Warning, /office/kbibtex-testset/isi/tougao.isi is written in an unsupported language. File is not indexed.
0001 FN ISI Export Format 0002 VR 1.0 0003 PT J 0004 AU Li, KY 0005 Yam, LH 0006 TI An optimization design method for large scale structures 0007 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 0008 DT Article 0009 ID STRESS CONSTRAINTS; PLATE STRUCTURES; APPROXIMATION 0010 AB In this paper, based on the mechanical property of structures, a 0011 unified approximate formula with high precision suitable to several 0012 structural response functions and various types of finite elements is 0013 introduced first and then an algorithm for solving the nonlinear 0014 program is presented. This algorithm is not only effective for solving 0015 the program constructed by this unified approximate formula, but also 0016 easy to change the objective function and to solve the structural 0017 optimization problem with dual or multiple objective functions. (C) 0018 1998 Elsevier Science S.A. All rights reserved. 0019 C1 Hong Kong Polytech Univ, Dept Engn Mech, Hong Kong, Peoples R China. 0020 Shanghai Univ, Dept Mech, Shanghai, Peoples R China. 0021 RP Yam, LH, Hong Kong Polytech Univ, Dept Engn Mech, Hong Kong, Peoples R 0022 China. 0023 CR ARORA JS, 1975, J STRUCT DIV ASCE, V101, P2063 0024 BERKE L, 1974, AGARD LS, V70, P1 0025 CANFIELD RA, 1990, AIAA J, V28, P1116 0026 FLEURY C, 1983, COMPUT METHODS APPL, V37, P249 0027 LI KY, 1980, P 1 NAT C COMP MECH, P146 0028 LI KY, 1991, COMPT STRUCT MECH AP, V2, P178 0029 PRASAD B, 1979, J STRUCT DIV ASCE, V105, P2376 0030 SCHMIT LA, 1960, P 2 ASCE C EL COMP P, P105 0031 SCHMIT LA, 1976, NASA CR, P2552 0032 STARNES JH, 1979, J AIRCRAFT, V16, P564 0033 STORAASLI OO, 1974, AIAA J, V12, P231 0034 VANDERPLAATS GN, 1989, AIAA J, V27, P352 0035 VANDERPLAATS GN, 1993, STRUCT OPTIMIZATION, V6, P1 0036 VENKAYYA VB, 1971, J COMPUT STRUCT, V1, P239 0037 ZHOU M, 1993, AIAA J, V31, P2169 0038 NR 15 0039 TC 1 0040 SN 0045-7825 0041 J9 COMPUT METHOD APPL MECH ENG 0042 JI Comput. Meth. Appl. Mech. Eng. 0043 PD NOV 2 0044 PY 1998 0045 VL 165 0046 IS 1-4 0047 BP 273 0048 EP 289 0049 PG 17 0050 SC Computer Science, Interdisciplinary Applications; Engineering, 0051 Mechanical; Mechanics 0052 GA 147XW 0053 UT ISI:000077523700014 0054 ER 0055 0056 PT J 0057 AU Zhang, NH 0058 Cheng, CJ 0059 TI Non-linear mathematical model of viscoelastic thin plates with its 0060 applications 0061 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 0062 DT Article 0063 ID SOLIDS 0064 AB In this paper, the nonlinear mathematical model of viscoelastic thin 0065 prates, by the Karman's hypotheses of a large deflection plate and the 0066 Boltzmann's law of anisotropic viscoelastic materials, is established 0067 by means of the Laplace transformation and its inverse as well as 0068 so-called structural functions introduced in this paper. In the case of 0069 isotropic viscoelastic materials with Poisson's ratio nu = const, the 0070 quasi-static problems of a simply-supported rectangular plate are 0071 investigated by using the Galerkin method for the spatial domain and 0072 two finite difference schemes for the temporal domain. It could be seen 0073 that the numerical method in this paper is Very simple and has some 0074 advantages, such as, smaller storage and quicker computational speed. 0075 (C) 1998 Elsevier Science S.A. All rights reserved. 0076 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China. 0077 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, 0078 Shanghai 200072, Peoples R China. 0079 CR ARGYRIS J, 1991, COMPUT METHOD APPL M, V88, P135 0080 CHEN Q, 1990, COMPUT STRUCT MECH A, V7, P27 0081 CHEN WH, 1993, COMPUT METHOD APPL M, V109, P315 0082 CHENG CJ, 1991, BUCKLING BIFURCATION 0083 CHRISTENSEN RM, 1982, THEORY VISCOELASTICI 0084 DUAN Q, 1995, J APPL MECH, V62, P407 0085 GAUL L, 1994, EUR J MECH A-SOLID, V13, P43 0086 LEITMAN JM, 1973, HDB PHYSIK, V6, P10 0087 LETALLEC P, 1993, COMPUT METHOD APPL M, V109, P233 0088 SCHANZ M, 1993, APPL MECH REV, V46, P41 0089 TIMOSHENKO S, 1959, THEORY PLATES SHELLS 0090 YANG TQ, 1990, THEORY VISCOELASTICI 0091 NR 12 0092 TC 3 0093 SN 0045-7825 0094 J9 COMPUT METHOD APPL MECH ENG 0095 JI Comput. Meth. Appl. Mech. Eng. 0096 PD NOV 2 0097 PY 1998 0098 VL 165 0099 IS 1-4 0100 BP 307 0101 EP 319 0102 PG 13 0103 SC Computer Science, Interdisciplinary Applications; Engineering, 0104 Mechanical; Mechanics 0105 GA 147XW 0106 UT ISI:000077523700016 0107 ER 0108 0109 PT J 0110 AU Yang, YZ 0111 Zhu, YL 0112 Li, QS 0113 Ma, XM 0114 Dong, YD 0115 Chuang, YZ 0116 TI A Mossbauer study on the mechanically alloyed Cu-Sn alloys 0117 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 0118 DT Article 0119 ID SYSTEM 0120 AB Nanocrystalline epsilon and eta electron compounds and supersaturated 0121 solid solution of the Cu-Sn system have been prepared by mechanical 0122 alloying of elemental Cu and Sn powders. The atomic alloying and 0123 microstructure of the resultant alloys have been investigated by XRD, 0124 DSC and Sn-119 Mossbauer spectroscopy. A little amount of SnO2 was 0125 detected by Mossbauer spectroscopy, although no trace of diffraction 0126 peaks occurred in the XRD pattern. Thus the spectra for all the milled 0127 samples should be fitted using two quadrupole-splitting doublets: one 0128 corresponding to SnO2, the other corresponding to the resultant alloys. 0129 The composition dependence of the hyperfine parameters has been 0130 extensively discussed and explained well with respect to oxidation, 0131 surface effect resulting from grain refinement, coordination 0132 environment asymmetry and distortion caused or/and induced by 0133 mechanical alloying. 0134 C1 Guangdong Univ Technol, Dept Mat Sci & Engn, Guangzhou 510090, Peoples R China. 0135 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China. 0136 Chinese Acad Sci, Inst Met Res, Shenyang 110015, Peoples R China. 0137 RP Yang, YZ, Guangdong Univ Technol, Dept Mat Sci & Engn, Guangzhou 0138 510090, Peoples R China. 0139 CR CAER GL, 1992, J MATER RES, V7, P1387 0140 CORTIE MB, 1991, METALL TRANS A, V22, P11 0141 GENTE C, 1993, PHYS REV B, V48, P13244 0142 KOCH CC, 1991, MAT SCI TECHNOLOGY, V15, P193 0143 MASSALSKI TB, 1987, BINARY ALLOY PHASE D, P965 0144 STEVENS JG, 1981, ISOMER SHIFT REFEREN 0145 YANG YZ, 1994, CHINESE SCI BULL, V39, P1956 0146 YANG YZ, 1994, J MATER SCI TECHNOL, V10, P135 0147 ZHANG DY, 1991, ACTA PHYS SINICA, V40, P844 0148 NR 9 0149 TC 1 0150 SN 1005-0302 0151 J9 J MATER SCI TECHNOL 0152 JI J. Mater. Sci. Technol. 0153 PD NOV 0154 PY 1998 0155 VL 14 0156 IS 6 0157 BP 551 0158 EP 554 0159 PG 4 0160 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 0161 Engineering 0162 GA 142QN 0163 UT ISI:000077212000013 0164 ER 0165 0166 PT J 0167 AU Ni, JS 0168 Wan, XJ 0169 Chen, WJ 0170 Wang, S 0171 TI Effect of mineral oil on the mechanical properties and fractographs of 0172 Fe-3(Al,Cr,Zr) intermetallic alloy 0173 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 0174 DT Article 0175 ID FE3AL-BASED ALLOYS; FRACTURE; FE3AL 0176 AB The effect of mineral oil on the mechanical properties and fractographs 0177 of Fe-3(Al,Cr,Zr) intermetallic alloy has been investigated. The 0178 results show that the tensile ductility of the Fe-3(Al,Cr,Zr) alloy 0179 tested in oil is comparable with the results obtained in oxygen and is 0180 insensitive to strain rate. The fracture mode of the Fe-3(Al,Cr,Zr) 0181 alloy, treated at 700 degrees C/1.5 h and tested in oil, is cleavage 0182 and with dimples in some areas. 0183 C1 Shanghai Univ, Inst Met & Mat Sci, Shanghai 200072, Peoples R China. 0184 RP Ni, JS, Shanghai Univ, Inst Met & Mat Sci, Shanghai 200072, Peoples R 0185 China. 0186 CR LIU CT, 1990, SCRIPTA METALL MATER, V24, P385 0187 MCKAMEY CG, 1991, J MATER RES, V6, P1779 0188 MORET M, 1994, SCRIPTA METALL MATER, V31, P1135 0189 NI JS, 1994, J SHANGHAI U TECHNOL, V15, P457 0190 QIAO L, 1996, METALL MATER TRANS A, V27, P3949 0191 ZHU JH, 1995, SCRIPTA METALL MATER, V32, P1399 0192 NR 6 0193 TC 0 0194 SN 1005-0302 0195 J9 J MATER SCI TECHNOL 0196 JI J. Mater. Sci. Technol. 0197 PD NOV 0198 PY 1998 0199 VL 14 0200 IS 6 0201 BP 564 0202 EP 566 0203 PG 3 0204 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 0205 Engineering 0206 GA 142QN 0207 UT ISI:000077212000016 0208 ER 0209 0210 PT J 0211 AU Wang, NN 0212 Wei, JM 0213 Cai, XS 0214 Zhang, ZW 0215 Zheng, G 0216 Yu, XH 0217 TI Optical measurement of wet steam in turbines 0218 SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE 0219 ASME 0220 DT Article 0221 AB The wetness fraction of steam causes dangerous erosion of turbine 0222 blades and other components, and decreases efficiency of stages. The 0223 instrumentation of wet steam has, therefore, attracted growing interest 0224 from the point of safety and economical operation of power stations. 0225 Based on the light scattering technique, a method is presented that is 0226 capable of measuring the wetness fraction of steam, the mean water 0227 droplet diameter as well as their full size distribution. An optical 0228 probe has been constructed that can be used in the turbines in 0229 operation. Its main characteristic and features are discussed in this 0230 paper. Experimental results in a 200 MW condensing steam turbine are 0231 also given. 0232 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China. 0233 RP Wang, NN, Shanghai Univ Sci & Technol, Coll Power Engn, 516 Jun Gong 0234 Rd, Shanghai 200093, Peoples R China. 0235 CR ACCORNERO A, 1987, AEROTHERMODYNAMIC LO, P185 0236 BARBACCI P, 1991, P INT C MULT FLOW TS, P132 0237 CAI XS, 1991, THESIS U SHANGHAI SC 0238 CAI XS, 1994, P 3 INT S MULT FLOW, P432 0239 KASPRZYK S, 1964, BRENNSTUFF WARME KRA, V16, P350 0240 KLEITZ A, 1991, P EUR C TURB LOND, P176 0241 MOORE MJ, 1987, AEROTHERMODYNAMIC LO 0242 RENNER M, 1994, P 12 S MEAS TECHN TR, P171 0243 ROEGENER H, 1960, BWK, V12, P220 0244 WALTER PT, 1985, JOINT ASME AEEE POW 0245 WANG NN, 1982, THESIS U STUTTGART G 0246 WANG NN, 1994, PART PART SYST CHAR, V11, P309 0247 WILLIAMS GH, 1978, P I MECH ENG, V190 0248 NR 13 0249 TC 0 0250 SN 0742-4795 0251 J9 J ENG GAS TURB POWER-T ASME 0252 JI J. Eng. Gas. Turbines Power-Trans. ASME 0253 PD OCT 0254 PY 1998 0255 VL 120 0256 IS 4 0257 BP 867 0258 EP 871 0259 PG 5 0260 SC Engineering, Mechanical 0261 GA 142EH 0262 UT ISI:000077186600026 0263 ER 0264 0265 PT J 0266 AU Wang, ZJ 0267 Ying, TL 0268 Wu, XX 0269 Qi, DY 0270 TI Study on a horseradish peroxidase biosensor based on N-methylene 0271 phenazine as a mediator 0272 SO ACTA BIOCHIMICA ET BIOPHYSICA SINICA 0273 DT Article 0274 DE biosensor; N-methyl phenazine; horseradish peroxidase; hydrogen peroxide 0275 ID AMPEROMETRIC ENZYME ELECTRODES; GLUCOSE-OXIDASE; GRAPHITE 0276 AB Horseradish peroxidase biosensors highly sensitive to hydrogen peroxide 0277 were constructed with N-methyl phenazine as mediator and 0278 coimmobilization of N-methyl phenazine, bovine serum albumin and 0279 glutaraldehyde. The sensor possesses perfect stability and high 0280 sensitivity, and its linear range is from 1 x 10(-6) to 5 x 10(-4) 0281 mol/L with the response time of less than 10 s. 0282 C1 Shanghai Fisheries Univ, Coll Food, Shanghai 200090, Peoples R China. 0283 Shanghai Univ, Shanghai 200072, Peoples R China. 0284 CR ALBERY WJ, 1985, J ELECTROANAL CH INF, V194, P211 0285 ALBERY WJ, 1985, J ELECTROANAL CH INF, V194, P223 0286 ALBERY WJ, 1987, J ELECTROANAL CH INF, V218, P127 0287 BIFULCO L, 1994, ANAL LETT, V27, P1443 0288 KATAKIS I, 1994, J AM CHEM SOC, V116, P3617 0289 KULYS J, 1990, BIOELECTROCH BIOENER, V24, P305 0290 MULCHANDANI A, 1995, ANAL CHEM, V67, P94 0291 PISHKO MV, 1990, ANGEW CHEM INT EDIT, V29, P82 0292 RUZGAS T, 1995, J ELECTROANAL CHEM, V391, P41 0293 SCOTT DL, 1992, J ELECTROANAL CHEM, V341, P307 0294 TATSUMA T, 1992, ANAL CHEM, V64, P1183 0295 TORSTENSSON A, 1981, J ELECTROANAL CHEM, V148, P130 0296 NR 12 0297 TC 0 0298 SN 0582-9879 0299 J9 ACTA BIOCHIM BIOPHYS SINICA 0300 JI Acta Biochim. Biophys. Sin. 0301 PD NOV 0302 PY 1998 0303 VL 30 0304 IS 6 0305 BP 641 0306 EP 643 0307 PG 3 0308 SC Biochemistry & Molecular Biology; Biophysics 0309 GA 141UW 0310 UT ISI:000077163500022 0311 ER 0312 0313 PT J 0314 AU Wong, PL 0315 Huang, P 0316 Wang, W 0317 Zhang, Z 0318 TI Effect of geometry change of rough point contact due to lubricated 0319 sliding wear on lubrication 0320 SO TRIBOLOGY LETTERS 0321 DT Article 0322 DE wear; roughness; micro-EHL 0323 ID THERMAL-ELASTOHYDRODYNAMIC LUBRICATION; RUNNING-IN; TRACTION; SURFACES; 0324 MODEL; STEEL 0325 AB The geometry change of a single asperity due to lubricated wear was 0326 studied by an experimental simulation with a ball-on-disc set up. The 0327 wear leads to the formation of a tilted section at the tip of the ball, 0328 which is proved to be due to the presence of oil during the process. 0329 The effect of the geometry change of rough surface contacts due to wear 0330 was examined by a micro-EHL analysis. A non-Newtonian visco-plastic 0331 fluid model which includes the effect of a limiting sheer strength was 0332 used. 0333 C1 City Univ Hong Kong, Mfg Engn & Engn Management Dept, Hong Kong, Hong Kong. 0334 S China Univ Technol, Dept Engn Mech, Guangzhou, Peoples R China. 0335 Shanghai Univ, Bearing Res Ctr, Shanghai, Peoples R China. 0336 RP Wong, PL, City Univ Hong Kong, Mfg Engn & Engn Management Dept, Hong 0337 Kong, Hong Kong. 0338 CR CARSLAW HS, 1959, CONDUCTION HEAT SOLI 0339 CHANG L, 1992, T ASME, V114, P186 0340 DOWSON D, 1977, ELASTO HYDRODYNAMIC 0341 HSIAO HS, 1992, T ASME, V114, P540 0342 HSIAO HS, 1994, J TRIBOL-T ASME, V116, P559 0343 HU YZ, 1991, J TRIBOL-T ASME, V113, P499 0344 HUANG P, 1994, ACTA TRIBOLOGICA, V2, P23 0345 KWEH CC, 1998, T ASME, V110, P421 0346 PATCHING MJ, 1996, TRIBOL T, V39, P595 0347 PATIR N, 1978, T ASME, V100, P12 0348 PAWLUS P, 1997, WEAR, V209, P69 0349 ROELANDS CJA, 1966, THESIS TU DELFT DELF 0350 SUZUKI M, 1987, J TRIBOL-T ASME, V109, P587 0351 WANG FX, 1991, J TRIBOL-T ASME, V113, P755 0352 NR 14 0353 TC 3 0354 SN 1023-8883 0355 J9 TRIBOL LETT 0356 JI Tribol. Lett. 0357 PY 1998 0358 VL 5 0359 IS 4 0360 BP 265 0361 EP 274 0362 PG 10 0363 SC Engineering, Chemical; Engineering, Mechanical 0364 GA 138ZF 0365 UT ISI:000077002400003 0366 ER 0367 0368 PT J 0369 AU Xu, KY 0370 Cheng, CJ 0371 TI The subharmonic bifurcation of a viscoelastic circular cylindrical shell 0372 SO NONLINEAR DYNAMICS 0373 DT Article 0374 DE viscoelasticity; circular cylindrical shell; resonance; subharmonic 0375 bifurcation 0376 AB In this paper the nonlinear dynamic behavior of a viscoelastic circular 0377 cylindrical shell under a harmonic excitation applied at both ends is 0378 studied. The modified Flugge partial differential equations of motion 0379 are reduced to a system of finite degrees of freedom using the Galerkin 0380 method. The equations are solved by the Liapunov-Schmidt reduction 0381 procedure. In order to study 1/2 and 1/4 subharmonic parametric 0382 resonance of the shell, the transition sets in parameter plane and 0383 bifurcation diagrams are plotted for a number of situations. Results 0384 indicate that, for certain static loads, the shell may display jumps 0385 due to the presence of dynamic periodic load with small amplitude. 0386 Additionally, different physical situations are identified in which 0387 periodic oscillating phenomena can be observed, and where 1/4 0388 subharmonic parametric resonance is simpler than the 1/2-one. 0389 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 0390 RP Xu, KY, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd, 0391 Shanghai 200072, Peoples R China. 0392 CR BELIAEV NM, 1924, ENG CONSTRUCTIONS ST, P149 0393 BOLOTIN VV, 1964, DYNAMIC STABILITY EL 0394 CHOW SN, 1982, METHODS BIFURCATION 0395 EVENSEN HA, 1967, AIAA J, V5, P969 0396 GOLUBISKY M, 1985, SINGULARITIES GROUPS, V1 0397 GURGOZE M, 1985, J SOUND VIB, V102, P415 0398 HUANG NC, 1972, INT J SOLIDS STRUCT, V8, P315 0399 HUANG NC, 1982, STABILITY MECH CONTI, P215 0400 IWATSUBO T, 1972, J SOUND VIBRATION, V23, P245 0401 KOUNADIS AN, 1977, J STRUCTURAL MECHANI, V5, P383 0402 SIMITSES GJ, 1987, APPL MECH REV, V40, P1403 0403 XU KY, 1995, MMM, V6, P247 0404 XU KY, 1996, THESIS SHANGHAI U 0405 YAMAKI N, 1984, ELASTIC STABILITY CI 0406 YAO JC, 1963, AIAA J, V1, P1391 0407 YAO JC, 1965, J APPL MECH, V32, P109 0408 ZHU YY, 1996, ACTA MECH SOLIDA SIN, V17, P257 0409 NR 17 0410 TC 0 0411 SN 0924-090X 0412 J9 NONLINEAR DYNAMICS 0413 JI Nonlinear Dyn. 0414 PD OCT 0415 PY 1998 0416 VL 17 0417 IS 2 0418 BP 159 0419 EP 171 0420 PG 13 0421 SC Engineering, Mechanical; Mechanics 0422 GA 138AX 0423 UT ISI:000076950200004 0424 ER 0425 0426 PT J 0427 AU Wang, YF 0428 Wang, Q 0429 Bao, JS 0430 TI Nonlinear TE surface waves on an antiferromagnetic crystal 0431 SO JOURNAL OF APPLIED PHYSICS 0432 DT Article 0433 AB A study of nonlinear magnetodynamic waves in antiferromagnetic 0434 materials is presented. Attention is restricted to an exact theory of 0435 electromagnetic waves along the single interface between a linear 0436 dielectric material and an antiferromagnetic crystal. The nonlinear 0437 motion equation for the TE waves is converted to the Bernoulli 0438 differential equation and its exact solution is found in a form of 0439 inverse function, and the exact dispersion relation is obtained. The 0440 necessary condition for the existence of the nonlinear TE surface wave 0441 is mu(x)(L) > 0. The dispersion equation and the frequency regime are 0442 analyzed. The theoretical results show that the peak position of the 0443 magnetic field is not a function of the effective index and is located 0444 steadily at the surface of the crystal, and in some cases one guided 0445 power corresponds to two different effective refraction indexes showing 0446 the bistable property of the waves. (C) 1998 American Institute of 0447 Physics. [S0021-8979(98)01823-4]. 0448 C1 Shanghai Maritime Univ, Dept Elect Engn, Shanghai 200135, Peoples R China. 0449 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 0450 RP Wang, YF, Shanghai Maritime Univ, Dept Elect Engn, Shanghai 200135, 0451 Peoples R China. 0452 CR ALMEIDA NS, 1987, PHYS REV B, V36, P2015 0453 BOARDMAN AD, 1986, IEEE J QUANTUM ELECT, V22, P319 0454 BOARDMAN AD, 1990, PHYS REV B, V41, P717 0455 BOARDMAN AD, 1993, PHYS REV B, V48, P13602 0456 LAX B, 1962, MICROWAVE FERRIMAGNE, CH6 0457 MIHALACHE D, 1987, OPT LETT, V12, P187 0458 VUKOVICH S, 1990, SOV PHYS JETP, V71, P964 0459 NR 7 0460 TC 4 0461 SN 0021-8979 0462 J9 J APPL PHYS 0463 JI J. Appl. Phys. 0464 PD DEC 1 0465 PY 1998 0466 VL 84 0467 IS 11 0468 BP 6233 0469 EP 6238 0470 PG 6 0471 SC Physics, Applied 0472 GA 137RN 0473 UT ISI:000076930100060 0474 ER 0475 0476 PT J 0477 AU Gan, JP 0478 Xu, DM 0479 TI Technique for optically tuning dielectric resonators 0480 SO ELECTRONICS LETTERS 0481 DT Article 0482 AB A novel technique is presented for optically tuning dielectric 0483 resonators at microwave frequencies. The resonator is tuned by coupling 0484 it to two sections of microstrip tuning line which are connected by a 0485 photoconductor patch. The resonant frequency of the dielectric 0486 resonator is changed when the photoconductor is illuminated. With 200 0487 mW optical power, an 86 MHz tuning range has been achieved, which is 0488 the best result ever reported. 0489 C1 Shanghai Univ, Coll Commun, Shanghai 201800, Peoples R China. 0490 RP Gan, JP, Shanghai Univ, Coll Commun, 20 Chengzhong Rd, Shanghai 201800, 0491 Peoples R China. 0492 CR BUER KV, 1995, IEEE T MICROW THEORY, V43, P36 0493 GU ML, 1997, MICR C CHIN, P101 0494 HERCZFELD PR, 1985, RCA REV, V46, P528 0495 KAJFEZ D, 1986, DIELECTRIC RESONATOR 0496 RAMO S, 1984, FIELDS WAVES COMMUNI 0497 SHEN Y, 1993, IEEE T MICROW THEORY, V41, P1005 0498 XU DM, 1990, APMC 90 0499 NR 7 0500 TC 0 0501 SN 0013-5194 0502 J9 ELECTRON LETT 0503 JI Electron. Lett. 0504 PD OCT 29 0505 PY 1998 0506 VL 34 0507 IS 22 0508 BP 2137 0509 EP 2138 0510 PG 2 0511 SC Engineering, Electrical & Electronic 0512 GA 138NL 0513 UT ISI:000076978600045 0514 ER 0515 0516 PT J 0517 AU Feng, SS 0518 Wang, B 0519 Qiu, XJ 0520 TI Bosonization to order 1/m by duality in three dimensions 0521 SO MODERN PHYSICS LETTERS A 0522 DT Article 0523 ID WAVE FUNCTIONALS; FIELD-THEORIES 0524 AB The recently discovered bosonization via duality transform can be used 0525 in arbitrary space-time dimensions. It is stressed that because of the 0526 gauge invariance of the resulting bosonic model for D greater than or 0527 equal to 3, the generating functional is not well-defined. This 0528 weakness can be eliminated by decomposing the bosonic field into 0529 transverse and longitudinal parts and only the transverse part is 0530 relevant. In this way the massive Thirring model in (2 + 1) dimensions 0531 is bosonized. It is found that the current-current coupling bosonizes 0532 into a Maxwell term. 0533 C1 CCAST, World Lab, Beijing 100080, Peoples R China. 0534 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 0535 Shanghai Normal Univ, Ctr String Theory, Shanghai 200234, Peoples R China. 0536 RP Qiu, XJ, CCAST, World Lab, POB 8730, Beijing 100080, Peoples R China. 0537 EM xjqiu@fudan.ac.cn 0538 CR ABDALLA E, 1991, NONPERTURBATIVE METH 0539 BANERJEE R, 1996, NUCL PHYS B, V465, P157 0540 BURGESS CP, 1994, NUCL PHYS B, V421, P373 0541 BURGESS CP, 1994, PHYS LETT B, V329, P457 0542 BURGESS CP, 1994, PHYS LETT B, V336, P18 0543 CASTRONETO AH, 1994, PHYS REV B, V49, P10877 0544 DESER S, 1988, PHYS REV LETT, V61, P1541 0545 FENG SS, 1995, INT J THEOR PHYS, V34, P1827 0546 FRADKIN E, 1991, FIELD THEORIES CONDE 0547 FRADKIN E, 1993, NUCL PHYS B, V389, P587 0548 FRADKIN E, 1993, NUCL PHYS B, V392, P667 0549 FRADKIN E, 1994, PHYS LETT B, V338, P253 0550 FROHLICH J, 1997, PHYS REV B, V55, P6788 0551 ITOH T, HEPTH9411201 0552 LEGUILLOU JC, 1997, NPB PREPRINT 0553 LOPEZ A, 1992, PHYS REV LETT, V69, P2126 0554 SCHAPOSNIK FA, 1995, PHYS LETT B, V356, P39 0555 TSVELIK AM, 1995, QUANTUM FIELD THEORY 0556 NR 18 0557 TC 1 0558 SN 0217-7323 0559 J9 MOD PHYS LETT A 0560 JI Mod. Phys. Lett. A 0561 PD SEP 21 0562 PY 1998 0563 VL 13 0564 IS 29 0565 BP 2393 0566 EP 2398 0567 PG 6 0568 SC Physics, Mathematical; Physics, Nuclear; Physics, Particles & Fields 0569 GA 133FZ 0570 UT ISI:000076677300009 0571 ER 0572 0573 PT J 0574 AU Ye, ZM 0575 Lu, JM 0576 TI Iterative analytical solution of nonlinear analysis of shallow 0577 spherical shell with computer algebra systems - MapleV 0578 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 0579 DT Article 0580 ID SOFTWARE 0581 AB This paper is concerned with the application of Computer algebra 0582 System-MapleV to the nonlinear analysis of shallow spherical shells. In 0583 the present paper, the nonlinear equations of the shell to the 0584 nonlinear problem could be solved by using CASes method. Detailed 0585 high-order iterative solution expressions and analytical results for 0586 the third iteration are given in CASes forms. The numerical results 0587 show that the solutions of this paper contain other cases where the 0588 solutions were the second iteration. The effects of various inner 0589 radius parameters have been investigated in detail. The results of the 0590 third iterative expressions are obtained firstly. It has been shown 0591 that the adoption of CASes method would be useful in nonlinear 0592 problems. (C) 1998 Elsevier Science S.A. All rights reserved. 0593 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 0594 RP Ye, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yan Chang 0595 Rd, Shanghai 200072, Peoples R China. 0596 CR *MAPLE, 1992, SYMB COMP GROUP 0597 FOSTER KR, 1989, SCIENCE, V243, P679 0598 HANSEN P, 1991, MATH PROGRAM, V52, P227 0599 IOAKIMIDIS NI, 1991, ENG FRACT MECH, V38, P95 0600 IOAKIMIDIS NI, 1992, COMPUT METHOD APPL M, V94, P229 0601 IOAKIMIDIS NI, 1993, COMPUT STRUCT, V47, P233 0602 IOAKIMIDIS NI, 1993, INT J COMPUT MATH, V49, P75 0603 IOAKIMIDIS NI, 1994, COMPUT STRUCT, V53, P63 0604 YE Z, 1997, MECH PRACTICE, V19, P1 0605 YE ZM, 1990, J APPL MECH-T ASME, V57, P1026 0606 YE ZM, 1993, MECH RES COMMUN, V20, P83 0607 YE ZM, 1995, COMPUT STRUCT, V55, P325 0608 YE ZM, 1997, J SOUND VIB, V202, P303 0609 NR 13 0610 TC 1 0611 SN 0045-7825 0612 J9 COMPUT METHOD APPL MECH ENG 0613 JI Comput. Meth. Appl. Mech. Eng. 0614 PD SEP 21 0615 PY 1998 0616 VL 163 0617 IS 1-4 0618 BP 383 0619 EP 394 0620 PG 12 0621 SC Computer Science, Interdisciplinary Applications; Engineering, 0622 Mechanical; Mechanics 0623 GA 134JR 0624 UT ISI:000076740200025 0625 ER 0626 0627 PT S 0628 AU Cao, Q 0629 Hua, TC 0630 TI Effects on rapid cooling of small samples in quenching 0631 SO BIOTRANSPORT: HEAT AND MASS TRANSFER IN LIVING SYSTEMS 0632 SE ANNALS OF THE NEW YORK ACADEMY OF SCIENCES 0633 DT Article 0634 ID CURVES; RATES 0635 AB Rapid cooling of small samples is necessary both to cryofixation for 0636 electron microscopy and to vitrification for cryopreservation, Several 0637 effects on the cooling rates of small samples quenched into liquid 0638 nitrogen were studied, including the diameter of samples, the 0639 subcooling of liquid nitrogen, the quenching speed, and the quenching 0640 distance, The heat flux is up to 1.4 X 10(6) W/m(2); the cooling rate 0641 is also up to 8200 K/s at the CRF point of boiling curves for sphere of 0642 diameter 0.287 mm quenching into subcooled liquid nitrogen, It is also 0643 found that if the time of sample moving inside the liquid nitrogen is 0644 not longer than the time required for forming stable vapor in the 0645 liquid, the quenching boiling heat transfer is not influenced by the 0646 quenching speed, Several equations for calculating heat flux of samples 0647 are also presented. 0648 C1 Shanghai Univ Sci & Technol, Inst Refrigerat & Cryogen Engn, Shanghai 200093, Peoples R China. 0649 RP Cao, Q, Shanghai Marine Equipment Res Inst, Shanghai 200031, Peoples R 0650 China. 0651 CR BALD WB, 1987, QUANTITATIVE CRYOFIX 0652 CAO Q, 1998, P ICCR 98 HANGZH CHI, P117 0653 DED JS, 1972, AICHE J, V18, P337 0654 ELKASSABGI Y, 1988, ASME, V110, P479 0655 FAHY GM, 1988, LOW TEMPERATURE BIOT, P113 0656 HAN RH, 1995, CRYOLETT, V16, P157 0657 HENDRICKS RC, 1969, TND5124 NASA 0658 RYAN KP, 1985, J MICROSC-OXFORD, V140, P47 0659 RYAN KP, 1987, J MICROSC-OXFORD, V145, P89 0660 TAJIMA M, 1990, JSME, V33, P340 0661 WESTWATER JW, 1986, IND ENG CHEM FUND, V25, P685 0662 YU GX, 1991, THESIS SHANGHAI I ME 0663 ZUBER N, 1958, T AM SOC MECH ENG, V80, P711 0664 ZUBER N, 1961, P 2 INT HEAT TRANSF, P27 0665 ZUBER N, 1963, ASME NEW YORK, V27, P230 0666 NR 15 0667 TC 0 0668 SN 0077-8923 0669 J9 ANN N Y ACAD SCI 0670 JI Ann.NY Acad.Sci. 0671 PY 1998 0672 VL 858 0673 BP 262 0674 EP 269 0675 PG 8 0676 GA BL74B 0677 UT ISI:000076515800026 0678 ER 0679 0680 PT S 0681 AU Zhao, H 0682 Hua, TC 0683 Zhou, YZ 0684 Wang, QF 0685 Yang, Y 0686 Bao, LL 0687 TI Cryopreservation and transplantation of dog trachea 0688 SO BIOTRANSPORT: HEAT AND MASS TRANSFER IN LIVING SYSTEMS 0689 SE ANNALS OF THE NEW YORK ACADEMY OF SCIENCES 0690 DT Article 0691 ID CANINE 0692 AB In order to meet the need of trachea transplantation for clinical 0693 application, it is important to research the methods of 0694 cryopreservation and transplantation of trachea. By the thermal 0695 analyses and thermal control techniques, combined with electron 0696 microscopy, the effects of cooling and warming rates with different 0697 concentrations of cryoprotective agents were studied. Also the 0698 transplantation technique was studied, eighty five percent ( 17/20) of 0699 the dogs were survival after the transplantation with cryopreserved 0700 tracheas. 0701 C1 Shanghai Chest Hosp, Dept Gen Thorac Surg, Shanghai 200030, Peoples R China. 0702 Shanghai Univ Sci & Technol, Cryobiol Engn Lab, Shanghai 200093, Peoples R China. 0703 RP Zhao, H, Shanghai Chest Hosp, Dept Gen Thorac Surg, Shanghai 200030, 0704 Peoples R China. 0705 CR BATESON EAJ, 1994, CRYOLETT, V15, P15 0706 CHEN RT, 1988, CRYOBIOLOGY, V25, P549 0707 DESCHAMPS C, 1989, ANN THORAC SURG, V47, P208 0708 HUA TC, 1991, J BIOMEDICAL ENG, V10, P118 0709 HUA TC, 1994, CRYOBIOMEDICAL TECHN 0710 LETANG E, 1990, ANN THROAC SURG, V49, P951 0711 YOKOMISE H, 1994, J THORAC CARDIOV SUR, V107, P1391 0712 NR 7 0713 TC 0 0714 SN 0077-8923 0715 J9 ANN N Y ACAD SCI 0716 JI Ann.NY Acad.Sci. 0717 PY 1998 0718 VL 858 0719 BP 270 0720 EP 275 0721 PG 6 0722 GA BL74B 0723 UT ISI:000076515800027 0724 ER 0725 0726 PT J 0727 AU Zhu, XH 0728 Xu, J 0729 Meng, ZY 0730 TI Ionic interdiffusion of functionally gradient piezoelectric materials 0731 in PNN/PZT system 0732 SO JOURNAL OF INORGANIC MATERIALS 0733 DT Article 0734 DE ionic interdiffusion; compositional distribution; piezoelectric 0735 materials; PNN/PZT system; functionally gradient materials 0736 ID ACTUATOR 0737 AB The ionic interdiffusions for Nb5+, Ni2+, Zr4+ and Ti4+ ions in the 0738 PNN/PZT functionally gradient piezoelectric materials were investigated 0739 as a function of diffusion temperature and time respectively. The ionic 0740 compositional distribution profiles were examined by electron probe 0741 microbeam analysis (EPMA), from which the thickness of the 0742 interdiffusion layers were determined. Based on a diffusion model of 0743 the overlapped diffusion solute from thin slub, the numerical 0744 simulation of the ionic concentration distributions for Nb5+, Ni2+, 0745 Zr4+ and Ti4+ ions was carried out by computer, which was in agreement 0746 with the EPMA experimental result. The ionic diffusivities and apparent 0747 activation energies were estimated, and discussed. 0748 C1 Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China. 0749 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 0750 RP Zhu, XH, Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 0751 210093, Peoples R China. 0752 CR CHAWIA KK, 1995, CERAMIC MATRIX COMPO 0753 SHEWMON PG, 1963, DIFFUSION SOLIDS, CH1 0754 TAKAHASHI H, 1990, JSME INT J A-SOLID M, V33, P281 0755 ZHU XH, 1995, J MATER SCI LETT, V14, P516 0756 ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169 0757 NR 5 0758 TC 0 0759 SN 1000-324X 0760 J9 J INORG MATER 0761 JI J. Inorg. Mater. 0762 PD APR 0763 PY 1998 0764 VL 13 0765 IS 2 0766 BP 181 0767 EP 188 0768 PG 8 0769 SC Materials Science, Ceramics 0770 GA 127AA 0771 UT ISI:000076326500010 0772 ER 0773 0774 PT J 0775 AU Jin, Y 0776 Jin, L 0777 Jiang, XY 0778 Zhang, ZL 0779 Xu, SC 0780 TI Two various element doped ZnS cluster 0781 SO JOURNAL OF INORGANIC MATERIALS 0782 DT Article 0783 DE cluster; dope; quantum size effect; time decay 0784 AB Manganese-doped zinc sulfide and copper-doped zinc sulfide were 0785 prepared by a chemical precipitation method. The structures and sizes 0786 of these clusters were detected by X-ray diffraction. Photoluminescence 0787 measurements demonstrate some changes in optical property due to 0788 quantum size effect, such as excitation blue shift with size decreasing 0789 and faster decay time. The mechanisms of various luminescent centers in 0790 zinc sulfide cluster were discussed. 0791 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 0792 RP Jin, Y, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R 0793 China. 0794 CR BHARGAVA RN, 1994, J LUMIN, V60, P275 0795 BHARGAVA RN, 1994, PHYS REV LETT, V72, P416 0796 BRUS L, 1986, J PHYS CHEM-US, V90, P2555 0797 KHOSRAVI AA, 1995, APPL PHYS LETT, V67, P2702 0798 NR 4 0799 TC 0 0800 SN 1000-324X 0801 J9 J INORG MATER 0802 JI J. Inorg. Mater. 0803 PD APR 0804 PY 1998 0805 VL 13 0806 IS 2 0807 BP 225 0808 EP 228 0809 PG 4 0810 SC Materials Science, Ceramics 0811 GA 127AA 0812 UT ISI:000076326500017 0813 ER 0814 0815 PT J 0816 AU Li, J 0817 Guo, BY 0818 Cao, WM 0819 TI Fourier-Chebyshev pseudospectral method for three-dimensional vorticity 0820 equation 0821 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 0822 DT Article 0823 DE pseudospectral method; vorticity equation; error estimates 0824 ID FINITE-ELEMENT; FLOW 0825 AB In this paper, a Fourier-Chebyshev pseudospectral scheme with mixed 0826 filtering is proposed for three-dimensional vorticity equation. The 0827 generalized stability and convergence are proved. The numerical results 0828 show the advantages of this method. 0829 C1 Chinese Acad Sci, ICMSEC, State Key Lab Sci & Engn Comp, Beijing 100080, Peoples R China. 0830 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 0831 CR CANUTO C, 1984, NUMER MATH, V44, P201 0832 CANUTO C, 1988, SPECTRAL METHODS FLU 0833 GUO BY, UNPUB GEN BOCHNER SU 0834 GUO BY, 1988, DIFFERENCE METHODS P 0835 GUO BY, 1989, J COMPUT PHYS, V84, P259 0836 GUO BY, 1990, COMPUTATIONAL TECHNI, P253 0837 GUO BY, 1991, SIAM J NUMER ANAL, V28, P113 0838 GUO BY, 1992, J COMPUT PHYS, V101, P207 0839 GUO BY, 1993, NUMER MATH, V66, P329 0840 GUO BY, 1995, ACTA MATH APPL SINIC, V11, P94 0841 KUO PY, 1983, J COMPUT MATH, V1, P353 0842 LIONS JL, 1969, QUELQUES METHODES RE 0843 MA HP, 1986, J COMPUT PHYS, V65, P120 0844 MA HP, 1988, J COMPUT MATH, V6, P48 0845 MACARAEG MG, 1982, J COMPUT PHYS, V62, P297 0846 MURDOK JW, 860434 AIAA 0847 VANDEVEN H, 1987, F56 CNRS CTR MATH AP 0848 WOODWARD P, 1984, J COMPUT PHYS, V54, P115 0849 NR 18 0850 TC 0 0851 SN 0254-9409 0852 J9 J COMPUT MATH 0853 JI J. Comput. Math. 0854 PD SEP 0855 PY 1998 0856 VL 16 0857 IS 5 0858 BP 417 0859 EP 436 0860 PG 20 0861 SC Mathematics, Applied; Mathematics 0862 GA 126AX 0863 UT ISI:000076271500004 0864 ER 0865 0866 PT J 0867 AU Lu, MG 0868 Cai, YC 0869 TI Chen's theorem in short intervals 0870 SO CHINESE SCIENCE BULLETIN 0871 DT Letter 0872 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 0873 Shandong Normal Univ, Dept Math, Jinan 250014, Peoples R China. 0874 RP Lu, MG, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 0875 CR CHEN JR, 1966, KEXUE TONGBAO, V17, P385 0876 CHEN JR, 1973, SCI SINICA, V16, P157 0877 CHEN JR, 1978, SCI SINICA, V21, P421 0878 SALERNO S, 1993, NOTE MAT, V13, P309 0879 WU J, 1993, Q J MATH, V44, P109 0880 WU J, 1994, J LOND MATH SOC, V49, P61 0881 NR 6 0882 TC 0 0883 SN 1001-6538 0884 J9 CHIN SCI BULL 0885 JI Chin. Sci. Bull. 0886 PD AUG 0887 PY 1998 0888 VL 43 0889 IS 16 0890 BP 1401 0891 EP 1403 0892 PG 3 0893 SC Multidisciplinary Sciences 0894 GA 126CQ 0895 UT ISI:000076275700020 0896 ER 0897 0898 PT J 0899 AU Jiang, WZ 0900 Qiu, XJ 0901 TI Medium effects on dynamical properties of the fermion and mesons in the 0902 gauged Nambu-Jona-Lasinio model 0903 SO CHINESE PHYSICS LETTERS 0904 DT Article 0905 ID ADDITIONAL 4-FERMION INTERACTION; THERMODYNAMICS 0906 AB The gap equation for the fermion in the gauged Nambu-Jona-Lasinio (NJL) 0907 model is derived in nuclear medium with flavors N-f = 2. Based on the 0908 gap equation, the fermion mass in nuclear medium is obtained and used 0909 to determine the properties of the scalar and pseudoscalar mesons. In 0910 contrast to the NJL model, the gluonic part has the one-fourth 0911 contribution to the fermion mass. The critical density with the chiral 0912 symmetry restored is about 6 rho(0). 0913 C1 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China. 0914 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 0915 RP Jiang, WZ, Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, 0916 Peoples R China. 0917 CR APPELQUIST T, 1988, P 12 J HOPK WORKSH C, P197 0918 BERNARD V, 1987, PHYS REV D, V36, P818 0919 BERNARD V, 1988, NUCL PHYS A, V489, P647 0920 CHRISTOV CV, 1990, NUCL PHYS A, V510, P689 0921 CUGNON J, 1996, NUCL PHYS A, V598, P515 0922 HENLEY EM, 1990, NUCL PHYS A, V513, P667 0923 JIANG WZ, UNPUB COVARIANT GAP 0924 KONDO K, 1993, MOD PHYS LETT A, V8, P2859 0925 KONDO K, 1993, PROG THEOR PHYS, V89, P1249 0926 KONDO KI, 1991, MOD PHYS LETT A, V6, P3385 0927 LEUNG CN, 1986, NUCL PHYS B, V273, P649 0928 MIRANSKY VA, 1989, MOD PHYS LETT A, V4, P129 0929 MIRANSKY VA, 1989, MOD PHYS LETT A, V4, P1409 0930 NAMBU Y, 1961, PHYS REV, V122, P345 0931 ZHUANG P, 1994, NUCL PHYS A, V576, P525 0932 NR 15 0933 TC 0 0934 SN 0256-307X 0935 J9 CHIN PHYS LETT 0936 JI Chin. Phys. Lett. 0937 PY 1998 0938 VL 15 0939 IS 9 0940 BP 639 0941 EP 641 0942 PG 3 0943 SC Physics, Multidisciplinary 0944 GA 126XR 0945 UT ISI:000076320700006 0946 ER 0947 0948 PT J 0949 AU Gao, SC 0950 Zhong, SS 0951 TI Dual-polarized microstrip antenna array with high isolation fed by 0952 coplanar network 0953 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 0954 DT Article 0955 DE dual polarization; microstrip antenna array; coplanar network 0956 AB Serial corner feeding of a square patch with two ports is proposed to 0957 realize dual-polarized operation. A novel coplanar feedline network is 0958 also presented for the array. A method of analysis is developed. The 0959 measured isolation is less than -40 dB at 6.07 GHz. The array has a 0960 small size and is easy to be combined further to form a larger coplanar 0961 array (C) 1998 John Wiley & Sons, Inc. 0962 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China. 0963 RP Gao, SC, Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R 0964 China. 0965 CR DANIEL JP, 1985, P ISAP 85, P121 0966 DUTOLT LJ, 1987, IEEE ANTENNAS PROPAG, V2, P810 0967 GUPT KC, 1987, IEEE AP S INT S ANT, V2, P786 0968 GUPTA KC, 1981, COMPUTER AIDED DESIG 0969 JAMES JR, 1981, MICROSTRIP ANTENNA T, P166 0970 LO YT, 1988, ANTENNA HDB THEORY 0971 NR 6 0972 TC 14 0973 SN 0895-2477 0974 J9 MICROWAVE OPT TECHNOL LETT 0975 JI Microw. Opt. Technol. Lett. 0976 PD OCT 20 0977 PY 1998 0978 VL 19 0979 IS 3 0980 BP 214 0981 EP 216 0982 PG 3 0983 SC Engineering, Electrical & Electronic; Optics 0984 GA 124EG 0985 UT ISI:000076168000012 0986 ER 0987 0988 PT J 0989 AU Guo, BY 0990 TI Gegenbauer approximation and its applications to differential equations 0991 on the whole line 0992 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 0993 DT Article 0994 DE Gegenbauer approximations; differential equations on the whole line; 0995 convergences 0996 ID DOMAINS 0997 AB A Gegenbauer approximation is discussed. Several imbedding inequalities 0998 and inverse inequalities are obtained. some approximation results are 0999 given. By variable transformation, differential equations on the whole 1000 lint: are changed to certain equations on a finite interval. Gegenbauer 1001 polynomials are used for their numerical solutions. The stabilities and 1002 convergences of proposed schemes are proved. The main idea and 1003 techniques used in this paper are also applicable to other 1004 multiple-dimensional problems in unbounded domains. (C) 1998 Academic 1005 Press. 1006 C1 Shanghai Univ, Dept Math, Shanghai, Peoples R China. 1007 Pohang Univ Sci & Technol, Dept Math, Pohang, South Korea. 1008 RP Guo, BY, Shanghai Univ, Dept Math, Shanghai, Peoples R China. 1009 CR ADAMS RA, 1975, SOBOLEV SPACES 1010 ASKEY R, 1975, REGIONAL C SERIES AP, V21 1011 BERGH J, 1976, INTERPOLATION SPACES 1012 BOYD JP, 1987, J COMPUT PHYS, V69, P112 1013 CANUTO C, 1982, MATH COMPUT, V38, P67 1014 CHRISTOV CI, 1982, SIAM J APPL MATH, V42, P1337 1015 COULAUD O, 1990, COMPUT METHOD APPL M, V80, P451 1016 COURANT R, 1928, MATH ANN, V100, P32 1017 FUNARO D, 1990, MATH COMPUT, V57, P597 1018 FUNARO D, 1991, ORTHOGONAL POLYNOMIA, P263 1019 GOTTLIEB D, 1995, MATH COMPUT, V64, P1081 1020 GUO BY, IN PRESS MATH COMP 1021 GUO BY, 1965, TR SUST 1022 GUO BY, 1994, CONT MATH, V163, P33 1023 IRANZO V, 1992, COMPUT METHOD APPL M, V98, P105 1024 MADAY Y, 1985, RECH AEROSPATIALE, P353 1025 MAVRIPLIS C, 1989, J COMPUT PHYS, V80, P480 1026 RICHTMEYER RD, 1967, FINITE DIFFERENCE ME 1027 STETTER HJ, 1966, NUMERICAL SOLUTIONS, P111 1028 TIMAN AF, 1963, THEORY APPROXIMATION 1029 NR 20 1030 TC 14 1031 SN 0022-247X 1032 J9 J MATH ANAL APPL 1033 JI J. Math. Anal. Appl. 1034 PD OCT 1 1035 PY 1998 1036 VL 226 1037 IS 1 1038 BP 180 1039 EP 206 1040 PG 27 1041 SC Mathematics, Applied; Mathematics 1042 GA 123CQ 1043 UT ISI:000076108600013 1044 ER 1045 1046 PT J 1047 AU Xu, YR 1048 Hou, DH 1049 Wang, DY 1050 Xu, WP 1051 TI Hot deformation and modeling of flow stress for a Ti-containing HSLA 1052 steel 1053 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 1054 DT Article 1055 ID STRIP; PREDICTION 1056 AB Single-stage and double-stage interrupted hot compression tests for 1057 simulating hot rolling have been carried out for a Ti-containing HSLA 1058 steel (10Ti). Physical simulation of hot rolling was in progress 1059 utilizing a Thermecmastor-Z simulator in 850 similar to 1150 degrees C 1060 and strain rate of 0.1 similar to 60 s(-1) A model for residual strain 1061 ratio lambda was designed, and a model of flow stress considering 1062 residual strain has been obtained. 1063 sigma = 8.176(epsilon + Delta epsilon(i)) .(epsilon) over 1064 dot(5.69x10-5T)..exp(3634/T) 1065 Delta epsilon(i) = lambda(i)[epsilon(0(i-1))+ 1066 lambda((i-1))(epsilon(0(i-2)))+ lambda((i-2))(epsilon(0(i-3)))+ ...] 1067 The hot deformation behaviour at various strain rates has been studied. 1068 C1 Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 1069 RP Xu, YR, Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 1070 201800, Peoples R China. 1071 CR BEYNON JH, 1992, ISIJ INT, V32, P259 1072 DEARDO AJ, 1988, THERMEC882029 1073 DEARDO AJ, 1995, MICROALLOYING 95, P15 1074 FABREGUE P, 1994, ADV HOT DEFORMATION, P75 1075 HODGSON PD, 1993, MODELLING METAL ROLL 1076 KWON O, 1992, ISIJ INT, V32, P350 1077 LAASRAOUI A, 1991, ISIJ INT, V31, P95 1078 SAMUEL FH, 1989, ISIJ INT, V29, P878 1079 SAMUEL FH, 1990, ISIJ INT, V30, P216 1080 SELLARS CM, 1990, MATER SCI TECH SER, V6, P1072 1081 TAMURE I, 1988, THERMOMECHANICAL PRO 1082 XU YR, 1991, CHIN J MET SCI TECHN, V7, P317 1083 XU YR, 1993, P 4 INT C TECHN PLAS 1084 NR 13 1085 TC 0 1086 SN 1005-0302 1087 J9 J MATER SCI TECHNOL 1088 JI J. Mater. Sci. Technol. 1089 PD SEP 1090 PY 1998 1091 VL 14 1092 IS 5 1093 BP 419 1094 EP 424 1095 PG 6 1096 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 1097 Engineering 1098 GA 125AB 1099 UT ISI:000076214300009 1100 ER 1101 1102 PT J 1103 AU Feng, SS 1104 Qiu, XJ 1105 Zhu, ZY 1106 TI Energy spectrum of excitations in the Proca-Chern-Simons system 1107 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 1108 DT Article 1109 ID FRACTIONAL SPIN; QUANTUM-MECHANICS; FIELD-THEORY; QUANTIZATION; 1110 STATISTICS 1111 AB We quantize the Proca-Chern-Simons system via the path-integral 1112 approach and diagonalize the Hamiltonian by canonical transformations. 1113 We find that the mass spectrum of the system is equivalent to a system 1114 of two free scalar fields; the statistical partition function, which 1115 does not exhibit any exotic properties, is also evaluated from the 1116 diagonalized Hamiltonian. 1117 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 1118 Shandong Teachers Univ, Ctr String Theory, Shanghai 200234, Peoples R China. 1119 Acad Sinica, Inst Nucl Res, Shanghai 201800, Peoples R China. 1120 RP Feng, SS, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 1121 CR BAILIN D, 1986, INTRO GAUGE FIELD TH 1122 BANERJEE R, 1994, PHYS REV D, V49, P5431 1123 BAXTER C, 1995, PHYS REV LETT, V74, P514 1124 BERNARD CW, 1974, PHYS REV D, V9, P3312 1125 BOWICK MJ, 1986, NUCL PHYS B, V271, P417 1126 DESER S, 1982, ANN PHYS-NEW YORK, V140, P372 1127 DIRAC PAM, 1964, LECT QUANTUM DYNAMIC 1128 DUNNE GV, 1990, PHYS REV D, V41, P661 1129 FENG SS, 1995, INT J THEOR PHYS, V34, P1827 1130 FORTE S, 1992, REV MOD PHYS, V64, P193 1131 GITMAN DM, 1990, QUANTIZATION FIELDS 1132 NIEMI AJ, 1994, PHYS LETT B, V336, P381 1133 SEMENOFF GW, 1988, PHYS REV LETT, V61, P517 1134 NR 13 1135 TC 0 1136 SN 0020-7748 1137 J9 INT J THEOR PHYS 1138 JI Int. J. Theor. Phys. 1139 PD AUG 1140 PY 1998 1141 VL 37 1142 IS 8 1143 BP 2105 1144 EP 2113 1145 PG 9 1146 SC Physics, Multidisciplinary 1147 GA 123ZX 1148 UT ISI:000076156800003 1149 ER 1150 1151 PT J 1152 AU Deng, K 1153 Shen, M 1154 Ren, ZM 1155 TI Lateral stability of alternative horizontal levitation electromagnetic 1156 continuous casting of aluminium sheet 1157 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA 1158 DT Article 1159 DE stability; horizontal continuous casting; electromagnetic casting; 1160 aluminium sheet 1161 AB The lateral stability of alternative horizontal levitation 1162 electromagnetic continuous casting process of aluminium sheet was 1163 analyzed by correlating the lateral electromagnetic force on the 1164 aluminium sheet to the lateral position disturbance of the sheet which 1165 was set between the side blocks. The results show that when a small 1166 disturbance occurs to the lateral position of the sheet, the unbalanced 1167 lateral force caused by disturbance will make it greater. Therefore, 1168 the lateral position of the sheet is an unstable balanced position, 1169 which explains the observation of instability in experiment. Based on 1170 the analyses, an explanation for the formation of rod after the 1171 appearance of the instability in the casting process of aluminium sheet 1172 was given. 1173 C1 Shanghai Univ, Coll Mat Sci & Engn, Shanghai 200072, Peoples R China. 1174 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 1175 CR ASAI S, 1989, TETSU TO HAGANE, V75, P32 1176 REN ZM, 1991, J DALIAN U TECH, V31, P419 1177 REN ZM, 1992, J DALIAN U TECH, V32, P121 1178 REN ZM, 1993, CHINESE J NONFERROUS, V3, P93 1179 REN ZM, 1994, CHINESE J NONFERROUS, V4, P78 1180 REN ZM, 1994, J DALIAN U TECH, V34, P556 1181 REN ZM, 1996, ACTA METALL SINICA, V36, P462 1182 REN ZM, 1996, CHINESE J NONFERROUS, V6, P108 1183 SAKANE J, 1988, METALL T B, V19, P397 1184 ZHU SJ, 1996, T NONFERR METAL SOC, V6, P42 1185 NR 10 1186 TC 0 1187 SN 1003-6326 1188 J9 TRANS NONFERROUS METAL SOC CH 1189 JI Trans. Nonferrous Met. Soc. China 1190 PD SEP 1191 PY 1998 1192 VL 8 1193 IS 3 1194 BP 441 1195 EP 444 1196 PG 4 1197 SC Metallurgy & Metallurgical Engineering 1198 GA 121TW 1199 UT ISI:000076030900016 1200 ER 1201 1202 PT J 1203 AU Wang, W 1204 Wong, PL 1205 Luo, JB 1206 Zhang, Z 1207 TI A new optical technique for roughness measurement on moving surface 1208 SO TRIBOLOGY INTERNATIONAL 1209 DT Article 1210 DE surface roughness; speckle; scattering 1211 ID REAL-TIME MEASUREMENT 1212 AB A new optical technique which allows the roughness of moving surfaces 1213 to be determined was developed. The new technique which is called the 1214 dark/bright ratio (DBR) method utilizes the combined effects of speckle 1215 and scattering phenomena. The roughness of surfaces is inferred from 1216 the dimensions of the recorded dark or bright area in the speckle 1217 pattern. Although it is a relative method, it has great potential to be 1218 used for in-process measurement and automation owing to the simplicity 1219 of both its principle and required optical set-up. The new technique 1220 has also been proved to have large measuring range and with high 1221 precision, The principle of this technique and the set-up of the 1222 measuring system are described. Experimental results for both static 1223 and dynamic conditions, which were compared to those obtained using the 1224 traditional stylus technique, were found to be in good agreement. The 1225 reliability of the new technique in obtaining roughness data of 1226 surfaces under various speed conditions (from 0 to 0.017 m/s) was 1227 validated. (C) 1998 Elsevier Science Ltd. All rights reserved. 1228 C1 City Univ Hong Kong, Dept Mfg Engn & Engn Management, Kowloon, Hong Kong. 1229 Tsing Hua Univ, Natl Tribol Lab, Beijing 100084, Peoples R China. 1230 Shanghai Univ, Bearing Res Ctr, Shanghai, Peoples R China. 1231 RP Wang, W, City Univ Hong Kong, Dept Mfg Engn & Engn Management, Tat Chee 1232 Ave, Kowloon, Hong Kong. 1233 CR BECKMANN P, 1987, SCATTERING ELECTROMA 1234 BENNETT JM, 1985, OPT ENG, V24, P380 1235 BROADMAN R, 1986, P 3 INT C METR PROP, P1 1236 CLARKE GM, 1979, WEAR, V57, P107 1237 HUANG P, 1994, J TRIBO, V14, P175 1238 LEGER D, 1976, J OPT SOC AM, V66, P1210 1239 LIANG X, 1989, WEAR, V132, P221 1240 LUO JB, 1996, WEAR, V194, P107 1241 MITSUI K, 1986, PRECIS ENG, V8, P212 1242 PERSSON U, 1992, OPT LASER ENG, V17, P61 1243 PERSSON U, 1993, WEAR, V160, P221 1244 SIROHI RS, 1993, SPECKLE METROLOGY, P380 1245 NR 12 1246 TC 3 1247 SN 0301-679X 1248 J9 TRIBOL INT 1249 JI Tribol. Int. 1250 PD MAY 1251 PY 1998 1252 VL 31 1253 IS 5 1254 BP 281 1255 EP 287 1256 PG 7 1257 SC Engineering, Mechanical 1258 GA 120XE 1259 UT ISI:000075982100008 1260 ER 1261 1262 PT J 1263 AU Tu, DW 1264 TI Range image acquisition for machine vision 1265 SO OPTICAL ENGINEERING 1266 DT Article 1267 DE range finding; laser scanning; target acquisition; machine vision 1268 AB An optical 3-D imaging system for autonomous vehicle and mobile robot 1269 navigation is presented. The system is based on a phase comparison 1270 range finder using a 30-mW laser diode modulated at a 5-MHz frequency, 1271 and a scanning mechanism, consisting of a nodding mirror and an 1272 eight-faced polygon and providing 30 X 30-deg total view with only 1273 0.5-deg instantaneous fields of view for the receiver optics. A 1274 Si-avalanche photodiode (APD) optoelectric detector and low-noise 1275 preamplifier can detect very low levels of returned energy. With an 1276 integrated MC4044 circuit for phase comparison, pixel range information 1277 can be represented by gray level on the high-resolution video monitor. 1278 A 3-D range image is obtained in the experiment, and a range accuracy 1279 of 0.08 m at 10 m outdoors in sunlight is achieved. (C) 1998 Society of 1280 Photo-Optical Instrumentation Engineers. 1281 C1 Shanghai Univ, Sch Mech Engn, Shanghai 200072, Peoples R China. 1282 RP Tu, DW, Shanghai Univ, Sch Mech Engn, 149 Yanchang Rd, Shanghai 200072, 1283 Peoples R China. 1284 CR CAMERON ES, 1989, P SOC PHOTO-OPT INS, V1103, P190 1285 DAVIS WC, 1985, NSFECS85003 NTIS CUR 1286 MORING I, 1989, OPT ENG, V28, P897 1287 SAMPSON RE, 1987, IEEE COMPUT, V20, P23 1288 VEATCH PA, 1990, COMPUT VISION GRAPH, V50, P50 1289 WESOLOWICZ KG, 1987, P SOC PHOTO-OPT INS, V783, P152 1290 ZUK DM, 1983, 3 DIMENSIONAL VISION 1291 NR 7 1292 TC 1 1293 SN 0091-3286 1294 J9 OPT ENG 1295 JI Opt. Eng. 1296 PD SEP 1297 PY 1998 1298 VL 37 1299 IS 9 1300 BP 2531 1301 EP 2535 1302 PG 5 1303 SC Optics 1304 GA 120BV 1305 UT ISI:000075935400014 1306 ER 1307 1308 PT J 1309 AU Shen, M 1310 Deng, K 1311 Ren, ZM 1312 TI Stability of alternative horizontal levitation electromagnetic 1313 continuous casting of aluminum sheet 1314 SO ISIJ INTERNATIONAL 1315 DT Article 1316 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 1317 Shanghai Univ, Coll Mat Sci, Shanghai 200072, Peoples R China. 1318 RP Shen, M, Shanghai Univ, Shanghai Inst Appl Math & Mech, Box 189,149 Yan 1319 Chang Rd, Shanghai 200072, Peoples R China. 1320 EM shenw@online.sh.cn 1321 CR ASAI S, 1989, TETSU TO HAGANE, V75, P32 1322 OHNO A, 1986, J MET, V38, P14 1323 REN Z, 1994, J SYNCHROTRON RADIAT, V1, P78 1324 REN ZM, 1991, J DALIAN U TECH, V31, P419 1325 REN ZM, 1992, J DALIAN U TECH, V32, P121 1326 REN ZM, 1993, T NONFERR METAL SOC, V3, P93 1327 REN ZM, 1994, J DALIAN U TECH, V34, P556 1328 REN ZM, 1996, ACTA METALL SINICA, V36, P462 1329 REN ZM, 1996, T NONFEROUS MET SOC, V6, P108 1330 SAKANE J, 1988, METALL T B, V19, P397 1331 ZHU SJ, 1996, T NONFERR METAL SOC, V6, P42 1332 NR 11 1333 TC 0 1334 SN 0915-1559 1335 J9 ISIJ INT 1336 JI ISIJ Int. 1337 PY 1998 1338 VL 38 1339 IS 9 1340 BP 1035 1341 EP 1037 1342 PG 3 1343 SC Metallurgy & Metallurgical Engineering 1344 GA 120PQ 1345 UT ISI:000075965100018 1346 ER 1347 1348 PT J 1349 AU Ho, SL 1350 Fu, WN 1351 Wong, HC 1352 TI Estimation of stray losses of skewed rotor induction motors using 1353 coupled 2-D and 3-D time stepping finite element methods 1354 SO IEEE TRANSACTIONS ON MAGNETICS 1355 DT Article 1356 DE induction machines; losses; finite element methods 1357 ID MACHINES; MODEL 1358 AB A precise estimation of stray losses in skewed rotor induction motors 1359 is an important and yet very challenging topic for machine designers, 1360 Methods for evaluating the stray losses in skewed rotor induction 1361 motors by coupling a 2-D multi-slice time stepping finite element model 1362 into a 3-D time stepping finite element method are presented in this 1363 paper, The model tan take into account the inter-bar currents which are 1364 ignored if a 2-D finite element model only is used, New formulas, which 1365 are based on the actual changes in the magnetic flux densities and can 1366 be easily coupled into a time stepping finite element method for 1367 estimating the iron losses, are also described. 1368 C1 Hong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong. 1369 Shanghai Univ, Sch Automat, Shanghai 200041, Peoples R China. 1370 Hong Kong Polytech Univ, Ind Ctr, Hong Kong, Hong Kong. 1371 RP Ho, SL, Hong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong. 1372 CR ALGER PL, 1970, INDUCTION MACH 1373 ARKKIO A, 1992, P ICEM MANCH, P317 1374 HO SL, 1995, C P, V412, P93 1375 HO SL, 1997, 1997 IEEE INT EL MAC 1376 HO SL, 1997, IEEE T MAGN, V33, P2265 1377 JIMOH AA, 1985, IEEE T PAS, V104, P1506 1378 JIMOH AA, 1985, IEEE T POWER AP SYST, V104, P1500 1379 PIRIOU F, 1990, IEEE T MAGN, V26, P1096 1380 SALON SJ, 1984, IEEE T MAGN, V20, P1992 1381 NR 9 1382 TC 14 1383 SN 0018-9464 1384 J9 IEEE TRANS MAGN 1385 JI IEEE Trans. Magn. 1386 PD SEP 1387 PY 1998 1388 VL 34 1389 IS 5 1390 PN Part 1 1391 BP 3102 1392 EP 3105 1393 PG 4 1394 SC Engineering, Electrical & Electronic; Physics, Applied 1395 GA 120MM 1396 UT ISI:000075960200173 1397 ER 1398 1399 PT J 1400 AU Zhou, HY 1401 Gu, SW 1402 Shi, YM 1403 TI Effects of strong coupling magnetopolaron in quantum dot 1404 SO MODERN PHYSICS LETTERS B 1405 DT Article 1406 ID OPTICAL POLARON; MAGNETIC-FIELD; STATE 1407 AB With the use of variational method of Pekar type, we have calculated 1408 both the ground state energy and the excited state energy of strong 1409 coupling magnetopolaron in disk-shape quantum dot. The dependence of 1410 cyclotron resonance frequency of magnetopolaron on the magnetic field 1411 and the confinement strength of quantum dot and quantum well is 1412 depicted. The limiting case of bulk type and strict two-dimensional 1413 type is discussed. 1414 C1 Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China. 1415 Shanghai Jiao Tong Univ, Dept Appl Phys, Shanghai 200030, Peoples R China. 1416 Shanghai Jiao Tong Univ, Inst Condensed Matter Phys, Shanghai 200030, Peoples R China. 1417 RP Zhou, HY, Shanghai Univ, Dept Phys, 149 Yanchang Rd, Shanghai 200072, 1418 Peoples R China. 1419 CR CHATTERJEE A, 1990, PHYS REV B, V41, P1668 1420 DAVYDOV AS, 1976, QUANTUM MECH 1421 DEMEL T, 1990, PHYS REV LETT, V64, P788 1422 DEVREESE JT, 1972, POLARONS IONIC CRYST 1423 FROHLICH H, 1954, ADV PHYS, V3, P325 1424 HUYBRECHTS WJ, 1977, J PHYS C SOLID STATE, V10, P3761 1425 KUPER CG, 1963, POLARONS EXCITONS 1426 LARSEN DM, 1987, PHYS REV B, V35, P4435 1427 LEE TD, 1953, PHYS REV, V90, P297 1428 LEPINE Y, 1984, PHYS STATUS SOLIDI B, V122, P151 1429 LORKE A, 1990, PHYS REV LETT, V64, P2559 1430 MASALE M, 1993, PHYS REV B, V48, P11128 1431 PAN JS, 1985, PHYS STATUS SOLIDI B, V128, P287 1432 PEETERS FM, 1987, PHYS REV B, V36, P4442 1433 PEKAR SI, 1954, UNTERSUCHUNGEN ELEKT 1434 PETERS FM, 1982, PHYS REV B, V25, P7281 1435 PETERS FM, 1982, PHYS REV B, V25, P7302 1436 SIKORSKI C, 1989, PHYS REV LETT, V62, P2164 1437 TOKUDA N, 1987, J PHYS C SOLID STATE, V20, P3021 1438 YILDIRIM T, 1991, J PHYS-CONDENS MAT, V3, P1271 1439 ZHU KD, 1993, PHYS REV B, V47, P12941 1440 ZHU KD, 1994, PHYS LETT A, V190, P337 1441 ZHU KD, 1994, SOLID STATE COMMUN, V92, P353 1442 NR 23 1443 TC 1 1444 SN 0217-9849 1445 J9 MOD PHYS LETT B 1446 JI Mod. Phys. Lett. B 1447 PD JUL 20 1448 PY 1998 1449 VL 12 1450 IS 17 1451 BP 693 1452 EP 701 1453 PG 9 1454 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical 1455 GA 117WN 1456 UT ISI:000075805800005 1457 ER 1458 1459 PT J 1460 AU Ji, PY 1461 Zhu, ST 1462 Shen, WD 1463 TI Gravitational perturbation induced by an intense laser pulse 1464 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 1465 DT Article 1466 AB The energy-level shifts of the hydrogen spectrum in curved spacetime 1467 induced by intense short laser pulses are studied. With present 1468 high-power laser pulses the magnitude of the energy-level shifts of 1469 highly excited hydrogen atom should be detectable. 1470 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 1471 Acad Sinica, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China. 1472 RP Ji, PY, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 1473 CR MANASSE FK, 1963, J MATH PHYS, V4, P785 1474 PARKER L, 1980, PHYS REV D, V22, P1922 1475 PARKER L, 1982, PHYS REV D, V25, P3180 1476 SCULLY MO, 1979, PHYSICAL REV D, V19, P3582 1477 NR 4 1478 TC 1 1479 SN 0020-7748 1480 J9 INT J THEOR PHYS 1481 JI Int. J. Theor. Phys. 1482 PD JUN 1483 PY 1998 1484 VL 37 1485 IS 6 1486 BP 1779 1487 EP 1791 1488 PG 13 1489 SC Physics, Multidisciplinary 1490 GA 117RB 1491 UT ISI:000075794600010 1492 ER 1493 1494 PT J 1495 AU Feng, SH 1496 Qiu, XJ 1497 TI A renormalization group study of the Ising model on a triangular 1498 lattice with long-range interactions 1499 SO COMMUNICATIONS IN THEORETICAL PHYSICS 1500 DT Article 1501 DE renormalization group; Ising model; long-range interaction 1502 ID HEISENBERG 1503 AB The critical exponents of the triangular lattice Ising model with 1504 long-range interactions r(-s) are calculated by the real space 1505 renormalization group. Using the simplest Kadanoff blocks and the 1506 lowest approximation of cumulant expansion, it is shown that there 1507 exists a finite critical temperature when 4(1 - ln 2/ln 3) < s < 4. 1508 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 1509 Acad Sinica, Inst Nucl Res, Shanghai 201800, Peoples R China. 1510 RP Feng, SH, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 1511 CR CANNAS SA, 1995, PHYS REV B, V52, P3034 1512 HALDANE FDM, 1988, PHYS REV LETT, V60, P635 1513 NAKANO H, 1995, PHYS REV B, V52, P6606 1514 NR 3 1515 TC 1 1516 SN 0253-6102 1517 J9 COMMUN THEOR PHYS 1518 JI Commun. Theor. Phys. 1519 PD JUL 30 1520 PY 1998 1521 VL 30 1522 IS 1 1523 BP 129 1524 EP 132 1525 PG 4 1526 SC Physics, Multidisciplinary 1527 GA 118DU 1528 UT ISI:000075823800023 1529 ER 1530 1531 PT J 1532 AU Jiang, XY 1533 Jin, Y 1534 Zhang, ZL 1535 Xu, SH 1536 TI Mn-doped nanometer-size ZnS clusters in chitosan film matrix prepared 1537 by ion-coordination reaction 1538 SO JOURNAL OF CRYSTAL GROWTH 1539 DT Article 1540 DE Mn-doped ZnS nanocluster; chitosan film; ion-coordination reaction; 1541 quantum size effect; emission efficiency 1542 ID QUANTUM CONFINEMENT; MICROCRYSTALLITES 1543 AB A novel method, the so called ion-coordination reaction, was introduced 1544 to prepare nanometer-sized Mn-doped ZnS clusters stuck to a chitosan 1545 medium. A possible growth mechanism of the Mn-doped ZnS clusters in a 1546 chitosan film has been proposed. The X-ray diffraction showed that the 1547 ZnS clusters have a cubic structure like bulk crystals and the cluster 1548 sizes were estimated from the diffraction linewidth to be 2-4 nm based 1549 on Scherre's equation. The emission of Mn ion was observed through 1550 band-to-band excitation of ZnS. The excitation spectrum showed a large 1551 blue shift relative to that of ZnS bulk material. The effect of Zn ion 1552 concentration on the luminescence intensity reveals that the emission 1553 efficiency of Mn ion increases with the decrease of the ZnS cluster 1554 size. (C) 1998 Elsevier Science B.V. All rights reserved. 1555 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China. 1556 RP Jiang, XY, Shanghai Univ, Dept Mat Sci, Jiading Campus, Shanghai 1557 201800, Peoples R China. 1558 CR BHARGAVA RN, 1994, PHYS REV LETT, V72, P416 1559 BORRELLI NF, 1987, J APPL PHYS, V61, P5399 1560 STUCKY GD, 1990, SCIENCE, V247, P669 1561 WANG Y, 1987, OPT COMMUN, V61, P233 1562 WANG Y, 1991, J PHYS CHEM-US, V95, P525 1563 YOFFE AD, 1993, ADV PHYS, V42, P173 1564 NR 6 1565 TC 0 1566 SN 0022-0248 1567 J9 J CRYST GROWTH 1568 JI J. Cryst. Growth 1569 PD AUG 1570 PY 1998 1571 VL 191 1572 IS 4 1573 BP 692 1574 EP 696 1575 PG 5 1576 SC Crystallography 1577 GA 115WE 1578 UT ISI:000075688600015 1579 ER 1580 1581 PT J 1582 AU He, JH 1583 TI A family of variational principles for compressible rotational 1584 blade-to-blade flow using semi-inverse method 1585 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 1586 DT Article 1587 AB By means of semi-inverse method of establishing generalized variational 1588 principles, a family of variational principles for compressible 1589 rotational blade-to-blade now has been rederived in detail. The present 1590 variational theory provides a straightforward way to arrive at various 1591 variational principles. This paper aims at providing a more complete 1592 theoretical basis for finite element applications. 1593 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 1594 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 1595 Peoples R China. 1596 CR HE JH, 1996, J SHANGHAI U, V2, P129 1597 HE JH, 1997, 40 ANN M CHIN MECH, P71417 1598 HE JH, 1997, INT J TURBO JET ENG, V14, P23 1599 HE JH, 1997, J ENG THERMOPHYSICS, V18, P440 1600 HE JH, 1997, J SHANGHAI U, V3, P99 1601 LIU GL, 1979, ACTA MECH SINICA, V11, P303 1602 LIU GL, 1980, SCI SINICA, V23, P1339 1603 LIU GL, 1982, P INT C FEM SHANGH C, P520 1604 LIU GL, 1992, FLOW MODELING TURBUL, P243 1605 LIU GL, 1993, INT J TURBO JET ENGI, V10, P273 1606 LIU GL, 1995, INT GAS TURB C YOK J 1607 LIU GL, 1995, P 6 AS C FLUID MECH 1608 NR 12 1609 TC 8 1610 SN 0334-0082 1611 J9 INT J TURBO JET ENGINES 1612 JI Int. J. Turbo. Jet-Engines 1613 PY 1998 1614 VL 15 1615 IS 2 1616 BP 95 1617 EP 100 1618 PG 6 1619 SC Engineering, Aerospace 1620 GA 116GJ 1621 UT ISI:000075715700003 1622 ER 1623 1624 PT J 1625 AU He, JH 1626 TI Generalized variational principle for compressible S2-flow in 1627 mixed-flow turbomachinery using semi-inverse method 1628 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 1629 DT Article 1630 AB Using semi-inverse method of establishing generalized variational 1631 principle, a family of variational principles for compressible S-2-flow 1632 in mixed-flow turbomachinery has been rederived in detail The present 1633 theory provides a convenient way to arrive at a variational functional 1634 and a more complete theoretical basis for finite element applications. 1635 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 1636 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 1637 Peoples R China. 1638 CR CAI RQ, 1988, INT J HEAT FLUID FL, V9, P302 1639 FINLAYSON BA, 1972, METHOD WEIGHTED RESI 1640 HE JH, 1996, THESIS SHANGHAI U 1641 HE JH, 1997, INT J TURBO JET ENG, V14, P23 1642 HE JH, 1997, J ENG THERMOPHYSICS, V18, P440 1643 HE JH, 1997, J SHANGHAI U, V1, P117 1644 LIU GL, 1990, P 1 INT S AER INT FL, P128 1645 LIU GL, 1995, INT J TURBO JET ENG, V12, P213 1646 NR 8 1647 TC 8 1648 SN 0334-0082 1649 J9 INT J TURBO JET ENGINES 1650 JI Int. J. Turbo. Jet-Engines 1651 PY 1998 1652 VL 15 1653 IS 2 1654 BP 101 1655 EP 107 1656 PG 7 1657 SC Engineering, Aerospace 1658 GA 116GJ 1659 UT ISI:000075715700004 1660 ER 1661 1662 PT J 1663 AU Chen, LQ 1664 Liu, YZ 1665 TI A modified open-plus-closed-loop approach to control chaos in nonlinear 1666 oscillations 1667 SO PHYSICS LETTERS A 1668 DT Article 1669 ID COMPLEX DYNAMIC-SYSTEMS; MIGRATION CONTROLS; ATTRACTORS 1670 AB We present a modified form of open-plus-closed-loop control for chaotic 1671 oscillations described by a non-autonomous second-order ordinary 1672 differential equation. The Duffing-Helmholtz oscillator is treated as a 1673 numerical example to demonstrate the effectiveness and robustness of 1674 the method. (C) 1998 Elsevier Science B.V. 1675 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 1676 Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China. 1677 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 1678 200072, Peoples R China. 1679 CR CHEN G, 1997, CHAOS ORDER 1680 CHEN LQ, 1991, A MECH SOLI SINI, V4, P381 1681 JACKSON EA, 1990, PHYS LETT A, V151, P478 1682 JACKSON EA, 1991, PHYS REV A, V44, P4839 1683 JACKSON EA, 1991, PHYSICA D, V50, P341 1684 JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1255 1685 JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1767 1686 JACKSON EA, 1995, PHYSICA D, V85, P1 1687 KAPITANIAK T, 1996, CHONTROLLING CHAOS T 1688 NR 9 1689 TC 7 1690 SN 0375-9601 1691 J9 PHYS LETT A 1692 JI Phys. Lett. A 1693 PD AUG 10 1694 PY 1998 1695 VL 245 1696 IS 1-2 1697 BP 87 1698 EP 90 1699 PG 4 1700 SC Physics, Multidisciplinary 1701 GA 112PG 1702 UT ISI:000075502600016 1703 ER 1704 1705 PT J 1706 AU Zhang, XB 1707 Jiang, GC 1708 Ding, WZ 1709 Xu, KD 1710 TI Evaluation of component activities in C-Mn-Fe-Si with model SELF-SReM4 1711 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL 1712 DT Article 1713 DE sub-regular solution model; component activity; C-Mn-Si-Fe alloy 1714 AB A sub-regular solution model SELF-SReM4 used to evaluate activities of 1715 thr components in a homogeneous region of a quaternary system has been 1716 developed in Shanghai Enhanced Lab of Ferrometallurgy. This paper 1717 introduces the application cf SELF-SReM4 in evaluating activities of 1718 the components in C-Mn-Fe-Si system without SiC precipitation. 1719 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 1720 RP Zhang, XB, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 1721 200072, Peoples R China. 1722 CR CHIPMAN J, 1952, T AM SOC MET, V44, P1215 1723 CHIPMAN J, 1963, T METALL SOC AIME, V227, P473 1724 DRESLER W, 1990, T ISS, V3, P95 1725 GEE R, 1978, SCAND J METALL, V7, P38 1726 HULTGREN R, 1973, SELECTED VALUES THER, P487 1727 JIANG GC, 1992, ACTA METALLURGICA SI, V5, P476 1728 KATSNELSON A, 1993, ISIJ INT, V33, P1045 1729 SCHURMANN E, 1969, GIESSEREI FORSCH, V21, P29 1730 TANAKA A, 1979, T JIM, V20, P516 1731 TUSET J, 1970, 340358 SINTEF 1732 ZHANG XB, 1996, THESIS SHANGHAI U 1733 NR 11 1734 TC 1 1735 SN 1006-706X 1736 J9 J IRON STEEL RES INT 1737 JI J. Iron Steel Res. Int. 1738 PD APR 1739 PY 1998 1740 VL 5 1741 IS 1 1742 BP 28 1743 EP 33 1744 PG 6 1745 SC Metallurgy & Metallurgical Engineering 1746 GA 113NL 1747 UT ISI:000075558100006 1748 ER 1749 1750 PT J 1751 AU Cao, WG 1752 Ding, WY 1753 Huang, TH 1754 Huang, H 1755 Wei, CH 1756 TI Convenient syntheses of 4-perfluoroalkyl-6-(alpha-thienyl)-2-pyranones 1757 and methyl 4-(alpha-thienacyl)-3-perfluoroalkyl-3-butenoates 1758 SO JOURNAL OF FLUORINE CHEMISTRY 1759 DT Article 1760 DE methyl 2-perfluoroalkynoates; 1761 4-perfluoroalkyl-6-(alpha-thienyl)-2-pyranones; methyl 1762 4-(alpha-thienacyl)-3-perfluoroalkyl-3-butenoates 1763 ID ELEMENTO-ORGANIC COMPOUNDS; STEREOSELECTIVE SYNTHESIS; 6TH GROUPS; 1764 ARSORANE; 2-PERFLUOROALKYNOATES; PHOSPHONIUM; CHEMISTRY; 5TH 1765 AB In the presence of K2CO3, reaction of (alpha-thienacyl) methyltriphenyl 1766 phosphonium bromide (1) with methyl 2-perfluoroalkynoates (2) in CH2Cl2 1767 at room temperature gave methyl 1768 4-(alpha-thienacyl)-2-triphenylphosphoranylidene-3-perfluoroalkyl-3-bute 1769 noates (3) in excellent yields. 1770 4-Perfluoroalkyl-6-(alpha-thienyl)-6-pyranones (4) and methyl 1771 4-(alpha-thienacyl)-3-perfluoroalkyl-3-butenoates (5) were obtained in 1772 high yield by hydrolysis of these methylene phosphoranes (3) with hot 1773 aqueous methanol. The butenoates (5) were isolated chromatographically 1774 as mixtures of Z and E isomers, the ratios of which were estimated by 1775 H-1 NMR. Reaction mechanisms are proposed to account for the formation 1776 of products 3, 4 and 5. (C) 1998 Elsevier Science S.A. All rights 1777 reserved. 1778 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 1779 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 1780 CR BANKS RE, 1979, ORGANOFLUORINE CHEM 1781 DING WY, 1986, ACTA CHIM SINICA, V44, P255 1782 DING WY, 1986, ACTA CHIM SINICA, V44, P62 1783 DING WY, 1987, ACTA CHIM SINICA, V45, P47 1784 DING WY, 1987, CHINESE J ORG CHEM, P435 1785 DING WY, 1991, ACTA CHIM SINICA, V49, P284 1786 DING WY, 1991, J CHEM SOC PERK JUN, P1369 1787 DING WY, 1992, CHEM RES CHINESE U, V8, P224 1788 HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47 1789 MANN J, 1987, CHEM SOC REV, V16, P381 1790 TAO WT, 1983, CHINESE J ORG CHEM, P129 1791 WELCH JT, 1987, TETRAHEDRON, V43, P3123 1792 NR 12 1793 TC 4 1794 SN 0022-1139 1795 J9 J FLUORINE CHEM 1796 JI J. Fluor. Chem. 1797 PD AUG 10 1798 PY 1998 1799 VL 91 1800 IS 1 1801 BP 99 1802 EP 101 1803 PG 3 1804 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic 1805 GA 112MA 1806 UT ISI:000075497400020 1807 ER 1808 1809 PT J 1810 AU Ma, JH 1811 Chen, YS 1812 Liu, ZR 1813 TI Threshold value for diagnosis of chaotic nature of the data obtained in 1814 nonlinear dynamic analysis 1815 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 1816 DT Article 1817 DE chaotic timeseries; surrogate-data; threshold value; random timeseries 1818 ID CORRELATION DIMENSION; TIME-SERIES; NOISE 1819 AB In this paper surrogate data method of phase-randomized is proposed to 1820 identify the random or chaotic nature of the data obtained in dynamic 1821 analysis: The calculating results validate the phase-randomized method 1822 to be useful as it can increase the extent of accuracy of the results. 1823 And the calculating results show that threshold values of the random 1824 timeseries and nonlinear chaotic timeseries have marked difference. 1825 C1 SE Univ, Inst Syst Engn, Nanjing 210018, Peoples R China. 1826 Tianjin Univ, Dept Mech, Tianjin 300072, Peoples R China. 1827 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 1828 RP Ma, JH, SE Univ, Inst Syst Engn, Nanjing 210018, Peoples R China. 1829 CR ABARBANEL HDI, 1991, INT J MOD PHYS B, V5, P1347 1830 CABRERA JL, 1995, PHYS LETT A, V197, P19 1831 CASDAGLI M, 1992, J ROY STAT SOC B MET, V54, P303 1832 GRASSBERGER P, 1988, PHYS LETT A, V128, P369 1833 KENNEL MB, 1992, PHYS REV A, V46, P3111 1834 KOSTELICH EJ, 1992, PHYSICA D, V58, P138 1835 PRICHARD D, 1993, GEOPHYS RES LETT, V20, P2817 1836 PRICHARD D, 1994, PHYS LETT A, V191, P245 1837 PRICHARD D, 1994, PHYS REV LETT, V191, P230 1838 RAPP PE, 1993, PHYS REV E, V47, P2289 1839 RAPP PE, 1994, PHYS LETT A, V192, P27 1840 ROMBOUTS SAR, 1995, PHYS LETT A, V202, P352 1841 SCHIFF SJ, 1992, PHYS REV LETT A, V67, P378 1842 TAKALO J, 1993, GEOPHYS RES LETT, V20, P1527 1843 THEILER J, 1986, PHYS REV A, V34, P2427 1844 THEILER J, 1991, PHYS LETT A, V155, P480 1845 THEILER J, 1992, PHYSICA D, V58, P77 1846 NR 17 1847 TC 5 1848 SN 0253-4827 1849 J9 APPL MATH MECH-ENGL ED 1850 JI Appl. Math. Mech.-Engl. Ed. 1851 PD JUN 1852 PY 1998 1853 VL 19 1854 IS 6 1855 BP 513 1856 EP 520 1857 PG 8 1858 SC Mathematics, Applied; Mechanics 1859 GA 113CA 1860 UT ISI:000075530700002 1861 ER 1862 1863 PT J 1864 AU Xu, DH 1865 Jin, C 1866 Li, MZ 1867 TI On the stability estimation of analytic continuation for potential field 1868 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 1869 DT Article 1870 DE Cauchy problems for Laplace equations; analytic continuation of 1871 potential field; ill-posed problems; stability estimation 1872 AB This paper discusses the stability of solutions to a class of Cauchy 1873 problems for Laplace equations under two kinds of nonclassical 1874 circumstances. By means of conformal mapping and Tikhonov, Luan Wengui 1875 and Yamamoto's methods for solving ill-posed problems respectively, the 1876 stability estimations of weighted Holder type and logarithmic type, 1877 have been obtained accordingly. 1878 C1 E China Geol Inst, Fuzhou 344000, Peoples R China. 1879 Fudan Univ, Dept Math, Shanghai 200433, Peoples R China. 1880 Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China. 1881 RP Xu, DH, E China Geol Inst, POB 267, Fuzhou 344000, Peoples R China. 1882 CR CHENG J, 1996, J NINGXIA U, V17, P74 1883 HETIAN R, 1982, FOURIER ANAL, P108 1884 LI MZ, 1990, THEORY BOUNDARY VALU, P228 1885 LUAN WG, 1985, SCI CHINA SER A, V9, P824 1886 LUAN WG, 1989, INVERSE PROBLEMS GEO, P32 1887 NIRENBERG L, 1957, COMMUN PUR APPL MATH, V10, P89 1888 TIKHONOV AN, 1977, SOLUTIONS ILL POSED, P27 1889 YAMAMOTO M, 1993, MATH COMPUT MODEL, V18, P79 1890 NR 8 1891 TC 0 1892 SN 0253-4827 1893 J9 APPL MATH MECH-ENGL ED 1894 JI Appl. Math. Mech.-Engl. Ed. 1895 PD JUN 1896 PY 1998 1897 VL 19 1898 IS 6 1899 BP 563 1900 EP 572 1901 PG 10 1902 SC Mathematics, Applied; Mechanics 1903 GA 113CA 1904 UT ISI:000075530700008 1905 ER 1906 1907 PT J 1908 AU Gu, GQ 1909 Yu, KW 1910 Hui, PM 1911 TI First-principles approach to conductivity of a nonlinear composite 1912 SO PHYSICAL REVIEW B 1913 DT Article 1914 ID DIELECTRIC-CONSTANT; MEDIA; SPHERES; APPROXIMATION; LATTICE; FIELD 1915 AB The Rayleigh method is extended to study the effective response in 1916 weakly nonlinear composites within a perturbative approach. The 1917 Rayleigh identity is used to obtain a set of equations for zeroth-order 1918 and higher-order potentials, with the latter resulted from the presence 1919 of nonlinearity in the problem. The formalism is applied to study the 1920 effective response in an array of cylinders embedded in a host. Results 1921 are compared with those obtained by other approximations previously 1922 proposed in the literature. Results from the present approach show that 1923 while the previous approach of applying the Rayleigh identity to 1924 determine the zeroth-order potential and neglecting the induced fields 1925 due to the higher-order potentials is valid for a wide range of 1926 nonlinear composites, the effects of induced fields due to the 1927 higher-order potentials are important in composites with high 1928 concentrations of inclusions, and in systems with a low value for the 1929 ratio of the Linear conductivities and a high value of the ratio of the 1930 third-order nonlinear conductivities. The present approach, thus, 1931 provides a general formalism for treating nonlinear composites and 1932 establishes the range of validity of previous approximations. 1933 C1 Chinese Ctr Adv Sci & Technol, World Lab, Beijing 100080, Peoples R China. 1934 Shanghai Univ Sci & Technol, Coll Syst Sci & Syst Engn, Shanghai 201800, Peoples R China. 1935 Chinese Univ Hong Kong, Dept Phys, Shatin, New Territories, Hong Kong. 1936 RP Gu, GQ, Chinese Ctr Adv Sci & Technol, World Lab, POB 8730, Beijing 1937 100080, Peoples R China. 1938 CR BERGMAN DJ, 1979, J PHYS C SOLID STATE, V12, P4947 1939 BLUMENFELD R, 1989, PHYS REV B, V40, P1987 1940 BLUMENFELD R, 1991, PHYS REV B, V44, P7378 1941 CHEN G, 1994, COMMUN THEOR PHYS, V22, P265 1942 FULLER KA, 1991, APPL OPTICS, V30, P4716 1943 GERARDY JM, 1980, PHYS REV B, V22, P4950 1944 GU GQ, 1988, J APPL PHYS, V64, P2968 1945 GU GQ, 1988, PHYS REV B, V37, P8612 1946 GU GQ, 1992, PHYS REV B, V46, P4502 1947 GU GQ, 1995, J APPL PHYS, V78, P1737 1948 GU GQ, 1997, COMMUN THEOR PHYS, V27, P395 1949 LU SY, 1994, J APPL PHYS, V76, P2641 1950 MCPHEDRAN RC, 1978, P ROY SOC LOND A MAT, V359, P45 1951 NEMATNASSER S, 1981, Q APPL MATH, V39, P43 1952 RAYLEIGH JW, 1892, PHILOS MAG, V34, P481 1953 STROUD D, 1988, PHYS REV B, V37, P8719 1954 STROUD D, 1989, J OPT SOC AM B, V6, P778 1955 SUEN WM, 1979, J PHYS D, V12, P1325 1956 YU KW, 1992, PHYS LETT A, V168, P313 1957 YU KW, 1993, PHYS REV B, V47, P14150 1958 ZENG XC, 1988, PHYS REV B, V38, P10970 1959 ZENG XC, 1989, PHYSICA A, V157, P192 1960 NR 22 1961 TC 2 1962 SN 0163-1829 1963 J9 PHYS REV B 1964 JI Phys. Rev. B 1965 PD AUG 1 1966 PY 1998 1967 VL 58 1968 IS 6 1969 BP 3057 1970 EP 3062 1971 PG 6 1972 SC Physics, Condensed Matter 1973 GA 110BN 1974 UT ISI:000075359500027 1975 ER 1976 1977 PT J 1978 AU Zhuang, J 1979 Tan, WH 1980 TI Cooperative frequency locking and spatiotemporal chaos in a 1981 photorefractive oscillator 1982 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS 1983 DT Article 1984 ID UNIDIRECTIONAL RING OSCILLATOR; 2-WAVE MIXING EXPERIMENTS; BI12SIO20 1985 CRYSTALS; DYNAMICS; LASERS; GAIN 1986 AB The spatiotemporal dynamics of a unidirectional ring oscillator with 1987 photorefractive gain are studied numerically. Some interesting 1988 spatiotemporal phenomena observed in the experiments were obtained even 1989 though intermodal gratings were neglected in the weak-field limit; 1990 These phenomena include cooperative frequency locking, spatiotemporal 1991 periodic behavior, and spatiotemporal chaos. Moreover, our results show 1992 that the spatiotemporal chaos that appears in the photorefractive 1993 oscillator can be induced by intermittence. (C) 1998 Optical Society of 1994 America [S0740-3224(98)01008-X] OCIS codes: 190.5330, 190.4420, 1995 130.4970. 1996 C1 Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. 1997 Shanghai Univ, Acad Sinica, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China. 1998 RP Zhuang, J, Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. 1999 CR ANDERSON DZ, 1987, J OPT SOC AM B, V4, P164 2000 ARECCHI FT, 1990, PHYS REV LETT, V65, P2531 2001 ARECCHI FT, 1991, PHYS REV LETT, V67, P3794 2002 DALESSANDRO G, 1992, PHYS REV A, V46, P2791 2003 HENNEQUIN D, 1994, J OPT SOC AM B, V11, P676 2004 HUIGNARD JP, 1981, OPT COMMUN, V38, P249 2005 JOST BM, 1995, PHYS REV A, V51, P1539 2006 JUN ZA, 1996, PHYS REV A, V54, P5201 2007 KLISCHE W, 1989, PHYS REV A, V39, P919 2008 LUGIATO LA, 1988, J OPT SOC AM B, V5, P879 2009 LUGIATO LA, 1988, OPT COMMUN, V68, P63 2010 MALOS J, 1996, PHYS REV A, V53, P3559 2011 MARRAKCHI A, 1981, APPL PHYS, V24, P131 2012 STALIUNAS K, 1995, PHYS REV A, V51, P4140 2013 NR 14 2014 TC 2 2015 SN 0740-3224 2016 J9 J OPT SOC AM B-OPT PHYSICS 2017 JI J. Opt. Soc. Am. B-Opt. Phys. 2018 PD AUG 2019 PY 1998 2020 VL 15 2021 IS 8 2022 BP 2249 2023 EP 2254 2024 PG 6 2025 SC Optics 2026 GA 108LP 2027 UT ISI:000075268100008 2028 ER 2029 2030 PT J 2031 AU Chen, DY 2032 TI The potential constraints of the complex (1+2)-dimensional soliton 2033 systems and related Hamiltonian equations 2034 SO JOURNAL OF MATHEMATICAL PHYSICS 2035 DT Article 2036 AB Potential complete constraints (symmetric and nonsymmetric) of the 2037 complex KP and MKP systems are derived by using the general theory for 2038 a nonlinear equation to be a Hamiltonian system. All the complex 2039 Hamiltonian equations corresponding to this kind of constraint are 2040 obtained, which contain the famous nonlinear Schrodinger equations and 2041 several new Hamiltonian equations. In addition, the classical 2042 Kaup-Newell system and the Heisenberg system are also led by a new 2043 reduction approach from the MKP system. (C) 1998 American Institute of 2044 Physics. 2045 C1 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China. 2046 RP Chen, DY, Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, 2047 Peoples R China. 2048 CR CHEN DY, 1984, ACTA MATH SINICA, V27, P624 2049 CHEN DY, 1994, J MATH PHYS, V35, P4725 2050 CHENG Y, 1991, PHYS LETT A, V157, P22 2051 CHENG Y, 1992, J MATH PHYS, V33, P3774 2052 CHENG Y, 1992, J PHYS A, V25, P419 2053 FUCHSSTEINER B, 1981, PHYSICA D, V4, P47 2054 KAUP DJ, 1978, J MATH PHYS, V19, P798 2055 KONOPELCHENKO B, 1991, PHYS LETT A, V157, P17 2056 LI YS, 1982, ACTA MATH SINICA, V25, P464 2057 ZHU M, 1993, POTENTIAL CONSTRAINT 2058 NR 10 2059 TC 0 2060 SN 0022-2488 2061 J9 J MATH PHYS-NY 2062 JI J. Math. Phys. 2063 PD JUN 2064 PY 1998 2065 VL 39 2066 IS 6 2067 BP 3246 2068 EP 3259 2069 PG 14 2070 SC Physics, Mathematical 2071 GA 108KC 2072 UT ISI:000075264200018 2073 ER 2074 2075 PT J 2076 AU Cheng, CJ 2077 Zhang, NH 2078 TI Variational principles on static-dynamic analysis of viscoelastic thin 2079 plates with applications 2080 SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES 2081 DT Article 2082 ID PERTURBED MOTION 2083 AB In this paper, according to the integral-type constitutive relation of 2084 linear viscoelastic materials, the initial-boundary-value problem on 2085 the static-dynamic analysis of viscoelastic thin plates is established 2086 by introducing a "structural function". The corresponding variational 2087 principles are presented by means of convolution bilinear forms. As 2088 applications, we consider the quasi-static responses of a 2089 simply-supported square plate with three different load histories in 2090 which the classical Ritz method on the spatial response and the 2091 interpolation technique of Legendre polynomials on the temporal 2092 response are used. The obtained results are compared with the 2093 analytical solutions given in this paper. One can see that the 2094 approximate solutions agree well with the analytical solutions. (C) 2095 1998 Elsevier Science Ltd. All rights reserved. 2096 C1 Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China. 2097 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 2098 200072, Peoples R China. 2099 CR CHIEN WZ, 1982, VARIATIONAL METHODS 2100 CHRISTENSEN RM, 1982, THEORY VISCOELASTICI 2101 DAI TM, 1995, P MMM, V6, P28 2102 DALLASTA A, 1993, INT J SOLIDS STRUCT, V30, P325 2103 DALLASTA A, 1994, INT J SOLIDS STRUCT, V31, P247 2104 GURTIN ME, 1963, ARCH RATIONAL MECH A, V3, P179 2105 HOFF NJ, 1958, P 3 US NAT C APPL ME 2106 LEITMAN JM, 1973, HDB PHYSIK, V6, P10 2107 LUO E, 1990, ACTA MECH SINICA, V22, P484 2108 REDDY JN, 1976, INT J SOLIDS STRUCT, V12, P227 2109 NR 10 2110 TC 8 2111 SN 0020-7683 2112 J9 INT J SOLIDS STRUCT 2113 JI Int. J. Solids Struct. 2114 PD NOV 2115 PY 1998 2116 VL 35 2117 IS 33 2118 BP 4491 2119 EP 4505 2120 PG 15 2121 SC Mechanics 2122 GA 108RE 2123 UT ISI:000075278600010 2124 ER 2125 2126 PT J 2127 AU Ragone, E 2128 Strazzullo, P 2129 Siani, A 2130 Iacone, R 2131 Russo, L 2132 Sacchi, A 2133 Cipriano, P 2134 Mancini, M 2135 Zhao, GS 2136 Yuan, XY 2137 Li, DY 2138 Gong, LS 2139 TI Ethnic differences in red blood cell sodium/lithium countertransport 2140 and metabolic correlates of hypertension - An international 2141 collaborative study 2142 SO AMERICAN JOURNAL OF HYPERTENSION 2143 DT Article 2144 DE erythrocyte Na/Li countertransport; hypertension; metabolic 2145 abnormalities; insulin resistance; Chinese population; electrolyte 2146 excretion 2147 ID SODIUM-LITHIUM COUNTERTRANSPORT; INSULIN-RESISTANCE; FAT DISTRIBUTION; 2148 BODY-MASS; PRESSURE; UTAH; POPULATION; TRANSPORT; DISEASE; CHINA 2149 AB Arterial hypertension is frequently associated with metabolic 2150 abnormalities. An abnormal activity of the erythrocyte sodium/lithium 2151 countertransport (Na/Li CT), an ion transport system under strong 2152 genetic control, is also found in people with hypertension and 2153 concomitant metabolic abnormalities. However, little information exists 2154 with regard to these clinical associations in different racial groups. 2155 The aim of this international collaborative study was to investigate 2156 Na/Li CT and the metabolic correlates of hypertension in two comparable 2157 samples of normotensive and hypertensive populations in the cities of 2158 Naples, Italy, and Shanghai, China, using identical, carefully 2159 standardized techniques. flood pressure, anthropometric and metabolic 2160 variables, Na/Li CT, and 24-h urinary Na and K excretion were measured 2161 in untreated essential hypertensive (HPT) and normotensive (NT) 2162 individuals selected by age (35-60 years), body mass index (BMI; < 30 2163 kg/m(2)), and blood pressure (BP; HPT, DBP greater than or equal to 95 2164 mm Hg; NT, DBP < 90 mm Hg). The analysis of variance with adjustment 2165 for age was used to compare the groups. In the Neapolitan population, 2166 hypertensive individuals had higher serum triglyceride (P <.05) and 2167 uric acid levels (P <.001) than the normotensive group and also had a 2168 reduced glucose tolerance (P <.01) and an enhanced insulin response to 2169 the oral glucose tolerance test (OGTT) (P <.05). No such differences 2170 were seen between normotensive and hypertensive Chinese participants. 2171 The Neapolitan population (both NT and HPT) had a higher BMI (P <.01) 2172 than their Chinese peers. In the comparison of hypertensive patients in 2173 Shanghai and in Naples, the Neapolitans were heavier (P <.001), had a 2174 lower HDL/total cholesterol ratio (P <.01), an elevated fasting blood 2175 glucose (P <.05), and also a higher glucose (P <.001) and insulin 2176 response (P <.001) to OGTT. By contrast, they showed a significantly 2177 lower urinary Na/K ratio (P <.001). Na/Li CT was significantly 2178 increased in HPT both in Naples (286 +/- 24 v 224 +/- 13 mu mol/L RBC x 2179 h; P <.05, M +/- SE) and in Shanghai (388 +/- 45 v 265 +/- 30 mu mol/L 2180 RBC x h; P <.05). Furthermore, Na/Li CT was significantly and inversely 2181 associated with HDL cholesterol both in the Neapolitan (P <.01) and in 2182 the Chinese (P <.05) population, whereas it was directly correlated 2183 with serum triglyceride (P <.001) and serum uric acid (P =.001) only in 2184 the Neapolitan population. These results indicate that essential 2185 hypertension is associated with a higher prevalence of obesity, 2186 impaired glucose tolerance, and hyperinsulinemia in Naples than in 2187 Shanghai; and Na/Li CT is linked to both high blood pressure and 2188 metabolic abnormalities in the Italian sample, whereas it is an 2189 isolated marker of hypertension in the Chinese sample. Am J Hypertens 2190 1998;11:935-941 (C) 1998 American Journal of Hypertension, Ltd. 2191 C1 Univ Naples Federico II, Dept Clin & Expt Med, Sch Med, I-80131 Naples, Italy. 2192 Natl Res Council, Epidemiol & Prevent Unit, Inst Food Sci & Technol, Avellino, Italy. 2193 Shanghai Univ, Inst Hypertens, Dept Internal Med, Shanghai, Peoples R China. 2194 RP Strazzullo, P, Univ Naples Federico II, Dept Clin & Expt Med, Sch Med, 2195 Via S Pansini 5, I-80131 Naples, Italy. 2196 EM strazzul@unina.it 2197 CR *WORK GROUP MAN PA, 1991, ANN INTERN MED, V114, P224 2198 BUNKER CH, 1993, J HYPERTENS, V5, P7 2199 CANESSA M, 1980, NEW ENGL J MED, V302, P772 2200 CANESSA M, 1984, HYPERTENSION, V6, P334 2201 DADONE MM, 1984, AM J MED GENET, V17, P565 2202 DORIA A, 1991, AM J PHYSIOL, V261, P684 2203 DOUGLAS JG, 1993, AM J KIDNEY DIS, V21, P46 2204 ELLIOTT P, 1988, BRIT MED J, V297, P319 2205 FOLSOM AR, 1994, J CLIN EPIDEMIOL, V47, P173 2206 HAFFNER SM, 1992, DIABETES, V41, P715 2207 HASSTEDT SJ, 1988, AM J HUM GENET, V43, P14 2208 HUNT SC, 1986, HYPERTENSION, V8, P30 2209 HUNT SC, 1990, CARDIOVASC DRUG THER, V4, P357 2210 IBSEN KK, 1982, HYPERTENSION, V4, P703 2211 KAPLAN NM, 1989, ARCH INTERN MED, V149, P1514 2212 LAW MR, 1991, BRIT MED J, V302, P811 2213 LAW YT, 1992, CLIN EXP HYPERTENS A, V14, P489 2214 PAGANO E, 1997, LIFE SCI, V26, P2389 2215 RAGONE E, 1993, J HYPERTENS, V11, S256 2216 REAVEN GM, 1989, AM J MED, V87, S2 2217 REAVEN GM, 1991, AM HEART J, V121, P1283 2218 SEMPLICINI A, 1997, NUTR METAB CARDIOVAS, V7, P81 2219 SIANI A, 1994, HIGH BLOOD PRESS, V3, P7 2220 SIANI A, 1996, NUTR METAB CARDIOVAS, V6, P245 2221 STAMLER R, 1978, JAMA-J AM MED ASSOC, V240, P1607 2222 STRAZZULLO P, 1993, J HYPERTENS, V11, P815 2223 TREVISAN M, 1984, AM J EPIDEMIOL, V120, P537 2224 TREVISAN M, 1992, LIFE SCI, V51, P687 2225 WEDER AB, 1993, NUTR METAB CARDIOVAS, V3, P38 2226 WEIR MR, 1993, AM J KIDNEY DIS, V21, P58 2227 WILLIAMS RR, 1988, JAMA-J AM MED ASSOC, V259, P3579 2228 WU XG, 1996, J HYPERTENS, V14, P1267 2229 NR 32 2230 TC 6 2231 SN 0895-7061 2232 J9 AMER J HYPERTENS 2233 JI Am. J. Hypertens. 2234 PD AUG 2235 PY 1998 2236 VL 11 2237 IS 8 2238 PN Part 1 2239 BP 935 2240 EP 941 2241 PG 7 2242 SC Peripheral Vascular Disease 2243 GA 108CH 2244 UT ISI:000075248100005 2245 ER 2246 2247 PT J 2248 AU Mo, Y 2249 Xia, Y 2250 Wu, W 2251 TI A nucleation mechanism for diamond film deposited on alumina substrates 2252 by microwave plasma CVD 2253 SO JOURNAL OF CRYSTAL GROWTH 2254 DT Article 2255 DE diamond; microwave plasma; chemical vapor deposition; aluminium oxide 2256 AB Diamond films were deposited on alumina substrates by a microwave 2257 plasma chemical vapor deposition (MPCVD) method. It is shown that by 2258 using appropriate pre-treatments, such as polishing the substrate 2259 surface carefully and by in situ pre-deposition of a carbon layer on 2260 the alumina substrate surface, one can significantly enhance the 2261 nucleation of diamond. The mechanism of the process has been considered 2262 using a droplet model with a quasi-equilibrium approximation. (C) 1998 2263 Elsevier Science B.V. All rights reserved. 2264 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 2265 RP Mo, Y, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R 2266 China. 2267 CR BARNES PN, 1993, APPL PHYS LETT, V62, P37 2268 HSU JY, 1989, J AM CERAM SOC, V72, P1861 2269 MO Y, 1995, ICEM ICSA95 XIAN 2270 MO YW, 1997, ACTA PHYS SINICA, V46, P618 2271 NAZERI A, 1993, AM CERAM SOC B, V75, P59 2272 NEMANICH RJ, 1991, ANNU REV MATER SCI, V21, P535 2273 SOMMER M, 1990, J MATER RES, V5, P2433 2274 XIA YB, 1996, CHINESE PHYS LETT, V13, P557 2275 YARBROUGH WA, 1992, J AM CERAM SOC, V75, P3179 2276 NR 9 2277 TC 8 2278 SN 0022-0248 2279 J9 J CRYST GROWTH 2280 JI J. Cryst. Growth 2281 PD JUL 2282 PY 1998 2283 VL 191 2284 IS 3 2285 BP 459 2286 EP 465 2287 PG 7 2288 SC Crystallography 2289 GA 104TY 2290 UT ISI:000075032500021 2291 ER 2292 2293 PT J 2294 AU He, JH 2295 TI A variational theory for one-dimensional unsteady compressible flow - 2296 an image plane approach 2297 SO APPLIED MATHEMATICAL MODELLING 2298 DT Article 2299 DE 1-dimensional unsteady flow; variational principle; semi-inverse 2300 method; trial-functional 2301 AB Via a semi-inverse method of establishing generalized variational 2302 principles, two families of variational principles and generalized 2303 variational principles for one-dimensional unsteady compressible flow 2304 in an imagine plane tau-Psi (defined by tau = t, Psi - path-function) 2305 have been deduced. The calculation domain in the image plane has the 2306 regular form of rectangle, which gives much advantage of utilizing 2307 variational-based FEM or other direct variational methods such as 2308 Kantrovich-FEM method to solve the problem. (C) 1998 Elsevier Science 2309 Inc. All rights reserved. 2310 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 2311 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd, 2312 Shanghai 200072, Peoples R China. 2313 CR CHIEN WZ, 1983, APPL MATH MECH, V4, P137 2314 FINLAYSON BA, 1972, METHOD WEIGHTED RESI 2315 HE JH, 1996, 4 C CHIN IND APPL MA 2316 HE JH, 1996, J SHANGHAI U, V2, P129 2317 HE JH, 1996, J SHANGHAI U, V2, P584 2318 HE JH, 1997, INT J TURBO JET ENG, V14, P23 2319 HE JH, 1997, J ENG THERMOPHYSICS, V18, P440 2320 LIU GL, 1995, P 6 AS C FLUID MECH 2321 SHAPIRO AH, 1953, DYNAMICS THERMODYNAM 2322 NR 9 2323 TC 7 2324 SN 0307-904X 2325 J9 APPL MATH MODEL 2326 JI Appl. Math. Model. 2327 PD JUN 2328 PY 1998 2329 VL 22 2330 IS 6 2331 BP 395 2332 EP 403 2333 PG 9 2334 SC Mathematics, Applied; Mechanics; Operations Research & Management 2335 Science 2336 GA 106JW 2337 UT ISI:000075127000002 2338 ER 2339 2340 PT J 2341 AU Du, J 2342 Rui, HB 2343 TI Based algebras and standard bases for quasi-hereditary algebras 2344 SO TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY 2345 DT Article 2346 ID SCHUR ALGEBRA; IRREDUCIBLE REPRESENTATIONS; CANONICAL BASES; QUANTUM 2347 GL(N) 2348 AB Quasi-hereditary algebras can be viewed as a Lie theory approach to the 2349 theory of finite dimensional algebras. Motivated by the existence of 2350 certain nice bases for representations of semisimple Lie algebras and 2351 algebraic groups, we will construct in this paper nice bases for 2352 (split) quasi-hereditary algebras and characterize them using these 2353 bases. We first introduce the notion of a standardly based algebra, 2354 which is a generalized version of a cellular algebra introduced by 2355 Graham and Lehrer, and discuss their representation theory. The main 2356 result is that an algebra over a commutative local noetherian ring with 2357 finite rank is split quasi-hereditary if and only if it is standardly 2358 full-based. As an application, we will give an elementary proof of the 2359 fact that split symmetric algebras are not quasi-hereditary unless they 2360 are semisimple. Finally, some relations between standardly based 2361 algebras and cellular algebras are also discussed. 2362 C1 Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia. 2363 Shanghai Univ Sci & Technol, Dept Math, Shanghai 200093, Peoples R China. 2364 RP Du, J, Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia. 2365 EM jied@maths.unsw.edu.au 2366 hbruik@online.sh.cn 2367 CR BARBASCH D, 1982, MATH ANN, V259, P153 2368 BEILINSON AA, 1990, DUKE MATH J, V61, P655 2369 BERGE C, 1971, PRINCIPLES COMBINATO 2370 CLINE E, 1988, J REINE ANGEW MATH, V391, P85 2371 CLINE E, 1989, CONT MATH, V82, P7 2372 CLINE E, 1990, J ALGEBRA, V131, P126 2373 DIPPER R, 1986, P LOND MATH SOC, V52, P20 2374 DIPPER R, 1989, P LOND MATH SOC, V59, P23 2375 DIPPER R, 1991, T AM MATH SOC, V327, P251 2376 DLAB V, 1989, ILLINOIS J MATH, V33, P280 2377 DLAB V, 1992, LONDON MATH SOC LECT, V168, P200 2378 DU J, NEW PROOF CANONICAL 2379 DU J, 1992, B LOND MATH SOC 4, V24, P325 2380 DU J, 1992, CONT MATH, V139, P121 2381 DU J, 1992, MANUSCRIPTA MATH, V75, P411 2382 DU J, 1994, J REINE ANGEW MATH, V455, P141 2383 DU J, 1994, P S PURE MATH 2, V56, P135 2384 DU J, 1995, J LOND MATH SOC, V51, P461 2385 GRAHAM JJ, 1996, INVENT MATH, V123, P1 2386 GREEN JA, 1980, LECT NOTES MATH, V830 2387 GREEN JA, 1990, J ALGEBRA, V131, P265 2388 GREEN JA, 1993, J PURE APPL ALGEBRA, V88, P89 2389 GREEN R, 1994, THESIS 2390 KAZHDAN D, 1979, INVENT MATH, V53, P155 2391 KONIG S, 1997, INVENT MATH, V127, P481 2392 LUSZTIG G, 1993, INTRO QUANTUM GROUPS 2393 PARSHALL B, 1991, MEMOIRS AM MATH SOC, V89 2394 SCOTT LL, 1987, P S PURE MATH 2, V47, P271 2395 NR 28 2396 TC 7 2397 SN 0002-9947 2398 J9 TRANS AMER MATH SOC 2399 JI Trans. Am. Math. Soc. 2400 PD AUG 2401 PY 1998 2402 VL 350 2403 IS 8 2404 BP 3207 2405 EP 3235 2406 PG 29 2407 SC Mathematics 2408 GA 103WZ 2409 UT ISI:000074982000012 2410 ER 2411 2412 PT J 2413 AU Huang, DB 2414 Zhao, XH 2415 Liu, ZR 2416 TI Divergence-free vector-field and reduction 2417 SO PHYSICS LETTERS A 2418 DT Article 2419 AB By the Lie symmetry group, the reduction for divergence-free 2420 vector-fields (DFVs) is studied, and the following results are found. A 2421 n-dimensional DFV can be locally reduced to a (n - 1)-dimensional DFV 2422 if it admits a one-parameter symmetry group that is spatial and 2423 divergenceless. More generally, a n-dimensional DFV admitting a 2424 r-parameter, spatial, divergenceless Abelian (commutable) symmetry 2425 group can be locally reduced to a (n - r)-dimensional DFV. (C) 1998 2426 Elsevier Science B.V. 2427 C1 Chinese Acad Sci, LNM, Inst Mech, Shanghai 201800, Peoples R China. 2428 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 2429 Yunnan Univ, Dept Math, Kunming 650091, Peoples R China. 2430 RP Huang, DB, Chinese Acad Sci, LNM, Inst Mech, Shanghai 201800, Peoples R 2431 China. 2432 CR GASCON FG, 1996, PHYS LETT A, V225, P269 2433 HUANG DB, 1997, IN PRESS SCI SIN A 2434 JANAKI MS, 1987, J PHYS A, V20, P3679 2435 LORENZ EN, 1987, J ATMOS SCI, V44, P2940 2436 MEZIC I, 1994, J NONLINEAR SCI, V4, P157 2437 OLVER PJ, 1986, APPL LIE GROUP DIFFE 2438 QUISPEL GRW, 1995, PHYS LETT A, V206, P26 2439 XIA ZH, 1992, ERGOD THEOR DYN SYST, V12, P621 2440 NR 8 2441 TC 2 2442 SN 0375-9601 2443 J9 PHYS LETT A 2444 JI Phys. Lett. A 2445 PD JUL 27 2446 PY 1998 2447 VL 244 2448 IS 5 2449 BP 377 2450 EP 382 2451 PG 6 2452 SC Physics, Multidisciplinary 2453 GA 104XC 2454 UT ISI:000075040600010 2455 ER 2456 2457 PT J 2458 AU Wang, NN 2459 Shen, JQ 2460 TI A study of the influence of misalignment on measuring results for laser 2461 particle analyzers 2462 SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION 2463 DT Article 2464 AB Light scattering-based laser particle analyzers have found wide use in 2465 powder technology and many-particle systems. It is very important that 2466 the photodetector of the analyzer is in good alignment with the 2467 incident laser beam, otherwise errors will occur. In this paper, the 2468 influences of misalignment on the final results of measurements are 2469 discussed. 2470 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China. 2471 RP Wang, NN, Shanghai Univ Sci & Technol, 516 Jun Gong Rd, Shanghai 2472 200093, Peoples R China. 2473 CR ALLEN T, 1990, PARTICLE SIZE MEASUR 2474 BARTH GB, 1995, ANAL CHEM, V67, R257 2475 HIRLEMAN ED, 1984, ASTM STP, V848, P35 2476 VANDEHULST HC, 1957, LIGHT SCATTERING SMA 2477 NR 4 2478 TC 2 2479 SN 0934-0866 2480 J9 PART PART SYST CHARACT 2481 JI Part. Part. Syst. Charact. 2482 PD JUN 2483 PY 1998 2484 VL 15 2485 IS 3 2486 BP 122 2487 EP 126 2488 PG 5 2489 SC Engineering, Chemical; Materials Science, Characterization & Testing 2490 GA 103NH 2491 UT ISI:000075162100003 2492 ER 2493 2494 PT J 2495 AU Feng, SS 2496 TI Some exact results of Hubbard model at finite temperature 2497 SO MODERN PHYSICS LETTERS B 2498 DT Article 2499 ID LONG-RANGE ORDER; STRONGLY CORRELATED ELECTRONS; GROUND-STATE; 2500 SUPERCONDUCTIVITY; THEOREMS 2501 AB Two theorems of the Hubbard model at finite temperature are proven 2502 employing the fluctuation-dissipation theorem and particle-hole 2503 transform. The main conclusion states that for the prototype Kubbard 2504 model, the expectation value of (S) over tilde(2) - (S) over 2505 tilde(z)(2) will be of order N-Lambda at any temperature except those 2506 critical. 2507 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 2508 CCAST, World Lab, Beijing 100080, Peoples R China. 2509 RP Feng, SS, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 2510 CR DEBOER J, 1995, PHYS REV LETT, V74, P789 2511 ESSLER FHL, 1992, PHYS REV LETT, V68, P2960 2512 ESSLER FHL, 1993, PHYS REV LETT, V70, P73 2513 JONES W, 1973, THEORETICAL SOLID ST, V1, CH4 2514 LIEB EH, 1989, PHYS REV LETT, V62, P1201 2515 NIEH HT, 1995, PHYS REV B, V51, P3760 2516 SEWELL GL, 1990, J STAT PHYS, V61, P415 2517 SHEN SQ, 1993, PHYS REV LETT, V71, P4238 2518 SHEN SQ, 1994, PHYS REV LETT, V72, P1280 2519 SINGH RRP, 1991, PHYS REV LETT, V66, P3203 2520 TIAN GS, 1992, PHYS REV B, V45, P3145 2521 YANG CN, 1962, REV MOD PHYS, V34, P694 2522 YANG CN, 1990, MOD PHYS LETT B, V4, P759 2523 NR 13 2524 TC 3 2525 SN 0217-9849 2526 J9 MOD PHYS LETT B 2527 JI Mod. Phys. Lett. B 2528 PD JUN 30 2529 PY 1998 2530 VL 12 2531 IS 14-15 2532 BP 555 2533 EP 559 2534 PG 5 2535 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical 2536 GA 105QZ 2537 UT ISI:000075086300001 2538 ER 2539 2540 PT J 2541 AU Wu, MH 2542 Bao, BR 2543 Zhou, RM 2544 Zhu, JL 2545 Hu, LX 2546 TI The regeneration of polluted activated carbon by radiation techniques 2547 SO RADIATION PHYSICS AND CHEMISTRY 2548 DT Article 2549 DE regeneration; radiation; activated carbon 2550 AB In this paper, the regeneration of used activated carbon from 2551 monosodium glutamate factory was experimented using radiation and 2552 acid-alkali chemical cleaning method. Results showed that the activated 2553 carbon saturated with pollutants can be wash away easily by flushing 2554 with chemical solution prior irradiation. DSC was used to monitor the 2555 change of carbon adsorption (C) 1998 Elsevier Science Ltd. All rights 2556 reserved. 2557 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China. 2558 Acad Sinica, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China. 2559 RP Wu, MH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, 2560 Peoples R China. 2561 CR BLULELY JP, 1965, CARBON, V3, P269 2562 CASE FN, 1973, 2179129, FR 2563 HERNANDEZ LA, 1976, ENVIRON SCI TECHNOL, V10, P454 2564 HOSONO M, 1993, APPL RADIAT ISOTOPES, V44, P1199 2565 KLEI HE, 1975, IEC RES REV, V14, P471 2566 KUZUYUKI C, 1981, AICHE J, V27, P20 2567 SHUBIN VN, 1980, ZH FIG KHIM, V54, P2557 2568 STRANGE JF, 1976, CARBON, V14, P345 2569 SUZUKI M, 1978, CHEM ENG SCI, V33, P271 2570 NR 9 2571 TC 2 2572 J9 RADIAT PHYS CHEM 2573 JI Radiat. Phys. Chem. 2574 PD OCT 2575 PY 1998 2576 VL 53 2577 IS 4 2578 BP 431 2579 EP 435 2580 PG 5 2581 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear 2582 Science & Technology 2583 GA 100TY 2584 UT ISI:000074832500012 2585 ER 2586 2587 PT J 2588 AU Gu, GQ 2589 Yu, KW 2590 TI Homotopy continuation approach to electrostatic boundary-value problems 2591 of nonlinear media 2592 SO COMMUNICATIONS IN THEORETICAL PHYSICS 2593 DT Article 2594 DE nonlinear media; homotopy continuation method; electrostatic 2595 boundary-value problem 2596 ID EFFECTIVE CONDUCTIVITY; DECOUPLING APPROXIMATION; COMPOSITE MEDIA; 2597 BEHAVIOR 2598 AB The homotopy continuation method is employed to solve electrostatic 2599 boundary-value problems of nonlinear media. The difficulty associated 2600 with matching the inherently nonlinear boundary conditions on the 2601 interface is overcome by the mode expansion method, by which the 2602 nonlinear partial differential equations of the original problem are 2603 transformed into an infinite set of nonlinear ordinary differential 2604 equations. In this regard, the homotopy method has to be modified to 2605 handle the nonlinear boundary conditions. As an illustration, we study 2606 two cases: (a) nonlinear inclusion in linear host and (b) linear 2607 inclusion in nonlinear host, both in two dimensions. The homotopy 2608 method is validated by comparing the results with the exact solution of 2609 case (a) and the results derived by perturbation method in case (b). 2610 C1 Shanghai Univ Sci & Technol, Coll Syst Sci & Syst Engn, Shanghai 200093, Peoples R China. 2611 Chinese Univ Hong Kong, Dept Phys, Shatin, New Territories, Hong Kong. 2612 RP Gu, GQ, Shanghai Univ Sci & Technol, Coll Syst Sci & Syst Engn, 2613 Shanghai 200093, Peoples R China. 2614 CR BARDHAN KK, 1994, SPRINGER LECT NOTES, V437, P1 2615 BERGMAN DJ, 1992, SOLID STATE PHYS, V46, P147 2616 BERGMAN DJ, 1994, PHYSICA A, V207, P1 2617 BLUMENFELD R, 1991, PHYS REV B, V44, P7378 2618 FLYTZANIS C, 1992, PROG OPTICS, V29, P2539 2619 GU GQ, 1992, PHYS REV B, V46, P4502 2620 GU GQ, 1995, J APPL PHYS, V78, P1737 2621 HAUS JW, 1989, PHYS REV A, V40, P5729 2622 LEE HC, 1995, PHYS LETT A, V197, P341 2623 LEE HC, 1995, PHYS REV B, V52, P4217 2624 LI K, 1993, NUMER ALG, V4, P167 2625 LIAO SJ, 1992, INT J NUMER METH FL, V15, P595 2626 LIAO SJ, 1992, J APPL MECH-T ASME, V59, P970 2627 LUI SH, 1995, NUMER ALGORITHMS, V10, P363 2628 PONTECASTANEDA P, 1991, J MECH PHYS SOLIDS, V39, P45 2629 STROUD D, 1988, PHYS REV B, V37, P8719 2630 STROUD D, 1989, J OPT SOC AM B, V6, P778 2631 YU KW, 1993, PHYS REV B, V47, P14150 2632 YU KW, 1993, PHYS REV B, V47, P1782 2633 YU KW, 1993, PHYS REV B, V47, P7568 2634 YU KW, 1994, PHYS LETT A, V193, P311 2635 YU KW, 1994, PHYS REV B, V50, P13327 2636 YU KW, 1996, PHYS LETT A, V210, P115 2637 ZENG XC, 1988, PHYS REV B, V38, P10970 2638 NR 24 2639 TC 1 2640 SN 0253-6102 2641 J9 COMMUN THEOR PHYS 2642 JI Commun. Theor. Phys. 2643 PD JUN 15 2644 PY 1998 2645 VL 29 2646 IS 4 2647 BP 523 2648 EP 530 2649 PG 8 2650 SC Physics, Multidisciplinary 2651 GA 100WG 2652 UT ISI:000074837900008 2653 ER 2654 2655 PT J 2656 AU Zhang, QL 2657 Qiu, XJ 2658 TI A chiral breaking field theory for giant multipole states of nuclei 2659 SO COMMUNICATIONS IN THEORETICAL PHYSICS 2660 DT Article 2661 DE giant multipole states of nuclei; chiral breaking field theory 2662 ID THOMAS-FERMI APPROXIMATION; QUADRUPOLE STATES; MATTER; MONOPOLE 2663 AB The isoscalar giant monopole and quadrupole states of finite nuclei are 2664 studied in a relativistic chiral breaking held theory by making use of 2665 local Lorentz-boost and scaling method. The nuclear surface effect and 2666 the density distribution are treated in the relativistic Thomas-Fermi 2667 approximation. The excitation energies of the giant resonances are 2668 self-consistently calculated. The numerical results for the excitation 2669 energies are in agreement with experimental data for all nuclei. 2670 C1 Ningxia Univ, Dept Phys, Yinchuan 750021, Peoples R China. 2671 Acad Sinica, Inst Nucl Res, Shanghai 201800, Peoples R China. 2672 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China. 2673 RP Zhang, QL, Ningxia Univ, Dept Phys, Yinchuan 750021, Peoples R China. 2674 CR BOGUTA J, 1977, NUCL PHYS A, V292, P413 2675 BOGUTA J, 1983, PHYS LETT B, V120, P34 2676 CLARK BC, 1983, PHYS REV LETT, V51, P1803 2677 HOROWITZ CJ, 1987, NUCL PHYS A, V464, P613 2678 NISHIZAKI S, 1987, NUCL PHYS A, V462, P687 2679 RING P, 1980, NUCL MANY BODY PROBL, P528 2680 SEROT BD, 1986, ADV NUCL PHYS, V16 2681 SERR FE, 1978, PHYS LETT B, V79, P10 2682 SUZUKI T, 1980, PROG THEOR PHYS, V64, P1627 2683 WALECKA JD, 1974, ANN PHYS-NEW YORK, V83, P491 2684 ZHANG QL, 1992, HIGH ENERG PHYS NUCL, V16, P615 2685 ZHU CY, 1990, HIGH ENERG PHYS NUCL, V14, P76 2686 ZHU CY, 1991, COMMUN THEOR PHYS, V15, P27 2687 ZHU CY, 1991, J PHYS G, V17, L11 2688 NR 14 2689 TC 0 2690 SN 0253-6102 2691 J9 COMMUN THEOR PHYS 2692 JI Commun. Theor. Phys. 2693 PD JUN 15 2694 PY 1998 2695 VL 29 2696 IS 4 2697 BP 563 2698 EP 570 2699 PG 8 2700 SC Physics, Multidisciplinary 2701 GA 100WG 2702 UT ISI:000074837900016 2703 ER 2704 2705 PT J 2706 AU Liu, ZG 2707 Tang, CJ 2708 Zhao, WM 2709 Zhang, ZL 2710 Jiang, XY 2711 Xu, SH 2712 Nazare, MH 2713 TI Effects of microcavities on the spontaneous emission of organic 2714 light-emitting diodes with ZnO : Al as the anode 2715 SO JOURNAL OF PHYSICS-CONDENSED MATTER 2716 DT Article 2717 ID ELECTROLUMINESCENT DIODES; PLANAR MICROCAVITY; DEVICES; SEMICONDUCTORS; 2718 VINYLENE); PHYSICS 2719 AB Organic light-emitting diodes (LED) with a microcavity structure and an 2720 aluminium-doped zinc oxide ZnO:Al (AZO) anode have been fabricated. 2721 Effects of microcavities on the spontaneous emission of the organic 2722 LED, such as spectral narrowing, intensity enhancement and angle 2723 dependence of the emission, have been observed. Different emission 2724 colours have been obtained by changing the thickness of the AZO layer 2725 and that of a TiO2 filler layer. The wavelengths of the cavity modes 2726 can be explained on the basis of the calculated total optical thickness 2727 of the individual cavities. 2728 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 2729 Univ Aveiro, Dept Phys, P-3810 Aveiro, Portugal. 2730 RP Liu, ZG, Univ Aveiro, Dept Phys, P-3810 Aveiro, Portugal. 2731 CR BECKER H, 1997, J APPL PHYS, V81, P2825 2732 CHANG KY, 1998, APPL PHYS LETT, V72, P335 2733 CIMROVA V, 1996, APPL PHYS LETT, V69, P608 2734 CIMROVA V, 1996, J APPL PHYS, V79, P3299 2735 DODABALAPUR A, 1994, APPL PHYS LETT, V65, P2308 2736 DODABALAPUR A, 1994, ELECTRON LETT, V30, P1000 2737 DODABALAPUR A, 1996, J APPL PHYS, V80, P6954 2738 DUTRA SM, 1996, PHYS REV A, V53, P3587 2739 EBINA K, 1995, APPL PHYS LETT, V66, P2783 2740 FISHER TA, 1995, APPL PHYS LETT, V67, P1355 2741 HUNT NEJ, 1992, APPL PHYS LETT, V61, P2287 2742 JORDAN RH, 1996, APPL PHYS LETT, V69, P1997 2743 LEMMER U, 1995, APPL PHYS LETT, V66, P1301 2744 LEMMER U, 1996, APPL PHYS LETT, V68, P3007 2745 LIDZEY DG, 1997, APPL PHYS LETT, V71, P744 2746 LIU ZG, 1996, J PHYS-CONDENS MAT, V8, P3221 2747 MINAMI T, 1985, JPN J APPL PHYS, V24, L605 2748 RIGNEAULT H, 1996, PHYS REV A, V54, P2356 2749 TAKADA N, 1993, APPL PHYS LETT, V63, P2032 2750 TANG CW, 1995, EL SOC FALL M PRINC, P1215 2751 TESSLER N, 1996, NATURE, V382, P695 2752 TESSLER N, 1997, APPL PHYS LETT, V70, P566 2753 TSUTSUI T, 1994, APPL PHYS LETT, V65, P1868 2754 YAMAMOTO Y, 1993, PHYS TODAY, V46, P66 2755 YOKOYAMA H, 1992, SCIENCE, V256, P66 2756 ZHANG B, 1996, SOLID STATE COMMUN, V97, P445 2757 NR 26 2758 TC 5 2759 SN 0953-8984 2760 J9 J PHYS-CONDENS MATTER 2761 JI J. Phys.-Condes. Matter 2762 PD JUL 6 2763 PY 1998 2764 VL 10 2765 IS 26 2766 BP 6019 2767 EP 6025 2768 PG 7 2769 SC Physics, Condensed Matter 2770 GA ZZ898 2771 UT ISI:000074780600025 2772 ER 2773 2774 PT J 2775 AU Chen, J 2776 Nho, YC 2777 Park, JS 2778 TI Grafting polymerization of acrylic acid onto preirradiated 2779 polypropylene fabric 2780 SO RADIATION PHYSICS AND CHEMISTRY 2781 DT Article 2782 ID CATIONIC SALTS; POLYETHYLENE; STYRENE 2783 AB Acrylic acid (AAc) was grafted onto polypropylene (PP) fabric by a 2784 preirradiation method using a Co-60 gamma ray. The effect of absorbed 2785 dose, AAc concentration, reaction temperature, reaction time, storage 2786 time, as well as the effect of ferrous ion and sulfuric acid on the 2787 degree of grafting were determined. It has been shown that the 2788 synergistic effect of sulfuric acid with the ferrous sulfate can not 2789 only increase the grafting yield, but also decrease the apparent 2790 activation energy for the grafting. It leads to the possibility of 2791 getting a particular grafting yield at a lower absorbed dose. In this 2792 experiment, It has also been shown that the grafting activity of 2793 preirradiated PP fabric in AAc aqueous solution could be well kept at 2794 room temperature for a long period. 2795 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China. 2796 Korea Atom Energy Res Inst, Radiat Proc Project, Taejon 305600, South Korea. 2797 RP Chen, J, Shanghai Univ, Shanghai Appl Radiat Inst, Jiading Campus, 2798 Shanghai 201800, Peoples R China. 2799 CR CHAPIRO A, 1962, RAD CHEM POLYM SYSTE, P690 2800 DUNN TS, 1979, RADIAT PHYS CHEM, V14, P625 2801 GARGAN K, 1990, RADIAT PHYS CHEM, V36, P757 2802 GARNETT JL, 1980, J MACROMOL SCI CHEM, V14, P87 2803 ISHIGAKI I, 1982, J APPL POLYM SCI, V27, P1043 2804 NHO YC, 1992, J POLYM SCI POL CHEM, V30, P1219 2805 NHO YC, 1993, J POLYM SCI POL CHEM, V31, P1621 2806 NHO YC, 1995, 5 INT C RAD CUR DEC, P389 2807 ONELL T, 1972, J POLYM SCI POL CHEM, V10, P569 2808 NR 9 2809 TC 14 2810 J9 RADIAT PHYS CHEM 2811 JI Radiat. Phys. Chem. 2812 PD JUN 2813 PY 1998 2814 VL 52 2815 IS 1-6 2816 BP 201 2817 EP 206 2818 PG 6 2819 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear 2820 Science & Technology 2821 GA ZX723 2822 UT ISI:000074548000041 2823 ER 2824 2825 PT J 2826 AU Chen, GS 2827 Wang, Q 2828 TI Mode coupling in single-mode helical fibres under perturbations 2829 SO OPTICAL AND QUANTUM ELECTRONICS 2830 DT Article 2831 ID OPTICAL FIBERS 2832 AB The mode coupling in a helical fibre with a circular cross-section 2833 undergoing perturbations is investigated in the Serret-Frenet frame. 2834 The coupled-mode equations have been derived and are compared with the 2835 conventional ones. Applying the coupled-mode equations to a helical 2836 fibre with an elliptical core deformation, we obtained, for the first 2837 time, a rigorous analysis of the transmission characteristics of the 2838 fibre. The numerical examples show that the mode ellipticity and 2839 elliptical birefringence increase as the core ellipticity increases and 2840 also vary as the pitch or the core offset change. 2841 C1 Zhongshan Univ, Dept Elect, Guangzhou 510275, Guangdong Prov, Peoples R China. 2842 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China. 2843 RP Chen, GS, Zhongshan Univ, Dept Elect, Guangzhou 510275, Guangdong Prov, 2844 Peoples R China. 2845 CR BIRCH RD, 1987, ELECTRON LETT, V23, P50 2846 CHEN GS, UNPUB OPT QUANTUM EL 2847 FANG XS, 1985, IEEE T MICROW THEORY, V33, P1150 2848 LEWIN L, 1977, ELECTROMAGNETIC WAVE 2849 PAPP A, 1977, APPL OPTICS, V16, P1315 2850 QIAN JR, 1988, IEE PROC-J, V135, P178 2851 SAKAI JI, 1981, IEEE J QUANTUM ELECT, V17, P1041 2852 TANG CH, 1970, I ELECT ELECTRON ENG, V18, P69 2853 NR 8 2854 TC 0 2855 SN 0306-8919 2856 J9 OPT QUANT ELECTRON 2857 JI Opt. Quantum Electron. 2858 PD MAR 2859 PY 1998 2860 VL 30 2861 IS 3 2862 BP 209 2863 EP 216 2864 PG 8 2865 SC Engineering, Electrical & Electronic; Optics 2866 GA ZY605 2867 UT ISI:000074640400008 2868 ER 2869 2870 PT J 2871 AU Wang, HX 2872 Dai, YL 2873 TI Population-size-dependent branching processes in Markovian random 2874 environments 2875 SO CHINESE SCIENCE BULLETIN 2876 DT Article 2877 DE Markov chains in random environments; stochastic population models; 2878 branching processes 2879 ID PROBABILITIES; CHAINS 2880 AB A branching model \Z(n)\(n greater than or equal to 0) is considered 2881 where the offspring distribution of the population's evolution is not 2882 only dependent on the population size, but also controlled by a 2883 Markovian environmental process {xi(n)}(n greater than or equal to 0). 2884 For this model, asymptotic behaviour is studied such as 2885 [GRAPHICS] 2886 Z(n) and 2887 [GRAPHICS] 2888 Z(n)/m(n) in the case that the mean m(k,0) of the offspring 2889 distribution converges to m > 1 as the population size k grows to 2890 infinity. In the case that {xi(n)}(n greater than or equal to 0) is an 2891 irreducible positive recurrent Markov chain, certain extinction (i. e. 2892 P(Z(n) = 0 for some n) = 1) and noncertain extinction (i. e. P(Z(n) = 0 2893 for some n) < l) are studied. 2894 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 2895 Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China. 2896 RP Wang, HX, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 2897 CR ATHREYA KB, 1971, ANN MATH STAT, V42, P1499 2898 COGBURN R, 1984, Z WAHRSCHEINLICHKEIT, V66, P109 2899 KLEBANER FC, 1983, J APPL PROBAB, V20, P242 2900 KLEBANER FC, 1984, ADV APPL PROBAB, V16, P30 2901 OREY S, 1991, ANN PROBAB, V19, P907 2902 VIAUD DPL, 1994, J APPL PROBAB, V31, P22 2903 NR 6 2904 TC 1 2905 SN 1001-6538 2906 J9 CHIN SCI BULL 2907 JI Chin. Sci. Bull. 2908 PD APR 2909 PY 1998 2910 VL 43 2911 IS 8 2912 BP 635 2913 EP 638 2914 PG 4 2915 SC Multidisciplinary Sciences 2916 GA ZX142 2917 UT ISI:000074483600005 2918 ER 2919 2920 PT J 2921 AU Huang, DB 2922 Zhao, XH 2923 Liu, ZR 2924 TI Reduction of the vector fields preserving n-form and the study of their 2925 interrelated problems 2926 SO CHINESE SCIENCE BULLETIN 2927 DT Letter 2928 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 2929 Yunnan Univ, Dept Math, Kunming 650091, Peoples R China. 2930 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 2931 CR CHENG CQ, 1990, CELESTIAL MECH, V47, P275 2932 MARSDEN J, 1974, REP MATH PHYS, V5, P121 2933 MEZIC I, 1994, J NONLINEAR SCI, V4, P157 2934 QUISPEL GRW, 1995, PHYS LETT A, V206, P26 2935 XIA ZH, 1992, ERGOD THEOR DYN SYST, V12, P621 2936 NR 5 2937 TC 0 2938 SN 1001-6538 2939 J9 CHIN SCI BULL 2940 JI Chin. Sci. Bull. 2941 PD MAY 2942 PY 1998 2943 VL 43 2944 IS 9 2945 BP 788 2946 EP 789 2947 PG 2 2948 SC Multidisciplinary Sciences 2949 GA ZX144 2950 UT ISI:000074483800023 2951 ER 2952 2953 PT J 2954 AU Liu, GL 2955 TI Variational principles for 1-D unsteady compressible flow in a 2956 deforming tube of variable cross section 2957 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 2958 DT Article 2959 AB The 1-D unsteady compressible, homentropic, inviscid now in a flexible 2960 tube of varying cross-sectional area A(x,t) is formulated by two 2961 variational principle (VP) families in terms of the potential-and 2962 path-functions respectively. In addition, a novel approach to dealing 2963 with the initial/final conditions is suggested in order to be able to 2964 incorporate physical initial conditions into the VP and to exclude 2965 final conditions from the VP so as to ensure the properly-posedness of 2966 the hyperbolic problem under study. Thus, a sound theoretical basis for 2967 the finite element analysis of unsteady now is founded. 2968 C1 Shanghai Univ, Shanghai 200072, Peoples R China. 2969 Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 2970 RP Liu, GL, Shanghai Univ, Shanghai 200072, Peoples R China. 2971 CR BENSON RS, 1982, THERMODYNAMICS GAS D, V1 2972 FINLAYSON BA, 1972, METHOD WEIGHTED RESI 2973 LIU GL, 1990, P 1 INT S AER INT FL, P128 2974 LIU GL, 1993, P 2 INT C FLUID MECH, P359 2975 RAO SS, 1982, FINITE ELEMENT METHO 2976 SHAPIRO AH, 1953, DYNAMICS THERMODYNAM, V2, CH23 2977 NR 6 2978 TC 3 2979 SN 0334-0082 2980 J9 INT J TURBO JET ENGINES 2981 JI Int. J. Turbo. Jet-Engines 2982 PY 1998 2983 VL 15 2984 IS 1 2985 BP 1 2986 EP 5 2987 PG 5 2988 SC Engineering, Aerospace 2989 GA ZT828 2990 UT ISI:000074131800001 2991 ER 2992 2993 PT J 2994 AU Guo, BQ 2995 Cao, WM 2996 TI Domain decomposition method for the h-p version finite element method 2997 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2998 DT Article 2999 ID ELLIPTIC PROBLEMS; 3 DIMENSIONS; ITERATIVE METHODS; 2 DIMENSIONS; 3000 PRECONDITIONER 3001 AB Domain decomposition method for the h-p version of the finite element 3002 method in two and three dimensions are discussed. Using the framework 3003 of additive Schwarz method, various iterative methods are described, 3004 with their condition numbers estimated. Further, to reduce the cost for 3005 solving the sub-problems on element interfaces, different inexact 3006 interface solvers are proposed. The effects on the overall condition 3007 number, as well as their efficient implementation, are analyzed. (C) 3008 1998 Elsevier Science S.A. 3009 C1 Univ Manitoba, Dept Appl Math, Winnipeg, MB R3T 2N2, Canada. 3010 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China. 3011 RP Guo, BQ, Univ Manitoba, Dept Appl Math, Winnipeg, MB R3T 2N2, Canada. 3012 CR AINSWORTH M, 1996, SIAM J NUMER ANAL, V33, P1358 3013 BABUSKA I, 1988, SIAM J NUMER ANAL, V25, P837 3014 BABUSKA I, 1989, INT J NUMER METH ENG, V28, P1891 3015 BABUSKA I, 1991, SIAM J NUMER ANAL, V28, P624 3016 BJORSTAD PE, 1986, SIAM J NUMER ANAL, V23, P1097 3017 BRAMBLE J, 1986, MATH COMPUT, V175, P103 3018 BRAMBLE JH, 1989, MATH COMPUT, V53, P1 3019 CANUTO C, 1987, SPECTRAL METHODS FLU 3020 CAO WM, IN PRESS SIAM J SCI 3021 CASARIN M, 1995, 704 NEW YORK U COUR 3022 CIARLET PG, 1978, FINITE ELEMENT METHO 3023 DON WS, 1994, SIAM J NUMER ANAL, V31, P1519 3024 DRUJA M, 1990, P 3 INT S DOM DEC ME 3025 DRYJA M, 1987, 339 NEW YORK U COUR 3026 DRYJA M, 1989, ITERATIVE METHODS LA, P273 3027 DRYJA M, 1994, SIAM J NUMER ANAL, V31, P1662 3028 GUO B, 1986, COMPUT MECH, V1, P203 3029 GUO B, 1986, COMPUT MECH, V1, P21 3030 GUO BQ, IN PRESS SIAM J SCI 3031 GUO BQ, 1996, NUMER MATH, V75, P59 3032 GUO BQ, 1997, P ROY SOC EDINB A 1, V127, P77 3033 GUO BQ, 1997, P ROY SOC EDINB A 3, V127, P517 3034 LIONS JL, 1972, NONHOMOGENEOUS BOUND, V1 3035 LIONS PL, 1988, P 1 INT S DOM DEC ME 3036 MANDEL J, 1990, COMPUT METHOD APPL M, V80, P117 3037 MANDEL J, 1990, INT J NUMER METH ENG, V29, P1095 3038 ODEN JT, 1994, 9411 TICAM 3039 ODEN JT, 1994, CONT MATH, V180, P295 3040 PAVARINO LF, 1994, IN PRESS COMPUTERS M 3041 PAVARINO LF, 1996, SIAM J NUMER ANAL, V33, P1303 3042 SZABO B, 1990, FINITE ELEMETN ANAL 3043 WDLUND OB, 1988, P 1 INT S DOM DEC ME 3044 WIDLUND OB, 1989, P 2 INT S DOM DEC ME 3045 XU JC, 1992, SIAM REV, V34, P581 3046 NR 34 3047 TC 3 3048 SN 0045-7825 3049 J9 COMPUT METHOD APPL MECH ENG 3050 JI Comput. Meth. Appl. Mech. Eng. 3051 PD MAY 11 3052 PY 1998 3053 VL 157 3054 IS 3-4 3055 BP 425 3056 EP 440 3057 PG 16 3058 SC Computer Science, Interdisciplinary Applications; Engineering, 3059 Mechanical; Mechanics 3060 GA ZT934 3061 UT ISI:000074142800018 3062 ER 3063 3064 PT J 3065 AU Bai, ZZ 3066 Wang, DR 3067 Evans, DJ 3068 TI A class of asynchronous matrix multi-splitting multi-parameter 3069 relaxation iterations 3070 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 3071 DT Article 3072 DE system of linear equations; asynchronous iteration; matrix 3073 multisplitting; relaxation; convergence 3074 ID MULTISPLITTING RELAXED ITERATIONS; PARALLEL; CONVERGENCE; ALGORITHM; 3075 EQUATIONS; MODELS 3076 AB A class of asynchronous matrix multi-splitting multi-parameter 3077 relaxation methods, including the asynchronous matrix multisplitting 3078 SAOR, SSOR and SGS methods as well. as the known asynchronous matrix 3079 multisplitting AOR, SOR and GS methods, etc., is proposed for solving 3080 the large sparse systems of linear equations by making use of the 3081 principle of sufficiently using the delayed information. These new 3082 methods can greatly execute the parallel computational efficiency of 3083 the MIMD-systems, and are shown to be convergent when the coefficient 3084 matrices are H-matrices. Moreover, necessary and sufficient conditions 3085 ensuring the convergence of these methods are concluded for the case 3086 that the coefficient matrices are L-matrices. 3087 C1 Chinese Acad Sci, ICMSEC, Beijing 100080, Peoples R China. 3088 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 3089 Loughborough Univ Technol, Dept Comp Studies, Loughborough LE11 3TU, Leics, England. 3090 CR BAI ZZ, 1993, CHINESE J ENG MATH, V10, P107 3091 BAI ZZ, 1993, J NATU SCI HEILONGJI, V10, P1 3092 BAI ZZ, 1993, NUMER MATH J CHINESE, V2, P87 3093 BAI ZZ, 1993, THESIS SHANGHAI U SC 3094 BAI ZZ, 1994, APPL MATH JCU B, V9, P189 3095 BAI ZZ, 1994, CHINESE J ENG MATH, V11, P99 3096 BAI ZZ, 1994, J UEST CHINA, V23, P207 3097 BAI ZZ, 1994, NUMER MATH J CHINESE, V16, P107 3098 BAI ZZ, 1995, APPL MATH JCU A, V10, P133 3099 BAI ZZ, 1995, COMMUN NUMER METH EN, V11, P363 3100 BAI ZZ, 1995, INT J COMPUT MATH, V55, P223 3101 BAI ZZ, 1995, J COMPUT MATH, V13, P369 3102 BAI ZZ, 1995, J FUDAN U, V34, P139 3103 BAI ZZ, 1995, J SHANGHAI TEACHERS, V24, P13 3104 BAI ZZ, 1995, NUMER MATH J CHINESE, V17, P127 3105 BAI ZZ, 1995, PARALLEL COMPUT, V21, P565 3106 BRU R, 1988, LINEAR ALGEBRA APPL, V103, P175 3107 EVANS DJ, 1991, PARALLEL COMPUT, V17, P165 3108 EVANS DJ, 1992, INT J COMPUT MATH, V43, P173 3109 FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141 3110 NEUMANN M, 1987, LINEAR ALGEBRA APPL, V88, P559 3111 OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630 3112 VARGA RS, 1961, MATRIX ITERATIVE ANA 3113 WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473 3114 WANG DR, 1994, INT J COMPUT MATH, V54, P57 3115 WANG DR, 1994, P 92 SHANGH INT NUME 3116 WANG DR, 1994, PARALLEL ALGORITHMS, V2, P173 3117 WANG DR, 1994, PARALLEL ALGORITHMS, V2, P209 3118 WHITE RE, 1989, SIAM J MATRIX ANAL A, V10, P481 3119 NR 29 3120 TC 3 3121 SN 0254-9409 3122 J9 J COMPUT MATH 3123 JI J. Comput. Math. 3124 PD MAY 3125 PY 1998 3126 VL 16 3127 IS 3 3128 BP 221 3129 EP 238 3130 PG 18 3131 SC Mathematics, Applied; Mathematics 3132 GA ZQ797 3133 UT ISI:000073904000004 3134 ER 3135 3136 PT J 3137 AU Wang, J 3138 Fiebig, M 3139 TI Absolute measurements of the thermal diffusivity of aqueous solutions 3140 of sodium chloride 3141 SO INTERNATIONAL JOURNAL OF THERMOPHYSICS 3142 DT Article 3143 DE aqueous solution; diffraction; laser-induced thermal grating; sodium 3144 chloride; thermal conductivity; thermal diffusivity 3145 ID GRATING TECHNIQUE; CONDUCTIVITY; LIQUIDS; PRESSURES; NACL 3146 AB The laser-induced thermal grating technique was used to determine the 3147 thermal diffusivity of aqueous solutions of sodium chloride. In 3148 comparison with conventional measurement methods, this noninvasive 3149 optical technique has the advantage that no sensors need to be inserted 3150 in the sample. Therefore, this technique is especially suitable for the 3151 measurement of electrically conducting and corrosive liquids. The 3152 aqueous solutions studied have weight fractions of 5, 10, 15, and 20% 3153 sodium chloride. Measurement results for the thermal diffusivity are 3154 presented for aqueous solutions of sodium chloride in the temperature 3155 range 293 to 373 K at atmospheric pressure. 3156 C1 Ruhr Univ Bochum, Inst Thermo & Fluiddynam, D-44780 Bochum, Germany. 3157 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China. 3158 RP Fiebig, M, Ruhr Univ Bochum, Inst Thermo & Fluiddynam, D-44780 Bochum, 3159 Germany. 3160 CR 1991, VDI WARMEATLAS 3161 ABDULAGATOV IM, 1994, INT J THERMOPHYS, V15, P401 3162 ASSAEL MJ, 1991, EXPT THERMODYNAMICS, V3, P184 3163 BLANKE W, 1989, THERMOPHYSIKALISCHE, P112 3164 DAVIS PS, 1971, J CHEM PHYS, V55, P4776 3165 ELDAROV VS, 1986, ZH FIZ KHIM, V60, P603 3166 GANIEV Y, 1990, P 11 INT C PROP WAT, P132 3167 KAPUSTINSKII AF, 1955, ZH FIZ KHIM, V29, P2222 3168 MAGOMEDOV UB, 1989, GEOTHERMICS, P103 3169 NAGASAKA Y, 1983, BER BUNSEN PHYS CHEM, V87, P859 3170 NAGASAKA Y, 1984, P 10 INT C PROP STEA, V2, P203 3171 NAGASAKA Y, 1988, REV SCI INSTRUM, V59, P1156 3172 PERRY RH, 1984, PERRYS CHEM ENG HDB 3173 PRESS WH, 1992, NUMERICAL RECIPES FO, P678 3174 RAMIRES MLV, 1994, J CHEM ENG DATA, V39, P186 3175 RIEDEL L, 1951, CHEM ING TECHNIK, V3, P59 3176 URBACH W, 1978, MOL CRYST LIQ CRYST, V46, P209 3177 VARGAFTIK NB, 1956, TEPLOENERGETIKA, V7, P11 3178 WANG J, 1995, INT J THERMOPHYS, V16, P1353 3179 WANG J, 1995, MESSUNG TEMPERATURLE, P48 3180 WANG J, 1996, EXP THERM FLUID SCI, V13, P38 3181 WANG J, 1996, INT J THERMOPHYS, V17, P1229 3182 WANG J, 1996, INT J THERMOPHYS, V17, P329 3183 WU G, 1988, INT J HEAT MASS TRAN, V31, P1471 3184 WU G, 1993, FLUID PHASE EQUILIBR, V88, P239 3185 YUSUFOVA VD, 1975, INZH FIZ ZH, V29, P600 3186 NR 26 3187 TC 2 3188 SN 0195-928X 3189 J9 INT J THERMOPHYS 3190 JI Int. J. Thermophys. 3191 PD JAN 3192 PY 1998 3193 VL 19 3194 IS 1 3195 BP 15 3196 EP 25 3197 PG 11 3198 SC Chemistry, Physical; Physics, Applied; Mechanics; Thermodynamics 3199 GA ZN249 3200 UT ISI:000073627000003 3201 ER 3202 3203 PT J 3204 AU Liu, RH 3205 Tan, WH 3206 TI Nonlinear control of chaos 3207 SO CHINESE PHYSICS LETTERS 3208 DT Article 3209 ID SYSTEMS 3210 AB The nonlinear and the exact control of chaos is deduced. Using these 3211 methods we achieve a simultaneous and instantaneous control of the 3212 scheduled unstable 2(k)p points for the logistic and the Henon map. The 3213 derivatives needed in the nonlinear method have been evaluated 3214 experimentally from the time series x(n), without the preknowledge of 3215 the function f(x). The difficulty confronted in the optimum control may 3216 be overcome by introducing the nonlinear control. 3217 C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China. 3218 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 3219 RP Liu, RH, Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 3220 201800, Peoples R China. 3221 CR HUBERMAN BA, 1990, IEEE T CIRCUITS SYST, V37, P547 3222 HUNT ER, 1991, PHYS REV LETT, V67, P1953 3223 JACKSON EA, 1990, PHYS LETT A, V151, P478 3224 LIMA R, 1990, PHYS REV A, V41, P726 3225 OTT E, 1990, PHYS REV LETT, V64, P1196 3226 PYRAGAS K, 1992, PHYS LETT A, V170, P423 3227 TONG PQ, 1995, ACTA PHYS SINICA, V44, P169 3228 WANSUN NI, 1994, CHINESE PHYS LETT, V11, P325 3229 NR 8 3230 TC 4 3231 SN 0256-307X 3232 J9 CHIN PHYS LETT 3233 JI Chin. Phys. Lett. 3234 PY 1998 3235 VL 15 3236 IS 4 3237 BP 249 3238 EP 251 3239 PG 3 3240 SC Physics, Multidisciplinary 3241 GA ZN653 3242 UT ISI:000073668200006 3243 ER 3244 3245 PT J 3246 AU Cheng, XY 3247 Wan, XJ 3248 TI Hydrogen diffusivity in a Fe3Al-based alloy 3249 SO SCRIPTA MATERIALIA 3250 DT Article 3251 ID ROOM-TEMPERATURE DUCTILITY; UNIDIRECTIONAL SOLIDIFICATION; 3252 ENVIRONMENTAL EMBRITTLEMENT; NI3AL; CO3TI; BORON 3253 C1 Shanghai Univ, Inst Met & Mat Sci, Shanghai 200072, Peoples R China. 3254 RP Cheng, XY, Shanghai Univ, Inst Met & Mat Sci, Shanghai 200072, Peoples 3255 R China. 3256 CR CASTAGNA A, 1992, SCRIPTA METALL, V26, P273 3257 GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37 3258 HIRANO T, 1991, SCRIPTA METALL MATER, V25, P1747 3259 LIU CT, 1989, SCRIPTA METALL, V23, P875 3260 LIU CT, 1990, SCRIPTA METALL MATER, V24, P385 3261 MCKAMEY CG, 1993, SCRIPTA METALL MATER, V28, P1173 3262 NI JS, 1994, J SHANGHAI U TECHNOL, V15, P81 3263 NISHIMURA C, 1993, SCRIPTA METALL MATER, V29, P1205 3264 SANDERS PG, 1991, SCRIPTA METALL MATER, V25, P2365 3265 TAKASUGI T, 1986, ACTA METALL, V34, P607 3266 TAKASUGI T, 1993, SCRIPTA METALL MATER, V29, P1587 3267 WAN X, 1994, J MATER SCI TECHNOL, V10, P39 3268 WAN XJ, 1995, ACTA METALL SINICA B, V31, B183 3269 ZHANG DZ, 1993, SCRIPTA METALL MATER, V29, P901 3270 ZHU JH, 1994, ACTA METALL SINICA, V30, A139 3271 ZHU JH, 1994, J SHANGHAI U TECHNOL, V15, P81 3272 NR 16 3273 TC 4 3274 SN 1359-6462 3275 J9 SCRIPTA MATER 3276 JI Scr. Mater. 3277 PD APR 14 3278 PY 1998 3279 VL 38 3280 IS 10 3281 BP 1505 3282 EP 1509 3283 PG 5 3284 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 3285 Engineering 3286 GA ZM587 3287 UT ISI:000073555100005 3288 ER 3289 3290 PT J 3291 AU Feng, F 3292 Ping, XY 3293 Zhou, ZQ 3294 Geng, MM 3295 Han, JW 3296 Northwood, DO 3297 TI The relationship between equilibrium potential during discharge and 3298 hydrogen concentration in a metal hydride electrode 3299 SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 3300 DT Article 3301 ID BATTERY; ALLOYS; POWDER; MODEL 3302 AB Based on the static equilibrium of electrochemical reaction kinetics, 3303 i.e, the same static reaction current density of forward and backward 3304 reactions, a relationship has been established between the equilibrium 3305 potential during discharge (E-e) and hydrogen concentration (C-H) in a 3306 hydride alloy (Mm(0.4)Ml(0.6)Ni(3.8)Co(0.5)Al(0.3)Mn(0.4)) at an 3307 equilibrium discharge condition. The theoretical results are in an 3308 agreement with the experimental electrochemical data in the two-phase 3309 (alpha-beta) region of the hydrogen-absorbing alloy. The enthalpy 3310 (Delta H) and entropy (Delta S), which is a function of hydrogen 3311 concentration in the electrode alloy, were obtained by fitting the 3312 curve of the equilibrium potential vs hydrogen concentration. (C) 1998 3313 International Association for Hydrogen Energy. 3314 C1 Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China. 3315 Univ Windsor, Dept Mech & Mat Engn, Windsor, ON N9B 3P4, Canada. 3316 RP Northwood, DO, Ryerson Polytech Univ, Fac Engn & Appl Sci, 350 Victoria 3317 St, Toronto, ON M5B 2K3, Canada. 3318 CR BJURSTROM H, 1987, J LESS-COMMON MET, V130, P365 3319 DRIESSEN A, 1985, Z PHYS CHEM NEUE FOL, V143, P145 3320 FUJITANI S, 1993, Z PHYS CHEM, V179, P27 3321 GENG MM, 1996, INT J HYDROGEN ENERG, V21, P887 3322 JARMAN RH, 1982, J ELECTROCHEM SOC, V129, P2276 3323 LEE SG, 1996, INT J HYDROGEN ENERG, V21, P733 3324 NOTTEN PHL, 1991, J ELECTROCHEM SOC, V138, P1877 3325 PONS M, 1994, Z PHYS CHEM, V183, P213 3326 RATNAKUMAR BV, 1996, J ELECTROCHEM SOC, V143, P2578 3327 SAKAI T, 1990, J ELECTROCHEM SOC, V137, P795 3328 SAKAI T, 1991, J LESS-COMMON MET, V1175, P172 3329 SUZUKI K, 1993, J ALLOY COMPD, V192, P173 3330 WILLEMS JJG, 1984, PHILIPS J RES S1, V39, P1 3331 YANG QM, 1994, J ELECTROCHEM SOC, V141, P2108 3332 YAYAMA H, 1985, TECHNOLOGY REPORT KY, V58, P139 3333 YE Z, 1995, J ELECTROCHEM SOC, V142, P4045 3334 NR 16 3335 TC 5 3336 SN 0360-3199 3337 J9 INT J HYDROGEN ENERG 3338 JI Int. J. Hydrog. Energy 3339 PD JUL 3340 PY 1998 3341 VL 23 3342 IS 7 3343 BP 599 3344 EP 602 3345 PG 4 3346 SC Physics, Atomic, Molecular & Chemical; Energy & Fuels; Environmental 3347 Sciences 3348 GA ZN252 3349 UT ISI:000073627300010 3350 ER 3351 3352 PT J 3353 AU Ru, HY 3354 Min, ZK 3355 TI New upper bounds for Ramsey numbers 3356 SO EUROPEAN JOURNAL OF COMBINATORICS 3357 DT Article 3358 AB Ramsey number R(G(1),G(2)) is the smallest integer p such that for any 3359 graph G on p vertices either G contains G(1) or (G) over bar contains 3360 G(2), where (G) over bar denotes the complement of G. Let R(m, n) = 3361 R(K-m, K-n). Some new upper bound formulas are obtained for 3362 R(G(1),G(2)) and R(m, n), and we derive some new upper bounds for 3363 Ramsey numbers here. (C) 1998 Academic Press Limited. 3364 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 3365 Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China. 3366 CR BONDY JA, 1976, GRAPH THEORY APPL 3367 RADZISZOWSKI SP, 1996, ELECT J COMBIN, V1, P1 3368 RU HY, 1997, JCMCC 3369 WALKER K, 1968, J COMB THEORY, V5, P238 3370 NR 4 3371 TC 1 3372 SN 0195-6698 3373 J9 EUR J COMBINATORIC 3374 JI Eur. J. Comb. 3375 PD APR 3376 PY 1998 3377 VL 19 3378 IS 3 3379 BP 391 3380 EP 394 3381 PG 4 3382 SC Mathematics 3383 GA ZM774 3384 UT ISI:000073574500012 3385 ER 3386 3387 PT J 3388 AU Guan, HW 3389 Ip, HHS 3390 Zhang, YC 3391 TI Java-based approaches for accessing databases on the Internet and a 3392 JDBC-ODBC implementation 3393 SO COMPUTING & CONTROL ENGINEERING JOURNAL 3394 DT Article 3395 AB An important area of Java development is to create Java-based software 3396 or tools with the capability of accessing databases over the Internet. 3397 In this article JDBC and its various properties are explored. Several 3398 Java-based technical approaches for accessing databases on the Internet 3399 are proposed and investigated in detail. A design and implementation of 3400 the Java software for accessing databases on the Internet is proposed 3401 and described, where the design scheme of an interactive applet by 3402 using Java JDBC programming is proposed and investigated, the main JDBC 3403 classes used in the Java program and the relationship between them are 3404 discussed, the implementation of the software is provided, and some 3405 instances for running the Java program are given. This Java software 3406 provides an interactive and user-friendly interface on the browser 3407 which supports Java JDK 1.1 or later and the software has the 3408 capability for the connection, SQL access, retrieval and display of a 3409 database on the Internet. 3410 C1 Shanghai Univ, Dept Comp Engn, Shanghai 200072, Peoples R China. 3411 IPSI, GMD, Darmstadt, Germany. 3412 City Univ Hong Kong, Dept Comp Sci, Hong Kong, Hong Kong. 3413 Univ So Queensland, Dept Math & Comp, Toowoomba, Qld 4350, Australia. 3414 RP Guan, HW, Shanghai Univ, Dept Comp Engn, Shanghai 200072, Peoples R 3415 China. 3416 CR GOSLING J, 1996, JAVA LANGUAGE SPECIF 3417 HELLER P, 1997, JAVA 1 1 DEV HDB 3418 JENNINGS R, 1997, VISUAL BASIC PROGRAM, V7, P22 3419 JEPSON B, 1997, JAVA DATABASE PROGRA 3420 LINDHOLM T, 1997, JAVA VIRTUAL MACHINE 3421 URQUHART K, 1997, IEEE MICRO, V17, P11 3422 NR 6 3423 TC 1 3424 SN 0956-3385 3425 J9 COMPUTING CONTROL ENGINEER J 3426 JI Comput. Control Eng. J. 3427 PD APR 3428 PY 1998 3429 VL 9 3430 IS 2 3431 BP 71 3432 EP 78 3433 PG 8 3434 SC Automation & Control Systems 3435 GA ZM371 3436 UT ISI:000073531800005 3437 ER 3438 3439 PT J 3440 AU Ma, HP 3441 TI Chebyshev-Legendre spectral viscosity method for nonlinear conservation 3442 laws 3443 SO SIAM JOURNAL ON NUMERICAL ANALYSIS 3444 DT Article 3445 DE conservation laws; Chebyshev-Legendre method; spectral viscosity; 3446 convergence 3447 ID RECOVERING EXPONENTIAL ACCURACY; PIECEWISE ANALYTIC-FUNCTION; GIBBS 3448 PHENOMENON; PARTIAL SUM; CONVERGENCE; APPROXIMATIONS 3449 AB In this paper, a Chebyshev-Legendre spectral viscosity (CLSV) method is 3450 developed for nonlinear conservation laws with initial and boundary 3451 conditions. The boundary conditions are dealt with by a penalty method. 3452 The viscosity is put only on the high modes, so accuracy may be 3453 recovered by postprocessing the CLSV approximation. It is proved that 3454 the bounded solution of the CLSV method converges to the exact scalar 3455 entropy solution by compensated compactness arguments. Also, a new 3456 spectral viscosity method using the Chebyshev differential operator D = 3457 root 1-x(2) partial derivative(x) is introduced, which is a little 3458 weaker than the usual one while guaranteeing the convergence of the 3459 bounded solution of the Chebyshev Galerkin, Chebyshev collocation, or 3460 Legendre Galerkin approximation to nonlinear conservation laws. This 3461 kind of viscosity is ready to be generalized to a super viscosity 3462 version. 3463 C1 Brown Univ, Div Appl Math, Providence, RI 02912 USA. 3464 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China. 3465 RP Ma, HP, Brown Univ, Div Appl Math, Providence, RI 02912 USA. 3466 CR ABARBANEL S, 1986, NUMERICAL METHODS FL, V2, P129 3467 ALPERT BK, 1991, SIAM J SCI STAT COMP, V12, P158 3468 BENNETT C, 1988, INTERPOLATION OPERAT 3469 BERNARDI C, 1992, J COMPUT APPL MATH, V43, P53 3470 CAI W, 1992, SIAM J NUMER ANAL, V29, P905 3471 CANUTO C, 1988, SPECTRAL METHODS FLU 3472 DON WS, 1994, SIAM J NUMER ANAL, V31, P1519 3473 FUNARO D, 1988, MATH COMPUT, V51, P599 3474 FUNARO D, 1991, MATH COMPUT, V57, P585 3475 GOTTLIEB D, 1977, SIAM CBMS, V26 3476 GOTTLIEB D, 1985, PROGR SUPERCOMPUTING, P357 3477 GOTTLIEB D, 1992, J COMPUT APPL MATH, V43, P81 3478 GOTTLIEB D, 1995, MATH COMPUT, V64, P1081 3479 GOTTLIEB D, 1995, NUMER MATH, V71, P511 3480 GOTTLIEB D, 1996, SIAM J NUMER ANAL, V33, P280 3481 KABER SMO, 1991, THESIS U P M CURIE P 3482 MA HP, 1988, J COMPUT MATH, V6, P48 3483 MADAY Y, 1989, SIAM J NUMER ANAL, V26, P854 3484 MADAY Y, 1991, THESIS U P M CURIE P 3485 MADAY Y, 1993, SIAM J NUMER ANAL, V30, P321 3486 MITRINOVIC DS, 1991, INEQUALITIES INVOLVI 3487 MUCKENHOUPT B, 1969, P AM MATH SOC, V23, P306 3488 MUCKENHOUPT B, 1970, T AM MATH SOC, V147, P433 3489 REYNA LG, 1988, J SCI COMPUT, V3, P1 3490 TADMOR E, 1989, SIAM J NUMER ANAL, V26, P30 3491 TADMOR E, 1990, COMPUT METHOD APPL M, V80, P197 3492 TADMOR E, 1993, NUMERICAL METHODS FL, V4, P69 3493 TARTAR L, 1975, RES NOTES MATH 39, V4, P136 3494 NR 28 3495 TC 10 3496 SN 0036-1429 3497 J9 SIAM J NUMER ANAL 3498 JI SIAM J. Numer. Anal. 3499 PD JUN 3500 PY 1998 3501 VL 35 3502 IS 3 3503 BP 869 3504 EP 892 3505 PG 24 3506 SC Mathematics, Applied 3507 GA ZL417 3508 UT ISI:000073430800001 3509 ER 3510 3511 PT J 3512 AU Ma, HP 3513 TI Chebyshev-Legendre super spectral viscosity method for nonlinear 3514 conservation laws 3515 SO SIAM JOURNAL ON NUMERICAL ANALYSIS 3516 DT Article 3517 DE conservation laws; Chebyshev-Legendre method; super spectral viscosity; 3518 convergence 3519 ID RECOVERING EXPONENTIAL ACCURACY; PIECEWISE ANALYTIC-FUNCTION; GIBBS 3520 PHENOMENON; PARTIAL SUM; APPROXIMATIONS; CONVERGENCE 3521 AB In this paper, a super spectral viscosity method using the Chebyshev 3522 differential operator of high order D-s = (root 1-x(2) partial 3523 derivative(x))(s) is developed for nonlinear conservation laws. The 3524 boundary conditions are treated by a penalty method. Compared with the 3525 second-order spectral viscosity method, the super one is much weaker 3526 while still guaranteeing the convergence of the bounded solution of the 3527 Chebyshev-Galerkin, Chebyshev collocation, or Legendre-Galerkin 3528 approximations to nonlinear conservation laws, which is proved by 3529 compensated compactness arguments. 3530 C1 Brown Univ, Div Appl Math, Providence, RI 02912 USA. 3531 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China. 3532 RP Ma, HP, Brown Univ, Div Appl Math, Providence, RI 02912 USA. 3533 CR ABARBANEL S, 1986, NUMERICAL METHODS FL, V2, P129 3534 CANUTO C, 1988, SPCTRAL METHODS FLUI 3535 CHEN GQ, 1993, MATH COMPUT, V61, P629 3536 DON WS, 1994, J COMPUT PHYS, V110, P103 3537 DON WS, 1994, SIAM J NUMER ANAL, V31, P1519 3538 FUNARO D, 1988, MATH COMPUT, V51, P599 3539 FUNARO D, 1991, MATH COMPUT, V57, P585 3540 GOTTLIEB D, COMMUNICATION 3541 GOTTLIEB D, 1985, PROGR SUPERCOMPUTING, P357 3542 GOTTLIEB D, 1992, J COMPUT APPL MATH, V43, P81 3543 GOTTLIEB D, 1995, MATH COMPUT, V64, P1081 3544 GOTTLIEB D, 1995, NUMER MATH, V71, P511 3545 GOTTLIEB D, 1996, SIAM J NUMER ANAL, V33, P280 3546 KWONG MK, 1991, LECT NOTES PURE APPL, V129, P91 3547 MA HP, 1998, SIAM J NUMER ANAL, V35, P901 3548 MADAY Y, 1989, SIAM J NUMER ANAL, V26, P854 3549 MADAY Y, 1993, SIAM J NUMER ANAL, V30, P321 3550 SHU CW, 1995, J SCI COMPUT, V10, P357 3551 TADMOR E, 1989, SIAM J NUMER ANAL, V26, P30 3552 TADMOR E, 1990, COMPUT METHOD APPL M, V80, P197 3553 TADMOR E, 1993, NUMERICAL METHODS FL, V4, P69 3554 TARTAR L, 1979, RES NOTES MATH, V39, P136 3555 NR 22 3556 TC 15 3557 SN 0036-1429 3558 J9 SIAM J NUMER ANAL 3559 JI SIAM J. Numer. Anal. 3560 PD JUN 3561 PY 1998 3562 VL 35 3563 IS 3 3564 BP 893 3565 EP 908 3566 PG 16 3567 SC Mathematics, Applied 3568 GA ZL417 3569 UT ISI:000073430800002 3570 ER 3571 3572 PT J 3573 AU Chen, RD 3574 Ding, AH 3575 Bao, PY 3576 Guo, ZG 3577 Luo, HZ 3578 Sun, SF 3579 Han, R 3580 Xu, SP 3581 TI Chemoprevention of cancer of uterine cervix: A study on chemoprevention 3582 of Retinamide II from cervical precancerous lesions 3583 SO JOURNAL OF CELLULAR BIOCHEMISTRY 3584 DT Article 3585 DE chemoprevention; precancerous lesions; uterine cervix Retinamide II 3586 (RII) 3587 AB Dysplasia of the uterine cervix is a recognized precancerous condition. 3588 Because of the observed ability of retinoids to suppress various cell 3589 lines in vitro, a number of clinical studies have examined tie effect 3590 these agents have on cervical dysplasia, with the object of developing 3591 a means of chemoprevention of cervical malignancies in women at risk. 3592 Three cervical cancer chemoprevention trials with Retinamide II (RII) 3593 have been conducted at the Cancer Institute, Chinese Academy of Medical 3594 Sciences, Beijing, China. 3595 A pilot study used RII to intervene in cases of precancerous cervical 3596 dysplasia. Twenty-seven women with mild, moderate, or servere cervical 3597 dysplasia, pathologically confirmed, were treated by RII suppositories, 3598 10 mg QD, given intravaginally for 6 months teach course lasting 3 3599 months). The results indicated that after the second course, the 3600 overall response rate was 96.29% and the complete response rate was 3601 88.89%. In general, side effects were mild. A little cervical and 3602 vaginal irritation was well tolerated. in the second double-blind 3603 study, patients with precancerous cervical lesions were randomized into 3604 two groups, one treated with RII suppository intravaginally and the 3605 other with a placebo, once daily for 50 days in two courses. 3606 Precancerous lesions in 68.76% of patients in the treatment arm 3607 disappeared, with an overall effective rate of 74.29% after two courses 3608 of treatment with RII. its curative effect was approximately that of 3609 laser beam radiation and electrocautery (P > 0.05), and differed 3610 significantly (P < 0.01) from that of traditional antiinflammatories. 3611 RII can be a major measure in prevention and treatment of cervical 3612 cancer in high-incidence areas in China. in the third trial, we are 3613 conducting a randomized double-blind study placebo controlled, in a 3614 high-incidence area of cervical cancer (Xiang-Yuan county, Shang Xi 3615 Province, China). At present, the patients are being followed up and 3616 the study will be completed after 2 years. (C) 1998 Wiley-Liss, inc. 3617 C1 Chinese Acad Med Sci, Inst Canc, Beijing 100021, Peoples R China. 3618 Shanghai Univ, Med Ctr, Shanghai Obstect Gynecol Hosp, Shanghai, Peoples R China. 3619 Hebei Med Coll, Affiliated Hosp 4, Shijiazhuang Shi, Peoples R China. 3620 Chinese Acad Med Sci, Inst Mat Med, Beijing 100050, Peoples R China. 3621 RP Chen, RD, Chinese Acad Med Sci, Inst Canc, Beijing 100021, Peoples R 3622 China. 3623 CR CAI H, 1981, ACTA PHARM SINCA, V16, P648 3624 CHEN R, 1987, CHINESE J ONCOL, V9, P348 3625 CHEN R, 1993, CHINESE J ONCOL, V15, P272 3626 CHU EW, 1965, CANCER RES, V25, P884 3627 ROBERTS AB, 1979, FED PROC, V38, P2524 3628 STAFL A, 1976, OBSTET GYNECOL, V48, P123 3629 WANG R, 1983, CHINESE J ONCOL, V15, P243 3630 XU S, 1981, ACTA PHARM SINCA, V16, P686 3631 NR 8 3632 TC 0 3633 SN 0730-2312 3634 J9 J CELL BIOCHEM 3635 JI J. Cell. Biochem. 3636 PY 1997 3637 SU Suppl. 28-29 3638 BP 140 3639 EP 143 3640 PG 4 3641 SC Biochemistry & Molecular Biology; Cell Biology 3642 GA ZL634 3643 UT ISI:000073454800016 3644 ER 3645 3646 PT J 3647 AU Ding, R 3648 Zhu, ZY 3649 Cheng, CJ 3650 TI Boundary element method for solving dynamical response of viscoelastic 3651 thin plate (II) - Theoretical analysis 3652 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 3653 DT Article 3654 DE dynamic response; viscoelasticity; approximate boundary element method; 3655 error estimation 3656 AB In this paper, the necessary theoretical analysis for the approximation 3657 boundary element method to solve dynamical response of viscoelastic 3658 thin plate presented in [1] is discussed. The theorem of existence and 3659 uniqueness of the approximate solution and the error estimation are 3660 also obtained. Based on these conclusions, the principle for choosing 3661 the mesh size and the number of truncated terms in the fundamental 3662 solution are given. It is shown that the theoretical analysis in this 3663 paper are consistent with the numerical results in [1]. 3664 C1 SW Jiaotong Univ, Mech Postdoctoral Stn, Chengdu 610031, Peoples R China. 3665 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 3666 RP Ding, R, SW Jiaotong Univ, Mech Postdoctoral Stn, Chengdu 610031, 3667 Peoples R China. 3668 CR BELLMAN R, 1966, NUMERICAL INVERSION, P624 3669 DING FY, 1995, J LANZHOU U, V31, P30 3670 DING R, 1997, APPL MATH MECH-ENGL, V18, P229 3671 RUOTSALAINEN K, 1988, NUMER MATH, V53, P229 3672 ZHU JL, 1987, BOUNDARY ELEMENT ANA 3673 NR 5 3674 TC 2 3675 SN 0253-4827 3676 J9 APPL MATH MECH-ENGL ED 3677 JI Appl. Math. Mech.-Engl. Ed. 3678 PD FEB 3679 PY 1998 3680 VL 19 3681 IS 2 3682 BP 101 3683 EP 110 3684 PG 10 3685 SC Mathematics, Applied; Mechanics 3686 GA ZL516 3687 UT ISI:000073441400001 3688 ER 3689 3690 PT J 3691 AU Li, HH 3692 Yan, SH 3693 Qi, DY 3694 Liu, HY 3695 TI Biosensors and clinic application based on immobilization of enzymes 3696 with beta-cyclodextrin. 3697 SO PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS 3698 DT Article 3699 DE biosensor; Eastman-AQ polymer; N-methyl phenazine methosulphate; 3700 horseradish peroxidase; glucose; lactose; beta-cyclodextrin 3701 ID HORSERADISH-PEROXIDASE; ELECTRODE 3702 AB Biosensor highly sensitive to hydrogen peroxide has constructed by 3703 immobilizing horseradish peroxidase in Eastman-AQ-N-methyl phenazine 3704 methosulphate modified electrode via cross-linking. Cyclic voltammetry 3705 and chronamperometry were employed to demonstrate the effective 3706 electron transfer between immobilized horseradish peroxidase and a 3707 glassy carbon electrode via N-methyl phenazine methosulphate in 3708 Eastman-AQ polymer film. Because of high efficiency of 3709 bioelectrocatalytic reduction of hydrogen peroxide via N-methyl 3710 phenazine methosulphate, the hydrogen peroxide sensor was combined with 3711 glucose oxidase and beta-galactosidase for bienzyme and trienzyme-based 3712 biosensor for determination of low glucose and lactose. The biosensors 3713 for hydrogen peroxide, glucose and lactose possessed a wide variety of 3714 advantages including long stability, rapid response times, wide dynamic 3715 range, high sensitivity and selectivity. Comparison of glucose 3716 biosensor with colorimetric method with glucose oxidase and peroxidase 3717 for the determination of serum glucose from diabetic patients indicates 3718 that the results display a good consistency. 3719 C1 Weimei Cooperat Zhejiang, Clin Dept, Hangzhou 310015, Peoples R China. 3720 Shanghai Univ, Dept Chem & Chem Engn, Shanghai 200072, Peoples R China. 3721 CR BERGMEYER HU, 1984, METHOD ENZYMAT AN, V1, P178 3722 BOURDILLON C, 1993, J AM CHEM SOC, V115, P12264 3723 GARGUILO MG, 1993, ANAL CHEM, V65, P523 3724 LIU H, 1995, ANAL P, V32, P437 3725 LIU YC, 1996, ELECTROCHIM ACTA, V41, P77 3726 REEKE M, 1995, ANALC HEM, V67, P303 3727 RUZGAS T, 1995, J ELECTROANAL CHEM, V391, P41 3728 NR 7 3729 TC 2 3730 SN 1000-3282 3731 J9 PROG BIOCHEM BIOPHYS 3732 JI Prog. Biochem. Biophys. 3733 PD APR 3734 PY 1998 3735 VL 25 3736 IS 2 3737 BP 162 3738 EP 166 3739 PG 5 3740 SC Biochemistry & Molecular Biology; Biophysics 3741 GA ZK264 3742 UT ISI:000073301800018 3743 ER 3744 3745 PT J 3746 AU Lu, HQ 3747 Fung, PCW 3748 TI Contribution of vacuum field to angular deviation of light path and 3749 radar echo delay 3750 SO ASTROPHYSICS AND SPACE SCIENCE 3751 DT Article 3752 ID GRAVITATIONAL LENS; Q0957+561 3753 AB The discovery of 'twin quasistellar objects' arose interests among 3754 astronomers and astrophysicists to study gravitational lensing 3755 problems. The deviation of light from its straight line path is caused 3756 by two sources according to the general theory of relativity: (i) the 3757 presence of massive objects, i.e. the presence of gravitational field 3758 and (ii) the presence of a 'vacuum field' which arises because there is 3759 a non-zero cosmological vacuum energy. 3760 Recently, the research on the relationship between cosmological 3761 constant and gravitational lensing process is rather active (see 3762 reference [1, 2, 3]. According to the Kottler space time metric, we 3763 have deduced an explicit representation of the angular deviation of 3764 light path. The deviation term is found to be simply -4GM/r(min)c(2) 3765 (Lambda/6r(min)(2)), where nd is the mass of the 'astronomical lens', 3766 r(min) is the distance between the point of nearest approach and the 3767 centre of M, other symbols have their usual meaning. The presence of 3768 this term may be meaningful to the study of cosmological constant using 3769 the concept of gravitational lensing; however more sophisticated 3770 analysis awaits. 3771 Consider a signal radar to be sent from one planet to another. We have 3772 found that the radar echo delay contributed by the existence of the 3773 cosmological constant Lambda is expressible as 2 3774 Lambda/9c(r(A)(3)+r(B)(3)) [1-r(min)(2)/2r(A)(2)+r(min)(2)/2r(B)(2)]. 3775 C1 Shanghai Univ, Dept Phys, Shanghai 200041, Peoples R China. 3776 Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China. 3777 RP Lu, HQ, Shanghai Univ, Dept Phys, Shanghai 200041, Peoples R China. 3778 CR EPSTEIN R, 1980, PHYS REV D, V22, P2947 3779 FAN JH, 1992, ASTROPHYS SPACE SCI, V197, P269 3780 FAN LZ, 1981, FUNDAMENTAL CONCEPT, P55 3781 FOMALONT EB, 1976, PHYS REV LETT, V36, P1475 3782 FORT B, 1997, ASTRON ASTROPHYS, V321, P353 3783 IBANEZ J, 1983, ASTRON ASTROPHYS, V124, P175 3784 IM MS, 1997, ASTROPHYS J 1, V475, P457 3785 KOCHANEK CS, 1996, ASTROPHYS J 1, V466, P638 3786 KOLB EW, 1990, EARLY UNIVERSE, P308 3787 KOTTLER F, 1922, ENCY MATH WISS A, V22, P231 3788 LIEBES S, 1964, PHYS REV B, V133, P835 3789 SCHNEIDER P, 1987, MITT ASTRON GES, V70, P219 3790 SHAPIRO II, 1971, ASTRON J, V76, P588 3791 WALSH D, 1979, NATURE, V279, P381 3792 YOUNG P, 1981, ASTROPHYS J, V244, P756 3793 YOUNG P, 1981, ASTROPHYS J, V249, P415 3794 NR 16 3795 TC 1 3796 SN 0004-640X 3797 J9 ASTROPHYS SPACE SCI 3798 JI Astrophys. Space Sci. 3799 PY 1997 3800 VL 253 3801 IS 2 3802 BP 291 3803 EP 299 3804 PG 9 3805 SC Astronomy & Astrophysics 3806 GA ZK077 3807 UT ISI:000073282600013 3808 ER 3809 3810 PT J 3811 AU Pu, DG 3812 Tian, WW 3813 TI A class of Broyden algorithms with revised search directions 3814 SO ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH 3815 DT Article 3816 DE variable metric algorithms; line search; convergence; convergence rate 3817 AB In this paper we discuss the convergence of the Broyden algorithms with 3818 revised search direction. We prove that the algorithms are globally 3819 convergent for continuously differentiable functions and the rate of 3820 convergence of the algorithms is one-step superlinear and n-step 3821 second-order for uniformly convex objective functions. 3822 C1 City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong. 3823 Shanghai Univ, Dept Math, Jiading, Peoples R China. 3824 CR BYRD RH, 1987, SIAM J NUMER ANAL, V24, P1171 3825 FLETCHER R, 1987, PRACTICAL METHODS OP, V1 3826 OREN SS, 1974, MANAGE SCI, V20, P845 3827 POWELL MJD, 1971, J I MATHS APPLICS, V7, P21 3828 POWELL MJD, 1976, SIAM AMS P, V6 3829 POWELL MJD, 1987, MATH PROGRAM, V38, P29 3830 PU D, 1989, ACTA MATH APPL SINIC, V13, P118 3831 PU D, 1989, CHINESE J OPERATIONS, V8, P53 3832 PU D, 1990, J ANN OPERATIONS RES, V24, P175 3833 PU D, 1992, ASIA PACIFIC J OPERA, V9, P207 3834 PU D, 1994, J COMPUTATIONAL MATH, V8, P366 3835 PU D, 1995, APPL MATH J CHINESE, V10, P313 3836 TIAN W, 1993, COMMUNICATION APPL M, V7, P50 3837 NR 13 3838 TC 3 3839 SN 0217-5959 3840 J9 ASIA PAC J OPER RES 3841 JI Asia Pac. J. Oper. Res. 3842 PD NOV 3843 PY 1997 3844 VL 14 3845 IS 2 3846 BP 93 3847 EP 109 3848 PG 17 3849 SC Operations Research & Management Science 3850 GA ZK325 3851 UT ISI:000073307800006 3852 ER 3853 3854 PT J 3855 AU Liu, RH 3856 Tan, WH 3857 Xu, WC 3858 Zhang, JF 3859 TI A quantum mode theory of the micromaser 3860 SO CHINESE SCIENCE BULLETIN 3861 DT Article 3862 DE quantum mode; threshold condition 3863 ID LASERS 3864 AB Failure of the steady solution of the master equation was analysed. It 3865 was found that the state of sustained oscillation exists only when the 3866 ratio of photon decay rate gamma to injection late tau is satisfied. 3867 Based on this understanding, a quantum mode micromaser theory was 3868 developed. The threshold nu(th) and photon distribution for pi and 2 pi 3869 mode were calculated. The instability of quantum mode was analyzed as 3870 well. 3871 C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China. 3872 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 3873 RP Liu, RH, Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 3874 201800, Peoples R China. 3875 CR BENKERT C, 1993, PHYS REV A, V47, P1564 3876 DAVIDOVICH L, 1992, PHYS REV A, V46, P1630 3877 FILIPOWICZ P, 1986, J OPT SOC AM B, V3, P906 3878 FILIPOWICZ P, 1986, PHYS REV A, V34, P3077 3879 GOLUBEV YM, 1984, ZH EKSP TEOR FIZ, V60, P234 3880 GUERRA ES, 1991, PHYS REV A, V44, P7785 3881 HAAK F, 1989, PHYS REV A, V40, P712 3882 TAN WH, 1994, PHYS LETT A, V190, P13 3883 TAN WH, 1995, OPT COMMUN, V115, P303 3884 NR 9 3885 TC 1 3886 SN 1001-6538 3887 J9 CHIN SCI BULL 3888 JI Chin. Sci. Bull. 3889 PD MAR 3890 PY 1998 3891 VL 43 3892 IS 5 3893 BP 425 3894 EP 430 3895 PG 6 3896 SC Multidisciplinary Sciences 3897 GA ZJ371 3898 UT ISI:000073207900018 3899 ER 3900 3901 PT J 3902 AU Guo, XM 3903 TI The existence of solution to the finite elastodynamics with mixed 3904 boundary conditions 3905 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 3906 DT Article 3907 DE finite deformation; nonlinear constitutive; elastodynamics; existence 3908 of solution 3909 ID INITIAL-VALUE PROBLEM; INCOMPRESSIBLE BODIES 3910 AB In this paper the existence of solution to finite elastodynamics 3911 constrainted by mixed boundary conditions is derived when the 3912 hyperpotential and its gradient (for Green's strain) satisfy adequate 3913 conditions. 3914 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 3915 RP Guo, XM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 3916 200072, Peoples R China. 3917 CR ADAM RA, 1975, SOBOLEV SPACES 3918 BERGER MS, 1977, NONLINEARITY FUNCTIO 3919 CHEN C, 1982, J REINE ANGEW MATH, V337, P77 3920 DAFERMOS CM, 1985, ARCH RATION MECH AN, V87, P267 3921 EBIN DG, 1986, ARCH RATION MECH AN, V94, P15 3922 EBIN DG, 1992, ARCH RATION MECH AN, V120, P61 3923 GURTIN ME, 1981, INTRO CONTINUM MECH 3924 HUGHES TJR, 1977, ARCH RATIONAL MECH A, V63, P273 3925 HUGHES TJR, 1983, MATH FDN ELASTICITY 3926 KATO T, 1976, HYPERBOLICITY, P125 3927 LIONS JL, 1969, QUELQUES METHODES RE 3928 NR 11 3929 TC 0 3930 SN 0253-4827 3931 J9 APPL MATH MECH-ENGL ED 3932 JI Appl. Math. Mech.-Engl. Ed. 3933 PD JAN 3934 PY 1998 3935 VL 19 3936 IS 1 3937 BP 27 3938 EP 35 3939 PG 9 3940 SC Mathematics, Applied; Mechanics 3941 GA ZH202 3942 UT ISI:000073083100005 3943 ER 3944 3945 PT J 3946 AU Ye, ZM 3947 TI The damage process zone characteristics at crack tip in concrete 3948 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 3949 DT Article 3950 DE concrete; crack tip; damage zone; nonlinear softening model 3951 AB This paper presents a comprehensive derivation of fracture process zone 3952 size which closely parallels similar work in fracture of metals and 3953 anisotropic solid, but is adapted to conrete. Some nonlinear mechanics 3954 models of concrete materials will be discussed by using uniaxial stress 3955 assumptions. For uniaxial stress assumption, energy model and fracture 3956 model will be presented for nonlinear softening models. Finally, we 3957 make a comparison with those models. 3958 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 3959 RP Ye, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 3960 Peoples R China. 3961 CR AYARI ML, 1988, THESIS U COLORADO 3962 BAZANT ZP, 1984, J ENG MECH-ASCE, V110, P518 3963 BAZANT ZP, 1985, POLI ANNIVERSARY VOL, P3335 3964 BAZANT ZP, 1986, APPL MECH REV, V39, P674 3965 HILLERBORG A, 1976, CEMENT CONCRETE RES, V6, P773 3966 LIEBOWITZ H, 1986, FRACTURE ADV TREATIS, V2 3967 SHAH SP, 1985, J ENG MECH-ASCE, V111, P275 3968 SWARTZ SE, 1982, P INT C FRACT MECH C 3969 YE ZM, 1995, INT J FRACTURE, V74, R3 3970 NR 9 3971 TC 0 3972 SN 0253-4827 3973 J9 APPL MATH MECH-ENGL ED 3974 JI Appl. Math. Mech.-Engl. Ed. 3975 PD JAN 3976 PY 1998 3977 VL 19 3978 IS 1 3979 BP 37 3980 EP 43 3981 PG 7 3982 SC Mathematics, Applied; Mechanics 3983 GA ZH202 3984 UT ISI:000073083100006 3985 ER 3986 3987 PT J 3988 AU Chen, YX 3989 Wan, XJ 3990 TI Hydrogen effects on the mechanical properties of Ti-24Al-11Nb-3V-1Mo 3991 alloy 3992 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 3993 DT Article 3994 ID TITANIUM ALUMINIDE ALLOY; HYDRIDES; TI3AL 3995 AB The effects of hydrogen on the mechanical properties at room 3996 temperature of a Ti3Al based alloy Ti-24Al-11Nb-3V-1Mo have been 3997 investigated. The results show a parabolic rate relationship between 3998 the average hydrogen concentration of the alloy at constant temperature 3999 and charging time. The mechanical properties (ultimate bending strength 4000 and deflection) decrease with increasing hydrogen content in the alloy. 4001 The fractographic feature indicates that the decrease of the mechanical 4002 properties is due to the crack nucleation and propagation at the 4003 hydride Ti3AlH. 4004 C1 Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China. 4005 RP Chen, YX, Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China. 4006 CR CHU WY, 1992, ACTA METALL MATER, V40, P455 4007 CHU WY, 1992, METALL TRANS A, V23, P1299 4008 FLEISCHER RL, 1989, ANNU REV MATER SCI, V19, P231 4009 GAO M, 1990, SCRIPTA METALL MATER, V24, P2135 4010 MANOR E, 1989, SCRIPTA METALL, V23, P313 4011 RUDMAN PS, 1978, J LESS-COMMON MET, V58, P231 4012 SCHWARTZ DS, 1991, ACTA METALL MATER, V39, P2799 4013 SHIH DS, 1989, SCRIPTA METALL, V23, P973 4014 SUBRAHMANYAM J, 1988, J MATER SCI, V23, P1906 4015 NR 9 4016 TC 3 4017 SN 1005-0302 4018 J9 J MATER SCI TECHNOL 4019 JI J. Mater. Sci. Technol. 4020 PD MAR 4021 PY 1998 4022 VL 14 4023 IS 2 4024 BP 176 4025 EP 178 4026 PG 3 4027 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 4028 Engineering 4029 GA ZG171 4030 UT ISI:000072974000017 4031 ER 4032 4033 PT J 4034 AU Guo, BY 4035 He, LP 4036 TI The fully discrete Legendre spectral approximation of two-dimensional 4037 unsteady incompressible fluid flow in stream function form 4038 SO SIAM JOURNAL ON NUMERICAL ANALYSIS 4039 DT Article 4040 DE incompressible fluid flow in stream function form; fully discrete 4041 Legendre spectral scheme; convergence; numerical results 4042 ID EQUATIONS 4043 AB The initial-boundary value problem of two-dimensional incompressible 4044 fluid flow in stream function form is considered. A fully discrete 4045 Legendre spectral scheme is proposed. By a series of a priori 4046 estimations and a compactness argument, it is proved that the numerical 4047 solution converges to the weak solution of the original problem. If the 4048 genuine solution is suitably smooth, then this approach provides higher 4049 accuracy. The numerical results show the advantages of this method. The 4050 techniques used in this paper are also applicable to other related 4051 problems with derivatives of high order in space. 4052 C1 City Univ Hong Kong, Dept Math, Kowloon, Hong Kong. 4053 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 4054 RP Guo, BY, City Univ Hong Kong, Dept Math, Kowloon, Hong Kong. 4055 EM maguo@cityu.edu.hk 4056 CR ADAMS RA, 1975, SOBOLEV SPACE 4057 BERNARDI C, 1992, MATH COMPUT, V59, P63 4058 CANTO C, 1982, MATH COMPUT, V38, P67 4059 CANUTO C, 1988, SPECTRAL METHODS FLU 4060 CHORIN AJ, 1967, J COMPUT PHYS, V2, P12 4061 GIRAULT V, 1979, LECT NOTES MATH, V794 4062 GOTTLIEB D, 1977, CBMS NSF REGIONAL C, V26 4063 GRESHO PM, 1987, INT J NUMER METH FL, V7, P1111 4064 GUO BY, 1988, FINITE DIFFERENT MET 4065 GUO BY, 1997, J MATH ANAL APPL, V20, P1 4066 KUO PY, 1977, SCI SINICA, V20, P287 4067 LIONS JL, 1968, PROBLEMES AUX LIMITE, V1 4068 LIONS JL, 1969, QUELQUES METHODES RE 4069 LIONS JL, 1970, NUMERICAL SOLUTION F, P11 4070 ODEN JT, 1974, FINITE ELEMENT METHO 4071 ROACH PJ, 1976, COMPUTATIONAL FLUID 4072 SHEN J, 1992, ADV COMPUTER METHODS, V7, P658 4073 SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489 4074 TEMAM R, 1977, NAVIER STOKES EQUATI 4075 NR 19 4076 TC 5 4077 SN 0036-1429 4078 J9 SIAM J NUMER ANAL 4079 JI SIAM J. Numer. Anal. 4080 PD FEB 4081 PY 1998 4082 VL 35 4083 IS 1 4084 BP 146 4085 EP 176 4086 PG 31 4087 SC Mathematics, Applied 4088 GA ZC436 4089 UT ISI:000072578000008 4090 ER 4091 4092 PT J 4093 AU Guo, BQ 4094 Cao, WM 4095 TI An additive Schwarz method for the h-p version of the finite element 4096 method in three dimensions 4097 SO SIAM JOURNAL ON NUMERICAL ANALYSIS 4098 DT Article 4099 DE additive Schwarz method; the h-p version; condition number; iterative 4100 and parallel solver 4101 ID 3 DIMENSIONS; ELLIPTIC PROBLEMS; DOMAIN DECOMPOSITION; 2 DIMENSIONS; 4102 APPROXIMATION; PRECONDITIONER; POLYNOMIALS; SPACES 4103 AB In this paper, we study the additive Schwarz method for the h-p version 4104 of the finite element method in three dimensions. The main idea is to 4105 treat separately the h-version (linear) components and the p-version 4106 (high-order) components by a vertex-based method. It can also be viewed 4107 as a three-level method with the level being the linear finite element 4108 approximation on the coarse mesh, the linear finite element 4109 approximation on the fine mesh, and the high-order finite element 4110 approximation on the fine mesh, respectively. The resulting algorithm 4111 can be implemented in parallel on the subdomain level for the h-version 4112 components and on the element level for the p-version components. The 4113 condition number is of order 4114 [GRAPHICS] 4115 where H-i stands for the diameter of the subdomain Omega(i), h(i) is 4116 the diameter of the elements in Omega(i), and p(i) is the maximum of 4117 the polynomial degrees used in Omega(i). 4118 C1 Univ Manitoba, Dept Appl Math, Winnipeg, MB R3T 2N2, Canada. 4119 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China. 4120 RP Guo, BQ, Univ Manitoba, Dept Appl Math, Winnipeg, MB R3T 2N2, Canada. 4121 CR AINSWORTH M, 1996, SIAM J NUMER ANAL, V33, P1358 4122 BABUSKA I, 1991, SIAM J NUMER ANAL, V28, P624 4123 BABUSKA I, 1996, COMPUT METHOD APPL M, V133, P319 4124 BABUSKA I, 1996, IN PRESS H P VERSION 4125 BRAMBLE JH, 1989, MATH COMPUT, V53, P1 4126 BRAMBLE JH, 1991, MATH COMPUT, V56, P463 4127 CAI XC, 1993, NONESTED COARSE SPAC 4128 CANUTO C, 1982, MATH COMPUT, V38, P67 4129 CASARIN MA, 1995, 705 NEW YORK U COUR 4130 CHAN TF, 1994, 948 CAM UCLA DEP MAT 4131 CIARLET PG, 1978, FINITE ELEMENT METHO 4132 CLEMENT P, 1975, RAIRO ANAL NUMER, V9, P77 4133 DRYJA M, 1988, P 1 INT S DOM DEC ME 4134 DRYJA M, 1994, SIAM J NUMER ANAL, V31, P1662 4135 DRYJA M, 1995, COMMUN PUR APPL MATH, V48, P121 4136 DRYJA M, 1996, NUMER MATH, V72, P313 4137 GUO B, 1996, HOUSTON J MATH, P487 4138 GUO B, 1997, IN PRESS REGULARIT 3 4139 GUO BQ, 1994, BOUNDARY VALUE PROBL, P101 4140 GUO BQ, 1996, NUMER MATH, V75, P59 4141 GUO BQ, 1997, P ROY SOC EDINB A 1, V127, P77 4142 GUO BQ, 1997, SIAM J SCI COMPUT, V18, P1267 4143 LIONS JL, 1972, NONHOMOGENEOUS BOUND, V1 4144 MADAY Y, 1989, CR ACAD SCI I-MATH, V309, P463 4145 MANDEL J, 1990, INT J NUMER METH ENG, V29, P1095 4146 ODEN JT, 1994, CONT MATH, V180, P295 4147 PAVARINO LF, 1994, 663 NEW YORK U DEP C 4148 PAVARINO LF, 1996, SIAM J NUMER ANAL, V33, P1303 4149 SZABO B, 1990, FINITE ELEMENT ANAL 4150 WIDLUND OB, 1988, P 1 S DOM DEC METH P 4151 WIDLUND OB, 1995, COMMUNICATION 4152 NR 31 4153 TC 15 4154 SN 0036-1429 4155 J9 SIAM J NUMER ANAL 4156 JI SIAM J. Numer. Anal. 4157 PD APR 4158 PY 1998 4159 VL 35 4160 IS 2 4161 BP 632 4162 EP 654 4163 PG 23 4164 SC Mathematics, Applied 4165 GA ZC449 4166 UT ISI:000072580500013 4167 ER 4168 4169 PT J 4170 AU Cao, WM 4171 He, GQ 4172 TI Rigorous analysis of an implicit spectral method for KdV equation 4173 SO ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 4174 DT Article 4175 DE KdV equation; spectral method; implicit scheme; existence; convergence; 4176 iteration method 4177 ID WAVE 4178 AB A Fourier spectral method in combination with the standard midpoint 4179 Euler temporal discretization for the KdV equation is considered. The 4180 global existence and convergence of the numerical solution are 4181 investigated rigorously. An iteration method for solving the nonlinear 4182 algebraic systems at each time level is also proposed, with its 4183 compression factor strictly estimated. 4184 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 4185 RP He, GQ, Shanghai Univ, Dept Math, Jiading Campus, Shanghai 201800, 4186 Peoples R China. 4187 CR ADAMS RA, 1975, SOBOLEV SPACES 4188 BENYU G, 1978, CHINESE SCI BULL, V23, P592 4189 BENYU G, 1985, ACTA MATH SINICA, V28, P1 4190 FORNBERG B, 1978, PHILOS T ROY SOC A, V289, P373 4191 FRUTOS JD, 1992, J COMPUT PHYS, V103, P160 4192 HE GQ, 1990, COMM APPL MATH COMP, V4, P51 4193 HE GQ, 1993, COMM APPL MATH COMPU, V7, P41 4194 HE GQ, 1993, J SHANGHAI U SCI TEC, V16, P111 4195 JEEFREY A, 1972, SIAM REV, V14, P582 4196 QUARTERONI A, 1984, JAPAN J APPL MATH, V1, P173 4197 TAHA TR, 1984, J COMPUT PHYS, V55, P231 4198 WINEBERG SB, 1991, J COMPUT PHYS, V97, P311 4199 ZABUSKY NJ, 1965, PHYS REV LETT, V15, P240 4200 NR 13 4201 TC 0 4202 SN 0377-9211 4203 J9 ARAB J SCI ENG 4204 JI Arab. J. Sci. Eng. 4205 PD DEC 4206 PY 1997 4207 VL 22 4208 IS 2C 4209 BP 159 4210 EP 167 4211 PG 9 4212 SC Multidisciplinary Sciences 4213 GA ZC497 4214 UT ISI:000072586000014 4215 ER 4216 4217 PT J 4218 AU Zhang, JC 4219 Zhang, YH 4220 Yang, YF 4221 Sen, Y 4222 Wu, WH 4223 TI Modification of surface properties of PbSe by ion implantation 4224 SO RADIATION PHYSICS AND CHEMISTRY 4225 DT Article 4226 ID PBTE 4227 AB P-type PbSe was implanted by phosphorous ion (P+) with incident energy 4228 of E-0 = 200 keV and doses of D-s = 1 x 10(14), 5 x 10(14) x 10(15) 4229 ions cm(-2), respectively. R-p, Delta R-p and the depth of the junction 4230 which was formed on the surface of the implanted (Pi) PbSe were 4231 measured and compared with theoretical calculation by means of 4232 modification of LSS theory. The electrical parameters of the pn 4233 junctions in PbSe were also discussed. PbSe photodiode implanted by P+ 4234 ion with performance was: ideal factor of the diode m = 2.31, diffusion 4235 length L = 51.4 mu m, diffusion coefficient D = 26.52 cm(2) s(-1), 4236 non-equilibrium minority carrier lifetime tau = 9.96 x 10(-7) s. (C) 4237 1998 Elsevier Science Ltd. All rights reserved. 4238 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China. 4239 RP Zhang, JC, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R 4240 China. 4241 CR BAN Y, 1970, J APPL PHYS, V41, P2817 4242 CARTER G, 1976, ION IMPLANTATION SEM, P42 4243 COLLOT P, 1994, SEMICONDUCTOR SCI TE, V9, P1135 4244 DALVEN R, 1969, INFRARED PHYS, V9, P141 4245 DONNELLY JP, 1973, PHYSICS 4 6 COMPOUND, P47 4246 GIBBONS JN, 1973, PROJECTED RANGE STAT, P78 4247 IGAKI K, 1963, J PHYSICS SOC JAPAN, V18, P143 4248 KOMAROV FF, 1991, VACUUM TECHNIQUE TEC, V1, P28 4249 LINDHARD J, 1963, MAT FYS MEDD K DAN V, V33, P14 4250 MARCHETTI S, 1993, INFRARED PHYS, V34, P137 4251 NORR MK, 1962, J ELECTROCHEM SOC, V109, P433 4252 SHI Z, 1995, APPL PHYS LETT, V66, P2537 4253 STOBER D, 1992, J CRYST GROWTH, V121, P656 4254 WANG DN, 1980, ACTA PHYS SINICA, V29, P14 4255 WANG HT, 1992, TECHNICAL PRINCIPLES, CH3 4256 ZHANG JC, 1989, P ICSICT 89, P53 4257 ZLOMANOV VP, 1974, J CRYST GROWTH, V26, P261 4258 NR 17 4259 TC 0 4260 J9 RADIAT PHYS CHEM 4261 JI Radiat. Phys. Chem. 4262 PD FEB 4263 PY 1998 4264 VL 51 4265 IS 2 4266 BP 129 4267 EP 133 4268 PG 5 4269 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear 4270 Science & Technology 4271 GA ZB067 4272 UT ISI:000072431700003 4273 ER 4274 4275 PT J 4276 AU Min-Ning, J 4277 TI Phase retardation measurement of single-mode optical fibers 4278 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 4279 DT Article 4280 DE optical fibers; single-mode fibers; phase retardation measurements 4281 AB Two new methods for measuring the phase retardation R of a "nominal" 4282 single-mode optical fiber are demonstrated. One of them is based on the 4283 polarization magnitude measure; the other is based on the polarization 4284 direction measure. Their effectiveness is confirmed by experiments. (C) 4285 1998 John Wiley & Sons, Inc. 4286 C1 Shanghai Univ Sci & Technol, Inst Fiber Opt, Shanghai 201800, Peoples R China. 4287 RP Min-Ning, J, Shanghai Univ Sci & Technol, Inst Fiber Opt, Shanghai 4288 201800, Peoples R China. 4289 CR JONES RC, 1941, J OPT SOC AM, V31, P488 4290 JONES RC, 1948, J OPT SOC AM, V38, P671 4291 KAPRON FP, 1972, IEEE J QUANTUM ELECT, V8 4292 NR 3 4293 TC 1 4294 SN 0895-2477 4295 J9 MICROWAVE OPT TECHNOL LETT 4296 JI Microw. Opt. Technol. Lett. 4297 PD APR 5 4298 PY 1998 4299 VL 17 4300 IS 5 4301 BP 303 4302 EP 306 4303 PG 4 4304 SC Engineering, Electrical & Electronic; Optics 4305 GA ZB601 4306 UT ISI:000072488900008 4307 ER 4308 4309 PT J 4310 AU Wang, ZH 4311 TI Free-space mode approximation for radiation modes of a slab waveguide 4312 and its application 4313 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 4314 DT Article 4315 DE slab waveguide; radiation modes 4316 ID WAVE-GUIDES; BRANCHES 4317 AB The symmetric slab waveguide as an example, we show that radiation 4318 modes of a weakly guiding planar optical waveguide can be approximated 4319 by the free-space modes; their field expressions and normalization 4320 constants are simple and physically understandable, and can be obtained 4321 directly without any calculation. By applying this approximation, the 4322 far-field and radiation loss calculations caused by random wall 4323 imperfections have been greatly simplified. (C) 1998 John Wiley & Sons, 4324 Inc. 4325 C1 Shanghai Univ Sci & Technol, Wave Sci Lab, Shanghai 201800, Peoples R China. 4326 RP Wang, ZH, Shanghai Univ Sci & Technol, Wave Sci Lab, Shanghai 201800, 4327 Peoples R China. 4328 CR BENECH P, 1992, OPT COMMUN, V88, P96 4329 CHU FS, 1991, OPT LETT, V16, P309 4330 LACEY JPR, 1990, IEE PROC-J, V137, P282 4331 LEE SL, 1994, J LIGHTWAVE TECHNOL, V12, P2073 4332 MARCUSE D, 1974, THEORY DIELECTIC OPT 4333 MARCUSE D, 1982, LIGHT TRANSMISSION O 4334 MARCUSE D, 1990, IEEE J QUANTUM ELECT, V26, P675 4335 ROZZI TE, 1978, IEEE T MICROW THEORY, V26, P738 4336 SNYDER AW, 1983, OPTICAL WAVEGUIDE TH 4337 YAP D, 1984, APPL OPTICS, V23, P2991 4338 NR 10 4339 TC 0 4340 SN 0895-2477 4341 J9 MICROWAVE OPT TECHNOL LETT 4342 JI Microw. Opt. Technol. Lett. 4343 PD APR 5 4344 PY 1998 4345 VL 17 4346 IS 5 4347 BP 313 4348 EP 315 4349 PG 3 4350 SC Engineering, Electrical & Electronic; Optics 4351 GA ZB601 4352 UT ISI:000072488900011 4353 ER 4354 4355 PT J 4356 AU Bing, ZX 4357 Chang, JG 4358 Kai, T 4359 Lun, XJ 4360 Zhong, DW 4361 Di, XK 4362 TI A sub-regular solution model used to predict the component activities 4363 of quaternary systems 4364 SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY 4365 DT Article 4366 AB A sub-regular solution model used to predict the component activities 4367 in a homogeneous region of a quaternary system was developed in 4368 Shanghai Enhanced Lab of Ferrometallurgy. It was designated as 4369 SELF-SReM4. The component activities were described with the 4370 polynomials of the content variables, in which a group of A(jkl) 4371 parameters involves. It was evaluated along with the reliable boundary 4372 conditions. The deduction of the model and the procedure of the 4373 evaluation of A(jkl), parameters were introduced in detail in this 4374 paper. 4375 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 4376 RP Bing, ZX, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 4377 200072, Peoples R China. 4378 CR CHANG JG, 1992, ACTA METALLURGICAL B, V5, P476 4379 CHANG WZ, 1986, CHINESE SCI A, V8, P862 4380 CHOU KC, 1994, CALPHAD, V23 4381 DARKEN LS, 1950, J AM CHEM SOC, V72, P2909 4382 PELTON AD, 1969, CAN J CHEM, V47, P2283 4383 NR 5 4384 TC 0 4385 SN 0364-5916 4386 J9 CALPHAD-COMPUT COUP PHASE DIA 4387 JI Calphad-Comput. Coupling Ph. Diagrams Thermochem. 4388 PD SEP 4389 PY 1997 4390 VL 21 4391 IS 3 4392 BP 301 4393 EP 309 4394 PG 9 4395 SC Chemistry, Physical; Thermodynamics 4396 GA ZA668 4397 UT ISI:000072389100003 4398 ER 4399 4400 PT J 4401 AU Bing, ZX 4402 Chang, JG 4403 Di, XK 4404 TI Prediction of component activities of quaternary systems using the 4405 sub-regular solution model 4406 SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY 4407 DT Article 4408 ID MELTS 4409 AB A sub-regular solution model used to predict the component activities 4410 in a homogeneous region of a quaternary system was developed in 4411 Shanghai Enhanced Lab of Ferrometallurgy. It was designated as 4412 SELF-SReM4. The previous paper elucidated the model and the evaluating 4413 procedures of A(jkl) parameters(1). In this paper, SELF-SReM4 is used 4414 to predict the component activities for the systems of C-Mn-Fe-Si, 4415 C-Cr-Fe-Ni, C-Cr-Fe-P and MnO-SiO2-Al2O3-CaO. 4416 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 4417 RP Bing, ZX, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 4418 200072, Peoples R China. 4419 CR ABRAHAM KP, 1960, J IRON STEEL I, V196, P82 4420 BAYYA S, 1993, ISIJ INT, P17 4421 BING ZX, IN PRESS 4422 CHANG JG, 1992, ACTA METALLURGICAL B, V5, P476 4423 CHIPMAN J, 1952, T AM SOC MET, V44, P1215 4424 CHIPMAN J, 1980, T JIK, V21, P27 4425 DARKEN LS, 1967, T METALL SOC AIME, V239, P90 4426 DRESLER W, 1990, I SM, P95 4427 FROHBERG MG, 1968, ARCH EISENHUTTENWES, V39, P587 4428 GEE R, 1978, SCAND J METALL, V7, P38 4429 GILBY SW, 1969, T METALL SOC AIME, V245, P1749 4430 HADRYS HG, 1970, METALL T, V1, P1867 4431 HEALY GW, 1987, I SM, P51 4432 HULTGREN R, 1973, SELECTED VALUES THER, P487 4433 KATSNELSON A, 1993, ISIJ INT, V33, P1045 4434 KATSNELSON AM, 1993, STEEL RES, V64, P197 4435 KUBASCHEWSKI O, 1979, METALLURGICAL THERMO 4436 MEHTA SR, 1965, J IRON STEEL I, V203, P524 4437 REIN RH, 1965, J CHIPMAN, P415 4438 RISBUD SH, 1977, J AM CERAM SOC, V60, P418 4439 SCHURMANN E, 1969, GIESSEREI FORSCH, V21, P29 4440 SHARMA RA, 1961, J IRON ST I, V198, P386 4441 SHARMA RA, 1965, T AIME, P1586 4442 TANAKA A, 1979, T JIM, V20, P516 4443 TURKGOGAN ET, 1956, JISI, P69 4444 TUSET JK, 1970, 340358 SINTEF 4445 WARREN GF, 1974, INFACON, V1, P175 4446 YAMADA A, 1990, TETSU TO HAGANE, V76, P2137 4447 ZHONG DW, 1993, THESIS TRONDHEIM U N 4448 NR 29 4449 TC 0 4450 SN 0364-5916 4451 J9 CALPHAD-COMPUT COUP PHASE DIA 4452 JI Calphad-Comput. Coupling Ph. Diagrams Thermochem. 4453 PD SEP 4454 PY 1997 4455 VL 21 4456 IS 3 4457 BP 311 4458 EP 320 4459 PG 10 4460 SC Chemistry, Physical; Thermodynamics 4461 GA ZA668 4462 UT ISI:000072389100004 4463 ER 4464 4465 PT J 4466 AU Li, L 4467 Hsu, TY 4468 TI Gibbs free energy evaluation of the fcc(gamma) and hcp(epsilon) phases 4469 in Fe-Mn-Si alloys 4470 SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY 4471 DT Article 4472 ID SHAPE MEMORY ALLOYS; TRANSFORMATION; SYSTEM 4473 AB The Gibbs free energy as a function of temperature of the fcc(gamma) 4474 and hcp(epsilon) phases in the Fe-Mn-Si system is evaluated by the 4475 application of the general model for predicting thermodynamic 4476 properties for ternary systems from binary ones, suggested by Chou and 4477 by the utilization of the available data from binary Fe-Mn, Fe-Si and 4478 Mn-Si systems and the SGTE DATA given by Dinsdale. The calculated 4479 result seems reasonable as compared with the experimental data. 4480 C1 Shanghai Univ, Shanghai 200072, Peoples R China. 4481 Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China. 4482 RP Li, L, Shanghai Univ, Shanghai 200072, Peoples R China. 4483 CR *SHANGH I MECH ENG, 1984, APPL FORTR PROGR, P29 4484 ANSARA I, 1979, INT METAL REV, V1, P20 4485 CHOU KC, 1995, CALPHAD, V19, P315 4486 DINSDALE AT, 1991, CALPHAD, V15, P317 4487 DONNER P, 1989, MARTENSITIC TRANSFOR, P267 4488 FORSBERG A, 1993, J PHASE EQUILIB, V14, P354 4489 GHOSH G, 1989, MRS INT M ADV MAT MA, P9 4490 HILLERT M, 1978, CALPHAD, V2, P227 4491 HILLERT M, 1980, CALPHAD, V4, P1 4492 HUANG WM, 1989, CALPHAD, V13, P243 4493 INDEN G, 1976, PROJ M CALPHAD 5 JUN 4494 LACAZE J, 1991, METALL TRANS A, V22, P2211 4495 MURAKAMI M, 1987, P INT C MARTENS TRAN, P985 4496 OTSUKA H, 1990, ISIJ INT, V30, P674 4497 SADE M, 1990, J MATER SCI LETT, V9, P112 4498 SATO A, 1982, ACTA METALL, V30, P1177 4499 TIBALLS JE, 1991, 8902215MNSI SI NORW 4500 NR 17 4501 TC 12 4502 SN 0364-5916 4503 J9 CALPHAD-COMPUT COUP PHASE DIA 4504 JI Calphad-Comput. Coupling Ph. Diagrams Thermochem. 4505 PD SEP 4506 PY 1997 4507 VL 21 4508 IS 3 4509 BP 443 4510 EP 448 4511 PG 6 4512 SC Chemistry, Physical; Thermodynamics 4513 GA ZA668 4514 UT ISI:000072389100016 4515 ER 4516 4517 PT J 4518 AU Yang, X 4519 Cheng, CJ 4520 TI Some identity relations between plane problems for visco- and elasticity 4521 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 4522 DT Article 4523 DE viscoelasticity; plane problem; Airy stress function; identity 4524 relation; integral constitutive relation 4525 AB In this paper, the boundary value problems of plane problems with a 4526 simply- or multiply-connected domain for isotropic linear 4527 visco-elasticity are first established by terms of Airy stress function 4528 F(chi(a) t). Secondly, some identity relations between displacements 4529 and stresses for plane problems of visco- and elasticity are discussed 4530 in detail and some meaningful conclusions are obtained. As an example, 4531 the deformation response for viscoelastic plate with a small circular 4532 hole at the center is analyzed under a uniaxial uniform extension. 4533 C1 Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China. 4534 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 4535 RP Yang, X, Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China. 4536 CR CHEN CJ, 1995, THEORY ELASTICITY 4537 CHRISTENSEN RM, 1982, THEORY VISCOELASTICI 4538 HUANG KZ, 1986, ANAL TENSOR 4539 MILLER MK, 1966, SIAM J NUMER ANAL, V3, P624 4540 YANG TQ, 1984, ASME 1984 PVP C 4541 YANG TQ, 1990, THEORY VISCOELASTICI 4542 NR 6 4543 TC 0 4544 SN 0253-4827 4545 J9 APPL MATH MECH-ENGL ED 4546 JI Appl. Math. Mech.-Engl. Ed. 4547 PD DEC 4548 PY 1997 4549 VL 18 4550 IS 12 4551 BP 1159 4552 EP 1167 4553 PG 9 4554 SC Mathematics, Applied; Mechanics 4555 GA ZB193 4556 UT ISI:000072445700004 4557 ER 4558 4559 PT J 4560 AU Cheng, XY 4561 Wan, XJ 4562 Guo, JT 4563 Liu, CT 4564 TI Effect of Zr and B on environmental embrittlement in Ni(3)AI alloys 4565 SO SCRIPTA MATERIALIA 4566 DT Article 4567 ID POLYCRYSTALLINE NI3AL; BORON; SEGREGATION 4568 C1 Shanghai Univ, Inst Mat Res, Shanghai, Peoples R China. 4569 Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. 4570 Acad Sinica, Inst Met Res, Shenyang, Peoples R China. 4571 RP Cheng, XY, Shanghai Univ, Inst Mat Res, Shanghai, Peoples R China. 4572 CR AOKI K, 1979, NIPPON KINZOKU GAKKA, V43, P1190 4573 CHOUDHURY A, 1992, ACTA METALL MATER, V40, P57 4574 CHUANG TH, 1991, MAT SCI ENG A-STRUCT, V141, P169 4575 GEORGE EP, 1992, SCRIPTA METALL MATER, V27, P365 4576 GEORGE EP, 1995, MATER RES SOC S P, V364, P1131 4577 GEORGE EP, 1996, ACTA MATER, V44, P1757 4578 GU YF, 1994, THESIS SHANGHAI JIAO 4579 LIU CT, 1985, ACTA METALL, V33, P213 4580 LIU CT, 1992, NATO ASI SER, V213, P321 4581 WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473 4582 WAN XJ, 1994, SCRIPTA METALL MATER, V31, P677 4583 XIAOJING W, 1995, ACTA METALL SINICA, V8, P299 4584 ZHEN Z, 1992, ACTA METALL SINICA, V28, A202 4585 NR 13 4586 TC 10 4587 SN 1359-6462 4588 J9 SCRIPTA MATER 4589 JI Scr. Mater. 4590 PD FEB 13 4591 PY 1998 4592 VL 38 4593 IS 6 4594 BP 959 4595 EP 964 4596 PG 6 4597 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 4598 Engineering 4599 GA ZA001 4600 UT ISI:000072317800015 4601 ER 4602 4603 PT J 4604 AU Wei, MM 4605 Zhuang, L 4606 TI Preparation of SrTiO3-based ceramic material for boundary layer 4607 capacitor by vacuum sintering method 4608 SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY 4609 DT Article 4610 ID POLYCRYSTALLINE 4611 AB Applying the vacuum sintering method instead of the sintering in 4612 reducing atmosphere (N-2+H-2) to achieve semiconduction for ceramic 4613 material of SrTiO3 with donor Nb2O5 has been researched preliminarily. 4614 The vacuum sintering method can produce n-type semiconductor, strontium 4615 titanate based ceramics, which is fired at 1350 degrees C for 3 h under 4616 a vacuum condition of 5 Pa, with resistivity about 2 Omega.cm. The 4617 process under vacuum condition allows promotion of the sintering as 4618 well as grain growth when compared with the process in atmosphere 4619 condition. The vacuum sintering can lower the sintering temperature by 4620 about 100 degrees C, and raise the density of ceramics and the apparent 4621 permittivity of GBLC of SrTiO3-based ceramics. The above mentioned 4622 advantages are the key factors of improving the properties of GBLC. 4623 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 4624 Shanghai Univ, Sch Technol Phys, Shanghai 201800, Peoples R China. 4625 RP Wei, MM, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R 4626 China. 4627 CR BURN I, 1982, J MATER SCI, V17, P3510 4628 SHIRASAKI S, 1980, J CHEM PHYS, V73, P4640 4629 WEI MM, 1992, FERROELECTRICS, V133, P301 4630 ZHONG JP, 1987, J INORG MATER, V2, P22 4631 NR 4 4632 TC 0 4633 SN 0374-4884 4634 J9 J KOREAN PHYS SOC 4635 JI J. Korean Phys. Soc. 4636 PD FEB 4637 PY 1998 4638 VL 32 4639 PN Part 3 Suppl. S 4640 BP S1180 4641 EP S1182 4642 PG 3 4643 SC Physics, Multidisciplinary 4644 GA YZ022 4645 UT ISI:000072212300093 4646 ER 4647 4648 PT J 4649 AU Cheng, DH 4650 Xu, WY 4651 Hua, LQ 4652 Zhang, ZY 4653 Wan, XJ 4654 TI Electrochemical preparation & mechanical properties of amorphous 4655 nickel-SiC composites 4656 SO PLATING AND SURFACE FINISHING 4657 DT Article 4658 ID ALLOYS 4659 AB In this study, an attempt was made to incorporate SiC particles into an 4660 amorphous nickel-phosphorus alloy matrix by electrodeposition. The bath 4661 composition and operating conditions of electrodeposited Ni-P-SiC 4662 composite coatings were studied and the structure and mechanical 4663 properties of the deposits were determined. 4664 C1 Shanghai Univ, Dept Chem Engn, Shanghai 200072, Peoples R China. 4665 Shanghai Univ, Met Res Ctr, Shanghai 200072, Peoples R China. 4666 RP Cheng, DH, Shanghai Univ, Dept Chem Engn, 149 Yanchang Rd, Shanghai 4667 200072, Peoples R China. 4668 CR CARGILL GS, 1970, J APPL PHYS, V41, P12 4669 GROUSE M, 1980, MET FINISH, V78, P31 4670 MUKHERJEE D, 1989, B ELECTROCHEM, V5, P656 4671 RAJAGOPAL C, 1984, MET FINISH, V82, P59 4672 NR 4 4673 TC 7 4674 SN 0360-3164 4675 J9 PLAT SURF FINISH 4676 JI Plat. Surf. Finish. 4677 PD FEB 4678 PY 1998 4679 VL 85 4680 IS 2 4681 BP 61 4682 EP 64 4683 PG 4 4684 SC Materials Science, Coatings & Films; Metallurgy & Metallurgical 4685 Engineering 4686 GA YY160 4687 UT ISI:000072119300021 4688 ER 4689 4690 PT J 4691 AU Liu, GL 4692 TI Variable-domain variational finite element method: A general approach 4693 to free/moving boundary problems in heat and fluid flow 4694 SO NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS 4695 DT Article 4696 DE finite element method; variational principle; free & moving boundary 4697 problems; fluid dynamics; heat transfer 4698 ID INCOMPRESSIBLE ROTOR FLOW; HYBRID PROBLEMS; POTENTIAL FLOW; PRINCIPLES; 4699 SHOCKS 4700 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 4701 RP Liu, GL, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 4702 200072, Peoples R China. 4703 CR 1990, AGARDCP463 4704 CRANK J, 1984, FREE MOVING BOUNDARY 4705 FINLAYSON BA, 1972, METHOD WEIGHTED RESI 4706 GUO JH, 1993, P 1 INT C AER BEIJ, P75 4707 LIU GI, 1986, J ENG GAS TURB POWER, V108, P254 4708 LIU GL, 1987, NUM METHODS THERMAL, V5, P284 4709 LIU GL, 1990, P 1 INT S AER INT FL, P128 4710 LIU GL, 1992, ACTA MECH, V95, P117 4711 LIU GL, 1993, INT J TURBO JET ENGI, V10, P273 4712 LIU GL, 1993, P 2 INT S AER INT FL, V2, P355 4713 LIU GL, 1993, P 2 INT S AER INT FL, V2, P361 4714 LIU GL, 1995, ACTA MECH, V108, P207 4715 LIU GL, 1995, INVERSE PROBL ENG, V2, P1 4716 LIU GL, 1996, 2 INT C HYDR DEC 16 4717 YAN S, 1994, INT J TURBO JET ENG, V11, P71 4718 NR 15 4719 TC 5 4720 SN 0362-546X 4721 J9 NONLINEAR ANAL-THEOR METH APP 4722 JI Nonlinear Anal.-Theory Methods Appl. 4723 PD DEC 4724 PY 1997 4725 VL 30 4726 IS 8 4727 BP 5229 4728 EP 5239 4729 PG 11 4730 SC Mathematics, Applied; Mathematics 4731 GA YX561 4732 UT ISI:000072052900064 4733 ER 4734 4735 PT J 4736 AU Xueming, MA 4737 Gang, JI 4738 Ling, Z 4739 Yuanda, D 4740 TI Structure and properties of bulk nano-structured WC-CO alloy by 4741 mechanical alloying 4742 SO JOURNAL OF ALLOYS AND COMPOUNDS 4743 DT Article 4744 DE nanocrystalline; WC-Co; mechanical alloying 4745 AB Mixtures of elemental powders of nominal composition WC-6wt% Co and 4746 WC-6wt% Co-1wt% VC were prepared using 99.5% purity tungsten, graphite, 4747 cobalt and vanadium powders with particle sizes smaller than 75 mu m. 4748 Mechanical alloying (MA) was performed in a QM-1 planetary ball mill. 4749 The structural evolution and the crystallite size changes of the 4750 powders during MA were monitored by X-ray diffraction. The results show 4751 that cemented carbides of WC-Co powder with crystalline sizes of about 4752 10 nm were directly synthesized from elemental powders by mechanical 4753 alloying. Cold compacting was carried our at a pressure of 800 MPa 4754 using a manual uniaxial press with carbide insert dies. The hardness 4755 and sintered density of sintered samples were measured. The effects of 4756 small VC additions on the grain size, density and hardness of sintered 4757 samples were also investigated. (C) 1998 Elsevier Science S.A. 4758 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China. 4759 RP Xueming, MA, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, 4760 Peoples R China. 4761 CR GLEITER H, 1984, Z METALLKD, V75, P263 4762 SHINGU PH, 1988, T JIM S, V29, P3 4763 XUEMING MA, 1996, J ALLOY COMPD, V245, L30 4764 YUANZHENG Y, 1992, CHINESE PHYS LETT, V5, P266 4765 YUANZHENG Y, 1994, CHINESE SCI BULL, V17, P1626 4766 NR 5 4767 TC 5 4768 SN 0925-8388 4769 J9 J ALLOYS COMPOUNDS 4770 JI J. Alloy. Compd. 4771 PD JAN 9 4772 PY 1998 4773 VL 264 4774 IS 1-2 4775 BP 267 4776 EP 270 4777 PG 4 4778 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & 4779 Metallurgical Engineering 4780 GA YX365 4781 UT ISI:000072032900050 4782 ER 4783 4784 PT J 4785 AU Zhao, XH 4786 Chen, WF 4787 TI Effective elastic moduli of concrete with interface layer 4788 SO COMPUTERS & STRUCTURES 4789 DT Article 4790 DE concrete; effective elastic moduli; engineering mechanics; interface 4791 layer; microstructure; stress analysis 4792 ID CEMENT PASTE; COMPOSITES; MORTAR 4793 AB In this paper, the effective elastic moduli E* and mu* of concrete are 4794 obtained from the analytical solution of a two-dimensional 4795 microstructural model, and the relationships between E*, mu* and the 4796 elastic moduli of each constituent of concrete are studied. Engineering 4797 formulas of the effective elastic :moduli on the basis of engineering 4798 mechanics are also derived and their advantages and limitations are 4799 assessed. The variation of E* and mu* values with the basic elastic 4800 moduli E-1, E-2 and E-3 of sand (or aggregate), interface and cement 4801 paste is given. It is found that the E* and mu* values are affected 4802 significantly by the interface layer. The results provide a deeper 4803 understanding of the influences of each constituent of the 4804 microstructure on the overall behavior of concrete, and an analytical 4805 relationship between the nonlinear behavior of concrete and the 4806 properties of its constituent. They are also helpful for developing new 4807 high-strength concrete materials with an improved strength and 4808 stiffness. (C) 1997 Elsevier Science Ltd. 4809 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 4810 Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA. 4811 RP Zhao, XH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 4812 200072, Peoples R China. 4813 CR BENVENISTE Y, 1989, MECH MATER, V7, P305 4814 CHEN WF, 1994, CONCRETE PLASTICITY, P146 4815 CHRISTENSEN RM, 1979, J MECH PHYS SOLIDS, V27, P315 4816 CLYNE TW, 1993, INTRO METAL MATRIX C 4817 COHEN MD, 1994, CEMENT CONCRETE RES, V24, P95 4818 COHEN MD, 1995, MATER RES SOC S P, V370, P407 4819 DASGUPTA A, 1992, MECH MATER, V14, P67 4820 HASHIN Z, 1962, J APPL MECH, V29, P144 4821 HASHIN Z, 1964, J APPL MECH E, V31, P223 4822 JONES RM, 1975, MECH COMPOSITE MAT 4823 LUO HA, 1989, MECH MATER, V8, P77 4824 SIBONI G, 1991, MECH MATER, V11, P107 4825 WANG ZM, 1991, MECH STRUCTURAL MECH, P67 4826 WINSLOW DN, 1994, CEMENT CONCRETE RES, V24 4827 ZHAO XH, 1996, CESTR962 PURD U 4828 ZHAO XH, 1996, INT J NUMER ANAL MET, V20, P215 4829 ZHAO XH, 1996, INT J NUMER ANAL MET, V20, P275 4830 NR 17 4831 TC 3 4832 SN 0045-7949 4833 J9 COMPUT STRUCT 4834 JI Comput. Struct. 4835 PD JAN 4836 PY 1998 4837 VL 66 4838 IS 2-3 4839 BP 275 4840 EP 288 4841 PG 14 4842 SC Computer Science, Interdisciplinary Applications; Engineering, Civil 4843 GA YX439 4844 UT ISI:000072040100012 4845 ER 4846 4847 PT J 4848 AU Liu, HY 4849 Li, HH 4850 Ying, TL 4851 Sun, K 4852 Qin, YQ 4853 Qi, DY 4854 TI Amperometric biosensor sensitive to glucose and lactose based on 4855 co-immobilization of ferrocene, glucose oxidase, beta-galactosidase and 4856 mutarotase in beta-cyclodextrin polymer 4857 SO ANALYTICA CHIMICA ACTA 4858 DT Article 4859 DE biosensor; glucose oxidase; beta-galactosidase; mutarotase; glucose; 4860 lactose; ferrocene; beta-cyclodextrin 4861 ID ENZYME ELECTRODE; INCLUSION; MILK; SENSOR 4862 AB An amperometric biosensor sensitive to glucose and lactose has been 4863 developed by immobilizing glucose oxidase (GOD), beta-galactosidase, 4864 mutarotase and ferrocene in beta-cyclodextrin polymer. The ferrocene is 4865 included in the cavities of the beta-cyclodextrin polymer through a 4866 host-guest chemical reaction whereas glucose oxidase, 4867 beta-galactosidase and mutarotase are cross-linked with the 4868 beta-cyclodextrin polymer. Cyclic voltammetry and amperometric 4869 measurement have been employed for the first time to show the efficacy 4870 of electron transfer between immobilized glucose oxidase and a glassy 4871 carbon electrode via ferrocene included in the cavities of 4872 beta-cyclodextrin polymer. Performance and characteristics of the 4873 biosensor were evaluated with respect to response time, detection 4874 limit, selectivity, and dependence on applied potential, temperature 4875 and pH as well as operating and storage stability. The stability of the 4876 enzyme membrane was greatly enhanced by cross-linking of the enzymes 4877 with beta-cyclodextrin polymer because of the water absorbability of 4878 the beta-cyclodextrin polymer. (C) 1998 Elsevier Science B.V. 4879 C1 Shanghai Univ, Dept Chem & Chem Engn, Shanghai 200072, Peoples R China. 4880 Weimei Cooperat Hangzhou, Clin Dept, Hangzhou 310016, Zhejiang Prov, Peoples R China. 4881 RP Liu, HY, Shanghai Univ, Dept Chem & Chem Engn, Shanghai 200072, Peoples 4882 R China. 4883 CR *INT DAIR FED, 1974, 28A INT DAIR FED 4884 CHENG FS, 1977, ANALYST, V102, P124 4885 DUBOIS M, 1956, ANAL CHEM, V28, P350 4886 GRIMBLEBY FH, 1956, J DAIRY RES, V23, P229 4887 HAMID JA, 1989, ANALYST, V114, P1587 4888 HARADA A, 1984, J CHEM SOC CHEM COMM, P645 4889 HARADA A, 1984, J INCLUSION PHENOM, V2, P791 4890 HARRIS WM, 1986, ANALYST, V111, P37 4891 JAGER A, 1994, ANALYST, V119, P1251 4892 KARASZ AB, 1971, J ASSOC OFF ANA CHEM, V54, P1436 4893 KORADECKI D, 1991, J INCLUS PHENOM MOL, V10, P79 4894 KUTNER W, 1992, J INCLUS PHENOM MOL, V13, P257 4895 LI S, 1992, CHEM REV, V92, P1457 4896 LIU HY, 1995, ANAL CHIM ACTA, V300, P65 4897 LIU HY, 1997, ANAL CHIM ACTA, V344, P187 4898 LUNDBACK H, 1985, ANAL LETT PT B, V18, P871 4899 MATSUMOTO K, 1985, AGR BIOL CHEM TOKYO, V49, P2131 4900 PFEIFFER D, 1990, J CHEM TECHNOL BIOT, V49, P255 4901 PILLOTON R, 1987, ANAL LETT, V20, P1803 4902 SAENGER W, 1980, ANGEW CHEM INT EDIT, V19, P344 4903 TAKAHASHI K, 1994, J INCLUS PHENOM MOL, V17, P1 4904 WALLENFELS K, 1972, ENZYMES, V7, P617 4905 WATANABE E, 1991, BIOTECHNOL BIOENG, V38, P99 4906 XU YH, 1990, ENZYME MICROB TECH, V12, P104 4907 YANG MT, 1981, J CHROMATOGR, V209, P316 4908 NR 25 4909 TC 30 4910 SN 0003-2670 4911 J9 ANAL CHIM ACTA 4912 JI Anal. Chim. Acta 4913 PD JAN 30 4914 PY 1998 4915 VL 358 4916 IS 2 4917 BP 137 4918 EP 144 4919 PG 8 4920 SC Chemistry, Analytical 4921 GA YX680 4922 UT ISI:000072065700005 4923 ER 4924 4925 PT J 4926 AU Zhang, C 4927 Qiu, ZG 4928 TI Effects of surface texture on hydrodynamic lubrication of dynamically 4929 loaded journal bearings 4930 SO TRIBOLOGY TRANSACTIONS 4931 DT Article 4932 DE hydrodynamic lubrication; journal bearing; surface roughness 4933 AB The effects of two-sided purely longitudinal, transverse and isotropic 4934 surface roughness on the hydrodynamic lubrication of dynamically loaded 4935 finite journal bearings are analyzed using Christensen's stochastic 4936 model of hydrodynamic lubrication of rough surfaces and considering 4937 running-in effect on roughness height distributions. A detailed study 4938 of the above system in terms of the nominal minimum film thickness and 4939 the maximum film pressure demonstrates that the effects of roughness 4940 are closely tied to the roughness texture and structure, features of 4941 nominal geometry, and operating factors. 4942 C1 Shanghai Univ, Res Inst Bearings, Shanghai 200072, Peoples R China. 4943 Fudan Univ, Dept Appl Mech, Shanghai 200433, Peoples R China. 4944 RP Zhang, C, Northwestern Univ, Evanston, IL 60201 USA. 4945 CR BOEDO S, 1995, P INT TRIB C YOK, P1061 4946 CHRISTENSEN H, 1969, P I MECH ENGRS 1, V184, P1013 4947 ELROD HG, 1973, ASME, V93, P324 4948 PATIR N, 1978, T ASME, V100, P12 4949 PRAKASH J, 1984, ASME, V106, P324 4950 RHOW SK, 1974, ASME, V94, P554 4951 TONDER K, 1977, WEAR, V44, P329 4952 ZHANG C, 1995, CHINESE INTERNAL COM, V16, P69 4953 ZHANG C, 1995, P INT TRIB C YOK, P1005 4954 NR 9 4955 TC 3 4956 SN 1040-2004 4957 J9 TRIBOL TRANS 4958 JI Tribol. Trans. 4959 PD JAN 4960 PY 1998 4961 VL 41 4962 IS 1 4963 BP 43 4964 EP 48 4965 PG 6 4966 SC Engineering, Mechanical 4967 GA YW245 4968 UT ISI:000071913000006 4969 ER 4970 4971 PT J 4972 AU Wang, DR 4973 Zhao, FG 4974 TI The globalization of Durand-Kerner algorithm 4975 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 4976 DT Article 4977 DE Durand-Kerner algorithm; continuous homotopy; path tracing; global 4978 convergence; point estimation 4979 ID EIGENVALUE PROBLEMS; POLYNOMIAL SYSTEMS; HOMOTOPY; EQUATIONS; ZEROS 4980 AB Making use of the theory of continuous homotopy and the relation 4981 between symmetric polynomial and polynomial in one variable the authors 4982 devoted this article to constructing a regularly homotopic curve with 4983 probability one. Discrete tracing along this homotopic curve leads to a 4984 class of Durand-Kerner algorithm with step parameters. The convergence 4985 of this class of algorithms is given, which solves the conjecture about 4986 the global property of Durand-Kerner algorithm. The problem for 4987 steplength selection is thoroughly discussed. Finally, sufficient 4988 numerical examples are used to verify our theory. 4989 C1 Shanghai Univ, Shanghai 201800, Peoples R China. 4990 Fudan Univ, Shanghai 200433, Peoples R China. 4991 RP Wang, DR, Shanghai Univ, Shanghai 201800, Peoples R China. 4992 CR ALEFELD G, 1974, SIAM J NUMER ANAL, V11, P237 4993 ALLGOWER EL, 1990, NUMERICAL CONTINUATI 4994 CHOW SN, 1978, MATH COMPUT, V32, P887 4995 DEREN W, 1987, COMPUTING, V38, P75 4996 DEREN W, 1989, COMPUTING, V43, P187 4997 DEREN W, 1993, JCAM, V60, P253 4998 DURAND E, 1960, SOLUTIONS NAMERIQUES, V1 4999 GARCIA CB, 1979, MATH PROGRAM, V16, P159 5000 KERNER IO, 1966, NUMER MATH, V8, P290 5001 LI TY, 1987, LINEAR ALGEBRA APPL, V91, P65 5002 LI TY, 1987, SIAM J NUMER ANAL, V24, P435 5003 LI TY, 1989, SIAM J NUMER ANAL, V26, P1241 5004 LI TY, 1992, SIAM J NUMER ANAL, V29, P229 5005 MO ZJ, 1987, ALGEBRA, V1 5006 SCHWARTZ ST, 1969, NONLINEAR FUNCTIONAL 5007 SENLIN X, 1989, SYSTEM ALGEBRAIC EQU 5008 SMALE S, 1986, MERGING DISCIPLINES, P185 5009 ZHAO FG, 1993, MATH NUMERICA SINICA, V2, P196 5010 ZHENG SM, 1982, CHINESE SCI BULL, V9, P515 5011 NR 19 5012 TC 0 5013 SN 0253-4827 5014 J9 APPL MATH MECH-ENGL ED 5015 JI Appl. Math. Mech.-Engl. Ed. 5016 PD NOV 5017 PY 1997 5018 VL 18 5019 IS 11 5020 BP 1045 5021 EP 1057 5022 PG 13 5023 SC Mathematics, Applied; Mechanics 5024 GA YW736 5025 UT ISI:000071967700003 5026 ER 5027 5028 PT J 5029 AU Guo, BY 5030 Wang, YM 5031 TI An almost monotone approximation for a nonlinear two-point boundary 5032 value problem 5033 SO ADVANCES IN COMPUTATIONAL MATHEMATICS 5034 DT Article 5035 DE nonlinear two-point problem; almost monotone approximation; nonlinear 5036 Jacobi and Gauss-Seidel iterations 5037 ID PETROV-GALERKIN 5038 AB Almost monotone approximation is proposed for nonlinear two-points 5039 problem. A general framework is given for studying the existence and 5040 uniqueness of numerical solutions. A discrete approximation with high 5041 accuracy is constructed. Nonlinear Jacobi iteration and Gauss-Seidel 5042 iteration are introduced to save work. The continuous approximation is 5043 also considered. The numerical results show the advantages of such an 5044 approach. 5045 C1 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China. 5046 Fudan Univ, Inst Math, Shanghai 200433, Peoples R China. 5047 CR BABUSKA I, 1966, NUMERICAL PROCESSES 5048 BABUSKA I, 1983, SIAM J NUMER ANAL, V20, P510 5049 BERMAN A, 1979, NONNEGATIVE MATRICES 5050 BOGLAEV IP, 1988, P ROY IRISH ACAD A, V88, P153 5051 CHANG KW, 1984, APPL MATH SCI, V56 5052 COLLATZ L, 1960, NUMERICAL TREATMENT 5053 COLLATZ L, 1964, FUNKTIONALANALYSIS N 5054 GUO BY, 1986, NUMER MATH, V49, P511 5055 GUO BY, 1988, DIFFERENCE METHODS P 5056 GUO BY, 1991, NUMER METH PART D E, P23 5057 GUO BY, 1992, J APPL SCI, V10, P1 5058 GUO BY, 1992, MATH COMPUT, V58, P531 5059 HOWES FA, 1978, MEMOIRS AM MATH SOC, V203 5060 LADDE GS, 1985, MONOTONE ITERATIVE T 5061 NUMEROV BV, 1924, MON NOT R ASTRON SOC, V84, P592 5062 RABINOWITZ PH, 1970, LECT NOTES MATH, V648, P97 5063 ROSE ME, 1964, MATH COMPUT, V18, P179 5064 VARGA RS, 1962, MATRIX ITERATIVE ANA 5065 NR 18 5066 TC 5 5067 SN 1019-7168 5068 J9 ADV COMPUT MATH 5069 JI Adv. Comput. Math. 5070 PY 1998 5071 VL 8 5072 IS 1-2 5073 BP 65 5074 EP 96 5075 PG 32 5076 SC Mathematics, Applied 5077 GA YW687 5078 UT ISI:000071962500005 5079 ER 5080 5081 PT J 5082 AU Zhang, ZL 5083 Jiang, XY 5084 Xu, SH 5085 Nagatomo, T 5086 Omoto, O 5087 TI Stability enhancement of organic electroluminescent diode through 5088 buffer layer or rubrene doping in hole-transporting layer 5089 SO SYNTHETIC METALS 5090 DT Article 5091 DE buffer layers; organic electroluminescent diodes; rubrene 5092 AB The stability of organic electroluminescent devices is significantly 5093 improved by inserting a buffer layer between ITO and the 5094 hole-transporting layer or by doping rubrene in the hole layer, The 5095 durabilities of the improved devices increase by a factor of about 10. 5096 The reasons for the improvements are discussed based on tunnelling 5097 theory and the energy-level diagram of the device, (C) 1997 Elsevier 5098 Science S.A. 5099 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China. 5100 Shibaura Inst Technol, Tokyo 108, Japan. 5101 RP Zhang, ZL, Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R 5102 China. 5103 CR ADACHI C, 1995, APPL PHYS LETT, V66, P2679 5104 SANO T, P IN ORG EL EL 96 BE, P249 5105 SHIROTA Y, 1994, APPL PHYS LETT, V65, P807 5106 NR 3 5107 TC 26 5108 SN 0379-6779 5109 J9 SYNTHET METAL 5110 JI Synth. Met. 5111 PD DEC 5112 PY 1997 5113 VL 91 5114 IS 1-3 5115 BP 131 5116 EP 132 5117 PG 2 5118 SC Materials Science, Multidisciplinary; Physics, Condensed Matter; 5119 Polymer Science 5120 GA YU803 5121 UT ISI:000071756200032 5122 ER 5123 5124 PT J 5125 AU Zhang, BW 5126 Zhao, W 5127 Cao, Y 5128 Wang, XS 5129 Zhang, ZL 5130 Jiang, XY 5131 Xu, SH 5132 TI Photoluminescence and electroluminescence of squarylium cyanine dyes 5133 SO SYNTHETIC METALS 5134 DT Article 5135 DE organic devices; photoluminescence; electroluminescence; squarylium 5136 cyanine-doped 8-hydroxyquinoline aluminium; energy transfer mechanism 5137 ID FILMS 5138 AB A series of squarylium cyanine dyes (Sq1, Sq2 and Sq3) were synthesized 5139 to explore their applications in organic electroluminescence devices 5140 (ELDs) with the aim of achieving highly efficient red emission. The 5141 absorption and fluorescence spectra of squarylium cyanine dyes (Sqs) in 5142 organic solvents, as well as their interaction with S-hydroxyquinoline 5143 aluminum (Alq) in solution and in film, were investigated to help 5144 understand the EL mechanism. The basic device structure consists of a 5145 hole-transport layer (HTL) of 5146 N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD) 5147 and an emission layer (EML) of Sq-doped Alq. By the doping method, the 5148 EL color can be readily tuned from green (EL of Alq) to red (EL of Sq) 5149 upon varying application of voltage. The EL mechanism is suggested to 5150 be associated with the energy transfer from the excited Alq to the 5151 dopant Sq. (C) 1997 Elsevier Science S.A. 5152 C1 Acad Sinica, Inst Photog Chem, Photochem Lab, Beijing 100101, Peoples R China. 5153 Shanghai Univ Sci & Technol, Dept Mat Sci, Shanghai 201800, Peoples R China. 5154 RP Zhang, BW, Acad Sinica, Inst Photog Chem, Photochem Lab, Beijing 5155 100101, Peoples R China. 5156 CR ABKOWITZ M, 1986, PHILOS MAG B, V53, P193 5157 BORSENBERGER PM, 1978, J APPL PHYS, V49, P273 5158 DALEEP SD, 1961, J ORG CHEM, V26, P3527 5159 EMMELIUS M, 1989, ANGEW CHEM INT EDIT, V28, P1445 5160 GALE DJ, 1974, J SOC DYERS COLOUR, V90, P97 5161 GRIFFITHS J, 1976, COLOR CONSTITUTION O 5162 HENG LS, 1995, J SICHUAN U, V32, P566 5163 HUGO I, 1968, J ORG CHEM, V33, P4283 5164 JOHNSON GE, 1995, PURE APPL CHEM, V67, P175 5165 LAW KY, 1993, CHEM REV, V93, P449 5166 LI CP, 1995, J POLYM RES, V2, P133 5167 MILON WB, 1956, J AM CHEM SOC, V78, P5854 5168 PIECHOWSKI A, 1984, J PHYS CHEM-US, V88, P933 5169 SANO T, 1995, 5432014, US 5170 SPRENGER HE, 1967, ANGEW CHEM INT EDIT, V6, P553 5171 TANG CW, 1987, APPL PHYS LETT, V51, P913 5172 TANG CW, 1989, J APPL PHYS, V65, P3610 5173 TANG CW, 1995, 5409783, US 5174 NR 18 5175 TC 8 5176 SN 0379-6779 5177 J9 SYNTHET METAL 5178 JI Synth. Met. 5179 PD DEC 5180 PY 1997 5181 VL 91 5182 IS 1-3 5183 BP 237 5184 EP 241 5185 PG 5 5186 SC Materials Science, Multidisciplinary; Physics, Condensed Matter; 5187 Polymer Science 5188 GA YU803 5189 UT ISI:000071756200057 5190 ER 5191 5192 PT J 5193 AU Li, L 5194 Tang, Z 5195 Sun, W 5196 Wang, P 5197 TI Calculation of phase diagrams of Al2O3-SiO2-R2O3 systems 5198 SO PHYSICS AND CHEMISTRY OF GLASSES 5199 DT Article 5200 ID GLASSES 5201 AB Binary oxide diagrams of Al2O3-SiO2, SiO2-R2O3, Al2O3-R2O3 (R=Nd, Sm) 5202 were thermodynamically assessed. The obtained Gibbs free energies of 5203 components and stoichiometric phases and solution parameters were used 5204 for the estimation of liquidus surface and isothermal sections of 5205 Al2O3-SiO2-Nd2O3 and Al2O3-SiO2-Sm2O3 systems. The eutectics in 5206 Al2O3-SiO2-Nd2O3 ternary phase diagram were also calculated in this 5207 work. 5208 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200027, Peoples R China. 5209 Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China. 5210 RP Li, L, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200027, Peoples R 5211 China. 5212 CR ARAMAKI S, 1962, J AM CERAM SOC, V45, P229 5213 BONDAR A, 1966, B ACAD SCI USSR CH, P195 5214 COUTURES JP, 1985, J AM CERAM SOC, V68, P105 5215 ERBE EM, 1990, J AM CERAM SOC, V73, P2708 5216 ERIKSSON G, 1993, METALL TRANS B, V24, P807 5217 KAUFMAN L, 1978, CALPHAD, V2, P35 5218 KOHLI JT, 1991, PHYS CHEM GLASSES, V32, P67 5219 LUKAS HL, 1977, CALPHAD, V1, P225 5220 LUO W, 1990, PHYSICAL CHEM, P316 5221 PELTON AD, 1986, METALL TRANS B, V17, P805 5222 SUN G, 1991, J CHIN RARE EARTH EL, V9, P118 5223 TOROPOV NA, 1960, T 7 INT CER C LOND, P440 5224 TOROPOV NA, 1961, B ACAD SCI USSR CH, P1279 5225 WU P, 1992, J ALLOY COMPD, V179, P259 5226 NR 14 5227 TC 8 5228 SN 0031-9090 5229 J9 PHYS CHEM GLASSES 5230 JI Phys. Chem. Glasses 5231 PD DEC 5232 PY 1997 5233 VL 38 5234 IS 6 5235 BP 323 5236 EP 326 5237 PG 4 5238 SC Chemistry, Physical; Materials Science, Ceramics 5239 GA YV402 5240 UT ISI:000071819400008 5241 ER 5242 5243 PT J 5244 AU Zhang, ZL 5245 Jiang, XY 5246 Xu, SH 5247 Nagatomo, T 5248 Omoto, O 5249 TI The effect of rubrene as a dopant on the efficiency and stability of 5250 organic thin film electroluminescent devices 5251 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS 5252 DT Article 5253 ID LIGHT-EMITTING-DIODES 5254 AB Rubrene was doped into the hole transport layer of an organic thin film 5255 electroluminescent (OTFEL) device with a double-layered structure. It 5256 was found that the dopant has a profound influence on the EL 5257 characteristics - it changed the region of light emission, increased 5258 the luminescence efficiency by more than 50% and improved the device 5259 stability tenfold. The reasons for these effects are discussed based on 5260 injection theory and the energy level diagram of the device. 5261 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China. 5262 Shibaura Inst Technol, Minato Ku, Tokyo 108, Japan. 5263 RP Zhang, ZL, Shanghai Univ, Dept Mat Sci, Jiading Campus, Shanghai 5264 201800, Peoples R China. 5265 CR ADACHI C, 1995, APPL PHYS LETT, V66, P2679 5266 BROWN AR, 1992, APPL PHYS LETT, V61, P2793 5267 PARKER ID, 1994, APPL PHYS LETT, V65, P1272 5268 SANO T, 1996, INORGANIC ORGANIC EL, P249 5269 SHIROTA Y, 1994, APPL PHYS LETT, V65, P807 5270 TANG CW, 1987, APPL PHYS LETT, V51, P913 5271 YANG Y, 1994, APPL PHYS LETT, V64, P1245 5272 ZHANG ZL, 1996, CHINESE PHYS LETT, V4, P301 5273 NR 8 5274 TC 11 5275 SN 0022-3727 5276 J9 J PHYS-D-APPL PHYS 5277 JI J. Phys. D-Appl. Phys. 5278 PD JAN 7 5279 PY 1998 5280 VL 31 5281 IS 1 5282 BP 32 5283 EP 35 5284 PG 4 5285 SC Physics, Applied 5286 GA YV414 5287 UT ISI:000071820600005 5288 ER 5289 5290 PT J 5291 AU Wen, HQ 5292 Mao, XM 5293 Xu, KD 5294 TI High strength conductor by directional solidification 5295 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 5296 DT Article 5297 AB The directional solidification of Cu-0.8 wt pet Cr alloy was 5298 investigated for high-strength conductors. An in-situ composite 5299 material in which the matrix is in cellular morphology and the 5300 well-distributed eutectics around the cells is formed in the 5301 directional solidification process. In such microstructure, the 5302 cellular matrix is as conductor and the coated-around eutectics as 5303 reinforcement. The formation mechanism of this microstructure is 5304 discussed from the interfacial instability. As a result, the tensile 5305 strength of the material along the solidification direction is two 5306 times more than that of the conventionally cast one, while the 5307 electrical conductivity is reduced a little by comparison with the pure 5308 Cu. 5309 C1 Shanghai Univ, Inst Mat Sci & Technol, Shanghai 200072, Peoples R China. 5310 RP Mao, XM, Shanghai Univ, Inst Mat Sci & Technol, Shanghai 200072, 5311 Peoples R China. 5312 CR ANDERSON KR, 1995, METALL MATER TRANS A, V9, P1197 5313 HANQI HU, 1991, SOLIDIFICATION FUNDA 5314 HARDWICH DA, 1993, METALL T A, V1, P27 5315 KURZ W, 1981, ACTA METALL, V29, P11 5316 TILLER WA, 1953, ACTA METALL, V1, P428 5317 VERHOEVEN JD, 1990, J MAT ENG, V2, P27 5318 WANG YW, 1995, FUNCTIONAL MAT, V3, P220 5319 ZHAO ZD, 1993, HDB CU ITS ALLOYS MA, P3 5320 NR 8 5321 TC 0 5322 SN 1005-0302 5323 J9 J MATER SCI TECHNOL 5324 JI J. Mater. Sci. Technol. 5325 PD JAN 5326 PY 1998 5327 VL 14 5328 IS 1 5329 BP 89 5330 EP 91 5331 PG 3 5332 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 5333 Engineering 5334 GA YV447 5335 UT ISI:000071825100022 5336 ER 5337 5338 PT J 5339 AU Zhu, XH 5340 Xu, J 5341 Meng, ZY 5342 TI Interdiffusion reaction in the PZT/PNN functionally gradient 5343 piezoelectric ceramic materials 5344 SO JOURNAL OF MATERIALS SCIENCE 5345 DT Article 5346 ID ACTUATOR 5347 AB The interfacial diffusion reaction between lead zirconate titanate 5348 (PZT) and lead nickel niobate (PbNi1/3Nb2/3O3:PNN) phases in the 5349 PZT/PNN functionally gradient piezoelectric ceramics were investigated 5350 as a function of the diffusion temperature and time, respectively. The 5351 ionic composition distribution profiles in the interdiffusion region 5352 were examined by electron probe microbeam analysis (EPMA). Based on a 5353 diffusion model of the overlapped diffusion solution from thin slab, 5354 the numerical simulation for the ionic composition distribution was 5355 carried out by computer, which was in agreement with the EPMA result. 5356 The diffusion coefficients for the Ni2+, Nb5+, Ti4+ and Zr4+ ions were 5357 determined, which were 33.8, 22.6, 10.8 and 9.9 x 10(-12) m(2) s(-1), 5358 respectively. The apparent activation energies for these ions were 5359 94.4, 171.7, 257.5 and 325.8 kJ mol(-1), respectively. The differences 5360 in the ionic diffusion coefficients and apparent activation energies 5361 were discussed from the viewpoint of the crystal chemistry. (C) 1998 5362 Chapman & Hall. 5363 C1 Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. 5364 Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China. 5365 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 5366 RP Zhu, XH, Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. 5367 CR CHAWLA KK, 1995, CERAMIC MATRIX COMPO 5368 ZHU XH, 1995, J MATER SCI LETT, V14, P516 5369 ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169 5370 ZHU XH, 1995, THESIS XIAN JIAOTONG 5371 NR 4 5372 TC 13 5373 SN 0022-2461 5374 J9 J MATER SCI 5375 JI J. Mater. Sci. 5376 PD FEB 15 5377 PY 1998 5378 VL 33 5379 IS 4 5380 BP 1023 5381 EP 1030 5382 PG 8 5383 SC Materials Science, Multidisciplinary 5384 GA YU268 5385 UT ISI:000071699300022 5386 ER 5387 5388 PT J 5389 AU Huang, SR 5390 Luo, J 5391 Leonardi, F 5392 Lipo, TA 5393 TI A general approach to sizing and power density equations for comparison 5394 of electrical machines 5395 SO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS 5396 DT Article 5397 DE ferrites; magnets; motors; power density; sizing equation 5398 AB Whenever an electrical machine is meant to be fed lug a power 5399 converter, the design should be approached as a system optimization, 5400 more than a simple machine sizing. A great variety of electrical 5401 machines is available to accomplish this goal, and the task of 5402 comparing the different options tan be very difficult, A general 5403 purpose sizing equation, easily adjustable for every topology, that 5404 could take into account different waveforms and machine 5405 characteristics, would be a very desirable tool, In this paper, a 5406 general approach is presented to develop and to discuss such an 5407 equation. Sample applications of the sizing and power density equations 5408 are utilized to compare the induction machine and the doubly salient 5409 permanent magnet (DSPM) machine. 5410 C1 Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA. 5411 RP Huang, SR, Shanghai Univ, Coll Automat, Shanghai 200072, Peoples R 5412 China. 5413 CR CHEN SQ, 1982, ELECT MACHINE DESIGN 5414 HONSINGER VB, 1987, IEEE T ENERGY CONVER, V2, P116 5415 HUANG S, 1997, 1997 IEEE POW ENG SO 5416 LEONARDI F, 1996, IEEE IAS ANN M M SAN 5417 LEVI E, 1984, POLYPHASE MOTORS DIR 5418 LI Y, 1995, C DES MAN MOD IND DM 5419 LIPO TA, 1984, IEEE T IND APPL, V20, P834 5420 LIPO TA, 1995, P IPEC 95, P1 5421 LIPO TA, 1996, INTRO AC MACHINE DES 5422 SCHUISKY W, 1957, INDUKTIONSMASCHIMEN 5423 NR 10 5424 TC 5 5425 SN 0093-9994 5426 J9 IEEE TRANS IND APPL 5427 JI IEEE Trans. Ind. Appl. 5428 PD JAN-FEB 5429 PY 1998 5430 VL 34 5431 IS 1 5432 BP 92 5433 EP 97 5434 PG 6 5435 SC Engineering, Electrical & Electronic; Engineering, Multidisciplinary 5436 GA YU517 5437 UT ISI:000071725800012 5438 ER 5439 5440 PT J 5441 AU Zhang, GL 5442 Yu, FH 5443 Weng, HM 5444 Zhang, HH 5445 TI Annealing behavior of Fe-57 implanted in ZrO2(Y) 5446 SO HYPERFINE INTERACTIONS 5447 DT Article 5448 AB Using conversion electron Mossbauer spectroscopy(CEMS) and slow 5449 positron beam, the chemical states of the implanted Fe-57 (100keV,3 x 5450 10(16) ions/cm(2)) in ZrO2 containing 3 mol% Y2O3 (ZY(3)) and its 5451 thermodynamic behavior during annealing process with the temperature 5452 from 200 to 500 degrees C were studied. After annealing at 400 degrees 5453 C the complex of Fe3+-V has been mostly dissolved, and the prior phase 5454 to alpha-Fe and alpha-Fe nano-crystalline cluster were present in the 5455 sample. Meanwhile the mixed conducting of oxygen-ions and electrons in 5456 the ZY(3) containing Fe sample appeared. 5457 C1 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China. 5458 Univ Sci & Technol China, Hefei 230026, Peoples R China. 5459 Shanghai Univ Sci & Technol, Coll Mat Sci, Shanghai 201800, Peoples R China. 5460 RP Zhang, GL, Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, 5461 Peoples R China. 5462 CR BURGGRAAF AJ, 1988, PHYS RES B, V32, P32 5463 MAREST G, 1990, HYPERFINE INTERACT, V56, P1605 5464 SAWICKI JA, 1988, NUCL INSTRUM METH B, V32, P79 5465 WELLER M, 1986, J AM CERAM SOC, V69, P573 5466 ZHANG G, 1986, PHYS LETT A, V119, P251 5467 NR 5 5468 TC 0 5469 SN 0304-3843 5470 J9 HYPERFINE INTERACTIONS 5471 JI Hyperfine Interact. 5472 PY 1998 5473 VL 112 5474 IS 1-4 5475 BP 197 5476 EP 200 5477 PG 4 5478 SC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; 5479 Physics, Nuclear 5480 GA YV034 5481 UT ISI:000071783000042 5482 ER 5483 5484 PT J 5485 AU Zhao, XH 5486 Chen, WF 5487 TI Solutions of multilayer inclusion problems under uniform field 5488 SO JOURNAL OF ENGINEERING MECHANICS-ASCE 5489 DT Article 5490 ID STRESS-FIELDS; COMPOSITES 5491 AB In this paper, a general solution of an n-layer inclusion problem in a 5492 limited region is obtained for the first time. The solutions of 5493 three-layer inclusion problems in a limited region under uniform strain 5494 field and under uniform stress field are given also. These solutions 5495 with undetermined constants are all expressed in closed form. The 5496 validity of these solutions is verified by numerical examples of 5497 several special cases. These solutions will enable us to study various 5498 stress distributions and elastic behavior of concrete materials in 5499 microscale. 5500 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 5501 Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA. 5502 RP Zhao, XH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 5503 200072, Peoples R China. 5504 CR BENVENISTE Y, 1989, MECH MATER, V7, P305 5505 CHEN T, 1990, MECH MATER, V9, P17 5506 CHRISTENSEN RM, 1979, J MECH PHYS SOLIDS, V27, P315 5507 DASGUPTA A, 1992, MECH MATER, V14, P67 5508 GOODIER JN, 1933, J APPL MECH, V1, P39 5509 LING CB, 1966, APPL SCI RES THE HAG, V18, P32 5510 SIBONI G, 1991, MECH MATER, V11, P107 5511 TIMOSHENKO S, 1951, THEORY ELASTICITY 5512 ZHAO XH, 1990, APPL MATH MECH, V11, P207 5513 ZHAO XH, 1996, INT J NUMER ANAL MET, V20, P275 5514 NR 10 5515 TC 3 5516 SN 0733-9399 5517 J9 J ENG MECH-ASCE 5518 JI J. Eng. Mech.-ASCE 5519 PD FEB 5520 PY 1998 5521 VL 124 5522 IS 2 5523 BP 209 5524 EP 216 5525 PG 8 5526 SC Engineering, Mechanical 5527 GA YT178 5528 UT ISI:000071573300012 5529 ER 5530 5531 PT J 5532 AU Ma, XG 5533 Chen, ZH 5534 TI Heat recovery from the starting vessel of a once-through boiler system 5535 SO APPLIED THERMAL ENGINEERING 5536 DT Article 5537 DE heat recovery; deaerator; boiler; start-up system 5538 AB An increasing number of coal-and oil-fired boilers are employed in 5539 covering the week-day load and are shut down at weekends. This paper 5540 describes an attempt to calculate the amount of heat recovery in a 5541 once-through boiler system during its start-up. A mathematical model 5542 has been firstly developed, and an experimental study is carried out to 5543 check the model. The 300 MW once-through boiler system is taken as an 5544 example. Both theoretical analysis and an experimental study show that 5545 the capacity for heat recovery in the deaerator tank largely depends on 5546 the working pressure of the deaerator tank and the starting vessel. The 5547 volume of the deaerator tank, especially the volume of water, has a 5548 large effect on the heat recovery capacity. (C) 1997 Published by 5549 Elsevier Science Ltd. 5550 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China. 5551 RP Ma, XG, Shanghai Univ Sci & Technol, Coll Power Engn, 516 Jun Gong Rd, 5552 Shanghai 200093, Peoples R China. 5553 CR HIRSCH C, 1988, NUMERICAL COMPUTATIO 5554 HUANG CM, 1982, HYDRODYNAMICS HEAT T 5555 RAY A, 1976, J DYNAMIC SYSTEM MEA, V9, P332 5556 XU HZ, 1996, POWER STATION AUXILI, V1, P1 5557 ZHANG CY, 1976, DYNAMIC RESPONSE MAT 5558 NR 5 5559 TC 0 5560 SN 1359-4311 5561 J9 APPL THERM ENG 5562 JI Appl. Therm. Eng. 5563 PD MAR-APR 5564 PY 1998 5565 VL 18 5566 IS 3-4 5567 BP 179 5568 EP 186 5569 PG 8 5570 SC Engineering, Mechanical; Energy & Fuels; Mechanics; Thermodynamics 5571 GA YR474 5572 UT ISI:000071498900011 5573 ER 5574 5575 PT J 5576 AU Huang, DB 5577 Zhao, XH 5578 Dai, HH 5579 TI Invariant tori and chaotic streamlines in the ABC flow 5580 SO PHYSICS LETTERS A 5581 DT Article 5582 DE ABC flow; action-angle-angle; invariant tori; Melnikov method; chaos 5583 AB We study the dynamical system associated with fluid particle motions of 5584 the Arnold-Beltrami-Childress (ABC) flow, defined by (x) over dot = A 5585 sin z + C cos y, (y) over dot = B sin x + A cos z, (z) over dot = C sin 5586 y + B cos x, where A, B, C are real parameters and \C\ much less than 5587 1. First, we reduce this system to action-angle-angle coordinates. 5588 Then, by using the new-KAM-like theorems for perturbations of a 5589 three-dimensional, volume-preserving map, we obtain the conditions of 5590 existence of invariant tori in the ABC flow. In addition, by using a 5591 high-dimensional generalization of the Melnikov method, we obtain the 5592 analytical criterion for the existence of chaotic streamlines in the 5593 ABC flow. (C) 1998 Published by Elsevier Science B.V. 5594 C1 Yunnan Univ, Dept Math, Kunming 650091, Peoples R China. 5595 City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong. 5596 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 5597 CR ARNOLD VI, 1965, CR HEBD ACAD SCI, V261, P17 5598 ARNOLD VI, 1978, MATH METHODS CLASSIC 5599 CHENG CQ, 1990, CELESTIAL MECH, V47, P275 5600 DOMBRE T, 1986, J FLUID MECH, V167, P353 5601 GALLOWAY D, 1987, J FLUID MECH, V180, P557 5602 GUCHENHEIMER J, 1983, NONLINEAR OSCILLATIO 5603 HENON M, 1966, CR HEBD ACAD SCI, V262, P312 5604 MEIZE J, 1994, J NONLINEAR SCI, V4, P157 5605 WIGGINS S, 1988, GLOBAL BIFURCATIONS 5606 WIGGINS S, 1990, INTRO APPL NONLINEAR 5607 YOCCOZ JC, 1992, ASTERISQUE, V206, P311 5608 ZHAO XH, 1993, SIAM J APPL MATH, V53, P71 5609 NR 12 5610 TC 4 5611 SN 0375-9601 5612 J9 PHYS LETT A 5613 JI Phys. Lett. A 5614 PD JAN 5 5615 PY 1998 5616 VL 237 5617 IS 3 5618 BP 136 5619 EP 140 5620 PG 5 5621 SC Physics, Multidisciplinary 5622 GA YQ830 5623 UT ISI:000071427400006 5624 ER 5625 5626 PT J 5627 AU Liu, GL 5628 He, JH 5629 TI New research and concepts in turbo-jet engine design 5630 SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY 5631 DT Article 5632 DE aerospace engineering; design; engines; 3D 5633 AB Presents a brief overview of some new concepts and research results 5634 concerning aerodynamic computation and design of jet-propulsion engines 5635 with emphasis on turbomachinery (TM) developed in China, without any 5636 attempt to be exhaustive. 5637 C1 Shanghai Univ, Inst Mech, Shanghai, Peoples R China. 5638 RP Liu, GL, Shanghai Univ, Inst Mech, Shanghai, Peoples R China. 5639 CR DEICH ME, 1963, THERMAL ENERGETICS 5640 EPPLER R, 1980, TM80210 NASA, P82 5641 GAO JH, 1997, THESIS SHANGHAI U 5642 LI XD, 1996, AIAA J, V34, P1097 5643 LIU GL, 1993, P I MECH ENG A-J POW, V207, P23 5644 LIU GL, 1995, INT J TURBO JET ENG, V12, P109 5645 LIU GL, 1996, 19 INT C THEOR APPL 5646 LIU GL, 1996, ACTA AERODYNAMICA SI, V14, P1 5647 LIU GL, 1996, INT J TURBO JET ENG, V13, P1 5648 LIU GL, 1998, IN PRESS INT S INV P 5649 MIAO RT, 1991, J AEROSPACE POWER, V6, P13 5650 OHTSUKA M, 1974, 74GT2 ASME 5651 SELIG MS, 1992, AIAA J, V30, P1162 5652 WANG ZQ, 1981, 5 INT S AIR BREATH E 5653 WANG ZQ, 1994, J ENG THERMOPHYSICS, V15, P147 5654 ZHANG ZC, 1996, J ENG THERMOPHYSICS, V17, P180 5655 NR 16 5656 TC 2 5657 SN 0002-2667 5658 J9 AIRCRAFT ENG AEROSP TECHNOL 5659 JI Aircr. Eng. Aerosp. Technol. 5660 PY 1997 5661 VL 69 5662 IS 6 5663 BP 527 5664 EP + 5665 PG 8 5666 SC Engineering, Aerospace 5667 GA YQ732 5668 UT ISI:000071417700003 5669 ER 5670 5671 PT J 5672 AU Chen, LQ 5673 Liu, YZ 5674 TI Parametric open-plus-closed-loop control of chaos in continuous 5675 dynamical systems 5676 SO ACTA MECHANICA SOLIDA SINICA 5677 DT Article 5678 DE continuous dynamical system; chaos; parametric open-plus-closed-loop 5679 control; the Lorenz model 5680 ID MIGRATION CONTROLS; ENTRAINMENT 5681 AB This paper presents a parametric open-plus-closed-loop control approach 5682 to controlling chaos in continuous dynamical systems. As an example, 5683 chaos in the Lorenz model is controlled to demonstrate its application. 5684 Finally. the relations between the parametric open-plus-closed-loop 5685 control and the former control methods, such as the 5686 open-plus-closed-loop control and the parametric entrainment control. 5687 are discussed. 5688 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 5689 Shanghai Jiao Tong Univ, Dept Mech Engn, Shanghai 200030, Peoples R China. 5690 CR CHEN LQ, IN PRESS APPL MATH M 5691 CHEN LQ, 1996, PHYS, V25, P278 5692 HU HY, 1996, ADV MECH, V26, P453 5693 HUBLER A, 1989, NATURWISSENSCHAFTEN, V76, P67 5694 JACKSON EA, 1990, PHYS LETT A, V151, P478 5695 JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1255 5696 JACKSON EA, 1995, PHYSICA D, V85, P1 5697 METTIN R, 1995, PHYS REV E A, V51, P4065 5698 NR 8 5699 TC 2 5700 SN 0894-9166 5701 J9 ACTA MECH SOLIDA SINICA 5702 JI Acta Mech. Solida Sin. 5703 PD DEC 5704 PY 1997 5705 VL 10 5706 IS 4 5707 BP 316 5708 EP 321 5709 PG 6 5710 SC Materials Science, Multidisciplinary; Mechanics 5711 GA YR176 5712 UT ISI:000071468000004 5713 ER 5714 5715 PT J 5716 AU Wang, Q 5717 Awai, I 5718 TI Frequency characteristics of the magnetic spatial solitons on the 5719 surface of an antiferromagnet 5720 SO JOURNAL OF APPLIED PHYSICS 5721 DT Article 5722 ID CROSS-PHASE MODULATION; WAVE-GUIDES; FERROMAGNETIC-FILMS; ENVELOPE 5723 SOLITONS; OPTICAL SOLITONS; SPIN-WAVES; PROPAGATION 5724 AB The frequency characteristics of magnetic spatial solitons on the 5725 surface of two-sublattice uniaxial antiferromagnetic crystal have been 5726 studied. The distinguishing feature of the solitons is the existence of 5727 the frequency passband(s) and stopband(s) that can be switched into 5728 each other by varying the power. This is because the nonlinear 5729 permeability is not only power dependent but also frequency dependent 5730 in infrared frequency region. The passband width may increase sharply 5731 with the power when the dielectric constant of the antiferromagnetic 5732 crystal is smaller than that of the nonmagnetic substrate. The passband 5733 may vary as much as 100 GHz below the infrared resonance frequency of 5734 the system. (C) 1998 American Institute of Physics. 5735 C1 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China. 5736 Yamaguchi Univ, Dept Elect & Elect Engn, Ube, Yamaguchi 755, Japan. 5737 RP Wang, Q, Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, 5738 Peoples R China. 5739 CR AITCHISON JS, 1991, J OPT SOC AM B, V8, P1290 5740 AITCHISON JS, 1992, ELECTRON LETT, V28, P1879 5741 AKHMANOV SA, 1968, SOV PHYS USP, V10, P609 5742 ALMEIDA NS, 1987, PHYS REV B, V36, P2015 5743 BARTHELEMY A, 1985, OPT COMMUN, V55, P201 5744 BEEMAN DE, 1966, J APPL PHYS, V37, P1136 5745 BOARDMAN AD, 1988, PHYS REV B, V38, P1144 5746 BOARDMAN AD, 1989, PHYS REV A, V39, P2481 5747 BOARDMAN AD, 1990, PHYS REV B, V41, P717 5748 BOARDMAN AD, 1993, PHYS REV B, V48, P13602 5749 BOARDMAN AD, 1993, RADIO SCI, V28, P891 5750 BOARDMAN AD, 1994, IEEE T MAGN, V30, P1 5751 BOARDMAN AD, 1994, IEEE T MAGN, V30, P14 5752 CAMLEY RE, 1987, SURF SCI REP, V7, P103 5753 CARNLEY RE, 1980, PHYS REV LETT, V45, P283 5754 COSTA BV, 1993, PHYS REV B, V47, P5059 5755 DEGASPERIS P, 1988, J APPL PHYS, V63, P4136 5756 DELAFUENTE R, 1992, IEEE J QUANTUM ELECT, V28, P547 5757 DELAFUENTE R, 1992, OPT COMMUN, V88, P419 5758 FETISOV YK, 1983, SOV PHYS-SOLID STATE, V25, P1634 5759 GATZ S, 1991, J OPT SOC AM B, V8, P2296 5760 GORDON NI, 1965, SOV PHYS JETP, V21, P576 5761 GULYAEV YV, 1986, SOV PHYS-SOLID STATE, V28, P1553 5762 KADIGROBOV MI, 1965, SOV PHYS JETP, V21, P576 5763 KALINIKOS BA, 1990, IEEE T MAGN, V26, P1477 5764 KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712 5765 LIU SL, 1995, PHYS REV A, V51, R38 5766 MOLONEY JV, 1992, NATO ASI SER E, V214, P341 5767 MOLONEY JV, 1992, OPT QUANTUM ELECT, V24, S1269 5768 QI W, 1995, J APPL PHYS, V77, P1 5769 QI W, 1995, SCI CHINA SER A, V24, P1108 5770 STAMPS RL, 1984, J APPL PHYS, V56, P3497 5771 TEMIRYAZEV AG, 1987, SOV PHYS-SOLID STATE, V29, P179 5772 VUKOVICH S, 1990, SOV PHYS JETP, V71, P964 5773 ZHANG HK, 1990, J APPL PHYS 2B, V67, P5498 5774 NR 35 5775 TC 6 5776 SN 0021-8979 5777 J9 J APPL PHYS 5778 JI J. Appl. Phys. 5779 PD JAN 1 5780 PY 1998 5781 VL 83 5782 IS 1 5783 BP 382 5784 EP 387 5785 PG 6 5786 SC Physics, Applied 5787 GA YP836 5788 UT ISI:000071320400055 5789 ER 5790 5791 PT J 5792 AU Zhao, XH 5793 Chen, WF 5794 TI The effective elastic moduli of concrete and composite materials 5795 SO COMPOSITES PART B-ENGINEERING 5796 DT Article 5797 DE effective elastic modulus; concrete; composite materials; micromechanics 5798 ID CEMENT PASTE; MORTAR 5799 AB In this paper, the analytical expressions of the effective elastic 5800 moduli E* for concrete or other composite materials under a uniform 5801 stress field, a uniform strain field and a uniform field at infinity 5802 are obtained based on elastic theory. The new expressions provide a 5803 better estimate of E* than the existing engineering formulas, and the 5804 differences between them are compared numerically. It is found that the 5805 effective elastic modulus E* depends not only on the geometrical and 5806 physical parameters of microstructure, but also on stress state. The 5807 value of E* is found to vary within a narrow region. (C) 1997 Elsevier 5808 Science Ltd. All rights reserved. 5809 C1 Purdue Univ, Sch Civil Engn, Dept Struct Engn, W Lafayette, IN 47907 USA. 5810 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 5811 RP Chen, WF, Purdue Univ, Sch Civil Engn, Dept Struct Engn, W Lafayette, 5812 IN 47907 USA. 5813 CR BENVENISTE Y, 1989, MECH MATER, V7, P305 5814 CHEN WF, 1994, CONCRETE PLASTICITY 5815 CHRISTENSEN RM, 1979, J MECH PHYS SOLIDS, V27, P315 5816 COHEN MD, 1994, CEMENT CONCRETE RES, V24, P95 5817 COHEN MD, 1995, MATER RES SOC S P, V370, P407 5818 HASHIN Z, 1962, ASME J APPL MECH, V29, P144 5819 HASHIN Z, 1964, J APPL MECH E, V31, P223 5820 HASHIN Z, 1983, ASME, V50, P481 5821 HERVE E, 1993, INT J ENG SCI, V31, P1 5822 HILL R, 1963, J MECH PHYS SOLIDS, V11, P357 5823 JONES RM, 1975, MECH COMPOSITE MAT 5824 LUO HA, 1989, MECH MATER, V8, P77 5825 SIBONI G, 1991, MECH MATER, V11, P107 5826 TORQUATO S, 1991, APPL MECH REV, V44, P37 5827 WISLOW DN, 1994, CEMENT CONCRETE RES, V24 5828 ZHAO XH, 1996, INT J NUMER ANAL MET, V20, P215 5829 ZHAO XH, 1996, INT J NUMER ANAL MET, V20, P275 5830 ZHAO XH, 1997, IN PRESS COMPUTERS S, V64 5831 ZHAO XH, 1998, IN PRESS J ENG MECH, V124 5832 NR 19 5833 TC 2 5834 SN 1359-8368 5835 J9 COMPOS PART B-ENG 5836 JI Compos. Pt. B-Eng. 5837 PY 1998 5838 VL 29 5839 IS 1 5840 BP 31 5841 EP 40 5842 PG 10 5843 SC Engineering, Multidisciplinary; Materials Science, Composites 5844 GA YP479 5845 UT ISI:000071280900005 5846 ER 5847 5848 PT J 5849 AU Chien, WZ 5850 TI The first order approximation of non-Kirchhoff-Love theory for elastic 5851 circular plate with fixed boundary under uniform surface loading (I) 5852 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 5853 DT Article 5854 DE elastic circular plate; Kirchhoff-Love assumption; generalized 5855 variational principle 5856 AB Based on the approximation theory adopting non-Kirchhoff-love 5857 assumption for three dimensional elastic plates with arbitrary 5858 shapes([1], [2]), the author derives a functional of generalized 5859 variation for three dimensional elastic circular plates, thereby 5860 obtains a set of differential equations and the relate boundary 5861 conditions to establish a first order approximation theory for elastic 5862 circular plate with fixed boundary and under uniform loading on one of 5863 its surface. The analytical solution of this problem will present in 5864 another paper. 5865 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 5866 RP Chien, WZ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 5867 200072, Peoples R China. 5868 CR CHIEN WZ, 1984, ADV APPL MECH, V24, P93 5869 CHIEN WZ, 1995, APPL MATH MECH, V16, P203 5870 CHIEN WZ, 1995, APPL MATH MECH, V16, P405 5871 CHIESA P, 1987, MEDIOEVO RINASCIMENT, V1, P1 5872 NR 4 5873 TC 3 5874 SN 0253-4827 5875 J9 APPL MATH MECH-ENGL ED 5876 JI Appl. Math. Mech.-Engl. Ed. 5877 PD JAN 5878 PY 1997 5879 VL 18 5880 IS 1 5881 BP 1 5882 EP 18 5883 PG 18 5884 SC Mathematics, Applied; Mechanics 5885 GA YP169 5886 UT ISI:000071249500001 5887 ER 5888 5889 PT J 5890 AU Wu, JC 5891 Pan, LZ 5892 TI Nonlinear theory of multilayer sandwich shells and its application (I) 5893 - General theory 5894 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 5895 DT Article 5896 DE multilayer sandwich shells; nonlinear theory 5897 AB In this paper, a nonlinear theory is given for multilayer sandwich 5898 shells undergoing small strains and moderate rotations. Then a 5899 simplified theory for the shells undergoing moderate or moderate/small 5900 rotations are obtained. 5901 C1 Tongji Univ, Dept Engn Mech, Shanghai 200092, Peoples R China. 5902 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 5903 RP Wu, JC, Tongji Univ, Dept Engn Mech, Shanghai 200092, Peoples R China. 5904 CR ABDULHADI F, 1971, 71VIBR48 ASME 5905 AZAR JJ, 1968, AIAA J, V6, P2166 5906 AZAR JJ, 1970, AIAA J, V8, P157 5907 CHIEN WZ, 1944, Q APPL MATH, V2, P120 5908 JOHN F, 1965, COMMUN PUR APPL MATH, V18, P235 5909 KOITER WT, 1980, MECHANICS TODAY, V5, P139 5910 LIAW BD, 1967, AIAA J, V5, P301 5911 LIAW BD, 1969, AERONAUTICAL Q, V20, P61 5912 LIU RH, NONLINEAR THEORY SAN 5913 PIETRASZKIEWICZ W, 1985, INT J NONLINEAR MECH, V19, P115 5914 RAJAGOPAL SV, 1978, AIAA J, V25, P130 5915 WONG JP, 1968, DEV MECH, V4, P289 5916 NR 12 5917 TC 2 5918 SN 0253-4827 5919 J9 APPL MATH MECH-ENGL ED 5920 JI Appl. Math. Mech.-Engl. Ed. 5921 PD JAN 5922 PY 1997 5923 VL 18 5924 IS 1 5925 BP 19 5926 EP 27 5927 PG 9 5928 SC Mathematics, Applied; Mechanics 5929 GA YP169 5930 UT ISI:000071249500002 5931 ER 5932 5933 PT J 5934 AU Zhu, Y 5935 TI Strongly oblique interactions between internal solitary waves with the 5936 same mode 5937 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 5938 DT Article 5939 DE solitary waves; strong interaction; stratified fluids; 3D problem 5940 AB In this paper, by using the Lagrangian coordinates, the strongly 5941 oblique interactions between solitary waves with the same mode in a 5942 stratified fluid ape discussed, which includes the shallow fluid case 5943 and deep fluid case. It is found that the interactions are described by 5944 the KP equation for the shallow fluid case, the two-dimensional 5945 intermediate long wave equation (2D-ILW equation) for the deep fluid 5946 case and the two-dimensional BO equation (2D-BO equation) for the 5947 infinite deep fluid case. 5948 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 5949 RP Zhu, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 5950 Peoples R China. 5951 CR ABLOWITZ MJ, 1980, STUD APPL MATH, V62, P249 5952 ABLOWITZ MJ, 1981, SOLITONS INVERSE SCA 5953 GRIMSHAW R, 1994, STUD APPL MATH, V92, P249 5954 MILES JW, 1977, J FLUID MECH, V79, P157 5955 MILES JW, 1977, J FLUID MECH, V79, P171 5956 ZABUSKY NJ, 1965, PHYS REV LETT, V15, P240 5957 NR 6 5958 TC 0 5959 SN 0253-4827 5960 J9 APPL MATH MECH-ENGL ED 5961 JI Appl. Math. Mech.-Engl. Ed. 5962 PD OCT 5963 PY 1997 5964 VL 18 5965 IS 10 5966 BP 957 5967 EP 962 5968 PG 6 5969 SC Mathematics, Applied; Mechanics 5970 GA YP725 5971 UT ISI:000071308200005 5972 ER 5973 5974 PT J 5975 AU Wu, YJ 5976 TI Remarks on nonlinear Galerkin method for Kuramoto-Sivashinsky equation 5977 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 5978 DT Article 5979 DE nonlinear Galerkin method; Kuramoto-Sivashinsky equation; infinite 5980 dimensional dynamical systems 5981 ID APPROXIMATE INERTIAL MANIFOLDS; NAVIER-STOKES EQUATIONS 5982 AB This paper is concentrated on a nonlinear Galerkin method with s(m) 5983 small-scale components for Kuramoto-Sivashinsky equation, in which 5984 convergence results and the analysis of error estimates are given. The 5985 conclusion shows that this choice of modes is efficient for the method 5986 modified. 5987 C1 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China. 5988 Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China. 5989 RP Wu, YJ, Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, 5990 Peoples R China. 5991 CR FOIAS C, 1983, PHYSICA D, V9, P157 5992 FOIAS C, 1988, RAIRO MODEL MATH ANA, V22, P93 5993 LIONS JL, 1969, QUELQUES METHODES RE 5994 MARION M, 1989, SIAM J NUMER ANAL, V26, P1139 5995 NICOLAENKO B, 1985, PHYSICA D, V16, P155 5996 SHEN J, 1990, APPL ANAL, V38, P201 5997 TEMAM R, 1983, CBMS NSF REGIONAL C 5998 TEMAM R, 1984, NAVIER STOKES EQUATI 5999 TEMAM R, 1988, APPL MATH SCI, V68 6000 TEMAM R, 1988, CR ACAD SCI II-MEC P, V306, P399 6001 TEMAM R, 1989, LECT NOTES PHYSICS 6002 TEMAM R, 1989, RAIRO-MATH MODEL NUM, V23, P541 6003 WU YJ, IN PRESS J COMPUT MA 6004 WU YJ, 1994, ADV MECH, V24, P145 6005 YANG ZH, 1997, J SHANGHAI U, V1, P20 6006 NR 15 6007 TC 0 6008 SN 0253-4827 6009 J9 APPL MATH MECH-ENGL ED 6010 JI Appl. Math. Mech.-Engl. Ed. 6011 PD OCT 6012 PY 1997 6013 VL 18 6014 IS 10 6015 BP 1005 6016 EP 1013 6017 PG 9 6018 SC Mathematics, Applied; Mechanics 6019 GA YP725 6020 UT ISI:000071308200011 6021 ER 6022 6023 PT J 6024 AU Chien, WZ 6025 TI The first-order approximation of non-Kirchhoff-Love theory for elastic 6026 circular plate with fixed boundary under uniform surface loading (II) 6027 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 6028 DT Article 6029 DE elasticity; circular plate; Kirchhoff-Love assumptions; generalized 6030 variational principle 6031 AB Based upon the differential equations and their related boundary 6032 conditions given in !he previous paper([I]), this paper finds the 6033 analytical solution of non-Kirchhoff-love theory for elastic circular 6034 plate with fixed boundary conditions under uniform surface loading. 6035 Hailer er, for. the sake of saving computational work, the first order 6036 approximation theory can be further simplified in more rational bases. 6037 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 6038 RP Chien, WZ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 6039 200072, Peoples R China. 6040 CR CHIEN WZ, 1997, APPL MATH MECH-ENGL, V18, P1 6041 KIRCHHOFF G, 1850, J REINE ANGEW MATH, V40, P51 6042 LOVE AEN, 1937, TREATISE MATH THEORY 6043 MCPHERSON AE, 1943, 744 NACA 6044 NR 4 6045 TC 1 6046 SN 0253-4827 6047 J9 APPL MATH MECH-ENGL ED 6048 JI Appl. Math. Mech.-Engl. Ed. 6049 PD FEB 6050 PY 1997 6051 VL 18 6052 IS 2 6053 BP 103 6054 EP 112 6055 PG 10 6056 SC Mathematics, Applied; Mechanics 6057 GA YP170 6058 UT ISI:000071249600001 6059 ER 6060 6061 PT J 6062 AU Dai, SQ 6063 Zang, HM 6064 TI A semi-inverse algorithm in application of computer algebra 6065 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 6066 DT Article 6067 DE computer algebra; symbolic computation; intermediate expression swell; 6068 perturbation method; nonlinear analysis 6069 AB For the purpose of overcoming the difficulty of the so-called 6070 "intermediate expression swell" in applying computer algebra, a 6071 semi-inverse algorithm is proposed. The or del of seeking solutions for 6072 various problems is partly inverted, i. e., the intermediate 6073 expressions appearing in computation are "frozen" in the symbolic form 6074 at first, and "unfrozen" till the formal expressions of final solutions 6075 are found out. In this rca!, the overflow due to the shortage of saving 6076 space is avoided. The applications of the algorithm in the problems on 6077 nonlinear oscillation, dynamical optimization and interfacial solitary 6078 waves are described, which show the effectiveness of the semi-inverse 6079 algorithm. 6080 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 6081 RP Dai, SQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 6082 200072, Peoples R China. 6083 CR BELTZER AI, 1990, APPL MECH REV, V43, P119 6084 CALMET J, 1988, COMPUTER ALGEBRA SYM, P245 6085 DAI SQ, 1981, SINGULAR PETURBATION, P33 6086 DAI SQ, 1982, APPL MATH MECHANICS, V3, P777 6087 RAND HR, 1987, PERTURBATION METHODS 6088 VANDYKE M, 1984, ANNU REV FLUID MECH, V16, P287 6089 WANG MQ, 1995, APPL MATH MECH ENGLI, V16, P421 6090 ZANG HM, 1991, J SHANGHAI U TECHNOL, V12, P283 6091 ZANG HM, 1993, J SHANGHAI U TECHNOL, V14, P189 6092 ZANG HM, 1993, THESIS SHANGHAI U TE 6093 ZANG HM, 1994, P INT C HYDR, P691 6094 NR 11 6095 TC 2 6096 SN 0253-4827 6097 J9 APPL MATH MECH-ENGL ED 6098 JI Appl. Math. Mech.-Engl. Ed. 6099 PD FEB 6100 PY 1997 6101 VL 18 6102 IS 2 6103 BP 113 6104 EP 119 6105 PG 7 6106 SC Mathematics, Applied; Mechanics 6107 GA YP170 6108 UT ISI:000071249600002 6109 ER 6110 6111 PT J 6112 AU Wu, JC 6113 Pan, LZ 6114 TI Nonlinear theory of multilayer sandwich shells and its application (II) 6115 - Fundamental equations for orthotropic shallow shells 6116 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 6117 DT Article 6118 DE multilayer sandwich shallow shells; orthotropic; fundamental equation 6119 AB This paper-applied the simplified theory for multilayer sandwich shells 6120 undergoing moderate/small rotations in Ref.[1] to shallow shells. The 6121 equilibrium equations and boundary conditions of large deflection of 6122 orthotropic and the special case, isotropic shells, are presented. 6123 C1 Tongji Univ, Inst Engn Mech, Shanghai 200092, Peoples R China. 6124 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 6125 RP Wu, JC, Tongji Univ, Inst Engn Mech, Shanghai 200092, Peoples R China. 6126 CR *I MECH AC SIN, 1977, STAB VIBR SANDW PLAT 6127 CHENG ZQ, 1994, APPL MATH MECH, V15, P605 6128 CHIEN WZ, 1944, Q APPL MATH, V2, P120 6129 WU JC, 1997, APPL MATH MECH-ENGL, V18, P19 6130 NR 4 6131 TC 1 6132 SN 0253-4827 6133 J9 APPL MATH MECH-ENGL ED 6134 JI Appl. Math. Mech.-Engl. Ed. 6135 PD FEB 6136 PY 1997 6137 VL 18 6138 IS 2 6139 BP 129 6140 EP 139 6141 PG 11 6142 SC Mathematics, Applied; Mechanics 6143 GA YP170 6144 UT ISI:000071249600004 6145 ER 6146 6147 PT J 6148 AU Feng, SW 6149 Zang, GC 6150 TI The study of sabot-discarding mechanism of gas-propelled APDS 6151 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 6152 DT Article 6153 DE gas-propelled APDS; gas-filling; gas-ejecting; sabot-discarding motion 6154 AB With the advantages of simpler structure, smaller disturbance and no 6155 self-hurt while discarding sabot, the gas-propelled amor-piercing 6156 projectile with discarding sabot (APDS) owns its promissing prospect. 6157 This paper has studied the gas-filling and ejecting characteristics 6158 between the gas chamber iir saber and the environment. A dynamical 6159 model describing the sabot-discarding process I?as been established The 6160 authors have also given the starling condition and the parting 6161 criterion of the parting motion during the sabot-discarding. The mellon 6162 of fire gas-propelled APDS has been carefully calculated. Finally, the 6163 effect of the gashole area has been analyzed not only on the pressure 6164 in the gas chamber near the barrel exit, but also on the 6165 sabot-discarding time and distance away from the barrel. 6166 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 6167 Nanjing Univ Sci & Technol, Ballist Res Lab China, Nanjing 210094, Peoples R China. 6168 RP Feng, SW, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 6169 200072, Peoples R China. 6170 CR *E CHIN I TECHN 10, 1978, INN BALL 6171 FENG SW, 1995, THESIS NANJING U SCI 6172 ZANG GC, 1989, AERODYNAMICS PROJECT 6173 ZUCROW MJ, 1976, GAS DYNAMICS 6174 NR 4 6175 TC 0 6176 SN 0253-4827 6177 J9 APPL MATH MECH-ENGL ED 6178 JI Appl. Math. Mech.-Engl. Ed. 6179 PD FEB 6180 PY 1997 6181 VL 18 6182 IS 2 6183 BP 151 6184 EP 156 6185 PG 6 6186 SC Mathematics, Applied; Mechanics 6187 GA YP170 6188 UT ISI:000071249600006 6189 ER 6190 6191 PT J 6192 AU Ding, R 6193 Zhu, ZY 6194 Cheng, CJ 6195 TI Boundary element method for solving dynamical response of viscoelastic 6196 thin plate (I) 6197 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 6198 DT Article 6199 DE dynamic response; viscoelasticity; BEM 6200 AB In this paper, a boundary element method for solving dynamical response 6201 of viscoelastic thin plate is given. In Laplace domain, we propose two 6202 methods to approximate the fundamental solution and develop the 6203 corresponding boundary element method. Then using the improved 6204 Bellman's numerical inversion of the Laplace transform, the solution of 6205 the original problem is obtained. The numerical results show that this 6206 method has higher accuracy and faster convergence. 6207 C1 Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China. 6208 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 6209 RP Ding, R, Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China. 6210 CR BELLMAN R, 1966, NUMERICAL INVERSION 6211 BREBBIA CA, 1984, BOUNDARY ELEMENT TEC 6212 DURBIN F, 1974, COMPUT J, V17, P371 6213 GU P, 1990, COMPUTATIONAL STRUCT, V7, P65 6214 MILLER MK, 1966, SIAM J NUMER ANAL, V3, P624 6215 SUN B, 1990, COMPUTATIONAL STRUCT, V7, P19 6216 SUN B, 1990, SHANGHAI MECH, V11, P1 6217 YANG T, 1990, ACTA MECH SINICA, V22, P217 6218 NR 8 6219 TC 2 6220 SN 0253-4827 6221 J9 APPL MATH MECH-ENGL ED 6222 JI Appl. Math. Mech.-Engl. Ed. 6223 PD MAR 6224 PY 1997 6225 VL 18 6226 IS 3 6227 BP 229 6228 EP 235 6229 PG 7 6230 SC Mathematics, Applied; Mechanics 6231 GA YP171 6232 UT ISI:000071249700003 6233 ER 6234 6235 PT J 6236 AU Guo, XM 6237 TI The existence of solutions in nonlinear elastodynamics 6238 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 6239 DT Article 6240 DE nonlinear; constitutive law; elastodynamics; existence 6241 AB Under the small deformation assumption this paper shows the existence 6242 of solution for the system of elastic dynamics with the general 6243 nonlinear constitutive laws, and the existence of classical solution 6244 can be found under weaker conditions. 6245 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 6246 RP Guo, XM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 6247 200072, Peoples R China. 6248 CR DUVAUT G, 1976, INEQUALITIES MECH PH 6249 GUO YZ, 1987, MORDEN MATH MECH, P143 6250 GURTIN ME, 1972, HDB PHYSIK A, V6 6251 LENE F, 1974, J MECANIQUE, V13, P499 6252 MOREAU JJ, 1974, LECT NOTES EC MATH S, V102, P141 6253 NAYROLES B, 1974, DAULITY CONVEXITY SO 6254 PANAGITOPOLUOS PD, 1985, INEQUALITY PROBLEMS 6255 VALENT T, 1988, BOUNDARY VALUE PROBL 6256 NR 8 6257 TC 0 6258 SN 0253-4827 6259 J9 APPL MATH MECH-ENGL ED 6260 JI Appl. Math. Mech.-Engl. Ed. 6261 PD MAR 6262 PY 1997 6263 VL 18 6264 IS 3 6265 BP 243 6266 EP 249 6267 PG 7 6268 SC Mathematics, Applied; Mechanics 6269 GA YP171 6270 UT ISI:000071249700005 6271 ER 6272 6273 PT J 6274 AU Shi, WH 6275 Chen, DD 6276 Tang, YM 6277 TI On the exact solution to certain non-linear partial differential 6278 equations 6279 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 6280 DT Article 6281 DE Janet number; bad system of equations; good system of equation 6282 AB This paper, based on the theory of stratifications, gives a brand-new 6283 classification of partial differential equations. 6284 C1 Shanghai Univ, Shanghai 200072, Peoples R China. 6285 RP Shi, WH, Shanghai Univ, Shanghai 200072, Peoples R China. 6286 CR HADAMARD J, 1964, THEORIE EQUATIONS DE 6287 SHIH JE, IN PRESS UN PROBLEME 6288 SHIH WH, 1986, UNE METHODE ELEMENTA 6289 SHIH WH, 1987, CR HEBD ACAD SCI, V364, P535 6290 SHIH WH, 1992, SOLUTIONS ANAL QUELQ 6291 SHIH WY, IN PRESS STRATIFICAT 6292 SIH JA, 1994, THESIS 6293 THOM R, 1986, C HONN MME SCHW 6294 NR 8 6295 TC 0 6296 SN 0253-4827 6297 J9 APPL MATH MECH-ENGL ED 6298 JI Appl. Math. Mech.-Engl. Ed. 6299 PD MAR 6300 PY 1997 6301 VL 18 6302 IS 3 6303 BP 259 6304 EP 265 6305 PG 7 6306 SC Mathematics, Applied; Mechanics 6307 GA YP171 6308 UT ISI:000071249700007 6309 ER 6310 6311 PT J 6312 AU Lu, ZM 6313 Liu, YL 6314 TI A calculation method for fully developed flows in curved rectangular 6315 tubes 6316 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 6317 DT Article 6318 DE curved tube; Galerkin method; Dean number 6319 ID BIFURCATION 6320 AB In this paper, A method, consisted of perturbation method, Garlerkin 6321 method and finite-difference method, is designed to calculate fully 6322 developed flows in curved tubes of rectangular cross-section. It costs 6323 less computation than that of direct solving N-S equations, and 6324 prevents from building high-order difference equations and extra 6325 dealing with the boundary conditions. Numerical results in the 6326 situation of small curvature and low Dean number is in accordance with 6327 former's numerical and experimental results in quality, and it shows 6328 the feasibility of this paper's method. 6329 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 6330 RP Lu, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 6331 Peoples R China. 6332 CR BARA B, 1992, J FLUID MECH, V244, P339 6333 BERGER SA, 1983, ANNU REV FLUID MECH, V15, P461 6334 DEAN WR, 1927, PHILOS MAG, V4, P208 6335 DEAN WR, 1928, PHILOS MAG, V5, P673 6336 DEAN WR, 1959, MATHEMATIKA, V6, P77 6337 DEVRIEND HJ, 1981, J FLUID MECH, V107, P423 6338 GHIA KN, 1977, T ASME DEC, P640 6339 LIU YL, 1995, P 6 C MOD MATH MECHS 6340 SAAD Y, 1986, SIAM J SCI STAT COMP, V7, P856 6341 SELMI M, 1994, J FLUID MECH, V262, P353 6342 THANGAM S, 1990, J FLUID MECH, V217, P421 6343 WINTERS KH, 1987, J FLUID MECH, V180, P343 6344 NR 12 6345 TC 0 6346 SN 0253-4827 6347 J9 APPL MATH MECH-ENGL ED 6348 JI Appl. Math. Mech.-Engl. Ed. 6349 PD APR 6350 PY 1997 6351 VL 18 6352 IS 4 6353 BP 315 6354 EP 320 6355 PG 6 6356 SC Mathematics, Applied; Mechanics 6357 GA YP172 6358 UT ISI:000071249800001 6359 ER 6360 6361 PT J 6362 AU Wu, JC 6363 Pan, LZ 6364 TI Nonlinear theory of multilayer sandwich shells and its application 6365 (III) - Large deflection and postbuckling of shallow shells 6366 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 6367 DT Article 6368 DE multilayer sandwich shallow shells; nonlinear; deflection; postbuckling 6369 ID VIBRATION 6370 AB In this paper, exact solutions of large deflection of multilayer 6371 sandwich shallow shells under transverse forces and different boundary 6372 conditions are presented. Exactly results of postbuckling of multilayer 6373 sandwich plates, shallow cylindrical shells and nonlinear deflection of 6374 general shallow shells such as spherical shells under inplane edge 6375 forces are also obtained by the same procedure. 6376 C1 Tongji Univ, Inst Engn Mech, Shanghai 200092, Peoples R China. 6377 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 6378 RP Wu, JC, Tongji Univ, Inst Engn Mech, Shanghai 200092, Peoples R China. 6379 CR CHENG ZQ, 1994, APPL MATH MECH, V15, P605 6380 CHIA CY, 1980, NONLINEAR ANAL PLATE 6381 CHIA CY, 1987, INT J SOLIDS STRUCT, V23, P1123 6382 LIU RH, 1993, APPL MATH MECH, V14, P217 6383 RAJAGOPAL SV, 1987, AIAA J, V25, P130 6384 WU JC, 1997, APPL MATH MECH-ENGL, V18, P129 6385 NR 6 6386 TC 0 6387 SN 0253-4827 6388 J9 APPL MATH MECH-ENGL ED 6389 JI Appl. Math. Mech.-Engl. Ed. 6390 PD APR 6391 PY 1997 6392 VL 18 6393 IS 4 6394 BP 321 6395 EP 329 6396 PG 9 6397 SC Mathematics, Applied; Mechanics 6398 GA YP172 6399 UT ISI:000071249800002 6400 ER 6401 6402 PT J 6403 AU Chien, WZ 6404 Sheng, SZ 6405 TI The first-order approximation of non-Kirchhoff-Love theory for elastic 6406 circular plate with fixed boundary under uniform surface loading (III) 6407 - Numerical results 6408 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 6409 DT Article 6410 DE elasticity; circular plate; non-Kirchhoff-Love theory; global 6411 interpolation method 6412 AB Based upon the differential equations and their related boundary 6413 conditions given in the previous papers([1,2]), using a global 6414 interpolation method, this paper presents a numerical solution to the 6415 axisymmetric bending problem of non-Kirchhoff-Love theory for circular 6416 plate with fired boundary under uniform surface loading. AN the 6417 numerical results obtained in this paper are compared with that of 6418 Kirchhoff-Love classical theory([3]) and E. Resisner's modified 6419 theory([4]). 6420 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 6421 RP Chien, WZ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 6422 200072, Peoples R China. 6423 CR CAO ZY, 1983, DYNAMIC THEORY THICK 6424 CHIEN WZ, 1980, MECH ELASTICITY 6425 CHIEN WZ, 1997, APPL MATH MECH-ENGL, V18, P1 6426 CHIEN WZ, 1997, APPL MATH MECH-ENGL, V18, P103 6427 MCPHERSON AE, 1942, NORMAL PRESSURE TEST, P744 6428 REISSNER E, 1945, J APPL MECH, V12, P69 6429 NR 6 6430 TC 0 6431 SN 0253-4827 6432 J9 APPL MATH MECH-ENGL ED 6433 JI Appl. Math. Mech.-Engl. Ed. 6434 PD MAY 6435 PY 1997 6436 VL 18 6437 IS 5 6438 BP 411 6439 EP 419 6440 PG 9 6441 SC Mathematics, Applied; Mechanics 6442 GA YP173 6443 UT ISI:000071249900001 6444 ER 6445 6446 PT J 6447 AU Zhu, Y 6448 TI Resonant flow of a fluid past a concave topography 6449 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 6450 DT Article 6451 DE nonlinear waves; fKdV equation; surface tension 6452 ID GENERATION 6453 AB In this paper, the resonant generation of nonlinear capillary-gravity 6454 waves in a fluid system with the effect of surface tension and the 6455 concave topography is examined by using a perturbation method and 6456 numerical method. 6457 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 6458 RP Zhu, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 6459 Peoples R China. 6460 CR FORNBERG B, 1978, PHILOS T ROY SOC A, V289, P373 6461 GRIMSHAW R, 1992, C P NONLINEAR DISPER, P1 6462 WU TYT, 1987, J FLUID MECH, V184, P75 6463 ZHU Y, 1995, PHYS FLUIDS, V7, P2294 6464 NR 4 6465 TC 1 6466 SN 0253-4827 6467 J9 APPL MATH MECH-ENGL ED 6468 JI Appl. Math. Mech.-Engl. Ed. 6469 PD MAY 6470 PY 1997 6471 VL 18 6472 IS 5 6473 BP 479 6474 EP 482 6475 PG 4 6476 SC Mathematics, Applied; Mechanics 6477 GA YP173 6478 UT ISI:000071249900007 6479 ER 6480 6481 PT J 6482 AU Cheng, CJ 6483 Shang, XC 6484 TI The growth of the void in a hyperelastic rectangular plate under a 6485 uniaxial extension 6486 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 6487 DT Article 6488 DE hyperelastic rectangular plate; finite deformation; growth of void; 6489 variational principle 6490 ID CAVITATION 6491 AB In the present paper, the finite deformation and stress analysis for a 6492 hyperelastic rectangular plate with a center void under a uniaxial 6493 extension is studied. In order to consider the effect of the existence 6494 of the void on the deformation and stress of the plate, the problem is 6495 reduced to the deformation and stress analysis for a hyperelastic 6496 annular plate and its approximate solution is obtained from the minimum 6497 potential energy principle. The growth of the cavitation is also 6498 numerically computed and analysed. 6499 C1 Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China. 6500 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 6501 RP Cheng, CJ, Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China. 6502 CR BALL JM, 1982, PHILOS T ROY SOC A, V306, P557 6503 HAUGHTON DM, 1990, INT J ENG SCI, V28, P163 6504 HORGAN CO, 1986, J ELASTICITY, V16, P189 6505 HORGAN CO, 1989, J APPL MECH, V56, P302 6506 HOU HS, 1993, J APPL MECH-T ASME, V60, P1 6507 ODEN TT, 1972, FINITE ELEMENTS NONL 6508 PODIOGUIDUGLI P, 1986, J ELASTICITY, V16, P75 6509 POLIGNONE DA, 1993, EFFECT MAT ANISOTROP, V3, P3381 6510 SHIELD RT, 1983, ASME J APPL MECH 6511 NR 9 6512 TC 1 6513 SN 0253-4827 6514 J9 APPL MATH MECH-ENGL ED 6515 JI Appl. Math. Mech.-Engl. Ed. 6516 PD JUL 6517 PY 1997 6518 VL 18 6519 IS 7 6520 BP 615 6521 EP 621 6522 PG 7 6523 SC Mathematics, Applied; Mechanics 6524 GA YP175 6525 UT ISI:000071250100001 6526 ER 6527 6528 PT J 6529 AU Cheng, CJ 6530 Yang, X 6531 TI Nonlinear stability analysis of a clamped rod carrying electric current 6532 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 6533 DT Article 6534 DE magnetoelasticity; bifurcation; limit point; numerical method; straight 6535 rod carrying electric current 6536 ID BIFURCATION-THEORY; MAGNETIC FORCES; SUBJECT; STATES; FIELD; WIRE 6537 AB This paper is devoted to the analysis of the nonlinear stability of a 6538 clamped rod carrying electric current in the magnetic field which is 6539 produced by the current flowing in a pair of infinitely long parallel 6540 rigid wires. The natural state of the rod is in the plane of the wires 6541 and is equidistant from them. Firstly under the assumption of spatial 6542 deformation, the governing equations of the problem are derived, and 6543 the linearized problem and critical currents are discussed. Secondly, 6544 it is proved that the buckled states of the rod are always in planes. 6545 Finally, the global responses of the bifurcation problem of the rod are 6546 computed numerically and the distributions of the deflections, axial 6547 forces and bending moments are obtained. The results show that the 6548 buckled states of the rod and the wires. Furthermore, it is found that 6549 there exists a limit point on the branch solution of the supercritical 6550 buckled state. This is distinctively different from the buckled state 6551 of the elastic compressive rods. 6552 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 6553 Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China. 6554 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 6555 200072, Peoples R China. 6556 CR ANTMAN SS, 1976, ARCH RATION MECH AN, V61, P307 6557 BUJANO E, 1985, ARCH RATIONAL MECH A, V89, P307 6558 HEALEY TJ, 1990, J ELASTICITY, V24, P211 6559 SEIDMAN T, 1988, ARCH RATION MECH AN, V102, P307 6560 WOLFE P, 1983, T AM MATH SOC, V278, P377 6561 WOLFE P, 1988, Q J MECH APPL MATH, V41, P265 6562 WOLFE P, 1990, INT J NONLINEAR MECH, V25, P597 6563 WOLFE P, 1990, J ELASTICITY, V23, P201 6564 WOODSON HH, 1968, ELECTROMECHANICAL DY 6565 ZHU ZY, 1989, NUMERICAL METHOD BIF 6566 NR 10 6567 TC 0 6568 SN 0253-4827 6569 J9 APPL MATH MECH-ENGL ED 6570 JI Appl. Math. Mech.-Engl. Ed. 6571 PD SEP 6572 PY 1997 6573 VL 18 6574 IS 9 6575 BP 825 6576 EP 834 6577 PG 10 6578 SC Mathematics, Applied; Mechanics 6579 GA YP177 6580 UT ISI:000071250300002 6581 ER 6582 6583 PT J 6584 AU Shen, WD 6585 Mao, LY 6586 Gao, W 6587 Zhu, ST 6588 TI Light tracks in the anisotropic optical fiber with two types of 6589 parabolic refractive indices 6590 SO ACTA PHYSICA SINICA-OVERSEAS EDITION 6591 DT Article 6592 ID STRONG-LASER PLASMA; RIEMANNIAN GEOMETRY 6593 AB The light tracks in an anisotropic optical fiber are studied by the 6594 optical metric model. The ordinary and extraordinary light tracks are 6595 determined by solving the null geodesic equation. In the paraxial 6596 approximation the birefringence of the fiber is analyzed. The focusing 6597 and defocusing characteristics of alight beam are described via the 6598 geodesic deviation equation. 6599 C1 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China. 6600 RP Shen, WD, Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, 6601 Peoples R China. 6602 CR ERDELYI A, 1995, HIGHER TRANSCENDENTA, V2 6603 GORDON W, 1923, ANN PHYS-BERLIN, V72, P421 6604 GUO QZ, 1995, ACTA PHYS SINICA, V44, P210 6605 GUO QZ, 1995, ACTA PHYS SINICA, V44, P396 6606 MISNER C, 1973, GRAVITATION, P1108 6607 MISNER CW, 1973, GRAVITATION, P219 6608 SHEN W, 1996, CHIN J LASERS B, V5, P516 6609 SHEN WD, 1995, INT J THEOR PHYS, V34, P2085 6610 SHEN WD, 1995, INT J THEOR PHYS, V34, P2095 6611 ZHU ST, 1993, ACTA PHYS SINICA, V42, P1471 6612 ZHU ST, 1993, ACTA PHYS SINICA, V42, P1483 6613 ZHU ST, 1995, INT J THEOR PHYS, V34, P169 6614 NR 12 6615 TC 10 6616 SN 1004-423X 6617 J9 ACTA PHYS SIN-OVERSEAS ED 6618 JI Acta Phys. Sin.-Overseas Ed. 6619 PD JAN 6620 PY 1998 6621 VL 7 6622 IS 1 6623 BP 1 6624 EP 11 6625 PG 11 6626 SC Physics, Multidisciplinary 6627 GA YP854 6628 UT ISI:000071322500001 6629 ER 6630 6631 PT J 6632 AU Wang, Q 6633 Li, CF 6634 Bao, JS 6635 Awai, I 6636 Boardman, AD 6637 TI Nonlinear magnetization and frequency conversion of magnetostatic waves 6638 in a ferromagnetic slab 6639 SO ACTA PHYSICA SINICA-OVERSEAS EDITION 6640 DT Article 6641 ID ENVELOPE SOLITONS; SURFACE-WAVES; GARNET-FILMS 6642 AB The possibilities of the generation of second-order dc and 6643 second-harmonic magnetic fields excited by the magnetostatic surface 6644 wave (MSSW) and backward volume wave (MSBVW) in ferromagnetic films 6645 have been analyzed and discussed through the calculations of source 6646 terms in the equations satisfying the magnetostatic potentials. The 6647 results show that the nonlinear magnetization responses of the film to 6648 the MSSW can generate neither de nor the second-harmonic magnetic 6649 fields. And the responses to the MSBVW will not induce the de field, 6650 but can excite second-harmonics under some conditions. The general 6651 expressions of third-order nonlinear magnetization are also derived and 6652 discussed. 6653 C1 Shanghai Univ Sci & Technol, Sch Sci, Dept Phys, Shanghai 201800, Peoples R China. 6654 RP Wang, Q, Shanghai Univ Sci & Technol, Sch Sci, Dept Phys, Shanghai 6655 201800, Peoples R China. 6656 CR AGRAWAL GP, 1989, NONLINEAR FIBER OPTI 6657 BOARDMAN AD, 1988, PHYS REV B, V38, P11444 6658 BOARDMAN AD, 1990, NONLINEAR WAVES SOLI 6659 BOARDMAN AD, 1994, IEEE T MAGN, V30, P1 6660 BOARDMAN AD, 1994, IEEE T MAGN, V30, P14 6661 DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308 6662 DEGASPERIS P, 1987, PHYS REV LETT, V59, P481 6663 DEGASPERIS P, 1988, J APPL PHYS, V63, P4136 6664 GUREVICH AG, 1963, FERRITE MICROWAVE FR, P135 6665 GUSEV BN, 1986, SOV PHYS-SOLID STATE, V28, P1669 6666 KALINIKOS BA, 1988, ZH EKSP TEOR FIZ, V67, P303 6667 KALINIKOS BA, 1990, PHYS REV B B, V42, P8658 6668 KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712 6669 MENDNIKOV AM, 1981, SOV PHYS-SOLID STATE, V23, P136 6670 QI W, 1994, J INFRARED MILLIMETE, V13, P131 6671 SUHL H, 1957, J PHYS CHEM SOLIDS, V1, P109 6672 TEMIRYAZEV AG, 1987, SOV PHYS-SOLID STATE, V29, P179 6673 YARIV A, 1989, QUANTUM ELECT 6674 NR 18 6675 TC 0 6676 SN 1004-423X 6677 J9 ACTA PHYS SIN-OVERSEAS ED 6678 JI Acta Phys. Sin.-Overseas Ed. 6679 PD JAN 6680 PY 1998 6681 VL 7 6682 IS 1 6683 BP 47 6684 EP 60 6685 PG 14 6686 SC Physics, Multidisciplinary 6687 GA YP854 6688 UT ISI:000071322500006 6689 ER 6690 6691 PT J 6692 AU Wang, Q 6693 Li, CF 6694 Bao, JS 6695 Awai, I 6696 Boardman, AD 6697 TI Frequency conversion of magnetostatic waves through nonlinear 6698 magnetization 6699 SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & 6700 REVIEW PAPERS 6701 DT Article 6702 DE magnetostatic wave; nonlinear magnetization; frequency conversion; 6703 ferromagnet; second harmonics 6704 ID ENVELOPE SOLITONS; SURFACE-WAVES; GARNET-FILMS 6705 AB The possibilities of the generation of the second-order de and 6706 second-harmonic magnetic fields excited by the magnetostatic surface 6707 wave (MSSW) and backward volume wave (MSBVW) in ferromagnetic films 6708 have been analyzed and discussed through the calculations of the source 6709 terms in the equations satisfying the magnetostatic potentials. The 6710 results show that the nonlinear magnetization responses of the film to 6711 the MSSW can generate neither de nor the second-harmonic magnetic 6712 fields, and the responses to the MSBVW will not induce the de held, but 6713 could excite second-harmonics in the conditions of phase-matching and 6714 H-0/M-0 less than or equal to cos(2) (theta/3). The general expressions 6715 of the third-order nonlinear magnetization induced by electromagnetic 6716 waves are also derived, and the contributions of the second-order 6717 magnetization are analyzed. 6718 C1 Shanghai Univ Sci & Technol, Sch Sci, Dept Phys, Shanghai 201800, Peoples R China. 6719 Yamaguchi Univ, Fac Engn, Ube, Yamaguchi 755, Japan. 6720 Univ Salford, Dept Phys, Salford M5 4WT, Lancs, England. 6721 RP Wang, Q, Shanghai Univ Sci & Technol, Sch Sci, Dept Phys, Shanghai 6722 201800, Peoples R China. 6723 CR AGRAWAL GP, 1989, NONLINEAR FIBER OPTI 6724 BLOEBERGEN N, 1965, NONLINEAR OPTICS 6725 BOARDMAN AD, 1988, PHYS REV B, V38, P1144 6726 BOARDMAN AD, 1990, NONLINEAR WAVES SOLI 6727 BOARDMAN AD, 1991, ACTA PHYS SINICA, V40, P1703 6728 BOARDMAN AD, 1994, IEEE T MAGN, V30, P1 6729 BOARDMAN AD, 1994, IEEE T MAGN, V30, P14 6730 DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308 6731 DEGASPERIS P, 1987, PHYS REV LETT, V59, P481 6732 DEGASPERIS P, 1988, J APPL PHYS, V63, P4136 6733 GUREVICH AG, 1963, FERRITE MICROWAVE FR, P135 6734 GUSEV BN, 1986, SOV PHYS-SOLID STATE, V28, P1669 6735 KALINIKOS BA, 1988, ZH EKSP TEOR FIZ, V67, P303 6736 KALINIKOS BA, 1990, PHYS REV B B, V42, P8658 6737 KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712 6738 MENDNIKOV AM, 1981, SOV PHYS-SOLID STATE, V23, P136 6739 QI W, 1993, ACTA PHYS SINICA, V42, P2005 6740 QI W, 1994, J INFRARED MILLIMETE, V13, P131 6741 SHEN YR, 1984, PRINCIPLES NONLINEAR 6742 SUHL H, 1957, J PHYS CHEM SOLIDS, V1, P109 6743 TEMIRYAZEV AG, 1987, SOV PHYS-SOLID STATE, V29, P179 6744 YARIV A, 1989, QUANTUM ELECT 6745 NR 22 6746 TC 1 6747 SN 0021-4922 6748 J9 JPN J APPL PHYS PT 1 6749 JI Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 6750 PD NOV 6751 PY 1997 6752 VL 36 6753 IS 11 6754 BP 7064 6755 EP 7072 6756 PG 9 6757 SC Physics, Applied 6758 GA YN475 6759 UT ISI:000071172300093 6760 ER 6761 6762 PT J 6763 AU Wang, YS 6764 Bao, BR 6765 Cao, WC 6766 TI N,N,N ',N '-tetrabutylsuccinylamide as a new extractant in n-dodecane 6767 for extraction of uranium(VI) and thorium(IV) ions 6768 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY 6769 DT Letter 6770 ID SOLVENT-EXTRACTION; N,N,N,N-TETRABUTYLSUCCINYLAMIDE 6771 AB N,N,N',N'-tetrabutylsuccinylamide (TBSA) was synthesized, characterised 6772 and used for the extradion of U(VI) and Th(IV) from nitric acid 6773 solutions into n-dodecane. Extraction distribution coefficients of 6774 U(VI) and Th(IV) as a function of aqueous nitric acid concentration 6775 extractant concentration and temperature have been measured and found 6776 that n-dodecane as diluent was superior to 50% 1,2,4-trimethyl benzene 6777 (TMB) and 50% kerosene (OK) system for extraction of U(VI) and Th(IV). 6778 The compositions of extracted species, equilibrium constants and 6779 enthalpies of extraction reactions have also been calculated. The 6780 formation of the 1 : 2 : 1 complex of uranyl(II) ion or the 1 : 4 : 1 6781 complex of thorium(IV) ion, nitrate ion and TBSA and extracted species 6782 was further confirmed by the IR spectra of saturated extract of U(VI) 6783 and Th(IV). 6784 C1 Chinese Acad Sci, Inst Nucl Res, Shanghai 201800, Peoples R China. 6785 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China. 6786 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 6787 RP Wang, YS, Chinese Acad Sci, Inst Nucl Res, POB 800 204, Shanghai 6788 201800, Peoples R China. 6789 CR MUSIKAS C, 1988, SEPAR SCI TECHNOL, V23, P1211 6790 NAIR GM, 1993, SOL EXTR ION EXCH, V11, P813 6791 SIDDALL TH, 1963, J INORG NUCL CHEM, V26, P883 6792 STANLEY RS, 1968, ORGANIC FUNCTIONAL G, V1, P277 6793 TIAN QZ, 1993, P ISEC 93, V1, P404 6794 WANG YS, 1996, J RADIOAN NUCL CH LE, V212, P101 6795 WANG YS, 1996, J RADIOAN NUCL CH LE, V213, P199 6796 WANG YS, 1996, J RADIOAN NUCL CH LE, V214, P67 6797 YIN YJ, 1985, HDB COLLEGE CHEM, P302 6798 NR 9 6799 TC 5 6800 SN 0236-5731 6801 J9 J RADIOANAL NUCL CHEM 6802 JI J. Radioanal. Nucl. Chem. 6803 PD AUG 6804 PY 1997 6805 VL 222 6806 IS 1-2 6807 BP 279 6808 EP 281 6809 PG 3 6810 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science 6811 & Technology 6812 GA YL699 6813 UT ISI:000070983600051 6814 ER 6815 6816 PT J 6817 AU Wang, ZH 6818 TI Orthogonal condition between two types of radiation modes for 6819 multilayer dielectric waveguides 6820 SO OPTICS COMMUNICATIONS 6821 DT Article 6822 ID WAVE-GUIDES 6823 AB A simplified orthogonal condition between two types of radiation modes 6824 for multilayer structures is presented by using their plane wave 6825 expressions, which is dependent on the ratios of amplitudes or relative 6826 phases of the fields at the outermost interfaces only, regardless of 6827 the number of layers and without detailed knowledge of field 6828 distribution inside this structure. It is a universal orthogonal 6829 condition, all the previously presented orthogonal conditions are 6830 special cases of this condition. (C) 1997 Elsevier Science B.V. 6831 RP Wang, ZH, SHANGHAI UNIV,WAVE SCI LAB,SHANGHAI 201800,PEOPLES R CHINA. 6832 CR BENECH P, 1992, OPT COMMUN, V88, P96 6833 DING H, 1995, IEEE J QUANTUM ELECT, V31, P411 6834 KOGELNIK H, 1998, GUIDED WAVE OPTOELEC, P7 6835 LEE SL, 1994, J LIGHTWAVE TECHNOL, V12, P2073 6836 MARCUSE D, 1982, LIGHT TRANSMISSION, P313 6837 MARCUSE D, 1990, IEEE J QUANTUM ELECT, V26, P675 6838 MARCUSE D, 1991, THEORY DIELECTRIC OP 6839 SNYDER AW, 1983, OPTICAL WAVEGUIDE TH 6840 NR 8 6841 TC 0 6842 SN 0030-4018 6843 J9 OPT COMMUN 6844 JI Opt. Commun. 6845 PD DEC 15 6846 PY 1997 6847 VL 144 6848 IS 4-6 6849 BP 187 6850 EP 191 6851 PG 5 6852 SC Optics 6853 GA YH847 6854 UT ISI:A1997YH84700007 6855 ER 6856 6857 PT J 6858 AU Wang, SJ 6859 Hu, LL 6860 Xu, DM 6861 TI Open resonator technique for measuring multilayer dielectrics 6862 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 6863 DT Article 6864 DE open resonator; complex permittivity; multilayer dielectrics; Q-factor; 6865 length-varying method 6866 ID PERMITTIVITY 6867 AB In the present work, the open resonator technique is extended to 6868 measure multilayer dielectrics. The difficulties that limit the open 6869 resonator in measuring easy warped thin films can be overcome by 6870 flattening a heavy sample to eliminate air gaps. Applying the simply 6871 equipped length-varying method, measurements on several thin films were 6872 carried out, and encouraging results were achieved. (C) 1997 John Wiley 6873 & Sons, Inc. 6874 RP Wang, SJ, SHANGHAI UNIV SCI & TECHNOL,SCH COMMUN & INFORMAT 6875 ENGN,SHANGHAI 201800,PEOPLES R CHINA. 6876 CR *NAT STAND BUR PR, 1988, 953488 GB NAT STAND 6877 AFSAR MN, 1990, IEEE T MICROW THEORY, V38, P1845 6878 CHAN WFP, 1987, IEEE T MICROW THEORY, V35, P1429 6879 COOK RJ, 1976, ELECTRON LETT, V12, P1 6880 CULLEN AL, 1971, P ROY SOC LOND A MAT, V325, P493 6881 HIRVONEN TM, 1996, IEEE T INSTRUM MEAS, V45, P780 6882 JONES RG, 1976, P I ELECTR ENG, V123, P285 6883 LYNCH AC, 1982, P ROY SOC LOND A MAT, V380, P73 6884 VONHIPPEL AR, 1954, DIELECTRIC MATERIALS 6885 XU D, 1989, J ELECT MEAS INSTRUM, V3 6886 YU PK, 1982, P ROY SOC LOND A MAT, V380, P49 6887 NR 11 6888 TC 3 6889 SN 0895-2477 6890 J9 MICROWAVE OPT TECHNOL LETT 6891 JI Microw. Opt. Technol. Lett. 6892 PD DEC 20 6893 PY 1997 6894 VL 16 6895 IS 6 6896 BP 368 6897 EP 371 6898 PG 4 6899 SC Engineering, Electrical & Electronic; Optics 6900 GA YH635 6901 UT ISI:A1997YH63500012 6902 ER 6903 6904 PT J 6905 AU Liu, GL 6906 TI Variational formulation of 3-D unsteady transonic flow past oscillating 6907 rotor bladings .1. Potential flow 6908 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 6909 DT Article 6910 ID SHOCKS 6911 AB A family of variational principles (VP) and generalized VP have been 6912 derived for fully 3-D unsteady transonic potential flow past 6913 periodically oscillating rotating bladings with an interblade phase 6914 angle, accounting also for the distributed mass suction/blowing along 6915 the blade/annular walls and converting the matching conditions across 6916 all unknown oscillating discontinuities (such as shocks and free 6917 trailing vortex sheets) into natural ones. In addition, taking 6918 advantage of the periodicity of blade oscillation, it has succeeded in 6919 transforming the original initial-boundary-value problem into a pure 6920 boundary-value problem to facilitate finite element (FE) computations. 6921 This work provides a sound theoretical basis for FE analysis of 6922 unsteady flow and also constitutes an important ingredient of the 6923 coupled aeroelasticity theory of blade vibration /13,14/. 6924 C1 SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA. 6925 RP Liu, GL, SHANGHAI UNIV,SHANGHAI 200072,PEOPLES R CHINA. 6926 CR DOWELL EH, 1988, APPL MECH REV, V41, P299 6927 FINLAYSON BA, 1972, METHOD WEIGHTED RESI 6928 HAFEZ MM, 1979, AIAA J, V17, P838 6929 LIU GL, 1987, 871426 AIAA 6930 LIU GL, 1989, P 5 INT S UNST AER A, P76 6931 LIU GL, 1989, SCI CHINA SER A, V32, P707 6932 LIU GL, 1990, P 1 INT S AER INT FL, P128 6933 LIU GL, 1992, ACTA MECH, V95, P117 6934 LIU GL, 1992, P 4 CHIN NAT AER C S, P358 6935 LIU GL, 1993, P 2 INT C FLUID MECH, P438 6936 LIU GL, 1993, P 2 INT S AER INT FL, P361 6937 LIU GL, 1996, 19 INT C THEOR APPL 6938 POLING DR, 1986, AIAA J, V24, P193 6939 TRAUPEL W, 1977, THERMISCHE TURBOMASC, V1, P3 6940 XU JZ, 1980, CHINESE J MECH ENG, V16, P66 6941 NR 15 6942 TC 2 6943 SN 0334-0082 6944 J9 INT J TURBO JET ENGINES 6945 JI Int. J. Turbo. Jet-Engines 6946 PY 1997 6947 VL 14 6948 IS 2 6949 BP 71 6950 EP 77 6951 PG 7 6952 SC Engineering, Aerospace 6953 GA YH439 6954 UT ISI:A1997YH43900002 6955 ER 6956 6957 PT J 6958 AU Zhao, H 6959 Fu, RT 6960 Sun, X 6961 Zhang, ZL 6962 TI Off-diagonal interactions, bond density correlation, and their effects 6963 on the excitons in conjugated polymers 6964 SO PHYSICAL REVIEW B 6965 DT Article 6966 ID CHARGE COULOMB REPULSION; PEIERLS-HUBBARD MODELS; N-ELECTRONS SYSTEM; 6967 BAND-GAP; OPTICAL-SPECTRA; ONE DIMENSION; GROUND-STATE; POLYACETYLENE; 6968 SUPERCONDUCTIVITY; ALTERNATION 6969 AB The effects of electron-electron interactions with both diagonal and 6970 off-diagonal parts on the excitons in conjugated polymers are studied, 6971 and it is found that the bond-charge interaction W and the bond-site 6972 interaction X affect the excitons oppositely: the former suppresses the 6973 excitation energy of excitons whereas the latter increases it except 6974 for the 2A(g) state. We find that the screening (originating from the 6975 bond density correlation effect of pi electrons), which controls the 6976 bond correlation, is a reason that the binding energy of the exciton is 6977 reduced. Our calculation shows that the off-diagonal interactions 6978 affect the singlet exciton with small binding energy even at normal 6979 screening, but for large exciton energy, such effects are negligible. 6980 C1 FUDAN UNIV,DEPT PHYS,SHANGHAI 200433,PEOPLES R CHINA. 6981 ACAD SINICA,SHANGHAI INST TECH PHYS,SHANGHAI 200083,PEOPLES R CHINA. 6982 SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SCI,SHANGHAI 201800,PEOPLES R CHINA. 6983 RP Zhao, H, FUDAN UNIV,TD LEE PHYS LAB,SHANGHAI 200433,PEOPLES R CHINA. 6984 CR ABE S, 1992, PHYS REV B, V45, P8264 6985 ABE S, 1992, PHYS REV B, V45, P9432 6986 BAERISWYL D, 1985, PHYS REV B, V31, P6633 6987 BEDNORZ JG, 1986, Z PHYS B CON MAT, V64, P189 6988 CAMPBELL DK, 1988, PHYS REV B B, V38, P12043 6989 CAMPBELL DK, 1990, PHYS REV B, V42, P475 6990 CAMPBELL IH, 1996, PHYS REV LETT, V76, P1900 6991 CHNO K, 1964, THEOR CHIM ACTA, V2, P219 6992 DACOSTA PG, 1993, PHYS REV B, V48, P1993 6993 EMERY VJ, 1976, PHYS REV B, V14, P2898 6994 GRANT PM, 1979, SOLID STATE COMMUN, V29, P225 6995 HAYASHI H, 1985, PHYS REV B, V32, P5295 6996 HIRSCH JE, 1983, PHYS REV LETT, V51, P296 6997 HIRSCH JE, 1989, PHYS LETT A, V134, P451 6998 HIRSCH JE, 1989, PHYS LETT A, V138, P83 6999 HIRSCH JE, 1989, PHYS REV B, V39, P11515 7000 HIRSCH JE, 1989, PHYS REV B, V40, P2354 7001 HORSCH P, 1981, PHYS REV B, V24, P7351 7002 HUBBARD J, 1963, P ROY SOC LOND A MAT, V276, P238 7003 HUBBARD J, 1978, PHYS REV B, V17, P494 7004 KIVELSON S, 1987, PHYS REV LETT, V58, P1899 7005 LENG JM, 1994, PHYS REV LETT, V72, P156 7006 LOF RW, 1992, PHYS REV LETT, V68, P3924 7007 MARTIN RL, 1993, PHYS REV B, V48, P4845 7008 MAZUMDAR S, 1989, SOLID STATE COMMUN, V66, P427 7009 MEINDERS MBJ, 1995, PHYS REV B, V52, P2484 7010 NASU K, 1983, J PHYS SOC JPN, V52, P3865 7011 NASU K, 1983, J PHYS SOC JPN, V53, P302 7012 NASU K, 1984, J PHYS SOC JPN, V53, P427 7013 PAINELLI A, 1988, SOLID STATE COMMUN, V66, P273 7014 PAINELLI A, 1989, PHYS REV B, V39, P2830 7015 PARISER R, 1953, J CHEM PHYS, V21, P767 7016 PARR RG, 1950, J CHEM PHYS, V18, P1561 7017 PARR RG, 1952, J CHEM PHYS, V20, P1499 7018 POPLE JA, 1955, P PHYS SOC A, V68, P81 7019 RNOX RS, 1963, SOLID STATE PHYSIC S, V5 7020 SCHUTEN K, 1975, J CHEM PHYS, V64, P4422 7021 SONDHI SL, 1995, PHYS REV B, V51, P5943 7022 STRACK R, 1993, PHYS REV LETT, V70, P2637 7023 SU WP, 1979, PHYS REV LETT, V42, P1698 7024 SUN X, 1991, PHYS REV B, V44, P11042 7025 WU C, 1987, PHYS REV LETT, V59, P831 7026 WU CQ, 1993, PHYS REV B, V47, P4204 7027 ZAANEN J, 1990, J SOLID STATE CHEM, V88, P8 7028 NR 44 7029 TC 3 7030 SN 0163-1829 7031 J9 PHYS REV B 7032 JI Phys. Rev. B 7033 PD NOV 15 7034 PY 1997 7035 VL 56 7036 IS 19 7037 BP 12268 7038 EP 12276 7039 PG 9 7040 SC Physics, Condensed Matter 7041 GA YH165 7042 UT ISI:A1997YH16500048 7043 ER 7044 7045 PT J 7046 AU Feng, SS 7047 Qiu, XJ 7048 TI Energy-momentum and angular-momentum in ISO(1,2) Chern-Simons gravity 7049 SO PHYSICS LETTERS B 7050 DT Article 7051 DE enegy-momentum; angular-momentum; ISO(1,2) Chern-Simons 7052 ID 2+1 DIMENSIONAL GRAVITY; GRAVITATIONAL ANYONS; SPIN 7053 AB Using local SO(1,2) transform and general displacement transform, We 7054 obtain generally covariant conservation laws of angular -momentum and 7055 energy-momentum for ISO(1,2) Chern-Simons gravity. The currents have 7056 also superpotentials and are therefore identically conserved. The 7057 structure of the superpotentials are simpler than those in the 7058 conventional SO(1,2) topologically massive gravity (TMG). The 7059 reasonableness of the definitions may be supported by the correct 7060 energy momentum and angular-momentum for Cho-Lee's exact solution. (C) 7061 1997 Elsevier Science B.V. 7062 C1 SHANGHAI TEACHERS UNIV,CTR STRING THEORY,SHANGHAI 200234,PEOPLES R CHINA. 7063 RP Feng, SS, SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 7064 CR BAK D, 1994, PHYS REV D, V49, P5173 7065 CHO JH, 1995, PHYS LETT B, V351, P111 7066 DESER S, 1982, ANN PHYS-NEW YORK, V140, P372 7067 DESER S, 1984, ANN PHYS-NEW YORK, V152, P220 7068 DESER S, 1990, NUCL PHYS B, V344, P747 7069 DESER S, 1990, PHYS REV LETT, V64, P611 7070 DUAN YS, 1963, ACTA PHYS SINICA, V19, P589 7071 DUAN YS, 1988, GEN RELAT GRAVIT, V20, P5 7072 FENG SS, GEN COVARIANT CONSER 7073 FENG SS, 1995, GEN RELAT GRAVIT, V27, P887 7074 FENG SS, 1996, NUCL PHYS B, V468, P163 7075 WITTEN E, 1988, NUCL PHYS B, V311, P46 7076 WITTEN E, 1989, NUCL PHYS B, V323, P113 7077 NR 13 7078 TC 2 7079 SN 0370-2693 7080 J9 PHYS LETT B 7081 JI Phys. Lett. B 7082 PD OCT 16 7083 PY 1997 7084 VL 411 7085 IS 3-4 7086 BP 256 7087 EP 260 7088 PG 5 7089 SC Physics, Multidisciplinary 7090 GA YG529 7091 UT ISI:A1997YG52900004 7092 ER 7093 7094 PT J 7095 AU Feng, W 7096 Hoa, SV 7097 Huang, Q 7098 TI Classification of stress modes in assumed stress fields of hybrid 7099 finite elements 7100 SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING 7101 DT Article 7102 DE finite element; stress modes; classification 7103 ID INVARIANT; 20-NODE 7104 AB A classification method is presented to classify stress modes in 7105 assumed stress fields of hybrid finite element based on the eigenvalue 7106 examination and the concept of natural deformation modes. It is assumed 7107 that there only exist m (=n - r) natural deformation modes in a hybrid 7108 finite element which has n degrees of freedom and r rigid-body modes. 7109 For a hybrid element, stress modes in various assumed stress fields 7110 proposed by different researchers can be classified into m stress mode 7111 groups corresponding to m natural deformation modes and a zero-energy 7112 stress mode group corresponding to rigid-body modes by the m natural 7113 deformation modes. It is proved that if the flexibility matrix CHI is a 7114 diagonal matrix, the classification of stress modes is unique. Each 7115 stress mode group, except the zero-energy stress mode group, contains 7116 many stress modes that are interchangeable in an assumed stress field 7117 and do not cause any kinematic deformation modes in the element. A 7118 necessary and sufficient condition for avoiding kinematic deformation 7119 modes in a hybrid element is also presented. By means of the m 7120 classified stress mode groups and the necessary and sufficient 7121 condition, assumed stress fields with the minimum number of stress 7122 modes can be constructed and the resulting elements are free from 7123 kinematic deformation modes. Moreover, an assumed stress field cap be 7124 constructed according to the problem to be solved. As examples, 2-D, 7125 4-node plane element and 3-D, 8-node solid element are discussed. (C) 7126 1997 John Wiley & Sons, Ltd. 7127 C1 CONCORDIA UNIV,DEPT MECH ENGN,MONTREAL,PQ H3G 1M8,CANADA. 7128 SHANGHAI UNIV,SHANGHAI,PEOPLES R CHINA. 7129 CR AHMAD S, 1974, FINITE ELEMENT METHO, P85 7130 BABUSKA I, 1977, COMPUT METHODS APPL, V11, P175 7131 BREZZI F, 1974, RAIRO, V8, P129 7132 CHEN WJ, 1992, INT J NUMER METH ENG, V35, P1871 7133 DEVEUBAKE BMF, 1965, P C MATR METH STRUCT 7134 FENG W, 1996, INT J NUMER METH ENG, V39, P3625 7135 HAN J, 1990, P 2 INT C COMP AID D, P189 7136 HAN JH, 1993, INT J NUMER METH ENG, V36, P3903 7137 HAO SV, 1995, COMPUTER AIDED DESIG 7138 HENSHELL RD, 1972, P BRUN U C I MATH IT 7139 HUANG Q, 1989, THESIS CONCORDIA U M 7140 PIAN THH, 1964, AIAA J, V2, P1333 7141 PIAN THH, 1969, INT J NUMER METH ENG, V1, P3 7142 PIAN THH, 1983, INT J NUMER METH ENG, V19, P1741 7143 PIAN THH, 1986, INT J NUMER METH ENG, V22, P173 7144 PIAN THH, 1987, FINITE ELEMENT HDB 7145 PIAN THH, 1988, INT J NUMER METH ENG, V26, P2331 7146 PIAN THH, 1995, FINITE ELEM ANAL DES, V21, P5 7147 PUNCH EF, 1984, COMPUT METHOD APPL M, V47, P331 7148 RUBINSTEIN R, 1983, COMPUT METHOD APPL M, V38, P63 7149 SZE KY, 1990, FINITE ELEM ANAL DES, V7, P61 7150 SZE KY, 1994, INT J NUMER METH ENG, V37, P2235 7151 WU CC, 1995, FINITE ELEM ANAL DES, V21, P111 7152 NR 23 7153 TC 7 7154 SN 0029-5981 7155 J9 INT J NUMER METHOD ENG 7156 JI Int. J. Numer. Methods Eng. 7157 PD DEC 15 7158 PY 1997 7159 VL 40 7160 IS 23 7161 BP 4313 7162 EP 4339 7163 PG 27 7164 SC Engineering, Multidisciplinary; Mathematics, Applied 7165 GA YG117 7166 UT ISI:A1997YG11700002 7167 ER 7168 7169 PT J 7170 AU Chen, ZL 7171 Lu, Q 7172 Tang, GC 7173 TI Single machine scheduling with discretely controllable processing times 7174 SO OPERATIONS RESEARCH LETTERS 7175 DT Article 7176 DE single machine scheduling; discretely controllable processing times; 7177 NP-hardness; dynamic programming 7178 ID EARLINESS; COMMON; JOBS; DATE; COST 7179 AB In the field of machine scheduling problems with controllable 7180 processing times, it is often assumed that the possible processing time 7181 of a job can be continuously controlled, i.e. it can be any number in a 7182 given interval. In this paper, we introduce a discrete model in which 7183 job processing times are discretely controllable, i.e. the possible 7184 processing time of a job can only be controlled to be some specified 7185 lengths. Under this discrete model, we consider a class of single 7186 machine problems with the objective of minimizing the sum of the total 7187 processing cost and the cost measured by a standard criterion. We 7188 investigate most common criteria, e.g. makespan, maximum tardiness, 7189 total completion time, weighted number of tardy jobs, and total 7190 earliness-tardiness penalty. The computational complexity of each 7191 problem is analyzed, and pseudo-polynomial dynamic programming 7192 algorithms are proposed for hard problems. (C) 1997 Elsevier Science 7193 B.V. 7194 C1 NATL UNIV SINGAPORE,DEPT DECIS SCI,SINGAPORE 0511,SINGAPORE. 7195 SHANGHAI UNIV,DEPT MANAGEMENT,SHANGHAI 200041,PEOPLES R CHINA. 7196 RP Chen, ZL, PRINCETON UNIV,DEPT CIVIL ENGN & OPERAT RES,PRINCETON,NJ 7197 08544. 7198 CR AHUJA RK, 1993, NETWORKS FLOWS THEOR 7199 ALIDAEE B, 1993, EUR J OPER RES, V70, P335 7200 BAKER KR, 1990, OPER RES, V38, P22 7201 CHENG TCE, SCHEDULING MINIMIZE 7202 CHENG TCE, 1996, IIE TRANS, V28, P177 7203 CHENG TCE, 1996, OPER RES LETT, V19, P237 7204 DANIELS RL, 1994, OPER RES, V42, P504 7205 GAREY MR, 1978, COMPUTERS INTRACTABI 7206 GRAHAM RL, 1979, ANN DISCRETE MATH, V5, P287 7207 HALL NG, 1991, OPER RES, V39, P847 7208 KARP RM, 1972, REDUCIBILITY COMBINA 7209 MOORE JM, 1968, MANAGE SCI, V15, P334 7210 NOWICKI E, 1990, DISCRETE APPLIED MAT, V25, P271 7211 PANWALKAR SS, 1982, OPER RES, V30, P391 7212 PANWALKAR SS, 1992, EUR J OPER RES, V59, P298 7213 TRICK MA, 1994, OPER RES, V42, P234 7214 VANWASSENHOVE LN, 1982, EUR J OPER RES, V11, P48 7215 VICKSON RG, 1980, AIIE T, V12, P258 7216 VICKSON RG, 1980, OPS RES, V28, P1155 7217 ZDRZALKA S, 1991, OPER RES LETT, V10, P519 7218 NR 20 7219 TC 15 7220 SN 0167-6377 7221 J9 OPER RES LETT 7222 JI Oper. Res. Lett. 7223 PD SEP 7224 PY 1997 7225 VL 21 7226 IS 2 7227 BP 69 7228 EP 76 7229 PG 8 7230 SC Operations Research & Management Science 7231 GA YE472 7232 UT ISI:A1997YE47200003 7233 ER 7234 7235 PT J 7236 AU Gu, CQ 7237 TI Multivariate generalized inverse vector-valued rational interpolants 7238 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 7239 DT Article 7240 DE generalized inverse for vectors; bivariate rational interpolants; 7241 characterisation 7242 AB Bivariate rational interpolating functions of the type introduced in 7243 [9, 1] are shown to have a natural extension to the case of rational 7244 interpolation of vector-valued quantities using the formalism of 7245 Graves-Morris [2]. In this paper, the convergence of Stieltjes-type 7246 branched vector-valued continued fractions for two-variable functions 7247 are constructed by using the Samelson inverse. Based on them, a kind of 7248 bivariate vector-valued rational interpolating function is defined on 7249 plane grids. Sufficient conditions for existence, characterisation and 7250 uniqueness for the interpolating functions are proved. The results in 7251 the paper are illustrated with some examples. 7252 C1 SHANGHAI UNIV,DEPT MATH,SHANGHAI 200072,PEOPLES R CHINA. 7253 CR CUTY AM, 1985, COMPUTING, V34, P41 7254 GRAVESMORRIS PR, 1983, NUMER MATH, V42, P331 7255 GRAVESMORRIS PR, 1983, PADE APPROXIMATION I, P144 7256 GRAVESMORRIS PR, 1984, IMA J NUMER ANAL, V4, P209 7257 GU CQ, 1993, NUMER MATH J CHINESE, V15, P99 7258 GU CQ, 1994, NUMER MATH J CHINESE, V16, P293 7259 GU CQ, 1995, MATH NUMER SINICA, V17, P73 7260 GU CQ, 1995, P INT C NUM APPR 7261 MURPHY JA, 1978, J COMPUT APPL MATH, V4, P181 7262 WYNN P, 1963, ARCH RATION MECH AN, V12, P273 7263 ZHU GQ, 1990, CHINESE J NUMER MATH, V12, P66 7264 NR 11 7265 TC 4 7266 SN 0377-0427 7267 J9 J COMPUT APPL MATH 7268 JI J. Comput. Appl. Math. 7269 PD OCT 28 7270 PY 1997 7271 VL 84 7272 IS 2 7273 BP 137 7274 EP 146 7275 PG 10 7276 SC Mathematics, Applied 7277 GA YD221 7278 UT ISI:A1997YD22100001 7279 ER 7280 7281 PT J 7282 AU Sang, WB 7283 Durose, K 7284 Brinkman, AW 7285 Woods, J 7286 TI In situ mass spectroscopic investigation of the pyrolysis mechanism of 7287 (C3H7)(2)Te and (CH3)(2)Cd during MOCVD 7288 SO ACTA CHIMICA SINICA 7289 DT Article 7290 ID GROWTH; CDTE 7291 AB Pyrolysis properties of metallo - organic precursors, di - 7292 isopropyltelluride (DIPTe) and dimethylcadmium (DMCd), in a MOCVD 7293 reactor have been investigated by in - situ mass spectroscopy. In 7294 particular, possible gas phase reactions as well as pyrolysis mechanism 7295 are analysed. Interaction between the two precursors and its influence 7296 on pyrolysis temperature are explored under the CdTe, CdTe growth 7297 conditions. 7298 C1 UNIV DURHAM,DEPT PHYS,APPL PHYS GRP,DURHAM DH1 3LE,ENGLAND. 7299 RP Sang, WB, SHANGHAI UNIV,DEPT INORGAN MAT,JIADING CAMPUS,SHANGHAI 7300 201800,PEOPLES R CHINA. 7301 CR CZERNIAK MR, 1984, J CRYST GROWTH, V68, P128 7302 DAVIES JI, 1986, J CRYST GROWTH, V79, P363 7303 FUJII S, 1988, J CRYST GROWTH, V93, P750 7304 GAILS JE, 1991, MATER RES SOC S P, V204, P155 7305 HOKE WE, 1985, APPL PHYS LETT, V46, P398 7306 JAXKSON DA, 1988, J CRYST GROWTH, V87, P205 7307 KIRSS RU, 1991, ORGANOMETALLICS, V10, P3589 7308 KONDRATEV VN, 1970, RATE CONSTANTS GAS P 7309 LAURIE CM, 1957, T FARADAY SOC, V53, P1431 7310 LOVERGINE N, 1991, CHEMTRONICS, V5, P11 7311 MCALLISTER T, 1989, J CRYST GROWTH, V96, P552 7312 MULLIN JB, 1981, J CRYST GROWTH, V55, P92 7313 NISHIO M, 1990, JPN J APPL PHYS, V29, P145 7314 OGAWA H, 1988, J APPL PHYS, V64, P6750 7315 SANG WB, 1991, CHEMTRONICS, V5, P179 7316 TROTMANDICKENSO.AF, 1973, COMPREHENSIVE INORGA, P991 7317 NR 16 7318 TC 0 7319 SN 0567-7351 7320 J9 ACTA CHIM SIN 7321 JI Acta Chim. Sin. 7322 PY 1997 7323 VL 55 7324 IS 6 7325 BP 578 7326 EP 584 7327 PG 7 7328 SC Chemistry, Multidisciplinary 7329 GA YD106 7330 UT ISI:A1997YD10600009 7331 ER 7332 7333 PT J 7334 AU Wong, PL 7335 Xu, H 7336 Zhang, Z 7337 TI Performance evaluation of high pressure sleeve seal 7338 SO WEAR 7339 DT Article 7340 DE high pressure; sleeve seal; elastohydrodynamics 7341 AB Sealing problems for reciprocating pumps or intensifiers operating at 7342 high pressures (above 100 MPa) may be solved by adopting a closely 7343 fitting externally pressurized sleeve. This paper presents an 7344 elastohydrodynamic (EHD) analysis for such high pressure sleeve type 7345 seals and examines the effects of structural and operational parameters 7346 on their high pressure performance characteristics. The effects of 7347 pressure on the viscosity and density of the working fluid are also 7348 considered in the analysis. The numerical results clearly indicate that 7349 the sealing efficiency of high pressure sleeve seals can be enhanced 7350 with elastic deformation of both the sleeve and the plunger. The effect 7351 of working pressure on the stiffness of the sleeve seal and the induced 7352 frictional force are also presented. The study of the effect of 7353 eccentricity on the radial stiffness shows that it leads to a large 7354 radial force and the plunger is pressed on the sleeve surface, hereby 7355 termed 'hydraulic locking'. This phenomenon results in an increase in 7356 frictional forces which is one of the key factors for the limited 7357 working life of the seal. (C) 1997 Elsevier Science S.A. 7358 C1 SHANGHAI UNIV,BEARING RES INST,SHANGHAI,PEOPLES R CHINA. 7359 RP Wong, PL, CITY UNIV HONG KONG,DEPT MFG ENGN,KOWLOON,HONG KONG. 7360 CR HARRIS HD, 1972, ASME, V94, P335 7361 JOHANNESSON HL, 1983, 198313 TULEA 7362 KAMAL MM, 1968, ASME, V90, P412 7363 VENKATARAMAN B, 1996, ASME, V118, P509 7364 WANG NM, 1970, ASME, V92, P310 7365 XU H, 1991, THESIS ACAD MACH SCI 7366 XU H, 1995, 22 LEEDS LYON S TRIB 7367 YOUNG WC, 1989, ROARKS FORMULAE STRE 7368 NR 8 7369 TC 1 7370 SN 0043-1648 7371 J9 WEAR 7372 JI Wear 7373 PD SEP 7374 PY 1997 7375 VL 210 7376 IS 1-2 7377 BP 104 7378 EP 111 7379 PG 8 7380 SC Engineering, Mechanical; Materials Science, Multidisciplinary 7381 GA YC793 7382 UT ISI:A1997YC79300014 7383 ER 7384 7385 PT J 7386 AU Guo, BQ 7387 Cao, WM 7388 TI An iterative and parallel solver based on domain decomposition for the 7389 h-p version of the finite element method 7390 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 7391 DT Article 7392 DE iterative and parallel solver; preconditioning; the h-p version of the 7393 finite element method 7394 ID ELLIPTIC PROBLEMS; 2 DIMENSIONS; PRECONDITIONER 7395 AB In this paper, we propose a new interative and parallel solver, based 7396 on domain decomposition, for the h-p version of the finite element 7397 method in two dimensions. It improves our previous work in two aspects: 7398 (1) A subdomain may contain several super-elements of the coarse mesh, 7399 thus can be of arbitrary shape and size. This makes the solver more 7400 efficient and more flexible in computational practice. (2) The 7401 p-version components (i.e., the high order side and internal modes) in 7402 every element are treated separately, which results in better 7403 parallelism. 7404 C1 UNIV MANITOBA,DEPT APPL MATH,WINNIPEG,MB R3T 2N2,CANADA. 7405 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 7406 CR AINSWORTH M, 1996, SIAM J NUMER ANAL, V33, P1358 7407 BABUSKA I, 1988, SIAM J MATH ANAL, V19, P257 7408 BABUSKA I, 1988, SIAM J NUMER ANAL, V25, P837 7409 BABUSKA I, 1989, INT J NUMER METH ENG, V28, P1891 7410 BABUSKA I, 1991, SIAM J NUMER ANAL, V28, P624 7411 BJORSTAD PE, 1986, SIAM J NUMER ANAL, V23, P1097 7412 BRAMBLE J, 1986, J MATH COMPUT, V175, P103 7413 BRAMBLE JH, 1989, MATH COMPUT, V53, P1 7414 CIARLET PG, 1978, FINITE ELEMENT METHO 7415 DRYJA M, 1989, ITERATIVE METHODS LA, P273 7416 DRYJA M, 1990, P 3 INT S DOM DEC ME 7417 DRYJA M, 1994, SIAM J SCI COMPUT, V15, P604 7418 GUO B, 1986, COMPUT MECH, V1, P203 7419 GUO B, 1986, COMPUT MECH, V1, P21 7420 GUO BQ, IN PRESS SIAM J SCI 7421 GUO BQ, 1996, NUMER MATH, V75, P59 7422 MANDEL J, 1990, COMPUT METHOD APPL M, V80, P117 7423 MANDEL J, 1993, SOLVING LARGE SCALE, P65 7424 ODEN JT, 1994, 9411 TICAM 7425 ODEN JT, 1994, CONT MATH, V180, P295 7426 PAVARINO LF, 1994, IN PRESS COMPUT MATH 7427 PAVARINO LF, 1996, SIAM J NUMER ANAL, V33, P1303 7428 SZABO B, 1990, FINITE ELEMENT ANAL 7429 WIDLUND OB, 1988, P 1 INT S DOM DEC ME 7430 XU JC, 1992, SIAM REV, V34, P581 7431 ZIENKIEWICZ OC, 1989, FINITE ELEMENT METHO, V1 7432 NR 26 7433 TC 6 7434 SN 0377-0427 7435 J9 J COMPUT APPL MATH 7436 JI J. Comput. Appl. Math. 7437 PD SEP 30 7438 PY 1997 7439 VL 83 7440 IS 1 7441 BP 71 7442 EP 85 7443 PG 15 7444 SC Mathematics, Applied 7445 GA YA600 7446 UT ISI:A1997YA60000005 7447 ER 7448 7449 PT J 7450 AU Li, CF 7451 TI Globalism of commutation relation and mechanism of momentum transfer in 7452 the Aharonov-Bohm effect 7453 SO PHYSICA B 7454 DT Article 7455 DE globalism of a commutation relation; Aharonov-Bohm effect; momentum 7456 transfer 7457 ID WAVE 7458 AB After examining the domain of an operator that has classical analog, 7459 which is shown to be the whole spatial space, the concept of globalism 7460 of a commutation relation is introduced through analyzing the 7461 quantization of the kinetic angular momentum in the Aharonov-Bohm 7462 effect. Its applications are also given to explain in an elegant and 7463 precise way, the mechanism of momentum transfer in the Aharonov-Bohm 7464 scattering and to study the probability distribution of the momentum 7465 for a particle in a one-dimensional infinitely deep square potential 7466 well. 7467 RP Li, CF, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,20 CHENGZHONG RD,SHANGHAI 7468 201800,PEOPLES R CHINA. 7469 CR AFANASEV GN, 1990, SOV J PART NUCL, V21, P74 7470 AHARONOV Y, 1959, PHYS REV, V115, P485 7471 CHAMBERS RG, 1960, PHYS REV LETT, V5, P3 7472 DIRAC PAM, 1958, PRINCIPLES QUANTUM M, P140 7473 ERIZ CP, 1973, PAULI LECT PHYSICS, V5, P24 7474 JACKIW R, 1983, PHYS REV LETT, V50, P555 7475 KRETZSCHMAR M, 1965, Z PHYS, V185, P97 7476 LANDAU LD, 1977, QUANTUM MECH NONRELA, P65 7477 LI CF, 1995, PHYSICA B, V212, P436 7478 LI CF, 1996, ANN PHYS-NEW YORK, V252, P329 7479 LI CF, 1996, PHYSICA B, V226, P406 7480 LI CF, 1997, PHYSICA B, V229, P354 7481 PESHKIN M, 1981, PHYS REP, V80, P375 7482 ROY SM, 1984, NUOVO CIMENTO A, V79, P391 7483 SAKURAI JJ, 1985, MODERN QUANTUM MECH, P55 7484 TONOMURA A, 1986, PHYS REV LETT, V56, P792 7485 NR 16 7486 TC 1 7487 SN 0921-4526 7488 J9 PHYSICA B 7489 JI Physica B 7490 PD SEP 7491 PY 1997 7492 VL 240 7493 IS 1-2 7494 BP 98 7495 EP 103 7496 PG 6 7497 SC Physics, Condensed Matter 7498 GA XZ736 7499 UT ISI:A1997XZ73600015 7500 ER 7501 7502 PT J 7503 AU Shen, WD 7504 Zhang, JF 7505 Wang, ST 7506 Zhu, ST 7507 TI Fermat's principle, the general eikonal equation, and space geometry in 7508 a static anisotropic medium 7509 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND 7510 VISION 7511 DT Article 7512 DE anisotropic medium; Fermat's principle; Riemannian manifold; optical 7513 metric; general eikonal equation; geodesic equation 7514 ID TRANSMISSION SCALAR THEORY; STRONG-LASER PLASMA; RIEMANNIAN GEOMETRY; 7515 OPTICS 7516 AB Fermat's principle and the optical metric are generalized to the case 7517 of an anisotropic medium. The metric tensor of a three-dimensional 7518 Riemannian manifold is related to the dielectric tensor of the medium. 7519 The general eikonal equation in a static anisotropic medium is derived. 7520 The expressions for the curvature tensor and the curvature scalar that 7521 characterize the geometrical structure of a three-dimensional manifold 7522 are given. For an isotropic medium the derived expressions for the 7523 curvature tensor and curvature scalar reduce to the previous results. 7524 (C) 1997 Optical Society of America. 7525 C1 SHANGHAI INST EDUC,DEPT PHYS,SHANGHAI 200031,PEOPLES R CHINA. 7526 ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI 201800,PEOPLES R CHINA. 7527 RP Shen, WD, SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 7528 CR BORN M, 1980, PRINCIPLES OPTICS, P122 7529 BORN M, 1980, PRINCIPLES OPTICS, P666 7530 CARINENA JF, 1996, FORTSCHR PHYS, V44, P181 7531 CARINENA JF, 1996, J PHYS A-MATH GEN, V29, P1695 7532 CARMELI M, 1982, CLASSICAL FIELDS GEN, P67 7533 GUO H, 1995, J OPT SOC AM A, V12, P600 7534 GUO H, 1995, J OPT SOC AM A, V12, P607 7535 GUO QZ, 1995, ACTA PHYS SINICA, V44, P210 7536 GUO QZ, 1995, ACTA PHYS SINICA, V44, P396 7537 MISNER CW, 1973, GRAVITATION, P293 7538 RIVERA AL, 1995, J OPT SOC AM A, V12, P1380 7539 SHEN W, 1996, CHIN J LASERS B, V5, P516 7540 SHEN WD, 1995, INT J THEOR PHYS, V34, P2085 7541 SHEN WD, 1995, INT J THEOR PHYS, V34, P2095 7542 ZHU S, 1993, WORLD OPT C SHANGH C 7543 ZHU ST, 1987, J OPT SOC AM B, V4, P739 7544 ZHU ST, 1988, P TOP M LAS MAT LAS, P190 7545 ZHU ST, 1989, ACTA PHYS SINICA, V38, P1167 7546 ZHU ST, 1989, ACTA PHYS SINICA, V38, P559 7547 ZHU ST, 1993, ACTA PHYS SINICA, V42, P1471 7548 ZHU ST, 1995, INT J THEOR PHYS, V34, P169 7549 NR 21 7550 TC 0 7551 SN 0740-3232 7552 J9 J OPT SOC AM A-OPT IMAGE SCI 7553 JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 7554 PD OCT 7555 PY 1997 7556 VL 14 7557 IS 10 7558 BP 2850 7559 EP 2854 7560 PG 5 7561 SC Optics 7562 GA XY742 7563 UT ISI:A1997XY74200029 7564 ER 7565 7566 PT J 7567 AU Mo, YW 7568 Xia, YB 7569 Huang, XQ 7570 Wang, H 7571 TI Dielectric properties of diamond film alumina composites 7572 SO THIN SOLID FILMS 7573 DT Article 7574 DE diamond; aluminium oxide; dielectric properties; chemical vapour 7575 deposition (CVD) 7576 AB Diamond films were deposited on alumina substrates both by microwave 7577 plasma chemical vapor deposition and hot filament chemical vapor 7578 deposition techniques. The qualities of deposited films were 7579 characterized by X-ray diffraction and Raman scattering spectrometry. 7580 The dielectric properties of the diamond film/alumina composites were 7581 measured, and were compared with the results also calculated by the 7582 model of series capacitors. (C) 1997 Elsevier Science S.A. 7583 RP Mo, YW, SHANGHAI UNIV,SCH MAT SCI & ENGN,SHANGHAI 201800,PEOPLES R 7584 CHINA. 7585 CR CHU MY, 1992, J MATER RES, V7, P3010 7586 HSU JY, 1989, J AM CERAM SOC, V72, P1861 7587 JOHNSON WB, 1993, J MATER RES, V8, P1169 7588 MO YW, 1995, ICEM ICSA 95 XIAN 7589 MO YW, 1997, IN PRESS ACTA PHYS S, V46 7590 NAZERI A, 1993, AM CERAM SOC B, V75, P59 7591 NEMANICH RJ, 1991, ANNU REV MATER SCI, V21, P535 7592 YARBROUGH WA, 1992, J AM CERAM SOC, V75, P3179 7593 YIBEN XIA, 1996, CHINESE PHYS LETT, V13, P557 7594 NR 9 7595 TC 9 7596 SN 0040-6090 7597 J9 THIN SOLID FILMS 7598 JI Thin Solid Films 7599 PD AUG 15 7600 PY 1997 7601 VL 305 7602 IS 1-2 7603 BP 266 7604 EP 269 7605 PG 4 7606 SC Materials Science, Multidisciplinary; Physics, Applied; Physics, 7607 Condensed Matter 7608 GA XX864 7609 UT ISI:A1997XX86400035 7610 ER 7611 7612 PT J 7613 AU Xu, WP 7614 Gu, M 7615 Zheng, LR 7616 Xin, HP 7617 Cao, ZC 7618 Okuyama, M 7619 Lin, CG 7620 TI Pulsed laser deposition of PZT/BaRuO3 bi-layered films on silicon 7621 substrate 7622 SO FERROELECTRICS 7623 DT Article 7624 ID CAPACITORS; FATIGUE 7625 AB Bi-layered thin films of PZT(70/30) on BaRuO3 have been prepared on 7626 silicon substrate by AF excimer laser deposition(PLD). BaRuO3 thin film 7627 crystallized into perovskite-like structure with (110) orientation and 7628 became highly conductive after atmospheric thermal annealing at 700 7629 degrees C for 30 minutes. It was found the subsequent PLD-deposited PZT 7630 film can be efficiently transformed to its perovskite structure by 7631 rapid thermal processing(RTP) at 700 degrees C for 100sec. 7632 C1 SHANGHAI UNIV,DEPT MAT SCI,SHANGHAI 201800,PEOPLES R CHINA. 7633 OSAKA UNIV,FAC ENGN SCI,DEPT ELECT ENGN,OSAKA 560,JAPAN. 7634 RP Xu, WP, CHINESE ACAD SCI,SHANGHAI INST MET,STATE KEY LAB FUNCT MAT 7635 INFORMAT,SHANGHAI 200050,PEOPLES R CHINA. 7636 CR ALSHAREEF HN, 1994, J MATER RES, V9, P2968 7637 DAT R, 1994, APPL PHYS LETT, V64, P2673 7638 EOM CB, 1992, SCIENCE, V258, P1766 7639 RAMESH R, 1992, APPL PHYS LETT, V61, P1537 7640 RANDALL JJ, 1959, J AM CHEM SOC, V81, P2629 7641 TAKIKAVA O, 1986, IEEE P EL COMP C IEE, P214 7642 XU WP, IN PRESS PHYS STAT A 7643 XU WP, UNPUB MAT LETT 7644 NR 8 7645 TC 2 7646 SN 0015-0193 7647 J9 FERROELECTRICS 7648 JI Ferroelectrics 7649 PY 1997 7650 VL 195 7651 IS 1-4 7652 BP 199 7653 EP 202 7654 PG 4 7655 SC Materials Science, Multidisciplinary; Physics, Condensed Matter 7656 GA XX634 7657 UT ISI:A1997XX63400048 7658 ER 7659 7660 PT J 7661 AU Yu, JD 7662 Sasaki, S 7663 Sugiura, H 7664 Huang, TK 7665 Inaguma, Y 7666 Itoh, M 7667 TI Compressibility and pressure dependence of charge transfer and T-c in 7668 pristine and iodine-intercalated single crystals of 7669 Bi2.2Sr1.8CaCu2O8+delta 7670 SO PHYSICA C 7671 DT Article 7672 DE electrical resistivity; Hall concentration; high pressure effect 7673 ID SUPERCONDUCTING TRANSITION-TEMPERATURE; HALL-COEFFICIENT; EPITAXIAL 7674 INTERCALATION; RESISTIVITY TENSOR 7675 AB Compressibility measurements for Bi2.2Sr1.8CaCu2O8+delta 7676 (Bi-2.2:1.8:1:2) and IBi2.2Sr1.8CaCu2O8+delta (IBi-2.2:1.8:1:2) single 7677 crystals were carried out in a diamond-anvil pressure cell up to 9 GPa. 7678 The values of bulk modulus are 68.56 and 48.21 Gpa for Bi-2.2:1.8:1:2 7679 and for IBi-2.2:1.8:1:2 single crystals, respectively. Hall 7680 coefficients and resistivities for oxygen annealed Bi-2.2:1.8:1:2 and 7681 I0.7Bi-2.2:1.8:1:2 single crystals were measured under high pressure up 7682 to 1.5 GPa. The value of dR(H)/dP for the oxygen annealed crystal is 7683 -0.06 x 10(-3) cm(3) C-1 GPa(-1), which is one third of the as-grown 7684 crystal. The decrease of dR(H)/dP after oxygen annealing is considered 7685 to be due to the increase of homogeneity of oxygen during high 7686 temperature annealing, The dR(H)/dP of I0.7Bi-2.2:1.8:1:2 is -0.39 x 7687 10(-3) cm(3) C-1 GPa(-1), which is nearly the same as that of 7688 IBi-2.2:1.8:1:2. That the negative dR(H)/dP of intercalated crystals is 7689 nearly twice as large as that of pristine crystals is concerned with 7690 the deposition of the iodine molecular state under pressure. The T-c of 7691 oxygen-annealed Bi-2.2:1.8:1:2 increases with increasing pressure at a 7692 parabolic curve below 1.5 Cpa. By using the Gupta model, we simulated 7693 T-c(P) up to 6 GPa, and found that the maximum value of T-c(P) is 88 K 7694 at P = 4.1 GPa. This is in good agreement with the experimental result 7695 measured by Klotz et al. [Physica C 209 (1993) 499]. The T-c of the 7696 I0.7Bi-2.2:1.8:1:2 crystal increased linearly at a rate of dT(c)/dP = 7697 3.5 K/GPa. This is the opposite of the behaviour of IBi-2.2:1.8:1:2 7698 which decreased linearly at a rate of dT(c)/dP = -3.6 K/GPa, although 7699 both intercalated crystals are overdoped compounds. (C) 1997 Elsevier 7700 Science B.V. 7701 C1 TOKYO INST TECHNOL,MAT & STRUCT LAB,MIDORI KU,YOKOHAMA,KANAGAWA 226,JAPAN. 7702 YOKOHAMA CITY UNIV,GRAD SCH INTEGRATED SCI,KANAZAWA KU,YOKOHAMA,KANAGAWA 236,JAPAN. 7703 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 7704 CR ALMASAN CC, 1992, PHYS REV LETT, V69, P680 7705 CRUSELLAS MA, 1991, PHYSICA C, V180, P313 7706 FAULQUES E, 1992, SOLID STATE COMMUN, V82, P531 7707 FUJIWARA A, 1992, PHYSICA C, V203, P411 7708 GROEN WA, 1990, PHYSICA C, V165, P55 7709 GUPTA RP, 1995, PHYS REV B, V51, P11760 7710 HUANG TK, 1993, PHYS REV B, V48, P7712 7711 HUANG TK, 1994, PHYS REV B, V49, P9885 7712 HUANG TK, 1996, PHYSICA C, V271, P103 7713 HYBERTSEN MS, 1988, PHYS REV LETT, V60, P1661 7714 KLOTZ S, 1993, PHYSICA C, V209, P499 7715 KOSUGE M, 1992, PHYS REV B, V45, P10713 7716 MARTIN S, 1988, PHYS REV LETT, V60, P2194 7717 MURAYAMA C, 1991, PHYSICA C 2, V185, P1293 7718 MURAYAMA C, 1991, PHYSICA C, V183, P277 7719 MURNAGHAN FD, 1951, FINITE DEFORMATION E 7720 NEUMEIER JJ, 1993, PHYS REV B, V47, P8385 7721 OLSEN JS, 1991, PHYS SCR, V44, P211 7722 POOKE D, 1992, PHYSICA C, V198, P349 7723 TAJIMA Y, 1989, PHYSICA C, V158, P237 7724 THOMPSON JD, 1984, REV SCI INSTRUM, V55, P231 7725 WIJNGAARDEN RJ, 1989, STUDIES HIGH TEMPERA, V2, P29 7726 XIANG XD, 1990, NATURE, V348, P145 7727 XIANG XD, 1991, PHYS REV B B, V43, P11496 7728 XIANG XD, 1991, SCIENCE, V254, P1487 7729 XIANG XD, 1992, PHYS REV LETT, V68, P530 7730 NR 26 7731 TC 4 7732 SN 0921-4534 7733 J9 PHYSICA C 7734 JI Physica C 7735 PD JUL 21 7736 PY 1997 7737 VL 281 7738 IS 1 7739 BP 45 7740 EP 54 7741 PG 10 7742 SC Physics, Applied 7743 GA XX217 7744 UT ISI:A1997XX21700006 7745 ER 7746 7747 PT J 7748 AU Cheng, XY 7749 Wan, XJ 7750 Chen, YX 7751 TI Environmental embrittlement and hydrogen diffusion in Co3Ti alloys 7752 SO SCRIPTA MATERIALIA 7753 DT Article 7754 ID MECHANICAL-PROPERTIES; NI3AL; BORON; INTERMETALLICS; NI3(SI,TI); 7755 DUCTILITY 7756 RP Cheng, XY, SHANGHAI UNIV,SHANGHAI 200072,PEOPLES R CHINA. 7757 CR GEORGE EP, 1993, SCRIPTA METALL MATER, V28, P857 7758 GEORGE EP, 1993, STRUCTURAL INTERMETA, P431 7759 GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37 7760 GEORGE EP, 1995, MATER RES SOC S P, V364, P1131 7761 LIU CT, 1985, ACTA METALL, V33, P213 7762 LIU CT, 1992, NATO ASI SER, V213, P321 7763 LIU CT, 1992, SCRIPTA METALL MATER, V27, P25 7764 TAKASUGI T, 1986, ACTA METALL, V34, P607 7765 TAKASUGI T, 1988, MATERIALS FORUM, V12, P8 7766 TAKASUGI T, 1990, J MATER SCI, V25, P4239 7767 TAKASUGI T, 1991, J MATER SCI, V26, P1173 7768 TAKASUGI T, 1991, MATER RES SOC S P, V213, P403 7769 TAKASUGI T, 1993, SCRIPTA METALL MATER, V29, P1587 7770 WAN X, 1994, J MATER SCI TECHNOL, V10, P39 7771 WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473 7772 WAN XJ, 1994, SCRIPTA METALL MATER, V31, P677 7773 WAN XJ, 1995, ACTA METALL SINICA, V8, P299 7774 NR 17 7775 TC 4 7776 SN 1359-6462 7777 J9 SCRIPTA MATER 7778 JI Scr. Mater. 7779 PD OCT 1 7780 PY 1997 7781 VL 37 7782 IS 7 7783 BP 1065 7784 EP 1069 7785 PG 5 7786 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 7787 Engineering 7788 GA XW414 7789 UT ISI:A1997XW41400025 7790 ER 7791 7792 PT J 7793 AU Zhang, RJ 7794 Dai, SG 7795 Mu, PA 7796 TI A spherical capacitive probe for measuring the thickness of coatings on 7797 metals 7798 SO MEASUREMENT SCIENCE & TECHNOLOGY 7799 DT Article 7800 AB This paper proposes a new method of using the spherical capacitive 7801 probe instead of the common planar probe to increase the accuracy in 7802 measuring the thickness of non-conducting coatings on metals. The 7803 measuring conversion model of the spherical capacitive probe and Its 7804 electric circuit are discussed and effective methods for overcoming the 7805 unfavourable influence caused by the spherical capacitive probe are 7806 introduced as well. 7807 RP Zhang, RJ, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 200093,PEOPLES R CHINA. 7808 CR *ISO, 1982, 2178 ISO 7809 *ISO, 1982, 2360 ISO 7810 NR 2 7811 TC 1 7812 SN 0957-0233 7813 J9 MEAS SCI TECHNOL 7814 JI Meas. Sci. Technol. 7815 PD SEP 7816 PY 1997 7817 VL 8 7818 IS 9 7819 BP 1028 7820 EP 1033 7821 PG 6 7822 SC Engineering, Multidisciplinary; Instruments & Instrumentation 7823 GA XW071 7824 UT ISI:A1997XW07100011 7825 ER 7826 7827 PT J 7828 AU Tu, LH 7829 TI Asymptotic Hodge theory in several variables: The flat case 7830 SO CHINESE ANNALS OF MATHEMATICS SERIES B 7831 DT Article 7832 DE canonical extension; Gauss-Manin connection; monodromy transformation 7833 AB In the flat case, the answer to the problem posed by Steenbrink and 7834 Zucker is given. 7835 RP Tu, LH, SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 7836 CR CLEMENS CH, 1977, DUKE MATH J, V44, P215 7837 DELIGNE P, 1970, LECT NOTES MAT, V163 7838 DELIGNE P, 1971, PUBL MATH IHES, V40, P5 7839 DELIGNE P, 1974, PUBL MATH IHES, V44, P5 7840 SCHMID W, 1973, INVENT MATH, V22, P211 7841 STEENBRINK J, 1976, INVENT MATH, V31, P229 7842 STEENBRINK J, 1985, INVENT MATH, V80, P489 7843 TU LH, 1990, J SYS SCI MATH SCI, V10, P277 7844 TU LH, 1991, CHIN ANN MATH A, V12, P766 7845 ZUCKER S, 1984, ANN MATH STUD, V106, P121 7846 ZUCKER S, 1985, INVENT MATH, V80, P543 7847 NR 11 7848 TC 0 7849 SN 0252-9599 7850 J9 CHIN ANN MATH SER B 7851 JI Chin. Ann. Math. Ser. B 7852 PD JUL 7853 PY 1997 7854 VL 18 7855 IS 3 7856 BP 277 7857 EP 282 7858 PG 6 7859 SC Mathematics 7860 GA XV663 7861 UT ISI:A1997XV66300002 7862 ER 7863 7864 PT J 7865 AU Huang, HC 7866 TI Practical circular-polarization-maintaining optical fiber 7867 SO APPLIED OPTICS 7868 DT Article 7869 ID PROPOSALS; FIELD 7870 AB The author describes a new idea for making 7871 circular-polarization-maintaining optical fiber with an existing 7872 fabrication technique. The method simply requires one to spin at a 7873 constant rate a special preform consisting of only one off-axis 7874 stress-applying element in addition to the on-axis core. Measurements 7875 taken with such a fiber specimen verify the existence of circular 7876 eigenmodes, the ease of joining or splicing two fiber segments, the 7877 tolerance to macrobending with a small radius, etc. Good agreement 7878 exists between the experimental data and the theoretical analysis. 7879 Prospective applications are discussed. (C) 1997 Optical Society of 7880 America. 7881 RP Huang, HC, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 7882 CR BARLOW AJ, 1981, ELECTRON LETT, V17, P388 7883 BIRCH RD, 1987, ELECTRON LETT, V23, P50 7884 CASTELLI R, 1989, OPT QUANT ELECTRON, V21, P35 7885 DANDLIKER R, 1992, OPTICAL WAVE SCI TEC, V2, P39 7886 FANG XS, 1985, IEEE T MICROW THEORY, V33, P1150 7887 FUJII Y, 1986, IEE PROC-J, V133, P249 7888 GAUTHIER F, 1981, P INT C FIB ROT SENS, P196 7889 HUANG HC, IN PRESS MICROWAVE A 7890 HUANG HC, 1960, SCI SINICA, V9, P142 7891 HUANG HC, 1990, 4943132, US 7892 HUANG HC, 1992, 5096312, US 7893 HUANG HC, 1995, 5452394, US 7894 HUANG HC, 1995, MICROW OPT TECHN LET, V9, P37 7895 HUANG HC, 1997, APPL OPTICS, V36, P4241 7896 HUSSEY CD, 1986, ELECTRON LETT, V22, P129 7897 JEUNHOMME L, 1980, ELECTRON LETT, V16, P921 7898 MACHIDA S, 1982, T IECE JPN E, V65, P642 7899 MAYSTRE F, 1989, OPT LETT, V14, P587 7900 RAMASWAMY V, 1978, APPL OPTICS, V17, P3014 7901 ROGERS AJ, 1995, J LIGHTWAVE TECHNOL, V13, P1371 7902 SAKAI JI, 1981, OPT LETT, V6, P496 7903 SOMEDA CG, 1985, 41584, IT 7904 SOMEDA CG, 1986, 41638, IT 7905 SOMEDA CG, 1991, OPT QUANT ELECTRON, V23, P713 7906 ULRICH R, 1979, APPL OPTICS, V18, P2241 7907 VARNHAM MP, 1985, P IOOC ECOC VEN, P135 7908 VARNHAM MP, 1986, M OPT FIB COMM, P68 7909 NR 27 7910 TC 2 7911 SN 0003-6935 7912 J9 APPL OPT 7913 JI Appl. Optics 7914 PD SEP 20 7915 PY 1997 7916 VL 36 7917 IS 27 7918 BP 6968 7919 EP 6975 7920 PG 8 7921 SC Optics 7922 GA XV502 7923 UT ISI:A1997XV50200036 7924 ER 7925 7926 PT J 7927 AU Feng, SS 7928 Zong, HS 7929 Wang, ZX 7930 Qiu, XJ 7931 TI Induced electronic interactions in Chern-Simons systems 7932 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 7933 DT Article 7934 ID GAUGE NONINVARIANCE; 3 DIMENSIONS; FIELD-THEORY; QUANTIZATION 7935 AB The induced electronic interactions in (I + 2)-dimensional vector 7936 Chem-Simons systems are studied by means of path-integral quantization. 7937 We consider four cases: relativistic, and nonrelativistic fermion 7938 Maxwell-Chern-Simons models, and relativistic and nonrelativistic 7939 fermion Chern-Simons models. It is shown that the Chern-Simons term may 7940 induce exotic electronic interactions which can be local or nonlocal 7941 and small Chern-Simons coupling may have a considerable effect in some 7942 cases. 7943 C1 ACAD SINICA,INST THEORET PHYS,BEIJING 100080,PEOPLES R CHINA. 7944 ACAD SINICA,INST NUCL PHYS,SHANGHAI 201800,PEOPLES R CHINA. 7945 SHANGHAI TEACHERS UNIV,CTR STRING THEORY,SHANGHAI 200234,PEOPLES R CHINA. 7946 RP Feng, SS, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES 7947 R CHINA. 7948 CR ANDRES K, 1975, PHYS REV LETT, V35, P1779 7949 BARASHENKOV IV, 1994, PHYS REV LETT, V72, P1575 7950 DESER S, 1982, ANN PHYS-NEW YORK, V140, P372 7951 FENG D, 1992, NEW PERSPECTIVES CON 7952 FENG SS, 1995, INT J THEOR PHYS, V34, P1827 7953 FENG SS, 1997, INT J THEORETICAL PH, V36, P41 7954 FRADKIN E, 1991, FIELD THEORIES CONDE 7955 GITMANN DM, 1990, QUANTIZATION FIELDS 7956 HAGEN CR, 1985, PHYS REV D, V31, P2135 7957 HAGEN CR, 1985, PHYS REV D, V31, P848 7958 JACKIW R, 1990, PHYS REV LETT, V64, P2969 7959 JONES W, 1973, THEORETICAL SOLID ST 7960 KIM YW, 1995, PHYS REV D, V51, P2943 7961 LOPEZ A, 1991, PHYS REV B, V44, P5246 7962 NI GJ, 1995, LEVINSON THEOREM ANO 7963 POLYAKOV AM, 1988, MOD PHYS LETT A, V3, P325 7964 REDLICH AN, 1984, PHYS REV D, V29, P2366 7965 REDLICH AN, 1984, PHYS REV LETT, V52, P18 7966 SEMENOFF GW, 1988, PHYS REV LETT, V61, P517 7967 YANG CN, 1989, PHYS REV LETT, V63, P2144 7968 YANG JF, 1995, PHYS LETT B, V343, P249 7969 NR 21 7970 TC 1 7971 SN 0020-7748 7972 J9 INT J THEOR PHYS 7973 JI Int. J. Theor. Phys. 7974 PD AUG 7975 PY 1997 7976 VL 36 7977 IS 8 7978 BP 1717 7979 EP 1731 7980 PG 15 7981 SC Physics, Multidisciplinary 7982 GA XU738 7983 UT ISI:A1997XU73800003 7984 ER 7985 7986 PT J 7987 AU Zhang, LX 7988 Wu, YS 7989 Yang, LX 7990 Fang, MX 7991 Fan, CZ 7992 TI Relationship between bronze alloy composition and corrosion 7993 SO CHINESE SCIENCE BULLETIN 7994 DT Letter 7995 RP Zhang, LX, SHANGHAI UNIV SCI & TECHNOL,JINAN 250061,PEOPLES R CHINA. 7996 CR FAN CZ, 1992, CHINESE J CHE PHYS, V6, P479 7997 FAN CZ, 1993, SCI CHINA SER B, V36, P659 7998 WANG CS, 1995, J U SCI TECH CHINA, V25, P448 7999 WU LM, 1986, CULTURAL RELICS, V11, P76 8000 WU YS, 1992, ACTA PHYS SINICA, V1, P79 8001 NR 5 8002 TC 0 8003 SN 1001-6538 8004 J9 CHIN SCI BULL 8005 JI Chin. Sci. Bull. 8006 PD SEP 8007 PY 1997 8008 VL 42 8009 IS 17 8010 BP 1494 8011 EP 1496 8012 PG 3 8013 SC Multidisciplinary Sciences 8014 GA XU001 8015 UT ISI:A1997XU00100025 8016 ER 8017 8018 PT J 8019 AU Bi, PZ 8020 Shi, YM 8021 TI A revised approach of the two phase model for quark-gluon deconfinement 8022 phase transition 8023 SO ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS 8024 DT Article 8025 ID HARD-CORE RADIUS; FINITE TEMPERATURE; BAG CONSTANT; THERMODYNAMICS; 8026 DENSITY; CHROMODYNAMICS; PHENOMENOLOGY; RESTORATION; CHARMONIUM; 8027 SPECTRUM 8028 AB The two phase model for the quark-gluon deconfinement phase transition 8029 is modified based on the temperature and density related properties of 8030 the hadron. The revised approach is consistent with the single body 8031 description. Its consequences on the pressure and energy density of the 8032 hadron gas is investigated, and the critical value of temperature and 8033 chemical potential of the phase transition from the hadron gas to a 8034 non-interacting quark matter are calculated. Our results agree with the 8035 recent lattice gauge calculations. 8036 C1 FUDAN UNIV,DEPT PHYS 2,SHANGHAI 200433,PEOPLES R CHINA. 8037 CCAST,WORLD LAB,BEIJING 100080,PEOPLES R CHINA. 8038 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA. 8039 RP Bi, PZ, FUDAN UNIV,TD LEE PHYS LAB,SHANGHAI 200433,PEOPLES R CHINA. 8040 CR BERNARD C, HEPLAT950993 MILK CO 8041 BI PZ, 1988, J PHYS G, V14, P681 8042 BI PZ, 1989, J PHYS G, V15, P1653 8043 BI PZ, 1991, QUARK GLUON STRUCTUR 8044 BI PZ, 1992, Z PHYS C, V54, P543 8045 BROWN GE, SUNYNTG966 8046 BROWN GE, 1991, NUCL PHYS A, V535, P701 8047 BROWN GE, 1991, PHYS REV LETT, V66, P2720 8048 CLEYMANS J, 1986, Z PHYS C PART FIELDS, V33, P151 8049 CLEYMANS J, 1987, Z PHYS C, V37, P51 8050 CLEYMANS J, 1993, Z PHYS C, V57, P135 8051 DEFORCRAND P, 1985, PHYS LETT B, V160, P137 8052 HARRINGTON BJ, 1974, PHYS REV LETT, V33, P324 8053 HASHIMOTO T, 1986, PHYS REV LETT, V57, P2123 8054 HASHIMOTO T, 1988, Z PHYS C, V38, P251 8055 HATSUDA T, 1992, NUCL PHYS A, V544, C27 8056 KAPUSTA JI, 1981, PHYS REV D, V23, P2444 8057 KOCH V, 1993, NUCL PHYS A, V560, P345 8058 KOGUT JB, 1991, PHYS LETT B, V263, P101 8059 KOUNO H, 1982, Z PHYS C, V42, P209 8060 LI SX, 1991, INT J MOD PHYS A, V6, P501 8061 LINDE AD, 1979, REPORTS PROGR PHYSIC, V42, P25 8062 PISARSKI R, 1982, PHYS LETT B, V110, P155 8063 PISARSKI RD, 1982, PHYS REV D, V26, P3735 8064 PISARSKI RD, 1984, PHYS REV D, V29, P338 8065 REINHARDT H, 1986, PHYS LETT B, V173, P473 8066 RISCHKE DH, 1991, Z PHYS C, V51, P584 8067 SHURYAK EV, 1980, PHYS REP C, V61, P71 8068 TAKAGI F, 1986, PHYS REV D, V34, P1646 8069 TAKAGI F, 1987, PHYS REV D, V35, P2226 8070 UDDIN S, 1992, Z PHYS C PART FIELDS, V53, P319 8071 VOGT R, 1988, PHYS LETT B, V206, P333 8072 NR 32 8073 TC 2 8074 SN 0170-9739 8075 J9 Z PHYS C-PAR FIELD 8076 JI Z. Phys. C-Part. Fields 8077 PD AUG 8078 PY 1997 8079 VL 75 8080 IS 4 8081 BP 735 8082 EP 738 8083 PG 4 8084 SC Physics, Particles & Fields 8085 GA XT297 8086 UT ISI:A1997XT29700017 8087 ER 8088 8089 PT J 8090 AU Zhu, XH 8091 Xu, J 8092 Meng, ZY 8093 TI Dielectric and piezoelectric properties of 8094 Pb(Ni1/3Nb2/3)O-3-PbTiO3-PbZrO3 ceramics modified with bismuth and zinc 8095 substitutions 8096 SO JOURNAL OF MATERIALS SCIENCE 8097 DT Article 8098 ID ACTUATOR 8099 AB The dielectric and piezoelectric properties of the 8100 (Pb0.985Bi0.01)(Ni1/4Zn1/12Nb2/3)(x)(ZrsigmaTi1-sigma)(1-x)O-3 8101 piezoelectric ceramic system (0.2 less than or equal to x less than or 8102 equal to 0.7, 0.1 less than or equal to sigma less than or equal to 8103 0.9) were systematically investigated. The results showed that, after 8104 poling, the dielectric constant, epsilon(33)(T), increased for the 8105 tetragonal compositions but decreased for the rhombohedral 8106 compositions. Furthermore, high values of epsilon(33)(T) and 8107 piezoelectric modulus, d(31) were found for the compositions along the 8108 extension of the morphotropic phase boundary. The highest values of the 8109 planar electromechanical coupling factor, K-p, and the piezoelectric 8110 modulus, d(31), were found to be 0.70 and -274 x 10(-12) C N-1, 8111 respectively. The Curie temperature, remanent polarization, coercive 8112 field and the lattice constants of the a and c axes in relation to the 8113 Pb(Ni1/3Nb2/3)O-3 content and the Zr/Zr + Ti ratio were also determined. 8114 C1 NANJING UNIV,NATL LAB SOLID STATE MICROSTRUCT,NANJING 210093,PEOPLES R CHINA. 8115 SHANGHAI UNIV SCI & TECHNOL,SCH MAT SCI & ENGN,SHANGHAI 201800,PEOPLES R CHINA. 8116 RP Zhu, XH, NANJING UNIV,DEPT PHYS,NANJING 210093,PEOPLES R CHINA. 8117 CR ADACHI M, 1987, JPN J APPL PHYS, V29, P68 8118 GERSON R, 1960, J APPL PHYS, V31, P188 8119 HAUN MJ, 1989, FERROELECTRICS, V99, P13 8120 JAFFE B, 1971, PIEZOELECTRIC CERAMI 8121 JONTS L, 1994, SMART MATER STRUCT, V3, P147 8122 KITAMURA T, 1981, JPN J APPL PHYS, V20, P97 8123 KULCSAR F, 1959, J AM CERAM SOC, V42, P343 8124 MOON JH, 1993, J MATER RES, V8, P3184 8125 OUCHI H, 1965, J AM CERAM SOC, V48, P630 8126 OUCHI H, 1968, J AM CERAM SOC, V51, P169 8127 ROBBINS WP, 1991, IEEE T ULTRASON FERR, V38, P454 8128 TAKAHASHI M, 1970, JPN J APPL PHYS, V9, P1236 8129 ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169 8130 ZHU XH, 1996, J MATER SCI, V31, P2171 8131 NR 14 8132 TC 8 8133 SN 0022-2461 8134 J9 J MATER SCI 8135 JI J. Mater. Sci. 8136 PD AUG 15 8137 PY 1997 8138 VL 32 8139 IS 16 8140 BP 4275 8141 EP 4282 8142 PG 8 8143 SC Materials Science, Multidisciplinary 8144 GA XT184 8145 UT ISI:A1997XT18400014 8146 ER 8147 8148 PT J 8149 AU Guo, BQ 8150 Cao, WM 8151 TI Additive Schwarz methods for the h-p version of the finite element 8152 method in two dimensions 8153 SO SIAM JOURNAL ON SCIENTIFIC COMPUTING 8154 DT Article 8155 DE additive Schwarz method; the h-p version; condition number; iterative 8156 and parallel solver 8157 ID ITERATIVE METHODS; ELLIPTIC PROBLEMS; DECOMPOSITION 8158 AB Two additive Schwarz methods (ASMs) are proposed for the h-p version of 8159 the finite element method for two-dimensional elliptic problems in 8160 polygonal domains. One is based on generous overlapping of the 8161 h-version components (i.e., the linear nodal modes) and nonoverlapping 8162 of the p-version components (i.e., the high-order side modes and 8163 internal modes). Another is based on nonoverlapping for both the 8164 h-version and the p-version components. Their implementations are in 8165 parallel on the subdomain level for the h-version components and on the 8166 element level for the p-version components. The condition number for 8167 the first method is of order O(1 + ln p)(2), and for the second one is 8168 max(i)(1 + ln(H(i)p(i)/h(i)))(2), where H-i is the diameter of the 8169 subdomain Omega(i), h(i) is the characteristic diameter of the elements 8170 in Omega(i), p(i) is the maximum polynomial degree used in Omega(i), 8171 and p = max(i)p(i) . 8172 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 8173 RP Guo, BQ, UNIV MANITOBA,DEPT APPL MATH,WINNIPEG,MB R3T 2N2,CANADA. 8174 CR AINSWORTH M, 1996, SIAM J NUMER ANAL, V33, P1358 8175 BABUSKA I, 1988, SIAM J MATH ANAL, V19, P257 8176 BABUSKA I, 1988, SIAM J NUMER ANAL, V25, P837 8177 BABUSKA I, 1989, INT J NUMER METH ENG, V28, P1891 8178 BABUSKA I, 1991, SIAM J NUMER ANAL, V28, P624 8179 BJORSTAD PE, 1986, SIAM J NUMER ANAL, V23, P1097 8180 BRAMBLE JH, 1986, MATH COMPUT, V47, P103 8181 CIARLET PG, 1978, FINITE ELEMENT METHO 8182 CLEMENT P, 1975, RAIRO ANAL NUMER R, V2, P77 8183 DRYJA M, 1987, 339 NEW YORK U COUR 8184 DRYJA M, 1989, ITERATIVE METHODS LA, P273 8185 DRYJA M, 1990, P 3 INT S DOM DEC ME 8186 DRYJA M, 1994, CONT MATH, V157, P53 8187 GRISVARD P, 1985, ELLIPTIC PROBLEMS NO 8188 GUO B, 1986, COMPUT MECH, V1, P203 8189 GUO B, 1986, COMPUT MECH, V1, P21 8190 GUO BQ, 1996, NUMER MATH, V75, P59 8191 GUO BQ, 1997, IN PRESS J COMPUT AP 8192 LIONS PL, 1988, P 1 INT S DOM DEC ME 8193 MANDEL J, 1990, COMPUT METHOD APPL M, V80, P117 8194 MANDEL J, 1990, INT J NUMER METH ENG, V29, P1095 8195 ODEN JT, 1994, 9411 U TEX AUST TICA 8196 PAVARINO LF, 1992, THESIS NEW YORK U NE 8197 WIDLUDN OB, 1988, P 1 INT S DOM DEC ME 8198 WILUND OB, 1989, P 2 INT S DOM DEC ME 8199 XU JC, 1992, SIAM REV, V34, P581 8200 NR 26 8201 TC 6 8202 SN 1064-8275 8203 J9 SIAM J SCI COMPUT 8204 JI SIAM J. Sci. Comput. 8205 PD SEP 8206 PY 1997 8207 VL 18 8208 IS 5 8209 BP 1267 8210 EP 1288 8211 PG 22 8212 SC Mathematics, Applied 8213 GA XT113 8214 UT ISI:A1997XT11300003 8215 ER 8216 8217 PT J 8218 AU Xin, HP 8219 Lin, CL 8220 Wang, JX 8221 Zou, SC 8222 Shi, XH 8223 Lin, ZX 8224 Zhou, ZY 8225 Liu, ZG 8226 TI Experimental studies of N+ implantation into CVD diamond thin films 8227 SO SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES 8228 DT Article 8229 DE N+ implantation into diamond films; Raman spectroscopy; ultraviolet 8230 photoluminescence spectroscopy (UV-PL); electrically inactive 8231 deep-level impurity; C N covalent bond; carbon nitride; x-ray 8232 photoelectron spectroscopy (XPS) 8233 ID ION 8234 AB The effects of N+ implantation under various conditions on CVD diamond 8235 films were analyzed with Raman spectroscopy, four-point probe method, 8236 X-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), 8237 ultraviolet photoluminescence spectroscopy (UV-PL), Fourier 8238 transformation infrared absorption spectroscopy (FTIR) and X-ray 8239 photoelectron spectroscopy (XPS). The results show that the N+ 8240 implantation doping without any graphitization has been successfully 8241 realized when 100 keV N+ ions at a dosage of 2 x 10(16) cm(-2) were 8242 implanted into diamond films at 550 degrees C. UV-PL spectra indicate 8243 that the implanted N+ ions formed an electrically inactive deep-level 8244 impurity in diamond films. So the sheet resistance of the sample after 8245 N+ implantation changed little. Carbon nitride containing C=N covalent 8246 bond has been successfully synthesized by 100 keV, 1.2 x 10(18) N/cm(2) 8247 N+ implantation into diamond films. Most of the implanted N+ ions 8248 formed C=N covalent bonds with C atoms. The others were free state 8249 nitrogen, which existed in the excessive nitrogen layers. C(1s) XPS 8250 studies show the existence of three different C(1s) bonding states, 8251 corresponding to graphite, i-carbon and the carbon of C=N covalent 8252 bonding state, respectively, which agrees well with the Raman results. 8253 C1 CHINESE ACAD SCI,SHANGHAI INST TECH PHYS,NATL LAB INFRARED PHYS,SHANGHAI 200083,PEOPLES R CHINA. 8254 CHINESE ACAD SCI,SHANGHAI INST MET,ION BEAM LAB,SHANGHAI 200050,PEOPLES R CHINA. 8255 SHANGHAI UNIV,DEPT MAT SCI,SHANGHAI 201800,PEOPLES R CHINA. 8256 RP Xin, HP, CHINESE ACAD SCI,SHANGHAI INST MET,NATL LAB FUNCT MAT 8257 INFORMAT,SHANGHAI 200050,PEOPLES R CHINA. 8258 CR ANSELL RO, 1979, J ELECTROANAL CHEM, V98, P79 8259 BROWER KL, 1982, PHYS REV B, V26, P6040 8260 CHU WK, 1978, BACKSCATTERING SPECT 8261 HARTNETT TM, 1988, THESIS PENNSYLVANIA 8262 LIN CG, 1990, SCI CHINA, P976 8263 MITCHELL JB, 1975, J APPL PHYS, V46, P332 8264 MITCHELL JB, 1975, J APPL PHYS, V46, P335 8265 SATO S, 1991, NUCL INSTRUM METH B, V59, P1391 8266 SCHER H, 1970, J CHEM PHYS, V53, P3759 8267 XIN HP, 1995, APPL PHYS LETT, V66, P3290 8268 XIN HP, 1995, CHINESE PHYSICS, V24, P147 8269 XIN HP, 1996, SCI CHINA SER E, V26, P210 8270 ZHANG XK, 1992, VACUUM, V43, P1047 8271 ZHU W, 1990, THESIS SOLID STATE S 8272 NR 14 8273 TC 0 8274 SN 1006-9321 8275 J9 SCI CHINA SER E 8276 JI Sci. China Ser. E-Technol. Sci. 8277 PD AUG 8278 PY 1997 8279 VL 40 8280 IS 4 8281 BP 361 8282 EP 368 8283 PG 8 8284 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary 8285 GA XR161 8286 UT ISI:A1997XR16100004 8287 ER 8288 8289 PT J 8290 AU Zhu, XH 8291 Li, Q 8292 Ming, NB 8293 Meng, ZY 8294 TI Origin of optical nonlinearity for PbO, TiO2, K2O, and SiO2 optical 8295 glasses 8296 SO APPLIED PHYSICS LETTERS 8297 DT Article 8298 ID SINGLE-BEAM 8299 AB The nonlinear optical properties for the PbO, TiO2, K2O, and SiO2 8300 system have been measured by the Z-scan method. The magnitude and sign 8301 of the nonlinear refractive index n(2) were determined, as was the 8302 negative sign, which indicated a self-defocusing optical nonlinearity. 8303 Two optical absorption bands at 540 and 660 nm, respectively, are 8304 observed in the optical absorption spectra. The sources of the 8305 absorption bands are attributed to the 3 d-shell electronic transitions 8306 of Ti3+ ions from the ground state to the excited states. The origin of 8307 the negative nonlinear refractive index was the contribution of 8308 resonant electronic transition processes, which can cancel the positive 8309 nonresonant refractive index that mainly resulted from the 8310 hyperpolarizabilities of the Pb-O and Ti-O pairs. (C) 1997 American 8311 Institute of Physics. 8312 C1 NANJING UNIV,CTR ADV STUDIES SCI & TECHNOL MICROSTRUCT,NANJING 210093,PEOPLES R CHINA. 8313 CCAST,WORLD LAB,BEIJING 100080,PEOPLES R CHINA. 8314 SHANGHAI UNIV,SCH MAT SCI & ENGN,SHANGHAI 201800,PEOPLES R CHINA. 8315 RP Zhu, XH, NANJING UNIV,NATL LAB SOLID STATE MICROSTRUCT,DEPT 8316 PHYS,NANJING 210093,PEOPLES R CHINA. 8317 CR BORRELLI NF, 1991, OPTICAL PROPERTIES G, P87 8318 BORRELLI NF, 1995, J NON-CRYST SOLIDS, V185, P109 8319 FRIBERG SR, 1987, IEEE J QUANTUM ELECT, V23, P2089 8320 GAN F, 1991, OPTICAL SPECTRAL PRO, P203 8321 KAMIYA K, 1985, J MATER SCI, V20, P906 8322 MIYAJI F, 1992, APPL PHYS LETT, V60, P2060 8323 NASU H, 1987, OPT ENG, V26, P102 8324 NASU H, 1995, J NON-CRYST SOLIDS, V182, P321 8325 SHEIKBAHAE M, 1989, OPT LETT, V14, P955 8326 SHEIKBAHAE M, 1990, IEEE J QUANTUM ELECT, V26, P760 8327 SHEN YR, 1984, PRINCIPLES NONLINEAR 8328 ZHU XH, 1994, J APPL PHYS, V75, P3756 8329 NR 12 8330 TC 17 8331 SN 0003-6951 8332 J9 APPL PHYS LETT 8333 JI Appl. Phys. Lett. 8334 PD AUG 18 8335 PY 1997 8336 VL 71 8337 IS 7 8338 BP 867 8339 EP 869 8340 PG 3 8341 SC Physics, Applied 8342 GA XR278 8343 UT ISI:A1997XR27800003 8344 ER 8345 8346 PT J 8347 AU He, JH 8348 TI A generalized variational principle for 3-D unsteady transonic 8349 rotational flow in rotor using Clebsch variables 8350 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 8351 DT Article 8352 AB Via semi-inverse method /1,2/, a generalized variational principle with 8353 only 6 independent variables for 3-D unsteady compressible rotational 8354 transonic rotor-flow with shocks has been successfully formulated, 8355 which has been unknown till the present time, and the matching 8356 conditions across all unknown oscillating discontinuities (such as 8357 shocks, free surface and free trailing vortex sheets) have been deduced 8358 via variable-domain variable principle. This theory aims at rendering a 8359 general, rigorous theoretical basis for the finite element method and 8360 other direct variational methods. 8361 RP He, JH, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI 8362 200072,PEOPLES R CHINA. 8363 CR CHAN STK, 1977, FE APPL UNSTEADY TRA 8364 ECER A, 1983, AIAA J, V21, P343 8365 FINLAYSON BA, 1972, METHOD WEIGHTED RESI 8366 HE JH, IN PRESS INT J TURBO 8367 HE JH, 1996, 4 C CHIN IND APPL MA 8368 LIU GL, 1989, SCI CHINA, V32, P271 8369 LIU GL, 1991, 3 INT C INV DES OPT, P337 8370 LIU GL, 1991, J ENG THERMOPHYSICS, V12, P280 8371 LIU GL, 1993, ACTA MECH, V99, P219 8372 MCCROSKEY WJ, 1977, J FLUIDS ENG, V99, P8 8373 SELIGER RL, 1968, P ROY SOC LOND A MAT, V305, P1 8374 SERRIN J, 1959, HDB PHYSIK, V8 8375 NR 12 8376 TC 11 8377 SN 0334-0082 8378 J9 INT J TURBO JET ENGINES 8379 JI Int. J. Turbo. Jet-Engines 8380 PY 1997 8381 VL 14 8382 IS 1 8383 BP 17 8384 EP 21 8385 PG 5 8386 SC Engineering, Aerospace 8387 GA XR112 8388 UT ISI:A1997XR11200002 8389 ER 8390 8391 PT J 8392 AU He, JH 8393 TI Semi-inverse method of establishing generalized variational principles 8394 for fluid mechanics with emphasis on turbomachinery aerodynamics 8395 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 8396 DT Article 8397 DE blade-to-blade flow in turbomachinery; variational principle in fluid 8398 mechanics; semi-inverse method; trial-functional 8399 AB The semi-inverse method suggested by the author is one of the best and 8400 most convenient ways to deduce generalized variational principles with 8401 multi-variables from 1) partial differential equations (PDE) and 8402 boundary conditions (BC), or 2) known variational principles with 8403 single variable or double variables, or 3) a suitable energy 8404 trial-functional, without any crisis variational phenomenon. 8405 As a result two families of generalized variational principles for 8406 irrotational compressible blade-to-blade flow have been deduced without 8407 using the Lagrange multiplier method. The method will have a great 8408 effect not only in fluid mechanics, but also in elasticity theorems. 8409 RP He, JH, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI 8410 200072,PEOPLES R CHINA. 8411 CR CHIEN WZ, 1983, APPL MATH MECH, V4, P137 8412 FINLAYSON BA, 1972, METHOD WEIGHTED RESI 8413 HE JH, 1996, 4 C CHIN IND APPL MA 8414 LIU GL, 1990, P 1 INT S AER INT FL, P128 8415 LIU GL, 1993, INT J TURBO JET ENGI, V10, P273 8416 LIU GL, 1995, P 6 AS C FLUID MECH 8417 NR 6 8418 TC 48 8419 SN 0334-0082 8420 J9 INT J TURBO JET ENGINES 8421 JI Int. J. Turbo. Jet-Engines 8422 PY 1997 8423 VL 14 8424 IS 1 8425 BP 23 8426 EP 28 8427 PG 6 8428 SC Engineering, Aerospace 8429 GA XR112 8430 UT ISI:A1997XR11200003 8431 ER 8432 8433 PT J 8434 AU Wang, YS 8435 Sun, GX 8436 Xie, DF 8437 Bao, BR 8438 Cao, WG 8439 TI Extraction of uranium(VI) and thorium(IV) ions from nitric acid 8440 solutions by N,N,N',N'-tetrabutyladipicamide 8441 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY-LETTERS 8442 DT Article 8443 AB A new symmetrical diamide, the straight-chain alkyl substituted neutral 8444 tetrabutyladipicamide (TBAA) has been synthesized, characterized and 8445 used for the extraction of U(V) and Th(IV) from nitric acid solutions 8446 in a diluent composed of 50% 1,2,4-trimethylbenzene (TMB) and 50% 8447 kerosene (OK). Extraction distribution coefficients of U(VI) and Th(IV) 8448 as a function of aqueous nitric acid concentration, extractant 8449 concentration and temperature have been studied. Back-extraction of 8450 U(VI) and Th(IV) from organic phases by dilute nitric acid has been 8451 undertaken. From the data, the compositions of extracted species, 8452 equilibrium constants and enthalpies of extraction reactions have also 8453 been calculated. 8454 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA. 8455 RP Wang, YS, CHINESE ACAD SCI,INST NUCL RES,POB 800-204,SHANGHAI 8456 201800,PEOPLES R CHINA. 8457 CR BAO BR, 1992, J RADIOAN NUCL CH AR, V162, P391 8458 CUILLERDIER C, 1991, SEPAR SCI TECHNOL, V26, P1229 8459 MUSIKAS C, 1988, SEPAR SCI TECHNOL, V23, P1211 8460 NAIR GM, 1993, SOL EXTR ION EXCH, V11, P813 8461 SEHN CH, 1996, J RADIOANAL NUCL CHE, V212, P187 8462 SIDDAL TE, 1996, J INORG NUCL CHEM, V26, P883 8463 YIN YJ, 1985, HDB COLLEGE CHEM, P302 8464 NR 7 8465 TC 24 8466 SN 0236-5731 8467 J9 J RADIOANAL NUCL CHEM LETT 8468 JI J. Radioanal. Nucl. Chem.-Lett. 8469 PD SEP 2 8470 PY 1996 8471 VL 214 8472 IS 1 8473 BP 67 8474 EP 76 8475 PG 10 8476 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science 8477 & Technology 8478 GA XQ095 8479 UT ISI:A1996XQ09500007 8480 ER 8481 8482 PT J 8483 AU Yu, BC 8484 Chen, Y 8485 Cai, RF 8486 Huang, ZE 8487 Xiao, YW 8488 TI Synthesis and structural characterization of a novel and starlike 8489 C-60(PMS)(x)(CH3)(x) copolymer 8490 SO EUROPEAN POLYMER JOURNAL 8491 DT Article 8492 ID MAGNETIC-RESONANCE; OPTICAL-PROPERTIES; C-60; FULLERENES; SPECTROSCOPY; 8493 POLYSTYRENE; POLYMERS; STYRENE; CARBON; FORM 8494 AB A novel starlike C-60(PMS)(x)(CH3)(x) (x=1-3) copolymer was prepared by 8495 reaction of a living poly(alpha-methylstyrene) (PMS) carbanion with 8496 C-60, followed by a capping reaction with methyl iodine. The 8497 characterization techniques used are UV-vis, FT-IR, GPC, DSC, TGA, ESR, 8498 C-13 NMR, SEM, XRD, cyclic voltammetry (CV) and fluorescence 8499 spectroscopy. This starlike polymer has a visibly earthy yellow cast 8500 when compared with the unfunctionalized parent polymer (PMS), and is 8501 highly soluble in some common organic solvents. 8502 Poly(alpha-methylstyrene) is essentially transparent at wavelengths 8503 longer than 280 nm, and its main absorption band is at 250 (vs) nm. 8504 Covalent attachment of the multiple PMS arms to the C-60 core results 8505 in the bathochromic shift of the above band and the appearance of a new 8506 absorption band at 328 nm (pi-->pi*). This new band is one of the 8507 characteristic absorptions for organofullerenes. The thermal stability 8508 and oxidation/reduction activation of pure PMS are enhanced apparently 8509 by C-60 chemical modifiction. It is also found that in this copolymer 8510 there are mainly two kinds of paramagnetic species, whereas no ESR 8511 signal in pure poly(a-methylstyrene) is detected, and this indicates 8512 the non-existence of unpaired electron or free radical. (C) 1997 8513 Elsevier Science Ltd. 8514 C1 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA. 8515 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA. 8516 CR BABU GN, 1984, J POLYM SCI POL CHEM, V22, P213 8517 BALCH AL, 1992, J AM CHEM SOC, V114, P5455 8518 BERGER PA, 1992, MACROMOLECULES, V25, P7227 8519 BUNKER CE, 1995, MACROMOLECULES, V28, P3744 8520 CAO T, 1995, MACROMOLECULES, V28, P3741 8521 CHEN Y, IN PRESS EUR POLYM J 8522 CHEN Y, 1996, J POLYM SCI POL PHYS, V34, P631 8523 CHEN Y, 1996, SOLID STATE COMMUN, V97, P239 8524 CHILKOTI A, 1991, APPL SPECTROSC, V45, P209 8525 DAVID C, 1974, EUR POLYM J, V10, P1181 8526 DIEDERICH F, 1996, SCIENCE, V271, P317 8527 ELGERT KF, 1975, POLYMER, V16, P465 8528 FUJIMOTO T, 1965, J POLYM SCI A, V3, P2259 8529 GALLAGHER PK, 1992, J THERM ANAL, V38, P2247 8530 GECKELER KE, 1993, J AM CHEM SOC, V115, P3850 8531 GECKELER KE, 1994, TRENDS POLYM SCI, V2, P355 8532 GILMAN H, 1964, J ORGANOMET CHEM, V2, P447 8533 GUILLET JE, 1985, POLYM PHOTOPHYSICS P 8534 HADDON RC, 1986, CHEM PHYS LETT, V125, P459 8535 HARADA K, 1981, J APPL POLYM SCI, V26, P3395 8536 HARE JP, 1991, CHEM PHYS LETT, V177, P394 8537 HAWKER CJ, 1994, J CHEM SOC CHEM COMM, P925 8538 HAWKER CJ, 1994, MACROMOLECULES, V27, P4836 8539 HIRSCH A, 1992, ANGEW CHEM INT EDIT, V31, P766 8540 HIRSCH A, 1993, ADV MATER, V5, P859 8541 INOUE Y, 1972, MAKROMOL CHEM, V156, P207 8542 ISAACS L, 1993, HELV CHIM ACTA, V76, P1231 8543 KIMURA A, 1970, J POLYM SCI A2, V8, P643 8544 KRATSCHMER W, 1990, NATURE, V347, P354 8545 KUST EG, 1993, J AM CHEM SOC, V115, P3850 8546 KUWASHIMA SY, 1994, TETRAHEDRON LETT, V35, P4371 8547 LOY DA, 1992, J AM CHEM SOC, V114, P3977 8548 MCCORMICK HW, 1957, J POLYM SCI, V25, P488 8549 MIZOGUCHI K, 1993, J PHYS CHEM SOLIDS, V54, P1693 8550 MUTO S, 1989, J APPL PHYS, V66, P3912 8551 NEPPEL A, 1984, SPECTROCHIM ACTA A, V40, P1095 8552 OKAMURA S, 1958, J POLYM SCI, V33, P491 8553 PATIL AO, 1993, POLYM BULL, V30, P187 8554 SAMULSKI ET, 1992, CHEM MATER, V4, P1153 8555 STEVENS MP, 1975, POLYM CHEM INTRO, P63 8556 SUN YP, 1991, J INORG ORGANOMET P, V1, P3 8557 SUN YP, 1993, J AM CHEM SOC, V115, P6376 8558 TAYLOR R, 1990, J CHEM SOC CHEM COMM, P1423 8559 VOLLMERT B, 1957, POLYM CHEM, P175 8560 WEBBER SE, 1986, ENCY POLYM SCI ENG, V6, P83 8561 WEIS C, 1995, MACROMOLECULES, V28, P403 8562 WORSFOLD DJ, 1957, J POLYM SCI, V26, P299 8563 WUDL F, 1992, ACCOUNTS CHEM RES, V25, P157 8564 WYMAN DP, 1968, MAKROMOL CHEM, V115, P64 8565 NR 49 8566 TC 11 8567 SN 0014-3057 8568 J9 EUR POLYM J 8569 JI Eur. Polym. J. 8570 PD JUL 8571 PY 1997 8572 VL 33 8573 IS 7 8574 BP 1049 8575 EP 1056 8576 PG 8 8577 SC Polymer Science 8578 GA XM230 8579 UT ISI:A1997XM23000010 8580 ER 8581 8582 PT J 8583 AU Wang, BH 8584 Yuan, GX 8585 TI Compression of ECG data by vector quantization 8586 SO IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE 8587 DT Article 8588 RP Wang, BH, SHANGHAI UNIV,DEPT BIOMED ENGN,SHANGHAI 201800,PEOPLES R 8589 CHINA. 8590 CR BERGER T, 1971, RATE DISTORTION THEO 8591 FOSTER J, 1985, IEEE T INFORM THEORY, V31 8592 GRAY RM, 1984, IEEE ASSP MAG APR, P4 8593 HAMILTON PS, 1991, IEEE T BIOMED ENG, V38 8594 LINDE Y, 1986, IEEE T COMMUN, V28, P1105 8595 MAMMEN CP, 1990, IEEE T BIOMED ENG, V37 8596 SATEH MS, 1990, IEEE T BIOMED ENG, V37 8597 SHANNON CE, 1948, BELL SYST TECH J, V27, P379 8598 SHANNON CE, 1948, BELL SYST TECH J, V27, P623 8599 NR 9 8600 TC 4 8601 SN 0739-5175 8602 J9 IEEE ENG MED BIOL MAG 8603 JI IEEE Eng. Med. Biol. Mag. 8604 PD JUL-AUG 8605 PY 1997 8606 VL 16 8607 IS 4 8608 BP 23 8609 EP 26 8610 PG 4 8611 SC Engineering, Biomedical; Medical Informatics 8612 GA XL193 8613 UT ISI:A1997XL19300009 8614 ER 8615 8616 PT J 8617 AU Gao, FL 8618 TI A new way of predicting cement strength - Fuzzy logic 8619 SO CEMENT AND CONCRETE RESEARCH 8620 DT Article 8621 AB This paper is to analyse the fuzzy logic method of predicting cement 8622 strength and to calculate some samples with fuzzy models. In order to 8623 compare, samples of them are calculated with regression method. All of 8624 results are shown in both root mean square error and scattered map. (C) 8625 1997 Elsevier Science Ltd. 8626 RP Gao, FL, SHANGHAI UNIV,FUZZY ENGN RES INST,149 YAN CHANG RD,SHANGHAI 8627 200072,PEOPLES R CHINA. 8628 CR GAO FL, P 5 IFSA WORLD C, P1163 8629 GAO FL, P 6 IFSA WORLD C 95, P113 8630 GAO FL, P 7 CFSM C 94 TAI YA, P468 8631 GAO FL, 1994, J SHANGHAI U TECHNOL, P28 8632 GAO FL, 1994, J SHANGHAI U TECHNOL, P517 8633 GAO FL, 1996, CHINA BUILDING MAT S, P24 8634 ZADEH LA, 1965, INFORM CONTR, V8, P338 8635 NR 7 8636 TC 1 8637 SN 0008-8846 8638 J9 CEM CONCR RES 8639 JI Cem. Concr. Res. 8640 PD JUN 8641 PY 1997 8642 VL 27 8643 IS 6 8644 BP 883 8645 EP 888 8646 PG 6 8647 SC Materials Science, Multidisciplinary; Construction & Building Technology 8648 GA XK977 8649 UT ISI:A1997XK97700011 8650 ER 8651 8652 PT J 8653 AU Ying, TL 8654 Wang, ZJ 8655 Liu, HY 8656 Sun, K 8657 Deng, JQ 8658 TI Hydrogen peroxide biosensor based on methylene blue incorporated into 8659 nafion membrane as electron transfer mediator 8660 SO PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS 8661 DT Article 8662 DE biosensor; methylene blue; nafion; horseradish peroxidase; hydrogen 8663 peroxide 8664 AB A new amperometic biosensor for hydrogen peroxide based on methylene 8665 blue incorporated into Nafion membrane as electron transfer mediator 8666 was fabricated. It was found that methylene blue incorporated into 8667 Nafion membrane by ion-exchanging could effectively transfer electrons 8668 between horseradish peroxidase and glassy carbon electrode. 8669 Bio-electrocatalytic reduction of hydrogen peroxide al the biosensor 8670 was evaluated with respect to solution pH, temperature, operating 8671 potential and influences of ascorbic acid etc. The biosensor response 8672 exhibited fine selectivity, high sensitivity and a linear dependence on 8673 the analytic concentration range 5 x 10(-7) similar to 2 x 10(-4) 8674 mol/L. Response time less than 30 s. 8675 C1 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA. 8676 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA. 8677 CR BIFULCO L, 1994, ANAL LETT, V27, P1443 8678 DENG Q, 1994, J ELECTROANAL CHEM, V377, P191 8679 FREW JE, 1986, J ELECTROANAL CH INF, V201, P1 8680 GUADALUPE AR, 1991, ELECTROCHIM ACTA, V36, P881 8681 HURRELL HC, 1988, ANAL CHEM, V60, P254 8682 KUWABATA S, 1989, J ELECTROANAL CH INF, V261, P363 8683 LIU KE, 1989, ANAL CHEM, V61, P2599 8684 SWAMIDOSS A, 1994, CHEM SOC FARADAY T, V90, P1241 8685 NR 8 8686 TC 4 8687 SN 1000-3282 8688 J9 PROG BIOCHEM BIOPHYS 8689 JI Prog. Biochem. Biophys. 8690 PY 1997 8691 VL 24 8692 IS 3 8693 BP 254 8694 EP 258 8695 PG 5 8696 SC Biochemistry & Molecular Biology; Biophysics 8697 GA XK091 8698 UT ISI:A1997XK09100015 8699 ER 8700 8701 PT J 8702 AU Li, W 8703 Shi, DH 8704 Chao, XL 8705 TI Reliability analysis of M/G/1 queueing systems with server breakdowns 8706 and vacations 8707 SO JOURNAL OF APPLIED PROBABILITY 8708 DT Article 8709 DE server breakdowns and repairs; queues with vacations; reliability 8710 ID BERNOULLI SCHEDULES 8711 AB This note introduces reliability issues to the analysis of queueing 8712 systems, We consider an M/G/1 queue with Bernoulli vacations and sen;er 8713 breakdowns. The server uptimes are assumed to be exponential, and the 8714 server repair times are arbitrarily distributed. Using a supplementary 8715 variable method we obtain a transient solution for both queueing and 8716 reliability measures of interest. These results provide insight into 8717 the effect of server breakdowns and repairs on system performance. 8718 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 8719 NEW JERSEY INST TECHNOL,DEPT IND & MFG ENGN,NEWARK,NJ 07102. 8720 RP Li, W, CHINESE ACAD SCI,INST APPL MATH,BEIJING 100080,PEOPLES R CHINA. 8721 CR COX DR, 1955, P CAMB PHILOS SOC, V51, P433 8722 DOSHI BT, 1990, STOCHASTIC ANAL COMP 8723 HSU GH, 1988, STOCHASTIC SERVICE S 8724 KEILSON J, 1960, ANN MATH STAT, V31, P104 8725 KEILSON J, 1986, J APPL PROBAB, V23, P790 8726 SERVI LD, 1986, IEEE J SEL AREA COMM, V4, P813 8727 SHI DH, 1985, ACTA MATH APPL SINIC, V8, P101 8728 SHI DH, 1990, CHINESE J OPERAT RES, V2, P38 8729 TAKACS L, 1962, INTRO THEORY QUEUES 8730 NR 9 8731 TC 7 8732 SN 0021-9002 8733 J9 J APPL PROBAB 8734 JI J. Appl. Probab. 8735 PD JUN 8736 PY 1997 8737 VL 34 8738 IS 2 8739 BP 546 8740 EP 555 8741 PG 10 8742 SC Statistics & Probability 8743 GA XK077 8744 UT ISI:A1997XK07700023 8745 ER 8746 8747 PT J 8748 AU Wang, DW 8749 Qian, GZ 8750 Zhang, ML 8751 Farkas, LG 8752 TI Differences in horizontal, neoclassical facial canons in Chinese (Han) 8753 and North American Caucasian populations 8754 SO AESTHETIC PLASTIC SURGERY 8755 DT Article 8756 DE anthropometry; horizontal neoclassical facial canons; canon, 8757 variations; Chinese (Han) population; North American Caucasians 8758 AB To better our ability to analyze the facial disproportions of patients 8759 of Chinese ancestry, we compared the validity of four neoclassical 8760 canons of facial proportion in Chinese and North American Caucasians 8761 populations. We tested the frequency of four horizontal facial canons 8762 and their eight variations in 206 healthy adults (105 males and 101 8763 females, 18-25 years old) belonging to the predominant ethnic group 8764 (Han: 400 million) of the Chinese population, and compared them to 8765 those of 103 healthy young North American Caucasian adults. The nose 8766 width corresponded to one-quarter of the face width (the nasofacial 8767 canon) significantly more frequently in Chinese participants (51.5%) 8768 than in Caucasian adults (36.9%). The nose was narrower than 8769 one-quarter of the face width in 38.8% of North American Caucasians and 8770 in 21.8% of Chinese; this difference was also statistically 8771 significant. In defiance of the naso-oral canon, the mouths of Chinese 8772 people were significantly more often narrower than 1.5 times the nose 8773 width (71.8%), while in North American Caucasian ethnics the mouth was 8774 significantly more frequently wider (60.2%). 8775 RP Wang, DW, SHANGHAI UNIV,CHANGHAI HOSP,DEPT PLAST & RECONSTRUCT SURG,174 8776 CHANG HAI RD,SHANGHAI,PEOPLES R CHINA. 8777 CR BERGMULLER JG, 1723, ANTHROPOMETRIA 8778 BROADBENT TR, 1957, PLAST RECONSTR SURG, V20, P1 8779 CONVERSE JM, 1977, RECONSTRUCTIVE PLAST, V1, P24 8780 DAVINCI L, 1898, 1 MANOSCRITTI L DAVI 8781 DURER A, 1557, QUATRE LIVES A DURER 8782 ELSHOLTZ JS, 1663, ANTHROPOMETRIA SIVE 8783 FARKAS LG, 1981, ANTHROPOMETRY HEAD F 8784 FARKAS LG, 1985, PLAST RECONSTR SURG, V75, P328 8785 FARKAS LG, 1987, ANTHROPOMETRIC FACIA 8786 FARKAS LG, 1987, CLIN PLAST SURG, V14, P599 8787 FARKAS LG, 1994, ANTHROPOMETRY HEAD F 8788 GONZALEZULLOA M, 1975, CIRURGIA PLASTICA IB, V1, P13 8789 HAJNIS K, 1994, ANTHROPOMETRY HEAD F, P201 8790 HUGHES DR, 1967, MAN, V2, P119 8791 ROGERS BO, 1974, CLIN PLAST SURG, V1, P439 8792 SEGHERS MJ, 1964, PLAST RECONSTR SURG, V34, P382 8793 SHAO XG, 1985, HDB ANTHROPOMETRY 8794 TESSIER P, 1987, ANTHROPOMETRIC FACIA, R9 8795 NR 18 8796 TC 6 8797 SN 0364-216X 8798 J9 AESTHET PLAST SURG 8799 JI Aesthet. Plast. Surg. 8800 PD JUL-AUG 8801 PY 1997 8802 VL 21 8803 IS 4 8804 BP 265 8805 EP 269 8806 PG 5 8807 SC Surgery 8808 GA XK111 8809 UT ISI:A1997XK11100011 8810 ER 8811 8812 PT J 8813 AU Ye, ZM 8814 TI A new finite element formulation for planar elastic deformation 8815 SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING 8816 DT Article 8817 DE finite element model; planar elastic deformation; 3-D solution 8818 AB For the stress analysis of planar deformable bodies, we usually refer 8819 to either plane stress or plane strain hypothesis. Three-dimensional 8820 analysis is required when neither hypothesis is applicable, e.g. bodies 8821 with finite thickness. In this paper, we derive an 'exact' solution for 8822 the plane stress problem based on a less restrictive hypothesis than 8823 sigma(z) = 0. By requiring the out-plane stress sigma(z) to be a 8824 harmonic function, the three-dimensional solution is obtained. In 8825 addition, we present a two-dimensional finite element for planar 8826 analysis of problems where the thickness of the body 2h is comparable 8827 to other characteristic dimensions. This element is presented as a 8828 substitute for classical plane stress and plane strain finite elements. 8829 The typical plane stress and plane strain state are recovered in the 8830 case where h --> 0 and the case h --> infinity, respectively. As an 8831 example for the application of such formulation, the behaviour of a 8832 concrete gravity dam is investigated. It is shown that this structure, 8833 typically analysed by using plane strain hypothesis, has its out-plane 8834 stress underestimated. (C) 1997 by John Wiley & Sons, Ltd. 8835 RP Ye, ZM, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,149 YAN CHANG 8836 RD,SHANGHAI 200072,PEOPLES R CHINA. 8837 CR BROEK D, 1982, ELEMENTARY ENG FRACT 8838 FUNG YC, 1965, FDN SOLID MECH 8839 LOVE AEH, 1927, TREATISE MATH THEORY 8840 PAL N, 1976, J STRUCT DIV P ASCE, V102 8841 TIMOSHENKO SP, 1954, THEORY ELASTICITY 8842 YE ZM, 1987, MECH PRACTICE, V8, P26 8843 ZHOU S, 1988, ENG FRACT MECH, V29, P41 8844 NR 7 8845 TC 5 8846 SN 0029-5981 8847 J9 INT J NUMER METHOD ENG 8848 JI Int. J. Numer. Methods Eng. 8849 PD JUL 30 8850 PY 1997 8851 VL 40 8852 IS 14 8853 BP 2579 8854 EP 2591 8855 PG 13 8856 SC Engineering, Multidisciplinary; Mathematics, Applied 8857 GA XJ723 8858 UT ISI:A1997XJ72300002 8859 ER 8860 8861 PT J 8862 AU Cao, WG 8863 Ding, WY 8864 Ding, WL 8865 Huang, H 8866 TI A facile synthesis of dimethyl 4-(alpha-furyl)- and 8867 4-(alpha-thienyl)-6-perfluoroalkylisophthalates via acyclic precursors 8868 SO JOURNAL OF FLUORINE CHEMISTRY 8869 DT Article 8870 DE phosphoranes; acyclic precursors; intramolecular Wittig reaction; 8871 dimethyl 4-(alpha-furyl)-perfluoroalkylisophthalates; 8872 4-(alpha-thienyl)-6-perfluoroalkylisophthalates 8873 AB In the presence of K2CO3, reaction of methyl propynoate 2 with 8874 (alpha-furoyl)methyltriphenylphosphorium bromide la or 8875 (alpha-thienacyl)methyltriphenylphosphonium bromide Ib gave methyl 8876 4-(alpha-furoyl)-2-(triphenylphosphoranylidene)but-3-enoate 4a or 8877 methyl 4-(alpha-thienacyl)-2-(triphenylphosphoranylidene)but-3-enoate 8878 4b as the major product. Phosphorane 4a or 4b could react further with 8879 methyl perfluoroalkynoates 5a-b to afford dimethyl 8880 2-(alpha-furoyl-1-perfluoroalkylvinyl)-4-(triphenylphosphoranylidene)pen 8881 t-2-enedioates 7a-b or dimethyl 8882 2-(alpha-thienacyl-1-perfluoroalkylvinyl)-4-(triphenylphosphoranylidene) 8883 pent-2-enedioates 7c-d, respectively. Dimethyl 8884 4-(alpha-furyl)-6-perfluoroalkylisophthalates 8a-b or dimethyl 8885 4-(alpha-thienyl) -6-perfluoroalkylisophthalates 8c-d were prepared in 8886 high yields via intramolecular Wittig reaction of phosphoranes 7a-d 8887 under heating in a sealed tube in xylenes. The structures of these 8888 compounds were confirmed by IR spectroscopy, mass spectrometry, H-1, 8889 F-19 and C-13 NMR spectra, and elemental analyses. Reaction mechanisms 8890 of the formation of compounds 4, 6, 7 and 8 were also proposed. (C) 8891 Elsevier Science S.A. 8892 RP Cao, WG, SHANGHAI UNIV,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA. 8893 CR BANKS RE, 1979, ORGANOFLUORINE CHEM 8894 CAO WG, 1997, J FLUORINE CHEM, V81, P153 8895 DING WY, 1987, TETRAHEDRON LETT, V28, P81 8896 DING WY, 1992, SYNTHESIS-STUTTGART, P635 8897 DING WY, 1993, CHINESE J CHEM, V11, P81 8898 DING WY, 1993, J CHEM SOC P1, P855 8899 DING WY, 1995, CHINESE J CHEM, V13, P468 8900 HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47 8901 JAMES DS, 1962, J ORG CHEM, V27, P3346 8902 TAO WT, 1983, YOUJI HUAXUE, P129 8903 WELCH JT, 1987, TETRAHEDRON, V43, P3123 8904 NR 11 8905 TC 4 8906 SN 0022-1139 8907 J9 J FLUORINE CHEM 8908 JI J. Fluor. Chem. 8909 PD JUN 8910 PY 1997 8911 VL 83 8912 IS 1 8913 BP 21 8914 EP 26 8915 PG 6 8916 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic 8917 GA XJ678 8918 UT ISI:A1997XJ67800004 8919 ER 8920 8921 PT J 8922 AU Dong, YD 8923 Ma, XM 8924 Yang, YZ 8925 Liu, FX 8926 Wang, GM 8927 TI Mechanically driven alloying and structural evolution of 8928 nanocrystalline Fe60Cu40 powder 8929 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 8930 DT Article 8931 ID SYSTEM; AMORPHIZATION 8932 AB Highly supersaturated nanocrystalline fee Fe60Cu40 alloy has been 8933 prepared by mechanical alloying of elemental powders. The phase 8934 transformation is monitored by X-ray diffraction (XRD), Mossbauer 8935 spectroscopy and extended X-ray absorption fine structure (EXAFS). The 8936 powder obtained after milling is of single fee structure with grain 8937 size of nanometer order. The Mossbauer spectra of the milled powder can 8938 be fitted by two subspectra whose hyperfine magnetic fields are 16 MA/m 8939 and 20 MA/m while that of pure Fe disappeared. EXAFS results show that 8940 the radial structure function (RSF) of Fe K-edge changed drastically 8941 and finally became similar to that of reference Cu K-edge, while that 8942 of Cu K-edge nearly keeps unchanged in the process of milling. 8943 These,imply that bcc Fe really transforms to fee structure and alloying 8944 between Fe and Cu occurs truly on an atomic scale. EXAFS results 8945 indicate that iron atoms tend to segregate at the boundaries and Cu 8946 atoms are rich in the fee lattice. Annealing experiments show that the 8947 Fe atoms at the interfaces are easy to cluster to alpha-Fe at a lower 8948 temperature, whereas the iron atoms in the lattice will form gamma-Fe 8949 first at temperature above 350 degrees C, and then transform to bcc Fe. 8950 C1 S CHINA UNIV TECHNOL,DEPT MECH ENGN 2,GUANGZHOU 510641,PEOPLES R CHINA. 8951 UNIV SCI & TECHNOL CHINA,LAB STRUCT ANAL,HEFEI 230026,PEOPLES R CHINA. 8952 RP Dong, YD, SHANGHAI UNIV,SCH MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R 8953 CHINA. 8954 CR ECKERT J, 1988, APPL PHYS LETT, V55, P117 8955 FUKUNAGA T, 1990, J NON-CRYST SOLIDS, V117, P700 8956 FUKUNAGA T, 1991, MAT SCI ENG A-STRUCT, V134, P863 8957 GAFFET E, 1991, MAT SCI ENG A-STRUCT, V134, P1380 8958 JIMAN PS, 1983, ANN REV MAT SCI, V13, P279 8959 JOHNSON WL, 1986, PROG MATER SCI, V30, P81 8960 KOCH CC, 1983, APPL PHYS LETT, V43, P1017 8961 SCHULTZ L, 1988, MATER SCI ENG, V97, P15 8962 SHINGU PH, 1990, SOLID STATE POWDER P, P21 8963 WILLIAMSON GK, 1953, ACTA METALL, V1, P23 8964 YANG YZ, 1992, ACTA METALL SINICA, V28, A399 8965 NR 11 8966 TC 0 8967 SN 1005-0302 8968 J9 J MATER SCI TECHNOL 8969 JI J. Mater. Sci. Technol. 8970 PD JUL 8971 PY 1997 8972 VL 13 8973 IS 4 8974 BP 354 8975 EP 358 8976 PG 5 8977 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 8978 Engineering 8979 GA XJ724 8980 UT ISI:A1997XJ72400032 8981 ER 8982 8983 PT J 8984 AU Li, YZ 8985 Yan, MS 8986 Fang, RS 8987 TI Two-area power system costing by the cumulant method using available 8988 capacity distribution 8989 SO ELECTRIC POWER SYSTEMS RESEARCH 8990 DT Article 8991 DE two-area power system; stochastic production simulation; equivalent 8992 available capacity; cumulant method 8993 AB This paper extends the cumulant method using available capacity 8994 distribution to evaluate the production costs of two-area power 8995 systems, in which the random characters of generating available 8996 capacity and the transmission capacity limit have been considered 8997 accurately. By means of the independence of both systems equivalent 8998 available capacity based on a chronological load curve, the 8999 single-variant cumulant and single-variant Gram-Charlier Series A 9000 approximation are adequate for the two-area production simulation. The 9001 method gives a new approach to stochastic production simulation for a 9002 two-area power system, and is easily extended to three-areas or 9003 multi-areas. Sample studies show favourable accuracy and efficiency 9004 results. (C) 1997 Elsevier Science S.A. 9005 RP Li, YZ, SHANGHAI UNIV,POB 9,SHANGHAI 200072,PEOPLES R CHINA. 9006 CR AHSAN Q, 1983, IEEE T POWER APPAR S, V102, P2155 9007 AHSAN Q, 1985, IEEE T POWER AP SYST, V104, P2140 9008 BALERIAUX H, 1967, REVU E, V5, P3 9009 BOOTH RR, 1972, IEEE T PAS, V91, P62 9010 HYEDT GT, 1980, IEEE T PAS 99, V5, P1916 9011 NOYES LR, 1983, IEEE T PAS, V2, P433 9012 RAU NS, 1980, IEEE T POWER APPARAT, V99, P1908 9013 SAGER MA, 1972, IEEE T PAS, V91, P2114 9014 STREMD JP, 1980, IEEE T PAS 99, V5, P1947 9015 YEN MS, 1992, 3 BIENN IND EL POW A, P11 9016 ZAHAVI J, 1977, IEEE T POWER APPAR S, V96, P285 9017 NR 11 9018 TC 1 9019 SN 0378-7796 9020 J9 ELEC POWER SYST RES 9021 JI Electr. Power Syst. Res. 9022 PD JUL 9023 PY 1997 9024 VL 42 9025 IS 1 9026 BP 55 9027 EP 61 9028 PG 7 9029 SC Engineering, Electrical & Electronic 9030 GA XJ526 9031 UT ISI:A1997XJ52600011 9032 ER 9033 9034 PT J 9035 AU Yen, MS 9036 Zhang, SH 9037 TI An efficient method for pumped-storage planning and evaluation 9038 SO ELECTRIC POWER SYSTEMS RESEARCH 9039 DT Article 9040 DE pumped-storage plants; evaluation; production costing; optimization; 9041 planning 9042 AB An efficient method for systematic planning and evaluation of 9043 pumped-storage plants is developed, in which a detailed operation 9044 simulation using an hourly chronological probabilistic production 9045 costing model is introduced so that the time dependency of storage 9046 operation policies through the charging and discharging processes is 9047 reflected. The optimum capacity of pumped-storage plants is chosen to 9048 minimize the overall system cost. In addition, peaking constraints are 9049 incorporated both in the thermal unit planning model and in the daily 9050 operation simulation model. So it is well-suited to the planning and 9051 evaluation of peaking plants. In this paper, a detailed description of 9052 the algorithm is provided and a real application to the East China 9053 Electric Power System is discussed. (C) 1997 Elsevier Science S.A. 9054 RP Yen, MS, SHANGHAI UNIV,AUTOMAT SCH,POB 9,SHANGHAI 200072,PEOPLES R 9055 CHINA. 9056 CR EA1411 EPRI, V1 9057 *E CHIN EL POW ADM, 1990, ECEPA REP 9058 FINGER S, 1975, 75009WP MITEL 9059 LEE BY, 1987, IEEE T POWER SYST, V2, P486 9060 PARK YM, 1985, IEEE T POWER APPARAT, V104, P390 9061 YEN MS, 1992, P 3 BIENN S IND EL P, P1 9062 YEN MS, 1992, P 3 BIENN S IND EL P, P11 9063 YEN MS, 1993, IEE CONF PUBL, P578 9064 NR 8 9065 TC 1 9066 SN 0378-7796 9067 J9 ELEC POWER SYST RES 9068 JI Electr. Power Syst. Res. 9069 PD JUL 9070 PY 1997 9071 VL 42 9072 IS 1 9073 BP 63 9074 EP 70 9075 PG 8 9076 SC Engineering, Electrical & Electronic 9077 GA XJ526 9078 UT ISI:A1997XJ52600012 9079 ER 9080 9081 PT J 9082 AU Feng, SX 9083 Duan, YS 9084 TI About the energy of the universe - Reply 9085 SO CHINESE PHYSICS LETTERS 9086 DT Editorial Material 9087 C1 LANZHOU UNIV,INST THEORET PHYS,LANZHOU 730000,PEOPLES R CHINA. 9088 RP Feng, SX, SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 9089 CR DUAN YS, 1963, ACTA PHYS SINICA, V19, P589 9090 DUAN YS, 1996, COMMUN THEOR PHYS, V25, P99 9091 EINSTEIN A, 1955, MEANING RELATIVITY 4, P90 9092 FENG SX, 1996, CHINESE PHYS LETT, V13, P409 9093 NR 4 9094 TC 0 9095 SN 0256-307X 9096 J9 CHIN PHYS LETT 9097 JI Chin. Phys. Lett. 9098 PY 1997 9099 VL 14 9100 IS 5 9101 BP 400 9102 EP 400 9103 PG 1 9104 SC Physics, Multidisciplinary 9105 GA XH742 9106 UT ISI:A1997XH74200022 9107 ER 9108 9109 PT J 9110 AU Ma, XM 9111 Ling, Z 9112 Gang, J 9113 Dong, YD 9114 TI Preparation and structure of bulk nanostructured WC-Co alloy by high 9115 energy ball-milling 9116 SO JOURNAL OF MATERIALS SCIENCE LETTERS 9117 DT Article 9118 RP Ma, XM, SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R 9119 CHINA. 9120 CR GLEITER H, 1984, Z METALLKD, V75, P263 9121 MA XM, IN PRESS J ALLOYS CO 9122 PETZOLDT F, 1987, MATER LETT, V5, P280 9123 SHINGU PH, 1988, T JIM S, V29, P3 9124 YANG YZ, 1992, CHINESE PHYS LETT, V5, P266 9125 YANG YZ, 1994, CHINESE SCI BULL, V17, P1626 9126 NR 6 9127 TC 3 9128 SN 0261-8028 9129 J9 J MATER SCI LETT 9130 JI J. Mater. Sci. Lett. 9131 PD JUN 15 9132 PY 1997 9133 VL 16 9134 IS 12 9135 BP 968 9136 EP 970 9137 PG 3 9138 SC Materials Science, Multidisciplinary 9139 GA XG479 9140 UT ISI:A1997XG47900002 9141 ER 9142 9143 PT J 9144 AU Yang, YZ 9145 Zhu, YL 9146 Li, QS 9147 Ma, XM 9148 Dong, YD 9149 Wang, GM 9150 Wei, SQ 9151 Liu, FX 9152 Chuang, YZ 9153 TI Local structure of mechanically alloyed nanocrystalline BCC Fe80Cu20 9154 solid solution 9155 SO PHYSICA B 9156 DT Article 9157 DE mechanical alloying; nanocrystalline solid solutions; fine structure; 9158 EXAFS 9159 ID FE-CU SYSTEM; THERMAL-STABILITY; DECOMPOSITION; IRON 9160 AB The fine structure of mechanically alloyed BCC Fe80Cu20 solid solution 9161 has been studied by X-ray diffraction (XRD), Mossbauer spectroscopy and 9162 the extended X-ray absorption fine structure (EXAFS) technique. The 9163 appearance of Mossbauer spectrum with a broad hyperfine magnetic field 9164 distribution demonstrates that the alloying is at an atomic level and 9165 complex forms of coordination exist in the solution. EXAFS results 9166 further prove the atomic alloying from the clear observation of Cu 9167 atoms taking on BCC coordination in the solution. Furthermore, a 9168 reduction in the nearest-neighbor coordination number of a center Cu 9169 atom but not for a center Fe atom due to surface effect and structure 9170 defects indicates the composition nonuniformity that Cu atoms are rich 9171 at interface and Fe atoms are slightly rich in the core of a BCC 9172 nanocrystal. 9173 C1 SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R CHINA. 9174 UNIV SCI & TECHNOL CHINA,CTR STRUCT ANAL,HEFEI 230026,PEOPLES R CHINA. 9175 ACAD SINICA,INST MET RES,SHENYANG 110015,PEOPLES R CHINA. 9176 RP Yang, YZ, GUANGDONG UNIV TECHNOL,DEPT MAT SCI & ENGN,GUANGZHOU 9177 510090,PEOPLES R CHINA. 9178 CR DICICCO A, 1994, PHYS REV B, V50, P12386 9179 DRBOHLAV O, 1995, ACTA METALL MATER, V43, P1799 9180 ECKERT J, 1993, J APPL PHYS, V73, P131 9181 ECKERT J, 1993, J APPL PHYS, V73, P2794 9182 HUANG JY, 1994, NANOSTRUCT MATER, V4, P1 9183 JIANG JZ, 1993, APPL PHYS LETT, V63, P1056 9184 JIANG JZ, 1993, APPL PHYS LETT, V63, P2768 9185 LIU FX, 1993, CHINESE SCI BULL, V38, P1565 9186 MA E, 1993, J APPL PHYS, V74, P955 9187 SCHILLING PJ, 1996, APPL PHYS LETT, V68, P767 9188 SUMIYAMA K, 1985, T JPN I MET, V26, P217 9189 UENISHI K, 1992, Z METALLKD, V83, P132 9190 YANG YZ, 1992, ACTA METALL SINICA, V28, A399 9191 YANG YZ, 1994, ACTA PHYS SIN-OV ED, V3, P567 9192 YANG YZ, 1994, J MATER SCI TECHNOL, V10, P135 9193 YAVARI AR, 1992, PHYS REV LETT, V68, P2235 9194 NR 16 9195 TC 2 9196 SN 0921-4526 9197 J9 PHYSICA B 9198 JI Physica B 9199 PD MAY 9200 PY 1997 9201 VL 233 9202 IS 2-3 9203 BP 119 9204 EP 124 9205 PG 6 9206 SC Physics, Condensed Matter 9207 GA XG331 9208 UT ISI:A1997XG33100004 9209 ER 9210 9211 PT J 9212 AU Lu, MG 9213 Yu, G 9214 TI On a problem of sums of mixed powers .2. 9215 SO CHINESE ANNALS OF MATHEMATICS SERIES B 9216 DT Article 9217 DE mixed power; Warings problem and variants; asymptotic formulae 9218 ID WARING PROBLEM 9219 AB Let R-b,R-c(n) denote the number of representations of n as the sum of 9220 one square, four cubes, one b-th power and one c-th power of natural 9221 numbers. It is shown that if b = 4, 4 less than or equal to c less than 9222 or equal to 35, or b = 5,5 less than or equal to c less than or equal 9223 to 13, or b = 6,6 less than or equal to c less than or equal to 9, or b 9224 = c = 7, then R-b,R-c(n) much greater than n(5/6+1/b+1/c) for all 9225 sufficiently large n. 9226 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 9227 UNIV GEORGIA,DEPT MATH,ATHENS,GA 30602. 9228 CR BRUDERN J, 1987, J LOND MATH SOC, V35, P233 9229 BRUDERN J, 1988, MATH P CAMBRIDGE PHI, V103, P27 9230 HOOLEY C, 1981, RECENT PROGR ANAL NU, V1, P127 9231 LU MG, 1991, ACTA ARITH, V58, P89 9232 LU MG, 1991, SCI CHINA SER A, V34, P385 9233 SELBERG A, 1954, J INDIAN MATH SOC, V18, P83 9234 VAUGHAN RC, 1984, TOPICS CLASSICAL NUM, V34, P1585 9235 VAUGHAN RC, 1986, J REINE ANGEW MATH, V365, P122 9236 VAUGHAN RC, 1989, ACTA MATH-DJURSHOLM, V162, P1 9237 WOOLEY TD, 1992, ANN MATH, V135, P131 9238 NR 10 9239 TC 0 9240 SN 0252-9599 9241 J9 CHIN ANN MATH SER B 9242 JI Chin. Ann. Math. Ser. B 9243 PD APR 9244 PY 1997 9245 VL 18 9246 IS 2 9247 BP 243 9248 EP 248 9249 PG 6 9250 SC Mathematics 9251 GA XG384 9252 UT ISI:A1997XG38400011 9253 ER 9254 9255 PT J 9256 AU Ding, WZ 9257 Olsen, SE 9258 TI Reactions between multicomponent slags and Mn-Fe-Si-C alloys: 9259 Equilibrium and stoichiometry 9260 SO SCANDINAVIAN JOURNAL OF METALLURGY 9261 DT Article 9262 DE manganese ferroalloys; equilibrium relations; reaction stoichiometry; 9263 equilibrium diagrams 9264 AB Background/aims: The purpose was to establish equilibrium and 9265 stoichiometric relations associated with production of manganese 9266 ferroalloys, and to determine experimentally equilibrium distribution 9267 between multicomponent slags and Mn-Fe-Si-C-sat alloys. 9268 Methods: Measurements were carried out in a resistance furnace in an 9269 argon and carbon monoxide atmosphere in the temperature range 1350 9270 degrees C to 1500 degrees C. Graphite crucibles were used. Only a small 9271 amount of slag was charged to expose both metal and slag to the gas 9272 phase. In this way, complete equilibrium was established relatively 9273 fast. Metal samples were analyzed by wet chemical methods and slag 9274 samples by electron microprobe analysis. 9275 Results and conclusions: A thermodynamic analysis has been made and a 9276 graphical method is developed for simultaneous description of 9277 equilibrium and stoichiometric relations in slag diagrams. The results 9278 of equilibrium measurements are compared with previous results, and the 9279 effect of adding MgO to the slag and Fe to the metal is especially 9280 discussed. 9281 C1 NORWEGIAN UNIV SCI & TECHNOL,DEPT MET,N-7034 TRONDHEIM,NORWAY. 9282 RP Ding, WZ, SHANGHAI UNIV,DEPT MET,SHANGHAI 200072,PEOPLES R CHINA. 9283 CR *NAT BUR STAND, 1985, JANAF THERM TABL 9284 BARCZA NA, 1981, CAN METAL Q, V20, P285 9285 BARIN I, 1989, THERMOCHEMICAL DATA 9286 BLOISE R, 1990, P INT S FERR NON FER, P75 9287 CHIPMAN J, 1963, T METALL SOC AIME, V227, P473 9288 DING WZ, 1993, THESIS NORWEGIAN I T 9289 DING WZ, 1996, METALL MATER TRANS B, V27, P5 9290 ELYUTIN VP, 1961, PRODUCTION FERROALLO 9291 GZIELO A, 1986, NEUE HUTTE, P100 9292 KOR GJW, 1979, METAL T B, V10, P367 9293 LEE YE, 1980, CAN METALL Q, V19, P315 9294 OLSEN SE, 1995, P 7 INT FERR C, P591 9295 RANKIN WJ, 1978, 1959 NIM 9296 RISS M, 1967, PRODUCTION FERROALLO 9297 TANAKA A, 1980, TETSU TO HAGANE, V66, P1474 9298 TURKDOGAN ET, 1958, T I MIN METALL, V67, P573 9299 TUSET JK, 1970, 340358 SINTEF 9300 TUSET JK, 1970, 340420 SINTEF 9301 NR 18 9302 TC 3 9303 SN 0371-0459 9304 J9 SCAND J METALL 9305 JI Scand. J. Metall. 9306 PD DEC 9307 PY 1996 9308 VL 25 9309 IS 6 9310 BP 232 9311 EP 243 9312 PG 12 9313 SC Metallurgy & Metallurgical Engineering 9314 GA XG283 9315 UT ISI:A1996XG28300001 9316 ER 9317 9318 PT J 9319 AU Zhu, ST 9320 Shen, WD 9321 TI Light trajectory in geometrical optics and metric optics 9322 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY 9323 DT Article 9324 DE light trajectory; geometrical optics; metric optics; Fermat's 9325 principle; null geodesic 9326 ID STRONG-LASER PLASMA; RIEMANNIAN GEOMETRY 9327 AB The light trajectory in an inhomogeneous medium is studied by the 9328 variation of Lagrangians L and L which correspond to Fermat's principle 9329 in the geometrical optics and the null geodesic in the metric optics, 9330 respectively. The relation between the metric coefficients of the 9331 three-dimensional space and of the four-dimensional space-time is 9332 established. The physical meaning of the equivalence and difference of 9333 both the descriptions is revealed. It is shown that Fermat's principle 9334 is a direct result of the null geodesic. 9335 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 9336 RP Zhu, ST, CHINESE ACAD SCI,SHANGHAI INST OPT & FINE MECH,SHANGHAI 9337 201800,PEOPLES R CHINA. 9338 CR BORN M, 1975, PRINCIPLES OPTICS 9339 GORDON W, 1923, ANN PHYS-BERLIN, V72, P421 9340 GUO QZ, 1995, ACTA PHYS SINICA, V44, P210 9341 GUO QZ, 1995, ACTA PHYS SINICA, V44, P396 9342 SHEN WD, 1995, INT J THEOR PHYS, V34, P2085 9343 SHEN WD, 1995, INT J THEOR PHYS, V34, P2095 9344 ZHU ST, 1987, J OPT SOC AM B, V4, P739 9345 ZHU ST, 1988, P TOP M LAS MAT LAS, P190 9346 ZHU ST, 1989, ACTA PHYS SINICA, V38, P1167 9347 ZHU ST, 1989, ACTA PHYS SINICA, V38, P559 9348 ZHU ST, 1993, ACTA PHYS SINICA, V42, P1438 9349 ZHU ST, 1993, ACTA PHYS SINICA, V42, P1471 9350 ZHU ST, 1995, INT J THEOR PHYS, V34, P169 9351 NR 13 9352 TC 2 9353 SN 1006-9283 9354 J9 SCI CHINA SER A 9355 JI Sci. China Ser. A-Math. Phys. Astron. 9356 PD JUL 9357 PY 1997 9358 VL 40 9359 IS 7 9360 BP 755 9361 EP 760 9362 PG 6 9363 SC Mathematics, Applied; Mathematics 9364 GA XG055 9365 UT ISI:A1997XG05500011 9366 ER 9367 9368 PT J 9369 AU Liu, HY 9370 Ying, TL 9371 Sun, K 9372 Li, HH 9373 Qi, DY 9374 TI Reagentless amperometric biosensors highly sensitive to hydrogen 9375 peroxide, glucose and lactose based on N-methyl phenazine methosulfate 9376 incorporated in a Nafion film as an electron transfer mediator between 9377 horseradish peroxidase and an electrode 9378 SO ANALYTICA CHIMICA ACTA 9379 DT Article 9380 DE biosensors; nafion; N-methyl phenazine methosulfate; horseradish 9381 peroxidase; hydrogen peroxide; glucose oxidase; beta-galactosidase; 9382 glucose; lactose 9383 ID CYTOCHROME-C PEROXIDASE; SILK FIBROIN MEMBRANE; ENZYME ELECTRODES; 9384 ELECTROCHEMICAL-BEHAVIOR; GRAPHITE-ELECTRODES; PYROLYTIC-GRAPHITE; 9385 SHUTTLE; SENSOR; FERROCENE; TETRATHIAFULVALENE 9386 AB Reagentless biosensors highly sensitive to hydrogen peroxide, glucose 9387 and lactose have been developed by immobilizing horseradish peroxidase 9388 (HRP), glucose oxidase (GOD) and beta-galactosidase (GAL) on 9389 Nafion-N-methyl phenazine methosulfate modified electrode. The cationic 9390 exchange of a perfluorosulfonic acid cation-exchange polymer (Nafion) 9391 film coated on a glassy carbon electrode was used to provide high local 9392 concentrations of the N-methyl phenazine ion in the Nafion film via a 9393 process of ion exchange from the solution. The incorporated N-methyl 9394 phenazine ions displayed an electrochemical behavior different from 9395 that in aqueous solution. Cyclic voltammetry and chronamperometry were 9396 employed to demonstrate the suitability of electron transfer between 9397 immobilized HRP and a glassy carbon electrode via N-methyl phenazine 9398 methosulfate (NMP) in a Nafion film. A hydrogen peroxide biosensor, 9399 prepared by immobilization of HRP alone, provided a detection limit of 9400 75 nM. Comparison of the NMP-mediated biosensor to the mediatorless 9401 biosensor indicated that the high sensitivity of the biosensor to 9402 hydrogen peroxide arose from the high efficiency of bioelectrocatalytic 9403 reduction of hydrogen peroxide via NMP incorporated in the Nafion film. 9404 Coimmobilization of HRP and GOD was employed to establish the 9405 feasibility of highly effective bienzyme-based biosensors for low 9406 glucose concentrations. Addition of GAL to the glucose biosensor 9407 provided a sensitive response to lactose, which illustrated the 9408 suitability of trienzyme-based biosensors. Performance and 9409 characteristics of the biosensors were evaluated with respect to 9410 response time, detection limit, selectivity, and dependence on applied 9411 potential, thickness of the Nafion film, temperature and pH as well as 9412 operating and storage stability. 9413 C1 WEIMEI COOPERAT HANGZHOU,CLIN DEPT,HANGZHOU 310000,PEOPLES R CHINA. 9414 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R 9415 CHINA. 9416 CR 1991, SIGMA CHEM CATALOGUE, P771 9417 ANDRIEUX CP, 1990, J ELECTROANAL CH INF, V296, P117 9418 ARMSTRONG FA, 1993, ANALYST, V118, P973 9419 AUDEBERT P, 1989, J CHEM SOC CHEM COMM, P939 9420 BIFULCO L, 1994, ANAL LETT, V27, P1443 9421 CASS AEG, 1984, ANAL CHEM, V56, P667 9422 FURBEE JW, 1993, ANAL CHEM, V65, P1654 9423 GARCIA O, 1990, J ELECTROANAL CH INF, V279, P79 9424 GIERKE TD, 1982, PERFLUORINATED IONOM, V180 9425 GORTON L, 1991, ANAL CHIM ACTA, V249, P43 9426 GORTON L, 1992, ANALYST, V117, P1235 9427 HAMID JA, 1989, ANALYST, V114, P1587 9428 HO WO, 1993, J ELECTROANAL CHEM, V351, P185 9429 JENSEN MH, 1994, J ELECTROANAL CHEM, V377, P131 9430 KAMIN RA, 1980, ANAL CHEM, V52, P1198 9431 KATAKIS I, 1994, J AM CHEM SOC, V116, P3617 9432 KULYS J, 1990, BIOELECTROCH BIOENER, V24, P305 9433 LIU H, 1995, ANAL P, V32, P375 9434 LIU HY, 1995, ANAL CHIM ACTA, V300, P65 9435 LIU HY, 1995, ELECTROCHIM ACTA, V40, P1845 9436 LIU HY, 1996, ANAL CHIM ACTA, V329, P97 9437 LIU HY, 1996, TALANTA, V43, P111 9438 LIU YC, 1995, ANAL CHIM ACTA, V316, P65 9439 LIU YC, 1996, ELECTROCHIM ACTA, V41, P77 9440 MULCHANDANI A, 1995, ANAL CHEM, V67, P94 9441 PFEIFFER D, 1990, J CHEM TECHNOL BIOT, V49, P255 9442 PISHKO MV, 1990, ANGEW CHEM INT EDIT, V29, P82 9443 POPESCU IC, 1995, BIOSENS BIOELECTRON, V10, P443 9444 QIAN JH, 1995, J ELECTROANAL CHEM, V397, P157 9445 RANDIN JP, 1982, J ELECTROCHEM SOC, V129, P1215 9446 RAZUMAS V, 1992, BIOELECTROCH BIOENER, V28, P159 9447 RUZGAS T, 1995, J ELECTROANAL CHEM, V391, P41 9448 RYSWYK HV, 1989, J ELECTROANAL CHEM, V265, P317 9449 SANCHEZ PD, 1990, ELECTROANAL, V2, P303 9450 SCOTT DL, 1992, J ELECTROANAL CHEM, V341, P307 9451 TATSUMA T, 1992, ANAL CHEM, V64, P1183 9452 TATSUMA T, 1995, ANAL CHEM, V67, P283 9453 VREEKE M, 1995, ANAL CHEM, V67, P303 9454 WILDES PD, 1978, J AM CHEM SOC, V100, P6568 9455 NR 39 9456 TC 21 9457 SN 0003-2670 9458 J9 ANAL CHIM ACTA 9459 JI Anal. Chim. Acta 9460 PD JUN 10 9461 PY 1997 9462 VL 344 9463 IS 3 9464 BP 187 9465 EP 199 9466 PG 13 9467 SC Chemistry, Analytical 9468 GA XF798 9469 UT ISI:A1997XF79800005 9470 ER 9471 9472 PT J 9473 AU Huang, HC 9474 TI Fiber-optic analogs of bulk-optic wave plates 9475 SO APPLIED OPTICS 9476 DT Article 9477 AB The author's discovery of an unusual fiber element that is simply a 9478 variably spun birefringent fiber with a spin rate that varies from fast 9479 to zero or vice versa is revealed. The novel fiber element can be 9480 readily made by the existing fabrication technique, with fairly loose 9481 tolerances of the structural parameters. Analytic theory predicts that 9482 such a nonuniform fiber element can function as a bulk-optic 9483 quarter-wave plate, but with the advantage of being inherently wide 9484 band. Experimental evidence confirms the theoretical prediction. With 9485 such a fiber-optic analog of a quarter-wave plate as a building block, 9486 wide-band half-wave plates and full wave plates can likewise be made in 9487 the form of variably spun birefringent fibers. (C) 1997 Optical Society 9488 of America. 9489 RP Huang, HC, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 9490 CR BARLOW AJ, 1981, APPL OPTICS, V20, P2962 9491 COOK JS, 1955, BELL SYST TECH J, V34, P807 9492 FOX AG, 1955, BELL SYST TECH J, V34, P823 9493 HUANG HC, IN PRESS MICROWAVE A 9494 HUANG HC, 1960, SCI SINICA, V9, P142 9495 HUANG HC, 1961, ACTA MATH SINICA, V11, P238 9496 HUANG HC, 1990, 4943132, US 9497 HUANG HC, 1992, 5096312, US 9498 HUANG HC, 1995, 5452394, US 9499 KAPRON FP, 1972, IEEE J QUANTUM ELECT, V8, P222 9500 KELLER HB, 1962, J SOC IND APPL MATH, V10, P246 9501 LEFEVRE HC, 1983, 4389090, US 9502 LOUISELL WH, 1955, BELL SYST TECH J, V34, P853 9503 MATSUMOTO T, 1989, 4793678, US 9504 MCINTYRE P, 1978, J OPT SOC AM, V68, P149 9505 SHAW HJ, 1989, 4801189, US 9506 NR 16 9507 TC 3 9508 SN 0003-6935 9509 J9 APPL OPT 9510 JI Appl. Optics 9511 PD JUN 20 9512 PY 1997 9513 VL 36 9514 IS 18 9515 BP 4241 9516 EP 4258 9517 PG 18 9518 SC Optics 9519 GA XE301 9520 UT ISI:A1997XE30100030 9521 ER 9522 9523 PT J 9524 AU Jian, GC 9525 Zhu, YR 9526 Guo, SQ 9527 Xu, JL 9528 Wang, YQ 9529 Pan, LY 9530 Yu, DW 9531 TI The existence of intragranular ferrite plates and nucleating inclusions 9532 in the heat affected zone of X-60 pipe steel 9533 SO JOURNAL OF MATERIALS SCIENCE 9534 DT Article 9535 AB In order to improve the heat affected zone (HAZ) toughness of X-60 pipe 9536 steel, we have applied intragranular ferrite plate (IFP) technology. 9537 The characteristic of IFP is the appearance of fine ferrite plates 9538 inside the original austenite grains. By means of suitable Re, Zr and 9539 Ti additions at high initial oxygen potentials, and good control of the 9540 peak temperature and the cooling rate during welding simulation, one 9541 can obtain IFP contents over 50 vol% with a resultant increase in the 9542 toughness from 55-160 J. It was found that the inclusions that were 9543 most effective in nucleating the IFP were deformable complex silicates 9544 which either entrap Re, Zr and Ti oxides or contain these elements. The 9545 greater the number of the evenly distributed and effectively nucleating 9546 inclusions, the greater the IFP content, and the finer the 9547 microstructure of the HAZ, and the greater the relevant toughness. 9548 Generally, these silicates behave as fine spheres along a line. The 9549 present authors show that these fine spheres result from the remelting 9550 of the shuttle-like silicates due to heating in the process of welding 9551 simulation. These silicates contain a high sulfur capacity and thus MnS 9552 deposits are often observed on the periphery of the silicates. The IFP 9553 was shown to be directly rooted in the Mn depletion zone which is 9554 located beside the MnS deposits. 9555 C1 BAO SHAN IRON & STEEL CORP,BAOSHAN,PEOPLES R CHINA. 9556 RP Jian, GC, SHANGHAI UNIV,SHANGHAI ENHANCED LAB FERROMET,SHANGHAI,PEOPLES 9557 R CHINA. 9558 CR *IR STEEL I JAP, 1990, P 6 INT IR STEEL C N, V1, P591 9559 GRAY JM, 1985, P HSLA STEELS MET AP, P557 9560 JIANG GC, 1996, CLEAN STEELS SECONDA 9561 LEE JL, 1995, ISIJ INT, V35, P1027 9562 TOMITA Y, 1994, ISIJ INT, V34, P829 9563 NR 5 9564 TC 2 9565 SN 0022-2461 9566 J9 J MATER SCI 9567 JI J. Mater. Sci. 9568 PD JUN 1 9569 PY 1997 9570 VL 32 9571 IS 11 9572 BP 2985 9573 EP 2989 9574 PG 5 9575 SC Materials Science, Multidisciplinary 9576 GA XD827 9577 UT ISI:A1997XD82700022 9578 ER 9579 9580 PT J 9581 AU Zhang, ZL 9582 Jiang, XY 9583 Xu, SH 9584 Nagatomo, T 9585 Omoto, O 9586 TI Improving stability of organic electroluminescent diode by inserting 9587 copper phthalocyanine between the anode and hole transport layer 9588 SO CHINESE PHYSICS LETTERS 9589 DT Article 9590 AB Copper phthalocyanine(CuPc) thin film layer was inserted between the 9591 anode indium tin oxide and the hole transport layer TPD of an organic 9592 thin film electroluminescent device with a. double-layered structure. 9593 It is found that the CuPc layer greatly improves the device stability. 9594 The durability of the device with CuPc layer increases about 8 times. 9595 The fact that at a constant current density the driving voltage remains 9596 unchanged with operation time for the device with CuPc layer means that 9597 the barriers of the carriers injection are stable due to the inserted 9598 CuPc layer. 9599 C1 SHIBAURA INST TECHNOL,MINATO KU,TOKYO 108,JAPAN. 9600 RP Zhang, ZL, SHANGHAI UNIV,DEPT MAT SCI,JIADING CAMPUS,SHANGHAI 9601 201800,PEOPLES R CHINA. 9602 CR ADACHI C, 1995, APPL PHYS LETT, V66, P2679 9603 HAMADA Y, 1995, JPN J APPL PHYS, V34, P824 9604 SHIROTA Y, 1994, APPL PHYS LETT, V65, P807 9605 TANG CW, 1987, APPL PHYS LETT, V51, P913 9606 NR 4 9607 TC 2 9608 SN 0256-307X 9609 J9 CHIN PHYS LETT 9610 JI Chin. Phys. Lett. 9611 PY 1997 9612 VL 14 9613 IS 4 9614 BP 302 9615 EP 305 9616 PG 4 9617 SC Physics, Multidisciplinary 9618 GA XE116 9619 UT ISI:A1997XE11600018 9620 ER 9621 9622 PT J 9623 AU Feng, SS 9624 Huang, CG 9625 TI Can Dirac observability apply to gravitational systems? 9626 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 9627 DT Article 9628 ID GRAVITY 9629 AB The problem of what is observable in general relativity is 9630 investigated. With the help of Landau's observable space interval. the 9631 observational frames for individual observers are established. Within 9632 the Ashtekar formulation of general relativity, we argue from the 9633 nonvanishing Poisson brackets of the Yang-Mills fi-ld and the 9634 constraints that Dirac observability does not apply to gravitational 9635 systems. 9636 C1 ACAD SINICA,INST HIGH ENERGY PHYS,BEIJING 100039,PEOPLES R CHINA. 9637 SHANDONG TEACHERS UNIV,CTR STRING THEORY,SHANGHAI 200234,PEOPLES R CHINA. 9638 RP Feng, SS, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES 9639 R CHINA. 9640 CR ASHTEKAR A, 1989, PHYS REV D, V40, P2572 9641 DIRAC PAM, 1964, LECTURES QUANTUM MEC 9642 DUAN YS, 1988, GENERAL RELATIVITY G, V20 9643 DUAN YS, 1996, COMMUN THEOR PHYS, V25, P99 9644 EINSTEIN A, 1979, MEANING RELATIVITY 9645 FENG SS, 1995, GEN RELAT GRAVIT, V27, P887 9646 FENG SS, 1996, INT J THEOR PHYS, V35, P267 9647 FENG SS, 1996, NUCL PHYS B, V468, P163 9648 GITMAN DM, 1990, QUANTIZATION FIELDS 9649 HAWKING SW, 1988, BRIEF HIST TIME BIG 9650 KUCHAR K, 1991, CONCEPTUAL PROBLEMS 9651 LANDAU LD, 1951, CLASSICAL THEORY FIE 9652 ROVELLI C, 1991, CLASSICAL QUANT GRAV, V8, P297 9653 STACHEL J, 1986, GENERAL RELATIVITY G 9654 WALD RM, 1984, GENERAL RELATIVITY 9655 NR 15 9656 TC 7 9657 SN 0020-7748 9658 J9 INT J THEOR PHYS 9659 JI Int. J. Theor. Phys. 9660 PD MAY 9661 PY 1997 9662 VL 36 9663 IS 5 9664 BP 1179 9665 EP 1187 9666 PG 9 9667 SC Physics, Multidisciplinary 9668 GA XE078 9669 UT ISI:A1997XE07800009 9670 ER 9671 9672 PT J 9673 AU Gu, CQ 9674 TI Bivariate Thiele-type matrix-valued rational interpolants 9675 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 9676 DT Article 9677 DE matrix-valued rational interpolants; branched continued fractions; 9678 generalized inverse 9679 AB A new method for the construction of bivariate matrix-valued rational 9680 interpolants on a rectangular grid is introduced in this paper. The 9681 rational interpolants are of the continued fraction form, with scalar 9682 denominator. In this respect the approach is essentially different from 9683 that of Bose and Basu (1980) where a rational matrix-valued approximant 9684 with matrix-valued numerator and denominator is used for the 9685 approximation of a bivariate matrix power series. The matrix quotients 9686 are based on the generalized inverse for a matrix introduced by Gu 9687 Chuanqing and Chen Zhibing (1995) which is found to be effective in 9688 continued fraction interpolation. A sufficient condition of existence 9689 is obtained. Some important conclusions such as characterisation and 9690 uniqueness are proven respectfully. The inner connection between two 9691 type interpolating functions is investigated. Some examples are given 9692 so as to illustrate the results in the paper. 9693 C1 SHANGHAI UNIV,DEPT MATH,SHANGHAI 200072,PEOPLES R CHINA. 9694 CR BOSE NK, 1978, P C DEC CONTR IEEE C 9695 BOSE NK, 1980, IEEE T AUTOMAT CONTR, V25, P509 9696 BULTHEEL A, 1986, J COMPUT APPL MATH, V14, P401 9697 COORE CJ, 1977, INT J ELECTRON, V43, P449 9698 GRAVESMORRIS PR, 1983, NUMER MATH, V42, P331 9699 GU CQ, 1993, NUMER MATH J CHINESE, V15, P99 9700 GU CQ, 1995, MATH NUMER SINICA, V17, P73 9701 GU CQ, 1996, J MATH RES EXPOSITIO, P301 9702 SHIEH LS, 1975, IEEE T CIRCUITS SYST, V22, P721 9703 SIEMASZKO W, 1978, J COMPUT APPL MATH, V4, P181 9704 SIEMASZKO W, 1983, J COMPUT APPL MATH, V9, P137 9705 ZHU GQ, 1990, CHINESE J NUMER MATH, V12, P66 9706 NR 12 9707 TC 5 9708 SN 0377-0427 9709 J9 J COMPUT APPL MATH 9710 JI J. Comput. Appl. Math. 9711 PD APR 14 9712 PY 1997 9713 VL 80 9714 IS 1 9715 BP 71 9716 EP 82 9717 PG 12 9718 SC Mathematics, Applied 9719 GA XC667 9720 UT ISI:A1997XC66700005 9721 ER 9722 9723 PT J 9724 AU Duan, YS 9725 Feng, SS 9726 TI General covariant conservative angular momentum for topologically 9727 massive gravity 9728 SO COMMUNICATIONS IN THEORETICAL PHYSICS 9729 DT Article 9730 ID GRAVITATIONAL ANYONS 9731 AB We obtain the general covariant conservation law of angular momentum 9732 for gravitational anyons by means of global rather than local SO(1,2) 9733 transforms. Two examples show that our conservation law is reasonable. 9734 The general covariance suggests that this definition of angular 9735 momentum is better than the usual Aux-integral definition. 9736 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 9737 RP Duan, YS, LANZHOU UNIV,INST THEORET PHYS,LANZHOU 730000,PEOPLES R CHINA. 9738 CR BAK D, 1994, PHYS REV D, V49, P5173 9739 CLEMENT G, 1992, CLASSICAL QUANT GRAV, V9, P2615 9740 CLEMENT G, 1992, CLASSICAL QUANT GRAV, V9, P2635 9741 DESER S, 1982, ANN PHYS-NEW YORK, V140, P372 9742 DESER S, 1984, ANN PHYS-NEW YORK, V152, P220 9743 DESER S, 1990, NUCL PHYS B, V344, P747 9744 DESER S, 1990, PHYS REV LETT, V64, P611 9745 DESER S, 1992, CLASSICAL QUANT GRAV, V9, P61 9746 DUAN YS, 1996, COMMUN THEOR PHYS, V25, P99 9747 FENG SS, 1994, THESIS LANZHOU U 9748 FENG SS, 1996, INT J THEOR PHYS, V35, P327 9749 FRADKIN E, 1991, FIELD THEORIES CONDE 9750 NR 12 9751 TC 0 9752 SN 0253-6102 9753 J9 COMMUN THEOR PHYS 9754 JI Commun. Theor. Phys. 9755 PD APR 30 9756 PY 1997 9757 VL 27 9758 IS 3 9759 BP 343 9760 EP 348 9761 PG 6 9762 SC Physics, Multidisciplinary 9763 GA XC049 9764 UT ISI:A1997XC04900014 9765 ER 9766 9767 PT J 9768 AU Wang, BH 9769 Hui, PM 9770 Gu, GQ 9771 TI Dynamical evolution of highway traffic flow: From microscopic to 9772 macroscopic 9773 SO CHINESE PHYSICS LETTERS 9774 DT Article 9775 ID MODEL 9776 AB In this paper, a derivation of the macroscopic mean field theory of the 9777 cellular automaton (CA) model of highway traffic flow starting from the 9778 microscopic dynamical point of view is presented. Starting from an 9779 equation describing the time evolution of the Boolean state variable at 9780 each site of the basic CA model, and using a two-site approximation for 9781 the multi-site correlation functions, a dynamical mapping between the 9782 macroscopic average speeds v(t + 1) and v(t) at different time can be 9783 derived. Mean field results consistent with the simulation data are 9784 obtained by considering the attractors of the mapping and their 9785 corresponding basins. 9786 C1 UNIV SCI & TECHNOL CHINA,CTR NONLINEAR SCI,HEFEI 230026,PEOPLES R CHINA. 9787 CHINESE UNIV HONG KONG,DEPT PHYS,SHATIN,NT,HONG KONG. 9788 SHANGHAI UNIV SCI & TECHNOL,DEPT SYST ENGN,SHANGHAI 200093,PEOPLES R CHINA. 9789 RP Wang, BH, UNIV SCI & TECHNOL CHINA,DEPT MODERN PHYS,HEFEI 9790 230026,PEOPLES R CHINA. 9791 CR CHUNG KH, 1994, J PHYS SOC JPN, V63, P4338 9792 NAGATANI T, 1995, J PHYS SOC JPN, V64, P1421 9793 NAGEL K, 1992, J PHYS I, V2, P2221 9794 SCHREKENBERG M, 1995, PHYS REV E A, V51, P2939 9795 WANG BH, 1996, J PHYS A-MATH GEN, V29, L31 9796 WANG BH, 1996, J PHYS SOC JPN, V65, P2345 9797 WOLFRAM S, 1986, THEORY APPL CELLULAR 9798 NR 7 9799 TC 8 9800 SN 0256-307X 9801 J9 CHIN PHYS LETT 9802 JI Chin. Phys. Lett. 9803 PY 1997 9804 VL 14 9805 IS 3 9806 BP 202 9807 EP 205 9808 PG 4 9809 SC Physics, Multidisciplinary 9810 GA XA764 9811 UT ISI:A1997XA76400012 9812 ER 9813 9814 PT J 9815 AU Bai, ZZ 9816 Wang, DR 9817 TI A class of new hybrid algebraic multilevel preconditioning methods 9818 SO LINEAR ALGEBRA AND ITS APPLICATIONS 9819 DT Article 9820 AB A class of new hybrid algebraic multilevel. preconditioning methods is 9821 presented for solving the large sparse systems of linear equations with 9822 symmetric positive definite coefficient matrices resulting from the 9823 discretization of many second-order elliptic boundary-value problems by 9824 the finite-element method. The new preconditioners are shown to be of 9825 optimal orders of complexities for two-dimensional and 9826 three-dimensional problem domains, and their relative condition numbers 9827 are estimated to be bounded uniformly, independent of the numbers of 9828 both the levels and the nodes. (C) Elsevier Science Inc., 1997. 9829 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 9830 RP Bai, ZZ, CHINESE ACAD SCI,INST COMPUTAT MATH & SCI ENGN COMP,POB 9831 2719,BEIJING 100080,PEOPLES R CHINA. 9832 CR AXELSSON O, 1983, MATH COMPUT, V40, P219 9833 AXELSSON O, 1989, NUMER MATH, V56, P157 9834 AXELSSON O, 1990, SIAM J NUMER ANAL, V27, P1569 9835 AXELSSON O, 1991, DOMAIN DECOMPOSITION, P163 9836 BAI ZZ, 1993, THESIS SHANGHAI U SC 9837 BAI ZZ, 1996, APPL NUMER MATH, V19, P389 9838 CAO ZH, 1993, INT J COMPUT MATH, V47, P77 9839 CAO ZH, 1993, NUMER MATH J CHINESE, V1, P25 9840 VASSILEVSKI PS, 198909 U WYOM I SCI 9841 VASSILEVSKI PS, 1992, MATH COMPUT, V58, P489 9842 WANG DR, 1997, LINEAR ALGEBRA APPL, V250, P317 9843 YSERENTANT H, 1986, NUMER MATH, V49, P379 9844 NR 12 9845 TC 2 9846 SN 0024-3795 9847 J9 LINEAR ALGEBRA APPL 9848 JI Linear Alg. Appl. 9849 PD JUL 15 9850 PY 1997 9851 VL 260 9852 BP 223 9853 EP 255 9854 PG 33 9855 SC Mathematics, Applied 9856 GA XA857 9857 UT ISI:A1997XA85700011 9858 ER 9859 9860 PT J 9861 AU Cao, WG 9862 Ding, WY 9863 Yi, T 9864 Zhu, ZM 9865 TI A simple approach to the synthesis of ethyl 9866 2-ethoxy-4-methoxy-6-perfluoroalkylbenzoates via acyclic precursors 9867 SO JOURNAL OF FLUORINE CHEMISTRY 9868 DT Article 9869 DE synthesis; phosphoranes; acyclic precursors; intramolecular Wittig 9870 reaction; ethyl 2-ethoxy-4-methoxy-6-perfluoroalkylbenzoates 9871 ID FACILE SYNTHESIS 9872 AB The acyclic precursors, methyl 9873 3-perfluoroalkyl-4-carboethoxy-5-ethoxy-6-(triphenylphosphoranylidene)he 9874 xa-2,4-dienoates 3a-c were obtained through the addition reaction of 9875 ethyl 3-ethoxy-4-(triphenylphosphoranylidene)but-2-enoate 1 with 9876 equally molar of methyl 2-perfluoroalkynoates 2a-c. Ethyl 9877 2-ethoxy-4-methoxy-6-perfluoroalkylbenzoates 4a-c were synthesized with 9878 high yields via an intramolecular elimination of Ph3PO of 3a-c by 9879 heating in anhydrous benzene in a sealed tube. The structures of these 9880 compounds were confirmed by IR, MS, H-1, C-13 and F-19 NMR spectra, and 9881 elemental analyses. The reaction mechanisms were also proposed. 9882 RP Cao, WG, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES 9883 R CHINA. 9884 CR BANKS RE, 1979, ORGANOFLUORINE CHEM 9885 COFFEY S, RODDS CHEM CARBON CO, P403 9886 DING WY, 1987, TETRAHEDRON LETT, V28, P81 9887 DING WY, 1992, SYNTHESIS-STUTTGART, P635 9888 DING WY, 1993, CHINESE J CHEM, V11, P81 9889 DING WY, 1993, J CHEM SOC P1, P855 9890 DING WY, 1995, CHINESE J CHEM, V13, P468 9891 HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47 9892 KOCHHAR KS, 1984, J ORG CHEM, V49, P3222 9893 MCCLINTON MA, 1992, TETRAHEDRON, V48, P6555 9894 TENDIL J, 1977, B SOC CHIM FR, P565 9895 WELCH JT, 1987, TETRAHEDRON, V43, P3123 9896 NR 12 9897 TC 6 9898 SN 0022-1139 9899 J9 J FLUORINE CHEM 9900 JI J. Fluor. Chem. 9901 PD MAR 9902 PY 1997 9903 VL 81 9904 IS 2 9905 BP 153 9906 EP 155 9907 PG 3 9908 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic 9909 GA XA484 9910 UT ISI:A1997XA48400009 9911 ER 9912 9913 PT J 9914 AU Ye, ZM 9915 TI The non-linear vibration and dynamic instability of thin shallow shells 9916 SO JOURNAL OF SOUND AND VIBRATION 9917 DT Article 9918 ID RECTANGULAR-PLATES; NONLINEAR VIBRATION; SPHERICAL-SHELL; CIRCULAR 9919 PLATES 9920 AB In this paper, the non-linear vibration and dynamic instability of thin 9921 shallow spherical and conical shells subjected to periodic transverse 9922 and in-plane loads are investigated. The Marguerre type dynamic 9923 equations used for the analysis of shallow shells, when treated by the 9924 Galerkin method, will result in a system of total differential 9925 equations in the time functions, known as Duffing and Mathieu 9926 equations, from which the various kinds of non-linear vibration and 9927 dynamic instability are determined by using numerical methods. 9928 Numerical results are presented for axisymmetric vibrations and dynamic 9929 instabilities of shallow spherical and conical shells with (a) clamped 9930 and (b) supported edge conditions. As numerical examples, non-linear 9931 vibration frequencies and instability regions for shells are 9932 determined. The effects of static load as well as static snap-through 9933 buckling on the instability are also investigated. (C) 1997 Academic 9934 Press Limited. 9935 RP Ye, ZM, SHANGHAI UNIV,DEPT CIVIL ENGN,149 YAN CHANG RD,SHANGHAI 9936 200072,PEOPLES R CHINA. 9937 CR BHUSHAN B, 1991, COMPOS STRUCT, V18, P263 9938 CHIA CY, 1985, J SOUND VIB, V101, P539 9939 CHIA CY, 1992, COMPUT STRUCT, V44, P797 9940 DENISOV VN, 1985, MECH SOLIDS, V20, P142 9941 DUMIR PC, 1986, J SOUND VIB, V107, P253 9942 EVANSEN DA, 1967, TND4090 NASA 9943 GONCALVES PB, 1988, J SOUND VIBRATION, V127, P133 9944 HUI D, 1985, INT J MECH SCI, V27, P397 9945 JAIN RK, 1987, AIAA J, V25, P630 9946 LEISSA AW, 1961, J AEROSP SCI, V29, P1381 9947 MAHRENHOLTZ O, 1987, APPL MATH MECH, V67, P218 9948 MEI C, 1985, AIAA J, V23, P1104 9949 NATH Y, 1985, INT J NUMER METH ENG, V21, P565 9950 NATH Y, 1987, J SOUND VIBRATION, V112, P53 9951 SANDERS JL, 1959, TRR24 NASA 9952 TSAI CT, 1989, INT J NONLINEAR MECH, V24, P127 9953 WANG XX, 1991, COMPUT METHOD APPL M, V86, P73 9954 YASUDA K, 1984, B JSME, V27, P2233 9955 YE ZM, 1984, ACTA MECH SINICA, V16, P634 9956 YE ZM, 1988, APPL MATH MECH, V9, P153 9957 YE ZM, 1993, MECH RES COMMUN, V20, P83 9958 NR 21 9959 TC 11 9960 SN 0022-460X 9961 J9 J SOUND VIB 9962 JI J. Sound Vibr. 9963 PD MAY 8 9964 PY 1997 9965 VL 202 9966 IS 3 9967 BP 303 9968 EP 311 9969 PG 9 9970 SC Engineering, Mechanical; Acoustics; Mechanics 9971 GA WY075 9972 UT ISI:A1997WY07500001 9973 ER 9974 9975 PT J 9976 AU Liu, GL 9977 Wang, HG 9978 TI A new pseudo-potential model for rotational turbo-flow .1. Variational 9979 formulation and finite element solution for transonic blade-to-blade 9980 flow 9981 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 9982 DT Article 9983 ID PRINCIPLES; SHOCKS; ROTOR 9984 AB A new general function - the pseudo-potential function - is introduced 9985 via the term-condensing method /13/, being a simple and consistent 9986 generalization of the potential function to general rotational 9987 turbo-now. It retains almost all advantages of the potential function, 9988 while removing its restriction to now potentiality (namely homentropy 9989 and homrothalpy). The general formulation of rotational now along S-1- 9990 and S-2-stream sheets in turbomachines is derived, and methods of 9991 solution are given with special attention to transonic and supersonic 9992 flows, providing a new physically self-consistent and computationally 9993 simple now model and allowing for the vorticity generated just behind 9994 shocks. Then, a family of variational principles for S-1-flow is 9995 established and based thereupon finite element solutions to some 9996 transonic now examples are obtained, which agree fairly well with the 9997 Euler's equation solutions and the measurements. This model can be 9998 further generalized to fully 3-D now, especially transonic turbo-now. 9999 C1 E CHINA UNIV TECHNOL,POWER ENGN DEPT,SHANGHAI 200093,PEOPLES R CHINA. 10000 RP Liu, GL, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI 10001 200072,PEOPLES R CHINA. 10002 CR AKAY HU, 1984, FINITE ELEMENTS FLUI, V5, P173 10003 BAKER TJ, 1983, COMPUTATION TRANSONI 10004 BOSMAN C, 1974, 3746 ARC RM 10005 CAI RQ, 1988, INT J HEAT FLUID FL, V9, P302 10006 DECONINCK H, 1981, ASME, V103, P665 10007 HAFEZ M, 1988, INT J NUMER METH FL, V8, P31 10008 HAFEZ MM, 1983, AIAA J, V21, P327 10009 HIRSCH C, 1990, NUMERICAL COMPUTATIO, V2 10010 KLOPFER GH, 1984, AIAA J, V22, P770 10011 LIU GL, 1980, FUNDAMENTALS AERODYN 10012 LIU GL, 1980, SCI SINICA, V23, P1339 10013 LIU GL, 1982, CHINESE J ENG THERMO, V3, P138 10014 LIU GL, 1982, P INT C FEM SHANGH C, P520 10015 LIU GL, 1983, 2ND P AS C FLUID MEC, P698 10016 LIU GL, 1989, NUMERICAL METHODS LA, V6, P1289 10017 LIU GL, 1990, EXPT COMPUTATIONAL A, P128 10018 LIU GL, 1992, ACTA MECH, V95, P117 10019 LIU GL, 1993, ACTA MECH, V97, P229 10020 NI RH, 1982, AIAA J, V20, P1565 10021 SARATHY KP, 1982, T ASME, V104, P394 10022 WU CH, 1952, 2604 NACA TN 10023 XU HY, 1990, P 1 INT S AER DYN IN, P121 10024 XU JZ, 1980, CHINESE J MECH ENG, V16, P3 10025 NR 23 10026 TC 1 10027 SN 0334-0082 10028 J9 INT J TURBO JET ENGINES 10029 JI Int. J. Turbo. Jet-Engines 10030 PY 1996 10031 VL 13 10032 IS 4 10033 BP 263 10034 EP 275 10035 PG 13 10036 SC Engineering, Aerospace 10037 GA WW120 10038 UT ISI:A1996WW12000003 10039 ER 10040 10041 PT J 10042 AU Li, X 10043 Guo, BY 10044 TI A Legendre pseudospectral method for solving nonlinear Klein-Gordon 10045 equation 10046 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 10047 DT Article 10048 ID SOBOLEV SPACES 10049 AB A Legendre pseudospectral scheme is proposed for solving 10050 initial-boundary value problem of nonlinear Klein-Gordon equation. The 10051 numerical solution keeps the discrete conservation. Its stability and 10052 convergence are investigated. Numerical results are also presented, 10053 which show the high accuracy. The technique in the theoretical analysis 10054 provides a framework for Legendre pseudospectral approximation of 10055 nonlinear multi-dimensional problems. 10056 C1 CHINESE UNIV HONG KONG,HONG KONG,HONG KONG. 10057 SHANGHAI UNIV,SHANGHAI,PEOPLES R CHINA. 10058 CR BERNARDI C, 1992, J COMPUT APPL MATH, V43, P53 10059 CANUTO C, 1982, MATH COMPUT, V38, P67 10060 CANUTO C, 1988, SPECTRAL METHODS FLU 10061 CAO WM, 1993, J COMPUT PHYS, V108, P296 10062 GUO BY, 1982, NUMERICAL MATH, V4, P46 10063 GUO BY, 1982, SCI SINICA A, V25, P702 10064 GUO BY, 1983, J APPL SCI, V1, P25 10065 GUO BY, 1988, DIFFERENCE METHODS P 10066 GUO BY, 1993, NUMERICAL MATH, V2, P38 10067 GUO BY, 1996, J COMP PHYS APPL MAT, V15, P19 10068 HARDY GH, 1952, INEQUALITES 10069 LIONS JL, 1969, QUELQUES METHODES RE 10070 MA HP, 1987, J COMPUT MATH, V4, P337 10071 NEVAI P, 1979, MEN AM MATH SOC, V213 10072 RICHTMYER RD, 1967, FINITE DIFFERENCE ME 10073 STRAUSS W, 1978, J COMP PHYSIOL, V28, P271 10074 SZABADOS J, 1992, J COMPUT APPL MATH, V43, P3 10075 NR 17 10076 TC 2 10077 SN 0254-9409 10078 J9 J COMPUT MATH 10079 JI J. Comput. Math. 10080 PD APR 10081 PY 1997 10082 VL 15 10083 IS 2 10084 BP 105 10085 EP 126 10086 PG 22 10087 SC Mathematics, Applied; Mathematics 10088 GA WV929 10089 UT ISI:A1997WV92900002 10090 ER 10091 10092 PT J 10093 AU Chen, H 10094 Shi, YM 10095 Yu, JZ 10096 Zhu, JL 10097 Kawazoe, Y 10098 TI Phonon-associated conductance through a quantum point contact 10099 SO PHYSICAL REVIEW B 10100 DT Article 10101 ID DOUBLE-BARRIER; BALLISTIC RESISTANCE; TRANSPORT; MODEL 10102 AB By using an independent-boson model we: study the electronic 10103 conductance through a quantum point contact in the presence of the 10104 electron-phonon interaction. We find that the phonon energy plays a 10105 crucial role in the quantum behavior of the conductance. 10106 C1 FUDAN UNIV,DEPT PHYS,SHANGHAI 200433,PEOPLES R CHINA. 10107 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA. 10108 RP Chen, H, TOHOKU UNIV,INST MAT RES,SENDAI,MIYAGI 98077,JAPAN. 10109 CR AVISHAI Y, 1989, PHYS REV B, V40, P12535 10110 BLICK RH, 1995, APPL PHYS LETT, V67, P3924 10111 CAI W, 1989, PHYS REV LETT, V63, P418 10112 CAI W, 1990, PHYS REV LETT, V65, P104 10113 CHEN H, 1993, PHYS REV B, V48, P8790 10114 DREXLER H, 1995, APPL PHYS LETT, V67, P2616 10115 GELFAND BY, 1989, PHYS REV LETT, V62, P1683 10116 GOLDMAN VJ, 1987, PHYS REV B, V36, P7635 10117 GUIMARAES PSS, 1993, PHYS REV LETT, V70, P3792 10118 GUREVICH VL, 1995, PHYS REV B, V51, P5219 10119 KEAY BJ, 1995, PHYS REV LETT, V75, P4098 10120 KOUWENHOVEN LP, 1994, PHYS REV LETT, V73, P3443 10121 MAHAN GD, 1981, MANY PARTICLE PHYSIC, P269 10122 RICCO B, 1984, PHYS REV B, V29, P1970 10123 STAFFORD CA, 1996, PHYS REV LETT, V76, P1916 10124 VANWEES BJ, 1988, PHYS REV LETT, V60, P848 10125 WHARAM DA, 1988, J PHYS C SOLID STATE, V21, L209 10126 WHARAM DA, 1988, J PHYS C SOLID STATE, V21, L887 10127 WROBEL J, 1995, EUROPHYS LETT, V29, P481 10128 NR 19 10129 TC 2 10130 SN 0163-1829 10131 J9 PHYS REV B 10132 JI Phys. Rev. B 10133 PD APR 15 10134 PY 1997 10135 VL 55 10136 IS 15 10137 BP 9935 10138 EP 9940 10139 PG 6 10140 SC Physics, Condensed Matter 10141 GA WV251 10142 UT ISI:A1997WV25100120 10143 ER 10144 10145 PT J 10146 AU Liu, HY 10147 Deng, HH 10148 Sun, K 10149 Qi, DY 10150 Deng, JQ 10151 Liu, YC 10152 Yu, TY 10153 TI Structure and properties of porous composite membranes of regenerated 10154 silk fibroin and poly(vinyl alcohol) and biosensing of glucose via 10155 Meldola blue dispersed in polyester ionomer as an electron transfer 10156 mediator 10157 SO FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY 10158 DT Article 10159 ID ENZYME ELECTRODES; SENSOR; OXIDASE; IMMOBILIZATION; TETRATHIAFULVALENE; 10160 FERROCENE; SHUTTLE; NAFION 10161 AB Porous composite membranes of regenerated silk fibroin and poly(vinyl 10162 alcohol) were prepared by adding polyethyleneglycol to the composite 10163 solution to reduce the mass-transfer resistance to the diffusion of 10164 substrate material transport; their surfaces were visualized with 10165 scanning electron microscopy. An amperometric glucose biosensor 10166 employing Meldola blue dispersed in polyester ionomer as electron 10167 transfer mediator was prepared to test the feasibility and workability 10168 of the composite membrane as immobilization matrix for glucose oxidase. 10169 The cationic exchange property of the polyester ionomer was employed to 10170 provide high local concentrations of Meldola blue (MB(+)) in the 10171 polymer film via ion exchange. Performance and characteristics of the 10172 glucose biosensor were evaluated with respect to response time, 10173 detection limit, applied potential, thickness of polyester ionomer 10174 membrane, pH and temperature. The glucose biosensor possesses a variety 10175 of advantages including easy maintenance of enzyme, simplicity of 10176 construction, fast response time and high stability. 10177 C1 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA. 10178 FUDAN UNIV,DEPT MACROMOL SCI,SHANGHAI 200433,PEOPLES R CHINA. 10179 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R 10180 CHINA. 10181 CR BADIA A, 1993, J AM CHEM SOC, V115, P7053 10182 BARKER SA, 1989, BIOSENSORS FUNDAMENT, P85 10183 BARTLETT PN, 1987, BIOSENSORS, V3, P359 10184 CLARK LC, 1962, ANN NY ACAD SCI, V102, P29 10185 CSOREGI E, 1995, ANAL CHEM, V67, P1240 10186 DEMURA M, 1989, BIOTECHNOL BIOENG, V33, P598 10187 DEMURA M, 1989, J BIOTECHNOL, V10, P113 10188 FORTIER G, 1990, ANAL LETT, V23, P1607 10189 GRUNDIG B, 1989, ANAL CHIM ACTA, V222, P75 10190 HARKNESS JK, 1993, J ELECTROANAL CHEM, V357, P261 10191 JIANG L, 1995, J CHEM SOC CHEM 0621, P1293 10192 KUWABATA S, 1994, ANAL CHEM, V66, P2757 10193 LIU H, 1997, IN PRESS FRESENIUS J, V357 10194 LIU HY, 1995, ANAL CHIM ACTA, V300, P65 10195 LIU HY, 1996, BIOSENS BIOELECTRON, V11, P103 10196 LIU Y, 1985, ANAL CHEM, V316, P65 10197 LIU YC, 1995, J CHEM TECHNOL BIOT, V64, P269 10198 MALITESTA C, 1990, ANAL CHEM, V62, P2735 10199 PANDEY PC, 1988, J CHEM SOC F1, V84, P2259 10200 PANDEY PC, 1995, BIOSENS BIOELECTRON, V10, P669 10201 PAZUR JH, 1965, ARCH BIOCHEM BIOPHYS, V111, P351 10202 QIAN JH, 1996, FRESEN J ANAL CHEM, V354, P173 10203 TRANMINH C, 1985, ION SEL ELECTRODE R, V7, P41 10204 WANG J, 1989, ANAL CHEM, V61, P1397 10205 WILSON GS, 1992, ANAL CHEM, V64, A381 10206 ZHAO SS, 1993, ANAL CHIM ACTA, V282, P319 10207 NR 26 10208 TC 4 10209 SN 0937-0633 10210 J9 FRESENIUS J ANAL CHEM 10211 JI Fresenius J. Anal. Chem. 10212 PD APR 10213 PY 1997 10214 VL 357 10215 IS 7 10216 BP 812 10217 EP 816 10218 PG 5 10219 SC Chemistry, Analytical 10220 GA WT961 10221 UT ISI:A1997WT96100006 10222 ER 10223 10224 PT J 10225 AU Li, CF 10226 TI Gauge transformation and A-B effect 10227 SO PHYSICA B 10228 DT Article 10229 DE gauge transformation; Aharonov-Bohm effect; momentum transfer 10230 ID AHARONOV-BOHM INTERFERENCE; MULTIPLY CONNECTED SPACES; 10231 ANGULAR-MOMENTUM; MAGNETIC-FLUX; QUANTUM-MECHANICS; PATH-INTEGRALS; 10232 STATISTICS; ROTATIONS 10233 AB The aim of this paper is to show that the vector potential in the 10234 so-called Aharonov-Bohm (A-B) effect is not a gauge transformation of 10235 the vacuum, even when alpha = integer(not equal 0) (where alpha = 10236 Phi/Phi(0) represents the magnetic flux in the long cylindrical 10237 solenoid and Phi(0) = h/e). To this end, it is discussed that the wave 10238 function of the electron and the gauge function in a gauge 10239 transformation are required to be single-valued so that the Schrodinger 10240 wave mechanics and the Maxwell electromagnetic theory are 10241 well-formulated. It is also discussed that the gauge transformation of 10242 wave functions and the representation change of operators of Kobe's 10243 meaning are the same thing. 10244 RP Li, CF, SHANGHAI UNIV,DEPT PHYS,20 CHENGZHONG RD,SHANGHAI 10245 201800,PEOPLES R CHINA. 10246 CR AFANASEV GN, 1990, SOV J PART NUCL, V21, P74 10247 AHARONOV Y, 1959, PHYS REV, V115, P485 10248 AHARONOV Y, 1961, PHYS REV, V123, P1511 10249 AHARONOV Y, 1967, PHYS REV, V158, P1237 10250 AHARONOV Y, 1984, P INT S FDN QUANT ME, P10 10251 AHARONOV Y, 1984, PHYS REV D, V29, P2396 10252 BAWIN M, 1983, J PHYS A, V16, P2173 10253 BAWIN M, 1985, J PHYS A-MATH GEN, V18, P2123 10254 BIEDENHARN LC, 1981, ANGULAR MOMENTUM QUA, P319 10255 BLATT JM, 1952, THEORETICAL NUCL PHY, P783 10256 BOCCHIERI P, 1978, NUOVO CIMENTO A, V47, P475 10257 BOHM D, 1951, QUANTUM THEORY, P389 10258 BOHM D, 1979, NUOVO CIMENTO A, V52, P295 10259 GRIFFITHS DJ, 1981, INTRO ELECTRODYNAMIC, P283 10260 GUPTA BD, 1978, MATH PHYSICS, P127 10261 HORVATHY PA, 1985, PHYS REV A, V31, P1151 10262 JACKIW R, 1983, PHYS REV LETT, V50, P555 10263 KLEIN AG, 1976, PHYS REV LETT, V37, P238 10264 KOBE DH, 1982, PHYS REV LETT, V49, P1592 10265 KRETZSCHMAR M, 1965, Z PHYS, V185, P73 10266 KRETZSCHMAR M, 1965, Z PHYS, V185, P97 10267 LANDAU LD, 1975, CLASSICAL THEORY FIE, P49 10268 LI CF, IN PRESS ANN PHYS 10269 LI CF, IN PRESS PHYSICA B 10270 LI CF, 1995, PHYSICA B, V212, P436 10271 LIANG JQ, 1988, PHYS REV LETT, V60, P836 10272 LIANG JQ, 1988, PHYSICA B C, V151, P239 10273 MERZBACHER E, 1962, AM J PHYSIOL, V30, P237 10274 NIETO MM, 1984, PHYS REV A, V29, P3413 10275 PANDRES D, 1962, J MATH PHYS, V3, P305 10276 PAULI W, 1939, HELV PHYS ACTA, V12, P147 10277 PESHKIN M, 1961, ANN PHYS-NEW YORK, V12, P426 10278 PESHKIN M, 1989, LECT NOTES PHYSICS, V340 10279 RAUCH H, 1978, Z PHYSIK B, V29, P281 10280 ROY SM, 1984, NUOVO CIMENTO A, V79, P391 10281 RUIJSENAARS SNM, 1983, ANN PHYS-NEW YORK, V146, P1 10282 SAKURAI JJ, 1985, MODERN QUANTUM MECH, P101 10283 SAKURAI JJ, 1985, MODERN QUANTUM MECHD, P162 10284 TASSIE LJ, 1961, ANN PHYS-NEW YORK, V16, P177 10285 WERNER SA, 1975, PHYS REV LETT, V35, P1053 10286 WILCZEK F, 1982, PHYS REV LETT, V48, P1144 10287 WILCZEK F, 1982, PHYS REV LETT, V49, P957 10288 WU TT, 1975, PHYS REV D, V12, P3845 10289 WU YS, 1984, PHYS REV LETT, V53, P111 10290 ZEILINGER A, 1979, LETT NUOVO CIMENTO, V25, P333 10291 NR 45 10292 TC 1 10293 SN 0921-4526 10294 J9 PHYSICA B 10295 JI Physica B 10296 PD MAR 10297 PY 1997 10298 VL 229 10299 IS 3-4 10300 BP 354 10301 EP 360 10302 PG 7 10303 SC Physics, Condensed Matter 10304 GA WT606 10305 UT ISI:A1997WT60600020 10306 ER 10307 10308 PT J 10309 AU Zhu, Y 10310 TI Interactions of atmospheric solitary waves of different modes 10311 SO ACTA MECHANICA SINICA 10312 DT Article 10313 DE atmospheric solitary waves; BO equation; perturbation methods 10314 AB The interactions of atmospheric solitary waves with different modes are 10315 investigated by a perturbation method. The model considered in this 10316 paper consists of a lower layer with exponential density profile and an 10317 infinitely deep upper layer with constant density. The analysis show 10318 that the waves obey the Benjamin-Ono equation before and after 10319 interaction, and the main effect of the interaction is the phase shifts 10320 for each wave. 10321 RP Zhu, Y, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,149 YANCHANG 10322 RD,SHANGHAI 200072,PEOPLES R CHINA. 10323 CR BENJAMIN TB, 1967, J FLUID MECH, V29, P249 10324 CHRISTIE DR, 1981, NATURE, V293, P46 10325 DAVIS RE, 1967, J FLUID MECH, V29, P593 10326 GEAR J, 1984, STUD APPL MATH, V70, P233 10327 GRIMSHAW R, 1994, STUD APPL MATH, V92, P249 10328 MILES JW, 1977, J FLUID MECH, V79, P157 10329 MILES JW, 1980, ANNU REV FLUID MECH, V12, P11 10330 ONO H, 1975, J PHYS SOC JPN, V39, P1082 10331 SMITH RK, 1988, EARTH-SCI REV, V25, P267 10332 SU CH, 1980, J FLUID MECH, V98, P509 10333 ZHU Y, 1996, ATMOSPHERIC SCI, V20, P751 10334 NR 11 10335 TC 0 10336 SN 0567-7718 10337 J9 ACTA MECH SINICA 10338 JI Acta Mech. Sin. 10339 PD FEB 10340 PY 1997 10341 VL 13 10342 IS 1 10343 BP 10 10344 EP 16 10345 PG 7 10346 SC Engineering, Mechanical; Mechanics 10347 GA WT856 10348 UT ISI:A1997WT85600002 10349 ER 10350 10351 PT J 10352 AU Wu, MH 10353 Zhou, RM 10354 Ma, ZT 10355 Bao, BR 10356 Lei, JQ 10357 TI Preparation of acrylate IPN copolymer latexes by radiation emulsion 10358 polymerization 10359 SO RADIATION PHYSICS AND CHEMISTRY 10360 DT Article 10361 ID SHELL 10362 AB Radiation-induced and chemical initiation are compared in the 10363 initiation of acrylate emulsion copolymer latexes. The particle 10364 diameter, distribution and microstructure are influenced by emulsifier 10365 concentration, radiation dose and temperature. The results show that 10366 the emulsion particle diameter of radiation polymerization is smaller 10367 and better distributed in comparison to using chemical polymerization. 10368 In addition, interlude polymer net (IPN) core-shell copolymer latexes 10369 are observed by transimission electron microscope (TEM). The bounding 10370 face of core-shell acrylate copolymer latexes of radiation 10371 polymerization is clearer. The morphology of acrylate IPN copolymer 10372 latexes is further investigated. (C) 1997 Elsevier Science Ltd. 10373 C1 ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI 201800,PEOPLES R CHINA. 10374 RP Wu, MH, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,JIADING 10375 CAMPUS,SHANGHAI 201800,PEOPLES R CHINA. 10376 CR BALITER B, 1987, J POLYM SCI A, V25, P135 10377 HOIGNE H, 1972, J POLYM SCI A, V10, P581 10378 LEE DI, 1983, J POLYM SCI POL CHEM, V21, P147 10379 MCCARTY W, 1984, HUS US, V444, P923 10380 PIRMA I, 1976, ACS SYM SER, V24, P306 10381 SAKOTA K, 1976, J APPL POLYM SCI, V20, P1735 10382 SPERLING LH, 1973, J APPL POLYM SCI, V17, P2443 10383 WU MH, 1993, RADIAT PHYS CHEM, V42, P171 10384 NR 8 10385 TC 0 10386 J9 RADIAT PHYS CHEM 10387 JI Radiat. Phys. Chem. 10388 PD MAR 10389 PY 1997 10390 VL 49 10391 IS 3 10392 BP 371 10393 EP 375 10394 PG 5 10395 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear 10396 Science & Technology 10397 GA WM139 10398 UT ISI:A1997WM13900010 10399 ER 10400 10401 PT J 10402 AU Chen, YL 10403 Guo, GY 10404 TI Preparation and characterization of yttria-stabilized zirconia powders 10405 by solvent extraction process 10406 SO CERAMICS INTERNATIONAL 10407 DT Article 10408 ID ZRO2; DENSIFICATION 10409 AB This study demonstrates that zirconium and yttrium can quantitatively 10410 be coextracted with di-(2-ethylhexyl) phosphoric acid or 10411 2-ethylhexyl-phosphonic acid mono-2-ethylhexylester from commercial 10412 grade of starting materials under suitable conditions, End that both 10413 zirconium and yttrium can be stripped completely with oxalic acid from 10414 the extractants under some specific conditions. The resulting oxalates, 10415 after careful washing with absolute ethanol, may be calcined to both 10416 ultrafine and pure yttria-stabilized zirconia powders, while the 10417 stripped extractants can be recycled to extract zirconium and yttrium. 10418 The present process, therefore, is a more economical technique than the 10419 metal alkoxide process - one of the most popular chemical processing 10420 routes for the preparation of advanced ceramic powder, yet it is a very 10421 efficient technique for controlling the purity, particle size, and 10422 crystalline phase composition of the powders. (C) 1997 Elsevier Science 10423 Limited and Techna S.r.l. 10424 C1 SHANGHAI JIAO TONG UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200030,PEOPLES R CHINA. 10425 RP Chen, YL, SHANGHAI UNIV,COL CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R 10426 CHINA. 10427 CR BOURELL DL, 1993, J AM CERAM SOC, V76, P705 10428 DESCEMOND M, 1993, J MATER SCI, V28, P3754 10429 DOYLE FM, 1992, HYDROMETALLURGY, V29, P527 10430 FEGLEY B, 1985, AM CERAM SOC BULL, V64, P1115 10431 FOSTER CM, 1993, J MATER RES, V8, P1977 10432 GHONELM NM, 1986, CFI-CERAM FORUM INT, V3, P96 10433 GONGYI G, 1988, PRODUCTION PROCESSIN, P627 10434 GONGYI G, 1991, J MATER SCI, V26, P3511 10435 GONGYI G, 1992, J AM CERAM SOC, V75, P1294 10436 HABERKO K, 1979, CERAMURGIA INT, V5, P148 10437 ISHIZAWA H, 1986, AM CERAM SOC BULL, V65, P1399 10438 RHODES WH, 1989, AM CERAM SOC BULL, V68, P1804 10439 NR 12 10440 TC 1 10441 SN 0272-8842 10442 J9 CERAM INT 10443 JI Ceram. Int. 10444 PY 1997 10445 VL 23 10446 IS 3 10447 BP 267 10448 EP 272 10449 PG 6 10450 SC Materials Science, Ceramics 10451 GA WM133 10452 UT ISI:A1997WM13300013 10453 ER 10454 10455 PT J 10456 AU Lin, D 10457 Fuchs, EF 10458 Doyle, M 10459 TI Computer-aided testing of electrical apparatus supplying nonlinear loads 10460 SO IEEE TRANSACTIONS ON POWER SYSTEMS 10461 DT Article 10462 DE computer-aided testing; electrical machines; transformers; electrical 10463 apparatus; nonlinear loads; derating 10464 AB A computer-aided testing program for electrical apparatus (CATEA) is 10465 designed to test the performance of single and polyphase electrical 10466 devices. It has been applied to measure the losses of single- and 10467 three-phase ac and dc electrical machines, single- and three-phase 10468 transformers with linear and nonlinear loads. On-line measurements of 10469 iron-core and copper losses of single- and three-phase transformers 10470 with rectifier load are presented and compared with the results of the 10471 open- and short-circuit tests. 10472 C1 TU ELECT,FT WORTH,TX 76101. 10473 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA. 10474 RP Lin, D, UNIV COLORADO,BOULDER,CO 80309. 10475 CR FUCHS EF, 1994, IEEE IND APPLIC SOC, P128 10476 NR 1 10477 TC 5 10478 SN 0885-8950 10479 J9 IEEE TRANS POWER SYST 10480 JI IEEE Trans. Power Syst. 10481 PD FEB 10482 PY 1997 10483 VL 12 10484 IS 1 10485 BP 11 10486 EP 21 10487 PG 11 10488 SC Engineering, Electrical & Electronic 10489 GA WK945 10490 UT ISI:A1997WK94500004 10491 ER 10492 10493 PT J 10494 AU Zhou, HY 10495 Deng, ZY 10496 TI Electronic and hydrogenic impurity states in a corner under an applied 10497 electric field 10498 SO JOURNAL OF PHYSICS-CONDENSED MATTER 10499 DT Article 10500 ID QUANTUM-WELL WIRES; 2 ORTHOGONAL SURFACES; DEPENDENCE; VICINITY; 10501 SPECTRA; GROWTH; ENERGY 10502 AB With the use of a variational method to solve the effective-mass 10503 equation, we have studied the electronic and hydrogenic impurity states 10504 in a corner under an applied electric field. The electron energy levels 10505 and the impurity binding energies are calculated. Our results show 10506 that, with the increasing strength of the electric field, the electron 10507 energy levels increase, and the impurity binding energy in the ground 10508 state increases at first, to a peak value, then decreases to a value 10509 which is determined by the impurity position in the corner. The 10510 dependence of the impurity binding energy on the applied electric field 10511 and impurity position is discussed in detail. 10512 C1 CHINESE ACAD SCI,SHANGHAI INST CERAM,SHANGHAI 200050,PEOPLES R CHINA. 10513 CHINA CTR ADV SCI & TECHNOL,WORLD LAB,BEIJING 100080,PEOPLES R CHINA. 10514 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA. 10515 CR BASTARD G, 1981, PHYS REV B, V24, P4714 10516 BASTARD G, 1983, PHYS REV B, V28, P3241 10517 BRANIS SV, 1993, PHYS REV B, V47, P1316 10518 BROWN JW, 1986, J APPL PHYS, V59, P1179 10519 BRUM JA, 1985, SOLID STATE COMMUN, V54, P179 10520 BRYANT GW, 1984, PHYS REV B, V29, P6632 10521 BRYANT GW, 1985, PHYS REV B, V31, P7812 10522 CAO HT, 1995, PHYSICA B, V205, P273 10523 CHEN H, 1991, PHYS REV B, V44, P6220 10524 DENG ZY, 1994, J PHYS-CONDENS MAT, V6, P9729 10525 FUJIWARA K, 1989, PHYS REV B, V40, P9698 10526 GEROHONI D, 1990, PHYS REV LETT, V65, P1631 10527 KHOO GS, 1993, J PHYS-CONDENS MAT, V5, P6507 10528 LANDAU LD, 1977, QUANTUM MECHANICS 10529 LEE WW, 1989, PHYS REV B, V40, P3352 10530 LEE WW, 1989, PHYS REV B, V40, P9920 10531 NAMBA H, 1993, PHYS REV LETT, V71, P4027 10532 TANAKA M, 1988, JPN J APPL PHYS 2, V27, L2025 10533 TANAKA M, 1989, APPL PHYS LETT, V54, P1326 10534 TSUCHIYA M, 1989, PHYS REV LETT, V62, P466 10535 WEBER G, 1988, PHYS REV B, V38, P2179 10536 WEISBUCH C, 1980, J VAC SCI TECHNOL, V17, P1128 10537 NR 22 10538 TC 8 10539 SN 0953-8984 10540 J9 J PHYS-CONDENS MATTER 10541 JI J. Phys.-Condes. Matter 10542 PD FEB 10 10543 PY 1997 10544 VL 9 10545 IS 6 10546 BP 1241 10547 EP 1248 10548 PG 8 10549 SC Physics, Condensed Matter 10550 GA WK618 10551 UT ISI:A1997WK61800010 10552 ER 10553 10554 PT J 10555 AU Yang, T 10556 Yang, LB 10557 TI Application of fuzzy cellular neural networks to Euclidean Distance 10558 Transformation 10559 SO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND 10560 APPLICATIONS 10561 DT Article 10562 DE distance transformation; Euclidean distance; fuzzy cellular neural 10563 network; image processing; mathematical morphology 10564 AB A new structure of fuzzy cellular neural network (FCNN) is proposed in 10565 this brief. In this FCNN, the relationship between fuzzy templates and 10566 input or/and output is defined by addition but not multiplication. 10567 Unlike the FCNN we proposed before [I], which can only implement 10568 morphological operators with flat structuring elements, this FCNN can 10569 implement morphological operators with all the types of structuring 10570 elements. This: FCNN is used to implement Euclidean Distance Transform. 10571 Simulation results are given. 10572 C1 UNIV E ZHOU,E ZHOU 436000,HUBEI,PEOPLES R CHINA. 10573 RP Yang, T, SHANGHAI UNIV SCI & TECHNOL,DEPT AUTOMAT CONTROL ENGN,SHANGHAI 10574 200072,PEOPLES R CHINA. 10575 CR CHUA LO, 1988, IEEE T CIRCUITS SYST, V35, P1257 10576 HARALICK RM, 1987, IEEE T PATTERN ANAL, V9, P532 10577 HEIJMANS HJA, 1994, MORPHOLOGICAL IMAGE 10578 MARAGOS PA, 1986, IEEE T ACOUST SPEECH, V34, P1228 10579 ROSKA T, 1993, IEEE T CIRCUITS-II, V40, P163 10580 SERRA J, 1982, IMAGE ANAL MATH MORP 10581 SERRA J, 1988, IMAGE ANAL MATH MORP, V2 10582 SHIH FY, 1992, IEEE T IMAGE PROCESS, V1, P197 10583 YANG T, 1996, IEEE T CIRCUITS-I, V43, P880 10584 YANG T, 1996, P 4 IEEE INT WORKSH, P181 10585 NR 10 10586 TC 5 10587 SN 1057-7122 10588 J9 IEEE TRANS CIRCUIT SYST-I 10589 JI IEEE Trans. Circuits Syst. I-Fundam. Theor. Appl. 10590 PD MAR 10591 PY 1997 10592 VL 44 10593 IS 3 10594 BP 242 10595 EP 246 10596 PG 5 10597 SC Engineering, Electrical & Electronic 10598 GA WK578 10599 UT ISI:A1997WK57800006 10600 ER 10601 10602 PT J 10603 AU Liu, HY 10604 Zhang, ZN 10605 Fan, YB 10606 Dai, M 10607 Zhang, XL 10608 Wei, JJ 10609 Qiu, ZN 10610 Li, HB 10611 Wu, XX 10612 Deng, JQ 10613 Qi, DY 10614 TI Reagentless amperometric biosensor highly sensitive to hydrogen 10615 peroxide based on the incorporation of Meldola Blue, fumed silica and 10616 horseradish peroxidase into carbon paste 10617 SO FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY 10618 DT Article 10619 ID ELECTROCATALYTIC OXIDATION; ENZYME ELECTRODES; LACTATE OXIDASE; 10620 SENSORS; DEHYDROGENASE; PROTEINS; GRAPHITE; NADH 10621 AB A reagentless amperometric sensor highly sensitive to H2O2 has been 10622 prepared by incorporating fumed silica, horseradish peroxidase (HRP) 10623 and Meldola Blue into carbon paste. The efficient mediating ability to 10624 shift electrons between HRP and the carbon paste electrode via Meldola 10625 Blue was investigated by cyclic voltammetric and amperometric 10626 measurements. Reproducibility, response time, detection limit, 10627 selectivity and effects of applied potential, temperature and pH on the 10628 response of the sensor are reported. The high sensitivity of the sensor 10629 with a detection limit of 0.1 mu mol/l arose from the high efficiency 10630 of the bioelectrocatalytic reduction of hydrogen peroxide via HRP and 10631 Meldola Blue. The dependence of the Michaelis-Menten constant on the 10632 applied potential and the mediator concentration has been investigated 10633 and the results are presented. 10634 C1 SUZHOU INST CITY CONSTRUCT & ENVIRONM PROTECT,DEPT ENVIRONM PROTECT,SUZHOU 300111,JIANSU,PEOPLES R CHINA. 10635 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA. 10636 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R 10637 CHINA. 10638 CR BIFULCO L, 1994, ANAL LETT, V27, P1443 10639 BONAKDAR M, 1989, J ELECTROANAL CH INF, V266, P47 10640 FORZANI ES, 1995, J ELECTROANAL CHEM, V382, P33 10641 FREW JE, 1986, J ELECTROANAL CH INF, V201, P1 10642 GARGUILO MG, 1993, ANAL CHEM, V65, P523 10643 GUO LH, 1991, ADV INORG CHEM RAD, V36, P341 10644 HURDIS EC, 1954, ANAL CHEM, V26, P320 10645 KAMIN RA, 1980, ANAL CHEM, V52, P1198 10646 KORELL U, 1994, ANAL CHEM, V66, P510 10647 KULYS J, 1990, BIOELECTROCH BIOENER, V24, P305 10648 KULYS J, 1992, ANAL LETT, V25, P1011 10649 KULYS J, 1993, ANAL CHIM ACTA, V274, P53 10650 KULYS J, 1994, ANAL CHIM ACTA, V288, P193 10651 KULYS J, 1994, J ELECTROANAL CHEM, V372, P49 10652 LIU HY, 1995, ANAL PROC, V32, P475 10653 LIU YC, 1996, ELECTROCHIM ACTA, V41, P77 10654 MULCHANDANI A, 1995, ANAL CHEM, V67, P94 10655 NAGY G, 1995, ANAL CHIM ACTA, V305, P65 10656 PERSSON B, 1990, J ELECTROANAL CH INF, V287, P61 10657 PERSSON B, 1990, J ELECTROANAL CH INF, V292, P115 10658 SANCHEZ PD, 1990, ELECTROANAL, V2, P303 10659 SCOTT DL, 1992, J ELECTROANAL CHEM, V341, P307 10660 SPRULES SD, 1995, ANAL CHIM ACTA, V304, P17 10661 WANG J, 1991, ANAL CHEM, V63, P2993 10662 WANG J, 1993, ANAL CHIM ACTA, V284, P385 10663 WOLLENBERGER U, 1991, BIOELECTROCH BIOENER, V26, P287 10664 NR 26 10665 TC 14 10666 SN 0937-0633 10667 J9 FRESENIUS J ANAL CHEM 10668 JI Fresenius J. Anal. Chem. 10669 PD FEB 10670 PY 1997 10671 VL 357 10672 IS 3 10673 BP 297 10674 EP 301 10675 PG 5 10676 SC Chemistry, Analytical 10677 GA WJ843 10678 UT ISI:A1997WJ84300010 10679 ER 10680 10681 PT J 10682 AU Liu, HY 10683 Qian, JH 10684 Liu, YC 10685 Yu, TY 10686 Deng, JG 10687 Qi, DY 10688 TI Amperometric methylene blue-mediated sensor highly sensitive to 10689 hydrogen peroxide based on a composite membrane of regenerated silk 10690 fibroin and poly-vinyl alcohol as immobilization matrix for horseradish 10691 peroxidase 10692 SO FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY 10693 DT Article 10694 ID ENZYME ELECTRODES; BIOELECTROCATALYTIC REDUCTION; CARBON; SYSTEM; 10695 ASSAY; ACID 10696 AB Horseradish peroxidase (HRP) was effectively entrapped in a novel 10697 composite membrane of poly-vinyl alcohol and regenerated silk fibroin, 10698 and IR was employed to provide a useful insight into the structure of 10699 the composite membrane. A methylene blue-mediated sensor highly 10700 sensitive to hydrogen peroxide was constructed, which was based on the 10701 immobilization of HRP in the composite membrane. Cyclic voltammetry and 10702 amperometric measurement were utilized to demonstrate the feasibility 10703 of electron communication between immobilized HRP and a glassy carbon 10704 electrode in the bioelectrocatalytic reduction of hydrogen peroxide via 10705 methylene blue. Performance and characteristics of the sensor were 10706 evaluated with regard to response time, detection limit, selectivity, 10707 and dependence on temperature and pH as well as operating and storage 10708 stability. The sensor possesses a variety of characteristics including 10709 high sensitivity, rapid response time and a low detection limit of 0.1 10710 mu mol/L. 10711 C1 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA. 10712 FUDAN UNIV,DEPT MACROMOL SCI,SHANGHAI 200433,PEOPLES R CHINA. 10713 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R 10714 CHINA. 10715 CR AIZAWA M, 1984, ANAL LETT PT B, V17, P555 10716 BENNETTO HP, 1987, INT ANAL, V8, P22 10717 BIFULCO L, 1994, ANAL LETT, V27, P1443 10718 CLARK LC, 1979, METHOD ENZYMOL, V56, P448 10719 FREW JE, 1983, ANAL CHIM ACTA, V155, P139 10720 FREW JE, 1986, J ELECTROANAL CH INF, V201, P1 10721 GARGUILO MG, 1993, ANAL CHEM, V65, P523 10722 HO WO, 1993, J ELECTROANAL CHEM, V351, P185 10723 HURDIS EC, 1954, ANAL CHEM, V26, P320 10724 IANNIELLO RM, 1981, ANAL CHEM, V53, P2090 10725 JONSSON G, 1989, ELECTROANAL, V1, P465 10726 KAMIN RA, 1980, ANAL CHEM, V52, P1198 10727 LIU HY, 1995, ANAL PROC, V32, P475 10728 MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801 10729 OHARA TJ, 1993, ELECTROANAL, V5, P823 10730 OLSSON B, 1988, ANAL CHIM ACTA, V206, P49 10731 QIAN JH, 1995, J ELECTROANAL CHEM, V397, P157 10732 SANCHEZ PD, 1990, ELECTROANAL, V2, P303 10733 SANCHEZ PD, 1991, ELECTROANAL, V3, P281 10734 TATSUMA T, 1991, ANAL CHIM ACTA, V242, P85 10735 WANG J, 1991, ANAL CHEM, V63, P2993 10736 WANG J, 1992, ANAL CHEM, V64, P1285 10737 WELINDER KG, 1979, EUR J BIOCHEM, V96, P483 10738 WOLLENBERGER U, 1990, ANAL LETT, V23, P1795 10739 WOLLENBERGER U, 1991, BIOELECTROCH BIOENER, V26, P287 10740 YAMADA H, 1974, ARCH BIOCHEM BIOPHYS, V165, P728 10741 YAROPOLOV AI, 1979, DOKL AKAD NAUK SSSR, V249, P1399 10742 ZHANG Z, 1996, IN PRESS ANAL CHEM 10743 NR 28 10744 TC 5 10745 SN 0937-0633 10746 J9 FRESENIUS J ANAL CHEM 10747 JI Fresenius J. Anal. Chem. 10748 PD FEB 10749 PY 1997 10750 VL 357 10751 IS 3 10752 BP 302 10753 EP 307 10754 PG 6 10755 SC Chemistry, Analytical 10756 GA WJ843 10757 UT ISI:A1997WJ84300011 10758 ER 10759 10760 PT J 10761 AU Wang, ZH 10762 TI Analysis of graded-index optical fibers by expansion of the fields in 10763 terms of partial-waveguide modes 10764 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 10765 DT Article 10766 DE optical fibers; mode-field and propagation constant; partial-waveguide 10767 mode; coupled-mode theory 10768 AB According to the core-cladding interface of an ideal waveguide, a 10769 step-index fiber, the transverse plane has been divided into two 10770 regions. Mode fields and propagation constants of the graded-index 10771 optical fibers have been calculated by the use of 10772 partial-waveguide-mode expansion and coupled-mode theory. 10773 RP Wang, ZH, SHANGHAI UNIV,WAVE SCI LAB,SHANGHAI 201800,PEOPLES R CHINA. 10774 CR CLARRICOATS PJB, 1970, ELECTRON LETT, V6, P694 10775 GLOGE D, 1971, APPL OPTICS, V10, P2252 10776 HENRY CH, 1989, J LIGHTWAVE TECHNOL, V7, P308 10777 OKOSHI T, 1982, OPTICAL FIBERS 10778 SNYDER AW, 1983, OPTICAL WAVEGUIDE TH 10779 WANG ZH, 1996, MICROW OPT TECHN LET, V12, P90 10780 NR 6 10781 TC 1 10782 SN 0895-2477 10783 J9 MICROWAVE OPT TECHNOL LETT 10784 JI Microw. Opt. Technol. Lett. 10785 PD MAR 10786 PY 1997 10787 VL 14 10788 IS 4 10789 BP 236 10790 EP 239 10791 PG 4 10792 SC Engineering, Electrical & Electronic; Optics 10793 GA WH757 10794 UT ISI:A1997WH75700013 10795 ER 10796 10797 PT J 10798 AU Luo, WL 10799 Liu, HY 10800 Deng, HH 10801 Sun, K 10802 Zhao, CH 10803 Qi, DY 10804 Deng, JQ 10805 TI Biosensing of hydrogen peroxide at carbon paste electrode incorporating 10806 N-methyl phenazine methosulphate, fumed-silica and horseradish 10807 peroxidase 10808 SO ANALYTICAL LETTERS 10809 DT Article 10810 DE biosensor; N-methyl phenazine methosulphate; horseradish peroxidase; 10811 hydrogen peroxide; fumed silica; carbon paste electrode 10812 ID CYTOCHROME-C PEROXIDASE; SPECTROPHOTOMETRIC DETERMINATION; 10813 PYROLYTIC-GRAPHITE; ACTIVATED CARBON; SENSORS; DEHYDROGENASE; POLYMER; 10814 GLUCOSE; ENZYMES 10815 AB Biosensing of hydrogen peroxide was made at a carbon paste electrode 10816 incorporating fumed silica, horseradish peroxidase and N-methyl 10817 phenazine methosulphate. Cyclic voltammetric and amperometric 10818 measurements were used for the first time to demonstrate the 10819 suitability of electron communication between horseradish peroxidase 10820 and a carbon paste electrode via N-methyl phenazine methosulphate, an 10821 electron transfer mediator. Performance and characteristics of the 10822 biosensor were evaluated with respect to response time, detection 10823 limit, applied potential and concentration of the mediator. Effect of 10824 applied potential and amount of the mediator in carbon paste on the 10825 Michaelis-Menten constant of the biosensor was investigated. The 10826 biosensor possessed a variety of characteristics including long 10827 stability and rapid response and high sensitivity to hydrogen peroxide, 10828 with a detection limit of 0.08 mu M. 10829 C1 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA. 10830 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA. 10831 CR AIZAWA M, 1984, ANAL LETT PT B, V17, P555 10832 AKIMOTO K, 1990, ANAL BIOCHEM, V189, P182 10833 BIFULCO L, 1994, ANAL LETT, V27, P1443 10834 BONAKDAR M, 1989, J ELECTROANAL CH INF, V266, P47 10835 CHICHARRO M, 1994, ANAL LETT, V27, P1809 10836 CLAPP PA, 1989, ANAL CHIM ACTA, V218, P331 10837 CSOREGI E, 1994, ANAL CHEM, V66, P3604 10838 FREW JE, 1986, J ELECTROANAL CH INF, V201, P1 10839 GARGUILO MG, 1993, ANAL CHEM, V65, P523 10840 GORTON L, 1986, J MOL CATAL, V38, P157 10841 GORTON L, 1991, ANAL CHIM ACTA, V249, P43 10842 GUO LH, 1991, ADV INORG CHEM RAD, V36, P341 10843 HO WO, 1993, J ELECTROANAL CHEM, V351, P185 10844 HURDIS EC, 1954, ANAL CHEM, V26, P320 10845 IANNIELLO RM, 1981, ANAL CHEM, V53, P448 10846 JOHANSSON G, 1989, ELECTROANAL, V1, P465 10847 KAMIN RA, 1980, ANAL CHEM, V52, P1198 10848 KOK GM, 1978, ENVIRON SCI TECHNOL, V12, P1073 10849 KORELL U, 1994, ANAL CHEM, V66, P510 10850 KULYS J, 1990, BIOELECTROCH BIOENER, V24, P305 10851 KULYS J, 1993, ANAL CHIM ACTA, V274, P53 10852 KUWANA T, 1964, ANAL CHEM, V36, P241 10853 LIU H, 1995, ANAL P, V32, P375 10854 LIU YC, 1996, ELECTROCHIM ACTA, V41, P77 10855 MOTTA N, 1994, ANAL CHEM, V66, P566 10856 OHARA TJ, 1993, ELECTROANAL, V5, P823 10857 RUZGAS T, 1995, J ELECTROANAL CHEM, V391, P41 10858 SCOTT DL, 1992, J ELECTROANAL CHEM, V341, P307 10859 SCOTT DL, 1994, ANAL CHEM, V66, P1217 10860 SELLERS RM, 1980, ANALYST, V105, P950 10861 SHU HC, 1995, BIOTECHNOL BIOENG, V46, P270 10862 WANG J, 1991, ANAL CHEM, V63, P2993 10863 WANG J, 1993, ANAL CHIM ACTA, V284, P385 10864 WIJESURIYA DC, 1993, BIOSENS BIOELECTRON, V8, P155 10865 WOLLENBERGER U, 1990, ANAL LETT, V23, P1795 10866 YAROPOLOV AI, 1979, DOKL AKAD NAUK SSSR, V249, P1399 10867 ZHANG ZE, 1996, ANAL CHEM, V68, P1632 10868 NR 37 10869 TC 7 10870 SN 0003-2719 10871 J9 ANAL LETT 10872 JI Anal. Lett. 10873 PY 1997 10874 VL 30 10875 IS 2 10876 BP 205 10877 EP 220 10878 PG 16 10879 SC Chemistry, Analytical 10880 GA WH284 10881 UT ISI:A1997WH28400001 10882 ER 10883 10884 PT J 10885 AU Bai, ZZ 10886 Wang, DR 10887 TI The monotone convergence of the two-stage iterative method for solving 10888 large sparse systems of linear equations 10889 SO APPLIED MATHEMATICS LETTERS 10890 DT Article 10891 DE linear system of equations; two-stage iterative method; Monotone 10892 convergence; Monotone convergence rate 10893 AB This paper sets up the monotone convergence theory for the two-stage 10894 iterative method proposed by Frommer and Szyld in [1], and investigates 10895 the influence of the splitting matrices and the inner iteration number 10896 sequence on the monotone convergence rate of this method. 10897 C1 SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 10898 RP Bai, ZZ, CHINESE ACAD SCI,INST COMPUTAT MAT & SCI ENGN COMP,STATE KEY 10899 LAB SCI ENGN COMP,POB 2719,BEIJING 100080,PEOPLES R CHINA. 10900 CR FROMMER A, 1992, NUMER MATH, V63, P345 10901 GOLUB GH, 1988, NUMER MATH, V53, P571 10902 LANZKRON PJ, 1991, NUMER MATH, V58, P685 10903 NICHOLS NK, 1973, SIAM J NUMER ANAL, V10, P460 10904 WACHSPRESS EL, 1966, ITERATIVE SOLUTION E 10905 NR 5 10906 TC 8 10907 SN 0893-9659 10908 J9 APPL MATH LETT 10909 JI Appl. Math. Lett. 10910 PD JAN 10911 PY 1997 10912 VL 10 10913 IS 1 10914 BP 113 10915 EP 117 10916 PG 5 10917 SC Mathematics, Applied 10918 GA WH071 10919 UT ISI:A1997WH07100021 10920 ER 10921 10922 PT J 10923 AU Cheng, CJ 10924 Shang, XC 10925 TI Mode jumping of simply supported rectangular plates on non-linear 10926 elastic foundation 10927 SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS 10928 DT Article 10929 DE non-linear stability; non-linear elastic foundation; secondary 10930 bifurcation; mode jumping; stability of bifurcation solution 10931 AB In this paper, we study the non-linear stability of simply supported 10932 rectangular plates on a non-linear elastic foundation and use the 10933 theory of singularities to analyse the effect of the coefficients of 10934 the foundation on the stability behaviour. The results point out that 10935 the instability behaviour of the rectangular plate near a double 10936 eigenvalue is very complex due to the interaction between the 10937 foundation and plate. And the stability behaviour of the plate not only 10938 depends on the elastic coefficients of the foundation but also the 10939 modes of the plate when it losses its stability. From 45 bifurcation 10940 diagrams given in the paper, one can see that the rectangular plate not 10941 only occurs the secondary bifurcation but also has very complex 10942 super-critical behaviour like mode jumping. In these figures, we still 10943 discover the new manners of mode transition. Finally, we discuss all 10944 possible bifurcation behaviours of rectangular plates. Copyright (C) 10945 1996 Elsevier Science Ltd. 10946 C1 SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA. 10947 RP Cheng, CJ, LANZHOU UNIV,DEPT MECH,LANZHOU 730000,PEOPLES R CHINA. 10948 CR BAUER L, 1965, SIAM J APPL MATH, V13, P603 10949 BAUER L, 1975, SIAM REV, V17, P101 10950 CHENG CJ, 1992, LIXUE YU SHIJIAN, V14, P12 10951 CHOW SN, 1982, GRUHDLEHREN, V251 10952 HOLDER EJ, 1984, SIAM J MATH ANAL, V15, P446 10953 MAOSKANT R, 1992, INT J SOLIDS STRUCT, V29, P1209 10954 MATHOWSKY BJ, 1973, INT J NONLINEAR MECH, V9, P84 10955 POSTON T, 1978, CATASTROPHE THEORY I 10956 SCHAEFFER D, 1979, COMMUN MATH PHYS, V69, P209 10957 STEIN M, 1959, R40 NASA 10958 STROEBEL GJ, 1973, J ELASTICITY, V3, P185 10959 SUCHY H, 1985, Z ANGEW MATH MECH, V65, P71 10960 SUPPLE WJ, 1970, INT J SOLIDS STRUCT, V6, P1234 10961 UEMURA M, 1977, INT J NONLINEAR MECH, V12, P355 10962 NR 14 10963 TC 1 10964 SN 0020-7462 10965 J9 INT J NON-LINEAR MECH 10966 JI Int. J. Non-Linear Mech. 10967 PD JAN 10968 PY 1997 10969 VL 32 10970 IS 1 10971 BP 161 10972 EP 172 10973 PG 12 10974 SC Mechanics 10975 GA WG519 10976 UT ISI:A1997WG51900013 10977 ER 10978 10979 PT J 10980 AU Sang, WB 10981 Durose, K 10982 Brinkman, AW 10983 Tanner, BK 10984 TI Growth and characterization of magnetic metal Mn film by MOCVD 10985 SO MATERIALS CHEMISTRY AND PHYSICS 10986 DT Article 10987 DE metal organic chemical vapour deposition; Mn film growth; growth 10988 kinetics 10989 ID MOVPE 10990 AB Metal manganese films have successfully been grown on (100) and (111) 10991 GaAs substrates by metal organic chemical vapour deposition using 10992 tricarbonyl (methylcyclopentadienyl) manganese (TCMn) as the Mn source 10993 material. The onset of diffusion limited growth occurs at a temperature 10994 of similar to 470 degrees C. Above this transition temperature, the 10995 growth is relatively independent of the temperature and limited only by 10996 the rate at which the precursor is able to diffuse to the substrate. At 10997 the low temperatures, the growth rate is limited by the pyrolysis 10998 behaviour of the TCMn and is thermally activated with an activation 10999 energy of similar to 220 kJ mol(-1). This compares with the activation 11000 energy obtained for the decomposition of the TCMn of 236 kJ mol(-1). 11001 The growth characteristic of Mn films has also shown that no growth 11002 took place below the temperature of 410 degrees C and the morphology of 11003 the layers grown at the higher temperature of 470 degrees C was 11004 considerably better than that of the layers grown at lower 11005 temperatures. Ex-situ reflection high-energy electron diffraction 11006 (RHEED) showed the films to be polycrystalline Mn, with good surface 11007 morphology. Surface roughness was measured to be similar to 4 nm and 11008 was probably limited by oxidation, when exposed to air. 11009 C1 UNIV DURHAM,DEPT PHYS,DURHAM DH1 3LE,ENGLAND. 11010 RP Sang, WB, SHANGHAI UNIV,JIADING CAMPUS,SHANGHAI 201800,PEOPLES R CHINA. 11011 CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 11012 DUB M, 1966, ORGANOMETALLIC COMPO, V1, P1445 11013 HAILS JE, 1986, J CRYST GROWTH, V79, P940 11014 MOTOMURA Y, 1988, SUPERLATTICE MICROST, V4, P479 11015 SANG WB, 1991, J CRYST GROWTH, V113, P1 11016 NR 5 11017 TC 0 11018 SN 0254-0584 11019 J9 MATER CHEM PHYS 11020 JI Mater. Chem. Phys. 11021 PD JAN 11022 PY 1997 11023 VL 47 11024 IS 1 11025 BP 75 11026 EP 77 11027 PG 3 11028 SC Materials Science, Multidisciplinary 11029 GA WG642 11030 UT ISI:A1997WG64200013 11031 ER 11032 11033 PT J 11034 AU Yao, DM 11035 Li, CF 11036 TI Field and intensity expectation values of quantum solitons in optical 11037 fibers 11038 SO ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER 11039 DT Article 11040 ID FLUCTUATIONS; APPROXIMATION; PROPAGATION 11041 AB Expectation values of the field and intensity operators are evaluated 11042 for quantum solitons in the normalized fundamental soliton states with 11043 a Gaussian momentum superposition and a Poisson distribution for photon 11044 numbers. The associate quantum diffusion effects are discussed and the 11045 conditions which lead to the classical limit are identified. A 11046 numerical estimate is given using experimental data. 11047 C1 UNIV SCI & TECHNOL CHINA,CTR FUNDAMENTAL PHYS,HEFEI 230026,ANHUI,PEOPLES R CHINA. 11048 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 11049 RP Yao, DM, CHINA CTR ADV SCI & TECHNOL,WORLD LAB,POB 8730,BEIJING 11050 100080,PEOPLES R CHINA. 11051 CR BELINSKII AV, 1991, JETP LETT, V53, P74 11052 BELINSKII AV, 1992, SOV J QUANTUM ELECTR, V22, P828 11053 CARTER SJ, 1987, PHYS REV LETT, V58, P1841 11054 DESURVIRE E, 1994, PHYS TODAY, V62, P20 11055 DRUMMOND PD, 1993, NATURE, V365, P307 11056 GLASS AM, 1993, PHYS TODAY, V61, P34 11057 GORDON JP, 1986, OPT LETT, V11, P665 11058 HASEGAWA A, 1990, OPTICAL SOLUTIONS FI 11059 KARTNER FX, 1996, PHYS REV A, V53, P454 11060 KUZNETSOV DY, 1991, JETP LETT, V54, P568 11061 KUZNETZOV DY, 1992, QUANTUM OPT, V4, P221 11062 LAI Y, 1989, PHYS REV A, V40, P854 11063 LAI YC, 1993, J OPT SOC AM B, V10, P475 11064 MOLLENAUER LF, 1980, PHYS REV LETT, V45, P1095 11065 NOHL CR, 1976, ANN PHYS-NEW YORK, V96, P234 11066 ROSENBLUH M, 1991, PHYS REV LETT, V66, P153 11067 WADACHI M, 1984, J PHYS SOC JPN, V53, P1933 11068 WADATI M, 1985, SPRINGER SERIES SYNE, V30, P68 11069 WRIGHT EM, 1991, PHYS REV A, V43, P3836 11070 YAO DM, 1995, PHYS REV A, V52, P1574 11071 YAO DM, 1995, PHYS REV A, V52, P4871 11072 NR 21 11073 TC 0 11074 SN 0722-3277 11075 J9 Z PHYS B-CONDENS MATTER 11076 JI Z. Phys. B-Condens. Mat. 11077 PD FEB 11078 PY 1997 11079 VL 102 11080 IS 2 11081 BP 239 11082 EP 243 11083 PG 5 11084 SC Physics, Condensed Matter 11085 GA WF434 11086 UT ISI:A1997WF43400012 11087 ER 11088 11089 PT J 11090 AU Sang, WB 11091 Zhou, SQ 11092 Wu, WH 11093 TI Investigation of equilibrium partial pressures over (Hg1-xCdx)(y)Te-1-y 11094 (y<0.5) melts 11095 SO JOURNAL OF CRYSTAL GROWTH 11096 DT Article 11097 ID TRAVELING HEATER METHOD; CRYSTAL-GROWTH; LPE GROWTH; TE; HG1-XCDXTE 11098 AB A double optical path system was designed for the optical absorbance 11099 measurement. The equilibrium partial pressures of Hg and Te-2 over the 11100 (Hg1-xCdx)(y)Te-1-y (y < 0.5) melts with x = 0.13-0.55 and y = 11101 0.21-0.41 between 500 and 750 degrees C were determined by this method. 11102 The experimental results were reproducible and the errors were 11103 estimated as about 5%. The data achieved show that p(Hg) increases with 11104 the rise of y when T and x remain unchanged, and decreases slightly 11105 with the increase of x when T and y are kept constant. The cause of 11106 these phenomena is discussed. 11107 RP Sang, WB, SHANGHAI UNIV SCI & TECHNOL,JIADING CAMPUS,SHANGHAI 11108 201800,PEOPLES R CHINA. 11109 CR ASTLES MG, 1992, J CRYST GROWTH, V117, P213 11110 BERNARDI S, 1988, J CRYST GROWTH, V87, P365 11111 BREBRICK RF, 1965, J PHYS CHEM SOLIDS, V26, P989 11112 DENOBEL D, 1959, PHILIPS RES REP, V14, P361 11113 GILLE P, 1991, J CRYST GROWTH, V114, P77 11114 GOLDFINGER P, 1963, T FARADAY SOC, V59, P2851 11115 HARMAN TC, 1980, J ELECTRON MATER, V9, P945 11116 HUA SC, 1985, J ELECTROCHEM SOC, V132, P942 11117 MOCHIZUKI K, 1990, J CRYST GROWTH, V99, P722 11118 PELLICIARI B, 1988, J CRYST GROWTH, V86, P146 11119 PELLICIARI B, 1994, PROG CRYST GROWTH CH, V29, P1 11120 SCHMIT JL, 1968, INFRARED PHYS, V8, P247 11121 SCHWARTZ JP, 1981, J ELECTROCHEM SOC, V128, P438 11122 SHUQUAN Z, 1989, J APPL SCI, V7, P271 11123 STEININGER J, 1976, J ELECTRON MATER, V5, P299 11124 UEDA R, 1972, J CRYST GROWTH, V13, P668 11125 NR 16 11126 TC 0 11127 SN 0022-0248 11128 J9 J CRYST GROWTH 11129 JI J. Cryst. Growth 11130 PD JAN 11131 PY 1997 11132 VL 171 11133 IS 1-2 11134 BP 45 11135 EP 49 11136 PG 5 11137 SC Crystallography 11138 GA WE271 11139 UT ISI:A1997WE27100007 11140 ER 11141 11142 PT J 11143 AU Guo, BY 11144 He, LP 11145 Mao, DK 11146 TI On the two-dimensional Navier-Stokes equations in stream function form 11147 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 11148 DT Article 11149 AB In this paper the initial-boundary value problem of the Navier-Stokes 11150 equations in stream function form is considered. A trilinear form is 11151 introduced to deal with the nonlinear term. A weak formulation of this 11152 problem is provided. The existence of a weak solution is proved by an 11153 auxiliary semi-discrete Faedo-Galerkin scheme and a compactness 11154 argument. The uniqueness and regularity of the solution are discussed. 11155 Finally the convergence of the numerical solution and the converge rate 11156 with a certain choice of basis in the Faedo-Galerkin method are given. 11157 (C) 1997 Academic Press 11158 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 11159 RP Guo, BY, CITY UNIV HONG KONG,DEPT MATH,KOWLOON,HONG KONG. 11160 CR ADAMS RA, 1975, SOBOLEV SPACES 11161 BERNARDI C, 1992, MATH COMPUT, V59, P63 11162 CANUTO C, 1988, SPECTRAL METHODS FLU 11163 GOTTLIEB D, 1977, CBMS REGIONAL C SERI, V26 11164 GUO B, 1985, SCI SINICA SER A, V28, P1139 11165 GUO BY, 1988, FINITE DIFFERENCE ME 11166 LIONS JL, 1969, QUELQUES METHODES RE 11167 ODEN JT, 1974, FINITE ELEMENTS MATH 11168 SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489 11169 TEMANS R, 1977, NAVIER STOKES EQUATI 11170 NR 10 11171 TC 3 11172 SN 0022-247X 11173 J9 J MATH ANAL APPL 11174 JI J. Math. Anal. Appl. 11175 PD JAN 1 11176 PY 1997 11177 VL 205 11178 IS 1 11179 BP 1 11180 EP 31 11181 PG 31 11182 SC Mathematics, Applied; Mathematics 11183 GA WD284 11184 UT ISI:A1997WD28400001 11185 ER 11186 11187 PT J 11188 AU Feng, SS 11189 Zhu, ZY 11190 TI Path integral quantization and the ground-state wave functional for 11191 multiplier scalar-vector field systems 11192 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 11193 DT Article 11194 AB With the help of path-integral quantization and Fradkin's approach, we 11195 obtain a new representation in the Schrodinger picture of the 11196 multiplier scalar-vector fields and the ground-state functional. We 11197 show that the model is equivalent to free scalar fields with the same 11198 mass. 11199 C1 ACAD SINICA,INST NUCL RES,SHANGHAI 201800,PEOPLES R CHINA. 11200 RP Feng, SS, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES 11201 R CHINA. 11202 CR DIRAC PAM, 1964, LECTURES QUANTUM MEC 11203 FENG SS, 1995, INT J THEOR PHYS, V34, P1827 11204 FRADKIN E, 1993, NUCL PHYS B, V389, P587 11205 FRADKIN E, 1993, NUCL PHYS B, V392, P667 11206 LI ZP, 1991, J PHYS A-MATH GEN, V24, P4261 11207 LOPEZ A, 1992, PHYS REV LETT, V69, P2126 11208 NR 6 11209 TC 1 11210 SN 0020-7748 11211 J9 INT J THEOR PHYS 11212 JI Int. J. Theor. Phys. 11213 PD JAN 11214 PY 1997 11215 VL 36 11216 IS 1 11217 BP 41 11218 EP 46 11219 PG 6 11220 SC Physics, Multidisciplinary 11221 GA WD241 11222 UT ISI:A1997WD24100005 11223 ER 11224 11225 PT J 11226 AU Bai, ZZ 11227 Sun, JC 11228 Wang, DR 11229 TI A unified framework for the construction of various matrix 11230 multisplitting iterative methods for large sparse system of linear 11231 equations 11232 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS 11233 DT Article 11234 DE system of linear equations; parallel iteration; matrix multisplitting; 11235 relaxation method; convergence theory 11236 ID PARALLEL SOLUTION; CONVERGENCE; SPLITTINGS; ALGORITHM; 2-STAGE 11237 AB A unified framework for the construction of various synchronous and 11238 asynchronous parallel matrix multisplitting iterative methods, suitable 11239 to the SIMD and MIMD multiprocessor systems, respectively, is 11240 presented, and its convergence theory is established under rather weak 11241 conditions. These afford general method models and systematical 11242 convergence criterions for studying the parallel iterations in the 11243 sense of matrix multisplitting. In addition, how the known parallel 11244 matrix multisplitting iterative methods can be classified into this new 11245 framework, and what novel ones can be generated by it are shown in 11246 detail. 11247 C1 CHINESE ACAD SCI,INST SOFTWARE,BEIJING 100080,PEOPLES R CHINA. 11248 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 11249 RP Bai, ZZ, CHINESE ACAD SCI,INST COMPUTAT MATH & SCI ENGN COMP,STATE KEY 11250 LAB SCI ENGN COMP,BEIJING 100080,PEOPLES R CHINA. 11251 CR BAI ZZ, IN PRESS COMP MULTIS 11252 BAI ZZ, IN PRESS J COMP MATH 11253 BAI ZZ, 1993, CHINESE J ENG MATH, V10, P107 11254 BAI ZZ, 1993, J NATU SCI HEILONGJI, V10, P1 11255 BAI ZZ, 1993, NUMER MATH J CHINESE, V2, P87 11256 BAI ZZ, 1993, THESIS SHANGHAI U SC 11257 BAI ZZ, 1994, CHINESE J ENG MATH, V11, P99 11258 BAI ZZ, 1994, NUMER MATH J CHINESE, V16, P107 11259 BAI ZZ, 1995, APPL MATH JCU A, V10, P133 11260 BAI ZZ, 1995, COMMUN NUMER METH EN, V11, P363 11261 BAI ZZ, 1995, J FUDAN U, V34, P139 11262 BAI ZZ, 1995, PARALLEL COMPUT, V21, P565 11263 BRU R, 1988, LINEAR ALGEBRA APPL, V103, P175 11264 BRU R, 1990, APPL MATH LETT, V3, P65 11265 CHAZAN D, 1969, LINEAR ALGEBRA APPL, V2, P199 11266 EVANS DJ, 1991, PARALLEL COMPUT, V17, P165 11267 EVANS DJ, 1992, INT J COMPUT MATH, V43, P173 11268 FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141 11269 FROMMER A, 1992, NUMER MATH, V63, P345 11270 HADJIDIMOS A, 1978, MATH COMPUT, V32, P149 11271 NEUMANN M, 1987, LINEAR ALGEBRA APPL, V88, P559 11272 OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630 11273 SZYLD DB, 1992, SIAM J MATRIX ANAL A, V13, P671 11274 VARGA RS, 1961, MATRIX ITERATIVE ANA 11275 WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473 11276 WANG DR, 1994, P 92 SHANGH INT NUM 11277 WANG DR, 1994, PARALLEL ALGORITHMS, V2, P173 11278 WHITE RE, 1989, SIAM J MATRIX ANAL A, V10, P481 11279 NR 28 11280 TC 15 11281 SN 0898-1221 11282 J9 COMPUT MATH APPL 11283 JI Comput. Math. Appl. 11284 PD DEC 11285 PY 1996 11286 VL 32 11287 IS 12 11288 BP 51 11289 EP 76 11290 PG 26 11291 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied 11292 GA WC720 11293 UT ISI:A1996WC72000005 11294 ER 11295 11296 PT J 11297 AU Sang, WB 11298 Wu, WH 11299 TI Thermodynamic investigation of equilibrium partial pressures over 11300 Hg1-xCdxTe melts 11301 SO ACTA CHIMICA SINICA 11302 DT Article 11303 AB Equilibrium partial pressures over Hg1-xCdxTe(MCT) melts have been 11304 considered as important thermodynamic parameters in high quality MCT 11305 crystal growth, However, these parameters reported until present in 11306 literatures are highly different from each other, which has become an 11307 obstacle to furthering studies on the crystal growth of MCT. This work 11308 determined systematically Hg and Te partial pressures over the MCT 11309 melts in the range of x = 0 similar to 0.4, based on the principles of 11310 the optical absorption, Cd partial pressure is calculated from our 11311 experimental results and known thermodynamic data. Relationship between 11312 P-Hg and composition re is discussed, Comparison has been made between 11313 our results and other author's data. The cause of difference is pursued. 11314 RP Sang, WB, SHANGHAI UNIV SCI & TECHNOL,DEPT INORGAN MAT,SHANGHAI 11315 201800,PEOPLES R CHINA. 11316 CR BREBRICK RF, 1965, J PHYS CHEM SOLIDS, V26, P989 11317 DENOBEL D, 1959, PHILIPS RES REP, V14, P361 11318 GOLDFINGER P, 1963, T FARADAY SOC, V59, P2851 11319 HARMAN TC, 1967, PHYSICS CHEM 2 6 COM, P725 11320 HULTGREN R, 1963, SELECTED VALUES THER, P592 11321 SCHMIT JL, 1968, INFRARED PHYS, V8, P247 11322 SCHWARTZ JP, 1981, J ELECTROCHEM SOC, V128, P438 11323 STEININGER J, 1970, J APPL PHYS, V41, P2713 11324 STEININGER J, 1976, J ELECTRON MATER, V5, P299 11325 SUGAWARA S, 1971, B JAP SOC MECH ENG, V118, P2014 11326 NR 10 11327 TC 0 11328 SN 0567-7351 11329 J9 ACTA CHIM SIN 11330 JI Acta Chim. Sin. 11331 PY 1996 11332 VL 54 11333 IS 12 11334 BP 1151 11335 EP 1158 11336 PG 8 11337 SC Chemistry, Multidisciplinary 11338 GA WC584 11339 UT ISI:A1996WC58400002 11340 ER 11341 11342 PT J 11343 AU Zhu, SJ 11344 Ren, ZM 11345 Deng, K 11346 Jiang, GC 11347 TI Numerical simulation of alternative horizontal levitation 11348 electromagnetic continuous casting 11349 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA 11350 DT Article 11351 DE horizontal electromagnetic continuous casting; electromagnetic 11352 levitation; numerical simulation 11353 AB Electromagnetic problem of horizontal electromagnetic continuous 11354 casting (HEMC) had been studied. The influence of structure of 11355 apparatus and power frequency on maximum electromagnetic levitation 11356 pressure had been analyzed. The results show that, in order to get 11357 large electromagnetic levitation pressure at high frequency, the screen 11358 must be wide but can be thin, and the width of the sheet should be 11359 closed to the distance of the flanges. 11360 C1 SHANGHAI UNIV,SHANGHAI ENHANCED LAB FERROMET,SHANGHAI 200072,PEOPLES R CHINA. 11361 CR ASAI S, 1989, TETSU TO HAGANE, V75, P32 11362 REN ZM, 1991, J DALIAN U TECH, V31, P419 11363 REN ZM, 1993, CHINESE J NONFERROUS, V3, P93 11364 REN ZM, 1994, CHINESE J NONFERROUS, V4, P78 11365 REN ZM, 1994, J DALIAN U TECH, V34, P556 11366 REN ZM, 1996, CHINESE J NONFERROUS, V6, P108 11367 SAKANE J, 1988, METALL T B, V9, P397 11368 ZHU SJ, 1995, T SHANGHAI U, V1, P68 11369 NR 8 11370 TC 2 11371 SN 1003-6326 11372 J9 TRANS NONFERROUS METAL SOC CH 11373 JI Trans. Nonferrous Met. Soc. China 11374 PD DEC 11375 PY 1996 11376 VL 6 11377 IS 4 11378 BP 42 11379 EP 46 11380 PG 5 11381 SC Metallurgy & Metallurgical Engineering 11382 GA WC539 11383 UT ISI:A1996WC53900010 11384 ER 11385 11386 PT J 11387 AU Huang, YX 11388 Senos, AMR 11389 Rocha, J 11390 Baptista, JL 11391 TI Gel formation in mullite precursors obtained via 11392 tetraethylorthosilicate (TEOS) pre-hydrolysis 11393 SO JOURNAL OF MATERIALS SCIENCE 11394 DT Article 11395 ID ALUMINOSILICATE GELS; SPINEL PHASE; XEROGELS 11396 AB Tetraethylorthosilicate (TEOS) and aluminium chloride were taken as 11397 sources of SiO2 and Al2O3 to prepare precursors of mullite by 11398 pre-hydrolysis of TEOS under refluxing conditions. Gelation was carried 11399 out at different pH values and the effect of the pH of gelation on the 11400 subsequent temperature-induced phase transformations was characterized 11401 by differential thermal analysis, powder X-ray diffraction and Si-29 11402 and Al-27 solid-state nuclear magnetic resonance spectroscopy. A 11403 pH-dependent exothermic peak was observed at similar to 980 degrees C. 11404 Strong acidic conditions (pH = 1.5) were found to be beneficial for 11405 improving the mixing scale of the Al-Si components, leading to a 11406 mullitization temperature of similar to 1200 degrees C and a sharp 980 11407 degrees C exothermic peak. In strong basic conditions (pH = 11.5), no 11408 evident similar to 980 degrees C exothermic peak was detected, and the 11409 mullitization temperature was as high as 1350 degrees C, probably due 11410 to heterogeneity in the mixing scale of the Al-Si components in the 11411 precursor system. A gel formation process has been proposed. 11412 C1 INESC,DEPT ENGN CERAM & VIDRO,P-3800 AVEIRO,PORTUGAL. 11413 UNIV AVEIRO,DEPT QUIM,P-3800 AVEIRO,PORTUGAL. 11414 SHANGHAI UNIV,FAC MAT SCI & ENGN,SHANGHAI,PEOPLES R CHINA. 11415 CR CHAKRABORTY AK, 1978, J AM CERAM SOC, V61, P170 11416 CHAKRAVORTY AK, 1994, J MATER SCI, V29, P1558 11417 HULING JC, 1991, J AM CERAM SOC, V74, P2374 11418 HYATT MJ, 1990, J MATER SCI, V25, P2815 11419 LI DX, 1991, J AM CERAM SOC, V74, P2382 11420 LIPPMAA E, 1980, J AM CHEM SOC, V102, P4889 11421 OKADA K, 1986, J AM CERAM SOC, V69, P652 11422 OKADA K, 1986, J AM CERAM SOC, V69, C251 11423 ROCHA J, 1990, PHYS CHEM MINER, V17, P17 11424 SACKS MD, 1990, CERAMIC T, V6, P167 11425 SCHNEIDER H, 1992, J MATER SCI, V27, P805 11426 SCHNEIDER H, 1994, J EUR CERAM SOC, V13, P441 11427 SUNDARESAN S, 1991, J AM CERAM SOC, V74, P2388 11428 YAMANE M, 1984, J NON-CRYST SOLIDS, V63, P13 11429 YANG H, 1989, J CHINESE CERAM SOC, V17, P204 11430 NR 15 11431 TC 5 11432 SN 0022-2461 11433 J9 J MATER SCI 11434 JI J. Mater. Sci. 11435 PD JAN 1 11436 PY 1997 11437 VL 32 11438 IS 1 11439 BP 105 11440 EP 110 11441 PG 6 11442 SC Materials Science, Multidisciplinary 11443 GA WC325 11444 UT ISI:A1997WC32500013 11445 ER 11446 11447 PT J 11448 AU Bi, PZ 11449 Shi, YM 11450 TI The P-T spectra of pion from resonance decays 11451 SO NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND 11452 FIELDS 11453 DT Article 11454 ID HEAVY-ION COLLISIONS; NUCLEAR COLLISIONS; FINITE TEMPERATURE; CHARMONIUM 11455 AB The PT spectra of pion from resonance decay are studied. It is found 11456 that the reduction of effective mass increases the emission of low P-T 11457 pions. The approach to explain the enhancement of low-P-T pion observed 11458 by the NA35 Collaboration in 200 GeV S+S collisions with the 11459 contribution from the resonance decays can be improved by the mass 11460 reduction. 11461 C1 FUDAN UNIV,DEPT PHYS 2,SHANGHAI 200433,PEOPLES R CHINA. 11462 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA. 11463 RP Bi, PZ, FUDAN UNIV,TD LEE PHYS LAB,SHANGHAI 200433,PEOPLES R CHINA. 11464 CR BARZ HW, 1991, PHYS LETT B, V254, P332 11465 BROWN GE, SUBYNTC9013 11466 HARRINGTON BJ, 1974, PHYS REV LETT, V33, P324 11467 HASHIMOTO T, 1986, PHYS REV LETT, V57, P2123 11468 HASHIMOTO T, 1988, Z PHYS C, V38, P251 11469 KICG P, 1986, PHYS REP, V142, P167 11470 KUSENEZOV D, 1989, PHYS REV C, V40, P2075 11471 KUSENEZOV D, 1991, PHYS REV C, V44, P902 11472 LI CQ, NUCLTH9504025 11473 PINZHEN B, 1988, J PHYS G, V14, P681 11474 PINZHEN B, 1989, J PHYS G NUCL PARTIC, V15, P1653 11475 PISARSKI RD, 1982, PHYS REV D, V26, P3735 11476 PISARSKI RD, 1985, PHYS LETT B, V160, P137 11477 SOLLFRANK J, 1990, PHYS LETT B, V252, P256 11478 SOLLFRANK J, 1991, Z PHYS C PART FIELDS, V52, P593 11479 STROBELE H, 1988, Z PHYS C, V38, P89 11480 VOGT R, 1988, PHYS LETT B, V206, P333 11481 NR 17 11482 TC 0 11483 SN 0369-3546 11484 J9 NUOVO CIMENTO A-NUCL PART F 11485 JI Nuovo Cimento Soc. Ital. Fis. A-Nucl. Part. Fields 11486 PD NOV 11487 PY 1996 11488 VL 109 11489 IS 11 11490 BP 1601 11491 EP 1604 11492 PG 4 11493 SC Physics, Particles & Fields 11494 GA WC189 11495 UT ISI:A1996WC18900008 11496 ER 11497 11498 PT J 11499 AU Shao, HQ 11500 Gao, XH 11501 Cao, ZC 11502 TI Effect of annealing on phase structure and degradation of a zinc oxide 11503 varistor with Si-additive 11504 SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 11505 DT Article 11506 ID ANTIMONY OXIDE; ZNO; CERAMICS; MICROSTRUCTURE; BI2O3 11507 AB The effect of annealing of phase structure and degradation of the 11508 current-voltage characteristics for a ZnO varistor with Si-additive has 11509 been investigated. By means of X-ray diffraction, analytical electron 11510 microscopy and thermal analysis, it is found that a phase transition 11511 from delta-Bi2O3 (with dissolved Si), to Bi24Si2O40 (bismuth silicate) 11512 took place in the ZnO varistor after annealing at 470 degrees C. This 11513 transition is associated with a volume contraction, no notable thermal 11514 effect, a high transition rate and reversibility. It is calculated by 11515 crystallography that the volume contraction of the phase transition is 11516 6.02%. The transition of the Bi-rich phase results in decreased levels 11517 of degradation and improved stability of the ZnO varistor. (C) 1996 11518 Elsevier Science Limited. 11519 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SCI & ENGN,SHANGHAI 201800,PEOPLES R CHINA. 11520 CR ASOKAN T, 1990, J MATER SCI, V25, P2447 11521 EDU K, 1980, J APPL PHYS, V51, P2678 11522 HAYASHI M, 1982, J APPL PHYS, V53, P5754 11523 IGN A, 1976, JPN J APPL PHYS, V15, P1161 11524 INADA M, 1978, JPN J APPL PHYS, V17, P1 11525 INADA M, 1980, JPN J APPL PHYS, V19, P409 11526 KIM J, 1989, J AM CERAM SOC, V72, P1390 11527 KIM J, 1989, J MATER SCI, V24, P213 11528 MEDERNACH JW, 1978, J AM CERAM SOC, V61, P494 11529 OLSSON E, 1989, J APPL PHYS, V66, P3666 11530 OLSSON E, 1989, J APPL PHYS, V66, P4317 11531 TAKEMURA T, 1986, JPN J APPL PHYS PT 1, V25, P293 11532 TAKEMURA T, 1986, JPN J APPL PHYS PT 1, V25, P295 11533 TAKEMURA T, 1987, J AM CERAM SOC, V70, P237 11534 WONG J, 1975, J APPL PHYS, V46, P1653 11535 NR 15 11536 TC 2 11537 SN 0955-2219 11538 J9 J EUR CERAM SOC 11539 JI J. European Ceram. Soc. 11540 PY 1997 11541 VL 17 11542 IS 1 11543 BP 55 11544 EP 59 11545 PG 5 11546 SC Materials Science, Ceramics 11547 GA WB693 11548 UT ISI:A1997WB69300008 11549 ER 11550 11551 PT J 11552 AU Xueming, MA 11553 Gang, JI 11554 TI Nanostructured WC-Co alloy prepared by mechanical alloying 11555 SO JOURNAL OF ALLOYS AND COMPOUNDS 11556 DT Letter 11557 DE nanocrystalline alloys; mechanical alloying; WC-Co cemented carbide 11558 powder 11559 AB Nanocrystalline cemented carbide powder of WC-Co was directly 11560 synthesized by mechanical alloying. The structure evolution of the 11561 powders was monitored by X-ray diffration, scanning electron microscope 11562 and thermal analysis. Results show that the formation of the compounds 11563 is controlled by an inter-diffusion reaction between elements. Powders 11564 of WC-Co milled for 100 h were compacted and sintered to a cylinder 11565 with the size circle divide 6 mmx8 mm. The hardness and sintered 11566 density were measured. 11567 RP Xueming, MA, SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES 11568 R CHINA. 11569 CR GLEITER H, 1984, Z METALLKD, V75, P263 11570 PETZOLDT F, 1987, MATER LETT, V5, P280 11571 SHINGU PH, 1988, T JIM S, V29, P3 11572 YANG YZ, 1992, CHINESE PHYS LETT, V5, P266 11573 YANG YZ, 1994, CHINESE SCI BULL, V17, P1626 11574 NR 5 11575 TC 8 11576 SN 0925-8388 11577 J9 J ALLOYS COMPOUNDS 11578 JI J. Alloy. Compd. 11579 PD NOV 15 11580 PY 1996 11581 VL 245 11582 BP L30 11583 EP L32 11584 PG 3 11585 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & 11586 Metallurgical Engineering 11587 GA WB358 11588 UT ISI:A1996WB35800009 11589 ER 11590 11591 PT J 11592 AU Xie, FQ 11593 Zhang, J 11594 Mao, XM 11595 Li, DL 11596 Fu, HZ 11597 TI Rapid directional solidification excited from bulk supercooled melt 11598 SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY 11599 DT Article 11600 DE supercooling; directional solidification; rapid solidification; 11601 excitation 11602 AB With the organic combination of melt supercooling and directional 11603 solidification techniques, a new concept of rapid directional 11604 solidification excited from superceded melt has been advanced. in this 11605 paper, the experimental method of this new technique is reviewed. The 11606 difference between the new and the conventional directional 11607 solidification processing is illustrated diagramatically. The latest 11608 experimental results are given for Cu-Ni alloy, which indicate the 11609 attractive prospects of the new technique. 11610 C1 SHANGHAI UNIV,INST MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R CHINA. 11611 RP Xie, FQ, NORTHWESTERN POLYTECH UNIV,STATE KEY LAB SOLIDIFICAT PROC,XIAN 11612 710072,PEOPLES R CHINA. 11613 CR BAYUZICK RJ, 1991, METALL T A, V22, P2713 11614 BEINGBO W, 1990, ACTA METAL SINICA, V5, B343 11615 DELI L, 1993, P 1 NAT C PHASE TRAN 11616 HERLACH DM, 1988, MATER SCI ENG, V98, P339 11617 LUX B, 1981, METALL, V95, P1235 11618 MEYER E, 1989, J NON-CRYST SOLIDS, V107, P163 11619 SCHLEIP R, 1990, APPL PHYS LETT, V62, P2707 11620 SHAM PR, 1989, MAT SCI LETT, V8, P201 11621 WU XY, 1994, THESIS NW POLYTECHNI 11622 NR 9 11623 TC 3 11624 SN 0924-0136 11625 J9 J MATER PROCESS TECHNOL 11626 JI J. Mater. Process. Technol. 11627 PD JAN 11628 PY 1997 11629 VL 63 11630 IS 1-3 11631 BP 776 11632 EP 778 11633 PG 3 11634 SC Engineering, Industrial; Engineering, Manufacturing; Materials Science, 11635 Multidisciplinary 11636 GA WA730 11637 UT ISI:A1997WA73000133 11638 ER 11639 11640 PT J 11641 AU Zhu, Y 11642 TI Interactions of internal solitary waves in deep stratified fluids - 11643 Weak interactions 11644 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY 11645 DT Article 11646 DE internal solitary waves; weak interactions; deep stratified fluids 11647 AB The weak interactions of internal solitary waves in deep stratified 11648 fluids are investigated in terns of Lagrangian coordinates, which 11649 include the head-on and overtaking collisions of solitary waves with 11650 different modes, and the head-on collision of waves with the same mode. 11651 The analysis shows that each wave is governed by the intermediately 11652 long wave (ILW) equation for finitely deep fluids and the Benjamin-Ono 11653 (BO) equation for infinitely deep fluids. The main effect of the 11654 interaction is the phase shifts of each wave. 11655 RP Zhu, Y, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI 11656 200072,PEOPLES R CHINA. 11657 CR GEAR JA, 1984, STUD APPL MATH, V70, P235 11658 GRIMSHAW R, 1986, ENCY FLUID MECH, V2, P1 11659 MILES JW, 1977, J FLUID MECH, V79, P157 11660 MILES JW, 1980, ANNU REV FLUID MECH, V12, P11 11661 MIRIE RM, 1982, J FLUID MECH, V147, P475 11662 SU CH, 1980, J FLUID MECH, V98, P509 11663 ZHU Y, IN PRESS ATMOSPHERIC 11664 ZHU Y, 1992, APPL MATH MECH, V13, P407 11665 NR 8 11666 TC 0 11667 SN 1006-9283 11668 J9 SCI CHINA SER A 11669 JI Sci. China Ser. A-Math. Phys. Astron. 11670 PD JUL 11671 PY 1996 11672 VL 39 11673 IS 7 11674 BP 728 11675 EP 737 11676 PG 10 11677 SC Mathematics, Applied; Mathematics 11678 GA WA869 11679 UT ISI:A1996WA86900006 11680 ER 11681 11682 PT J 11683 AU Ding, YY 11684 Chen, YL 11685 Zhang, Y 11686 Yao, Y 11687 TI A highly stereoselective synthesis of 11688 2-carbomethoxy-3-aryl-4-carboethoxy-5-methyl-cis-2,3-dihydrofurans 11689 SO CHEMICAL RESEARCH IN CHINESE UNIVERSITIES 11690 DT Article 11691 DE arsorane; stereoselective synthesis; 2,3-dihydrofuran 11692 AB Carbomethoxymethylenetriphenylarsorane reacts with ethyl 11693 2-acetyl-3-arylacrylates to afford 11694 2-carbomethoxy-3-aryl-4-carboethoxy-5-methyl-2,3-dihydrofuran via 11695 Michael addition in high to excellent yields with high 11696 stereoselectivity. 11697 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA. 11698 CR BRUCKNER C, 1988, J ORG CHEM, V53, P2440 11699 DANION BR, 1968, B SOC CHIM FR, V6, P2526 11700 HUANG YZ, 1978, ACTA CHIM SINICA, V36, P215 11701 KOO G, 1993, J HETEROCYCLIC CHEM, V30, P1213 11702 MCDONALD FE, 1993, J ORG CHEM, V58, P6952 11703 SUGIMURA H, 1994, J ORG CHEM, V59, P7653 11704 NR 6 11705 TC 2 11706 SN 1005-9040 11707 J9 CHEM RES CHINESE UNIV 11708 JI Chem. Res. Chin. Univ. 11709 PD NOV 11710 PY 1996 11711 VL 12 11712 IS 4 11713 BP 354 11714 EP 359 11715 PG 6 11716 SC Chemistry, Multidisciplinary 11717 GA VZ675 11718 UT ISI:A1996VZ67500007 11719 ER 11720 11721 PT J 11722 AU Wan, DC 11723 Liu, YZ 11724 Miao, GP 11725 TI The interactions between wave-currents and offshore structures with 11726 consideration of fluid viscosity 11727 SO ACTA MECHANICA SINICA 11728 DT Article 11729 DE interactions among waves; viscous currents and bodies; depth-averaged 11730 Reynolds equations; depth-averaged kappa epsilon turbulence model 11731 ID OPEN-CHANNEL FLOW; WATER 11732 AB Study of the how held around the large scale offshore structures under 11733 the action of waves and viscous currents is of primary importance for 11734 the scouring estimation and protection in the vicinity of the 11735 structures. But very little has been known in its mechanism when the 11736 viscous effects is taken into consideration. As a part of the efforts 11737 to tackle the problem, a numerical model is presented for the 11738 simulation of the how held around a fixed vertical truncated circular 11739 cylinder subjected to waves and viscous currents based on the 11740 depth-averaged Reynolds equations and depth-averaged k-epsilon 11741 turbulence model. Finite difference method with a suitable iteration 11742 defect correct method and an artificial open boundary condition are 11743 adopted in the numerical process. Numerical results presented relate to 11744 the interactions of a pure incident viscous current with Reynolds 11745 number Re = 10(5), a pure incident regular sinusoidal wave, and the 11746 coexisting of viscous current and wave with a circular cylinder, 11747 respectively. Flow fields associated with the hydrodynamic coefficients 11748 of the fixed cylinder, as well as corresponding free surface profiles 11749 and wave amplitudes, are discussed. The present method is found to be 11750 relatively straightforward, computationally effective and numerically 11751 stable for treating the problem of interactions among waves, viscous 11752 currents and bodies. 11753 C1 SHANGHAI JIAO TONG UNIV, DEPT NAVAL ARCHITECTURE & OCEAN ENGN, SHANGHAI 200030, PEOPLES R CHINA. 11754 RP Wan, DC, SHANGHAI UNIV, SHANGHAI INST APPL MATH & MECH, SHANGHAI 11755 200072, PEOPLES R CHINA. 11756 CR BORTHWICK AGL, 1993, INT J NUMER METH FL, V17, P417 11757 CHENG J, 1992, THESIS SHANGHAI JIAO, P1 11758 FISCHER HB, 1973, ANNU REV FLUID MECH, V5, P59 11759 GIVOLI D, 1991, J COMPUT PHYS, V94, P1 11760 HINZE JO, 1975, TURBULENCE, P78 11761 KAWAMURA T, 1984, 840340 AIAA, P1 11762 LAUFER J, 1951, 1053 NACA, P312 11763 LAUNDER BE, 1974, COMPUTER METHODS APP, V3, P269 11764 MCGUIRK JJ, 1978, J FLUID MECH, V86, P761 11765 MEI CC, 1978, ANNU REV FLUID MECH, V10, P393 11766 RASTOGI AK, 1978, J HYDRAULICS DIVISIO, V104, P397 11767 SARPKAYA T, 1981, MECH WAVE FORCES OFF, P54 11768 SPALDING DB, 1975, HTS754 IMP COLL DEPT, P890 11769 STETTER HJ, 1978, NUMER MATH, V29, P234 11770 THOMPSON JF, 1984, AIAA J, V22, P1505 11771 WAN DC, 1993, J SHANGHAI JIAOTONG, V27, P9 11772 WAN DC, 1994, INT S WAVES PHYSICAL, V2, P951 11773 WAN DC, 1995, J HYDRODYNAMICS B, V7, P105 11774 WAN DC, 1995, P 5 INT OFFSH POL EN, V3, P182 11775 YOON SB, 1989, J FLUID MECH, V205, P397 11776 ZHAO R, 1988, 5 C BEH OFFSH STRUCT, P623 11777 NR 21 11778 TC 0 11779 SN 0567-7718 11780 J9 ACTA MECH SINICA 11781 JI Acta Mech. Sin. 11782 PD NOV 11783 PY 1996 11784 VL 12 11785 IS 4 11786 BP 307 11787 EP 322 11788 PG 16 11789 SC Engineering, Mechanical; Mechanics 11790 GA VZ544 11791 UT ISI:A1996VZ54400003 11792 ER 11793 11794 PT J 11795 AU Liu, HY 11796 Ying, TL 11797 Sun, K 11798 Qi, DY 11799 TI A reagentless biosensor highly sensitive to hydrogen peroxide based on 11800 new methylene blue N dispersed in Nafion(R) gel as the electron shuttle 11801 SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY 11802 DT Article 11803 DE biosensor; horseradish peroxidase; Nafion(R); new methylene blue N; 11804 hydrogen peroxide 11805 ID CYTOCHROME-C PEROXIDASE; SILK FIBROIN MEMBRANE; HORSERADISH-PEROXIDASE; 11806 ENZYME ELECTRODES; CARBON; GRAPHITE; SENSOR; OXIDATION 11807 AB A reagentless biosensor highly sensitive to hydrogen peroxide was 11808 constructed by immobilizing horseradish peroxidase on Nafion(R)-new 11809 methylene blue N modified electrode. Cyclic voltammetry and 11810 chronamperometry were for the first time employed to demonstrate the 11811 feasibility of electron transfer between immobilized horseradish 11812 peroxidase and a glassy carbon electrode via new methylene blue N 11813 incorporated in Nafion(R) gel. Performance and characteristics of the 11814 sensor were evaluated with respect to response time, detection limit, 11815 selectivity, and dependence on applied potential, thickness of 11816 Nafion(R) membrane, ionic strength, temperature and pH as well as 11817 operating and storage stability. High sensitivity of the sensor with a 11818 detection limit of 0.5 mu M was due to high efficiency of the electron 11819 communication between immobilized horseradish peroxidase and the 11820 electrode via new methylene blue N. 11821 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R 11822 CHINA. 11823 CR BIFULCO L, 1994, ANAL LETT, V27, P1443 11824 CLARK LC, 1979, METHOD ENZYMOL, V56, P448 11825 COOPER JM, 1991, J ELECTROANAL CH INF, V312, P155 11826 CSOREGI E, 1994, ANAL CHEM, V66, P3604 11827 DENG Q, 1994, J ELECTROANAL CHEM, V377, P191 11828 FREW JE, 1986, J ELECTROANAL CH INF, V201, P1 11829 GORTON L, 1992, ANALYST, V117, P1235 11830 HO WO, 1993, J ELECTROANAL CHEM, V351, P185 11831 HURDIS EC, 1954, ANAL CHEM, V26, P320 11832 IANNIELLO RM, 1981, ANAL CHEM, V53, P2090 11833 KAMIN RA, 1980, ANAL CHEM, V52, P1198 11834 LIU H, IN PRESS J ANAL CHEM 11835 LIU H, 1995, ANAL P, V32, P375 11836 LIU HY, 1996, TALANTA, V43, P111 11837 LIU YC, 1995, ANAL CHIM ACTA, V316, P65 11838 LIU YC, 1996, ELECTROCHIM ACTA, V41, P77 11839 MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801 11840 MULCHANDANI A, 1995, ANAL CHEM, V67, P94 11841 POPESCU IC, 1995, BIOSENS BIOELECTRON, V10, P443 11842 QIAN JH, 1995, J ELECTROANAL CHEM, V397, P157 11843 RUZGAS T, 1995, J ELECTROANAL CHEM, V391, P41 11844 SANCHEZ PD, 1990, ELECTROANAL, V2, P303 11845 SCHUBERT F, 1991, ANAL CHIM ACTA, V245, P133 11846 SCOTT DL, 1992, J ELECTROANAL CHEM, V341, P307 11847 TATSUMA T, 1992, ANAL CHEM, V64, P1183 11848 TATSUMA T, 1995, ANAL CHEM, V67, P283 11849 VREEKE M, 1995, ANAL CHEM, V67, P303 11850 WANG J, 1992, ANAL CHEM, V64, P1285 11851 WELINDER KG, 1979, EUR J BIOCHEM, V96, P483 11852 WOLLENBERGER U, 1991, BIOELECTROCH BIOENER, V26, P287 11853 YAMADA H, 1974, ARCH BIOCHEM BIOPHYS, V165, P728 11854 YANG L, 1995, ANAL CHEM, V67, P1325 11855 ZHANG ZE, 1996, ANAL CHEM, V68, P1632 11856 ZHAO JG, 1992, J ELECTROANAL CHEM, V327, P109 11857 NR 34 11858 TC 11 11859 SN 0022-0728 11860 J9 J ELECTROANAL CHEM 11861 JI J. Electroanal. Chem. 11862 PD NOV 7 11863 PY 1996 11864 VL 417 11865 IS 1-2 11866 BP 59 11867 EP 64 11868 PG 6 11869 SC Chemistry, Analytical; Electrochemistry 11870 GA VZ349 11871 UT ISI:A1996VZ34900009 11872 ER 11873 11874 PT J 11875 AU Gu, M 11876 Xu, WP 11877 Zheng, LR 11878 Lin, CL 11879 Cao, ZC 11880 TI Multiple conduction behavior of BaRuO3 thin film prepared by pulsed 11881 laser ablation deposition 11882 SO THIN SOLID FILMS 11883 DT Article 11884 DE ruthenium; oxides; laser ablation; conductivity 11885 AB In this paper, thin films of BaRuO3 prepared on a Si substrate by the 11886 pulsed laser ablation deposition method under oxygen ambient have been 11887 studied by means of X-ray diffraction, emission spectroscopy, 11888 Rutherford backscattering spectroscopy, RT Hall measurement and 11889 resistivity measurement. It is interesting to find that BaRuO3 thin 11890 films, having a different thermal history examined in the same 11891 temperature range, show different conduction types including 11892 metallicity, semiconduction and semiconductor-metal transition. The 11893 explanation about the findings are given using a suggested modified 11894 energy band diagram. It is believed that the versatile electrical 11895 behavior is helpful for the use in electrical contact materials. 11896 C1 CHINESE ACAD SCI,SHANGHAI INST MET,STATE KEY LAB MAT INFORMAT,SHANGHAI 200050,PEOPLES R CHINA. 11897 RP Gu, M, SHANGHAI UNIV SCI & TECHNOL,DEPT INORGAN MAT,JIADING 11898 CAMPUS,SHANGHAI 201800,PEOPLES R CHINA. 11899 CR COX PA, 1992, TRANSITION METAL OXI, P237 11900 DONOHUE PC, 1965, INORG CHEM, V4, P306 11901 EOM CB, 1993, APPL PHYS LETT, V63, P2570 11902 NEWNHAM RE, 1975, STRUCTURE PROPERTY R 11903 RICE CE, 1977, ACTA CRYSTALLOGR B, V33, P1342 11904 TAKIKAVA O, 1986, IEEE P EL COMP C IEE, P214 11905 VANLOAN PR, 1972, CERAM B, V51, P231 11906 NR 7 11907 TC 2 11908 SN 0040-6090 11909 J9 THIN SOLID FILMS 11910 JI Thin Solid Films 11911 PD NOV 15 11912 PY 1996 11913 VL 288 11914 IS 1-2 11915 BP 95 11916 EP 98 11917 PG 4 11918 SC Materials Science, Multidisciplinary; Physics, Applied; Physics, 11919 Condensed Matter 11920 GA VZ205 11921 UT ISI:A1996VZ20500018 11922 ER 11923 11924 PT J 11925 AU Wang, ZX 11926 Luo, WY 11927 Wang, CS 11928 Wang, WM 11929 TI Modelling of the angular distribution of sputtered particles from 11930 roughened elemental and alloy targets 11931 SO VACUUM 11932 DT Article 11933 ID SCANNING TUNNELING MICROSCOPY; MULTICOMPONENT MATERIALS; GRAPHITE 11934 SURFACE; ION-BOMBARDMENT; IMPACTS 11935 AB A solid surface subjected to energetic ion bombardment generally 11936 develops characteristic structures, which may change the total and 11937 partial sputtering yields significantly. The change is caused by 11938 several competing effects, for instance, change of the effective 11939 projectile incidence angle, recapture of obliquely ejected particles 11940 (shadowing effect), and element local-enrichment in different 11941 micro-regions on the alloy surface. In this article, we have developed 11942 a new theoretical method to take account of all the above effects. This 11943 method and its application to the analysis of experimental results for 11944 elemental (Cd) and alloy system (Al-x-Sn-100-x) targets is described in 11945 detail. Copyright (C) 1996 Elsevier Science Ltd 11946 C1 SHANGHAI UNIV,SHANGHAI APPL RADIAT INST,SHANGHAI 201800,PEOPLES R CHINA. 11947 CCAST,WORLD LAB,BEIJING 100080,PEOPLES R CHINA. 11948 RP Wang, ZX, ACAD SINICA,INST NUCL RES,POB 800204,SHANGHAI 201800,PEOPLES 11949 R CHINA. 11950 CR ANDERSEN HH, 1985, NUCL INSTRUM METH B, V6, P459 11951 ANDERSEN HH, 1988, NUCL INSTRUM METH B, V33, P466 11952 BETZ G, 1983, TOP APPL PHYS, V52, P11 11953 CARTER G, 1983, TOPICS APPL PHYSICS, V52 11954 DEVILLENEUVE CH, 1990, VACUUM, V41, P1686 11955 DODONOV AI, 1988, RADIAT EFF, V107, P15 11956 EMMOTH B, 1980, S SPUTT PERCHT VIENN 11957 FETZ H, 1942, Z PHYS, V119, P590 11958 HUCKS P, 1978, J NUCL MATER, V76, P736 11959 JISHENG P, 1992, NUCL INSTRUM METH B, V67, P514 11960 KELLY R, 1984, ION BOMBARDMENT MODI, V1 11961 LINDHARD J, 1963, KGL DANSKE VIDENSKAB, V33, P10 11962 LITTMARK U, 1978, J MATER SCI, V13, P2577 11963 OECHSNER H, 1975, APPL PHYS, V8, P185 11964 PORTE L, 1989, NUCL INSTRUM METH B, V44, P116 11965 SIGMUND P, 1969, PHYS REV, V184, P383 11966 SIGMUND P, 1982, NUCL INSTRUM METHODS, V194, P541 11967 SIGMUND P, 1982, TOP APPL PHYS, V47, P9 11968 VOSSEN JL, 1974, J VAC SCI TECHNOL, V11, P875 11969 WILSON IH, 1989, J VAC SCI TECHNOL A, V7, P2840 11970 ZHENXIA W, 1993, NUCL INSTRUM METH B, V74, P380 11971 ZHENXIA W, 1993, PHYS LETT A, V177, P275 11972 NR 22 11973 TC 0 11974 SN 0042-207X 11975 J9 VACUUM 11976 JI Vacuum 11977 PD DEC 11978 PY 1996 11979 VL 47 11980 IS 12 11981 BP 1465 11982 EP 1472 11983 PG 8 11984 SC Materials Science, Multidisciplinary; Physics, Applied 11985 GA VY916 11986 UT ISI:A1996VY91600010 11987 ER 11988 11989 PT J 11990 AU Li, CF 11991 TI Pauli criterion and the vector Aharonov-Bohm effect 11992 SO ANNALS OF PHYSICS 11993 DT Article 11994 ID MAGNETIC-FLUX QUANTIZATION; ELECTROMAGNETIC POTENTIALS; 11995 QUANTUM-MECHANICS; ANGULAR-MOMENTUM 11996 AB After discussing the commutation relations of the kinetic angular 11997 momentum of the electron in the vector Aharonov-Bohm effect, the author 11998 shows that the Pauli criterion for admissibility of the wave function 11999 is inapplicable. The point is that the kinetic angular momentum does 12000 not satisfy the fundamental commutation relations of the angular 12001 momentum. The inapplicability of the Pauli criterion reflects the 12002 breakdown of the symmetry of the electron's motion around the solenoid. 12003 (C) 1996 Academic Press, Inc. 12004 RP Li, CF, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,20 CHENGZHONG RD,SHANGHAI 12005 201800,PEOPLES R CHINA. 12006 CR AFANASEV GN, 1990, SOV J PART NUCL, V21, P74 12007 AHARONOV Y, 1959, PHYS REV, V115, P485 12008 CABRERA B, 1989, PHYS REV LETT, V62, P2040 12009 DIRAC PAM, 1958, PRINCIPLES QUANTUM M, P140 12010 HENNEBERGER WC, 1981, J MATH PHYS, V22, P116 12011 JACKIW R, 1983, PHYS REV LETT, V50, P555 12012 KAWAMOTO H, 1994, PHYS LETT A, V190, P9 12013 KRETZSCHMAR M, 1965, Z PHYS, V185, P97 12014 LIANG JQ, 1988, PHYS REV LETT, V60, P836 12015 MAGNI C, 1995, J MATH PHYS, V36, P177 12016 PAULI W, 1939, HELV PHYS ACTA, V12, P147 12017 PAULI W, 1980, GEN PRINCIPLES QUANT, P47 12018 PESHKIN M, 1981, PHYS REP, V80, P375 12019 ROY SM, 1984, NUOVO CIMENTO A, V79, P391 12020 RUBIO H, 1991, NUOVO CIMENTO B, V106, P407 12021 SPAVIERI G, 1994, NUOVO CIMENTO B, V109, P675 12022 NR 16 12023 TC 3 12024 SN 0003-4916 12025 J9 ANN PHYS N Y 12026 JI Ann. Phys. 12027 PD DEC 15 12028 PY 1996 12029 VL 252 12030 IS 2 12031 BP 329 12032 EP 335 12033 PG 7 12034 SC Physics, Multidisciplinary 12035 GA VY568 12036 UT ISI:A1996VY56800004 12037 ER 12038 12039 PT J 12040 AU Wang, DR 12041 Bai, ZZ 12042 TI Parallel multilevel iterative methods 12043 SO LINEAR ALGEBRA AND ITS APPLICATIONS 12044 DT Article 12045 ID PRECONDITIONING METHODS 12046 AB For large-scale system of linear equations with symmetric positive 12047 definite block coefficient matrix resulting from the discretization of 12048 a self-adjoint elliptic boundary-value problem, by making use of 12049 blocked multilevel iteration we construct preconditioning matrices for 12050 the coefficient matrix and set up a class of parallel multilevel 12051 iterative methods for solving such system. Theoretical analysis shows 12052 that besides lending themselves to strongly parallel computation these 12053 new methods have convergence rates independent of both the sizes and 12054 the level numbers of the grids, and their computational work loads are 12055 also bounded by linear functions about the step sizes of the finest 12056 grids. (C) Elsevier Science Inc., 1997 12057 C1 CHINESE ACAD SCI,INST COMPUTAT MATH & SCI ENGN COMP,BEIJING 100080,PEOPLES R CHINA. 12058 RP Wang, DR, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 12059 CR AXELSSON O, 1984, FINITE ELEMENT SOLUT 12060 AXELSSON O, 1989, BIT, V29, P769 12061 AXELSSON O, 1989, NUMER MATH, V56, P157 12062 AXELSSON O, 1990, SIAM J NUMER ANAL, V27, P1569 12063 BAI ZZ, 1993, THESIS SHANGHAI U SC 12064 BANK RE, 1988, NUMER MATH, V52, P427 12065 BERTSEKAS DP, 1989, PARALLEL DISTRIBUTED 12066 CIARLET PG, 1978, FINITE ELEMENT METHO 12067 HACKBUSCH W, 1985, MULTIGRID METHODS 12068 YSERENTANT H, 1986, NUMER MATH, V49, P379 12069 NR 10 12070 TC 3 12071 SN 0024-3795 12072 J9 LINEAR ALGEBRA APPL 12073 JI Linear Alg. Appl. 12074 PD JAN 1 12075 PY 1997 12076 VL 250 12077 BP 317 12078 EP 347 12079 PG 31 12080 SC Mathematics, Applied 12081 GA VX450 12082 UT ISI:A1997VX45000018 12083 ER 12084 12085 PT J 12086 AU Liu, HY 12087 Zhang, ZN 12088 Zhang, XL 12089 Qi, DY 12090 Liu, YC 12091 Yu, TY 12092 Deng, JQ 12093 TI A phenazine methosulphate-mediated sensor sensitive to lactate based on 12094 entrapment of lactate oxidase and horseradish peroxidase in composite 12095 membrane of poly(vinyl alcohol) and regenerated silk fibroin 12096 SO ELECTROCHIMICA ACTA 12097 DT Article 12098 DE sensor; phenazine methosulphate; L-lactate; lactate oxidase; 12099 horseradish peroxidase; poly(vinyl alcohol); regenerated silk fibroin 12100 ID CARBON-PASTE ELECTRODES; LACTIC-ACID; SYSTEMS 12101 AB An amperometric phenazine methosulphate-mediated sensor sensitive to 12102 lactate was fabricated, which was based on immobilization of lactate 12103 oxidase and horseradish peroxidase in a novel composite membrane of 12104 poly(vinyl alcohol) and regenerated silk fibroin. The water 12105 absorbability and mechanical properties of the composite membrane were 12106 investigated. Horseradish peroxidase (HRP) was employed in the 12107 catalytic reduction of hydrogen peroxide, formed by the lactate oxidase 12108 reaction, to amplify the amperometric response of the lactate sensor. 12109 In this bienzyme configuration, phenazine methosulphate was used as an 12110 electron transfer mediator between immobilized HRP and a glassy carbon 12111 electrode. Effects of pH, temperature, applied potential and 12112 concentration of phenazine methosulphate on the steady-state 12113 bioelectrocatalytic oxidation of lactate at the sensor were evaluated. 12114 Dependence of Michaelis-Menten constant K-m(app) on the concentration 12115 of phenazine methosulphate and applied potential was also investigated. 12116 The response of the sensor to lactate reached 95% steady-state current 12117 within 20 s. Copyright (C) 1996 Elsevier Science Ltd 12118 C1 SUZHOU INST CITY CONSTRUCT & ENVIRONM PROTECT,DEPT ENVIRONM PROTECT,SUZHOU 300111,JIANSU PROVINCE,PEOPLES R CHINA. 12119 FUDAN UNIV,DEPT MACROMOL SCI,SHANGHAI 200433,PEOPLES R CHINA. 12120 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA. 12121 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R 12122 CHINA. 12123 CR *SIGM CHEM CO, 1991, CAT, P771 12124 DURLIAT H, 1979, ANAL CHIM ACTA, V106, P131 12125 HU YB, 1993, ANAL CHIM ACTA, V281, P503 12126 HUCK H, 1984, ANALYST, V109, P147 12127 KAMIN RA, 1980, ANAL CHEM, V52, P1198 12128 KATAKIS I, 1992, ANAL CHEM, V64, P1008 12129 KULYS J, 1992, ANAL LETT, V25, P1011 12130 LIU HY, 1995, ELECTROCHIM ACTA, V40, P1845 12131 LIU YC, 1996, ELECTROCHIM ACTA, V41, P77 12132 MAKOVOS EB, 1985, BIOTECHNOL BIOENG, V27, P167 12133 MASCINI M, 1984, ANAL CHIM ACTA, V157, P45 12134 MITZUTANI F, 1984, CHEM LETT, V2, P199 12135 MITZUTANI F, 1985, ANAL CHIM ACTA, V177, P153 12136 NEWMAN JD, 1992, ANAL CHIM ACTA, V262, P13 12137 SCHUBERT F, 1985, ANAL CHIM ACTA, V169, P391 12138 SPRULES SD, 1995, ANAL CHIM ACTA, V304, P17 12139 WANG DL, 1993, ANAL CHEM, V65, P1069 12140 WANG J, 1995, ANAL CHIM ACTA, V304, P41 12141 YAO T, 1979, ANAL CHIM ACTA, V110, P203 12142 NR 19 12143 TC 2 12144 SN 0013-4686 12145 J9 ELECTROCHIM ACTA 12146 JI Electrochim. Acta 12147 PY 1997 12148 VL 42 12149 IS 3 12150 BP 349 12151 EP 355 12152 PG 7 12153 SC Electrochemistry 12154 GA VW704 12155 UT ISI:A1997VW70400001 12156 ER 12157 12158 PT J 12159 AU Guo, BY 12160 Ma, HP 12161 Hou, JY 12162 TI Chebyshev pseudospectral-hybrid finite element method for 12163 two-dimensional vorticity equation 12164 SO RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION 12165 MATHEMATIQUE ET ANALYSE NUMERIQUE 12166 DT Article 12167 DE two-dimensional vorticity equation; Chebyshev pseudospectral-finite 12168 element approximation 12169 ID NAVIER-STOKES EQUATIONS; SPECTRAL APPROXIMATIONS 12170 AB Chebyshev pseudospectral-hybrid finite element schemes are proposed for 12171 two-dimensional vorticity equation. Some approximation results in 12172 non-isotropic Sobolev spaces are presented. The generalized stability 12173 and the convergence are proved. The hybrid finite element approximation 12174 provides the optimal convergence rate. The numerical results show the 12175 advantages of the approach. The technique in this paper is also 12176 applicable to other nonlinear problems in computational fluid dynamics. 12177 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 12178 RP Guo, BY, CITY UNIV HONG KONG,KOWLOON,HONG KONG. 12179 CR BERNARDI C, 1989, SIAM J NUMER ANAL, V26, P769 12180 CANUTO C, 1982, NUMER MATH, V39, P205 12181 CANUTO C, 1984, NUMER MATH, V44, P201 12182 CANUTO C, 1984, SPECTRAL METHODS PAR, P55 12183 CANUTO C, 1988, SPECTRAL METHODS FLU 12184 CIARLET PG, 1978, FINITE ELEMENT METHO 12185 GUO BY, UNPUB CHEBYSHEV SPEC 12186 GUO BY, 1983, J COMPUT MATH, V1, P353 12187 GUO BY, 1987, SCI SINICA SER A, V30, P696 12188 GUO BY, 1988, DIFFERENCE METHODS P 12189 GUO BY, 1988, J COMPUT MATH, V6, P238 12190 GUO BY, 1991, SIAM J NUMER ANAL, V28, P113 12191 GUO BY, 1992, J COMPUT PHYS, V101, P207 12192 GUO BY, 1992, J COMPUT PHYS, V101, P375 12193 GUO BY, 1993, NUMER MATH, V66, P329 12194 INGHAM DB, 1985, P ROY SOC LOND A MAT, V402, P109 12195 LIONS JL, 1969, QUELQUES METHODES RE 12196 MA HP, 1987, IMA J NUMER ANAL, V7, P47 12197 MA HP, 1988, J COMPUT MATH, V6, P48 12198 MADAY Y, 1981, NUMER MATH, V37, P321 12199 MURDOCK JW, 1977, AIAA J, V15, P1167 12200 ODEN JT, 1974, FINITE ELEMENTS MATH 12201 RAVIART PA, 1979, COURS ECOLE ETE ANAL 12202 ROACHE PJ, 1976, COMPUTATIONAL FLUID 12203 NR 24 12204 TC 1 12205 SN 0764-583X 12206 J9 RAIRO-MATH MODEL NUMER ANAL 12207 JI Rairo-Math. Model. Numer. Anal.-Model. Math. Anal. Numer. 12208 PD DEC 12209 PY 1996 12210 VL 30 12211 IS 7 12212 BP 873 12213 EP 905 12214 PG 33 12215 SC Mathematics, Applied 12216 GA VX586 12217 UT ISI:A1996VX58600004 12218 ER 12219 12220 PT J 12221 AU Sakatsume, O 12222 Tsutsui, H 12223 Wang, YF 12224 Gao, H 12225 Tang, XR 12226 Yamauchi, T 12227 Murata, T 12228 Itakura, K 12229 Yokoyama, KK 12230 TI Binding of THZif-1, a MAZ-like zinc finger protein to the 12231 nuclease-hypersensitive element in the promoter region of the c-MYC 12232 protooncogene 12233 SO JOURNAL OF BIOLOGICAL CHEMISTRY 12234 DT Article 12235 ID TRIPLE-HELIX FORMATION; IN-VITRO; EMBRYONIC LETHALITY; 12236 BURKITT-LYMPHOMA; TRANSCRIPTIONAL INITIATION; FORMING OLIGONUCLEOTIDES; 12237 TARGETED DISRUPTION; MODULATE EXPRESSION; REGULATORY ELEMENTS; 12238 CHROMATIN STRUCTURE 12239 AB A detailed analysis is reported of the binding of the zinc finger 12240 protein THZif-1 to the nuclease hypersensitive element (NHE) in the 12241 promoter region of the c-MYC gene using the electrophoretic mobility 12242 shift assay and a series of mutants of a fusion protein composed of 12243 glutathione S-transferase and THZif-1. The THZif-1 protein bound 12244 specifically to the single-stranded (ss) pyrimidine-rich DNA of the NHE 12245 (ss c-myc NHE-C) with an apparent dissociation constant (K-d(app)) of 12246 0.077 mu M. By contrast, no binding to the single-stranded purine rich 12247 DNA of the NHE (ss c-myc NHE-me(5)C) was detected. Moreover, the 12248 binding affinity of THZif-1 protein was S-fold higher for the 12249 single-stranded 5-methyl-2'-deoxycytidine derivative of NHE (ss c-myc 12250 NHE-me(5)C) than for the unmethylated NHE, in the case of the binding 12251 of THZif-1 to methylated double-stranded (ds) NHE (ds c-myc 12252 NHE-me(5)CG), no significant binding to the DNA was observed. The 12253 decrease in binding: to DNA of THZif-1 was significant in the case of 12254 mutated ds c-myc NHE, in which more than two sites of deoxycytidine 12255 residues were methylated, However, the binding affinity of THZif-1 12256 protein for methylated and for unmethylated triple-helical DNA of the 12257 NHE was almost identical, Moreover, the domain of the THZif-1 protein 12258 that made the major contribution to binding to ss c-myc NHE-C or ss 12259 c-myc NHE-me(5)C corresponded to the amino-terminal second zinc finger 12260 motif. Taken together, the results indicate that the THZif-1 protein 12261 exhibits preferential DNA-binding activity with ss c-myc NHE-C, ds 12262 c-myc NHE-CG, and ts c-myc NHE but not with ss c-myc NHE-G and ds c-myc 12263 NRE-me(5)CG in vitro. 12264 C1 INST PHYS & CHEM RES,TSUKUBA LIFE SCI CTR,TSUKUBA,IBARAKI 305,JAPAN. 12265 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA. 12266 W CHINA UNIV MED SCI,DEPT MED GENET,SHENYANG,PEOPLES R CHINA. 12267 CITY HOPE NATL MED CTR,BECKMAN RES INST,DEPT MOL GENET,DUARTE,CA 91010. 12268 CR ARCINAS M, 1994, ONCOGENE, V9, P2699 12269 ASSELIN C, 1989, ONCOGENE, V4, P549 12270 BATTEY J, 1983, CELL, V34, P779 12271 BEAL PA, 1991, SCIENCE, V251, P1360 12272 BENTLEY DL, 1986, MOL CELL BIOL, V6, P3481 12273 BENTLEY DL, 1986, NATURE, V321, P702 12274 BLACKWOOD EM, 1992, CURR OPIN GENE DEV, V2, P227 12275 BOLES TC, 1987, BIOCHEMISTRY-US, V26, P367 12276 BOSSONE SA, 1992, P NATL ACAD SCI USA, V89, P7452 12277 CHARRON J, 1992, GENE DEV, V6, P2248 12278 CHRISTMAN JK, 1995, P NATL ACAD SCI USA, V92, P7347 12279 CHUNG J, 1986, P NATL ACAD SCI USA, V83, P7918 12280 COLE MD, 1986, ANNU REV GENET, V20, P361 12281 CONREY AJ, 1988, CELL, V55, P887 12282 COONEY M, 1988, SCIENCE, V241, P456 12283 DAVIS AC, 1993, GENE DEV, V7, P671 12284 DAVIS TL, 1989, P NATL ACAD SCI USA, V86, P9682 12285 DESJARDINS E, 1993, MOL CELL BIOL, V13, P5710 12286 DURLAND RH, 1991, BIOCHEMISTRY-US, V30, P9246 12287 DYSON PJ, 1985, EMBO J, V4, P2885 12288 EBBINGHAUS SW, 1993, J CLIN INVEST, V92, P2433 12289 EHRLICH M, 1981, SCIENCE, V212, P1350 12290 EICK D, 1989, EMBO J, V8, P1965 12291 EVAN GI, 1992, CELL, V69, P119 12292 FANG GW, 1993, CELL, V74, P875 12293 FILIPPOVA GN, 1996, MOL CELL BIOL, V16, P2802 12294 FIRULLI AB, 1994, ARCH BIOCHEM BIOPHYS, V310, P236 12295 GLASER RL, 1990, J MOL BIOL, V211, P751 12296 GORMAN CM, 1982, MOL CELL BIOL, V2, P1044 12297 GRIGORIEV M, 1992, J BIOL CHEM, V267, P3389 12298 HALL DJ, 1990, ONCOGENE, V5, P47 12299 HAY N, 1987, GENE DEV, V1, P659 12300 HELM CW, 1993, GYNECOL ONCOL, V49, P339 12301 KAWASAKI H, 1996, ARTIF ORGANS, V20, P836 12302 KENNEDY GC, 1992, P NATL ACAD SCI USA, V89, P11498 12303 KIMURA A, 1986, CELL, V44, P261 12304 KINNIBURGH AJ, 1989, NUCLEIC ACIDS RES, V17, P771 12305 KITABAYASHI I, 1992, EMBO J, V11, P167 12306 KITABAYASHI I, 1995, EMBO J, V14, P3496 12307 KLENOVA EM, 1993, MOL CELL BIOL, V13, P7612 12308 KOHWI Y, 1988, P NATL ACAD SCI USA, V85, P3781 12309 KOLLURI R, 1992, NUCLEIC ACIDS RES, V20, P111 12310 LI E, 1992, CELL, V69, P915 12311 LIPP M, 1987, MOL CELL BIOL, V7, P1393 12312 LUCKOW B, 1987, NUCLEIC ACIDS RES, V15, P5490 12313 MAHER LJ, 1989, SCIENCE, V245, P725 12314 MARCU KB, 1992, ANNU REV BIOCHEM, V61, P809 12315 MAYFIELD C, 1994, BIOCHEMISTRY-US, V33, P3358 12316 MAYFIELD C, 1994, J BIOL CHEM, V269, P18232 12317 MICHELOTTI EF, 1995, J BIOL CHEM, V270, P9494 12318 MICHELOTTI EF, 1996, MOL CELL BIOL, V16, P2350 12319 MICHELOTTI GA, 1996, MOL CELL BIOL, V16, P2656 12320 MOBERG KH, 1992, ONCOGENE, V7, P411 12321 MOSER HE, 1987, SCIENCE, V238, P645 12322 ORSON FM, 1991, NUCLEIC ACIDS RES, V19, P3435 12323 POSTEL EH, 1989, MOL CELL BIOL, V9, P5123 12324 POSTEL EH, 1991, P NATL ACAD SCI USA, V88, P8227 12325 POSTEL EH, 1993, SCIENCE, V261, P478 12326 POVSIC TJ, 1989, J AM CHEM SOC, V111, P3059 12327 PYRC JJ, 1992, BIOCHEMISTRY-US, V31, P4102 12328 RAJAGOPAL P, 1989, NATURE, V339, P637 12329 SAWAI S, 1993, DEVELOPMENT, V117, P1445 12330 SCHMID P, 1989, SCIENCE, V243, P226 12331 SIEBENLIST U, 1984, CELL, V37, P381 12332 SIEBENLIST U, 1988, MOL CELL BIOL, V8, P867 12333 SPENCER CA, 1991, ADV CANCER RES, V56, P1 12334 STANTON BR, 1992, GENE DEV, V6, P2235 12335 TAKIMOTO M, 1993, J BIOL CHEM, V268, P18249 12336 TOMONAGA T, 1995, J BIOL CHEM, V270, P4875 12337 TOMONAGA T, 1996, P NATL ACAD SCI USA, V93, P5830 12338 TOTH M, 1990, J MOL BIOL, V214, P673 12339 WELLS RD, 1988, FASEB J, V2, P2939 12340 XODO LE, 1991, NUCLEIC ACIDS RES, V19, P5625 12341 YOKOYAMA K, 1987, P NATL ACAD SCI USA, V84, P7363 12342 YOKOYAMA K, 1990, PROSPECT ANTISENSE N, P35 12343 YOKOYAMA K, 1991, ANTISENSE RNA DNA, P335 12344 NR 76 12345 TC 17 12346 SN 0021-9258 12347 J9 J BIOL CHEM 12348 JI J. Biol. Chem. 12349 PD DEC 6 12350 PY 1996 12351 VL 271 12352 IS 49 12353 BP 31322 12354 EP 31333 12355 PG 12 12356 SC Biochemistry & Molecular Biology 12357 GA VW686 12358 UT ISI:A1996VW68600050 12359 ER 12360 12361 PT J 12362 AU Guo, BQ 12363 Cao, WM 12364 TI A preconditioner for the h-p version of the finite element method in 12365 two dimensions 12366 SO NUMERISCHE MATHEMATIK 12367 DT Article 12368 ID ITERATIVE METHODS; DECOMPOSITION 12369 AB A preconditioner, based on a two-level mesh and a two-level 12370 orthogonalization, is proposed for the h-p version of the finite 12371 element method for two dimensional elliptic problems in polygonal 12372 domains. Its implementation is in parallel on the subdomain level for 12373 the linear or bilinear (nodal) modes, and in parallel on the element 12374 level for the high order (side and internal) modes. The condition 12375 number of the preconditioned linear system is of order 12376 [GRAPHICS] 12377 where H-i is the diameter of the i-th subdomain, h(i) and p(i) are the 12378 diameter of elements and the maximum polynomial degree used in the 12379 subdomain. This result reduces to well-known results for the h-version 12380 (i.e. p(i) = 1) and the p-version (i.e. h(i) = H-i) as the special 12381 cases of the h-p version. 12382 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 12383 RP Guo, BQ, UNIV MANITOBA,DEPT APPL MATH,WINNIPEG,MB R3T 2N2,CANADA. 12384 CR AINSWORTH M, 1993, MATH COMPUT SCI TECH, V16 12385 BABUSKA I, 1988, SIAM J MATH ANAL, V19, P257 12386 BABUSKA I, 1988, SIAM J NUMER ANAL, V25, P837 12387 BABUSKA I, 1989, J COMPUT APPL MATH, V27, P157 12388 BABUSKA I, 1991, SIAM J NUMER ANAL, V28, P624 12389 BJORSTAD PE, 1986, SIAM J NUMER ANAL, V23, P1097 12390 BRAMBLE J, 1986, MATH COMPUT, V175, P103 12391 BRAMBLE JH, 1991, MATH COMPUT, V56, P463 12392 CIARLET PG, 1978, FINITE ELEMENT METHO 12393 DRYJA M, 1989, ITERATIVE METHODS LA, P273 12394 DRYJA M, 1990, P 3 INT S DOM DEC ME 12395 GRISVARD P, 1985, ELLIPTIC PROBLEMS NO 12396 GUO B, 1986, COMPUT MECH, V1, P203 12397 GUO B, 1986, COMPUT MECH, V1, P21 12398 MANDEL J, 1990, COMPUT METHOD APPL M, V80, P117 12399 MANDEL J, 1990, INT J NUMER METH ENG, V29, P1095 12400 ODEN JT, 1994, 9411 TICAM 12401 WIDLUND OB, 1988, P 1 INT S DOM DEC ME 12402 XU JC, 1992, SIAM REV, V34, P581 12403 NR 19 12404 TC 15 12405 SN 0029-599X 12406 J9 NUMER MATH 12407 JI Numer. Math. 12408 PD NOV 12409 PY 1996 12410 VL 75 12411 IS 1 12412 BP 59 12413 EP 77 12414 PG 19 12415 SC Mathematics, Applied 12416 GA VW511 12417 UT ISI:A1996VW51100004 12418 ER 12419 12420 PT J 12421 AU Wei, GP 12422 Wu, WB 12423 Kita, T 12424 Nakayama, H 12425 Nishino, T 12426 Ma, W 12427 Okamoto, H 12428 Okuyama, M 12429 Hamakawa, Y 12430 TI Hydrogenated amorphous silicon crystalline silicon double 12431 heterojunction X-ray sensor 12432 SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & 12433 REVIEW PAPERS 12434 DT Article 12435 DE amorphous silicon (a-Si); X-ray; sensor; heterojunction 12436 AB With full utilization of the low-temperature process of hydrogenated 12437 amorphous silicon (a-Si) thin-him deposition and long carrier lifetime 12438 of high-purity crystalline silicon (c-Si), we have developed a new type 12439 of a-Si/c-Si double heterojunction X-ray sensor. The sensor has the 12440 structure of Au/p a-SiC/n NTD c-Si/n a-SilAl. High-purity NTD (neutron 12441 transmutation doping) crystalline silicon wafers were used as 12442 substrates. The high-purity NTD crystalline silicon has a long carrier 12443 lifetime (about 400 mu s), and the low deposition temperature of a-Si 12444 has no adverse effects on the carrier lifetime. Therefore, high 12445 photogenerated carrier collection efficiency and high sensitivity can 12446 be obtained. The characteristics of this kind of X-ray sensor have been 12447 examined. The linearity of the relationship between output current and 12448 X-ray intensity was good, and the sensitivity was high. 12449 C1 KOBE UNIV,INST NAT SCI,NADA KU,KOBE 657,JAPAN. 12450 OSAKA UNIV,FAC ENGN SCI,DEPT ELECT ENGN,TOYONAKA,OSAKA 560,JAPAN. 12451 RP Wei, GP, SHANGHAI UNIV SCI & TECHNOL,INST MAT SCI & ENGN,SHANGHAI 12452 201800,PEOPLES R CHINA. 12453 CR HALLER EE, 1981, HDB SEMICONDUCTORS, V4, P799 12454 JACOB G, 1972, NUCL INSTRUM METHODS, V101, P51 12455 KIM C, 1982, NUCL INSTRUM METHODS, V193, P69 12456 SAKAI E, 1973, OYO BUTURI, V42, P97 12457 SHIRAISHI F, 1982, OYO BUTURI, V51, P299 12458 WEI GP, IN PRESS 12459 WEI GP, 1985, JPN J APPL PHYS PT 1, V24, P1105 12460 WEI GP, 1986, OYO BUTURI, V55, P824 12461 NR 8 12462 TC 0 12463 SN 0021-4922 12464 J9 JPN J APPL PHYS PT 1 12465 JI Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 12466 PD OCT 12467 PY 1996 12468 VL 35 12469 IS 10 12470 BP 5342 12471 EP 5345 12472 PG 4 12473 SC Physics, Applied 12474 GA VU822 12475 UT ISI:A1996VU82200022 12476 ER 12477 12478 PT J 12479 AU Huang, TK 12480 Yu, LM 12481 Zhang, YB 12482 Itoh, M 12483 Yu, JD 12484 Inaguma, Y 12485 Nakamura, T 12486 TI Hall coefficient and resistivity measurements for oxygen-annealed 12487 Bi2.2Sr1.8CaCu2O8+y single crystals under pressure 12488 SO PHYSICA C 12489 DT Article 12490 DE electrical resistivity; Hall effect; high pressure effect 12491 ID SUPERCONDUCTING TRANSITION-TEMPERATURE; HIGH-TC SUPERCONDUCTORS; 12492 HYDROSTATIC-PRESSURE; EPITAXIAL INTERCALATION; IODINE INTERCALATION; 12493 CHARGE-TRANSFER; DEPENDENCE; BI2SR2CACU2O8+DELTA; OXIDE; BI 12494 AB Hall coefficients and resistivities have been measured on 12495 oxygen-annealed Bi2.2Sr1.8CaCu2O8+y single crystals under hydrostatic 12496 pressure up to 1.6 GPa and the results are compared with those on 12497 as-grown and iodine-intercalated ones. Under pressure, the Hall 12498 coefficient of the oxygen-annealed crystal decreases and the pressure 12499 derivative of the Hall coefficient is - 0.12 x 10(-3) 12500 cm(3)C(-1)GPa(-1). The variation of T-c, contrary to the 12501 iodine-intercalated crystal, shows a linear increase at the rate of 12502 dT(c)/dP = 2.3 K GPa(-1), whereas the Hall coefficient at ambient 12503 pressure is 2.15 x 10(-3) cm(3)C(-1), very close to the value of the 12504 iodine-intercalated one. The positive behavior of dT(c)/dP is an 12505 indication that the hole concentration in the CuO2 layers is located at 12506 the underdoped region and holes derived from extra oxygen are probable 12507 in other layers, e.g., Bi2O2 layers. The resistivities along the c-axis 12508 direction are semiconductor-like, indicating the holes from extra 12509 oxygen are two-dimensional. 12510 C1 TOKYO INST TECHNOL,ENGN MAT RES LAB,MIDORI KU,YOKOHAMA,KANAGAWA 227,JAPAN. 12511 UTSUNOMIYA UNIV,FAC ENGN,DEPT APPL CHEM,UTSUNOMIYA,TOCHIGI 321,JAPAN. 12512 RP Huang, TK, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 12513 201800,PEOPLES R CHINA. 12514 CR ALLGEIER C, 1989, PHYSICA C, V162, P741 12515 ALLGEIER C, 1990, PHYSICA C, V168, P499 12516 BERKLEY DD, 1993, PHYS REV B, V47, P5524 12517 ERSKINE D, 1987, J MATER RES, V2, P783 12518 FUJIWARA A, 1992, PHYSICA C, V203, P411 12519 GROEN WA, 1989, PHYSICA C, V159, P417 12520 HUANG T, 1993, ADV SUPERCONDUCTIVIT, V6, P359 12521 HUANG T, 1993, REP RES LAB ENG MAT, V18, P83 12522 HUANG TK, 1993, PHYS REV B, V48, P7712 12523 HUANG TK, 1994, PHYS REV B, V49, P9885 12524 HYBERTSEN MS, 1988, PHYS REV LETT, V60, P1661 12525 KATO M, 1994, PHYSICA C, V226, P243 12526 KENDZIORA C, 1993, PHYS REV B, V48, P3531 12527 KLOTZ S, 1991, PHYSICA C, V172, P423 12528 KLOTZ S, 1993, PHYSICA C, V209, P499 12529 KOSUGE M, 1992, PHYS REV B, V45, P10713 12530 KUBIAK R, 1990, PHYSICA C, V166, P532 12531 LI TW, 1994, PHYSICA C, V224, P110 12532 MA J, 1994, PHYSICA C, V227, P371 12533 MORI N, 1990, J PHYS SOC JPN, V59, P3839 12534 MURAYAMA C, 1991, PHYSICA C, V183, P277 12535 NEUMEIER JJ, 1993, PHYS REV B, V47, P8385 12536 PRESLAND MR, 1991, PHYSICA C, V176, P95 12537 SCHILLING JS, 1992, PHYSICAL PROPERTIES, V3, P59 12538 SCHOLTZ JJ, 1992, PHYS REV B, V45, P3077 12539 SIEBURGER R, 1991, PHYSICA C, V181, P335 12540 THOMPSON JD, 1984, REV SCI INSTRUM, V55, P231 12541 VANEENIGE EN, 1992, EUROPHYS LETT, V20, P41 12542 WHEATLEY JM, 1988, NATURE, V333, P121 12543 WIJNGAARDEN RJ, 1991, FRONTIERS HIGH PRESS, P339 12544 XIANG XD, 1990, NATURE, V348, P145 12545 XIANG XD, 1991, PHYS REV B B, V43, P11496 12546 XIANG XD, 1992, PHYS REV LETT, V68, P530 12547 YAMAMOTO A, 1990, PHYS REV B A, V42, P4228 12548 NR 34 12549 TC 8 12550 SN 0921-4534 12551 J9 PHYSICA C 12552 JI Physica C 12553 PD NOV 1 12554 PY 1996 12555 VL 271 12556 IS 1-2 12557 BP 103 12558 EP 110 12559 PG 8 12560 SC Physics, Applied 12561 GA VU642 12562 UT ISI:A1996VU64200013 12563 ER 12564 12565 PT J 12566 AU Tan, WH 12567 Li, QN 12568 TI On the general and resonant solutions of atoms reflected by an 12569 evanescent laser wave 12570 SO CHINESE PHYSICS LETTERS 12571 DT Article 12572 AB Usually the reflection of two level atoms by a detuning evanescent 12573 laser wave was studied in past few years.(1-3) In previous paper we 12574 have presented an exact solution for this model based on the matrix 12575 Laplace transformation technique, and proceeded the numerical 12576 calculations for a given set of parameters.(4) However in the special 12577 case of resonance interaction considered in this paper, the solution 12578 for Schrodinger wave equation and reflectivity calculation can be 12579 greatly simplified; besides, the resonant solution provides a check to 12580 the numerical data based on the general solution of the previous paper. 12581 RP Tan, WH, SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA. 12582 CR BALYKIN VI, 1988, PHYS REV LETT, V60, P2137 12583 COOK RJ, 1982, OPT COMMUN, V43, P250 12584 DEUTSCHMANN R, 1993, PHYS REV A, V47, P2169 12585 TAN WH, 1995, ACTA SINICA QUANTUM, V1, P55 12586 NR 4 12587 TC 0 12588 SN 0256-307X 12589 J9 CHIN PHYS LETT 12590 JI Chin. Phys. Lett. 12591 PY 1996 12592 VL 13 12593 IS 8 12594 BP 587 12595 EP 589 12596 PG 3 12597 SC Physics, Multidisciplinary 12598 GA VT945 12599 UT ISI:A1996VT94500008 12600 ER 12601 12602 PT J 12603 AU Chen, DY 12604 Zhang, DJ 12605 TI Lie algebraic structures of (1+1)-dimensional Lax integrable systems 12606 SO JOURNAL OF MATHEMATICAL PHYSICS 12607 DT Article 12608 AB An approach of constructing isospectral flows K-l, nonisospectral flows 12609 sigma(k) and their implicit representations of a general Lax integrable 12610 system is proposed. By introducing product function matrices, it is 12611 shown that the two sets of flows and of related symmetries both 12612 constitute infinite-dimensional Lie algebras with respect to the 12613 commutator [.,.] given in this paper. Algebraic properties for some 12614 well-known integrable systems such as the AKNS system, the generalized 12615 Harry Dym system, and the n-wave interaction system are obtained as 12616 particular examples. (C) 1996 American Institute of Physics. 12617 RP Chen, DY, SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 12618 CR ANTONOWICZ M, 1989, COMMUN MATH PHYS, V124, P456 12619 BOWMAN S, 1987, MATH PROC CAMBRIDGE, V102, P173 12620 CHEN DG, 1991, J PHYS A-MATH GEN, V24, P377 12621 CHEN DY, 1993, ACTA MATH APPL SINIC, V13, P324 12622 CHEN DY, 1994, ACTA MATH APPL SINIC, V17, P300 12623 CHENG Y, 1990, CHINESE SCI BULL, V35, P1631 12624 FOKAS AS, 1982, J MATH PHYS, V23, P1066 12625 LI YS, 1991, CHINESE SCI BULL, V36, P496 12626 MA WX, 1992, J MATH PHYS, V33, P2464 12627 NR 9 12628 TC 6 12629 SN 0022-2488 12630 J9 J MATH PHYS-NY 12631 JI J. Math. Phys. 12632 PD NOV 12633 PY 1996 12634 VL 37 12635 IS 11 12636 BP 5524 12637 EP 5538 12638 PG 15 12639 SC Physics, Mathematical 12640 GA VQ507 12641 UT ISI:A1996VQ50700021 12642 ER 12643 12644 PT J 12645 AU Pu, HT 12646 Ding, ZL 12647 Ma, Z 12648 TI Preparation, characterization, and properties of EVA preirradiation 12649 grafted NIPAAm 12650 SO JOURNAL OF APPLIED POLYMER SCIENCE 12651 DT Article 12652 ID GELS; POLYMER; HYDROGEL; MEMBRANE; COLLAPSE; RELEASE 12653 AB An ethyl-vinyl acetate copolymer (EVA) preirradiation-grafted with 12654 N-isopropylacrylamide (NIPAAm) was prepared. Various methods which can 12655 be used to control the grafting reaction are described. DSC and TMA 12656 were employed to characterize the surface thermosensitivity of the 12657 graft copolymer. It is indicated that the surface of EVA grafted with 12658 NIPAAm shows thermosensitivity similar to a partially crosslinked 12659 poly-NIPAAm (PNIPAAm) gel. The response to the change of temperature 12660 through the lower critical solution temperature (LCST) of the graft was 12661 swifter than that of the PNIPAAm gel. SEM revealed a micropore 12662 structure in the surface layer of the sample. DSC was also used to 12663 analyze the water state in the surface layer of the sample. (C) 1996 12664 John Wiley & Sons, Inc. 12665 C1 UNIV WASHINGTON,CTR BIOENGN,SEATTLE,WA 98195. 12666 SHANGHAI UNIV,INST CHEM & CHEM ENGN,SHANGHAI 201800,PEOPLES R CHINA. 12667 RP Pu, HT, TONGJI UNIV,DEPT MAT SCI,SHANGHAI 200092,PEOPLES R CHINA. 12668 CR ALHAIQUE F, 1981, J PHARM, V33, P413 12669 BEA YH, 1987, MAKROMOL CHEM-RAPID, V8, P481 12670 CHAPIRO A, 1962, RAD CHEM POLYM SYSTE, CH12 12671 DONG LC, 1986, J CONTROL RELEASE, V4, P223 12672 DONG LC, 1991, J CONTROL RELEASE, V15, P141 12673 DUSEK K, 1968, J POLYM SCI A2, V6, P1209 12674 EISENBERG SR, 1984, J MEMBRANE SCI, V19, P173 12675 FRELTAS RFS, 1987, SEPAR SCI TECHNOL, V22, P911 12676 HIROTSU S, 1987, J CHEM PHYS, V87, P1392 12677 HIROTSU S, 1989, J PHYS SOC JPN, V58, P1508 12678 HOFFMAN AS, 1986, J CONTROL RELEASE, V4, P213 12679 ILAVASK M, 1985, POLYMER, V26, P26 12680 ISHIHARA K, 1984, J APPL POLYM SCI, V29, P211 12681 KUNGWATCHAKUN D, 1988, MAKROMOL CHEM-RAPID, V9, P243 12682 MATSUO ES, 1988, J CHEM PHYS, V89, P1696 12683 MUKAE K, 1990, POLYM J, V22, P206 12684 OKANO T, 1990, J CONTROL RELEASE, V11, P255 12685 TANAKA T, 1978, PHYS REV LETT, V40, P820 12686 TANAKA T, 1980, PHYS REV LETT, V45, P1637 12687 TANAKA T, 1982, SCIENCE, V218, P467 12688 ULBRICH K, 1979, J POLYM SCI POLYM S, V66, P209 12689 YOSHIDA M, 1989, EUR POLYM J, V25, P1197 12690 NR 22 12691 TC 5 12692 SN 0021-8995 12693 J9 J APPL POLYM SCI 12694 JI J. Appl. Polym. Sci. 12695 PD DEC 5 12696 PY 1996 12697 VL 62 12698 IS 10 12699 BP 1529 12700 EP 1535 12701 PG 7 12702 SC Polymer Science 12703 GA VQ475 12704 UT ISI:A1996VQ47500005 12705 ER 12706 12707 PT J 12708 AU Wu, YX 12709 Liu, HY 12710 Qi, DY 12711 Liu, YC 12712 Qian, JH 12713 Liu, SH 12714 Yu, TY 12715 Deng, JQ 12716 TI Methylene green-mediated sensor highly sensitive to hydrogen peroxide 12717 based on entrapment of horseradish peroxidase in composite membrane of 12718 regenerated silk fibroin and poly(vinyl alcohol) 12719 SO CHINESE JOURNAL OF CHEMISTRY 12720 DT Article 12721 DE sensor; poly(vinyl alcohol); regenerated silk fibroin; methylene green; 12722 horseradish peroxidase; hydrogen peroxide 12723 ID BIOELECTROCATALYTIC REDUCTION; ELECTRODE; CARBON; SYSTEM; ASSAY 12724 AB A novel composite membrane of poly(vinyl alcohol) and regenerated silk 12725 fibroin was employed to immobilize horseradish peroxidase (HRP) and IR 12726 was used to give a useful insight into the structure of the composite 12727 membrane before and after ethanol treatment. A methylene green-mediated 12728 sensor sensitive to hydrogen peroxide was fabricated, based on the 12729 composite membrane as immobilization matrix for HRP. Cyclic voltammetry 12730 and amperometric measurement were for the first time utilized to 12731 demonstrate the suitability of methylene green as an electron transfer 12732 mediator between immobilized HRP and a glassy carbon electrode in 12733 bioelectrocatalytic reduction of hydrogen peroxide. Performance and 12734 characteristics of the sensor were evaluated in respect to response 12735 time, detection limit, applied potential and concentration of the 12736 mediator. The sensor possesses a variety of characteristics including 12737 good sensitivity, rapid response time and low detection of limit of 0.1 12738 mu mol/L. 12739 C1 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA. 12740 FUDAN UNIV,DEPT MACROMOL SCI & CHEM,SHANGHAI 200433,PEOPLES R CHINA. 12741 CR DUNFORD HB, 1991, PEROXIDASES CHEM BIO, V2, P1 12742 GARGUILO MG, 1993, ANAL CHEM, V65, P523 12743 HO WO, 1993, J ELECTROANAL CHEM, V351, P185 12744 JONSSON G, 1989, ELECTROANAL, V1, P465 12745 KAMIN RA, 1980, ANAL CHEM, V52, P1198 12746 LIU HY, 1995, ANAL PROC, V32, P475 12747 MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801 12748 MINOURA N, 1990, POLYMER, V31, P430 12749 OHARA TJ, 1993, ELECTROANAL, V5, P823 12750 OLSSON B, 1988, ANAL CHIM ACTA, V206, P49 12751 SANCHEZ PD, 1990, ELECTROANAL, V2, P303 12752 SANCHEZ PD, 1991, ELECTROANAL, V3, P281 12753 TATSUMA T, 1991, ANAL CHIM ACTA, V242, P85 12754 WANG J, 1991, ANAL CHEM, V63, P2993 12755 WOLLENBERGER U, 1990, ANAL LETT, V23, P1795 12756 YAROPOLOV AI, 1979, DOKL AKAD NAUK SSSR, V249, P1399 12757 NR 16 12758 TC 0 12759 SN 1001-604X 12760 J9 CHINESE J CHEM 12761 JI Chin. J. Chem. 12762 PY 1996 12763 VL 14 12764 IS 4 12765 BP 359 12766 EP 366 12767 PG 8 12768 SC Chemistry, Multidisciplinary 12769 GA VQ561 12770 UT ISI:A1996VQ56100012 12771 ER 12772 12773 PT J 12774 AU Bi, PZ 12775 Shi, YM 12776 TI The Psi' in the relativistic heavy ion collision 12777 SO ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS 12778 DT Article 12779 ID HADRONIC TRANSITIONS; TEMPERATURE; STATES; SYSTEM; DECAY; MASS 12780 AB We have investigated the temperature influence on the hadronic decay 12781 width Psi'. Contrary to the divergence of the decay width of rho-meson, 12782 pi-meson at critical temperature as suggested in some papers, we find 12783 that the decay width of Psi' decreases with increasing temperature. 12784 Thus the leptonic decay can be used to measure the number of produced 12785 Psi' at finite temperature just as at zero temperature. 12786 C1 FUDAN UNIV,DEPT PHYS 2,SHANGHAI 200433,PEOPLES R CHINA. 12787 CHINA CTR ADV SCI & TECHNOL,WORLD LAB,BEIJING 100080,PEOPLES R CHINA. 12788 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA. 12789 RP Bi, PZ, FUDAN UNIV,TD LEE PHYS LAB,SHANGHAI 200433,PEOPLES R CHINA. 12790 CR BHANOT G, 1979, NUCL PHYS B, V156, P391 12791 BI P, 1988, J PHYS G, V15, P1653 12792 BI PZ, 1991, PHYS LETT B, V262, P485 12793 BI PZ, 1992, MOD PHYS LETT A, V7, P3161 12794 BI PZ, 1992, Z PHYS C PART FIELDS, V54, P453 12795 CRAIGIE NS, 1978, PHYS REP, V49, P1 12796 DOMINGUEZ CA, 1993, Z PHYS C PART FIELDS, V59, P63 12797 HASHIMOTO T, 1986, PHYS REV LETT, V57, P2123 12798 HASHIMOTO T, 1988, PHYS REV D, V37, P3331 12799 HIOKI S, 1991, PHYS LETT B, V261, P5 12800 KOCH P, 1986, PHYS REP, V142, P262 12801 KUANG YP, 1981, PHYS REV D, V24, P2874 12802 LIU DS, 1987, Z PHYS C PART FIELDS, V37, P119 12803 MATSUI T, 1986, PHYS LETT B, V178, P416 12804 VARELA J, 1991, NUCL PHYS A, V525, P275 12805 VOLOSHIN M, 1980, PHYS REV LETT, V45, P688 12806 YAN TM, 1980, PHYS REV D, V22, P1652 12807 NR 17 12808 TC 1 12809 SN 0170-9739 12810 J9 Z PHYS C-PAR FIELD 12811 JI Z. Phys. C-Part. Fields 12812 PD OCT 12813 PY 1996 12814 VL 72 12815 IS 3 12816 BP 497 12817 EP 499 12818 PG 3 12819 SC Physics, Particles & Fields 12820 GA VQ431 12821 UT ISI:A1996VQ43100014 12822 ER 12823 12824 PT J 12825 AU Bai, ZZ 12826 Wang, DR 12827 TI A class of parallel nonlinear multisplitting relaxation methods for the 12828 large sparse nonlinear complementarity problems 12829 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS 12830 DT Article 12831 DE nonlinear complementarity problem; nonlinear multisplitting; relaxation 12832 method; local convergence; parallel computation 12833 ID NEWTON METHODS; EQUATIONS 12834 AB By making use of the nonlinear multisplitting and the nonlinear 12835 relaxation techniques, we present, in this paper, a class of parallel 12836 nonlinear multisplitting successive overrelaxation methods for solving 12837 the large sparse nonlinear complementarity problems on the modern 12838 high-speed multiprocessors. These new methods particularly include the 12839 so-called nonlinear multisplitting SOR Newton method, the nonlinear 12840 multisplitting SOR-chord method, and the nonlinear multisplitting 12841 SOR-Steffensen method. Under suitable conditions, we establish the 12842 local convergence theories of the new methods, and investigate their 12843 asymptotic convergence rates. A lot of numerical results show that our 12844 new methods are feasible and efficient for parallel solving the 12845 nonlinear complementarity problems. 12846 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 12847 RP Bai, ZZ, CHINESE ACAD SCI,STATE KEY LAB SCI ENGN COMP,INST COMPUTAT 12848 MATH & SCI ENGN COMP,POB 2719,BEIJING 100080,PEOPLES R CHINA. 12849 CR BAI ZZ, 1995, J FUDAN U NATURAL SC, V34, P683 12850 BAI ZZ, 1996, COMPUT MATH APPL, V31, P17 12851 BAI ZZ, 1996, COMPUT MATH APPL, V32, P41 12852 BAI ZZ, 1996, J FUDAN U NATURAL SC, V35 12853 DELEONE R, 1988, MATH PROGRAM, V42, P347 12854 FROMMER A, 1989, NUMER MATH, V56, P269 12855 HARKER PT, 1990, MATH PROGRAM, V48, P339 12856 IP CM, 1992, MATH PROGRAM, V56, P71 12857 MANGASARIAN OL, 1976, SIAM J APPL MATH, V31, P89 12858 OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630 12859 ORTEGA JM, 1970, ITERATIVE SOLUTION N 12860 PANG JS, 1982, MATH PROGRAM, V24, P284 12861 PANG JS, 1988, MATH PROGRAM, V42, P407 12862 VARGA RS, 1962, MATRIX ITERATIVE ANA 12863 WANG DR, 1995, APPL MATH JCU B, V10, P251 12864 NR 15 12865 TC 3 12866 SN 0898-1221 12867 J9 COMPUT MATH APPL 12868 JI Comput. Math. Appl. 12869 PD OCT 12870 PY 1996 12871 VL 32 12872 IS 8 12873 BP 79 12874 EP 95 12875 PG 17 12876 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied 12877 GA VM923 12878 UT ISI:A1996VM92300008 12879 ER 12880 12881 PT J 12882 AU Shen, WH 12883 VanBrunt, V 12884 Xu, XW 12885 Hsu, HW 12886 TI Dynamic analysis of gas stripping during ethanol fermentation in CSTR 12887 SO CHINESE JOURNAL OF CHEMICAL ENGINEERING 12888 DT Article 12889 DE gas stripping; bifurcation; stability; product-substrate inhibition 12890 ID INHIBITION; REACTOR; BEHAVIOR 12891 AB The dynamic behavior of gas stripping during ethanol fermentation 12892 (GSEF) in a CSTR for a combined product-substrate inhibition case has 12893 been investigated in terms of bifurcation and regional stability 12894 theory. The region of optimal operating steady states and the effect of 12895 initial concentration on the attraction region have been established. 12896 The analytical results can be used to predict and promote the GSEF 12897 system moving towards an optimal operating steady state. 12898 C1 UNIV S CAROLINA,DEPT CHEM ENGN,COLUMBIA,SC 29208. 12899 UNIV TENNESSEE,DEPT CHEM ENGN,KNOXVILLE,TN 37996. 12900 RP Shen, WH, SHANGHAI UNIV,COLL CHEM & CHEM ENGN,JIADING CAMPUS,SHANGHAI 12901 201800,PEOPLES R CHINA. 12902 CR AGRAWAL P, 1982, CHEM ENG SCI, V37, P453 12903 CYSEWSKI GR, 1977, BIOTECHNOL BIOENG, V19, P1125 12904 DALE MC, 1985, BIOTECHNOL BIOENG, V27, P932 12905 GHOSE TK, 1979, BIOTECHNOL BIOENG, V21, P1387 12906 HAZWINKEL M, 1985, BIFURCATION ANAL, P13 12907 HONDA H, 1986, J CHEM ENG JPN, V19, P268 12908 LENBURY Y, 1987, APPL MICROBIOL BIOT, V25, P532 12909 LIU HS, 1990, CHEM ENG SCI, V45, P1289 12910 LIU HS, 1991, CHEM ENG SCI, V46, P2551 12911 LUEDEKING R, 1959, J BIOCHEM MICROBIOL, V1, P393 12912 LUONG JHT, 1985, BIOTECHNOL BIOENG, V27, P280 12913 MARGARITIS A, 1978, BIOTECHNOL BIOENG, V20, P727 12914 POORE BA, 1973, ARCH RATION MECH AN, V52, P358 12915 RION WL, 1990, COMPUT CHEM ENG, V14, P889 12916 SEVELY Y, 1980, 5 IFAC TRIEN C KYOT 12917 THIBAULT J, 1987, BIOTECHNOL BIOENG, V29, P74 12918 UPPAL A, 1976, CHEM ENG SCI, V31, P205 12919 NR 17 12920 TC 1 12921 SN 1004-9541 12922 J9 CHINESE J CHEM ENG 12923 JI Chin. J. Chem. Eng. 12924 PD SEP 12925 PY 1996 12926 VL 4 12927 IS 3 12928 BP 236 12929 EP 245 12930 PG 10 12931 SC Engineering, Chemical 12932 GA VM719 12933 UT ISI:A1996VM71900006 12934 ER 12935 12936 PT J 12937 AU Shi, DH 12938 Liu, LM 12939 TI Availability analysis of a two-unit series system with a priority 12940 shut-off rule 12941 SO NAVAL RESEARCH LOGISTICS 12942 DT Article 12943 AB This study shows that the steady-state availability of a two-unit 12944 series system, which operates under a one-direction shut-off rule with 12945 a preemptive repair priority for unit 1, depends only on the 12946 first-order system parameters. First we obtain both transient and 12947 steady-state system availability and failure frequency when the 12948 lifetime of Unit 1 is Erlang and the other distributions are general. 12949 When the lifetime of Unit 1 is general, the system process has no 12950 regenerative point. Using supplementary variables, we establish a 12951 vector Markov process and hence transfer the problem to the solution of 12952 a system of integrodifferential equations. We can then obtain explicit 12953 formulas for the steady-state system availability and failure 12954 frequency, respectively. In concluding this article we make some 12955 conjectures on series systems and point out future research 12956 opportunities. (C) 1996 John Wiley & Sons, Inc. 12957 RP Shi, DH, SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 12958 CR BARLOW RE, 1979, ASYMPTOTIC MEASURES 12959 BARLOW RE, 1981, STATISTICAL THEORY R 12960 BARLOW RE, 1985, THEORY RELIABILITY S, P67 12961 CAO J, 1987, RELIABILITY THEORY A, P1 12962 KHALIL ZS, 1985, IEEE T RELIAB, V34, P181 12963 KLEINROCK L, 1976, QUEUEING SYSTEMS 12964 SHI DH, 1985, ACTA AUTOMATICA SINI, V1, P71 12965 SHI DH, 1985, ACTA MATH APPL SINIC, V1, P101 12966 SHI DH, 1993, ACTA MATH APPL SINTC, V1, P88 12967 NR 9 12968 TC 6 12969 SN 0894-069X 12970 J9 NAV RES LOG 12971 JI Nav. Res. Logist. 12972 PD OCT 12973 PY 1996 12974 VL 43 12975 IS 7 12976 BP 1009 12977 EP 1024 12978 PG 16 12979 SC Operations Research & Management Science 12980 GA VK759 12981 UT ISI:A1996VK75900005 12982 ER 12983 12984 PT J 12985 AU Li, CF 12986 TI A note on the boundary condition in the Aharonov-Bohm scattering for 12987 alpha=integer 12988 SO PHYSICA B 12989 DT Article 12990 AB The boundary condition under which the Aharonov-Bohm scattering 12991 solution was obtained is examined. It is shown that when alpha = 12992 integer (where alpha = Phi/Phi(0) represents the magnetic flux in the 12993 long cylindrical solenoid, and Phi(0) = h/e), scattering does not 12994 happen only if the electron enters the region where the magnetic field 12995 exists. This result is not only in contrast with Aharonov and Bohm's 12996 result that there will be no scattering if the electron does not enter 12997 the field, but is also rather surprising, because it means that the 12998 electron passing through the magnetic field does not experience any 12999 effect. 13000 RP Li, CF, SHANGHAI UNIV,DEPT PHYS,20 CHENGZHONG RD,SHANGHAI 13001 201800,PEOPLES R CHINA. 13002 CR AHARONOV Y, 1959, PHYS REV, V115, P485 13003 CHAMBERS RG, 1960, PHYS REV LETT, V5, P3 13004 PAGE L, 1930, PHYS REV, V36, P444 13005 TONOMURA A, 1986, PHYS REV LETT, V56, P792 13006 NR 4 13007 TC 2 13008 SN 0921-4526 13009 J9 PHYSICA B 13010 JI Physica B 13011 PD AUG 13012 PY 1996 13013 VL 226 13014 IS 4 13015 BP 406 13016 EP 408 13017 PG 3 13018 SC Physics, Condensed Matter 13019 GA VJ660 13020 UT ISI:A1996VJ66000020 13021 ER 13022 13023 PT J 13024 AU Wu, MH 13025 Jie, C 13026 Ding, ZL 13027 Ma, ZT 13028 TI Preparation of a new thermo-sensitive material by preirradiation 13029 grafting 13030 SO RADIATION PHYSICS AND CHEMISTRY 13031 DT Article 13032 ID GELS 13033 AB In this paper, a new thermo-sensitive material that NIPAAm was grafted 13034 onto EVA by preirradiation grafting was obtained, and the effects of 13035 reaction condition on grafting reaction were discussed. The 13036 experimental results showed that the swelling of the grafted EVA was 13037 reversible and the lower critical solution temperature (LCST) of the 13038 surface was 32 degrees C. Compared with the poly-NIPAAm gel, the 13039 grafted EVA with high mechanical strength behaves with similar 13040 thermo-sensitivity and the more swift response to the change of 13041 temperature. When acrylic or acrylamide was added to NIPAAm, the LCST 13042 of the grafted surface shifts higher with the increase of the grafted 13043 component hydrophilicity. Copyright (C) 1996 Elsevier Science Ltd 13044 RP Wu, MH, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI 13045 201800,PEOPLES R CHINA. 13046 CR BAE YH, 1987, MAKROMOL CHEM-RAPID, V8, P481 13047 DONG LC, 1986, J CONTROL RELEASE, V4, P223 13048 FREITAS RFS, 1987, SEPAR SCI TECHNOL, V22, P911 13049 HIROTSU S, 1987, J CHEM PHYS, V87, P1392 13050 HOFFMAN AS, 1986, AM CHEM SOC M NEW YO 13051 HOFFMAN AS, 1986, J CONTROL RELEASE, V4, P213 13052 MATSUO ES, 1988, J CHEM PHYS, V89, P1695 13053 MUKAE K, 1990, POLYM J, V22, P206 13054 TANAKA T, 1978, PHYS REV LETT, V40, P820 13055 ULBRICK K, 1979, J POLYM SCI PS, V66, P206 13056 NR 10 13057 TC 7 13058 J9 RADIAT PHYS CHEM 13059 JI Radiat. Phys. Chem. 13060 PD OCT 13061 PY 1996 13062 VL 48 13063 IS 4 13064 BP 525 13065 EP 527 13066 PG 3 13067 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear 13068 Science & Technology 13069 GA VJ820 13070 UT ISI:A1996VJ82000019 13071 ER 13072 13073 PT J 13074 AU Yan, H 13075 Wang, Q 13076 Awai, I 13077 TI Resonant frequency shift in a MSSW-SER with excitation power 13078 SO ELECTRONICS LETTERS 13079 DT Article 13080 DE magnetostatic surface waves; magnetostatic wave devices 13081 AB Owing to the nonlinear effect of LPE-YIG film and the energy 13082 confinement effect in the resonator, the resonant frequency of a 13083 MSSW-SER shifts appreciably with exciting power increase. Using this 13084 principle, an experimental method is proposed to investigate the 13085 nonlinear MSSW dispersion without large excitation power. The MSSW 13086 nonlinear prpoagation theory is verified by experimental results. 13087 C1 SHANGHAI UNIV,SCH SCI,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 13088 RP Yan, H, YAMAGUCHI UNIV,DEPT ELECT & ELECT ENGN,TOKIWADAI 13089 2557,UBE,YAMAGUCHI 755,JAPAN. 13090 CR BOARDMAN AD, 1994, IEEE T MAGN, V30, P14 13091 CHANG KW, 1985, CIRC SYST SIGNAL PR, V4, P201 13092 NR 2 13093 TC 2 13094 SN 0013-5194 13095 J9 ELECTRON LETT 13096 JI Electron. Lett. 13097 PD SEP 12 13098 PY 1996 13099 VL 32 13100 IS 19 13101 BP 1787 13102 EP 1789 13103 PG 3 13104 SC Engineering, Electrical & Electronic 13105 GA VJ628 13106 UT ISI:A1996VJ62800032 13107 ER 13108 13109 PT J 13110 AU Kostreva, MM 13111 Zheng, Q 13112 Zhuang, DM 13113 TI Upper robust mappings and vector minimization: An integral approach 13114 SO EUROPEAN JOURNAL OF OPERATIONAL RESEARCH 13115 DT Article 13116 DE programming nonlinear; programming multiple criteria 13117 ID OPTIMIZATION PROBLEMS 13118 AB A study of upper robust mapping from a topological space to R(n) and 13119 development of optimality conditions for vector minimization of upper 13120 robust mappings are presented in the framework of integral based 13121 optimization theory. Under some general assumptions, optimality 13122 conditions are established for several well developed scalarization 13123 techniques such as weighting, E-constraint and reference point. These 13124 optimality conditions are applied to design integral algorithms for 13125 finding the set of efficient solutions of a vector optimization 13126 problem. A numerical example is presented to illustrate the 13127 effectiveness of the algorithm. 13128 C1 SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 13129 MT ST VINCENT UNIV,DEPT MATH & COMP STUDIES,HALIFAX,NS B3M 2J6,CANADA. 13130 RP Kostreva, MM, CLEMSON UNIV,DEPT MATH SCI,CLEMSON,SC 29634. 13131 CR BORWEIN JM, 1993, T AM MATH SOC, V338, P105 13132 CHANKONG V, 1983, MULTIOBJECTIVE DECIS 13133 CHEW SH, 1988, LECTURE NOTES EC MAT, V298 13134 HAIMES YY, 1971, IEEE T SYST MAN CYB, V1, P296 13135 JAHN J, 1984, MATH PROGRAM, V29, P203 13136 JAHN J, 1986, MATH VECTOR OPTIMIZA 13137 JAHN J, 1988, OPERATIONS RES P 198, P576 13138 JAHN J, 1992, J OPTIMIZ THEORY APP, V74, P87 13139 JAHN J, 1992, LECTURE NOTES EC MAT, V378 13140 KURATOWSKI K, 1966, TOPOLOGY, V1 13141 ROCKAFELLAR RT, 1970, CONVEX ANAL 13142 SHI SZ, 1994, J MATH ANAL APPL, V183, P706 13143 SHI SZ, 1995, T AM MATH SOC, V347, P4943 13144 WIERZBICKI AP, 1982, MATH MODELLING, V3, P391 13145 WIERZBICKI AP, 1986, OR SPEKTRUM, V8, P73 13146 ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205 13147 ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317 13148 ZHENG Q, 1992, THESIS CLEMSON U 13149 NR 18 13150 TC 0 13151 SN 0377-2217 13152 J9 EUR J OPER RES 13153 JI Eur. J. Oper. Res. 13154 PD SEP 20 13155 PY 1996 13156 VL 93 13157 IS 3 13158 BP 565 13159 EP 581 13160 PG 17 13161 SC Operations Research & Management Science 13162 GA VJ553 13163 UT ISI:A1996VJ55300009 13164 ER 13165 13166 PT J 13167 AU Sang, WB 13168 Qian, YB 13169 Guan, XD 13170 Wu, WH 13171 Liu, YF 13172 Zhang, KJ 13173 Wang, J 13174 Hua, JD 13175 TI Synthesis and characterisation of nanometre-sized CdS clusters in 13176 chitosan film 13177 SO ADVANCED MATERIALS FOR OPTICS AND ELECTRONICS 13178 DT Article 13179 DE CdS; nanometer-sized clusters; chitosan; complexes 13180 ID QUANTUM CONFINEMENT 13181 AB A novel process using chitosan containing ligand groups as a medium for 13182 forming CdS clusters in chitosan films by an ion co-ordinate method has 13183 been investigated. The CdS clusters in the chitosan have been 13184 identified by X-ray diffraction and by their infrared, ultraviolet and 13185 visible absorption spectra and shown to possess high stability with a 13186 specific structure. Notable quantum size effects have been shown 13187 through their absorption spectra. By changing the reaction conditions, 13188 the wavelength edge of the absorption can be blue-shifted from 470 to 13189 375 nm. 13190 C1 SHANGHAI UNIV,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA. 13191 RP Sang, WB, SHANGHAI UNIV,DEPT INORGAN MAT,JIADING CAMPUS,SHANGHAI 13192 201800,PEOPLES R CHINA. 13193 CR BORRELLI NF, 1987, J APPL PHYS, V61, P5399 13194 DEAN JA, 1985, LANGES HDB CHEM, CH5 13195 KLUG HP, 1974, XRAY DIFFRACTION PRO, P635 13196 MAHLER W, 1988, INORG CHEM, V27, P435 13197 PILENI MP, 1992, CHEM MATER, V4, P345 13198 ROSSETTI R, 1984, J CHEM PHYS, V80, P4464 13199 STUCKY GD, 1990, SCIENCE, V247, P669 13200 TAYLOR A, 1961, XRAY METALLOGRAPHY 13201 WANG Y, 1987, OPT COMMUN, V61, P223 13202 WANG Y, 1990, J CHEM PHYS, V92, P6977 13203 WANG Y, 1991, J PHYS CHEM-US, V95, P525 13204 NR 11 13205 TC 1 13206 SN 1057-9257 13207 J9 ADV MATER OPT ELECTRON 13208 JI Adv. Mater. Opt. Electron. 13209 PD JUL-AUG 13210 PY 1996 13211 VL 6 13212 IS 4 13213 BP 197 13214 EP 202 13215 PG 6 13216 SC Chemistry, Applied; Chemistry, Multidisciplinary; Engineering, 13217 Electrical & Electronic; Materials Science, Multidisciplinary; Optics 13218 GA VH708 13219 UT ISI:A1996VH70800006 13220 ER 13221 13222 PT J 13223 AU Liu, LM 13224 Shi, DH 13225 TI Busy period in GI(X)/G/infinity 13226 SO JOURNAL OF APPLIED PROBABILITY 13227 DT Article 13228 DE busy period; busy cycle; idle period; vector Markov process method; 13229 renewal method 13230 ID QUEUE 13231 AB Busy period problems in infinite server queues are studied 13232 systematically, starting from the batch service time. General relations 13233 are given for the lengths of the busy cycle, busy period and idle 13234 period, and for the number of customers served in a busy period. These 13235 relations show that the idle period is the most difficult while the 13236 busy cycle is the simplest of the four random variables. Renewal 13237 arguments are used to derive explicit results for both general and 13238 special cases. 13239 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 13240 RP Liu, LM, HONG KONG UNIV SCI & TECHNOL,DEPT IND ENGN,CLEAR WATER 13241 BAY,KOWLOON,HONG KONG. 13242 CR BROWN M, 1969, J APPL PROBAB, V6, P604 13243 BROWNE S, 1993, J APPL PROBAB, V30, P589 13244 CHAUDHRY ML, 1992, QUEUEING SYST, V10, P105 13245 DVURECENSKIJ A, 1984, J APPL PROBAB, V21, P207 13246 HOLMAN DF, 1982, SANKHYA A, V44, P294 13247 KEILSON J, 1994, J APPL PROBAB, V31, P157 13248 LIU L, 1990, J APPL PROBAB, V27, P671 13249 LIU L, 1993, QUEUEING SYSTEMS, V14, P313 13250 SHANBHAG DN, 1966, J APPL PROBAB, V3, P274 13251 SHI DH, 1990, ANN OPERAT RES, V24, P185 13252 STADJE W, 1985, J APPL PROBAB, V22, P694 13253 TAKACS L, 1962, INTRO THEORY QUEUES 13254 NR 12 13255 TC 1 13256 SN 0021-9002 13257 J9 J APPL PROBAB 13258 JI J. Appl. Probab. 13259 PD SEP 13260 PY 1996 13261 VL 33 13262 IS 3 13263 BP 815 13264 EP 829 13265 PG 15 13266 SC Statistics & Probability 13267 GA VH253 13268 UT ISI:A1996VH25300020 13269 ER 13270 13271 PT J 13272 AU Liu, JR 13273 Wang, YZ 13274 TI Velocity-selective population and quantum collapse-revival phenomena of 13275 the atomic motion for a motion-quantized Raman-coupled Jaynes-Cummings 13276 model 13277 SO PHYSICAL REVIEW A 13278 DT Article 13279 ID NONDEMOLITION MEASUREMENTS; RABI OSCILLATIONS; PHOTON STATISTICS; 13280 SQUEEZED STATES; BEAM DEFLECTION; SUPER-RADIANCE; CAVITY FIELDS; 13281 2-LEVEL ATOM; MASER; DYNAMICS 13282 AB An extension of the standard Raman-coupled Jaynes-Cummings model has 13283 been made to include atomic external effects dire to quantization of 13284 atomic motion. The collapse-and-revival phenomena in population 13285 inversion and in atomic motion, the velocity-selective population and 13286 their relation for a motion-quantized atom are given on the basis of a 13287 fundamental constant characterizing the interaction strength between 13288 the field modes and the atomic internal and external states. This study 13289 reveals how the initial statistics of atomic momentum affect the atomic 13290 internal dynamics and how those of the fields affect the atomic 13291 external dynamics through the atomic internal states. An exact 13292 expression for the time evolution of the density operator has been 13293 given for two fields and the center-of-mass motion initially in 13294 coherent states and in an arbitrary superposition of atomic momentum 13295 eigenstates. The statistics of atomic external and internal quantities 13296 such as the radiation force and the atomic momentum are given. 13297 RP Liu, JR, SHANGHAI UNIV SCI & TECHNOL,JOINT LAB QUANTUM OPT,SHANGHAI 13298 201800,PEOPLES R CHINA. 13299 CR AGARWAL GS, 1984, PHYS REV LETT, V53, P1732 13300 AGARWAL GS, 1985, J OPT SOC AM B, V2, P480 13301 AGARWAL GS, 1991, PHYS REV LETT, V67, P3665 13302 ARVINDA PK, 1988, PHYSICA C, V150, P427 13303 BRUNE M, 1987, PHYS REV LETT, V59, P1899 13304 BUZEK V, 1992, PHYS REV A, V45, P8190 13305 CARDIMONA DA, 1991, PHYS REV A, V43, P3710 13306 CIRAC JI, 1993, PHYS REV LETT, V70, P556 13307 CUMMINGS FW, 1965, PHYS REV, V140, A1051 13308 EBERLY JH, 1977, J OPT SOC AM, V67, P1257 13309 EBERLY JH, 1980, J PHYS B ATOM MOL PH, V13, P217 13310 EBERLY JH, 1980, PHYS REV LETT, V44, P1383 13311 ENGLERT BG, 1991, EUROPHYS LETT, V14, P25 13312 FOX RF, 1986, PHYS REV A, V34, P482 13313 GENTILE TR, 1989, PHYS REV A, V40, P5103 13314 GERRY CC, 1990, PHYS REV A, V42, P6805 13315 HAROCHE S, 1984, NEW TRENDS ATOMIC PH 13316 HAROCHE S, 1991, EUROPHYS LETT, V14, P19 13317 HERKOMMER AM, 1992, PHYS REV LETT, V69, P3298 13318 HOLLAND MJ, 1991, PHYS REV LETT, V67, P1716 13319 ITANO WM, 1982, PHYS REV A, V25, P35 13320 JAYNES ET, 1963, P IEEE, V51, P89 13321 KALUZNY Y, 1983, PHYS REV LETT, V51, P1175 13322 KLEPPNER D, 1981, PHYS REV LETT, V47, P233 13323 KNIGHT PL, 1982, PHYS LETT A, V90, P342 13324 KNIGHT PL, 1986, PHYS SCRI T, V12, P51 13325 KUKLINSKI JR, 1988, PHYS REV A, V37, P317 13326 LOWELL S, 1991, PHYS REV LETT, V66, P527 13327 MAHRAN MH, 1992, PHYS REV A, V45, P5113 13328 MESCHEDE D, 1985, PHYS REV LETT, V54, P551 13329 MEYSTRE P, 1975, NUOVO CIMENTO B, V25, P21 13330 MEYSTRE P, 1982, PHYS LETT A, V89, P390 13331 MILBURN GJ, 1984, OPT ACTA, V31, P671 13332 MILONNI PW, 1983, PHYS REV LETT, V50, P966 13333 MOLER K, 1992, PHYS REV A, V45, P342 13334 NAROZHNY NB, 1981, PHYS REV A, V23, P236 13335 PURI RR, 1987, PHYS REV A, V35, P3433 13336 PURI RR, 1992, PHYS REV A, V45, P5073 13337 RAIMOND JM, 1982, PHYS REV LETT, V49, P117 13338 RAIMOND JM, 1982, PHYS REV LETT, V49, P1924 13339 REMPE G, 1987, PHYS REV LETT, V51, P550 13340 REMPE G, 1987, PHYS REV LETT, V58, P353 13341 RITI C, 1982, OPT COMMUN, V44, P105 13342 SANCHEZMONDRAGO.JJ, 1983, PHYS REV LETT, V51, P550 13343 SCHOENDORFF L, 1990, PHYS REV A, V41, P5147 13344 SHORE BW, 1993, J MOD OPTIC, V40, P1195 13345 SHORT R, 1983, PHYS REV LETT, V51, P384 13346 SLEATOR T, 1993, PHYS REV A, V48, P3286 13347 STOREY P, 1992, PHYS REV LETT, V68, P472 13348 WALLS DF, 1970, Z PHYS, V237, P224 13349 YOO HI, 1981, J PHYS A, V14, P1383 13350 YOO HI, 1985, PHYS REP, V118, P239 13351 YURKE B, 1986, PHYS REV LETT, V57, P13 13352 YURKE B, 1990, PHYS REV A, V42, P1703 13353 NR 54 13354 TC 5 13355 SN 1050-2947 13356 J9 PHYS REV A 13357 JI Phys. Rev. A 13358 PD SEP 13359 PY 1996 13360 VL 54 13361 IS 3 13362 BP 2444 13363 EP 2450 13364 PG 7 13365 SC Physics, Atomic, Molecular & Chemical; Optics 13366 GA VH090 13367 UT ISI:A1996VH09000086 13368 ER 13369 13370 PT J 13371 AU Liu, HY 13372 Zhang, XL 13373 Zhang, ZN 13374 Qi, DY 13375 Fan, YB 13376 Liu, YC 13377 Liu, SH 13378 Yu, TY 13379 Deng, JQ 13380 TI Characterization of composite membrane of poly(vinyl alcohol) and 13381 regenerated silk fibroin for immobilization of horseradish peroxidase 13382 and an amperometric neckelocene-mediated sensor sensitive to hydrogen 13383 peroxide 13384 SO JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY 13385 DT Article 13386 DE sensor; poly(vinyl alcohol); regenerated silk fibroin; nickelocene; 13387 horseradish peroxidase; hydrogen peroxide 13388 ID DIRECT ELECTRON-TRANSFER; ENZYME ELECTRODES; POTENTIAL APPLICATION; 13389 ORGANIC PEROXIDES; ACTIVATED CARBON; BIOSENSORS; POLYMER; OXIDASE 13390 AB Horseradish peroxidase (HRP) was effectively entrapped in a novel 13391 composite membrane of poly(vinyl alcohol) and regenerated silk fibroin. 13392 IR spectroscopy was employed to characterize the structure of the 13393 composite membrane and scanning electron microscopy was used to 13394 visualize the morphology of the composite membrane. HRP was utilized to 13395 amplify the amperometric response of the sensor by catalyzing reduction 13396 of hydrogen peroxide via nickelocene, an electron transfer mediator 13397 between immobilized HRP and a glassy carbon electrode. The influence of 13398 various experimental parameters such as pH, temperature and applied 13399 potential were explored for optimum analytical performance. The sensor 13400 possessed a variety of characteristics including good sensitivity, 13401 rapid response time and a low detection of limit of 0.1 mu mol dm(-3), 13402 which arose from the efficiency of electron transfer between 13403 immobilized HRP and the electrode via nickelocene. 13404 C1 SUZHOU INST CITY CONSTRUCT & ENVIRONM PROTECT,DEPT ENVIRONM PROTECT,SUZHOU 300111,JIANSU,PEOPLES R CHINA. 13405 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA. 13406 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R 13407 CHINA. 13408 CR ADEYOJU O, 1995, ANAL CHIM ACTA, V305, P57 13409 ASAKURA T, 1989, BIOTECHNOL BIOENG, V33, P598 13410 BIFULCO L, 1994, ANAL LETT, V27, P1443 13411 CSOREGI E, 1994, ANAL CHEM, V66, P3604 13412 DEMURA M, 1992, BIOMATERIALS, V13, P276 13413 DENG Q, 1994, J ELECTROANAL CHEM, V377, P191 13414 DORDICK JS, 1992, TRENDS BIOTECHNOL, V10, P287 13415 DUNFORD HB, 1991, PEROXIDASES CHEM BIO, V2, P1 13416 FREW JE, 1986, J ELECTROANAL CH INF, V201, P1 13417 GARGUILO MG, 1993, ANAL CHEM, V65, P523 13418 GORTON L, 1992, ANALYST, V117, P1235 13419 HO WO, 1993, J ELECTROANAL CHEM, V351, P185 13420 HO WO, 1995, BIOSENS BIOELECTRON, V10, P683 13421 LIU YC, 1995, J CHEM TECHNOL BIOT, V64, P269 13422 LIU YC, 1996, ELECTROCHIM ACTA, V41, P77 13423 MULCHANDANI A, 1995, ANAL CHEM, V67, P94 13424 OLIVER JM, 1984, METHOD ENZYMOL, V108, P336 13425 POPESCU IC, 1995, BIOSENS BIOELECTRON, V10, P443 13426 RENZ M, 1984, NUCLEIC ACIDS RES, V12, P3435 13427 RUZGAS T, 1995, J ELECTROANAL CHEM, V391, P41 13428 SMITH AT, 1992, BIOCHEM SOC T, V20, P340 13429 TAKAHASHI K, 1984, BIOCHEM BIOPH RES CO, V121, P261 13430 TATSUMA T, 1992, ANAL CHEM, V64, P1183 13431 TATSUMA T, 1995, ANAL CHEM, V67, P283 13432 TSUKADA M, 1994, J POLYM SCI POL PHYS, V32, P1407 13433 VREEKE M, 1995, ANAL CHEM, V67, P303 13434 WANG J, 1991, ANAL CHIM ACTA, V254, P81 13435 WOLLENBERGER U, 1991, BIOELECTROCH BIOENER, V26, P287 13436 YANG L, 1995, ANAL CHEM, V67, P1326 13437 ZHAO JG, 1992, J ELECTROANAL CHEM, V327, P109 13438 NR 30 13439 TC 2 13440 SN 0268-2575 13441 J9 J CHEM TECHNOL BIOTECHNOL 13442 JI J. Chem. Technol. Biotechnol. 13443 PD SEP 13444 PY 1996 13445 VL 67 13446 IS 1 13447 BP 77 13448 EP 83 13449 PG 7 13450 SC Chemistry, Multidisciplinary; Engineering, Chemical; Biotechnology & 13451 Applied Microbiology 13452 GA VF658 13453 UT ISI:A1996VF65800010 13454 ER 13455 13456 PT J 13457 AU Zhu, MY 13458 Zhang, HY 13459 Zhu, YL 13460 Jin, HM 13461 Jin, HJ 13462 Xu, GQ 13463 TI Study on the easy direction of magnetization of Sm0.88Dy0.12Fe2 alloy 13464 SO JOURNAL OF RARE EARTHS 13465 DT Article 13466 DE Sm0.88Dy0.12Fe2 alloy; easy direction of magnetization; 13467 magnetostriction; Mossbauer-effect 13468 AB By Mossbauer-effect, the changes of easy direction of magnetization for 13469 Sm0.88Dy0.12. Fe-2 alloy have been studied in this paper. It was found 13470 that as temperature increases, the easy direction of magnetization 13471 changes gradually from [110] to [111] axis in the temperature range of 13472 153 to 213 K. Two easy directions of magnetization [110] and [111] 13473 coexist and do not change suddenly from [110] to [111] at the same 13474 temperature. 13475 C1 SHANGHAI UNIV,DEPT MAT ENGN,SHANGHAI 200072,PEOPLES R CHINA. 13476 SHANGHAI IRON & STEEL RES INST,SHANGHAI 200940,PEOPLES R CHINA. 13477 CR ANNAPOORNI S, 1990, J APPL PHYS, V67, P424 13478 ATZMONY U, 1973, P 10 RAR EARTH C, V1, P605 13479 CLARK AE, 1980, FERROMAGNETIC MAT 13480 VANDIEPEN AM, 1973, PHYS REV B, V8, P1125 13481 NR 4 13482 TC 0 13483 SN 1002-0721 13484 J9 J RARE EARTH 13485 JI J. Rare Earths 13486 PD SEP 13487 PY 1996 13488 VL 14 13489 IS 3 13490 BP 185 13491 EP 188 13492 PG 4 13493 SC Chemistry, Applied 13494 GA VF262 13495 UT ISI:A1996VF26200005 13496 ER 13497 13498 PT J 13499 AU Sang, WB 13500 Qian, YB 13501 Shi, WM 13502 Wang, DM 13503 Min, JH 13504 Wu, WH 13505 Liu, YF 13506 Hua, JD 13507 Fang, J 13508 Yue, YF 13509 TI A primary study on the synthesis and characterization of ZnS clusters 13510 in chitosan film 13511 SO JOURNAL OF PHYSICS-CONDENSED MATTER 13512 DT Letter 13513 ID QUANTUM CONFINEMENT 13514 AB A novel process using chitosan containing ligand groups as a medium for 13515 forming ZnS clusters by an ion-coordination method is investigated for 13516 the first time. The ZnS clusters in the chitosan film have been 13517 identified by x-ray diffraction, ultraviolet-visible absorption and 13518 photoluminescence spectra. The ZnS cluster size was estimated to be 13519 about 2-6 nm, depending on the processing conditions. Blue luminescence 13520 for the undoped ZnS clusters was observed and its mechanism is briefly 13521 discussed. 13522 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA. 13523 CHINESE ACAD SCI,SHANGHAI INST CERAM,SHANGHAI 200050,PEOPLES R CHINA. 13524 RP Sang, WB, SHANGHAI UNIV SCI & TECHNOL,DEPT INORGAN MAT,SHANGHAI 13525 201800,PEOPLES R CHINA. 13526 CR BORRELLI NF, 1987, J APPL PHYS, V61, P5399 13527 GARLICK GFJ, 1966, P INT C LUMINESCENCE, P56 13528 KLUG HP, 1974, XRAY DIFFRACTION PRO, P635 13529 MAHLER W, 1988, INORG CHEM, V27, P435 13530 PILENI MP, 1992, CHEM MATER, V4, P345 13531 ROSSETTI R, 1984, J CHEM PHYS, V80, P4464 13532 STUCKY GD, 1990, SCIENCE, V247, P669 13533 TAYLOR A, 1961, XRAY METALLOGRAPHY 13534 WANG Y, 1987, OPT COMMUN, V61, P233 13535 WANG Y, 1990, J CHEM PHYS, V92, P6977 13536 WANG Y, 1991, J PHYS CHEM-US, V95, P525 13537 NR 11 13538 TC 4 13539 SN 0953-8984 13540 J9 J PHYS-CONDENS MATTER 13541 JI J. Phys.-Condes. Matter 13542 PD SEP 2 13543 PY 1996 13544 VL 8 13545 IS 36 13546 BP L499 13547 EP L504 13548 PG 6 13549 SC Physics, Condensed Matter 13550 GA VF317 13551 UT ISI:A1996VF31700001 13552 ER 13553 13554 PT J 13555 AU Wang, ZC 13556 Wang, SF 13557 Shen, SH 13558 Zou, SC 13559 Zhang, ZM 13560 TI Intrinsic periodicity associated with quantum-well states in a magnetic 13561 sandwich 13562 SO JOURNAL OF PHYSICS-CONDENSED MATTER 13563 DT Article 13564 ID OSCILLATORY INTERLAYER EXCHANGE; NONMAGNETIC METALLIC LAYER; GIANT 13565 MAGNETORESISTANCE; TRANSPORT-PROPERTIES; THIN-FILMS; FE LAYERS; 13566 MULTILAYERS; SUPERLATTICES; MECHANISM; TRILAYERS 13567 AB zFrom a simplified quantum-well model for a magnetic sandwich, it can 13568 be shown that in the variation of the number of occupied levels with 13569 the spacer layers, there exists an intrinsic periodicity, which leads 13570 the Fermi level to oscillate periodically. The intrinsic periodicity 13571 does not depend on the magnetic alignment but only on the quantum-well 13572 states themselves. The oscillation period can be approximately given by 13573 T = (1/beta) (3) root pi mu(parallel to)/(3n(0) mu(perpendicular to)), 13574 where mu(parallel to) and mu(perpendicular to) are the effective masses 13575 of the electron in the lateral and perpendicular directions 13576 respectively, beta is the distance between the two neighbouring atomic 13577 layers, and n(0) is the electron density in the spacer layers. This 13578 makes one speculate that the long periodicity of the oscillatory 13579 coupling could be a result of the intrinsic periodicity, if mu(parallel 13580 to)/mu(perpendicular to) >> 1 and a small s-electron density are 13581 assumed. On the other hand, from the calculated energy bands for a thin 13582 film, it is found that the electronic structure is highly anisotropic, 13583 which is in agreement with this assumption. Therefore, it can be 13584 confirmed that the intrinsic periodicity plays an important role in the 13585 oscillatory coupling. An inverse photoemission experiment on Cu(100) 13586 films over Co can be explained quite well using this physical picture. 13587 C1 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA. 13588 RP Wang, ZC, CHINESE ACAD SCI,SHANGHAI INST MET,STATE KEY LAB FUNCT MAT 13589 INFORMAT,865 CHANGNING RD,SHANGHAI 200050,PEOPLES R CHINA. 13590 CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 13591 BARNAS J, 1992, J MAGN MAGN MATER, V111, L215 13592 BENNETT WR, 1990, PHYS REV LETT, V65, P3169 13593 BRUBAKER ME, 1991, APPL PHYS LETT, V58, P2307 13594 BRUNO P, 1991, PHYS REV LETT, V67, P1602 13595 BRUNO P, 1992, J MAGN MAGN MATER, V116, L13 13596 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 13597 CAMLEY RE, 1989, PHYS REV LETT, V63, P664 13598 CARBONE C, 1987, PHYS REV B, V36, P2433 13599 CARBONE C, 1993, PHYS REV LETT, V71, P2805 13600 CELINSKI Z, 1991, J MAGN MAGN MATER, V99, L25 13601 DOSE V, 1983, PROG SURF SCI, V13, P225 13602 EDWARDS DM, 1990, S C E MRS SPRING M S 13603 EDWARDS DM, 1991, J MAGN MAGN MATER, V93, P85 13604 EDWARDS DM, 1991, J PHYS-CONDENS MAT, V3, P4941 13605 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 13606 EHRLICH AC, 1993, J APPL PHYS, V73, P5536 13607 EHRLICH AC, 1993, PHYS REV LETT, V71, P2300 13608 EUCEDA A, 1983, PHYS REV B, V27, P659 13609 GARCIA N, 1991, J MAGN MAGN MATER, V99, L12 13610 GARRISON K, 1993, PHYS REV LETT, V71, P2801 13611 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 13612 HEINRICH B, 1990, PHYS REV LETT, V64, P673 13613 HIMPSEL FJ, 1991, PHYS REV B, V44, P5966 13614 JIN QY, 1994, PHYS REV LETT, V72, P5 13615 JONES BA, 1993, PHYS REV LETT, V71, P4253 13616 KRAKAUER H, 1979, PHYS REV B, V19, P1706 13617 LACROIX C, 1991, J MAGN MAGN MATER, V93, P413 13618 LEVY PM, 1990, J APPL PHYS 2B, V67, P5914 13619 LEVY PM, 1990, PHYS REV LETT, V65, P1643 13620 MANKEY J, 1993, PHYS REV B, V47, P1540 13621 MATHON J, 1991, J MAGN MAGN MATER, V100, P527 13622 MATHON J, 1992, J PHYS-CONDENS MAT, V4, P9873 13623 NEDOREZOV SS, 1967, SOV PHYS JETP, V24, P578 13624 ORTEGA JE, 1992, PHYS REV LETT, V69, P844 13625 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 13626 PARKIN SSP, 1991, PHYS REV LETT, V66, P2152 13627 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 13628 PESCIA D, 1990, Z PHYS B, V78, P475 13629 PETROFF F, 1991, PHYS REV B, V44, P5355 13630 QIU ZQ, 1992, PHYS REV, V46, P5810 13631 RUDERMAN MA, 1954, PHYS REV, V96, P99 13632 SEGALL B, 1962, PHYS REV, V125, P109 13633 SOHN KS, 1976, PHYS REV B, V13, P1515 13634 STILES MD, 1990, PHYS REV B, V64, P2304 13635 STILES MD, 1993, PHYS REV B, V48, P7238 13636 TRIVEDI N, 1988, PHYS REV B, V38, P12298 13637 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P3870 13638 WALKER TG, 1993, PHYS REV, V48 13639 WANG SF, 1995, PHYS REV B, V51, P15156 13640 WANG Y, 1990, PHYS REV LETT, V65, P2732 13641 WANG Y, 1991, J MAGN MAGN MATER, V93, P359 13642 WANG ZC, 1994, PHYS LETT A, V193, P480 13643 YAFET Y, 1987, PHYS REV B, V36, P3948 13644 ZHANG S, 1992, PHYS REV B, V45, P8689 13645 NR 55 13646 TC 1 13647 SN 0953-8984 13648 J9 J PHYS-CONDENS MATTER 13649 JI J. Phys.-Condes. Matter 13650 PD AUG 26 13651 PY 1996 13652 VL 8 13653 IS 35 13654 BP 6381 13655 EP 6391 13656 PG 11 13657 SC Physics, Condensed Matter 13658 GA VE807 13659 UT ISI:A1996VE80700007 13660 ER 13661 13662 PT J 13663 AU Chen, WJ 13664 Wan, XJ 13665 Jin, C 13666 TI Environmental effects on the room temperature ductility of a TiAl based 13667 alloy 13668 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 13669 DT Article 13670 ID EMBRITTLEMENT 13671 AB The effects of different environments and strain rates on the room 13672 temperature ductility of a TiAl based alloy with the composition 13673 Ti-46Al-2Cr-0.2Si-0.1Nd have been investigated in this paper. The 13674 results show that the TiAl based alloy is susceptible to environmental 13675 embrittlement at room temperature. The tensile ductility of the TiAl 13676 based alloy in different test environments decreases in the sequence of 13677 oxygen > air > hydrogen > argon saturated with water vapor. The 13678 ductility is also sensitive to strain rate. It increases with 13679 increasing strain rate when tested in hydrogen gas. Both H2O and H-2 13680 cause environmental embrittlement, with the former being a more potent 13681 embrittler. 13682 C1 SHANGHAI UNIV,INST MET & MAT SCI,SHANGHAI 200072,PEOPLES R CHINA. 13683 CR CHAN KS, 1992, METALL T A, V23, P1663 13684 CHRISTODOULOU L, 1990, HYDROGEN EFFECTS MAT, P515 13685 GEORGE EP, 1994, HIGH TEMPERATURE ORD, V6, P1131 13686 KANE RD, 1991, ENV EFFECTS ADV MAT, P35 13687 KIM YW, 1990, HIGH TEMPERATURE ALU, P465 13688 LIU CT, 1989, SCRIPTA METALL, V23, P875 13689 LIU CT, 1990, HIGH TEMPERATURE ALU, P133 13690 LIU CT, 1990, SCRIPTA METALL MATER, V24, P1583 13691 LIU CT, 1990, SCRIPTA METALL MATER, V24, P385 13692 LIU CT, 1992, SCRIPTA METALL MATER, V27, P599 13693 MASAHASHI N, 1988, METALL T, V19, P535 13694 TAKASUGI T, 1986, ACTA METALL, V34, P607 13695 WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473 13696 YAMAGUCHI M, 1990, PROG MATER SCI, V34, P1 13697 NR 14 13698 TC 0 13699 SN 1005-0302 13700 J9 J MATER SCI TECHNOL 13701 JI J. Mater. Sci. Technol. 13702 PD OCT 13703 PY 1996 13704 VL 12 13705 IS 5 13706 BP 373 13707 EP 376 13708 PG 4 13709 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 13710 Engineering 13711 GA VE553 13712 UT ISI:A1996VE55300011 13713 ER 13714 13715 PT J 13716 AU Fang, JH 13717 Lu, WC 13718 Ding, YM 13719 Yan, LC 13720 TI Self-organization neural tree applied to structure-activity 13721 relationship of 3-methylfentanyl derivatives 13722 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE 13723 DT Article 13724 DE 3-methylfentanyl derivatives; structure-activity relationship; 13725 artificial neural network; self-organization neural tree 13726 AB In this paper, the non-linear relationship between the characteristic 13727 parameters and analgesic activities of a series of 3-methylfentanyl 13728 derivatives was calculated by self-organization neural tree model, The 13729 results show that the performance of the self-organization neural tree 13730 is quite good and the successful classification rare is high, 13731 Therefore, we can expect that this model might be used as an effective 13732 assistant technique for the investigation of structure-activity 13733 relationship of drugs. 13734 C1 CHINESE ACAD SCI,SHANGHAI INST MET,SHANGHAI,PEOPLES R CHINA. 13735 RP Fang, JH, SHANGHAI UNIV,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA. 13736 CR HANSCH C, 1962, NATURE, V194, P178 13737 HANSCH C, 1973, J MED CHEM, V16, P1207 13738 HANSCH C, 1977, J MED CHEM, V20, P304 13739 HOFFMANN R, 1963, J CHEM PHYS, V39, P1397 13740 LI T, 1993, NEUROCOMPUTING, V5, P231 13741 LU WC, 1993, J MOL SCI, V9, P123 13742 ZHU YC, 1981, ACTA PHARMACOL SINIC, V16, P97 13743 ZHU YC, 1983, ACTA PHARMACEUTICA S, V18, P591 13744 ZHU YC, 1985, ACTA PHARMACOL SINIC, V20, P267 13745 NR 9 13746 TC 0 13747 SN 0251-0790 13748 J9 CHEM J CHINESE UNIV-CHINESE 13749 JI Chem. J. Chin. Univ.-Chin. 13750 PD AUG 13751 PY 1996 13752 VL 17 13753 IS 8 13754 BP 1280 13755 EP 1284 13756 PG 5 13757 SC Chemistry, Multidisciplinary 13758 GA VE173 13759 UT ISI:A1996VE17300032 13760 ER 13761 13762 PT J 13763 AU Gu, XR 13764 Zhu, YZ 13765 TI Optimal heapsort algorithm 13766 SO THEORETICAL COMPUTER SCIENCE 13767 DT Article 13768 AB A new heapsort algorithm is given in this paper. Its practical value is 13769 that the efficiency of it is two times as high as that of the original 13770 algorithm in Horowitz and Sahni (1978). Also, its theoretical 13771 significance lies in the order and the main term coefficient of the 13772 complexity has optimal performance. 13773 RP Gu, XR, SHANGHAI UNIV SCI & TECHNOL,DEPT COMP SCI,SHANGHAI 13774 201800,PEOPLES R CHINA. 13775 CR AHO AV, 1975, DESIGN ANAL COMPUTER 13776 HOROWITZ E, 1978, FUNDAMENTALS COMPUTE 13777 KNUTH DE, 1973, ART COMPUTER PROGRAM, V3 13778 WEGENER I, 1992, SIMPLE MODIFICATION 13779 XUNRANG G, 1990, COMPUT J, V33, P281 13780 XUNRANG G, 1994, THEORET COMPUT SCI, V134, P559 13781 NR 6 13782 TC 2 13783 SN 0304-3975 13784 J9 THEOR COMPUT SCI 13785 JI Theor. Comput. Sci. 13786 PD AUG 30 13787 PY 1996 13788 VL 163 13789 IS 1-2 13790 BP 239 13791 EP 243 13792 PG 5 13793 SC Computer Science, Theory & Methods 13794 GA VE225 13795 UT ISI:A1996VE22500010 13796 ER 13797 13798 PT J 13799 AU Liu, GL 13800 TI Generalized Euler's turbomachine equation and free vortex sheet 13801 conditions in separated/cavitated turbo-flows 13802 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 13803 DT Article 13804 ID INCOMPRESSIBLE ROTOR FLOW; 3-D TRANSONIC FLOW; VARIATIONAL-PRINCIPLES; 13805 VARIABLE-DOMAIN; HYBRID PROBLEMS; SHOCKS 13806 AB In the present paper four fundamental problems in turbomachinery 13807 aerodynamic theory are studied in depth: (1) It is shown that the 13808 well-known Euler's equation for turbomachine power is valid only for 13809 shrouded impellers. Then, a generalization of it to unshrouded 13810 impellers is carried out. (2) An equation relating the free trailing 13811 vortex distribution along the blade span to that of the swirl moment 13812 rV(theta) is derived, yielding a condition for the vanishing of free 13813 trailing vortex sheets. (3) The free surface conditions in separated 13814 now are shown to be entirely different from those in cavitated flow. 13815 (4) Generalized Kutta conditions for 3-D rotor bladings in separated 13816 and cavitated flows are also derived. All these results are of 13817 fundamental value in both analytical and numerical handlings of fully 13818 3-D rotor-flows. 13819 RP Liu, GL, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI 13820 200072,PEOPLES R CHINA. 13821 CR DRING RP, 1971, J ENG POWER, V93, P4 13822 HAWTHORNE WR, 1964, AERODYNAMICS TURBINE 13823 HIRSCH C, 1974, 74GT72 ASME 13824 HORLOCK JH, 1974, AGARDOGRAPH, V185 13825 KIRILLOV II, 1972, THEORY TURBOMACHINES 13826 LASKARIS TE, 1978, AIAA J, V16, P717 13827 LIU GI, 1986, J ENG GAS TURB POWER, V108, P254 13828 LIU GL, 1980, FUNDAMENTALS AERODYN 13829 LIU GL, 1992, ACTA MECH, V95, P117 13830 LIU GL, 1992, P 3 E CHIN C FLUID M, P156 13831 LIU GL, 1993, ACTA MECH, V97, P229 13832 SPALDING DB, 1958, ENG THERMODYNAMICS 13833 STODOLA A, 1945, STEAM GAS TURBINES 13834 TRAPEL W, 1966, THERMISCHE TURBOMASC, V1 13835 VAVRA MH, 1960, AEROTHERMODYNAMICS F 13836 WISLICENUS GF, 1965, FLUID MECH TURBOMACH, V1 13837 WU CH, 1965, CHINESE J MECH ENG, V13, P43 13838 YAN S, 1994, INT J TURBO JET ENG, V11, P71 13839 YAN S, 1996, IN PRESS INT J TURBO 13840 NR 19 13841 TC 9 13842 SN 0334-0082 13843 J9 INT J TURBO JET ENGINES 13844 JI Int. J. Turbo. Jet-Engines 13845 PY 1996 13846 VL 13 13847 IS 1 13848 BP 1 13849 EP 11 13850 PG 11 13851 SC Engineering, Aerospace 13852 GA VE151 13853 UT ISI:A1996VE15100001 13854 ER 13855 13856 PT J 13857 AU Yan, S 13858 Liu, GL 13859 TI Variable-domain finite element method based on variational principles 13860 for solving hybrid problems of fully 3-D compressible rotor flow 13861 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 13862 DT Article 13863 AB Based on a unified variable-domain variational theory (Liu, 1988), a 13864 new finite element method (FEM) with self-adjusting nodes for 13865 determining the unknown boundaries (shape of the blade and of the 13866 annulus walls) in hybrid problems is presented. Two hybrid problem 13867 types H(A)xD and [H-C+D]xD are tested numerically by this FEM and the 13868 geometry of the rotor bladings thus obtained coincides with the 13869 original one quite well. Thus, a new numerical method with great 13870 generality and versatility for practical 3-D blading design and/or 13871 modification is provided. 13872 C1 SHANGHAI UNIV,SHANGHAI 200072,PEOPLES R CHINA. 13873 RP Yan, S, E CHINA UNIV TECHNOL,SHANGHAI 200093,PEOPLES R CHINA. 13874 CR CHUNG TJ, 1989, FINITE ELEMENT ANAL 13875 FINLAYSON BA, 1972, METHOD WEIGHTED RESI 13876 LIU GI, 1986, J ENG GAS TURB POWER, V108, P254 13877 LIU GL, 1980, SCI SINICA, V23, P1339 13878 LIU GL, 1988, COMPUTATIONAL FLUID, P473 13879 LIU GL, 1993, INT J TURBO JET ENGI, V10, P273 13880 LIU GL, 1994, INT J TURBO JET ENG, V11, P53 13881 LIU GL, 1995, 95GT171 ASME 13882 LIU GL, 1995, ACTA MECH, V108, P207 13883 MARCHUK GI, 1982, METHODS NUMERICAL MA, CH4 13884 PENG HW, 1975, KEXUE TONGBAO, V20, P416 13885 SIEVERDING CH, 1984, J ENG GAS TURB POWER, V106, P437 13886 WU CH, 1952, 2604 NACA TN 13887 YAN S, 1989, VARIATIONAL FINITE E 13888 YAN S, 1990, EXP COMPUT AEROTHERM, P457 13889 YAN S, 1994, INT J TURBO JET ENG, V11, P71 13890 NR 16 13891 TC 0 13892 SN 0334-0082 13893 J9 INT J TURBO JET ENGINES 13894 JI Int. J. Turbo. Jet-Engines 13895 PY 1996 13896 VL 13 13897 IS 1 13898 BP 13 13899 EP 23 13900 PG 11 13901 SC Engineering, Aerospace 13902 GA VE151 13903 UT ISI:A1996VE15100002 13904 ER 13905 13906 PT J 13907 AU Xia, YB 13908 Mo, YW 13909 Wang, Y 13910 Huang, XQ 13911 Chen, DM 13912 Wang, H 13913 TI Nucleation mechanism of polycrystalline diamond film deposited on 13914 ceramic alumina by microwave plasma chemical vapor deposition 13915 SO CHINESE PHYSICS LETTERS 13916 DT Article 13917 ID PHASE 13918 AB Polycrystalline diamond films have been deposited on ceramic alumina 13919 substrates by microwave plasma chemical vapor deposition method, 13920 Variation of the emission spectra in the microwave plasma with the 13921 microwave power and the vapor pressure in the reaction chamber is 13922 studied, respectively. Relationships between the hydrogen atomic 13923 spectra and the average energy of the electrons in the plasma, as well 13924 as the mechanism of diamond film deposition on ceramic alumina are 13925 discussed. 13926 RP Xia, YB, SHANGHAI UNIV SCI & TECHNOL,COLL MAT SCI & ENGN,SHANGHAI 13927 201800,PEOPLES R CHINA. 13928 CR BAKEFI G, 1976, PRINCIPLES LASER PLA, P592 13929 BARNES PN, 1993, APPL PHYS LETT, V62, P37 13930 CHEN Y, 1993, THIN FILMS SCI TECH, V6, P277 13931 DAWSON PH, 1969, ADV ELECT ELECTR PHY, V27, P60 13932 FRENKLACH M, 1991, PHYS REV B, V43, P1520 13933 SHECHTMAN D, 1993, J MATER RES, V8, P473 13934 SPEAR KE, 1989, J AM CERAM SOC, V72, P171 13935 YARBROUGH WA, 1992, J AM CERAM SOC, V75, P3179 13936 NR 8 13937 TC 1 13938 SN 0256-307X 13939 J9 CHIN PHYS LETT 13940 JI Chin. Phys. Lett. 13941 PY 1996 13942 VL 13 13943 IS 7 13944 BP 557 13945 EP 560 13946 PG 4 13947 SC Physics, Multidisciplinary 13948 GA VE315 13949 UT ISI:A1996VE31500021 13950 ER 13951 13952 PT J 13953 AU Wu, XY 13954 Zhou, SP 13955 Xu, DM 13956 TI The photoinduced carrier distribution in a semiconductor waveguide and 13957 the FDTD analysis for millimeter-wave propagation 13958 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 13959 DT Article 13960 DE photoinduced carrier; semiconductor waveguide; FDTD analysis 13961 ID OPTICAL CONTROL; GUIDES 13962 AB Exact solutions for millimeter-wave propagation in an optically 13963 controlled rectangular semiconductor waveguide were presented. This was 13964 implemented by strictly solving the continuity equation that the 13965 photoinduced carriers hold and by finite-difference-time-domain (FDTD) 13966 modeling for the wave propagation in the waveguide. The laser intensity 13967 dependence of the millimeter-wave signal's amplitude and phase shift 13968 was obtained. Excellent agreement between numerical results and 13969 experiments was found. (C) 1996 John Wiley & Sons, Inc. 13970 RP Wu, XY, SHANGHAI UNIV,SHANGHAI 201800,PEOPLES R CHINA. 13971 CR LEE CH, 1980, IEEE QUANTUM ELECTRO, V16, P277 13972 LEE CH, 1984, PICOSECOND OPTOELECT 13973 LUEBBERS RJ, 1991, IEEE T ANTENN PROPAG, V39, P29 13974 PLATTE W, 1989, IEEE T MICROW THEORY, V37, P139 13975 SEEDS AJ, 1990, IEEE T MICROW THEORY, V38, P577 13976 SHEN Y, 1993, IEEE T MICROW THEORY, V41, P1005 13977 TSUTSUMI M, 1991, IEE PROC-H, V138, P527 13978 NR 7 13979 TC 0 13980 SN 0895-2477 13981 J9 MICROWAVE OPT TECHNOL LETT 13982 JI Microw. Opt. Technol. Lett. 13983 PD SEP 13984 PY 1996 13985 VL 13 13986 IS 1 13987 BP 35 13988 EP 38 13989 PG 4 13990 SC Engineering, Electrical & Electronic; Optics 13991 GA VC405 13992 UT ISI:A1996VC40500012 13993 ER 13994 13995 PT J 13996 AU Yang, ZH 13997 Ye, RS 13998 TI Symmetry-breaking and bifurcation study on the laminar flows through 13999 curved pipes with a circular cross section 14000 SO JOURNAL OF COMPUTATIONAL PHYSICS 14001 DT Article 14002 ID TUBE; POINTS 14003 AB The Dean problem of steady viscous flow through a coiled circular pipe 14004 is studied numerically. We compute the structure of the symmetric 14005 families of the flows that exist as the crucial parameter D varies, 14006 which is in accordance with those stated in Yang and Keller (Appl. 14007 Numer. Math. 2, 257, 1986), Furthermore, we find a asymmetric flow 14008 emanating from the symmetry-breaking bifurcation point, which they 14009 could not find since they restricted the numerical study on the flows 14010 symmetric about the x-axis. (C) 1996 Academic Press, Inc. 14011 C1 SHANTOU UNIV,INST MATH,GUANGDONG 515063,PEOPLES R CHINA. 14012 RP Yang, ZH, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES 14013 R CHINA. 14014 CR BREZZI F, 1981, NUMER MATH, V38, P1 14015 COLLINS WM, 1975, Q J MECH APPL MATH, V28, P133 14016 DASKOPOULOS P, 1989, J FLUID MECH, V203, P125 14017 DEAN WR, 1927, PHILOS MAG, V4, P208 14018 DEAN WR, 1928, PHILOS MAG, V5, P673 14019 DENNIS SCR, 1980, J FLUID MECH, V99, P449 14020 DENNIS SCR, 1982, Q J MECH APPL MATH, V35, P305 14021 KELLER HB, 1977, APPL BIFURCATION THE, P359 14022 MOORE G, 1980, SIAM J NUMER ANAL, V17, P567 14023 VANDYKE M, 1978, J FLUID MECH, V86, P129 14024 WERNER B, 1984, SIAM J NUMER ANAL, V21, P388 14025 WINTERS KH, 1987, J FLUID MECH, V180, P343 14026 YANG ZH, 1986, APPL NUMER MATH, V2, P257 14027 NR 13 14028 TC 2 14029 SN 0021-9991 14030 J9 J COMPUT PHYS 14031 JI J. Comput. Phys. 14032 PD AUG 14033 PY 1996 14034 VL 127 14035 IS 1 14036 BP 73 14037 EP 87 14038 PG 15 14039 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical 14040 GA VB430 14041 UT ISI:A1996VB43000007 14042 ER 14043 14044 PT J 14045 AU Liu, HY 14046 Zhang, XL 14047 Wei, JJ 14048 Wu, XX 14049 Qi, DY 14050 Liu, YC 14051 Dai, M 14052 Yu, TY 14053 Deng, JQ 14054 TI An amperometric Meldola Blue-mediated sensor high sensitive to hydrogen 14055 peroxide based on immobilization of horseradish peroxidase in a 14056 composite membrane of regenerated silk fibroin and poly(vinyl alcohol) 14057 SO ANALYTICA CHIMICA ACTA 14058 DT Article 14059 DE sensors; poly(vinyl alcohol); regenerated silk fibroin; Meldola Blue; 14060 horseradish peroxidase; hydrogen peroxide 14061 ID ENZYME ELECTRODES; BIOELECTROCATALYTIC REDUCTION; CARBON; ASSAY 14062 AB A new composite membrane of poly(vinyl alcohol) (PVA) and regenerated 14063 silk fibroin (RSF) was successfully employed to immobilize horseradish 14064 peroxidase (HRP) and infrared (IR) was used to get insight in the 14065 structure of the composite membrane. An amperometric HRP-based sensor 14066 highly sensitive to hydrogen peroxide was fabricated, which was based 14067 on Meldola Blue as a mediator to facilitate efficient electron transfer 14068 between immobilized HRP and a glassy carbon electrode. Performance and 14069 characteristics of the sensor were evaluated with respect to response 14070 time, detection limit, selectivity, operating and storage stability, 14071 and dependence on temperature, pH, applied potential and mediator 14072 concentration. The sensor displayed high sensitivity to hydrogen 14073 peroxide with low detection of limit of 0.1 mu M. 14074 C1 FUDAN UNIV,DEPT MACROMOLEC SCI,SHANGHAI 200433,PEOPLES R CHINA. 14075 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA. 14076 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R 14077 CHINA. 14078 CR 1991, SIGMA CATALOG, V771 14079 BIFULCO L, 1994, ANAL LETT, V27, P1443 14080 FREW JE, 1986, J ELECTROANAL CH INF, V201, P1 14081 GARGUILO MG, 1993, ANAL CHEM, V65, P523 14082 HO WO, 1993, J ELECTROANAL CHEM, V351, P185 14083 HURDIS EC, 1954, ANAL CHEM, V26, P320 14084 JONSSON G, 1989, ELECTROANAL, V1, P465 14085 KAMIN RA, 1980, ANAL CHEM, V52, P1198 14086 KORELL U, 1994, ANAL CHEM, V66, P510 14087 KULYS JJ, 1980, FEBS LETT, V114, P7 14088 LIU HY, 1995, ANAL PROC, V32, P475 14089 LIU YC, 1996, ELECTROCHIM ACTA, V41, P77 14090 MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801 14091 OHARA TJ, 1993, ELECTROANAL, V5, P823 14092 QIAN JH, 1995, J ELECTROANAL CHEM, V397, P157 14093 SANCHEZ PD, 1990, ELECTROANAL, V2, P303 14094 SANCHEZ PD, 1991, ELECTROANAL, V3, P281 14095 TATSUMA T, 1989, ANAL CHEM, V61, P2352 14096 TATSUMA T, 1992, ANAL CHEM, V64, P1183 14097 WANG J, 1991, ANAL CHEM, V63, P2993 14098 WELINDER KG, 1979, EUR J BIOCHEM, V96, P483 14099 WOLLENBERGER U, 1990, ANAL LETT, V23, P1795 14100 WOLLENBERGER U, 1991, BIOELECTROCH BIOENER, V26, P287 14101 YAMADA H, 1974, ARCH BIOCHEM BIOPHYS, V165, P728 14102 YAROPOLOV AI, 1979, DOKL AKAD NAUK SSSR, V249, P1399 14103 NR 25 14104 TC 16 14105 SN 0003-2670 14106 J9 ANAL CHIM ACTA 14107 JI Anal. Chim. Acta 14108 PD AUG 9 14109 PY 1996 14110 VL 329 14111 IS 1-2 14112 BP 97 14113 EP 103 14114 PG 7 14115 SC Chemistry, Analytical 14116 GA VB446 14117 UT ISI:A1996VB44600012 14118 ER 14119 14120 PT J 14121 AU Hsu, TY 14122 Li, L 14123 Jiang, BH 14124 TI Thermodynamic calculation of the equilibrium temperature between the 14125 tetragonal and monoclinic phases in CeO2-ZrO2 14126 SO MATERIALS TRANSACTIONS JIM 14127 DT Article 14128 DE thermodynamics; martensitic transformation; CeO2-ZrO2 14129 ID MARTENSITIC-TRANSFORMATION; ZIRCONIA MICROCRYSTALS; APPLIED STRESS; 14130 DRIVING FORCE; AL ALLOYS; FE-C; MS; SYSTEM 14131 AB Gibbs free energies of tetragonal and monoclinic phases at various 14132 temperatures are calculated for 8, 10 and 12 mol% CeO2-ZrO2 by 14133 referring to the revised CeO2-ZrO2 phase diagram given by Tani ct al. 14134 and utilizing the Lukas program. The equilibrium temperatures T-0, 14135 between t and m phases are obtained as 999, 838 and 697 K for 8, 10 and 14136 12 mol% CeO2-ZrO2, respectively, being much lower than the T-0 of ZrO2. 14137 C1 SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R CHINA. 14138 RP Hsu, TY, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI,SHANGHAI 200030,PEOPLES R 14139 CHINA. 14140 CR DU Y, 1991, J AM CERAM SOC, V74, P1569 14141 GARVIE RC, 1965, J PHYS CHEM-US, V69, P1238 14142 GARVIE RC, 1978, J PHYS CHEM-US, V82, P218 14143 GARVIE RC, 1985, J MATER SCI, V20, P1193 14144 GARVIE RC, 1985, J MATER SCI, V20, P3479 14145 GARVIE RC, 1986, J MATER SCI, V21, P1253 14146 HANNINK RHJ, 1981, ADV CERAM, V3, P116 14147 HSU TY, 1983, J MATER SCI, V18, P3206 14148 HSU TY, 1984, ACTA METALL, V32, P343 14149 HSU TY, 1985, J MATER SCI, V20, P23 14150 HSU TY, 1989, ACTA METALL, V37, P3091 14151 HSU TY, 1994, CHINESE J MATER RES, V8, P50 14152 HSU TY, 1995, CHINESE J MATER RES, V9, P338 14153 KAUFMAN L, 1978, CALPHAD, V2, P35 14154 LUKAS HL, 1977, CALPHAD, V1, P225 14155 TANI E, 1983, J AM CERAM SOC, V66, P506 14156 TU JB, 1994, J MATER SCI, V29, P1662 14157 ZHOU XW, 1991, ACTA METALL MATER, V39, P1041 14158 ZHOU XW, 1991, ACTA METALL MATER, V39, P1045 14159 NR 19 14160 TC 3 14161 SN 0916-1821 14162 J9 MATER TRANS JIM 14163 JI Mater. Trans. JIM 14164 PD JUN 14165 PY 1996 14166 VL 37 14167 IS 6 14168 BP 1281 14169 EP 1283 14170 PG 3 14171 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 14172 Engineering 14173 GA VB574 14174 UT ISI:A1996VB57400002 14175 ER 14176 14177 PT J 14178 AU Jiang, BH 14179 Li, L 14180 Hsu, TY 14181 TI Thermodynamic calculation of the M(s) temperature in 8 mol% CeO2-ZrO2 14182 SO MATERIALS TRANSACTIONS JIM 14183 DT Article 14184 DE thermodynamics; martensitic transformation; CeO2-ZrO2 14185 ID ZIRCONIA MICROCRYSTALS; PHASE-TRANSFORMATION; APPLIED STRESS; ZRO2 14186 AB The M(s) temperature in 8 mol% CeO2-ZrO2 with a mean grain size of 1.38 14187 mu m is calculated by using the calculated results of the Gibbs 14188 energies of both tetragonal and monoclinic phases in our previous 14189 paper((1)), The required parameters for M(s) calculation are obtained 14190 by experimental measurements or through estimation from some available 14191 data. The calculated M(s) temperature is in good agreement with the 14192 experimental one and the difference of them is less than 5 degrees, 14193 showing that the approach given in this article is suitable for the 14194 prediction of M(s) in zirconia ceramics. 14195 C1 SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R CHINA. 14196 RP Jiang, BH, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI,SHANGHAI 200030,PEOPLES 14197 R CHINA. 14198 CR BANSAL GK, 1972, ACTA METALL, V20, P1281 14199 EVANS AG, 1981, ACTA METALL, V79, P447 14200 GARVIE RC, 1965, J PHYS CHEM-US, V69, P1238 14201 GARVIE RC, 1978, J PHYS CHEM-US, V82, P218 14202 GARVIE RC, 1980, CERAM INT, V6, P19 14203 GARVIE RC, 1985, J MATER SCI, V20, P1193 14204 GARVIE RC, 1985, J MATER SCI, V20, P3479 14205 GARVIE RC, 1986, J MATER SCI, V21, P1253 14206 HANNINK RHJ, 1981, ADV CERAM, V3, P116 14207 HOMES H, 1972, J PHYS CHEM-US, V76, P1497 14208 HSU TY, 1996, MATER T JIM, V37, P1281 14209 HUGO GR, 1990, MATER SCI FORUM, V56, P357 14210 LEE RR, 1988, J AM CERAM SOC, V71, P694 14211 SAMSONOV GV, 1982, OXIDE HDB, P183 14212 NR 14 14213 TC 2 14214 SN 0916-1821 14215 J9 MATER TRANS JIM 14216 JI Mater. Trans. JIM 14217 PD JUN 14218 PY 1996 14219 VL 37 14220 IS 6 14221 BP 1284 14222 EP 1286 14223 PG 3 14224 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 14225 Engineering 14226 GA VB574 14227 UT ISI:A1996VB57400003 14228 ER 14229 14230 PT J 14231 AU Guo, GY 14232 Chen, YL 14233 TI Thermal analysis and infrared measurements of a lead-barium-aluminum 14234 phosphate glass 14235 SO JOURNAL OF NON-CRYSTALLINE SOLIDS 14236 DT Letter 14237 ID VIBRATIONS 14238 AB Thermal properties of a recently-developed lead-barium-aluminum 14239 phosphate glass were examined by means of differential thermal analysis 14240 (DTA) and thermal mechanical analysis (TMA). DTA curve shows that the 14241 melting of the crystalline phases (devitrified phases) appears at 891 14242 +/- 3 degrees C. The glass transition temperature, softening 14243 temperature and thermal expansion coefficient obtained from TMA are 528 14244 +/- 3 degrees C, 565 +/- 3 degrees C and (11.7 +/- 0.4) x 14245 10(-6)/degrees C (30 degrees C < T < 520 degrees C), respectively. 14246 Infrared spectra were measured on samples of the glass to investigate 14247 the structure of the glass. The infrared spectrum of the glass has an 14248 absorption band due to water in the near-infrared region, the absence 14249 of a characteristic P=O absorption band at around 1280 cm(-1) in the 14250 mid-infrared region, and three well-resolved absorption bands at 403 14251 +/- 10, 124 +/- 7, 115 +/- 5 cm(-1) in the far-infrared region. 14252 C1 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA. 14253 RP Guo, GY, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI & ENGN,SHANGHAI 14254 200030,PEOPLES R CHINA. 14255 CR CHAKRABORTY S, 1989, J MATER SCI LETT, V8, P1358 14256 CORBRIDGE DEC, 1954, J CHEM SOC, P493 14257 EXARHOS GJ, 1972, SOLID STATE COMMUN, V11, P755 14258 EXARHOS GJ, 1974, J CHEM PHYS, V60, P4145 14259 GUO GY, 1993, J NON-CRYST SOLIDS, V162, P164 14260 GUO GY, 1993, MATER CHEM PHYS, V35, P49 14261 GUO GY, 1995, J AM CERAM SOC, V78, P501 14262 HIGAZY AA, 1985, J MATER SCI, V20, P2345 14263 LAPP JC, 1992, AM CERAM SOC B, V71, P1545 14264 MORIKAWA H, 1981, J NONCRYST SOLIDS, V44, P107 14265 NELSON BN, 1979, J CHEM PHYS, V71, P2739 14266 OUCHETTO M, 1991, PHYS CHEM GLASSES, V32, P22 14267 SALES BC, 1987, J AM CERAM SOC, V70, P615 14268 NR 13 14269 TC 6 14270 SN 0022-3093 14271 J9 J NON-CRYST SOLIDS 14272 JI J. Non-Cryst. Solids 14273 PD JUN 14274 PY 1996 14275 VL 201 14276 IS 3 14277 BP 262 14278 EP 266 14279 PG 5 14280 SC Materials Science, Ceramics; Materials Science, Multidisciplinary 14281 GA VA912 14282 UT ISI:A1996VA91200010 14283 ER 14284 14285 PT J 14286 AU Jiang, WZ 14287 Zhu, ZY 14288 Qiu, XJ 14289 TI Relativistic density-dependent Hartree approach for nuclear matter in 14290 the chiral-symmetry-breaking model 14291 SO CHINESE PHYSICS LETTERS 14292 DT Article 14293 AB A relativistic density-dependent Hartree approach in the 14294 chiral-symmetry-breaking field model has been developed for nuclear 14295 matter. The coupling constants of the relativistic Hartree-Lagrangian 14296 are made density dependence and obtained from the relativistic 14297 Brueckner-Bethe-Goldstone results of nuclear matter. The calculated 14298 saturation nuclear density, binding-energy and compressibility for 14299 nuclear matter are close to the empirical ones. 14300 C1 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 14301 RP Jiang, WZ, CHINESE ACAD SCI,SHANGHAI INST NUCL RES,SHANGHAI 14302 201800,PEOPLES R CHINA. 14303 CR BOGUTA J, 1977, NUCL PHYS A, V292, P413 14304 BROCKMANN R, 1992, PHYS REV LETT, V68, P3408 14305 GELLMANN M, 1960, NUOVO CIMENTO, V16, P705 14306 JIANG WH, IN PRESS COMMUN THEO 14307 SEROT BD, 1986, ADV NUCLEAR PHYSICS, V16, CH1 14308 ZHANG XO, IN PRESS CHIN J NUCL 14309 NR 6 14310 TC 0 14311 SN 0256-307X 14312 J9 CHIN PHYS LETT 14313 JI Chin. Phys. Lett. 14314 PY 1996 14315 VL 13 14316 IS 6 14317 BP 416 14318 EP 419 14319 PG 4 14320 SC Physics, Multidisciplinary 14321 GA VA453 14322 UT ISI:A1996VA45300005 14323 ER 14324 14325 PT J 14326 AU Bi, PZ 14327 Shi, YM 14328 TI The temperature influence on the Q(2)(Q)over-bar(2) system 14329 SO NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND 14330 FIELDS 14331 DT Article 14332 ID ANNIHILATIONS; STATES; REST 14333 AB The Q(2) (Q) over bar(2) system at finite temperature is investigated 14334 based on the ellipsoidal bag model. It is found that the binding energy 14335 decreases with increasing temperature. 14336 C1 FUDAN UNIV,DEPT PHYS 2,SHANGHAI 200433,PEOPLES R CHINA. 14337 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA. 14338 RP Bi, PZ, FUDAN UNIV,TD LEE PHYS LAB,SHANGHAI 200433,PEOPLES R CHINA. 14339 CR ADER JP, 1982, PHYS REV D, V25, P2370 14340 BI PZ, 1988, J PHYS G, V14, P681 14341 BI PZ, 1991, PHYS LETT B, V262, P485 14342 BI PZ, 1991, Z PHYS C PART FIELDS, V52, P105 14343 BI PZ, 1992, Z PHYS C PART FIELDS, V54, P453 14344 BRIDGES D, 1986, PHYS REV LETT, V56, P211 14345 BRIDGES D, 1986, PHYS REV LETT, V56, P215 14346 HELLER L, 1985, PHYS REV D, V32, P755 14347 LIU KF, 1987, PHYS REV LETT, V58, P2288 14348 NR 9 14349 TC 0 14350 SN 0369-3546 14351 J9 NUOVO CIMENTO A-NUCL PART F 14352 JI Nuovo Cimento Soc. Ital. Fis. A-Nucl. Part. Fields 14353 PD MAY 14354 PY 1996 14355 VL 109 14356 IS 5 14357 BP 593 14358 EP 596 14359 PG 4 14360 SC Physics, Particles & Fields 14361 GA UZ797 14362 UT ISI:A1996UZ79700009 14363 ER 14364 14365 PT J 14366 AU Hu, YT 14367 Zhao, XH 14368 TI Collinear periodic cracks in an anisotropic medium 14369 SO INTERNATIONAL JOURNAL OF FRACTURE 14370 DT Article 14371 ID ELASTIC-MATERIALS; LINE FORCES; DISLOCATIONS 14372 AB The problem of collinear periodic cracks in an anisotropic medium is 14373 examined in this paper. By means of Stroh formalism and the conformal 14374 mapping method, we obtain general periodic solutions for collinear 14375 cracks. The corresponding stress intensity factors, crack opening 14376 displacements and strain energy release rate are found. 14377 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA. 14378 RP Hu, YT, HUAZHONG UNIV SCI & TECHNOL,DEPT MECH,WUHAN 430074,PEOPLES R 14379 CHINA. 14380 CR ASARO RJ, 1973, PHYS STATUS SOLIDI B, V60, P261 14381 BARNETT DM, 1973, J PHYS F MET PHYS, V3, P1083 14382 BARNETT DM, 1974, J PHYS F MET PHYS, V4, P1618 14383 CHADWICK P, 1977, ADV APPL MECH, V17, P303 14384 HOWLAND RCJ, 1935, P ROY SOC LOND A MAT, V148, P471 14385 HWU C, 1989, Q J MECH APPL MATH, V42, P553 14386 HWU CB, 1991, INT J FRACTURE, V52, P239 14387 JIANKE L, 1986, PERIODIC PROBLEMS PL 14388 KARIHALOO BL, 1979, ENG FRACT MECH, V12, P49 14389 KOITER WT, 1959, ING ARCH, V28, P168 14390 LI QQ, 1989, J APPL MECH, V56, P556 14391 MUSKHELISHVILI NI, 1953, SOME BASIC PROBLEMS 14392 STROH AN, 1958, PHILOS MAG, V3, P625 14393 STROH AN, 1962, J MATH PHYS, V41, P77 14394 SUO ZG, 1990, P ROY SOC LOND A MAT, V427, P331 14395 TING TCT, 1982, INT J SOLIDS STRUCT, V18, P139 14396 TING TCT, 1988, PHYS STATUS SOLIDI B, V146, P81 14397 NR 17 14398 TC 3 14399 SN 0376-9429 14400 J9 INT J FRACTURE 14401 JI Int. J. Fract. 14402 PY 1996 14403 VL 76 14404 IS 3 14405 BP 207 14406 EP 219 14407 PG 13 14408 SC Mechanics 14409 GA UZ448 14410 UT ISI:A1996UZ44800002 14411 ER 14412 14413 PT J 14414 AU Qiao, ZC 14415 Dai, SQ 14416 TI Limit cycle analysis of a class of strongly nonlinear oscillation 14417 equations 14418 SO NONLINEAR DYNAMICS 14419 DT Article 14420 DE strongly nonlinear oscillation; limit cycle; asymptotic analysis; 14421 modified KBM method 14422 ID NON-LINEAR OSCILLATOR; BIFURCATIONS 14423 AB The limit cycle of a class of strongly nonlinear oscillation equations 14424 of the form u double over dot + g(u) = epsilon f(u, u over dot) is 14425 investigated by means of a modified version of the KBM method, where 14426 epsilon is a positive small parameter. The advantage of our method is 14427 its straightforwardness and effectiveness, which is suitable for the 14428 above equation, where g(u) need not be restricted to an odd function of 14429 u, provided that the reduced equation, corresponding to epsilon = 0, 14430 has a periodic solution. A specific example is presented to demonstrate 14431 the validity and accuracy of our method by comparing our results with 14432 numerical ones, which are in good agreement with each other even for 14433 relatively large epsilon. 14434 RP Qiao, ZC, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI 14435 200072,PEOPLES R CHINA. 14436 CR BURTON TD, 1982, INT J NONLINEAR MECH, V17, P7 14437 BYRD PF, 1971, HDB ELLIPTIC INTEGRA 14438 CHEN SH, 1991, INT J NONLINEAR MECH, V26, P125 14439 DAI SQ, 1985, APPL MATH MECH, V6, P409 14440 HOLMES P, 1980, INT J NONLINEAR MECH, V15, P449 14441 KNOBLOCH E, 1981, J FLUID MECH, V108, P2911 14442 MARGALLO JG, 1987, J SOUND VIBRATION, V116, P591 14443 MARGALLO JG, 1988, J SOUND VIBRATION, V125, P13 14444 MARGALLO JG, 1990, INT J NONLINEAR MECH, V25, P663 14445 MOREMEDI GM, 1993, INT J NONLINEAR MECH, V28, P237 14446 NAYFEH AH, 1973, PERTURBATION METHODS 14447 NAYFEH AH, 1981, INTRO PERTURBATION T 14448 SHEN JQ, 1988, ACTA MATH SINICA, V31, P215 14449 NR 13 14450 TC 1 14451 SN 0924-090X 14452 J9 NONLINEAR DYNAMICS 14453 JI Nonlinear Dyn. 14454 PD JUL 14455 PY 1996 14456 VL 10 14457 IS 3 14458 BP 221 14459 EP 233 14460 PG 13 14461 SC Engineering, Mechanical; Mechanics 14462 GA UZ339 14463 UT ISI:A1996UZ33900002 14464 ER 14465 14466 PT J 14467 AU Grabb, ML 14468 Wang, SZ 14469 Birdsall, TG 14470 TI Deterministic three-dimensional analysis of long-range sound 14471 propagation through internal-wave fields 14472 SO IEEE JOURNAL OF OCEANIC ENGINEERING 14473 DT Article 14474 AB A Munk profile and a set of propagating internal-wave modes are used to 14475 construct a three-dimensional time-varying ocean sound-speed model. 14476 Three-dimensional ray tracing is employed to simulate long-range sound 14477 propagation of a broad-band acoustic signal. Methods are developed to 14478 convert three-dimensional ray-tracing results to acoustic time-domain 14479 amplitude and phase measurements. The ocean sound-speed model is 14480 defined deterministically, and the model acoustic receptions are 14481 analyzed deterministically. A single internal-wave mode that is 14482 ''spatially synchronized'' to an arrival can coherently focus and 14483 defocus the acoustic energy. These internal waves ran cause an 14484 arrival's amplitude fluctuation to mimic Rayleigh fading; however, the 14485 time-domain phase is stable, in contradiction to the classical Rayleigh 14486 fading environment where the received phase is uniformly distributed. 14487 for example, the received power attributed to an early arrival 14488 propagated over a 750-km range can fluctuate over 40 dB, while the 14489 time-domain phase remains within a quarter of a 75-Hz cycle, The 14490 characteristics of the time-domain phase are important for establishing 14491 coherent integration times at the receiver. 14492 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT ELECTR & TELECOMMUN ENGN,SHANGHAI 200072,PEOPLES R CHINA. 14493 RP Grabb, ML, UNIV MICHIGAN,DEPT ELECT & COMP SCI,ANN ARBOR,MI 48109. 14494 CR BOLD GEJ, 1986, 112 AC SOC AM M F FF, S63 14495 BOLD GEJ, 1986, J ACOUST SOC AM, P656 14496 CERVENY V, 1987, SEISMIC TOMOGRAPHY 14497 COLOSI JA, 1994, J ACOUST SOC AM, V96, P452 14498 CORNUELLE BD, 1992, J GEOPHYS RES, V11, P680 14499 ECKART C, 1961, HYDRODYNAMICS OCEANS 14500 FLATTE SM, 1979, SOUND PROPAGATION FL 14501 FLATTE SM, 1983, P IEEE, V71, P1267 14502 FLATTE SM, 1987, J ACOUST SOC AM, V82, P967 14503 FLATTE SM, 1988, J ACOUST SOC AM, V84, P1414 14504 FLATTE SM, 1992, INT M WAV PROP RAND 14505 GARRETT C, 1975, J GEOPHYS RES, V80, P291 14506 GRABB ML, 1996, THESIS U MICHIGAN AN 14507 MUNK WH, 1974, J ACOUST SOC AM, V55, P220 14508 PHILLIPS OM, 1977, DYNAMICS UPPER OCEAN 14509 TAPPERT FD, UNPUB J ACOUST SOC A 14510 TECHAU P, UNPUB 14511 NR 17 14512 TC 1 14513 SN 0364-9059 14514 J9 IEEE J OCEANIC ENG 14515 JI IEEE J. Ocean. Eng. 14516 PD JUL 14517 PY 1996 14518 VL 21 14519 IS 3 14520 BP 260 14521 EP 272 14522 PG 13 14523 SC Engineering, Civil; Engineering, Electrical & Electronic; Engineering, 14524 Ocean; Oceanography 14525 GA UY891 14526 UT ISI:A1996UY89100003 14527 ER 14528 14529 PT J 14530 AU Deng, K 14531 Zhou, YM 14532 Ren, ZM 14533 Zhu, SJ 14534 Wei, JH 14535 Jiang, GC 14536 TI Electromagnetic model of levitation melting with cold crucible 14537 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA 14538 DT Article 14539 DE cold crucible; electromagnetic induction; levitation melting 14540 AB The electromagnetic problems of levitation melting with cold crucible 14541 were studied. A quasi-three dimensional model of electromagnetic field 14542 in this levitation melting process and the modified coupled current 14543 method were presented. The influences of crucible structure and power 14544 frequency on the electromagnetic field in this process were analyzed. 14545 C1 SHANGHAI UNIV,SHANGHAI ENHANCED LAB FERROMET,SHANGHAI 200072,PEOPLES R CHINA. 14546 CR CISZEK TF, 1985, J ELECTROCHEM SOC, V132, P963 14547 DENG K, 1994, T SHANGHAI U TECHN, V15, P87 14548 TANAKA T, 1991, ISIJ INT, V31, P1416 14549 TANAKA T, 1991, ISIJ INT, V31, P350 14550 TARAPORE ED, 1976, METALL T B B, V7, P343 14551 TOH T, 1990, P 6 INT IRON STEEL C, P239 14552 NR 6 14553 TC 3 14554 SN 1003-6326 14555 J9 TRANS NONFERROUS METAL SOC CH 14556 JI Trans. Nonferrous Met. Soc. China 14557 PD JUN 14558 PY 1996 14559 VL 6 14560 IS 2 14561 BP 12 14562 EP 17 14563 PG 6 14564 SC Metallurgy & Metallurgical Engineering 14565 GA UY040 14566 UT ISI:A1996UY04000003 14567 ER 14568 14569 PT J 14570 AU Fang, ZH 14571 Zhang, J 14572 Wang, Y 14573 TI The HAL-3 airborne navigation radar 14574 SO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 14575 DT Letter 14576 AB This correspondence describes the HAL-3 navigation radar which was 14577 designed specially for civil airplanes. The main technical functions of 14578 the radar have been extensively tested on Boeing 707 and Y-7A airplanes 14579 to the military standard on aeronautic airborne facilities. The rest 14580 results [1] are qualified by the Chinese Appraisal Committee of 14581 Aeronautics Facilities. The technical specifications of the radar are 14582 similar to those of the RDR-1F radar manufactured in tie U.S. with 14583 several added, operational functions. The radar includes 7 units: 14584 antenna, transceiver, servo unit, control box, two display units and 14585 power supply. Operational principles and functions of each unit ore 14586 described briefly. The current research project for interfacing the 14587 radar to a fibre-optic gyroscope is in process and some initial 14588 experimental results are described. 14589 RP Fang, ZH, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI INST ELECTR 14590 PHYS,SHANGHAI 201800,PEOPLES R CHINA. 14591 CR *CHIN APPR COMM AE, 1985, QUAL REP HAL 3 RAD 14592 DEFANG Z, 1990, TECHNICAL MANUAL HAL 14593 JI Y, 1995, THESIS SHANGHAI U 14594 NR 3 14595 TC 0 14596 SN 0018-9251 14597 J9 IEEE TRANS AEROSP ELECTRON SY 14598 JI IEEE Trans. Aerosp. Electron. Syst. 14599 PD JUL 14600 PY 1996 14601 VL 32 14602 IS 3 14603 BP 1208 14604 EP 1211 14605 PG 4 14606 SC Engineering, Aerospace; Engineering, Electrical & Electronic; 14607 Telecommunications 14608 GA UX978 14609 UT ISI:A1996UX97800038 14610 ER 14611 14612 PT J 14613 AU Zhang, LS 14614 Sun, XL 14615 TI An algorithm for minimizing a class of locally Lipschitz functions 14616 SO JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 14617 DT Article 14618 DE nondifferentiable optimization; locally Lipschitz functions; 14619 generalized gradients; global convergence methods 14620 ID OPTIMIZATION 14621 AB In this paper, we present an algorithm for minimizing a class of 14622 locally Lipschitz functions. The method generalizes the E-smeared 14623 method to a class of functions whose Clarke generalized gradients are 14624 singleton at almost all differentiable points. We analyze the global 14625 convergence of the method and report some numerical results. 14626 RP Zhang, LS, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 14627 201800,PEOPLES R CHINA. 14628 CR BIHAIN A, 1984, J OPTIMIZ THEORY APP, V44, P545 14629 CLARKE FH, 1983, OPTIMIZATION NONSMOO 14630 KIWIEL KC, 1985, LECTURE NOTES MATH, V1133 14631 LEMARECHAL C, 1975, MATH PROGRAMMING STU, V3, P95 14632 MIFFLIN R, 1977, MATH OPER RES, V2, P191 14633 POLAK E, 1983, SIAM J CONTROL OPTIM, V21, P179 14634 POLAK E, 1985, SIAM J CONTROL OPTIM, V23, P477 14635 SHOR NZ, 1985, MINIMIZATION METHODS 14636 WOLFE P, 1975, MATHEMATICAL PROGRAM, V3, P145 14637 ZHANG LS, 1988, ACTA MATH APPL SINIC, V4, P200 14638 ZOWE J, 1985, COMPUTATIONAL MATH P, P323 14639 NR 11 14640 TC 0 14641 SN 0022-3239 14642 J9 J OPTIMIZ THEOR APPL 14643 JI J. Optim. Theory Appl. 14644 PD JUL 14645 PY 1996 14646 VL 90 14647 IS 1 14648 BP 203 14649 EP 212 14650 PG 10 14651 SC Mathematics, Applied; Operations Research & Management Science 14652 GA UX337 14653 UT ISI:A1996UX33700011 14654 ER 14655 14656 PT J 14657 AU Zhang, F 14658 Cao, ZC 14659 TI Study on the electrical properties of single grain boundaries in BaTiO3 14660 ceramics 14661 SO JOURNAL OF APPLIED PHYSICS 14662 DT Article 14663 AB In the article, the electrical properties of single grains and single 14664 grain boundaries in donor doped BaTiO3 ceramics have been investigated. 14665 The results show that the grains have no positive temperature 14666 coefficient of resistance effect (PTCR effect) if the influence of 14667 electrode was neglected. The results also show that different grain 14668 boundaries have various PTCR effect. The characteristics of 14669 current-voltage do not follow the Heywang model and accord with our 14670 modified model. The maximum barrier heights of single grain boundaries 14671 are also deduced experimentally. (C) 1996 American Institute of Physics. 14672 C1 SHANGHAI UNIV,SHANGHAI 201800,PEOPLES R CHINA. 14673 RP Zhang, F, CHINESE ACAD SCI,SHANGHAI INST MET,ION BEAM LAB,SHANGHAI 14674 200050,PEOPLES R CHINA. 14675 CR GOODMAN G, 1963, J AM CERAM SOC, V46, P48 14676 HEYWANG W, 1961, SOLID STATE ELECTRON, V3, P51 14677 HEYWANG W, 1964, J AM CERAM SOC, V47, P484 14678 NEMOTO H, 1980, J AM CERAM SOC, V63, P398 14679 OMISSON E, 1989, J APPL PHYS, V6, P3666 14680 RHODERICK EH, 1978, METAL SEMICONDUCTOR 14681 TAO M, 1987, J APPL PHYS, V61, P1562 14682 ZHANG F, IN PRESS J APPL PHYS 14683 NR 8 14684 TC 0 14685 SN 0021-8979 14686 J9 J APPL PHYS 14687 JI J. Appl. Phys. 14688 PD JUL 15 14689 PY 1996 14690 VL 80 14691 IS 2 14692 BP 1033 14693 EP 1036 14694 PG 4 14695 SC Physics, Applied 14696 GA UX156 14697 UT ISI:A1996UX15600061 14698 ER 14699 14700 PT J 14701 AU Xu, KX 14702 Zhou, SP 14703 Bao, JS 14704 Xu, WW 14705 Wang, HB 14706 TI Optical detector using granular YBa2Cu3O7-delta weak link-type junctions 14707 SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY 14708 DT Article 14709 ID THIN-FILMS 14710 AB Experimental photoresponse study of granular YBa2Cu3O7-x (YBCO) weak 14711 link is reported, The Josephson critical current I-c is suppressed with 14712 light illumination of the junction, produced mainly from optical 14713 generation of quasiparticles. At lower temperature (T = 64.5 K), the 14714 hysteresis in I-V characteristic of the weak link appears, which may be 14715 found useful for optical detection purpose. This was supported from 14716 preliminary experiments. 14717 C1 NANJING UNIV,NANJING 210093,PEOPLES R CHINA. 14718 RP Xu, KX, SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 14719 CR BAO J, 1995, J SHANGHAI U NATURAL, V1, P48 14720 BARONE A, 1982, PHYSICS APPL JOSEPHS, P322 14721 BHATTACHARYA S, 1993, APPL PHYS LETT, V63, P2279 14722 BLUZER N, 1991, PHYS REV B, V44, P10222 14723 BLUZER N, 1993, IEEE T APPL SUPERCON, V3, P2869 14724 CARSLAW HS, 1986, CONDUCTION HEAT SOLI, P75 14725 ENOMOTO Y, 1986, J APPL PHYS, V59, P3807 14726 FENKEL A, 1993, PHYS REV B, V48, P9717 14727 FRENKEL A, 1990, J APPL PHYS, V67, P3054 14728 GHIS A, 1993, IEEE T APPL SUPERCON, V3, P2136 14729 TESTARDI LR, 1971, PHYS REV B, V4, P2189 14730 XU KX, 1995, J INFRARED MILLIM WA, V14, P341 14731 NR 12 14732 TC 0 14733 SN 1051-8223 14734 J9 IEEE TRANS APPL SUPERCONDUCT 14735 JI IEEE Trans. Appl. Supercond. 14736 PD JUN 14737 PY 1996 14738 VL 6 14739 IS 2 14740 BP 87 14741 EP 89 14742 PG 3 14743 SC Engineering, Electrical & Electronic; Physics, Applied 14744 GA UW838 14745 UT ISI:A1996UW83800006 14746 ER 14747 14748 PT J 14749 AU Wang, DR 14750 Bai, ZZ 14751 Evans, DJ 14752 TI On the monotone convergence of multisplitting method for a class of 14753 systems of weakly nonlinear equations 14754 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 14755 DT Article 14756 DE system of weakly nonlinear equations; matrix multisplitting; monotone 14757 convergence; convergence rate 14758 ID REGULAR SPLITTINGS 14759 AB In this paper, we set up a parallel matrix multisplitting iterative 14760 method for a class of system of weakly nonlinear equations, Au = G(u), 14761 A is an element of L(R(n)), G:R(n) --> R(n), which is generally 14762 resulted from the discretization of many classical differential 14763 equations. For the new method, the two-sided approximation property is 14764 deliberately shown, and the comparison theorems between the convergence 14765 rates of different multisplittings as well as multisplitting and single 14766 splittings of the coefficient matrix A is an element of L(R(n)) are 14767 given in detail in the sense of monotonicity. Therefore, the monotone 14768 convergence theory about this method is thoroghly established. Finally, 14769 we apply the built conclusions to several special but very important 14770 and practical multisplittings to confirm the correctness and 14771 effectiveness of our theory. 14772 C1 FUDAN UNIV,INST MATH,SHANGHAI 200433,PEOPLES R CHINA. 14773 LOUGHBOROUGH UNIV TECHNOL,PARALLEL ALGORITHMS RES CTR,LOUGHBOROUGH LE11 3TU,LEICS,ENGLAND. 14774 RP Wang, DR, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES 14775 R CHINA. 14776 CR ALEFELD G, 1985, NUMER MATH, V46, P213 14777 ELSNER L, 1989, NUMER MATH, V56, P283 14778 NEUMANN M, 1987, LINEAR ALGEBRA APPL, V88, P559 14779 OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630 14780 ORTEGA JM, 1970, ITERATIVE SOLUTION N 14781 VARGA RS, 1961, MATRIX ITERATIVE ANA 14782 NR 6 14783 TC 8 14784 SN 0020-7160 14785 J9 INT J COMPUT MATH 14786 JI Int. J. Comput. Math. 14787 PY 1996 14788 VL 60 14789 IS 3-4 14790 BP 229 14791 EP 242 14792 PG 14 14793 SC Mathematics, Applied 14794 GA UW399 14795 UT ISI:A1996UW39900006 14796 ER 14797 14798 PT J 14799 AU Xu, KX 14800 Zhou, SP 14801 Bao, JS 14802 TI Optically tuned superconductive-dielectric resonators with 14803 whispering-gallery modes 14804 SO JOURNAL OF SUPERCONDUCTIVITY 14805 DT Article 14806 DE optical effect; superconductive-dielectric resonator; 14807 whispering-gallery mode; modified partial region method 14808 AB An analytical method is presented for calculating the resonant 14809 frequency and Q-factor of a superconducting dielectric disk resonator 14810 operating in millimeter-wave regime with whispering-gallery mode. 14811 Resonant frequency shift due to the optical generation of 14812 quasi-particles in superconducting film is investigated as a function 14813 of photon flux. An optically tunable resonant frequency of about 500 14814 MHz is estimated, and good agreement is found between numerical results 14815 and experimental ones. 14816 RP Xu, KX, SHANGHAI UNIV,DEPT PHYS,JIA DING,SHANGHAI 201800,PEOPLES R 14817 CHINA. 14818 CR ARNAUD JA, 1976, BEAM FIBER OPTICS 14819 FRENKEL A, 1990, J APPL PHYS, V67, P3054 14820 FRENKEL A, 1993, PHYS REV B, V48, P9717 14821 HERCZFELD PR, 1984, P 14 EUR MICR C SEP, P268 14822 INVENOV EN, 1992, IEEE MTT, V41, P632 14823 JONSE SK, 1988, ELECTRON LETT, V23, P807 14824 KAJFEZ D, 1988, DIELECTRIC RESONATOR 14825 LEE CH, 1980, IEEE QUANTUM ELECTRO, V16, P277 14826 LEE CH, 1990, IEEE T MICROW THEORY, V38, P596 14827 LONDON F, 1935, PROC R SOC LON SER-A, V149, P71 14828 MEI KK, 1991, IEEE T MICROW THEORY, V39, P1545 14829 NEIKIRK P, 1990, IEEE MTT, V38, P586 14830 OWEN CS, 1972, PHYS REV LETT, V28, P1559 14831 PARKER WH, 1972, PHYS REV LETT, V29, P925 14832 SECMNOV AD, 1993, APPL PHYS LETT, V63, P681 14833 SEEDS AJ, 1990, IEEE T MICROW THEORY, V38, P577 14834 TESTARDI LR, 1971, PHYS REV B, V4, P2189 14835 TOBAR M, 1991, IEEE MTT, V39, P2073 14836 TSINDLEKHT M, 1994, APPL PHYS LETT, V65, P2875 14837 XU KX, 1995, J INFRARED MILLIM WA, V14, P341 14838 ZHOU SP, 1991, J SUPERCOND, V4, P227 14839 ZHOU SP, 1992, J APPL PHYS, V71, P2789 14840 NR 22 14841 TC 0 14842 SN 0896-1107 14843 J9 J SUPERCOND 14844 JI J. Supercond. 14845 PD APR 14846 PY 1996 14847 VL 9 14848 IS 2 14849 BP 193 14850 EP 199 14851 PG 7 14852 SC Physics, Applied; Physics, Condensed Matter 14853 GA UV423 14854 UT ISI:A1996UV42300008 14855 ER 14856 14857 PT J 14858 AU Lin, D 14859 Batan, T 14860 Fuchs, EF 14861 Grady, WM 14862 TI Harmonic losses of single-phase induction motors under nonsinusoidal 14863 voltages 14864 SO IEEE TRANSACTIONS ON ENERGY CONVERSION 14865 DT Article 14866 DE time harmonics; single-phase induction machines 14867 AB Parameters of a capacitor-start, capacitor-run single-phase induction 14868 motor with closed or semi-closed rotor slots are measured and a model 14869 for the investigation of the performance of the machine in the 14870 frequency domain under the influence of harmonic voltages is presented, 14871 An algorithm taking into account the nonlinear rotor leakage inductance 14872 is established, This algorithm is applied to estimate the current in 14873 the time domain, and the harmonic losses at rated-load operation 14874 without and with run capacitors are calculated, Computational results 14875 are compared with those from experimentation and the differences 14876 between both are discussed. 14877 C1 UNIV TEXAS,AUSTIN,TX 78712. 14878 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 14879 RP Lin, D, UNIV COLORADO,BOULDER,CO 80309. 14880 CR DUFFEY CK, 1989, IEEE T IND APPL, V25 14881 FUCHS EF, 1994 IEEE IAS ANN M 14882 FUCHS EF, 1987, OPTIMIZATION INDUCTI, V2 14883 HU Z, 1989, ANAL CALCULATION ELE 14884 HUANG Y, 1986, SMALL MEDIUM ELECT M 14885 VANDERMERWE C, IEEE PES 1994 SUMM M 14886 NR 6 14887 TC 4 14888 SN 0885-8969 14889 J9 IEEE TRANS ENERGY CONVERS 14890 JI IEEE Trans. Energy Convers. 14891 PD JUN 14892 PY 1996 14893 VL 11 14894 IS 2 14895 BP 273 14896 EP 279 14897 PG 7 14898 SC Engineering, Electrical & Electronic; Energy & Fuels 14899 GA UU449 14900 UT ISI:A1996UU44900001 14901 ER 14902 14903 PT J 14904 AU Liu, YC 14905 Qian, JH 14906 Liu, HY 14907 Zhang, XL 14908 Deng, JQ 14909 Yu, TY 14910 TI Blend membrane of regenerated silk fibroin, poly(vinyl alcohol), and 14911 peroxidase and its application to a ferrocene-mediating hydrogen 14912 peroxide sensor 14913 SO JOURNAL OF APPLIED POLYMER SCIENCE 14914 DT Article 14915 ID HORSERADISH-PEROXIDASE; IMMOBILIZATION; BEADS; ENZYME 14916 AB Before or after the blend membrane of regenerated silk fibroin (RSF), 14917 poly(vinyl alcohol) (PVA), and peroxidase is treated with ethanol, RSF, 14918 PVA, and peroxidase maintain their own structures. The conformational 14919 transition of RSF in the blend membrane is accomplished from the silk I 14920 structure to the silk II structure by ethanol treatment, which is used 14921 to immobilize peroxidase. A ferrocene-mediating sensor for H2O2 is 14922 made, which is based on the immobilization of peroxidase in the blend 14923 membrane of RSF and PVA. Performance and characteristics of the sensor 14924 were evaluated with respect to response time, detection limit, 14925 selectivity, and dependencies on temperature and pH as well as on 14926 operating and storage stability. (C) 1996 John Wiley & Sons, Inc. 14927 C1 FUDAN UNIV,DEPT MACROMOLEC SCI,SHANGHAI 200433,PEOPLES R CHINA. 14928 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA. 14929 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA. 14930 CR AMPON K, 1992, J CHEM TECHNOL BIOT, V55, P185 14931 BAHADUR A, 1985, MAKROMOL CHEM, V186, P1387 14932 BARTLETT PN, 1993, J ELECTROANAL CHEM, V362, P1 14933 BOYER RF, 1991, BIOTECHNOL EDUC, V2, P17 14934 CHIBATA I, 1987, BIOTECHNOLOGY A, V7, P653 14935 DALVIE SK, 1992, BIOTECHNOL BIOENG, V40, P1173 14936 DINELLI D, 1976, METHOD ENZYMOL, V44, P227 14937 DRIOLI E, 1986, NATO ASI SER C, P667 14938 HAYASHI T, 1991, J APPL POLYM SCI, V42, P85 14939 HAYASHI T, 1992, J APPL POLYM SCI, V44, P143 14940 HAYASHI T, 1993, MAKROMOL CHEM-M SYMP, V70, P137 14941 HURDIS EC, 1954, ANAL CHEM, V26, P320 14942 KARUBE I, 1987, BIOTECHNOLOGY A, V7, P685 14943 LINKO P, 1984, CRC CRIT R BIOTECH, V1, P289 14944 LIU F, 1993, BIOTECHNOL APPL BIOC, V18, P57 14945 LIU H, IN PRESS BIOELECTROC 14946 LIU Y, IN PRESS ELECTROCHIM 14947 MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801 14948 OHKI A, 1994, CHEM LETT, V6, P1065 14949 SCHUHMANN W, 1992, BIOELECTROANAL S, V2, P113 14950 TARHAN L, 1991, J FS EGE U A, V14, P11 14951 WANG J, 1994, ANAL CHEM, V66, P1988 14952 WELINDER KG, 1979, EUR J BIOCHEM, V96, P483 14953 YAMADA H, 1974, ARCH BIOCHEM BIOPHYS, V165, P728 14954 YU T, IN PRESS J APPL POLY 14955 NR 25 14956 TC 2 14957 SN 0021-8995 14958 J9 J APPL POLYM SCI 14959 JI J. Appl. Polym. Sci. 14960 PD JUL 25 14961 PY 1996 14962 VL 61 14963 IS 4 14964 BP 641 14965 EP 647 14966 PG 7 14967 SC Polymer Science 14968 GA UU473 14969 UT ISI:A1996UU47300007 14970 ER 14971 14972 PT J 14973 AU Bradbury, I 14974 Kirkby, R 14975 Guanbao, S 14976 TI Development and environment: The case of rural industrialization and 14977 small-town growth in China 14978 SO AMBIO 14979 DT Article 14980 AB Rural industrialization and small-town growth are prominent and 14981 distinctive features oi China's phenomenal economic growth since the 14982 Open Door Policy was introduced;around 1980. Such developments are most 14983 advanced in the coastal provinces, but are steadily diffusing 14984 westwards. Major concerns of these developments are their impact on 14985 China's food production capability and a general degradation of the 14986 rural environment. The trend of progressive land loss since the 1950s 14987 has been accentuated, the pollution burden in rural areas has risen, 14988 and workers have been attracted away from agriculture by the greater 14989 rewards oi industrial work with a consequent lowering of land 14990 maintenance and husbandry standards. Resource constraints and the 14991 administrative system limit the likely effectiveness oi environmental 14992 protection by coercion. Incentives, through the lax system, are 14993 suggested as a possible approach to limiting the environmental impacts 14994 of rural industrialization, but must be complemented by strenuous 14995 measures to enhance environmental awareness. 14996 C1 UNIV LIVERPOOL,DEPT CIV DESIGN,LIVERPOOL L69 3BX,MERSEYSIDE,ENGLAND. 14997 SHANGHAI UNIV,DEPT SOCIOL,SHANGHAI 200434,PEOPLES R CHINA. 14998 RP Bradbury, I, UNIV LIVERPOOL,DEPT GEOG,POB 147,LIVERPOOL L69 14999 3BX,MERSEYSIDE,ENGLAND. 15000 CR *CHIN AC SOC SCI, 1994, POL CHOIC CHIN EC DE 15001 *NATL ENV PROT AG, 1994, ZHONGG HUANJ BAOH XI 15002 *STAT PLANN COMM, 1994, CHIN AG 21 PAP CHIN 15003 BYRD W, 1990, CHINAS RURAL IND STR 15004 EDMONDS RL, 1994, PATTERNS CHINAS LOST 15005 GLAESER B, 1990, GEOGRAPHY CONT CHINA, P249 15006 KIRKBY R, 1994, CHINA NEXT DECADES, P128 15007 LIU Q, 1995, P BAND S SMALL CIT 15008 LUK S, 1993, MEGAPROJECT CASE STU 15009 MA R, 1992, URBANIZING CHINA, P119 15010 SMIL V, 1984, BAD EARTH 15011 SMIL V, 1993, CHINAS ENV CRISIS 15012 STONE B, 1988, CHINA Q, V116, P767 15013 NR 13 15014 TC 7 15015 SN 0044-7447 15016 J9 AMBIO 15017 JI Ambio 15018 PD MAY 15019 PY 1996 15020 VL 25 15021 IS 3 15022 BP 204 15023 EP 209 15024 PG 6 15025 SC Engineering, Environmental; Environmental Sciences 15026 GA UQ531 15027 UT ISI:A1996UQ53100011 15028 ER 15029 15030 PT J 15031 AU Bi, PZ 15032 Shi, YM 15033 TI The influence of mass reduction on pion momentum spectra from 15034 relativistic collisions 15035 SO PHYSICS LETTERS B 15036 DT Article 15037 ID HEAVY-ION COLLISIONS; FINITE TEMPERATURE; NUCLEAR COLLISIONS; MODEL; 15038 DECONFINEMENT; CHARMONIUM; TRANSITION; DENSITY; MESONS 15039 AB The influence of mass reduction on the momentum spectra is 15040 investigated. We find that the enhancement of the low P-T pion observed 15041 by the NA35 Collabration in 200 GeV S+S collisions can be understood as 15042 a consequence of pion mass reduction. 15043 C1 FUDAN UNIV,DEPT PHYS 2,SHANGHAI 200433,PEOPLES R CHINA. 15044 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA. 15045 CHINA CTR ADV SCI & TECHNOL,WORLD LAB,BEIJING 100080,PEOPLES R CHINA. 15046 RP Bi, PZ, FUDAN UNIV,TD LEE PHYS LAB,SHANGHAI 200433,PEOPLES R CHINA. 15047 CR ATWATER TW, 1987, PHYS LETT B, V199, P30 15048 BARZ HW, 1991, PHYS LETT B, V254, P332 15049 BERTSCH G, 1989, PHYS REV C, V40, P1830 15050 BROWN GE, SUNYNTC9013 15051 BROWN GE, 1991, NUCL PHYS A, V535, P701 15052 COLLAB NA, 1988, Z PHYS C, V38, P89 15053 DEFORCRAND P, 1985, PHYS LETT B, V160, P137 15054 HARRINGTON BJ, 1974, PHYS REV LETT, V33, P324 15055 HASHIMOTO T, 1986, PHYS REV LETT, V57, P2123 15056 HASHIMOTO T, 1988, Z PHYS C, V38, P251 15057 KOCH P, 1986, PHYS REP, V142, P167 15058 KOCH V, 1993, NUCL PHYS A, V560, P345 15059 KUSENEZOV D, 1989, PHYS REV C, V40, P2075 15060 KUSENEZOV D, 1991, PHYS REV C, V44, P902 15061 LEE KS, 1989, Z PHYS C PART FIELDS, V43, P425 15062 PINZHEN B, 1988, J PHYS G, V14, P681 15063 PINZHEN B, 1989, J PHYS G NUCL PARTIC, V15, P1653 15064 PISARSKI RD, 1982, PHYS REV D, V26, P3735 15065 SOLLFRANK J, 1990, PHYS LETT B, V252, P256 15066 SOLLFRANK J, 1991, Z PHYS C PART FIELDS, V52, P593 15067 TAKAGI F, 1986, PHYS REV D, V34, P1646 15068 VOGT R, 1988, PHYS LETT B, V206, P333 15069 WENIG S, 1990, THESIS I KERNPHYS FR 15070 NR 23 15071 TC 2 15072 SN 0370-2693 15073 J9 PHYS LETT B 15074 JI Phys. Lett. B 15075 PD MAY 16 15076 PY 1996 15077 VL 375 15078 IS 1-4 15079 BP 355 15080 EP 357 15081 PG 3 15082 SC Physics, Multidisciplinary 15083 GA UP263 15084 UT ISI:A1996UP26300053 15085 ER 15086 15087 PT J 15088 AU Zhang, ZL 15089 Jiang, XY 15090 Xu, SH 15091 Nagatomo, T 15092 Omoto, O 15093 TI Threshold lowering and by intensity and efficiency enhancement by 15094 dopants in polymer emitting diodes 15095 SO CHINESE PHYSICS LETTERS 15096 DT Article 15097 ID ELECTROLUMINESCENT 15098 AB A new method to increase the luminance and quantum efficiency of 15099 polymer light emitting diodes with a lower threshold voltage has been 15100 reported. The threshold voltage, luminance and quantum efficiency have 15101 been significantly improved by doping certain dopants with a lower 15102 highest occupied molecular orbital (HOMO) level into the hole 15103 transporting layer. A high performance device has been achieved by 15104 addition of the perylene and triphenylamine as a dopant into 15105 poly(N-vinylcarbazole). The luminance and quantum efficiency increase 15106 by 2-3 times in comparison with the undoped device, reaching 10000 15107 cd/m(2) in luminance and 0.58% in quantum efficiency. While threshold 15108 voltage is reduced to one half value. The energy diagram has been 15109 obtained by measuring the HOMO levels and band gap values. Based on 15110 this, the carriers injection and balance between electrons and holes as 15111 well as the action of dopant are discussed. 15112 C1 SHIBAURA INST TECHNOL, MINATO KU, TOKYO 108, JAPAN. 15113 RP Zhang, ZL, SHANGHAI UNIV SCI & TECHNOL, DEPT MAT SCI, JIADING CAMPUS, 15114 SHANGHAI 201800, PEOPLES R CHINA. 15115 CR BROWN AR, 1992, APPL PHYS LETT, V61, P2793 15116 PARKER ID, 1994, APPL PHYS LETT, V65, P1272 15117 TANG CW, 1987, APPL PHYS LETT, V51, P913 15118 YANG Y, 1994, APPL PHYS LETT, V64, P1245 15119 ZHANG ZL, 1994, CHINESE J LUMINESCEN, V15, P363 15120 NR 5 15121 TC 0 15122 SN 0256-307X 15123 J9 CHIN PHYS LETT 15124 JI Chin. Phys. Lett. 15125 PY 1996 15126 VL 13 15127 IS 4 15128 BP 301 15129 EP 304 15130 PG 4 15131 SC Physics, Multidisciplinary 15132 GA UM282 15133 UT ISI:A1996UM28200016 15134 ER 15135 15136 PT J 15137 AU Li, L 15138 Delaey, L 15139 Wollants, P 15140 Biest, VD 15141 TI Thermodynamic calculation of segregation in multicomponent steels 15142 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 15143 DT Article 15144 ID REGULAR SOLUTION MODEL; PHASES 15145 AB The thermodynamic equation for segregation in multicomponent steels is 15146 extended from that in ternary system and the segregation amounts of Cr, 15147 C and P in the intergranular phase in a Cr-steel are estimated. 15148 C1 KATHOLIEKE UNIV LEUVEN,DEPT MTM,B-3001 HEVERLEE,BELGIUM. 15149 RP Li, L, SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 2000072,PEOPLES R 15150 CHINA. 15151 CR CHANDRASEKARAN L, 1987, CALPHAD, V11, P163 15152 DEFAY R, 1966, SURFACE TENSION ADSO 15153 GUTTMANN M, 1979, INTERFACIAL SEGREGAT 15154 GUTTMANN M, 1982, MET T A, V13, P1693 15155 HERTZMAN S, 1987, METALL TRANS A, V18, P1767 15156 HILLERT M, 1970, ACTA CHEM SCAND, V24, P3618 15157 LI L, 1993, J CHIM PHYS, V90, P305 15158 LI L, 1994, CALPHAD, V18, P89 15159 SUNDMAN B, 1981, J PHYS CHEM SOLIDS, V42, P297 15160 NR 9 15161 TC 0 15162 SN 1005-0302 15163 J9 J MATER SCI TECHNOL 15164 JI J. Mater. Sci. Technol. 15165 PY 1996 15166 VL 12 15167 IS 3 15168 BP 238 15169 EP 240 15170 PG 3 15171 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 15172 Engineering 15173 GA UL673 15174 UT ISI:A1996UL67300017 15175 ER 15176 15177 PT J 15178 AU Wang, ZH 15179 TI Application of the coupled mode theory to eigenvalue problems of 15180 graded-index optical fibers 15181 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 15182 DT Article 15183 DE coupled mode theory; eigenvalue and eigenmode; optical fibers 15184 AB The propagation constant and the modal field distribution for guided 15185 modes of an arbitrary graded-index optical fiber have been calculated 15186 with the use of the coupled mode theory. The infinitely extended 15187 parabolic profile fiber is taken as an ideal waveguide, and an 15188 arbitrary radially inhomogenous optical fiber can be viewed as a 15189 perturbation. Its modal field can be expanded in terms of complete set 15190 of ideal waveguide modes. Eigenvalues and modal fields are then 15191 obtained from coupled mode equations that have been transformed into a 15192 set of linear equations. Numerical results have been presented and 15193 compared with exact values. (C) 1996 John Wiley & Sons, Inc. 15194 RP Wang, ZH, SHANGHAI UNIV SCI & TECHNOL,WAVE SCI LAB,SHANGHAI 15195 201800,PEOPLES R CHINA. 15196 CR ABRAMOWITZ M, 1964, HDB MATH FUNCTIONS 15197 ADAMS MJ, 1981, INTRO OPTICAL WAVEGU 15198 GLOGE D, 1971, APPL OPTICS, V10, P2252 15199 KOGELNIK H, 1975, INTEGRATED OPTICS, CH2 15200 MARCUSE D, 1974, THEORY DIELECTRIC OP 15201 MILLER SE, 1954, BELL SYST TECH J, V33, P661 15202 OKOSHI T, 1982, OPTICAL FIBERS 15203 SHEN YR, 1984, PRINCIPLES NONLINEAR, CH6 15204 SNYDER AW, 1983, OPTICAL WAVEGUIDE TH 15205 YAMADA R, 1977, J OPT SOC AM, V67, P96 15206 YARIV A, 1973, IEEE J QUANTUM ELECT, V9, P919 15207 NR 11 15208 TC 1 15209 SN 0895-2477 15210 J9 MICROWAVE OPT TECHNOL LETT 15211 JI Microw. Opt. Technol. Lett. 15212 PD JUN 5 15213 PY 1996 15214 VL 12 15215 IS 2 15216 BP 90 15217 EP 93 15218 PG 4 15219 SC Engineering, Electrical & Electronic; Optics 15220 GA UL075 15221 UT ISI:A1996UL07500011 15222 ER 15223 15224 PT J 15225 AU Wang, W 15226 Wong, PL 15227 Zhang, Z 15228 TI Partial EHL analysis of rib-roller end contact in tapered roller 15229 bearings 15230 SO TRIBOLOGY INTERNATIONAL 15231 DT Article 15232 DE tapered roller bearing; partial elastohydrodynamic lubrication; surface 15233 roughness 15234 ID TORQUE 15235 AB A partial EHL analysis was performed for the tapered rib/spherical 15236 roller end contact in tapered roller bearings. The average Reynolds 15237 equation, the elasticity equation and the pressure-viscosity relation 15238 were solved simultaneously. The effects of the surface roughness as 15239 well as the peculiar geometrical and kinematics parameters of the 15240 rib-roller end contact on the friction torque and film thickness were 15241 investigated. The optimal ratios of radius of curvature of roller end 15242 to rib face were deduced, which confirm the previous finding with the 15243 theory of smooth surfaces. The significant range of surface roughness, 15244 and the optimal surface roughness for the roller big end were obtained. 15245 It was found that asperity contacts extend into the outlet zone. The 15246 results are significant for the design of rib faces and roller ends. 15247 The theoretical treatment is validated by its good correlation with the 15248 existing experimental data for smooth surface contact. Copyright (C) 15249 1996 Elsevier Science Ltd 15250 C1 CITY UNIV HONG KONG,DEPT MFG ENGN,KOWLOON,HONG KONG. 15251 RP Wang, W, SHANGHAI UNIV,DEPT ENGN MECH,POB 224,149 YAN CHANG RD,SHANGHAI 15252 200072,PEOPLES R CHINA. 15253 CR AIHARA S, 1987, J TRIBOL-T ASME, V109, P471 15254 DALMAZ G, 1980, P 7 LEEDS LYON S TRI, V7, P175 15255 ELROD HG, 1979, ASME, V101, P8 15256 GADALLAH N, 1984, J TRIBOL-T ASME, V106, P265 15257 GREENWOOD JA, 1970, P I MECH ENG, V185, P625 15258 JAMISON WE, 1976, ASLE T, V20, P79 15259 JIANG XF, 1994, ASME STLE ANN C HAW 15260 KLECKNER RJ, 1982, ASME T, V104, P99 15261 KORRENN H, 1967, FORTSCHR BER, V1, P11 15262 PATIR N, 1978, ASME, V100, P12 15263 ROELANDS CJA, 1966, CORRELATIONAL ASPECT 15264 TRIPP JH, 1983, ASME, V105, P458 15265 ZHANG Z, 1988, STLE T, V31, P461 15266 ZHOU RS, 1991, J TRIBOL-T ASME, V113, P590 15267 ZHU D, 1988, ASME, V110, P32 15268 NR 15 15269 TC 1 15270 SN 0301-679X 15271 J9 TRIBOL INT 15272 JI Tribol. Int. 15273 PD JUN 15274 PY 1996 15275 VL 29 15276 IS 4 15277 BP 313 15278 EP 321 15279 PG 9 15280 SC Engineering, Mechanical 15281 GA UJ716 15282 UT ISI:A1996UJ71600007 15283 ER 15284 15285 PT J 15286 AU Huang, HC 15287 TI Elliptically birefringent optical fiber transmission characteristics 15288 SO FIBER AND INTEGRATED OPTICS 15289 DT Article 15290 DE birefringence; Faraday effect; optical fiber; optical sensors; 15291 polarization optics 15292 AB This paper presents a rigorous analysis of spun hi-bi (highly 15293 birefringent) fibers, loosely categorized as elliptically bi fibers, 15294 via the initial value problem approach. Two kinds of transmission 15295 problem are treated. In the single-eigenmode transmission regime, it is 15296 found that the major technological difficulty inherent to spun hi-bi 15297 fibers concerns excitation of the eigenmode, which strictly requires 15298 that the launched light be exactly oriented in conformity with one or 15299 the other local principal axes of the fiber and, meanwhile, that the 15300 ellipticity of the launched light be exactly equal to the 15301 eigen-ellipticity of the same fiber. In the second kind of problem that 15302 involves the interaction of two eigenmodes, a basic result is derived 15303 to show that an arbitrary polarization mode of excitation will 15304 reproduce itself in integer multiples of the local beat length. Such a 15305 kind of transmission regime is relieved of the excitation difficulty 15306 but, because of being severely length-sensitive, is inherently 15307 impractical from the application viewpoint. 15308 RP Huang, HC, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 15309 CR BORN M, 1964, PRINCIPLES OPTICS, P36 15310 HUANG HC, 1960, SCI SINICA, V9, P142 15311 HUANG HC, 1983, OPTICAL WAVEGUIDE SC, P57 15312 LI L, 1986, ELECTRON LETT, V22, P1142 15313 NR 4 15314 TC 1 15315 SN 0146-8030 15316 J9 FIBER INTEGRATED OPT 15317 JI Fiber Integr. Opt. 15318 PY 1996 15319 VL 15 15320 IS 2 15321 BP 71 15322 EP 80 15323 PG 10 15324 SC Optics 15325 GA UJ548 15326 UT ISI:A1996UJ54800001 15327 ER 15328 15329 PT J 15330 AU Zhu, XH 15331 Meng, ZY 15332 TI The influence of the morphotropic phase boundary on the dielectric and 15333 piezoelectric properties of the PNN-PZ-PT ternary system 15334 SO JOURNAL OF MATERIALS SCIENCE 15335 DT Article 15336 AB The influence of the morphotropic phase boundary (MPB) on the 15337 dielectric and piezoelectric properties of PbNi1/3Nb2/3-PbZrO3-PbTiO3 15338 (PNN-PZ-PT) ternary system were systematically investigated. The 15339 results showed that the piezoelectric constant d(31) and plane coupling 15340 factor k(p) reached a maximum in the vicinity of morphotropic phase 15341 boundary. The highest value of the piezoelectric constant d(31) was 260 15342 x 10(-12) C/N. The Curie temperature T-c decreased rapidly with 15343 increasing content of PNN. The lattice parameters a increased and c 15344 decreased with increasing PNN content and the Zr/Zr + Ti ratio as a 15345 result of the crystal structural transformation from tetragonal to 15346 rhombohedral phases. 15347 C1 SHANGHAI UNIV,SCH MAT SCI & ENGN,SHANGHAI 201800,PEOPLES R CHINA. 15348 RP Zhu, XH, XIAN JIAOTONG UNIV,SCH ELECT & INFORMAT ENGN,XIAN 15349 710049,PEOPLES R CHINA. 15350 CR 1961, P IRE, V49, P1161 15351 BUYANOVA EA, 1965, IZV AN SSSR FIZ, V29, P1877 15352 KITAMURA T, 1981, JPN J APPL PHYS, V20, P97 15353 KO JS, 1992, P 8 IEEE S APPL FERR, P395 15354 KUDO T, 1970, J AM CERAM SOC, V53, P326 15355 MOON JH, 1993, J AM CERAM SOC, V76, P549 15356 UCHINO K, 1986, PIEZOELECTRIC ELECTR 15357 WANG TB, 1986, J INORGANIC MAT, V2, P143 15358 NR 8 15359 TC 12 15360 SN 0022-2461 15361 J9 J MATER SCI 15362 JI J. Mater. Sci. 15363 PD APR 15 15364 PY 1996 15365 VL 31 15366 IS 8 15367 BP 2171 15368 EP 2175 15369 PG 5 15370 SC Materials Science, Multidisciplinary 15371 GA UJ408 15372 UT ISI:A1996UJ40800028 15373 ER 15374 15375 PT J 15376 AU Liu, ZG 15377 Zhao, WM 15378 Ji, RB 15379 Zhang, ZL 15380 Jiang, XY 15381 Xue, MZ 15382 Fang, B 15383 TI Organic thin film electroluminescent devices with ZnO:Al as the anode 15384 SO JOURNAL OF PHYSICS-CONDENSED MATTER 15385 DT Article 15386 ID DIODES; POLY(3-ALKYLTHIOPHENE) 15387 AB Some organic thin film electroluminescent (EL) devices with 15388 aluminium-doped zinc oxide as the hole-injecting electrode have now 15389 been manufactured. Their EL spectra and J-V and B-V characteristics 15390 have been studied in detail. The work function and ionization potential 15391 of the materials composing the devices have been measured and their 15392 energy models given. The EL performance properties have been explained 15393 well. 15394 C1 E CHINA UNIV CHEM TECHNOL,ELECTRICALLY CONDUCTING POLYMER LAB,SHANGHAI 200237,PEOPLES R CHINA. 15395 RP Liu, ZG, SHANGHAI UNIV SCI & TECHNOL,SCH MAT,SHANGHAI 201800,PEOPLES R 15396 CHINA. 15397 CR ADACHI C, 1988, JPN J APPL PHYS, V27, L269 15398 ADACHI C, 1990, APPL PHYS LETT, V57, P531 15399 AMINAKA E, 1994, JPN J APPL PHYS PT 1, V33, P1061 15400 FOWLER RH, 1928, P R SOC LOND A-CONTA, V119, P173 15401 FUKUDA M, 1989, JPN J APPL PHYS, V28, L1433 15402 HOSOKAWA C, 1992, APPL PHYS LETT, V61, P2503 15403 KAO KC, 1981, ELECT TRANSPORT SOLI 15404 KEDO J, 1993, APPL PHYS LETT, V63, P2627 15405 LIU ZG, 1993, CHIN J LUMIN, V14, P185 15406 OHMORI Y, 1991, JPN J APPL PHYS, V30, P1938 15407 OHMORI Y, 1992, JPN J APPL PHYS 2, V31, L568 15408 ONODA M, 1992, JPN J APPL PHYS, V31, P1107 15409 TANG CW, 1987, APPL PHYS LETT, V51, P913 15410 TANG CW, 1989, J APPL PHYS, V65, P3610 15411 ZHANG C, 1993, J APPL PHYS, V73, P5177 15412 ZHANG ZL, 1994, CHINESE J LUMINESCEN, V15, P363 15413 ZHAO WM, 1995, THIN FILM SCI TECHNO, V8, P153 15414 NR 17 15415 TC 3 15416 SN 0953-8984 15417 J9 J PHYS-CONDENS MATTER 15418 JI J. Phys.-Condes. Matter 15419 PD APR 29 15420 PY 1996 15421 VL 8 15422 IS 18 15423 BP 3221 15424 EP 3228 15425 PG 8 15426 SC Physics, Condensed Matter 15427 GA UJ327 15428 UT ISI:A1996UJ32700014 15429 ER 15430 15431 PT J 15432 AU Qian, JH 15433 Liu, YC 15434 Liu, HY 15435 Yu, TY 15436 Deng, JQ 15437 TI An amperometric new methylene blue N-mediating sensor for hydrogen 15438 peroxide based on regenerated silk fibroin as an immobilization matrix 15439 for peroxidase 15440 SO ANALYTICAL BIOCHEMISTRY 15441 DT Article 15442 ID ENZYME ELECTRODE 15443 AB A simple and effective procedure was described for the immobilization 15444 of peroxidase in regenerated silk. fibroin membrane prepared from waste 15445 silk. The membranes of regenerated silk fibroin with or without 15446 peroxidase, before or after the ethanol treatment, were characterized 15447 by ir spectra. An amperometric H2O2 sensor, based on the immobilized 15448 peroxidase in regenerated silk fibroin membrane, in the use of new 15449 methylene blue N as an electron transfer mediator, was fabricated. The 15450 characteristics of the sensor with respect to linearity, response time, 15451 effect of pH and temperature, stability, and reproducibility were 15452 investigated. Dependences of Michaelis-Menten constant K-M(app) on the 15453 concentration of the mediator, and the applied potential were also 15454 studied and the results were presented. The sensor was highly sensitive 15455 to H2O2 with a detection limit of 1.0 x 10(-7) M and with response time 15456 of less than 40 s. (C) 1996 Academic Press, Inc. 15457 C1 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA. 15458 FUDAN UNIV,DEPT MACROMOLEC SCI,SHANGHAI 200433,PEOPLES R CHINA. 15459 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA. 15460 CR ALBERY J, 1975, ELECTRODE KINETICS 15461 BIFULCO L, 1994, ANAL LETT, V27, P1443 15462 DEMURA M, 1989, J BIOTECHNOL, V10, P113 15463 DENG Q, 1994, J ELECTROANAL CHEM, V377, P191 15464 DURLIAT H, 1989, BIOELECTROCH BIOENER, V22, P197 15465 FREW JE, 1986, J ELECTROANAL CH INF, V201, P1 15466 HOOGVLIET JC, 1991, BIOSENS BIOELECTRON, V6, P413 15467 HURDIS EC, 1954, ANAL CHEM, V26, P320 15468 ITO Y, 1981, J ASSOC OFF ANA CHEM, V64, P1448 15469 KAMIN RA, 1980, ANAL CHEM, V52, P1198 15470 LIU Y, 1995, ANAL CHEM, V67, P1326 15471 LIU YC, 1995, J CHEM TECHNOL BIOT, V64, P269 15472 MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801 15473 MATSUBARA C, 1985, ANAL CHEM, V57, P1107 15474 OLSSON B, 1982, ANAL CHIM ACTA, V136, P113 15475 POPESCU IC, 1995, BIOSENS BIOELECTRON, V10, P443 15476 QIAN JH, 1995, J ELECTROANAL CHEM, V397, P157 15477 SCHUBERT F, 1991, ANAL CHIM ACTA, V245, P133 15478 SHCELLER FW, 1989, BIOSENSORS 15479 TATSUMA T, 1989, ANAL CHEM, V61, P2352 15480 WANG J, 1989, ELECTROANAL, V1, P43 15481 ZHOU XJ, 1995, ANAL CHIM ACTA, V304, P147 15482 NR 22 15483 TC 13 15484 SN 0003-2697 15485 J9 ANAL BIOCHEM 15486 JI Anal. Biochem. 15487 PD MAY 1 15488 PY 1996 15489 VL 236 15490 IS 2 15491 BP 208 15492 EP 214 15493 PG 7 15494 SC Chemistry, Analytical; Biochemical Research Methods; Biochemistry & 15495 Molecular Biology 15496 GA UJ495 15497 UT ISI:A1996UJ49500003 15498 ER 15499 15500 PT J 15501 AU Lu, WC 15502 Yan, LC 15503 Liu, HL 15504 Chen, NY 15505 TI Expert system RECORES for classification and prediction of 15506 resistivities of rare earth complex oxides 15507 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE 15508 DT Article 15509 DE rare earth complex brides; pattern recognition; expert system 15510 AB The relationship between the resistivities of rare earth complex oxides 15511 and their characteristic parameters was studied by chemical bond 15512 parameter-pattern recognition method, An expert system, RECORES, for 15513 the classification and prediction of resistivities of the compounds has 15514 been built on the basis of the classification diagrams and rules found 15515 by the principal; component analysis and Fisher method, The expert 15516 system posesses the basic properties of common expert system as well as 15517 the pattern recognition package used as a visual and effective tool to 15518 save, represent and acquire the knowledges. 15519 C1 ACAD SINICA,SHANGHAI INST MET,SHANGHAI 200050,PEOPLES R CHINA. 15520 RP Lu, WC, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R 15521 CHINA. 15522 CR CHEN N, 1988, ANAL CHIM ACTA, V210, P175 15523 LIU HL, 1992, CHINESE SCI BULL, V2, P113 15524 LIU ZX, 1981, ACTA METALLURGICA SI, V17, P652 15525 LU WC, 1994, CHEM J CHINESE U, V15, P882 15526 NR 4 15527 TC 0 15528 SN 0251-0790 15529 J9 CHEM J CHINESE UNIV-CHINESE 15530 JI Chem. J. Chin. Univ.-Chin. 15531 PD APR 15532 PY 1996 15533 VL 17 15534 IS 4 15535 BP 505 15536 EP 508 15537 PG 4 15538 SC Chemistry, Multidisciplinary 15539 GA UH847 15540 UT ISI:A1996UH84700002 15541 ER 15542 15543 PT J 15544 AU Cai, YD 15545 Tang, Y 15546 Lu, WC 15547 Yan, LC 15548 TI Learning association by self-organization neural tree applied to the 15549 estimation of formation condition for amorphous phase of trinal 15550 fluorides 15551 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE 15552 DT Article 15553 DE fluoride; condition for amorphous formation; artificial neural network; 15554 learning association by self-organization neural tree (LASSONT) 15555 AB In this paper, Learning Association by Self-organization neural 15556 tree(LASSONT) was applied to the estimation of the formation condition 15557 for amorphous phase of trinal fluorides by using the chemical bond 15558 parameters, and the intelligential expert systems for computer 15559 estimation was established, The classification results show that the 15560 performance of the neural tree is good, and therefore LASSONT might be 15561 referred as an effective assistant technique for the investigation of 15562 formation condition of amorphous phase of trinal fluorides. 15563 C1 CHINESE ACAD SCI,SHANGHAI RES CTR BIOTECHNOL,SHANGHAI 200233,PEOPLES R CHINA. 15564 SHANGHAI UNIV,DEPT CHEM,SHANGHAI,PEOPLES R CHINA. 15565 CR FRANK IE, 1982, ANAL CHEM, V54, P232 15566 LI T, 1993, NEUROCOMPUTING, P5 15567 LUO MQ, 1991, 3 NAT C COMP CHEM HA, P102 15568 NR 3 15569 TC 0 15570 SN 0251-0790 15571 J9 CHEM J CHINESE UNIV-CHINESE 15572 JI Chem. J. Chin. Univ.-Chin. 15573 PD APR 15574 PY 1996 15575 VL 17 15576 IS 4 15577 BP 531 15578 EP 534 15579 PG 4 15580 SC Chemistry, Multidisciplinary 15581 GA UH847 15582 UT ISI:A1996UH84700009 15583 ER 15584 15585 PT J 15586 AU Ding, WY 15587 Han, ZH 15588 Chen, YL 15589 Zou, YJ 15590 Liu, X 15591 TI Stereoselective synthesis of cis-1,2-cyclopropane derivatives 15592 SO CHEMICAL RESEARCH IN CHINESE UNIVERSITIES 15593 DT Article 15594 DE cyclopropanation; stereoselective synthesis; arsenic ylide 15595 AB Carbomethoxymethylenetriphenylarsorane 1, or its arsonium bromide in 15596 the presence of K2CO3, reacts with 2, 2-dialkyl-1, 15597 3-dioxa-5-substituted-benzal-4, 6-dione 2 to give 15598 cis-1-methoxycarbonyl-2-aryl-6, 6-dialky-5, 7-dioxa-spiro-[2, 5]-4, 15599 8-octanadione 3 with a moderate to good yield. 15600 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA. 15601 CR DAVIDSON D, 1948, J AM CHEM SOC, V70, P3426 15602 NICOLAOU KC, 1981, J CHEM SOC CHEM COMM, P1195 15603 SCHUSTER P, 1964, MH CHEM, V95, P53 15604 SHEN YC, 1981, ACTA CHIM SINICA, V39, P243 15605 TROST BM, 1991, COMPREHENSIVE ORGANI, V4, P951 15606 NR 5 15607 TC 12 15608 SN 1005-9040 15609 J9 CHEM RES CHINESE UNIV 15610 JI Chem. Res. Chin. Univ. 15611 PD FEB 15612 PY 1996 15613 VL 12 15614 IS 1 15615 BP 50 15616 EP 55 15617 PG 6 15618 SC Chemistry, Multidisciplinary 15619 GA UH840 15620 UT ISI:A1996UH84000009 15621 ER 15622 15623 PT J 15624 AU Wang, SZ 15625 TI Finite-difference time-domain approach to underwater acoustic 15626 scattering problems 15627 SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 15628 DT Article 15629 ID ABSORBING BOUNDARY-CONDITIONS; RADIATION; EQUATIONS 15630 AB The finite-difference time-domain (FDTD) recurrence expressions are 15631 formulated, and the numerical algorithm developed for underwater 15632 acoustic scattering applications, based upon the basic motion equation 15633 and the equation of continuity. The boundary condition implementation 15634 for both soft and rigid surfaces, and the absorbing boundary conditions 15635 on the truncating surface are described. The algorithm simulates the 15636 sound wave propagation in the time domain. As the time-stepping 15637 proceeds,boundary conditions are satisfied naturally. The method is 15638 particularly suited for scattering from complex objects. Near-field 15639 distributions of waves scattered from cylinders with ideal boundary 15640 conditions, insonified by a plane incident wave, are first computed. 15641 Far-field directional patterns are then derived using a Fourier 15642 transform method. The method is then applied to some other objects, 15643 including a square cylinder with an arbitrary aspect angle, and wedges 15644 with either ideally soft or ideally rigid surfaces. A good agreement 15645 between the FDTD and the theoretical results is demonstrated, showing 15646 the potential of the method in the studies of underwater scattering 15647 problems. (C) 1996 Acoustical Society of America. 15648 RP Wang, SZ, SHANGHAI UNIV,SHANGHAI 200072,PEOPLES R CHINA. 15649 CR BOBBER RJ, 1970, UNDERWATER ELECTROAC, P193 15650 CHANG WF, 1989, B SEISMOL SOC AM, V79, P211 15651 CLARK JA, 1992, IEEE 6 SP WORKSH STA, P338 15652 DOUGHERTY M, 1987, J ACOUST SOC AM, V82, P239 15653 FANG J, 1988, P 1988 IEEE AP S INT, P472 15654 FRICKE JR, 1993, J ACOUST SOC AM, V93, P1784 15655 JULL EV, 1981, APERTURE ANTENNAS DI, P38 15656 KELLY KR, 1974, P ROY IR AC C NUM AN, P57 15657 LUEBBERS RJ, 1992, IEEE T ANTENN PROPAG, V40, P1403 15658 MALONEY JG, 1993, IEEE T ANTENN PROPAG, V41, P668 15659 MORSE PM, 1983, VIBRATION SOUND, P347 15660 MUR G, 1981, IEEE T ELECTROMAGN C, V23, P377 15661 RAILTON CJ, 1992, ELECTRON LETT, V628, P1891 15662 ROACHE PJ, 1972, COMPUTATIONAL FLUID 15663 SCHINZINGER R, 1991, CONFORMAL MAPPING ME, P339 15664 STEPHEN RA, 1988, REV GEOPHYS, V26, P445 15665 TAFLOVE A, 1975, IEEE T MICROW THEORY, V23, P623 15666 TAFLOVE A, 1989, P IEEE, V77, P682 15667 TIRKAS PA, 1993, IEEE T ELECTROMAGN C, V35, P192 15668 WANG S, UNPUB EFFICIENT ABSO 15669 WANG S, 1984, CHIN J ACOUST, V3, P121 15670 WANG S, 1985, ACTA ACUST, V10, P247 15671 YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302 15672 NR 23 15673 TC 7 15674 SN 0001-4966 15675 J9 J ACOUST SOC AMER 15676 JI J. Acoust. Soc. Am. 15677 PD APR 15678 PY 1996 15679 VL 99 15680 IS 4 15681 PN Part 1 15682 BP 1924 15683 EP 1931 15684 PG 8 15685 SC Acoustics 15686 GA UF398 15687 UT ISI:A1996UF39800014 15688 ER 15689 15690 PT J 15691 AU Zhang, XL 15692 Liu, HY 15693 Wu, XX 15694 Qi, DY 15695 Zhang, ZY 15696 Dai, M 15697 Deng, JQ 15698 Feng, F 15699 TI Amperometric tetrathiafulvalene-mediated sensor sensitive to reduced 15700 nicotinamide adenine dinucleotide based on co-immobilized lactate 15701 oxidase and lactate dehydrogenase 15702 SO ANALYTICAL COMMUNICATIONS 15703 DT Article 15704 ID CHEMICALLY MODIFIED ELECTRODES; ELECTROCATALYTIC OXIDATION; ENZYME 15705 ELECTRODE; CARBON ELECTRODES; NADH; ADSORPTION; COENZYMES; ACID; SALT 15706 AB An amperometric tetrathiafulvalene (TTF) mediated reduced nicotinamide 15707 adenine dinucleotide (NADH) sensor has been fabricated by 15708 co-immobilizing lactate oxidase and lactate dehydrogenase on an 15709 Eastman-AQ-TTF-modified electrode. The sensor provides low detection 15710 limits of 0.01 mmol l(-1) NADH and 1.0 mu mol l(-1) L-lactate and 15711 pyruvate by means of amplification of the bioelectrocatalytic oxidation 15712 current by the recycling of L-lactate and pyruvate, The response of the 15713 sensor to NADH under N-2 saturation reaches a 95% steady-state current 15714 within 2 min with a linear response at concentrations of 0.05-2.5 mmol 15715 l(-1), The dependence of the apparent Michaelis-Menten constant on 15716 applied potential was studied. 15717 C1 SUZHOU INST CITY CONSTRUCT & ENVIRONM PROTECT,DEPT ENVIRONM PROTECT,SUZHOU 300111,JIANSU,PEOPLES R CHINA. 15718 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA. 15719 SHANGHAI UNIV,INST HYDROGEN STORAGE MAT,SHANGHAI 200072,PEOPLES R CHINA. 15720 RP Zhang, XL, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES 15721 R CHINA. 15722 CR ALBERY WJ, 1987, J ELECTROANAL CH INF, V218, P127 15723 BARD AJ, 1990, ANAL CHEM, V62, P2658 15724 CENAS NK, 1981, J ELECTROANAL CHEM, V128, P103 15725 DEMPSEY E, 1992, BIOSENS BIOELECTRON, V7, P323 15726 ESSAADI K, 1994, J ELECTROANAL CHEM, V367, P275 15727 GABBAY EJ, 1976, BIOCHEMISTRY-US, V15, P2062 15728 GENTILOMI G, 1991, ANAL CHIM ACTA, V255, P387 15729 GORTON L, 1984, J ELECTROANAL CH INF, V161, P103 15730 GORTON L, 1986, J CHEM SOC FARAD T 1, V82, P1245 15731 GORTON L, 1991, ANAL CHIM ACTA, V250, P203 15732 HAJIZADEH K, 1991, ANAL LETT, V24, P1453 15733 HALE PD, 1993, ANAL LETT, V26, P1073 15734 HIN BFYY, 1987, ANAL CHEM, V59, P2111 15735 JAEGFELDT H, 1980, J ELECTROANAL CHEM, V110, P295 15736 KAMACHE M, 1982, J AM CHEM SOC, V104, P4520 15737 KATZ E, 1994, J ELECTROANAL CHEM, V373, P189 15738 KUO KN, 1979, ANAL CHEM, V51, P745 15739 MCNEIL CJ, 1989, ANAL CHEM, V61, P25 15740 MOIROUX J, 1978, ANAL CHEM, V50, P1056 15741 MURTHY ASN, 1994, BIOELECTROCH BIOENER, V33, P71 15742 ONSAKA T, 1993, J CHEM SOC CHEM COMM, P222 15743 RIVERA N, 1994, BIOELECTROCH BIOENER, V34, P169 15744 RYAN MD, 1994, ANAL CHEM, V66, R360 15745 SCOTT DA, 1992, ANAL CHIM ACTA, V256, P47 15746 SIM KW, 1993, ANAL CHIM ACTA, V273, P165 15747 SPRULES SD, 1994, ANALYST, V119, P253 15748 SYMONS RH, 1989, J VIROL METHODS, V23, P299 15749 UEDA C, 1982, ANAL CHEM, V54, P850 15750 XU FQ, 1994, J ELECTROANAL CHEM, V368, P221 15751 YAMADA H, 1994, BIOELECTROCH BIOENER, V33, P91 15752 NR 30 15753 TC 4 15754 SN 1359-7337 15755 J9 ANAL COMMUN 15756 JI Anal. Commun. 15757 PD MAR 15758 PY 1996 15759 VL 33 15760 IS 3 15761 BP 111 15762 EP 114 15763 PG 4 15764 SC Chemistry, Analytical 15765 GA UE375 15766 UT ISI:A1996UE37500008 15767 ER 15768 15769 PT J 15770 AU Li, L 15771 Xu, ZY 15772 Hsu, TY 15773 Ao, Q 15774 TI Optimization of the phase diagram of CeO2-ZrO2 system 15775 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 15776 DT Article 15777 AB Revised phase diagram of the CeO2-ZrO2 system is optimized and the 15778 lattice stability parameters of CeO2 of various phases as well as 15779 solution parameters of phases (liquid, cubic, tetragonal and 15780 monoclinic) are simultaneously obtained by using the Kaufman and 15781 Nesor's model for describing the ceramic solutions and the Lukas 15782 program. 15783 C1 SHANGHAI JIAO TONG UNIV,DEPT MAT SCI,SHANGHAI 200030,PEOPLES R CHINA. 15784 SHANDONG POLYTECH UNIV,DEPT MAT ENGN,JINAN 250014,PEOPLES R CHINA. 15785 RP Li, L, SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R 15786 CHINA. 15787 CR DU Y, 1991, J AM CERAM SOC, V74, P1569 15788 DUWEZ P, 1950, J AM CERAM SOC, V33, P274 15789 GARVIE RC, 1965, J PHYS CHEM-US, V69, P1238 15790 KAUFMAN L, 1987, CALPHAD, V2, P35 15791 LANGE FF, 1981, 12 ROCHW INT, P19 15792 LIN L, 1995, J MATER SCI TECHNOL, V11, P276 15793 LONGO V, 1971, CERAMURGIA INT, V1, P4 15794 LUKAS HL, 1977, CALPHAD, V1, P225 15795 NEGAS T, 1976, 12TH P RAR EARTH RES, P605 15796 ROITTI S, 1972, CERAMURGIA INT, V2, P97 15797 STUBICAN VS, 1981, ADV CERAM, V3, P25 15798 TANI E, 1982, YOGVO KYOKAI SHI, V90, P195 15799 TANI E, 1983, J AM CERAM SOC, V66, P506 15800 NR 13 15801 TC 11 15802 SN 1005-0302 15803 J9 J MATER SCI TECHNOL 15804 JI J. Mater. Sci. Technol. 15805 PY 1996 15806 VL 12 15807 IS 2 15808 BP 159 15809 EP 160 15810 PG 2 15811 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 15812 Engineering 15813 GA UD933 15814 UT ISI:A1996UD93300015 15815 ER 15816 15817 PT J 15818 AU Guo, BY 15819 Li, X 15820 Vazquez, L 15821 TI A Legendre spectral method for solving the nonlinear Klein-Gordon 15822 education 15823 SO COMPUTATIONAL AND APPLIED MATHEMATICS 15824 DT Article 15825 DE Legendre spectral scheme; Klein-Gordon equation 15826 ID EQUATION 15827 AB A Legendre spectral scheme is proposed for solving the initial boundary 15828 value problem of the nonlinear Klein-Gordon equation. The numerical 15829 solution keeps the conservation. Its stability and convergence are 15830 investigated. Numerical results show the advantages of such 15831 approximation. 15832 C1 CITY UNIV HONG KONG,DEPT MATH,KOWLOON,HONG KONG. 15833 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 15834 UNIV COMPLUTENSE MADRID,FAC CIENCIAS FIS,DEPT FIS TEOR,E-28040 MADRID,SPAIN. 15835 CR CANUTO C, 1988, SPECTRAL METHODS FLU 15836 CAO WM, 1993, J COMPUT PHYS, V108, P296 15837 GOU BY, 1982, NUMERICAL MATH, V4, P46 15838 GOU BY, 1982, SCI SINICA A, V25, P702 15839 GOU BY, 1983, J APPL SCI, V1, P25 15840 GOU BY, 1988, DIFFERENCE METHODS P 15841 GOU BY, 1993, NUMERICAL MATH, V2, P38 15842 LIONS JL, 1969, QUELQUES METHODES RE 15843 RICHTMYER RD, 1967, FINITE DIFFERENCE ME 15844 STRAUSS W, 1978, J COMP PHYSIOL, V28, P271 15845 NR 10 15846 TC 1 15847 SN 0101-8205 15848 J9 COMPUT APPL MATH 15849 JI Comput. Appl. Math. 15850 PY 1996 15851 VL 15 15852 IS 1 15853 BP 19 15854 EP 36 15855 PG 18 15856 SC Mathematics, Applied 15857 GA UD917 15858 UT ISI:A1996UD91700002 15859 ER 15860 15861 PT J 15862 AU Lin, L 15863 Delaey, L 15864 VanDerBiest, O 15865 Wollants, P 15866 TI Calculation of isothermal sections of three ternary Ti-Zr-X systems 15867 SO SCRIPTA MATERIALIA 15868 DT Article 15869 C1 KATHOLIEKE UNIV LEUVEN,DEPT MET & MAT ENGN,B-3001 HEVERLEE,BELGIUM. 15870 RP Lin, L, SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R 15871 CHINA. 15872 CR ABRIATA JP, 1982, B ALLOY PHASE DIAGR, V3, P34 15873 ABRIATA JP, 1982, B ALLOY PHASE DIAGRA, V3, P29 15874 AUFFREDIC JP, 1982, J LESS-COMMON MET, V84, P49 15875 BALAKRISHNA SS, 1990, T INDIAN I METALS, V33, P155 15876 BOYER HE, 1973, METALS HDB, V8, P310 15877 BROWN ARG, 1966, MEM SCI REV METALL, V63, P575 15878 BUDBERG PB, 1967, IAN SSSR NEORG MATER, V3, P656 15879 CHAN YA, 1966, AFMLTR652 USAF 2, P5 15880 CHATTERJI D, 1971, MET T, V2, P1271 15881 DOMAGALA RF, 1966, J LESS-COMMON MET, V11, P70 15882 FAN MY, 1982, OPTIMUM TECHNIQUE, P159 15883 FARRAR PA, 1966, T AIME, V236, P1061 15884 FLEWITT PEJ, 1972, J APPL CRYSTALLOGR, V5, P423 15885 GUILLERMET AF, 1991, Z METALLKD, V82, P478 15886 HAYES ET, 1957, USBMU345 US AT EN CO 15887 HAYES ET, 1957, USBMV345 15888 IMGRAM AG, 1961, 59595 WADC BATT MEM 15889 IMGRAM AG, 1962, J LESS-COMMON MET, V4, P217 15890 KAUFMAN L, 1970, COMPUTER CALCULATION 15891 LIN L, 1994, CALPHAD, V18, P89 15892 MAYKUTH DJ, 1953, T AIME, V197, P231 15893 MURRAY JL, COMMUNICATION 15894 MURRAY JL, 1981, B ALLOY PHASE DIAGRA, V2, P181 15895 MURRAY JL, 1981, B ALLOY PHASE DIAGRA, V2, P55 15896 MURRAY JL, 1981, BAPD, V2, P197 15897 MURRAY JL, 1981, BAPD, V2, P62 15898 MURRAY JL, 1987, PHASE DIAGRAMS BINAR, P340 15899 NELDER JA, 1965, COMPUT J, V7, P308 15900 RAUB CJ, 1965, PHYS REV A, V137, P142 15901 RUDY E, 1969, AFMLTR652 USAF 5 15902 VANEFFENTEREE P, 1972, CEAR4330 CTR ET NUCL 15903 NR 31 15904 TC 0 15905 SN 1359-6462 15906 J9 SCRIPTA MATER 15907 JI Scr. Mater. 15908 PD MAY 1 15909 PY 1996 15910 VL 34 15911 IS 9 15912 BP 1411 15913 EP 1416 15914 PG 6 15915 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 15916 Engineering 15917 GA UD557 15918 UT ISI:A1996UD55700012 15919 ER 15920 15921 PT J 15922 AU Bai, ZZ 15923 Wang, DR 15924 TI Improved comparison theorem for the nonlinear multisplitting relaxation 15925 method 15926 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS 15927 DT Article 15928 DE nonlinear multisplitting; relaxation method; monotone convergence; 15929 convergence rate 15930 ID PARALLEL; ALGORITHM 15931 AB A new comparison theorem is given for the nonlinear multisplitting 15932 relaxation method [1], and an important modification is proposed for 15933 it, too. 15934 C1 SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 15935 RP Bai, ZZ, CHINESE ACAD SCI,INST COMPUTAT MATH & SCI ENGN COMP,POB 15936 2719,BEIJING 100080,PEOPLES R CHINA. 15937 CR BAI ZZ, 1993, THESIS SHANGHAI U SC 15938 BAI ZZ, 1994, CHINESE J ENG MATH, V11, P99 15939 BAI ZZ, 1996, COMPUT MATH APPL, V31, P21 15940 FROMMER A, 1989, NUMER MATH, V56, P269 15941 MORE JJ, 1972, SIAM J NUMER ANAL, V9, P357 15942 OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630 15943 ORTEGA JM, 1970, ITERATIVE SOLUTION N 15944 RHEINBOLDT WC, 1970, J MATH ANAL APPL, V32, P274 15945 WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473 15946 WANG DR, 1994, CHINESE ANN MATH B, V15, P335 15947 WANG DR, 1994, P 92 SHANGH INT NUM, P125 15948 WHITE RE, 1986, SIAM J ALGEBRA DISCR, V7, P137 15949 WHITE RE, 1986, SIAM J NUMER ANAL, V23, P639 15950 NR 13 15951 TC 1 15952 SN 0898-1221 15953 J9 COMPUT MATH APPL 15954 JI Comput. Math. Appl. 15955 PD APR 15956 PY 1996 15957 VL 31 15958 IS 8 15959 BP 23 15960 EP 30 15961 PG 8 15962 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied 15963 GA UD547 15964 UT ISI:A1996UD54700003 15965 ER 15966 15967 PT J 15968 AU Lin, SP 15969 Zhou, ZW 15970 TI The hydrodynamic stability of pendent drop under a liquid column 15971 SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME 15972 DT Article 15973 AB The hydrodynamic stability of a liquid column resting on a gas in a 15974 vertical tube with its upper end closed is analyzed. The maximum height 15975 above which the interface is unstable is given as a function of the 15976 Bond number and the density ratio. The instability is shown to be 15977 monotonic, i.e., nonoscillatory. 15978 C1 SHANGHAI UNIV SCI & TECHNOL,INST APPL MATH & MECH,SHANGHAI,PEOPLES R CHINA. 15979 RP Lin, SP, CLARKSON UNIV,DEPT MECH & AERONAUT ENGN,POTSDAM,NY 13699. 15980 CR DUSSAN V, 1975, ARCH RATION MECH AN, V57, P363 15981 HUH C, 1969, THESIS U MINNESOTA 15982 JOSEPH DD, 1976, STABILITY FLUID MOTI 15983 LIN SP, 1990, J FLUID MECH, V218, P641 15984 PITTS E, 1973, J FLUID MECH, V59, P753 15985 PITTS E, 1974, J FLUID MECH, V63, P487 15986 NR 6 15987 TC 0 15988 SN 0021-8936 15989 J9 J APPL MECH 15990 JI J. Appl. Mech.-Trans. ASME 15991 PD MAR 15992 PY 1996 15993 VL 63 15994 IS 1 15995 BP 106 15996 EP 109 15997 PG 4 15998 SC Mechanics 15999 GA UC815 16000 UT ISI:A1996UC81500015 16001 ER 16002 16003 PT J 16004 AU Wang, HZ 16005 TI Incidence-radiation condition of an artificial boundary 16006 SO COMPUTERS & STRUCTURES 16007 DT Article 16008 ID FINITE 16009 AB In this paper, the incidence-radiation composite boundary is presented 16010 for simulating the radiation condition on load incidence boundary. The 16011 theoretical foundations of the composite boundary are region-wise 16012 virtual work equations of wave motion in the finite and infinite 16013 domain. By studying the virtual work equations of changed domain and 16014 original domain, the correct boundary condition of wave motion problems 16015 concerning infinite domain is obtained. This revises the mistake caused 16016 by the current generally used method. Numerical results also show that 16017 the presented incidence-radiation composite boundary is very effective. 16018 RP Wang, HZ, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI 16019 200072,PEOPLES R CHINA. 16020 CR CHEW WC, 1990, WAVES FIELDS INHOMOG 16021 CHIEN W, 1989, ACTA MECH SINICA, V21, P300 16022 LIAO ZP, 1984, SCI SINICA SER A, V27, P1063 16023 LYSMER J, 1969, J ENG MECH DIV ASCE, V95, P859 16024 MEDINA F, 1983, INT J NUMER METH ENG, V19, P1209 16025 SUN J, 1993, SELECTED PAPERS TONG, P71 16026 WHITE W, 1977, J ENG MECH DIV ASCE, V103, P949 16027 WOLF JP, 1981, DYNAMIC SOIL STRUCTU 16028 ZIENKIEWICZ OC, 1991, FINITE ELEMENT METHO, V2 16029 NR 9 16030 TC 0 16031 SN 0045-7949 16032 J9 COMPUT STRUCT 16033 JI Comput. Struct. 16034 PD MAY 17 16035 PY 1996 16036 VL 59 16037 IS 4 16038 BP 743 16039 EP 749 16040 PG 7 16041 SC Computer Science, Interdisciplinary Applications; Engineering, Civil 16042 GA UC192 16043 UT ISI:A1996UC19200014 16044 ER 16045 16046 PT J 16047 AU Xiao, YW 16048 Zhang, ZW 16049 TI Investigation on the potentiostatic polymerization of low concentration 16050 aniline 16051 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE 16052 DT Article 16053 DE potentiostatic method; electrochemical polymerization; low 16054 concentration aniline 16055 AB In this paper, the electrochemical polymerization of low concentration 16056 aniline was studied by potentiostatic method. The equation of polymeric 16057 current simultaneously controlled by diffusion and electrode reaction 16058 was derived and verified successfully, Some electrochemical parameters 16059 of polymeric reaction, such as alpha(boolean AND), k(s)' and D-R, were 16060 determined. 16061 C1 NANJING UNIV, DEPT CHEM, NANJING 210093, PEOPLES R CHINA. 16062 RP Xiao, YW, SHANGHAI UNIV SCI & TECHNOL, DEPT CHEM, SHANGHAI 201800, 16063 PEOPLES R CHINA. 16064 CR BREITENHACH M, 1971, ELECTROANAL CHEM ELE, V29, P29 16065 DIAZ AF, 1980, J ELECTROANAL CHEM, V111, P111 16066 DUNSCH L, 1975, J ELECTROANAL CHEM, V61, P61 16067 MOHILNER DM, 1962, J AM CHEM SOC, V84, P3618 16068 XIAO YW, IN PRESS ACTA CHIM S 16069 YIN B, IN PRESS ACTA CHIMIC 16070 YIN B, 1995, ACTA CHIM SINICA, V53, P73 16071 NR 7 16072 TC 0 16073 SN 0251-0790 16074 J9 CHEM J CHINESE UNIV-CHINESE 16075 JI Chem. J. Chin. Univ.-Chin. 16076 PD DEC 16077 PY 1995 16078 VL 16 16079 IS 12 16080 BP 1852 16081 EP 1855 16082 PG 4 16083 SC Chemistry, Multidisciplinary 16084 GA UC194 16085 UT ISI:A1995UC19400007 16086 ER 16087 16088 PT J 16089 AU Zhao, PS 16090 Yun, S 16091 Hu, ZM 16092 Qi, DY 16093 TI Quantitative analysis of a mixture with reversible electrode processes 16094 by cyclic voltammetry and linear sweep voltammetry 16095 SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY 16096 DT Article 16097 DE digital simulation; quantitative analysis; reversible electrode 16098 processes; cyclic voltammetry; linear sweep voltammetry 16099 ID RESOLUTION ENHANCEMENT 16100 AB The theories of the linear sweep voltammetry (LSV) and cyclic 16101 voltammetry (CV), including branch cyclic voltammetry (BACV), of a 16102 mixture containing two components whose electrode processes are 16103 reversible and independent are described. The digital simulation method 16104 is used to simulate the theoretical linear sweep and cyclic 16105 voltammograms at spherical electrodes. A mixture of Pb2+ and Cd2+ at 16106 hanging mercury drop electrodes is used to test the theories. Both 16107 theory and experiment show that, in the presence of a species which is 16108 reduced at more positive potentials, it is difficult to determine the 16109 concentration of another species; considerable error could be caused in 16110 LSV, but CV based on the reverse branch of a cyclic voltammogram and 16111 BACV show less error. The allowed concentration of the more positively 16112 reduced species with a 10% relative error in CV and BACV is about four 16113 to twenty times more than that in LSV. However, in the presence of a 16114 species that is reduced at more negative potentials, LSV shows far less 16115 error than BACV and CV. The theoretical and experimental results are 16116 consistent. 16117 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA. 16118 CR BARD AJ, 1980, ELECTROCHEMICAL METH, P232 16119 BOND AM, 1980, MODERN POLAROGRAPHIC, P207 16120 ENGBLOM SO, 1990, J ELECTROANAL CH INF, V296, P371 16121 FELDBERG SW, 1969, ELECTROANALYTICAL CH, V3, P199 16122 KISSINGER PT, 1983, J CHEM EDUC, V60, P702 16123 MABBOTT GA, 1983, J CHEM EDUC, V60, P697 16124 MYLAND JC, 1983, J ELECTROANAL CH INF, V153, P43 16125 MYLAND JC, 1986, J ELECTROANAL CH INF, V206, P1 16126 NICHOLSON RS, 1964, ANAL CHEM, V36, P706 16127 OLDHAM KB, 1983, ANAL CHEM, V55, P1992 16128 OSTERYOUNG J, 1986, ANAL CHEM S SER, V25, P3 16129 OSTERYOUNG J, 1986, ELECTROANAL CHEM, V14, P209 16130 PALYS M, 1991, TALANTA, V38, P723 16131 PIZETA I, 1990, J ELECTROANAL CH INF, V296, P395 16132 POLCYN DS, 1966, ANAL CHEM, V38, P370 16133 ROONEY RC, 1963, J POLAROGRAPH SOC, V9, P45 16134 TOKUDA K, 1983, J ELECTROANAL CH INF, V159, P23 16135 ZHAO P, 1987, ACTA CHIM SINICA, V45, P1163 16136 NR 18 16137 TC 0 16138 SN 0022-0728 16139 J9 J ELECTROANAL CHEM 16140 JI J. Electroanal. Chem. 16141 PD FEB 7 16142 PY 1996 16143 VL 402 16144 IS 1-2 16145 BP 11 16146 EP 17 16147 PG 7 16148 SC Chemistry, Analytical; Electrochemistry 16149 GA UC280 16150 UT ISI:A1996UC28000002 16151 ER 16152 16153 PT J 16154 AU Chian, JF 16155 TI Ceramic glass from flying-ash 16156 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY 16157 DT Meeting Abstract 16158 C1 SUNY COLL ONEONTA,DEPT CHEM,ONEONTA,NY 13820. 16159 SHANGHAI UNIV,SHANGHAI,PEOPLES R CHINA. 16160 NR 0 16161 TC 0 16162 SN 0065-7727 16163 J9 ABSTR PAP AMER CHEM SOC 16164 JI Abstr. Pap. Am. Chem. Soc. 16165 PD MAR 24 16166 PY 1996 16167 VL 211 16168 PN Part 1 16169 BP 631 16170 EP INOR 16171 PG 1 16172 SC Chemistry, Multidisciplinary 16173 GA UA482 16174 UT ISI:A1996UA48203648 16175 ER 16176 16177 PT J 16178 AU Zhao, XH 16179 Chen, WF 16180 TI The influence of interface layer on microstructural stresses in mortar 16181 SO INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN 16182 GEOMECHANICS 16183 DT Article 16184 DE concrete; interface layer; microstructure; mortar; stress 16185 AB In this paper, the influence of geometrical and physical parameters 16186 (size of the sand particle, thickness of the interface layer and ratios 16187 of the modulus of elasticity) on stress distributions in a mortar is 16188 studied. It is found that a weak or soft interface layer in the mortar 16189 will greatly reduce the strength of the concrete; if the modulus of the 16190 interface layer approaches to that of the cement paste and the modulus 16191 of the sand particle (or aggregate) is 4-10 times as large as that of 16192 the cement paste, the concrete will possess a much higher strength and 16193 thus has a better property. 16194 C1 PURDUE UNIV,SCH CIVIL ENGN,W LAFAYETTE,IN 47907. 16195 RP Zhao, XH, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI,PEOPLES 16196 R CHINA. 16197 CR BENVENISTE Y, 1989, MECH MATER, V7, P305 16198 CHEN WF, 1994, 146 ASME AMR 16199 CHRISTENSEN RM, 1979, J MECH PHYS SOLIDS, V27, P315 16200 COHEN MD, 1994, CEMENT CONCRETE RES, V24, P95 16201 YAMAGUCHI E, 1991, J ENG MECH-ASCE, V117, P653 16202 ZHAO XH, 1994, CESTR9423 PURD U SCH 16203 NR 6 16204 TC 2 16205 SN 0363-9061 16206 J9 INT J NUMER ANAL METH GEOMECH 16207 JI Int. J. Numer. Anal. Methods Geomech. 16208 PD MAR 16209 PY 1996 16210 VL 20 16211 IS 3 16212 BP 215 16213 EP 228 16214 PG 14 16215 SC Engineering, Geological; Materials Science, Multidisciplinary; Mechanics 16216 GA UA784 16217 UT ISI:A1996UA78400005 16218 ER 16219 16220 PT J 16221 AU Zhang, F 16222 Cao, ZC 16223 TI Modified model in positive temperature coefficient of resistance BaTiO3 16224 ceramics 16225 SO JOURNAL OF APPLIED PHYSICS 16226 DT Article 16227 AB Current-voltage and resistivity-voltage measurements have been made on 16228 donor-doped BaTiO3 ceramics in order to investigate the nature of the 16229 current transport processes. It is found that the characteristics of 16230 the current-voltage do not follow the Heywang model [Solid-State 16231 Electron. 3, 51 (1961)]. Hence, the classical Heywang model is modified 16232 and the thermionic emission model with smoothly changed barrier 16233 resulted from image force is suggested. The modified theory coincides 16234 better with the experimental observation. The dependence between 16235 current density and voltage is J=J(0) exp[-(phi(0)-beta V-1/2)/kT]. The 16236 relationship between resistivity and voltage (voltage effect) is 16237 rho=(2kT/dJ(0) beta)V-1/2 exp[(phi(0)-beta V-1/2)/kT]. From the 16238 modified model, the maximum barrier height of BaTiO3 ceramics can be 16239 deduced experimentally as well. (C) 1996 American Institute of Physics. 16240 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SCI & ENGN,SHANGHAI 201800,PEOPLES R CHINA. 16241 RP Zhang, F, CHINESE ACAD SCI,SHANGHAI INST MET,ION BEAM LAB,SHANGHAI 16242 200050,PEOPLES R CHINA. 16243 CR HAAYMAN PW, 1995, 925350, GE 16244 HEYWANG W, 1961, SOLID STATE ELECTRON, V3, P51 16245 HEYWANG W, 1964, J AM CERAM SOC, V47, P484 16246 JONKER GH, 1964, SOLID STATE ELECTRON, V7, P895 16247 NEMOTO H, 1980, J AM CERAM SOC, V63, P398 16248 SIMMONS JG, 1964, J APPL PHYS, V35, P2472 16249 SMYTHE WR, 1950, STATIC DYNAMIC ELECT 16250 NR 7 16251 TC 3 16252 SN 0021-8979 16253 J9 J APPL PHYS 16254 JI J. Appl. Phys. 16255 PD MAR 1 16256 PY 1996 16257 VL 79 16258 IS 5 16259 BP 2487 16260 EP 2490 16261 PG 4 16262 SC Physics, Applied 16263 GA TY119 16264 UT ISI:A1996TY11900046 16265 ER 16266 16267 PT J 16268 AU Ye, ZM 16269 TI Plastic zone characteristics of crack tip in anisotropic solids 16270 SO INTERNATIONAL JOURNAL OF FRACTURE 16271 DT Article 16272 RP Ye, ZM, SHANGHAI UNIV,DEPT CIVIL ENGN,149 YAN CHANG RD,SHANGHAI 16273 200072,PEOPLES R CHINA. 16274 CR ERDOGAN F, 1963, J BASIC ENG, V85, P519 16275 LIEBOWITZ H, 1968, FRACTURE ADV TREATIS, V2 16276 SIH GC, 1974, INT J FRACTURE MECH, V10, P305 16277 WU EM, 1968, COMP MAT WORKSH, P20 16278 ZHIMING Y, 1994, ENG FRACT MECH, V49, P797 16279 NR 5 16280 TC 0 16281 SN 0376-9429 16282 J9 INT J FRACTURE 16283 JI Int. J. Fract. 16284 PY 1996 16285 VL 74 16286 IS 1 16287 BP R3 16288 EP R10 16289 PG 8 16290 SC Mechanics 16291 GA TX339 16292 UT ISI:A1996TX33900008 16293 ER 16294 16295 PT J 16296 AU Ding, WZ 16297 Olsen, SE 16298 TI Reaction equilibria in the production of manganese ferroalloys 16299 SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND 16300 MATERIALS PROCESSING SCIENCE 16301 DT Article 16302 AB A laboratory investigation has been carried out to determine slag/metal 16303 and slag/metal/gas equilibria relevant to production of manganese 16304 ferroalloys. The metal phase was normally composed of Mn-Si-C-sat 16305 alloys, but in some experiments, the alloys contained up to 15 wt pet 16306 Fe. Different slag systems were used: MnO-SiO2, MnO-SiO2-CaO, 16307 MnO-SiO2-Al2O3, and quaternary MnO-SiO2-CaO-Al2O3 with fixed CaO/Al2O3 16308 weight ratios of 1.5 and 3. The experiments were normally made in CO 16309 gas atmosphere at temperatures ranging from 1450 degrees C to 1600 16310 degrees C. The results give comprehensive information about equilibrium 16311 relations. Partial and complete equilibria are illustrated in 16312 equilibrium diagrams. Partial equilibrium is a situation in which 16313 equilibrium is established with respect to certain variables but not to 16314 others, in this case, between slag and metal but not with the gas 16315 phase. The effect of temperature was found to be of minor importance 16316 for the partial slag/metal equilibrium, whereas the complete 16317 slag/metal/gas equilibrium is considerably influenced by both 16318 temperature and CO pressure. As expected, increasing temperature and 16319 decreasing CO pressure will reduce the equilibrium MnO content of 16320 slags. The influence of alumina addition to the slag phase and of iron 16321 to the metal phase is also discussed. 16322 C1 UNIV TRONDHEIM,NORWEGIAN INST TECHNOL,DEPT MET,N-7034 TRONDHEIM,NORWAY. 16323 RP Ding, WZ, SHANGHAI UNIV SCI & TECHNOL,DEPT MET,SHANGHAI 200072,PEOPLES 16324 R CHINA. 16325 CR ABRAHAM KP, 1960, J IRON STEEL I, V196, P82 16326 AHMAD N, 1978, METALL T A, V9, P1857 16327 ASHIN AK, 1977, IZV AKAD NAUK SSSR M, P232 16328 BALATIN GI, 1974, UKR KHIM ZH, V40, P542 16329 CENGIZLER H, 1992, P 6 INT FERR C 1992, P167 16330 CHIPMAN J, 1952, T AM SOC MET, V44, P1215 16331 DARKEN RS, 1953, PHYSICAL CHEM METALS, P144 16332 DING W, 1993, THESIS NORWEGIAN I T 16333 ESIN OA, 1954, RUSS ZH APPL CHEM, V27, P1252 16334 FUJISAWA T, 1977, TETSU TO HAGANE, V63, P1494 16335 GEE R, 1976, SCAND J METALL, V5, P57 16336 GEE R, 1978, SCAND J METALL, V7, P38 16337 GELDENHUIS JMA, 1992, P 6 INT FERR C 1992, P105 16338 GLASSER FP, 1962, J AM CERAM SOC, V45, P242 16339 GZIELO A, 1986, NEUE HUTTE, P100 16340 KOR GJW, 1979, METAL T B, V10, P367 16341 KORBER F, 1936, MITT KAIS WILH I EIS, V18, P109 16342 LEE YE, 1980, CAN METALL Q, V19, P315 16343 MEHTA SR, 1965, J IRON STEEL I, V203, P524 16344 MUAN A, 1965, PHASE EQUILIBRIA OXI 16345 NI RM, 1990, STEEL RES, V61, P113 16346 PETRUSHEVSKII MS, 1959, J PRIKLADNOI KHEMI, V32, P86 16347 PETRUSHEVSKII MS, 1973, RUSS J PHYS CHEM, V47, P158 16348 RANKIN WJ, 1978, 1959 NIM 16349 RAO BKD, 1981, METALL T B, V12, P469 16350 RAO BKDP, 1981, METALL TRANS B, V12, P311 16351 REIN RH, 1963, T METALL SOC AIME, V227, P1193 16352 RESER MK, PHASE DIAGRAMS CERAM, P630 16353 SHARMA RA, 1965, T METALL SOC AIME, V233, P1586 16354 SKIREDJ O, 1963, T TMS AIME, V227, P536 16355 STAPLETON JM, 1961, J MET, V13, P45 16356 TANAKA A, 1977, J JPN I MET, V41, P601 16357 TANAKA A, 1980, MURORAN KOGYO DAIGAK, V10, P19 16358 TANAKA A, 1980, TETSU TO HAGANE, V66, P1474 16359 TURKDOGAN ET, 1956, J IRON STEEL I, V182, P274 16360 TURKDOGAN ET, 1957, T I MIN METALL, V67, P573 16361 TUSET JK, 1970, 340358 SINTEF 16362 TUSET JK, 1970, 340420 SINTEF 16363 VORONOV VA, 1982, RUSS METALL+, P22 16364 WARREN GF, 1975, P 1 INT FERR C 1974, P175 16365 YAKOSHEVITCH NF, 1969, IZV VUZ CHERN METALL, P48 16366 ZAITSEV AI, 1989, RASPLAVY, V3, P9 16367 NR 42 16368 TC 10 16369 SN 1073-5623 16370 J9 METALL MATER TRANS B 16371 JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. 16372 PD FEB 16373 PY 1996 16374 VL 27 16375 IS 1 16376 BP 5 16377 EP 17 16378 PG 13 16379 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 16380 Engineering 16381 GA TW621 16382 UT ISI:A1996TW62100001 16383 ER 16384 16385 PT J 16386 AU Ye, RS 16387 Yang, ZH 16388 TI Double S-breaking cubic turning points and their computation 16389 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 16390 DT Article 16391 AB In the paper we are concerned with double S-breaking cubic turning 16392 points of two-parameter nonlinear problems in the presence of 16393 Z(2)-symmetry. Three extended systems are proposed to determine double 16394 S-breaking cubic turning points. We show that there exist two kinds of 16395 singular point path passing through double S-breaking cubic turning 16396 point, One is the simple quadratic turning point path, the other is the 16397 pitchfork bifurcation point path. 16398 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 16399 CR ALLGOWER EL, 1984, ISNM70, P15 16400 GOLUBITSKY M, 1985, SINGULARITIES GROUPS, V2 16401 MA YN, 1990, J COMPUT MATH, V8, P261 16402 SPENCE A, 1982, IMA J NUMER ANAL, V2, P413 16403 WERNER B, 1984, ISNM70, P562 16404 WERNER B, 1984, SIAM J NUMER ANAL, V21, P388 16405 WU W, 1993, NUMERICAL MATH J CHI, V2, P101 16406 YANG ZH, 1991, J COMPUT MATH, V9, P149 16407 NR 8 16408 TC 0 16409 SN 0254-9409 16410 J9 J COMPUT MATH 16411 JI J. Comput. Math. 16412 PD JAN 16413 PY 1996 16414 VL 14 16415 IS 1 16416 BP 8 16417 EP 22 16418 PG 15 16419 SC Mathematics, Applied; Mathematics 16420 GA TU315 16421 UT ISI:A1996TU31500002 16422 ER 16423 16424 PT J 16425 AU Ding, WY 16426 Cao, WG 16427 Yao, Y 16428 Zhu, ZM 16429 TI Synthesis of dimethyl 16430 3-perfluoroalkyl-4-(3-oxo-2-triphenylphosphoranylidenbutanylidene)-pent- 16431 2-enedioate and its cyclization 16432 SO CHINESE JOURNAL OF CHEMISTRY 16433 DT Article 16434 DE phosphorane; polysubstituted arene; intramolecular cyclization 16435 ID ACYCLIC PRECURSORS; FACILE SYNTHESIS; METHYL 16436 AB The title compounds 5a-5c were prepared via the reaction of methyl 16437 2-perfluoroalkynoates (4) with methyl 16438 5-oxo-4-(triphenylphosphoranylidene)hex-2-enoate (3), which was 16439 obtained from the reaction of methyl propynate (2) with 16440 acetylmethylenetriphenylphosphorane (1) at -5-0 degrees C. 16441 Intramolecular elimination of Ph(3)PO took place when compound 5 was 16442 heated in aqueous methanol at 115-120 degrees C in sealed tube, 16443 yielding dimethyl 2-trifluoromethyl-4-methylisophthalate (6a) from 5a 16444 and methyl 5-acetyl-4-hydroxy-2-heptafluoropropanylbenzoate (6b) from 16445 5b, respectively. The structures of compounds 5, 6a and 6b were 16446 confirmed by IR, MS, H-1 NMR, F-19 NMR and C-13 NMR spectroscopy and 16447 elemental analyses. Rection mechanisms for the formation of compounds 16448 5, 6a and 6b were proposed. 16449 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA. 16450 CR BANKS RE, 1979, ORGANOFLUORINE CHEM 16451 DING WY, 1986, ACTA CHIM SINICA, V44, P62 16452 DING WY, 1987, TETRAHEDRON LETT, V28, P81 16453 DING WY, 1992, SYNTHESIS-STUTTGART, P635 16454 DING WY, 1993, CHINESE J CHEM, V11, P81 16455 DING WY, 1993, J CHEM SOC P1, P855 16456 HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47 16457 JUNG ME, 1988, J AM CHEM SOC, V110, P3965 16458 MANN J, 1987, CHEM SOC REV, V16, P381 16459 MCCLINTON MA, 1992, TETRAHEDRON, V48, P6555 16460 RAMIREZ F, 1957, J ORG CHEM, V22, P41 16461 WELCH JT, 1987, TETRAHEDRON, V43, P3123 16462 WOLF V, 1953, CHEM BER, V86, P735 16463 NR 13 16464 TC 6 16465 SN 1001-604X 16466 J9 CHINESE J CHEM 16467 JI Chin. J. Chem. 16468 PD SEP 16469 PY 1995 16470 VL 13 16471 IS 5 16472 BP 468 16473 EP 474 16474 PG 7 16475 SC Chemistry, Multidisciplinary 16476 GA TU139 16477 UT ISI:A1995TU13900014 16478 ER 16479 16480 PT J 16481 AU Jiang, XF 16482 Wong, PL 16483 Zhang, ZM 16484 TI Thermal non-Newtonian EHL analysis of rib-roller end contact in tapered 16485 roller bearings 16486 SO JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME 16487 DT Article 16488 ID LUBRICATION 16489 AB An EHL approach to the rib-roller end contact in tapered roller 16490 bearings has been achieved by taking into account the non-Newtonian 16491 behavior of lubricants and thermal effects and with full consideration 16492 of the peculiar geometrical and kinematic conditions. Two kinds of 16493 geometrical configurations of rib and roller end were investigated 16494 tapered rib/spherical roller end and spherical rib/spherical roller 16495 end. Optimal ratios of curvature radius of roller end to rib face were 16496 deduced. The film thickness, friction torque, lubricant temperature, 16497 and surface temperature at various speeds and loads were calculated. 16498 C1 CITY UNIV HONG KONG,DEPT MFG ENGN,KOWLOON,HONG KONG. 16499 SHANGHAI UNIV,DEPT ENGN MECH,SHANGHAI 200072,PEOPLES R CHINA. 16500 CR ARAMAKI H, 1992, J TRIBOL-T ASME, V114, P311 16501 BAIR S, 1979, ASME, V101, P258 16502 CARSLAW HS, 1959, CONDUCTION HEAT SOLI 16503 CHITTENDEN RJ, 1985, P ROY SOC LOND A MAT, V397, P245 16504 DALMAZ G, 1980, 7TH P LEEDS LY S TRI, V7, P175 16505 DOWSON D, 1977, ELASTOHYDRODYNAMIC L 16506 GADALLAH N, 1984, J TRIBOL-T ASME, V106, P265 16507 HAMROCK BJ, 1981, BALL BEARING LUBRICA 16508 JAMISON WE, 1977, ASLE T, V20, P79 16509 JIANG XF, 1993, P INT S TRIBOLOGY 93, P147 16510 JOHNSON KL, 1977, P ROY SOC LOND A MAT, V356, P215 16511 KORRENN H, 1970, FORTSCHR BER, V1, P11 16512 ROELANDS CJA, 1966, CORRELATIONAL ASPECT 16513 WANG SH, 1987, J TRIBOL-T ASME, V109, P666 16514 ZHANG Z, 1988, STLE T, V31, P461 16515 ZHOU RS, 1991, J TRIBOL-T ASME, V113, P590 16516 NR 16 16517 TC 2 16518 SN 0742-4787 16519 J9 J TRIBOL-TRANS ASME 16520 JI J. Tribol.-Trans. ASME 16521 PD OCT 16522 PY 1995 16523 VL 117 16524 IS 4 16525 BP 646 16526 EP 654 16527 PG 9 16528 SC Engineering, Mechanical 16529 GA TT886 16530 UT ISI:A1995TT88600016 16531 ER 16532 16533 PT J 16534 AU Du, B 16535 Yang, KZ 16536 Zhong, SS 16537 TI Theoretical analysis of a parabolic torus reflector antenna with 16538 multibeam 16539 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY 16540 DT Article 16541 DE multibeam antenna; single offset antenna; parabolic torus reflector 16542 antenna 16543 AB The parametric equations and the formulas of unit normal vector and 16544 surface element for a parabolic torus reflector antenna are derived and 16545 the mechanism of producing multibeam is proposed. Based on physical 16546 optics, the radiation pattern formulas for the antenna are given, with 16547 which the effects of geometric parameters on the antenna are studied. 16548 The good agreement between the calculated patterns and the measured 16549 ones shows that the theory is helpful for designing parabolic torus 16550 antennas. 16551 C1 MINIST ELECTR IND,INST 54,SHIJIAZHUANG 050081,PEOPLES R CHINA. 16552 RP Du, B, SHANGHAI UNIV SCI & TECHNOL,DEPT ELECTR ENGN,SHANGHAI 16553 201800,PEOPLES R CHINA. 16554 CR HDB MATH, P307 16555 1979, HDB MATH, V415, P416 16556 BOSWELL AGP, 1978, MARCONI REV, V41, P237 16557 HYDE G, 1974, COMSAT TECH REV, V4, P231 16558 LUDWING AC, 1973, IEEE T ANTENN PROPAG, V2, P116 16559 NR 5 16560 TC 1 16561 SN 1001-6511 16562 J9 SCI CHINA SER A 16563 JI Sci. China Ser. A-Math. Phys. Astron. 16564 PD DEC 16565 PY 1995 16566 VL 38 16567 IS 12 16568 BP 1520 16569 EP 1531 16570 PG 12 16571 SC Mathematics, Applied; Mathematics 16572 GA TQ966 16573 UT ISI:A1995TQ96600012 16574 ER 16575 16576 PT J 16577 AU Wang, ZX 16578 Pan, JS 16579 Luo, WY 16580 Li, XN 16581 Wang, CS 16582 TI Preferential sputtering from Ni-Pd alloy in the phase transition region 16583 SO JOURNAL OF MATERIALS SCIENCE LETTERS 16584 DT Article 16585 ID PARTICLES 16586 C1 ACAD SINICA,INST NUCL RES,SHANGHAI 201800,PEOPLES R CHINA. 16587 SHANGHAI UNIV,SHANGHAI APPL RADIAT INST,SHANGHAI 201800,PEOPLES R CHINA. 16588 RP Wang, ZX, CCAST,WORLD LAB,POB 8730,BEIJING 100080,PEOPLES R CHINA. 16589 CR BETZ G, 1983, SPUTTERING PARTICLE, V2, P11 16590 KELLY R, 1985, SURF INTERFACE ANAL, V7, P1 16591 KIRSCHNER J, 1985, NUCL INSTRUM METH B, V7, P742 16592 SHAKIROV R, 1992, NUCL INSTRUM METH B, V67, P540 16593 SIGMUND P, 1969, PHYS REV, V184, P383 16594 SIGMUND P, 1982, NUCL INSTRUM METHODS, V194, P541 16595 SLUSSER GJ, 1979, SURF SCI, V84, P211 16596 WANG ZX, 1993, NUCL INSTRUM METH B, V74, P380 16597 YURASOVA VE, 1983, VACUUM, V33, P565 16598 YURASOVA VE, 1986, VACUUM, V36, P630 16599 NR 10 16600 TC 0 16601 SN 0261-8028 16602 J9 J MATER SCI LETT 16603 JI J. Mater. Sci. Lett. 16604 PD JAN 15 16605 PY 1996 16606 VL 15 16607 IS 2 16608 BP 149 16609 EP 150 16610 PG 2 16611 SC Materials Science, Multidisciplinary 16612 GA TQ664 16613 UT ISI:A1996TQ66400017 16614 ER 16615 16616 PT J 16617 AU Ma, GB 16618 Tan, WH 16619 TI Field enhancement due to anomalous skin effect inside a target 16620 SO PHYSICS OF PLASMAS 16621 DT Article 16622 ID HIGH-DENSITY PLASMA; LASER-PULSES; ABSORPTION 16623 AB A new method based on Fourier transformation to study the skin effects 16624 is presented. Using this method, the field amplitude in plasma is 16625 represented in terms of electric conductivity, and the normal and 16626 anomalous skin effects are described through one formula by omitting 16627 the plasma dispersion or not. The results are in agreement with other 16628 publications [e.g., J. P. Matte and K. Aguenaou, Phys. Rev. A 45, 2558 16629 (1992)] for equivalent parameters. But for deeper positions inside a 16630 target, which have not been studied by others, it is found that the 16631 field amplitude is considerably enhanced due to an anomalous skin 16632 effect, even for constant collision frequency. In addition, the skin 16633 absorptions and some calculations on an anomalous skin effect for 16634 different collision frequencies are also presented. (C) 1996 American 16635 Institute of Physics. 16636 C1 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 16637 RP Ma, GB, ACAD SINICA,SHANGHAI INST OPT & FINE MECH,POB 800211,SHANGHAI 16638 201800,PEOPLES R CHINA. 16639 CR BLEVIN HA, 1970, PHYS FLUIDS, V10, P1259 16640 BLEVIN HA, 1973, PHYS FLUIDS, V13, P82 16641 BRUNEL F, 1988, PHYS FLUIDS, V31, P2714 16642 BULANOV SV, 1994, PHYS PLASMAS, V1, P745 16643 DENAVIT J, 1992, PHYS REV LETT, V69, P3052 16644 FEDOSEJEVS R, 1990, APPL PHYS B-PHOTO, V50, P79 16645 FEDOSEJEVS R, 1990, PHYS REV LETT, V64, P1250 16646 FRIED BD, 1961, PLASMA DISPERSION FU 16647 GAMALIY EG, 1990, PHYS REV A, V42, P929 16648 GAUTSCHI W, 1964, APPLIED MATH SERIES, V55, P295 16649 GIBBON P, 1992, PHYS REV LETT, V68, P1535 16650 ICHIMARU S, 1973, BASIC PRINCIPLES PLA, CH3 16651 JACKSON JD, 1962, CLASSICAL ELECTRODYN, P220 16652 KIEFFER JC, 1989, PHYS REV LETT, V62, P760 16653 KIEFFER JC, 1991, PHYS FLUIDS B-PLASMA, V3, P167 16654 MATTE JP, 1992, PHYS REV A, V45, P2558 16655 MURNANE MM, 1989, PHYS REV LETT, V62, P155 16656 NG A, 1994, PHYS REV LETT, V72, P3351 16657 ROZMUS W, 1990, PHYS REV A, V42, P7401 16658 SAUERBREY R, 1994, PHYS PLASMAS, V1, P1635 16659 WEIBEL ES, 1967, PHYS FLUIDS, V10, P741 16660 WILKS SC, 1992, PHYS REV LETT, V69, P1383 16661 ZIGLER A, 1991, APPL PHYS LETT, V59, P534 16662 ZIMAN JM, 1969, PRINCIPLES THEORY SO, P241 16663 ZIMAN JM, 1981, PHYS MET, V1, P102 16664 NR 25 16665 TC 2 16666 SN 1070-664X 16667 J9 PHYS PLASMAS 16668 JI Phys. Plasmas 16669 PD JAN 16670 PY 1996 16671 VL 3 16672 IS 1 16673 BP 349 16674 EP 353 16675 PG 5 16676 SC Physics, Fluids & Plasmas 16677 GA TP807 16678 UT ISI:A1996TP80700040 16679 ER 16680 16681 PT J 16682 AU Bai, ZZ 16683 Wang, DR 16684 Evans, DJ 16685 TI Models of asynchronous parallel nonlinear multisplitting relaxed 16686 iterations 16687 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 16688 DT Article 16689 ID ALGORITHM; CONVERGENCE 16690 AB In the sense of the nonlinear multisplitting and based on the principle 16691 of sufficiently using the delayed information, we propose models of 16692 asynchronous parallel accelerated overrelaxation iteration methods for 16693 solving large scale system of nonlinear equations. Under proper 16694 conditions, we set up the local convergence theories of these new 16695 method models. 16696 C1 CHINESE ACAD SCI,INST COMPUTAT MATH & SCI ENGN COMP,BEIJING,PEOPLES R CHINA. 16697 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 16698 LOUGHBOROUGH UNIV TECHNOL,PARALLEL ALGORITHMS RES CTR,LOUGHBOROUGH LE11 3TU,LEICS,ENGLAND. 16699 CR BAI ZZ, 1995, PARALLEL COMPUT, V21, P565 16700 BERTSEKAS DP, 1989, PARALLEL DISTRIBUTED 16701 BRU R, 1988, LINEAR ALGEBRA APPL, V103, P175 16702 EVANS DJ, 1991, PARALLEL COMPUT, V17, P165 16703 FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141 16704 FROMMER A, 1989, NUMER MATH, V56, P269 16705 OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630 16706 ORTEGA JM, 1970, ITERATIVE SOLUTION N 16707 VARGA RS, 1961, MATRIX ITERATIVE ANA 16708 WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473 16709 WANG DR, 1994, CHINESE ANN MATH B, V15, P335 16710 WANG DR, 1994, PARALLEL ALGORITHMS, V2, P173 16711 WANG DR, 1994, PARALLEL ALGORITHMS, V2, P209 16712 WANG DR, 1995, IN PRESS APPL MATH J 16713 WHITE RE, 1986, SIAM J ALGEBRA DISCR, V7, P137 16714 WHITE RE, 1986, SIAM J NUMER ANAL, V23, P639 16715 NR 16 16716 TC 3 16717 SN 0254-9409 16718 J9 J COMPUT MATH 16719 JI J. Comput. Math. 16720 PD OCT 16721 PY 1995 16722 VL 13 16723 IS 4 16724 BP 369 16725 EP 386 16726 PG 18 16727 SC Mathematics, Applied; Mathematics 16728 GA TP800 16729 UT ISI:A1995TP80000009 16730 ER 16731 16732 PT J 16733 AU Shi, SZ 16734 Zheng, QA 16735 Zhuang, DM 16736 TI Discontinuous robust mappings are approximatable 16737 SO TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY 16738 DT Article 16739 DE robust sets; robust mappings; approximatable mappings; integral global 16740 optimization 16741 AB The concepts of robustness of sets and and functions were introduced to 16742 form the foundation of the theory of integral global optimization. A 16743 set A of a topological space X is said to be robust iff cl A = cl int 16744 A. A mapping f: X --> Y is said to be robust iff for each open set U-Y 16745 of Y, f(-1)(U-Y) is robust. We prove that if X is a Baire space and Y 16746 satisfies the second axiom of countability, then a mapping f: X --> Y 16747 is robust iff it is approximatable in the sense that the set of points 16748 of continuity of f is dense in X and that for any other point x is an 16749 element of X, (x, f(x)) is the limit of {(x(alpha), f(x(alpha)))}, 16750 where for all alpha, x(alpha) is a continuous point of f. This result 16751 justifies the notion of robustness. 16752 C1 SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 16753 MT ST VINCENT UNIV,DEPT MATH & COMP STUDIES,HALIFAX,NS B3M 2J6,CANADA. 16754 RP Shi, SZ, NANKAI INST MATH,DIV THEORET PHYS,TIANJIN 300071,PEOPLES R 16755 CHINA. 16756 CR BATUCHTIN LV, 1984, OPTIMIZATION DISCONT 16757 CHEW SH, 1988, LECTURE NOTES EC MAT, V298 16758 CHOQUET G, 1969, LECTURES ANAL, V1 16759 CHOQUET G, 1969, OUTILS TOPOLOGIQUES 16760 MAYUROVA IV, 1984, USSR COMP MATH MATH, V24, P121 16761 OXTOBY JC, 1980, MEASURE CATEGORY 16762 SEMANDENI Z, 1971, BANACH SPACES CONTIN 16763 SHI SZ, 1994, J MATH ANAL APPL, V183, P706 16764 ZANG I, 1981, MATH OPER RES, V6, P140 16765 ZHENG Q, IN PRESS GLOBAL MINI 16766 ZHENG Q, 1978, ACTA MATH APPL SINIC, V1, P161 16767 ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205 16768 ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317 16769 ZHENG Q, 1991, COMPUT MATH APPL, V21, P17 16770 ZHENG Q, 1991, RECENT ADV GLOBAL OP 16771 ZHENG Q, 1993, COMPUT MATH APPL, V25, P79 16772 NR 16 16773 TC 4 16774 SN 0002-9947 16775 J9 TRANS AMER MATH SOC 16776 JI Trans. Am. Math. Soc. 16777 PD DEC 16778 PY 1995 16779 VL 347 16780 IS 12 16781 BP 4943 16782 EP 4957 16783 PG 15 16784 SC Mathematics 16785 GA TM686 16786 UT ISI:A1995TM68600016 16787 ER 16788 16789 PT J 16790 AU Liu, GL 16791 TI A unified variable-domain variational theory of hybrid problems for 16792 compressible S-2-flow in mixed-flow turbomachinery 16793 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 16794 DT Article 16795 ID PRINCIPLES; ROTOR 16796 AB Using the functional variation with variable domain, two families of 16797 variational principles (VPs) for the hybrid problem types H-A and H-B 16798 of S-2-flow in mixed-flow turbomachinery are established. The new 16799 theory provides both rational ways for best contouring the hub/casing 16800 walls to meet various practical design requirements and a theoretical 16801 basis for introducing the finite element method (FEM) into 16802 computational aerodynamics of turbomachinery 16803 C1 SHANGHAI INST APPL MATHS & MECH,SHANGHAI 200072,PEOPLES R CHINA. 16804 RP Liu, GL, SHANGHAI UNIV,SHANGHAI 200072,PEOPLES R CHINA. 16805 CR BOSMAN C, 1974, ARC RM3746 16806 CAI RQ, 1983, ACTA AERODYNAMICA SI, V1, P25 16807 CAI RQ, 1988, INT J HEAT FLUID FL, V9, P302 16808 COURANT R, 1953, METHODS MATH PHYSICS, V1 16809 DORMAN TE, 1968, ASME, V90 16810 LIU GI, 1986, J ENG GAS TURB POWER, V108, P254 16811 LIU GL, 1978, VARIATIONAL PRINCIPL 16812 LIU GL, 1979, ACTA MECH SINICA, V11, P303 16813 LIU GL, 1980, SCI SINICA, V23, P1339 16814 LIU GL, 1981, CHINESE J ENG THERMO, V2, P335 16815 LIU GL, 1981, THERMOPHYSICS 16816 LIU GL, 1982, AUG P INT C FEM SHAN, P520 16817 LIU GL, 1986, 6TH P INT S FEM FLOW, P125 16818 LIU GL, 1986, 6TH P INT S FEM FLOW, P137 16819 LIU GL, 1987, AIAA871426 PAP 16820 LIU GL, 1990, 1 INT S EXP COMP AER, P128 16821 LIU GL, 1993, ACTA MECH, V97, P229 16822 LIU GL, 1993, ACTA MECHANICA 1, V95, P117 16823 LIU GL, 1993, INT J TURBO JET ENGI, V10, P273 16824 LIU RX, 1981, SEISMOL GEOL, V3, P1 16825 MARSH H, 1968, ARC RM3509 16826 MCNALLY WD, 1985, J FLUID ENG-T ASME, V107, P6 16827 OATES GC, 1976, ASME, V98, P1 16828 PENG HW, 1975, KEXUE TONGBAO, V20, P416 16829 WU CH, 1952, NACA TN2604 16830 WU CH, 1965, CHINESE J MECH ENG, V13, P43 16831 YAN S, 1990, 1ST P INT S EXP COMP, P457 16832 NR 27 16833 TC 1 16834 SN 0334-0082 16835 J9 INT J TURBO JET ENGINES 16836 JI Int. J. Turbo. Jet-Engines 16837 PY 1995 16838 VL 12 16839 IS 3 16840 BP 213 16841 EP 222 16842 PG 10 16843 SC Engineering, Aerospace 16844 GA TN109 16845 UT ISI:A1995TN10900005 16846 ER 16847 16848 PT J 16849 AU Liu, GL 16850 TI Optimization of axial-flow pump cascade solidity subject to cavitation 16851 and separation-free constraints 16852 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 16853 DT Article 16854 AB The solidity optimization of 2-D axial-flow pump cascades is formulated 16855 as a nonlinear programming problem that minimizes the profile losses 16856 subject to separation/cavitation-free constraints. Both constraints are 16857 expressed in terms of the Lieblen's equivalent diffusion ratio D-eq. 16858 Analytical solutions are obtained in the form of formulae convenient 16859 for design. The method is further extended to 3-D pump stages. 16860 C1 SHANGHAI INST APPL MATHS & MECH,SHANGHAI 200072,PEOPLES R CHINA. 16861 RP Liu, GL, SHANGHAI UNIV,SHANGHAI 200072,PEOPLES R CHINA. 16862 CR BEVERIDGE GSG, 1970, OPTIMIZATION THEORY 16863 BRUCE EP, 1974, NASA SP304, P795 16864 CONRAD A, 1965, MTZ 16865 LIEBLEIN S, 1959, ASME, V81, P387 16866 LIEBLEIN S, 1965, NASA SP, V36, CH6 16867 LIU GL, 1983, 6TH P INT S AIR BREA, P313 16868 LIU GL, 1987, NUMERICAL METHODS LA, V5, P1739 16869 LIU GL, 1993, INT J TURBO JET ENGI, V10, P127 16870 OKIISHI TH, 1975, INT J MECH SCI, V17, P633 16871 REKLAITIS GV, 1983, ENG OPTIMIZATION MET 16872 NR 10 16873 TC 0 16874 SN 0334-0082 16875 J9 INT J TURBO JET ENGINES 16876 JI Int. J. Turbo. Jet-Engines 16877 PY 1995 16878 VL 12 16879 IS 3 16880 BP 231 16881 EP 236 16882 PG 6 16883 SC Engineering, Aerospace 16884 GA TN109 16885 UT ISI:A1995TN10900007 16886 ER 16887 16888 PT J 16889 AU Tu, DW 16890 TI In-process sensor for surface profile measurement applying a 16891 common-mode rejection technique 16892 SO OPTICS AND LASER TECHNOLOGY 16893 DT Article 16894 DE interferometers; profilometers; noise suppression; common-mode rejection 16895 AB An optical non-contact profilometer is presented for super-smooth 16896 surfaces, which applies a so-called common-mode rejection technique. 16897 Environmental disturbances and laser amplitude noise, which commonly 16898 exist in similar instruments, are overcome in this system. The overall 16899 simplicity of the optics and electronics, the low cost of the 16900 components and the ease of alignment make this a convenient system to 16901 implement. 16902 RP Tu, DW, SHANGHAI UNIV SCI & TECHNOL,SCH MECH AUTOMAT,POB 27,SHANGHAI 16903 200072,PEOPLES R CHINA. 16904 CR DAUDRIDGE A, 1981, APPL OPTICS, V20, P2337 16905 DOWNS MJ, 1985, PRECIS ENG, V7, P211 16906 HUANG CC, 1984, OPT ENG, V23, P356 16907 MITSUI K, 1986, PRECIS ENG, V8, P212 16908 PANTZER D, 1986, APPL OPTICS, V25, P4168 16909 NR 5 16910 TC 0 16911 SN 0030-3992 16912 J9 OPT LASER TECHNOL 16913 JI Opt. Laser Technol. 16914 PD DEC 16915 PY 1995 16916 VL 27 16917 IS 6 16918 BP 351 16919 EP 353 16920 PG 3 16921 SC Optics 16922 GA TN089 16923 UT ISI:A1995TN08900012 16924 ER 16925 16926 PT J 16927 AU Zhu, JL 16928 Chadderton, LT 16929 Fink, D 16930 Cruz, SA 16931 Ghosh, S 16932 Zhu, DZ 16933 TI Electronic stopping and etched particle tracks in polymers .2. Boron 16934 and lithium tracks 16935 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM 16936 INTERACTIONS WITH MATERIALS AND ATOMS 16937 DT Article 16938 ID DETECTORS; CR-39; IONS 16939 AB This work is the second one in a series of papers on the correlation of 16940 etched particle tracks with the projectiles' electronic energy 16941 transfer. The plastic detector CR39 was bombarded with boron and 16942 lithium ions at different energies, and subsequently etched. The 16943 relation between the diameter of etched tracks and the projectile 16944 energy was studied in detail. Maximum diameters were found after boron 16945 irradiation at 2.1 MeV, and after lithium irradiation at about 1.1 MeV. 16946 These values closely coincide with those ion energies at which they 16947 deposit their maximum electronic energy in the target surface area. The 16948 observations also point at a linear relationship between the maximum 16949 electronic stopping power and the atomic number of the projectile ions. 16950 C1 AUSTRALIAN NATL UNIV,RES SCH PHYS SCI,CANBERRA,ACT 2601,AUSTRALIA. 16951 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI 201800,PEOPLES R CHINA. 16952 HAHN MEITNER INST BERLIN GMBH,DEPT FD,D-14109 BERLIN,GERMANY. 16953 UNIV AUTONOMA METROPOLITANA IZTAPALAPA,DEPT FIS,MEXICO CITY 09340,DF,MEXICO. 16954 NE HILL UNIV,DEPT CHEM,SHILLONG 793003,MEGHALAYA,INDIA. 16955 ACAD SINICA,JOINT OPEN LAB ANALYT NUCL TECH,SHANGHAI BRANCH,SHANGHAI 201800,PEOPLES R CHINA. 16956 RP Zhu, JL, CSIRO,DIV APPL PHYS,GPO 4,CANBERRA,ACT 2601,AUSTRALIA. 16957 CR ALNAJJAR SAR, 1984, NUCL TRACKS RAD MEAS, V8, P45 16958 BERNARDI L, 1991, NUCL INSTRUM METH B, V53, P61 16959 BIERSACK JP, 1980, NUCL INSTRUM METHODS, V174, P257 16960 CHADDERTON LT, 1994, NUCL INSTRUM METH B, V91, P168 16961 CROSS WG, 1986, NUCL TRACKS RAD MEAS, V12, P533 16962 FINK D, 1992, NUCL INSTRUM METH B, V65, P432 16963 FLEISCHER RL, 1975, NUCLEAR TRACKS SOLID 16964 JONSSON G, 1992, NUCL INSTRUM METH B, V63, P399 16965 ZIEGLER JF, 1985, STOPPING RANGES IONS, V1 16966 NR 9 16967 TC 0 16968 SN 0168-583X 16969 J9 NUCL INSTRUM METH PHYS RES B 16970 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 16971 PD NOV 16972 PY 1995 16973 VL 105 16974 IS 1-4 16975 BP 208 16976 EP 211 16977 PG 4 16978 SC Physics, Atomic, Molecular & Chemical; Physics, Nuclear; Instruments & 16979 Instrumentation; Nuclear Science & Technology 16980 GA TM152 16981 UT ISI:A1995TM15200043 16982 ER 16983 16984 PT J 16985 AU Xu, QJ 16986 Deng, XN 16987 TI Oscillating behaviour on electrodeposited CuInSe2 thin-films during 16988 H2O2 cathodic reduction 16989 SO ACTA CHIMICA SINICA 16990 DT Article 16991 ID IRON-SULFIDE ELECTRODES; SUSTAINED OSCILLATIONS; CATALYTIC REDUCTION; 16992 HYDROGEN-PEROXIDE 16993 AB CuInSe2 thin films prepared by electrodeposition method can produce 16994 periodically electrochemistry oscillation phenomenna during H2O2 16995 cathodic reduction. The dynamic current-voltage curve from -1.80V to 16996 0.00V((vsSCE)) appears a pronounced current wave. When the potential is 16997 set in the oscillating potential region, the cell response may be 16998 accounted for, in the equivalent circuit representation, by the 16999 presence of negative resistances and inductances with A.C. methods. The 17000 negative resistances and inductances may indicate an autocatalytio 17001 reaction with an adsorbed intermediate. 17002 C1 SHANGHAI UNIV,ELECTROCHEM RES CTR,SHANGHAI 201800,PEOPLES R CHINA. 17003 RP Xu, QJ, SHANGHAI INST ELECT POWER,ELECTROCHEM RES CTR,SHANGHAI 17004 200090,PEOPLES R CHINA. 17005 CR ARMSTRONG RD, 1972, J ELECTROANAL CHEM, V39, P81 17006 CATTARIN S, 1988, BER BUNSEN PHYS CHEM, V92, P1345 17007 CATTARIN S, 1990, J ELECTROCHEM SOC, V137, P3475 17008 SCHUMANN D, 1968, J ELECTROANAL CHEM, V17, P451 17009 TRIBUTSCH H, 1975, BER BUNSEN PHYS CHEM, V79, P570 17010 TRIBUTSCH H, 1975, BER BUNSEN PHYS CHEM, V79, P580 17011 WOJTOWICZ J, 1973, MOD ASPECT ELECTROC, P47 17012 NR 7 17013 TC 0 17014 SN 0567-7351 17015 J9 ACTA CHIM SIN 17016 JI Acta Chim. Sin. 17017 PY 1995 17018 VL 53 17019 IS 11 17020 BP 1076 17021 EP 1081 17022 PG 6 17023 SC Chemistry, Multidisciplinary 17024 GA TL445 17025 UT ISI:A1995TL44500007 17026 ER 17027 17028 PT J 17029 AU Wang, CS 17030 Luo, WY 17031 Gu, JQ 17032 Tabata, T 17033 Ito, R 17034 TI A comparison of calculated and measured absorbed doses of electron beams 17035 SO RADIATION PHYSICS AND CHEMISTRY 17036 DT Article 17037 ID DOSIMETERS; ALGORITHM 17038 AB A semiempirical code to compute the absorbed dose in a single- to 17039 five-layer slab absorbers irradiated by electron beams has been 17040 developed. The doses estimated by the code have been compared with the 17041 experimental results obtained with a pyrolitic-graphite calorimeter for 17042 the electron beams of 1.5 and 1.75-MeV energy, and these have shown 17043 agreement within about 3%. 17044 C1 UNIV OSAKA PREFECTURE,ADV SCI & TECHNOL RES INST,SAKAI,OSAKA 593,JAPAN. 17045 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI 201800,PEOPLES R CHINA. 17046 SHANGHAI INST METROL TECHNOL,SHANGHAI 200233,PEOPLES R CHINA. 17047 CR 1992, EDMULT 311 MICRO ELE 17048 GARTH JC, 1986, T AM NUCL SOC, V52, P377 17049 HUMPHREYS JC, 1990, RADIAT PHYS CHEM, V35, P744 17050 ITO R, 1987, RCOPTR8 RAD CTR OS P 17051 KOBETICH EJ, 1968, PHYS REV, V170, P391 17052 KOBETICH EJ, 1969, NUCL INSTRUM METHODS, V71, P269 17053 MCLAUGHLIN WL, 1989, DOSIMETRY RAD PROCES 17054 MILLER A, 1985, NUCL INSTRUM METH B, V10, P994 17055 MILLER A, 1990, RADIAT PHYS CHEM, V35, P774 17056 TABATA T, 1974, NUCL SCI ENG, V53, P226 17057 TABATA T, 1981, JPN J APPL PHYS, V20, P249 17058 TABATA T, 1989, RADIAT PHYS CHEM, V33, P411 17059 TABATA T, 1990, RADIAT PHYS CHEM, V35, P821 17060 TABATA T, 1993, NOV RADT AS 93 C P T, P574 17061 TANAKA R, 1971, 32ND PREPR AUT M JAP, P231 17062 ZHANG LM, 1993, RADIAT PHYS CHEM, V42, P765 17063 NR 16 17064 TC 3 17065 J9 RADIAT PHYS CHEM 17066 JI Radiat. Phys. Chem. 17067 PD FEB 17068 PY 1996 17069 VL 47 17070 IS 2 17071 BP 167 17072 EP 170 17073 PG 4 17074 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear 17075 Science & Technology 17076 GA TK581 17077 UT ISI:A1996TK58100001 17078 ER 17079 17080 PT J 17081 AU YANG, T 17082 TI RECOVERY OF DIGITAL SIGNALS FROM CHAOTIC SWITCHING 17083 SO INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS 17084 DT Letter 17085 ID CHUA CIRCUIT 17086 RP YANG, T, SHANGHAI UNIV SCI & TECHNOL,DEPT AUTOMAT ENGN,CAMPUS BOX 17087 14,SHANGHAI 200072,PEOPLES R CHINA. 17088 CR CHUA LO, 1992, AEU-ARCH ELEKTRON UB, V46, P250 17089 CRUZ JM, 1993, IEEE T CIRCUITS-II, V40, P614 17090 CUOMO KM, 1993, 1993 P IEEE ASSP C M, P137 17091 CUOMO KM, 1993, IEEE T CIRCUITS-II, V40, P626 17092 KOCAREV L, 1992, INT J BIFURCAT CHAOS, V2, P709 17093 PARLITZ U, 1992, INT J BIFURCAT CHAOS, V2, P973 17094 YANG T, 1994, INT J CIRC THEOR APP, V22, P399 17095 NR 7 17096 TC 41 17097 SN 0098-9886 17098 J9 INT J CIRCUIT THEOR APPL 17099 JI Int. J. Circuit Theory Appl. 17100 PD NOV-DEC 17101 PY 1995 17102 VL 23 17103 IS 6 17104 BP 611 17105 EP 615 17106 PG 5 17107 SC Engineering, Electrical & Electronic 17108 GA TJ622 17109 UT ISI:A1995TJ62200006 17110 ER 17111 17112 PT J 17113 AU GUO, BY 17114 CAO, WM 17115 TI A SPECTRAL METHOD FOR THE FLUID-FLOW WITH LOW MACH NUMBER ON THE 17116 SPHERICAL SURFACE 17117 SO SIAM JOURNAL ON NUMERICAL ANALYSIS 17118 DT Article 17119 DE FLUID FLOW WITH LOW MACH NUMBER; SPHERICAL SURFACE; SPECTRAL METHOD 17120 AB A spectral scheme is proposed for the fluid flow with low Mach number 17121 on the spherical surface. The stability and the convergence are proved. 17122 some skills in this paper can be extended to tackle problems defined on 17123 manifolds. 17124 RP GUO, BY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 17125 CR CANUTO C, 1987, SPECTRAL METHODS FLU 17126 COURANT R, 1953, METHODS MATH PHYSICS, V1 17127 GOTTLIEB D, 1977, NUMERICAL ANAL SPECT 17128 GUO BY, 1994, J COMPUT MATH, V12, P173 17129 GUO BY, 1995, MATH COMPUT, V64, P1067 17130 HALTINER GJ, 1980, NUMERICAL PREDICTION 17131 JARUND M, 1985, LECTURE NOTES APPLIE, V22, P1 17132 LIONS JL, 1972, NONHOMOGENEOUS BOUND, V1 17133 ROACHE PJ, 1976, COMPUTATIONAL FLUID 17134 WILLIAMSON DL, 1992, J COMPUT PHYS, V102, P211 17135 ZEN QC, 1979, PHYSICAL MATH BASIS, V1 17136 NR 11 17137 TC 0 17138 SN 0036-1429 17139 J9 SIAM J NUMER ANAL 17140 JI SIAM J. Numer. Anal. 17141 PD DEC 17142 PY 1995 17143 VL 32 17144 IS 6 17145 BP 1764 17146 EP 1777 17147 PG 14 17148 SC Mathematics, Applied 17149 GA TH076 17150 UT ISI:A1995TH07600004 17151 ER 17152 17153 PT J 17154 AU ZHU, Y 17155 TI GENERATION OF SOLITARY WAVES IN A 3-LAYER FLUID SYSTEM 17156 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY & TECHNOLOGICAL 17157 SCIENCES 17158 DT Article 17159 DE SOLITARY WAVES; STRATIFIED FLUID; KDV EQUATION 17160 ID GRAVITATIONAL COLLAPSE; STRATIFIED FLUID; INTERNAL WAVES 17161 AB Based on the generalized Boussinesq equations for the three-layer fluid 17162 system, the KdV equations for the interfaces are obtained by using a 17163 perturbation method and the effect of fluid depth on the generation of 17164 solitary waves is discussed. By classifying the waves into fast-, 17165 medium- and slow-modes, it is found that the results on the slow-mode 17166 waves is qualitatively consistent with the experimental ones, and there 17167 may exist concave solitary waves on free surface, which is yet to be 17168 verified by experiments. 17169 RP ZHU, Y, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI 17170 200072,PEOPLES R CHINA. 17171 CR ABLOWITZ MJ, 1981, SOLITONS INVERSE SCA 17172 AMEN R, 1980, J FLUID MECH, V96, P65 17173 GILREATH HE, 1985, AIAA J, V23, P693 17174 KAKUTANI T, 1978, J PHYS SOC JPN, V45, P674 17175 MAXWORTHY T, 1980, J FLUID MECH, V96, P47 17176 WHITHAM GB, 1974, LINEAR NONLINEAR WAV 17177 ZHU Y, IN PRESS J HYDRODYNA 17178 NR 7 17179 TC 0 17180 SN 1001-6511 17181 J9 SCI CHINA SER A 17182 JI Sci. China Ser. A-Math. Phys. Astron. Technol. Sci. 17183 PD OCT 17184 PY 1995 17185 VL 38 17186 IS 10 17187 BP 1239 17188 EP 1245 17189 PG 7 17190 SC Mathematics, Applied; Mathematics 17191 GA TH029 17192 UT ISI:A1995TH02900008 17193 ER 17194 17195 PT J 17196 AU XU, WP 17197 ZHENG, LR 17198 XIN, HP 17199 LIN, CL 17200 GU, M 17201 CAO, ZC 17202 OKUYAMA, M 17203 TI BARUO3 THIN-FILMS PREPARED BY PULSED-LASER DEPOSITION 17204 SO MATERIALS LETTERS 17205 DT Article 17206 ID FERROELECTRIC MEMORIES 17207 AB High electrical conductive BaRuO3 thin films with (110) perovskite 17208 orientation have been successfully fabricated on Si(100) substrates by 17209 pulsed ArF excimer laser deposition and post-annealing. The resistivity 17210 of the films at room temperature is in the range of 10(-2)-10(-3) Ohm 17211 cm. Auger electron spectroscopy (AES) measurement shows that the 17212 compositions uniformly distributed throughout the film. Rutherford 17213 backscattering spectroscopy (RES) analysis indicates that the chemical 17214 stoichiometric ratio is well consistent with the ideal one as in BaRuO3. 17215 C1 SHANGHAI UNIV,FAC MAT,JIADING 201800,PEOPLES R CHINA. 17216 OSAKA UNIV,FAC ENGN SCI,DEPT ELECT ENGN,TOYONAKA,OSAKA 560,JAPAN. 17217 RP XU, WP, CHINESE ACAD SCI,SHANGHAI INST MET,STATE KEY LAB FUNCT MAT 17218 INFORMAT,SHANGHAI 200050,PEOPLES R CHINA. 17219 CR BENSCH W, 1990, SOLID STATE IONICS, V43, P171 17220 CHEUNG JT, 1993, APPL PHYS LETT, V62, P2045 17221 DONOHUE PC, 1965, INORG CHEM, V4, P306 17222 EOM CB, 1992, SCIENCE, V258, P1766 17223 KIM TW, 1994, APPL PHYS LETT, V64, P2676 17224 LARSEN PK, 1992, FERROELECTRICS, V128, P265 17225 SCOTT JF, 1989, SCIENCE, V246, P1400 17226 TAKIKAWA O, 1986, 36TH IEEE P EL COMP, P214 17227 VANLOAN PR, 1992, CERAM B, V51, P231 17228 VIJAY DP, 1993, J ELECTROCHEM SOC, V140, P2640 17229 XU W, 1995, IN PRESS PHYS STAT A 17230 YOON YS, 1993, J APPL PHYS, V73, P1547 17231 NR 12 17232 TC 5 17233 SN 0167-577X 17234 J9 MATER LETT 17235 JI Mater. Lett. 17236 PD NOV 17237 PY 1995 17238 VL 25 17239 IS 3-4 17240 BP 175 17241 EP 178 17242 PG 4 17243 SC Materials Science, Multidisciplinary; Physics, Applied 17244 GA TG742 17245 UT ISI:A1995TG74200021 17246 ER 17247 17248 PT J 17249 AU WANG, ZH 17250 TI SPLICE LOSS ANALYSIS OF 2 NONIDENTICAL SINGLE-MODE SLAB WAVE-GUIDES 17251 WITH SIMULTANEOUS TILT AND OFFSET MISALIGNMENTS 17252 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 17253 DT Article 17254 DE PLANAR OPTICAL WAVE-GUIDES; SPLICE LOSS 17255 AB By using the Gaussian approximation of the fundamental mode of a 17256 symmetric slab waveguide, the splice losses due to simultaneous tilt, 17257 offset, and waveguide-parameter mismatch of single-mode slab waveguides 17258 have been calculated Very simple formulas have been derived, and 17259 numerical examples have been given. (C) 1995 John Wiiey & Sons, Inc. 17260 RP WANG, ZH, SHANGHAI UNIV,WAVE SCI LAB,SHANGHAI 201800,PEOPLES R CHINA. 17261 NR 0 17262 TC 0 17263 SN 0895-2477 17264 J9 MICROWAVE OPT TECHNOL LETT 17265 JI Microw. Opt. Technol. Lett. 17266 PD DEC 5 17267 PY 1995 17268 VL 10 17269 IS 5 17270 BP 291 17271 EP 294 17272 PG 4 17273 SC Engineering, Electrical & Electronic; Optics 17274 GA TE780 17275 UT ISI:A1995TE78000009 17276 ER 17277 17278 PT J 17279 AU LIU, HY 17280 QIAN, JH 17281 LIU, YC 17282 YU, TY 17283 DENG, JQ 17284 TI NICKELOCENE-MEDIATING SENSOR FOR HYDROGEN-PEROXIDE BASED ON 17285 BIOELECTROCATALYTIC REDUCTION OF HYDROGEN-PEROXIDE 17286 SO ANALYTICAL PROCEEDINGS 17287 DT Article 17288 ID HORSERADISH-PEROXIDASE; MODIFIED ELECTRODES; CARBON 17289 AB An amperometric H2O2 sensor using nickelocene as the electron transfer 17290 agent between immobilized horseradish peroxide and a glassy carbon 17291 electrode was fabricated. The sensor was highly sensitive to H2O2 with 17292 a detection limit of 5.0 X 10(-7) mol l(-1) H2O2 and a response time of 17293 less than 20 s. The effect of applied potential and temperature on the 17294 Michaelis-Menten constant was calculated and the influence of various 17295 experimental parameters such as pH, temperature and applied potential 17296 were explored for optimum analytical performance. 17297 C1 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA. 17298 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA. 17299 FUDAN UNIV,DEPT MACROMOLEC SCI,SHANGHAI 200433,PEOPLES R CHINA. 17300 CR 1991, SIGMA CHEM CATALOGUE, P771 17301 BIFULCO L, 1994, ANAL LETT, V27, P1443 17302 BOGDANOVSKAYA VA, 1988, BIOELECTROCH BIOENER, V19, P581 17303 CHEN L, 1991, ANAL LETT, V24, P1 17304 DANNER DJ, 1973, ARCH BIOCHEM BIOPHYS, V156, P759 17305 DUNFORD HB, 1982, ADV INORG BIOCHEM, V4, P41 17306 DUNFORD HB, 1987, COORD CHEM, V19, P187 17307 DURLIAT H, 1989, BIOELECTROCH BIOENER, V22, P197 17308 FREW JE, 1986, J ELECTROANAL CH INF, V201, P1 17309 GORTIER G, 1990, ANAL LETT, V23, P1607 17310 HO WO, 1993, J ELECTROANAL CHEM, V351, P185 17311 HURDIS EC, 1954, ANAL CHEM, V26, P320 17312 JONSSONPETTERSS.G, 1991, ELECTROANAL, V3, P741 17313 LIU H, IN PRESS TALANTA 17314 LIU Y, IN PRESS J ELECTROAN 17315 MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801 17316 OYYAMA N, 1985, ANAL CHEM, V57, P1526 17317 TATSUMA T, 1991, ANAL CHEM, V63, P1580 17318 ZHAO JG, 1992, J ELECTROANAL CHEM, V327, P109 17319 NR 19 17320 TC 9 17321 SN 0144-557X 17322 J9 ANALYT PROC 17323 JI Anal. Proc. 17324 PD NOV 17325 PY 1995 17326 VL 32 17327 IS 11 17328 BP 475 17329 EP 477 17330 PG 3 17331 SC Chemistry, Analytical 17332 GA TE648 17333 UT ISI:A1995TE64800006 17334 ER 17335 17336 PT J 17337 AU CHEN, GS 17338 WANG, Q 17339 TI LOCAL-FIELDS IN SINGLE-MODE HELICAL FIBERS 17340 SO OPTICAL AND QUANTUM ELECTRONICS 17341 DT Article 17342 ID OPTICAL FIBERS; BIREFRINGENCE; POLARIZATION 17343 AB The scalar local-field wave equations in helical fibres are derived 17344 and, with the aid of a special mathematical treatment, solved 17345 approximately in a local coordinate system - the Serret-Frenet frame 17346 from the Maxwell's equations. Two basic results are obtained: (1) The 17347 local modes in a single-mode helical fibre are circularly polarized. 17348 (2) The difference of the propagation constants between the two 17349 fundamental modes is 2 tau, where tau is the torsion. They agree well 17350 with the known experimental measurements. 17351 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 17352 RP CHEN, GS, ZHONGSHAN UNIV,DEPT ELECTR,CANTON,PEOPLES R CHINA. 17353 CR BIRCH RD, 1987, ELECTRON LETT, V23, P50 17354 COLLIN RE, 1991, FIELD THEORY GUIDED, P637 17355 FANG XS, 1985, IEEE T MICROWAVE THE, V33, P150 17356 FUJII Y, 1986, IEE PROC-J, V133, P249 17357 LALOV IJ, 1992, INT J OPTOELECTRON, V7, P479 17358 LEWIN L, 1977, ELECTROMAGNETIC WAVE, P16 17359 LOVE JD, 1987, ELECTRON LETT, V23, P1109 17360 PAPP A, 1977, APPL OPTICS, V16, P1315 17361 PHILLIPS RS, 1950, Q APPL MATH, V8, P229 17362 PIERCE JR, 1950, BELL SYST TECH J, V29, P189 17363 PIERCE JR, 1950, BELL SYST TECH J, V29, P390 17364 PIERCE JR, 1950, BELL SYST TECH J, V29, P608 17365 QIAN J, 1986, ELECTRON LETT, V22, P515 17366 QIAN JR, 1988, IEE PROC-J, V135, P178 17367 ROSS JN, 1984, OPT QUANT ELECTRON, V16, P455 17368 SOLLFREY W, 1951, J APPL PHYS, V22, P905 17369 TANG CH, 1970, I ELECT ELECTRON ENG, V18, P69 17370 ULRICH R, 1979, APPL OPTICS, V10, P2241 17371 VARNHAM MP, 1986, P OFC ATLANTA, P68 17372 NR 19 17373 TC 3 17374 SN 0306-8919 17375 J9 OPT QUANT ELECTRON 17376 JI Opt. Quantum Electron. 17377 PD NOV 17378 PY 1995 17379 VL 27 17380 IS 11 17381 BP 1069 17382 EP 1074 17383 PG 6 17384 SC Engineering, Electrical & Electronic; Optics 17385 GA TD876 17386 UT ISI:A1995TD87600004 17387 ER 17388 17389 PT J 17390 AU SHEN, WD 17391 ZHU, ST 17392 TI WAVE-FUNCTION OF A FREE-ELECTRON IN A LASER-PLASMA VIA RIEMANNIAN 17393 GEOMETRY 17394 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 17395 DT Article 17396 AB The wave function of a free electron in a laser plasma described via 17397 Riemannian geometry is derived by solving the Dirac equation in the 17398 associated curved spacetime. If the laser field vanishes, the wave 17399 function naturally reduces to the case in flat space-time. 17400 C1 ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI 201800,PEOPLES R CHINA. 17401 RP SHEN, WD, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES 17402 R CHINA. 17403 CR SCHIFF LI, 1968, QUANTUM MECHANICS 17404 SHEN W, 1988, PHYSICAL REV A, V37, P4387 17405 ZHU ST, 1995, IN PRESS INT J THEOR 17406 NR 3 17407 TC 4 17408 SN 0020-7748 17409 J9 INT J THEOR PHYS 17410 JI Int. J. Theor. Phys. 17411 PD OCT 17412 PY 1995 17413 VL 34 17414 IS 10 17415 BP 2085 17416 EP 2094 17417 PG 10 17418 SC Physics, Multidisciplinary 17419 GA TA672 17420 UT ISI:A1995TA67200009 17421 ER 17422 17423 PT J 17424 AU SHEN, WD 17425 ZHU, ST 17426 GUO, QZ 17427 TI CLASSICAL DESCRIPTION OF THE RADIATION OF A CHARGED-PARTICLE IN A 17428 STRONG-LASER PLASMA 17429 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 17430 DT Article 17431 AB The behavior of a charged particle in it strong-laser plasma is 17432 discussed by solving the generally covariant equation of motion for a 17433 charged particle. The classical description for the radiation of a 17434 charged particle in a strong-laser plasma is given, and the intensity 17435 and the radiation power are derived in detail. 17436 C1 ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI 201800,PEOPLES R CHINA. 17437 RP SHEN, WD, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES 17438 R CHINA. 17439 CR JACKSON JD, 1976, CLASSICAL ELECTRODYN 17440 SARACHIK ES, 1970, PHYS REV D, V1, P2738 17441 WEINBERG S, 1972, GRAVITATION COSMOLOG 17442 ZHU ST, 1995, IN PRESS INT J THEOR 17443 NR 4 17444 TC 4 17445 SN 0020-7748 17446 J9 INT J THEOR PHYS 17447 JI Int. J. Theor. Phys. 17448 PD OCT 17449 PY 1995 17450 VL 34 17451 IS 10 17452 BP 2095 17453 EP 2104 17454 PG 10 17455 SC Physics, Multidisciplinary 17456 GA TA672 17457 UT ISI:A1995TA67200010 17458 ER 17459 17460 PT J 17461 AU FENG, SS 17462 QIU, XJ 17463 TI PATH-INTEGRAL QUANTIZATION AND THE GROUND-STATE FUNCTIONAL FOR 17464 MAXWELL-CHERN-SIMONS SYSTEM 17465 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 17466 DT Article 17467 ID WAVE 17468 AB The Maxwell-Chern-Simons system as a constrained system is quantized in 17469 the path integral formulation. Using the functional partition function 17470 and the method proposed by Fradkin, we obtain the correct absolute 17471 value squared of the ground state. 17472 C1 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 17473 RP FENG, SS, ACAD SINICA,INST NUCL RES,SHANGHAI 201800,PEOPLES R CHINA. 17474 CR DESER S, 1982, ANN PHYS-NEW YORK, V140, P372 17475 FRADKIN E, 1993, NUCL PHYS B, V362, P667 17476 FRADKIN E, 1993, NUCL PHYS B, V389, P587 17477 GITMAN DM, 1990, QUANTIZATION FIELDS 17478 LI ZP, 1993, CLASSICAL QUANTUM CO 17479 LOPEZ A, 1992, PHYS REV LETT, V69, P2126 17480 NR 6 17481 TC 5 17482 SN 0020-7748 17483 J9 INT J THEOR PHYS 17484 JI Int. J. Theor. Phys. 17485 PD SEP 17486 PY 1995 17487 VL 34 17488 IS 9 17489 BP 1827 17490 EP 1833 17491 PG 7 17492 SC Physics, Multidisciplinary 17493 GA RX153 17494 UT ISI:A1995RX15300001 17495 ER 17496 17497 PT J 17498 AU WANG, DR 17499 ZHAO, FG 17500 TI THE THEORY OF SMALES POINT ESTIMATION AND ITS APPLICATIONS 17501 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 17502 DT Article 17503 DE POINT ESTIMATION; NEWTON METHOD; DURAND-KERNER METHOD 17504 AB The main result of this paper is that we exact Smale's point estimation 17505 theory, i.e., without assuming gamma(k) = parallel to P'(z)(-1) 17506 P-(k)(z)/k! parallel to (k greater than or equal to 2) being bounded by 17507 gamma, the point estimation convergence theorem of the Newton method is 17508 set up by making use of the majorizing method. The proof of the theorem 17509 is simple and precise, while the required point estimation conditions 17510 are weaker than all those of known point estimation convergence 17511 theorems. 17512 Another result of this paper is an application of the above new theory 17513 to the Durand-Kerner method. We compare the point estimation conditions 17514 for the Durand-Kerner method with other known point estimation 17515 conditions. Numerical results show that our results have evident 17516 advantages. 17517 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 17518 CR KERNER IO, 1966, NUMER MATH, V8, P290 17519 SMALE S, 1986, INT C MATH BERK CAL, P1 17520 SMALE S, 1986, INT C MATH BERK CAL, P1 17521 SMALE S, 1989, P C HONOR G YOUNG LA, P1 17522 WANG X, 1989, SCI SINICA A, P905 17523 ZHAO F, 1993, MATH NUMER SINICA, V15, P196 17524 NR 6 17525 TC 15 17526 SN 0377-0427 17527 J9 J COMPUT APPL MATH 17528 JI J. Comput. Appl. Math. 17529 PD JUN 20 17530 PY 1995 17531 VL 60 17532 IS 1-2 17533 BP 253 17534 EP 269 17535 PG 17 17536 SC Mathematics, Applied 17537 GA RV875 17538 UT ISI:A1995RV87500017 17539 ER 17540 17541 PT J 17542 AU LIU, GQ 17543 YUAN, B 17544 ZHANG, NG 17545 GONG, XY 17546 TI CALCULATION OF THE MAGNETIC-SUSCEPTIBILITY AND THE VERDET CONSTANT IN 17547 NEODYMIUM TRIFLUORIDE 17548 SO JOURNAL OF APPLIED PHYSICS 17549 DT Article 17550 ID OPTICAL-ABSORPTION 17551 AB This paper first considers the effects of multielectron interaction, 17552 L-S interaction and the weak crystal-field on the 4f(3) ground state of 17553 Nd3+ ion in the paramagnetic medium NdF3; then, further takes account 17554 of the splitting of the crystal-field ground levels caused by both the 17555 effective superexchange field H upsilon and the applied field H-e, and 17556 calculates quantitatively the temperature dependence of the magnetic 17557 susceptibility chi in NdF3. For the splitting of 4f(2)5d excited state 17558 of Nd3+ ion in NdF3, the paper investigates the effect of the strong 17559 crystal-held on the 5d electrons. Using the model of three-level 17560 transition, the specific Faraday rotation theta(F), the Verdet constant 17561 V, and their temperature dependence, which originate from the 17562 electronic transitions between the electron configurations 4f(3) and 17563 4f(2)5d, are calculated quantitatively, The theoretical calculations 17564 show that the superexchange interaction between Nd3+ ions has an 17565 important effect on the magneto-optical properties in NdF3, and both 17566 V-1 and chi(-1) are linearly dependent on T in the temperature range 70 17567 K < T < 300 K. The theory is in good agreement with the experimental 17568 results. (C) 1995 American Institute of Physics. 17569 C1 JIAO TONG UNIV,DEPT APPL PHYS,SHANGHAI 200030,PEOPLES R CHINA. 17570 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 17571 RP LIU, GQ, CHINA CTR ADV SCI & TECHNOL,WORLD LAB,POB 8730,BEIJING 17572 100080,PEOPLES R CHINA. 17573 CR ASANO S, 1979, J PHYS C SOLID STATE, V12, P4081 17574 BENNETT HS, 1965, PHYS REV, V137, A448 17575 CARNALL WT, 1977, ENERGY LEVEL STRUCTU 17576 CARO P, 1981, J CHEM PHYS, V74, P2698 17577 CROSSLEY WA, 1969, PHYS REV, V181, P896 17578 DAVIS JA, 1984, APPL OPTICS, V23, P633 17579 FREISER MJ, 1968, IEEE T MAGN, V4, P152 17580 GOLDSCHMILT ZB, HDB PHYSICS CHEM RAR, V1 17581 JUDD BR, 1966, PHYS REV, V141, P1 17582 JUDD BR, 1966, PHYS REV, V141, P91 17583 LEYCURAS C, 1984, J APPL PHYS, V55, P2161 17584 LIU GQ, 1990, PHYS REV B, V41, P749 17585 LIU GQ, 1993, PHYS REV B, V48, P16091 17586 LIU GQ, 1994, J PHYS-CONDENS MAT, V6, P453 17587 NIELSON CW, 1963, SPECTROSCOPIC COEFFI 17588 OFTEDAL I, 1931, Z PHYS CHEM B-CHEM E, V13, P190 17589 RACAH G, 1942, PHYS REV, V61, P186 17590 RACAH G, 1942, PHYS REV, V62, P438 17591 RACAH G, 1943, PHYS REV, V63, P367 17592 RACAH G, 1949, PHYS REV, V76, P1352 17593 ROTENBERG M, 1963, 3J 6J SYMBOLS 17594 SHEN YR, 1964, PHYS REV, V133, A511 17595 STAROSTIN NV, 1976, CRYSTAL SPECTROSCOPY, P216 17596 SUITS JC, 1972, IEEE T MAGN, V8, P95 17597 VANVLECK JH, 1934, PHYS REV, V46, P17 17598 WYBOURNE BG, 1965, SPECTROSCOPIC PROPER 17599 YANASE A, 1970, PROG THEOR PHYS S, V46, P338 17600 YANASE A, 1977, J PHYS SOC JPN, V42, P1680 17601 YOU Y, 1992, PHYS REV B, V46, P11636 17602 NR 29 17603 TC 5 17604 SN 0021-8979 17605 J9 J APPL PHYS 17606 JI J. Appl. Phys. 17607 PD SEP 15 17608 PY 1995 17609 VL 78 17610 IS 6 17611 BP 4054 17612 EP 4059 17613 PG 6 17614 SC Physics, Applied 17615 GA RU953 17616 UT ISI:A1995RU95300074 17617 ER 17618 17619 PT J 17620 AU LI, L 17621 AO, Q 17622 VANDERBIEST, O 17623 WOLLANTS, P 17624 DELAEY, L 17625 TI CALCULATION OF THE QUASI-TERNARY SYSTEMS - SI3N4-Y2O3-SIO2, 17626 Y2O3-SIO2-BEO AND Y2O3-AL2O3-BEO 17627 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 17628 DT Article 17629 AB Based on the thermodynamic model of Kaufman for the calculation of 17630 quasibinary and quasiternary system, numerical method for the 17631 calculation of stable equilibrium is developed and thermodynamic data 17632 of undefined phases are discussed in this work for several ceramic 17633 systems. The calculated isothermal sections in Si3N4-Y2O3-SiO2 system 17634 meet well with other previous calculated phase diagrams and 17635 experimental results. The diagrams in Y2O3-SiO2-BeO and Y2O3-Al2O3-BeO 17636 systems are calculated for the approach of prediction. 17637 C1 SHANDONG POLYTECH UNIV,DEPT MAT ENGN,JINAN 250014,PEOPLES R CHINA. 17638 KATHOLIEKE UNIV LEUVEN,DEPT MTM,B-3001 LOUVAIN,BELGIUM. 17639 RP LI, L, SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R 17640 CHINA. 17641 CR COHEN AM, 1973, NUMERICAL ANAL, P270 17642 DORNER P, 1979, CALPHAD, P241 17643 KAUFMAN L, 1978, CALPHAD, P35 17644 KAUFMAN L, 1979, CALCULATION PHASE DI, P46 17645 KAUFMAN L, 1979, CALPHAD, P27 17646 KAUFMAN L, 1979, CALPHAD, P275 17647 KAUFMAN L, 1981, CALPHAD, P163 17648 LEVIN EM, 1964, PHASE DIAGRAMS CERAM, V1, P99 17649 LI L, 1994, CALPHAD, V18, P89 17650 ROTH RS, 1983, PHASE DIAGRAMS CERAM, V5, P308 17651 ROTH RS, 1983, PHASE DIAGRAMS CERAM, V5, P309 17652 SINGHAL SC, 1976, CERAMURGIA INT, V2, P123 17653 TORRE JP, 1977, NITROGEN CERAMICS, P63 17654 NR 13 17655 TC 0 17656 SN 1005-0302 17657 J9 J MATER SCI TECHNOL 17658 JI J. Mater. Sci. Technol. 17659 PY 1995 17660 VL 11 17661 IS 4 17662 BP 276 17663 EP 280 17664 PG 5 17665 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 17666 Engineering 17667 GA RT533 17668 UT ISI:A1995RT53300005 17669 ER 17670 17671 PT J 17672 AU REN, JS 17673 ZHANG, GS 17674 WANG, ZS 17675 ZHAO, JW 17676 TI SPUTTERING RATES OF ALLOYS IN GLOW-DISCHARGE 17677 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 17678 DT Article 17679 AB The sputtering rates of alloys were investigated under constant Ar 17680 pressure and voltage supplied. The alloys studied in this work range 17681 from binary intermetallic alloys to ternary and quaternary alloys. It 17682 is revealed that the sputtering rates of alloy targets under steady 17683 states are 17684 q = 1/Sigma C-i/q(i)(0) 17685 where q is the sputtering rates of alloys, C-i the weight percentage of 17686 i-th component in the alloy, and q(i)(0) the sputtering rate of pure 17687 metal of i-th component. 17688 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 200072,PEOPLES R CHINA. 17689 RP REN, JS, CHINESE ACAD SCI,INST MET RES,SHENYANG 110015,PEOPLES R CHINA. 17690 CR BOUMANS PWJ, 1972, ANAL CHEM, V44, P1219 17691 DUENCHENG F, 1988, JAAS, V3, P873 17692 GREENE JE, 1978, J APPL PHYS, V49, P417 17693 PONSCORBEAU J, 1985, SURF INTERFACE ANAL, V7, P169 17694 REN JS, 1983, ANAL CHEM, V11, P586 17695 REN JS, 1992, ACTA METALL SIN B, V5, P462 17696 ZHAO JW, 1992, THESIS SHANGHAI IND 17697 NR 7 17698 TC 0 17699 SN 1005-0302 17700 J9 J MATER SCI TECHNOL 17701 JI J. Mater. Sci. Technol. 17702 PY 1995 17703 VL 11 17704 IS 4 17705 BP 295 17706 EP 298 17707 PG 4 17708 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 17709 Engineering 17710 GA RT533 17711 UT ISI:A1995RT53300009 17712 ER 17713 17714 PT J 17715 AU HU, XL 17716 TI LANGUAGE AND LEARNING - EDUCATING LINGUISTICALLY DIVERSE STUDENTS - 17717 MCLEOD,B 17718 SO BRITISH JOURNAL OF EDUCATIONAL STUDIES 17719 DT Book Review 17720 RP HU, XL, SHANGHAI UNIV,SHANGHAI,PEOPLES R CHINA. 17721 CR MCLEOD B, 1994, LANGUAGE LEARNING ED 17722 NR 1 17723 TC 0 17724 SN 0007-1005 17725 J9 BRIT J EDUC STUD 17726 JI Br. J. Educ. Stud. 17727 PD SEP 17728 PY 1995 17729 VL 43 17730 IS 3 17731 BP 358 17732 EP 360 17733 PG 3 17734 SC Education & Educational Research 17735 GA RU011 17736 UT ISI:A1995RU01100023 17737 ER 17738 17739 PT J 17740 AU ZHU, Y 17741 TI RESONANT GENERATION OF NONLINEAR CAPILLARY-GRAVITY WAVES 17742 SO PHYSICS OF FLUIDS 17743 DT Note 17744 ID FLOW; TOPOGRAPHY; SOLITONS 17745 AB The model considered in this paper consists of an incompressibie, 17746 inviscid fluid flow over bottom topography with the surface tension 17747 acting on it. A forced KdV equation with negative dispersion for 17748 capillary-gravity waves is derived with the inclusion of the effect of 17749 surface tension (for the case of Bond number being larger than 1/3) 17750 when the flow is near resonant. The most important result is that a 17751 typical solution of the present forced KdV equation consists of a train 17752 of concave solitary-like waves which propagate downward, a convex near 17753 the topography and a train of upstream dispersive waves. (C) 1995 17754 American Institute of Physics. 17755 RP ZHU, Y, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI 17756 200072,PEOPLES R CHINA. 17757 CR AKYLAS TR, 1984, J FLUID MECH, V141, P455 17758 COLE SL, 1985, WAVE MOTION, V7, P579 17759 FORNBERG B, 1978, PHILOS T R SOC LON A, V289, P337 17760 GRIMSHAW R, 1992, NONLINEAR DISPERSIVE, P1 17761 GRIMSHAW RHJ, 1986, J FLUID MECH, V169, P429 17762 MEI CC, 1986, J FLUID MECH, V162, P53 17763 MELVILLE WK, 1987, J FLUID MECH, V178, P31 17764 MILES JW, 1986, J FLUID MECH, V62, P489 17765 WU DM, 1980, 14TH P S NAV HYDR WA, P103 17766 WU TYT, 1987, J FLUID MECH, V184, P75 17767 NR 10 17768 TC 2 17769 SN 1070-6631 17770 J9 PHYS FLUIDS 17771 JI Phys. Fluids 17772 PD SEP 17773 PY 1995 17774 VL 7 17775 IS 9 17776 BP 2294 17777 EP 2296 17778 PG 3 17779 SC Physics, Fluids & Plasmas; Mechanics 17780 GA RR501 17781 UT ISI:A1995RR50100025 17782 ER 17783 17784 PT J 17785 AU ZOU, GP 17786 TI THE MIXED-STATE HAMILTONIAN DYNAMIC ELEMENT AND A SEMI-ANALYTICAL 17787 SOLUTION FOR THE ANALYSIS OF THICK LAMINATED COMPOSITE PLATES 17788 SO ACTA MECHANICA SOLIDA SINICA 17789 DT Article 17790 DE HAMILTON CANONICAL EQUATION; LAMINATED COMPOSITE PLATE 17791 ID TRANSIENT 17792 AB Through introducing the Laplace transformation in the time direction, 17793 the mixed state Hamilton canonical equation and a semi-analytical 17794 solution are presented for analyzing the dynamic response of laminated 17795 composite plates. This method accounts for the separation of variables, 17796 the finite element discretization can be employed in the plane of 17797 laminar, and the exact solution in the thickness direction is derived 17798 by the state space control method. To apply the transfer matrix method, 17799 the relational expression at the top and bottom surface is established. 17800 So the general solution in transformation space is deduced by the spot 17801 method. By the application of inversion of Laplace transformation, the 17802 transient displacements and stresses can be derived. 17803 C1 SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA. 17804 DALIAN UNIV TECHNOL,ENGN MECH RES INST,DALIAN 116024,PEOPLES R CHINA. 17805 CR KANT T, 1988, COMPOS STRUCT, V9, P319 17806 KHDEIR AA, 1989, COMPOS SCI TECHNOL, V34, P205 17807 PAGANO NJ, 1970, J COMPOS MATER, V4, P20 17808 PAPOULIS A, 1982, APPL MATH MODEL, V6, P238 17809 REDDY JN, 1983, INT J NUMER METH ENG, V19, P237 17810 ROCK TA, 1976, COMPUT STRUCT, V6, P37 17811 TANG LM, 1992, COMPUT STRUCT MECH A, V9, P347 17812 ZOU GP, 1994, ACTA MATERIAL COMPOS, V11, P95 17813 NR 8 17814 TC 1 17815 SN 0894-9166 17816 J9 ACTA MECH SOLIDA SINICA 17817 JI Acta Mech. Solida Sin. 17818 PD JUN 17819 PY 1995 17820 VL 8 17821 IS 2 17822 BP 154 17823 EP 162 17824 PG 9 17825 SC Materials Science, Multidisciplinary; Mechanics 17826 GA RR435 17827 UT ISI:A1995RR43500005 17828 ER 17829 17830 PT J 17831 AU LIU, YF 17832 ZHANG, KJ 17833 HE, XL 17834 HUA, JD 17835 TI DETERMINATION OF STABILITY CONSTANT OF POLYVINYLPYRIDINE-CU(II) COMPLEX 17836 BY VISIBLE SPECTROSCOPY 17837 SO JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS 17838 DT Article 17839 DE POLYMER METAL COMPLEX; STABILITY CONSTANT; VISIBLE SPECTROSCOPY 17840 AB This paper suggests a broadly applicable method for the determination 17841 of the stability constant and formation function of metal-polymer 17842 complexes in which only the visible spectrum of metal ion is used. The 17843 basic principle has been proved through an experiment on the polyvinyl 17844 pyridine-Cu(II) complex system. 17845 RP LIU, YF, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES 17846 R CHINA. 17847 CR BJERRUM J, 1941, METAL AMINE FORMATIO 17848 BRUEHLMAN RC, 1948, J AM CHEM SOC, V70, P1401 17849 FUOSS RM, 1950, IND ENG CHEM, V42, P1603 17850 GREGOR HP, 1955, J PHYS CHEM-US, V59, P34 17851 HISHIKAWA H, 1975, J PHYS CHEM-US, V79, P2072 17852 ISE N, 1979, KANKYO KAGAKU TOKUBE, V1, P5 17853 KHANLAROV TG, 1992, ZH ANAL KHIM, V47, P1817 17854 MAS F, 1993, ANAL CHIM ACTA, V273, P297 17855 SKURLATOV YI, 1982, VYSOKOMOL SOEDIN A+, V24, P1874 17856 NR 9 17857 TC 4 17858 SN 0022-2348 17859 J9 J MACROMOL SCI-PHYS 17860 JI J. Macromol. Sci-Phys. 17861 PY 1995 17862 VL B34 17863 IS 3 17864 BP 311 17865 EP 324 17866 PG 14 17867 SC Polymer Science 17868 GA RQ884 17869 UT ISI:A1995RQ88400011 17870 ER 17871 17872 PT J 17873 AU MA, GB 17874 TAN, WH 17875 TI CALCULATION OF SOFT-X-RAY LASER IN AN EXPANDING HE-LIKE MG PLASMA 17876 PUMPED BY A SHORT LASER-PULSE 17877 SO OPTICS COMMUNICATIONS 17878 DT Note 17879 ID AMPLIFICATION 17880 AB Using the analytical solution of hydrodynamic equations, energy level 17881 populations of the plasma dominated by He-Like Mg ions are obtained by 17882 solving the rate equations numerically for a short pulsed pumping 17883 laser. Variations of gain coefficient for the lasing transition 17884 1s3d-1s4f of MgXI (lambda = 154 Angstrom) versus time and space are 17885 calculated. Also, the influence of pumping laser pulse duration on gain 17886 coefficient is discussed. 17887 C1 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 17888 RP MA, GB, ACAD SINICA,SHANGHAI INST OPT & FINE MECH,NATL LAB HIGH POWER 17889 LASER & PHYS,POB 800211,SHANGHAI 201800,PEOPLES R CHINA. 17890 CR BURNETT NH, 1989, J OPT SOC AM B, V6, P1195 17891 CARILLON A, 1992, PHYS REV LETT, V68, P2971 17892 CHARATIS G, 1992, J OPT SOC AM B, V9, P1278 17893 COWAN RD, 1968, J OPT SOC AM, V58, P808 17894 COWAN RD, 1968, J OPT SOC AM, V58, P924 17895 DASILVA LB, 1992, SCIENCE, V258, P269 17896 EDER DC, 1992, PHYS REP A, V45, P6741 17897 FARNSWORTH AV, 1980, PHYS FLUIDS, V23, P1496 17898 JAEGLE P, 1987, J OPT SOC AM B, V4, P563 17899 KOCH JA, 1992, PHYS REV LETT, V68, P3291 17900 LANDSHOFF RK, 1976, PHYS REV A, V13, P1619 17901 LEE TN, 1987, PHYS REV LETT, V59, P1185 17902 LIN Z, 1988, OPT COMMUN, V65, P445 17903 LOCHTEHOLTGREVE.W, 1968, PLASMA DIAGNOSTICS 17904 LONDON RA, 1989, APPL OPTICS, V28, P3397 17905 LUTHERDAVIES B, 1992, SOV J QUANTUM ELECTR, V422, P289 17906 MA GB, 1991, ACTA OPT SINICA, V11, P1057 17907 MACGOWAN BJ, 1992, PHYS FLUIDS B-PLASMA, V4, P2326 17908 MATTHEWS DL, 1985, PHYS REV LETT, V54, P110 17909 MCWRITER RWP, 1965, PLASMA DIAGNOSTIC TE 17910 STEYER M, 1990, APPL PHYS B-PHOTO, V50, P265 17911 SUCKEWER S, 1985, PHYS REV LETT, V55, P1753 17912 TALLENTS GJ, 1991, XRAY LASERS 1990 17913 TAN W, 1988, J APPL PHYS, V64, P6182 17914 VALEO EJ, 1993, PHYS REV E, V47, P1321 17915 ZHANG J, 1994, PHYS REV A, V49, P4024 17916 NR 26 17917 TC 2 17918 SN 0030-4018 17919 J9 OPT COMMUN 17920 JI Opt. Commun. 17921 PD AUG 15 17922 PY 1995 17923 VL 119 17924 IS 1-2 17925 BP 125 17926 EP 131 17927 PG 7 17928 SC Optics 17929 GA RP774 17930 UT ISI:A1995RP77400023 17931 ER 17932 17933 PT J 17934 AU HU, ZM 17935 ZHANG, WQ 17936 ZHAO, PS 17937 QI, DY 17938 TI STUDY OF CATION TRANSFER ACROSS THE WATER/NITROBENZENE INTERFACE 17939 FACILITATED BY A SYNTHETIC NEUTRAL DICARBOXAMIDE 17940 SO ELECTROANALYSIS 17941 DT Article 17942 DE WATER/NITROBENZENE INTERFACE; IONOPHORE; ION TRANSFER; CYCLIC 17943 VOLTAMMETRY 17944 ID WATER-NITROBENZENE INTERFACE; IMMISCIBLE ELECTROLYTE-SOLUTIONS; LIQUID 17945 MEMBRANE ELECTRODES; ION TRANSFER; METAL-CATIONS; LITHIUM; ALKALI; 17946 VOLTAMMETRY; IONOPHORES; POTASSIUM 17947 AB The transfer of proton, alkali, and alkaline earth metal ions across 17948 the water/nitrobenzene interface, facilitated by a synthetic neutral 17949 dicarboxamide ionophore in the nitrobenzene phase was investigated 17950 using cyclic voltammetry. The ionophore-facilitated transfer of Li+ 17951 Ca2+, and Ba2+ ions showed cathodic current peaks, and the transfer of 17952 H+ ions apparently resulted in peaks of both anodic and cathodic 17953 currents within the potential window. The transfer process of these 17954 ions was found to be controlled by the diffusion of the ionophore in 17955 the nitrobenzene. The formation of a 1:1 complex for H+ and of 1:2 17956 (cation to ionophore) complexes for Li+, Ca2+, and Ba2+ ions was 17957 inferred, through peak separation or the dependence of the cathodic 17958 peak potential on the logarithm of the ionophore concentration, to be 17959 involved in the transfer process. The equilibrium constants K-Li,K-M 17960 for the exchange reaction of the ion M(Z+) with the Li-(+)ionophore 17961 complex at the water/nitrobenzene interface were evaluated and 17962 correlated with the potentiometric selectivity coefficients K-Li,M(Pot). 17963 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA. 17964 CR AMMANN D, 1986, ION SELECTIVE MICROE, P55 17965 BARUZZI AM, 1990, J ELECTROANAL CH INF, V279, P19 17966 FAN R, 1988, J ELECTROANAL CHEM, V256, P207 17967 FAN RX, 1992, J ELECTROANAL CHEM, V324, P107 17968 HOFMANOVA A, 1982, J ELECTROANAL CH INF, V135, P257 17969 HOMOLKA D, 1981, J ELECTROANAL CHEM, V125, P243 17970 HOMOLKA D, 1982, J ELECTROANAL CHEM, V138, P29 17971 KAKUTANI T, 1986, B CHEM SOC JPN, V59, P781 17972 KETAZAWA S, 1985, ANALYST, V110, P295 17973 KORYTA J, 1983, ION SEL ELECTRODE R, V5, P131 17974 KORYTA J, 1983, ION SELECTIVE ELECTR, P39 17975 MEIER PC, 1980, MED BIOL APPLICATION, P13 17976 METZGER E, 1984, CHIMIA, V38, P440 17977 METZGER E, 1986, ANAL CHEM, V58, P132 17978 METZGER E, 1986, HELV CHIM ACTA, V69, P1821 17979 MORF WE, 1983, ION SELECTIVE ELECTR, V1, P39 17980 PARHAM H, 1991, J ELECTROANAL CH INF, V314, P71 17981 SAMEC Z, 1982, J ELECTROANAL CHEM, V135, P265 17982 SAMEC Z, 1990, ANAL CHEM, V62, P1010 17983 SHAO Y, 1991, J ELECTROANAL CHEM, V318, P101 17984 SUN ZH, 1989, ELECTROANAL, V1, P441 17985 SUN ZS, 1990, ANAL CHIM ACTA, V228, P241 17986 TAN SN, 1992, J ELECTROANAL CHEM, V332, P101 17987 VANYSEK P, 1983, J ELECTROANAL CH INF, V148, P117 17988 WANG E, 1986, J ELECTROANAL CHEM, V214, P465 17989 WANG EK, 1990, ELECTROCHIM ACTA, V35, P1965 17990 WANG EK, 1993, ELECTROANAL, V5, P149 17991 XIA XH, 1992, J ELECTROANAL CHEM, V324, P59 17992 XIE RY, 1986, ANAL CHEM, V58, P1806 17993 NR 29 17994 TC 2 17995 SN 1040-0397 17996 J9 ELECTROANAL 17997 JI Electroanalysis 17998 PD JUL 17999 PY 1995 18000 VL 7 18001 IS 7 18002 BP 681 18003 EP 686 18004 PG 6 18005 SC Chemistry, Analytical 18006 GA RN553 18007 UT ISI:A1995RN55300015 18008 ER 18009 18010 PT J 18011 AU ZHANG, JK 18012 HUANG, JZ 18013 YANG, JZ 18014 TI RESEARCH INTO THE SYNTHETIC CALCULATION OF THE PLACE-AND-POSE ERROR 18015 (SCPPE) OF THE PARTS IN A MACHINE 18016 SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY 18017 DT Article 18018 AB During machine design and manufacturing, the analyses and calculations 18019 of the structural or assembling accuracy are very important for 18020 ensuring the quality of the mechanical product. However, the structural 18021 or assembling accuracy is the result of synthesizing the place-and-pose 18022 error of the parts required to be assembled. Due to every part in the 18023 machine being a Three-Dimensional (3-D) Space Substance, in this paper 18024 the place-and-pose error of every part is described in a 3-D coordinate 18025 system. Further, it is shown how the SCPPE of the parts concerned in a 18026 machine can be researched, analyzed and calculated by vector and matrix 18027 operations. Finally, the satisfactory results obtained are illustrated. 18028 RP ZHANG, JK, SHANGHAI UNIV SCI & TECHNOL,DEPT ENGN MECH,149 YAN CHANG 18029 RD,SHANGHAI 200072,PEOPLES R CHINA. 18030 CR CHAKRABORTY J, 1975, MECHANISM MACHINE TH, V10, P155 18031 SHAHEEN A, 1988, IEEE J ROBOTICS AUTO, V14 18032 SHARFI OMA, 1983, MECH MACH THEORY, V18, P123 18033 WILLIAM KV, 1988, IEEE J ROBOTICS AUTO, V14 18034 NR 4 18035 TC 0 18036 SN 0924-0136 18037 J9 J MATER PROCESS TECHNOL 18038 JI J. Mater. Process. Technol. 18039 PD MAY 18040 PY 1995 18041 VL 52 18042 IS 1 18043 BP 151 18044 EP 173 18045 PG 23 18046 SC Engineering, Industrial; Engineering, Manufacturing; Materials Science, 18047 Multidisciplinary 18048 GA RM653 18049 UT ISI:A1995RM65300016 18050 ER 18051 18052 PT J 18053 AU GUO, BY 18054 LI, J 18055 TI FOURIER-CHEBYSHEV PSEUDOSPECTRAL METHODS FOR THE 2-DIMENSIONAL 18056 NAVIER-STOKES EQUATIONS 18057 SO RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION 18058 MATHEMATIQUE ET ANALYSE NUMERIQUE 18059 DT Article 18060 DE NAVIER-STOKES EQUATIONS; FOURIER-CHEBYSHEV PSEUDOSPECTRAL 18061 APPROXIMATION; SUBJECT CLASSIFICATION; AMS(MOS), 65N30; 76D99 18062 ID SPECTRAL METHOD; APPROXIMATION 18063 AB Fourier-Chebyshev pseudospectral approximation for the two-dimensional 18064 unsteady Naviel-Stokes equations is analyzed. The generalized stability 18065 and convergence are proved strictly The numerical results are presented. 18066 RP GUO, BY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 18067 CR CANUTO C, 1982, MATH COMPUT, V38, P67 18068 CANUTO C, 1984, SPECTRAL METHODS PAR, P55 18069 CANUTO C, 1988, SPECTRAL METHODS FLU 18070 CAO WM, 1992, APPL MATH J CHINESE, V7, P350 18071 GOTTLIEB D, 1977, NUMERICAL ANAL SPECT 18072 GUO B, 1985, SCI SINICA SER A, V28, P1139 18073 GUO BY, 1988, ACTA MATH APPL SINIC, V4, P55 18074 GUO BY, 1988, DIFFERENCE METHODS P 18075 GUO BY, 1992, J COMPUT PHYS, V101, P207 18076 GUO BY, 1994, NUMER MATH, V66, P329 18077 KUO PY, 1983, J COMPUT MATH, V1, P353 18078 MA HP, 1988, J COMPUT MATH, V6, P48 18079 MADAY Y, 1981, NUMER MATH, V37, P321 18080 MADAY Y, 1982, SIAM J NUMER ANAL, V19, P761 18081 MADAY Y, 1987, RAIRO-MATH MODEL NUM, V21, P93 18082 ROACHE PJ, 1976, COMPUTATIONAL FLUID 18083 NR 16 18084 TC 3 18085 SN 0764-583X 18086 J9 RAIRO-MATH MODEL NUMER ANAL 18087 JI Rairo-Math. Model. Numer. Anal.-Model. Math. Anal. Numer. 18088 PD MAY 18089 PY 1995 18090 VL 29 18091 IS 3 18092 BP 303 18093 EP 337 18094 PG 35 18095 SC Mathematics, Applied 18096 GA RJ578 18097 UT ISI:A1995RJ57800002 18098 ER 18099 18100 PT J 18101 AU GUO, BY 18102 TI A SPECTRAL METHOD FOR THE VORTICITY EQUATION ON THE SURFACE 18103 SO MATHEMATICS OF COMPUTATION 18104 DT Article 18105 DE VORTICITY EQUATION; SPHERICAL SURFACE; SPECTRAL METHOD; APPROXIMATION 18106 THEORY 18107 AB A spectral scheme is proposed for the vorticity equation defined on the 18108 spherical surface. Generalized stability and convergence are proved. 18109 The approximation results in this paper are also useful for other 18110 nonlinear problems. 18111 RP GUO, BY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 18112 CR BRAMBLE JH, 1985, APPL NUMER MATH, V1, P493 18113 CANUTO C, 1988, SPECTRAL METHODS FLU 18114 CURANT R, 1953, METHODS MATH PHYSICS, V1 18115 GOTTLIEB D, 1977, REGIONAL C SERIES AP, V26 18116 GUO B, 1985, SCI SINICA SER A, V28, P1139 18117 GUO BY, 1987, CALCOLO, V24, P263 18118 GUO BY, 1988, DIFFERENCE METHOD PA 18119 GUO BY, 1992, J COMPUT PHYS, V101, P207 18120 HALTINER GJ, 1971, NUMERICAL PREDICTION 18121 HALTINER GJ, 1980, NUMERICAL PREDICTION 18122 JARRAUD M, 1985, LECTURES APPLIED MAT, V22, P1 18123 KREISS HO, 1979, SIAM J NUMER ANAL, V16, P421 18124 KUO PY, 1983, J COMPUT MATH, V1, P353 18125 LIONS JL, 1969, QUELQUES METHODES RE 18126 LIONS JL, 1972, NONHOMOGENEOUS BOUND, V1 18127 MADAY Y, 1982, SIAM J NUMER ANAL, V19, P761 18128 PASCIAK J, 1982, SIAM J NUMER ANAL, V19, P142 18129 RICHTMYER RD, 1967, DIFFERENCE METHODS I 18130 ZEN QG, 1979, PHYSICAL MATH BASIS, V1 18131 NR 19 18132 TC 2 18133 SN 0025-5718 18134 J9 MATH COMPUT 18135 JI Math. Comput. 18136 PD JUL 18137 PY 1995 18138 VL 64 18139 IS 211 18140 BP 1067 18141 EP 1079 18142 PG 13 18143 SC Mathematics, Applied 18144 GA RJ128 18145 UT ISI:A1995RJ12800008 18146 ER 18147 18148 PT J 18149 AU WANG, ZX 18150 LI, XN 18151 WANG, CS 18152 TI LOCALIZED COMPOSITIONAL DEPTH PROFILES IN NEAR-SURFACE OF CU-50 WT 18153 PERCENT AG ALLOY 18154 SO JOURNAL OF MATERIALS SCIENCE LETTERS 18155 DT Article 18156 ID SEGREGATION 18157 C1 ACAD SINICA,SHANGHAI INST NUCL RES,SHANGHAI 201800,PEOPLES R CHINA. 18158 SHANGHAI UNIV,SHANGHAI APPL RADIAT INST,SHANGHAI 201800,PEOPLES R CHINA. 18159 RP WANG, ZX, CCAST,WORLD LAB,POB 8730,BEIJING 100080,PEOPLES R CHINA. 18160 CR ANDERSEN HH, 1983, NUCL INSTRUM METHODS, V209, P487 18161 ANDERSON GS, 1969, J APPL PHYS, V40, P2884 18162 BETZ G, 1980, SURF SCI, V92, P283 18163 BRIZZOLARA RA, 1987, NUCL INSTRUM METH B, V26, P528 18164 HOFF HA, 1988, SURF SCI, V204, P233 18165 KELLY R, 1989, NUCL INSTRUM METH B, V39, P43 18166 WANG ZX, 1992, J MATER SCI LETT, V11, P719 18167 WANG ZX, 1993, NUCL INSTRUM METH B, V74, P380 18168 WANG ZX, 1994, J MATER SCI LETT, V13, P427 18169 NR 9 18170 TC 1 18171 SN 0261-8028 18172 J9 J MATER SCI LETT 18173 JI J. Mater. Sci. Lett. 18174 PD JUN 15 18175 PY 1995 18176 VL 14 18177 IS 12 18178 BP 892 18179 EP 894 18180 PG 3 18181 SC Materials Science, Multidisciplinary 18182 GA RG754 18183 UT ISI:A1995RG75400018 18184 ER 18185 18186 PT J 18187 AU JIANG, XY 18188 ZHANG, ZL 18189 XU, SH 18190 TI MULTI-DIFFUSED REFLECTION SPECTROSCOPY OF RARE-EARTHS DOPED LAOCL 18191 POWDER SAMPLES AND THE CALCULATION OF QUANTUM EFFICIENCY 18192 SO JOURNAL OF RARE EARTHS 18193 DT Article 18194 DE POWDERED MATERIAL; MULTI-DIFFUSED REFLECTION; DIFFUSED REFLECTION 18195 ABSORPTION SPECTRUM; QUANTUM EFFICIENCY 18196 AB The excitation and emission spectra, the relaxation time of principal 18197 spectral lines and multi-diffused reflection spectra in LaOCl : Er, 18198 LaOCl : Ho powder samples were measured. The diffused absorption 18199 spectrum was derived from the multi-diffused reflection spectrum. 18200 According to Judd-Ofelt theory, the intensity parameters, radiative 18201 transition probabilities and quantum efficiencies of luminescence 18202 emission were calculated. Then comparison with erbium and holmium doped 18203 floride glass and other matrices were made. 18204 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MAT,SHANGHAI 201800,PEOPLES R CHINA. 18205 CR CAMALL WJ, 1968, J CHEM PHYS, V49, P4412 18206 CAMALL WT, 1968, J CHEM PHYS, V49, P4424 18207 HEBET T, 1990, APPL PHYS LETT, V67, P1727 18208 JIANG XY, 1990, CHINESE J LUMIN, V11, P79 18209 JIANG XY, 1993, ACTA PHYS SINICA, V2, P333 18210 JIANG XY, 1993, CHINESE J LUMIN, V14, P307 18211 QI CH, 1985, LUMINESCENCE DISPLAY, V6, P18 18212 WU S, 1986, CHINESE J LUMINESCEN, V7, P252 18213 ZHANG ZL, 1989, 2ND P INT S RAR EART, P353 18214 ZHANG ZL, 1991, ACTA OPT SINICA, V11, P312 18215 NR 10 18216 TC 0 18217 SN 1002-0721 18218 J9 J RARE EARTH 18219 JI J. Rare Earths 18220 PD JUN 18221 PY 1995 18222 VL 13 18223 IS 2 18224 BP 94 18225 EP 98 18226 PG 5 18227 SC Chemistry, Applied 18228 GA RG278 18229 UT ISI:A1995RG27800004 18230 ER 18231 18232 PT J 18233 AU WANG, JR 18234 WEI, GL 18235 TI KINETICS OF THE TRANSFORMATION PROCESS OF PBSO4 TO PBO2 IN A LEAD 18236 ANODIC FILM 18237 SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY 18238 DT Article 18239 DE FILM GROWTH; LEAD-ACID BATTERY; POTENTIOSTATIC OXIDATION; PBSO4; PBO2 18240 ID SULFURIC-ACID; ACTIVE MASS; OXIDATION; SULFATE 18241 AB The kinetics of the nucleation and growth of PbO2 during the 18242 potentiostatic oxidation of PbSO4 in a lead anodic film was studied 18243 using linear sweep voltammetry, potential-step and ac impedance tracing 18244 methods. The film investigated is the partially reduced anodic PbO2 18245 film formed by. polarizing a lead electrode in 4.5 M H2SO4 solution 18246 first at 1.3 V vs. Hg\HgSO4 for 20 min and then at 0.9 V for 5 min. The 18247 nucleation and growth process begins some time after the potential step 18248 and is completed within 60 s. The pre- and post-nucleation and growth 18249 processes correspond to the growth of the anodic film formed by the 18250 oxidation of the lead substrate. The mathematical equations 18251 representing the current-time and capacitance-time transients are 18252 derived laking the background oxidation current into account. The 18253 experimental results are well fitted by these equations. The process 18254 obeys the laws of two-dimensional instantaneous nucleation and growth. 18255 C1 SHANGHAI UNIV,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA. 18256 CR CARR JP, 1970, J ELECTROANAL CHEM, V27, P201 18257 DAWSON JL, 1975, POWER SOURCES, V5, P70 18258 FLEISCHMANN M, 1955, T FARADAY SOC, V51, P71 18259 HAMEENOJA E, 1984, J APPL ELECTROCHEM, V14, P449 18260 HAMPSON NA, 1980, J ELECTROANAL CHEM, V107, P177 18261 LAITINEN T, 1989, ELECTROCHIM ACTA, V134, P3 18262 MONAHOV B, 1993, J APPL ELECTROCHEM, V23, P1244 18263 PAVLOV D, 1989, J ELECTROCHEM SOC, V136, P3189 18264 PAVLOV D, 1990, J POWER SOURCES, V30, P77 18265 PAVLOV D, 1992, J ELECTROCHEM SOC, V139, P3075 18266 TAKEHARA Z, 1990, J POWER SOURCES, V30, P55 18267 VALERIOTE EML, 1975, POWER SOURCES, V5, P55 18268 VALERIOTE EML, 1977, J ELECTROCHEM SOC, V124, P370 18269 WEI C, 1989, ACTA CHIM SINICA, V47, P569 18270 NR 14 18271 TC 4 18272 SN 0022-0728 18273 J9 J ELECTROANAL CHEM 18274 JI J. Electroanal. Chem. 18275 PD JUN 15 18276 PY 1995 18277 VL 390 18278 IS 1-2 18279 BP 29 18280 EP 33 18281 PG 5 18282 SC Chemistry, Analytical; Electrochemistry 18283 GA RG024 18284 UT ISI:A1995RG02400004 18285 ER 18286 18287 PT J 18288 AU LIU, GL 18289 TI THE GENERALIZED UNTWIST PROBLEM OF ROTATING BLADES - A COUPLED 18290 AEROELASTIC FORMULATION 18291 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 18292 DT Article 18293 ID 3-D TRANSONIC FLOW; VARIATIONAL-PRINCIPLES; TURBO-ROTOR; SHOCKS 18294 AB The untwist of rotating blades in turbomachines treated so far in the 18295 literature simply as a pure elasticity problem is generalized and 18296 formulated rigorously as a problem of aeroelasticity by variational 18297 principles (VPs) and generalized VP (GVP). It takes into account not 18298 only the centrifugal force, but also the aeroelastic interaction 18299 between blades and the flow as well as the elastic distortion of the 18300 cross section shape of blades, assuming the material to be linearly 18301 elastic but anisotropic. Thus, a new rigorous theoretical basis for the 18302 finite element analysis of blade untwist in turbomachine design is 18303 provided. 18304 C1 SHANGHAI UNIV,SHANGHAI,PEOPLES R CHINA. 18305 RP LIU, GL, SHANGHAI INST APPL MATH & MECH,SHANGHAI,PEOPLES R CHINA. 18306 CR BIEZENO CB, 1953, TECHNISCHE DYNAMIK, V1 18307 CHIEN WZ, 1980, CALCULUS VARIATIONS 18308 DOWELL EH, 1978, MODERN COURSE AEROEL 18309 FUNG YC, 1965, F SOLID MECHANICS 18310 LIU GL, 1981, ACTA MECH SINICA, V13, P421 18311 LIU GL, 1988, COMPUTATIONAL FLUID, P473 18312 LIU GL, 1990, 1 INT S EXP COMP AER, P128 18313 LIU GL, 1992, ACTA MECH, V95, P117 18314 LIU GL, 1993, 1993 P INT C FLUID M, P359 18315 LIU GL, 1993, ACTA MECH, V97, P229 18316 LIU GL, 1993, MEMORIAL TRIBUTE VOL 18317 OHTSUKA M, 1974, ASME74GT2 PAP 18318 TRAUPEL W, 1977, THERMISCHE TURBOMASC, V1 18319 TRAUPEL W, 1982, THERMISCHE TURBOMASC, V2 18320 WASHIZU K, 1982, VARIATIONAL METHODS 18321 WU CH, 1952, NACA TN2604 18322 NR 16 18323 TC 4 18324 SN 0334-0082 18325 J9 INT J TURBO JET ENGINES 18326 JI Int. J. Turbo. Jet-Engines 18327 PY 1995 18328 VL 12 18329 IS 2 18330 BP 109 18331 EP 117 18332 PG 9 18333 SC Engineering, Aerospace 18334 GA RE849 18335 UT ISI:A1995RE84900003 18336 ER 18337 18338 PT J 18339 AU FINK, D 18340 HU, HW 18341 KLETT, R 18342 MULLER, M 18343 ZHU, J 18344 LI, CL 18345 SUN, YM 18346 MA, F 18347 WANG, LH 18348 TI CONDUCTIVITY OF AGED NONOVERLAPPING AND OVERLAPPING TRACKS IN 18349 ION-IRRADIATED POLYIMIDE 18350 SO RADIATION MEASUREMENTS 18351 DT Article 18352 DE CONDUCTIVITY; NUCLEAR TRACKS; POLYIMIDE; ELECTRONIC ENERGY TRANSFER; 18353 TRACK RADIUS 18354 AB Non-overlapping as well as overlapping tracks of energtic ions have 18355 been introduced into polyimide foils. After aging their conductivity 18356 was measured. This - to our knowledge - first systematic study shows 18357 that conductivity does not only result from multiple track overlapping, 18358 but can be found already in single ion tracks. This conductivity is 18359 shown to be primarily a consequence of electronic energy transfer. The 18360 conductivity of single ion tracks is higher than that of typical 18361 insulators, but still orders of magnitude lower than that of typical 18362 semiconductors. The conductivity is independent of the applied electric 18363 field strength until at excessive voltages the electric current 18364 increases nonlinearly up to complete breakthrough. The total 18365 conductivity of an irradiated polyimide foil increases proportionally 18366 with ion fluence for large ion track spacings, and approaches 18367 saturation when the electronically active track regimes begin to 18368 overlap. Above some thousand times track overlapping however, new 18369 chemical and structural changes in the irradiated material lead to 18370 another strong increase in conductivity. 18371 C1 CHINESE INST ATOM ENERGY,BEIJING,PEOPLES R CHINA. 18372 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI 201800,PEOPLES R CHINA. 18373 ACAD SINICA,INST MODERN PHYS,LANZHOU,PEOPLES R CHINA. 18374 GESELL SCHWERIONENFORSCH MBH,D-64291 DARMSTADT,GERMANY. 18375 RP FINK, D, HAHN MEITNER INST BERLIN GMBH,GLIENICKER STR 100,D-14109 18376 BERLIN,GERMANY. 18377 CR CARDOSO J, 1994, IN PRESS COMMUNICATI 18378 FINK D, 1990, NUCL INSTRUM METH B, V46, P342 18379 FINK D, 1990, NUCL INSTRUM METH B, V46, P342 18380 FINK D, 1994, RAD EFF DEF SOLIDS, V25, P27 18381 FINK D, 1994, UNPUB RAD EFF DE SOL 18382 NR 5 18383 TC 3 18384 SN 1350-4487 18385 J9 RADIAT MEAS 18386 JI Radiat. Meas. 18387 PY 1995 18388 VL 25 18389 IS 1-4 18390 BP 51 18391 EP 54 18392 PG 4 18393 SC Nuclear Science & Technology 18394 GA RE480 18395 UT ISI:A1995RE48000011 18396 ER 18397 18398 PT J 18399 AU ZHOU, SP 18400 TI NOVEL METHODOLOGY TO INVESTIGATE SUPERCONDUCTING DIELECTRIC RESONATORS 18401 SO JOURNAL OF SUPERCONDUCTIVITY 18402 DT Article 18403 DE YBA2CU3O7-DELTA (DELTA-APPROXIMATE-TO-0) RESONATOR; NEGATIVE DIELECTRIC 18404 CONSTANT; CONFORMAL TRANSFORMATION 18405 AB An analytical method is presented for investigating the resonant 18406 behavior of a c-axis oriented YBa2Cu2O7-delta (delta approximate to 0) 18407 thin film on a resonator composed of LaAlO3 (001). The concept of the 18408 negative dielectric medium for a superconductor is introduced within 18409 the framework of the two-fluid model, which permits us to treat a 18410 superconductor as any other penetrable materials so that only its 18411 electromagnetics are concerned. A conformal transformation is further 18412 suggested to map the original open boundary-value problem to a closed 18413 one. This not only makes the original problem readily solvable by using 18414 the variational technique, but is also a powerful tool for analyzing 18415 some kinds of problems such as the propagation characteristics of the 18416 superconducting microstripe and coplanar waveguide structures. 18417 RP ZHOU, SP, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES 18418 R CHINA. 18419 CR ALLENDER D, 1973, PHYS REV B, V7, P1020 18420 BAO JS, 1992, CHIN J LOW TEMP PHYS, V14, P383 18421 BARDEEN J, 1957, PHYS REV, V108, P1175 18422 GOULD SH, 1986, VARIATIONAL METHOD E 18423 KLOPMAN BBG, 1993, IEEE T MICROW THEORY, V41, P781 18424 MATTIS DC, 1958, PHYS REV, V111, P412 18425 RIBBER JC, 1991, IEEE T MAGN, V27, P2533 18426 SCHLUTER M, 1989, PHYSICA C, V162, P583 18427 TURENEAURE JP, 1967, THESIS STANFORD U 18428 VANDUZER T, 1990, 2ND WORKSH HIGH TEMP 18429 ZHOU SP, 1993, J APPL PHYS, V71, P2789 18430 NR 11 18431 TC 0 18432 SN 0896-1107 18433 J9 J SUPERCOND 18434 JI J. Supercond. 18435 PD APR 18436 PY 1995 18437 VL 8 18438 IS 2 18439 BP 211 18440 EP 219 18441 PG 9 18442 SC Physics, Applied; Physics, Condensed Matter 18443 GA RD121 18444 UT ISI:A1995RD12100003 18445 ER 18446 18447 PT J 18448 AU ZHOU, SP 18449 COURT, GR 18450 TI MAGNETIC-BEHAVIOR AND VORTEX LATTICE TRANSITION IN YBA2CU3O7-DELTA 18451 SO JOURNAL OF SUPERCONDUCTIVITY 18452 DT Article 18453 DE SUSCEPTIBILITY; MIXED STATE; PINNING; STRUCTURE VORTEX LATTICE 18454 TRANSITION 18455 ID HIGH-TC SUPERCONDUCTORS; MULTILAYERS; MODEL 18456 AB Magnetic susceptibility measurements on YBa2Cu3O7-delta rod materials 18457 by an ac balanced bridge technique are made in fields of up to 50 mT 18458 and over the temperature range from 4.2 K to just below T-c. A large 18459 H-c2 accompanied by characteristic form of hysteresis has been shown. A 18460 modified critical state model of Anderson [Phys. Rev. Lett. 9, 309 18461 (1962)] is adapted to fit the curves in the region where hysteresis is 18462 dominant because of flux trapping. A conceptual model of structure 18463 vortex lattice transition due to the intrinsic pinning of the layering 18464 configuration is suggested, which can provide an explanation of the 18465 magnetic behaviour of oxide superconductors. 18466 C1 UNIV LIVERPOOL,DEPT PHYS,LIVERPOOL L69 3BX,MERSEYSIDE,ENGLAND. 18467 RP ZHOU, SP, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI,PEOPLES R 18468 CHINA. 18469 CR ANDERSON PW, 1962, PHYS REV LETT, V9, P309 18470 ANDERSON PW, 1964, REV MOD PHYS, V36, P39 18471 ARATS J, 1990, EUROPHYS LETT, V12, P447 18472 BAK P, 1988, PHYS REV A, V38, P364 18473 BEAN CP, 1962, PHYS REV LETT, V8, P250 18474 CHADWICK J, 1989, SOLID STATE COMMUN, V69, P19 18475 CHAKRAVARTY S, 1989, PHYS REV LETT, V60, P1057 18476 CLEM JR, 1991, PHYS REV B, V43, P7837 18477 DOLAN GJ, 1989, PHYS REV LETT, V62, P8276 18478 DREW HD, 1993, PHYS REV B, V47, P586 18479 HAGEN CW, 1989, PHYS REV LETT, V62, P2857 18480 KES PH, 1988, PHYSICA C, V153, P1121 18481 KES PH, 1989, PHYSICA C, V153, P1121 18482 KES PH, 1991, PHYSICA C, V185, P2071 18483 KIM YB, 1962, PHYS REV LETT, V9, P306 18484 KRRAI K, 1992, PHYS REV LETT, V69, P355 18485 KUMAR GR, 1989, PHYS REV B, V39, P4704 18486 KUWASAWA Y, 1990, PHYSICA C, V165, P173 18487 LARKIN AI, 1979, J LOW TEMP PHYS, V34, P409 18488 LARKIN AI, 1989, SOLID STATE COMMUN, V70, P291 18489 MAJ W, 1992, SUPERCOND SCI TECH, V5, P483 18490 ROSSAT J, 1989, SEP P INT FOR PHYS H 18491 SUN JZ, 1989, PHYS REV LETT, V63, P4861 18492 TACHIKI M, 1989, SOLID STATE COMMUN, V70, P361 18493 TAKAHASHI S, 1986, PHYS REV B, V33, P4620 18494 NR 25 18495 TC 0 18496 SN 0896-1107 18497 J9 J SUPERCOND 18498 JI J. Supercond. 18499 PD FEB 18500 PY 1995 18501 VL 8 18502 IS 1 18503 BP 79 18504 EP 85 18505 PG 7 18506 SC Physics, Applied; Physics, Condensed Matter 18507 GA RD078 18508 UT ISI:A1995RD07800014 18509 ER 18510 18511 PT J 18512 AU LI, J 18513 GUO, BY 18514 TI FOURIER-LEGENDRE SPECTRAL METHOD FOR THE UNSTEADY NAVIER-STOKES 18515 EQUATIONS 18516 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 18517 DT Article 18518 ID FINITE-ELEMENT; APPROXIMATION 18519 AB Fourier-Legendre spectral approximation for the unsteady Navier-Stokes 18520 equations is analyzed. The generalized stability and convergence are 18521 proved respectively. 18522 C1 ACAD SINICA,CTR COMP,BEIJING 100080,PEOPLES R CHINA. 18523 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 18524 CR BERNARDI C, 1987, NUMER MATH, V51, P655 18525 CANTO C, 1982, MATH COMPUT, V38, P67 18526 CANUTO C, 1984, NUMER MATH, V44, P201 18527 GIRAULT V, 1986, FINITE ELEMENT APPRO 18528 GUO BY, 1985, SCI SINICA, V28, P1138 18529 GUO BY, 1988, DIFFERENCE METHODS P 18530 GUO BY, 1992, J COMPUT PHYS, V101, P375 18531 HUANG W, 1992, NE MATH J, V8, P157 18532 LIONS JL, 1970, 2 SIAM AMS P, V2, P11 18533 MADAY Y, 1981, NUMER MATH, V37, P321 18534 MADAY Y, 1982, SIAM J NUMER ANAL, V19, P761 18535 NR 11 18536 TC 1 18537 SN 0254-9409 18538 J9 J COMPUT MATH 18539 JI J. Comput. Math. 18540 PD APR 18541 PY 1995 18542 VL 13 18543 IS 2 18544 BP 144 18545 EP 155 18546 PG 12 18547 SC Mathematics, Applied; Mathematics 18548 GA RB379 18549 UT ISI:A1995RB37900005 18550 ER 18551 18552 PT J 18553 AU WANG, Q 18554 SHI, JL 18555 BAO, JS 18556 TI THEORY OF NONLINEAR MAGNETOSTATIC SURFACE-WAVE IN A PERIODICALLY 18557 CORRUGATED FERROMAGNETIC SLAB 18558 SO JOURNAL OF APPLIED PHYSICS 18559 DT Article 18560 ID YTTRIUM-IRON-GARNET; ENVELOPE SOLITONS; SPIN-WAVES; FILMS; PROPAGATION 18561 RP WANG, Q, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES 18562 R CHINA. 18563 CR ANISIMOV AN, 1976, SOV PHYS-SOLID STATE, V18, P20 18564 BOARDMAN AD, 1988, PHYS REV B, V38, P11444 18565 BOARDMAN AD, 1990, NONLINEAR WAVES SOLI, P235 18566 BOARDMAN AD, 1994, IEEE T MAGN, V30, P1 18567 BRILLOUIN L, 1953, WAVE PROPAGATION PER 18568 DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308 18569 DEAGUIAR FM, 1986, PHYS REV LETT, V56, P1070 18570 DEGASPERIS P, 1987, PHYS REV LETT, V59, P481 18571 DEGASPERIS P, 1988, J APPL PHYS, V63, P3335 18572 ELACHI C, 1975, IEEE T MAGN, V11, P36 18573 GULYAEV YV, 1980, SOV PHYS-SOLID STATE, V22, P1651 18574 GULYAEV YV, 1986, SOV PHYS-SOLID STATE, V28, P1553 18575 JEFFRIES CD, 1988, J APPL PHYS, V64, P5382 18576 KALINIKOS BA, 1983, JETP LETT, V38, P413 18577 KALINIKOS BA, 1988, ZH EKSP TEOR FIZ, V67, P303 18578 KALINIKOS BA, 1990, PHYS REV B B, V42, P8658 18579 KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712 18580 KOGELNIK H, 1972, J APPL PHYS, V43, P2327 18581 MCKINSTRY KD, 1985, J APPL PHYS, V58, P925 18582 MEDNIKOV AM, 1981, SOV PHYS-SOLID STATE, V23, P136 18583 PATTON CE, 1969, J APPL PHYS, V40, P2837 18584 PENG ST, 1975, IEEE T MICROW THEORY, V23, P123 18585 POLZIKOVA NI, 1984, SOV PHYS-SOLID STATE, V26, P2113 18586 QI W, 1994, SCI CHINA SER A, V24, P160 18587 SYKES CG, 1976, APPL PHYS LETT, V29, P388 18588 TSUTSUMI M, 1977, IEEE T MICROWAVE THE, V25, P224 18589 VENDIK OG, 1977, SOV PHYS-SOLID STATE, V19, P222 18590 WANG Q, 1993, ACTA PHYSIC SINICA, V42, P2005 18591 WEISS MT, 1959, J APPL PHYS, V30, P2014 18592 ZVEZDIN AK, 1983, ZH EKSP TEOR FIZ, V57, P350 18593 NR 30 18594 TC 8 18595 SN 0021-8979 18596 J9 J APPL PHYS 18597 JI J. Appl. Phys. 18598 PD JUN 1 18599 PY 1995 18600 VL 77 18601 IS 11 18602 BP 5831 18603 EP 5837 18604 PG 7 18605 SC Physics, Applied 18606 GA QZ282 18607 UT ISI:A1995QZ28200047 18608 ER 18609 18610 PT J 18611 AU WEI, GL 18612 CHEN, XL 18613 ZHOU, WF 18614 TI OXIDATION PROCESSES OF LEAD SULFATE IN THE ANODIC FILMS ON PURE AND 18615 ANTIMONIAL LEAD 18616 SO ACTA CHIMICA SINICA 18617 DT Article 18618 ID SULFURIC-ACID; SULFATE 18619 AB The oxidation processes of lead sulphate in the anodic films on lead 18620 and Pb-5wt% Sb alloy, which were formed by the reduction at 0.9 V (vs. 18621 Hg / Hg2SO4, the same reference electrode below) for 5 min of the 18622 anodic films grown in a 4.5 mol . dm(-3) H2SO4 solution (30 degrees C) 18623 at 1.3 V for 20 min, have been studied using potential. step and a.c. 18624 impedance methods respectively. The experimental results show that the 18625 lead sulphate, which is formed by reducing lead dioxide, can be 18626 reoxidized to lead dioxide within 1 min at 1.4 V. This is due to the 18627 fact that this kind of lead sulphate is at the surface layers of the 18628 lead sulphate grains in the anodic film, The oxidation process of lead 18629 sulphate in the inner part of the grain, which is formed directly by 18630 anodizing lead, is much slower. The antimony in the lead alloy inhibits 18631 significantly the nucleation and growth of lead dioxide crystals, 18632 C1 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA. 18633 RP WEI, GL, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES 18634 R CHINA. 18635 CR DAWSON JL, 1979, ELECTROCHEMISTRY LEA, P309 18636 ELLIS SR, 1986, J APPL ELECTROCHEM, V16, P159 18637 FLEISCHMANN M, 1963, ADV ELECTROCHEMISTRY, V3, P123 18638 HAN J, 1994, J ELECTROANAL CHEM, V368, P43 18639 LAITINEN T, 1991, ELECTROCHIM ACTA, V36, P605 18640 RAND DAJ, 1988, J POWER SOURCES, V23, P269 18641 TAKEHARA Z, 1990, J POWER SOURCES, V30, P55 18642 VALERIOTE EML, 1977, J ELECTROCHEM SOC, V124, P370 18643 NR 8 18644 TC 1 18645 SN 0567-7351 18646 J9 ACTA CHIM SIN 18647 JI Acta Chim. Sin. 18648 PY 1995 18649 VL 53 18650 IS 4 18651 BP 313 18652 EP 317 18653 PG 5 18654 SC Chemistry, Multidisciplinary 18655 GA QY409 18656 UT ISI:A1995QY40900001 18657 ER 18658 18659 PT J 18660 AU JIN, C 18661 WANG, JG 18662 CHEN, WJ 18663 TI IN-SITU OBSERVATION OF FRACTURE PROCESS OF A TIAL ALLOY WITH FULLY 18664 LAMELLAR MICROSTRUCTURE 18665 SO SCRIPTA METALLURGICA ET MATERIALIA 18666 DT Article 18667 ID GAMMA-TITANIUM ALUMINIDE; INTERMETALLICS; TOUGHNESS 18668 RP JIN, C, SHANGHAI UNIV,INST MET & MAT,YANCHANG RD 149,SHANGHAI 18669 200072,PEOPLES R CHINA. 18670 CR CAO HC, 1989, ACTA METALL, V37, P2969 18671 CHAN KS, 1991, METALL TRANS A, V22, P2021 18672 CHAN KS, 1992, JOM-J MIN MET MAT S, V44, P30 18673 CHAN KS, 1992, METALL T A, V23, P1663 18674 DEVE HE, 1990, ACTA METALL MATER, V38, P1491 18675 DEVE HE, 1991, ACTA METALL MATER, V39, P2275 18676 DEVE HE, 1992, ACTA METALL MATER, V40, P1259 18677 JIN C, IN PRESS 18678 JIN C, UNPUB 18679 KIM YW, 1989, JOM-J MIN MET MAT S, V41, P24 18680 KIM YW, 1991, JOM, V43, P40 18681 LONDON B, 1991, MICROSTRUCTURE PROPE, P285 18682 NR 12 18683 TC 0 18684 SN 0956-716X 18685 J9 SCR METALL MATER 18686 JI Scr. Metall. Materialia 18687 PD MAY 15 18688 PY 1995 18689 VL 32 18690 IS 10 18691 BP 1579 18692 EP 1584 18693 PG 6 18694 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 18695 Engineering 18696 GA QX018 18697 UT ISI:A1995QX01800011 18698 ER 18699 18700 PT J 18701 AU GUAN, HW 18702 TI TECHNICAL APPROACHES TO REAL-TIME CONTROL-BASED ON TRANSPUTERS 18703 SO COMPUTING & CONTROL ENGINEERING JOURNAL 18704 DT Article 18705 AB An important application of modern microcomputer systems is in the area 18706 of real-time control. The transputer is a novel RISC microcomputer that 18707 provides a few of the facilities which may be obtained in a general 18708 microcomputer. The various kinds of real-time control methods based on 18709 transputers are investigated in this article. Some practical real-time 18710 control techniques are proposed according to the properties of the 18711 transputer and the capability of Occam programming. The outlines of 18712 Occam code for the various real-time control applications are given. 18713 RP GUAN, HW, SHANGHAI UNIV,DEPT COMP SCI & ENGN,SHANGHAI,PEOPLES R CHINA. 18714 CR 1987, REFERENCE MANUAL TRA 18715 1987, TUTORIAL INTRO OCCAM 18716 1989, TRANSPUTER APPLICATI 18717 1989, TRANSPUTER DATABOOK 18718 1991, TRANSPURTER DEV IQ S 18719 GUAN HW, 1993, CHINESE J COMPUTERS, V16, P488 18720 GUAN HW, 1993, DEC P INT C MOD SIM 18721 GUAN HW, 1993, SEP P IEEE INT C NET 18722 NR 8 18723 TC 1 18724 SN 0956-3385 18725 J9 COMPUTING CONTROL ENGINEER J 18726 JI Comput. Control Eng. J. 18727 PD APR 18728 PY 1995 18729 VL 6 18730 IS 2 18731 BP 75 18732 EP 78 18733 PG 4 18734 SC Automation & Control Systems 18735 GA QX091 18736 UT ISI:A1995QX09100008 18737 ER 18738 18739 PT J 18740 AU SHE, JW 18741 LI, MY 18742 HUAN, LJ 18743 YU, YZ 18744 TI DYNAMIC CHARACTERISTICS OF PROSTHETIC HEART-VALVES 18745 SO MEDICAL ENGINEERING & PHYSICS 18746 DT Article 18747 DE PROSTHETIC HEART VALVE; PRESSURE DROP; FLOW RATE; DYNAMIC 18748 CHARACTERISTIC; CIRCULATION; POWER LOSS 18749 ID BJORK-SHILEY; INVITRO; HYPERTENSION; MODEL 18750 AB The relation between flow rate (Q) and transvalvular pressure-drop (DP) 18751 is of fundamental importance for a prosthetic heart value tested in 18752 steady flow conditions. The Q-DP Plot can thus be called the static 18753 characteristic of the valve. While in pulsatile flow, with time (t) as 18754 a parameter, the instantaneous Q(t)-DP(t) relation can also be 18755 obtained. The Q-DP relation forms a phase graph on an X-Y plane during 18756 a whole cardiac cycle, and can be regarded as the dynamic 18757 characteristic, which to our knowledge has never been systematically 18758 explored before. With in vitro experiment the Q(t)-DP(t) relations are 18759 presented for five different aortic valves. Properly modelling the 18760 characteristics of heart valves is a key link in modelling the 18761 interaction between the ventricle and arterial system. Treatments for 18762 valves, such as diode analogue and orifice area assumption governed by 18763 the Gorlin formula, are found unsatisfactory. A simple one-dimensional 18764 flow equation is used to futher examine the Q-DP graph, and both the 18765 dynamic resistance characteristic and the dynamic flow characteristic 18766 can be obtained. It is found that the dynamic characteristic differs 18767 from the static one not only in the inertance effect but also in the 18768 transient process, which can be quite energy-consuming and therefore 18769 important. Geometric relations of these phase graphs with the 18770 transvalvular power loss are discussed. The method of dynamic 18771 characteristics provides a new way to evaluate the performance of a 18772 tested valve. 18773 C1 SHANGHAI MED UNIV,DEPT ANAT,SHANGHAI,PEOPLES R CHINA. 18774 SHANGHAI MED UNIV,DEPT BIOMED ENGN,SHANGHAI,PEOPLES R CHINA. 18775 SHANGHAI UNIV SCI & TECHNOL,DEPT MECH ENGN,SHANGHAI,PEOPLES R CHINA. 18776 CR 1986, REPLACEMENT HEART VA 18777 AVANZOLINI G, 1989, IEEE T BIO-MED ENG, V36, P462 18778 BARBARO V, 1992, J MED ENG TECHNOL, V16, P10 18779 BURKHOFF D, 1988, AM J PHYSIOL, V255, H742 18780 COCHRANE T, 1991, J BIOMED ENG, V13, P335 18781 COHN JN, 1992, J HYPERTENS, V10, S61 18782 GROSS JM, 1991, ASAIO T, V37, P7357 18783 HAGGAG YAM, 1989, J BIOMED ENG, V12, P63 18784 HENZE A, 1974, J THORACIC CARDIOVAS, V4, P167 18785 JANSEN J, 1992, J MED ENG TECHNOL, V16, P27 18786 KNOTT E, 1988, J THORAC CARDIOV SUR, V96, P952 18787 LEVENSON J, 1992, EUR HEART J, V13, P48 18788 LIVNAT A, 1981, AM J PHYSIOL, V240, R370 18789 MILLMAN J, 1965, PULSE DIGITAL SWITCH 18790 OLIN C, 1971, J THORACIC CARDIOVAS, V5, P1 18791 RUEL H, 1987, ENG MED, V16, P67 18792 SABBAH HN, 1984, J BIOMECH ENG-T ASME, V106, P66 18793 SHE JW, 1990, J BIOMED ENG, V12, P375 18794 SUGA H, 1971, IEEE T BIOMED ENG, V18, P47 18795 SWANSON WM, 1984, MED INSTRUM, V18, P318 18796 TSITLIK JE, 1992, ANN BIOMED ENG, V20, P595 18797 WALKER DK, 1984, J THORACIC CARDIOVAS, V88, P673 18798 WENDT MO, 1991, J BIOMED ENG, V13, P126 18799 WILLSHAW P, 1986, J BIOMED ENG, V8, P43 18800 YAGANATHAN AP, 1979, J BIOMECH, V12, P153 18801 NR 25 18802 TC 2 18803 SN 1350-4533 18804 J9 MED ENG PHYS 18805 JI Med. Eng. Phys. 18806 PD JUN 18807 PY 1995 18808 VL 17 18809 IS 4 18810 BP 273 18811 EP 281 18812 PG 9 18813 SC Engineering, Biomedical 18814 GA QW624 18815 UT ISI:A1995QW62400005 18816 ER 18817 18818 PT J 18819 AU DEREN, W 18820 BAI, ZZ 18821 EVANS, DJ 18822 TI ASYNCHRONOUS MULTISPLITTING RELAXED ITERATIONS FOR WEAKLY 18823 NONLINEAR-SYSTEMS 18824 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 18825 DT Article 18826 DE SYSTEM OF WEAKLY NONLINEAR EQUATIONS; MATRIX MULTISPLITTING; 18827 ASYNCHRONOUS PARALLEL ITERATION; RELAXATION; GLOBAL CONVERGENCE 18828 ID PARALLEL ALGORITHM; CONVERGENCE 18829 AB In this paper, we propose a class of asynchronous parallel 18830 multisplitting accelerated overrelaxation methods for solving the 18831 system of weakly nonlinear equations A phi(x) + B psi(x) = G(x) with 18832 A,B is an element of L(R(n)), phi, psi:R(n) --> R(n) being diagonal 18833 mappings and G:R(n) --> R(n) a general mapping, which is constantly 18834 resulted from the discretization of many classical differential 18835 equations. Under suitable conditions of both the coefficient matrices 18836 and the nonlinear mappings, as well as reasonable constraints of the 18837 multiple splittings and the relaxation parameters, the global 18838 convergence theories of these new methods are set up thoroughly. 18839 C1 FUDAN UNIV,INST MATH,SHANGHAI 200433,PEOPLES R CHINA. 18840 LOUGHBOROUGH UNIV TECHNOL,DEPT COMP STUDIES,LOUGHBOROUGH LE11 3TU,LEICS,ENGLAND. 18841 RP DEREN, W, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES 18842 R CHINA. 18843 CR BAI ZZ, 1993, IN PRESS MODELS ASYN 18844 BAI ZZ, 1994, IN PRESS APPL MATH B 18845 BERTSEKAS DP, 1989, NUMERICAL METHODS 18846 BRU R, 1989, LINEAR ALGEBRA APPL, V103, P175 18847 EVANS DJ, 1991, PARALLEL COMPUT, V17, P165 18848 FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141 18849 MEMON RA, 1994, J SHANGHAI U SCI TEC 18850 NEUMANN M, 1987, LINEAR ALGEBRA APPL, V88, P559 18851 OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630 18852 ORTEGA JM, 1970, ITERATIVE SOLUTION N 18853 VARGA RS, 1961, MATRIX ITERATIVE ANA 18854 WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473 18855 WANG D, 1991, NUMER MATH SINICA, V13, P297 18856 WANG D, 1993, IN PRESS MONOTONE CO 18857 WANG D, 1993, IN PRESS MULTISPLITT 18858 WANG DR, 1994, PARALLEL ALGORITHMS, V2, P173 18859 WHITE RE, 1986, SIAM J ALGEBRA DISCR, V7, P137 18860 WHITE RE, 1986, SIAM J NUMER ANAL, V23, P639 18861 NR 18 18862 TC 1 18863 SN 0020-7160 18864 J9 INT J COMPUT MATH 18865 JI Int. J. Comput. Math. 18866 PY 1994 18867 VL 54 18868 IS 1-2 18869 BP 57 18870 EP 76 18871 PG 20 18872 SC Mathematics, Applied 18873 GA QV102 18874 UT ISI:A1994QV10200006 18875 ER 18876 18877 PT J 18878 AU BAI, ZZ 18879 WANG, DR 18880 EVANS, DJ 18881 TI MODELS OF ASYNCHRONOUS PARALLEL MATRIX MULTISPLITTING RELAXED ITERATIONS 18882 SO PARALLEL COMPUTING 18883 DT Article 18884 DE SYSTEM OF LINEAR EQUATIONS; ASYNCHRONOUS PARALLEL ITERATION; MATRIX 18885 MULTISPLITTING; RELAXATION; CONVERGENCE 18886 ID CONVERGENCE 18887 AB By making use of the principle of sufficiently using the delayed 18888 information, we propose two models of asynchronous parallel matrix 18889 multisplitting accelerated overrelaxation iterative methods for solving 18890 systems of linear equations, which have the merits of convenient 18891 computations, flexible and free communications, and can cover all the 18892 known synchronous as well as asynchronous parallel matrix 18893 multisplitting relaxation methods and their special cases. When the 18894 coefficient matrix is an H-matrix, we prove the convergence and 18895 estimate the convergence rates of these models in a detailed manner. 18896 C1 LOUGHBOROUGH UNIV TECHNOL,DEPT COMP STUDIES,LOUGHBOROUGH LE11 3TU,LEICS,ENGLAND. 18897 FUDAN UNIV,INST MATH,SHANGHAI 200433,PEOPLES R CHINA. 18898 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 18899 CR BAUDET GM, 1978, J ASSOC COMPUT MACH, V25, P226 18900 BERTSEKAS DP, 1978, PARALLEL DISTRIBUTED 18901 BRU R, 1989, LINEAR ALGEBRA APPL, V103, P175 18902 CHAZAN D, 1969, LINEAR ALGEBRA APPL, V2, P199 18903 DEREN W, 1991, LINEAR ALGEBRA APPL, V154, P473 18904 DEREN W, 1993, PARALLEL ALGORITHMS, V1 18905 ELTARAZI MN, 1982, NUMER MATH, V39, P325 18906 EVANS DJ, 1991, PARALLEL COMPUT, V17, P165 18907 FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141 18908 OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630 18909 VARGA RS, 1961, MATRIX ITERATIVE ANA 18910 YANGFENG S, 1991, J FUDAN U NATURAL SC, V4, P444 18911 YOUNG DM, 1971, ITERATIVE SOLUTION L 18912 NR 13 18913 TC 15 18914 SN 0167-8191 18915 J9 PARALLEL COMPUT 18916 JI Parallel Comput. 18917 PD APR 18918 PY 1995 18919 VL 21 18920 IS 4 18921 BP 565 18922 EP 582 18923 PG 18 18924 SC Computer Science, Theory & Methods 18925 GA QU875 18926 UT ISI:A1995QU87500003 18927 ER 18928 18929 PT J 18930 AU ZHU, JH 18931 HUANG, SB 18932 WAN, XJ 18933 TI SURFACE-REACTION OF FE3AL WITH WATER-VAPOR AND OXYGEN 18934 SO SCRIPTA METALLURGICA ET MATERIALIA 18935 DT Article 18936 ID ENVIRONMENTAL EMBRITTLEMENT; CRACK-GROWTH; FRACTURE 18937 C1 SHANGHAI UNIV SCI & TECHNOL,INST MET & MAT SCI,SHANGHAI 200072,PEOPLES R CHINA. 18938 CR GAO SJ, 1984, MATER SCI ENG, V62, P65 18939 GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37 18940 LIU CT, 1989, SCRIPTA METALL, V23, P875 18941 LIU CT, 1990, HIGH TEMPERATURE ALU, P133 18942 LIU CT, 1990, SCRIPTA METALL MATER, V24, P385 18943 LIU CT, 1991, INT J IRON STEEL OCT 18944 LIU CT, 1992, ORDERED INTERMETALLI, P321 18945 LIU CT, 1992, SCRIPTA METALL MATER, V27, P599 18946 SHEA M, 1992, MAT RES SOC P, V213, P609 18947 SIMMONS GW, 1978, METALL T A, V9, P1147 18948 WAN X, 1994, J MATER SCI TECHNOL, V10, P39 18949 WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473 18950 WEI RP, 1980, MET T A, V11, P151 18951 NR 13 18952 TC 9 18953 SN 0956-716X 18954 J9 SCR METALL MATER 18955 JI Scr. Metall. Materialia 18956 PD MAY 1 18957 PY 1995 18958 VL 32 18959 IS 9 18960 BP 1399 18961 EP 1404 18962 PG 6 18963 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 18964 Engineering 18965 GA QU727 18966 UT ISI:A1995QU72700018 18967 ER 18968 18969 PT J 18970 AU HUANG, HC 18971 HE, YC 18972 TI POLARIZATION BEHAVIOR OF SPUN FIBER VERSUS CONVENTIONAL FIBER UNDER 18973 STRONG SLIGHT TWISTING 18974 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 18975 DT Article 18976 DE FIBER OPTICS; POLARIZATION OPTICS; OPTOELECTRONICS; PHOTONICS; 18977 SPECIALIZED FIBER 18978 AB In this article, the authors attempt to treat both strong twisting and 18979 slight twisting of fiber via a consistent asymptotic approach to the 18980 coupled-mode theory. In strong twisting, an admirably simple and useful 18981 asymptotic equation is derived in the form R(2) tau = const., which 18982 relates the minimum required twist rate tau with the minimum allowable 18983 radius of curvature R. In slight twisting, an oscillatory pattern of 18984 the polarization behavior clearly reveals the advantageous feature of a 18985 twist-spun fiber, which is made by a prior spinning of the fiber before 18986 a twisting. (C) 1995 John Wiley & Sons, Inc. 18987 RP HUANG, HC, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 18988 NR 0 18989 TC 1 18990 SN 0895-2477 18991 J9 MICROWAVE OPT TECHNOL LETT 18992 JI Microw. Opt. Technol. Lett. 18993 PD MAY 18994 PY 1995 18995 VL 9 18996 IS 1 18997 BP 37 18998 EP 41 18999 PG 5 19000 SC Engineering, Electrical & Electronic; Optics 19001 GA QT782 19002 UT ISI:A1995QT78200013 19003 ER 19004 19005 PT J 19006 AU DING, S 19007 KHAN, RD 19008 ZHANG, JL 19009 SHEN, WD 19010 TI QUANTUM HARMONIC-OSCILLATOR WITH TIME-DEPENDENT MASS AND FREQUENCY 19011 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 19012 DT Article 19013 ID FABRY-PEROT CAVITY; FIELD FLUCTUATIONS; COHERENT STATES; VARIABLE MASS; 19014 2-LEVEL ATOMS; INVARIANTS; HAMILTONIANS; RESONANCE; RESERVOIR 19015 AB The quantum harmonic oscillator with time-dependent mass and frequency 19016 is analyzed by using the canonical transformation method. The varying 19017 mass and frequency of the system are reduced to constant mass and 19018 frequency, and the corresponding eigenvalues and eigenvectors are 19019 derived. The exact time-dependent coherent state of the harmonic 19020 oscillator is constructed and shown to be equivalent to the squeezed 19021 state. Damped harmonic oscillators with different frictions and forced 19022 time-dependent harmonic oscillators are also discussed. 19023 RP DING, S, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES 19024 R CHINA. 19025 CR ABDALLA MS, 1986, PHYS REV A, V34, P4598 19026 BASEIA B, 1992, PHYS REV A, V45, P5308 19027 COLEGRAVE RK, 1981, J PHYS A-MATH GEN, V14, P2269 19028 COLEGRAVE RK, 1981, OPT ACTA, V28, P495 19029 COLEGRAVE RK, 1982, J PHYS A, V15, P1549 19030 COLEGRAVE RK, 1983, OPT ACTA, V30, P849 19031 COLEGRAVE RK, 1983, OPT ACTA, V30, P861 19032 DANTAS CMA, 1992, PHYS REV A, V45, P1320 19033 GUNTHER NJ, 1977, J MATH PHYS, V18, P572 19034 HARTLEY JG, 1982, PHYS REV A, V25, P2388 19035 HARTLEY JG, 1982, PHYS REV D, V25, P382 19036 JANNUSSIS A, 1988, NUOVO CIMENTO B, V102, P33 19037 JANNUSSIS AD, 1988, PHYS LETT A, V129, P2631 19038 LEACH PGL, 1977, J MATH PHYS, V18, P1608 19039 LEACH PGL, 1977, J MATH PHYS, V18, P1902 19040 LEACH PGL, 1978, J MATH PHYS, V19, P446 19041 LEACH PGL, 1983, J PHYS A-MATH GEN, V16, P3261 19042 LEWIS HR, 1969, J MATH PHYS, V10, P1458 19043 LO CF, 1990, NUOVO CIMENTO B, V105, P497 19044 LO CF, 1992, PHYS REV A, V45, P5262 19045 PEDROSA IA, 1987, J MATH PHYS, V28, P2662 19046 PEDROSA IA, 1987, PHYS REV D, V36, P1279 19047 YUAN HP, 1976, PHYSICAL REV A, V131, P2226 19048 NR 23 19049 TC 0 19050 SN 0020-7748 19051 J9 INT J THEOR PHYS 19052 JI Int. J. Theor. Phys. 19053 PD MAR 19054 PY 1995 19055 VL 34 19056 IS 3 19057 BP 355 19058 EP 368 19059 PG 14 19060 SC Physics, Multidisciplinary 19061 GA QR832 19062 UT ISI:A1995QR83200004 19063 ER 19064 19065 PT J 19066 AU ZHU, ST 19067 GUO, QZ 19068 SHEN, WD 19069 WANG, ST 19070 TI RIEMANNIAN GEOMETRY OF STRONG-LASER PLASMA 19071 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 19072 DT Article 19073 AB The optical metric for a strong-laser plasma is derived. The affine 19074 connection and curvature related to the optical metric are given and 19075 their spatial distributions are studied numerically. 19076 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 19077 CHINESE ACAD SCI,SHANGHAI INST EDUC,DEPT PHYS,SHANGHAI 200031,PEOPLES R CHINA. 19078 RP ZHU, ST, ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI 19079 201800,PEOPLES R CHINA. 19080 CR GORDON W, 1923, ANN PHYS-BERLIN, V72, P421 19081 SHEN W, 1988, PHYSICAL REV A, V37, P4387 19082 WEINBERG S, 1972, GRAVITATION COSMOLOG 19083 ZHU ST, 1987, J OPT SOC AM B, V4, P739 19084 ZHU ST, 1988, SATELLITE M IQFC 88 19085 ZHU ST, 1989, ACTA PHYS SINICA, V38, P1167 19086 ZHU ST, 1989, ACTA PHYSICA SINIA, V38, P560 19087 ZHU ST, 1991, CNOC 91 19088 ZHU ST, 1992, INT LASER C BEIJING 19089 NR 9 19090 TC 6 19091 SN 0020-7748 19092 J9 INT J THEOR PHYS 19093 JI Int. J. Theor. Phys. 19094 PD FEB 19095 PY 1995 19096 VL 34 19097 IS 2 19098 BP 169 19099 EP 177 19100 PG 9 19101 SC Physics, Multidisciplinary 19102 GA QR441 19103 UT ISI:A1995QR44100002 19104 ER 19105 19106 PT J 19107 AU CHEN, CH 19108 TI A FORMULA FOR DETERMINING LIMIT NONINTERFERENCE CURVATURE IN PURE 19109 ROLLING CONJUGATION GEARS BY USING GEOMETRO-KINEMATICAL CONCEPTS 19110 SO JOURNAL OF MECHANICAL DESIGN 19111 DT Article 19112 AB Pure rolling conjugation gears are very useful in the cases where 19113 lubrication is difficult to implement, such as in cryogenic and/or 19114 vacuum environments, and at slow operating speeds. The main problem 19115 confronted in the design of the pure rolling conjugation gears is to 19116 determine the limit noninterference curvature of one gear when the 19117 curvature of the conjugate gear is prescribed. The way of solving this 19118 problem becomes very complicated when using the conventional concepts 19119 from the classical differential geometry. However, when using the 19120 geometro-kinematical concepts from the theory of conjugate surfaces, 19121 this problem can be solved explicitly and simply. In this paper, these 19122 concepts are introduced, and a closed-form formula for determining the 19123 limit noninterference curvature is derived. A numerical example is 19124 cited. 19125 RP CHEN, CH, SHANGHAI UNIV SCI & TECHNOL,LANE 200,HOUSE 23,ROOM 19126 401,SHANGHAI 200063,PEOPLES R CHINA. 19127 NR 0 19128 TC 5 19129 SN 1050-0472 19130 J9 J MECH DESIGN 19131 JI J. Mech. Des. 19132 PD MAR 19133 PY 1995 19134 VL 117 19135 IS 1 19136 BP 180 19137 EP 184 19138 PG 5 19139 SC Engineering, Mechanical 19140 GA QR245 19141 UT ISI:A1995QR24500027 19142 ER 19143 19144 PT J 19145 AU ZHANG, JL 19146 JIAN, XY 19147 XU, SH 19148 SAITO, S 19149 NAGAMOTO, T 19150 TI BRIGHT BLUE EMISSION FROM A NEW SPECIES OF POLYMER DIODE 19151 SO CHINESE PHYSICS LETTERS 19152 DT Article 19153 ID LIGHT-EMITTING-DIODES; ELECTROLUMINESCENT 19154 AB Blue emitting electroluminescent diode using PVCz doped with perylene 19155 and BBOT as electron transport has been constructed. The emission 19156 spectrum is a mixture of spectra of BBOT and perylene. A luminance of 19157 as high as 680 cd/m(2) with lumen efficiency more then 0.028 lm/W ham 19158 been obtained. 19159 C1 SHIBAURA INST TECHNOL,MINATO KU,TOKYO 108,JAPAN. 19160 RP ZHANG, JL, SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SCI,SHANGHAI 19161 201800,PEOPLES R CHINA. 19162 CR BROWN AR, 1992, APPL PHYS LETT, V61, P2793 19163 BURROUGHES JH, 1990, NATURE, V347, P539 19164 KIGO J, 1993, APPL PHYS LETT, V63, P2627 19165 TANG CW, 1987, APPL PHYS LETT, V51, P913 19166 TANG CW, 1989, J APPL PHYS, V65, P3610 19167 ZHANG ZL, IN PRESS J LUMINESCE 19168 NR 6 19169 TC 1 19170 SN 0256-307X 19171 J9 CHIN PHYS LETT 19172 JI Chin. Phys. Lett. 19173 PY 1995 19174 VL 12 19175 IS 1 19176 BP 54 19177 EP 57 19178 PG 4 19179 SC Physics, Multidisciplinary 19180 GA QL804 19181 UT ISI:A1995QL80400015 19182 ER 19183 19184 PT J 19185 AU TAN, WH 19186 TI THE GENERAL PROCESS IN LASERS 19187 SO OPTICS COMMUNICATIONS 19188 DT Note 19189 ID PUMP 19190 AB Generalizing the results of previous papers, a model of general process 19191 in lasers is described. It is shown that a three-level laser system can 19192 generate nonclassical light with sub-Poissonian distribution, where as 19193 the four-level system generates light essentially Poisson distributed 19194 at threshold. 19195 C1 ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI 201800,PEOPLES R CHINA. 19196 RP TAN, WH, SHANGHAI UNIV,DEPT PHYS,JOINT LAB QUANTUM OPT,POB 19197 800-211,SHANGHAI 201800,PEOPLES R CHINA. 19198 CR GOLUBEV YM, 1984, ZH EKSP TEOR FIZ, V60, P234 19199 HAAKE F, 1989, PHYS REV A, V40, P7121 19200 MARTE MAM, 1989, PHYS REV A, V40, P5774 19201 RITSCH H, 1991, PHYS REV A, V44, P3361 19202 SARGENT M, 1974, LASER PHYSICS, P297 19203 SCULLY MO, 1967, PHYS REV, V159, P208 19204 TAN WH, 1994, PHYS LETT A, V190, P13 19205 WIESMAN HM, 1992, PHYS REV A, V46, P2853 19206 YAMAMOTO Y, 1989, PHYS REV A, V40, P7121 19207 YAMAMOTO Y, 1990, PHYS REV A, V41, P2808 19208 NR 10 19209 TC 3 19210 SN 0030-4018 19211 J9 OPT COMMUN 19212 JI Opt. Commun. 19213 PD MAR 15 19214 PY 1995 19215 VL 115 19216 IS 3-4 19217 BP 303 19218 EP 307 19219 PG 5 19220 SC Optics 19221 GA QL915 19222 UT ISI:A1995QL91500014 19223 ER 19224 19225 PT J 19226 AU GU, HY 19227 TI STUDIES ON OPTIMUM CONDITION-MONITOR CYCLE TIME POLICIES WITH GENERAL 19228 REPAIR RESULT 19229 SO RELIABILITY ENGINEERING & SYSTEM SAFETY 19230 DT Article 19231 AB In this paper we consider that an equipment life is subjected to a 19232 general distribution and its condition-monitor cycle time is T. No 19233 sooner is the failure monitored than the equipment is repaired. After 19234 being repaired, the equipment does not function as a new, but as one 19235 which has been used for a period of time. Let Y indicate such a period 19236 of time, standing as a random variable. Hence, assuming the same repair 19237 conditions at each repair, we get a Y distribution after each repair. 19238 Using the following method, E(X) = E(y)(E(x)(X \ Y)), we can obtain a 19239 mean condition-monitor cycle time and mean repair cost between two 19240 adjacent maintenance intervals. Finally, considering an objective 19241 function with bound condition, and using Lagrange's method of 19242 multipliers, we obtain an optimum condition-monitor cycle time T-*, 19243 where the minimum total repairing cost is achieved. 19244 RP GU, HY, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,BOX 30,149 YANCHANG 19245 RD,SHANGHAI 200072,PEOPLES R CHINA. 19246 CR GERTSBAKH IB, 1977, MODELS PREVENTIVE MA 19247 GU HY, 1993, RELIAB ENG SYST SAFE, V41, P197 19248 NAKAFAWA T, 1977, THESIS KYOTO U JAPAN 19249 NAKAGAWA T, 1976, Z OPNS RES, V20, P171 19250 NR 4 19251 TC 0 19252 SN 0951-8320 19253 J9 RELIAB ENG SYST SAFETY 19254 JI Reliab. Eng. Syst. Saf. 19255 PY 1994 19256 VL 46 19257 IS 3 19258 BP 245 19259 EP 252 19260 PG 8 19261 SC Engineering, Industrial; Operations Research & Management Science 19262 GA QK577 19263 UT ISI:A1994QK57700006 19264 ER 19265 19266 PT J 19267 AU YAN, Q 19268 HOFFMAN, AS 19269 TI SYNTHESIS OF MACROPOROUS HYDROGELS WITH RAPID SWELLING AND DESWELLING 19270 PROPERTIES FOR DELIVERY OF MACROMOLECULES 19271 SO POLYMER 19272 DT Note 19273 DE MACROPOROUS HYDROGEL; SWELLING KINETICS; PORE SIZE 19274 AB Thermally reversible macroporous poly(N-isopropylacrylamide) 19275 (polyNIPAAm) hydrogel has been synthesized in aqueous solution at a 19276 temperature above the lower critical solution temperature (LCST). Rapid 19277 swelling and deswelling kinetics of this macroporous hydrogel are 19278 characterized. Pore size measurement by a solute exclusion technique 19279 reveals that this macroporous hydrogel has a larger pore size 19280 distribution than the hydrogel synthesized at a temperature below the 19281 LCST. This kind of thermally reversible macroporous hydrogel will be 19282 very useful in delivery of macromolecules. 19283 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 19284 UNIV WASHINGTON,CTR BIOENGN,SEATTLE,WA 98105. 19285 CR DONG LC, 1990, P INT S CONTROL REL, V17, P325 19286 PARKER L, 1988, LEARN MOTIV, V19, P1 19287 SATO S, 1974, INT J PHARM, V22, P229 19288 NR 3 19289 TC 49 19290 SN 0032-3861 19291 J9 POLYMER 19292 JI Polymer 19293 PD FEB 19294 PY 1995 19295 VL 36 19296 IS 4 19297 BP 887 19298 EP 889 19299 PG 3 19300 SC Polymer Science 19301 GA QK671 19302 UT ISI:A1995QK67100029 19303 ER 19304 19305 PT J 19306 AU WANG, XW 19307 ZHU, XH 19308 TI NUMERICAL-SIMULATION OF DEEP-DRAWING PROCESS 19309 SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY 19310 DT Article 19311 AB In this pager, both rigid-plastic FEM simulation and experimental 19312 methods are used to systematically analyze axisymmetric deep-drawing 19313 process, summarize material flow law in deep-drawing process. The 19314 relation between punch force and drawing depth is measured with 19315 transducer and other equipment. Contrasting to the experimental result, 19316 it shows that this method is successfully applied to simulate 19317 deep-drawing process. The method of dealing with boundary conditions 19318 raised in this paper precisely simulate the material warping in the 19319 center and the cavity in the flange, and investigate the influence of 19320 friction and other parameters on the limit depth of deep-drawing. 19321 Although the program shown in this paper deals merely with the 19322 axisymmetric deep-drawing deformation, it could be applied to upsetting 19323 and forging process either. 19324 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MAT ENGN,SHANGHAI 200335,PEOPLES R CHINA. 19325 RP WANG, XW, SHANGHAI JIAO TONG UNIV,DEPT MAT ENGN,1954 HUA SHAN 19326 RD,SHANGHAI 200030,PEOPLES R CHINA. 19327 CR BIANCHI JH, 1987, INT J MECH SCI, V29, P61 19328 CHEN CC, 1979, T ASME, V101, P23 19329 KANETAKE N, 1987, ADV TECHNOLOGY PLAST, P493 19330 LEE CH, 1973, J ENG IND-T ASME, V95, P865 19331 OH SI, 1979, T ASME B, V101, P36 19332 TEKKAYA AE, 1985, SIMULATION METAL FOR, P50 19333 ZICNKIWICZ OC, 1984, NUMERICAL ANAL FORMI 19334 NR 7 19335 TC 0 19336 SN 0924-0136 19337 J9 J MATER PROCESS TECHNOL 19338 JI J. Mater. Process. Technol. 19339 PD JAN 15 19340 PY 1995 19341 VL 48 19342 IS 1-4 19343 BP 123 19344 EP 127 19345 PG 5 19346 SC Engineering, Industrial; Engineering, Manufacturing; Materials Science, 19347 Multidisciplinary 19348 GA QJ335 19349 UT ISI:A1995QJ33500016 19350 ER 19351 19352 PT J 19353 AU TAN, WH 19354 MA, GB 19355 ZHUANG, J 19356 LIU, RH 19357 TI INFLUENCE OF DETUNING ON THE BUTTERFLY EFFECT OF LASER OSCILLATION 19358 SO ACTA PHYSICA SINICA-OVERSEAS EDITION 19359 DT Article 19360 AB In this paper the butterfly effects of single mode laser oscillation 19361 are studied. It is shown that the detuning between laser oscillation 19362 and atomic transition frequency leads to a decrease in second 19363 threshold, which makes the demonstration of chaos theory in experiment 19364 easy. 19365 RP TAN, WH, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES 19366 R CHINA. 19367 NR 0 19368 TC 1 19369 SN 1004-423X 19370 J9 ACTA PHYS SIN-OVERSEAS ED 19371 JI Acta Phys. Sin.-Overseas Ed. 19372 PD DEC 19373 PY 1994 19374 VL 3 19375 IS 12 19376 BP 884 19377 EP 890 19378 PG 7 19379 SC Physics, Multidisciplinary 19380 GA QH441 19381 UT ISI:A1994QH44100002 19382 ER 19383 19384 PT J 19385 AU WANG, Q 19386 WEN, GJ 19387 CAI, YS 19388 TI THEORY OF OPTICAL-WAVE COUPLING IN THE PRESENCE OF MAGNETOSTATIC 19389 SURFACE-WAVES 19390 SO ACTA PHYSICA SINICA-OVERSEAS EDITION 19391 DT Article 19392 AB The general expression of magneto-optical permittivity tensor including 19393 the Faraday and Cotton-Mouton effects is derived and the coupled wave 19394 equations for the optical modes propagating in an arbitrary direction 19395 with respect to the magnetostatic surface wave are obtained. The 19396 optical multimode coupled wave equations will reduce to the bi-mode 19397 ones in the phase-matching conditions. The behaviors of four types of 19398 important optical bi-mode coupling are discussed and some new results 19399 are obtained. In the limits of alpha = 0 and pi/2, all results 19400 obtained reduce to those reported in the literature. 19401 RP WANG, Q, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES 19402 R CHINA. 19403 NR 0 19404 TC 0 19405 SN 1004-423X 19406 J9 ACTA PHYS SIN-OVERSEAS ED 19407 JI Acta Phys. Sin.-Overseas Ed. 19408 PD NOV 19409 PY 1994 19410 VL 3 19411 IS 11 19412 BP 849 19413 EP 860 19414 PG 12 19415 SC Physics, Multidisciplinary 19416 GA QH440 19417 UT ISI:A1994QH44000008 19418 ER 19419 19420 PT J 19421 AU GUO, GY 19422 CHEN, YL 19423 TI FORMATION AND PROPERTIES OF A LEAD-BARIUM-ALUMINUM PHOSPHATE-GLASS 19424 SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY 19425 DT Note 19426 AB A lead-barium-aluminum phosphate glass has been prepared by a wet 19427 chemical process. The phosphate glass exhibits high transmission in the 19428 visible region of the spectrum and into the mid-infrared and can 19429 strongly absorb in the ultraviolet at wavelengths of less than 344 nm. 19430 In addition, the glass has a relatively high index of refraction and a 19431 good chemical durability, Therefore, the phosphate glass can be used 19432 for general-purpose optical applications. 19433 C1 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA. 19434 RP GUO, GY, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI & ENGN,SHANGHAI 19435 200030,PEOPLES R CHINA. 19436 CR BROW RK, 1993, J AM CERAM SOC, V76, P913 19437 BUNKER BC, 1984, J NON-CRYST SOLIDS, V64, P291 19438 GUO GY, 1993, J NON-CRYST SOLIDS, V162, P164 19439 GUO GY, 1993, MATER CHEM PHYS, V35, P409 19440 HE Y, 1992, GLASS TECHNOL, V33, P214 19441 PENG YB, 1991, GLASS TECHNOL, V32, P166 19442 PENG YB, 1991, GLASS TECHNOL, V32, P200 19443 SALES BC, 1987, J AM CERAM SOC, V70, P615 19444 VOLF MB, 1984, CHEM APPROACH GLASS, P277 19445 NR 9 19446 TC 5 19447 SN 0002-7820 19448 J9 J AMER CERAM SOC 19449 JI J. Am. Ceram. Soc. 19450 PD FEB 19451 PY 1995 19452 VL 78 19453 IS 2 19454 BP 501 19455 EP 503 19456 PG 3 19457 SC Materials Science, Ceramics 19458 GA QG272 19459 UT ISI:A1995QG27200036 19460 ER 19461 19462 PT J 19463 AU WEI, GL 19464 WANG, JR 19465 TI KINETICS OF THE FORMATION PROCESS OF PBO2 ON LEAD ANTIMONY ELECTRODES 19466 SO JOURNAL OF POWER SOURCES 19467 DT Article 19468 DE ELECTRODES; LEAD; ANTIMONY; FORMATION PROCESS 19469 ID ACID; OXIDATION 19470 AB The kinetics of the formation process of PbO2 on Pb-1wt.%Sb and 19471 Pb-7wt.%Sb electrodes, together with the influence of antimony on this 19472 process, are studied with potential-step and a.c. impedance methods. 19473 Relationships between the current density and time, and between the 19474 capacitance and time, are investigated. The oxidation current of the 19475 lead substrate is considered. Results show that the formation process 19476 of PbO2 on lead-antimony electrodes follows a two-dimensional 19477 instantaneous nucleation/growth process. Antimony enhances the 19478 formation of PbO2 nuclei, but inhibits their growth. 19479 RP WEI, GL, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES 19480 R CHINA. 19481 CR DAWSON JL, 1979, POWER SOURCES, V7, P1 19482 HAMEENOJA E, 1984, J APPL ELECTROCHEM, V14, P449 19483 HAMPSON NA, 1980, J ELECTROANAL CHEM, V107, P177 19484 LAITINEN T, 1989, ELECTROCHIM ACTA, V134, P3 19485 LAITINEN T, 1991, ELECTROCHIM ACTA, V36, P605 19486 PAVLOV D, 1993, J POWER SOURCES, V42, P345 19487 RITCHIE EJ, 1970, J ELECTROCHEM SOC, V117, P299 19488 THIRSK HR, 1972, GUIDE STUDY ELECTROD, P116 19489 VALERIOTE EML, 1977, J ELECTROCHEM SOC, V124, P370 19490 WEI C, 1989, ACTA CHIM SINICA, V47, P569 19491 NR 10 19492 TC 3 19493 SN 0378-7753 19494 J9 J POWER SOURCES 19495 JI J. Power Sources 19496 PD DEC 19497 PY 1994 19498 VL 52 19499 IS 2 19500 BP 193 19501 EP 196 19502 PG 4 19503 SC Electrochemistry; Energy & Fuels 19504 GA QD431 19505 UT ISI:A1994QD43100005 19506 ER 19507 19508 PT J 19509 AU LI, B 19510 MA, XM 19511 LIU, L 19512 QI, ZH 19513 DONG, YD 19514 TI INVESTIGATION OF AMORPHIZATION OF NB-SI ALLOYS BY MECHANICAL ALLOYING 19515 SO CHINESE PHYSICS LETTERS 19516 DT Article 19517 ID AMORPHOUS-ALLOYS; ZR ALLOYS; POWDERS; NI 19518 AB Amorphous Nb62.5 Si37.5 and Nb75Si25 alloys were produced from mixtures 19519 of elemental Nb and Si powders by mechanical alloying (MA). The 19520 structural changes of mechanically alloyed powders were monitored by 19521 x-ray diffraction. It was found that NbSi2 intermetallic compound was 19522 formed in the initial stage of MA of Nb62.5 Si37.5 or Nb75Si25 powders. 19523 With continued milling, the mixtures of intermetallic NbSi2 and 19524 elemental Nb transformed into amorphous Nb-Si alloys (Nb62.5 Si37.5 or 19525 Nb75Si25). The slow interdiffusion of Nb and Si and the slower 19526 diffusion of silicon atoms to niobium matrix than that of niobium atoms 19527 to silicon matrix were suggested to be responsible for the formation of 19528 intermetallic NbSi2. The amorphization of 3NbSi2 + 7Nb mixtures (or 19529 NbSi2 + 5Nb mixtures) is believed to be controlled by material 19530 transfer, which moves composition of line intermetallic NbSi2, off 19531 stoichiometry, and causes the matrix of elemental Nb deformed. 19532 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MET & MAT,SHANGHAI 200072,PEOPLES R CHINA. 19533 RP LI, B, ACAD SINICA,INST SOLID STATE PHYS,HEFEI 230031,PEOPLES R CHINA. 19534 CR CALKA A, 1991, APPL PHYS LETT, V58, P119 19535 HELLSTERN E, 1986, APPL PHYS LETT, V48, P124 19536 HIKATA A, 1987, APPL PHYS LETT, V50, P478 19537 KOCH CC, 1983, APPL PHYS LETT, V43, P1017 19538 LEE PY, 1987, APPL PHYS LETT, V50, P1578 19539 LI B, UNPUB APPL PHYS LETT 19540 LI B, 1993, J ALLOY COMPD, V202, P161 19541 MIEDEMA AR, 1980, PHYSICA B, V100, P1 19542 OMURO K, 1992, APPL PHYS LETT, V60, P1433 19543 POUNDER NM, 1991, J PHYS-CONDENS MAT, V3, P2069 19544 SCHWARZ RB, 1985, J NON-CRYST SOLIDS, V76, P281 19545 SCHWARZ RB, 1986, APPL PHYS LETT, V49, P146 19546 WANG WK, 1988, Z PHYS B, V69, P481 19547 NR 13 19548 TC 1 19549 SN 0256-307X 19550 J9 CHIN PHYS LETT 19551 JI Chin. Phys. Lett. 19552 PY 1994 19553 VL 11 19554 IS 11 19555 BP 681 19556 EP 684 19557 PG 4 19558 SC Physics, Multidisciplinary 19559 GA QD297 19560 UT ISI:A1994QD29700007 19561 ER 19562 19563 PT J 19564 AU YU, JD 19565 ITOH, M 19566 HUANG, T 19567 INAGUMA, Y 19568 NAKAMURA, T 19569 TI ELECTRONIC TRANSPORT PROPERTY OF LA2CUO4+DELTA 19570 (0-LESS-THAN-DELTA-LESS-THAN-0.35) SINGLE-CRYSTAL BELOW 320-K 19571 SO PHYSICA C 19572 DT Article 19573 ID PHASE-SEPARATION 19574 AB The excess oxygen contents of La2CuO4+delta single crystals grown by 19575 the TSFZ method were changed in the range 0.000 less than or equal to 19576 delta less than or equal to 0.035 by the heat treatments under high and 19577 low oxygen pressures. Measurements of the electrical resistivity under 19578 hydrostatic pressure up to 11 kbar, magnetic susceptibility, and 19579 thermoelectric power were carried out below 320 K for the samples with 19580 different excess oxygen contents. The results of all measurements 19581 indicated that, except for superconducting transition temperature, 19582 there are three characteristic temperatures below 320 K, i.e., aroud 19583 295 K, around 265 K, around 195 K. 19584 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 19585 RP YU, JD, TOKYO INST TECHNOL,ENGN MAT RES LAB,MIDORI KU,4259 19586 NAGATSUTA,YOKOHAMA,KANAGAWA 227,JAPAN. 19587 CR BEDNORZ JG, 1986, Z PHYS B CON MAT, V64, P189 19588 CHAILLOUT C, 1990, PHYSICA C, V170, P87 19589 HUNDLEY MF, 1990, PHYS REV B, V41, P4062 19590 HUNDLEY MF, 1991, PHYSICA C, V172, P455 19591 ITOH M, 1994, SOLID STATE COMMUN, V90, P787 19592 JORGENSEN JD, 1988, PHYS REV B, V38, P11337 19593 RADAELLI PG, 1994, PHYS REV B, V49, P6239 19594 VAKNIN D, 1994, PHYS REV B, V49, P9057 19595 NR 8 19596 TC 1 19597 SN 0921-4534 19598 J9 PHYSICA C 19599 JI Physica C 19600 PD DEC 19601 PY 1994 19602 VL 235 19603 PN Part 2 19604 BP 1323 19605 EP 1324 19606 PG 2 19607 SC Physics, Applied 19608 GA QC694 19609 UT ISI:A1994QC69400301 19610 ER 19611 19612 PT J 19613 AU LIU, GL 19614 TI RESEARCH ON INVERSE, HYBRID AND OPTIMIZATION PROBLEMS IN ENGINEERING 19615 SCIENCES WITH EMPHASIS ON TURBOMACHINE AERODYNAMICS - A REVIEW OF 19616 CHINESE ADVANCES 19617 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 19618 DT Article 19619 AB A brief review of advances in the inverse design and optimization 19620 theory in the following engineering fields in China is presented: I) 19621 turbomachine aerodynamic inverse design: including mainly: (i) two 19622 original approaches - image-space approach and variational approach, 19623 (ii) improved mean-streamline (stream surface) method, (iii) 19624 optimization theory based on optimal control; II) other engineering 19625 fields: inverse problem of heat conduction, free-surface flow, 19626 variational cogeneration of optimal grid and flow field, optimal 19627 meshing theory of gears, etc. 19628 C1 SHANGHAI INST APP MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA. 19629 RP LIU, GL, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 200072,PEOPLES R CHINA. 19630 CR CAI R, 1984, ASME, V106, P300 19631 CAI R, 1987, ASME87GT147 PAP 19632 CAI RQ, 1983, INT J HEAT FLUID FL, V9, P302 19633 CHEN KM, NUMERICAL METHOD C 2, P1355 19634 CHEN NI, 1986, INT J NUMER METH ENG, V22, P456 19635 CHEN NI, 1987, ASME87GT29 PAP 19636 CHEN XI, 1986, ASME86GT159 PAP 19637 CHEN Z, 1982, CHINESE J ENG THERMO, V3, P353 19638 GE M, 1987, CHINESE J ENG THERMO, V8, P243 19639 GE M, 1987, CHINESE J ENG THERMO, V8, P31 19640 GE M, 1988, ASME88GT PAP 19641 GU CG, 1986, ASME86FT182 PAP 19642 GU CG, 1987, 2ND P CHIN JAP JOINT, P416 19643 HAFEZ MM, 1983, AIAA J, V21, P327 19644 HUA YN, 1983, 6TH P INT S AIR BREA, P487 19645 JIANG HX, 1983 P TOK INT GAS T 19646 LING ZU, 1985, CHINESE J ENG THERMO, V6, P245 19647 LIU GL, 1964, UNIVERSAL COMPUTER M 19648 LIU GL, 1980, ACTA MECHANICA SIN, V12, P337 19649 LIU GL, 1980, FUNDAMENTALS AERODYN 19650 LIU GL, 1980, J SHANGAI I MECH ENG, V2, P25 19651 LIU GL, 1981, CHINESE J ENG THERMO, V23, P335 19652 LIU GL, 1981, J SHANGHAI I MECHANI, V3, P1 19653 LIU GL, 1982, ACTA MECHANICA SIN, V14, P122 19654 LIU GL, 1982, CHINESE J ENG THERMO, V3, P138 19655 LIU GL, 1983, 6TH P INT S AIR BREA, P313 19656 LIU GL, 1984, CHINESE J ENG THERMO, V5, P27 19657 LIU GL, 1985, ACTA AERODYN SINICA, V3, P24 19658 LIU GL, 1985, OPTIMAL TYPE FLOW PA 19659 LIU GL, 1986, 6TH P INT S FEM FLOW, P137 19660 LIU GL, 1986, 6TH P INT S FEM FLOW, P39 19661 LIU GL, 1987, 1987 TOKY INT GAS TU, V2, P259 19662 LIU GL, 1987, NUM METHODS THERMAL, V5, P284 19663 LIU GL, 1987, NUMERICAL METHODS LA, V5, P1739 19664 LIU GL, 1987, TURBULENCE MEASUREME, P323 19665 LIU GL, 1988, 3RD P INT S REF FLOW, P283 19666 LIU GL, 1989, NUM METHODS THERMAL, V6, P1712 19667 LIU GL, 1989, NUMERICAL METHODS C, V6, P1343 19668 LIU GL, 1989, NUMERICAL METHODS LA, V6, P1289 19669 LIU GL, 1990, 4TH P INT S REF FLOW, P175 19670 LIU GL, 1990, CHINESE J ENG THERMO, V11, P136 19671 LIU GL, 1991, ASME91GT169 PAP 19672 LIU GL, 1991, ASME91GT3085 PAP 19673 LIU GL, 1993, 2ND P INT S AER INT, P361 19674 LIU GL, 1993, ACTA MECH, V99, P219 19675 LU WC, 1987, 2ND P CHIN JAP JOINT, P481 19676 QIN R, ASME J TURBOMACHINER, V110, P545 19677 SHEN MY, 1983, ACTA MECH SINICA, V15, P1 19678 SUN XY, 1988, ASME88GT113 PAP 19679 TAO C, 1990, 3RD P JAP CHIN JOINT 19680 THOMAS KM, 1974, ASME74GT82 PAP 19681 WANG XJ, 1983, THESIS NE U TECHNOLO 19682 WANG ZM, 1985, ASME85GT6 PAP 19683 WANG ZM, 1988, ASME, V110, P181 19684 WANG ZM, 1989, 9TH INTL S AIR BREAT 19685 WANG ZM, 1990, 1ST P ISAIF BEIJ, P482 19686 WANG ZM, 1991, ASME91GT76 PAP 19687 WILKINSON DH, 1970, ARC RM3704 19688 WU BR, 1984, ADV MECHANICS, V14, P161 19689 WU CH, 1952, JAS, V19, P3 19690 WU CH, 1952, NACA TN2604 19691 WU CH, 1976, 3RD P ISABE MUN, P233 19692 WU GC, 1987, 87TOKYOIGTC19 PAP 19693 XU HY, 1990, ACTA AERODYNAMICS SI, V8, P103 19694 XUE MI, 1975, OPTIMUM AERODYNAMICS 19695 YAN S, 1ST INT S BEIJ, P457 19696 YAO FS, 1979, CHINESE J MECH ENG 19697 YAO Z, 1982, THESIS SHANGHAI I ME 19698 YAO Z, 1984, COMPUTL TURBOMACHINE, P237 19699 ZHAO SL, 1989, ASME89GT73 PAP 19700 ZHAO XL, 1985, ASME, V107, P293 19701 ZHOU XH, 1985, CHEM J ENGN THERMOPH, V6, P331 19702 ZOU ZX, 1980, CHINESE J ENG THERMO, V1, P341 19703 NR 73 19704 TC 3 19705 SN 0334-0082 19706 J9 INT J TURBO JET ENGINES 19707 JI Int. J. Turbo. Jet-Engines 19708 PY 1994 19709 VL 11 19710 IS 1 19711 BP 53 19712 EP 70 19713 PG 18 19714 SC Engineering, Aerospace 19715 GA QC854 19716 UT ISI:A1994QC85400005 19717 ER 19718 19719 PT J 19720 AU YAN, S 19721 LIU, GL 19722 TI VARIATIONAL VARIABLE-DOMAIN FINITE-ELEMENT METHOD FOR HYBRID PROBLEMS 19723 OF 3-DIMENSIONAL INCOMPRESSIBLE ROTOR FLOW 19724 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 19725 DT Article 19726 AB Based on the variational theory developed by Liu (1986), a new finite 19727 element method (FEM) with self-adapting nodes is suggested in this 19728 paper for determining the unknown shape of the boundaries in hybrid 19729 problems of three-dimensional incompressible rotor flow. The 19730 computational results of two different kinds of hybrid problems show 19731 that the rotor geometry obtained from the calculation coincides with 19732 the original one quite well. A new numerical method for cascade design 19733 and modification is thus provided and recommended for practical use. 19734 It can be extended to compressible flow (Liu, 1988). 19735 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA. 19736 SHANGHAI INST APPL MATH & MECH,SHANGHAI,PEOPLES R CHINA. 19737 RP YAN, S, SHANGHAI INST MECH & ELECT ENGN,SHANGHAI 200093,PEOPLES R CHINA. 19738 CR BORGES JE, 1989, ASME89GT136 PAP 19739 BORGES JE, 1989, ASME89GT137 PAP 19740 CHUNG TJ, 1978, FINITE ELEMENT ANAL 19741 FINLAYSON BA, 1972, METHOD WEIGHTED RESI 19742 GHALY WS, 1990, INT J NUMER METH FL, V10, P179 19743 HAWTHORNE WR, 1987, P ICIDES 2 DULIKRAVI, P207 19744 LIU GL, 1986, ASME, V108, P254 19745 LIU GL, 1988, COMPUTATIONAL FLUID, P473 19746 MARCHUK GI, 1982, METHODS NUMERICAL MA 19747 MIZUKI S, 1975, ASME75GT14 PAP 19748 MIZUKI S, 1979, PERFORMANCE PREDICTI, P13 19749 STANITZ JD, 1988, APPLIED MECHANICS RE, V41, P217 19750 YAN S, 1989, VARIATIONAL FINITE E 19751 YAN S, 1990, 1ST P INT S EXP COMP, P457 19752 NR 14 19753 TC 3 19754 SN 0334-0082 19755 J9 INT J TURBO JET ENGINES 19756 JI Int. J. Turbo. Jet-Engines 19757 PY 1994 19758 VL 11 19759 IS 1 19760 BP 71 19761 EP 82 19762 PG 12 19763 SC Engineering, Aerospace 19764 GA QC854 19765 UT ISI:A1994QC85400006 19766 ER 19767 19768 PT J 19769 AU WANG, ZX 19770 PAN, JS 19771 ZHANG, JP 19772 TAO, ZL 19773 DU, GT 19774 WANG, CH 19775 LI, XN 19776 XIE, YF 19777 LUO, WY 19778 ZHOU, SX 19779 TI TOPOGRAPHY AND ANGULAR-DISTRIBUTION OF SPUTTERED ATOMS OF SILVER TARGET 19780 BOMBARDED BY SIN- (N=1,2) IONS 19781 SO JOURNAL OF MATERIALS SCIENCE LETTERS 19782 DT Article 19783 ID MOLECULAR-DYNAMICS SIMULATION; FILMS 19784 C1 SHANGHAI UNIV SCI & TECHNOL,INST APPL RADIAT,SHANGHAI 201800,PEOPLES R CHINA. 19785 RP WANG, ZX, ACAD SINICA,INST NUCL RES,POB 800204,SHANGHAI 201800,PEOPLES 19786 R CHINA. 19787 CR ANDERSEN HH, 1975, J APPL PHYS, V46, P2416 19788 JOHAR SS, 1979, SURF SCI, V90, P319 19789 OASTA DJ, 1988, PHYS REV LETT, V61, P1392 19790 ROOSENDAAL HE, 1982, NUCL INSTRUM METHODS, V194, P579 19791 SHAPIRO MH, 1990, NUCL INSTRUM METH B, V48, P557 19792 SHAPIRO MH, 1991, NUCL INSTRUM METH B, V62, P35 19793 SZYMONSKI M, 1978, J PHYS D, V11, P751 19794 THOMPSON DA, 1977, RADIAT EFF, V32, P135 19795 THOMPSON DA, 1979, APPL PHYS LETT, V34, P342 19796 WANG ZX, 1993, NUCL INSTRUM METH B, V74, P380 19797 NR 10 19798 TC 0 19799 SN 0261-8028 19800 J9 J MATER SCI LETT 19801 JI J. Mater. Sci. Lett. 19802 PD JAN 1 19803 PY 1995 19804 VL 14 19805 IS 1 19806 BP 33 19807 EP 34 19808 PG 2 19809 SC Materials Science, Multidisciplinary 19810 GA QB226 19811 UT ISI:A1995QB22600013 19812 ER 19813 19814 PT J 19815 AU WEI, GP 19816 ZHENG, YM 19817 HUANG, ZJ 19818 LI, Y 19819 FENG, JW 19820 MO, YW 19821 TI POROUS SILICON AND ITS APPLICATION TEST FOR PHOTOVOLTAIC DEVICES 19822 SO SOLAR ENERGY MATERIALS AND SOLAR CELLS 19823 DT Article 19824 AB Porous silicon was prepared by anodization of a p/p(+) epitaxial c-Si 19825 wafer. Its structure was examined by electron microscopy, Raman 19826 spectroscopy, and infrared spectroscopy. The results of the examination 19827 show that the porous Si consists of many nano-scale pores and 19828 crystalline slices, and that there is a thin molecular film containing 19829 Si-H, Si-O and SI-H-2 bonds at the surface of the slices. Some solar 19830 cells were fabricated from the porous Si wafers, and about 7% 19831 efficiency was obtained. 19832 RP WEI, GP, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 19833 CR BRANDT MS, 1992, SOLID STATE COMMUN, V81, P307 19834 CANHAM LT, 1990, APPL PHYS LETT, V57, P1046 19835 KOSHIDA N, 1992, JPN J APPL PHYS, V60, P1 19836 LEHMANN V, 1991, APPL PHYS LETT, V58, P856 19837 NAKAGAWA K, 1992, JPN J APPL PHYS, V31, L515 19838 NISHIDA A, 1992, JPN J APPL PHYS, V31, P1219 19839 NR 6 19840 TC 6 19841 SN 0927-0248 19842 J9 SOLAR ENERG MATER SOLAR CELLS 19843 JI Sol. Energy Mater. Sol. Cells 19844 PD SEP 19845 PY 1994 19846 VL 35 19847 IS 1-4 19848 BP 319 19849 EP 324 19850 PG 6 19851 SC Materials Science, Multidisciplinary; Energy & Fuels 19852 GA PX516 19853 UT ISI:A1994PX51600042 19854 ER 19855 19856 PT J 19857 AU GUO, BY 19858 XIONG, YS 19859 TI FOURIER PSEUDOSPECTRAL-FINITE DIFFERENCE METHOD FOR 2-DIMENSIONAL 19860 VORTICITY EQUATION 19861 SO CHINESE ANNALS OF MATHEMATICS SERIES B 19862 DT Article 19863 DE VORTICITY EQUATION; FOURIER PSEUDOSPECTRAL-FINITE DIFFERENCE METHOD; 19864 GENERALIZED STABILITY; CONVERGENCE 19865 ID BAROCLINIC PRIMITIVE EQUATION; NAVIER-STOKES EQUATIONS; RESTRAIN 19866 OPERATOR; ERROR ESTIMATION; SPECTRAL METHOD; ELEMENT METHOD; FLOW; 19867 APPROXIMATION 19868 AB A Fourier pseudospectral-finite difference scheme is proposed for 19869 solving two-dimensional vorticity equations. The generalized stability 19870 and the convergence are proved. The numerical results are given. 19871 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 19872 CR CANUTO C, 1982, MATH COMPUT, V38, P67 19873 CANUTO C, 1984, NUMER MATH, V44, P201 19874 CANUTO C, 1988, SPECTRAL METHODS FLU 19875 GOTTLIEB D, 1977, NUMERICAL ANAL SPECT 19876 GUO B, 1985, SCI SINICA SER A, V28, P1139 19877 GUO B, 1988, J COMPUT PHYS, V74, P110 19878 GUO BY, 1974, ACTA MATH SINICA, V17, P242 19879 GUO BY, 1987, SCI SINICA SER A, V30, P696 19880 GUO BY, 1988, J COMPUT MATH, V6, P238 19881 GUO BY, 1989, J COMPUT PHYS, V84, P259 19882 GUO BY, 1991, SIAM J NUMER ANAL, V28, P113 19883 GUO BY, 1992, J COMPUT PHYS, V101, P207 19884 GUO BY, 1992, J COMPUT PHYS, V101, P375 19885 GUO BY, 1992, SCI CHINA SER A, V35, P1 19886 INGHAM DB, 1978, J APPL MATH PHYS, V29, P871 19887 INGHAM DB, 1984, J COMPUT PHYS, V53, P90 19888 KREISS HO, 1979, SIAM J NUMER ANAL, V16, P421 19889 KUO PY, 1981, COMMUNICATION MAR 19890 KUO PY, 1983, J COMPUT MATH, V1, P353 19891 KUO PY, 1985, ACTA MATH SINICA, V28, P1 19892 LIONS JL, 1969, QUELQUES METHODES RE 19893 MA HP, 1986, J COMPUT PHYS, V65, P120 19894 MA HP, 1987, IMA J NUMER ANAL, V7, P47 19895 MACARAEG MG, 1986, J COMPUT PHYS, V62, P297 19896 MOIN P, 1982, J FLUID MECH, V118, P341 19897 MURDOCK JW, 1977, AIAA J, V15, P1167 19898 VANDEVEN H, 1987, FAMILY SPECTRAL FILT 19899 WOODWARD P, 1984, J COMPUT PHYS, V54, P115 19900 NR 28 19901 TC 0 19902 SN 0252-9599 19903 J9 CHIN ANN MATH SER B 19904 JI Chin. Ann. Math. Ser. B 19905 PD OCT 19906 PY 1994 19907 VL 15 19908 IS 4 19909 BP 469 19910 EP 488 19911 PG 20 19912 SC Mathematics 19913 GA PX887 19914 UT ISI:A1994PX88700008 19915 ER 19916 19917 PT J 19918 AU WANG, SZ 19919 GRABB, ML 19920 BIRDSALL, TG 19921 TI DESIGN OF PERIODIC SIGNALS USING FM SWEEPS AND AMPLITUDE-MODULATION FOR 19922 OCEAN ACOUSTIC TRAVEL-TIME MEASUREMENTS 19923 SO IEEE JOURNAL OF OCEANIC ENGINEERING 19924 DT Article 19925 ID TOMOGRAPHY 19926 AB A design procedure for an amplitude-modulated and nonlinear 19927 frequency-modulated (AM-NLFM) signal is introduced. The designed signal 19928 can drive a given transducer to its peak power to produce a sound 19929 pressure waveform into the water with a desired power spectrum and 19930 maximum possible energy. The signal can be formed either in the time 19931 domain or in the frequency domain. The frequency domain approach gives 19932 an output power spectrum precisely identical to a preferred shape. 19933 Therefore, the sidelobe levels after matched filtering are not raised 19934 by unwanted spectral magnitude ripples which exist when a time domain 19935 method is adopted. The absence of spectral ripples is desirable for 19936 applications requiring long range transmission and good multipath 19937 discrimination capability. An acceptable tradeoff between time 19938 resolution and sidelobe levels is achieved by properly choosing the 19939 desired power spectral shape. As the time resolution is usually the 19940 most critical specification for precision travel-time measurements, it 19941 is shown that by sacrificing some of the transducer's output power 19942 capability, a waveform with a considerably wider band, width can be 19943 transmitted, resulting in a significantly enhanced time resolution. A 19944 quasi-steady-stale (QSS) approximation is used in the signal design, 19945 leading to a manageable and intuitive design procedure. 19946 C1 UNIV MICHIGAN,DEPT ELECT ENGN & COMP SCI,ANN ARBOR,MI 48109. 19947 RP WANG, SZ, SHANGHAI UNIV SCI & TECHNOL,DEPT ELECTR & TELECOMMUN 19948 ENGN,SHANGHAI 200072,PEOPLES R CHINA. 19949 CR BAGGEROER A, 1992, PHYSICS TODAY SEP, P22 19950 BATTEN HW, 1952, 3 U MICH DEPT EL ENG 19951 BEHRINGER D, 1982, NATURE, V299, P121 19952 BIRDSALL TG, 1976, IEEE T EDUC, V19, P168 19953 BIRDSALL TG, 1986, J ACOUST SOC AM, V79, P91 19954 BUTLER MBN, 1980, P IEE F, V127, P118 19955 DUDA TF, 1993, IEEE J OCEANIC ENG, V18, P87 19956 JOHNSTON A, 1983, RADIO ELECTRON ENG, V53, P138 19957 JOHNSTON JA, 1986, IEE PROC-F, V133, P163 19958 JUDD GW, 1973, P IEEE ULTR S MONT, P478 19959 MUNK W, 1993, SCIENCES, V33, P21 19960 NATHANSON FE, 1991, RADAR DESIGN PRINCIP, P624 19961 SPIESBERGER JL, 1991, J GEOPHYS RES-OCEANS, V96, P4869 19962 WORCESTER PF, 1991, REV GEOPHYS S, P557 19963 NR 14 19964 TC 0 19965 SN 0364-9059 19966 J9 IEEE J OCEANIC ENG 19967 JI IEEE J. Ocean. Eng. 19968 PD OCT 19969 PY 1994 19970 VL 19 19971 IS 4 19972 BP 611 19973 EP 618 19974 PG 8 19975 SC Engineering, Civil; Engineering, Electrical & Electronic; Engineering, 19976 Ocean; Oceanography 19977 GA PX325 19978 UT ISI:A1994PX32500014 19979 ER 19980 19981 PT J 19982 AU MAK, AFT 19983 HUANG, LD 19984 WANG, QQ 19985 TI A BIPHASIC POROELASTIC ANALYSIS OF THE PLOW DEPENDENT SUBCUTANEOUS 19986 TISSUE PRESSURE AND COMPACTION DUE TO EPIDERMAL LOADINGS - ISSUES IN 19987 PRESSURE SORE 19988 SO JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME 19989 DT Article 19990 ID ARTICULAR-CARTILAGE; FLUID TRANSPORT; INDENTATION; COMPRESSION; MODEL; 19991 SKIN; FLOW 19992 AB A layer of skin and subcutaneous tissue on a bony substratum was 19993 modeled as a homogeneous layer of biphasic poroelastic material with 19994 uniform thickness. The epidermal surface and the bony interface were 19995 taken to be impervious. The soft tissue on the bony interface was 19996 assumed either fully adhered or completely free to slide on the bone. 19997 The cases for surface pressure loadings and displacement controlled 19998 indentations were simulated The resultant biomechanical responses of 19999 the layer, including the transient tissue hydrostatic pressure and the 20000 tissue compaction, were presented. A new hypothesis is offered to 20001 interpret the threshold pressure-time curve for pressure sores in term 20002 of the time required for a particular area in the tissue layer to reach 20003 tr critical compaction for a given level of applied pressure. 20004 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PRECIS MECH ENGN,SHANGHAI 201800,PEOPLES R CHINA. 20005 RP MAK, AFT, HONG KONG POLYTECH,CTR REHABIL ENGN,HONG KONG,HONG KONG. 20006 CR BADER DL, 1988, CLIN PHYS PHYSL MEAS, V9, P33 20007 BADER DL, 1990, PRESSURE SORES CLIN 20008 BENNETT L, 1979, ARCH PHYS MED REHAB, V60, P309 20009 BIOT MA, 1941, J APPL PHYS, V12, P155 20010 BOWEN RM, 1976, CONTINUUM PHYSICS, V3 20011 CHOW WW, 1978, J BIOMECH ENG, V100, P79 20012 CRENSHAW RP, 1989, J REHABIL RES DEV, V26, P63 20013 DANIEL RK, 1981, ARCH PHYS MED REHAB, V62, P492 20014 DRUMMOND DS, 1982, J BONE JOINT SURG AM, V64, P1034 20015 FERGUSONPELL MW, 1992, P RESNA INT 92, P219 20016 HAYES WC, 1972, J BIOMECH, V5, P541 20017 HIVDBERY E, 1960, ACTA PARMACAL KOBENH, V16, P245 20018 IRANI KD, 1985, MED REHABILITATION 20019 KENYON DE, 1979, B MATH BIOL, V41, P79 20020 KOSIAK M, 1959, ARCH PHYS MED REHAB, V40, P62 20021 KROUSKOP TA, 1983, MED HYPOTHESES, V11, P255 20022 LANIR Y, 1987, HDB BIOENGINEERING 20023 LANIR Y, 1990, J BIOMECH ENG-T ASME, V112, P63 20024 LIVESLEY B, 1990, PRESSURE SORES CLIN, P27 20025 MAK AF, 1986, J BIOMECH ENG-T ASME, V108, P123 20026 MAK AF, 1987, J BIOMECH, V20, P703 20027 MCNAMEE J, 1960, Q J MECH APPL MATH, V13, P98 20028 MICHEL CC, 1990, PRESSURE SORES CLIN, P153 20029 MONTAGNA W, 1962, STRUCTURE FUNCTION S 20030 MOW VC, 1977, J BIOMECH, V10, P31 20031 MOW VC, 1980, J BIOMECH ENG, V102, P73 20032 MOW VC, 1984, J BIOMECH, V17, P377 20033 MOW VC, 1986, FRONTIERS BIOMECHANI 20034 OOMENS CWJ, 1982, J BIOMECH, V20, P877 20035 OOMENS CWJ, 1987, J BIOMECH, V20, P923 20036 PAPIR YS, 1985, BIOCHIM BIOPHYS ACTA, V399, P170 20037 PETERSON MJ, 1982, PHYS THER, V62, P990 20038 POULOS HG, 1974, ELASTIC SOLUTIONS SO 20039 REDDY NP, 1981, J BIOMECH, V14, P879 20040 REDDY NP, 1982, J BIOMECH, V15, P493 20041 REDDY NP, 1986, TISSUE NUTRITION VIA, P215 20042 REDDY NP, 1990, PRESSURE SORES CLIN, P203 20043 REGER SI, 1990, PRESSURE SORES CLIN, P177 20044 RESWICK JB, 1976, BEDSORE BIOMECHANICS, P301 20045 SACKS AH, 1985, J REHAB RES DEV, P1 20046 SACKS AH, 1989, J REHABIL RES DEV, V26, P27 20047 SALZETEIN RA, 1987, J BIOMECH, V20, P681 20048 SANGEORZAN BJ, 1989, J ORTHOPAED RES, V7, P425 20049 SCALES JT, 1990, PRESSURE SORES CLIN, P15 20050 SCHOCK RB, 1982, ADV BIOENG, P88 20051 SIMON BR, 1985, J BIOMECH ENG-T ASME, V107, P327 20052 SNASHALL PD, 1971, CLIN SCI, V41, P35 20053 SPILKER RL, 1990, J BIOMECH ENG-T ASME, V112, P138 20054 STEEGE JW, 1987, 10TH RESNA ANN C, P814 20055 TABER LA, 1992, 1991 ADV BIOENGINEER, P623 20056 TODD BA, 1992, P RESNA INT 92, P222 20057 TORZILLI PA, 1976, J BIOMECH, V9, P587 20058 NR 52 20059 TC 13 20060 SN 0148-0731 20061 J9 J BIOMECH ENG 20062 JI J. Biomech. Eng.-Trans. ASME 20063 PD NOV 20064 PY 1994 20065 VL 116 20066 IS 4 20067 BP 421 20068 EP 429 20069 PG 9 20070 SC Engineering, Biomedical; Biophysics 20071 GA PW301 20072 UT ISI:A1994PW30100007 20073 ER 20074 20075 PT J 20076 AU SKIDMORE, MJ 20077 TI ETHICS AND PUBLIC-SERVICE 20078 SO ANNALS OF THE AMERICAN ACADEMY OF POLITICAL AND SOCIAL SCIENCE 20079 DT Article 20080 AB There is widespread concern for ethics in government, and news reports 20081 justify that concern. The public's emphasis, fueled by both accurate 20082 and inaccurate reporting, appears to center upon the conduct of elected 20083 officials. Some of that reporting is significant, and some is trivial. 20084 Professional literature tends to concentrate upon the bureaucracy. 20085 This article traces the history in general of ethical thought regarding 20086 public service in America and sketches attempts to require adherence to 20087 ethical standards. It concludes that-with notable exceptions and 20088 despite considerable insightful work from ethicists - the strongest 20089 reactions have often come in response to relatively trivial infractions 20090 and that prescriptions tend to be entirely negative. Such negative 20091 approaches are unlikely to result in significant improvement of ethics 20092 in public service, whether judged by standards of personal conduct or 20093 the even more important standard of institutional performance and 20094 integrity. 20095 C1 UNIV MISSOURI,COLUMBIA,MO 65201. 20096 SHANGHAI UNIV,SHANGHAI,PEOPLES R CHINA. 20097 CR BOHR JA, 1991, PUBLIC ADMIN REV, V51, P283 20098 BOWMAN JE, 1991, ETHICAL FRONTIERS PU, P2 20099 COOPER TL, 1982, RESPONSIBLE ADM, P8 20100 DEGEORGE RT, 1982, BUSINESS ETHICS 20101 DENHARDT K, 1991, ETHICAL FRONTEIRS PU, P100 20102 DENHARDT KG, 1988, ETHICS PUBLIC SERVIC, P5 20103 DVORIN EP, 1972, AMORAL HUMANE BUREAU, P1 20104 FINER H, 1994, PUBLIC ADM REV, V1 20105 FRIEDRICH CJ, 1940, PUBLIC POLICY 20106 GABRIS GT, 1991, ETHICAL FRONTIERS PU, P217 20107 GAWTHROP LC, 1984, PUBLIC SECTOR MANAGE, P142 20108 GOLEMBIEWSKI RT, 1962, PUBLIC ADM REV, V22 20109 GOLEMBIEWSKI RT, 1965, MEN MANAGEMENT MORAL 20110 HARMON MM, 1971, NEW PUBLIC MINNOWBRO, P172 20111 JENNINGS B, 1991, ETHICAL FRONTIERS PU, P67 20112 LEYS WAR, 1944, ETHICS SOCIAL POLICY 20113 LUKE IS, 1991, ETHICAL FRONTIERS PU, P160 20114 MERGET AE, 1989, GOVERNING, V3, P90 20115 NORTON DL, 1988, PAPERS ETHICS ADM, P47 20116 PUGH DL, 1991, ETHICAL FRONTIERS PU, P10 20117 ROHR JA, 1978, ETHICS BUREAUCRATS 20118 ROHR JA, 1989, ETHICS BUREAUCRATS 20119 SCOTT WG, 1988, PAPERS ETHICS ADM, P29 20120 THOMPSON DF, 1987, POLITICAL ETHICS PUB 20121 VENTRISS C, 1991, ETHICAL FRONTIERS PU, P114 20122 WALDO D, 1948, ADM STATE STUDY POLI, P18 20123 WALL B, 1991, ETHICAL FRONTIERS PU, P136 20124 WILSON W, 1987, POLITICAL SCI Q, V2 20125 WRIGHT ND, 1988, PAPERS ETHICS ADM, P15 20126 NR 29 20127 TC 1 20128 SN 0002-7162 20129 J9 ANN AMER ACAD POLIT SOC SCI 20130 JI Ann. Am. Acad. Polit. Soc. Sci. 20131 PD JAN 20132 PY 1995 20133 VL 537 20134 BP 25 20135 EP 36 20136 PG 12 20137 SC Social Sciences, Interdisciplinary; Political Science 20138 GA PX926 20139 UT ISI:A1995PX92600004 20140 ER 20141 20142 PT J 20143 AU LIU, GL 20144 TI A UNIFIED VARIATIONAL THEORY OF HYBRID PROBLEMS FOR FULLY 3-D TRANSONIC 20145 ROTOR-FLOW WITH SHOCKS .1. POTENTIAL FLOW 20146 SO ACTA MECHANICA 20147 DT Article 20148 ID TURBO-ROTOR; PRINCIPLES 20149 AB Based on [3], the unified variable-domain variational theory of hybrid 20150 problems for rotor-flow [1], [2], [16], [24] is extended to fully 3-D 20151 transonic rotor-flows with shocks, unifying and generalizing the direct 20152 and inverse problems. Three variational principle (VP) families 20153 together with a general form of generalized VPs have been established, 20154 taking distributed suction and/or blowing along blade- and annular 20155 walls into account. All unknown boundaries are successfully handled via 20156 functional variations with variable domain, converting almost all 20157 boundary and interface conditions, including the Rankine-Hugoniot shock 20158 relations, into natural ones. This theory provides a series of novel 20159 ways for blade design and a theoretical basis for finite element 20160 applications and also constitutes an important part of the optimal 20161 design theory of rotor-bladings [6]. Numerical solutions by finite 20162 elements in [22]-[24] show good agreement with experimental results. 20163 C1 SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA. 20164 RP LIU, GL, SHANGHAI UNIV,149 YAN CHANG RD,SHANGHAI 200072,PEOPLES R CHINA. 20165 CR ECER A, 1983, AIAA J, V21, P343 20166 FINLAYSON BA, 1972, METHOD WEIGHTED RESI 20167 LIU GI, 1986, J ENG GAS TURB POWER, V108, P254 20168 LIU GL, 1979, ACTA MECH SINICA, V11, P303 20169 LIU GL, 1980, LECTURE NOTES SHANGH 20170 LIU GL, 1980, SCI SINICA, V23, P1339 20171 LIU GL, 1981, CHINESE J ENG THERMO, V2, P335 20172 LIU GL, 1982, 1982 P INT C FEM SHA, P520 20173 LIU GL, 1983, 6TH P INT S AIR BREA, P313 20174 LIU GL, 1985, ACTA AERODYN SINICA, V3, P24 20175 LIU GL, 1986, 6TH P INT S FEM FLOW, P137 20176 LIU GL, 1987, NUM METHODS THERMAL, V5, P284 20177 LIU GL, 1987, TURBULENCE MEASUREME, P323 20178 LIU GL, 1988, COMPUTATIONAL FLUID, P473 20179 LIU GL, 1990, 1 INT S EXP COMP AER, P128 20180 LIU GL, 1992, ACTA MECH, V95, P117 20181 LIU GL, 1993, 2ND INT S EXP COMP A, P355 20182 LIU GL, 1993, ACTA MECH, V97, P229 20183 LIU GL, 1993, INT J TURBO JET ENGI, V10, P273 20184 MCNALLY WD, 1985, J FLUID ENG-T ASME, V107, P6 20185 MEAUZE G, 1982, ASME, V104, P650 20186 PENG HW, 1975, KEXUE TONGBAO, V20, P416 20187 SERRIN J, 1959, HDB PHYSIK, V7 20188 THOMPKINS WT, 1982, ASME, V104, P282 20189 WU CH, 1952, NACA TN2604 20190 YAN S, 1990, EXP COMP AEROTHERMOD, P449 20191 YAN S, 1991, 1991 P YOK INT GAS T, P35 20192 YAO Z, 1984, IMECHE PAPER, V69, P237 20193 NR 28 20194 TC 3 20195 SN 0001-5970 20196 J9 ACTA MECH 20197 JI Acta Mech. 20198 PY 1995 20199 VL 108 20200 IS 1-4 20201 BP 207 20202 EP 217 20203 PG 11 20204 SC Mechanics 20205 GA PW711 20206 UT ISI:A1995PW71100016 20207 ER 20208 20209 PT J 20210 AU RODGERS, GJ 20211 HASSAN, MK 20212 TI FRAGMENTATION OF PARTICLES WITH MORE THAN ONE DEGREE-OF-FREEDOM 20213 SO PHYSICAL REVIEW E 20214 DT Article 20215 ID KINETICS; DEGRADATION 20216 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SYLHET,BANGLADESH. 20217 RP RODGERS, GJ, BRUNEL UNIV,DEPT PHYS,UXBRIDGE UB8 3PH,MIDDX,ENGLAND. 20218 CR AMEMIYA A, 1962, J PHYS SOC JPN, V17, P1245 20219 AMEMIYA A, 1962, J PHYS SOC JPN, V17, P1694 20220 BAK TA, 1959, ACTA CHEM SCAND, V13, P1997 20221 BALLAUFF M, 1981, MACROMOLECULES, V14, P654 20222 BASEDOW AM, 1978, MACROMOLECULES, V11, P774 20223 CHARLESBY A, 1954, P ROY SOC LOND A MAT, V224, P120 20224 DEMJANENKO M, 1980, MACROMOLECULES, V13, P571 20225 ERNST MH, 1993, J PHYS A-MATH GEN, V26, P6085 20226 FAMILY F, 1986, PHYS REV LETT, V57, P727 20227 FILIPPOV AF, 1961, THEORY PROBABILITY I, V6, P275 20228 GILVARRY JJ, 1961, J APPL PHYS, V32, P391 20229 MCGRADY ED, 1987, PHYS REV LETT, V58, P892 20230 MEYER R, 1966, BR J APPL PHYS, V17, P409 20231 SHINNAR R, 1961, J FLUID MECH, V10, P259 20232 VICSEK T, 1984, PHYS REV LETT, V52, P1669 20233 ZIFF RM, 1985, J PHYS A-MATH GEN, V18, P3027 20234 ZIFF RM, 1986, MACROMOLECULES, V19, P2513 20235 ZIFF RM, 1991, J PHYS A-MATH GEN, V24, P2821 20236 NR 18 20237 TC 10 20238 SN 1063-651X 20239 J9 PHYS REV E 20240 JI Phys. Rev. E 20241 PD NOV 20242 PY 1994 20243 VL 50 20244 IS 5 20245 BP 3458 20246 EP 3463 20247 PG 6 20248 SC Physics, Fluids & Plasmas; Physics, Mathematical 20249 GA PV863 20250 UT ISI:A1994PV86300033 20251 ER 20252 20253 PT J 20254 AU WANG, ZX 20255 PAN, JS 20256 ZHANG, JP 20257 WANG, CS 20258 LUO, WY 20259 LI, XN 20260 ZHOU, SX 20261 ZHANG, HM 20262 ZHAO, L 20263 TI SURFACE-TOPOGRAPHY EFFECT ON PREFERENTIAL SPUTTERING FROM CU76NI15SN9 20264 ALLOY 20265 SO JOURNAL OF MATERIALS SCIENCE LETTERS 20266 DT Article 20267 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI INST APPL RADIAT,SHANGHAI 201800,PEOPLES R CHINA. 20268 HANGZHOU UNIV,CENT LAB,HANGZHOU 310028,PEOPLES R CHINA. 20269 RP WANG, ZX, ACAD SINICA,SHANGHAI INST NUCL RES,POB 800-204,SHANGHAI 20270 201800,PEOPLES R CHINA. 20271 CR BETZ G, 1980, NUCL INSTRUM METHODS, V170, P347 20272 BETZ G, 1981, SURF SCI, V104, L185 20273 MATTIEU HJ, 1979, APPL SURF SCI, V3, P348 20274 WITTMAACK K, 1980, NUCL INSTRUM METHODS, V170, P331 20275 ZHENXIA W, 1992, J MATER SCI LETT, V11, P719 20276 ZHENXIA W, 1993, NUCL INSTRUM METH B, V74, P380 20277 NR 6 20278 TC 0 20279 SN 0261-8028 20280 J9 J MATER SCI LETT 20281 JI J. Mater. Sci. Lett. 20282 PD DEC 1 20283 PY 1994 20284 VL 13 20285 IS 23 20286 BP 1667 20287 EP 1669 20288 PG 3 20289 SC Materials Science, Multidisciplinary 20290 GA PX084 20291 UT ISI:A1994PX08400004 20292 ER 20293 20294 PT J 20295 AU KLINGENBERG, C 20296 MAO, DK 20297 TI THE TOTAL VARIATION DECREASING PROPERTY OF A CONSERVATIVE FRONT 20298 TRACKING TECHNIQUE 20299 SO MATHEMATICAL AND COMPUTER MODELLING 20300 DT Article 20301 DE CONSERVATION LAWS; CONSERVATIVE NUMERICAL SCHEME; TOTAL VARIATION 20302 DECREASING 20303 ID FINITE-DIFFERENCE METHODS; HIGH-RESOLUTION SCHEMES; LAWS; 20304 DISCONTINUITIES 20305 AB In [1-4], one of the authors developed a conservative front tracking 20306 technique. In this paper, we study the effect of the technique on the 20307 total variation of the numerical solution when the underlying scheme is 20308 total variation decreasing (TVD). We prove that the first order 20309 technique will retain the TVD property for the overall scheme. 20310 Numerical examples are presented to support the conclusion even for 20311 higher order front tracking techniques. 20312 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA. 20313 RP KLINGENBERG, C, UNIV HEIDELBERG,DEPT APPL MATH,NEUENHEIMER FELD 20314 294,D-69120 HEIDELBERG,GERMANY. 20315 CR CRANDALL MG, 1980, MATH COMPUT, V34, P1 20316 HARTEN A, 1983, J COMPUT PHYS, V49, P357 20317 MAO D, IN PRESS J COMPUT PH 20318 MAO D, UNPUB CONSERVATIVE F 20319 MAO DK, 1991, J COMPUT PHYS, V92, P422 20320 MAO DK, 1992, J COMPUT PHYS, V103, P359 20321 OSHER S, 1984, SIAM J NUMER ANAL, V21, P955 20322 SHU CW, 1987, MATH COMPUT, V49, P105 20323 NR 8 20324 TC 2 20325 SN 0895-7177 20326 J9 MATH COMPUT MODELLING 20327 JI Math. Comput. Model. 20328 PD NOV-DEC 20329 PY 1994 20330 VL 20 20331 IS 10-11 20332 BP 89 20333 EP 99 20334 PG 11 20335 SC Computer Science, Interdisciplinary Applications; Computer Science, 20336 Software Engineering; Mathematics, Applied 20337 GA PV700 20338 UT ISI:A1994PV70000007 20339 ER 20340 20341 PT J 20342 AU WEI, GL 20343 WANG, JR 20344 TI ELECTROCHEMICAL-BEHAVIOR OF LEAD ELECTRODE IN SULFURIC-ACID-SOLUTION 20345 CONTAINING CITRIC-ACID 20346 SO JOURNAL OF POWER SOURCES 20347 DT Article 20348 DE LEAD ELECTRODES; SULFURIC ACID; CITRIC ACID 20349 ID PBO2/PBSO4 ELECTRODE; POSITIVE PLATES; PBO2 ELECTRODE; ANTIMONY; SWEEP; 20350 H3PO4; TIN 20351 AB The electrochemical behaviour of a lead electrode as the positive 20352 electrode (in PbO2 form) and the negative electrode of a lead/acid 20353 battery in sulfuric acid solution containing different concentrations 20354 of citric acid has been studied by cyclic voltammetry. For the 20355 behaviour of lead as a positive electrode, a new layer of PbO2 is 20356 formed in the presence of citric acid. It is difficult for this layer 20357 to be reduced and, therefore, the conductivity between the positive 20358 grid and the positive active material will be greater than that in pure 20359 sulfuric acid solution. The peak currents attributed to the formation 20360 and reduction of PbO2, and to the evolution of oxygen, increase with 20361 the concentration of citric acid. The limits of the effects are 20362 reached at about 2 g/l citric acid in 4.5 M H2SO4. For the behaviour 20363 of lead as a negative electrode, the peak currents attributed to the 20364 oxidation of lead to PbSO4 and to the evolution of hydrogen gas also 20365 increase with the concentration of citric acid. In 4.5 M H2SO4, the 20366 limits of these effects are reached at a citric acid concentration of 2 20367 and 3 g/l, respectively. The observed behaviour is caused by the 20368 adsorption of citric acid on the PbO2, lead and PbSO4 surfaces. 20369 RP WEI, GL, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES 20370 R CHINA. 20371 CR BULLOCK KR, 1977, J ELECTROCHEM SOC, V124, P1478 20372 CULPIN B, 1992, J POWER SOURCES, V38, P63 20373 DORING H, 1992, J POWER SOURCES, V38, P261 20374 HULLMEINE U, 1990, J POWER SOURCES, V30, P99 20375 LAITINEN HA, 1975, ANAL CHEM, V47, P135 20376 LAITINEN T, 1991, ELECTROCHIM ACTA, V36, P605 20377 MAHATO BK, 1980, J ELECTROCHEM SOC, V127, P1679 20378 MAHATO BK, 1983, J ELECTROCHEM SOC, V130, P2139 20379 MOHAMMADI AT, 1992, J POWER SOURCES, V40, P323 20380 PAVLOV D, 1990, J POWER SOURCES, V30, P117 20381 SATO Y, 1992, J POWER SOURCES, V39, P43 20382 SHARPE TF, 1975, J ELECTROCHEM SOC, V122, P845 20383 STERNBERG S, 1987, ELECTROCHIM ACTA, V32, P349 20384 VOSS E, 1990, J POWER SOURCES, V30, P33 20385 NR 14 20386 TC 4 20387 SN 0378-7753 20388 J9 J POWER SOURCES 20389 JI J. Power Sources 20390 PD NOV 20391 PY 1994 20392 VL 52 20393 IS 1 20394 BP 25 20395 EP 29 20396 PG 5 20397 SC Electrochemistry; Energy & Fuels 20398 GA PV022 20399 UT ISI:A1994PV02200003 20400 ER 20401 20402 PT J 20403 AU WEI, GL 20404 WANG, JR 20405 TI ELECTROCHEMICAL-BEHAVIOR OF SNSO4 IN SULFURIC-ACID-SOLUTION 20406 SO JOURNAL OF POWER SOURCES 20407 DT Article 20408 DE SULFURIC ACID; TIN SULFATE; LEAD ACID BATTERIES 20409 ID ANODIC BEHAVIOR; TIN; LEAD; ELECTRODE 20410 AB The effect of SnSO4 on the deep-discharge capacity of lead/acid 20411 batteries is investigated when it is added to the sulfuric acid 20412 electrolyte. The electrochemical behaviour of Sn2+ ions in sulfuric 20413 acid is studied by using chemical-analysis and cyclic-voltammetry 20414 methods. In the battery system, Sn2+ ions will be reduced to tin on 20415 the negative plates or will be oxidized to tin(IV) species on the 20416 positive plates. Tin metal formed on the negative plates will improve 20417 the charge/discharge properties. Tin(IV) species formed on the 20418 positive plates may be incorporated as SnO2 in the positive active 20419 material (PAM) as well as in the anodic film that is produced at the 20420 grid/active-material interface. The effect of SnO2 on the properties 20421 of the PAM are explained in terms of the gel-crystal model. The SnO2 20422 is stable during the discharge process. The compound increases the 20423 electronic conductivity of the gel zones, thereby, enhances the 20424 capacity of the PAM. The SnO2 species may also act as nuclei for the 20425 formation of beta-PbO2 in the crystal zones. The corrosion of positive 20426 grids is inhibited by the presence of SnO2. By virtue of these 20427 effects, the addition of SnSO4 is beneficial to the operation of 20428 lead/acid batteries. 20429 RP WEI, GL, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES 20430 R CHINA. 20431 CR BAGSHAW N, 1988, POWER SOURCES 12, P113 20432 BURBANK J, 1971, ADV ELECTROCHEMISTRY, V8, P109 20433 CULPIN B, 1992, J POWER SOURCES, V38, P63 20434 DORING H, 1990, J POWER SOURCES, V30, P41 20435 GALUS Z, 1975, ENCY ELECTROCHEMISTR, V4, P229 20436 GALUS Z, 1975, ENCY ELECTROCHEMISTR, V4, P233 20437 ISHIKAWA Y, 1987, 8751161, JA 20438 LAITINEN T, 1992, ELECTROCHIM ACTA, V37, P1797 20439 NELSON RF, 1991, J POWER SOURCES, V33, P165 20440 PAVLOV D, 1984, POWER SOURCES ELECTR, P237 20441 PAVLOV D, 1992, J ELECTROCHEM SOC, V139, P3075 20442 SALMI K, 1992, J POWER SOURCES, V40, P217 20443 SUGIKARA M, 1979, 7960424, JA 20444 TERADA M, 1988, 202862, JA 20445 TOKUNAGA A, 1979, 79495386, JA 20446 VOSS E, 1990, J POWER SOURCES, V30, P33 20447 WILL FG, 1982, 4324848, US 20448 WILL FG, 1982, 4326017, US 20449 NR 18 20450 TC 5 20451 SN 0378-7753 20452 J9 J POWER SOURCES 20453 JI J. Power Sources 20454 PD NOV 20455 PY 1994 20456 VL 52 20457 IS 1 20458 BP 81 20459 EP 85 20460 PG 5 20461 SC Electrochemistry; Energy & Fuels 20462 GA PV022 20463 UT ISI:A1994PV02200011 20464 ER 20465 20466 PT J 20467 AU GU, XR 20468 ZHU, YZ 20469 TI ASYMPTOTIC OPTIMAL HEAPSORT ALGORITHM 20470 SO THEORETICAL COMPUTER SCIENCE 20471 DT Note 20472 AB Heapsort algorithm HEAPSORT runs in a higher efficiency way. It has 20473 been improved to reduce the constant factor of the complexity. An 20474 asymptotic optimal heapsort algorithm is given in this paper. When the 20475 efficiency becomes the lowest, the constant factor of its complexity 20476 will not be more than 4/3. 20477 RP GU, XR, SHANGHAI UNIV SCI & TECHNOL,DEPT COMP SCI,SHANGHAI 20478 201800,PEOPLES R CHINA. 20479 CR AHO AV, 1975, DESIGN ANAL COMPUTER 20480 BAASE S, 1978, COMPUTER ALGORITHMS 20481 GU X, 1990, COMPUT J, V33, P281 20482 HOROWITZ E, 1978, FUNDAMENTALS COMPUTE 20483 WEGENER I, 1992, SIMPLE MODIFICATION 20484 NR 5 20485 TC 0 20486 SN 0304-3975 20487 J9 THEOR COMPUT SCI 20488 JI Theor. Comput. Sci. 20489 PD NOV 21 20490 PY 1994 20491 VL 134 20492 IS 2 20493 BP 559 20494 EP 565 20495 PG 7 20496 SC Computer Science, Theory & Methods 20497 GA PR819 20498 UT ISI:A1994PR81900016 20499 ER 20500 20501 PT J 20502 AU GUO, BY 20503 XIONG, YS 20504 TI FOURIER PSEUDOSPECTRAL-FINITE DIFFERENCE METHOD FOR INCOMPRESSIBLE-FLOW 20505 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 20506 DT Article 20507 ID NAVIER-STOKES EQUATIONS; VORTICITY EQUATIONS; ELEMENT METHOD; 20508 APPROXIMATION 20509 AB A Fourier pseudospectral-finite difference scheme is proposed for 20510 unsteady Navier-Stokes equation. It is showed that the numerical 20511 solution keeps semi-discrete conservation. The strict error estimation 20512 is established. The numerical results are presented. 20513 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA. 20514 CR CANUTO C, 1982, MATH COMPUT, V38, P67 20515 CANUTO C, 1984, NUMER MATH, V44, P201 20516 CANUTO C, 1988, SPECTRAL METHOD FLUI 20517 CHORIN AJ, 1967, J COMPUT PHYS, V2, P12 20518 GOTTLIEB D, 1977, NUMERICAL ANAL SPECT 20519 GUO BY, 1981, SCI SINICA A, V24, P297 20520 GUO BY, 1987, SCI SINICA A, V30, P6963 20521 GUO BY, 1989, J COMPUT PHYS, V84, P259 20522 GUO BY, 1991, J COMPUT MATH, V9, P57 20523 GUO BY, 1991, MATH NUMER SINICA, V13, P331 20524 GUO BY, 1991, SCI SINICA A, V35, P1 20525 GUO BY, 1991, SIAM J NUMER ANAL, V28, P113 20526 GUO BY, 1992, J COMPUT PHYS, V101, P207 20527 GUO BY, 1992, J COMPUT PHYS, V101, P375 20528 GUO BY, 1992, P BAIL, V6, P34 20529 GUO BY, 1993, SIAM J NUMER ANAL, V30, P1066 20530 INGHAM DB, 1985, P ROY SOC LOND A MAT, V402, P109 20531 KUO PY, 1983, J COMPUT MATH, V1, P353 20532 LIONS JL, 1970, 2 SIAM AMS P, P11 20533 MA HP, 1986, J COMPUT PHYS, V65, P120 20534 MACARAEG MG, 1982, J COMPUT PHYS, V62, P297 20535 MOIN P, 1982, J FLUID MECH, V118, P341 20536 MULHOLLAND LS, 1991, J COMPUT PHYS, V96, P369 20537 MURDOCK JW, AIAA860434 20538 ROACHE PJ, 1976, COMPUTATIONAL FLUID 20539 VANDEVEN H, 1987, CNRS F56 CTR MATH AP 20540 WOODWARD P, 1984, J COMPUT PHYS, V54, P115 20541 NR 27 20542 TC 1 20543 SN 0254-9409 20544 J9 J COMPUT MATH 20545 JI J. Comput. Math. 20546 PD OCT 20547 PY 1994 20548 VL 12 20549 IS 4 20550 BP 312 20551 EP 329 20552 PG 18 20553 SC Mathematics, Applied; Mathematics 20554 GA PR581 20555 UT ISI:A1994PR58100003 20556 ER 20557 20558 PT J 20559 AU PU, DG 20560 TIAN, WW 20561 TI A CLASS OF MODIFIED BROYDEN ALGORITHMS 20562 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 20563 DT Article 20564 ID QUASI-NEWTON METHODS 20565 AB In this paper we dicuss the convergence of the modified Broyden 20566 algorithms. We prove that the algorithms are globally convergent for 20567 the continuous differentiable function and the rate of convergence of 20568 the algorithms is one-step superlinear and n-step second-order for the 20569 uniformly convex objective function. From the discussion of this 20570 paper, we may get some convergence properties of the Broyden algorithms. 20571 C1 SHANGHAI INST RAILWAY TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA. 20572 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA. 20573 CR BYRD RH, 1987, SIAM J NUMER ANAL, V24, P1171 20574 BYRD RH, 1989, SIAM J NUMER ANAL, V26, P727 20575 CONN NI, 1991, MATH PROG, V52, P177 20576 FLETCHER R, 1987, PRACTICAL METHODS OP 20577 HUANG HY, 1970, J OPTIM THEORY APPL, V5, P405 20578 POWELL MJD, 1971, J I MATHS APPLICS, V7, P21 20579 POWELL MJD, 1972, NUMERICAL METHODS NO, P1 20580 POWELL MJD, 1976, 6 SIAM AMS P, P53 20581 PU D, 1987, J SHANGHAI I RAILWAY, V8, P19 20582 PU D, 1989, J OPER RES CHINA, V8, P53 20583 PU D, 1989, L ACTA MATHEMATICAE, V13, P118 20584 PU D, 1990, J ANN OPERATIONS RES, V24, P175 20585 PU D, 1990, J OPER RES CHINA, V9, P49 20586 PU D, 1992, ASIA PACIFIC J OPERA, V9, P207 20587 PU D, 1993, J OPER RES CHINA, V22, P2 20588 TIAN W, 1992, J APPL MATH COMP MAT, V6, P42 20589 TIAN W, 1993, J APPL MATH COMP MAT, V7, P50 20590 WU F, 1991 P C APOR SOC BE, P35 20591 WU F, 1981, J ACTA MATH SINICA C, V24, P921 20592 YUAN YX, 1991, IMA J NUMER ANAL, V11, P325 20593 NR 20 20594 TC 2 20595 SN 0254-9409 20596 J9 J COMPUT MATH 20597 JI J. Comput. Math. 20598 PD OCT 20599 PY 1994 20600 VL 12 20601 IS 4 20602 BP 366 20603 EP 379 20604 PG 14 20605 SC Mathematics, Applied; Mathematics 20606 GA PR581 20607 UT ISI:A1994PR58100008 20608 ER 20609 20610 PT J 20611 AU YANG, T 20612 TI BLIND SIGNAL SEPARATION USING CELLULAR NEURAL NETWORKS 20613 SO INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS 20614 DT Article 20615 AB In this paper a two-layer cellular neural network (CNN) is used to 20616 separate blind signals. The topological structures of the CNN and the 20617 inner parameters are presented. The first CNN layer functions as an 20618 adaptive filter which converges asymptotically to an equilibrium point 20619 in the mean. A stochastic stability model is used to find conditions 20620 under which cells in the first layer converge. Conditions leading to 20621 correct equilibrium solutions are also presented using this model. The 20622 second CNN layer functions as a signal separator. Simulations show that 20623 the CNN blind signal separator has strong robustness and works even 20624 better than the theory predicts. 20625 RP YANG, T, SHANGHAI UNIV SCI & TECHNOL,DEPT AUTOMAT CONTROL ENGN,POB 20626 14,SHANGHAI 200072,PEOPLES R CHINA. 20627 CR CARDOSO J, 1989, P IEEE ICASSP, V4, P2109 20628 CHUA LO, 1988, IEEE T CIRCUITS SYST, V35, P1257 20629 CHUA LO, 1988, IEEE T CIRCUITS SYST, V35, P1273 20630 CHUA LO, 1992, P CNNA 92, P1 20631 COMON P, 1991, SIGNAL PROCESS, V24, P11 20632 JUTTEN C, 1991, SIGNAL PROCESS, V24, P1 20633 SOROUCHYARI E, 1991, SIGNAL PROCESS, V24, P21 20634 TONG L, 1991, IEEE T CIRCUITS SYST, V38, P499 20635 NR 8 20636 TC 2 20637 SN 0098-9886 20638 J9 INT J CIRCUIT THEOR APPL 20639 JI Int. J. Circuit Theory Appl. 20640 PD SEP-OCT 20641 PY 1994 20642 VL 22 20643 IS 5 20644 BP 399 20645 EP 408 20646 PG 10 20647 SC Engineering, Electrical & Electronic 20648 GA PN991 20649 UT ISI:A1994PN99100006 20650 ER 20651 20652 PT J 20653 AU XU, HP 20654 LEI, TJ 20655 TI A RINGLESS HIGH-PRESSURE MOVING SEAL UP TO 1200 MPA 20656 SO TRIBOLOGY TRANSACTIONS 20657 DT Article 20658 DE HIGH PRESSURE; MOVING SEAL; RINGLESS SEAL 20659 AB A ringless high pressure moving seal has been developed which can reach 20660 pressures as high as 1200 MPa. A unique feature of the seal is the 20661 elastic action of its plunger. This action results in full oil film 20662 operation that enhances volumetric efficiency while reducing leakage. 20663 Analysis and results of the pressure examination are presented. It is 20664 shown that the seal operates with high volumetric efficiency, very low 20665 friction and no wear. 20666 C1 ACAD MACHINE SCI,BEIJING 100044,PEOPLES R CHINA. 20667 RP XU, HP, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 200072,PEOPLES R CHINA. 20668 CR BRIDGMAN PW, 1953, PHYSICS HIGH PRESSUR 20669 XU H, 1991, 911084401, CH 20670 XU H, 1991, THESIS ACADEMY MACHI 20671 XU H, 1994, CHINESE J MECH ENG, V7, P2 20672 NR 4 20673 TC 1 20674 SN 0569-8197 20675 J9 TRIBOL TRANS 20676 JI Tribol. Trans. 20677 PD OCT 20678 PY 1994 20679 VL 37 20680 IS 4 20681 BP 767 20682 EP 770 20683 PG 4 20684 SC Engineering, Mechanical 20685 GA PN115 20686 UT ISI:A1994PN11500013 20687 ER 20688 20689 PT J 20690 AU ZHU, ST 20691 SHEN, WD 20692 TI GLOBALLY REGULAR MODEL OF THE ELECTRON IN GENERAL-RELATIVITY 20693 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 20694 DT Article 20695 AB Necessary conditions on a reasonable description of a physical object 20696 are suggested. The globally regular solutions of Petrov type D of the 20697 Einstein - Maxwell field equations and their generation solutions are 20698 derived for a charged perfect fluid sphere. A globally regular model 20699 of a stationary electron is established in the framework of general 20700 relativity. The quantitative relations between the inertial and the 20701 electromagnetic mass of an electron and between the electron mass and 20702 radius are explained. 20703 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 20704 RP ZHU, ST, ACAD SINICA,SHANGHAI INST OPT & FINE MECH,POB 800-211,SHANGHAI 20705 201800,PEOPLES R CHINA. 20706 CR FUKUDA H, 1949, PROG THEOR PHYS, V4, P121 20707 GAUTREAU R, 1985, PHYS REV D, V31, P1860 20708 HAWKING SW, 1973, LARGE SCALE STRUCTUR 20709 HORWITZ G, 1971, NUOVO CIMENTO B, V3, P245 20710 ISRAEL W, 1970, PHYS REV D, V2, P641 20711 JACKSON JD, 1975, CLASSICAL ELECTRODYN 20712 KATZ J, 1971, NUOVO CIMENTO B, V5, P59 20713 KRAMER D, 1980, EXACT SOLUTIONS EINS, P164 20714 PAULI W, 1958, THEORY RELATIVITY 20715 SHEN WD, 1985, GEN RELAT GRAVIT, V17, P739 20716 TIWARI RN, 1985, PHYSICAL REV D, V30, P489 20717 NR 11 20718 TC 0 20719 SN 0020-7748 20720 J9 INT J THEOR PHYS 20721 JI Int. J. Theor. Phys. 20722 PD AUG 20723 PY 1994 20724 VL 33 20725 IS 8 20726 BP 1687 20727 EP 1697 20728 PG 11 20729 SC Physics, Multidisciplinary 20730 GA PL431 20731 UT ISI:A1994PL43100009 20732 ER 20733 20734 PT J 20735 AU SUN, Z 20736 ZHENG, Z 20737 XU, N 20738 SUN, Y 20739 JI, R 20740 ZHAO, W 20741 TI DIAMOND FILM DEPOSITED ON A SILICA SUBSTRATE WITH A ZNOAL INTERMEDIATE 20742 LAYER BY HOT-FILAMENT CHEMICAL-VAPOR-DEPOSITION 20743 SO JOURNAL OF APPLIED PHYSICS 20744 DT Note 20745 ID THIN-FILMS; OPTICAL-PROPERTIES; LOW-PRESSURE 20746 AB Diamond films were deposited on ZnO:Al thin-film silica substrates by 20747 hot-filament chemical vapor deposition. Ultrasonic irradiation in a 20748 diamond suspension enhanced the diamond nucleation density on a 20749 ZnO:Al-silica substrate. The nucleation density and the growth rate of 20750 diamond film deposited on ZnO:Al thin film is higher than on the 20751 silica. The cracks on a ZnO:Al-silica substrate occurred during the 20752 diamond deposition process. It is proposed that the cracks were caused 20753 by the stress in ZnO:Al film and diamond film, and the peak frequency 20754 shift of the Raman line of diamond indicates the presence of 20755 compressive stress in the diamond film. 20756 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SCI,SHANGHAI,PEOPLES R CHINA. 20757 RP SUN, Z, E CHINA NORMAL UNIV,DEPT PHYS,SHANGHAI 200062,PEOPLES R CHINA. 20758 CR ANGUS JC, 1988, SCIENCE, V241, P913 20759 BONNOT AM, 1990, PHYS REV B, V41, P6040 20760 CELII FG, 1992, NAV RES REV, V44, P23 20761 DEVERIES RC, 1987, ANNU REV MATER SCI, V17, P161 20762 JIN ZC, 1987, APPL PHYS LETT, V51, P149 20763 JIN ZC, 1988, J APPL PHYS 1, V64, P5117 20764 LEE YH, 1990, APPL PHYS LETT, V57, P1916 20765 RAVI KV, 1993, MAT SCI ENG B-SOLID, V19, P203 20766 SHPAK MT, 1985, PHYS CHEM MECH SURF, V3, P1412 20767 SOOD DK, 1992, SURF COAT TECH, V51, P307 20768 TANIGUCHI Y, 1989, JPN J APPL PHYS, V28, L1848 20769 VANDEPOL FCM, 1990, AM CERAM SOC BULL, V69, P1959 20770 WINDISCHMANN H, 1991, J APPL PHYS, V69, P2231 20771 YARBROUGH WA, 1990, SCIENCE, V247, P688 20772 YOSHIKAWA M, 1989, APPL PHYS LETT, V55, P2608 20773 NR 15 20774 TC 1 20775 SN 0021-8979 20776 J9 J APPL PHYS 20777 JI J. Appl. Phys. 20778 PD OCT 1 20779 PY 1994 20780 VL 76 20781 IS 7 20782 BP 4446 20783 EP 4447 20784 PG 2 20785 SC Physics, Applied 20786 GA PK458 20787 UT ISI:A1994PK45800078 20788 ER 20789 20790 PT J 20791 AU CHEN, CH 20792 CHEN, HJ 20793 TI DOF OF EQUIVALENT CONJUGATE MOTION BETWEEN 2 BODIES IN A MECHANICAL 20794 SYSTEM 20795 SO MECHANISM AND MACHINE THEORY 20796 DT Article 20797 AB In modern mechanical systems, especially in robotics and bio-mechanics, 20798 there are needs to investigate higher pairs in more details, and to 20799 compute the d.o.f. of the relative motion between two bodies, rather 20800 than the d.o.f. of the whole system. In this paper, conjugate pairs 20801 are investigated with the aid of the theory of conjugate surfaces. 20802 This investigation provides a geometrical insight of the d.o.f. of a 20803 joint. The conjugation chain and the corresponding algorithm are 20804 introduced. They provide an instrumental tool for computing the d.o.f. 20805 of the equivalent conjugate motion between two bodies in a mechanical 20806 system. The existence of the redundant and the complementary d.o.f. is 20807 briefly explained. 20808 RP CHEN, CH, SHANGHAI UNIV SCI & TECHNOL,LANE 200,HOUSE 23,ROOM 20809 401,SHANGHAI 20063,PEOPLES R CHINA. 20810 CR BAGCI C, 1971, T ASME, V93, P140 20811 BAUSCH JJ, 1990, P MANUFACTURING INT, V1, P225 20812 CHEN CH, 1985, FUNDAMENTALS THEORY, P107 20813 LIU T, 1992, ASME, V47, P653 20814 REULEAUX F, 1963, KINEMATICS MACHINERY 20815 WARNAAR DB, 1992, ASME DE, V47, P143 20816 NR 6 20817 TC 6 20818 SN 0094-114X 20819 J9 MECH MACH THEOR 20820 JI Mech. Mach. Theory 20821 PD NOV 20822 PY 1994 20823 VL 29 20824 IS 8 20825 BP 1143 20826 EP 1150 20827 PG 8 20828 SC Engineering, Mechanical 20829 GA PJ582 20830 UT ISI:A1994PJ58200005 20831 ER 20832 20833 PT J 20834 AU ZHONG, SS 20835 LIU, G 20836 QASIM, G 20837 TI CLOSED-FORM EXPRESSIONS FOR RESONANT-FREQUENCY OF RECTANGULAR PATCH 20838 ANTENNAS WITH MULTIDIELECTRIC LAYERS 20839 SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 20840 DT Note 20841 ID MICROSTRIP ANTENNAS; DIELECTRIC LAYER; ACCURATE MODEL; LINES 20842 AB The conformal mapping approach combined with a generalized transmission 20843 line model has been developed to predict the resonant frequency of 20844 rectangular patch antennas with multidielectric layers. A set of closed 20845 form expressions is derived, which is suitable for direct application 20846 in CAD programs. Numerical results are presented to validate this 20847 method. 20848 C1 NWFP UNIV ENGN & TECHNOL,PESHAWAR,PAKISTAN. 20849 RP ZHONG, SS, SHANGHAI UNIV SCI & TECHNOL,DEPT RADIO & ELECTR,SHANGHAI 20850 201800,PEOPLES R CHINA. 20851 CR BAHL IJ, 1982, IEEE T ANTENN PROPAG, V30, P314 20852 BENALLA A, 1990, IEE PROC-H, V137, P377 20853 KIRSCHNING M, 1981, ELECTRON LETT, V17, P123 20854 KIRSCHNING M, 1982, ELECTRON LETT, V18, P272 20855 NELSON RM, 1990, IEEE T ANTENN PROPAG, V38, P978 20856 PRIBETICH J, 1988, ELECTRON LETT, V24, P1464 20857 QQASIM G, 1991, J SHANGHAI U SCI TEC, V14, P77 20858 RAMAHI OM, 1992, MICROW OPT TECHN LET, V5, P254 20859 SVACINA J, 1992, IEEE T MICROW THEORY, V40, P769 20860 VERMA AK, 1991, IEICE T COMMUN, V74, P1270 20861 WHEELER HA, 1964, IEEE T MICROW THEORY, V12, P280 20862 NR 11 20863 TC 6 20864 SN 0018-926X 20865 J9 IEEE TRANS ANTENNAS PROPAGAT 20866 JI IEEE Trans. Antennas Propag. 20867 PD SEP 20868 PY 1994 20869 VL 42 20870 IS 9 20871 BP 1360 20872 EP 1363 20873 PG 4 20874 SC Engineering, Electrical & Electronic; Telecommunications 20875 GA PH084 20876 UT ISI:A1994PH08400024 20877 ER 20878 20879 PT J 20880 AU WANG, DR 20881 BAI, ZZ 20882 TI ON MONOTONE CONVERGENCE OF NONLINEAR MULTISPLITTING RELAXATION METHODS 20883 SO CHINESE ANNALS OF MATHEMATICS SERIES B 20884 DT Article 20885 DE NONLINEAR SYSTEM OF EQUATIONS; NONLINEAR MULTISPLITTING; MONOTONICITY; 20886 GLOBAL CONVERGENCE 20887 ID PARALLEL; ALGORITHM 20888 AB A class of parallel nonlinear multisplitting AOR methods is et up by 20889 directly multisplitting the nonlinear mapping F : D subset-of R(n) --> 20890 R(n) for solving the nonlinear system of equations F(x) = 0. The 20891 different choices of the relaxation parameters can yield all the known 20892 and a lot of new relaxation methods as well as a lot of new relaxation 20893 parallel nonlinear multisplitting methods. The two-sided approximation 20894 properties and the influences on convergence from the relaxation 20895 parameters about the new methods are shown, and the sufficient 20896 conditions guaranteeing the methods to converge globally are discussed. 20897 Finally, a lot of numerical results show that the methods are feasible 20898 and efficient. 20899 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 20900 EUDAN UNIV,INST MATH,SHANGHAI 200433,PEOPLES R CHINA. 20901 CR FROMMER A, 1989, NUMER MATH, V56, P269 20902 MORE J, 1970, SIAM J NUMER ANAL, V9, P357 20903 OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630 20904 RHEINBOLDT WC, 1970, ITERATIVE SOLUTION N 20905 RHEINBOLDT WC, 1970, J MATH ANAL APPL, V32, P274 20906 WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473 20907 WHITE RE, 1986, SIAM J ALGEBRA DISCR, V7, P137 20908 WHITE RE, 1986, SIAM J NUMER ANAL, V23, P639 20909 NR 8 20910 TC 5 20911 SN 0252-9599 20912 J9 CHIN ANN MATH SER B 20913 JI Chin. Ann. Math. Ser. B 20914 PD JUL 20915 PY 1994 20916 VL 15 20917 IS 3 20918 BP 335 20919 EP 348 20920 PG 14 20921 SC Mathematics 20922 GA PG700 20923 UT ISI:A1994PG70000009 20924 ER 20925 20926 PT J 20927 AU LI, YZ 20928 DAVID, AK 20929 TI WHEELING RATES OF REACTIVE POWER-FLOW UNDER MARGINAL COST PRICING 20930 SO IEEE TRANSACTIONS ON POWER SYSTEMS 20931 DT Article 20932 DE WHEELING; POWER WHEELING; WHEELING RATES; MARGINAL COST PRICING; 20933 ECONOMIC DISPATCH 20934 AB Wheeling is the transmission of electrical power and reactive power 20935 from a seller to a buyer through a transmission network owned by a 20936 third party. The wheeling rate is an area of intense research at 20937 present in view of increased deregulation. This paper uses a wheeling 20938 rate based on marginal cost pricing and implemented using a 20939 modification of the OPF. A case study based on the IEEE 30-bus system 20940 illustrates the magnitudes and ranges that wheeling rates might have in 20941 different circumstances. Special attention is paid to reactive 20942 wheeling, which cannot be analyzed with a DC model used by previous 20943 authors. The ratio of wheeling rates between real and reactive flow 20944 shows the importance of the latter. The paper also discusses the 20945 significance of this for the trade-off between paying for reactive 20946 wheel or investing in compensating plant. 20947 C1 HONG KONG POLYTECH,KOWLOON,HONG KONG. 20948 RP LI, YZ, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA. 20949 CR BAUGHMAN ML, 1991, IEEE T POWER SYST, V6, P23 20950 CARAMANIS MC, 1986, IEEE T POWER SYST, V1, P63 20951 CARAMANIS MC, 1989, IEEE T POWER SYST, V4, P594 20952 LI YZ, IN PRESS P IEE C 20953 LI YZ, 1992, WIN IEEE P M 20954 MERRILL HM, 1989, IEEE T POWER SYST, V4, P1445 20955 MUKERJI R, 1992, IEEE T POWER SYST, V7, P201 20956 SCHWEPPE FC, 1988, SPOT PRICING ELECTRI 20957 NR 8 20958 TC 16 20959 SN 0885-8950 20960 J9 IEEE TRANS POWER SYST 20961 JI IEEE Trans. Power Syst. 20962 PD AUG 20963 PY 1994 20964 VL 9 20965 IS 3 20966 BP 1263 20967 EP 1269 20968 PG 7 20969 SC Engineering, Electrical & Electronic 20970 GA PF168 20971 UT ISI:A1994PF16800014 20972 ER 20973 20974 PT J 20975 AU CHEN, DY 20976 ZHU, NS 20977 ZHU, M 20978 TI THE POTENTIAL CONSTRAINTS OF THE KP SYSTEM AND THE CORRESPONDING 20979 HAMILTONIAN EQUATIONS 20980 SO JOURNAL OF MATHEMATICAL PHYSICS 20981 DT Article 20982 AB In this paper all the potential constraints (wither without first-order 20983 partial derivatives) of the KP system, from which the associated linear 20984 problem can be restricted into a (1+1)-dimensional Hamiltonian 20985 equation, are obtained by using the sufficient and necessary condition 20986 for a nonlinear equation to be a Hamiltonian system. Some well-known 20987 integrable systems, such as (1+1)-dimensional AKNS system, generalized 20988 NS system, and several new Hamiltonian equations, are deduced as 20989 particular examples. 20990 RP CHEN, DY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 20991 CR ADLER M, 1979, INVENT MATH, V50, P219 20992 CEWEN C, 1987, HENAN SCI, V5, P2 20993 CHEN HH, 1979, PHYS SCR, V20, P490 20994 DENGYUNA C, 1992, SYMMETRIC CONSTRAINT 20995 FLASCHKA H, 1983, 1981 P RIMS S NONL I, P219 20996 FUCHSSTEINER B, 1981, PHYSICA D, V4, P47 20997 KONOPELCHENKO B, 1991, PHYS LETT A, V157, P17 20998 YI C, 1991, PHYS LETT A, V157, P22 20999 YI C, 1992, J PHYS A, V25, P419 21000 YUNBO Z, 1989, J MATH PHYS, V30, P1679 21001 NR 10 21002 TC 1 21003 SN 0022-2488 21004 J9 J MATH PHYS-NY 21005 JI J. Math. Phys. 21006 PD SEP 21007 PY 1994 21008 VL 35 21009 IS 9 21010 BP 4725 21011 EP 4738 21012 PG 14 21013 SC Physics, Mathematical 21014 GA PF137 21015 UT ISI:A1994PF13700022 21016 ER 21017 21018 PT J 21019 AU CHEN, WR 21020 ZHANG, B 21021 CHEN, WJ 21022 WANG, J 21023 WAN, X 21024 TI TEMPERATURE-DEPENDENCE OF THE MECHANICAL-PROPERTIES OF A TI-AL-CR ALLOY 21025 SO SCRIPTA METALLURGICA ET MATERIALIA 21026 DT Article 21027 ID ELEVATED-TEMPERATURES; DEFORMATION; FRACTURE 21028 RP CHEN, WR, SHANGHAI UNIV SCI & TECHNOL,INST MAT SCI,149 YANCHANG 21029 RD,SHANGHAI 200072,PEOPLES R CHINA. 21030 CR CHEN WR, UNPUB 21031 CHEN WR, 1994, SCRIPTA METALL, V30, P83 21032 HUANG SC, 1988, SCRIPTA METALL, V22, P1885 21033 HUANG SC, 1991, METALL T A, V22, P427 21034 KIM YW, 1989, JOM-J MIN MET MAT S, V41, P24 21035 KIM YW, 1990, HIGH TEMPERATURE ALU, P465 21036 KIM YW, 1991, JOM, V43, P40 21037 KIMURA M, 1992, MAT SCI ENG A-STRUCT, V152, P54 21038 LIPSITT HA, 1975, METALL T A, V6, P1991 21039 LIPSITT HA, 1980, METALLURG T A, V11, P1369 21040 LIPSITT HA, 1985, MATER RES SOC S P, V39, P351 21041 WUNDERLICH W, 1990, Z METALLKD, V81, P802 21042 ZHENG Y, 1992, SCRIPTA METALL MATER, V26, P219 21043 NR 13 21044 TC 1 21045 SN 0956-716X 21046 J9 SCR METALL MATER 21047 JI Scr. Metall. Materialia 21048 PD NOV 15 21049 PY 1994 21050 VL 31 21051 IS 10 21052 BP 1297 21053 EP 1300 21054 PG 4 21055 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 21056 Engineering 21057 GA PE217 21058 UT ISI:A1994PE21700003 21059 ER 21060 21061 PT J 21062 AU LU, DY 21063 LIANG, G 21064 ZHANG, MJ 21065 XU, B 21066 TI SERUM CONTENTS OF SIALIC ACIDS IN MICE BEARING DIFFERENT TUMORS 21067 SO CHINESE SCIENCE BULLETIN 21068 DT Article 21069 DE SIALIC ACIDS; HPLC; ANTINEOPLASTIC DRUGS; NEOPLASM METASTASES; 21070 CARCINOGENESIS 21071 RP LU, DY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 21072 NR 0 21073 TC 0 21074 SN 1001-6538 21075 J9 CHIN SCI BULL 21076 JI Chin. Sci. Bull. 21077 PD JUL 21078 PY 1994 21079 VL 39 21080 IS 14 21081 BP 1220 21082 EP 1233 21083 PG 14 21084 SC Multidisciplinary Sciences 21085 GA PD156 21086 UT ISI:A1994PD15600017 21087 ER 21088 21089 PT J 21090 AU DUNHAM, CB 21091 ZHU, CZ 21092 TI COMPUTATION OF THE MODIFIED STRONG UNIQUENESS CONSTANTS 21093 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 21094 DT Article 21095 DE COMPUTATION; MINIMAX APPROXIMATION; MODIFIED STRONG UNIQUENESS 21096 CONSTANT; NEARNESS OF COEFFICIENTS (PARAMETERS); HAAR CONDITION 21097 AB Paralleling the classical strong uniqueness, in this paper we consider 21098 the modified strong uniqueness which measures the distance between the 21099 best approximation and the achieved approximation in the parameter norm 21100 instead of uniform (function) norm in which the classical strong 21101 uniqueness measures the distance. We introduce a quantity called 21102 modified strong uniqueness constant which can be used to bound the 21103 distance mentioned above (if we can bound the difference between the 21104 minimal approximation error norm and the achieved approximation error 21105 norm), and deduce a computation formula for it for both linear and 21106 nonlinear uniform approximations. Cline's arguments for the classical 21107 strong uniqueness constant are used, but we make some modifications due 21108 to the turning of our attention from uniform (function) norm to 21109 parameter norm. Implementation of the computation, and examples for 21110 computing both classical and modified strong uniqueness constants are 21111 given. We also introduce a quantity which is analogous to Lipschitz 21112 constant. 21113 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 21114 RP DUNHAM, CB, UNIV WESTERN ONTARIO,DEPT COMP SCI,LONDON N6A 21115 5B7,ONTARIO,CANADA. 21116 CR CLINE AK, 1973, J APPROXIMATION THEO, V8, P160 21117 CROMME L, 1978, NUMER MATH, V29, P179 21118 DUNHAM C, 1980, J COMPUT APPL MATH, V6, P241 21119 DUNHAM C, 1986, C NUMERANTIUM, V51, P123 21120 DUNHAM C, 1988, 204 U W ONT DEP COMP 21121 DUNHAM C, 1989, APPROX THEORY APPL, V5, P43 21122 DUNHAM C, 1992, 312 U W ONT DEP COMP 21123 DUNHAM C, 1993, 377 U W ONT DEP COMP 21124 JITTORNTRUM K, 1980, NUMER MATH, V34, P439 21125 RICE JR, 1964, APPROXIMATION FUNCTI, V1 21126 SMITH, 1979, THESIS U CALIFORNIA 21127 NR 11 21128 TC 1 21129 SN 0020-7160 21130 J9 INT J COMPUT MATH 21131 JI Int. J. Comput. Math. 21132 PY 1994 21133 VL 52 21134 IS 1-2 21135 BP 83 21136 EP 97 21137 PG 15 21138 SC Mathematics, Applied 21139 GA PA314 21140 UT ISI:A1994PA31400008 21141 ER 21142 21143 PT J 21144 AU LIU, HL 21145 CHEN, NY 21146 LU, WC 21147 ZHU, XW 21148 TI MULTITARGET CLASSIFICATION PATTERN-RECOGNITION APPLIED TO 21149 COMPUTER-AIDED MATERIALS DESIGN 21150 SO ANALYTICAL LETTERS 21151 DT Article 21152 DE CLASSIFICATION PATTERN RECOGNITION; PRINCIPAL COMPONENT ANALYSIS; 21153 INVERSE MAPPING; OPTIMIZATION; MATERIALS DESIGN 21154 AB A multi-target classification pattern recognition method based on the 21155 principal component analysis (PCA) has been proposed for computer-aided 21156 materials design considering the multiple specialties of materials. The 21157 designed sample with probable optimal specialties is determined in such 21158 way that its representing point should be at the optimal region in the 21159 PC sub-space, where most optimal samples can be discriminated from 21160 nonoptimal samples by means of features. The experimental parameters of 21161 the sample represented by this point can be obtained using a non-linear 21162 inverse mapping method from the PC sub-space to the original space. 21163 Based on the information provided using the method, several samples of 21164 V-PTC materials with optimal multiple specialties are synthesized. 21165 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA. 21166 RP LIU, HL, CHINESE ACAD SCI,SHANGHAI INST MET,SHANGHAI 200050,PEOPLES R 21167 CHINA. 21168 CR CHEN N, 1988, ANAL CHIM ACTA, V210, P175 21169 CHEN NY, 1990, 1990 INT S P MECH PR, P777 21170 CHEN Y, 1990, ABIT, V4, P29 21171 HAYMANN PW, 1955, 929350, GE 21172 KAZUSHIRO H, 1985, 5329234, JA 21173 KOWALSKI BR, 1982, CLASSIFICATION PATTE, P673 21174 LIU HL, 1991, CHINESE SCI BULL, V36, P991 21175 LIU HL, 1993, PATT RECOG ARTI, V6, P399 21176 SAMMON JW, 1969, IEEE T COMPUT, V18, P401 21177 VARMUZA K, 1980, PATTERN RECOGNITION 21178 NR 10 21179 TC 7 21180 SN 0003-2719 21181 J9 ANAL LETT 21182 JI Anal. Lett. 21183 PY 1994 21184 VL 27 21185 IS 11 21186 BP 2195 21187 EP 2203 21188 PG 9 21189 SC Chemistry, Analytical 21190 GA NY067 21191 UT ISI:A1994NY06700014 21192 ER 21193 21194 PT J 21195 AU TAN, WH 21196 TI THE EXACT SOLUTION TO THE REGULAR PUMP MODEL OF PHOTON NOISE-REDUCTION 21197 IN LASERS 21198 SO PHYSICS LETTERS A 21199 DT Article 21200 ID FEEDBACK 21201 AB An exact solution to the regular pump model of photon reduction in 21202 lasers is presented. 21203 RP TAN, WH, SHANGHAI UNIV SCI TECHNOL,ACAD SINICA,SHANGHAI INST OPT & FINE 21204 MECH,JOINT LAB QUANTUM OPT,SHANGHAI 201800,PEOPLES R CHINA. 21205 CR GOLUBEV YM, 1984, ZH EKSP TEOR FIZ, V60, P234 21206 HAAK F, 1989, PHYS REV A, V40, P712 21207 HAUS HA, 1986, PHYS REV A, V34, P270 21208 MACHIDA S, 1986, OPT COMMUN, V57, P290 21209 SARGENT M, 1974, LASER PHYSICS, P297 21210 NR 5 21211 TC 7 21212 SN 0375-9601 21213 J9 PHYS LETT A 21214 JI Phys. Lett. A 21215 PD JUL 11 21216 PY 1994 21217 VL 190 21218 IS 1 21219 BP 13 21220 EP 16 21221 PG 4 21222 SC Physics, Multidisciplinary 21223 GA NX957 21224 UT ISI:A1994NX95700004 21225 ER 21226 21227 PT J 21228 AU MA, RD 21229 ZHANG, QL 21230 DING, WY 21231 ZHANG, QR 21232 XU, MJ 21233 TI STRUCTURE OF PEROXIDE FORMED DURING PREIRRADIATION OF STYRENE AND ITS 21234 INITIATING REACTIVITY 21235 SO ACTA CHIMICA SINICA 21236 DT Article 21237 AB Preirradiation of styrene under total dosage 5 x 10(4) Gy of gamma-ray 21238 radiation and different dose rate 2.9 Gy/s, 0.7 Gy/s, 0.5Gy/s and 0.3 21239 Gy/s were investigated. The peroxides formed during Preirradiation were 21240 separated by silica gel column chromatography in three components, 1,2 21241 and 3 respectively. The distribution of components was different with 21242 the different dose rate. The peroxide isolated only the single 21243 component 2 when dose rate was 0.3 Gy/s. Their structures were studied 21244 by IR, H-1 NM R and MS. It was found the component 2 possesses strong 21245 initiating reactivity with the structure of alternating peroxide, 21246 initiates smoother polymerization than BPO under lower temperature and 21247 shorter time. It also initiates copolymerization with other monomer. 21248 RP MA, RD, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R 21249 CHINA. 21250 CR MUKUNDAN T, 1989, J POLYM SCI C, V2, P455 21251 NR 1 21252 TC 0 21253 SN 0567-7351 21254 J9 ACTA CHIM SIN 21255 JI Acta Chim. Sin. 21256 PY 1994 21257 VL 52 21258 IS 6 21259 BP 603 21260 EP 608 21261 PG 6 21262 SC Chemistry, Multidisciplinary 21263 GA NX086 21264 UT ISI:A1994NX08600014 21265 ER 21266 21267 PT J 21268 AU FANG, ZH 21269 ZHANG, MX 21270 SHEN, CH 21271 WANG, Y 21272 TI THE HAL-3 RADAR TEST SET 21273 SO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 21274 DT Article 21275 AB This paper presents the HAL-3 radar test set (called the set in the 21276 following) used to measure the technical specifications of the HAL-3 21277 airborne radar and to maintain it based on tested results. Some new 21278 techniques are employed in the set, including sinusoidal pulsewidth 21279 modulation (SPWM) in the power supply, digital gyro simulator and 21280 automatic test module (ATM) with STD industrial control microprocessor 21281 series. The specially designed software implements man-machine 21282 interaction with menu in chinese, selects parameters and operation 21283 mode, and controls testing procedures. These techniques may be 21284 extensively applied to other automatic test instruments. 21285 RP FANG, ZH, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI INST ELECTRON 21286 PHYS,SHANGHAI 201800,PEOPLES R CHINA. 21287 CR ZHENHE F, 1992, 1992 AMSE MSC 92 C P, P69 21288 NR 1 21289 TC 0 21290 SN 0018-9251 21291 J9 IEEE TRANS AEROSP ELECTRON SY 21292 JI IEEE Trans. Aerosp. Electron. Syst. 21293 PD JUL 21294 PY 1994 21295 VL 30 21296 IS 3 21297 BP 919 21298 EP 924 21299 PG 6 21300 SC Engineering, Aerospace; Engineering, Electrical & Electronic; 21301 Telecommunications 21302 GA NV887 21303 UT ISI:A1994NV88700025 21304 ER 21305 21306 PT J 21307 AU SHENG, ZL 21308 WOLFE, MA 21309 TI AN INTERVAL ALGORITHM FOR NONDIFFERENTIABLE GLOBAL OPTIMIZATION 21310 SO APPLIED MATHEMATICS AND COMPUTATION 21311 DT Article 21312 AB An interval algorithm for constrained nondifferentiable global 21313 optimization in which an exact penalty function is used is described, 21314 and the determination of the penalty function parameter is discussed. 21315 Numerical results are presented. 21316 C1 UNIV ST ANDREWS,SCH MATH & COMP SCI,ST ANDREWS KY15 9SS,FIFE,SCOTLAND. 21317 RP SHENG, ZL, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R 21318 CHINA. 21319 CR ALEFELD G, 1983, INTRO INTERVAL COMPU 21320 BRACKEN J, 1968, SELECTED APPLICATION 21321 GOULD FJ, 1972, NONLINEAR TOLERANCE 21322 HESTENES MR, 1975, OPTIMIZATION THEORY 21323 MOORE RE, 1979, SIAM STUDIES, V2 21324 NEUMAIER A, 1988, PERSPECTIVES COMPUTI, V9 21325 NEUMAIER A, 1990, ENCY MATH ITS APPLIC 21326 RATSCHEK H, 1988, E HORWOOD SERIES MAT 21327 SHEN ZH, 1990, APPL MATH COMPUT, V39, P89 21328 WOLFE MA, 1994, J COMPUT APPL MATH, V50, P1 21329 NR 10 21330 TC 2 21331 SN 0096-3003 21332 J9 APPL MATH COMPUT 21333 JI Appl. Math. Comput. 21334 PD JUL 21335 PY 1994 21336 VL 63 21337 IS 2-3 21338 BP 101 21339 EP 122 21340 PG 22 21341 SC Mathematics, Applied 21342 GA NV827 21343 UT ISI:A1994NV82700001 21344 ER 21345 21346 PT J 21347 AU RASHID, A 21348 WEIMING, C 21349 BENYU, G 21350 TI 3 LEVEL FOURIER SPECTRAL APPROXIMATIONS FOR FLUID-FLOW WITH LOW MACH 21351 NUMBER 21352 SO APPLIED MATHEMATICS AND COMPUTATION 21353 DT Article 21354 ID TIME 21355 AB Fourier spectral approximation, combined with a second-order time 21356 differencing technique for fluid flow with low Mach number is 21357 considered in this paper. Its generalized stability and convergence are 21358 strictly proven. 21359 RP RASHID, A, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA. 21360 CR BENYU G, 1986, CHINESE SCI BULL, V31, P1081 21361 CANUTO C, 1987, SPECTRAL FLUID DYNAM 21362 MA HP, 1986, J COMPUT PHYS, V65, P120 21363 PENYU K, 1990, NUMER MATH J CHINESE, V2, P64 21364 RASHID A, 1992, FOURIER PSEUDOSPECTR 21365 ROACHE PJ, 1976, COMPUTATIONAL FLUID 21366 TALEZER H, 1989, SIAM J NUMER ANAL, V26, P1 21367 ZAKARIA A, 1985, THESIS U NICE 21368 ZLATEV Z, 1984, J COMPUT PHYS, V55, P278 21369 NR 9 21370 TC 0 21371 SN 0096-3003 21372 J9 APPL MATH COMPUT 21373 JI Appl. Math. Comput. 21374 PD JUL 21375 PY 1994 21376 VL 63 21377 IS 2-3 21378 BP 131 21379 EP 149 21380 PG 19 21381 SC Mathematics, Applied 21382 GA NV827 21383 UT ISI:A1994NV82700003 21384 ER 21385 21386 PT J 21387 AU BOARDMAN, AD 21388 NIKITOV, SA 21389 WANG, Q 21390 TI THEORY OF BISTABLE MAGNETOSTATIC SURFACE-WAVES 21391 SO IEEE TRANSACTIONS ON MAGNETICS 21392 DT Article 21393 ID OPTICAL BISTABILITY; BEHAVIOR 21394 AB A comprehensive theory of nonlinear magnetostatic wave propagation in a 21395 corrugated ferromagnetic film is presented. The applied magnetic field 21396 is in the plane of the film, and is perpendicular to the propagation 21397 direction. A portion of the film has its upper boundary periodically 21398 corrugated, and an analysis close to the Bragg condition is carried 21399 out. Typical bistable loops of output power against input power are 21400 obtained. Multistability is predicted for input powers, in the range 21401 50-150 mW/mm. The threshold power is rather sensitive to the modulation 21402 of the upper surface, i.e., to the amplitude of the geometric 21403 variations on the periodic surface. Small amplitudes suppress the 21404 multistability and this critical region is investigated quantitatively. 21405 It is concluded that the multistable effects should be readily 21406 observable. 21407 C1 RUSSIAN ACAD SCI,INST RADIOENGN & ELECTR,MOSCOW,RUSSIA. 21408 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 21409 RP BOARDMAN, AD, UNIV SALFORD,DEPT PURE & APPL PHYS,SALFORD M5 21410 4WT,LANCS,ENGLAND. 21411 CR ADAM JD, 1977, IEEE T MAG, V13, P1246 21412 ALMEIDA NS, 1987, PHYS REV B, V36, P2015 21413 AN NB, 1989, PHYS LETT A, V136, P71 21414 BASHAROV AM, 1988, ZH EKSP TEOR FIZ, V67, P1741 21415 BAZHENOV VY, 1990, P SPIE INT SOC OPT E, V1280, P289 21416 BOARDMAN AD, 1990, NATO ASI SER B-PHYS, V247, P239 21417 BOARDMAN AD, 1994, IEEE T MAGN, V30, P14 21418 BRILLOUIN L, 1953, WAVE PROPAGATION PER 21419 ELACHI C, 1975, IEEE T MAGN, V11, P36 21420 EMPSTEN A, 1990, IEEE J QUANTUM ELECT, V26, P1089 21421 ESIPOV SE, 1988, SOV PHYS JETP, V67, P1363 21422 FELBER FS, 1976, APPL PHYS LETT, V28, P731 21423 GIBBS HM, 1985, OPTICAL BISTABILITY 21424 GULYAEV YV, 1980, SOV PHYS-SOLID STATE, V22, P1651 21425 GULYAEV YV, 1981, SOV PHYS-SOLID STATE, V23, P2138 21426 GULYAEV YV, 1981, SOV PHYS-SOLID STATE, V23, P724 21427 KAWARSCHIK R, 1982, OPT ACT, V29, P455 21428 KOGELNIK H, 1972, J APPL PHYS, V43, P2327 21429 KUZNETSOV AV, 1988, SOV PHYS SEMICOND+, V22, P1143 21430 LEUNG KM, 1989, PHYS REV B, V39, P3590 21431 OKUDA M, 1977, JPN J APPL PHYS, V16, P769 21432 PENG ST, 1975, IEEE T MICROW THEORY, V23, P123 21433 SUNG CC, 1984, J OPT SOC AM B, V1, P476 21434 TSUTSUMI M, 1975, IEEE T MICROWAVE THE, V58, P16 21435 TSUTSUMI M, 1975, J I ELECTRON COMMU B, V58, P16 21436 TSUTSUMI M, 1977, IEEE T MICROWAVE THE, V25, P224 21437 VUKOVICH S, 1990, SOV PHYS JETP, V71, P964 21438 WINFUL HG, 1979, APPL PHYS LETT, V35, P379 21439 NR 28 21440 TC 20 21441 SN 0018-9464 21442 J9 IEEE TRANS MAGN 21443 JI IEEE Trans. Magn. 21444 PD JAN 21445 PY 1994 21446 VL 30 21447 IS 1 21448 BP 1 21449 EP 13 21450 PG 13 21451 SC Engineering, Electrical & Electronic; Physics, Applied 21452 GA NC483 21453 UT ISI:A1994NC48300001 21454 ER 21455 21456 PT J 21457 AU BOARDMAN, AD 21458 WANG, Q 21459 NIKITOV, SA 21460 SHEN, J 21461 CHEN, W 21462 MILLS, D 21463 BAO, JS 21464 TI NONLINEAR MAGNETOSTATIC SURFACE-WAVES IN FERROMAGNETIC-FILMS 21465 SO IEEE TRANSACTIONS ON MAGNETICS 21466 DT Article 21467 ID ENVELOPE SOLITONS 21468 AB A comprehensive perturbation theory is presented, that enables the 21469 nonlinear wavenumber shift of magnetostatic surface waves (MSSW) on a 21470 thin ferromagnetic film to be calculated from first principles. The 21471 MSSW propagate, in this case, perpendicularly or obliquely to the 21472 applied magnetic field and their group-velocity dispersion is positive. 21473 Detailed calculations show that the nonlinear coefficient is also 21474 positive so that bright envelope solitons are forbidden. Nevertheless, 21475 nonlinear pulse shaping is possible so the use of the nonlinear 21476 Schrodinger equation is discussed in detail, together with the role of 21477 damping. 21478 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 21479 RUSSIAN ACAD SCI,INST RADIOENGN & ELECTR,MOSCOW,RUSSIA. 21480 UNIV CALIF IRVINE,DEPT PHYS,IRVINE,CA 92717. 21481 ROCKWELL INT CORP,CTR SCI,THOUSAND OAKS,CA 91360. 21482 RP BOARDMAN, AD, UNIV SALFORD,DEPT PURE & APPL PHYS,SALFORD M5 21483 4WT,LANCS,ENGLAND. 21484 CR BLOW KJ, 1985, OPT COMMUN, V52, P367 21485 BOARDMAN AD, 1988, PHYS REV B, V38, P1144 21486 BOARDMAN AD, 1991, NATO ASI SER B-PHYS, V247, P235 21487 DEGASPERIS P, 1987, PHYS REV LETT, V59, P481 21488 DEGASPERIS P, 1988, J APPL PHYS, V63, P4136 21489 GUREVICH AG, 1963, FERRITE MICROWAVE FR, P135 21490 KALINIKOS BA, 1988, ZH EKSP TEOR FIZ, V67, P303 21491 KALINIKOS BA, 1990, IEEE T MAGN, V26, P1477 21492 KALINIKOS BA, 1990, PHYS REV B B, V42, P8658 21493 SCHILZ W, 1973, PHILIPS RES REP, V28, P50 21494 SCOTT AC, 1973, P IEEE, V61, P1443 21495 SODHA MS, 1981, MICROWAVE PROPAGATIO 21496 ZVEZDIN AK, 1983, ZH EKSP TEOR FIZ, V57, P350 21497 NR 13 21498 TC 37 21499 SN 0018-9464 21500 J9 IEEE TRANS MAGN 21501 JI IEEE Trans. Magn. 21502 PD JAN 21503 PY 1994 21504 VL 30 21505 IS 1 21506 BP 14 21507 EP 22 21508 PG 9 21509 SC Engineering, Electrical & Electronic; Physics, Applied 21510 GA NC483 21511 UT ISI:A1994NC48300002 21512 ER 21513 21514 PT J 21515 AU WAN, XJ 21516 ZHU, JH 21517 JING, KL 21518 LIU, CT 21519 TI HYDROGEN DIFFUSIVITY IN BORON-DOPED POLYCRYSTALLINE NI3AL 21520 SO SCRIPTA METALLURGICA ET MATERIALIA 21521 DT Article 21522 ID ENVIRONMENTAL EMBRITTLEMENT; DUCTILITY 21523 C1 OAK RIDGE NATL LAB,DIV MET & CERAM,OAK RIDGE,TN 37831. 21524 RP WAN, XJ, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 200072,PEOPLES R CHINA. 21525 CR AOKI K, 1979, NIPPON KINZOKU GAKKA, V43, P1190 21526 CHOUDHURY A, 1987, ORNLTM10508 OAK RIDG 21527 DEVANATHAN MAV, 1962, P ROY SOC LOND A MAT, V270, P90 21528 GEORGE EP, 1992, SCRIPTA METALL MATER, V27, P365 21529 GEORGE EP, 1993, SCRIPTA METALL MATER, V28, P857 21530 GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37 21531 GEROGE EP, 1993, STRUCTURAL INTERMETA, P431 21532 HANADA S, 1985, J MATER SCI, V21, P203 21533 LIU CT, 1985, ACTA METALL, V33, P213 21534 LIU CT, 1992, NATO ASI SER, V213, P321 21535 LIU CT, 1992, SCRIPTA METALL MATER, V27, P25 21536 LIU CT, 1993, MATER RES SOC S P, V288, P3 21537 MASAHASHI N, 1988, ACTA METALL, V36, P1823 21538 TAKASUGI T, 1991, MATER RES SOC S P, V213, P403 21539 TAUB AI, 1984, METALL TRANS A, V15, P399 21540 WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473 21541 YAO J, 1993, METALL TRANS A, V24, P105 21542 ZHU JH, 1993, SCRIPTA METALL MATER, V29, P429 21543 NR 18 21544 TC 29 21545 SN 0956-716X 21546 J9 SCR METALL MATER 21547 JI Scr. Metall. Materialia 21548 PD SEP 15 21549 PY 1994 21550 VL 31 21551 IS 6 21552 BP 677 21553 EP 681 21554 PG 5 21555 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 21556 Engineering 21557 GA NW207 21558 UT ISI:A1994NW20700006 21559 ER 21560 21561 PT J 21562 AU GRIMSHAW, R 21563 ZHU, Y 21564 TI OBLIQUE INTERACTIONS BETWEEN INTERNAL SOLITARY WAVES 21565 SO STUDIES IN APPLIED MATHEMATICS 21566 DT Article 21567 ID ATMOSPHERE 21568 AB In this paper, we study the oblique interaction of weakly, nonlinear, 21569 long internal gravity waves in both shallow and deep fluids. The 21570 interaction is classified as weak when DELTA1,2 much greater than alpha 21571 where DELTA1 = \c(m)/c(n) - cos delta\, DELTA2 = \c(n)/c(m) - cos 21572 delta\, c(m,n) are the linear, long wave speeds for waves with mode 21573 numbers m, n, delta is the angle between the respective propagation 21574 directions, and alpha measures the wave amplitude. In this case, each 21575 wave is governed by its own Kortweg-de Vries (KdV) equation' for a 21576 shallow fluid, or intermediate long-wave (ILW) equation for a deep 21577 fluid, and the main effect of the interaction is an 0(alpha) phase 21578 shift. A strong interaction (I) occurs when DELTA1,2 are 0(alpha), and 21579 this case is governed by two coupled Kadomtsev-Petviashvili (KP) 21580 equations for a shallow fluid, or two coupled, two-dimensional ILW 21581 equations for deep fluids. A strong interaction (II) occurs when DELTA1 21582 is 0(alpha), and DELTA2 much greater than a (or vice versa), and in 21583 this case, each wave is governed by its own KdV equation for a shallow 21584 fluid, or ILW equation for a deep fluid. The main effect of the 21585 interaction is that the phase shift associated with DELTA1 leads to a 21586 local distortion of the wave speed of the mode n. When the interacting 21587 waves belong to the same mode (i.e., m = n) the general results 21588 simplify and we show that for a weak interaction (\1 - cos delta\ much 21589 greater than alpha) the phase shift for obliquely interacting waves 21590 always negative (positive) for (1/2 + cos delta) > 0(< 0), while the 21591 interaction term always has the same polarity as the interacting waves. 21592 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA. 21593 RP GRIMSHAW, R, MONASH UNIV,DEPT MATH,CLAYTON,VIC 3168,AUSTRALIA. 21594 CR ABLOWITZ MJ, 1981, SOLITONS INVERSE SCA 21595 APEL JR, 1980, ANN REV EARTH PLANET, V8, P303 21596 BENNEY DJ, 1966, J MATH PHYS, V45, P52 21597 CHRISTIE DR, 1978, J ATMOS SCI, V35, P805 21598 DAI SQ, 1984, APPL MATH MECH, V5, P1469 21599 ECKART C, 1961, PHYS FLUIDS, V4, P791 21600 FARMER DM, 1978, J PHYS OCEANOGR, V8, P63 21601 GEAR JA, 1984, STUD APPL MATH, V70, P235 21602 GEAR JA, 1985, STUD APPL MATH, V72, P95 21603 GRIMSHAW R, 1983, 1982 P IUTAM S TALL, P431 21604 GRIMSHAW RHJ, 1986, ENCY FLUID MECHANICS, P3 21605 LIU AK, 1980, STUD APPL MATH, V63, P25 21606 MILES JW, 1977, J FLUID MECH, V79, P157 21607 MILES JW, 1977, J FLUID MECH, V79, P170 21608 SMITH RK, 1988, EARTH-SCI REV, V25, P267 21609 NR 15 21610 TC 12 21611 SN 0022-2526 21612 J9 STUD APPL MATH 21613 JI Stud. Appl. Math. 21614 PD JUL 21615 PY 1994 21616 VL 92 21617 IS 3 21618 BP 249 21619 EP 270 21620 PG 22 21621 SC Mathematics, Applied 21622 GA NV263 21623 UT ISI:A1994NV26300004 21624 ER 21625 21626 PT J 21627 AU CHADDERTON, LT 21628 ZHU, JL 21629 CRUZ, SA 21630 FINK, D 21631 GHOSH, S 21632 TI ELECTRONIC STOPPING AND ETCHED PARTICLE TRACKS IN POLYMERS 21633 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM 21634 INTERACTIONS WITH MATERIALS AND ATOMS 21635 DT Article 21636 ID IMPLANTATION; DAMAGE 21637 AB The existence of a maximum in the electronic stopping power when an 21638 energetic ion reaches some depth in a solid target is well known. 21639 Experiments are described in which lithium ions - in the energy range 21640 0.6 to 3 MeV - were used to bombard the common polymer and particle 21641 dosimeter CR-39, so that the position of the stopping power peak 21642 relative to the polymer surface could be systematically varied. 21643 Differences in etched surface track diameters measured by optical 21644 microscopy and corresponding to differences in energy approximately 0.2 21645 MeV could be readily distinguished. Maximum etched track diameters 21646 clearly coincided with the intersection of maximum electronic energy 21647 losses with the CR-39 surface. Implications of this to more general 21648 stopping are discussed, including a linear relationship between the 21649 maximum electronic stopping power at a surface and the atomic number of 21650 the projectile ion. 21651 C1 SHANGHAI UNIV SCI & TECHNOL, INST APPL RADIAT, SHANGHAI, PEOPLES R CHINA. 21652 UNIV AUTONOMA METROPOLITANA IZTAPALAPA, DEPT FIS, MEXICO CITY 09340, DF, MEXICO. 21653 HAHN MEITNER INST BERLIN GMBH, DEP P-3, D-14109 BERLIN, GERMANY. 21654 NE HILL UNIV, DEPT CHEM, SHILLONG, INDIA. 21655 AUSTRALIAN NATL UNIV, RES SCH PHYS SCI, INST ADV STUDIES, CANBERRA, ACT 2601, AUSTRALIA. 21656 RP CHADDERTON, LT, AUSTRALIAN NATL UNIV, CSIRO, DIV APPL PHYS, GPO BOX 4, 21657 CANBERRA, ACT 2601, AUSTRALIA. 21658 CR BERNARDI L, 1991, NUCL INSTRUM METH B, V53, P61 21659 BIERSACK JP, 1982, Z PHYS A, V305, P95 21660 DAVENAS J, 1989, NUCL INSTRUM METH B, V39, P796 21661 FINK D, 1992, NUCL INSTRUM METH B, V65, P432 21662 GIBBONS JF, 1972, P IEEE, V60, P1062 21663 NR 5 21664 TC 4 21665 SN 0168-583X 21666 J9 NUCL INSTRUM METH PHYS RES B 21667 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 21668 PD JUN 21669 PY 1994 21670 VL 91 21671 IS 1-4 21672 BP 168 21673 EP 171 21674 PG 4 21675 SC Physics, Atomic, Molecular & Chemical; Physics, Nuclear; Instruments & 21676 Instrumentation; Nuclear Science & Technology 21677 GA NR935 21678 UT ISI:A1994NR93500027 21679 ER 21680 21681 PT J 21682 AU LIU, ZM 21683 ZHU, JL 21684 GUO, YP 21685 YU, ZW 21686 QIAN, PP 21687 MA, ZT 21688 TI CHEMICAL EFFECTS OF ION-IMPLANTATION IN POLYANILINE 21689 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM 21690 INTERACTIONS WITH MATERIALS AND ATOMS 21691 DT Article 21692 AB The chemical changes of polyaniline resulted from implantation of H, B, 21693 P, F, BF2, or Ar ions have been studied. From ESCA studies it is 21694 concluded that the number of nitrogen atoms in polyaniline decreases 21695 with increasing ion dose, while the number of oxygen atoms in the ion 21696 implanted layer of polyaniline increases. ESR (electron spin resonance) 21697 spectra show that the radical concentration in polyaniline increases 21698 with the ion dose. From FTIR analysis, two different kinds of chemical 21699 changes in the irradiated polyaniline are found, one from implanting H, 21700 F, or BF2 ions and the other from implanting B, P, or Ar ions. 21701 RP LIU, ZM, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI 21702 201800,PEOPLES R CHINA. 21703 CR DESURVILLE R, 1968, ELECTROCHIM ACTA, V13, P1451 21704 KITANI A, 1988, J POLYM SCI A, V88, P2385 21705 SILVERSTEIN RM, 1974, SPECTROMETRIC IDENTI 21706 WANG LX, 1990, APPL CHEM, V75, P1 21707 WANG ZM, 1982, APPLIED INFRARED SPE 21708 ZHU JL, 1994, NUCL INSTRUM METH B, V91, P469 21709 NR 6 21710 TC 2 21711 SN 0168-583X 21712 J9 NUCL INSTRUM METH PHYS RES B 21713 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 21714 PD JUN 21715 PY 1994 21716 VL 91 21717 IS 1-4 21718 BP 465 21719 EP 468 21720 PG 4 21721 SC Physics, Atomic, Molecular & Chemical; Physics, Nuclear; Instruments & 21722 Instrumentation; Nuclear Science & Technology 21723 GA NR935 21724 UT ISI:A1994NR93500088 21725 ER 21726 21727 PT J 21728 AU ZHU, JL 21729 LIU, ZM 21730 YU, ZW 21731 GUO, YP 21732 MA, ZT 21733 BENG, RZ 21734 TI EFFECTS OF ION-IMPLANTATION ON THE ELECTRICAL-CONDUCTIVITY OF 21735 POLYANILINE 21736 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM 21737 INTERACTIONS WITH MATERIALS AND ATOMS 21738 DT Article 21739 AB Polyaniline with a marked environmental stability was bombarded by 21740 beams of hydrogen, boron, fluorine, phosphorus and argon ions. All 21741 irradiated surfaces displayed substantial changes in physical 21742 properties (e.g. electrical conductivity, colour, etc.). The highest 21743 measured conductivity was approximately 100 S/cm and the irradiated 21744 samples have now been shown to be environmentally stable. The 21745 conductivity of the irradiated zone depended upon the deposited 21746 electronic energy density and also upon the chemical structure and 21747 composition. The radicals appeared prior to nitrogen release when the 21748 electronic energy deposition density was at the lower threshold in the 21749 irradiated layer. The radical concentration, nitrogen release and 21750 carbon richness contributed to the conductivity. Shrinkage and colour 21751 changes accompanied by nitrogen release and remnant nitrogen reduction 21752 or oxidation and also a higher conductivity value were observed. 21753 C1 SHANGHAI DEVICES FACTORY 5,SHANGHAI 20041,PEOPLES R CHINA. 21754 RP ZHU, JL, SHANGHAI UNIV SCI & TECHNOL,INST APPL RADIAT,SHANGHAI 21755 201800,PEOPLES R CHINA. 21756 CR CHADDERTON LT, 1994, NUCL INSTRUM METH B, V91, P71 21757 FINK D, 1992, COMMUNICATION 21758 FRIEND R, 1992, PHYS WORLD NOV, P42 21759 LIU ZM, 1994, NUCL INSTRUM METH B, V91, P465 21760 RUDY FH, 1988, J MATER RES, V3, P1253 21761 VANKKATESSAN T, 1983, POLYM SCI ENG, V23, P931 21762 NR 6 21763 TC 13 21764 SN 0168-583X 21765 J9 NUCL INSTRUM METH PHYS RES B 21766 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 21767 PD JUN 21768 PY 1994 21769 VL 91 21770 IS 1-4 21771 BP 469 21772 EP 472 21773 PG 4 21774 SC Physics, Atomic, Molecular & Chemical; Physics, Nuclear; Instruments & 21775 Instrumentation; Nuclear Science & Technology 21776 GA NR935 21777 UT ISI:A1994NR93500089 21778 ER 21779 21780 PT J 21781 AU GUO, BY 21782 ZHENG, JD 21783 TI A SPECTRAL APPROXIMATION OF THE BAROTROPIC VORTICITY EQUATION 21784 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 21785 DT Article 21786 ID BAROCLINIC PRIMITIVE EQUATION; DIFFERENCE METHOD; ERROR ESTIMATION 21787 AB A spectral scheme is considered for solving the barotropic vorticity 21788 equation. The error estimates are proved strictly. The technique used 21789 in this paper is also useful for other nonlinear problems defined on a 21790 spherical surface. 21791 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA. 21792 SHANGHAI INST COMP TECHNOL,SHANGHAI,PEOPLES R CHINA. 21793 CR ARAKAWA A, 1966, J COMPUT PHYS, V1, P119 21794 CANUTO C, 1988, SPECTRAL METHODS FLU 21795 COURANT R, 1953, METHODS MATH PHYSICS, V1 21796 GUO BY, 1974, ACTA MATH SINICA, V17, P242 21797 GUO BY, 1983, J COMPUT MATH, V1, P353 21798 GUO BY, 1987, SCI SINICA SER A, V30, P696 21799 GUO BY, 1988, DIFFERENCE METHOD PA 21800 GUO BY, 1989, J COMPUT PHYS, V84, P259 21801 GUO BY, 1992, SCI CHINA SER A, V35, P1 21802 HALTINER GJ, 1971, NUMERICAL WEATHER PR 21803 HALTINER GJ, 1980, NUMERICAL PREDICTION 21804 JARRAUD M, 1985, LECTURES APPLIED MAT, V22, P1 21805 LIONS JL, 1972, NONHOMOGENEOUS BOUND, V1 21806 ZEN QC, 1979, PHYSICAL MATH BASIS, V1 21807 NR 14 21808 TC 1 21809 SN 0254-9409 21810 J9 J COMPUT MATH 21811 JI J. Comput. Math. 21812 PD APR 21813 PY 1994 21814 VL 12 21815 IS 2 21816 BP 173 21817 EP 184 21818 PG 12 21819 SC Mathematics, Applied; Mathematics 21820 GA NT096 21821 UT ISI:A1994NT09600009 21822 ER 21823 21824 PT J 21825 AU SHI, SZ 21826 ZHENG, Q 21827 ZHUANG, DM 21828 TI SET-VALUED ROBUST MAPPINGS AND APPROXIMATABLE MAPPINGS 21829 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 21830 DT Article 21831 ID MAPS 21832 AB The concepts of robustness of sets and mappings were proposed for the 21833 theory of integral global optimization. This paper discusses the 21834 robustness of a set-valued mapping, associating with the stability 21835 problem. We extend the equivalence between the robustness and the 21836 approximatability to the case of a set-valued mapping. We deal also 21837 with ''bi-robustness'' and ''in-robustness.'' (C) 1994 Academic 21838 Press, Inc. 21839 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 21840 MT ST VINCENT UNIV,DEPT MATH & COMP STUDIES,HALIFAX B3M 2J6,NS,CANADA. 21841 RP SHI, SZ, NANKAI INST MATH,TIANJIN 300071,PEOPLES R CHINA. 21842 CR AUBIN JP, 1988, ANN I H POINCARE-AN, V5, P519 21843 AUBIN JP, 1990, SET VALUED ANAL 21844 BORWEIN JM, 1988, J MATH ANAL APPL, V134, P441 21845 CHEW SH, 1988, LECTURE NOTES ECONOM, V298 21846 CHOQUET G, 1969, LECTURES ANAL, V1 21847 CHOQUET G, 1969, OUTILS TOPOLOGIQUES 21848 FRANKOWSKA H, CONICAL INVERSE MAPP 21849 FRANKOWSKA H, 1987, J MATH ANAL APPL, V127, P172 21850 FRANKOWSKA H, 1990, ANN I H POINCARE-AN, V7, P183 21851 OXTOBY JC, 1957, ANN MATH STUD, V39, P159 21852 PREISS D, 1990, ISRAEL J MATH, V72, P257 21853 SHI SZ, IN PRESS DISCONTINUO 21854 SHI SZ, 1981, C R ACAD SCI I, V293, P27 21855 ZHENG Q, IN PRESS GLOBAL MINI 21856 ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205 21857 ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317 21858 ZHENG Q, 1991, COMPUT MATH APPL, V21, P17 21859 ZHENG Q, 1991, RECENT ADV GLOBAL OP, P298 21860 ZHENG Q, 1992, 2ND P INT C FIX POIN, P346 21861 NR 19 21862 TC 5 21863 SN 0022-247X 21864 J9 J MATH ANAL APPL 21865 JI J. Math. Anal. Appl. 21866 PD MAY 1 21867 PY 1994 21868 VL 183 21869 IS 3 21870 BP 706 21871 EP 726 21872 PG 21 21873 SC Mathematics, Applied; Mathematics 21874 GA NN729 21875 UT ISI:A1994NN72900022 21876 ER 21877 21878 PT J 21879 AU LUO, ZF 21880 XU, ZZ 21881 QIU, XJ 21882 TI ENERGY-DEPENDENT POTENTIAL AND HYPERFINE MASS SPLITTING OF QUARKONIUM 21883 SO COMMUNICATIONS IN THEORETICAL PHYSICS 21884 DT Article 21885 AB For scalar and vector interactions, the relativistic two-body Dirac 21886 equation is reduced in the nonrelativistic approximation by expanding 21887 in powers of E-1 to obtain energy-dependent effective potential. The 21888 spin-spin part of the resulting potential is applied to analyze the 21889 hyperfine mass splitting of quarkonium. It is found that the formula 21890 established with such a potential improves the description of hyperfine 21891 mass splittings for most ground state and excited state mesons of 21892 isospin nonzero and isospin zero. 21893 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA. 21894 RP LUO, ZF, ACAD SINICA,SHANGHAI INST OPT & FINE MECH,POB 800-211,SHANGHAI 21895 201800,PEOPLES R CHINA. 21896 CR 1988, PHYS LETT B, V204, P1 21897 1990, PHYS LETT B, V239, P1 21898 BARKER WA, 1955, PHYS REV, V99, P317 21899 BREIT G, 1958, PHYS REV, V111, P652 21900 BUCHMULLER W, 1981, PHYS REV D, V24, P3003 21901 CHAKRABARTY S, 1990, J PHYS G NUCL PARTIC, V16, P185 21902 FELDMAN G, 1973, PHYS REV A, V8, P1149 21903 FRANK M, 1985, PHYS LETT B, V159, P174 21904 FRANK M, 1987, Z PHYS C PART FIELDS, V34, P39 21905 GRATER HW, 1981, PHYS LETT B, V100, P166 21906 GREEN AES, 1967, NUCL PHYS B, V2, P267 21907 GROMES D, 1977, NUCL PHYS B, V131, P80 21908 IGI K, 1985, PHYS REV D, V32, P232 21909 JACOBS S, 1987, PHYS REV D, V35, P2448 21910 LICHTENBERG DB, 1987, PHYS LETT, V193, P95 21911 SATO S, 1990, NUOVO CIMENTO A, V103, P471 21912 SONG XT, 1989, PHYS REV D, V40, P3655 21913 NR 17 21914 TC 0 21915 SN 0253-6102 21916 J9 COMMUN THEOR PHYS 21917 JI Commun. Theor. Phys. 21918 PD MAR 15 21919 PY 1994 21920 VL 21 21921 IS 2 21922 BP 217 21923 EP 222 21924 PG 6 21925 SC Physics, Multidisciplinary 21926 GA NM498 21927 UT ISI:A1994NM49800015 21928 ER 21929 21930 PT J 21931 AU DING, ZL 21932 YOSHIDA, M 21933 ASANO, M 21934 MA, ZT 21935 OMICHI, H 21936 KATAKAI, R 21937 TI THERMORESPONSIVE BEHAVIOR OF A METHACRYLOYL-DL-ALANINE METHYL-ESTER 21938 POLYMER GEL PREPARED BY RADIATION-INDUCED POLYMERIZATION 21939 SO RADIATION PHYSICS AND CHEMISTRY 21940 DT Article 21941 ID FUNCTIONAL CAPSULE MEMBRANES; PHASE-TRANSITION; THERMOSENSITIVE 21942 HYDROGEL; PERMEABILITY CONTROL; TEMPERATURE; 21943 POLY(N-ISOPROPYLACRYLAMIDE); PERMEATION; NETWORKS; COLLAPSE; RELEASE 21944 AB Loosely cross-linked poly(methacryloyl-DL-alanine methyl ester, 21945 MA-DL-AlaOMe) gels, which were prepared by radiation-induced 21946 polymerization, exhibited a reversible low-temperature swelling and 21947 high-temperature deswelling when cycled in water at different 21948 temperatures at 24-h intervals, in the range of 0 and 40-degrees-C. The 21949 thermo-response strongly depended upon irradiation condition. 21950 Increasing the irradiation dose resulted in a formation of lower 21951 molecular weight polymer owing to the scission of polymer chain, in 21952 which it gave a high swelling ability at low temperature, in contrast 21953 to a sluggish shrinkage at high temperature. On the other hand, no 21954 irradiation temperature affects the thermo-response of the gel. An 21955 important characteristic of the MA-DL-AlaOMe polymer gel is the 21956 formation of the membrane barrier at the surface with the rise in 21957 temperature, but it disappears in reswelling, to be termed 21958 ''surface-controlling on-off switch system''. Brilliant blue FCF (BB) 21959 as a model compound was incorporated into the gel to evaluate the 21960 capability as a thermo-responsive carrier for application in drug 21961 delivery systems, and it was found that the reversibly 21962 surface-controlling on-off switch function responsible to temperature 21963 changes plays an important role in a pulsatile release of BB from the 21964 gel in vitro. 21965 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,JIA DING,SHANGHAI,PEOPLES R CHINA. 21966 JAPAN ATOM ENERGY RES INST,TAKASAKI RADIAT CHEM RES ESTAB,DEPT MAT DEV,TAKASAKI,GUNMA 37012,JAPAN. 21967 GUNMA UNIV,FAC ENGN,DEPT CHEM,KIRYU,GUNMA 376,JAPAN. 21968 CR DONG LC, 1986, J CONTROL RELEASE, V4, P223 21969 FREITAS RFS, 1987, CHEM ENG SCI, V42, P97 21970 FUJISHIGE S, 1989, J PHYS CHEM-US, V93, P331 21971 HESKINS M, 1968, J MACROMOL SCI CHEM, V2, P1441 21972 HIROSE Y, 1987, MACROMOLECULES, V20, P1342 21973 HIROTSU S, 1987, J PHYS SOC JPN, V56, P233 21974 HOFFMAN AS, 1986, J CONTROL RELEASE, V4, P213 21975 ILAVSKY M, 1985, POLYMER, V26, P1514 21976 ISHIHARA K, 1985, J POLYM SCI POL CHEM, V23, P2841 21977 ITO R, 1990, INT J PHARM, V61, P109 21978 KUNGWATCHAKUN D, 1988, MAKROMOL CHEM-RAPID, V9, P243 21979 MUKAE K, 1990, POLYM J, V22, P206 21980 MUKAE K, 1990, POLYM J, V22, P250 21981 OHMINE I, 1982, J CHEM PHYS, V77, P5725 21982 OKAHATA Y, 1983, J AM CHEM SOC, V105, P4855 21983 OKAHATA Y, 1986, MACROMOLECULES, V19, P493 21984 OKANO T, 1990, J CONTROL RELEASE, V11, P255 21985 OSADA Y, 1985, CHEM LETT, P1285 21986 PALASIS M, 1992, J CONTROL RELEASE, V18, P1 21987 SAEKI S, 1976, POLYMER, V17, P685 21988 SATOH K, 1989, CHEM PHARM BULL, V37, P1642 21989 SCHILD HG, 1991, MACROMOLECULES, V24, P948 21990 TANAKA T, 1978, PHYS REV LETT, V40, P820 21991 TANAKA T, 1982, SCIENCE, V218, P467 21992 WINNIK FM, 1990, MACROMOLECULES, V23, P2414 21993 YOSHIDA M, 1989, EUR POLYM J, V25, P1197 21994 YOSHIDA M, 1991, DRUG DESIGN DELIVERY, V7, P159 21995 YOSHIDA M, 1991, EUR POLYM J, V27, P997 21996 YOSHIDA M, 1991, RADIAT PHYS CHEM, V38, P7 21997 YOSHIDA M, 1992, EUR POLYM J, V28, P1141 21998 YOSHIDA M, 1993, POLYM J, V25, P215 21999 NR 31 22000 TC 11 22001 SN 0146-5724 22002 J9 RADIAT PHYS CHEM 22003 JI Radiat. Phys. Chem. 22004 PD SEP 22005 PY 1994 22006 VL 44 22007 IS 3 22008 BP 263 22009 EP 272 22010 PG 10 22011 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear 22012 Science & Technology 22013 GA NL474 22014 UT ISI:A1994NL47400004 22015 ER 22016 22017 PT J 22018 AU LI, YZ 22019 DAVID, AK 22020 TI OPTIMAL MULTIAREA WHEELING 22021 SO IEEE TRANSACTIONS ON POWER SYSTEMS 22022 DT Article 22023 DE WHEELING; POWER TRANSMISSION ECONOMICS; POWER SYSTEM ECONOMICS; 22024 OPTIMIZATION METHODS; NONLINEAR PROGRAMMING 22025 ID MARGINAL-COST; RATES 22026 AB An important consideration in wheeling is where a transaction involves 22027 several parties, that is, multi-area wheeling. Power from seller to 22028 buyer flows through several intermediate utilities. Each utility 22029 represents an individual control area, engaged in part of a more 22030 complex wheeling transaction. Individual wheeling rates then have to be 22031 computed for each area. The question of how much energy should be 22032 transported through each path and what wheeling price should be payed 22033 is then an issue of importance. This is formulated as a nonlinear 22034 optimisation program with linear constraints and solved by a gradient 22035 projection method. The availability of FACTS capability to implement 22036 the optimal wheeling strategy once determined, is assumed in this paper. 22037 C1 HONG KONG POLYTECH,KOWLOON,HONG KONG. 22038 RP LI, YZ, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA. 22039 CR CARAMANIS MC, 1986, IEEE T POWER SYST, V1, P63 22040 CARAMANIS MC, 1989, IEEE T POWER SYST, V4, P594 22041 MERRILL HM, 1989, IEEE T POWER SYST, V4, P1445 22042 POWELL MJD, 1987, LECTURES NOTES MATH, V630 22043 SCHWEPPE FC, 1988, SPOT PRICING ELECTRI 22044 TALUKDAR SN, 1982, IEEE T PAS, V101, P415 22045 WOLFE P, 1967, NONLINEAR PROGRAMMIN, P120 22046 NR 7 22047 TC 8 22048 SN 0885-8950 22049 J9 IEEE TRANS POWER SYST 22050 JI IEEE Trans. Power Syst. 22051 PD FEB 22052 PY 1994 22053 VL 9 22054 IS 1 22055 BP 288 22056 EP 294 22057 PG 7 22058 SC Engineering, Electrical & Electronic 22059 GA NL152 22060 UT ISI:A1994NL15200095 22061 ER 22062 22063 PT J 22064 AU JIANG, XY 22065 ZHANG, ZL 22066 ZHAO, WM 22067 LUI, ZG 22068 XU, SH 22069 TI A QUANTITATIVE-EVALUATION OF THE EXCITATION MECHANISM OF TM3+ IN A ZNS 22070 THIN-FILM 22071 SO JOURNAL OF PHYSICS-CONDENSED MATTER 22072 DT Article 22073 ID IMPACT EXCITATION; ELECTROLUMINESCENCE; TRANSPORT 22074 AB The impact excitation rates, and consequently the emission intensities, 22075 of various energy states of Tm3+ in ZnS thin-film electroluminescence 22076 (TFEL) have been quantitatively evaluated by calculating the radiative 22077 transition rates and the impact cross section, together with a Baraff 22078 distribution function of hot-electron energy The results show that the 22079 direct impact excitation rate of the 1G4 state of Tm3+ is very small, 22080 while that of the F-3(4) state is fairly large, resulting in a weak 22081 blue light intensity relative to the IR light in TFEL. Different 22082 theories of the electron distribution function are compared and 22083 discussed. 22084 RP JIANG, XY, SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SCI,SHANGHAI 22085 201800,PEOPLES R CHINA. 22086 CR ALLEN JW, 1986, J PHYS C SOLID STATE, V19, L369 22087 BARAFF GA, 1962, PHYS REV, V128, P2507 22088 BARAFF GA, 1964, PHYS REV, V133, A26 22089 BHATTACHARYYA K, 1993, J APPL PHYS, V73, P3390 22090 BRENNAN K, 1988, J APPL PHYS, V64, P4024 22091 BRINGUIER E, 1991, J APPL PHYS, V70, P4505 22092 BRINGUIER E, 1992, ELECTROLUMINESCENCE, P379 22093 FITTING HJ, 1990, PHYS STATUS SOLIDI A, V121, P305 22094 HUANG SH, 1983, LUMIN DISPLAY, V4, P23 22095 KOBAYASHI H, 1985, PHYS STATUS SOLIDI A, V88, P713 22096 KRUPKA DC, 1972, J APPL PHYS, V43, P476 22097 MA L, 1985, LUMIN DISPLAY DEVICE, V6, P192 22098 MACH R, 1984, PHYS STATUS SOLIDI A, V81, P609 22099 MACH R, 1990, J CRYST GROWTH, V101, P967 22100 OKAMOTO K, 1986, APPL PHYS LETT, V49, P1596 22101 ONO YA, 1993, SID F 1 22102 PAPPALARDO R, 1976, J LUMIN, V14, P159 22103 RIDLEY BK, 1983, J PHYS C SOLID STATE, V16, P3373 22104 SHOCKLEY W, 1961, SOLID STATE ELECTRON, V2, P35 22105 TANAKA S, 1992, J CRYST GROWTH, V117, P997 22106 WOLFF PA, 1954, PHYS REV, V95, P1415 22107 YU JQ, SPRINGER P PHYSICS, V38, P24 22108 NR 22 22109 TC 3 22110 SN 0953-8984 22111 J9 J PHYS-CONDENS MATTER 22112 JI J. Phys.-Condes. Matter 22113 PD APR 25 22114 PY 1994 22115 VL 6 22116 IS 17 22117 BP 3279 22118 EP 3290 22119 PG 12 22120 SC Physics, Condensed Matter 22121 GA NH957 22122 UT ISI:A1994NH95700018 22123 ER 22124 22125 PT J 22126 AU TAO, DH 22127 LU, SP 22128 LI, ZY 22129 SHI, YP 22130 TI THE LUBRICATION EFFECT OF THE GLYCOLIPID-TYPE BIONIC SYNOVIAL-FLUID ON 22131 A BONE JOINT 22132 SO LUBRICATION ENGINEERING 22133 DT Article 22134 DE BIONIC SYNOVIAL FLUID; BONE JOINT; LUBRICATION EFFECT; FRICTION 22135 COEFFICIENT 22136 AB A new concept is proposed, using a glycolipid bionic lubricant to 22137 improve the behavior of pathologically-changed bone joints, such that 22138 an artificial joint might not be required. 22139 The experiments were made on a simulated bone joint test machine. The 22140 results showed that the lubrication behavior was excellent when an 22141 ethyl sophorosolipid aqueous solution of 50% concentration was used. 22142 The friction coefficient was only 13 to 20 percent, compared with dry 22143 friction under heavy load. 22144 C1 SHANGHAI INST ORGAN CHEM,SHANGHAI 200020,PEOPLES R CHINA. 22145 RP TAO, DH, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 200072,PEOPLES R CHINA. 22146 CR COOKE A, 1974, THESIS LEEDS U LEEDS 22147 DAVIES DV, 1967, P I MECH ENG, V181, P25 22148 DAVIES WH, 1987, ARTHRITIS RHEUM, V21, P754 22149 DUMBIETON JH, 1981, TRIBOLOGY NATURAL AR 22150 MANSOUR JM, 1977, ASME JUL TECH F, V99, P163 22151 OGSTON AG, 1950, BIOCHEM J, V46, P364 22152 OGSTON AG, 1951, BIOCHEM J, V49, P585 22153 NR 7 22154 TC 0 22155 SN 0024-7154 22156 J9 LUBRIC ENG 22157 JI Lubric. Eng. 22158 PD MAY 22159 PY 1994 22160 VL 50 22161 IS 5 22162 BP 386 22163 EP 389 22164 PG 4 22165 SC Engineering, Mechanical 22166 GA NJ065 22167 UT ISI:A1994NJ06500005 22168 ER 22169 22170 PT J 22171 AU WANG, DR 22172 HUANG, ZJ 22173 TI ON THE CONVERGENCE OF THE BRENT METHOD 22174 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 22175 DT Article 22176 ID INEXACT NEWTON METHODS 22177 AB In this paper, we establish the semi-local convergence theorem of the 22178 rent method with regional estimation. By an in-depth investigation in 22179 to the algorithm structure of the method, we convert the Brent method 22180 into an approximate Newton method with a special error term. Bsaed on 22181 such equivalent variation, under a similar condition of the 22182 Newton-Kantorovich theorem of the Newton method, we establish a 22183 semi-local convergence theorem of the Brent method. This theorem 22184 provides a sufficient theoretical basis for initial choices of the 22185 Brent method. 22186 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA. 22187 FUDAN UNIV,DEPT STAT & OPERAT RES,SHANGHAI,PEOPLES R CHINA. 22188 CR BRENT RP, 1973, SIAM J NUMER ANAL, V10, P327 22189 BROWN KM, 1969, SIAM J NUMER ANAL, V6, P560 22190 DEMBO RS, 1982, SIAM J NUMER ANAL, V19, P400 22191 DENNIS JE, 1971, MATH COMPUT, V25, P559 22192 DENNIS JE, 1983, NUMERICAL METHODS UN 22193 GAY DM, 1975, BROWN METHOD SOME GE, P75 22194 KANTOROVICH LV, 1948, DOKL AKAD NAUK SSSR, V59, P1237 22195 MIEL GJ, 1979, NUMER MATH, V33, P391 22196 MORE JJ, 1979, ACM T MATH SOFTWARE, V5, P64 22197 MORET I, 1986, COMPUTING, V37, P185 22198 ORTEGA JM, 1970, ITERATIVE SOLUTION N 22199 YPMA TJ, 1984, SIAM J NUMER ANAL, V21, P583 22200 NR 12 22201 TC 2 22202 SN 0254-9409 22203 J9 J COMPUT MATH 22204 JI J. Comput. Math. 22205 PD JAN 22206 PY 1994 22207 VL 12 22208 IS 1 22209 BP 1 22210 EP 20 22211 PG 20 22212 SC Mathematics, Applied; Mathematics 22213 GA ND010 22214 UT ISI:A1994ND01000001 22215 ER 22216 22217 PT J 22218 AU DONG, Y 22219 LIU, L 22220 TI MECHANICALLY DRIVEN AMORPHIZATION IN THE TA-CU SYSTEM 22221 SO ZEITSCHRIFT FUR METALLKUNDE 22222 DT Article 22223 ID METALS; ALLOYS 22224 AB Amorphizing transformation by ball milling was studied in a system 22225 without miscibility of the elements, Ta-Cu, with nominal compositions 22226 of Ta50Cu50 to Ta90Cu10. X-ray diffractometry, scanning and 22227 transmission electron microscopy were employed to monitor the 22228 structural evolution of the samples. The results show that a single 22229 phase of amorphous product was obtained for all the given samples after 22230 100 h of milling. Differential thermal analysis shows that both the 22231 temperature and the activation energy for crystallization increase with 22232 the Ta content, implying that the Ta-rich alloys exhibit a better 22233 thermal stability. The atomic structure of the Ta-Cu amorphous alloys 22234 was studied by radial distribution function analysis. The region of 22235 short-range ordering (SRO) increases with Cu content, which means that 22236 SRO became stronger in those alloys with a higher Cu content. The 22237 nearest-neighbor coordination number was estimated to be 12 to 13 for 22238 all the alloys, which indicates that the amorphous materials formed by 22239 mechanical alloying are also of topologically dense packing structure. 22240 C1 ACAD SINICA,INST SOLID STATE PHYS,HEFEI 230031,PEOPLES R CHINA. 22241 RP DONG, Y, SHANGHAI UNIV SCI & TECHNOL,DEPT MET & MAT,SHANGHAI 22242 200072,PEOPLES R CHINA. 22243 CR BENJAMIN JS, 1970, METALL T, V1, P2943 22244 DEBOER FR, 1988, COHESION METALS 22245 FECHT HJ, 1990, METALL TRANS A, V21, P2333 22246 GESSINGER GH, 1984, POWDER METALLURGY SU, P273 22247 JOHNSON WL, 1988, PROG MATER SCI, V30, P87 22248 KOCH CC, 1983, APPL PHYS LETT, V43, P1017 22249 KOCH CC, 1989, ANNU REV MATER SCI, V19, P121 22250 SCHULTZ L, 1987, J APPL PHYS, V61, P3183 22251 SCHWARZ RB, 1986, APPL PHYS LETT, V49, P146 22252 SCHWARZ RB, 1988, J LESS-COMMON MET, V140, P171 22253 NR 10 22254 TC 2 22255 SN 0044-3093 22256 J9 Z METALLK 22257 JI Z. Metallk. 22258 PD FEB 22259 PY 1994 22260 VL 85 22261 IS 2 22262 BP 140 22263 EP 142 22264 PG 3 22265 SC Metallurgy & Metallurgical Engineering 22266 GA NA295 22267 UT ISI:A1994NA29500013 22268 ER 22269 22270 PT J 22271 AU ZHOU, ZQ 22272 ZHANG, JL 22273 GE, JS 22274 FENG, F 22275 DAI, ZM 22276 TI MATHEMATICAL-MODELING OF THE PCT CURVE OF HYDROGEN STORAGE ALLOYS 22277 SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 22278 DT Article 22279 AB The PCT curve presents the thermodynamic characteristics of hydrogen 22280 storage alloys, which consist of hydrogen storage capacity, the 22281 temperature, and the equilibrium presure in hydriding and dehydriding, 22282 the mathematical modeling of which is important for the application of 22283 hydrogen storage alloys in various techniques. Mathematical modeling of 22284 the PCT curve of hydrogen storage alloys was studied. It has been shown 22285 that the calculated PCT curves are in good agreement with the 22286 experimental curves, and a lot of physical parameters, which are very 22287 useful, can be estimated from the modeling. 22288 RP ZHOU, ZQ, SHANGHAI UNIV SCI & TECHNOL,149 YANCHANG RD,SHANGHAI,PEOPLES 22289 R CHINA. 22290 CR JORDY C, 1991, J LESS-COMMON MET, V172, P1236 22291 SAKAI T, 1990, J LESS-COMMON MET, V159, P127 22292 WILLEMS JJG, 1984, PHILIPS J RES S1, V39 22293 ZHOU ZQ, P S HYDROGEN STORAGE, P139 22294 NR 4 22295 TC 7 22296 SN 0360-3199 22297 J9 INT J HYDROGEN ENERG 22298 JI Int. J. Hydrog. Energy 22299 PD MAR 22300 PY 1994 22301 VL 19 22302 IS 3 22303 BP 269 22304 EP 273 22305 PG 5 22306 SC Physics, Atomic, Molecular & Chemical; Energy & Fuels; Environmental 22307 Sciences 22308 GA MZ473 22309 UT ISI:A1994MZ47300014 22310 ER 22311 22312 PT J 22313 AU XU, BM 22314 YIN, ZW 22315 WANG, H 22316 TI MICROSTRUCTURE DEVELOPMENT OF THE SINGLE-STEP, LOW-TEMPERATURE SINTERED 22317 SRTIO3 GBBL CAPACITOR MATERIALS 22318 SO FERROELECTRICS LETTERS SECTION 22319 DT Article 22320 ID POLYCRYSTALLINE 22321 AB The microstructure development of the single-step, low-temperature 22322 sintered SrTiO3 GBBL capacitor materials is studied according to the 22323 microstructure analysis, mass transfer and defect chemical reactions 22324 during sintering process. The sintering mechanism is the reactive 22325 liquid phase sintering with the participation of solid state diffusion 22326 caused by the volatilization of oxygen. Insulating grain boundaries are 22327 formed by the grain boundary segregation of Li2O, which is caused by 22328 the donor enhanced volatilization of oxygen. Grains are 22329 semiconductorized during grain growth process which incorporates the 22330 donor dopant into SrTiO3 lattice. 22331 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 22332 RP XU, BM, CHINESE ACAD SCI,SHANGHAI INST CERAM,SHANGHAI 200050,PEOPLES R 22333 CHINA. 22334 CR BURN I, 1982, J MATER SCI, V17, P3510 22335 GOODMAN G, 1981, ADV CERAM, V1, P215 22336 SHIRASAKI S, 1980, J CHEM PHYS, V73, P4640 22337 XU BM, 1991, J CHIN CERAM SOC, V19, P354 22338 XU BM, 1992, J CHIN CERAM SOC, V20, P16 22339 YAN MF, 1983, ADV CERAM, V7, P226 22340 NR 6 22341 TC 1 22342 SN 0731-5171 22343 J9 FERROELECTRICS LETT SECT 22344 JI Ferroelectr. Lett. Sect. 22345 PY 1993 22346 VL 16 22347 IS 5-6 22348 BP 157 22349 EP 165 22350 PG 9 22351 SC Physics, Condensed Matter 22352 GA MY696 22353 UT ISI:A1993MY69600003 22354 ER 22355 22356 PT J 22357 AU CAO, ZC 22358 WU, RJ 22359 SONG, RS 22360 TI INEFFECTIVE GRAIN-BOUNDARIES AND BREAKDOWN THRESHOLD OF ZINC-OXIDE 22361 VARISTORS 22362 SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED 22363 TECHNOLOGY 22364 DT Article 22365 ID ZNO VARISTORS 22366 AB In order to evaluate the breakdown threshold of ZnO varistor ceramic, 22367 the geometry-independent average breakdown voltage per grain boundary, 22368 or V-gb was examined. The discrepancy between the average breakdown 22369 voltage per grain in ZnO varistor ceramic and the breakdown voltage of 22370 a single grain boundary in this material is interesting and worth study 22371 for practical purposes. The contradiction is imputed to the existence 22372 of ineffective grain boundaries in this material. The ineffective grain 22373 boundary is demonstrated by elaborately designed experiments. 22374 Observation also shows that the presence of ineffective grain 22375 boundaries is related to deficiency of oxygen in the grain boundary 22376 region. Using computer-aided simulation, the influence of ineffective 22377 grain boundaries on the breakdown threshold of the component is 22378 discussed. 22379 RP CAO, ZC, SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SIC & ENGN,SHANGHAI 22380 201800,PEOPLES R CHINA. 22381 CR ALLES AB, 1991, J APPL PHYS, V70, P6883 22382 CAO ZC, 1990, J EUR CERAM SOC, V6, P85 22383 EDA K, 1984, J APPL PHYS, V56, P2948 22384 EMTAGE PR, 1979, J APPL PHYS, V50, P6833 22385 FUJITSU S, 1988, J CERAM SOC JPN, V96, P119 22386 GUPTA TK, 1990, J AM CERAM SOC, V73, P1817 22387 LEVINSON LM, 1988, B AM CERAM SOC, V65, P639 22388 OLSSON E, 1989, J APPL PHYS, V66, P3666 22389 SONDER E, 1983, J APPL PHYS, V54 22390 SONDER E, 1985, J APPL PHYS, V58, P4420 22391 SONG RS, 1992, 1992 P INT C EL COMP, P31 22392 TRONTELJ M, 1983, ADDITIVES INTERFACES, P107 22393 NR 12 22394 TC 8 22395 SN 0921-5107 22396 J9 MATER SCI ENG B-SOLID STATE M 22397 JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 22398 PD JAN 22399 PY 1994 22400 VL 22 22401 IS 2-3 22402 BP 261 22403 EP 266 22404 PG 6 22405 SC Materials Science, Multidisciplinary; Physics, Condensed Matter 22406 GA MR122 22407 UT ISI:A1994MR12200023 22408 ER 22409 22410 PT J 22411 AU KHAN, RD 22412 ZHANG, JL 22413 SHENG, D 22414 WENDA, S 22415 TI EVOLUTION OF A VELOCITY-DEPENDENT QUANTUM FORCED ANHARMONIC-OSCILLATOR 22416 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 22417 DT Article 22418 AB The exact solution to a velocity-dependent quantum forced anharmonic 22419 oscillator is derived by using integral operators and an iteration 22420 method. The study is carried out in operational form by use of the 22421 creation and annihilation operators of the oscillator. The time 22422 development of the displacement and momentum operators of the 22423 anharmonic oscillator is given. These operators are presented as a 22424 Laplace transform and a subsequent inverse Laplace transform of 22425 suitable functionals. 22426 RP KHAN, RD, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES 22427 R CHINA. 22428 CR CARUSOTTO S, 1988, PHYS REV A, V38, P3249 22429 LOUISELL WH, 1973, QUANTUM STATISTICAL, P137 22430 SAAVEDRA FA, 1990, PHYSICAL REV A, V42, P5073 22431 ZHANG JL, 1992, IN PRESS SPIE, V1726 22432 NR 4 22433 TC 0 22434 SN 0020-7748 22435 J9 INT J THEOR PHYS 22436 JI Int. J. Theor. Phys. 22437 PD NOV 22438 PY 1993 22439 VL 32 22440 IS 11 22441 BP 2023 22442 EP 2029 22443 PG 7 22444 SC Physics, Multidisciplinary 22445 GA MQ896 22446 UT ISI:A1993MQ89600004 22447 ER 22448 22449 PT J 22450 AU ZHANG, B 22451 WANG, JG 22452 WAN, XJ 22453 CHEN, WJ 22454 TI A STUDY ON THE BETA AND OMEGA PHASES IN A TI-AL-CR ALLOY 22455 SO SCRIPTA METALLURGICA ET MATERIALIA 22456 DT Article 22457 ID MICROSTRUCTURE EVOLUTION; BASE ALLOYS 22458 AB The beta phase obtained in the Ti-42Al-3Cr alloy has an ordered B.C.C. 22459 structure with a0=0.3197nm, which is rich in chromium. The omega phase 22460 precipitated from the beta phase in this alloy has an ordered hexagonal 22461 structure with a0=0.452nm and c0=0.577nm. The orientation relationship 22462 between the omega phase and the parent beta phase yields the usual 22463 orientation relationship: [111]c\\[0001]h and {110}c\\{1120}h. 22464 RP ZHANG, B, SHANGHAI UNIV SCI & TECHNOL,INST MAT SCI,149 YANCHANG 22465 RD,SHANGHAI 200072,PEOPLES R CHINA. 22466 CR BENDERSKY LA, 1990, ACTA METALL MATER, V38, P931 22467 CHEN WJ, IN PRESS 22468 CUI YY, 1993, ACTA METALLURGICA A, V29, P61 22469 HUANG SC, 1991, METALL TRANS A, V22, P2619 22470 JONES SA, 1988, SCRIPTA METALL, V22, P1235 22471 KIMURA M, 1992, MAT SCI ENG A-STRUCT, V152, P54 22472 LIPSITT HA, 1985, MATER RES SOC S P, V39, P351 22473 MURRAY JL, 1981, B ALLOY PHASE DIA, V2, P174 22474 PEREPEZKO JH, 1991, ISIJ INT, V31, P1080 22475 SASTRY SML, 1977, METALL T A, V8, P299 22476 VALENCIA JJ, 1987, SCRIPTA METALL, V21, P1341 22477 WILLIAMS JC, 1978, PRECIPITATION PROCES, P191 22478 ZHENG Y, 1992, SCRIPTA METALL MATER, V26, P219 22479 NR 13 22480 TC 7 22481 SN 0956-716X 22482 J9 SCR METALL MATER 22483 JI Scr. Metall. Materialia 22484 PD FEB 15 22485 PY 1994 22486 VL 30 22487 IS 4 22488 BP 399 22489 EP 404 22490 PG 6 22491 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 22492 Engineering 22493 GA MN519 22494 UT ISI:A1994MN51900003 22495 ER 22496 22497 PT J 22498 AU CHEN, WJ 22499 WANG, JG 22500 ZHANG, B 22501 WAN, XJ 22502 TI MECHANICAL-PROPERTIES OF A TI-AL-CR ALLOY 22503 SO SCRIPTA METALLURGICA ET MATERIALIA 22504 DT Article 22505 RP CHEN, WJ, SHANGHAI UNIV SCI & TECHNOL,INST MAT SCI,149 YANCHANG 22506 RD,SHANGHAI 200072,PEOPLES R CHINA. 22507 CR COURT SA, 1989, MATER RES SOC S P, V133, P675 22508 HAYES FH, TERNARY ALLOYS, V4, P430 22509 KIM YW, 1990, HIGH TEMPERATURE ALU, P465 22510 KIMURA M, 1992, MAT SCI ENG A-STRUCT, V152, P54 22511 LIPSITT HA, 1985, MATER RES SOC S P, V39, P351 22512 MURALEEDHARAN K, 1989, METALL TRANS A, V20, P1139 22513 ROWE RG, 1990, HIGH TEMPERATURE ALU, P375 22514 TSUJIMOTO T, 1992, MATER T JIM, V33, P989 22515 ZHANG B, UNPUB 22516 ZHENG Y, 1992, SCRIPTA METALL MATER, V26, P219 22517 NR 10 22518 TC 1 22519 SN 0956-716X 22520 J9 SCR METALL MATER 22521 JI Scr. Metall. Materialia 22522 PD JAN 1 22523 PY 1994 22524 VL 30 22525 IS 1 22526 BP 83 22527 EP 87 22528 PG 5 22529 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 22530 Engineering 22531 GA ME906 22532 UT ISI:A1994ME90600016 22533 ER 22534 22535 PT J 22536 AU GUO, BY 22537 LI, J 22538 TI FOURIER-CHEBYSHEV PSEUDOSPECTRAL METHOD FOR 2-DIMENSIONAL VORTICITY 22539 EQUATION 22540 SO NUMERISCHE MATHEMATIK 22541 DT Article 22542 ID NAVIER-STOKES EQUATIONS; FINITE-ELEMENT; FLOW 22543 AB A Fourier-Chebyshev pseudospectral scheme is proposed for 22544 two-dimensional unsteady vorticity equation. The generalized stability 22545 and convergence are proved strictly. The numerical results are 22546 presented. 22547 RP GUO, BY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 22548 CR CANUTO C, 1984, NUMER MATH, V44, P201 22549 CANUTO C, 1988, SPECTRAL METHODS FLU 22550 GUO BY, 1988, DIFFERENCE METHODS P 22551 GUO BY, 1989, J COMPUT PHYS, V84, P259 22552 GUO BY, 1992, J COMPUT PHYS, V101, P207 22553 GUO BY, 1992, J COMPUT PHYS, V101, P375 22554 INGHAM DB, 1985, P ROY SOC LOND A MAT, V402, P109 22555 KUO PY, 1983, J COMPUT MATH, V1, P353 22556 MA HP, 1986, J COMPUT PHYS, V65, P120 22557 MA HP, 1988, J COMPUT MATH, V6, P48 22558 MACARAEG MG, 1982, J COMPUT PHYS, V62, P297 22559 MOIN P, 1982, J FLUID MECH, V118, P341 22560 MURDOK JW, 1986, AIAA860434 22561 VANDEVEN H, 1987, FAMILY SPECTRAL FILT 22562 WOODWARD P, 1984, J COMPUT PHYS, V54, P115 22563 NR 15 22564 TC 3 22565 SN 0029-599X 22566 J9 NUMER MATH 22567 JI Numer. Math. 22568 PD DEC 22569 PY 1993 22570 VL 66 22571 IS 3 22572 BP 329 22573 EP 346 22574 PG 18 22575 SC Mathematics, Applied 22576 GA ML599 22577 UT ISI:A1993ML59900004 22578 ER 22579 22580 PT J 22581 AU LI, B 22582 LIU, L 22583 MA, XM 22584 DONG, YD 22585 TI AMORPHIZATION IN THE NB-SI SYSTEM BY MECHANICAL ALLOYING 22586 SO JOURNAL OF ALLOYS AND COMPOUNDS 22587 DT Article 22588 ID NI; POWDERS 22589 AB Amorphous Nb50Si50 alloy was produced from crystalline elemental 22590 powders by high-energy ball milling; the amorphization mechanisms of 22591 Nb50Si50 powders are discussed. 22592 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MET & MAT,SHANGHAI 200072,PEOPLES R CHINA. 22593 RP LI, B, ACAD SINICA,INST SOLID STATE PHYS,POB 1129,HEFEI 230031,PEOPLES 22594 R CHINA. 22595 CR BRANDES EA, 1983, SMITHELLS METALS REF 22596 CALKA A, 1991, APPL PHYS LETT, V58, P119 22597 KOCH CC, 1983, APPL PHYS LETT, V43, P1017 22598 KOCH CC, 1989, ANNU REV MATER SCI, V19, P121 22599 LEE PY, 1987, APPL PHYS LETT, V50, P1578 22600 MIEDEMA AR, 1980, PHYSICA B, V100, P1 22601 OMURO K, 1992, APPL PHYS LETT, V60, P1433 22602 SCHWARZ RB, 1985, J NON-CRYST SOLIDS, V76, P281 22603 NR 8 22604 TC 6 22605 SN 0925-8388 22606 J9 J ALLOYS COMPOUNDS 22607 JI J. Alloy. Compd. 22608 PD DEC 10 22609 PY 1993 22610 VL 202 22611 BP 161 22612 EP 163 22613 PG 3 22614 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & 22615 Metallurgical Engineering 22616 GA MK678 22617 UT ISI:A1993MK67800036 22618 ER 22619 22620 PT J 22621 AU SHAO, J 22622 TI STRUCTURAL-CHANGE OF SIO2 GLASS UNDER HIGH-PRESSURE - A 22623 MOLECULAR-DYNAMICS STUDY 22624 SO CHINESE PHYSICS LETTERS 22625 DT Article 22626 ID INDUCED COORDINATION CHANGES; X-RAY-DIFFRACTION; QUARTZ 22627 AB Pressure-induced structural transition in SiO2 glass at 300 K has been 22628 investigated by molecular dynamics simulation. The compression of SiO2 22629 glass appears to be accommodated by three processes occuring in our 22630 calculation. Below 10 GPa, the Si-O, O-O and Si-Si bond distances 22631 decrease with compression. Also in this pressure region the O-Si-O 22632 angle is always peaked at about 109-degrees. Above 10 GPa, the Si-O 22633 bond distance increase quickly with compression and the O-Si-O angle 22634 deviates from 109-degrees. At about 46 GPa, the structural information 22635 shows that the coordination number of Si becomes six. Then, the 22636 structural behavior of SiO2 glass becomes normal with further 22637 compression. 22638 RP SHAO, J, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES 22639 R CHINA. 22640 CR DURBEN DJ, 1990, PHYS REV B, V43, P2355 22641 GIBBS GV, 1982, AM MINERAL, V67, P421 22642 GRIMSDITCH M, 1984, PHYS REV LETT, V52, P2379 22643 HAZEN RM, 1989, SOLID STATE COMMUN, V72, P507 22644 HEMLEY RJ, 1986, PHYS REV LETT, V57, P747 22645 ITIE JP, 1989, PHYS REV LETT, V63, P398 22646 LEVIEN L, 1980, AM MINERAL, V65, P920 22647 MEADE C, 1992, PHYS REV LETT, V69, P1387 22648 TSUJI K, 1989, REV SCI INSTRUM, V60, P2425 22649 WEIDNER DJ, 1982, J GEOPHYS RES, V87, P4740 22650 WILLIAMS Q, 1988, SCIENCE, V239, P902 22651 WOODCOCK LV, 1976, J CHEM PHYS, V65, P1565 22652 NR 12 22653 TC 4 22654 SN 0256-307X 22655 J9 CHIN PHYS LETT 22656 JI Chin. Phys. Lett. 22657 PY 1993 22658 VL 10 22659 IS 11 22660 BP 669 22661 EP 672 22662 PG 4 22663 SC Physics, Multidisciplinary 22664 GA MK170 22665 UT ISI:A1993MK17000009 22666 ER 22667 22668 PT J 22669 AU REN, XH 22670 YU, XJ 22671 TI CHARACTERIZATION OF NUCLEOLAR ORGANIZER REGIONS OF 12 SPECIES OF 22672 CHINESE CYPRINID FISHES 22673 SO CARYOLOGIA 22674 DT Article 22675 ID CHROMOSOMES; PISCES 22676 AB Silver staining technique was used to study the chromosomal NORs of 12 22677 species of Chinese cyprinids. The NOR number varies from 2 to 7. Only a 22678 single pair of NOR-bearing chromosomes was detected in 5 species 22679 respectively. The remaining species each possess two or more pairs of 22680 NOR-bearing homologues. NORs may be located at submetacentric, 22681 subtelocentric or metacentric chromosomes. NOR heteromorphism was 22682 common. Finally, it is suggested, in the discussion, that further 22683 studies should be made on the overall Cyprinidae. 22684 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT BIOTECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 22685 RP REN, XH, WUHAN UNIV,DEPT BIOL,WUSHAN 430072,PEOPLES R CHINA. 22686 CR AMEMIYA CT, 1990, HEREDITAS, V112, P231 22687 FORESTI F, 1981, CYTOGENET CELL GENET, V31, P137 22688 GALETTI PM, 1984, CARYOLOGIA, V37, P401 22689 GOODPASTURE C, 1975, CHROMOSOMA, V53, P37 22690 HOWELL WM, 1980, EXPERIENTIA, V36, P1014 22691 HOWELL WM, 1982, CELL NUCLEUS, V11, P89 22692 HSU TC, 1975, CHROMOSOMA, V53, P25 22693 MAYR B, 1987, GENETICA, V75, P199 22694 OBERDORFF T, 1990, CARYOLOGIA, V43, P9 22695 PHILLIPS RB, 1989, COPEIA, P47 22696 REN X, 1991, CHIN J GENET, V18, P219 22697 REN X, 1991, CYTOLOGIA, V56, P673 22698 TAKAI A, 1984, P JPN ACAD B-PHYS, V60, P410 22699 THODE G, 1985, CYTOBIOS, V43, P73 22700 WU XW, 1977, CYPRINIDAE FISHES CH, P229 22701 YU XJ, 1989, CHROMOSOMES FRESHWAT, P1 22702 NR 16 22703 TC 0 22704 SN 0008-7114 22705 J9 CARYOLOGIA 22706 JI Caryologia 22707 PD APR-SEP 22708 PY 1993 22709 VL 46 22710 IS 2-3 22711 BP 201 22712 EP 207 22713 PG 7 22714 SC Genetics & Heredity 22715 GA MH884 22716 UT ISI:A1993MH88400011 22717 ER 22718 22719 PT J 22720 AU GU, Y 22721 WANG, YG 22722 FU, SZ 22723 WU, J 22724 YU, SY 22725 WAN, BG 22726 ZHOU, GL 22727 WANG, X 22728 HAN, GJ 22729 ZENG, YX 22730 MA, MX 22731 TI HUGONIOT MEASUREMENTS ON COPPER TO 0.8 TPA BY LASER-DRIVEN SHOCK-WAVES 22732 SO LASER AND PARTICLE BEAMS 22733 DT Article 22734 AB An experiment on Al-Cu impedance-match targets, carried out at the 22735 Shenguang high-power laser facility, is described. The shock adiabat of 22736 Cu in the pressure region 0.4-0.8 TPa, measured experimentally, is 22737 close to the extrapolated results of the data at lower pressure 22738 obtained with a high-explosive loading facility and also is in with the 22739 data at high pressure measured in the underground nuclear test 22740 environment. 22741 C1 SHANGHAI UNIV,COLL ENGN,SHANGHAI,PEOPLES R CHINA. 22742 RP GU, Y, CHINA ACAD ENGN PHYS,SHANGHAI LASER LAB,SHANGHAI,PEOPLES R CHINA. 22743 CR DE XM, 1986, APPL OPTICS, V25, P377 22744 ELIEZER S, 1986, INTRO EQUATIONS STAT 22745 ELIEZER S, 1990, J APPL PHYS, V68, P356 22746 FORTOV VE, 1991, E FERMI SUMMER SCH 1 22747 GU Y, 1986, P INT S INTENSE DYNA, P131 22748 GU Y, 1988, ACTA PHYS SINICA, V37, P1690 22749 MCQUEEN RG, 1970, HIGH VELOCITY IMPACT, P530 22750 NELLIS WJ, 1988, PHYS REV LETT, V60, P1414 22751 XU XS, 1986, INTRO APPLIED THEORY, P521 22752 NR 9 22753 TC 0 22754 SN 0263-0346 22755 J9 LASER PART BEAM 22756 JI Laser Part. Beams 22757 PY 1993 22758 VL 11 22759 IS 3 22760 BP 611 22761 EP 616 22762 PG 6 22763 SC Physics, Applied 22764 GA MF947 22765 UT ISI:A1993MF94700019 22766 ER 22767 22768 PT J 22769 AU LU, WC 22770 YAN, LC 22771 LIU, HL 22772 HUANG, SP 22773 CHEN, NY 22774 LI, JL 22775 XU, YM 22776 TI STUDIES ON STRUCTURE-ACTIVITY RELATIONSHIP OF THE ETHOFENPROX ANALOGOUS 22777 OF PESTICIDE BY PATTERN-RECOGNITION METHOD 22778 SO CHINESE SCIENCE BULLETIN 22779 DT Article 22780 DE PATTERN RECOGNITION; ETHOFENPROX ANALOGOUS; HAMMETT CONSTANT; MOLAR 22781 REFLECTIVITY; HYDROPHOBIC PARAMETER 22782 RP LU, WC, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R 22783 CHINA. 22784 NR 0 22785 TC 1 22786 SN 1001-6538 22787 J9 CHIN SCI BULL 22788 JI Chin. Sci. Bull. 22789 PD SEP 22790 PY 1993 22791 VL 38 22792 IS 18 22793 BP 1534 22794 EP 1537 22795 PG 4 22796 SC Multidisciplinary Sciences 22797 GA ME840 22798 UT ISI:A1993ME84000009 22799 ER 22800 22801 PT J 22802 AU CAO, WM 22803 GUO, BY 22804 TI FOURIER COLLOCATION METHOD FOR SOLVING NONLINEAR KLEIN-GORDON EQUATION 22805 SO JOURNAL OF COMPUTATIONAL PHYSICS 22806 DT Article 22807 RP CAO, WM, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 22808 CR ADAMS RA, 1975, SOBOLEV SPACES 22809 CANUTO C, 1982, MATH COMPUT, V38, P67 22810 GUO B, IN PRESS J APPL MATH 22811 GUO B, 1988, DIFFERENCE METHODS P 22812 HARDY GH, 1952, INEQUALITIES 22813 KUO P, 1983, J APPL SCI, V1, P25 22814 LIONS JL, 1969, QUELQUES METHODES RE 22815 QUARTERONI A, 1984, JAPAN J APPL MATH, V1, P173 22816 STRAUSS W, 1978, J COMP PHYSIOL, V28, P271 22817 WHITHAM GB, 1974, LINEAR NONLINEAR WAV 22818 NR 10 22819 TC 4 22820 SN 0021-9991 22821 J9 J COMPUT PHYS 22822 JI J. Comput. Phys. 22823 PD OCT 22824 PY 1993 22825 VL 108 22826 IS 2 22827 BP 296 22828 EP 305 22829 PG 10 22830 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical 22831 GA MC593 22832 UT ISI:A1993MC59300009 22833 ER 22834 22835 PT J 22836 AU GU, HY 22837 HE, YH 22838 TI THE CLOSENESS FOR (NBU) AND (NWU) 22839 SO MICROELECTRONICS AND RELIABILITY 22840 DT Note 22841 AB In this note an n mutually independent unit coherent system is 22842 considered. Using the minimal path method, it is proved that if every 22843 unit lifetime distribution belongs to {NBU} (which is a class of new 22844 better than used), the system lifetime distribution belongs to {NBU} 22845 also. Finally, by using an example, it is proposed that {NWU} (which is 22846 a class of new worse than used) is not closed. 22847 RP GU, HY, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,149 YANCHANG RD,SHANGHAI 22848 200072,PEOPLES R CHINA. 22849 CR BARLOW RE, 1981, STATISTICAL THEORY R, P158 22850 KLEFSJO B, 1982, NAVAL RES LOGIST Q, V29, P331 22851 KLEFSJO B, 1985, IEEE T RELIAB, V33 22852 NR 3 22853 TC 0 22854 SN 0026-2714 22855 J9 MICROELECTRON REL 22856 JI Microelectron. Reliab. 22857 PD OCT 22858 PY 1993 22859 VL 33 22860 IS 13 22861 BP 2053 22862 EP 2054 22863 PG 2 22864 SC Engineering, Electrical & Electronic 22865 GA LZ803 22866 UT ISI:A1993LZ80300014 22867 ER 22868 22869 PT J 22870 AU DENG, XN 22871 FAN, QB 22872 YIN, JH 22873 LIANG, PH 22874 ZHANG, WQ 22875 TI THE EFFECT OF LONG-CHAIN COUMARIN FILMS ON THE ELECTRON-TRANSFER AT THE 22876 LIQUID-JUNCTION ON N-SI/NI 22877 SO ACTA CHIMICA SINICA 22878 DT Article 22879 AB The modification of stearic acid-coumarin LB films on the performance 22880 of n-Si/Ni electrode has been studied in this paper The deposition of 22881 the LB film was Z-type. There was a blue shift of absorption peak (from 22882 343 nm to 325 nm) after the film had been prepared on a glass plate. 22883 Under the illumination of 60 m W degrees cm-2 bromine-tungstem lamp 22884 light, the energy conversion efficiency of n-Si/Ni/3LB/Fe(CN)63-/4-/Pt 22885 cell has been increased by 100% and the stability has been apparently 22886 enhanced. The AC impedance measurement has shown that the charge 22887 transfer resistance of n-Si/Ni/3LB electrode decreased greatly under 22888 the irradiation. The research results indicates that the modification 22889 of stearic acid-coumarin LB films on the photoelectron transfer process 22890 on n-Si/Ni electrode is good. 22891 C1 ACAD SINICA,SHANGHAI INST OPT MECH,SHANGHAI 201800,PEOPLES R CHINA. 22892 RP DENG, XN, SHANGHAI UNIV SCI & TECHNOL,ELECTROCHEM RES CTR,SHANGHAI 22893 201800,PEOPLES R CHINA. 22894 CR CHANDRASEKARAN K, 1987, ELECTROCHIM ACTA, V32, P1392 22895 FURUNO T, 1988, THIN SOLID FILMS, V160, P145 22896 HIGUCHI Y, 1986, CHEM LETT, V12, P1651 22897 HOLDCROFT S, 1988, J ELECTROCHEM SOC, V135, P3106 22898 HOME AT, 1987, J ELECTROCHEM SOC, V134, P7 22899 KAKIMOTO M, 1986, CHEM LETT, V2, P173 22900 KAKIMOTO M, 1986, CHEM LETT, V6, P823 22901 KUHN H, 1985, P INT S FUTURE ELECT, P1 22902 NR 8 22903 TC 0 22904 SN 0567-7351 22905 J9 ACTA CHIM SIN 22906 JI Acta Chim. Sin. 22907 PY 1993 22908 VL 51 22909 IS 8 22910 BP 743 22911 EP 747 22912 PG 5 22913 SC Chemistry, Multidisciplinary 22914 GA LX882 22915 UT ISI:A1993LX88200003 22916 ER 22917 22918 PT J 22919 AU GU, HY 22920 TI STUDIES ON OPTIMUM PREVENTIVE MAINTENANCE POLICIES FOR GENERAL REPAIR 22921 RESULT 22922 SO RELIABILITY ENGINEERING & SYSTEM SAFETY 22923 DT Note 22924 AB In this paper we consider that a unit is repaired preventively after it 22925 has operated for time T. After repair, the unit is not as good as a new 22926 one, but is equivalent to one which has been used for a period of time. 22927 If we let Y indicate such a period of time, then Y is a random variable 22928 related to the time for which the unit has already operated . 22929 Hence, under the same repair condition as above, we obtain the unit's 22930 renovation degree distribution Of Y after the unit is repaired 22931 preventively at time kT (k = 2, 3, . . . ). Further, using the method 22932 of leading variables, we obtain the mean number of times the unit has 22933 broken down from time (k - 1)T to time kT (k = 1, 2, . . . ). Finally, 22934 considering an objective function with a bound condition and using the 22935 Lagrange multipliers method, we obtain an optimal preventive 22936 maintenance time T, for which the minimum total repair cost is achieved. 22937 RP GU, HY, SHANGHAI UNIV SCI & TECHNOL,ROOM 402 6 LANE 840,TIAN SHAN 22938 RD,SHANGHAI 200051,PEOPLES R CHINA. 22939 CR GERTSBAKH IB, 1977, MODELS PREVENTIVE MA 22940 NAKAGAWA T, 1976, Z OPNS RES, V20, P171 22941 NAKAGAWA T, 1977, THESIS KYOTO U 22942 NR 3 22943 TC 4 22944 SN 0951-8320 22945 J9 RELIAB ENG SYST SAFETY 22946 JI Reliab. Eng. Syst. Saf. 22947 PY 1993 22948 VL 41 22949 IS 2 22950 BP 197 22951 EP 201 22952 PG 5 22953 SC Engineering, Industrial; Operations Research & Management Science 22954 GA LX684 22955 UT ISI:A1993LX68400011 22956 ER 22957 22958 PT J 22959 AU GUO, GY 22960 CHEN, YL 22961 TI PREPARATION AND THERMAL-PROPERTIES OF A LEAD INDIUM ALUMINUM 22962 PHOSPHATE-GLASS 22963 SO JOURNAL OF NON-CRYSTALLINE SOLIDS 22964 DT Article 22965 AB A wet chemical process has been developed for the preparation of a 22966 lead-indium phosphate compound, and the effect of incorporation of 22967 aluminum into the compound on the thermal properties of the resulting 22968 glass is reported. High field Al-27 NMR in combination with a magic 22969 angle spinning technique was used to investigate the aluminum 22970 coordination in the lead-indium-aluminum phosphate glass. The 22971 transition, crystallization and softening temperatures and thermal 22972 expansion coefficient of the glass were determined by means of DTA, TMA 22973 and dilatometric measurements. 22974 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA. 22975 RP GUO, GY, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI & ENGN,SHANGHAI 22976 200030,PEOPLES R CHINA. 22977 CR GUO GY, 1993, J MATER SCI LETT, V12, P265 22978 MULLER D, 1983, PHYS CHEM GLASSES, V24, P37 22979 PENG YB, 1991, GLASS TECHNOL, V32, P166 22980 SALES BC, 1987, J AM CERAM SOC, V70, P615 22981 SCALES BC, 1986, J NONCRYSTALLINE SOL, V79, P83 22982 NR 5 22983 TC 8 22984 SN 0022-3093 22985 J9 J NON-CRYST SOLIDS 22986 JI J. Non-Cryst. Solids 22987 PD SEP 22988 PY 1993 22989 VL 162 22990 IS 1-2 22991 BP 164 22992 EP 168 22993 PG 5 22994 SC Materials Science, Ceramics; Materials Science, Multidisciplinary 22995 GA LX484 22996 UT ISI:A1993LX48400017 22997 ER 22998 22999 PT J 23000 AU LI, YZ 23001 DAVID, AK 23002 TI PRICING REACTIVE POWER CONVEYANCE 23003 SO IEE PROCEEDINGS-C GENERATION TRANSMISSION AND DISTRIBUTION 23004 DT Article 23005 DE FINANCIAL MANAGEMENT; POWER SYSTEM ECONOMICS; POWER SYSTEM OPERATION 23006 ID WHEELING RATES; MARGINAL-COST 23007 AB The transmission of electrical power and reactive power from a seller 23008 to a buyer through a transmission network obviously has cost 23009 implications. The costs incurred are of interest to transmission system 23010 owners in view of the increased interest in deregulation in recent 23011 years. The paper provides a theory of an ideal conveyance rate based on 23012 marginal cost pricing theory. An analysis is made of the marginal cost 23013 of reactive transportation using a modification of the optimal power 23014 flow algorithm, followed by a case study illustrating the magnitudes 23015 and ranges that reactive transportation rates may take on under 23016 different circumstances. The ratio of marginal prices between real and 23017 reactive power conveyance shows that the costs of reactive power 23018 transport is of as much interest because of its impact on real power 23019 transport as in itself. 23020 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT AUTOMAT,SHANGHAI,PEOPLES R CHINA. 23021 RP LI, YZ, HONG KONG POLYTECH,DEPT ELECT ENGN,KOWLOON,HONG KONG. 23022 CR BAUGHMAN ML, 1991, IEEE T POWER SYST, V6, P23 23023 CARAMANIS MC, 1986, IEEE T POWER SYST, V1, P63 23024 CARAMANIS MC, 1989, IEEE T POWER SYST, V4, P594 23025 MERRILL HM, 1989, IEEE T POWER SYST, V4, P1445 23026 POWELL MJD, 1987, LECTURE NOTES MATH, V630 23027 SCHWEPPE FC, 1988, SPOT PRICING ELECTRI 23028 TALUKDAR SN, 1982, IEEE T PAS, V101, P415 23029 NR 7 23030 TC 6 23031 SN 0143-7046 23032 J9 IEE PROC-C GEN TRANSM DISTRIB 23033 PD MAY 23034 PY 1993 23035 VL 140 23036 IS 3 23037 BP 174 23038 EP 180 23039 PG 7 23040 SC Engineering, Electrical & Electronic 23041 GA LW324 23042 UT ISI:A1993LW32400003 23043 ER 23044 23045 PT J 23046 AU GUO, BY 23047 MA, HP 23048 TI COMBINED FINITE-ELEMENT AND PSEUDOSPECTRAL METHOD FOR THE 2-DIMENSIONAL 23049 EVOLUTIONARY NAVIER-STOKES EQUATIONS 23050 SO SIAM JOURNAL ON NUMERICAL ANALYSIS 23051 DT Article 23052 DE NAVIER-STOKES EQUATION; COMBINED FINITE ELEMENT AND PSEUDOSPECTRAL 23053 APPROXIMATION; INF-SUP CONDITION AND ERROR ESTIMATION 23054 ID RESTRAIN OPERATOR; APPROXIMATION 23055 AB A combined finite element and pseudospectral scheme is proposed for 23056 solving the two-dimensional evolutionary Navier-Stokes equations. The 23057 artificial compressibility and filtering techniques are used. It is 23058 also shown that the inf-sup condition holds naturally for this combined 23059 method. The generalized stability and optimal convergence rate in 23060 L2-norm are proved. Some numerical results are presented. 23061 RP GUO, BY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA. 23062 CR BERINGEN S, 1984, J FLUID MECH, V148, P413 23063 CANUTO C, 1982, NUMER MATH, V39, P205 23064 CANUTO C, 1983, SIAM J NUMER ANAL, V20, P873 23065 CANUTO C, 1984, NUMER MATH, V44, P201 23066 CAO W, 1991, J COMPUT MATH, V9, P278 23067 CHORIN AJ, 1967, J COMPUT PHYS, V2, P12 23068 CIARLET PG, 1978, FINITE ELEMENT METHO 23069 GIRAULT V, 1979, LECTURE NOTES MATH, V794 23070 GUO B, 1985, SCI SINICA SER A, V28, P1139 23071 GUO B, 1988, DIFFERENCE METHODS P 23072 GUO B, 1988, J COMPUT PHYS, V74, P110 23073 GUO B, 1991, ACTA MATH APPL SINIC, V7, P257 23074 GUO BY, 1987, SCI SINICA A, V30, P697 23075 GUO BY, 1988, J COMPUT MATH, V6, P238 23076 GUO BY, 1991, SIAM J NUMER ANAL, V28, P113 23077 HALD O, 1981, J COMPUT PHYS, V40, P305 23078 INGHAM DB, 1984, J COMPUT PHYS, V53, P90 23079 INGHAM DB, 1985, P ROY SOC LOND A MAT, V402, P109 23080 KREISS HO, 1979, SIAM J NUMER ANAL, V16, P421 23081 KUO PY, 1983, J COMPUT MATH, V1, P353 23082 LIONS JL, 1972, NONHOMOGENEOUS BOUND 23083 MA H, 1992, MATH ANN B, V13, P96 23084 MA HP, 1986, J COMPUT PHYS, V65, P120 23085 MADAY Y, 1982, SIAM J NUMER ANAL, V19, P761 23086 MILINAZZO FA, 1985, J FLUID MECH, V160, P281 23087 MULHOLLAND LS, 1991, J COMPUT PHYS, V96, P369 23088 MURDOCK JW, 1977, AIAA J, V15, P1167 23089 MURDOCK JW, 1986, AIAA J 23090 ROACHE PJ, 1976, COMPUTATIONAL FLUID 23091 TEMAM R, 1977, NAVIER STOKES EQUATI 23092 NR 30 23093 TC 4 23094 SN 0036-1429 23095 J9 SIAM J NUMER ANAL 23096 JI SIAM J. Numer. Anal. 23097 PD AUG 23098 PY 1993 23099 VL 30 23100 IS 4 23101 BP 1066 23102 EP 1083 23103 PG 18 23104 SC Mathematics, Applied 23105 GA LR663 23106 UT ISI:A1993LR66300008 23107 ER 23108 23109 PT J 23110 AU CHENG, WM 23111 CHEN, MY 23112 TI TRANSFORMATION AND CONNECTION OF SUBAPERTURES IN THE MULTIAPERTURE 23113 OVERLAP-SCANNING TECHNIQUE FOR LARGE OPTICS TESTS 23114 SO OPTICAL ENGINEERING 23115 DT Article 23116 DE OVERLAP SCANNING; SUBAPERTURE CONNECTION; LARGE OPTICS TESTING 23117 AB The multiaperture overlap-scanning technique (MAOST) is a new method 23118 for large optics testing. We describe the mathematical model and the 23119 performance procedure of the transformation and connection of 23120 subapertures for MAOST. Computer simulation results show that the 23121 theoretical accuracy of a pair of two-subaperture connections tested 23122 with MAOST could be reached up to lambda/600. The experimental test 23123 with a magnification ratio of 1.7 in a four-aperture overlap-scanning 23124 configuration is conducted and its result is analyzed in detail. 23125 RP CHENG, WM, SHANGHAI UNIV SCI & TECHNOL,APPL OPT & METROL LAB,SOUTH 23126 GATE,JIADING 201800,PEOPLES R CHINA. 23127 CR BRUNING JH, 1978, OPTICAL SHOP TESTING, P425 23128 CHEN MY, 1991, P SOC PHOTO-OPT INS, V1553, P626 23129 JENSEN SC, 1984, APPL OPTICS, V23, P740 23130 KIM CJ, 1982, THESIS U ARIZONA 23131 THUNEN JG, 1982, P SOC PHOTO-OPT INS, V351, P19 23132 WILLIAMS RA, 1987, J OPT SOC AM A, V4, P1855 23133 NR 6 23134 TC 4 23135 SN 0091-3286 23136 J9 OPT ENG 23137 JI Opt. Eng. 23138 PD AUG 23139 PY 1993 23140 VL 32 23141 IS 8 23142 BP 1947 23143 EP 1950 23144 PG 4 23145 SC Optics 23146 GA LR112 23147 UT ISI:A1993LR11200037 23148 ER 23149 23150 PT J 23151 AU LIU, GL 23152 TI THE RADIAL EQUILIBRIUM PROBLEM OF FLOW IN WAVE MACHINERY 23153 SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL 23154 OF POWER AND ENERGY 23155 DT Article 23156 AB The present paper deals with the radial equilibrium problem of gas flow 23157 at the inlet and outlet of a wave rotor theoretically, presenting a 23158 method of solution. The salient feature of this method is that, in 23159 contrast to turbomachinery, the outlet flow parameters are related to 23160 those at inlet by the state characteristic (compatibility) equations of 23161 unsteady rotor flow. The numerical example has shown that the radial 23162 equilibrium effect plays a very important role in the design and 23163 performance of wave machinery and hence it is suggested that a complete 23164 gas dynamic design procedure of a wave machine should include two 23165 parts: (a) solution of the one-dimensional unsteady relative flow in 23166 rotor at the mean radius; (b) solution of the radial equilibrium 23167 problem of gas flow at the rotor inlet and outlet. 23168 RP LIU, GL, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA. 23169 NR 0 23170 TC 1 23171 SN 0957-6509 23172 J9 PROC INST MECH ENG A-J POWER 23173 JI Proc. Inst. Mech. Eng. Part A-J. Power Energy 23174 PY 1993 23175 VL 207 23176 IS A1 23177 BP 23 23178 EP 30 23179 PG 8 23180 SC Engineering, Mechanical 23181 GA LQ983 23182 UT ISI:A1993LQ98300003 23183 ER 23184 23185 PT J 23186 AU LI, W 23187 SHI, DH 23188 TI RELIABILITY-ANALYSIS OF A 2-UNIT PARALLEL SYSTEM WITH PREEMPTIVE 23189 PRIORITY RULE 23190 SO MICROELECTRONICS AND RELIABILITY 23191 DT Article 23192 AB This paper deals with a two-dissimilar-unit parallel redundant system 23193 in which unit 1 has preemptive priority in being repaired. Under the 23194 assumptions that the life time of unit 1 is an mth Erlang distribution, 23195 the life time of unit 2 and the repaired time of unit i(i = 1, 2) are 23196 all general continuous distributions, we obtain almost all of the 23197 interesting reliability indices of the system. Finally, we give the 23198 upper and lower limits of a special case which has not been discussed 23199 elsewhere. 23200 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 23201 RP LI, W, CHINESE ACAD SCI,INST APPL MATH,BEIJING 100080,PEOPLES R CHINA. 23202 CR CHENG K, 1978, ACTA MATH APPL SINIC, V4, P341 23203 LINTON DG, 1976, MICROELECTRON RELIAB, V15, P39 23204 NAKAGAWA T, 1975, MICROELECTRON RELIAB, V14, P457 23205 SHI DH, 1985, ACTA MATH APPL SINIC, V8, P101 23206 SHI DH, 1985, ACTA MATH APPL SINIC, V8, P159 23207 NR 5 23208 TC 6 23209 SN 0026-2714 23210 J9 MICROELECTRON REL 23211 JI Microelectron. Reliab. 23212 PD AUG 23213 PY 1993 23214 VL 33 23215 IS 10 23216 BP 1447 23217 EP 1453 23218 PG 7 23219 SC Engineering, Electrical & Electronic 23220 GA LQ167 23221 UT ISI:A1993LQ16700002 23222 ER 23223 23224 PT J 23225 AU JIN, C 23226 CHEN, WJ 23227 JING, KL 23228 WAN, XJ 23229 TI THE INFLUENCE OF CR ON OXIDATION BEHAVIOR OF TIAL AT 1173K 23230 SO SCRIPTA METALLURGICA ET MATERIALIA 23231 DT Article 23232 RP JIN, C, SHANGHAI UNIV SCI & TECHNOL,INST MET & MAT SCI,YANCHANG RD 23233 149,SHANGHAI 200072,PEOPLES R CHINA. 23234 CR HUANG SC, 1991, METALL TRANS A, V22, P2619 23235 JIN C, UNPUB 23236 PERKINS RA, 1987, SCRIPTA METALL MATER, V21, P1505 23237 PU Z, IN PRESS SCRIPTA MET 23238 TANIGUCHI S, 1991, MATER T JIM, V32, P151 23239 WELSCH G, 1988, OXIDATION HIGH TEMPE, P207 23240 NR 6 23241 TC 2 23242 SN 0956-716X 23243 J9 SCR METALL MATER 23244 JI Scr. Metall. Materialia 23245 PD SEP 15 23246 PY 1993 23247 VL 29 23248 IS 6 23249 BP 747 23250 EP 751 23251 PG 5 23252 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 23253 Engineering 23254 GA LP598 23255 UT ISI:A1993LP59800006 23256 ER 23257 23258 PT J 23259 AU GUO, GY 23260 CHEN, YL 23261 TI OPTICAL-PROPERTIES AND CHEMICAL DURABILITY OF LEAD INDIUM ALUMINUM 23262 PHOSPHATE-GLASS 23263 SO MATERIALS CHEMISTRY AND PHYSICS 23264 DT Article 23265 ID THERMAL-EXPANSION 23266 AB The optical properties and chemical durability of lead-indium-aluminum 23267 phosphate glass prepared by a wet-chemical process have been 23268 investigated. Ultraviolet-visible and infrared spectra were recorded 23269 for the glass. The refraction index of the glass was measured as a 23270 function of wavelength in the visible region of the spectrum. The 23271 long-term chemical durability of the glass in acidic and basic aqueous 23272 solutions was examined at a high temperature. The results are compared 23273 with recent data for other phosphate glasses, and indicate that 23274 lead-indium-aluminum phosphate glass has a promising combination of 23275 good optical properties and chemical durability. 23276 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA. 23277 RP GUO, GY, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI & ENGN,SHANGHAI 23278 200030,PEOPLES R CHINA. 23279 CR BUNKER BC, 1984, J NON-CRYST SOLIDS, V64, P291 23280 BUNKER BC, 1987, J AM CERAM SOC, V70, P425 23281 GUO GY, IN PRESS 1993 AM CER 23282 MINAMI T, 1977, J AM CERAM SOC, V60, P232 23283 MULLER D, 1983, PHYS CHEM GLASSES, V24, P37 23284 PENG YB, 1991, GLASS TECHNOL, V32, P166 23285 PENG YB, 1991, GLASS TECHNOL, V32, P200 23286 RAY NH, 1979, BRIT POLYM J, V11, P63 23287 SALES BC, 1986, J NON-CRYST SOLIDS, V79, P83 23288 SALES BC, 1987, J AM CERAM SOC, V70, P615 23289 NR 10 23290 TC 4 23291 SN 0254-0584 23292 J9 MATER CHEM PHYS 23293 JI Mater. Chem. Phys. 23294 PD AUG 23295 PY 1993 23296 VL 35 23297 IS 1 23298 BP 49 23299 EP 52 23300 PG 4 23301 SC Materials Science, Multidisciplinary 23302 GA LP402 23303 UT ISI:A1993LP40200009 23304 ER 23305 23306 PT J 23307 AU BAI, ZZ 23308 WANG, DR 23309 TI ON THE CONVERGENCE OF THE FACTORIZATION UPDATE ALGORITHM 23310 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 23311 DT Article 23312 AB In this paper, we make a Kantorovich-type analysis for the sparse 23313 Johnson and Austria's algorithm given in [2], which is called 23314 factorization update algorithm. When the mapping is linear, it is shown 23315 that a modification of that algorithm leads to global and Q-superlinear 23316 convergence. Finally, we point out the modification is also of local 23317 and Q-superlinear convergence for nonlinear systems of equations and 23318 give its corresponding Kantorovich-type convergence result. 23319 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA. 23320 CR DENNIS JE, 1971, MATH COMPUT, V25, P559 23321 JOHNSON GW, 1983, SIAM J NUMER ANAL, V20, P315 23322 LAM B, 1978, MATH COMPUT, V32, P447 23323 MARWIL E, 1979, SIAM J NUMER ANAL, V16, P558 23324 WANG DR, 1989, IN PRESS CLASS FACTO 23325 WANG DR, 1991, COMMUN APPL MATH COM, V5, P50 23326 NR 6 23327 TC 1 23328 SN 0254-9409 23329 J9 J COMPUT MATH 23330 JI J. Comput. Math. 23331 PD JUL 23332 PY 1993 23333 VL 11 23334 IS 3 23335 BP 236 23336 EP 249 23337 PG 14 23338 SC Mathematics, Applied; Mathematics 23339 GA LN497 23340 UT ISI:A1993LN49700006 23341 ER 23342 23343 PT J 23344 AU LIU, GL 23345 TI A VARIABLE-DOMAIN VARIATIONAL THEORY USING CLEBSCH VARIABLES FOR HYBRID 23346 PROBLEMS OF 2-D TRANSONIC ROTATIONAL FLOW 23347 SO ACTA MECHANICA 23348 DT Note 23349 AB By means of functional variations with variable domain the variational 23350 principles of [7], [8] are extended to inverse and hybrid flow problems. 23351 C1 SHANGHAI INST APPL MATH & MECH,SHANGHAI,PEOPLES R CHINA. 23352 RP LIU, GL, SHANGHAI UNIV SCI & TECHNOL,149 YAN CHANG RD,SHANGHAI 23353 200072,PEOPLES R CHINA. 23354 CR ECER A, 1983, AIAA J, V21, P343 23355 LIU GI, 1986, J ENG GAS TURB POWER, V108, P254 23356 LIU GL, 1980, SCI SINICA, V23, P1339 23357 LIU GL, 1981, J ENG THERMOPHYS, V2, P335 23358 LIU GL, 1985, ACTA AERODYN SINICA, V3, P24 23359 LIU GL, 1986, 6TH P INT S FEM FLOW, P137 23360 LIU GL, 1991, ASME91GT169 PAP 23361 MEAUZE G, 1982, ASME, V104, P650 23362 SELIGER RL, 1968, P ROY SOC LOND A MAT, V305, P1 23363 YAO Z, 1984, IMECHE PUBLICATION, P237 23364 NR 10 23365 TC 3 23366 SN 0001-5970 23367 J9 ACTA MECH 23368 JI Acta Mech. 23369 PY 1993 23370 VL 99 23371 IS 1-4 23372 BP 219 23373 EP 223 23374 PG 5 23375 SC Mechanics 23376 GA LK575 23377 UT ISI:A1993LK57500017 23378 ER 23379 23380 PT J 23381 AU HE, ZM 23382 SHEN, BG 23383 JIN, JH 23384 XIONG, CS 23385 TI MAGNETIC-PROPERTIES AND MAGNETOSTRICTION AT ROOM-TEMPERATURE OF THE 23386 AMORPHOUS RARE EARTH-FE ALLOYS (RBFECOCU) (R = ND, SM) 23387 SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 23388 DT Article 23389 AB The following three systems of the amorphous alloy specimens have been 23390 prepared and measured: NdxB20-x (Fe78Co1.7Cu0.3)(x = 0, 1, 2, 3, 4, 5), 23391 SmxB20-x (Fe78CO17Cu0.3)(x = 0, 1, 3), Fe79.7-xCox (Cu0.3B17Sm3)(x = 0, 23392 1.7, 3.7, 5.7, 7.7). The results show that the specific magnetizing 23393 moment sigma(s) varies with temperature T, and that the anisotropy 23394 constant K(u) and saturation magnetostriction constant lambda(s) vary 23395 with composition x at room temperature. It is shown that small amounts 23396 of rare earth elements alloyed into Fe-based amorphous alloys can 23397 increase K(u), lambda(s) and the crystallization temperature T(cr) of 23398 the amorphous alloys. It stands to reason that the local magnetic 23399 anisotropy and the exchange interaction are both effected. Although 23400 sigma(s) and T(c) may decrease as the small amount of R elements is 23401 alloyed, they can be compensated with an increase in the composition of 23402 Co. 23403 C1 ACAD SINICA,INST PHYS,MAGNETISM LAB,BEIJING 100080,PEOPLES R CHINA. 23404 UNIV SCI & TECHNOL CHINA,DEPT PHYS,HEFEI 230026,PEOPLES R CHINA. 23405 RP HE, ZM, SHANGHAI UNIV SCI & TECHNOL,PHYS TEACHING & RES OFF,BOX 23406 146,SHANGHAI 200072,PEOPLES R CHINA. 23407 CR DAI DS, 1987, FERROMAGNETISM, P135 23408 GROSSINGER R, 1990, J MAGN MAGN MATER, V86, P219 23409 HE ZM, 1989, ACTA METALLURGICA SI, V25, B329 23410 KHAN Y, 1990, J MAGN MAGN MATER, V86, L143 23411 NR 4 23412 TC 0 23413 SN 0304-8853 23414 J9 J MAGN MAGN MATER 23415 JI J. Magn. Magn. Mater. 23416 PD JUN 23417 PY 1993 23418 VL 124 23419 IS 1-2 23420 BP 47 23421 EP 50 23422 PG 4 23423 SC Materials Science, Multidisciplinary; Physics, Condensed Matter 23424 GA LK585 23425 UT ISI:A1993LK58500008 23426 ER 23427 23428 PT J 23429 AU CHEN, J 23430 YANG, YQ 23431 QIAN, PB 23432 MA, ZT 23433 WU, WB 23434 SUNG, PZ 23435 WANG, XG 23436 LI, JH 23437 TI DRUG CARRYING HYDROGEL BASE WOUND DRESSING 23438 SO RADIATION PHYSICS AND CHEMISTRY 23439 DT Article 23440 DE HYDROGEL; WOUND DRESSING; DRUG RELEASE; RADIATION CROSS-LINKING 23441 AB A special drug carrying hydrogel base wound dressing by radiation 23442 preparation is developed for hospital uses. The dressing possesses high 23443 water absorption property. Radiation preparation is carried out using a 23444 Van de Graaff Accelerator as an electron radiation source. The effect 23445 of absorbed dose and amount of crosslinking agent on the gel fraction 23446 and swelling ratio of the hydrogel were determined respectively. As a 23447 bio-medical material, standard tests were made. Results showed 23448 properties conforming with requirements for clinical applications. 23449 Results obtained from clinical tests were good. 23450 C1 NAVY HOSP 411,SHANGHAI 200081,PEOPLES R CHINA. 23451 RP CHEN, J, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI 23452 201800,PEOPLES R CHINA. 23453 CR PEPPAS NA, 1986, HYDROGELS MED PHARM, V3, P180 23454 RUCINSKA A, 1988, 4TH C RAD PROC IND, P218 23455 NR 2 23456 TC 4 23457 SN 0146-5724 23458 J9 RADIAT PHYS CHEM 23459 JI Radiat. Phys. Chem. 23460 PD OCT-DEC 23461 PY 1993 23462 VL 42 23463 IS 4-6 23464 BP 915 23465 EP 918 23466 PG 4 23467 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear 23468 Science & Technology 23469 GA LK325 23470 UT ISI:A1993LK32500075 23471 ER 23472 23473 PT J 23474 AU LIU, ZM 23475 MA, ZT 23476 TI RADIATION GRAFTING KINETICS OF HEMA/DGDA ONTO SILASTIC IN DIFFERENT 23477 ATMOSPHERES 23478 SO RADIATION PHYSICS AND CHEMISTRY 23479 DT Article 23480 DE RADIATION GRAFTING; GRAFTING KINETICS; GRAFTING ATMOSPHERES; GRAFTING 23481 DISTRIBUTION 23482 AB The radiation grafting kinetics of HEMA, as well as that of the mixture 23483 monomers of HEMA and DGDA have been researched. The effects of 23484 radiation dose, dose rate, and temperature on grafting are 23485 systematically researched in different atmospheres. It has been found 23486 that grafting is different in different atmospheres. The findings show 23487 that the depth distribution of HEMA/DGDA monomer units in grafting 23488 layer is nonuniform. At first, HEMA grafting is superior, in the later 23489 stage of grafting, however, DGDA grafting is increased. The temperature 23490 effect on grafting is great at the beginning, it is less in the later 23491 stage of grafting. 23492 RP LIU, ZM, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI 23493 201800,PEOPLES R CHINA. 23494 CR CHAPIRO A, 1962, RAD CHEM POLYM SYSTE 23495 COHN D, 1984, J APPL POLYM SCI, V29, P2645 23496 HOFFMAN AS, 1982, IND APPL RADIOISOTOP, P279 23497 MA ZT, 1986, J SHANGHAI U SCI TEC, P1 23498 YASUDA H, 1964, J POLYM SCI A2, P5093 23499 NR 5 23500 TC 0 23501 SN 0146-5724 23502 J9 RADIAT PHYS CHEM 23503 JI Radiat. Phys. Chem. 23504 PD OCT-DEC 23505 PY 1993 23506 VL 42 23507 IS 4-6 23508 BP 939 23509 EP 942 23510 PG 4 23511 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear 23512 Science & Technology 23513 GA LK325 23514 UT ISI:A1993LK32500081 23515 ER 23516 23517 PT J 23518 AU ZHOU, RM 23519 MA, ZT 23520 KAETUS, I 23521 KUMAKURA, M 23522 TI IMMOBILIZATION OF TRICHORDEMA REESEI BY RADIATION POLYMERIZATION 23523 SO RADIATION PHYSICS AND CHEMISTRY 23524 DT Article 23525 DE RADIATION POLYMERIZATION; IMMOBILIZATION; FERMENTATION; CELL 23526 AB Immobilization of trichordema Reesei(QM9414) was prepared by radiation 23527 polymerization. It was found that the activity of fixed cells increased 23528 with inseasing surface area of the carrier and was affected by the 23529 concentration of monomer tetraethylenglycol dimethacrylate (4G) and the 23530 shape of the substrate composition and structure of cotton textile 23531 fabics. 23532 C1 JAPAN ATOM ENERGY RES INST,TAKASAKI RADIAT CHEM INST,TAKASAKI,GUNMA 37012,JAPAN. 23533 RP ZHOU, RM, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT 23534 INST,SHANGHAI 201800,PEOPLES R CHINA. 23535 CR ARCURI EJ, 1982, BIOTECHNOL BIOENG, V24, P595 23536 MA ZT, 1986, IND MICROBIOLOGY, V16, P21 23537 ZHOU RM, 1987, IND MICROBIOLOGY, V17, P5 23538 NR 3 23539 TC 1 23540 SN 0146-5724 23541 J9 RADIAT PHYS CHEM 23542 JI Radiat. Phys. Chem. 23543 PD OCT-DEC 23544 PY 1993 23545 VL 42 23546 IS 4-6 23547 BP 943 23548 EP 945 23549 PG 3 23550 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear 23551 Science & Technology 23552 GA LK325 23553 UT ISI:A1993LK32500082 23554 ER 23555 23556 PT J 23557 AU WU, WB 23558 SUNG, PZ 23559 WANG, XG 23560 LI, JH 23561 CHEN, J 23562 YANG, YQ 23563 SHEN, YH 23564 MA, ZT 23565 TI SLOW-RELEASE OF WOUND-HEALING DRUG FROM HYDROGEL WOUND DRESSING 23566 PREPARED BY RADIATION CROSS-LINKING METHOD 23567 SO RADIATION PHYSICS AND CHEMISTRY 23568 DT Article 23569 DE WOUND DRESSING; DRUG RELEASE; HYDROGEL; RADIATION CROSS-LINKING 23570 AB The hydrogel wound dressing was prepared by radiation crosslinking. It 23571 was used of on patients in the Navy 411 Hospital and some other 23572 hospitals.From sixty case studies of the clinical effects, the results 23573 showed that: 1. drug releasing slowly relieves the pain 23574 effectively for prolonged period of application; 2. The dressing can 23575 reduce the oozing liquid from the wound and make the wound heal faster 23576 ;3.The number of the dressing change is greatly reduced. All the data 23577 indicates that the dressing is superior to the conventional kinds. 23578 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 23579 RP WU, WB, NAVY HOSP 411,SHANGHAI 200081,PEOPLES R CHINA. 23580 CR QUEEN D, 1987, BURNS, V13, P218 23581 NR 1 23582 TC 1 23583 SN 0146-5724 23584 J9 RADIAT PHYS CHEM 23585 JI Radiat. Phys. Chem. 23586 PD OCT-DEC 23587 PY 1993 23588 VL 42 23589 IS 4-6 23590 BP 947 23591 EP 948 23592 PG 2 23593 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear 23594 Science & Technology 23595 GA LK325 23596 UT ISI:A1993LK32500083 23597 ER 23598 23599 PT J 23600 AU DING, ZL 23601 YOSHIDA 23602 MA, ZT 23603 KUMAKURA, M 23604 TI A STUDY ON THE DESWELLING BEHAVIOR OF A THERMORESPONSIVE HYDROGEL 23605 PREPARED BY RADIATION POLYMERIZATION 23606 SO RADIATION PHYSICS AND CHEMISTRY 23607 DT Article 23608 DE THERMORESPONSIVE HYDROGEL; RADIATION POLYMERIZATION; SWELLING 23609 AB A new kind of thermo-responsive hydrogel, poly(methacryloyl-DL-alanie 23610 methyl ester), was synthesized by means of radiation polymerization. 23611 The swelling and deswelling were reversible.The deswelling kinetics 23612 changes with the variation of temperature. It was found that a rigid 23613 membrane was formed during deswlling at 40-degrees-C . In the case of 23614 deswelling at 20-degrees-C , no skin was found. The hydrogel deswelled 23615 uniformly. 23616 C1 JAPAN ATOM ENERGY RES INST,TAKASAKI RADIAT CHEM RES INST,TAKASAKI,GUNMA 37012,JAPAN. 23617 RP DING, ZL, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT 23618 INST,SHANGHAI 201800,PEOPLES R CHINA. 23619 CR DONG LC, 1986, J CONTROL RELEASE, V4, P223 23620 FREITAS RFS, 1987, CHEM ENG SCI, V42, P97 23621 OKANO T, 1990, J CONTROL RELEASE, V11, P255 23622 NR 3 23623 TC 2 23624 SN 0146-5724 23625 J9 RADIAT PHYS CHEM 23626 JI Radiat. Phys. Chem. 23627 PD OCT-DEC 23628 PY 1993 23629 VL 42 23630 IS 4-6 23631 BP 959 23632 EP 962 23633 PG 4 23634 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear 23635 Science & Technology 23636 GA LK325 23637 UT ISI:A1993LK32500086 23638 ER 23639 23640 PT J 23641 AU WU, MH 23642 SHEN, WP 23643 MA, ZT 23644 TI SYNTHESIS OF POLYACRYLATE CORE-SHELL STRUCTURE LATEX BY RADIATION 23645 TECHNIQUES 23646 SO RADIATION PHYSICS AND CHEMISTRY 23647 DT Article 23648 DE CORE-SHELL STRUCTURE; POLYACRYLATE; EMULSION POLYMERIZATION 23649 AB A series of poly(butyl acrylate-co-methyl methacrylate)/poly (ethyl 23650 acrylate-co-acrylic acid) interpenetrating polymer network (IPN) was 23651 synthesized in latex form by emulsion polymerization. The multiphase 23652 morphology of the latex particles was studied after two-stage 23653 polymerization by using transimission electron microscope (TEM), the 23654 result indicated that the morphology of the particles comprises 23655 gradient shell structure, cellular structure and core-shell structure. 23656 The change of morphology might stem from emulsion polymerization by 23657 radiation initiation or chemical initiation and the weight composition 23658 of poly(EA-co-MMA) seed latex which formed the core. By radiation 23659 techniques, we successfully synthesized poly( BA-co-MMA)/poly(EA-co-AA) 23660 latex of core-shell structure having (42-8)/(46-4) weight compositions. 23661 The PA core-shell structure latex applied to textile as a water 23662 proofing coating showed higher water-pressure and easier handling than 23663 that with PA homogeneous phase structure latex. 23664 RP WU, MH, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI RADIAT APPLICAT 23665 INST,SHANGHAI 201800,PEOPLES R CHINA. 23666 CR 1983, PROGR ORGANIC COATIN, V11, P205 23667 MCCARTY WHU, 1984, 44492324, US 23668 PIRMA I, 1976, ACS SYM SER, V24, P306 23669 SPERLING LH, 1972, INT J POLYM MATER, V1, P331 23670 SPERLING LH, 1973, J APPL POLYM SCI, V17, P2443 23671 WANDERHOFF TW, 1984, J POLYM CHEM, V22 23672 NR 6 23673 TC 1 23674 SN 0146-5724 23675 J9 RADIAT PHYS CHEM 23676 JI Radiat. Phys. Chem. 23677 PD JUL-SEP 23678 PY 1993 23679 VL 42 23680 IS 1-3 23681 BP 171 23682 EP 174 23683 PG 4 23684 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear 23685 Science & Technology 23686 GA LK323 23687 UT ISI:A1993LK32300038 23688 ER 23689 23690 PT J 23691 AU DENG, XN 23692 YIN, JH 23693 FAN, QB 23694 SHEN, ZD 23695 LIANG, PH 23696 ZHANG, WQ 23697 TI THE MODIFICATION OF NI, PB AND LB FILMS ON THE BEHAVIOR OF N-SI 23698 PHOTOELECTRODE 23699 SO ACTA CHIMICA SINICA 23700 DT Article 23701 ID SILICON PHOTOELECTRODES 23702 AB The effects of metal (Ni or Pb) and Langmuir-Blodgett films on the PEC 23703 behavior of n-Si have been studied. It is observed that Ni and Pb can 23704 improve the energy conversion efficiency and the stability of n-Si. The 23705 modification of LB films prepared with eight different organic 23706 compounds on n-Si/Ni have been determined and discussed, its efficiency 23707 has been doubled by the best one (long-chain coumarin LB film). The 23708 photoelectrochemical properties of Si/LB/Al electrode having the MIS 23709 structure has also been researched. It is discovered that it exhibits 23710 good photoelectric effect. 23711 C1 ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI 201800,PEOPLES R CHINA. 23712 RP DENG, XN, SHANGHAI UNIV SCI & TECHNOL,ELECTROCHEM RES CTR,SHANGHAI 23713 201800,PEOPLES R CHINA. 23714 CR BAKER S, 1983, THIN SOLID FILMS, V99, P53 23715 BATEY J, 1983, THIN SOLID FILMS, V99, P283 23716 BOLTS JM, 1979, J AM CHEM SOC, V101, P1378 23717 FURUNO T, 1988, THIN SOLID FILMS, V160, P145 23718 HIGUCHI Y, 1986, CHEM LETT, V12, P1651 23719 HOME AT, 1987, J ELECTROCHEM SOC, V134, P72 23720 LI G, 1990, Z NATURFORSCH, V45, P695 23721 NAKATO Y, 1987, BER BUNSEN PHYS CHEM, V91, P405 23722 TSUBOMURA H, 1987, NEW J CHEM, V11, P167 23723 NR 9 23724 TC 0 23725 SN 0567-7351 23726 J9 ACTA CHIM SIN 23727 JI Acta Chim. Sin. 23728 PY 1993 23729 VL 51 23730 IS 5 23731 BP 432 23732 EP 437 23733 PG 6 23734 SC Chemistry, Multidisciplinary 23735 GA LJ879 23736 UT ISI:A1993LJ87900003 23737 ER 23738 23739 PT J 23740 AU HUANG, HC 23741 TI FIBEROPTICS IN CHINA - INTRODUCTION 23742 SO FIBER AND INTEGRATED OPTICS 23743 DT Editorial Material 23744 RP HUANG, HC, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA. 23745 NR 0 23746 TC 0 23747 SN 0146-8030 23748 J9 FIBER INTEGRATED OPT 23749 JI Fiber Integr. Opt. 23750 PY 1993 23751 VL 12 23752 IS 1 23753 BP 1 23754 EP 1 23755 PG 1 23756 SC Optics 23757 GA LJ499 23758 UT ISI:A1993LJ49900001 23759 ER 23760 23761 PT J 23762 AU HUANG, HC 23763 TI PASSIVE POLARIZATION-CONTROLLED ALL-FIBER GYROSCOPE AND OTHER 23764 INTERFEROMETRIC ARCHITECTURES 23765 SO FIBER AND INTEGRATED OPTICS 23766 DT Article 23767 AB A novel all-fiber gyroscope architecture is disclosed making use of the 23768 author's U. S. -patented Passive Polarization Control (PPC) invention 23769 to stabilize the polarization state of the counter-propagating beams in 23770 the rotating Sagnac fiber loop. The PPC is simply a piece of variably 23771 spun birefringent optical fiber capable of transforming a circularly 23772 polarized light into a linearly polarized light that automatically 23773 aligns itself along a principal axis of the fiber. The all-fiber 23774 gyroscope architecture uses two cascaded directional couplers operating 23775 on circular SOP, thus providing an ''SOP matching '' with the 23776 PPC-terminated fiber loop. The predicted PPC performance has been 23777 confirmed experimentally in a laboratory. 23778 RP HUANG, HC, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 23779 CR CULSHAW B, 1991, PROGR ELECTROMAGNETI 23780 HUNGCHIA H, 1960, SCIENTIA SINICA, V9, P142 23781 HUNGCHIA H, 1961, ACTA MATH SINICA, V11, P238 23782 HUNGCHIA H, 1981, RADIO SCI, V16, P494 23783 HUNGCHIA H, 1984, COUPLED MODE THEORY 23784 HUNGCHIA H, 1990, 10422442, CH 23785 HUNGCHIA H, 1990, 4943132, US 23786 HUNGCHIA H, 1991, 91107430, CH, APPL 23787 HUNGCHIA H, 1991, COUPLED MODES NONIDE, P81 23788 HUNGCHIA H, 1991, PROGR ELECTROMAGNETI 23789 HUNGCHIA H, 1992, 5096312, US 23790 HUNGCHIA H, 1992, 92108559, CH, APPL 23791 KELLER HB, 1962, J SOC IND APPL MATH, V10, P246 23792 NR 13 23793 TC 3 23794 SN 0146-8030 23795 J9 FIBER INTEGRATED OPT 23796 JI Fiber Integr. Opt. 23797 PY 1993 23798 VL 12 23799 IS 1 23800 BP 21 23801 EP 29 23802 PG 9 23803 SC Optics 23804 GA LJ499 23805 UT ISI:A1993LJ49900004 23806 ER 23807 23808 PT J 23809 AU ZHU, JH 23810 WAN, XJ 23811 WU, Y 23812 TI EFFECT OF BORON DOPING ON ENVIRONMENTAL EMBRITTLEMENT OF NI3(AL,MN) 23813 SO SCRIPTA METALLURGICA ET MATERIALIA 23814 DT Article 23815 ID INTERGRANULAR HYDROGEN EMBRITTLEMENT; MECHANICAL-PROPERTIES; 23816 GRAIN-BOUNDARIES; NI3AL; DUCTILITY; ALLOYS; FEAL; CO3TI; BERYLLIUM; 23817 COMPOUND 23818 RP ZHU, JH, SHANGHAI UNIV SCI & TECHNOL,INST MET & MAT SCI,SHANGHAI 23819 200072,PEOPLES R CHINA. 23820 CR GAYDOSH DJ, 1990, SCRIPTA METALL MATER, V24, P1281 23821 GEORGE EP, 1992, SCRIPTA METALL MATER, V27, P365 23822 HORTON JA, 1984, HIGH TEMPERATURE ALL, P309 23823 HORTON JA, 1987, ACTA METALL, V35, P133 23824 LIU CT, 1985, ACTA METALL, V33, P213 23825 LIU CT, 1989, SCRIPTA METALL, V23, P875 23826 LIU CT, 1990, SCRIPTA METALL MATER, V24, P1285 23827 LIU CT, 1990, SCRIPTA METALL MATER, V24, P385 23828 LIU CT, 1991, ISIJ INT, V31, P1192 23829 LIU CT, 1991, SCRIPTA METALL MATER, V25, P1933 23830 LIU CT, 1992, SCRIPTA METALL MATER, V27, P25 23831 LIU CT, 1992, SCRIPTA METALL MATER, V27, P599 23832 LYNTH R, 1991, SCRIPTA METALL, V25, P2147 23833 MASAHASHI N, 1988, ACTA METALL, V36, P1823 23834 MASAHASHI N, 1988, METALL T A, V19, P345 23835 MASAHASHI N, 1988, METALL T A, V19, P353 23836 MCKAMEY CG, 1990, SCRIPTA METALL MATER, V24, P2119 23837 NISHIMURA C, 1991, SCRIPTA METALL MATER, V25, P791 23838 NISHIMURA C, 1992, ACTA METALL MATER, V40, P723 23839 SIKKA VK, 1991, SAMPE QUART, V22, P2 23840 TAKASUGI T, 1985, SCRIPTA METALL, V19, P903 23841 TAKASUGI T, 1986, ACTA METALL, V34, P607 23842 TAKASUGI T, 1986, SCRIPTA METALL, V20, P1317 23843 TAKASUGI T, 1990, J MATER SCI, V25, P4239 23844 TAKASUGI T, 1991, ACTA METALL MATER, V39, P2157 23845 TAKASUGI T, 1991, J MATER SCI, V26, P1179 23846 WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473 23847 WHITE CL, 1984, SCRIPTA METALL, V18, P1417 23848 NR 28 23849 TC 10 23850 SN 0956-716X 23851 J9 SCR METALL MATER 23852 JI Scr. Metall. Materialia 23853 PD AUG 1 23854 PY 1993 23855 VL 29 23856 IS 3 23857 BP 429 23858 EP 432 23859 PG 4 23860 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 23861 Engineering 23862 GA LJ115 23863 UT ISI:A1993LJ11500026 23864 ER 23865 23866 PT J 23867 AU WANG, E 23868 YU, ZM 23869 XU, CM 23870 QI, DY 23871 TI BARIUM ION TRANSFER ACROSS THE WATER NITROBENZENE INTERFACE FACILITATED 23872 BY AN IONOPHORE N,N,N',N'-TETRACYCLOHEXYL-3-OXAPENTANEDIAMIDE (ETH129) 23873 SO ANALYTICAL SCIENCES 23874 DT Note 23875 ID MECHANISM; TRANSPORT 23876 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA. 23877 RP WANG, E, CHINESE ACAD SCI,CHANGCHUN INST APPL CHEM,ELECTROANALYT CHEM 23878 LAB,CHANGCHUN 130022,PEOPLES R CHINA. 23879 CR HOMOLKA D, 1982, J ELECTROANAL CHEM, V138, P29 23880 KAKIUCHI T, 1991, J ELECTROANAL CH INF, V300, P431 23881 KAKUTANI T, 1986, B CHEM SOC JPN, V59, P781 23882 KORYTA J, 1979, ELECTROCHIM ACTA, V24, P293 23883 KORYTA J, 1983, ION SEL ELECTRODE R, V5, P131 23884 PRETSCH E, 1980, HELV, V63, P191 23885 QI DY, 1992, ACTA CHIM SINICA, V50, P479 23886 VANYSEK P, 1984, J ELECTROANAL CH INF, V163, P1 23887 WANG E, 1987, J CHEM SOC F1, V83, P2993 23888 YOSHIDA Z, 1984, J ELECTROANAL CH INF, V179, P31 23889 NR 10 23890 TC 1 23891 SN 0910-6340 23892 J9 ANAL SCI 23893 JI Anal. Sci. 23894 PD JUN 23895 PY 1993 23896 VL 9 23897 IS 3 23898 BP 405 23899 EP 408 23900 PG 4 23901 SC Chemistry, Analytical 23902 GA LG425 23903 UT ISI:A1993LG42500014 23904 ER 23905 23906 PT J 23907 AU YANG, ZJ 23908 YAO, KY 23909 TI EFFECTS OF SEVERAL KINDS OF ANISOTROPY ON THE COERCIVITY BEHAVIORS OF 23910 IRON-OXIDES 23911 SO JOURNAL OF APPLIED PHYSICS 23912 DT Article 23913 AB Coercivity behaviors of iron oxides during phase changes between Fe3O4 23914 and gamma-Fe2O3 for granular powders and continuous thin films, which 23915 can be interpreted in a unified framework by an intermediate product 23916 hypothesis, are investigated. There exists a critical value c(cr) of 23917 Fe3O4 concentration for different samples. The intermediate product 23918 Fe3-zO4 in oxidation and reduction processes is a mixture of two phases 23919 when Fe3O4 concentration c is smaller than C(cr); but it may exist in 23920 the form of a homogeneous solid solution (single-phase) 23921 (Fe3O4)1-x(gamma-Fe2O3)x when c is larger than c(cr). The difference in 23922 lattice constants will produce a tensive stress (sigma>0) on 23923 gamma-Fe2O3 and compressive stress (sigma<0) on Fe3O4 at interfaces. 23924 Superposition of a positive stress anisotropy on the easy axes [111] of 23925 magnetocrystalline anisotropy for Fe3O4 and on the easy axes [110] for 23926 gamma-Fe2O3 will cause an increase in the coercivity H(c) for spherical 23927 particle and thin film samples. The coercivity behavior of our acicular 23928 particle sample is contrary to that of thin film and spherical particle 23929 samples. Also, the switching field distribution curve showed a peak 23930 near c=0.4. There always exist some two-phase intermediate compounds in 23931 Fe3-zO4 due to the incomplete reaction of single domain particles. The 23932 decrease in coercivity of acicular particles is affected by the shape 23933 anisotropy related to changes in effective particle sizes. 23934 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI,PEOPLES R CHINA. 23935 RP YANG, ZJ, ARIZONA STATE UNIV,DEPT PHYS,TEMPE,AZ 85287. 23936 CR BATE G, 1980, FERROMAGNETIC MATERI, V2, P381 23937 BEAN CP, 1959, J APPL PHYS, V30, P1205 23938 BICKFORD LR, 1956, P I ELECTR ENG S5, V104, P238 23939 BORRELLI NF, 1972, IEEE MAGNET, V8, P648 23940 CHIKAZUMI S, 1964, PHYSICS MAGNETISM 23941 COLOMBO U, 1967, MATER SCI ENG, V2, P125 23942 EAGLE DF, 1967, J APPL PHYS, V38, P995 23943 GUSTARD B, 1969, IEEE T MAGN, V5, P326 23944 HANDERS PJ, 1962, J APPL PHYS, V33, P216 23945 IMAOKA Y, 1968, J ELECTRON SOC JPN, V36, P15 23946 IMAOKA Y, 1971, P INT C FERRITES, P467 23947 KOJIMA H, 1980, IEEE T MAGN, V16, P11 23948 NEEL L, 1947, CR HEBD ACAD SCI, V224, P488 23949 NEEL L, 1955, ADV PHYS, V4, P191 23950 SHTRIKMAN S, 1959, J PHYS RADIUM, V20, P286 23951 STONER EC, 1948, PHILOS T ROY SOC A, V240, P599 23952 TAKEI H, 1966, J PHYS SOC JPN, V21, P1255 23953 WATT LAK, 1960, J APPL PHYS, V31, S71 23954 WOHLFARTH EP, 1964, J APPL PHYS, V35, P783 23955 NR 19 23956 TC 2 23957 SN 0021-8979 23958 J9 J APPL PHYS 23959 JI J. Appl. Phys. 23960 PD MAY 15 23961 PY 1993 23962 VL 73 23963 IS 10 23964 PN Part 2B 23965 BP 6665 23966 EP 6667 23967 PG 3 23968 SC Physics, Applied 23969 GA LD865 23970 UT ISI:A1993LD86500196 23971 ER 23972 23973 PT J 23974 AU CHEN, ZX 23975 YU, GB 23976 TI LONG-TIME BEHAVIORS OF THE SPATIALLY UNIFORM DISCRETE NAGUMO MODEL 23977 SO MATHEMATICAL METHODS IN THE APPLIED SCIENCES 23978 DT Article 23979 AB In this paper a spatially uniform discrete Nagumo model is considered. 23980 The relation between the number and positions of period-2 solutions, 23981 and the parameter and initial values are discovered. The long-time 23982 behaviours of the solutions are discussed for different parameters and 23983 initial values. 23984 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA. 23985 RP CHEN, ZX, SHANGHAI JIAO TONG UNIV,DEPT APPL MATH,SHANGHAI 23986 200030,PEOPLES R CHINA. 23987 CR BRITTON NF, 1986, REACTION DIFFUSION E 23988 BURATTI RJ, 1968, P IEEE, V56, P1392 23989 CHEN ZX, 1992, IMA J APPL MATH, V48, P107 23990 DEVANCY RL, 1986, INTRO CHAOTIC DYNAMI 23991 DEVANEY RL, 1989, CHAOS FRACTALS MATH 23992 GUO B, 1989, APPL ANAL, V33, P215 23993 JONES DS, 1983, DIFFERENTIAL EQUATIO 23994 NAGUMO J, 1962, P IRE, V50, P2061 23995 NAGUMO J, 1965, IREE T CIRCUIT THEOR, V12, P400 23996 PICKARD WF, 1966, J THEOR BIOL, V11, P30 23997 SCOTT AC, 1963, P IEEE, V51, P240 23998 SLEEMAN BD, 1988, SIAM J SCI STAT COMP, V9, P543 23999 SMIONOV VI, 1952, KUS VYESHEI MATEMATI, V1 24000 SMOLLER J, 1983, SHOCK WAVES REACTION 24001 WEINBERGER HF, 1982, SIAM J MATH ANAL, V13, P353 24002 NR 15 24003 TC 0 24004 SN 0170-4214 24005 J9 MATH METH APPL SCI 24006 JI Math. Meth. Appl. Sci. 24007 PD MAY 24008 PY 1993 24009 VL 16 24010 IS 5 24011 BP 305 24012 EP 325 24013 PG 21 24014 SC Mathematics, Applied 24015 GA LD445 24016 UT ISI:A1993LD44500001 24017 ER 24018 24019 PT J 24020 AU HUA, JD 24021 LIU, YF 24022 ZHANG, KJ 24023 JIANG, SR 24024 TI THE COMPATIBILITY OF A POLYMERIC CATALYST SUBSTRATE SOLVENT AND 24025 REACTION-RATE .3. 24026 SO JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS 24027 DT Article 24028 AB In the presence of solvent, the catalytic rate in a polymeric metal 24029 complex catalyst (2)-substrate (1)-solvent (0) system is related to the 24030 solubility parameters (delta(i)) of the three components. According to 24031 thermodynamic and kinetic theories, an approximate relationship between 24032 the reaction rate and solubility parameters has been deduced as follows: 24033 [GRAPHICS] where phi2 is volume fraction of polymeric catalyst and V1 24034 is mole volume of substrate. For a given polymeric catalyst and a given 24035 substrate, the effect of different solvents on the rate could be 24036 simplified as r = A/1 + D . exp(-B (delta0 - delta2)2) where A, B, and 24037 D are constants. From this formula it can be seen that the rate is a 24038 function of solubility parameter of solvent in the form of the 24039 reciprocal of a normal distribution. This result has been supported by 24040 experiment. 24041 RP HUA, JD, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES 24042 R CHINA. 24043 CR HANSEN CM, 1967, J PAINT TECHNOL, V39, P104 24044 HANSEN CM, 1967, J PAINT TECHNOL, V39, P511 24045 HANSEN CM, 1969, IND ENG CHEM PROD RD, V2, P8 24046 HUA J, 1989, J APPL POLYM SCI, V38, P1211 24047 HUA J, 1989, J MACROMOL SCI PHY B, V28, P455 24048 NR 5 24049 TC 2 24050 SN 0022-2348 24051 J9 J MACROMOL SCI-PHYS 24052 JI J. Macromol. Sci.-Phys. 24053 PY 1993 24054 VL B32 24055 IS 2 24056 BP 183 24057 EP 204 24058 PG 22 24059 SC Polymer Science 24060 GA LB533 24061 UT ISI:A1993LB53300004 24062 ER 24063 24064 PT J 24065 AU WANG, X 24066 WANG, ZH 24067 HUANG, ZM 24068 TI PROPAGATION CONSTANT OF A PLANAR DIELECTRIC WAVE-GUIDE WITH ARBITRARY 24069 REFRACTIVE-INDEX VARIATION 24070 SO OPTICS LETTERS 24071 DT Article 24072 ID OPTICAL WAVE-GUIDE; MATRIX 24073 AB The calculation of a propagation constant is an interesting problem in 24074 the study of planar waveguides. We present a new method for solving the 24075 problem of a planar dielectric waveguide with arbitrary 24076 refractive-index variation for either TE or TM modes, and this method 24077 is simpler than other methods. Taking a parabolic refractive-index 24078 profile as an example, we show that high accuracy can be attained with 24079 this new method, provided that the waveguide is divided into layers of 24080 proper number and thickness. 24081 RP WANG, X, SHANGHAI UNIV SCI & TECHNOL,WAVE SCI LAB,SHANGHAI 24082 201800,PEOPLES R CHINA. 24083 CR CHILWELL J, 1984, J OPT SOC AM A, V1, P742 24084 HUANG HC, 1981, ELECTRON LETT, V17, P202 24085 POLKY JN, 1974, J OPT SOC AM, V64, P274 24086 TAMIR T, 1979, INTEGRATED OPTICS, CH2 24087 WALPITA LM, 1985, J OPT SOC AM A, V2, P595 24088 WANG ZH, 1989, J OPT SOC AM A, V6, P142 24089 NR 6 24090 TC 1 24091 SN 0146-9592 24092 J9 OPTICS LETTERS 24093 JI Opt. Lett. 24094 PD MAY 15 24095 PY 1993 24096 VL 18 24097 IS 10 24098 BP 805 24099 EP 807 24100 PG 3 24101 SC Optics 24102 GA LA947 24103 UT ISI:A1993LA94700017 24104 ER 24105 24106 PT J 24107 AU LIU, RH 24108 ZOU, RP 24109 TI NONLINEAR BENDING OF A CORRUGATED ANNULAR PLATE WITH A PLANE BOUNDARY 24110 REGION AND A NON-DEFORMABLE RIGID-BODY AT THE CENTER UNDER COMPOUND LOAD 24111 SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS 24112 DT Article 24113 ID LARGE DEFLECTION; CIRCULAR PLATE 24114 AB In this paper, based on the non-linear bending theories of isotropic 24115 and anisotropic annular plates, the non-linear bending of a corrupted 24116 annular plate with a plane boundary region and a non-deformable rigid 24117 body at the center has been investigated under the combined action of 24118 uniform pressure and a single concentrated load at the center. For two 24119 kinds of outer edges, namely, rigidly and loosely clamped edges, 24120 analytical solutions of the plate have been obtained by the modified 24121 iteration method. 24122 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA. 24123 RP LIU, RH, JINAN UNIV,CANTON 510632,PEOPLES R CHINA. 24124 CR AKASAKA T, 1955, J JAP SOC AERONAUT E, V3, P279 24125 ANDRYEVA LE, 1962, ELASTIC ELEMENTS INS 24126 ANDRYEWA LE, 1955, ENG COLLECTION SBORN, V21, P128 24127 BURMISTROV EV, 1960, ENG COLLECTION, V27, P185 24128 CHEN SL, 1980, APPL MATH MECH, V1, P261 24129 FEODOSEV VI, 1945, PRIKL MAT MEKH, V9, P389 24130 FEODOSEV VI, 1949, ELASTIC ELEMENTS PRE 24131 HARINGX JA, 1956, APPL SCI RES A, V16, P45 24132 HARINGX JA, 1957, T ASME, V79, P55 24133 LIU RH, 1965, B SCI, V3, P253 24134 LIU RH, 1978, ACTA MECH SINICA, V1, P47 24135 LIU RH, 1979, J CHINA U SCI TECHNO, V9, P75 24136 LIU RH, 1984, INT J NONLINEAR MECH, V19, P409 24137 LIU RH, 1984, SCI SINICA SER A, V27, P640 24138 LIU RH, 1984, SOLID MECH ARCH, V9, P383 24139 LIU RH, 1985, SCI SINICA SER A, V28, P959 24140 LIU RH, 1987, ADV APPL MATH MECH C, V1, P138 24141 LIU RH, 1988, APPL MATH MECH, V9, P711 24142 LIU RH, 1989, INT J NONLINEAR MECH, V24, P165 24143 PANOV DY, 1941, PRIKL MAT MEKH, V5, P308 24144 YEH KY, 1965, B SCI, V2, P142 24145 YEH KY, 1965, B SCI, V2, P145 24146 NR 22 24147 TC 2 24148 SN 0020-7462 24149 J9 INT J NON-LINEAR MECH 24150 JI Int. J. Non-Linear Mech. 24151 PD MAY 24152 PY 1993 24153 VL 28 24154 IS 3 24155 BP 353 24156 EP 364 24157 PG 12 24158 SC Mechanics 24159 GA KZ772 24160 UT ISI:A1993KZ77200007 24161 ER 24162 24163 PT J 24164 AU DAVID, AK 24165 LI, YZ 24166 TI EFFECT OF INTER-TEMPORAL FACTORS ON THE REAL-TIME PRICING OF ELECTRICITY 24167 SO IEEE TRANSACTIONS ON POWER SYSTEMS 24168 DT Article 24169 DE REAL TIME PRICING; POWER ECONOMICS; POWER GENERATION DISPATCH; LOAD 24170 MANAGEMENT; ENERGY MANAGEMENT 24171 AB Dynamic tariffs such as spot pricing are meaningful as indirect load 24172 management tools only if customers are sensitive to inter-temporal 24173 price variations. However, little attention has been paid so far to 24174 understanding the mechanisms of cross-time price elasticity of demand, 24175 inter-temporal definitions of customer utility, and the interaction of 24176 these two effects with the supply side factors of least cost system 24177 operation and dispatch. The importance of these interactions is 24178 enhanced in circumstances where competition between suppliers is 24179 envisaged or when it is desired to use a common spot price for several 24180 disparate customers. This paper develops conceptual and theoretical 24181 models for this purpose, describes computerized solution algorithms and 24182 provides simulation examples. 24183 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA. 24184 RP DAVID, AK, HONG KONG POLYTECH,KOWLOON,HONG KONG. 24185 CR DAVID AK, IN PRESS INT J ELECT 24186 DAVID AK, 1988, IEE P-GENER TRANSM D, V135, P378 24187 DAVID AK, 1989, IEEE T POWER SYST, V4, P904 24188 DAVID AK, 1991, NOV P IEE C ADV POW 24189 SCHWEPPE FC, 1988, SPOT PRICING ELECTRI 24190 NR 5 24191 TC 4 24192 SN 0885-8950 24193 J9 IEEE TRANS POWER SYST 24194 JI IEEE Trans. Power Syst. 24195 PD FEB 24196 PY 1993 24197 VL 8 24198 IS 1 24199 BP 44 24200 EP 52 24201 PG 9 24202 SC Engineering, Electrical & Electronic 24203 GA KZ377 24204 UT ISI:A1993KZ37700007 24205 ER 24206 24207 PT J 24208 AU HE, GQ 24209 CHEN, YM 24210 TI AN INVERSE PROBLEM FOR THE BURGERS-EQUATION 24211 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 24212 DT Article 24213 AB In this paper the Generalized Pulse-Spectrum Technique (GPST) is 24214 extended to solve an inverse problem for the Burgers equation. We prove 24215 that the GPST is equivalent in some sense to the Newton-Kautorovich 24216 iteration method. A feasible numerical implementation is presented in 24217 the paper and some examples are excuted. The numerical results show 24218 that this procedure works quite well. 24219 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA. 24220 SUNY STONY BROOK,DEPT APPL MATH & STAT,STONY BROOK,NY 11794. 24221 CR BURGERS JM, 1948, ADV APPL MECH, V1, P171 24222 BURGERS JM, 1974, NONLINEAR DIFFUSION 24223 CHEN YM, 1983, J COMPUT PHYS, V50, P193 24224 CHEN YM, 1983, SEP US CHIN WORKSH A 24225 LIONS JL, 1972, NONHOMOGENEOUS BOUND 24226 LIU XY, 1987, SIAM J SCI STAT COMP, V8, P436 24227 TEMAM R, 1982, J DIFFER EQUATIONS, V43, P73 24228 TEMAM R, 1984, NAVIER STOKES EQUATI 24229 TIKHONOV AN, 1977, SOLUTIONS ILL POSED 24230 WHITHAM GB, 1974, LINEAR NONLINEAR WAV 24231 NR 10 24232 TC 0 24233 SN 0254-9409 24234 J9 J COMPUT MATH 24235 JI J. Comput. Math. 24236 PD APR 24237 PY 1993 24238 VL 11 24239 IS 2 24240 BP 103 24241 EP 112 24242 PG 10 24243 SC Mathematics, Applied; Mathematics 24244 GA KZ192 24245 UT ISI:A1993KZ19200002 24246 ER 24247 24248 PT J 24249 AU LIN, CS 24250 YAQOOB, MT 24251 TI AN EFFICIENT FORMULATION TO FIND THE SCATTERING FIELD OF A CONDUCTING 24252 CYLINDER COATED WITH LOSSY MAGNETIC MATERIAL 24253 SO JOURNAL OF APPLIED PHYSICS 24254 DT Article 24255 AB A new formulation for the scattered field from a two dimensional 24256 conducting cylinder coated with a lossy magnetic material is presented 24257 for transverse electric polarization of the incident field. A 24258 conduction current on the conducting surface and a magnetic 24259 polarization current in the coating material is supposed to be induced 24260 when an electromagnetic field is incident over the cylinder. The 24261 scattered field is supposed to be originated in these induced currents. 24262 Two H-field integral equations are developed, which are then solved by 24263 the Method of Moments to find these currents. Scattering cross section 24264 for circular configuration is calculated and compared with exact 24265 solution. Good agreement of results is achieved. The advantage of the 24266 formulation is that it solves the scattered field without the 24267 computation of complex argument Hankel functions. Second, by 24268 considering the polarization of the magnetic coating, the effects of 24269 surface wave excitation are automatically included in the solution. 24270 C1 GOVT COLL,DEPT PHYS,BHAKKAR,PAKISTAN. 24271 RP LIN, CS, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 24272 CR ANTAR YMM, 1989, IEEE T ANTENN PROPAG, V37, P564 24273 ARVAS E, 1989, IEEE T ANTENN PROPAG, V37, P546 24274 HARRINGTON RF, 1968, FIELD COMPUTATION MO 24275 HELSTROM CW, 1963, SCATTERING CYLINDER, P133 24276 JIN JM, 1988, IEEE T ANTENN PROPAG, V36, P50 24277 LIN CS, 1992, J APPL PHYS, V72, P788 24278 NR 6 24279 TC 0 24280 SN 0021-8979 24281 J9 J APPL PHYS 24282 JI J. Appl. Phys. 24283 PD APR 15 24284 PY 1993 24285 VL 73 24286 IS 8 24287 BP 4038 24288 EP 4041 24289 PG 4 24290 SC Physics, Applied 24291 GA KY567 24292 UT ISI:A1993KY56700068 24293 ER 24294 24295 PT J 24296 AU DING, WY 24297 CAO, WG 24298 XU, ZR 24299 YAO, Y 24300 SHI, ZJ 24301 HAN, ZH 24302 TI SIMPLE SYNTHESIS OF DIMETHYL 4-METHYL-6-PERFLUOROALKYLISOPHTHALATES AND 24303 DIMETHYL 5-PERFLUOROALKYLBIPHENYL-2,4-DICARBOXYLATES VIA ACYCLIC 24304 PRECURSORS 24305 SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 1 24306 DT Article 24307 AB Reaction of methyl propynoate 2 with 24308 acetylmethylenetriphenylphosphorane 1 a or 24309 benzoylmethylenetriphenylphosphorane 1b at 90-degrees-C gives methyl 24310 5-oxo-2-(triphenylphosphoranylidene)hex-3-enoate 4a or methyl 24311 4-benzoyl-2-(triphenylphosphoranylidene)but-3-enoate 4b as the main 24312 product, respectively. Phosphoranes 4a or 4b can further react with 24313 methyl perfluoroalkynoates 5a and 5b to afford dimethyl 24314 2-(3-oxo-1-perfluoroalkylbut-1-enyl)-4-(triphenylphosphoranylidene)pent- 24315 2-enedioates 6a and 6b or dimethyl 24316 2-(2-benzoyl-1-perfluoroalkylvinyl)-4-(triphenylphosphoranylidene)pent-2 24317 -enedioates 6c and 6d, respectively. Diemethyl 24318 4-methyl-6-perfluoroalkylisophthalates 7a and 7b or dimethyl 24319 5-perfluoroalkylbiphenyl-2,4-dicarboxylates 7c and 7d were prepared in 24320 high yield via intramolecular Wittig reaction of phosphoranes 6a/6b or 24321 6c/6d in benzene or methanol. The structures of compounds 4a, 6a and 7a 24322 were confirmed by IR, MS and H-1, F-19 and C-13 NMR spectroscopy and 24323 elemental analyses. Reaction mechanisms for the formation of compounds 24324 4, 6 and 7 are proposed. 24325 RP DING, WY, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES 24326 R CHINA. 24327 CR DING WY, 1987, TETRAHEDRON LETT, V28, P81 24328 DING WY, 1992, SYNTHESIS-STUTTGART, P635 24329 DING WY, 1993, UNPUB CHIN J CHEM, V11, P67 24330 HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47 24331 JUNG ME, 1988, J AM CHEM SOC, V110, P3965 24332 RAMIREZ F, 1957, J ORG CHEM, V22, P41 24333 WOLF V, 1953, CHEM BER, V86, P735 24334 NR 7 24335 TC 10 24336 SN 0300-922X 24337 J9 J CHEM SOC PERKIN TRANS 1 24338 JI J. Chem. Soc.-Perkin Trans. 1 24339 PD APR 7 24340 PY 1993 24341 IS 7 24342 BP 855 24343 EP 858 24344 PG 4 24345 SC Chemistry, Organic 24346 GA KX923 24347 UT ISI:A1993KX92300020 24348 ER 24349 24350 PT J 24351 AU HE, GQ 24352 TI A KIND OF A POSTERIORI PARAMETER CHOICES FOR THE ITERATED TIKHONOV 24353 REGULARIZATION METHOD 24354 SO CHINESE SCIENCE BULLETIN 24355 DT Article 24356 DE ILL-POSED PROBLEM; REGULARIZATION METHOD; A POSTERIORI PARAMETER CHOICE 24357 RP HE, GQ, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 24358 NR 0 24359 TC 1 24360 SN 1001-6538 24361 J9 CHIN SCI BULL 24362 JI Chin. Sci. Bull. 24363 PD MAR 24364 PY 1993 24365 VL 38 24366 IS 5 24367 BP 356 24368 EP 360 24369 PG 5 24370 SC Multidisciplinary Sciences 24371 GA KV496 24372 UT ISI:A1993KV49600002 24373 ER 24374 24375 PT J 24376 AU XIE, XY 24377 EVANS, RJ 24378 TI FREQUENCY-WAVE-NUMBER TRACKING USING HIDDEN MARKOV-MODELS 24379 SO IEEE TRANSACTIONS ON SIGNAL PROCESSING 24380 DT Letter 24381 ID MULTIPLE 24382 AB This correspondence extends earlier work by the authors on multiple 24383 frequency line tracking using hidden Markov models (HMM's) to also 24384 include wavenumber estimation. The main idea is to model the frequency 24385 and wavenumber of each target using HMM and then to track these signals 24386 using a Viterbi algorithm. The input measurements to the Viterbi 24387 algorithm are two-dimensional (2-D) Fourier transforms of the array 24388 output signals. Several supporting simulations show that the approach 24389 works well, although it is computationally expensive. 24390 C1 UNIV MELBOURNE,DEPT ELECT & ELECTR ENGN,PARKVILLE,VIC 3052,AUSTRALIA. 24391 RP XIE, XY, SHANGHAI UNIV SCI & TECHNOL,DEPT COMP SCI,SHANGHAI,PEOPLES R 24392 CHINA. 24393 CR BARSHALOM Y, 1988, TRACKING DATA ASS 24394 DAVENPORT WB, 1987, INTRO THEORY RANDOM 24395 DEGRAAF SR, 1983, IEEE T ACOUST SPEECH, V33, P1368 24396 HALPENY OS, 1975, IEEE T CIRCUITS SYST, V22, P552 24397 HAYKIN S, 1983, NONLINEAR METHODS SP, CH1 24398 JOHNSON DH, 1982, P IEEE, V70, P1018 24399 RABINER LR, 1986, IEEE ASSP MAGAZI JAN, P4 24400 RABINER LR, 1989, P IEEE, V77, P257 24401 SCHMIDT RO, 1986, IEEE T ANTENN PROPAG, V34, P276 24402 STARKEY PG, 1987, GEC-J RES, V5, P193 24403 STREIT RL, 1990, IEEE T ACOUST SPEECH, V38, P586 24404 SWORD CK, 1990, IEEE T AERO ELEC SYS, V26, P367 24405 XIE XY, 1991, IEEE T SIGNAL PROCES, V39, P2659 24406 XIE XY, 1993, IEEE T SIGNAL PROCES, V41, P334 24407 NR 14 24408 TC 2 24409 SN 1053-587X 24410 J9 IEEE TRANS SIGNAL PROCESS 24411 JI IEEE Trans. Signal Process. 24412 PD MAR 24413 PY 1993 24414 VL 41 24415 IS 3 24416 BP 1391 24417 EP 1394 24418 PG 4 24419 SC Engineering, Electrical & Electronic 24420 GA KU545 24421 UT ISI:A1993KU54500029 24422 ER 24423 24424 PT J 24425 AU TU, RJ 24426 ZHENG, Q 24427 TI INTEGRAL GLOBAL OPTIMIZATION METHOD IN STATISTICAL APPLICATIONS 24428 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS 24429 DT Article 24430 ID MAXIMUM-LIKELIHOOD; EM ALGORITHM 24431 AB Many statistical computations need a minimization method which can find 24432 global of a nonconvex, nonsmooth and even discontinuous objective 24433 function. Conventional optimization methods hardly serve that. The 24434 integral optimization method has been developed to satisfy such 24435 requirements. In this paper, we apply this method to several problems 24436 in statistics, such as nonlinear regression, maximum likelihood 24437 estimation for three-pararmeter Weibull distribution, mixture densities 24438 and sampling, and show that the results obtained by a global 24439 minimization method are better than those by a gradient-based one. 24440 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA. 24441 RP TU, RJ, WICHITA STATE UNIV,DEPT MATH,WICHITA,KS 67208. 24442 CR ARTHANARI TS, 1981, MATH PROGRAMMING STA 24443 CHEW SH, 1988, LECTURE NOTES EC MAT, V298 24444 DEMPSTER AP, 1977, J ROY STAT SOC B MET, V39, P1 24445 MCCORMICK GP, 1983, NONLINEAR PROGRAMMIN 24446 MCCORMICK GP, 1988, EXAMPLE 2 LOCAL MAXI 24447 RATKOWSKY DA, 1983, NONLINEAR REGRESSION 24448 REDNER RA, 1984, SIAM REV, V26, P195 24449 ROCHETTE H, 1974, J AM STAT ASSOC, V69, P246 24450 ZANAKIS SH, 1986, J STATISTICAL COMPUT, V25, P53 24451 ZHENG Q, 1978, ACTAMATH APPLICATAE, V2, P161 24452 ZHENG Q, 1985, ACTA MATH APPL SINIC, V1, P118 24453 ZHENG Q, 1985, ACTA MATH APPLICATAE, V1, P67 24454 ZHENG Q, 1988, LECTURE NOTES EC MAT, V302, P18 24455 ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205 24456 ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317 24457 ZHENG Q, 1991, COMPUT MATH APPL, V21, P17 24458 NR 16 24459 TC 1 24460 SN 0898-1221 24461 J9 COMPUT MATH APPL 24462 JI Comput. Math. Appl. 24463 PD MAY-JUN 24464 PY 1993 24465 VL 25 24466 IS 10-11 24467 BP 9 24468 EP 17 24469 PG 9 24470 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied 24471 GA KU420 24472 UT ISI:A1993KU42000003 24473 ER 24474 24475 PT J 24476 AU ZHENG, Q 24477 TI DISCONTINUITY AND MEASURABILITY OF ROBUST FUNCTIONS IN THE INTEGRAL 24478 GLOBAL MINIMIZATION 24479 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS 24480 DT Article 24481 AB Robustness and measurability of a set and of a function are the 24482 foundation of the integral approach to global minimization. However, a 24483 robust function may be discontinuous and nonmeasurable. In this paper, 24484 we show that the set of points of discontinuity of a robust function 24485 has empty interior and is of the first category. A robust function on 24486 the interval [0,1] is constructed such that the Lebesgue measure of its 24487 set of points of discontinuity approaches 1. We also show that there is 24488 a robust set on [0,1] which is Lebesgue nonmeasurable, and then a 24489 Lebesgue nonmeasurable robust function is constructed. 24490 RP ZHENG, Q, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R 24491 CHINA. 24492 CR BAIRE R, 1905, LECONS FONCTIONS DIS 24493 BOREL E, 1905, LECONS FONCTIONS VAR 24494 GALPERIN E, IN PRESS INTEGRAL GL 24495 GALPERIN E, 1991, GLOBAL SOLUTIONS OPT 24496 HEWITT E, 1975, REAL ABSTRACT ANAL 24497 KULLER RG, 1969, TOPICS MODERN ANAL 24498 LEBESGUE MH, 1898, B SCI MATH 24499 OXTOBY JC, 1980, MEASURE CATEGORY 24500 ROYDEN HL, 1968, REAL ANAL 24501 ZHENG Q, 1985, NUMERICAL ANAL J CHI, V8, P31 24502 ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205 24503 ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317 24504 ZHENG Q, 1991, COMPUT MATH APPL, V21, P17 24505 NR 13 24506 TC 3 24507 SN 0898-1221 24508 J9 COMPUT MATH APPL 24509 JI Comput. Math. Appl. 24510 PD MAY-JUN 24511 PY 1993 24512 VL 25 24513 IS 10-11 24514 BP 79 24515 EP 88 24516 PG 10 24517 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied 24518 GA KU420 24519 UT ISI:A1993KU42000011 24520 ER 24521 24522 PT J 24523 AU GALPERIN, EA 24524 ZHENG, Q 24525 TI SOLUTION AND CONTROL OF PDE VIA GLOBAL OPTIMIZATION METHODS 24526 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS 24527 DT Article 24528 ID PARTIAL-DIFFERENTIAL EQUATIONS; COMPUTATIONAL FLUID-DYNAMICS; DATA 24529 APPROXIMATION SCHEME; FINITE-ELEMENT METHOD; PARABOLIC EQUATIONS; 24530 MULTIQUADRICS; SYSTEMS 24531 AB Based on the concept of eta-equivalent solutions (not to be confused 24532 with approximations to the exact solution), a new consideration is 24533 given to ill-posed [1,2] and overdetermined PDE problems and to 24534 problems with nonexistent solutions [3]. Then a new method based on 24535 full global optimization techniques is developed for solution and 24536 control of processes described by partial differential equations. The 24537 ideas are illustrated by examples, and a case study is presented in 24538 comparison with the quasi-reversibility method [4]. 24539 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA. 24540 RP GALPERIN, EA, UNIV QUEBEC,DEPT MATH & INFORMAT,CP 8888,SUCC A,MONTREAL 24541 H3C 3P8,QUEBEC,CANADA. 24542 CR BAKER GA, 1980, NONL ANAL THEORY MET, V4, P579 24543 BENISRAEL A, 1974, GENERALIZED INVERSES 24544 CHEW SH, 1988, LECTURE NOTES EC MAT, V298 24545 COPSON ET, 1975, PARTIAL DIFFERENTIAL 24546 COURANT R, 1928, MATH ANN, V100, P32 24547 DOUGLAS J, 1970, SIAM J NUMER ANAL, V7, P575 24548 EPSTEIN B, 1975, PARTIAL DIFFERENTIAL 24549 FARAGO I, 1991, COMPUT MATH APPL, V21, P49 24550 FARAGO I, 1991, COMPUT MATH APPL, V21, P59 24551 GALPERIN EA, 1990, CUBIC ALGORITHM OPTI 24552 GALPERIN EA, 1990, NEW THEORY CONTINUOU 24553 GARABEDIAN PR, 1964, PARTIAL DIFFERENTIAL 24554 GROMOV ML, 1973, MATH USSR IZV, V7, P329 24555 HADAMARD J, 1952, LECTURES CAUCHYS PRO 24556 HARDY RL, 1990, COMPUT MATH APPL, V19, P163 24557 KANSA EJ, 1990, COMPUT MATH APPL, V19, P127 24558 KANSA EJ, 1990, COMPUT MATH APPL, V19, P147 24559 LATTES R, 1967, METHODE QUASIREVERSI 24560 PENROSE R, 1955, P CAMBRIDGE PHILOS S, V51, P406 24561 PENROSE R, 1956, P CAMBRIDGE PHILOS S, V52, P17 24562 SPRING D, 1983, ANN I FOURIER, V33, P121 24563 NR 21 24564 TC 4 24565 SN 0898-1221 24566 J9 COMPUT MATH APPL 24567 JI Comput. Math. Appl. 24568 PD MAY-JUN 24569 PY 1993 24570 VL 25 24571 IS 10-11 24572 BP 103 24573 EP 118 24574 PG 16 24575 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied 24576 GA KU420 24577 UT ISI:A1993KU42000013 24578 ER 24579 24580 PT J 24581 AU GALPERIN, EA 24582 PAN, ZX 24583 ZHENG, Q 24584 TI APPLICATION OF GLOBAL OPTIMIZATION TO IMPLICIT SOLUTION OF 24585 PARTIAL-DIFFERENTIAL EQUATIONS 24586 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS 24587 DT Article 24588 ID COMPUTATIONAL FLUID-DYNAMICS; DATA APPROXIMATION SCHEME; MULTIQUADRICS 24589 AB A numerical method of finding implicit eta-solutions of partial 24590 differential equations is presented. 24591 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA. 24592 RP GALPERIN, EA, UNIV QUEBEC,DEPT MATH & COMP SCI,CP 8888,SUCC A,MONTREAL 24593 H3C 3P8,QUEBEC,CANADA. 24594 CR GALPERIN EA, 1991, GLOBAL SOLUTIONS OPT 24595 HARDY RL, 1990, COMPUT MATH APPL, V19, P163 24596 KANSA EJ, 1990, COMPUT MATH APPL, V19, P127 24597 KANSA EJ, 1990, COMPUT MATH APPL, V19, P147 24598 LEVEQUE RJ, 1982, SIAM J NUMER ANAL, P1091 24599 RICHTMYER RD, 1967, DIFFERENCE METHODS I 24600 NR 6 24601 TC 0 24602 SN 0898-1221 24603 J9 COMPUT MATH APPL 24604 JI Comput. Math. Appl. 24605 PD MAY-JUN 24606 PY 1993 24607 VL 25 24608 IS 10-11 24609 BP 119 24610 EP 124 24611 PG 6 24612 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied 24613 GA KU420 24614 UT ISI:A1993KU42000014 24615 ER 24616 24617 PT J 24618 AU GUO, YP 24619 DENG, XN 24620 TI ELECTRODEPOSITION OF CDTE THIN-FILMS AND THEIR PHOTOELECTROCHEMICAL 24621 BEHAVIOR 24622 SO SOLAR ENERGY MATERIALS AND SOLAR CELLS 24623 DT Article 24624 ID SOLAR-CELLS; CADMIUM; DEPOSITION; TELLURIDE 24625 AB CdTe thin films were electrodeposited on Ni substrates from aqueous 24626 solutions containing CdSO4, TeO2 and H2SO4 with an interchangeable 24627 rotating disk electrode. The variations in the composition of the CdTe 24628 films with cathodic potentials and heat treatment temperatures were 24629 studied by the polarographic method. The deposition and annealing 24630 parameters had been optimized to yield a good photoelectrochemical 24631 performance. After surface modification, the conversion efficiencies 24632 were 0.61% and 5.3% for the cells p-CdTe/SnCl2 (sat.), 0.2M HCl/C and 24633 n-CdTe/1 M Na2S, 1 M S, 1 M NaOH/C, respectively. 24634 RP GUO, YP, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES 24635 R CHINA. 24636 CR BHATTACHARYA RN, 1984, J ELECTROCHEM SOC, V131, P2033 24637 DANAHER WJ, 1983, AUST J CHEM, V36, P1011 24638 DARKOWSKI A, 1985, J ELECTROCHEM SOC, V132, P2768 24639 DARKOWSKI A, 1986, TALANTA, V33, P187 24640 FULOP G, 1982, APPL PHYS LETT, V40, P327 24641 GORE RB, 1989, J APPL PHYS, V65, P2693 24642 GORE RB, 1989, SOL ENERG MATER, V18, P159 24643 GUO YP, IN PRESS SOC ENERGY 24644 LICHT S, 1986, J PHYS CHEM-US, V90, P1096 24645 LLABRES J, 1984, J ELECTROCHEM SOC, V131, P464 24646 LOAEZA P, 1990, J MATER SCI LETT, V9, P11 24647 PANICKER MPR, 1978, J ELECTROCHEM SOC, V125, P566 24648 SANYAL GS, 1990, SOL ENERG MATER, V20, P395 24649 SHEN J, 1986, ACTA PHYSICOCHIMICA, V2, P554 24650 TAKAHASHI M, 1985, J APPL PHYS, V58, P4292 24651 UOSAKI K, 1984, ELECTROCHIM ACTA, V29, P279 24652 NR 16 24653 TC 10 24654 SN 0927-0248 24655 J9 SOLAR ENERG MATER SOLAR CELLS 24656 JI Sol. Energy Mater. Sol. Cells 24657 PD MAR 24658 PY 1993 24659 VL 29 24660 IS 2 24661 BP 115 24662 EP 122 24663 PG 8 24664 SC Materials Science, Multidisciplinary; Energy & Fuels 24665 GA KU287 24666 UT ISI:A1993KU28700003 24667 ER 24668 24669 PT J 24670 AU GUO, YP 24671 DENG, XN 24672 TI EFFECTS OF SURFACE MODIFICATION ON THE PEC PERFORMANCE OF 24673 ELECTROCHEMICALLY DEPOSITED N-CDTE FILMS 24674 SO SOLAR ENERGY MATERIALS AND SOLAR CELLS 24675 DT Article 24676 ID P-TYPE CDTE; THIN-FILMS; CADMIUM TELLURIDE; PHOTOELECTROCHEMICAL CELLS; 24677 INSITU PREPARATION; SOLAR-CELLS; ELECTRODEPOSITION; EFFICIENCY; 24678 ELECTROLYTES; STABILITY 24679 AB Modification of electrodeposited n-CdTe thin films by PbS showed 24680 considerably improvement of the performance and stability of n-CdTe 24681 photoelectrochemical cells. The enhanced parameters of PEC solar cells 24682 after modification are V(oc) = 0.515 V, I(sc) = 13 mA/cm2, FF = 0.385 24683 and eta = 5.2% under 50 mW/cm2 illumination, compared to V(oc) = 0.44 24684 V, I(sc) = 6 mA/cm2, FF = 0.31 and eta = 1.6% observed before 24685 modification. The enhanced parameters are attributed to the greater 24686 band bending induced by excess surface charge, as well as the enhanced 24687 solution kinetics due to a good electrocatalysis of PbS for the 24688 polysulfide redox system. 24689 RP GUO, YP, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES 24690 R CHINA. 24691 CR BASOL BM, 1984, J APPL PHYS, V55, P601 24692 BHATTACHARYA RN, 1984, J ELECTROCHEM SOC, V131, P2032 24693 BHATTACHARYA RN, 1985, J ELECTROCHEM SOC, V132, P732 24694 BOSE DN, 1984, J ELECTROCHEM SOC, V131, P850 24695 CAHEN D, 1979, J AM CHEM SOC, V101, P3969 24696 DANAHER WJ, 1983, AUST J CHEM, V36, P1011 24697 DARKOWSKI A, 1985, J ELECTROCHEM SOC, V132, P2768 24698 ELLIS AB, 1977, J AM CHEM SOC, V99, P2839 24699 FULOP G, 1982, APPL PHYS LETT, V40, P327 24700 GAUGASH P, 1981, J ELECTROCHEM SOC, V128, P924 24701 GROE RB, 1989, SOL ENERG MATER, V18, P159 24702 GUTIERREZ MT, 1990, SOL ENERG MATER, V20, P387 24703 HELLER A, 1978, J AM CHEM SOC, V100, P684 24704 HODES G, 1980, J ELECTROCHEM SOC, V127, P544 24705 HODES G, 1981, SOL ENERG MATER, V4, P373 24706 LLABRES J, 1984, J ELECTROCHEM SOC, V131, P464 24707 LOAEZA P, 1990, J MATER SCI LETT, V9, P11 24708 MANDAL KC, 1987, J PHYS CHEM-US, V91, P4011 24709 MANDAL KC, 1987, J SOLID STATE CHEM, V71, P559 24710 MULLER N, 1981, APPL PHYS LETT, V39, P283 24711 PANICKER MPR, 1978, J ELECTROCHEM SOC, V125, P566 24712 PARKINSON BA, 1979, J ELECTROCHEM SOC, V126, P954 24713 PENG R, 1984, B MATER ENERGY SYSTE, V2, P25 24714 TAKAHASHI M, 1984, J APPL PHYS, V55, P3879 24715 TAKAHASHI M, 1986, J ELECTROCHEM SOC, V133, P266 24716 TENNE R, 1983, APPL PHYS LETT, V43, P201 24717 TENNE R, 1983, J ELECTROANAL CH INF, V143, P103 24718 UOSAKI K, 1984, ELECTROCHIM ACTA, V29, P279 24719 NR 28 24720 TC 1 24721 SN 0927-0248 24722 J9 SOLAR ENERG MATER SOLAR CELLS 24723 JI Sol. Energy Mater. Sol. Cells 24724 PD MAR 24725 PY 1993 24726 VL 29 24727 IS 2 24728 BP 123 24729 EP 130 24730 PG 8 24731 SC Materials Science, Multidisciplinary; Energy & Fuels 24732 GA KU287 24733 UT ISI:A1993KU28700004 24734 ER 24735 24736 PT J 24737 AU WANG, EK 24738 YU, ZM 24739 QI, DY 24740 XU, CM 24741 TI ALKALI AND ALKALINE-EARTH METAL-ION TRANSFER ACROSS THE LIQUID-LIQUID 24742 INTERFACE FACILITATED BY IONOPHORE ETH157 24743 SO ELECTROANALYSIS 24744 DT Article 24745 DE LIQUID-LIQUID INTERFACE; ION TRANSFER; IONOPHORE 24746 ID WATER 24747 AB The H+, Li+, Na+, K+, Mg2+, Ca2+ and Ba2+ ion transfer across the 24748 water/nitrobenzene (NB) and water/1,2-dichloroethane (DCE) interfaces, 24749 facilitated by the ionophore ETH157, has been investigated by cyclic 24750 voltammetry (CV). The mechanism of the transfer process has been 24751 discussed, and the diffusion coefficients and the stability constants 24752 of the complexes formed in the nitrobenzene phase have been determined. 24753 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 20072,PEOPLES R CHINA. 24754 RP WANG, EK, CHINESE ACAD SCI,CHANGCHUN INST APPL CHEM,ELECTROANALYT CHEM 24755 LAB,CHANGCHUN 130022,PEOPLES R CHINA. 24756 CR AMMANN D, 1985, NEUROSCI LETT, V57, P267 24757 FUJINAGA T, 1982, BUNSEKI KAGAKU, V31, E301 24758 HOMOLKA D, 1982, J ELECTROANAL CHEM, V138, P29 24759 KIHARA S, 1982, BUNSEKI KAGAKU, V31, E293 24760 KORYTA J, 1983, ION SEL ELECTRODE R, V5, P131 24761 VANYSEK P, 1985, ELECTROCHEMISTRY LIQ 24762 NR 6 24763 TC 6 24764 SN 1040-0397 24765 J9 ELECTROANAL 24766 JI Electroanalysis 24767 PD FEB 24768 PY 1993 24769 VL 5 24770 IS 2 24771 BP 149 24772 EP 154 24773 PG 6 24774 SC Chemistry, Analytical 24775 GA KT389 24776 UT ISI:A1993KT38900008 24777 ER 24778 24779 PT J 24780 AU GUO, GY 24781 CHEN, YL 24782 TI OPTICAL-PROPERTIES OF A CHEMICALLY DURABLE PHOSPHATE-GLASS 24783 SO JOURNAL OF MATERIALS SCIENCE LETTERS 24784 DT Article 24785 ID THERMAL-EXPANSION 24786 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA. 24787 RP GUO, GY, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI & ENGN,SHANGHAI 24788 200030,PEOPLES R CHINA. 24789 CR BUNKER BC, 1984, J NON-CRYST SOLIDS, V64, P291 24790 BUNKER BC, 1987, J AM CERAM SOC, V70, P425 24791 MINAMI T, 1977, J AM CERAM SOC, V60, P232 24792 MULLER D, 1983, PHYS CHEM GLASSES, V24, P37 24793 PENG YB, 1991, GLASS TECHNOL, V32, P166 24794 PENG YB, 1991, GLASS TECHNOL, V32, P200 24795 RAY NH, 1979, BRIT POLYM J, V11, P63 24796 SALES BC, 1986, J NON-CRYST SOLIDS, V79, P83 24797 SALES BC, 1987, J AM CERAM SOC, V70, P615 24798 NR 9 24799 TC 3 24800 SN 0261-8028 24801 J9 J MATER SCI LETT 24802 JI J. Mater. Sci. Lett. 24803 PD MAR 1 24804 PY 1993 24805 VL 12 24806 IS 5 24807 BP 265 24808 EP 267 24809 PG 3 24810 SC Materials Science, Multidisciplinary 24811 GA KR345 24812 UT ISI:A1993KR34500002 24813 ER 24814 24815 PT J 24816 AU LIU, GL 24817 TI VARIATIONAL-PRINCIPLES AND GENERALIZED VARIATIONAL-PRINCIPLES FOR FULLY 24818 3-D TRANSONIC FLOW WITH SHOCKS IN A TURBO-ROTOR .2. ROTATIONAL FLOW 24819 SO ACTA MECHANICA 24820 DT Article 24821 AB Two variational principle (VP) families for fully 3-D transonic 24822 potential, Beltrami rotational flows with shocks in a rotor are put 24823 forth in terms of stream functions. By making use of functional 24824 variations with variable domain one succeeded in converting most of the 24825 boundary conditions and matching conditions across unknown 24826 discontinuities (such as shocks and free trailing vortex sheets), 24827 including the generalized Rankine-Hugoniot shock relations, into 24828 natural ones. This paper is intended to provide a rigorous theoretical 24829 foundation for constructing a novel computational method which 24830 incorporating a new finite element with self-adapting embedded 24831 discontinuities (now under development) and the artificial density 24832 concept, could capture all unknown discontinuities automatically and 24833 clearly. The applicability of VPs for rotational flow, in contrast to 24834 those for Beltrami flow, is not limited to transonic flow with moderate 24835 Mach numbers. 24836 C1 SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA. 24837 RP LIU, GL, SHANGHAI UNIV SCI & TECHNOL,149 YAN CHANG RD,SHANGHAI 24838 200072,PEOPLES R CHINA. 24839 CR CAREY GF, 1978, COMPUTER METHODS APP, V13, P129 24840 CHAN SKT, 1975, AIAA7579 PAP 24841 CHEN KM, 1982, CHINESE J ENG THERMO, V3, P145 24842 DECONINCK H, 1981, ASME, V103, P665 24843 GIESE JH, 1951, J MATH PHYS, V30, P31 24844 HAFEZ MM, 1983, AIAA J, V21, P327 24845 KRIMERMAN Y, 1978, J MECH ENG SCI, V20, P149 24846 KUZNETSOV BG, 1959, J NAT TOM U, V144, P117 24847 LASKARIS TE, 1978, AIAA J, V16, P717 24848 LIU GI, 1986, J ENG GAS TURB POWER, V108, P254 24849 LIU GL, 1979, ACTA MECH SINICA, V11, P303 24850 LIU GL, 1980, SCI SINICA, V23, P1339 24851 LIU GL, 1981, ACTA MECH SINICA, V13, P421 24852 LIU GL, 1981, CHINESE J ENG THERMO, V2, P335 24853 LIU GL, 1981, LECTURE NOTES 24854 LIU GL, 1982, P INT C FEM SHANGH C, P520 24855 LIU GL, 1983, 2ND P AS C FLUID MEC, P698 24856 LIU GL, 1983, 6TH P INT S AIR BREA, P313 24857 LIU GL, 1986, 6TH P INT S FEM FLOW, P125 24858 LIU GL, 1987, 1987 P TOK INT GAS T, V2, P256 24859 LIU GL, 1990, CHINESE J ENG THERMO, V2, P480 24860 LIU GL, 1991, ASME91GT169 PAP 24861 LIU GL, 1992, ACTA MECH, V95, P117 24862 LIU RX, 1981, SEISMOL GEOL, V3, P1 24863 NORRIE DH, 1978, FINITE ELEMENTS FLUI, V3, P363 24864 OATES GC, 1976, ASME, V98, P1 24865 QIN R, 1988, J TURBOMACH, V110, P545 24866 SERRIN J, 1959, HDB PHYSIK, V8 24867 WU CH, 1952, NACA TN2604 24868 WU WQ, 1979, CHINESE J MECH ENG, V15 24869 XU JZ, 1980, CHINESE J MECHANICAL, V16, P61 24870 NR 31 24871 TC 7 24872 SN 0001-5970 24873 J9 ACTA MECH 24874 JI Acta Mech. 24875 PY 1993 24876 VL 97 24877 IS 3-4 24878 BP 229 24879 EP 238 24880 PG 10 24881 SC Mechanics 24882 GA KN932 24883 UT ISI:A1993KN93200008 24884 ER 24885 24886 PT J 24887 AU WEI, CH 24888 XIANG, SH 24889 TI ELECTRICAL-CONDUCTIVITY OF MOLTEN SLAGS OF CAF2+AL2O3 AND 24890 CAF2+AL2O3+CAO SYSTEMS FOR ESR 24891 SO ISIJ INTERNATIONAL 24892 DT Article 24893 DE ELECTROSLAG REMELTING; MOLTEN SLAGS OF CAF2+AL2O3 AND CAF2+AL2O3+CAO 24894 SYSTEMS; ELECTRICAL CONDUCTIVITY; CONSTANT-CURRENT SINGLE PULSE 24895 TECHNIQUE WITH 3 LEAD-ELECTRODES 24896 AB The electrical conductivity of the molten slags of the CaF2 + Al2O3 and 24897 CaF2 + Al2O3 + CaO systems for the practical ESR was determined, using 24898 the constant-current single pulse technique with three lead-electrodes. 24899 All the measurements were carried out under high-purity argon 24900 atmosphere, employing a high-purity molybdenum metal crucible with pure 24901 iron wire electrodes. The effects of FeO, MnO, MgO, Cr2O3, TiO2, SiO2 24902 and other oxide components and temperature on the conductivity of the 24903 slags were examined. The results indicated that in the common 24904 concentration ranges for the ESR practice, the specific conductivity 24905 values of the slags in these two systems are monotonously increasing 24906 with the FeO and MnO contents in the slags following an essentially 24907 similar pattern; the additions of MgO, Cr2O3, and TiO2 change also 24908 evidently the conductivity but in another roughly similar mode and make 24909 it have a maximum value, whilst the influence due to a small amount of 24910 SiO2 (less-than-or-equal-to 1.5 mass%) is relatively not large; the 24911 conduction of CaF2-based multi-component and complicate liquid slags 24912 may be treated as a rate process. 24913 C1 XIAN INST MET & CONSTRUCT ENGN,DEPT MET,XIAN,PEOPLES R CHINA. 24914 RP WEI, CH, SHANGHAI UNIV SCI & TECHNOL,DEPT MET & MAT 24915 ENGN,SHANGHAI,PEOPLES R CHINA. 24916 CR 1972, HDB PROPERTIES LIQUI, P244 24917 ELGAMMAL T, 1978, ARCH EISENHUTTENWES, V49, P235 24918 EVSEEV PP, 1965, IZV VUZ CHERNAYA MET, V8, P74 24919 EVSEEV PP, 1967, AUTOMAT WELD, V20, P12 24920 EVSEEV PP, 1967, IZV VYSSH UCHEBN ZAV, V10, P55 24921 HAJDUK M, 1979, STAHL EISEN, V99, P113 24922 ISOTOMIN SA, 1975, 220275 REP 24923 KOLISNYK VN, 1964, AUTOMAT WELD, V17, P9 24924 KOLISNYK VN, 1965, AUTOMAT WELD, V18, P80 24925 KOVAL AE, 1970, IZV VUZ CHERNAYA MET, V13, P71 24926 KRAUS S, 1973, THESIS BERGAHAD 24927 KUO CK, 1964, ACTA CHIM SINICA, V30, P381 24928 LATASH YL, 1960, AUTOMAT WELD, V13, P14 24929 LOPAEV BE, 1966, AUTOMAT WELD, V19, P31 24930 MANAKOV AI, 1975, IZV VUZ CHERNAYA MET, V18, P14 24931 MILLS KC, 1979, NPL103 REP CHEM 24932 MILLS KS, 1981, INT METALS REV, V1, P21 24933 MITCHELL A, 1971, METALL T, V3, P3361 24934 OGINO K, 1977, TETSU TO HAGANE, V63, P2141 24935 OGINO K, 1978, TETSU TO HAGANE, V64, P225 24936 OGINO K, 1978, TETSU TO HAGANE, V64, P232 24937 POVOLOTSKII DY, 1970, IZV VUZ CHERN MET, V13, P8 24938 WEAST RC, 1979, HDB CHEM PHYSICS 24939 WEI CH, 1984, ACTA METALL SINICA, V20, B261 24940 WEI CH, 1987, ACTA METALL SINICA, V23, B126 24941 WEI CH, 1989, CHIN ENG CHEM METAL, V10, P87 24942 WEI CH, 1989, CHIN J MET SCI TECHN, V5, P235 24943 XIANG SH, 1989, THESIS XIAN I METALL 24944 ZHMOIDIN G, 1970, IZV AKAD NAUK SSSR M, V3, P69 24945 NR 29 24946 TC 0 24947 SN 0915-1559 24948 J9 ISIJ INT 24949 JI ISIJ Int. 24950 PY 1993 24951 VL 33 24952 IS 2 24953 BP 239 24954 EP 244 24955 PG 6 24956 SC Metallurgy & Metallurgical Engineering 24957 GA KM872 24958 UT ISI:A1993KM87200001 24959 ER 24960 24961 PT J 24962 AU MAO, DK 24963 TI A TREATMENT OF DISCONTINUITIES FOR FINITE-DIFFERENCE METHODS IN THE 24964 2-DIMENSIONAL CASE 24965 SO JOURNAL OF COMPUTATIONAL PHYSICS 24966 DT Article 24967 ID FRONT TRACKING; CONSERVATION-LAWS; ENTROPY CONDITION; SCHEMES; WAVES; 24968 INTERFACES; RESOLUTION 24969 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA. 24970 RP MAO, DK, UNIV CALIF LOS ANGELES,DEPT MATH,LOS ANGELES,CA 90024. 24971 CR CHANG SH, 1989, NASA TM102384 24972 CHERN IL, 1986, J COMPUT PHYS, V62, P83 24973 GLIMM J, 1981, ADV APPL MATH, V2, P91 24974 GLIMM J, 1985, ADV APPL MATH, V6, P259 24975 GLIMM J, 1985, ADV APPL MATH, V6, P422 24976 GLIMM J, 1986, SIAM J SCI STAT COMP, V7, P280 24977 GLIMM J, 1988, COMMUN PUR APPL MATH, V41, P569 24978 GLIMM J, 1988, SIAM J SCI STAT COMP, V9, P61 24979 GROVE J, 1989, ADV APPL MATH, V10, P201 24980 HARTEN A, 1989, J COMPUT PHYS, V83, P148 24981 HENSHAW WD, 1987, J COMPUT PHYS, V68, P25 24982 LEVEQUE RJ, 1988, NASA TM100075 24983 MAO D, 1985, J COMPUT MATH, V3, P256 24984 MAO D, 1990, UCLA CAM9019 REP 24985 MAO DK, 1991, J COMPUT PHYS, V92, P422 24986 MORETTI G, 1972, PIBAL7237 POLYT I BR 24987 OSHER S, 1984, SIAM J NUMER ANAL, V21, P217 24988 OSHER S, 1984, SIAM J NUMER ANAL, V21, P955 24989 OSHER S, 1986, IMA VOLUMES MATH ITS, V2, P229 24990 RICHTMYER RD, 1967, DIFFERENCE METHODS I 24991 SHU CW, 1987, MATH COMPUT, V49, P105 24992 SWARTZ BK, 1986, APPL NUMER MATH, V2, P385 24993 WAGNER DH, 1983, SIAM J MATH ANAL, V14, P3 24994 NR 23 24995 TC 14 24996 SN 0021-9991 24997 J9 J COMPUT PHYS 24998 JI J. Comput. Phys. 24999 PD FEB 25000 PY 1993 25001 VL 104 25002 IS 2 25003 BP 377 25004 EP 397 25005 PG 21 25006 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical 25007 GA KM221 25008 UT ISI:A1993KM22100008 25009 ER 25010 25011 PT J 25012 AU GUO, BY 25013 HUANG, W 25014 TI THE SPECTRAL-DIFFERENCE METHOD FOR COMPRESSIBLE FLOW 25015 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 25016 DT Article 25017 AB A spectral-difference scheme is proposed for semi-periodic compressible 25018 flow with strict estimation. 25019 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA. 25020 CR GUO BY, 1981, SCI SINICA A, V24, P297 25021 GUO BY, 1987, CALCOLO, V24, P263 25022 GUO BY, 1989, J COMPUT PHYS, V84, P259 25023 INGHAM DB, 1985, P ROY SOC LOND A MAT, V402, P109 25024 MACARAEG MG, 1986, J COMPUT PHYS, V62, P297 25025 MURDOCK JW, 1977, AIAA J, V15, P1167 25026 TANI A, 1976, P JAPAN ACAD, V52, P334 25027 NR 7 25028 TC 0 25029 SN 0254-9409 25030 J9 J COMPUT MATH 25031 JI J. Comput. Math. 25032 PD JAN 25033 PY 1993 25034 VL 11 25035 IS 1 25036 BP 37 25037 EP 49 25038 PG 13 25039 SC Mathematics, Applied; Mathematics 25040 GA KM180 25041 UT ISI:A1993KM18000004 25042 ER 25043 25044 PT J 25045 AU CHEN, Q 25046 WANG, ZH 25047 TI EXACT DISPERSION-RELATIONS FOR TM WAVES GUIDED BY THIN DIELECTRIC FILMS 25048 BOUNDED BY NONLINEAR MEDIA 25049 SO OPTICS LETTERS 25050 DT Article 25051 AB Exact dispersion relations for TM waves guided by thin dielectric 25052 films, surrounded on one or both sides by media with 25053 intensity-dependent refractive indices, have been derived. Numerical 25054 results for a symmetric structure are in complete agreement with those 25055 obtained by the finite-element method. 25056 RP CHEN, Q, SHANGHAI UNIV SCI & TECHNOL,WAVE SCI LAB,SHANGHAI 25057 201800,PEOPLES R CHINA. 25058 CR AGRANOVICH VM, 1981, JETP LETT+, V32, P512 25059 BERKHOER AL, 1970, ZH EKSP TEOR FIZ, V31, P486 25060 BOARDMAN AD, 1985, IEEE J QUANTUM ELECT, V21, P1701 25061 BOARDMAN AD, 1987, IEE PROC-J, V134, P152 25062 HAYATA K, 1988, IEEE T MICROW THEORY, V36, P1207 25063 MIHALACHE D, 1987, OPT LETT, V12, P187 25064 OGUSU K, 1989, IEEE T MICROW THEORY, V37, P941 25065 SEATON CT, 1985, IEEE J QUANTUM ELECT, V21, P774 25066 SEATON CT, 1985, OPT LETT, V10, P149 25067 STEGEMAN GI, 1986, NONLINEAR OPTICS MAT 25068 NR 10 25069 TC 3 25070 SN 0146-9592 25071 J9 OPTICS LETTERS 25072 JI Opt. Lett. 25073 PD FEB 15 25074 PY 1993 25075 VL 18 25076 IS 4 25077 BP 260 25078 EP 262 25079 PG 3 25080 SC Optics 25081 GA KK808 25082 UT ISI:A1993KK80800002 25083 ER 25084 25085 PT J 25086 AU ZHANG, LA 25087 QIU, WD 25088 TI DECOMPOSITIONS OF RECOGNIZABLE STRONG MAXIMAL CODES 25089 SO THEORETICAL COMPUTER SCIENCE 25090 DT Article 25091 AB In this paper, we study the decompositions of recognizable strong 25092 maximal codes and obtain the following results: Every recognizable 25093 strong maximal code is a composition of a finite number of 25094 indecomposable (in the sense of strong codes) recognizable strong 25095 maximal codes. In particular, every solvable strong code is a 25096 composition of a finite number of indecomposable (in the sense of 25097 general codes) strong maximal codes and, for the latter, a structure 25098 formula is given. 25099 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT COMP SCI,SHANGHAI 200072,PEOPLES R CHINA. 25100 RP ZHANG, LA, SHANGHAI INST URBAN CONSTRUCT,DEPT BASIC COURSES,SHANGHAI 25101 200092,PEOPLES R CHINA. 25102 CR BERSTEL J, 1985, THEORY CODES 25103 LALLEMENT G, 1979, SEMIGROUPS COMBINATO 25104 SHYR HJ, 1977, SOOCHOW J MATH NAT S, V3, P9 25105 SHYR HJ, 1979, LECTURE NOTES MATH D 25106 ZHANG LX, 1987, SEMIGROUP FORUM, V35, P181 25107 NR 5 25108 TC 1 25109 SN 0304-3975 25110 J9 THEOR COMPUT SCI 25111 JI Theor. Comput. Sci. 25112 PD FEB 1 25113 PY 1993 25114 VL 108 25115 IS 1 25116 BP 173 25117 EP 183 25118 PG 11 25119 SC Computer Science, Theory & Methods 25120 GA KK389 25121 UT ISI:A1993KK38900010 25122 ER 25123 25124 PT J 25125 AU YE, ZM 25126 TI AN OPTIMIZATION OF NONLINEAR BENDING AND STABILITY OF REVOLUTIONAL 25127 PARABOLIC SHELL WITH VARIABLE THICKNESS 25128 SO MECHANICS RESEARCH COMMUNICATIONS 25129 DT Article 25130 RP YE, ZM, SHANGHAI UNIV SCI & TECHNOL,DEPT CIVIL ENGN,SHANGHAI 25131 200072,PEOPLES R CHINA. 25132 CR BANERJEE B, 1982, J APPL MECH, V49, P268 25133 BANERJEE B, 1983, INT J SOLIDS STRUCT, V19, P202 25134 TIMOSHENKO SP, 1959, THEORY PLATES SHELLS 25135 YE ZM, 1984, ACTA MECH SINICA, V16, P634 25136 YE ZM, 1988, APPL MATH MECH, V9, P153 25137 YE ZM, 1989, ACTA MECH SINICA, V5, P152 25138 YE ZM, 1990, ASME, V57, P1026 25139 NR 7 25140 TC 3 25141 SN 0093-6413 25142 J9 MECH RES COMMUN 25143 JI Mech. Res. Commun. 25144 PD JAN-FEB 25145 PY 1993 25146 VL 20 25147 IS 1 25148 BP 83 25149 EP 88 25150 PG 6 25151 SC Mechanics 25152 GA KH577 25153 UT ISI:A1993KH57700011 25154 ER 25155 25156 PT J 25157 AU SHEN, YD 25158 CHENG, DJ 25159 TONG, F 25160 SOENEN, R 25161 TAHON, C 25162 TI ON THE COMPLETED DATABASE SEMANTICS FOR NEGATION 25163 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY 25164 DT Article 25165 DE NEGATION AS FAILURE; THE COMPLETED DATABASE; CONSISTENCY 25166 AB As a semantics for negation. the completed database appears to be a 25167 little too strong. It makes no sense when it is inconsistent. However, 25168 as has been shown by Shepherdson, the general problem of determining 25169 whether the completed database is consistent is recursively 25170 undecidable. In this paper, we present a necessary and sufficient 25171 condition for the consistency of the completed database and use it to 25172 prove the consistency of the completed database for definite, locally 25173 stratified and R-terminable programs, respectively. We then establish a 25174 weak version of the completed database semantics for negation. 25175 Informally, the semantics says that for any function-free logic program 25176 P the results inferred by applying the SLDNF-refutation procedure via 25177 the ''Latest-first'' computation rule are logical consequences of the 25178 relevant completed database comp(REL(P)), where comp(REL(P)) is always 25179 consistent even if comp(P) is inconsistent. 25180 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT COMP SCI,SHANGHAI 201800,PEOPLES R CHINA. 25181 UNIV VALENCIA,LGIL,CNRS,URIAH 1118,F-59326 VALENCIENNES,FRANCE. 25182 RP SHEN, YD, CHONGQING UNIV,DEPT COMP SCI,CHONGQING 630044,PEOPLES R CHINA. 25183 CR APT KR, 1988, FDN DEDUCTIVE DATABA, P89 25184 CLARK KL, 1978, LOGIC DATA BASES, P293 25185 CLOCKSIN WF, 1984, PROGRAMMING PROLOG 25186 LLOYD JW, 1984, F LOGIC PROGRAMMING 25187 LOVELAND DW, 1978, AUTOMATED THEOREM PR 25188 PRZMUSINSKI TC, 1988, FDN DEDUCTIVE DATABA, P193 25189 SHEPHERDSON JC, 1988, FDN DEDUCTIVE DATABA, P19 25190 VANEMDEN MH, 1976, J ASSOC COMPUT MACH, V23, P733 25191 NR 8 25192 TC 0 25193 SN 1001-6511 25194 J9 SCI CHINA SER A 25195 JI Sci. China Ser. A-Math. Phys. Astron. 25196 PD DEC 25197 PY 1992 25198 VL 35 25199 IS 12 25200 BP 1516 25201 EP 1528 25202 PG 13 25203 SC Mathematics, Applied; Mathematics 25204 GA KJ935 25205 UT ISI:A1992KJ93500011 25206 ER 25207 25208 PT J 25209 AU JIANG, GC 25210 XU, KD 25211 WEI, SK 25212 TI SOME ADVANCES ON THE THEORETICAL RESEARCH OF SLAG 25213 SO ISIJ INTERNATIONAL 25214 DT Review 25215 DE SLAG MODEL; BASICITY; CELL STRUCTURE 25216 ID OPTICAL BASICITY 25217 AB This pasper is a review and a comment regarding slag models and optical 25218 basicity. It was thought to be better to establish slag model and 25219 basicity concept based on the cell structure of slag. 25220 C1 BEIJING UNIV SCI & ENGN,BEIJING 100083,PEOPLES R CHINA. 25221 RP JIANG, GC, SHANGHAI UNIV SCI & TECHNOL,YANCHANG RD,SHANGHAI 25222 200072,PEOPLES R CHINA. 25223 CR APPEN AA, 1974, GLASS CHEM, P268 25224 BANYA S, 1988, TETSU TO HAGANE, V74, P1701 25225 BOOM R, 1988, 3RD P INT C MOLT SLA, P273 25226 BOTTINGA Y, 1981, THERMODYNAMICS MINER, P207 25227 DUFFY JA, 1976, J NON-CRYST SOLIDS, V21, P373 25228 GAYE H, 1984, 2ND P INT S MET SLAG, P257 25229 HASTIE JW, 1988, 3RD P INT C MOLT SLA, P254 25230 HILLERT M, 1990, METALL TRANS B, V21, P303 25231 HINO M, 1990, 6TH P IISC TOK, V1, P264 25232 HYUN DB, 1988, T ISIJ, V28, P736 25233 HYUN DB, 1990, 6TH P IISC TOK, V1, P177 25234 INGRAM MD, 1988, 3RD P INT C MOLT SLA, P166 25235 JIANG GC, 1989, J SHANGHAI U TECHNOL, V10, P257 25236 JIANG GC, 1990, 6TH P IISC TOK, V1, P240 25237 JIANG GC, 1992, 4TH P INT C MOLT SLA 25238 JIANG GC, 1992, ACTA METALL SIN B, V28, P240 25239 KAPOOR ML, 1971, P INT S MET CHEM APP, P17 25240 KAY DAR, 1988, 3RD P INT C MOLT SLA, P263 25241 LEHMAN J, 1990, 6TH P INT IR STEEL C, V1, P256 25242 MASSON CR, 1971, P S CHEM METALLURGY, P3 25243 MYSEN BO, 1988, STRUCTURE PROPERTIES, P48 25244 NAGABAYASHI R, 1988, 3RD P INT C MOLT SLA, P24 25245 NAKAMURA T, 1986, J JPN I MET, V50, P456 25246 PELTON AD, 1986, METALL TRANS B, V17, P805 25247 PELTON AD, 1988, 3RD P INT C MOLT SLA, P66 25248 QI GJ, 1984, 5TH P NAT C MET PHYS, P227 25249 RICHARSAON RD, 1974, PHYSICOCHEMISTRY MEL, P116 25250 SAINTJOURS C, 1988, 3RD P INT C MOLT SLA, P65 25251 SHARMA RC, 1979, MET T B, V10, P103 25252 SOMMERVILLE ID, 1986, SEP P TECHN ADV MET 25253 SOSINSKY DJ, 1986, METALL TRANS B, V17, P331 25254 VARSHAL VG, 1972, IZV A N SSSR INORG M, P934 25255 YOKOKAWA T, 1969, T JAPAN I MET, V10, P3 25256 YOKOKAWA T, 1969, T JPN I MET, V10, P81 25257 YOKOKAWA T, 1986, B JIM, V25, P3 25258 ZHANG J, COMMUNICATION 25259 ZHANG J, 1986, P NATIONAL ACADEMIC, P1 25260 ZHANG J, 1990, P WEI SHOUKUN S, P57 25261 NR 38 25262 TC 4 25263 SN 0915-1559 25264 J9 ISIJ INT 25265 JI ISIJ Int. 25266 PY 1993 25267 VL 33 25268 IS 1 25269 BP 20 25270 EP 25 25271 PG 6 25272 SC Metallurgy & Metallurgical Engineering 25273 GA KH294 25274 UT ISI:A1993KH29400004 25275 ER 25276 25277 PT J 25278 AU XU, KD 25279 JIANG, GC 25280 DING, WZ 25281 GU, LP 25282 GUO, SQ 25283 ZHAO, BX 25284 TI THE KINETICS OF REDUCTION OF MNO IN MOLTEN SLAG WITH CARBON SATURATED 25285 LIQUID-IRON 25286 SO ISIJ INTERNATIONAL 25287 DT Article 25288 DE KINETICS, REDUCTION OF (MNO), CARBON SATURATED IRON; SLAG METAL REACTION 25289 ID OXIDE 25290 AB This investigation devotes to the kinetics of the reduction of (MnO) 25291 with carbon-saturated liquid iron. The experiment condition involves 25292 high content realm of both (%MnO) and %Mn. It was found that the 25293 reduction is limited by the interfacial reaction. By means of a X-TV 25294 dynamic metallurgical phenomena displaying device, the slag-iron 25295 interface was proved to be the essential site for evolving the 25296 reduction product CO. The content variation of surface active agent S 25297 affects obviously on the reduction rate. If no carbon is added in slag, 25298 then a hump emerges on the curve of (%FeO) vs. reaction time. In this 25299 case, the apparent reaction order is 2. If there is a carbon addition 25300 in slag, the process is of apparent first order. Based on the three 25301 step model of reactions in series, the aforementioned phenomena and 25302 regularities were elucidated unitedly. 25303 RP XU, KD, SHANGHAI UNIV SCI & TECHNOL,YANCHANG RD,SHANGHAI 200072,PEOPLES 25304 R CHINA. 25305 CR CHEN JX, 1984, HDB DATA ATLAS STEEL, P412 25306 FANG YY, 1986, SHANGHAI METALS, V3, P47 25307 FUJITA M, 1988, TETSU TO HAGANE, V74, P801 25308 FUWA T, 1987, B JPN I MET, V26, P365 25309 HAN QY, 1983, KINETICS METALLURGIC, P24 25310 PLASHEVSKY AA, 1984, IZV VUZ CHERNAYA MET, V10, P16 25311 POMFRET RJ, 1984, P CENTENARY C CELEBR 25312 POMFRET RJ, 1987, IRONMAK STEELMAK, V5, P191 25313 QY Y, 1980, PRINCIPLE STEELMAKIN, P72 25314 SATO A, 1987, TETSU TO HAGANE, V73, P812 25315 SHINOTAKE A, 1987, TETSU TO HAGANE, V73, S121 25316 SHINOZAKI N, 1984, TETSU TO HAGANE, V70, P73 25317 SUITO H, 1984, TETSU TO HAGANE, V70, P672 25318 TURKDOGAN ET, 1953, J IRON STEEL I, V173, P217 25319 WAGNER C, 1958, PHYSICAL CHEM STEELM, P237 25320 NR 15 25321 TC 5 25322 SN 0915-1559 25323 J9 ISIJ INT 25324 JI ISIJ Int. 25325 PY 1993 25326 VL 33 25327 IS 1 25328 BP 104 25329 EP 108 25330 PG 5 25331 SC Metallurgy & Metallurgical Engineering 25332 GA KH294 25333 UT ISI:A1993KH29400016 25334 ER 25335 25336 PT J 25337 AU XU, DM 25338 SONG, LP 25339 TI A NEW TYPE OF OPTOELECTRONIC MILLIMETER-WAVE FINLINE SWITCHES 25340 SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 25341 DT Article 25342 AB A new type of millimeter-wave finline switches constructed on teflon 25343 substrates is proposed, which can be easily fabricated and mounted. The 25344 experimental results are reported, which show less than 2 dB insertion 25345 loss in the region of 26-40 GHz and 23.4 dB on/off ratio have been 25346 reached. Because of its good compatibility with the conventional 25347 finline structures, it will have a wide application field. A very 25348 simple method has been given to analyze its behaviors which has 25349 successfully predicted the experimental results. A nonlinear relation 25350 between the photoconductivity and the light power is given which has 25351 been confirmed by experiment. 25352 RP XU, DM, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA. 25353 CR 1975, HP183 APPL NOT 25354 CHEUNG P, 1990, IEEE T MICROW THEORY, V38, P586 25355 GUPTA KC, 1981, COMPUT AIDED DESIGN, P39 25356 LEE CH, 1990, IEEE T MICROW THEORY, V38, P596 25357 PLATTE W, 1984, ELECTRON LETT, V20, P608 25358 SCHIEBLICH C, 1984, IEEE T MICROW THEORY, V32, P1638 25359 SEEGER K, 1985, SEMICONDUCTOR PHYSIC, P386 25360 UHDE K, 1990, IEEE T MICROW THEORY, V38, P679 25361 NR 8 25362 TC 0 25363 SN 0018-9480 25364 J9 IEEE TRANS MICROWAVE THEORY 25365 JI IEEE Trans. Microw. Theory Tech. 25366 PD DEC 25367 PY 1992 25368 VL 40 25369 IS 12 25370 BP 2392 25371 EP 2396 25372 PG 5 25373 SC Engineering, Electrical & Electronic 25374 GA KH463 25375 UT ISI:A1992KH46300035 25376 ER 25377 25378 PT J 25379 AU XIE, XY 25380 EVANS, RJ 25381 TI MULTIPLE FREQUENCY LINE TRACKING WITH HIDDEN MARKOV-MODELS - FURTHER 25382 RESULTS 25383 SO IEEE TRANSACTIONS ON SIGNAL PROCESSING 25384 DT Article 25385 AB This paper extends our earlier work on the application of hidden Markov 25386 models (HMM's) to the problem of multiple frequency line tracking using 25387 the concept of a mixed track. Here we introduce an alternative 25388 definition of measurement vector which avoids the use of thresholds and 25389 is shown to yield superior performance to threshold based schemes. We 25390 also present an improved method for separating the mixed track into its 25391 component tracks. 25392 C1 UNIV NEWCASTLE,DEPT ELECT ENGN & COMP SCI,NEWCASTLE,NSW 2308,AUSTRALIA. 25393 UNIV MELBOURNE,DEPT ELECT & ELECTR ENGN,PARKVILLE,VIC 3052,AUSTRALIA. 25394 RP XIE, XY, SHANGHAI UNIV SCI & TECHNOL,DEPT COMP SCI,SHANGHAI 25395 201800,PEOPLES R CHINA. 25396 CR ADAMS G, 1991, EE9125 U NEWC DEP EL 25397 BARNIV Y, 1985, IEEE T AERO ELEC SYS, V21, P144 25398 BARNIV Y, 1987, IEEE T AERO ELEC SYS, V23, P776 25399 BARSHALOM Y, 1988, TRACKING DATA ASS 25400 BLACKMAN SS, 1986, MULTIPLE TARGET TRAC 25401 DAVENPORT WB, 1987, INTRO THEORY RANDOM 25402 FORNEY GD, 1973, P IEEE, V61, P268 25403 RABINER LR, 1986, IEEE ASSP MAGAZI JAN, P4 25404 RABINER R, 1989, P IEEE, V77, P257 25405 SCHMIDT RO, 1986, IEEE T ANTENN PROPAG, V34, P276 25406 STEELE A, 1989, APR P ASSP 89 SIGN P, P17 25407 STREIT RL, 1990, IEEE T ACOUST SPEECH, V38, P586 25408 WHALEN AD, 1971, DETECTION SIGNALS NO 25409 XIANYA X, 1990, EE9007 U NEWC DEP EL 25410 XIANYA X, 1990, EE9032 U NEWC DEP EL 25411 XIE XY, 1991, IEEE T SIGNAL PROCES, V39, P2659 25412 NR 16 25413 TC 5 25414 SN 1053-587X 25415 J9 IEEE TRANS SIGNAL PROCESS 25416 JI IEEE Trans. Signal Process. 25417 PD JAN 25418 PY 1993 25419 VL 41 25420 IS 1 25421 BP 334 25422 EP 343 25423 PG 10 25424 SC Engineering, Electrical & Electronic 25425 GA KG148 25426 UT ISI:A1993KG14800029 25427 ER 25428 25429 PT J 25430 AU WEI, MM 25431 GU, F 25432 XIE, WY 25433 TI STUDY ON THE PREPARATION OF PZT CERAMIC MATERIAL FOR MEDIUM 25434 HIGH-FREQUENCY SAW DEVICES BY LOW VACUUM ATMOSPHERE SINTERING 25435 SO FERROELECTRICS 25436 DT Article 25437 AB Ternary PZT-PNM* ceramics is prepared by low vacuum atmosphere(5 x 25438 10(-2) bar) sintering technique to improve the microstructure, density, 25439 polished surface smoothness, as well as the piezoelectric properties. 25440 The grain growth has been restrained by doping small amount of CeO2. At 25441 the same time. The density up to 7.97 g/cm3 and grain size less than 2 25442 um have also been obtained. The size of pits on the polished surface is 25443 less than 0.5 um. It is suitable for manufacturing SAW devices in 25444 medium high frequency of 10 to 40 MHz. 25445 RP WEI, MM, SHANGHAI UNIV SCI & TECHNOL,DEPT MAT,JIADING SHANGHAI 25446 201800,PEOPLES R CHINA. 25447 CR LEVIN EM, 1969, PHASE DIAGRAM CERAMI, P39 25448 SHIGERU J, 1981, J APPL PHYS, V52, P4472 25449 TAKAHASHI M, 1974, J JPN SOC POWD METAL, V20, P274 25450 NR 3 25451 TC 1 25452 SN 0015-0193 25453 J9 FERROELECTRICS 25454 PY 1992 25455 VL 133 25456 IS 1-4 25457 BP 301 25458 EP 306 25459 PG 6 25460 SC Materials Science, Multidisciplinary; Physics, Condensed Matter 25461 GA KF791 25462 UT ISI:A1992KF79100052 25463 ER 25464 25465 PT J 25466 AU MAO, DK 25467 TI A TREATMENT OF DISCONTINUITIES FOR FINITE-DIFFERENCE METHODS 25468 SO JOURNAL OF COMPUTATIONAL PHYSICS 25469 DT Article 25470 ID FRONT-TRACKING; CONSERVATION-LAWS; SCHEMES 25471 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA. 25472 RP MAO, DK, UNIV CALIF LOS ANGELES,DEPT MATH,LOS ANGELES,CA 90024. 25473 CR CHARRIER P, 1986, SIAM J NUMER ANAL, V23, P461 25474 CHEN IL, 1986, J COMPUT PHYS, V62, P83 25475 CHORIN A, 1979, MATH INTRO FLUID MEC 25476 GLIMM J, 1985, ADV APPL MATH, V6, P259 25477 HARTEN A, 1989, J COMPUT PHYS, V83, P148 25478 MAO D, 1985, J COMPUT MATH, V3, P256 25479 MO D, 1991, J COMPUT PHYS, V92, P422 25480 MORETTI, 1972, PIBAL7237 POL I BROO 25481 OSHER S, 1986, IMA VOLUMES MATH ITS, V2, P229 25482 SHU CW, 1987, MATH COMPUT, V49, P105 25483 SJOGREEN B, 1991, 3RD P INT C HYP PROB, P848 25484 SWARTZ BK, 1986, APPL NUMER MATH, V2, P385 25485 NR 12 25486 TC 12 25487 SN 0021-9991 25488 J9 J COMPUT PHYS 25489 JI J. Comput. Phys. 25490 PD DEC 25491 PY 1992 25492 VL 103 25493 IS 2 25494 BP 359 25495 EP 369 25496 PG 11 25497 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical 25498 GA KD206 25499 UT ISI:A1992KD20600012 25500 ER 25501 25502 EF 25503 25504 FN ISI Export Format 25505 VR 1.0 25506 PT J 25507 AU Cao, WG 25508 Ding, WY 25509 Chen, YL 25510 Gao, JS 25511 TI An efficient and highly stereoselective synthesis of 25512 cis-1-acetyl-2-aryl-6,6-dimethyl-5,7-dioxo-spiro-[2,5]-4,8-octadiones 25513 and beta,gamma-trans-beta-acetyl-gamma-aryl-butyrolactones 25514 SO SYNTHETIC COMMUNICATIONS 25515 DT Article 25516 DE stereoselective synthesis; acetylmethyltriphenylarsonium bromide; 25517 2,2-dimethyl-1,3-dioxa-5-substituted-benzylidene-4,6-dione; 25518 cis-1-acetyl-2-aryl-6,6-dimethyl-5,7-dioxo-spiro-[2,5]-4,8-octadiones; 25519 beta,gamma-trans-beta-acetyl-gamma-aryl-gamma-butyrolactones 25520 AB Acetylmethyltriphenylarsonium bromide 6 in the presence of potassium 25521 carbonate and trace water reacted with 25522 2,2-dimethyl-1,3-dioxa-5-substituted-benzylidene-4,6-dione 2 at room 25523 temperature to give cyclopropane derivatives 25524 cis-1-acetyl-2-aryl-6,6-dimethyl-5,7-dioxo-spiro-[2,5]-4,8-octadiones 7 25525 (X=p-CH3, p-Cl, H, p-NO2) or beta,gamma -trans-beta -acetyl-gamma 25526 -aryl-gamma -butyrolactones 8 (X=p-CH3O, p-N(CH3)(2), 3',4'-OCH2O-) 25527 with good yield and high stereoselectivity. 25528 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 25529 Chinese Acad Sci, Shanghai Inst Organ Chem, Organomet Chem Lab, Shanghai 200032, Peoples R China. 25530 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 25531 CR CAO WG, IN PRESS SYNTH COMMU 25532 CHEN YL, 1998, CHEM J CHINESE U, V19, P1614 25533 DING WY, 1965, B NAT SCI U CHEM CE, P540 25534 DING WY, 1996, CHEM RES CHINESE U, V12, P51 25535 HUDLICKY T, 1990, SYNTHETIC COMMUN, V20, P1721 25536 JAIN PT, 1991, DISS ABSTR INT B, P195 25537 SCHUSTER P, 1964, MH CHEM, V95, P53 25538 SHI DQ, 1998, CHINESE J ORG CHEM, V18, P82 25539 NR 8 25540 TC 6 25541 SN 0039-7911 25542 J9 SYN COMMUN 25543 JI Synth. Commun. 25544 PY 2000 25545 VL 30 25546 IS 24 25547 BP 4523 25548 EP 4530 25549 PG 8 25550 SC Chemistry, Organic 25551 GA 381YX 25552 UT ISI:000165792600018 25553 ER 25554 25555 PT J 25556 AU Cao, WG 25557 Ding, WY 25558 Chen, YL 25559 Gao, JS 25560 TI Study on the reaction of 25561 cis-1-acetyl-2-aryl-6,6-dimethyl-5,7-dioxo-spiro-[2,5]-4,8-octadiones 25562 with methanol 25563 SO SYNTHETIC COMMUNICATIONS 25564 DT Article 25565 DE cis-1-acetyl-2-aryl-6,6-dimethyl-5,7-dioxo-spiro-[2,5]-4,8-octadione; 25566 trans,cis-alpha-carbomethoxy-beta-(alpha'-methoxy-alpha'-aryl)-gamma-met 25567 hoxy-gamma-methyl-gamma-butyrolactones; 25568 cis,cis-alpha-carbomethoxy-beta-(alpha'-methoxy-alpha'-aryl)-gamma-metho 25569 xy-gamma-methyl-gamma-butyrolactones 25570 AB Cis-1-acetyl-2-aryl-6,6-dimethyl-5,7-dioxo-spiro-[2,5]-4,8-octadiones 25571 3a-d (X=p-CH3, p-Cl, H, p-NO2) reacted with anhydrous methanol in a 25572 sealed tube at 80 degreesC to form trans, cis-alpha 25573 -carbomethoxy-beta-(alpha'-methoxy-alpha'-aryl)-gamma -methoxy-gamma 25574 -methyl-gamma -butyrolactones 4a-d and cis,cis-alpha-alpha 25575 -carbomethoxy-beta-(alpha'-methoxy-alpha'-aryl)-gamma -methoxy-gamma 25576 -methyl-gamma -butyrolactones 5a-d in good yield. 25577 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 25578 Chinese Acad Sci, Shanghai Inst Organ Chem, Organomet Chem Lab, Shanghai 200032, Peoples R China. 25579 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 25580 CR CAO WG, IN PRESS CHEM J CHIN 25581 CAO WG, IN PRESS SYNTH COMMU 25582 CHEN YL, 1998, CHEM J CHINESE U, V19, P1614 25583 GAO JS, 1999, J SHANGHAI U NATURL, V5, P491 25584 HUDLICKY T, 1990, SYNTHETIC COMMUN, V20, P1721 25585 NR 5 25586 TC 3 25587 SN 0039-7911 25588 J9 SYN COMMUN 25589 JI Synth. Commun. 25590 PY 2000 25591 VL 30 25592 IS 24 25593 BP 4531 25594 EP 4541 25595 PG 11 25596 SC Chemistry, Organic 25597 GA 381YX 25598 UT ISI:000165792600019 25599 ER 25600 25601 PT J 25602 AU Zhou, JM 25603 Wang, Q 25604 Wu, Z 25605 Li, CF 25606 TI Frequency properties of nonlinear transverse electric surface waves 25607 SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & 25608 REVIEW PAPERS 25609 DT Article 25610 DE frequency region; passband; stopband; antiferromagnet; dielectric; 25611 nonlinear TE surface wave 25612 ID MICROWAVE-ENVELOPE SOLITONS; IRON-GARNET FILMS 25613 AB The frequency properties of the nonlinear transverse electric (TE) 25614 waves on the interface between a dielectric and a nonlinear 25615 antiferromagnet are studied. The analyzed expressions of the field 25616 components of TE waves are derived in a large power case. We find that 25617 the peak magnetic field moves into the nonlinear antiferromagnet from 25618 the interface when the power of TE waves increases. Using the explicit 25619 dispersion equation obtained in this article we analyze in detail the 25620 frequency regions of the TE surface waves. The results show the 25621 nonlinear TE surface waves have frequency passband and stopband, which 25622 can be switched into each other by varying the power. Ii is also 25623 revealed that, under certain conditions, the nonlinear TE waves on the 25624 interface are backward surface waves with the group and phase 25625 velocities opposite in direction. 25626 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 25627 RP Zhou, JM, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 25628 CR ALMEIDA NS, 1987, PHYS REV B, V36, P2015 25629 BOARDMAN AD, 1990, PHYS REV B, V41, P717 25630 BOARDMAN AD, 1993, PHYS REV B, V48, P13602 25631 BOARDMAN AD, 1994, IEEE T MAGN, V30, P1 25632 CHEN M, 1994, PHYS REV B, V49, P12773 25633 DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308 25634 MIHALACHE D, 1987, OPT LETT, V12, P187 25635 TSANKOV MA, 1994, J APPL PHYS, V76, P4274 25636 VUKOVIH S, 1990, SOV PHYS JETP, V71, P864 25637 WANG Q, 1995, J APPL PHYS, V77, P5831 25638 WANG Q, 1999, SCI CHINA SER A, V42, P310 25639 WANG YF, 1998, J APPL PHYS, V84, P6233 25640 NR 12 25641 TC 1 25642 SN 0021-4922 25643 J9 JPN J APPL PHYS PT 1 25644 JI Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 25645 PD NOV 25646 PY 2000 25647 VL 39 25648 IS 11 25649 BP 6223 25650 EP 6229 25651 PG 7 25652 SC Physics, Applied 25653 GA 382PL 25654 UT ISI:000165831400021 25655 ER 25656 25657 PT J 25658 AU Chen, LQ 25659 Cheng, CJ 25660 TI Stability and chaotic motion in columns of nonlinear viscoelastic 25661 material 25662 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 25663 DT Article 25664 DE stability; chaos; averaging method; Galerkin method; viscoelastic column 25665 ID DYNAMIC STABILITY; PLATES 25666 AB The dynamical stability of a homogeneous, simple supported column, 25667 subjected to a periodic axial force, is investigated. The viscoelastic 25668 material is assumed to obey the Leaderman nonlinear constitutive 25669 relation. The equation of motion was derived as a nonlinear 25670 integro-partial-differential equation, and was simplified into a 25671 nonlinear integro-differential equation by the Galerkin method. The 25672 averaging method was employed to carry out the stability analysis. 25673 Numerical results are presented to compare with the analytical ones. 25674 Numerical results also indicate that chaotic motion appears. 25675 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 25676 Shanghai Univ, Dept Mech, Shanghai 201800, Peoples R China. 25677 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 25678 200072, Peoples R China. 25679 CR ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151 25680 CEDERBAUM G, 1992, J APPL MECH-T ASME, V59, P16 25681 CHEN LQ, 1999, APPL MATH MECH, V20, P1224 25682 CHENG CJ, 1998, ACTA MECH SINICA, V30, P690 25683 GLUCKNER PG, 1987, ENCY CIV ENG PRAC TE, V23, P577 25684 LEADERMAN H, 1962, T SOC RHEOL, V6, P361 25685 MATYASH VI, 1964, MECH POLY, V2, P293 25686 NAYFEF AH, 1979, NONLINEAR OSCILLATIO 25687 SANDERS JA, 1985, AVERAGING METHODS NO 25688 SMART J, 1972, J MECH PHYS SOLIDS, V20, P313 25689 STEVENS KK, 1966, AIAA J, V12, P2111 25690 SUIRE G, 1994, ARCH APPL MECH-ING, V64, P307 25691 SUIRE G, 1995, INT J MECH SCI, V37, P753 25692 SZYSZKOWSKI W, 1985, INT J SOLIDS STRUCT, V6, P545 25693 TOUATI D, 1994, INT J SOLIDS STRUCT, V31, P2367 25694 TOUATI D, 1995, ACTA MECH, V113, P215 25695 ZHANG NH, 1998, P 3 INT C NONL MECH, P432 25696 ZHU YY, 1998, P 3 INT C NONL MECH, P445 25697 NR 18 25698 TC 0 25699 SN 0253-4827 25700 J9 APPL MATH MECH-ENGL ED 25701 JI Appl. Math. Mech.-Engl. Ed. 25702 PD SEP 25703 PY 2000 25704 VL 21 25705 IS 9 25706 BP 987 25707 EP 994 25708 PG 8 25709 SC Mathematics, Applied; Mechanics 25710 GA 381DZ 25711 UT ISI:000165748200002 25712 ER 25713 25714 PT J 25715 AU Chen, LQ 25716 Cheng, CJ 25717 TI Dynamical behavior of nonlinear viscoelastic beams 25718 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 25719 DT Article 25720 DE viscoelastic beam; differential equation of motion; Leaderman relation; 25721 Galerkin method 25722 ID CHAOTIC VIBRATIONS 25723 AB The integro-partial-differential equation that governs the dynamical 25724 behavior of homogeneous viscoelastic beams was established. The 25725 material of the beams obeys the Leaderman nonlinear constitutive 25726 relation. rn the case of two simply supported ends, the mathematical 25727 model is simplified into an integro-differential equation after a 25728 2nd-order truncation by the Galerkin method. Then the equation is 25729 further reduced to an ordinary differential equation which is 25730 convenient to carry out numerical experiments. Finally, the dynamical 25731 behavior of Ist-order and 2nd-order truncation are numerically compared. 25732 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 25733 Shanghai Univ, Dept Mech, Shanghai 201800, Peoples R China. 25734 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 25735 200072, Peoples R China. 25736 CR ABHYANKAR NS, 1993, J APPL MECH-T ASME, V60, P167 25737 ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151 25738 CHEN LQ, 1999, NATURAL J, V21, P1 25739 LEADERMAN H, 1962, T SOC RHEOL, V6, P361 25740 MOON FC, 1979, J SOUND VIB, V65, P285 25741 NAYFEF AH, 1979, NONLINEAR OSCILLATIO 25742 POTAPOV VD, 1997, INT J SOLIDS STRUCT, V34, P1367 25743 SMART J, 1972, J MECH PHYS SOLIDS, V20, P313 25744 SUIRE G, 1995, INT J MECH SCI, V37, P753 25745 WOJCIECH S, 1990, ACTA MECH, V85, P43 25746 NR 10 25747 TC 5 25748 SN 0253-4827 25749 J9 APPL MATH MECH-ENGL ED 25750 JI Appl. Math. Mech.-Engl. Ed. 25751 PD SEP 25752 PY 2000 25753 VL 21 25754 IS 9 25755 BP 995 25756 EP 1001 25757 PG 7 25758 SC Mathematics, Applied; Mechanics 25759 GA 381DZ 25760 UT ISI:000165748200003 25761 ER 25762 25763 PT J 25764 AU Lai, JW 25765 Zhou, SP 25766 Li, GH 25767 Xu, DM 25768 TI A method for computing Lyapunov exponents spectra without 25769 reorthogonalization 25770 SO ACTA PHYSICA SINICA 25771 DT Article 25772 DE chaos; Lyapunov exponents; compound matrix; eigenvalue 25773 ID SYSTEMS 25774 AB We present a method for the computation of Lyapunov exponents without 25775 reorthogonalization. In the low dimension of system( n<5), the 25776 equations needed. in present algorithm is less than those in normal 25777 methods such as QR, SVD etc. This method is applicable to both discrete 25778 systems and continuous systems, and is still valid when the Lyapunov 25779 spectra is degenerate. Numerical analysis to Lorenz dynamical system 25780 indicates that the method converges quickly and steadly for arbitrary 25781 nonzero initial state. 25782 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 25783 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800, Peoples R China. 25784 RP Lai, JW, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 25785 CR ARGYRIS J, 1994, EXPLORATION CHAOS, CH5 25786 CHOQUETBRUHAT Y, 1977, ANAL MANIFOLDS PHYSI, P258 25787 ECKMANN JP, 1985, REV MOD PHYS, V57, P617 25788 GEIST K, 1990, PROG THEOR PHYS, V83, P875 25789 GREENE JM, 1987, PHYSICA D, V24, P213 25790 HEINXOTTOPEITGE., 1992, CHAOS FRACTALS, CH12 25791 PECORA LM, 1990, PHYS REV LETT, V64, P821 25792 PECORA LM, 1991, PHYS REV A, V44, P2374 25793 RANGARAJAN G, 1998, PHYS REV LETT, V80, P3743 25794 ROSSLER OE, 1979, PHYS LETT A, V71, P155 25795 VONBREMEN HF, 1997, PHYSICA D, V101, P1 25796 WANG DS, 1995, CHAOS FRACTAL APPL, CH2 25797 WILKINSM JH, 1987, ALGEBRAIC EIGENVALUE, CH1 25798 WOLF A, 1985, PHYSICA D, V16, P285 25799 ZHANG XK, 1998, ADV ALGEBRA, P22 25800 NR 15 25801 TC 3 25802 SN 1000-3290 25803 J9 ACTA PHYS SIN-CHINESE ED 25804 JI Acta Phys. Sin. 25805 PD DEC 25806 PY 2000 25807 VL 49 25808 IS 12 25809 BP 2328 25810 EP 2332 25811 PG 5 25812 SC Physics, Multidisciplinary 25813 GA 382WB 25814 UT ISI:000165849400003 25815 ER 25816 25817 PT J 25818 AU Lai, GJ 25819 Ji, PY 25820 TI Photon acceleration based on laser-plasma 25821 SO ACTA PHYSICA SINICA 25822 DT Article 25823 DE electron density perturbation; optical metric; photon acceleration 25824 AB The one-dimensional electron density perturbation is derived by using 25825 the cold fluid equation, Poisson's equation and the continuity 25826 equation, which is generated by a driving laser pulse propagating 25827 through a tenuous plasma. The upshifting of the frequency of a trailing 25828 pulse induced by density perturbation is studied by using optical 25829 metric. The results show that it is possible that the photon will gain 25830 energy from the wake field when assuming photon number to be conserved, 25831 i. e., the photon will be accelerated. 25832 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 25833 RP Lai, GJ, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 25834 CR GORDON W, 1923, ANN PHYS-BERLIN, V72, P421 25835 JOSHI C, 1984, NATURE, V311, P525 25836 MENDONCA JT, 1994, PHYS REV E, V49, P3520 25837 NAKAJIMA K, 1995, PHYS REV LETT, V74, P4428 25838 TAJIMA T, 1979, PHYS REV LETT, V43, P267 25839 WEINBERG S, 1972, GRAVITATION COSMOLOG 25840 WILKS SC, 1989, PHYS REV LETT, V62, P2600 25841 ZHU ST, 1993, ACTA PHYS SINICA, V42, P1438 25842 NR 8 25843 TC 4 25844 SN 1000-3290 25845 J9 ACTA PHYS SIN-CHINESE ED 25846 JI Acta Phys. Sin. 25847 PD DEC 25848 PY 2000 25849 VL 49 25850 IS 12 25851 BP 2399 25852 EP 2403 25853 PG 5 25854 SC Physics, Multidisciplinary 25855 GA 382WB 25856 UT ISI:000165849400015 25857 ER 25858 25859 PT J 25860 AU You, JL 25861 Jiang, GC 25862 Xu, KD 25863 TI High temperature Raman spectroscopic study of the structure of sodium 25864 disilicate crystal, glass and its melt 25865 SO SPECTROSCOPY AND SPECTRAL ANALYSIS 25866 DT Article 25867 DE high temperature; Raman spectroscopy; melts; sodium disilicate 25868 AB The structure of Na2Si2O5 from room temperature up to 1 773 K are 25869 studied by high temperature Raman spectroscopy using copper vapor pulse 25870 laser and integral time-resolved detection technique without any 25871 black-body radiation effect on spectral record. Backscattering optical 25872 configuration is coupled with confocal collection of Raman signal of 25873 macro-sample in the high temperature shaft tube furnace. Results show 25874 that temperature-dependent Raman spectra can clearly indicate phase 25875 transition during melting. Relative densities of various kinds of 25876 SiO4(n-4) (n, bridging-oxygen number binding to one tetrahedron former 25877 Si) tetrahedrons can be qualitatively and quantitatively resolved by 25878 Gaussian spectral deconvolution. Obviously high temperature Raman 25879 spectroscopy provides an useful tool for the micro-structure research 25880 of materials under high temperature. 25881 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 25882 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 25883 200072, Peoples R China. 25884 CR DOMINE F, 1983, J NON-CRYST SOLIDS, V55, P125 25885 HANDKE M, 1993, VIB SPECTROSC, V5, P75 25886 SMITH W, 1995, J NONCRYST SOLIDS, V192, P267 25887 XU KD, 1999, SCI CHINA, V22, P77 25888 YOU JL, 1998, J CHINESE RARE EARTH, V16, P505 25889 NR 5 25890 TC 3 25891 SN 1000-0593 25892 J9 SPECTROSC SPECTR ANAL 25893 JI Spectrosc. Spectr. Anal. 25894 PD DEC 25895 PY 2000 25896 VL 20 25897 IS 6 25898 BP 797 25899 EP 799 25900 PG 3 25901 SC Spectroscopy 25902 GA 379NP 25903 UT ISI:000165649400015 25904 ER 25905 25906 PT J 25907 AU Ben-Yu, G 25908 Cheng-Long, X 25909 TI On two-dimensional unsteady incompressible fluid flow in an infinite 25910 strip 25911 SO MATHEMATICAL METHODS IN THE APPLIED SCIENCES 25912 DT Article 25913 DE incompressible fluid flow; stream function form; infinite strip; 25914 existence; uniqueness and regularity of solution 25915 ID NAVIER-STOKES EQUATIONS; STREAM FUNCTION FORM 25916 AB In this paper, we study two-dimensional incompressible fluid flow in an 25917 infinite strip. The stream function form of Navier-Stokes equation is 25918 considered, which keeps the physical boundary condition and avoids some 25919 difficulties in numerical simulations. The existence and uniqueness of 25920 global solution are proved. Some results on the regularity of solution 25921 are obtained. Copyright (C) 2000 John Wiley & Sons, Ltd. 25922 C1 Shanghai Normal Univ, Sch Math Sci, Shanghai 200234, Peoples R China. 25923 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China. 25924 RP Ben-Yu, G, Shanghai Normal Univ, Sch Math Sci, Shanghai 200234, Peoples 25925 R China. 25926 CR BERNARDI C, 1992, MATH COMPUT, V59, P63 25927 CHAZARAIN J, 1982, INTRO THEORY LINEAR 25928 GUO BY, 1997, J MATH ANAL APPL, V205, P1 25929 GUO BY, 1998, SIAM J NUMER ANAL, V35, P146 25930 GUO BY, 1999, MATH COMPUT, V68, P1067 25931 HE LP, 1999, RAIRO MATH MODEL NUM, V33, P113 25932 KWEON JR, 1998, J MATH ANAL APPL, V220, P657 25933 LADYZHENSKAJA OA, 1969, MATH THEORY VISCOUS 25934 LIONS JL, 1969, QUELQUES METHODES RE 25935 MADAY Y, 1985, RECH AEROSPATIALE, P353 25936 TEMAM R, 1977, NAVIERSTOKES EQUATIO 25937 NR 11 25938 TC 0 25939 SN 0170-4214 25940 J9 MATH METH APPL SCI 25941 JI Math. Meth. Appl. Sci. 25942 PD DEC 25943 PY 2000 25944 VL 23 25945 IS 18 25946 BP 1617 25947 EP 1636 25948 PG 20 25949 SC Mathematics, Applied 25950 GA 380WJ 25951 UT ISI:000165726200002 25952 ER 25953 25954 PT J 25955 AU Bai, YJ 25956 Liu, YX 25957 Sun, DS 25958 Bian, XF 25959 Xiao, LM 25960 Geng, GL 25961 TI Atmospheric oxidation of CuZnAlMnNi shape memory alloy 25962 SO MATERIALS LETTERS 25963 DT Article 25964 DE shape memory alloy (CuZnAlMnNi), oxidation of; microstructure; 25965 transmission electron microscopy 25966 ID CU-ZN-AL; MARTENSITIC-TRANSFORMATION; THERMOELASTICITY; TEMPERATURE; 25967 BEHAVIOR 25968 AB The microstructures of CuZnAlMnNi alloy after ion-polishing and 25969 subsequent exposure for 60 days in the ambient atmosphere were examined 25970 by transmission electron microscopy (TEM). It was found that a large 25971 number of fine oxide grains, with various sizes, appear homogeneously 25972 on the surface of the alloy after being held in atmosphere. The oxides 25973 form along the planes of stacking fault, at the plate boundaries or 25974 around the dislocations, resulting in the decrease of the stacking 25975 faults in the original quenched martensite plates, and even the 25976 complete disappearance in local zones. (C) 2000 Elsevier Science B.V. 25977 All rights reserved. 25978 C1 Shanghai Univ Sci & Technol, Dept Mech, Jinan 250031, Shandong, Peoples R China. 25979 Shandong Univ Technol, Mat Testing Ctr, Jinan 250061, Shandong, Peoples R China. 25980 RP Bai, YJ, Shanghai Univ Sci & Technol, Dept Mech, Jinan 250031, 25981 Shandong, Peoples R China. 25982 CR BAI YJ, 1999, J MATER SCI LETT, V18, P1509 25983 DELAEY L, 1974, J MATER SCI, V9, P1521 25984 GENG GL, 1999, MATER CHARACT, V42, P45 25985 GU NJ, 1996, METALL MATER TRANS A, V27, P3108 25986 LOVEY FC, 1990, PHILOS MAG A, V61, P159 25987 LOVEY FC, 1995, J PHYS IV, V5, C2 25988 LOVEY FC, 1999, PROG MATER SCI, V44, P189 25989 PELEGRINA JL, 1992, ACTA METALL MATER, V40, P3205 25990 PONS J, 1990, ACTA METALL MATER, V38, P2733 25991 PONS J, 1993, ACTA METALL MATER, V41, P2547 25992 STALMANS R, 1992, ACTA METALL MATER, V40, P501 25993 WEI ZG, 1998, J MATER SCI, V33, P3743 25994 NR 12 25995 TC 1 25996 SN 0167-577X 25997 J9 MATER LETT 25998 JI Mater. Lett. 25999 PD DEC 26000 PY 2000 26001 VL 46 26002 IS 6 26003 BP 358 26004 EP 361 26005 PG 4 26006 SC Materials Science, Multidisciplinary; Physics, Applied 26007 GA 380KV 26008 UT ISI:000165701800009 26009 ER 26010 26011 PT J 26012 AU Luo, X 26013 Roetzel, W 26014 Ludersen, U 26015 TI The single-blow transient testing technique considering longitudinal 26016 core conduction and fluid dispersion 26017 SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER 26018 DT Article 26019 DE heat exchangers; measurement techniques; transient 26020 ID NUMERICAL INVERSION; LAPLACE TRANSFORMS; COEFFICIENTS 26021 AB Single-blow transient testing technique has been widely used to measure 26022 the thermal performance of compact heat exchangers. For compact heat 26023 exchangers with short length the effect of longitudinal core conduction 26024 can usually not be neglected. Furthermore, the flow nonuniformity in a 26025 heat exchanger has also a significant influence on its temperature 26026 response. A new conduction/dispersion model for the single-blow 26027 transient testing technique is developed to include the effects of the 26028 longitudinal core conduction and fluid dispersion. Because the axial 26029 dispersion coefficient depends on the flow pattern in the heat 26030 exchanger which is usually unknown, both the heat transfer coefficient 26031 and the axial dispersion coefficient are determined with the whole 26032 curve matching simultaneously. The experiments are conducted in an open 26033 circuit wind tunnel. Comparison is made between the experimental 26034 results and data available in the literature. The software TAIHE 26035 (Transient Analysis In Heat Exchangers) developed by the authors is 26036 applied to the data analysis to evaluate heat transfer coefficients and 26037 axial dispersion coefficients. The results show that the pulse testing 26038 technique developed in the present investigation can easily be carried 26039 out and gives good evaluated results. (C) 2000 Elsevier Science Ltd. 26040 All rights reserved. 26041 C1 Univ Fed Armed Forces Hamburg, Inst Thermodynam, D-22039 Hamburg, Germany. 26042 Shanghai Univ Sci & Technol, Inst Thermal Engn & Air Conditioning, Shanghai 200093, Peoples R China. 26043 RP Luo, X, Univ Fed Armed Forces Hamburg, Inst Thermodynam, D-22039 26044 Hamburg, Germany. 26045 CR 1979, HDB MATH 26046 ANZELIUS A, 1926, Z ANGEW MATH MECH, V6, P291 26047 CAI ZH, 1984, INT J HEAT MASS TRAN, V27, P971 26048 CRUMP KS, 1976, J ASSOC COMPUT MACH, V23, P89 26049 DANCKWERTS PV, 1953, CHEM ENG SCI, V2, P1 26050 FURNAS CC, 1932, US BUREAU MINES B, V361 26051 HAUSEN H, 1929, Z ANGEW MATH MECH, V9, P173 26052 HEGGS PJ, 1988, EXP THERM FLUID SCI, V1, P243 26053 HOWARD CP, 1964, 64GTP11 ASME 26054 ICHIKAWA S, 1972, KYOTO U MEMORIES 1, V34, P53 26055 JACQUOT RG, 1983, IEEE CIRCUITS SYSTEM, V5, P4 26056 KOHLMAYR GF, 1966, INT J HEAT MASS TRAN, V9, P671 26057 KOHLMAYR GF, 1968, INT J HEAT MASS TRAN, V11, P567 26058 KOHLMAYR GF, 1968, J HEAT TRANSFER, V90, P130 26059 LIANG CY, 1975, J HEAT TRANSFER, V97, P16 26060 LOEHRKE RI, 1990, EXP THERM FLUID SCI, V3, P574 26061 LUO X, 1998, FORTSCHRITT BERICHTE, V19 26062 LUO X, 1999, SCI COMPUTING CHEM E, V2, P167 26063 MULLISEN RS, 1986, J HEAT TRANS-T ASME, V108, P370 26064 NUSSELT W, 1927, Z VER DTSCH ING 1, V71, P85 26065 PUCCI PF, 1967, J ENG PWR, V89, P29 26066 ROETZEL W, 1996, NEW DEV HEAT EXCHANG, P547 26067 ROETZEL W, 1997, COMPACT HEAT EXCHANG, P381 26068 ROETZEL W, 1997, REV GEN THERM, V36, P635 26069 ROETZEL W, 1998, REV GEN THERM, V37, P277 26070 ROETZEL W, 1999, DYNAMIC BEHAV HEAT E 26071 SCHUMANN TEW, 1929, J FRANKL INST, V208, P405 26072 STEHFEST H, 1970, COMMUN ACM, V13, P47 26073 ZHOU K, 1998, P INT C HEAT EXCH SU, P645 26074 NR 29 26075 TC 4 26076 SN 0017-9310 26077 J9 INT J HEAT MASS TRANSFER 26078 JI Int. J. Heat Mass Transf. 26079 PD JAN 26080 PY 2001 26081 VL 44 26082 IS 1 26083 BP 121 26084 EP 129 26085 PG 9 26086 SC Engineering, Mechanical; Mechanics; Thermodynamics 26087 GA 380ND 26088 UT ISI:000165707200011 26089 ER 26090 26091 PT J 26092 AU Deng, K 26093 Ren, ZM 26094 Jiang, GC 26095 TI Theoretical and experimental analyses of continuous casting with 26096 soft-contacted mould - (II) - EMF calculation and experimental analyses 26097 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA 26098 DT Article 26099 DE electromagnetic continuous casting (EMC); soft-contacted mould; 26100 electromagnetic field (EMF) 26101 AB Coupling the quasi-3D numerical simulation of the electromagnetic field 26102 and the experiments with some metals, a series of phenomena in the 26103 processes of continuous casting with soft-contacted mould was analyzed. 26104 Some theoretical and experimental models were presented, from which 26105 following results were obtained. 1) The electromagnetic force is 26106 related with electric conductivity of billet as a power function to 26107 0.4. 2) The heat transfer between billet and mould is related with the 26108 contacting pressure, and it is a linear function for tin billet 26109 approximately. 3) The distance between initial solidification point and 26110 meniscus in billet is related with the surface magnetic flux density as 26111 a fourth root function. 4) The temperature gradient in the initial 26112 solidifying shell is reduced, which can decrease the tendency of hot 26113 tearing on the surface of billet, and increase the equiaxed crystal 26114 zone in billet. 5) The stronger the magnetic flux density is, the more 26115 shallow and the thinner the oscillation mark on the surface of billet 26116 is. 6) The depth of oscillation mark on the billet cast by the 26117 soft-contacted mould can be reduced to about 10% in comparison with 26118 that on the billets cast by traditional mould. 7) In non-dimensional 26119 condition, the average depth of the oscillation marks on the billets 26120 cast by the soft-contacted mould decreases with increasing magnetic 26121 flux density on there as a complementary error function. 26122 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China. 26123 CR AYATA K, 1997, CAMP ISIJ, V10, P828 26124 CHA PR, 1998, ISIJ INT, V38, P403 26125 DENG K, 1996, T NONFERR METAL SOC, V6, P12 26126 DONG HF, 1998, J IRON STEEL, V10, P5 26127 FURUHASHI S, 1998, TETSU TO HAGANE, V84, P625 26128 LI TJ, 1997, ACTA METALLURGICA SI, V33, P524 26129 MORISHITA M, 1991, MAGNETOHYDRODYNAMICS, P267 26130 REN ZM, 1999, ACTA METALL SIN, V35, P851 26131 SIMPSON PG, 1960, INDUCTION HEATING CO 26132 VIVES C, 1989, METALL TRANS B, V20, P623 26133 NR 10 26134 TC 0 26135 SN 1003-6326 26136 J9 TRANS NONFERROUS METAL SOC CH 26137 JI Trans. Nonferrous Met. Soc. China 26138 PD DEC 26139 PY 2000 26140 VL 10 26141 IS 6 26142 BP 726 26143 EP 731 26144 PG 6 26145 SC Metallurgy & Metallurgical Engineering 26146 GA 379EE 26147 UT ISI:000165627300006 26148 ER 26149 26150 PT J 26151 AU Yoshida, F 26152 Horiike, K 26153 Huang, SP 26154 TI Time-dependent concentration profile of secreted molecules in the 26155 intercellular signaling 26156 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN 26157 DT Article 26158 DE diffusion equation; secretion rate; communication distance; cytokine; 26159 hormone; signal transduction 26160 ID CELLS; DIFFUSION; VESICLES 26161 AB The concentration profile of secreted molecules is studied to 26162 understand characteristic properties of the intercellular signaling. 26163 Diffusion equations are solved for the concentration by assuming the 26164 rectangular, triangular and oscillatory lime-dependence of the flux at 26165 the cell surface. The concentration is examined as a function of time 26166 and distance from a secreting cell by varying both the strength of an 26167 enhanced secretion rate and a secretion time. The time-dependence of 26168 the secretion rate is found to be inevitable for the concept of 26169 communication distance and characteristic time. Realistic estimations 26170 of these quantities are given for human cytokines. 26171 C1 Shiga Univ Med Sci, Dept Phys, Otsu, Shiga 5202192, Japan. 26172 Shiga Univ Med Sci, Dept Biochem, Otsu, Shiga 5202192, Japan. 26173 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 26174 RP Yoshida, F, Shiga Univ Med Sci, Dept Phys, Seta Tsukinowa Cho, Otsu, 26175 Shiga 5202192, Japan. 26176 CR ALBERTS B, 1994, MOL BIOL CELL, CH13 26177 BROCK TG, 1999, J BIOL CHEM, V274, P11660 26178 CARSLAW HS, 1959, CONDUCTION HEAT SOLI 26179 CIOLKOWSKI EL, 1992, J AM CHEM SOC, V114, P2815 26180 CRANK J, 1975, MATH DIFFUSION, CH14 26181 FRANCIS K, 1997, P NATL ACAD SCI USA, V94, P12258 26182 LAUFFENBURGER DA, 1993, RECEPTORS MODELS BIN 26183 NICHOLSON C, 1995, BIOPHYS J, V68, P1699 26184 NISHIKI T, 1997, BIOCHEM BIOPH RES CO, V239, P57 26185 PALSSON BO, 1997, NAT BIOTECHNOL, V15, P3 26186 SAVINELL JM, 1989, BIOPROCESS ENG, V4, P231 26187 WIGHTMAN RM, 1995, BIOPHYS J, V68, P383 26188 YOSHIDA F, 1999, P JPN ACAD B-PHYS, V75, P87 26189 NR 13 26190 TC 6 26191 SN 0031-9015 26192 J9 J PHYS SOC JPN 26193 JI J. Phys. Soc. Jpn. 26194 PD NOV 26195 PY 2000 26196 VL 69 26197 IS 11 26198 BP 3736 26199 EP 3743 26200 PG 8 26201 SC Physics, Multidisciplinary 26202 GA 378DH 26203 UT ISI:000165569400046 26204 ER 26205 26206 PT J 26207 AU Li, D 26208 Sun, XL 26209 TI Success guarantee of dual search in integer programming: p-th power 26210 Lagrangian method 26211 SO JOURNAL OF GLOBAL OPTIMIZATION 26212 DT Article 26213 DE integer programming; dual search; Lagrangian method 26214 ID GLOBAL OPTIMIZATION METHODS; CONSTRAINTS; BRANCH; GAP 26215 AB Although the Lagrangian method is a powerful dual search approach in 26216 integer programming, it often fails to identify an optimal solution of 26217 the primal problem. The p-th power Lagrangian method developed in this 26218 paper offers a success guarantee for the dual search in generating an 26219 optimal solution of the primal integer programming problem in an 26220 equivalent setting via two key transformations. One other prominent 26221 feature of the p-th power Lagrangian method is that the dual search 26222 only involves a one-dimensional search within [0,1]. Some potential 26223 applications of the method as well as the issue of its implementation 26224 are discussed. 26225 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China. 26226 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 26227 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, 26228 Shatin, Hong Kong, Peoples R China. 26229 CR BARHEN J, 1997, SCIENCE, V276, P1094 26230 BELL DE, 1977, OPER RES, V25, P419 26231 COOPER MW, 1981, MANAGE SCI, V27, P353 26232 CVIJOVIC D, 1995, SCIENCE, V267, P664 26233 FISHER ML, 1974, SIAM J APPL MATH, V27, P31 26234 FISHER ML, 1981, MANAGE SCI, V27, P1 26235 FLETCHER R, 1994, MATH PROGRAM, V66, P327 26236 GE R, 1990, MATH PROGRAM, V46, P191 26237 GEOFFRION AM, 1974, MATHEMATICAL PROGRAM, V2, P82 26238 GLOVER F, 1968, OPER RES, V16, P741 26239 GUPTA OK, 1985, MANAGE SCI, V31, P1533 26240 HORST R, 1993, GLOBAL OPTIMIZATION 26241 KAN AHGR, 1987, MATH PROGRAM, V39, P27 26242 KAN AHGR, 1987, MATH PROGRAM, V39, P57 26243 KARWAN MH, 1979, MATH PROGRAM, V17, P320 26244 KARWAN MH, 1980, OPER RES, V28, P1251 26245 KRAAY D, 1991, OPER RES, V39, P82 26246 LI D, 1995, J OPTIMIZ THEORY APP, V85, P309 26247 LI D, 1999, OPER RES LETT, V25, P89 26248 MICHELON P, 1991, MATH PROGRAM, V52, P303 26249 OHTAGAKI H, 1995, MATH COMPUT MODEL, V22, P261 26250 PARKER RG, 1988, DISCRETE OPTIMIZATIO 26251 SHAPIRO JF, 1979, ANN DISCRETE MATH, V5, P113 26252 SKORINKAPOV J, 1987, OPER RES LETT, V6, P269 26253 SUNG CS, 1999, IEEE T RELIAB, V48, P108 26254 TILLMAN FA, 1980, OPTIMIZATION SYSTEM 26255 TZAFESTAS SG, 1980, INT J SYST SCI, V11, P455 26256 NR 27 26257 TC 4 26258 SN 0925-5001 26259 J9 J GLOBAL OPTIM 26260 JI J. Glob. Optim. 26261 PD NOV 26262 PY 2000 26263 VL 18 26264 IS 3 26265 BP 235 26266 EP 254 26267 PG 20 26268 SC Mathematics, Applied; Operations Research & Management Science 26269 GA 379JB 26270 UT ISI:000165638000003 26271 ER 26272 26273 PT J 26274 AU Wu, MH 26275 Bao, BR 26276 Chen, J 26277 TI Reduction of the thrombogenicity of polyethylene membranes by radiation 26278 grafting 26279 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY 26280 DT Article 26281 ID ACRYLIC-ACID; BIOMATERIALS 26282 AB A new anti-thrombosis dialytic membrane with a hydrophilic-hydrophobic 26283 microphase structure was prepared by pre-irradiation grafting of beta 26284 -hydroxyethyl methacrylate (HEMA) and styrene (St) onto polyethylene 26285 (PE) membranes. The effects of reaction conditions on the degree of 26286 grafting were determined, and the properties of the grafted films were 26287 investigated. Compared with PE grafted with hydrophilic monomer, the 26288 antithrombogenicity and permeability of the PE-g-(HEMA-co-St) were 30 26289 and 15 times higher than that of the ungrafted films, respectively, if 26290 the volume ratio (HEMA:St) is about 1:1. 26291 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China. 26292 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai, Peoples R China. 26293 RP Wu, MH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, 26294 Peoples R China. 26295 CR CHE JT, 1993, RADIAT PHYS CHEM, V42, P85 26296 CHEN J, 1998, NUCL TECH, V21, P498 26297 EUSTACE DJ, 1988, J APPL POLYM SCI, V35, P707 26298 HOFFMAN AS, 1981, RADIAT PHYS CHEM, V18, P323 26299 IMAI Y, 1972, J BIOMED MATER RES, V6, P165 26300 ISHIGAKI I, 1982, J APPL POLYM SCI, V27, P1033 26301 LINARES HA, 1972, J INVEST DERMATOL, V59, P323 26302 MERRILL EW, 1987, HYDROGELS MED PHARM, P31 26303 MULLERSCHULTE D, 1993, RADIAT PHYS CHEM, V42, P891 26304 RATNER BD, 1981, BIOCOMPATIBILITY CLI, P145 26305 RATNER BD, 1996, HYDROGELS BIOMATERIA, P60 26306 WU MH, 1995, J RAD RES RAD PROCES, V13, P145 26307 ZHOU RM, 1993, J RAD RES RAD PROCES, V11, P170 26308 NR 13 26309 TC 2 26310 SN 0236-5731 26311 J9 J RADIOANAL NUCL CHEM 26312 JI J. Radioanal. Nucl. Chem. 26313 PD NOV 26314 PY 2000 26315 VL 246 26316 IS 2 26317 BP 457 26318 EP 461 26319 PG 5 26320 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science 26321 & Technology 26322 GA 375EZ 26323 UT ISI:000165387700039 26324 ER 26325 26326 PT J 26327 AU Shi, LY 26328 Zhang, Y 26329 Fang, DY 26330 Li, CZ 26331 Gu, HC 26332 TI The effect of SnO2 on the photocatalytic activity of aerosol-made TiO2 26333 particles 26334 SO JOURNAL OF MATERIALS SYNTHESIS AND PROCESSING 26335 DT Article 26336 DE composite particles; photodegradation; titanium dioxide 26337 ID DEGRADATION; PHENOL; POWDERS; FILMS 26338 AB Ultrafine titania particles were prepared by gas-phase oxidation of 26339 titanium tetrachloride in a high-temperature tubular aerosol how 26340 reactor. Homogeneous precipitation method was used to deposit SnO2 on 26341 the surface of lab-made TiO2. The composite particles were 26342 characterized by TEM, ICP, XRD, and BET surface area analysis. The 26343 composite particles, pure ultrafine TiO2, commercial TiO2, and pure 26344 SnO2 were employed for photocatalytic degradation of azo dye active red 26345 X-3B in aerated solutions. The result showed that the photoactivity of 26346 the composite particles was higher than that of pure ultrafine TiO2 and 26347 commercial TiO2, and the optimum loading of SnO2 on TiO2 is 15.3%. The 26348 enhanced degradation rate of X-3B using SnO2-TiO2 composite particles 26349 was attributed to increased charge separation in these systems. 26350 C1 Shanghai Univ, Dept Chem, Shanghai 200072, Peoples R China. 26351 RP Shi, LY, Shanghai Univ, Dept Chem, Box 59,149 Yanchang Rd, Shanghai 26352 200072, Peoples R China. 26353 CR BEDJA I, 1994, J PHYS CHEM-US, V98, P4133 26354 CHHABRA V, 1995, LANGMUIR, V11, P3307 26355 FOTOU GP, 1994, CHEM ENG SCI, V49, P4939 26356 FOTOU GP, 1996, CHEM ENG COMMUN, V151, P251 26357 GERISCHER H, 1991, J PHYS CHEM-US, V95, P5261 26358 GOPIDAS KR, 1994, J PHYS CHEM-US, V98, P3822 26359 HIROSHI Y, 1989, J PHYS CHEM-US, V93, P4833 26360 JUDIN VPS, 1993, CHEM BRIT, V29, P503 26361 KRUIS FE, 1998, J AEROSOL SCI, V29, P511 26362 LEGRINI O, 1993, CHEM REV, V93, P671 26363 LOOK JL, 1992, J COLLOID INTERF SCI, V153, P461 26364 SCLAFANI A, 1990, J PHYS CHEM-US, V94, P829 26365 SHI LY, 1998, J ECUST CH, V24, P291 26366 SHI LY, 1998, MAT REV, V12, P23 26367 SHI LY, 1999, J CATAL, V20, P338 26368 SHI LY, 1999, J ECUST, V25, P151 26369 SHI LY, 1999, J INORG MATER, V14, P717 26370 SHI LY, 1999, THESIS 26371 TSAI SJ, 1997, CATAL TODAY, V33, P227 26372 VINODGOPAL K, 1995, ENVIRON SCI TECHNOL, V29, P841 26373 VINODGPAL K, 1998, CHEM MATER, V8, P2180 26374 WEI TY, 1991, IND ENG CHEM RES, V30, P1293 26375 NR 22 26376 TC 3 26377 SN 1064-7562 26378 J9 J MATER SYNTH PROCESS 26379 JI J. Mater. Synth. Process 26380 PD NOV 26381 PY 1999 26382 VL 7 26383 IS 6 26384 BP 357 26385 EP 363 26386 PG 7 26387 SC Materials Science, Multidisciplinary 26388 GA 376NW 26389 UT ISI:000165464500003 26390 ER 26391 26392 PT J 26393 AU Wan, JTK 26394 Yu, KW 26395 Gu, GQ 26396 TI Dynamic electrorheological effects and interparticle force between a 26397 pair of rotating spheres 26398 SO PHYSICAL REVIEW E 26399 DT Article 26400 ID SUSPENSIONS; SIMULATION; SHEAR; FLUIDS; FIELD 26401 AB We consider a two-particle system in which a particle is held fixed, 26402 and the other one rotates around the axis perpendicular to the line 26403 joining the particles' centers. The rotating particle leads to a 26404 displacement of its polarization charge on the surface. Our results 26405 show that the rotational motion of the particles generally reduces the 26406 force between the particles. The dependence of interparticle force on 26407 the angular velocity of rotation will be discussed. 26408 C1 Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. 26409 Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 200093, Peoples R China. 26410 RP Wan, JTK, Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples 26411 R China. 26412 CR HALSEY TC, 1990, J STAT PHYS, V61, P1257 26413 HALSEY TC, 1992, SCIENCE, V258, P761 26414 JACKSON JD, 1975, CLASSICAL ELECTRODYN 26415 JONES TK, 1998, THESIS CHINESE U HON 26416 KLINGENBERG DJ, 1989, J CHEM PHYS, V91, P7888 26417 KLINGENBERG DJ, 1990, LANGMUIR, V6, P15 26418 KLINGENBERG DJ, 1991, J CHEM PHYS, V94, P6160 26419 KLINGENBERG DJ, 1998, MRS BULL, V23, P30 26420 LADD AJC, 1988, J CHEM PHYS, V88, P5051 26421 LOBRY L, 1999, J ELECTROSTAT, V47, P61 26422 PHULE PP, 1998, MRS BULL, V23, P19 26423 POLADIAN L, 1991, PHYS REV B, V44, P2092 26424 RUSSEL WB, 1989, COLLOIDAL DISPERSION 26425 TAO R, 1991, PHYS REV LETT, V67, P398 26426 WANG ZW, COMMUNICATION 26427 WANG ZW, 1996, INT J MOD PHYS B, V10, P1153 26428 WANG ZW, 1997, J PHYS D APPL PHYS, V30, P1265 26429 YU KW, 2000, COMPUT PHYS COMMUN, V129, P177 26430 YU KW, 2000, PHYSICA B, V279, P78 26431 NR 19 26432 TC 10 26433 SN 1063-651X 26434 J9 PHYS REV E 26435 JI Phys. Rev. E 26436 PD NOV 26437 PY 2000 26438 VL 62 26439 IS 5 26440 PN Part B 26441 BP 6846 26442 EP 6850 26443 PG 5 26444 SC Physics, Fluids & Plasmas; Physics, Mathematical 26445 GA 374JK 26446 UT ISI:000165341900020 26447 ER 26448 26449 PT J 26450 AU Zhou, SP 26451 TI The s+id(x2-y2) pairing symmetry in high temperature superconductors 26452 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS 26453 DT Article 26454 DE Ginzburg-Landau theory; energy gap; Josephson effect 26455 ID TIME-REVERSAL SYMMETRY; ORDER-PARAMETER; THIN-FILMS; YBA2CU3O7-DELTA; 26456 JUNCTIONS; VORTICES; WAVE; PB 26457 AB The pairing symmetry in high temperature superconductors 26458 YBa2Cu3O7-delta a is studied. In the framework of Ginzburg-Landau 26459 model, the coexistence of s- and d-wave states has been discussed from 26460 the group theory analysis point of view. The s + id(x2-y2) pairing 26461 symmetry argument can provide us a plausible account of the 26462 experimental results of the Josephson tunneling along in 26463 YBa2Cu3O7-delta/YB2Cu3O7-delta junctions and the c-axis tunneling 26464 between YBCO/Pb junctions as well. (C) 2000 Elsevier Science B.V. All 26465 rights reserved. 26466 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 26467 RP Zhou, SP, Shanghai Univ, Dept Phys, 20 Chengzhong Rd, Shanghai 201800, 26468 Peoples R China. 26469 CR BARONE A, 1982, PHYSICS APPL JOSEPHS, CH2 26470 CHAKRAVARTY S, 1993, SCIENCE, V261, P337 26471 CHAUDHARI P, 1994, PHYS REV LETT, V72, P1084 26472 ELLIOTT JP, 1984, SYMMETRY PHYSICS 26473 GORKOV LP, 1959, ZH EKSP TEOR FIZ, V36, P1918 26474 GORKOV LP, 1960, SOV PHYS JETP, V9, P1364 26475 IGUCHI I, 1994, PHYS REV B, V49, P12388 26476 KHOMSKII DI, 1995, PHYS REV LETT, V75, P1384 26477 KOUZNETSOV KA, 1997, PHYS REV LETT, V79, P3050 26478 KRESIN VZ, 1993, PHYS REV B, V48, P9012 26479 LESUEUR J, 1997, PHYS REV B, V55, P3398 26480 LI QP, 1993, PHYS REV B, V48, P437 26481 LIHN HTS, 1996, PHYS REV LETT, V76, P3810 26482 LYONS KB, 1990, PHYS REV LETT, V64, P2949 26483 MILLIS AJ, 1994, PHYS REV B, V49, P15408 26484 ROBERTAZZI RP, 1992, PHYS REV B, V46, P8456 26485 ROHKSAR DS, 1993, PHYS REV LETT, V70, P493 26486 SIGRIST M, 1989, PHYS REV LETT, V63, P1727 26487 SIGRIST M, 1995, PHYS REV LETT, V74, P3249 26488 SIGRIST M, 1996, PHYS REV B, V53, P2835 26489 SPIELMAN S, 1990, PHYS REV LETT, V65, P123 26490 SUN AG, 1994, PHYS REV LETT, V72, P2267 26491 TINKHAM M, 1964, GROUP THEORY QUANTUM 26492 TSUEI CC, 1994, PHYS REV LETT, V73, P593 26493 VOLOVIK GE, 1985, SOV PHYS JETP, V61, P843 26494 WEBER HJ, 1990, SOLID STATE COMMUN, V76, P511 26495 WEI CD, 1992, GREENS FUNCTION METH, CH8 26496 WOLLMAN DA, 1993, PHYS REV LETT, V71, P2134 26497 WU S, 1996, PHYS REV B, V54, P13343 26498 ZHANG FC, 1988, PHYS REV B, V37, P3759 26499 NR 30 26500 TC 3 26501 SN 0921-4534 26502 J9 PHYSICA C 26503 JI Physica C 26504 PD NOV 1 26505 PY 2000 26506 VL 339 26507 IS 4 26508 BP 258 26509 EP 268 26510 PG 11 26511 SC Physics, Applied 26512 GA 372YC 26513 UT ISI:000165260800006 26514 ER 26515 26516 PT J 26517 AU Zhang, TS 26518 Hing, P 26519 Zhang, RF 26520 Zhang, JC 26521 Li, Y 26522 TI Phase evolution, microstructure, and gas-sensing characteristics of the 26523 Sb2O3-Fe2O3 system prepared by coprecipitation 26524 SO JOURNAL OF MATERIALS RESEARCH 26525 DT Article 26526 ID ALPHA-FE2O3 CERAMICS; FILM; SENSITIVITY; SENSORS; FE2O3; AIR 26527 AB Precursor powders with antimony-to-iron (Sb/Fe) atomic ratios ranging 26528 from 0 to 2.0 were prepared by chemical coprecipitation. The origin of 26529 enhanced gas-sensing behavior at a higher calcining temperature was 26530 investigated, based on phase evolution and microstructure characterized 26531 by means of thermal analysis, x-ray diffraction, Brunauer-Emmett-Teller 26532 surface area measurement, and electron microscopy. Only one 26533 iron-antimony oxide (i.e., FeSbO4) could be obtained under present 26534 experimental conditions. Pure FeSbO4 exhibited a high gas sensitivity, 26535 only when calcining temperature was below 600 degreesC. A rapid 26536 crystallite growth, as well as hard agglomeration, occurred in pure 26537 FeSbO4 powder calcined at 600-1000 degreesC, and thus led to poor 26538 gas-sensing behavior. However, there existed an optimal Sb/Fe ratio 26539 range (i.e., 0.25 to 0.65) in which crystallite growth of both alpha 26540 -Fe2O3 and FeSbO4 could be efficiently depressed up to 800 degreesC. 26541 The samples (with Sb/Fe ratio in the range 0.25-0.65) calcined at 26542 600-800 degreesC displayed a high sensitivity to liquid petroleum gas 26543 due to their large specific surface area and poor crystallinity. 26544 C1 Nanyang Technol Univ, Sch Appl Sci, Div Mat Engn, Singapore 639798, Singapore. 26545 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China. 26546 Univ Sci & Technol China, Struct Res Lab, Hefei 230026, Peoples R China. 26547 RP Zhang, TS, Nanyang Technol Univ, Sch Appl Sci, Div Mat Engn, Nanyang 26548 Ave, Singapore 639798, Singapore. 26549 CR ASO I, 1980, J CATAL, V64, P29 26550 BABDO Y, 1965, JPN J APPL PHYS, V4, P240 26551 BADAWY WA, 1988, THIN SOLID FILMS, V158, P277 26552 BERRY FJ, 1987, J SOLID STATE CHEM, V71, P582 26553 BONDIOLI F, 1998, MATER RES BULL, V33, P723 26554 CANTALINI C, 1994, SENSOR ACTUAT B-CHEM, V18, P437 26555 CHUNG WY, 1991, THIN SOLID FILMS, V200, P329 26556 COLOMBO P, 1991, J EUR CERAM SOC, V8, P383 26557 DEBOER FE, 1954, J AM CHEM SOC, V76, P3365 26558 EWISS MAZ, 1998, PHYS CHEM GLASSES, V39, P236 26559 FANG YK, 1989, THIN SOLID FILMS, V169, P51 26560 IPPOMMATSU M, 1989, J ELECTROCHEM SOC, V136, P2123 26561 KIM KH, 1994, J AM CERAM SOC, V77, P915 26562 KIM TH, 1991, J APPL PHYS, V70, P2739 26563 KOHL D, 1989, SENSOR ACTUATOR, V18, P71 26564 MATSUOKA M, 1978, NAT TECH REPORT, V24, P461 26565 NAKATANI Y, 1982, JPN J APPL PHYS, V21, L758 26566 NAKATANI Y, 1983, JPN J APPL PHYS PT 1, V22, P233 26567 NAKATANI Y, 1983, JPN J APPL PHYS PT 1, V22, P912 26568 SARALA G, 1995, SENSOR ACTUAT B-CHEM, V28, P31 26569 SCHIERBAUM KD, 1991, SENSOR ACTUAT B-CHEM, V3, P205 26570 WALCZAK J, 1997, SOLID STATE IONICS 2, V101, P1363 26571 ZHANG TS, 1999, J MATER SCI-MATER EL, V10, P509 26572 ZHANG TS, 2000, J MATER SCI, V35, P1419 26573 NR 24 26574 TC 3 26575 SN 0884-2914 26576 J9 J MATER RES 26577 JI J. Mater. Res. 26578 PD NOV 26579 PY 2000 26580 VL 15 26581 IS 11 26582 BP 2356 26583 EP 2363 26584 PG 8 26585 SC Materials Science, Multidisciplinary 26586 GA 373EL 26587 UT ISI:000165275400016 26588 ER 26589 26590 PT J 26591 AU Rocha, A 26592 Tong, F 26593 Yan, ZZ 26594 TI A logic filter for tumor detection on mammograms 26595 SO JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 26596 DT Article 26597 DE logic filter; mammogram diagnosis; image processing for mammograms 26598 AB This paper presents a novel approach for detection of suspicious 26599 regions in digitized mammograms. The edges of the suspicious region in 26600 mammogram are enhanced using an improved logic filter. The result of 26601 further image processing gives a gray-level histogram with 26602 distinguished characteristics, which facilitates the segmentation of 26603 the suspicious masses. The experiment results based on 25 digital 26604 sample mammograms, which are definitely diagnosed, are analyzed and 26605 evaluated briefly. 26606 C1 Shanghai Univ, Dept Comp Sci, Shanghai 201800, Peoples R China. 26607 Shanghai Univ, Dept Biomed Engn, Shanghai 201800, Peoples R China. 26608 RP Rocha, A, Shanghai Univ, Dept Comp Sci, Shanghai 201800, Peoples R 26609 China. 26610 CR BASSMANN H, 1995, DIGITAL IMAGE PROCES, P117 26611 BOVIK AC, 1987, IEEE T PATTERN ANAL, V9, P181 26612 HALL EL, 1971, IEEE T COMPUTER, V20 26613 LAI SM, 1989, IEEE T MED IMAGING, V8, P377 26614 LAMARQUE JL, 1981, ATLS BREAST CLIN RAD 26615 ROCHA A, 1999, J SHANGHAI U, V3, P293 26616 TSIRIKOLIAS K, 1991, P INT C DIG SIGN PRO, P285 26617 TSIRIKOLIAS K, 1993, IMAGE PROCESSING THE, P251 26618 NR 8 26619 TC 1 26620 SN 1000-9000 26621 J9 J COMPUT SCI TECHNOL 26622 JI J. Comput. Sci. Technol. 26623 PD NOV 26624 PY 2000 26625 VL 15 26626 IS 6 26627 BP 629 26628 EP 632 26629 PG 4 26630 SC Computer Science, Hardware & Architecture; Computer Science, Software 26631 Engineering 26632 GA 373JC 26633 UT ISI:000165284800015 26634 ER 26635 26636 PT J 26637 AU Peng, LM 26638 Mao, XM 26639 Wen, HQ 26640 TI Directional solidification properties of the in-situ composite Cu-Cr 26641 alloy 26642 SO RARE METAL MATERIALS AND ENGINEERING 26643 DT Article 26644 DE in-situ composite; primary dendritic spacing; axial length 26645 AB The in-situ. composite cable ingots of the alloy Cu-Cr have been 26646 produced by a directional solidification and continuous casting 26647 process. The directional solidification properties of the alloy Cu-Cr, 26648 such as microstructure, primary dendritic spacing, and axial length of 26649 crystal, are studied. The experimental results show that the planar or 26650 cellular solidification interface is beneficial to forming the in-situ 26651 composite reinforced by fibers. As G(L) = 210 degreesC/cm, and V = 0.6 26652 mm/min, the solidification interface of the alloy Cu-0. 8%Cr is planar. 26653 With the increase of the solidification rate, the primary dendritic 26654 spacing of the alloy Cu-Cr increases at the beginning, and then 26655 decreases while the axial length increases all the time. 26656 C1 Shanghai Univ, Inst Mat Sci & Engn, Shanghai 200072, Peoples R China. 26657 Bao Steel Co, Shanghai 201900, Peoples R China. 26658 RP Peng, LM, Shanghai Univ, Inst Mat Sci & Engn, Shanghai 200072, Peoples 26659 R China. 26660 CR HU HQ, 1991, PRINCIPLE METAL SOLI, P109 26661 PAN Y, 1999, RARE METAL MAT ENG, V28, P85 26662 VERHOEVEN JD, 1990, J MATER ENG, V12, P127 26663 WAN CK, 1993, MAT REV, V2, P23 26664 WEN HQ, 1995, J FUNCTIONAL MAT, V26, P553 26665 WEN HQ, 1998, RARE METALS, V17, P23 26666 WU NP, 1993, ELECT MAT, P24 26667 ZHAO ZD, 1990, HDB COPPER COPPER AL, P3 26668 NR 8 26669 TC 1 26670 SN 1002-185X 26671 J9 RARE METAL MAT ENG 26672 JI Rare Metal Mat. Eng. 26673 PD OCT 26674 PY 2000 26675 VL 29 26676 IS 5 26677 BP 307 26678 EP 310 26679 PG 4 26680 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 26681 Engineering 26682 GA 370QR 26683 UT ISI:000165134200006 26684 ER 26685 26686 PT J 26687 AU Cheng, JR 26688 Meng, ZY 26689 TI Orientation controlling of PZT thin films derived from sol-gel 26690 techniques 26691 SO JOURNAL OF MATERIALS SCIENCE LETTERS 26692 DT Article 26693 C1 Shanghai Univ, Sch Mat Sci & Technol, Shanghai 201800, Peoples R China. 26694 Shanghai Jiao Tong Univ, Sch Mat Sci, Shanghai 200030, Peoples R China. 26695 RP Meng, ZY, Shanghai Univ, Sch Mat Sci & Technol, Shanghai 201800, 26696 Peoples R China. 26697 CR ADACHI M, 1987, JPN J APPL PHYS PT 1, V26, P550 26698 BROOKS KG, 1994, J MATER RES, V9, P2540 26699 CHEN SY, 1994, J AM CERAM SOC, V77, P2337 26700 CHEN SY, 1997, JPN J APPL PHYS 1, V36, P4451 26701 CHEN SY, 1998, J AM CERAM SOC, V81, P97 26702 CHENG JR, 1999, ADV SCI TECH, V25, P61 26703 CLEE M, 1992, J APPL PHYS, V72, P1566 26704 FOSTER CM, 1995, MATER RES SOC S P, V361, P307 26705 KANG YM, 1997, FERROELECTRICS, V196, P5 26706 KWOK CK, 1993, J MATER RES, V8, P339 26707 LAKEMAN CDE, 1992, CERAMIC T, V25, P413 26708 WILLEMS GJ, 1995, MICROELECTRON ENG, V29, P217 26709 WILLEMS GJ, 1997, INTEGR FERROELECTR, V15, P19 26710 WOOD VE, 1992, J APPL PHYS, V71, P4557 26711 NR 14 26712 TC 6 26713 SN 0261-8028 26714 J9 J MATER SCI LETT 26715 JI J. Mater. Sci. Lett. 26716 PD NOV 26717 PY 2000 26718 VL 19 26719 IS 21 26720 BP 1945 26721 EP 1949 26722 PG 5 26723 SC Materials Science, Multidisciplinary 26724 GA 369WK 26725 UT ISI:000165090600019 26726 ER 26727 26728 PT J 26729 AU Li, GH 26730 Zhou, SP 26731 Xu, DM 26732 Lai, JW 26733 TI An occasional linear feedback approach to control chaos 26734 SO ACTA PHYSICA SINICA 26735 DT Article 26736 DE occasional linear feedback; chaos; Henon-like mapping; Lyapunov exponent 26737 AB This paper proposes an approach to control chaos based on occasional 26738 linear feedback. This scheme is composed of control and non-control 26739 phases. The different stable periodic orbits are obtained by adjusting 26740 the feedback coefficients and the time duration which the control phase 26741 occupies. We also simulate acousto-optic bistable model and Henon-like 26742 attactor. The results from the numerical simulation show that the 26743 method can switch effectively the system to the desired periodic orbits. 26744 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800, Peoples R China. 26745 Shanghai Univ, Sch Sci, Shanghai 201800, Peoples R China. 26746 RP Li, GH, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800, 26747 Peoples R China. 26748 CR BERNARDO M, 1996, PHYS LETT A, V214, P139 26749 GUEMEZ J, 1993, PHYS LETT A, V181, P29 26750 LIM TK, 1998, PHYS LETT A, V240, P289 26751 LIU ZH, 1997, PHYS LETT A, V232, P55 26752 MATIAS MA, 1994, PHYS REV LETT, V72, P1455 26753 OTT E, 1990, PHYS REV LETT, V64, P1196 26754 NR 6 26755 TC 9 26756 SN 1000-3290 26757 J9 ACTA PHYS SIN-CHINESE ED 26758 JI Acta Phys. Sin. 26759 PD NOV 26760 PY 2000 26761 VL 49 26762 IS 11 26763 BP 2123 26764 EP 2128 26765 PG 6 26766 SC Physics, Multidisciplinary 26767 GA 371XH 26768 UT ISI:000165204200003 26769 ER 26770 26771 PT J 26772 AU Ju, JH 26773 Xia, YB 26774 Zhang, WL 26775 Wang, LJ 26776 Shi, WM 26777 Huang, ZM 26778 Li, ZF 26779 Zheng, GZ 26780 Tang, DY 26781 TI Effect of nitrogen on the residual stress and adhesion of diamond-like 26782 amorphous carbon nitride films 26783 SO ACTA PHYSICA SINICA 26784 DT Article 26785 DE diamond-like carbon film; microstructure; adhesion properties 26786 ID THIN-FILMS; INDENTATION; ADHERENCE 26787 AB Microstructure and adhesion properties of nitrogen - doped diamond-like 26788 amorphous carbon (DLC) film deposited by r f plasma-enhanced chemical 26789 vapor deposition method is studied by atomic force microscope, Auger 26790 electron spectroscopy (AES) and micro-indentation analysis. Results 26791 show that, with the increase of nitrogen content, particles of tens of 26792 nanometer in size appear in the film. The atomic lateral force 26793 microscope and AES analyses show that these nano particles are 26794 nitrogen-rich amorphous carbon nitride CNx, where x is larger than 26795 0.126. Micro-indentation measurement shows that this DLC/CNx 26796 nano-composite structure reduces the residual stress of the film and 26797 improves the adhesion between DLC film and Si substrate. 26798 C1 Shanghai Univ, Sch Mat & Engn, Shanghai 201800, Peoples R China. 26799 Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China. 26800 RP Ju, JH, Shanghai Univ, Sch Mat & Engn, Shanghai 201800, Peoples R China. 26801 CR ANGUS JC, 1988, J VAC SCI TECHNOL 2, V6, P1778 26802 CHOI W, 1998, J ADHES SCI TECHNOL, V12, P29 26803 FRANCESCHINI DF, 1992, APPL PHYS LETT, V60, P3229 26804 JU JH, IN PRESS J APPL SCI 26805 MARSHALL DB, 1984, J APPL PHYS, V56, P2632 26806 ROSSINGTON C, 1984, J APPL PHYS, V56, P2639 26807 SILVA SRP, 1997, J APPL PHYS, V81, P2626 26808 ZOU JW, 1988, J VAC SCI TECHNOL A, V6, P3103 26809 ZOU JW, 1989, J APPL PHYS, V65, P3914 26810 NR 9 26811 TC 3 26812 SN 1000-3290 26813 J9 ACTA PHYS SIN-CHINESE ED 26814 JI Acta Phys. Sin. 26815 PD NOV 26816 PY 2000 26817 VL 49 26818 IS 11 26819 BP 2310 26820 EP 2314 26821 PG 5 26822 SC Physics, Multidisciplinary 26823 GA 371XH 26824 UT ISI:000165204200038 26825 ER 26826 26827 PT J 26828 AU Han, JT 26829 Bao, BR 26830 Sun, GX 26831 Yang, Y 26832 Yang, YH 26833 Chen, MQ 26834 Sun, SX 26835 TI Synthesis and structure of dinitrato Di(N-dodecanoylpyrrolidine) 26836 uranyl(II) 26837 SO ACTA CHIMICA SINICA 26838 DT Article 26839 DE N - dodecanoylpyrrolidine; crystal structures; uranyl complex 26840 ID EXTRACTION; URANIUM(VI); TOLUENE 26841 AB The complex UO2(DOPOD)(2)(NO3)(2) has been prepared and characterized 26842 by elemental analysis and IR spectroscopy. The crystal structure of the 26843 complex has been determined by four - circle X - ray diffractometer. 26844 The complex crystal belongs to the orthorhombic system and space group 26845 Pbca, with cell parameters: a=0.9301(5), b=1.7017(2), c=5.1171(11)nm, 26846 V=8.099(5)nm(3), Z = 8, D-c = 1.478g/ cm(3),mu>(*) over bar * (MoK 26847 alpha) = 4.061mm(-1), F(000) = 3632, final R = 0.0655 and R-w = 0.1907 26848 for 3006 observed reflections [I > 2 sigma>(*) over bar * (I)], The 26849 results indicate that uranyl ion is coordinated to six oxygen atoms, 26850 four of them are from two nitrate groups and other two are from 26851 carbonyl groups of organic ligands. The uranium atom in the structure 26852 is hexagonal bipyramid cooperated. 26853 C1 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China. 26854 Shanghai Univ, Sch Chem & Chem Engn, Shanghai 201800, Peoples R China. 26855 Fudan Univ, Ctr Anal & Measurement, Shanghai 200433, Peoples R China. 26856 Shandong Univ, Dept Chem, Jinan 250100, Peoples R China. 26857 RP Han, JT, Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, 26858 Peoples R China. 26859 CR HAN JT, 1999, J RADIOANAL NUCL CH, V241, P215 26860 HAN JT, 1999, J RADIOANAL NUCL CH, V241, P679 26861 JIANG D, 1992, ACTA CHIM SINICA, V50, P1091 26862 PANATTONI C, 1969, INORG CHEM, V8, P320 26863 SUN GX, 1998, J RADIOANAL NUCL CH, V232, P245 26864 SUN GX, 1998, RADIOCHIM ACTA, V83, P27 26865 THIOLLET G, 1989, SOLVENT EXTR ION EXC, V7, P813 26866 XU G, 1984, PRINCIPLES EXTRACTIO, P161 26867 ZHOU G, 1989, BASIC STRUCTURAL CHE, P246 26868 NR 9 26869 TC 4 26870 SN 0567-7351 26871 J9 ACTA CHIM SIN 26872 JI Acta Chim. Sin. 26873 PY 2000 26874 VL 58 26875 IS 10 26876 BP 1286 26877 EP 1290 26878 PG 5 26879 SC Chemistry, Multidisciplinary 26880 GA 371YX 26881 UT ISI:000165207800021 26882 ER 26883 26884 PT J 26885 AU Li, XS 26886 Tanaka, T 26887 Suzuki, Y 26888 TI Preferred orientation and ferroelectric properties of lead zirconate 26889 titanate thin films 26890 SO THIN SOLID FILMS 26891 DT Article 26892 DE PZT thin film; facing target sputtering; ferroelectric properties; 26893 preferred orientation 26894 ID AXIS-ORIENTED PB(ZR; DEPOSITION; GROWTH; RF 26895 AB Highly (111) oriented perovskite PZT thin films have been prepared by 26896 annealing FTS-deposited samples. The effects of the substrate 26897 temperature, sputtering power, annealing temperature and heating rate 26898 for annealing on the crystalline orientation were investigated. The 26899 sample prepared under the optimum condition showed excellent 26900 ferroelectric properties with P-r of 45 muC/cm(2) and P-s of 79 26901 muC/cm(2). (C) 2000 Elsevier Science S.A. All rights reserved. 26902 C1 Technol Res Inst Osaka Prefecture, Super Eye Image Sensor Project, Osaka 5941157, Japan. 26903 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 26904 RP Li, XS, Technol Res Inst Osaka Prefecture, Super Eye Image Sensor 26905 Project, Ayumino 2-7-1, Osaka 5941157, Japan. 26906 CR BAI GR, 1998, APPL PHYS LETT, V72, P1572 26907 CHEN SY, 1994, J AM CERAM SOC, V77, P2337 26908 FUJII S, 1997, JPN J APPL PHYS 1, V36, P6065 26909 FUKAMI T, 1991, JPN J APPL PHYS PT 1, V30, P2155 26910 LEE KB, 1999, APPL PHYS LETT, V74, P1484 26911 MATSUOKA M, 1986, J APPL PHYS, V60, P2096 26912 RANDALL CA, 1998, J AM CERAM SOC, V81, P677 26913 SONG YJ, 1998, APPL PHYS LETT, V72, P2686 26914 TYUNINA M, 1998, J APPL PHYS, V83, P5489 26915 UDAYAKUMAR KR, 1995, J APPL PHYS, V77, P3981 26916 YAMAUCHI S, 1993, JPN J APPL PHYS 1, V32, P4118 26917 NR 11 26918 TC 7 26919 SN 0040-6090 26920 J9 THIN SOLID FILMS 26921 JI Thin Solid Films 26922 PD OCT 31 26923 PY 2000 26924 VL 375 26925 IS 1-2 26926 BP 91 26927 EP 94 26928 PG 4 26929 SC Materials Science, Multidisciplinary; Physics, Applied; Physics, 26930 Condensed Matter 26931 GA 369LU 26932 UT ISI:000165067400022 26933 ER 26934 26935 PT J 26936 AU Ding, YP 26937 Jin, CY 26938 Meng, ZY 26939 TI The effects and mechanism of chemical additives on the pyrolysis 26940 evolution and microstructure of sol-gel derived Ba1-xSrxTiO3 thin films 26941 SO THIN SOLID FILMS 26942 DT Article 26943 DE BST film; deposition process; crystallization; microstructure 26944 ID BARIUM-TITANATE 26945 AB The dependence of phase evolution on preparation conditions of 26946 precursor sols were investigated by DSC and XRD experiments during the 26947 sol-gel processing for Ba1-xSrxTiO3(BST) thin films. Two kinds of 26948 crystallization paths of perovskite BST were found during the 26949 annealing, which are closely dependent on chelating agent and solution 26950 aging. One path was the decomposition of all oxycarbonate intermediate, 26951 the other was the solid reaction between Ba/Sr carbonates and titanium 26952 oxides. For fresh sol, the addition of acetylacetone (HAcAc) as a 26953 chelating agent reduced the crystallization temperature by similar to 26954 70 degreesC. Moreover, the back scattered scanning electron microscopy 26955 (BS-SEM) revealed that the HAcAc-derived films were homogeneous in 26956 composition in comparison with the heterogeneity of the films prepared 26957 with no chelating agent addition. The Variations mentioned above were 26958 considered originating from different molecule structures of the 26959 precursors. (C) 2000 Elsevier Science S.A. All rights reserved. 26960 C1 Shanghai Univ Sci & Technol, Dept Mat Sci, Shanghai 201800, Peoples R China. 26961 Jiao Tong Univ, Dept Mat Sci, Shanghai 20030, Peoples R China. 26962 RP Meng, ZY, Shanghai Univ Sci & Technol, Dept Mat Sci, Shanghai 201800, 26963 Peoples R China. 26964 CR ALSHAREEF HN, 1997, J ELECTROCERAM, V1, P145 26965 CHANDLER CD, 1993, CHEM REV, V93, P1025 26966 DING Y, 1998, P 9 INT C MOD MAT TE, P615 26967 GRAMMATICO JP, 1997, J MAT SCI LETT ELECT, V3, P82 26968 GUST MC, 1997, J AM CERAM SOC, V80, P2828 26969 HOFFMAN W, 1997, THIN SOLID FILMS, V305, P305 26970 KRUPANIDHI SB, 1997, THIN SOLID FILMS, V305, P144 26971 MOSSET A, 1988, J NONCRYST SOLIDS, V100, P339 26972 SCOTT JF, 1992, P 8 IEEE INT S APPL, P356 26973 SHAIKH AS, 1986, J AM CERAM SOC, V69, P682 26974 TSAY JD, 1998, J MATER SCI, V33, P3721 26975 UEDA T, 1995, INTEGR FERROELECTR, V7, P45 26976 NR 12 26977 TC 10 26978 SN 0040-6090 26979 J9 THIN SOLID FILMS 26980 JI Thin Solid Films 26981 PD OCT 31 26982 PY 2000 26983 VL 375 26984 IS 1-2 26985 BP 196 26986 EP 199 26987 PG 4 26988 SC Materials Science, Multidisciplinary; Physics, Applied; Physics, 26989 Condensed Matter 26990 GA 369LU 26991 UT ISI:000165067400045 26992 ER 26993 26994 PT J 26995 AU Li, XS 26996 Tanaka, T 26997 Suzuki, Y 26998 TI Characterization of lead zirconate titanate thin films deposited at low 26999 temperature by reactive facing target sputtering 27000 SO THIN SOLID FILMS 27001 DT Article 27002 DE reactive facing target sputtering; lead zirconate titanate thin film; 27003 orientation; ferroelectric property 27004 ID PB(ZR,TI)O-3 FILMS; PB(ZR; RF; GROWTH 27005 AB Lead zirconate titanate thin films have been deposited on platinized 27006 silicon substrate at low temperature by reactive facing target 27007 sputtering. The effects of substrate temperature, total gas pressure, 27008 sputtering ambience, input power and target composition on the phase 27009 composition of PZT thin film were investigated. By controlling the 27010 sputtering conditions, highly (111) oriented perovskite PZT thin films 27011 can be obtained, and the samples show ferroelectric properties. (C) 27012 2000 Elsevier Science S.A. All rights reserved. 27013 C1 Technol Res Inst Osaka Prefecture, Super Eye Image Sensor Project, Osaka 5941157, Japan. 27014 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 27015 RP Li, XS, Technol Res Inst Osaka Prefecture, Super Eye Image Sensor 27016 Project, Ayumino 2-7-1, Osaka 5941157, Japan. 27017 CR CHEN SY, 1994, J AM CERAM SOC, V77, P2332 27018 FUJISAWA A, 1993, JPN J APPL PHYS 1, V32, P4048 27019 HASE T, 1991, JPN J APPL PHYS, V30, P2159 27020 HASE T, 1994, JPN J APPL PHYS 1, V33, P5244 27021 HAYASHI K, 1993, JPN J APPL PHYS 1, V32, P4122 27022 LEE HS, 1998, JPN J APPL PHYS 1, V37, P5630 27023 MATSUOKA M, 1986, J APPL PHYS, V60, P2096 27024 MATSUOKA M, 1988, J APPL PHYS, V63, P2098 27025 NAM HJ, 1998, JPN J APPL PHYS 1, V37, P3462 27026 TOMINAGA K, 1991, JPN J APPL PHYS PT 1, V30, P2574 27027 TRISCONE JM, 1996, J APPL PHYS 1, V79, P4298 27028 YAMAUCHI S, 1993, JPN J APPL PHYS 1, V32, P4118 27029 ZHANG WX, 1995, JPN J APPL PHYS 1, V34, P5120 27030 ZHANG WX, 1996, JPN J APPL PHYS 1, V35, P5084 27031 NR 14 27032 TC 2 27033 SN 0040-6090 27034 J9 THIN SOLID FILMS 27035 JI Thin Solid Films 27036 PD OCT 31 27037 PY 2000 27038 VL 375 27039 IS 1-2 27040 BP 267 27041 EP 270 27042 PG 4 27043 SC Materials Science, Multidisciplinary; Physics, Applied; Physics, 27044 Condensed Matter 27045 GA 369LU 27046 UT ISI:000165067400061 27047 ER 27048 27049 PT J 27050 AU Wen, Q 27051 You, JL 27052 Huang, SP 27053 Yu, BK 27054 Jiang, GC 27055 Zhou, CD 27056 TI High temperature Raman spectra and micro-structure study of lithium 27057 metaborate and its melt 27058 SO SPECTROSCOPY AND SPECTRAL ANALYSIS 27059 DT Article 27060 DE high temperature Raman spectroscopy; lithium metaborate (LiBO2); melt 27061 AB Lithium metaborate (LiBO2) is studied by high temperature Raman 27062 spectroscopy from room temperature up to 1 673 K,and spectra drawing in 27063 different temperature are got. By analyzing, it focus on the phase 27064 transition,it is that the endless chains of BO3 triangles transform 27065 into rings of (B3O6)(3-) at about 1 123 K,and then the different kind 27066 of phase balance's motion occurs after 1 273 K which implies that both 27067 endless chain and ring have changed to CRN. In the drawing, the 27068 variation of peak's area rate implies the microstructure 27069 information,and shows the process from order to disorder. 27070 C1 Shanghai City Key Lab Ferromet, Shanghai 200072, Peoples R China. 27071 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 27072 RP Wen, Q, Shanghai City Key Lab Ferromet, Shanghai 200072, Peoples R 27073 China. 27074 CR BRONSWIJK JP, 1977, J NONCRYST SOLIDS, V24, P145 27075 CHRYSSIKOS GD, 1990, J NONCRYSTALL SOLIDS, V42, P126 27076 JIANG YJ, 1996, ACTA PHYS SINICA, V45, P885 27077 LIU HS, 1996, SPECTROSC SPECT ANAL, V16, P66 27078 MAREZIO M, 1963, ACTA CRYSTALLOGR, V16, P390 27079 MAREZIO M, 1963, ACTA CRYSTALLOGR, V16, P594 27080 RULMONT A, 1989, SPECTROCHIM ACTA A, V45, P603 27081 SASTRY BSR, 1995, J AM CERAM SOC, V42, P218 27082 YOU JL, 1999, OPTICAL INSTRUMENT, V21, P21 27083 ZACHARIASEN WH, 1964, ACTA CRYSTALLOGR, V17, P749 27084 ZHOU XW, 1997, PROGR LIQUID PHYSI 1, V7, P12 27085 NR 11 27086 TC 2 27087 SN 1000-0593 27088 J9 SPECTROSC SPECTR ANAL 27089 JI Spectrosc. Spectr. Anal. 27090 PD OCT 27091 PY 2000 27092 VL 20 27093 IS 5 27094 BP 694 27095 EP 696 27096 PG 3 27097 SC Spectroscopy 27098 GA 369AR 27099 UT ISI:000090150100036 27100 ER 27101 27102 PT J 27103 AU Liu, ZY 27104 Lin, L 27105 Shi, CC 27106 TI Nonstationary two-stage multisplitting methods for symmetric positive 27107 definite matrices 27108 SO APPLIED MATHEMATICS LETTERS 27109 DT Article 27110 DE nonstationary two-stage multisplitting; diagonal compensation 27111 reduction; block diagonal conformable 27112 ID LINEAR-SYSTEMS; OVERLAPPING BLOCKS; ITERATIVE METHODS; PARALLEL 27113 SOLUTION; CONVERGENCE; 2-STAGE 27114 AB Nonstationary synchronous two-stage multisplitting methods for the 27115 solution of the symmetric positive definite linear system of equations 27116 are considered. The convergence properties of these methods are 27117 studied. Relaxed variants are also discussed. The main tool for the 27118 construction of the two-stage multisplitting and related theoretical 27119 investigation is the diagonally compensated reduction (cf. [1]). (C) 27120 2000 Elsevier Science Ltd. All rights reserved. 27121 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 27122 Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China. 27123 Fudan Univ, Dept Math, Shanghai 200433, Peoples R China. 27124 RP Liu, ZY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 27125 CR AXELSSON O, 1994, NUMER LINEAR ALGEBR, V1, P155 27126 BERMAN A, 1979, NONNEGATIVE MATRICES 27127 BRU R, 1988, LINEAR ALGEBRA APPL, V103, P175 27128 BRU R, 1990, APPL MATH LETT, V3, P65 27129 BRU R, 1995, ELECTRONIC T NUMERIC, V3, P24 27130 BRU R, 1995, SIAM J MATRIX ANAL A, V16, P1210 27131 CAO ZH, 1998, LINEAR ALGEBRA APPL, V285, P153 27132 CAO ZH, 1998, LINEAR ALGEBRA APPL, V285, P309 27133 CASTEL MJ, 1998, MATH COMPUT, V67, P209 27134 FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141 27135 JONES MT, 1996, NUMER LINEAR ALGEBR, V3, P113 27136 LANZKRON PJ, 1991, NUMER MATH, V58, P685 27137 MIGALLON V, 1997, APPL MATH LETT, V10, P79 27138 NEUMANN M, 1987, LINEAR ALGEBRA APPL, V88, P559 27139 OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630 27140 ORTEGA JM, 1972, NUMERICAL ANAL 2 COU 27141 SZYLD DB, 1992, SIAM J MATRIX ANAL A, V13, P671 27142 VARGA RS, 1962, MATRIX ITERATIVE ANA 27143 NR 18 27144 TC 5 27145 SN 0893-9659 27146 J9 APPL MATH LETT 27147 JI Appl. Math. Lett. 27148 PD NOV 27149 PY 2000 27150 VL 13 27151 IS 8 27152 BP 49 27153 EP 54 27154 PG 6 27155 SC Mathematics, Applied 27156 GA 369ZM 27157 UT ISI:000165097700009 27158 ER 27159 27160 PT J 27161 AU Du, B 27162 Yung, EKN 27163 Yang, KZ 27164 Zhong, SS 27165 TI Design of multibeam parabolic torus reflector antennas 27166 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 27167 DT Article 27168 DE parabolic torus reflector antenna; multibeam antenna; offset antenna; 27169 antenna design 27170 AB Design formulas, principles, and procedures for a multibeam parabolic 27171 tones reflector antenna (PTRA) are presented. A six-beam PTRA with 15 27172 degrees geostationary are coverage for satellite communication is 27173 described. Experimental and theoretical radiation patterns are given. 27174 Six identical beams are obtained with low sidelobe and low 27175 cross-polarization lei els. A comparison between the calculated and 27176 measured patterns of the central beam shows good agreement. (C) 2000 27177 John Wiley & Sons, Inc. 27178 C1 City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China. 27179 Commun Telemetry & Telecontrol Res Inst, Shijiazhuang 050081, Hebei, Peoples R China. 27180 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800, Peoples R China. 27181 RP Du, B, City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, 27182 Peoples R China. 27183 CR BOSWELL AGP, 1978, MARCONI REV, V41, P237 27184 CHU TS, 1989, IEEE T ANTENN PROPAG, V37, P865 27185 CLARRICOATS PJB, 1984, CORRUGATED HORNS MIC, P141 27186 DU B, 1995, SCI CHINA SER A, V38, P1520 27187 DU B, 1997, CHINESE J ELECTRON, V6, P86 27188 DU B, 1997, P 4 INT S ANT EM THE, P148 27189 HOFERER RA, 1998, IEEE T ANTENN PROPAG, V46, P1449 27190 ZHONG SS, 1998, P IEEE AP S S ATL GA, P848 27191 NR 8 27192 TC 0 27193 SN 0895-2477 27194 J9 MICROWAVE OPT TECHNOL LETT 27195 JI Microw. Opt. Technol. Lett. 27196 PD DEC 5 27197 PY 2000 27198 VL 27 27199 IS 5 27200 BP 343 27201 EP 347 27202 PG 5 27203 SC Engineering, Electrical & Electronic; Optics 27204 GA 367FM 27205 UT ISI:000090051100016 27206 ER 27207 27208 PT J 27209 AU Li, CF 27210 Wang, Q 27211 TI Negative phase time for particles passing through a potential well 27212 SO PHYSICS LETTERS A 27213 DT Article 27214 DE negative phase time; negative lateral shift; potential well; 27215 quantum-like dependence of phase on potential-well thickness 27216 ID TOTAL-INTERNAL-REFLECTION; TUNNELING TIMES; DELAY 27217 AB It is reported that the phase time of particles passing through a 27218 potential well is negative when the energy of incident particles and 27219 the thickness of potential well satisfy certain conditions. Similar 27220 results are also found in a fully-relativistic optical analog. The 27221 2-dimensional optical case gives rise to a lateral shift of the wave 27222 packet. It is shown that the phase-time associated lateral shift can 27223 also be negative. (C) 2000 Published by Elsevier Science B.V. 27224 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 27225 CCAST, World Lab, Beijing 100080, Peoples R China. 27226 RP Li, CF, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200436, 27227 Peoples R China. 27228 CR BALCOU P, 1997, PHYS REV LETT, V78, P851 27229 BRILLOUIN L, 1960, WAVE PROPAGATION GRO, P121 27230 CARNIGLIA CK, 1971, J OPT SOC AM, V61, P1035 27231 CHIAO RY, 1997, PROG OPTICS, V37, P345 27232 ENDERS A, 1992, J PHYS I, V2, P1693 27233 ENDERS A, 1993, J PHYS I, V3, P1089 27234 GARRETT CGB, 1970, PHYS REV A-GEN PHYS, V1, P305 27235 HARTMAN TE, 1962, J APPL PHYS, V33, P3427 27236 HAUGE EH, 1989, REV MOD PHYS, V61, P917 27237 LEE B, 1997, J OPT SOC AM B, V14, P777 27238 MACCOLL LA, 1932, PHYS REV, V40, P621 27239 MARTIN T, 1992, PHYS REV A, V45, P2611 27240 MERZBACHER E, 1970, QUANTUM MECH, P112 27241 SPIELMANN C, 1994, PHYS REV LETT, V73, P2308 27242 STEINBERG AM, 1993, PHYS REV LETT, V71, P708 27243 STEINBERG AM, 1994, PHYS REV A, V49, P3283 27244 WANG LJ, 2000, NATURE, V406, P277 27245 WIGNER EP, 1955, PHYS REV, V98, P145 27246 NR 18 27247 TC 12 27248 SN 0375-9601 27249 J9 PHYS LETT A 27250 JI Phys. Lett. A 27251 PD OCT 16 27252 PY 2000 27253 VL 275 27254 IS 4 27255 BP 287 27256 EP 291 27257 PG 5 27258 SC Physics, Multidisciplinary 27259 GA 365QL 27260 UT ISI:000089961900009 27261 ER 27262 27263 PT J 27264 AU Mao, JM 27265 Liu, ZR 27266 Ling, Y 27267 TI Straight-line stabilization 27268 SO PHYSICAL REVIEW E 27269 DT Article 27270 ID CHAOS; SYSTEMS 27271 AB For finite-dimensional maps, an unstable orbit in a neighborhood of an 27272 unstable fixed point can be stabilized by adjusting parameters so that 27273 the orbit goes to the fixed point along the straight line connecting 27274 the orbit (at a given time) and the fixed point [Yang Ling, Liu 27275 Zengrong and Jian-min Mao, Phys. Rev. Lett. 83, 67 (2000)]. This is 27276 called straight-line stabilization. In this paper, we derive the 27277 expression for the region of stabilization, i.e., the region within 27278 which the straight-line stabilization method is valid. For 27279 two-dimensional maps, the parameter adjustments needed by the 27280 stabilization method are explicitly given for nine cases. Stabilization 27281 of unstable flows, with or without introducing a Poincare map, is also 27282 investigated. 27283 C1 Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China. 27284 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 27285 RP Mao, JM, Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, 27286 Peoples R China. 27287 CR AYNG L, 2000, PHYS REV LETT, V84, P67 27288 GARFINKEL A, 1992, SCIENCE, V257, P1230 27289 HUNT ER, 1991, PHYS REV LETT, V67, P1953 27290 MYNENI K, 1999, PHYS REV LETT, V83, P2175 27291 OSIPOV G, 1998, CHAOS SOLITON FRACT, V9, P307 27292 OSIPOV GV, 1998, PHYS LETT A, V247, P119 27293 OTT E, 1990, PHYS REV LETT, V64, P1196 27294 PETTOV V, 1993, NATURE, V361, P240 27295 ROMEIRAS FJ, 1992, PHYSICA D, V58, P165 27296 ROY R, 1992, PHYS REV LETT, V68, P1259 27297 NR 10 27298 TC 3 27299 SN 1063-651X 27300 J9 PHYS REV E 27301 JI Phys. Rev. E 27302 PD OCT 27303 PY 2000 27304 VL 62 27305 IS 4 27306 PN Part A 27307 BP 4846 27308 EP 4849 27309 PG 4 27310 SC Physics, Fluids & Plasmas; Physics, Mathematical 27311 GA 365XY 27312 UT ISI:000089976800050 27313 ER 27314 27315 PT J 27316 AU Li, J 27317 Ma, HP 27318 Sun, WW 27319 TI Error analysis for solving the Korteweg-de Vries equation by a Legendre 27320 pseudo-spectral method 27321 SO NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS 27322 DT Article 27323 DE Korteweg-de Vries equation; Legendre pseudo-spectral method 27324 ID KORTEWEG-DEVRIES EQUATION; PSEUDOSPECTRAL METHOD; GALERKIN METHOD; 27325 DIRECT SOLVERS; POLYNOMIALS; 3RD-ORDER; 2ND-ORDER 27326 AB A Legendre pseudo-spectral method is proposed for the Korteweg-de Vries 27327 equation with nonperiodic boundary conditions. Appropriate base 27328 functions are chosen to get an efficient algorithm. Error analysis is 27329 given for both semi-discrete and fully discrete schemes. The numerical 27330 results confirm to the theoretical analysis. (C) (2000) John Wiley & 27331 Sons, Inc. 27332 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 27333 Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100080, Peoples R China. 27334 City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China. 27335 RP Ma, HP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 27336 CR BERNARD C, 1997, SPECIAL METHODS HDB, V5, P209 27337 BERNARDI C, 1992, J COMPUT APPL MATH, V43, P53 27338 BRESSAN N, 1990, COMPUT METHODS APPL, V80, P443 27339 CANUTO C, 1988, SPECTRAL METHODS FLU 27340 CAREY GF, 1991, COMPUT METHOD APPL M, V93, P1 27341 CHAN TF, 1985, SIAM J NUMER ANAL, V22, P441 27342 DJIDJELI K, 1995, J COMPUT APPL MATH, V58, P307 27343 GOTTLIEB D, 1977, NUMERICAL ANAL SPECT 27344 GUO BY, 1988, DIFFERENCE MEHTODS P 27345 GUO BY, 1998, SPECTRAL METHODS THE 27346 HUANG WZ, 1992, SIAM J NUMER ANAL, V29, P1626 27347 MA HP, 1986, J COMPUT PHYS, V65, P120 27348 MADAY Y, 1988, MEAN MODEL MATH AN N, V22, P499 27349 MERRYFIELD WJ, 1993, J COMPUT PHYS, V105, P182 27350 MITRINOVIE DS, 1991, INEQUALITIES INVOLVI 27351 PAVONI D, 1988, CALCOLO, V25, P311 27352 SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489 27353 SHEN J, 1995, SIAM J SCI COMPUT, V16, P74 27354 SZEGO G, 1975, ORTHOGONAL POLYNOMIA 27355 NR 19 27356 TC 4 27357 SN 0749-159X 27358 J9 NUMER METHOD PARTIAL DIFFER E 27359 JI Numer. Meth. Part Differ. Equ. 27360 PD NOV 27361 PY 2000 27362 VL 16 27363 IS 6 27364 BP 513 27365 EP 534 27366 PG 22 27367 SC Mathematics, Applied 27368 GA 364UJ 27369 UT ISI:000089911100002 27370 ER 27371 27372 PT J 27373 AU Hua, TC 27374 Xu, JJ 27375 TI Quenching boiling in subcooled liquid nitrogen for solidification of 27376 aqueous materials 27377 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES 27378 MICROSTRUCTURE AND PROCESSING 27379 DT Article 27380 DE rapid cooling; quenching boiling; subcooled liquid nitrogen; 27381 solidification 27382 ID SPECIMENS 27383 AB Rapid cooling is of great importance in solidification of aqueous 27384 materials, such as in vitrification of biological cells and tissues, 27385 and in quick freezing of food. Quenching of samples into liquid 27386 nitrogen is a typical technique to obtain high cooling rate. This paper 27387 investigates the quenching boiling of small spheres and a circular 27388 plate into saturated and subcooled liquid nitrogen. Effects of the 27389 diameters of spheres, the inclination angles of the plate, and the 27390 subcooling of liquid nitrogen on quenching boiling are investigated 27391 systematically. Boiling characteristics of the small spheres 27392 (representing small samples) and the circular plate (representing large 27393 samples) are very different from each other. The scale effect of small 27394 samples and the inclination effect of large plate on heat transfer 27395 performance are obvious. The subcooling of liquid nitrogen can enhance 27396 the heat fluxes in all cases, especially in the cases of small samples. 27397 (C) 2000 Elsevier Science S.A. All rights reserved. 27398 C1 Shanghai Univ Sci & Technol, Inst Cryogen & Refrigerat, Shanghai 200093, Peoples R China. 27399 RP Hua, TC, Shanghai Univ Sci & Technol, Inst Cryogen & Refrigerat, 516 27400 Jun Gong Rd, Shanghai 200093, Peoples R China. 27401 CR CAO Q, 1998, CRYOGENICS REFRIGERA, P117 27402 COSTELLO MJ, 1978, J MICROSC, V112, P17 27403 ELKASSABGI Y, 1988, ASME, V110, P479 27404 HAN RH, 1995, CRYOLETT, V16, P157 27405 HUA TC, 1998, HEAT TRANSFER 1998, V1, P357 27406 KUTATELADZE SS, 1961, INT J HEAT MASS TRAN, V4, P31 27407 RYAN KP, 1987, J MICROSC-OXFORD, V145, P89 27408 STEPONKUS PL, 1990, NATURE, V345, P170 27409 XU JJ, 1998, CRYOGENICS REFRIGERA, P301 27410 ZUBER N, 1958, T ASME, V83, P351 27411 NR 10 27412 TC 1 27413 SN 0921-5093 27414 J9 MATER SCI ENG A-STRUCT MATER 27415 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 27416 PD NOV 30 27417 PY 2000 27418 VL 292 27419 IS 2 27420 BP 169 27421 EP 172 27422 PG 4 27423 SC Materials Science, Multidisciplinary 27424 GA 364HE 27425 UT ISI:000089886300007 27426 ER 27427 27428 PT J 27429 AU Xu, SY 27430 Frank, TJ 27431 TI Forecasting the efficiency of test generation algorithms for 27432 combinational circuits 27433 SO JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 27434 DT Article 27435 DE testability; genetic algorithm; forecasting; test generation 27436 AB In this era of VLSI circuits, testability is truly a very crucial 27437 issue. To generate a test set for a given circuit, choice of an 27438 algorithm from a number of existing test generation algorithms to apply 27439 is bound to vary from circuit to circuit. In this paper, the Genetic 27440 Algorithm is used in order to construct an accurate model for some 27441 existing test generation algorithms that are being used everywhere in 27442 the world. Some objective quantitative measures are used as an 27443 effective tool in making such choice. Such measures are so important to 27444 the analysis of algorithms that they become one of the subjects of this 27445 work. 27446 C1 Shanghai Univ, Sch Comp, Shanghai 200072, Peoples R China. 27447 RP Xu, SY, Shanghai Univ, Sch Comp, Shanghai 200072, Peoples R China. 27448 CR *TEX INSTR INC, 1982, BIP DIG INT CIRC D 1 27449 ABRAMOVICI M, 1986, IEEE DES TEST COMPUT, V3, P43 27450 ABRAMOVICI M, 1990, DIGITAL SYSTEMS TEST 27451 BRGLEZ F, 1985, INT TEST S CIRC SYST 27452 CHA CW, 1978, IEEE T COMPUT, V27, P193 27453 FOGEL LJ, 1966, ARTIFICIAL INTELLIGE 27454 FUJIWARA H, 1983, IEEE T COMPUT, V32, P1137 27455 GLOVER F, 1977, DECISION SCI, V8, P156 27456 GOEL P, 1981, IEEE T COMPUT, V30, P215 27457 HOLLAND JH, 1975, ADAPTATION NATURAL A 27458 HU Y, 1997, THESIS SHANGHAI U 27459 JOHNSON BW, 1989, DESIGN ANAL FAULT TO 27460 KIRKLAND T, 1987, P 24 DES AUT C JUN, P502 27461 KOZA JR, 1991, GENETIC PROGRAMMING 27462 MAHFOUD S, 1996, APPL ARTIF INTELL, V10, P543 27463 MICHALEWICZ Z, 1994, GENETIC ALGORITHMS D 27464 MUTH P, 1976, IEEE T COMPUT, V25, P630 27465 ROTH JP, 1966, IBM J RES DEV, V10, P278 27466 ROTH JP, 1967, IEEE T ELECTRON COMP, V16, P567 27467 RUSSELL SJ, 1995, ARTIF INTELL, P619 27468 SCHNEIDER PR, 1967, IBM J RES DEV JAN, V11, P14 27469 SCHWEFEL HP, 1981, NUMERICAL OPTIMIZATI 27470 WELSTEAD ST, 1994, NEURAL NETWORK FUZZY, P283 27471 XI SY, 1995, P IEEE 4 AS TEST S N, P199 27472 XU SY, 1997, P IEEE 6 AS TEST S N, P126 27473 XU SY, 1999, P IEEE 8 AS TEST S N, P63 27474 NR 26 27475 TC 1 27476 SN 1000-9000 27477 J9 J COMPUT SCI TECHNOL 27478 JI J. Comput. Sci. Technol. 27479 PD JUL 27480 PY 2000 27481 VL 15 27482 IS 4 27483 BP 326 27484 EP 337 27485 PG 12 27486 SC Computer Science, Hardware & Architecture; Computer Science, Software 27487 Engineering 27488 GA 365EZ 27489 UT ISI:000089936800002 27490 ER 27491 27492 PT J 27493 AU Lin, QS 27494 Feng, XQ 27495 Man, ZY 27496 Shi, ZS 27497 Zhang, QR 27498 TI Formation of the 350 nm intrinsic color center in PbWO4 crystals 27499 SO PHYSICA STATUS SOLIDI A-APPLIED RESEARCH 27500 DT Article 27501 ID SINGLE-CRYSTALS; ORIGIN; DAMAGE; BAND 27502 C1 Chinese Acad Sci, Lab Funct Inorgan Mat, Shanghai 200050, Peoples R China. 27503 Natl Synchrotron Radiat Lab, Hefei 230039, Peoples R China. 27504 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China. 27505 RP Feng, XQ, Chinese Acad Sci, Lab Funct Inorgan Mat, Shanghai 200050, 27506 Peoples R China. 27507 CR ANNENKOV A, 1998, PHYS STATUS SOLIDI A, V170, P47 27508 BACCARO S, 1997, J LUMIN, V72, P748 27509 BACCARO S, 1998, P SCINT 98 U STUD SE, P129 27510 BIEDERBICK R, 1975, PHYS STATUS SOLIDI B, V69, P55 27511 HAN BG, 1998, J APPL PHYS, V84, P2831 27512 HAN BG, 1999, J APPL PHYS, V86, P3571 27513 KOBAYASHI M, 1999, NUCL INSTRUM METH A, V434, P412 27514 LIN QS, UNPUB 27515 NESSITEDALDI F, 1998, NUCL INSTRUM METH A, V408, P266 27516 NIKL M, 1996, PHYS STATUS SOLIDI B, V196, K7 27517 NIKL M, 1997, MATER SCI FORUM, V239, P271 27518 VANLOO W, 1975, J SOLID STATE CHEM, V14, P359 27519 WILLIAMS RT, 1999, P SCINT 99 MOSC 27520 ZHANG Y, 1998, PHYS REV B, V57, P12738 27521 NR 14 27522 TC 24 27523 SN 0031-8965 27524 J9 PHYS STATUS SOLIDI A-APPL RES 27525 JI Phys. Status Solidi A-Appl. Res. 27526 PD SEP 16 27527 PY 2000 27528 VL 181 27529 IS 1 27530 BP R1 27531 EP R3 27532 PG 3 27533 SC Physics, Condensed Matter 27534 GA 363GV 27535 UT ISI:000089827900001 27536 ER 27537 27538 PT J 27539 AU Hassan, AKA 27540 Xu, DM 27541 Maode, N 27542 Zhang, YJ 27543 TI EM-properties measurement of concave-surface coating materials using a 27544 modified open-ended coaxial probe 27545 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 27546 DT Article 27547 DE coating materials testing; open-ended coaxial probe; concave-surface 27548 materials; complex permittivity and permeability; air gap; FDTD 27549 AB In this work, a new aspect of the utilization and development of the 27550 open-ended coaxial probe technique for EM-properties measurement of 27551 coating materials with a concave surface is studied. it is found from 27552 the results of an analysis performed using FDTD modeling that the 27553 reflection coefficient is strongly affected, even for large sample 27554 radii. In order to satisfy concave-surface materials measurement, rte 27555 propose a technique to modify the standard open-ended coaxial probe to 27556 improve measurement accuracy. It is based on adding a ring patch at the 27557 end of the extended length of the inner conductor throughout the air 27558 gap between the probe and the material under test. The proposed 27559 technique is analyzed and verified by experiments. Results of the 27560 measured epsilon* and mu* of the several microwave-absorbing materials 27561 coated on prototype boxes with different radii for shielding are in 27562 relative agreement with the published data. (C) 2000 John Wiley & Sons, 27563 Inc. 27564 C1 Shanghai Univ Sci & Technol, Coll Commun & Informat Engn, Shanghai 201800, Peoples R China. 27565 RP Hassan, AKA, Shanghai Univ Sci & Technol, Coll Commun & Informat Engn, 27566 Shanghai 201800, Peoples R China. 27567 CR BAKERJARVIS J, 1994, IEEE T INSTRUM MEAS, V43, P711 27568 HASSAN AKA, 1999, INT UN RAD SCI C URS 27569 HASSAN AKA, 2000, MICROW OPT TECHN LET, V24, P117 27570 LAUGHE PD, 1993, IEEE T INSTRUM MEAS, V42, P879 27571 LI CL, 1995, IEEE T INSTRUM MEAS, V44, P19 27572 NIU M, 1999, IEEE T INSTRUM MEAS, V47, P476 27573 WANG S, 1998, IEEE T MICROWAVE THE, V45, P2145 27574 NR 7 27575 TC 0 27576 SN 0895-2477 27577 J9 MICROWAVE OPT TECHNOL LETT 27578 JI Microw. Opt. Technol. Lett. 27579 PD NOV 20 27580 PY 2000 27581 VL 27 27582 IS 4 27583 BP 278 27584 EP 281 27585 PG 4 27586 SC Engineering, Electrical & Electronic; Optics 27587 GA 363ZB 27588 UT ISI:000089866600019 27589 ER 27590 27591 PT J 27592 AU Weng, XC 27593 Wang, W 27594 TI Antioxidant activity of compounds isolated from Salvia plebeia 27595 SO FOOD CHEMISTRY 27596 DT Article 27597 DE Salvia plebeia; natural antioxidant; antioxidant activity; compound 27598 AB Six compounds, hispidulin-glucuronide (1), hispidulin-7-O-D-glucoside 27599 (2), 6-methoxy-luteolin-7-glucoside (3), p-sitosterol (4), 27600 2'-hydroxy-5'-methoxybiochanin A (5) and coniferyl aldehyde (6), were 27601 isolated from Salvia plebeia and identified by UV, IR, Mass, H-1 and 27602 (CNMR)-C-13 spectra. Their antioxidant activities were investigated 27603 individually and compared with butylatedhydroxytoluene (BHT) (8) and 27604 alpha-tocopherol (7) by the oxidative stability instrument (OSI) at 100 27605 degrees C. Compounds 3, 4 and 5 had strong antioxidant activities, but 27606 compounds 1, 2 and 6 had low antioxidant activities at 0.02 and 0.04% 27607 levels. (C) 2000 Elsevier Science Ltd. All rights reserved. 27608 C1 Shanghai Univ, Sch Life Sci, Shanghai 201800, Peoples R China. 27609 RP Weng, XC, Shanghai Univ, Sch Life Sci, 20 Chengzhong Rd, Shanghai 27610 201800, Peoples R China. 27611 CR AUGUSTIN EN, 1989, J NAT PRODUCTS, V52, P320 27612 CHIPAULT JR, 1952, FOOD RES, V17, P45 27613 DUAN S, 1998, FOOD CHEM, V61, P101 27614 GRICE HC, 1986, FOOD CHEM TOXICOL, V24, P1127 27615 GUPTA HC, 1975, J CHEM, V13, P215 27616 JIAN Y, 1987, J PHARM IND, V18, P349 27617 KOSUGE K, 1994, CHEM PHARM BULL, V42, P1669 27618 MARIA CG, 1986, PHYTOCHEMISTRY, V25, P272 27619 PLATTNER RD, 1978, PHYTOCHEMISTRY, V17, P149 27620 RICHARD GP, 1976, PHYTOCHEMISTRY, V15, P1963 27621 SU JD, 1986, AGR BIOL CHEM TOKYO, V50, P199 27622 WENG XC, 1993, J ZHENGZHOU GRAIN CO, P20 27623 WENG XC, 1997, J YANTAI U, V104, P304 27624 WENG XC, 1998, J CHINESE CEREAL OIL, V13, P46 27625 WENG XC, 1998, J CHINESE CEREALS OI, V13, P25 27626 WICHI HP, 1988, FOOD CHEM TOXICOL, V26, P717 27627 NR 16 27628 TC 9 27629 SN 0308-8146 27630 J9 FOOD CHEM 27631 JI Food Chem. 27632 PD DEC 27633 PY 2000 27634 VL 71 27635 IS 4 27636 BP 489 27637 EP 493 27638 PG 5 27639 SC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics 27640 GA 362YT 27641 UT ISI:000089806400011 27642 ER 27643 27644 PT J 27645 AU He, JH 27646 TI Semi-inverse method and generalized variational principles with 27647 multi-variables in elasticity 27648 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 27649 DT Article 27650 DE variational principle in elasticy; Chien's generalized variational 27651 principles; Hu-Washizu principle; semi-inverse method; 27652 trial-functional; variational crisis 27653 ID MIXED-FLOW TURBOMACHINERY; COMPRESSIBLE S2-FLOW 27654 AB Semi-inverse method, which is an integration and an extension of Hu's 27655 try-and-error method, Chien's veighted residual method and Liu's 27656 systematic method, is proposed to establish generalized variational 27657 principles with multi-variables without arty variational crisis 27658 phenomenon. The method is to construct an energy trial-functional with 27659 an unknown function F, which can be readily identified by making the 27660 trial-functional stationary and using known constraint equations. As a 27661 result generalized variational principles with two kinds of independent 27662 variables (such as well-known Hellinger-Reissner variational principle 27663 and Hu-Washizu principle) and generalized variational principles with 27664 three kinds of independent variables (such as Chien's generalized 27665 variational principles) in elasticity have been deduced without using 27666 Lagrange multiplier method. By semi-inverse method, the author has also 27667 proved that Hu-Washizu principle is actually a variational principle 27668 with only two kinds of independent variables, stress-strain relations 27669 are still its constraints. 27670 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 27671 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 27672 Peoples R China. 27673 CR CHIEN WZ, 1983, APPL MATH MECH, V4, P143 27674 CHIEN WZ, 1984, ADV APPL MECH, V24, P93 27675 CHIEN WZ, 1985, APPL MATH MECH, V6, P25 27676 CHIEN WZ, 1989, SELECTED WORKS WEI Z, P419 27677 FINLAYSON BA, 1972, METHOD WEIGHTED RESI 27678 GU CH, 1990, SOLITON THEORY ITS A 27679 HE JH, 1997, INT J TURBO JET ENG, V14, P23 27680 HE JH, 1997, J ENG THERMOPHYSICS, V18, P440 27681 HE JH, 1998, INT J TURBO JET ENG, V15, P101 27682 HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154 27683 HE JH, 1999, APPL MATH MECH-ENGL, V20, P545 27684 HE JH, 1999, SHANGHAI J MECH, V20, P365 27685 HU HC, 1954, PHYSICS J, V10, P259 27686 HU HC, 1955, SCI SINICA, V4, P33 27687 HU JH, 1992, J U SHANGHAI SCI TEC, V21, P29 27688 HU JH, 1997, SHANGHAI J MECH, V18, P305 27689 LIU GL, 1990, P 1 INT S AER DYN IN, V11, P128 27690 LIU GL, 1995, P 6 AS C FLUID MECH 27691 NR 18 27692 TC 5 27693 SN 0253-4827 27694 J9 APPL MATH MECH-ENGL ED 27695 JI Appl. Math. Mech.-Engl. Ed. 27696 PD JUL 27697 PY 2000 27698 VL 21 27699 IS 7 27700 BP 797 27701 EP 808 27702 PG 12 27703 SC Mathematics, Applied; Mechanics 27704 GA 361NT 27705 UT ISI:000089729700010 27706 ER 27707 27708 PT J 27709 AU Wang, W 27710 Wong, PL 27711 Zhang, Z 27712 TI Experimental study of the real time change in surface roughness during 27713 running-in for PEHL contacts 27714 SO WEAR 27715 DT Article 27716 DE running-in; surface roughness 27717 ID ASPERITY LEVEL CONFORMITY; PARTIAL-EHL; LUBRICATION 27718 AB An optical system for the implementation of a new real time roughness 27719 measuring technique was incorporated to a two-dish machine. The change 27720 in surface roughness during the running-in stage of partial 27721 elastohydrodynamic lubricated wear tests was measured in a real time 27722 mode. The results were compared with the experimental data, which were 27723 measured, in a conventional manner, at discrete intervals of time by 27724 stopping the wear test. The apparent discrepancies reveal that the wear 27725 is enhanced by the stop/start actions. The effects of different initial 27726 roughness, sliding/rolling ratios and loading on the change in surface 27727 roughness during lubricated running-in tests were also studied with the 27728 current set up. (C) 2000 Published by Elsevier Science S.A. 27729 C1 City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China. 27730 Shanghai Univ, Dept Mech Engn, Shanghai, Peoples R China. 27731 RP Wong, PL, City Univ Hong Kong, Dept Mfg Engn & Engn Management, Tat 27732 Chee Ave, Hong Kong, Hong Kong, Peoples R China. 27733 CR BECKMANN P, 1987, SCATTERING ELECTROMA 27734 BOOSER ER, 1983, HDB LUBRICATION 27735 FOUCHER D, 1977, P 4 LEEDS LYON S TRI, P109 27736 HAMROCK BJ, 1981, BALL BEARING LUBRICA 27737 LUO JB, 1996, WEAR, V194, P107 27738 MITSUI K, 1986, PRECIS ENG, V8, P212 27739 PAWLUS P, 1991, WEAR, V176, P323 27740 PERSSON U, 1993, WEAR, V160, P221 27741 STOUT KJ, 1977, WEAR, V43, P99 27742 THOMAS TR, 1977, P 4 LEEDS LYN S TRIB, P99 27743 TYAGI MR, 1996, WEAR, V197, P89 27744 TYAGI MR, 1996, WEAR, V197, P98 27745 WANG FX, 1991, J TRIBOL-T ASME, V113, P755 27746 WANG W, 1998, TRIBOL INT, V31, P281 27747 WU CG, 1991, WEAR, V147, P323 27748 WU SF, 1991, J TRIBOL-T ASME, V113, P134 27749 NR 16 27750 TC 1 27751 SN 0043-1648 27752 J9 WEAR 27753 JI Wear 27754 PD SEP 27755 PY 2000 27756 VL 244 27757 IS 1-2 27758 BP 140 27759 EP 146 27760 PG 7 27761 SC Engineering, Mechanical; Materials Science, Multidisciplinary 27762 GA 360TH 27763 UT ISI:000089683000016 27764 ER 27765 27766 PT J 27767 AU Ding, YP 27768 Jin, CY 27769 Meng, ZY 27770 TI Investigation on the amorphous-crystalline transition and 27771 microstructure of sol-gel derived (Ba1-xSrx)TiO3 thin films 27772 SO MATERIALS RESEARCH BULLETIN 27773 DT Article 27774 DE thin films; sol-gel chemistry; phase transitions; microstructure 27775 ID TITANATE 27776 AB (Ba1-xSrx)TiO3 (BST) ferroelectric thin films were fabricated by 27777 sol-gel processing, using Ba(Ac)(2), Sr(Ac)(2), and Ti(OC4H9)(4) as 27778 starting materials. Differential scanning calorimetry (DSC), 27779 backscattering scanning electronic microscopy (BS-SEM), and X-ray 27780 diffraction (XRD) were employed to investigate the effect of chelating 27781 agents on the phase formation characteristics and microstructure of the 27782 BST films. It was found that the chelating agents, acetate acid (HAc) 27783 and acetylacetone (HAcAc), changed the crystallization path from 27784 amorphous to crystalline phase during annealing. BS-SEM revealed that 27785 HAcAc improved the densification and compositional homogeneity in the 27786 microregion of the films. These phenomena were explained by the 27787 modified condensation property of the precursors. (C) 2000 Elsevier 27788 Science Ltd. All rights reserved. 27789 C1 Jiao Tong Univ, Dept Mat Sci, Shanghai 200030, Peoples R China. 27790 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China. 27791 RP Meng, ZY, Jiao Tong Univ, Dept Mat Sci, Shanghai 200030, Peoples R 27792 China. 27793 CR ALSHAREEF HN, 1997, J ELECTROCERAM, V1, P145 27794 CHANDLER CD, 1993, CHEM REV, V93, P1025 27795 DING YP, 1999, CHIN J MAT RES, V13, P21 27796 FUJII E, 1992, IEDM, P267 27797 GRAMMATICO JP, 1997, J MAT SCI LETT ELECT, V3, P82 27798 GUST MC, 1997, J AM CERAM SOC, V80, P2828 27799 HOFFMAN W, 1997, THIN SOLID FILMS, V305, P305 27800 KRUPANIDHI SB, 1997, THIN SOLID FILMS, V305, P144 27801 MOSSET A, 1988, J NONCRYST SOLIDS, V100, P339 27802 SCHWARTZ RW, 1997, J MATER RES, V12, P444 27803 SHAIKH AS, 1986, J AM CERAM SOC, V69, P682 27804 UEDA T, 1995, INTEGR FERROELECTR, V7, P45 27805 NR 12 27806 TC 8 27807 SN 0025-5408 27808 J9 MATER RES BULL 27809 JI Mater. Res. Bull. 27810 PD MAY 27811 PY 2000 27812 VL 35 27813 IS 7 27814 BP 1187 27815 EP 1193 27816 PG 7 27817 SC Materials Science, Multidisciplinary 27818 GA 360MA 27819 UT ISI:000089670600021 27820 ER 27821 27822 PT J 27823 AU Yan, KZ 27824 Tan, WH 27825 TI Bose-Einstein condersation of neutral atoms with attractive interaction 27826 in a harmonic trap 27827 SO ACTA PHYSICA SINICA 27828 DT Article 27829 DE Bose-Einstein condensation; bistability 27830 ID CONDENSATION; GAS 27831 AB In this paper we present the numerical solutions of neutral atoms with 27832 attractive interaction in a harmonic trap. The calculated result shows 27833 the bistability curve of the number of condensate atoms versus the 27834 energy eigenvalues. The maximum number of atoms in and attractive 27835 Bose-Einstein condensate deduced hereby is in agreement with the 27836 experimental on the whole. 27837 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 27838 RP Yan, KZ, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 27839 CR ANDERSON MH, 1995, SCIENCE, V269, P198 27840 BAYM G, 1996, PHYS REV LETT, V76, P6 27841 BRADLEY CC, 1995, PHYS REV LETT, V75, P1687 27842 BRADLEY CC, 1997, PHYS REV LETT, V78, P985 27843 DAVIS KB, 1995, PHYS REV LETT, V75, P3969 27844 DODD RJ, 1996, PHYS REV A, V54, P661 27845 KAGAN Y, 1996, PHYS REV LETT, V76, P2670 27846 NOZIERES P, 1990, THEORY QUANTUM LIQUI, V2 27847 RUPRECHT PA, 1996, PHYS REV A, V54, P4178 27848 SHURYAK EV, 1996, PHYS REV A, V54, P3151 27849 UEDA M, 1998, PHYS REV LETT, V80, P1576 27850 YAN KZ, 1999, ACTA PHYS SIN-CH ED, V48, P1185 27851 NR 12 27852 TC 5 27853 SN 1000-3290 27854 J9 ACTA PHYS SIN-CHINESE ED 27855 JI Acta Phys. Sin. 27856 PD OCT 27857 PY 2000 27858 VL 49 27859 IS 10 27860 BP 1909 27861 EP 1911 27862 PG 3 27863 SC Physics, Multidisciplinary 27864 GA 360NA 27865 UT ISI:000089673000003 27866 ER 27867 27868 PT J 27869 AU Zheng, LP 27870 Qiu, XJ 27871 TI The influence of the intensity and the frequency on the enhanced 27872 ionization behavior of multiatomic molecular ions in the intense laser 27873 fields 27874 SO ACTA PHYSICA SINICA 27875 DT Article 27876 DE intense laser field; molecular ion; enhanced ionization 27877 ID MULTIPHOTON IONIZATION; ELECTRON; H-2(+); PULSES 27878 AB The enhanced ionization(EI) behavior of multiatomic molecular ions is 27879 studied in intense laser fields by the numerical solution of 27880 time-dependent Schrodinger equation with the symmetrical splitting of 27881 the short-time exponential propagator and fast fourier 27882 transformation(FFT). The influence of the intensity and the frequency 27883 of the laser on EI is given. With the laser frequency increasing, the 27884 criticla value of bond length for EI decreases and the ionization 27885 probability decreases too. The ionization probability increases with 27886 increasing laser intensity. The EI disappeares when the intensity 27887 reaches a certain value. 27888 C1 Shanghai Univ, Sch Sci, Shanghai 201800, Peoples R China. 27889 RP Zheng, LP, Shanghai Univ, Sch Sci, Shanghai 201800, Peoples R China. 27890 CR BAIK MG, 1996, PHYS REV A, V54, P1570 27891 BANDRACK AD, 1994, MOL LASER FIELDS, P156 27892 BANDRAUK AD, 1993, J CHEM PHYS, V99, P1185 27893 EBERLY JH, 1989, PHYS REV LETT, V62, P881 27894 FEIT MD, 1982, J COMPUT PHYS, V47, P412 27895 FRASINSKI LJ, 1992, PHYS REV A, V46, R6789 27896 GIBSON GN, 1997, PHYS REV LETT, V79, P2022 27897 HEATHER RW, 1991, COMPUT PHYS COMMUN, V63, P446 27898 HU SX, 1998, SCI CHINA SER A, V41, P198 27899 JAVANAINEN J, 1988, PHYS REV A, V38, P3430 27900 LEI AL, 1999, CHINESE PHYS LETT, V16, P264 27901 MAINE P, 1988, IEEE J QUANTUM ELECT, V24, P398 27902 SCHMIDT M, 1994, PHYS REV A A, V50, P5037 27903 SEIDEMAN T, 1995, PHYS REV LETT, V75, P2819 27904 ZUO T, 1995, PHYS REV A, V52, R2511 27905 NR 15 27906 TC 0 27907 SN 1000-3290 27908 J9 ACTA PHYS SIN-CHINESE ED 27909 JI Acta Phys. Sin. 27910 PD OCT 27911 PY 2000 27912 VL 49 27913 IS 10 27914 BP 1965 27915 EP 1968 27916 PG 4 27917 SC Physics, Multidisciplinary 27918 GA 360NA 27919 UT ISI:000089673000013 27920 ER 27921 27922 PT J 27923 AU Jing, C 27924 Jin, XF 27925 Dong, GS 27926 Gong, XY 27927 Yu, LM 27928 Zheng, WM 27929 TI Exchange biasing in molecular-beam-epitaxy-grown Fe/Fe50Mn50 bilayers 27930 SO ACTA PHYSICA SINICA 27931 DT Article 27932 DE MBE; Fe/Fe50Mn50; bilayer; exchange biasing 27933 ID NIFE/COO BILAYERS; DEPENDENCE; ANISOTROPY; LAYER 27934 AB Exchange biasing and coercive field of molecular-beam-epitaxy-grown 27935 Fe/Fe50Mn50 bilayers have been investigated by Surface Magneto-optical 27936 Kerr Effect(SMOKE) and ferromagnetic resonance measurements. The 27937 results indicate that there is no exchange biasing when the thickness 27938 of antiferromagnetic layer is less than 5.5 nm. The exchange biasing 27939 appears when the thickness of antiferromagnetic layer is greater than 27940 5.5 nm,and the maximum value is reached when the thickness is about 7 27941 nm. Exchange biasing and coercive field decrease with further increase 27942 of the thickness of the antiferrmagnetic layer. The ferromagnetic 27943 resonance measurement results show that there exists unidirectional 27944 anisotropy. The above results are discussed in the paper. 27945 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 27946 Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. 27947 Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China. 27948 RP Jing, C, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 27949 CR AMBROSE T, 1998, J APPL PHYS 2, V83, P6822 27950 AMBROSE T, 1998, J APPL PHYS 2, V83, P7222 27951 DIENY B, 1991, PHYS REV B, V43, P1297 27952 GOKEMEIJER NJ, 1997, PHYS REV LETT, V79, P4270 27953 JUNGBLUT R, 1995, J MAGN MAGN MATER, V148, P300 27954 MAURI D, 1987, J APPL PHYS, V62, P2929 27955 MEIKLEJOHN WH, 1956, PHYS REV, V102, P1413 27956 MEIKLEJOHN WH, 1957, PHYS REV, V105, P904 27957 MEIKLEJOHN WH, 1962, J APPL PHYS, V33, P1328 27958 TSANG C, 1981, J APPL PHYS, V52, P2471 27959 ZHU WR, 1997, VACUUM SCI TECHNOLOG, V17, P243 27960 ZHU XG, 1993, CHINESE J SEMICONDUC, V14, P719 27961 NR 12 27962 TC 0 27963 SN 1000-3290 27964 J9 ACTA PHYS SIN-CHINESE ED 27965 JI Acta Phys. Sin. 27966 PD OCT 27967 PY 2000 27968 VL 49 27969 IS 10 27970 BP 2022 27971 EP 2026 27972 PG 5 27973 SC Physics, Multidisciplinary 27974 GA 360NA 27975 UT ISI:000089673000024 27976 ER 27977 27978 PT J 27979 AU Cheng, CJ 27980 Fan, XJ 27981 TI A method for calculating the Lyapunov exponent spectrum of a 27982 periodically excited non-autonomous dynamical system. 27983 SO ACTA MECHANICA SOLIDA SINICA 27984 DT Article 27985 DE periodically excited dynamical system; Lyapunov exponent spectrum; 27986 Lyapunov dimension; Duffing equation; van der Pol equation 27987 AB The relation between the Lyapunov exponent spectrum of a periodically 27988 excited non-autonomous dynamical system and the Lyapunov exponent 27989 spectrum of the corresponding autonomous system is given and the 27990 validity of the relation is verified theoretically and computationally. 27991 A direct method for calculating the Lyapunov exponent spectrum of 27992 non-autonomous dynamical systems is suggested in this paper, which 27993 makes it more convenient to calculate the Lyapunov exponent spectrum of 27994 the dynamical system periodically excited. Following the definition of 27995 the Lyapunov dimension D-L((A)) of the autonomous system, the 27996 definition of the Lyapunov dimension D-L of the non-autonomous 27997 dynamical system is also given, and the difference between them is the 27998 integer 1, namely, D-L((A)) - D-L = 1. For a quasi-periodically excited 27999 dynamical system, similar conclusions are formed. 28000 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China. 28001 Xian Jiao Tong Univ, Sch Civil Engn & Mech, Xian 710049, Peoples R China. 28002 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, 28003 Shanghai 200072, Peoples R China. 28004 CR KREUZER E, 1989, NUMERISCHE UNTERSUCH 28005 PARKER TS, 1989, PRACTICAL NUMERICAL 28006 SHIMADA I, 1979, PROG THEOR PHYS, V61, P1605 28007 WOLF A, 1985, PHYSICA D, V16, P285 28008 NR 4 28009 TC 1 28010 SN 0894-9166 28011 J9 ACTA MECH SOLIDA SINICA 28012 JI Acta Mech. Solida Sin. 28013 PD SEP 28014 PY 2000 28015 VL 13 28016 IS 3 28017 BP 254 28018 EP 261 28019 PG 8 28020 SC Materials Science, Multidisciplinary; Mechanics 28021 GA 359EQ 28022 UT ISI:000089598900009 28023 ER 28024 28025 PT J 28026 AU Xu, KX 28027 Essa, AA 28028 Zhou, SP 28029 Bao, JS 28030 TI Microwave detection using Y-Ba-Cu-O granular film bridge device 28031 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS 28032 DT Article 28033 DE granular superconductivity; Josephson effect; microwave detection 28034 ID TRANSPORT; BOLOMETER 28035 AB High-T-c superconducting microwave video detection is investigated 28036 based on the Y-Ba-Cu-O granular film bridge device. By optimizing the 28037 device parameters, a detectivity of about 10(4) V/W is achievable, and 28038 the noise equivalent power at T = 70 K is about 5.2 x 10(-14) 28039 W/Hz(1/2). To identify the response time of the device, the response 28040 voltage is measured with incident radiation chopped at 500 kHz, and a 28041 rise time of less than 3.9 x 10(-8) s is observed. These results 28042 compare favorably with that of high-T-c superconducting bolometers for 28043 millimeter wave bands. On the other hand, the dynamic resistance R-N of 28044 the device is found to increase as the device is illuminated by 28045 incident irradiation. This effect cannot be interpreted in terms of the 28046 Josephson dissipation mechanism, and a discussion about this is 28047 presented. (C) 2000 Elsevier Science B.V. All rights reserved. 28048 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 28049 RP Xu, KX, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 28050 CR BARONE A, 1982, PHYSICS APPL JOSEPHS, CH11 28051 BLUZER N, 1995, J APPL PHYS, V78, P7340 28052 BOONE BG, 1991, J APPL PHYS, V69, P2676 28053 CHERN JD, 1993, IEEE T APPL SUPERCON, V3, P2128 28054 CONSTANTINIAN KY, 1997, I PHYS C SER, V158, P417 28055 CULBERTSON JC, 1991, PHYS REV B, V44, P9609 28056 GRIMES CC, 1968, J APPL PHYS, V39, P3905 28057 KAILA MM, 1997, SUPERCOND SCI TECH, V10, P763 28058 KAILA MM, 1998, J SUPERCOND, V11, P463 28059 KANTER H, 1972, J APPL PHYS, V43, P3714 28060 PHONG LN, 1993, J APPL PHYS, V74, P7414 28061 PIQUE A, 1995, APPL PHYS LETT, V67, P1920 28062 RICHARDS PL, 1989, APPL PHYS LETT, V54, P283 28063 WOLF SA, 1988, 13TH INT C INFR MILL, V1039, P253 28064 XU KX, UNPUB PHYSICA C 28065 NR 15 28066 TC 1 28067 SN 0921-4534 28068 J9 PHYSICA C 28069 JI Physica C 28070 PD SEP 15 28071 PY 2000 28072 VL 339 28073 IS 1 28074 BP 42 28075 EP 48 28076 PG 7 28077 SC Physics, Applied 28078 GA 357ZJ 28079 UT ISI:000089532500006 28080 ER 28081 28082 PT J 28083 AU Wu, MH 28084 Bao, BR 28085 Chen, J 28086 TI Study on antithrombosis dialytic membrane prepared by preirradiation 28087 grafting 28088 SO JOURNAL OF APPLIED POLYMER SCIENCE 28089 DT Article 28090 DE radiation grafting; antithrombosis; ethylene-vinyl acetate; 28091 beta-hydroxyethyl methacrylate; styrene 28092 ID ACRYLIC-ACID; RADIATION; BIOMATERIALS 28093 AB A new antithrombosis dialytic membrane with a hydrophilic-hydrophobic 28094 microphase structure was prepared by preirradiation grafting of 28095 beta-hydroxyethyl methacrylate (HEMA) and styrene (St) onto 28096 ethylene-vinyl acetate (EVA). The influence of some effects, such as 28097 preirradiation dose, dose rate, grafting reaction temperature, reaction 28098 time, and monomer component, on the degree of grafting was determined, 28099 and the properties of the grafted films were investigated. Compared 28100 with the conventional EVA-grafted hydrophilic monomer, the EVA films 28101 grafted with HEMA and St have superior antithrombogenicity; the 28102 antithrombogenicity and permeability of EVA-g-(HEMA-co-St) were 30 and 28103 20 times higher than those of the ungrafted films, respectively, when 28104 the volume ratio (HEMA versus St) was about 7:3. (C) 2000 John Wiley & 28105 Sons, Inc. 28106 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China. 28107 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai, Peoples R China. 28108 RP Wu, MH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, 28109 Peoples R China. 28110 CR CHAPIRO A, 1980, RADIAT PHYS CHEM, V15, P423 28111 CHE JT, 1993, RADIAT PHYS CHEM, V42, P85 28112 CHEN J, 1998, NUCL TECH, V21, P498 28113 CRANK J, 1956, MATH DIFFUSION, P291 28114 EUSTACE DJ, 1988, J APPL POLYM SCI, V35, P707 28115 HOFFMAN AS, 1981, RADIAT PHYS CHEM, V18, P323 28116 ISHIGAKI I, 1982, J APPL POLYM SCI, V27, P1033 28117 LINARES HA, 1972, J INVEST DERMATOL, V59, P323 28118 MERRILL EW, 1987, HYDROGELS MED PHARM, P31 28119 MULLERSCHULTE D, 1993, RADIAT PHYS CHEM, V42, P891 28120 RATNER BD, 1981, BIOCOMPATIBILITY CLI, P145 28121 RATNER BD, 1996, HYDROGELS BIOMATERIA, P60 28122 URGUHART J, 1980, OPHTHALMIC DRUG DELI, P105 28123 WU MH, 1995, J RAD RES RAD PROCES, V13, P145 28124 ZHOU RM, 1993, J RAD RES RAD PROCES, V11, P170 28125 NR 15 28126 TC 0 28127 SN 0021-8995 28128 J9 J APPL POLYM SCI 28129 JI J. Appl. Polym. Sci. 28130 PD NOV 14 28131 PY 2000 28132 VL 78 28133 IS 7 28134 BP 1321 28135 EP 1327 28136 PG 7 28137 SC Polymer Science 28138 GA 357ZH 28139 UT ISI:000089532400002 28140 ER 28141 28142 PT J 28143 AU Ding, WH 28144 Olsen, SE 28145 TI Manganese and silicon distribution between slag and metal in 28146 silicomanganese production 28147 SO ISIJ INTERNATIONAL 28148 DT Article 28149 DE silicon distribution; manganese distribution; silicomanganese; 28150 equilibrium relations; equilibrium diagrams 28151 AB Laboratory measurements have been carried out to investigate the 28152 equilibrium distribution of manganese and silicon between slag and 28153 metal in silicomanganese production. Graphite crucibles have been used 28154 to study equilibrium between Mn-Si-C-sat alloys and 28155 MnQ-SiO2-CaO-Al2O3-MgO slags in CO gas at 1 600 degrees C, 1 650 28156 degrees C and 1 700 degrees C. 28157 The equilibrium content of Si in the metal is mainly controlled by the 28158 temperature, the silica content of the slag and the mass ratio 28159 R=(CaO+MgO)/Al2O3. The silicon content increases with the temperature 28160 and the silica content, and decreases with increasing R-ratio. The 28161 silicon content remains approximately the same when some MgO replaces 28162 CaO in the slag. 28163 The equilibrium content of MnO in silicomanganese slags is primarily 28164 controlled by the temperature and the silica content of the slag. 28165 Addition of Al2O3 to acid slags will result in somewhat lower MnO 28166 contents, and addition to more basic slags has the opposite effect. The 28167 equilibrium content of MnO in the slag is slightly increased when some 28168 CaO is replaced by MgO. 28169 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China. 28170 Norwegian Univ Sci & Technol, Dept Mat Technol & Electrochem, N-7491 Trondheim, Norway. 28171 RP Ding, WH, Shanghai Univ, Dept Mat Sci & Engn, 149 Yan Shang Rd, 28172 Shanghai 200072, Peoples R China. 28173 CR ABRAHAM KP, 1960, J IRON STEEL I, V196, P82 28174 DING W, 1993, THESIS NORWEGIAN I T 28175 DING WZ, 1996, METALL MATER TRANS B, V27, P5 28176 GZIELO A, 1986, NEUE HUTTE, P100 28177 KOR GJW, 1979, METAL T B, V10, P367 28178 OLSEN SE, 1995, P 7 INT FERR C, P591 28179 OLSEN SE, 1996, STF24 SINTEF 28180 OLSEN SE, 1997, STF24 SINTEF 28181 RANKIN WJ, 1979, T I MIN METALL C, V88, C167 28182 REIN RH, 1963, T METALL SOC AIME, V227, P1193 28183 SWINBOURNE DR, 1995, METALL MATER TRANS B, V26, P59 28184 TANAKA A, 1980, TETSU TO HAGANE, V66, P1474 28185 TUSET JK, 1979, 340420 SINTEF 28186 YOKOKAWA T, 1969, T JPN I MET, V10, P81 28187 NR 14 28188 TC 1 28189 SN 0915-1559 28190 J9 ISIJ INT 28191 JI ISIJ Int. 28192 PY 2000 28193 VL 40 28194 IS 9 28195 BP 850 28196 EP 856 28197 PG 7 28198 SC Metallurgy & Metallurgical Engineering 28199 GA 356TF 28200 UT ISI:000089458400004 28201 ER 28202 28203 PT J 28204 AU Guo, BY 28205 Xu, CL 28206 TI Hermite pseudospectral method for nonlinear partial differential 28207 equations 28208 SO ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION 28209 MATHEMATIQUE ET ANALYSE NUMERIQUE 28210 DT Article 28211 DE hermite pseudospectral approximation; nonlinear partial differential 28212 equations 28213 AB Hermite polynomial interpolation is investigated. Some approximation 28214 results are obtained. As an example, the Burgers equation on the whole 28215 line is considered. The stability and the convergence of proposed 28216 Hermite pseudospectral scheme are proved strictly. Numerical results 28217 are presented. 28218 C1 Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China. 28219 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 28220 RP Guo, BY, Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R 28221 China. 28222 CR ADAMS RA, 1975, SOBOLEV SPACES 28223 BERNARDI C, 1997, TECHNIQUES SCI COM 2, P209 28224 COULAUD O, 1990, COMPUT METHOD APPL M, V80, P451 28225 COURANT R, 1928, MATH ANN, V100, P32 28226 FUNARO D, 1990, MATH COMPUT, V57, P597 28227 FUNARO D, 1991, ORTHOGONAL POLYNOMIA, P263 28228 GUO BY, 1974, ACTA MATH SINICA, V17, P242 28229 GUO BY, 1994, CONT MATH, V163, P33 28230 GUO BY, 1998, SPECTRAL METHODS THE 28231 GUO BY, 1999, MATH COMPUT, V68, P1067 28232 LEVIN AL, 1992, CONSTR APPROX, V8, P461 28233 LUBINSKY DS, 1994, J APPROX THEORY, V77, P42 28234 MADAY Y, 1985, RECH AEROSPATIALE, V6, P353 28235 RICHITMEYER RD, 1967, FINITE DIFFERENCE ME 28236 STETTER HJ, 1966, NUMERICAL SOLUTIONS, P111 28237 SZEGO G, 1967, ORTHOGONAL POLYNOMIA 28238 TIMAN AF, 1963, THEORY APPROXIMATION 28239 NR 17 28240 TC 6 28241 SN 0764-583X 28242 J9 ESAIM-MATH MODEL NUMER ANAL 28243 JI ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer. 28244 PD JUL-AUG 28245 PY 2000 28246 VL 34 28247 IS 4 28248 BP 859 28249 EP 872 28250 PG 14 28251 SC Mathematics, Applied 28252 GA 357KL 28253 UT ISI:000089499000007 28254 ER 28255 28256 PT J 28257 AU Cao, WG 28258 Ding, WY 28259 Chen, YL 28260 Qiu, MY 28261 TI An efficient and highly stereoselective synthesis of 28262 beta,gamma-trans-beta-benzoyl-gamma-aryl-gamma-butyrolactones 28263 SO SYNTHETIC COMMUNICATIONS 28264 DT Article 28265 DE benzoylmethyltriphenylarsonium bromide; 28266 2,2-dialkyl-1,3-dioxa-5-substituted-benzylidene-4,6-dione; 28267 beta,gamma-trans-beta-benzoyl-gamma-aryl-gamma-butyrolactone 28268 AB Benzoylmethyltriphenylarsonium bromide 6 in the presence of potassium 28269 carbonate reacted with 28270 2,2-dialkyl-1,3-dioxa-5-substituted-benzylidene-4,6-dione 2 at room 28271 temperature to give 28272 beta,gamma-trans-beta-benzoyl-gamma-aryl-gamma-butyrolactones 7 in good 28273 yield. 28274 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 28275 Acad Sinica, Organomet Chem Lab, Shanghai 200032, Peoples R China. 28276 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 28277 CR CHEN YL, 1998, CHEM J CHINESE U, V19, P1614 28278 DING WY, 1965, B NAT SCI U CHEM CE, P540 28279 HUDLICKY T, 1990, SYNTHETIC COMMUN, V20, P1721 28280 SCHUSTER P, 1964, MH CHEM, V95, P53 28281 SHI DQ, 1998, CHINESE J ORG CHEM, V18, P82 28282 NR 5 28283 TC 4 28284 SN 0039-7911 28285 J9 SYN COMMUN 28286 JI Synth. Commun. 28287 PY 2000 28288 VL 30 28289 IS 20 28290 BP 3793 28291 EP 3799 28292 PG 7 28293 SC Chemistry, Organic 28294 GA 356PA 28295 UT ISI:000089450600019 28296 ER 28297 28298 PT J 28299 AU Chen, J 28300 Yang, LM 28301 Wu, MH 28302 Xi, Q 28303 He, SM 28304 Li, YW 28305 Nho, YC 28306 TI Preparation of interpenetrating polymer networks by two times grafting 28307 of monomers onto preirradiated polypropylene film 28308 SO RADIATION PHYSICS AND CHEMISTRY 28309 DT Article 28310 DE radiation grafting; electron beam (EB); acrylamide (AAm); acrylic acid 28311 (AAc); polypropylene (PP) 28312 AB An interpenetrating polymer network (IPN) hydrogel was made by the 28313 grafting of acrylamide (AAm) and acrylic acid (AAc) onto preirradiated 28314 polypropylene (PP) film. AAm and AAc were grafted onto preirradiated PP 28315 film by two times grafting reaction. Thermo-sensitive behaviors were 28316 determined. The effect of first and second reactions on the degree of 28317 grafting was studied. Trapped radicals on samples with different 28318 storage conditions and reaction conditions were determined by electron 28319 spin resonance (ESR). (C) 2000 Elsevier Science Ltd. All rights 28320 reserved. 28321 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China. 28322 Shanghai Second Med Univ, Shanghai Biomat Res & Test Ctr, Shanghai, Peoples R China. 28323 Korea Atom Energy Res Inst, Radiat Applicat Div, Taejon, South Korea. 28324 RP Chen, J, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, 28325 Peoples R China. 28326 CR CHAPIRO A, 1962, RAD CHEM POLYM SYSTE, P690 28327 CHEN YG, 1998, MAT SCI ENG B-SOLID, V52, P1 28328 HOFFMAN AS, 1991, MRS BULL, V16, P42 28329 KATANO H, 1991, POLYM J, V23, P1179 28330 NHO YC, 1998, RADIAT PHYS CHEM, V54, P317 28331 PEPPAS NA, 1986, HYDROGELS MED PHARM, P1 28332 PU HT, 1994, J SHANGHAI JIAOTONG, V28, P102 28333 WU MH, 1999, THESIS CHINESE ACAD, P73 28334 NR 8 28335 TC 11 28336 SN 0969-806X 28337 J9 RADIAT PHYS CHEM 28338 JI Radiat. Phys. Chem. 28339 PD SEP 28340 PY 2000 28341 VL 59 28342 IS 3 28343 BP 313 28344 EP 316 28345 PG 4 28346 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear 28347 Science & Technology 28348 GA 353UY 28349 UT ISI:000089294900012 28350 ER 28351 28352 PT J 28353 AU Shi, LY 28354 Li, CZ 28355 Chen, AP 28356 Zhu, YH 28357 Fang, DY 28358 TI Morphology and structure of nanosized TiO2 particles synthesized by 28359 gas-phase reaction 28360 SO MATERIALS CHEMISTRY AND PHYSICS 28361 DT Article 28362 DE rutile; titanium dioxide; nanosized particle; gas-phase reaction 28363 ID TITANIA; DOPANTS; POWDERS 28364 AB Nanosized titania particles are synthesized by the gas-phase oxidation 28365 of titanium tetrachloride in a high temperature tubular aerosol flow 28366 reactor that consists of two preheaters for oxygen and vaporized 28367 titanium tetrachloride, a reaction zone, and a cooling zone for 28368 particles. The effect of process parameters on the morphology and 28369 structure of titania particles is studied. As the preheating 28370 temperature of oxygen increases, the average particle size of titania 28371 decreases and the size distribution becomes more uniform. The addition 28372 of AlCl3 can reduce the particle size, and enhance the rutile weight 28373 fraction. The effect of reaction temperature (T) on the characteristics 28374 of nanosized titania particles is also investigated. The results show 28375 that the particle size increases with increasing temperature, acid a 28376 maximum rutile fraction is attained at 1200 degrees C and AlCl3 and 28377 TiCl4 feed ratio (X-inlet) of 0.09. Pure rutile titania particles is 28378 formed when T=1373 K and X-inlet=0.25. The average grain size of the 28379 particles is 29.0 nm, and the BET specific surface area is 23.4 m(2) 28380 g(-1). (C) 2000 Elsevier Science S.A. All rights reserved. 28381 C1 Shanghai Univ, Dept Chem, Shanghai 200072, Peoples R China. 28382 E China Univ Sci & Technol, Shanghai 200237, Peoples R China. 28383 RP Shi, LY, Shanghai Univ, Dept Chem, Shanghai 200072, Peoples R China. 28384 CR AKHTAR MK, 1991, AICHE J, V37, P1561 28385 AKHTAR MK, 1992, J AM CERAM SOC, V75, P3408 28386 KOBATA A, 1991, AICHE J, V37, P347 28387 MACHENZIE K, 1975, BRIT CERAM TRANS J, V74, P29 28388 MOROOKA S, 1989, INT CHEM ENG, V29, P119 28389 PIERRE AC, 1991, AM CERAM SOC BULL, V70, P1281 28390 SETO T, 1995, AEROSOL SCI TECH, V23, P183 28391 SHANNON RD, 1965, J AM CERAM SOC, V48, P391 28392 SHI LY, 1998, FUNCT MAT, V29, P136 28393 SHI LY, 1998, MAT REV, V12, P23 28394 SHI LY, 1999, J INORG MATER, V14, P717 28395 SPURR RA, 1957, ANAL CHEM, V29, P760 28396 SUYAMA Y, 1985, J AM CERAM SOC, V68, C154 28397 VEMURY S, 1995, J AM CERAM SOC, V78, P2984 28398 XIONG Y, 1991, J AEROSOL SCI, V22, P637 28399 YU JG, 1991, CHEM B, V10, P25 28400 ZHOU M, 1996, COAT IND, V4, P36 28401 NR 17 28402 TC 6 28403 SN 0254-0584 28404 J9 MATER CHEM PHYS 28405 JI Mater. Chem. Phys. 28406 PD SEP 15 28407 PY 2000 28408 VL 66 28409 IS 1 28410 BP 51 28411 EP 57 28412 PG 7 28413 SC Materials Science, Multidisciplinary 28414 GA 354ZG 28415 UT ISI:000089360700008 28416 ER 28417 28418 PT J 28419 AU Forchielli, ML 28420 Gura, K 28421 Anessi-Pessina, E 28422 Richardson, D 28423 Cai, W 28424 Lo, CW 28425 TI Success rates and cost-effectiveness of antibiotic combinations for 28426 initial treatment of central-venous-line infections during total 28427 parenteral nutrition 28428 SO JOURNAL OF PARENTERAL AND ENTERAL NUTRITION 28429 DT Article 28430 ID INTENSIVE-CARE UNIT; CATHETER INFECTIONS; SEPSIS; MANAGEMENT; RISK; 28431 SEPTICEMIA; BACTEREMIA; CHILDREN; CANCER; FEVER 28432 AB Background: Central-venous-line infections can be successfully treated 28433 with appropriate antibiotics, thus avoiding the need for catheter 28434 removal. Based on our experience, vancomycin, gentamicin, piperacillin, 28435 ceftazidime, and amphotericin, alone or in combination, are usually 28436 administered, pending sensitivity results. This empirical list, 28437 however, has never been verified against actual sensitivity results nor 28438 has it been tested for cost or efficacy. Methods: Medical records of 28439 inpatients on hyperalimentation over 1 year were reviewed. Success 28440 rate, therapy duration, and drug acquisition cost and charge were 28441 assessed for central-venous-line infections. Antibiotics then were 28442 paired and evaluated in terms of charge and efficacy against all 28443 microorganisms as determined by sensitivity results. Results: In 500 28444 inpatients receiving hyperalimentation for 9698 patient-days, 8.4 28445 central-venous-line infections/1000 patient-days occurred. 28446 Staphylococcus non-aureus, Candida species, Enterococcus faecium, and 28447 Staphylococcus aureus predominantly were isolated. Of the infections, 28448 51 (67%) were sensitive to one or more of the initial antibiotics. A 28449 2-week course of antibiotics successfully treated 50 (66%) catheter 28450 infections without line removal. Appropriate initial therapy on average 28451 reduced treatment duration by 8 to 10 days and drug charges by $400 to 28452 $700. Conclusions: Amikacin-vancomycin appears to be the most 28453 cost-effective selection for presumed central-venous-line infections, 28454 pending sensitivity results, followed by valid alternatives. Lower 28455 failure rates are well worth the extra cost in pharmaceutical charges. 28456 C1 Univ Bologna, Dept Pediat, I-41038 Bologna, Italy. 28457 Childrens Hosp, Combined Program Gastroenterol & Nutr, Boston, MA 02115 USA. 28458 Childrens Hosp, Dept Pharm, Boston, MA 02115 USA. 28459 Catholic Univ, Dept Business Adm, Milan, Italy. 28460 Shanghai Univ, Xin Hua Hosp, Dept Pediat Surg, Shanghai 200041, Peoples R China. 28461 RP Forchielli, ML, Univ Bologna, Dept Pediat, 11 V Massarenti, I-41038 28462 Bologna, Italy. 28463 CR 1995, FED REG, V60, P49978 28464 *HOSP INF CONTR PR, 1995, INFECT CONT HOSP EP, V16, P105 28465 ABRAHM JL, 1982, JAMA-J AM MED ASSOC, V248, P2868 28466 BALAGTAS RC, 1971, PEDIATRICS, V48, P359 28467 BATTISTI O, 1981, ARCH DIS CHILD, V56, P775 28468 BENOIT JL, 1995, CLIN INFECT DIS, V21, P1286 28469 COLLIGNON PJ, 1984, MED J AUSTRALIA, V141, P345 28470 DECKER MD, 1988, PEDIATR CLIN N AM, V35, P579 28471 FLEER A, 1983, PEDIATR INFECT DIS J, V2, P426 28472 KING DR, 1985, J PEDIATR SURG, V20, P728 28473 KRAUSS AN, 1972, NY STATE J MED, V72, P1136 28474 LEIBOVICI L, 1992, J INTERN MED, V231, P371 28475 MCKINNON PS, 1997, CLIN INFECT DIS, V24, P57 28476 MULLOY RH, 1991, JPEN-PARENTER ENTER, V15, P460 28477 NELSON DB, 1986, DRESSING CHANGES SPE, V19, P220 28478 PALADINO JA, 1994, PHARMACOECONOMICS, V5, P505 28479 PARTSCH DJ, 1997, ANN PHARMACOTHER, V31, P1137 28480 PESSION A, 1997, CHEMOTHERAPY, V43, P358 28481 PINILLA JC, 1983, CRIT CARE MED, V11, P21 28482 PRESS OW, 1984, MEDICINE, V63, P189 28483 PRINCE A, 1986, PEDIATR INFECT DIS J, V5, P20 28484 REINHARDT GF, 1978, AM J SURG, V49, P401 28485 RICARD P, 1985, CRIT CARE MED, V13, P541 28486 RIIKONEN P, 1993, SCAND J INFECT DIS, V25, P357 28487 RYAN JA, 1974, NEW ENGL J MED, V290, P757 28488 SALZMAN MB, 1995, ADV PEDIAT INFECT DI, V10, P337 28489 SHAPIRO ED, 1982, AM J DIS CHILD, V136, P679 28490 VISCOLI C, 1988, RECENT RESULTS CANC, V108, P71 28491 WEBER TR, 1983, AM J SURG, V145, P202 28492 NR 29 28493 TC 4 28494 SN 0148-6071 28495 J9 J PARENT ENTER NUTR 28496 JI J. Parenter. Enter. Nutr. 28497 PD MAR-APR 28498 PY 2000 28499 VL 24 28500 IS 2 28501 BP 119 28502 EP 125 28503 PG 7 28504 SC Nutrition & Dietetics 28505 GA 355MG 28506 UT ISI:000089389000013 28507 ER 28508 28509 PT J 28510 AU Guo, SQ 28511 Jiang, GC 28512 Xu, JL 28513 Xu, KD 28514 TI Kinetics of reduction of MnO in molten slag with carbon undersaturated 28515 liquid iron 28516 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL 28517 DT Article 28518 DE MnO; kinetics; smelting reduction 28519 ID REGULAR SOLUTION MODEL 28520 AB The reduction of MnO in molten slag with carbon undersaturated iron was 28521 studied. It was found that the process is affected by the carbon 28522 content of molten metal and the temperature. The higher the carbon 28523 content and the temperature, the faster both the reduction and the 28524 emerging of the hump on curve of omega(FeO), the larger the difference 28525 between omega(FeO, max) and omega(FeO, e). The phenomena were explained 28526 with three-step reaction model. 28527 C1 Shanghai Univ, Shanghai 200072, Peoples R China. 28528 RP Guo, SQ, Shanghai Univ, Shanghai 200072, Peoples R China. 28529 CR BANYA S, 1985, TETSU TO HAGANE, V71, P853 28530 BANYA S, 1986, TETSU TO HAGANE, V72, S223 28531 BANYA S, 1987, TETSU TO HAGANE, V73, P476 28532 BANYA S, 1993, ISIJ INT, V33, P2 28533 MARTIN E, 1974, T B I MIN METALL, V83, C193 28534 SHINOZAKI N, 1982, TETSU TO HAGANE, V68, P72 28535 SOMMERVILLE ID, 1982, CAN METALL Q, V21, P145 28536 XU KD, 1990, P 6 NAT C STEELM C B 28537 XU KD, 1993, ISIJ INT, V33, P104 28538 NR 9 28539 TC 4 28540 SN 1006-706X 28541 J9 J IRON STEEL RES INT 28542 JI J. Iron Steel Res. Int. 28543 PD MAY 28544 PY 2000 28545 VL 7 28546 IS 1 28547 BP 1 28548 EP 5 28549 PG 5 28550 SC Metallurgy & Metallurgical Engineering 28551 GA 356DW 28552 UT ISI:000089429900001 28553 ER 28554 28555 PT J 28556 AU Zhang, XB 28557 Jiang, GC 28558 Xu, KD 28559 TI Evaluation of component activity in molten MnO-SiO2-Al2O3-CaO system 28560 with model SELF-SReM4 28561 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL 28562 DT Article 28563 DE sub-regular solution model; component activity; molten slag; 28564 MnO-SiO2-Al2O3-CaO 28565 AB A sub-regular solution model SELF-SReM4 used to evaluate activity of 28566 the components in a homogeneous region of a quaternary system has been 28567 developed in Shanghai Enhanced Laboratory of Ferrometallurgy. The 28568 application of SELF-SReM4 in C-Mn-Fe-Si system without the SIC 28569 formation has been introduced in previous paper. It's application for 28570 molten slag of MnO-SiO2-Al2O3-CaO was introduced in this paper. They 28571 provide a basis for the prediction of the metal-slag equilibrium 28572 conditions. 28573 C1 Shanghai Univ, Shanghai 200072, Peoples R China. 28574 RP Zhang, XB, Shanghai Univ, Shanghai 200072, Peoples R China. 28575 CR ABRAHAM KP, 1960, ISIJ 28576 MEHTA SR, 1965, J IRON STEEL I, V203, P524 28577 REIN RH, 1965, T AIME, P415 28578 RISBUD SH, 1977, J AM CERAM SOC, V60, P418 28579 SHARMA RA, 1961, J IRON ST I, V198, P386 28580 SHARMA RA, 1965, T AIME, P1586 28581 TANG K, 1995, RARE METALS, V14, P137 28582 WARREN GF, 1975, INT C FERR ALL 1974, P175 28583 YA SB, 1991, CHEM PROPERTIES MELT 28584 ZHANG XB, 1998, J IRON STEEL RES INT, V5, P28 28585 NR 10 28586 TC 1 28587 SN 1006-706X 28588 J9 J IRON STEEL RES INT 28589 JI J. Iron Steel Res. Int. 28590 PD MAY 28591 PY 2000 28592 VL 7 28593 IS 1 28594 BP 6 28595 EP 8 28596 PG 3 28597 SC Metallurgy & Metallurgical Engineering 28598 GA 356DW 28599 UT ISI:000089429900002 28600 ER 28601 28602 PT J 28603 AU Lu, XG 28604 Li, FS 28605 Li, LF 28606 Chou, KC 28607 TI Study on electronic conductivity of CaO-SiO2-Al2O3-FeOx slag system 28608 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL 28609 DT Article 28610 DE smelt slag; electron hole; electronic conductivity 28611 AB A study on electronic conductivity of CaO-SiO2-Al2O3-FeOx slag system 28612 with Wagner polarization technique was carried out. The experimental 28613 data show that electronic conductivity is consisted of free electron 28614 conductivity and electron hole conductivity and both are related to the 28615 content of Fe3+ and Fe2+. Free electron conductivity is decreasing and 28616 electron hole conductivity is increasing while Fe3+ changes to Fe2+. 28617 There is a maximum electronic conductivity at some ratio of ferric ions 28618 Fe3+ to total ion content. Under the experimental conditions, the 28619 electronic conductivity is in the range of 10(-4)-10(-2) S/cm. 28620 C1 Univ Sci & Technol Beijing, Beijing 100083, Peoples R China. 28621 Shanghai Univ, Shanghai 200072, Peoples R China. 28622 RP Lu, XG, Univ Sci & Technol Beijing, Beijing 100083, Peoples R China. 28623 CR BOCKRIS JOM, 1952, T FARADAY SOC, V48, P75 28624 DANCY EA, 1966, T TMS AIME, V236, P1642 28625 DICKSON WR, 1962, T METALL SOC AIME, V224, P505 28626 DUKELOW DA, 1960, T AIME, V218, P136 28627 ENGELL HJ, 1968, BER BUNSEN PHYS CHEM, V72, P5 28628 FARUP F, 1924, CHEM IND, V12, P11 28629 FONTANA A, 1984, TMS AIME PAPER SELEC, P53 28630 GOEL RP, 1980, MET T B, V11, P107 28631 GOTO KS, 1977, T ISIJ, V20, P212 28632 GOTO KS, 1984, P INT S MET SLAG NEW, P839 28633 HAARBERG GM, 1988, BER BUNSEN PHYS CHEM, V92, P139 28634 HAARBERG GM, 1990, J ELECTROCHEM SOC, V137, P2777 28635 HAARBERG GM, 1993, METALL TRANS B, V24, P729 28636 INOUYE H, 1953, T FARADAY SOC, V49, P796 28637 KATO M, 1969, T IRON STEEL I JPN, V9, P39 28638 KRISHNA GGM, 1993, IRONMAK STEELMAK, V20, P198 28639 KROGER FA, 1974, CHEM IMPERFECT CRYST, V3, P149 28640 MARTIN AE, 1942, T AIME, V154, P104 28641 PAL U, 1985, J AM CERAM SOC, V68, P104 28642 PAL U, 1985, METALL TRANS B, V16, P77 28643 PASTUKHOV EA, 1966, ELEKTROCHEM, V2, P209 28644 SANERWALD F, 1925, ZISCH ELEKTROCHEM, V31, P643 28645 SIMNAD MT, 1953, J CHEM PHYS, V21, P933 28646 SIMNAD MT, 1954, T AIME, V200, P1386 28647 SPEELMAN JL, 1989, METALL T B, V20, P31 28648 WAGNER C, 1957, P 7 M INT COMM EL TH, P361 28649 WEJNARTH A, 1934, ELECTROCHEM SOC, V66, P329 28650 WEJNARTH A, 1934, T AM, V63, P177 28651 NR 28 28652 TC 1 28653 SN 1006-706X 28654 J9 J IRON STEEL RES INT 28655 JI J. Iron Steel Res. Int. 28656 PD MAY 28657 PY 2000 28658 VL 7 28659 IS 1 28660 BP 9 28661 EP 13 28662 PG 5 28663 SC Metallurgy & Metallurgical Engineering 28664 GA 356DW 28665 UT ISI:000089429900003 28666 ER 28667 28668 PT J 28669 AU Yan, KZ 28670 Tan, WH 28671 TI A model for macroscopic quantum tunneling of Bose-Einstein condensate 28672 with attractive interaction 28673 SO CHINESE PHYSICS LETTERS 28674 DT Article 28675 ID NONLINEAR SCHRODINGER-EQUATION; NEUTRAL ATOMS; GAS; EXCITATIONS; TRAP 28676 AB Based on the numerical wave function solutions of neutral atoms with 28677 attractive interaction in a harmonic trap, we propose an exactly 28678 solvable model for macroscopic quantum tunneling of a Bose condensate 28679 with attractive interaction. me calculate the rate of macroscopic 28680 quantum tunneling from a metastable condensate state to the collapse 28681 state and analyze the stability of the attractive Bose-Einstein 28682 condensation. 28683 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 28684 RP Yan, KZ, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 28685 CR ANDERSON MH, 1995, SCIENCE, V269, P198 28686 BRADLEY CC, 1995, PHYS REV LETT, V75, P1687 28687 BRADLEY CC, 1997, PHYS REV LETT, V78, P985 28688 DAVIS KB, 1995, PHYS REV LETT, V75, P3969 28689 DUAN YW, 1999, CHINESE PHYS LETT, V15, P568 28690 HONG T, 1998, CHINESE PHYS LETT, V15, P550 28691 HUANG H, 1999, CHINESE PHYS LETT, V16, P9 28692 KAGAN Y, 1996, PHYS REV LETT, V76, P2670 28693 KAGAN Y, 1998, PHYS REV LETT, V81, P933 28694 KUANG LM, 1998, CHINESE PHYS LETT, V15, P703 28695 RUPRECHT PA, 1995, PHYS REV A, V51, P4704 28696 RUPRECHT PA, 1996, PHYS REV A, V54, P4178 28697 SHURYAK EV, 1996, PHYS REV A, V54, P3151 28698 STOOF HTC, 1997, J STAT PHYS, V87, P1353 28699 UEDA M, 1998, PHYS REV LETT, V80, P1576 28700 YAN KZ, 1999, ACTA PHYS SIN-CH ED, V48, P1185 28701 NR 16 28702 TC 3 28703 SN 0256-307X 28704 J9 CHIN PHYS LETT 28705 JI Chin. Phys. Lett. 28706 PY 2000 28707 VL 17 28708 IS 9 28709 BP 631 28710 EP 633 28711 PG 3 28712 SC Physics, Multidisciplinary 28713 GA 356JT 28714 UT ISI:000089440700003 28715 ER 28716 28717 PT J 28718 AU Wang, W 28719 Wong, PL 28720 TI Wear volume determination during running-in for PEHL contacts 28721 SO TRIBOLOGY INTERNATIONAL 28722 DT Article 28723 DE running-in; zero-wear; surface roughness 28724 ID SURFACE 28725 AB The relation of wear volume and the change of average surface roughness 28726 under the "zero-wear" condition was derived, with the assumption that 28727 the original profiles of the surface below the wear plane remain 28728 exactly the same as before, i.e. no plastic deformation. The flattening 28729 of asperities on an engineering rough surface was simulated with 28730 numerical techniques. The variation in wear volume and average surface 28731 roughness with the depth of wear was studied. The pattern and the 28732 correlation length of rough surface were checked and found to have no 28733 effect on the relation of wear volume and change of average roughness. 28734 The simulated results show that the variation of wear volume and the 28735 change of average roughness can be described by a second order 28736 polynomial. The model was also validated with experimental results 28737 obtained by using a two-disc wear machine. (C) 2000 Elsevier Science 28738 Ltd. All rights reserved. 28739 C1 City Univ Hong Kong, Dept Mfg Engn & Engn Management, Kowloon, Hong Kong, Peoples R China. 28740 Shanghai Univ, Dept Mech Engn, Shanghai, Peoples R China. 28741 RP Wong, PL, City Univ Hong Kong, Dept Mfg Engn & Engn Management, Tat 28742 Chee Ave, Kowloon, Hong Kong, Peoples R China. 28743 CR LI N, 1990, THESIS TSINGHUA U 28744 PATIR N, 1978, WEAR, V47, P263 28745 PAWLUS P, 1994, WEAR, V176, P247 28746 REDFERN D, 1998, MATLAB 5 HDB 28747 STOUT KJ, 1977, WEAR, V43, P99 28748 THOMAS TR, 1972, WEAR, V22, P83 28749 WANG W, 1998, 24 LEEDS LYON S TRIB, P275 28750 WANG W, 1998, TRIBOL INT, V31, P281 28751 ZHANG B, 1989, WEAR, V129, P37 28752 NR 9 28753 TC 1 28754 SN 0301-679X 28755 J9 TRIBOL INT 28756 JI Tribol. Int. 28757 PD JUL 28758 PY 2000 28759 VL 33 28760 IS 7 28761 BP 501 28762 EP 506 28763 PG 6 28764 SC Engineering, Mechanical 28765 GA 352VC 28766 UT ISI:000089237700008 28767 ER 28768 28769 PT J 28770 AU Liu, XM 28771 Lu, ZM 28772 Liu, YL 28773 TI Krylov subspace projection method and its application on oil reservoir 28774 simulation 28775 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 28776 DT Article 28777 DE Krylov subspace methods; block PE method; numerical oil reservoir 28778 simulation 28779 ID NONSYMMETRIC LINEAR-SYSTEMS; CONJUGATE-GRADIENT; ITERATIVE METHODS; 28780 BI-CGSTAB; ALGORITHM; GMRES; EQUATIONS; VARIANT; QMR 28781 AB Krylov subspace projection methods are known to be highly efficient for 28782 solving large linear systems. Many different versions arise from 28783 different choices to the left and right subspaces. These methods were 28784 classified into two groups in terms of the different forms of matrix 28785 H-m, the main properties in applications and the new versions of these 28786 two types of methods were briefly reviewed, then one of the most 28787 efficient versions, GMRES method was applied to oil reservoir 28788 simulation. The block Pseudo-Elimination method was used to generate 28789 the preconditioned matrix. Numerical results show much better 28790 performance of this preconditioned techniques and the GMRES method than 28791 that of preconditioned ORTHMIN method, which is now in use in oil 28792 reservoir simulation. Finally, some limitations of Krylov subspace 28793 methods and some potential improvements to this type of methods are 28794 further presented. 28795 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 28796 RP Liu, XM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 28797 200072, Peoples R China. 28798 CR BROWN PN, 1991, SIAM J SCI STAT COMP, V12, P58 28799 CHAN TF, 1994, SIAM J SCI COMPUT, V15, P338 28800 CHEN YM, 1989, FUNDAMENTALS NUMERIC 28801 DESA C, 1992, SIAM J SCI STAT COMP, V13, P30 28802 ERN A, 1994, SIAM J SCI COMPUT, V15, P681 28803 FREUND RW, 1991, NUMER MATH, V60, P315 28804 FREUND RW, 1992, NUMER MATHS, V14, P470 28805 FROMMER A, 1998, SIAM J SCI COMPUT, V19, P15 28806 HU JG, 1991, ITERATIVE METHODS SO 28807 KASENALLY EM, 1995, SIAM J SCI COMPUT, V16, P698 28808 LU ZM, 1993, THESIS FUDAN U SHANG 28809 PAIGE CC, 1975, SIAM J NUMER ANAL, V12, P617 28810 PARLETT BN, 1985, MATH COMPUT, V44, P105 28811 RESSEL KJ, 1998, SIAM J SCI COMPUT, V19, P55 28812 SAAD Y, 1981, MATH COMPUT, V37, P105 28813 SAAD Y, 1985, MATH COMPUT, V44, P417 28814 SAAD Y, 1986, SIAM J SCI COMPUT, V7, P859 28815 SAAD Y, 1993, SIAM J SCI COMPUT, V14, P461 28816 SAUNDERS MA, 1988, SIAM J NUMER ANAL, V25, P927 28817 SONNEVELD P, 1989, SIAM J SCI STAT COMP, V10, P36 28818 TAN LH, 1991, COMPUT STRUCT, V40, P441 28819 VANDERVORST HA, 1992, SIAM J SCI STAT COMP, V13, P631 28820 ZHOU L, 1994, SIAM J SCI COMPUT, V15, P297 28821 NR 23 28822 TC 0 28823 SN 0253-4827 28824 J9 APPL MATH MECH-ENGL ED 28825 JI Appl. Math. Mech.-Engl. Ed. 28826 PD JUN 28827 PY 2000 28828 VL 21 28829 IS 6 28830 BP 607 28831 EP 616 28832 PG 10 28833 SC Mathematics, Applied; Mechanics 28834 GA 353GM 28835 UT ISI:000089266500001 28836 ER 28837 28838 PT J 28839 AU Li, Q 28840 Zhou, BX 28841 TI TEM sample preparation of melt-spun Nd-Fe-B powders 28842 SO RARE METAL MATERIALS AND ENGINEERING 28843 DT Article 28844 DE Ni-Fe-B permanent magnet; transmission electron microscopy; 28845 microstructure 28846 AB A method of TEM sample preparation for melt-spun Nd-Fe-B powders is 28847 presented. The TEM samples were prepared by mixing the Nd-Fe-B powders 28848 (30% in volume) with pure aluminium powders, followed by blending, 28849 compacting into pellets, rolling into flakes, punching, grinding and 28850 ion-sputter thinning. 28851 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 28852 RP Li, Q, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 28853 CR MISHRA RK, 1991, MAT SCI ENG B-SOLID, V7, P297 28854 MISHRA RK, 1994, J APPL PHYS 2B, V75, P6652 28855 ZHOU BX, 1996, CNIC01111 28856 NR 3 28857 TC 0 28858 SN 1002-185X 28859 J9 RARE METAL MAT ENG 28860 JI Rare Metal Mat. Eng. 28861 PD AUG 28862 PY 2000 28863 VL 29 28864 IS 4 28865 BP 283 28866 EP 284 28867 PG 2 28868 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 28869 Engineering 28870 GA 351YD 28871 UT ISI:000089186900019 28872 ER 28873 28874 PT J 28875 AU Chen, LQ 28876 Cheng, CJ 28877 TI Dynamical behavior of nonlinear viscoelastic columns based on 2-order 28878 Galerkin truncation 28879 SO MECHANICS RESEARCH COMMUNICATIONS 28880 DT Article 28881 ID CHAOTIC VIBRATIONS; STABILITY ANALYSIS; PLATES; BEAM 28882 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 28883 Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China. 28884 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 28885 200072, Peoples R China. 28886 CR ABHYANKAR NS, 1993, J APPL MECH-T ASME, V60, P167 28887 ABOUDI J, 1990, J SOUND VIB, V139, P459 28888 ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151 28889 CEDERBAUM G, 1992, J APPL MECH-T ASME, V59, P16 28890 CHEN LQ, IN PRESS APPL MATH M 28891 CHENG CJ, 1998, ACTA MECH SINICA, V30, P690 28892 CHENG CJ, 1998, SHANGHAI J MECH, V19, P326 28893 LEADERMAN H, 1962, T SOC RHEOL, V6, P361 28894 MOON FC, 1979, J SOUND VIB, V65, P285 28895 NAYFEH AH, 1979, NONLINEAR OSCILLATIO 28896 SUIRE G, 1994, ARCH APPL MECH-ING, V64, P307 28897 SUIRE G, 1995, INT J MECH SCI, V37, P753 28898 TOUATI D, 1995, ACTA MECH, V113, P215 28899 WOJCIECH S, 1990, ACTA MECH, V85, P43 28900 XU KY, NONLINEAR DYNAMICS 28901 ZHANG NH, IN PRESS ACTA MECH S 28902 ZHANG NH, 1998, P 3 INT C NONL MECH, P432 28903 ZHU YY, 1998, P 3 INT C NONL MECH, P445 28904 NR 18 28905 TC 5 28906 SN 0093-6413 28907 J9 MECH RES COMMUN 28908 JI Mech. Res. Commun. 28909 PD JUL-AUG 28910 PY 2000 28911 VL 27 28912 IS 4 28913 BP 413 28914 EP 419 28915 PG 7 28916 SC Mechanics 28917 GA 352CP 28918 UT ISI:000089197200005 28919 ER 28920 28921 PT J 28922 AU He, JH 28923 TI A variational approach to electroelastic analysis of piezoelectric 28924 ceramics with surface electrodes 28925 SO MECHANICS RESEARCH COMMUNICATIONS 28926 DT Article 28927 ID SEMI-INVERSE METHOD; FLOW; PRINCIPLES 28928 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 28929 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 28930 Peoples R China. 28931 CR HE JH, IN PRESS ASME 28932 HE JH, 1997, INT J TURBO JET ENG, V14, P17 28933 HE JH, 1997, INT J TURBO JET ENG, V14, P23 28934 HE JH, 1997, J SHANGHAI U, V1, P117 28935 HE JH, 1998, APPL MATH MODEL, V22, P395 28936 HE JH, 1998, COMMUNICATIONS NONLI, V3, P179 28937 HE JH, 1998, INT J TURBO JET ENG, V15, P101 28938 HE JH, 1998, INT J TURBO JET ENG, V15, P95 28939 HE JH, 2000, INT J NONLINEAR SCI, V1, P133 28940 SHINDO Y, 1998, INT J ENG SCI, V36, P1001 28941 ZHOU SA, 1986, INT J SOLIDS STRUCT, V22, P1411 28942 NR 11 28943 TC 16 28944 SN 0093-6413 28945 J9 MECH RES COMMUN 28946 JI Mech. Res. Commun. 28947 PD JUL-AUG 28948 PY 2000 28949 VL 27 28950 IS 4 28951 BP 445 28952 EP 450 28953 PG 6 28954 SC Mechanics 28955 GA 352CP 28956 UT ISI:000089197200009 28957 ER 28958 28959 PT J 28960 AU He, JH 28961 TI Exact resonances of nonlinear vibration of rotor-bearings system 28962 without small parameter 28963 SO MECHANICS RESEARCH COMMUNICATIONS 28964 DT Article 28965 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 28966 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 28967 Peoples R China. 28968 CR FINLAYSON BA, 1972, METHOD WEIGHTED RESI 28969 HE JH, 1997, COMMUNICATIONS NONLI, V2, P235 28970 HE JH, 1998, COMPUT METHOD APPL M, V167, P57 28971 HE JH, 1998, P INT C VIBR ENG 98, P288 28972 HE JH, 1999, INT J NONLINEAR MECH, V34, P699 28973 HE JH, 2000, INT J NONLINEAR SCI, V1, P51 28974 INOKUTI M, 1978, VARIATIONAL METHOD M, P156 28975 LIU CS, 1998, P INT C VIBR ENG 98, P435 28976 NAYFEH AH, 1981, INTRO PERTURBATION T 28977 NR 9 28978 TC 3 28979 SN 0093-6413 28980 J9 MECH RES COMMUN 28981 JI Mech. Res. Commun. 28982 PD JUL-AUG 28983 PY 2000 28984 VL 27 28985 IS 4 28986 BP 451 28987 EP 456 28988 PG 6 28989 SC Mechanics 28990 GA 352CP 28991 UT ISI:000089197200010 28992 ER 28993 28994 PT J 28995 AU Zhao, DP 28996 Feng, SS 28997 Yang, GH 28998 TI Mass density of Dp-branes 28999 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 29000 DT Article 29001 AB It is shown that the generally covariant definition of mass equals the 29002 ADM mass for Dp-branes. 29003 C1 Univ Sci & Technol China, Dept Astron & Appl Phys, Hefei 230026, Peoples R China. 29004 Anhui Post & Telecommun Sch, Hefei 230031, Peoples R China. 29005 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China. 29006 RP Feng, SS, Univ Sci & Technol China, Dept Astron & Appl Phys, Hefei 29007 230026, Peoples R China. 29008 CR DAURIA R, HEPTH9812160 29009 DUAN YS, 1963, ACTA PHYS SINICA, V19, P589 29010 DUAN YS, 1988, GEN RELAT GRAVIT, V20, P485 29011 FENG SS, HEPTH9902082 29012 FENG SS, HEPTH9902108 29013 PETERSEN JL, HEPTH9902131 29014 STELLE KS, HEPTH9803116 29015 NR 7 29016 TC 0 29017 SN 0020-7748 29018 J9 INT J THEOR PHYS 29019 JI Int. J. Theor. Phys. 29020 PD JUN 29021 PY 2000 29022 VL 39 29023 IS 6 29024 BP 1637 29025 EP 1642 29026 PG 6 29027 SC Physics, Multidisciplinary 29028 GA 351XJ 29029 UT ISI:000089184500017 29030 ER 29031 29032 PT J 29033 AU Wang, LJ 29034 Jiang, XY 29035 Zhang, ZL 29036 Xu, SH 29037 TI Organic thin film electroluminescent devices using Gaq3 as emitting 29038 layers 29039 SO DISPLAYS 29040 DT Article 29041 DE electroluminescence; Gaq3; Alq3; Znq2; organic materials 29042 ID IMPROVED STABILITY 29043 AB Organic electroluminescent (EL) devices using 29044 tris(8-hydroxyquinoline)-gallium complex (Gaq3) as the emitting layer 29045 were developed. Results indicated that EL devices using Gaq3 as 29046 emitting layers emitted light at a peak wavelength of 540 nm. The 29047 maximum luminance of these devices was obviously higher than that of 29048 devices using Alq3 and Znq2 as emitting layers prepared with the same 29049 structures and under the same conditions as Gaq3. The greatest maximum 29050 luminance of Gaq3 devices was attributed to the higher breakdown 29051 voltage and quantum efficiency than those of the other two devices. (C) 29052 2000 Elsevier Science B.V. All rights reserved. 29053 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 29054 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R 29055 China. 29056 CR ADACHI C, 1990, APPL PHYS LETT, V57, P531 29057 HAMADA Y, 1993, JPN J APPL PHYS, V32, P514 29058 LIU ZG, 1997, J SHANGHAI U, V3, P157 29059 SHI JM, 1997, APPL PHYS LETT, V70, P1665 29060 TANG CW, 1987, APPL PHYS LETT, V51, P913 29061 VANSLYKE SA, 1996, APPL PHYS LETT, V69, P2160 29062 WAGNER J, 1982, J MATER SCI, V17, P27 29063 ZHANG ZQ, 1996, ELECTROPHORESIS, V17, P372 29064 NR 8 29065 TC 7 29066 SN 0141-9382 29067 J9 DISPLAYS 29068 JI Displays 29069 PD AUG 1 29070 PY 2000 29071 VL 21 29072 IS 2-3 29073 BP 47 29074 EP 49 29075 PG 3 29076 SC Computer Science, Hardware & Architecture; Engineering, Electrical & 29077 Electronic; Instruments & Instrumentation; Optics 29078 GA 351AT 29079 UT ISI:000089134400002 29080 ER 29081 29082 PT J 29083 AU Wang, LJ 29084 Xia, YB 29085 Ju, JH 29086 Zhang, WG 29087 TI Electrical properties of chemical vapor deposition diamond films and 29088 electrical response to X-ray 29089 SO DIAMOND AND RELATED MATERIALS 29090 DT Article 29091 DE microwave plasma chemical vapor deposition; electrical properties; 29092 diamond films; optoelectronic properties 29093 ID CVD DIAMOND; DETECTORS 29094 AB In this paper, dark current-voltage (I-V) characteristics, 29095 current-temperature (I-T) characteristics, and photocurrents under 29096 steady-state X-ray excitation of CVD diamond films were investigated. 29097 Results indicated that dark currents and photocurrents by X-ray 29098 irradiation for the [001] textured CVD diamond film were greater than 29099 those for the non-textured one. The differences in dark currents and 29100 resistivities were attributed to a large number of grain boundaries 29101 contained in the non-textured diamond films. From the I-T curves, at 29102 the temperature higher than 500 K, currents clearly followed an 29103 exponential behavior because of the activation energy of E-a = 1.68 eV 29104 which was normally attributed to Si trapped to a vacancy in the diamond 29105 lattice. (C) 2000 Elsevier Science S.A. All rights reserved. 29106 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 29107 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R 29108 China. 29109 CR BEHNKE T, 1998, NUCL INSTRUM METH A, V414, P340 29110 FERNANDES AJ, 1999, VACUUM, V52, P215 29111 FOULON F, 1994, IEEE T NUCL SCI, V41, P927 29112 GALLUZZI F, 1998, NUCL INSTRUM METH A, V409, P423 29113 MANFREDOTTI C, 1998, NUCL INSTRUM METH A, V410, P96 29114 POCHET T, 1993, MATER RES SOC S P, V302, P369 29115 WEILHAMMER P, 1998, NUCL INSTRUM METH A, V409, P264 29116 NR 7 29117 TC 7 29118 SN 0925-9635 29119 J9 DIAM RELAT MATER 29120 JI Diam. Relat. Mat. 29121 PD SEP-OCT 29122 PY 2000 29123 VL 9 29124 IS 9-10 29125 BP 1617 29126 EP 1620 29127 PG 4 29128 SC Materials Science, Multidisciplinary 29129 GA 352FD 29130 UT ISI:000089203100011 29131 ER 29132 29133 PT J 29134 AU Xia, YB 29135 Sekiguchi, T 29136 Zhang, WJ 29137 Jiang, X 29138 Ju, JH 29139 Wang, LJ 29140 Yao, T 29141 TI Surfaces of undoped and boron doped polycrystalline diamond films 29142 influenced by negative DC bias voltage 29143 SO DIAMOND AND RELATED MATERIALS 29144 DT Article 29145 DE diamond; penetrating effects; thin film; cathodoluminescence 29146 ID CHEMICAL-VAPOR-DEPOSITION 29147 AB The hydrogen ion bombardment is performed by applying a negative bias 29148 voltage to the substrate during microwave plasma chemical vapor 29149 deposition process, using only hydrogen as reactant gas. The size of 29150 (001) faces increases after hydrogen ion etching while other grains are 29151 etched off. The surfaces of [001]-oriented films after doping boron are 29152 investigated by scanning electron microscopy (SEM) and 29153 cathodoluminescent (CL) spectra. The absence of the band-A emission in 29154 the CL spectra means a low density of dislocation in the films. It is 29155 the first time that the peak at 741.5 nm and the broad peak at 29156 approximately 575 and 625 nm in the CL spectra were reduced efficiently 29157 after boron doping in (001) polycrystalline diamond films and to 29158 propose that these phenomena should be explained in simple terms with 29159 penetration of the lattice nets of the [001]-oriented faces model. (C) 29160 2000 Elsevier Science S.A. All rights reserved. 29161 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China. 29162 Tohoku Univ, Inst Mat Res, Sendai, Miyagi 980, Japan. 29163 Fraunhofer Inst Thin Films & Surface Engn, D-38108 Braunschweig, Germany. 29164 RP Xia, YB, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R 29165 China. 29166 CR COLLINS AT, 1990, J MATER RES, V5, P2507 29167 DAVIS JW, 1987, J NUCL MATER, V145, P417 29168 HAYASHI K, 1997, J APPL PHYS, V81, P744 29169 HAYASHI K, 1998, J CRYST GROWTH, V183, P338 29170 ROBINS LH, 1989, PHYS REV B, V39, P13367 29171 WON J, 1996, RECENT PROG DIAMOND, V1, P103 29172 YOKOTA Y, 1990, MAT RES SOC S P PITT, P162 29173 ZHANG WJ, 1997, J APPL PHYS, V82, P1896 29174 NR 8 29175 TC 1 29176 SN 0925-9635 29177 J9 DIAM RELAT MATER 29178 JI Diam. Relat. Mat. 29179 PD SEP-OCT 29180 PY 2000 29181 VL 9 29182 IS 9-10 29183 BP 1636 29184 EP 1639 29185 PG 4 29186 SC Materials Science, Multidisciplinary 29187 GA 352FD 29188 UT ISI:000089203100015 29189 ER 29190 29191 PT J 29192 AU Zhang, WG 29193 Xia, YB 29194 Shi, WM 29195 Wang, LJ 29196 Fang, ZJ 29197 TI Effect of substrate temperature on the selective deposition of diamond 29198 films 29199 SO DIAMOND AND RELATED MATERIALS 29200 DT Article 29201 DE diamond films; deposition; chemical vapor deposition 29202 ID CHEMICAL-VAPOR-DEPOSITION; BIAS-ENHANCED NUCLEATION; SILICON; GROWTH 29203 AB Selective diamond films on roughened Si(100) substrates with 29204 patternings have been achieved by microwave plasma chemical vapor 29205 deposition (MP-CVD). The films have been characterized by scanning 29206 electron microscopy (SEM) and Raman spectra. The influence of substrate 29207 temperature on the selective deposition of diamond films has been 29208 discussed in detail: the diamond nucleation density on the SiO2 mask 29209 increased with substrate temperature while the effect of the selective 29210 deposition of diamond films deteriorated; the optimized deposition 29211 temperature conditions have been concluded. (C) 2000 Elsevier Science 29212 S.A. All rights reserved. 29213 C1 Shanghai Univ, Sch Mat Sci & Engn, Dept Inorgan Mat, Shanghai 201800, Peoples R China. 29214 RP Zhang, WG, Shanghai Univ, Sch Mat Sci & Engn, Dept Inorgan Mat, 29215 Shanghai 201800, Peoples R China. 29216 CR DAVIDSON JL, 1989, J ELECTRON MATER, V18, P711 29217 IRWIN MD, 1997, APPL PHYS LETT, V71, P716 29218 JIANG X, 1991, PROGR STUDY DIAMOND, P21 29219 JIANG X, 1993, APPL PHYS LETT, V62, P3438 29220 JOFFREAN PO, 1988, INT J REFRACT HARD M, V7, P186 29221 LEE JS, 1997, J APPL PHYS, V81, P486 29222 MA JS, 1989, APPL PHYS LETT, V55, P1071 29223 MO Y, 1997, THESIS CHINESE ACAD, P35 29224 RANKIN J, 1994, J MATER RES, V9, P2164 29225 STONER BR, 1993, J MATER RES, V8, P1334 29226 ZEMANSKY MW, 1981, HEAT THERMODYN, V4, P267 29227 NR 11 29228 TC 1 29229 SN 0925-9635 29230 J9 DIAM RELAT MATER 29231 JI Diam. Relat. Mat. 29232 PD SEP-OCT 29233 PY 2000 29234 VL 9 29235 IS 9-10 29236 BP 1687 29237 EP 1690 29238 PG 4 29239 SC Materials Science, Multidisciplinary 29240 GA 352FD 29241 UT ISI:000089203100026 29242 ER 29243 29244 PT J 29245 AU Shi, LY 29246 Li, CZ 29247 Fang, DY 29248 Gu, HC 29249 Zhu, YH 29250 Chen, AP 29251 TI Morphology of high temperature vapor-phase synthesized nanophase 29252 TiO2-Al2O3 composite particles 29253 SO CHINESE JOURNAL OF INORGANIC CHEMISTRY 29254 DT Article 29255 DE nanophase particles; vapor-phase reaction; functional ceramic 29256 AB Nanophase TiO2-Al2O3 composite particles synthesized by gas-phase 29257 oxidation of TiCl4 and AlCl3 in an aerosol reactor were characterized 29258 by EDS, XPS, TG-DTA, TEM, XRD and BET surface area analysis. The 29259 results showed that the morphological structure of the composite 29260 particles were influenced by AlCl3 feed ratio and reaction temperature. 29261 When X-inlet = 2.80 and T = 1400 degrees C; the composite particles 29262 were mainly composed of rutile TiO2, alpha-Al2O3, and Al2TiO5, the 29263 average particle size was 25.3 nm and GSD (Geometric tandaed Squace 29264 Deviation) was 1.51. Other processing parameters affecting the particle 29265 size was also analyzed. 29266 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200072, Peoples R China. 29267 E China Univ Sci & Technol, Inst Tech Chem Phys, Shanghai 200237, Peoples R China. 29268 E China Univ Sci & Technol, Dept Chem Engn, Shanghai 200237, Peoples R China. 29269 RP Shi, LY, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200072, Peoples R 29270 China. 29271 CR CHENG HM, 1996, CHEM J CHINESE U, V17, P833 29272 HUNG CH, 1992, J MATER RES, V7, P1870 29273 LI HR, 1987, PRACTICAL COMPLEXING, P227 29274 LIU SH, 1988, XRAY PHOTOELECTRON S, V305, P313 29275 MO SF, 1991, GUSUANYAN TONGBAO, P4 29276 OKUMURA H, 1986, J AM CERAM SOC, V69, C22 29277 SHI LY, 1999, HUAXUE FANYING GONGC, V15, P213 29278 SHI LY, 1999, J INORG MATER, V14, P717 29279 WOIGNIER T, 1988, J NONCRYST SOLIDS, V100, P325 29280 NR 9 29281 TC 0 29282 SN 1001-4861 29283 J9 CHIN J INORG CHEM 29284 JI Chin. J. Inorg. Chem. 29285 PD JUL 29286 PY 2000 29287 VL 16 29288 IS 4 29289 BP 683 29290 EP 687 29291 PG 5 29292 SC Chemistry, Inorganic & Nuclear 29293 GA 351PA 29294 UT ISI:000089166300026 29295 ER 29296 29297 PT J 29298 AU Tu, DW 29299 Lin, CX 29300 TI Spy quantitative inspection with a machine vision light sectioning 29301 method 29302 SO MEASUREMENT SCIENCE & TECHNOLOGY 29303 DT Article 29304 DE spy inspection; machine vision; light sectioning; non-contact sensor 29305 AB Machine vision light sectioning sensing is developed and expanded to 29306 the range of spy quantitative inspection for hole-like work pieces in 29307 this paper. A light beam from a semiconductor laser diode is converged 29308 into a line-shape by a cylindrical lens. A special compact 29309 reflecting-refracting, prism group is designed to ensure that such a 29310 sectioning light is projected axially onto the inner surface, and to 29311 make the deformed Line be imaged onto a CCD sensitive area. The image 29312 is digitized and captured into a computer by a 512 x 512 pixel card, 29313 and machine vision image processing methods such as thresholding, line 29314 centre detect and the least-squares method are developed for contour 29315 feature extraction and description. Two other important problems in 29316 such an inspection system are how to orientate the deep-going optical 29317 probe and how to bring the projected line into focus. A focusing 29318 criterion based on image position deviation and a four-step orientating 29319 procedure are put forward, and analysed to be feasible respectively. 29320 The experimental results show that the principle is correct and the 29321 techniques are realizable, and a good future for application in 29322 industry is possible. 29323 C1 Shanghai Univ, Sch Mechatron & Automat, Shanghai 200072, Peoples R China. 29324 RP Tu, DW, Shanghai Univ, Sch Mechatron & Automat, POB 17,149 Yanchang Rd, 29325 Shanghai 200072, Peoples R China. 29326 CR MIYOSHI T, 1992, J JAPAN SOC PRECISIO, P98 29327 SCHALKOFF RJ, 1989, DIGITAL IMAGE PROCES 29328 VANDERHEIJDEN F, 1996, IMAGE BASED MEASUREM 29329 ZHANG WW, 1998, MEAS SCI TECHNOL, V9, P1380 29330 NR 4 29331 TC 0 29332 SN 0957-0233 29333 J9 MEAS SCI TECHNOL 29334 JI Meas. Sci. Technol. 29335 PD AUG 29336 PY 2000 29337 VL 11 29338 IS 8 29339 BP 1187 29340 EP 1192 29341 PG 6 29342 SC Engineering, Multidisciplinary; Instruments & Instrumentation 29343 GA 349KU 29344 UT ISI:000089044900015 29345 ER 29346 29347 PT J 29348 AU Zhang, BX 29349 Zhao, WM 29350 Zhu, WQ 29351 Wang, KS 29352 Jiang, XY 29353 TI Transition of Eu3+ ion in SiO2 aerogel thin film 29354 SO JOURNAL OF INORGANIC MATERIALS 29355 DT Article 29356 DE SiO2 aerogel; doped-nanocrystals; rare-earth luminescent centers; 29357 time-resolved emission spectroscopy 29358 AB The Eu3+ ion doped SiO2 aerogel film was prepared by a sol-gel process, 29359 and the luminescence and transitions of this aerogel film were 29360 investigated. The surface structure of the film was observed by AFM. 29361 Its microstructure was investigated by XRD and IR. Its excitation, 29362 emission, absorption, and time-resolved spectra were measured. The 29363 luminescence properties were discussed. The radiative transition 29364 probabilities of D-5(0) energy levels in Eu3+ ion were calculated by 29365 Judd-Ofelt theory. According to the time-resolved spectra, the 29366 nonradiative transition probabilities and decay properties of D-5(1) 29367 were also studied. The results are not quite different to Eu3+ ion in 29368 silicate glass, but a fine thin film doped with rare earth ions can be 29369 obtained by using a facile and low temperature method, and this film, 29370 having luminescent light glass qualities, can possess potential 29371 applications. 29372 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 29373 RP Zhang, BX, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples 29374 R China. 29375 CR JUDD BR, 1962, PHYS REV, V127, P750 29376 KAMISKI AA, 1981, LASER CRYSTALS, P166 29377 OFELT GS, 1962, J CHEM PHYS, V37, P511 29378 REISFELD R, 1972, J RES NBS A, V76, P613 29379 WEBER MJ, 1967, OPTICAL PROPERTIES I, P467 29380 NR 5 29381 TC 0 29382 SN 1000-324X 29383 J9 J INORG MATER 29384 JI J. Inorg. Mater. 29385 PD AUG 29386 PY 2000 29387 VL 15 29388 IS 4 29389 BP 727 29390 EP 732 29391 PG 6 29392 SC Materials Science, Ceramics 29393 GA 348MW 29394 UT ISI:000088989400026 29395 ER 29396 29397 PT J 29398 AU Mao, RH 29399 Guo, CJ 29400 TI Preparation of nanosized anatase titania 29401 SO JOURNAL OF INORGANIC MATERIALS 29402 DT Article 29403 DE titania; nanonmeter; colloid; anatase 29404 ID POWDER 29405 AB Nanosized anatase titania colloid and powders were prepared by 29406 hydrolysis of titanium-tetrabutoxide in basic media and then dehydrated 29407 at 700C in acid media. The powder and colloid were characterized by 29408 XRD, BET, TEM, HREM and TG-DTA. methods. The results show that after 29409 dehydrated in acid media the titania particles in colloid are already 29410 anatase crystallites with good crystal lattices. The average diameter 29411 of the nanosized titania powder after calcination at 220 degrees C is 29412 9nm and surface area is 171m(2)/g. 29413 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 29414 RP Mao, RH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R 29415 China. 29416 CR CHEN JY, 1996, J MATER SCI, V31, P3497 29417 DOUGLAS C, 1994, J AM CERAM SOC, V77, P1957 29418 HUANG JH, 1996, J INORG MATER, V11, P51 29419 KEICHI T, 1991, CHEM PHYS LETT, V187, P73 29420 OREGAN B, 1991, NATURE, V353, P737 29421 ZHAO WK, 1998, J INORG MATER, V13, P608 29422 NR 6 29423 TC 1 29424 SN 1000-324X 29425 J9 J INORG MATER 29426 JI J. Inorg. Mater. 29427 PD AUG 29428 PY 2000 29429 VL 15 29430 IS 4 29431 BP 761 29432 EP 764 29433 PG 4 29434 SC Materials Science, Ceramics 29435 GA 348MW 29436 UT ISI:000088989400032 29437 ER 29438 29439 PT J 29440 AU Zhang, J 29441 Hua, TC 29442 Chen, ET 29443 TI Experimental measurement and theoretical analyses of the 29444 freezing-thawing processes around a probe 29445 SO CRYO-LETTERS 29446 DT Article 29447 DE cryosurgery; cryoprobe; phase-changing problem; heat transfer; enthalpy 29448 method 29449 ID NONIDEAL BIOLOGICAL TISSUES; INVERSE-STEFAN PROBLEM; CRYOGENIC 29450 TEMPERATURES; CRYOSURGERY 29451 AB Both the experimental and the analytical studies of the 29452 freezing/thawing process around a cryosurgical cylinder probes in a 29453 simulative biological tissue are presented in this paper. The enthalpy 29454 method and the finite element scheme are applied to solve the 29455 multidimensional phase change problems in cryosurgery. A very good 29456 agreement is found between the computed solutions and the experimental 29457 results. The influences of different cooling-warming schemes of the 29458 probe on the ice ball development, the temperature variation, the axial 29459 and the radial temperature gradients inside the tissues, and the 29460 requirement of cooling power are analyzed. 29461 C1 Shanghai Univ Sci & Technol, Inst Cryobiol & Food Freezing, Shanghai 200093, Peoples R China. 29462 RP Hua, TC, Shanghai Univ Sci & Technol, Inst Cryobiol & Food Freezing, 29463 516 Jun Gong Rd, Shanghai 200093, Peoples R China. 29464 CR BUDMAN HM, 1991, J BIOMECH ENG-T ASME, V113, P430 29465 DILLER KR, 1992, ADV HEAT TRANSFER, V22, P177 29466 GAGE AA, 1998, CRYOBIOLOGY, V37, P171 29467 GAO DY, 1995, CRYOBIOLOGY, V32, P270 29468 HUA TC, 1994, CRYOBIOMEDICAL TECHN, P325 29469 HUNT CJ, 1994, CRYOBIOLOGY, V31, P506 29470 OZIZIK MN, 1993, HEAT CONDUCTION, P423 29471 RABIN Y, 1995, J HEAT TRANSFER, V117, P425 29472 RABIN Y, 1996, CRYOBIOLOGY, V33, P472 29473 RABIN Y, 1997, J BIOMECH ENG-T ASME, V119, P146 29474 RABIN Y, 1998, J BIOMECH ENG-T ASME, V120, P259 29475 RABIN Y, 1998, J BIOMECH ENG-T ASME, V120, P32 29476 RUBINSKY B, 1980, CRYOBIOLOGY, V17, P66 29477 SHAMSUNDAR N, 1975, J HEAT TRANSFER, V97, P333 29478 YOO J, 1986, INT J NUMER METH ENG, V23, P1785 29479 NR 15 29480 TC 2 29481 SN 0143-2044 29482 J9 CRYO-LETT 29483 JI Cryo-Lett. 29484 PD JUL-AUG 29485 PY 2000 29486 VL 21 29487 IS 4 29488 BP 245 29489 EP 254 29490 PG 10 29491 SC Biology; Physiology 29492 GA 348PK 29493 UT ISI:000088993700006 29494 ER 29495 29496 PT J 29497 AU Chen, XY 29498 Cheng, CJ 29499 TI Discrete inverse method for viscoelastic medium with complete data 29500 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 29501 DT Article 29502 DE viscoelastic medium; scattering and propagation operator; discrete 29503 inverse method; imbedding equation; reconstruction of the relaxation 29504 modulus; extent of the reflection data; volterra integral equation 29505 ID DISSIPATIVE WAVE-EQUATION; TIME DOMAIN; SCATTERING OPERATORS; 29506 DISPERSIVE MEDIA 29507 AB The discrete inverse scattering problem for viscoelastic medium is 29508 studied in this paper. It is assumed that the relaxation modulus varies 29509 only with time t. The object of this paper is to develop a method to 29510 reconstruct the relaxation modulus with less measurement data than 29511 before. The propagation operators of the viscoelastic medium are 29512 defined first and the imbedding equations governing the behavior of the 29513 propagation operators are derived with the invariant imbedding 29514 techniques. Using the finite difference method, these equations can be 29515 discretized to obtain a system of linear algebraic equations about the 29516 propagation operators and the material modulus. For the inverse 29517 scattering problem, it is assumed that the reflection data obtained 29518 from the scattering experiments are only available on one side of the 29519 medium and for one round trip through the viscoelastic slab. To 29520 reconstruct the unknown relaxation modulus, an inversion procedure is 29521 developed using this set of data that are complete in the sense that 29522 they can be extended to arbitrary rime t and the other scattering and 29523 propagation operators can also be determined by the inversion procedure 29524 described in this paper. The inversion algorithm is implemented 29525 numerically on several examples at the end of the paper. It can be seen 29526 that the obtained curves of the material modulus coincide with the 29527 original relaxation modulus very well. (C) 2000 Elsevier Science S.A. 29528 All rights reserved. 29529 C1 Shanghai Univ, Dept Mech, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China. 29530 Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China. 29531 RP Cheng, CJ, Shanghai Univ, Dept Mech, Shanghai Inst Math & Mech, 29532 Shanghai 200072, Peoples R China. 29533 CR AMMICHT E, 1987, J ACOUST SOC AM, V81, P827 29534 BEEZLEY RS, 1985, J MATH PHYS, V26, P317 29535 BUI DD, 1995, INVERSE PROBL, V11, P835 29536 CHENG CJ, 2000, J MATH PHYS, V41, P2839 29537 CHRISTENSON RM, 1982, THEORY VISCOELASTICI 29538 CORONES JP, 1983, J ACOUST SOC AM, V74, P1535 29539 FUKS P, 1994, INVERSE PROBL, V10, P555 29540 KRESS R, 1989, LINEAR INTEGRAL EQUA 29541 KRISTENSSON G, 1986, J MATH PHYS, V27, P1667 29542 KRISTENSSON G, 1986, J MATH PHYS, V27, P1683 29543 KRISTENSSON G, 1987, J MATH PHYS, V28, P360 29544 NR 11 29545 TC 1 29546 SN 0045-7825 29547 J9 COMPUT METHOD APPL MECH ENG 29548 JI Comput. Meth. Appl. Mech. Eng. 29549 PY 2000 29550 VL 189 29551 IS 1 29552 BP 77 29553 EP 90 29554 PG 14 29555 SC Computer Science, Interdisciplinary Applications; Engineering, 29556 Mechanical; Mechanics 29557 GA 349DQ 29558 UT ISI:000089028800002 29559 ER 29560 29561 PT J 29562 AU He, JH 29563 TI Variational iteration method for autonomous ordinary differential 29564 systems 29565 SO APPLIED MATHEMATICS AND COMPUTATION 29566 DT Article 29567 DE nonlinearity; variational technique; autonomous ordinary differential 29568 equations 29569 ID APPROXIMATE 29570 AB In this paper, a new iteration technique is proposed to solve 29571 autonomous ordinary differential systems. In this method, general 29572 Lagrange multipliers are introduced to construct correction functionals 29573 for the systems. The multipliers in the functionals can be identified 29574 by the variational theory. The initial approximations can be freely 29575 chosen with possible unknown constants, which can be determined by 29576 imposing the boundary/initial conditions. Some examples are given. The 29577 results reveal that the method is very effective and convenient. (C) 29578 2000 Elsevier Science Inc. All rights reserved. 29579 C1 Shanghai Univ, Shanghai 200072, Peoples R China. 29580 Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 29581 RP He, JH, Shanghai Univ, Shanghai 200072, Peoples R China. 29582 CR DRIVER RD, 1977, ORDINARY DELAY DIFFE 29583 HE JH, 1996, THESIS SHANGHAI U 29584 HE JH, 1997, COMM NONLINEAR SCI N, V2, P230 29585 HE JH, 1997, COMMUNICATIONS NONLI, V2, P235 29586 HE JH, 1998, COMPUT METHOD APPL M, V167, P57 29587 HE JH, 1998, COMPUT METHOD APPL M, V167, P69 29588 HE JH, 1998, GEN VARIATIONAL PRIN 29589 HE JH, 1998, INT C VIBR ENG 98 DA 29590 HE JH, 1998, MECH PRACTICE, V20, P30 29591 HE JH, 1998, MECH SCI TECHNOL, V17, P221 29592 INOKUTI M, 1978, VARIATIONAL METHOD M, P156 29593 NAYFEH AH, 1985, PROBLEMS PERTURBATIO 29594 SMITH DR, 1985, SINGULAR PERTURBATIO 29595 NR 13 29596 TC 17 29597 SN 0096-3003 29598 J9 APPL MATH COMPUT 29599 JI Appl. Math. Comput. 29600 PD SEP 11 29601 PY 2000 29602 VL 114 29603 IS 2-3 29604 BP 115 29605 EP 123 29606 PG 9 29607 SC Mathematics, Applied 29608 GA 349ZG 29609 UT ISI:000089075100001 29610 ER 29611 29612 PT J 29613 AU Xu, H 29614 He, KY 29615 Qiu, YQ 29616 Wang, ZJ 29617 Feng, W 29618 Dong, YD 29619 Xiao, XS 29620 Wang, Q 29621 TI Intense milling nanocrystalline Fe73.5Cu1Nb3Si13.5B9: a soft magnetic 29622 material in powdered form 29623 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES 29624 MICROSTRUCTURE AND PROCESSING 29625 DT Article 29626 DE intense milling; nanocrystalline; dust core 29627 ID GRAIN-STRUCTURE; FERROMAGNETS 29628 AB The change of structure by intense milling on the nanocrystalline 29629 Fe73.5Cu1Nb3Si13.5B9 alloy was investigated. The magnetic properties of 29630 nanocrystalline Fe73.5Cu1Nb3Si13.5B9 dust cores (core of compacted 29631 powder) were studied. It was found that the nanostructured ribbons 29632 obtained from the crystallization of amorphous state by a proper 29633 annealing treatment could be changed into amorphous powder via short 29634 time milling. By increasing the milling time, the milled powder return 29635 to crystallization. It was also found that the permeability of the 29636 nanocrystalline dust cores had nearly not any changes in the frequency 29637 range from 1 to 100 kHz. The quality factor Q of the nanocrystalline 29638 dust cores increased gradually with increasing frequency. The quality 29639 factor Q of nanocrystalline dust cores became higher at the frequency 29640 over 50 similar to 70 kHz n comparison with that of the permalloy dust 29641 core. Published by Elsevier Science S.A. 29642 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 29643 Northeastern Univ, Shenyang 110006, Peoples R China. 29644 Cent Iron & Steel Res Inst, Beijing 100081, Peoples R China. 29645 Liaoning Sch Light Ind, Shenyang 110036, Peoples R China. 29646 RP Xu, H, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 29647 CR HERZER G, 1989, IEEE T MAGN, V25, P3327 29648 HERZER G, 1990, IEEE T MAGN, V26, P1397 29649 SCHULZ R, 1994, MAT SCI ENG A-STRUCT, V179, P516 29650 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 29651 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6047 29652 NR 5 29653 TC 7 29654 SN 0921-5093 29655 J9 MATER SCI ENG A-STRUCT MATER 29656 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 29657 PD JUN 30 29658 PY 2000 29659 VL 286 29660 IS 1 29661 BP 197 29662 EP 200 29663 PG 4 29664 SC Materials Science, Multidisciplinary 29665 GA 347EP 29666 UT ISI:000088914700036 29667 ER 29668 29669 PT J 29670 AU Zhu, XH 29671 Xu, J 29672 Meng, ZY 29673 Zhu, JM 29674 Zhou, SH 29675 Li, Q 29676 Liu, ZG 29677 Ming, NB 29678 TI Microdisplacement characteristics and microstructures of functionally 29679 graded piezoelectric ceramic actuator 29680 SO MATERIALS & DESIGN 29681 DT Article 29682 DE composites; sandwich structures; microstructure; bonding diffusion; 29683 powder metallurgy 29684 AB In this work, we report a functionally gradient piezoelectric ceramic 29685 actuator with sandwiched structure prepared by the powder metallurgical 29686 method. The functional gradients of piezoelectric activity and 29687 dielectric activity vary inversely across the thickness of the 29688 actuator. Such functional gradients are obtained by interdiffusion 29689 reaction between a high piezoelectric composition [Pb(Zr,Ti)O-3/PZT] 29690 and a high dielectric composition (PbNi1/3Nb2/3O3/PNN). The bending 29691 displacement at the free end of the PNN/PZT functionally graded 29692 piezoelectric ceramic actuator was approximately 20 mu m when 1.4-kV/mm 29693 electric field was applied. The grain morphology and compositional 29694 distribution across the actuator section and the microstructures of the 29695 sandwiched layer were investigated by scanned electron microscopy 29696 equipped with energy-dispersive spectroscopy, transmission electron 29697 microscopy, and selected area electron diffraction patterns, 29698 respectively. (C) 2000 Elsevier Science Ltd. All rights reserved. 29699 C1 Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China. 29700 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 29701 CCAST World Lab, Beijing 100080, Peoples R China. 29702 Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China. 29703 CR BERLINCOURT D, 1959, J APPL PHYS, V30, P1804 29704 CHEN J, 1989, J AM CERAM SOC, V72, P593 29705 GERSON R, 1960, J APPL PHYS, V31, P188 29706 HAERTLING GH, 1994, AM CERAM SOC BULL, V73, P93 29707 ROBBINS WP, 1991, IEEE T ULTRASON FERR, V38, P634 29708 SHANNON RD, 1976, ACTA CRYSTALLOGR A, V32, P751 29709 SUGAWARA Y, 1992, J AM CERAM SOC, V75, P996 29710 YAOMAJI A, 1977, J AM CERAM SOC, V60, P97 29711 ZHU XH, 1995, J MATER SCI LETT, V14, P516 29712 ZHU XH, 1998, J MATER SCI, V33, P1023 29713 NR 10 29714 TC 17 29715 SN 0261-3069 29716 J9 MATER DESIGN 29717 JI Mater. Des. 29718 PD DEC 29719 PY 2000 29720 VL 21 29721 IS 6 29722 BP 561 29723 EP 566 29724 PG 6 29725 SC Materials Science, Multidisciplinary 29726 GA 345ZB 29727 UT ISI:000088844400015 29728 ER 29729 29730 PT J 29731 AU Zhang, ZL 29732 Jiang, XY 29733 Xu, SH 29734 TI A white emitting organic diode with a doped blocking layer 29735 SO CHINESE PHYSICS LETTERS 29736 DT Article 29737 ID ELECTROLUMINESCENT DEVICES; STABILITY 29738 AB A novel white emitting organic diode has been simply realized by 29739 inserting a doped hole-blocking layer between the hole transporting 29740 layer (RTL) and the electron transporting layer (ETL). The structure of 29741 this device is ITO/CuPc/NPB/blocking layer:rubrene/Alq/MgAg. Copper 29742 phthalocyanine(CuPc) was used as a buffer layer, 29743 N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) as 29744 the HTL, and trimer of N-arylbenzimidazoles (TPBi) as the blocking 29745 layers, in which rubrene is doped. Tris(8-quinolinolato)aluminum 29746 complex(Alq) as ETL. Indium tin oxide and MgAg were the anode and 29747 cathode, respectively. The emission spectrum of this device covers a 29748 wide range of visible region and can be sensitively adjusted by the 29749 concentration of rubrene. The white emission with the CIE (Commission 29750 International de I' Eclairage) color coordinates x = 0.31, y = 0.32, a 29751 maximum luminance of 8635 cd/m(2), and the luminous efficiency 1.39 29752 lm/W at the luminance of 100 cd/m(2) were obtained in the device with 29753 1.5% rubrene concentration in TPBi. 29754 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China. 29755 RP Zhang, ZL, Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R 29756 China. 29757 CR FORREST SR, 1997, SYNTHETIC MET, V91, P9 29758 GAO ZQ, 1999, APPL PHYS LETT, V74, P865 29759 GRANSTROM M, 1996, APPL PHYS LETT, V68, P147 29760 HOSOKAWA C, 1997, SOC INFORMATION DISP, V91, P1037 29761 JORDAN RH, 1996, APPL PHYS LETT, V68, P1192 29762 KIDO J, 1994, APPL PHYS LETT, V64, P815 29763 KIDO J, 1995, SCIENCE, V267, P1332 29764 MIYAGUCHI S, 1998, 9 INT WORKSH IN ORG, P137 29765 SATO Y, 1997, SYNTHETIC MET, V91, P103 29766 TAN HS, 1998, CHINESE PHYS LETT, V15, P137 29767 TANG CW, 1987, APPL PHYS LETT, V51, P913 29768 VANSLYKE SA, 1996, APPL PHYS LETT, V69, P2160 29769 YANG Y, 1997, J APPL PHYS, V81, P3294 29770 ZHANG ZL, 1998, J PHYS D APPL PHYS, V31, P32 29771 NR 14 29772 TC 3 29773 SN 0256-307X 29774 J9 CHIN PHYS LETT 29775 JI Chin. Phys. Lett. 29776 PY 2000 29777 VL 17 29778 IS 7 29779 BP 534 29780 EP 536 29781 PG 3 29782 SC Physics, Multidisciplinary 29783 GA 346VM 29784 UT ISI:000088891800026 29785 ER 29786 29787 PT J 29788 AU Hu, YY 29789 Li, HB 29790 Sun, L 29791 Shen, YJ 29792 Qiu, ZC 29793 TI Synthesis of 1-amino-2-(2 '-methyl-4 '-methyl propionate) 29794 phenoxy-4-hydroxy anthraquinone 29795 SO CHINESE JOURNAL OF ORGANIC CHEMISTRY 29796 DT Article 29797 DE 2-methyl-4-beta- cyanoethylphenol; 1-amino-2-(2 ' - methyl-4 '- 29798 methylpropionate) phenoxy-4-hydroxy anthraquinone; synthesis 29799 AB 2- Methyl - 4 - beta - cyanoethylphenol was synthesized via Friedel - 29800 Crafts reaction between o - cresol and acrylonitrile. It was condensed 29801 with 1 - amino - 2 - bromo - 4 - hydroxy anthraquinone by the 29802 nucleophilic reaction. The product was hydrolyzed in alkaline medium 29803 and esterified with methanol to afford the title compound. Mass, H-1 29804 NMR, element analyses, Vis spectra and the melting points of the title 29805 compound and the intermediates were measured. 29806 C1 Shanghai Univ, Sch Environm & Architectural Engn, Shanghai 200072, Peoples R China. 29807 E China Univ Sci & Technol, Inst Fine Chem, Shanghai 200237, Peoples R China. 29808 Shanghai Analyt Instrument Gen Factory, Shanghai 200233, Peoples R China. 29809 RP Hu, YY, Shanghai Univ, Sch Environm & Architectural Engn, Shanghai 29810 200072, Peoples R China. 29811 CR CHENG ZS, 1994, JINGXI HUAXUEPIN HUA, P70 29812 JOHNSTON HW, 1957, J ORG CHEM, V22, P1264 29813 RICHTER RH, 1977, 4051166, US 29814 SATO YSK, 1969, 15316, JP 29815 SUN SD, 1992, CHINESE J ORG CHEM, V12, P96 29816 ZHANG ZY, 1995, JINGXI YOUJI HECHENG, P270 29817 ZHOU QK, 1993, SHANGHAI RANLIAO, V105, P5 29818 NR 7 29819 TC 0 29820 SN 0253-2786 29821 J9 CHINESE J ORG CHEM 29822 JI Chin. J. Org. Chem. 29823 PD AUG 29824 PY 2000 29825 VL 20 29826 IS 4 29827 BP 533 29828 EP 536 29829 PG 4 29830 SC Chemistry, Organic 29831 GA 346VC 29832 UT ISI:000088890900015 29833 ER 29834 29835 PT J 29836 AU Liu, GL 29837 TI A new generation of inverse shape design problem in aerodynamics and 29838 aerothermoelasticity: concepts, theory and methods 29839 SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY 29840 DT Article 29841 DE aerodynamics; inverse problems; finite element method; wings; fluid 29842 mechanics 29843 AB So far the literature on inverse shape design in aerodynamics is still 29844 confined to the single-point (nominal design point) design and to 29845 steady flow. This situation cannot cope with the modern development of 29846 internal and external aerodynamics and aerothermoelasticity, especially 29847 turbomachinery and aircraft flows. Accordingly, in recent years a new 29848 generation of inverse shape design problem has been suggested and 29849 investigated theoretically and computationally, consisting mainly of: 29850 unsteady inverse and hybrid problems; multipoint inverse and hybrid 29851 problems; and inverse problem in aerothermoelasticity. It opens a new 29852 area of research in fluid mechanics and aerothermoelasticity. An 29853 overview of its status and perspective is given herein, emphasizing the 29854 new concepts, theory and methods of solution involved. 29855 C1 Shanghai Univ, Inst Mech, Shanghai, Peoples R China. 29856 RP Liu, GL, Shanghai Univ, Inst Mech, Shanghai, Peoples R China. 29857 CR DULIKRAVICH GS, 1992, J AIRCRAFT, V29, P1020 29858 EPPLER R, 1979, J SHIP RES, V23, P191 29859 EPPLER R, 1979, J SHIP RES, V23, P209 29860 EPPLER R, 1980, TM80210 NASA 29861 EPPLER R, 1985, J SHIP RES, V29, P30 29862 FINLAYSON BA, 1972, METHOD WEIGHTED RESI 29863 JAMESON A, 1990, AGARDCP463, P1 29864 LIGHTHILL MJ, 1945, 2112 ARC R D 29865 LIU GL, IN PRESS ACTA MECH 29866 LIU GL, 1980, SCI SINICA, V23, P1339 29867 LIU GL, 1987, NUMERICAL METHODS LA, V5, P1739 29868 LIU GL, 1995, INT J TURBO JET ENG, V12, P109 29869 LIU GL, 1995, INVERSE PROBL ENG, V2, P1 29870 LIU GL, 1996, ACTA AERODYNAMICA SI, V14, P1 29871 LIU GL, 1997, AIRCR ENG AEROSP TEC, V69, P527 29872 LIU GL, 1997, NONLINEAR ANAL-THEOR, V30, P5229 29873 LIU GL, 1998, HYDRODYNAMICS THEORY, V2, P901 29874 LIU GL, 1998, IN PRESS ACTA MECH 29875 LIU GL, 1998, INVERSE PROBL ENG, P391 29876 LIU GL, 1998, P 3 INT C FLUID MECH, P809 29877 LIU GL, 1998, P 3 INT C NONL MECH, P502 29878 LIU GL, 1999, P 14 INT S AIRBR ENG 29879 LIU GL, 1999, P 4 INT S AER INT FL 29880 LOIU GL, 1999, ACTA MECH SINICA, V31, P165 29881 MANGLER W, 1938, JB DTSCH LUFTFAHRTFO, V1, P46 29882 NAKAZAKI M, 1986, J KANSAI SOC NAVAL A 29883 OHTSUKA M, 1974, 74GT2 ASME 29884 SELIG MS, 1992, AIAA J, V30, P1162 29885 SHEN YT, 1981, J SHIP RES, V25, P191 29886 WEINIG F, 1929, Z ANGEANDTE MATH MEC, V9, P507 29887 YIU KFC, 1994, MATH COMPUT MODEL, V20, P3 29888 NR 31 29889 TC 1 29890 SN 0002-2667 29891 J9 AIRCRAFT ENG AEROSP TECHNOL 29892 JI Aircr. Eng. Aerosp. Technol. 29893 PY 2000 29894 VL 72 29895 IS 4 29896 BP 334 29897 EP 344 29898 PG 11 29899 SC Engineering, Aerospace 29900 GA 346TM 29901 UT ISI:000088887200002 29902 ER 29903 29904 PT J 29905 AU Wan, DC 29906 Wei, GW 29907 TI Numerical solutions of incompressible Euler and Navier-Stokes equations 29908 by efficient discrete singular convolution method 29909 SO ACTA MECHANICA SINICA 29910 DT Article 29911 DE incompressible flows; periodic boundary; DSC method; fourth-order 29912 Runge-Kutta method 29913 ID SCHEMES 29914 AB An efficient discrete singular convolution (DSC) method is introduced 29915 to the numerical solutions of incompressible Euler and Navier-Stokes 29916 equations with periodic boundary conditions. Two numerical tests of 29917 two-dimensional Navier-Stokes equations with periodic boundary 29918 conditions and Euler equations for doubly periodic shear layer flows 29919 are carried out by using the DSC method for spatial derivatives and 29920 fourth-order Runge-Kutta method for time advancement, respectively. The 29921 computational results show that the DSC method is efficient and robust 29922 for solving tho problems of incompressible flows, and has the potential 29923 of being extended to numerically solve much broader problems in fluid 29924 dynamics. 29925 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 29926 Natl Univ Singapore, Dept Computat Sci, Singapore 119260, Singapore. 29927 RP Wan, DC, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 29928 200072, Peoples R China. 29929 CR BELL JB, 1989, J COMPUT PHYS, V85, P257 29930 BELLMAN R, 1972, J COMPUT PHYS, V10, P40 29931 CANUTO C, 1988, SPECTRAL METHODS FLU 29932 CHEUNG YK, 1976, FINITE STRIP METHODS 29933 CHUI CK, 1992, INTRO WAVELETS 29934 E WN, 1996, J COMPUT PHYS, V126, P122 29935 FORNBERG B, 1996, PRACTICAL GUIDE PSEU 29936 FORSYTHE GE, 1960, FINITE DIFFERENCE ME 29937 HARTEN A, 1983, J COMPUT PHYS, V49, P357 29938 HARTEN A, 1987, SIAM J NUMER ANAL, V24, P279 29939 HIRSH RS, 1975, J COMPUT PHYS, V19, P90 29940 KOREVAAR J, 1968, MATH METHODS, V1 29941 LOU JZ, 1996, J COMPUT PHYS, V125, P225 29942 MA YW, 1999, INT J NUMER METH FL, V30, P509 29943 MEAD JL, 1999, J COMPUT PHYS, V152, P404 29944 ORSZAG SA, 1972, STUD APPL MATH, V51, P253 29945 PATANKAR SV, 1980, NUMERICAL HEAT TRANS 29946 SCHWARTZ L, 1951, THEORE DISTRIBUTIONS 29947 TOLSTYKH A, 1994, SERIES ADV MATH APPL, V21 29948 WALKER JS, 1996, FAST FOURIER TRANSFO 29949 WAN DC, 2000, P 4 INT C HYDR SEPT 29950 WEI GW, 1997, PHYS REV LETT, V79, P775 29951 WEI GW, 1998, CHEM PHYS LETT, V296, P215 29952 WEI GW, 1999, J CHEM PHYS, V110, P8930 29953 WEI GW, 2000, J PHYS B-AT MOL OPT, V33, P343 29954 WEI GW, 2000, PHYSICA D, V137, P247 29955 WEINAN E, 1994, J COMPUT PHYS, V110, P39 29956 ZIENKIEWICZ OC, 1971, FINITE ELEMENT METHO 29957 NR 28 29958 TC 1 29959 SN 0567-7718 29960 J9 ACTA MECH SINICA 29961 JI Acta Mech. Sin. 29962 PD AUG 29963 PY 2000 29964 VL 16 29965 IS 3 29966 BP 223 29967 EP 239 29968 PG 17 29969 SC Engineering, Mechanical; Mechanics 29970 GA 346NK 29971 UT ISI:000088877800003 29972 ER 29973 29974 PT J 29975 AU Wang, W 29976 Weng, XC 29977 Cheng, DL 29978 TI Antioxidant activities of natural phenolic components from Dalbergia 29979 odorifera T. Chen 29980 SO FOOD CHEMISTRY 29981 DT Article 29982 ID LIPID-PEROXIDATION; RED WINE 29983 AB The antioxidant activities on oil of natural phenolic components 29984 extracted from Dalbergia odorifera T. Chen were investigated. A new 29985 benzophenone 2,4-dihydroxy-5-methoxybenzophenone (1), together with 29986 eight known components, were isolated. The eight components were 29987 identified by chemical and spectroscopic methods as 29988 2',3',7-trihydroxy-4'-methoxyisoflavanone (2), 3'-methoxydaidzein (3), 29989 4',5,7-trihydroxy-3-methoxyflavone (4), vestitol (5), medicarpin (6), 29990 hexanoic acid, 2-propenylester (7), hexadecanoic acid, ethyl ester (8) 29991 and 3,8,-nonadien-2-one (9). Their antioxidant activities were 29992 investigated and compared with butylated hydroxyluene (BHT) and 29993 alpha-tocopherol. The results showed that components 1, 3, 5 and 6 had 29994 antioxidant activity and components 2 and 4 had strong antioxidant 29995 activity at 0.02 and 0.04% levels. When the individual components 29996 (0.02%) were mixed with 0.02% BHT, or 0.02% cr-tocopherol, their 29997 protection factor was increased, but there was no synergistic effect. 29998 When the individual component had 4 ppm added Fe3+, components 1, 2, 3 29999 and 4 had antioxidant activity. Their antioxidant activities were 30000 tested by an oxidative stability instrument (OSI) at 100 degrees C. Six 30001 of the phenolic components showed antioxidant activities. (C) 2000 30002 Elsevier Science Ltd. All rights reserved. 30003 C1 Lanzhou Univ, Dept Chem, Natl Lab Appl Organ Chem, Lanzhou 730000, Gansu, Peoples R China. 30004 Shanghai Univ, Sch Life Sci, Shanghai, Peoples R China. 30005 RP Cheng, DL, Lanzhou Univ, Dept Chem, Natl Lab Appl Organ Chem, Lanzhou 30006 730000, Gansu, Peoples R China. 30007 CR FUHRMAN B, 1995, AM J CLIN NUTR, V61, P549 30008 GRICE HC, 1986, FOOD CHEM TOXICOL, V24, P1127 30009 HELLER SR, 1978, EPA NIH MASS SPECTRA, V1, P336 30010 HELLER SR, 1978, EPA NIH MASS SPECTRA, V1, P547 30011 HELLER SR, 1978, EPA NIH MASS SPECTRA, V3, P2090 30012 HELLER SR, 1978, EPA NIH MASS SPECTRA, V3, P234 30013 KANNER J, 1991, J AGR FOOD CHEM, V39, P1017 30014 KROYER G, 1986, Z ERNAHRUNGSWISS, V25, P63 30015 PRATT DE, 1990, FOOD ANTIOXIDANTS, P171 30016 RUSZNYAK S, 1936, NATURE, V138, P27 30017 SHOJI Y, 1989, CHEM PHARM BULL, V31, P979 30018 TETSU O, 1990, CHEM PHARM BULL, V38, P2750 30019 WENG XC, 1998, J CHINESE CEREAL OIL, V13, P46 30020 WHITEHEAD TP, 1995, CLIN CHEM, V41, P32 30021 WICHI HP, 1988, FOOD CHEM TOXICOL, V26, P717 30022 YUKIHIRO G, 1992, CHEM PHARM BULL, V40, P2452 30023 ZLOCH Z, 1969, INT Z VITAMINFORSCH, V39, P269 30024 NR 17 30025 TC 7 30026 SN 0308-8146 30027 J9 FOOD CHEM 30028 JI Food Chem. 30029 PD OCT 30030 PY 2000 30031 VL 71 30032 IS 1 30033 BP 45 30034 EP 49 30035 PG 5 30036 SC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics 30037 GA 344YW 30038 UT ISI:000088789500004 30039 ER 30040 30041 PT J 30042 AU Peng, LM 30043 Mao, XM 30044 Xu, KD 30045 TI Simulation and control model for interactions among process parameters 30046 of directional solidification continuous casting 30047 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA 30048 DT Article 30049 DE directional solidification; continuous casting; control model 30050 AB On the basis of analyzing the principles, equipment and control needs 30051 of directional solidification continuous casting (DSCC) process, the 30052 building and fulfilling methods of control model of DSCC procedure by 30053 neural network control (NNC) method were proposed and discussed. 30054 Combining the experimental researches, firstly the computer is used to 30055 simulate the effects of those solidification parameters on destination 30056 control variable (S/L interface) and the reactions among those 30057 parameters during DSCC procedure; secondly many training samples can be 30058 obtained. Moreover, after these samples are input into neural network 30059 software (NNs) and trained, the control model can be built. 30060 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China. 30061 CR CHANG GW, 1999, FOUNDRY, V40, P18 30062 FAN XH, 1996, CHINESE J MAT RES, V10, P364 30063 FAN XH, 1997, CHINESE J NONFERROUS, V7, P134 30064 LI SY, 1996, THEORY FUZZY CONTROL, P85 30065 NI WD, 1996, SEVERAL PROBLEMS MOD, P10 30066 OHNO A, 1989, LIGHT METAL, V39, P735 30067 OHNO A, 1990, ADV MATER, V28, P161 30068 OHNO A, 1991, T JAPAN I METALS, V30, P448 30069 SU YJ, 1996, J HARBIN U SCI TECHN, V1, P60 30070 WANG W, 1997, CONTROL DECISION S, V12, P385 30071 WANG YN, 1996, INTELLIGENT CONTROL, P96 30072 XU ZM, 1997, P 9 CHIN FOUNDR C C, P345 30073 XU ZM, 1998, T NONFERR METAL SOC, V8, P277 30074 NR 13 30075 TC 1 30076 SN 1003-6326 30077 J9 TRANS NONFERROUS METAL SOC CH 30078 JI Trans. Nonferrous Met. Soc. China 30079 PD AUG 30080 PY 2000 30081 VL 10 30082 IS 4 30083 BP 449 30084 EP 452 30085 PG 4 30086 SC Metallurgy & Metallurgical Engineering 30087 GA 343GQ 30088 UT ISI:000088693700006 30089 ER 30090 30091 PT J 30092 AU Zhang, H 30093 Zou, XW 30094 Wang, ZH 30095 Chen, YX 30096 TI A comparative investigation of oxygen in-diffusion in the orthorhombic 30097 phase of REBCO (RE:: Y, Sm, Nd) by in situ electrical resistance 30098 SO PHYSICA C 30099 DT Article 30100 DE REBCO (RE : Y, Sm, Nd) curprate; in situ electrical resistance; oxygen 30101 in-diffusion 30102 ID TRACER DIFFUSION; SINGLE-CRYSTAL; YBA2CU3O7-DELTA; YBA2CU3O6+X; 30103 SUPERCONDUCTORS 30104 AB The relaxation behavior of the isothermal electrical resistance has 30105 been comparatively investigated in the single orthorhombic phase of 30106 REBCO (RE: Y, Sm, Nd) powder sinters in oxygen uptaking processes. It 30107 can be well described by an oxygen uptaking process controlled by the 30108 lattice diffusion. The relaxation activation energy, i.e., the 30109 diffusion activation energy is 1.2, 1.0 and 0.7 eV for YBa2Cu3Oy, 30110 SmBa2Cu3Oy and Nd1.1Ba1.9Cu3Oy, respectively. It indicates that the 30111 diffusion activation energy of oxygen in REBCO decreases with the 30112 increase of RE ion size. It may be connected with the repulsive energy 30113 between O(1) and O(5). (C) 2000 Elsevier Science B.V. All rights 30114 reserved. 30115 C1 Chinese Acad Sci, Shanghai Inst Met, Shanghai 200050, Peoples R China. 30116 Shanghai Univ, Shanghai 200072, Peoples R China. 30117 RP Zhang, H, Chinese Acad Sci, Shanghai Inst Met, Shanghai 200050, Peoples 30118 R China. 30119 CR CRANK J, 1956, MATH DIFFUSION 30120 ERB A, 1997, APPL SUPERCOND, V158, P1109 30121 HIKUMOTO N, 1997, PHYSICA C, V278, P187 30122 KLAUSER M, 1998, PHYSICA C, V306, P188 30123 LAGRAFF JR, 1993, PHYS REV B, V47, P3380 30124 LAGRAFF JR, 1993, PHYSICA C, V212, P470 30125 LAGRAFF JR, 1993, PHYSICA C, V212, P487 30126 MURAKAMI M, 1994, JPN J APPL PHYS, V33, P715 30127 MURAKAMI M, 1997, PHYSICA C 1, V282, P371 30128 ROTHMAN SJ, 1989, PHYS REV B, V40, P8852 30129 ROTHMAN SJ, 1991, PHYS REV B, V44, P2326 30130 SHAKED H, 1990, PHYS REV B, V41, P4173 30131 TALLON JL, 1992, SCIENCE, V258, P781 30132 TU KN, 1989, PHYS REV B, V39, P304 30133 XIA XM, 1989, PHYS REV B, V40, P4549 30134 YOO SI, 1994, APPL PHYS LETT, V65, P633 30135 NR 16 30136 TC 5 30137 SN 0921-4534 30138 J9 PHYSICA C 30139 JI Physica C 30140 PD JUL 30141 PY 2000 30142 VL 337 30143 IS 1-4 30144 BP 307 30145 EP 311 30146 PG 5 30147 SC Physics, Applied 30148 GA 343DL 30149 UT ISI:000088686400062 30150 ER 30151 30152 PT J 30153 AU Tan, WH 30154 Yan, KZ 30155 Liu, RH 30156 TI The enhancement of spontaneous and induced transition rates by a 30157 Bose-Einstein condensate 30158 SO JOURNAL OF MODERN OPTICS 30159 DT Article 30160 ID RESONANCE OPTICS; H-DOWN; GAS; ATOMS; LIGHT 30161 AB In this paper, an exactly solved model for the emission by N atoms is 30162 presented, the spontaneous and induced transition rates obtained, are 30163 enhanced by a factor which is proportional to the number of atoms n in 30164 the volume lambda(3)/(2 pi(2)) (lambda is the transition wavelength of 30165 the atom) and dependent on the de-Broglie wavelength lambda(B) in a 30166 more complicated way. 30167 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 30168 Acad Sinica, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China. 30169 RP Tan, WH, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 30170 CR ANDERSON MH, 1995, SCIENCE, V269, P198 30171 BRADLEY CC, 1995, PHYS REV LETT, V75, P1787 30172 DAVIS KB, 1995, PHYS REV LETT, V75, P3969 30173 GLAUBER RJ, 1959, LECTURES THEORETICAL, V1, P315 30174 HOPE JJ, 1996, PHYS REV A, V54, P3177 30175 HUANG H, 1997, PHYS REV LETT, V79, P2923 30176 JAVANAINEN JH, 1994, PHYS REV LETT, V72, P2375 30177 LEHMBERG RH, 1970, PHYS REV A-GEN PHYS, V2, P883 30178 LEVI BG, 1998, PHYS TODAY 1017 30179 POLITZER HD, 1991, PHYS REV A, V43, P6444 30180 SCHIFF LI, 1968, QUANTUM MECH, P533 30181 SVISTUNOV BV, 1990, ZH EKSP TEOR FIZ, V97, P821 30182 SVISTUNOV BV, 1990, ZH EKSP TEOR FIZ, V98, P129 30183 TAYLOR JR, 1987, SCATTERING THEORY QU 30184 WEISSKOPF V, 1930, Z PHYS, V63, P54 30185 WEISSKOPF VG, 1990, QUANTUM STAT PROPERT, P285 30186 YOU L, 1994, PHYS REV A, V50, R3365 30187 YOU L, 1996, PHYS REV A, V53, P329 30188 NR 18 30189 TC 0 30190 SN 0950-0340 30191 J9 J MOD OPTIC 30192 JI J. Mod. Opt. 30193 PD AUG 30194 PY 2000 30195 VL 47 30196 IS 10 30197 BP 1729 30198 EP 1737 30199 PG 9 30200 SC Optics 30201 GA 341DF 30202 UT ISI:000088575200011 30203 ER 30204 30205 PT J 30206 AU Sun, JA 30207 Zhu, ZY 30208 TI Upwind local differential quadrature method for solving incompressible 30209 viscous flow 30210 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 30211 DT Article 30212 DE upwind local differential quadrature method; incompressible viscous 30213 flow; navier-stokes equations 30214 ID EQUATIONS 30215 AB The differential quadrature method (DQM) is able to obtain quite 30216 accurate numerical solutions of differential equations with few grid 30217 points and less computational effort. The successful applications of 30218 DQM have been reported to solve various problems of fluid mechanics. 30219 But, owing to the limitation of its quadrature rules, DQM is convenient 30220 only For regular regions and lacks upwind mechanism to characterize the 30221 convection of the fluid flow. In the present paper, a local 30222 differential quadrature method (LDQM) with upwind mechanism is proposed 30223 to solve incompressible viscous fluid flow problems in irregular 30224 regions. As its application, planar contraction flows in irregular 30225 regions is numerically solved and excellent numerical results are 30226 obtained for coarse meshes, (C) 2000 Elsevier Science S.A. All rights 30227 reserved. 30228 C1 Shanghai Univ, Dept Math, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 30229 NW Normal Univ, Dept Phys, Lanzhou 730070, Peoples R China. 30230 RP Sun, JA, Shanghai Univ, Dept Math, Shanghai Inst Appl Math & Mech, 30231 Shanghai 200072, Peoples R China. 30232 CR BELLMAN R, 1971, J MATH ANAL APPL, V34, P235 30233 BELLMAN R, 1972, J COMPUT PHYS, V10, P40 30234 BERT CW, 1996, APPL MECH REV, V49, P1 30235 BOGER DV, 1987, ANNU REV FLUID MECH, V19, P157 30236 CIVAN F, 1983, INT J NUMER METH ENG, V19, P711 30237 JANG SK, 1989, INT J NUMER METH ENG, V28, P561 30238 KINE ME, 1983, J NONNEWTONIAN FLUID, V13, P341 30239 SHU C, 1990, 3RD P INT C ADV NUM, V2, P978 30240 SHU C, 1992, COMPUTING SYSTEMS EN, V3, P271 30241 SHU C, 1992, INT J NUMER METH FL, V15, P791 30242 SHU C, 1993, P 1 PAN PAC C COMP E, P131 30243 STRIZ AG, 1994, INT J NONLINEAR MECH, V29, P665 30244 VIRIYAYUTHAKORN M, 1980, J NONNEWTONIAN FLUID, V6, P245 30245 VRENTAS JS, 1973, APPL SCI RES, V28, P241 30246 NR 14 30247 TC 0 30248 SN 0045-7825 30249 J9 COMPUT METHOD APPL MECH ENG 30250 JI Comput. Meth. Appl. Mech. Eng. 30251 PY 2000 30252 VL 188 30253 IS 1-3 30254 BP 495 30255 EP 504 30256 PG 10 30257 SC Computer Science, Interdisciplinary Applications; Engineering, 30258 Mechanical; Mechanics 30259 GA 342TR 30260 UT ISI:000088661700030 30261 ER 30262 30263 PT J 30264 AU Wang, YF 30265 Wang, ZH 30266 Bialkowski, ME 30267 TI All-optical logic devices with cascaded nonlinear couplers 30268 SO APPLIED OPTICS 30269 DT Article 30270 ID DIRECTIONAL-COUPLERS 30271 AB The switching behaviors of cascaded nonlinear couplers were 30272 investigated. They have nearly ideal digital-switching characteristics, 30273 and their output power levels can he adjusted by means of varying the 30274 nonlinear coupling coefficient of the final coupler. The two-input 30275 excitation nonlinear cascaded couplers can perform not only switching 30276 operations but also a series of logic operations; The logic operations 30277 depend mainly on the coupling length of the two-input coupler and its 30278 initial inputs. The power corresponding to the rising and falling ridge 30279 of the logic operating waveforms can be shifted effectively by means of 30280 varying the switching power of the reshaper. Allowable ranges of three 30281 important parameters-coupling length of the two-input coupler L-1, bias 30282 optical power P-bia, and phase difference Jr between the signal and 30283 bias beams for six fundamental logic operations-were calculated. Curves 30284 for design considerations and suggestions for the best choice of 30285 parameters for stable and reliable logic operations AND, OR, XOR, NAND, 30286 NOR, and NXOR are also presented individually. (C) 2000 Optical Society 30287 of America OCIS codes: 060.0060, 130.0130, 190.0190, 220.0220, 230.0230. 30288 C1 Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore. 30289 Shanghai Univ, Wave Sci Lab, Shanghai 201800, Peoples R China. 30290 RP Wang, YF, Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 30291 639798, Singapore. 30292 CR AITCHISON JS, 1995, OPT LETT, V20, P698 30293 CHEN Y, 1990, ELECTRON LETT, V26, P77 30294 CHEN YJ, 1992, IEEE J QUANTUM ELECT, V28, P239 30295 FUKUSHIMA T, 1995, P ILLMC 95, P250 30296 JENSEN SM, 1982, IEEE J QUANTUM ELECT, V18, P1580 30297 KITAYAMA K, 1983, APPL PHYS LETT, V43, P17 30298 PHAM AT, 1990, INT J OPTOELECTRON, V5, P367 30299 PHAM AT, 1991, J OPT SOC AM B, V8, P1914 30300 VILLENEUVE A, 1992, APPL PHYS LETT, V61, P147 30301 WANG YF, 1999, IEEE PHOTONIC TECH L, V11, P72 30302 WANG YF, 1999, J LIGHTWAVE TECHNOL, V17, P292 30303 YANG CC, 1992, IEEE J QUANTUM ELECT, V28, P479 30304 NR 12 30305 TC 1 30306 SN 0003-6935 30307 J9 APPL OPT 30308 JI Appl. Optics 30309 PD AUG 10 30310 PY 2000 30311 VL 39 30312 IS 23 30313 BP 4143 30314 EP 4152 30315 PG 10 30316 SC Optics 30317 GA 342KE 30318 UT ISI:000088643100011 30319 ER 30320 30321 PT J 30322 AU Chen, MY 30323 Guo, HW 30324 Wei, CL 30325 TI Algorithm immune to tilt phase-shifting error for phase-shifting 30326 interferometers 30327 SO APPLIED OPTICS 30328 DT Article 30329 ID STEPPING ALGORITHM; SURFACES 30330 AB As a phase shifter usually suffers from both translational and 30331 tilt-shift errors during shifting, so every pixel in the same 30332 interferogram will have a different phase-shift value. Thus nonlinear 30333 phase-measurement errors cannot be avoided, but even 30334 translational-shift error has been corrected effectively. However, 30335 based on the fact that the shifted phases of all the pixels in the same 30336 interferogram remain on the phase-shift plane, by defining this plane 30337 one can eliminate a significant number of phase errors. A new algorithm 30338 that is immune to both translational- and tilt-shift errors in a phase 30339 shifter for phase-stepping interferometers is presented. A first-order 30340 Taylor series expansion replaces the nonlinear equations for defining 30341 the phase-shift plane, and iteration of the algorithm guarantees its 30342 accuracy. Results of a computer simulation show that phase-measurement 30343 errors caused by both translation- and tilt-shift error can be 30344 compensated for completely, even when the tilt-shift error is not more 30345 than +/-1%. (C) 2000 Optical Society of America. OCIS codes: 050.5080, 30346 120.3180, 120.5050. 30347 C1 Shanghai Univ, Lab Appl Opt & Metrol, Shanghai 201800, Peoples R China. 30348 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China. 30349 RP Chen, MY, Shanghai Univ, Lab Appl Opt & Metrol, Shanghai 201800, 30350 Peoples R China. 30351 CR BRUNING JH, 1974, APPL OPTICS, V13, P2693 30352 CARRE P, 1966, METROLOGIA, V2, P13 30353 CREATH K, 1993, INTERFEROGRAM ANAL, P94 30354 KONG IB, 1995, OPT ENG, V34, P1400 30355 KONG IB, 1995, OPT ENG, V34, P183 30356 MORGAN CJ, 1982, OPT LETT, V7, P368 30357 OKADA K, 1991, OPT COMMUN, V84, P118 30358 WEI CL, 1998, P SOC PHOTO-OPT INS, V3478, P411 30359 WEI CL, 1999, OPT ENG, V38, P1357 30360 NR 9 30361 TC 6 30362 SN 0003-6935 30363 J9 APPL OPT 30364 JI Appl. Optics 30365 PD AUG 1 30366 PY 2000 30367 VL 39 30368 IS 22 30369 BP 3894 30370 EP 3898 30371 PG 5 30372 SC Optics 30373 GA 338MZ 30374 UT ISI:000088425000011 30375 ER 30376 30377 PT J 30378 AU Xu, JQ 30379 Shun, YA 30380 Pan, QY 30381 Qin, JH 30382 TI Sensing characteristics of double layer film of ZnO 30383 SO SENSORS AND ACTUATORS B-CHEMICAL 30384 DT Article 30385 DE zinc oxide; gas selectivity; gas sensor; double layer film; catalyst 30386 coating 30387 AB Pure ZnO powder was made by chemical precipitation. ZnO-based gas 30388 sensing materials and Al2O3-based catalysts doped with a noble metal 30389 were prepared with impregnation. Gas sensitivity of ZnO single layer 30390 and double layer film gas sensors was measured in static state. It can 30391 be shown from experimental results that the gas sensitivity and 30392 selectivity of ZnO gas sensor can be improved by doping noble metal and 30393 using noble metal catalyst coating, (C) 2000 Elsevier Science B.V. All 30394 rights reserved. 30395 C1 Zhengzhou Inst Light Ind, Dept Chem Engn, Zhengzhou 450002, Peoples R China. 30396 Shanghai Univ, Sch Chem Engn, Shanghai 210072, Peoples R China. 30397 RP Xu, JQ, Zhengzhou Inst Light Ind, Dept Chem Engn, Zhengzhou 450002, 30398 Peoples R China. 30399 CR LOU X, 1991, J SENS T TECHNOL, V3, P1 30400 XU J, 1993, J FUNCT MAT, V24, P30 30401 XU J, 1997, SENS WORLD, V3, P7 30402 XU J, 1998, J FUNCT MAT, V29, P281 30403 NR 4 30404 TC 16 30405 SN 0925-4005 30406 J9 SENSOR ACTUATOR B-CHEM 30407 JI Sens. Actuator B-Chem. 30408 PD JUL 25 30409 PY 2000 30410 VL 66 30411 IS 1-3 30412 BP 161 30413 EP 163 30414 PG 3 30415 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation 30416 GA 337TV 30417 UT ISI:000088378500050 30418 ER 30419 30420 PT J 30421 AU Pan, QY 30422 Xu, JQ 30423 Dong, XW 30424 Zhang, JP 30425 TI Gas-sensitive properties of nanometer-sized SnO2 30426 SO SENSORS AND ACTUATORS B-CHEMICAL 30427 DT Article 30428 DE sol-gel method; nanometer; tin peroxide; doping; reducing gas 30429 AB Nanometer-sized SnO2 particles were prepared by a sol-gel method using 30430 inorganic salt as a precursor material. The investigated results 30431 indicate that well-crystallized nano-sized SnO2 with size around 15 nm 30432 was obtained at annealing temperature 600 degrees C. The activation 30433 energy for the growth of nano-SnO2 was calculated to be 26.55 kJ 30434 mol(-1) when the annealing temperature was higher than 500 degrees C. 30435 The measurements also show that there is a peculiar resistance change 30436 as a function of temperature for nano-SnO2. It has relevance to the 30437 increase of surface adsorbed oxygen. The selective detection for C4H10 30438 and patrol can be increased when ruthenium ion was doped in nano-SnO2 30439 as a catalyst. The gas sensitivity to CO, CH4, H-2, etc., can be 30440 increased when rhodium ion was doped in nano-SnO2 as a catalyst and the 30441 detection to the several reducing gas can be realized ranging in 30442 temperature from 260 degrees C to 400 degrees C. (C) 2000 Elsevier 30443 Science S.A. All rights reserved. 30444 C1 Shanghai Univ, Sch Chem Engn, Shanghai 200072, Peoples R China. 30445 Zhengzhou Inst Light Ind, Dept Chem Engn, Zhengzhou 450002, Peoples R China. 30446 RP Pan, QY, Shanghai Univ, Sch Chem Engn, Shanghai 200072, Peoples R China. 30447 CR CULLITY BD, 1977, ELEMENTS XRAY DIFFRA 30448 RAMAMURTHI SD, 1990, J AM CERAM SOC, V73, P2760 30449 SCOTT MG, AMORPHOUS METALLIC A 30450 ZHOU QF, 1995, J TRANSDUCTION TECHN, V8, P22 30451 NR 4 30452 TC 12 30453 SN 0925-4005 30454 J9 SENSOR ACTUATOR B-CHEM 30455 JI Sens. Actuator B-Chem. 30456 PD JUL 25 30457 PY 2000 30458 VL 66 30459 IS 1-3 30460 BP 237 30461 EP 239 30462 PG 3 30463 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation 30464 GA 337TV 30465 UT ISI:000088378500075 30466 ER 30467 30468 PT J 30469 AU Xu, JQ 30470 Pan, QY 30471 Shun, YA 30472 Tian, ZZ 30473 TI Grain size control and gas sensing properties of ZnO gas sensor 30474 SO SENSORS AND ACTUATORS B-CHEMICAL 30475 DT Article 30476 DE zinc oxide; nanometer material; grain size control; gas sensor; 30477 emulsion synthesis 30478 AB Nanometer ZnO gas sensing material with different particle size were 30479 made by chemical precipitation, emulsion and microemulsion, 30480 respectively. Crystal structure and ceramic microstructure of powders 30481 were determined by XRD and TEM. The mean grain size and lattice 30482 distortion of the materials were calculated with the Cauchy-Cauchy and 30483 Debye-Scherrer methods, respectively. Gas sensitivity of ZnO to H-2, 30484 SF6, C4H10, gasoline, C2H5OH was measured. It Fan be shown from 30485 experimental results that grain size of ZnO gas-sensitive materials can 30486 be controlled by means of different processes or surfactants. The gas 30487 sensitivity of ZnO gas sensor depends upon its grain size. (C) 2000 30488 Elsevier Science S.A. All rights reserved. 30489 C1 Zhengzhou Inst Light Ind, Dept Chem Engn, Zhengzhou 450002, Peoples R China. 30490 Shanghai Univ, Sch Chem Engn, Shanghai 210072, Peoples R China. 30491 RP Xu, JQ, Zhengzhou Inst Light Ind, Dept Chem Engn, Zhengzhou 450002, 30492 Peoples R China. 30493 CR LOU X, 1991, J SENS T TECHNOL, V3, P1 30494 PAN S, 1993, J SENS TRANS TECHNOL, V3, P18 30495 SEIYAMA T, 1962, ANAL CHEM, V34, P1502 30496 XU J, 1993, J FUNCT MAT, V24, P30 30497 XU J, 1998, J INORG CHEM, V14, P355 30498 NR 5 30499 TC 40 30500 SN 0925-4005 30501 J9 SENSOR ACTUATOR B-CHEM 30502 JI Sens. Actuator B-Chem. 30503 PD JUL 25 30504 PY 2000 30505 VL 66 30506 IS 1-3 30507 BP 277 30508 EP 279 30509 PG 3 30510 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation 30511 GA 337TV 30512 UT ISI:000088378500086 30513 ER 30514 30515 PT J 30516 AU Adikary, SU 30517 Meng, ZY 30518 Jin, DR 30519 TI A resistivity gradient piezoelectric FGM actuator 30520 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 30521 DT Article 30522 AB A resistivity gradient actuator based on lead zirconate titanate 30523 ceramics was successfully developed and the bending deflections up to 30524 140 mu m were obtained. The actuator material was a matrix of PZT 30525 ceramic into which smooth gradient of piezoelectric activity was 30526 introduced. The application of an electric field then causes the 30527 actuator to bend due to differential strains induced by the 30528 piezoelectric effect. The resistivity gradient of the actuator was 30529 achieved by doping PZT with suitable donor and acceptor dopants. PZT 30530 powder was modified and synthesized by using two stage powder 30531 fabrication method. The actuator was fabricated by uniaxial pressing 30532 followed by isostatic pressing with two layers of different 30533 resistivities. 30534 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 30535 Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China. 30536 RP Meng, ZY, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R 30537 China. 30538 CR HEARTLING GH, 1994, AM CERAM SOC B, V73, P93 30539 HEARTLING GH, 1997, SPIE, V3040, P81 30540 NINO M, 1990, ISIJ INT, V30, P699 30541 ONITSUKA K, 1995, J INTEL MAT SYST STR, V6, P447 30542 ROBBINS WP, 1991, IEEE T ULSR FERR FRE, V68, P634 30543 SUGAWARA Y, 1992, J AM CERAM SOC, V75, P996 30544 TOMIKAWA Y, 1986, FERROELECTRICS, V68, P235 30545 UCHINO K, 1997, PIEZOELECTRIC ACTUAT 30546 WU CCM, 1996, J AM CERAM SOC, V79, P809 30547 ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169 30548 ZHU XH, 1998, J MATER SCI, V33, P1023 30549 NR 11 30550 TC 2 30551 SN 1005-0302 30552 J9 J MATER SCI TECHNOL 30553 JI J. Mater. Sci. Technol. 30554 PD JUL 30555 PY 2000 30556 VL 16 30557 IS 4 30558 BP 383 30559 EP 386 30560 PG 4 30561 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 30562 Engineering 30563 GA 337QA 30564 UT ISI:000088372100007 30565 ER 30566 30567 PT J 30568 AU Cheng, XY 30569 Wan, XJ 30570 Chen, YX 30571 Yao, MY 30572 TI The effect of Al and Fe on the intergranular embrittlement of Co3Ti 30573 alloys by hydrogen transport from the external surface 30574 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 30575 DT Article 30576 ID ENVIRONMENTAL EMBRITTLEMENT; MECHANICAL-PROPERTIES; ORDERED ALLOYS; 30577 WATER-VAPOR; POLYCRYSTALS; FRACTURE; NI3FE 30578 AB Some observation relating tp the solubility, diffusivity and 30579 intergranular cracking by hydrogen transport from the external surface 30580 in Co3Ti, Co3Ti-Al and Co3Ti-Fe alloys have been carried out. The 30581 results show that the addition of alloying elements Al or Fe to Co3Ti 30582 alloy can increase the critical hydrogen concentration for changing 30583 from transgranular to brittle intergranular fracture, therefore 30584 suppress the moisture induced environmental embrittlement. 30585 C1 Shanghai Univ, Inst Met & Mat Sci, Shanghai 200072, Peoples R China. 30586 RP Cheng, XY, Shanghai Univ, Inst Met & Mat Sci, Shanghai 200072, Peoples 30587 R China. 30588 CR CAMUS GM, 1989, ACTA METALL, V37, P1497 30589 CHEN YX, 1998, J MATER SCI LETT, V17, P1627 30590 CHENG XY, 1997, J IRON STEEL RES S, V9, P270 30591 CHENG XY, 1997, SCRIPTA MATER, V37, P1065 30592 CHU WY, 1981, CORROSION, V37, P514 30593 CHU WY, 1982, CORROSION, V38, P514 30594 CHU WY, 1982, CORROSION, V38, P561 30595 KIMURA A, 1994, MATER T JIM, V35, P879 30596 KIMURA A, 1995, INTERMETALLICS, V3, P115 30597 KURUVILLA AK, 1985, SCRIPTA METALL, V19, P83 30598 LIU CT, 1984, INT MET REV, V29, P168 30599 LIU CT, 1990, SCRIPTA METALL MATER, V24, P1583 30600 LIU Y, 1989, ACTA METALL, V37, P507 30601 LIU Y, 1989, J MATER SCI, V24, P4458 30602 SHUTT RC, 1985, WELD J, V64, P19 30603 TAKASUGI T, 1986, ACTA METALL, V34, P607 30604 TAKASUGI T, 1997, INTERMETALLICS, V5, P443 30605 ZHANG DZ, 1993, SCRIPTA METALL MATER, V29, P901 30606 NR 18 30607 TC 0 30608 SN 1005-0302 30609 J9 J MATER SCI TECHNOL 30610 JI J. Mater. Sci. Technol. 30611 PD JUL 30612 PY 2000 30613 VL 16 30614 IS 4 30615 BP 431 30616 EP 434 30617 PG 4 30618 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 30619 Engineering 30620 GA 337QA 30621 UT ISI:000088372100018 30622 ER 30623 30624 PT J 30625 AU Wang, LJ 30626 Sang, WB 30627 Shi, WM 30628 Qian, YB 30629 Min, JH 30630 Liu, DH 30631 Xia, YB 30632 TI Electrical properties of contacts on P-type Cd0.8Zn0.2Te crystal 30633 surfaces 30634 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION 30635 A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 30636 DT Article 30637 DE cadmium zinc telluride; electrical contacts; gamma-ray detectors 30638 ID RADIATION DETECTORS; TELLURIDE 30639 AB In this payer effects of surface treatments of p-type Cd0.8Zn0.2Te 30640 devices were studied by Atomic Force Microscopy (AFM), I-V 30641 measurements, and electrical properties as well as different contact 30642 technologies using Au, Al: In and electroless Au. It is shown that 30643 electroless Au film deposited by the chemical method can form a heavily 30644 doped pf layer on a smooth surface, which is nearly ohmic on p-type 30645 material. Electroless Au gives better contact than evaporated Au, Al or 30646 In. A post-annealing treatment of electroless Au film improves the 30647 ohmic quality of contacts and enhances the adhesion between contact 30648 layer and the Cd0.8Zn0.2Te crystal surface. (C) 2000 Elsevier Science 30649 B.V. All rights reserved. 30650 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 30651 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R 30652 China. 30653 CR AZOULAY M, 1993, J VAC SCI TECHNOL B, V11, P148 30654 BUTLER JF, 1992, IEEE T NUCL SCI, V39, P605 30655 CHEN KT, 1997, J VAC SCI TECHNOL 1, V15, P850 30656 GEORGE MA, 1995, J APPL PHYS, V77, P3134 30657 LACHISH U, 1998, NUCL INSTRUM METH A, V403, P417 30658 MUSA A, 1983, J APPL PHYS, V54, P3260 30659 NEMIROVSKY Y, 1996, J ELECTRON MATER, V25, P1221 30660 RABINAL MK, 1997, J ELECTRON MATER, V26, P893 30661 SUZUKI K, 1996, J CRYST GROWTH, V159, P388 30662 VERGER L, 1997, J ELECT MAT, V26, P738 30663 YOON H, 1997, J ELECTRON MATER, V26, P529 30664 NR 11 30665 TC 2 30666 SN 0168-9002 30667 J9 NUCL INSTRUM METH PHYS RES A 30668 JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. 30669 Equip. 30670 PD JUL 1 30671 PY 2000 30672 VL 448 30673 IS 3 30674 BP 581 30675 EP 585 30676 PG 5 30677 SC Physics, Particles & Fields; Instruments & Instrumentation; Nuclear 30678 Science & Technology; Spectroscopy 30679 GA 336CU 30680 UT ISI:000088285000012 30681 ER 30682 30683 PT J 30684 AU Xia, SL 30685 Zhao, MJ 30686 Wu, ZY 30687 Li, ZP 30688 TI Detection of Lis1 gene frame shift mutation in human hepatocarcinoma 30689 SO ACTA BIOCHIMICA ET BIOPHYSICA SINICA 30690 DT Article 30691 DE PTT; Lis1 gene; frame shift mutation; GST fusion protein 30692 ID CANCER PATIENTS 30693 AB GST fusion protein expression system combined with protein truncation 30694 test(PTT) protocol was used to detect gene frame shift mutation. The 30695 RT-PCR products of Lis1 genes from hepatocarcinoma samples were 30696 respectively cloned into a GST fusion protein expression vector pGEX-1, 30697 then expressed in E. coli. The results showed a truncated 33 kD fusion 30698 protein in SDS-PAGE, although the full-translated product of Lis1 gene 30699 should be of 71 kD. Sequencing revealed insertion of an A residue, 30700 causing the premature termination of translation, between the 163th and 30701 164th nucleotide of Lis1 gene. This improved PTT assay was proved to be 30702 a fast and effective way in detecting gene frame shift mutation. 30703 C1 Shanghai Univ, Sch Life Sci, Dept Biochem Engn, Shanghai 201800, Peoples R China. 30704 Chinese Acad Sci, Shanghai Inst Biochem, Shanghai 200031, Peoples R China. 30705 CR DANIELA TP, 1998, HUM MOL GENET, V13, P2029 30706 DUNNEN JT, 1999, HUM MUTAT, V14, P95 30707 FARRINGTON SM, 1998, AM J HUM GENET, V63, P749 30708 ORLY R, 1993, NAT GENET, V364, P717 30709 OZCELIK H, 1997, NAT GENET, V16, P17 30710 NR 5 30711 TC 1 30712 SN 0582-9879 30713 J9 ACTA BIOCHIM BIOPHYS SINICA 30714 JI Acta Biochim. Biophys. Sin. 30715 PD JUL 30716 PY 2000 30717 VL 32 30718 IS 4 30719 BP 401 30720 EP 405 30721 PG 5 30722 SC Biochemistry & Molecular Biology; Biophysics 30723 GA 336TQ 30724 UT ISI:000088319400019 30725 ER 30726 30727 PT J 30728 AU De-Kang, M 30729 TI Toward front tracking based on conservation in two space dimensions 30730 SO SIAM JOURNAL ON SCIENTIFIC COMPUTING 30731 DT Article 30732 DE front tracking; cell-average; recovery of discontinuity curve 30733 ID FINITE-DIFFERENCE METHODS; WAVE-PROPAGATION METHODS; DISCONTINUITIES; 30734 SCHEMES 30735 AB A two-dimensional front tracking method based on conservation for 30736 scalar conservation law and for the Euler system of gas dynamics is 30737 being developed. In the method, discontinuities are tracked by 30738 enforcing the conservation properties of the PDEs. Unlike the 30739 traditional front tracking methods, for which the conservation is only 30740 a property that may or may not be preserved, in this front tracking 30741 method the conservation is the mechanism by which the tracking is 30742 performed. The method is also extended to treat the reflection wall 30743 boundary in the Euler system. As an attempt to treat the interactions 30744 of discontinuities by enforcing the conservation properties without 30745 solving two-dimensional Riemann problems, three special cases of 30746 treatment of discontinuity interactions in scalar conservation law and 30747 in the Euler system of gas dynamics are studied. Finally, numerical 30748 experiments are implemented in both scalar and system cases to show the 30749 efficiency of the method. 30750 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 30751 RP De-Kang, M, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 30752 CR CHERN IL, 1986, J COMPUT PHYS, V62, P83 30753 CHERN IL, 1987, UCRL97200 L LIV NAT 30754 CHORIN AJ, 1993, MATH INTRO FLUID MEC 30755 COLELLA P, 1984, J COMPUT PHYS, V54, P174 30756 DESCHAMBAULT RL, 1983, J FLUID MECH, V131, P27 30757 FORRER H, 1996, 9304 EIDG TH 30758 FORRER H, 1996, 9613 EIDG TH 30759 GLIMM J, 1985, ADV APPL MATH, V6, P259 30760 GLIMM J, 1986, SIAM J SCI STAT COMP, V7, P230 30761 GLIMM J, 1988, COMMUN PUR APPL MATH, V41, P569 30762 GLIMM J, 1988, SIAM J SCI STAT COMP, V9, P61 30763 GLIMM J, 1998, COMPUT MATH APPL, V35, P1 30764 GLIMM J, 1998, SIAM J SCI COMPUT, V19, P703 30765 GROVE J, 1989, ADV APPL MATH, V10, P201 30766 HARTEN A, 1987, J COMPUT PHYS, V71, P231 30767 HARTEN A, 1987, SIAM J NUMER ANAL, V24, P279 30768 HENSHAW WD, 1987, J COMPUT PHYS, V68, P25 30769 KLINGENBERG C, 1994, MATH COMPUT MODEL, V20, P89 30770 LEVEQUE RJ, 1990, 9037 2CASE 30771 LEVEQUE RJ, 1990, NUMERICAL METHODS CO 30772 LEVEQUE RJ, 1995, SIAM J SCI COMPUT, V16, P348 30773 LEVEQUE RJ, 1996, J COMPUT PHYS, V123, P354 30774 MAJDA A, 1984, APPL MATH SCI, V53 30775 MAO D, 1985, J COMPUT MATH, V3, P356 30776 MAO D, 1991, P 3 INT C HYP PROBL 30777 MAO DK, 1991, J COMPUT PHYS, V92, P422 30778 MAO DK, 1992, J COMPUT PHYS, V103, P359 30779 MAO DK, 1993, J COMPUT PHYS, V104, P377 30780 MAO DK, 1995, SIAM J NUMER ANAL, V32, P1677 30781 MAO DK, 1999, SIAM J NUMER ANAL, V36, P529 30782 MORETTI G, 1972, PIBAL7237 POL I BROO 30783 OSHER S, 1986, IMA VOLUMES MATH ITS, V2, P229 30784 SHU CW, 1987, J COMPUT PHYS, V83, P439 30785 SWARTZ BK, 1986, APPL NUMER MATH, V2, P385 30786 VANLEER B, 1977, J COMPUT PHYS, V23, P276 30787 WANGER DH, 1983, SIAM J MATH ANAL, V14, P534 30788 WOODWARD P, 1984, J COMPUT PHYS, V54, P115 30789 ZHU YL, 1980, DIFFERENCE METHODS I 30790 NR 38 30791 TC 0 30792 SN 1064-8275 30793 J9 SIAM J SCI COMPUT 30794 JI SIAM J. Sci. Comput. 30795 PD JUN 23 30796 PY 2000 30797 VL 22 30798 IS 1 30799 BP 113 30800 EP 151 30801 PG 39 30802 SC Mathematics, Applied 30803 GA 334BP 30804 UT ISI:000088165500007 30805 ER 30806 30807 PT J 30808 AU Wei, JH 30809 Zhu, SJ 30810 Yu, NW 30811 TI Kinetic model of desulphurisation by powder injection and blowing in RH 30812 refining of molten steel 30813 SO IRONMAKING & STEELMAKING 30814 DT Article 30815 ID IRON 30816 AB The desulphurisation by powder injection and blowing in the RH refining 30817 of molten steel and its mechanism have been considered and analysed. 30818 Based on the two-resistance mass transfer theory and the mass balance 30819 of sulphur in the system, a kinetic model for the process has been 30820 developed. The related parameters of the model, including the mass 30821 transfer coefficients and the effective amount of powder in the molten 30822 steel being treated for desulphurisation, have been reasonably 30823 determined. Modelling and predictions of the process of injecting and 30824 blowing the lime based powder flux under assumed operating modes with 30825 the different initial contents of sulphur and amounts of powder 30826 injected and blown in a RH degasser of 300 t capacity have been carried 30827 out using the model, The relevant circulation rate of the liquid steel 30828 and the powder injection and blowing rate were taken to be 100 t 30829 min(-1) and 150 kg min(-1), respectively, The initial contents of 30830 sulphur in the liquid steel to be treated a nd the amounts of powder 30831 injection and blowing were respectively assumed to be 0.007, 0.006, 30832 0.005, 0.004, 0.003, 0.002 wt-% and 10, 8, 6, 5, 4, 3 kg/t steel, The 30833 total treatment time for desulphurisation under each mode was set at 24 30834 min, equivalent to eight circulation cycles of the liquid steel to be 30835 treated. The results indicated that the predictions made by this model 30836 are in good agreement with data from industrial experiments and 30837 practice. By injecting and blowing the lime based powder flux with the 30838 composition of 85 wt-% lime (CaO) + 15 wt-% fluorspar (CaF2) of 3-5 30839 kg/t steel, it is possible to decrease the sulphur content in the 30840 molten steel to an ultralow level below (5-10) x 10(-4) wt-% from 30841 (60-80) x 10(-4) wt-%. The total treatment time needed will be 12-20 30842 min. Intensifying the powder injection and blowing operation and 30843 increasing the circulation rate of the liquid steel may effectively 30844 increase the rate of the process in RH refining. The model may be 30845 expected to offer some useful information and a reliable basis for 30846 determining the reasonable process parameters and help in optimising 30847 the technology of desulphurisation by powder injection and blowing in 30848 the RH refining of molten steel. 30849 C1 Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China. 30850 RP Wei, JH, Univ Iowa, Dept Mech Engn, Iowa City, IA 52242 USA. 30851 CR *ISIJ, 1971, YOUT YOUK NO MON YAS, P70 30852 ENDOH K, 1989, SADA TETSU TOGISATA, P20 30853 ENDOH K, 1990, NIPP STEEL TECH REP, P45 30854 ENGH TA, 1972, SCAND J METALL, V1, P103 30855 FARIAS LR, 1985, METALL TRANS B, V16, P211 30856 GEIGER GH, 1973, TRANSPORT PHENOMENA, P18 30857 GHOSH DN, 1982, IRONMAK STEELMAK, V9, P136 30858 HALE RJ, 1990, ISS STEELM C P, V73, P69 30859 HANDA N, 1977, TETSU TO HAGANE, V63, P163 30860 HATAKEYAMA T, 1989, IRON STEELMAKER, V15, P23 30861 IRONS GA, 1986, P INT C INJ MET SC 1 30862 KAWAI Y, 1975, TETSU TO HAGANE, V61, P29 30863 KAWAI Y, 1984, T IRON STEEL I JPN, V24, P509 30864 KIRHARA T, 1992, CAMP ISIJ, V5, P1239 30865 KOMAI T, 1982, P 7 INT C VAC MET TO, P1383 30866 LEHNER T, 1977, P INT C INJ MET SCAN 30867 MCNALLEN M, 1980, P INT C INJ MET SCAN 30868 MCNALLEN M, 1983, P INT INJ MET SCAN 3 30869 MYRAYAMA N, 1990, P 6 INT IR STEEL C N, V3, P151 30870 OETERS F, 1973, ARCH EISENHUTTENWES, V44, P727 30871 OETERS F, 1983, P INT C INJ MET SC 1 30872 OHGUCHI S, 1984, IRONMAK STEELMAK, V11, P262 30873 OHGUCHI S, 1984, IRONMAK STEELMAK, V11, P274 30874 OKADA Y, 1992, CAMP ISIJ, V5, P1238 30875 OKADA Y, 1994, TETSU TO HAGANE, V80, T9 30876 RANZ WE, 1952, CHEM ENG PROG, V48, P141 30877 ROBERTSON DGC, 1980, P INT C INJ MET SCAN 30878 SZATKOWSHI M, 1991, IRONMAK STEELMAK, V17, P65 30879 TSUJINO R, 1989, ISIJ INT, V29, P589 30880 UEHARAL H, 1992, CAMP ISIJ, V5, P1240 30881 WEI JH, 1997, UNPUB 30882 NR 31 30883 TC 2 30884 SN 0301-9233 30885 J9 IRONMAKING STEELMAKING 30886 JI Ironmak. Steelmak. 30887 PY 2000 30888 VL 27 30889 IS 2 30890 BP 129 30891 EP 137 30892 PG 9 30893 SC Metallurgy & Metallurgical Engineering 30894 GA 332JE 30895 UT ISI:000088069900007 30896 ER 30897 30898 PT J 30899 AU Xiao, HT 30900 Xu, HY 30901 TI In situ permeability measurements to establish the influence of slice 30902 mining on floor rocks 30903 SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES 30904 DT Article 30905 C1 Shanghai Univ Sci & Technol, Ctr Special Mining, Tainan 271019, Taiwan. 30906 Shanghai Univ Sci & Technol, Dept Civil Engn, Tainan 271019, Taiwan. 30907 RP Xiao, HT, Shanghai Univ Sci & Technol, Ctr Special Mining, Tainan 30908 271019, Taiwan. 30909 CR CAI DB, 1981, HDB MINE GEOLOGY, P10 30910 JING ZG, 1984, J CHINA COAL SOC, V9, P81 30911 PANG YH, 1982, COAL GEOLOGY EXPLORA, V10, P37 30912 SUN GZ, 1988, STRUCTURE MECH ROCKS, P92 30913 TANG MX, 1988, THESIS SHANDONG U SC 30914 XIAO HT, 1989, COAL GEOLOGY EXPLORA, V17, P39 30915 NR 6 30916 TC 2 30917 SN 1365-1609 30918 J9 INT J ROCK MECH MINING SCI 30919 JI Int. J. Rock Mech. Min. Sci. 30920 PD JUL 30921 PY 2000 30922 VL 37 30923 IS 5 30924 BP 855 30925 EP 860 30926 PG 6 30927 SC Engineering, Geological; Mining & Mineral Processing 30928 GA 332XA 30929 UT ISI:000088098600008 30930 ER 30931 30932 PT J 30933 AU Lin, L 30934 Liu, ZY 30935 TI Algebraic multilevel iterative preconditioning methods for H-matrices 30936 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 30937 DT Article 30938 DE algebraic multilevel; H-compatible splitting; diagonal compensation 30939 reduction; optimal order preconditioners 30940 AB A purely algebraic method is presented to construct preconditioners for 30941 symmetric positive definite H-matrices. The main technique is 30942 H-compatible splitting and diagonal compensation reduction. Associated 30943 with some special matrix polynomials, under certain condition, this 30944 method is optimal with respect to the rate of convergence and 30945 computational complexity. Numerical results that illustrate these 30946 properties are provided. 30947 C1 Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China. 30948 Fudan Univ, Inst Math, Shanghai 200433, Peoples R China. 30949 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 30950 RP Lin, L, Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China. 30951 CR AXELSSON O, 1984, LINEAR ALGEBRA APPL, V58, P3 30952 AXELSSON O, 1989, NUMER MATH, V56, P157 30953 AXELSSON O, 1990, 9045 CATH U DEP MATH 30954 AXELSSON O, 1990, SIAM J NUMER ANAL, V27, P1569 30955 AXELSSON O, 1991, J COMPUT APPL MATH, V38, P31 30956 AXELSSON O, 1994, NUMER LINEAR ALGEBR, V1, P155 30957 AXELSSON O, 1994, NUMER LINEAR ALGEBR, V1, P213 30958 KOLOTILINA LY, 1993, SIAM J MATRIX ANAL A, V14, P45 30959 VASSILEVSKI PS, 1997, SIAM REV, V39, P18 30960 NR 9 30961 TC 0 30962 SN 0020-7160 30963 J9 INT J COMPUT MATH 30964 JI Int. J. Comput. Math. 30965 PY 2000 30966 VL 74 30967 IS 1 30968 BP 97 30969 EP 111 30970 PG 15 30971 SC Mathematics, Applied 30972 GA 333LK 30973 UT ISI:000088131600008 30974 ER 30975 30976 PT J 30977 AU Hong-Yi, L 30978 TI The calculation of global error for initial value problem of ordinary 30979 differential equations 30980 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 30981 DT Article 30982 DE ordinary differential equation; initial value problem; global error; 30983 numerical analysis 30984 AB This paper presents a simple but reliable method to calculate global 30985 error of ordinary differential equations. The results show that the 30986 global error can be calculated very simply and satisfactory. Several 30987 numerical examples are given to verify the method. 30988 C1 Shanghai Univ, Polytech 2, Shanghai 200041, Peoples R China. 30989 RP Hong-Yi, L, Shanghai Univ, Polytech 2, 80 Shan Xi Rd, Shanghai 200041, 30990 Peoples R China. 30991 CR BRUSA L, 1980, INT J NUMER METH ENG, V15, P685 30992 DORMAND JR, 1978, CELESTIAL MECH, V18, P223 30993 GEAR CW, 1971, NUMERICAL INITIAL VA 30994 PLISCHKE M, 1994, EQUILIBRIUM STAT PHY 30995 RICE JR, 1993, NUMERICAL METHODS SO 30996 NR 5 30997 TC 0 30998 SN 0020-7160 30999 J9 INT J COMPUT MATH 31000 JI Int. J. Comput. Math. 31001 PY 2000 31002 VL 74 31003 IS 2 31004 BP 237 31005 EP 245 31006 PG 9 31007 SC Mathematics, Applied 31008 GA 333LL 31009 UT ISI:000088131700009 31010 ER 31011 31012 PT J 31013 AU Yan, KZ 31014 Tan, WH 31015 TI The growth rate and statistical fluctuation of Bose-Einstein condensate 31016 formation 31017 SO CHINESE PHYSICS 31018 DT Article 31019 DE Bbose-Einstein condensate; atom laser; growth rate 31020 ID QUANTUM KINETIC-THEORY; EQUATION; TRAP 31021 AB Using the generating function method to solve the master equation of 31022 Bose-Einstein condensate and to evaluate the growth rate, statistical 31023 fluctuation of condensate atoms, we find out that there is a plateau in 31024 the growth rate curve and a super-Poisson distribution observed. 31025 C1 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China. 31026 RP Yan, KZ, Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, 31027 Peoples R China. 31028 CR GARDINER CW, 1997, PHYS REV LETT, V79, P1793 31029 GARDINER CW, 1998, PHYS REV A, V58, P536 31030 GARDINER CW, 1998, PHYS REV LETT, V81, P5266 31031 MIESNER HJ, 1998, SCIENCE, V279, P1005 31032 TAN WH, 1994, PHYS LETT A, V190, P13 31033 TAN WH, 1995, OPT COMMUN, V115, P203 31034 WANG ZX, 1956, INTRO STAT PHYSICS, P186 31035 YAN KZ, 1999, ACTA PHYS SIN-CH ED, V48, P1185 31036 NR 8 31037 TC 4 31038 SN 1009-1963 31039 J9 CHIN PHYS 31040 JI Chin. Phys. 31041 PD JUL 31042 PY 2000 31043 VL 9 31044 IS 7 31045 BP 485 31046 EP 489 31047 PG 5 31048 SC Physics, Multidisciplinary 31049 GA 333PY 31050 UT ISI:000088139500002 31051 ER 31052 31053 PT J 31054 AU Li, HY 31055 Lee, HY 31056 TI One-parameter equation of state for gases and gas mixtures 31057 SO CHINESE JOURNAL OF CHEMICAL ENGINEERING 31058 DT Article 31059 DE equation of state; virial equation; gases; fugacity; correlation; 31060 mixture; polar; nonpolar 31061 ID CORRESPONDING-STATES 31062 C1 Shanghai Univ, Shanghai 200041, Peoples R China. 31063 RP Lee, HY, Shanghai Univ, Shanghai 200041, Peoples R China. 31064 CR CHUECH PL, 1967, IND ENG CHEM FUND, V6, P442 31065 KELL GS, 1968, J CHEM PHYS, V48, P3805 31066 KNAPP H, 1982, CHEM DATA SER, V6 31067 LEE BI, 1975, AICHE J, V21, P510 31068 LEE HY, 1992, FLUID PHASE EQUILIBR, V81, P152 31069 LEE HY, 1997, J SHANGHAI 2 POLYTEC, V14, P13 31070 MARTIN JJ, 1979, IND ENG CHEM FUND, V18, P81 31071 PLOCKER U, 1978, IND ENG CHEM PROC DD, V17, P324 31072 PRAUSNITZ JM, 1968, COMPUTER CALCULATION 31073 SMITH SM, 1975, INTRO CHEM ENG THERM 31074 SOAVE G, 1972, CHEM ENG SCI, V27, P1197 31075 VARGAFTIK NB, 1975, TABLES THERMOPHYSICA 31076 NR 12 31077 TC 0 31078 SN 1004-9541 31079 J9 CHINESE J CHEM ENG 31080 JI Chin. J. Chem. Eng. 31081 PD JUN 31082 PY 2000 31083 VL 8 31084 IS 2 31085 BP 163 31086 EP 166 31087 PG 4 31088 SC Engineering, Chemical 31089 GA 332UJ 31090 UT ISI:000088091500014 31091 ER 31092 31093 PT J 31094 AU Lu, YL 31095 Zhou, SP 31096 Xu, DM 31097 TI Analysis of properties of high-electron-mobility-transistor under 31098 optical illumination 31099 SO ACTA PHYSICA SINICA 31100 DT Article 31101 DE high electron mobility transistor; photovoltage; charge-controlling 31102 model; 2-dimensional electron gas 31103 ID ANALYTIC MODEL; HEMTS 31104 AB We studied the dynamical behaviors of the depletion-mode AlGaAs/GaAs 31105 high-electron-mobility transistor under optical illumination. The 31106 photovoltage effect and the photogenerated carriers contribution to the 31107 space charge concentration were taken into account. The pinch-off 31108 voltage, the sheet concentration of two-dimensional electron gas 31109 (2-DEG) located at the interface of the: heterojunction, the I-V 31110 characteristic curve, and the transconductance were investigated by 31111 using the charge-controlling model. We found that the pinch-off voltage 31112 was lowered and the sheet concentration of 2-DEG was increased because 31113 of the optical illumination, which, in turn, resulted in an increase in 31114 the current gain and the transconductance of the device. 31115 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 31116 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China. 31117 RP Lu, YL, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 31118 CR CHANG CS, 1987, IEEE T ELECTRON DEV, V34, P1456 31119 CHANG CS, 1987, SOLID STATE ELECTRON, V30, P485 31120 CHATURVEDI GJ, 1983, INFRARED PHYS, V23, P65 31121 CHEN CY, 1983, APPL PHYS LETT, V42, P1040 31122 DELAGEBEAUDEUF D, 1982, IEEE T ELECTRON DEV, V29, P955 31123 DESALLES AA, 1990, MICROW OPT TECHN LET, V3, P350 31124 DESALLES AA, 1991, IEEE T MICROW THEORY, V39, P2010 31125 GRAFFEUIL J, 1979, ELECTRON LETT, V15, P439 31126 HUEPPER G, 1991, PHYS REV LETT, V66, P2372 31127 MITRA H, 1998, IEEE T ELECTRON DEV, V45, P68 31128 SIMONS RN, 1987, IEEE T MICROW THEORY, V35, P1444 31129 SIMONS RN, 1990, OPTICAL CONTROL MICR, CH4 31130 SINGHAL A, 1990, SOLID STATE ELECTRON, V33, P1214 31131 SZE SM, 1981, PHYSICS SEMICONDUCTO, CH13 31132 YU LS, 1990, PHYSICS SEMICONDUCTO, CH5 31133 NR 15 31134 TC 1 31135 SN 1000-3290 31136 J9 ACTA PHYS SIN-CHINESE ED 31137 JI Acta Phys. Sin. 31138 PD JUL 31139 PY 2000 31140 VL 49 31141 IS 7 31142 BP 1394 31143 EP 1399 31144 PG 6 31145 SC Physics, Multidisciplinary 31146 GA 333HU 31147 UT ISI:000088125500037 31148 ER 31149 31150 PT J 31151 AU Dai, HH 31152 Dai, SQ 31153 Huo, Y 31154 TI Head-on collision between two solitary waves in a compressible 31155 Mooney-Rivlin elastic rod 31156 SO WAVE MOTION 31157 DT Article 31158 DE solitary waves; hyperelastic rods 31159 AB The interaction between two solitary waves in hyperelastic rods had 31160 been studied in literature by numerical methods, and here we study the 31161 head-on collision between two solitary waves in a circular cylindrical 31162 rod composed of a compressible Mooney-Rivlin material by a perturbation 31163 approach which combines the reductive perturbation method with the 31164 technique of strained coordinates. The third-order asymptotic solution 31165 which describes the evolution process of interaction is derived. It is 31166 found that the head-on collision does have imprints on the colliding 31167 waves with nonuniform phase shifts at O(epsilon(2)), which cause the 31168 tilting of the wave profiles. Our analytical results provide a formula 31169 for the maximum amplitude during the collision and also successfully 31170 explain the phenomenon that the smaller solitary wave has a larger 31171 distortion while the larger solitary wave has a smaller distortion. (C) 31172 2000 Elsevier Science B.V. All rights reserved. 31173 C1 City Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China. 31174 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 31175 RP Dai, HH, City Univ Hong Kong, Dept Math, Tat Chee Ave, Kowloon Tong, 31176 Hong Kong, Peoples R China. 31177 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E 31178 CLARKSON PA, 1986, STUD APPL MATH, V75, P95 31179 COHEN H, 1993, ACTA MECH, V100, P223 31180 COLEMAN BD, 1990, ARCH RATION MECH AN, V109, P39 31181 DAI HH, 1998, ACTA MECH, V127, P193 31182 DAI SQ, 1984, SIENTIA SINICA, V27, P507 31183 DAI SQ, 1992, NONLINEAR PROBLEMS E 31184 DAI SQ, 1997, APPL MATH MECH-ENGL, V18, P113 31185 HECK H, 1993, INTRO MAPLE 31186 MEI CC, 1989, APPL DYNAMICS OCEAN 31187 NARIBOLI GA, 1970, J MATH PHYS SCI, V4, P64 31188 NEWELL AC, 1985, SOLITONS MATH PHYSIC 31189 SAMSONOV AM, 1994, NONLINEAR WAVES SOLI, P349 31190 SOERENSEN MP, 1984, J ACOUST SOC AM, V76, P871 31191 SOERENSEN MP, 1987, J ACOUST SOC AM, V81, P1718 31192 SU CH, 1980, J FLUID MECH, V98, P509 31193 WRIGHT T, 1982, P IUTAM S FIN EL 31194 NR 17 31195 TC 2 31196 SN 0165-2125 31197 J9 WAVE MOTION 31198 JI Wave Motion 31199 PD AUG 31200 PY 2000 31201 VL 32 31202 IS 2 31203 BP 93 31204 EP 111 31205 PG 19 31206 SC Physics, Multidisciplinary; Acoustics; Mechanics 31207 GA 329VE 31208 UT ISI:000087928500001 31209 ER 31210 31211 PT J 31212 AU Sang, WB 31213 Qian, YB 31214 Shi, WM 31215 Wang, LJ 31216 Yang, J 31217 Liu, DH 31218 TI Equilibrium partial pressures and crystal growth of Cd1-xZnxTe 31219 SO JOURNAL OF CRYSTAL GROWTH 31220 DT Article 31221 DE equilibrium partial pressure; CdZnTe crystal growth; gamma detector 31222 ID CD-TE; SYSTEM 31223 AB The partial pressures, p(Cd) and p(Zn), over Cd1-xZnxTe (CZT) and 31224 Cd1-xZnx, melts were estimated based on known thermodynamic data and 31225 the partial pressures, p(Cd) and p(Zn), over Cd0.86Zn0.14 alloy melt at 31226 a temperature of about 980 degrees C could be equilibrium with those 31227 over Cd0.8Zn0.2Te melt at a melting temperature of 1162 degrees C. The 31228 Cd0.8Zn0.2Te crystal growth from the melt under controlled constituent 31229 partial pressures, provided by Cd0.86Zn0.14 alloy instead of only Cd 31230 source was carried out in this work. The best result for the 31231 resistivity, which has reached up to about 10(10) Omega cm, has been 31232 obtained under the equilibrium partial pressures estimated by 31233 thermodynamic relationships. The axial variation in Zn concentration, 31234 which has been obviously improved due to the Zn replenishment from the 31235 reservoir during the whole growth procedure, is within about 4%. EPD on 31236 the average was about 2 x 10(5) and 4 x 10(4)cm(-2) at the middle of 31237 the bulk. IR transmissivity in the range of 2 to 42 mu m is larger than 31238 60%. In addition, the relationship between resistivities and conducting 31239 types of the crystal and different controlled pressures is also 31240 discussed. (C) 2000 Elsevier Science B.V. All rights reserved. 31241 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 31242 RP Sang, WB, Shanghai Univ, Sch Mat Sci & Engn, Jiading Campus,20 31243 Chengzhong Rd,Jiading, Shanghai 201800, Peoples R China. 31244 CR BREBRICK RF, 1995, METALL MATER TRANS A, V26, P2597 31245 BUTLER JF, 1992, IEEE T NUCL SCI, V39, P605 31246 EISEN Y, 1998, J CRYST GROWTH, V184, P1310 31247 GLASS HL, 1998, J CRYST GROWTH, V184, P1035 31248 HULTGREN R, 1963, SELECTED VALUES THER, P637 31249 JORDAN AS, 1970, MET T, V1, P239 31250 NIEMELA A, 1994, IEEE T NUCL SCI, V41, P1054 31251 PETERS K, 1990, CRYST RES TECHNOL, V25, P1107 31252 TANAKA A, 1989, J CRYST GROWTH, V94, P166 31253 TUNG T, 1982, J VAC SCI TECHNOL, V21, P117 31254 VYDYANATH HR, 1993, J ELECTRON MATER, V22, P1067 31255 NR 11 31256 TC 8 31257 SN 0022-0248 31258 J9 J CRYST GROWTH 31259 JI J. Cryst. Growth 31260 PD JUN 31261 PY 2000 31262 VL 214 31263 BP 30 31264 EP 34 31265 PG 5 31266 SC Crystallography 31267 GA 328WC 31268 UT ISI:000087873200009 31269 ER 31270 31271 PT J 31272 AU Sang, WB 31273 Ju, JH 31274 Shi, WM 31275 Qian, YB 31276 Wang, LJ 31277 Xia, YB 31278 Wu, WH 31279 Fang, JX 31280 Li, YJ 31281 Zhao, J 31282 Gong, HM 31283 TI Comparison of physical passivation of Hg1-xCdxTe 31284 SO JOURNAL OF CRYSTAL GROWTH 31285 DT Article 31286 DE MCT physical passivation; ZnS/MCT interface; DLC/MCT interface 31287 ID HGCDTE; WINDOW 31288 AB The interface properties between well-polished MCT and ZnS layers 31289 deposited by three different physical techniques, and DLC prepared by 31290 RFPCVD, have been investigated by AES, IRTS, etc. ZnS and DLC films can 31291 prevent the outward diffusion of the components in MCT. However, Zn and 31292 S in the ZnS layer tend to diffuse into the MCT, especially, the S 31293 diffuses deeper in the case of EBV, and O is detected especially after 31294 PLD, but C in the DLC layer diffuses only slightly into the MCT. In 31295 particular, the IR transmission of the MCT with deposited DLC is 31296 obviously raised, and higher than that of the MCT with deposited ZnS at 31297 least in the range of 7.1-7.5 mu m. (C) 2000 Elsevier Science B.V. All 31298 rights reserved. 31299 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 31300 Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China. 31301 RP Sang, WB, Shanghai Univ, Sch Mat Sci & Engn, Jiading Campus, Shanghai 31302 201800, Peoples R China. 31303 CR BUBULAC LO, 1995, J ELECTRON MATER, V24, P1175 31304 HARRIS DC, 1995, P SOC PHOTO-OPT INS, V2552, P325 31305 HOLLAND L, 1979, THIN SOLID FILMS, V58, P107 31306 KINCH MA, 1982, J VAC SCI TECHNOL, V21, P215 31307 MCKINLEY JM, 1995, P SOC PHOTO-OPT INS, V2554, P213 31308 MROCZKOWSKI JA, 1983, J APPL PHYS, V54, P2041 31309 NEMIROVSKY Y, 1989, J VAC SCI TECHNOL A, V7, P450 31310 NR 7 31311 TC 3 31312 SN 0022-0248 31313 J9 J CRYST GROWTH 31314 JI J. Cryst. Growth 31315 PD JUN 31316 PY 2000 31317 VL 214 31318 BP 265 31319 EP 268 31320 PG 4 31321 SC Crystallography 31322 GA 328WC 31323 UT ISI:000087873200057 31324 ER 31325 31326 PT J 31327 AU Xu, KX 31328 Essa, AA 31329 Zhou, SP 31330 Bao, JS 31331 TI Anomalous microwave response of YBa2Cu3O7-delta granular thin films 31332 under magnetic fields 31333 SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY 31334 DT Article 31335 ID KOSTERLITZ-THOULESS TRANSITION; SINGLE-CRYSTALS; SUPERCONDUCTORS; 31336 RADIATION; ARRAYS 31337 AB The microwave response of YBa2Cu3O7-delta (YBCO) granular films has 31338 been studied at a microwave frequency of 30.5 GHz. In absence of a 31339 magnetic field, the dependencies of a normal microwave response on the 31340 bias current was observed at a temperature close to T-c. When a 31341 magnetic field ranging from 5.0 to 33.0 mT is applied, the responses 31342 broaden and shift toward a lower temperature. In the superconducting 31343 state, the responses were found to be highly dependent on the magnetic 31344 field. For a current of 5.0 mA and a magnetic field above 17.0 mT, the 31345 responses increased and did not vanish, even at a very low temperature, 31346 which is believed to be correlative with the anisotropic character of 31347 the structure. 31348 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 31349 RP Xu, KX, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 31350 CR AFANASYEV AS, 1989, IEEE T MAGN, V25, P2571 31351 BOONE BG, 1991, J APPL PHYS, V69, P2676 31352 CHANG K, 1991, J APPL PHYS, V69, P7316 31353 CHERN JD, 1993, IEEE T APPL SUPERCON, V3, P2128 31354 CULERTSON JC, 1991, PHYS REV B, V44, P9609 31355 DAVIS LC, 1990, PHYS REV B, V42, P99 31356 DONIACH S, 1979, PHYS REV LETT, V42, P1169 31357 ENOMOTO Y, 1986, J APPL PHYS, V59, P3808 31358 GAMMEL PL, 1991, PHYS REV LETT, V66, P953 31359 HERBERT ST, 1998, PHYS REV B, V57, P1154 31360 JUNG G, 1989, APPL PHYS LETT, V54, P2355 31361 KOCH RH, 1990, PHYS REV LETT, V64, P2586 31362 LI Q, 1990, PHYS REV LETT, V64, P3086 31363 MARTIN S, 1989, PHYS REV LETT, V62, P677 31364 PHONG LN, 1993, J APPL PHYS, V74, P7414 31365 ROSE K, 1975, APPL SUPERCONDUCTIVI 31366 RZCHOWSKI MS, 1990, PHYS REV B, V42, P2041 31367 TINHAM M, 1995, INTRO SUPERCONDUCTIV 31368 VADLAMANNATI S, 1991, PHYS REV B, V44, P7094 31369 YEH NC, 1989, PHYS REV B, V39, P9708 31370 YING QY, 1990, PHYS REV B, V42, P2242 31371 YOSOHISATO Y, 1990, JPN J APPL PHYS, V29, P1080 31372 NR 22 31373 TC 0 31374 SN 1051-8223 31375 J9 IEEE TRANS APPL SUPERCONDUCT 31376 JI IEEE Trans. Appl. Supercond. 31377 PD JUN 31378 PY 2000 31379 VL 10 31380 IS 2 31381 BP 1606 31382 EP 1611 31383 PG 6 31384 SC Engineering, Electrical & Electronic; Physics, Applied 31385 GA 329UR 31386 UT ISI:000087927300005 31387 ER 31388 31389 PT J 31390 AU Yang, XX 31391 Zhong, SS 31392 TI Analysis of two dual-polarization square-patch antennas 31393 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 31394 DT Article 31395 DE patch antenna; dual polarization; Green's function approach; input 31396 impedance 31397 ID MICROSTRIP ANTENNAS 31398 AB New analytical expressions for the input and mutual impedance of two 31399 kinds of dual-polarization square-patch antenna double fed ar the 31400 orthogonal edges or corners are obtained using the Green's function 31401 approach based on the planar circuit principle. The frequency 31402 characteristics of the input impedance, VSWR, and isolation are 31403 analyzed and verified by the published data and experiments. The 31404 calculating formulas are very efficient with little computation, and 31405 are suitable for engineering design. (C) 2000 John Wiley & Sons, Inc. 31406 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China. 31407 RP Yang, XX, Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R 31408 China. 31409 CR ABDALHAMEED RA, 1998, P I ELECTR ENG, V145, P455 31410 BENALLA A, 1986, IEEE T MICROW THEORY, V34, P733 31411 GATSINGER WJ, 1973, IEEE T MICROWAVE THE, V21, P34 31412 HAMMERSTAD EO, 1975, 5 EUR MICR C SEPT, P268 31413 LO YT, 1979, IEEE T ANTENN PROPAG, V27, P137 31414 MUNSON RE, 1974, IEEE T ANTENN PROPAG, V22, P74 31415 OKOSHI T, 1972, IEEE T MICROW THEORY, V20, P245 31416 RICHARDS WF, 1981, IEEE T ANTENN PROPAG, V29, P38 31417 NR 8 31418 TC 3 31419 SN 0895-2477 31420 J9 MICROWAVE OPT TECHNOL LETT 31421 JI Microw. Opt. Technol. Lett. 31422 PD AUG 5 31423 PY 2000 31424 VL 26 31425 IS 3 31426 BP 153 31427 EP 156 31428 PG 4 31429 SC Engineering, Electrical & Electronic; Optics 31430 GA 328KW 31431 UT ISI:000087850900005 31432 ER 31433 31434 PT J 31435 AU Zhang, SH 31436 Li, YZ 31437 TI Concise method for evaluating the probability distribution of the 31438 marginal cost of power generation 31439 SO IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION 31440 DT Article 31441 ID CONTRACTS; SYSTEM 31442 AB In the developing electricity market, many questions on electricity 31443 pricing and the risk modelling of forward contracts require the 31444 evaluation of the expected value and probability distribution of the 31445 short-run marginal cast of power generation at any given time. A 31446 concise forecasting method is provided, which is consistent with the 31447 definitions of marginal costs and the techniques of probabilistic 31448 production costing. The method embodies clear physical concepts, so 31449 that it can be easily understood theoretically and computationally 31450 realised. A numerical example has been used to test the proposed method. 31451 C1 Shanghai Univ, Dept Automat, Shanghai 200072, Peoples R China. 31452 RP Zhang, SH, Shanghai Univ, Dept Automat, 149 Yanchang Rd, Shanghai 31453 200072, Peoples R China. 31454 CR BILLINTON R, 1993, RELIABILITY EVALUATI 31455 BILLINTON R, 1994, IEEE T POWER SYST, V9, P68 31456 BLOOM JA, 1984, IEEE T POWER AP SYST, V103, P1725 31457 BLOOM JA, 1992, IEEE T POWER SYST, V7, P1370 31458 DAVID AK, 1994, IEE P-GENER TRANSM D, V141, P75 31459 GEDRA TW, 1994, IEEE T POWER SYST, V9, P1766 31460 KIRSCH LD, 1988, IEEE T PWRS, V3, P1133 31461 RAU NS, 1985, IEEE T POWER APPARAT, V104, P3493 31462 SHIH FR, 1998, IEEE T POWER SYST, V13, P731 31463 SUTANTON D, 1989, IEEE T ENERGY CONVER, V4, P559 31464 NR 10 31465 TC 1 31466 SN 1350-2360 31467 J9 IEE PROC-GENER TRANSM DISTRIB 31468 JI IEE Proc.-Gener. Transm. Distrib. 31469 PD MAY 31470 PY 2000 31471 VL 147 31472 IS 3 31473 BP 137 31474 EP 142 31475 PG 6 31476 SC Engineering, Electrical & Electronic 31477 GA 324AL 31478 UT ISI:000087598100001 31479 ER 31480 31481 PT J 31482 AU Li, HB 31483 Hu, YY 31484 Sun, L 31485 Shen, YJ 31486 TI Synthesis of 1-amino-2-(4 '-methoxycarbonyl ethyl-2 31487 '-methyl)phenoxy-4-hydroxy anthraquinone 31488 SO DYES AND PIGMENTS 31489 DT Article 31490 DE 1-amino-2-(4 '-methoxylcarbonyl ethyl-2 '-methyl)phenoxy-4-hydroxy 31491 anthraquinone; 4-(beta-cyanoethyl)-2-methylphenol; Friedel-Crafts 31492 reaction; hydrolysis of nitrile 31493 AB 4-(beta-Cyanoethyl)-2-methylphenol was synthesized via the 31494 Friedel-Crafts reaction between o-cresol and acrylonitrile and was then 31495 condensed with 1-amino-2-bromo-4-hydroxy anthraquinone. The resulting 31496 product was hydrolyzed in alkaline medium and esterified with methanol 31497 to afford the title compound. Mass spectra, H-1 NMR and visible spectra 31498 of the title compound and the intermediates were measured. (C) 2000 31499 Elsevier:Science Ltd. All rights reserved. 31500 C1 Shanghai Univ, Sch Environm & Architectural Engn, Shanghai 200072, Peoples R China. 31501 E China Univ Sci & Technol, Inst Fine Chem, Shanghai 200237, Peoples R China. 31502 RP Shen, YJ, Shanghai Univ, Sch Environm & Architectural Engn, Shanghai 31503 200072, Peoples R China. 31504 CR 15316, JP 31505 JOHNSON HW, 1975, J ORG CHEM, V22, P1264 31506 LAI DY, 1981, GONGYE HECHENG RANLI, P82 31507 RICHTER RH, 1977, 4051166, US 31508 SUN SD, 1992, CHINESE J ORG CHEM, V12, P96 31509 ZHANG ZY, 1995, JINGXI YOUJI HECHENG, P270 31510 ZHOU QK, 1993, SHANGHAI RANLIAO, V105, P5 31511 NR 7 31512 TC 0 31513 SN 0143-7208 31514 J9 DYE PIGMENT 31515 JI Dyes Pigment. 31516 PD JUN 31517 PY 2000 31518 VL 45 31519 IS 3 31520 BP 185 31521 EP 188 31522 PG 4 31523 SC Chemistry, Applied; Engineering, Chemical; Materials Science, Textiles 31524 GA 328QJ 31525 UT ISI:000087861300002 31526 ER 31527 31528 PT J 31529 AU Zhu, WP 31530 Guo, P 31531 Huang, Q 31532 TI General solution for U-shaped bellows overall-bending problems 31533 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 31534 DT Article 31535 DE flexible shells; shells of revolution; circular ring shells; bellows; 31536 U-shaped bellows 31537 AB The formulae for stresses and angular displacements of U-shaped bellows 31538 overall bending in a meridian plane under pure bending moments are 31539 presented based on the general solution for slender ring shells 31540 proposed by Zhu Weiping, et al. and the solution for ring plates. The 31541 results evaluated in this paper are compared with those on EJMA 31542 (standards of the expansion joint manufacturers association) and of the 31543 experiment given by Li Tingxilz, et al. 31544 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 31545 RP Zhu, WP, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 31546 200072, Peoples R China. 31547 CR 1993, STANDARDS EXPANSION 31548 AXELRAD EL, 1976, FLEXIBLE SHELLS M 31549 AXELRAD EL, 1987, THEORY FLEXIBLE SHEL 31550 CHIEN WZ, 1979, J TSINGHUA U, V19, P27 31551 CHIEN WZ, 1980, APPL MATH MECH ENGLI, V1, P305 31552 CHIEN WZ, 1981, APPL MATH MECH ENGLI, V2, P103 31553 CHIEN WZ, 1983, APPL MATH MECH, V4, P649 31554 HAMADA M, 1971, B JSME, V14, P401 31555 HUANG Q, 1986, APPL MATH MECH, V7, P573 31556 LI TX, 1994, J S CHINA U TECH, V22, P94 31557 NARASIMHAM SV, 1997, INT J PRES VES PIP, V71, P35 31558 QIAN H, 1982, APPL MATH MECH, V3, P99 31559 SKOCZEN B, 1992, INT J MECH SCI, V34, P901 31560 ZHU WP, 1998, P 2 ICIWS 1998 SING, P477 31561 ZHU WP, 1999, APPL MATH MECH-ENGL, V20, P952 31562 NR 15 31563 TC 4 31564 SN 0253-4827 31565 J9 APPL MATH MECH-ENGL ED 31566 JI Appl. Math. Mech.-Engl. Ed. 31567 PD APR 31568 PY 2000 31569 VL 21 31570 IS 4 31571 BP 371 31572 EP 382 31573 PG 12 31574 SC Mathematics, Applied; Mechanics 31575 GA 328KN 31576 UT ISI:000087850200001 31577 ER 31578 31579 PT J 31580 AU Deng, K 31581 Ren, ZM 31582 Jiang, GC 31583 TI Theoretical and experimental analysis of continuous casting with 31584 soft-contacted mould 31585 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA 31586 DT Article 31587 DE continuous casting; numerical simulation; soft-contacted mould 31588 AB Coupling the quasi-3D numerical simulation of electromagnetic field and 31589 the experiments with some metals such as tin, aluminum, copper and 31590 steel, the electromagnetic characteristics of continuous casting with 31591 soft-contacted mould, especially the influences of power frequency, the 31592 mould structure, and the inductor position, size and current on the 31593 electromagnetic force and pressure on the billet, were analyzed. The 31594 result shows that, in continuous casting with soft-contacted mould, the 31595 electromagnetic pressure on the surface of billet increases with the 31596 rising of the power frequency as a logarithmically parabolic function 31597 and, with that of inductor current as a parabolic function. The design 31598 principle of the soft-contacted mould is that 1) the mould structure 31599 should be 'more segments and thin slits'; 2) the topside of inductor 31600 should be at the same location with the meniscus of molten metal; 3) 31601 the inductor should cover the initial solidifying shell of billet. 31602 C1 Shanghai Univ, Sch Mat, Shanghai 200072, Peoples R China. 31603 CR AYATA K, 1997, CAMP ISIJ, V10, P828 31604 CHA PR, 1998, ISIJ INT, V38, P403 31605 DENG K, 1994, J SHANGHAI U TECH, V15, P87 31606 DENG K, 1996, T NONFERR METAL SOC, V6, P12 31607 DONG HF, 1998, J IRON STEEL, V10, P5 31608 FURUHASHI S, 1998, TETSU TO HAGANE, V84, P625 31609 LAVERS JD, 1989, ISIJ INT, V29, P993 31610 LI TJ, 1997, ACTA METALLURGICA SI, V33, P524 31611 MORISHITA M, 1991, MAGNETOHYDRODYNAMICS, P267 31612 SAKANE J, 1988, METALL T B, V19, P397 31613 VIVES C, 1989, METALL TRANS B, V20, P623 31614 ZHU XY, 1991, STUDY ELECTROMAGNETI 31615 NR 12 31616 TC 1 31617 SN 1003-6326 31618 J9 TRANS NONFERROUS METAL SOC CH 31619 JI Trans. Nonferrous Met. Soc. China 31620 PD JUN 31621 PY 2000 31622 VL 10 31623 IS 3 31624 BP 314 31625 EP 319 31626 PG 6 31627 SC Metallurgy & Metallurgical Engineering 31628 GA 327KX 31629 UT ISI:000087794000006 31630 ER 31631 31632 PT J 31633 AU Zhu, XH 31634 Zhu, JM 31635 Zhou, SH 31636 Li, Q 31637 Meng, ZY 31638 Liu, ZG 31639 Ming, NB 31640 TI Domain morphology evolution associated with the relaxer-normal 31641 ferroelectric transition in the Bi- and Zn-modified 31642 Pb(Ni1/3Nb2/3)O-3-PbZrO3-PbTiO3 system 31643 SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 31644 DT Article 31645 DE domains; electron microscopy; ferroelectric properties; Pb(Ni,Nb)O-3; 31646 PbTiO3; PbZrO3; perovskites 31647 ID MODIFIED PB(NI1/3NB2/3)O-3-PBTIO3-PBZRO3 CERAMICS; LEAD-MAGNESIUM 31648 NIOBATE; PEROVSKITE FERROELECTRICS; DIELECTRIC-PROPERTIES; BISMUTH; 31649 BEHAVIOR 31650 AB To understand the dielectric behavior from a viewpoint of domain 31651 configuration, the domain morphology evolution in 31652 (Pb0.985Bi0.01)(Ni1/4Zn1/12Nb2/3)(0.2)(Zr1-sigmaTisigma)(0.8)O-3 31653 ceramics (0.30 less than or equal to sigma less than or equal to 0.60) 31654 has been investigated by transmission electron microscopy and high 31655 resolution electron microscopy. The results indicated that the domain 31656 morphology evolved from the normal micron-sized domains to herringbone 31657 domain patterns, and finally to the polar nanodoamains approximately 3 31658 similar to 6 nm in size when the PT content was decreased from 60 to 30 31659 mol%. The normal twin-related 90 degrees macrodomains are closely 31660 correlated with the normal dielectric response of the composition with 31661 higher PT content, whereas the relaxer response of the composition with 31662 lower PT content is directly attributable to nanometer domains that 31663 contain 1:1 short-range ordering on the B-site sub-lattice. A model is 31664 proposed to describe the effect of the PbTiO3 content on the 31665 ferroelectric domain morphology evolution in the system. (C) 2000 31666 Elsevier Science Ltd. All rights reserved. 31667 C1 Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China. 31668 Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 31669 CCAST, World Lab, Beijing 100080, Peoples R China. 31670 RP Zhu, XH, Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, 31671 Nanjing 210093, Peoples R China. 31672 CR AKBAS MA, 1997, J AM CERAM SOC, V80, P2933 31673 CHEN J, 1989, J AM CERAM SOC, V72, P593 31674 CROSS LE, 1987, FERROELECTRICS, V76, P241 31675 HARMER MP, 1989, FERROELECTRICS, V97, P263 31676 HILTON AD, 1990, J MATER SCI, V25, P3461 31677 HU YH, 1986, J AM CERAM SOC, V69, P594 31678 POKOV VA, 1961, SOV PHYS-SOLID STATE, V3, P613 31679 RANDALL C, 1987, FERROELECTRICS, V76, P277 31680 RANDALL CA, 1990, J MATER RES, V5, P829 31681 RANDALL CA, 1990, JPN J APPL PHYS 1, V29, P327 31682 SETTER N, 1980, J APPL PHYS, V51, P4356 31683 SMOLENSKY GA, 1970, J PHYS SOC JAPAN S, V28, P26 31684 SWARTZ SL, 1984, J AM CERAM SOC, V67, P311 31685 YAO X, 1983, J APPL PHYS, V54, P3399 31686 YOON MS, 1995, J APPL PHYS, V77, P3991 31687 ZHU XH, 1997, J MATER SCI, V32, P4275 31688 ZHU XH, 1998, FERROELECTRICS, V215, P265 31689 ZHU XH, 1999, J MATER SCI, V34, P1533 31690 NR 18 31691 TC 3 31692 SN 0955-2219 31693 J9 J EUR CERAM SOC 31694 JI J. European Ceram. Soc. 31695 PD AUG 31696 PY 2000 31697 VL 20 31698 IS 9 31699 BP 1251 31700 EP 1255 31701 PG 5 31702 SC Materials Science, Ceramics 31703 GA 324PJ 31704 UT ISI:000087630300004 31705 ER 31706 31707 PT J 31708 AU Liu, YF 31709 Hua, JD 31710 Sang, WB 31711 TI Dielectric properties in ferroelectric optically active polyamides 31712 SO JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS 31713 DT Article 31714 DE dielectric constant; dielectric loss; dielectric properties; optically 31715 active polymers; polyamides 31716 ID LIQUID-CRYSTALLINE POLYACRYLATES; POLARIZATION; COPOLYMERS 31717 AB A relationship between dielectric constant epsilon or dielectric loss 31718 tan delta and structure was studied for optically active polyamides. 31719 The samples of these polyamides exhibited a chiral smectic phase due to 31720 their asymmetric structures and strong hydrogen bonds. The dielectric 31721 parameters were significantly influenced by temperature, but were 31722 hardly affected by frequency in the high-frequency region. The hindered 31723 rotations of the mesogens, which affect the polarization, depended on 31724 the structures and the phase transitions. 31725 C1 Shanghai Univ Sci & Technol, Dept Polymer Mat, Shanghai 201800, Peoples R China. 31726 Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 31727 RP Liu, YF, Shanghai Univ Sci & Technol, Dept Polymer Mat, Shanghai 31728 201800, Peoples R China. 31729 CR BALIZER E, 1991, IEEE PUBLICATION, P193 31730 CHIELLINI E, 1992, ACS SYM SER, V493, P280 31731 FURUKAWA T, 1992, POLYM PREPR JPN, V41, P4562 31732 KOZLOVSKY MV, 1992, CRYST RES TECHNOL, V27, P1141 31733 LEE JW, 1991, J POLYM SCI POL PHYS, V29, P273 31734 LIU Y, 1999, SHANGHAI DAXUE XUEBA, V5, P165 31735 OHTANI M, 1992, POLYM PREPR JPN, V41, P4559 31736 PORTUGALL M, 1982, MAKROMOL CHEM, V183, P2311 31737 SHIBAEV VP, 1984, POLYM BULL, V12, P299 31738 YAMAMOTO M, 1992, 04223440, JP 31739 ZENTEL R, 1985, MACROMOLECULES, V18, P960 31740 NR 11 31741 TC 0 31742 SN 0022-2348 31743 J9 J MACROMOL SCI-PHYS 31744 JI J. Macromol. Sci.-Phys. 31745 PY 2000 31746 VL B39 31747 IS 3 31748 BP 349 31749 EP 358 31750 PG 10 31751 SC Polymer Science 31752 GA 327AQ 31753 UT ISI:000087770400004 31754 ER 31755 31756 PT J 31757 AU Hua, JD 31758 Liu, YF 31759 Yuan, WJ 31760 TI The compatibility of a polymeric catalyst-substrate-solvent and 31761 reaction rate. IV 31762 SO JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS 31763 DT Article 31764 DE catalyst; compatibility; electrostatic interaction; hydrogenation; 31765 polymer-metal complex 31766 AB This article focuses on charged polymer catalyst systems. Based on 31767 chemical thermodynamics, kinetics, and interface chemistry, a 31768 quantitative relationship between the catalysis rate and the charge 31769 density on the various components in the catalysis system was obtained. 31770 It can be formulated as follows: 31771 r = A alpha phi(2)(1 - phi(2)) exp {lambda sigma(2) exp(gamma root 31772 alpha(1-phi(2)) + beta root alpha(1 - phi(2))[alpha(1 - phi(2)) + 31773 sigma(2)phi(2)]} 31774 This formula indicates that the larger the value of the charge density 31775 of the polymer backbone, the better the compatibility and, in turn, the 31776 faster the catalysis rate. This result is compared to our experiments 31777 and to literature results. 31778 C1 Shanghai Univ Sci & Technol, Dept Polymer Mat, Shanghai 201800, Peoples R China. 31779 RP Liu, YF, Shanghai Univ Sci & Technol, Dept Polymer Mat, Shanghai 31780 201800, Peoples R China. 31781 CR DEBYE P, 1923, PHYSIK, V2, P185 31782 DEBYE P, 1923, PHYSIK, V2, P24 31783 HUA J, 1989, J APPL POLYM SCI, V38, P1211 31784 HUA J, 1989, J MACROMOL SCI PHY B, V28, P455 31785 HUA J, 1993, J MACROMOL SCI PHY B, V32, P183 31786 ISE N, 1968, J AM CHEM SOC, V90, P4242 31787 YIN Y, 1980, CONCISE TXB PHYSICAL, V2, P214 31788 NR 7 31789 TC 0 31790 SN 0022-2348 31791 J9 J MACROMOL SCI-PHYS 31792 JI J. Macromol. Sci.-Phys. 31793 PY 2000 31794 VL B39 31795 IS 3 31796 BP 359 31797 EP 372 31798 PG 14 31799 SC Polymer Science 31800 GA 327AQ 31801 UT ISI:000087770400005 31802 ER 31803 31804 PT J 31805 AU Xu, H 31806 Shao, J 31807 TI Molecular dynamics simulation of the phase transition of 31808 alpha-berlinite under high pressure 31809 SO ACTA PHYSICO-CHIMICA SINICA 31810 DT Article 31811 DE molecular dynamics simulation; alpha-berlinite; pressure-induced 31812 amorphization 31813 ID GLASS; ALPO4 31814 AB A Molecular dynamics simulation of the behavior of alpha-berlinite 31815 (AIPO(4)) was performed between -20 GPa to 40 GPa at 300 K, With 31816 increasing pressure, the PO4 tetrahedron almost keeps unchanged, while 31817 the AlO4 tetrahedron becomes more and more distorted, but both P and Al 31818 continue to keep four coordinated with oxygen in the pressure region 31819 studied. The lattice constant a is more compressible than c and the 31820 calculated cell edge compressibilities are in good agreement with the 31821 experimental data available in low pressure region, An amorphous solid 31822 is formed at about 20 GPa and this glass, when releasing the pressure 31823 to zero, will transform back to its original crystal structure. The 31824 crystal structure can remain under tension until -15GPa. Further 31825 tension will make the crystal structure collapse. 31826 C1 Changshu Coll, Dept Chem, Changshu 215500, Peoples R China. 31827 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 31828 RP Xu, H, Changshu Coll, Dept Chem, Changshu 215500, Peoples R China. 31829 CR ANGELL CA, 1994, NUOVO CIMENTO D, V16, P993 31830 KIEFFER J, 1999, J PHYS CHEM B, V103, P4153 31831 KRUGER MB, 1990, SCIENCE, V249, P647 31832 MCNEW J, 1992, VA QUART REV, V68, P1 31833 SCIORTINO F, 1995, PHYS REV E B, V52, P6484 31834 SHAO J, 1990, ACTA PHYS SINICA, V39, P245 31835 SHAO J, 1993, ACTA METALLURGICA SI, V29, B11 31836 SHAO J, 1993, CHINESE PHYS LETT, V10, P669 31837 SOWA H, 1990, Z KRISTALLOGR, V192, P119 31838 TSE JS, 1993, PHYS REV LETT, V70, P174 31839 VANBEEST BWH, 1990, PHYS REV LETT, V64, P1955 31840 XU H, 1999, ACTA METALLURGICA SI, V35, P1065 31841 NR 12 31842 TC 2 31843 SN 1000-6818 31844 J9 ACTA PHYS-CHIM SIN 31845 JI Acta Phys.-Chim. Sin. 31846 PD JUN 31847 PY 2000 31848 VL 16 31849 IS 6 31850 BP 512 31851 EP 516 31852 PG 5 31853 SC Chemistry, Physical 31854 GA 325GJ 31855 UT ISI:000087667600007 31856 ER 31857 31858 PT J 31859 AU Wu, YJ 31860 Guo, BY 31861 TI Localization and approximation of attractors for the 31862 Kuramoto-Sivashinsky equations 31863 SO ACTA MATHEMATICA SCIENTIA 31864 DT Article 31865 DE Kuramoto-Sivashinsky equations; attractors; approximate inertial 31866 manifolds 31867 AB The aim of this paper is to provide explicitly a sequence of 31868 m-dimensional approximate inertial manifolds M(m,j,)j = 1,2,, for each 31869 positive integer m, for the Kuramoto-Sivashinsky equations. A very thin 31870 neighborhood into which the orbits enter with an exponential speed and 31871 in a finite time is associated with each manifold. The thickness of 31872 these neighborhoods decreases with increasing m for a fixed order j. 31873 Besides, the neighborhoods localize the global attractor and aid in the 31874 approximate computation of large-time solutions of the 31875 Kuramoto-Sivashinsky equations. 31876 C1 Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China. 31877 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 31878 CR FOIAS C, 1988, J DIFFER EQUATIONS, V73, P309 31879 FOIAS C, 1988, RAIRO MODEL MATH ANA, V22, P93 31880 NICOLAENKO B, 1985, PHYSICA D, V16, P155 31881 PROMISLOW K, 1990, PHYSICA D, P232 31882 PROMISLOW K, 1991, J DYNAMICS DIFFERENT, V3, P491 31883 PROMISLOW K, 1991, NONLINEAR ANAL-THEOR, V16, P959 31884 TEMAM R, 1988, APPL MATH SCI SER, V8 31885 TEMAM R, 1989, J FS TOKYO IA, V36, P629 31886 WU YJ, 1994, ADV MECH, V24, P145 31887 WU YJ, 1999, J COMPUT MATH, V17, P243 31888 NR 10 31889 TC 0 31890 SN 0252-9602 31891 J9 ACTA MATH SCI 31892 JI Acta Math. Sci. 31893 PD APR 31894 PY 2000 31895 VL 20 31896 IS 2 31897 BP 145 31898 EP 154 31899 PG 10 31900 SC Mathematics 31901 GA 324JR 31902 UT ISI:000087619000001 31903 ER 31904 31905 PT J 31906 AU Chen, YX 31907 Yao, MY 31908 Wan, XJ 31909 Xu, WX 31910 TI Effect of Fe on the environmental embrittlement of Co3Ti alloy 31911 SO INTERMETALLICS 31912 DT Article 31913 DE hydrogen embrittlement 31914 ID MECHANICAL-PROPERTIES 31915 AB The mechanical properties of Co3Ti-based alloys were investigated. The 31916 tensile results show that the environment embrittlement of the alloy 31917 was completely suppressed when third element Fe was added to Ll(2)-type 31918 Co3Ti alloy. The AES result shows that the surface reaction of Co3Ti-Fe 31919 alloy with water vapor saturates at exposure of 2x10(-3) Pa s, bur it 31920 does not saturate at 0.1 Pa s exposure for Co3Ti alloy, and that the 31921 extent of the surface reaction of Co3Ti-Fe with water vapor is much 31922 smaller than that of Co3Ti at the same exposure. It illustrates that 31923 the beneficial effect of Fe in Co3Ti on the environmental embrittlement 31924 is attributed to its obvious reduction of the kinetics of the surface 31925 reaction with water vapor. (C) 2000 Elsevier Science Ltd. All rights 31926 reserved. 31927 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 31928 Shanghai Iron & Steel Res Inst, Shanghai 200940, Peoples R China. 31929 RP Chen, YX, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 31930 CR CHEN TK, UNPUB SCRIPTA MAT 31931 GEORGE EP, 1993, SCRIPTA METALL MATER, V28, P857 31932 LIU CT, 1991, SCRIPTA METALL MATER, V25, P1933 31933 LIU Y, 1989, J MATER SCI, V24, P4458 31934 TAKASUGI T, 1986, ACTA METALL, V34, P607 31935 TAKASUGI T, 1990, J MATER SCI, V25, P4239 31936 TAKASUGI T, 1991, J MATER SCI, V26, P1173 31937 WAN X, 1994, J MATER SCI TECHNOL, V10, P39 31938 WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473 31939 WAN XJ, 1995, ACTA METALL SINICA, V8, P299 31940 NR 10 31941 TC 1 31942 SN 0966-9795 31943 J9 INTERMETALLICS 31944 JI Intermetallics 31945 PD MAY-JUN 31946 PY 2000 31947 VL 8 31948 IS 5-6 31949 BP 585 31950 EP 588 31951 PG 4 31952 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & 31953 Metallurgical Engineering 31954 GA 320GQ 31955 UT ISI:000087393800021 31956 ER 31957 31958 PT J 31959 AU Wei, EB 31960 Gu, GQ 31961 TI Electrostatic potential of strongly nonlinear composites: Homotopy 31962 continuation approach 31963 SO CHINESE PHYSICS 31964 DT Article 31965 ID BOUNDARY-VALUE-PROBLEMS; DECOUPLING APPROXIMATION; MEDIA; CONDUCTIVITY; 31966 2ND-ORDER 31967 AB The homotopy continuation method is used to solve the electrostatic 31968 boundary-value problems of strongly nonlinear composite media, which 31969 obey a current-field relation of J = sigma E + chi\E\E-2. With the mode 31970 expansion, the approximate analytical solutions of electric potential 31971 in host and inclusion regions are obtained by solving a set of 31972 nonlinear ordinary different equations, which are derived from the 31973 original equations with homotopy method. As an example in dimension 31974 two, we apply the method to deal with a nonlinear cylindrical inclusion 31975 embedded in a host. Comparing the approximate analytical solution of 31976 the potential obtained by homotopy method with that of numerical 31977 method, we can obverse that the homotopy method is valid for solving 31978 boundary-value problems of weakly and strongly nonlinear media. 31979 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China. 31980 RP Wei, EB, Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, 31981 Peoples R China. 31982 CR BARDHAN KK, 1994, SPRINGER LECT NOTES 31983 BERGMAN DJ, 1989, PHYS REV B, V39, P4598 31984 BERGMAN DJ, 1992, SOLID STATE PHYS, V46, P147 31985 BLUMENFELD R, 1989, PHYS REV B, V40, P1987 31986 CASTANEDA PP, 1992, PHYS REV B, V46, P4387 31987 CHOY TS, 1995, PHYS LETT A, V202, P129 31988 GU GQ, 1992, PHYS REV B, V46, P4502 31989 GU GQ, 1998, COMMUN THEOR PHYS, V29, P523 31990 LIAO SJ, 1992, INT J NUMER METH FL, V15, P595 31991 LIAO SJ, 1992, J APPL MECH-T ASME, V59, P970 31992 LUI SH, 1995, NUMER ALGORITHMS, V10, P363 31993 NI FS, 1995, CHINESE PHYS LETT, V12, P438 31994 STROUD D, 1989, J OPT SOC AM B, V6, P778 31995 YU KW, 1992, PHYS LETT A, V168, P313 31996 YU KW, 1994, PHYS LETT A, V193, P311 31997 YU KW, 1996, PHYS LETT A, V210, P115 31998 ZENG XC, 1989, PHYSICA A, V157, P192 31999 ZHANG W, 1999, PHYS LETT A, V255, P343 32000 NR 18 32001 TC 3 32002 SN 1009-1963 32003 J9 CHIN PHYS 32004 JI Chin. Phys. 32005 PD JUN 32006 PY 2000 32007 VL 9 32008 IS 6 32009 BP 464 32010 EP 468 32011 PG 5 32012 SC Physics, Multidisciplinary 32013 GA 321QW 32014 UT ISI:000087467000012 32015 ER 32016 32017 PT J 32018 AU Li, CP 32019 TI A Note on bifurcations of u ''+mu(u-u(k)) = 0(4 <= k epsilon Z(+)) 32020 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 32021 DT Article 32022 DE Liapunov-Schmidt reduction; singularity theory; bifurcation 32023 AB Bifurcations of one kind of reaction-diffusion equations, u" + mu ( u - 32024 u(k)) = 0(mu is a parameter, 4 less than or equal to k epsilon Z(+)), 32025 with boundary value condition u(0) = u(rr) = 0 are discussed. By means 32026 of singularity theory based on the method of Liapunov-Schmidt 32027 reduction, satisfactory results can be acquired. 32028 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 32029 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 32030 CR CHOW SN, 1982, METHODS BIFURCATION 32031 FIFE PC, 1979, LECT NOTES BIOMATHEM, V28 32032 GOLUBITSKY M, 1985, SINGULARITIES GROUPS, V1 32033 LU QS, 1995, BIFURCATION SINGULAR 32034 TANG Y, 1998, FDN SYMMETRY BIFURCA 32035 YE QX, 1994, INTRO REACTION DIFFU 32036 NR 6 32037 TC 2 32038 SN 0253-4827 32039 J9 APPL MATH MECH-ENGL ED 32040 JI Appl. Math. Mech.-Engl. Ed. 32041 PD MAR 32042 PY 2000 32043 VL 21 32044 IS 3 32045 BP 265 32046 EP 274 32047 PG 10 32048 SC Mathematics, Applied; Mechanics 32049 GA 321QX 32050 UT ISI:000087467100003 32051 ER 32052 32053 PT J 32054 AU Gu, GQ 32055 Yu, KW 32056 TI A theoretical research to effective viscosity of colloidal dispersions 32057 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 32058 DT Article 32059 DE multiphase flow; colloidal dispersion; suspension; emulsion 32060 ID PERIODIC SUSPENSION; PARTICLES 32061 AB Colloidal dispersions are common in nature with wide industrial 32062 applications. One of the central theoretical problems in the field is 32063 to determine the rheological properties of the colloidal dispersion 32064 from the microstructures of the systems. Because of the difficulties 32065 associated with the boundary-value problems of the many-particle 32066 system, existing theories for colloidal suspensions are limited to low 32067 particle concentrations. In this work, a method of transformation field 32068 is developed by which one can calculate the effective viscosity of an 32069 incompressible viscous fluid containing colloidal particles ( either 32070 solid particles or liquid drops). The predictions of the theory are in 32071 goad agreement with the Einstein's formula for suspensions and the 32072 Taylor's formula for emulsions at low particle concentrations. At 32073 higher particle concentrations, the results of Nunan and Keller are 32074 produced. The method is also applicable to the viscosity of colloidal 32075 systems with non-spherical particles. 32076 C1 Shanghai Univ Sci & Technol, Sch Comp Engn, Shanghai 200092, Peoples R China. 32077 Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. 32078 RP Gu, GQ, Shanghai Univ Sci & Technol, Sch Comp Engn, Shanghai 200092, 32079 Peoples R China. 32080 CR BATCHELOR GK, 1972, J FLUID MECH, V56, P401 32081 BATCHELOR GK, 1976, J FLUID MECH, V74, P1 32082 BEDEAUX D, 1977, PHYSICA A, V88, P88 32083 CHOW TS, 1993, PHYS REV E, V48, P1977 32084 EINSTEIN A, 1906, ANN PHYS-BERLIN, V19, P289 32085 GU GQ, 1988, PHYS REV B, V37, P8612 32086 GU GQ, 1989, SCI CHINA SER A, V32, P1186 32087 MAZUR P, 1982, PHYSICA A, V115, P21 32088 MELLEMA J, 1983, PHYSICA A, V122, P286 32089 NAGATANI T, 1979, J PHYS SOC JPN, V47, P320 32090 NASSER SN, 1981, Q APPL MATH, V39, P43 32091 NUNAN KC, 1984, J FLUID MECH, V142, P269 32092 PETERSON JM, 1963, J CHEM PHYS, V39, P2516 32093 RAYLEIGH, 1892, PHILOS MAG, V34, P481 32094 TAYLOR GI, 1932, P R SOC LOND A-CONTA, V138, P41 32095 NR 15 32096 TC 0 32097 SN 0253-4827 32098 J9 APPL MATH MECH-ENGL ED 32099 JI Appl. Math. Mech.-Engl. Ed. 32100 PD MAR 32101 PY 2000 32102 VL 21 32103 IS 3 32104 BP 275 32105 EP 282 32106 PG 8 32107 SC Mathematics, Applied; Mechanics 32108 GA 321QX 32109 UT ISI:000087467100004 32110 ER 32111 32112 PT J 32113 AU Zhang, JK 32114 Huang, YH 32115 Huang, GZ 32116 Chen, CG 32117 TI The Monte-Carlo method for solving the dimensional chain positive 32118 problem 32119 SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY 32120 DT Article 32121 DE Monte-Carlo simulation; dimensional chain; pseudo-random number 32122 AB In this paper, the Monte-Carlo method for solving the dimensional chain 32123 positive problem is presented and discussed. By using an electronic 32124 computer to calculate the limit size of piston travel of piston parts, 32125 not only are the calculating results of this method proven to be more 32126 precise than those of the probability method, but also the calculating 32127 speed of this method is proven to be faster than that of the 32128 probability method. (C) 2000 Elsevier Science S.A. All rights reserved. 32129 C1 Shanghai Univ, Ctr Mechanoelect Engn, Shanghai 200072, Peoples R China. 32130 Shanghai Sch Mechanoelect Ind, Shanghai 200093, Peoples R China. 32131 Yuchai Machinery Co, Yulin 537005, Guangxi, Peoples R China. 32132 RP Zhang, JK, Shanghai Univ, Ctr Mechanoelect Engn, 149 Yan Chang Rd, 32133 Shanghai 200072, Peoples R China. 32134 CR *DEP MATH MECH ZHO, 1980, THEOR PROB MATH STAT, V1, P148 32135 *DEP MATH MECH ZHO, 1980, THEOR PROB MATH STAT, V2, P343 32136 JIANZHONG Z, 1974, MONTE CARLO METHOD P, P28 32137 NR 3 32138 TC 1 32139 SN 0924-0136 32140 J9 J MATER PROCESS TECHNOL 32141 JI J. Mater. Process. Technol. 32142 PD JUN 15 32143 PY 2000 32144 VL 103 32145 IS 2 32146 BP 189 32147 EP 193 32148 PG 5 32149 SC Engineering, Industrial; Engineering, Manufacturing; Materials Science, 32150 Multidisciplinary 32151 GA 319RB 32152 UT ISI:000087354400002 32153 ER 32154 32155 PT J 32156 AU Xia, YB 32157 Sekiguchi, T 32158 Zhang, WJ 32159 Jiang, X 32160 Wu, WH 32161 Yao, T 32162 TI Effects of hydrogen ion bombardment and boron doping on (001) 32163 polycrystalline diamond films 32164 SO JOURNAL OF CRYSTAL GROWTH 32165 DT Article 32166 DE diamond; penetrating effects; thin film; cathodoluminescence 32167 ID CHEMICAL-VAPOR-DEPOSITION; GROWTH; SMOOTH 32168 AB Hydrogen ion bombardment was carried out by applying a negative bias 32169 voltage to the substrate during a microwave plasma chemical vapor 32170 deposition process, using only hydrogen as reactant gas. The sine of (0 32171 0 1) faces increases after hydrogen ion etching while other grains are 32172 etched off. The surfaces of [0 0 1] directionally oriented films after 32173 boron doping were investigated by scanning electron microscopy (SEM) 32174 and cathodoluminescent (CL) spectra. The absence of the band-A emission 32175 in the CL spectra indicates a low density of dislocations in the films. 32176 It is the first indication that the peak at 741.5 Nn and the broad peak 32177 at around 575 and 625 nm in the CL spectra are reduced efficiently 32178 after boron doping in (0 0 1) polycrystalline diamond films. We propose 32179 that these phenomena could be explained in simple terms by penetration 32180 or adsorption through the lattice nets of the [0 0 1] directionally 32181 oriented surfaces model. (C) 2000 Elsevier Science B.V. All rights 32182 reserved. 32183 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 32184 Tohoku Univ, Mat Res Inst, Sendai, Miyagi 980, Japan. 32185 Fraunhofer Inst Thin Films & Surface Engn, D-38108 Braunschweig, Germany. 32186 RP Xia, YB, Shanghai Univ, Sch Mat Sci & Engn, Jiading Campus, Shanghai 32187 201800, Peoples R China. 32188 CR COLLINS AT, 1990, J MATER RES, V5, P2507 32189 DAVIS JW, 1987, J NUCL MATER, V145, P417 32190 HAYASHI K, 1997, J APPL PHYS, V81, P744 32191 HAYASHI K, 1998, J CRYST GROWTH, V183, P338 32192 KAWARADA H, 1995, APPL PHYS LETT, V66, P583 32193 ROBINS LH, 1989, PHYS REV B, V39, P13367 32194 WILD C, 1993, DIAM RELAT MATER, V2, P158 32195 WON J, 1996, RECENT PROG DIAMOND, V1, P103 32196 YOKOTA Y, 1990, MAT RES SOC S P PITT, V160, P162 32197 ZHANG WJ, 1997, J APPL PHYS, V82, P1896 32198 NR 10 32199 TC 4 32200 SN 0022-0248 32201 J9 J CRYST GROWTH 32202 JI J. Cryst. Growth 32203 PD JUN 32204 PY 2000 32205 VL 213 32206 IS 3-4 32207 BP 328 32208 EP 333 32209 PG 6 32210 SC Crystallography 32211 GA 320EX 32212 UT ISI:000087389800017 32213 ER 32214 32215 PT J 32216 AU Li, SR 32217 Cheng, CJ 32218 TI Analysis of thermal post-buckling of heated elastic rods 32219 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 32220 DT Article 32221 DE elastic straight rod; thermal post-buckling; nonlinear mathematical 32222 model; shooting method; numerical solution 32223 AB Based on the nonlinear geometric theory of extensible rods, an exact 32224 mathematical model of thermal post-buckling behavior of uniformly 32225 heated elastic rods with axially immovable ends is developed, in which 32226 the are length s(x) of axial line and the longitudinal displacement 32227 u(x) are taken as the basic unknown functions. This is a two point 32228 boundary value problem of first order ordinary differential equations 32229 with strong nonlinearity. By using shooting method and analytical 32230 continuation, the nonlinear boundary value problems are numerically 32231 solved. The thermal post-buckled states of the rods with transversely 32232 simply supported and clamped ends are obtained respectively and the 32233 corresponding numerical data tables and characteristic curves are also 32234 given. 32235 C1 Gansu Univ Technol, Dept Basic Sci, Lanzhou 730050, Peoples R China. 32236 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 32237 Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China. 32238 RP Li, SR, Gansu Univ Technol, Dept Basic Sci, Lanzhou 730050, Peoples R 32239 China. 32240 CR CHEN CJ, 1991, BUCKLING BIFURCATION, P83 32241 CHENG JK, 1994, MECH PRACTICE, V16, P23 32242 LI SR, 1997, J LANZHOU U, V33, P43 32243 LI SR, 1998, P INT C NONL MECH, P282 32244 NOWISCKI JL, 1978, THEORY THERMAL ELAST, P547 32245 TAUCHERT TR, 1987, INT J NONLINEAR MECH, V22, P511 32246 TIMOSHENKO SP, 1961, THEORY ELASTIC STABI, P76 32247 WANG CY, 1997, INT J NONLINEAR MECH, V32, P1115 32248 WILLIAM HP, 1986, NUMERICAL RECIPES AR, P578 32249 NR 9 32250 TC 8 32251 SN 0253-4827 32252 J9 APPL MATH MECH-ENGL ED 32253 JI Appl. Math. Mech.-Engl. Ed. 32254 PD FEB 32255 PY 2000 32256 VL 21 32257 IS 2 32258 BP 133 32259 EP 140 32260 PG 8 32261 SC Mathematics, Applied; Mechanics 32262 GA 320DT 32263 UT ISI:000087387100002 32264 ER 32265 32266 PT J 32267 AU Huang, DB 32268 Zhao, XH 32269 TI The vector fields admitting one-parameter spatial symmetry group and 32270 their reduction 32271 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 32272 DT Article 32273 DE vector field; symmtry group; Lie group; reduction; preserving n-form 32274 AB For a n-dimensional vector fields preserving some n-form, the following 32275 conclusion is reached by the method of Lie group. That is, if it admits 32276 an one-parameter, n-form preserving symmetry group, a transformation 32277 independent of the vector field is constructed explicitly, which can 32278 reduce not only dimesion of the vector field by one, but also make the 32279 reduced vector field preserve the corresponding ( n - 1)-form. In 32280 partic ular, while n = 3, an important result can be directly got which 32281 is given by Me,ie and Wiggins in 1994. 32282 C1 Acad Sinica, Inst Mech, LNM, Beijing 100080, Peoples R China. 32283 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 32284 Yunnan Univ, Dept Math, Kunming 650091, Peoples R China. 32285 RP Huang, DB, Acad Sinica, Inst Mech, LNM, Beijing 100080, Peoples R China. 32286 CR GUO ZH, 1995, APPL MATH MECH, V16, P301 32287 LI JB, 1994, THEORY GEN HAMILTONI 32288 MARSDEN J, 1974, REP MATH PHYS, V5, P121 32289 MARSDEN JE, 1994, INTRO MECH SYMMETRY 32290 MEYER KR, 1973, DYNAMICAL SYSTEMS, P259 32291 MEZIC I, 1994, J NONLINEAR SCI, V4, P157 32292 OLVER PJ, 1986, APPL LIE GROUP DIFFE 32293 OTTINO JM, 1989, KINEMATICS MIXING ST 32294 SEN T, 1990, PHYSICA D, V44, P313 32295 SMALE S, 1970, INVENT MATH, V10, P305 32296 ZHANG JY, 1983, SCI SINICA A, V13, P426 32297 NR 11 32298 TC 0 32299 SN 0253-4827 32300 J9 APPL MATH MECH-ENGL ED 32301 JI Appl. Math. Mech.-Engl. Ed. 32302 PD FEB 32303 PY 2000 32304 VL 21 32305 IS 2 32306 BP 173 32307 EP 180 32308 PG 8 32309 SC Mathematics, Applied; Mechanics 32310 GA 320DT 32311 UT ISI:000087387100006 32312 ER 32313 32314 PT J 32315 AU Li, HF 32316 Wang, XW 32317 Zhang, RG 32318 Yuan, JH 32319 Xie, Y 32320 Xie, H 32321 TI Discovery of new antimetastatic agents: Review of in vitro and in vivo 32322 screening methods 32323 SO METHODS AND FINDINGS IN EXPERIMENTAL AND CLINICAL PHARMACOLOGY 32324 DT Article 32325 ID TUMOR-CELLS; HEPATOCELLULAR-CARCINOMA; METASTATIC CAPACITY; 32326 BASEMENT-MEMBRANE; LUNG METASTASIS; NUDE-MICE; MODEL; INVASION; CANCER; 32327 MATRIX 32328 C1 Chinese Acad Sci, Shanghai Inst Cell Biol, Dept Biotherapy, Shanghai 200031, Peoples R China. 32329 Shanghai Univ, Coll Life Sci, Dept Biochem, Shanghai 200041, Peoples R China. 32330 Hong Kong Univ Sci & Technol, Dept Biol, Hong Kong, Hong Kong, Peoples R China. 32331 RP Wang, XW, Chinese Acad Sci, Shanghai Inst Cell Biol, Dept Biotherapy, 32332 320 Yue Yang Rd, Shanghai 200031, Peoples R China. 32333 CR ALBINI A, 1987, CANCER RES, V47, P3239 32334 BERLIN J, 1997, J CLIN ONCOL, V15, P781 32335 CORBLEY MJ, 1996, INT J CANCER, V66, P753 32336 FAN TPD, 1995, TRENDS PHARMACOL SCI, V16, P57 32337 FOLKMAN J, 1986, CANCER RES, V46, P467 32338 GREENBERG AH, 1989, INVAS METAST, V9, P360 32339 GUAITANI A, 1985, CANCER RES, V45, P2206 32340 HORI K, 1979, GANN, V70, P383 32341 JAMES SE, 1974, CANCER RES, V34, P839 32342 KARRER K, 1967, INT J CANCER, V2, P213 32343 KOPPER L, 1982, J CANCER RES CLIN, V103, P31 32344 KRAMER RH, 1986, CANCER RES, V46, P1980 32345 KURAMITSU Y, 1998, ANTI-CANCER DRUG, V9, P88 32346 LAFRENLERE R, 1996, J NATL CANCER I, V76, P309 32347 LEONE A, 1991, CELL, V65, P25 32348 LI HF, 1998, ONCOL RES, V10, P569 32349 LIU HY, 1998, ACTA PHARMACOL SINIC, V33, P18 32350 MEHTA RR, 1998, BRIT J CANCER, V77, P595 32351 NICOSIA RF, 1990, LAB INVEST, V63, P115 32352 POHL J, 1988, MOL CELL BIOL, V8, P2078 32353 RABBANI SA, 1998, INT J ONCOL, V12, P911 32354 SAIKI I, 1989, BRIT J CANCER, V59, P194 32355 SATO H, 1961, CANC CHEMOTHER REP, V13, P33 32356 SIDRANSKY D, 1994, J NATL CANCER I, V86, P955 32357 STROEKEN PJM, 1998, CANCER RES, V58, P1569 32358 SUN FX, 1996, INT J CANCER, V66, P239 32359 SUN FX, 1996, J CANCER RES CLIN, V122, P397 32360 TAKASHI T, 1980, CANCER RES, V40, P4758 32361 TAKAZAWA H, 1976, GANN, V67, P403 32362 TERRANOVA VP, 1986, J NATL CANCER I, V77, P311 32363 TSUKAGOSHI S, 1970, CANC CHEMOTHER REP, V54, P311 32364 WEXLER H, 1966, J NATL CANCER I, V36, P641 32365 YAMAMOTO H, 1996, INT J CANCER, V65, P519 32366 YU AE, 1997, DRUG AGING, V11, P229 32367 NR 34 32368 TC 0 32369 SN 0379-0355 32370 J9 METH FIND EXP CLIN PHARMACOL 32371 JI Methods Find. Exp. Clin. Pharmacol. 32372 PD MAR 32373 PY 2000 32374 VL 22 32375 IS 2 32376 BP 123 32377 EP 128 32378 PG 6 32379 SC Pharmacology & Pharmacy 32380 GA 315CJ 32381 UT ISI:000087094800009 32382 ER 32383 32384 PT J 32385 AU Wei, JH 32386 Shen, XY 32387 TI Study on electroslag remelting of Cu-Cr-Zr alloy 32388 SO METALL 32389 DT Article 32390 AB The ESR of Cu-Cr-Zr alloy has been experimentally investigated. The 32391 remelting experiments have been carried out with different slag fluxes 32392 in the CaF2 + NaF, CaF2 + ZrO2 and CaF2 + NaF + ZrO2 systems on an ESR 32393 furnace of 25 kg capacity, using a water-cooled copper mould of 96.5 mm 32394 diameter, with the forged square bar electrodes of 50 x 50 mm(2). The 32395 slag amount was taken to be 1.5 kg. The remelting current and voltage 32396 used were 1600-1800 A and 15-25 V, respectively. The influence of the 32397 slag composition on the stability of the remelting process and the 32398 losses of alloying elements (Zr and Cr) has been considered and 32399 examined. The technologies of hot working and heat treatment of the ES 32400 ingot have been described and discussed. Some physical properties of 32401 the slag in a CaF2 + NaF + ZrO2 system and the remelted Cu-Cr-Zr alloy 32402 have been determined. The results indicated that with the slag flux of 32403 CaF2 + NaF + 10mass% ZrO2 and the other operation parameters employed, 32404 a high quality ingot of Cu-Cr-Zr alloy can be obtained at the 32405 considerably high yields of Zr and Cr by means of ESR. For the remelted 32406 Cu-Cr-Zr alloy with a specified composition of 0.5 mass% Cr and 0.1 32407 mass% Zr, the appropriate electrical conductivity, hardness and 32408 softening temperature are as high as 45-46 S/m, HRB 82-84 and greater 32409 than or equal to 550 degrees C, respectively. The properties of the 32410 Cu-Cr-Zr alloy products are in accordance with and superior to the 32411 requirements and specifications of ISO5182-1991(E). 32412 C1 Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China. 32413 Shanghai Elect Apparatus Res Inst, Shanghai, Peoples R China. 32414 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China. 32415 CR 474258, SU 32416 ANZEL I, 1997, METALL, V5, P189 32417 ANZEL, 1997, METALL, V4, P181 32418 HOYLE G, 1983, ELECTROSLAG PROCESSE 32419 KOROUSIC B, 1983, METALL, V37, P1109 32420 KOROUSIC B, 1984, METALL, V38, P319 32421 KOROUSIK B, 1987, METALL, V41, P153 32422 LODINI A, 1980, REV METALLURGIE, V12, P1061 32423 MILLER RR, 1981, PHARMACOTHERAPY, V1, P21 32424 PATON BE, 1981, ELECTROSLAG TECHNOLO 32425 NR 10 32426 TC 1 32427 SN 0026-0746 32428 J9 METALL 32429 JI Metall 32430 PY 2000 32431 VL 54 32432 IS 4 32433 BP 196 32434 EP 200 32435 PG 5 32436 SC Metallurgy & Metallurgical Engineering 32437 GA 314BX 32438 UT ISI:000087035200005 32439 ER 32440 32441 PT J 32442 AU Huang, SP 32443 You, JP 32444 Jiang, GC 32445 Yoshida, F 32446 Xu, KD 32447 TI A molecular dynamics simulation of CaSiO3 melt under an electric field 32448 SO CHINESE PHYSICS LETTERS 32449 DT Article 32450 AB The results of a molecular dynamics (MD) simulation are presented for 32451 CaSiO3 melt under an electric field. The two-body interaction potential 32452 is adopted in the simulation, with parameters chosen so that the 32453 calculated static structure is consistent with results of high 32454 temperature x-ray experiments. It is found that the MD results for the 32455 heat capacity at constant volume, the self-diffusion coefficient and 32456 the electrical conductivity change greatly when the electric field is 32457 over 500 MV/m. Discussion is given on these results, together with the 32458 frequency-dependent electrical conductivity. 32459 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 32460 Shiga Univ Med Sci, Dept Phys, Shiga 5202192, Japan. 32461 RP Huang, SP, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 32462 200072, Peoples R China. 32463 CR ENDERLY JE, 1985, AMORPHOUS SOLIDS LIQ 32464 HANSEN JP, 1986, THEORY SIMPLE LIQUID 32465 HEMMATI M, 1995, PHYS REV B, V51, P14841 32466 HUANG SP, 1999, J PHYS-CONDENS MAT, V11, P5429 32467 KATO T, 1990, J CHEM PHYS, V92, P5506 32468 KELLER H, 1979, METALL T B, V10, P1356 32469 KELLER H, 1982, METALL T B, V13, P237 32470 MAEDA M, 1997, P 5 INT C MOLT SLAGS, P423 32471 MATSUI M, 1988, PHYS CHEM MINER, V16, P234 32472 PING HS, 1997, J PHYS SOC JPN, V66, P1356 32473 PING HS, 1997, J PHYS SOC JPN, V66, P392 32474 WANG ZW, 1997, CHINESE PHYS LETT, V14, P151 32475 WASEDA Y, 1989, MAT SCI EARTH INTERI 32476 ZHANG YH, 1999, CHINESE PHYS LETT, V16, P253 32477 ZONG XF, 1998, CHINESE PHYS LETT, V15, P767 32478 NR 15 32479 TC 4 32480 SN 0256-307X 32481 J9 CHIN PHYS LETT 32482 JI Chin. Phys. Lett. 32483 PY 2000 32484 VL 17 32485 IS 4 32486 BP 279 32487 EP 281 32488 PG 3 32489 SC Physics, Multidisciplinary 32490 GA 318EP 32491 UT ISI:000087271200017 32492 ER 32493 32494 PT J 32495 AU Wang, YS 32496 Bao, BR 32497 Tan, XF 32498 Yang, AP 32499 TI Extraction mechanism of uranium(VI) with N,N,N ',N 32500 '-tetrabutylmalonamide 32501 SO CHINESE JOURNAL OF INORGANIC CHEMISTRY 32502 DT Article 32503 DE N,N,N ',N '-tetrabutylmalonamide (TBMA); extraction uranium (VI); 32504 coordination model 32505 AB The extraction mechanism of HNO3 and UO22+ with TBMA in toluene from 32506 the nitric acid medium has been studied. At the experimental condition, 32507 HNO3 and TBMA can form HNO3. TBMA, and the composition of extracted 32508 species is UO2(NO3)(2). 3TBMA. it was testified that the in the 32509 extraction species UO2(NO3)(2). 3TBMA, NO3- did not directly 32510 participate in coordination of uranyl (VI) ion by IR, and the 32511 coordination mode of the complex was also discussed. 32512 C1 Coll Agr, Laiyang 265200, Peoples R China. 32513 Shanghai Univ, Shanghai 201800, Peoples R China. 32514 RP Wang, YS, Coll Agr, Laiyang 265200, Peoples R China. 32515 CR DAVIS W, 1965, J PHYS CHEM-US, V69, P1094 32516 MUSIKAS C, 1988, SEPAR SCI TECHNOL, V23, P1211 32517 NAIR GM, 1993, SOL EXTR ION EXCH, V11, P813 32518 WANG HZ, 1995, WUJI HUAXUE XUEBAO, V11, P120 32519 WANG YS, 1997, THESIS CHINESE ACAD 32520 XU GX, 1984, EXTRACTION CHEM PRIN, P134 32521 NR 6 32522 TC 1 32523 SN 1001-4861 32524 J9 CHIN J INORG CHEM 32525 JI Chin. J. Inorg. Chem. 32526 PD MAY 32527 PY 2000 32528 VL 16 32529 IS 3 32530 BP 416 32531 EP 420 32532 PG 5 32533 SC Chemistry, Inorganic & Nuclear 32534 GA 317VH 32535 UT ISI:000087247300007 32536 ER 32537 32538 PT J 32539 AU Cao, WG 32540 Ding, WY 32541 Tong, WQ 32542 Liu, X 32543 Qiu, MY 32544 TI Studies on the reaction of 1,2,3-trisubstituted electron-deficient 32545 cyclopropane derivatives with methanol 32546 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE 32547 DT Article 32548 DE 1,2,3-trisubstituted cyclopropane; methanolysis; methyl butyrate 32549 ID STEREOSELECTIVE SYNTHESIS 32550 AB In this paper, the reaction of 1,2,3-trisubstituted electron-deficient 32551 cyclopropane derivatives cis-1-benzoyl-2-p-substituted phenyl-6, 32552 6-dimethyl-5, 7-dioxo-spiro-[2, 5]-4,8-octadiones with methanol was 32553 studied. The structures of the reaction products were confirmed as 32554 methyl beta-benzoyl-gamma-methoxy-gamma-p-substituted phenylbutyrates 32555 by means of IR, MS, microanalysis, H-1, C-13 NMR spectroscopies and APT 32556 techniques. The reaction mechanism for the formation of the product was 32557 also proposed. 32558 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 32559 Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China. 32560 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 32561 CR CHEN YL, 1998, CHEM J CHINESE U, V19, P1614 32562 DING WY, 1996, CHEM RES CHINESE U, V12, P50 32563 DING WY, 1999, CHEM J CHINESE U, V20, P64 32564 MONTI SA, 1974, TETRAHEDRON LETT, P3239 32565 MURPHY WS, 1983, J CHEM SOC P1, P817 32566 POKU SK, 1984, CAN J CHEM, V62, P1217 32567 PU JQ, 2000, IN PRESS SYNTHESIS C 32568 SMITH AB, 1978, TETRAHEDRON LETT, P1649 32569 NR 8 32570 TC 1 32571 SN 0251-0790 32572 J9 CHEM J CHINESE UNIV-CHINESE 32573 JI Chem. J. Chin. Univ.-Chin. 32574 PD MAY 32575 PY 2000 32576 VL 21 32577 IS 5 32578 BP 740 32579 EP 742 32580 PG 3 32581 SC Chemistry, Multidisciplinary 32582 GA 316HH 32583 UT ISI:000087161200022 32584 ER 32585 32586 PT J 32587 AU Liu, ZR 32588 Chen, LQ 32589 Yang, L 32590 TI On properties of hyperchaos: Case study 32591 SO ACTA MECHANICA SINICA 32592 DT Article 32593 DE hyperchaos; strange attractor; unstable periodic point; pattern 32594 formation 32595 ID CHAOS 32596 AB Some properties of hyperchaos are exploited by studying both uncoupled 32597 and coupled CML. In addition to usual properties of chaotic strange 32598 attractors, there are other interesting properties, such as: the number 32599 of unstable periodic points embedded in the strange attractor increases 32600 dramatically increasing and a large number of low-dimensional chaotic 32601 invariant sets are contained in the strange attractor. These properties 32602 may be useful for regarding the edge of chaos as. the origin of 32603 complexity of dynamical systems. 32604 C1 Acad Sinica, Inst Mech, LNM, Beijing 100080, Peoples R China. 32605 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 32606 Shanghai Univ, Dept Mech, Shanghai 201800, Peoples R China. 32607 RP Liu, ZR, Acad Sinica, Inst Mech, LNM, Beijing 100080, Peoples R China. 32608 CR BADII R, 1997, COMPLEXITY HIERARCHI 32609 CHEN LQ, 1998, APPL MATH MECH-ENGL, V19, P67 32610 CHEN LQ, 1998, J SHANGHAI JIAOTONG, V32, P108 32611 KANEKO K, 1989, PHYSICA D, V34, P1 32612 LIU ZG, 1993, SCI CHINA SER A, V23, P702 32613 LIU ZR, 1997, ACTA MECH SCINICA, V29, P103 32614 MAROTTO FR, 1978, J MATH ANAL APPL, V63, P199 32615 MAROTTO FR, 1979, COMMUN MATH PHYS, V68, P187 32616 MAROTTO FR, 1979, J MATH ANAL APPL, V72, P716 32617 OTT E, 1990, PHYS REV LETT, V64, P1196 32618 WALDROP MM, 1992, COMPLEXITY EMERGING 32619 YANG L, 1998, APPL MATH MECH-ENGL, V19, P1 32620 NR 12 32621 TC 6 32622 SN 0567-7718 32623 J9 ACTA MECH SINICA 32624 JI Acta Mech. Sin. 32625 PD NOV 32626 PY 1999 32627 VL 15 32628 IS 4 32629 BP 366 32630 EP 370 32631 PG 5 32632 SC Engineering, Mechanical; Mechanics 32633 GA 317GF 32634 UT ISI:000087217100008 32635 ER 32636 32637 PT J 32638 AU Li, XS 32639 Yamashita, K 32640 Tanaka, T 32641 Suzuki, Y 32642 Okuyama, M 32643 TI Structural and electrical properties of highly oriented Pb(Zr,Ti)O-3 32644 thin films deposited by facing target sputtering 32645 SO SENSORS AND ACTUATORS A-PHYSICAL 32646 DT Article 32647 DE PZT thin film; facing target sputtering; crystalline orientation; 32648 ferroelectric property 32649 ID ZIRCONATE-TITANATE FILMS; HEAT-TREATMENT; GEL; SUBSTRATE; GROWTH; 32650 PB(ZR; RF 32651 AB The Pb(Zr,Ti)O-3 thin films with single (111) oriented perovskite phase 32652 and excellent electrical properties have been prepared by annealing the 32653 as-deposited samples. The orientation of crystals depends strongly on 32654 both the deposition temperature and annealing temperature. The sample 32655 annealed at 606 degrees C has the best (111) orientation. When the 32656 sample is annealed at lower temperature, the relative content of (111) 32657 oriented perovskite phase decreases quickly with increase of deposition 32658 temperature. The deposition temperature has little effects on the 32659 orientation when the sample is annealed at higher temperature. The 32660 effects of deposition temperature and annealing temperature on the 32661 crystallographic structures and electrical properties of PZT thin films 32662 were investigated in this paper. The sample deposited at 285 degrees C 32663 and annealed at 606 degrees C has the maximum value of polarization, 32664 which displays excellent ferroelectric properties. The typical P-r and 32665 P-s values are 57 and 101 mu C/cm(2), respectively. (C) 2000 Elsevier 32666 Science S.A. All rights reserved. 32667 C1 Shanghai Univ, Shanghai, Peoples R China. 32668 Osaka Univ, Osaka, Japan. 32669 Technol Res Inst Osaka Prefecture, Super Eye Image Sensor Project, Osaka 5941157, Japan. 32670 RP Li, XS, Shanghai Univ, Shanghai, Peoples R China. 32671 CR CHEN SY, 1994, J AM CERAM SOC, V77, P2337 32672 EAKIM B, 1998, J VAC SCI TECHNOL A, V16, P2876 32673 FUKUDA Y, 1997, JPN J APPL PHYS 1, V36, P5793 32674 HIRATA K, 1992, JPN J APPL PHYS 1, V31, P3021 32675 KIM CJ, 1998, THIN SOLID FILMS, V312, P130 32676 MASUDA Y, 1996, JPN J APPL PHYS 1, V35, P5002 32677 MATSUOKA M, 1986, J APPL PHYS, V60, P2096 32678 NAM HJ, 1998, JPN J APPL PHYS 1, V37, P3462 32679 RANDALL CA, 1998, J AM CERAM SOC, V81, P677 32680 REANEY IM, 1994, J AM CERAM SOC, V77, P1209 32681 SONG YJ, 1998, APPL PHYS LETT, V72, P2686 32682 SPIERINGS GACM, 1991, J APPL PHYS, V70, P2290 32683 TUTTLE BA, 1993, J AM CERAM SOC, V76, P1537 32684 UDAYAKUMAR KR, 1995, J APPL PHYS, V77, P3981 32685 NR 14 32686 TC 6 32687 SN 0924-4247 32688 J9 SENSOR ACTUATOR A-PHYS 32689 JI Sens. Actuator A-Phys. 32690 PD MAY 15 32691 PY 2000 32692 VL 82 32693 IS 1-3 32694 BP 265 32695 EP 269 32696 PG 5 32697 SC Engineering, Electrical & Electronic; Instruments & Instrumentation 32698 GA 314PD 32699 UT ISI:000087063700041 32700 ER 32701 32702 PT J 32703 AU Xu, KX 32704 TI Non-equilibrium radiation response and decoupling of vortex-antivortes 32705 pairs in two-dimensional high-T-c superconductors 32706 SO ACTA PHYSICA SINICA 32707 DT Article 32708 ID KOSTERLITZ-THOULESS TRANSITION; YBA2CU3O7-DELTA THIN-FILMS; 32709 2-DIMENSIONAL SUPERCONDUCTORS; RENORMALIZATION; PHOTORESPONSE 32710 AB On the basis of the two-dimensional (2D) characteristics of the 32711 superconducting transportation as well as Josephson weak link behaviors 32712 in granular YBCO films,a 2D Josephson junction array is propssed as a 32713 model system for this film. Using this simplified model, we have 32714 discussed the decoupling procedure of vortex-antivortex pairs by bias 32715 current,and analytically developed temperature distribution of free 32716 vortices n(T,I) below T-KT. As compared with experimental results,we 32717 find that the temperature dependency of n(T,I) is similar to the 32718 behaviors of microwave response of granular YBCO films near K-T 32719 transition temperature. This similarity implies, to a certain 32720 extent,some intrinsic relationship between vortex-antivortex decoupling 32721 and non-equilibrium radiation response dissipation in the high-T-c 32722 superconducting granular films. 32723 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 32724 RP Xu, KX, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 32725 CR BEASLEY MR, 1979, PHYS REV LETT, V42, P1165 32726 BOONE BG, 1991, J APPL PHYS, V69, P2676 32727 CHEN JD, 1993, IEEE T APPL SUPERCON, V3, P2128 32728 CULBERTSON JC, 1991, PHYS REV B, V44, P9609 32729 DAVIS LC, 1990, PHYS REV B, V42, P99 32730 DEMSAR J, 1997, J SUPERCOND, V10, P455 32731 DONIACH S, 1979, PHYS REV LETT, V42, P1169 32732 FIORY AT, 1988, PHYS REV LETT, V61, P1419 32733 FRENKEL A, 1993, PHYS REV B, V48, P9717 32734 HABIB YM, 1998, PHYS REV B, V57, P13833 32735 HALPERIN BI, 1979, J LOW TEMP PHYS, V36, P599 32736 HEGMANN FA, 1993, PHYS REV B, V48, P16023 32737 HEGMANN FA, 1995, APPL PHYS LETT, V67, P285 32738 HERTER ST, 1998, PHYS REV B, V57, P1154 32739 HUBER WM, 1996, APPL PHYS LETT, V68, P3338 32740 KADIN AM, 1983, PHYS REV B, V27, P6691 32741 KOSTERLITZ JM, 1973, J PHYS C SOLID STATE, V6, P1181 32742 MARTIN S, 1989, PHYS REV LETT, V62, P677 32743 PHONG LN, 1993, J APPL PHYS, V74, P7414 32744 TINKHAM M, 1995, INTRO SUPERCONDUCTIV 32745 VANVECHTEN D, 1997, APPL PHYS LETT, V71, P1415 32746 WU PH, 1987, JPN J APPL PHYS, V26, L1579 32747 XU KX, 1999, ACTA PHYS SIN-CH ED, V48, P1152 32748 YING QY, 1990, PHYS REV B, V42, P2242 32749 ZHANG ZM, 1994, J SUPERCOND, V7, P871 32750 NR 25 32751 TC 1 32752 SN 1000-3290 32753 J9 ACTA PHYS SIN-CHINESE ED 32754 JI Acta Phys. Sin. 32755 PD MAY 32756 PY 2000 32757 VL 49 32758 IS 5 32759 BP 989 32760 EP 996 32761 PG 8 32762 SC Physics, Multidisciplinary 32763 GA 313XV 32764 UT ISI:000087025700032 32765 ER 32766 32767 PT J 32768 AU Zhong, YB 32769 Ren, ZM 32770 Deng, K 32771 Jiang, GC 32772 Xu, KD 32773 TI Separation of inclusions from liquid metal contained in a 32774 triangle/square pipe by travelling magnetic field 32775 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA 32776 DT Article 32777 DE travelling magnetic fields; purification; inclusion 32778 AB By using plug flow and trajectory model, the elimination efficiency of 32779 the inclusions from liquid metals purified by travelling magnetic field 32780 (TMF) in either a triangle or a square pipe was analyzed theoretically. 32781 The ways to improve the elimination efficiency were suggested. The 32782 results using different kinds of pipes were reciprocally compared. It 32783 is determined that by means of TMF to eliminate inclusions the 32784 efficiency is affected by the diameter of the inclusions, in which the 32785 inclusions can be removed most efficiently, is optimized. 32786 C1 Shanghai Univ, Shanghai Key Lab Ferrous Met, Shanghai 200072, Peoples R China. 32787 CR FLEMINGS MC, 1981, SOLIDIFYING PROCESS, P202 32788 JIANG GC, 1996, CLEAN STEEL SECONDAR, P2 32789 JOON P, 1994, TETSU TO HAGANE, V80, P31 32790 LEENOV D, 1954, J CHEM PHYS, V22, P683 32791 SHANGGUAN D, 1992, METALL TRANS A, V23, P669 32792 SHOJI T, 1994, TETSU TO HAGANE, V80, P24 32793 TANLGUCHI S, 1997, PAR P EMP INT C, P199 32794 YOSHIKO T, 1995, TETSU TO HAGANE, V81, P12 32795 ZHAO XD, 1985, VISCOUS HYDROMECHANI, P62 32796 ZHONG YB, 1988, DEV NOWADAYS LEVEL T, P435 32797 ZHONG YB, 1999, CHINESE J NONFERROUS, V9, P482 32798 ZHONG YB, 1999, SHANGHAI NONFERROUS, P5 32799 NR 12 32800 TC 5 32801 SN 1003-6326 32802 J9 TRANS NONFERROUS METAL SOC CH 32803 JI Trans. Nonferrous Met. Soc. China 32804 PD APR 32805 PY 2000 32806 VL 10 32807 IS 2 32808 BP 240 32809 EP 245 32810 PG 6 32811 SC Metallurgy & Metallurgical Engineering 32812 GA 310PC 32813 UT ISI:000086835700024 32814 ER 32815 32816 PT J 32817 AU Jiang, GC 32818 You, JL 32819 Yu, BK 32820 Haung, SP 32821 TI Developments of high temperature Raman spectroscopic techniques 32822 SO SPECTROSCOPY AND SPECTRAL ANALYSIS 32823 DT Article 32824 DE high temperature; Raman spectroscopy; melt 32825 AB In recent years,researches on electroluminescence (EL) of organic and 32826 polymer thin film materials have been made with an outstanding 32827 progress,and have attracted much interest because of its large-area, 32828 full color, high luminance displays which can be driven with low de 32829 voltage. In this paper, the history of the development on 32830 electroluminescence, the devices and the selection of luminescent 32831 materials and the electroluminescence principle are introduced briefly. 32832 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 32833 RP Jiang, GC, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 32834 200072, Peoples R China. 32835 CR GILLET P, 1996, PHYS CHEM MINER, V23, P263 32836 IGUCHI Y, 1981, CAN METALL Q, V20, P51 32837 IGUCHI Y, 1984, P 2 INT C MOLT SLAGS, P975 32838 IGUCHI Y, 1988, P 3 INT C MOLT SLAGS, P169 32839 KASHIO S, 1980, RAMAN SPECTROSCOPIC, V20, P251 32840 LONG DA, 1977, RAMAN SPECTROSCOPY 32841 RICHET P, 1993, J APPL PHYS, V74, P5451 32842 NR 7 32843 TC 6 32844 SN 1000-0593 32845 J9 SPECTROSC SPECTR ANAL 32846 JI Spectrosc. Spectr. Anal. 32847 PD APR 32848 PY 2000 32849 VL 20 32850 IS 2 32851 BP 206 32852 EP + 32853 PG 5 32854 SC Spectroscopy 32855 GA 312TD 32856 UT ISI:000086958400018 32857 ER 32858 32859 PT J 32860 AU Wang, XJ 32861 Zhang, ZM 32862 Zhang, GX 32863 TI Improving the performance of spring-supported thrust bearing by 32864 controlling its deformations 32865 SO TRIBOLOGY INTERNATIONAL 32866 DT Article 32867 DE spring supporting form; thermo-elastic deformation; thrust bearing 32868 ID ELASTIC DISTORTION ANALYSIS 32869 AB The performance of the spring-supported thrust bearing is studied with 32870 three-dimensional thermo-elastic hydrodynamic lubrication theory. The 32871 generalized Reynolds equation, the energy equation, the heat conduction 32872 equation, and the thermo-elastic deformation equation are solved 32873 simultaneously using the combination of the finite difference method 32874 and finite element method. Thermo-elastic deformation plays an 32875 important role in the performance of the spring-supported thrust 32876 bearing. Several factors such as spring pattern, pad thickness and 32877 initial pad geometry are analyzed. The results show that the above 32878 factors influence the performance of the bearing significantly. 32879 Suggestions based on the results are put forward to assist design 32880 considerations. (C) 2000 Elsevier Science Ltd. All rights reserved. 32881 C1 Shanghai Univ, Dept Mech Engn, Shanghai 200072, Peoples R China. 32882 RP Wang, XJ, Shanghai Univ, Dept Mech Engn, Shanghai 200072, Peoples R 32883 China. 32884 CR ASHOUR NME, 1991, TRIBOL INT, V24, P299 32885 ETTLES CM, 1991, J TRIBOL-T ASME, V113, P626 32886 LIAO G, 1994, HUBEI ELECT TECHNOL, V1, P74 32887 SINHA AN, 1993, TRIBOL INT, V26, P251 32888 SINHA AN, 1994, STLE TRIBOL T, V37, P802 32889 WANG X, 1998, P ASIATRIB 98, P30 32890 NR 6 32891 TC 3 32892 SN 0301-679X 32893 J9 TRIBOL INT 32894 JI Tribol. Int. 32895 PD DEC 32896 PY 1999 32897 VL 32 32898 IS 12 32899 BP 713 32900 EP 720 32901 PG 8 32902 SC Engineering, Mechanical 32903 GA 310GA 32904 UT ISI:000086817100003 32905 ER 32906 32907 PT J 32908 AU Wang, GB 32909 TI Synthesis and characterization of novel complexes of a dipeptide Schiff 32910 base ligand containing DL-alanyl-DL-alanine 32911 SO SYNTHESIS AND REACTIVITY IN INORGANIC AND METAL-ORGANIC CHEMISTRY 32912 DT Article 32913 ID L-AMINO-ACIDS; COORDINATION MODES; HISTIDINE; OXOVANADIUM(IV); 32914 STEREOCHEMISTRY; OXYGENATION; COPPER(II); CRYSTAL 32915 AB A new dipeptide Schiff base obtained by the condensation of 32916 DL-alanyl-DL-alanine with o-vanillin was synthesized and characterized 32917 by H-1 NMR spectroscopy. Cu(II), Zn(II), Ni(II) and Co(II) complexes 32918 were obtained with the dipeptide Schiff base. The COO stretching bands 32919 in the IR spectra suggest that carboxylate acts as a monodentate group 32920 when binding with metal. The ligand is coordinated to the central metal 32921 as tetradentate ligand. The bonding sites are the carboxylate oxygen, 32922 imino nitrogen, amide nitrogen and phenolic oxygen. 32923 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 201800, Peoples R China. 32924 RP Wang, GB, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 201800, Peoples R 32925 China. 32926 CR ABDELMAWGOUD AM, 1991, SYN REACT INORG MET, V21, P1061 32927 ANGOSO A, 1992, INORG CHIM ACTA, V195, P45 32928 CASELLA L, 1984, J CHEM SOC DA, P1033 32929 CASELLA L, 1986, INORG CHEM, V25, P1293 32930 CASELLA L, 1988, INORG CHIM ACTA, V144, P89 32931 CAVACO I, 1994, J CHEM SOC DA, P149 32932 CHAKRAVARTY J, 1994, J CHEM SOC DA, P557 32933 DUTTA S, 1995, POLYHEDRON, V14, P1163 32934 FULWOOD R, 1995, J CHEM SOC CHEM COMM, P1443 32935 GEARY WJ, 1971, COORDIN CHEM REV, V7, P81 32936 GON NK, 1993, POLYHEDRON, V12, P925 32937 MARTELL AE, 1989, ACCOUNTS CHEM RES, V22, P115 32938 MARTELL AE, 1990, J CHEM SOC CHEM COMM, P352 32939 MATHEWS II, 1991, INORG CHEM, V30, P81 32940 MONDAL S, 1995, J CHEM SOC DA, P1115 32941 NAKAMOTO K, 1978, INFRA RED RAMAN SPEC 32942 NATH M, 1998, SYN REACT INORG MET, V28, P715 32943 PESSOA JC, 1992, J CHEM SOC DA, P1745 32944 VOGEL AI, 1978, TXB QUANTITATIVE INO 32945 WANG GB, 1994, SYN REACT INORG MET, V28, P843 32946 YUSUFF KKM, 1991, SYN REACT INORG MET, V21, P553 32947 NR 21 32948 TC 3 32949 SN 0094-5714 32950 J9 SYN REACTIV INORG METAL-ORG C 32951 JI Synth. React. Inorganic Met.-Org. Chem. 32952 PY 2000 32953 VL 30 32954 IS 4 32955 BP 601 32956 EP 608 32957 PG 8 32958 SC Chemistry, Inorganic & Nuclear 32959 GA 310HM 32960 UT ISI:000086820500003 32961 ER 32962 32963 PT J 32964 AU Yao, LX 32965 Chen, RL 32966 Qin, P 32967 Chen, NY 32968 Lu, WC 32969 TI Regularities of formation of ternary alloy phases between 32970 non-transition metals 32971 SO SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES 32972 DT Article 32973 DE non-transition metals; ternary intermetallic compounds; regularities of 32974 formation 32975 AB Using a four-parameter model based on extended Miedema's cellular model 32976 of alloy phases and pattern recognition methods, the regularities of 32977 formation of ternary intermetallic compounds between non-transition 32978 metals have been investigated. The criterion of formation can be 32979 expressed as some empirical functions of phi (electronegativity), 32980 n(ws)(1/3)(valence electron density in Wagner-Seitz cell), R (Pauling's 32981 metallic radius) and Z (number of valence electrons in atom). 32982 C1 Chinese Acad Sci, Shanghai Inst Met, Shanghai 200050, Peoples R China. 32983 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 32984 RP Yao, LX, Chinese Acad Sci, Shanghai Inst Met, Shanghai 200050, Peoples 32985 R China. 32986 CR CHEN NY, 1976, BOND PARAMETER FUNCT 32987 CHEN NY, 1996, J ALLOY COMPD, V245, P179 32988 CHEN NY, 1999, CHEMOMETR INTELL LAB, V45, P329 32989 MIEDEMA AR, 1973, J LESS-COMMON MET, V32, P117 32990 NESPER R, 1993, J ALLOY COMPD, V197, P109 32991 PAULING L, 1960, NATURE CHEM BOND 32992 TILLARDCHARBONN.M, 1993, MATER RES BULL, V28, P1285 32993 VILLERS P, 1987, PERSONS HDB CRYSTALL, V1 32994 NR 8 32995 TC 3 32996 SN 1006-9321 32997 J9 SCI CHINA SER E 32998 JI Sci. China Ser. E-Technol. Sci. 32999 PD APR 33000 PY 2000 33001 VL 43 33002 IS 2 33003 BP 199 33004 EP 205 33005 PG 7 33006 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary 33007 GA 309AJ 33008 UT ISI:000086744800011 33009 ER 33010 33011 PT J 33012 AU Zhao, DQ 33013 Wang, WH 33014 Zhuang, YX 33015 Pan, MX 33016 Ji, YF 33017 Ma, XM 33018 Dong, YD 33019 TI Formation and performance of new Zr-Ti-Cu-Ni-Be-Fe bulk amorphous alloy 33020 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY 33021 DT Article 33022 DE bulk amorphous alloy; glass forming ability; Zr-Ti-Cu-Ni-Be-Fe alloy; 33023 hardness; susceptibility 33024 ID METALLIC-GLASS; MICROSTRUCTURE 33025 AB The formation of the new Zr-Ti-Cu-Ni-Be-Fe bulk amorphous alloy with 33026 high strength is reported. The effects of the iron atom on the glass 33027 forming ability, hardness, susceptibility and thermal stability of the 33028 amorphous alloy are investigated. The role of the iron in the formation 33029 of the bulk amorphous alloy is discussed. 33030 C1 Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. 33031 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 33032 RP Zhao, DQ, Chinese Acad Sci, Inst Phys, POB 603, Beijing 100080, Peoples 33033 R China. 33034 CR DAI DS, 1992, FERROMAGNETICS, P28 33035 GREER AL, 1993, NATURE, V366, P303 33036 INOUE A, 1995, MATER T JIM, V36, P866 33037 JOHNSON WL, 1996, MATER SCI FORUM, V35, P225 33038 PEKER A, 1993, APPL PHYS LETT, V63, P2342 33039 WANG R, 1979, NATURE, V278, P700 33040 WANG WH, 1997, APPL PHYS LETT, V71, P1053 33041 WANG WH, 1998, PHYS REV B, V57, P8211 33042 NR 8 33043 TC 0 33044 SN 1006-9283 33045 J9 SCI CHINA SER A 33046 JI Sci. China Ser. A-Math. Phys. Astron. 33047 PD MAR 33048 PY 2000 33049 VL 43 33050 IS 3 33051 BP 307 33052 EP 311 33053 PG 5 33054 SC Mathematics, Applied; Mathematics 33055 GA 309AP 33056 UT ISI:000086745300009 33057 ER 33058 33059 PT J 33060 AU Xu, YR 33061 Chen, LS 33062 Wang, DY 33063 Jin, L 33064 TI Flow behavior and evolution of microstructure during hot deformation 33065 for a high Mo stainless steel 33066 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 33067 DT Article 33068 ID PRECIPITATION 33069 AB The mechanical behaviors of high Mo austenitic stainless steel 33070 00Cr20Ni18Mo6Cu[N] have been investigated using the methods of hot 33071 compression simulation test on the Thermecmaster-Z simulator. The 33072 dynamic recrystallization kinetic equation was established, Avrami 33073 coefficient n lies in between 0.9 similar to 2 depending on deformation 33074 parameters. A perfect flow stress model considering dynamic 33075 recrystallization was also established. Dynamic recrystallization tends 33076 to complete at 1050 degrees C and high strain rate, but at temperature 33077 below 950 degrees C, it is hard to occur. Double-stage interrupt 33078 compression tests were carried out. Activation energy for static and 33079 metadynamic recrystallization have been obtained respectively 33080 (Q(SRX)=483.7, Q(MDRX)=253.5 kJ/mol). Avrami coefficient of MDRX is 33081 about 0.5, and t(0.5)-kinetics equations of SRX and MDRX have also been 33082 constructed. The evolution of microstructures during interrupt 33083 compression deformation was investigated. Static and metadynamic 33084 recrystallization is essential to improve plasticity, at temperature 33085 above 1000 degrees C increasing interpass time has advantage for static 33086 and metadynamic recrystallization. 33087 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 33088 RP Xu, YR, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R 33089 China. 33090 CR DUTTA B, 1987, MATER SCI TECH SER, V3, P197 33091 FABREGUE P, 1994, ADV HOT DEFORMATION, P75 33092 HERTZMEN S, 1996, SCANDINAVIAN J METAL, V24, P140 33093 HODGSON PD, 1994, ADV HOT DEFORMATION, P41 33094 HOLMVIK AA, 1997, THERM 97 INT C THERM, V1, P241 33095 JARGELIUSPETTER.RF, 1996, SCANDINAVIAN J METAL, V24, P188 33096 MILITZER M, 1994, ACTA METALL MATER, V42, P133 33097 ROBERTS W, 1984, DEFORMATION PROCESSI, P109 33098 ROUCOULES C, 1993, 1 INT C MOD MET ROLL, P165 33099 RYAN ND, 1990, MATER FORUM, V14, P283 33100 RYAN ND, 1994, ADV HOT DEFORMATION, P445 33101 NR 11 33102 TC 0 33103 SN 1005-0302 33104 J9 J MATER SCI TECHNOL 33105 JI J. Mater. Sci. Technol. 33106 PD MAY 33107 PY 2000 33108 VL 16 33109 IS 3 33110 BP 341 33111 EP 344 33112 PG 4 33113 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 33114 Engineering 33115 GA 310FW 33116 UT ISI:000086816700018 33117 ER 33118 33119 PT J 33120 AU Chen, BL 33121 Lu, W 33122 Wang, ZG 33123 Yang, H 33124 Wang, H 33125 TI Characterization for 64x64 InSb photovoltaic infrared detector array 33126 SO JOURNAL OF INFRARED AND MILLIMETER WAVES 33127 DT Article 33128 DE infrared focal plane array; InSb; microprobing; characterization 33129 AB Statistical characterization and uniformity evaluation for 64 X 64 InSb 33130 photovoltaic detector arrays prepared for fabrication of staring 33131 infrared focal plane array by using modified cryomicroprobing technique 33132 were carried out. Typical values of mean detector impedance 42Mh Omega 33133 at 90K and zero bias with nonuniformity 20%, mean responsivity 2.8A/W 33134 for 1000K blackbody with nonuniformity 6.3%, and electrical crosstalk 33135 rate less than 2% were measured. These performances meet the technical 33136 requirements to fabrication of hybrid InSb focal plane arrays. 33137 Localized electrical crosstalk detected on some abnormal chips was 33138 discussed. 33139 C1 Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China. 33140 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 33141 RP Chen, BL, Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083, 33142 Peoples R China. 33143 CR AMINGUAL D, 1996, P SOC PHOTO-OPT INS, V2894, P95 33144 BLUZER N, 1987, OPT ENG, V26, P241 33145 NAVEH O, 1997, P SOC PHOTO-OPT INS, V3061, P692 33146 PARRISH WJ, 1991, P SOC PHOTO-OPT INS, V1512, P68 33147 TREADO PJ, 1994, APPL SPECTROSC, V48, P607 33148 NR 5 33149 TC 0 33150 SN 1001-9014 33151 J9 J INFRARED MILIM WAVES 33152 JI J. Infrared Millim. Waves 33153 PD APR 33154 PY 2000 33155 VL 19 33156 IS 2 33157 BP 89 33158 EP 92 33159 PG 4 33160 SC Optics 33161 GA 310JD 33162 UT ISI:000086822000002 33163 ER 33164 33165 PT J 33166 AU Wang, ZH 33167 Peng, GD 33168 Chu, PL 33169 TI Improved Rouard's method for fiber and waveguide gratings 33170 SO OPTICS COMMUNICATIONS 33171 DT Article 33172 DE Rouard's method; fiber gratings 33173 ID WAVE-GUIDE GRATINGS; COUPLED-MODE THEORY; PERIODIC STRUCTURES 33174 AB An improvement has been made to Rouard's method for the analysis of 33175 fiber and waveguide gratings. The real reflectivity of each interface 33176 is used instead of an approximate value obtained by coupled-mode 33177 theory. The improved Rouard's method becomes a complete Rouard's method 33178 and an exact method. It is simple and independent on coupled-mode 33179 theory for no calculation of coupling coefficient required. Numerical 33180 examples of uniform and nonuniform gratings have been given. (C) 2000 33181 Published by Elsevier Science B.V. All rights reserved. 33182 C1 Shanghai Univ, Wave Sci Lab, Shanghai 201800, Peoples R China. 33183 Univ New S Wales, Sch Elect Engn, Opt Commun Grp, Sydney, NSW 2052, Australia. 33184 RP Wang, ZH, Shanghai Univ, Wave Sci Lab, Shanghai 201800, Peoples R China. 33185 CR ERDOGAN T, 1997, J LIGHTWAVE TECHNOL, V15, P1277 33186 HILL KO, 1997, J LIGHTWAVE TECHNOL, V15, P1263 33187 KOGELNIK H, 1976, BELL SYST TECH J, V55, P109 33188 WELLERBROPHY LA, 1985, J OPT SOC AM A, V2, P863 33189 WELLERBROPHY LA, 1987, J OPT SOC AM A, V4, P60 33190 WINICK KA, 1992, APPL OPTICS, V31, P757 33191 YAMADA M, 1987, APPL OPTICS, V26, P3474 33192 YARIV A, 1977, IEEE J QUANTUM ELECT, V13, P233 33193 YARIV A, 1993, OPTICAL WAVES CRYSTA, P177 33194 YEH P, 1977, J OPT SOC AM, V67, P423 33195 NR 10 33196 TC 1 33197 SN 0030-4018 33198 J9 OPT COMMUN 33199 JI Opt. Commun. 33200 PD APR 15 33201 PY 2000 33202 VL 177 33203 IS 1-6 33204 BP 245 33205 EP 250 33206 PG 6 33207 SC Optics 33208 GA 306BW 33209 UT ISI:000086577200029 33210 ER 33211 33212 PT J 33213 AU Jin, CY 33214 Ding, YP 33215 Meng, ZY 33216 TI Studies on the chemical mechanism of BaxSr1-xTiO3 ferroelectric thin 33217 films by sol-gel method 33218 SO JOURNAL OF INORGANIC MATERIALS 33219 DT Article 33220 DE BST thin films; sol-gel method; FTIR; DSC; XRD; AFM 33221 ID KINETICS 33222 AB FTIR analysis combined with DSC, XRD and AFM experiments was used to 33223 study on the chemical mechanism of thermal evolution for BaxSr1-xTiO3 33224 (BST) thin films derived by sol-gel method. Acetylacetone(HAcAc) was 33225 introduced as a chelating agent to reduce a rapid hydrolysis rate of 33226 Ti-alkoxide, to improve its crystallization path, to decrease its 33227 crystallization temperature. And then the densified and crack-free BST 33228 thin films with better crystallization were fabricated. 33229 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China. 33230 Shanghai Jiao Tong Univ, Dept Mat Sci, Shanghai 200030, Peoples R China. 33231 RP Jin, CY, Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China. 33232 CR DING YP, UNPUB MAT RES B 33233 DING YP, 1999, ADV SCI TECHNOLOGY, V20, P615 33234 GUST MC, 1997, J AM CERAM SOC, V80, P2828 33235 JANG SI, 1997, J MATER RES, V12, P1327 33236 KAMALASANAN MN, 1996, J MATER SCI, V31, P2741 33237 OHFUJI S, 1997, JPN J APPL PHYS 1, V36, P5854 33238 SENGUPTA LC, 1994, FERROELECTRICS, V153, P359 33239 SHAIKH AS, 1986, J AM CERAM SOC, V69, P682 33240 NR 8 33241 TC 1 33242 SN 1000-324X 33243 J9 J INORG MATER 33244 JI J. Inorg. Mater. 33245 PD APR 33246 PY 2000 33247 VL 15 33248 IS 2 33249 BP 287 33250 EP 292 33251 PG 6 33252 SC Materials Science, Ceramics 33253 GA 307PA 33254 UT ISI:000086660700015 33255 ER 33256 33257 PT J 33258 AU Feng, WB 33259 Li, KT 33260 TI The existence and uniqueness of weak solution of the flow between two 33261 concentric rotating spheres 33262 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 33263 DT Article 33264 DE Navier-Stokes equations; stream function; Galerkin method 33265 ID SIMULATION 33266 AB The unsteady axisymmetric incompressible flow between two concentric 33267 spheres was discussed in this paper. It is useful to most 33268 astrophysical, geophysical and engineering applications. In order to 33269 get the existence and uniqueness of weak solution of this flow with the 33270 stream-velocity form, firstly, the relations among the nonlinear terms 33271 in this equation is found; then, the existence is proved by an 33272 auxiliary semi-discrete scheme and a compactness argument. 33273 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 33274 Xian Jiao Tong Univ, Sch Sci, Xian 710049, Peoples R China. 33275 RP Feng, WB, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 33276 200072, Peoples R China. 33277 CR GLOWINSKI R, 1984, NUMERICAL METHODS NO 33278 KHLEBUTIN GN, 1968, FLUID DYN, V3, P31 33279 LI KT, 1992, HILBERT SPACE METHOD 33280 MARCUS PS, 1987, J FLUID MECH, V185, P1 33281 MARCUS PS, 1987, J FLUID MECH, V185, P31 33282 TEMAN R, 1984, NAVIERSTOKES EQUATIO 33283 TUCKERMAN LS, 1983, THESIS MIT MASSACHUS 33284 NR 7 33285 TC 0 33286 SN 0253-4827 33287 J9 APPL MATH MECH-ENGL ED 33288 JI Appl. Math. Mech.-Engl. Ed. 33289 PD JAN 33290 PY 2000 33291 VL 21 33292 IS 1 33293 BP 67 33294 EP 72 33295 PG 6 33296 SC Mathematics, Applied; Mechanics 33297 GA 308DJ 33298 UT ISI:000086695000009 33299 ER 33300 33301 PT J 33302 AU Cheng, CJ 33303 Chen, XY 33304 TI Inverse scattering for inhomogeneous viscoelastic media 33305 SO JOURNAL OF MATHEMATICAL PHYSICS 33306 DT Article 33307 ID DISSIPATIVE WAVE-EQUATION; ELECTROMAGNETIC SCATTERING; TIME DOMAIN 33308 AB In this paper, the inverse scattering problems for the full 33309 inhomogeneous viscoelastic medium are studied via the invariant 33310 imbedding technique. Special attention is paid to the propagation 33311 operators of the viscoelastic medium and the imbedding equations for 33312 these operators are derived. For the inverse scattering problems, it is 33313 shown that the reflection data can be extended from one round trip 33314 through the iscoelastic slab to arbitrary time with the help of the 33315 propagation operators, hence the reconstruction of the relaxation 33316 modulus is sufficient to be considered only in one round trip. It is 33317 also shown that only one-side measurement reflection data are not 33318 sufficient to reconstruct the relaxation modulus and the density of the 33319 medium simultaneously. The corresponding numerical examples are 33320 presented. For the case that the relaxation modulus of the medium is 33321 modeled by two independent functions, an iterative inversion procedure 33322 is proposed to recover the relaxation modulus and the density 33323 simultaneously with the input two-side normally reflection data. (C) 33324 2000 American Institute of Physics. [S0022-2488(00)06705-0]. 33325 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China. 33326 State Ocean Adm, Key Lab Marine Sci & Numer Modelling, Tsingdao 266003, Peoples R China. 33327 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, 33328 Shanghai 200072, Peoples R China. 33329 CR AMMICHT E, 1987, J ACOUST SOC AM, V81, P827 33330 BEEZLEY RS, 1985, J MATH PHYS, V26, P317 33331 BUI DD, 1995, INVERSE PROBL, V11, P835 33332 CHRISTENSON RM, 1982, THEORY VISCOELASTICI 33333 CORONES JP, 1988, INVERSE PROBL, V4, P643 33334 KARLSSON A, 1987, INVERSE PROBL, V3, P691 33335 KREIDER KL, 1989, WAVE MOTION, V11, P427 33336 KRESS R, 1989, APPL MATH SCI 33337 KRISTENSSON G, 1986, J MATH PHYS, V27, P1667 33338 KRISTENSSON G, 1986, J MATH PHYS, V27, P1683 33339 ZHU WH, 1990, J ACOUST SOC AM, V877, P2371 33340 NR 11 33341 TC 1 33342 SN 0022-2488 33343 J9 J MATH PHYS-NY 33344 JI J. Math. Phys. 33345 PD MAY 33346 PY 2000 33347 VL 41 33348 IS 5 33349 BP 2839 33350 EP 2850 33351 PG 12 33352 SC Physics, Mathematical 33353 GA 305YD 33354 UT ISI:000086568600022 33355 ER 33356 33357 PT J 33358 AU Liu, YF 33359 Wang, SZ 33360 Hua, JD 33361 TI Synthesis of complex polymeric flocculant and its application in 33362 purifying water 33363 SO JOURNAL OF APPLIED POLYMER SCIENCE 33364 DT Article 33365 DE polyacrylamide; complex; flocculant 33366 AB A novel flocculant was synthesized, a method consisting of a 33367 poly(acrylamide-co-acrylic acid) complexed with an inorganic coagulant 33368 through the chemical bond between metal ions and carboxyl acid groups 33369 or amide ligands within the polymer. This complex polymeric flocculant 33370 is more readily available for purifying water than any single or 33371 mechanical mixture. The mechanism of flocculating is discussed and a 33372 practical use performed for wastewater from paper mill. (C) 2000 John 33373 Wiley & Sons, Inc. 33374 C1 Shanghai Univ Sci & Technol, Dept Polymer Mat, Shanghai 201800, Peoples R China. 33375 RP Liu, YF, Shanghai Univ Sci & Technol, Dept Polymer Mat, Shanghai 33376 201800, Peoples R China. 33377 CR CAMPANELLA L, 1995, INQUINAMENTO, V37, P66 33378 CHEN F, 1994, 2110458, CA 33379 FAN R, 1995, ZIRAN KEXUE BAN, V23, P71 33380 FUJII N, 1991, MIYAZAKI DAIGAKU NOG, V38, P131 33381 GOLDBLATT ME, 1995, P 68 ANN C EXP WAT E, V3, P451 33382 GOOSSENS IR, 1993, CM MAG, V19, P20 33383 KOETZ J, 1992, 301010, DE 33384 LAMER VK, 1963, REV PURE APPL CHEM, V13, P112 33385 NR 8 33386 TC 4 33387 SN 0021-8995 33388 J9 J APPL POLYM SCI 33389 JI J. Appl. Polym. Sci. 33390 PD JUN 28 33391 PY 2000 33392 VL 76 33393 IS 14 33394 BP 2093 33395 EP 2097 33396 PG 5 33397 SC Polymer Science 33398 GA 306JF 33399 UT ISI:000086593000013 33400 ER 33401 33402 PT J 33403 AU He, JH 33404 TI A variational model for compressible rotational blade-to-blade flow 33405 using Liu-type potential function 33406 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 33407 DT Article 33408 ID SEMI-INVERSE METHOD; PRINCIPLES 33409 AB The pseudo-potential function proposed by Liu retains almost all 33410 advantages of the potential function, while removing its restriction to 33411 flow potentiality. To apply the finite element applications for 33412 numerical simulation of the compressible rotational blade-to-blade 33413 flow, it is necessary to establish a generalized variational principle. 33414 In this paper a family of variational principles is established by the 33415 trial-and-error method, the Lagrange multiplier method and the 33416 semi-inverse method. 33417 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 33418 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 33419 Peoples R China. 33420 CR HE JH, 1997, INT J TURBO JET ENG, V14, P23 33421 HE JH, 1997, J SHANGHAI U, V1, P117 33422 HE JH, 1998, APPL MATH MODEL, V22, P395 33423 HE JH, 1998, COMMUNICATIONS NONLI, V3, P176 33424 HE JH, 1998, INT J TURBO JET ENG, V15, P101 33425 HE JH, 1998, INT J TURBO JET ENG, V15, P95 33426 HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154 33427 LIU GH, 1997, AIRCRAFT ENG AEROSPA, V6, P527 33428 LIU GL, 1991, J ENG THERMOPHYSICS, V12, P2026 33429 LIU GL, 1996, INT J TURBO JET ENG, V13, P263 33430 SHEN YS, 1998, THESIS SHANGHAI I AP 33431 WANG HG, 1993, THESIS SHANGHAI I ME, P21 33432 NR 12 33433 TC 0 33434 SN 0334-0082 33435 J9 INT J TURBO JET ENGINES 33436 JI Int. J. Turbo. Jet-Engines 33437 PY 2000 33438 VL 17 33439 IS 2 33440 BP 143 33441 EP 152 33442 PG 10 33443 SC Engineering, Aerospace 33444 GA 305YZ 33445 UT ISI:000086570500004 33446 ER 33447 33448 PT J 33449 AU Wang, J 33450 Fiebig, M 33451 TI Thermal diffusivity of aqueous solutions of magnesium chloride in the 33452 temperature range from 294 to 371 K 33453 SO INTERNATIONAL JOURNAL OF THERMOPHYSICS 33454 DT Article 33455 DE aqueous solution; diffraction; laser-induced thermal grating; magnesium 33456 chloride; thermal conductivity; thermal diffusivity 33457 ID GRATING TECHNIQUE; METHANOL 33458 AB The thermal diffusivity of aqueous solutions of magnesium chloride was 33459 determined in the temperature range 294 to 371 K and at atmospheric 33460 pressure. Using a noninvasive optical technique-laser-induced thermal 33461 grating ( LTG) the measurements were carried out in aqueous solutions 33462 of weight fractions of 5, 10, 15, and 20% magnesium chloride. The 33463 measurement results for the aqueous solutions are presented as a 33464 Function of temperature and weight fraction. 33465 C1 Ruhr Univ Bochum, Inst Thermo & Fluiddynam, D-44780 Bochum, Germany. 33466 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China. 33467 RP Fiebig, M, Ruhr Univ Bochum, Inst Thermo & Fluiddynam, D-44780 Bochum, 33468 Germany. 33469 CR 1991, VDI WARMEATLAS 33470 BLANKE W, 1989, THERMOPHYSIKALISCHE, P112 33471 NAGASAKA Y, 1988, REV SCI INSTRUM, V59, P1156 33472 PRESS WH, 1992, NUMERICAL RECIPES FO, P678 33473 WANG J, 1995, HEAT MASS TRANSFER, V31, P83 33474 WANG J, 1995, INT J THERMOPHYS, V16, P1353 33475 WANG J, 1995, MESSUNG TEMPERATURLE, P48 33476 WANG J, 1996, EXP THERM FLUID SCI, V13, P38 33477 WANG J, 1998, INT J THERMOPHYS, V19, P15 33478 WU G, 1993, FLUID PHASE EQUILIBR, V88, P239 33479 NR 10 33480 TC 1 33481 SN 0195-928X 33482 J9 INT J THERMOPHYS 33483 JI Int. J. Thermophys. 33484 PD JAN 33485 PY 2000 33486 VL 21 33487 IS 1 33488 BP 35 33489 EP 44 33490 PG 10 33491 SC Chemistry, Physical; Physics, Applied; Mechanics; Thermodynamics 33492 GA 304VZ 33493 UT ISI:000086506000003 33494 ER 33495 33496 PT J 33497 AU Guo, GY 33498 Chen, YL 33499 TI Achieving practically zero discharge for an acrylic acid plant by a 33500 metalorganic precipitation process 33501 SO GREEN CHEMISTRY 33502 DT Article 33503 ID ACETIC-ACID; ION-EXCHANGE; SEPARATION; EXTRACTION; PRECURSOR; PH 33504 C1 Jiao Tong Univ, Shanghai 200030, Peoples R China. 33505 Shanghai Univ, Shanghai 200041, Peoples R China. 33506 RP Guo, GY, Jiao Tong Univ, Shanghai 200030, Peoples R China. 33507 CR ANWAR MM, 1998, SOLVENT EXTR ION EXC, V16, P931 33508 CLOETE FLD, 1995, IND ENG CHEM RES, V34, P2464 33509 DELUCAS A, 1999, SEPAR SCI TECHNOL, V34, P525 33510 DOEUFF S, 1987, J NON-CRYST SOLIDS, V89, P206 33511 GUO GY, 1991, J MATER SCI, V26, P3511 33512 GUO GY, 1992, J AM CERAM SOC, V75, P1294 33513 JOSHI VP, 1998, CHEM ENG SCI, V53, P2271 33514 MICHELI AL, 1989, CERAM INT, V15, P131 33515 RAYNAUDLACROZE PO, 1993, IND ENG CHEM RES, V32, P685 33516 REISINGER H, 1995, IND ENG CHEM RES, V34, P845 33517 SCHIERBAUM B, 1999, CHEM ENG TECHNOL, V22, P37 33518 SHENDE RV, 1997, IND ENG CHEM RES, V36, P4809 33519 SOREK Y, 1997, CHEM MATER, V9, P670 33520 TAKATSUJI W, 1997, J CHEM ENG JPN, V30, P396 33521 WODZKI R, 1997, SOLVENT EXTR ION EXC, V15, P1085 33522 YANG ST, 1991, IND ENG CHEM RES, V30, P1335 33523 NR 16 33524 TC 1 33525 SN 1463-9262 33526 J9 GREEN CHEM 33527 JI Green Chem. 33528 PD APR 33529 PY 2000 33530 VL 2 33531 IS 2 33532 BP G42 33533 EP G45 33534 PG 4 33535 SC Chemistry, Multidisciplinary 33536 GA 305DR 33537 UT ISI:000086524600002 33538 ER 33539 33540 PT J 33541 AU Wang, LJ 33542 Xia, YB 33543 Ju, JH 33544 Fan, YM 33545 Mo, YW 33546 Shi, WM 33547 TI Efficient luminescence from CVD diamond film-coated porous silicon 33548 SO JOURNAL OF PHYSICS-CONDENSED MATTER 33549 DT Letter 33550 AB In this Letter a novel passivation method for porous silicon (PS) 33551 surfaces, i.e., depositing diamond film on a PS surface by microwave 33552 plasma assisted chemical vapour deposition (MPCVD) method, is reported. 33553 The morphologies, structure and PL of CVD diamond film coated PS were 33554 characterized using scanning electron microscopy (SEM), Raman spectrum 33555 and PL spectroscope. Results indicate that efficient luminescence can 33556 be obtained from diamond film-coated porous silicon Also, the CVD 33557 diamond film may efficiently stabilize the PL wavelength and intensity 33558 of PS, and therefore is a promising candidate for passivation of porous 33559 silicon in the future. 33560 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 33561 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R 33562 China. 33563 CR CANHAM LT, 1990, APPL PHYS LETT, V57, P1016 33564 GARDELIS S, 1994, J APPL PHYS, V76, P5327 33565 GILDENBLAT GS, 1991, P IEEE, V79, P647 33566 KALISH R, 1997, APPL SURF SCI, V117, P558 33567 MULLER C, 1993, SCI SOC, V57, P111 33568 PROKES SM, 1995, J APPL PHYS, V78, P2671 33569 TISCHLER MA, 1992, APPL PHYS LETT, V60, P639 33570 ZOUBIR NH, 1994, APPL PHYS LETT, V65, P82 33571 NR 8 33572 TC 3 33573 SN 0953-8984 33574 J9 J PHYS-CONDENS MATTER 33575 JI J. Phys.-Condes. Matter 33576 PD APR 3 33577 PY 2000 33578 VL 12 33579 IS 13 33580 BP L257 33581 EP L260 33582 PG 4 33583 SC Physics, Condensed Matter 33584 GA 303HF 33585 UT ISI:000086415900004 33586 ER 33587 33588 PT J 33589 AU Chen, LQ 33590 Cheng, CJ 33591 TI Controlling chaotic oscillations of viscoelastic plates by the 33592 linearization via output feedback 33593 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 33594 DT Article 33595 DE controlling chaos; linearization via output feedback; viscoelastic 33596 plate; nonlinearity 33597 ID VIBRATIONS 33598 AB Controlling chaotic oscillations of viscoelastic plates are 33599 investigated in this paper. Based an the exact linearization method in 33600 nonlinear system control theory, a nonlinear feedback control law is 33601 presented for a class of non-affine control systems. The mathematical 33602 model describing motion of nonlinear viscoelastic plates is 33603 established, and it is simplified by the Galerkin method. The phase 33604 space portrait and the power spectrum are employed to demonstrate chaos 33605 in the system. The deflection is treated as an output, and is 33606 controlled to given periodic goals. 33607 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 33608 Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China. 33609 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 33610 200072, Peoples R China. 33611 CR ALVAREZGALLEGOS J, 1994, DYNAM CONTROL, V4, P277 33612 ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151 33613 CHEN LQ, 1998, APPL MATH MECH-ENGL, V19, P67 33614 CHEN LQ, 1998, J SHANGHAI JIAOTONG, V32, P108 33615 DING R, 1996, THESIS LANZHOU U, P56 33616 HALL EK, 1993, J GUID CONTROL DYNAM, V16, P470 33617 HU HY, 1996, ADV MECH, V26, P453 33618 ISIDORI A, 1989, NONLINEAR CONTROL SY, P156 33619 LINDNER JF, 1995, REV APPL MECH, V45, P795 33620 SHINBROT T, 1993, NATURE, V363, P411 33621 SUIRE G, 1995, INT J MECH SCI, V37, P753 33622 TOUATI D, 1994, INT J SOLIDS STRUCT, V31, P2367 33623 YU XH, 1997, INT J BIFURCAT CHAOS, V7, P1659 33624 ZHANG SQ, 1997, CAN AGR ENG, V39, P99 33625 NR 14 33626 TC 2 33627 SN 0253-4827 33628 J9 APPL MATH MECH-ENGL ED 33629 JI Appl. Math. Mech.-Engl. Ed. 33630 PD DEC 33631 PY 1999 33632 VL 20 33633 IS 12 33634 BP 1324 33635 EP 1330 33636 PG 7 33637 SC Mathematics, Applied; Mechanics 33638 GA 301UH 33639 UT ISI:000086328300004 33640 ER 33641 33642 PT J 33643 AU Sun, J 33644 Zhu, ZY 33645 TI A mixture differential quadrature method for solving two-dimensional 33646 imcompressible Navier-Stokes equations 33647 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 33648 DT Article 33649 DE numerical method; differential quadrature method; Navier-Stokes 33650 equations 33651 AB Differential quadrature method (DQM) is able to obtain high;ly accurate 33652 numerical solutions of differential equations just using a few grid 33653 points. Bat using purely differential quadrature: method, goad 33654 numerical solutions of two-dimensional incompressible Navier-Stokes 33655 equations can be obtained only for lour Reynolds number flow and 33656 numerical solutions will not be convergent for high Reynolds number 33657 flow. For this reason, ill this paper a combinative 33658 predicting-correcting numerical scheme for solving hue-dimensional 33659 incompressible Navier-Stokes equations is presented by mixing upwind 33660 difference method into differential quadrature! one, Using this scheme 33661 and pseudo-time-dependent algorithm, numerical solutions of high 33662 Reynolds number flow are obtained with only a few grid points. For 33663 example?, 1:1 and 1:2 driven cavity flows are calculated and good 33664 numerical solutions ape obtained. 33665 C1 NW Normal Univ, Dept Phys, Lanzhou, Peoples R China. 33666 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 33667 Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China. 33668 RP Sun, J, NW Normal Univ, Dept Phys, Lanzhou, Peoples R China. 33669 CR BELLMAN R, 1971, J MATH ANAL APPL, V34, P235 33670 BELLMAN R, 1972, J COMPUT PHYS, V10, P40 33671 BERT CW, 1996, APPL MECH REV, V49, P1 33672 BURGGRAF OR, 1966, J FLUID MECH, V24, P113 33673 CHIA U, 1982, J COMPUT PHYS, V48, P387 33674 CHU C, 1992, COMPUT SYST ENG, V3, P271 33675 KAWAGUTI M, 1961, J PHYS SOC JPN, V16, P2307 33676 PROSNAK WJ, 1991, ACTA MECH, V89, P45 33677 SHU C, 1992, INT J NUMER METH FL, V15, P791 33678 STRIZ AG, 1994, INT J NONLINEAR MECH, V29, P665 33679 NR 10 33680 TC 0 33681 SN 0253-4827 33682 J9 APPL MATH MECH-ENGL ED 33683 JI Appl. Math. Mech.-Engl. Ed. 33684 PD DEC 33685 PY 1999 33686 VL 20 33687 IS 12 33688 BP 1358 33689 EP 1366 33690 PG 9 33691 SC Mathematics, Applied; Mechanics 33692 GA 301UH 33693 UT ISI:000086328300008 33694 ER 33695 33696 PT J 33697 AU Huang, DB 33698 Liu, ZR 33699 Wang, LL 33700 TI A family of interesting exact solutions of the sine-Gordon equation 33701 SO CHINESE PHYSICS LETTERS 33702 DT Article 33703 ID SOLITON; SYSTEM; CHAOS 33704 AB By using AKNS [Phys. Rev. Lett. 31 (1973) 125] system and introducing 33705 the wave function, a family of interesting exact solutions of the 33706 sine-Gordon equation are constructed. These solutions seem to be some 33707 soliton, kink, and anti-kink ones respectively for the different choice 33708 of the spectrum, whereas due to the interaction between two 33709 traveling-waves they have some properties different from usual soliton, 33710 kink, and anti-kink solutions. 33711 C1 Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R China. 33712 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China. 33713 RP Huang, DB, Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R 33714 China. 33715 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V31, P125 33716 BISHOP AR, 1986, PHYSICA D, V23, P1 33717 BISHOP AR, 1990, SIAM J MATH ANAL, V21, P1511 33718 CAUDREY PJ, 1973, PHYS REV LETT, V30, P237 33719 CROSS MC, 1993, REV MOD PHYS, V65, P851 33720 HIROTA R, 1972, J PHYS SOC JPN, V33, P1459 33721 LIU ZR, 1999, CHINESE PHYS LETT, V16, P313 33722 LOMDAHL PS, 1984, PHYS REV A, V29, P350 33723 OVERMAN EA, 1986, PHYSICA D, V19, P1 33724 WADATI M, 1975, PROG THEOR PHYS, V53, P419 33725 YAN JR, 1997, CHINESE PHYS LETT, V14, P671 33726 NR 11 33727 TC 6 33728 SN 0256-307X 33729 J9 CHIN PHYS LETT 33730 JI Chin. Phys. Lett. 33731 PY 2000 33732 VL 17 33733 IS 1 33734 BP 1 33735 EP 3 33736 PG 3 33737 SC Physics, Multidisciplinary 33738 GA 297RA 33739 UT ISI:000086095400001 33740 ER 33741 33742 PT J 33743 AU Lu, J 33744 Wang, JK 33745 TI Reactive precipitation of procaine benzylpenicillin 33746 SO CHINESE JOURNAL OF CHEMICAL ENGINEERING 33747 DT Article 33748 DE procaine benzylpenicillin; reactive precipitation; secondary processes; 33749 mixing 33750 ID CRYSTALLIZATION 33751 AB The reactive precipitation process of procaine benzylpenicillin is 33752 reviewed, while such secondary processes as ageing, agglomeration, 33753 breakage, and the effects of operation parameters on crystal size are 33754 emphasized. In the reactive precipitation the ageing of particles has a 33755 little effect on the process. while the greater effect, comes from the 33756 agglomeration and breakage of particles, furthermore, the mixing has 33757 also notable influence on the product; size. All of these provide the 33758 bases for further study on reactive precipitation. 33759 C1 Shanghai Univ, Dept Chem Engn, Shanghai 201800, Peoples R China. 33760 Tianjin Univ, Inst Chem Engn, Tianjin 300072, Peoples R China. 33761 RP Lu, J, Shanghai Univ, Dept Chem Engn, Shanghai 201800, Peoples R China. 33762 CR DAVID R, 1991, CHEM ENG SCI, V46, P205 33763 JONES E, 1992, YOUNG CHILDREN, V47, P12 33764 LU J, 1997, THESIS TIANJIN U TIA 33765 MERSMANN A, 1990, J CRYST GROWTH, V102, P841 33766 MULLIN JW, 1993, CRYSTALLIZATION 33767 MYDLARZ J, 1991, POWDER TECHNOL, V65, P187 33768 NIELSEN AE, 1964, KINETICS PRECIPITATI 33769 NORE PH, 1993, CHEM ENG SCI, V48, P3083 33770 RANDOLPH AD, 1988, THEORY PARTICULATE P 33771 TAVARE NS, 1993, CHEM ENG SCI, V48, P475 33772 WANG ST, 1986, HEAT MASS TRANSFER 33773 NR 11 33774 TC 0 33775 SN 1004-9541 33776 J9 CHINESE J CHEM ENG 33777 JI Chin. J. Chem. Eng. 33778 PD MAR 33779 PY 2000 33780 VL 8 33781 IS 1 33782 BP 68 33783 EP 73 33784 PG 6 33785 SC Engineering, Chemical 33786 GA 299JQ 33787 UT ISI:000086195700012 33788 ER 33789 33790 PT J 33791 AU Harko, T 33792 Lu, HQ 33793 Mak, MK 33794 Cheng, KS 33795 TI Quantum birth of the Universe in the varying speed of light cosmologies 33796 SO EUROPHYSICS LETTERS 33797 DT Article 33798 ID INFLATION 33799 AB In the framework of the varying speed of light theory the 33800 Wheeler-DeWitt equation is considered in the minisuperspace 33801 approximation. The quantum potential is obtained and the tunneling 33802 probability is studied in bath Vilenkin and Hartle-Hawking approaches. 33803 C1 Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. 33804 Shanghai Univ, Dept Phys, Shanghai, Peoples R China. 33805 RP Harko, T, Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R 33806 China. 33807 CR ALBRECHT A, 1999, PHYS REV D, V59 33808 ATKATZ D, 1982, PHYS REV D, V25, P2065 33809 AVELINO PP, 1999, PHYS LETT B, V459, P468 33810 BARROW JD, 1998, PHYS LETT B, V443, P104 33811 BARROW JD, 1999, ASTROPH9904116 33812 BARROW JD, 1999, ASTROPH9907354 33813 BARROW JD, 1999, CLASSICAL QUANT GRAV, V16, P1435 33814 BARROW JD, 1999, PHYS LETT B, V447, P246 33815 BARROW JD, 1999, PHYS REV D, V59 33816 BEKENSTEIN JD, 1982, PHYS REV D, V25, P1527 33817 CLAYTON MA, 1999, PHYS LETT B, V460, P263 33818 COULE DH, 1999, GRQC9905056 33819 COULE DH, 1999, MOD PHYS LETT A, V14, P2437 33820 DEWITT BS, 1967, PHYS REV, V160, P1113 33821 GASPERINI M, 1985, PHYS LETT B, V163, P84 33822 HARKO T, 1999, CLASSICAL QUANT GRAV, V16, P2741 33823 HARTLE JB, 1983, PHYS REV D, V28, P3960 33824 HAWKING SW, 1984, NUCL PHYS B, V239, P257 33825 LINDE AD, 1984, LETT NUOVO CIMENTO, V39, P401 33826 MFFAT JW, 1998, ASTROPH9811390 33827 MOFFAT JW, 1993, INT J MOD PHYS D, V2, P351 33828 NORBURY JW, 1998, PHYS LETT B, V433, P263 33829 RATRA B, 1988, PHYS REV D, V37, P3406 33830 VILENKIN A, 1983, PHYS REV D, V27, P2848 33831 VILENKIN A, 1989, PHYS REV D, V39, P1116 33832 VILENKIN A, 1994, PHYS REV D, V50, P2581 33833 WEINBERG S, 1984, PHYS LETT B, V138, P47 33834 NR 27 33835 TC 4 33836 SN 0295-5075 33837 J9 EUROPHYS LETT 33838 JI Europhys. Lett. 33839 PD MAR 33840 PY 2000 33841 VL 49 33842 IS 6 33843 BP 814 33844 EP 820 33845 PG 7 33846 SC Physics, Multidisciplinary 33847 GA 296RD 33848 UT ISI:000086038800019 33849 ER 33850 33851 PT J 33852 AU Cai, YC 33853 Lu, MG 33854 TI Chen's theorem in short intervals 33855 SO ACTA ARITHMETICA 33856 DT Article 33857 C1 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China. 33858 RP Cai, YC, Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, 33859 Peoples R China. 33860 CR CHEN JR, 1966, REPRESENTATION LARGE, V17, P385 33861 CHEN JR, 1973, SCI SINICA, V16, P157 33862 CHEN JR, 1978, SCI SINICA, V21, P477 33863 IWANIEC H, 1981, RECENT PROGR ANAL NU, V2, P203 33864 JIA CH, 1996, ACTA ARITH, V76, P21 33865 PAN CD, 1981, GOLDBACH CONJECTURE 33866 SALERNO S, 1993, NOTE MAT, V13, P309 33867 WU J, 1993, Q J MATH, V44, P109 33868 WU J, 1994, J LOND MATH SOC, V49, P61 33869 NR 9 33870 TC 1 33871 SN 0065-1036 33872 J9 ACTA ARITHMET 33873 JI Acta Arith. 33874 PY 1999 33875 VL 91 33876 IS 4 33877 BP 311 33878 EP 323 33879 PG 13 33880 SC Mathematics 33881 GA 297ZH 33882 UT ISI:000086113800002 33883 ER 33884 33885 PT J 33886 AU Weng, XC 33887 Xiang, GQ 33888 Jiang, AL 33889 Liu, YP 33890 Wu, LL 33891 Dong, XW 33892 Duan, S 33893 TI Antioxidant properties of components extracted from puccoon 33894 (Lithospermum erythrorhizon Sieb. et Zucc.) 33895 SO FOOD CHEMISTRY 33896 DT Article 33897 DE puccoon (Lithospermum erythrorhizon Sieb. et Zucc.); antioxidant 33898 activity; beta,beta-dimethyl-acrylshikonin; acetylshikonin; shikonin 33899 AB The petroleum ether extract of puccoon has been separated with 33900 thin-layer chromatography (TLC) and three compounds have been isolated. 33901 The structures of the compounds have been identified by spectroscopic 33902 methods as beta,beta-dimethyl-acrylshikonin, acetylshikonin and 33903 shikonin. Their antioxidant properties in lard have been tested with 33904 the oxidative stability instrument (OSI). The raw extracts and pure 33905 compounds all have obvious antioxidant activity, and all have some 33906 synergistic effects with D,L-alpha-tocopherol (Ve) and 33907 butylatedhydroxytoluene (BHT). They all show antioxidant properties in 33908 lard containing Fe3+, and all show synergistic effects with Ve and 33909 citric acid (CA) with different degrees. In the concentration range of 33910 0.01-0.06%, antioxidant activity of Ve and BHT, on OSI at 100 degrees 33911 C, increases with increase of concentration, but much less than 33912 acetylshikonin, shikonin and beta,beta-dimethyl-acrylshikonin. (C) 2000 33913 Elsevier Science Ltd. All rights reserved. 33914 C1 Shanghai Univ, Sch Life Sci, Shanghai, Peoples R China. 33915 Yantai Univ, Lipid Res Lab, Shandong, Peoples R China. 33916 Acad Sinica, Inst Bot, Beijing 100044, Peoples R China. 33917 RP Weng, XC, Shanghai Univ, Sch Life Sci, 20 Chengzhong Rd, Shanghai, 33918 Peoples R China. 33919 CR GAO JH, 1986, ZHONGCAOYAO, V17, P28 33920 GORDON MH, 1992, FOOD CHEM, V44, P119 33921 HUDSON BJF, 1983, FOOD CHEM, V10, P111 33922 LIN ZB, 1980, J BEIJING MED COLLEG, V12, P101 33923 LIU GS, 1981, PHARM B, V16, P270 33924 LIU YP, 1998, J CHINESE CEREALS OI, V13, P34 33925 LU FS, 1983, ACTA BOT SIN, V25, P454 33926 WENG XC, 1991, THESIS READING U UK 33927 WENG XC, 1998, J CHINESE CEREAL OIL, V13, P46 33928 ZHAO I, 1997, MED J CHINA, V8, P115 33929 ZHOU SB, 1996, J HARBIN MED U, V30, P524 33930 NR 11 33931 TC 2 33932 SN 0308-8146 33933 J9 FOOD CHEM 33934 JI Food Chem. 33935 PD MAY 33936 PY 2000 33937 VL 69 33938 IS 2 33939 BP 143 33940 EP 146 33941 PG 4 33942 SC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics 33943 GA 294FR 33944 UT ISI:000085901300005 33945 ER 33946 33947 PT J 33948 AU Qiu, ZB 33949 Xiao, XS 33950 Mo, ZS 33951 Yu, YN 33952 Wang, XH 33953 Dong, YD 33954 TI Melt crystallization of poly(ether ether ketone ketone) under strong 33955 electric field 33956 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE 33957 DT Letter 33958 DE PEEKK; electric field; crystallization; crystal structure 33959 ID DRAWING-INDUCED POLYMORPHISM; CRYSTAL-STRUCTURE; PEEKK; KINETICS 33960 AB In this paper, melt crystallization of poly(ether ether ketone ketone) 33961 (PEEKK) under strong electric field was investigated. In the crystal 33962 structure of PEEKK, the length of c axis was found to he 1.075 nm, 33963 increasing by 7% compared to that of PEEKK crystallized without strong 33964 electric field. The molecule chains might take a more extended 33965 conformation through the opening of the bridge bond angles by 33966 increasing from 124 degrees to 144 degrees under strong electric field 33967 in the crystal structure. 33968 C1 Acad Sinica, Changchun Inst Appl Chem, Polymer Phys Lab, Changchun 130022, Peoples R China. 33969 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 33970 RP Mo, ZS, Acad Sinica, Changchun Inst Appl Chem, Polymer Phys Lab, 33971 Changchun 130022, Peoples R China. 33972 CR LIU TX, 1997, EUR POLYM J, V33, P1405 33973 LIU TX, 1997, EUR POLYM J, V33, P913 33974 LIU TX, 1997, POLYM ENG SCI, V37, P568 33975 LIU TX, 1998, S POL SHANGH 33976 WANG S, 1997, MACROMOL RAPID COMM, V18, P83 33977 WANG SG, 1997, MACROMOL CHEM PHYSIC, V198, P969 33978 ZIMMERMANN HJ, 1991, POLYMER, V32, P3162 33979 NR 7 33980 TC 1 33981 SN 0251-0790 33982 J9 CHEM J CHINESE UNIV-CHINESE 33983 JI Chem. J. Chin. Univ.-Chin. 33984 PD MAR 33985 PY 2000 33986 VL 21 33987 IS 3 33988 BP 491 33989 EP 492 33990 PG 2 33991 SC Chemistry, Multidisciplinary 33992 GA 294KM 33993 UT ISI:000085910500040 33994 ER 33995 33996 PT J 33997 AU Yu, TY 33998 Yu, BK 33999 Wang, Q 34000 Wan, YB 34001 Pan, SK 34002 TI Potassium lithium niobate crystal and the second harmonic generation in 34003 IT 34004 SO ACTA PHYSICA SINICA 34005 DT Article 34006 ID SINGLE-CRYSTALS 34007 AB The tetragonal tungsten bronze type potassium lithium niobatc single 34008 crystals grown by the resistance heating Czochralski technique are 34009 reported. Frequency doubling of a quasi-continuous tunable Ti:sapphire 34010 laser is realized in the crystal. Tunable second harmonic generation 34011 within the range of 445-476 nm by noncritical phase matching at room 34012 temperature is obtained. The incident power is 144-269 mW and the power 34013 of the second harmonic generation is 0.58-1.73 mW. The conversion 34014 efficiency is about 0.65 percent. 34015 C1 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China. 34016 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China. 34017 RP Yu, TY, Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, 34018 Peoples R China. 34019 CR BONNER WA, 1967, J CRYST GROWTH, V1, P318 34020 FUKUDA T, 1970, J CRYST GROWTH, V6, P293 34021 GE YM, 1996, CHINESE J LASERS A, V23, P969 34022 OUWERKERK M, 1991, ADV MATER, V3, P399 34023 REID JJE, 1993, APPL PHYS LETT, V62, P19 34024 SMITH AW, 1971, J APPL PHYS, V42, P684 34025 XIA HR, 1997, PHYS REV B, V55, P14892 34026 YOON DH, 1994, JPN J APPL PHYS PT 1, V33, P3510 34027 ZHANG GY, 1984, ACTA OPT SINICA, V4, P515 34028 NR 9 34029 TC 3 34030 SN 1000-3290 34031 J9 ACTA PHYS SIN-CHINESE ED 34032 JI Acta Phys. Sin. 34033 PD MAR 34034 PY 2000 34035 VL 49 34036 IS 3 34037 BP 463 34038 EP 467 34039 PG 5 34040 SC Physics, Multidisciplinary 34041 GA 294WD 34042 UT ISI:000085932700016 34043 ER 34044 34045 PT J 34046 AU Li, D 34047 Sun, XL 34048 TI Local convexification of the Lagrangian function in nonconvex 34049 optimization 34050 SO JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 34051 DT Article 34052 DE nonconvex optimization; Lagrangian function; local convexification; 34053 local duality; p-power formulation 34054 AB It is well-known that a basic requirement for the development of local 34055 duality theory in nonconvex optimization is the local convexity of the 34056 Lagrangian function. This paper shot-vs how to locally convexify the 34057 Lagrangian function and thus expand the class of optimization problems 34058 to which dual methods can be applied. Specifically, we prove that, 34059 under mild assumptions, the Hessian of the Lagrangian in some 34060 transformed equivalent problem formulations becomes positive definite 34061 in a neighborhood of a local optimal point of the original problem. 34062 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China. 34063 Shanghai Univ, Dept Math, Shanghai, Peoples R China. 34064 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, 34065 Shatin, Hong Kong, Peoples R China. 34066 CR LI D, 1995, J OPTIMIZ THEORY APP, V85, P309 34067 LI D, 1997, NONLINEAR ANAL-THEOR, V30, P4339 34068 LUENBERGER DG, 1984, LINEAR NONLINEAR PRO 34069 WOLFE P, 1961, Q APPL MATH, V19, P239 34070 XU ZK, 1997, J OPTIMIZ THEORY APP, V94, P739 34071 NR 5 34072 TC 6 34073 SN 0022-3239 34074 J9 J OPTIMIZ THEOR APPL 34075 JI J. Optim. Theory Appl. 34076 PD JAN 34077 PY 2000 34078 VL 104 34079 IS 1 34080 BP 109 34081 EP 120 34082 PG 12 34083 SC Mathematics, Applied; Operations Research & Management Science 34084 GA 291PR 34085 UT ISI:000085745700007 34086 ER 34087 34088 PT J 34089 AU Zhang, ZL 34090 Jiang, XY 34091 Xu, SH 34092 TI Energy transfer and white emitting organic thin film electroluminescence 34093 SO THIN SOLID FILMS 34094 DT Article 34095 DE energy transfer; white emitting organic thin film electroluminescence; 34096 full-color display 34097 AB Energy transfer between in 34098 N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4-4'-diamine (NPB) 34099 and rubrene was investigated. The device ITO/CuPc/NPB:rubrene/blocking 34100 layer /Alq/MgAg, in which copper phthalocyanine (CuPc) is used as 34101 buffer layer, NPB as the hole transporting layer (HTL), trimer of 34102 N-arylbenzimidazoles (TPBi) [or 34103 2-(4-biphenylyl)-5-(4-tertbutylphenyl)-1,2,3-oxadiazole(PBD) or 34104 1,2,3-triazolederivative(TAZ)] as the blocking layer, 34105 Tris(8-quinolinolato)aluminum complex (Alq) as electron transporting 34106 layers (ETL), can not give white emitting light. White emitting light 34107 can be realized in a new device with the structure 34108 ITO/CuPc/NPB/blocking layer:rubene/Alq/MeAg, in which rubrene is doped 34109 in blocking layer instead of in NPB. The emission spectrum of this 34110 device covers a wide range of visible region and can be adjusted by the 34111 concentration of rubrene. The white emitting devices with CIE 34112 coordinates x = 0.31, y = 0.32, maximum luminance 8635 cd/m(2) and 34113 luminous efficiency 1.39 Lm/w, were obtained with the blocking layer 34114 TPBi doped with 1.5% rubrene. (C) 2000 Elsevier Science S.A. All rights 34115 reserved. 34116 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China. 34117 RP Zhang, ZL, Shanghai Univ, Dept Mat Sci, Jiading Campus, Shanghai 34118 201800, Peoples R China. 34119 CR FOREST SR, 1997, SYNTHETIC MET, V91, P9 34120 KIDO J, 1995, SCIENCE, V267, P1332 34121 MIYAGUCHI S, 1998, 9 INT WORKSH IN ORG, P137 34122 NR 3 34123 TC 10 34124 SN 0040-6090 34125 J9 THIN SOLID FILMS 34126 JI Thin Solid Films 34127 PD MAR 1 34128 PY 2000 34129 VL 363 34130 IS 1-2 34131 BP 61 34132 EP 63 34133 PG 3 34134 SC Materials Science, Multidisciplinary; Physics, Applied; Physics, 34135 Condensed Matter 34136 GA 290EU 34137 UT ISI:000085664000016 34138 ER 34139 34140 PT J 34141 AU Li, PL 34142 Deng, CF 34143 Wang, LL 34144 Xu, MJ 34145 TI Calculation of the productive dilepton spectrum (M <= 4GeV/c(2)) in 34146 U-238+U-238 collisions at E-c,E-m approximate to 200GeV/u 34147 SO HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION 34148 DT Article 34149 DE charm; quark flavour dynamics effect; dilepton spectrum 34150 AB In this paper, besides including u, d, s quarks and their anti-quarks 34151 the charm quarks and their anti-quarks (c (c) over bar) were still 34152 included in the calculation of flavour kinetics of quarks. Using 34153 relativistic hydrodynamics model with the effect of quark flavor 34154 kinetics, invariable mass dilepton spectrum of M less than or equal to 34155 4GeV/c(2) has been calculated. The dileptons are emitted from phase 34156 transition process of an expansion quark matter which is created in 34157 collisions of U-238 + U-238 at energy similar to 200GeV/u. The 34158 numerical results have been compared with experimental data of CERN SPS 34159 qualitatively. A preliminary conclusion has been given: quark 34160 fragmentation and effect of flavour kinetics are the causes of 34161 suppression of the peak of J/psi-->mu(+) + mu(-). 34162 C1 Suzhou Railway Normal Coll, Dept Phys, Suzhou 215009, Peoples R China. 34163 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 34164 RP Li, PL, Suzhou Railway Normal Coll, Dept Phys, Suzhou 215009, Peoples R 34165 China. 34166 CR BARZ HW, 1988, NUCL PHYS A, V484, P661 34167 KAJANTIE K, 1983, NUCL PHYS B, V222, P152 34168 KAJANTIE K, 1986, PHYS REV D, V34, P811 34169 KOCH P, 1986, PHYS REP, V142, P167 34170 LI PL, 1997, HIGH ENERG PHYS, V21, P918 34171 MASERA M, 1995, NUCL PHYS A, V590, C93 34172 WU H, 1999, CHINESE GEN COMPUTAT, V16, P94 34173 NR 7 34174 TC 1 34175 SN 0254-3052 34176 J9 HIGH ENERGY PHYS NUCL PHYS-CH 34177 JI High Energy Phys. Nucl. Phys.-Chin. Ed. 34178 PD JUL 34179 PY 1999 34180 VL 23 34181 IS 7 34182 BP 693 34183 EP 700 34184 PG 8 34185 SC Physics, Nuclear; Physics, Particles & Fields 34186 GA 289PB 34187 UT ISI:000085630200013 34188 ER 34189 34190 PT J 34191 AU Harko, T 34192 Mak, MK 34193 Lu, HQ 34194 Cheng, KS 34195 TI Bianchi-type I and V cosmologies in Einstein-Cartan theory 34196 SO NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS 34197 RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS 34198 DT Article 34199 ID GENERAL-RELATIVITY; UNIVERSES; MATTER; FLUIDS; MODEL; SPIN 34200 AB Within the framework of the Einstein-Cartan theory a 34201 Weyssenhoff-spinning-fluid-filled homogeneous anisotropic Bianchi-type 34202 I and V space-time is studied. The effects of a cosmological constant 34203 upon the dynamics of the early Universe are also considered. In the 34204 presence of torsion the general solution of the gravitational field 34205 equations for a cosmological fluid obeying a linear barotropic equation 34206 of state can be expressed in an exact parametric form. Several classes 34207 of exact analytical solutions for stiff matter and radiation are also 34208 obtained. In the large-time limit the Bianchi-type-V Universe ends in 34209 an isotropic open non-flat inflationary era but due to the effects of 34210 the spin the isotropization period is shortened. For an appropriate 34211 choice of the parameters non-singular behavior occurs and the evolution 34212 of the cosmological fluid near the bounce is considered in detail. 34213 C1 Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. 34214 Shanghai Univ, Dept Phys, Shanghai, Peoples R China. 34215 RP Harko, T, Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R 34216 China. 34217 CR ASSAD MJD, 1990, PHYS LETT A, V145, P74 34218 BAHCALL NA, 1995, APJ, V447, L81 34219 BAHCALL NA, 1997, ASTROPHYS J 2, V485, L53 34220 BAKER WM, 1990, CLASSICAL QUANT GRAV, V7, P717 34221 BARROW JD, 1997, PHYS LETT A, V233, P169 34222 BATAKIS NA, 1982, PHYS REV D, V26, P2611 34223 FENNELLY AJ, 1998, PHYS LETT A, V129, P195 34224 FUKUGITA M, 1993, NATURE, V366, P369 34225 GRON O, 1985, PHYS REV D, V32, P2522 34226 GRONWALD F, GRQC9602013 34227 GUTH AH, 1981, PHYS REV D, V23, P347 34228 HARVEY A, 1997, NUOVO CIMENTO B, V112, P1217 34229 HAWKING SW, 1973, LARGE SCALE STRUCTUR 34230 HEHL FW, 1976, REV MOD PHYS, V48, P393 34231 KOCHANEK CS, 1996, ASTROPHYS J 1, V466, P638 34232 KRAMER D, 1980, EXACT SOLUTIONS EINS 34233 LANDAU LD, 1975, CLASSICAL THEORY FIE 34234 LU HQ, 1995, CLASSICAL QUANT GRAV, V12, P2755 34235 OBREGON O, 1993, PHYS REV D, V48, P5642 34236 RATRA B, 1988, PHYS REV D, V37, P3406 34237 RAY JR, 1982, PHYS REV D, V26, P2615 34238 RAY JR, 1982, PHYS REV D, V26, P2619 34239 SARAJEDINI A, 1989, ASTRON J, V98, P1624 34240 SCIAMA JA, 1964, REV MOD PHYS, V36, P463 34241 SHAPIRO SL, 1983, BLACK HOLES WHITE DW 34242 NR 25 34243 TC 0 34244 SN 0369-3554 34245 J9 NUOVO CIMENTO B-GEN PHYS R 34246 JI Nouvo Cimento Soc. Ital. Fis. B-Gen. Phys. Relativ. Astron. Math. Phys. 34247 Methods 34248 PD DEC 34249 PY 1999 34250 VL 114 34251 IS 12 34252 BP 1389 34253 EP 1407 34254 PG 19 34255 SC Physics, Multidisciplinary 34256 GA 285WT 34257 UT ISI:000085411900006 34258 ER 34259 34260 PT J 34261 AU Wang, Q 34262 Liu, CQ 34263 Li, Y 34264 TI Quasi-tem analysis of a shielded microstrip line of elliptic 34265 cross-section with finite metallization thickness penetrating into the 34266 substrate by the finite difference method 34267 SO INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES 34268 DT Article 34269 DE MSL; monolithic microwave integrated circuits (MMICs); quasi-static 34270 characteristics; metallization thickness; FDM 34271 ID WAVE-GUIDES; TRANSMISSION-LINES; STATIC ANALYSIS; ELEMENT METHOD; 34272 ELECTRODES 34273 AB A shielded microstripline(MSL) of elliptic cross-section with finite 34274 metallization thickness penetrating into the substrate is presented. 34275 The quasi-static characteristics of this kind of MSL are studied with 34276 finit difference method(FDM),The effect of metal cross-section shape 34277 and metal penetrating depth is also studied. 34278 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China. 34279 RP Wang, Q, Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R 34280 China. 34281 CR CHANG TN, 1990, IEEE T MICROW THEORY, V38, P1130 34282 FENG NN, 1999, MICROW OPT TECHN LET, V21, P60 34283 GENTILI GG, 1994, IEEE T MICROW THEORY, V42, P249 34284 HEINRICH W, 1994, IEEE T MICROWAVE THE, V41, P249 34285 HOFFMANN RK, 1989, HDB MICROWAVE INTEGR, P142 34286 HONG IP, 1999, INT J RF MICROW C E, V9, P49 34287 IVANOV SA, 1984, IEEE T MICROW THEORY, V32, P450 34288 JIN H, 1991, IEEE J QUANTUM ELECT, V27, P2306 34289 JIN H, 1991, IEEE J QUANTUM ELECT, V27, P243 34290 KE JY, 1995, IEE P-MICROW ANTEN P, V142, P357 34291 KOLLIPARA RT, 1992, IEEE MICROW GUIDED W, V2, P100 34292 KUO JT, 1997, IEEE T MICROW THEORY, V45, P274 34293 LERER AM, 1997, INT J MICROWAVE MILL, V7, P483 34294 MATSUHARA M, 1988, IEICE T C, V71, P1398 34295 PANTIC Z, 1986, IEEE T MICROW THEORY, V34, P1096 34296 SCHMUCKLE FJ, 1991, IEEE T MICROW THEORY, V39, P107 34297 SHIH C, 1989, IEEE T MICROW THEORY, V37, P793 34298 TAO YM, 1994, MICROW OPT TECHN LET, V7, P17 34299 WADELL BC, 1991, TRANSMISSION LINE DE 34300 NR 19 34301 TC 0 34302 SN 0195-9271 34303 J9 INT J INFRAR MILLIM WAVE 34304 JI Int. J. Infrared Millimeter Waves 34305 PD JAN 34306 PY 2000 34307 VL 21 34308 IS 1 34309 BP 91 34310 EP 100 34311 PG 10 34312 SC Engineering, Electrical & Electronic; Physics, Applied; Optics 34313 GA 284AN 34314 UT ISI:000085308700011 34315 ER 34316 34317 PT J 34318 AU Ma, JH 34319 Chen, YS 34320 Liu, ZG 34321 TI The non-linear chaotic model reconstruction for the experimental data 34322 obtained from different dynamic system 34323 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 34324 DT Article 34325 DE non-linear; chaotic timeseries; Lyapunov exponent; chaotic model; 34326 parameter identification 34327 ID TIME-SERIES; ATTRACTORS 34328 AB The non-linear chaotic model reconstruction is the major important 34329 quantitative index for describing accurate experimental data obtained 34330 in dynamic analysis. A lot of work has been done to distinguish chaos 34331 from,randomness, to calculate fractral dimension and Lyapunov exponent, 34332 to reconstruct the state space and to fix the rank of model. In this 34333 paper, a new improved EAR method is presented in modelling and 34334 predicting chaotic timeseries, and a successful approach to fast 34335 estimation algorithms is proposed. Some illustrative experimental data 34336 examples from known chaotic systems are presented, emphasising the 34337 increase in predicting error with time. The calculating results tell us 34338 that the parameter identification method in this paper can effectively 34339 adjust the initial value row ards the global limit value of the single 34340 peak target Junction nearby. Then the model paremeter can immediately 34341 be obtained by using the improved optimization method rapidly, and 34342 non-linens chaotic models can nor provide long period superior 34343 predictions. Applications of this method are listed to real data from 34344 widely different areas. 34345 C1 Tianjin Finance Univ, Dept Econ & Management, Tianjin 300222, Peoples R China. 34346 Tianjin Univ, Dept Mech, Tianjin 300072, Peoples R China. 34347 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 34348 RP Ma, JH, Tianjin Finance Univ, Dept Econ & Management, Tianjin 300222, 34349 Peoples R China. 34350 CR CHEN CH, 1989, APPL TIMESERIES ANAL 34351 DAVIES ME, 1997, PHYSICA D, V101, P195 34352 LIANG YC, 1995, PHYSICA D, V85, P225 34353 MA JH, 1997, NONLINEAR DYNAMIC SY, P5 34354 MA JH, 1998, APPL MATH MECH-ENGL, V19, P513 34355 MESS AI, 1987, PHYS REV A, V36, P340 34356 NERENBERG MAH, 1990, PHYS REV A, V42, P7065 34357 POTAPOV A, 1997, PHYSICA D, V101, P207 34358 PRICHARD D, 1994, PHYS REV LETT, V191, P230 34359 WOLF A, 1985, PHYSICA D, V16, P285 34360 YA W, 1989, APPL TIME SERIES ANA 34361 YANG SZ, 1992, APPL TIMESERIES ANAL 34362 ZHANG QH, 1992, IEE T NEURAL NETWORK, V6, P889 34363 NR 13 34364 TC 2 34365 SN 0253-4827 34366 J9 APPL MATH MECH-ENGL ED 34367 JI Appl. Math. Mech.-Engl. Ed. 34368 PD NOV 34369 PY 1999 34370 VL 20 34371 IS 11 34372 BP 1214 34373 EP 1221 34374 PG 8 34375 SC Mathematics, Applied; Mechanics 34376 GA 285RP 34377 UT ISI:000085402100005 34378 ER 34379 34380 PT J 34381 AU Chen, XY 34382 Cheng, CJ 34383 TI Inverse problem for the viscoelastic medium with discontinuous wave 34384 impedance 34385 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 34386 DT Article 34387 DE viscoelastic medium; inverse scattering; inversion procedure; Volterra 34388 integral equation; relaxation modulus; one round trip; numerical 34389 examples 34390 ID DISPERSIVE MEDIA; SCATTERING 34391 AB In this paper, the inverse problem for the viscoelastic medium is 34392 investigated in the time domain, in which the wave impedance of the 34393 medium is discontinuous at the rear interface. The differentio-integral 34394 equations governing the behavior of the scattering and propagation 34395 operators are utilized to reconstruct the relaxation modulus of the 34396 viscoelastic medium. A new approach, in which only the one-side 34397 measurement reflection data for one round trip through the viscoelastic 34398 layer, is developed. The numerical examples are given at the end of the 34399 paper. Ir is shown that the curves of the reconstructed moduli coincide 34400 very well with the original relaxation moduli. 34401 C1 Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China. 34402 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 34403 Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China. 34404 RP Chen, XY, Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China. 34405 CR AMMICHT E, 1987, J ACOUST SOC AM, V81, P827 34406 BEEZLEY RS, 1985, J MATH PHYS, V26, P317 34407 CHEN XY, 1999, THESIS LANZHOU U LAN 34408 CHRISTENSON RM, 1982, THOERY VISCOELASTICI 34409 FUKS P, 1994, INVERSE PROBL, V10, P555 34410 KRESS R, 1989, LINEAR INTEGRAL EQUA 34411 NR 6 34412 TC 0 34413 SN 0253-4827 34414 J9 APPL MATH MECH-ENGL ED 34415 JI Appl. Math. Mech.-Engl. Ed. 34416 PD NOV 34417 PY 1999 34418 VL 20 34419 IS 11 34420 BP 1222 34421 EP 1229 34422 PG 8 34423 SC Mathematics, Applied; Mechanics 34424 GA 285RP 34425 UT ISI:000085402100006 34426 ER 34427 34428 PT J 34429 AU Gu, GQ 34430 Hui, PM 34431 Yu, KW 34432 TI A theory of nonlinear AC response in nonlinear composites 34433 SO PHYSICA B 34434 DT Article 34435 DE nonlinear composites; effective nonlinear conductivity; harmonic 34436 generation 34437 ID EFFECTIVE CONDUCTIVITY; GENERATION 34438 AB A perturbative approach, which has previously been applied to study the 34439 effective nonlinear response in random nonlinear composites consisting 34440 of Kerr materials. is extended to treat random composites with 34441 components having nonlinear response at finite frequencies. For a 34442 sinusoidal applied field, the field in the composite generally includes 34443 components with frequencies at the higher harmonics. Using the 34444 potential in the absence of nonlinearity as the unperturbed potential, 34445 nonlinear response can be studied perturbatively. Expression for the 34446 effective nonlinear susceptibility at the third harmonic is derived in 34447 the dilute limit of one of the nonlinear components. (C) 2000 Elsevier 34448 Science B.V. All rights reserved. 34449 C1 Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 201800, Peoples R China. 34450 Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. 34451 RP Gu, GQ, Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 201800, 34452 Peoples R China. 34453 CR GU GQ, 1992, PHYS REV B, V46, P4502 34454 HUI PM, 1998, J APPL PHYS, V84, P3451 34455 LEVY O, 1995, PHYS REV E, V52, P3184 34456 YU KW, 1993, PHYS REV B, V47, P14150 34457 YU KW, 1993, PHYS REV B, V47, P1782 34458 YU KW, 1997, PHYS REV B, V56, P14195 34459 NR 6 34460 TC 19 34461 SN 0921-4526 34462 J9 PHYSICA B 34463 JI Physica B 34464 PD APR 34465 PY 2000 34466 VL 279 34467 IS 1-3 34468 BP 62 34469 EP 65 34470 PG 4 34471 SC Physics, Condensed Matter 34472 GA 284DD 34473 UT ISI:000085314700018 34474 ER 34475 34476 PT J 34477 AU He, JH 34478 TI Modified straightforward expansion 34479 SO MECCANICA 34480 DT Article 34481 DE perturbation technique; nonlinear equation; duffing equation; nonlinear 34482 dynamics 34483 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 34484 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang 34485 Rd,POB 189, Shanghai 200072, Peoples R China. 34486 CR BELLMAN R, 1964, PERTURBATION TECHNIQ 34487 CHEUNG YK, 1991, INT J NONLINEAR MECH, V26, P367 34488 HE JH, IN PRESS J SOUND VIB 34489 MICKENS RE, 1996, J SOUND VIB, V193, P747 34490 NAYFEH AH, 1985, PROBLEMS PERTURBATIO 34491 NR 5 34492 TC 6 34493 SN 0025-6455 34494 J9 MECCANICA 34495 JI Meccanica 34496 PD OCT 34497 PY 1999 34498 VL 34 34499 IS 4 34500 BP 287 34501 EP 289 34502 PG 3 34503 SC Mechanics 34504 GA 283XD 34505 UT ISI:000085300600006 34506 ER 34507 34508 PT J 34509 AU Feng, F 34510 Han, J 34511 Shen, M 34512 Geng, M 34513 Zhou, Z 34514 Northwood, DO 34515 TI Electrochemical properties of a LaNi4.7Al0.3 alloy used for the 34516 negative electrode in nickel/metal hydride batteries 34517 SO JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS 34518 DT Article 34519 DE metal hydride electrodes; electrochemical characteristics; exchange 34520 current density; symmetry factor 34521 ID HYDROGEN STORAGE ALLOYS; EVOLUTION REACTION; METAL; PERFORMANCE; 34522 DISCHARGE; BEHAVIOR 34523 AB The electrochemical properties of an activated LaNi4.7Al0.3 hydride 34524 electrode (MH) were studied using charge/discharge and polarization 34525 tests. The rests were performed at different steady states of 34526 discharging and temperatures. Both the exchange current density (I-0) 34527 and the symmetry-factor (beta) of the MH electrode in a 6M KOH aqueous 34528 solution decrease with increasing hydrogen concentration and increase 34529 with increasing temperature at a given hydrogen concentration. These 34530 intrinsic parameters (I-0 and beta) were then used to evaluate the 34531 characteristics of the nonequilibrium discharge process of the MH 34532 electrode, including the discharge overpotential and activation. From 34533 the exchange current density measurements, the apparent activation 34534 energy (E-a) was found to be in the range 15.5 to 22.5 kJ.(molH)(-1) 34535 for hydrogen concentrations H/M=0.6 to 0.1 in the temperature range 34536 273-318K. It is suggested that the apparent activation energy (E-a) is 34537 a useful intrinsic parameter for evaluating the electrochemical 34538 characteristics of MH electrodes. 34539 C1 Univ Windsor, Dept Mech & Mat Engn, Windsor, ON N9B 3P4, Canada. 34540 Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China. 34541 Ryerson Polytech Univ, Fac Engn & Appl Sci, Toronto, ON M5B 2K3, Canada. 34542 RP Northwood, DO, Univ Windsor, Dept Mech & Mat Engn, Windsor, ON N9B 3P4, 34543 Canada. 34544 CR BARD AJ, 1980, ELECTROCHEMICAL METH, P106 34545 BOCKRIS JO, 1993, MOD ASPECT ELECTROC, V25, P261 34546 FENG F, 1998, INT J HYDROGEN ENERG, V23, P599 34547 GENG MM, 1996, INT J HYDROGEN ENERG, V21, P887 34548 IWAKURA C, 1992, J POWER SOURCES, V38, P335 34549 IWAKURA C, 1993, J ALLOY COMPD, V192, P152 34550 KIBRIA MF, 1996, INT J HYDROGEN ENERG, V21, P179 34551 KRONBERGER H, 1996, INT J HYDROGEN ENERG, V21, P577 34552 KURIYAMA N, 1993, J ALLOY COMPD, V202, P183 34553 LIU BH, 1996, J ALLOY COMPD, V245, P132 34554 MATSUOKA M, 1993, J ALLOY COMPD, V192, P149 34555 NDZEBET E, 1995, INT J HYDROGEN ENERG, V20, P635 34556 POPOV BN, 1996, J APPL ELECTROCHEM, V26, P603 34557 SAKAI T, 1991, J LESS-COMMON MET, V172, P1175 34558 WANG XL, 1990, J LESS-COMMON MET, V159, P83 34559 WILLEMS JJG, 1984, PHILIPS J RES S1, V39, P1 34560 WILLEMS JJG, 1984, PHILIPS J RES S1, V39, P3 34561 NR 17 34562 TC 3 34563 SN 1480-2422 34564 J9 J NEW MATER ELECTROCHEM SYST 34565 JI J. New Mat.Electrochem. Syst. 34566 PD JAN 34567 PY 1999 34568 VL 2 34569 IS 1 34570 BP 45 34571 EP 50 34572 PG 6 34573 SC Materials Science, Multidisciplinary; Electrochemistry 34574 GA 283LB 34575 UT ISI:000085276100007 34576 ER 34577 34578 PT J 34579 AU Guo, XM 34580 TI On existence and uniqueness of solution of hyperbolic differential 34581 inclusion with discontinuous nonlinearity 34582 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 34583 DT Article 34584 ID EQUATIONS 34585 AB In this paper a hyperbolic differential inclusion with a discontinuous 34586 and nonlinear multi-valued term is studied, and the existence and 34587 uniqueness of its global weak solutions are obtained. We also study the 34588 asymptotic behavior of the solutions under suitable assumptions. (C) 34589 2000 Academic Press. 34590 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 34591 RP Guo, XM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 34592 200072, Peoples R China. 34593 CR BREZIS H, 1971, CONTRIBUTIONS NONLIN, P101 34594 CARL S, 1992, NONLINEAR ANAL-THEOR, V18, P471 34595 CHANG KC, 1981, J MATH ANAL APPL, V80, P102 34596 CLARK MR, 1996, INT J MATH MATH SCI, V19, P151 34597 DUVAUT G, 1972, INEQUATIONS MECH PHY 34598 FERREIRA J, 1996, INT J MATH MATH SCI, V19, P751 34599 HARAUX A, 1981, LECT NOTES MATH, V841 34600 MACIEL AB, 1993, NONLINEAR ANAL-THEOR, V20, P745 34601 NAKAO M, 1978, MATH REP, V11, P117 34602 PANAGIOTOPOULOS PD, 1985, INEQUALITY PROBLEMS 34603 PANAGIOTOPOULOS PD, 1993, HEMIVARIATIONAL INEQ 34604 RAUCH J, 1977, P AM MATH SOC, V64, P277 34605 ZHANG KC, 1987, COURSE FUNCTIONAL AN 34606 ZHOU MQ, 1985, REAL VARIABLES FUNCT 34607 NR 14 34608 TC 2 34609 SN 0022-247X 34610 J9 J MATH ANAL APPL 34611 JI J. Math. Anal. Appl. 34612 PD JAN 15 34613 PY 2000 34614 VL 241 34615 IS 2 34616 BP 198 34617 EP 213 34618 PG 16 34619 SC Mathematics, Applied; Mathematics 34620 GA 282NQ 34621 UT ISI:000085225300004 34622 ER 34623 34624 PT J 34625 AU Yan, LC 34626 Lu, WC 34627 Ding, YM 34628 Fang, JH 34629 Chen, NY 34630 Cao, GY 34631 Zhu, JX 34632 TI Thermodynamic stability of LiFeO2 in molten carbonate fuel cell 34633 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 34634 DT Letter 34635 AB LiFeO2, as one of candidate cathode materials or additive for molten 34636 carbonate fuel cell, has been found to be thermodynamically unstable in 34637 CO2 atmosphere at 650 degrees C (the condition of molten carbonate fuel 34638 cell) both by computation and experimental confirmation. 34639 C1 Shanghai Univ Sci & Technol, Dept Chem, Shanghai 201800, Peoples R China. 34640 Jiao Tong Univ, Inst Fuel Cell Technol, Shanghai 200030, Peoples R China. 34641 RP Yan, LC, Shanghai Univ Sci & Technol, Dept Chem, Shanghai 201800, 34642 Peoples R China. 34643 CR DEVAN HSH, 1987, J ELECTROCHEM SOC, P2146 34644 JANZ GJ, 1961, J CHEM ENG DATA, P6321 34645 OTA KI, 1987, 2 S MOLT CARB FUEL C, P53 34646 OTA KI, 1992, P 4 JAP CHIN BIL C M, P34 34647 PLOMP L, 1993, P 3 S MOLT CARB FUEL, P171 34648 SHORES D, 1993, P 3 2NT S CARB FUEL, P254 34649 TANIMOTO K, 1998, P FUEL CELL S, P321 34650 NR 7 34651 TC 0 34652 SN 1005-0302 34653 J9 J MATER SCI TECHNOL 34654 JI J. Mater. Sci. Technol. 34655 PD JAN 34656 PY 2000 34657 VL 16 34658 IS 1 34659 BP 71 34660 EP 72 34661 PG 2 34662 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 34663 Engineering 34664 GA 282AN 34665 UT ISI:000085193800015 34666 ER 34667 34668 PT J 34669 AU Li, CF 34670 Zhao, XG 34671 TI Spatial rotation and time-evolution operator of two-level systems 34672 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B 34673 DT Article 34674 ID 2-LEVEL SYSTEMS; DYNAMICS 34675 AB All the six kinds of rotation approach with the same form to the 34676 evolution problem of arbitrarily time-dependent two-level systems are 34677 investigated in this paper. A time-dependent two-level system can be 34678 viewed as a spin-1/2 system in a time-varying magnetic field. It is 34679 shown that for each kind of rotation approach, we can always find a 34680 rotating frame in which the direction of the effective magnetic field 34681 is fixed. This property reduces the problem of finding the 34682 time-evolution operator to the solution of a second-order differential 34683 equation. Applications are made to the J C model in quantum optics and 34684 the Landau-Zener model in resonance physics. 34685 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 34686 CCAST, World Lab, Beijing 100080, Peoples R China. 34687 Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China. 34688 Acad Sinica, Inst Theoret Phys, Beijing 100080, Peoples R China. 34689 RP Li, CF, Shanghai Univ, Dept Phys, 99 Qixiang Rd, Shanghai 200436, 34690 Peoples R China. 34691 CR ALLEN L, 1975, OPTICAL RESONANCE 2 34692 ERDELYI A, 1953, HIGH TRANSCENDENTAL, V2, P192 34693 FERNANDEZ DJ, 1997, PHYS LETT A, V236, P275 34694 HUANG YH, 1989, PHYS REV A, V40, P4171 34695 LANDAU L, 1932, PHYS Z SOWJETUNION, V2, P46 34696 MAJORANA E, 1932, NUOVO CIMENTO, V9, P43 34697 SAKURAI JJ, 1985, MODERN QUANTUM MECH, P171 34698 VITANOV NV, 1996, PHYS REV A, V53, P4288 34699 WAGH AG, 1993, PHYS REV A, V48, R1729 34700 WANG ZX, 1965, INTRO SPECIAL FUNCTI, P359 34701 ZENER C, 1932, P R SOC LOND A-CONTA, V137, P696 34702 ZHAO XG, 1993, PHYS LETT A, V181, P425 34703 ZHAO XG, 1994, PHYS LETT A, V193, P5 34704 ZHOU JY, 1994, PHYS REV A, V50, P1903 34705 NR 14 34706 TC 0 34707 SN 0217-9792 34708 J9 INT J MOD PHYS B 34709 JI Int. J. Mod. Phys. B 34710 PD JAN 10 34711 PY 2000 34712 VL 14 34713 IS 1 34714 BP 101 34715 EP 112 34716 PG 12 34717 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical 34718 GA 282JF 34719 UT ISI:000085214200009 34720 ER 34721 34722 PT J 34723 AU Liu, GL 34724 TI Derivation and transformation of variational principles with emphasis 34725 on inverse and hybrid problems in fluid mechanics: a systematic approach 34726 SO ACTA MECHANICA 34727 DT Article 34728 ID TRANSONIC FLOW; POTENTIAL FLOW; ROTOR; FORMULATION; SHOCKS 34729 AB A systematic approach to the derivation of variational principles (VPs) 34730 from the partial differential equations of fluid mechanics is suggested 34731 herein, consisting essentially of two major lines: (1) establishing a 34732 first VP via reversed deduction followed by extending it successively 34733 to a Family of subgeneralized VPs via a series of transformations. and 34734 (2) vice versa. Full advantage is taken of four powerful means - the 34735 functional variation with variable domain, the natural boundary/initial 34736 condition (BC/IC), the Lagrange multiplier, and the artificial 34737 interface. The occurrence of three kinds of variational crisis is 34738 demonstrated and methods for their removal are suggested. This approach 34739 has been used with great success in establishing VP-families in fluid 34740 mechanics with special attention to inverse and hybrid problems of flow 34741 in a rotating system. 34742 C1 Shanghai Univ, Shanghai 200072, Peoples R China. 34743 Shanghai Inst Appl Maths & Mechs, Shanghai 200072, Peoples R China. 34744 RP Liu, GL, Shanghai Univ, 149 Yan Chang Rd, Shanghai 200072, Peoples R 34745 China. 34746 CR CHIESA P, 1987, MEDIOEVO RINASCIMENT, V1, P1 34747 COURANT R, 1953, METHODS MATH PHYSICS, V1 34748 FINLAYSON BA, 1972, METHOD WEIGHTED RESI 34749 KOMKOV V, 1986, VARIATIONAL PRINCIPL, V1 34750 LIU GL, 1979, ACTA MECH SINICA, V11, P303 34751 LIU GL, 1980, SCI SINICA, V23, P1339 34752 LIU GL, 1987, TURBULENCE MEASUREME, P323 34753 LIU GL, 1990, J ENG THERMOPHYSICS, V11, P136 34754 LIU GL, 1993, ACTA MECH, V97, P229 34755 LIU GL, 1995, ACTA MECH, V108, P207 34756 LIU GL, 1995, INVERSE PROBL ENG, V2, P1 34757 LIU GL, 1995, P 6 AS C FLUID MECH, V1, P745 34758 LIU GL, 1997, INT J TURBO JET ENG, V14, P71 34759 LIU GL, 1997, NONLINEAR ANAL-THEOR, V30, P5229 34760 LIU GL, 1999, P 14 INT S AIR BREAT 34761 LIU GL, 1999, P 4 INT S AER INT FL, V1, P29 34762 REDDY JN, 1986, APPL FUNCTIONAL ANAL 34763 TONTI E, 1984, INT J ENG SCI, V22, P1343 34764 NR 18 34765 TC 7 34766 SN 0001-5970 34767 J9 ACTA MECH 34768 JI Acta Mech. 34769 PY 2000 34770 VL 140 34771 IS 1-2 34772 BP 73 34773 EP 89 34774 PG 17 34775 SC Mechanics 34776 GA 284EL 34777 UT ISI:000085317700007 34778 ER 34779 34780 PT J 34781 AU Zhu, XH 34782 Zhu, JM 34783 Zhou, SH 34784 Li, Q 34785 Liu, ZG 34786 Ming, NB 34787 Meng, ZY 34788 TI EPMA and TEM investigations on the interdiffusion layer of the PNN/PZT 34789 functionally gradient piezoelectric ceramics 34790 SO JOURNAL OF MATERIALS SCIENCE 34791 DT Article 34792 ID ACTUATOR 34793 AB The compositional profile, distribution of the phases and the ordering 34794 behavior in the interdiffusion layer of the PNN/PZT functionally 34795 gradient piezoelectric ceramics have been investigated by electron 34796 probe microbeam analyses (EPMA) and transmission electron microscopy 34797 (TEM) respectively. The results show that the thickness of the 34798 interdiffusion layers (d) for Ni2+, Nb5+, Ti4+ and Zr4+ ions are 34799 ordered as d(Ni)(2+) > d(Nb)(5+) > d(Ti)(4+) > d(Zr)(4+). It is 34800 demonstrated by TEM observation and selected area electron diffraction 34801 (SAED) patterns that a clear interface between the rhombohedral and 34802 pseudocubic phases exists in the interdiffusion layer. The SAED studies 34803 also reveal the presence of F spots along the [111] direction of the 34804 perovskite cubic unit cell. The origin of this superstructure is 34805 determined. (C) 2000 Kluwer Academic Publishers. 34806 C1 Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China. 34807 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 34808 RP Zhu, XH, Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, 34809 Nanjing 210093, Peoples R China. 34810 CR CHEN J, 1989, J AM CERAM SOC, V72, P593 34811 CHERRADI N, 1994, COMPOS ENG, V4, P883 34812 HARMER MP, 1989, FERROELECTRICS, V97, P263 34813 HILTON AD, 1990, J MATER SCI, V25, P3461 34814 RANDALL CA, 1990, JPN J APPL PHYS 1, V29, P327 34815 SHANNON RD, 1976, ACTA CRYSTALLOGR A, V32, P751 34816 ZHU XH, 1995, J MATER SCI LETT, V14, P516 34817 ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169 34818 ZHU XH, 1998, J MATER SCI, V33, P1023 34819 NR 9 34820 TC 2 34821 SN 0022-2461 34822 J9 J MATER SCI 34823 JI J. Mater. Sci. 34824 PD FEB 34825 PY 2000 34826 VL 35 34827 IS 4 34828 BP 1031 34829 EP 1036 34830 PG 6 34831 SC Materials Science, Multidisciplinary 34832 GA 279HF 34833 UT ISI:000085037800033 34834 ER 34835 34836 PT J 34837 AU He, JH 34838 TI Inverse problems of determining the unknown shape of oscillating 34839 airfoils in compressible 2D unsteady flow via variational technique 34840 SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY 34841 DT Article 34842 DE flow; finite element method; inverse problems; aircraft; aerodynamics 34843 AB A generalized variational principle of 2D unsteady compressible flow 34844 around oscillating airfoils is established directly from the governing 34845 equations and boundary/initial conditions via the semi-inverse method 34846 proposed by He. In this method, an energy integral with an unknown F is 34847 used as a trial-functional. The identification of the unknown F is 34848 similar to the identification of the Lagrange multiplier. Based on the 34849 variational theory with variable domain, a variational principle for 34850 the inverse problem (given as the time-averaged pressure over the 34851 airfoil contour, while the corresponding airfoil shape is unknown) is 34852 constructed, and all the boundary/initial conditions are converted into 34853 natural ones, leading to well-posedness and the unique solution of the 34854 inverse problems. 34855 C1 Shanghai Univ, Inst Mech, Shanghai, Peoples R China. 34856 RP He, JH, Shanghai Univ, Inst Mech, Shanghai, Peoples R China. 34857 CR HE JH, 1997, INT J TURBO JET ENG, V14, P23 34858 HE JH, 1998, APPL MATH MODEL, V22, P395 34859 HE JH, 1998, COMMUNICATIONS NONLI, V3, P176 34860 HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154 34861 HE JH, 1999, INT J TURBO JET ENG, V16, P19 34862 LIU GL, 1989, SCI CHINA SER A, V32, P707 34863 LIU GL, 1993, ACTA MECH, V99, P219 34864 LIU GL, 1996, ACTA AERODYNAMICA SI, V14, P1 34865 LIU GL, 1998, INT J HEAT FLUID FL, V9, P302 34866 MEAUZE G, 1982, ASME, V104, P650 34867 NR 10 34868 TC 9 34869 SN 0002-2667 34870 J9 AIRCRAFT ENG AEROSP TECHNOL 34871 JI Aircr. Eng. Aerosp. Technol. 34872 PY 2000 34873 VL 72 34874 IS 1 34875 BP 18 34876 EP 24 34877 PG 7 34878 SC Engineering, Aerospace 34879 GA 281PF 34880 UT ISI:000085169300003 34881 ER 34882 34883 PT J 34884 AU Li, ZT 34885 Wu, PF 34886 Tao, YQ 34887 Mao, DK 34888 TI Calculation of magnetic entropy changes of gadolinium from 34889 magnetization curves 34890 SO ACTA PHYSICA SINICA 34891 DT Article 34892 AB The magnetization curves of gadolinium were measured with a vibrating 34893 sample magnetometer, from which the function M(H, T) was obtained using 34894 two-step least square fitting. Then magnetic entropy changes can be 34895 calculated. These works can provide the perliminary information needed 34896 for the design of magnetic refrigerator. 34897 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China. 34898 Shanghai Yuelong NonFerrous Met Co Ltd, Shanghai 200949, Peoples R China. 34899 RP Li, ZT, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R 34900 China. 34901 CR BROWN GV, 1976, J APPL PHYS, V47, P3673 34902 CAO LF, 1986, NUMERICAL ANAL, P399 34903 FOLDEAKI M, 1995, J APPL PHYS, V77, P3528 34904 KUHRT C, 1985, PHYS STATUS SOLIDI A, V91, P105 34905 LI ZT, 1995, PROGR CHEM, V7, P140 34906 TISHIN AM, 1990, CRYOGENICS, V30, P127 34907 NR 6 34908 TC 0 34909 SN 1000-3290 34910 J9 ACTA PHYS SIN-CHINESE ED 34911 JI Acta Phys. Sin. 34912 PD DEC 34913 PY 1999 34914 VL 48 34915 IS 12 34916 SU Suppl. S 34917 BP S126 34918 EP S131 34919 PG 6 34920 SC Physics, Multidisciplinary 34921 GA 279XN 34922 UT ISI:000085070500022 34923 ER 34924 34925 PT J 34926 AU Wang, Q 34927 Wu, Z 34928 Wang, LQ 34929 TI Nonlinear TM waves on interface of gyromagnets 34930 SO ACTA PHYSICA SINICA 34931 DT Article 34932 ID MICROWAVE-ENVELOPE SOLITONS; IRON-GARNET FILMS; FERROMAGNETIC-FILMS; 34933 LIGHT; PROPAGATION; SURFACE 34934 AB The nonlinear behavior of transverse magnetic (TM) waves on the 34935 interface between an antiferromagnet and a ferromagnet is studied. The 34936 theoretical results show that for TM waves there exist frequency 34937 passband(s) and stopband(s) which can be switched into each other by 34938 varying the power. It is indicated that this surface waveguide may 34939 support backward surface waves, which have opposite group velocities to 34940 their phase velocities. The passbands width of forward and backward 34941 surface waves are about 10 GHz. 34942 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 34943 RP Wang, Q, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 34944 CR ACEVES AB, 1989, PHYS REV A, V39, P1809 34945 ACEVES AB, 1990, J OPT SOC AM B, V7, P963 34946 AGRAWAL GP, 1989, NONLINEAR FIBER OPTI 34947 ALMEIDA NS, 1987, PHYS REV B, V36, P2015 34948 BOARDMAN AD, 1990, OPT COMMUN, V74, P347 34949 BOARDMAN AD, 1993, PHYS REV B, V48, P13602 34950 BOARDMAN AD, 1994, IEEE T MAGN, V30, P1 34951 BOARDMAN AD, 1994, IEEE T MAGN, V30, P14 34952 BOARDMAN AD, 1995, J MAGN MAGN MATER, V145, P357 34953 BOYLE JW, 1996, PHYS REV B, V53, P12173 34954 CHEN M, 1994, PHYS REV B, V49, P12773 34955 CHEN ZG, 1996, OPT LETT, V21, P716 34956 HAUS HA, 1993, IEEE SPECTRUM, V30, P48 34957 KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712 34958 MILLS DL, 1974, REPORTS PROGR PHYSIC, V37, P817 34959 QI W, 1995, J APPL PHYS, V77, P5831 34960 QI W, 1997, JPN J APPL PHYS, V36, P22 34961 TRAN HT, 1992, IEEE J QUANTUM ELECT, V28, P488 34962 TSANKOV MA, 1994, J APPL PHYS, V76, P4274 34963 VARATHARAJAH P, 1990, PHYS REV A, V42, P1767 34964 VUKOVICH S, 1991, SOV PHYS JETP, V71, P964 34965 WANG Q, 1998, J APPL PHYS, V83, P382 34966 NR 22 34967 TC 2 34968 SN 1000-3290 34969 J9 ACTA PHYS SIN-CHINESE ED 34970 JI Acta Phys. Sin. 34971 PD FEB 34972 PY 2000 34973 VL 49 34974 IS 2 34975 BP 349 34976 EP 354 34977 PG 6 34978 SC Physics, Multidisciplinary 34979 GA 281BY 34980 UT ISI:000085139300033 34981 ER 34982 34983 PT J 34984 AU He, JH 34985 TI A new perturbation technique which is also valid for large parameters 34986 SO JOURNAL OF SOUND AND VIBRATION 34987 DT Letter 34988 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 34989 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 34990 Peoples R China. 34991 CR BELLMAN R, 1964, PERTURBATION TECHNIQ 34992 CHEUNG YK, 1991, INT J NONLINEAR MECH, V26, P367 34993 HE JH, 1999, CHINESE J COMPUTATIO, V16, P121 34994 HE JH, 1999, COMPUT METHOD APPL M, V178, P257 34995 HE JH, 1999, INT J NONLINEAR MECH, V34, P699 34996 HE JH, 2000, INT J NONLINEAR MECH, V35, P37 34997 MICKENS RE, 1996, J SOUND VIB, V193, P747 34998 NR 7 34999 TC 15 35000 SN 0022-460X 35001 J9 J SOUND VIB 35002 JI J. Sound Vibr. 35003 PD FEB 3 35004 PY 2000 35005 VL 229 35006 IS 5 35007 BP 1257 35008 EP 1263 35009 PG 7 35010 SC Engineering, Mechanical; Acoustics; Mechanics 35011 GA 279GH 35012 UT ISI:000085035700011 35013 ER 35014 35015 PT J 35016 AU Wang, Q 35017 Wu, Z 35018 Li, SM 35019 Wang, LQ 35020 TI Nonlinear behavior of magnetic surface waves on the interface between 35021 ferromagnet and antiferromagnet 35022 SO JOURNAL OF APPLIED PHYSICS 35023 DT Article 35024 ID MICROWAVE-ENVELOPE SOLITONS; IRON-GARNET FILMS; LIGHT; PROPAGATION 35025 AB In this article the nonlinear frequency characteristics of the 35026 transverse magnetic surface waves at microwave frequencies on the 35027 interface between a ferromagnet and an antiferromagnet have been 35028 studied. The results show that the magnetic surface waves have 35029 passband(s) and stopband(s), which are interchangeable through the 35030 variation of the wave power. It is shown that the nonlinear surface 35031 waves excited on the interface can be backward surface waves with group 35032 velocities opposite to their phase velocities in direction. The 35033 passband widths of the forward surface waves are about five times 35034 larger than those of the backward surface waves in the situation. (C) 35035 2000 American Institute of Physics. [S0021-8979(00)00604-6]. 35036 C1 Shanghai Univ, Coll Sci, Shanghai 201800, Peoples R China. 35037 RP Wang, Q, Shanghai Univ, Coll Sci, Shanghai 201800, Peoples R China. 35038 CR ACEVES AB, 1989, PHYS REV A, V39, P1809 35039 ACEVES AB, 1990, J OPT SOC AM B, V7, P963 35040 AGRAWAL GP, 1989, NONLINEAR FIBER OPTI 35041 ALMEIDA NS, 1987, PHYS REV B, V36, P2015 35042 BOARDMAN AD, 1990, OPT COMMUN, V74, P347 35043 BOARDMAN AD, 1990, PHYS REV B, V41, P717 35044 BOARDMAN AD, 1993, PHYS REV B, V48, P13602 35045 BOARDMAN AD, 1994, IEEE T MAGN, V30, P1 35046 BOARDMAN AD, 1994, IEEE T MAGN, V30, P14 35047 BOYLE JW, 1996, PHYS REV B, V53, P12173 35048 CHEN M, 1994, PHYS REV B, V49, P12773 35049 CHEN ZG, 1996, OPT LETT, V21, P716 35050 HAUS HA, 1993, IEEE SPECTRUM, V30, P48 35051 KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712 35052 MILLS DL, 1974, REPORTS PROGR PHYSIC, V37, P817 35053 TRAN HT, 1992, IEEE J QUANTUM ELECT, V28, P488 35054 TSANKOV MA, 1994, J APPL PHYS, V76, P4274 35055 VARATHARAJAH P, 1990, PHYS REV A, V42, P1767 35056 VUKOVICH S, 1991, SOV PHYS JETP, V71, P964 35057 WANG Q, 1995, J APPL PHYS, V77, P5831 35058 WANG Q, 1997, JPN J APPL PHYS PT 1, V36, P22 35059 WANG Q, 1998, J APPL PHYS, V83, P382 35060 NR 22 35061 TC 1 35062 SN 0021-8979 35063 J9 J APPL PHYS 35064 JI J. Appl. Phys. 35065 PD FEB 15 35066 PY 2000 35067 VL 87 35068 IS 4 35069 BP 1908 35070 EP 1913 35071 PG 6 35072 SC Physics, Applied 35073 GA 278MA 35074 UT ISI:000084992500048 35075 ER 35076 35077 PT J 35078 AU Wei, JH 35079 Ma, JC 35080 Fan, YY 35081 Yu, NW 35082 Yang, SL 35083 Xiang, SH 35084 Zhu, DP 35085 TI Water modelling study of fluid flow and mixing characteristics in bath 35086 during AOD process 35087 SO IRONMAKING & STEELMAKING 35088 DT Article 35089 ID METAL 35090 AB The fluid flow and mixing characteristics in the bath during the 35091 argon-oxygen decarburisation (AOD) process have been investigated on a 35092 water model of an 18 t AOD vessel blown th rough two annu lar tube type 35093 lances of constant cross-sectional area. The geometric similarity ratio 35094 between the model and its prototype (including the lances) was 1 :3. 35095 Based on theoretical calculations of the parameters of the gas streams 35096 in the lances, the gas blowing rates used for the model were determined 35097 fairly precisely. Thus, sufficiently full kinematic similarity between 35098 the model and its prototype was ensured. The influence of the gas 35099 flowrate and the angle included between the two lances was examined. 35100 The results demonstrated that the liquid in the bath underwent vigorous 35101 circulatory motion du ring blowing, and there was no obvious dead zone 35102 in the bath, resulting in excellent mixing and a short mixing time. The 35103 gas flowrates, particularly that of the main lance, had a key influence 35104 on these characteristics. However, the gas jet of the sublance had a 35105 physical shielding effect on the gas jet of the main lance, and mixing 35106 efficiency could be improved by a suitable increase in the gas blowing 35107 rate of the sublance. The angular separation of the two lances also had 35108 a marked influence on the flow and mixing in the bath. An excessively 35109 large or small separation of the two lances would reduce the stability 35110 of blowing and would also be unfavourable to mixing. The optimum range 35111 of separation is 60-100 degrees under the conditions of the present 35112 work. The relationships between the mixing time and the gas blowing 35113 rate, the stirring energy, the modified Froude numbers for the main 35114 lance and sublance, the lance arrangement, etc. have been obtained. 35115 I&S/1413. 35116 C1 Shanghai Univ, Dept Metall Mat, Shanghai 200072, Peoples R China. 35117 RP Wei, JH, Shanghai Univ, Dept Metall Mat, Shanghai 200072, Peoples R 35118 China. 35119 CR CHO YW, 1986, SCANINJECT 1, V4 35120 FIGUEIRA RM, 1985, METALL T B, V16, P67 35121 GEIGER GH, 1973, TRANSPORT PHENOMENA, P244 35122 GORGES H, 1978, P 3 INT IR STEEL C C, P161 35123 IGUCHI M, 1992, SCANINJECT 1, V6, P113 35124 KOMAROV SV, 1996, P INT C MSMM 96 BEIJ, P113 35125 LEACH JCC, 1978, IRONMAK STEELMAK, V5, P107 35126 NAKANISHI K, 1975, IRONMAK STEELMAK, V2, P193 35127 SANO M, 1983, T IRON STEEL I JPN, V23, P169 35128 SCHWARZ MP, 1991, ISIJ INT, V30, P947 35129 SZEKELY J, 1984, IRON STEEL MAKER, V11, P22 35130 TOKUNAGA H, 1995, ISIJ INT, V35, P21 35131 WEI JH, 1989, CHIN J MET SCI TECHN, V5, P235 35132 WEI JH, 1997, P 7 NAT S COMP HEAT, P264 35133 ZHANG MH, 1995, P 10 NAT ANN C STAIN, P13 35134 NR 15 35135 TC 8 35136 SN 0301-9233 35137 J9 IRONMAKING STEELMAKING 35138 JI Ironmak. Steelmak. 35139 PY 1999 35140 VL 26 35141 IS 5 35142 BP 363 35143 EP 371 35144 PG 9 35145 SC Metallurgy & Metallurgical Engineering 35146 GA 279NG 35147 UT ISI:000085050600009 35148 ER 35149 35150 PT J 35151 AU Huang, DB 35152 Liu, ZR 35153 TI On the persistence of lower-dimensional invariant hyperbolic tori for 35154 smooth Hamiltonian systems 35155 SO NONLINEARITY 35156 DT Article 35157 ID QUASI-PERIODIC PERTURBATIONS 35158 AB In this paper, sufficiently smooth Hamiltonian systems with 35159 perturbations are considered. By combining a smooth version of the 35160 Kolmogorov-Arnold-Moser theorem and the theory of normally hyperbolic 35161 invariant manifolds, we show that under the conditions of nonresonance 35162 and nondegeneracy, most hyperbolic invariant tori and their stable and 35163 unstable manifolds survive smoothly under sufficiently smooth 35164 autonomous perturbation. This result can be generalized directly to the 35165 case of time-dependent quasi-periodic perturbations. Finally, an 35166 example from geometrical optics is used to illustrate our method. 35167 C1 Acad China, Inst Mech, LNM, Beijing, Peoples R China. 35168 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 35169 RP Huang, DB, Acad China, Inst Mech, LNM, Beijing, Peoples R China. 35170 CR ARNOLD VI, 1963, RUSS MATH SURV, V18, P9 35171 CHENG CQ, 1990, CELESTIAL MECH, V47, P275 35172 DIEZ C, 1991, CELESTIAL MECH, V50, P13 35173 ELIASSON LH, 1988, ANN SC NORM SUPER S, V15, P115 35174 FENICHEL N, 1971, INDIANA U MATH J, V21, P193 35175 GRAFF SM, 1974, J DIFFER EQUATIONS, V15, P1 35176 HOLM DD, 1991, PHYSICA D, V51, P177 35177 JORBA A, 1996, SIAM J MATH ANAL, V27, P1704 35178 JORBA A, 1997, J NONLINEAR SCI, V7, P427 35179 LERMAN L, 1987, SELECTA MATH SOVIETI, V6, P365 35180 MARSDEN JE, 1994, INTRO MECH SYMMETRY 35181 MOSER J, 1966, ANN SCUOLA NORM, V20, P499 35182 POSCHEL J, 1982, COMMUN PUR APPL MATH, V35, P653 35183 POSCHEL J, 1989, MATH Z, V202, P559 35184 RUDNEV M, 1997, J NONLINEAR SCI, V7, P177 35185 SPIVAK M, 1979, DIFFERENTIAL GEOMETR, V1 35186 WIGGINS S, 1994, NORMALLY HYPERBOLIC 35187 XIA ZH, 1992, ERGOD THEOR DYN SYST, V12, P621 35188 NR 18 35189 TC 0 35190 SN 0951-7715 35191 J9 NONLINEARITY 35192 JI Nonlinearity 35193 PD JAN 35194 PY 2000 35195 VL 13 35196 IS 1 35197 BP 189 35198 EP 202 35199 PG 14 35200 SC Mathematics, Applied; Physics, Mathematical 35201 GA 276TW 35202 UT ISI:000084894300010 35203 ER 35204 35205 PT J 35206 AU Zhong, SS 35207 Yang, XX 35208 Gao, SC 35209 Ahmed, M 35210 TI A low-cost dual-polarized microstrip antenna array 35211 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 35212 DT Article 35213 DE microstrip antenna array; dual polarization; low cost; radiation 35214 patterns; S-parameters 35215 AB A new low-cost dual-polarized microsrip antenna array with a single 35216 layer is proposed. Its element is the parallel corner-fed square patch 35217 with two ports. The design, analysis, and experimental results of a 12 35218 GHz 16-element array on a 0.8 mm thick substrate are presented. Its 35219 measured isolation is 26.5 dB at 12 GHz and higher than 20 dB over 710 35220 MHz. The 2:1 VSWR bandwidth is wider than 840 MHz (7%). The theoretical 35221 results agree well with the experimental results. (C) 2000 John Wiley & 35222 Sons, Inc. 35223 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China. 35224 RP Zhong, SS, Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R 35225 China. 35226 CR BRACHAT P, 1995, IEEE T ANTENN PROPAG, V43, P738 35227 CRUZ EM, 1991, ELECTRON LETT, V27, P1410 35228 CRYAN MJ, 1996, ELECTRON LETT, V32, P286 35229 DERNERYD AG, 1976, P 6 EUR MICR C, P339 35230 GAO SC, 1998, MICROW OPT TECHN LET, V19, P214 35231 GAO SC, 1999, THESIS SHANGHAI U PR 35232 LINDMARK B, 1998, IEEE AP-S, P328 35233 MURAKAMI Y, 1996, IEE P-MICROW ANTEN P, V143, P119 35234 RICHARDS WF, 1981, IEEE T ANTENN PROPAG, V29, P38 35235 ZHONG SS, 1991, MICROSTRIP ANTENNA T 35236 NR 10 35237 TC 3 35238 SN 0895-2477 35239 J9 MICROWAVE OPT TECHNOL LETT 35240 JI Microw. Opt. Technol. Lett. 35241 PD FEB 5 35242 PY 2000 35243 VL 24 35244 IS 3 35245 BP 176 35246 EP 179 35247 PG 4 35248 SC Engineering, Electrical & Electronic; Optics 35249 GA 275GU 35250 UT ISI:000084813100009 35251 ER 35252 35253 PT J 35254 AU Gao, F 35255 Xu, YR 35256 Song, BY 35257 Xia, KN 35258 TI Substructural changes during hot deformation of an Fe-26Cr ferritic 35259 stainless steel 35260 SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND 35261 MATERIALS SCIENCE 35262 DT Article 35263 ID HIGH-TEMPERATURE DEFORMATION; DYNAMIC RECRYSTALLIZATION; MICROSTRUCTURE 35264 AB Dynamic softening and substructural changes during hot deformation of a 35265 ferritic Fe-26Cr stainless steel were studied. The flow stress 35266 increased to reach a steady state in all the cases and the steady-state 35267 stress decreased with decreasing Z the Zener-Hollomon parameter. A 35268 constant subgrain size was observed to correspond to the 35269 steady-state:flow and the steady-state subgrain size increased with 35270 decreasing Z. Substructure examinations revealed-that elongated, 35271 pancake-shaped subgrains formed in the early stage of deformation. 35272 Straight sub-boundaries: and equiaxed subgrains developed pi-ogres 35273 sively with strain, leading eventually to a stable substructure at 35274 strains greater than 0.7. During deformation at 1100 degrees C, dynamic 35275 recrystallization occurred by the migration and coalescence of 35276 subboundaries. Dynamic recovery dominated during deformation at 900 35277 degrees C, resulting in the formation of fine equiaxed subgrains, Based 35278 on microstructural;observations, the process of substructural changes 35279 during hot deformation was described by a schematic-diagram. 35280 C1 Dalian Railway Univ, Dalian 116028, Liaoning, Peoples R China. 35281 Shanghai Univ, Shanghai 201800, Peoples R China. 35282 Univ Melbourne, Dept Mech & Mfg Engn, Parkville, Vic 3052, Australia. 35283 RP Gao, F, Dalian Railway Univ, Dalian 116028, Liaoning, Peoples R China. 35284 CR BELYAKOV AN, 1993, PHYS MET METALLOGR, V76, P162 35285 BOURELL DL, 1987, J MAT SHAPING TECH, V5, P53 35286 CIZEK P, 1989, METALL J, V44, P94 35287 CIZEK P, 1997, MAT SCI ENG A-STRUCT, V230, P88 35288 DOHERTY RD, 1997, MAT SCI ENG A-STRUCT, V238, P219 35289 DRURY MR, 1986, ACTA METALL, V34, P2259 35290 GAO F, 1988, ACTA METALL SINICA, V24, B195 35291 GLOVER G, 1973, METALL T, V4, P765 35292 ION SE, 1982, ACTA METALL, V30, P1909 35293 JONAS JJ, 1969, MET REV, V14, P1 35294 KONOPLEVA EV, 1997, MAT SCI ENG A-STRUCT, V234, P826 35295 MAKI T, 1982, 6 INT C STRENGTH MET, P529 35296 MCQUEEN HJ, 1977, METALL TRANS A, V8, P807 35297 ROBERTS W, 1984, DEFORMATION PROCESSI, P109 35298 SAKAI T, 1984, ACTA METALL, V32, P189 35299 SCHMIDT CG, 1982, MET T A, V13, P447 35300 NR 16 35301 TC 9 35302 SN 1073-5623 35303 J9 METALL MATER TRANS A 35304 JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 35305 PD JAN 35306 PY 2000 35307 VL 31 35308 IS 1 35309 BP 21 35310 EP 27 35311 PG 7 35312 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 35313 Engineering 35314 GA 274JQ 35315 UT ISI:000084763100003 35316 ER 35317 35318 PT J 35319 AU Ding, YP 35320 Meng, ZY 35321 TI The ordered micro-domain in Ba1-xSrxTiO3 thin films and its effect on 35322 phase transition 35323 SO JOURNAL OF MATERIALS SCIENCE LETTERS 35324 DT Article 35325 ID FERROELECTRICS 35326 C1 Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China. 35327 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 35328 RP Ding, YP, Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, 35329 Peoples R China. 35330 CR CROSS LE, 1987, FERROELECTRICS, V76, P241 35331 DING YP, 1998, IN PRESS 9 INT C MOD 35332 GU BL, 1991, J APPL PHYS, V70, P4224 35333 KING G, 1988, J AM CERAM SOC, V71, P454 35334 RANDALL CA, 1990, J MATER RES, V5, P829 35335 SMOLENSKY GA, 1970, J PHYS SOC JAPAN S, V28, P26 35336 NR 6 35337 TC 3 35338 SN 0261-8028 35339 J9 J MATER SCI LETT 35340 JI J. Mater. Sci. Lett. 35341 PD JAN 35342 PY 2000 35343 VL 19 35344 IS 2 35345 BP 163 35346 EP 165 35347 PG 3 35348 SC Materials Science, Multidisciplinary 35349 GA 276GR 35350 UT ISI:000084868500021 35351 ER 35352 35353 PT J 35354 AU Lu, JM 35355 Ye, ZM 35356 TI Application of CASs to iterative solution of nonlinear analysis of 35357 shallow conical shell 35358 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 35359 DT Article 35360 ID COMPUTER ALGEBRA SOFTWARE; MATHEMATICA 35361 AB This paper deals with the application of Computer Algebra Systems 35362 (CASs) - Maple V to the nonlinear analysis of shallow conical shells. 35363 It is shown that the nonlinear equations of the shell to the nonlinear 35364 problem could be solved by using the CASs method. Detailed high-order 35365 iterative solution expressions and analytical results or the third 35366 iteration are given in CASs forms. The numerical results show that the 35367 solutions of this paper contain other cases when the solutions were the 35368 second order iteration. The effects of various inner radius parameters 35369 have been investigated in detail. The results of the third iterative 35370 expressions are obtained first. It has been shown that the adoption of 35371 the CASs method would be useful in nonlinear problems. (C) 2000 35372 Published by Elsevier Science S.A. All rights reserved. 35373 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 35374 RP Lu, JM, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yan Chang 35375 Rd, Shanghai 200072, Peoples R China. 35376 CR HANSEN P, 1991, MATH PROGRAM, V52, P227 35377 IOAKIMIDIS NI, 1991, ENG FRACT MECH, V38, P95 35378 IOAKIMIDIS NI, 1992, COMPUT METHOD APPL M, V94, P229 35379 IOAKIMIDIS NI, 1993, COMPUT STRUCT, V47, P233 35380 IOAKIMIDIS NI, 1993, INT J COMPUT MATH, V49, P75 35381 IOAKIMIDIS NI, 1994, COMPUT STRUCT, V53, P63 35382 IOAKIMIDIS NI, 1995, COMPUT STRUCT, V55, P229 35383 KENNETH R, 1989, SCIENCE, V243, P679 35384 YE Z, 1997, MECH PRACTICE, V19, P1 35385 YE ZM, 1990, J APPL MECH-T ASME, V57, P1026 35386 YE ZM, 1993, MECH RES COMMUN, V20, P83 35387 YE ZM, 1995, COMPUT STRUCT, V55, P325 35388 YE ZM, 1997, J SOUND VIB, V202, P303 35389 YE ZM, 1998, COMPUT METHOD APPL M, V163, P383 35390 NR 14 35391 TC 0 35392 SN 0045-7825 35393 J9 COMPUT METHOD APPL MECH ENG 35394 JI Comput. Meth. Appl. Mech. Eng. 35395 PD JAN 7 35396 PY 2000 35397 VL 181 35398 IS 1-3 35399 BP 345 35400 EP 361 35401 PG 17 35402 SC Computer Science, Interdisciplinary Applications; Engineering, 35403 Mechanical; Mechanics 35404 GA 276PX 35405 UT ISI:000084887500014 35406 ER 35407 35408 PT J 35409 AU Tan, WH 35410 Yan, KZ 35411 TI Collapse and revival in the damped Jaynes-Cummings model 35412 SO CHINESE PHYSICS LETTERS 35413 DT Article 35414 ID STATES; CAVITY; FIELD 35415 AB We present the first results for the analytic solution of the 35416 dissipative Jaynes-Cummings model and its application to the collapse 35417 and revival of atomic inversion. We find that the atomic inversion 35418 oscillates more and more slowly with decreasing Rabi frequency due to 35419 the cavity losses. At the same time, long drawn-out revivals after 35420 collapse are observed. 35421 C1 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China. 35422 RP Tan, WH, Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, 35423 Peoples R China. 35424 CR BARNETT SM, 1986, PHYS REV A, V33, P2444 35425 BUCK B, 1981, PHYS LETT A, V81, P132 35426 DUAN LM, 1997, CHINESE PHYS LETT, V14, P488 35427 EBERLY JH, 1980, PHYS REV LETT, V44, P1323 35428 GERRY CC, 1996, PHYS REV A, V53, P2857 35429 HAKEN H, 1970, ENCYCL PHYS, V25, P41 35430 JAYNES ET, 1963, P IEEE, V51, P89 35431 KUKLINSKI JR, 1988, PHYS REV A, V37, P3175 35432 RAIMOND JM, 1982, PHYS REV LETT, V49, P117 35433 SHAO B, 1997, CHINESE PHYS LETT, V14, P905 35434 YANG XX, 1998, CHINESE PHYS LETT, V15, P186 35435 ZHENG SB, 1997, CHINESE PHYS LETT, V14, P273 35436 NR 12 35437 TC 0 35438 SN 0256-307X 35439 J9 CHIN PHYS LETT 35440 JI Chin. Phys. Lett. 35441 PY 1999 35442 VL 16 35443 IS 12 35444 BP 896 35445 EP 898 35446 PG 3 35447 SC Physics, Multidisciplinary 35448 GA 272KQ 35449 UT ISI:000084649500014 35450 ER 35451 35452 PT J 35453 AU Li, DZ 35454 TI Universal equation of photovoltage and transverse photovoltage effect 35455 SO ACTA PHYSICA SINICA 35456 DT Article 35457 AB We have derived a universal equation of photovoltage using a physics 35458 model of photovoltage effects, which involves a p(+)-n-n(+) structure. 35459 Under specified condition, the equation is simplified to expressions of 35460 junction field photovoltage, Dem ber photovoltage and transverse 35461 photovoltage. 35462 According to the function relation between the transverse photovoltage 35463 and the position of light point derived from the universal equation of 35464 photovoltage we fabricated the position sensitive detector (PSD) with 35465 excellent characteristics of position sensitivity on photocurrents. The 35466 theory is thus proven by the successful fabrication of the PSD. 35467 C1 Shanghai Univ, Sch Sci, Shanghai 201800, Peoples R China. 35468 RP Li, DZ, Shanghai Univ, Sch Sci, Shanghai 201800, Peoples R China. 35469 CR 1988, POSITION SENSITIVE D 35470 LI DZ, 1998, J SHANGHAI U, V4, P284 35471 PANKORE JI, 1971, OPTICAL PROCESS SEMI, P313 35472 QIAO D, 1980, ELECT MAT, P119 35473 SMITH RA, 1978, SEMICONDUCTOR CAMBRI 35474 SZE SM, 1981, PHYSICS SEMICONDUCTO, P74 35475 WOLTRING H, 1985, J IEEE T ELECT DEVIC, P581 35476 ZHANG YY, 1987, PHOTOELECTRONIC, P81 35477 NR 8 35478 TC 0 35479 SN 1000-3290 35480 J9 ACTA PHYS SIN-CHINESE ED 35481 JI Acta Phys. Sin. 35482 PD JAN 35483 PY 2000 35484 VL 49 35485 IS 1 35486 BP 137 35487 EP 141 35488 PG 5 35489 SC Physics, Multidisciplinary 35490 GA 273EC 35491 UT ISI:000084694100029 35492 ER 35493 35494 PT J 35495 AU Zhang, TS 35496 Hing, P 35497 Li, Y 35498 Zhang, JC 35499 TI Selective detection of ethanol vapor and hydrogen using Cd-doped 35500 SnO2-based sensors 35501 SO SENSORS AND ACTUATORS B-CHEMICAL 35502 DT Article 35503 DE tin dioxide; CdO doping; ethanol sensor; hydrogen sensor 35504 ID GAS SENSORS; WORK FUNCTION; TIN DIOXIDE; THIN-FILMS; SURFACE; SNO2; 35505 SENSITIVITY; CONDUCTANCE; H2S 35506 AB The effect of CdO doping on microstructure, conductance and gas-sensing 35507 properties of SnO2-based sensors has been presented in this study. 35508 Precursor powders with Cd/Sn molar ratios ranging from 0 to 0.5 were 35509 prepared by chemical coprecipitation. X-ray diffraction (XRD) analysis 35510 indicates that the solid-state reaction in the CdO-SnO2 system occurs 35511 and alpha-CdSnO3 with pervoskite structure is formed between 600 and 35512 650 degrees C. CdO doping suppresses SnO2 crystallite growth 35513 effectively which has been confirmed by means of XRD, transmission 35514 electron microscopy (TEM) and BET method. The 10 mol% Cd-doped 35515 SnO2-based sensor shows an excellent ethanol-sensing performance, such 35516 as high sensitivity (275 for 100 ppm C2H5OH), rapid response rate (12 s 35517 for 90% response time) and high selectivity over CO, H-2 and i-C4H10. 35518 On the other hand, this sensor has good H-2-sensing properties in the 35519 absence of ethanol vapor. The sensor operates at 300 degrees C, the 35520 sensitivity to 1000 ppm H-2 is up to 98, but only 16 and 7 for 1000 ppm 35521 CO and i-C4H10, respectively. (C) 1999 Elsevier Science S.A. All rights 35522 reserved. 35523 C1 Nanyang Technol Univ, Sch Appl Sci, Div Mat Engn, Ctr Adv Mat Res, Singapore 639798, Singapore. 35524 Univ Aveiro, UIMC, Dept Ceram & Glass Engn, P-3810 Aveiro, Portugal. 35525 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China. 35526 RP Zhang, TS, Nanyang Technol Univ, Sch Appl Sci, Div Mat Engn, Ctr Adv 35527 Mat Res, Nanyang Ave, Singapore 639798, Singapore. 35528 CR CALDARARU M, 1996, SENSOR ACTUAT B-CHEM, V30, P35 35529 CANTALINI C, 1994, SENSOR ACTUAT B-CHEM, V18, P437 35530 COLES GSV, 1991, SENSOR ACTUAT B-CHEM, V5, P7 35531 COX DF, 1988, PHYS REV B, V38, P2072 35532 FANG YK, 1989, THIN SOLID FILMS, V169, P51 35533 GHIOTTI G, 1995, SENSOR ACTUAT B-CHEM, V24, P520 35534 GUTIERREZ FJ, 1992, SENSOR ACTUAT B-CHEM, V8, P231 35535 HARA K, 1994, SENSOR ACTUAT B-CHEM, V20, P181 35536 HYKAWAY N, 1988, SENSOR ACTUATOR, V15, P105 35537 JIANMING L, 1989, P INT C EL COMP MAT, P197 35538 KOHL D, 1989, SENSOR ACTUATOR, V18, P71 35539 LONG LB, 1996, SENSOR ACTUAT B-CHEM, V30, P217 35540 MAEKAWA T, 1991, CHEM LETT, P575 35541 MAEKAWA T, 1992, SENSOR ACTUAT B-CHEM, V9, P63 35542 MARTINELLI G, 1992, SENSOR ACTUAT B-CHEM, V7, P717 35543 MATSUSHIMA S, 1989, CHEM LETT, P845 35544 MCALEER JF, 1987, J CHEM SOC FARAD T 1, V83, P1323 35545 MISHRA VN, 1994, SENSOR ACTUAT B-CHEM, V21, P209 35546 MIZSEI J, 1991, SENSOR ACTUAT B-CHEM, V4, P163 35547 NITTA M, 1979, J ELECTRON MATER, V8, P571 35548 OGAWA H, 1982, J APPL PHYS, V53, P4448 35549 OYABU T, 1986, SENSOR ACTUATOR, V9, P301 35550 PROMSONG L, 1995, SENSOR ACTUAT B-CHEM, V24, P504 35551 SARALA G, 1995, SENSOR ACTUAT B-CHEM, V28, P31 35552 SBERVEGLIERI G, 1991, SENSOR ACTUAT B-CHEM, V5, P253 35553 SBERVEGLIERI G, 1992, SENSOR ACTUAT B-CHEM, V8, P79 35554 SCHIERBAUM KD, 1991, SENSOR ACTUAT B-CHEM, V3, P205 35555 TAKATA M, 1976, J AM CERAM SOC, V59, P4 35556 TALLAL NM, 1974, ELECT CONDUCTIVITY C, P380 35557 YAMAMOTO N, 1981, JPN J APPL PHYS, V20, P721 35558 YAMAZOE N, 1991, SENSOR ACTUAT B-CHEM, V5, P7 35559 NR 31 35560 TC 8 35561 SN 0925-4005 35562 J9 SENSOR ACTUATOR B-CHEM 35563 JI Sens. Actuator B-Chem. 35564 PD NOV 23 35565 PY 1999 35566 VL 60 35567 IS 2-3 35568 BP 208 35569 EP 215 35570 PG 8 35571 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation 35572 GA 269UB 35573 UT ISI:000084495000016 35574 ER 35575 35576 PT J 35577 AU Yang, L 35578 Liu, ZR 35579 Mao, JM 35580 TI Controlling hyperchaos 35581 SO PHYSICAL REVIEW LETTERS 35582 DT Article 35583 ID DIRECT TRAJECTORIES; CONTROLLING CHAOS; SYSTEMS; TARGETS; ORBITS; MAP 35584 AB For a finite-dimensional dynamical system, whose governing equations 35585 may or may not be analytically available, we show how to stabilize an 35586 unstable orbit in a neighborhood of a "fully"unstable fixed point 35587 (i.e., a fixed point at which all eigenvalues of the Jacobian matrix 35588 have modulus greater than unity). Only one of the unstable directions 35589 is to be stabilized via time-dependent adjustments of control 35590 parameters. The parameter adjustments can be optimized. 35591 C1 Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong. 35592 Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R China. 35593 Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China. 35594 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 35595 RP Mao, JM, Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong. 35596 CR AUERBACH D, 1992, PHYS REV LETT, V69, P3479 35597 DITTO WL, 1990, PHYS REV LETT, V65, P3211 35598 KANEKO K, 1989, PHYSICA D, V34, P1 35599 OTT E, 1990, PHYS REV LETT, V64, P1196 35600 PETROV V, 1992, J CHEM PHYS, V96, P7506 35601 PYRAGAS K, 1992, PHYS LETT A, V170, P421 35602 ROMEIRAS FJ, 1992, PHYSICA D, V58, P165 35603 SHINBROT T, 1990, PHYS REV LETT, V65, P3215 35604 SHINBROT T, 1992, PHYS REV A, V45, P4165 35605 SHINBROT T, 1992, PHYS REV LETT, V68, P2863 35606 SINGER J, 1991, PHYS REV LETT, V66, P1123 35607 SO P, 1996, PHYS REV LETT, V76, P4705 35608 NR 12 35609 TC 22 35610 SN 0031-9007 35611 J9 PHYS REV LETT 35612 JI Phys. Rev. Lett. 35613 PD JAN 3 35614 PY 2000 35615 VL 84 35616 IS 1 35617 BP 67 35618 EP 70 35619 PG 4 35620 SC Physics, Multidisciplinary 35621 GA 271HJ 35622 UT ISI:000084587900017 35623 ER 35624 35625 PT J 35626 AU Gao, F 35627 Xu, Y 35628 Song, B 35629 Xia, K 35630 TI Thermodynamic study of the critical nucleus size for metadynamic 35631 recrystallisation 35632 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES 35633 MICROSTRUCTURE AND PROCESSING 35634 DT Article 35635 DE metadynamic recrystallisation; dynamic recrystallisation; nucleation 35636 ID DYNAMIC RECRYSTALLIZATION; HOT-WORKING; RECOVERY 35637 AB On the basis of thermodynamics, it is shown that the critical nucleus 35638 size for metadynamic recrystallisation is smaller than that for dynamic 35639 recrystallisation. It follows that the nucleation rate of metadynamic 35640 recrystallisation is not zero. A Cr25Ti steel was hot deformed and its 35641 recrystallised structures were examined after delayed quench. It was 35642 observed that after the deformation was terminated, both the grain size 35643 and the subgrain size decreased at first, although the grains 35644 eventually coarsened at longer times. This is attributed to the 35645 conversion of potential embryos formed during dynamic recrystallisation 35646 into true nuclei in metadynamic recrystallisation. The results from the 35647 experiment appear to be consistent with the theoretical analysis. (C) 35648 2000 Elsevier Science S.A. All rights reserved. 35649 C1 Univ Melbourne, Dept Mech & Mfg Engn, Parkville, Vic 3052, Australia. 35650 Shanghai Univ, Shanghai 201800, Peoples R China. 35651 Dalian Railway Univ, Dalian, Lianoning, Peoples R China. 35652 RP Xia, K, Univ Melbourne, Dept Mech & Mfg Engn, Parkville, Vic 3052, 35653 Australia. 35654 CR DJAIC RAP, 1973, MET T, V4, P621 35655 GAO F, 1988, ACTA METALL SINICA, V24, B195 35656 GLOVER G, 1972, METALL T, V3, P2271 35657 HODGSON PD, 1998, THERMEC 97, P121 35658 JONAS JJ, 1994, MAT SCI ENG A-STRUCT, V184, P155 35659 PETKOVIC RA, 1979, ACTA METALL, V27, P1633 35660 ROUCOULES C, 1994, METALL MATER TRANS A, V25, P389 35661 ROUCOULES C, 1995, MATER SCI TECH SER, V11, P548 35662 SAKAI T, 1988, ACTA METALL, V36, P1781 35663 NR 9 35664 TC 0 35665 SN 0921-5093 35666 J9 MATER SCI ENG A-STRUCT MATER 35667 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 35668 PD JAN 31 35669 PY 2000 35670 VL 277 35671 IS 1-2 35672 BP 33 35673 EP 37 35674 PG 5 35675 SC Materials Science, Multidisciplinary 35676 GA 271RQ 35677 UT ISI:000084607600005 35678 ER 35679 35680 PT J 35681 AU Shi, LY 35682 Li, CZ 35683 Gu, HC 35684 Fang, DY 35685 TI Morphology and properties of ultrafine SnO2-TiO2 coupled semiconductor 35686 particles 35687 SO MATERIALS CHEMISTRY AND PHYSICS 35688 DT Article 35689 DE photocatalytic oxidation; ultrafine particle; dyeing wastewater 35690 ID PHOTOCATALYTIC DEGRADATION; FILMS; TIO2 35691 AB In this paper, a new method to synthesize ultrafine SnO2-TiO2 coupled 35692 particles is presented. The coupled particles are synthesized by 35693 homogeneous precipitation and characterized by EDS, XRD, TEM, HREM and 35694 BET surface area analysis. The coupled particles, pure ultrafine TiO2, 35695 commercial TiO2,and pure SnO2 are employed for photocatalytic 35696 degradation of azo dye active red X-3B in aerated solution. The results 35697 show that a very rapid and complete decolorization of the azo dye can 35698 be achieved, and the photoactivity of the coupled particles is higher 35699 than that of pure ultrafine TiO2 and commercial TiO2 particles, and the 35700 optimum loading of SnO2 on TiO2 is 18.4%. The enhanced degradation rate 35701 of X-3B using SnO2-TiO2 coupled photocatalysts is attributed to 35702 increased charge separation in these systems. (C) 2000 Elsevier Science 35703 S.A. All rights reserved. 35704 C1 Shanghai Univ, Coll Chem & Chem Engn, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China. 35705 E China Univ Sci & Technol, Inst Tech Chem & Phys, Shanghai 200237, Peoples R China. 35706 E China Univ Sci & Technol, Dept Chem Engn, Shanghai 200237, Peoples R China. 35707 RP Shi, LY, Shanghai Univ, Coll Chem & Chem Engn, Dept Environm Sci & 35708 Engn, Box 59,149 Yanchang Rd, Shanghai 200072, Peoples R China. 35709 CR BEDJA I, 1994, J PHYS CHEM-US, V98, P4133 35710 CHAO M, 1993, RES ENV SCI, V6, P58 35711 CRAIG ST, 1990, J CATAL, V122, P178 35712 FOTOU GP, 1996, CHEM ENG COMMUN, V251, P151 35713 GERISCHER H, 1991, J PHYS CHEM-US, V95, P5261 35714 GOPIDAS KR, 1994, J PHYS CHEM-US, V98, P3822 35715 HIROSHI Y, 1989, J PHYS CHEM-US, V93, P4833 35716 JUDIN VPS, 1993, CHEM BRIT, V29, P503 35717 LEGRINI O, 1993, CHEM REV, V93, P671 35718 SHI LY, 1998, J ECUST CH, V24, P291 35719 SHI LY, 1999, IN PRESS J CATAL, V20 35720 SPADARO JT, 1994, ENVIRON SCI TECHNOL, V28, P1389 35721 TSAI SJ, 1997, CATAL TODAY, V33, P227 35722 VINODGOPAL K, 1996, CHEM MATER, V8, P2180 35723 WEI TY, 1991, IND ENG CHEM RES, V30, P1293 35724 ZHANG LD, 1994, FUNCTIONAL MAT, P76 35725 NR 16 35726 TC 25 35727 SN 0254-0584 35728 J9 MATER CHEM PHYS 35729 JI Mater. Chem. Phys. 35730 PD JAN 14 35731 PY 2000 35732 VL 62 35733 IS 1 35734 BP 62 35735 EP 67 35736 PG 6 35737 SC Materials Science, Multidisciplinary 35738 GA 269RV 35739 UT ISI:000084492100009 35740 ER 35741 35742 PT J 35743 AU Zhang, YJ 35744 Ho, SL 35745 Wong, HC 35746 Xie, GD 35747 TI Analytical prediction of armature-reaction field in disc-type permanent 35748 magnet generators 35749 SO IEEE TRANSACTIONS ON ENERGY CONVERSION 35750 DT Article 35751 DE disc-type machine; permanent magnet; armature reaction field; 35752 analytical method 35753 ID MOTORS 35754 AB A two dimensional (2D) analytical method to predict the 35755 armature-reaction field in the slotted opening airgap/magnet region of 35756 a permanent magnet (PM) disc-type generator is presented. The currents 35757 in the slot is modeled by a uniform distributed current sheet along an 35758 are at the slot opening. The analysis takes into account the harmonics 35759 in the armature current waveforms which are calculated from the voltage 35760 equations. The effects of the stator slot openings are being accounted 35761 for by the introduction of a 2D relative permeance function which is 35762 calculated directly from the nonlinear equation described,by conformal 35763 transformation. A more refined permeance distribution can then be 35764 obtained easily. 35765 C1 Hong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong. 35766 Hong Kong Polytech Univ, Ind Ctr, Hong Kong, Hong Kong. 35767 Shanghai Univ, Dept Elect Engn, Shanghai, Peoples R China. 35768 RP Zhang, YJ, Hong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong 35769 Kong. 35770 CR CAMPBELL P, 1975, IEEE T MAGN, V11, P1541 35771 CHALMERS B, 1990, MACHINES ELECTROMAGN 35772 FURLANI EP, 1994, IEEE T MAGN, V30, P3660 35773 GU CL, 1994, IEEE T MAGN, V30, P3668 35774 HO SL, 1994, INT C EL MACH PAR FR, P477 35775 TAKANO H, 1992, IEEE T IND APPL, V28, P350 35776 ZHU ZQ, 1993, IEEE T MAGN, V29, P144 35777 NR 7 35778 TC 1 35779 SN 0885-8969 35780 J9 IEEE TRANS ENERGY CONVERS 35781 JI IEEE Trans. Energy Convers. 35782 PD DEC 35783 PY 1999 35784 VL 14 35785 IS 4 35786 BP 1385 35787 EP 1390 35788 PG 6 35789 SC Engineering, Electrical & Electronic; Energy & Fuels 35790 GA 271HV 35791 UT ISI:000084588900095 35792 ER 35793 35794 PT J 35795 AU Ji, YF 35796 Ji, G 35797 Xiao, XS 35798 Dong, YD 35799 Ma, XM 35800 Wang, WH 35801 Zhao, DQ 35802 TI Fabrication of bulk glassy Zr41Ti14Ni8Cu12.5Be22.5Fe2 alloy by water 35803 quenching 35804 SO CHINESE SCIENCE BULLETIN 35805 DT Article 35806 DE bulk amorphous alloy; glass forming ability; supercooled liquid region; 35807 eletronegativity 35808 AB A glassy Zr41Ti14Ni8Cu12.5Be22.5Fe2 rod with a diameter of 9 mm was 35809 successfully produced by water quenching. The effects of iron addition 35810 on thermal stability and hardness of Zr41Ti14Ni8Cu12.5Be22.5Fe2 bulk 35811 amorphous alloy were investigated by XR D, DSC and microhardness test; 35812 It is found that the full annealing would enhance the strength of the 35813 alloy significantly. The cause of the increase in hardness was analyzed 35814 and the formation mechanisms of the bulk amorphous alloy are discussed. 35815 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China. 35816 Chinese Acad Sci, Inst Phys, Beijing 10080, Peoples R China. 35817 RP Ji, YF, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R 35818 China. 35819 CR CHENG HC, 1985, CRYSTALLIZATION CHEM, P116 35820 GREER AL, 1993, NATURE, V366, P303 35821 INOUE A, 1995, MATER T JIM, V36, P866 35822 JOHNSON WL, 1996, MATER SCI FORUM, V225, P35 35823 WANG WH, 1997, APPL PHYS LETT, V71, P1053 35824 NR 5 35825 TC 1 35826 SN 1001-6538 35827 J9 CHIN SCI BULL 35828 JI Chin. Sci. Bull. 35829 PD JAN 35830 PY 2000 35831 VL 45 35832 IS 1 35833 BP 23 35834 EP 27 35835 PG 5 35836 SC Multidisciplinary Sciences 35837 GA 270GE 35838 UT ISI:000084526400004 35839 ER 35840 35841 PT J 35842 AU Wang, CS 35843 Zhu, JL 35844 Luo, WY 35845 Zhou, SX 35846 TI Measurement of fluorine pollutant in plant leaves and soil using 35847 nuclear reaction analysis 35848 SO BIOLOGICAL TRACE ELEMENT RESEARCH 35849 DT Article 35850 DE fluorine pollution; nuclear reaction analysis; environment; plant 35851 leaves; soil 35852 AB In this article, the soil and the leaves of plants, parasol, cotton, 35853 and glossy privet around a fluorine-polluted area were taken as the 35854 samples, and fluorine concentration of the samples were studied using 35855 the nuclear reaction F-19(P,alpha)O-16, and some results were given. 35856 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China. 35857 RP Wang, CS, Shanghai Univ, Shanghai Appl Radiat Inst, Jiading Campus, 35858 Shanghai 201800, Peoples R China. 35859 CR ALFASSI ZB, 1990, ACTIVATION ANAL 35860 DECONNINCK G, 1983, NUCL INSTRUM METHODS, V218, P165 35861 DIEUMEGARD D, 1980, NUCL INSTRUM METHODS, V168, P93 35862 NR 3 35863 TC 0 35864 SN 0163-4984 35865 J9 BIOL TR ELEM RES 35866 JI Biol. Trace Elem. Res. 35867 PD WIN 35868 PY 1999 35869 VL 71-2 35870 BP 325 35871 EP 329 35872 PG 5 35873 SC Biochemistry & Molecular Biology; Endocrinology & Metabolism 35874 GA 271TT 35875 UT ISI:000084610100036 35876 ER 35877 35878 PT J 35879 AU You, JL 35880 Wang, ZS 35881 Zhang, GS 35882 Ren, JS 35883 Jiang, GC 35884 TI Study on magnesium ionization in cathodic sputtering glow discharge 35885 plasma 35886 SO SPECTROSCOPY AND SPECTRAL ANALYSIS 35887 DT Article 35888 DE glow discharge; cathodic sputtering atomizer; atomic absorption 35889 spectrometry; ionic absorption spectrometry; ionization degree 35890 ID ATOMIC-ABSORPTION SPECTROMETRY; ATOMIZATION; METALS; ALLOYS; COPPER 35891 AB A method, based on the Doppler broadening-dependent absorption width 35892 and the ionization degree measured by the ratio of relative atomic and 35893 ionic absorbance in cathodic sputtering glow discharge (CSGD) plasma 35894 with aluminum-magnesium alloys as cathodes,is proposed. The 35895 experimental reveals that the plentiful magnesium ions in the plasma 35896 under the conventional discharge conditions,of the atomizer do 35897 influence the analytic working curves. Corrected method is derived and 35898 factors which result in magnesium ionization degree are disscused. 35899 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 35900 Shanghai Univ, Dept Chem & Chem Engn, Shanghai 200072, Peoples R China. 35901 Acad Sinica, Inst Met Res, Shenyang 110015, Peoples R China. 35902 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 35903 200072, Peoples R China. 35904 CR *CRC, HDB CHEM PHYS 35905 BARSHICK CM, 1994, ANAL CHEM, V66, P730 35906 BATAL A, 1981, SPECTROCHIM ACTA B, V36, P993 35907 BRUHN CG, 1978, ANAL CHEM, V50, P16 35908 CHAKRABARTI CL, 1989, SPECTROCHIM ACTA B, V44, P385 35909 GOUGH DS, 1976, ANAL CHEM, V48, P1926 35910 GRIMM W, 1968, SPECTROCHIM ACTA B, V23, P443 35911 HARVILLE TR, 1993, ANAL CHEM, V65, P3636 35912 HASEGAWA T, 1985, SPECTROCHIM ACTA B, V40, P123 35913 HEADRICK KL, 1994, SPECTROCHIM ACTA B, V49, P975 35914 JIANSHI REN, 1984, SPECTROSC SPECT ANAL, V4, P32 35915 JINGLIN Y, 1993, ANAL LETT, V26, P541 35916 MEHDI T, 1993, SPECTROCHIM ACTA B, V48, P1023 35917 MEI Y, 1993, ANAL CHEM, V65, P3337 35918 MITCHELL ACG, 1961, RESONANCE RAD EXCITE 35919 TONG SL, 1993, SPECTROCHIM ACTA B, V48, P1237 35920 WAGATSUMA K, 1993, SPECTROCHIM ACTA B, V48, P1039 35921 WEISS Z, 1993, SPECTROCHIM ACTA B, V48, P1247 35922 WINCHESTER MR, 1988, APPL SPECTROSC, V42, P941 35923 WINCHESTER MR, 1990, J ANAL ATOM SPECTROM, V5, P9 35924 NR 20 35925 TC 0 35926 SN 1000-0593 35927 J9 SPECTROSC SPECTR ANAL 35928 JI Spectrosc. Spectr. Anal. 35929 PD DEC 35930 PY 1999 35931 VL 19 35932 IS 6 35933 BP 850 35934 EP 853 35935 PG 4 35936 SC Spectroscopy 35937 GA 268RY 35938 UT ISI:000084430400025 35939 ER 35940 35941 PT J 35942 AU Hassan, AKA 35943 Xu, DM 35944 Zhang, YJ 35945 TI Modeling and analysis of finite-flange open-ended coaxial probe for 35946 planar and convex surface coating material testing by FDTD method 35947 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 35948 DT Article 35949 DE curved surface testing; FDTD; error analysis; EM properties; complex 35950 permittivity and permeability 35951 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800, Peoples R China. 35952 RP Hassan, AKA, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 35953 201800, Peoples R China. 35954 CR BAKERJARVIS J, 1994, IEEE T INSTRUM MEAS, V43, P711 35955 BAKHTIARI S, 1994, IEEE T MICROW THEORY, V42, P2073 35956 BRINGHURST S, 1997, IEEE T MICROWAVE THE, V45 35957 COLPITTS BG, 1996, IEEE T MICROW THEORY, V44, P160 35958 HASSAN AKA, 1999, 26 GEN ASS INT UN RA 35959 LAUGHE PD, 1993, IEEE T INSTRUM MEAS, V42, P879 35960 MUR G, 1981, IEEE T ELECTROMAGN C, V23, P377 35961 NIU M, 1999, IEEE T INSTRUM MEAS, V47, P476 35962 OKONIEWSKI M, 1994, IEEE ANT PROP SOC IN, V2, P1438 35963 TOFLOVE A, 1980, IEEE T ELECTROMAGNET, V22, P191 35964 XU DM, 1987, IEEE T MICROW THEORY, V35, P1424 35965 YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302 35966 ZHANG Z, 1995, J MICROWAVES CHINA, V11, P171 35967 NR 13 35968 TC 1 35969 SN 0895-2477 35970 J9 MICROWAVE OPT TECHNOL LETT 35971 JI Microw. Opt. Technol. Lett. 35972 PD JAN 20 35973 PY 2000 35974 VL 24 35975 IS 2 35976 BP 117 35977 EP 120 35978 PG 4 35979 SC Engineering, Electrical & Electronic; Optics 35980 GA 268YG 35981 UT ISI:000084447000010 35982 ER 35983 35984 PT J 35985 AU Qing, AY 35986 Li, J 35987 Ren, L 35988 Lee, CK 35989 Zhong, SS 35990 TI Microwave imaging of multiple perfectly conducting cylinders using 35991 real-coded genetic algorithm 35992 SO CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION 35993 DT Article 35994 DE microwave imaging; two-dimensional perfectly conducting objects; 35995 real-coded genetic algorithm; simulated annealing 35996 ID ELECTROMAGNETICS 35997 AB A novel approach for microwave imaging of two-dimensional perfectly 35998 conducting objects in free space using real-coded genetic algorithm is 35999 put forward in this paper. The shape function of each contour is 36000 approximated by triangular series. A set of integral equations with 36001 respect to the coefficients of these series are derived according to 36002 the boundary conditions. The imaging problem is then reformulated into 36003 a restrained optimization one where the variables to be optimized are 36004 the coefficients of the series and the cost function is defined as the 36005 relative error between the measured scattered electric field and the 36006 simulated one. Using real-coded genetic algorithm, the imaging is done 36007 by genetic operating iteratively. The fitness function is obtained by 36008 transforming and scaling the cost function using simulated annealing 36009 method. Tournament selection, proportional model, one-point crossover 36010 and elitist model are used while the mutation is done by adding a 36011 random purtabation item to the gene to be mutated. Numerical examples 36012 show the validity of this method. Compared with other inversion 36013 algorithms, our method is more simple, versatile and robust. 36014 C1 SW Jiaotong Univ, Inst Electromagnet Theory & Microwave Technol, Chengdu 610031, Peoples R China. 36015 Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore. 36016 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China. 36017 RP Qing, AY, SW Jiaotong Univ, Inst Electromagnet Theory & Microwave 36018 Technol, POB 63, Chengdu 610031, Peoples R China. 36019 CR CHENG GL, 1996, GENETIC ALGORITHM AP 36020 CHEW WC, 1990, WAVES FIELDS INHOMOG 36021 CHIU CC, 1992, IEEE T ANTENN PROPAG, V40, P933 36022 DAVIS L, 1987, GENETIC ALGORITHM SI 36023 HARRINGTON RF, 1968, FIELD COMPUTATION MO 36024 HAUPT RL, 1995, IEEE ANTENNAS PROPAG, V37, P7 36025 HOLLAND JH, 1975, ADAPTION NATURAL ART 36026 KLEINMAN RE, 1994, RADIO SCI, V29, P1157 36027 MICHIELSSEN E, 1992, IEE PROC-J, V139, P413 36028 MOGHADDAM M, 1992, IEEE T GEOSCI REMOTE, V30, P147 36029 PENG ZQ, 1993, J APPL SCI, V11, P297 36030 QING A, 1997, J ELECTROMAGNET WAVE, V11, P259 36031 QING AY, 1997, THESIS SW JIAOTONG U 36032 QING AY, 1998, CHINESE J GEOPHYS, V41, P117 36033 WEILE DS, 1997, IEEE T ANTENN PROPAG, V45, P343 36034 NR 15 36035 TC 0 36036 SN 0001-5733 36037 J9 CHINESE J GEOPHYS-CHINESE ED 36038 JI Chinese J. Geophys.-Chinese Ed. 36039 PD NOV 36040 PY 1999 36041 VL 42 36042 IS 6 36043 BP 841 36044 EP 848 36045 PG 8 36046 SC Geochemistry & Geophysics 36047 GA 268JY 36048 UT ISI:000084411600015 36049 ER 36050 36051 PT J 36052 AU Fang, S 36053 Zhou, ZQ 36054 Zhang, JL 36055 Yao, MY 36056 Feng, F 36057 Northwood, DO 36058 TI The application of mathematical models to the calculation of selected 36059 hydrogen storage properties (formation enthalpy and hysteresis) of 36060 AB(2)-type alloys 36061 SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 36062 DT Article 36063 ID LAVES PHASE; ABSORPTION; HYDRIDES 36064 AB Two mathematical models have been applied to AB(2)-type 36065 hydrogen-absorbing alloys. The first model is for the calculation of 36066 hydride formation enthalpy and the second model allows for the 36067 calculation of P-C-T curves. Certain physical parameters (activity 36068 coefficient of hydrogen (gamma), partial molar volume of hydrogen ((V) 36069 over bar(H)), solution heat of hydrogen (Delta H-s), enthalpy (Delta H) 36070 and entropy (Delta S) of formation of a hydride, slope factor (f(s)) of 36071 a plateau and the variation rate (k) of slope factor with respect to 36072 temperature in a plateau region of P-C-T curves) for these 36073 intermetallic compounds and their hydrides are estimated from these 36074 models. From the second model, the relationship between the hysteresis 36075 factor (RT ln P-a/P-d) and temperature, hydrogen concentration and 36076 slope factor of the plateau region for the P-C-T curves has been 36077 obtained. (C) 1999 International Association for Hydrogen Energy. 36078 published by Elsevier Science Ltd. All rights reserved. 36079 C1 Ryerson Polytech Inst, Fac Engn & Appl Sci, Toronto, ON M5B 2K3, Canada. 36080 Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China. 36081 Univ Windsor, Windsor, ON N9B 3P4, Canada. 36082 RP Northwood, DO, Ryerson Polytech Inst, Fac Engn & Appl Sci, 350 Victoria 36083 St, Toronto, ON M5B 2K3, Canada. 36084 CR BOUTEN PCP, 1980, J LESS-COMMON MET, V71, P147 36085 ESAYED A, 1993, THESIS U WINDSOR CAN 36086 FUJII H, 1981, J PHYS CHEM-US, V85, P3112 36087 FUJITANI S, 1993, Z PHYS CHEM, V179, P27 36088 HONG G, 1990, 1043409, CN 36089 LEE HH, 1993, J ALLOY COMPD, V202, P23 36090 LUNDIN CE, 1977, J LESS-COMMON MET, V58, P19 36091 MIEDEMA AR, 1980, THEORY ALLOY PHASE F, P344 36092 QIAN S, 1988, INT J HYDROGEN ENERG, V13, P25 36093 QIAN S, 1989, THESIS U WINDSOR CAN 36094 SHALTIEL D, 1977, J LESS-COMMON MET, V53, P117 36095 SHITIKOV V, 1984, J LESS-COMMON MET, V102, P29 36096 VANMAL HH, 1974, J LESS-COMMON MET, V35, P65 36097 WICKE E, 1984, J LESS-COMMON MET, V101, P17 36098 XIAO J, 1985, ALLOY ENERGY RELATIO 36099 YANG HW, 1995, J ALLOY COMPD, V227, P69 36100 ZHOU Z, 1991, MAT SCI PROGR, V5, P117 36101 ZHOU Z, 1993, NEW ENERGY SYSTEMS C, P79 36102 ZHOU ZQ, 1994, INT J HYDROGEN ENERG, V19, P269 36103 NR 19 36104 TC 8 36105 SN 0360-3199 36106 J9 INT J HYDROGEN ENERG 36107 JI Int. J. Hydrog. Energy 36108 PD FEB 36109 PY 2000 36110 VL 25 36111 IS 2 36112 BP 143 36113 EP 149 36114 PG 7 36115 SC Physics, Atomic, Molecular & Chemical; Energy & Fuels; Environmental 36116 Sciences 36117 GA 266DT 36118 UT ISI:000084285900006 36119 ER 36120 36121 PT J 36122 AU Ma, Z 36123 Zhou, ZW 36124 TI On the instability in gas atomization 36125 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 36126 DT Article 36127 DE gas atomization; spray forming; instability of interfacial wave 36128 ID LIQUID 36129 AB The instability theory of fluid flow is applied in gas atomization and 36130 the results show that the instability of interfacial wave is the main 36131 cause of gas atomization. The size of the droplets and its change with 36132 parameters are also studied, the results are compatible with the 36133 experiments. 36134 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 36135 RP Ma, Z, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 36136 Peoples R China. 36137 CR BRADLEY D, 1973, J PHYS D, V6, P1724 36138 BRADLEY D, 1973, J PHYS D, V6, P2267 36139 GRANT NJ, 1983, J MET, V35, P20 36140 LAWLEY A, 1981, J MET, V33, P13 36141 LAWLEY A, 1993, ATOMIZATION PRODUCTI 36142 LUBANSKA H, 1970, J MET, V22, P45 36143 MA Z, 1998, ICFM, V3, P514 36144 MA Z, 1999, APPL MATH MECH-ENGL, V20, P825 36145 REITZ RD, 1982, PHYS FLUIDS, V25, P1730 36146 SEE JB, 1978, POWDER TECHNOL, V21, P119 36147 UNAL A, 1987, MATER SCI TECHNOL, V3, P1029 36148 UNAL A, 1988, MAT SCI TECHNOL, V4, P909 36149 NR 12 36150 TC 1 36151 SN 0253-4827 36152 J9 APPL MATH MECH-ENGL ED 36153 JI Appl. Math. Mech.-Engl. Ed. 36154 PD OCT 36155 PY 1999 36156 VL 20 36157 IS 10 36158 BP 1061 36159 EP 1066 36160 PG 6 36161 SC Mathematics, Applied; Mechanics 36162 GA 266DZ 36163 UT ISI:000084286500001 36164 ER 36165 36166 PT J 36167 AU Zhu, ZY 36168 Cong, YH 36169 TI The influence of imperfections upon the critical load of structures 36170 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 36171 DT Article 36172 DE imperfections; critical load; pitchfork; universal unfolding 36173 AB By means of the theory of universal unfolding, the influence of 36174 multi-imperfections upon the critical load of structure in engineering 36175 is analysed in this paper. For the pitchfork problem, a lower bound of 36176 increments of the critical loads caused by imperfections of the 36177 structures is given. A simple and available numerical method for 36178 computing the lower bound is described. 36179 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Math, Shanghai 200072, Peoples R China. 36180 Shanghai Normal Univ, Coll Math Sci, Shanghai 200234, Peoples R China. 36181 RP Zhu, ZY, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Math, 36182 Shanghai 200072, Peoples R China. 36183 CR ARNOLD VI, 1981, LONDON MATH SOC LECT, V51 36184 CHOW SN, 1975, ARCH RATIONAL MECH A, V59, P159 36185 ELISHAKOFF I, 1988, BUCKLING STRUCTURES, P195 36186 GOLUBITSKY M, 1984, SINGULARITIES GROUPS, V1 36187 HUNT GW, 1977, P ROY SOC LOND A MAT, V357, P193 36188 IKEDA K, 1990, INT J SOLIDS STRUCT, V26, P865 36189 KIRKPATRICK SW, 1988, J ENG MECH DIV, V115, P1025 36190 KOITER WT, 1967, NASA TECH T F, V10, P833 36191 LINDBERG HE, 1988, J ENG MECH-ASCE, V114, P1144 36192 MUROTA K, 1991, SIAM J APPL MATH, V51, P1222 36193 NIWA Y, 1981, P JAPAN SOC CIVIL EN, V307, P99 36194 THOMSON JMT, 1973, GEN THEORY ELASTIC S 36195 NR 12 36196 TC 0 36197 SN 0253-4827 36198 J9 APPL MATH MECH-ENGL ED 36199 JI Appl. Math. Mech.-Engl. Ed. 36200 PD OCT 36201 PY 1999 36202 VL 20 36203 IS 10 36204 BP 1108 36205 EP 1115 36206 PG 8 36207 SC Mathematics, Applied; Mechanics 36208 GA 266DZ 36209 UT ISI:000084286500006 36210 ER 36211 36212 PT J 36213 AU Zheng, LP 36214 TI Carbon stable isotopic composition of karst soil CO2 in central 36215 Guizhon, China 36216 SO SCIENCE IN CHINA SERIES D-EARTH SCIENCES 36217 DT Article 36218 DE karst area; soil CO2; carbon stable isotope 36219 ID UNSATURATED ZONE; DIOXIDE; RESPIRATION; CLIMATE; PLAINS; C-14 36220 AB The delta(13)C values of soil CO2 are less than that of atmosphere CO2 36221 in the karst area. On the soil-air interface, the delta(13)C vlaues of 36222 soil CO2 decrease with the increase in soil depth; below the soil-air 36223 interface, the delta(13)C values of soil CO2 are invariable. The type 36224 of vegetation on the land surface has an influence on the delta(13)C 36225 values of soil CO2. Due to the activity of soil microbes, the 36226 delta(13)C values of soil CO2 are variable dth seasonal change in 36227 grass. Isotopic tracer indicates that atmosphere CO2 has a great deal 36228 of contribution to soil CO2 at the lower parts of soil profile. 36229 C1 Chinese Acad Sci, Inst Geochem, State Key Lab Environm Geochem, Guiyang 550002, Peoples R China. 36230 Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China. 36231 RP Zheng, LP, Chinese Acad Sci, Inst Geochem, State Key Lab Environm 36232 Geochem, Guiyang 550002, Peoples R China. 36233 CR BIRD MI, 1996, NATURE, V381, P143 36234 BRULSEMA TW, 1996, SOIL SCI SOC AM J, V60, P1787 36235 BUYANOVSKY GA, 1983, SOIL SCI SOC AM J, V47, P1139 36236 CERLING TE, 1984, EARTH PLANET SC LETT, V71, P229 36237 CERLING TE, 1991, GEOCHIM COSMOCHIM AC, V55, P3403 36238 CRAIG H, 1953, GEOCHIM COSMOCHIM AC, V3, P53 36239 DAVIDSON GR, 1995, GEOCHIM COSMOCHIM AC, V59, P2485 36240 DORR H, 1980, RADIOCARBON, V22, P909 36241 FRITZ P, 1985, CHEM GEOL, V58, P89 36242 HINKLE ME, 1994, APPL GEOCHEM, V9, P53 36243 LI B, 1996, CARSOLOGICA SINICA, V15, P41 36244 PANKINA RG, 1978, INT GEOL REV, V21, P535 36245 PINEAU F, 1983, EARTH PLANET SC LETT, V62, P239 36246 RAICH JW, 1992, TELLUS B, V44, P81 36247 RAICH JW, 1995, GLOBAL BIOGEOCHEM CY, V9, P23 36248 REARDON EJ, 1979, J HYDROL, V43, P355 36249 TANS PP, 1990, SCIENCE, V247, P1431 36250 THORSTENSON DC, 1983, RADIOCARBON, V25, P315 36251 WAN GJ, 1995, CARBONATE ROCK ENV, V1 36252 WANG Y, 1994, GEOCHIM COSMOCHIM AC, V58, P393 36253 WILDUNG RE, 1975, SOIL BIOL BIOCHEM, V7, P373 36254 WOOD WW, 1984, WATER RESOUR RES, V20, P1193 36255 XU SY, CARSOLOGICA SINICA, V15, P50 36256 XU SY, 1997, CHINESE SCI BULL, V42, P953 36257 YUAN D, 1993, QUATERNARY SCI, P1 36258 ZHENG L, 1999, DIZHI DIQIU HUAXUE, P113 36259 NR 26 36260 TC 2 36261 SN 1006-9313 36262 J9 SCI CHINA SER D 36263 JI Sci. China Ser. D-Earth Sci. 36264 PD DEC 36265 PY 1999 36266 VL 42 36267 IS 6 36268 BP 588 36269 EP 594 36270 PG 7 36271 SC Geosciences, Multidisciplinary 36272 GA 266DQ 36273 UT ISI:000084285700004 36274 ER 36275 36276 PT J 36277 AU Zhu, LH 36278 Zhao, QX 36279 Gu, HC 36280 Lu, YS 36281 TI Application of instrumented impact test for studying dynamic fracture 36282 property of 9Cr-1Mo-V-Nb-N steel 36283 SO ENGINEERING FRACTURE MECHANICS 36284 DT Article 36285 DE heat-resistant steel; dynamic fracture toughness; instrumented impact 36286 test; SZW 36287 ID REACTOR PRESSURE-VESSEL; A533 STEEL; TOUGHNESS 36288 AB Dynamic fracture toughness property of 9Cr-1Mo-V-Nb-N heat-resistant 36289 steel was studied over a broad range of temperatures from -196 to 650 36290 degrees C, Results show that reasonable dynamic fracture toughness 36291 values of 9Cr-1Mo-V-Nb-N steel can be obtained from instrumented impact 36292 test of precracked Charpy specimens, according to the assumption that 36293 crack initiation occurs at a load equal to (P-m + P-y)/2. Fractographic 36294 observation shows, close correspondence exists between P-D oscilloscope 36295 traces and fracture morphology, thus P-D traces can be used to analyse 36296 the fracture process of 9Cr-1Mo-V-Nb-N steel. (C) 1999 Published by 36297 Elsevier Science Ltd. All rights reserved. 36298 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China. 36299 Xian Jiao Tong Univ, Sch Mat Sci & Engn, Xian 710049, Shaanxi Provinc, Peoples R China. 36300 RP Zhu, LH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R 36301 China. 36302 CR 1970, 466 ASTM STP 36303 1974, ASTM STP 36304 CHEN BY, 1990, ENG FRACT MECH, V36, P17 36305 CHINA R, 1992, 1130 ASTM STP 36306 HOLT JM, 1990, 1072 ASTM STP 36307 HUANG FH, 1984, TOPICAL C FERRITIC A, P337 36308 JAMES LA, 1985, J PRESS VESS-T ASME, V107, P271 36309 KALTHOFF JF, CONCEPT INPACT RESPO, V8 36310 KALTHOFF JF, 1986, ENG FRACT MECH, V23, P289 36311 KESSLER SL, 1986, 936 ASTM STP 36312 KOBAYASHI T, 1984, ENG FRACT MECH, V19, P49 36313 KOBAYASHI T, 1984, ENG FRACT MECH, V19, P67 36314 KOBAYASHI T, 1986, ENG FRACT MECH, V24, P773 36315 PUTATUNDA SK, 1986, ENG FRACT MECH, V25, P429 36316 SERVER WL, 1978, J TEST EVAL, V6, P29 36317 SREENIVASAN PR, 1996, INT J PRES VES PIP, V69, P149 36318 WADA H, 1996, ENG FRACT MECH, V54, P805 36319 NR 17 36320 TC 1 36321 SN 0013-7944 36322 J9 ENG FRACTURE MECH 36323 JI Eng. Fract. Mech. 36324 PD OCT 36325 PY 1999 36326 VL 64 36327 IS 3 36328 BP 327 36329 EP 336 36330 PG 10 36331 SC Mechanics 36332 GA 264HL 36333 UT ISI:000084174700004 36334 ER 36335 36336 PT J 36337 AU Li, DZ 36338 TI Spectral transmission and reflection of the doping semiconductor/metal 36339 films systems 36340 SO ACTA PHYSICA SINICA 36341 DT Article 36342 AB The paper presents that the plasma frequency omega(p) of semiconductor 36343 films are regulated by the way of changing its doping concentration, 36344 which lead to high transmission. Zone of the film shift visible 36345 spectral rang V-omega, the semiconductor film is combined with the 36346 metal which thinness induced transmission frequency omega(g) locate in 36347 the edge of ultra violet range to compose the excellent D/M spectral 36348 transmission and reflection film systems. Besides, it is also necessary 36349 to select the most suitable combination of the thickness between the 36350 semiconductor and the metal films for forming the excellent transparent 36351 heat insulation film. 36352 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 36353 RP Li, DZ, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 36354 CR KARLSSON B, 1986, SPIT, V653, P148 36355 THI ES, 1982, THIN SOLID FILMS, V88, P99 36356 UTSUMI K, 1998, THIN SOLID FILMS, V334, P30 36357 VALKONEN E, 1984, SOL ENERGY, V32, P211 36358 ZHAO JQ, 1998, CHINESE J SEMICONDUC, V19, P752 36359 NR 5 36360 TC 0 36361 SN 1000-3290 36362 J9 ACTA PHYS SIN-CHINESE ED 36363 JI Acta Phys. Sin. 36364 PD DEC 36365 PY 1999 36366 VL 48 36367 IS 12 36368 BP 2349 36369 EP 2356 36370 PG 8 36371 SC Physics, Multidisciplinary 36372 GA 262KM 36373 UT ISI:000084066400031 36374 ER 36375 36376 PT J 36377 AU Shi, ZD 36378 TI Experimental observation of spectral transmittance of highly 36379 birefringent fibre with high spin rate 36380 SO OPTICS COMMUNICATIONS 36381 DT Article 36382 DE spun high-birefringent fibres; spectral transmittance; microbending loss 36383 ID SINGLE-MODE FIBERS; OPTICAL FIBERS; FABRICATION; PROPOSALS 36384 AB Spectral transmittance of spun hi-bi (highly birefringent) fibres with 36385 different spin rates is studied by an experimental method. It is found 36386 that, as the spin rate is raised to a certain high value, the 36387 transmittance of this kind of fibre drops down in a certain long 36388 wavelength band. This phenomenon of the spun type fibres is attributed 36389 essentially to microbending produced in the spinning-drawing processes. 36390 (C) 1999 Published by Elsevier Science B.V. All rights reserved. 36391 C1 Shanghai Univ, Inst Fibre Opt, Shanghai 201800, Peoples R China. 36392 RP Shi, ZD, Shanghai Univ, Inst Fibre Opt, Shanghai 201800, Peoples R 36393 China. 36394 CR BARLOW AJ, 1981, ELECTRON LETT, V17, P725 36395 BARLOW AJ, 1982, ELECTRON LETT, V18, P200 36396 BIRCH RD, 1987, ELECTRON LETT, V23, P50 36397 CASTELLI R, 1989, OPT QUANT ELECTRON, V21, P35 36398 CHEN Y, 1988, J OPT SOC AM, V5, P380 36399 HUANG HC, MICROWAVE APPROACH H, P172 36400 HUANG HC, 1997, APPL OPTICS, V36, P4241 36401 NORMAN SR, 1979, ELECTRON LETT, V15, P309 36402 SOMEDA CG, 1991, OPT QUANT ELECTRON, V23, P713 36403 NR 9 36404 TC 1 36405 SN 0030-4018 36406 J9 OPT COMMUN 36407 JI Opt. Commun. 36408 PD NOV 15 36409 PY 1999 36410 VL 171 36411 IS 1-3 36412 BP 61 36413 EP 64 36414 PG 4 36415 SC Optics 36416 GA 260QE 36417 UT ISI:000083960700009 36418 ER 36419 36420 PT J 36421 AU Lu, XG 36422 Li, FS 36423 Li, LF 36424 Chou, KC 36425 TI Electrochemical characteristic of decarburization reaction 36426 SO JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING 36427 DT Article 36428 DE melt-slag reaction; decarburization; electrochemistry; electronic 36429 conductor 36430 ID FE-C DROPLETS; REDUCTION; SLAGS 36431 AB The electrochemical mechanism of the reaction between Fe-C melts and 36432 CaO-SiO2-Al2O3-FeOx slag systems has been carried out. The experimental 36433 results suggest that the final content of carbon in melt increases as 36434 the partial oxygen pressure of gas decreases no matter whether there is 36435 electronic conductor or not. However, the final content of carbon in 36436 the system with electronic conductor:is much lower than that without 36437 electronic conductor. It can be deduced that the transfer ability of 36438 oxygen in slag is dominated by electrons. When an electronic conductor 36439 exists, an easy pathway for the electrons is provided and the oxygen 36440 transfer rate is accelerated. 36441 C1 Univ Sci & Technol Beijing, Appl Sci Sch, Beijing 100083, Peoples R China. 36442 Shanghai Univ, Mat Sci & Engn Sch, Shanghai 200072, Peoples R China. 36443 RP Lu, XG, Univ Sci & Technol Beijing, Appl Sci Sch, Beijing 100083, 36444 Peoples R China. 36445 CR LU X, 1997, S PHYS CHEM MET BEIJ, P230 36446 LU XG, 1998, J UNIV SCI TECHNOL B, V5, P20 36447 MURTHY GGK, 1993, IRONMAK STEELMAK, V20, P179 36448 MURTHY GGK, 1993, IRONMAK STEELMAK, V20, P191 36449 SASABE M, 1974, METALLURG T, V5, P2225 36450 WEI S, 1980, THERMODYNAMICS METAL 36451 NR 6 36452 TC 2 36453 SN 1005-8850 36454 J9 J UNIV SCI TECHNOL BEIJING 36455 JI J. Univ. Sci. Technol. Beijing 36456 PD MAR 36457 PY 1999 36458 VL 6 36459 IS 1 36460 BP 27 36461 EP 30 36462 PG 4 36463 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 36464 Engineering; Mining & Mineral Processing 36465 GA 262BF 36466 UT ISI:000084045300008 36467 ER 36468 36469 PT J 36470 AU Fang, SS 36471 Zhou, ZQ 36472 Zhang, JL 36473 Yao, MY 36474 Feng, F 36475 Northwood, DD 36476 TI Two mathematical models for the hydrogen storage properties of AB(2) 36477 type alloys 36478 SO JOURNAL OF ALLOYS AND COMPOUNDS 36479 DT Article 36480 DE mathematical model; hydrogen storage allay; PCT curve 36481 ID LAVES PHASE; ABSORPTION; BATTERIES 36482 AB Two semi-empirical models have been applied to AB(2) hydrogen storage 36483 alloys. One is concerned with the relation between formation enthalpy 36484 in hydriding and the atomic parameters of the alloys. The other is an 36485 expression for the PCT carves, which can be used for estimating some 36486 physical parameters of these compounds and their hydrides, calculating 36487 unknown PC isotherms at given temperatures and finding the relationship 36488 of hysteresis to temperature and hydrogen concentration. (C) 1999 36489 Published by Elsevier Science S.A. All rights reserved. 36490 C1 Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China. 36491 Univ Windsor, Dept Mech & Mat Engn, Windsor, ON N9B 3P4, Canada. 36492 RP Fang, SS, Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, 36493 Peoples R China. 36494 CR ESAYED A, 1993, THESIS U WINDSOR CAN, P69 36495 FUJII H, 1981, J PHYS CHEM-US, V85, P3112 36496 GAMO T, 1980, 3RD P WORLD HYDR EN, V4, P2127 36497 HONG G, 1990, 1043409, CN 36498 HUOT J, 1995, J ALLOY COMPD, V228, P69 36499 LEE HH, 1993, J ALLOY COMPD, V202, P23 36500 LEE JH, 1995, J ALLOY COMPD, V221, P174 36501 QIAN S, 1988, INT J HYDROGEN ENERG, V13, P25 36502 QIAN S, 1989, THESIS U WINDSOR CAN, P106 36503 SHALTIEL D, 1977, J LESS-COMMON MET, V53, P117 36504 SHITIKOV V, 1984, J LESS-COMMON MET, V102, P29 36505 VANMAL HH, 1974, J LESS-COMMON MET, V35, P65 36506 YANG HW, 1995, J ALLOY COMPD, V227, P69 36507 ZHOU Z, 1991, MAT SCI PROGR, V5, P117 36508 ZHOU Z, 1993, NEW ENERGY SYSTEMS C, P79 36509 ZHOU ZQ, 1994, INT J HYDROGEN ENERG, V19, P269 36510 NR 16 36511 TC 11 36512 SN 0925-8388 36513 J9 J ALLOYS COMPOUNDS 36514 JI J. Alloy. Compd. 36515 PD DEC 20 36516 PY 1999 36517 VL 295 36518 BP 10 36519 EP 13 36520 PG 4 36521 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & 36522 Metallurgical Engineering 36523 GA 262KD 36524 UT ISI:000084065500004 36525 ER 36526 36527 PT J 36528 AU Zhou, ZQ 36529 Lin, GW 36530 Zhang, JL 36531 Ge, JS 36532 Shen, JR 36533 TI Degradation behavior of foamed nickel positive electrodes of Ni-MH 36534 batteries 36535 SO JOURNAL OF ALLOYS AND COMPOUNDS 36536 DT Article 36537 DE foamed nickel electrode; degradation behavior; phase transformation 36538 stress 36539 AB The extrusion mechanism has been demonstrated to be the major cause for 36540 the capacity decay of the positive electrodes during cycling. However, 36541 based on our SEM and EPMA observations on cycled electrodes we found 36542 that some active material on the foamed nickel electrodes came off into 36543 scales especially as the electrodes cycled at IC rate of discharge. 36544 This phenomena is suggested as another important cause for the capacity 36545 decay of positive electrodes and may be explained by the internal 36546 stress induced by the different volume change at the outer layer and 36547 the core due to phase and structure transformation during cycling. (C) 36548 1999 Elsevier Science S.A. All rights reserved. 36549 C1 Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China. 36550 RP Zhou, ZQ, Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, 36551 Peoples R China. 36552 CR COATES DK, 1996, 13 INT SEM PRIM SEC 36553 WATADA M, 5366831, US 36554 ZHOU ZQ, 1995, NEW TYPE FUNCTIONAL, P367 36555 NR 3 36556 TC 3 36557 SN 0925-8388 36558 J9 J ALLOYS COMPOUNDS 36559 JI J. Alloy. Compd. 36560 PD DEC 20 36561 PY 1999 36562 VL 295 36563 BP 795 36564 EP 798 36565 PG 4 36566 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & 36567 Metallurgical Engineering 36568 GA 262KD 36569 UT ISI:000084065500150 36570 ER 36571 36572 PT J 36573 AU Zhu, XH 36574 Zhu, JM 36575 Zhou, SH 36576 Li, Q 36577 Meng, ZY 36578 Ming, NB 36579 TI SAED and TEM investigations of domain structure in bismuth- and 36580 zinc-modified Pb(Ni1/3Nb2/3)O-3-PbTiO3-PbZrO3 ceramics at morphotropic 36581 phase boundary 36582 SO FERROELECTRICS 36583 DT Article 36584 DE electron diffraction; transmission electron microscopy; domain 36585 structure; ferroelectric materials; PNN-PT-PZ; morphotropic phase 36586 boundary 36587 ID PIEZOELECTRIC PROPERTIES 36588 AB Transmission electron microscopy and electron diffraction 36589 investigations of the ferroelectric domain structures in the Bi- and 36590 Zn-modified Pb(Ni1/3Nb2/3)O-3-PbTiO3-PbZrO3 (PNN-PT-PZ) ceramics at the 36591 morphotropic phase boundary (MPB) revealed the triplet splitting of 36592 electron diffraction spots due to the coexistence of the tetragonal 36593 (T-1 and T-2) and rhombohedral (R) phases at the microscopic 36594 Ferroelectric-domain level. The angular values formed between the 36595 parallel stripes in the herringbone domain pattern can be explained by 36596 a model of spatial domain configuration previously proposed for BaTiO3 36597 ceramics. A succession model of ferroelectric domain structures T-1 RT 36598 2RT(1)...is proposed to explain the coexistence of T and R phases 36599 in:the same ceramic grain at the MPB. The elastically stored energy in 36600 the mixed T-R wall was estimated, and its uniform distribution confirms 36601 this succession model. 36602 C1 Nanjing Univ, Natl Lab Solid State Microstruct, Dept Phys, Nanjing 210093, Peoples R China. 36603 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 36604 CCAST, World Lab, Beijing 100080, Peoples R China. 36605 RP Zhu, XH, Nanjing Univ, Natl Lab Solid State Microstruct, Dept Phys, 36606 Nanjing 210093, Peoples R China. 36607 CR ARIT G, 1980, J APPL PHYS, V51, P4956 36608 BULAEVSKII LN, 1964, FIZ TVERD TELA, V5, P2329 36609 EDINGTON JW, 1974, PRACTICAL ELECT MICR, P80 36610 GOO EKW, 1981, J APPL PHYS, V52, P2940 36611 HANH L, 1978, JPN J APPL PHYS, V17, P637 36612 KITAMURA T, 1981, JPN J APPL PHYS, V20, P97 36613 RANDALL CA, 1987, J MATER SCI, V22, P925 36614 TAKAHASHI S, 1986, SENSOR TECHNOLOGY, V6, P56 36615 UCHINO K, 1990, THESIS XIAN JIAOTONG, V18, P42 36616 UCHNIO K, 1986, PIEZOELECTRIC ELECTR 36617 ZHIRNOV VA, 1959, ZH EKSP TEOR FIZ, V35, P822 36618 ZHU XH, 1996, J MATER SCI, V31, P2171 36619 ZHU XH, 1997, J MATER SCI, V32, P4275 36620 NR 13 36621 TC 4 36622 SN 0015-0193 36623 J9 FERROELECTRICS 36624 JI Ferroelectrics 36625 PY 1998 36626 VL 215 36627 IS 1-4 36628 BP 265 36629 EP 276 36630 PG 12 36631 SC Materials Science, Multidisciplinary; Physics, Condensed Matter 36632 GA 263BC 36633 UT ISI:000084101900024 36634 ER 36635 36636 PT J 36637 AU Li, PL 36638 Deng, CF 36639 Wang, LL 36640 Xu, MJ 36641 TI J/psi suppression and the effect of quark flavor kinetics 36642 SO CHINESE PHYSICS LETTERS 36643 DT Article 36644 ID GLUON PLASMA; COLLISIONS 36645 AB The dilepton spectrum emitted in the phase transition process of an 36646 expanding quark gluon plasma formed in the collisions of U-238-U-238 36647 and W-184-W-184 at 200 GeV/(cu) is calculated by using the theoretical 36648 framework of relativistic hydrodynamics, including the effect of quark 36649 flavor kinetics, and phenomenological SU (3) string model is used in 36650 the calculation of the quark flavor kinetics. The calculated results 36651 are compared with the experimental data from the Center of European 36652 Research of Nucleon SPS and analysis is carried out. The results show 36653 that the effects of quark fragmentation and flavor kinetics cause a 36654 peak suppression of J/psi --> mu(+) mu(-), while the dilepton spectrum 36655 increases for small invariant mass. The calculated results show that 36656 the phenomena of suppression under the rich-baryon condition is greater 36657 than those under the poor-baryon conditions. Under the same conditions 36658 of collision, the J/psi, peak suppression produced in U-238-U-238 36659 collisions is greater than that in W-184-W-184 collisions. 36660 C1 Suzhou Railway Normal Coll, Dept Phys, Suzhou 215009, Peoples R China. 36661 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 36662 RP Li, PL, Suzhou Railway Normal Coll, Dept Phys, Suzhou 215009, Peoples R 36663 China. 36664 CR BARZ HW, 1988, NUCL PHYS A, V484, P661 36665 CLEYMANS J, 1984, PHYS LETT B, V147, P186 36666 KAJANTIE K, 1983, NUCL PHYS B, V222, P152 36667 KOCH P, 1986, PHYS REP, V142, P167 36668 LI PL, 1999, HIGH ENERG PHYS, V23, P693 36669 MASERA M, 1995, NUCL PHYS A, V590, C93 36670 WANG LL, 1999, J COMPUT PHYS, V16, P94 36671 NR 7 36672 TC 0 36673 SN 0256-307X 36674 J9 CHIN PHYS LETT 36675 JI Chin. Phys. Lett. 36676 PY 1999 36677 VL 16 36678 IS 11 36679 BP 800 36680 EP 802 36681 PG 3 36682 SC Physics, Multidisciplinary 36683 GA 260YA 36684 UT ISI:000083980000008 36685 ER 36686 36687 PT J 36688 AU Zhu, WP 36689 Huang, Q 36690 Guo, P 36691 TI Complex equations of flexible circular ring shells overall-bending in a 36692 meridian plane and general solution for the slender ring shells 36693 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 36694 DT Article 36695 DE flexible shells; shells of revolution; circular ring shells; 36696 curved-tubes; bellows 36697 AB Complex equations of circular ring shells and slender ring shells 36698 overall-bending in a meridian plane are presented based on E. L. 36699 Axelrad's equations of flexible shells of revolution render 36700 asymmetrical lending. It turns out that the equations are analogous to 36701 Novozhilov's equations of symmetrical ring shells, where general 36702 sollutions have been given by W. Z. Chien. Therefore, by analogy with 36703 Chien's solution, a general solution for equations of the slender ring 36704 shells is put forward, which can be used to salve bellow's 36705 overall-bending problems. 36706 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 36707 RP Zhu, WP, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 36708 200072, Peoples R China. 36709 CR AXELRAD EL, 1976, FLEXIBLE SHELLS 36710 AXELRAD EL, 1987, THEORY FLEXIBLE SHEL 36711 BLAZEJ S, 1992, INT J MECH SCI, V34, P901 36712 CHIEN WZ, 1979, J TSINGHUA U, V19, P27 36713 CHIEN WZ, 1980, APPL MATH MECH ENGLI, V1, P305 36714 CHIEN WZ, 1981, APPL MATH MECH ENGLI, V2, P103 36715 HUANG Q, 1986, APPL MATH MECH, V7, P125 36716 HUANG Q, 1986, APPL MATH MECH, V7, P573 36717 ZHU WP, 1998, P 2 ICIWS 1998 SING, P477 36718 NR 9 36719 TC 6 36720 SN 0253-4827 36721 J9 APPL MATH MECH-ENGL ED 36722 JI Appl. Math. Mech.-Engl. Ed. 36723 PD SEP 36724 PY 1999 36725 VL 20 36726 IS 9 36727 BP 952 36728 EP 959 36729 PG 8 36730 SC Mathematics, Applied; Mechanics 36731 GA 261DA 36732 UT ISI:000083992200002 36733 ER 36734 36735 PT J 36736 AU Ma, JH 36737 Chen, YS 36738 Liu, ZG 36739 TI The matric algorithm of Lyapunov exponent for the experimental data 36740 obtained in dynamic analysis 36741 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 36742 DT Article 36743 DE nonlinear chaotic timeseries; Lyapunov exponent; matric algorithm 36744 ID TIME-SERIES; SYSTEM 36745 AB The Lyapunov exponent is important quantitative index for describing 36746 chaotic attractors. Since Wolf put up the trajectory algorithm to 36747 Lyapunov exponent in 1985, how to calculate the Lyapunov exponent with 36748 accuracy has become a very important question. Based on the theoretical 36749 algorithm of Zuo Binwu, the matric algorithm of Lyapunov exponent is 36750 given, and the results with the results of Wolf's algorithm are 36751 compared. The calculating results validate that the matric algorithm 36752 has sufficient accuracy, and the relationship between the character of 36753 attractor and the value of Lyapunov exponent is studied in this paper. 36754 The corresponding conclusions are given in this paper. 36755 C1 Tianjin Finance Univ, Dept Econ & Management, Tianjin 300222, Peoples R China. 36756 Tianjin Univ, Dept Mech, Tianjin 300072, Peoples R China. 36757 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 36758 RP Ma, JH, Tianjin Finance Univ, Dept Econ & Management, Tianjin 300222, 36759 Peoples R China. 36760 CR BROWN R, 1991, PHYS REV A, V43, P2787 36761 ELLNER S, 1991, PHYS LETT A, V153, P357 36762 GENCAY R, 1992, PHYSICA D, V59, P142 36763 KANTZ H, 1994, PHYS LETT A, V185, P77 36764 MA JH, 1997, J NONLINEAR DYNAMICS, V4, P25 36765 NERENBERG MAH, 1990, PHYS REV A, V42, P7065 36766 SHUN GW, 1995, PHYS LETT A, V197, P287 36767 WOLF A, 1985, PHYSICA D, V16, P285 36768 YU QH, 1992, PHYS LETT A, V170, P29 36769 ZUO BW, 1995, PHYS D, V85, P485 36770 NR 10 36771 TC 3 36772 SN 0253-4827 36773 J9 APPL MATH MECH-ENGL ED 36774 JI Appl. Math. Mech.-Engl. Ed. 36775 PD SEP 36776 PY 1999 36777 VL 20 36778 IS 9 36779 BP 985 36780 EP 993 36781 PG 9 36782 SC Mathematics, Applied; Mechanics 36783 GA 261DA 36784 UT ISI:000083992200006 36785 ER 36786 36787 PT J 36788 AU Bai, ZZ 36789 Wang, DR 36790 Evans, DJ 36791 TI On the convergence of asynchronous nested matrix multisplitting methods 36792 for linear systems 36793 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 36794 DT Article 36795 DE solution of linear systems; asynchronous parallel iteration; matrix 36796 multisplitting; relaxation method; convergence 36797 ID ITERATIVE METHODS; PARALLEL SOLUTION; SPLITTINGS; ALGORITHM; 2-STAGE 36798 AB A class of asynchronous nested matrix multisplitting methods for 36799 solving large-scale systems of linear equations are proposed, and their 36800 convergence characterizations are studied in detail when the 36801 coefficient matrices of the linear systems are monotone matrices and 36802 H-matrices, respectively. 36803 C1 Acad Sinica, State Key Lab Sci Engn Comp, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China. 36804 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 36805 Loughborough Univ Technol, Parallel Algorithms Res Ctr, Loughborough LE11 3TU, Leics, England. 36806 CR BRU R, 1988, LINEAR ALGEBRA APPL, V103, P175 36807 ELSNER L, 1989, NUMER MATH, V56, P283 36808 EVANS DJ, 1991, PARALLEL COMPUT, V17, P165 36809 FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141 36810 FROMMER A, 1992, NUMER MATH, V63, P345 36811 LANZKRON PJ, 1991, NUMER MATH, V58, P685 36812 NEUMANN M, 1987, LINEAR ALGEBRA APPL, V88, P559 36813 OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630 36814 ORTEGA JM, 1970, ITERATIVE SOLUTIONS 36815 SZYLD DB, 1992, SIAM J MATRIX ANAL A, V13, P671 36816 VARGA RS, 1962, MATRIX ITERATIVE ANA 36817 WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473 36818 WANG DR, 1994, PARALLEL ALGORITHMS, V2, P173 36819 WANG DR, 1994, PARALLEL ALGORITHMS, V2, P209 36820 NR 14 36821 TC 1 36822 SN 0254-9409 36823 J9 J COMPUT MATH 36824 JI J. Comput. Math. 36825 PD NOV 36826 PY 1999 36827 VL 17 36828 IS 6 36829 BP 575 36830 EP 588 36831 PG 14 36832 SC Mathematics, Applied; Mathematics 36833 GA 259FT 36834 UT ISI:000083884400003 36835 ER 36836 36837 PT J 36838 AU Lu, DY 36839 Cao, JY 36840 Huang, YP 36841 Gong, L 36842 Chen, XL 36843 Chen, EH 36844 Xu, B 36845 TI Comparison of some antineoplastic drugs on inhibiting thrombin 36846 catalizing fibrinogen clotting in vitro 36847 SO CHINESE MEDICAL JOURNAL 36848 DT Article 36849 DE fibrin; fibrinogen; antineoplastic drugs; neoplasm metastasis 36850 ID TUMOR; COAGULATION 36851 AB Objective To classify the effect of thrombin, the key enzyme which 36852 enables fibrinogen to form fibrin (fibrinogen clotting) on the 36853 formation of metastasis by comparing the inhibition of some 36854 antineoplastic drugs on fibrinogen clotting in vitro. 36855 Methods Time intervals of different drugs to reach a maximum OD (340 36856 nm) data in fibrinogen solution added with thrombin were used in this 36857 work. 36858 Results It was found that L-4-oxalysine (8-40 mu g/ml) and arabinosyl 36859 cytosine (10-50 mu g/ml) could inhibit the effect of thrombin by 36860 extending the fibrinogen clotting time to 100% - 150% (P< 0.001) and 36861 61% -100% (P < 0.001) while the other antimetastatic drugs razoxane, 36862 probimane, adriamycin, harringtonine homoharringtonine and 36863 alpha-anordrin at the treatment concentrations showed no such activity. 36864 The positive rate of drugs to thrombin activity was approximately 25%. 36865 Conclusion It suggests that L-4-oxalysine and arabinosyl cytosine may 36866 even exhibit antimetastatic effect through thrombin-fibrinogen pathway, 36867 and thrombin might operate in tumor metastasis for only limited step 36868 but crutial to fibrin formation in tumor nodules. 36869 C1 Shanghai Univ, Sch Life Sci, Shanghai 201800, Peoples R China. 36870 Chinese Acad Sci, Shanghai Inst Mat Med, Dept Pharmacol, Shanghai 200031, Peoples R China. 36871 Cent Hosp Jing An Dist, Dept Oncol, Shanghai 200040, Peoples R China. 36872 RP Lu, DY, Shanghai Univ, Sch Life Sci, Shanghai 201800, Peoples R China. 36873 CR COSTANTINI V, 1992, CANCER METAST REV, V11, P283 36874 DVORAK HF, 1983, CANCER METAST REV, V2, P41 36875 GUNJI Y, 1988, CANCER RES, V48, P5216 36876 LU DY, 1994, HENAN MED RES, V3, P4 36877 LU DY, 1995, ACTA PHARMACOL SINIC, V16, P187 36878 POGGI A, 1977, CANCER RES, V37, P272 36879 YUE XF, 1982, ACTA PHARMACOL SINIC, V3, P124 36880 YUE XF, 1985, ACTA PHARMACOL SINIC, V6, P198 36881 ZACHARSKI LR, 1981, MALIGNANCY HEMOSTATI, P113 36882 NR 9 36883 TC 1 36884 SN 0366-6999 36885 J9 CHIN MED J 36886 JI Chin. Med. J. 36887 PD NOV 36888 PY 1999 36889 VL 112 36890 IS 11 36891 BP 1052 36892 EP 1053 36893 PG 2 36894 SC Medicine, General & Internal 36895 GA 258WZ 36896 UT ISI:000083863800033 36897 ER 36898 36899 PT J 36900 AU Lu, HQ 36901 Harko, T 36902 Cheng, KS 36903 TI Quantum cosmology with a nonlinear Born-Infeld type scalar field 36904 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS D 36905 DT Article 36906 DE Born-Infeld type scalar field; quantum cosmology 36907 ID WAVE-FUNCTION; UNIVERSE; STATE 36908 AB A quantum model of gravitation interacting with a Born-Infeld type 36909 nonlinear scalar field phi is considered. The corresponding 36910 Wheeler-DeWitt equation can be solved analytically for both large and 36911 small phi-over-dot. In the extreme limits of small and large 36912 cosmological scale factors the wave function of the Universe can also 36913 be obtained by applying the methods developed by Vilenkin and Hartle 36914 and Hawking. An inflationary Universe is predicted with the largest 36915 possible vacuum energy and the largest interaction between the 36916 particles of the nonlinear scalar field. 36917 C1 Shanghai Univ, Dept Phys, Shanghai, Peoples R China. 36918 Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China. 36919 RP Lu, HQ, Shanghai Univ, Dept Phys, Shanghai, Peoples R China. 36920 CR BOILLAT G, 1998, J MATH PHYS, V40, P1 36921 BORN M, 1934, PROC R SOC LON SER-A, V144, P425 36922 DEOLIVEIRA HP, 1995, J MATH PHYS, V36, P2988 36923 DESER S, 1998, CLASSICAL QUANT GRAV, V15, P135 36924 DEWITT BS, 1967, PHYS REV, V160, P1113 36925 FANG LZ, 1986, INT J MOD PHYS D, V4, P887 36926 FEIGENBAUM JA, 1998, PHYS REV D, V5801, P24023 36927 GRADSHTEYN IS, 1983, TABLE INTEGRALS SERI 36928 GRISHCHUK LP, 1988, PHYS LETT B, V208, P369 36929 GRISHCHUK LP, 1990, PHYS LETT B, V234, P9 36930 HARTLE JB, 1983, PHYS REV D, V28, P2960 36931 HAWKING SW, 1984, NUCL PHYS B, V239, P257 36932 HAWKING SW, 1985, PHYS REV D, V32, P2489 36933 HAWKING SW, 1986, NUCL PHYS B, V264, P185 36934 HEISENBERG W, 1952, Z PHYS, V133, P79 36935 LUKAS A, 1995, PHYS LETT B, V347, P13 36936 LYONS GW, 1992, PHYS REV D, V46, P1546 36937 PALATNIK D, 1998, PHYS LETT B, V432, P287 36938 TSEYTLIN AA, 1986, NUCL PHYS B, V276, P391 36939 VILENKIN A, 1983, PHYS REV D, V27, P2848 36940 VILENKIN A, 1984, PHYS REV D, V30, P509 36941 VILENKIN A, 1985, NUCL PHYS B, V252, P141 36942 VILENKIN A, 1986, PHYS REV D, V33, P3560 36943 VILENKIN A, 1988, PHYS REV D, V37, P888 36944 VILENKIN A, 1994, PHYS REV D, V50, P2581 36945 NR 25 36946 TC 8 36947 SN 0218-2718 36948 J9 INT J MOD PHYS D 36949 JI Int. J. Mod. Phys. D 36950 PD OCT 36951 PY 1999 36952 VL 8 36953 IS 5 36954 BP 625 36955 EP 634 36956 PG 10 36957 SC Astronomy & Astrophysics 36958 GA 256NL 36959 UT ISI:000083731400004 36960 ER 36961 36962 PT J 36963 AU Cao, WG 36964 Ding, WY 36965 Liu, RD 36966 Huang, TH 36967 TI Chemistry and applications of phosphonium and arsonium ylides - XXVI. 36968 Synthesis of arsonium ylides containing perfluoroalkyl group and study 36969 on their hydrolysis 36970 SO ACTA CHIMICA SINICA 36971 DT Article 36972 DE arsonium ylide; hydrolysis; 36973 4-perfluoroalkyl-6-(alpha-furyl)-2-pyranone; methyl 36974 4-(alpha-furoyl)-3-perfluoroalkyl-3-butenoates 36975 ID ELEMENTO-ORGANIC COMPOUNDS; METHYL 2-PERFLUOROALKYNOATES; 36976 STEREOSELECTIVE SYNTHESIS; 6TH GROUPS; ARSORANE; 5TH 36977 AB In the presence of K2CO3, reaction of (alpha - furoyl)methyl - 36978 arsoniumbromide(1) with methyl 2-perfluoroalkynoates(2) in methylene 36979 chloride at 0 similar to 5 degrees C afforded the adduct - methyl 4 - 36980 (alpha furoyl) - 2 - triphenylarsoranylidene - 3 - perfluoroalkyl - 3 - 36981 butenoates(3) in high yield. Hydrolysis of 3 in V(CH3OH): V(H2O) = 9:1 36982 methanolic solution at room temperature, 70 degrees C and 120 degrees C 36983 in a sealed tube respectively, 4 - perfluoroalkyl - 6 - (alpha - furyl) 36984 - 2 - pyranones(4) and methyl 4 - (alpha - furoyl) 3 - perfluoroalkyl - 36985 3 - butenoates(5) were obtained in excellent yield. Compounds 4 and 5 36986 could be separated by column chromatography. 5 is a mixture of Z - and 36987 E - isomers which couldn't be separated by column chromatography, but 36988 the ratio of Z - and E - isomers could be estimated by H-1 NMR. The 36989 catalytic hydrolysis of compound 3 with silica gel and the mechanisms 36990 for the formation of products are also discussed in this paper. 36991 C1 Shanghai Univ, Sch Chem & Chem Engn, Shanghai 201800, Peoples R China. 36992 RP Cao, WG, Shanghai Univ, Sch Chem & Chem Engn, Shanghai 201800, Peoples 36993 R China. 36994 CR *GIB FDN, 1972, CARB FLUOR COMP CHEM 36995 BANKS RE, 1982, PREPARATION PROPERTI 36996 CAO WG, 1998, J FLUORINE CHEM, V91, P99 36997 CAO WG, 1999, J FLUORINE CHEM, V95, P135 36998 DING WY, 1986, ACTA CHIM SINICA, V44, P255 36999 DING WY, 1986, ACTA CHIM SINICA, V44, P62 37000 DING WY, 1987, ACTA CHIM SINICA, V45, P47 37001 DING WY, 1987, CHINESE J ORG CHEM, P435 37002 DING WY, 1991, ACTA CHIM SINICA, V49, P284 37003 DING WY, 1991, J CHEM SOC PERK JUN, P1369 37004 DING WY, 1992, CHEM RES CHINESE U, V8, P224 37005 HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47 37006 STOLL A, 1933, HELV CHIM ACTA, V16, P703 37007 TAO WT, 1983, CHINESE J ORG CHEM, P129 37008 XU ML, 1982, YAOXUE XUEBAO, V17, P905 37009 NR 15 37010 TC 2 37011 SN 0567-7351 37012 J9 ACTA CHIM SIN 37013 JI Acta Chim. Sin. 37014 PY 1999 37015 VL 57 37016 IS 11 37017 BP 1270 37018 EP 1276 37019 PG 7 37020 SC Chemistry, Multidisciplinary 37021 GA 257LT 37022 UT ISI:000083783900015 37023 ER 37024 37025 PT J 37026 AU Chen, H 37027 Shi, YM 37028 TI Antiresonances modulated by magnetic flux in an Aharonov-Bohm ring 37029 SO PHYSICS LETTERS A 37030 DT Article 37031 ID FANO RESONANCES; QUANTUM-WELL; SEMICONDUCTORS; TRANSMISSION; TRANSPORT; 37032 PHASE; HETEROSTRUCTURES; OSCILLATIONS; INTERFERENCE; IMPURITIES 37033 AB With or without an inserted quantum dot or an attached side resonator, 37034 the transmission behavior of an Aharonov-Bohm (AB) ring Is investigated 37035 in the framework of quantum waveguide theory in the complex-energy 37036 plane. The calculated results show that the AB ring possesses 37037 antiresonances in the conductance and several kinds of transmission 37038 poles in the complex-energy plane. Piercing the ring, magnetic flux 37039 causes a series of crossovers among zero-pole pairs. zero-double-pole 37040 pairs, peak-double-pole pairs, and peak-pole pairs. With the inserted 37041 quantum dot or attached side resonator in one of its arms, the ring 37042 produces complicated behaviors in conductance: some of the poles are 37043 split into more than two parts. A kind of deformed Fano resonance is 37044 found in the conductance of the AB ring with the attached resonator. 37045 (C) 1999 Published by Elsevier Science B.V. All rights reserved. 37046 C1 Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. 37047 Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China. 37048 RP Chen, H, Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. 37049 CR BELITSKY VI, 1997, J PHYS-CONDENS MAT, V9, P5965 37050 BELLANI V, 1996, SOLID STATE COMMUN, V97, P459 37051 BOYKIN TB, 1992, PHYS REV B, V46, P12769 37052 BUTTIKER M, 1984, PHYS REV A, V30, P1982 37053 CERDEIRA F, 1973, PHYS REV B, V8, P4734 37054 CHO SY, 1996, INT J MOD PHYS B, V10, P3569 37055 CHOI T, 1998, INT J MOD PHYS B, V12, P2091 37056 DEO PS, 1998, SOLID STATE COMMUN, V107, P69 37057 FANO U, 1961, PHYS REV, V124, P1866 37058 GLUTSCH S, 1994, PHYS REV B, V50, P17009 37059 KO DYK, 1988, SEMICOND SCI TECH, V3, P791 37060 KUNZE C, 1995, PHYS REV B, V51, P13410 37061 MASCHKE K, 1991, PHYS REV LETT, V67, P2646 37062 MELLITI A, 1998, SOLID STATE COMMUN, V105, P747 37063 RYU CM, 1998, PHYS REV B, V58, P3572 37064 SHAO ZA, 1994, PHYS REV B, V49, P7453 37065 SHI YM, 1999, IN PRESS PHYS REV B 37066 TEKMAN E, 1990, PHYS REV B, V42, P9098 37067 TEKMAN E, 1993, PHYS REV B, V48, P2553 37068 TING DZY, 1993, PHYS REV B, V47, P7281 37069 WEI LF, 1998, CHINESE PHYS LETT, V15, P128 37070 WU CH, 1991, PHYS REV B, V43, P5012 37071 XIA JB, 1992, PHYS REV B, V45, P3593 37072 NR 23 37073 TC 2 37074 SN 0375-9601 37075 J9 PHYS LETT A 37076 JI Phys. Lett. A 37077 PD OCT 25 37078 PY 1999 37079 VL 262 37080 IS 1 37081 BP 76 37082 EP 82 37083 PG 7 37084 SC Physics, Multidisciplinary 37085 GA 251ZY 37086 UT ISI:000083477300012 37087 ER 37088 37089 PT J 37090 AU Mao, JM 37091 Liu, ZR 37092 Cao, YL 37093 TI Constructing new periodic exact solutions of evolution equations 37094 SO PHYSICAL REVIEW E 37095 DT Article 37096 AB For the nonlinear Schrodinger equation, the Korteweg-de Vries equation, 37097 and the modified Korteweg-de Vries equation, periodic exact solutions 37098 are constructed from their stationary periodic solutions, by means of 37099 the Backlund transformation. These periodic solutions were not written 37100 down explicitly before to our knowledge. Their asymptotic behavior when 37101 t-->-infinity is different from that when t-->infinity. Near t=0, the 37102 spatial-temporal pattern can change abruptly, and rational solitons can 37103 appear randomly in space and time. They correspond to new types of 37104 "homoclinic orbits" due to different asymptotic behaviors in time. 37105 [S1063-651X(99)01310-0]. 37106 C1 Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong. 37107 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 37108 Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China. 37109 RP Mao, JM, Hong Kong Univ Sci & Technol, Dept Math, Clearwater Bay, 37110 Kowloon, Hong Kong. 37111 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E 37112 AKHMEDIEV NN, 1997, SOLITONS NONLINEAR P 37113 CROSS MC, 1993, REV MOD PHYS, V65, P851 37114 HERMAN W, 1985, WAVE MOTION, V7, P283 37115 HERMAN W, 1989, J PHYS A, V22, P241 37116 HERMAN W, 1990, J PHYS A, V23, P4805 37117 KHATER AH, 1988, COMPUT MATH APPL, V17, P1379 37118 KHATER AH, 1989, ASTROPHYS SPACE SCI, V162, P151 37119 KHATER AH, 1997, CHAOS SOLITON FRACT, V8, P1901 37120 KONNO K, 1975, PROG THEOR PHYS, V53, P1652 37121 LI C, 1997, INVARIANT MANIFOLDS 37122 LI Y, 1996, COMMUN PUR APPL MATH, V49, P1175 37123 LI Y, 1997, J NONLINEAR SCI, V7, P211 37124 MALFLIET W, 1991, J PHYS A-MATH GEN, V24, P5499 37125 MCLAUGHLIN DW, 1996, DYN REPORT, V5, P190 37126 OVLVER PJ, 1986, APPL LIE GROUPS DIFF 37127 ROGERS C, 1982, BUCKLUND TRANSFORMAT 37128 WEISS J, 1983, J MATH PHYS, V24, P522 37129 NR 18 37130 TC 0 37131 SN 1063-651X 37132 J9 PHYS REV E 37133 JI Phys. Rev. E 37134 PD OCT 37135 PY 1999 37136 VL 60 37137 IS 4 37138 PN Part A 37139 BP 3589 37140 EP 3596 37141 PG 8 37142 SC Physics, Fluids & Plasmas; Physics, Mathematical 37143 GA 250XD 37144 UT ISI:000083414800022 37145 ER 37146 37147 PT J 37148 AU Shi, YM 37149 Chen, H 37150 TI Transport through an Aharonov-Casher ring with a quantum gate 37151 SO PHYSICAL REVIEW B 37152 DT Article 37153 ID BOHM OSCILLATIONS; MESOSCOPIC RINGS; GEOMETRIC PHASE; BERRY PHASE; DOT; 37154 SYSTEMS; EVOLUTION; CURRENTS 37155 AB We study the oscillations of the conductance through an Aharonov-Casher 37156 (AC) ring with a quantum gate by using one-dimensional quantum 37157 waveguide theory. The compact formula of the transmission probability 37158 for the ring-stub system in the presence of the spin-orbit interaction 37159 and magnetic flux is obtained under the condition of weak Zeeman 37160 coupling. The formula shows that the competition between AC and 37161 Aharonov-Bohm phases dominates the transport behavior. The stub as a 37162 phase modulator also controls the oscillations of the conductance in 37163 the ring. The perfect reflection condition is obtained. The numerical 37164 results show that the phase shift between g(up arrow)(alpha) and g(down 37165 arrow)(alpha) increases with the magnetic field and the spin-dependent 37166 conductances have parity relation g(up arrow)(- phi) = g(down 37167 arrow)(phi). [S0163-1 829(99)03639-5]. 37168 C1 Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. 37169 Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China. 37170 CCAST, World Lab, Beijing 100080, Peoples R China. 37171 RP Shi, YM, Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. 37172 CR AHARONOV Y, 1987, PHYS REV LETT, V58, P1593 37173 ARONOV AG, 1993, PHYS REV LETT, V70, P343 37174 BERRY MV, 1984, P ROY SOC LOND A MAT, V392, P45 37175 BRUDER C, 1996, PHYS REV LETT, V76, P114 37176 BUKS E, 1996, PHYS REV LETT, V77, P4664 37177 CHEN H, 1998, INT J MOD PHYS B, V12, P1729 37178 CHOI T, 1997, PHYS REV B, V56, P4825 37179 DEO PS, 1996, MOD PHYS LETT B, V10, P787 37180 GRIFFITH S, 1953, T FARADAY SOC, V49, P345 37181 HACKENBROICH G, 1996, PHYS REV LETT, V76, P110 37182 LOSS D, 1990, PHYS REV LETT, V65, P1655 37183 LOSS D, 1992, PHYS REV B, V45, P13544 37184 MEAD CA, 1992, REV MOD PHYS, V64, P51 37185 QIAN TZ, 1993, PHYS REV LETT, V70, P2311 37186 QIAN TZ, 1997, PHYS REV B, V55, P4605 37187 ROTH LM, 1959, PHYS REV, V114, P90 37188 SHAPERE A, 1989, GEOMETRIC PHASE PHYS 37189 WU J, 1998, PHYS REV LETT, V80, P1952 37190 XIA JB, 1992, PHYS REV B, V45, P3593 37191 YACOBY A, 1995, PHYS REV LETT, V74, P4047 37192 YEYATI AL, 1995, PHYS REV B, V52, P14360 37193 YI YS, 1997, PHYS REV B, V55, P10631 37194 ZHU JX, 1997, Z PHYS B CON MAT, V102, P153 37195 NR 23 37196 TC 2 37197 SN 0163-1829 37198 J9 PHYS REV B 37199 JI Phys. Rev. B 37200 PD OCT 15 37201 PY 1999 37202 VL 60 37203 IS 15 37204 BP 10949 37205 EP 10952 37206 PG 4 37207 SC Physics, Condensed Matter 37208 GA 251CT 37209 UT ISI:000083427600077 37210 ER 37211 37212 PT J 37213 AU Essa, AA 37214 Xu, KX 37215 Zhou, SP 37216 Bao, JS 37217 TI Non-equilibrium microwave response of YBa2Cu3O7-delta granular thin 37218 films under magnetic fields 37219 SO ACTA PHYSICA SINICA-OVERSEAS EDITION 37220 DT Article 37221 ID SUPERCONDUCTORS; TRANSITION; RADIATION 37222 AB Microwave responses of YBa2Cu3O7-delta (YBCO) granular film have been 37223 studied at the microwave frequency of 30.5 GHz. In the absence of a 37224 magnetic field the dependence of a normal microwave response on the 37225 bias current is observed at a temperature close to T-c. When a magnetic 37226 field ranged from 5.0 mT to 33.0 mT is applied, the responses broaden 37227 and shift toward a lower temperature. In the superconducting state, the 37228 responses were found to be highly dependent on the magnetic field. For 37229 the current equal to 5.0 mA and a magnetic field above 17.0 mT the 37230 response increases and did not vanish even at a very low temperature, 37231 the fact is believed to be correlated to the anisotropic character of 37232 the structure. 37233 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 37234 RP Essa, AA, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 37235 CR AFANASYEV AS, 1989, IEEE T MAGN, V25, P2571 37236 AMBEGAOKAR V, 1978, PHYS REV LETT, V40, P783 37237 BOONE BG, 1991, J APPL PHYS, V69, P2676 37238 CHANG K, 1991, J APPL PHYS, V69, P7316 37239 CHERN JD, 1993, IEEE T APPL SUPERCON, V3, P2128 37240 CULERTSON JC, 1991, PHYS REV B, V44, P9609 37241 ENOMOTO Y, 1986, J APPL PHYS, V59, P3808 37242 JUNG G, 1989, APPL PHYS LETT, V54, P2355 37243 KOSTERLITZ JM, 1973, J PHYS C SOLID STATE, V6, P1181 37244 LI Q, 1990, PHYS REV LETT, V64, P3086 37245 MARTIN S, 1989, PHYS REV LETT, V62, P677 37246 PHONG LN, 1993, J APPL PHYS, V74, P7414 37247 ROSE K, 1975, APPL SUPERCONDUCTIVI 37248 SROM U, 1989, IEEE T MAGN, V25, P1315 37249 VADLAMANNATI S, 1991, PHYS REV B, V44, P7094 37250 YING QY, 1990, PHYS REV B, V42, P2242 37251 YOSHISATO Y, 1990, JPN J APPL PHYS PT 1, V29, P1080 37252 NR 17 37253 TC 0 37254 SN 1004-423X 37255 J9 ACTA PHYS SIN-OVERSEAS ED 37256 JI Acta Phys. Sin.-Overseas Ed. 37257 PD NOV 37258 PY 1999 37259 VL 8 37260 IS 11 37261 BP 860 37262 EP 868 37263 PG 9 37264 SC Physics, Multidisciplinary 37265 GA 251BT 37266 UT ISI:000083425300010 37267 ER 37268 37269 PT J 37270 AU Tan, WH 37271 Yan, KZ 37272 TI A general approach to the Bose-Einstein condensation of neutral atoms 37273 with repellent interaction 37274 SO ACTA PHYSICA SINICA 37275 DT Article 37276 ID TRAP; GAS 37277 AB In this paper a general approach to the Bose-Einstein condensation of 37278 neutral atoms with repellent interaction is presented. Especially in 37279 the case of free atoms (V=0) with repellent interaction, an exact 37280 solution for the atom's wave function, can be derived, and therefore 37281 the calculation of atom's Bose-Einstein condensation is completed. 37282 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 37283 RP Tan, WH, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 37284 CR ABRAMOWITZ M, 1965, HDB MATH FUNCTIONS F, P567 37285 ANDERSON MH, 1995, SCIENCE, V269, P198 37286 BOGOLIUBOV NN, 1947, J PHYS USSR, V11, P23 37287 BRADLEY CC, 1995, PHYS REV LETT, V75, P1687 37288 CHOU TT, 1996, PHYS REV A, V53, P4257 37289 CHOU TT, 1997, PHYS REV A, V55, P1179 37290 DAVIS KB, 1995, PHYS REV LETT, V75, P3969 37291 EINSTEIN A, 1924, SITZBER PREUSS AKAD, P261 37292 EINSTEIN A, 1925, SITZBER PREUSS AKAD, P3 37293 FETTER AL, 1972, ANN PHYS-NEW YORK, V70, P67 37294 HUANG K, 1957, PHYS REV, V105, P767 37295 LANDAU LD, 1958, QUANTUM MNECH, P55 37296 WANG ZX, 1956, INTRO STAT PHYSICS, P279 37297 NR 13 37298 TC 4 37299 SN 1000-3290 37300 J9 ACTA PHYS SIN-CHINESE ED 37301 JI Acta Phys. Sin. 37302 PD NOV 37303 PY 1999 37304 VL 48 37305 IS 11 37306 BP 1983 37307 EP 1991 37308 PG 9 37309 SC Physics, Multidisciplinary 37310 GA 251CA 37311 UT ISI:000083426000005 37312 ER 37313 37314 PT J 37315 AU Cai, YC 37316 TI On a diophantine inequality involving prime numbers (III) 37317 SO ACTA MATHEMATICA SINICA-ENGLISH SERIES 37318 DT Article 37319 DE prime; inequality; exponential sum 37320 AB Let 1 < c <,. In the present paper it is proved that there exists a 37321 number N(c) > 0 such that for each real number N > N(c) the inequality 37322 \p(1)(c) + p(2)(c) + p(3)(c) - N\ < N-1/C(11/10 - C) log(c1) N is 37323 solvable in prime numbers p(1),p(2),p(3), where cl is some absolute 37324 positive constant. 1991MR Subject Classification 11M. 37325 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 37326 RP Cai, YC, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 37327 CR CAI YC, IN PRESS DIOPHANTINE 37328 CAI YC, 1996, ACTA MATH SINICA, V39, P733 37329 GRITSENKO SA, 1987, MAT ZAMETKI, V39, P625 37330 HEATHBROWN DR, 1982, CAN J MATH, V34, P1365 37331 JIA CH, 1992, SCI SIN A, V22, P812 37332 KARATSUBA AA, 1983, PRINCIPLES ANAL NUMB 37333 PIATETSKISHAPIR.II, 1952, MAT SBORNIK, V30, P105 37334 TITCHMARSH EC, 1986, THEORY RIEMANN ZETA 37335 TOLEV DI, 1990, THESIS MOSCOW U 37336 TOLEV DI, 1992, ACTA ARITH, V61, P289 37337 NR 10 37338 TC 0 37339 SN 1000-9574 37340 J9 ACTA MATH SIN-ENGLISH SERIES 37341 JI Acta. Math. Sin.-English Ser. 37342 PD JUL 37343 PY 1999 37344 VL 15 37345 IS 3 37346 BP 387 37347 EP 394 37348 PG 8 37349 SC Mathematics, Applied; Mathematics 37350 GA 252NR 37351 UT ISI:000083508000008 37352 ER 37353 37354 PT J 37355 AU Cao, WG 37356 Ding, WY 37357 TI Simple syntheses of polysubstituted arenes via acyclic precursors 37358 SO PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS 37359 DT Article 37360 DE phosphorane; polysubstituted arene; perfluoroalkynoate; acyclic 37361 precursor 37362 ID FACILE SYNTHESIS 37363 AB Summarizes the syntheses of polysubstituted arenes containing 37364 perfluoroalkyl group(s) via acyclic precursors. 37365 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 37366 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 37367 CR BANKS RE, 1979, ORGANOFLUORINE CHEM 37368 CAO WG, 1997, J FLUORINE CHEM, V81, P153 37369 CAO WG, 1997, J FLUORINE CHEM, V83, P21 37370 DING WY, 1987, TETRAHEDRON LETT, V28, P81 37371 DING WY, 1992, SYNTHESIS-STUTTGART, P635 37372 DING WY, 1993, CHINESE J CHEM, V11, P81 37373 DING WY, 1993, J CHEM SOC P1, P855 37374 DING WY, 1995, CHINESE J CHEM, V13, P468 37375 MANN J, 1987, CHEM SOC REV, V16, P381 37376 MCCLINTON MA, 1992, TETRAHEDRON, V48, P6555 37377 WELCH JT, 1987, TETRAHEDRON, V43, P3123 37378 NR 11 37379 TC 0 37380 SN 1042-6507 37381 J9 PHOSPHOR SULFUR SILICON 37382 JI Phosphorus Sulfur Silicon Relat. Elem. 37383 PY 1999 37384 VL 146 37385 BP 705 37386 EP 708 37387 PG 4 37388 SC Chemistry, Inorganic & Nuclear 37389 GA 249EW 37390 UT ISI:000083320800177 37391 ER 37392 37393 PT J 37394 AU Ma, Z 37395 Zhou, ZW 37396 TI The energy criterion of minimum equivalent diameter in gas atomization 37397 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 37398 DT Article 37399 DE gas atomization; capillary potential energy; equivalent diameter 37400 ID LIQUID 37401 AB Gas atomization has been studied by using energy method in this paper. 37402 It shows that the capillary potential energy of the atomization 37403 droplets is supplied by the impingement of the gas on the liquid. The 37404 energy criterion of the minimum equivalent diameter of the atomization 37405 droplets is obtained. The result is comparable to the empirical 37406 formulae. 37407 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 37408 RP Ma, Z, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 37409 Peoples R China. 37410 CR BRADLEY D, 1973, J PHYS D, V6, P1724 37411 LAWLEY A, 1981, J MET, V33, P13 37412 LAWLEY A, 1993, ATOMIZATION PRODUCTI 37413 LUBANSKA H, 1970, J MET, V22, P45 37414 MATHUR P, 1991, MAT SCI ENG A-STRUCT, V142, P261 37415 REITZ RD, 1982, PHYS FLUIDS, V25, P1730 37416 NR 6 37417 TC 1 37418 SN 0253-4827 37419 J9 APPL MATH MECH-ENGL ED 37420 JI Appl. Math. Mech.-Engl. Ed. 37421 PD AUG 37422 PY 1999 37423 VL 20 37424 IS 8 37425 BP 825 37426 EP 829 37427 PG 5 37428 SC Mathematics, Applied; Mechanics 37429 GA 248JC 37430 UT ISI:000083270500001 37431 ER 37432 37433 PT J 37434 AU Tang, YM 37435 TI On the stability of general Navier-Stokes type equation 37436 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 37437 DT Article 37438 DE gradue; l-simple; unstable equation 37439 AB In this paper, by proving that the equations discussed here are 37440 l-simple (l greater than or equal to 1) by stratification theory, the 37441 unstability of the equations is proved. And the un-uniqueness of the 37442 solution of forced dissipative non-linear system equations in 37443 atmospheric dynamics is used as an illustration for the result. 37444 C1 Shanghai Univ, Coll Sci, Shanghai 200072, Peoples R China. 37445 RP Tang, YM, Shanghai Univ, Coll Sci, Shanghai 200072, Peoples R China. 37446 CR CHEN DD, 1996, APPL MATH MECH, V17, P541 37447 CHEN DD, 1996, APPL MATH MECH, V17, P541 37448 CHOU J, 1990, NEW DEV ATMOSPHERIC 37449 CHOU JF, 1990, NEW DEV ATMOSPHERIC 37450 EHRESMANN C, 1953, C TOPOLOGIE GEOMETRI, P97 37451 EHRESMANN C, 1953, C TOPOLOGIE GEOMETRI, P97 37452 HADAMARD J, 1964, THEORIE EQUATIONS DE 37453 MARCHONK G, 1980, METHODE CALCUL NUMER 37454 MARCHONK G, 1980, METHODS CALCUL NUMER 37455 SHI WH, 1996, J SHANGHAI U, V2, P355 37456 SHIH WS, 1992, SOLUTIONS ANAL QUELQ 37457 SHIH WS, 1995, IHES M 37458 SHIH WS, 1995, IHES M, V95 37459 SHIN SA, 1994, SATURATION SATABILIT 37460 NR 14 37461 TC 0 37462 SN 0253-4827 37463 J9 APPL MATH MECH-ENGL ED 37464 JI Appl. Math. Mech.-Engl. Ed. 37465 PD AUG 37466 PY 1999 37467 VL 20 37468 IS 8 37469 BP 888 37470 EP 894 37471 PG 7 37472 SC Mathematics, Applied; Mechanics 37473 GA 248JC 37474 UT ISI:000083270500007 37475 ER 37476 37477 PT J 37478 AU Li, L 37479 Tang, ZJ 37480 Sun, WY 37481 Wang, PL 37482 TI Phase diagram prediction of the Al2O3-SiO2-La2O3 system 37483 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 37484 DT Article 37485 ID REGULAR SOLUTION MODEL; GLASSES 37486 AB Rare earth oxide systems Al2O3-La2O3 and SiO2-La2O3 were 37487 thermodynamically assessed and optimized with the substitution model. 37488 The obtained model parameters and Gibbs free energy of line compounds 37489 and pure components were applied to the prediction of the liquidus 37490 surface and isothermal sections of Al2O3-SiO2-La2O3 system. 37491 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China. 37492 Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China. 37493 RP Li, L, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R 37494 China. 37495 CR ARAMAKI S, 1962, J AM CERAM SOC, V45, P229 37496 BONDAR IA, 1964, IAN SSSR KH, V5, P785 37497 CINIBULK MK, 1992, J AM CERAM SOC, V75, P2037 37498 DU Y, 1992, CALPHAD, V16, P221 37499 ERBE EM, 1990, J AM CERAM SOC, V73, P2708 37500 FRITSCHE ET, 1967, J AM CERAM SOC, V50, P167 37501 HILLERT M, 1970, ACTA CHEM SCAND, V24, P3618 37502 HILLERT M, 1992, CALPHAD, V16, P193 37503 HILLERT M, 1992, CALPHAD, V16, P199 37504 HIROSAKI N, 1988, J AM CERAM SOC, V71, C144 37505 HUANG JG, 1993, B CERAM, V6, P50 37506 HYATT MJ, 1987, J AM CERAM SOC, V70, P283 37507 KAUFMAN L, 1978, CALPHAD, V2, P35 37508 KLUG FJ, 1987, J AM CERAM SOC, V70, P750 37509 KOHLI JT, 1991, PHYS CHEM GLASSES, V32, P67 37510 LI C, 1987, B CERAM, V10, P34 37511 LI L, 1995, P 8 NAT S PHAS DIAGR, P125 37512 LI L, 1997, PHYS CHEM GLASSES, V38, P323 37513 LI L, 1999, PHYS CHEM GLASSES, V40, P126 37514 MIZUNO M, 1974, YOGYO-KYOKAI-SHI, V82, P631 37515 PELTON AD, 1986, METALL TRANS B, V17, P805 37516 ROLIN M, 1965, REV HAUTES TEMP REFR, V2, P182 37517 SUN G, 1991, J CHIN RARE EARTH EL, V9, P128 37518 SUNDMAN B, 1981, J PHYS CHEM SOLIDS, V42, P297 37519 TOROPOV NA, 1961, IAN SSSR KH, V5, P740 37520 TOROPOV NA, 1962, T INT CER C 8 COP, P87 37521 WU P, 1992, J ALLOY COMPD, V179, P259 37522 YAMAGUCHI O, 1985, J AM CERAM SOC, V68, C44 37523 NR 28 37524 TC 2 37525 SN 1005-0302 37526 J9 J MATER SCI TECHNOL 37527 JI J. Mater. Sci. Technol. 37528 PD SEP 37529 PY 1999 37530 VL 15 37531 IS 5 37532 BP 439 37533 EP 443 37534 PG 5 37535 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 37536 Engineering 37537 GA 246WV 37538 UT ISI:000083188600011 37539 ER 37540 37541 PT J 37542 AU Wang, HX 37543 Fang, DF 37544 TI Asymptotic behaviour of population-size-dependent branching processes 37545 in Markovian random environments 37546 SO JOURNAL OF APPLIED PROBABILITY 37547 DT Article 37548 DE Markov chains in random environments; branching models; extinction 37549 probabilities 37550 AB A population-size-dependent branching process {Z(n)} is considered 37551 where the population's evolution is controlled by a Markovian 37552 environment process {xi(n)}. For this model, let m(k,theta) and 37553 sigma(k,theta)(2) be the mean and the variance respectively of the 37554 offspring distribution when the population size is k and a environment 37555 theta is given. Let B = {omega : Z(n)(omega) = 0 for some n} and q = 37556 P(B). The asymptotic behaviour of lim(n) Z(n) and lim(n) 37557 Z(n)/Pi(i=0)(n-1)m(xi n) is studied in the case where sup(theta) 37558 /m(k,theta) - m(theta)/ --> 0 for some real numbers {m(theta)} such 37559 that inf(theta) m(theta) > 1. When the environmental sequence {xi(n)} 37560 is a irreducible positive recurrent Markov chain (particularly, when 37561 its state space is finite), certain extinction (q = 1) and non-certain 37562 extinction (q < 1) are studied. 37563 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 37564 Yueyang Normal Coll, Dept Math, Yueyang 414000, Peoples R China. 37565 RP Wang, HX, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 37566 CR ATHREYA KB, 1971, ANN MATH STAT, V42, P1499 37567 COGBURN R, 1980, ANN PROBAB, V8, P908 37568 COGBURN R, 1984, Z WAHRSCHEINLICHKEIT, V66, P109 37569 FUJIMAGARI T, 1976, KODAI MATH SEM REP, V27, P11 37570 KLEBANER FC, 1984, ADV APPL PROBAB, V16, P30 37571 KLEBANER FC, 1984, J APPL PROBAB, V21, P40 37572 VIAUD DPL, 1994, J APPL PROBAB, V31, P22 37573 WANG HX, 1999, J APPL PROBAB, V36, P146 37574 NR 8 37575 TC 4 37576 SN 0021-9002 37577 J9 J APPL PROBAB 37578 JI J. Appl. Probab. 37579 PD JUN 37580 PY 1999 37581 VL 36 37582 IS 2 37583 BP 611 37584 EP 619 37585 PG 9 37586 SC Statistics & Probability 37587 GA 248PD 37588 UT ISI:000083283200024 37589 ER 37590 37591 PT J 37592 AU Liu, GL 37593 TI A general variational theory of multipoint inverse design of 2-D 37594 transonic cascades based on an artificial flow-oscillation model 37595 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 37596 DT Article 37597 AB In order to ensure favorable aerodynamic performance of cascades not 37598 only at the nominal design point but also at other off-design points, a 37599 novel variational theory of multipoint inverse design of 2-D transonic 37600 cascades is developed herein, in which along each of the segments of 37601 the cascade airfoil contour the pressure (or velocity) distribution is 37602 specified at a corresponding angle of attack. For this purpose an 37603 artificial flow-oscillation concept is suggested to simulate the 37604 multipoint design problem of steady flow. As a result, a family of 37605 variational principles (VP) for the multipoint inverse problem is 37606 derived, in which all free boundaries/interfaces such as the unknown 37607 airfoil shape, the shocks and trailing vortex sheets are handled by 37608 means of the powerful variable-domain variation of the functional. This 37609 theory is capable of extending to hybrid problems as well as to fully 37610 3-D and/or rotational flows. 37611 C1 Shanghai Univ, Shanghai 200072, Peoples R China. 37612 Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 37613 RP Liu, GL, Shanghai Univ, Shanghai 200072, Peoples R China. 37614 CR BRESLIN JP, 1994, HYDRODYNAMICS SHIP P, P103 37615 DOWELL EH, 1988, APPL MECH REV, V41, P299 37616 DULIKRAVICH GS, 1992, J AIRCRAFT, V29, P1020 37617 EPPLER R, 1979, J SHIP RES, V23, P209 37618 EPPLER R, 1980, TM80210 NASA 37619 EPPLER R, 1985, J SHIP RES, V29, P30 37620 EPPLER R, 1990, AIRFOIL DESIGN DATA 37621 FINLAYSON BA, 1972, METHOD WEIGHTED RESI 37622 JAMESON A, 1985, COMPUT METHOD APPL M, V51, P467 37623 LIU GL, 1987, 871426 AIAA 37624 LIU GL, 1990, EXPT COMPUTATIONAL A, P128 37625 LIU GL, 1992, ACTA MECH, V95, P117 37626 LIU GL, 1993, P INT C AER OCT BEIJ, P82 37627 LIU GL, 1995, INVERSE PROBL ENG, V2, P1 37628 LIU GL, 1996, ACTA AERODYNAMICA SI, V14, P1 37629 LIU GL, 1998, IN PRESS ACTA MECH 37630 LIU GL, 1998, INVERSE PROBL ENG, P391 37631 LIU GL, 1998, P 3 INT C FLUID MECH, P809 37632 NAKAZAKI M, 1986, J KANSAI SOC NAVAL A 37633 NIXON D, 1989, PROGR ASTRONAUTICS A, V120 37634 POLING DR, 1986, AIAA J, V24, P193 37635 SELIG MS, 1992, AIAA J, V30, P1162 37636 SHEN YT, 1981, J SHIP RES, V25, P191 37637 NR 23 37638 TC 1 37639 SN 0334-0082 37640 J9 INT J TURBO JET ENGINES 37641 JI Int. J. Turbo. Jet-Engines 37642 PY 1999 37643 VL 16 37644 IS 3 37645 BP 141 37646 EP 148 37647 PG 8 37648 SC Engineering, Aerospace 37649 GA 247CZ 37650 UT ISI:000083204200002 37651 ER 37652 37653 PT J 37654 AU Chen, LS 37655 Zhao, XH 37656 Fu, MF 37657 TI The simple shear oscillation and the restrictions to elastic-plastic 37658 constitutive relations 37659 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 37660 DT Article 37661 DE objective rates; elastic-plastic constitutive relation; simple shear 37662 oscillation 37663 ID FINITE 37664 AB Based on the definitions of hardening, softening and ideal plastic 37665 behavior of elastic-plastic materials in the true stress tensor space, 37666 the phenomena of simple shear oscillation are shown to be relative to 37667 the oscillatory occurrence of hardening and softening behavior of 37668 elastic-plastic materials, namely the oscillation of hardening 37669 behavior, by analyzing a simple model of rigid-plastic materials with 37670 kinematical hardening under simple shear deformation. To make the 37671 models of elastic-plastic materials realistic, must be satisfied the 37672 following conditions: for any constitutive model, its response stresses 37673 to any continuous plastic deformation must be non-oscillatory, and 37674 there is no oscillation of hardening behavior during the plastic 37675 deformation. 37676 C1 Univ Nanchang, Inst Engn Mech, Nanchang 330029, Peoples R China. 37677 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 37678 RP Chen, LS, Univ Nanchang, Inst Engn Mech, Nanchang 330029, Peoples R 37679 China. 37680 CR AGAHTEHRANI A, 1987, J MECH PHYS SOLIDS, V35, P519 37681 CASEY J, 1984, Q J MECH APPL MATH, V37, P231 37682 CASEY J, 1988, ARCH RATION MECH AN, V102, P351 37683 CHEN LS, 1999, APPL MATH MECH-ENGL, V20, P476 37684 DIENES JK, 1979, ACTA MECH, V32, P217 37685 MINFU F, 1995, FINTIE DEFORMATION F, P20 37686 NAGTEGAAL JC, 1982, P WORKSH PLAST MET F, P56 37687 NEMATNASSER S, 1983, J APPL MECH-T ASME, V50, P1114 37688 SZABO L, 1989, INT J SOLIDS STRUCT, V25, P279 37689 NR 9 37690 TC 1 37691 SN 0253-4827 37692 J9 APPL MATH MECH-ENGL ED 37693 JI Appl. Math. Mech.-Engl. Ed. 37694 PD JUN 37695 PY 1999 37696 VL 20 37697 IS 6 37698 BP 593 37699 EP 603 37700 PG 11 37701 SC Mathematics, Applied; Mechanics 37702 GA 248FL 37703 UT ISI:000083264400002 37704 ER 37705 37706 PT J 37707 AU Wang, GX 37708 Liu, ZR 37709 TI On radii of absorbing sets for Kuramoto-Sivashinsky equation 37710 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 37711 DT Article 37712 DE K-S equation; uniform estimate; absorbing set 37713 AB In this article sharper estimates on the radii of absorbing sets for 37714 the Kuramoto-Sivashinsky equation are given. It is proved that radii of 37715 absorbing sets will decay to Zero as the coefficient of viscosity tends 37716 to a certain critical value, which is more reasonable in the physical 37717 sence compared with classical results. 37718 C1 Peking Univ, Dept Math, Beijing 100871, Peoples R China. 37719 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China. 37720 RP Wang, GX, Peking Univ, Dept Math, Beijing 100871, Peoples R China. 37721 CR COLLET P, 1993, COMMUN MATH PHYS, V152, P203 37722 GOODMAN J, 1994, COMMUN PUR APPL MATH, V47, P293 37723 KEVREKIDIS IG, 1990, SIAM J APPL MATH, V50, P760 37724 KURAMOTO Y, 1975, PROG THEOR PHYS, V54, P687 37725 LICOLAENKO B, 1985, PHYSICA D, V16, P155 37726 MICHELSON DM, 1977, ACTA ASTRONAUT, V4, P1206 37727 SIVASHINSKY GI, 1977, ACTA ASTRONAUT, V4, P1177 37728 SIVASHINSKY GI, 1980, PROG THEOR PHYS, V63, P2112 37729 WANG GX, 1996, THESIS SUZHOU U 37730 NR 9 37731 TC 0 37732 SN 0253-4827 37733 J9 APPL MATH MECH-ENGL ED 37734 JI Appl. Math. Mech.-Engl. Ed. 37735 PD JUL 37736 PY 1999 37737 VL 20 37738 IS 7 37739 BP 729 37740 EP 738 37741 PG 10 37742 SC Mathematics, Applied; Mechanics 37743 GA 247WU 37744 UT ISI:000083244600003 37745 ER 37746 37747 PT J 37748 AU Liu, L 37749 Zhang, TJ 37750 Cui, K 37751 Dong, YD 37752 TI Reduction of copper oxide with graphite by mechanical alloying 37753 SO JOURNAL OF MATERIALS RESEARCH 37754 DT Article 37755 ID MECHANOCHEMICAL REDUCTION; SYSTEM; COMBUSTION 37756 AB The reduction of CuO with different amounts of C (CuO:C = 2:1, 2:1.5, 37757 and 2:2 molar ratios) driven by mechanical alloying was examined by 37758 x-ray diffraction and transmission electron microscopy. It was found 37759 that reduction behaviors are closely related to the carbon content. The 37760 reduction of CuO for the mixture with 1 mol of carbon follows a 37761 two-step process; i.e.. CuO --> Cu --> Cu2O. However, the CuO can be 37762 completely converted to Cu for the mixtures with higher carbon content. 37763 A tentative model in terms of solid-state reactions at the interfaces 37764 is proposed to explain the effect of carbon content. Additionally, the 37765 thermal responses of the premilled mixtures were investigated by 37766 thermogravity and differential thermal analysis followed by x-ray 37767 identification. Contrary to mechanical alloying, reduction of CuO 37768 during thermal treatment follows a transition sequence of CuO -- Cu2O 37769 --> Cu. The preferential formation of Cu2O at the early annealing stage 37770 is probably due to the involvement of gaseous reduction. 37771 C1 Huazhong Univ Sci & Technol, Dept Mat Sci & Engn, State Key Lab Plast Forming Stimulat & Die & Moul, Wuhan 430074, Peoples R China. 37772 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 37773 RP Liu, L, Huazhong Univ Sci & Technol, Dept Mat Sci & Engn, State Key Lab 37774 Plast Forming Stimulat & Die & Moul, Wuhan 430074, Peoples R China. 37775 CR BENJAMIN JS, 1970, METALL T, V1, P2943 37776 BRANDES A, 1983, SMITHELLS METALS REF 37777 CHEN Y, 1997, METALL MATER TRANS A, V28, P115 37778 ECKERT J, 1990, Z METALLKD, V81, P862 37779 FECHT HJ, 1990, J APPL PHYS, V67, P1744 37780 GILMAN PS, 1983, ANNU REV MATER SCI, V13, P279 37781 KOCH CC, 1983, APPL PHYS LETT, V43, P1017 37782 LIU L, 1993, NANOSTRUCT MATER, V2, P463 37783 LIU L, 1995, ACTA METALL MATER, V43, P3755 37784 MAGINI M, 1991, J MATER SCI, V26, P3969 37785 MCCORMICK PG, 1995, MATER T JIM, V36, P161 37786 MORRIS DG, 1991, MAT SCI ENG A-STRUCT, V134, P1481 37787 POLITIS C, 1986, J APPL PHYS, V60, P1147 37788 SCHAFFER GB, 1989, APPL PHYS LETT, V55, P45 37789 SCHAFFER GB, 1990, J MATER SCI LETT, V9, P1014 37790 SCHAFFER GB, 1990, METALL TRANS A, V21, P2789 37791 SCHAFFER GB, 1992, METALL TRANS A, V23, P1285 37792 WEAST RC, 1988, HDB CHEM PHYSICS 37793 XU J, 1996, J APPL PHYS 1, V79, P3935 37794 YANG H, 1993, J SOLID STATE CHEM, V107, P258 37795 YANG H, 1994, J SOLID STATE CHEM, V110, P136 37796 YANG H, 1995, SCRIPTA METALL MATER, V32, P681 37797 NR 22 37798 TC 2 37799 SN 0884-2914 37800 J9 J MATER RES 37801 JI J. Mater. Res. 37802 PD OCT 37803 PY 1999 37804 VL 14 37805 IS 10 37806 BP 4062 37807 EP 4069 37808 PG 8 37809 SC Materials Science, Multidisciplinary 37810 GA 246KV 37811 UT ISI:000083163700034 37812 ER 37813 37814 PT J 37815 AU Weng, PF 37816 TI Investigation of separated flow around a curved air intake 37817 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 37818 DT Article 37819 AB This paper presents the investigation of two-dimensional separated now 37820 in and around a submerged curved intake by experiment and computation. 37821 Elliptic Navier-Stokes equations are employed which are discreted in 37822 body-fitted coordinate system by the SIMPLE method. The results show 37823 that a now separation near and behind the inlet exists and the duct now 37824 is distorted. Comparison between the calculations and experimental data 37825 is fairly satisfactory. 37826 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 37827 RP Weng, PF, Campus Box 189,149 Yanchang Rd, Shanghai, Peoples R China. 37828 CR AUIEHLA F, 1982, ICAS824811 37829 GUO RW, 1983, AERONAUTICAL Q, V32, P130 37830 HUANG XJ, 1987, INT AVIATION, V7, P19 37831 JENKINS RC, 1991, AIAA J, V29, P401 37832 PATANKAR SV, 1980, NUMERICAL HEAT TRANS 37833 THOMPSON JF, 1985, NUMERICAL GRID GENER 37834 YU SMC, 1993, J I ENG, V33, P15 37835 NR 7 37836 TC 0 37837 SN 0334-0082 37838 J9 INT J TURBO JET ENGINES 37839 JI Int. J. Turbo. Jet-Engines 37840 PY 1999 37841 VL 16 37842 IS 2 37843 BP 71 37844 EP 77 37845 PG 7 37846 SC Engineering, Aerospace 37847 GA 244YB 37848 UT ISI:000083077400002 37849 ER 37850 37851 PT J 37852 AU Zhang, C 37853 Zhang, HS 37854 Qiu, ZG 37855 TI Fast analysis of crankshaft bearings with a database including shear 37856 thinning and viscoelastic effects 37857 SO TRIBOLOGY TRANSACTIONS 37858 DT Article 37859 DE database; hydrodynamic lubrication; journal bearing; non-Newtonian 37860 lubricants; internal combustion engine 37861 ID JOURNAL BEARINGS 37862 AB Database consists of nondimensional data of load capacity, maximum 37863 pressure and its position, flow and power loss factors obtained by 37864 solving the full 2-D Reynolds equation including the effect of oil feed 37865 features of 360 degrees, 180 degrees grooves and a single oil hole. 37866 Aided by the database, dynamically loaded journal bearings are analyzed 37867 without solving the Reynolds equation. The database is interpolated 37868 linearly. The fluids shear thinning and elasticity are characterized by 37869 the power law and Maxwell models. The solutions given by the present 37870 method are almost identical to the expensive FDM solution, and the CPU 37871 time consumed in the former cases almost can be neglected as compared 37872 to the latter cases. 37873 C1 Shanghai Univ, Res Inst Bearings, Shanghai 200072, Peoples R China. 37874 Fudan Univ, Dept Appl Mech, Shanghai 200433, Peoples R China. 37875 RP Zhang, C, Shanghai Univ, Res Inst Bearings, Shanghai 200072, Peoples R 37876 China. 37877 CR BOOKER JF, 1965, T ASME D, V87, P537 37878 BOOKER JF, 1969, ASME, V91, P534 37879 BOOKER JF, 1971, ASME, V93, P168 37880 CONWAYJONES JM, 1990, P 17 LEEDS LYON S TR, P33 37881 GOENKA PK, 1984, ASME, V106, P429 37882 GOENKA PK, 1984, J TRIBOL-T ASME, V106, P421 37883 JONES GJ, 1982, P 9 LEEDS LYON S TRI, P83 37884 JONES GJ, 1983, P 9 LEEDS LYON S TRI 37885 PARANJPE RS, 1992, J TRIBOL-T ASME, V114, P736 37886 RASTOGI A, 1990, J RHEOL, V34, P1337 37887 ZHANG C, 1995, CHINESE INTERNAL COM, V16, P69 37888 ZHANG C, 1995, P INT TRIB C, P975 37889 ZHONGGANG F, 1995, LUBR ENG, V5, P12 37890 NR 13 37891 TC 2 37892 SN 1040-2004 37893 J9 TRIBOL TRANS 37894 JI Tribol. Trans. 37895 PD OCT 37896 PY 1999 37897 VL 42 37898 IS 4 37899 BP 922 37900 EP 928 37901 PG 7 37902 SC Engineering, Mechanical 37903 GA 243MN 37904 UT ISI:000083002000033 37905 ER 37906 37907 PT J 37908 AU Xu, KX 37909 Essa, AA 37910 Bao, JS 37911 TI Non-ohmic dissipation in granular YBCO films with microwave radiation 37912 SO PHYSICA C 37913 DT Article 37914 DE granular superconductivity; microwave absorption; K-T transition 37915 ID YBA2CU3O7-DELTA THIN-FILMS; PHOTORESPONSE; SUPERCONDUCTORS 37916 AB The evidence for nonequilibrium response to microwave radiation (37 37917 GHz) from YBa2Cu3O7-delta (YBCO) granular films is presented in this 37918 paper. The experimental results show that the microwave response always 37919 occurs within the "tail" region in R-T curves. The measurements of the 37920 I-V characteristics suggest that the dissipation below the G-L mean 37921 field transition temperature T-co can be described in terms of the 37922 Kosterlitz-Thouless (K-T) transition model, Based on the measurements 37923 with a weak magnetic field. we propose that the origin of the 37924 nonequilibrium microwave response in granular YBCO films may be related 37925 with the photon-vortex interaction process. (C) 1999 Elsevier Science 37926 B.V. All rights reserved. 37927 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 37928 RP Xu, KX, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 37929 CR BATLOGG BJ, 1997, J SUPERCOND, V10, P583 37930 CULBERTSON JC, 1991, PHYS REV B, V44, P9609 37931 ENOMOTO Y, 1986, J APPL PHYS, V59, P3807 37932 FLORY AT, 1983, PHYS REV B, V28, P5075 37933 FORRESTER MG, 1989, IEEE T MAGN, V25, P1327 37934 GEVSHENZON EM, 1991, IEEE T MAGN, V27, P1321 37935 HEGMANN FA, 1993, PHYS REV B, V48, P16023 37936 HEGMANN FA, 1995, APPL PHYS LETT, V67, P285 37937 HERTER ST, 1998, PHYS REV B, V57, P1154 37938 KADIN AM, 1990, APPL PHYS LETT, V57, P2847 37939 KADIN AM, 1990, J APPL PHYS, V68, P5741 37940 KADIN AM, 1990, PHYS REV LETT, V65, P3193 37941 KADOWAKI K, 1994, SUPERCOND SCI TECH, V7, P519 37942 KOSTERLITZ JM, 1973, J PHYS C SOLID STATE, V6, P1181 37943 STROM U, 1990, PHYS REV B, V42, P4059 37944 VECHTEN DV, 1997, APPL PHYS LETT, V71, P1415 37945 YESHURUN Y, 1987, PHYS REV LETT, V58, P2202 37946 YING QY, 1990, PHYS REV B, V42, P2242 37947 NR 18 37948 TC 1 37949 SN 0921-4534 37950 J9 PHYSICA C 37951 JI Physica C 37952 PD AUG 20 37953 PY 1999 37954 VL 321 37955 IS 3-4 37956 BP 258 37957 EP 262 37958 PG 5 37959 SC Physics, Applied 37960 GA 243NP 37961 UT ISI:000083004400015 37962 ER 37963 37964 PT J 37965 AU Xu, HP 37966 Wong, PL 37967 Zhang, ZM 37968 TI An EHL analysis of an all-metal viscoelastic high-pressure seal 37969 SO JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME 37970 DT Article 37971 AB An EHL (elasto-hydrodynamic lubrication) analysis of art all-metal 37972 viscoelastic high-pressure seal is presented. The fluid flow is assumed 37973 to be laminar and isothermal, and its inertial effect is neglected. 37974 Deformation of the cylinder and plunger is governed by Lame's formula 37975 for a thick-walled cylinder. The pressure-viscosity and 37976 pressure-density relationships of a working fluid are assumed to 37977 satisfy the Burus and Dowson-Higginson formulas, respectively. The 37978 leakage rate of the seal decreases almost exponentially with an 37979 increase in the working pressure, while its minimum film thickness can 37980 remain at about seventy percent of its nominal value at high working 37981 pressures. The radial stiffness increases significantly with an 37982 increase in the working pressure, i.e., stable operations of the seal 37983 can be expected. 37984 C1 City Univ Hong Kong, Dept Mfg Engn, Kowloon, Hong Kong. 37985 Shanghai Univ, Bearing Res Inst, Shanghai 200072, Peoples R China. 37986 RP Xu, HP, Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 37987 USA. 37988 CR BRIDGMAN P, 1953, PHYSICS HIGH PRESSUR 37989 HARRIS HD, 1972, ASME, V94, P335 37990 JOHANNESSON HL, 1983, INFLUENCE PLUNGER EC, P13 37991 KAMAL MM, 1968, ASME, V90, P412 37992 ROARK JR, 1975, FORMULAS STRESS STRA, P504 37993 WANG NM, 1970, ASME, V92, P310 37994 WONG PL, 1997, WEAR, V210, P104 37995 XU H, 1991, 1084, CN 37996 XU H, 1991, THESIS ACAD MACHINE 37997 XU H, 1994, CHINESE J MECH ENG, V7, P148 37998 XU H, 1995, P 22 LEEDS LYON S TR 37999 XU HP, 1994, TRIBOL T, V37, P767 38000 NR 12 38001 TC 0 38002 SN 0742-4787 38003 J9 J TRIBOL-TRANS ASME 38004 JI J. Tribol.-Trans. ASME 38005 PD OCT 38006 PY 1999 38007 VL 121 38008 IS 4 38009 BP 916 38010 EP 920 38011 PG 5 38012 SC Engineering, Mechanical 38013 GA 243WY 38014 UT ISI:000083021500040 38015 ER 38016 38017 PT J 38018 AU Hua, JD 38019 Liu, YF 38020 Hu, J 38021 Wang, QQ 38022 Gong, ZB 38023 Guo, XZ 38024 TI Thermal phase transition of poly(N-propionylethyleneimine) hydrogel 38025 SO JOURNAL OF APPLIED POLYMER SCIENCE 38026 DT Article 38027 DE poly(N-propionylethyleneimine); lower critical solution temperature; 38028 hydrogels; interpenetrating polymer network polymer 38029 ID GELS 38030 AB This article presents the preparation of the hydrogel of 38031 poly(N-propionylethyleneimine) and its interpenetrating polymer network 38032 (IPN) hydrogel containing polyacrylamide by means of gamma-ray 38033 radiation and a study of the phase transition temperature of these 38034 hydrogels. As a result, the hydrogel of the crosslinked 38035 poly(N-propionylethyleneimine) exhibited swelling below and shrinking 38036 above the phase transition temperature (about 61 degrees C), as well as 38037 the lower critical solution temperature (LCST) of the liner 38038 polymer-water system. The experiment also showed that the LCST of the 38039 IPN hydrogel could be adjusted by the incorporation of the second 38040 component polyacrylamide. (C) 1999 John Wiley & Sons, Inc. 38041 C1 Shanghai Univ, Dept Polymer Mat & Engn, Shanghai 201800, Peoples R China. 38042 Shanghai Univ, Dept Mech Engn, Shanghai 201800, Peoples R China. 38043 RP Hua, JD, Shanghai Univ, Dept Polymer Mat & Engn, Shanghai 201800, 38044 Peoples R China. 38045 CR BAE YH, 1989, J CONTROL RELEASE, V9, P271 38046 DONG LC, 1986, J CONTROL RELEASE, V4, P223 38047 DONG LC, 1990, J CONTROL RELEASE, V13, P21 38048 FREITAS RFS, 1987, SEPAR SCI TECHNOL, V22, P911 38049 FRELTAS RFS, 1987, CHEM ENG SCI, V42, P79 38050 HIROKAWA Y, 1984, AIP C P PHYS CHEM PO, V107, P203 38051 HIROKAWA Y, 1984, J CHEM PHYS, V81, P6379 38052 HOFFMAN AS, 1986, J CONTROL RELEASE, V4, P213 38053 KISHI R, 1993, J INTEL MAT SYST STR, V4, P533 38054 OSADA Y, 1975, MAKROMOL CHEM, V176, P2761 38055 PARK TG, 1990, BIOTECHNOL BIOENG, V35, P152 38056 PARK TG, 1990, J BIOMED MATER RES, V24, P21 38057 TANAKA T, 1978, PHYS REV LETT, V40, P820 38058 NR 13 38059 TC 2 38060 SN 0021-8995 38061 J9 J APPL POLYM SCI 38062 JI J. Appl. Polym. Sci. 38063 PD DEC 5 38064 PY 1999 38065 VL 74 38066 IS 10 38067 BP 2457 38068 EP 2461 38069 PG 5 38070 SC Polymer Science 38071 GA 242GH 38072 UT ISI:000082931800014 38073 ER 38074 38075 PT J 38076 AU Liu, GL 38077 Wu, ZC 38078 TI Variational formulation of inverse shape design problem of heat 38079 conductors in an image plane and finite element solutions 38080 SO INVERSE PROBLEMS IN ENGINEERING 38081 DT Article 38082 DE variational principles; heat conduction; finite element method 38083 AB Using an image plane introduced previously by Liu [4] the original 38084 shape design problem of heat conduction is transformed into the one 38085 with known boundary and a pair of complementary variational principles 38086 (VP) for it with complicated boundary conditions are established in 38087 terms of the heat stream function and the temperature function 38088 respectively. Based upon these VP some finite element solutions to the 38089 shape design problem of heat conduction are presented. Finally, a very 38090 interesting invariance rule of inverse problem solutions with respect 38091 to the temperature-dependent conductivity is identified and numerically 38092 demonstrated. 38093 C1 Shanghai Univ, Shanghai 200072, Peoples R China. 38094 Shanghai Met Coll, Shanghai 200233, Peoples R China. 38095 RP Liu, GL, Shanghai Univ, 149 Yan Chang Rd, Shanghai 200072, Peoples R 38096 China. 38097 CR CARSLAW HS, 1986, CONDUCTION HEAT SOLI 38098 CRANK J, 1984, FREE MOVING BOUNDARY 38099 DULIKRAVICH GS, 1988, APPL MECH REV, V41, P270 38100 FINLAYSON BA, 1972, METHOD WEIGHTED RESI 38101 KOZDOBA LA, 1982, METHODS SOLUTION INV 38102 LIU GL, 1987, NUM METHODS THERMAL, V5, P284 38103 LIU GL, 1989, NUM METHODS THERMAL, V6, P1712 38104 LIU GL, 1990, EXPT COMPUTATIONAL A, P128 38105 LIU GL, 1997, NONLINEAR ANAL-THEOR, V30, P5229 38106 RAMM AG, 1986, INVERSE PROBL, V2, L19 38107 STANITZ JD, 1952, TN2593 NACA 38108 NR 11 38109 TC 0 38110 SN 1068-2767 38111 J9 INVERSE PROBL ENG 38112 JI Inverse Probl. Eng. 38113 PY 1999 38114 VL 7 38115 IS 4 38116 BP 385 38117 EP 408 38118 PG 24 38119 SC Engineering, Multidisciplinary; Mathematics, Applied 38120 GA 242VJ 38121 UT ISI:000082962100004 38122 ER 38123 38124 PT J 38125 AU Zhang, SH 38126 Li, YZ 38127 TI Pumped-storage capacity discount and its effect on capacity planning 38128 SO ELECTRIC POWER SYSTEMS RESEARCH 38129 DT Article 38130 DE pumped-storage plant; probabilistic operation simulation; capacity 38131 discount; capacity benefits; planning 38132 AB Pumped-storage plants can play important roles in several aspects, its 38133 capacity planning is increasingly of great interest, especially in 38134 China. The subject of this paper is an investigation of effect of 38135 pumped-storage capacity discount on its capacity planning. The 38136 probabilistic formulation and cause analysis of pumped-storage capacity 38137 discount are presented. Case studies for a real power system in China 38138 are also discussed. The insight gained from these studies will be 38139 useful in pumped-storage development planning. (C) 1999 Elsevier 38140 Science S.A. All rights reserved. 38141 C1 Shanghai Univ, Automat Sch, Shanghai 200072, Peoples R China. 38142 RP Zhang, SH, Shanghai Univ, Automat Sch, POB 9,149 Yanchang Rd, Shanghai 38143 200072, Peoples R China. 38144 CR CHEN HH, 1991, P INT C HYDR DENV, P1186 38145 KANDIL MS, 1990, IEE P C, V137, P298 38146 LEE BY, 1987, IEEE T POWER SYST, V2, P486 38147 MALIK AS, 1991, P INT C ADV POW SYST, P379 38148 STASCHUS K, 1990, I ELECT ELECT ENG IE, V5, P531 38149 YEN MS, 1993, P INT C ADV POW SYST, P578 38150 YEN MS, 1997, ELECTR POW SYST RES, V42, P63 38151 NR 7 38152 TC 0 38153 SN 0378-7796 38154 J9 ELEC POWER SYST RES 38155 JI Electr. Power Syst. Res. 38156 PD OCT 1 38157 PY 1999 38158 VL 52 38159 IS 1 38160 BP 43 38161 EP 49 38162 PG 7 38163 SC Engineering, Electrical & Electronic 38164 GA 243QQ 38165 UT ISI:000083009100006 38166 ER 38167 38168 PT J 38169 AU Liu, GL 38170 Guo, JH 38171 TI A variable-domain variational formulation of inverse problem I-A of 2-D 38172 unsteady transonic flow around oscillating airfoils 38173 SO ACTA MECHANICA 38174 DT Article 38175 AB The present paper carries out, for the first time, a detailed 38176 theoretical investigation on the inverse problem in unsteady 38177 aerodynamics. Special attention is paid to finding proper ways of 38178 problem-posing and mathematical formulation. To demonstrate the basic 38179 idea, only an inverse problem of type I-A of unsteady transonic flow 38180 with shocks around oscillating airfoils is studied herein. II has been 38181 formulated by a family of variational principles (VP) with variable 38182 domain, in which all unknown boundary (airfoil contour) and 38183 discontinuities (shocks and free trailing vortex sheets) are handled 38184 (captured) via the functional variation with variable domain. As a 38185 result, almost all boundary- and interface-conditions have been 38186 converted into natural ones. Thus, a rigorous theoretical basis for 38187 unsteady airfoil design and Finite element (FE) applications is 38188 provided. On the basis of these variational principles developed in 38189 this paper, a method using new self-deforming finite element is 38190 suggested for the numerical realization of the variable-domain 38191 variation of the functional and a numerical example is given. Its 38192 suitability and effectiveness are demonstrated by the numerical results. 38193 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 38194 RP Liu, GL, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang 38195 Rd, Shanghai 200072, Peoples R China. 38196 CR *AGARD FLUID DYN P, 1990, AGARDCP463 38197 CHYU WJ, 1981, AIAA J, V19, P684 38198 DULIKRAVICH GS, 1991, P INT C INV DES CONC 38199 FINLAYSON BA, 1970, METHODS WEIGHTED RES, P336 38200 GUO JH, 1993, P 1 INT C AER BEIJ, P75 38201 HAFEZ MM, 1979, AIAA J, V17, P838 38202 HE H, 1993, P 2 INT C FLUID MECH, P359 38203 LIU G, 1986, ASME, V108, P252 38204 LIU GL, 1987, AIAA871426 38205 LIU GL, 1989, P 5 INT S UNST AER A, P76 38206 LIU GL, 1990, EXPT COMPUTATIONAL A, P128 38207 LIU GL, 1992, ACTA MECH, V95, P117 38208 LIU GL, 1993, P 2 INT C FLUID MECH, P438 38209 LIU GL, 1995, INVERSE PROBL ENG, V2, P1 38210 LIU GL, 1997, NONLINEAR ANAL-THEOR, V30, P5229 38211 LIU GL, 1998, P 3 INT C FLUID MECH, P809 38212 POLING DR, 1986, AIAA J, V24, P193 38213 NR 17 38214 TC 0 38215 SN 0001-5970 38216 J9 ACTA MECH 38217 JI Acta Mech. 38218 PY 1999 38219 VL 137 38220 IS 3-4 38221 BP 195 38222 EP 209 38223 PG 15 38224 SC Mechanics 38225 GA 244DA 38226 UT ISI:000083035500005 38227 ER 38228 38229 PT J 38230 AU Shen, Y 38231 Zhang, JC 38232 Gu, F 38233 Sao, J 38234 Yan, JK 38235 Wu, WB 38236 TI Preparation and spectroscopic properties of C-60-toluene derivative 38237 SO ACTA CHIMICA SINICA 38238 DT Article 38239 DE C-60; C-60 - toluene derivative; photoluminescence 38240 AB A C-60 - toluene derivative is prepared by reaction of C-60 with 38241 toluene in the presence of a proper catalyst. According to the UV and 38242 H-1 NMR spectra, the structure of the product and the reaction 38243 mechanism are discussed. Comparison of the PL spectrum of the 38244 derivative and C-60; shows that the derivative has increased PL 38245 phenomena at 460nm at room temperature. 38246 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China. 38247 RP Shen, Y, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R 38248 China. 38249 CR EGUCHI S, 1995, FULLERENES ADDUCTS S 38250 FOWLER PW, 1990, J CHEM SOC FARADAY T, V86, P2073 38251 GANG GU, 1995, PROGR PHYSICS, V15, P319 38252 GUO ZX, 1998, PROG CHEM, V10, P1 38253 HARE JP, 1991, CHEM PHYS LETT, V177, P394 38254 HUANG S, 1993, FUNCTIONAL POLYM, V6, P371 38255 OLAH GA, 1991, J AM CHEM SOC, V113, P9387 38256 TAYLOR R, 1992, J CHEM SOC CHEM 0501, P667 38257 NR 8 38258 TC 2 38259 SN 0567-7351 38260 J9 ACTA CHIM SIN 38261 JI Acta Chim. Sin. 38262 PY 1999 38263 VL 57 38264 IS 9 38265 BP 1034 38266 EP 1037 38267 PG 4 38268 SC Chemistry, Multidisciplinary 38269 GA 243BY 38270 UT ISI:000082978300015 38271 ER 38272 38273 PT J 38274 AU Zhang, TS 38275 Hing, P 38276 Zhang, JC 38277 Kong, LB 38278 TI Ethanol-sensing characteristics of cadmium ferrite prepared by chemical 38279 coprecipitation 38280 SO MATERIALS CHEMISTRY AND PHYSICS 38281 DT Article 38282 DE cadmium oxide; alpha-Fe2O3; cadmium ferrite; ethanol sensor; 38283 coprecipitation 38284 ID SEMICONDUCTOR GAS SENSORS; ELECTRICAL-PROPERTIES; TIN OXIDE; HUMIDITY 38285 SENSORS; SNO2; CO; SENSITIVITY; SELECTIVITY; CONDUCTANCE; ADDITIVES 38286 AB The microstructure, electrical property and gas-sensing characteristics 38287 of complex compounds in the CdO-Fe2O3 system have been investigated. 38288 Raw powder with Cd/Fe = 1:2 was prepared by chemical coprecipitation 38289 method. The results from thermal gravimetric-differential thermal 38290 analysis and X-ray diffraction measurement indicate that decomposition 38291 of CdCO3 takes place from 350 to 500 degrees C, and the solid reaction 38292 in CdO-Fe2O3 system starts at 570 degrees C; the completion of this 38293 reaction is up to 800 degrees C. Single phase of CdFe2O4 is composed of 38294 spheroidic grains with narrow size distribution between 50 and 150 nm. 38295 Sample calcined at 650 degrees C consists of smaller grains with 38296 different shape and sizes due to the presence of three phases, i.e., 38297 CdFe2O4, CdO and alpha-Fe2O3. The sensors based on Cd-Fe complex oxides 38298 show a high sensitivity and selectivity to C2H5OH gas over CO, H-2 and 38299 i-C4H10. The sensor made of 650 degrees C sample operates at 380 38300 degrees C, and its sensitivity to 200 ppm C2H5OH gas is up to 90, but 38301 its sensitivity to 1000 ppm H-2, CO or i-C4H10 are only 7.5, 4 and 5, 38302 respectively. (C) 1999 Elsevier Science S.A. All rights reserved. 38303 C1 Nanyang Technol Univ, Sch Appl Sci, Div Mat Sci, Ctr Adv Mat Res, Singapore 639798, Singapore. 38304 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China. 38305 Nanyang Technol Univ, Sch Elect & Elect Engn, Ctr Microelect, Singapore 639798, Singapore. 38306 RP Zhang, TS, Nanyang Technol Univ, Sch Appl Sci, Div Mat Sci, Ctr Adv Mat 38307 Res, Nanyang Ave, Singapore 639798, Singapore. 38308 CR ALBANESE G, 1992, J MATER SCI, V27, P6146 38309 BEHR G, 1995, SENSOR ACTUAT B-CHEM, V26, P33 38310 CALDARARU M, 1996, SENSOR ACTUAT B-CHEM, V30, P35 38311 CANTALINI C, 1993, SENSOR ACTUAT B-CHEM, V15, P193 38312 CAROTTA MC, 1998, SENSOR ACTUAT B-CHEM, V48, P270 38313 COLES GSV, 1991, SENSOR ACTUAT B-CHEM, V3, P7 38314 DAWSON DH, 1995, SENSOR ACTUAT B-CHEM, V26, P76 38315 FANG YK, 1989, THIN SOLID FILMS, V169, P51 38316 GIBER J, 1994, SENSOR ACTUAT B-CHEM, V18, P113 38317 GUSMANO G, 1993, BRIT CERAM T, V92, P104 38318 GUSMANO G, 1993, J MATER SCI, V28, P6195 38319 HYKAWAY N, 1988, SENSOR ACTUATOR, V15, P105 38320 JIANMING L, 1989, P INT C EL COMP MAT, P197 38321 KUDO S, 1995, SENSOR ACTUAT B-CHEM, V23, P219 38322 LANTTO V, 1987, SURF SCI, V192, P243 38323 LEE DD, 1987, SENSOR ACTUATOR, V12, P441 38324 MAEKAWA T, 1991, CHEM LETT, P575 38325 MAEKAWA T, 1992, SENSOR ACTUAT B-CHEM, V9, P63 38326 MATSUSHIMA S, 1989, CHEM LETT, P845 38327 MCALEER E, 1971, DISCUSS FARADAY SOC, V52, P239 38328 MCALEER JF, 1987, J CHEM SOC FARAD T 1, V83, P1323 38329 NITTA M, 1979, J ELECTRON MATER, V8, P571 38330 PROMSONG L, 1995, SENSOR ACTUAT B-CHEM, V24, P504 38331 SARALA G, 1995, SENSOR ACTUAT B-CHEM, V28, P31 38332 SAYAGO I, 1995, SENSOR ACTUAT B-CHEM, V26, P19 38333 SCHIERBAUM KD, 1991, SENSOR ACTUAT B-CHEM, V3, P205 38334 TAKATA M, 1976, J AM CERAM SOC, V59, P4 38335 TETERYCZ H, 1998, SENSOR ACTUAT B-CHEM, V47, P100 38336 TOURNIER G, 1995, SENSOR ACTUAT B-CHEM, V26, P24 38337 WOLSKA E, 1992, SOLID STATE IONICS, V51, P231 38338 YAMAMOTO N, 1981, JPN J APPL PHYS, V20, P721 38339 YAMAZOE N, 1986, SENSOR ACTUATOR, V10, P379 38340 YAMAZOE N, 1991, SENSOR ACTUAT B-CHEM, V5, P7 38341 YOKOYAMA M, 1996, J APPL PHYS, V80, P1015 38342 NR 34 38343 TC 2 38344 SN 0254-0584 38345 J9 MATER CHEM PHYS 38346 JI Mater. Chem. Phys. 38347 PD NOV 1 38348 PY 1999 38349 VL 61 38350 IS 3 38351 BP 192 38352 EP 198 38353 PG 7 38354 SC Materials Science, Multidisciplinary 38355 GA 241MQ 38356 UT ISI:000082887500002 38357 ER 38358 38359 PT J 38360 AU He, JH 38361 TI Homotopy perturbation technique 38362 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 38363 DT Article 38364 DE perturbation techniques; homotopy; nonlinearity 38365 AB The homotopy perturbation technique does not depend upon a small 38366 parameter in the equation. By the homotopy technique in topology, a 38367 homotopy is constructed with an imbedding parameter p epsilon [0, 1], 38368 which is considered as a "smalI parameter". Some examples are given. 38369 The approximations obtained by the proposed method are uniformly valid 38370 not only for small parameters, but also for very large parameters. (C) 38371 1999 Elsevier Science S.A. All rights reserved. 38372 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 38373 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 38374 Peoples R China. 38375 CR HE JH, 1997, COMM NONLINEAR SCI N, V2, P230 38376 HE JH, 1998, INT C VIBR ENG 98 DA 38377 LIAO SJ, 1995, INT J NONLINEAR MECH, V30, P371 38378 LIAO SJ, 1997, ENG ANAL BOUND ELEM, V20, P91 38379 LIN CC, 1974, MATH APPL DETERMINIS 38380 NAYFEH AH, 1981, INTRO PERTURBATION T 38381 WANG YB, 1986, INTRO PERTURBATION T 38382 NR 7 38383 TC 45 38384 SN 0045-7825 38385 J9 COMPUT METHOD APPL MECH ENG 38386 JI Comput. Meth. Appl. Mech. Eng. 38387 PD AUG 3 38388 PY 1999 38389 VL 178 38390 IS 3-4 38391 BP 257 38392 EP 262 38393 PG 6 38394 SC Computer Science, Interdisciplinary Applications; Engineering, 38395 Mechanical; Mechanics 38396 GA 239YN 38397 UT ISI:000082798300004 38398 ER 38399 38400 PT J 38401 AU Wu, MH 38402 Bao, BR 38403 Chen, J 38404 Xu, YJ 38405 Zhao, SR 38406 Ma, ZT 38407 TI Preparation of thermosensitive hydrogel (PP-g-NIPAAm) with one-off 38408 switching for controlled release of drugs 38409 SO RADIATION PHYSICS AND CHEMISTRY 38410 DT Article 38411 ID INTERPENETRATING POLYMER NETWORKS 38412 AB A novel thermosensitive hydrogel with high mechanical strength was 38413 obtained by grafting N-isopropylacrylamide (NIPAAm) onto polypropylene 38414 using a preirradiation grafting method. The effect of radiation dose, 38415 dose rate, grafting temperature and reaction time on the grafting 38416 degree and properties of swelling-deswelling is discussed. Water 38417 absorption of the grafted polypropylene film could be switched on and 38418 off swiftly by control of temperature. The microstructure of grafted 38419 ultra thin porous PP film was studied with scanning electron 38420 microscope. (C) 1999 Elsevier Science Ltd. All rights reserved. 38421 C1 Acad Sinica, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China. 38422 Shanghai Univ, Sch Chem & Chem Engn, Shanghai 200041, Peoples R China. 38423 RP Wu, MH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, 38424 Peoples R China. 38425 CR DONG LC, 1986, J CONTROL RELEASE, V4, P223 38426 HESKINS M, 1968, J MACROMOL SCI CHEM, V2, P1441 38427 HIROSE Y, 1987, MACROMOLECULES, V20, P1342 38428 HOFFMAN AS, 1986, J CONTROL RELEASE, V4, P213 38429 ILAVSKY M, 1985, POLYMER, V26, P1514 38430 MUKAE K, 1990, POLYM J, V22, P206 38431 MUKAE K, 1990, POLYM J, V22, P250 38432 OKANO T, 1990, J CONTROL RELEASE, V11, P255 38433 PALASIS M, 1992, J CONTROL RELEASE, V18, P1 38434 WU MH, 1996, RADIAT PHYS CHEM, V48, P525 38435 NR 10 38436 TC 5 38437 SN 0969-806X 38438 J9 RADIAT PHYS CHEM 38439 JI Radiat. Phys. Chem. 38440 PD SEP 38441 PY 1999 38442 VL 56 38443 IS 3 38444 BP 341 38445 EP 346 38446 PG 6 38447 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear 38448 Science & Technology 38449 GA 239LL 38450 UT ISI:000082769600010 38451 ER 38452 38453 PT J 38454 AU Yuan, Y 38455 Zhang, Q 38456 Huang, PY 38457 Wang, YF 38458 Zhou, QW 38459 Gan, RB 38460 Li, ZP 38461 TI Functional difference between N domain and C domain of hEGF and 38462 hTGF-alpha 38463 SO ACTA BIOCHIMICA ET BIOPHYSICA SINICA 38464 DT Article 38465 DE hEGF; hTGF-alpha; chimera; structure; function 38466 ID EPIDERMAL GROWTH-FACTOR 38467 AB By exchanging the N domain and C domain of hEGF and hTGF-alpha genes by 38468 PCR, two chimeras E-TGF(EGF(1-32)-TGF-alpha(34-50)) and 38469 T-EGF(TGF-alpha(1-33)-EGF(33-53)) were constructed. The wild and 38470 chimeric molecules were expressed in E. coli under phoA system. The 38471 expressed hEGF, hTGF-alpha and two chimeras were purified. The EGF 38472 receptor competitive binding affinity of the four molecules was hEGF > 38473 hTGF-alpha and E-TGF > T-EGF and the cell proliferation stimulating 38474 activity of them was hTGF-alpha and E-TGF > T-EGF > hEGF. The result 38475 suggests that the N domain of hEGF and hTGF-alpha may play a major role 38476 in receptor binding activity and C domain of them may be responsible 38477 for stimulating cell proliferation. 38478 C1 Chinese Acad Sci, Shanghai Inst Biochem, Shanghai 200031, Peoples R China. 38479 Shanghai Univ Sci & Technol, Sch Sci, Shanghai 201800, Peoples R China. 38480 CR ANZANO MA, 1983, P NATL ACAD SCI USA, V80, P6264 38481 BELL GI, 1986, NUCLEIC ACIDS RES, V14, P8427 38482 GAN RB, 1992, ACTA BIOCH BIOPH SIN, V24, P587 38483 MOSMANN T, 1983, J IMMUNOL METHODS, V65, P55 38484 SAMBROOK J, 1989, MOL CLONING LAB MANU 38485 WINKLER ME, 1989, BIOCHEMISTRY-US, V28, P6373 38486 YUAN Y, 1998, ACTA BIOCH BIOPH SIN, V30, P96 38487 NR 7 38488 TC 1 38489 SN 0582-9879 38490 J9 ACTA BIOCHIM BIOPHYS SINICA 38491 JI Acta Biochim. Biophys. Sin. 38492 PD SEP 38493 PY 1999 38494 VL 31 38495 IS 5 38496 BP 519 38497 EP U2 38498 PG 6 38499 SC Biochemistry & Molecular Biology; Biophysics 38500 GA 237UF 38501 UT ISI:000082673900008 38502 ER 38503 38504 PT J 38505 AU Wang, ZY 38506 Shen, JQ 38507 TI Stimulated radiation from high-lying state of Li-2 generated with 38508 multiphoton in a wide wavelength region 38509 SO SPECTROSCOPY AND SPECTRAL ANALYSIS 38510 DT Article 38511 DE stimulated radiation; ionization recombination process; two-photon 38512 resonant excitation 38513 ID SODIUM VAPOR; DIFFUSE BAND; DIMER 38514 AB The experimental results of ultraviolet diffuse-band of stimulated 38515 radiation from the high-lying state of Li-2 generated with any pumping 38516 wavelength between 620.0-665.0 nm were reported in this paper. In 38517 Li-2-Li system, the high-lying state of Li-2 was generated by 38518 two-photon excitation, ionization recombination process and collision 38519 energy pooling process, and the ultraviolet diffuse-band radiation was 38520 stimulated. The radiation was due to the transition from one of the 38521 comparable high-lying treble states to the low-lying repelling state a 38522 (3)Sigma(u)(+). The excitation mechanisms involved were discussed in 38523 detail. 38524 C1 Wenzhou Teachers Coll, Dept Phys, Wenzhou 325003, Peoples R China. 38525 Shanghai Univ Sci & Technol, Dept Basic Studies, Shanghai 200093, Peoples R China. 38526 E China Normal Univ, Acad Sinica, Shanghai Inst Opt & Fine Mech, Joint Lab Quantum Opt, Shanghai 200062, Peoples R China. 38527 RP Wang, ZY, Wenzhou Teachers Coll, Dept Phys, Wenzhou 325003, Peoples R 38528 China. 38529 CR BAHNS JT, 1984, APPL PHYS LETT, V44, P826 38530 BAHNS JT, 1989, J CHEM PHYS, V90, P2841 38531 RATCLIFF LB, 1987, J MOL SPECTROSC, V122, P293 38532 SHEN JQ, 1987, APPL PHYS B, V43, P225 38533 SHEN JQ, 1992, OPTICS SINICA, V12, P331 38534 WANG ZG, 1986, OPT COMMUN, V58, P315 38535 WANG ZG, 1986, OPTICS SINICA, V6, P1081 38536 WU CYR, 1983, OPT COMMUN, V48, P28 38537 NR 8 38538 TC 0 38539 SN 1000-0593 38540 J9 SPECTROSC SPECTR ANAL 38541 JI Spectrosc. Spectr. Anal. 38542 PD APR 38543 PY 1999 38544 VL 19 38545 IS 2 38546 BP 145 38547 EP 147 38548 PG 3 38549 SC Spectroscopy 38550 GA 237DG 38551 UT ISI:000082639600006 38552 ER 38553 38554 PT J 38555 AU Sun, XL 38556 Li, D 38557 TI Value-estimation function method for constrained global optimization 38558 SO JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 38559 DT Article 38560 DE constrained global optimization; nonconvex optimization; smoothing 38561 technique; generalized Newton method; bisection method 38562 AB A novel value-estimation function method for global optimization 38563 problems with inequality constraints is proposed in this paper. The 38564 value-estimation function formulation is an auxiliary unconstrained 38565 optimization problem with a univariate parameter that represents an 38566 estimated optimal value of the objective function of the original 38567 optimization problem. A solution is optimal to the original problem if 38568 and only if it is also optimal to the auxiliary unconstrained 38569 optimization with the parameter set at the optimal objective value of 38570 the original problem, which turns out to be the unique root of a basic 38571 value-estimation function. A logarithmic-exponential value-estimation 38572 function formulation is further developed to acquire computational 38573 tractability and efficiency. The optimal objective value of the 38574 original problem as well as the optimal solution are sought iteratively 38575 by applying either a generalized Newton method or a bisection method to 38576 the logarithmic-exponential value-estimation function formulation. The 38577 convergence properties of the solution algorithms guarantee the 38578 identification of an approximate optimal solution of the original 38579 problem, up to any predetermined degree of accuracy, within a finite 38580 number of iterations. 38581 C1 Shanghai Univ, Dept Math, Shanghai, Peoples R China. 38582 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, New Territories, Hong Kong. 38583 RP Sun, XL, Shanghai Univ, Dept Math, Shanghai, Peoples R China. 38584 CR AUBIN JP, 1984, APPL NONLINEAR ANAL 38585 BERTSEKAS DP, 1976, AUTOMATICA, V12, P133 38586 BRANCH MA, 1996, MATLAB OPTIMIZATION 38587 CETIN BC, 1993, J OPTIMIZ THEORY APP, V77, P97 38588 CHEN CH, 1995, MATH PROGRAM, V71, P51 38589 CLARKE FH, 1983, OPTIMIZATION NONSMOO 38590 DIXON LCW, 1978, GLOBAL OPTIMIZATION, V2 38591 FIACCO AV, 1990, NONLINEAR PROGRAMMIN 38592 GILL PE, 1981, PRACTICAL OPTIMIZATI 38593 GOH CJ, 1997, APPL MATH LETT, V10, P9 38594 HESTENES MR, 1969, J OPTIMIZATION THEOR, V4, P303 38595 HOCK W, 1981, TEST EXAMPLES NONLIN 38596 HORST R, 1995, INTRO GLOBAL OPTIMIZ 38597 KAN AHG, 1989, HDB OPERATIONS RES M, V1, P631 38598 KAN AHGR, 1987, MATH PROGRAM, V39, P57 38599 LEMARECHAL C, 1975, MATH PROGRAMMING STU, V3, P95 38600 LEVY AV, 1985, SIAM J SCI STAT COMP, V6, P15 38601 LI D, 1995, J OPTIMIZ THEORY APP, V85, P309 38602 LI XS, 1991, COMPUTATIONAL STRUCT, V8, P85 38603 RATSCHEK H, 1988, NEW COMPUTER METHODS 38604 ROCKAFELLAR RT, 1973, J OPTIMIZATION THEOR, V12, P555 38605 TANG HW, 1994, CHINESE SCI BULL, V39, P682 38606 NR 22 38607 TC 6 38608 SN 0022-3239 38609 J9 J OPTIMIZ THEOR APPL 38610 JI J. Optim. Theory Appl. 38611 PD AUG 38612 PY 1999 38613 VL 102 38614 IS 2 38615 BP 385 38616 EP 409 38617 PG 25 38618 SC Mathematics, Applied; Operations Research & Management Science 38619 GA 235GP 38620 UT ISI:000082534200010 38621 ER 38622 38623 PT J 38624 AU He, JH 38625 TI A coupling method of a homotopy technique and a perturbation technique 38626 for non-linear problems 38627 SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS 38628 DT Article 38629 DE perturbation technique; homotopy; non-linearity 38630 AB In this paper, a coupling method of a homotopy technique and a 38631 perturbation technique is proposed to solve non-linear problems. In 38632 contrast to the traditional perturbation methods, the proposed method 38633 does not require a small parameter in the equation. In this method, 38634 according to the homotopy technique, a homotopy with an imbedding 38635 parameter p is an element of [0, 1] is constructed, and the imbedding 38636 parameter is considered as a "small parameter". So the proposed method 38637 can take full advantage of the traditional perturbation methods. Some 38638 examples are given. The results reveal that the new method is very 38639 effective and simple. (C) 1999 Elsevier Science Ltd. All rights 38640 reserved. 38641 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 38642 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd, 38643 Shanghai 200072, Peoples R China. 38644 CR HE JH, 1997, COMM NONLINEAR SCI N, V2, P230 38645 HE JH, 1998, INT C VIBR ENG 98 DA 38646 LIAO SJ, 1995, INT J NONLINEAR MECH, V30, P371 38647 LIAO SJ, 1997, ENG ANAL BOUND ELEM, V20, P91 38648 LIU GL, 1997, C 7 MOD MATH MECH SH, P47 38649 NAYFEH AH, 1985, PROBLEMS PERTURBATIO 38650 NR 6 38651 TC 62 38652 SN 0020-7462 38653 J9 INT J NON-LINEAR MECH 38654 JI Int. J. Non-Linear Mech. 38655 PD JAN 38656 PY 2000 38657 VL 35 38658 IS 1 38659 BP 37 38660 EP 43 38661 PG 7 38662 SC Mechanics 38663 GA 235WX 38664 UT ISI:000082567200005 38665 ER 38666 38667 PT J 38668 AU Gao, S 38669 Li, J 38670 TI FDTD analysis of a sized-reduced, dual-frequency patch antenna - 38671 Abstract 38672 SO JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS 38673 DT Article 38674 AB A new single probe-fed, compact, dual-frequency antenna is studied, 38675 which is a rectangular microstrip patch with a rectangular slot cut in 38676 the center. The FDTD method is developed for full-wave analysis of its 38677 characteristics. A simple and accurate probe feed model is proposed, 38678 together with a simple method of calculating the radiation patterns. It 38679 is shown that through loading of the rectangular slot and proper 38680 location of the feed point, dual-frequency operations can be realized 38681 with an antenna-size reduction of similar to 33% and further reductions 38682 are also possible by tuning the length and width of the slot and the 38683 patch. Electric current distributions on the rectangular patch for both 38684 the slot loaded case and the case without slot are given, together with 38685 the radiation patterns. Theoretical analysis is verified by 38686 experimental results. 38687 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China. 38688 RP Gao, S, Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R 38689 China. 38690 NR 0 38691 TC 0 38692 SN 0920-5071 38693 J9 J ELECTROMAGNET WAVE APPLICAT 38694 JI J. Electromagn. Waves Appl. 38695 PY 1999 38696 VL 13 38697 IS 8 38698 BP 1031 38699 EP 1032 38700 PG 2 38701 SC Engineering, Electrical & Electronic; Physics, Applied; Physics, 38702 Mathematical 38703 GA 232QK 38704 UT ISI:000082381300003 38705 ER 38706 38707 PT J 38708 AU Liu, L 38709 Yuan, SL 38710 Dong, YD 38711 Cui, K 38712 TI Effect of carbon content on mechanoreduction of copper oxide 38713 SO CHINESE PHYSICS LETTERS 38714 DT Article 38715 ID MECHANOCHEMICAL REDUCTION; COMBUSTION; GRAPHITE 38716 AB The reduction of CuO with different amount of carbon (CuO:C = 2:1, 38717 2:1.5, and 2:2, in molar ratio) induced by ball milling is examined by 38718 x-ray diffraction and transmission electron microscopy. It is found 38719 that reduction process is closely related to the carbon content. CuO 38720 can be completely converted into Cu if an excessive C is used (i.e., C 38721 = 1.5 or 2.0 mol). However, the reduction of CuO follows a two-step 38722 process, CuO --> Cu --> Cu2O, if the mixture only contains a nominal C 38723 content (i.e., C = 1 mol). A tentative model in terms of solid state 38724 reaction at the interfaces is proposed to explain the effect of carbon 38725 content on the mechanoreduction of CuO. 38726 C1 Huazhong Univ Sci & Technol, State Key Lab Plast Forming Stimulat & Die & Moul, Wuhan 430074, Peoples R China. 38727 Huazhong Univ Sci & Technol, Dept Phys, Wuhan 430074, Peoples R China. 38728 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 38729 RP Liu, L, Huazhong Univ Sci & Technol, State Key Lab Plast Forming 38730 Stimulat & Die & Moul, Wuhan 430074, Peoples R China. 38731 CR BRANDES A, 1983, SMITHELLS METALS REF 38732 MATTEAZZI P, 1991, MAT SCI ENG A-STRUCT, V149, P135 38733 MCCORMICK PG, 1995, MATER T JIM, V36, P161 38734 SCHAFFER GB, 1989, APPL PHYS LETT, V55, P45 38735 SCHAFFER GB, 1990, J MATER SCI LETT, V9, P1014 38736 SCHAFFER GB, 1990, METALL TRANS A, V21, P2789 38737 SCHAFFER GB, 1992, METALL TRANS A, V23, P1285 38738 YANG H, 1993, J SOLID STATE CHEM, V107, P258 38739 YANG H, 1994, J SOLID STATE CHEM, V110, P136 38740 YANG H, 1995, SCRIPTA METALL MATER, V32, P681 38741 YANG H, 1998, METALL MATER TRANS B, V29, P449 38742 NR 11 38743 TC 0 38744 SN 0256-307X 38745 J9 CHIN PHYS LETT 38746 JI Chin. Phys. Lett. 38747 PY 1999 38748 VL 16 38749 IS 8 38750 BP 591 38751 EP 593 38752 PG 3 38753 SC Physics, Multidisciplinary 38754 GA 231CH 38755 UT ISI:000082288500017 38756 ER 38757 38758 PT J 38759 AU Zhou, SP 38760 Xu, KX 38761 Niu, JH 38762 Qu, H 38763 TI Solutions for the wave functions of mixed pairing symmetry 38764 superconductors 38765 SO ACTA PHYSICA SINICA 38766 DT Article 38767 ID HIGH-TEMPERATURE SUPERCONDUCTORS; UPPER CRITICAL-FIELD; YBA2CU3O7-DELTA 38768 AB We study the pairing symmetry in high-temperature superconductors from 38769 the point of view of group theory analysis in the framework of 38770 Ginzburg-Landau model. By considering an orthorhombic distortion from 38771 C-4v point group because of the correlation of intralayers, the two 38772 apparent transitions needed in earlier work on mixed s and d state have 38773 been removed. The structure of a single vortex is presented by solving 38774 the Ginzburg-Landau wave function equations of the mixed s +/- 38775 id(x2-y2) state. The analysis of the magnetic field dependence of the 38776 transport behaviors including the critical current and the R-T curve 38777 expansion reveals the origin of the so-called "eigen-pinning effect" 38778 and offers a good interpretation of the experimental observations. 38779 C1 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China. 38780 RP Zhou, SP, Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, 38781 Peoples R China. 38782 CR CAI JH, 1982, THEORY GREENS FUNCTI, P336 38783 CHAKRAVARTY S, 1993, SCIENCE, V261, P337 38784 CHAUDHARI P, 1994, PHYS REV LETT, V72, P1084 38785 DORIA MM, 1989, PHYS REV B, V39, P9537 38786 DORIA MM, 1990, PHYS REV B, V41, P6335 38787 ELLIOTT JP, 1984, SYMMETRY PHYSICS, P43 38788 GUO BY, 1988, DIFFERENCE ALGORITHM, P43 38789 IYE Y, 1987, JPN J APPL PHYS PT 2, V26, L1057 38790 JOYNT R, 1990, PHYS REV B, V41, P4271 38791 KHOMSKII DI, 1995, PHYS REV LETT, V75, P1384 38792 KRESIN VZ, 1993, PHYS REV B, V48, P9012 38793 KUPFER H, 1988, CRYOGENICS, V28, P650 38794 LI QP, 1993, PHYS REV B, V48, P437 38795 NIU JH, 1997, THESIS SHANGHAI U 38796 REN Y, 1995, PHYS REV LETT, V74, P3680 38797 ROBERTAZZI RP, 1992, PHYS REV B, V46, P8456 38798 ROHKSAR DS, 1993, PHYS REV LETT, V70, P493 38799 ROSENTHAL PA, 1993, APPL PHYS LETT, V63, P1984 38800 SIGRIST M, 1989, PHYS REV LETT, V63, P1727 38801 SUN AG, 1994, PHYS REV LETT, V72, P2267 38802 TINKHAM M, 1964, GROUP THEORY QUANTUM 38803 TINKHAM M, 1988, PHYS REV LETT, V61, P1658 38804 TSUEI CC, 1994, PHYS REV LETT, V73, P593 38805 WELP U, 1989, PHYS REV LETT, V62, P1908 38806 XU JH, 1996, PHYS REV B, V53, R2991 38807 ZHANG FC, 1988, PHYS REV B, V37, P3759 38808 ZHOU SP, 1998, IN PRESS ACTA PHYSIC, P807 38809 NR 27 38810 TC 3 38811 SN 1000-3290 38812 J9 ACTA PHYS SIN-CHINESE ED 38813 JI Acta Phys. Sin. 38814 PD FEB 38815 PY 1999 38816 VL 48 38817 IS 2 38818 BP 342 38819 EP 351 38820 PG 10 38821 SC Physics, Multidisciplinary 38822 GA 231VU 38823 UT ISI:000082332800022 38824 ER 38825 38826 PT J 38827 AU Qu, H 38828 Zhou, SP 38829 TI Vortex lattice in a high-T-c superconductor of mixed pairing symmetry 38830 SO ACTA PHYSICA SINICA 38831 DT Article 38832 ID HIGH-TEMPERATURE SUPERCONDUCTORS 38833 AB Starting from a tight binding description, the existence of mixed s-d 38834 wave pairing stare is discussed. Then, within the framework of the 38835 phenomenological G-L theory, the structure of vortex lattice in a 38836 high-T-c superconductor is studied. It is shown that there is a strong 38837 correlation between the structure of a single vortex and the shape of 38838 the vortex lattice. At low temperatures, with the existence of s-wave 38839 component and its coupling to d-wave component, the d-wave order 38840 parameter and the local magnetic field show tetragonal anisotropy, and 38841 the structure of vortex lattice is oblique; however, when the 38842 temperature is close to T-c, it may become triangular. 38843 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 38844 RP Qu, H, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 38845 CR CAI JH, 1982, THEORY GREENS FUNCTI 38846 CHAKRAVARTY S, 1993, SCIENCE, V261, P337 38847 DERAEDT H, 1990, Z PHYS B CON MAT, V79, P327 38848 DORIA MM, 1990, PHYS REV B, V41, P6335 38849 KEIMER B, 1994, J APPL PHYS 2, V76, P6778 38850 KHOMSKII DI, 1995, PHYS REV LETT, V75, P1384 38851 KLEINER WH, 1964, PHYS REV, V133, P1266 38852 KRESIN VZ, 1993, PHYS REV B, V48, P9012 38853 LEGGETT AJ, 1975, REV MOD PHYS, V47, P331 38854 NIU JH, 1997, THESIS SHANGHAI U 38855 PARKALUOTO R, 1990, PHYS SCR T, V33, P227 38856 SCHNEIDER T, 1990, Z PHYS B CON MAT, V81, P3 38857 WANG ZD, 1991, PHYS REV B, V44, P918 38858 ZHANG FC, 1980, PHYS REV B, V37, P3795 38859 ZHOU SP, 1998, ACTA PHYS SINICA, V47, P807 38860 NR 15 38861 TC 1 38862 SN 1000-3290 38863 J9 ACTA PHYS SIN-CHINESE ED 38864 JI Acta Phys. Sin. 38865 PD FEB 38866 PY 1999 38867 VL 48 38868 IS 2 38869 BP 352 38870 EP 362 38871 PG 11 38872 SC Physics, Multidisciplinary 38873 GA 231VU 38874 UT ISI:000082332800023 38875 ER 38876 38877 PT J 38878 AU Xu, KX 38879 Yu, LM 38880 Essa, AA 38881 Zhou, SP 38882 Bao, JS 38883 TI Nonequilibrium microwave response and Kosterlitz-Thouless transition in 38884 YBCO granular films 38885 SO ACTA PHYSICA SINICA 38886 DT Article 38887 ID YBA2CU3O7-DELTA THIN-FILMS; HIGH-TEMPERATURE SUPERCONDUCTORS; 38888 PHOTORESPONSE 38889 AB The characteristic of microwave radiation (lambda = 8 mm) response of 38890 YBCO granular films was reported. Experimental results show that the 38891 response behavior can be described with nonequilibrium response effect, 38892 instead of thermal effect model. Near below the transition temperature 38893 T-infinity, nonequilibrium microwave response signal decays gradually 38894 and disappears with the sample resistance becoming zero. It was also 38895 found that the response signal is very sensitive to a weak magnetic 38896 field. The sample I-V curve was studied carefully, and the 38897 Kosterlitz-Thouless transition model can be used to describe the 38898 two-dimensional transport characteristic of the YBCO granular films. 38899 Based on the analysis and experimental results, we believe that the 38900 mechanism of nonequilibrium microwave response may be related with the 38901 breaking of the votex-antivotex pair in high T-c superconductor. 38902 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 38903 RP Xu, KX, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 38904 CR BATLOGG BJ, 1997, J SUPERCOND, V10, P583 38905 CULBERTSON JC, 1991, PHYS REV B, V44, P9609 38906 DEMSAR J, 1997, J SUPERCOND, V10, P455 38907 ENOMOTO Y, 1986, J APPL PHYS, V59, P3807 38908 FARDMANESH M, 1995, J APPL PHYS, V77, P4568 38909 FLORY AT, 1983, PHYS REV B, V28, P5075 38910 FRENKEL A, 1993, PHYS REV B, V48, P9717 38911 HEGMANN FA, 1993, PHYS REV B, V48, P16023 38912 HEGMANN FA, 1995, APPL PHYS LETT, V67, P285 38913 HERTER ST, 1998, PHYS REV B, V57, P1154 38914 HUBER WM, 1996, APPL PHYS LETT, V68, P3338 38915 KADOWAKI K, 1994, SUPERCOND SCI TECH, V7, P519 38916 KOSTERLITZ JM, 1973, J PHYS C SOLID STATE, V6, P1181 38917 VANVECHTEN D, 1997, APPL PHYS LETT, V71, P1415 38918 WU PH, 1987, JPN J APPL PHYS, V26, L1579 38919 XIA RM, 1998, CHINESE J LOW TEMPER, V20, P235 38920 YING QY, 1990, PHYS REV B, V42, P2242 38921 ZHANG ZM, 1994, J SUPERCOND, V7, P871 38922 NR 18 38923 TC 3 38924 SN 1000-3290 38925 J9 ACTA PHYS SIN-CHINESE ED 38926 JI Acta Phys. Sin. 38927 PD JUN 38928 PY 1999 38929 VL 48 38930 IS 6 38931 BP 1152 38932 EP 1162 38933 PG 11 38934 SC Physics, Multidisciplinary 38935 GA 231VY 38936 UT ISI:000082333200027 38937 ER 38938 38939 PT J 38940 AU Yan, KZ 38941 Tan, WH 38942 TI Stationary solutions of the nonlinear Schrodinger equation for neutral 38943 atoms in a harmonic trap 38944 SO ACTA PHYSICA SINICA 38945 DT Article 38946 ID BOSE-EINSTEIN CONDENSATION; GAS 38947 AB We present a general method to solve the stationary nonlinear 38948 Schrodinger equation (NLSE) with an external potential. We apply it to 38949 the stationary states of NLSE for neutral atoms in a harmonic trap. We 38950 discuss the problems of convergence and normalization of NLSE wave 38951 function. The accuracy of calculation is analyzed. 38952 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 38953 RP Yan, KZ, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 38954 CR ANDERSON MH, 1995, SCIENCE, V269, P198 38955 BRADLEY CC, 1995, PHYS REV LETT, V75, P1687 38956 DAVIS KB, 1995, PHYS REV LETT, V75, P3969 38957 EDWARDS M, 1995, PHYS REV A, V51, P1382 38958 HAO BL, 1997, PROGR PHYSICS, V17, P223 38959 RUPRECHT PA, 1995, PHYS REV A, V51, P4704 38960 NR 6 38961 TC 8 38962 SN 1000-3290 38963 J9 ACTA PHYS SIN-CHINESE ED 38964 JI Acta Phys. Sin. 38965 PD JUL 38966 PY 1999 38967 VL 48 38968 IS 7 38969 BP 1185 38970 EP 1191 38971 PG 7 38972 SC Physics, Multidisciplinary 38973 GA 231VZ 38974 UT ISI:000082333300001 38975 ER 38976 38977 PT J 38978 AU Zhao, MH 38979 Cheng, CJ 38980 Liu, YJ 38981 Liu, GN 38982 Zhang, SS 38983 TI The method of analysis of crack problem in three-dimensional non-local 38984 elasticity 38985 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 38986 DT Article 38987 DE non-local elasticity; fracture mechanics; boundaryintegral equation 38988 method 38989 ID NONLOCAL ELASTICITY; SUBJECT; SHEAR 38990 AB In this paper, the displacement discontinuity fundamental solution 38991 (DDFS) corresponding to the unit concentrated displacement 38992 discontinuity for three dimensional (3D) non-local elasticity under 38993 symmetrical condition is obtained. Based on the displacement 38994 discontinuity boundary integralequation (DDBIE) and boundary-element 38995 method (DDBEM) of local (classical) elasticity, a method of analysis of 38996 crack in 3D non- local elasticity with wide application is proposed 38997 with the DDFS. Through the method, several important problems of 38998 fracture mechanics are analysed. 38999 C1 Zhengzhou Res Inst Mech Engn, Zhengzhou 450052, Peoples R China. 39000 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 39001 Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China. 39002 RP Zhao, MH, Zhengzhou Res Inst Mech Engn, Zhengzhou 450052, Peoples R 39003 China. 39004 CR BREBBIA CA, 1980, BOUNDARY ELEMENT TEC 39005 CHENG PS, 1992, ACTA MECH SINICA, V24, P329 39006 EDELEN DGB, 1976, NONLOCAL FIELD THEOR 39007 ERINGEN AC, 1976, NONLOCAL POLAR FIELD 39008 ERINGEN AC, 1977, INT J ENG SCI, V15, P177 39009 ERINGEN AC, 1977, J MECH PHYS SOLIDS, V25, P339 39010 ERINGEN AC, 1978, INT J FRACTURE, V14, P367 39011 ERINGEN AC, 1979, ENG FRACT MECH, V12, P211 39012 GAO J, 1989, ACTA MECH SOLIDA SIN, V10, P289 39013 GRADSHTEYN IS, 1965, TABLES INTEGRALS SER 39014 ILCEWICZ L, 1981, ENG FRACT MECH, V14, P801 39015 RAMABRAHAM B, 1985, INDIAN J PURE APPL M, V16, P661 39016 RUI W, 1989, SCI B, V34, P412 39017 SNEDDON IN, 1951, FOURIER TRANSFORMS M 39018 YU JL, 1984, ACTA MECH SINICA, V16, P487 39019 ZHAO MH, 1994, ENG ANAL, V13, P333 39020 ZHAO MH, 1999, APPL MATH MECH-ENGL, V20, P143 39021 NR 17 39022 TC 0 39023 SN 0253-4827 39024 J9 APPL MATH MECH-ENGL ED 39025 JI Appl. Math. Mech.-Engl. Ed. 39026 PD MAY 39027 PY 1999 39028 VL 20 39029 IS 5 39030 BP 469 39031 EP 475 39032 PG 7 39033 SC Mathematics, Applied; Mechanics 39034 GA 230NL 39035 UT ISI:000082257200002 39036 ER 39037 39038 PT J 39039 AU Chen, LS 39040 Zhao, XH 39041 TI A mathematical theory of materials with elastic range and the 39042 definition of back stress tensor 39043 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 39044 DT Article 39045 DE theory of materials with elastic range; elastic-plastic constitutive 39046 relation; back stress 39047 ID FINITE 39048 AB In this pager, the theory of materials with elastic range by Lucchesi 39049 and Podio-Guidugli(1988) has been generalized. It has also shown that 39050 there are some difficulties on the definition of back stress as the 39051 "center" of the yield surface in the Cauchy space. The back stress 39052 tensor is Lagrangian, and must be defined in the Lagrangian stress 39053 space. 39054 C1 Nanchang Univ, Inst Engn Mech, Nanchang 330029, Peoples R China. 39055 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 39056 RP Chen, LS, Nanchang Univ, Inst Engn Mech, Nanchang 330029, Peoples R 39057 China. 39058 CR AGAHTEHRANI A, 1987, J MECH PHYS SOLIDS, V35, P519 39059 CASEY J, 1988, ARCH RATION MECH AN, V102, P351 39060 CASEY J, 1992, INT J ENG SCI, V30, P1257 39061 DAFALIAS YF, 1987, ACTA MECH, V69, P119 39062 DAFALIAS YF, 1988, ACTA MECH, V73, P121 39063 LUCCHESI M, 1988, ARCH RATION MECH AN, V102, P23 39064 NAGHDI PM, 1990, J APPL MATH PHYS ZAM, V4, P315 39065 NEMATNASSER S, 1983, J APPL MECH-T ASME, V50, P1114 39066 NOLL W, 1958, ARCH RATIONAL MECH A, V2, P197 39067 ZHENG QS, 1992, ACTA MECH, V91, P97 39068 NR 10 39069 TC 1 39070 SN 0253-4827 39071 J9 APPL MATH MECH-ENGL ED 39072 JI Appl. Math. Mech.-Engl. Ed. 39073 PD MAY 39074 PY 1999 39075 VL 20 39076 IS 5 39077 BP 476 39078 EP 484 39079 PG 9 39080 SC Mathematics, Applied; Mechanics 39081 GA 230NL 39082 UT ISI:000082257200003 39083 ER 39084 39085 PT J 39086 AU He, JH 39087 TI Further study of the equivalent theorem of Hellinger-Reissner and 39088 Hu-Washizu variational principles 39089 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 39090 DT Article 39091 DE variational principles in elasticity; Hellinger-Reissner principle; 39092 Hu-Washizu principle; the semi-inverse method; trial-functional 39093 ID SEMI-INVERSE METHOD; FLOW 39094 AB In this paper, it has been proved that the well-known Hu-Washizu 39095 variational principle is a pseudo-generalized variational principle ( 39096 pseudo-GVP). The stationary conditions of its functional may satisfy! 39097 all its field equations and boundary conditions if all the variables in 39098 the functional are considered as independent variations, but there 39099 might exist some kinds of constraints. Some new pseudo-GVPs are 39100 established to distinguish them from genuine ones by the so-called 39101 inverse Lagrange multiplier method. The constrained Hu-Washizu 39102 principle, therefore, is proved to be equivalent with the 39103 Hellinger-Reissner principle under the constraints of stress-strain 39104 relations. 39105 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 39106 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 39107 Peoples R China. 39108 CR CHEIN WZ, 1989, SELECTED WORKS CHIEN, P419 39109 CHEN WZ, 1983, APPL MATH MECH, V4, P143 39110 CHIEN WZ, 1983, ACTA MECH SINICA, V4, P313 39111 CHIEN WZ, 1984, ADV APPL MECH, V24, P93 39112 HE JH, 1997, INT J TURBO JET ENG, V14, P17 39113 HE JH, 1997, INT J TURBO JET ENG, V14, P23 39114 HE JH, 1997, J SHANGHAI U, V1, P117 39115 HE JH, 1998, APPL MATH MODEL, V22, P395 39116 HE JH, 1998, INT J TURBO JET ENG, V15, P101 39117 HE JH, 1998, INT J TURBO JET ENG, V15, P95 39118 HE JH, 1999, ASME 39119 HU HC, 1954, ACTA PHYSICA SINICA, V10, P259 39120 HU HC, 1985, ACTA MECH SINICA, V17, P426 39121 LIU GL, 1990, P 1 INT S AER INT FL, P128 39122 WASHIZU K, 1955, 2518 MIT AER STRUCT 39123 NR 15 39124 TC 2 39125 SN 0253-4827 39126 J9 APPL MATH MECH-ENGL ED 39127 JI Appl. Math. Mech.-Engl. Ed. 39128 PD MAY 39129 PY 1999 39130 VL 20 39131 IS 5 39132 BP 545 39133 EP 556 39134 PG 12 39135 SC Mathematics, Applied; Mechanics 39136 GA 230NL 39137 UT ISI:000082257200012 39138 ER 39139 39140 PT J 39141 AU Gu, CQ 39142 TI Thiele-type and Lagrange-type generalized inverse rational 39143 interpolation for rectangular complex matrices 39144 SO LINEAR ALGEBRA AND ITS APPLICATIONS 39145 DT Article 39146 ID RECURSIVENESS 39147 AB A variety of matrix rational interpolation problems include the partial 39148 realization problem for matrix power series and the minimal rational 39149 interpolation problem for general matrix functions. Different from the 39150 previous work, in this paper we consider a new method of matrix 39151 rational interpolation, with rectangular real or complex interpolated 39152 matrices and distinct real or complex interpolation points. Based on an 39153 axiomatic definition for the generalized inverse matrix rational 39154 interpolants (GMRI), GMRI are constructed in the following two forms: 39155 (i) Thiele-type continued fraction expression; (ii) an explicit 39156 determinantal formula for the denominator scalar polynomials and for 39157 the numerator matrix polynomials, which are of Lagrange-type 39158 expression. As a direct application of GMRI, a matrix rational 39159 extrapolation is introduced. (C) 1999 Elsevier Science Inc. All rights 39160 reserved. 39161 C1 Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China. 39162 RP Gu, CQ, Shanghai Univ, Dept Math, Box 30,149 Yan Chang Rd, Shanghai 39163 200072, Peoples R China. 39164 CR ANDERSON BDO, 1990, LINEAR ALGEBRA APPL, V137, P479 39165 ANTOULAS AC, 1986, IEEE T AUTOMAT CONTR, V31, P1121 39166 ANTOULAS AC, 1988, LINEAR ALGEBRA APPL, V108, P157 39167 ANTOULAS AC, 1990, LINEAR ALGEBRA APPL, V137, P511 39168 BECKERMANN B, 1992, NUMER ALGORITHMS, V3, P45 39169 BECKERMANN B, 1997, J COMPUT APPL MATH, V77, P5 39170 BULTHEEL A, 1986, J COMPUT APPL MATH, V14, P401 39171 DIECI L, 1994, LINEAR ALGEBRA APPL, V202, P25 39172 GRAVESMORRIS PR, 1983, NUMER MATH, V42, P331 39173 GRAVESMORRIS PR, 1986, CONSTR APPROX, V2, P263 39174 GU CQ, 1993, J HEFEI U TECHNOLOGY, V16, P176 39175 GU CQ, 1995, MATH NUMER SINICA, V17, P73 39176 GU CQ, 1996, J MATH RES EXPOSITIO, V16, P301 39177 GU CQ, 1996, NUMER MATH J CHINESE, V18, P135 39178 GU CQ, 1997, J COMPUT APPL MATH, V80, P71 39179 GU CQ, 1997, J COMPUT APPL MATH, V84, P137 39180 GU CQ, 1997, NUMER MATH J CHINESE, V19, P241 39181 GU CQ, 1997, NUMER SINICA, V19, P19 39182 MESSAOUDI A, 1994, LINEAR ALGEBRA APPL, V202, P71 39183 WUYTACK L, 1970, NUMER MATH, V17, P215 39184 NR 20 39185 TC 4 39186 SN 0024-3795 39187 J9 LINEAR ALGEBRA APPL 39188 JI Linear Alg. Appl. 39189 PD JUL 1 39190 PY 1999 39191 VL 295 39192 IS 1-3 39193 BP 7 39194 EP 30 39195 PG 24 39196 SC Mathematics, Applied 39197 GA 228QX 39198 UT ISI:000082148100002 39199 ER 39200 39201 PT J 39202 AU Wei, JH 39203 Ma, JC 39204 Fan, YY 39205 Yu, NW 39206 Yang, SL 39207 Xiang, SH 39208 TI Back-attack phenomena of gas jets with submerged horizontally blowing 39209 and effects on erasion and wear of refractory lining 39210 SO ISIJ INTERNATIONAL 39211 DT Article 39212 DE back-attack phenomenon; refractory lining erosion and wear; 39213 annular-straight type tuyere; annular-spiral flat type tuyere; 39214 submerged gas blowing; horizontally side blowing; AOD refining; 39215 non-rotating gas jet; rotating gas jet; water modeling 39216 ID INJECTION 39217 AB Taken the refining process in an 18 t AOD vessel for example, the 39218 "back-attack" phenomena of the horizontal rotating and non-rotating gas 39219 jets and their effects on the erosion and wear of the refractory lining 39220 were investigated in a water model. For this refining process, the 39221 two-tuyere (lance with constant cross-sectional area) blowing of gas is 39222 operated using the annular-tube type tuyere. The geometric similarity 39223 ratio of the model unit (including the tuyere) with its prototype was 39224 1/3. The relations of the gas blowing rate, blowing pressure, angular 39225 separation between the two tuyeres, type of tuyere and other operation 39226 parameters with the back-attack action of the gas jet and the 39227 refractory lining erosion and wear were examined under the different 39228 operating modes. The appropriate back-attack frequencies and pressures 39229 were continuously monitored and measured by means of a dynamic 39230 resistance strain-meter of YD-21 type with an anti-water pressure 39231 sensor made specially. A light-beam oscilloscope of SC16A type recorded 39232 simultaneously the back-attack waves. Also, the modeling experiment on 39233 the erosion and wear of the refractory lining was carried out. The 39234 results indicated that the back-attack phenomena of the horizontal 39235 rotating and non-rotating gas jets have respectively the different 39236 features from that in a bottom blowing. On the back-attack phenomena of 39237 these two kinds of jets, the gas streams of the inner tubes 39238 (main-tuyeres) have all a governing bearing, and the annular slit pipe 39239 (sub-tuyere) streams show an evident alleviation and suppression 39240 effect. The circulative motion of the liquid in the bath would be 39241 another important reason to bring about the back-attack phenomenon of a 39242 submerged gas jet. The buoyancy force gives a considerable influence; 39243 it is able not only to increase the back-attack intensity of a 39244 horizontal gas jet, but also to enlarge the locally eroded and worn 39245 zone of the refractory lining. The influence of the tuyere position 39246 (the angle included between the two tuyeres) is not so remarkable in 39247 the conditions of the present work. The rotating motion of a horizontal 39248 gas jet may decrease the frequency and intensity of the back-attack 39249 action and reduce the eroded and worn rate and area of the refractory 39250 lining under a same blowing pressure. The annular-spiral tube type 39251 tuyere with a reasonable structure may be expected to have a good 39252 latent using power and composite effectiveness. 39253 C1 Shanghai Univ, Dept Metall Mat, Shanghai 200072, Peoples R China. 39254 RP Wei, JH, Shanghai Univ, Dept Metall Mat, Shanghai 200072, Peoples R 39255 China. 39256 CR AOKI T, 1982, INJECTION PHENOMENA, A1 39257 AOKI T, 1990, TETSU TO HAGANE, V76, P2004 39258 BLOSTEIN P, 1992, SCANINJECT 1, V6, P129 39259 BRIMACOMBE JK, 1984, METALL TRANS B, V15, P243 39260 CARLSSON G, 1986, SCAND J METALL, V15, P298 39261 CHO YW, 1986, SCANINJECT 1, V4, P4 39262 FARIAS L, 1982, INJECTION PHENOMENA, V1, E1 39263 FARMER L, 1989, P STEELM C AIME ISS, P487 39264 GUSTAFSSON S, 1984, P S INJ MET SEC REF, R15 39265 LI YZ, 1984, P 2 NAT S KIN MET RE, V2, P335 39266 OZAWA Y, 1983, T IRON STEEL I JPN, V23, P764 39267 SAKAGUCHI S, 1977, TETSU TO HAGANE, V63, S534 39268 SHIBASHI M, 1975, TETSU TO HAGANE, V61, S111 39269 SUZUKI K, 1982, T STEEL I JPN, V22, B237 39270 WEI JH, IN PRESS IRON STEELM 39271 WEI JH, IN PRESS IRONMAKING 39272 NR 16 39273 TC 3 39274 SN 0915-1559 39275 J9 ISIJ INT 39276 JI ISIJ Int. 39277 PY 1999 39278 VL 39 39279 IS 8 39280 BP 779 39281 EP 786 39282 PG 8 39283 SC Metallurgy & Metallurgical Engineering 39284 GA 227XU 39285 UT ISI:000082105900005 39286 ER 39287 39288 PT J 39289 AU Sun, JA 39290 Zhu, ZY 39291 TI Application of differential quadrature method to solve entry flow of 39292 viscoelastic second-order fluid 39293 SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS 39294 DT Article 39295 DE viscoelasticity; second-order fluid; entry flow; differential 39296 quadrature method 39297 ID EQUATIONS; CAVITY 39298 AB The entry flow of viscoelastic second-order fluid between two parallel 39299 plates is discussed. The governing equations of vorticity and the 39300 streamfunction are expanded with respect to a small parameter that 39301 characterizes the elasticity of the fluid by means of the standard 39302 perturbation method. By using the differential quadrature method with 39303 only a few grid points, high-accurate numerical solutions are obtained. 39304 The numerical results show a lot of the features of a viscoelastic 39305 second-order fluid. Copyright (C) 1999 John Wiley & Sons, Ltd. 39306 C1 NW Normal Univ, Dept Phys, Lanzhou 730070, Peoples R China. 39307 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Math, Shanghai 200072, Peoples R China. 39308 Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China. 39309 RP Sun, JA, NW Normal Univ, Dept Phys, Lanzhou 730070, Peoples R China. 39310 CR BELLMAN R, 1971, J MATH ANAL APPL, V34, P235 39311 BELLMAN R, 1972, J COMPUT PHYS, V10, P40 39312 BEN CW, 1996, APPL MECH REV, V49, P1 39313 CHANG PW, 1979, COMP FLUIDS, V7, P267 39314 DATTA AB, 1976, RHEOL ACTA, V15, P403 39315 FONG CFC, 1984, NONNEWTONIAN FLUID M 39316 MINGLE JO, 1973, INT J NUMER METH ENG, V7, P103 39317 SHU C, 1992, COMPUT SYST ENG, V3, P281 39318 SHU C, 1992, INT J NUMER METH FL, V15, P791 39319 SHU C, 1994, INT COMMUN HEAT MASS, V21, P809 39320 STRIZ AG, 1994, INT J NONLINEAR MECH, V29, P665 39321 TAN KL, 1977, J NONNEWTONIAN FLUID, V3, P25 39322 NR 12 39323 TC 0 39324 SN 0271-2091 39325 J9 INT J NUMER METHOD FLUID 39326 JI Int. J. Numer. Methods Fluids 39327 PD AUG 30 39328 PY 1999 39329 VL 30 39330 IS 8 39331 BP 1109 39332 EP 1117 39333 PG 9 39334 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied; 39335 Physics, Fluids & Plasmas; Mechanics 39336 GA 228BC 39337 UT ISI:000082114800010 39338 ER 39339 39340 PT J 39341 AU Liu, ZR 39342 Xu, ZY 39343 Debin, H 39344 TI Homoclinic orbit in ODE on GAIM of the sine-Gordon equation 39345 SO PHYSICS LETTERS A 39346 DT Article 39347 DE infinite dimensional dynamical systems; GIAM; homoclinic orbit 39348 AB In this paper, the existence of the homoclinic orbit is proved under 39349 certain parametric conditions, by studying qualitative properties of 39350 ODE on GAIM of the sine-Gordon equation. (C) 1999 Published by Elsevier 39351 Science B.V. All rights reserved. 39352 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 39353 Acad China, Inst Mech, LNM, Beijing, Peoples R China. 39354 Wuxi Light Ind Univ, Math & Phys Inst, Wuxi, Peoples R China. 39355 RP Liu, ZR, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 39356 CR BISHOP AR, 1990, SIAM J MATH ANAL, V21, P1511 39357 HALLER G, 1993, PHYSICA D, V66, P298 39358 KOVOCIC G, 1992, PHYSICA D, V59, P185 39359 LIU Z, 1995, J NONL DYN, V2, P12 39360 LIU ZG, 1995, PHYS LETT A, V204, P343 39361 TEMAM R, 1988, INFINITE DIMENSIONAL 39362 XU Z, 1993, KEXUE TONGBAO, V38, P1750 39363 NR 7 39364 TC 1 39365 SN 0375-9601 39366 J9 PHYS LETT A 39367 JI Phys. Lett. A 39368 PD JUL 26 39369 PY 1999 39370 VL 258 39371 IS 4-6 39372 BP 249 39373 EP 252 39374 PG 4 39375 SC Physics, Multidisciplinary 39376 GA 225NW 39377 UT ISI:000081968500009 39378 ER 39379 39380 PT J 39381 AU Li, L 39382 Tang, ZJ 39383 Sun, WY 39384 Wang, PL 39385 TI Phase diagram estimation of the Al2O3SiO2-Gd2O3 system 39386 SO PHYSICS AND CHEMISTRY OF GLASSES 39387 DT Article 39388 ID REGULAR SOLUTION MODEL; OXIDE SYSTEMS; PREDICTION; GLASSES 39389 AB Limiting binaries in the Al2O3-SiO2-Gd2O3 system were assessed The 39390 binary diagrams from Toropov, Mizuno, Aramaki and Roy were optimised 39391 with the substitutional model of Kaufman and Nesor; and the approximate 39392 formula for the free energy effusion of rare earth element oxides of Wu 39393 and Pelton. The Gibbs free energies derived for pure solid oxides and 39394 stoichiometric phases were used with solution parameters to estimate 39395 the corresponding binaries, liquidus surface and isothermal sections of 39396 the ternary system at 2140, 2073 and 2023 K respectively Samples 39397 as-fired at known temperatures but with different compositions were 39398 analysed by x-ray diffraction and the results were used in the 39399 calculation of isothermal sections. 39400 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China. 39401 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China. 39402 RP Li, L, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R 39403 China. 39404 CR ARAMAKI S, 1962, J AM CERAM SOC, V45, P229 39405 BONDAR IA, 1973, CERAM INT, V13, P99 39406 BUDNIKOV PP, 1965, VS DOKL AKAD NAUK SS, V165, P1077 39407 CINIBULK MK, 1992, J AM CERAM SOC, V75, P2037 39408 DU Y, 1992, CALPHAD, V16, P221 39409 ERBE EM, 1990, J AM CERAM SOC, V73, P2708 39410 FELSCHE J, 1973, STRUCT BOND, V13, P99 39411 HILLERT M, 1970, ACTA CHEM SCAND, V24, P3618 39412 HILLERT M, 1992, CALPHAD, V16, P193 39413 HILLERT M, 1992, CALPHAD, V16, P199 39414 HIROSAKI N, 1988, J AM CERAM SOC, V71, C144 39415 HUANG JG, 1993, B CERAM, V6, P50 39416 HYATT MJ, 1987, J AM CERAM SOC, V70, P283 39417 KAUFMAN L, 1978, CALPHAD, V2, P35 39418 KLUG FJ, 1987, J AM CERAM SOC, V70, P750 39419 KOHLI JT, 1991, PHYS CHEM GLASSES, V32, P67 39420 KOLITSCH U, 1997, J ALLOY COMPD, V257, P104 39421 LI C, 1987, B CERAM, V10, P34 39422 LI L, 1997, PHYS CHEM GLASSES, V38, P323 39423 LUKAS HL, 1977, CALPHAD, V1, P225 39424 MIZUNO M, 1977, YOGYO-KYOKAI-SHI, V85, P543 39425 PELTON AD, 1986, METALL TRANS B, V17, P805 39426 SHEVTHENKO AV, 1985, THERMOCHIM ACTA, V93, P537 39427 SHISHIDO T, 1979, J MATER SCI, V14, P823 39428 SUN G, 1991, J CHIN RARE EARTH EL, V9, P128 39429 SUNDMAN B, 1981, J PHYS CHEM SOLIDS, V42, P297 39430 TOROPOV NA, 1960, T 7 INT CER C LOND, P441 39431 WANG XH, 1990, J AM CERAM SOC, V73, P770 39432 WU P, 1992, J ALLOY COMPD, V179, P259 39433 WU P, 1992, J ALLOY COMPD, V179, P259 39434 NR 30 39435 TC 4 39436 SN 0031-9090 39437 J9 PHYS CHEM GLASSES 39438 JI Phys. Chem. Glasses 39439 PD JUN 39440 PY 1999 39441 VL 40 39442 IS 3 39443 BP 126 39444 EP 129 39445 PG 4 39446 SC Chemistry, Physical; Materials Science, Ceramics 39447 GA 224PY 39448 UT ISI:000081908500003 39449 ER 39450 39451 PT J 39452 AU Wei, CL 39453 Chen, MY 39454 Wang, ZL 39455 TI General phase-stepping algorithm with automatic calibration of phase 39456 steps 39457 SO OPTICAL ENGINEERING 39458 DT Article 39459 DE phase-stepping algorithm; Lissajous figures; interferometry 39460 ID SHIFTING INTERFEROMETRY; LEAST-SQUARES; SURFACES 39461 AB A new general algorithm for phase-stepping interferometry is presented. 39462 The calculation of the phase distribution is composed of three 39463 least-squares fitting procedures for an analysis of real 39464 interferograms. First, we calculate the initial phase distribution 39465 utilizing Lissajous figures and elliptic least-squares fitting. Second, 39466 we calculate the phase steps through the spatial least-squares fitting. 39467 Finally, we calculate the exact phase distribution through the serial 39468 least-squares fitting. Both insensitivity to phase-step errors and 39469 automatic calibration of phase steps for the new algorithm are 39470 confirmed by experiment. (C) 1999 Society of Photo-Optical 39471 Instrumentation Engineers. 39472 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China. 39473 Shanghai Univ, Dept Precis Mech Engn, Shanghai 201800, Peoples R China. 39474 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China. 39475 RP Wei, CL, Shanghai Univ, Dept Commun Engn, Jiading Campus, Shanghai 39476 201800, Peoples R China. 39477 CR BRUNING JH, 1974, APPL OPTICS, V13, P2693 39478 FARRELL CT, 1994, MEAS SCI TECHNOL, V5, P648 39479 HAN GS, 1994, APPL OPTICS, V33, P7321 39480 KIM SW, 1997, OPT ENG, V36, P3101 39481 KONG IB, 1995, OPT ENG, V34, P1400 39482 KONG IB, 1995, OPT ENG, V34, P183 39483 LASSAHN GD, 1994, OPT ENG, V33, P2039 39484 OKADA K, 1991, OPT COMMUN, V84, P118 39485 NR 8 39486 TC 6 39487 SN 0091-3286 39488 J9 OPT ENG 39489 JI Opt. Eng. 39490 PD AUG 39491 PY 1999 39492 VL 38 39493 IS 8 39494 BP 1357 39495 EP 1360 39496 PG 4 39497 SC Optics 39498 GA 224JZ 39499 UT ISI:000081895900012 39500 ER 39501 39502 PT J 39503 AU Malomed, BA 39504 TI Multichannel switchable system for spatial solitons 39505 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS 39506 DT Article 39507 ID PHOTOREFRACTIVE MEDIA; OPTICAL SOLITONS; WAVE-GUIDE; LASER-BEAMS 39508 AB We consider a model of a nonlinear planar waveguide with a sinusoidal 39509 modulation of the refractive index in the transverse direction, which 39510 gives rise to a system of parallel troughs that may serve as channels 39511 that trap solitary beams (spatial solitons). The model can also be 39512 considered as an asymptotic one describing a dense planar array of 39513 parallel nonlinear optical fibers, with the modulation representing the 39514 corresponding effective Peierls-Nabarro potential. By means of the 39515 variational approximation and by direct simulations we demonstrate that 39516 the one-soliton state trapped in a channel has no existence threshold 39517 and is always stable. In contrast with this a stationary state of two 39518 beams trapped in two adjacent troughs has an existence border, which is 39519 found numerically. Depending on the values of the parameters, the 39520 two-soliton states are found to be dynamically stable over an 39521 indefinitely long or a finite but large distance. We consider the 39522 possibility of switching the beam from a channel where it was trapped 39523 into an adjacent one by a localized spot attracting the beam through 39524 the cross-phase modulation. The spot can be created between the troughs 39525 by a focused laser beam shone transversely to the waveguide. By means 39526 of the perturbation theory and numerical method we demonstrate that the 39527 switching is possible, provided that the spot's strength exceeds a 39528 certain threshold value. (C) 1999 Optical Society of America 39529 [S0740-3224(99)00908-X]. 39530 C1 Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel. 39531 Univ New S Wales, Sch Elect Engn, Opt Commun Grp, Sydney, NSW 2052, Australia. 39532 Shanghai Univ, Wave Sci Lab, Shanghai 201800, Peoples R China. 39533 RP Malomed, BA, Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, 39534 IL-69978 Tel Aviv, Israel. 39535 CR AFANASJEV VV, 1997, OPT LETT, V22, P1388 39536 AITCHISON JS, 1990, OPT LETT, V15, P471 39537 AITCHISON JS, 1991, OPT LETT, V16, P15 39538 BARTHELEMY A, 1985, OPT COMMUN, V55, P201 39539 BURYAK AV, 1995, PHYS LETT A, V197, P407 39540 CHEN ZG, 1996, OPT LETT, V21, P1436 39541 CHRISTODOULIDES DN, 1997, PHYS REV LETT, V78, P646 39542 CLAUSEN CB, 1997, PHYS REV LETT, V78, P4749 39543 CROSIGNANI B, 1993, J OPT SOC AM B, V10, P446 39544 EISENBERG HS, 1998, PHYS REV LETT, V81, P3383 39545 FAN SH, 1998, OPT EXPRESS, V3, P4 39546 HASEGAWA A, 1995, SOLITONS OPTICAL COM 39547 KIVSHAR YS, 1989, REV MOD PHYS, V61, P763 39548 KIVSHAR YS, 1993, PHYS REV E, V48, P3077 39549 KROLIKOWSKI W, 1998, PHYS REV LETT, V80, P3240 39550 LI QY, 1991, OPT LETT, V16, P1083 39551 MANEUF S, 1988, OPT COMMUN, V65, P193 39552 MANEUF S, 1988, OPT COMMUN, V66, P325 39553 REYNAUD F, 1990, EUROPHYS LETT, V12, P401 39554 SHALABY M, 1991, OPT LETT, V16, P1472 39555 SHIPULIN A, 1997, J OPT SOC AM B, V14, P3393 39556 SNYDER AW, 1993, OPT LETT, V18, P482 39557 VAKHITOV MG, 1973, RADIOPHYS QUANTUM EL, V16, P783 39558 NR 23 39559 TC 27 39560 SN 0740-3224 39561 J9 J OPT SOC AM B-OPT PHYSICS 39562 JI J. Opt. Soc. Am. B-Opt. Phys. 39563 PD AUG 39564 PY 1999 39565 VL 16 39566 IS 8 39567 BP 1197 39568 EP 1203 39569 PG 7 39570 SC Optics 39571 GA 223VU 39572 UT ISI:000081862900003 39573 ER 39574 39575 PT J 39576 AU Huang, SP 39577 Yoshida, F 39578 You, JL 39579 Jiang, GC 39580 Xu, KD 39581 TI Iom motion in SiO2 melt 39582 SO JOURNAL OF PHYSICS-CONDENSED MATTER 39583 DT Article 39584 ID COMPUTER-SIMULATION; MOLECULAR-DYNAMICS; PRESSURE; SILICA; MODEL; GLASS 39585 AB Dynamical properties of ions are studied in SiO2 melt by using the 39586 molecular dynamics method. The diffusion constant, ionic conductivity 39587 and velocity autocorrelation function are calculated at various 39588 pressures and temperatures. It is found that the simulated ionic 39589 conductivities are close to experimental values, and show an increase 39590 with temperature. Diffusion constants become maximum around 10 GPa, in 39591 close relation with a marked shift in the coordination number of the Si 39592 ion. The velocity autocorrelation function and its spectra are 39593 calculated by using the memory function method. These compare well with 39594 the molecular dynamics results. Discussion is given on the pressure 39595 dependence of dynamical quantities. 39596 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 39597 Shiga Univ Med Sci, Dept Phys, Otsu, Shiga 52021, Japan. 39598 RP Huang, SP, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 39599 200072, Peoples R China. 39600 CR ANGELL CA, 1982, SCIENCE, V218, P885 39601 BERNE BJ, 1966, J CHEM PHYS, V45, P1086 39602 DELLAVALLE RG, 1991, J CHEM PHYS, V94, P5056 39603 HANSEN JP, 1986, THEORY SIMPLE LIQUID, CH7 39604 HEMMATI M, 1997, J NON-CRYST SOLIDS, V217, P236 39605 KATO T, 1990, J CHEM PHYS, V92, P5506 39606 KELLER H, 1982, METALL T B, V13, P237 39607 KUBICKI JD, 1988, AM MINERAL, V73, P941 39608 KUSHIRO I, 1983, GEOCHIM COSMOCHIM AC, V47, P1415 39609 PANISH MB, 1959, J PHYS CHEM-US, V63, P1337 39610 PING HS, 1997, J PHYS SOC JPN, V66, P1356 39611 SJOGREN L, 1982, J CHEM PHYS, V77, P3703 39612 STEBBINS GJ, 1989, AM MINERAL, V74, P960 39613 TSUNEYUKI S, 1988, PHYS REV LETT, V61, P869 39614 TSUNEYUKI S, 1989, NATURE, V339, P209 39615 VANKAMPEN NG, 1981, STOCHASTIC PROCESSES, CH3 39616 YOSHIDA F, 1989, PHYS REP, V173, P301 39617 NR 17 39618 TC 2 39619 SN 0953-8984 39620 J9 J PHYS-CONDENS MATTER 39621 JI J. Phys.-Condes. Matter 39622 PD JUL 19 39623 PY 1999 39624 VL 11 39625 IS 28 39626 BP 5429 39627 EP 5436 39628 PG 8 39629 SC Physics, Condensed Matter 39630 GA 222BU 39631 UT ISI:000081764200009 39632 ER 39633 39634 PT J 39635 AU Gao, SC 39636 Li, J 39637 TI FDTD analysis of serial corner-fed square patch antennas for single- 39638 and dual-polarised applications 39639 SO IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION 39640 DT Article 39641 ID TIME-DOMAIN METHOD; CIRCUITS 39642 AB The finite-difference time-domain (FDTD) method is developed for the 39643 analysis of serial corner-fed square patch antennas. A special 39644 technique to model the slanted metallic boundaries of the patch antenna 39645 has been used in the general FDTD algorithm to avoid the staircase 39646 approximations. The method improves the accuracy of the original FDTD 39647 algorithm without increasing its complexity. Both the one-port and 39648 two-port cases are studied, which are for single- and dual-polarised 39649 applications, respectively, Several antenna elements are manufactured. 39650 An isolation of -25dB is achieved by the two-port antenna, which makes 39651 it suitable for many dual-polarised applications. The numerical 39652 analysis is confirmed by the experimental results and by results 39653 published elsewhere. 39654 C1 Shanghai Univ, Dept Commun Engn, Jiading 201800, Peoples R China. 39655 Fuyang Normal Univ, Dept Comp, Fuyang 236032, Peoples R China. 39656 RP Gao, SC, Shanghai Univ, Dept Commun Engn, Jiading 201800, Peoples R 39657 China. 39658 CR BAHL IJ, 1980, MICROSTRIP ANTENNAS 39659 BERENGER JP, 1994, J COMPUT PHYS, V114, P185 39660 CHEW WC, 1995, WAVES FIELDS INHOMOG, CH4 39661 CRUZ EM, 1991, ELECTRON LETT, V27, P1410 39662 DANIEL JP, 1985, P ISAP 85, P121 39663 JAMES JR, 1989, HDB MICROSTRIP ANTEN 39664 LIANG GC, 1989, IEEE T MICROW THEORY, V37, P1949 39665 LIAO ZP, 1984, SCI SINICA SER A, V27, P1063 39666 MEI KK, 1992, IEEE T ANTENN PROPAG, V40, P1001 39667 MEZZANOTTE P, 1995, IEEE MICROW GUIDED W, V5, P267 39668 MUR G, 1981, IEEE T ELECTROMAGN C, V23, P1073 39669 PIKETMAY M, 1994, IEEE T MICROW THEORY, V42, P1514 39670 POZAR DM, 1982, IEEE T ANTENN PROPAG, V30, P1191 39671 REIMEIX A, 1989, IEEE T ANTENN PROPAG, V37, P1361 39672 SHEEN DM, 1990, IEEE T MICROW THEORY, V38, P849 39673 TAFLOVE A, 1975, IEEE T MICROW THEORY, V23, P623 39674 TAFLOVE A, 1983, IEEE T ELECTROMAGN C, V25, P433 39675 TIRKAS PA, 1992, IEEE T ANTENN PROPAG, V40, P334 39676 TOLAND B, 1993, IEEE MICROW GUIDED W, V3, P423 39677 YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302 39678 ZHANG X, 1988, IEEE T MICROW THEORY, V36, P263 39679 ZHANG XL, 1988, IEEE T MICROW THEORY, V36, P1775 39680 NR 22 39681 TC 11 39682 SN 1350-2417 39683 J9 IEE PROC-MICROWAVE 39684 JI IEE Proc.-Microw. Antennas Propag. 39685 PD JUN 39686 PY 1999 39687 VL 146 39688 IS 3 39689 BP 205 39690 EP 208 39691 PG 4 39692 SC Engineering, Electrical & Electronic; Telecommunications 39693 GA 223GG 39694 UT ISI:000081832100007 39695 ER 39696 39697 PT J 39698 AU Sun, XL 39699 Li, D 39700 TI Logarithmic-exponential penalty formulation for integer programming 39701 SO APPLIED MATHEMATICS LETTERS 39702 DT Article 39703 DE nonlinear integer programming; logarithmic-exponential penalty 39704 function; inequality constraints; integer programming 39705 AB The purpose of this note is to present a smooth penalty formulation for 39706 integer programming. By adopting the proposed logarithmic-exponential 39707 penalty function, we are able to transform an inequality constrained 39708 integer programming problem into an equivalent unconstrained problem 39709 with a smooth objective function when choosing an appropriate penalty 39710 parameter. We show that this penalty formulation preserves the 39711 convexity for convex integer programming problems. (C) 1999 Elsevier 39712 Science Ltd. All rights reserved. 39713 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 39714 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, NT, Hong Kong. 39715 RP Sun, XL, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 39716 CR COOPER MW, 1981, MANAGE SCI, V27, P353 39717 GUPTA OK, 1985, MANAGE SCI, V31, P1533 39718 KORNER F, 1988, BIT, V28, P701 39719 SINCLAIR M, 1986, EUR J OPER RES, V27, P50 39720 NR 4 39721 TC 1 39722 SN 0893-9659 39723 J9 APPL MATH LETT 39724 JI Appl. Math. Lett. 39725 PD OCT 39726 PY 1999 39727 VL 12 39728 IS 7 39729 BP 73 39730 EP 77 39731 PG 5 39732 SC Mathematics, Applied 39733 GA 222VV 39734 UT ISI:000081806800012 39735 ER 39736 39737 PT J 39738 AU Lu, DQ 39739 Dai, SQ 39740 Zhang, BS 39741 TI Hamiltonian formulation of nonlinear water waves in a two-fluid system 39742 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 39743 DT Article 39744 DE two-fluid system; Hamilton's principle; nonlinear water waves; shallow 39745 water assumption; Hamiltonian cononical equations 39746 ID SURFACE-WAVES; PRINCIPLE 39747 AB In this paper, it is dealt with that the Hamilton formulation of 39748 nonlinear water waves in a two-fluid system, which consists of two 39749 layers of constant-density incompressible inviscid fluid with a 39750 horizontal bottom, an interface and a free surface. The velocity 39751 potentials are expanded in power series of the vertical coordinate. By 39752 taking the kinetic thickness of lower fluid-layer and the reduced 39753 kinetic thickness of upper fluid-layer as the generalized 39754 displacements, choosing the velocity potentials at the interface and 39755 free surface as the generalized momenta and using Hamilton's principle, 39756 the Hamiltonian canonical equations for the system are derived with the 39757 Legendre transformation under the shallow water assumption. Hence the 39758 results for single-layer fluid are extended to the case of stratified 39759 fluid. 39760 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 39761 RP Lu, DQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 39762 Peoples R China. 39763 CR BENJAMIN TB, 1982, J FLUID MECH, V125, P137 39764 CRAIG W, 1994, WAVE MOTION, V19, P367 39765 DIA SQ, 1984, J SCI SINICA A, V27, P507 39766 LU DQ, 1997, MODERN MATH MECH MMM, V7, P387 39767 LUKE JC, 1967, J FLUID MECH, V27, P395 39768 MILDER DM, 1977, J FLUID MECH, V83, P159 39769 MILES JW, 1977, J FLUID MECH, V83, P153 39770 WHITHAM GB, 1967, P ROY SOC LOND A MAT, V299, P6 39771 ZAKHAROV VE, 1968, J APPL MECH TECH PHY, V2, P190 39772 ZHANG BS, 1998, ADV MECH, V28, P521 39773 NR 10 39774 TC 1 39775 SN 0253-4827 39776 J9 APPL MATH MECH-ENGL ED 39777 JI Appl. Math. Mech.-Engl. Ed. 39778 PD APR 39779 PY 1999 39780 VL 20 39781 IS 4 39782 BP 343 39783 EP 349 39784 PG 7 39785 SC Mathematics, Applied; Mechanics 39786 GA 222VP 39787 UT ISI:000081806300001 39788 ER 39789 39790 PT J 39791 AU Gabriel, B 39792 Jiang, FR 39793 TI Application of the modified method of multiple scales to the bending 39794 problems for circular thin plate at very large deflection and the 39795 asymptotics of solutions(II) 39796 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 39797 DT Article 39798 DE large deflection; modified method of multiple scales; asymptotic 39799 behaviors 39800 AB This paper is a continuation of part ( I ), on the asymptotics 39801 behaviors of the series solutions investigated in ( I ). The remainder 39802 terms of the series solutions are estimated by the maximum norm. 39803 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 39804 RP Gabriel, B, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 39805 200072, Peoples R China. 39806 CR BISSANGA G, 1998, APPL MATH MECH, V19, P937 39807 ECKHAUS W, 1979, STUDIES MATH ITS APP, V9, P190 39808 NR 2 39809 TC 0 39810 SN 0253-4827 39811 J9 APPL MATH MECH-ENGL ED 39812 JI Appl. Math. Mech.-Engl. Ed. 39813 PD APR 39814 PY 1999 39815 VL 20 39816 IS 4 39817 BP 373 39818 EP 378 39819 PG 6 39820 SC Mathematics, Applied; Mechanics 39821 GA 222VP 39822 UT ISI:000081806300005 39823 ER 39824 39825 PT J 39826 AU Jin, XJ 39827 Xu, ZY 39828 Li, L 39829 TI Critical driving force for martensitic transformation fcc(gamma)-> 39830 hcp(epsilon) in Fe-Mn-Si shape memory alloys 39831 SO SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES 39832 DT Article 39833 DE critical driving force; martensitic transformation; Fe-Mn-Si alloy 39834 ID SYSTEM; MODEL 39835 AB By the application of Chou's new geometry model and the available data 39836 from binary Fe-Mn, Fe-Si and Mn-Si systems, as well as SGTE DATA for 39837 lattice stability parameters of three elements from Dinsdale, the Gibbs 39838 free energy as a function of temperature of the fcc(gamma) and 39839 hcp(epsilon) phases in the Fe-Mn-Si system is reevaluated. The 39840 relationship between the Neel temperature of the gamma phase and 39841 concentration of constituents in mole fraction, T-N(gamma) = 67x(Fe) + 39842 5402 x(Mn) + x(Fe)x(Mn) [761 + 689(x(Fe) - x(Mn))] - 850x(Si), is 39843 fitted and verified by the experimental results. The critical driving 39844 force for the martensitic transformation fcc(gamma) --> hcp(epsilon), 39845 Delta G(C)(gamma-->epsilon), defined as the free energy difference 39846 between gamma and epsilon phases at M-S of various alloys can also be 39847 obtained with a known M-S. It is found that the driving force varies 39848 with the composition of alloys, e. g. Delta G(C)(gamma-->epsilon) = - 39849 100.99 J/mol in Fe-27.0Mn-6.0Si and Delta G(C)(epsilon)(gamma-->) = - 39850 122.11 J/mol in Fe-26.91Mn-3.37Si. The compositional dependence of 39851 critical driving force accorded with the expression formulated by Hsu 39852 of the critical driving force for fcc(gamma) --> hcp(epsilon) 39853 transformation in alloys with low stacking fault energy (SFE), i. e. 39854 Delta G(C)(gamma-epsilon) = A . gamma + B, where gamma is the stacking 39855 fault energy (SFE) and A and B are constants related to materials. 39856 C1 Shanghai Jiao Tong Univ, Dept Mat Sci, Shanghai 200030, Peoples R China. 39857 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China. 39858 RP Xu, ZY, Shanghai Jiao Tong Univ, Dept Mat Sci, Shanghai 200030, Peoples 39859 R China. 39860 CR CHOU KC, 1996, CALPHAD, V20, P395 39861 CHOU KC, 1997, METALL MATER TRANS B, V28, P439 39862 DINSDALE AT, 1991, CALPHAD, V15, P317 39863 FORSBERG A, 1993, J PHASE EQUILIB, V14, P354 39864 HILLERT M, 1978, CALPHAD, V2, P227 39865 HSU TY, 1980, ACTA METALL SIN, V16, P430 39866 HSU TY, 1993, SHANGHAI METALS, V15, P1 39867 HUANG WM, 1989, CALPHAD, V13, P243 39868 INDEN G, 1981, PHYSICA B, V103, P82 39869 LACAZE J, 1991, METALL TRANS A, V22, P2211 39870 LI L, 1997, CALPHAD, V21, P443 39871 MURAKAMI M, 1987, P INT C MARTENS TRAN, P985 39872 SATO A, 1986, ACTA METALL, V34, P287 39873 NR 13 39874 TC 8 39875 SN 1006-9321 39876 J9 SCI CHINA SER E 39877 JI Sci. China Ser. E-Technol. Sci. 39878 PD JUN 39879 PY 1999 39880 VL 42 39881 IS 3 39882 BP 266 39883 EP 274 39884 PG 9 39885 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary 39886 GA 221UG 39887 UT ISI:000081744700005 39888 ER 39889 39890 PT J 39891 AU Lu, MG 39892 Cai, YC 39893 TI Chen's theorem in arithmetical progressions 39894 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY 39895 DT Article 39896 DE Chen's Theorem; sieve; mean value theorem 39897 AB Let N be a sufficiently large even integer and 39898 q greater than or equal to 1, (l(i), q) = 1 (i = 1, 2), 39899 l(1) + l(2) = N(mod q). 39900 It is proved that the equation 39901 N = p + P-2, p = l(1) (mod q), P-2 = l(2) (mod q) 39902 has infinitely many solutions for almost all q less than or equal to 39903 N-1/37, where p is a prime and P-2 is an almost prime with at most two 39904 prime factors. 39905 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 39906 RP Lu, MG, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 39907 CR CHEN JR, 1966, KEXUE TONGBAO, V17, P385 39908 CHEN JR, 1973, SCI SINICA, V16, P157 39909 CHEN JR, 1978, SCI SINICA, V21, P421 39910 IWANIEC H, 1981, RECENT PROGR ANAL NU, V2, P203 39911 LIU JY, 1997, ACTA ARITH, V82, P197 39912 LIU MC, LECT NOTES MATH, V247, P227 39913 PAN CD, 1981, GOLDBACH CONJECTURE 39914 RICHERT HE, 1953, J FUR MATH, V191, P179 39915 TAMES RD, 1942, AM J MATH, V64, P539 39916 VANDERCORPUT JG, 1939, ACTA ARITH, V33, P181 39917 VINOGRADOV IM, 1937, DOKL AKAD NAUK SSSR, V15, P291 39918 ZULAUF A, 1952, J REINE ANGEW MATH, V190, P169 39919 NR 12 39920 TC 0 39921 SN 1006-9283 39922 J9 SCI CHINA SER A 39923 JI Sci. China Ser. A-Math. Phys. Astron. 39924 PD JUN 39925 PY 1999 39926 VL 42 39927 IS 6 39928 BP 561 39929 EP 569 39930 PG 9 39931 SC Mathematics, Applied; Mathematics 39932 GA 219WY 39933 UT ISI:000081632100001 39934 ER 39935 39936 PT J 39937 AU Han, JT 39938 Sun, GX 39939 Fang, JH 39940 Bao, BR 39941 TI Solvent extraction of uranium (VI) by N-octanoylpyrrolidine in toluene 39942 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY 39943 DT Letter 39944 AB The extraction of uranium(VI) from nitric acid by N-octanoylpyrrolidine 39945 (OPOD) in toluene has been investigated at varying concentrations of 39946 nitric acid, extractant salting-out agent LiNO3 and at different 39947 temperatures. The mechanism of extraction is discussed in the light of 39948 the obtained results. 39949 C1 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China. 39950 Shanghai Univ, Sch Chem & Chem Engn, Shanghai 201800, Peoples R China. 39951 RP Han, JT, Chinese Acad Sci, Shanghai Inst Nucl Res, POB 800-204, 39952 Shanghai 201800, Peoples R China. 39953 CR STANLEY RS, 1968, ORGANIC FUNCTIONAL G, V1, P227 39954 SUN GX, 1998, J RADIOANAL NUCL CH, V232, P245 39955 SUN GX, 1998, NUCL SCI TECHNOL, V9, P115 39956 SUN GX, 1998, THESIS CHINESE ACAD, P50 39957 THIOLLET G, 1989, SOLVENT EXTR ION EXC, V7, P813 39958 NR 5 39959 TC 1 39960 SN 0236-5731 39961 J9 J RADIOANAL NUCL CHEM 39962 JI J. Radioanal. Nucl. Chem. 39963 PD JUL 39964 PY 1999 39965 VL 241 39966 IS 1 39967 BP 215 39968 EP 217 39969 PG 3 39970 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science 39971 & Technology 39972 GA 219LF 39973 UT ISI:000081608200035 39974 ER 39975 39976 PT J 39977 AU Hu, A 39978 Fang, YH 39979 Young, JF 39980 TI Humidity dependence of apparent dielectric constant for DSP cement 39981 materials at high frequencies 39982 SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY 39983 DT Article 39984 AB The relationship between humidity and dielectric constant for cement 39985 densified with small particles (DSP) has been studied in the relative 39986 humidity range 0%-93% and the frequency range 1 MHz to 1 GHz. The 39987 calculated dielectric constant appears to increase with increasing 39988 humidity as a linear relation at fixed frequency. According to 39989 experimental data and basic principles for dielectrics, two 39990 experimental expressions are suggested for heterogeneous dielectric 39991 materials to describe the observed behavior of the dielectric constant. 39992 The expressions fit the experimental data well in the frequency range 39993 studied. Apparent dielectric constant decreases with increasing 39994 frequency. Polarization of DSP cement is also discussed. 39995 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China. 39996 Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. 39997 Univ Illinois, Ctr Cement Composite Mat, Urbana, IL 61801 USA. 39998 RP Hu, A, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R 39999 China. 40000 CR BACHE HH, 1981, P 2 INT C SUP CONCR, P5 40001 BIRCHALL JD, 1981, NATURE, V289, P388 40002 BRUNAUER S, 1972, 3689294, US 40003 BUCHANAN RC, 1986, CERAMIC MAT ELECT, P39 40004 CARTER WJ, 1984, J MATER SCI LETT, V3, P1083 40005 FRANKLIN AD, 1971, PHYSICS ELECT CERA A, P451 40006 GOODMAN G, 1986, CERAMIC MAT ELECT, P84 40007 HAMMOND E, 1955, ENGINEER, V199, P78 40008 HJORTH L, 1983, PHILOS T ROY SOC A, V310, P167 40009 KINGERY WD, 1976, INTRO CERAMICS, P947 40010 LEIGH DW, 1989, ADV CERAM, V26, P255 40011 MOULSON AJ, 1990, ELECTROCERAMIC MAT P, P62 40012 OTTO GP, 1991, IEEE T INSTRUM MEAS, V40, P742 40013 PAYNE DA, 1977, CERAMIC MICROSTRUCTU, P584 40014 PEREZPENA M, 1987, ADV CERAM, V26, P279 40015 RIXOM MR, 1978, CHEM ADMIXTURE CONCR 40016 ROY DM, 1973, J AM CERAM SOC, V56, P549 40017 SWAMY RN, 1979, J MATER SCI, V14, P1521 40018 TAMAS FD, 1982, CEMENT CONCRETE RES, V12, P115 40019 TAYLOR MA, 1974, CEMENT CONCRETE RES, V4, P881 40020 WILKOSZ DE, 1995, J AM CERAM SOC, V78, P1673 40021 WISE S, 1985, MAT RES SOC S P, V42 40022 YOUNG JF, 1967, J APPL CHEM-USSR, V17, P241 40023 NR 23 40024 TC 6 40025 SN 0002-7820 40026 J9 J AMER CERAM SOC 40027 JI J. Am. Ceram. Soc. 40028 PD JUL 40029 PY 1999 40030 VL 82 40031 IS 7 40032 BP 1741 40033 EP 1747 40034 PG 7 40035 SC Materials Science, Ceramics 40036 GA 215ZY 40037 UT ISI:000081416900013 40038 ER 40039 40040 PT J 40041 AU Liu, ZR 40042 Huang, DB 40043 TI A method to generate new exact solutions from a known stationary 40044 solution 40045 SO CHINESE PHYSICS LETTERS 40046 DT Article 40047 ID EQUATION; FORM 40048 AB By combining the Backlund transformations and the AKNS system[ Study in 40049 Appl. Math. 53 (1974) 249.] which is a linear eigenvalue problem of the 40050 corresponding evolution equation, a method to find new exact solutions 40051 from known stationary solutions for nonlinear integrable equations is 40052 proposed. As an example, Korteweg de Vries (Kd V) equation is used to 40053 illustrate this method, and a class of new exact solutions of KdV 40054 equation is obtained. 40055 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 40056 Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R China. 40057 RP Liu, ZR, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 40058 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E 40059 ALBOWITZ MJ, 1974, STUDY APPL PHYS, V53, P249 40060 CHEN XJ, 1998, CHINESE PHYS LETT, V15, P504 40061 CROSS MC, 1993, REV MOD PHYS, V65, P851 40062 HERMAN W, 1990, J PHYS A, V23, P4805 40063 KHATER AH, 1997, CHAOS SOLITON FRACT, V8, P1901 40064 KONNO K, 1975, PROG THEOR PHYS, V53, P1652 40065 LU XQ, 1997, CHINESE PHYS LETT, V14, P561 40066 MALFLIET W, 1993, J PHYS A, V26, L723 40067 OLVER PJ, 1986, APPL LIE GROUPS DIFF 40068 ROGERS C, 1982, BACKLUND TRANSFORMAT 40069 WEISS J, 1983, J MATH PHYS, V24, P522 40070 WU KX, 1998, CHINESE PHYS LETT, V15, P654 40071 NR 13 40072 TC 3 40073 SN 0256-307X 40074 J9 CHIN PHYS LETT 40075 JI Chin. Phys. Lett. 40076 PY 1999 40077 VL 16 40078 IS 5 40079 BP 313 40080 EP 315 40081 PG 3 40082 SC Physics, Multidisciplinary 40083 GA 215CA 40084 UT ISI:000081363300001 40085 ER 40086 40087 PT J 40088 AU Deng, K 40089 Zhou, YM 40090 Ren, ZM 40091 Gong, T 40092 Jiang, GC 40093 TI Electromagnetic characteristics of levitation melting with cold crucible 40094 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA 40095 DT Article 40096 DE cold crucible; electromagnetic induction; levitation melting; numerical 40097 simulation 40098 AB By using the numerical simulation method with quasi-three-dimensions 40099 and the modified coupled current model presented in the previous work, 40100 the influences of the structure of cold crucible, the power frequency 40101 and the electricity property of melting charge on the electromagnetic 40102 field in the levitation melting processes were analyzed. The 40103 fundamentals for the technique design of levitation melting with cold 40104 crucible were presented. It is shown that the levitation melting with 40105 cold crucible is a self-balanced and self-stable process, and the cold 40106 crucible can be segmented 16 similar to 20 sectors for high frequency 40107 electromagnetic field and/or 4 similar to 8 sectors for lower frequency 40108 one. It is also shown that the change of the power frequency has great 40109 influence on the magnetic flux density on the surface of metallic 40110 charge, but for nonmetallic charge, the main influence on the magnetic 40111 flux density is the segmented number of cold crucible. 40112 C1 Shanghai Univ, Coll Mat, Shanghai 200072, Peoples R China. 40113 CR ASAI S, 1990, P 6 INT IR STEEL CON, P370 40114 DENG K, 1994, J SHANGHAI U TECH, V15, P87 40115 DENG K, 1995, CHINESE J NONFERROUS, V5, P409 40116 DENG K, 1996, T NONFERR METAL SOC, V6, P12 40117 GARINIER M, 1990, P 6 INT IR STEEL CON, P226 40118 TANAKA T, 1991, ISIJ INT, V31, P1416 40119 TANAKA T, 1991, ISIJ INT, V31, P350 40120 TOH T, 1990, P 6 INT IRON STEEL C, P239 40121 NR 8 40122 TC 0 40123 SN 1003-6326 40124 J9 TRANS NONFERROUS METAL SOC CH 40125 JI Trans. Nonferrous Met. Soc. China 40126 PD JUN 40127 PY 1999 40128 VL 9 40129 IS 2 40130 BP 387 40131 EP 392 40132 PG 6 40133 SC Metallurgy & Metallurgical Engineering 40134 GA 212JX 40135 UT ISI:000081214500036 40136 ER 40137 40138 PT J 40139 AU Ding, R 40140 Zhu, ZY 40141 Cheng, CJ 40142 TI Some dynamical properties of a viscoelastic cylindrical shell 40143 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 40144 DT Article 40145 DE viscoelasticity; cylindrical shell; stability 40146 AB In this paper, the dynamic,stability of a viscoelastic circular 40147 cylindrical shell subject to an axial compressive force and a uniformly 40148 distributed radial compressive load is discussed. By using the Laplace 40149 transformation, stability conditions of viscoelastic shell under 40150 constant loads are yielded. By using synthetically the classical 40151 dynamic methods, the various dynamical properties for the dynamical 40152 system de: fined by the viscoelastic shell and the effect of parameters 40153 on the stability of structure are obtained. 40154 C1 SW Jiaotong Univ, Mech Postdoctoral Stn, Chengdu 610031, Peoples R China. 40155 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 40156 RP Ding, R, SW Jiaotong Univ, Mech Postdoctoral Stn, Chengdu 610031, 40157 Peoples R China. 40158 CR DROZDOV A, 1993, MECH RES COMMUN, V20, P481 40159 LADOPOULOS EG, 1991, MECH RES COMMUN, V18, P111 40160 TYLIKOWSKI A, 1989, INT J MED SCI, V31, P591 40161 YANG TQ, 1989, THEORYT VISCOELASTIC 40162 NR 4 40163 TC 0 40164 SN 0253-4827 40165 J9 APPL MATH MECH-ENGL ED 40166 JI Appl. Math. Mech.-Engl. Ed. 40167 PD MAR 40168 PY 1999 40169 VL 20 40170 IS 3 40171 BP 233 40172 EP 240 40173 PG 8 40174 SC Mathematics, Applied; Mechanics 40175 GA 212FB 40176 UT ISI:000081205600001 40177 ER 40178 40179 PT J 40180 AU Peng, RR 40181 Chen, JM 40182 Peng, K 40183 TI Construction of wavelet bases with vanishing movement 40184 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 40185 DT Article 40186 DE vanishing movement; scaling function; orthogonal mother wavelet 40187 AB A kind of mother wavelet with good properties is constructed for any N 40188 greater than or equal to 2, which is differentiable for N times, 40189 converges to Zero at the order of O( I t I-N)( t --> infinity) and has 40190 N - 2 order of vanishing movement and some property of symmetry 40191 meanwhile. A computation example for N = 4 is also given. 40192 C1 Shanghai Univ, Coll Sci, Shanghai 200072, Peoples R China. 40193 Changzhou Text Ind Coll, Changzhou 213000, Peoples R China. 40194 RP Peng, RR, Shanghai Univ, Coll Sci, Shanghai 200072, Peoples R China. 40195 CR CHUI JT, 1995, INTRO WAVELET 40196 LI SX, 1994, ELEMENTARY WAVELET I 40197 PENG RR, 1994, J SHANGHAI U TECHNOL, V15, P299 40198 NR 3 40199 TC 0 40200 SN 0253-4827 40201 J9 APPL MATH MECH-ENGL ED 40202 JI Appl. Math. Mech.-Engl. Ed. 40203 PD MAR 40204 PY 1999 40205 VL 20 40206 IS 3 40207 BP 247 40208 EP 253 40209 PG 7 40210 SC Mathematics, Applied; Mechanics 40211 GA 212FB 40212 UT ISI:000081205600003 40213 ER 40214 40215 PT J 40216 AU Zhang, NH 40217 Cheng, CJ 40218 TI A variational principle of perturbed motion on viscoelastic thin plates 40219 with applications 40220 SO ACTA MECHANICA SOLIDA SINICA 40221 DT Article 40222 DE viscoelastic thin plate; perturbed motion; variational principle; 40223 stability 40224 AB In this paper, in the light of the Boltzmann superposition principle in 40225 linear viscoelasticity, a mathematical model of perturbed motion on 40226 viscoelastic thin plates is established. The corresponding variational 40227 principle is obtained in a convolution bilinear form. For application 40228 the problems of free vibration, forced vibration and stability of a 40229 viscoelastic simply-supported rectangular thin plate are considered. 40230 The results show that numerical solutions agree well with analytical 40231 solutions. 40232 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 40233 Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China. 40234 CR CEDERBAUM G, 1992, J APPL MECH-T ASME, V59, P16 40235 CEDERBAUM G, 1992, MECH STRUCT MACH, V20, P37 40236 CHENG CJ, 1998, INT J SOLIDS STRUCT, V35, P4491 40237 CHIEN WZ, 1980, VARIATIONAL METHODS 40238 DALLASTA A, 1994, INT J SOLIDS STRUCT, V31, P247 40239 LEITMAN JM, HDB PHYSIK, V6, P10 40240 LUO E, 1990, ACTA MECH SINICA, V22, P484 40241 ODEN JT, 1983, VARIATIONAL METHODS 40242 REDDY JN, 1976, INT J SOLIDS STRUCT, V16, P227 40243 SHIMADA I, 1979, PROG THEOR PHYS, V61, P1605 40244 WOLF A, 1985, PHYS D, V16, P545 40245 NR 11 40246 TC 2 40247 SN 0894-9166 40248 J9 ACTA MECH SOLIDA SINICA 40249 JI Acta Mech. Solida Sin. 40250 PD JUN 40251 PY 1999 40252 VL 12 40253 IS 2 40254 BP 121 40255 EP 128 40256 PG 8 40257 SC Materials Science, Multidisciplinary; Mechanics 40258 GA 213TR 40259 UT ISI:000081289800004 40260 ER 40261 40262 PT J 40263 AU Li, Y 40264 TI On the symmetry group and harmonic potentials of a generalized multipole 40265 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS 40266 DT Article 40267 AB The relation between the M function for a generalized multipole and the 40268 pure mathematical M function is discussed. The concept of rotation 40269 sense has been replaced by the clearer and more general concept of 40270 screw sense. The influence of the infinitesimal orders of harmonic 40271 potentials on aberrations in connection with the constraints of the 40272 symmetry group of a GM are discussed. A simple, unified and powerful 40273 method to determine the constraint relations among the harmonic 40274 potentials of a generalized multipole or ordinary multipole is given 40275 and rigorously proved. 40276 C1 Shanghai Univ Sci & Technol, Res Sect Appl Phys, Shanghai 200093, Peoples R China. 40277 RP Li, Y, Shanghai Univ Sci & Technol, Res Sect Appl Phys, Shanghai 40278 200093, Peoples R China. 40279 CR ARFKEN G, 1985, MATH METHODS PHYSICI 40280 HAMERMESH M, 1962, GROUP THEORY ITS APP 40281 JOHN F, 1982, PARTIAL DIFFERENTIAL 40282 LANCASTER P, 1985, THEORY MATRICES 40283 LI Y, 1986, OPTIK, V75, P8 40284 LI Y, 1987, OPTIK, V76, P48 40285 LI Y, 1988, ACTA MATH SCI, V8, P131 40286 LI Y, 1988, OPTIK, V80, P39 40287 LI Y, 1992, ACTA PHYS SINICA, V41, P353 40288 LI Y, 1993, ADV ELECTRON EL PHYS, V85, P231 40289 LI Y, 1995, J PHYS D APPL PHYS, V28, P2007 40290 LI Y, 1995, SCI CHINA SER A, V38, P963 40291 LI Y, 1996, J PHYS D APPL PHYS, V29, P1133 40292 SCHOUTEN JA, 1954, RICCI CALCULUS 40293 NR 14 40294 TC 0 40295 SN 0022-3727 40296 J9 J PHYS-D-APPL PHYS 40297 JI J. Phys. D-Appl. Phys. 40298 PD JUN 21 40299 PY 1999 40300 VL 32 40301 IS 12 40302 BP 1336 40303 EP 1345 40304 PG 10 40305 SC Physics, Applied 40306 GA 211GV 40307 UT ISI:000081153300010 40308 ER 40309 40310 PT J 40311 AU Feng, SS 40312 Wang, ZX 40313 Qiu, XJ 40314 TI SU(2) charges as angular momentum in N=1 self-dual supergravity 40315 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 40316 DT Article 40317 ID GRAVITY; VARIABLES 40318 AB The N = 1 self-dual supergravity has SL(2, C) symmetry. This symmetry 40319 results in SU(2) charges as the angular momentum. As in 40320 nonsupersymmetric self-dual gravity, the currents are also of their 40321 potentials and are therefore identically conserved. The charges are 40322 generally invariant and gauge covariant under local SU(2) transforms 40323 and approach being, rigid at spatial infinity. The Poisson brackets 40324 constitute the su(2) algebra and hence can be interpreted as the 40325 generally covariant conservative angular momentum. 40326 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 40327 CCAST, World Lab, Beijing 100080, Peoples R China. 40328 Acad Sinica, Inst Nucl Res, Shanghai 201800, Peoples R China. 40329 Shanghai Teachers Univ, Ctr String Theory, Shanghai 200234, Peoples R China. 40330 RP Feng, SS, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 40331 CR ASHTEKAR A, 1986, PHYS REV LETT, V57, P2244 40332 DAI YB, 1987, GAUGE THEORY INTERAC 40333 DUAN YS, 1963, ACTA PHYS SINICA, V19, P589 40334 DUAN YS, 1996, COMMUN THEOR PHYS, V25, P99 40335 FENG SS, 1995, GEN RELAT GRAVIT, V27, P887 40336 FENG SS, 1995, GRAV COS, V1, P319 40337 FENG SS, 1996, COMMUN THEOR PHYS, V25, P485 40338 FENG SS, 1996, INT J THEOR PHYS, V35, P267 40339 FENG SS, 1996, NUCL PHYS B, V468, P163 40340 GOROBEY NN, 1990, CLASSICAL QUANT GRAV, V7, P67 40341 JACOBSON T, 1988, CLASSICAL QUANT GRAV, V5, P923 40342 SAMUEL J, 1987, PRAMANA-J PHYS, V28, L429 40343 WEINBERG S, 1995, QUANTUM THEORY FIELD, V1 40344 NR 13 40345 TC 0 40346 SN 0020-7748 40347 J9 INT J THEOR PHYS 40348 JI Int. J. Theor. Phys. 40349 PD MAY 40350 PY 1999 40351 VL 38 40352 IS 5 40353 BP 1415 40354 EP 1422 40355 PG 8 40356 SC Physics, Multidisciplinary 40357 GA 210QH 40358 UT ISI:000081115800003 40359 ER 40360 40361 PT J 40362 AU Cha, KH 40363 Guo, BY 40364 Kwon, YH 40365 TI Parameter estimation by spectral approximation 40366 SO APPLIED MATHEMATICS AND COMPUTATION 40367 DT Article 40368 DE parameter estimation; spectral approximation; convergence and spectral 40369 accuracy 40370 AB In this paper, Chebyshev and Legendre approximations are proposed for 40371 estimating parameters in differential equations, which are easy to be 40372 performed. The convergence and the spectral accuracy are proved, even 40373 without some conditions as imposed in other papers. The numerical 40374 results show the advantages of this new approach. (C) 1999 Elsevier 40375 Science Inc. All rights reserved. AMS Classification: 34A55; 65L10; 40376 65L99. 40377 C1 Pohang Univ Sci & Technol, Dept Math, Pohang 790784, South Korea. 40378 Shanghai Univ, Dept Math, Shanghai, Peoples R China. 40379 RP Guo, BY, Pohang Univ Sci & Technol, Dept Math, Pohang 790784, South 40380 Korea. 40381 CR ACAR R, 1993, SIAM J CONTROL OPTIM, V31, P1221 40382 BANKS HT, 1989, ESTIMATION TECHNIQUE 40383 BERNARDI C, 1992, APPROXIMATIONS SPECT 40384 CANUTO C, 1982, MATH COMPUT, V38, P67 40385 CANUTO C, 1988, SPECTRAL METHODS FLU 40386 CHO CK, 1999, APPL MATH COMPUT, V100, P265 40387 FRIND EO, 1973, WATER RES R, V9, P1397 40388 GILBARG D, 1983, PARTIAL DIFFERENTIAL 40389 GOTTLIEB D, 1997, NUMERICAL ANAL SPECT 40390 GUO B, UNPUB PARAMETER IDEN 40391 GUO B, 1998, SPECTRAL METHODS THE 40392 NUTBROWN DA, 1975, WATER RESOUR RES, V11, P581 40393 RABINOWITZ PH, 1970, LECT NOTES MATH, V648, P97 40394 RICHTER GR, 1981, MATH COMPUT, V36, P375 40395 RICHTER GR, 1981, SIAM J APPL MATH, V41, P210 40396 VAINIKKO E, 1992, ACTA COMM U TARTUENS, V937, P90 40397 VAINIKKO E, 1993, Z ANAL ANGW, V12, P327 40398 YEH WWG, 1986, WATER RESOUR RES, V22, P95 40399 NR 18 40400 TC 0 40401 SN 0096-3003 40402 J9 APPL MATH COMPUT 40403 JI Appl. Math. Comput. 40404 PD SEP 1 40405 PY 1999 40406 VL 104 40407 IS 1 40408 BP 1 40409 EP 14 40410 PG 14 40411 SC Mathematics, Applied 40412 GA 210ME 40413 UT ISI:000081108600001 40414 ER 40415 40416 PT J 40417 AU Guo, BY 40418 TI Error estimation of Hermite spectral method for nonlinear partial 40419 differential equations 40420 SO MATHEMATICS OF COMPUTATION 40421 DT Article 40422 DE Hermite approximation; Burgers equation; error estimations 40423 ID DOMAINS 40424 AB Hermite approximation is investigated. Some inverse inequalities, 40425 imbedding inequalities and approximation results are obtained. A 40426 Hermite spectral scheme is constructed for Burgers equation. The 40427 stability and convergence of the proposed scheme are proved strictly. 40428 The techniques used in this paper are also applicable to other 40429 nonlinear problems in unbounded domains. 40430 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 40431 RP Guo, BY, Pohang Univ Sci & Technol, Pohang 790784, South Korea. 40432 CR ADAMS RA, 1975, SOBOLEV SPACES 40433 BLACK K, UNPUB SPECTRAL ELEME 40434 BOYD JP, 1987, J COMPUT PHYS, V69, P112 40435 CHRISTOV CI, 1982, SIAM J APPL MATH, V42, P1337 40436 COULAUD O, 1990, COMPUT METHOD APPL M, V80, P451 40437 COURANT R, 1928, MATH ANN, V100, P32 40438 FUNARO D, 1990, MATH COMPUT, V57, P597 40439 FUNARO D, 1991, ORTHOGONAL POLYNOMIA, P263 40440 GUO BY, 1965, RR SUST 40441 GUO BY, 1974, ACTA MATH SINICA, V17, P242 40442 GUO BY, 1994, CONT MATH, V163, P33 40443 HARDY GH, 1952, INEQUALITIES 40444 IRANZO V, 1992, COMPUT METHOD APPL M, V98, P105 40445 MADAY Y, 1985, RECH AEROSPATIALE, P353 40446 MAVRIPLIS C, 1989, J COMPUT PHYS, V80, P480 40447 NESSEL RJ, APPROXIMATION THEORY, V2, P479 40448 STETTER HJ, 1966, NUMERICAL SOLUTIONS, P111 40449 WEIDEMAN JAC, 1992, NUMER MATH, V61, P409 40450 NR 18 40451 TC 20 40452 SN 0025-5718 40453 J9 MATH COMPUT 40454 JI Math. Comput. 40455 PD JUL 40456 PY 1999 40457 VL 68 40458 IS 227 40459 BP 1067 40460 EP 1078 40461 PG 12 40462 SC Mathematics, Applied 40463 GA 209PV 40464 UT ISI:000081057700010 40465 ER 40466 40467 PT J 40468 AU Chen, Y 40469 Wang, JX 40470 Yu, BC 40471 Cai, RF 40472 Huang, ZE 40473 Zhang, JM 40474 TI Preparation and structural characterization of star-shaped 40475 C-60-p-methylstyrene copolymers 40476 SO JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 40477 DT Article 40478 DE fullerenes; polymers; chemical synthesis; infrared spectroscopy; X-ray 40479 diffraction 40480 ID POLYMER-SUBSTITUTED FULLERENES; ELECTROCHEMICAL DETECTION; C-60; 40481 BUCKMINSTERFULLERENE; <60>FULLERENE; CHEMISTRY; STYRENE; C60; 40482 PARAMAGNETISM; FLAGELLENES 40483 AB Highly soluble star-shaped C-60-p-methylstyrene copolymers with 40484 different C-60 contents were prepared in the toluene-tetrahydrofuran 40485 mixed solvents. The average number of grafted polymer chains onto the 40486 [60]fullerene was approximately between 1 and 4. Covalent attachment of 40487 C-60 to the terminal of active n-butyl-terminated poly(p-methylstyrene) 40488 (PPMS) backbone modified greatly the physical and chemical properties 40489 of the parent polymer. Its thermal stability and absorption degree at 40490 longer wavelengths were apparently enhanced. Interestingly, unlike pure 40491 PPMS polymer without paramagnetism, there are two kinds of paramagnetic 40492 species in the copolymer. This paramagnetic phenomenon can be 40493 interpreted most logically as being associated with a full charge 40494 transfer from a PMS unit of grafted chains to the C-60 core. First, if 40495 upon addition of the C-60 core an electron is transferred from the 40496 nearby PMS unit, then both would be in doublet states, which couple to 40497 give a close-lying singlet and triplet. The effect of C-60 chemical 40498 modification on the morphological structure and the X-ray diffraction 40499 structure of the parent polymer are also discussed. (C) 1999 Elsevier 40500 Science Ltd. All rights reserved. 40501 C1 Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China. 40502 Shanghai Univ, Dept Chem & Chem Engn, Shanghai 201800, Peoples R China. 40503 RP Chen, Y, Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China. 40504 CR CAMPS X, 1997, CHEM-EUR J, V3, P561 40505 CHEN Y, 1995, POLYM BULL, V35, P705 40506 CHEN Y, 1996, J APPL POLYM SCI, V61, P2185 40507 CHEN Y, 1996, J POLYM SCI POL CHEM, V34, P3297 40508 CHEN Y, 1996, J POLYM SCI POL PHYS, V34, P631 40509 CHEN Y, 1996, SOLID STATE COMMUN, V97, P239 40510 CHEN Y, 1996, SYNTHETIC COMMUN, V26, P3699 40511 CHEN Y, 1997, EUR POLYM J, V33, P291 40512 CHEN Y, 1997, EUR POLYM J, V33, P823 40513 CHEN Y, 1998, EUR POLYM J, V34, P137 40514 CHEN Y, 1998, EUR POLYM J, V34, P1755 40515 CHEN Y, 1998, EUR POLYM J, V34, P421 40516 CHEN Y, 1998, J POLYM SCI POL PHYS, V36, P2653 40517 DUBOIS D, 1991, J AM CHEM SOC, V113, P4364 40518 DUBOIS D, 1991, J AM CHEM SOC, V113, P7773 40519 EDERLE Y, 1997, MACROMOLECULES, V30, P2546 40520 FAGAN PJ, 1992, CARBON, V30, P1213 40521 FAGAN PJ, 1992, J AM CHEM SOC, V114, P9697 40522 FISHER JE, 1993, J PHYS CHEM SOLIDS, V54, P1725 40523 FUJIMOTO T, 1965, J POLYM SCI A, V3, P2259 40524 GILMAN H, 1964, J ORGANOMET CHEM, V2, P447 40525 GUERRA G, 1991, POLYM COMMUN, V32, P430 40526 HIGASHI H, 1961, MAKROMOL CHEM, V43, P245 40527 HIRSCH A, 1992, ANGEW CHEM INT EDIT, V31, P766 40528 HIRSCH A, 1993, CHEM BER, V126, P1061 40529 ISAACS L, 1993, HELV CHIM ACTA, V76, P1231 40530 JEHOULET C, 1991, J AM CHEM SOC, V113, P5456 40531 JEHOULET C, 1992, J AM CHEM SOC, V114, P4237 40532 KAWAMURA T, 1982, MAKROMOL CHEM, V183, P153 40533 KRATSCHMER W, 1990, NATURE, V347, P354 40534 MARSHALL GL, 1985, EUR POLYM J, V21, P949 40535 MILLIKEN J, 1991, CHEM MATER, V3, P386 40536 OHSAWA Y, 1992, J CHEM SOC CHEM 0515, P781 40537 PRATO M, 1997, J MATER CHEM, V7, P1097 40538 RASINKANGAS M, 1993, J AM CHEM SOC, V115, P4901 40539 SAMULSKI ET, 1992, CHEM MATER, V4, P1153 40540 STEWART C, 1996, CHEM COMMUN, P1383 40541 SUBRAMANIAN R, 1996, J PHYS CHEM-US, V100, P16327 40542 SUN YP, 1996, MACROMOLECULES, V29, P8441 40543 TADOKORO H, 1959, B CHEM SOC JPN, V32, P313 40544 WIGNALL GD, 1995, MACROMOLECULES, V28, P6000 40545 NR 41 40546 TC 2 40547 SN 0022-3697 40548 J9 J PHYS CHEM SOLIDS 40549 JI J. Phys. Chem. Solids 40550 PD JUL 40551 PY 1999 40552 VL 60 40553 IS 7 40554 BP 949 40555 EP 956 40556 PG 8 40557 SC Chemistry, Multidisciplinary; Physics, Condensed Matter 40558 GA 208DZ 40559 UT ISI:000080976100013 40560 ER 40561 40562 PT J 40563 AU Cao, WG 40564 Ding, WY 40565 Liu, RD 40566 Huang, TH 40567 Cao, J 40568 TI Facile syntheses of 4-perfluoroalkyl-6-(alpha-furyl)-2-pyranones and 40569 methyl 4-(alpha-furoyl)-3-perfluoroalkyl-3-butenoates 40570 SO JOURNAL OF FLUORINE CHEMISTRY 40571 DT Article 40572 DE methyl 2-perfluoroalkynoates; 40573 4-perfluoroalkyl-6-(alpha-furyl)-2-pyranones; methyl 40574 4-(alpha-furoyl)-3-perfluoroalkyl-3-butenoates 40575 ID ELEMENTO-ORGANIC COMPOUNDS; STEREOSELECTIVE SYNTHESIS; 6TH GROUPS; 40576 ARSORANE; 2-PERFLUOROALKYNOATES; PHOSPHONIUM; CHEMISTRY; 5TH 40577 AB In the presence of K2CO3, reaction of 40578 (alpha-furoyl)methyltriphenylphosphonium bromide (1) with methyl 40579 2-perfluoroalkynoates (2) in CH2Cl2 at room temperature gave methyl 40580 4-(alpha-furoyl)-2-triphenylphospknoranylidene-3-perfluoroalkyl-3-buteno 40581 ates (3) in excellent yields. 40582 4-Perfluoroalkyl-6-(alpha-furyl)-6-phyranones (4) and methyl 40583 4-(alpha-furoyl)-3-perfluoroalkyl-3-butenoates (5) were obtained in 40584 high yield by hydrolysis of these phosphoranes (3) with hot aqueous 40585 methanol. The butenoates (5) were isolated chromatographically as 40586 mixtures of Z and E isomers, the ratios of which were estimated by H-1 40587 NMR Reaction mechanisms are proposed to account for the formation of 40588 products 3, 4 and 5. (C) 1999 Elsevier Science S.A. All rights reserved. 40589 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 40590 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 40591 CR BANKS RE, 1979, ORGANOFLUORINE CHEM 40592 CAO WG, 1998, J FLUORINE CHEM, V91, P99 40593 DING WY, 1986, ACTA CHIM SINICA, V44, P255 40594 DING WY, 1986, ACTA CHIM SINICA, V44, P62 40595 DING WY, 1987, ACTA CHIM SINICA, V45, P47 40596 DING WY, 1987, CHINESE J ORG CHEM, P435 40597 DING WY, 1991, ACTA CHIM SINICA, V49, P284 40598 DING WY, 1991, J CHEM SOC PERK JUN, P1369 40599 DING WY, 1992, CHEM RES CHINESE U, V8, P224 40600 HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47 40601 MANN J, 1987, CHEM SOC REV, V16, P381 40602 TAO WT, 1983, CHINESE J ORG CHEM, P129 40603 WELCH JT, 1987, TETRAHEDRON, V43, P3123 40604 NR 13 40605 TC 3 40606 SN 0022-1139 40607 J9 J FLUORINE CHEM 40608 JI J. Fluor. Chem. 40609 PD JUN 4 40610 PY 1999 40611 VL 95 40612 IS 1-2 40613 BP 135 40614 EP 140 40615 PG 6 40616 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic 40617 GA 207JZ 40618 UT ISI:000080934900016 40619 ER 40620 40621 PT J 40622 AU Xu, J 40623 Zhu, XH 40624 Meng, ZY 40625 TI Effect of the interdiffusion reaction on the compatibility in PZT PNN 40626 functionally gradient piezoelectric materials 40627 SO IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES 40628 DT Article 40629 DE activation energy; diffusivity; distribution profile; FGM; 40630 interdiffusion couple 40631 AB The interfacial diffusion reaction Pb(Ni1/3Nb2/3)O-3 (PNN) and 40632 Pb(Zr,Ti)O-3 (PZT) phases in functionally gradient materials (FGM) has 40633 been investigated as a function of sintering temperature and time, 40634 respectively. The compositional distribution profiles of the 40635 interaction region were examined by electron probe microbeam analysis 40636 (EPMA). According to the diffusion model, the concentration 40637 distribution profiles were simulated by way of numerical approaches. 40638 The diffusivity and activation energy for Ni2+, Nb5+, Ti4+ and Zr4+ 40639 ions have been estimated. The results were discussed. 40640 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 40641 RP Xu, J, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R 40642 China. 40643 CR CHAWLA KK, 1995, CERAMIC MATRIX COMPO, CH4 40644 JINPIN L, 1989, CHINESE J MAT SCI, V4 40645 SHEWMON PB, 1963, DIFFUSION SOLIDS, CH1 40646 TAKAHASHI H, 1990, JSME INT J 1, V33 40647 XINHUA Z, 1995, J MATER SCI LETT, V14, P516 40648 ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169 40649 NR 6 40650 TC 4 40651 SN 1521-3331 40652 J9 IEEE TRANS COMPON PACKAGING T 40653 JI IEEE Trans. Compon. Packaging Technol. 40654 PD MAR 40655 PY 1999 40656 VL 22 40657 IS 1 40658 BP 11 40659 EP 16 40660 PG 6 40661 SC Engineering, Electrical & Electronic; Engineering, Manufacturing; 40662 Materials Science, Multidisciplinary 40663 GA 209DD 40664 UT ISI:000081031900004 40665 ER 40666 40667 PT J 40668 AU Kong, KH 40669 Cheung, PCH 40670 Lu, HQ 40671 Cheng, KS 40672 TI Inflation in Bianchi type-IX Einstein-Cartan cosmological model 40673 SO ASTROPHYSICS AND SPACE SCIENCE 40674 DT Article 40675 ID ANISOTROPIC COSMOLOGIES; PRIMORDIAL SHEAR; UNIVERSE; TORSION; SPIN 40676 AB Within the framework of Einstein-Cartan theory with Weyssenhoff fluid, 40677 we investigate an inflation model for an anisotropic Bianchi type-IX 40678 cosmological model. The system of field equations is solved numerically 40679 and an inflation epoch is achieved. The general condition for the 40680 inflation to occur is also discussed. This anisotropic model evolves 40681 quickly towards to an isotropic one. 40682 C1 Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China. 40683 Shanghai Univ, Dept Phys, Shanghai 200041, Peoples R China. 40684 Univ Oxford, Dept Astrophys, Nucl & Astrophys Lab, Oxford OX1 3RH, England. 40685 RP Kong, KH, Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China. 40686 CR BARROW JD, 1981, NATURE, V292, P35 40687 BRANDENBERGER RH, 1985, REV MOD PHYS, V57, P1 40688 CARTAN E, 1985, MANIFOLD AFFINE CONN 40689 DEMIANSKI M, 1984, NATURE, V307, P140 40690 DEMIANSKI M, 1987, PHYS REV D, V35, P1181 40691 GOENNER H, 1984, CLASSICAL QUANT GRAV, V1, P651 40692 GUTH AH, 1981, PHYS REV D, V23, P347 40693 HEHL FW, 1976, REV MOD PHYS, V48, P393 40694 HENRIQUES AB, 1991, PHYS LETT B, V256, P359 40695 JENSEN LG, 1986, PHYS REV D, V34, P931 40696 LINDE AD, 1984, REP PROG PHYS, V47, P925 40697 LU HQ, 1995, CLASSICAL QUANT GRAV, V12, P2755 40698 MARTINEZGONZALE.E, 1986, PHYS LETT B, V167, P37 40699 OBUKHOV YN, 1987, CLASSICAL QUANT GRAV, V4, P1633 40700 ROTHMAN T, 1985, PHYS LETT B, V159, P256 40701 ROTHMAN T, 1986, PHYS LETT B, V180, P19 40702 STEIGMAN G, 1983, PHYS LETT B, V128, P295 40703 TSAMPARLIS M, 1979, PHYS LETT A, V75, P27 40704 TSOUBELIS D, 1979, PHYS REV D, V20, P3004 40705 TURNER MS, 1986, PHYS REV LETT, V57, P2237 40706 WALD RM, 1983, PHYS REV D, V28, P2118 40707 ZARDECKI A, 1985, PHYS REV D, V31, P718 40708 NR 22 40709 TC 1 40710 SN 0004-640X 40711 J9 ASTROPHYS SPACE SCI 40712 JI Astrophys. Space Sci. 40713 PY 1998 40714 VL 260 40715 IS 4 40716 BP 521 40717 EP 529 40718 PG 9 40719 SC Astronomy & Astrophysics 40720 GA 207RG 40721 UT ISI:000080922200008 40722 ER 40723 40724 PT J 40725 AU Gu, GQ 40726 Yu, KW 40727 TI New method for effective viscosity of colloidal dispersions with 40728 periodic microstructures 40729 SO ACTA MATHEMATICA SCIENTIA 40730 DT Article 40731 DE colloidal dispersion; effective viscosity; suspension; emulsion 40732 ID EFFECTIVE SHEAR VISCOSITY; CONCENTRATED DISPERSIONS; VOLUME FRACTION; 40733 SPHERES; SUSPENSION; LATTICE; FLOW 40734 AB One of the central theoretical problems in the colloid field is to 40735 determine the rheological relation between the macroscopic properties 40736 of colloidal suspensions and the microstructures of the systems. In 40737 this work, the authors develop a method of transformation field by 40738 which one call calculate the effective viscosity of an incompressible: 40739 viscous fluid containing colloidal particles (either solid particles: 40740 or liquid drops) fixed at the points of a periodic lattice. The 40741 effective viscosity of a colloidal dispersion of spherical particles is 40742 calculated. The predictions of the theory are in good agreement with 40743 the Einstein's formula for suspensions and the Taylor's formula for 40744 emulsions at low particle concentrations. At higher particle 40745 concentrations, the theory reproduces the results of Nunan and Keller. 40746 The method is also applicable to the viscosity of colloidal systems 40747 with non-spherical particles. 40748 C1 Shanghai Univ Sci & Technol, Sch Syst Sci & Syst Engn, Shanghai 200093, Peoples R China. 40749 Chinese Univ Hong Kong, Dept Phys, Shatin, New Territories, Hong Kong. 40750 CR BATCHELOR GK, 1972, J FLUID MECH, V56, P401 40751 BATCHELOR GK, 1977, J FLUID MECH, V83, P97 40752 BEDEAUX D, 1977, PHYSICA A, V88, P88 40753 BEDEAUX D, 1983, PHYSICA A, V121, P345 40754 CHOW TS, 1993, PHYS REV E, V48, P1977 40755 DEKRUIF CG, 1985, J CHEM PHYS, V83, P4717 40756 EINSTEIN A, 1906, ANN PHYS LEIPAIG, V19, P288 40757 EINSTEIN A, 1911, ANN PHYS-BERLIN, V34, P591 40758 ESHELBY JD, 1957, P ROY SOC LOND A MAT, V241, P376 40759 FREED KF, 1982, J CHEM PHYS, V76, P6187 40760 GU GQ, 1988, PHYS REV B, V37, P8612 40761 KANDYRIN LB, 1992, ADV POLYM SCI, V103, P103 40762 KRIEGER IM, 1972, ADV COLLOID INTERFAC, V3, P111 40763 MCPHEDRAN RC, 1978, P ROY SOC LOND A MAT, V359, P45 40764 MELLEMA J, 1983, PHYSICA A, V122, P268 40765 MUTHUKUMAR M, 1982, J CHEM PHYS, V76, P6195 40766 NAGATANI T, 1979, J PHYS SOC JPN, V47, P320 40767 NEMATNASSER S, 1981, Q APPL MATH, V39, P43 40768 NUNAN KC, 1984, J FLUID MECH, V142, P269 40769 PETERSON JM, 1963, J CHEM PHYS, V39, P2516 40770 RAYLEIGH JW, 1892, PHILOS MAG, V34, P481 40771 SUEN WM, 1979, J PHYS D, V12, P1325 40772 TAYLOR GI, 1932, P R SOC LOND A-CONTA, V138, P41 40773 VANDERWERFF JC, 1989, J RHEOL, V33, P421 40774 ZICK AA, 1982, J FLUID MECH, V115, P13 40775 NR 25 40776 TC 0 40777 SN 0252-9602 40778 J9 ACTA MATH SCI 40779 JI Acta Math. Sci. 40780 PY 1999 40781 VL 19 40782 IS 2 40783 BP 148 40784 EP 157 40785 PG 10 40786 SC Mathematics 40787 GA 208NK 40788 UT ISI:000080997800004 40789 ER 40790 40791 PT J 40792 AU Chen, J 40793 Nho, YC 40794 Kwon, OH 40795 Hoffman, AS 40796 TI Grafting copolymerization of polyethylene glycol methacrylate (PEGMA) 40797 onto preirradiated PP films 40798 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY 40799 DT Letter 40800 ID PEO GRADIENT SURFACES; PROTEIN ADSORPTION; PLATELET-ADHESION; 40801 PREVENTION; COATINGS 40802 AB Polyethylene glycol methacrylate (PEGMA) with different polyethylene 40803 oxide units were grafted onto polypropylene (PP) films by a 40804 preirradiation grafting method. The effect of co-solvent system on the 40805 degree of grafting and water contact angle were determined, 40806 respectively. The grafted sample films were verified by Fourier 40807 Transform Infrared (FTIR) spectroscopy in the attenuated total 40808 reflectance mode (ATR). The biocompatibility and blood compatibility of 40809 the grafted PP films were evaluated by the determination of protein 40810 adsorption, platelet adsorption and thrombus. 40811 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China. 40812 Korea Atom Energy Res Inst, Radiat Applicat Div, Taejon, South Korea. 40813 Univ Washington, Ctr Bioengn, Seattle, WA 98159 USA. 40814 RP Chen, J, Shanghai Univ, Shanghai Appl Radiat Inst, Jiadiang Campus, 40815 Shanghai 201800, Peoples R China. 40816 CR AMIJI M, 1992, BIOMATERIALS, V13, P682 40817 ANDRADE JD, 1987, T AM SOC ART INT ORG, V33, P75 40818 BAIER RE, 1970, T AM SOC ART INT ORG, V16, P50 40819 DUNKIRK SG, 1991, J BIOMATER APPL, V6, P131 40820 HADDADIASL V, 1995, RADIAT PHYS CHEM, V45, P191 40821 HOFFMAN AS, 1982, ADV CHEM SER, V199, P3 40822 HOFFMAN AS, 1988, J APPL POLYM SCI APP, V42, P251 40823 IKADA Y, 1981, RADIAT PHYS CHEM, V18, P1207 40824 IMAI Y, 1972, J BIOMED MATER RES, V6, P165 40825 JEONG BJ, 1996, J COLLOID INTERF SCI, V178, P757 40826 LEE JH, 1989, J BIOMED MATER RES, V23, P351 40827 LEE JH, 1990, BIOMATERIALS, V11, P455 40828 LEE JH, 1997, J BIOMED MATER RES, V34, P105 40829 NIIO YC, 1993, POLYMER, V17, P433 40830 SUN YH, 1986, J BIOACT COMPAT POL, V1, P316 40831 WILSON JE, 1977, J MACROMOL SCI CHEM, V11, P2113 40832 NR 16 40833 TC 0 40834 SN 0236-5731 40835 J9 J RADIOANAL NUCL CHEM 40836 JI J. Radioanal. Nucl. Chem. 40837 PD JUN 40838 PY 1999 40839 VL 240 40840 IS 3 40841 BP 943 40842 EP 948 40843 PG 6 40844 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science 40845 & Technology 40846 GA 207HR 40847 UT ISI:000080931900039 40848 ER 40849 40850 PT J 40851 AU Guo, XM 40852 TI A new uniqueness theorem of the linear thermo-elastic dynamics on 40853 unbounded domains 40854 SO ACTA MECHANICA SINICA 40855 DT Article 40856 DE linear thermo-elasticity; initial boundary value problem; unique 40857 ID ENERGY 40858 AB In the present paper, the uniqueness of the solution to the initial 40859 boundary value problem of the linear thermo-elastic dynamics on 40860 unbounded domains is obtained under less restrictive conditions, 40861 including abandoning the positive semi-definiteness of the elasticity 40862 tensor and boundness of the material tensor and restrictions on the 40863 acoustic tensor and the coupled tensor, and the results in [1] are 40864 refined. The conclusion here is valid for the case on bounded domains 40865 and the linear elastic dynamics on unbounded domains, hence the results 40866 in [2 similar to 4] are refined too. Abandoning the positive 40867 semi-definiteness of elasticity tensor permits that the uniqueness of 40868 the kinetic process is still valid for deformation of the wider 40869 materials, especially for the case that there are phase-transition 40870 during deformation process provided that the constitutive equations are 40871 unchanged in forms. 40872 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 40873 RP Guo, XM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 40874 200072, Peoples R China. 40875 CR BALL JM, 1987, ARCH RATION MECH AN, V100, P13 40876 CARBONARO B, 1984, J ELASTICITY, V14, P163 40877 CARBONARO B, 1987, J ELASTICITY, V17, P85 40878 CHANDRASEKHARAI.DS, 1984, J TECHN PHYS, V25, P345 40879 ERICKSEN JL, 1975, J ELASTICITY, V5, P191 40880 SHERIEF HH, 1980, J THERMAL STRESSES, V3, P223 40881 NR 6 40882 TC 0 40883 SN 0567-7718 40884 J9 ACTA MECH SINICA 40885 JI Acta Mech. Sin. 40886 PD FEB 40887 PY 1999 40888 VL 15 40889 IS 1 40890 BP 59 40891 EP 62 40892 PG 4 40893 SC Engineering, Mechanical; Mechanics 40894 GA 206VX 40895 UT ISI:000080902000008 40896 ER 40897 40898 PT J 40899 AU Chen, YS 40900 Ma, JH 40901 Liu, ZR 40902 TI The state space reconstruction technology of different kinds of chaotic 40903 data obtained from dynamical system 40904 SO ACTA MECHANICA SINICA 40905 DT Article 40906 DE nonlinear chaotic data; embedding space matrix; eigenvalue and 40907 eigenvector; state space reconstruction 40908 ID TIME-SERIES; INFORMATION; ATTRACTORS 40909 AB Certain deterministic nonlinear systems may show chaotic behavior. We 40910 consider the motion of qualitative information and the practicalities 40911 of extracting a part from chaotic experimental data. Our approach based 40912 on a theorem of Takens draws on the ideas from the generalized theory 40913 of information known as singular system analysis. We illustrate this 40914 technique by numerical data from the chaotic region of the chaotic 40915 experimental data. The method of the singular-value decomposition is 40916 used to calculate the eigenvalues of embedding space matrix. The 40917 corresponding concrete algorithm to calculate eigenvectors and to 40918 obtain the basis of embedding vector space is proposed in this paper. 40919 The projection on the orthogonal basis generated by eigenvectors of 40920 timeseries data and concrete paradigm are also provided here. Meanwhile 40921 the state space reconstruction technology of different kinds of chaotic 40922 data obtained from dynamical system has also been discussed in detail. 40923 C1 Tianjin Univ, Dept Mech, Tianjin 300072, Peoples R China. 40924 SE Univ, Inst Syst Engn, Nanjing 210096, Peoples R China. 40925 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 40926 RP Chen, YS, Tianjin Univ, Dept Mech, Tianjin 300072, Peoples R China. 40927 CR ALDANO AM, 1988, PHYS REV A, V38, P3017 40928 BROOMHEAD DS, 1986, PHYSICA D, V20, P217 40929 CASDAGLI M, 1991, PHYSICA D, V51, P52 40930 FRASER AM, 1986, PHYS REV A, V33, P1134 40931 FRASER AM, 1989, PHYSICA D, V34, P391 40932 GIBSON JF, 1992, PHYSICA D, V57, P1 40933 JUNHAI M, 1997, THESIS TIANJIAN U CH 40934 LIEBERT W, 1988, PHYS LETT, V142, P101 40935 MA JH, 1998, APPL MATH MECH, V19, P481 40936 MA JH, 1998, APPL MATH MECH-ENGL, V19, P1033 40937 MEES AI, 1987, PHYS REV A, V36, P340 40938 PACKARD NH, 1980, PHYS REV LETT, V45, P712 40939 PALUS M, 1993, PHYS LETT A, V175, P203 40940 TAKENS F, 1981, LECT NOTES MATH, V898, P366 40941 NR 14 40942 TC 1 40943 SN 0567-7718 40944 J9 ACTA MECH SINICA 40945 JI Acta Mech. Sin. 40946 PD FEB 40947 PY 1999 40948 VL 15 40949 IS 1 40950 BP 82 40951 EP 92 40952 PG 11 40953 SC Engineering, Mechanical; Mechanics 40954 GA 206VX 40955 UT ISI:000080902000011 40956 ER 40957 40958 PT J 40959 AU Hua, B 40960 Li, CZ 40961 TI Production and characterization of nanocrystalline SnO2 films on Al2O3 40962 agglomerates by CVD in a fluidized bed 40963 SO MATERIALS CHEMISTRY AND PHYSICS 40964 DT Article 40965 DE chemical vapor deposition; fluidization; ultrafine particle 40966 AB In this paper, nanocrystalline SnO2 films an coated on ultrafine Al2O3 40967 particles by hydrolyzing SnCl4 vapor using fluidization chemical vapor 40968 deposition (FCVD) technology. The morphology and distribution of SnO2 40969 films in Al2O3 agglomerates as well as on ultrafine Al2O3 particles are 40970 determined by means of X-ray diffraction (XRD), EPMA, high resolution 40971 electron microscopy (HREM) etc. The results show that nanocrystalline 40972 SnO2 films are deposited uniformly throughout the whole agglomerate if 40973 Al2O3 agglomerates are fluidized and the films are made up of both 40974 amorphous SnO2 and 6-10 nm crystallites on the surfaces of ultrafine 40975 Al2O3 particles under different coating conditions. FCVD can be 40976 developed into a competitive method for surface modification of 40977 ultrafine particles. (C) 1999 Published by Elsevier Science S.A. All 40978 rights reserved. 40979 C1 Shanghai Univ, Coll Chem & Chem Engn, Shanghai 200072, Peoples R China. 40980 E China Univ Sci & Technol, Inst Tech Chem Phys, Shanghai 200072, Peoples R China. 40981 RP Hua, B, Shanghai Univ, Coll Chem & Chem Engn, POB 233,Yanchang Rd 149, 40982 Shanghai 200072, Peoples R China. 40983 CR GU Y, 1992, J E CHINA U CHEM TEC, V18, P506 40984 HUA B, 1994, J E CHINA U SCI TECH, V20, P290 40985 HUA B, 1994, J E CHINA U SCI TECH, V20, P294 40986 ITON H, 1988, J MATER SCI, V23, P43 40987 MAUDES JS, 1980, THIN SOLID FILMS, V69, P183 40988 MOROOKA S, 1988, J CHEM ENG JPN, V21, P41 40989 NAGANO M, 1984, J CRYST GROWTH, V67, P639 40990 YAO J, 1990, J E CHINA U CHEM TEC, V16, P249 40991 NR 8 40992 TC 6 40993 SN 0254-0584 40994 J9 MATER CHEM PHYS 40995 JI Mater. Chem. Phys. 40996 PD MAY 25 40997 PY 1999 40998 VL 59 40999 IS 2 41000 BP 130 41001 EP 135 41002 PG 6 41003 SC Materials Science, Multidisciplinary 41004 GA 203NV 41005 UT ISI:000080714500006 41006 ER 41007 41008 PT J 41009 AU Zhang, YH 41010 Huang, SP 41011 TI Molecular dynamics simulation study of MgO crystal 41012 SO CHINESE PHYSICS LETTERS 41013 DT Article 41014 ID THERMODYNAMIC PROPERTIES; MGSIO3 PEROVSKITE 41015 AB Molecular dynamics simulation of MgO crystal at different temperature 41016 and pressure was carried out by suing the shell model of ionic 41017 polarizability. The prediction of thermal expansion is in good 41018 agreement with the experiment. The heat capacity has been calculated 41019 with a semi-classical approximate method. The calculated values are 41020 less than the experimental data because the anharmonic effect and 41021 quantum correlation were not taken into account. The changes of 41022 transverse-optic and longitudinal-optic modes with the compression 41023 ration are also calculated. 41024 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 41025 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 41026 RP Zhang, YH, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 41027 CR ALLAN NL, 1987, ADV CERAM, V23, P257 41028 ANDERSON OL, 1990, J PHYS CHEM REF DATA, V19, P69 41029 BORN M, 1954, DYNAMICAL THEORY CRY 41030 BUSH TS, 1994, J MATER CHEM, V4, P831 41031 FINCHAM D, 1994, J PHYS-CONDENS MAT, V6, P393 41032 LEWIS GV, 1985, J PHYS C SOLID STATE, V18, P1140 41033 MAO HK, 1979, J GEOPHYS RES, V84, P4533 41034 MATSUI M, 1989, J CHEM PHYS, V91, P489 41035 MITCHELL PJ, 1993, J PHYS-CONDENS MAT, V5, P1031 41036 PING HS, 1997, J PHYS SOC JPN, V66, P1356 41037 WEI Q, 1998, CHINESE PHYS LETT, V15, P834 41038 WINKLER B, 1992, PHYS CHEM MINER, V18, P407 41039 ZHOU LX, 1998, CHINESE PHYS LETT, V15, P444 41040 NR 13 41041 TC 2 41042 SN 0256-307X 41043 J9 CHIN PHYS LETT 41044 JI Chin. Phys. Lett. 41045 PY 1999 41046 VL 16 41047 IS 4 41048 BP 235 41049 EP 237 41050 PG 3 41051 SC Physics, Multidisciplinary 41052 GA 203MT 41053 UT ISI:000080712000001 41054 ER 41055 41056 PT J 41057 AU Wu, YJ 41058 TI A nonlinear Galerkin method with variable modes for 41059 Kuramoto-Sivashinsky equation 41060 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 41061 DT Article 41062 DE Kuramoto-Sivaskinsky equation; nonlinear Galerkin method; 41063 approximation; convergence 41064 ID GLOBAL DYNAMICAL PROPERTIES 41065 AB This article proposes a kind of nonlinear Galerkin methods with 41066 variable modes for the long-term integration of Kuramoto-Sivashinsky 41067 equation. It consists of finding an appropriate or best number of modes 41068 in the correction of the method. Convergence results and error 41069 estimates are derived for this method. Numerical examples show also the 41070 efficiency and advantage of our method over the usual nonlinear 41071 Galerkin method and the classical Galerkin method. 41072 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 41073 Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China. 41074 CR CANUTO C, 1988, SPECTRAL METHODS FLU 41075 FOIAS C, 1983, PHYSICA D, V9, P157 41076 FOIAS C, 1988, MATH MODELLING NUMER, V22, P93 41077 MARION M, 1989, SIAM J NUMER ANAL, V26, P1139 41078 NICOLAENKO B, 1985, PHYSICA D, V16, P155 41079 NICOLAENKO B, 1989, COMMUN PART DIFF EQ, V14, P245 41080 TEMAM R, 1989, MATH MODEL NUMER ANA, V3, P541 41081 TEMAM R, 1989, P 11 INT C NUM METH 41082 TEMAN R, 1984, NAVIER STOKES EQUATI 41083 TEMAN R, 1988, APPL MATH SCI, V68 41084 WU YJ, 1994, ADV MECH, V2, P145 41085 YANG ZH, 1997, J SHANGHAI U, V1, P20 41086 NR 12 41087 TC 1 41088 SN 0254-9409 41089 J9 J COMPUT MATH 41090 JI J. Comput. Math. 41091 PD MAY 41092 PY 1999 41093 VL 17 41094 IS 3 41095 BP 243 41096 EP 256 41097 PG 14 41098 SC Mathematics, Applied; Mathematics 41099 GA 201MN 41100 UT ISI:000080599400003 41101 ER 41102 41103 PT J 41104 AU He, GQ 41105 Liu, JX 41106 TI A kind of implicit iterative methods for ill-posed operator equations 41107 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 41108 DT Article 41109 DE ill-posed equation; implicit iterative method; control parameter; 41110 discrepamcy principle; optimal convergence rate 41111 ID TIKHONOV REGULARIZATION; PARAMETER CHOICE; HILBERT SCALES 41112 AB In this paper we propose a kind of implicit iterative methods for 41113 solving ill-posed operator equations and discuss the properties of the 41114 methods in the case that the control parameter is fixed. The 41115 theoretical results show that the new methods have certain important 41116 features and can overcome some disadvantages of Tikhonov-type 41117 regularization and explicit iterative methods. Numerical examples are 41118 also given in the paper, which coincide well with theoretical results. 41119 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 41120 CR BAUMEISTER J, 1987, STABLE SOLUTION INVE 41121 BRAKHAGE H, 1987, INVERSE ILL POSED PR, P165 41122 GROETSCH CW, 1984, THEORY TIKHONOV REGU 41123 GROETSCH CW, 1989, J APPROX THEORY, V58, P184 41124 HAGEMAN LA, 1981, APPL ITERATIVE METHO 41125 HANKE M, 1991, NUMER MATH, V60, P341 41126 HE GQ, 1993, COMM APPL MATH COMPU, V38, P356 41127 HE GQ, 1993, COMM APPL MATH COMPU, V38, P356 41128 HE GQ, 1993, COMM APPL MATH COMPU, V7, P76 41129 KING JT, 1979, NUMER FUNCT ANAL OPT, V1, P499 41130 LANDWEBER L, 1951, AM J MATH, V73, P615 41131 LUAN WG, 1989, INVERSE PROBLEMS GEO 41132 MOROZOV A, 1966, SOV MATH DOKL, V7, P414 41133 NATTERER F, 1984, APPL ANAL, V18, P29 41134 NEMIROVSKIY AS, 1984, ENG CYBERN, V22, P1 41135 NEUBAUER A, 1988, SIAM J NUMER ANAL, V25, P1313 41136 TIKHONOV AN, 1977, SOLUTION ILL POSED P 41137 NR 17 41138 TC 2 41139 SN 0254-9409 41140 J9 J COMPUT MATH 41141 JI J. Comput. Math. 41142 PD MAY 41143 PY 1999 41144 VL 17 41145 IS 3 41146 BP 275 41147 EP 284 41148 PG 10 41149 SC Mathematics, Applied; Mathematics 41150 GA 201MN 41151 UT ISI:000080599400005 41152 ER 41153 41154 PT J 41155 AU Wang, HX 41156 TI Extinction of population-size-dependent branching processes in random 41157 environments 41158 SO JOURNAL OF APPLIED PROBABILITY 41159 DT Article 41160 DE stochastic population models; Markov chains in random environments; 41161 extinction probabilities 41162 AB We generalize a population-size-dependent branching process to a more 41163 general branching model called the population-size-dependent branching 41164 process in random environments. For the model where {Zn}(n greater than 41165 or equal to 0) is associated with the stationary environment <(xi)over 41166 bar> = {xi(n)}(n greater than or equal to 0), let B = {omega : 41167 Z(n)(omega) = 0 for some n}, and q(<(xi)over bar>) = P(B \ <(xi)over 41168 bar>, Z(0) = 1). The result is that P(q(<(xi)over bar>) = 1) is either 41169 1 or 0, and sufficient conditions for certain extinction (i.e. 41170 P(q(<(xi)over bar>) = 1) = 1) and for non-certain extinction (i.e. 41171 P(q(<(xi)over bar>) < 1) = 1) are obtained for the model. 41172 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 41173 RP Wang, HX, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 41174 CR ATHREYA KB, 1971, ANN MATH STAT, V42, P1499 41175 COGBURN R, 1984, Z WAHRSCHEINLICHKEIT, V66, P109 41176 KLEBANER FC, 1984, ADV APPL PROBAB, V16, P30 41177 SMITH WL, 1969, ANN MATH STAT, V40, P814 41178 VIAUD DPL, 1994, J APPL PROBAB, V31, P22 41179 NR 5 41180 TC 5 41181 SN 0021-9002 41182 J9 J APPL PROBAB 41183 JI J. Appl. Probab. 41184 PD MAR 41185 PY 1999 41186 VL 36 41187 IS 1 41188 BP 146 41189 EP 154 41190 PG 9 41191 SC Statistics & Probability 41192 GA 202WX 41193 UT ISI:000080676100013 41194 ER 41195 41196 PT J 41197 AU Li, CF 41198 Wang, Q 41199 TI The quantum behavior of an electron in a uniform magnetic field 41200 SO PHYSICA B 41201 DT Article 41202 DE probability current density; uniform magnetic field; symmetric gauge; 41203 classical correspondence 41204 AB The total probability current of an electron in a uniform magnetic 41205 field is calculated in the symmetric gauge. Even though the eigen 41206 motion of the electron in this gauge is similar to the classical orbit 41207 motion, the total probability current is found to be equal to zero when 41208 the canonical angular momentum is less than zero. The reason is that in 41209 this case, the origin of the coordinate system lies outside the 41210 circular orbit of corresponding classical motion, in addition to the 41211 absence of radial component of the probability current density because 41212 of the indeterminacy of the location of the orbit center. (C) 1999 41213 Published by Elsevier Science B.V. All rights reserved. 41214 C1 CCAST, World Lab, Beijing 100080, Peoples R China. 41215 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 41216 RP Li, CF, CCAST, World Lab, POB 8730, Beijing 100080, Peoples R China. 41217 CR ARFKEN G, 1985, MATH METHODS PHYSICI, P726 41218 BALLENTINE LE, 1990, QUANTUM MECH, P216 41219 CAPRI AZ, 1985, NONRELATIVISTIC QUAN, P457 41220 LANDAU LD, 1977, QUANTUM MECHANICS, P456 41221 PAGE L, 1930, PHYS REV, V36, P444 41222 STONE M, 1992, QUANTUM HALL EFFECT 41223 NR 6 41224 TC 3 41225 SN 0921-4526 41226 J9 PHYSICA B 41227 JI Physica B 41228 PD JUL 41229 PY 1999 41230 VL 269 41231 IS 1 41232 BP 22 41233 EP 27 41234 PG 6 41235 SC Physics, Condensed Matter 41236 GA 200KG 41237 UT ISI:000080538400004 41238 ER 41239 41240 PT J 41241 AU Huang, SR 41242 Luo, J 41243 Leonardi, F 41244 Lipo, TA 41245 TI A comparison of power density for axial flux machines based on general 41246 purpose sizing equations 41247 SO IEEE TRANSACTIONS ON ENERGY CONVERSION 41248 DT Article 41249 ID ELECTRICAL MACHINES; DESIGN 41250 AB Based on the concept of the converter fed machine (CFM), an optimal 41251 machine design can be considered as the best match of the machine 41252 topology, the power electronic converter and the performance 41253 specification. To compare power production potential of axial flux 41254 machines with various topologies, different waveforms of back emf and 41255 current, general purpose sizing and power density equations for such 41256 machines are needed. In this paper, a general approach is presented to 41257 develop and to interpret these equations. Sample applications of the 41258 sizing and power density equations are utilized to compare the axial 41259 flux toroidal permanent magnet (AFTPM) machine and the axial flux 41260 two-stator permanent magnet (AF2SPM) machine. 41261 C1 Shanghai Univ, Coll Automat, Shanghai 200072, Peoples R China. 41262 McCleer Power Inc, Jackson, MI 49203 USA. 41263 Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA. 41264 RP Huang, SR, Shanghai Univ, Coll Automat, 147 Yan Chang Rd, Shanghai 41265 200072, Peoples R China. 41266 CR CAMPBELL P, 1974, P I ELECTR ENG, V121, P1489 41267 CARICCHI F, 1994, IEEE IAS ANN M DENV, P254 41268 CHAN CC, 1987, IEEE T ENERGY CONVER, V2, P294 41269 DOTE Y, 1990, BRUSHLESS SERVOMOTOR 41270 HUANG S, 1996, IEEE IND APPLIC SOC, P836 41271 JENSEN CC, 1992, IEEE T IND APPL, V28, P646 41272 LI Y, 1995, THESIS U WISCONSIN M 41273 LIPO TA, 1984, IEEE T IND APPL, V20, P834 41274 LIPO TA, 1995, IPEC 95 JAP APR 3 7, P1 41275 SPOONER E, 1988, P INT C EL MACH, V3, P81 41276 NR 10 41277 TC 7 41278 SN 0885-8969 41279 J9 IEEE TRANS ENERGY CONVERS 41280 JI IEEE Trans. Energy Convers. 41281 PD JUN 41282 PY 1999 41283 VL 14 41284 IS 2 41285 BP 185 41286 EP 191 41287 PG 7 41288 SC Engineering, Electrical & Electronic; Energy & Fuels 41289 GA 199CP 41290 UT ISI:000080462000010 41291 ER 41292 41293 PT J 41294 AU Li, QN 41295 TI Coupled-local-mode theory and study of optical properties of a Gaussian 41296 fiber grating 41297 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND 41298 VISION 41299 DT Article 41300 ID BRAGG GRATINGS; PHASE GRATINGS; FILTERS; PERIOD 41301 AB A coupled-local-mode theory is presented for a nonuniform fiber grating 41302 with slowly varying background induced-index change. On this basis the 41303 transmission spectrum of a Gaussian fiber grating is calculated, and 41304 the underlying physical mechanism is studied in detail. (C) 1999 41305 Optical Society of America [S0740-3232(99)02306-6]. 41306 C1 Shanghai Univ, Inst Fiber Opt, Shanghai 201800, Peoples R China. 41307 RP Li, QN, Shanghai Univ, Inst Fiber Opt, Shanghai 201800, Peoples R China. 41308 CR BENNION I, 1996, OPT QUANT ELECTRON, V28, P93 41309 BORN M, 1959, PRINCIPLES OPTICS 41310 CAMPBELL RJ, 1994, INT J OPTOELECTRON, V9, P33 41311 ERDOGAN T, 1996, J OPT SOC AM A, V13, P296 41312 ERDOGAN T, 1997, J LIGHTWAVE TECHNOL, V15, P1277 41313 ERDOGAN T, 1997, J OPT SOC AM A, V14, P1760 41314 FONJALLAZ PY, 1997, J LIGHTWAVE TECHNOL, V15, P371 41315 HILL KO, 1978, APPL PHYS LETT, V32, P647 41316 HUANG HC, 1998, MICROWAVE APPROACH H 41317 KASHYAP R, 1994, OPT FIBRE TECHNOL, V1, P17 41318 KASHYAP R, 1997, INT J OPTOELECTRON, V11, P87 41319 LAM DKW, 1981, APPL OPTICS, V20, P440 41320 LANDAU LD, 1980, QUANTUM MECH 41321 MARCUSE D, 1991, THEORY DIELECTRIC OP 41322 MELTZ G, 1989, OPT LETT, V14, P823 41323 MIZRAHI V, 1993, J LIGHTWAVE TECHNOL, V11, P1513 41324 POLADIAN L, 1993, PHYS REV E, V48, P4758 41325 SIPE JE, 1994, J OPT SOC AM A, V11, P1307 41326 SNYDER AW, 1983, OPTICAL WAVEGUIDE TH 41327 VENGSARKAR AM, 1996, J LIGHTWAVE TECHNOL, V14, P58 41328 ZHAO YY, 1997, J LIGHTWAVE TECHNOL, V15, P154 41329 NR 21 41330 TC 0 41331 SN 0740-3232 41332 J9 J OPT SOC AM A-OPT IMAGE SCI 41333 JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 41334 PD JUN 41335 PY 1999 41336 VL 16 41337 IS 6 41338 BP 1312 41339 EP 1325 41340 PG 14 41341 SC Optics 41342 GA 198YQ 41343 UT ISI:000080452500011 41344 ER 41345 41346 PT J 41347 AU He, JH 41348 TI General Bernoulli equation for rotational flow in rotor 41349 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 41350 DT Article 41351 AB In this paper, a general Bernoulli equation is formulated in terms of 41352 three Clebsch-type variables for unsteady compressible rotational flow 41353 in turbomachine aerodynamics. 41354 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 41355 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 41356 Peoples R China. 41357 CR ECER A, 1983, AIAA J, V21, P343 41358 HE JH, 1997, INT J TURBO JET ENG, V14, P17 41359 LIU GL, 1980, FUNDAMENTALS AERODYN 41360 LIU GL, 1991, 3 INT C INV DES OPT, P337 41361 NR 4 41362 TC 1 41363 SN 0334-0082 41364 J9 INT J TURBO JET ENGINES 41365 JI Int. J. Turbo. Jet-Engines 41366 PY 1999 41367 VL 16 41368 IS 1 41369 BP 17 41370 EP 18 41371 PG 2 41372 SC Engineering, Aerospace 41373 GA 196WU 41374 UT ISI:000080331500002 41375 ER 41376 41377 PT J 41378 AU He, JH 41379 TI Treatment shocks in transonic aerodynamics in the meshless method Part 41380 I: Lagrange multiplier approach 41381 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 41382 DT Article 41383 DE meshless method; variational principle; transonic flow 41384 ID FREE GALERKIN METHODS; FLUID-MECHANICS 41385 AB The meshless method, which is mainly based on moving least-squares 41386 approximation, has features which make it highly attractive for 41387 simulating problems containing discontinuities (such as material 41388 discontinuities, shocks, and inverse problems). By using the meshless 41389 method, the trial and test functions for variational functional are 41390 constructed with moving least-square interpolants. The Rankine-Hogoniot 41391 shock relations are imposed at the variational level by the Lagrange 41392 multipliers. Treatment of the shocks is discussed as well as accurate 41393 treatment of the unknown discontinuities of shocks has been emphasized. 41394 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 41395 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 41396 Peoples R China. 41397 CR BELYTSCHKO T, 1994, INT J NUMER METH ENG, V37, P229 41398 BELYTSCHKO T, 1995, INT J SOLIDS STRUCT, V32, P2547 41399 BELYTSCHKO T, 1996, COMPUT METHOD APPL M, V139, P3 41400 HE JH, 1997, INT J TURBO JET ENG, V14, P17 41401 HE JH, 1997, INT J TURBO JET ENG, V14, P23 41402 HE JH, 1997, J SHANGHAI U, V1, P117 41403 LISZKA TJ, 1996, COMPUT METHOD APPL M, V139, P263 41404 LIU WK, 1995, INT J NUMER METH FL, V21, P901 41405 LIU WK, 1996, ARCH COMPUTATIONAL M, V3, P3 41406 ONATE E, 1996, COMPUT METHOD APPL M, V139, P315 41407 NR 10 41408 TC 10 41409 SN 0334-0082 41410 J9 INT J TURBO JET ENGINES 41411 JI Int. J. Turbo. Jet-Engines 41412 PY 1999 41413 VL 16 41414 IS 1 41415 BP 19 41416 EP 25 41417 PG 7 41418 SC Engineering, Aerospace 41419 GA 196WU 41420 UT ISI:000080331500003 41421 ER 41422 41423 PT J 41424 AU Shi, DH 41425 TI Revisiting the state transition frequency formula 41426 SO ANNALS OF OPERATIONS RESEARCH 41427 DT Article 41428 DE supplementary variable technique; VMP method; state transition counting 41429 process; transition frequency formula; fluid model 41430 AB In this paper, we give a new proof of the transition frequency formula 41431 for the state transition counting process in a vector Markov process 41432 (VMP). The formula was first presented by the author in the early 41433 eighties. We also derive the absorbing distribution, the renewal 41434 distribution and the entering probability formulas from the formula. As 41435 an application, we use derived results to reduce the analysis of a 41436 fluid model with random disruptions. 41437 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 41438 RP Shi, DH, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 41439 CR CHEN H, 1992, OPER RES, V40, S324 41440 COX DR, 1955, P CAMBRIDGE PHILOS S, V51, P313 41441 NEUTS MF, 1957, J APPL PROBAB, V17, P764 41442 NEUTS MF, 1975, LIBER AMICORUM PROF, P173 41443 PYKE R, 1961, ANN MATH STAT, V32, P1231 41444 SHI DH, 1985, ACTA MATH APPL SINIC, V1, P101 41445 SHI DH, 1990, ANN OPERAT RES, V24, P185 41446 SHI DH, 1996, NAV RES LOG, V43, P1009 41447 WIDDER DV, 1946, LAPLACE TRANSFORM 41448 NR 9 41449 TC 0 41450 SN 0254-5330 41451 J9 ANN OPER RES 41452 JI Ann. Oper. Res. 41453 PY 1999 41454 VL 87 41455 BP 305 41456 EP 317 41457 PG 13 41458 SC Operations Research & Management Science 41459 GA 197DK 41460 UT ISI:000080349200021 41461 ER 41462 41463 PT J 41464 AU He, JH 41465 TI Hybrid problems of determining unknown shape of bladings in 41466 compressible S2-flow in mixed-flow turbomachinery via variational 41467 technique 41468 SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY 41469 DT Article 41470 DE aerodynamics; blades; inverse problems 41471 AB Using the semi-inverse method proposed by the present author, a family 41472 of variational principle for direct problem of S2-flow in mixed-flow 41473 turbomachinery is obtained; then, applying the functional variation 41474 with variable domain, two families of variational principles are 41475 established for the hybrid problems of determining the unknown shape of 41476 bladings, where pressure or velocity is over-specified. The present 41477 variational models are well posed for redundant data at boundaries. The 41478 theory provides both rational ways for best contouring the hub/casing 41479 walls to meet various practical design requirements and a theoretical 41480 basis for introducing the finite element method into computational 41481 aerodynamics of turbomachinery. 41482 C1 Shanghai Univ, Inst Mech, Shanghai 200041, Peoples R China. 41483 RP He, JH, Shanghai Univ, Inst Mech, Shanghai 200041, Peoples R China. 41484 CR CAI RQ, 1988, INT J HEAT FLUID FL, V9, P302 41485 HE JH, 1997, INT J TURBO JET ENG, V14, P23 41486 HE JH, 1997, J SHANGHAI U, V1, P117 41487 HE JH, 1998, GEN VARIATIONAL PRIN 41488 HE JH, 1998, INT J TURBO JET ENG, V15 41489 LIU GL, 1997, AIRCR ENG AEROSP TEC, V69, P527 41490 LIU X, 1995, MULT SCLER, V1, P2 41491 NR 7 41492 TC 8 41493 SN 0002-2667 41494 J9 AIRCRAFT ENG AEROSP TECHNOL 41495 JI Aircr. Eng. Aerosp. Technol. 41496 PY 1999 41497 VL 71 41498 IS 2 41499 BP 154 41500 EP 159 41501 PG 6 41502 SC Engineering, Aerospace 41503 GA 195JN 41504 UT ISI:000080247200007 41505 ER 41506 41507 PT J 41508 AU Wang, Q 41509 Wu, Z 41510 Wang, LQ 41511 TI Nonlinear behavior of electromagnetic waves on surface of 41512 antiferromagnet 41513 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY 41514 DT Article 41515 DE antiferromagnet; nonlinear wave; surface wave 41516 ID MICROWAVE-ENVELOPE SOLITONS; IRON-GARNET FILMS 41517 AB The properties of the nonlinear TM waves on the interface between a 41518 dielectric and an antiferromagnet are studied. The relationship between 41519 the field components of TM wave is discussed in detail, and the 41520 dispersion characteristics as well as the position of the peak field 41521 are exposed. The theoretical analysis shows that for the nonlinear TM 41522 waves there exist passband(s) and stopband(s) which can be switched 41523 into each other by varying the power. II is revealed that, in the case 41524 of epsilon(1)>epsilon(2), the nonlinear TM waves on the interface are 41525 backward surface waves with the group and phase velocities opposite. 41526 C1 Shanghai Univ, Coll Sci, Shanghai 201800, Peoples R China. 41527 RP Wang, Q, Shanghai Univ, Coll Sci, Shanghai 201800, Peoples R China. 41528 CR ALMEIDA NS, 1987, PHYS REV B, V36, P2015 41529 BOARDMAN AD, 1994, IEEE T MAGN, V30, P1 41530 BOYLE JW, 1996, PHYS REV B, V53, P12173 41531 CHEN M, 1994, PHYS REV B, V49, P12773 41532 DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308 41533 NEWELL AC, 1991, NONLINEAR OPTICS, P120 41534 TSANKOV MA, 1994, J APPL PHYS, V76, P4274 41535 VUKOVICH S, 1990, SOV PHYS JETP, V71, P964 41536 WANG KCP, 1996, INTERFACES, V26, P77 41537 WANG Q, 1994, SCI CHINA SER A, V24, P160 41538 WANG Q, 1995, J APPL PHYS, V77, P5831 41539 NR 11 41540 TC 4 41541 SN 1006-9283 41542 J9 SCI CHINA SER A 41543 JI Sci. China Ser. A-Math. Phys. Astron. 41544 PD MAR 41545 PY 1999 41546 VL 42 41547 IS 3 41548 BP 310 41549 EP 318 41550 PG 9 41551 SC Mathematics, Applied; Mathematics 41552 GA 193FQ 41553 UT ISI:000080125600011 41554 ER 41555 41556 PT J 41557 AU Zhao, MH 41558 Cheng, CJ 41559 Liu, GN 41560 Shen, YP 41561 TI The analysis of crack problems with non-local elasticity 41562 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 41563 DT Article 41564 DE crack; boundary integral equation (BIM); boundary element method (BEM); 41565 non-local elasticity; fundamental solution 41566 ID NONLOCAL ELASTICITY; DISLOCATION 41567 AB In this pager, the displacement discontinuity fundamental solutions ( 41568 DDFS) corresponding to the unit concentrated displacement discontinuity 41569 for plane problems of non-local elasticity are obtained. Based on the 41570 displacement discontinuity boundary integral equation (DDBIE) and 41571 boundary element method (BEM), a method of analysis of crack problems 41572 in non-local elasticity with generalized purpose is proposed. By using 41573 this method, several important problems in fracture mechanics such as 41574 edge crack are studied. The study of edge crack shows that the stress 41575 concentration factor (SCF) near the crack tip is not a constant but 41576 varies with the crack length. With this result the effect of crack 41577 length on the fracture roughness K (I c) is studied. The results 41578 obtained in this paper are in accordance with the published ones. 41579 C1 Zhengzhou Res Inst Mech Engn, Zhengzhou 450052, Peoples R China. 41580 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China. 41581 Xian Jiao Tong Univ, Xian 710049, Peoples R China. 41582 RP Zhao, MH, Zhengzhou Res Inst Mech Engn, Zhengzhou 450052, Peoples R 41583 China. 41584 CR 1986, GB639486 41585 CHENG PS, 1992, ACTA MECH SINICA, V24, P329 41586 CROUCH SL, 1976, INT J NUMER METH ENG, V10, P301 41587 ERINGEN AC, 1977, INT J ENG SCI, V15, P177 41588 ERINGEN AC, 1977, J MECH PHYS SOLIDS, V25, P339 41589 ERINGEN AC, 1979, ENG FRACT MECH, V12, P211 41590 ERINGEN AC, 1983, J APPL PHYS, V54, P6811 41591 ERINGEN AC, 1984, J APPL PHYS, V56, P2675 41592 ERINGEN AC, 1992, INT J ENG SCI, V10, P223 41593 GAO J, 1989, ACTA MECH SOLIDA SIN, V10, P289 41594 HU SH, 1991, P 6 NAT C FRACT C HA, P262 41595 ILCEWICZ L, 1981, ENG FRACT MECH, V14, P801 41596 LI QF, 1985, ENG FRACT MECH, V22, P9 41597 RAMABRAHAM B, 1985, INDIAN J PURE APPL M, V16, P661 41598 SHAH RC, 1974, ASTM STP, V560, P29 41599 SIH GC, 1973, MECH FRACTURE M, V1 41600 WANG R, 1989, SCI CHINA, V34, P1056 41601 YU JL, 1984, ACTA MECH SINICA, V16, P485 41602 ZHAO MH, 1994, ENG ANAL, V13, P333 41603 ZHAO MH, 1995, ACTA MECH SOLIDA SIN, V8, P42 41604 ZHAO TS, 1985, J HUAZHONG CENTRAL C, V13, P47 41605 ZHAO YS, 1987, P INT C FRACT FRACT, P206 41606 NR 22 41607 TC 1 41608 SN 0253-4827 41609 J9 APPL MATH MECH-ENGL ED 41610 JI Appl. Math. Mech.-Engl. Ed. 41611 PD FEB 41612 PY 1999 41613 VL 20 41614 IS 2 41615 BP 143 41616 EP 153 41617 PG 11 41618 SC Mathematics, Applied; Mechanics 41619 GA 193CZ 41620 UT ISI:000080119400004 41621 ER 41622 41623 PT J 41624 AU Zhu, XH 41625 Zhu, JM 41626 Zhou, SH 41627 Li, Q 41628 Meng, ZY 41629 Ming, NB 41630 TI Configurations of ferroelectric domains in bismuth- and zinc-modified 41631 Pb(Ni1/3Nb2/3)O-3-PbTiO3-PbZrO3 ceramics 41632 SO JOURNAL OF MATERIALS SCIENCE 41633 DT Article 41634 ID PIEZOELECTRIC PROPERTIES; ELECTRON-MICROSCOPY; BATIO3; SYSTEM 41635 AB Transmission electron microscopy was used to investigate the domain 41636 structures of the 41637 (Pb0.985Bi0.01)(Ni1/4Zn1/12Nb2/3)(0.2)(ZrsigmaTi1-sigma)(0.8)O-3 (0.30 41638 less than or equal to sigma less than or equal to 0.70) ceramics, which 41639 are located in the ferroelectric tetragonal and rhombohedral phase 41640 regions, and also near the morphotropic phase boundary (MPB). The 41641 results show that the lamellar twinning domains and the delta-fringe 41642 contrast are most frequently observed in the compositions located in 41643 the ferroelectrc tetragonal phase region. In the compositions near the 41644 MPB, a banded domain structure similar to herringbone pattern is 41645 observed, which contains many parallel bands forming 90 degrees or 70 41646 degrees angles whereas they are inconsistent with one another on both 41647 sides of the herringbone domain patterns. The morphology of the 41648 herringbone domain structure observed in the bismuth- and zinc-modified 41649 PNN-PZ-PT ceramics with composition near the MPB can be described by a 41650 space-stacking succession of two crystallographically equivalent plates 41651 whereas made from different twin-related domains, with the same habit 41652 plane parallel to the (0.11)-type plane. In the compositions located in 41653 the rhombohedral phase region, the stripelike domains are observed, and 41654 a local random contrast representing short-range-ordered 'island'-typed 41655 polar clusters or nanodomains is also found, which is attributed to the 41656 existence of the polar microregions with the dispersed nanometer-sized 41657 short-range-ordered domains in the rhombohedral matrix, because the 41658 free energy of the ensemble of the polar microregion is lowered, and 41659 the relative thermodynamic stability is increased with increasing the 41660 content ratio of Zr to Ti. In addition, the wavy character in the 41661 thickness fringe is commonly observed at the fringe of thin foil, which 41662 is due to continuous bending of the thin foil at various equivalent 41663 directions. (C) 1999 Klumer Academic Publishers. 41664 C1 Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China. 41665 Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 41666 CCAST, World Lab, Beijing 100080, Peoples R China. 41667 RP Zhu, XH, Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, 41668 Nanjing 210093, Peoples R China. 41669 CR ARISTOV VV, 1983, PHYS STATUS SOLIDI A, V78, P229 41670 ARLT G, 1980, J APPL PHYS, V51, P4956 41671 BRADT RC, 1969, J AM CERAM SOC, V52, P192 41672 DEDERICHS H, 1986, FERROELECTRICS, V68, P281 41673 GERSON R, 1960, J APPL PHYS, V31, P188 41674 GOO EKW, 1981, J APPL PHYS, V52, P2940 41675 HU YH, 1986, J AM CERAM SOC, V69, P594 41676 JAFFE B, 1971, PIEZOELECTRIC CERAMI 41677 KING G, 1990, J AM CERAM SOC, V73, P1534 41678 MAFFITT KN, 1968, J APPL PHYS, V39, P3878 41679 OUCHI H, 1965, J AM CERAM SOC, V48, P630 41680 PARK BM, 1994, J AM CERAM SOC, V77, P3193 41681 RANDALL CA, 1987, J MATER SCI, V22, P925 41682 YOON MS, 1995, J APPL PHYS, V77, P3991 41683 ZHANG QM, 1988, J APPL PHYS, V64, P6445 41684 ZHU HX, 1996, SENSOR ACTUAT A-PHYS, V48, P169 41685 ZHU XH, 1995, THESIS XIAN JIAOTONG 41686 ZHU XH, 1996, J MATER SCI, V31, P2171 41687 ZHU XH, 1997, J MATER SCI, V32, P4275 41688 ZHU XH, 1998, FERROELECTRICS, V215, P265 41689 NR 20 41690 TC 2 41691 SN 0022-2461 41692 J9 J MATER SCI 41693 JI J. Mater. Sci. 41694 PD APR 1 41695 PY 1999 41696 VL 34 41697 IS 7 41698 BP 1533 41699 EP 1541 41700 PG 9 41701 SC Materials Science, Multidisciplinary 41702 GA 190DJ 41703 UT ISI:000079946500014 41704 ER 41705 41706 PT J 41707 AU Zhang, LS 41708 Gao, F 41709 Zhu, WX 41710 TI Nonlinear integer programming and global optimization 41711 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 41712 DT Article 41713 DE integer programming; global minimization problem; Branch-Bound algorithm 41714 AB Various approaches have been developed for solving a variety of 41715 continuous global optimization problems. But up to now, less work has 41716 been devoted to solving nonlinear integer programming problems due to 41717 the inherent difficulty. This paper manages to transform the general 41718 nonlinear integer programming problem into an "equivalent" special 41719 continuous global minimization problem. Thus any effective global 41720 optimization algorithm can be used to solve nonlinear integer 41721 programming problems. This result will also promote the research on 41722 global optimization. We present an interval Branch-and-Bound algorithm. 41723 Numerical experiments show that this approach is efficient. 41724 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 41725 CR BENSON HP, 1990, ANN OPER RES, V25, P243 41726 CHICHINADZE VK, 1991, COMP MATH MATH PHYS+, V30, P170 41727 CONLEY W, 1980, COMPUTER OPTIMIZATIO 41728 GAREY MR, 1979, COMPUTER INTRACTABIL 41729 GE R, 1989, APPL MATH COMPUT, V34, P39 41730 GE R, 1990, MATH PROGRAM, V46, P191 41731 KAN AHG, 1988, HDB OPERATIONS RES M, V1 41732 LEVY AV, 1985, SIAM J SCI STAT COMP, V6, P15 41733 NUMHAAUSER GL, 1988, INTEGER COMBINATORIA 41734 RATSCHEK H, 1988, E HORWOOD SERIES MAT 41735 SCHRIJVER A, 1986, THEORY LINEAR INTEGE 41736 NR 11 41737 TC 2 41738 SN 0254-9409 41739 J9 J COMPUT MATH 41740 JI J. Comput. Math. 41741 PD MAR 41742 PY 1999 41743 VL 17 41744 IS 2 41745 BP 179 41746 EP 190 41747 PG 12 41748 SC Mathematics, Applied; Mathematics 41749 GA 190JB 41750 UT ISI:000079958400007 41751 ER 41752 41753 PT J 41754 AU Ye, ZM 41755 TI Application of Maple V to the nonlinear vibration analysis of circular 41756 plate with variable thickness 41757 SO COMPUTERS & STRUCTURES 41758 DT Article 41759 DE nonlinear vibration; circular plate with variable thickness; computer 41760 algebra systems method 41761 ID NON-LINEAR VIBRATION; RECTANGULAR-PLATES; SHALLOW SHELLS 41762 AB This paper is concerned with the application of Maple V to the 41763 nonlinear vibration problems of circular plates with variable 41764 thickness. In this paper, the nonlinear equations of plates of variable 41765 thickness to the dynamic case can be solved by using the computer 41766 algebra systems method. Details of solution expressions and numerical 41767 results are given in computer algebra systems forms, for two kinds of 41768 boundary conditions, which are the clamped edge and the supported edge. 41769 The numerical results show that the solutions of the paper contain 41770 other cases when the plates are of uniform thickness. The effect of 41771 various thickness parameters has been investigated in detail. In 41772 addition, a Runge-Kutta method is used to solve the free vibration and 41773 the maximum deflection response to a uniformly distributed step load of 41774 plates with variable thickness. It is shown that the adoption of 41775 variable thickness plate would be useful in engineering design. (C) 41776 1999 Elsevier Science Ltd. All rights reserved. 41777 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 41778 RP Ye, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yan Chang 41779 Rd, Shanghai 200072, Peoples R China. 41780 CR BELTZER AI, 1990, APPL MECH REV, V43, P119 41781 BHUSHAN B, 1991, COMPOS STRUCT, V18, P263 41782 BISWAS P, 1984, J INDIAN I SCI, V65, P29 41783 CHANG WP, 1986, INT J NONLINEAR MECH, V21, P375 41784 CHIA CY, 1985, J SOUND VIB, V101, P539 41785 CHU HN, 1956, J APPLIED MECHANICS, V23, P532 41786 DUMIR PC, 1986, J SOUND VIB, V107, P253 41787 GANDHI M, 1988, T ASME, V110, P140 41788 IOAKIMIDIS NI, 1992, COMPUT STRUCT, V43, P181 41789 IOAKIMIDIS NI, 1994, COMPUT STRUCT, V53, P63 41790 ISAKHANOV GV, 1985, PROBL PROCHN, V11, P74 41791 LI D, 1990, APPL MATH MECH, V11, P13 41792 MEI C, 1985, AIAA J, V23, P1104 41793 RAJAGOPAL SV, 1986, J SOUND VIBR, V110, P261 41794 RAJAGOPAL SV, 1987, AIAA J, V25, P130 41795 TIMOSHENKO S, 1959, THEORY PLATES SHELLS 41796 WAH T, 1963, INT J MECH SCI, V5, P425 41797 WANG XX, 1991, COMPUT METHOD APPL M, V86, P73 41798 YAMAKI N, 1961, Z ANGEW MATH MECH, V41, P501 41799 YE ZM, 1995, COMPUT STRUCT, V55, P325 41800 YE ZM, 1997, J SOUND VIB, V202, P303 41801 YE ZM, 1998, COMPUT METH APPL MEC, V163, P384 41802 NR 22 41803 TC 4 41804 SN 0045-7949 41805 J9 COMPUT STRUCT 41806 JI Comput. Struct. 41807 PD JUN 41808 PY 1999 41809 VL 71 41810 IS 5 41811 BP 481 41812 EP 488 41813 PG 8 41814 SC Computer Science, Interdisciplinary Applications; Engineering, Civil 41815 GA 191WD 41816 UT ISI:000080043800001 41817 ER 41818 41819 PT J 41820 AU Tian, LX 41821 Liu, ZR 41822 TI p dissipative operator 41823 SO COMMUNICATIONS IN MATHEMATICAL PHYSICS 41824 DT Article 41825 ID NONLINEAR SCHRODINGER-EQUATION; ADJOINT HILLS OPERATORS; POTENTIALS 41826 AB In this paper the authors prove that the generalized positive p 41827 selfadjoint (GPpS) operators in Banach space satisfy the generalized 41828 Schwarz inequality, solve the maximal dissipative extension 41829 representation of p dissipative operators in Banach space by using the 41830 inequality and introducing the generalized indefinite inner product 41831 (GIIP) space, and apply the result to a certain type of Schrodinger 41832 operator. 41833 C1 Jiangsu Uni Sci & Technol, Dept Math & Phys, Zhenjiang 212013, Jiangsu, Peoples R China. 41834 Acad Sinica, Inst Mech, LNM, Beijing 100080, Peoples R China. 41835 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 41836 RP Tian, LX, Jiangsu Uni Sci & Technol, Dept Math & Phys, Zhenjiang 41837 212013, Jiangsu, Peoples R China. 41838 CR ANTOINE JP, 1981, ADV MATH, V41, P281 41839 BERKSON E, 1975, T AM MATH SOC, V116, P376 41840 BONGAR L, 1974, ERGEB MATH GRENZGEB, V78 41841 BRANGES LD, 1988, J FUNCT ANAL, V81, P219 41842 CHANG SS, 1997, INT J MATH MATH SCI, V20, P219 41843 CRANDALL MG, 1968, J FUNCT ANAL, V2, P147 41844 FAULKNER GD, 1977, ROCKY MOUNTAIN J MAT, V7, P789 41845 FLEMING RJ, 1976, T AM MATH SOC, V217, P87 41846 GILES JR, 1967, T AM MATH SOC, V129, P436 41847 GODEFROY G, 1991, J FUNCT ANAL, V98, P229 41848 HALMOS PR, 1967, HILBERT SPACE PROBLE 41849 HAYASHI N, 1993, NONLINEAR ANAL-THEOR, V20, P823 41850 HELFFER B, 1988, LECT NOTE MATH, V1336 41851 HERRERO DA, 1991, B LOND MATH SOC, V23, P513 41852 HERRERO DA, 1992, J OPERAT THEOR, V28, P93 41853 KUKSIN SB, 1996, COMMUN MATH PHYS, V178, P265 41854 LANGER H, 1984, LECT NOTES MATH, V948, P1 41855 LUMER G, 1961, PAC J MATH, V11, P679 41856 LUMER G, 1961, T AM MATH SOC, V100, P29 41857 LUMER G, 1962, B AM MATH SOC, V68, P28 41858 NATH B, 1971, MATH J OKAYANA U, V15, P1 41859 OLSEN PA, 1995, COMMUN PART DIFF EQ, V20, P2005 41860 OLUBUMMO A, 1965, J MATH MECH, V14, P929 41861 OSTENHOF MH, 1995, COMMUN PART DIFF EQ, V20, P1241 41862 PETHE PV, 1976, INDIAN J PURE APPL M, V7, P1024 41863 PETHE PV, 1977, INDIAN J PURE APPL M, V8, P898 41864 PHILLIPS RS, 1959, T AM MATH SOC, V90, P193 41865 PHILLIPS RS, 1966, J MATH MECH, V15, P235 41866 PUTTAMADAIAH C, 1986, INDIAN J PURE APPL M, V17, P919 41867 SANSUC JJ, 1996, J DIFFER EQUATIONS, V125, P366 41868 SEN DK, 1982, MATH JAPN, V27, P151 41869 SIMON B, 1996, J FUNCT ANAL, V140, P541 41870 SOFFER A, 1992, J DIFFER EQUATIONS, V98, P376 41871 STAMPEL JG, 1962, P AM MATH SOC, V13, P796 41872 STAMPEL JG, 1969, CAN J MATH, V21, P505 41873 TIAN LX, 1987, J JIANGSU U SCI TECH, V8, P103 41874 TIAN LX, 1988, J JIANGSU U SCI TECH, V9, P96 41875 TIAN LX, 1991, J JIANGSU U SCI TECH, V12, P121 41876 TIAN LX, 1995, ACTA MATH SCI, V15, P455 41877 TIAN LX, 1995, J JIANGSU U SCI TECH, V16, P82 41878 TIAN LX, 1996, APPL MATH MECH, V17, P155 41879 TIAN LX, 1997, APPL MATH MECH-ENGL, V18, P1021 41880 TIAN LX, 1998, P AM MATH SOC, V126, P203 41881 TKACHENKO V, 1996, ANN MATH, V143, P181 41882 TORRANCE E, 1970, P AM MATH SOC, V76, P108 41883 UNNI KR, 1981, TSUKUBA J MATH, V5, P15 41884 WEI GQ, 1987, CHIN ANN MATH B, V88, P70 41885 YAN SZ, 1990, ADV SCI CHINA MATH, V3, P99 41886 YAN Y, 1993, NONLINEAR ANAL-THEOR, V20, P1417 41887 YANG L, 1994, AUDIT NEUROSCI, V1, P1 41888 YOSIDA K, 1965, FUNCTIONAL ANAL 41889 NR 51 41890 TC 1 41891 SN 0010-3616 41892 J9 COMMUN MATH PHYS 41893 JI Commun. Math. Phys. 41894 PD APR 41895 PY 1999 41896 VL 201 41897 IS 3 41898 BP 519 41899 EP 548 41900 PG 30 41901 SC Physics, Mathematical 41902 GA 190WC 41903 UT ISI:000079987400003 41904 ER 41905 41906 PT J 41907 AU Chen, J 41908 Nho, YC 41909 Kwon, OH 41910 Hoffman, AS 41911 TI Grafting copolymerization of acrylamides onto preirradiated PP films 41912 SO RADIATION PHYSICS AND CHEMISTRY 41913 DT Article 41914 DE radiation grafting; acrylamide; polypropylene; blood-compatibility 41915 AB Acrylamide (AAm), N,N-Dimethylacrylamide (DMAAm) and 41916 N-(3-Dimethylaminopropyl) methacrylamide (DMAPMAAm) were grafted onto 41917 polypropylene (PP) films by preirradiation grafting respectively. The 41918 effect of irradiation dose, solvent systems and reaction time on the 41919 degree of grafting were determined. The grafted sample films were 41920 verified by Fourier Transform Infrared (FTIR) spectroscopy in the 41921 attenuated total reflectance mode (ATR) and the determination of water 41922 contact angle. The blood compatibility of the grafted PP films were 41923 evaluated by the determination of platelet adsorption and thrombus. The 41924 blood compatibility of grafted PP films seems better than that of 41925 original PP films. (C) 1999 Elsevier Science Ltd. All rights reserved. 41926 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China. 41927 Korea Atom Energy Res Inst, Radiat Applicat Div, Taejon, South Korea. 41928 Univ Washington, Ctr Bioengn, Seattle, WA 98159 USA. 41929 RP Chen, J, Shanghai Univ, Shanghai Appl Radiat Inst, Jiading Campus, 41930 Shanghai 201800, Peoples R China. 41931 CR DUNKIRK SG, 1991, J BIOMATER APPL, V6, P131 41932 HOFFMAN AS, 1988, J APPL POLYM SCI APP, V42, P251 41933 IMAI Y, 1972, J BIOMED MATER RES, V6, P165 41934 ISHIGAKI I, 1982, J APPL POLYM SCI, V27, P1033 41935 JEONG BJ, 1996, J COLLOID INTERF SCI, V178, P757 41936 MATSUDA T, 1990, T AM SOC ART INT ORG, V36, M161 41937 MERRIL EW, 1987, HYDROGELS MED PHARM, V3, P1 41938 NHO YC, 1993, POLYMER, V17, P433 41939 RATNER BD, 1996, HYDROGELS BIOMATERIA, P60 41940 SUN YH, 1986, J BIOACT COMPAT POL, V1, P316 41941 NR 10 41942 TC 8 41943 SN 0969-806X 41944 J9 RADIAT PHYS CHEM 41945 JI Radiat. Phys. Chem. 41946 PD JUN 41947 PY 1999 41948 VL 55 41949 IS 1 41950 BP 87 41951 EP 92 41952 PG 6 41953 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear 41954 Science & Technology 41955 GA 187WX 41956 UT ISI:000079812200011 41957 ER 41958 41959 PT J 41960 AU Fang, ZM 41961 TI Sci-tech translation and its research in China 41962 SO META 41963 DT Article 41964 C1 Shanghai Univ, Shanghai 200041, Peoples R China. 41965 RP Fang, ZM, Shanghai Univ, Shanghai 200041, Peoples R China. 41966 CR FANG MZ, 1993, SELECTED READINGS TR 41967 JIANG CF, 1984, TAC NEWSLETT, V12 41968 JIN D, 1984, TRANSLATION 41969 LU SY, 1990, SHANGHAI J TRANSLATO, V4 41970 LUO XZ, 1984, SELECTED WRITINGS TR 41971 MACKAY R, 1978, ENGLISH SPECIFIC PUR 41972 NEWMARK P, 1988, TEXTBOOK TRANSLATION 41973 NIDA EA, 1989, FOREIGN LANGUAGES, V4 41974 ZHANG RS, 1994, FOREIGN LANGUAGES, V6 41975 NR 9 41976 TC 0 41977 SN 0026-0452 41978 J9 META 41979 JI Meta 41980 PD MAR 41981 PY 1999 41982 VL 44 41983 IS 1 41984 BP 185 41985 EP 197 41986 PG 13 41987 SC Language & Linguistics Theory 41988 GA 190HU 41989 UT ISI:000079957700013 41990 ER 41991 41992 PT J 41993 AU Chen, DY 41994 Gu, Y 41995 TI Cole-Hopf quotient and exact solutions of the generalized 41996 Fitzhugh-Nagumo equations 41997 SO ACTA MATHEMATICA SCIENTIA 41998 DT Article 41999 DE Cole-Hopf quotient; reaction-diffusion equation; exact solution 42000 ID LINEAR DIFFUSION EQUATION; SYMMETRY REDUCTIONS 42001 AB Several classes of solution (wavefronts, coalescence of two wavefronts, 42002 solutions with Jacobi elliptic function) of the Fitzhugh-Nagumo 42003 equation and the generalized Fitzhugh-Nagumo equation are constructed 42004 by the Cole-Hopf quotient and the elementary transformations, Pome of 42005 which are new solutions. The close relation of the generalized 42006 Fitzhugh-Nagumo equation and Emden equation are also found. 42007 C1 Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China. 42008 CR ARRIGO DJ, 1994, IMA J APPL MATH, V52, P1 42009 BELLMAN R, 1953, STABILITY THEORY DIF 42010 CARIELLO F, 1989, PHYSICA D, V39, P77 42011 CHEN ZX, 1992, IMA J APPL MATH, V48, P107 42012 CONTE R, 1988, PHYS LETT A, V134, P100 42013 GU Y, 1993, ANAL SOLUTION REACTI 42014 KAWAHARA T, 1983, PHYS LETT A, V97, P311 42015 NUCCI MC, 1992, PHYS LETT A, V164, P49 42016 NR 8 42017 TC 2 42018 SN 0252-9602 42019 J9 ACTA MATH SCI 42020 JI Acta Math. Sci. 42021 PY 1999 42022 VL 19 42023 IS 1 42024 BP 7 42025 EP 14 42026 PG 8 42027 SC Mathematics 42028 GA 188NQ 42029 UT ISI:000079854700002 42030 ER 42031 42032 PT J 42033 AU Mao, DK 42034 TI Entropy satisfaction of a conservative shock-tracking method 42035 SO SIAM JOURNAL ON NUMERICAL ANALYSIS 42036 DT Article 42037 DE shocking tracking; conservation; entropy condition 42038 ID FINITE-DIFFERENCE METHODS; HIGH-RESOLUTION SCHEMES; APPROXIMATIONS; 42039 LAWS; DISCONTINUITIES 42040 AB In this paper we discuss the entropy satisfaction of the conservative 42041 shock-tracking technique developed in [D. K. Mao, J. Comput. Phys., 92 42042 (1991), pp. 422-455], [D. K. Mao, J. Comput. Phys., 103 (1992), pp. 42043 359-369], and [D. K. Mao, SIAM J. Numer. Anal., 32 (1995), pp. 42044 1677-1703] when it is applied to the Godunov scheme. We consider the 42045 scalar case in one-space dimension and assume that both the flux and 42046 entropy functions are strictly convex. We prove that, when the tracked 42047 shocks are strong enough in comparison with the variation of the 42048 numerical solution around them, the numerical solution satisfies the 42049 entropy condition in a certain sense. We also discuss the entropy 42050 situation when the convexity of the flux function is very weak and the 42051 tracked shock neighbors to strong simple waves. 42052 C1 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China. 42053 RP Mao, DK, Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, 42054 Peoples R China. 42055 EM dkmao@guomai.sh.cn 42056 CR ATKINSON K, 1988, INTRO NUMERICAL ANAL 42057 CRANDALL MG, 1980, MATH COMPUT, V34, P1 42058 ENGQUIST B, 1981, MATH COMPUT, V36, P321 42059 HARTEN A, 1976, COMMUN PURE APPL MAT, V29, P297 42060 HARTEN A, 1983, J COMPUT PHYS, V49, P357 42061 KLINGENBERG C, 1994, MATH COMPUT MODEL, V20, P89 42062 KRUZKOV SN, 1970, MAT SBORNIK, V81, P228 42063 LEVEQUE RJ, 1990, NUMERICAL METHODS CO 42064 MAJDA A, 1979, COMMUN PUR APPL MATH, V32, P797 42065 MAO DK, 1991, J COMPUT PHYS, V92, P422 42066 MAO DK, 1992, J COMPUT PHYS, V103, P359 42067 MAO DK, 1995, SIAM J NUMER ANAL, V32, P1677 42068 OSHER S, 1984, SIAM J NUMER ANAL, V21, P955 42069 TADMOR E, 1984, MATH COMPUT, V43, P369 42070 NR 14 42071 TC 2 42072 SN 0036-1429 42073 J9 SIAM J NUMER ANAL 42074 JI SIAM J. Numer. Anal. 42075 PD MAR 5 42076 PY 1999 42077 VL 36 42078 IS 2 42079 BP 529 42080 EP 550 42081 PG 22 42082 SC Mathematics, Applied 42083 GA 179UD 42084 UT ISI:000079347000012 42085 ER 42086 42087 PT J 42088 AU Yang, YZ 42089 Li, QS 42090 Zhu, YL 42091 Ma, XM 42092 Dong, YD 42093 TI Influence of milling conditions on the mechanical alloying of Fe-B 42094 powders 42095 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 42096 DT Article 42097 AB Amorphous and nanostructural Fe-B alloys made by mechanical alloying of 42098 elemental Fe and amorphous B powders have been studied using X-ray 42099 diffraction, differential scanning calorimetry and Mossbauer 42100 spectroscopy. It has been shown that the milling conditions have a 42101 strong effect on the alloying. The single phase amorphous alloy, which 42102 is limited at nominal composition of Fe60B40, has been produced only by 42103 milling in Ar atmosphere and in other composition range the mixture of 42104 nanostructure Fe-like phase and Fe2B compound with a little amorphous 42105 phase are obtained. While by milling in air atmosphere the introduction 42106 of oxygen in air may suppress the formation of amorphous phase, thus 42107 the compounds Fe2B may be synthesized with no trace of amorphous phase. 42108 The crystallization temperatures of amorphous phase in the resultant 42109 products are higher than those of a single amorphous alloy Fe60B40, and 42110 hardly independent of the milling conditions and the composition. In 42111 addition, it is revealed that detectable B content in the final 42112 products is lower than the nominal composition of all the initial 42113 samples, which indicates that some B atoms may be located in the 42114 disordered interfacial regions of the nanostructural alloyed mixtures. 42115 C1 Guangdong Univ Technol, Dept Mat Sci & Engn, Guangzhou 510090, Peoples R China. 42116 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China. 42117 RP Yang, YZ, Guangdong Univ Technol, Dept Mat Sci & Engn, Guangzhou 42118 510090, Peoples R China. 42119 CR BALOGH J, 1995, J APPL PHYS, V77, P4997 42120 BLUM NA, 1982, J APPL PHYS, V53, P2074 42121 CALKA A, 1991, APPL PHYS LETT, V58, P119 42122 CHIEN CL, 1979, PHYS REV B, V20, P283 42123 CHIEN CL, 1982, PHYS REV B, V25, P5790 42124 CLAVAGUERAMORA MT, 1990, COLL PHYS, V51, P49 42125 HOVING W, 1984, J NONCRYST SOLIDS, V61, P421 42126 JING J, 1990, J NONCRYST SOLIDS, V116, P247 42127 JING J, 1991, J PHYS-CONDENS MAT, V3, P7413 42128 NAKAJIMA T, 1986, J MATER SCI LETT, V5, P60 42129 OKUMURA H, 1992, J MATER SCI, V27, P153 42130 YANG YZ, 1995, CHIN J MAT RES, V9, P33 42131 NR 12 42132 TC 2 42133 SN 1005-0302 42134 J9 J MATER SCI TECHNOL 42135 JI J. Mater. Sci. Technol. 42136 PD MAR 42137 PY 1999 42138 VL 15 42139 IS 2 42140 BP 137 42141 EP 142 42142 PG 6 42143 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 42144 Engineering 42145 GA 183KD 42146 UT ISI:000079552000007 42147 ER 42148 42149 PT J 42150 AU Rui, HB 42151 TI On endomorphism algebras arising from Hecke algebras 42152 SO JOURNAL OF ALGEBRA 42153 DT Article 42154 ID REPRESENTATIONS 42155 C1 Shanghai Univ Sci & Technol, Dept Math, Shanghai 200093, Peoples R China. 42156 RP Rui, HB, Shanghai Univ Sci & Technol, Dept Math, Shanghai 200093, 42157 Peoples R China. 42158 CR ARIKI S, 1994, ADV MATH, V106, P216 42159 CLINE E, 1988, J REINE ANGEW MATH, V391, P85 42160 DIPPER R, 1986, P LOND MATH SOC, V52, P20 42161 DIPPER R, 1995, P LOND MATH SOC, V70, P505 42162 DIPPER R, 1998, MATH Z, V229, P385 42163 DIPPER R, 1998, P LOND MATH SOC 2, V77, P327 42164 DU J, IN PRESS J ALGEBRA 42165 DU J, IN PRESS T AM MATH S 42166 DU J, 1998, T AM MATH SOC, V350, P3207 42167 GRAHAM JJ, 1996, INVENT MATH, V123, P1 42168 KAZHDAN D, 1979, INVENT MATH, V53, P155 42169 MURPHY GE, 1995, J ALGEBRA, V173, P97 42170 PALLIKAROS C, 1994, J ALGEBRA, V169, P20 42171 RUI HB, 1997, J ALGEBRA, V195, P308 42172 SHI JY, 1996, J ALGEBRA, V179, P607 42173 NR 15 42174 TC 0 42175 SN 0021-8693 42176 J9 J ALGEBRA 42177 JI J. Algebra 42178 PD APR 1 42179 PY 1999 42180 VL 214 42181 IS 1 42182 BP 342 42183 EP 355 42184 PG 14 42185 SC Mathematics 42186 GA 183TE 42187 UT ISI:000079568900019 42188 ER 42189 42190 PT J 42191 AU He, JH 42192 TI Variational iteration method - a kind of non-linear analytical 42193 technique: Some examples 42194 SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS 42195 DT Article 42196 DE variational iteration method; duffing equation; non-linear equations 42197 AB In this paper, a new kind of analytical technique for a non-linear 42198 problem called the variational iteration method is described and used 42199 to give approximate solutions for some well-known non-linear problems. 42200 In this method, the problems are initially approximated with possible 42201 unknowns. Then a correction functional is constructed by a general 42202 Lagrange multiplier, which can be identified optimally via the 42203 variational theory. Being different from the other non-linear 42204 analytical methods, such as perturbation methods, this method does not 42205 depend on small parameters, such that it can find wide application in 42206 non-linear problems without linearization or small perturbations. 42207 Comparison with Adomian's decomposition method reveals that the 42208 approximate solutions obtained by the proposed method converge to its 42209 exact solution faster than those of Adomian's method. (C) 1999 Elsevier 42210 Science Ltd. All rights reserved. 42211 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 42212 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 42213 Peoples R China. 42214 CR ADOMIAN G, 1988, J MATH ANAL APPL, V135, P501 42215 CHERRUAULT Y, 1989, KYBERNETES, V18, P31 42216 FINLAYSON BA, 1972, METHOD WEIGHTED RESI 42217 HAGEDORN P, 1981, NONLINEAR OSCILLATIO 42218 HE JH, 1988, INT C VIBR ENG 98 DA 42219 HE JH, 1997, COMM NONLINEAR SCI N, V2, P230 42220 HE JH, 1997, COMMUNICATIONS NONLI, V2, P235 42221 HE JH, 1997, INT J TURBO JET ENG, V14, P23 42222 HE JH, 1998, MECH PRACTICE, V20, P30 42223 HE JH, 1998, MECH SCI TECHNOL, V17, P221 42224 INOKUTI M, 1978, VARIATIONAL METHOD M, P156 42225 MICKENS RE, 1981, INTRO NONLINEAR OSCI 42226 NAYFEH AH, 1985, PROBLEMS PERTURBATIO 42227 NR 13 42228 TC 50 42229 SN 0020-7462 42230 J9 INT J NON-LINEAR MECH 42231 JI Int. J. Non-Linear Mech. 42232 PD JUL 42233 PY 1999 42234 VL 34 42235 IS 4 42236 BP 699 42237 EP 708 42238 PG 10 42239 SC Mechanics 42240 GA 182CV 42241 UT ISI:000079481700010 42242 ER 42243 42244 PT J 42245 AU Tan, WH 42246 Fan, W 42247 TI Stability of multi-atom micromasers 42248 SO ACTA PHYSICA SINICA-OVERSEAS EDITION 42249 DT Article 42250 ID PHOTON NOISE-REDUCTION; PUMPING STATISTICS; LASERS; MASERS; QUANTUM; 42251 MODEL 42252 AB In view of the one-atom micromasers output sensitive to the interaction 42253 parameters, we propose a new multi-atom micromasers defined by passing 42254 multi-atom each time through the cavity regularly. Through analysis and 42255 numerical simulation, great progress has been made in the improvement 42256 of stability of mean photon number and variance of micromasers. 42257 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 42258 RP Tan, WH, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 42259 CR BENKERT C, 1993, PHYS REV A, V47, P1564 42260 BERGOU J, 1989, OPT COMMUN, V72, P82 42261 DAVIDOVICH L, 1992, PHYS REV A, V46, P1630 42262 FILIPOWICZ P, 1986, J OPT SOC AM B, V3, P906 42263 FILIPOWICZ P, 1986, PHYS REV A, V34, P3077 42264 GOLUBEV YM, 1984, ZH EKSP TEOR FIZ, V60, P234 42265 GUERRA ES, 1991, PHYS REV A, V44, P7785 42266 HAAKE F, 1989, PHYS REV A, V40, P7121 42267 KYUNGWON A, 1994, PHYS REV LETT, V73, P3375 42268 LIU RH, 1998, CHINESE SCI BULL, V43, P425 42269 REMPE G, 1990, PHYS REV A, V42, P1650 42270 REMPE G, 1990, PHYS REV LETT, V64, P2783 42271 TAN WH, 1994, PHYS LETT A, V190, P13 42272 TAN WH, 1995, OPT COMMUN, V115, P303 42273 YAMAMOTO Y, 1986, PHYS REV A, V34, P4025 42274 ZHU SY, 1992, PHYS REV A, V45, P499 42275 NR 16 42276 TC 1 42277 SN 1004-423X 42278 J9 ACTA PHYS SIN-OVERSEAS ED 42279 JI Acta Phys. Sin.-Overseas Ed. 42280 PD APR 42281 PY 1999 42282 VL 8 42283 IS 4 42284 BP 275 42285 EP 283 42286 PG 9 42287 SC Physics, Multidisciplinary 42288 GA 184CX 42289 UT ISI:000079592800005 42290 ER 42291 42292 PT J 42293 AU Li-Ping, H 42294 De-Kang, M 42295 Ben-Yu, G 42296 TI Prediction-correction Legendre spectral scheme for incompressible fluid 42297 flow 42298 SO ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION 42299 MATHEMATIQUE ET ANALYSE NUMERIQUE 42300 DT Article 42301 DE incompressible fluid flow in stream function form; 42302 prediction-correction Legendre spectral scheme with high accuracy; 42303 convergence and numerical experiments 42304 ID NAVIER-STOKES EQUATIONS; POLYNOMIALS 42305 AB The initial-boundary value problem of two-dimensional incompressible 42306 fluid flow in stream function form is considered. A 42307 prediction-correction Legendre spectral scheme is proposed, which is 42308 easy to be performed. The numerical solution possesses the accuracy of 42309 second-order in time and higher order in space. The numerical 42310 experiments show the high accuracy of this approach. 42311 C1 Shanghai Jiao Tong Univ, Dept Math Appl, Shanghai 200030, Peoples R China. 42312 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 42313 RP Li-Ping, H, Shanghai Jiao Tong Univ, Dept Math Appl, Shanghai 200030, 42314 Peoples R China. 42315 CR ADAMS RA, 1975, SOBOLEV SPACE 42316 BERNSTEIN JM, 1992, RESPIRATION, V59, P3 42317 CANUTO C, 1982, MATH COMPUT, V38, P67 42318 CANUTO C, 1988, SPECTRAL METHODS FLU 42319 CHORIN AJ, 1967, J COMPUT PHYS, V2, P12 42320 GIRAULT V, 1979, LECT NOTE MATH, V794 42321 GOTTLIEB D, 1977, CBMS NSF REGINAL C S, V26 42322 GRESHO PM, 1987, INT J NUMER METH FL, V7, P1111 42323 GUO BY, 1988, FINITE DIFFERENCE ME 42324 GUO BY, 1997, J MATH ANAL APPL, V205, P1 42325 GUO BY, 1998, SIAM J NUMER ANAL, V35, P146 42326 HI LP, 19963 RR SHANGH U DE 42327 KUO PY, 1977, SCI SINICA, V20, P287 42328 LIONS JL, 1968, PROBLEMES LIMITES HO, V1 42329 LIONS JL, 1969, QUELQUES METHODES RE 42330 LIONS JL, 1970, SIAM AMS P, V2, P11 42331 ODEN JT, 1974, FINITE ELEMENT METHO 42332 ROACH PJ, 1976, COMPUTATIONAL FLUID 42333 SHEN J, 1992, ADV COMPUTER METHODS, V7, P658 42334 SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489 42335 TEMAM R, 1977, NAVIERSTOKES EQUATIO 42336 NR 21 42337 TC 0 42338 SN 0764-583X 42339 J9 RAIRO-MATH MODEL NUMER ANAL 42340 JI Rairo-Math. Model. Numer. Anal.-Model. Math. Anal. Numer. 42341 PD JAN-FEB 42342 PY 1999 42343 VL 33 42344 IS 1 42345 BP 113 42346 EP 120 42347 PG 8 42348 SC Mathematics, Applied 42349 GA 179LZ 42350 UT ISI:000079330100007 42351 ER 42352 42353 PT J 42354 AU Li, CF 42355 Feng, SS 42356 TI Several aspects of the A-B scattering 42357 SO PHYSICA B 42358 DT Article 42359 DE A-B scattering; single-valuedness of incident wave function; divergence 42360 of total cross section 42361 ID AHARONOV-BOHM SCATTERING; WAVE 42362 AB After a brief review of previous works on the A-B scattering, the 42363 authors show that the multi-valued incident wave function used 42364 originally by Aharonov and Bohm is of no physical significance. The 42365 closed expression for the scattering amplitude that is continuous in 42366 the forward direction apart from a delta-function contribution is also 42367 calculated by the method of partial waves. In contrast with Aharonov 42368 and Bohm's result that no scattering occurs when alpha is an integer, 42369 the differential and total scattering cross sections do not vanish when 42370 a equals an odd number (where alpha = Phi/Phi(0) represents the 42371 magnetic Aux in the infinitely long thin solenoid, and Phi(0) = h/e). 42372 This coincides with the result by Sakoda and Omote [J. Math. Phys. 38 42373 (1997) 716]. It is shown that the divergence of the total cross section 42374 is due to the fact that the A-B solenoid exhibits a 42375 partial-wave-dependent effective scattering potential. (C) 1999 42376 Elsevier Science B.V. All rights reserved. 42377 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 42378 CCAST, World Lab, Beijing 100080, Peoples R China. 42379 RP Feng, SS, Shanghai Univ, Dept Phys, 20 Chengzhong Rd, Shanghai 201800, 42380 Peoples R China. 42381 CR AHARONOV Y, 1959, PHYS REV, V115, P485 42382 AHARONOV Y, 1984, PHYS REV D, V29, P2396 42383 ALVAREZ M, 1996, PHYS REV A, V54, P1128 42384 BOZ M, 1996, ANN PHYS-NEW YORK, V246, P347 42385 HAGEN CR, 1990, PHYS REV D, V41, P2015 42386 HENNEBERGER WC, 1980, PHYS REV A, V22, P1383 42387 HENNEBERGER WC, 1981, J MATH PHYS, V22, P116 42388 JACKIW R, 1990, ANN PHYS-NEW YORK, V201, P83 42389 LI CF, 1995, PHYSICA B, V212, P436 42390 LI CF, 1996, PHYSICA B, V226, P406 42391 RUIJSENAARS SNM, 1983, ANN PHYS-NEW YORK, V146, P1 42392 SAKODA S, 1997, J MATH PHYS, V38, P716 42393 SAKURAI JJ, 1985, MODERN QUANTUM MECH, P424 42394 WEINBERG S, 1995, QUANTUM THEORY FIELD, P112 42395 YANG CN, 1983, P INT S FDN QUANT ME, P5 42396 NR 15 42397 TC 0 42398 SN 0921-4526 42399 J9 PHYSICA B 42400 JI Physica B 42401 PD APR 1 42402 PY 1999 42403 VL 262 42404 IS 3-4 42405 BP 210 42406 EP 217 42407 PG 8 42408 SC Physics, Condensed Matter 42409 GA 178DR 42410 UT ISI:000079251500002 42411 ER 42412 42413 PT J 42414 AU Hou, JY 42415 Guo, BY 42416 TI Chebyshev pseudospectral-finite element method for the 42417 three-dimensional unsteady Navier-Stokes equation 42418 SO APPLIED MATHEMATICS AND COMPUTATION 42419 DT Article 42420 DE three-dimensional Navier-Stokes equation; Chebyshev 42421 pseudospectral-finite element approximation 42422 ID VORTICITY EQUATIONS 42423 AB A mixed Chebyshev pseudospectral-finite element method is developed for 42424 solving the three-dimensional evolutionary Navier-Stokes equation. The 42425 generalized stability and the convergence of the scheme are proved 42426 strictly. The numerical results presented show the advantages of this 42427 mixed method. (C) 1999 Published by Elsevier Science Inc. All rights 42428 reserved. 42429 C1 Shanghai Univ Sci & Technol, Shanghai 201800, Peoples R China. 42430 RP Guo, BY, Shanghai Univ, President Off, Jiading Campus, Shanghai, 42431 Peoples R China. 42432 CR CANUTO C, 1984, NUMER MATH, V44, P201 42433 CANUTO C, 1984, SPECTRAL METHODS PAR, P55 42434 CANUTO C, 1988, SPECTRAL METHOD FLUI 42435 CIARLET PG, 1978, FINITE ELEMENT METHO 42436 COURANT R, 1953, METHODS MATH PHYSICS, V1 42437 GIRAULT V, 1979, LECT NOTES MATH, V794 42438 GRESHO PM, 1987, INT J NUMER METH FL, V7, P1111 42439 GUO BY, IN PRESS ACTA MATH A 42440 GUO BY, 1987, SCI SINICA A, V30, P697 42441 GUO BY, 1988, DIFFERNCE METHODS PA 42442 GUO BY, 1989, J COMPUT PHYS, V84, P259 42443 GUO BY, 1991, SIAM J NUMER ANAL, V28, P113 42444 GUO BY, 1992, BMN M PHI, V32, P530 42445 GUO BY, 1992, J COMPUT PHYS, V101, P207 42446 GUO BY, 1993, SIAM J NUMER ANAL, V30, P1066 42447 GUO BY, 1995, RAIRO-MATH MODEL NUM, V29, P303 42448 GUO BY, 1996, NUMERICAL MATH, V5, P161 42449 GUO BY, 1996, RAIRO-MATH MODEL NUM, V30, P873 42450 GUO BY, 1997, JPN J APPL MATH, V14, P329 42451 MA HP, 1988, J COMPUT MATH, V6, P48 42452 MA HP, 1990, J HYDRODYNAMICS B, V3, P75 42453 MA HP, 1992, CHINESE ANN MATH B, V13, P350 42454 MOIN P, 1982, J FLUID MECH, V118, P341 42455 ODEN JT, 1974, FINITE ELEMENT METHO 42456 RAVIART PA, 1979, COURS ECOLE ETE ANAL 42457 ROACH PJ, 1976, COMPUTATIONAL FLUID 42458 TEMANN R, 1977, NAVIER STOKES EQUATI 42459 NR 27 42460 TC 0 42461 SN 0096-3003 42462 J9 APPL MATH COMPUT 42463 JI Appl. Math. Comput. 42464 PD JUN 15 42465 PY 1999 42466 VL 101 42467 IS 2-3 42468 BP 209 42469 EP 244 42470 PG 36 42471 SC Mathematics, Applied 42472 GA 179EP 42473 UT ISI:000079312900005 42474 ER 42475 42476 PT J 42477 AU Du, J 42478 Rui, HB 42479 TI Borel type subalgebras of the q-Schur(m) algebra 42480 SO JOURNAL OF ALGEBRA 42481 DT Article 42482 ID SCHUR ALGEBRA; WEYL MODULES; REPRESENTATIONS 42483 C1 Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia. 42484 Shanghai Univ Sci & Technol, Dept Math, Shanghai 200093, Peoples R China. 42485 RP Du, J, Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia. 42486 EM jied@maths.unsw.edu.au 42487 hbruik@online.sh.cn 42488 CR ARIKI S, 1994, ADV MATH, V106, P216 42489 CLINE E, 1988, J REINE ANGEW MATH, V391, P85 42490 CLINE E, 1990, J ALGEBRA, V131, P126 42491 CURTIS C, 1981, METHODS REPRESENTATI, V1 42492 DIPPER R, 1986, P LOND MATH SOC, V52, P20 42493 DIPPER R, 1991, T AM MATH SOC, V327, P251 42494 DIPPER R, 1998, MATH Z, V229, P385 42495 DIPPER R, 1998, P LOND MATH SOC 2, V77, P327 42496 DU J, IN PRESS T AM MATH S 42497 DU J, 1991, J LOND MATH SOC, V44, P420 42498 DU J, 1994, J REINE ANGEW MATH, V455, P141 42499 DU J, 1998, T AM MATH SOC, V350, P3207 42500 GRAHAM JJ, 1996, INVENT MATH, V123, P1 42501 GREEN JA, 1990, J ALGEBRA, V131, P265 42502 GREEN JA, 1993, J PURE APPL ALGEBRA, V88, P89 42503 PARSHALL B, 1991, MEM AM MATH SOC, V89 42504 RINGEL CM, 1991, MATH Z, V208, P209 42505 SANTANA AP, 1993, J ALGEBRA, V161, P480 42506 SCOTT L, 1995, MATH Z, V220, P421 42507 NR 19 42508 TC 1 42509 SN 0021-8693 42510 J9 J ALGEBRA 42511 JI J. Algebra 42512 PD MAR 15 42513 PY 1999 42514 VL 213 42515 IS 2 42516 BP 567 42517 EP 595 42518 PG 29 42519 SC Mathematics 42520 GA 176ZA 42521 UT ISI:000079181300009 42522 ER 42523 42524 PT J 42525 AU Liu, RH 42526 Tan, WH 42527 TI Resonance fluorescence spectrum by two-level system without the 42528 rotating wave approximation 42529 SO CHINESE PHYSICS LETTERS 42530 DT Article 42531 AB In this paper the theory of resonance fluorescence spectrum by 42532 two-level system is presented without the assumption of rotating wave 42533 approximation. However, in this case, the application of quantum 42534 fluctuation-regression theorem to evaluate the resonance fluorescence 42535 spectrum tak-es a more complicated form. The prominent features of the 42536 spectrum calculated are the double splitting on the central and side 42537 bands and the emergence of harmonics in the asymmetric spectra. 42538 C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China. 42539 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 42540 RP Liu, RH, Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 42541 201800, Peoples R China. 42542 CR BOYD RW, 1992, NONLINEAR OPTICS, P224 42543 DOMHELM MA, 1996, AVIATION WEEK SPACE, V145, P22 42544 MOLLOW BR, 1969, PHYS REV, V188, P1969 42545 TAN WH, 1988, OPT COMMUN, V65, P61 42546 NR 4 42547 TC 4 42548 SN 0256-307X 42549 J9 CHIN PHYS LETT 42550 JI Chin. Phys. Lett. 42551 PY 1999 42552 VL 16 42553 IS 1 42554 BP 23 42555 EP 25 42556 PG 3 42557 SC Physics, Multidisciplinary 42558 GA 175YX 42559 UT ISI:000079124600009 42560 ER 42561 42562 PT J 42563 AU Ding, WY 42564 Tong, WQ 42565 Zhai, YA 42566 Cai, ZR 42567 TI Studies on stereoselective synthetic methods of 42568 2,3,4,5-tetrasubstituted-cis-2,3-dihydrofurans 42569 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE 42570 DT Article 42571 DE arsenic ylid; 2,3-dihydrofuran; stereoselective synthesis 42572 AB Three methods for the stereoselective synthesis of 42573 2-carbomethoxy-3-aryl-4-acethyl-5-methyl-cis-dihydrofurans (7a-7g) were 42574 studied. The Ist method is proceeded through the reaction of 42575 carbomethoxy methylene triphenylarsorane (5) with 3-substituted 42576 benzal-2, 4-pentadione (6) in benzene at room temperature for 4 h and 42577 high yield of the products 7a-7g can be obtained. The 2nd method is 42578 started from the reaction of carbomethoxy methyl triphenylarsonium 42579 bromide(4) with K2CO3 in dimethyl ethyleneglycol at room temperature, 42580 the Ylid 5 formed reacted with 6 in situ, excellent yield of 7 can be 42581 obtained and triphenylarsine recovered quantitatively. The 3rd method 42582 is a stepwise one pot reaction, triphenylarsine(2) and methyl 42583 bromoacetate(3) is refluxed in dimethyl ethyleneglycol for 2. 5 h, 42584 after cooling, potassium carbonate and 6 are added in and the reaction 42585 continued at room temperature for 2 d, the overall yield from starting 42586 material triphenylarsine is about 65%. Although the Ist method is a 42587 very simple process for preparing 2,3-dihydrofuran derivatives, its 42588 application is limited due to the unstability of Ylid 5 during its 42589 preparation and storage, so the last two methods seem preferable. The 42590 structures of the products 7a-7g were confirmed by means of IR, H-1 42591 NMR, MS and elementary analysis and their configurations were 42592 established through the coupling constants of the two protons on 2-C 42593 and 3-C atoms in the dihydrofuran ring. These reactions were all highly 42594 stereoselective and only one kind of stereoisomer with cis 42595 configuration was formed. It is noteworthy that these reactions no 42596 similar normal Wittig reaction products were detected. 42597 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 42598 RP Ding, WY, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 42599 CR DING YY, 1996, CHEM RES CHINESE U, V12, P354 42600 DULERE JP, 1994, J CHEM SOC CHEM COMM, P303 42601 HUANG YZ, 1978, ACTA CHIM SINICA, V36, P215 42602 PALLAUD R, 1963, CHIM IND, V89, P283 42603 SUGIMURA H, 1994, J ORG CHEM, V59, P7653 42604 NR 5 42605 TC 4 42606 SN 0251-0790 42607 J9 CHEM J CHINESE UNIV-CHINESE 42608 JI Chem. J. Chin. Univ.-Chin. 42609 PD JAN 42610 PY 1999 42611 VL 20 42612 IS 1 42613 BP 64 42614 EP 67 42615 PG 4 42616 SC Chemistry, Multidisciplinary 42617 GA 174PQ 42618 UT ISI:000079043900016 42619 ER 42620 42621 PT J 42622 AU Shen, J 42623 Zhou, L 42624 Li, T 42625 TI Effects of surface-applied ceria on the stability of thermally growing 42626 chromia scale of FeCr alloys and 310 steel 42627 SO JOURNAL OF MATERIALS SCIENCE 42628 DT Article 42629 ID OXIDATION 42630 AB The influence of surface-applied ceria on the oxidation behavior of 42631 FeCr alloys and 310 stainless steel at 1000 degrees C and 1100 degrees 42632 C has been studied. The surface-applied ceria were beneficial in 42633 reducing the growth rate of chromia scale, and were particularly 42634 effective in inhibiting the accelerated breakaway oxidation of Fe20Cr 42635 alloy in wet oxygen and spalling and cracking of the scale under cyclic 42636 oxidation. The beneficial effects of the ceria have been attributed to 42637 the improvement in the stability of the thermally growing chromia 42638 scale. (C) 1998 Kluwer Academic Publishers. 42639 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 42640 State Key Lab Corros & Protect, Shenyang 110015, Peoples R China. 42641 RP Shen, J, Shanghai Univ, Inst Mat, 149 Yanchang Rd, Shanghai 200072, 42642 Peoples R China. 42643 CR HOU PY, 1987, J ELECTROCHEM SOC, V134, P1836 42644 HUSSEY RJ, 1989, MAT SCI ENG A-STRU 1, V120, P147 42645 JING H, IN PRESS CHIN J CORR 42646 LANG E, 1989, ROLE REACTIVE ELEMEN 42647 LI M, 1991, ACTA U BEIJING SCI T, V13, P619 42648 NICHOLLS JR, 1989, ROLE ACTIVE ELEMENTS, P195 42649 SHEN J, 1997, OXID MET, V48, P355 42650 SHEN JN, 1992, CORROS SCI PROT TECH, V4, P289 42651 NR 8 42652 TC 1 42653 SN 0022-2461 42654 J9 J MATER SCI 42655 JI J. Mater. Sci. 42656 PD DEC 15 42657 PY 1998 42658 VL 33 42659 IS 24 42660 BP 5815 42661 EP 5819 42662 PG 5 42663 SC Materials Science, Multidisciplinary 42664 GA 170YG 42665 UT ISI:000078834300012 42666 ER 42667 42668 PT J 42669 AU Zhao, XH 42670 Shi, ZW 42671 TI A divided region variational principle of A,rho Omega method for 3-D 42672 eddy current problems 42673 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 42674 DT Article 42675 DE 3-D eddy current field; divided region variational principle; 42676 A,phi-Omega method; interface continuity conditions 42677 AB In this paper, a divided region variational principle to solve 3-D eddy 42678 current problems was given. It adopts the magnetic vector potential A 42679 and the electric scalar potential phi in the eddy current regions and 42680 the source regions, and the magnetic scalar potential Omega in the 42681 non-conducting regions (air gap). Using variation of the functional, 42682 all governing equations in various regions, the natural boundary 42683 conditions and the interface continuity conditions which satisfy 42684 electromagnetic continuity are obtained. 42685 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 42686 RP Zhao, XH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 42687 200072, Peoples R China. 42688 CR BROWN ML, 1982, IEE P A, V129, P46 42689 CHARI MVK, 1982, IEEE T MAG, V18, P435 42690 CHEN WH, 1984, J I HA ER BIN ELECTR, V7, P1 42691 CHIEN WZ, 1985, GEN VARIATIONAL PRIN 42692 EMSON CRI, 1983, IEEE T MAGN, V19, P2450 42693 SHI ZW, 1998, APPL MATH MECH-ENGL, V19, P1017 42694 NR 6 42695 TC 0 42696 SN 0253-4827 42697 J9 APPL MATH MECH-ENGL ED 42698 JI Appl. Math. Mech.-Engl. Ed. 42699 PD DEC 42700 PY 1998 42701 VL 19 42702 IS 12 42703 BP 1135 42704 EP 1140 42705 PG 6 42706 SC Mathematics, Applied; Mechanics 42707 GA 173MB 42708 UT ISI:000078983400002 42709 ER 42710 42711 PT J 42712 AU Ju, XC 42713 Ma, ZT 42714 TI Study on the photochemical properties of benzoyl derivatives 42715 SO RADIATION PHYSICS AND CHEMISTRY 42716 DT Article 42717 AB In this paper, the photochemical properties of benzoyl derivatives, 42718 e.g. KIP-100F and ESACURE TZT were studied using the N121 UV Curing 42719 Tester. It was shown that their photochemical reactivity is higher; the 42720 photoactivation of triethanol amine(TEA) upon ESACURE TZT is greater, 42721 upon KIP-100F is unexpected; the sensitization of fluorescein upon 42722 KIP-100F is larger than upon ESACURE TZT/TEA systems; the synergistic 42723 action of them is very effective; (C) 1999 Elsevier Science Ltd. All 42724 rights reserved. 42725 C1 Beijing Univ, Dept Tech Phys, Beijing 100871, Peoples R China. 42726 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China. 42727 RP Ju, XC, Beijing Univ, Dept Tech Phys, Beijing 100871, Peoples R China. 42728 CR LAWSON K, 1997, 9M C P NOV 4 7, P7 42729 XUECHENG J, 1995, PAINT COATINGS IND, V2, P36 42730 NR 2 42731 TC 0 42732 SN 0969-806X 42733 J9 RADIAT PHYS CHEM 42734 JI Radiat. Phys. Chem. 42735 PD MAR 42736 PY 1999 42737 VL 54 42738 IS 3 42739 BP 241 42740 EP 243 42741 PG 3 42742 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear 42743 Science & Technology 42744 GA 170GC 42745 UT ISI:000078797100005 42746 ER 42747 42748 PT J 42749 AU Chen, YX 42750 Wan, XJ 42751 Xu, WX 42752 TI Surface reactions of Co3Ti alloys with water vapor 42753 SO JOURNAL OF MATERIALS SCIENCE LETTERS 42754 DT Article 42755 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 42756 Shanghai Iron & Steel Res Inst, Shanghai 200940, Peoples R China. 42757 RP Chen, YX, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 42758 CR CHEN YX, UNPUB SCRIPTA MAT 42759 CHEN YX, 1997, ACTA METALL SINICA E, V10, P363 42760 CHENG XY, 1997, J IRON STEEL RES S, V9, P270 42761 CHIA WJ, 1995, J VAC SCI TECHNOL A, V13, P1687 42762 KIMURA A, 1994, MATER T JIM, V35, P879 42763 LEE KH, 1996, SCRIPTA MATER, V35, P1153 42764 LIU Y, 1989, J MATER SCI, V24, P4458 42765 WAN XJ, 1995, ACTA METALL SINICA, V8, P299 42766 ZHU JH, 1995, SCRIPTA METALL MATER, V32, P1399 42767 NR 9 42768 TC 2 42769 SN 0261-8028 42770 J9 J MATER SCI LETT 42771 JI J. Mater. Sci. Lett. 42772 PD OCT 1 42773 PY 1998 42774 VL 17 42775 IS 19 42776 BP 1627 42777 EP 1629 42778 PG 3 42779 SC Materials Science, Multidisciplinary 42780 GA 170ZQ 42781 UT ISI:000078837700008 42782 ER 42783 42784 PT J 42785 AU Liu, XT 42786 Li, B 42787 Yu, R 42788 Liu, XH 42789 Lu, HX 42790 Tang, DY 42791 Yu, BK 42792 TI Protective films of diamond for high T-c superconducting detectors 42793 SO INFRARED PHYSICS & TECHNOLOGY 42794 DT Article 42795 ID LASER 42796 AB Deposition of diamond like carbon (DLC) films on YBCO superconducting 42797 detectors is reported. The method is to make a DLC film by C+ 42798 implantation and XeCl excimer laser irradiation. The implantation 42799 energy is 20-35 keV and C+ implantation dosages D = 1 x 10(14)-5 x 42800 10(18) ions/cm(2). The parameters of XeCl excimer laser ablation are: 42801 wavelength 308 nm; energy density, 20-50 mJ/cm(2); and width of pulse, 42802 45 ns. The superconductivity of C+-implanted YBCO is also investigated, 42803 while the damage behavior of C+ implantation and the mechanism of 42804 coating DLC are analyzed. (C) 1999 Elsevier Science B.V. All rights 42805 reserved. 42806 C1 Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China. 42807 Shanghai Univ Sci & Technol, Shanghai 201800, Peoples R China. 42808 RP Liu, XT, Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared 42809 Phys, Shanghai 200083, Peoples R China. 42810 CR BRASUNAS JC, 1994, APPL PHYS LETT, V64, P777 42811 CHEN CF, 1994, P 1 WORLD S CHIN SCI, P53 42812 FABAO W, 1994, CHINESE J LOW TEMPER, V16, P185 42813 NARAYAN J, 1991, SCIENCE, V252, P416 42814 SINGH RK, 1989, MAT SCI ENG B-SOLID, V3, P217 42815 ZAIFU W, 1994, ACTA OPTICAL SINICA, V14, P355 42816 NR 6 42817 TC 0 42818 SN 1350-4495 42819 J9 INFRARED PHYS TECHNOL 42820 JI Infrared Phys. Technol. 42821 PD APR 42822 PY 1999 42823 VL 40 42824 IS 2 42825 BP 87 42826 EP 91 42827 PG 5 42828 SC Physics, Applied; Instruments & Instrumentation; Optics 42829 GA 170FK 42830 UT ISI:000078795500005 42831 ER 42832 42833 PT J 42834 AU Zheng, Q 42835 Zhang, LS 42836 TI Global minimization of constrained problems with discontinuous penalty 42837 functions 42838 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS 42839 DT Article 42840 DE integral global minimization; robust sets and functions; discontinuous 42841 penalty functions 42842 ID OPTIMIZATION 42843 AB With the integral approach to global optimization, a class of 42844 discontinuous penalty functions is proposed to solve constrained 42845 minimization problems. Optimality conditions of a penalized 42846 minimization problem are generalized to a discontinuous case; necessary 42847 and sufficient conditions for an exact penalty function are examined; a 42848 nonsequential algorithm is proposed. Numerical examples are given to 42849 illustrate the effectiveness of the algorithm. (C) 1999 Elsevier 42850 Science Ltd. All rights reserved. 42851 C1 Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada. 42852 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 42853 RP Zheng, Q, Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada. 42854 CR BERTSEKAS DP, 1975, MATH PROG, V9, P87 42855 CHEW SH, 1988, LECT NOTES EC MATH S, V298 42856 CONN AR, 1973, SIAM J NUMER ANAL, V10, P760 42857 COURANT R, 1962, CALCULUS VARIATIONS 42858 DICKMAN BH, 1989, J OPTIMIZ THEORY APP, V60, P149 42859 DIPILLO G, 1988, J OPTIMIZATION THEOR, V57, P399 42860 DIPILLO G, 1989, SIAM J CONTROL OPTIM, V27, P1333 42861 EVANS JP, 1973, MATH PROGRAM, V4, P72 42862 FIACCO AV, 1968, NONLINEAR PROGRAMMIN 42863 FLETCHER R, 1973, MATH PROGRAM, V5, P129 42864 HAN SP, 1979, MATH PROGRAM, V17, P140 42865 HIMMELBLAU DM, 1972, APPL NONLINEAR PROGR 42866 LAWLER EL, 1966, OPER RES, V14, P1098 42867 LEE LF, 1977, 77DET163 42868 PIETRYKOWSKI T, 1969, SIAM J NUMER ANAL, V6, P294 42869 ZANGWILL WI, 1967, MANAGE SCI, V13, P344 42870 ZHENG Q, 1980, COMPUTATIONAL MATH, V3, P146 42871 ZHENG Q, 1981, NUMERICAL COMPUTATIO, V2, P257 42872 ZHENG Q, 1985, ACTA MATH APPL SINIC, V1, P118 42873 ZHENG Q, 1985, ACTA MATH APPL SINIC, V1, P66 42874 ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205 42875 ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317 42876 NR 22 42877 TC 1 42878 SN 0898-1221 42879 J9 COMPUT MATH APPL 42880 JI Comput. Math. Appl. 42881 PD FEB-MAR 42882 PY 1999 42883 VL 37 42884 IS 4-5 42885 BP 41 42886 EP 58 42887 PG 18 42888 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied 42889 GA 170FA 42890 UT ISI:000078794600006 42891 ER 42892 42893 PT J 42894 AU Pan, XC 42895 Zheng, QA 42896 TI Global optimum shape design 42897 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS 42898 DT Article 42899 DE mathematical programming; random number generation; testing; choice of 42900 initial values 42901 ID ROBUST MAPPINGS 42902 AB An optimum shape design problem can be formulated as a minimization 42903 problem of a functional subject to certain constraints. Usually, it is 42904 nonlinear and nonconvex. Conventional optimization techniques are 42905 gradient-based, they highly depend on the initial design, and are 42906 difficult to be applied to find a global solution. Integral global 42907 optimization algorithm is proposed to solve optimum shape design 42908 problems. Three design examples are given to illustrate the 42909 effectiveness of the algorithm. (C) 1999 Elsevier Science Ltd. All 42910 rights reserved. 42911 C1 China Text Univ, Shanghai 200051, Peoples R China. 42912 Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada. 42913 Shanghai Univ, Shanghai 201800, Peoples R China. 42914 RP Pan, XC, China Text Univ, Shanghai 200051, Peoples R China. 42915 CR BREBBIA CA, 1980, BOUNDARY ELEMENT TEC 42916 CHEN D, 1989, COMPUTATIONAL STRUCT, V6, P67 42917 CHEW SH, 1988, LECT NOTES EC MATH S, V298 42918 DIPILLO G, 1989, SIAM J CONTROL OPTIM, V27, P1333 42919 FIACCO AV, 1968, NONLINEAR PROGRAMMIN 42920 FLUGGE W, 1952, 2612 NASA TN 42921 SHI SZ, 1994, J MATH ANAL APPL, V183, P706 42922 SHI SZ, 1995, T AM MATH SOC, V347, P4943 42923 YING K, 1987, ENG MECH, V2, P125 42924 ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205 42925 ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317 42926 ZHENG Q, 1992, RECENT ADV GLOBAL OP, P298 42927 NR 12 42928 TC 1 42929 SN 0898-1221 42930 J9 COMPUT MATH APPL 42931 JI Comput. Math. Appl. 42932 PD FEB-MAR 42933 PY 1999 42934 VL 37 42935 IS 4-5 42936 BP 151 42937 EP 162 42938 PG 12 42939 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied 42940 GA 170FA 42941 UT ISI:000078794600014 42942 ER 42943 42944 PT J 42945 AU Pan, QY 42946 Xu, JQ 42947 Liu, HM 42948 An, CX 42949 Jia, N 42950 TI Preparation, microstructure and gas sensing properties of nanosized 42951 SnO2 materials made by microemulsions 42952 SO JOURNAL OF INORGANIC MATERIALS 42953 DT Article 42954 DE tin oxides; microemulsion; nanosized materials; gas; sensor; surfactant 42955 AB The application of microemulsion made of anion surfactants in preparing 42956 SnO2 naosized materials was studied, and the influence of different 42957 anion surfactants and assistant surfactants on the mean grain size of 42958 nanosized SnO2 was also researched by XRD and TEM. It can be known from 42959 the experimental results, monodispersed SnO2 nanosized materials with 42960 the mean grain size of about 6nm and average partical size smaller than 42961 20nm can be obtained from the microemulsion composed of AES or K-12 42962 anion surfactant and butanol assistant surfactant and it has high 42963 sensitivity without catalysts and additives. 42964 C1 Shanghai Univ, Sch Chem & Chem Engn, Shanghai 200072, Peoples R China. 42965 Zhengzhou Inst Light Ind, Dept Chem Engn, Zhengzhou 450002, Peoples R China. 42966 RP Pan, QY, Shanghai Univ, Sch Chem & Chem Engn, Shanghai 200072, Peoples 42967 R China. 42968 CR BUTTA N, 1992, SENSOR ACTUAT B-CHEM, V6, P253 42969 NITTA M, 1979, IEEE T ELECTRON DEV, V26, P219 42970 TAMAKI J, 1992, SENSOR ACTUAT B-CHEM, V9, P197 42971 XU C, 1991, SENSOR ACTUAT B-CHEM, V3, P147 42972 NR 4 42973 TC 6 42974 SN 1000-324X 42975 J9 J INORG MATER 42976 JI J. Inorg. Mater. 42977 PD FEB 42978 PY 1999 42979 VL 14 42980 IS 1 42981 BP 83 42982 EP 89 42983 PG 7 42984 SC Materials Science, Ceramics 42985 GA 167PG 42986 UT ISI:000078642000014 42987 ER 42988 42989 PT J 42990 AU Xu, KD 42991 Jiang, GC 42992 Huang, SP 42993 You, JL 42994 TI A study on the bonding structure of CaO-SiO2 slag by means of molecular 42995 dynamics simulation 42996 SO SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES 42997 DT Article 42998 DE CaO-SiO2 slag; molecular dynamics simulation; vibrational density of 42999 states 43000 ID SILICA; GLASS 43001 AB The investigation results of the bonding structure of CaO-SiO2 slag by 43002 means of molecular dynamics simulation are presented. The 43003 characteristics of partial radial distribution function g(ij)(r) are in 43004 goad agreement with the measurement of X-ray diffraction, and the 43005 variation of Q(n) with different SiO4 tetrahedra following the change 43006 of X-CaO is consistent with the results of Raman spectroscopy. The 43007 partial vibrational density of states Gamma(Si)(omega) shows that two 43008 bands appear in the range of 636-737 cm(-1) and 800-1 200 cm(-1) 43009 respectively which are also consistent with Raman spectroscopy. 43010 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 43011 RP Xu, KD, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, 43012 Peoples R China. 43013 CR ABRAMO MC, 1992, J CHEM PHYS, V96, P9083 43014 ALLEN MP, 1987, COMPUTER SIMULATION 43015 CHIPMAN J, 1961, PHYSICAL CHEM PROCES 43016 DELLAVALLE RG, 1994, CHEM PHYS, V179, P411 43017 IGUCHI Y, 1981, CAN METALL Q, V20, P51 43018 KIEFFER J, 1989, J CHEM PHYS, V90, P4982 43019 MATSUMIYA T, 1992, 4 INT C MOLT SLAGS F, P115 43020 OKAZAKI S, 1993, J CHEM PHYS, V98, P607 43021 WASEDA Y, 1989, MAT SCI EARTHS INTER, CH1 43022 WOODCOCK LV, 1976, J CHEM PHYS, V65, P1565 43023 NR 10 43024 TC 0 43025 SN 1006-9321 43026 J9 SCI CHINA SER E 43027 JI Sci. China Ser. E-Technol. Sci. 43028 PD FEB 43029 PY 1999 43030 VL 42 43031 IS 1 43032 BP 77 43033 EP 82 43034 PG 6 43035 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary 43036 GA 165LY 43037 UT ISI:000078523700010 43038 ER 43039 43040 PT J 43041 AU Niu, M 43042 Su, Y 43043 Yan, JK 43044 Fu, CP 43045 Xu, DM 43046 TI An improved open-ended waveguide measurement technique on parameters 43047 epsilon(r) and mu(r) of high-loss materials 43048 SO IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 43049 DT Article 43050 DE electromagnetic parameters; high-loss material; open-ended waveguide; 43051 simultaneous measurement 43052 AB An improved technique of using rectangular waveguide aperture for 43053 simultaneous measurement of the electromagnetic parameters epsilon(r), 43054 mu(r) of materials is developed in this paper, Both multilayer and 43055 single-layer medium sheet samples can be tested, Samples are sandwiched 43056 between a flange of an open-ended waveguide and a shorting plate, The 43057 parameters are obtain by using an optimization technique by fitting the 43058 theoretical values of the reflection coefficients Gamma(epsilon(r), 43059 mu(r)) to the measured values with epsilon(r), mu(r) as the argument. 43060 The related details, such as test theories, waveguide design, sample 43061 preparation, and error analysis are also discussed in this paper. The 43062 experimental results are validated by the measurements performed using 43063 the reflection-transmission method using an automatic network analyzer 43064 and the published data from manufactures. By virtue of its open-ended 43065 waveguide configuration, this technique is well suited for sheet or 43066 coating materials, and it might be applied for industrial 43067 on-the-worksite testing or biomedical analysis. 43068 C1 Shanghai Univ, Shanghai 201800, Peoples R China. 43069 Chinese Univ Hong Kong, Hong Kong, Peoples R China. 43070 RP Niu, M, Shanghai Univ, Shanghai 201800, Peoples R China. 43071 CR 1975, IEE C PUB 43072 ARJALINGAM, 1990, IEEE T MICROWAVE THE, V38 43073 BAKHTIARI S, 1994, IEEE T MICROWAVE THE, V24 43074 CULLEN AL, 1971, P ROY SOC LOND A MAT, V325, P493 43075 DEMING X, 1987, IEEE T MICROW THEORY, V35, P1424 43076 GARDIOL FE, 1985, ADV ELECTRON EL PHYS, V63, P139 43077 HAKKI BW, 1960, IRE T MICROWAVE THEO, V8, P402 43078 KHAN SA, 1992, P INT C MICR COMM NA, P702 43079 LI CL, 1995, IEEE T INSTRUM MEAS, V44, P19 43080 MISRA D, 1990, IEEE T MICROWAVE THE, V38 43081 STUCHLY MA, 1980, IEEE T INSTRUM MEAS, V29, P176 43082 TANABE E, 1976, IEEE T INSTRUM MEAS, V25, P222 43083 WEI YZ, 1991, IEEE T MICROW THEORY, V39, P526 43084 WEIR WB, 1974, P IEEE, V62 43085 NR 14 43086 TC 0 43087 SN 0018-9456 43088 J9 IEEE TRANS INSTRUM MEAS 43089 JI IEEE Trans. Instrum. Meas. 43090 PD APR 43091 PY 1998 43092 VL 47 43093 IS 2 43094 BP 476 43095 EP 481 43096 PG 6 43097 SC Engineering, Electrical & Electronic; Instruments & Instrumentation 43098 GA 166CC 43099 UT ISI:000078557800023 43100 ER 43101 43102 PT J 43103 AU He, JH 43104 TI Generalized variational principles for 1-D unsteady viscous flow 43105 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 43106 DT Article 43107 ID FLUID 43108 AB In order to solve the I-D unsteady viscous now via the finite element 43109 method, it is necessary to establish a generalized variational 43110 principle. In the present paper, based on the semi-inverse method 43111 proposed by He, two families of variational principles are established 43112 for I-D unsteady compressible, homentropic, viscous now in a flexible 43113 tube of varying cross-sectional area. 43114 C1 Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 43115 RP He, JH, Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples 43116 R China. 43117 CR HE JH, 1996, J SHANGHAI U, V2, P129 43118 HE JH, 1996, J SHANGHAI U, V2, P584 43119 HE JH, 1997, GEN VARIATIONAL PRIN, V1, P117 43120 HE JH, 1997, INT J TURBO JET ENG, V14, P23 43121 HE JH, 1997, J SHANGHAI U, V3, P299 43122 HE JH, 1998, ACTA AERODYNAMIC SIN, V16, P352 43123 HE JH, 1998, APPL MATH MODEL, V22, P395 43124 HE JH, 1998, INT J TURBO JET ENG, V15, P101 43125 LIU GL, 1998, INT J TURBO JET ENG, V15, P1 43126 OLSON LG, 1997, J FLUID STRUCT, V11, P207 43127 SHAPIRO AH, 1953, DYNAMICS THERMODYNAM, V2, CH23 43128 NR 11 43129 TC 0 43130 SN 0334-0082 43131 J9 INT J TURBO JET ENGINES 43132 JI Int. J. Turbo. Jet-Engines 43133 PY 1998 43134 VL 15 43135 IS 4 43136 BP 253 43137 EP 258 43138 PG 6 43139 SC Engineering, Aerospace 43140 GA 162YR 43141 UT ISI:000078375500002 43142 ER 43143 43144 PT J 43145 AU Gao, JH 43146 TI Numerical simulation of the form of the free trailing vortex sheet in 43147 3-D compressible rotor flow 43148 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 43149 DT Article 43150 DE 3-D flow in turbine; trailing vortex sheet; FEM; nonlinear programming 43151 AB This article is based on a unified variable-domain variational theory 43152 and uses the finite element method to solve the unknown boundary 43153 problem of the free trailing vortex sheet which is the natural boundary 43154 condition result in the variational theory. A new nonlinear programming 43155 method is adopted to study the form of the free trailing vortex sheet 43156 and this article proves the method is feasible by numerical simulation 43157 of an example. 43158 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 43159 RP Gao, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 43160 200072, Peoples R China. 43161 CR CRANK J, 1984, FREE MOVING BOUNDARY 43162 FINLAYSON BA, 1972, METHOD WEIGHTED RESI 43163 HIMMELBLAU DM, 1972, APPL NONLINEAR PROGR 43164 LIU GL, 1980, SCI SINICA, V23, P1339 43165 RAO SS, 1984, OPTIMIZATION THEORY 43166 SIEVERDING CH, 1984, J ENG GAS TURB POWER, V2, P437 43167 YAN S, 1987, 1 INT C IND APPL MAT 43168 YAN S, 1991, P INT GAS TURB C YOK, V2, P35 43169 ZIENKLEWICZ OC, 1977, FEM 43170 NR 9 43171 TC 0 43172 SN 0334-0082 43173 J9 INT J TURBO JET ENGINES 43174 JI Int. J. Turbo. Jet-Engines 43175 PY 1998 43176 VL 15 43177 IS 4 43178 BP 271 43179 EP 274 43180 PG 4 43181 SC Engineering, Aerospace 43182 GA 162YR 43183 UT ISI:000078375500004 43184 ER 43185 43186 PT J 43187 AU Chen, YL 43188 Ding, WY 43189 TI A simple approach to highly stereoselective synthesis of 43190 beta,gamma-trans-gamma-butyrolactones 43191 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE 43192 DT Article 43193 DE arsenic ylide; stereoselective synthesis; gamma-butyrolactone 43194 AB A simple approach to highly stereoselective synthesis Of 43195 trans-beta-methoxycarbonyl-gamma-aryl-gamma-butyrolactones (5a-5c) is 43196 reported. Methoxycarbonylmethyltriphenylarsonium bromide (1) in 43197 dimethyl ethylene glycol was reacted with 43198 2,2-dimethyl-1,3-dioxa-5-p-methoxybenzal-4, 6-dione(2a) in the presence 43199 of K2CO3 and trace of water at room temperature, to give 43200 trans-beta-methoxycarbonyl-gamma-p-methoxyphenyl- gamma-butyrolactone 43201 (5a) with 64 % yield, whereas 1,2-cis cyclopropane derivatives(3b and 43202 3c) were isolated when started from 2b or 2c, under same conditions. 43203 The gamma-butyrolactones 5b or 5c were obtained with 62% and 57% yields 43204 when compounds 3b or 3c was further heated in acetone-water. The 43205 structures of 5a-5c were established on the basis of IR, H-1 and C-13 43206 NMR, MS and elemental analyses, and their configurations were assigned 43207 via 2D proton NOESY spectrum of compound 5c. 43208 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 43209 RP Chen, YL, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 43210 CR DING WY, 1996, CHEM RES CHINESE U, V12, P50 43211 NR 1 43212 TC 9 43213 SN 0251-0790 43214 J9 CHEM J CHINESE UNIV-CHINESE 43215 JI Chem. J. Chin. Univ.-Chin. 43216 PD OCT 43217 PY 1998 43218 VL 19 43219 IS 10 43220 BP 1614 43221 EP 1616 43222 PG 3 43223 SC Chemistry, Multidisciplinary 43224 GA 160YT 43225 UT ISI:000078261500021 43226 ER 43227 43228 PT J 43229 AU Liu, LM 43230 Shi, DH 43231 TI An (s,S) model for inventory with exponential lifetimes and renewal 43232 demands 43233 SO NAVAL RESEARCH LOGISTICS 43234 DT Article 43235 AB Inventory control of products with finite lifetimes is important in 43236 many modem business organizations. It has been an important and 43237 difficult research subject. Here, we study the (s, S) continuous review 43238 model for items with an exponential random lifetime and a general 43239 renewal demand process through a Markov process. We derive a 43240 fundamental rate conservation theorem and show that all the other 43241 system performance measures can be obtained easily through the expected 43242 reorder cycle length. This leads to a simple expression for the total 43243 expected long run cost rate function in terms of the expected reorder 43244 cycle length. Subsequently, we derive formulas for computing the 43245 expected cycle lengths for the general renewal demand as well as for a 43246 large class of demands characterized by the phase type interdemand time 43247 distribution. We show analytically when the cost as a function of the 43248 reorder level is monotone, concave, or convex. We also show 43249 analytically that, depending on the behavior of the expected reorder 43250 cycle, the cost as a function of the order-up level is either monotone 43251 increasing or unimodal. These analytical properties enable us to 43252 understand the problem and make the subsequent numerical optimization 43253 much easier. Numerical studies confirm and illustrate some of the 43254 analytical properties. The results also demonstrate the impact of 43255 various parameters on the optimal policy and the cost. (C) 1999 John 43256 Wiley & Sons, Inc. 43257 C1 Hong Kong Univ Sci & Technol, Dept Ind Engn & Engn Management, Hong Kong, Peoples R China. 43258 Shanghai Univ, Dept Math, Shanghai, Peoples R China. 43259 RP Liu, LM, Hong Kong Univ Sci & Technol, Dept Ind Engn & Engn Management, 43260 Hong Kong, Peoples R China. 43261 CR BARLOW RE, 1975, STAT THEORY RELIABIL 43262 BUZACOTT JA, 1993, STOCHASTIC MODELS MA 43263 FRIES B, 1975, OPER RES, V23, P46 43264 GHARE PM, 1963, J IND ENG, V14, P238 43265 GOLDBERG H, 1981, EXTENDING LIMITS REL 43266 KALPAKAM S, 1988, STATISTICS, V19, P389 43267 KALPAKAM S, 1994, OPER RES LETT, V16, P115 43268 KASPI H, 1984, ADV APPL PROBAB, V16, P402 43269 LIU L, 1995, IN PRESS EUR J OPERA 43270 LIU L, 1995, IN PRESS OPERATIONS 43271 LIU LM, 1990, OPER RES LETT, V9, P161 43272 MOORTHY KA, 1992, INT J INF MANAGE SCI, V3, P29 43273 NAHMIAS S, 1975, OPER RES, V23, P735 43274 NAHMIAS S, 1982, OPERATIONS RES SOC A, V30, P680 43275 NANDAKUMAR P, 1993, MANAGE SCI, V39, P1490 43276 NEUTS MF, 1981, MATRIX GEOMETRIC SOL 43277 PIERSKALLA WP, 1972, MANAGE SCI, V18, P603 43278 RAAFAT F, 1991, J OPER RES SOC, V42, P27 43279 ROSS SM, 1983, STOCHASTIC PROCESSES 43280 WEISS HJ, 1980, OPER RES, V28, P365 43281 NR 20 43282 TC 4 43283 SN 0894-069X 43284 J9 NAV RES LOG 43285 JI Nav. Res. Logist. 43286 PD FEB 43287 PY 1999 43288 VL 46 43289 IS 1 43290 BP 39 43291 EP 56 43292 PG 18 43293 SC Operations Research & Management Science 43294 GA 158VX 43295 UT ISI:000078139100003 43296 ER 43297 43298 PT J 43299 AU Gabriel, B 43300 Jiang, FR 43301 TI Application of the modified method of multiple scales to the bending 43302 problems for circular thin plate at very large deflection and the 43303 asymptotics of solutions (I) 43304 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 43305 DT Article 43306 DE circular plate; large deflection; boundary layer effect; asymptotics; 43307 modified method of multiple scales 43308 AB In this paper, the,modified method of multiple scales is applied to 43309 study the bending problems for circular thin plate with large 43310 deflection under the hinged and simply supported edge conditio,ls. The 43311 series solutions are constructed, the boundary layer effects are 43312 analysed and their asymptotics are proved. 43313 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 43314 RP Gabriel, B, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 43315 200072, Peoples R China. 43316 CR CHIEN WZ, 1947, CHINESE J PHYS, V7, P102 43317 CHIEN WZ, 1948, NATIONAL TSING HUA U, V5, P71 43318 CHIEN WZ, 1954, ACTA PHYS SINICA, V10, P209 43319 CHUEN YC, 1980, NONLINEAR ANAL PLATE 43320 QIAO ZC, 1993, APPL MATH MECH, V14, P953 43321 VOLMIL AC, 1956, FLEXIBLE THIN PLATE 43322 NR 6 43323 TC 1 43324 SN 0253-4827 43325 J9 APPL MATH MECH-ENGL ED 43326 JI Appl. Math. Mech.-Engl. Ed. 43327 PD OCT 43328 PY 1998 43329 VL 19 43330 IS 10 43331 BP 937 43332 EP 950 43333 PG 14 43334 SC Mathematics, Applied; Mechanics 43335 GA 158UP 43336 UT ISI:000078135800003 43337 ER 43338 43339 PT J 43340 AU Shen, M 43341 TI Variational principles in hydrodynamics of a non-Newtonian fluid 43342 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 43343 DT Article 43344 DE non-Newtonian fluid; variational principle; Lagrangian multiplier 43345 AB In this paper, the principle of maximum power losses for the 43346 incompressible viscous fluid proposed by professor Chien Weizang in 43347 reference [1] is further extended to the hydrodynamic problem of the 43348 non-Newtonian fluid with constitutive law expressed as epsilon(y) = 43349 partial derivative tau/partial derivative sigma'(y). The constraint 43350 conditions of variation are eliminated by the method of identified 43351 Lagrangian multiplier and a generalized variational principle is 43352 established. 43353 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 43354 RP Shen, M, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 43355 200072, Peoples R China. 43356 CR CHIEN WZ, 1984, APPL MATH MECH, V5, P1281 43357 GROCHET MJ, 1984, NUMERICAL SIMULATION 43358 GUDERLY KG, 1972, SIAN J APPL MATH, V23, P259 43359 HAFEZ M, 1983, AIAA J, V21, P3 43360 LIN CC, 1945, J MATH PHYS, V27, P105 43361 MANWELL AR, 1980, WAVE MOTION, V2, P83 43362 SHEN M, 1995, APPL MATH MECH, V16, P369 43363 SKOBELKIN VI, 1957, SOV PHYS JETP, V4, P68 43364 NR 8 43365 TC 0 43366 SN 0253-4827 43367 J9 APPL MATH MECH-ENGL ED 43368 JI Appl. Math. Mech.-Engl. Ed. 43369 PD OCT 43370 PY 1998 43371 VL 19 43372 IS 10 43373 BP 963 43374 EP 969 43375 PG 7 43376 SC Mathematics, Applied; Mechanics 43377 GA 158UP 43378 UT ISI:000078135800006 43379 ER 43380 43381 PT J 43382 AU Wang, SJ 43383 Niu, MD 43384 Xu, DM 43385 TI A frequency-varying method for simultaneous measurement of complex 43386 permittivity and permeability with an open-ended coaxial probe 43387 SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 43388 DT Article 43389 DE frequency-varying method; open-ended coaxial probe; permeability; 43390 permittivity 43391 ID DIELECTRIC-PROPERTIES; MICROWAVE-FREQUENCIES; BIOLOGICAL SUBSTANCES; 43392 LINE SENSOR; CALIBRATION; REFLECTION 43393 AB To measure the complex permittivity and permeability of materials 43394 simultaneously with an open-ended coaxial probe, one needs at least two 43395 independent reflections. Based on the fact that frequency is an 43396 independent variable for the probe's reflection coefficient, a new 43397 concept, namely the frequency-varying method (FVM), which achieves the 43398 independent reflections via changing frequency, has been proposed. 43399 Since the electromagnetic (EM) properties of materials themselves are 43400 functions of frequency, the FVM introduces interpolation techniques 43401 into the process of extracting EM parameters from multiple reflection 43402 coefficients. The successful experimental results on radar-absorbing 43403 coatings show the feasibility and good prospects of the FVM for 43404 characterizing EM properties of materials ill situ, Compared with the 43405 thickness-varying method (TVM), which makes two measurements with two 43406 samples of different thicknesses, the FVM needs only one 43407 frequency-swept reflection measurement, thus simplifying and speeding 43408 up the measurement process, and improving accuracy and repeatability. 43409 Furthermore, the FVM has the ready capability to be extended to 43410 multiple-parameter measurements, and we may also find potential 43411 applications in other fields. 43412 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800, Peoples R China. 43413 RP Wang, SJ, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800, 43414 Peoples R China. 43415 CR CHEN GW, 1994, IEEE T MICROW THEORY, V42, P966 43416 DELANGHE P, 1994, IEEE T INSTRUM MEAS, V43, P810 43417 GRANT JP, 1989, J PHYS E SCI INSTRUM, V22, P757 43418 JARVIS JB, 1994, IEEE T INSTRUM MEAS, V43, P711 43419 JENKINS S, 1992, IEE PROC-H, V139, P179 43420 KRASZEWSKI A, 1983, IEEE T INSTRUM MEAS, V32, P385 43421 LI CL, 1995, IEEE T INSTRUM MEAS, V44, P19 43422 MISRA D, 1990, IEEE T MICROW THEORY, V38, P8 43423 MOSIG JR, 1981, IEEE T INSTRUM MEAS, V30, P46 43424 NIU MD, 1997, IEEE IMTC P, P482 43425 NYSHADHAM A, 1992, IEEE T MICROW THEORY, V40, P305 43426 STUCHLY MA, 1980, IEEE T INSTRUM MEAS, V29, P176 43427 XU DM, 1987, IEEE T MICROW THEORY, V35, P1424 43428 NR 13 43429 TC 1 43430 SN 0018-9480 43431 J9 IEEE TRANS MICROWAVE THEORY 43432 JI IEEE Trans. Microw. Theory Tech. 43433 PD DEC 43434 PY 1998 43435 VL 46 43436 IS 12 43437 PN Part 1 43438 BP 2145 43439 EP 2147 43440 PG 3 43441 SC Engineering, Electrical & Electronic 43442 GA 158CP 43443 UT ISI:000078098700023 43444 ER 43445 43446 PT J 43447 AU Shi, ZW 43448 Zhao, XH 43449 TI A,phi-Omega method for 3-D eddy current analysis 43450 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 43451 DT Article 43452 DE 3-D eddy current field; A, phi-Omega method; interface continuous 43453 conditions 43454 AB After the field equations and the continuous conditions between the 43455 interfaces for 3-D eddy current problems under various gauges were 43456 discussed, it was pointed out in this paper that using the magnetic 43457 vector potential A, the electric scalar potential phi and Coulomb gauge 43458 del . A = 0 in eddy current regions and using the magnetic scalar 43459 potential Omega in the non-conducting regions are more suitable. All 43460 field equations, the boundary conditions, the interface continuity 43461 conditions and the corresponding variational principle of this method 43462 are also given. 43463 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 43464 RP Shi, ZW, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 43465 200072, Peoples R China. 43466 CR 1987, P C COMP EL FIELDS G 43467 1988, IEEE T MAG, V24, P13 43468 BROWN ML, 1982, PIEE, V129, P46 43469 CHARI MVK, 1982, IEEE T MAG, V18, P435 43470 EMSON CRI, 1983, IEEE T MAGN, V19, P2450 43471 EMSON RI, 1988, IEEE T MAG, V24, P86 43472 NR 6 43473 TC 1 43474 SN 0253-4827 43475 J9 APPL MATH MECH-ENGL ED 43476 JI Appl. Math. Mech.-Engl. Ed. 43477 PD NOV 43478 PY 1998 43479 VL 19 43480 IS 11 43481 BP 1017 43482 EP 1023 43483 PG 7 43484 SC Mathematics, Applied; Mechanics 43485 GA 157NN 43486 UT ISI:000078068700001 43487 ER 43488 43489 PT J 43490 AU Ma, JH 43491 Chen, YS 43492 Liu, ZR 43493 TI The influence of the different distributed phase-randomized on the 43494 experimental data obtained in dynamic analysis 43495 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 43496 DT Article 43497 DE experimental data; surrogate data; critical value; phase-randomized; 43498 random timeseries; chaotic timeseries 43499 ID CORRELATION DIMENSION; NOISE; CHAOS 43500 AB In this paper the influence of the differently distributed 43501 phase-randomized to the data obtained in dynamic analysis for critical 43502 value is studied. The calculation results validate that the sufficient 43503 phase-randomized of the different distributed random numbers are less 43504 influential on the critical value. This offers the theoretical 43505 foundation of the feasibility and practicality of the phase-randomized 43506 method. 43507 C1 Southeast Univ, Inst Syst Engn, Nanjing 210096, Peoples R China. 43508 Tianjin Univ, Dept Mech, Tianjin 300072, Peoples R China. 43509 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 43510 RP Ma, JH, Southeast Univ, Inst Syst Engn, Nanjing 210096, Peoples R China. 43511 CR ABARBANEL HDI, 1991, INT J MOD PHYS B, V5, P1347 43512 CABRERA JL, 1995, PHYS LETT A, V197, P19 43513 CASDAGLI M, 1992, J ROY STAT SOC B MET, V54, P303 43514 GRASSBERGER P, 1988, PHYS LETT A, V128, P369 43515 KENNEL MB, 1992, PHYS REV A, V46, P3111 43516 KOSTELICH EJ, 1992, PHYSICA D, V58, P138 43517 MA JH, 1998, APPL MATH MECH-ENGL, V19, P513 43518 PRICHARD D, 1993, GEOPHYS RES LETT, V20, P2817 43519 PRICHARD D, 1994, PHYS LETT A, V191, P245 43520 PRICHARD D, 1994, PHYS REV LETT, V191, P230 43521 RAPP PE, 1993, PHYS REV E, V47, P2289 43522 RAPP PE, 1994, PHYS LETT A, V192, P27 43523 ROMBOUTS SAR, 1995, PHYS LETT A, V202, P352 43524 SCHIFF SJ, 1992, PHYS REV LETT A, P378 43525 TAKALO J, 1993, GEOPHYS RES LETT, V20, P1527 43526 THEILER J, 1986, PHYS REV A, V34, P2427 43527 THEILER J, 1991, PHYS LETT A, V155, P480 43528 NR 17 43529 TC 3 43530 SN 0253-4827 43531 J9 APPL MATH MECH-ENGL ED 43532 JI Appl. Math. Mech.-Engl. Ed. 43533 PD NOV 43534 PY 1998 43535 VL 19 43536 IS 11 43537 BP 1033 43538 EP 1042 43539 PG 10 43540 SC Mathematics, Applied; Mechanics 43541 GA 157NN 43542 UT ISI:000078068700003 43543 ER 43544 43545 PT J 43546 AU Lu, DC 43547 Tian, LX 43548 Liu, ZR 43549 TI Wavelet basis analysis in perturbed periodic KdV equation 43550 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 43551 DT Article 43552 DE wavelet basis; approximate inertial manifold; perturbed periodic KdV 43553 equation 43554 AB In the paper by using the spline wavelet basis to construct the 43555 approximate inertial manifold, we study the longtime behavior of 43556 perturbed perodic KdV equation. 43557 C1 Jiangus Univ Sci & Technol, Dept Math & Phys, Zhenjiang 212013, Peoples R China. 43558 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 43559 RP Lu, DC, Jiangus Univ Sci & Technol, Dept Math & Phys, Zhenjiang 212013, 43560 Peoples R China. 43561 CR CHUI CK, 1992, INTRO WAVELET 43562 DEBUSSCHE A, 1992, J DIFFER EQUATIONS, V100, P173 43563 ERCOLANI NM, 1993, J NONLINEAR SCI, V3, P477 43564 GOUBET O, 1992, SIAM J MATH ANAL, V9, P1455 43565 SUN SM, 1994, NONLINEAR ANAL-THEOR, V23, P545 43566 TEMAN R, 1988, APPL MATH SOC, V68 43567 TIAN LX, 1997, APPL MATH MECH-ENGL, V18, P1021 43568 TIAN LX, 1997, WAVELET GALERKIN MET 43569 NR 8 43570 TC 1 43571 SN 0253-4827 43572 J9 APPL MATH MECH-ENGL ED 43573 JI Appl. Math. Mech.-Engl. Ed. 43574 PD NOV 43575 PY 1998 43576 VL 19 43577 IS 11 43578 BP 1053 43579 EP 1058 43580 PG 6 43581 SC Mathematics, Applied; Mechanics 43582 GA 157NN 43583 UT ISI:000078068700005 43584 ER 43585 43586 PT J 43587 AU Yong, Z 43588 TI Numerical study of a nonlinear integrodifferential equation 43589 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 43590 DT Article 43591 DE integrodifferential equation; spectral method; solitary waves 43592 AB In this paper, by using the pseudo-spectral method of Fornberg and 43593 Whitham, a nonlinear intergrodifferential equations 43594 A(t) + 6AA(x) + 1/2\In epsilon\ integral (+infinity)(-infinity) A(x', 43595 t(.))/{(x' - x)(2) + epsilon(2)}(-1/2) dx' = 0 43596 is investigated numerically. It is found that for small epsilon, the 43597 result is close to that of the KdV equation, whereas the effects of 43598 larger epsilon and the initial condition are significant. 43599 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 43600 RP Yong, Z, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 43601 200072, Peoples R China. 43602 CR FORNBERG B, 1978, PHILOS T ROY SOC A, V289, P373 43603 GRIMSHAW R, 1994, CAN APPL MATH Q, V2, P189 43604 LEIBOVICH S, 1970, J FLUID MECH, V42, P803 43605 ZABUSKY NJ, 1965, PHYS REV LETT, V15, P240 43606 NR 4 43607 TC 0 43608 SN 0253-4827 43609 J9 APPL MATH MECH-ENGL ED 43610 JI Appl. Math. Mech.-Engl. Ed. 43611 PD NOV 43612 PY 1998 43613 VL 19 43614 IS 11 43615 BP 1059 43616 EP 1063 43617 PG 5 43618 SC Mathematics, Applied; Mechanics 43619 GA 157NN 43620 UT ISI:000078068700006 43621 ER 43622 43623 PT J 43624 AU Zhang, BS 43625 TI A comment on the proof of Fermat's last theorem 43626 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 43627 DT Article 43628 DE factorization; cofactor; relative prime; Fermat's last theorem 43629 AB In this paper, some comments on the proof of Fermat's last theorem are 43630 proposed. The main result is that the proof proposed by Wong Chiahe is 43631 only part of proof for Fermat's last theorem. That is to say, the proof 43632 is not all-full proof to Fermat's last theorem. 43633 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 43634 RP Zhang, BS, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 43635 200072, Peoples R China. 43636 CR CHEN SS, 1996, MATH DEV, V25, P1 43637 HUA LG, 1959, NUMBER THEORY INTRO, P14 43638 WONG CH, 1996, APPL MATH MECH ENGLI, V17, P1031 43639 NR 3 43640 TC 0 43641 SN 0253-4827 43642 J9 APPL MATH MECH-ENGL ED 43643 JI Appl. Math. Mech.-Engl. Ed. 43644 PD NOV 43645 PY 1998 43646 VL 19 43647 IS 11 43648 BP 1115 43649 EP 1118 43650 PG 4 43651 SC Mathematics, Applied; Mechanics 43652 GA 157NN 43653 UT ISI:000078068700012 43654 ER 43655 43656 PT J 43657 AU Gu, GQ 43658 Hui, PM 43659 Wang, BH 43660 Dai, SQ 43661 TI Two-dimensional cellular automaton traffic model with randomly 43662 switching traffic lights 43663 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 43664 DT Article 43665 DE cellular automata; traffic model; traffic light; phase transition 43666 ID JAMMING TRANSITION; FLOW PROBLEMS 43667 AB Cellular automation traffic models can include various factors in 43668 traffic systems and the corresponding computational simulations are 43669 rather simple and effective. The Biham-Middleton-Levine model (BML 43670 model) facilitates the simulation of two-dimensional traffic flow 43671 problems via the cellular automaton models. In this paper, the BML 43672 model is improved by removing its limitation of synchronized change of 43673 traffic lights. In the new model, the traffic light at each crossing 43674 could arbitrarily change its starting time and tempo of variation, and 43675 hence the model could more realistically describe the influence of 43676 traffic lights on the performance of traffic systems. Some new effects 43677 appearing in the new model are also elucidated. 43678 C1 Shanghai Univ, Sch Syst Sci & Syst Engn, S&T, Shanghai 200093, Peoples R China. 43679 Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. 43680 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 43681 Chinese Univ Hong Kong, Dept Phys, Shatin, NT, Peoples R China. 43682 RP Gu, GQ, Shanghai Univ, Sch Syst Sci & Syst Engn, S&T, Shanghai 200093, 43683 Peoples R China. 43684 CR BENJAMIN SC, 1996, J PHYS A-MATH GEN, V29, P3119 43685 BIHAM O, 1992, PHYS REV A, V46, P6124 43686 CHUNG KH, 1995, PHYS REV E, V51, P772 43687 CUESTA JA, 1993, PHYS REV E, V48, R4175 43688 GU GQ, 1995, PHYSICA A, V217, P339 43689 GU GQ, 1995, SYST ENG THEOR METH, V14, P12 43690 NAGATANI T, 1993, PHYS REV E, V48, P3290 43691 NAGATANI T, 1994, J PHYS SOC JPN, V63, P1228 43692 NR 8 43693 TC 0 43694 SN 0253-4827 43695 J9 APPL MATH MECH-ENGL ED 43696 JI Appl. Math. Mech.-Engl. Ed. 43697 PD SEP 43698 PY 1998 43699 VL 19 43700 IS 9 43701 BP 807 43702 EP 813 43703 PG 7 43704 SC Mathematics, Applied; Mechanics 43705 GA 157AK 43706 UT ISI:000078036400001 43707 ER 43708 43709 PT J 43710 AU Qin, KR 43711 Jiang, WY 43712 Li, XX 43713 Liu, ZR 43714 TI On analysis of the steady flow in an irrectangular parallel-plate flow 43715 chamber 43716 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 43717 DT Article 43718 DE irrectangular parallel-plate flow chamber; shear stress; steady flow; 43719 cell's mechanical behaviors 43720 AB The parallel-plate flow chamber (PPFC), of which the height is far 43721 smaller than its own length and width, is one of the main apparatus for 43722 the in vitro study of the mechanical behaviors of cultured cells at the 43723 bottom of PPFC undergoing shear stress. The PPFC of which the upper and 43724 lower plates are rectangular is usually used by research workers, and 43725 the flow field in this kind of PPFC (except for the regions near the 43726 entrance and exit) is uniform([1]), so only the effect the shear stress 43727 with one value has on cultured cells can be observed during each 43728 experiment. A kind of PPFC of which the upper and lower plates are not 43729 rectangular is proposed in this paper. The distributions of the 43730 velocities inside and the shear stresses at the bottom of the chamber 43731 are given by analyzing the flow field of the steady flow in the PPFC. 43732 The results show that the mechanical behaviors of cultured cells 43733 undergoing the shear stresses with various values may be simultaneously 43734 observed by the use of this kind of irrectangular PPFC. The theoretical 43735 and experimental results obtained by Ultrasonic Doppler Technique show 43736 good agreement. 43737 C1 Fudan Univ, Biomech Lab, Shanghai 200433, Peoples R China. 43738 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 43739 RP Qin, KR, Fudan Univ, Biomech Lab, Shanghai 200433, Peoples R China. 43740 CR DAVIS RT, 1983, COMPUTATIONAL METHOD 43741 FRANGOS JA, 1988, BIOTECHNOL BIOENG, V32, P1053 43742 HAMMER DA, 1995, P 4 CHIN JAP SING C, P425 43743 JIANG WY, 1996, J APPL BIOMECH, V11, P97 43744 YUNG YC, 1993, BIOMECHANICS KINETIC 43745 NR 5 43746 TC 0 43747 SN 0253-4827 43748 J9 APPL MATH MECH-ENGL ED 43749 JI Appl. Math. Mech.-Engl. Ed. 43750 PD SEP 43751 PY 1998 43752 VL 19 43753 IS 9 43754 BP 851 43755 EP 859 43756 PG 9 43757 SC Mathematics, Applied; Mechanics 43758 GA 157AK 43759 UT ISI:000078036400006 43760 ER 43761 43762 PT J 43763 AU Nafziger, JAR 43764 Wei, L 43765 TI China's sports law 43766 SO AMERICAN JOURNAL OF COMPARATIVE LAW 43767 DT Article 43768 C1 Willamette Univ, Coll Law, Salem, OR 97301 USA. 43769 Shanghai Univ, Shanghai, Peoples R China. 43770 RP Nafziger, JAR, Willamette Univ, Coll Law, Salem, OR 97301 USA. 43771 CR 1986, BEIJING REV 0203, P32 43772 1994, ASIA WK 1207, P38 43773 1994, CHRIST SCI MONI 0301, P20 43774 1994, MAINICHI DAILY 1205, P1 43775 1994, SPURT Z SPORT RECHT, V1, P6 43776 1994, SPURT Z SPORT RECHT, V1, P73 43777 1994, XINHUA NEWS AGE 1205 43778 1994, XINHUA NEWS AGE 1229 43779 1995, BUS WK 0619, P140 43780 1995, NY TIMES 0728, B8 43781 1995, PEOPLES DAILY 0427, P1 43782 1995, PEOPLES DAILY 1222, P10 43783 1995, PEOPLES DAILY 1227, P5 43784 1995, PEOPLES DAILY 1227, P6 43785 1995, PEOPLES DAILY 1229, P10 43786 1995, SHANGHAI STAR 0901, P1 43787 1995, UPI 0301 43788 1995, ZHONGHUA RENMIN GONG 43789 1996, JAPAN EC NEWSWI 0805 43790 1996, LA TIMES 0212, S1 43791 1997, PEOPLES DAILY 0905, P10 43792 1997, PEOPLES DAILY 1025, P1 43793 1998, PEOPLES DAILY 0115, P2 43794 1998, XINHUA NEWS AGE 0406 43795 *LAW RUL SECT LAW, 1995, YU TIYUF YOUG JIG ZH, P4 43796 BADDELEY, 1997, REV JURIDIQUE EC SPO, P5 43797 BO T, 1993, BEIJING REV 0906, P31 43798 BROWNELL S, 1995, TRAINING BODY CHINA, P39 43799 BUCHBERGER M, 1997, THESIS RUHR U BOCHUM 43800 CHEN XT, 1998, WASH POST 0801, A17 43801 DEMERODE A, 1994, JAPANESE EC NEW 1214 43802 EVANS R, 1993, DENG XIAOPING MAKING, P204 43803 FACHET, 1994, WASH POST 1201, B2 43804 FUMAGALLI, 1995, RIV DIRITTO SPORTIVO, V47, P715 43805 FUNG YL, 1948, SHORT HIST CHINESE P 43806 GABRIEL, 1988, NY TIMS 0424, P30 43807 GABRIEL, 1988, NY TIMS 0424, P33 43808 GOODBODY, 1995, TIMES LONDON 0302 43809 HE ZL, 1995, NEW STRAITS TIM 0107, P48 43810 HERSH, 1996, CHICAGO TRIB 0104, P1 43811 HESS B, 1996, ZZPINT, V1, P371 43812 HLADCZUK J, 1991, SPORTS LAW LEGISLATI, P115 43813 HOBERMAN JM, 1984, SPORTS POLITICAL IDE, P219 43814 HUGHES NC, 1998, FOREIGN AFF JUL, P67 43815 HUGHES NC, 1998, FOREIGN AFF JUL, P68 43816 JACQ P, 1993, P 1 INT C SPORTS LAW, P403 43817 JIANG RP, 1994, TIYU FAXUE, P33 43818 KRISTOF ND, 1994, CHINA WAKES, P440 43819 KRISTOF, 1993, INT HERALD TRIB 0729, P17 43820 LAM, 1994, CHINESE BUS REV NOV, P41 43821 LI P, 1998, PEOPLES DAILY 0321, P1 43822 LI ZH, 1997, PEOPLES DAILY 1128 43823 LIN, 1993, FREE CHINA J 0302, P4 43824 LINDORFF D, 1995, BUS WK 0619, P140 43825 LOU LW, 1993, BEIJING REV 1228, P36 43826 MASTROCOLA, 1995, BC 3 WORLD LJ, V15, P141 43827 MONTVILLE, 1994, SPORTS ILLUS 0919, P40 43828 MUFSON S, 1994, WASH POST 1206, B2 43829 NAFZIGER JAR, 1988, INT SPORTS LAW, P58 43830 NAFZIGER JAR, 1992, AM J INT LAW, V86, P489 43831 NAFZIGER, 1992, AM J INT L, V86, P496 43832 NAFZIGER, 1996, INT COMP LQ, V45, P130 43833 NAFZIGER, 1996, INT COMP LQ, V45, P143 43834 NAN L, 1988, AM J SOCIOL, V93, P793 43835 NAN L, 1988, AM J SOCIOL, V93, P805 43836 PESCANTE, 1997, INT ATHLETIC FDN SUP, P127 43837 QUN W, 1996, PEOPLES DAILY 0105, P10 43838 RIDING, 1993, NY TIMES 0920, B9 43839 RIORDAN J, 1991, SPORTS POLITICS COMM, P5 43840 TYLER, 1993, NY TIMES 0919, A4 43841 WANG JP, 1995, PEOPLES DAILY 0927, P5 43842 WANG SW, 1995, ZHONGHUA RENMIN GONG, P18 43843 WHITTEN, 1994, SWIMMING WORLD J JAN, P34 43844 WILCOX RC, 1994, SPORT GLOBAL VILLAGE, P407 43845 WILL MR, 1988, AUF WEGE EINEM EUROP 43846 YU XG, PEOPLES DAILY 0905, P10 43847 ZOU SC, 1993, BEIJING REV 0920, P22 43848 ZOU SC, 1995, BEIJING REV 0715, P8 43849 NR 78 43850 TC 0 43851 SN 0002-919X 43852 J9 AMER J COMP LAW 43853 JI Am. J. Comp. Law 43854 PD SUM 43855 PY 1998 43856 VL 46 43857 IS 3 43858 BP 453 43859 EP 483 43860 PG 31 43861 SC Law 43862 GA 156UB 43863 UT ISI:000078019500003 43864 ER 43865 43866 PT J 43867 AU Wan, DC 43868 Wu, GX 43869 TI Numerical simulation of a solitary wave interaction with submerged 43870 multi-bodies 43871 SO ACTA MECHANICA SINICA 43872 DT Article 43873 DE multi-bodies; solitary wave; viscous flows; VOF method 43874 AB The problems of a solitary wave passing over rectangular cylinders have 43875 been analysed. The numerical simulation is based on the full nonlinear 43876 two-dimensional Navier-Stokes equations which are solved by the finite 43877 difference method. The free surface is dealt with by the Volume of 43878 Fluid method (VOF). Results for a solitary wave passing over a single 43879 cylinder are compared with the experimental data of Seabra-Santos, 43880 Penouard and Temperville([2]) and better agreement is obtained than 43881 those obtained from the long wave equation based on the potential flow 43882 theory. Results are also given for two cylinders with different gaps. 43883 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 43884 Univ London Univ Coll, Dept Mech Engn, London WC1E 7JE, England. 43885 RP Wan, DC, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 43886 200072, Peoples R China. 43887 CR COOKER MJ, 1990, J FLUID MECH, V215, P1 43888 DJORDJEVIC VD, 1978, J PHYS OCEANOGR, V8, P1016 43889 HIRT CW, 1981, J COMPUT PHYS, V39, P201 43890 MADSEN OS, 1969, J FLUID MECH, V39, P781 43891 NICHOLS BD, 1980, LA8355 LOS AL SCI LA 43892 OHYAMA T, 1992, J CIVIL ENG SOC JAPA, P31 43893 SEABRASANTOS FJ, 1987, J FLUID MECH, V176, P117 43894 WAN DC, 1997, J HYDRODYNAMICS B, V9, P88 43895 WAN DC, 1998, J HYDRODYNAMICS A, V13, P95 43896 WANG YX, 1993, COMMUNICATION CHINES, V3, P553 43897 NR 10 43898 TC 0 43899 SN 0567-7718 43900 J9 ACTA MECH SINICA 43901 JI Acta Mech. Sin. 43902 PD NOV 43903 PY 1998 43904 VL 14 43905 IS 4 43906 BP 297 43907 EP 305 43908 PG 9 43909 SC Engineering, Mechanical; Mechanics 43910 GA 156BQ 43911 UT ISI:000077981900002 43912 ER 43913 43914 PT J 43915 AU He, JH 43916 TI Approximate analytical solution for seepage flow with fractional 43917 derivatives in porous media 43918 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 43919 DT Article 43920 AB In this paper, a new and more exact model for seepage Row in porous 43921 media with fractional derivatives has been proposed, which has modified 43922 the well-known Darcy law and overcome the continuity assumption of 43923 seepage flow. A new kind of analytical method of nonlinear problem 43924 called the variational iteration method is described and used to give 43925 approximate solutions of the problem. The results show that the 43926 proposed iteration method, requiring no linearization or small 43927 perturbation, is very effective and convenient. (C) 1998 Elsevier 43928 Science S.A. All rights reserved. 43929 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 43930 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 43931 Peoples R China. 43932 CR ADOMIAN G, 1988, J MATH ANAL APPL, V135, P510 43933 CAMPOS LMB, 1990, INT J MATH MATH SCI, V13, P481 43934 DELBOSCO D, 1996, J MATH ANAL APPL, V204, P609 43935 DUARTE RT, 1983, P 7 EUR C EARTH ENG 43936 FINLAYSON BA, 1972, METHOD WEIGHTED RESI 43937 HE JH, 1997, COMM NONLINEAR SCI N, V2, P230 43938 HE JH, 1997, COMMUNICATIONS NONLI, V2, P235 43939 HE JH, 1998, MECH PRACTICE, V20, P30 43940 HE JH, 1998, MECH SCI TECHNOL, V17, P221 43941 HUANG AX, 1996, 3 INT S AER INT FLOW, P417 43942 INOKUTI M, 1978, VARIATIONAL METHOD M, P156 43943 NR 11 43944 TC 20 43945 SN 0045-7825 43946 J9 COMPUT METHOD APPL MECH ENG 43947 JI Comput. Meth. Appl. Mech. Eng. 43948 PD DEC 1 43949 PY 1998 43950 VL 167 43951 IS 1-2 43952 BP 57 43953 EP 68 43954 PG 12 43955 SC Computer Science, Interdisciplinary Applications; Engineering, 43956 Mechanical; Mechanics 43957 GA 154KP 43958 UT ISI:000077888300004 43959 ER 43960 43961 PT J 43962 AU He, JH 43963 TI Approximate solution of nonlinear differential equations with 43964 convolution product nonlinearities 43965 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 43966 DT Article 43967 AB In this paper, a new iteration method is proposed to solve nonlinear 43968 problems. Special attention is paid to nonlinear differential equations 43969 with convolution product nonlinearities, The results reveal the 43970 approximations obtained by the proposed method are uniformly valid for 43971 both small and large parameters in nonlinear problems. Furthermore, the 43972 first order of approximations are more accurate than perturbation 43973 solutions at high order of approximation. (C) 1998 Elsevier Science 43974 S.A. All rights reserved. 43975 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 43976 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 43977 Peoples R China. 43978 CR ADOMIAN G, 1986, J MATH ANAL APPL, V114, P171 43979 FINLAYSON BA, 1972, METHOD WEIGHTED RESI 43980 HE JH, IN PRESS J SHANGHAI 43981 HE JH, 1997, COMM NONLINEAR SCI N, V2, P230 43982 HE JH, 1998, MECH PRACTICE, V20, P30 43983 INOKUTI M, 1978, VARIATIONAL METHOD M, P156 43984 NR 6 43985 TC 20 43986 SN 0045-7825 43987 J9 COMPUT METHOD APPL MECH ENG 43988 JI Comput. Meth. Appl. Mech. Eng. 43989 PD DEC 1 43990 PY 1998 43991 VL 167 43992 IS 1-2 43993 BP 69 43994 EP 73 43995 PG 5 43996 SC Computer Science, Interdisciplinary Applications; Engineering, 43997 Mechanical; Mechanics 43998 GA 154KP 43999 UT ISI:000077888300005 44000 ER 44001 44002 PT J 44003 AU Hu, C 44004 Zhao, XH 44005 Ma, XG 44006 Huang, WH 44007 TI Dynamic stress concentrations in Ambartsumian's plate with a cutout 44008 SO ACTA MECHANICA SOLIDA SINICA 44009 DT Article 44010 DE Ambartsumian's plate; cutout; dynamic stress concentration; 44011 perturbation method 44012 AB Based on the motion equations of flexural wave in Ambartsumian' s 44013 plates including the effects of transverse shear deformations, by using 44014 perturbation method of small parameter, the scattering of flexural 44015 waves and dynamic stress concentrations in the plate with a cutout have 44016 been studied. The asypmtotic solution of the dynamic stress problem is 44017 obtained Numerical results for the dynamic stress concentration factor 44018 in Ambartsumian' s plates with a circular cutout are graphically 44019 presented and discussed. 44020 C1 Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 44021 Harbin Inst Technol, Harbin 150001, Peoples R China. 44022 CR AMBARTSUMIAN SA, 1970, THEORY ANISOTROPIC P 44023 HU HC, 1981, VARIATIONAL PRINCIPL 44024 KLYUKIN II, 1964, SOV PHYS ACOUST, V10, P49 44025 LEKHNITSKII SG, 1963, THEORY ANISOTROPIC P 44026 MA XR, 1997, ACTA MECH SINICA, V29, P269 44027 MUSKHELISHVILI NI, 1958, BASIC PROBLEMS MATH 44028 PANC V, 1975, THEORIES ELASTIC PLA 44029 PAO YH, 1962, J APPL MECH, V29, P299 44030 PAO YH, 1983, J APPL MECH-T ASME, V50, P1152 44031 PAO YH, 1993, DIFFRACTION ELASTIC 44032 QIAN EC, 1981, THEORY SINGULAR PERT 44033 SAVIN GN, 1958, STRESS CONCENTRATION 44034 NR 12 44035 TC 0 44036 SN 0894-9166 44037 J9 ACTA MECH SOLIDA SINICA 44038 JI Acta Mech. Solida Sin. 44039 PD DEC 44040 PY 1998 44041 VL 11 44042 IS 4 44043 BP 341 44044 EP 350 44045 PG 10 44046 SC Materials Science, Multidisciplinary; Mechanics 44047 GA 152ZG 44048 UT ISI:000077807700006 44049 ER 44050 44051 PT J 44052 AU Gao, SC 44053 Zhong, SS 44054 TI Analysis and design of dual-polarized microstrip antenna array 44055 SO INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING 44056 DT Article 44057 DE microstrip antenna; array; dual polarization; isolation 44058 ID MOBILE SATELLITE-COMMUNICATIONS 44059 AB A new dual-polarized microstrip antenna array is presented. Diagonal 44060 feeding of the square patch with two ports is proposed to obtain dual 44061 linear polarization. A novel coplanar feedline network is also 44062 presented for the dual-polarized array. For engineering purposes, a 44063 CAD-oriented method of analysis is developed. The measured results 44064 demonstrate high isolation between the two input ports. The array has 44065 simple structure and is easy to further combine to form larger coplanar 44066 arrays. (C) 1999 John Wiley & Sons, Inc. 44067 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China. 44068 RP Gao, SC, Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R 44069 China. 44070 CR BRACHAT P, 1995, IEEE T ANTENN PROPAG, V43, P738 44071 CRYAN MJ, 1996, ELECTRON LETT, V32, P286 44072 DUTOLT LJ, 1987, IEEE AP S INT S LOS, P810 44073 GUPTA KC, 1981, COMPUTER AIDED DESIG, CH11 44074 GUPTA KC, 1987, IEEE AP S INT S, P786 44075 GUPTA KC, 1988, MICROSTRIP ANTENNA D, CH3 44076 HALL PS, 1988, IEE P H, V135, P180 44077 JAMES JR, 1981, MICROSTRIP ANTENNA T, P166 44078 JAMES JR, 1989, HDB MICROSTRIP ANTEN, CH3 44079 LO YT, 1988, ANTENNA HDB THEORY A, CH10 44080 MURAKAMI Y, 1996, IEE P-MICROW ANTEN P, V143, P119 44081 NAKANO M, 1992, IEEE T ANTENN PROPAG, V40, P1269 44082 NR 12 44083 TC 9 44084 SN 1096-4290 44085 J9 INT J RF MICROW COMPUT-AID EN 44086 JI Int. J. RF Microw. Comput-Aid. Eng. 44087 PD JAN 44088 PY 1999 44089 VL 9 44090 IS 1 44091 BP 42 44092 EP 48 44093 PG 7 44094 SC Computer Science, Interdisciplinary Applications; Engineering, 44095 Electrical & Electronic 44096 GA 150NB 44097 UT ISI:000077670100005 44098 ER 44099 44100 PT J 44101 AU Xu, X 44102 He, FB 44103 TI Three dimensional elasticity solution for vibration problem of thick 44104 plate 44105 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 44106 DT Article 44107 DE thick plate; free vibration; forced vibration 44108 AB In this paper, based upon the basic equations of three dimensional 44109 theory of elastodynamics, the governing differential equations of thick 44110 plate have been formulated The dynamic response of stress and 44111 displacement of thick plate subjected to the transversed forced are 44112 obtained. It is shown that the vibrational characters of thick plate 44113 consist of three modes: thickness shear mode, symmetric mode and 44114 anti-symmetric mode. The characteristic equations;of simply supported 44115 thick plate are derived and rile comparison of the free vibration 44116 frequencies based on the classic. theory, middle thickness plate theory 44117 and three dimensional elasticity theory are given. 44118 C1 Shanghai Univ, Shanghai 200072, Peoples R China. 44119 RP Xu, X, Shanghai Univ, Shanghai 200072, Peoples R China. 44120 CR BARNETT S, 1979, MATRIX METHODS ENG S 44121 CAO GX, 1983, VIBRATION THIN ELAST 44122 CAO ZY, 1983, THEORY THICK PLATE D 44123 CHIEN WZ, 1994, J SHANGHAI U TECHNOL, V15, P1 44124 MINDLIN RD, 1951, J APPLIED MECHANICS, V18, P31 44125 WANG FY, 1985, ACTA MECH SOLIDA SIN, V6, P429 44126 ZE DS, 1994, J TONGJI U, V22, P274 44127 NR 7 44128 TC 0 44129 SN 0253-4827 44130 J9 APPL MATH MECH-ENGL ED 44131 JI Appl. Math. Mech.-Engl. Ed. 44132 PD JUL 44133 PY 1998 44134 VL 19 44135 IS 7 44136 BP 615 44137 EP 624 44138 PG 10 44139 SC Mathematics, Applied; Mechanics 44140 GA 149EC 44141 UT ISI:000077591300002 44142 ER 44143 44144 PT J 44145 AU Wang, ZX 44146 Fan, XL 44147 Zhu, ZY 44148 TI Inertial manifolds for nonautonomous infinite dimensional dynamical 44149 systems 44150 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 44151 DT Article 44152 DE nonautonomous equations; the spectral gap condition; inertial manifold 44153 AB In this paper, the long time behavior of nonautonomous infinite 44154 dimensional dynamical systems is discussed Under the spectral gap 44155 condition, It is proved that there exist inertial manifolds for a class 44156 of nonautonomous evolution equations. 44157 C1 Fudan Univ, Inst Math, Shanghai 200433, Peoples R China. 44158 Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China. 44159 Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China. 44160 RP Wang, ZX, Fudan Univ, Inst Math, Shanghai 200433, Peoples R China. 44161 CR BERNAL AR, 1990, APPL ANAL, V37, P95 44162 CHEPYZHOV VV, 1994, J MATH PURE APPL, V73, P297 44163 DAFERMOS CM, 1974, MATH SYST THEORY, V8, P142 44164 DEBUSSCHE A, 1994, J MATH PURE APPL, V73, P489 44165 GILL TL, 1992, SIAM J MATH ANAL, V23, P1204 44166 HALE J, 1988, MATH SURVEYS MONOGRA, V25 44167 HARAUX A, 1988, COMMUN PART DIFF EQ, V13, P1383 44168 SELL GR, 1967, T AM MATH SOC, V127, P241 44169 SMILEY MW, 1993, APPL ANAL, V50, P217 44170 SMILEY MW, 1995, J DYNAMICS DIFFERENT, V7, P237 44171 TEMAM R, 1988, INFINITE DIMENSIONAL 44172 NR 11 44173 TC 1 44174 SN 0253-4827 44175 J9 APPL MATH MECH-ENGL ED 44176 JI Appl. Math. Mech.-Engl. Ed. 44177 PD JUL 44178 PY 1998 44179 VL 19 44180 IS 7 44181 BP 695 44182 EP 704 44183 PG 10 44184 SC Mathematics, Applied; Mechanics 44185 GA 149EC 44186 UT ISI:000077591300011 44187 ER 44188 44189 PT J 44190 AU Lu, ZM 44191 Liu, YL 44192 TI On the mechanism of turbulent coherent structure (III) - A statistical 44193 and dynamical model of coherent structure and its heat transfer 44194 mechanism 44195 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 44196 DT Article 44197 DE coherent structure; statistical and dynamical model; heat transfer 44198 AB Following Tsai & Ma([1]) and Tsai & Liu([2]), a statistical and 44199 dynamical near-wall turbulent coherent structural model with separate 44200 consideration of two different portions: locally generated and 44201 upstream-transported large eddies has been established. With this 44202 model, heat transfer in a fully developed open channel in the absence 44203 of pressure gradient is numerically simulated. Database of fluctuations 44204 of velocity and temperature has also been set. Numerical analysis shows 44205 the existence of high-low temperature streak caused by near-wall 44206 coherent structure and its swing in the lateral direction. Numerical 44207 results are in accordance with the computations and experimental 44208 results of other researchers. 44209 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 44210 RP Lu, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 44211 Peoples R China. 44212 CR BELL DM, 1993, NEAR WALL TURBULENT, P327 44213 BRADSHAW P, 1967, J FLUID MECH, V30, P241 44214 KASAGI N, 1990, NEAR WALL TURBULENCE, P596 44215 LIU YL, 1996, APPL MATH MECH, V17, P197 44216 LOU JS, 1993, APPL MATH MECH, V14, P993 44217 MA Z, 1996, THESIS TIANJIN U 44218 ROBINSON SK, 1991, ANNU REV FLUID MECH, V23, P601 44219 TSAI ST, 1987, APPL MATH MECH, V8, P901 44220 TSAI ST, 1993, THEORY TURBULENCE 44221 TSAI ST, 1995, APPL MATH MECH, V16, P319 44222 XIONG ZM, 1994, THESIS TIANJIN U 44223 ZHOU H, 1994, SCI CHINA SER A, V24, P941 44224 NR 12 44225 TC 1 44226 SN 0253-4827 44227 J9 APPL MATH MECH-ENGL ED 44228 JI Appl. Math. Mech.-Engl. Ed. 44229 PD AUG 44230 PY 1998 44231 VL 19 44232 IS 8 44233 BP 705 44234 EP 711 44235 PG 7 44236 SC Mathematics, Applied; Mechanics 44237 GA 149ED 44238 UT ISI:000077591400001 44239 ER 44240 44241 PT J 44242 AU Shen, LJ 44243 Pan, LZ 44244 He, FB 44245 TI Study on the generalized Prandtl-Reuss constitutive equation and the 44246 corotational rates of stress tensor 44247 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 44248 DT Article 44249 DE finite elastic-plastic deformations; generalized Prandtl-Reuss 44250 constitutive equations; the corotational rates of stress tensor; simple 44251 shear stress oscillation 44252 ID PLASTICITY 44253 AB In this paper, the generalized Prandtl-Reuss (P-R) constitutive 44254 equations of elastic-plastic material in the presence of finite 44255 deformations through a new approach are studied. It analyzes the 44256 generalized P-R equation based on the material corotational rate and 44257 clarifies the puzzling problem of the simple shear stress oscillation 44258 mentioned in some literature. The paper proposes a modified relative 44259 rotational rate with which to constitute the objective rates of stress 44260 in the generalized P-R equation and concludes that the decomposition of 44261 total deformation rate into elastic and plastic parts is not necessary 44262 in developing the generalized P-R equations. Finally, the stresses of 44263 simple shear deformation are worked out. 44264 C1 Ningbo Univ, Mat Sci & Mech Res Ctr, Ningbo 315211, Peoples R China. 44265 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 44266 RP Shen, LJ, Ningbo Univ, Mat Sci & Mech Res Ctr, Ningbo 315211, Peoples R 44267 China. 44268 CR DAFALIAS YF, 1983, J APPL MECH-T ASME, V50, P561 44269 DIENES JK, 1979, ACTA MECH, V32, P217 44270 DIENES JK, 1986, ACTA MECH, V65, P1 44271 HUTCHINSON JW, 1973, NUMERICAL SOLUTION N, P17 44272 LEE EH, 1969, J APPLIED MECHANICS, V36, P1 44273 LEE EH, 1983, J APPL MECH-T ASME, V50, P554 44274 METZGER DR, 1987, INT J PLASTICITY, V4, P341 44275 NAGETAAL JC, 1982, P WORKSH PLAST MET F, P65 44276 NAGHDI PM, 1990, Z ANGEW MATH PHYS, V41, P315 44277 SOWERBY R, 1984, INT J SOLIDS STRUCT, V20, P1037 44278 TRUESDELL C, 1966, ELEMENTS CONTINUUM M, P39 44279 TVERGAARD V, 1978, INT J MECH SCI, V20, P651 44280 VOYIADJIS GZ, 1992, INT J PLASTICITY, V8, P271 44281 NR 13 44282 TC 0 44283 SN 0253-4827 44284 J9 APPL MATH MECH-ENGL ED 44285 JI Appl. Math. Mech.-Engl. Ed. 44286 PD AUG 44287 PY 1998 44288 VL 19 44289 IS 8 44290 BP 735 44291 EP 743 44292 PG 9 44293 SC Mathematics, Applied; Mechanics 44294 GA 149ED 44295 UT ISI:000077591400005 44296 ER 44297 44298 PT J 44299 AU Wang, ZX 44300 Fan, XL 44301 Zhu, ZY 44302 TI Convergent families of approximate inertial manifolds for nonautonomous 44303 evolution equations 44304 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 44305 DT Article 44306 DE nonautonomous equation; approximate inertial manifold; spectral gap 44307 condition 44308 AB In this paper, the long time behavior of nonautonomous infinite 44309 dimensional dynamical systems is studied. A family of convergent 44310 approximate inertial manifolds for a class of evolution equations has 44311 been constructed when the spectral gap condition is satisfied. 44312 C1 Fudan Univ, Inst Math, Shanghai 200433, Peoples R China. 44313 Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China. 44314 Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China. 44315 RP Wang, ZX, Fudan Univ, Inst Math, Shanghai 200433, Peoples R China. 44316 CR BERNAL AR, 1990, APPL ANAL, V37, P95 44317 CHEPYZHOV VV, 1994, J MATH PURE APPL, V73, P297 44318 DAFERMOS CM, 1974, MATH SYST THEORY, V8, P142 44319 DEBUSSCHE A, 1994, J MATH PURE APPL, V73, P489 44320 GILL TL, 1992, SIAM J MATH ANAL, V23, P1204 44321 HALE J, 1988, MATH SURVEYS MONOGRA, V25 44322 HARAUX A, 1988, COMMUN PART DIFF EQ, V13, P1383 44323 SELL GR, 1967, T AM MATH SOC, V127, P241 44324 SMILEY MW, 1993, APPL ANAL, V50, P217 44325 SMILEY MW, 1995, J DYNAMICS DIFFERENT, V7, P237 44326 TEMAM R, 1988, INFINITE DIMENSIONAL 44327 WANG ZX, 1998, APPL MATH MECH-ENGL, V19, P695 44328 NR 12 44329 TC 0 44330 SN 0253-4827 44331 J9 APPL MATH MECH-ENGL ED 44332 JI Appl. Math. Mech.-Engl. Ed. 44333 PD AUG 44334 PY 1998 44335 VL 19 44336 IS 8 44337 BP 765 44338 EP 775 44339 PG 11 44340 SC Mathematics, Applied; Mechanics 44341 GA 149ED 44342 UT ISI:000077591400008 44343 ER 44344 44345 EF 44346 FN ISI Export Format 44347 VR 1.0 44348 PT J 44349 AU Qiao, H 44350 Kang, LY 44351 Cardei, M 44352 Du, DZ 44353 TI Paired-domination of trees 44354 SO JOURNAL OF GLOBAL OPTIMIZATION 44355 DT Article 44356 AB Let G 5 (V, E) be a graph without isolated vertices. A set S subset of 44357 or equal to V is a paired-dominating set if it dominates V and the 44358 subgraph induced by S, [S], contains a perfect matching. The 44359 paired-domination number gamma(p)(G) is defined to be the minimum 44360 cardinality of a paired-dominating set S in G. In this paper, we 44361 present a linear-time algorithm computing the paired-domination number 44362 for trees and characterize trees with equal domination and 44363 paired-domination numbers. 44364 C1 City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China. 44365 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 44366 Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA. 44367 RP Qiao, H, City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong 44368 Kong, Hong Kong, Peoples R China. 44369 CR COCKAYNE EJ, 2000, J GRAPH THEOR, V34, P277 44370 HATTINGH JH, 2000, J GRAPH THEOR, V34, P142 44371 HAYNES TW, 1998, DOMINATION GRAPHS AD 44372 HAYNES TW, 1998, FUNDAMENTALS DOMINAT 44373 HAYNES TW, 1998, NETWORKS, V32, P199 44374 MYNHARDT CM, 1999, J GRAPH THEOR, V31, P163 44375 NR 6 44376 TC 4 44377 SN 0925-5001 44378 J9 J GLOBAL OPTIM 44379 JI J. Glob. Optim. 44380 PD JAN 44381 PY 2003 44382 VL 25 44383 IS 1 44384 BP 43 44385 EP 54 44386 PG 12 44387 SC Mathematics, Applied; Operations Research & Management Science 44388 GA 620YE 44389 UT ISI:000179561100003 44390 ER 44391 44392 PT J 44393 AU Zhang, ZC 44394 Guo, JK 44395 TI Evaluation of thermodynamic properties from alloy phase diagram with 44396 miscibility gap using non-random two-liquid equation 44397 SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY 44398 DT Article 44399 AB The non-random two-liquid equation has been applied to evaluate the 44400 thermodynamic properties of the liquid solution at elevated 44401 temperatures in a binary alloy system with a liquid phase miscibility 44402 gap. Only upon making use of the phase equilibrium data at the critical 44403 and monotectic points of the miscibility gap from a T-X phase diagram 44404 and thermochemical data, the parameters needed for the evaluation, 44405 i.e., (g(12) - g(22)), (g(21) - g(11)) and a of the non-random 44406 two-liquid solution approach, can be determined. The evaluation of 44407 thermodynamic properties was carried out numerically for three binary 44408 alloy systems, i.e., Al-Pb, Zn-Pb and Ga-Hg systems. The application of 44409 the non-random two-liquid equation to these three binary alloy systems 44410 shows that the evaluated results are close to the available 44411 experimental measurements. (C) 2002 Published by Elsevier Science Ltd. 44412 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 44413 Shanghai Univ, Sch Sci, Shanghai 201800, Peoples R China. 44414 RP Zhang, ZC, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples 44415 R China. 44416 CR CHOU KC, 1989, CALPHAD, V13, P301 44417 DARKEN LS, 1953, PHYSICAL CHEM METALS 44418 GANNEESCARD M, 1979, THERMOCHIM ACTA, V31, P323 44419 GUMINSKI C, 1993, J PHASE EQUILIB, V14, P719 44420 HULTGREN R, 1973, SELECTED VALUES THER 44421 LIANG YJ, 1993, HDB THERMODYNAMIC DA 44422 PRIGOGINE I, 1957, MOL THEORY SOLUTIONS 44423 RENON H, 1968, AICHE J, V14, P135 44424 WAGNER C, 1962, THERMODYNAMICS ALLOY 44425 ZHANG ZC, 1998, CALPHAD, V22, P313 44426 NR 10 44427 TC 0 44428 SN 0364-5916 44429 J9 CALPHAD-COMPUT COUP PHASE DIA 44430 JI Calphad-Comput. Coupling Ph. Diagrams Thermochem. 44431 PD SEP 44432 PY 2002 44433 VL 26 44434 IS 3 44435 BP 327 44436 EP 340 44437 PG 14 44438 SC Chemistry, Physical; Thermodynamics 44439 GA 620PF 44440 UT ISI:000179541200002 44441 ER 44442 44443 PT J 44444 AU You, B 44445 Wang, XD 44446 Ji, WS 44447 Yang, WR 44448 Li, Y 44449 TI Resonant frequency and quality factors of a silver-coated dual-mode 44450 dielectric resonator 44451 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 44452 DT Article 44453 DE dual-mode dielectric resonator; FDTD method; resonant frequency; Q 44454 factor; high permittivity dielectric ceramics 44455 ID FILTERS 44456 AB In this paper, resonant frequency and quality factors of a 44457 square-corner-cut dielectric resonator are obtained by using the 44458 finite-difference time-domain (FDTD) method, and the resonant 44459 frequencies of some modes in the resonator are analyzed. Some useful 44460 results are obtained. (C) 2002 Wiley Periodicals, Inc. 44461 C1 Shanghai Univ, Shc Commun & Informat Engn, Shanghai 200072, Peoples R China. 44462 Shanghai Univ, Microelect Res & Dev Ctr, Shanghai 200072, Peoples R China. 44463 RP You, B, Shanghai Univ, Shc Commun & Informat Engn, Shanghai 200072, 44464 Peoples R China. 44465 CR LIANG XP, 1992, IEEE T MICROW THEORY, V40, P2294 44466 NAVARRO A, 1991, IEEE T MICROW THEORY, V39, P2159 44467 SANO K, 2000, IEEE T MICROW THEORY, V48, P2491 44468 WANG C, 1995, IEEE T MICROW THEORY, V43, P1524 44469 NR 4 44470 TC 0 44471 SN 0895-2477 44472 J9 MICROWAVE OPT TECHNOL LETT 44473 JI Microw. Opt. Technol. Lett. 44474 PD DEC 20 44475 PY 2002 44476 VL 35 44477 IS 6 44478 BP 475 44479 EP 477 44480 PG 3 44481 SC Engineering, Electrical & Electronic; Optics 44482 GA 618GE 44483 UT ISI:000179409700016 44484 ER 44485 44486 PT J 44487 AU Zhang, DJ 44488 TI Conservation laws of the two-dimensional Toda lattice hierarchy 44489 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN 44490 DT Article 44491 DE conservation law; two-dimensional Toda lattice hierarchy; generalized 44492 Riccati equation 44493 ID KP HIERARCHY; EQUATIONS; QUANTITIES; SYMMETRIES; REDUCTIONS 44494 AB A novel method of constructing the conservation laws of (1 + 44495 2)-dimensional differential-difference systems is proposed. By 44496 introducing the generalized Riccati equation related to the 44497 pseudo-difference operator, we obtain the infinitely many conserved 44498 densities and the associated fluxes of the two-dimensional Toda lattice 44499 hierarchy. Moreover, this method presents more forms of the 44500 conservation laws than the previous approach. 44501 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 44502 RP Zhang, DJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 44503 CR ABLOWITZ MJ, 1976, J MATH PHYS, V17, P1011 44504 CHENG Y, 1992, J MATH PHYS, V33, P3774 44505 KAJIWARA K, 1990, PHYS LETT A, V146, P115 44506 KAJIWARA K, 1991, J MATH PHYS, V32, P506 44507 KONNO K, 1974, PROG THEO PHYS, V52, P886 44508 KONOPELCHENKO B, 1992, J MATH PHYS, V33, P3676 44509 MATSUKIDAIRA J, 1990, J MATH PHYS, V31, P1426 44510 MATSUNO Y, 1990, J PHYS SOC JPN, V59, P3093 44511 OHTA Y, 1988, PROG THEOR PHYS SUPP, V94, P210 44512 SATO M, 1981, RIMS KOKYUROKU, V439, P30 44513 SATO M, 1983, NONLINEAR PARTIAL DI, P259 44514 SIDORENKO J, 1993, J MATH PHYS, V34, P1429 44515 TSUCHIDA T, 1998, J MATH PHYS, V39, P4785 44516 TSUCHIDA T, 1998, J PHYS SOC JPN, V67, P1175 44517 TSUCHIDA T, 1999, J PHYS A-MATH GEN, V32, P2239 44518 WADATI M, 1975, PROG THEOR PHYS, V53, P419 44519 WADATI M, 1976, PROG THEOR PHYS SUPP, V59, P36 44520 WADATI M, 1977, PROG THEOR PHYS, V57, P808 44521 ZAKHAROV VE, 1972, SOV PHYS JETP, V34, P62 44522 ZHANG DJ, 2002, CHAOS SOLITON FRACT, V14, P573 44523 NR 20 44524 TC 0 44525 SN 0031-9015 44526 J9 J PHYS SOC JPN 44527 JI J. Phys. Soc. Jpn. 44528 PD NOV 44529 PY 2002 44530 VL 71 44531 IS 11 44532 BP 2583 44533 EP 2586 44534 PG 4 44535 SC Physics, Multidisciplinary 44536 GA 618JB 44537 UT ISI:000179414000001 44538 ER 44539 44540 PT J 44541 AU Zhang, DJ 44542 TI The N-soliton solutions for the modified KdV equation with 44543 self-consistent sources 44544 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN 44545 DT Article 44546 DE modified KdV equation with self consistent sources; Hirota's method; 44547 Wronskian technique; uniformity 44548 ID NONLINEAR INTEGRABLE SYSTEMS; VRIES EQUATION; HIERARCHY; KORTEWEG; 44549 SCATTERING 44550 AB The N-soliton solutions for the modified KdV equation with 44551 self-consistent sources are obtained through Hirota's method and 44552 Wronskian technique respectively. Some novel determinantal identities 44553 are presented to treat the nonlinear term in the time evolution and 44554 finish the Wronskian verifications. The uniformity of these two kinds 44555 of N-soliton solutions is proved. 44556 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 44557 RP Zhang, DJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 44558 CR ABLOWITZ MJ, 1981, SOLITON INVERSE SCAT 44559 CHEN DY, 2001, 3 C SOL INT SYST CHI 44560 CLAUDE C, 1991, J MATH PHYS, V32, P3321 44561 DOKTOROV EV, 1983, OPT ACTA, V30, P223 44562 DOKTOROV EV, 1995, PHYS LETT A, V207, P153 44563 FREEMAN NC, 1983, PHYS LETT A, V95, P1 44564 HIROTA R, LECT NOTES MATH, V515 44565 HIROTA R, 1971, PHYS REV LETT, V27, P1192 44566 KAUP DJ, 1987, PHYS REV LETT, V59, P2063 44567 LEON J, 1990, J PHYS A-MATH GEN, V23, P1385 44568 LIN RL, 2001, PHYSICA A, V291, P287 44569 MELNIKOV VK, 1988, PHYS LETT A, V133, P493 44570 MELNIKOV VK, 1989, COMMUN MATH PHYS, V120, P451 44571 MELNIKOV VK, 1989, COMMUN MATH PHYS, V126, P201 44572 MELNIKOV VK, 1990, J MATH PHYS, V31, P1106 44573 MELNIKOV VK, 1992, INVERSE PROBL, V8, P133 44574 NAKAZAWA M, 1991, PHYS REV LETT, V66, P2625 44575 NIMMO JJC, 1983, PHYS LETT A, V95, P4 44576 NIMMO JJC, 1984, J PHYS A-MATH GEN, V17, P1415 44577 SATSUMA J, 1979, J PHYS SOC JPN, V46, P359 44578 SHCHESNOVICH VS, 1996, PHYS LETT A, V213, P23 44579 URASBOEV GU, 2001, THEOR MATH PHYS+, V129, P1341 44580 VLASOV RA, 1991, DOKL AKAD NAUK BSSR, V26, P17 44581 ZENG YB, 1996, ACTA MATH SINICA, V12, P217 44582 ZENG YB, 1998, PHYSICA A, V259, P278 44583 ZENG YB, 1999, PHYSICA A, V262, P405 44584 ZENG YB, 2000, J MATH PHYS, V41, P5453 44585 ZENG YB, 2001, J MATH PHYS, V42, P2113 44586 NR 28 44587 TC 7 44588 SN 0031-9015 44589 J9 J PHYS SOC JPN 44590 JI J. Phys. Soc. Jpn. 44591 PD NOV 44592 PY 2002 44593 VL 71 44594 IS 11 44595 BP 2649 44596 EP 2656 44597 PG 8 44598 SC Physics, Multidisciplinary 44599 GA 618JB 44600 UT ISI:000179414000018 44601 ER 44602 44603 PT J 44604 AU Fang, ZJ 44605 Xia, YB 44606 Wang, LJ 44607 Zhang, WL 44608 Ma, ZG 44609 Zhang, ML 44610 TI Effective stress reduction in diamond films on alumina by carbon ion 44611 implantation 44612 SO CHINESE PHYSICS LETTERS 44613 DT Article 44614 ID DEPOSITION 44615 AB We show the effective stress reduction in diamond films by implanting 44616 carbon ions into alumina substrates prior to the diamond deposition. 44617 Residual stresses in the films are evaluated by Raman spectroscopy and 44618 a more reliable method for stress determination is presented for the 44619 quantitative measurement of stress evolution. It is found that 44620 compressive stresses in the diamond films can be partly offset by the 44621 compressive stresses in the alumina substrates, which are caused by the 44622 ion pre-implantation. At the same time, the difference between the 44623 offset by the pre-stressed substrates and the total stress reduction 44624 indicates that some other mechanisms are also active. 44625 C1 Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 44626 RP Fang, ZJ, Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 44627 201800, Peoples R China. 44628 CR AGER JW, 1993, PHYS REV B, V48, P2601 44629 FAN QH, 1999, J MATER SCI, V34, P1353 44630 FAN WD, 1995, SURF COAT TECH, V72, P78 44631 LIU JF, 2001, SEMICOND SCI TECH, V16, P273 44632 VONKAENEL Y, 1997, J APPL PHYS, V81, P1726 44633 XIA Y, 1996, CHINESE PHYS LETT, V13, P459 44634 NR 6 44635 TC 2 44636 SN 0256-307X 44637 J9 CHIN PHYS LETT 44638 JI Chin. Phys. Lett. 44639 PD NOV 44640 PY 2002 44641 VL 19 44642 IS 11 44643 BP 1663 44644 EP 1665 44645 PG 3 44646 SC Physics, Multidisciplinary 44647 GA 618TK 44648 UT ISI:000179433200028 44649 ER 44650 44651 PT J 44652 AU Xue, Y 44653 TI Analysis of the stability and density waves for traffic flow 44654 SO CHINESE PHYSICS 44655 DT Article 44656 DE car-following model; traffic flow; density wave; relative velocity 44657 ID CONGESTION; SOLITON; STATES 44658 AB In this paper, the optimal velocity model of traffic is extended to 44659 take into account the relative velocity. The stability and density 44660 waves for traffic flow are investigated analytically with the 44661 perturbation method. The stability criterion is derived by the linear 44662 stability analysis. It is shown that the triangular shock wave, soliton 44663 wave and kink wave appear respectively in our model for density waves 44664 in the three regions: stable, metastable and unstable regions. These 44665 correspond to the solutions of the Burgers equation, Korteweg-de Vries 44666 equation and modified Korteweg-de Vries equation. The analytical 44667 results are confirmed to be in good agreement with those of numerical 44668 simulation. All the results indicate that the interaction of a car with 44669 relative velocity can affect the stability of the traffic flow and 44670 raise critical density. 44671 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 44672 Guangxi Univ, Dept Phys, Nanning 530003, Peoples R China. 44673 RP Xue, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 44674 Peoples R China. 44675 CR BANDO M, 1995, PHYS REV E, V51, P1035 44676 BARLOVIC R, 1998, EUR PHYS J B, V5, P793 44677 CHOWDHURY D, 2000, PHYS REP, V329, P199 44678 KERNER BS, 1993, PHYS REV E, V48, P2335 44679 KOMATSU TS, 1995, PHYS REV E B, V52, P5574 44680 KURTZ DA, 1993, PHYS REV E, V52, P218 44681 MURAMATSU M, 1999, PHYS REV E, V60, P180 44682 NAGATANI T, 1999, PHYS REV E A, V60, P6395 44683 TREIBER M, 2000, PHYS REV E A, V62, P1805 44684 XUE Y, 2002, ACTA PHYS SIN-CH ED, V51, P492 44685 XUE Y, 2002, COMMUN THEOR PHYS, V38, P230 44686 NR 11 44687 TC 3 44688 SN 1009-1963 44689 J9 CHIN PHYS 44690 JI Chin. Phys. 44691 PD NOV 44692 PY 2002 44693 VL 11 44694 IS 11 44695 BP 1128 44696 EP 1134 44697 PG 7 44698 SC Physics, Multidisciplinary 44699 GA 618KT 44700 UT ISI:000179417800007 44701 ER 44702 44703 PT J 44704 AU Liu, LH 44705 Dong, C 44706 Zhang, JC 44707 Chen, H 44708 Chen, L 44709 TI A simple volumetric method for oxygen content determination in high-T-c 44710 doped YBCO compositions 44711 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS 44712 DT Article 44713 DE high-T-c superconductors; oxygen content determination 44714 ID IODOMETRIC TITRATION; SUPERCONDUCTOR; NONSTOICHIOMETRY; FE 44715 AB We have developed a simple volumetric method for oxygen content 44716 determination in high-T-c materials. Application of this method in Fe 44717 and Co doped YBa2Cu3Oy systems is presented in this paper. This method 44718 shows several advantages. First, the apparatus is simple and 44719 inexpensive, so it can be widely used. Second, the operational 44720 procedure is simple and time saving. Moreover, the oxygen contents 44721 determined using this method are quite accurate. According to the error 44722 analysis, we found that the experimental accuracy can be improved 44723 further by reducing the original gas volume in the apparatus and 44724 increasing the sample mass. Besides the high-T-c copper oxides, this 44725 method can also be used to determine the oxygen content of other 44726 materials such as the colossal magnetoresistance materials. (C) 2002 44727 Elsevier Science B.V. All rights reserved. 44728 C1 Chinese Acad Sci, Natl Lab Superconduct, Beijing 100080, Peoples R China. 44729 Univ Houston, Dept Chem, Houston, TX 77204 USA. 44730 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 44731 RP Liu, LH, Chinese Acad Sci, Natl Lab Superconduct, POB 603, Beijing 44732 100080, Peoples R China. 44733 CR BARBOUR JC, 1988, PHYS REV B, V38, P7005 44734 CHEN WM, 1996, PHYSICA C, V270, P349 44735 CHEN WM, 1997, PHYSICA C, V276, P132 44736 CONDER K, 1989, MATER RES BULL, V24, P581 44737 DONG C, 1999, J APPL CRYSTALLOGR, V32, P838 44738 FUEKI K, 1990, PHYSICA C, V166, P261 44739 HARRIS DC, 1987, J SOLID STATE CHEM, V69, P182 44740 HUONG PV, 1990, MAT SCI ENG B-SOLID, V5, P255 44741 JAMES AM, 1992, MACMILLANS CHEM PHYS, P108 44742 KARPPINEN M, 1993, J SOLID STATE CHEM, V104, P276 44743 KISHIO K, 1987, JPN J APPL PHYS, V26, P1228 44744 MIN JR, 1995, PHYSICA C, V249, P196 44745 NAZZAL AI, 1988, PHYSICA C, V153, P1367 44746 OBARA H, 1988, JPN J APPL PHYS, V27, L603 44747 TARASCON JM, 1988, PHYS REV B, V37, P7458 44748 NR 15 44749 TC 2 44750 SN 0921-4534 44751 J9 PHYSICA C 44752 JI Physica C 44753 PD DEC 1 44754 PY 2002 44755 VL 383 44756 IS 1-2 44757 BP 17 44758 EP 22 44759 PG 6 44760 SC Physics, Applied 44761 GA 617HF 44762 UT ISI:000179355700003 44763 ER 44764 44765 PT J 44766 AU Chen, ZP 44767 Cao, SX 44768 Cao, GX 44769 Zhang, JC 44770 TI Dependence of positron lifetime parameters on the preparation 44771 techniques and structural defects for YBCO cuprates 44772 SO MATERIALS LETTERS 44773 DT Article 44774 DE yttrium barium copper oxide (YBa2CU3O7-delta); orthorhombic 44775 ID OXYGEN-DEFICIENT YBA2CU3O7-DELTA; ELECTRON-STRUCTURE; ANNIHILATION 44776 AB Based on possible existence of technique effect and scattered 44777 distribution in positron results, a special investigation was made for 44778 YBa2Cu3O7 (- delta) systems in this paper. The dependence of 44779 preparation techniques and the structural characteristics on the 44780 sintering temperature and time are also given by positron lifetime, XRD 44781 and SEM experiments. The results show that the positron lifetime 44782 parameters and the microstructure show a significant dependence on 44783 sintering temperature and time. It is proved that, in the range of 44784 920-950 degreesC/12-72 h, the positron results have good stability and 44785 reliability in the sintering times and temperature. The distribution 44786 characteristic of defect was evaluated and bad a good stability in the 44787 preparation technique. The present studies provide an important 44788 experimental evidence for the study of Y-123 systems by positron 44789 experiment. (C) 2002 Elsevier Science B.V. All rights reserved. 44790 C1 Zhengzhou Inst Light Ind, Dept Phys, Zhengzhou 450002, Peoples R China. 44791 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 44792 RP Chen, ZP, Zhengzhou Inst Light Ind, Dept Phys, Zhengzhou 450002, 44793 Peoples R China. 44794 CR BERGERSEN B, 1969, SOLID STATE COMMUN, V7, P1203 44795 BRANDT W, 1967, POSITRON ANNIHILATIO 44796 BRANDT W, 1971, PHYS LETT A, V35, P109 44797 DU YK, 1994, J LOW TEMP PHYS, V16, P7 44798 HAUTOJARI P, 1979, POSITRON SOLIDS 44799 JEAN YC, 1987, PHYS REV B, V36, P3994 44800 JEAN YC, 1988, PHYS REV LETT, V60, P1069 44801 JINCANG Z, 2002, PHYS REV B, V65 44802 KWOK WK, 1988, PHYS REV B, V37, P106 44803 LU X, 1992, PHYS REV B, V45, P7989 44804 RAO CNR, 1987, ACCOUNTS CHEM RES, V20, P228 44805 SALAMA K, 1989, APPL PHYS LETT, V54, P2352 44806 VONSTETTEN EC, 1988, PHYS REV LETT, V60, P2198 44807 ZHANG JC, 1995, PHYS LETT A, V201, P70 44808 ZHANG JC, 1999, PHYS LETT A, V263, P452 44809 NR 15 44810 TC 2 44811 SN 0167-577X 44812 J9 MATER LETT 44813 JI Mater. Lett. 44814 PD DEC 44815 PY 2002 44816 VL 57 44817 IS 2 44818 BP 374 44819 EP 379 44820 PG 6 44821 SC Materials Science, Multidisciplinary; Physics, Applied 44822 GA 616YY 44823 UT ISI:000179332500019 44824 ER 44825 44826 PT J 44827 AU Ma, H 44828 Kamiya, N 44829 TI A general algorithm for the numerical evaluation of nearly singular 44830 boundary integrals of various orders for two- and three-dimensional 44831 elasticity 44832 SO COMPUTATIONAL MECHANICS 44833 DT Article 44834 DE boundary element method; nearly singular integrals; elasticity; 44835 distance transformation; numerical integration 44836 ID PRINCIPAL VALUE INTEGRALS; ELEMENT METHOD; HYPERSINGULAR INTEGRALS; 44837 EQUATIONS; TRANSFORMATIONS; REGULARIZATION; FORMULATION 44838 AB A general algorithm of the distance transformation type is presented in 44839 this paper for the accurate numerical evaluation of nearly singular 44840 boundary integrals encountered in elasticity, which, next to the 44841 singular ones, has long been an issue of major concern in computational 44842 mechanics with boundary element methods. The distance transformation is 44843 realized by making use of the distance functions, defined in the local 44844 intrinsic coordinate systems, which plays the role of damping-out the 44845 near singularity of integrands resulting from the very small distance 44846 between the source and the integration points. By taking advantage of 44847 the divergence-free property of the integrals with the nearly 44848 hypersingular kernels in the 3D case, a technique of geometric 44849 conversion over the auxiliary cone surfaces of the boundary element is 44850 designed, which is suitable also for the numerical evaluation of the 44851 hypersingular boundary integrals. The effects of the distance 44852 transformations are studied and compared numerically for different 44853 orders in the 2D case and in the different local systems in the 3D case 44854 using quadratic boundary elements. It is shown that the proposed 44855 algorithm works very well, by using standard Gaussian quadrature 44856 formulae, for both the 2D and 3D elastic problems. 44857 C1 Shanghai Univ, Sch Sci, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200436, Peoples R China. 44858 Nagoya Univ, Sch Informat & Sci, Nagoya, Aichi 4648601, Japan. 44859 RP Ma, H, Shanghai Univ, Sch Sci, Shanghai Inst Appl Math & Mech, Dept 44860 Mech, Shanghai 200436, Peoples R China. 44861 CR ALIABADI MH, 1985, INT J NUMER METH ENG, V21, P2221 44862 ALIABADI MH, 2000, INT J NUMER METH ENG, V48, P995 44863 BREBBIA CA, 1984, BOUNDARY ELEMENT TEC 44864 CERROLAZA M, 1989, INT J NUMER METH ENG, V28, P987 44865 CRISTESCU M, 1978, RECENT ADV BOUNDARY, P375 44866 CRUSE TA, 1993, INT J NUMER METH ENG, V36, P237 44867 DIRGANTARA T, 2000, INT J FRACTURE, V105, P27 44868 DOBLARE M, 1997, INT J NUMER METH ENG, V40, P3325 44869 GRANADOS JJ, 2001, ENG ANAL BOUND ELEM, V25, P165 44870 GUIGGIANI M, 1987, INT J NUMER METH ENG, V24, P1711 44871 GUIGGIANI M, 1990, ASME, V57, P906 44872 GUIGGIANI M, 1992, ASME, V59, P604 44873 JOHNSTON PR, 1999, INT J NUMER METH ENG, V45, P1333 44874 KRISHNASAMY G, 1990, J APPL MECH-T ASME, V57, P404 44875 KRISHNASAMY G, 1994, INT J NUMER METH ENG, V37, P107 44876 LIU YJ, 1998, INT J NUMER METH ENG, V41, P541 44877 LIU YJ, 1999, COMPUT MECH, V24, P286 44878 LIU YJ, 2000, ENG ANAL BOUND ELEM, V24, P789 44879 MA H, 1998, JSCE J APPL MECH, V1, P355 44880 MA H, 1999, ENG ANAL BOUND ELEM, V23, P281 44881 MA H, 2001, ENG ANAL BOUNDARY EL, V25, P843 44882 MARTIN PA, 1996, INT J NUMER METH ENG, V39, P687 44883 MUKHERJEE S, 1982, BOUNDARY ELEMENT MET 44884 MUKHERJEE S, 2000, ENG ANAL BOUND ELEM, V24, P767 44885 SLADEK V, 1993, INT J NUMER METH ENG, V36, P1609 44886 TANAKA M, 1991, BOUNDARY ELEMENT MET 44887 TELLES JCF, 1987, INT J NUMER METH ENG, V24, P959 44888 ZHANG D, 1999, COMPUT MECH, V23, P389 44889 NR 28 44890 TC 5 44891 SN 0178-7675 44892 J9 COMPUTATION MECH 44893 JI Comput. Mech. 44894 PD OCT 44895 PY 2002 44896 VL 29 44897 IS 4-5 44898 BP 277 44899 EP 288 44900 PG 12 44901 SC Mathematics, Applied; Mechanics 44902 GA 616YA 44903 UT ISI:000179330100001 44904 ER 44905 44906 PT J 44907 AU Wen, TQ 44908 Gu, P 44909 Minning, TA 44910 Wu, Q 44911 Liu, M 44912 Chen, FX 44913 Liu, H 44914 Huangi, HH 44915 TI Microarray analysis of neural stem cell differentiation in the striatum 44916 of the fetal rat 44917 SO CELLULAR AND MOLECULAR NEUROBIOLOGY 44918 DT Article 44919 DE microarray; neural stem cells; differentiation; striatum; rats 44920 ID CENTRAL-NERVOUS-SYSTEM; PROGENITOR CELLS; RECEPTOR; MATURATION; 44921 ACTIVATION; FOREBRAIN; PROMOTES; NEURONS; LINE 44922 AB 1. Gene expression profiles in neural stem cell differentiation in 44923 vitro were determined by cDNA microarray analysis. 44924 2. Total RNA was extracted and reverse transcripted into cDNA from 44925 differentiated and undifferentiated neural stem cells. The P-33 labeled 44926 cDNA was hybridized with a cDNA microarray consisting of 14,000 human 44927 genes. 44928 3. The results showed that a total of 1406 genes were differentially 44929 expressed, of which 148 genes exhibited more than twofold differences. 44930 Some genes were obviously activated while others were strongly 44931 repressed. These changes in gene expression suggest that 44932 differentiation is regulated by different genes at different 44933 expressional levels. By biological classification, the differentially 44934 expressed genes were divided into four functional categories: molecular 44935 function, biological process, cellular component, and new functional 44936 genes or ESTs. 44937 4. These findings will be a valuable contribution for gene expression 44938 profiling and elucidation of neural stem cell differentiation 44939 mechanisms. 44940 C1 Shanghai Univ, Sch Life Sci, Lab Neural Mol Biol, Shanghai 200436, Peoples R China. 44941 Univ Georgia, Dept Cellular Biol, Athens, GA 30602 USA. 44942 RP Wen, TQ, Shanghai Univ, Sch Life Sci, Lab Neural Mol Biol, 99 Shangda 44943 Rd, Shanghai 200436, Peoples R China. 44944 CR AMOUREUX MC, 2000, J NEUROSCI, V20, P3631 44945 ARONOW BJ, 2001, PHYSIOL GENOMICS, V6, P105 44946 BENRAISS A, 2001, J NEUROSCI, V21, P6718 44947 BONNI A, 1997, SCIENCE, V278, P477 44948 DIETZ AB, 2000, BIOCHEM BIOPH RES CO, V275, P731 44949 EISEN MB, 1998, P NATL ACAD SCI USA, V95, P14863 44950 ELBITAR F, 2001, CELL TISSUE RES, V304, P361 44951 FERNANDEZLLEBREZ P, 2001, CELL TISSUE RES, V305, P115 44952 FRANCESCANGELI E, 1997, NEUROCHEM RES, V10, P1299 44953 GADIENT RA, 1998, BRAIN RES, V798, P140 44954 GAGE FH, 2000, SCIENCE, V287, P1433 44955 GESCHWIND DH, 2001, NEURON, V29, P325 44956 HUGHES SM, 1988, NATURE, V335, P70 44957 KAPLANSKI C, 2000, CANCER RES, V60, P580 44958 KELLY DL, 2000, MOL REPROD DEV, V56, P113 44959 KOBLAR SA, 1998, P NATL ACAD SCI USA, V95, P3178 44960 LIU SY, 2000, J 3 MIL MED U, V22, P26 44961 MARMUR R, 1998, J NEUROSCI, V18, P9800 44962 MU XQ, 2001, NUCLEIC ACIDS RES, V29, P4983 44963 PINCUS DW, 1998, ANN NEUROL, V43, P576 44964 SALLY T, 2001, NATURE, V414, P112 44965 SATOH M, 2000, NEUROSCI LETT, V284, P143 44966 SHIMAZAKI T, 2001, J NEUROSCI, V21, P7642 44967 STIER H, 1998, DIFFERENTIATION, V64, P55 44968 SUELVES M, 2002, BLOOD, V99, P2835 44969 TAYLOR MV, 2002, CURR BIOL, V12, R224 44970 TROPEPE V, 1999, DEV BIOL, V208, P166 44971 TSOUKATOS DC, 2001, BIOCHEM J 2, V357, P457 44972 VANDERKOOY D, 2000, SCIENCE, V287, P1439 44973 NR 29 44974 TC 5 44975 SN 0272-4340 44976 J9 CELL MOL NEUROBIOL 44977 JI Cell. Mol. Neurobiol. 44978 PD AUG 44979 PY 2002 44980 VL 22 44981 IS 4 44982 BP 407 44983 EP 416 44984 PG 10 44985 SC Cell Biology; Neurosciences 44986 GA 614GF 44987 UT ISI:000179179400003 44988 ER 44989 44990 PT J 44991 AU Hu, ZM 44992 TI Application of FTIR micro-spectroscopy in the tribology 44993 SO SPECTROSCOPY AND SPECTRAL ANALYSIS 44994 DT Article 44995 DE FTIR micro-spectroscopy; tribology; hydroxyl vegetable oil fatty acid; 44996 polyester; characteristic absorption peak 44997 AB The wave number of characteristic absorption peak v(C-O-C)(as) of the 44998 polyester formed on the frictional process were determined by Fourier 44999 Transform Infrared (FTIR) Micro-spectroscopy, and the wave number 45000 displacement of characteristic absorption peak v(C-O-C)(as) was 45001 analyzed based on the conversion mass of polyester formed. The internal 45002 relations between anti-wear order rule of hydroxyl fatty acids and 45003 vibration absorption peak v(C-O-C)(as) of polyester formed by hydroxyl 45004 fatty acids was deduced according to these results, and the anti-wear 45005 order of hydroxyl fatty acids was reasonably explained, that is 13, 45006 14-di-hydroxydooosanoic acid > 13 (14)-monohydroxydooosanoic acid = 9, 45007 10-dihydroxyoctadecanoic acid > 9,10, 12-trihydroxyoctadecanoic acid > 45008 9(10)-monohydroxyoctadecanoic acid. A net polyester film is formed by 45009 13, 14-dihydroxydocosanoic acid and a linear polyester film is formed 45010 by 9, (10)-monohydroxyoctadecanoic acid and 45011 13(14)-monohydroxydooosanoic acid. 45012 C1 Tsing Hua Univ, State Key Lab Tribol, Dept Precis Instruments & Mechanol, Beijing 100084, Peoples R China. 45013 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 45014 RP Hu, ZM, Tsing Hua Univ, State Key Lab Tribol, Dept Precis Instruments & 45015 Mechanol, Beijing 100084, Peoples R China. 45016 CR HU ZM, 1993, J SHANGHAI U TECHNOL, V14, P364 45017 HU ZM, 1995, LUBRICATION SCI, V7, P285 45018 HU ZM, 2000, LUBRICATING OIL, V15, P38 45019 HU ZM, 2001, LUBRICATION ENG PERI, V4, P36 45020 NR 4 45021 TC 0 45022 SN 1000-0593 45023 J9 SPECTROSC SPECTR ANAL 45024 JI Spectrosc. Spectr. Anal. 45025 PD OCT 45026 PY 2002 45027 VL 22 45028 IS 5 45029 BP 761 45030 EP 763 45031 PG 3 45032 SC Spectroscopy 45033 GA 612WX 45034 UT ISI:000179099400017 45035 ER 45036 45037 PT J 45038 AU You, JL 45039 Jiang, GC 45040 Wen, Q 45041 Xu, KD 45042 TI Raman spectroscopic study of silicon-oxygen tetrahedrons microstructure 45043 in x CaSiO3 center dot LiBO2 solid solutions 45044 SO SPECTROSCOPY AND SPECTRAL ANALYSIS 45045 DT Article 45046 DE silicates; LiBO2; Raman spectroscopy 45047 ID SPECTRA 45048 AB Raman spectra of xCaSiO(3) . LiBO2 (by weight ratio, x = 0, 0.25, 0.33, 45049 0.50)crystals were measured. The microstructure of different 45050 silicon-oxygen tetrahedrons and their abundant variations with silica 45051 contents were studied. It shows that all the silicon-oxygen 45052 tetrahedrons are isolated by Si-O-b-B bondings. or free SiO44- No 45053 evidence suggests that there exist considerable Si-O-b-Si bondings. The 45054 abundance of Q(2), Q(4) species increases with the increasing silica 45055 content, there exists barely Q(3) species even at high silica content. 45056 And the sum of integrated Raman peaks for all Q(i) species are linearly 45057 correlated with silica concentration in crystal, which offers the 45058 possibility to analysis silica in minerals, slags, glasses and soil 45059 samples directly. 45060 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 45061 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 45062 200072, Peoples R China. 45063 CR BOCK R, 1979, HDB DECOMPOSITION ME 45064 MCMILLAN P, 1984, AM MINERAL, V69, P622 45065 RULMONT A, 1989, SPECTROCHIM ACTA A, V45, P603 45066 WEN Q, 2000, SPECTROSC SPECT ANAL, V20, P694 45067 YOU JL, 1998, J CHINESE RARE EARTH, V16, P505 45068 YOU JL, 2001, CHINESE PHYS LETT, V18, P991 45069 YOU JL, 2001, J NON-CRYST SOLIDS, V282, P125 45070 NR 7 45071 TC 1 45072 SN 1000-0593 45073 J9 SPECTROSC SPECTR ANAL 45074 JI Spectrosc. Spectr. Anal. 45075 PD OCT 45076 PY 2002 45077 VL 22 45078 IS 5 45079 BP 787 45080 EP 789 45081 PG 3 45082 SC Spectroscopy 45083 GA 612WX 45084 UT ISI:000179099400024 45085 ER 45086 45087 PT J 45088 AU Huang, SG 45089 Li, L 45090 Vleugels, J 45091 Wang, PL 45092 Van der Biest, O 45093 TI Thermodynamic prediction of the nonstoichiometric phase Zr1-zCezO2-x in 45094 the ZrO2-CeO1.5-CeO2 system 45095 SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 45096 DT Article 45097 DE CeO2; ZrO2; defects; mechanical properties; phase equilibria; sintering 45098 ID ZRO2-CEO2 SYSTEM; DIAGRAM; TRANSFORMATION; OPTIMIZATION; TEMPERATURE 45099 AB A thermodynamic estimation of the ZrO2-CeO2 and ZrO2-CeO1.5 systems, as 45100 well as the cubic phase in the CeO1.5-CeO2 system has been developed 45101 and the complex relation between the nonstoichiometry, y, in CezO2-y 45102 and the oxygen partial pressure at different temperatures is evaluated. 45103 The behavior of the nonstoichiometry phase Zr1-zCezO2-x is described 45104 based on the thermodynamic estimation in the ZrO2-CeO2, CeO1.5-CeO2 and 45105 ZrO2-CeO1.5 systems. Additionally, the interdependence among 45106 miscellaneous factors, which can be used to describe the change in 45107 oxidation states of cerium such as the oxygen partial pressure, the 45108 CeO1.5 fraction in CeO1.5-CeO2 in the quasi-ternary system, the 45109 nonstoichiometry y and the difference between the activity of CeO2 and 45110 CeO1.5 are predicted. The calculated results are found to be very 45111 useful to explain the influence of pressureless sintering at different 45112 O-2 partial pressures on the mechanical properties of CeO2-stabilised 45113 ZrO2 ceramics (C) 2002 Published by Elsevier Science Ltd. 45114 C1 Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Heverlee, Belgium. 45115 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China. 45116 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China. 45117 RP Van der Biest, O, Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 45118 Heverlee, Belgium. 45119 CR ANSTIS GR, 1981, J AM CERAM SOC, V64, P533 45120 CAMPSERVEUX J, 1978, J SOLID STATE CHEM, V23, P73 45121 DU Y, 1991, J AM CERAM SOC, V74, P1569 45122 DU Y, 1994, SCRIPTA METALL MATER, V31, P327 45123 DURAN P, 1990, J MATER SCI, V25, P5001 45124 HANNINK RHJ, 2000, J AM CERAM SOC, V83, P461 45125 HEUSSNER KH, 1989, J AM CERAM SOC, V72, P1044 45126 KAUFMAN L, 1978, CALPHAD, V2, P35 45127 LEONOV AI, 1996, IZV AKAD NAUK SSSR I, V2, P1047 45128 LI L, 1996, J MATER SCI TECHNOL, V12, P159 45129 LI L, 2001, J EUR CERAM SOC, V21, P2903 45130 LI L, 2001, J MATER SCI TECHNOL, V17, P529 45131 LIDE DR, 1998, HDB CHEM PHYSICS 45132 LINDEMER TB, 1986, J AM CERAM SOC, V69, P867 45133 LONGO V, 1973, J AM CERAM SOC DISCU, V56, P600 45134 LUKAS HL, 1977, CALPHAD, V1, P225 45135 MUGGIANU YM, 1975, J CHIMIE PHYSIQUE, V72, P83 45136 PANKRATZ LB, 1982, US DEPT INTERIOR BUR, V672 45137 RICKEN M, 1986, SOLID STATE IONICS, V18, P725 45138 ROEBBEN G, 1997, REV SCI INSTRUM, V68, P4511 45139 ROUANET MA, 1968, COMP REND HEBD SEA C, V267, P1581 45140 TANI E, 1983, J AM CERAM SOC, V66, P506 45141 TULLER HL, 1979, J ELECTROCHEM SOC, V126, P209 45142 YASHIMA M, 1994, J AM CERAM SOC, V77, P1869 45143 YOSHIMURA M, 1972, B TOKYO I TECHNOL, V108, P25 45144 NR 25 45145 TC 2 45146 SN 0955-2219 45147 J9 J EUR CERAM SOC 45148 JI J. European Ceram. Soc. 45149 PD JAN 45150 PY 2003 45151 VL 23 45152 IS 1 45153 BP 99 45154 EP 106 45155 PG 8 45156 SC Materials Science, Ceramics 45157 GA 613GV 45158 UT ISI:000179125300013 45159 ER 45160 45161 PT J 45162 AU Ren, JS 45163 Cheng, CJ 45164 TI Bifurcation of cavitation solutions for incompressible transversely 45165 isotropic hyper-elastic materials 45166 SO JOURNAL OF ENGINEERING MATHEMATICS 45167 DT Article 45168 DE bifurcation; comparison of energy; incompressible hyper-elastic 45169 material; jumping and concentration of stress; transversely isotropic 45170 cylinder 45171 ID VOID NUCLEATION; HYPERELASTIC MATERIALS; GROWTH; INHOMOGENEITY; 45172 EXAMPLE; SPHERES 45173 AB In this paper, the bifurcation problem of void formation and growth in 45174 a solid circular cylinder, composed of an incompressible, transversely 45175 isotropic hyper-elastic material, under a uniform radial tensile 45176 boundary dead load and an axial stretch is examined. At first, the 45177 deformation of the cylinder, containing an undetermined parameter-the 45178 void radius, is given by using the condition of incompressibility of 45179 the material. Then the exact analytic formulas to determine the 45180 critical load and the bifurcation values for the parameter are obtained 45181 by solving the differential equation for the deformation function. 45182 Thus, an analytic solution for bifurcation problems in incompressible 45183 anisotropic hyper-elastic materials is obtained. The solution depends 45184 on the degree of anisotropy of the material. It shows that the 45185 bifurcation may occur locally to the right or to the left, depending on 45186 the degree of anisotropy, and the condition for the bifurcation to the 45187 right or to the left is discussed. The stress distributions subsequent 45188 to the cavitation are given and the jumping and concentration of 45189 stresses are discussed. The stability of solutions is discussed through 45190 comparison of the associated potential energies. The bifurcation to the 45191 left is a 'snap cavitation'. The growth of a pre-existing void in the 45192 cylinder is also observed. The results for a similar problem in three 45193 dimensions were obtained by Polignone and Horgan. 45194 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China. 45195 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, 45196 Shanghai 200072, Peoples R China. 45197 CR ANTMAN SS, 1987, J ELASTICITY, V18, P131 45198 BALL JM, 1982, PHILOS T ROY SOC A, V306, P557 45199 CHOUWANG MSO, 1989, INT J SOLIDS STRUCT, V25, P1239 45200 GENT AN, 1958, P ROY SOC LOND A MAT, V249, P195 45201 HAO TH, 1990, INT J FRACTURE, V43, R51 45202 HORGAN CO, 1986, J ELASTICITY, V16, P189 45203 HORGAN CO, 1989, J APPL MECH, V56, P302 45204 HORGAN CO, 1989, J ELASTICITY, V21, P61 45205 HORGAN CO, 1992, INT J SOLIDS STRUCT, V29, P279 45206 HORGAN CO, 1995, APPL MECH REV, V48, P471 45207 MEYNARD F, 1992, Q APPL MATH, V50, P210 45208 OGDEN RW, 1972, P ROY SOC LOND A MAT, V326, P565 45209 PODIOGUIDUGLI P, 1986, J ELASTICITY, V16, P75 45210 POLIGNONE DA, 1993, INT J SOLIDS STRUCT, V30, P3381 45211 POLIGNONE DA, 1993, J ELASTICITY, V33, P27 45212 SHANG XC, 1996, ACTA MECH SINICA, V28, P751 45213 SHANG XC, 2001, INT J ENG SCI, V39, P1101 45214 SIVALOGANANTHAN J, 1991, Q APPL MATH, V49, P521 45215 SIVALOGANATHAN J, 1986, ARCH RATIONAL MECH A, V96, P96 45216 STUART CA, 1985, ANN I H POINCARE-AN, V2, P33 45217 YEOH OH, 1997, RUBBER CHEM TECHNOL, V70, P175 45218 NR 21 45219 TC 9 45220 SN 0022-0833 45221 J9 J ENG MATH 45222 JI J. Eng. Math. 45223 PD NOV 45224 PY 2002 45225 VL 44 45226 IS 3 45227 BP 245 45228 EP 257 45229 PG 13 45230 SC Engineering, Multidisciplinary; Mathematics, Applied 45231 GA 611BK 45232 UT ISI:000178996400003 45233 ER 45234 45235 PT J 45236 AU Liu, WH 45237 Wu, HQ 45238 Lei, YQ 45239 Wang, QD 45240 TI Reaction kinetics of amorphous Mg50Ni50 hydride electrode 45241 SO JOURNAL OF ALLOYS AND COMPOUNDS 45242 DT Article 45243 DE amorphous materials; hydride electrode; Mg-based alloy; electrochemical 45244 impedance spectroscopy 45245 ID ALLOYED MG-NI; ELECTROCHEMICAL IMPEDANCE; AC-IMPEDANCE; BEHAVIOR 45246 AB Mg-based alloy is a promising hydride electrode material. In this 45247 study, the kinetics of the electrode reaction of an amorphous Mg50Ni50 45248 hydride electrode is studied by using electrochemical impedance 45249 spectroscopy (EIS) technique. An equivalent circuit for the hydride 45250 electrode reaction is proposed. Results show that the reaction rate of 45251 the hydride electrode is determined by a charge-transfer reaction at 45252 the alloy surface, which is represented by the EIS responses in the 45253 medium frequency region. The serious corrosion of the active material 45254 on the alloy surface is the main reason for the high charge-transfer 45255 resistance of the electrode reaction. (C) 2002 Elsevier Science B.V. 45256 All rights reserved. 45257 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R China. 45258 Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China. 45259 Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R China. 45260 RP Liu, WH, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R 45261 China. 45262 CR CHEN J, 1998, AL 20 P 45263 CHENG SA, 1999, J ALLOY COMPD, V293, P814 45264 KOHNO T, 1998, INT S MET HYDR SYST 45265 KURIYAMA N, 1993, J ALLOY COMPD, V192, P161 45266 KURIYAMA N, 1993, J ALLOY COMPD, V202, P183 45267 LEI YQ, 1994, Z PHYS CHEM, V183, P379 45268 LIU WH, 1996, J POWER SOURCES, V58, P243 45269 LIU WH, 1997, J ALLOY COMPD, V252, P234 45270 VALOEN LO, 1997, J ALLOY COMPD, V253, P656 45271 WAN X, 1999, J ALLOY COMPD, V293, P788 45272 WANG CS, 1998, J ELECTROCHEM SOC, V145, P1801 45273 ZHANG WL, 1995, J ELECTROCHEM SOC, V142, P2935 45274 NR 12 45275 TC 3 45276 SN 0925-8388 45277 J9 J ALLOYS COMPOUNDS 45278 JI J. Alloy. Compd. 45279 PD NOV 18 45280 PY 2002 45281 VL 346 45282 IS 1-2 45283 BP 244 45284 EP 249 45285 PG 6 45286 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & 45287 Metallurgical Engineering 45288 GA 614DF 45289 UT ISI:000179172500042 45290 ER 45291 45292 PT J 45293 AU Ren, ZJ 45294 Cao, WG 45295 Tong, WQ 45296 TI The Knoevenagel condensation reaction of aromatic aldehydes with 45297 malononitrile by grinding in the absence of solvents and catalysts 45298 SO SYNTHETIC COMMUNICATIONS 45299 DT Article 45300 ID SOLID-STATE; MICROWAVE IRRADIATION; ACID 45301 AB An improved Knoevenagel condensation reaction of aldehydes and 45302 malononitrile can be achieved by grinding at room temperature in the 45303 absence of solvents and catalysts. This process is simple, efficient, 45304 economical, and environmentally benign. Compared to reactions carried 45305 out by microwave irradiation, this procedure is completely free from 45306 organic solvents during both the reaction and separation of the product. 45307 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 45308 Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China. 45309 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 45310 CR ABDALLAHELAYOUB.S, 1994, SYNTHESIS-STUTTGART, P258 45311 CABELLO JA, 1984, J ORG CHEM, V49, P5195 45312 CORSON BB, 1928, J AM CHEM SOC 3, V50, P2825 45313 HAGIWARA H, 1996, MOL CRYST LIQ CRYST, V279, P291 45314 IM J, 1997, TETRAHEDRON LETT, V38, P451 45315 JONES G, 1967, ORG REACTIONS, V15, P204 45316 KIM SY, 1997, SYNTHETIC COMMUN, V27, P533 45317 KNOEVENAGEL E, 1894, CHEM BER, V27, P2345 45318 KWON PS, 1997, SYNTHETIC COMMUN, V27, P4091 45319 LEHNERT W, 1974, SYNTHESIS-STUTTGART, P667 45320 LI JP, 2001, SYNTHETIC COMMUN, V31, P781 45321 PRAJAPATI D, 1992, CHEM LETT OCT, P1945 45322 PRAJAPATI D, 1993, J CHEM SOC P1, P739 45323 RAO PS, 1991, TETRAHEDRON LETT, V32, P5821 45324 SCHIEMENZ GP, 1962, CHEM BER, V95, P485 45325 SCHMEYERS T, 1998, J CHEM SOC P2, P989 45326 STURZ HG, 1949, J AM CHEM SOC, V71, P2949 45327 TANAKA K, 2000, CHEM REV, V100, P1025 45328 TANAKA M, 1998, J CHEM SOC CHEM COMM, P1965 45329 TODA F, 1989, ANGEW CHEM INT EDIT, V28, P320 45330 TODA F, 1989, CHEM EXP, V4, P507 45331 TODA F, 1989, J ORG CHEM, V54, P3007 45332 TODA F, 1990, J CHEM SOC P1, P3207 45333 TODA F, 1998, J CHEM SOC PERK 1107, P3521 45334 TROST BM, 1991, COMPREHENSIVE ORGANI, V2, P341 45335 VILLEMIN D, 1990, SYNTHETIC COMMUN, V20, P3207 45336 VILLEMIN D, 1996, TETRAHEDRON LETT, V37, P1113 45337 XIAO JP, 2001, SYNTHETIC COMMUN, V31, P661 45338 NR 28 45339 TC 16 45340 SN 0039-7911 45341 J9 SYN COMMUN 45342 JI Synth. Commun. 45343 PY 2002 45344 VL 32 45345 IS 22 45346 BP 3475 45347 EP 3479 45348 PG 5 45349 SC Chemistry, Organic 45350 GA 610VA 45351 UT ISI:000178981000014 45352 ER 45353 45354 PT J 45355 AU Zhang, XP 45356 Wang, SZ 45357 TI Watermarking scheme capable of resisting attacks based on availability 45358 of inserter 45359 SO SIGNAL PROCESSING 45360 DT Article 45361 DE digital watermarking; attack; inserter 45362 AB Attacks based on the presence of watermark inserter are easy to perform 45363 since they make use of similarity between an original watermark and 45364 additionally added ones by using the same inserter and key. In this 45365 paper, a novel watermarking scheme capable of resisting inserter 45366 attacks is proposed. Watermark signals corresponding to the same key 45367 are mutually independent if they are randomly selected using the 45368 described technique. Thus the inserter attack is invalidated. 45369 Performance of the proposed method is studied, and simulation 45370 experiments presented. 45371 (C) 2002 Elsevier Science B.V. All rights reserved. 45372 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China. 45373 RP Zhang, XP, Shanghai Univ, Sch Commun & Informat Engn, 149 Yanchang Rd, 45374 Shanghai 200072, Peoples R China. 45375 CR COX IJ, 1998, IEEE J SEL AREA COMM, V16, P587 45376 HARTUNG F, 1999, P IEEE, V87, P1079 45377 KALKER T, 1998, P IEEE INT C IM PROC, V1, P425 45378 PETITCOLAS FAP, 1999, P IEEE MULT SYST 99, V1, P574 45379 PETITCOLAS FAP, 1999, P IEEE, V87, P1062 45380 NR 5 45381 TC 1 45382 SN 0165-1684 45383 J9 SIGNAL PROCESS 45384 JI Signal Process. 45385 PD NOV 45386 PY 2002 45387 VL 82 45388 IS 11 45389 BP 1801 45390 EP 1804 45391 PG 4 45392 SC Engineering, Electrical & Electronic 45393 GA 605ZV 45394 UT ISI:000178707700020 45395 ER 45396 45397 PT J 45398 AU Li, Q 45399 Liu, WQ 45400 Zhou, BX 45401 TI Effect of the deformation and heat treatment on the decomposition of 45402 beta Zr in Zr-Sn-Nb alloys 45403 SO RARE METAL MATERIALS AND ENGINEERING 45404 DT Article 45405 DE zirconium alloy; secondary phase; heat treatment; microstructure 45406 AB The influence of the deformation and heat treatment on the 45407 decomposition of beta-Zr in Zr-Sn-Nb alloys has been studied by means 45408 of transmission electron microscopy (TEM). After fast cooling by 45409 heating the specimens at 750degreesC - 0.5 h, some lumps of beta-Zr are 45410 formed on grain boundaries and bar - like particles of beta-Zr are 45411 formed within grains. After faster cooling by heating the specimens at 45412 1000degreesC - 0.5 h, a sandwich structure between thin layer G-Zr and 45413 lathy grains of alpha-Zr is formed. By aging the specimens at 45414 560degreesC, the decomposition of beta-Zr existing on the grain 45415 boundaries occurs to form particlelike beta-Nb (100 nm - 200 nm) This 45416 does not occur for bar - like beta-Zr existing within the grains. 45417 Deformation can make the beta-Zr more unstable and promotes the 45418 nucleation of fine particles of beta-Nb (10 nm - 60 nm). The bar-like 45419 particles of beta-Zr, which did not decompose only by aging at 45420 560degreesC, can be decomposed by a deformation - plus - aging heat 45421 treatment. In order to obtain a uniform dispersion and finer second 45422 phase particles of beta-Nb in zirconium alloys containing niobium, the 45423 material should not be heated over 610degreesC to avoid reforming lumps 45424 of beta-Zr on grain boundaries during subsequent processing. 45425 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 45426 RP Li, Q, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 45427 CR DAVID R, 1986, BINARY ALLOY PHASE D, P1711 45428 FOSTER JP, 1990, J NUCL MATER, V173, P146 45429 LIU WQ, 2001, RARE METAL MAT ENG, V30, P81 45430 ROGERS BA, 1955, J MET, V7, P1034 45431 NR 4 45432 TC 2 45433 SN 1002-185X 45434 J9 RARE METAL MAT ENG 45435 JI Rare Metal Mat. Eng. 45436 PD OCT 45437 PY 2002 45438 VL 31 45439 IS 5 45440 BP 389 45441 EP 392 45442 PG 4 45443 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 45444 Engineering 45445 GA 611ZZ 45446 UT ISI:000179049700018 45447 ER 45448 45449 PT J 45450 AU Lei, JX 45451 Kang, YL 45452 Qu, FQ 45453 TI Prediction and determination of both friction coefficient and forming 45454 force on sheet metal deep-drawing 45455 SO JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING 45456 DT Article 45457 DE deep-drawing; friction coefficient; forming force; prediction and 45458 determination 45459 ID FRACTURE LIMIT; WRINKLE LIMIT 45460 AB On the basis of the criterion of no-wrinkle, the principle and method 45461 of prediction and determination of both friction coefficient and 45462 forming force on sheet metal deep-drawing are put forward, and proved 45463 it's expedience and practicability. They are suitable for assessment of 45464 lubricant properties. Friction coefficient and forming force are a 45465 function of material parameter, design parameter and process parameter, 45466 especially relative prevent wrinkle blank-holder force. Product of both 45467 friction coefficient and prevent wrinkle blankholder force is only 45468 function of process parameter eta after determining material parameter 45469 and design parameter. 45470 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China. 45471 Univ Sci & Technol Beijing, Beijing 100083, Peoples R China. 45472 Yantai Univ, Yantai 263005, Peoples R China. 45473 RP Lei, JX, Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China. 45474 CR KANG YL, 1999, QUALITY CONTROL FORM 45475 LEI JX, 1998, J UNIV SCI TECHNOL B, V5, P237 45476 LEI JX, 1999, CHINESE J MECH ENG, V12, P288 45477 LEI JX, 1999, J IRON STEEL RES, V11, P194 45478 LEI JX, 1999, J PLASTICITY ENG, V6, P638 45479 LEI JX, 1999, J UNIV SCI TECHNOL B, V6, P201 45480 RU Z, 1992, PLASTICITY WORKING T 45481 NR 7 45482 TC 0 45483 SN 1005-8850 45484 J9 J UNIV SCI TECHNOL BEIJING 45485 JI J. Univ. Sci. Technol. Beijing 45486 PD OCT 45487 PY 2002 45488 VL 9 45489 IS 5 45490 BP 360 45491 EP 362 45492 PG 3 45493 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 45494 Engineering; Mining & Mineral Processing 45495 GA 611KA 45496 UT ISI:000179015000010 45497 ER 45498 45499 PT J 45500 AU Zhang, SQ 45501 Xu, GQ 45502 Li, ZB 45503 TI General explicit solutions of a classical Boussinesq system 45504 SO CHINESE PHYSICS 45505 DT Article 45506 DE explicit solution; soliton; nonlinear equation 45507 ID NONLINEAR-WAVE EQUATIONS; JACOBI ELLIPTIC FUNCTION; EXPANSION METHOD 45508 AB Seeking a travelling wave solution of the classical Boussinesq system 45509 and making an ansatz for the solution, we obtain a nonlinear system of 45510 algebraic equations. We solve the system using an effective algorithm 45511 and then two general explicit solutions are obtained which are of 45512 physical interest. 45513 C1 E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China. 45514 Shanghai Univ, Dept Informat Engn & Adm, Shanghai 200436, Peoples R China. 45515 RP Zhang, SQ, E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples 45516 R China. 45517 CR BAI CL, 2001, CHINESE PHYS, V10, P1091 45518 FAN EG, 1998, ACTA PHYS SINICA, V47, P353 45519 FAN EG, 2000, ACTA PHYS SIN-CH ED, V49, P1409 45520 FENG X, 2000, INT J THEOR PHYS, V39, P207 45521 LI YS, 2000, PHYS LETT A, V275, P60 45522 LI ZB, 2001, ACTA PHYS SIN-CH ED, V50, P2062 45523 LIU SK, 2001, ACTA PHYS SIN-CH ED, V50, P2068 45524 LIU SK, 2001, PHYS LETT A, V289, P69 45525 LOU SY, 1999, ACTA PHYS SIN S, V8, P280 45526 MALFLIET W, 1992, AM J PHYS, V60, P650 45527 WANG ML, 1996, PHYS LETT A, V213, P279 45528 WU TY, 1996, MATH SOLVING PROBLEM, P233 45529 XU GQ, 2002, ACTA PHYS SIN-CH ED, V51, P946 45530 ZHANG JF, 2002, CHINESE PHYS, V11, P425 45531 ZHANG JF, 2002, CHINESE PHYS, V11, P533 45532 ZHANG YF, 2002, CHINESE PHYS, V11, P319 45533 ZHOU ZJ, 2002, UNPUB J MATH PHYS 45534 NR 17 45535 TC 6 45536 SN 1009-1963 45537 J9 CHIN PHYS 45538 JI Chin. Phys. 45539 PD OCT 45540 PY 2002 45541 VL 11 45542 IS 10 45543 BP 993 45544 EP 995 45545 PG 3 45546 SC Physics, Multidisciplinary 45547 GA 609RU 45548 UT ISI:000178919000003 45549 ER 45550 45551 PT J 45552 AU Li, WW 45553 Sang, WB 45554 Min, JH 45555 Yu, F 45556 Zhang, B 45557 Wang, KS 45558 TI Cd1-xZnxTe crystal growth controlled by Cd/Zn partial pressures 45559 SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY 45560 DT Article 45561 ID CD-TE; SYSTEM 45562 AB We have estimated the partial pressures, P-Cd and P-Zn over Cd1-xZnxTe 45563 (CZT) and Cd1-xZnx melts based on known thermodynamic data. The partial 45564 pressures, P-Cd and P-Zn over the Cd0.81Zn0.19 alloy melt at a 45565 temperature of about 1003 degreesC could be in equilibrium with those 45566 over the Cd0.9Zn0.1Te melt at a melting temperature of 1120 degreesC. 45567 In this work, we have carried out Cd0.9Zn0.1Te crystal growth from the 45568 melt under controlled constituent partial pressures, provided by the 45569 Cd0.81Zn0.19 alloy instead of only the Cd source. The best result for 45570 the resistivity, which has reached up to about 10(10) Omega cm, has 45571 been obtained under the equilibrium partial pressures estimated by 45572 thermodynamic relationships. The axial variation in Zn concentration, 45573 which has been obviously improved due to Zn being replenished from the 45574 reservoir during the whole growth procedure, is within about 4%. The 45575 etch pit densities were, on average, about 2 x 10(5) and 4 x 10(4) 45576 cm(-2) at the middle of the bulk. Infrared transmissivity in the range 45577 of 2-42 mum is larger than 60%. In addition, we also discuss the 45578 relationship between the resistivities and conducting types of the 45579 crystal and the different controlled pressures. 45580 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 45581 RP Li, WW, Shanghai Univ, Sch Mat Sci & Engn, Jiading Campus,20 Chengzhong 45582 Rd, Shanghai 201800, Peoples R China. 45583 CR BREBRICK RF, 1995, METALL MATER TRANS A, V26, P2597 45584 BUTLER JF, 1992, IEEE T NUCL SCI, V39, P605 45585 EISEN Y, 1998, J CRYST GROWTH, V184, P1310 45586 GLASS HL, 1998, J CRYST GROWTH, V184, P1035 45587 HULTGREN R, 1963, SELECTED VALUES THER, P637 45588 JORDAN AS, 1970, MET T, V1, P239 45589 NIEMELA A, 1994, IEEE T NUCL SCI, V41, P1054 45590 PETERS K, 1990, CRYST RES TECHNOL, V25, P1107 45591 TANAKA A, 1989, J CRYST GROWTH, V94, P166 45592 TUNG T, 1982, J VAC SCI TECHNOL, V21, P117 45593 VYDYANATH HR, 1993, J ELECTRON MATER, V22, P1067 45594 NR 11 45595 TC 2 45596 SN 0268-1242 45597 J9 SEMICOND SCI TECHNOL 45598 JI Semicond. Sci. Technol. 45599 PD OCT 45600 PY 2002 45601 VL 17 45602 IS 10 45603 BP L55 45604 EP L58 45605 PG 4 45606 SC Engineering, Electrical & Electronic; Materials Science, 45607 Multidisciplinary; Physics, Condensed Matter 45608 GA 609AJ 45609 UT ISI:000178880200001 45610 ER 45611 45612 PT J 45613 AU Zhao, YW 45614 Zhang, GX 45615 TI A new integrated design method based on fuzzy matter-element 45616 optimization 45617 SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY 45618 DT Article 45619 DE multi-objective optimization; fuzzy matter-element; genetic algorithms; 45620 scheme design 45621 ID GENETIC ALGORITHMS 45622 AB This paper puts forward a new integrated design method based on fuzzy 45623 matter-element optimization. On the based of analyzing the model of 45624 multi-objective fuzzy matter-element (R) over tilde, the paper defines 45625 the matter-element weighting and changes solving a multi-objective 45626 fuzzy optimization into solving a dependent function K(x) of the 45627 single-objective optimization according to the optimization criterion. 45628 The paper particularly describes the realization approach of the GA 45629 process of multi-objective fuzzy matter-element optimization: encode, 45630 produce initial population, confirm fitness function, select operator, 45631 etc. In the process, the adaptive macro genetic algorithms (AMGA) are 45632 applied to enhance the evolution speed. The paper improves the two 45633 genetic operators: cross-over and mutation operator. The modified 45634 adaptive macro genetic algorithms (MAMGA) are put forward 45635 simultaneously, and adopted to solve the optimization problem. 45636 Three optimization methods, namely the fuzzy matter-element 45637 optimization method, the linearity weighted method and the fuzzy 45638 optimization method, are compared using tables and figures, showing 45639 that not only is MAMMA a little better than AMGA, but also it reaches 45640 the extent to which the effective iteration generation is 62.2% of 45641 simple genetic algorithms (SGA). By the calculation of an optimum 45642 example, the improved genetics method of reported in the paper is much 45643 better than the methods in the references of the paper. (C) 2002 45644 Elsevier Science B.V. All rights reserved. 45645 C1 Zhejiang Univ Technol, Coll Mech Engn, Hangzhou 310014, Zhejiang, Peoples R China. 45646 Shanghai Univ, Coll Mech & Elect Engn, Shanghai 200072, Peoples R China. 45647 RP Zhao, YW, Zhejiang Univ Technol, Coll Mech Engn, Hangzhou 310014, 45648 Zhejiang, Peoples R China. 45649 CR BING Z, 1997, FUZZY MATTER ELEMENT 45650 GAO Y, 2000, P 3 WORLD C INT CONT, P646 45651 HUANG YP, 2000, FUZZY SET SYST, V113, P367 45652 SRINIVAS M, 1994, IEEE T SYST MAN CYB, V24, P656 45653 WEN C, 1999, CHINESE SCI BULL, V44, P673 45654 WU QH, 1998, INT J ELEC POWER, V20, P563 45655 NR 6 45656 TC 0 45657 SN 0924-0136 45658 J9 J MATER PROCESS TECHNOL 45659 JI J. Mater. Process. Technol. 45660 PD OCT 11 45661 PY 2002 45662 VL 129 45663 IS 1-3 45664 BP 612 45665 EP 618 45666 PG 7 45667 SC Engineering, Industrial; Engineering, Manufacturing; Materials Science, 45668 Multidisciplinary 45669 GA 607MJ 45670 UT ISI:000178795100128 45671 ER 45672 45673 PT J 45674 AU Wang, Y 45675 Chau, KT 45676 Gan, JY 45677 Chan, CC 45678 Jiang, JZ 45679 TI Design and analysis of a new multiphase polygonal-winding 45680 permanent-magnet brushless DC machine 45681 SO IEEE TRANSACTIONS ON MAGNETICS 45682 DT Article 45683 DE brushless dc machine; permanent-magnet machine; time-stepping 45684 finite-element method 45685 ID INSET 45686 AB In this paper, a new multiphase polygonal-winding permanent-magnet 45687 brushless dc (PMBDC) machine is proposed and analyzed. The originality 45688 of the proposed machine lies on the multiphase polygonal-winding stator 45689 and the surface-inset permanent-magnet rotor. Because of its unique 45690 structure and operating principle, a circuit-field-torque coupled time 45691 stepping finite-element method is also employed for analysis. The 45692 designed machine prototyped and the analysis. The designed machine is 45693 prototyped and the analysis is verufied by experimentation. 45694 C1 Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China. 45695 Shanghai Univ, Sch Automat, Shanghai 200072, Peoples R China. 45696 RP Wang, Y, Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, 45697 Peoples R China. 45698 CR CHAN CC, 1996, IEEE T IND ELECTRON, V43, P331 45699 GAN JY, 2000, IEEE T MAGN 2, V36, P3810 45700 XU LY, 1995, IEEE T IND APPL, V31, P373 45701 ZHU ZQ, 1994, IEEE T MAGN, V30, P98 45702 NR 4 45703 TC 0 45704 SN 0018-9464 45705 J9 IEEE TRANS MAGN 45706 JI IEEE Trans. Magn. 45707 PD SEP 45708 PY 2002 45709 VL 38 45710 IS 5 45711 PN Part 1 45712 BP 3258 45713 EP 3260 45714 PG 3 45715 SC Engineering, Electrical & Electronic; Physics, Applied 45716 GA 608VE 45717 UT ISI:000178867200444 45718 ER 45719 45720 PT J 45721 AU Chen, DY 45722 Xin, HW 45723 Zhang, DJ 45724 TI Lie algebraic structures of some (1+2)-dimensional Lax integrable 45725 systems 45726 SO CHAOS SOLITONS & FRACTALS 45727 DT Article 45728 ID KADOMTSEV-PETVIASHVILI EQUATION; NONLINEAR EVOLUTION-EQUATIONS; 45729 BI-HAMILTONIAN STRUCTURES; RECURSION OPERATORS; SYMMETRIES; 45730 HIERARCHIES; MULTIDIMENSIONS 45731 AB The paper proposes an approach to constructing the symmetries and their 45732 algebraic structures for isospectral and nonisospectral evolution 45733 equations of (1 + 2)-dimensional systems associated with the linear 45734 problem of Sato theory. To do that, we introduce the implicit 45735 representations of the isospectral flows {K-m} and nonisospectral flows 45736 {sigma(n)} in the high dimensional cases. Three examples, the 45737 Kodomstev-Petviashvili system, BKP system and new CKP system, are 45738 considered to demonstrate our method. (C) 2002 Elsevier Science Ltd. 45739 All rights reserved. 45740 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 45741 RP Chen, DY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 45742 CR CAUDREY PJ, 1990, SOLITON THEORY SURVE, P55 45743 CHEN DY, 1990, ACTA MATH APPL SIN, V13, P324 45744 CHEN DY, 1991, CHIN ANN MATH A, V12, P33 45745 CHEN DY, 1996, J MATH PHYS, V37, P5524 45746 CHEN HH, 1982, PHYS LETT A, V91, P381 45747 CHEN HH, 1983, PHYSICA D, V9, P439 45748 CHEN HH, 1987, PHYSICA D, V26, P171 45749 CHENG Y, 1988, J PHYS A, V21, L443 45750 CHENG Y, 1988, PHYS LETT A, V127, P205 45751 CHENG Y, 1989, PHYSICA D, V34, P277 45752 CHENG Y, 1990, NONLINEAR PHYSICS, P12 45753 CHENG Y, 1990, PHYS D, V46, P286 45754 CHENG Y, 1991, J MATH PHYS, V32, P157 45755 FOKAS AS, 1981, PHYS LETT A, V86, P341 45756 FOKAS AS, 1988, COMMUN MATH PHYS, V116, P449 45757 FUCHSSTEINER B, 1983, PROG THEOR PHYS, V70, P1508 45758 KONOPELCHENKO BG, 1984, PHYS LETT A, V102, P15 45759 LI YS, 1986, J PHYS A-MATH GEN, V19, P3713 45760 MA WX, 1992, J MATH PHYS, V33, P2464 45761 OEVEL W, 1982, PHYS LETT A, V88, P323 45762 SANTINI PM, 1988, COMMUN MATH PHYS, V115, P375 45763 NR 21 45764 TC 4 45765 SN 0960-0779 45766 J9 CHAOS SOLITON FRACTAL 45767 JI Chaos Solitons Fractals 45768 PD FEB 45769 PY 2003 45770 VL 15 45771 IS 4 45772 BP 761 45773 EP 770 45774 PG 10 45775 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary 45776 GA 609FT 45777 UT ISI:000178893500018 45778 ER 45779 45780 PT J 45781 AU Song, FQ 45782 Liu, CQ 45783 TI The transient elliptic flow of power-law fluid in fractal porous media 45784 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 45785 DT Article 45786 DE fractal media; vertically fractured well; transient flow; power-law 45787 fluid 45788 AB The steady oil production and pressure distribution formulae of 45789 vertically fractured well for power-law non-Newtonian fluid were 45790 derived on the basis of the elliptic flow model in fractal reservoirs. 45791 The corresponding transient flow in fractal reservoirs was studied by 45792 numerical differentiation method: the influence of fractal index to 45793 transient pressure of vertically fractured well was analyzed. Finally 45794 the approximate analytical solution of transient flow was given by 45795 average mass conservation law. The study shows that using elliptic flow 45796 method to analyze the flow of vertically fractured well is a simple 45797 method. 45798 C1 Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 45799 Acad Sinica, Inst Porous Flow & Fluid Mech, Langfang 065007, Hebei, Peoples R China. 45800 RP Song, FQ, Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, 45801 Peoples R China. 45802 CR LIU CQ, 1989, WELL TESTING PRODUCT, V10, P22 45803 LIU CQ, 1996, 10 S HYDR CHIN, P439 45804 LIU J, 1996, BIOMED ENVIRON SCI, V9, P12 45805 SONG FQ, 2000, WELL TESTING PRODUCT, V21, P1 45806 NR 4 45807 TC 0 45808 SN 0253-4827 45809 J9 APPL MATH MECH-ENGL ED 45810 JI Appl. Math. Mech.-Engl. Ed. 45811 PD AUG 45812 PY 2002 45813 VL 23 45814 IS 8 45815 BP 875 45816 EP 880 45817 PG 6 45818 SC Mathematics, Applied; Mechanics 45819 GA 608JB 45820 UT ISI:000178841700002 45821 ER 45822 45823 PT J 45824 AU Ren, JS 45825 Cheng, CJ 45826 TI Cavitated bifurcation for incompressible hyperelastic material 45827 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 45828 DT Article 45829 DE incompressible hyperelastic material; void nucleation and growth; 45830 catastrophe and concentration of stress 45831 ID NONLINEARLY ELASTIC-MATERIALS; VOID NUCLEATION; GROWTH 45832 AB The spherical cavitated bifurcation for a hyperelastic solid sphere 45833 made of the incompressible Valanis-Landel material under boundary 45834 dead-loading is examined. The analytic solution for the bifurcation 45835 problem is obtained. The catastrophe and concentration of stresses are 45836 discussed. The stability of solutions is discussed through the energy 45837 comparison. And the growth of a pre-existing micro-void is also 45838 observed. 45839 C1 Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 45840 Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China. 45841 RP Ren, JS, Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples 45842 R China. 45843 CR BALL JM, 1982, PHILOS T ROY SOC A, V306, P557 45844 CHOUWANG MSO, 1989, INT J SOLIDS STRUCT, V25, P1239 45845 HORGAN CO, 1986, J ELASTICITY, V16, P189 45846 HORGAN CO, 1989, J ELASTICITY, V21, P61 45847 HORGAN CO, 1992, INT J SOLIDS STRUCT, V29, P279 45848 HORGAN CO, 1995, APPL MECH REV, V48, P471 45849 SHANG XC, 1996, ACTA MECH SINICA, V28, P751 45850 SIVALOGANATHAN J, 1986, ARCH RATION MECH AN, V96, P97 45851 VALANIS KC, 1967, J APPL PHYS, V38, P2997 45852 NR 9 45853 TC 11 45854 SN 0253-4827 45855 J9 APPL MATH MECH-ENGL ED 45856 JI Appl. Math. Mech.-Engl. Ed. 45857 PD AUG 45858 PY 2002 45859 VL 23 45860 IS 8 45861 BP 881 45862 EP 888 45863 PG 8 45864 SC Mathematics, Applied; Mechanics 45865 GA 608JB 45866 UT ISI:000178841700003 45867 ER 45868 45869 PT J 45870 AU Zhu, WP 45871 Huang, Q 45872 TI General solution of the overall bending of flexible circular ring 45873 shells with moderately slender ratio and applications to the bellows 45874 (I) - Governing equation and general solution 45875 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 45876 DT Article 45877 DE theory of flexible shell; circular ring shell; bellows; lateral bending 45878 load; moderately slender ratio; general solution 45879 AB The overall bending of circular ring shells subjected to bending 45880 moments and lateral forces is discussed. The derivation of the 45881 equations was based upon the theory of flexible shells generalized by 45882 E. L. Axelrad and the assumption of the moderately slender ratio less 45883 than 1/3 (i.e., ratio between curvature radius of the meridian and 45884 distance from the meridional curvature center to the axis of 45885 revolution). The present general solution is an analytical one 45886 convergent in the whole domain of the shell and with the necessary 45887 integral constants for the boundary value problems. It can be used to 45888 calculate the stresses and displacements of the related bellows. The 45889 whole work is arranged into four parts: (I) Governing equation and 45890 general solution; (II) Calculation for Omega-shaped bellows; (III) 45891 Calculation for C-shaped bellows; (IV) Calculation for U-shaped 45892 bellows. This paper is the first part. 45893 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 45894 RP Zhu, WP, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 45895 200072, Peoples R China. 45896 CR AXELRAD EL, 1976, FLEXIBLE SHELLS 45897 AXELRAD EL, 1987, THEORY FLEXIBLE SHEL 45898 CHEN SL, 1987, PROGR APPL MECH, P181 45899 CHIEN WZ, 1979, J LANZHOU U SPECIAL, P1 45900 CHIEN WZ, 1979, J TSINGHUA U, V19, P27 45901 CHIEN WZ, 1979, J TSINGHUA U, V19, P84 45902 CHIEN WZ, 1980, APPL MATH MECH ENGLI, V1, P305 45903 CHIEN WZ, 1981, APPL MATH MECH ENGLI, V2, P103 45904 ZHU WP, 1998, THIN WALL STRUCT, P477 45905 ZHU WP, 1999, APPL MATH MECH-ENGL, V20, P952 45906 ZHU WP, 2000, APPL MATH MECH-ENGL, V21, P371 45907 ZHU WP, 2000, CHINESE Q MECH, V21, P311 45908 NR 12 45909 TC 0 45910 SN 0253-4827 45911 J9 APPL MATH MECH-ENGL ED 45912 JI Appl. Math. Mech.-Engl. Ed. 45913 PD AUG 45914 PY 2002 45915 VL 23 45916 IS 8 45917 BP 889 45918 EP 897 45919 PG 9 45920 SC Mathematics, Applied; Mechanics 45921 GA 608JB 45922 UT ISI:000178841700004 45923 ER 45924 45925 PT J 45926 AU Zhu, WP 45927 Huang, Q 45928 TI General solution of the overall bending of flexible circular ring 45929 shells with moderately slender ratio and applications to the bellows 45930 (II) - Calculation for Omega-shaped bellows 45931 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 45932 DT Article 45933 DE theory of flexible shell; circular ring shell; Omega-shaped bellows; 45934 general solution 45935 AB (II) is one of the applications of (I), in which the angular stiffness, 45936 the lateral stiffness and the corresponding stress distributions of 45937 Omega-shaped bellows were calculated, and the present results were 45938 compared with those of the other theories and experiments. It is shown 45939 that the non-homogeneous solution of ( I) can solve the pure bending 45940 problem of the bellows by itself, and be more effective than by the 45941 theory of slender ring shells; but if a lateral slide of the bellows 45942 support exists the non-homogeneous solution will no longer entirely 45943 satisfy the boundary conditions of the problem, in this case the 45944 homogeneous solution of ( I) should be included, that is to say, the 45945 full solution of can meet all the requirements. 45946 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 45947 RP Zhu, WP, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 45948 200072, Peoples R China. 45949 CR *EJMA INC, 1998, STAND EXP JOINT MAN 45950 CHIEN WZ, 1979, COLLECTED WORKS APPL, P110 45951 CHIEN WZ, 1979, J TSINGHUA U, V19, P27 45952 CHIEN WZ, 1980, APPL MATH MECH ENGLI, V1, P305 45953 CHIEN WZ, 1980, J INSTRUMENTS METERS, V1, P89 45954 DAHL NC, 1953, J APPL MECH, V20, P497 45955 ZHU WP, 1999, APPL MATH MECH-ENGL, V20, P952 45956 ZHU WP, 1999, J SHANGHAI U, V3, P121 45957 NR 8 45958 TC 0 45959 SN 0253-4827 45960 J9 APPL MATH MECH-ENGL ED 45961 JI Appl. Math. Mech.-Engl. Ed. 45962 PD AUG 45963 PY 2002 45964 VL 23 45965 IS 8 45966 BP 898 45967 EP 905 45968 PG 8 45969 SC Mathematics, Applied; Mechanics 45970 GA 608JB 45971 UT ISI:000178841700005 45972 ER 45973 45974 PT J 45975 AU He, JH 45976 TI Homotopy perturbation method: a new nonlinear analytical technique 45977 SO APPLIED MATHEMATICS AND COMPUTATION 45978 DT Article 45979 DE perturbation methods; homotopy; duffing equation; nonlinearity 45980 ID APPROXIMATE SOLUTION 45981 AB In this paper, a new perturbation method is proposed. In contrast to 45982 the traditional perturbation methods, this technique does not require a 45983 small parameter in an equation. In this method, according to the 45984 homotopy technique, a homotopy with an imbedding parameter p is an 45985 element of [0, 1] is constructed, and the imbedding parameter is 45986 considered as a "small parameter", so the method is called the homotopy 45987 perturbation method, which can take the full advantages of the 45988 traditional perturbation methods and homotopy techniques. To illustrate 45989 its effectiveness and its convenience, a Duffing equation with high 45990 order of nonlinearity is used; the result reveals that its first order 45991 of approximation obtained by the proposed method is valid uniformly 45992 even for very large parameter, and is more accurate than the 45993 perturbation solutions. (C) 2002 Elsevier Science Inc. All rights 45994 reserved. 45995 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 45996 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd, 45997 Shanghai 200072, Peoples R China. 45998 CR HE JH, 1998, COMPUT METHOD APPL M, V167, P57 45999 HE JH, 1998, COMPUT METHOD APPL M, V167, P69 46000 HE JH, 1999, COMPUT METHOD APPL M, V178, P257 46001 HE JH, 1999, INT J NONLINEAR MECH, V34, P699 46002 HE JH, 2000, INT J NONLINEAR MECH, V35, P37 46003 HE JH, 2000, INT J NONLINEAR SCI, V1, P51 46004 LIAO SJ, 1995, INT J NONLINEAR MECH, V30, P371 46005 LIAO SJ, 1997, ENG ANAL BOUND ELEM, V20, P91 46006 LIU GL, 1997, C 7 MOD MATH MECH SH 46007 NAYFEH AF, 1985, PROBLEMS PERTURBATIO 46008 NR 10 46009 TC 16 46010 SN 0096-3003 46011 J9 APPL MATH COMPUT 46012 JI Appl. Math. Comput. 46013 PD FEB 15 46014 PY 2002 46015 VL 135 46016 IS 1 46017 BP 73 46018 EP 79 46019 PG 7 46020 SC Mathematics, Applied 46021 GA 609DQ 46022 UT ISI:000178888700006 46023 ER 46024 46025 PT J 46026 AU He, JH 46027 TI A new iteration method for solving algebraic equations 46028 SO APPLIED MATHEMATICS AND COMPUTATION 46029 DT Article 46030 DE nonlinearity; iteration method 46031 ID PERTURBATION TECHNIQUE 46032 AB In this paper, a nonlinear algebraic equation f (x) = 0, by applying 46033 Taylor's theorem, is converted into a coupled iteration system 46034 L(x(n+1)) + g(x(n)) = 0 and g(x(n)) = f (x(n)) - L(x(n)), where L(x) = 46035 Ax(2) + Bx + C. 46036 The formula is of high convergence. Some examples are given. (C) 2002 46037 Elsevier Science Inc. All rights reserved. 46038 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 46039 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, POB 189,149 46040 Yanchang Rd, Shanghai 200072, Peoples R China. 46041 CR HE JH, 1998, COMMUN NONLINEAR SCI, V3 46042 HE JH, 1999, COMPUT METHOD APPL M, V178, P257 46043 HE JH, 2000, INT J NONLINEAR MECH, V35, P37 46044 HE JH, 2000, INT J NONLINEAR SCI, V1, P239 46045 PETKOVIC L, 1997, NONLINEAR ANAL-THEOR, V30, P669 46046 NR 5 46047 TC 3 46048 SN 0096-3003 46049 J9 APPL MATH COMPUT 46050 JI Appl. Math. Comput. 46051 PD FEB 15 46052 PY 2002 46053 VL 135 46054 IS 1 46055 BP 81 46056 EP 84 46057 PG 4 46058 SC Mathematics, Applied 46059 GA 609DQ 46060 UT ISI:000178888700007 46061 ER 46062 46063 PT J 46064 AU Zhou, SP 46065 Qu, H 46066 Liao, HY 46067 TI Pairing symmetry and vortex lattice of high temperature superconductors 46068 SO ACTA PHYSICA SINICA 46069 DT Article 46070 DE hight T-c; superconduciivity; vortex structure; Ginzburg-Landau theory 46071 ID S-WAVE; THERMAL-CONDUCTIVITY; II SUPERCONDUCTORS; MODEL; 46072 YBA2CU3O7-DELTA; BI2SR2CACU2O8; STATE; ORDER; PB 46073 AB We studied pairing symmetry of YBa2Cu3O7-delta high-temperature. 46074 superconductor using a generic Ginzburg-Landau model. The phase 46075 transition between the mixed s-d(x2-y2) state and d(x2-y2) wave was 46076 shown. The vortex lattice of a YBa2Cu3O7 superconductor is oblique at 46077 the temperature well below the transition temperature T-c, where the 46078 mixed s-d(x2-y2) state is expected to have the lowest energy. Whereas, 46079 very close to T-c, the d(x2-y2) wave is slightly lower in energy, and a 46080 triangular vortex lattice recovers. The coexistence and the coupling 46081 between the s-and d-waves would account for the unusual behaviours such 46082 as the upward curvature of the upper critical field curve H-c2 (T). 46083 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 46084 RP Zhou, SP, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 46085 CR ABRIKOSOV AA, 1957, ZH EKSP TEOR FIZ, V32, P1442 46086 ABRIKOSOV AA, 1957, ZH EKSP TEOR FIZ, V5, P1174 46087 ANDERSON PW, 1987, SCIENCE, V235, P1196 46088 AUBIN H, 1999, PHYS REV LETT, V82, P624 46089 CHAKRAVARTY S, 1993, SCIENCE, V261, P337 46090 DORIA MM, 1989, PHYS REV B, V39, P9573 46091 DU Q, 1993, SIAM J APPL MATH, V53, P689 46092 GORKOV LP, 1960, SOV PHYS JETP, V9, P1364 46093 HEEB R, 1996, PHYS REV B, V54, P9385 46094 JOYNT R, 1990, PHYS REV B, V41, P4271 46095 KEIMER B, 1994, J APPL PHYS 2, V76, P6778 46096 KLEINER R, 1996, PHYS REV LETT, V76, P2161 46097 KOUZNETSOV KA, 1997, PHYS REV LETT, V79, P3050 46098 KRISHANA K, 1997, SCIENCE, V277, P83 46099 LAUGHLIN RB, 1998, PHYS REV LETT, V80, P5188 46100 LEE PA, 1987, PHYS REV LETT, V58, P2891 46101 LI QP, 1993, PHYS REV B, V48, P437 46102 LIECHTENSTEIN AI, 1995, PHYS REV LETT, V74, P2303 46103 MILLIS AJ, 1994, PHYS REV B, V49, P15408 46104 MONTHOUX P, 1994, PHYS REV B, V49, P4261 46105 MONTHOUX P, 1994, PHYS REV LETT, V72, P1874 46106 REN Y, 1995, PHYS REV LETT, V74, P3680 46107 RUGGIERO S, 1982, PHYS REV B, V26, P4897 46108 SOININEN PI, 1994, PHYS REV B, V50, P13883 46109 TINKHAM M, 1964, GROUP THEORY QUANTUM 46110 TSUEI CC, 1994, PHYS REV LETT, V73, P593 46111 VOLOVIK GE, 1993, JETP LETT, V58, P469 46112 WELP U, 1989, PHYS REV LETT, V62, P1908 46113 WOLLMAN DA, 1993, PHYS REV LETT, V71, P2134 46114 ZHANG FC, 1988, PHYS REV B, V37, P3759 46115 ZHANG SC, 1997, SCIENCE, V275, P1089 46116 ZHOU SP, 1999, ACTA PHYS SIN-CH ED, V48, P342 46117 ZHOU SP, 2000, PHYSICA C, V339, P258 46118 ZHOU SP, 2001, CHINESE PHYS, V10, P541 46119 NR 34 46120 TC 0 46121 SN 1000-3290 46122 J9 ACTA PHYS SIN-CHINESE ED 46123 JI Acta Phys. Sin. 46124 PD OCT 46125 PY 2002 46126 VL 51 46127 IS 10 46128 BP 2355 46129 EP 2361 46130 PG 7 46131 SC Physics, Multidisciplinary 46132 GA 609JF 46133 UT ISI:000178899300036 46134 ER 46135 46136 PT J 46137 AU Zheng, CL 46138 Zhang, JF 46139 TI General solution and fractal localized structures for the 46140 (2+1)-dimensional generalized Ablowitz-Kaup-Newell-Segur system 46141 SO CHINESE PHYSICS LETTERS 46142 DT Article 46143 ID NONLINEAR SCHRODINGER-EQUATION; COHERENT STRUCTURES; SIMILARITY 46144 REDUCTIONS; BOUSSINESQ EQUATION; EVOLUTION-EQUATIONS; DROMION; 46145 SOLITONS; INTEGRABILITY; SCATTERING; PLASMA 46146 AB Using the standard truncated Painleve expansions, we derive a quite 46147 general solution of the (2+1)-dimensional generalized 46148 Ablowitz-Kaup-Newell-Segur system. Except for the usual localized 46149 solutions, such as dromions, lumps, ring soliton solutions, etc, some 46150 special localized excitations with fractal behaviour, i.e. the fractal 46151 dromion and fractal lump excitations, are obtained by some types of 46152 lower-dimensional fractal patterns. 46153 C1 Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China. 46154 Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China. 46155 Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China. 46156 Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China. 46157 RP Zheng, CL, Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000, 46158 Peoples R China. 46159 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V30, P1262 46160 BOITI M, 1988, PHYS LETT A, V132, P116 46161 BOITI M, 1988, PHYS LETT A, V132, P432 46162 BOITI M, 1995, CHAOS SOLITON FRACT, V5, P2377 46163 CLARKSON PA, 1989, J MATH PHYS, V30, P2201 46164 DAVEY A, 1974, P ROY SOC LOND A MAT, V338, P17 46165 FOKAS AS, 1989, PHYS REV LETT, V63, P1329 46166 FOKAS AS, 1994, INVERSE PROBL L, V19, P10 46167 GAO YT, 1997, COMPUT MATH APPL, V33, P115 46168 GEDALIN M, 1997, PHYS REV LETT, V78, P448 46169 HEREMAN W, 1991, COMPUT PHYS COMMUN, V65, P143 46170 HIROTA R, 1971, PHYS REV LETT, V27, P1192 46171 KADOMTSEV BB, 1970, SOV PHYS DOKL, V15, P539 46172 KISELEV OM, 2000, J NONLINEAR MATH PHY, V7, P411 46173 KIVSHAR YS, 1989, REV MOD PHYS, V61, P765 46174 KONOPELCHENKO B, 1991, PHYS LETT A, V158, P391 46175 KONOPELCHENKO BG, 1993, J MATH PHYS, V34, P214 46176 LI YS, 1993, J PHYS A-MATH GEN, V26, P7487 46177 LOU SY, 1990, PHYS LETT A, V151, P133 46178 LOU SY, 1996, J PHYS A-MATH GEN, V29, P5989 46179 LOU SY, 1997, COMMUN THEOR PHYS, V41, P28 46180 LOU SY, 1997, J MATH PHYS, V38, P6401 46181 LOU SY, 2001, EUR PHYS J B, V22, P473 46182 LOU SY, 2001, J PHYS A-MATH GEN, V34, P305 46183 LOU SY, 2002, CHINESE PHYS LETT, V19, P769 46184 LOUTSENKO I, 1997, PHYS REV LETT, V78, P3011 46185 NISHINARI K, 1993, J PHYS SOC JPN, V62, P2021 46186 NOVIKOV SP, 1986, PHYSICA D, V18, P267 46187 OIKAWA M, 1989, J PHYS SOC JPN, V58, P4416 46188 RADHA R, 1994, J MATH PHYS, V35, P4746 46189 RADHA R, 1997, CHAOS SOLITON FRACT, V8, P17 46190 RUAN HY, 1997, J MATH PHYS, V38, P3123 46191 RUAN HY, 2000, PHYS REV E B, V62, P5738 46192 TAJIRI M, 1997, PHYS REV E B, V55, P3351 46193 TANG XY, 2002, IN PRESS J PHYS A, V35 46194 TIAN B, 1995, MOD PHYS LETT A, V10, P2937 46195 WEISS J, 1983, J MATH PHYS, V24, P522 46196 YOSHIDA N, 1998, J PHYS A-MATH GEN, V31, P3325 46197 ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P705 46198 ZHANG JF, 2002, COMMUN THEOR PHYS, V37 46199 NR 40 46200 TC 58 46201 SN 0256-307X 46202 J9 CHIN PHYS LETT 46203 JI Chin. Phys. Lett. 46204 PD OCT 46205 PY 2002 46206 VL 19 46207 IS 10 46208 BP 1399 46209 EP 1402 46210 PG 4 46211 SC Physics, Multidisciplinary 46212 GA 606VR 46213 UT ISI:000178755700001 46214 ER 46215 46216 PT J 46217 AU Ni, FS 46218 Gu, GQ 46219 Chen, KM 46220 TI Low-frequency dielectric dispersion of highly concentrated spherical 46221 particles in an electrolyte solution 46222 SO CHINESE PHYSICS LETTERS 46223 DT Article 46224 ID ELECTROCHEMICAL DOUBLE-LAYER; APPROXIMATION; CONDUCTIVITY; ENHANCEMENT; 46225 SUSPENSION 46226 AB We deal with the problem of calculating the effective dielectric 46227 dispersion and electrical conductivity of colloidal dispersions. A 46228 comparison of the theoretical calculation of first principles with the 46229 experimental data of Schwan shows that our technique proposed here is 46230 no longer restricted to dilute solutions and is very effective for 46231 studying the dielectric properties of colloids with highly concentrated 46232 charged spherical particles in an electrolyte solution. 46233 C1 Hohai Univ, Coll Mech & Elect Engn, Nanjing 210024, Peoples R China. 46234 E China Normal Univ, Coll Informat Technol, Shanghai 200062, Peoples R China. 46235 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China. 46236 RP Ni, FS, Hohai Univ, Coll Mech & Elect Engn, Nanjing 210024, Peoples R 46237 China. 46238 CR CARRIQUE F, 1993, J COLLOID INTERF SCI, V156, P117 46239 CHEW WC, 1982, J CHEM PHYS, V77, P4683 46240 CHEW WC, 1984, J CHEM PHYS, V80, P4541 46241 DUNSTAN DE, 1992, J COLLOID INTERF SCI, V152, P308 46242 FIXMAN M, 1980, J CHEM PHYS, V72, P5177 46243 GU GQ, 1991, J APPL PHYS, V70, P4476 46244 GU GQ, 1993, J PHYS D APPL PHYS, V26, P1371 46245 KAN R, 1987, J CHEM PHYS, V86, P5748 46246 LARSON RE, 1989, PHYS FLUIDS A-FLUID, V1, P38 46247 NI FS, 1995, CHINESE PHYS LETT, V12, P438 46248 OBRIEN RW, 1981, J COLLOID INTERF SCI, V81, P234 46249 OKONSKI CT, 1960, J PHYS CHEM-US, V64, P605 46250 PETSEV DN, 1992, J COLLOID INTERF SCI, V149, P329 46251 SCHURR JM, 1964, J PHYS CHEM-US, V68, P2407 46252 SCHWAN HP, 1962, J PHYS CHEM-US, V66, P2626 46253 SCHWARZ G, 1962, J PHYS CHEM-US, V66, P2636 46254 NR 16 46255 TC 0 46256 SN 0256-307X 46257 J9 CHIN PHYS LETT 46258 JI Chin. Phys. Lett. 46259 PD OCT 46260 PY 2002 46261 VL 19 46262 IS 10 46263 BP 1550 46264 EP 1552 46265 PG 3 46266 SC Physics, Multidisciplinary 46267 GA 606VR 46268 UT ISI:000178755700046 46269 ER 46270 46271 PT J 46272 AU Li, ZJ 46273 Chen, YP 46274 Pan, JM 46275 Tang, J 46276 TI The determination of lead in industrial samples by spectrophotometry 46277 with 46278 2-(2-sulfophenylazo)-7-(2,6dibromo-4-methyphenylazo)-1,8-dihydroxynaphth 46279 alene-3,6-disulfonic acid 46280 SO ANALYTICAL LETTERS 46281 DT Article 46282 DE spectrophotometry; determination of lead; industrial samples; 46283 2-(2-Sulfophenylazo)-7-(2,6-dibromo-4-methyphenylazo)-1,8-dihydroxynapht 46284 halene-3,6-disulfonic acid 46285 ID SOIL 46286 AB An excellent method for spectrophotometric determination of trace lead 46287 in industrial samples has been developed. The method is based on the 46288 reaction of lead(II) with new reagent 46289 2-(2-sulfophenylazo)-7-(2,6-dibromo-4-methyphenylazo)-1,8-dihydroxynapht 46290 halene-3,6-disulfonic acid(SDBM). Under optimal conditions, SDBM reacts 46291 with lead(II) to give a 1: 2 blue complex in a phosphoric acid media, 46292 which has an maximum peak at 630 nm; 0-20 mug of lead(II) obeyed Beer's 46293 law in 25 mL solution. The color reaction is instantaneous and the 46294 absorbance stable for 24 h; its the apparent molar absorption 46295 coefficient, Sandell's sensitivity, the limit of detection and the 46296 limit of quantification were found to be 1.07 x 10(5) L mol(-1)cm(-1), 46297 1.94ng cm(-2), 3.12 ng mL(-1) and 10.0 ng mL(-1) respectively. Effect 46298 of foreign ions have been examined in detail. The experiment indicated 46299 that most of metal ions studied can be tolerated in considerable 46300 amounts, especially transition metal ions such as Ag(I), Fe(III), 46301 Co(II), Ni(II), Cu(II), Zn(II), Al(III), Cr(III) and Hg(II). Therefore, 46302 the proposed method is simple, high sensitive and selective, it has 46303 been applied to determine trace lead in real samples with satisfactory 46304 results. 46305 C1 So Yangtze Univ, Coll Chem & Mat Engn, Wuxi 214036, Peoples R China. 46306 Shanghai Univ, Coll Sci, Dept Chem, Shanghai, Peoples R China. 46307 E China Normal Univ, Dept Chem, Shanghai 200062, Peoples R China. 46308 RP Li, ZJ, So Yangtze Univ, Coll Chem & Mat Engn, Wuxi 214036, Peoples R 46309 China. 46310 CR AHMED MJ, 2001, TALANTA, V55, P43 46311 BALE MN, 1995, TALANTA, V42, P1291 46312 HONGO T, 1988, FRESEN Z ANAL CHEM, V331, P647 46313 KISCH PP, 1984, ZH ANAL KHIM, V39, P1052 46314 KISCH PP, 1984, ZH ANAL KHIM, V39, P820 46315 LONG GL, 1980, ANAL CHEM, V52, P2242 46316 LONG GL, 1983, ANAL CHEM, V55, P712 46317 MEDINILLA J, 1986, TALANTA, V33, P329 46318 PAN J, 1981, CHROMOGENIC REAGENTS, P283 46319 PAN JM, 1996, METALLURGICAL ANAL, V16, P1 46320 RALKAIAH GV, 1985, INDIAN J TECHNOL, V23, P157 46321 RAMESH M, 2000, INDIAN J CHEM A, V39, P1337 46322 THAKUR M, 1999, ANALYST, V124, P1331 46323 TRINDER N, 1966, ANALYST, V91, P587 46324 XIAO M, 1988, LIHUA JIANYAN HUAXUE, V24, P130 46325 ZHAO SL, 1996, ENV SCI, V17, P59 46326 NR 16 46327 TC 1 46328 SN 0003-2719 46329 J9 ANAL LETT 46330 JI Anal. Lett. 46331 PY 2002 46332 VL 35 46333 IS 13 46334 BP 2157 46335 EP 2171 46336 PG 15 46337 SC Chemistry, Analytical 46338 GA 607FA 46339 UT ISI:000178780000008 46340 ER 46341 46342 PT J 46343 AU Ren, JS 46344 Cheng, CJ 46345 TI Cavitated bifurcation for composed compressible hyper-elastic materials 46346 SO ACTA MECHANICA SOLIDA SINICA 46347 DT Article 46348 DE composed compressible hyper-elastic material; void bifurcation; 46349 catastrophe and concentration of stress; energy comparion 46350 ID VOID NUCLEATION 46351 AB The cavitated bifurcation problem in a solid sphere composed of two 46352 compressible hyper-elastic materials is examined. The bifurcation 46353 solution for the composed sphere under a uniform radial tensile 46354 boundary dead-load is obtained. The bifurcation curves and the stress 46355 contributions subsequent to the cavitation are given. The right and 46356 left bifurcation as well as the catastrophe and concentration of 46357 stresses are analyzed. The stability of solutions is discussed through 46358 an energy comparison. 46359 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China. 46360 RP Ren, JS, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, 46361 Shanghai 200072, Peoples R China. 46362 CR HORGAN CO, 1989, J ELASTICITY, V21, P61 46363 HORGAN CO, 1992, INT J SOLIDS STRUCT, V29, P279 46364 HORGAN CO, 1995, APPL MECH REV, V48, P471 46365 SHANG XC, 1996, ACTA MECH SINICA, V28, P751 46366 SHANG XC, 2001, INT J ENG SCI, V39, P1101 46367 NR 5 46368 TC 7 46369 SN 0894-9166 46370 J9 ACTA MECH SOLIDA SINICA 46371 JI Acta Mech. Solida Sin. 46372 PD SEP 46373 PY 2002 46374 VL 15 46375 IS 3 46376 BP 208 46377 EP 213 46378 PG 6 46379 SC Materials Science, Multidisciplinary; Mechanics 46380 GA 606XE 46381 UT ISI:000178759800003 46382 ER 46383 46384 PT J 46385 AU Mo, YW 46386 Okawa, Y 46387 Nakai, T 46388 Tajima, M 46389 Natukawa, K 46390 TI Preparation of SnO2 films with high sensitivity and selectivity to 46391 C2H5OH by oxygen radical assisted electron beam evaporation for 46392 micro-machined gas sensors 46393 SO THIN SOLID FILMS 46394 DT Article 46395 DE tin oxide; evaporation; sensors; electrical properties and measurements 46396 AB The oxygen radical assisted electron beam (EB) evaporation was employed 46397 to prepare SnO2 films with high sensitivity and selectivity to C2H5OH 46398 for micro-machined gas sensors. The films deposited by this technique 46399 allow a low-temperature and fast annealing process, and therefore has 46400 high compatibility to the standard integrated circuit process. The 46401 maximum sensitivity is higher than 160, more than 20 times larger than 46402 that of films prepared by the conventional EB evaporation, and 46403 comparable to that of radio frequency reactive sputtered films. 46404 Furthermore, the temperature of maximum sensitivity has also decreased 46405 approximately 100 degreesC compared to a conventional EB evaporated 46406 SnO2 film. (C) 2002 Elsevier Science B.V. All rights reserved. 46407 C1 Shanghai Univ, Shanghai 201800, Peoples R China. 46408 Technol Res Inst Osaka Prefecture, Izumi, Osaka 5941157, Japan. 46409 Hochiki Co Ltd, Machida, Tokyo 1948577, Japan. 46410 Kubota Co Ltd, Amagasaki, Hyogo 6618567, Japan. 46411 RP Mo, YW, Shanghai Univ, Shanghai 201800, Peoples R China. 46412 CR CAVICCHI RE, 1995, APPL PHYS LETT, V66, P812 46413 GAEDNER JW, 1991, SENSOR ACTUAT B-CHEM, V4, P109 46414 GUIDI V, 1998, SENSOR ACTUAT B-CHEM, V49, P88 46415 HEILAND G, 1982, SENSOR ACTUATOR, V2, P343 46416 LYLE RP, 1997, MICROSTRUCT MICROFAB, V3, P188 46417 PERSAUD K, 1982, NATURE, V299, P352 46418 ROSSI C, 1997, SENSOR ACTUAT A-PHYS, V63, P183 46419 SHURMER HV, 1990, SENSOR ACTUAT B-CHEM, V1, P256 46420 ZARCOMB S, 1984, SENSOR ACTUATOR, V6, P225 46421 NR 9 46422 TC 5 46423 SN 0040-6090 46424 J9 THIN SOLID FILMS 46425 JI Thin Solid Films 46426 PD SEP 2 46427 PY 2002 46428 VL 416 46429 IS 1-2 46430 BP 248 46431 EP 253 46432 PG 6 46433 SC Materials Science, Multidisciplinary; Physics, Applied; Physics, 46434 Condensed Matter 46435 GA 603VY 46436 UT ISI:000178582700037 46437 ER 46438 46439 PT J 46440 AU Ren, ZJ 46441 Ding, WY 46442 Cao, WG 46443 Wang, SH 46444 Huang, ZJ 46445 TI Stereoselective synthesis of 46446 cis-1-carbomethoxy-2-aryl-3,3-dicyanocyclopropanes 46447 SO SYNTHETIC COMMUNICATIONS 46448 DT Article 46449 ID DERIVATIVES 46450 AB The route of preparing of 46451 1-carbomethoxy-2-aryl-3,3-dicyanocyclopropanes through the reaction of 46452 arylidenemalononitrile with methoxycarbonylmethyltriphenylarsonium 46453 bromide in the presence of K2CO3 under mild conditions with high yield 46454 and stereo selectivity is described. 46455 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 46456 Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China. 46457 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 46458 CR ATTAHPOKN SK, 1984, CAN J CHEM, V62, P1217 46459 CHEN YL, 1998, CHEM J CHINESE U, V19, P1614 46460 DING WY, 1996, CHEM RES CHINESE U, V12, P50 46461 DING WY, 1999, CHEM J CHINESE U, V20, P64 46462 DING YY, 1996, CHEM RES CHINESE U, V12, P354 46463 FREY HM, 1966, ADV PHYS ORG CHEM, V4, P147 46464 GRIECO PA, 1972, TETRAHEDRON LETT, P3781 46465 JINHWA L, 1995, J AM CHEM SOC, V117, P9919 46466 MURPHY WS, 1983, J CHEM SOC P1, P817 46467 TRISTM BM, 1967, J AM CHEM SOC, V89, P138 46468 VINOD KS, 1997, SYNTHESIS-STUTTGART, P137 46469 WILLIAM B, 2000, TETRAHEDRON LETT, V41, P1491 46470 WONG HNC, 1989, CHEM REV, V89, P165 46471 YAMAMOTE Y, 1975, CHEM COMMUN, P668 46472 ZWANENBURG B, 1997, HOUBENWEYL METHODS A, V17 46473 NR 15 46474 TC 5 46475 SN 0039-7911 46476 J9 SYN COMMUN 46477 JI Synth. Commun. 46478 PY 2002 46479 VL 32 46480 IS 20 46481 BP 3143 46482 EP 3148 46483 PG 6 46484 SC Chemistry, Organic 46485 GA 602UB 46486 UT ISI:000178521900010 46487 ER 46488 46489 PT J 46490 AU Miao, LY 46491 Wu, JL 46492 TI Edge-coloring critical graphs with high degree 46493 SO DISCRETE MATHEMATICS 46494 DT Article 46495 DE edge coloring; edge chromatic number; critical graph 46496 AB It is proved here that any edge-coloring critical graph of order n and 46497 maximum degree Delta greater than or equal to 8 has the size at least 46498 3(n + Delta - 8). It generalizes a result of Hugh Hind and Yue Zhao. 46499 (C) 2002 Elsevier Science B.V. All rights reserved. 46500 C1 Shanxi Univ, Sch Sci, Shandong 271018, Peoples R China. 46501 Shanghai Univ Sci & Technol, Jinan 250031, Peoples R China. 46502 RP Miao, LY, Shanxi Univ, Sch Sci, Shandong 271018, Peoples R China. 46503 CR FIORINI S, 1977, RES NOTES MATHS, V16 46504 HIND H, 1998, DISCRETE MATH, V190, P107 46505 MELNIKOV LS, 1970, MATH NOTES, V7, P405 46506 VIZING VG, 1968, RUSS MATH SURV, V23, P125 46507 YAN ZD, 2000, GRAPH COMBINATOR, V16, P245 46508 YAP HP, 1981, DISCRETE MATH, V37, P289 46509 YAP HP, 1986, SOME TOPICS GRAPH TH 46510 NR 7 46511 TC 1 46512 SN 0012-365X 46513 J9 DISCRETE MATH 46514 JI Discret. Math. 46515 PD NOV 6 46516 PY 2002 46517 VL 257 46518 IS 1 46519 BP 169 46520 EP 172 46521 PG 4 46522 SC Mathematics 46523 GA 605KV 46524 UT ISI:000178677800013 46525 ER 46526 46527 PT J 46528 AU Chen, LQ 46529 TI An open plus nonlinear closed loop control of chaotic oscillators 46530 SO CHINESE PHYSICS 46531 DT Article 46532 DE chaos control; entrainment basin; oscillator 46533 ID MULTIPLE-ATTRACTOR SYSTEMS; COMPLEX DYNAMIC-SYSTEMS; MIGRATION 46534 CONTROLS; ADAPTIVE-CONTROL; OPCL CONTROL; ENTRAINMENT 46535 AB An open plus nonlinear closed loop control law is presented for chaotic 46536 oscillations described by a set of non-autonomous second-order ordinary 46537 differential equations. It is proven that the basins of entrainment are 46538 global when the right-hand sides of the equations are given by 46539 arbitrary polynomial functions. The forced Duffing oscillator and the 46540 forced van der Pol oscillator are treated as numerical examples to 46541 demonstrate the applications of the method. 46542 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China. 46543 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, 46544 Shanghai 200072, Peoples R China. 46545 CR CHEN G, 1998, CHAOS ORDER, P2 46546 CHEN LQ, 1998, PHYS LETT A, V245, P87 46547 CHEN LQ, 1998, PHYS LETT A, V262, P350 46548 CHEN LQ, 1999, CHIN J COMP MATH, V16, P127 46549 CHEN LQ, 1999, J APPL SCI, V17, P443 46550 CHEN LQ, 1999, NONLINEAR DYNAM, V20, P309 46551 CHENG LQ, 1997, J SHANGHAI JIAOTONG, V31, P32 46552 GUAN XP, 2001, ACTA PHYS SIN-CH ED, V50, P2108 46553 HUBLER A, 1989, NATURWISSENSCHAFTEN, V76, P67 46554 JACKSON EA, 1990, PHYS LETT A, V151, P478 46555 JACKSON EA, 1991, PHYS REV A, V44, P4839 46556 JACKSON EA, 1991, PHYSICA D, V50, P341 46557 JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1255 46558 JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1767 46559 JACKSON EA, 1995, PHYSICA D, V85, P1 46560 JACKSON EA, 1997, CHAOS, V7, P550 46561 LI GH, 2000, ACTA PHYS SINICA, V49, P2133 46562 LI LX, 2001, CHINESE PHYS, V10, P708 46563 LI Z, 2001, ACTA PHYS SIN-CH ED, V50, P847 46564 LU JH, 2002, CHINESE PHYS, V11, P12 46565 LUO XS, 1999, ACTA PHYS SIN-CH ED, V48, P402 46566 OGATA K, 1998, MODERN CONTROL ENG, P739 46567 OTT E, 1990, PHYS REV LETT, V64, P1196 46568 PARLITZ U, 1987, PHYS REV A, V36, P1428 46569 REN HP, 2002, ACTA PHYS SIN-CH ED, V51, P982 46570 TANG GN, 2000, ACTA PHYS SIN-CH ED, V49, P30 46571 WANG GY, 2001, ACTA PHYS SIN-CH ED, V50, P2307 46572 WANG J, 2000, INT J CON, V72, P911 46573 WANG ZY, 1999, ACTA PHYS SIN-CH ED, V48, P206 46574 YAN SL, 2001, ACTA PHYS SIN-CH ED, V50, P428 46575 NR 30 46576 TC 4 46577 SN 1009-1963 46578 J9 CHIN PHYS 46579 JI Chin. Phys. 46580 PD SEP 46581 PY 2002 46582 VL 11 46583 IS 9 46584 BP 900 46585 EP 904 46586 PG 5 46587 SC Physics, Multidisciplinary 46588 GA 602DR 46589 UT ISI:000178490900009 46590 ER 46591 46592 PT J 46593 AU Ma, HL 46594 TI Hyperfine structure of singly ionized lanthanum and praseodymium 46595 SO CHINESE PHYSICS 46596 DT Article 46597 DE hyperfine structure; fast-ion-beam laser spectroscopy; magnetic dipole 46598 and electric quadruple coupling constants 46599 ID FINE 46600 AB Hyperfine structure spectra of singly ionized lanthanum and 46601 praseodymium have been measured by collinear fast-ion-beam laser 46602 spectroscopy. All the spectral lines were resolved and the magnetic 46603 dipole and electric quadruple coupling constants of the metastable 46604 levels and excited levels were determined. Our results are in agreement 46605 with the published data within the experimental uncertainty. For 46606 praseodymium ions, the accuracy of the magnetic dipole coupling 46607 constants are improved by one order of magnitude compared with other 46608 published data, and the electric quadruple coupling constants are 46609 reported for the first time. 46610 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 46611 RP Ma, HL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 46612 CR ANDRA HJ, 1975, P 4 INT C AT PHYS AT, V4, P365 46613 ANDRA HJ, 1979, PROGR ATOMIC SPECT B, P6 46614 BELLAHMANSOUR N, 1989, PHYS REV A, V39, P5762 46615 BENGTSON A, 1980, PHYS LETT A, V76, P45 46616 DUFAY M, 1977, P 3 INT C JACKS LAK, P231 46617 GINIBRE A, 1989, PHYS SCR, V39, P694 46618 HOHLE C, 1982, Z PHYS A, V304, P279 46619 HOLT RA, 1977, PHYS REV A, V15, P2293 46620 JOHANSSON S, 1996, ASTROPHYS J 1, V462, P943 46621 KUWAMOTO T, 1996, J PHYS SOC JPN, V65, P3180 46622 MA HL, 2001, CHINESE PHYS, V10, P512 46623 MEIER T, 1977, OPT COMMUN, V20, P397 46624 WING WH, 1976, PHYS REV LETT, V36, P1488 46625 NR 13 46626 TC 2 46627 SN 1009-1963 46628 J9 CHIN PHYS 46629 JI Chin. Phys. 46630 PD SEP 46631 PY 2002 46632 VL 11 46633 IS 9 46634 BP 905 46635 EP 909 46636 PG 5 46637 SC Physics, Multidisciplinary 46638 GA 602DR 46639 UT ISI:000178490900010 46640 ER 46641 46642 PT J 46643 AU Huang, SG 46644 Li, L 46645 Biest, OVD 46646 Vleugels, J 46647 Wang, PL 46648 TI Study of thermodynamic properties of nonstoichiometric phase < 46649 Zr1-zCezO2-x > with compound energy model 46650 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 46651 DT Article 46652 DE zirconia; ceria; nonstoichiometry; thermodynamic 46653 ID ZRO2-CEO2 SYSTEM; DIAGRAM; TRANSFORMATION 46654 AB Using compound energy model (CEM), the thermodynamic properties of 46655 <CeO2-y> and <Zr1-zCezO2-x> were evaluated. The evaluation was based on 46656 the optimization of ZrO2-CeO2 and ZrO2-CeO1.5 systems, as well as the 46657 miscibility gap in CeO1.5-CeO2 system. Except the cubic fluorite 46658 structure phase assessed with compound energy model, all the other 46659 solution phases were assessed with subsitutional solution model. The 46660 model parameters were evaluated through fitting the selected 46661 experimental data by means of thermodynamic optimization. A set of 46662 parameters with thermodynamics self-consistency was obtained and 46663 satisfactorily described the complex relation between y in <CeO2-y> and 46664 the partial pressure of oxygen at different temperatures, also the 46665 interdependence among miscellaneous factors such as temperature, oxygen 46666 partial pressure, the reduction amount of CeO2 as well as the 46667 nonstoichiometry in cubic phase <Zr1-zCezO2-x>. The calculated results 46668 seem to be reasonable when put into the explanation of pressureless 46669 sintering of CeO2-stabilized ZrO2 powder compacts at a controlled 46670 oxygen partial pressure. 46671 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China. 46672 Katholieke Univ Leuven, Dept MTM, B-3001 Heverlee, Belgium. 46673 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China. 46674 RP Li, L, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R 46675 China. 46676 CR BARRY TI, 1992, J PHASE EQUILIB, V13, P459 46677 CAMPSERVEUX J, 1978, J SOLID STATE CHEM, V23, P73 46678 DU Y, 1991, J AM CERAM SOC, V74, P1569 46679 DU Y, 1994, SCRIPTA METALL MATER, V31, P327 46680 DURAN P, 1990, J MATER SCI, V25, P5001 46681 GRUNDY AN, 2001, J PHASE EQUILIB, V22, P105 46682 HANNINK RHJ, 2000, J AM CERAM SOC, V83, P461 46683 HEUSSNER KH, 1989, J AM CERAM SOC, V72, P1044 46684 HILLERT M, 2001, J ALLOY COMPD, V320, P161 46685 HUANG WM, 1995, METALL MATER TRANS A, V26, P2293 46686 KAUFMAN L, 1978, CALPHAD, V2, P35 46687 LEONOV AI, 1966, IAN SSSR NEORG MATER, V2, P1047 46688 LIN LI, 1996, J MATER SCI TECHNOL, V12, P159 46689 LIN LI, 2001, J MATER SCI TECHNOL, V17, P529 46690 LINDEMER TB, 1986, J AM CERAM SOC, V69, P867 46691 LONGO V, 1973, J AM CERAM SOC DISCU, V56, P600 46692 PANKRATZ LB, 1982, BUREAU MINES B, V672 46693 SUNDMAN B, 1991, J PHASE EQUILIB, V12, P127 46694 TANI E, 1983, J AM CERAM SOC, V66, P506 46695 YASHIMA M, 1994, J AM CERAM SOC, V77, P1869 46696 NR 20 46697 TC 0 46698 SN 1005-0302 46699 J9 J MATER SCI TECHNOL 46700 JI J. Mater. Sci. Technol. 46701 PD SEP 46702 PY 2002 46703 VL 18 46704 IS 5 46705 BP 422 46706 EP 426 46707 PG 5 46708 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 46709 Engineering 46710 GA 601JZ 46711 UT ISI:000178443700013 46712 ER 46713 46714 PT J 46715 AU Chen, GR 46716 Yang, L 46717 TI Chaotifying a continuous-time system near a stable limit cycle 46718 SO CHAOS SOLITONS & FRACTALS 46719 DT Article 46720 ID CONTROLLING CHAOS; FEEDBACK 46721 AB This paper studies the chaotification problem of driving a 46722 continuous-time system chaotic near its stable limit cycle. The 46723 controller is designed to ensure the controlled orbit be bounded and, 46724 meanwhile, have positive Lyapunov exponents. A numerical example is 46725 given to illustrate the effectiveness of the proposed chaotification 46726 algorithm. (C) 2002 Elsevier Science Ltd. All rights reserved. 46727 C1 City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China. 46728 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 46729 Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China. 46730 RP Chen, GR, City Univ Hong Kong, Dept Elect Engn, Tat Chee Ave, Kowloon, 46731 Hong Kong, Peoples R China. 46732 CR CHEN G, 1998, CHAOS ORDER METHODOL 46733 CHEN G, 1999, CONTROLLING CHAOS BI 46734 CHEN GR, 1996, INT J BIFURCAT CHAOS, V6, P1341 46735 CHEN GR, 1998, INT J BIFURCAT CHAOS, V8, P1585 46736 FRADKOV AL, 1999, INTRO CONTROL OSCILL 46737 JUDD K, 1997, CONTROL CHAOS MATH M 46738 KAPITANIAK T, 1998, CHAOS ENGINEERS THEO 46739 LAKSHMANAN M, 1996, CHAOS NONLINEAR OSCI 46740 OTT E, 1990, PHYS REV LETT, V64, P1196 46741 SCHIFF SJ, 1994, NATURE, V370, P615 46742 TRIANDAF I, 2000, PHYS REV E A, V62, P3529 46743 VANECEK A, 1996, CONTROL SYSTEMS LINE 46744 WANG XF, 2000, CHAOS, V10, P771 46745 WANG XF, 2000, INT J BIFURCAT CHAOS, V10, P549 46746 YANG L, 2002, INT J BIFURCAT CHAOS, V12, P1121 46747 YANG WM, 1995, PHYS REV E, V51, P102 46748 NR 16 46749 TC 8 46750 SN 0960-0779 46751 J9 CHAOS SOLITON FRACTAL 46752 JI Chaos Solitons Fractals 46753 PD JAN 46754 PY 2003 46755 VL 15 46756 IS 2 46757 BP 245 46758 EP 253 46759 PG 9 46760 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary 46761 GA 601WX 46762 UT ISI:000178472700005 46763 ER 46764 46765 PT J 46766 AU Mo, YW 46767 Tanaka, T 46768 Arita, S 46769 Tsuchitani, A 46770 Inoue, K 46771 Yamashita, K 46772 Suzuki, Y 46773 TI Integrated analog beam former based on bucket brigade device for 46774 micromachined ultrasonic sensor array 46775 SO SENSORS AND ACTUATORS A-PHYSICAL 46776 DT Article 46777 DE ultrasonic sensors; phased array; microelectromechanical devices; 46778 system analysis and design 46779 AB Micromachined ultrasonic sensors are promising in the applications 46780 including medical imaging, non-destructive evaluation (NDE), ranging, 46781 and object detections. Bucket brigade device (BBD) was used as the 46782 analog beam former for piezoelectric micromachined ultrasonic sensor 46783 phased array. The works on the optimization of BBD, including 46784 improvement of the transfer efficiency and dynamic range, and 46785 simplification of system design were discussed in details. The 46786 parasitic insensitive approach was proposed to optimize the properties 46787 of BBD delay line, and measured results indicated that this approach 46788 achieved larger charge transfer efficiency, larger dynamic range, and 46789 higher frequency than the conventional BBD. Furthermore, the BBD 46790 distributed delay-sum architecture was proposed to reduce chip area, 46791 simplify system design, and achieve monolithic integration. The 46792 measured results indicated that BBD distributed delay-sum architecture 46793 showed the beam forming property that is consistent to the theoretical 46794 calculation very well. (C) 2002 Elsevier Science B.V. All rights 46795 reserved. 46796 C1 Shanghai Univ, Shanghai 201800, Peoples R China. 46797 Technol Res Inst Osaka Prefecture, Izumi, Osaka 5941157, Japan. 46798 Osaka Ind Promot Org, Izumi, Osaka 5941157, Japan. 46799 Osaka Univ, Toyonaka, Osaka 5608531, Japan. 46800 RP Mo, YW, Shanghai Univ, Shanghai 201800, Peoples R China. 46801 CR INOUE K, 1995, P 8 INT C SOL STAT S 46802 KUTTRUFF H, 1991, ULTRASONICS FUNDAMEN 46803 MACOVSKI A, 1975, 3918024, US 46804 MASLAK SH, 1979, 4140022, US 46805 MELEN R, 1977, CHAGE COUPLED DEVICE 46806 ODONNEL MO, 1990, P 1990 IEEE ULTR S, P1499 46807 PELLAM JR, 1946, J CHEM PHYS, V14, P608 46808 VONRAMM OT, 1983, IEEE T BIO-MED ENG, V30, P438 46809 YAMASHITA K, 2002, SENSOR ACTUAT A-PHYS, V97, P302 46810 NR 9 46811 TC 2 46812 SN 0924-4247 46813 J9 SENSOR ACTUATOR A-PHYS 46814 JI Sens. Actuator A-Phys. 46815 PD SEP 30 46816 PY 2002 46817 VL 101 46818 IS 1-2 46819 BP 203 46820 EP 211 46821 PG 9 46822 SC Engineering, Electrical & Electronic; Instruments & Instrumentation 46823 GA 599QC 46824 UT ISI:000178345800028 46825 ER 46826 46827 PT J 46828 AU Yang, L 46829 Liu, ZR 46830 Zheng, Y 46831 TI "Middle" periodic orbit and its application to chaos control 46832 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS 46833 DT Article 46834 DE chaos; chaos control; symbolic dynamics 46835 ID SYSTEMS; HYPERCHAOS; TARGETS 46836 AB In this paper, a new method, by which any point in a chaotic attractor 46837 can be guided to any target periodic orbit, is proposed. The "middle" 46838 periodic orbit is used to lead an initial point in a chaotic attractor 46839 to a neighborhood of the target orbit, and then controlling chaos can 46840 be achieved by the improved OGY method. The time needed in the method 46841 using "middle" periodic orbit is less than that of the OGY method, and 46842 is inversely proportional to the square of the topological entropy of 46843 the given map. An example is used to illustrate the results. 46844 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 46845 Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China. 46846 Yangzhou Univ, Dept Math, Jiangsu 225002, Peoples R China. 46847 RP Yang, L, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 46848 CR AUERBACH D, 1992, PHYS REV LETT, V69, P3479 46849 CHEN GR, 1996, INT J BIFURCAT CHAOS, V6, P1341 46850 CHEN GR, 1998, INT J BIFURCAT CHAOS, V8, P1585 46851 DITTO WL, 1990, PHYS REV LETT, V65, P3211 46852 LIU ZR, 1999, ACTA MECH SINICA, V15, P366 46853 OTT E, 1990, PHYS REV LETT, V64, P1196 46854 SHINBROT T, 1990, PHYS REV LETT, V65, P3215 46855 SHINBROT T, 1992, PHYS LETT A, V169, P349 46856 SHINBROT T, 1992, PHYS REV A, V45, P4165 46857 SINGER J, 1991, PHYS REV LETT, V66, P1123 46858 XIE H, 1996, GRAMMATICAL COMPLEXI 46859 XIE HM, 1995, COMPLEX SYST, V9, P73 46860 YANG L, 1998, APPL MATH MECH-ENGL, V19, P1 46861 YANG L, 2000, PHYS REV LETT, V84, P67 46862 NR 14 46863 TC 0 46864 SN 0218-1274 46865 J9 INT J BIFURCATION CHAOS 46866 JI Int. J. Bifurcation Chaos 46867 PD AUG 46868 PY 2002 46869 VL 12 46870 IS 8 46871 BP 1869 46872 EP 1876 46873 PG 8 46874 SC Mathematics, Applied; Multidisciplinary Sciences 46875 GA 599XX 46876 UT ISI:000178361400013 46877 ER 46878 46879 PT J 46880 AU Chen, WX 46881 Tu, JP 46882 Ma, XC 46883 Xu, ZD 46884 Chen, WL 46885 Wang, JG 46886 Cheng, DH 46887 Xia, JB 46888 Gan, HY 46889 Jin, YX 46890 Tenne, R 46891 Rosenstveig, R 46892 TI Preparation and tribological properties of Ni-P electroless composite 46893 coating containing inorganic fullerene-like WS2 nanomaterials 46894 SO ACTA CHIMICA SINICA 46895 DT Article 46896 DE inorganic fullerene-like (IF); nanomaterials; composite coating; 46897 tribological properties 46898 ID TUNGSTEN DISULFIDE; NANOPARTICLES; MECHANISM; FRICTION; WEAR 46899 AB Ni-P composite coating containing inorganic fullerene-like WS2 nanosize 46900 particles was prepared by electroless codeposition. Its tribological 46901 performances were evaluated by a ring-on-block wear tester. It was 46902 found that the Ni-P-(IF-WS2) composite coating exhibited both higher 46903 wear resistance and lower friction coefficient than Ni-P, Ni-P-(layer 46904 2H-WS2) and Ni-P-graphite electroless coating. The favorable effects of 46905 inorganic fullerene-like nanomaterials on the tribological properties 46906 of the composite coating were discussed. 46907 C1 Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China. 46908 Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R China. 46909 Zhejiang Univ Technol, Coll Mech & Electr Engn, Hangzhou 310032, Peoples R China. 46910 Shanghai Univ, Dept Environ & Chem Engn, Shanghai 200027, Peoples R China. 46911 Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel. 46912 RP Chen, WX, Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China. 46913 CR CHHOWALLA M, 2000, NATURE, V407, P164 46914 FELDMAN Y, 1996, J AM CHEM SOC, V118, P5362 46915 FELDMAN Y, 2000, SOLID STATE SCI, V2, P663 46916 MARGULIS L, 1993, NATURE, V365, P113 46917 RAPOPORT L, 1997, NATURE, V387, P791 46918 RAPOPORT L, 1999, WEAR, V225, P975 46919 RAPOPORT L, 2001, ADV ENG MATER, V3, P71 46920 RAPOPORT L, 2001, NANO LETTERS, V1, P137 46921 RAPOPORT L, 2001, WEAR, V249, P150 46922 TENNE R, 1992, NATURE, V360, P444 46923 ZAK A, 2000, J AM CHEM SOC, V122, P11108 46924 NR 11 46925 TC 2 46926 SN 0567-7351 46927 J9 ACTA CHIM SIN 46928 JI Acta Chim. Sin. 46929 PD SEP 46930 PY 2002 46931 VL 60 46932 IS 9 46933 BP 1722 46934 EP 1726 46935 PG 5 46936 SC Chemistry, Multidisciplinary 46937 GA 598TK 46938 UT ISI:000178292400033 46939 ER 46940 46941 PT J 46942 AU Liu, LH 46943 Dong, C 46944 Zhang, JC 46945 Li, JQ 46946 TI The microstructure study of Co-doped YBCO system 46947 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS 46948 DT Article 46949 DE Co; Fe-doped YBCO; superconductor; structure phase transition; twin; 46950 tweed; oxygen content 46951 ID HIGH-TC SUPERCONDUCTORS; POSITRON-ANNIHILATION; YBA2CU3O7-DELTA; 46952 PARAMETERS; DENSITY; NI; FE 46953 AB A series of YBa2CU3-xCoxOx (x = 0-0.50) samples have been studied by 46954 means of SEM, TEM, XRD and positron annihilation technology. Oxygen 46955 contents of the samples have been measured using a new volumetric 46956 method The microstructure evolution of the Co-doped YBCO is very 46957 similar to that in the Fe-doped YBCO. YBa2Cu3-xCoxOx undergoes a 46958 structure phase transition from orthorhombic to tetragonal between x = 46959 0.12 and 0.15. Twin structure predominates when x is low (x < 0.05). 46960 With the increasing of x, tweed structure appears and its proportion 46961 increases till it becomes dominant. When x > 0 12, the tweed structure 46962 disappears completely. The grain boundary density increases with x and 46963 shows a sudden drop when x > 0.12. Similarly, the positron short 46964 lifetime component tau(1) shows a sudden drop between x = 0.12 and 0.15 46965 Therefore, positron can be used as a sensitive probe for the O-T phase 46966 transition in this system. A possible model is proposed to describe the 46967 relationship between positron short lifetime component tau(1), and the 46968 concentrations of oxygen vacancy and twin (tweed) boundary. The 46969 experimental results can be satisfactorily explained by this model. (C) 46970 2002 Elsevier Science B.V. All rights reserved. 46971 C1 Chinese Acad Sci, Inst Phys, Natl Lab Superconduct, Beijing 100080, Peoples R China. 46972 Henan Normal Univ, Dept Phys, Xinxiang 453002, Peoples R China. 46973 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 46974 RP Liu, LH, Chinese Acad Sci, Inst Phys, Natl Lab Superconduct, POB 603, 46975 Beijing 100080, Peoples R China. 46976 CR BALOGH AG, 1988, PHYS REV B, V38, P2883 46977 BERGERSEN B, 1969, SOLID STATE COMMUN, V7, P1208 46978 BRANDT W, 1967, POSITRON ANNIHILATIO, P155 46979 CHAKRABORTY B, 1989, PHYS REV B, V39, P215 46980 CONNORS DC, 1969, PHYS LETT A, V30, P24 46981 DONG C, 1999, J APPL CRYSTALLOGR, V32, P838 46982 GASUMYANTS VE, 1992, SFKHT, V5, P674 46983 HAUTOJARVI P, 1983, POSITRONS SOLID, P255 46984 HIROI Z, 1988, JPN J APPL PHYS, V27, L580 46985 JEAN YC, 1990, PHYS REV LETT, V64, P1593 46986 NAROZHNYI VN, 1996, PHYS REV B, V53, P5856 46987 RENEVIER H, 1994, PHYSICA C, V220, P143 46988 RISTO Z, 1991, J PHYS CHEM SOLIDS, V52, P1577 46989 SEEGER A, 1973, J PHYS F MET PHYS, V3, P248 46990 SMEDSKJAER LC, 1988, PHYS REV B, V37, P2330 46991 SYDOW JP, 1998, APPL PHYS LETT, V72, P3512 46992 TARASCON JM, 1988, PHYS REV B, V37, P7458 46993 USMAR SG, 1988, PHYS REV B, V38, P5126 46994 VONSTETTEN EC, 1988, PHYS REV LETT, V60, P2198 46995 WESTERHOLT K, 1989, PHYS REV B, V39, P11680 46996 XU YW, 1989, PHYS REV B, V39, P6667 46997 ZHANG J, 1999, PHYS LETT A, V236, P452 46998 ZHANG JC, 1993, PHYS REV B, V48, P16830 46999 NR 23 47000 TC 0 47001 SN 0921-4534 47002 J9 PHYSICA C 47003 JI Physica C 47004 PD SEP 1 47005 PY 2002 47006 VL 377 47007 IS 3 47008 BP 348 47009 EP 356 47010 PG 9 47011 SC Physics, Applied 47012 GA 596NV 47013 UT ISI:000178171700021 47014 ER 47015 47016 PT J 47017 AU Darrouzet, V 47018 Hilton, M 47019 Pinder, D 47020 Wang, JL 47021 Guerin, J 47022 Bebear, JP 47023 TI Prognostic value of the blink reflex in acoustic neuroma surgery 47024 SO OTOLARYNGOLOGY-HEAD AND NECK SURGERY 47025 DT Article 47026 ID NERVE; TUMORS 47027 AB OBJECTIVE: The study goal was to demonstrate that blink reflex analysis 47028 can predict postoperative facial nerve outcome in cerebellopontine 47029 angle tumor surgery. 47030 STUDY DESIGN, SETTING, AND PATIENTS: In an open and prospective study 47031 conducted at a single tertiary care center over 3 years, 91 subjects 47032 with a vestibular schwannoma filling the internal auditory meatus were 47033 enrolled and operated on via a translabyrinthine approach. The 47034 difference in latency of the early response (DeltaR1) of the blink 47035 reflex between the pathologic side and the healthy side was calculated 47036 in every patient during a complete electrophysiologic examination of 47037 the facial nerve performed on the day before surgery. 47038 MAIN OUTCOME MEASURES. DeltaR1 was compared with the other preoperative 47039 data (tumor volume, facial function), with the perioperative 47040 observations (difficulties with the dissection of the facial nerve), 47041 and especially with the postoperative status after I year. The 47042 statistical, study was conducted using polynomial, regression. 47043 RESULTS: Patients with a negative or zero DeltaR1 have normal facial 47044 function at I year. For those with a positive DeltaR1 the outcome is 47045 not favorable unless the tumor is small. For patients presenting with 47046 an immediate complete facial paralysis, the value of DeltaR1 is also 47047 indicative of facial function outcome. 47048 CONCLUSION. Statistical analysis shows that the blink reflex, through 47049 DeltaR1, has an excellent prognostic value in anticipating the 47050 difficulties with facial nerve dissection and postoperative facial 47051 function after 1 year. 47052 C1 Univ Hosp, Dept Skull Base Surg, Bordeaux, France. 47053 Univ Bristol, Southmead Hosp, Dept Otolaryngol, Bristol, Avon, England. 47054 Univ Bristol, St Michaels Hosp, Dept Otolaryngol, Bristol, Avon, England. 47055 Shanghai Univ, Rui Jin Hosp, Dept Otolaryngol, Shanghai, Peoples R China. 47056 RP Darrouzet, V, Hop Pellegrin, Serv ORL, Pl Amelie Raba Leon, F-33076 47057 Bordeaux, France. 47058 CR BEBEAR J, 1990, LONG TERM RESULTS IN, P497 47059 BENDER LF, 1969, ARCHIVES PHYSICAL ME, V50, P27 47060 DAVERAT F, 1989, VALEUR PRONOSTIQUE E 47061 GIL R, 1980, ACTA NEUROL BELG, V80, P201 47062 HOUSE JW, 1985, OTOLARYNG HEAD NECK, V93, P146 47063 JESEL M, 1978, REV ELECTROENCEPHALO, V8, P302 47064 KARTUSH JM, 1987, OTOLARYNG HEAD NECK, V97, P257 47065 KIMURA J, 1983, ELECTRODIAGNOSIS DIS 47066 LYON LW, 1972, ARCH OTOLARYNGOL, V95, P100 47067 NAGAHIRO S, 1983, NO TO SHINKEI, V35, P1117 47068 NORMAND MM, 1994, MUSCLE NERVE, V17, P1401 47069 NURLU G, 1994, NEUROSURG REV, V17, P253 47070 PAVESI G, 1992, ELECTROMYOGR CLIN NE, V32, P119 47071 PORTMANN M, 1982, PRECIS OTORHINOLARYN, P139 47072 PORTMANN M, 1988, REV LARYNGOL OTOL RH, V109, P437 47073 ROSLER KM, 1994, MUSCLE NERVE, V17, P183 47074 STERKERS J, 1991, CHIRURGIE NEURINOME, P45 47075 STERKERS JM, 1986, ANN OTOLARYNGOL CHIR, V103, P487 47076 NR 18 47077 TC 2 47078 SN 0194-5998 47079 J9 OTOLARYNGOL HEAD NECK SURG 47080 JI Otolaryngol. Head Neck Surg. 47081 PD SEP 47082 PY 2002 47083 VL 127 47084 IS 3 47085 BP 153 47086 EP 157 47087 PG 5 47088 SC Otorhinolaryngology; Surgery 47089 GA 596MQ 47090 UT ISI:000178169000004 47091 ER 47092 47093 PT J 47094 AU Chen, LQ 47095 Zhang, NH 47096 Zu, JW 47097 TI Bifurcation and chaos of an axially moving viscoelastic string 47098 SO MECHANICS RESEARCH COMMUNICATIONS 47099 DT Article 47100 ID NONLINEAR VIBRATION; DYNAMICAL BEHAVIOR; STABILITY ANALYSIS; BELTS 47101 AB In this paper, bifurcation and chaos of an axially moving viscoelastic 47102 string are investigated. The 1-term and the 2-term Galerkin truncations 47103 are respectively employed to simplify the partial-differential equation 47104 that governs the transverse motions of the string into a set of 47105 ordinary differential equations. The bifurcation diagrams are presented 47106 in the case that the transport speed, the amplitude of the periodic 47107 perturbation, or the dynamic viscosity is respectively varied while 47108 other parameters are fixed. The dynamical behaviors are numerically 47109 identified based on the Poincare maps. Numerical simulations indicate 47110 that periodic, quasi-periodic and chaotic motions occur in the 47111 transverse vibrations of the axially moving viscoelastic string. (C) 47112 2002 Elsevier Science Ltd. All rights reserved. 47113 C1 Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China. 47114 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 47115 Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada. 47116 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China. 47117 CR ABRATE S, 1992, MECH MACH THEORY, V27, P645 47118 CHEN LQ, 2000, APPL MATH MECH-ENGL, V21, P995 47119 CHEN LQ, 2000, MECH RES COMMUN, V27, P413 47120 CHEN LQ, 2001, ADV MECH, V31, P535 47121 FUNG RF, 1997, J SOUND VIB, V201, P153 47122 HUANG JS, 1995, INT J MECH SCI, V37, P145 47123 LUO ACJ, 1995, J HYDRODYNAMICS B, V7, P92 47124 LUO ACJ, 1999, J SOUND VIB, V227, P523 47125 MAHALINGAM S, 1957, BRIT J APPL PHYS, V8, P145 47126 MOCHENSTURM EM, 1996, J VIB ACOUST, V116, P346 47127 MOTE CD, 1972, SHOCK VIBRATION DIGE, V4, P2 47128 PAKDEMIRLI M, 1994, J SOUND VIB, V169, P179 47129 PAKDEMIRLI M, 1997, J SOUND VIB, V203, P815 47130 RAVINDRA B, 1998, ARCH APPL MECH, V68, P195 47131 TAGATA G, 1995, J SOUND VIB, V185, P51 47132 THOMPSON JMT, 1994, PHYS REV E, V49, P1019 47133 WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3 47134 ZHANG L, 1999, J APPL MECH-T ASME, V66, P396 47135 ZHANG L, 1999, J APPL MECH-T ASME, V66, P403 47136 NR 19 47137 TC 9 47138 SN 0093-6413 47139 J9 MECH RES COMMUN 47140 JI Mech. Res. Commun. 47141 PD APR-JUN 47142 PY 2002 47143 VL 29 47144 IS 2-3 47145 BP 81 47146 EP 90 47147 PG 10 47148 SC Mechanics 47149 GA 595VN 47150 UT ISI:000178129400002 47151 ER 47152 47153 PT J 47154 AU Zhang, DJ 47155 Chen, DY 47156 TI Hamiltonian structure of discrete soliton systems 47157 SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL 47158 DT Article 47159 ID DIFFERENTIAL-DIFFERENCE EQUATIONS; INTEGRABLE SYSTEMS; 47160 EVOLUTION-EQUATIONS; HEREDITARY SYMMETRIES; ALGEBRAIC STRUCTURE; TRACE 47161 IDENTITY; AKNS SYSTEM 47162 AB We describe an approach for investigating the Hamiltonian structures of 47163 the lattice isospectral evolution equations associated with a general 47164 discrete spectral problem. By using the so-called implicit 47165 representations of the isospectral flows, we demonstrate the existence 47166 of the recursion operator L, which is a strong and hereditary symmetry 47167 of the flows. It is then proven that every equation in the isospectral 47168 hierarchy possesses the Hamiltonian structure if L has a skew-symmetric 47169 factorization and the first equation (u(1) = K-(0)) in the hierarchy 47170 satisfies some simple condition. We obtain related properties, such as 47171 the implectic-symplectic factorization of L, the Liouville complete 47172 integrability and the multi-Hamiltonian structures of the isospectral 47173 hierarchy. Four examples are given. 47174 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 47175 RP Zhang, DJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 47176 CR ABLOWITZ MJ, 1975, J MATH PHYS, V16, P598 47177 ABLOWITZ MJ, 1976, J MATH PHYS, V17, P1011 47178 ABLOWITZ MJ, 1976, STUD APPL MATH, V55, P213 47179 ABLOWITZ MJ, 1977, STUD APPL MATH, V57, P1 47180 BLASZAK M, 1994, J MATH PHYS, V35, P4661 47181 CHEN DG, 1991, J PHYS A-MATH GEN, V24, P377 47182 CHEN DY, 1996, J MATH PHYS, V37, P5524 47183 FAN E, 2001, J PHYS A-MATH GEN, V34, P513 47184 FOKAS AS, 1982, J MATH PHYS, V23, P1066 47185 FOKAS AS, 1987, STUD APPL MATH, V77, P253 47186 FUCHSSTEINER B, 1979, NONLINEAR ANAL, V3, P849 47187 FUCHSSTEINER B, 1981, PHYSICA D, V4, P47 47188 LI YS, 1986, J PHYS A-MATH GEN, V19, P3713 47189 LI YS, 1990, J PHYS A-MATH GEN, V23, P721 47190 MA WX, 1990, J PHYS A-MATH GEN, V23, P2707 47191 MA WX, 1999, J MATH PHYS, V40, P2400 47192 MAGRI F, 1978, J MATH PHYS, V19, P1156 47193 TODA M, 1989, THEORY NONLINEAR LAT 47194 TU GZ, 1989, J MATH PHYS, V30, P330 47195 TU GZ, 1990, J PHYS A-MATH GEN, V23, P3903 47196 WADATI M, 1976, PROG THEOR PHYS SUPP, V59, P36 47197 WU YT, 1996, J MATH PHYS, V37, P2338 47198 YAN Z, 2001, J MATH PHYS, V42, P330 47199 NR 23 47200 TC 15 47201 SN 0305-4470 47202 J9 J PHYS-A-MATH GEN 47203 JI J. Phys. A-Math. Gen. 47204 PD AUG 23 47205 PY 2002 47206 VL 35 47207 IS 33 47208 BP 7225 47209 EP 7241 47210 PG 17 47211 SC Physics, Mathematical; Physics, Multidisciplinary 47212 GA 594LP 47213 UT ISI:000178051900017 47214 ER 47215 47216 PT J 47217 AU Cao, WG 47218 Shi, ZJ 47219 Fan, C 47220 Ding, WY 47221 TI Convenient synthesis of methyl 47222 4-carboethoxy-3-perfluoroalkyl-5-methoxyhexa-2,4-dienoates 47223 SO JOURNAL OF FLUORINE CHEMISTRY 47224 DT Article 47225 DE hexadienoates; fluorinated ylides; methyl 3-perfluoroalkyl-2-propiolates 47226 ID ELEMENTO-ORGANIC COMPOUNDS; STEREOSELECTIVE SYNTHESIS; 6TH GROUPS; 47227 ARSORANE; 5TH 47228 AB In the presence of K2CO3, reaction of ethyl 3-methoxy-4-(triphenyl 47229 phosphoranylidene)but-2-enoate (2), which was derived from the bromide 47230 1, with methyl 3-perfluoroalkyl-2-propiolates (3) in CH2Cl2 at room 47231 temperature, gave methyl 47232 4-carboethoxy-3-perfluoroalkyl-5-methoxy-6-(triphenylphosphoranylidene)h 47233 exa-2,4-dienoate (4) as major products in excellent yields. Methyl 47234 4-carboethoxy-3-perfluoroalkyl-5-methoxyhexa-2,4-dienoates (5) were 47235 obtained in high yield by hydrolysis of (4) in hot aqueous methanol in 47236 a sealed tube. The structure identities of compounds 4 and 5 were 47237 confirmed by IR, MS,H-1, (CNMR)-C-13, 2D C-H COSY and microanalyses. 47238 Reaction mechanisms are proposed to account for the formation of 47239 products 4 and 5. (C) 2002 Elsevier Science B.V. All rights reserved. 47240 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 47241 RP Cao, WG, Shanghai Univ, Dept Chem, 99 Shang Da Rd, Shanghai 200436, 47242 Peoples R China. 47243 CR BANKS RE, 1994, ORGANOFLUORINE CHEM 47244 DING WY, 1986, ACTA CHIM SINICA, V44, P62 47245 DING WY, 1987, ACTA CHIM SINICA, V45, P47 47246 DING WY, 1991, J CHEM SOC PERK JUN, P1369 47247 DING WY, 1992, CHEM RES CHINESE U, V8, P224 47248 FILLER R, 1993, ORGANOFLUORINE COMPO, P386 47249 HUANG YZ, 1979, HUA XUE XUE BAO, V31, P47 47250 KOCHHAR KS, 1984, J ORG CHEM, V49, P3222 47251 LIEBMAN JF, 1988, FLUORINE CONTAINING 47252 SMISSMAN EE, 1964, J ORG CHEM, V29, P3161 47253 NR 10 47254 TC 0 47255 SN 0022-1139 47256 J9 J FLUORINE CHEM 47257 JI J. Fluor. Chem. 47258 PD AUG 28 47259 PY 2002 47260 VL 116 47261 IS 2 47262 BP 117 47263 EP 120 47264 PG 4 47265 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic 47266 GA 594RH 47267 UT ISI:000178064200004 47268 ER 47269 47270 PT J 47271 AU Zheng, YA 47272 Nian, YB 47273 Liu, ZR 47274 TI Impulsive control for the stabilization of discrete chaotic system 47275 SO CHINESE PHYSICS LETTERS 47276 DT Article 47277 ID VARIABLES; SUPPRESSION 47278 AB We first give the theoretical result of the stabilization of general 47279 discrete chaotic systems by using impulsive control. As an example and 47280 an application of the theoretical result, we derive some sufficient 47281 conditions for the stabilization of the double rotor map via impulsive 47282 control. The computer simulation result is given to demonstrate the 47283 method. 47284 C1 Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China. 47285 Jiangsu Univ, Sch Elect & Infromat Engn, Jiangsu 212013, Peoples R China. 47286 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 47287 RP Zheng, YA, Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China. 47288 CR CHEN YX, 1995, CHINESE SCI BULL, V40, P1748 47289 FRODKOV A, 1996, IEEE T CAS I, V43, P907 47290 GREBOGI C, 1987, PHYSICA D, V25, P347 47291 GUTIERREZ JM, 1996, INT J BIFURCAT CHAOS, V6, P1351 47292 MATIAS MA, 1994, PHYS REV LETT, V72, P1455 47293 MATIAS MA, 1996, PHYS REV E, V54, P198 47294 OTT E, 1990, PHYS REV LETT, V64, P1196 47295 ROMEIRAS FJ, 1992, PHYSICA D, V58, P165 47296 TAO Y, 1997, PHYS LETT A, V232, P356 47297 TIAN YC, 1998, PHYSICA D, V117, P1 47298 WU SG, 2001, CHINESE PHYS LETT, V18, P341 47299 XIE WX, 2000, PHYS LETT A, V275, P67 47300 XU HB, 2001, PHYS REV E 2, V64 47301 YANG T, 1997, PHYSICA D, V110, P18 47302 ZASLAVSKY GM, 1978, PHYS LETT A, V69, P145 47303 NR 15 47304 TC 1 47305 SN 0256-307X 47306 J9 CHIN PHYS LETT 47307 JI Chin. Phys. Lett. 47308 PD SEP 47309 PY 2002 47310 VL 19 47311 IS 9 47312 BP 1251 47313 EP 1253 47314 PG 3 47315 SC Physics, Multidisciplinary 47316 GA 595CD 47317 UT ISI:000178088500010 47318 ER 47319 47320 PT J 47321 AU Liu, YR 47322 Liu, ZR 47323 TI Some dynamical behavior of discrete Nagumo equation 47324 SO CHAOS SOLITONS & FRACTALS 47325 DT Article 47326 ID COUPLED MAP LATTICE; BREATHERS; ANTIINTEGRABILITY; OSCILLATORS; 47327 EXISTENCE; NETWORKS; CHAOS 47328 AB The spatiotemporal dynamics can be effectively studied by continuation 47329 from an anti-integrable limit. By using the anti-integrability method 47330 we consider the dynamical behavior of discrete Nagumo equation, prove 47331 the existence of breather and discuss the spatial disorder of the 47332 stationary solutions in the system. (C) 2002 Elsevier Science Ltd. All 47333 rights reserved. 47334 C1 Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China. 47335 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 47336 RP Liu, YR, Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China. 47337 CR ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249 47338 AUBRY S, 1990, PHYSICA D, V43, P199 47339 AUBRY S, 1995, PHYSICA D, V86, P284 47340 AUBRY S, 1997, PHYSICA D, V103, P201 47341 CHOW SN, 1995, SIAM J APPL MATH, V55, P1764 47342 CROSS MC, 1993, REV MOD PHYS, V65, P3 47343 DEIMLING K, 1985, NONLINEAR FUNCTIONAL 47344 GINZBURG SL, 1999, PHYSICA D, V132, P87 47345 KANEKO K, 1993, PHYSICA D, V68, P299 47346 KANEKO K, 1993, THEORY APPL COUPLED 47347 KEENER JP, 1987, SIAM J APPL MATH, V47, P556 47348 MACKAY RS, 1994, NONLINEARITY, V7, P1623 47349 MARIN JL, 1996, NONLINEARITY, V9, P1501 47350 SEPULCHRE JA, 1997, NONLINEARITY, V10, P679 47351 SEPULCHRE JA, 1998, PHYSICA D, V113, P342 47352 NR 15 47353 TC 0 47354 SN 0960-0779 47355 J9 CHAOS SOLITON FRACTAL 47356 JI Chaos Solitons Fractals 47357 PD DEC 47358 PY 2002 47359 VL 14 47360 IS 9 47361 BP 1457 47362 EP 1464 47363 PG 8 47364 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary 47365 GA 595WA 47366 UT ISI:000178130500014 47367 ER 47368 47369 PT J 47370 AU Chen, ZP 47371 Zhang, JC 47372 Cao, GX 47373 Cao, SX 47374 TI Effect of the lanthanide contraction on the superconduction and local 47375 electronic structure of RBa2Cu3O7-delta systemes 47376 SO ACTA PHYSICA SINICA 47377 DT Article 47378 DE ionic radius of rare earth; high-T-c superconductivity; positron 47379 annihilation; local electronic structure 47380 ID EARTH IONIC RADIUS; POSITRON LIFETIME; DEFECTS 47381 AB A series of RBa2 Cu-3 O-7.8 (R = Tm, Dy, Gd, Eu, Nd and Y) samples were 47382 prepared by the standard solid-state-reaction method. The effect of the 47383 ionic radius of rare earth on the local electronic structure, crystal 47384 structures and superconductivity have been studied by means of positron 47385 annihilation technique(PAT) and x-ray diffraction ( XRD) The results 47386 show that the positron lifetime parameters tau(1) and tau(2) increase 47387 with the increase of the ionic radius of rare earth. But the local 47388 electronic density based on the positron lifetime parameters appears to 47389 decrease with the increase of the ionic radius of rare earth. It is 47390 concluded that the local electronic density and crystal structures are 47391 factors affecting the superconductivity. 47392 C1 Zhengzhou Inst Light Ind, Dept Appl Math & Phys, Zhengzhou 450002, Peoples R China. 47393 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 47394 RP Chen, ZP, Zhengzhou Inst Light Ind, Dept Appl Math & Phys, Zhengzhou 47395 450002, Peoples R China. 47396 CR BRANDT W, 1967, POSITRON ANNIHALATIO 47397 BRANDT W, 1974, APPL PHYS, V5, P1 47398 BUCHNER B, 1990, SOLID STATE COMMUN, V73, P357 47399 CHEN ZP, 2001, ACTA PHYS SIN-CH ED, V50, P550 47400 GOU ZH, 1995, CHINESE J LOW TEMP P, V17, P48 47401 LAVROV AN, 1998, PHYS REV LETT, V81, P5636 47402 LI LJ, 1998, ACTA PHYS SINICA, V47, P844 47403 LIU LH, 2001, ACTA PHYS SINICA, V50, P768 47404 LU X, 1992, PHYS REV B, V45, P7989 47405 NAROZHNYI VN, 1996, PHYS REV B, V53, P5856 47406 POLITY A, 1999, PHYS REV B, V59, P10025 47407 THOMAS J, 1988, SOLID STATE COMMUN, V65, P981 47408 UDAYAN D, 2000, PHYS REV B, V62, P14519 47409 WANG JC, 2000, CHINESE PHYS, V9, P216 47410 XIONG H, 2001, ACTA PHYS SIN-CH ED, V50, P1783 47411 ZHANG JC, 1995, PHYS LETT A, V201, P70 47412 ZHANG JC, 1999, PHYS LETT A, V263, P452 47413 ZHANG LW, 1998, ACTA PHYS SINICA, V47, P1906 47414 NR 18 47415 TC 4 47416 SN 1000-3290 47417 J9 ACTA PHYS SIN-CHINESE ED 47418 JI Acta Phys. Sin. 47419 PD SEP 47420 PY 2002 47421 VL 51 47422 IS 9 47423 BP 2150 47424 EP 2154 47425 PG 5 47426 SC Physics, Multidisciplinary 47427 GA 595LL 47428 UT ISI:000178110800044 47429 ER 47430 47431 PT J 47432 AU Pike, R 47433 Jiang, SH 47434 TI Ultrahigh-resolution optical imaging of colloidal particles 47435 SO JOURNAL OF PHYSICS-CONDENSED MATTER 47436 DT Article 47437 ID SCANNING MICROSCOPY; SUPERRESOLVING MASKS 47438 AB We continue the theme exploited very effectively by Professor Pusey 47439 over the years of using laser light to measure the size of colloidal 47440 particles. A description of a new measurement technique using a 47441 confocal scanning laser microscope (CSLM) is given in which the 47442 Rayleigh resolution limit of a numerical aperture 1.3 oil-immersion 47443 objective is effectively doubled. The method exploits the 'natural' 47444 bandwidth of an imaging system with a very low number of 'degrees of 47445 freedom' (generalized Shannon number) which is realized in the CSLM by 47446 using the high-aperture objective lens both to illuminate the particles 47447 and to collect the scattered light from them. The available extra 47448 resolution is not visible in the conventional recorded image of the 47449 instrument and the full double-bandwidth 'information' content in the 47450 image plane is extracted in our method by using a specially calculated 47451 optical mask as an instantaneous analogue computer. We have modified a 47452 commercial Bio-Rad 600 confocal microscope to work in this way and 47453 present here the first measurements obtained with it. We compare images 47454 of 100 nm diameter standard PVC fluorescent calibration spheres with 47455 the new and the older modalities. The results confirm the expected 47456 increase in optical resolution. 47457 C1 Univ London Kings Coll, Dept Phys, London WC2R 2LS, England. 47458 Shanghai Univ, Dept Fine Mech Engn, Shanghai, Peoples R China. 47459 RP Pike, R, Univ London Kings Coll, Dept Phys, Strand, London WC2R 2LS, 47460 England. 47461 CR AKDUMAN I, 1998, J OPT SOC AM A, V15, P2275 47462 BERTERO M, 1992, INVERSE PROBL, V8, P1 47463 BERTERO M, 1993, HANDB STAT, V10, P1 47464 BRAND U, 2000, THESIS KINGS COLL LO 47465 CREFFIELD CE, 1995, PHYS REV LETT, V75, P517 47466 DEVILLIERS GD, 1999, INVERSE PROBL, V15, P615 47467 DEVILLIERS GD, 2001, INVERSE PROBL, V17, P1163 47468 GROCHMALICKI J, 1993, J OPT SOC AM A, V10, P1074 47469 IGNATOWSKY VS, 1921, T OPT I PETROGRAD, V1, P1 47470 WILSON T, 1984, THEORY PRACTICE SCAN 47471 NR 10 47472 TC 0 47473 SN 0953-8984 47474 J9 J PHYS-CONDENS MATTER 47475 JI J. Phys.-Condes. Matter 47476 PD AUG 26 47477 PY 2002 47478 VL 14 47479 IS 33 47480 BP 7749 47481 EP 7756 47482 PG 8 47483 SC Physics, Condensed Matter 47484 GA 594PW 47485 UT ISI:000178060400015 47486 ER 47487 47488 PT J 47489 AU Huang, DB 47490 TI A stable discretization on attractors of the damped and driven 47491 periodically sine-Gordon equation 47492 SO DYNAMIC SYSTEMS AND APPLICATIONS 47493 DT Article 47494 AB In this paper, the rationality of numerical schemes for continuous 47495 systems is studied from viewpoint of dynamics by investigating the 47496 damped and driven periodically sine-Gordon equation. The existence and 47497 convergence of attractors under its spectral discretization are showed, 47498 and such results throw light on the modal truncation of the sine-Gordon 47499 equation which was used in the previous literature. 47500 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 47501 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 47502 CR BIRNIR B, 1994, COMMUN MATH PHYS, V162, P539 47503 BISHOP AR, 1990, PHYS LETT A, V144, P117 47504 BROOMHEAD DS, 1992, DYNAMICS NUMERICS DY 47505 CALINI A, 1996, PHYSICA D, V89, P227 47506 CHEPYZHOV VV, 1994, J MATH PURE APPL, V73, P291 47507 DETTORI L, 1995, SPECTRAL APPROXIMATI 47508 GHIDAGLIA JM, 1987, J MATH PURE APPL, V66, P273 47509 GILL TL, 1992, SIAM J MATH ANAL, V23, P1204 47510 GRAUER R, 1992, PHYSICA D, V56, P165 47511 HALE JK, 1988, MATH COMPUT, V50, P89 47512 HALE JK, 1994, CONT MATH, V172, P1 47513 HARAUX A, 1988, COMMUN PART DIFF EQ, V13, P1383 47514 RAUGEL G, 1990, CR HEBD ACAD SCI, V310, P85 47515 STUART AM, 1996, DYNAMICAL SYSTEMS NU 47516 TEMAM R, 1988, INFINITE DIMENSIONAL 47517 NR 15 47518 TC 1 47519 SN 1056-2176 47520 J9 DYN SYST APPL 47521 JI Dyn. Syst. Appl. 47522 PD MAR 47523 PY 2002 47524 VL 11 47525 IS 1 47526 BP 127 47527 EP 141 47528 PG 15 47529 SC Mathematics, Applied; Mathematics 47530 GA 592GK 47531 UT ISI:000177928400011 47532 ER 47533 47534 PT J 47535 AU Ding, YP 47536 Su, QD 47537 Wu, QS 47538 TI Ant Colony Algorithm in Chemistry and its application in first 47539 derivative fluorescent spectra analyzing 47540 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE 47541 DT Article 47542 DE Ant Colony Algorithm; derivative fluorescent spectra; phenylalanine; 47543 tyrosine; tryptophan 47544 AB A new method of chemometrics - Ant Colony Algorithm in Chemistry has 47545 been developed. In this paper, the evaluation, function, the parameter 47546 choice and the basic principle have been discussed. The proposed method 47547 has been applied to the analysis for first-derivative fluorescent mixed 47548 spectra of tryptophan, tyrosine and phenylalanine, and the relative 47549 errors are within +/-5%. The new method, has obvious superiority on the 47550 sides of the convergence speed and,calculation precision as compared 47551 with Partial Last Squares(PLS) and Genetic Algorithms(GA). 47552 C1 Univ Sci & Technol China, Dept Chem, Hefei 230026, Peoples R China. 47553 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 47554 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China. 47555 RP Ding, YP, Univ Sci & Technol China, Dept Chem, Hefei 230026, Peoples R 47556 China. 47557 CR BONABEAU E, 2000, NATURE, V406, P39 47558 COLORNI A, 1991, P 1 EUR C ART LIF, P134 47559 DING YP, 2001, SPECTROSC SPECT ANAL, V21, P212 47560 DING YP, 2002, CHEMISTRY, V65, P257 47561 GAMBARDELLA LM, 1999, NEW IDEAS OPTIMIZATI, P63 47562 HEUSSE M, 1998, ADV COMPLEX SYST, V1, P237 47563 KRIEGER MJB, 2000, NATURE, V406, P992 47564 NR 7 47565 TC 0 47566 SN 0251-0790 47567 J9 CHEM J CHINESE UNIV-CHINESE 47568 JI Chem. J. Chin. Univ.-Chin. 47569 PD SEP 47570 PY 2002 47571 VL 23 47572 IS 9 47573 BP 1695 47574 EP 1697 47575 PG 3 47576 SC Chemistry, Multidisciplinary 47577 GA 594NL 47578 UT ISI:000178056800016 47579 ER 47580 47581 PT J 47582 AU Lei, ZS 47583 Ren, ZM 47584 Zhang, BW 47585 Deng, K 47586 TI Model experiment of meniscus temperature fluctuation during continuous 47587 casting mold oscillation 47588 SO ACTA METALLURGICA SINICA 47589 DT Article 47590 DE continuous casting; meniscus; temperature fluctuation; mold oscillation 47591 ID STEEL SLABS 47592 AB The temperature at the meniscus during continuous casting was measured 47593 under mold oscillation by model experiments. It is found that the 47594 temperature of meniscus varied periodically along with mold 47595 oscillation. According to the experiments, the temperature fluctuation 47596 of meniscus decreases with increasing the mold oscillation frequency, 47597 decreasing the mold oscillation amplitude, cooling density, and contact 47598 pressure between mold and solidification shell. It is considered that 47599 the temperature fluctuation of meniscus is a key factor for the surface 47600 defect formation of continuous casting billets. Based on the 47601 phenomenon, the mechanisms of improving surface quality of continuous 47602 casting billets including high frequency and low amplitude mold 47603 oscillation, soft-contact mold electromagnetic continuous casting, hot 47604 top mold and so on were analyzed. 47605 C1 Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai 200072, Peoples R China. 47606 RP Lei, ZS, Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai 47607 200072, Peoples R China. 47608 CR ASAI S, 1989, TETSU TO HAGANE, V75, P32 47609 CAI KK, 1990, CONTINUOUS CASTING S, P284 47610 CHENG CG, 2000, STEELMAKING, V16, P55 47611 DENG K, 1999, ACTA METALL SIN, V35, P1112 47612 LI XK, 1992, IRON STEEL, V27, P20 47613 REN ZM, 1999, ACTA METALL SIN, V35, P851 47614 REN ZM, 2001, ISIJ INT, V41, P981 47615 SAUCEDO IG, 1987, 1987 STEELM C P CHIC, P449 47616 SAUCEDO IG, 1991, 1991 STEELM C P WASH, P79 47617 SUZUKI M, 1991, ISIJ INT, V31, P254 47618 SZEKERES ES, 1996, IRON STEEL ENG, V6, P29 47619 TAKEUCHI E, 1984, METALL TRANS B, V15, P493 47620 NR 12 47621 TC 0 47622 SN 0412-1961 47623 J9 ACTA METALL SIN 47624 JI Acta Metall. Sin. 47625 PD AUG 47626 PY 2002 47627 VL 38 47628 IS 8 47629 BP 877 47630 EP 880 47631 PG 4 47632 SC Metallurgy & Metallurgical Engineering 47633 GA 593DY 47634 UT ISI:000177977000019 47635 ER 47636 47637 PT J 47638 AU Mo, YW 47639 Okawa, YZ 47640 Inoue, KJ 47641 Natukawa, K 47642 TI Low-voltage and low-power optimization of micro-heater and its on-chip 47643 drive circuitry for gas sensor array 47644 SO SENSORS AND ACTUATORS A-PHYSICAL 47645 DT Article 47646 DE arrays; sensors; microelectromechanical devices; low-voltage and 47647 low-power; CMOS 47648 AB Low-voltage and low-power design is the key issue for the portable 47649 electronics applications and has become the major concern for the 47650 system design. Integrated gas sensor array allows the monolithic 47651 realization of multi-species gas sensing systems. This paper reports 47652 the developments of Si-based micro-machined micro-heater array with 47653 extremely low-power consumption, low-voltage operation, and CMOS 47654 compatibility, and low-voltage and low-power CMOS drive circuitry for 47655 the micro-heaters that can provide large drive current and voltage 47656 swing, and heater temperature is continuously adjustable in the full 47657 temperature range. (C) 2002 Elsevier Science B.V. All rights reserved. 47658 C1 Technol Res Inst Osaka Prefecture, Izumi Shi, Osaka 5941157, Japan. 47659 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 47660 RP Mo, YW, Technol Res Inst Osaka Prefecture, 2-7-1 Ayumi No, Izumi Shi, 47661 Osaka 5941157, Japan. 47662 CR CAVICCHI RE, 1995, APPL PHYS LETT, V66, P812 47663 CAVICCHI RE, 1995, SENSOR ACTUAT B-CHEM, V24, P478 47664 CHUNG W, 1998, T IEE JPN E, V118, P147 47665 FUNG SKH, 1996, SENSOR ACTUAT A-PHYS, V54, P482 47666 GAEDNER JW, 1991, SENSOR ACTUAT B-CHEM, V4, P109 47667 GUIDI V, 1998, SENSOR ACTUAT B-CHEM, V49, P88 47668 LYLE RP, 1997, MICROSTRUCT MICROFAB, V3, P188 47669 NATALE CD, 1995, SENSOR ACTUAT B-CHEM, V24, P808 47670 PERSAUD K, 1982, NATURE, V299, P352 47671 ROSSI C, 1997, SENSOR ACTUAT A-PHYS, V63, P183 47672 SHENG LY, 1998, SENSOR ACTUAT B-CHEM, V49, P81 47673 SHURMER HV, 1990, SENSOR ACTUAT B-CHEM, V1, P256 47674 SUEHLE JS, 1993, IEEE ELECTR DEVICE L, V14, P118 47675 ZARCOMB S, 1984, SENSOR ACTUATOR, V6, P225 47676 NR 14 47677 TC 7 47678 SN 0924-4247 47679 J9 SENSOR ACTUATOR A-PHYS 47680 JI Sens. Actuator A-Phys. 47681 PD AUG 15 47682 PY 2002 47683 VL 100 47684 IS 1 47685 BP 94 47686 EP 101 47687 PG 8 47688 SC Engineering, Electrical & Electronic; Instruments & Instrumentation 47689 GA 590GH 47690 UT ISI:000177809900013 47691 ER 47692 47693 PT J 47694 AU Gu, JM 47695 TI Identification of 2-acetylpyridine in Xiangjing-8618 rice and in 47696 Yahonkaoluo leaves 47697 SO FOOD CHEMISTRY 47698 DT Article 47699 DE 2-acetylpyridine; scented rice; spice; aroma 47700 ID 2-ACETYL-1-PYRROLINE; ODORANTS 47701 AB 2-Acetylpyridine was established, for the first time, as the 47702 characteristic aroma compound of two plants, Yahonkaoluo leaves (a 47703 spice, Acanthaceae strobilanthus sp.), wild in Mengla county of Yunnan 47704 province of China and Xiangjing-8618 rice (a scented rice, Oryza sativa 47705 L.), cultivated in the south of Jiangsu province of China, by means of 47706 ethylene glycol pre-extraction, porapak Q trapping, GC-MS 47707 identification, sniffing technique after capillary column and 47708 verification by authentic compound. Ethylene glycol, as a 47709 pre-extracting solvent, efficently extracted a micro-basic fraction 47710 containing the "scented rice"-like aroma compound in Yahonkaoluo 47711 leaves. (C) 2002 Published by Elsevier Science Ltd. 47712 C1 Shanghai Univ, Sch Life Sci, Dept Food Sci & Engn, Shanghai 200436, Peoples R China. 47713 RP Gu, JM, Shanghai Univ, Sch Life Sci, Dept Food Sci & Engn, 99 Shangda 47714 Rd, Shanghai 200436, Peoples R China. 47715 CR BUTLER LD, 1976, J CHROMATOGR SCI, V14, P117 47716 BUTTERY RG, 1982, CHEM IND-LONDON, P958 47717 BUTTERY RG, 1983, CHEM IND-LONDON, P478 47718 CERNY C, 1992, Z LEBENSM UNTERS FOR, V194, P322 47719 GU J, 1996, J CHINESE CEREALS OI, V11, P34 47720 GU J, 1999, J SHANGHAI U NATURAL, V5, P154 47721 GUIOCHON G, 1964, ANAL CHEM, V36, P661 47722 HOFMANN T, 1995, J AGR FOOD CHEM, V43, P2195 47723 HOFMANN T, 1998, J AGR FOOD CHEM, V46, P2721 47724 JOHNSON BR, 1971, J AGR FOOD CHEM, V19, P1020 47725 JUNK GA, 1974, J CHROMATOGR, V99, P745 47726 KLINGSBERG E, 1960, CHEM HETEROCYCLIC CO 47727 KOVATS E, 1958, HELV CHIM ACTA, V41, P1915 47728 SAKODYNSKII K, 1974, CHROMATOGRAPHIA, V7, P339 47729 YAJIMA I, 1979, AGR BIOL CHEM TOKYO, V43, P2425 47730 NR 15 47731 TC 0 47732 SN 0308-8146 47733 J9 FOOD CHEM 47734 JI Food Chem. 47735 PD AUG 47736 PY 2002 47737 VL 78 47738 IS 2 47739 BP 163 47740 EP 166 47741 PG 4 47742 SC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics 47743 GA 590EC 47744 UT ISI:000177804500004 47745 ER 47746 47747 PT J 47748 AU Ye, ZM 47749 Kettle, RJ 47750 Li, LY 47751 Schafer, BW 47752 TI Buckling behavior of cold-formed zed-purlins partially restrained by 47753 steel sheeting 47754 SO THIN-WALLED STRUCTURES 47755 DT Article 47756 DE cold-formed; purlin; steel; thin-walled; restrained; sheeting; 47757 buckling; instability 47758 ID GENERALIZED BEAM THEORY 47759 AB This paper presents a study on the buckling behaviour of 47760 purlin-sheeting systems under wind uplift loading. The restraint 47761 provided by the sheeting to the purlin is modeled by using two springs 47762 representing the translational and rotational restraints. The analysis 47763 is performed using finite strip methods in which the pre-buckling 47764 stress is calculated based on the same model used for the buckling 47765 analysis rather than taken as the 'pure bending' stress. The results 47766 obtained from this study show that, for both local and distortional 47767 buckling, the restraints have significant influence on the critical 47768 loads through their influence on the pre-buckling stress rather than 47769 directly on the buckling modes. While for lateral-torsional buckling, 47770 the influence of the restraints on the critical loads is mainly due to 47771 their influence on the buckling modes rather than the pre-buckling 47772 stress. (C) 2002 Elsevier Science Ltd. All rights reserved. 47773 C1 Aston Univ, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands, England. 47774 Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R China. 47775 Johns Hopkins Univ, Dept Civil Engn, Baltimore, MD 21218 USA. 47776 RP Li, LY, Aston Univ, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands, 47777 England. 47778 CR CHEUNG YK, 1976, FINITE STRIP METHOD 47779 DAVIES JM, 1994, J CONSTR STEEL RES, V31, P187 47780 DAVIES JM, 1994, J CONSTR STEEL RES, V31, P221 47781 DAVIES JM, 2000, J CONSTR STEEL RES, V55, P267 47782 GOTLURU BP, 2000, THIN WALL STRUCT, V37, P127 47783 HANCOCK G, 1997, STEEL CONSTRUCTION, V15, P2 47784 HANCOCK GJ, 1994, DESIGN COLD FORMED S 47785 LEACH P, 1993, STRUCTURAL ENG, V71, P250 47786 MOORE DB, 1988, LOAD TESTS FULL SCAL 47787 RHODES J, 1993, 089 SCI 47788 SCHAFER BW, 1997, THESIS CORNELL U ITH 47789 SCHAFER BW, 2001, ELASTIC BUCKLING ANA 47790 TOMA T, 1994, J CONSTR STEEL RES, V31, P149 47791 TRAHAIR NS, 1993, FLEXURAL TORSIONAL B 47792 WALKER AC, 1975, DESIGN ANAL COLD FOR 47793 YE ZM, IN PRESS COMPUTERS S 47794 NR 16 47795 TC 4 47796 SN 0263-8231 47797 J9 THIN WALL STRUCT 47798 JI Thin-Walled Struct. 47799 PD OCT 47800 PY 2002 47801 VL 40 47802 IS 10 47803 BP 853 47804 EP 864 47805 PG 12 47806 SC Engineering, Civil 47807 GA 588QV 47808 UT ISI:000177712900003 47809 ER 47810 47811 PT J 47812 AU Chu, BL 47813 Liu, XR 47814 Wang, XJ 47815 Zhang, JH 47816 Jiang, XY 47817 TI Luminescence properties of Pr3+ and energy transfer characteristics of 47818 Pr3+-> Gd3+ in CaSiO3 47819 SO SPECTROSCOPY AND SPECTRAL ANALYSIS 47820 DT Article 47821 DE Pr3+; Gd3+; CaSiO3; luminescence spectrum; concentration quenching; 47822 energy transfer 47823 ID PR-3+ 47824 AB The excitation spectrum and the emission spectrum of Pr3+ in CaSiO3 47825 under the room temperature were studied. The emission spectrum was 47826 constituted of three emission bands, corresponding to the emissions of 47827 the lowest 4f5d states to the H-3(4), H-3(6), (1)G(4) of the 4f(2) 47828 states. The emission of the P-3(0) and D-1(2) were not observed.,The 47829 concentration quenching of Pr3+ was due to the radiative and 47830 nonradiative energy transfer. There was energy transfer from Pr3+ to 47831 Gd3+ with the transfer rate of 10% of the Pr3+ emission rate. 47832 C1 Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Lab Excited State Proc, Changchun 130021, Peoples R China. 47833 Shanghai Univ, Dept Malerial Sci, Shanghai 201800, Peoples R China. 47834 RP Chu, BL, Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Lab 47835 Excited State Proc, Changchun 130021, Peoples R China. 47836 CR BLASSE G, 1989, J PHYS CHEM SOLIDS, V50, P583 47837 CARNALL WT, 1971, J CHEM PHYS, V54, P1476 47838 DEVRIES AJ, 1986, MATER RES BULL, V21, P683 47839 LIU XR, 1989, CHINESE J LUMINESCEN, V10, P177 47840 LIU XR, 1989, CHINESE J LUMINESCEN, V10, P6 47841 VANDERVOORT D, 1991, J PHYS CHEM SOLIDS, V52, P1149 47842 VANEIJK CWE, 1996, P SOC PHOTO-OPT INS, V2706, P158 47843 NR 7 47844 TC 1 47845 SN 1000-0593 47846 J9 SPECTROSC SPECTR ANAL 47847 JI Spectrosc. Spectr. Anal. 47848 PD AUG 47849 PY 2002 47850 VL 22 47851 IS 4 47852 BP 542 47853 EP 544 47854 PG 3 47855 SC Spectroscopy 47856 GA 590EE 47857 UT ISI:000177804700004 47858 ER 47859 47860 PT J 47861 AU Voron'ko, YK 47862 Sobol', AA 47863 Ushakov, SN 47864 Jiang, GC 47865 You, JL 47866 TI Phase transformations and melt structure of calcium metasilicate 47867 SO INORGANIC MATERIALS 47868 DT Article 47869 AB The beta --> alpha phase transition, melting, crystallization, and 47870 vitrification of calcium metasilicate were studied by high-temperature 47871 Raman scattering spectroscopy. The results demonstrate that, in the 47872 course of melting, the [Si3O9] metasilicate rings, which form the 47873 structural basis of the a phase, transform mainly into [SiO3](infinity) 47874 anions. The structural similarity or dissimilarity of the CaO . SiO2 47875 melt to crystalline phases is shown to have a crucial effect on its 47876 crystallization/vitrification behavior. 47877 C1 Russian Acad Sci, Inst Gen Phys, Res Ctr Laser Mat & Technol, Moscow 119991, Russia. 47878 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 47879 RP Voron'ko, YK, Russian Acad Sci, Inst Gen Phys, Res Ctr Laser Mat & 47880 Technol, Ul Vavilova 38, Moscow 119991, Russia. 47881 CR IGUCHI Y, 1981, CAN METALL Q, V20, P51 47882 LAZAREV AN, 1975, KOLEBATELNYE SPEKTRY, P296 47883 MYSEN BO, 1980, AM MINERAL, V65, P690 47884 SWAMY V, 1997, J AM CERAM SOC, V80, P2237 47885 TOROPOV NA, 1969, DIAGRAMMY SOSTOYANIY, P38 47886 VANWAZER JR, 1962, PHOSPHORUS ITS COMPO 47887 VORONKO YK, 1988, ROST KRIST, V16, P178 47888 VORONKO YK, 1992, IZV AKAD NAUK NEORG, V28, P576 47889 WEN SL, 1981, J CHEM SOC CHEM COMM, P662 47890 YANAMAKA T, 1981, ACTA CRYSTALLOGR B, V37, P1010 47891 NR 10 47892 TC 0 47893 SN 0020-1685 47894 J9 INORG MATER-ENGL TR 47895 JI Inorg. Mater. 47896 PD AUG 47897 PY 2002 47898 VL 38 47899 IS 8 47900 BP 825 47901 EP 830 47902 PG 6 47903 SC Materials Science, Multidisciplinary 47904 GA 591DQ 47905 UT ISI:000177864800010 47906 ER 47907 47908 PT J 47909 AU Wu, QS 47910 Zheng, NW 47911 Ding, YP 47912 Li, YD 47913 TI Micelle-template inducing synthesis of winding ZnS nanowires 47914 SO INORGANIC CHEMISTRY COMMUNICATIONS 47915 DT Article 47916 DE zinc sulfide; nanowires; template synthesis; reverse micelle 47917 ID BUILDING-BLOCKS; BACO3 NANOWIRES; MICROEMULSIONS; CDS 47918 AB Semiconductor single-crystal ZnS nanowires with diameters 40-80 nm and 47919 lengths up to tens of micron, which can bend and wind, have been 47920 synthesis by the reaction of Zn2+ with S2- in reverse micelle for the 47921 inducing template. The formation mechanism of ZnS nanowires has been 47922 studied. The results indicated that the formation of ZnS nanowires 47923 probably was via the process of the directional aggregation and 47924 orientated growth of the ZnS nanoparticles. (C) 2002 Elsevier Science 47925 B.V. All rights reserved. 47926 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China. 47927 Univ Sci & Technol China, Dept Chem, Hefei 230026, Peoples R China. 47928 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 47929 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China. 47930 CR CHAE WS, 2001, CHEM PHYS LETT, V341, P279 47931 CUI Y, 2001, SCIENCE, V291, P851 47932 CUI Y, 2001, SCIENCE, V293, P1289 47933 DUAN XF, 2000, ADV MATER, V12, P298 47934 GE SH, 2001, J APPL PHYS, V90, P509 47935 HUANG MH, 2001, SCIENCE, V292, P1897 47936 HUANG Y, 2001, SCIENCE, V294, P1313 47937 JIANG X, CHEM MAT, V13, P1213 47938 LI Y, 1999, MOL CRYST LIQ CRYS A, V337, P193 47939 LI YD, 2001, J AM CHEM SOC, V123, P9904 47940 QI LM, 1997, J PHYS CHEM B, V101, P3460 47941 WALSH D, 1994, SCIENCE, V264, P1576 47942 WU QS, 2000, CHEM J CHINESE U, V21, P1471 47943 WU QS, 2000, J MEMBRANE SCI, V172, P199 47944 WU QS, 2001, CHEM J CHINESE U, V22, P898 47945 WU YY, 2001, ADV MATER, V13, P1487 47946 ZHENG NW, 2000, CHEM LETT 0605, P638 47947 NR 17 47948 TC 37 47949 SN 1387-7003 47950 J9 INORG CHEM COMMUN 47951 JI Inorg. Chem. Commun. 47952 PD SEP 47953 PY 2002 47954 VL 5 47955 IS 9 47956 BP 671 47957 EP 673 47958 PG 3 47959 SC Chemistry, Inorganic & Nuclear 47960 GA 591CZ 47961 UT ISI:000177863300011 47962 ER 47963 47964 PT J 47965 AU Xue, Y 47966 Dong, LY 47967 Yuan, YW 47968 Dai, SQ 47969 TI The effect of the relative velocity on traffic flow 47970 SO COMMUNICATIONS IN THEORETICAL PHYSICS 47971 DT Article 47972 DE optimal velocity model; relative velocity; jamming transition; traffic 47973 flow 47974 ID SOLITON; CONGESTION; JAMS 47975 AB The optimal velocity model of traffic is extended to take the relative 47976 velocity into account, The traffic behavior is investigated numerically 47977 and analytically with this model. It is shown that the car interaction 47978 with the relative velocity can effect the stability of the traffic flow 47979 and raise critical density. The jamming transition between the freely 47980 moving and jamming phases is investigated with the linear stability 47981 analysis and nonlinear perturbation methods. The traffic jam is 47982 described by the kink solution of the modified Korteweg-de Vries 47983 equation, The theoretical result is in good agreement with the 47984 simulation. 47985 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 47986 Guangxi Univ, Dept Phys, Nanning 530003, Peoples R China. 47987 RP Xue, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 47988 Peoples R China. 47989 CR BANDO M, 1995, PHYS REV E, V51, P1035 47990 CHOWDHURY D, 2000, PHYS REP, V329, P199 47991 GAZIS DC, 1961, OPER RES, V9, P545 47992 KERNER BS, 1993, PHYS REV E, V48, P2335 47993 KOMATSU TS, 1995, PHYS REV E B, V52, P5574 47994 KURTZE DA, 1995, PHYS REV E A, V52, P218 47995 MURAMATSU M, 1999, PHYS REV E, V60, P180 47996 TREIBER M, 2000, PHYS REV E A, V62, P1805 47997 NR 8 47998 TC 3 47999 SN 0253-6102 48000 J9 COMMUN THEOR PHYS 48001 JI Commun. Theor. Phys. 48002 PD AUG 15 48003 PY 2002 48004 VL 38 48005 IS 2 48006 BP 230 48007 EP 234 48008 PG 5 48009 SC Physics, Multidisciplinary 48010 GA 590RN 48011 UT ISI:000177836000023 48012 ER 48013 48014 PT J 48015 AU Zheng, YG 48016 Liu, ZR 48017 Huang, DB 48018 TI Discrete soliton-like for KdV prototypes 48019 SO CHAOS SOLITONS & FRACTALS 48020 DT Article 48021 ID NETWORKS; BREATHERS; EXISTENCE 48022 AB In this paper we consider space and time discretization of KdV 48023 equation, that is, KdV prototypes by using finite difference 48024 discretization. The existence of discrete soliton-likes for the KdV 48025 prototypes is proved by anti-integrable limit method [S. Aubry, G. 48026 Abramovici, Physica D (1990) 199]. Some of their properties are 48027 discussed. (C) 2002 Elsevier Science Ltd. All rights reserved. 48028 C1 Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China. 48029 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 48030 RP Zheng, YG, Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China. 48031 CR AUBRY S, 1990, PHYSICA D, V43, P199 48032 AUBRY S, 1997, PHYSICA D, V103, P201 48033 BAESENS C, 1997, NONLINEARITY, V10, P931 48034 MACKAY RS, 1994, NONLINEARITY, V7, P1623 48035 MACKAY RS, 1995, PHYSICA D, V82, P243 48036 STERLING D, 1998, PHYS LETT A, V241, P46 48037 ZEIDLER E, 1986, NONLINEAR FUNCTIONAL 48038 NR 7 48039 TC 0 48040 SN 0960-0779 48041 J9 CHAOS SOLITON FRACTAL 48042 JI Chaos Solitons Fractals 48043 PD OCT 48044 PY 2002 48045 VL 14 48046 IS 7 48047 BP 989 48048 EP 994 48049 PG 6 48050 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary 48051 GA 589QW 48052 UT ISI:000177772700006 48053 ER 48054 48055 PT J 48056 AU Xiao, Y 48057 Wang, G 48058 Liu, H 48059 Zhao, H 48060 Zhang, J 48061 Sun, C 48062 Wu, M 48063 TI Treatment of H-acid wastewater by photo-Fenton reagent combined with a 48064 biotreatment process: A study on optimum conditions of pretreatment by 48065 a photo-Fenton process 48066 SO BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 48067 DT Article 48068 ID DEGRADATION 48069 C1 Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China. 48070 Tsing Hua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. 48071 Shanghai Univ, Dept Chem, Shanghai 200073, Peoples R China. 48072 RP Xiao, Y, Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, 48073 Peoples R China. 48074 CR BOX GE, 1978, STAT EXPT INTRO DESI 48075 CHEN RZ, 1997, ENVIRON SCI TECHNOL, V31, P2399 48076 LI J, 1987, DESIGN PROCESS EXPT 48077 LIPCZYNSKAKOCHA.E, 1991, CHEMOSPHERE, V22, P529 48078 OLIVEROS E, 1997, CHEM ENG PROCESS, V36, P397 48079 PIGNATELLO JJ, 1992, ENVIRON SCI TECHNOL, V26, P944 48080 PIGNATELLO JJ, 1995, WATER RES, V29, P1837 48081 WEI FX, 1989, MONITOR ANAL PROCESS 48082 ZHU WP, 1996, ENV SCI, V4, P7 48083 NR 9 48084 TC 2 48085 SN 0007-4861 48086 J9 BULL ENVIRON CONTAM TOXICOL 48087 JI Bull. Environ. Contam. Toxicol. 48088 PD SEP 48089 PY 2002 48090 VL 69 48091 IS 3 48092 BP 430 48093 EP 435 48094 PG 6 48095 SC Environmental Sciences; Toxicology 48096 GA 588LC 48097 UT ISI:000177702100019 48098 ER 48099 48100 PT J 48101 AU He, JH 48102 TI Generalized variational principles for thermopiezoelectricity 48103 SO ARCHIVE OF APPLIED MECHANICS 48104 DT Article 48105 DE piezoelectricity; elasticity; variational technique; semi-inverse 48106 method; FEM 48107 ID UNKNOWN SHAPE; FLOW; TURBOMACHINERY; AERODYNAMICS 48108 AB Based on the semi-inverse method of establishing variational principles 48109 proposed in [10], a family of variational principles (non Gurtin-type 48110 and not involving convolutions) for thermopiezoelectricity is deduced 48111 directly from the field equations and boundary/initial conditions. 48112 Present theory provides a more complete theoretical basis for the 48113 finite element applications and other direct variational methods such 48114 as Ritz's, Trefftz's and Kantorovitch's methods. 48115 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 48116 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd, 48117 Shanghai 200072, Peoples R China. 48118 CR ASHIDA F, 1998, J APPL MECH-T ASME, V65, P367 48119 CHANDRASEKHARAI.DS, 1988, ACTA MECH, V71, P39 48120 CHEN TY, 1998, P ROY SOC LOND A MAT, V454, P873 48121 FARES ME, 1999, INT J NONLINEAR MECH, V34, P685 48122 HE JH, 1997, INT J TURBO JET ENG, V14, P23 48123 HE JH, 1998, APPL MATH MODEL, V22, P395 48124 HE JH, 1998, COMMUN NONLINEAR SCI, V3, P215 48125 HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154 48126 HE JH, 1999, APPL MATH MECH-ENGL, V20, P545 48127 HE JH, 1999, INT J TURBO JET ENG, V16, P19 48128 HE JH, 1999, SHANGHAI LIGONG DAXU, V21, P356 48129 HE JH, 2000, AIRCR ENG AEROSP TEC, V72, P18 48130 HE JH, 2000, INT J NONLINEAR SCI, V1, P133 48131 LIU GL, 1988, COMPUTATIONAL FLUID, P473 48132 MAUGIN GA, 1984, MECH BEHAV ELECTROMA 48133 MAUGIN GA, 1988, CONTINUUM MECH ELECT 48134 SANTILLI RM, 1978, FDN THEORETICAL MECH, V1 48135 WASHIZU K, 1982, VARATIONAL METHODS E 48136 NR 18 48137 TC 0 48138 SN 0939-1533 48139 J9 ARCH APPL MECH 48140 JI Arch. Appl. Mech. 48141 PD JUL 48142 PY 2002 48143 VL 72 48144 IS 4-5 48145 BP 248 48146 EP 256 48147 PG 9 48148 SC Mechanics 48149 GA 589AC 48150 UT ISI:000177734400003 48151 ER 48152 48153 PT J 48154 AU Wan, TQ 48155 Gu, P 48156 Che, FX 48157 TI Discovery of two novel functional genes from differentiation of neural 48158 stem cells in the striatum of the fetal rat 48159 SO NEUROSCIENCE LETTERS 48160 DT Article 48161 DE neural stem cells; striatum; differentiation; differential expression; 48162 differential display polymerase chain reaction; expressed sequence tag 48163 ID CENTRAL-NERVOUS-SYSTEM; MATURATION; FOREBRAIN; RECEPTOR; NEURONS 48164 AB Neural stem cells (NSC) are capable of differentiating into neurons and 48165 glia. However, the molecular mechanisms regulating NSC differentiation 48166 are not well understood. We have used the differential display 48167 polymerase chain reaction to analyze the differentially expressed genes 48168 of NSC from Sprague-Dawley rat striatum. Twelve differentially 48169 expressed sequence tags (ESTs) have been discovered and two of them, 48170 SHD10 and SHD11, were confirmed to be positive by reverse Northern blot 48171 techniques. Sequencing analyses showed that SHD10 shared a 94% 48172 (547/581) homology with mouse EST B1687817, but its biological function 48173 has not been reported. SHD11 shared a 91% (512/562) homology with mouse 48174 EST BG172336. It encodes an open reading frame containing 117 amino 48175 acids. Analysis of protein sequence indicated that it has a 98% 48176 homology with dendritic cell factor (gi18203393). Our research 48177 primarily discovered that these two genes are associated with 48178 differentiation of NSC. How they function in the process of 48179 differentiation needs further study. (C) 2002 Elsevier Science Ireland 48180 Ltd. All rights reserved. 48181 C1 Shanghai Univ, Sch Life Sci, Lab Neural Mol Biol, Shanghai 200436, Peoples R China. 48182 RP Wan, TQ, Shanghai Univ, Sch Life Sci, Lab Neural Mol Biol, 99 Shangda 48183 Rd, Shanghai 200436, Peoples R China. 48184 CR BAIN G, 2000, GENOMICS, V1, P127 48185 BENRAISS A, 2001, J NEUROSCI, V21, P6718 48186 BONNI A, 1997, SCIENCE, V278, P477 48187 DELCERRO M, 2000, INVEST OPHTH VIS SCI, V41, P3142 48188 DIETZ AB, 2000, BIOCHEM BIOPH RES CO, V275, P731 48189 GADIENT RA, 1998, BRAIN RES, V798, P140 48190 GESCHWIND DH, 2001, NEURON, V29, P325 48191 HUGHES SM, 1988, NATURE, V335, P70 48192 KOBLAR SA, 1998, P NATL ACAD SCI USA, V95, P3178 48193 LIU SY, 2000, J 3 MIL MED U, V22, P26 48194 MARMUR R, 1998, J NEUROSCI, V18, P9800 48195 MENG JH, 2000, J 4 MIL MED U, V21, P1026 48196 PINCUS DW, 1998, ANN NEUROL, V43, P576 48197 SATOH M, 2000, NEUROSCI LETT, V284, P143 48198 SEILER MJ, 1998, INVEST OPHTH VIS SCI, V39, P2121 48199 SHIMAZAKI T, 2001, J NEUROSCI, V21, P7642 48200 TEMPLE S, 2001, NATURE, V414, P112 48201 TROPEPE V, 1999, DEV BIOL, V208, P166 48202 NR 18 48203 TC 0 48204 SN 0304-3940 48205 J9 NEUROSCI LETT 48206 JI Neurosci. Lett. 48207 PD AUG 23 48208 PY 2002 48209 VL 329 48210 IS 1 48211 BP 101 48212 EP 105 48213 PG 5 48214 SC Neurosciences 48215 GA 586ZT 48216 UT ISI:000177616600025 48217 ER 48218 48219 PT J 48220 AU Zhou, SP 48221 TI Oblique vortex lattice implies unconventional pairing symmetry in high 48222 temperature superconductors 48223 SO JOURNAL OF SUPERCONDUCTIVITY 48224 DT Article 48225 DE pairing symmetries; Ginzburg-Landau model; vortex lattice 48226 ID TIME-REVERSAL SYMMETRY; GINZBURG-LANDAU THEORY; D-WAVE SUPERCONDUCTORS; 48227 THERMAL-CONDUCTIVITY; II SUPERCONDUCTORS; YBA2CU3O7; VORTICES; STATE; 48228 MODEL; BI2SR2CACU2O8 48229 AB The symmetry of order parameters of YBa2Cu3O7-delta high temperature 48230 superconductor was studied with the Ginzburg-Landau theory. The vortex 48231 lattice of a YBa2Cu3O7 superconductor is oblique at a temperature well 48232 below the transition temperature T-c, where the mixed s-d(x2-y2) state 48233 is expected to have the lowest energy, whereas very close to T-c, the 48234 d(x2-y2)-wave is slightly lower in energy, and a triangular vortex 48235 lattice recovers. The coexistence and the coupling between the s- and 48236 d-waves would account for the unusual behaviors such as the upward 48237 curvature of the upper critical field curve H-C2(T). 48238 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 48239 RP Zhou, SP, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 48240 CR ABRIKOSOV AA, 1957, ZH EKSP TEOR FIZ, V32, P1442 48241 ABRIKOSOV AA, 1957, ZH EKSP TEOR FIZ, V5, P1174 48242 ANDERSON PW, 1987, SCIENCE, V235, P1196 48243 AUBIN H, 1999, PHYS REV LETT, V82, P624 48244 BERLINSKY AJ, 1995, PHYS REV LETT, V75, P2200 48245 CHAKRAVARTY S, 1993, SCIENCE, V261, P337 48246 DORIA MM, 1989, PHYS REV B, V39, P9573 48247 DU Q, 1993, SIAM J APPL MATH, V53, P689 48248 HEEB R, 1996, PHYS REV B, V54, P9385 48249 JOYNT R, 1990, PHYS REV B, V41, P4271 48250 KEIMER B, 1994, J APPL PHYS 2, V76, P6778 48251 KIRTLEY JR, 1996, PHYS REV LETT, V76, P1336 48252 KLEINER R, 1996, PHYS REV LETT, V76, P2161 48253 KOUZNETSOV KA, 1997, PHYS REV LETT, V79, P3050 48254 KRISHANA K, 1997, SCIENCE, V277, P83 48255 LAUGHLIN RB, 1998, PHYS REV LETT, V80, P5188 48256 LEE PA, 1987, PHYS REV LETT, V58, P2891 48257 LEI B, 2000, PHYS REV B, V62, P8687 48258 LI OP, 1993, PHYS REV B, V48, P437 48259 LIECHTENSTEIN AI, 1995, PHYS REV LETT, V74, P2303 48260 LYONS KB, 1990, PHYS REV LETT, V64, P2949 48261 MILLIS AJ, 1994, PHYS REV B, V49, P15408 48262 MONTHOUX P, 1994, PHYS REV B, V49, P4261 48263 MONTHOUX P, 1994, PHYS REV LETT, V72, P1874 48264 PALSTRA TTM, 1988, PHYS REV LETT, V61, P1662 48265 REN Y, 1995, PHYS REV LETT, V74, P3680 48266 RUGGIERO S, 1982, PHYS REV B, V26, P4897 48267 SOININEN PI, 1994, PHYS REV B, V50, P13883 48268 SPIELMAN S, 1990, PHYS REV LETT, V65, P123 48269 TINKHAM M, 1964, GROUP THEORY QUANTUM 48270 TSUEI CC, 1994, PHYS REV LETT, V72, P1084 48271 TSUEI CC, 1994, PHYS REV LETT, V73, P593 48272 VARMA CM, 2000, PHYS REV B, V61, R3804 48273 VOLOVIK GE, 1993, JETP LETT, V58, P469 48274 WEBER HJ, 1990, SOLID STATE COMMUN, V76, P511 48275 WELP U, 1989, PHYS REV LETT, V62, P1908 48276 WOLLMAN DA, 1993, PHYS REV LETT, V71, P2134 48277 ZHANG FC, 1988, PHYS REV B, V37, P3759 48278 ZHANG SC, 1997, SCIENCE, V275, P1089 48279 ZHOU SP, 2000, PHYSICA C, V339, P258 48280 ZHOU SP, 2001, CHINESE PHYS, V10, P541 48281 NR 41 48282 TC 0 48283 SN 0896-1107 48284 J9 J SUPERCOND 48285 JI J. Supercond. 48286 PD AUG 48287 PY 2002 48288 VL 15 48289 IS 4 48290 BP 307 48291 EP 313 48292 PG 7 48293 SC Physics, Applied; Physics, Condensed Matter 48294 GA 588AL 48295 UT ISI:000177677200012 48296 ER 48297 48298 PT J 48299 AU Tian, ZX 48300 Tang, LM 48301 Liu, ZX 48302 TI Element functions of discrete operator difference method 48303 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 48304 DT Article 48305 DE discrete operator difference method; element function; reproduce exactly 48306 AB The discrete scheme called discrete operator difference for 48307 differential equations was given. Several difference elements for plate 48308 bending problems and plane problems were given. By investigating these 48309 elements, the ability of the discrete forms expressing to the element 48310 functions was talked about. In discrete operator difference method, the 48311 displacements of the elements can be reproduced exactly in the discrete 48312 forms whether the displacements are conforming or not. According to 48313 this point, discrete operator difference method is a method with good 48314 performance. 48315 C1 Shanghai Univ, Ctr CIMS & Robot, Shanghai 200072, Peoples R China. 48316 Dalian Univ Technol, Dept Engn Mech, Dalian 116024, Peoples R China. 48317 Shanghai Jiao Tong Univ, Dept Engn Mech, Shanghai 200030, Peoples R China. 48318 RP Tian, ZX, Shanghai Univ, Ctr CIMS & Robot, Shanghai 200072, Peoples R 48319 China. 48320 CR CHEN ZY, 1993, NUMERICAL MATH J CHI, V15, P182 48321 LI RH, 1994, GEN DIFFERENCE METHO 48322 TANG LM, 1973, J DALIAN U TECHNOLOG, V13, P27 48323 TANG LM, 1973, J DALIAN U TECHNOLOG, V13, P7 48324 TANG LM, 2001, J DALIAN U TECHNOLOG, V41, P1 48325 TIAN ZX, 2000, CHINESE J COMPUTATIO, V17, P163 48326 NR 6 48327 TC 0 48328 SN 0253-4827 48329 J9 APPL MATH MECH-ENGL ED 48330 JI Appl. Math. Mech.-Engl. Ed. 48331 PD JUN 48332 PY 2002 48333 VL 23 48334 IS 6 48335 BP 619 48336 EP 626 48337 PG 8 48338 SC Mathematics, Applied; Mechanics 48339 GA 586FT 48340 UT ISI:000177574500001 48341 ER 48342 48343 PT J 48344 AU He, JH 48345 TI A note on delta-perturbation expansion method 48346 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 48347 DT Article 48348 DE perturbation method; artificial parameter; nonlinear equation; homotropy 48349 ID STRONGLY NONLINEAR OSCILLATIONS; LINDSTEDT-POINCARE METHODS 48350 AB The Delta-perturbation expansion method, a kind of new perturbation 48351 technique depending upon an artificial parameter Delta was studied. The 48352 study reveals that the method exits some advantages, but also exits 48353 some limitations. To overcome the limitations, the so-called linearized 48354 perturbation method proposed by HE Ji-huan can be powerfully applied. 48355 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, LNM, Inst Mech, Shanghai 200072, Peoples R China. 48356 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, LNM, Inst Mech, 48357 Shanghai 200072, Peoples R China. 48358 CR ACTON JR, 1985, SOLVING EQUATIONS PH 48359 ANDRIANOV I, 2000, INT J NONLINEAR SCI, V1, P327 48360 AWREJCEWICZ J, 1998, ASYMPTOTIC APPROACHE 48361 BENDER CM, 1989, J MATH PHYS, V30, P1447 48362 HE JH, 1999, COMPUT METHOD APPL M, V178, P257 48363 HE JH, 2000, INT J NONLINEAR MECH, V35, P37 48364 HE JH, 2000, INT J NONLINEAR SCI, V1, P51 48365 HE JH, 2000, J SOUND VIB, V229, P1257 48366 HE JH, 2001, INT J NONLINEAR SCI, V2, P257 48367 HE JH, 2001, INT J NONLINEAR SCI, V2, P317 48368 HE JH, 2001, J VIB CONTROL, V7, P631 48369 HE JH, 2002, INT J NONLINEAR MECH, V37, P309 48370 HE JH, 2002, INT J NONLINEAR MECH, V37, P315 48371 NR 13 48372 TC 3 48373 SN 0253-4827 48374 J9 APPL MATH MECH-ENGL ED 48375 JI Appl. Math. Mech.-Engl. Ed. 48376 PD JUN 48377 PY 2002 48378 VL 23 48379 IS 6 48380 BP 634 48381 EP 638 48382 PG 5 48383 SC Mathematics, Applied; Mechanics 48384 GA 586FT 48385 UT ISI:000177574500003 48386 ER 48387 48388 PT J 48389 AU Chen, DY 48390 Zhang, DJ 48391 Deng, SF 48392 TI Remarks on some solutions of soliton equations 48393 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN 48394 DT Article 48395 DE soliton equation; solutions; Hirota method 48396 ID DE VRIES EQUATION 48397 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 48398 RP Chen, DY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 48399 CR CHEN DY, 2002, J PHYS SOC JPN, V71, P658 48400 CHEN DY, 2002, PREPRINT 48401 DENG SF, 2001, J PHYS SOC JPN, V70, P3174 48402 DENG SF, 2002, PREPRINT 48403 KONNO K, 2002, J PHYS SOC JPN, V71, P2071 48404 KOVALYOV M, 1996, APPL MATH LETT, V9, P89 48405 OLEMEDILLA E, 1987, PHYSICA D, V25, P330 48406 TAKAHASHI M, 1989, J PHYS SOC JPN, V58, P3505 48407 TSURU H, 1984, J PHYS SOC JPN, V53, P2908 48408 WADATI M, 1982, J PHYS SOC JPN, V51, P2029 48409 ZHANG DJ, 2002, PREPRINT 48410 NR 11 48411 TC 6 48412 SN 0031-9015 48413 J9 J PHYS SOC JPN 48414 JI J. Phys. Soc. Jpn. 48415 PD AUG 48416 PY 2002 48417 VL 71 48418 IS 8 48419 BP 2072 48420 EP 2073 48421 PG 2 48422 SC Physics, Multidisciplinary 48423 GA 584NN 48424 UT ISI:000177473900046 48425 ER 48426 48427 PT J 48428 AU Wang, ZM 48429 Xia, YB 48430 Yang, Y 48431 Fang, ZJ 48432 Wang, LJ 48433 Ju, JH 48434 Fan, YM 48435 Zhang, WL 48436 TI Lower gas pressure enhanced diamond nucleation on alumina by microwave 48437 plasma chemical vapor deposition 48438 SO JOURNAL OF INORGANIC MATERIALS 48439 DT Article 48440 DE diamond film; MPCVD; alumina substrates; gas pressure; nucleation 48441 ID FILMS 48442 AB Under lower gas pressure, the high-density nucleation of diamond films 48443 on alumina was successfully achieved by microwave plasma-enhanced 48444 chemical vapor deposition (MPCVD). It was found that the nucleation 48445 density increased with the decreases of gas pressure. Based on these 48446 results, a kinetic model for diamond nucleation in MPCVD system was 48447 proposed. The critical gas pressure corresponding to the highest 48448 nucleation density was also discussed. 48449 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 48450 RP Wang, ZM, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R 48451 China. 48452 CR BACHMANN PK, 1988, DIAMOND DIAMOND LIKE, P99 48453 IIJIMA S, 1990, APPL PHYS LETT, V57, P2646 48454 JIANG X, 2000, DIAM RELAT MATER, V9, P1640 48455 MO Y, 1998, J CRYST GROWTH, V191, P459 48456 WANG JJ, 1996, CHINESE PHYS LETT, V13, P473 48457 YUGO S, 1991, APPL PHYS LETT, V58, P1036 48458 NR 6 48459 TC 1 48460 SN 1000-324X 48461 J9 J INORG MATER 48462 JI J. Inorg. Mater. 48463 PD JUL 48464 PY 2002 48465 VL 17 48466 IS 4 48467 BP 765 48468 EP 770 48469 PG 6 48470 SC Materials Science, Ceramics 48471 GA 581TR 48472 UT ISI:000177309800020 48473 ER 48474 48475 PT J 48476 AU Xu, H 48477 Ni, JS 48478 Zhu, MY 48479 Zhou, BX 48480 Dong, YD 48481 Xiao, XS 48482 TI Crystallization behavior of melt-spun NdFeB permanent magnets 48483 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA 48484 DT Article 48485 DE nanocomposite magnet; crystallization behavior; activation energy 48486 ID ND2FE14B/FE3B MAGNET; FIELD TREATMENT 48487 AB The crystallization behavior of melt-spun Nd8.5Fe78Co5Cu1Nb1B6.5 48488 ribbons was investigated using dynamic differential scanning 48489 calorimetry (DSC) and X-ray diffractometry (XRD). It was found that the 48490 as-spun ribbons crystallize in two steps: at first the Nd3Fe62B14 + 48491 alpha-Fe phases are formed and subsequently Nd3Fe62B14 transformed to 48492 Nd2Fe14B and a-Fe upon heating above 680 US. The effective activation 48493 energy of two crystallization peaks are 332.0 kJ/mol and 470.5 kJ/mol, 48494 respectively. As the wheel speed increases, the magnetic properties of 48495 the magnet change obviously. When the wheel speed is 18 m/s, the best 48496 magnetic properties of the magnet was obtained after the sample was 48497 annealed at 690 degreesC for 8 min: B-x = 0.74T, H-i(c) = 421.7 kA/m, 48498 (BH)(max) = 64.5 kJ/m(3). 48499 C1 Shanghai Univ, Inst Mat Sci & Engn, Shanghai 200072, Peoples R China. 48500 CR CHANG WC, 1998, J APPL PHYS, V83, P2147 48501 COEHOORN R, 1988, J PHYS-PARIS, V49, P669 48502 COEHOORN R, 1989, J MAGN MAGN MATER, V80, P101 48503 GAO YH, 1998, J MAGN MAGN MATER, V186, P97 48504 SCHREFL T, 1994, PHYS REV B, V49, P6100 48505 SKOMSKI R, 1993, IEEE T MAGN, V29, P2860 48506 YANG CJ, 1996, IEEE T MAGN 2, V32, P4428 48507 YANG CJ, 1997, J MAGN MAGN MATER, V166, P243 48508 NR 8 48509 TC 1 48510 SN 1003-6326 48511 J9 TRANS NONFERROUS METAL SOC CH 48512 JI Trans. Nonferrous Met. Soc. China 48513 PD AUG 48514 PY 2002 48515 VL 12 48516 IS 4 48517 BP 720 48518 EP 722 48519 PG 3 48520 SC Metallurgy & Metallurgical Engineering 48521 GA 581WL 48522 UT ISI:000177317200034 48523 ER 48524 48525 PT J 48526 AU Ni, JS 48527 Xu, H 48528 Zhu, MY 48529 Li, Q 48530 Zhou, BX 48531 Dong, YD 48532 TI Nanocrystalline Nd2Fe14B/alpha-Fe permanent magnet 48533 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA 48534 DT Article 48535 DE Nd-Fe-B; permanent magnet; nanocrystalline; grain size 48536 ID NANOCOMPOSITE 48537 AB N8.5Fe75Co5Cu1Zr3Nb1B6.5 bonded magnet was prepared by melt-spinning 48538 (v(s) = 18 m/s) and subsequent heat treatment (670 degreesC, 4 min). 48539 Excellent magnetic properties of the bonded magnet were achieved: B-r = 48540 0.68T, H-i(c) = 620.3 kA/m, (BH)(max) = 74 kJ/m(3). The addition of Cu 48541 and Zr elements shows to be advantageous in improving an intrinsic 48542 coercivity and squareness of hysteresis loop, as well as energy 48543 product. It has a remarkable remanence enhancement and the isctropic 48544 saturation remanence ratio M-r/M-s is 0.83. 48545 C1 Shanghai Univ, Inst Mat Sci & Engn, Shanghai 200072, Peoples R China. 48546 CR CHANG WC, 1996, IEEE T MAGN 2, V32, P4425 48547 COEHOORN R, 1989, J MAGN MAGN MATER, V80, P101 48548 ECKART F, 1991, IEEE T MAGN, V27, P3588 48549 JURCZYK M, 1998, J MAGN MAGN MATER, V185, P66 48550 PANAGIOTOPOULOS I, 1996, J APPL PHYS 2A, V79, P4827 48551 XU H, 2001, NEW MAT SCI ENG 2000, P319 48552 YONEYAMA T, 1990, IEEE T MAGN, V26, P1963 48553 ZHANG MG, 1999, ACTA METALL SIN, V35, P777 48554 NR 8 48555 TC 0 48556 SN 1003-6326 48557 J9 TRANS NONFERROUS METAL SOC CH 48558 JI Trans. Nonferrous Met. Soc. China 48559 PD AUG 48560 PY 2002 48561 VL 12 48562 IS 4 48563 BP 723 48564 EP 725 48565 PG 3 48566 SC Metallurgy & Metallurgical Engineering 48567 GA 581WL 48568 UT ISI:000177317200035 48569 ER 48570 48571 PT J 48572 AU Cheng, XY 48573 Wan, XJ 48574 TI Effect of atomic ordering on environmental embrittlement of (Co, 48575 Fe)(3)V alloy in gaseous hydrogen 48576 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA 48577 DT Article 48578 DE (Co,Fe)(3)V alloy; atomic ordering; environmental embrittlement; 48579 hydrogen gas 48580 ID (CO,FE)(3)V 48581 AB The diffusible hydrogen contents in precharged (Co, Fe)(3)V alloy were 48582 measured. It is found that atomic ordering can not promote hydrogen 48583 penetration in the (Co, Fe)(3)V alloy. The ultimate tensile strength 48584 (UTS) and ductilities in various condition were also investigated. The 48585 results show that the UTS and elongation of disordered alloy are higher 48586 than that of ordered one with fixed diffusible hydrogen content and 48587 (Co, Fe)(3)V alloy with ordered structure is highly susceptible to the 48588 embrittlement in hydrogen gas. The factor which may affect the 48589 susceptibility to the embrittlement of (Co, Fe)(3)V alloy in hydrogen 48590 gas is mainly due to that the atomic ordering may accelerate the 48591 kinetics of the catalytic reaction for the dissociation of molecular 48592 hydrogen into atomic hydrogen. However, it can not be roled out that 48593 atomic ordering intensifies planar slip and restricts cross-slip at the 48594 grain boundaries and enhances the susceptibility of the alloy to 48595 hydrogen embrittlement. 48596 C1 Shanghai Univ, Inst Mat Res, Shanghai 200072, Peoples R China. 48597 CR CAMUS GM, 1989, ACTA METALL, V37, P1497 48598 CHENG XY, 2001, SCRIPTA MATER, V44, P325 48599 CHENG XY, 2002, SCRIPTA MATER, V46, P465 48600 DUS R, 1967, ACTA METALL, V15, P1611 48601 GRIFFITHS M, 1957, CONTACT CATALYSIS 48602 HAMMER B, 1995, SURF SCI, V343, P211 48603 KURUVILLA AK, 1982, 3RD P INT C HYDR MET, V2, P629 48604 LIU CT, 1989, SCRIPTA METALL, V23, P875 48605 MAIER HJ, 1987, ACTA METALL, V35, P875 48606 NISHIMURA C, 1996, SCRIPTA MATER, V35, P1441 48607 NORBERG RE, 1952, PHYS REV, V86, P745 48608 SHUTT RC, 1985, WELD J, V64, P19 48609 TAKASUGI T, 1986, ACTA METALL, V34, P607 48610 TAKASUGI T, 1991, J MATER SCI, V26, P3032 48611 TAKASUGI T, 1992, J MATER RES, V7, P2739 48612 TAKASUGI T, 1994, INTERMETALLICS, V2, P2225 48613 ULMER DG, 1991, ACTA METALL MATER, V39, P1237 48614 WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473 48615 NR 18 48616 TC 0 48617 SN 1003-6326 48618 J9 TRANS NONFERROUS METAL SOC CH 48619 JI Trans. Nonferrous Met. Soc. China 48620 PD AUG 48621 PY 2002 48622 VL 12 48623 IS 4 48624 BP 785 48625 EP 791 48626 PG 7 48627 SC Metallurgy & Metallurgical Engineering 48628 GA 581WL 48629 UT ISI:000177317200046 48630 ER 48631 48632 PT J 48633 AU Huang, SG 48634 Li, L 48635 Biest, OVD 48636 Vleugels, J 48637 Wang, PL 48638 TI Thermodynamic assessment of the ZrO2-CeO2 and ZrO2-CeO1.5 binary system 48639 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 48640 DT Article 48641 DE ZrO2-CeO1.5; thermodynamic; phase diagram 48642 ID PHASE-DIAGRAM; TRANSFORMATION; OPTIMIZATION 48643 AB An optimal set of thermodynamic parameters of the ZrO2-CeO1.5 system 48644 has been obtained using phase diagram data by modern CALPHAD 48645 (CALculation of PHAse Diagrams) technique. The liquid and other solid 48646 solution phases were regarded as substitutional solution. The ordered 48647 Zr2Ce2O7 phase was treated as a stoichiometric compound. The ZrO2-CeO2 48648 system has been re-optimized with new reference state. A comparison 48649 between the ZrO2-CeO2 system and ZrO2-CeO1.5 system has been made 48650 through calculation. With the calculation, the experimental information 48651 is well reproduced and a good agreement is obtained. 48652 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China. 48653 Katholieke Univ Leuven, Dept Mat & Met, B-3001 Heverlee, Belgium. 48654 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China. 48655 RP Li, L, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R 48656 China. 48657 CR DU Y, 1991, J AM CERAM SOC, V74, P1569 48658 DU Y, 1994, SCRIPTA METALL MATER, V31, P327 48659 DURAN P, 1990, J MATER SCI, V25, P5001 48660 HANNINK RHJ, 2000, J AM CERAM SOC, V83, P461 48661 HEUSSNER KH, 1989, J AM CERAM SOC, V72, P1044 48662 KAUFMAN L, 1978, CALPHAD, V2, P35 48663 LEONOV AI, 1966, IAN SSSR NEORG MATER, V2, P1047 48664 LI L, IN PRESS J EUROPEAN 48665 LI L, 1996, J MATER SCI TECHNOL, V12, P159 48666 LI L, 2001, J MATER SCI TECHNOL, V17, P529 48667 LINDEMER TB, 1986, J AM CERAM SOC, V69, P867 48668 LONGO V, 1973, J AM CERAM SOC DISCU, V56, P600 48669 LUKAS HL, 1977, CALPHAD, V1, P225 48670 PANKRATZ LB, 1982, BUREAU MINES B, V672 48671 ROUANET MA, 1968, COMP REND HEBD SEA C, V267, P1581 48672 TANI E, 1983, J AM CERAM SOC, V66, P506 48673 YASHIMA M, 1994, J AM CERAM SOC, V77, P1869 48674 YOSHIMURA M, 1972, B TOKYO I TECHNOL, V108, P25 48675 NR 18 48676 TC 1 48677 SN 1005-0302 48678 J9 J MATER SCI TECHNOL 48679 JI J. Mater. Sci. Technol. 48680 PD JUL 48681 PY 2002 48682 VL 18 48683 IS 4 48684 BP 325 48685 EP 327 48686 PG 3 48687 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 48688 Engineering 48689 GA 582LD 48690 UT ISI:000177351700011 48691 ER 48692 48693 PT J 48694 AU Sheng, WC 48695 TI Two-dimensional Riemann problem for scalar conservation laws 48696 SO JOURNAL OF DIFFERENTIAL EQUATIONS 48697 DT Article 48698 AB Using the generalized characteristic analysis method, we study the 48699 two-dimensional Riemann problem for scalar conservation laws, which is 48700 nonconvex along the y direction, and interactions of its elementary 48701 waves, give the classification of initial discontinuities and construct 48702 all Riemann solutions, which Riemann data are two or three pieces of 48703 constants. All kinds of Guckenheimer structure appear in the solutions 48704 and the necessary and sufficient condition of appearance of it is 48705 given. (C) 2002 Elsevier Science (USA). 48706 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 48707 RP Sheng, WC, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 48708 CR CHANG T, 1989, PITMAN MONOGRA SURVE, V41 48709 CHEN GQ, 1996, J DIFFER EQUATIONS, V127, P124 48710 CONWAY E, 1966, COMMUN PUR APPL MATH, V19, P95 48711 GUCKENHEIMER J, 1975, ARCH RATIONAL MECH A, V59, P281 48712 HSIAO L, 1986, STRUCTURE SOLUTION 2 48713 KRUZKOV SN, 1970, MATH USSR SB, V10, P271 48714 LI J, 1999, PITMAN MONOGR SURVEY, V98 48715 LINDQUIST WB, 1986, SIAM J MATH ANAL, V17, P1178 48716 WAGNER D, 1983, SIAM J MATH ANAL, V38, P534 48717 ZHANG P, 1999, J DIFFER EQUATIONS, V152, P409 48718 ZHANG T, 1989, T AM MATH SOC, V312, P589 48719 NR 11 48720 TC 0 48721 SN 0022-0396 48722 J9 J DIFFERENTIAL EQUATIONS 48723 JI J. Differ. Equ. 48724 PD JUL 20 48725 PY 2002 48726 VL 183 48727 IS 1 48728 BP 239 48729 EP 261 48730 PG 23 48731 SC Mathematics 48732 GA 582HH 48733 UT ISI:000177344100010 48734 ER 48735 48736 PT J 48737 AU Gao, Y 48738 Xia, ZQ 48739 Zhang, LW 48740 TI Kernelled quasidifferential for a quasidifferentiable function in 48741 two-dimensional space 48742 SO JOURNAL OF CONVEX ANALYSIS 48743 DT Article 48744 DE quasidifferential calculus; kernelled quasidifferential; minimal 48745 quasidifferential; nonsmooth analysis 48746 AB For a quasidifferentiable function f defined on R-2, it is proved, in 48747 the sense of Demyanov and Rubinov, that the following assertion 48748 [GRAPHICS] 48749 in this paper, where D f (x) denotes the set of all quasidifferentials 48750 of fat x. It is shown that this way can be viewed as an approach to 48751 determining or choosing a representative of the equivalent class of 48752 quasidifferentials of fat x, in the two-dimensional case. 48753 C1 Shanghai Univ Sci & Technol, Sch Management, Shanghai 200093, Peoples R China. 48754 Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China. 48755 RP Gao, Y, Shanghai Univ Sci & Technol, Sch Management, Shanghai 200093, 48756 Peoples R China. 48757 CR CRZYBOWSKI J, 1994, ARCH MATH, V63, P173 48758 DEMYANOV VF, 1995, CONSTRUCTURE NONSMOO 48759 DENG MR, 1991, CHINESE J OPERATIONS, V10, P65 48760 GAO Y, 1988, J MATH RES EXPOSITIO, V8, P152 48761 PALLASCHKE D, 1991, B POLISH ACAD SCI MA, V39, P1 48762 PALLASCHKE D, 1993, Z OPER RES, V37, P129 48763 PALLASCHKE D, 1994, MATH PROGRAM, V66, P161 48764 SCHOLTES S, 1992, MATHEMATIKA, V39, P267 48765 XIA ZQ, 1987, WP8789 IIASA 48766 XIA ZQ, 1993, DEMONSTRATIO MATH, V26, P159 48767 XIA ZQ, 1993, PUMA, V4, P211 48768 NR 11 48769 TC 2 48770 SN 0944-6532 48771 J9 J CONVEX ANAL 48772 JI J. Convex Anal. 48773 PY 2001 48774 VL 8 48775 IS 2 48776 BP 401 48777 EP 408 48778 PG 8 48779 SC Mathematics 48780 GA 582HX 48781 UT ISI:000177345700006 48782 ER 48783 48784 PT J 48785 AU Zhang, LW 48786 Xia, ZQ 48787 Gao, Y 48788 Wang, MZ 48789 TI Star-kernels and star-differentials in quasidifferential analysis 48790 SO JOURNAL OF CONVEX ANALYSIS 48791 DT Article 48792 DE quasidifferentiable function; directional derivative; 48793 quasidifferential; kernelled quasidifferential; star-kernel; 48794 star-differential; star-shaped set 48795 AB This paper is devoted to the study of quasidifferential structure. 48796 Three concepts, kernelled quasidifferential, star-kernel and 48797 star-differential, are proposed. Kernelled quasidifferential is used to 48798 describe a special class of quasidifferentiable functions, which covers 48799 convex and concave functions. A sufficiency theorem and a sufficiency 48800 and necessity theorem for a quasi-kernel being a kernelled 48801 quasidifferential are proven. The notion of star-kernel is employed if 48802 the quasi-kernel is not a kernelled quasidifferential. The existence 48803 theorem for a star-kernel of a quasidifferentiable function is 48804 established, which shows that the star-kernel is a pair of star-shaped 48805 sets and the sub-/super-derivative is expressed by the gauge of a 48806 star-shaped set. The notion of star-differential is used to describe 48807 the differential of the class of directionally differentiable functions 48808 which contains the class of quasidifferentiable functions. A 48809 star-differential is also a pair of star-shaped sets and its 48810 operational properties are favourable. A representative of the 48811 star-differential can be easily obtained by decomposing the directional 48812 derivative into the difference of its positive and negative part. 48813 C1 Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China. 48814 Dalian Univ Technol, Dept Appl Math, CORA, Dalian 116024, Peoples R China. 48815 Shanghai Univ Sci & Technol, Sch Management, Shanghai 200093, Peoples R China. 48816 RP Zhang, LW, Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, POB 48817 2719, Beijing 100080, Peoples R China. 48818 CR CRZYBOWSKI J, 1994, ARCH MATH, V63, P173 48819 DEMYANOV VF, 1980, DOKL AKAD NAUK SSSR, V250, P21 48820 DEMYANOV VF, 1986, QUASIDIFFERENTIAL CA 48821 DEMYANOV VF, 1995, CONSTRUCTIVE NONSMOO, V7 48822 DENG MY, 1991, CHINESE J OPERATIONS, V1, P65 48823 GAO Y, 1988, J MATH RES EXPOSITIO, V8, P152 48824 GAO Y, 1997, KERNELLED QUASIDIFFE 48825 GAO Y, 1998, SOOCHOW J MATH, V24, P211 48826 PALLASCHKE D, 1991, B POLISH ACAD SCI MA, V39, P1 48827 PALLASCHKE D, 1993, Z OPER RES, V37, P129 48828 PALLASCHKE D, 1994, MATH PROGRAM, V66, P161 48829 PALLASCHKE D, 1996, J CONVEX ANAL, V3, P83 48830 ROCKAFELLAR RT, 1970, CONVEX ANAL 48831 ROCKAFELLAR RT, 1988, T AM MATH SOC, V307, P75 48832 RUBINOV AM, 1986, MATH PROGRAM STUD, V29, P176 48833 SCHOLTES S, 1992, MATHEMATIKA, V39, P267 48834 XIA ZQ, 1987, WP8766 IIASA 48835 NR 17 48836 TC 2 48837 SN 0944-6532 48838 J9 J CONVEX ANAL 48839 JI J. Convex Anal. 48840 PY 2002 48841 VL 9 48842 IS 1 48843 BP 139 48844 EP 158 48845 PG 20 48846 SC Mathematics 48847 GA 583NH 48848 UT ISI:000177413600007 48849 ER 48850 48851 PT J 48852 AU Chen, GR 48853 Yang, L 48854 Liu, ZR 48855 TI Anticontrol of chaos for continuous-time systems 48856 SO IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND 48857 COMPUTER SCIENCES 48858 DT Article 48859 DE anticontrol; chaos; impulsive control 48860 ID FEEDBACK 48861 AB This paper studies the anticontrol problem of making a continuous-time 48862 system chaotic by using impulsive control. The controller is designed 48863 to ensure the controlled orbit be bounded and, meanwhile, the 48864 controlled system have positive Lyapunov exponents, which are achieved 48865 near a stable limit cycle of the system, One illustrative example is 48866 given. 48867 C1 City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China. 48868 Suzhou Univ, Dept Elect Engn, Suzhou, Peoples R China. 48869 Shanghai Univ, Dept Math, Shanghai, Peoples R China. 48870 RP Chen, GR, City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, 48871 Peoples R China. 48872 CR CHEN G, 1998, CHAOS ORDER METHODOL 48873 CHEN G, 1999, CONTROLLING CHAOS BI 48874 CHEN GR, 1998, INT J BIFURCAT CHAOS, V8, P1585 48875 PARKER TS, 1989, PRACTICAL NUMERICAL 48876 WANG XF, 2000, CHAOS, V10, P771 48877 WANG XF, 2000, INT J BIFURCAT CHAOS, V10, P549 48878 YANG L, 2002, IN PRESS INT J BIFUR, V12 48879 NR 7 48880 TC 3 48881 SN 0916-8508 48882 J9 IEICE TRANS FUND ELEC COM COM 48883 JI IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 48884 PD JUN 48885 PY 2002 48886 VL E85A 48887 IS 6 48888 BP 1333 48889 EP 1335 48890 PG 3 48891 SC Computer Science, Hardware & Architecture; Computer Science, 48892 Information Systems; Engineering, Electrical & Electronic 48893 GA 581YJ 48894 UT ISI:000177322400020 48895 ER 48896 48897 PT J 48898 AU Lu, TS 48899 Yi, YH 48900 Zhang, ZG 48901 Zhang, ZQ 48902 Hua, N 48903 TI A new 10-hydroxyl anthrone glycoside from Cassia siamea Lam. 48904 SO CHINESE CHEMICAL LETTERS 48905 DT Article 48906 DE Cassia siamea; anthrone; 48907 1,8,10-trihydroxyl-1-O-beta-D-glucopyranosyl-3-methyl-10-C (S) -beta-D; 48908 glucopyranosyl-anthrone-9 1 48909 ID PRODUCTS 48910 AB A new 10-hydroxyl anthrone glycoside, 1, 8, 10 - 48911 trihydroxyl-1-O-beta-D-glucopyranosyl-3-i-nethyl- 10- C (S) - beta - D- 48912 glucopyranosyl-anthrone-9 1 was isolated from the stein of Cassia 48913 siamea Lam. The structure was elucidated by spectral evidences, 48914 especially by 2 D techniques. 48915 C1 Pharm Dept 88th Hosp PLA, Shandong 271000, Peoples R China. 48916 Shanghai Univ, Mil Med 2, Sch Pharm, Ctr Marine Drug Res, Shanghai 200433, Peoples R China. 48917 RP Lu, TS, Pharm Dept 88th Hosp PLA, Shandong 271000, Peoples R China. 48918 CR ERMIAS D, 1996, PHYTOCHEMISTRY, V42, P1683 48919 LU TS, 2001, CHINESE CHEM LETT, V12, P703 48920 MANITTO P, 1993, J CHEM SOC P1, P1577 48921 MANITTO P, 1995, J NAT PRODUCTS, V58, P419 48922 RAUWALD HW, 1992, PLANTA MED, V58, P259 48923 NR 5 48924 TC 0 48925 SN 1001-8417 48926 J9 CHIN CHEM LETT 48927 JI Chin. Chem. Lett. 48928 PD AUG 48929 PY 2002 48930 VL 13 48931 IS 8 48932 BP 731 48933 EP 733 48934 PG 3 48935 SC Chemistry, Multidisciplinary 48936 GA 583CE 48937 UT ISI:000177387300011 48938 ER 48939 48940 PT J 48941 AU Pu, DG 48942 Tian, WW 48943 TI A class of DFP algorithms with revised search direction 48944 SO NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 48945 DT Article 48946 DE DFP algorithm; line search; convergence; convergence rate 48947 ID QUASI-NEWTON METHODS; UNCONSTRAINED OPTIMIZATION; BROYDEN FAMILY; BFGS; 48948 CONVERGENCE 48949 AB in this paper, we discuss the convergence of the DFP algorithm with 48950 revised search direction. We prove that the algorithm is globally 48951 convergent for continuously differentiable functions and the rate of 48952 convergence of the algorithm is one-step superlinear and n-step 48953 second-order for uniformly convex objective functions. 48954 C1 Tongji Univ, Shanghai 200092, Peoples R China. 48955 Shanghai Univ, Shanghai 200041, Peoples R China. 48956 CR ALBAALI M, 1993, J OPTIMIZ THEORY APP, V77, P127 48957 ARMAND P, 2000, SIAM J OPTIMIZ, V11, P199 48958 BROYDEN CG, 1965, MATH COMPUT, V19, P577 48959 BYRD RH, 1987, SIAM J NUMER ANAL, V24, P1171 48960 DAVIDON WC, 1959, VARIABLE METRIC ALGO 48961 DAVIDON WC, 1975, MATH PROGRAM, V9, P1 48962 DENNIS JE, 1977, SIAM REV, V19, P46 48963 DIXON LCW, 1972, J OPTIMIZATION THEOR, V10, P34 48964 FLETCHER R, 1963, COMPUT J, V6, P163 48965 FLETCHER R, 1987, UNCONSTRAINED OPTIMI 48966 HU YF, 1994, J OPTIM THEORY APPL, V83, P421 48967 LALEE M, 1993, SIAM J OPTIMIZ, V3, P637 48968 MIFFLIN RB, 1994, MATH PROGRAM, V65, P247 48969 OREN SS, 1972, THESIS STANFORD U 48970 OREN SS, 1974, J OPT THEORY APPL, V37, P137 48971 POWELL MJD, 1971, J I MATHS APPLICS, V7, P21 48972 POWELL MJD, 1976, NONLINEAR PROGRAMMIN, V6 48973 POWELL MJD, 1983, MATH PROGRAMMING STA 48974 POWELL MJD, 1984, LECT NOTES MATH, V1066, P122 48975 POWELL MJD, 1986, MATH PROGRAM, V34, P34 48976 POWELL MJD, 1987, MATH PROGRAM, V38, P29 48977 PU D, 1990, J ACTA MATH APPL SIN, V13, P118 48978 PU D, 1990, J ANN OPERATIONS RES, V24, P175 48979 PU D, 1992, ASIA PACIFIC J OPERA, V9, P207 48980 PU D, 1994, J COMPUTATIONAL MATH, V8, P366 48981 PU D, 1995, J CHINESE U, V10, P313 48982 PU D, 2000, J ACTA MATH APPLICAT, V16, P313 48983 PU D, 2002, J OPTIMIZ THEORY APP, V112, P187 48984 PU DG, 1997, ASIA PAC J OPER RES, V14, P93 48985 QI HD, 2000, SIAM J OPTIMIZ, V11, P113 48986 SIEGEL D, 1993, MATH PROGRAM, V60, P167 48987 SIEGEL D, 1994, MATH PROGRAM, V66, P45 48988 SPEDICATO E, 1976, J OPTIMIZATION THEOR, V20, P315 48989 SPEDICATO E, 1978, MATH PROG, V15, P123 48990 WOLFE P, 1971, SIAM REV, V13, P185 48991 ZHANG Y, 1988, IMA J NUMER ANAL, V8, P487 48992 ZOUTENDIJK G, 1970, INTEGER NONLINEAR PR, P37 48993 NR 37 48994 TC 0 48995 SN 0163-0563 48996 J9 NUMER FUNC ANAL OPTIMIZ 48997 JI Numer. Funct. Anal. Optim. 48998 PD MAY-JUN 48999 PY 2002 49000 VL 23 49001 IS 3-4 49002 BP 383 49003 EP 400 49004 PG 18 49005 SC Mathematics, Applied 49006 GA 580PT 49007 UT ISI:000177243500010 49008 ER 49009 49010 PT J 49011 AU Bai, YJ 49012 Xu, XG 49013 Liu, YX 49014 Xiao, LM 49015 Geng, GL 49016 TI Structural change due to martensite aging of CuZnAlMnNi shape memory 49017 alloy 49018 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES 49019 MICROSTRUCTURE AND PROCESSING 49020 DT Article 49021 DE martensite aging; CuZnAlMnNi shape memory alloy; alpha-phase; 49022 transmission electron microscopy 49023 ID 18R MARTENSITE; AL; TRANSFORMATION; STABILIZATION 49024 AB The microstructures of a CuZnAlMnNi shape memory alloy after one year 49025 aging in martensite phase were investigated by transmission electron 49026 microscopy. It was found that the substructure of stacking faults in 49027 the original martensite plates becomes indistinct, and the amount 49028 decreases. However, the equilibrium face centered cubic (fcc) 49029 alpha-phase can be observed forming at martensite plate boundaries or 49030 inside the plates. The structural variation during aging is responsible 49031 for the degradation of shape memory property and transformation 49032 temperatures when Cu-based SMA actuators are in use. (C) 2002 Elsevier 49033 Science B.V. All rights reserved. 49034 C1 Shanghai Univ Sci & Technol, Dept Mech, Shandong 250031, Peoples R China. 49035 Shandong Univ, Inst Mat Sci & Engn, Shandong 250061, Peoples R China. 49036 RP Bai, YJ, Shanghai Univ Sci & Technol, Dept Mech, Shandong 250031, 49037 Peoples R China. 49038 CR ABUARAB A, 1988, ACTA METALL, V36, P2627 49039 ANDRADE M, 1984, ACTA METALL, V32, P1809 49040 BAI YJ, 2000, MAT SCI ENG A-STRUCT, V284, P25 49041 GOTTHARDT R, 1982, J PHYS S12, V43, P667 49042 KENNON NF, 1982, METALL T A, V13, P551 49043 LOVEY FC, 1984, PHYS STATUS SOLIDI A, V86, P553 49044 SAULE F, 1995, ACTA METALL MATER, V43, P2373 49045 VANHUMBEECK J, 1984, SCRIPTA METALL, V18, P893 49046 WEI ZG, 1997, METALL MATER TRANS A, V28, P955 49047 WU MH, 1989, ACTA METALL, V37, P1821 49048 NR 10 49049 TC 0 49050 SN 0921-5093 49051 J9 MATER SCI ENG A-STRUCT MATER 49052 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 49053 PD SEP 1 49054 PY 2002 49055 VL 334 49056 IS 1-2 49057 BP 49 49058 EP 52 49059 PG 4 49060 SC Materials Science, Multidisciplinary 49061 GA 580LL 49062 UT ISI:000177236000008 49063 ER 49064 49065 PT J 49066 AU Wei, BC 49067 Wang, WH 49068 Xia, L 49069 Zhang, Z 49070 Zhao, DQ 49071 Pan, MX 49072 TI Glass transition and thermal stability of hard magnetic bulk NdAlFeCo 49073 metallic glass 49074 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES 49075 MICROSTRUCTURE AND PROCESSING 49076 DT Article 49077 DE metallic glasses; phase transformations; hard magnetic; glass transition 49078 ID DIFFERENTIAL SCANNING CALORIMETRY; FE-AL ALLOYS; SUPERCOOLED LIQUID; 49079 AMORPHOUS-ALLOYS; CASTING METHOD; ND; PHASES 49080 AB Glass transition and thermal stability of bulk Nd60Al10Fe20Co10 49081 metallic glass were investigated by means of dynamic mechanical thermal 49082 analysis (DMTA), differential scanning calorimetry (DSC), X-ray 49083 diffraction (XRD) and scanning electronic microscopy (SEM). The glass 49084 transition temperature, not revealed by DSC, is alternatively 49085 determined by DMTA via storage modulus E' and loss modulus E" 49086 measurement to be 498 K at a heating rate of 0.167 K s (-1). The 49087 calculated reduced glass transition temperature (T-g/T-m) is 0.63. The 49088 large value of T-g/T-m of this alloy is consistent with its good 49089 glass-forming ability. The crystallization process of the metallic 49090 glass is concluded as follows: amorphous --> amorphous + metastable 49091 FeNdAl phase --> amorphous + primary delta-FeNdAl phase --> primary 49092 delta-phase + eutectic delta-phase + Nd3Al + Nd3Co. The appearance of 49093 hard magnetism in this alloy is ascribed to the presence of amorphous 49094 phase with highly relaxed structure. The hard magnetism disappeared 49095 after the eutectic crystallization of the amorphous phase. (C) 2002 49096 Elsevier Science B.V. All rights reserved. 49097 C1 Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Beijing 100080, Peoples R China. 49098 Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. 49099 Chinese Acad Sci, Ctr Condensed Matter Phys, Beijing 100080, Peoples R China. 49100 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 49101 RP Wei, BC, Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Beijing 49102 100080, Peoples R China. 49103 CR ANDERSON PM, 1980, MATER SCI ENG, V43, P267 49104 CHEN HS, 1985, J NON-CRYST SOLIDS, V72, P287 49105 DING J, 1999, APPL PHYS LETT, V75, P1763 49106 FAN GJ, 1999, APPL PHYS LETT, V75, P2984 49107 GRIEB B, 1990, IEEE T MAGN, V26, P1367 49108 INOUE A, 1990, MATER T JIM, V31, P425 49109 INOUE A, 1992, MATER T JIM, V33, P937 49110 INOUE A, 1996, MATER T JIM, V37, P636 49111 INOUE A, 1997, APPL PHYS LETT, V71, P58 49112 INOUE A, 1998, METALL MATER TRANS A, V29, P1779 49113 INOUE A, 2000, ACTA MATER, V48, P279 49114 JOHNSON WL, 1996, MATER SCI FORUM, V225, P35 49115 LI Y, 1998, PHIL MAG LETT, V78, P213 49116 NAGAYAMA K, 1990, J PHYS SOC JPN, V59, P2483 49117 NIEH TG, 1999, SCRIPTA MATER, V40, P1021 49118 ORTEGAHERTOGS RJ, 2001, SCRIPTA MATER, V44, P1333 49119 PEKER A, 1993, APPL PHYS LETT, V63, P2342 49120 PIERRE V, 1994, HDB TERNARY ALLOY PH, P3525 49121 RAMBOUSKY R, 1995, MATER SCI FORUM, V179, P761 49122 STADELMAIER HH, 1991, MATER LETT, V10, P303 49123 WANG WH, 1997, APPL PHYS LETT, V71, P1053 49124 WANG XZ, 1999, J ALLOY COMPD, V290, P209 49125 WEI BC, 2001, J APPL PHYS, V89, P3529 49126 NR 23 49127 TC 3 49128 SN 0921-5093 49129 J9 MATER SCI ENG A-STRUCT MATER 49130 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 49131 PD SEP 1 49132 PY 2002 49133 VL 334 49134 IS 1-2 49135 BP 307 49136 EP 311 49137 PG 5 49138 SC Materials Science, Multidisciplinary 49139 GA 580LL 49140 UT ISI:000177236000044 49141 ER 49142 49143 PT J 49144 AU Zhu, XH 49145 Zhu, JM 49146 Zhou, SH 49147 Li, Q 49148 Liu, ZG 49149 Ming, NB 49150 Meng, ZY 49151 Chan, HLW 49152 Choy, CL 49153 TI Actuators, piezoelectric ceramics and functionally gradient materials 49154 SO FERROELECTRICS 49155 DT Article 49156 DE actuators; piezoelectric ceramics; functional gradient materials 49157 ID FILMS 49158 AB Piezoelectric ceramic actuators and materials play a key role in the 49159 development of advanced precision engineering. The breakthroughs in 49160 this field are closely related to the development of various types of 49161 piezoelectric ceramic actuators and related materials. The likelihood 49162 that the range of applications and demand for actuators will grow 49163 quickly has stimulated intensive researches on piezoelectric ceramics. 49164 Functionally gradient materials (FGMs) are new classes of composites 49165 characterized by compositional and/or microstructural gradation over 49166 macroscopic/microscopic distances. This constitutional gradation can be 49167 tailored to meet specific needs while providing the best utilization of 49168 composite components. Furthermore, FGMs technology is also a novel 49169 interfacial technology to solve the problems associated with the sharp 49170 interface between two dissimilar materials. In recent years significant 49171 advances in the development of FGMs have been achieved. In this paper, 49172 we first briefly review the recent progress of ceramic actuators and 49173 developments of piezoelectric materials, and then focus on summarizing 49174 typical applications of functional gradients in piezoelectric and 49175 ferroelectric materials. 49176 C1 Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China. 49177 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 49178 Hong Kong Polytech Univ, Dept Appl Phys, Kowloon, Hong Kong, Peoples R China. 49179 Hong Kong Polytech Univ, Mat Res Ctr, Kowloon, Hong Kong, Peoples R China. 49180 RP Zhu, XH, Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, 49181 Nanjing 210093, Peoples R China. 49182 CR BANDYOPADHYAY A, 1997, J AM CERAM SOC, V80, P1366 49183 DOGAN A, 1994, FERROELECTRICS, V156, P1 49184 FERNANDEZ JF, 1996, SENSOR ACTUAT A-PHYS, V51, P183 49185 HAERTLING GH, 1994, AM CERAM SOC BULL, V73, P93 49186 KITAMURA T, 1981, JPN J APPL PHYS, V20, P97 49187 MOHAMMED MS, 1998, J APPL PHYS, V84, P3322 49188 SCHUBRING NW, 1992, PHYS REV LETT, V68, P1778 49189 SUGAWARA Y, 1992, J AM CERAM SOC, V75, P996 49190 WEI ZG, 1998, J MATER SCI, V33, P3763 49191 WU CCM, 1996, J AM CERAM SOC, V79, P809 49192 ZHU XH, 1995, J MATER SCI LETT, V14, P516 49193 ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169 49194 ZHU XH, 2001, 13 INT S INT FERR MA 49195 NR 13 49196 TC 0 49197 SN 0015-0193 49198 J9 FERROELECTRICS 49199 JI Ferroelectrics 49200 PY 2001 49201 VL 263 49202 IS 1-4 49203 BP 1367 49204 EP 1376 49205 PG 10 49206 SC Materials Science, Multidisciplinary; Physics, Condensed Matter 49207 GA 580BZ 49208 UT ISI:000177215600011 49209 ER 49210 49211 PT J 49212 AU Ren, ZJ 49213 Cao, WG 49214 Tong, WQ 49215 Jing, XP 49216 TI Knoevenagel condensation of aldehydes with cyclic active methylene 49217 compounds in water 49218 SO SYNTHETIC COMMUNICATIONS 49219 DT Article 49220 AB A new route of Knoevenagel condensation of aromatic aldehydes with 49221 Meldrum's acid, barbituric acid and dimedone in the presence of 49222 cetyltrimethyl ammonium bromide at room temperature in water is 49223 described. 49224 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 49225 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 49226 CR CONRAD M, 1900, BER DTSCH CHEM GES, V33, P1339 49227 LI CJ, 1993, CHEM REV, V93, P2023 49228 NAGARAJAN K, 1992, INDIAN J CHEM B, V31, P73 49229 SCHUSTER P, 1964, MH CHEM, V95, P53 49230 SHI DQ, 2000, SYNTHETIC COMMUN, V30, P713 49231 TROST RM, 1991, COMPREHENSIVE ORGANI, V2, P369 49232 VVEDENSKII VM, 1969, CHEM HETEROCYCL CMPD, V5, P827 49233 VVEDENSKII VM, 1969, KHIM GETEROTSIKL, P1092 49234 WANG SH, 2001, SYNTHETIC COMMUN, V31, P29 49235 NR 9 49236 TC 7 49237 SN 0039-7911 49238 J9 SYN COMMUN 49239 JI Synth. Commun. 49240 PY 2002 49241 VL 32 49242 IS 13 49243 BP 1947 49244 EP 1952 49245 PG 6 49246 SC Chemistry, Organic 49247 GA 579TZ 49248 UT ISI:000177195100005 49249 ER 49250 49251 PT J 49252 AU Chen, YL 49253 Ding, WY 49254 Cao, WG 49255 Lu, C 49256 TI Stereoselective synthesis of 49257 trans-beta-methoxycarbonyl-gamma-aryl-gamma-butyrolactones 49258 SO SYNTHETIC COMMUNICATIONS 49259 DT Article 49260 DE arsenic ylide; stepwise synthesis; one-pot synthesis; 49261 gamma-butyrolactone; stereoselective synthesis 49262 AB Stereoselective synthesis of 49263 trans-beta-methoxycarbonyl-gamma-aryl-gamma-butyrolactones (5) by the 49264 reaction of methoxycarbonylmethyl triphenyl arsonium bromide (1) and 49265 2,2-dimethyl-5-substituted-benzal-1,3-dioxa-4,6-dioxa-4,6-dione (2) is 49266 carried out in the presence of potassium carbonate and trace water in 49267 dimethoxyethane. 1,2-Cis-cyclopropane 3 is formed as an intermediate. 49268 The stability of compound 3 in water is related to the property of the 49269 aryl substituent. With strong electron-donating groups [2a-c, 49270 Ar=4-CH3O-C6H4; 3,4-OCH2O-C6H3 or 4-(CH3)(2)N-C6H4] at room temperature 49271 3 is formed in situ and transformed to gamma-butyrolactones 5a-c 49272 immediately, whereas when the aryl substituent is H or a weak 49273 electron-donating or electron-withdrawing group (2d-g, Ar=4-CH3-C6H4; 49274 C6H5; 4-Cl-C6H4 or 4-NO2-C6H4), 3 is stable to water at room 49275 temperature. On further heating in acetone, 3 is transformed to 49276 gamma-butyrolactones 5d-g (stepwise synthesis). One-pot synthesis of 49277 5d-g from the reaction of 1 with 2d-g is also studied. 49278 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 49279 Acad Sinica, Organomet Chem Lab, Shanghai 200032, Peoples R China. 49280 RP Chen, YL, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 49281 CR BARTOLO G, 1997, J CHEM SOC P1, V2, P147 49282 CHEM YL, 1998, J CHIN U, V19, P1614 49283 DING WY, 1996, CHEM RES CHINESE U, V12, P50 49284 UENISHI J, 1997, HETEROCYCLES, V44, P277 49285 NR 4 49286 TC 3 49287 SN 0039-7911 49288 J9 SYN COMMUN 49289 JI Synth. Commun. 49290 PY 2002 49291 VL 32 49292 IS 13 49293 BP 1953 49294 EP 1960 49295 PG 8 49296 SC Chemistry, Organic 49297 GA 579TZ 49298 UT ISI:000177195100006 49299 ER 49300 49301 PT J 49302 AU Zhou, SF 49303 TI Attractors for lattice systems corresponding to evolution equations 49304 SO NONLINEARITY 49305 DT Article 49306 ID REACTION-DIFFUSION SYSTEMS; DYNAMICAL-SYSTEMS; UNBOUNDED-DOMAINS; 49307 GLOBAL ATTRACTOR; WAVE-EQUATIONS; SPATIAL CHAOS; PROPAGATION; 49308 EXISTENCE; FAILURE 49309 AB We consider the existence of the global attractor and its 49310 finite-dimensional approximation for the lattice dynamical systems 49311 corresponding to the wave equations and reaction diffusion equations. 49312 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 49313 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 49314 CR BELL J, 1984, Q APPL MATH, V42, P1 49315 BELLERI V, 2001, DISCRET CONTIN DYN S, V7, P719 49316 CAHN JW, 1960, ACTA METALL, V8, P554 49317 CHATE H, 1997, PHYSICA D, V103, P1 49318 CHOW SN, 1995, IEEE T CIRCUITS-I, V42, P746 49319 CHOW SN, 1998, J DIFFER EQUATIONS, V149, P248 49320 CHUA LO, 1993, IEEE T CIRCUITS-I, V40, P147 49321 ERNEUX T, 1993, PHYSICA D, V67, P237 49322 FABINY L, 1993, PHYS REV A B, V47, P4287 49323 FEIREISL E, 1996, J DIFFER EQUATIONS, V129, P239 49324 FEIREISL E, 1997, J DYNAM DIFFERENTIAL, V9, P133 49325 FIRTH WJ, 1988, PHYS REV LETT, V61, P329 49326 HALE JK, 1988, ASYMPTOTIC BEHAV DIS 49327 HILLERT M, 1961, ACTA METALL, V9, P525 49328 JIANG MH, 1999, J STAT PHYS, V95, P791 49329 KAPRAL R, 1991, J MATH CHEM, V6, P113 49330 KARACHALIOS NI, 1999, J DIFFER EQUATIONS, V157, P183 49331 KEENER JP, 1987, SIAM J APPL MATH, V47, P556 49332 KEENER JP, 1991, J THEOR BIOL, V148, P49 49333 LAPLANTE JP, 1992, J PHYS CHEM-US, V96, P4931 49334 MERINO S, 1996, J DIFFER EQUATIONS, V132, P87 49335 PECORA LM, 1990, PHYS REV LETT, V64, P821 49336 PEREZMUNUZURI A, 1993, IEEE T CIRCUITS SYST, V40, P872 49337 SHEN WX, 1996, SIAM J APPL MATH, V56, P1379 49338 TEMAM R, 1997, APPL MATH SCI, V68 49339 VONNEUMANN J, 1951, CEREBRAL MECH BEHAV, P9 49340 WANG BX, 1999, PHYSICA D, V128, P41 49341 WEINBERGER HE, 1988, SIAM J MATH ANAL, V19, P1057 49342 WINALOW RL, 1993, PHYSICA D, V64, P281 49343 YU J, 1998, PHYS LETT A, V240, P60 49344 NR 30 49345 TC 2 49346 SN 0951-7715 49347 J9 NONLINEARITY 49348 JI Nonlinearity 49349 PD JUL 49350 PY 2002 49351 VL 15 49352 IS 4 49353 BP 1079 49354 EP 1095 49355 PG 17 49356 SC Mathematics, Applied; Physics, Mathematical 49357 GA 578NE 49358 UT ISI:000177123700007 49359 ER 49360 49361 PT J 49362 AU Fang, ZJ 49363 Xia, YB 49364 Wang, LJ 49365 Wang, ZM 49366 Zhang, WL 49367 Fan, YM 49368 TI Effect of carbon ion pre-implantation on the stress level of diamond 49369 films formed on alumina substrates 49370 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS 49371 DT Article 49372 ID DEPOSITION; NUCLEATION 49373 AB The compressive stress in diamond films formed by hot filament chemical 49374 vapour deposition is reduced by implantation of carbon ions into 49375 alumina substrates before the deposition of diamond films. It is found 49376 that the stress in the diamond films decreases linearly with the 49377 increment of the C+ implantation dose. The reason for the decrease in 49378 the compressive stress is explained in terms of the offset by the 49379 residual compressive stress in the alumina substrates, which is caused 49380 by the ion pre-implantation. 49381 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 49382 RP Fang, ZJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R 49383 China. 49384 CR *INT CTR DIFFR DAT, 1988, 10174 JCPDS INT CTR 49385 AGER JW, 1993, PHYS REV B, V48, P2601 49386 FAN QH, 1999, J MATER SCI, V34, P1353 49387 FAN WD, 1995, SURF COAT TECH, V72, P78 49388 ITO T, 1994, JPN J APPL PHYS 1, V33, P5681 49389 MO Y, 1998, J CRYST GROWTH, V191, P459 49390 RALLS KM, 1982, INTRO MAT SCI ENG 49391 NR 7 49392 TC 5 49393 SN 0022-3727 49394 J9 J PHYS-D-APPL PHYS 49395 JI J. Phys. D-Appl. Phys. 49396 PD JUL 7 49397 PY 2002 49398 VL 35 49399 IS 13 49400 BP L57 49401 EP L60 49402 PG 4 49403 SC Physics, Applied 49404 GA 577WL 49405 UT ISI:000177085500001 49406 ER 49407 49408 PT J 49409 AU Liu, ZG 49410 Chen, GR 49411 TI On the relationship between parametric variation and state feedback in 49412 chaos control 49413 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS 49414 DT Article 49415 DE chaos control; feedback control; parametric variation 49416 AB In this Letter, we study the popular parametric variation chaos control 49417 and state-feedback methodologies in chaos control, and point out for 49418 the first time that they are actually equivalent in the sense that 49419 there exist diffeomorphisms that can convert one to the other for most 49420 smooth chaotic systems. Detailed conversions are worked out for typical 49421 discrete chaotic maps (logistic, Henon) and continuous flows (Rosller, 49422 Lorenz) for illustration. This unifies the two seemingly different 49423 approaches from the physics and the engineering communities on chaos 49424 control. This new perspective reveals some new potential applications 49425 such as chaos synchronization and normal form analysis from a unified 49426 mathematical point of view. 49427 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 49428 City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China. 49429 RP Liu, ZG, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 49430 CR CHEN G, 1998, CHAOS ORDER METHODOL 49431 CHEN GR, 2000, INT J BIFURCAT CHAOS, V10, P511 49432 OTT E, 1990, PHYS REV LETT, V64, P1196 49433 PEITGEN HO, 1992, CHAOS FRACTALS NEW F 49434 WIGGINS S, 1990, INTRO APPL NONLINEAR 49435 NR 5 49436 TC 3 49437 SN 0218-1274 49438 J9 INT J BIFURCATION CHAOS 49439 JI Int. J. Bifurcation Chaos 49440 PD JUN 49441 PY 2002 49442 VL 12 49443 IS 6 49444 BP 1411 49445 EP 1415 49446 PG 5 49447 SC Mathematics, Applied; Multidisciplinary Sciences 49448 GA 579KB 49449 UT ISI:000177176200013 49450 ER 49451 49452 PT J 49453 AU Zhu, WM 49454 Li, CE 49455 Guo, CJ 49456 Yan, HX 49457 He, LX 49458 TI Study of phase conversion in PMN-PT ceramics near the morphotropic 49459 phase boundary 49460 SO FERROELECTRICS 49461 DT Article 49462 DE phase composition; compressive stress; phase conversion 49463 ID TITANATE 49464 AB Phase compositions, grain sizes and domain widths of 0.65PMN-0.35PT 49465 ceramics sintered at various conditions have been investigated. It has 49466 been shown that a phase conversion from rhombohedral to tetragonal took 49467 place when the sintering temperatures were increased. This result is 49468 considered to be attributed to the increase of compressive stress in 49469 the grain, which makes the phase transition from tetragonal to 49470 rhombohedral difficult to occur, due to an expansion of cell volume. As 49471 a result, more tetragonal phases were left unchanged. 49472 C1 Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China. 49473 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China. 49474 RP Zhu, WM, Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, 49475 Peoples R China. 49476 CR ARIGUR P, 1975, J PHYS D, V8, P1856 49477 ARLT G, 1985, J APPL PHYS, V58, P1619 49478 CHOI SW, 1989, MATER LETT, V8, P253 49479 FERNANDEZ JF, 1998, J EUR CERAM SOC, V18, P1695 49480 FORSBERGH PW, 1954, PHYS REV, V93, P686 49481 HIREMATH BV, 1983, J AM CERAM SOC, V66, P790 49482 KELLY J, 1997, J AM CERAM SOC, V80, P957 49483 SWARTZ SL, 1982, MATER RES BULL, V17, P1245 49484 NR 8 49485 TC 0 49486 SN 0015-0193 49487 J9 FERROELECTRICS 49488 JI Ferroelectrics 49489 PY 2001 49490 VL 251 49491 IS 1-4 49492 BP 45 49493 EP 52 49494 PG 8 49495 SC Materials Science, Multidisciplinary; Physics, Condensed Matter 49496 GA 580BC 49497 UT ISI:000177213400007 49498 ER 49499 49500 PT J 49501 AU Ding, YP 49502 Wu, JS 49503 Meng, ZY 49504 TI Study on the characterization and formation mechanism of microdomains 49505 in Ba0.7Sr0.3TiO3 thin films by Hrem 49506 SO FERROELECTRICS 49507 DT Article 49508 DE microdomain structure; ferroelectricity; Ba0.7Sr0.3TiO3 thin films 49509 ID BARIUM-TITANATE; PHASE; FERROELECTRICITY; MICROSTRUCTURE; CAPACITORS 49510 AB Microdomain clusters in scope of about 60 nm were observed in 49511 Ba0.7Sr0.3TiO3 thin films by transmission electron microscopy (TEM). 49512 Combined with investigated results by high-resolution electron 49513 microscopy (HREM) and selected area electron diffraction (SAED) 49514 techniques, a reasonable spatial configuration of the microdomains is 49515 proposed, where twin-related microdomain with thickness of several unit 49516 cells are prevailing. The larger c/a value deduced from the doublet 49517 splitting of diffraction spot in SHED pattern confirms that the 49518 microdomains are under highly compressing. This locally compressive 49519 condition is pointed out to be responsible for the formation of small 49520 microdomain uncommitted by critical size and the ferroelectricity of 49521 the thin films. 49522 C1 Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Elect Mat Lab, Shanghai 200030, Peoples R China. 49523 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 49524 RP Ding, YP, Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Elect Mat Lab, 49525 Shanghai 200030, Peoples R China. 49526 CR ARIT G, 1980, J APPL PHYS, V51, P4956 49527 BAUMERT BA, 1998, J MATER RES, V13, P197 49528 BURNS G, 1986, SOLID STATE COMMUN, V58, P567 49529 BURNS G, 1990, FERROELECTRICS, V104, P25 49530 DING YP, 1998, P 1 CHIN INT C HIGH, P489 49531 DING YP, 2000, J MATER SCI LETT, V19, P163 49532 FREY MH, 1993, APPL PHYS LETT, V63, P2753 49533 GUST MC, 1997, J AM CERAM SOC, V80, P2828 49534 ISUPOV VA, 1990, IZV AN SSSR FIZ+, V54, P1131 49535 MARUYAMA T, 1998, APPL PHYS LETT, V73, P3524 49536 QU BD, 1998, APPL PHYS LETT, V72, P1394 49537 SCOTT JF, 1998, FERROELECTRICS REV, V1, P1 49538 TSAI F, 1994, APPL PHYS LETT, V65, P1906 49539 TYBELL T, 1999, APPL PHYS LETT, V75, P856 49540 WASER R, 1998, J KOREAN PHYS SO S 4, V32, S1340 49541 YIN ZW, 1988, FERROELECTRICS, V87, P85 49542 NR 16 49543 TC 0 49544 SN 0015-0193 49545 J9 FERROELECTRICS 49546 JI Ferroelectrics 49547 PY 2001 49548 VL 252 49549 IS 1-4 49550 BP 453 49551 EP 460 49552 PG 8 49553 SC Materials Science, Multidisciplinary; Physics, Condensed Matter 49554 GA 580BD 49555 UT ISI:000177213500028 49556 ER 49557 49558 PT J 49559 AU Hou, WD 49560 Mo, YL 49561 TI Increasing image resolution in electrical impedance tomography 49562 SO ELECTRONICS LETTERS 49563 DT Article 49564 AB An effective approach to increase the image resolution in static 49565 electrical impedance tomography is proposed, in which the image with 49566 local high resolution is reconstructed by fine meshing only the 49567 impedance abnormal element in the finite element model based on a 49568 genetic algorithm. Experimental results from a laboratory phantom are 49569 presented. 49570 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China. 49571 RP Hou, WD, Shanghai Univ, Dept Commun Engn, 149 Yanchang Rd, Shanghai 49572 200072, Peoples R China. 49573 CR HOU WD, 2000, J SHANGHAI U, V6, P343 49574 ISAACSON D, 2001, P 11 INT C EL BIOIMP, P387 49575 METHERALL P, 1998, THESIS U SHEFFIELD U 49576 OLMI R, 2000, IEEE T EVOLUT COMPUT, V4, P83 49577 NR 4 49578 TC 0 49579 SN 0013-5194 49580 J9 ELECTRON LETT 49581 JI Electron. Lett. 49582 PD JUL 4 49583 PY 2002 49584 VL 38 49585 IS 14 49586 BP 701 49587 EP 702 49588 PG 2 49589 SC Engineering, Electrical & Electronic 49590 GA 578CZ 49591 UT ISI:000177101000019 49592 ER 49593 49594 PT J 49595 AU Chien, WZ 49596 TI Second order approximation solution of nonlinear large deflection 49597 problems of Yongjiang Railway Bridge in Ningbo 49598 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 49599 DT Article 49600 DE large deflection; elastic modulus; cantilever beam 49601 AB The solution and computational aspects on nonlinear deflection of 49602 Yongjiang Railway Bridge in Ningbo were investigated. An approximate 49603 iteration algorithm on nonlinear governing equation was presented, and 49604 the obtained results show that, if altitude difference and span of the 49605 riverbanks are taken as 5 meters and 100 meters, respectively, the 49606 maximum gradient in the middle of the bridge exceeds 5%, much larger 49607 than maximum allowance gradient in railway design code. Therefore, a 49608 new solution scheme for decreasing gradient of the bridge is put 49609 forward, that is, the altitude difference between two riverbanks can be 49610 decreased to about 1/10 of the initial magnitude by building roadbeds 49611 with 0.5% gradient and 1 kilometer length at two riverbanks. As a 49612 direct result, the deflection gradient of the railway bridge is much 49613 reduced and the value is between 0.5% similar to 0.6%. 49614 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 49615 RP Chien, WZ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 49616 200072, Peoples R China. 49617 NR 0 49618 TC 1 49619 SN 0253-4827 49620 J9 APPL MATH MECH-ENGL ED 49621 JI Appl. Math. Mech.-Engl. Ed. 49622 PD MAY 49623 PY 2002 49624 VL 23 49625 IS 5 49626 BP 493 49627 EP 506 49628 PG 14 49629 SC Mathematics, Applied; Mechanics 49630 GA 577RJ 49631 UT ISI:000177075200001 49632 ER 49633 49634 PT J 49635 AU Zhang, JF 49636 Liu, YL 49637 TI Localized coherent structures of the (2+1)-dimensional higher order 49638 Broer-Kaup equations 49639 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 49640 DT Article 49641 DE higher order Broer-Kaup equation; (2+1)-dimension; coherent structure; 49642 homogeneous balance method 49643 ID DROMION-LIKE STRUCTURES; KDV-TYPE EQUATION; WAVE-EQUATIONS; 49644 TRANSFORMATION; SOLITONS 49645 AB By using the extended homogeneous balance method, the localized 49646 coherent structures are studied. A nonlinear transformation was first 49647 established, and then the linearization form was obtained based on the 49648 extended homogeneous balance method for the higher order (2 + 49649 1)-dimensional Broer-Kaup equations. Starting from this linearization 49650 form equation, a variable separation solution with the entrance of some 49651 arbitrary functions and some arbitrary parameters was constructed. The 49652 quite rich localized coherent structures were revealed. This method, 49653 which can be generalized to other (2 + I) -dimensional nonlinear 49654 evolution equation, is simple and powerful. 49655 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 49656 RP Zhang, JF, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 49657 200072, Peoples R China. 49658 CR BOITI M, 1988, PHYS LETT A, V132, P432 49659 FANG EG, 1997, ACTA PHYS SINICA, V46, P1254 49660 FOKAS AS, 1990, PHYS LETT A, V145, P237 49661 HIETARINTA J, 1990, PHYS LETT A, V149, P113 49662 LOU SY, 1995, J PHYS A-MATH GEN, V28, P7227 49663 LOU SY, 1996, COMMUN THEOR PHYS, V26, P487 49664 LOU SY, 1996, J PHYS A-MATH GEN, V29, P5989 49665 LOU SY, 1998, COMMUN THEOR PHYS, V29, P145 49666 LOU SY, 2000, PHYS LETT A, V277, P94 49667 LOU SY, 2001, J PHYS A-MATH GEN, V34, P305 49668 RADHA R, 1994, J MATH PHYS, V35, P4746 49669 RADHA R, 1995, PHYS LETT A, V197, P7 49670 RADHA R, 1997, J MATH PHYS, V38, P292 49671 RADHA R, 1997, J PHYS A-MATH GEN, V30, P3229 49672 RADHA R, 1999, CHAOS SOLITON FRACT, V10, P1821 49673 RUAN HY, 1997, J MATH PHYS, V38, P3123 49674 RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P586 49675 WANG ML, 1995, PHYS LETT A, V199, P169 49676 ZHANG JF, 1998, ACTA PHYS SINICA, V47, P1416 49677 ZHANG JF, 1999, ACTA PHYS SIN-OV ED, V8, P326 49678 ZHANG JF, 1999, CHINESE PHYS LETT, V16, P659 49679 ZHANG JF, 2000, COMMUN THEOR PHYS, V33, P577 49680 ZHANG JF, 2001, COMMUNICATION NONLIN, V6, P50 49681 NR 23 49682 TC 1 49683 SN 0253-4827 49684 J9 APPL MATH MECH-ENGL ED 49685 JI Appl. Math. Mech.-Engl. Ed. 49686 PD MAY 49687 PY 2002 49688 VL 23 49689 IS 5 49690 BP 549 49691 EP 556 49692 PG 8 49693 SC Mathematics, Applied; Mechanics 49694 GA 577RJ 49695 UT ISI:000177075200006 49696 ER 49697 49698 PT J 49699 AU Tian, LX 49700 Xu, G 49701 Liu, ZR 49702 TI The concave or convex peaked and smooth soliton solutions of 49703 Camassa-Holm equation 49704 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 49705 DT Article 49706 DE soliton; peakson; integrable system; traveling wave solution 49707 ID SHALLOW-WATER EQUATION 49708 AB The traveling wave soliton solutions and pair soliton solution to a 49709 class of new completely integrable, shallow water equation, 49710 Camassa-Holm equation are studied. The concept of concave or convex 49711 peaked soliton and smooth soliton were introduced. And the research 49712 shows that the traveling wave solution of that equation possesses 49713 concave and convex peaked soliton and smooth soliton solutions with the 49714 peakson. Simultaneously by applying Backlund transformation the new 49715 pair soliton solutions to this class of equation are given. 49716 C1 Jiangsu Univ Sci & Technol, Dept Math, Zhenjiang 212013, Peoples R China. 49717 Shanghai Univ, Dept Math, Shanghai 200018, Peoples R China. 49718 RP Tian, LX, Jiangsu Univ Sci & Technol, Dept Math, Zhenjiang 212013, 49719 Peoples R China. 49720 CR ALBER MS, 1994, LETT MATH PHYS, V32, P137 49721 CAMASSA R, 1993, PHYS REV LETT, V71, P1661 49722 CLARKSON PA, 1997, MATH COMPUT MODEL, V25, P195 49723 CONSTANTIN A, 1998, COMMUN PUR APPL MATH, V51, P475 49724 CONSTANTIN A, 2000, COMMUN PUR APPL MATH, V53, P603 49725 FISHER M, 1999, PHYS LETT A, V259, P371 49726 TIAN LX, 1998, P AM MATH SOC, V126, P201 49727 TIAN LX, 1999, COMM MATH PHY, V201, P509 49728 TIAN LX, 2000, J MATH PHYS, V41, P5773 49729 XIN ZP, 2000, COMMUN PUR APPL MATH, V53, P1411 49730 NR 10 49731 TC 1 49732 SN 0253-4827 49733 J9 APPL MATH MECH-ENGL ED 49734 JI Appl. Math. Mech.-Engl. Ed. 49735 PD MAY 49736 PY 2002 49737 VL 23 49738 IS 5 49739 BP 557 49740 EP 567 49741 PG 11 49742 SC Mathematics, Applied; Mechanics 49743 GA 577RJ 49744 UT ISI:000177075200007 49745 ER 49746 49747 PT J 49748 AU Cai, YC 49749 TI Chen's theorem with small primes 49750 SO ACTA MATHEMATICA SINICA-ENGLISH SERIES 49751 DT Article 49752 DE Chen's theorem; sieve; mean value theorem 49753 AB Let N be a sufficiently large even integer. In this paper it is proved 49754 that the equation 49755 N = p + P-2, p less than or equal to N-0.95, 49756 is solvable, where p denotes a prime and P-2 denotes an almost prime 49757 with at most two prime factors. 49758 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 49759 RP Cai, YC, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 49760 CR CHEN JR, 1966, KEXUE TONGBAO, V17, P385 49761 CHEN JR, 1973, SCI SINICA, V16, P157 49762 CHEN JR, 1978, SCI SINICA, V21, P421 49763 CHEN JR, 1978, SCI SINICA, V21, P477 49764 HALBERSTAM H, 1975, ASTERISQUE, V24, P281 49765 IWANIEC H, 1981, RECENT PROGR ANAL NU, V2, P203 49766 LU MG, IN PRESS CHENS THEOR 49767 PAN CD, 1992, GOLDBACH CONJECTURE, P175 49768 WU J, 1993, Q J MATH, V44, P109 49769 NR 9 49770 TC 0 49771 SN 1439-8516 49772 J9 ACTA MATH SIN-ENGLISH SERIES 49773 JI Acta. Math. Sin.-English Ser. 49774 PD JUL 49775 PY 2002 49776 VL 18 49777 IS 3 49778 BP 597 49779 EP 604 49780 PG 8 49781 SC Mathematics, Applied; Mathematics 49782 GA 579MC 49783 UT ISI:000177180900018 49784 ER 49785 49786 PT J 49787 AU Chen, ZB 49788 Jiao, YH 49789 Xia , SB 49790 Huang, WH 49791 Zhang, ZM 49792 TI An efficient calculation method of nonlinear fluid film forces in 49793 journal bearing 49794 SO TRIBOLOGY TRANSACTIONS 49795 DT Article 49796 DE journal bearing; database; rotor 49797 ID ROTOR; STABILITY 49798 AB An efficient method of fluid film force database is proposed for a 49799 single pad of the journal bearing. By some manipulations on Reynolds 49800 equation, a speed parameter varying within (-1, +1) is introduced to 49801 reflect the relative weights of the bearing journal's rotation and 49802 squeezing effects. Given the bearing aspect ratio and pad angle, the 49803 fluid film force database can be easily established. For a multi-pad 49804 journal bearing, an algorithm is needed to sum the separate fluid 49805 forces generated in every pad. An elliptic beating supporting a rigid 49806 rotor is employed to examine the effectiveness of the suggested method. 49807 The results based on the numerical solution of Reynolds equation is 49808 taken as a yardstick for comparison. It is shown that the database 49809 method provides a way to obtain the bearing fluid forces quickly 49810 without losing accuracy. 49811 C1 Harbin Inst Technol, Dept Engn Mech, Harbin 150001, Peoples R China. 49812 Shanghai Univ, Dept Mech Engn, Shanghai, Peoples R China. 49813 RP Chen, ZB, Harbin Inst Technol, Dept Engn Mech, Harbin 150001, Peoples R 49814 China. 49815 CR CAPONE G, 1990, J TRIBOL-T ASME, V112, P643 49816 CASTELLI V, 1967, J LUBR TECH, V89, P211 49817 DEEPAK JC, 1998, J TRIBOL-T ASME, V120, P605 49818 EHRICH FF, 1991, J VIB ACOUST, V113, P50 49819 KIRK RG, 1976, ASME, V98, P47 49820 LUND JW, 1978, TOPICS FLUID FILM BE, P1 49821 LUND JW, 1987, ASME, V109, P38 49822 PINKUS O, 1961, THEORY HYDRODYNAMIC, P1 49823 QIU ZL, 1996, TRIBOL T, V39, P469 49824 REZVANI MA, 1993, J TRIBOL-T ASME, V115, P544 49825 SUNDARARAJAN P, 1998, J SOUND VIB, V214, P695 49826 TIEU AK, 1995, TRIBOL T, V38, P627 49827 ZHAO JY, 1994, J VIB ACOUST, V116, P357 49828 NR 13 49829 TC 2 49830 SN 1040-2004 49831 J9 TRIBOL TRANS 49832 JI Tribol. Trans. 49833 PD JUL 49834 PY 2002 49835 VL 45 49836 IS 3 49837 BP 324 49838 EP 329 49839 PG 6 49840 SC Engineering, Mechanical 49841 GA 575JE 49842 UT ISI:000176942500007 49843 ER 49844 49845 PT J 49846 AU Shi, YM 49847 Chen, H 49848 TI Spin-dependent transmission through a mesoscopic ring with a quantum 49849 gate 49850 SO PHYSICS LETTERS A 49851 DT Article 49852 DE spin-dependent transmission; mesoscopic ring; quantum gate 49853 ID AHARONOV-BOHM OSCILLATIONS; WAVE-GUIDE THEORY; DOT; PHASE 49854 AB We investigate the spin-dependent transmission through an Aharonov-Bohm 49855 ring with a quantum gate that is tuned by an uniform external magnetic 49856 field. The formula of spin-dependent transmission coefficient at zero 49857 temperature is obtained as a function of the flux, the magnetic field 49858 and Fermi energy in term of quantum waveguide theory. We found that for 49859 some special Fermi energies, spin-state electrons are driven into a 49860 perfect transmissive state or reflective state, which is not affected 49861 by the flux, when Zeeman energy of electron moving in the stub 49862 coincides with a level of the isolated stub. As Zeeman energy crosses 49863 the level of the stub, Aharonov-Bohm oscillations of spin-state 49864 conductance have no abrupt change of phase by pi and are in phase. The 49865 effect of the magnetic field on transmission behavior of spin-state 49866 electrons are examined. (C) 2002 Elsevier Science B.V. All rights 49867 reserved. 49868 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 49869 Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. 49870 RP Shi, YM, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 49871 CR BRUDER C, 1996, PHYS REV LETT, V76, P114 49872 CHEN H, 1998, INT J MOD PHYS B, V12, P1729 49873 DEO PS, 1996, MOD PHYS LETT B, V10, P787 49874 HACKENBROICH G, 1996, PHYS REV LETT, V76, P110 49875 RYU CM, 1996, MOD PHYS LETT B, V10, P401 49876 SCHUSTER R, 1997, NATURE, V385, P417 49877 SHI YM, 1999, J SHANGHAI UNIV, V3, P339 49878 SHI YM, 1999, PHYS RVE B, V60, P1949 49879 TANIGUCHI T, 1999, PHYS REV B, V60, P13841 49880 WU J, 1998, PHYS REV LETT, V80, P1952 49881 WU J, 1999, PHYS LETT A, V262, P245 49882 XIA JB, 1992, PHYS REV B, V45, P3593 49883 YACOBY A, 1995, PHYS REV LETT, V74, P4047 49884 YACOBY A, 1996, PHYS REV B, V53, P9583 49885 YEYATI L, 1995, PHYS REV B, V52 49886 YI YS, 1999, PHYS REV B, V55, P10637 49887 NR 16 49888 TC 0 49889 SN 0375-9601 49890 J9 PHYS LETT A 49891 JI Phys. Lett. A 49892 PD JUL 8 49893 PY 2002 49894 VL 299 49895 IS 4 49896 BP 401 49897 EP 406 49898 PG 6 49899 SC Physics, Multidisciplinary 49900 GA 576WR 49901 UT ISI:000177030600014 49902 ER 49903 49904 PT J 49905 AU Gu, ZT 49906 Liang, PH 49907 Zhang, WQ 49908 TI Measurement of glass surface layers and their influence on thin-film 49909 optical properties 49910 SO OPTICAL ENGINEERING 49911 DT Article 49912 DE glass surface layer; optical parameter; p-polarized light reflectance; 49913 cleaning treatment 49914 ID ELLIPSOMETRY 49915 AB A new and simple method is proposed to analyze the profiles of glass 49916 surface layers based on their reflectance for p-polarized light. By 49917 measuring the angle spectrum gamma(theta(i)) (gamma equivalent to 49918 I-a/I-b), where I-a and I-b are the intensities of reflection from the 49919 front and the back surface of the glass, and fitting the results with 49920 theoretical relations, the refractive index n(s) and extinction 49921 coefficient k(s) of plane glass surfaces can easily be obtained. 49922 Experimentally, glass samples subjected to different cleaning 49923 treatments have been analyzed. The results show that n(s) and k(s) of 49924 the glass surface increase exponentially with the depth into the 49925 surface layers, and an etched glass sample has a smaller extinction 49926 coefficient on its surface. This is confirmed by 49927 atomic-force-microscope observation and by laser-damage testing. In 49928 addition, the influence of the glass surface layers on the properties 49929 of films coated on one side or both sides of the glass substrate is 49930 analyzed. Dip-coated polymethyltriethoxysilane. (PMTES) films and 49931 spin-coated PMMA films have been measured. It is found that the optical 49932 parameters of PMTES films and azo-doped PMMA films are in agreement 49933 with the experimental results only if the glass surface layers are 49934 considered. (C) 2002 Society of Photo-Optical Instrumentation Engineers. 49935 C1 Shanghai Univ Sci & Technol, Dept Basic Sci, Shanghai 200093, Peoples R China. 49936 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China. 49937 RP Gu, ZT, Shanghai Univ Sci & Technol, Dept Basic Sci, POB 249,516 Jun 49938 Gong Rd, Shanghai 200093, Peoples R China. 49939 CR AFANASEVA AG, 1990, OPT SPECTROSC, V69, P679 49940 ALVAREZHERRERO A, 2001, APPL OPTICS, V40, P527 49941 BORN M, 1964, PRINCIPLES OPTICS 49942 COUILLARD JG, 1997, J NON-CRYST SOLIDS, V222, P429 49943 GUENTHER KH, 1981, THIN SOLID FILMS, V77, P239 49944 JELLISON GE, 1991, APPL OPTICS, V30, P4310 49945 LIU XL, 1997, APPL OPTICS, V36, P3788 49946 PENZKOFER A, 1998, OPT COMMUN, V158, P221 49947 RADLEIN E, 1997, J NON-CRYST SOLIDS, V222, P69 49948 ROCHE P, 1996, APPL OPTICS, V35, P5059 49949 SCHICHT H, 1997, J NON-CRYST SOLIDS, V218, P210 49950 YOKOTA H, 1969, SURF SCI, V16, P265 49951 ZHANG ZM, 1999, APPL OPTICS, V38, P205 49952 NR 13 49953 TC 0 49954 SN 0091-3286 49955 J9 OPT ENG 49956 JI Opt. Eng. 49957 PD JUL 49958 PY 2002 49959 VL 41 49960 IS 7 49961 BP 1738 49962 EP 1746 49963 PG 9 49964 SC Optics 49965 GA 576TR 49966 UT ISI:000177021900040 49967 ER 49968 49969 PT J 49970 AU He, JH 49971 TI Smoothed particle technique for treatment shocks in transonic 49972 aerodynamics 49973 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES 49974 DT Article 49975 DE meshfree particle method; SPH technique; transonic flow 49976 ID MESHLESS 49977 AB The smoothed particle computing technique has features which make the 49978 technique highly attractive for simulating aerodynamics involving 49979 unknown discontinuities (such as shock and free trailing vortex 49980 sheets). However, full exploitation of the method's potential has been 49981 hampered by the inherent deficiency on the boundaries and the unknown 49982 discontinuities. To remedy the shortcoming, this paper proposes some 49983 heuristic approaches to capturing automatically the unknown 49984 discontinuities. To impose the boundary conditions, a variational-like 49985 approach is suggested so that boundary conditions can be satisfied 49986 optimally. 49987 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 49988 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 49989 Peoples R China. 49990 CR BELYTSCHKO T, 1996, COMPUT METHOD APPL M, V139, P3 49991 CHEN JK, 1999, INT J NUMER METH ENG, V46, P231 49992 CORDES LW, 1996, COMPUT METHOD APPL M, V139, P75 49993 HE JH, 1999, INT J TURBO JET ENG, V16, P19 49994 HE JH, 2000, INT J NONLINEAR SCI, V1, P139 49995 LIU WK, 1996, ARCH COMPUTATIONAL M, V3, P3 49996 LUCKY LB, 1977, ASTRON J, V82, P1013 49997 ONATE E, 1996, COMPUT METHOD APPL M, V139, P315 49998 RANDLES PW, 1996, COMPUT METHOD APPL M, V139, P375 49999 WAGNER GJ, IN PRESS INT J NUMER 50000 NR 10 50001 TC 1 50002 SN 0334-0082 50003 J9 INT J TURBO JET ENGINES 50004 JI Int. J. Turbo. Jet-Engines 50005 PY 2001 50006 VL 18 50007 IS 4 50008 BP 243 50009 EP 249 50010 PG 7 50011 SC Engineering, Aerospace 50012 GA 576LC 50013 UT ISI:000177005400002 50014 ER 50015 50016 PT J 50017 AU He, JH 50018 TI A variational principle for magnetohydrodynamics with high Hartmann 50019 number flow 50020 SO INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE 50021 DT Article 50022 DE MHD; variational principle; semi-inverse method; Lagrange multiplier 50023 ID SEMI-INVERSE METHOD; AERODYNAMICS; ELASTICITY 50024 AB By the semi-inverse method proposed by He, a variational principle is 50025 established for three-dimensional MHD equations with high Hartmann 50026 number. In order to incorporate the no-slip condition and far distance 50027 boundary condition as natural boundary conditions, a special technique 50028 is proposed in this paper. Lagrange crisis are also illustrated. (C) 50029 2002 Published by Elsevier Science Ltd. 50030 C1 Shanghai Donghua Univ, Coll Basic Sci, Dept Math, Shanghai 200051, Peoples R China. 50031 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, POB 189,149 50032 Yanchang Rd, Shanghai 200072, Peoples R China. 50033 CR BARRETT KE, 2001, INT J ENG SCI, V39, P1577 50034 CHANG ID, 1963, ZAMP, V14, P134 50035 CHIEN WZ, 1983, APPL MATH MECH, V4, P137 50036 FELIPPA CA, 1989, COMMUN APPL NUMER M, V5, P79 50037 HE JH, 1997, INT J TURBO JET ENG, V14, P23 50038 HE JH, 1997, J SHANGHAI U, V1, P117 50039 HE JH, 1997, SHANGHAI J MECH, V18, P305 50040 HE JH, 1999, INT J TURBO JET ENG, V16, P19 50041 HE JH, 1999, J U SHANGHAI SCI TEC, V21, P127 50042 HE JH, 1999, J U SHANGHAI SCI TEC, V21, P29 50043 HE JH, 2000, AIRCR ENG AEROSP TEC, V72, P18 50044 HE JH, 2000, APPL MATH MECH-ENGL, V21, P797 50045 HE JH, 2000, ASME, V67, P326 50046 HE JH, 2000, INT J ENG SCI, V39, P323 50047 HE JH, 2000, INT J NONLINEAR SCI, V1, P139 50048 HE JH, 2001, INT J NONLINEAR SCI, V2, P161 50049 HUNT JCR, 1967, J FLUID MECH, V28, P241 50050 LIU GL, 2000, INT J NONLINEAR SCI, V1, P25 50051 NOOR AK, 1984, UNIFICATION FINITE E, P275 50052 NR 19 50053 TC 3 50054 SN 0020-7225 50055 J9 INT J ENG SCI 50056 JI Int. J. Eng. Sci. 50057 PD JUL 50058 PY 2002 50059 VL 40 50060 IS 12 50061 BP 1403 50062 EP 1410 50063 PG 8 50064 SC Engineering, Multidisciplinary 50065 GA 575RD 50066 UT ISI:000176960900008 50067 ER 50068 50069 PT J 50070 AU Zhang, JF 50071 TI Backlund transformation and variable separation solutions for the 50072 generalized Nozhnik-Novikov-Veselov equation 50073 SO CHINESE PHYSICS 50074 DT Article 50075 DE extended homogeneous balance method; (2+1) dimensions; GNNV equation; 50076 localized coherent structures 50077 ID COHERENT STRUCTURES; KDV EQUATION 50078 AB Using the extended homogeneous balance method, the Backlund 50079 transformation for a (2+1)-dimensional integrable model, the 50080 generalized Nizhnik-Novikov-Veselov (GNNV) equation, is first obtained. 50081 Also, making use of the Backlund transformation, the GNNV equation is 50082 changed into three equations: linear, bilinear and trilinear form 50083 equations. Starting from these three equations, a rather general 50084 variable separation solution of the model is constructed. The abundant 50085 localized coherent structures of the model can be induced by the 50086 entrance of two variable-separated arbitrary functions. 50087 C1 Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China. 50088 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 50089 RP Zhang, JF, Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, 50090 Peoples R China. 50091 CR BOITI M, 1986, INVERSE PROBL, V2, P271 50092 CAO CW, 1990, SCI CHINA SER A, V33, P528 50093 CHEN LL, 1999, ACTA PHYS SIN-CH ED, V48, P2149 50094 CHENG Y, 1991, PHYS LETT A, V157, P22 50095 FAN EG, 1998, ACTA PHYS SINICA, V47, P353 50096 HU XB, 1991, J PHYS A, V24, P1331 50097 HU XB, 1991, J PHYS A-MATH GEN, V24, P1979 50098 KONOPELCHENKO BG, 1991, PHYS LETT A, V175, P17 50099 LOU SY, 1996, J PHYS A, V29, P420 50100 LOU SY, 1997, ACTA PHYS SINICA, V46, P561 50101 LOU SY, 1999, J MATH PHYS, V40, P6491 50102 LOU SY, 2000, CHINESE PHYS LETT, V17, P781 50103 LOU SY, 2000, PHYS LETT A, V277, P94 50104 LOU SY, 2001, J PHYS A-MATH GEN, V34, P305 50105 NIZHNIK LP, 1980, SOV PHYS DOKL, V25, P706 50106 NOVIKOV SP, 1986, PHYSICA D, V18, P267 50107 OHTA Y, 1992, J PHYS SOC JPN, V61, P3928 50108 RADHA R, 1994, J MATH PHYS, V35, P4746 50109 RUAN HY, 1999, ACTA PHYS SINICA, V5, P241 50110 RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P586 50111 TAGAMI Y, 1989, PHYS LETT A, V141, P116 50112 WANG MI, 1995, PHYS LETT A, V199, P279 50113 WANG ML, 1995, PHYS LETT A, V199, P169 50114 ZHANG JF, 1998, ACTA PHYS SINICA, V47, P1416 50115 ZHANG JF, 1999, CHINESE PHYS LETT, V16, P659 50116 NR 25 50117 TC 28 50118 SN 1009-1963 50119 J9 CHIN PHYS 50120 JI Chin. Phys. 50121 PD JUL 50122 PY 2002 50123 VL 11 50124 IS 7 50125 BP 651 50126 EP 655 50127 PG 5 50128 SC Physics, Multidisciplinary 50129 GA 576GM 50130 UT ISI:000176995100001 50131 ER 50132 50133 PT J 50134 AU Zheng, G 50135 Zhang, M 50136 Li, H 50137 Chance, B 50138 Glickson, JD 50139 TI Synthesis and biological evaluation of near infrared fluorescence 50140 probes (NIRFS) for tumors overexpressing LDL receptors 50141 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY 50142 DT Meeting Abstract 50143 C1 Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA. 50144 Shanghai Univ, Dept Chem, Shanghai, Peoples R China. 50145 Univ Penn, Dept Biochem & Biophys, Philadelphia, PA 19104 USA. 50146 NR 0 50147 TC 0 50148 SN 0065-7727 50149 J9 ABSTR PAP AMER CHEM SOC 50150 JI Abstr. Pap. Am. Chem. Soc. 50151 PD APR 7 50152 PY 2002 50153 VL 223 50154 PN Part 2 50155 BP B135 50156 EP B135 50157 PG 1 50158 SC Chemistry, Multidisciplinary 50159 GA 564CE 50160 UT ISI:000176296800735 50161 ER 50162 50163 PT J 50164 AU Li, TY 50165 Wang, SJ 50166 Zheng, LP 50167 TI Comparative study on CO2 sources in soil developed on carbonate rock 50168 and non-carbonate rock in Central Guizhou 50169 SO SCIENCE IN CHINA SERIES D-EARTH SCIENCES 50170 DT Article 50171 DE carbonate rock; non-carbonate rock; soil CO2; sources 50172 ID STABLE ISOTOPIC COMPOSITION; DIOXIDE; AREAS; CHINA 50173 AB In this paper, by using concentration and carbon stable isotope the CO2 50174 sources of soil profiles developed on limestone, dolostone and 50175 claystone basements in Central Guizhou, China are comparatively 50176 studied. The results show that CO2 concentration of soil profiles 50177 developed on different basements is different, having the following 50178 sequence: limestone>dolostone>claystone. Below the soil depth of 20 cm 50179 from the surface the delta(13)C value of CO2 in soil profile developed 50180 on limestone ranges from -12.811parts per thousand - -13.492parts per 50181 thousand(PDB), that in soil profile developed on dolostone varys from 50182 -13.212parts per thousand - -14.271parts per thousand(PDB) and that in 50183 soil profile developed on claystone is about -20.234parts per thousand 50184 - -21.485parts per thousand(PDB). Taking the carbon isotope of soil 50185 organic matter and carbonate rock as two isotopic endmembers, the 50186 proportion of soil CO2 generated by dissolution of carbonate rock is 50187 calculated, about 21%-25% for soil profile developed on limestone 50188 basement, 19%-21% for soil profile developed on dolostone basement. 50189 There is almost no influx of CO2 generated by the dissolution of 50190 carbonate rock in soil profile developed on claystone basement. 50191 C1 Chinese Acad Sci, Inst Geochem, State Key Lab Environm Geochem, Guiyang 550002, Peoples R China. 50192 Grad Sch Chinese Acad Sci, Beijing 100039, Peoples R China. 50193 Shanghai Univ, Dept Environm Engn, Shanghai 200072, Peoples R China. 50194 RP Wang, SJ, Chinese Acad Sci, Inst Geochem, State Key Lab Environm 50195 Geochem, Guiyang 550002, Peoples R China. 50196 CR BUYANOVSKY GA, 1983, SOIL SCI SOC AM J, V47, P1139 50197 CERLING TE, 1984, EARTH PLANET SC LETT, V71, P229 50198 CHIODINI G, 1998, APPL GEOCHEM, V13, P543 50199 CRAIG H, 1953, GEOCHIM COSMOCHIM AC, V3, P53 50200 DAVIDSON GR, 1995, GEOCHIM COSMOCHIM AC, V59, P2485 50201 HE SH, 1997, CARSOLOGICA SINICA, V16, P319 50202 HOEFS J, 1997, STABLE ISOTOPE GEOCH, P153 50203 HSIEH JCC, 1999, GEOCHIM COSMOCHIM AC, V63, P767 50204 JAMES WR, 1995, GLOBAL BIOGEOCHEMICA, V9, P23 50205 JUAN CC, 1998, CHEM GEOL, V149, P251 50206 LIU ZH, 1998, HYDROGEOLOGY ENG GEO, V4, P42 50207 LIU ZH, 2000, SCI CHINA SER D, V43, P569 50208 MARRISON GM, 1991, CHEM GEOL, V86, P97 50209 PAN GX, 1999, CARSOLOGICA SINICA, V18, P287 50210 PARKER LW, 1983, SOIL BIOL BIOCHEM, V15, P303 50211 PIAO HC, 2000, BIOL FERT SOILS, V31, P422 50212 SOLOMON DK, 1987, WATER RESOUR RES, V23, P2257 50213 SONG WZ, 1996, ENV SCI, V17, P85 50214 TANG C, 1999, CARSOLOGICA SINICA, V18, P213 50215 WALTER CO, 1997, GLOBAL BIOGEOCHEMICA, V11, P163 50216 WANG Y, 1994, GEOCHIM COSMOCHIM AC, V58, P393 50217 WENG JT, 1995, ADV EARTH SCI, V10, P154 50218 WITKAMP M, 1969, ECOLOGY, V50, P922 50219 YUAN DX, 1993, QUATERNARY SCI, V1, P1 50220 ZHENG LP, 1999, CHINESE SCI B S2, V44, P93 50221 ZHENG LP, 1999, SCI CHINA SER D, V42, P588 50222 NR 26 50223 TC 1 50224 SN 1006-9313 50225 J9 SCI CHINA SER D 50226 JI Sci. China Ser. D-Earth Sci. 50227 PD AUG 50228 PY 2002 50229 VL 45 50230 IS 8 50231 BP 673 50232 EP 679 50233 PG 7 50234 SC Geosciences, Multidisciplinary 50235 GA 573VD 50236 UT ISI:000176851600001 50237 ER 50238 50239 PT J 50240 AU Li, CF 50241 TI Comment on "Photonic tunneling time in frustrated total internal 50242 reflection" 50243 SO PHYSICAL REVIEW A 50244 DT Editorial Material 50245 ID NEGATIVE PHASE TIME; ANALOGY; DELAY 50246 AB This is a comment on Stahlhofen's paper [Phys. Rev. A 62, 012112 50247 (2000)]. It is shown by stationary-phase theory that the Goos-Hanchen 50248 shift in frustrated total internal reflection (FTIR) is not independent 50249 of the group delay (or phase time in the literature). The group delay 50250 involves the contribution of Goos-Hanchen shift and is always larger 50251 than zero in FTIR. It is also shown that the group delay in the 50252 two-dimensional (2D) optical FTIR can be written in the same form as 50253 that of the group delay in the 1D quantum tunneling in the sense that 50254 the group delay is the derivative of the total phase shift with respect 50255 to the angular frequency. 50256 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 50257 RP Li, CF, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 50258 CR BUTTIKER M, 1983, PHYS REV B, V27, P6178 50259 LI CF, 2000, PHYS LETT A, V275, P287 50260 MARTIN T, 1992, PHYS REV A, V45, P2611 50261 STAHLHOFEN AA, 2000, PHYS REV A, V62 50262 STEINBERG AM, 1994, PHYS REV A, V49, P3283 50263 VETTER RM, 2001, PHYS REV E 2, V63 50264 WANG LJ, 2000, NATURE, V406, P277 50265 NR 7 50266 TC 4 50267 SN 1050-2947 50268 J9 PHYS REV A 50269 JI Phys. Rev. A 50270 PD JUN 50271 PY 2002 50272 VL 65 50273 IS 6 50274 AR 066101 50275 DI ARTN 066101 50276 PG 3 50277 SC Physics, Atomic, Molecular & Chemical; Optics 50278 GA 572FT 50279 UT ISI:000176763600135 50280 ER 50281 50282 PT J 50283 AU Xu, T 50284 Li, L 50285 Wang, PL 50286 Van Der Biest, O 50287 Vlengels, J 50288 TI Progress on calculation of phase diagram of ZrO2-containing oxides 50289 systems 50290 SO JOURNAL OF INORGANIC MATERIALS 50291 DT Article 50292 DE phase diagram; calculation of phase diagram; zirconia 50293 ID REGULAR SOLUTION MODEL; COMPOUND-ENERGY MODEL; THERMODYNAMIC 50294 PROPERTIES; OPTIMIZATION 50295 AB Zirconia is a kind of important ceramics materials. Because of its 50296 superior mechanical and electrical properties, zirconia, has been 50297 widely applied as both structural ceramics and functional ceramics. 50298 Based on a brief introduction on the progress and principle of 50299 calculation of phase diagram, the corresponding work on 50300 zirconia-containing systems in recent years was reviewed, and the 50301 results in some important systems were also summarized in detail. It 50302 was expected that the information of zirconia-containing phase diagrams 50303 based on the CALPHAD method would significantly promote the 50304 compositional design of zirconia ceramics. 50305 C1 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China. 50306 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China. 50307 Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Louvain, Belgium. 50308 RP Xu, T, Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High 50309 Performance Ceram & Superfine, Shanghai 200050, Peoples R China. 50310 CR ANDERSSON JO, 1986, ACTA METALL, V34, P437 50311 BLANDER M, 1987, GEOCHIM COSMOCHIM AC, V51, P85 50312 BONNIER E, 1960, CR HEBD ACAD SCI, V250, P527 50313 CHOU KC, 1987, CALPHAD, V11, P293 50314 COLINET C, 1967, D E S U GRENOBLE FRA 50315 DEGTYAREV SA, 1988, CALPHAD, V12, P73 50316 DU Y, 1991, J AM CERAM SOC, V74, P1569 50317 DU Y, 1991, J AM CERAM SOC, V74, P2107 50318 HILLERT M, 1969, PHASE TRANSFORMATION, CH5 50319 HILLERT M, 1970, ACTA CHEM SCAND, V24, P3618 50320 HILLERT M, 1980, CALPHAD, V4, P1 50321 HILLERT M, 1985, METALL TRANS A, V16, P261 50322 HILLERT M, 1988, Z METALLKD, V79, P81 50323 HILLERT M, 1998, J PHASE EQUILIB, V19, P206 50324 KAUFMAN L, 1970, COMPUTER CALCULATION 50325 KOHLER F, 1960, MONATSH CHEM, V91, P738 50326 KUBASCHEWSKI O, 1965, J I MET, V93, P329 50327 LI L, 1996, J MATER SCI TECHNOL, V12, P159 50328 LI L, 2001, J EUR CERAM SOC, V21, P2903 50329 MEIJERING JL, 1950, PHILIPS RES REP, V5, P333 50330 MUGGIANU YM, 1975, J CHIMIE PHYSIQUE, V72, P83 50331 ONDIK HM, 1998, PHASE DIAGRAMS ZIRCO 50332 PELTON AD, 1986, METALL TRANS B, V17, P805 50333 PELTON AD, 1988, CALPHAD, V12, P97 50334 SUNDMAN B, 1981, J PHYS CHEM SOLIDS, V42, P297 50335 TOOP GW, 1965, T METALL SOC AIME, V233, P850 50336 VANLAAR JJ, 1908, Z PHYS CHEM-STOCH VE, V63, P216 50337 VANLAAR JJ, 1908, Z PHYS CHEM-STOCH VE, V64, P257 50338 YOKOKAWA H, 1993, SCI TECHNOLOGY ZIRCO, V5, P59 50339 NR 29 50340 TC 0 50341 SN 1000-324X 50342 J9 J INORG MATER 50343 JI J. Inorg. Mater. 50344 PD MAY 50345 PY 2002 50346 VL 17 50347 IS 3 50348 BP 399 50349 EP 406 50350 PG 8 50351 SC Materials Science, Ceramics 50352 GA 574BN 50353 UT ISI:000176868700003 50354 ER 50355 50356 PT J 50357 AU Chen, XY 50358 Shen, XJ 50359 TI Mechanical model of laterally driven polysilicon microresonant 50360 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION 50361 DT Article 50362 DE MEMS; mechanical model; laterally driven micro-resonator; flexural 50363 suspension 50364 AB Surface-polysilicon fabricated comb-drive resonators suspended by 50365 springs are modeled in this paper. Based on the understanding of 50366 symmetry of the microstructures but applied load are not same, the 50367 lateral vibration of the micro-resonators which suspended by four 50368 straight-leg or crab-leg flexure are investigated. It is found that the 50369 simple mechanical models of them are both superfluous systems with 50370 three or five unknown variables. The calculating way of the stress, 50371 lateral displacement, spring coefficient and resonant frequency is 50372 deducted. Compared with the model of steady system, which published 50373 before, the result shows the essential aspect of this problem and 50374 explains why straight-leg flexures are more commonly used in practice. 50375 C1 Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China. 50376 RP Chen, XY, Shanghai Univ, Sch Mechatron Engn & Automat, POB 224,149 50377 Yanchang Rd, Shanghai 200072, Peoples R China. 50378 CR DANEMAN MJ, 1996, J MICROELECTROMECH S, V5, P159 50379 DEB N, 1999, P SOC PHOTO-OPT 1&2, V3680, P58 50380 FEDDER GK, 1995, P 1 INT C SIM DES MI, P175 50381 FEDDER GK, 1997, P TRANSD 97, P1109 50382 HIRANO T, 1992, J MICROELECTROMECH S, V1, P52 50383 PISANO AP, 1989, SENSOR ACTUATOR, V20, P83 50384 PISANO AP, 1990, SENSOR ACTUAT A-PHYS, V21, P1060 50385 TANG WC, 1989, SENSOR ACTUATOR, V20, P25 50386 TANG WC, 1990, SENSOR ACTUAT A-PHYS, V21, P328 50387 TANG WC, 1992, J MICROELECTROMECHAN, V1, P170 50388 NR 10 50389 TC 0 50390 SN 1565-1339 50391 J9 INT J NONLINEAR SCI NUMER SIM 50392 JI Int. J. Nonlinear Sci. Numer. Simul. 50393 PY 2002 50394 VL 3 50395 IS 3-4 50396 SI Sp. Iss. SI 50397 BP 639 50398 EP 642 50399 PG 4 50400 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics, 50401 Mathematical; Mechanics 50402 GA 574RR 50403 UT ISI:000176903800108 50404 ER 50405 50406 PT J 50407 AU Lu, ZY 50408 Wang, LH 50409 Yao, DY 50410 TI Study on the modeling of timed-token protocol 50411 SO APPLIED MATHEMATICAL MODELLING 50412 DT Article 50413 DE timed-token protocol (TTP); time-limited service; mathematical modeling 50414 AB The study on the modeling of timed-token protocol (TTP) in metropolitan 50415 area network is presented in this paper. The classification of queueing 50416 models of TTP is given, and the mathematical analysis as well as 50417 numerical emulation for one of the queueing models i.e. L/G/1 50418 [Intermittent, Station priority, TTP, Time-limited service] are 50419 presented. (C) 2002 Elsevier Science Inc. All rights reserved. 50420 C1 Ocean Univ Qingdao, Dept Comp Sci & Technol, Qingdao 266071, Peoples R China. 50421 Yunnan Univ, Informat Engn Coll, Yunnan 650000, Peoples R China. 50422 Shanghai Univ, Coll Comp, Shanghai 200072, Peoples R China. 50423 RP Lu, ZY, Ocean Univ Qingdao, Dept Comp Sci & Technol, Qingdao 266071, 50424 Peoples R China. 50425 CR JAIN R, 1990, P ACM SIGCOMM S COMM, P264 50426 LU ZY, 1994, J ELECT, V16, P148 50427 PANG JWM, 1989, IEEE T COMMUN, V37, P694 50428 RUBIN I, 1992, P IEEE GLOBECOM, P1630 50429 RUBIN I, 1997, COMPUT NETWORKS ISDN, V29, P249 50430 WANG L, 1999, QINGD HONG KONG INT 50431 NR 6 50432 TC 0 50433 SN 0307-904X 50434 J9 APPL MATH MODEL 50435 JI Appl. Math. Model. 50436 PD AUG 50437 PY 2002 50438 VL 26 50439 IS 8 50440 BP 797 50441 EP 805 50442 PG 9 50443 SC Mathematics, Applied; Mechanics; Operations Research & Management 50444 Science 50445 GA 574MU 50446 UT ISI:000176894800002 50447 ER 50448 50449 PT J 50450 AU Xu, GQ 50451 Li, ZB 50452 TI Extended mixing exponential method and its applications 50453 SO ACTA PHYSICA SINICA 50454 DT Article 50455 DE solitary wave; mixing exponential method; regular long wave equation 50456 ID SOLITARY WAVE SOLUTIONS; EXPLICIT EXACT-SOLUTIONS; TANH-FUNCTION 50457 METHOD; NONLINEAR EVOLUTION; EQUATIONS 50458 AB Mixing exponential method proposed by Hereman for finding the solitary 50459 wave solutions to a nonlinear evolution equation is developed and 50460 perfected. Correspondingly, an extended mixing exponential method is 50461 obtained by expressing the solutions as an infinite series of the real 50462 or complex exponential solutions of the underlying linear equations. 50463 The effectiveness of the extended approach is demonstrated by 50464 application to the well-known regular long wave equation with physical 50465 interest. Not only are steady solitary wave solutions recovered, but 50466 also the diverging and the periodic solutions are obtained. 50467 C1 E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China. 50468 Shanghai Univ, Dept Informat Engn & Adm, Shanghai 200436, Peoples R China. 50469 RP Xu, GQ, E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R 50470 China. 50471 CR FAN EG, 1998, ACTA PHYS SINICA, V47, P353 50472 FAN EG, 2000, PHYS LETT A, V277, P212 50473 HEREMAN W, 1986, J PHYS A-MATH GEN, V19, P607 50474 HEREMAN W, 1990, J PHYS A-MATH GEN, V23, P4805 50475 LI ZB, 1997, ACTA MATH SINICA, V17, P81 50476 LI ZB, 2001, ACTA PHYS SIN-CH ED, V50, P2062 50477 PANIGRAHY E, 1999, PHYS LETT A, V261, P284 50478 PARKES EJ, 1996, COMPUT PHYS COMMUN, V98, P288 50479 XIA TC, 2001, CHINESE PHYS, V10, P694 50480 XU GQ, 2002, ACTA PHYS SIN-CH ED, V51, P946 50481 YAN ZY, 1999, ACTA PHYS SIN-CH ED, V48, P1962 50482 ZHANG GX, 2000, SCI CHINA SER A, V30, P1103 50483 ZHENG Y, 2000, ACTA PHYS SIN-CH ED, V49, P389 50484 NR 13 50485 TC 12 50486 SN 1000-3290 50487 J9 ACTA PHYS SIN-CHINESE ED 50488 JI Acta Phys. Sin. 50489 PD JUL 50490 PY 2002 50491 VL 51 50492 IS 7 50493 BP 1424 50494 EP 1427 50495 PG 4 50496 SC Physics, Multidisciplinary 50497 GA 573VF 50498 UT ISI:000176851800004 50499 ER 50500 50501 PT J 50502 AU Wu, Z 50503 Wang, Q 50504 Zhou, JM 50505 Li, CF 50506 Shi, JL 50507 TI Nonlinear characteristics of magnetic surface waves with microwave 50508 excitation 50509 SO ACTA PHYSICA SINICA 50510 DT Article 50511 DE antiferromagnet; ferromagnet; nonlinear surface waves 50512 ID IRON-GARNET FILMS; ENVELOPE SOLITONS; FERROMAGNETIC-FILMS; SPATIAL 50513 SOLITONS; TM WAVES; ANTIFERROMAGNETS; PROPAGATION; INTERFACE 50514 AB Properties of transverse-electric surface waves on a plane interface 50515 between a linear ferromagnet and a nonlinear antiferromagnet are 50516 investigated. The dispersion relation and the field distribution are 50517 obtained. The property investigation of the surface waves in this 50518 waveguide shows that there exist passbands and stopbands, which can be 50519 controlled by varying the power in the nonlinear gyromagnetic 50520 waveguide. The results provide ideas to develop devices capable of 50521 working in microwave frequency range. 50522 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 50523 RP Wu, Z, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 50524 CR ALMEIDA NS, 1987, PHYS REV B, V36, P2015 50525 BOARDMAN AD, 1990, OPT COMMUN, V74, P347 50526 BOARDMAN AD, 1990, PHYS REV B, V41, P717 50527 BOARDMAN AD, 1993, PHYS REV B, V48, P13602 50528 BOARDMAN AD, 1994, IEEE T MAGN, V30, P1 50529 BOARDMAN AD, 1994, IEEE T MAGN, V30, P14 50530 BOARDMAN AD, 1995, J MAGN MAGN MATER, V145, P357 50531 BOYLE JW, 1996, PHYS REV B, V53, P12173 50532 CHEN M, 1994, PHYS REV B, V49, P12773 50533 CHEN ZG, 1996, OPT LETT, V21, P716 50534 KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712 50535 NEWELL AC, 1991, NONLINEAR OPTICS, P120 50536 TSANKOV MA, 1994, J APPL PHYS, V76, P4274 50537 VARATHARAJAH P, 1990, PHYS REV A, V42, P1767 50538 VUKOVICH S, 1991, SOV PHYS JETP, V71, P964 50539 WANG Q, 1995, J APPL PHYS, V77, P5831 50540 WANG Q, 1997, JPN J APPL PHYS PT 1, V36, P22 50541 WANG Q, 1998, J APPL PHYS, V83, P382 50542 WANG Q, 2000, ACTA PHYS SIN-CH ED, V49, P349 50543 WANG YF, 1998, J APPL PHYS, V84, P6233 50544 WU Z, 2001, ACTA PHYS SIN-CH ED, V50, P1178 50545 NR 21 50546 TC 2 50547 SN 1000-3290 50548 J9 ACTA PHYS SIN-CHINESE ED 50549 JI Acta Phys. Sin. 50550 PD JUL 50551 PY 2002 50552 VL 51 50553 IS 7 50554 BP 1612 50555 EP 1620 50556 PG 9 50557 SC Physics, Multidisciplinary 50558 GA 573VF 50559 UT ISI:000176851800037 50560 ER 50561 50562 PT J 50563 AU Yang, L 50564 Liu, ZR 50565 Chen, GR 50566 TI Chaotifying a continuous-time system via impulsive input 50567 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS 50568 DT Article 50569 DE chaos; chaotification; impulsive control; Poincare map 50570 ID CHAOS 50571 AB This paper studies the chaotification problem of driving a 50572 continuous-time system to a chaotic state by using an impulsive control 50573 input. The controller is designed to ensure the controlled orbit be 50574 bounded and, meanwhile, have positive Lyapunov exponents. This is 50575 proved to be not only possible but also implementable near a stable 50576 limit cycle of the given system. Two numerical examples are given to 50577 illustrate the effectiveness of the proposed chaotification method. 50578 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 50579 Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China. 50580 City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China. 50581 RP Yang, L, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 50582 CR CHEN G, 1998, CHAOS ORDER METHODOL 50583 CHEN G, 1999, CONTROLLING CHAOS BI 50584 CHEN G, 2002, IN PRESS IEICE T FUN 50585 CHEN GR, 1996, INT J BIFURCAT CHAOS, V6, P1341 50586 CHEN GR, 1998, INT J BIFURCAT CHAOS, V8, P1585 50587 FRADKOV AL, 1999, INTRO CONTROL OSCILL 50588 JUDD K, 1997, CONTORL CHAOS MATH M 50589 KAPITANIAK T, 1998, CHAOS ENG THEORY APP 50590 LAKSHMANAN M, 1996, CHAOS NONLINEAR OSCI 50591 OTT E, 1990, PHYS REV LETT, V64, P1196 50592 PARKER TS, 1989, PRACTICAL NUMERICAL 50593 VANECEK A, 1996, CONTROL SYSTEMS LINE 50594 WANG XF, 2000, CHAOS, V10, P771 50595 WANG XF, 2000, INT J BIFURCAT CHAOS, V10, P549 50596 NR 14 50597 TC 9 50598 SN 0218-1274 50599 J9 INT J BIFURCATION CHAOS 50600 JI Int. J. Bifurcation Chaos 50601 PD MAY 50602 PY 2002 50603 VL 12 50604 IS 5 50605 BP 1121 50606 EP 1128 50607 PG 8 50608 SC Mathematics, Applied; Multidisciplinary Sciences 50609 GA 571JD 50610 UT ISI:000176713500017 50611 ER 50612 50613 PT J 50614 AU Tang, JG 50615 Ma, HP 50616 TI Single and multi-interval Legendre tau-methods in time for parabolic 50617 equations 50618 SO ADVANCES IN COMPUTATIONAL MATHEMATICS 50619 DT Article 50620 DE interval decomposition; parabolic equation; spectral method in time; 50621 optimal error estimate 50622 ID SPECTRAL-GALERKIN METHOD; HYPERBOLIC-EQUATIONS; ELEMENT METHODS; DIRECT 50623 SOLVERS; 2ND-ORDER; POLYNOMIALS 50624 AB In this paper, we take the parabolic equation with periodic boundary 50625 conditions as a model to present a spectral method with the Fourier 50626 approximation in spatial and single/multi-interval Legendre 50627 Petrov-Galerkin method in time. For the single interval spectral method 50628 in time, we obtain the optimal error estimate in L-2 -norm. For the 50629 multi-interval spectral method in time, the L-2-optimal error estimate 50630 is valid in spatial. Numerical results show the efficiency of the 50631 methods. 50632 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 50633 Lingling Coll, Dept Math, Yongzhou Hunan, Peoples R China. 50634 CR BABUSKA I, 1989, NUMER METH PART D E, V5, P363 50635 BARYOSEPH P, 1995, J COMPUT PHYS, V119, P62 50636 BARYOSEPH PZ, 2000, APPL NUMER MATH, V33, P435 50637 BERNARDI C, 1997, HDBK NUM AN 2, V5, P209 50638 CANUTO C, 1988, SPECTRAL METHODS FLU 50639 COUTSIAS EA, 1996, P 3 INT C SPECTR HIG, P21 50640 GERVASIO P, 1998, NUMER METH PART D E, V14, P115 50641 GLENN I, 1992, J COMPUT PHYS, V102, P88 50642 GUO BY, 1998, SPECTRAL METHODS THE 50643 LI J, 2000, NUMER METH PART D E, V16, P513 50644 LUO Y, 1994, J SCI COMPUT, V9, P123 50645 LUO Y, 1997, J SCI COMPUT, V12, P31 50646 LUO Y, 1997, J SCI COMPUT, V12, P465 50647 MA HP, 2000, SIAM J NUMER ANAL, V38, P1425 50648 SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489 50649 SHEN J, 1995, SIAM J SCI COMPUT, V16, P74 50650 TALEZER H, 1986, SIAM J NUMER ANAL, V23, P11 50651 TALEZER H, 1989, SIAM J NUMER ANAL, V26, P1 50652 WU SC, 1996, APPL MATH MECH, V17, P357 50653 WU SC, 1997, ACTA MATH APPL SINIC, V13, P314 50654 ZHANG FY, 1998, J COMPUT MATH, V16, P107 50655 ZRAHIA U, 1994, COMPUT METHOD APPL M, V116, P135 50656 NR 22 50657 TC 0 50658 SN 1019-7168 50659 J9 ADV COMPUT MATH 50660 JI Adv. Comput. Math. 50661 PD NOV 50662 PY 2002 50663 VL 17 50664 IS 4 50665 BP 349 50666 EP 367 50667 PG 19 50668 SC Mathematics, Applied 50669 GA 572ZG 50670 UT ISI:000176804400004 50671 ER 50672 50673 PT J 50674 AU Bian, LJ 50675 Qian, XF 50676 Yin, J 50677 Lu, QH 50678 Liu, L 50679 Zhu, ZK 50680 TI Preparation and properties of rare earth oxide/polyimide hybrids 50681 SO POLYMER TESTING 50682 DT Article 50683 DE hybrid; polyimide; rare earth 50684 ID POLYIMIDE; NANOCLUSTERS; COMPOSITES; FILMS 50685 AB A series of Eu2O3/polyimide hybrids has been successfully prepared via 50686 a solution process. X-ray diffraction and atomic force microscopy were 50687 used to characterize the hybrids. Mechanical tests showed that 50688 introduction of the rare earth can obviously increase the tensile 50689 strength of the polymer. Thermal analysis indicated that the addition 50690 of rare earth can increase the glass transition temperature and thermal 50691 stability of polyimide. The introduction of rare earth also increased 50692 the dimensional stability and refractive index. (C) 2002 Elsevier 50693 Science Ltd. All rights reserved. 50694 C1 Shanghai Jiao Tong Univ, Sch Chem & Chem Technol, Shanghai 200240, Peoples R China. 50695 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China. 50696 RP Zhu, ZK, Shanghai Jiao Tong Univ, Sch Chem & Chem Technol, Shanghai 50697 200240, Peoples R China. 50698 CR AGAG T, 2001, POLYMER, V42, P3399 50699 BERGMEISTER JJ, 1992, CHEM MATER, V2, P679 50700 EZZELL SA, 1984, MACROMOLECULES, V17, P1627 50701 KIOUL A, 1994, J NON-CRYST SOLIDS, V175, P169 50702 LAN T, 1994, CHEM MATER, V6, P573 50703 NANDI M, 1991, CHEM MATER, V3, P201 50704 PORTA GM, 1989, CHEM MATER, V1, P69 50705 SOUTHWARD RE, 1996, J ADV MATER, V27, P2 50706 THOMPSON DS, 1994, POLYM MAT SCI ENG, V71, P725 50707 TROGER L, 1997, J PHYS CHEM B, V101, P1279 50708 ZHU ZK, 2000, ADV MATER, V12, P1055 50709 NR 11 50710 TC 2 50711 SN 0142-9418 50712 J9 POLYM TEST 50713 JI Polym. Test 50714 PD OCT 50715 PY 2002 50716 VL 21 50717 IS 7 50718 BP 841 50719 EP 845 50720 PG 5 50721 SC Materials Science, Characterization & Testing; Polymer Science 50722 GA 567VA 50723 UT ISI:000176505100016 50724 ER 50725 50726 PT J 50727 AU Ju, JH 50728 Xia, YB 50729 Sang, WB 50730 Wang, LJ 50731 Wu, WH 50732 Tang, DY 50733 TI Interface analysis of DLC film deposited on Hg1-xCdxTe 50734 SO JOURNAL OF INFRARED AND MILLIMETER WAVES 50735 DT Article 50736 DE diamond like carbon; film; infrared; interfaces 50737 AB A dense and homogeneous nanograins diamond-like carbon (DLC) film was 50738 deposited on the well-polished HgCdTe wafer by radio frequency plasma 50739 chemical vapor deposition at room temperature. The interface of 50740 DLC/HgCdTe was studied by AES and compared with that of ZnS/HgCdTe, 50741 which was prepared by ion sputtering( IS). The result shows that both 50742 DLC film and ZnS film can suppress the dissociation of the weak bonding 50743 HgTe, and prevent Hg escaping from MCT surface to some extent. However, 50744 both Zn and S in ZnS layer tend to diffuse inward MCT, while diffusion 50745 of C from DLC layer into MCT is rather slight. In particular, IR 50746 transmission of MCT deposited with DLC is remarkable raised comparing 50747 to the naked surface and higher than that of MCT deposited with ZnS. 50748 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 50749 Chinese Acad Sci, Natl Lab Infrared Phys, Shanghai, Peoples R China. 50750 RP Ju, JH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R 50751 China. 50752 CR ANGUS JC, 1988, SCIENCE, V241, P913 50753 HARRIS DC, 1995, P SOC PHOTO-OPT INS, V2552, P325 50754 HOLLAND L, 1979, THIN SOLID FILMS, V58, P107 50755 HOWLAND R, 1996, PRACTICAL GUIDE SCAN 50756 JU JH, 1992, ACTA ENERGIAE SOLARI, V13, P276 50757 JUNG JW, 1996, THIN SOLID FILMS, V290, P18 50758 MCKINLEY JM, 1995, P SOC PHOTO-OPT INS, V2554, P213 50759 NEMIROVSKY Y, 1990, J VAC SCI TECHNOL A, V8, P1185 50760 NR 8 50761 TC 1 50762 SN 1001-9014 50763 J9 J INFRARED MILIM WAVES 50764 JI J. Infrared Millim. Waves 50765 PD JUN 50766 PY 2002 50767 VL 21 50768 IS 3 50769 BP 238 50770 EP 240 50771 PG 3 50772 SC Optics 50773 GA 570WM 50774 UT ISI:000176682400018 50775 ER 50776 50777 PT J 50778 AU Jiang, XY 50779 Zhang, ZL 50780 Zhang, BX 50781 Zhu, WQ 50782 Xu, SH 50783 TI Stable and current independent white-emitting organic diode 50784 SO SYNTHETIC METALS 50785 DT Article 50786 DE white OLED; current independence; stability 50787 ID ELECTROLUMINESCENT DEVICES; LAYERS 50788 AB White organic light emitting diodes (OLEDs) with new blue material and 50789 two kinds of structures have been constructed: one with blue and red 50790 emission in a same layer, the other with blue and red emission in 50791 separated layers. The configurations of the devices are 50792 ITO/CuPc/NTPB/JBEM(P):DCJT/Alq/MgAg (Device1) and 50793 ITO/CuPc/NPB/JBEM(P)/Alq:DCJT/Alq/MgAg (Device2). Here, copper 50794 phthalocyanine (CuPc) is the buffer layer; 50795 N,N'-bis(l-naphthyl)-N'-diphenyl-1.1'-biphenyl-4-4'-diamine (NPB) is 50796 the hole transporting layer (HTL); 9,10-bis(3'5'-diaryl)phenyl 50797 anthracene doped with perylene (JBEM(P)) is a new blue emitting 50798 material; tris(8-quinolinolato)aluminum complex (Alq) is the electron 50799 transporting layer (ETL), and DCJT is a red dye. A stable and current 50800 independent white OLED has been obtained in the device with blue and 50801 red emission in the same layer. It shows a maximum luminance of 14 850 50802 cd/m(2), an efficiency of 2.88 Lm/W, Commission Internationale de 50803 l'Eclairage (CIE) co-ordinates x = 0.32, y = 0.38 from 4 to 200 50804 mA/cm(2), and the half lifetime 2860 h at the starting luminance of 100 50805 cd/m(2). It is proved that the device with blue and red in the same 50806 layer has better characteristics than the device with blue and red in 50807 separated layers in luminance, efficiency and stability. (C) 2002 50808 Elsevier Science B.V. All rights reserved. 50809 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China. 50810 RP Jiang, XY, Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R 50811 China. 50812 CR CHEN CH, 1997, MACROMOL S, V125, P1 50813 DESHPANDE RS, 1999, APPL PHYS LETT, V75, P888 50814 FORREST SR, 1997, SYNTHETIC MET, V91, P9 50815 GRANSTROM M, 1996, APPL PHYS LETT, V68, P147 50816 JIANG XY, 2000, J PHYS D APPL PHYS, V33, P473 50817 JORDAN RH, 1996, APPL PHYS LETT, V68, P1192 50818 KIDO J, 1994, APPL PHYS LETT, V64, P815 50819 LIU SY, 2000, THIN SOLID FILMS, V363, P294 50820 SHI JM, 1999, 5972247, US 50821 STRUKELJ M, 1996, J AM CHEM SOC, V118, P1213 50822 TANG CW, 1987, APPL PHYS LETT, V51, P913 50823 TOKITO S, 1995, J APPL PHYS, V77, P1985 50824 NR 12 50825 TC 10 50826 SN 0379-6779 50827 J9 SYNTHET METAL 50828 JI Synth. Met. 50829 PD JUN 17 50830 PY 2002 50831 VL 129 50832 IS 1 50833 BP 9 50834 EP 13 50835 PG 5 50836 SC Materials Science, Multidisciplinary; Physics, Condensed Matter; 50837 Polymer Science 50838 GA 567DK 50839 UT ISI:000176470000002 50840 ER 50841 50842 PT J 50843 AU Yang, GH 50844 Zhang, H 50845 Duan, YS 50846 TI Topological aspects of liquid crystals 50847 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 50848 DT Article 50849 DE topological current; wrapping number; disclination point; bifurcation 50850 ID CONDENSED MATTER PHYSICS; SPACE-TIME DEFECTS; BIFURCATION-THEORY; EARLY 50851 UNIVERSE; QUANTIZATION; MEDIA; ORIGIN 50852 AB Using phi-mapping method and topological current theory, the properties 50853 and behaviors of disclination points in three-dimensional liquid 50854 crystals are studied. By introducing the strength density and the 50855 topological current of many disclination points, the total disclination 50856 strength is topologically quantized by the Hopf indices and Brouwer 50857 degrees at the singularities of the general director field when the 50858 Jacobian determinant of the general director field does not vanish. 50859 When the Jacobian determinant vanishes, the origin, annihilation, and 50860 bifurcation of disclination points are detailed in the neighborhoods of 50861 the limit point and bifurcation point, respectively. The branch 50862 solutions at the limit point and the different directions of all branch 50863 curves at the first- and second-order degenerated points are 50864 calculated. It is pointed out that a disclination point with a higher 50865 strength is unstable and will evolve to the lower strength state 50866 through the bifurcation process. An original disclination point can 50867 split into at most four disclination points at one time. 50868 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 50869 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 50870 Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China. 50871 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 50872 CR ANDERSON PW, 1984, BASIC NOTIONS CONDEN 50873 BLAHA S, 1976, PHYS REV LETT, V36, P874 50874 BRAY AJ, 1994, ADV PHYS, V43, P375 50875 DEGENNES PG, 1970, LECT NOTES 50876 DEGENNES PG, 1974, PHYSICS LIQUID CRYST 50877 DUAN YS, 1997, GEN RELAT GRAVIT, V29, P715 50878 DUAN YS, 1997, HELV PHYS ACTA, V70, P565 50879 DUAN YS, 1998, NUCL PHYS B, V514, P705 50880 FINKELSTEIN D, 1966, J MATH PHYS, V7, P1218 50881 FRIEDEL J, 1964, DISLOCATIONS 50882 HOLZ A, 1992, PHYSICA A, V182, P240 50883 JIANG Y, 2000, J MATH PHYS, V41, P2616 50884 KLEMAN M, 1972, LIQUID CRYSTALLINE S 50885 KLEMAN M, 1973, PHILOS MAG, V27, P1057 50886 KLEMAN M, 1977, J PHYSIQUE LETT, V38, L195 50887 KLEMAN M, 1983, POINTS LINES WALLS L 50888 KURIK MV, 1988, SOV PHYS USP, V31, P196 50889 KURIK MV, 1988, USP FIZ NAUK, V154, P381 50890 LUBENSKY TC, 1997, SOLID STATE COMMUN, V102, P187 50891 MERMIN ND, 1979, REV MOD PHYS, V51, P591 50892 NABARRO FRN, 1967, THEORY CRYSTAL DISLO 50893 ROGULA D, 1976, TRENDS APPL PURE MAT 50894 SHANKAR R, 1977, J PHYSIQUE, V38, P1405 50895 TOULOUSE G, 1976, J PHYSIQUE LETT, V37, P149 50896 TREBIN HR, 1982, ADV PHYS, V31, P195 50897 VOLOVIK GE, 1976, SOV PHYS JETP, V48, P561 50898 VOLOVIK GE, 1977, ZH EKSP TEOR FIZ, V45, P1186 50899 VOLOVIK GE, 1977, ZH EKSP TEOR FIZ, V46, P401 50900 YANG GH, 1998, INT J THEOR PHYS, V37, P2371 50901 YANG GH, 1998, MOD PHYS LETT A, V13, P2123 50902 YANG GH, 1999, INT J ENG SCI, V37, P1037 50903 NR 31 50904 TC 0 50905 SN 0020-7748 50906 J9 INT J THEOR PHYS 50907 JI Int. J. Theor. Phys. 50908 PD JUN 50909 PY 2002 50910 VL 41 50911 IS 6 50912 BP 991 50913 EP 1005 50914 PG 15 50915 SC Physics, Multidisciplinary 50916 GA 566FN 50917 UT ISI:000176416400001 50918 ER 50919 50920 PT J 50921 AU Huang, DB 50922 TI Failure of the Ott-Grebogi-York-type controllers for nonhyperbolic chaos 50923 SO CHINESE PHYSICS LETTERS 50924 DT Article 50925 AB It is considered that nonhyperbolicity affects the achievement of 50926 Ott-Grebogi-York-type (OGY-type) controllers. The result shows that, 50927 without a priori analytical knowledge of the dynamics, it is impossible 50928 to estimate the local dynamics from an experimental time series due to 50929 the singularity of the corresponding least-squares problem which 50930 results from the nonhyperbolicity in the system. Thus, it is necessary 50931 to destroy chaos before obtaining the formation for attempting control 50932 by experimental time series. The result explains a physical 50933 experimental result in the failure of chaos control in a parametrically 50934 excited pendulum model. 50935 C1 Shanghai Univ, Dept Math, Shanghai 200136, Peoples R China. 50936 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 200136, Peoples R China. 50937 CR ECKMANN JP, 1985, REV MOD PHYS, V57, P617 50938 KOSTELICH EJ, 1992, PHYSICA D, V58, P138 50939 LATHROP DP, 1989, PHYS REV A, V40, P4028 50940 OTT E, 1990, PHYS REV LETT, V64, P1196 50941 OTT E, 1993, CHAOS DYNAMICAL SYST 50942 STEWART GW, 1973, INTRO MATRIX COMPUTA 50943 VANDEWATER W, 2000, PHYS REV E A, V62, P6398 50944 XU HB, 2001, CHINESE PHYS LETT, V18, P878 50945 YANG L, 2000, PHYS REV LETT, V84, P67 50946 NR 9 50947 TC 1 50948 SN 0256-307X 50949 J9 CHIN PHYS LETT 50950 JI Chin. Phys. Lett. 50951 PD JUN 50952 PY 2002 50953 VL 19 50954 IS 6 50955 BP 762 50956 EP 764 50957 PG 3 50958 SC Physics, Multidisciplinary 50959 GA 566UV 50960 UT ISI:000176447400006 50961 ER 50962 50963 PT J 50964 AU Fang, ZJ 50965 Xia, YB 50966 Wang, LJ 50967 Wang, ZM 50968 TI A new quantitative determination of stress by Raman spectroscopy in 50969 diamond grown on alumina 50970 SO JOURNAL OF PHYSICS-CONDENSED MATTER 50971 DT Article 50972 AB Raman spectroscopy is used to study the residual stress in 50973 polycrystalline diamond grown on alumina by chemical vapour deposition. 50974 A new method for stress determination is first presented and used for 50975 the measurement of the stress evolution across the film thickness. The 50976 compressive stress in the very thin film is in good agreement with the 50977 thermal mismatch between diamond and alumina, and the stress declines 50978 with increasing film thickness due to the stress relief during grain 50979 growth. Within thickness up to about 20 mum, the stress values given by 50980 the singlet and doublet Raman modes correspond satisfactorily and the 50981 common assumption of biaxial stress in the plane of the film is 50982 confirmed. With further increasing film thickness, the quantitative 50983 measurement method seems to be inappropriate because of the more 50984 complicated stress state. 50985 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 50986 RP Fang, ZJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R 50987 China. 50988 CR AGER JW, 1993, PHYS REV B, V48, P2601 50989 AGER JW, 1995, MATER RES SOC SYMP P, V383, P143 50990 CHAUDHARI P, 1972, J VAC SCI TECHNOL, V9, P520 50991 FIELD JE, 1979, PROPERTIES NATURAL S 50992 GRIMSDITCH MH, 1978, PHYS REV B, V18, P901 50993 MO Y, 1998, J CRYST GROWTH, V191, P459 50994 VONKAENEL Y, 1994, DIAM RELAT MATER, V3, P757 50995 NR 7 50996 TC 4 50997 SN 0953-8984 50998 J9 J PHYS-CONDENS MATTER 50999 JI J. Phys.-Condes. Matter 51000 PD JUN 3 51001 PY 2002 51002 VL 14 51003 IS 21 51004 BP 5271 51005 EP 5276 51006 PG 6 51007 SC Physics, Condensed Matter 51008 GA 565ZP 51009 UT ISI:000176400700004 51010 ER 51011 51012 PT S 51013 AU Bian, JJ 51014 Zhong, YG 51015 Wang, H 51016 TI Low-temperature-fireable microwave dielectric ceramic 51017 (Pb0.45Ca0.55)[(Fe1/2Nb1/2)(0.9)Sn-0.1]O-3 with addition of CuO-V2O6-LiF 51018 SO HIGH-PERFORMANCE CERAMICS 2001, PROCEEDINGS 51019 SE KEY ENGINEERING MATERIALS 51020 DT Article 51021 DE low-temperature-firing; microwave dielectrics; dielectric properties 51022 AB The sintering behavior, microstructure as well as the microwave 51023 dielectric properties of 51024 (Pb0.45Ca0.55)[(Fe1/2Nb1/2)(0.9)Sn-0.1]O-3(PCFNS) ceramics with the 51025 addition Of CuO-V2O5-LiF(VCL) were investigated. The experimental 51026 results showed that the PCFNS ceramics could be sintered at rather low 51027 temperature (950-1000degreesC) when more than 0.1wt% CuO-V2O5-LiF is 51028 added. Excellent microwave dielectric properties were obtained: Q(.)f = 51029 4000 GHz, epsilon(r) = 85.4,tau(f) = 5 ppm/degreesC, as 0.2wt% 51030 CuO-V2O5-LiF sintering aid was added. The variations of sinterability 51031 and the microwave properties were also discussed based on the 51032 characterization of microstructures. 51033 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China. 51034 RP Bian, JJ, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R 51035 China. 51036 CR BIAN JJ, IN PRESS J MAT SCI M 51037 BIAN JJ, 2001, J MATER SCI LETT, V20, P1767 51038 HUANG CL, 2000, MATER LETT, V43, P32 51039 ISHZAKI T, 1994, IEEE T MICROW THEORY, V42, P2017 51040 KAGATA H, 1994, NATL TECHNICAL REPOR, V40, P17 51041 KIM HT, 1999, J AM CERAM SOC, V82, P3476 51042 KUCHEIKO S, 1997, J AM CERAM SOC, V80, P2937 51043 ONODA M, 1982, JPN J APPL PHYS, V21, P3731 51044 NR 8 51045 TC 0 51046 SN 1013-9826 51047 J9 KEY ENG MAT 51048 PY 2002 51049 VL 224-2 51050 BP 13 51051 EP 16 51052 PG 4 51053 GA BU56L 51054 UT ISI:000176367400004 51055 ER 51056 51057 PT S 51058 AU Chen, HY 51059 Guo, XB 51060 Meng, ZY 51061 TI Aging behavior and mechanism of PMMN-PZT quaternary piezoelectric 51062 ceramics 51063 SO HIGH-PERFORMANCE CERAMICS 2001, PROCEEDINGS 51064 SE KEY ENGINEERING MATERIALS 51065 DT Article 51066 DE aging; PMMN-PZT; quaternary piezoelectric ceramics 51067 ID NIOBATE-LEAD TITANATE; RELAXOR FERROELECTRICS 51068 AB Pb(Mg1/3Nb2/3)O-3-Pb(Mn1/3Nb2/3)O-3-PbZrO3-PbTiO3 (PMMN-PZT) quaternary 51069 piezoelectric ceramics in the vicinity of morphotropic phase boundary 51070 (MPB) were fabricated and the piezoelectric properties were 51071 characterized. Aging characteristics of the quaternary systems was 51072 investigated. It was observed that as the Pb(Mg1/3Nb2/3)O-3 (PMN) 51073 content increases, the aging rate decrease. For a certain composition, 51074 the aging rate increases with increasing temperature. It was shown that 51075 the aging observed in these compositions related with logarithmic aging 51076 time is out of line, instead, a stretched exponential time law. The 51077 compositions of rhombohedral phase exhibit a much weaker aging than 51078 that of tetragonal phase. Experimental results also reveal that the 51079 aging rate can be suppressed via post-sintering annealing in oxygen. It 51080 is concluded that the aging mechanism of PMMN-PZT systems is mainly 51081 related to the lattice defects. 51082 C1 Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 51083 Shanghai Jiao Tong Univ, Inst Composite Mat, Shanghai 200030, Peoples R China. 51084 RP Meng, ZY, Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 51085 201800, Peoples R China. 51086 CR CHEN HY, IN PRESS MAT CHEM PH 51087 COHEN A, 1970, J AM CERAM SOC, V53, P396 51088 CROSS LE, 1987, FERROELECTRICS, V76, P241 51089 IKEGAMI S, 1967, J PHYS SOC JPN, V22, P725 51090 KO JS, 1992, P 8 IEEE S APPL FERR, P395 51091 KUDO T, 1970, J AM CERAM SOC, V53, P326 51092 NOMURA T, 1995, JPN J APPL PHYS 1, V34, P5389 51093 PAN W, 1989, J MATER SCI LETT, V5, P647 51094 SCHULZE WA, 1975, FERROELECTRICS, V9, P203 51095 SCHULZE WA, 1988, FERROELECTRICS, V87, P361 51096 SHROUT TR, 1989, FERROELECTRICS, V93, P361 51097 WARREN WL, 1996, J AM CERAM SOC, V79, P536 51098 ZHANG QM, 1996, J APPL PHYS, V79, P3181 51099 ZHANG QM, 1997, J MATER RES, V12, P1777 51100 ZHOU LQ, 2000, J AM CERAM SOC, V83, P413 51101 ZHU XH, 1996, J MATER SCI, V31, P2175 51102 NR 16 51103 TC 0 51104 SN 1013-9826 51105 J9 KEY ENG MAT 51106 PY 2002 51107 VL 224-2 51108 BP 89 51109 EP 93 51110 PG 5 51111 GA BU56L 51112 UT ISI:000176367400022 51113 ER 51114 51115 PT S 51116 AU Guo, XB 51117 Chen, HY 51118 Meng, ZY 51119 TI Electro-mechanical properties and their temperature dependence for 51120 PMS-PZ-PT doped with Sr2+ 51121 SO HIGH-PERFORMANCE CERAMICS 2001, PROCEEDINGS 51122 SE KEY ENGINEERING MATERIALS 51123 DT Article 51124 DE PMS-PZ-PT; piezoelectric; temperature dependence; Sr2+ doping 51125 ID PIEZOELECTRIC PROPERTIES; RESONANT-FREQUENCY; TI)O-3 CERAMICS; 51126 STABILITY; VICINITY 51127 AB The dielectric and piezoelectric properties of 51128 Pb1-xSr,(Mn1/3Sb2/3)(0.05)Zr0.48Ti0.47O3 + 0.2 wt% CeO2 (PMS-PZ-PT) 51129 were investigated as a function of Sr2+ substituting rate. The 51130 temperature dependence of Electro-mcchanical properties was also 51131 discussed. The lattice parameters determined by XRD patterns indicated 51132 that, with the increasing of Sr2+ substituting rate, the unit cell 51133 shrinked and become more isotropic. A set of optimized piezoelectric 51134 properties, which are better than those of other reports were obtained 51135 in the composition doped with 2mol% Sr2+. The temperature dependence of 51136 resonant frequency was also improved by 2mol% Sr2+. The temperature 51137 coefficient Deltaf/(DeltaT.f(25degreesC)) is 6.62 x 10(-5)/degreesC at 51138 the temperature range of -50-100degreesC. At the temperature range in 51139 which USM was operated practically (20degreesC-80degreesC), K-31 have 51140 high temperature stability (DeltaK(31)/DeltaT=0.014%/degreesC) while Qm 51141 obtained comparatively high value. With increasing of temperature, S11E 51142 decreased at first and then followed by a increasing at higher 51143 temperature region while d(31) increased monotonously. 51144 C1 Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 51145 RP Meng, ZY, Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 51146 201800, Peoples R China. 51147 CR ALBERTA EF, 2000, FERROELECTRICS, V242, P13 51148 CHEON CI, 1997, J MATER SCI LETT, V16, P2043 51149 CHEON CI, 1999, J MATER SCI-MATER EL, V10, P81 51150 GAO YK, 2001, JPN J APPL PHYS 1, V40, P687 51151 GUO XB, 2002, J CHINESE CERAM SOC, V30, P125 51152 KAMIYA T, 1993, JPN J APPL PHYS 1, V32, P4223 51153 KONDO M, 1999, JPN J APPL PHYS 1, V38, P5539 51154 LEE DL, 1998 IEEE INT C COND, P381 51155 NADOLIISKY MM, 1992, FERROELECTRICS, V129, P141 51156 WANG D, 1998, J APPL PHYS, V83, P5342 51157 YONEDA A, 1990, NIPPON SERAM KYO GAK, V98, P890 51158 YOON SJ, 1998, J AM CERAM SOC, V81, P2473 51159 ZHANG QM, 1994, J APPL PHYS, V75, P454 51160 NR 13 51161 TC 0 51162 SN 1013-9826 51163 J9 KEY ENG MAT 51164 PY 2002 51165 VL 224-2 51166 BP 105 51167 EP 109 51168 PG 5 51169 GA BU56L 51170 UT ISI:000176367400025 51171 ER 51172 51173 PT J 51174 AU Dong, LY 51175 Xue, Y 51176 Dai, SQ 51177 TI One-dimensional cellular automaton model of traffic flow based on 51178 car-following idea 51179 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 51180 DT Article 51181 DE cellular automaton (CA); traffic model; metastability; hysteresis 51182 phenomenon; car-following model 51183 AB An improved one-dimensional CA ( Cellular Automaton) traffic model was 51184 proposed to describe the highway traffic under the periodic boundary 51185 conditions. This model was based on the idea of the car-following 51186 model, which claims that the motion of a vehicle at one time step 51187 depends on both its headway and the synchronous motion of the front 51188 vehicle, thus including indirectly the influence of its sub-neighboring 51189 vehicle. It? addition, the so-called safety distance was introduced to 51190 consider the deceleration behavior of vehicles and the stochastic 51191 factor was taken into account by introducing the deceleration 51192 probability. Meanwhile, the conditional deceleration in the model gives 51193 a better description of the phenomena observed on highways. It is found 51194 that there exists the metastability and hysteresis effect of traffic 51195 flow in the neighborhood of critical density under different initial 51196 conditions. Since this model gives a reasonable depiction of the motion 51197 of a single vehicle, it is easy to be extended to the case of traffic 51198 flow tinder the control of traffic lights in cities. 51199 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 51200 RP Dong, LY, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 51201 200072, Peoples R China. 51202 CR CHOWDHURY D, 2000, PHYS REP, V329, P199 51203 FUKUI M, 1996, J PHYS SOC JPN, V65, P1868 51204 HELBING D, 1999, PHYS REV E A, V59, R2505 51205 HU YT, 1999, NEW APPROACH CELLULA 51206 KRAUSS S, 1997, PHYS REV E A, V55, P5597 51207 LUBECK S, 1998, PHYS REV E, V57, P1171 51208 NAGEL K, 1992, J PHYS I, V2, P2221 51209 NAGEL K, 1995, PHYS REV E A, V51, P2909 51210 WANG L, 2000, STUDY SELF ORG CRITI 51211 XUE Y, 2001, ACTA PHYS SIN-CH ED, V50, P445 51212 NR 10 51213 TC 4 51214 SN 0253-4827 51215 J9 APPL MATH MECH-ENGL ED 51216 JI Appl. Math. Mech.-Engl. Ed. 51217 PD APR 51218 PY 2002 51219 VL 23 51220 IS 4 51221 BP 363 51222 EP 370 51223 PG 8 51224 SC Mathematics, Applied; Mechanics 51225 GA 565WL 51226 UT ISI:000176392400001 51227 ER 51228 51229 PT J 51230 AU Wu, MH 51231 Chen, J 51232 Qian, Q 51233 Bao, BR 51234 TI Thermo-responsive interpenetrating polymer networks composed of 51235 AAc/AAm/NMA by radiation grafting 51236 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY 51237 DT Article 51238 ID GELS; COLLAPSE 51239 AB Interpenetrating polymer network (IPN) hydrogels were prepared by 51240 grafting of acrylamide (AAm), N-methylol acrylamide (NMA) and acrylic 51241 acid (AAc) onto preirradiated polypropylene (PP) membrane. To obtain 51242 PP-g-AAc/AAm/NMA IPN hydrogels, at first, AAc were grafted onto 51243 preirradiated PP and then AAm were grafted onto the PP-g-AAc membranes. 51244 Finally NMA were grafted onto PP-g-AAc/AAm membranes. In the different 51245 stages of grafting under different reaction conditions, trapped 51246 radicals in the membrane samples were probed by electron spin resonance 51247 (ESR). The temperature response behaviors of the IPN hydrogels were 51248 studied. Reversible behavior and controlled release of drug tests made 51249 reflecting the switching to "on" state at higher temperatures and to 51250 "off" state at lower temperatures were achieved. By increasing the 51251 grafted content of NMA, higher transition temperature of the hydrogel 51252 could be attained. 51253 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China. 51254 RP Wu, MH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, 51255 Peoples R China. 51256 CR BRANNONPEPPAS L, 1989, J CONTROL RELEASE, V8, P267 51257 CHEN J, 2000, RADIAT PHYS CHEM, V59, P313 51258 FENGLIAN B, 1986, MACROMOLECULES, V19, P2248 51259 HOFFMAN AS, 1991, MRS BULL, V16, P42 51260 ILAVSKY M, 1981, POLYMER, V22, P1678 51261 ILAVSKY M, 1982, POLYM B, V7, P107 51262 KATANO H, 1991, J POLYM, V23, P1179 51263 MASAHIRO I, 1986, MACROMOLECULES, V19, P2476 51264 TANAKA T, 1980, PHYS REV LETT, V45, P1636 51265 TANAKA T, 1982, SCIENCE, V218, P467 51266 WU MH, 2000, J RADIOANAL NUCL CH, V246, P457 51267 NR 11 51268 TC 1 51269 SN 0236-5731 51270 J9 J RADIOANAL NUCL CHEM 51271 JI J. Radioanal. Nucl. Chem. 51272 PD JUN 51273 PY 2002 51274 VL 252 51275 IS 3 51276 BP 531 51277 EP 535 51278 PG 5 51279 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science 51280 & Technology 51281 GA 562DX 51282 UT ISI:000176183100014 51283 ER 51284 51285 PT J 51286 AU Zhang, DJ 51287 Chen, DY 51288 TI The conservation laws of some discrete soliton systems 51289 SO CHAOS SOLITONS & FRACTALS 51290 DT Article 51291 ID EQUATIONS; HIERARCHY 51292 AB A systematic approach to constructing an infinite number of 51293 conservation laws for discrete soliton systems is proposed, and three 51294 examples are given. (C) 2002 Elsevier Science Ltd. All rights reserved. 51295 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 51296 RP Zhang, DJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 51297 CR ABLOWITZ MJ, 1975, J MATH PHYS, V16, P598 51298 ABLOWITZ MJ, 1976, J MATH PHYS, V17, P1011 51299 BLASZAK M, 1994, J MATH PHYS, V35, P4661 51300 HIROTA R, 1973, J PHYS SOC JPN, V35, P289 51301 INOUE R, 1997, J PHYS SOC JPN, V66, P1291 51302 KAJIWARA K, 1990, PHYS LETT A, V146, P115 51303 KONNO K, 1974, PROG THEO PHYS, V52, P886 51304 KONOPELCHENKO B, 1992, J MATH PHYS, V33, P3676 51305 MA WX, 1999, J MATH PHYS, V40, P2400 51306 MIURA RM, 1968, J MATH PHYS, V9, P1204 51307 TODA M, 1989, THEORY NONLINEAR LAT 51308 TSUCHIDA T, 1998, J MATH PHYS, V39, P4785 51309 TSUCHIDA T, 1998, J PHYS SOC JPN, V67, P1175 51310 TSUCHIDA T, 1999, J PHYS A-MATH GEN, V32, P2239 51311 WADATI M, 1975, PROG THEOR PHYS, V53, P419 51312 WADATI M, 1976, PROG THEOR PHYS SUPP, V59, P36 51313 WADATI M, 1977, PROG THEOR PHYS, V57, P808 51314 ZAKHAROV VE, 1972, SOV PHYS JETP, V34, P62 51315 NR 18 51316 TC 9 51317 SN 0960-0779 51318 J9 CHAOS SOLITON FRACTAL 51319 JI Chaos Solitons Fractals 51320 PD SEP 51321 PY 2002 51322 VL 14 51323 IS 4 51324 BP 573 51325 EP 579 51326 PG 7 51327 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary 51328 GA 562MH 51329 UT ISI:000176200700006 51330 ER 51331 51332 PT J 51333 AU Sonis, M 51334 Zhou, SF 51335 TI Stability and transverse manifolds of periodic points for coupled maps 51336 SO PHYSICA D-NONLINEAR PHENOMENA 51337 DT Article 51338 DE coupled maps; domain of stability; periodic points; transverse manifold 51339 ID CHAOTIC ELEMENTS; LOGISTIC MAPS; SYNCHRONIZATION; BIFURCATION; 51340 DYNAMICS; NETWORK 51341 AB We consider the domains of stability of periodic points for linear-, 51342 internal- and external-coupled maps. We obtain the approximation 51343 expressions of the transverse manifolds at periodic points, which show 51344 that the transverse manifolds of periodic points are asymptotically 51345 elliptic paraboloids. We point out that the action of maps on the 51346 transverse manifold has the "symmetry" only in two-coupled maps. We 51347 study in detail the hereditary properties of domains of stability of 51348 period-doublmg points for the internal-coupling of an arbitrary 51349 one-dimensional map with the help of its quadratic approximation and 51350 show that these domains follow the universal rules similar to the 51351 Feigenbaum universality rules for one-dimensional maps. (C) 2002 51352 Elsevier Science B.V All rights reserved. 51353 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 51354 Bar Ilan Univ, Dept Geog, IL-52900 Ramat Gan, Israel. 51355 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 51356 CR DENDRINOS DS, 1990, APPL MATH SCI, V86 51357 FEIGENBAUM MJ, 1978, J STAT PHYS, V19, P25 51358 KANEKO K, 1990, PHYSICA D, V41, P137 51359 KAPITANIAK T, 1999, PHYSICA D, V126, P18 51360 KENDALL BE, 1998, THEOR POPUL BIOL, V54, P11 51361 MAISTRENKO Y, 2000, INT J BIFURCAT CHAOS, V10, P179 51362 MAISTRENKO YL, 1998, PHYS REV E A, V57, P2713 51363 MAISTRENKO YL, 1998, PHYS REV LETT, V80, P1638 51364 MAISTRENKO YL, 1999, PHYS LETT A, V262, P355 51365 MAISTRENKO YL, 1999, PHYS REV E, V60, P2817 51366 SHIBATA T, 1998, PHYS REV LETT, V81, P4116 51367 SHIBATA T, 1998, PHYSICA D, V124, P177 51368 SONIS M, 1987, MATH MODELLING, V9, P539 51369 NR 13 51370 TC 1 51371 SN 0167-2789 51372 J9 PHYSICA D 51373 JI Physica D 51374 PD MAY 1 51375 PY 2002 51376 VL 165 51377 IS 1-2 51378 BP 12 51379 EP 25 51380 PG 14 51381 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary 51382 GA 560QZ 51383 UT ISI:000176093900002 51384 ER 51385 51386 PT J 51387 AU Yang, GH 51388 Zhang, H 51389 Duan, YS 51390 TI Topological aspect and bifurcation of disclination lines in 51391 two-dimensional liquid crystals 51392 SO COMMUNICATIONS IN THEORETICAL PHYSICS 51393 DT Article 51394 DE topological current; winding number; director field; disclination line 51395 ID SPACE-TIME DEFECTS; EARLY UNIVERSE; ORDERED MEDIA; QUANTIZATION; ORIGIN 51396 AB Using phi-mapping method and topological current theory, the 51397 topological structure and bifurcation of disclination lines in 51398 two-dimensional liquid crystals are studied. By introducing the 51399 strength density and the topological current of many disclination 51400 lines, the total disclination strength is topologically quantized by 51401 the Hopf indices and Brouwer degrees at the singularities of the 51402 director field when the Jacobian determinant of director field does not 51403 vanish. When the Jacobian determinant vanishes, the origin, 51404 annihilation and bifurcation processes of disclination lines are 51405 studied in the neighborhoods of the limit points and bifurcation 51406 points, respectively. The branch solutions at the limit point and the 51407 different directions of all branch curves at the bifurcation point are 51408 calculated with the conservation law of the topological quantum 51409 numbers. It is pointed out that a disclination line with a higher 51410 strength is unstable and it will evolve to the lower strength state 51411 through the bifurcation process. 51412 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 51413 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 51414 Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China. 51415 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 51416 CR ANDERSON PW, 1984, BASIC NOTIONS CONDEN 51417 BLAHA S, 1976, PHYS REV LETT, V36, P874 51418 BRAY AJ, 1994, ADV PHYS, V43, P375 51419 DEGENNES PG, 1974, PHYSICS LIQUID CRYST 51420 DUAN YS, 1997, GEN RELAT GRAVIT, V29, P715 51421 DUAN YS, 1997, HELV PHYS ACTA, V70, P565 51422 DUAN YS, 1998, NUCL PHYS B, V514, P705 51423 FINKELSTEIN D, 1966, J MATH PHYS, V7, P1218 51424 FRIEDEL J, 1964, DISLOCATIONS 51425 HOLZ A, 1992, PHYSICA A, V182, P240 51426 KLEMAN M, 1977, J PHYSIQUE LETT, V38, L195 51427 KLEMAN M, 1983, POINTS LINES WALLS L 51428 KURIK MV, 1988, SOV PHYS USP, V31, P196 51429 KURIK MV, 1988, USP FIZ NAUK, V154, P381 51430 LI S, HEPTH0001007 51431 LUBENSKY TC, 1997, SOLID STATE COMMUN, V102, P187 51432 MERMIN ND, 1979, REV MOD PHYS, V51, P591 51433 NABARRO FRN, 1967, THEORY CRYSTAL DISLO 51434 ROGULA D, 1976, TRENDS APPL PURE MAT 51435 SHANKAR R, 1977, J PHYSIQUE, V38, P1405 51436 TOULOUSE G, 1976, J PHYS LETT-PARIS, V37, L149 51437 VOLOVIK GE, 1976, JETP LETT, V24, P561 51438 VOLOVIK GE, 1977, ZH EKSP TEOR FIZ, V45, P1186 51439 VOLOVIK GE, 1977, ZH EKSP TEOR FIZ, V46, P401 51440 YANG GH, 1998, INT J THEOR PHYS, V37, P2371 51441 YANG GH, 1998, MOD PHYS LETT A, V13, P2123 51442 YANG GH, 1999, INT J ENG SCI, V37, P1037 51443 NR 27 51444 TC 2 51445 SN 0253-6102 51446 J9 COMMUN THEOR PHYS 51447 JI Commun. Theor. Phys. 51448 PD MAY 15 51449 PY 2002 51450 VL 37 51451 IS 5 51452 BP 513 51453 EP 518 51454 PG 6 51455 SC Physics, Multidisciplinary 51456 GA 558RF 51457 UT ISI:000175979800001 51458 ER 51459 51460 PT J 51461 AU Guo, GP 51462 Zhang, JF 51463 TI Note on solving solitary wave solution by the hyperbolic function method 51464 SO ACTA PHYSICA SINICA 51465 DT Article 51466 DE hyperbolic function method; solitary wave solution; nonlinear wave 51467 equation 51468 ID EXPANSION METHOD; SHALLOW-WATER; LONG WAVES; EQUATIONS; QUADRATURE; 51469 REDUCTION 51470 AB We give a note on solving the solitary wave solution of the nonlinear 51471 wave equation using the hyperbolic function method. It can be seen that 51472 the hyperbolic function method is a simple and effective method in 51473 studying the solitary wave solution of the nonlinear evolution equation. 51474 C1 Zhejiang Normal Univ, Coll Educ Sci & Technol, Jinhua 321004, Peoples R China. 51475 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 51476 RP Guo, GP, Zhejiang Normal Univ, Coll Educ Sci & Technol, Jinhua 321004, 51477 Peoples R China. 51478 CR ABLOWITZ MJP, 1991, SOLITON NONLINEAR EV, P200 51479 FAN EG, 1998, ACTA PHYS SINICA, V47, P353 51480 FAN EG, 2000, PHYS LETT A, V277, P212 51481 FANG EG, 2000, ACTA PHYS SINICA, V49, P1409 51482 GU CH, 1990, SOLITON THEORY ITS A, P160 51483 HIROTA R, 1973, J MATH PHYS, V14, P810 51484 KUDRYASHOV NA, 1990, PHYS LETT A, V147, P287 51485 LIU SK, 2001, ACTA PHYS SIN-CH ED, V50, P2068 51486 LOU SY, 1998, ACTA PHYS SINICA, V47, P1937 51487 LU KP, 2001, ACTA PHYS SIN-CH ED, V50, P2074 51488 MIURA MR, 1978, BACKUND TRANSFORMATI, P185 51489 OTWINOWSKI M, 1988, PHYS LETT A, V128, P483 51490 SHANG YD, 1998, J NINGXIA U, V19, P110 51491 WANG ML, 1995, PHYS LETT A, V199, P169 51492 YAN CT, 1996, PHYS LETT A, V224, P77 51493 YAN ZY, 1999, ACTA PHYS SIN-CH ED, V48, P1962 51494 YANG L, 2001, PHYS LETT A, V278, P267 51495 ZHANG GX, 2000, CHIN SCI A, V30, P1103 51496 ZHANG JF, 1998, ACTA PHYS SINICA, V47, P1416 51497 ZHANG JF, 2001, ACTA PHYS SIN-CH ED, V50, P1648 51498 NR 20 51499 TC 19 51500 SN 1000-3290 51501 J9 ACTA PHYS SIN-CHINESE ED 51502 JI Acta Phys. Sin. 51503 PD JUN 51504 PY 2002 51505 VL 51 51506 IS 6 51507 BP 1159 51508 EP 1162 51509 PG 4 51510 SC Physics, Multidisciplinary 51511 GA 559XE 51512 UT ISI:000176050800003 51513 ER 51514 51515 PT J 51516 AU Jiang, GH 51517 Shan, S 51518 Jiang, L 51519 Xu, XS 51520 TI A new rank-size distribution of Zipf's Law and its applications 51521 SO SCIENTOMETRICS 51522 DT Article 51523 AB Developing the probability function to describe rank-size Zipfian 51524 phenomena, i.e., a form like P(R = r)similar toc/r(a) (alpha>0) with a 51525 rank type random variable R, has been an important problem in 51526 scientometrics and informetrics. In this article a new rank-size 51527 distribution of Zipf's law is presented and applied to an actual 51528 distribution of scientific productivities in Chinese universities. 51529 C1 China Natl Inst Educ Res, Beijing 100088, Peoples R China. 51530 Shanghai Univ, Dept Management & Informat Engn, Shanghai, Peoples R China. 51531 RP Jiang, GH, China Natl Inst Educ Res, Beijing 100088, Peoples R China. 51532 CR AUERBACH F, 1913, PETERMANS MITTEILUNG, V59, P74 51533 AYRES LP, 1915, MEASURING SCALE ABIL 51534 CONDON EU, 1928, SCIENCE, V67, P300 51535 GLANZEL W, 1984, Z WAHRSCHEINLICHKEIT, V66, P173 51536 HILL BM, 1974, J AM STAT ASSOC, V69, P1017 51537 KRETSCHMER H, 2000, RES EVLAUATION ITS I, P95 51538 LOTKA AJ, 1925, ELEMENTS MATH BIOL 51539 MANDELBROT B, 1953, COMMUN THEORY, P486 51540 ROUSSEAU R, 2000, RES EVALUATION ITS I, P458 51541 ZIPF GK, 1935, PSYCHOBIOLOGY LANGUA 51542 ZIPF GK, 1949, HUMAN BEHAV PRINCIPL 51543 NR 11 51544 TC 0 51545 SN 0138-9130 51546 J9 SCIENTOMETRICS 51547 JI Scientometrics 51548 PD APR 51549 PY 2002 51550 VL 54 51551 IS 1 51552 BP 119 51553 EP 130 51554 PG 12 51555 SC Computer Science, Interdisciplinary Applications; Information Science & 51556 Library Science 51557 GA 557HJ 51558 UT ISI:000175902800008 51559 ER 51560 51561 PT J 51562 AU Huang, AM 51563 Liu, YF 51564 Chen, L 51565 Hua, JD 51566 TI Synthesis and property of nanosized palladium catalysts protected by 51567 chitosan/silica 51568 SO JOURNAL OF APPLIED POLYMER SCIENCE 51569 DT Article 51570 DE catalysts; palladium; chitosan; silica; nanotechnology 51571 AB A chitosan (CTN)/silica-supported nanosized palladium catalyst was 51572 obtained from a silica-supported chitosan palladium complex through a 51573 complex transition method. An adsorption model was employed to simplify 51574 the structure of the di-supporter. It was indicated that when the 51575 polymer coil adsorbed on the silica surface with even a monolayer the 51576 catalytic activity would reach an optimum value, and different 51577 situations of the, nanosized palladium particles would cause a 51578 different catalysis. The molar ratio of the chitosan structure unit to 51579 the palladium would affect the metal's size, which therefore influenced 51580 its catalytic activity. The experimental results corresponded with the 51581 inferences. (C) 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 51582 989-994,2002. 51583 C1 Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R China. 51584 RP Liu, YF, Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R 51585 China. 51586 CR FELDHEIM DL, 1995, J ELECT CHEM SOC, V142, P32 51587 HIDEFANI NL, 1999, J MOL SCI, V15, P3 51588 HIRAI H, 1998, REACT FUNCT POLYM, V37, P121 51589 RYLANDER PN, 1967, CATALYTIC HYDROGENAT 51590 SANG LY, 1918, POLYM B, V3, P11 51591 NR 5 51592 TC 6 51593 SN 0021-8995 51594 J9 J APPL POLYM SCI 51595 JI J. Appl. Polym. Sci. 51596 PD AUG 1 51597 PY 2002 51598 VL 85 51599 IS 5 51600 BP 989 51601 EP 994 51602 PG 6 51603 SC Polymer Science 51604 GA 558TQ 51605 UT ISI:000175983000010 51606 ER 51607 51608 PT J 51609 AU Lu, HQ 51610 Shen, LM 51611 Yang, GH 51612 Lai, YY 51613 Cheng, KS 51614 TI Quantum cosmology in CGBD theory 51615 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 51616 DT Article 51617 DE quantum cosmology; Brans-Dicke gravity 51618 ID COMPLEX SCALAR FIELD; GRAVITATIONAL-WAVES; EINSTEIN FRAME; UNIVERSE; 51619 GRAVITY 51620 AB We apply the theory developed in quantum cosmology to a model of 51621 charged generalized Brans-Dicke gravity. This is a quantum model of 51622 gravitation interacting with a charged Brans-Dicke type scalar field 51623 which is considered in the Pauli frame. The Wheeler-DeWitt equation 51624 describing the evolution of the quantum Universe is solved in the 51625 semiclassical approximation by applying the WKB approximation. The wave 51626 function of the Universe is also obtained by applying both the 51627 Vilenkin-like and the Hartle-Hawking-like boundary conditions. We then 51628 make predictions from the wave functions and infer that the Vilenkin's 51629 boundary condition is more reasonable in the Brans-Dicke gravity models 51630 leading a large vacuum energy density at the beginning of the inflation. 51631 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 51632 Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. 51633 RP Lu, HQ, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 51634 CR BRACCO C, 1998, GRGC9811090 51635 CHO YM, 1992, PHYS REV LETT, V68, P3133 51636 FARAONI V, 1996, ASTROPHYS LETT COMM, V35, P305 51637 FARAONI V, 1998, ASTRON ASTROPHYS, V332, P1154 51638 FARAONI V, 1998, GRGC9811047 51639 FARAONI V, 1999, INT J THEOR PHYS, V38, P217 51640 HARTLE JB, 1983, PHYS REV D, V28, P2960 51641 HARTLE JB, 1991, QUANTUM COSMOLOGY BA 51642 KAMENSHCHIK AY, 1995, PHYS LETT B, V357, P36 51643 KHALATNIKOV IM, 1992, PHYS LETT A, V169, P308 51644 KHALATNIKOV IM, 1993, PHYS LETT B, V302, P176 51645 KOLB EW, 1990, EARLY UNIVERSE 51646 LU HQ, 1999, INT J MOD PHYS D, V8, P625 51647 LUCA A, 1994, PHYSICAL REV D, V49, P1881 51648 MAGNANO G, 1994, PHYS REV D, V50, P5039 51649 VILENKIN A, 1984, PHYS REV D, V30, P509 51650 VILENKIN A, 1988, PHYS REV D, V37, P888 51651 VILENKIN A, 1989, PHYS REV D, V39, P1116 51652 VILENKIN A, 1998, GRQC9804051 51653 WALD RM, 1984, GEN RELATIVITY 51654 NR 20 51655 TC 1 51656 SN 0020-7748 51657 J9 INT J THEOR PHYS 51658 JI Int. J. Theor. Phys. 51659 PD MAY 51660 PY 2002 51661 VL 41 51662 IS 5 51663 BP 939 51664 EP 951 51665 PG 13 51666 SC Physics, Multidisciplinary 51667 GA 558CK 51668 UT ISI:000175947500011 51669 ER 51670 51671 PT J 51672 AU Yang, GH 51673 TI Topology in entropy of Schwarzschild black hole 51674 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 51675 DT Article 51676 DE entropy; Euler characteristic; killing vector field 51677 ID EXTREME 51678 AB In the light of phi-mapping method and the relationship between the 51679 entropy and the Euler characteristic, the inner topological structure 51680 of the entropy of Schwarzschild black hole is studied. By introducing 51681 an entropy density, it is shown that the entropy of Schwarzschild black 51682 hole is determined by the singularities of the timelike Killing vector 51683 field of spacetime and these singularities carry the topological 51684 numbers, Hopf indices and Brouwer degrees, naturally. Taking account of 51685 the statistical meaning of entropy in physics, the entropy of 51686 Schwarzschild black hole is merely the sum of the Hopf indices, which 51687 will give the increasing law of entropy of black holes. 51688 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 51689 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 51690 CR CHERN SS, 1944, ANN MATH, V45, P747 51691 CHERN SS, 1945, ANN MATH, V46, P674 51692 CHERN SS, 1959, LECT NOTES U CHICAGO 51693 DUAN YS, 1993, J MATH PHYS, V34, P1149 51694 DUAN YS, 1998, NUCL PHYS B, V514, P705 51695 GELFAND IM, 1958, GEN FUNCTION 51696 GIBBONS GW, 1995, PHYS REV D, V51, P2839 51697 HAWKING SW, 1995, PHYS REV D, V51, P4302 51698 LIBERATI S, 1997, PHYS REV D, V56, P6458 51699 TEITELBOIM C, 1995, PHYS REV D, V51, P4315 51700 WANG B, 1998, PHYS LETT B, V432, P69 51701 WANG B, 1998, PHYS REV D, V57, P5284 51702 YANG GH, 2001, CHINESE PHYS LETT, V18, P631 51703 ZASLAVSKII OB, 1996, PHYS REV LETT, V76, P2211 51704 NR 14 51705 TC 1 51706 SN 0020-7748 51707 J9 INT J THEOR PHYS 51708 JI Int. J. Theor. Phys. 51709 PD MAY 51710 PY 2002 51711 VL 41 51712 IS 5 51713 BP 953 51714 EP 959 51715 PG 7 51716 SC Physics, Multidisciplinary 51717 GA 558CK 51718 UT ISI:000175947500012 51719 ER 51720 51721 PT J 51722 AU Zhao, WJ 51723 Chen, LQ 51724 TI A numerical algorithm for non-linear parametric vibration analysis of a 51725 viscoelastic moving belt 51726 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION 51727 DT Article 51728 DE axially moving belt; transverse parametric vibration; viscoelastic; 51729 implicit Runge-Kutta method; finite difference 51730 ID NONLINEAR VIBRATION; PART I 51731 AB A numerical algorithm for nonlinear partial differential equations is 51732 proposed to analyze the parametric vibrations of viscoelastic moving 51733 belts. The method of finite difference is employed to discrete spatial 51734 variables. The partial differential equation is transformed into a 51735 large system of differential-algebraic equations. Based oil the special 51736 structures in the mathematical model of a viscoelastic belt, the 51737 algorithm is easy to carry out, and it can be efficiently applied to 51738 solve the parametric vibration problems of belts with various kinds of 51739 nonlinear stress-strain relations. As two applications of the 51740 algorithm, the dynamical response of viscoelastic belts, whose 51741 materials are respectively defined by the standard model or the 51742 Maxwell-Kelvin model, are calculated. 51743 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China. 51744 RP Zhao, WJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, 51745 Shanghai 200072, Peoples R China. 51746 CR ABRATE S, 1992, MECH MACH THEORY, V27, P645 51747 BRENAN KE, 1996, NUMERICAL SOLUTION I 51748 CHEN LQ, 2001, ADV MECH, V31, P535 51749 CHRISTENSEN RM, 1982, THEORY VISCOELASTICI 51750 FUNG RF, 1997, J SOUND VIB, V201, P153 51751 MOON J, 1997, J SOUND VIB, V200, P419 51752 PAKDEMIRLI M, 1994, J SOUND VIB, V169, P179 51753 PAKDEMIRLI M, 1997, J SOUND VIB, V203, P815 51754 PALINGREN H, 1986, V BELT HDB 51755 WICKERT JA, 1993, J SOUND VIB, V160, P455 51756 ZHANG L, 1998, J SOUND VIB, V216, P75 51757 ZHANG L, 1999, J APPL MECH-T ASME, V66, P396 51758 NR 12 51759 TC 4 51760 SN 1565-1339 51761 J9 INT J NONLINEAR SCI NUMER SIM 51762 JI Int. J. Nonlinear Sci. Numer. Simul. 51763 PY 2002 51764 VL 3 51765 IS 2 51766 BP 139 51767 EP 144 51768 PG 6 51769 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics, 51770 Mathematical; Mechanics 51771 GA 557TT 51772 UT ISI:000175924800007 51773 ER 51774 51775 PT J 51776 AU Li, T 51777 Sheng, WC 51778 TI The general multi-dimensional Riemann problem for hyperbolic systems 51779 with real constant coefficients 51780 SO DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS 51781 DT Article 51782 DE general multi-dimensional Riemann problem; hyperbolic system; constant 51783 coefficients; explicit solution 51784 AB In this paper, we give the explicit solution to the general 51785 multi-dimensional Riemann problem for the canonical form of 2 x 2 51786 hyperbolic systems with real constant coefficients. 51787 C1 Fudan Univ, Dept Math, Shanghai 200433, Peoples R China. 51788 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 51789 RP Li, T, Fudan Univ, Dept Math, Shanghai 200433, Peoples R China. 51790 CR GILQUIN H, 1996, RAIRO-MATH MODEL NUM, V30, P527 51791 LAX PD, 1982, B AM MATH SOC, V6, P213 51792 OSHIME Y, 1991, J MATH KYOTO U, V31, P937 51793 OSHIME Y, 1991, J MATH KYOTO U, V31, P983 51794 STRONG G, 1967, J MATH KYOTO U, V6, P397 51795 NR 5 51796 TC 1 51797 SN 1078-0947 51798 J9 DISCRETE CONTIN DYN SYST 51799 JI Discret. Contin. Dyn. Syst. 51800 PD JUL 51801 PY 2002 51802 VL 8 51803 IS 3 51804 BP 737 51805 EP 744 51806 PG 8 51807 SC Mathematics, Applied; Mathematics 51808 GA 557GB 51809 UT ISI:000175899500013 51810 ER 51811 51812 PT J 51813 AU Xia, N 51814 TI Investigation of the stability of inviscid compressible swirling flows 51815 SO AEROSPACE SCIENCE AND TECHNOLOGY 51816 DT Article 51817 DE flow stability; swirling flow; vortex 51818 AB The stability of an inviscid compressible swirling flow between two 51819 concentric cylinders is analytically investigated. Two stability 51820 criteria are derived for compressible swirling flows under narrow gap 51821 approximation by an analytic method analogous to Ludwieg's method. 51822 Finally, the effect of compressibility is discussed. (C) 2002 Editions 51823 scientifiques et medicales Elsevier SAS. All rights reserved. 51824 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 51825 RP Xia, N, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 51826 Peoples R China. 51827 CR GANS RF, 1975, J FLUID MECH, V68, P403 51828 HOWARD LN, 1962, J FLUID MECH, V14, P463 51829 HOWARD LN, 1973, STUD APPL MATH, V52, P39 51830 LALAS DP, 1975, J FLUID MECH, V69, P65 51831 LEIBOVICH S, 1983, J FLUID MECH, V126, P335 51832 LUDWEIG H, 1964, Z FLUGWISS, V12, P304 51833 LUDWIEG H, 1960, Z FLUGWISS, V8, P135 51834 LUDWIEG H, 1961, Z FLUGWISS WELTRAUM, V9, P350 51835 RAYLEIGH JWS, 1916, P ROY SOC LOND A MAT, V93, P148 51836 WARREN FW, 1975, J FLUID MECH, V68, P413 51837 NR 10 51838 TC 0 51839 SN 1270-9638 51840 J9 AEROSP SCI TECHNOL 51841 JI Aerosp. Sci. Technol. 51842 PD APR 51843 PY 2002 51844 VL 6 51845 IS 2 51846 BP 99 51847 EP 103 51848 PG 5 51849 SC Engineering, Aerospace 51850 GA 558CC 51851 UT ISI:000175946600001 51852 ER 51853 51854 PT J 51855 AU Leng, GS 51856 Zhou, GB 51857 TI Inverse forms of Hadamard inequality 51858 SO SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS 51859 DT Article 51860 DE parallelotope; inverse forms; canonical volume; inequality 51861 ID MATRICES 51862 AB In this paper we establish the inverse inequalities of the Hadamard 51863 inequality and the Szasz inequality. To prove these results, we give 51864 two sharpenings of the Hadamard inequality and the Szasz inequality. 51865 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 51866 Shanghai Jiao Tong Univ, Dept Appl Math, Shanghai 200030, Peoples R China. 51867 RP Leng, GS, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 51868 CR BECKENBACH EF, 1961, INEQUALITIES 51869 BOOTHBY WM, 1975, INTRO DIFFERENTIABLE 51870 DIXON JD, 1983, SIAM J NUMER ANAL, V20, P812 51871 DIXON JD, 1984, CANAD MATH B, V27, P260 51872 ENGLE GM, 1976, LINEAR MULTILINEAR A, V4, P155 51873 HORN R, 1985, MATRIX ANAL 51874 JOHNSON CR, 1974, J RES NBS, V78, P167 51875 JOHNSON CR, 1985, LINEAR MULTILINEAR A, V18, P23 51876 JOHNSON CR, 1987, CBMS REG C SER MATH, V68 51877 REZNIKOV AG, 1991, LECT NOTES MATH, V1469, P90 51878 REZNIKOV AG, 1995, OPER THEORY ADV APPL, V77, P239 51879 SHIUE JS, 1976, SOOCHOW J MATH NATUR, V2, P57 51880 VELJAN D, 1995, LINEAR ALGEBRA APPL, V219, P79 51881 WOLKOWICZ H, 1980, LINEAR ALGEBRA ITS A, V29, P471 51882 ZHANG XD, 1993, SIAM J MATRIX ANAL A, V14, P705 51883 ZHANG XD, 1997, ACTA MATH APPL SINIC, V20, P269 51884 NR 16 51885 TC 2 51886 SN 0895-4798 51887 J9 SIAM J MATRIX ANAL APPLICAT 51888 JI SIAM J. Matrix Anal. Appl. 51889 PD MAY 10 51890 PY 2002 51891 VL 23 51892 IS 4 51893 BP 990 51894 EP 997 51895 PG 8 51896 SC Mathematics, Applied 51897 GA 555UE 51898 UT ISI:000175811000006 51899 ER 51900 51901 PT J 51902 AU Cheng, XY 51903 Wan, XJ 51904 TI The effect of ordering on the environmental embrittlement of Ni4Mo alloy 51905 SO SCRIPTA MATERIALIA 51906 DT Article 51907 DE scanning electron microscopy; intermetallics; hydrogen embrittlement; 51908 order-disorder phenomena 51909 ID HYDROGEN EMBRITTLEMENT; (CO,FE)(3)V; NI3FE 51910 AB Hydrogen embrittlement of Ni4Mo alloy in different degree of ordered 51911 conditions was investigated. The results show that the atomic ordering 51912 does not influence the moisture-induced or dynamic hydrogen 51913 charging-induced environmental embrittlement, but has a considerable 51914 effect on the gaseous hydrogen-induced environmental embrittlement. (C) 51915 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights 51916 reserved. 51917 C1 Shanghai Univ, Mat Res Inst, Shanghai 200072, Peoples R China. 51918 RP Cheng, XY, Shanghai Univ, Mat Res Inst, Box 269,149 Yanchang Rd, 51919 Shanghai 200072, Peoples R China. 51920 CR BROOKS CR, 1984, INT MET REV, V29, P210 51921 CAMUS GM, 1989, ACTA METALL, V37, P1497 51922 CHENG XY, 2001, SCRIPTA MATER, V44, P325 51923 KURUVILLA AK, 1982, 3RD P INT C HYDR MET, V2, P629 51924 LIU CT, 1989, SCRIPTA METALL, V23, P875 51925 LIU CT, 1991, 6 INT S INT COMP STR, P703 51926 NISHIMURA C, 1996, SCRIPTA MATER, V35, P1441 51927 TAKASUGI T, 1986, ACTA METALL, V34, P607 51928 TAKASUGI T, 1992, J MATER RES, V7, P2739 51929 TAKASUGI T, 1994, INTERMETALLICS, V2, P225 51930 TAWANCY HM, 1995, SCRIPTA METALL MATER, V32, P1525 51931 WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473 51932 WRIGHT JL, 1998, SCRIPTA MATER, V38, P253 51933 NR 13 51934 TC 3 51935 SN 1359-6462 51936 J9 SCRIPTA MATER 51937 JI Scr. Mater. 51938 PD MAR 25 51939 PY 2002 51940 VL 46 51941 IS 6 51942 BP 465 51943 EP 470 51944 PG 6 51945 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 51946 Engineering 51947 GA 555XL 51948 UT ISI:000175818500011 51949 ER 51950 51951 PT J 51952 AU Fang, GY 51953 Mo, YL 51954 Song, YL 51955 Wang, YX 51956 Li, CF 51957 Song, LC 51958 TI Nonlinear refractive properties of organometallic fullerene-C-60 51959 derivatives 51960 SO OPTICS COMMUNICATIONS 51961 DT Article 51962 DE excited-state nonlinearity; nonlinear refraction; fullerene 51963 derivatives; Z-scan 51964 ID REVERSE SATURABLE ABSORPTION; Z-SCAN; C-60 51965 AB We have studied the nonlinear refractive properties of the 51966 organometalic fullerene-C-60 derivatives fac- and mer- [bis 51967 (1,2-diphenylphosphino) ethane] (tricarbonyl)(eta(2)-fullerene-C-60) 51968 chromium and molybdenum using the Z-scan method. These compounds change 51969 from being self-defocusing to self-focusing as the input light 51970 intensity increases. The experimental results have been interpreted 51971 using rate-equation theory. Critical conditions for the occurrence of 51972 this kind of transition have been elucidated for the steady-state 51973 situation. (C) 2002 Published by Elsevier Science B.V. 51974 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China. 51975 Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China. 51976 Nankai Univ, Dept Chem, Tianjin 300071, Peoples R China. 51977 RP Fang, GY, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, 51978 Peoples R China. 51979 CR BENTIVEGNA F, 1993, APPL PHYS LETT, V62, P1721 51980 FANG GY, 2000, OPT COMMUN, V183, P523 51981 HERMANN JA, 1998, OPT COMMUN, V154, P225 51982 JOSHI MP, 1993, APPL PHYS LETT, V62, P1763 51983 KOST A, 1993, OPT LETT, V18, P334 51984 LI C, 1995, PHYS REV A, V51, P1569 51985 LI CF, 1994, J OPT SOC AM B, V11, P1356 51986 MENGHETTI M, 1997, SYNTHETIC MET, V86, P2353 51987 SHEIKBAHAE M, 1990, IEEE J QUANTUM ELECT, V26, P760 51988 SONG LC, 1998, POLYHEDRON, V17, P469 51989 SONG YL, 1999, APPL PHYS LATT, V74, P334 51990 TUTT L, 1992, NATURE, V356, P255 51991 TUTT LW, 1993, PROG QUANT ELECTRON, V17, P299 51992 NR 13 51993 TC 10 51994 SN 0030-4018 51995 J9 OPT COMMUN 51996 JI Opt. Commun. 51997 PD MAY 1 51998 PY 2002 51999 VL 205 52000 IS 4-6 52001 BP 337 52002 EP 341 52003 PG 5 52004 SC Optics 52005 GA 554KL 52006 UT ISI:000175734500015 52007 ER 52008 52009 PT J 52010 AU Ma, CQ 52011 Zhang, BX 52012 Liang, Z 52013 Xie, PH 52014 Wang, XS 52015 Zhang, BW 52016 Cao, Y 52017 Jiang, XY 52018 Zhang, ZL 52019 TI A novel n-type red luminescent material for organic light-emitting 52020 diodes 52021 SO JOURNAL OF MATERIALS CHEMISTRY 52022 DT Article 52023 ID ELECTROLUMINESCENT DEVICES; EUROPIUM COMPLEX; EFFICIENT; HOLE; 52024 EMISSION; POLYMERS; INJECTION; DOPANTS; BRIGHT; SERIES 52025 AB A novel red luminescent material 52026 N,N-bis{4-[2-(4-dicyanomethylene-6-methyl-4H-pyran-2-yl)ethylene]phenyl} 52027 aniline (BDCM) with two (4-dicyanomethylene)-4H-pyran electron-acceptor 52028 moieties and a triphenylamine electron-donor moiety for application in 52029 organic light-emitting diodes (OLEDs) was synthesized. The resultant 52030 compound has a sterically well-hindered structure and a high 52031 fluorescence yield. The photoluminescence (PL) of this compound in 52032 solution and solid film and the electroluminescence (EL) have been 52033 studied. Based on its intense sterically hindered structure, the pure 52034 BDCM film prepared shows a bright red PL emission. The three-layered EL 52035 device with the structure ITO/CuPc/DPPhP/BDCM/Mg:Ag has a turn-on 52036 voltage of less than 4 V, which suggests that BDCM has an excellent 52037 electron injection property. A bright luminance of 582 cd m(-2) is 52038 obtained for the device at 19 V. 52039 C1 Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100101, Peoples R China. 52040 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 52041 RP Zhang, BW, Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100101, 52042 Peoples R China. 52043 CR BALDO MA, 1998, NATURE, V395, P151 52044 BELLMANN E, 1999, CHEM MATER, V11, P399 52045 BULOVIC V, 1998, CHEM PHYS LETT, V287, P455 52046 CAMPAIGNE E, 1963, ORG SYNTH, V4, P331 52047 CHEN CH, 1997, MACROMOL S, V125, P1 52048 CHEN CH, 1997, MACROMOL S, V125, P49 52049 CHEN CH, 2000, THIN SOLID FILMS, V363, P327 52050 CUI YT, 1999, MACROMOLECULES, V32, P3824 52051 GREENHAM NC, 1993, NATURE, V365, P628 52052 GU G, 1999, APPL PHYS LETT, V74, P305 52053 HAMMOND PR, 1979, OPT COMMUN, V29, P331 52054 KIDO J, 1990, CHEM LETT, P657 52055 KIDO J, 1991, CHEM LETT, P1267 52056 KIDO J, 1994, APPL PHYS LETT, V65, P2124 52057 KWONG RC, 1999, CHEM MATER, V11, P3709 52058 LI XC, 1999, CHEM MATER, V11, P1568 52059 LOUIE J, 1997, J AM CHEM SOC, V119, P1169 52060 LU JP, 1999, CHEM MATER, V11, P2501 52061 MA CQ, IN PRESS ACTA CHIM S 52062 RIVETT DE, 1979, AUST J CHEM, V32, P1601 52063 ROSENSTEIN RD, 1985, ACTA CRYSTALLOGR C, V41, P967 52064 SANO T, 1995, JPN J APPL PHYS PT 1, V34, P3124 52065 SCHWEIKART KH, 2001, EUR J ORG CHEM JAN, P293 52066 SHEN ZL, 1997, SCIENCE, V276, P2009 52067 TANG CW, 1989, J APPL PHYS, V65, P3610 52068 TAO XT, 2001, APPL PHYS LETT, V78, P279 52069 TSUTSUI T, 1994, APPL PHYS LETT, V65, P1868 52070 VANSLYKE SA, 1996, APPL PHYS LETT, V69, P2160 52071 WOOD LL, 1958, J AM CHEM SOC, V80, P144 52072 WU F, 2000, THIN SOLID FILMS, V363, P214 52073 WU QG, 2001, CHEM MATER, V13, P71 52074 YANG Y, 1996, J APPL PHYS, V79, P934 52075 ZHANG XH, 2001, CHEM MATER, V13, P1565 52076 ZHANG XJ, 1998, MATER RES SOC SYMP P, V488, P539 52077 ZHANG XJ, 1999, MACROMOLECULES, V32, P7422 52078 NR 35 52079 TC 13 52080 SN 0959-9428 52081 J9 J MATER CHEM 52082 JI J. Mater. Chem. 52083 PY 2002 52084 VL 12 52085 IS 6 52086 BP 1671 52087 EP 1675 52088 PG 5 52089 SC Chemistry, Physical; Materials Science, Multidisciplinary 52090 GA 555AB 52091 UT ISI:000175768600010 52092 ER 52093 52094 PT J 52095 AU Zhang, JJ 52096 Wang, DR 52097 TI A numerical embedding method for solving the nonlinear complementarity 52098 problem(I) - Theory 52099 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 52100 DT Article 52101 DE B-differentiable equations; nnlinear complementarity problem; nmerical 52102 embedding method 52103 ID NEWTON METHOD; NONSMOOTH EQUATIONS; CONVERGENCE; ALGORITHMS 52104 AB In this paper, we extend the numerical embedding method for solving the 52105 smooth equations to the nonlinear complementarity problem. By using the 52106 nonsmooth theory, we prove the existence and the continuation of the 52107 following path for the corresponding homotopy equations. Therefore the 52108 basic theory of the numerical embedding method for solving the 52109 nonlinear complementarity problem is established. In part II of this 52110 paper, we will further study the implementation of the method and give 52111 some numerical examples. 52112 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 52113 CR HARKER PT, 1990, MATH PROGRAM, V48, P161 52114 HARKER PT, 1990, MATH PROGRAM, V48, P339 52115 IP CM, 1992, MATH PROGRAM, V56, P71 52116 KOJIMA M, 1989, MATH PROGRAM, V43, P107 52117 MANGASARIAN OL, 1976, SIAM J APPL MATH, V31, P89 52118 ORTEGA JM, 1970, ITERATIVE SOLUTION N 52119 PANG JS, 1993, MATH PROGRAM, V60, P295 52120 PANG JS, 1993, SIAM J OPTIMIZ, V3, P443 52121 QI L, 1993, MATH PROGRAM, V58, P353 52122 QI LQ, 1993, MATH OPER RES, V18, P227 52123 RALPH D, 1994, MATH OPER RES, V19, P352 52124 ROBINSON SM, 1987, MATH PROGRAM STUD, V30, P45 52125 ROBINSON SM, 1990, MATH PROGRAM, V48, P221 52126 SHAPIRO A, 1990, J OPTIMIZ THEORY APP, V66, P477 52127 SUBRAMANIAN PK, 1985, 2845 U WISC MATH RES 52128 WATSON LT, 1979, SIAM J CONTROL OPTIM, V17, P36 52129 XIAO BC, 1994, MATH PROGRAM, V65, P151 52130 ZHANG H, 2000, EUR HEART J, V21, P225 52131 NR 18 52132 TC 0 52133 SN 0254-9409 52134 J9 J COMPUT MATH 52135 JI J. Comput. Math. 52136 PD MAY 52137 PY 2002 52138 VL 20 52139 IS 3 52140 BP 257 52141 EP 266 52142 PG 10 52143 SC Mathematics, Applied; Mathematics 52144 GA 555PM 52145 UT ISI:000175802500003 52146 ER 52147 52148 PT J 52149 AU Luo, X 52150 Li, ML 52151 Roetzel, W 52152 TI A general solution for one-dimensional multistream heat exchangers and 52153 their networks 52154 SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER 52155 DT Article 52156 DE heat exchangers; heat recovery; optimization 52157 ID OPTIMIZATION 52158 AB A mathematical model for predicting the steady-state thermal 52159 performance of one-dimensional (cocurrent and countercurrent) 52160 multistream beat exchangers and their networks is developed and is 52161 solved analytically for constant physical properties of streams. By 52162 introducing three matching matrices. the general Solution can be 52163 applied to various types of one-dimensional multistream heat exchangers 52164 such as shell-and-tube heat exchangers. plate heat exchangers and 52165 plate-fin heat exchangers as well as their networks. The general 52166 solution is applied to the calculation and design of multistream heat 52167 exchangers. Examples are given to illustrate the procedures in detail. 52168 Based on this solution the superstructure model is developed for 52169 synthesis of heat exchanger networks, (C) 2002 Elsevier Science Ltd. 52170 All rights reserved. 52171 C1 Univ Fed Armed Forces Hamburg, Inst Thermodynam, D-22039 Hamburg, Germany. 52172 Shanghai Univ Sci & Technol, Inst Thermal Engn, Shanghai 200093, Peoples R China. 52173 RP Roetzel, W, Univ Fed Armed Forces Hamburg, Inst Thermodynam, D-22039 52174 Hamburg, Germany. 52175 CR BRIONES V, 1999, CHEM ENG SCI, V54, P519 52176 CHEN BD, 1998, ENERGY ENV 52177 HASELER LE, 1983, HEAT EXCHANGERS THEO, P495 52178 KAO S, 1961, 61WA255 ASME 52179 LI K, 1992, P INT POW ENG C MAY, P221 52180 LUO X, IN PRESS INT J HEAT 52181 MALINOWSKI L, 1983, INT J HEAT MASS TRAN, V26, P316 52182 ROETZEL W, 2001, P 13 SCH SEM YOUNG S, V2, P401 52183 SETTARI A, 1972, INT J HEAT MASS TRAN, V15, P555 52184 TAYLOR MA, 1987, PLATE FIN HEAT EXCHA 52185 WANG I, 1999, PROGR ENG HEAT TRANS, P597 52186 WOLF J, 1964, INT J HEAT MASS TRAN, V7, P901 52187 YEE TF, 1990, COMPUT CHEM ENG, V14, P1151 52188 ZALESKI T, 1973, INT J HEAT MASS TRAN, V16, P1527 52189 ZALESKI T, 1974, INT J HEAT MASS TRAN, V17, P1116 52190 ZALESKI T, 1984, CHEM ENG SCI, V39, P1251 52191 NR 16 52192 TC 6 52193 SN 0017-9310 52194 J9 INT J HEAT MASS TRANSFER 52195 JI Int. J. Heat Mass Transf. 52196 PD JUN 52197 PY 2002 52198 VL 45 52199 IS 13 52200 BP 2695 52201 EP 2705 52202 PG 11 52203 SC Engineering, Mechanical; Mechanics; Thermodynamics 52204 GA 556JA 52205 UT ISI:000175844600008 52206 ER 52207 52208 PT J 52209 AU Gu, GD 52210 TI A seed method for solving nonsymmetric linear systems with multiple 52211 right-hand sides 52212 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 52213 DT Article 52214 DE augmented GMRES method; block method; seed method; linear systems; 52215 multiple right-hand sides 52216 ID CONJUGATE-GRADIENT ALGORITHM; GMRES METHOD; BLOCK GMRES 52217 AB We present a seed method for solving large nonsymmetric linear systems 52218 with multiple right-hand sides. The method uses a single augmented 52219 Krylov subspace corresponding to a seed system as a generator of 52220 approximations to the nonseed systems. The residual evaluate of the 52221 method is shown, and a new strategy to form a seed system which could 52222 supply information shareable among the right-hand sides is given. 52223 Numerical experiments indicate that our seed selection strategy is more 52224 efficient than two existing strategies and our method has significant 52225 time saving compared with the block GMRES method and the GMRES method 52226 with a projection process. 52227 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 52228 RP Gu, GD, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 52229 CR CHAN TF, 1997, SIAM J SCI COMPUT, V18, P1698 52230 CHAPMAN A, 1997, NUMER LINEAR ALGEBR, V4, P43 52231 FREUND RW, 1997, LINEAR ALGEBRA APPL, V254, P119 52232 GU GD, IN PRESS APPL MATH C 52233 GU GD, 1997, MATH NUMERICA SINICA, V19, P374 52234 GU GD, 1999, LINEAR ALGEBRA APPL, V299, P1 52235 MORGAN RB, 1991, LINEAR ALGEBRA APPL, V154, P289 52236 MORGAN RB, 1995, SIAM J MATRIX ANAL A, V16, P1154 52237 NIKISHIN AA, 1995, SIAM J MATRIX ANAL A, V16, P1135 52238 OLEARY DP, 1980, LINEAR ALGEBRA APPL, V29, P293 52239 OLEARY DP, 1994, LINEAR ALGEBRA APPL, V212, P153 52240 SAAD Y, 1987, MATH COMPUT, V48, P651 52241 SAAD Y, 1996, ITERATIVE METHODS SP 52242 SAAD Y, 1997, SIAM J MATRIX ANAL A, V18, P435 52243 SIMONCINI V, 1995, SIAM J SCI COMPUT, V16, P917 52244 SIMONCINI V, 1996, J COMPUT APPL MATH, V66, P457 52245 SIMONCINI V, 1996, LINEAR ALGEBRA APPL, V247, P97 52246 SMITH CF, 1987, THESIS U ILLINOIS UR 52247 SMITH CF, 1989, IEEE T ANTENN PROPAG, V37, P1490 52248 NR 19 52249 TC 1 52250 SN 0020-7160 52251 J9 INT J COMPUT MATH 52252 JI Int. J. Comput. Math. 52253 PD MAR 52254 PY 2002 52255 VL 79 52256 IS 3 52257 BP 307 52258 EP 326 52259 PG 20 52260 SC Mathematics, Applied 52261 GA 555XN 52262 UT ISI:000175818700003 52263 ER 52264 52265 PT J 52266 AU Zheng, YG 52267 Liu, ZR 52268 Zhou, J 52269 TI A new synchronization principle and application to Chua's circuits 52270 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS 52271 DT Article 52272 DE synchronization; Liapunov stability; Lipschitz condition 52273 ID CHAOTIC SYSTEMS; FUNDAMENTALS 52274 AB In the paper we propose a new synchronization principle. To guarantee 52275 synchronization between coupled chaotic oscillators, proper coupling 52276 constants are selected by the Liapunov stability theory and Hurwitz 52277 Theorem. As an example and application, we prove the conjecture [Wu & 52278 Chua, 1994] that synchronization between two chaotic Chua's circuits 52279 can be achieved by using the second state as feedback variable for 52280 sufficiently large coupling constant. 52281 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 52282 Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China. 52283 RP Zheng, YG, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 52284 CR CHUA LO, 1993, J CIRCUIT SYST COMP, V3, P93 52285 CHUA LO, 1996, INT J BIFURCAT CHAOS, V6, P189 52286 KOLUMBAN G, 1997, IEEE T CIRCUITS-I, V44, P927 52287 OGORZALEK MJ, 1993, IEEE T CIRCUITS-I, V40, P693 52288 PECORA LM, 1990, PHYS REV LETT, V64, P821 52289 PECORA LM, 1997, CHAOS, V7, P520 52290 RAO RM, 1980, ORDINARY DIFFERENTIA 52291 WANG XF, 1999, INT J BIFURCAT CHAOS, V6, P1169 52292 WU CW, 1994, INT J BIFURCAT CHAOS, V4, P979 52293 NR 9 52294 TC 0 52295 SN 0218-1274 52296 J9 INT J BIFURCATION CHAOS 52297 JI Int. J. Bifurcation Chaos 52298 PD APR 52299 PY 2002 52300 VL 12 52301 IS 4 52302 BP 815 52303 EP 818 52304 PG 4 52305 SC Mathematics, Applied; Multidisciplinary Sciences 52306 GA 554XC 52307 UT ISI:000175761600007 52308 ER 52309 52310 PT J 52311 AU Cao, WG 52312 Ding, WY 52313 Wang, LY 52314 Song, LP 52315 Zhang, QY 52316 TI Chemistry and applications of phosphonium and arsonium ylides(XXIX) - 52317 Studies on the hydrolysis of arsonium ylides containing perfluoroalkyl 52318 group and synthesis of 2-pyranone derivatives 52319 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE 52320 DT Article 52321 DE arsonium ylide; hydrolysis; 2-pyranone derivatives 52322 ID CONVENIENT 52323 AB In the presence of K2CO3, reaction of (2-naphthoyl)methyl arsonium 52324 bromide (1) with methyl 2-perfluoroalkynoates(2) in methylene chloride 52325 at room temperature afforded the adduct - methyl 52326 4-(2-naphthoyl)-2-triphenylarsoranylidene-3-perfluoroalkyl-3-butenoates( 52327 3) as major product and 52328 4-(2-naphthoyl)-4-triphenylarsoranylidene-3-perfluoroalkyl-2-butenoates 52329 (4) as minor product in high yield. Hydrolysis of compound 3 in V 52330 (CH3OH):V(H2O) = 9:1 methanolic solution at 80 degreesC in a sealed 52331 tube, 4-perfluoroalkyl-6-(2-naphthyl)-2-pyranones(5) was obtained in an 52332 excellent yield. The catalytic hydrolysis of compound 3 with silica gel 52333 and the mechanisms for the formation of the products will also be 52334 discussed. 52335 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 52336 Acad Sinica, Shanghai Inst Organ Chem, Lab Organmet Chem, Shanghai Organ Chem Inst, Shanghai 200032, Peoples R China. 52337 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 52338 CR *GIB FDN, 1972, CARB FLOUR COMP CHEM 52339 BANKS RE, 1982, PREPARATION PRINCIPL 52340 CAO WG, 1998, J FLUORINE CHEM, V91, P99 52341 CAO WG, 1999, ACTA CHIM SINICA, V57, P1270 52342 CAO WG, 1999, J FLUORINE CHEM, V95, P135 52343 CAO WG, 2001, J FLUORINE CHEM, V109, P201 52344 DING WY, 1986, ACTA CHIM SINICA, V44, P255 52345 HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47 52346 STOLL A, 1933, HELV CHIM ACTA, V16, P703 52347 TAO WT, 1983, CHINESE J ORG CHEM, V3, P129 52348 NR 10 52349 TC 0 52350 SN 0251-0790 52351 J9 CHEM J CHINESE UNIV-CHINESE 52352 JI Chem. J. Chin. Univ.-Chin. 52353 PD MAY 52354 PY 2002 52355 VL 23 52356 IS 5 52357 BP 839 52358 EP 842 52359 PG 4 52360 SC Chemistry, Multidisciplinary 52361 GA 556CD 52362 UT ISI:000175831000022 52363 ER 52364 52365 PT J 52366 AU He, JH 52367 TI Linearization and correction method for nonlinear problems 52368 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 52369 DT Article 52370 DE nonlinearity; asymptotic solution; perturbation technique 52371 ID LINDSTEDT-POINCARE METHODS; PERTURBATION TECHNIQUE; EXPANSION 52372 AB A new perturbation-like technique called linearization and correction 52373 method is proposed. Contrary to the traditional perturbation 52374 techniques, the present theory does not assume that the solution is 52375 expressed in the form of a power series of small parameter. To obtain 52376 an asymptotic solution of nonlinear system, the technique first 52377 searched for a solution for the linearized system, then a correction 52378 was added to the linearized solution. So the obtained results are 52379 uniformly valid for both weakly and strongly nonlinear equations. 52380 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 52381 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 52382 Peoples R China. 52383 CR HAGEDORN P, 1981, NONLINEAR OSCILLATIO 52384 HE JH, 1999, COMMUNICATIONS NONLI, V4, P81 52385 HE JH, 1999, COMPUT METHOD APPL M, V178, P257 52386 HE JH, 1999, INT J NONLINEAR MECH, V34, P699 52387 HE JH, 1999, MECCANICA, V34, P287 52388 HE JH, 2000, INT J NONLINEAR MECH, V35, P37 52389 HE JH, 2000, INT J NONLINEAR SCI, V1, P51 52390 HE JH, 2000, J SOUND VIB, V229, P1257 52391 HE JH, 2002, INT J NONLINEAR MECH, V37, P309 52392 HE JH, 2002, INT J NONLINEAR MECH, V37, P315 52393 LIU GL, 1997, C 7 MOD MATH MECH SH, P47 52394 MICKENS RE, 1981, INTRO NONLINEAR OSCI 52395 NAYFEH AH, 1981, INTRO PERTURBATION T 52396 NR 13 52397 TC 0 52398 SN 0253-4827 52399 J9 APPL MATH MECH-ENGL ED 52400 JI Appl. Math. Mech.-Engl. Ed. 52401 PD MAR 52402 PY 2002 52403 VL 23 52404 IS 3 52405 BP 241 52406 EP 248 52407 PG 8 52408 SC Mathematics, Applied; Mechanics 52409 GA 556FJ 52410 UT ISI:000175838500001 52411 ER 52412 52413 PT J 52414 AU We, JH 52415 Yu, NW 52416 TI Mathematical modelling of decarburisation and degassing during vacuum 52417 circulation refining process of molten steel: mathematical model of the 52418 process 52419 SO STEEL RESEARCH 52420 DT Article 52421 ID ULTRA-LOW-CARBON; RH DEGASSER; DECARBURIZATION RATE; REDUCED PRESSURE; 52422 KINETIC-MODEL 52423 AB Based on the mass and momentum balances in the system, a new 52424 mathematical model for decarburisation and degassing in the vacuum 52425 circulation refining process of molten steel has been proposed and 52426 developed. The refining roles of the three reaction sites, i.e. the 52427 up-snorkel zone, the droplet group and steel bath in the vacuum vessel, 52428 have been considered in the model. It was assumed that the mass 52429 transfer of reactive components in the molten steel is the rate control 52430 step of the refining reactions. And the friction losses and drags of 52431 flows in the snorkels and vacuum vessel were all counted. For the 52432 refining process of molten steel in a 90 t multifunction RH degasser, 52433 the parameters of the model have been discussed and more reasonably 52434 determined. 52435 C1 Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China. 52436 RP We, JH, Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China. 52437 CR BAKAKIN AV, 1981, IZV VUZ FERROUS META, P33 52438 CHEN JX, 1984, HDB COMMON USING DAT, P654 52439 DEO B, 1996, STEEL RES, V67, P7 52440 ELLIOTT JF, 1963, THERMOCHEMISTRY STEE, V2 52441 FILLIO GAV, 2001, 84 STEELM C P ISS US, P661 52442 FUJII T, 1970, TETSU TO HAGANE, V56, P1165 52443 GEIGER GH, 1973, TRANSPORT PHENOMENA 52444 HUGHMARK GA, 1967, IND ENG CHEM PROC DD, V6, P218 52445 HUIN D, 2001, 84 STEELM C P ISS US, P601 52446 INOUE A, 1970, T JAPN SOC MECH ENG, V36, P1366 52447 INOUE S, 1992, ISIJ INT, V32, P120 52448 KANG SC, 1999, IRON STEEL S, V34, P352 52449 KATO Y, 1993, ISIJ INT, V33, P1088 52450 KATO Y, 1993, TETSU TO HAGANE, V79, P1248 52451 KATO Y, 1995, KAWASAKI STEEL TECHN, P25 52452 KIRIHARA T, 1994, TETSU TO HAGANE, V80, P705 52453 KISHIMOTO Y, 1993, ISIJ INT, V33, P391 52454 KLEIMT B, 1993, IRONMAK STEELMAK, V20, P390 52455 KLEIMT B, 2000, SCAND J METALL, V29, P194 52456 KORIA SC, 1984, METALL T B, V15, P109 52457 KUWABARA T, 1988, T IRON STEEL I JPN, V28, P305 52458 OETERS F, 1994, METALLURGY STEELMAKI 52459 OU T, 1999, ACTA METALL SIN, V35, P735 52460 QU Y, 1994, FUNDAMENTALS STEELMA, P178 52461 TAKAHASHI M, 1995, ISIJ INT, V35, P1452 52462 TURKDOGAN ET, 1980, PHYSICAL CHEM HIGH T 52463 WATANABE H, 1968, TETSU TO HAGANE, V54, P1327 52464 WEI JH, 2000, IRONMAK STEELMAK, V27, P129 52465 WEI JH, 2000, MAT PROCESSING COMPU, P147 52466 YAMAGUCHI K, 1992, ISIJ INT, V32, P126 52467 YANO M, 1994, STEEL PROC, V77, P117 52468 YAO YB, 1985, HDB PHYSICAL CHEM, P407 52469 YOSHIMURA K, 1982, P 7 INT C VAC MET TO, P1404 52470 YU N, 1998, J NE U NATURAL SCI, V19, P118 52471 YU N, 2000, THESIS SHANGHAI 52472 ZHANG L, 1997, IRON STEEL S, V32, P633 52473 ZHANG L, 2001, 84 STEELM C P, P275 52474 ZHU MY, 2001, ACTA METALL SIN, V37, P91 52475 NR 38 52476 TC 0 52477 SN 0177-4832 52478 J9 STEEL RES 52479 JI Steel Res. 52480 PD APR 52481 PY 2002 52482 VL 73 52483 IS 4 52484 BP 135 52485 EP 142 52486 PG 8 52487 SC Metallurgy & Metallurgical Engineering 52488 GA 551YE 52489 UT ISI:000175590900003 52490 ER 52491 52492 PT J 52493 AU Wei, JH 52494 Yu, NW 52495 TI Mathematical modelling of decarburisation and degassing during vacuum 52496 circulation refining process of molten steel: application of the model 52497 and results 52498 SO STEEL RESEARCH 52499 DT Article 52500 ID RH 52501 AB The mathematical model for decarburisation and degassing in the vacuum 52502 circulation refining process of molten steel, proposed and presented 52503 earlier, has been applied to the refining process of molten steel in a 52504 multifunction RH degasser of 90 t capacity. The decarburisation and 52505 degassing processes in the degasser under the RH and RH-KTB operating 52506 conditions have been modelled and analysed using this model. It was 52507 demonstrated that for the RH and RH-KTB refining processes, the results 52508 predicted by the model are in good agreement with some plant data. The 52509 mean contributions of the three refining sites in six circulation 52510 cycles to decarburisation are 10.5 - 11.6, 37.4 - 38.0 and 50.5 - 52.1 52511 % of the overall amount of decarburisation, respectively. The KTB 52512 operation can markedly accelerate the decarburisation of molten steel. 52513 Using the top blowing oxygen of 6 min with the flow rate of (600 - 52514 1000) m(3)(STP)/h, the initial carbon mass content of the liquid steel 52515 for the RH refining process may be increased to (550 - 700) . 10(-4) 52516 from 400 . 10(-4) %. And the treatment time needed for reducing the 52517 carbon mass content in the steel to a level of : 20 - 10-4 % may be 52518 shortened over 3 - 4 min. The effectiveness of decarburisation and 52519 degassing cannot be obviously improved by increasing the lifting argon 52520 blow rate to 900 from 600 I(STP)/min under the operating modes examined 52521 in the present work. 52522 C1 Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China. 52523 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China. 52524 CR AZUMA K, 1990, CAMP ISIJ, V3, P168 52525 INOUE S, 1990, CAMP ISIJ, V3, P164 52526 KUWABARA T, 1988, T IRON STEEL I JPN, V28, P305 52527 LIU J, 1999, IRON STEEL S10, V34, P527 52528 OU T, 1996, IRON STEEL, V31, P17 52529 TAKAHASHI M, 1995, ISIJ INT, V35, P1452 52530 WATANABE H, 1968, TETSU TO HAGANE, V54, P1327 52531 WEI JH, 2002, STEEL RES, V73, P135 52532 YANO M, 1994, STEEL PROC, V77, P117 52533 YU N, 1998, J NE U NATURAL SCI, V19, P118 52534 YU N, 2000, THESIS SHANGHAI 52535 NR 11 52536 TC 4 52537 SN 0177-4832 52538 J9 STEEL RES 52539 JI Steel Res. 52540 PD APR 52541 PY 2002 52542 VL 73 52543 IS 4 52544 BP 143 52545 EP 148 52546 PG 6 52547 SC Metallurgy & Metallurgical Engineering 52548 GA 551YE 52549 UT ISI:000175590900004 52550 ER 52551 52552 PT J 52553 AU Zhang, JC 52554 Cao, GX 52555 Chen, ZP 52556 Li, XG 52557 Cao, SX 52558 TI Hole carrier localization and Pr substitution in YBCO systems by 52559 positron experiment 52560 SO MATERIALS LETTERS 52561 DT Article 52562 DE ternary; Y; rare earth barium high-T-c superconductors 52563 ID LIFETIME SPECTROSCOPY; NEUTRON-DIFFRACTION; MOMENTUM DENSITY; 52564 HIGH-TEMPERATURE; SINGLE-CRYSTALS; FERMI-SURFACE; ANNIHILATION; 52565 SUPERCONDUCTIVITY; Y1-XPRXBA2CU3O7-DELTA; DEFECTS 52566 AB Pr-substituted YBCO system has been studied by positron lifetime 52567 experiment in the range from 0.0 to 1.0. The present results show that 52568 the value of short lifetime tau(1) in PrBa2Cu3O7-delta is nearly the 52569 same as in the isostructural YBa2Cu3O7-delta and the defect-related 52570 positron lifetime component tau(2) decreases as a function of 52571 Pr-substitution x. The increase of local electron density n(e), 52572 reflects the electronic intense localization. These experimental 52573 results are interpreted in terms of the localization of hole carriers 52574 in the Cu-O chains on Pr substitution due to disorder in the Ba and Pr 52575 planes by the partly occupation of Ba2+ ion site with Pr3+ ion. These 52576 will destroy the intrinsic conductivity of the Cu-O chains and so 52577 impresses the superconductivity above x=0.6 Pr-substitution 52578 concentration. (C) 2002 Elsevier Science B.V. All rights reserved. 52579 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 52580 Hennan Normal Univ, Dept Phys, Xinxiang 453002, Peoples R China. 52581 Zhengzhou Inst Light Ind, Dept Math & Phys, Zhengzhou 450002, Peoples R China. 52582 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 52583 CR ABDELRAZEK MM, 1999, INT J MOD PHYS B, V13, P3615 52584 BLACKSTEAD HA, 1995, PHYS LETT A, V109 52585 BLACKSTEAD HA, 1995, PHYS REV B, V51, P11830 52586 BOOTHROYD AT, 1997, PHYS REV LETT, V78, P130 52587 CAO G, 1993, PHYSICA B, V186, P1004 52588 CHAKRABORTY B, 1989, PHYS REV B, V39, P215 52589 CHEN CK, 1993, PHYSICA C, V214, P231 52590 FINCHER CR, 1991, PHYS REV LETT, V67, P2902 52591 FINK J, 1990, PHYS REV B, V42, P4823 52592 HAUTOJARVI P, 1977, PHILOS MAG, V35, P973 52593 HOFFMANN L, 1993, PHYS REV LETT, V71, P4047 52594 JEAN YC, 1987, PHYS REV B, V36, P3994 52595 JEAN YC, 1990, PHYS REV LETT, V64, P1593 52596 JUNG K, 1995, J APPL PHYS, V78, P5534 52597 KEBEDE A, 1989, PHYS REV B, V40, P4453 52598 LEVIN GA, 1998, PHYS REV LETT, V80, P841 52599 LIECHTENSTEIN AI, 1995, PHYS REV LETT, V74, P1000 52600 LING CC, 2000, PHYS REV B, V62, P8016 52601 MAHONY J, 1997, PHYS REV B, V55, P9637 52602 MASSIDDA S, 1990, PHYSICA C, V169, P137 52603 NAGEL C, 1999, PHYS REV B, V60, P9212 52604 NEUMEIER JJ, 1990, PHYSICA C, V166, P191 52605 OKAI B, 1988, JPN J APPL PHYS, V27, P41 52606 PANKALUOTO R, 1994, PHYS REV B, V50, P6408 52607 POLITY A, 1998, PHYS REV B, V58, P10363 52608 POLITY A, 1999, PHYS REV B, V59, P10025 52609 REMPEL AA, 2000, PHYS REV B, V61, P5945 52610 ROMANENKO AI, 1996, PHYS LETT A, V223, P132 52611 SANYAL D, 1998, PHYS REV B, V58, P15226 52612 SHUKLA A, 1995, PHYS REV B, V51, P6028 52613 SHUKLA A, 1999, PHYS REV B, V59, P12127 52614 SODERHOLM L, 1987, NATURE, V328, P604 52615 SOMOZA A, 2000, PHYS REV B, V61, P14454 52616 USAGAWA T, 1998, APPL PHYS LETT, V72, P1772 52617 VONSTETTEN EC, 1988, PHYS REV LETT, V60, P2198 52618 WURSCHUM R, 2000, PHYS REV B, V62, P12021 52619 ZHANG JC, 1995, PHYS LETT A, V201, P70 52620 ZOU ZG, 1998, PHYS REV LETT, V80, P1074 52621 NR 38 52622 TC 0 52623 SN 0167-577X 52624 J9 MATER LETT 52625 JI Mater. Lett. 52626 PD JUN 52627 PY 2002 52628 VL 54 52629 IS 4 52630 BP 273 52631 EP 278 52632 PG 6 52633 SC Materials Science, Multidisciplinary; Physics, Applied 52634 GA 553XP 52635 UT ISI:000175702600006 52636 ER 52637 52638 PT J 52639 AU Yang, GH 52640 Zhang, H 52641 Duan, YS 52642 TI Topological quantization of disclination points in three-dimensional 52643 liquid crystals 52644 SO CHINESE PHYSICS 52645 DT Article 52646 DE topological current; wrapping number; director field; disclination point 52647 ID SPACE-TIME DEFECTS; BIFURCATION-THEORY; EARLY UNIVERSE; ORIGIN; MEDIA 52648 AB Using the phi-mapping method and topological current theory, we study 52649 the inner structure of disclination points in three-dimensional liquid 52650 crystals. By introducing the strength density and the topological 52651 current of many disclination points, it is pointed out that the 52652 disclination points are determined by the singularities of the general 52653 director field and they are topologically quantized by the Hopf indices 52654 and Brouwer degrees. 52655 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 52656 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 52657 Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China. 52658 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 52659 CR ANDERSON PW, 1984, BASIC NOTIONS CONDEN 52660 BLAHA S, 1976, PHYS REV LETT, V36, P874 52661 BRAY AJ, 1994, ADV PHYS, V43, P375 52662 DEGENNES PG, 1970, LECT NOTES 52663 DEGENNES PG, 1974, PHYSICS LIQUID CRYST 52664 DUAN YS, 1997, GEN RELAT GRAVIT, V29, P715 52665 DUAN YS, 1997, HELV PHYS ACTA, V70, P565 52666 DUAN YS, 1998, NUCL PHYS B, V514, P705 52667 FINKELSTEIN D, 1966, J MATH PHYS, V7, P1218 52668 FRIEDEL J, 1964, DISLOCATIONS 52669 HOLZ A, 1992, PHYSICA A, V182, P240 52670 KLEMAN M, 1972, LIQUID CRYSTALLINE S 52671 KLEMAN M, 1973, PHILOS MAG, V27, P1057 52672 KLEMAN M, 1977, J PHYSIQUE LETT, V38, L195 52673 KLEMAN M, 1983, LIQUID CRYSTALS MAGN 52674 KURIK MV, 1988, SOV PHYS USP, V31, P196 52675 KURIK MV, 1988, USP FIZ NAUK, V154, P381 52676 LUBENSKY TC, 1997, SOLID STATE COMMUN, V102, P187 52677 MERMIN ND, 1979, REV MOD PHYS, V51, P591 52678 NABARRO FRN, 1967, THEORY CRYSTAL DISLO 52679 ROGULA D, 1976, TRENDS APPL PURE MAT 52680 SHANKAR R, 1977, J PHYSIQUE, V38, P1405 52681 TOULOUSE G, 1976, J PHYSIQUE LETT, V37, P149 52682 VOLOVIK GE, 1976, JETP LETT, V48, P561 52683 VOLOVIK GE, 1977, ZH EKSP TEOR FIZ, V45, P1186 52684 VOLOVIK GE, 1977, ZH EKSP TEOR FIZ, V46, P401 52685 YANG GH, 1998, INT J THEOR PHYS, V37, P2371 52686 YANG GH, 1998, MOD PHYS LETT A, V13, P2123 52687 YANG GH, 1999, INT J ENG SCI, V37, P1037 52688 NR 29 52689 TC 0 52690 SN 1009-1963 52691 J9 CHIN PHYS 52692 JI Chin. Phys. 52693 PD MAY 52694 PY 2002 52695 VL 11 52696 IS 5 52697 BP 415 52698 EP 418 52699 PG 4 52700 SC Physics, Multidisciplinary 52701 GA 552TD 52702 UT ISI:000175635400001 52703 ER 52704 52705 PT J 52706 AU Zheng, G 52707 Li, H 52708 Zhang, M 52709 Lund-Katz, S 52710 Chance, B 52711 Glickson, JD 52712 TI Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl 52713 oleate as target-specific photosensitizer 52714 SO BIOCONJUGATE CHEMISTRY 52715 DT Article 52716 ID PHOTODYNAMIC THERAPY; CULTURED-CELLS; IN-VIVO; DELIVERY; DERIVATIVES; 52717 COMPLEXES; DRUGS 52718 AB To target tumors overexpressing low-density lipoprotein receptors 52719 (LDLr), a pyropheophorbide cholesterol oleate conjugate was synthesized 52720 and successfully reconstituted into the low-density lipoprotein (LDL) 52721 lipid core. Laser scanning confocal microscopy studies demonstrated 52722 that this photosensitizer-reconstituted LDL can be internalized via 52723 LDLr by human hepatoblastoma G(2) (HepG(2)) tumor cells. 52724 C1 Univ Penn, Sch Med, Dept Radiol, Philadelphia, PA 19104 USA. 52725 Univ Penn, Sch Med, Dept Biochem & Biophys, Philadelphia, PA 19104 USA. 52726 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 52727 Childrens Hosp Philadelphia, Dept Pediat GI Nutr, Philadelphia, PA 19104 USA. 52728 RP Zheng, G, Univ Penn, Sch Med, Dept Radiol, Chem Bldg,Box 66,231 S 34th 52729 St, Philadelphia, PA 19104 USA. 52730 CR ALLISON BA, 1991, PHOTOCHEM PHOTOBIOL, V54, P709 52731 BROWN MS, 1980, ANN NY ACAD SCI, V348, P48 52732 CANDIDE C, 1986, FEBS LETT, V207, P133 52733 CRAIG IF, 1981, J LIPID RES, V22, P687 52734 DESMIDT PC, 1993, BIOCHEMISTRY-US, V32, P2916 52735 DOUGHERTY TJ, 1998, J NATL CANCER I, V90, P889 52736 FIRESTONE RA, 1994, BIOCONJUGATE CHEM, V5, P105 52737 HENDERSON BW, 1997, CANCER RES, V57, P4000 52738 KRIEGER M, 1979, J BIOL CHEM, V254, P3845 52739 LOWRY OH, 1951, J BIOL CHEM, V193, P265 52740 LUNDBERG B, 1987, CANCER RES, V47, P4105 52741 MOAN J, 1990, J PHOTOCH PHOTOBIO B, V6, P343 52742 MOSLEY ST, 1981, P NATL ACAD SCI USA, V78, P5717 52743 PANDEY RK, 1996, PHOTOCHEM PHOTOBIOL, V64, P194 52744 PANDEY RK, 2000, PORPHYRIN HDB, V6, P157 52745 REDDI E, 1997, J PHOTOCH PHOTOBIO B, V37, P189 52746 SHAW JM, 1987, ANN NY ACAD SCI, V507, P252 52747 STERNBERG ED, 1998, TETRAHEDRON, V54, P4151 52748 VERSLUIS AJ, 1996, BRIT J CANCER, V74, P525 52749 NR 19 52750 TC 10 52751 SN 1043-1802 52752 J9 BIOCONJUGATE CHEMISTRY 52753 JI Bioconjugate Chem. 52754 PD MAY-JUN 52755 PY 2002 52756 VL 13 52757 IS 3 52758 BP 392 52759 EP 396 52760 PG 5 52761 SC Chemistry, Multidisciplinary; Chemistry, Organic; Biochemical Research 52762 Methods; Biochemistry & Molecular Biology 52763 GA 553PN 52764 UT ISI:000175684800002 52765 ER 52766 52767 PT J 52768 AU He, JH 52769 TI A variational model for a symmetric transonic aerofoil 52770 SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY 52771 DT Article 52772 DE flow; finite element method 52773 ID UNKNOWN SHAPE; TURBOMACHINERY; AERODYNAMICS; FLOW 52774 AB By the semi-inverse method proposed by He, a variational principle is 52775 established for steady flow over a thin, symmetric, non-lifting 52776 aerofoil. The nonlinear, small-disturbance, velocity-potential equation 52777 is obtained by minimizing the obtained functional, and all boundary 52778 conditions are converted into natural boundary conditions, resulting in 52779 much convenience when incorporating the finite element method. 52780 C1 Shanghai Univ, Shanghai 200072, Peoples R China. 52781 Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 52782 RP He, JH, Shanghai Univ, Shanghai 200072, Peoples R China. 52783 CR HE JH, 1997, INT J TURBO JET ENG, V14, P23 52784 HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154 52785 HE JH, 1999, INT J TURBO JET ENG, V16, P19 52786 HE JH, 2000, AIRCR ENG AEROSP TEC, V72, P18 52787 HE JH, 2000, INT J NONLINEAR SCI, V1, P139 52788 LIU GL, 2000, INT J NONLINEAR SCI, V1, P25 52789 MARSH JE, 1980, INT J NUMER METH ENG, V16, P137 52790 NR 7 52791 TC 2 52792 SN 0002-2667 52793 J9 AIRCRAFT ENG AEROSP TECHNOL 52794 JI Aircr. Eng. Aerosp. Technol. 52795 PY 2002 52796 VL 74 52797 IS 1 52798 BP 9 52799 EP 11 52800 PG 3 52801 SC Engineering, Aerospace 52802 GA 554DC 52803 UT ISI:000175717600002 52804 ER 52805 52806 PT J 52807 AU Ma, CQ 52808 Zhang, LQ 52809 Li, XH 52810 Wang, XS 52811 Zhang, BW 52812 Cao, Y 52813 Wang, DM 52814 Jiang, XY 52815 Zhang, ZL 52816 Zhang, DQ 52817 Qui, Y 52818 TI The luminescent properties of 5-substituted 2-pyrazoline and 52819 application in electroluminescent device 52820 SO ACTA CHIMICA SINICA 52821 DT Article 52822 DE pyrazoline; electroluminescence; thermal stability; hole transport 52823 material; blue electroluminescent material 52824 AB A series of 5-substituted 2-pyrazoline derivatives were synthesized and 52825 their physical properties were measured. The results indicate that the 52826 introduction of bulky groups into the pyrazoline ring increases the 52827 glass transition temperature (T-g) of the compounds and changes the 52828 luminescent mechanism of the compounds. Differential scanning 52829 calorimetry ( DSC) shows that the new pyrazoline derivative, 52830 1,3-diphenyl-5-(9-phenanthrenyl)-2-pyrazoline (TAP7) has high T-g of 96 52831 degreesC. The electroluminescent properties of this compound were 52832 measured. It is demonstrated that TAP7 is a good hole transport 52833 material and blue electroluminescent material with high thermal 52834 stability. 52835 C1 Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100101, Peoples R China. 52836 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 52837 Tsing Hua Univ, Dept Chem, Beijing 100084, Peoples R China. 52838 RP Ma, CQ, Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100101, 52839 Peoples R China. 52840 CR BILOT L, 1962, Z NATURFORSCH A, V17, P621 52841 BLAIR JT, 1994, J PHOTOCH PHOTOBIO A, V77, P133 52842 CHEN CH, 1997, MACROMOL S, V125, P1 52843 DEAN JA, 1999, LANGES HDB CHEM 52844 DONNALD ER, 1979, AUST J CHEM, V32, P1601 52845 GAO XC, 1999, J MATER CHEM, V9, P1077 52846 MORLEY JO, 1989, J MOL ELECTRON, V5, P117 52847 NAITO K, 1993, J PHYS CHEM-US, V97, P6240 52848 SAHYUN MRV, 1991, P SPIE INT SOC OPT E, V1436, P125 52849 SANO T, 1995, JPN J APPL PHYS PT 1, V34, P3124 52850 WANG Y, 1999, PHOTOGRAPHIC SCI PHO, V1, P73 52851 WU F, 2000, CHEM J CHINESE U, V10, P1581 52852 WU F, 2000, THIN SOLID FILMS, V363, P214 52853 YAN ZL, 1993, J LUMIN, V54, P303 52854 YAN ZL, 1994, THESIS CAS BEIJING 52855 ZHANG LQ, 1999, ACTA PHYS-CHIM SIN, V10, P911 52856 NR 16 52857 TC 7 52858 SN 0567-7351 52859 J9 ACTA CHIM SIN 52860 JI Acta Chim. Sin. 52861 PD MAY 52862 PY 2002 52863 VL 60 52864 IS 5 52865 BP 847 52866 EP 853 52867 PG 7 52868 SC Chemistry, Multidisciplinary 52869 GA 554BD 52870 UT ISI:000175712200016 52871 ER 52872 52873 PT J 52874 AU Li, Q 52875 Wang, NC 52876 Shi, BC 52877 Zheng, CG 52878 TI Extendible look-up table of twiddle factors and radix-8 based fast 52879 Fourier transform 52880 SO SIGNAL PROCESSING 52881 DT Article 52882 DE fast Fourier transform; twiddle factors; bit-reversed order 52883 ID ALGORITHM 52884 AB An extendible look-up table of the twiddle factors for implementation 52885 of fast Fourier transform (FFT) is introduced in this paper. In fact, 52886 this twiddle factors table is independent of the length of sequence, It 52887 need not be recomputed for shorter sequences. And for longer sequences, 52888 the table can be extended easily. A radix-8 based FFT algorithm for 52889 2(m)-FFT with this table is presented. Experimental comparisons between 52890 our algorithm and FFTW software package have be done. And the results 52891 indicate that our FFT scheme is effective. (C) 2002 Elsevier Science 52892 B.V. All rights reserved. 52893 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China. 52894 RP Li, Q, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R 52895 China. 52896 CR ALMEIDA LB, 1994, IEEE T SIGNAL PROCES, V42, P3084 52897 CHAN SC, 1992, IEEE T SIGNAL PROCES, V40, P2029 52898 COOLEY JW, 1965, MATH COMPUT, V19, P297 52899 DUHAMEL P, 1984, ELECTRON LETT, V20, P14 52900 DUHAMEL P, 1990, SIGNAL PROCESS, V19, P259 52901 GRIGORYAN AM, 2000, IEEE T SIGNAL PROCES, V48, P172 52902 MA YT, 1999, IEEE T SIGNAL PROCES, V47, P907 52903 RIUS JM, 1995, IEEE T SIGNAL PROCES, V43, P991 52904 SILVIA M, 1999, MOD PHYS C, V10, P781 52905 NR 9 52906 TC 0 52907 SN 0165-1684 52908 J9 SIGNAL PROCESS 52909 JI Signal Process. 52910 PD APR 52911 PY 2002 52912 VL 82 52913 IS 4 52914 BP 643 52915 EP 648 52916 PG 6 52917 SC Engineering, Electrical & Electronic 52918 GA 551NC 52919 UT ISI:000175566900008 52920 ER 52921 52922 PT J 52923 AU Xu, GQ 52924 Li, ZB 52925 TI Solitary wave solutions of a nonlinear evolution equation using mixed 52926 exponential method 52927 SO ACTA PHYSICA SINICA 52928 DT Article 52929 DE nonlinear differential equations; mixed exponential method; solitary 52930 wave 52931 ID EXPLICIT EXACT-SOLUTIONS 52932 AB Mixed exponential method proposed by Hereman for finding solitary wave 52933 solutions of a nonlinear evolution equation is presented. The method is 52934 developed and perfected according to the theory of mathematical 52935 mechanization, and with this method many solitary wave solutions not 52936 only of a nonlinear evolution equation(s) but also a multi-dimention 52937 equation can be obtained. 52938 C1 E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China. 52939 Shanghai Univ, Dept Informat Engn & Adm, Shanghai 200436, Peoples R China. 52940 RP Xu, GQ, E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R 52941 China. 52942 CR FAN EG, 1998, ACTA PHYS SINICA, V47, P353 52943 FAN EG, 1998, PHYS LETT A, V245, P389 52944 FAN EG, 2000, PHYS LETT A, V277, P212 52945 HEREMAN W, 1986, J PHYS A-MATH GEN, V19, P607 52946 HEREMAN W, 1990, J PHYS A-MATH GEN, V23, P4805 52947 HIROTA R, 1981, PHYS LETT A, V85, P407 52948 LI ZB, 1997, ACTA MATH SINICA, V17, P81 52949 LI ZB, 2001, ACTA PHYS SIN-CH ED, V50, P2062 52950 WANG ML, 1996, PHYS LETT A, V216, P67 52951 YAN ZY, 1999, ACTA PHYS SIN-CH ED, V48, P1962 52952 ZHANG GX, 2000, CHIN SCI A, V30, P1103 52953 NR 11 52954 TC 17 52955 SN 1000-3290 52956 J9 ACTA PHYS SIN-CHINESE ED 52957 JI Acta Phys. Sin. 52958 PD MAY 52959 PY 2002 52960 VL 51 52961 IS 5 52962 BP 946 52963 EP 950 52964 PG 5 52965 SC Physics, Multidisciplinary 52966 GA 550PR 52967 UT ISI:000175511900003 52968 ER 52969 52970 PT J 52971 AU Gu, ZY 52972 Ji, PY 52973 TI Effects of background plasma density on multi-photon ionization 52974 SO ACTA PHYSICA SINICA 52975 DT Article 52976 DE MPI; plasma 52977 ID MULTIPHOTON IONIZATION; FIELD 52978 AB Multi-photon ionization (MPI) in plasma which is examined in terms of 52979 optical metric and the quantum Volkov state in curved space-time is 52980 derived. The cross section of MPI is derived by virtur of the corrected 52981 Volkov state within the framework of quantum electrodynamics formal 52982 scattering theory. It shows that the plasma medium acts as a 52983 "suppression" on MPI. 52984 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 52985 RP Gu, ZY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 52986 CR GUO DS, 1988, J PHYS A-MATH GEN, V21, P4577 52987 GUO DS, 1989, PHYS REV A, V40, P4997 52988 JI PY, 2001, CHINESE PHYS, V10, P314 52989 KELDYSH LV, 1965, ZH EKSP TEOR FIZ, V20, P1307 52990 LAI GJ, 2000, ACTA PHYS SIN-CH ED, V49, P2399 52991 LEONHARDT U, 1999, PHYS REV A, V60, P4301 52992 REISS HR, 1980, PHYS REV A, V22, P1786 52993 ZHU ST, 1993, ACTA PHYS SINICA, V42, P1438 52994 NR 8 52995 TC 0 52996 SN 1000-3290 52997 J9 ACTA PHYS SIN-CHINESE ED 52998 JI Acta Phys. Sin. 52999 PD MAY 53000 PY 2002 53001 VL 51 53002 IS 5 53003 BP 1022 53004 EP 1025 53005 PG 4 53006 SC Physics, Multidisciplinary 53007 GA 550PR 53008 UT ISI:000175511900017 53009 ER 53010 53011 PT J 53012 AU Peng, LM 53013 Mao, XM 53014 Xu, KD 53015 Ding, WJ 53016 TI In-situ composite Cu-Cr contact cables with high strength and high 53017 conductivity 53018 SO RARE METALS 53019 DT Article 53020 DE contact cable; in-situ composite; directional solidification continuous 53021 casting process; Cu-Cr alloy 53022 AB In order to develop a new type of contact cable with high strength and 53023 high electrical conductivity, Cu-Cr alloy series were selected as 53024 materials and Cu-Cr alloy castings were produced by means of 53025 directional solidification continuous casting (DSCC) process. The 53026 results show that the fibrillar strengthening phase, beta-Cr, orderly 53027 arranges among the copper matrix phase along the wire direction; and a 53028 microstructure of in-situ composite forms, which retains the basic 53029 property of good conductivity of the copper matrix and meanwhile 53030 obtains the strengthening effect of beta-Cr phase. The production 53031 technology as well as the mechanical property, electrical property, and 53032 synthetic property of the in-situ composite contact cables was 53033 discussed. 53034 C1 Shanghai Jiao Tong Univ, Natl Engn Ctr Light Alloy Netshaping, Shanghai 200030, Peoples R China. 53035 Shanghai Univ, Inst Mat Sci & Engn, Shanghai 200072, Peoples R China. 53036 RP Peng, LM, Shanghai Jiao Tong Univ, Natl Engn Ctr Light Alloy 53037 Netshaping, Shanghai 200030, Peoples R China. 53038 CR CEN X, 1986, WIRE CABLE, V28, P50 53039 KURZ W, 1989, DIRECTIONALLY SOLIDI, P101 53040 LIU LN, 1997, WIRE CABLE, V39, P2 53041 PENG LM, 2000, INTERACTIONS CONTROL, P28 53042 WEN HQ, 1998, RARE METALS, V17, P23 53043 WEN HQ, 1998, STUDY FORMING MECH P, P35 53044 ZHAO ZD, 1993, HDB CU ITS ALLOYS MA, P3 53045 NR 7 53046 TC 1 53047 SN 1001-0521 53048 J9 RARE METALS 53049 JI Rare Metals 53050 PD MAR 53051 PY 2002 53052 VL 21 53053 IS 1 53054 BP 62 53055 EP 66 53056 PG 5 53057 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 53058 Engineering 53059 GA 548AZ 53060 UT ISI:000175366900011 53061 ER 53062 53063 PT J 53064 AU Xu, KD 53065 TI The 20th century - Ferrometallurgy advanced from skill towards 53066 engineering science 53067 SO RARE METAL MATERIALS AND ENGINEERING 53068 DT Article 53069 DE ferrometallurgy; advancednent of technology; engineering science 53070 ID DIOXINS; SYSTEM 53071 AB In the past century, a considerable development of ferrometallurgy, 53072 including its principle and technology, had been achieved. It was 53073 mainly attributed to the advancement of related theories and the 53074 application of modern industrial technologies, equipments, materials, 53075 analytical techniques and computer/information technology in the 53076 manufacture of steel. Today, the processes of extracting, smelting, 53077 forming and rolling of steel can be completely controlled in accordance 53078 with the requirement of man. Within the prospect in the 21st century 53079 ferrometallurgy will become mature engineering science. 53080 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 53081 RP Xu, KD, Chinese Acad Engn, Postbox 3847, Beijing 100038, Peoples R 53082 China. 53083 CR 1965, CHIPM C C 53084 1981, CHINESE IRONMAKING 3 53085 *NAT SCI FUND SOC, 1997, MET MIN SCI, P30 53086 *SUZHOU IR STEEL G, INT REP INV SULF DIS 53087 AKIYAMA T, 1993, ISIJ INT, V33, P1136 53088 AKIYAMA T, 1998, ISIJ INT, V38, P93 53089 ANELLI E, 1992, ISIJ INT, V32, P440 53090 ARGYROPOULOS SA, 1990, ISIJ INT, V30, P83 53091 ASANUMA M, 2000, ISIJ INT, V40, P240 53092 BAO ZH, 1986, STEEL ROLLING, P1 53093 BIRAT JP, 1999, IRON STEEL S, V34, P416 53094 BRIMACOMBE J, 1986, STEELM C P ISS WASH, P409 53095 BRIMACOME JK, 1976, CANADIAN METALL Q, P38 53096 CHEN JX, 1990, HDB CONTINUOUS CASTI, P4 53097 CHEN YS, 2001, MICROALLOYING TECHNO, V1, P20 53098 DEARDO GA, 1982, THERMOMECHANICAL PRO 53099 DIPPENAAR RJ, 1985, ELECT FURNACE P, P43 53100 DONALDSON JW, 1966, COMPUTER SIMULATION, P780 53101 DRUCKENTHANER H, 2000, REV METALL-PARIS, V97, P481 53102 EKETORP S, 1982, RIST REICHARDT DIAGR 53103 FLEMINGS MC, 1981, SOLIDIFICATION PROCE 53104 FU GR, 1994, IRON STEEL, V29, P26 53105 GAN Y, 2001, MATH PHYSICAL MODELI 53106 GRATACOS P, 1991, P 5 INT ROLL C UK LO, P252 53107 GRAY JM, 2000, P CHIN BRAZ AC C 53108 GUBKIN SE, 1960, PLASTIC DEFORMATION 53109 GUO J, 1995, IRON STEEL, V30, P24 53110 HAN ZC, 2001, ELECTROMAGNETIC META 53111 HARUO K, 1991, J JAPAN SOC TECHNOLO, V32, P441 53112 HORBACH U, 1998, MPT INT, P74 53113 HOU ST, 1995, IRON STEEL, V30, P16 53114 JIANG GC, 1996, CLEAN STEEL SECONDAR 53115 JIANG GL, 1982, IRON STEEL, V4, P13 53116 KASAI E, 2001, ISIJ INT, V41, P86 53117 KASAI E, 2001, ISIJ INT, V41, P93 53118 LAASRAOUI A, 1991, ISIJ INT, V31, P95 53119 LAIT JE, 1974, IRONMAK STEELMAK, V2, P90 53120 LALLY B, 1990, METALL TRANS B, V21, P761 53121 LAROUCHE Y, 1998, LIGHT MET, P1059 53122 LIANG H, 1998, METALL MATER TRANS B, V29, P1345 53123 LIU GX, 1979, PRINCIPLES METALLOGR 53124 LIU MJ, 1995, STEELM C P, V78, P359 53125 LIU XH, 1994, FINITE ELEMENT METHO 53126 MACHIDA S, 1998, CAMP ISIJ, V11, P162 53127 MARUKAWA K, 1989, P 6 GUANX SHANGH EC 53128 MASAMI K, 1990, R D KOBE STEEL ENG R, V40, P23 53129 MATSUDA K, 1990, IRON STEEL I JAPAN, V5, P1 53130 MCPHERSON NA, 1980, IRONMAK STEELMAK, V7, P75 53131 MILZER M, 1999, IRON STEEL, V34, P658 53132 MIZIKAR EA, 1967, T METALLURGICAL SOCI, V239, P1747 53133 OHNO, 1982, T METAL SOLIDIFICATI 53134 PAWELSKI, 1980, P INT STEEL ROLL C J, P27 53135 PU HQ, 1999, IRON STEEL, V34, P5 53136 QIN MS, 1987, IRON STEEL, V22, P1 53137 QU Y, 1980, PRINCIPLE STEELMAKIN, P1 53138 RAND R, 1999, STAHL EISEN, V6, P13 53139 RAUDENSKY M, 1995, STEELM C P, V78, P391 53140 REN ZM, 1999, ACTA METALL SIN, V35, P851 53141 REN ZM, 1999, NATL NATURE SCI FDN 53142 ROBERTS W, 1985, STRENGTH METALS ALLO, V3, P1859 53143 ROWE GW, 1977, PRINCIPLE IND METALW 53144 RUDDLE RW, 1957, SOLIDIFICATION SAND 53145 RUSSWURM D, 1995, MCROALLOYING 95, P377 53146 SAMARASEKERA V, 1982, IRONMAK STEELMAK, V8, P1 53147 SARAFF L, 1972, IRONMAK STEELMAK, P49 53148 SCHENCK H, 1945, PHYSICAL CHEM STEELM 53149 SHI ZB, NONBLAST FURNACE IRO 53150 SZEKERES ES, 1996, IRONMAK STEELMAK, V79, P29 53151 TAMURA I, 1988, THERMOMECHANICAL PRO 53152 TOSHIO S, 1989, HITACHI HYORON, V71, P103 53153 WANG GD, 2000, ARTIFICIAL INTELLIGE 53154 WANG YM, 1995, CONTROLLED ROLLING C 53155 WEI SK, 1980, THERMODYNAMICS METAL 53156 WEN DW, 1999, IRON STEEL, V34, P223 53157 WHITTINGTON KR, 1998, LIGHT MET, P1147 53158 WIKLUND, 1991, P 5 INT ROLL C UK LO, P512 53159 WOLF MM, 1992, STEELM C P ISS, V75, P83 53160 WOLF MM, 1995, P TECH C P NASHV ISI, P99 53161 WOLF MM, 1996, IRON STEELMAKER, V23, P47 53162 XU GJ, 2000, ACTA METALL SIN, V13, P1093 53163 XU JL, 1996, P 4 E CHIN IR C 53164 XU KD, 1985, REFINING STAINLESS S 53165 XU KD, 1998, ACTA METALLURGIC SIN, V34, P467 53166 XU KD, 1999, 125 XIANGSH SCI C P, V125, P31 53167 YE ZP, 1959, DISCUSS BASIC PROBLE 53168 YI SH, 1990, 6 INT IR STEEL C JAP, P379 53169 YONG QL, 1989, MICROALLOYED STEEL P 53170 YU RY, 1989, GENERALITY METALLURG 53171 YUE E, 1990, MATH MODELING HOT RO 53172 ZHANG SR, 1999, IRON STEEL, V34, P43 53173 ZHANG YQ, 2000, IRON STEEL, V35, P43 53174 ZHONG YB, 1999, ACTA METALLURGIC SIN, V35, P503 53175 ZHOU JQ, 1985, P 4 THERM EN THERM T, P10 53176 NR 93 53177 TC 0 53178 SN 1002-185X 53179 J9 RARE METAL MAT ENG 53180 JI Rare Metal Mat. Eng. 53181 PD NOV 53182 PY 2001 53183 VL 30 53184 SU Suppl. S 53185 BP 9 53186 EP 20 53187 PG 12 53188 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 53189 Engineering 53190 GA 548KU 53191 UT ISI:000175387800003 53192 ER 53193 53194 PT J 53195 AU Yu, QR 53196 Yang, JR 53197 Huang, GS 53198 Chen, XQ 53199 Xia, YB 53200 He, L 53201 TI Ag doping of p-type HgCdTe grown by LPE 53202 SO JOURNAL OF INFRARED AND MILLIMETER WAVES 53203 DT Article 53204 DE HgCdTe; doping; Hall tests; SIMS; electrical properties 53205 ID ELECTRICAL-PROPERTIES; CDXHG1-XTE; IMPURITIES; (HG,CD)TE; ELEMENTS; CDTE 53206 AB SIMS (secondary ion mass spectrum) and variable temperature Hail 53207 measurement were employed to study the doping of Ag and the electrical 53208 properties of Ag-doped HgCdTe films grown by LPE. The results show that 53209 the Ag-doping in HgCdTe by soaking HgCdTe in AgNO3 solution is 53210 effective and the dopant concentration is equal to the Hg vacancy 53211 concentration of undoped HgCdTe film. After Ag doping, the acceptor 53212 energy of p-type HgCdTe has an obvious decrease. It was also found that 53213 the electrical properties of Ag-doped HgCdTe films can keep stable at 53214 room temperature. 53215 C1 Shanghai Univ, Sch Mat, Shanghai 201800, Peoples R China. 53216 Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China. 53217 Chinese Acad Sci, Res Ctr Adv Mat & Devices, Shanghai 200083, Peoples R China. 53218 RP Yu, QR, Shanghai Univ, Sch Mat, Shanghai 201800, Peoples R China. 53219 CR CHEUNG DT, 1985, J VAC SCI TECHNOL A, V3, P128 53220 DESTEFANIS GL, 1988, J CRYST GROWTH, V86, P700 53221 EDWALL DD, 1992, J VAC SCI TECHNOL B, V10, P1423 53222 KENWORTHY I, 1990, SEMICOND SCI TECH, V5, P854 53223 LYUBOMIRSKY I, 1996, J CRYST GROWTH, V159, P1148 53224 SCHAAKE HF, 1985, J VAC SCI TECHNOL A, V3, P143 53225 SCOTT W, 1976, J APPL PHYS, V47, P1408 53226 SHIN SH, 1980, J APPL PHYS, V51, P3772 53227 TANAKA N, 1998, J ELECTRON MATER, V27, P579 53228 TREGILGAS J, 1985, J VAC SCI TECHNOL A, V3, P156 53229 VYDYANATH HR, 1987, J ELECTRON MATER, V16, P13 53230 WILSON RG, 1988, J APPL PHYS, V63, P5121 53231 NR 12 53232 TC 1 53233 SN 1001-9014 53234 J9 J INFRARED MILIM WAVES 53235 JI J. Infrared Millim. Waves 53236 PD APR 53237 PY 2002 53238 VL 21 53239 IS 2 53240 BP 91 53241 EP 94 53242 PG 4 53243 SC Optics 53244 GA 547PY 53245 UT ISI:000175342000003 53246 ER 53247 53248 PT J 53249 AU Zhou, X 53250 Yan, X 53251 Li, Y 53252 TI 5.8ghz biphase modulator/mixer designed by uniplanar technology 53253 SO JOURNAL OF INFRARED AND MILLIMETER WAVES 53254 DT Article 53255 DE MMIC; uniplanar technology; CPW; biphase modulator/mixer 53256 AB By considering the high flexibility of uniplanar technology to design 53257 complex multifunction subsystems, a design procedure based on a 53258 subsystem repartitioned into elementary blocks and very simple 53259 electrical modeling was proposed and applied to a uniplanar 53260 biphase(0degrees or 180degrees)modulator/mixer, which was intended to 53261 be used as a building block in microwave uncontact impact card of 53262 Intelligent Transportation System(ITS) at 5.8GHz. Theoretical 53263 electromagnetic field calculation methods were combined with 53264 conventional transmission-line and computer-aided design calculations 53265 to analyze and design the critical parts of the subsystems. The 53266 subsystem designed in this paper has the advantages of small size, 53267 compact structure, high performance and low cost. 53268 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China. 53269 RP Zhou, X, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, 53270 Peoples R China. 53271 CR COHN SB, 1969, IEEE T MICROW THEORY, V17, P1091 53272 COHN SB, 1969, IEEE T MICROW THEORY, V17, P768 53273 DIB N, 1991, IEEE T MICROW THEORY, V139, P873 53274 GORUR A, 1996, INT J MICROWAVE MILL, P6297 53275 GRAMMER W, 1993, IEEE T MICROW THEORY, V41, P1653 53276 HETTAK K, 1994, IEEE T MICROW THEORY, V43, P915 53277 HETTAK K, 1996, IEEE T MICROW THEORY, V47, P1831 53278 HILBERG W, 1969, IEEE T MTT, V17, P259 53279 HIROTA T, 1987, IEEE T MICROW THEORY, V35, P576 53280 HOUDART M, 1976, P 7 EUR MICR C, P49 53281 KATEHI LPB, 1992, P IEEE, V80, P1771 53282 OGAWA H, 1987, IEEE T MICROW THEORY, V35, P1363 53283 PUCEL RA, 1985, MONOLITHIC MICROWAVE, P553 53284 TAMAS V, 1995, MICROWAVE J, P80 53285 NR 14 53286 TC 0 53287 SN 1001-9014 53288 J9 J INFRARED MILIM WAVES 53289 JI J. Infrared Millim. Waves 53290 PD APR 53291 PY 2002 53292 VL 21 53293 IS 2 53294 BP 137 53295 EP 141 53296 PG 5 53297 SC Optics 53298 GA 547PY 53299 UT ISI:000175342000013 53300 ER 53301 53302 PT J 53303 AU Ma, HL 53304 Lu, FQ 53305 TI Measurement of hyperfine structure coupling constants in the 570.38 nm 53306 line of Nd-143,145(+) 53307 SO SPECTROSCOPY AND SPECTRAL ANALYSIS 53308 DT Article 53309 DE hyperfine structure; fast-ion-beam laser spectroscopy 53310 AB Hyperfine structure in atomic ions is caused by the electromagnetic 53311 interaction between the nucleus and orbital electrons. Information on 53312 the nuclear structure and also on the electronic properties of ions can 53313 be obtained through studying the hyperfine structure. Hyperfine 53314 structure spectrum in the 570.38 nm line of (143), (145) Nd+ was 53315 measured by using collinear fast-ion-beam laser spectroscopy. All the 53316 spectral lines were resolved and the magnetic dipole and electric 53317 quadrupole coupling constants of the corresponding metastable levels 53318 and excited levels were determined. 53319 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 53320 Fudan Univ, Inst Modern Phys, Shanghai 200433, Peoples R China. 53321 RP Ma, HL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 53322 CR BROSTROM L, 1996, PHYS REV A, V53, P109 53323 CHENG KT, 1985, PHYS REV A, V31, P2775 53324 CHILDS WJ, 1984, J OPT SOC AM B, V1, P22 53325 GINIBRE A, 1981, PHYS SCR, V23, P260 53326 GINIBRE A, 1989, PHYS SCR, V39, P694 53327 JOHANSSON S, 1996, ASTROPHYS J 1, V462, P943 53328 LI MS, 2000, PHYS SCRIPTA, V61, P449 53329 MA HL, 1998, CHINESE PHYS LETT, V15, P178 53330 NR 8 53331 TC 1 53332 SN 1000-0593 53333 J9 SPECTROSC SPECTR ANAL 53334 JI Spectrosc. Spectr. Anal. 53335 PD APR 53336 PY 2002 53337 VL 22 53338 IS 2 53339 BP 183 53340 EP 185 53341 PG 3 53342 SC Spectroscopy 53343 GA 546RF 53344 UT ISI:000175286800003 53345 ER 53346 53347 PT J 53348 AU Ho, SL 53349 Fei, MR 53350 Fu, WN 53351 Wong, HC 53352 Lo, EWC 53353 TI Integrated RBF network based estimation strategy of the output 53354 characteristics of brushless DC motors 53355 SO IEEE TRANSACTIONS ON MAGNETICS 53356 DT Article 53357 DE ANN; brushless dc motor; finite element; non-linear; radial basis 53358 function 53359 AB The circuit-field coupled model is very accurate but it is 53360 computationally inefficient in studying the output performance of 53361 brushless de motors. In order to resolve the problem, an estimation 53362 strategy based on an integrated radial basis function (RBF) network is 53363 proposed in this paper. The strategy introduces new conceptions of the 53364 network group that are being realized by three steps, namely: 1) an 53365 adaptive RBF network is proposed for modeling the center network; 2) 53366 the RBF network group is then used to build the base networks; and 3) 53367 an integrated RBF network based on the base network group is used 53368 subsequently to predict the nontrained output characteristics of the 53369 brushless dc motor. 53370 C1 Hong Kong Polytech Univ, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China. 53371 Shanghai Univ, Dept Automat, Shanghai, Peoples R China. 53372 Hong Kong Polytech Univ, Ind Ctr, Kowloon, Peoples R China. 53373 RP Ho, SL, Hong Kong Polytech Univ, Dept Elect Engn, Kowloon, Hong Kong, 53374 Peoples R China. 53375 CR FEI M, 1999, P IEEE AIM SEP 53376 FEI M, 1999, P IEEE PEDS JUL, P1108 53377 HENDERSHOT JR, 1994, DESIGN BRUSHLESS PER 53378 HO SL, 1997, IEEE T MAGN, V33, P2265 53379 HO SL, 2000, P 9 BIENN IEEE C EL 53380 LI HL, 2000, P 9 BIENN IEEE C EL 53381 SALON SJ, 1995, FINITE ELEMENT ANAL 53382 VAS P, 1996, WORKSH AC MOT DRIV T, P55 53383 VAS P, 1998, SENSORLESS VECTOR DI 53384 NR 9 53385 TC 1 53386 SN 0018-9464 53387 J9 IEEE TRANS MAGN 53388 JI IEEE Trans. Magn. 53389 PD MAR 53390 PY 2002 53391 VL 38 53392 IS 2 53393 PN Part 1 53394 BP 1033 53395 EP 1036 53396 PG 4 53397 SC Engineering, Electrical & Electronic; Physics, Applied 53398 GA 543DV 53399 UT ISI:000175086800180 53400 ER 53401 53402 PT J 53403 AU Wang, Y 53404 Chau, KT 53405 Chan, CC 53406 Jiang, JZ 53407 TI Transient analysis of a new outer-rotor permanent-magnet brushless DC 53408 drive using circuit-field-torque coupled time-stepping finite-element 53409 method 53410 SO IEEE TRANSACTIONS ON MAGNETICS 53411 DT Article 53412 DE brushless dc machines; permanent magnet machines; time-stepping 53413 finite-element method 53414 ID ELECTRIC VEHICLES; MOTOR-DRIVES 53415 AB In this paper, a new outer-rotor permanent magnet (PM) brushless de 53416 drive is designed and analyzed. To enable this drive applicable to 53417 electric vehicles, its transient performances at both normal and 53418 flux-weakening operations are particularly focused. The distinct 53419 feature in design is due to the new motor configuration including the 53420 outer-rotor topology, the multipole magnetic circuit and the full 53421 slot-pitch coil span arrangement. The distinct feature in analysis is 53422 due to the development of the circuit-field-torque coupled 53423 time-stepping finite-element method. The proposed PM brushless dc drive 53424 is prototyped. The analysis results are verified by experimental 53425 measurement. 53426 C1 Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China. 53427 Shanghai Univ, Sch Automat, Shanghai 200072, Peoples R China. 53428 RP Wang, Y, Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, 53429 Peoples R China. 53430 CR CHAN CC, 1995, IEEE T POWER ELECTR, V10, P539 53431 CHAN CC, 1996, IEEE T IND ELECTRON, V43, P331 53432 CHAN CC, 1997, IEEE T IND ELECTRON, V44, P3 53433 GAN JY, 2000, IEEE T MAGN 1, V36, P3353 53434 PARK SC, 1999, IEEE T MAGN 1, V35, P1302 53435 NR 5 53436 TC 3 53437 SN 0018-9464 53438 J9 IEEE TRANS MAGN 53439 JI IEEE Trans. Magn. 53440 PD MAR 53441 PY 2002 53442 VL 38 53443 IS 2 53444 PN Part 1 53445 BP 1297 53446 EP 1300 53447 PG 4 53448 SC Engineering, Electrical & Electronic; Physics, Applied 53449 GA 543DV 53450 UT ISI:000175086800246 53451 ER 53452 53453 PT J 53454 AU Qiao, XY 53455 Xiao, XS 53456 Wang, XH 53457 Yang, H 53458 Qiu, ZB 53459 An, LJ 53460 Wang, WK 53461 Mo, ZS 53462 TI External field induced crystallization of poly(3-dodecylthiophene) 53463 SO EUROPEAN POLYMER JOURNAL 53464 DT Article 53465 DE external field; induced crystallization; poly(3-dodecylthiophene) 53466 ID POLY(3-ALKYLTHIOPHENES) 53467 AB In order to investigate the effect of external field on the 53468 crystallization behavior of poly(3-dodecylthiopliene) (P3DDT), the 53469 samples were recrystallized with different electrostatic field 53470 intensity, different pressure and different solidification direction in 53471 temperature gradient field. Measurements of differential scanning 53472 calorimetry and X-ray diffraction were operated to characterize these 53473 samples for analysis. The results suggest that after recrystallization, 53474 whether the external field is added or not, a more compact packing of 53475 molecular chains in P3DDT could be obtained without the change of the 53476 crystal structure model. Moreover, the addition of electrostatic field 53477 has greater effects on the crystallization of rigid main chains than on 53478 that of flexible side chains, Merely great pressure field can effect 53479 the rearrangements of molecular chains greatly. As for the temperature 53480 gradient field induced crystallization, different oriented 53481 solidification direction will lead to different effects on the compact 53482 degree and perfect degree of molecular chains packing, (C) 2002 53483 Elsevier Science Ltd. All rights reserved. 53484 C1 Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China. 53485 Shanghai Univ, Mat Inst, Shanghai 200072, Peoples R China. 53486 Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. 53487 RP Mo, ZS, Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab 53488 Polymer Phys & Chem, Changchun 130022, Peoples R China. 53489 CR CHEN SA, 1992, MACROMOLECULES, V25, P6081 53490 ELSENBAUMER DLE, 1986, SYNTHETIC MET, V15, P16 53491 HO KS, 1993, SYNTHETIC MET, V55, P384 53492 HSU WP, 1993, MACROMOLECULES, V26, P1318 53493 IWASAKI K, 1994, SYNTHETIC MET, V63, P101 53494 MARDALEN J, 1991, SOLID STATE COMMUN, V77, P337 53495 PROSA TJ, 1992, MACROMOLECULES, V25, P4364 53496 QIAO XY, 1999, CHINESE CHEM LETT, V10, P419 53497 QIAO XY, 2000, CHINESE CHEM LETT, V11, P361 53498 QIAO XY, 2000, SYNTHETIC MET, V113, P1 53499 QIAO XY, 2001, SYNTHETIC MET, V118, P89 53500 SUGIMOTO R, 1986, CHEM EXPRESS, V1, P635 53501 TAMAO K, 1982, TETRAHEDRON, V38, P3347 53502 TASHIRO K, 1991, J POLYM SCI POL PHYS, V29, P1223 53503 WINOKUR MJ, 1989, SYNTHETIC MET, V28, P419 53504 YOSHINO K, 1987, POLYM COMMUN, V28, P30 53505 NR 16 53506 TC 1 53507 SN 0014-3057 53508 J9 EUR POLYM J 53509 JI Eur. Polym. J. 53510 PD JUN 53511 PY 2002 53512 VL 38 53513 IS 6 53514 BP 1183 53515 EP 1190 53516 PG 8 53517 SC Polymer Science 53518 GA 546PP 53519 UT ISI:000175282800017 53520 ER 53521 53522 PT J 53523 AU Cai, YH 53524 TI A remark on Chen's theorem 53525 SO ACTA ARITHMETICA 53526 DT Article 53527 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 53528 RP Cai, YH, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 53529 CR CHEN JR, 1973, SCI SINICA, V16, P157 53530 CHEN JR, 1973, SCI SINICA, V21, P477 53531 CHEN JR, 1978, SCI SINICA, V21, P421 53532 FOUVRY E, 1986, J REINE ANGEW MATH, V370, P101 53533 FOUVRY E, 1989, DUKE MATH J, V58, P731 53534 HALBERSTAM H, 1974, SIEVE METHODS 53535 HALBERSTAM H, 1975, ASTERISQUE, V24, P281 53536 HARDY GH, 1923, ACTA MATH-DJURSHOLM, V44, P1 53537 IWANIEC H, 1980, ACTA ARITH, V37, P307 53538 LIU HQ, 1990, SCI CHINA SER A, V33, P281 53539 PAN CD, 1992, GOLDBACH CONJECTURE 53540 WU J, 1990, ACTA ARITH, V55, P365 53541 NR 12 53542 TC 1 53543 SN 0065-1036 53544 J9 ACTA ARITHMET 53545 JI Acta Arith. 53546 PY 2002 53547 VL 102 53548 IS 4 53549 BP 339 53550 EP 352 53551 PG 14 53552 SC Mathematics 53553 GA 546YK 53554 UT ISI:000175304400005 53555 ER 53556 53557 PT J 53558 AU Wang, SL 53559 TI Impact chaos control and stress release - A key for development of 53560 ultra fine vibration milling 53561 SO PROGRESS IN NATURAL SCIENCE 53562 DT Article 53563 DE vibration mills; ultra fine milling; impact chaos control; stress 53564 release 53565 AB Through our previous experimental and analytical studies, it has been 53566 discovered that the key for the development of vibration milling is the 53567 impact chaos control and stress release. The necessities for the chaos 53568 control and stress release are: (i) to strictly eliminate the 53569 sub-harmonics; (ii) to control the super-harmonics to a lower level and 53570 (iii) to load the system compressively with relatively higher period, 53571 in order that the vibration energy can be absorbed by the particles 53572 effectively and sufficiently, A new vibration model for ultra fine 53573 milling is proposed, which has wide applications in preparing ultra 53574 fine particles. 53575 C1 Shanghai Univ Sci & Technol, Dept Power Engn, Shanghai 200093, Peoples R China. 53576 RP Wang, SL, Shanghai Univ Sci & Technol, Dept Power Engn, Shanghai 53577 200093, Peoples R China. 53578 CR GOCK E, 1998, AUFBEREITUNGSTECHNIK, V39, P103 53579 HOEFFL K, 1985, VEB DEUTSCHER VERLAG 53580 JENG JJ, 1992, AUFBERCITUNGSTECHNIK, V33, P361 53581 KANTZ H, 1997, NONLINEAR TIME SERIE 53582 KIESSLING M, 1989, FREIBERGER FORSCH A, V798, P62 53583 KURRER KE, 1988, FREIBERGER FORSCH A, V778, P76 53584 LOEWE J, 1995, AUFBEREITUNGSTECHNIK, V36, P277 53585 LONG YJ, 1998, MODERN ENG DYNAMICS 53586 ROSE HE, 1961, VIBRATION MILL VIBRA 53587 RUMPF H, 1973, AUFBEREIT TECH, V14, P59 53588 WANG SL, 1987, MINING MACHINERY, V14, P24 53589 WANG SL, 1996, P CHIN JAP S PART TS, P336 53590 WANG SL, 1997, CHINESE J MECH ENG, V33, P19 53591 WANG SL, 1997, P MTM BEIJ CHIN MACH, P1144 53592 WANG SL, 1998, J OCEAN U QINGDAO, V28, P457 53593 WANG SL, 1999, IMPACT DYNAMICS VIBR, P465 53594 WANG ZQ, 1995, PLASTIC MICRO MECH 53595 NR 17 53596 TC 1 53597 SN 1002-0071 53598 J9 PROG NAT SCI 53599 JI Prog. Nat. Sci. 53600 PD MAY 53601 PY 2002 53602 VL 12 53603 IS 5 53604 BP 336 53605 EP 341 53606 PG 6 53607 SC Multidisciplinary Sciences 53608 GA 545GX 53609 UT ISI:000175209800003 53610 ER 53611 53612 PT J 53613 AU Shang, XC 53614 Cheng, CJ 53615 TI Cavitation in Hookean elastic membranes 53616 SO ACTA MECHANICA SOLIDA SINICA 53617 DT Article 53618 DE cavitation; bifurcation; boundary layer; elastic membrane; exact 53619 solution 53620 ID BIFURCATION; GROWTH 53621 AB An exact solution to cavitation is found in tension of a class of 53622 Cauchy elastic membranes. The constitutive relationship of materials is 53623 based on Hookean elastic law and finite logarithmic strain measure. A 53624 variable transformation is used in solving the two-point boundary-value 53625 problem of nonlinear ordinary differential equation. A simple formula 53626 to calculate the critical stretch for cavitation is derived. As the 53627 numerical results, the bifurcation curves describing void nucleation 53628 and suddenly rapidly growth of the cavity are obtained. The boundary 53629 layers of displacements and stresses near the cavity wall are observed. 53630 The catastrophic transition from homogeneous to cavitated deformation 53631 and the jumping of stress distribution are discussed. The result of the 53632 energy comparison shows the cavitated deformation has lower energy than 53633 the homogeneous one, thus the state of cavitated deformation is 53634 relatively stable. All investigations illustrate that cavitation 53635 reflects a local behavior of materials. 53636 C1 Univ Sci & Technol Beijing, Dept Math & Mech, Beijing 100083, Peoples R China. 53637 Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China. 53638 Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 53639 RP Shang, XC, Univ Sci & Technol Beijing, Dept Math & Mech, Beijing 53640 100083, Peoples R China. 53641 CR ASHBY MF, 1989, ACTA METALL, V37, P1857 53642 BALL JM, 1982, PHILOS T ROY SOC A, V306, P557 53643 BIWA S, 1995, INT J NONLINEAR MECH, V30, P899 53644 DURBAN D, 1988, INT J SOLIDS STRUCT, V24, P675 53645 ERTAN N, 1988, ASCE J ENG MECHANICS, V114, P1231 53646 GENT AN, 1958, P ROY SOC LOND A MAT, V249, P195 53647 HAUGHTON DM, 1990, INT J ENG SCI, V28, P163 53648 HORGAN CO, 1986, J ELASTICITY, V16, P189 53649 HORGAN CO, 1992, INT J SOLIDS STRUCT, V29, P279 53650 HORGAN CO, 1995, APPL MECH REV, V48, P471 53651 JIN M, 1999, APPL MECH MATH, V20, P867 53652 SHANG XC, 1996, ACTA MECH SINICA, V28, P755 53653 SHANG XC, 2001, INT J ENG SCI, V39, P1101 53654 NR 13 53655 TC 1 53656 SN 0894-9166 53657 J9 ACTA MECH SOLIDA SINICA 53658 JI Acta Mech. Solida Sin. 53659 PD MAR 53660 PY 2002 53661 VL 15 53662 IS 1 53663 BP 89 53664 EP 94 53665 PG 6 53666 SC Materials Science, Multidisciplinary; Mechanics 53667 GA 544KK 53668 UT ISI:000175156600012 53669 ER 53670 53671 PT J 53672 AU Chen, WX 53673 Cheng, DH 53674 Liu, SL 53675 Guo, HT 53676 TI Electrocatalytic activity and electrochemical hydrogen storage of Ni-La 53677 alloy prepared by electrodeposition from aqueous electrolyte 53678 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA 53679 DT Article 53680 DE Ni-La alloy; electrodeposition; hydrogen evolution reaction; hydrogen 53681 storage 53682 ID WATER ELECTROLYSIS; EVOLUTION REACTION; PERFORMANCES; BATTERIES 53683 AB Ni-La alloy coating was prepared by electrodeposition. The effect of 53684 cathodic current density on the La content of the alloy coatings was 53685 discussed. It is found that the content of La in the alloy increases 53686 with increasing the cathodic current density. The microstructures and 53687 codeposition mechanism of Ni-La alloy coatings were investigated by 53688 means of X-ray diffraction (XRD) and cyclic voltammetry (CV). The 53689 results demonstrate that the Ni-La alloy is FCC and code-posited by the 53690 induced mechanism. The hydrogen evolution reaction (HER) on the 53691 electrodeposited Ni-La alloy electrodes in alkaline solution was 53692 evaluated by Tafel polarization curves. It is found that La-Ni alloy 53693 coating exhibites much higher exchange current density for HER than 53694 pure Ni electrode, and that the exchange current density increases with 53695 increasing the La content of alloys. The good electrocatalytic activity 53696 for HER of this Ni-La ahoy is attributed to the synergism of the 53697 electronic structure of La and Ni. The electrodeposited La-Ni alloys 53698 have a certain electrochemical hydrogen storage capacity of 34 similar 53699 to 143 mAh/g, which increases with increasing the La content of alloys. 53700 C1 Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China. 53701 Shanghai Univ, Coll Environm & Chem Engn, Shanghai 200027, Peoples R China. 53702 Tianjin Univ, Dept Appl Chem, Tianjin 300072, Peoples R China. 53703 CR ANANI A, 1994, J POWER SOURCES, V47, P261 53704 BOCUTTI R, 2000, INT J HYDROGEN ENERG, V25, P1051 53705 CHEN WX, 1998, T NONFERR METAL SOC, V8, P250 53706 CHEN WX, 1999, T NONFERR METAL SOC, V9, P487 53707 EZAKI H, 1993, ELECTROCHIM ACTA, V38, P557 53708 FURUKAWA N, 1994, J POWER SOURCES, V51, P45 53709 GUO ZC, 2000, T NONFERR METAL SOC, V10, P50 53710 HAUNG QAH, 2000, MAT PROTECTION, V33, P51 53711 HU WK, 2000, INT J HYDROGEN ENERG, V25, P111 53712 JAKSIC JM, 2000, ELECTROCHIM ACTA, V45, P4151 53713 JAKSIC MM, 2000, ELECTROCHIM ACTA, V45, P4085 53714 JOVIC VD, 1988, J APPL ELECTROCHEM, V18, P511 53715 MACHIDA K, 1984, B CHEM SOC JPN, V57, P2809 53716 MACHIDA K, 1984, ELECTROCHIM ACTA, V29, P807 53717 METIKOSHUKOVIC M, 2000, ELECTROCHIM ACTA, V45, P4159 53718 TAMURA H, 1983, J LESS-COMMON MET, V89, P567 53719 TANAKA M, 1993, DENKI KAGAKU, V61, P790 53720 NR 17 53721 TC 0 53722 SN 1003-6326 53723 J9 TRANS NONFERROUS METAL SOC CH 53724 JI Trans. Nonferrous Met. Soc. China 53725 PD APR 53726 PY 2002 53727 VL 12 53728 IS 2 53729 BP 269 53730 EP 272 53731 PG 4 53732 SC Metallurgy & Metallurgical Engineering 53733 GA 542BF 53734 UT ISI:000175023100019 53735 ER 53736 53737 PT J 53738 AU Lu, XG 53739 Ding, WZ 53740 Li, FS 53741 Li, LF 53742 Zhou, GZ 53743 TI Electrochemistry of oxygen ion transport in slag 53744 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA 53745 DT Article 53746 DE metal-slag reaction; oxygen ion; electrochemical model 53747 ID FE-C DROPLETS; DECARBURIZATION REACTION; CONDUCTIVITY; REDUCTION; OXIDE 53748 AB A systematic experiment relating to the electrochemistry of oxygen ion 53749 transport in slag has been studied in lab. An equivalent circuit has 53750 been used to describe ion transfer between metal and slag in this paper 53751 and a kinetic model with electrochemical characteristic representing 53752 oxygen ion immigration has been worked out. The different experimental 53753 phenomena ran be explained generally by this model. It can be seen that 53754 the theoretical results are in good agreement with experiments. The 53755 comparison of experimental data with model calculation proved that the 53756 electrochemical model is right. 53757 C1 Shanghai Univ, State Enhance Lab Ferromet, Shanghai 200072, Peoples R China. 53758 Univ Sci & Technol Beijing, Lab Solid Electrolytes & Met Testing Tech, Beijing 100083, Peoples R China. 53759 CR GARE T, 1981, IRONMAK STEELMAK, V8, P169 53760 GOTO KS, 1977, T IRON STEEL I JPN, V17, P212 53761 HASHAM Z, 1995, J ELECTROCHEM SOC, V142, P469 53762 LU XG, 1998, J UNIV SCI TECHNOL B, V5, P20 53763 LU XG, 1999, ENG CHEM METALLURGY, V20, P402 53764 LU XG, 1999, J IRON STEEL RES, V11, P5 53765 LU XG, 1999, J UNIV SCI TECHNOL B, V6, P27 53766 LU XG, 2000, J IRON STEEL RES INT, V7, P9 53767 LU XG, 2001, ACTA METALL SIN, V37, P184 53768 MURTHY GGK, 1993, IRONMAK STEELMAK, V20, P179 53769 MURTHY GGK, 1993, IRONMAK STEELMAK, V20, P191 53770 SASABE M, 1974, METALLURG T, V5, P2225 53771 SPEELMAN JL, 1989, METALL T B, V20, P31 53772 WOOLLEY DE, 1999, METALL MATER TRANS B, V30, P877 53773 NR 14 53774 TC 1 53775 SN 1003-6326 53776 J9 TRANS NONFERROUS METAL SOC CH 53777 JI Trans. Nonferrous Met. Soc. China 53778 PD APR 53779 PY 2002 53780 VL 12 53781 IS 2 53782 BP 326 53783 EP 329 53784 PG 4 53785 SC Metallurgy & Metallurgical Engineering 53786 GA 542BF 53787 UT ISI:000175023100034 53788 ER 53789 53790 PT J 53791 AU Zhou, HY 53792 Gu, SW 53793 Shi, YM 53794 TI Polar surface-optical phonon modes in a quantum box 53795 SO MODERN PHYSICS LETTERS B 53796 DT Article 53797 ID DOUBLE HETEROSTRUCTURES; INTERFACE PHONONS; ENERGY; SUPERLATTICES; 53798 CONFINEMENT; CRYSTALS; WIRE 53799 AB The polar surface-optical (SO) phonon modes and their dispersion 53800 relations in a quantum box axe derived within the dielectric continuum 53801 approximation. Then, having quantized the vibrational eigenmodes, we 53802 give the electron-SO phonon interaction Hamiltonian in a quantum box. 53803 C1 Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China. 53804 Shanghai Jiao Tong Univ, Dept Appl Phys, Shanghai 200030, Peoples R China. 53805 RP Zhou, HY, Shanghai Univ, Dept Phys, 149 Yanchang Rd, Shanghai 200072, 53806 Peoples R China. 53807 CR DEGANI MH, 1988, SURF SCI, V196, P459 53808 FUCHS R, 1965, PHYS REV A, V140, P2076 53809 GU SW, 1987, PHYS REV B, V36, P7977 53810 HUANG K, 1988, PHYS REV B, V38, P2183 53811 KITTEL C, 1986, INTRO SOLID STATE PH 53812 KLEIN MC, 1990, PHYS REV B, V42, P11123 53813 KNOPP PA, 1996, SURF SCI, V361, P318 53814 LAMBIN P, 1991, PHYS REV B, V44, P6416 53815 LASSNIG R, 1984, PHYS REV B, V30, P7132 53816 LI WS, 1997, PHYSICA B, V229, P375 53817 LICARI JJ, 1977, PHYS REV B, V15, P2254 53818 MORI N, 1989, PHYS REV B, V40, P6175 53819 SHI JM, 1991, PHYS REV B, V44, P5692 53820 SOOD AK, 1985, PHYS REV LETT, V54, P2115 53821 STROSCIO MA, 1990, PHYS REV B, V42, P1488 53822 TSUCHIYA M, 1989, PHYS REV LETT, V62, P466 53823 ZHOU F, 1988, J LUMIN, V40, P739 53824 ZHU KD, 1992, J PHYS-CONDENS MAT, V4, P1291 53825 NR 18 53826 TC 0 53827 SN 0217-9849 53828 J9 MOD PHYS LETT B 53829 JI Mod. Phys. Lett. B 53830 PD JAN 30 53831 PY 2002 53832 VL 16 53833 IS 1-2 53834 BP 1 53835 EP 9 53836 PG 9 53837 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical 53838 GA 542LN 53839 UT ISI:000175045500001 53840 ER 53841 53842 PT J 53843 AU Wu, WB 53844 Peng, DW 53845 Ding, YP 53846 Meng, ZY 53847 TI Dielectric tunable properties of (Ba1-xSrx)TiO3 thin films on LaAlO3 53848 substrate 53849 SO MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING 53850 DT Article 53851 DE BST; sol-gel; thin film; coplanar capacitor; tunability 53852 ID MICROSTRUCTURE 53853 AB (Ba1-xSrx)TiO3 (1-x = 0.8, 0.7, 0.6 and 0.5) thin films were prepared 53854 on (0 0 1) LaAlO3 substrates by sol-gel method. The films were found to 53855 be crystallized in preferential (0 0 1) orientation after 53856 post-deposition annealing at 750degreesC for 1.5 h and 1100degreesC for 53857 2 h in air, respectively. We investigated the dependence of tunability 53858 and dissipation factor on annealing temperature and different Ba/Sr 53859 ratios. It was found that the tunability increased dramatically and 53860 dissipation factor decreased obviously with increasing annealing 53861 temperature, and Ba0.6Sr0.4TiO3 thin films annealed at 1100degreesC for 53862 2 h have a tunability of 46.9% at 80 kV/cm bias filed and a dissipation 53863 factor of 0.008 at 1 MHz. (C) 2002 Elsevier Science Ltd. All rights 53864 reserved. 53865 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 53866 Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China. 53867 RP Meng, ZY, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R 53868 China. 53869 CR ALSHAREEF HN, 1997, J ELECTROCERAM, V1, P145 53870 BABBITT R, 1995, INTEGR FERROELECTR, V8, P65 53871 DEFLAVIIS F, 1997, IEEE T MICROW THEORY, V45, P963 53872 DING Y, 2000, J MATER SCI LETT, V119, P163 53873 DING YP, 2000, MATER RES BULL, V35, P1187 53874 DING YP, 2000, THIN SOLID FILMS, V375, P196 53875 KAWAW H, 1993, J APPL PHYS, V73, P10 53876 KOTECKI DE, 1997, INTEGR FERROELECTR, V16, P2 53877 STREIFFER SK, 1996, MATER RES SOC SYMP P, V415, P219 53878 SWARTZ SL, 1992, CONDENSED MATTER NEW, V1, P4 53879 TAHAN DM, 1996, J AM CERAM SOC, V79, P1593 53880 UHLMANN DR, 1991, J NONCRYST SOLIDS, V1194, P131 53881 VENDIK OG, 1993, FERROELECTRICS, V144, P3 53882 YI G, 1993, AM CERM SOC B, V70, P1173 53883 NR 14 53884 TC 3 53885 SN 1369-8001 53886 J9 MATER SCI SEMICOND PROCESS 53887 JI Mater. Sci. Semicond. Process 53888 PD DEC 53889 PY 2001 53890 VL 4 53891 IS 6 53892 BP 673 53893 EP 678 53894 PG 6 53895 SC Engineering, Electrical & Electronic; Materials Science, 53896 Multidisciplinary; Physics, Applied; Physics, Condensed Matter 53897 GA 542WA 53898 UT ISI:000175066200041 53899 ER 53900 53901 PT J 53902 AU Chen, HY 53903 Guo, XB 53904 Meng, ZY 53905 TI Processing and properties of PMMN-PZT quaternary piezoelectric ceramics 53906 for ultrasonic motors 53907 SO MATERIALS CHEMISTRY AND PHYSICS 53908 DT Article 53909 DE PMMN-PZT quaternary system; piezoelectric ceramics; mechanical quality 53910 factor; ultrasonic motors 53911 ID VIBRATION LEVEL; SYSTEM 53912 AB Piezoelectric Pb(Mg(1/)3Nb(1/3))O-3-Pb(Mn1/3Nb2/3)O-3-PbZrO3-PbTiO3 53913 (PMMN-PZT) quaternary ceramics with various contents of 53914 Pb(Mn1/3Nb2/3)O-3 from 4 to 8 mol% were prepared. The conventional 53915 single-stage and columbite two-stage methods were compared. Columbites 53916 MgNb2O6 and MnNb2O6, and the phase structure of PMMN-PZT were examined 53917 using X-ray diffraction (XRD). The surface morphology was examined by 53918 SEM. Study on the effect of Pb(Mn1/3Nb2/3)O-3 additives on dielectric 53919 and piezoelectric properties indicated that the PMMN-PZT quaternary 53920 system exhibited a high mechanical quality factor and well-situated 53921 piezoelectric properties. The optimized results, of d(33) (307 pC/N), 53922 K-p (0.55) and Q(m) (2379) were obtained at 6 mol% Pb(Mn1/3Nb2/3)O-3. 53923 (C) 2002 Elsevier Science B.V. All rights reserved. 53924 C1 Shanghai Jiao Tong Univ, Inst Composite Mat, Shanghai 200030, Peoples R China. 53925 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 53926 RP Meng, ZY, Shanghai Jiao Tong Univ, Inst Composite Mat, Shanghai 200030, 53927 Peoples R China. 53928 CR CHAE HI, 1994, P 4 INT C PROP APPL, P17 53929 GUO XB, 2001, AM CER SOC 103 ANN M 53930 ISE O, 1999, JPN J APPL PHYS 1, V38, P5531 53931 KIM JS, 1999, JPN J APPL PHYS 1, V38, P1433 53932 LEE DJ, 1998, P IEEE INT C COND BR, P381 53933 OUCHI H, 1968, J AM CERAM SOC, V51, P169 53934 SWARTZ SL, 1983, MAT RES B, V7, P1245 53935 TAKAHASHI S, 1994, J AM CERAM SOC, V77, P2429 53936 TASHIRO S, 1997, JPN J APPL PHYS 1, V36, P3004 53937 UEHA S, 1993, ULTRASONIC MOTORS 53938 WU L, 1991, J MATER SCI, V26, P4439 53939 ZHU XH, 1996, J MATER SCI, V31, P2171 53940 NR 12 53941 TC 7 53942 SN 0254-0584 53943 J9 MATER CHEM PHYS 53944 JI Mater. Chem. Phys. 53945 PD APR 28 53946 PY 2002 53947 VL 75 53948 IS 1-3 53949 SI Sp. Iss. SI 53950 BP 202 53951 EP 206 53952 PG 5 53953 SC Materials Science, Multidisciplinary 53954 GA 539XK 53955 UT ISI:000174897700042 53956 ER 53957 53958 PT J 53959 AU Ding, YP 53960 Wu, JS 53961 Meng, ZY 53962 Chan, HL 53963 Choy, ZL 53964 TI Oxygen pressure dependence of structural and tunable properties of 53965 PLD-deposited Ba0.5Sr0.5TiO3 thin film on LaAlO3-substrate 53966 SO MATERIALS CHEMISTRY AND PHYSICS 53967 DT Article 53968 DE LaAlO3 substrates; pulse laser deposition; dielectric tunability 53969 ID MICROWAVE PROPERTIES 53970 AB Ba0.5Sr0.5TiO3 thin films were deposited onto (100)-LaAlO3 substrates 53971 under various oxygen pressures from 50 to 300 mTorr by pulse laser 53972 deposition (PLD). X-ray diffraction investigations indicated that all 53973 the films were (001)-epitaxially grown on the substrates; however the 53974 epitaxy quality and lattice parameters of the films were changed 53975 greatly by the different oxygen pressures (Po-2) during deposition. 53976 Lower Po-2 under 150 mTorr made weak epitaxy of films and less 53977 tetragonal distortion (c/a) of the unit cell. With increasing Po-2, the 53978 films became highly epitaxial and also the c/a ratio increased to 1.002 53979 at Po-2 = 300 mTorr. It was noted that the volume of unit cell was very 53980 critical to the epitaxy with LaAlO3 substrates, which acted on the 53981 distortion of the unit cells by lattice mismatch force in succession. 53982 At frequency of 100 MHz, the film deposited at Po-2 = 200 mTorr, 53983 characterized by high single-epitaxy and mild cell distortion, had a 53984 large dielectric tunability of 42% (at similar to80 kV cm(-1) bias) and 53985 small dielectric loss (tg delta) of 0.008 (at 0 kV cm(-1) bias) and 53986 therefor the largest figure of merit (K, tunability/tg delta) of 5250 53987 among all. (C) 2002 Elsevier Science B.V. All rights reserved. 53988 C1 Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Elect Mat Lab, Shanghai 200030, Peoples R China. 53989 Shanghai Univ, Dept Elect & Informat Mat, Shanghai 201800, Peoples R China. 53990 Hong Kong Polytechn Univ, Dept Appl Phys, Hong Kong, Hong Kong, Peoples R China. 53991 RP Ding, YP, Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Elect Mat Lab, 53992 Shanghai 200030, Peoples R China. 53993 CR CARLSON CM, 2000, APPL PHYS LETT, V76, P1920 53994 CHANG WT, 1999, APPL PHYS LETT, V74, P1033 53995 CHEN CL, 1999, APPL PHYS LETT, V75, P412 53996 GEVORGIAN SS, 1994, ELECTRON LETT, V30, P1236 53997 KIM WJ, 2000, APPL PHYS LETT, V76, P1185 53998 PARK BH, 2000, APPL PHYS LETT, V77, P2587 53999 SCHMIZU T, 1997, SOLID STATE COMMUN, V102, P523 54000 VANKEULS FW, 1999, MICROW OPT TECHN LET, V20, P53 54001 VENDIK OG, 1999, J SUPERCOND, V12, P325 54002 NR 9 54003 TC 6 54004 SN 0254-0584 54005 J9 MATER CHEM PHYS 54006 JI Mater. Chem. Phys. 54007 PD APR 28 54008 PY 2002 54009 VL 75 54010 IS 1-3 54011 SI Sp. Iss. SI 54012 BP 220 54013 EP 224 54014 PG 5 54015 SC Materials Science, Multidisciplinary 54016 GA 539XK 54017 UT ISI:000174897700046 54018 ER 54019 54020 PT J 54021 AU Song, YL 54022 Zhang, C 54023 Chen, GP 54024 Fang, GY 54025 Wang, YX 54026 Xin, XQ 54027 TI Pulse-width-dependent self-focusing-defocusing transformation of the 54028 compound [Et4N](2)[MoS4Cu4(SCN)(4)(2-pic)(4)] 54029 SO JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS 54030 DT Article 54031 DE self-defocusing; self-focusing; excited state refraction 54032 ID NONLINEAR-OPTICAL PROPERTIES; SOLID-STATE SYNTHESIS; CRYSTAL-STRUCTURE; 54033 ABSORPTIVE PROPERTIES; LIMITING PROPERTIES; REFRACTION 54034 AB The pulse-width-dependent self-focusing-defocusing transformation of 54035 the planar heterothiometallic cluster compound 54036 [Et4N](2)[MoS4Cu4(SCN)(4)(2-pic)(4)] in DMF solution is observed at a 54037 wavelength of 532 nm. We also investigate the nonlinear refraction and 54038 absorption behaviours of the cluster compound based on excited state 54039 theory. For picosecond pulses the compound possesses a self-focusing 54040 property, which is attributed to population transitions between singlet 54041 excited states, while for nanosecond pulses it exhibits a 54042 self-defocusing property, which is attributed to the population 54043 relaxing to triplet states. In addition, we found that the singlet 54044 excited state absorption is stronger than triplet excited state 54045 absorption. 54046 C1 Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China. 54047 Nanjing Univ, Dept Chem, State Key Lab Coordinat Chem, Nanjing 210093, Peoples R China. 54048 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China. 54049 RP Song, YL, Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R 54050 China. 54051 CR FANG G, 2000, OPT COMMUN, V181, P523 54052 GE P, 1997, J PHYS CHEM B, V101, P27 54053 HOGGARD PE, 1996, CHEM MATER, V8, P2218 54054 HOU HW, 1994, J CHEM SOC DA, P3211 54055 HOU HW, 1995, CHEM MATER, V7, P472 54056 HOU HW, 1996, J CHEM SOC FARADAY T, V92, P2343 54057 HOU HW, 1999, CHEM COMMUN 0407, P647 54058 JI W, 1995, J PHYS CHEM-US, V99, P17297 54059 LOW MKM, 1998, CHEM COMMUN 0221, P505 54060 SAKANE G, 1995, INORG CHEM, V34, P4785 54061 SHEIKBAHAE M, 1990, IEEE J QUANTUM ELECT, V26, P760 54062 SHEIKBAHAE M, 1990, PHYS REV LETT, V65, P96 54063 SHI S, 1994, J PHYS CHEM-US, V98, P3570 54064 SHI S, 1995, CHEM MATER, V7, P1519 54065 SHI S, 1995, J PHYS CHEM-US, V99, P4050 54066 SHI S, 1995, J PHYS CHEM-US, V99, P894 54067 SHI S, 1995, MATER CHEM PHYS, V39, P298 54068 SONG YL, 1999, OPT COMMUN, V168, P131 54069 SONG YL, 2000, OPT COMMUN, V186, P105 54070 SONG YL, 2001, OPT COMMUN, V192, P273 54071 WEI TH, 2000, CHEM PHYS LETT, V318, P53 54072 YARIV A, 1991, OPTICAL ELECT, P48 54073 ZHANG C, 2000, J CHEM SOC DALTON, P1317 54074 ZHANG J, 2000, J UNIV SCI TECHNOL B, V7, P10 54075 ZHANG QF, 1999, CHEM LETT JUL, P619 54076 ZHENG HG, 1997, J CHEM SOC DALT 0707, P2357 54077 NR 26 54078 TC 0 54079 SN 1464-4258 54080 J9 J OPT A-PURE APPL OPT 54081 JI J. Opt. A-Pure Appl. Opt. 54082 PD MAR 54083 PY 2002 54084 VL 4 54085 IS 2 54086 BP 199 54087 EP 201 54088 PG 3 54089 SC Optics 54090 GA 540BL 54091 UT ISI:000174908300014 54092 ER 54093 54094 PT J 54095 AU Ma, H 54096 Kamiya, N 54097 TI Distance transformation for the numerical evaluation of near singular 54098 boundary integrals with various kernels in boundary element method 54099 SO ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS 54100 DT Article 54101 DE BEM; near singular boundary integral; integral kernel; order of near 54102 singularity; numerical solution; boundary layer effect 54103 ID PRINCIPAL VALUE INTEGRALS; ELASTICITY; EQUATIONS; FORMULATION 54104 AB The accurate numerical solution of near singular boundary integrals was 54105 an issue of major concern in most of the boundary element analysis next 54106 to the singular boundary integrals. The problem was solved in this 54107 paper by a kind of non-linear transformation, namely, the distance 54108 transformation for the accurate 'valuation of near singular boundary 54109 integrals with various kernels for both the two- and three- dimensional 54110 problems incorporated with the distance functions defined in the local 54111 intrinsic coordinate systems. It is considered that two effects play 54112 the role in the transformation. They are the damping out of the near 54113 singularity and the rational redistribution of integration points. The 54114 actual numerical computation can be performed by standard Gaussian 54115 quadrature formulae and can be easily included in the existing computer 54116 code, along with its insensitivity to the kind of the boundary 54117 elements. Numerical results of potential problem were presented, 54118 showing the effectiveness and the generality of the algorithm, which 54119 makes it possible, for the first time, to observe the behaviors of 54120 various boundary integral values with numerical means, when the source 54121 point is moving across the boundary with fine steps. (C) 2002 Elsevier 54122 Science Ltd. All rights reserved. 54123 C1 Shanghai Univ, Sch Sci, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200436, Peoples R China. 54124 Nagoya Univ, Sch Informat & Sci, Nagoya, Aichi 4648601, Japan. 54125 RP Ma, H, Shanghai Univ, Sch Sci, Shanghai Inst Appl Math & Mech, Dept 54126 Mech, Shanghai 200436, Peoples R China. 54127 CR ALIABADI MH, 1985, INT J NUMER METH ENG, V21, P2221 54128 ALIABADI MH, 2000, INT J NUMER METH ENG, V48, P995 54129 BREBBIA CA, 1984, BOUNDARY ELEMENT TEC 54130 CERROLAZA M, 1989, INT J NUMER METH ENG, V28, P987 54131 CHEN HB, 2001, ENG ANAL BOUND ELEM, V25, P851 54132 CRISTESCU M, 1978, RECENT ADV BOUNDARY, P375 54133 CRUSE TA, 1993, INT J NUMER METH ENG, V36, P237 54134 DIRGANTARA T, 2000, INT J FRACTURE, V105, P27 54135 DOBLARE M, 1997, INT J NUMER METH ENG, V40, P3325 54136 GRANADOS JJ, 2001, ENG ANAL BOUND ELEM, V25, P165 54137 GUIGGIANI M, 1987, INT J NUMER METH ENG, V24, P1711 54138 GUIGGIANI M, 1990, ASME, V57, P906 54139 GUIGGIANI M, 1992, ASME, V59, P604 54140 JOHNSTON PR, 1999, INT J NUMER METH ENG, V45, P1333 54141 KRISHNASAMY G, 1990, J APPL MECH-T ASME, V57, P404 54142 KRISHNASAMY G, 1994, INT J NUMER METH ENG, V37, P107 54143 LIU YJ, 1998, INT J NUMER METH ENG, V41, P541 54144 LIU YJ, 1999, COMPUT MECH, V24, P286 54145 LIU YJ, 2000, ENG ANAL BOUND ELEM, V24, P789 54146 MA H, 1999, ENG ANAL BOUND ELEM, V23, P281 54147 MA H, 2001, ENG ANAL BOUNDARY EL, V25, P843 54148 MUKHERJEE S, 1982, BOUNDARY ELEMENT MET 54149 MUKHERJEE S, 2000, INT J SOLIDS STRUCT, V37, P7633 54150 SLADEK V, 1993, INT J NUMER METH ENG, V36, P1609 54151 TANAKA M, 1991, BOUNDARY ELEMENT MET 54152 TELLES JCF, 1987, INT J NUMER METH ENG, V24, P959 54153 ZHANG D, 1999, COMPUT MECH, V23, P389 54154 ZHANG GH, 1990, P 3 JAP CHIN S BOUND, P73 54155 NR 28 54156 TC 4 54157 SN 0955-7997 54158 J9 ENG ANAL BOUND ELEM 54159 JI Eng. Anal. Bound. Elem. 54160 PD APR 54161 PY 2002 54162 VL 26 54163 IS 4 54164 BP 329 54165 EP 339 54166 PG 11 54167 SC Engineering, Multidisciplinary; Mathematics, Applied 54168 GA 542JT 54169 UT ISI:000175040300004 54170 ER 54171 54172 PT J 54173 AU Kang, LY 54174 Dang, CY 54175 Cai, MC 54176 Shan, EF 54177 TI Upper bounds for the k-subdomination number of graphs 54178 SO DISCRETE MATHEMATICS 54179 DT Article 54180 DE graph; tree; open and closed neighborhoods; k-subdomination number 54181 ID MAJORITY 54182 AB For a positive integer k, a k-subdominating function of G = (V, E) is a 54183 Function f : V --> (-1,1) such that the sum of the function values, 54184 taken over closed neighborhoods of vertices, is at least one for at 54185 least k vertices of G. The sum of the function values taken over all 54186 vertices is called the aggregate of f and the minimum aggregate among 54187 all k-subdominating functions of G is the k-subdomination number 54188 gamma(ks)(G). In this paper, we solve a conjecture proposed in (Ars. 54189 Combin 43 (1996) 235), which determines a sharp upper bound on 54190 gamma(ks)(G) for trees if k > \V\/2 and give an upper bound on 54191 gamma(ks) for connected graphs. (C) 2002 Elsevier Science B.V. All 54192 rights reserved. 54193 C1 Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China. 54194 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 54195 City Univ, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China. 54196 RP Cai, MC, Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China. 54197 CR BROERE I, 1995, DISCRETE MATH, V138, P125 54198 COCKAYNE EJ, 1996, ARS COMBINATORIA, V43, P235 54199 DUNBAR JE, 1995, GRAPH THEORY COMBINA, V1, P311 54200 HENNING MA, 1998, J GRAPH THEOR, V28, P49 54201 NR 4 54202 TC 2 54203 SN 0012-365X 54204 J9 DISCRETE MATH 54205 JI Discret. Math. 54206 PD MAR 28 54207 PY 2002 54208 VL 247 54209 IS 1-3 54210 BP 229 54211 EP 234 54212 PG 6 54213 SC Mathematics 54214 GA 540CT 54215 UT ISI:000174911400018 54216 ER 54217 54218 PT J 54219 AU Li, GH 54220 Zhou, SP 54221 Xu, DM 54222 TI Dynamical behaviour and its control in periodically driven semiconductor 54223 SO ACTA PHYSICA SINICA 54224 DT Article 54225 DE bifurcation; chaos; negative differential conductivity 54226 ID CURRENT-DENSITY FILAMENTS; CHAOTIC MOTIONS; FREQUENCY; DEVICE; GAAS 54227 AB A model for n-GaAs based on nonlinear carrier transport theory has been 54228 proposed. Complex bifurcations are studied as the excited field varies. 54229 Numerical simulation shows that the system exhibits periodicity, 54230 quasi-periodicity, and chaos, depending on the frequency and amplitude 54231 of the externally applied field, as expected. We also compute the 54232 quantities characterizing chaotic behaviours. An occasional pulse 54233 driving technique to control chaotic attactor to the desired periodic 54234 trajectory is illustrated. 54235 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China. 54236 Shanghai Univ, Sch Sci, Shanghai 200436, Peoples R China. 54237 RP Li, GH, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, 54238 Peoples R China. 54239 CR AOKI K, 1982, J PHYS SOC JPN, V51, P2373 54240 AOKI K, 1986, PHYS SCRI, V14, P76 54241 AOKI K, 1989, APPL PHYS A, V48, P111 54242 AOKI K, 1989, APPL PHYS A-SOLID, V48, P161 54243 KNAP W, 1988, SOLID STATE ELECTRON, V31, P813 54244 LI GH, 2000, ACTA PHYS SIN-CH ED, V49, P2123 54245 NIEDERNOSTHEIDE FJ, 1996, PHYS REV B, V54, P14012 54246 NIEDERNOSTHEIDE FJ, 1999, PHYS REV B, V59, P7663 54247 NR 8 54248 TC 2 54249 SN 1000-3290 54250 J9 ACTA PHYS SIN-CHINESE ED 54251 JI Acta Phys. Sin. 54252 PD APR 54253 PY 2002 54254 VL 51 54255 IS 4 54256 BP 736 54257 EP 741 54258 PG 6 54259 SC Physics, Multidisciplinary 54260 GA 540WA 54261 UT ISI:000174952500007 54262 ER 54263 54264 PT J 54265 AU Nho, YC 54266 Kwon, OH 54267 Jie, C 54268 TI Introduction of phosphoric acid group to polypropylene film by 54269 radiation grafting and its blood compatibility 54270 SO RADIATION PHYSICS AND CHEMISTRY 54271 DT Article 54272 DE radiation grafting; grafting; phosphoric acid; blood compatibility 54273 ID HEPARIN-IMMOBILIZED POLYURETHANES; POLYETHYLENE FILM; POLYMERIZATION; 54274 METHACRYLATE; PLASMA 54275 AB 2,3-epoxvpropyl methacrylate (EPMA) was grafted to polypropylene (PP) 54276 film by using a radiation grafting technique. The phosphoric acid group 54277 was introduced to the EPMA-grafted PP films with different grafting 54278 yields. The blood compatibility of the phosphoric acid group-introduced 54279 PP films was evaluated by the determination of platelet adsorption and 54280 thrombus formation. The EPMA grafting extent was found to be dependent 54281 on the absorbed dose, reaction time and temperature. The grafting and 54282 phosphonation reactions were confirmed by Fourier transform infrared 54283 spectroscopy in the attenuated total reflectance mode and electron 54284 spectroscopy for chemical analysis. The amount of thrombus and adherent 54285 platelet on modified PP film was evaluated by an in vitro method and 54286 scanning electron microscope, respectively. The phosphoric acid 54287 group-introduced PP film was found to have good blood compatibility, 54288 which increased with the content of the introduced phosphoric acid 54289 group. (C) 2002 Elsevier Science Ltd. All rights reserved. 54290 C1 Korea Atom Energy Res Inst, Radioisotope Radiat Applicat Team, Taejon 305600, South Korea. 54291 Hanyang Univ, Coll Engn, Dept Ind Chem, Seoul 133791, South Korea. 54292 Shanghai Univ, Dept Chem Engn & Technol, Shanghai 201800, Peoples R China. 54293 RP Nho, YC, Korea Atom Energy Res Inst, Radioisotope Radiat Applicat Team, 54294 POB 105, Taejon 305600, South Korea. 54295 CR BERGSTROM K, 1994, J BIOMAT SCI-POLYM E, V6, P123 54296 BRINKMAN E, 1990, BIOMATERIALS, V11, P200 54297 CHOWDHURY P, 1998, J APPL POLYM SCI, V70, P523 54298 HAN DK, 1989, J BIOMED MATER RES-A, V23, P211 54299 IMAI Y, 1972, J BIOMED MATER RES, V6, P165 54300 KANG IK, 1996, BIOMATERIALS, V17, P841 54301 KWON OH, 1999, J APPL POLYM SCI, V71, P631 54302 LEE YM, 1995, POLYMER, V36, P81 54303 NHO YC, 1992, J KOREAN IND ENG CHE, V3, P491 54304 NHO YC, 1992, J POLYM SCI POL CHEM, V30, P1219 54305 NHO YC, 1997, J APPL POLYM SCI, V63, P1101 54306 NHO YC, 1997, MACROMOL SCI PURE AP, V34, P831 54307 OKANO T, 1993, J BIOMED MATER RES, V27, P1519 54308 VULIC I, 1993, J MATER SCI-MATER M, V4, P448 54309 YUI N, 1988, BIOMATERIALS, V9, P225 54310 NR 15 54311 TC 3 54312 SN 0969-806X 54313 J9 RADIAT PHYS CHEM 54314 JI Radiat. Phys. Chem. 54315 PD APR 54316 PY 2002 54317 VL 64 54318 IS 1 54319 BP 67 54320 EP 75 54321 PG 9 54322 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear 54323 Science & Technology 54324 GA 539UE 54325 UT ISI:000174889000011 54326 ER 54327 54328 PT J 54329 AU He, CQ 54330 Wang, CK 54331 TI Allelopathic effect of Acorns tatarinowii upon algae 54332 SO JOURNAL OF ENVIRONMENTAL SCIENCES-CHINA 54333 DT Article 54334 DE Acorns tatarinowii; allelopathy; algae; wetlands 54335 ID SOIL 54336 AB Besides competing with algae for light and mineral nutrients (i.e. N, 54337 P, etc.), the root system of Acorns tatarinowii excretes some chemical 54338 substances, which injure and eliminate alga cells, to inhibit the 54339 growth of the algae. When the algae cells were treated in " A. 54340 tatarinowii water", some of the chlorophyll a were destroyed and the 54341 photosynthetic rate of algae decreased markedly and the ability of alga 54342 cells to deoxidize triphenyltetrazolium chloride (TTC) reduced greatly. 54343 Then alga cells turned from bright red to bluish green under 54344 fluorescence microscope. These showed that the allelopathic effects of 54345 A. tatarinowii on algae were obvious and planting A. tatarireowii can 54346 control some green algae. The experiment on the extractions of the 54347 secretions of the root system showed that the inhibitory effect had a 54348 concentration effect. If the concentration of the root secretion was 54349 below 30 mul/disc, the inhibitory rate was negative; if it was over 45 54350 mul/disc, the inhibitory rate was positive. This proved that the 54351 influence of the root secretion on the same acceptor was a kind of 54352 concentration effect. When the concentration of the root secretion was 54353 low, it promoted the growth of algae; when the concentration reached a 54354 definite threshold value, it restrained the growth of algae. In present 54355 case, the threshold value was between 30 mul/disc and 45 mul/disc. 54356 C1 Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China. 54357 Chinese Acad Sci, Changchun Inst Geog, Changchun 130021, Peoples R China. 54358 RP He, CQ, Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, 54359 Peoples R China. 54360 CR *AM PUBL HLTH ASS, 1985, ASS PHYT CHLOR NORM, P901 54361 BLUM U, 1988, SOIL BIOL BIOCHEM, V20, P793 54362 DALTON BR, 1983, J CHEM ECOL, V9, P1185 54363 GRIME JP, 1976, J ECOL, V64, P975 54364 HE CQ, 1999, CHINESE J ECOLOGY, V18 54365 INDERJIT DKM, 1995, BOT REV, V61, P32 54366 REDDY KR, 1983, ECON BOT, V37, P237 54367 RICE EL, 1984, ALLELOPATHY, P382 54368 ROBINSON RK, 1972, J ECOL, V60, P219 54369 STEPONKUS PL, 1967, PLANT PHYSIOL, V42, P1423 54370 SUN WH, 1989, ENV SCI J, V9, P188 54371 SUN WH, 1991, PLANT PHYSL COMMUNIC, V27, P433 54372 SUN WH, 1992, PLANT PHYSL COMMUNIC, V28, P81 54373 WYNNE B, 1987, STRUCTURE REPROD, P572 54374 YE JX, 1987, PLANT ECOLOGY GEOBOT, V11, P203 54375 YE JX, 1993, AWAKE 21 CENTURY EAR, P243 54376 YE JX, 1996, PLANT MAGAZINE, V30, P10 54377 ZHANG BC, 1981, ECOLOGY J, V1, P227 54378 NR 18 54379 TC 1 54380 SN 1001-0742 54381 J9 J ENVIRON SCI-CHINA 54382 JI J. Environ. Sci. 54383 PD OCT 54384 PY 2001 54385 VL 13 54386 IS 4 54387 BP 481 54388 EP 484 54389 PG 4 54390 SC Environmental Sciences 54391 GA 537VP 54392 UT ISI:000174780600018 54393 ER 54394 54395 PT J 54396 AU Li, BG 54397 Hua, TC 54398 Zhang, HD 54399 Wang, YF 54400 Wang, GX 54401 TI Cryopreservation and xenotransplantation studies of microencapsulated 54402 rat pancreatic islets 54403 SO CRYOLETTERS 54404 DT Article 54405 DE cryopreservation; microencapsulation; rat pancreatic islet; 54406 xenotransplantation 54407 AB Islets of Langerhans were isolated from the Sprague Dawley rat pancreas 54408 digested by injected collagenase, and purified by Ficoll density 54409 gradient centrifugation, In order to make smaller and more uniform 54410 micro encapsulated islets, we designed a special high-voltage 54411 electrostatic microcapsule generator. The effects of operational 54412 parameters of the generator on the size and the uniformity of 54413 microcapsules were analyzed, such as the voltage, the plunger speed of 54414 suspension delivery to the needle tip, the distance between needle tip 54415 and solution surface. The optimal parameter combinations for making 54416 microcapsules area 5kV of voltage, 50mm/h of the plunger speed, and 54417 20mm distance. The high-voltage electric system can produce uniform 54418 microcapsules with diameters ranging from 0.3similar to0.5mm, which are 54419 smaller and more uniform than those produced by air-jet system. A 54420 comparison of the cryopreservation effects between microencapsulated 54421 islets and unencapsulated islets showed that the microcapsules can 54422 protect the fragile islets from freezing damage, and increase the 54423 retrieval rate from 68.5% to 92.6%. Xenotransplantation of the 54424 cryopreserved rat islets resulted in the normalization of the metabolic 54425 blood glucose of the diabetic mice for 90 days, whereas the 54426 unencapsulated islets were easily fragmented and lost during the 54427 freezing process. They only reversed hyperglycemia for less than 3-5 54428 days. 54429 C1 Shanghai Univ Sci & Technol, Inst Cryobiol Engn, Shanghai 200093, Peoples R China. 54430 Shanghai First Peoples Hosp, Res Lab Diabetes, Shanghai 200080, Peoples R China. 54431 RP Li, BG, Shanghai Univ Sci & Technol, Inst Cryobiol Engn, 516 Jun Gong 54432 Rd, Shanghai 200093, Peoples R China. 54433 CR BARTH HG, 1984, MODERN METHODS PARTI 54434 CHEN RT, 1988, CRYOBIOLOGY, V25, P548 54435 CHICHEPORTICHE D, 1988, DIABETOLOGIA, V31, P54 54436 HU YF, 1990, CHIN J ORGAN TRANSPL, V11, P50 54437 JEAN PH, 1993, TRANSPLANTATION, V55, P350 54438 JUTTE PM, 1987, CRYOBIOLOGY, V24, P290 54439 LI BG, 2000, J SHANGHAI U SCI TEC, V22, P1 54440 LIM F, 1980, SCIENCE, V210, P908 54441 SOONSHIONG P, 1994, LANCET, V343, P950 54442 SUTTON R, 1986, TRANSPLANTATION, V42, P689 54443 ZHANG HD, 1991, CHIN J ORGAN TRANSPL, V12, P72 54444 ZHOU DB, 1997, TRANSPLANTATION, V64, P1112 54445 NR 12 54446 TC 1 54447 SN 0143-2044 54448 J9 CRYOLETTERS 54449 JI CryoLetters 54450 PD JAN-FEB 54451 PY 2002 54452 VL 23 54453 IS 1 54454 BP 47 54455 EP 54 54456 PG 8 54457 SC Biology; Physiology 54458 GA 538CQ 54459 UT ISI:000174796800007 54460 ER 54461 54462 PT J 54463 AU Sang, WB 54464 Qian, YB 54465 Min, JH 54466 Li, DM 54467 Wang, LL 54468 Shi, WM 54469 Liu, YF 54470 TI Microstructural and optical properties of ZnS : Cu nanocrystals 54471 prepared by an ion complex transformation method 54472 SO SOLID STATE COMMUNICATIONS 54473 DT Article 54474 DE Cu-doped ZnS; nanostructure; luminescence; nanofabrication 54475 ID PHOTOPHYSICAL PROPERTIES; CHITOSAN FILM; CLUSTERS; ELECTRON; CDS 54476 AB The typical morphologies of Cu-doped ZnS nanocrystals in a polyvinyl 54477 alcohol (PVA) film by an ion complex transformation method observed by 54478 transmission electron microscope show that the particles were rather 54479 evenly distributed throughout the PVA film, and the dimension was 54480 estimated to be about 5.7 nm in diameter. The crystallites of the ZnS 54481 have a finite bulk-like cubic structure identified by using the ED 54482 patterns of the sample. The Cu-doped ZnS UV absorption spectra are 54483 essentially similar to that of the undoped, but the luminescence 54484 properties are quite different from that of the undoped. The green 54485 emission band peaked at about 480 nm. is characteristic of copper doped 54486 ZnS nanocrystals, which could be attributed to a transition from the 54487 conduction band of ZnS to the 't(2)' level of Cu in ZnS band gap. The 54488 blue emission band peaked at about 430 nm is characteristic of the 54489 undoped quantum particles of ZnS for the same size and it might be 54490 caused by the presence of self-activated centers, like zinc vacancies. 54491 (C) 2002 Elsevier Science Ltd. All rights reserved. 54492 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 54493 Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R China. 54494 RP Sang, WB, Shanghai Univ, Sch Mat Sci & Engn, Jiading, Shanghai 201800, 54495 Peoples R China. 54496 CR BHARGAVA RN, 1994, PHYS REV LETT, V72, P416 54497 BRUS LE, 1984, J CHEM PHYS, V80, P4403 54498 COLVIN VL, 1994, NATURE, V370, P354 54499 EMPEDOCLES SA, 1997, SCIENCE, V278, P2114 54500 HUANG JM, 1997, APPL PHYS LETT, V70, P2335 54501 KHOSRAVI AA, 1995, APPL PHYS LETT, V67, P2702 54502 PEKA P, 1994, PHYSICA B, V193, P57 54503 SANG WB, 1996, ADV MATER OPT ELECTR, V6, P197 54504 SANG WB, 1996, J PHYS-CONDENS MAT, V8, L499 54505 SHIONOYA S, 1966, LUMINESCENCE INORGAN, P229 54506 SOOKLAL K, 1996, J PHYS CHEM-US, V100, P4551 54507 WANG MW, 2000, SOLID STATE COMMUN, V115, P493 54508 WANG Y, 1991, J PHYS CHEM-US, V95, P525 54509 XU SJ, 1998, APPL PHYS LETT, V73, P473 54510 YANG P, 2001, CHEM PHYS LETT, V336, P76 54511 NR 15 54512 TC 9 54513 SN 0038-1098 54514 J9 SOLID STATE COMMUN 54515 JI Solid State Commun. 54516 PY 2002 54517 VL 121 54518 IS 9-10 54519 BP 475 54520 EP 478 54521 PG 4 54522 SC Physics, Condensed Matter 54523 GA 537HQ 54524 UT ISI:000174753200005 54525 ER 54526 54527 PT J 54528 AU Zhang, JF 54529 TI Exotic localized coherent structures of the (2+1)-dimensional 54530 dispersive long-wave equation 54531 SO COMMUNICATIONS IN THEORETICAL PHYSICS 54532 DT Article 54533 DE extended homogeneous balance method; coherent soliton structures; 54534 dispersive long-wave equation; the (2+1)-dimensions 54535 ID NONLINEAR SCHRODINGER-EQUATION; 2 SPACE DIMENSIONS; NOVIKOV-VESELOV 54536 EQUATION; DROMION-LIKE STRUCTURES; KDV-TYPE EQUATION; SOLITONS; PLASMA 54537 AB This article is concerned with the extended homogeneous balance method 54538 for studying the abundant localized solution structures in the 54539 (2+1)-dimensional dispersive long-wave equations U-ty + eta(xx) + 54540 (u(2))(xy)/2 = 0, eta(t) + (ueta + u + u(xy))x = 0. Starting from the 54541 homogeneous balance method, we find that the richness of the localized 54542 coherent structures of the model is caused by the entrance of two 54543 variable-separated arbitrary functions. For some special selections of 54544 the arbitrary functions, it is shown that the localized structures of 54545 the model may be dromions, lumps, breathers, instantons and ring 54546 solitons. 54547 C1 Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China. 54548 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 54549 RP Zhang, JF, Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, 54550 Peoples R China. 54551 CR BOITI M, 1986, INVERSE PROBL, V2, P271 54552 BOITI M, 1988, PHYS LETT A, V132, P432 54553 DAS GC, 1997, PHYS PLASMAS, V4, P2095 54554 FOKAS AS, 1990, PHYSICA D, V44, P99 54555 GEDALIN M, 1997, PHYS REV LETT, V78, P448 54556 HAUS HA, 1996, REV MOD PHYS, V68, P423 54557 HIETARINTA J, 1990, PHYS LETT A, V145, P237 54558 HU XB, 1996, J PHYS A-MATH GEN, V29, P4589 54559 LOU S, 1993, PHYS LETT A, V176, P96 54560 LOU SY, 1994, J PHYS A, V27, P3225 54561 LOU SY, 1995, J PHYS A-MATH GEN, V28, P7227 54562 LOU SY, 1995, MATH METHOD APPL SCI, V18, P789 54563 LOU SY, 1996, COMMUN THEOR PHYS, V26, P487 54564 LOU SY, 1996, J PHYS A-MATH GEN, V29, P5989 54565 LOU SY, 2000, COMMUN THEOR PHYS, V33, P7 54566 LOU SY, 2000, PHYS LETT A, V277, P94 54567 LOU SY, 2001, J PHYS A-MATH GEN, V34, P305 54568 LOUSTENKO I, 1997, PHYS REV LETT, V78, P3011 54569 PAQUIN G, 1990, PHYSICA D, V46, P122 54570 RADHA R, 1994, J MATH PHYS, V35, P4746 54571 RADHA R, 1995, PHYS LETT A, V197, P7 54572 RADHA R, 1997, CHAOS SOLITON FRACT, V8, P17 54573 RADHA R, 1997, J MATH PHYS, V38, P292 54574 RADHA R, 1997, J PHYS A-MATH GEN, V30, P3229 54575 RADHA R, 1999, CHAOS SOLITON FRACT, V10, P1821 54576 RUAN HY, 1997, J MATH PHYS, V38, P3123 54577 RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P586 54578 TAJIRI M, 1997, PHYS REV E B, V55, P3351 54579 WANG ML, 1995, PHYS LETT A, V199, P169 54580 ZHANG JF, 1999, CHINESE PHYS LETT, V16, P659 54581 ZHANG JF, 1999, COMMUN THEOR PHYS, V33, P577 54582 NR 31 54583 TC 18 54584 SN 0253-6102 54585 J9 COMMUN THEOR PHYS 54586 JI Commun. Theor. Phys. 54587 PD MAR 15 54588 PY 2002 54589 VL 37 54590 IS 3 54591 BP 277 54592 EP 282 54593 PG 6 54594 SC Physics, Multidisciplinary 54595 GA 535XM 54596 UT ISI:000174671700004 54597 ER 54598 54599 PT J 54600 AU Cheng, XY 54601 Wan, XJ 54602 Wu, QY 54603 Sun, XK 54604 TI Diffusion of hydrogen along the grain boundaries in Ni3Al alloys 54605 SO INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY 54606 DT Article 54607 DE hydrogen diffusivity; N1(3)A1 alloys; ultrahigh vacuum gaseous; 54608 permeation technique 54609 ID ENVIRONMENTAL EMBRITTLEMENT; NICKEL; TRANSPORT 54610 AB The diffusivity of hydrogen in two Nl(3)Al alloys has been measured in 54611 the temperature range 100degreesC to 420degreesC using an ultrahigh 54612 vacuum gaseous permeation technique. The diffusivity data fall into two 54613 segments, in which the hydrogen diffusivity adheres to the Arrhenius 54614 form, respectively. It is suggested that hydrogen transportation takes 54615 place along the grain boundaries at lower temperature and in the 54616 lattice at higher temperature. The intergranular fracture of L1(2)-type 54617 intermetallics induced by hydrogen at relatively low temperature 54618 results from hydrogen transportation along the grain boundaries, not in 54619 the lattice. 54620 C1 Shanghai Univ, Inst Mat Res, Shanghai 200072, Peoples R China. 54621 Chinese Acad Sci, Inst Met Res, State Key Lab RSA, Shenyang 110015, Peoples R China. 54622 CR CHENG XY, 1998, SCRIPTA MATER, V38, P959 54623 FUKUSHIMA H, 1984, ACTA METALL, V32, P851 54624 GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37 54625 HARRIS TM, 1991, METALL TRANS A, V22, P351 54626 HUANG JH, 1996, DIFFUSION METALS ALL 54627 KIRMURA A, 1988, ACTA METALL, V36, P757 54628 LADNA B, 1987, ACTA METALL, V35, P1775 54629 PALUMBO G, 1991, SCRIPTA METALL MATER, V25, P679 54630 TAKAGI C, 1993, DNA LINK, V3, P3 54631 TSURU T, 1982, SCRIPTA METALL, V16, P575 54632 WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473 54633 XU J, 1993, ACTA METALL MATER, V41, P1455 54634 NR 12 54635 TC 0 54636 SN 0268-1900 54637 J9 INT J MATER PROD TECHNOL 54638 JI Int. J. Mater. Prod. Technol. 54639 PY 2001 54640 SU Suppl. 2 54641 BP 841 54642 EP 846 54643 PG 6 54644 SC Materials Science, Multidisciplinary 54645 GA 534UG 54646 UT ISI:000174604900067 54647 ER 54648 54649 PT J 54650 AU Li, BF 54651 Liu, J 54652 TI Detail feature recognition and decomposition in solid model 54653 SO COMPUTER-AIDED DESIGN 54654 DT Article 54655 DE detail removal; detail feature decomposition; feature 54656 recognition/feature suppression; analysis automation; CAE 54657 ID ELEMENT 54658 AB A methodology for abstracting features from a 3D solid model based on a 54659 new detail-level metric method is proposed. Filleting the whole 54660 boundary of an object with constant fillet radius has the effect of 54661 low-pass filtering. Taking advantage of the effect, detail-level of 54662 boundary entities can be rated. This paper investigates an approach to 54663 fillet polyhedral model and then develops a simple way to detect 54664 detailed boundary elements. Taking detailed entities as the indicators, 54665 detail features are recognized and extracted. In the detailed entities 54666 detection and decomposition cycle of the corresponding detail features, 54667 detail features are decomposed from the model one by one in terms of 54668 their locality. Detail feature decomposition directly results in 54669 geometric simplification of a 3D object. The method proposed in this 54670 paper can be applied in efficient modeling for CAE from CAD models. (C) 54671 2002 Elsevier Science Ltd. All rights reserved. 54672 C1 Shanghai Univ, Sch Mech Engn, Shanghai 200072, Peoples R China. 54673 RP Li, BF, Shanghai Univ, Sch Mech Engn, 18 Postal Box,149 Yanchang Rd, 54674 Shanghai 200072, Peoples R China. 54675 CR ARBSHAHI S, 1992, FINITE ELEMENT ANAL, V9, P271 54676 ARMSTRONG CG, 1994, COMPUT AIDED DESIGN, V26, P573 54677 CAGAN J, 1987, ENG COMPUT, V2, P199 54678 CHUANG SH, 1990, COMPUT AIDED DESIGN, V22, P377 54679 DONG J, 1997, COMPUT AIDED DESIGN, V29, P263 54680 DONG J, 1997, COMPUT AIDED DESIGN, V29, P427 54681 GAYANKAR P, 1990, COMPUT AIDED DESIGN, V22, P442 54682 GREGORY BL, 1987, ENG COMPUT, V2, P65 54683 INOUE K, 1999, 8 INT MESH ROUNDT SA, P281 54684 JOSHI S, 1988, COMPUT AIDED DESIGN, V20, P58 54685 KIM YS, 1992, COMPUT AIDED DESIGN, V24, P461 54686 KYPRIANOU L, 1980, THESIS U CAMBRIDGE 54687 LEE YG, 1997, ADV ENG SOFTW, V28, P593 54688 LEE YG, 1998, COMPUT AIDED DESIGN, V30, P677 54689 LO KH, 1988, COMPUT AIDED DESIGN, V20, P27 54690 MAYER EA, 1996, CURR OPIN GASTROEN, V12, P3 54691 MOHSEN R, 1998, COMPUT AIDED DESIGN, V28, P905 54692 SHEFFER A, 1997, TRENS UNSTRUCTURED, V220, P57 54693 VANDENBRANDE JH, 1993, IEEE T PATTERN ANAL, V15, P1269 54694 NR 19 54695 TC 4 54696 SN 0010-4485 54697 J9 COMPUT AID DES 54698 JI Comput.-Aided Des. 54699 PD APR 15 54700 PY 2002 54701 VL 34 54702 IS 5 54703 BP 405 54704 EP 414 54705 PG 10 54706 SC Computer Science, Software Engineering 54707 GA 533NV 54708 UT ISI:000174537400006 54709 ER 54710 54711 PT J 54712 AU Zhu, ZY 54713 Li, GG 54714 Cheng, CJ 54715 TI Quasi-static and dynamical analysis for viscoelastic Timoshenko beam 54716 with fractional derivative constitutive relation 54717 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 54718 DT Article 54719 DE viscoelastic Timoshenko beam; fractional derivative constitutive 54720 relation; weakly singular Volterra integro-differential equation; 54721 dynamical response 54722 ID BEHAVIOR 54723 AB The equations of motion governing the quasi-static and dynamical 54724 behavior of a viscoelastic Timoshenko beam are derived. The 54725 viscoelastic material is assumed to obey a three-dimensional fractional 54726 derivative constitutive relation. ne quasi-static behavior of the 54727 viscoelastic Timoshenko beam under step loading is analyzed and the 54728 analytical solution is obtained. The influence of material parameters 54729 on the deflection is investigated. The dynamical response of the 54730 viscoelastic Timoshenko beam subjected to a periodic excitation is 54731 studied by means of mode shape functions. And the effect of both 54732 transverse shear and rotational inertia on the vibration of the beam is 54733 discussed. 54734 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 54735 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 54736 Shanghai Supercomp Ctr, Shanghai 201203, Peoples R China. 54737 Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China. 54738 RP Zhu, ZY, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 54739 200072, Peoples R China. 54740 CR AKOZ Y, 1999, INT J NUMER METH ENG, V44, P1909 54741 ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151 54742 BAGLEY RL, 1986, J RHEOL, V30, P133 54743 CHEN LQ, 2000, APPL MATH MECH-ENGL, V21, P995 54744 GEMANT A, 1938, PHILOS MAG, V25, P92 54745 KOELLER RC, 1984, J APPL MECH, V51, P294 54746 LIU YZ, 1998, MECH VIBRATIONS 54747 LUO ZD, 1994, MECH ANISITROPIC MAT 54748 ROSSIKHIN YA, 1997, APPL MECH REV, V50, P15 54749 SAMKO SG, 1993, FRACTIONAL INTEGRALS 54750 SPINELLI RA, 1966, SIAM J NUMER ANAL, V3, P636 54751 NR 11 54752 TC 2 54753 SN 0253-4827 54754 J9 APPL MATH MECH-ENGL ED 54755 JI Appl. Math. Mech.-Engl. Ed. 54756 PD JAN 54757 PY 2002 54758 VL 23 54759 IS 1 54760 BP 1 54761 EP 12 54762 PG 12 54763 SC Mathematics, Applied; Mechanics 54764 GA 534QJ 54765 UT ISI:000174597500001 54766 ER 54767 54768 PT J 54769 AU Yin, RH 54770 Fang, ZH 54771 Zhang, L 54772 Xu, HB 54773 TI Effect of Cl- on the transition current density of Zn during the 54774 electrodeposition Zn-Co, Zn-Fe alloys 54775 SO ACTA CHIMICA SINICA 54776 DT Article 54777 DE Zn-Co; Zn-Fe alloys; transition current density; anomalous co-deposition 54778 AB For co-deposition of Zn-Co or Zn-Fe alloys in chloride baths it was 54779 found that the transition current density of Zn varied with the 54780 deposition process from normal co-deposition to anomalous 54781 co-deposition. The value of the transition current density increases 54782 with the increasing of Cl- concentration. However, when Cl- 54783 concentration exceeds 4 mol(.)dm(-3), the co-deposition process becomes 54784 normal type and the transition current density of Zn disappears. It can 54785 he attributed to the existence of Cl-, which decreases the evolution 54786 overpotential of Co and Fe metal, especially for Fe metal. 54787 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 54788 RP Yin, RH, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 54789 CR ATSUYOSHI S, 1980, J IRON STEEL I JPN, V66, P771 54790 FUKUSHIMA H, 1983, T JPN I MET, V24, P125 54791 LI HW, 1998, PLAT PROT, V101, P16 54792 MITSUHIRO Y, 1990, J SURF FINISH SOC JP, V41, P312 54793 TU ZM, 1994, PLAT SURF FINISH, V16, P3 54794 YIN RH, 2001, ELECTROCHEMISTRY, V7, P85 54795 YOJI I, 1978, ELECTROCHEM JPN, V46, P202 54796 NR 7 54797 TC 0 54798 SN 0567-7351 54799 J9 ACTA CHIM SIN 54800 JI Acta Chim. Sin. 54801 PD MAR 54802 PY 2002 54803 VL 60 54804 IS 3 54805 BP 404 54806 EP 407 54807 PG 4 54808 SC Chemistry, Multidisciplinary 54809 GA 533UW 54810 UT ISI:000174549600005 54811 ER 54812 54813 PT J 54814 AU Zhang, WH 54815 Chen, Q 54816 Liu, YL 54817 TI Relationship between H+-ATPase activity and fluidity of tonoplast in 54818 barley roots under NaCl stress 54819 SO ACTA BOTANICA SINICA 54820 DT Article 54821 DE salt stress; H+-ATPase; membrane fluidity; fatty acid composition; 54822 barley 54823 ID SALT STRESS; LIPID-COMPOSITION; TOLERANCE; VESICLES; ACID; ARABIDOPSIS; 54824 TRANSPORT 54825 AB H+-ATPase activity of tonoplast in roots of Hordeum vulgare L. cv. 54826 "Tanyin 2" (salt-tolerant cultivar) increased when the roots were 54827 exposed to 50 - 200 mmol/L NaCl for 2 d, and decreased when NaCl 54828 concentration was increased to 600 mmol/L. In "Kepin 7" (salt-sensitive 54829 cultivar), tonoplast H+-ATPase activity in roots also increased at 54830 lower levels of NaCl (50 - 100 mmol/L), but decreased at higher levels 54831 of NaCl (200 - 600 mmol/L). Tonoplast fluidity in roots of "Tanyin 2" 54832 decreased at 50 - 200 mmol/L NaCl, and increased significantly at 600 54833 mmol/L NaCl. Under salt stress, the change of tonoplast fluidity was 54834 identical with that of the ratio of unsaturated fatty acids to 54835 saturated fatty acids in tonoplast lipid of barley roots. It is 54836 proposed that the increase of tonoplast fluidity due to increased 54837 degree of unsaturation of fatty acids is one of the reasons leading to 54838 the decrease of H+-ATPase activity under higher level of NaCl stress. 54839 C1 Nanjing Agr Univ, Coll Agr, Nanjing 210095, Peoples R China. 54840 Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China. 54841 RP Zhang, WH, Nanjing Agr Univ, Coll Agr, Nanjing 210095, Peoples R China. 54842 CR APSE MP, 1999, SCIENCE, V285, P1256 54843 BALLESTEROS E, 1996, PHYSIOL PLANTARUM, V97, P259 54844 BARKLA BJ, 1996, ANNU REV PLANT PHYS, V47, P159 54845 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248 54846 BROWN DJ, 1989, PHYSIOL PLANTARUM, V90, P956 54847 DIAO FQ, 1997, ACTA PHYTOPHYSIOL SI, V23, P105 54848 DIETZ KJ, 1996, BBA-BIOMEMBRANES, V1281, P134 54849 GONG HM, 1999, ACTA BOT SIN, V41, P414 54850 HUANG YG, 1996, MEMBRANE LIPID PROTE, P1 54851 LIU YL, 1998, PLANT PHYSL MOL BIOL, P752 54852 LU ZX, 1993, ACTA PHYTOPHYSIOL SI, V19, P325 54853 MANSOUR MMF, 1994, PHYSIOL PLANTARUM, V92, P473 54854 NARASIMHAN ML, 1991, PLANT PHYSIOL, V97, P562 54855 NIU X, 1995, PLANT PHYSIOL, V109, P715 54856 OHNISHI T, 1975, ANAL BIOCHEM, V69, P261 54857 REIDIBOYMTALLEUX L, 1999, PHYSIOL PLANTARUM, V105, P513 54858 SHI HZ, 2000, P NATL ACAD SCI USA, V97, P6896 54859 SU WA, 1983, CHINESE SCI BULL, V28, P373 54860 WU JL, 1998, PHYSIOL PLANTARUM, V102, P307 54861 YANG FY, 1983, CHINESE SCI BULL, V28, P370 54862 ZHANG WH, 1993, ACTA BOT SIN, V35, P435 54863 ZHANG WH, 1998, J PLANT NUTR, V21, P447 54864 NR 22 54865 TC 2 54866 SN 0577-7496 54867 J9 ACTA BOT SIN 54868 JI Acta Bot. Sin. 54869 PD MAR 54870 PY 2002 54871 VL 44 54872 IS 3 54873 BP 292 54874 EP 296 54875 PG 5 54876 SC Biochemistry & Molecular Biology; Plant Sciences 54877 GA 534YM 54878 UT ISI:000174617400007 54879 ER 54880 54881 PT J 54882 AU Chen, DY 54883 TI k-constraint for the modified Kadomtsev-Petviashvili system 54884 SO JOURNAL OF MATHEMATICAL PHYSICS 54885 DT Article 54886 AB By imposing constraint (L-k)(-)=qpartial derivative(-1)rpartial 54887 derivative on the pseudo-differential operator L-k, the k constrained 54888 modified Kadomtsev-Petviashvili (KP) hierarchy and their corresponding 54889 Lax pair are obtained from the linear problem and its adjoint of the 54890 modified KP system. Especially, the modified KdV system, the GNS system 54891 with derivative coupling, the Burgers system, and a new 3x3 integrable 54892 system are presented as examples. (C) 2002 American Institute of 54893 Physics. 54894 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 54895 RP Chen, DY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 54896 CR CHEN HH, 1979, PHYS SCR, V20, P490 54897 CHENG Y, 1992, J MATH PHYS, V33, P3774 54898 CHENG Y, 1992, J PHYS A, V25, P419 54899 DATE E, 1983, NONLINEAR INTEGRABLE, P39 54900 DICKEY LA, 1991, ADV SERIES MATH PHYS, V12 54901 KAUP DJ, 1978, J MATH PHYS, V19, P798 54902 KONOPELCHENKO BG, 1984, PHYS LETT A, V102, P15 54903 KONOPELCHENKO BG, 1992, NONLINEAR EVOLUTION, P87 54904 OHTA Y, 1988, PROG THEOR PHYS SUPP, V94, P210 54905 NR 9 54906 TC 1 54907 SN 0022-2488 54908 J9 J MATH PHYS-NY 54909 JI J. Math. Phys. 54910 PD APR 54911 PY 2002 54912 VL 43 54913 IS 4 54914 BP 1956 54915 EP 1965 54916 PG 10 54917 SC Physics, Mathematical 54918 GA 532KQ 54919 UT ISI:000174474300013 54920 ER 54921 54922 PT J 54923 AU Zhou, SF 54924 TI Attractors for second order lattice dynamical systems 54925 SO JOURNAL OF DIFFERENTIAL EQUATIONS 54926 DT Article 54927 ID WAVE-EQUATIONS; GLOBAL ATTRACTOR 54928 AB We consider the existence and the approximation of the global attractor 54929 for second order damped lattice dynamical systems. (C) 2002 Elsevier 54930 Science (USA). 54931 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 54932 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 54933 CR AFRAIMOVICH VS, 1997, PHYSICA D, V103, P442 54934 BATES PW, 1999, ATTRACTORS LATTICE D 54935 FEIREISL E, 1995, J DIFFER EQUATIONS, V116, P431 54936 FEIREISL E, 1997, J DYNAM DIFFERENTIAL, V9, P133 54937 GHIDAGLIA JM, 1987, J MATH PURE APPL, V66, P273 54938 HALE JK, 1988, ASYMPTOTIC BEHAV DIS 54939 KARACHALIOS NI, 1999, J DIFFER EQUATIONS, V157, P183 54940 TEMAM R, 1988, APPL MATH SCI, V68 54941 ZHOU SF, 1999, P AM MATH SOC, V127, P3623 54942 NR 9 54943 TC 8 54944 SN 0022-0396 54945 J9 J DIFFERENTIAL EQUATIONS 54946 JI J. Differ. Equ. 54947 PD MAR 1 54948 PY 2002 54949 VL 179 54950 IS 2 54951 BP 605 54952 EP 624 54953 PG 20 54954 SC Mathematics 54955 GA 530GR 54956 UT ISI:000174350400008 54957 ER 54958 54959 PT J 54960 AU Liu, WB 54961 Ma, HP 54962 Tang, T 54963 TI On mixed error estimates for elliptic obstacle problems 54964 SO ADVANCES IN COMPUTATIONAL MATHEMATICS 54965 DT Article 54966 DE finite element approximation; elliptic obstacle; sharp a posteriori 54967 error estimates 54968 ID EQUATIONS 54969 AB We establish in this paper sharp error estimates of residual type for 54970 finite element approximation to elliptic obstacle problems. The 54971 estimates are of mixed nature, which are neither of a pure a priori 54972 form nor of a pure a posteriori form but instead they are combined by 54973 an a priori part and an a posteriori part. The key ingredient in our 54974 derivation for the mixed error estimates is the use of a new 54975 interpolator which enables us to eliminate inactive data from the error 54976 estimators. One application of our mixed error estimates is to 54977 construct a posteriori error indicators reliable and efficient up to 54978 higher order terms, and these indicators are useful in mesh-refinements 54979 and adaptive grid generations. In particular, by approximating the a 54980 priori part with some a posteriori quantities we can successfully track 54981 the free boundary for elliptic obstacle problems. 54982 C1 Xiang Tan Univ, Dept Math, Hunan Prov, Peoples R China. 54983 Univ Kent, CBS, Canterbury CT2 7NF, Kent, England. 54984 Univ Kent, Inst Math & Stat, Canterbury CT2 7NF, Kent, England. 54985 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 54986 Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China. 54987 CR AINSWORTH M, 1993, NUMER MATH, V65, P23 54988 AINSWORTH M, 1997, COMPUT METHOD APPL M, V142, P1 54989 BARANGER J, 1991, RAIRO-MATH MODEL NUM, V25, P31 54990 BREZIS H, 1972, J MATH PURE APPL, V51, P1 54991 CHEN ZM, 2000, NUMER MATH, V84, P527 54992 CIARLET PG, 1978, FINITE ELEMENT METHO 54993 DURAN R, 1991, NUMER MATH, V59, P107 54994 DUVAUT G, 1973, INEQUALITIES MECH PH 54995 ELLIOTT CM, 1982, RES NOTES MATH, V59 54996 FRENCH DA, UNPUB POINTWISE POST 54997 FRIEDMAN A, 1982, VARIATIONAL PRINCIPL 54998 GLOWINSKI R, 1972, NUMERICAL ANAL VARIA 54999 KINDERLEHRER D, 1980, INTRO VARIATIONAL IN 55000 KORNHUBER R, 1996, COMPUT MATH APPL, V31, P49 55001 KUFNER A, 1977, FUNCTION SPACES 55002 LI R, 2001, J COMPUT PHYS, V170, P562 55003 LI R, 2001, UNPUB MOVING MESH ME 55004 LIU WB, 2000, J SCI COMPUT, V35, P361 55005 VERFURTH R, 1989, NUMER MATH, V55, P309 55006 VERFURTH R, 1994, MATH COMPUT, V62, P445 55007 ZIENKIEWICZ OC, 1987, INT J NUMER METH ENG, V24, P337 55008 NR 21 55009 TC 2 55010 SN 1019-7168 55011 J9 ADV COMPUT MATH 55012 JI Adv. Comput. Math. 55013 PY 2001 55014 VL 15 55015 IS 1-4 55016 BP 261 55017 EP 283 55018 PG 23 55019 SC Mathematics, Applied 55020 GA 531AJ 55021 UT ISI:000174392100011 55022 ER 55023 55024 PT J 55025 AU Xue, Y 55026 Dong, LY 55027 Yuan, YW 55028 Dai, SQ 55029 TI Numerical simulation on traffic flow with the consideration of relative 55030 velocity 55031 SO ACTA PHYSICA SINICA 55032 DT Article 55033 DE traffic flow; optimal velocity model; jamming phase; relative velocity 55034 ID AUTOMATON MODEL; CONGESTION; SOLITON 55035 AB The optimal velocity model of traffic is extended by taking into 55036 account the relative velocity. We derive the stability condition and 55037 stimulate the evolution of traffic flow with a small perturbation. We 55038 have found that the relative velocity can stabilize traffic flow and 55039 decrease the number of jamming phases. 55040 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 55041 Guangxi Univ, Dept Phys, Nanning 530004, Peoples R China. 55042 RP Xue, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 55043 Peoples R China. 55044 CR BANDO M, 1995, PHYS REV E, V51, P1035 55045 BIHAM O, 1992, PHYS REV A, V46, P6124 55046 CHANDLER RE, 1958, OPER RES, V6, P165 55047 CHOWDHURY D, 2000, PHYS REP, V329, P199 55048 HELBING D, 2001, TRANSPORT RES B-METH, V35, P183 55049 KOMATSU TS, 1995, PHYS REV E B, V52, P5574 55050 LU XY, 2001, ACTA PHYS SIN-CH ED, V50, P1255 55051 MURAMATSU M, 1999, PHYS REV E, V60, P180 55052 NAGEL K, 1992, J PHYS I, V2, P2221 55053 NEWELL GF, 1961, OPER RES, V9, P209 55054 PIPES LA, 1953, J APPL PHYS, V24, P274 55055 TREIBER M, 2000, PHYS REV E A, V62, P1805 55056 WANG BH, 2000, ACTA PHYS SIN-CH ED, V49, P1926 55057 XUE Y, 2001, ACTA PHYS SIN-CH ED, V50, P445 55058 NR 14 55059 TC 6 55060 SN 1000-3290 55061 J9 ACTA PHYS SIN-CHINESE ED 55062 JI Acta Phys. Sin. 55063 PD MAR 55064 PY 2002 55065 VL 51 55066 IS 3 55067 BP 492 55068 EP 496 55069 PG 5 55070 SC Physics, Multidisciplinary 55071 GA 531DD 55072 UT ISI:000174400000007 55073 ER 55074 55075 PT J 55076 AU Chen, YY 55077 Wang, Q 55078 Shi, JL 55079 Wei, Q 55080 TI Characteristics of self-trapping of partially coherent beam 55081 SO ACTA PHYSICA SINICA 55082 DT Article 55083 DE spatial soliton; partially coherent beam; coherence radius 55084 ID NONLINEAR MEDIA; SOLITONS; LIGHT 55085 AB Using the mutually coherent function, we study the self-trapping of 55086 circlar partially coherent beam. The initial condition of the beam and 55087 the nonlinearity of the media decide the propagation properties of the 55088 beam. The spatial variation period of the beam is obtained. And we find 55089 that the transverse coherence property of the partially coherent beam 55090 evolves periodically with the distance. Our analysis can also be 55091 etended to the elliptical partially coherent beam. 55092 C1 Shanghai Univ, Dept Phys, Sch Sci, Shanghai 200436, Peoples R China. 55093 RP Chen, YY, Shanghai Univ, Dept Phys, Sch Sci, Shanghai 200436, Peoples R 55094 China. 55095 CR CHRISTODOULIDES DN, 1997, PHYS REV LETT, V78, P646 55096 CHRISTODOULIDES DN, 1998, PHYS REV LETT, V80, P2310 55097 KROLIKOWSKI W, 2000, PHYS REV E, V61, P3122 55098 LIU J, 1998, ACTA PHYS SINICA, V47, P1509 55099 LIU SM, 1992, PHOTOREFRACTIVE NONL 55100 LU KQ, 1999, ACTA PHYS SIN-CH ED, V48, P2070 55101 MANDEL L, 1995, OPTICAL COHERENCE QU, CH4 55102 MITCHELL M, 1996, PHYS REV LETT, V77, P490 55103 MITCHELL M, 1997, NATURE, V387, P880 55104 PERINA J, 1986, COHERENCE LIGHT, CH2 55105 SNYDER AW, 1998, PHYS REV LETT, V80, P1422 55106 NR 11 55107 TC 3 55108 SN 1000-3290 55109 J9 ACTA PHYS SIN-CHINESE ED 55110 JI Acta Phys. Sin. 55111 PD MAR 55112 PY 2002 55113 VL 51 55114 IS 3 55115 BP 559 55116 EP 564 55117 PG 6 55118 SC Physics, Multidisciplinary 55119 GA 531DD 55120 UT ISI:000174400000020 55121 ER 55122 55123 PT J 55124 AU Zheng, YG 55125 Liu, ZR 55126 Liu, YR 55127 TI Travelling wave solutions for sine-Gordon prototypes 55128 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION 55129 DT Article 55130 ID NETWORKS; BREATHERS; EXISTENCE; MAP 55131 AB By using finite difference discretization for the sine-Gordon equation, 55132 we obtain the sine-Gordon prototypes. For these prototypes, the 55133 existence of discrete periodic travelling wave solutions and discrete 55134 solitons are proved by the anti-integrable limit method. 55135 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 55136 Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China. 55137 RP Zheng, YG, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 55138 CR ABEL M, 1998, PHYSICA D, V119, P22 55139 AUBRY S, 1990, PHYSICA D, V43, P199 55140 AUBRY S, 1997, PHYSICA D, V103, P201 55141 BAESENS C, 1997, NONLINEARITY, V10, P931 55142 CROSS MC, 1993, REV MOD PHYS, V65, P851 55143 MACKAY RS, 1994, NONLINEARITY, V7, P1623 55144 MACKAY RS, 1995, PHYSICA D, V82, P243 55145 ZEIDLER E, 1986, NONLINEAR FUNCTIONAL 55146 NR 8 55147 TC 0 55148 SN 1565-1339 55149 J9 INT J NONLINEAR SCI NUMER SIM 55150 JI Int. J. Nonlinear Sci. Numer. Simul. 55151 PY 2001 55152 VL 2 55153 IS 1 55154 BP 73 55155 EP 77 55156 PG 5 55157 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics, 55158 Mathematical; Mechanics 55159 GA 529EP 55160 UT ISI:000174287300006 55161 ER 55162 55163 PT J 55164 AU He, JH 55165 TI A remark on Lagrange multiplier method (I) 55166 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION 55167 DT Article 55168 DE Lagrange multiplier; paradox; semi-inverse method 55169 AB In this paper, the author point out that the identification of Lagrange 55170 multipliers might lead to Lagrange crisis ( some a constraint can be 55171 eliminated by the method). They must be treated as independent 55172 variables throughout the calculation. If the identified multipliers are 55173 submitted to the Lagrangian, the removed constraints might have to be 55174 further applied, otherwise wrong results might be obtained. 55175 C1 Shanghai Univ, Shanghai 200072, Peoples R China. 55176 Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 55177 RP He, JH, Shanghai Univ, Shanghai 200072, Peoples R China. 55178 CR HE JH, 1997, INT J TURBO JET ENG, V14, P23 55179 HE JH, 1997, J SHANGHAI U, V1, P117 55180 HE JH, 2000, ASME, V67, P326 55181 HE JH, 2000, INT J NONLINEAR SCI, V1, P133 55182 HE JH, 2000, INT J NONLINEAR SCI, V1, P139 55183 HE JH, 2001, INT J ENG SCI, V39, P323 55184 LAGRANGE JL, 1788, MECANIQUE ANAL 55185 NR 7 55186 TC 3 55187 SN 1565-1339 55188 J9 INT J NONLINEAR SCI NUMER SIM 55189 JI Int. J. Nonlinear Sci. Numer. Simul. 55190 PY 2001 55191 VL 2 55192 IS 2 55193 BP 161 55194 EP 164 55195 PG 4 55196 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics, 55197 Mathematical; Mechanics 55198 GA 529ET 55199 UT ISI:000174287600009 55200 ER 55201 55202 PT J 55203 AU Qin, ZQ 55204 TI Applied mathematics and mechanics in China 55205 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION 55206 DT Article 55207 AB In this paper, the well-known journal APPLIED MATHEMATICS AND MECHANICS 55208 in China is introduced, the authorship of the journal is systematically 55209 studied. The statistic data shows that 30% old authorship keep the 55210 mainstream of the journal, while 70% new authorship reveals the bloom 55211 of development of the field of applied mathematics and mechanics in 55212 China. 55213 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 55214 RP Qin, ZQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 55215 200072, Peoples R China. 55216 CR 1996, APPL MATH MECH 55217 CHIEN WZ, 1983, APPL MATH MECH, V4, P143 55218 HE JH, 2000, APPL MATH MECH-ENGL, V21, P797 55219 NR 3 55220 TC 0 55221 SN 1565-1339 55222 J9 INT J NONLINEAR SCI NUMER SIM 55223 JI Int. J. Nonlinear Sci. Numer. Simul. 55224 PY 2001 55225 VL 2 55226 IS 2 55227 BP 169 55228 EP 171 55229 PG 3 55230 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics, 55231 Mathematical; Mechanics 55232 GA 529ET 55233 UT ISI:000174287600012 55234 ER 55235 55236 PT J 55237 AU He, JH 55238 TI Bookkeeping parameter in perturbation methods 55239 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION 55240 DT Article 55241 DE perturbation method; nonlinear equation; Thomas-Fermi equation 55242 ID NONLINEAR PROBLEMS 55243 AB In case of no possible small parameter in an equation, we can expand 55244 the solution in a series of an artificial parameter(Nayfeh 1981). The 55245 artificial parameter is a bookkeeping or crutching device and set equal 55246 to unity after the "perturbation solution" is obtained, In order to 55247 avoid the secular terms arising in straightforward expansion, the 55248 coefficients in the equation are also expanded into series of the 55249 artificial parameter. Some examples are given hereby, and the results 55250 show that the obtained approximate solutions are uniformly valid on the 55251 whole solution domain. 55252 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 55253 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 55254 Peoples R China. 55255 CR ANDRIANOV I, 2000, INT J NONLINEAR SCI, V1, P327 55256 BENDER CM, 1989, J MATH PHYS, V30, P1447 55257 HAGEDORN P, 1981, NONLINEAR OSCILLATIO 55258 HE JH, IN PRESS INT J NONLI 55259 HE JH, 1999, COMMUNICATIONS NONLI, V4, P81 55260 HE JH, 1999, INT J NONLINEAR MECH, V34, P699 55261 HE JH, 2000, INT J NONLINEAR MECH, V35, P37 55262 HE JH, 2000, INT J NONLINEAR SCI, V1, P51 55263 HE JH, 2000, J SOUND VIB, V229, P1257 55264 LAURENZI BJ, 1990, J MATH PHYS, V30, P2535 55265 LIU GL, 1997, NAT C 7 MOD MATH MEC, P47 55266 NAYFEH AH, 1985, INTRO PERTURBATION 55267 NR 12 55268 TC 9 55269 SN 1565-1339 55270 J9 INT J NONLINEAR SCI NUMER SIM 55271 JI Int. J. Nonlinear Sci. Numer. Simul. 55272 PY 2001 55273 VL 2 55274 IS 3 55275 BP 257 55276 EP 264 55277 PG 8 55278 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics, 55279 Mathematical; Mechanics 55280 GA 529EV 55281 UT ISI:000174287800003 55282 ER 55283 55284 PT J 55285 AU Jiang, JB 55286 Wang, LB 55287 Lu, ZM 55288 TI A new model for turbulent energy dissipation 55289 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION 55290 DT Article 55291 DE Turbulent Energy dissipation; Direct Interaction Approximation 55292 ID SHEAR FLOWS; DIFFUSION 55293 AB It is very difficult to model the turbulent energy dissipation epsilon. 55294 The known models in open literature are unsatisfactory and need to be 55295 farther improved. In this paper, using the 55296 Single-Green-Function-Two-ScaleDirect-Interaction approximation, we 55297 obtain a new model, whose coefficients are close to those of 55298 Yoshizawa's and those of the standard k-epsilon model. We also find 55299 that the coefficient for the destruction term is an independent number, 55300 which agrees with Rubinstein's result, The present paper provides a 55301 sound theoretical basis for modeling the turbulent energy dissipation. 55302 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 55303 RP Jiang, JB, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 55304 200072, Peoples R China. 55305 CR HAMBA F, 1997, PHYS FLUIDS, V9, P79 55306 KRAICHNAN R, 1961, HSN3 NEW YORK U I MA, P435 55307 RUBINSTEIN R, 1996, PHYS FLUIDS, V8, P3172 55308 SHIMOMURA Y, 1998, PHYS FLUIDS, V10, P2636 55309 YOSHIZAWA A, 1984, J PHYS SOC JPN, V53, P1264 55310 YOSHIZAWA A, 1984, PHYS FLUIDS, V27, P1337 55311 YOSHIZAWA A, 1988, J FLUID MECH, V195, P541 55312 NR 7 55313 TC 1 55314 SN 1565-1339 55315 J9 INT J NONLINEAR SCI NUMER SIM 55316 JI Int. J. Nonlinear Sci. Numer. Simul. 55317 PY 2001 55318 VL 2 55319 IS 3 55320 BP 277 55321 EP 282 55322 PG 6 55323 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics, 55324 Mathematical; Mechanics 55325 GA 529EV 55326 UT ISI:000174287800005 55327 ER 55328 55329 PT J 55330 AU Huang, LJ 55331 Liang, RJ 55332 Zhang, NH 55333 TI An aero-viscoelastic model for nonlinear cylindrical shells in 55334 supersonic flow 55335 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION 55336 DT Editorial Material 55337 DE structural function; viscoelasticity; cylindrical shell; supersonic flow 55338 AB Based on the Karman-Donnell's hypotheses of thin shells and the 55339 Boltzmann superposition principles in viscoelasticity, an 55340 aero-viscoelastic model for nonlinear cylindrical shells in supersonic 55341 flow is set up by means of Laplace transform and the so-called 55342 structural function. The aerodynamic load is obtained from the 55343 quasi-steady first-order piston theory. 55344 C1 Shanghai Univ, Dept Mech, Minist Educ, Key Lab Solid Mech, Shanghai 200436, Peoples R China. 55345 Gansu Univ Technol, Dept Basic Sci, Lanzhou 730050, Peoples R China. 55346 RP Zhang, NH, Shanghai Univ, Dept Mech, Minist Educ, Key Lab Solid Mech, 55347 Shanghai 200436, Peoples R China. 55348 CR KHOLODAV DB, 2000, INT J NONLINEAR SCI, V1, P153 55349 MEI C, 1999, APPL MECH REV, V52, P321 55350 NR 2 55351 TC 2 55352 SN 1565-1339 55353 J9 INT J NONLINEAR SCI NUMER SIM 55354 JI Int. J. Nonlinear Sci. Numer. Simul. 55355 PY 2001 55356 VL 2 55357 IS 3 55358 BP 303 55359 EP 304 55360 PG 2 55361 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics, 55362 Mathematical; Mechanics 55363 GA 529EV 55364 UT ISI:000174287800010 55365 ER 55366 55367 PT J 55368 AU He, JH 55369 TI Variational theory for linear magneto-electro-elasticity 55370 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION 55371 DT Article 55372 DE piezoelectricity; magneto-electro-elastic medium; smart (or 55373 intelligent) material; variational theory; semi-inverse method; 55374 trial-functional 55375 ID SEMI-INVERSE METHOD; MIXED-FLOW TURBOMACHINERY; COMPRESSIBLE S2-FLOW; 55376 FLUID-MECHANICS; HYBRID PROBLEMS; UNKNOWN SHAPE; PRINCIPLES; 55377 AERODYNAMICS; VARIABLES; EMPHASIS 55378 AB To describe the physical behavior of a magneto-electro-elastic medium, 55379 the fundamental equations, including equilibrium equations, 55380 strain-displacement relations, and constitutive relations, and all 55381 boundary conditions are expressed as stationary condition (Euler 55382 equations and natural conditions) of a generalized variational 55383 principle, which is obtained by the semi-inverse method proposed by He. 55384 The principle is deduced from an energy-like trial functional with a 55385 certain unknown function, which can be identified step by step. A 55386 family of various variational principles for the discussed problem is 55387 also obtained for differential applications. Present theory provides a 55388 quite straightforward tool to the search for various variational 55389 principles for physical problems. This paper aims at providing a more 55390 complete theoretical basis for the finite element applications, 55391 meshfree particle methods, and other direct variational methods such as 55392 Ritz's, Trefftz's and Kantorovitch's methods. 55393 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 55394 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 55395 Peoples R China. 55396 CR ALTAY GA, 1996, INT J ENG SCI, V34, P769 55397 BERLINCOURT DA, 1964, PHYS ACOUST A, V1, P169 55398 CHANDRASEKHARAI.DS, 1988, ACTA MECH, V71, P39 55399 CHIEN WZ, 1983, APPL MATH MECH, V4, P137 55400 HE JH, 1997, INT J TURBO JET ENG, V14, P17 55401 HE JH, 1997, INT J TURBO JET ENG, V14, P23 55402 HE JH, 1997, J SHANGHAI U, V1, P117 55403 HE JH, 1997, SHANGHAI J MECH, V18, P305 55404 HE JH, 1998, INT J TURBO JET ENG, V15, P101 55405 HE JH, 1998, INT J TURBO JET ENG, V15, P95 55406 HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154 55407 HE JH, 1999, INT J TURBO JET ENG, V16, P19 55408 HE JH, 1999, J U SHANGHAI SCI TEC, V21, P127 55409 HE JH, 1999, J U SHANGHAI SCI TEC, V21, P29 55410 HE JH, 1999, J U SHANGHAI SCI TEC, V21, P356 55411 HE JH, 2000, AIRCR ENG AEROSP TEC, V72, P18 55412 HE JH, 2000, APPL MATH MECH-ENGL, V21, P797 55413 HE JH, 2000, ASME, V67, P326 55414 HE JH, 2000, FACTA U SERIES MECH, V12, P1253 55415 HE JH, 2000, INT J ENG SCI, V39, P323 55416 HE JH, 2000, INT J NONLINEAR SCI, V1, P133 55417 HE JH, 2000, MECH RES COMMUN, V27, P445 55418 HE JH, 2001, ACTA MECH, V149, P247 55419 HE JH, 2001, APPL MATH MECH-ENGL, V22, P989 55420 HE JH, 2001, ASME J APPL MECH, V68, P666 55421 HE JH, 2001, INT J NONLINEAR SCI, V2, P161 55422 LIU GL, 1990, 1 INT S EXP COMP AER, P128 55423 LIU GL, 1990, J ENG THERMOPHYSICS, V11, P136 55424 LIU GL, 1995, 6 AS C FLUID MECH MA, P745 55425 LIU GL, 2000, ACTA MECH, V140, P73 55426 LIU GL, 2000, INT J NONLINEAR SCI, V1, P25 55427 MAUGIN GA, 1984, MECH BEHAV ELECTROMA 55428 MAUGIN GA, 1991, CONTINUUM MECH ELECT 55429 PAN E, 2001, ASME, V68, P608 55430 SANTILLI RM, 1978, FDN THEORETICAL MECH, V1 55431 ZHOU SA, 1986, INT J SOLIDS STRUCT, V22, P1411 55432 NR 36 55433 TC 28 55434 SN 1565-1339 55435 J9 INT J NONLINEAR SCI NUMER SIM 55436 JI Int. J. Nonlinear Sci. Numer. Simul. 55437 PY 2001 55438 VL 2 55439 IS 4 55440 BP 309 55441 EP 316 55442 PG 8 55443 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics, 55444 Mathematical; Mechanics 55445 GA 529EX 55446 UT ISI:000174288000001 55447 ER 55448 55449 PT J 55450 AU He, JH 55451 TI Modified Lindsted-Poincare methods for some strongly nonlinear 55452 oscillations Part III: Double series expansion 55453 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION 55454 DT Article 55455 DE perturbation method; nonlinear equation; Duffing equation; 55456 Lindstedt-Poincare method 55457 AB In this paper, we propose a new perturbation technique for strongly 55458 nonlinear oscillations with two parameters, which need not to be small 55459 in the present study. In this new method, the solution is expanded into 55460 double series of the two parameters. In order to avoid the secular 55461 terms, a constant in the equation is also expressed in a double series 55462 expansion. The present technique can be widely applied to nonlinear 55463 systems with multitude nonlinear terms. The preliminary study shows 55464 that the obtained approximate solutions are uniformly valid on the 55465 whole solution domain, and they are suitable not only for weakly 55466 nonlinear systems, but also for strongly nonlinear systems. 55467 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 55468 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 55469 Peoples R China. 55470 CR AZIZ A, 1984, PERTURBATION METHODS 55471 HAGEDORN P, 1981, NONLINEAR OSCILLATIO 55472 HE JH, 1998, U SHANGHAI SCI TECHN, V20, P325 55473 HE JH, 2000, INT J NONLINEAR SCI, V1, P51 55474 HE JH, 2001, INT J NONLINEAR MECH, V37, P309 55475 HE JH, 2001, INT J NONLINEAR MECH, V37, P315 55476 HE JH, 2001, INT J NONLINEAR SCI, V2, P203 55477 HE JH, 2001, J VIB CONTROL, V7, P631 55478 NAYFEH AH, 1985, INTRO PERTURBATION T 55479 NR 9 55480 TC 25 55481 SN 1565-1339 55482 J9 INT J NONLINEAR SCI NUMER SIM 55483 JI Int. J. Nonlinear Sci. Numer. Simul. 55484 PY 2001 55485 VL 2 55486 IS 4 55487 BP 317 55488 EP 320 55489 PG 4 55490 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics, 55491 Mathematical; Mechanics 55492 GA 529EX 55493 UT ISI:000174288000002 55494 ER 55495 55496 PT J 55497 AU Shen, JQ 55498 Riebel, U 55499 TI Extinction by a large spherical particle located in a narrow Gaussian 55500 beam 55501 SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION 55502 DT Article 55503 ID FORWARDSCATTERING CORRECTIONS; AEROSOL MEDIA; SUSPENSIONS; 55504 TRANSMISSION; FLUCTUATIONS; SCATTERING; DILUTE 55505 AB In most extinction measurements, the laser beam is expanded and the 55506 particles are small enough so that the incident beam can be considered 55507 as a plane wave. With regard to particle size analysis by optical 55508 extinction counters or transmission fluctuation spectrometry, however, 55509 we are interested in the opposite situation, i.e. particle diameters 55510 which are larger than the beam diameter. This paper presents 55511 experimental results on the extinction by an absorbent or transparent 55512 spherical particle passing through a Gaussian beam. 55513 The experiments show that the extinction is sensitive to the particle 55514 location, especially when the particle is very near to the beam waist 55515 and the ratio of the beam to the particle diameter is close to or less 55516 than 1. 55517 C1 Brandenburg Tech Univ Cottbus, Lehrstuhl Mech Verfahrenstech, D-03013 Cottbus, Germany. 55518 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China. 55519 RP Shen, JQ, Brandenburg Tech Univ Cottbus, Lehrstuhl Mech Verfahrenstech, 55520 D-03013 Cottbus, Germany. 55521 CR BREITENSTEIN M, 1999, PART PART SYST CHAR, V16, P249 55522 BREITENSTEIN M, 2000, THESIS COTTBUS 55523 DEEPAK A, 1978, APPL OPTICS, V17, P2900 55524 DEEPAK A, 1978, APPL OPTICS, V17, P3169 55525 DOPHEIDE D, 1990, 5 INT S APPL LAS TEC, P1 55526 GOUESBET G, 1988, J OPT SOC AM A, V5, P1427 55527 GREGORY J, 1985, J COLLOID INTERF SCI, V105, P357 55528 HODGES JT, 1995, APPL OPTICS, V34, P2120 55529 KRAUTER U, 1995, THESIS KARLRUHE 55530 RIEBEL U, 1991, PART PART SYST CHAR, V8, P95 55531 RIEBEL U, 1993, PART PART SYST CHAR, V10, P201 55532 NR 11 55533 TC 1 55534 SN 0934-0866 55535 J9 PART PART SYST CHARACT 55536 JI Part. Part. Syst. Charact. 55537 PD FEB 55538 PY 2002 55539 VL 18 55540 IS 5-6 55541 BP 254 55542 EP 261 55543 PG 8 55544 SC Engineering, Chemical; Materials Science, Characterization & Testing 55545 GA 526PR 55546 UT ISI:000174139300005 55547 ER 55548 55549 PT J 55550 AU Gu, CQ 55551 Zhu, GQ 55552 TI Bivariate Lagrange-type vector valued rational interpolants 55553 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 55554 DT Article 55555 DE bivariate vector value; rational interpolation; determinantal formula 55556 AB An axiomatic definition to bivariate vector valued rational 55557 interpolation on distinct plane interpolation points is at first 55558 presented in this paper. A two-variable vector valued rational 55559 interpolation formula is explicitly constructed in the following form: 55560 the determinantal formulas for denominator scalar polynomials and for 55561 numerator vector polynomials, which possess Lagrange-type basic 55562 function expressions. A practical criterion of existence and uniqueness 55563 for interpolation is obtained. In contrast to the underlying method, 55564 the method of bivariate Thiele-type vector valued rational 55565 interpolation is reviewed. 55566 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 55567 Hefei Polytech Univ, Dept Math, Hefei 230009, Peoples R China. 55568 CR BREZINSKI C, 1974, LINEAR ALGEBRA APPL, V8, P77 55569 GRAVESMORRIS PR, 1983, NUMER MATH, V42, P331 55570 GRAVESMORRIS PR, 1986, CONSTR APPROX, V2, P263 55571 GU CQ, 1997, J COMPUT APPL MATH, V8, P71 55572 GU CQ, 1997, J COMPUT APPL MATH, V84, P137 55573 GU CQ, 1997, MATH NUMER SINICA, V19, P19 55574 MCCLEOD JB, 1971, COMPUTING, V7, P17 55575 SIEMASZKO W, 1983, J COMPUT APPL MATH, V9, P137 55576 WYNN P, 1963, ARCH RATION MECH AN, V12, P273 55577 ZHU GQ, 1990, MATH NUM SIN, V12, P293 55578 ZHU GQ, 1993, CHINESE J NUMER MATH, V15, P1 55579 NR 11 55580 TC 0 55581 SN 0254-9409 55582 J9 J COMPUT MATH 55583 JI J. Comput. Math. 55584 PD MAR 55585 PY 2002 55586 VL 20 55587 IS 2 55588 BP 207 55589 EP 216 55590 PG 10 55591 SC Mathematics, Applied; Mathematics 55592 GA 527QN 55593 UT ISI:000174198000009 55594 ER 55595 55596 PT J 55597 AU Liu, YF 55598 Chen, L 55599 Su, B 55600 Huang, AM 55601 Hua, JD 55602 Sang, WB 55603 Min, JH 55604 Meng, ZY 55605 TI Synthesis and characterization of CdS nanocrystals embedded on solid 55606 electrolyte films 55607 SO JOURNAL OF APPLIED POLYMER SCIENCE 55608 DT Article 55609 DE polyethylene oxide; nanocomposites; metal-polymer complexes; conducting 55610 polymers 55611 ID CLUSTERS 55612 AB In this article nano-sized CdS crystal embedded in a PEO matrix was 55613 successfully prepared by a complex transformation method that is 55614 universal for preparing nanosized compounds containing transition 55615 metals. The size of embedded CdS particles was in the nanoscale from 2 55616 to 10 nm determined by X-ray diffusion. The nanosized CdS displayed the 55617 expected blue shift of the onset absorbance in the UV spectrum. The 55618 amount of blue shift depends upon the dipping time of the PEO-cadmium 55619 complex film in a sodium sulfide solution as well as its concentration. 55620 The most effective means for adjusting the size of CdS nanocrystals is 55621 to change the ratio of the oxygen along with the PEO chain to the 55622 cadmium ion in the complex film. The alkali salt in the film would 55623 contribute to the conductivity of the composite film. (C) 2002 Wiley 55624 Periodicals, Inc. 55625 C1 Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R China. 55626 Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800, Peoples R China. 55627 RP Liu, YF, Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R 55628 China. 55629 CR DEAN JA, 1973, LANGES HDB CHEM 55630 HUANG JM, 1996, POLYM BULL, V36, P337 55631 LI H, 1994, PRACTICAL ANAL XRAY 55632 LIU Y, 1998, POLYM B, P11 55633 LIU YF, 1997, CHIN L LUMIN, V18, P248 55634 MIN J, 2001, 2 NAT S PHYS OPT EL 55635 NAKUTA N, 1985, J PHYS CHEM-US, V89, P48 55636 PENG X, 1999, CHIN J RARE METALS, V23, P321 55637 SANG W, 1990, ADV MATER OPT ELECTR, V6, P197 55638 SANG WB, 1996, J PHYS-CONDENS MAT, V8, L499 55639 WANG Y, 1990, J CHEM PHYS, V92, P6927 55640 WOGGON U, 1997, OPTICAL PROPERTIES S 55641 YANG Y, 1996, APPL PHYS LETT, V69, P377 55642 NR 13 55643 TC 5 55644 SN 0021-8995 55645 J9 J APPL POLYM SCI 55646 JI J. Appl. Polym. Sci. 55647 PD MAY 9 55648 PY 2002 55649 VL 84 55650 IS 6 55651 BP 1263 55652 EP 1268 55653 PG 6 55654 SC Polymer Science 55655 GA 526ZX 55656 UT ISI:000174160500018 55657 ER 55658 55659 PT J 55660 AU Hu, HP 55661 Mo, YL 55662 TI Method of wavelet threshold denoising based on Bayesian estimation 55663 SO JOURNAL OF INFRARED AND MILLIMETER WAVES 55664 DT Article 55665 DE wavelet transform; Donoho wavelet threshold; Wiener filtering; Bayesian 55666 estimation 55667 ID CROSS-VALIDATION; SHRINKAGE 55668 AB A new image denoising method of wavelet shrinkage threshold based on 55669 Bayesian estimation was proposed. The coefficients of wavelet transform 55670 of image were estimated by minimizing Bayes risk in the proposed 55671 method. The estimation is not only related to the orientation and the 55672 level of the subband, but also to the wavelet coefficients. The 55673 experimental results show that the denoising effect of the proposed 55674 method is better than that of other methods based on wavelet shrinkage. 55675 Although the denoising effect of this method is worse than one of 55676 Wiener filters at low peak-signal-noise ratio, it is better than Wiener 55677 filters at high peak-signal-noise ratio. 55678 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China. 55679 RP Hu, HP, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, 55680 Peoples R China. 55681 CR ABRAMOVICH F, 1998, J ROY STAT SOC B 4, V60, P725 55682 CHANG SG, 2000, IEEE T IMAGE PROCESS, V9, P1532 55683 DONOHO DL, 1994, BIOMETRIKA, V81, P425 55684 DONOHO DL, 1995, J AM STAT ASSOC, V90, P1200 55685 NASON GP, 1996, J ROY STAT SOC B MET, V58, P463 55686 OGDEN RT, 1994, THESIS TEXAS A M U 55687 VIDAKOVIC B, 1998, J AM STAT ASSOC, V93, P173 55688 WEYRICH N, 1998, IEEE T IMAGE PROCESS, V7, P82 55689 NR 8 55690 TC 0 55691 SN 1001-9014 55692 J9 J INFRARED MILIM WAVES 55693 JI J. Infrared Millim. Waves 55694 PD FEB 55695 PY 2002 55696 VL 21 55697 IS 1 55698 BP 74 55699 EP 76 55700 PG 3 55701 SC Optics 55702 GA 526AG 55703 UT ISI:000174105800018 55704 ER 55705 55706 PT J 55707 AU Wei, JH 55708 Wang, M 55709 Yu, NW 55710 TI Mass transfer characteristics between molten steel and particles in 55711 RH-PTB refining 55712 SO IRONMAKING & STEELMAKING 55713 DT Article 55714 AB The mass transfer characteristics between powder particles and liquid 55715 steel in RH-PTB (powder top blowing) refining have been investigated on 55716 a 5 scale water model of a 90 t RH degasser. Sodium chloride powder of 55717 analytical purity has been used as the flux for blowing, and the mass 55718 transfer coefficient of solute (NaCl) in the liquid has been determined 55719 under the conditions of the RH-PTB process. The influence of the main 55720 technological and structural parameters on the mass transfer rate has 55721 been examined. The results have shown that, under the conditions of the 55722 present work, the mass transfer coefficient in the liquid increases 55723 with increasing lifting gas flowrate, with increasing inner diameter of 55724 the upsnorkel, with increasing circulation rate of the liquid, and with 55725 increasing particle size of powdered flux. On the other hand, mass 55726 transfer in the liquid decreases with an increase in the inner diameter 55727 of the downsnorkel. Its value is in the range (1.36-7.30) x 10(-4) m 55728 s(-1). The following dimensionless relationships, correspondingly, have 55729 been obtained for the mass transfer coefficient in the range: 55730 Sh = 2 + 0.073Re(s)(0.777) Sc-1/3 55731 Sh = 2 + 0.073(epsilon(1s)D(p)(4)/v(t)(3))(0.259) Sc-1/3 55732 When the mass transfer is treated as that between rigid bubbles and 55733 molten steel, it may be characterised by 55734 Sh = 2 + 0.026((ResSc0.339)-Sc-0.48(g(1/3)d(p)/D-p(2/3))(0.072)](1.455). 55735 C1 Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China. 55736 Baoshan Steel Grp Corp, Shanghai 201900, Peoples R China. 55737 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China. 55738 CR ASAI S, 1983, P INT INJ MET SCANIN 55739 BENNETT CO, 1974, MOMENTRUM HEAT MASS, P788 55740 DAVIES JY, 1972, TURBULENCE PHENOMENA, P148 55741 EBIHARA A, 1992, CAMP ISIJ, V5, P1237 55742 ENDOH K, 1989, SADA TETSU TOGISATA, P20 55743 ENDOH K, 1990, NIPP STEEL TECH REP, P45 55744 GEIGER GH, 1973, TRANSPORT PHENOMENA, P115 55745 HALL RJ, 1990, ISS STEELM C P, P69 55746 HATAKEYAMA T, 1989, IRON STEELMAKER, V15, P23 55747 HUGHMARK GA, 1967, IND ENG CHEM PROC DD, V6, P218 55748 KAORU S, 1988, T ISIJ, V28, P297 55749 LAMPPLE CE, 1950, CHEM ENG HDB, P1018 55750 MAYA K, 1992, CAMP ISIJ, V5, P276 55751 MYRAYAMA N, 1990, P 6 INT IR STEEL C N, V3, P151 55752 OKADA Y, 1992, CAMP ISIJ, V5, P1238 55753 OKADA Y, 1994, TETSU TO HAGANE, V80, T9 55754 OKANO H, 1997, ISS STEELM C P 55755 SANO Y, 1974, J CHEM ENG JAPAN, V7, P255 55756 SZEKELY J, 1979, FLUID FLOW PHENOMENA, P261 55757 UEHARAL H, 1992, CAMP ISIJ, V5, P1240 55758 WANG Z, 1979, CHEM ENG DICT, P612 55759 WEAST RC, 1979, HDB CHEM PHYSICS, F58 55760 YAO Y, HDB PHYSICAL CHEM, P407 55761 YU N, 1998, J NE U NATURAL SCI, V19, P118 55762 ZHANG Z, 1988, FUNDAMENTALS POWDER, P52 55763 NR 25 55764 TC 0 55765 SN 0301-9233 55766 J9 IRONMAKING STEELMAKING 55767 JI Ironmak. Steelmak. 55768 PY 2001 55769 VL 28 55770 IS 6 55771 BP 455 55772 EP 464 55773 PG 10 55774 SC Metallurgy & Metallurgical Engineering 55775 GA 526BW 55776 UT ISI:000174109400004 55777 ER 55778 55779 PT J 55780 AU Shen, DZ 55781 Kang, Q 55782 Zhang, XL 55783 Li, WP 55784 Liu, ZC 55785 TI An electrode-separated piezoelectric sensor as a surface monitoring 55786 technique for anionic surfactant adsorption on quartz surface 55787 SO MIKROCHIMICA ACTA 55788 DT Article 55789 DE surfactant; adsorption; quartz; piezoelectric; surfactant 55790 ID SELF-ASSEMBLED MONOLAYERS; CRYSTAL MICROBALANCE; NEUTRON REFLECTIVITY; 55791 NONIONIC SURFACTANTS; BEHAVIOR; SILICON; INTERFACE; LAYER; GOLD 55792 AB In the configuration of an electrode-separated piezoelectric sensor 55793 (ESPS), the quartz crystal surface is in a direct contact with the 55794 liquid phase. With the pre-adsorption of Ca2+ as the ionic bridge, 55795 anionic surfactant can adsorb on the negatively charged quartz surface 55796 (pH > 2.0). The adsorption process of sodium dodecyl benzene sulfonate 55797 (SDBS) was monitored in real time with the ESPS method. It was shown 55798 that the adsorption of SDBS on quartz surface by Ca2+ inducement was 55799 reversible with respective to the dilution of solution phase. The 55800 adsorption behavior can be analyzed using Langmuir model. The 55801 adsorption and desorption rate constants were estimated to be k(a)= 55802 (108.4 +/- 6.4) mol(-1)Ls(-1) and k(d) = (2.57 +/- 0.32) x 10(-3) 55803 s(-1), respectively. The observed adsorption densities in the ESPS 55804 method were significantly greater than the true ones. The influence on 55805 surface roughness of the quartz disc on adsorption densities should be 55806 corrected by adding a calibration coefficient in the Sauerbrey 55807 equation. The saturation adsorption density is 0.223 mug/cm(2) for SDBS 55808 on quartz surface. Double layer occurs for the adsorption of SDBS on 55809 quartz surface. 55810 C1 Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China. 55811 Shanghai Univ Sci & Technol, Dept Chem Engn, Jinan 250031, Peoples R China. 55812 RP Shen, DZ, Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R 55813 China. 55814 CR BALLANTINE DS, 1997, ACOUSTIC WAVE SENSOR 55815 BUTTRY DA, 1992, CHEM REV, V92, P1355 55816 CARUSO F, 1995, LANGMUIR, V11, P1546 55817 CHERNYSHOVA IV, 2000, LANGMUIR, V16, P8071 55818 DOBIAS B, 1993, COAGULATION FLOCCULA 55819 FRAGNETO G, 1996, J COLLOID INTERF SCI, V178, P531 55820 FRAGNETO G, 1996, LANGMUIR, V12, P477 55821 FUERSTENAU DW, 1956, J PHYS CHEM-US, V60, P981 55822 HARWIGSSON I, 1996, J COLLOID INTERF SCI, V183, P380 55823 KRAUSE C, 1996, LANGMUIR, V12, P6059 55824 MANNE S, 1994, LANGMUIR, V10, P4409 55825 MEADER AL, 1953, J COLL SCI, V8, P170 55826 NAGASHIMA K, 1999, J COLLOID INTERF SCI, V214, P8 55827 NOMURA T, 1991, ANAL CHIM ACTA, V243, P273 55828 OKAHATA Y, 1991, ANAL CHEM, V63, P203 55829 PENFOLD J, 2000, LANGMUIR, V16, P8879 55830 SAUERBREY G, 1959, Z PHYS, V155, P206 55831 SHARMA R, 1995, SURFACTANT ADSORPTIO 55832 SHEN DZ, 1997, J ELECTROANAL CHEM, V428, P105 55833 SHEN DZ, 1998, FRESEN J ANAL CHEM, V361, P424 55834 SHEN DZ, 1998, MICROCHEM J, V60, P1 55835 SHEN DZ, 1998, MIKROCHIM ACTA, V128, P229 55836 TAHANI A, 1999, J COLLOID INTERF SCI, V216, P242 55837 THIBAUT A, 2000, LANGMUIR, V16, P9192 55838 TIBERG F, 1994, LANGMUIR, V10, P2294 55839 YAO SZ, 1997, PIEZOELECTRIC CHEM B 55840 YEZEK L, 2000, J COLLOID INTERF SCI, V225, P227 55841 NR 27 55842 TC 2 55843 SN 0026-3672 55844 J9 MIKROCHIM ACTA 55845 JI Mikrochim. Acta 55846 PY 2002 55847 VL 138 55848 IS 1-2 55849 BP 89 55850 EP 93 55851 PG 5 55852 SC Chemistry, Analytical 55853 GA 523CR 55854 UT ISI:000173934700015 55855 ER 55856 55857 PT J 55858 AU Chen, DY 55859 Zhang, DJ 55860 Deng, SF 55861 TI The novel multi-soliton solutions of the MKdV-Sine Gordon equations 55862 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN 55863 DT Article 55864 DE MKdV-Sine Gordon equation; Hirota method; novel multi-soliton solution 55865 ID COLLISIONS 55866 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 55867 RP Chen, DY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 55868 CR CHEN DY, 2000, NOVEL MULTISOLITON S 55869 CHEN DY, 2001, SOLITON SOLUTIONS WR 55870 GU CH, 1986, LETT MATH PHYS, V11, P31 55871 HIROTA R, 1971, PHYS REV LETT, V27, P1192 55872 HIROTA R, 1972, J PHYS SOC JPN, V33, P1459 55873 HIROTA R, 1973, J MATH PHYS, V14, P805 55874 KONNO K, 1974, J PHYS SOC JPN, V37, P171 55875 NR 7 55876 TC 17 55877 SN 0031-9015 55878 J9 J PHYS SOC JPN 55879 JI J. Phys. Soc. Jpn. 55880 PD FEB 55881 PY 2002 55882 VL 71 55883 IS 2 55884 BP 658 55885 EP 659 55886 PG 2 55887 SC Physics, Multidisciplinary 55888 GA 523ZF 55889 UT ISI:000173986900052 55890 ER 55891 55892 PT J 55893 AU Bian, JJ 55894 Wang, XW 55895 Zhong, YG 55896 Wang, H 55897 TI Preparation and microwave dielectric properties of 55898 (Pb0.45Ca0.55)(Fe1/2Nb1/2)O-3 ceramics by citrate-gel processing route 55899 SO JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS 55900 DT Article 55901 AB A synthetic procedure has been developed for the 55902 (Pb0.45Ca0.55)(Fe1/2Nb1/2)O-3 (PCFN) system in terms of liquid-mixed 55903 citrate precursor. The stability of the citrate gels against phase 55904 separation is investigated as a function of the pH value and the 55905 citrate/metal ratio in the initial solution. The elaboration process is 55906 described in detail. A single-phase PCFN powder with a particle size of 55907 30-50 nm can be synthesized at the low temperature of 850 degreesC 55908 using the citrate-gel processing route, which is 200 degreesC lower 55909 than that for the conventional process. Sintering properties and 55910 microwave dielectric properties of specimens derived from the 55911 citrate-gel process were also studied in this paper. A dense compound 55912 with a bulk density up to 6.20 g cm(-3) could be obtained when the 55913 specimens are sintered at 1000 degreesC/4 h. The dense single-phase 55914 PCFN ceramics were found to have microwave dielectric properties of 55915 epsilon(gamma) = 86.2, Q . f = 3450 GHz and tau(f) = 4 ppm 55916 C-degrees(-1). (C) 2002 Kluwer Academic Publishers. 55917 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China. 55918 RP Bian, JJ, Shanghai Univ, Dept Inorgan Mat, 20 ChenZhong Rd, Shanghai 55919 201800, Peoples R China. 55920 CR HUANG CL, 2000, MATER LETT, V43, P32 55921 ISHZAKI T, 1994, IEEE T MICROW THEORY, V42, P2017 55922 KAGATA H, 1994, NATL TECHNICAL REPOR, V40, P17 55923 KAKIHANA M, 1996, J SOL-GEL SCI TECHN, V6, P7 55924 KAREN P, 1994, J AM CERAM SOC, V77, P547 55925 KATO J, 1992, JPN J APPL PHYS 1, V31, P3144 55926 KIM HT, 1999, J AM CERAM SOC, V82, P3476 55927 NAKANO M, 1993, JPN J APPL PHYS 1, V32, P4314 55928 ONODA M, 1982, JPN J APPL PHYS, V21 55929 ZHOU BQ, 1980, CHEM REAGENTS, P123 55930 NR 10 55931 TC 1 55932 SN 0957-4522 55933 J9 J MATER SCI-MATER ELECTRON 55934 JI J. Mater. Sci.-Mater. Electron. 55935 PD MAR 55936 PY 2002 55937 VL 13 55938 IS 3 55939 BP 125 55940 EP 129 55941 PG 5 55942 SC Engineering, Electrical & Electronic; Materials Science, 55943 Multidisciplinary; Physics, Condensed Matter 55944 GA 524GG 55945 UT ISI:000174004400002 55946 ER 55947 55948 PT J 55949 AU Li, CP 55950 Ceh, GR 55951 TI Bifurcation from an equilibrium of the steady state 55952 Kuramoto-Sivashinsky equation in two spatial dimensions 55953 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS 55954 DT Article 55955 ID NON-LINEAR ANALYSIS; HYDRODYNAMIC INSTABILITY; LAMINAR FLAMES; 55956 PROPAGATION 55957 AB The paper deals with the steady state bifurcations of the 55958 Kuramoto-Sivashinsky (K-S) equation in two spatial dimensions with zero 55959 mean and periodic boundary value conditions. Applying the perturbation 55960 method, asymptotic expressions of the steady state solution branches 55961 that have bifurcated from the equilibrium are obtained. Furthermore, 55962 stability of the bifurcated solution branches is discussed. 55963 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 55964 City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China. 55965 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 55966 CR AMDJADI F, 1997, J COMPUT PHYS, V131, P181 55967 BENNEY DJ, 1966, J MATH PHYS, V45, P150 55968 CHOW SN, 1982, METHODS BIFURCATION 55969 FOIAS C, 1988, J DIFF EQS, V73, P93 55970 GOLUBITSKY M, 1985, SINGULARITIES GROUPS, V1 55971 GOLUBITSKY M, 1988, SINGULARITIES GROUPS, V2 55972 KURAMOTO Y, 1975, PROG THEOR PHYS, V54, P687 55973 KURAMOTO Y, 1976, PROG THEOR PHYS, V55, P356 55974 KURAMOTO Y, 1978, PROG THEOR PHYS S, V64, P346 55975 LI CP, 1997, J SHANGHAI U, V1, P95 55976 LI CP, 1998, APPL MATH JCU B, V13, P263 55977 LI CP, 2001, INT J BIFURCAT CHAOS, V11, P2493 55978 MICHELSON DM, 1977, ACTA ASTRONAUT, V4, P1207 55979 NICOLAENKO B, 1985, PHYSICA D, V16, P155 55980 ROST M, 1995, PHYSICA D, V88, P1 55981 SIVASHINSKY GI, 1977, ACTA ASTRONAUT, V4, P1177 55982 SIVASHINSKY GI, 1980, SIAM J APPL MATH, V39, P67 55983 TEMAM R, 1988, INFINITE DIMENSIONAL 55984 YANG ZH, 2000, IN PRESS J COMPUT AP 55985 NR 19 55986 TC 2 55987 SN 0218-1274 55988 J9 INT J BIFURCATION CHAOS 55989 JI Int. J. Bifurcation Chaos 55990 PD JAN 55991 PY 2002 55992 VL 12 55993 IS 1 55994 BP 103 55995 EP 114 55996 PG 12 55997 SC Mathematics, Applied; Multidisciplinary Sciences 55998 GA 522NR 55999 UT ISI:000173903900006 56000 ER 56001 56002 PT J 56003 AU Xu, X 56004 Cao, ZY 56005 TI Linear and nonlinear aerodynamic theory of interaction between flexible 56006 long structure and wind 56007 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 56008 DT Article 56009 DE nonlinear aerodynamic forces; coupled interaction; flutter derivatives 56010 ID BRIDGES; FLOW 56011 AB In light of the characteristics of the interactions between flexible 56012 structure and wind in three directions, and based on the rational 56013 mechanical section-model of structure, a new aerodynamic force model is 56014 accepted, i.e, the coefficients of three component forces are the 56015 functions of the instantaneous attack angle and rotational speed C-t = 56016 C-t (beta(t), 0). (i = D, L, M). So, a new method to formulate the 56017 linear and nonlinear aerodynamic items of wind and structure 56018 interacting has been put forward in accordance with "strip theory" and 56019 modified "quasi-static theory", and then the linear and nonlinear 56020 coupled theory of super-slender structure for civil engineering 56021 analyzing are converged in one model, For the linear aerodynamic-force 56022 parts, the semi-analytical expressions of the items so-called "flutter 56023 derivatives" corresponding to the one in the classic equations have 56024 been given here, and so have the nonlinear parts. The study of the 56025 stability of nonlinear aerodynamic-coupled torsional vibration of the 56026 old Tacoma bridge shows that the form and results of the nonlinear 56027 control equation in rotational direction are in agreement with that of 56028 V. F. Bohm's. 56029 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 56030 Tongji Univ, Dept Engn Mech & Tech, Shanghai 200092, Peoples R China. 56031 RP Xu, X, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 56032 Peoples R China. 56033 CR BOHM VF, 1967, STAHLBAU, V7, P207 56034 BORRI C, 1995, 9 INT C WIND ENG NEW, P839 56035 BRITO JLV, 1995, J WIND ENG IND AEROD, V57, P81 56036 DAVENPORT AG, 1962, P I CIVIL ENG, V23, P389 56037 DIANA G, 1995, 9 INT C WIND ENG NEW, P938 56038 FALCO M, 1992, J WIND ENG IND AEROD, V41, P1321 56039 LIN YK, 1979, J ENG MECH DIV ASCE, V105, P921 56040 LIN YK, 1980, J STRUCTURAL MECHANI, V8, P1 56041 NOVAK M, 1968, BLWT368 U W ONT 56042 PARKINSON GV, 1961, J APPL MECH, V83, P250 56043 PICCARDO G, 1993, J WIND ENG IND AEROD, V48, P241 56044 SARKAR PP, 1994, J ENG MECH-ASCE, V120, P1718 56045 SCANLAN RH, 1971, J ENGINEERING MECHAN, V97, P1717 56046 SCANLAN RH, 1978, J SOUND VIB, V60, P187 56047 SCANLAN RH, 1978, J SOUND VIB, V60, P201 56048 SCANLAN RH, 1987, J ENG MECH-ASCE, V113, P555 56049 SCANLAN RH, 1997, J WIND ENG IND AEROD, V69, P829 56050 SOLARI G, 1994, GUST EXCITED VIBRATI 56051 STEINMANN DG, 1954, ACIER STEEL STAHL, V19, P495 56052 STROMMEN E, 1995, J WIND ENG IND AEROD, V56, P267 56053 XU X, 1998, P 3 INT C NONL MECH, P396 56054 XU X, 1999, J NONLINEAR DYNAMICS, V6, P228 56055 NR 22 56056 TC 0 56057 SN 0253-4827 56058 J9 APPL MATH MECH-ENGL ED 56059 JI Appl. Math. Mech.-Engl. Ed. 56060 PD DEC 56061 PY 2001 56062 VL 22 56063 IS 12 56064 BP 1446 56065 EP 1457 56066 PG 12 56067 SC Mathematics, Applied; Mechanics 56068 GA 523WW 56069 UT ISI:000173981400012 56070 ER 56071 56072 PT J 56073 AU Chen, W 56074 Wu, Y 56075 Shen, J 56076 TI Corrosion resistance of 316L stainless steel cladded on plain carbon 56077 steel by powder metallurgy 56078 SO POWDER METALLURGY 56079 DT Article 56080 ID MICROSTRUCTURE 56081 AB A sandwich Structure with 316L stainless steel cladding on plain carbon 56082 steel was prepared by means of powder metallurgy processing. The 56083 corrosion performances of the cladding samples were studied by long 56084 term immersion tests and potentiodynamic anodic polarisation tests in 56085 sulphuric acid and ferric chloride solutions. The 316L surface layer, 56086 greater than or equal to 1.0 mm deep produced by PM cladding improves 56087 corrosion resistance in H2SO4 and FeCl3 solutions, although it is 56088 slightly lower than that of PM 316L bulk material. The PM 316L cladding 56089 surface layers have a similar anodic polarisation behaviour to the PM 56090 316L bulk material in H2SO4 and FeCl3 solutions, but the anodic current 56091 density of the PM bulk sample is much smaller than that of the cladding 56092 samples. 56093 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 56094 Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China. 56095 RP Chen, W, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 56096 CR DEDAMBORENA J, 1989, SURFACE ENG, V5, P235 56097 LABARBERA A, 1991, SURF COAT TECH, V46, P317 56098 LUMSDEN JB, 1982, CORROSION METALS PRO, P130 56099 MATHIESEN T, 1994, P INT POWD MET C EXH, V3, P2089 56100 MCCAFFERTY E, 1986, J ELECTROCHEM SOC, V133, P1090 56101 OTERO E, 1995, MATER CHARACT, V35, P145 56102 PARVATHAVARTHINI N, 1992, MATER SCI TECH SER, V8, P1070 56103 NR 7 56104 TC 1 56105 SN 0032-5899 56106 J9 POWDER MET 56107 JI Powder Metall. 56108 PY 2001 56109 VL 44 56110 IS 4 56111 BP 309 56112 EP 312 56113 PG 4 56114 SC Metallurgy & Metallurgical Engineering 56115 GA 520JV 56116 UT ISI:000173779500024 56117 ER 56118 56119 PT J 56120 AU Wei, JH 56121 Zhu, DP 56122 TI Mathematical Modeling of the argon-oxygen decarburization refining 56123 process of stainless steel: Part I. Mathematical model of the process 56124 SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND 56125 MATERIALS PROCESSING SCIENCE 56126 DT Article 56127 AB Some available mathematical models for the argon-oxygen decarburization 56128 (AOD) stainless steel-making process have been reviewed. The actual 56129 situations of the AOD process, including the competitive oxidation of 56130 the elements dissolved in the molten steel and the changes in the bath 56131 composition, as well as the nonisothermal nature of the process, have 56132 been analyzed. A new mathematical model for the AOD refining process of 56133 stainless steel has been proposed and developed. The model is based on 56134 the assumption that the blown oxygen oxidizes C, Cr, Si, and Mn in the 56135 steel and Fe as a matrix, but the FeO formed is also an oxidant of C, 56136 Cr, Si, and Mn in the steel. All the possible oxidation-reduction 56137 reactions take place simultaneously and reach a combined equilibrium in 56138 competition at the liquid/bubble interfaces. It is also assumed that at 56139 high carbon levels, the oxidation rates of elements are primarily 56140 related to the supplied oxygen rate, and at low carbon levels, the rate 56141 of decarburization is mainly determined by the mass transfer of carbon 56142 from the molten steel bulk to the reaction interfaces. It is further 56143 assumed that the nonreacting oxygen blown into the bath does not 56144 accumulate in the liquid steel and will escape from the bath into the 56145 exhaust gas. The model performs the rate calculations of the refining 56146 process and the mass and heat balances of the system. Also, the effects 56147 of the operating factors, including adding the slag materials, crop 56148 ends, and scrap, and alloy agents; the nonisothermal conditions; the 56149 changes in the amounts of metal and slag during the refining; and other 56150 factors have all been taken into account. 56151 C1 Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China. 56152 Shanghai Wensi Software Ltd Co, Shanghai, Peoples R China. 56153 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China. 56154 CR ASAI S, 1974, METALL T, V5, P651 56155 BAIRD MHI, 1962, CHEM ENG SCI, V17, P87 56156 BURTSEV VT, 1974, DEOXIDATION POWER CA, P3 56157 CHEN JX, 1984, HDB COMMON USING DAT, P383 56158 CHEN JX, 1984, HDB COMMON USING DAT, CH1 56159 CHIPMAN J, 1964, BASIC OPEN HEARTH ST, P531 56160 DAVIES RM, 1950, P ROY SOC LOND A MAT, V200, P375 56161 DIAZ MC, 1997, ISIJ INT, V37, P1 56162 FINE HA, 1979, HDB MAT ENERGY BALAN, P106 56163 FRUEHAN RJ, 1976, IRONMAK STEELMAK, V3, P153 56164 GORGES H, 1978, P 3 INT IR STEEL C C, P161 56165 GORNERUP M, 1999, IRONMAK STEELMAK, V26, P58 56166 LANKFORD WT, 1985, MAKING SHAPING TREAT, P368 56167 LEWIS DA, 1998, P ANN CONV 1998 AISE 56168 MITCHELL A, 1982, I SM, P37 56169 OHNO T, TETSU TO HAGANE, V63, P2094 56170 RAY WH, 1971, PROCESS OPTIMIZATION, P310 56171 REICHEL J, 1995, IRON STEELMAKER, P41 56172 ROY TD, 1978, IRONMAK STEELMAK, V5, P198 56173 ROY TD, 1978, IRONMAK STEELMAK, V5, P207 56174 SIGWORTH GK, 1974, MET SCI, V8, P298 56175 SZEKELY J, 1974, METALL T, V5, P1573 56176 TOHGE T, 1984, P 4 PROC TECHN C IR, P129 56177 TURKDOGAN ET, 1980, PHYSICAL CHEM HIGH T, P14 56178 TURKDOGAN ET, 1980, PHYSICAL CHEM HIGH T, P359 56179 TURKDOGAN ET, 1980, PHYSICAL CHEM HIGH T, P5 56180 TURKDOGAN ET, 1983, PHYSICOCHEMICAL PROP, P422 56181 WEH CH, 1982, P 3 PROC TECHN C MAR, V3, P232 56182 WEI JH, 1986, CHIN J MET SCI TECHN, V2, P11 56183 WEI JH, 1987, ACTA METALL SIN, V23, B126 56184 WEI JH, 1989, CHIN J MET SCI TECHN, V5, P235 56185 WEI JH, 1999, IRONMAK STEELMAK, V26, P363 56186 NR 32 56187 TC 2 56188 SN 1073-5615 56189 J9 METALL MATER TRANS B 56190 JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. 56191 PD FEB 56192 PY 2002 56193 VL 33 56194 IS 1 56195 BP 111 56196 EP 119 56197 PG 9 56198 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 56199 Engineering 56200 GA 520HW 56201 UT ISI:000173776500011 56202 ER 56203 56204 PT J 56205 AU Wei, JH 56206 Zhu, DP 56207 TI Mathematical Modeling of the argon-oxygen decarburization refining 56208 process of stainless steel: Part II. Application of the model to 56209 industrial practice 56210 SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND 56211 MATERIALS PROCESSING SCIENCE 56212 DT Article 56213 AB The mathematical model proposed and presented in Part I of the present 56214 work has been used to deal with and analyze the austenitic stainless 56215 steel making (including ultralow-carbon steel) and has been tested on 56216 data of 32 heats obtained in producing 18Cr9Ni-grade steel in an 18-t 56217 argon-oxygen decarburization (AOD) vessel. The results indicated that 56218 the carbon concentrations and bath temperatures at the endpoints of 56219 blowing periods, calculated by the model, are in excellent agreement 56220 with the determined data, and the Cr content after the 56221 predeoxidization, obtained from the model predictions, also agrees very 56222 well with the observed value. The Gibbs free energies of the oxidation 56223 reactions of elements can be used to characterize fully the competitive 56224 oxidation among the elements during the refining process and to 56225 determine reasonably the corresponding distribution ratios of oxygen. 56226 The critical carbon concentration of decarburization (after which the 56227 decarburization changes to become controlled by the mass transfer of 56228 carbon in molten steel) for the AOD refining process of austenitic 56229 stainless steel in an 18-t AOD vessel is in the range of 0.25 to 0.40 56230 mass pet. The model can provide some very useful information and a 56231 reliable basis for optimization of the technology of the AOD refining 56232 process of stainless steel and control of the process in real time and 56233 online. 56234 C1 Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China. 56235 Shanghai Wensi Software Ltd Co, Shanghai, Peoples R China. 56236 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China. 56237 CR BREUER G, 1968, ARCH EISENHUTTENWES, V39, P553 56238 GORGES H, 1978, P 3 INT IR STEEL C C, P161 56239 KOCH K, 1976, ARCH EISENHUTTENWES, V47, P583 56240 NOMURA H, 1973, T ISIJ, V13, P325 56241 OETERS F, 1994, METALLURGH STEELMAKI, CH8 56242 REICHEL J, 1995, IRON STEELMAKER, P41 56243 WEI JH, 1999, IRONMAK STEELMAK, V26, P363 56244 WEI JH, 2002, METALL MATER TRANS B, V33, P111 56245 NR 8 56246 TC 1 56247 SN 1073-5615 56248 J9 METALL MATER TRANS B 56249 JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. 56250 PD FEB 56251 PY 2002 56252 VL 33 56253 IS 1 56254 BP 121 56255 EP 127 56256 PG 7 56257 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 56258 Engineering 56259 GA 520HW 56260 UT ISI:000173776500012 56261 ER 56262 56263 PT J 56264 AU You, JL 56265 Jiang, GC 56266 Hou, HY 56267 Wu, YQ 56268 Chen, H 56269 Xu, KD 56270 TI Temperature-dependent Raman spectra and microstructure of barium 56271 metaborate crystals and its melts 56272 SO CHINESE PHYSICS LETTERS 56273 DT Article 56274 ID BETA-BAB2O4; GENERATION; BORATE 56275 AB We have measured the Raman spectra of beta- and alpha-barium metaborate 56276 in crystal and liquid states from room temperature to 1873 K, with a 56277 semiconductor laser as the laser source, coupled with a time-resolved 56278 detection system to eliminate the dense thermal emission background 56279 when temperature was considerably high. Temperature-dependent Raman 56280 spectra can clearly indicate that the phase transformation from beta- 56281 to alpha-barium metaborate has been completed during 1273 - 1300 K. 56282 Variations of different kinds of microstructure units with temperature 56283 are identified and discussed. 56284 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 56285 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 56286 200072, Peoples R China. 56287 CR CHEN C, 1984, 13 IQEC 56288 CHEN C, 1984, SCI SIN B, V7, P598 56289 CHEN C, 1985, SCI SIN B, V28, P235 56290 EDELSTEIN DC, 1988, APPL PHYS LETT, V52, P2211 56291 EIMERL D, 1987, J APPL PHYS, V62, P1968 56292 HUANG ZQ, 1981, ACTA PHYS SINICA, V30, P559 56293 HUBNER KH, 1969, JB NEUES MONATSH, P335 56294 HUDSON B, 1986, SPECTROSCOPY, V1, P22 56295 IMAI S, 1989, APPL PHYS LETT, V54, P1206 56296 JIANG GC, 2000, SPECTROSC SPECT ANAL, V20, P206 56297 KAMITSOS EI, 1989, PHYS CHEM GLASSES, V30, P19 56298 KATO K, 1986, IEEE J QUANTUM ELECT, V22, P1013 56299 LIEBERTZ J, 1983, Z KRISTALLOGR, V165, P91 56300 MIGHELL AD, 1966, ACTA CRYSTALLOGR, V20, P819 56301 RULMONT A, 1989, SPECTROCHIM ACTA A, V45, P603 56302 TANG DY, 2000, CHIN J STRUCT CHEM, V19, P112 56303 VORONKO YK, 1988, ROST KRIST, V16, P178 56304 VORONKO YK, 1992, NEORGANICHESKIE MAT, V28, P1699 56305 VORONKO YK, 1993, J PHYS CHEM SOLIDS, V54, P1579 56306 WANG YF, 1998, J TIANJIN NORMAL U, V18, P12 56307 WEN Q, 2000, SPECTROSC SPECT ANAL, V20, P694 56308 YOU JL, 2001, CHINESE PHYS LETT, V18, P991 56309 YOU JL, 2001, J NON-CRYST SOLIDS, V282, P125 56310 NR 23 56311 TC 1 56312 SN 0256-307X 56313 J9 CHIN PHYS LETT 56314 JI Chin. Phys. Lett. 56315 PD FEB 56316 PY 2002 56317 VL 19 56318 IS 2 56319 BP 205 56320 EP 207 56321 PG 3 56322 SC Physics, Multidisciplinary 56323 GA 521HK 56324 UT ISI:000173834400020 56325 ER 56326 56327 PT J 56328 AU Zhang, JC 56329 Liu, LH 56330 Dong, C 56331 Li, JQ 56332 Chen, H 56333 Li, XG 56334 Cheng, GS 56335 TI Positron study of microstructure and phase transition in the Fe-doped 56336 YBa2Cu3-xFexOy system 56337 SO PHYSICAL REVIEW B 56338 DT Article 56339 ID ANNIHILATION; SUPERCONDUCTIVITY; YBA2(CU1-XFEX)3O7-Y; YBA2CU3O7-DELTA; 56340 DENSITY; NI 56341 AB A series of YBa2Cu3-xFexOy (x = 0-0.50) samples has been studied by 56342 means of positron annihilation technology, scan electron microscope and 56343 x-ray diffraction. The oxygen contents of the samples have been 56344 measured using a volumetric method. The positron short-lifetime 56345 component tau(1) decreases abruptly between x = 0.12 and 0.15 where the 56346 compound undergoes an O-T phase transition and the tweed microstructure 56347 disappears. We proposed a simple model to describe the dependency of 56348 tau(1) on oxygen vacancy and twin (and tweed) boundary densities. The 56349 experimental results can be satisfactorily explained using this model. 56350 The positron lifetime tau(1) depends not only on the oxygen vacancy 56351 density, but also on the twin and tweed densities. Therefore, the 56352 positron can be used as a sensitive probe for the O-T phase transition 56353 in this system. In addition, analysis of the experimental results also 56354 gives certain indication for Fe clustering when x greater than or equal 56355 to 0.20. 56356 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 56357 Chinese Acad Sci, Inst Phys, Natl Lab Superconduct, Beijing 100080, Peoples R China. 56358 Henan Normal Univ, Dept Phys, Xinxiang 453002, Peoples R China. 56359 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 56360 CR BALOGH AG, 1988, PHYS REV B, V38, P2883 56361 BRANDT W, 1967, POSITRON ANNIHILATIO, P155 56362 CHAKRABORTY B, 1989, PHYS REV B, V39, P215 56363 DONG C, 1999, J APPL CRYSTALLOGR, V32, P838 56364 GASUMYANTS VE, 1992, SFKHT, V5, P674 56365 HAUTOJARVI P, 1983, POSITRONS SOLID, P255 56366 HIROI Z, 1988, JPN J APPL PHYS, V27, L580 56367 ISHIBASHI S, 1990, J PHYS-CONDENS MAT, V2, P3691 56368 ISLAM MS, 1991, PHYS REV B, V44, P9492 56369 JEAN YC, 1990, PHYS REV LETT, V64, P1593 56370 KATSUYAMA S, 1989, PHYSICA C, V165, P405 56371 NAROZHNYI VN, 1996, PHYS REV B, V53, P5856 56372 PUSKA MJ, 1994, REV MOD PHYS, V66, P841 56373 RISTO Z, 1991, J PHYS CHEM SOLIDS, V52, P1577 56374 SEEGER A, 1973, J PHYS F MET PHYS, V3, P248 56375 SMEDSKJAER LC, 1988, PHYS REV B, V37, P2330 56376 SYDOW JP, 1998, APPL PHYS LETT, V72, P3512 56377 TARASCON JM, 1988, PHYS REV B, V37, P7458 56378 VONSTETTEN EC, 1988, PHYS REV LETT, V60, P2198 56379 WESTERHOLT K, 1989, PHYS REV B, V39, P11680 56380 XU YW, 1989, PHYS REV B, V39, P6667 56381 ZHANG H, 1990, PHYS STATUS SOLIDI A, V121, K207 56382 ZHANG J, 1999, PHYS LETT A, V236, P452 56383 ZHANG JC, 1993, PHYS REV B, V48, P16830 56384 NR 24 56385 TC 10 56386 SN 1098-0121 56387 J9 PHYS REV B 56388 JI Phys. Rev. B 56389 PD FEB 1 56390 PY 2002 56391 VL 65 56392 IS 5 56393 AR 054513 56394 DI ARTN 054513 56395 PG 7 56396 SC Physics, Condensed Matter 56397 GA 518BQ 56398 UT ISI:000173647000086 56399 ER 56400 56401 PT J 56402 AU Fang, SS 56403 Lin, GW 56404 Zhang, JL 56405 Zhou, ZQ 56406 TI The maximum solid solubility of the transition metals in palladium 56407 SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 56408 DT Article 56409 DE palladium alloys; solid solubility; electronegativity difference; 56410 atomic size parameters; covalent electron 56411 AB The maximum solid solubility limit (C-max) of transition metals 56412 dissolved in palladium can be described as an equation in 56413 semi-empirical theories with parameters such as electronegativity 56414 difference, atomic diameter and covalent electrons. It has been found 56415 that the electronegativity difference and the covalent electron number 56416 mainly affected the C-max of transition metals in palladium. The atomic 56417 size parameter had the smallest effect on the C-max. (C) 2002 56418 International Association for Hydrogen Energy. Published by Elsevier 56419 Science Ltd. All rights reserved. 56420 C1 Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China. 56421 RP Zhou, ZQ, Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, 56422 Peoples R China. 56423 CR BENNETT LH, 1980, THEORY ALLOY PHASE F, P1 56424 BENNETT LH, 1980, THEORY ALLOY PHASE F, P390 56425 DARKEN LS, 1953, PHYSICAL CHEM METALS, P74 56426 MASSALSKI TB, 1986, BINARY ALLOY PHASE D 56427 MIEDEMA AR, 1980, THEORY ALLOY PHASE F, P344 56428 XIAO JM, 1985, ENERGETICS ALLOYS, P296 56429 ZHOU ZQ, 1997, P 97 MAT S CHIN SPON, P37 56430 NR 7 56431 TC 4 56432 SN 0360-3199 56433 J9 INT J HYDROGEN ENERG 56434 JI Int. J. Hydrog. Energy 56435 PD MAR 56436 PY 2002 56437 VL 27 56438 IS 3 56439 BP 329 56440 EP 332 56441 PG 4 56442 SC Physics, Atomic, Molecular & Chemical; Energy & Fuels; Environmental 56443 Sciences 56444 GA 518PA 56445 UT ISI:000173676000007 56446 ER 56447 56448 PT J 56449 AU Li, D 56450 Sun, XL 56451 Biswal, MP 56452 Gao, F 56453 TI Convexification, concavification and monotonization in global 56454 optimization 56455 SO ANNALS OF OPERATIONS RESEARCH 56456 DT Article 56457 DE global optimization; monotonic function; convexification; 56458 concavification; monotonization; concave minimization; DC programming 56459 ID NONCONVEX OPTIMIZATION; NONINFERIOR FRONTIER 56460 AB We show in this paper that via certain convexification, concavification 56461 and monotonization schemes a nonconvex optimization problem over a 56462 simplex can be always converted into an equivalent better-structured 56463 nonconvex optimization problem, e.g., a concave optimization problem or 56464 a D.C. programming problem, thus facilitating the search of a global 56465 optimum by using the existing methods in concave minimization and D.C. 56466 programming. We first prove that a monotone optimization problem (with 56467 a monotone objective function and monotone constraints) can be 56468 transformed into a concave minimization problem over a convex set or a 56469 D.C. programming problem via pth. power transformation. We then prove 56470 that a class of nonconvex minimization problems can be always reduced 56471 to a monotone optimization problem, thus a concave minimization problem 56472 or a D.C. programming problem. 56473 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China. 56474 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 56475 Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India. 56476 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, 56477 Shatin, Hong Kong, Peoples R China. 56478 CR BARHEN J, 1997, SCIENCE, V276, P1094 56479 CVIJOVIC D, 1995, SCIENCE, V267, P664 56480 GE R, 1990, MATH PROGRAM, V46, P191 56481 HOFFMAN KL, 1981, MATH PROGRAM, V20, P22 56482 HORST R, 1984, EUR J OPER RES, V15, P382 56483 HORST R, 1993, GLOBAL OPTIMIZATION 56484 HORST R, 1996, INTRO GLOBAL OPTIMIZ 56485 KAN AHG, 1989, HDB OPERATIONS RES M, V1, P631 56486 LI D, 1995, J OPTIMIZ THEORY APP, V85, P309 56487 LI D, 1996, J OPTIMIZ THEORY APP, V88, P177 56488 LI D, 1998, J OPTIMIZ THEORY APP, V99, P183 56489 LI D, 2000, J OPTIMIZ THEORY APP, V104, P109 56490 PARDALOS PM, 1987, CONSTRAINED GLOBAL O 56491 RAO SS, 1996, ENG OPTIMIZATION THE 56492 RUBIN GM, 1999, MOL BIOL CELL, V10, P1 56493 TUY H, 1994, HDB GLOBAL OPTIMIZAT, P149 56494 TZAFESTAS SG, 1980, INT J SYST SCI, V11, P455 56495 XU ZK, 1997, J OPTIMIZ THEORY APP, V94, P739 56496 NR 18 56497 TC 5 56498 SN 0254-5330 56499 J9 ANN OPER RES 56500 JI Ann. Oper. Res. 56501 PY 2001 56502 VL 105 56503 BP 213 56504 EP 226 56505 PG 14 56506 SC Operations Research & Management Science 56507 GA 518UH 56508 UT ISI:000173685900012 56509 ER 56510 56511 PT J 56512 AU Wang, H 56513 Ren, ZM 56514 Deng, K 56515 Xu, KD 56516 TI Effects of a static magnetic field on solidification structure of MnBi 56517 phase in semi-solidified Bi-Mn alloy 56518 SO ACTA METALLURGICA SINICA 56519 DT Article 56520 DE magnetic field; Bi-Mn alloy; MnBi; semi-solidification; alignment; 56521 magnetic property 56522 AB Influences of a static magnetic field (0-1.0 T) on the solidification 56523 structure and magnetic property of the semi-solidified Bi-3%Mn and 56524 Bi-6%Mn alloys have been investigated. In the present of the magnetic 56525 field, the alloys were maintained at semi-solid state for a certain 56526 time and then solidified. It was shown that alignment and preferential 56527 growth of MnBi crystals along the applied field occurred. The alignment 56528 degree of MnBi was increased with the increase of the applied field, 56529 and the mean length of elongated MnBi crystals was increased with the 56530 increase of the applied field and the prolongation of solidification 56531 time. Moreover, the remained magnetic flux intensity along the aligned 56532 direction of Bi-Mn alloys in the case with a magnetic field was found 56533 to be strongly anisotropic and nearly double of that without magnetic 56534 field. A model was proposed to explain the alignment and preferential 56535 growth of ferromagnetic MnBi crystals in a magnetic field in terms of 56536 the magnetic anisotropism and the interaction between the crystals. 56537 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China. 56538 RP Ren, ZM, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R 56539 China. 56540 CR DECARLO JL, 1984, METALL TRANS A, V15, P2155 56541 FENG D, 1998, PHYSICS METAL, V4, P460 56542 GUO X, 1991, J APPL PHYS 2B, V69, P6067 56543 KATSUKI A, 1996, CHEM LETT, P607 56544 MIKELSON AE, 1981, J CRYST GROWTH, V52, P524 56545 MOFFATT WG, 1984, HDB BINARY PHASE DIA 56546 MORIKAWA H, 1998, MATER T JIM, V39, P814 56547 RANGO PD, 1991, NATURE, V349, P770 56548 SAVITSKY EM, 1981, J CRYST GROWTH, V52, P519 56549 SHETTY MN, 1987, J MATER SCI, V22, P1908 56550 WAN DF, 1987, PHYSICS MAGNETISM, P8 56551 WANG H, 2000, CHIN SCI ABSTR, V6, P240 56552 WANG H, 2001, MATER SCI ENG, V19, P119 56553 WANG H, 2001, MATER SCI ENG, V19, P136 56554 YASUDA H, 2000, 3 INT S EL PROC MAT, P647 56555 NR 15 56556 TC 13 56557 SN 0412-1961 56558 J9 ACTA METALL SIN 56559 JI Acta Metall. Sin. 56560 PD JAN 18 56561 PY 2002 56562 VL 38 56563 IS 1 56564 BP 41 56565 EP 46 56566 PG 6 56567 SC Metallurgy & Metallurgical Engineering 56568 GA 519TZ 56569 UT ISI:000173742700009 56570 ER 56571 56572 PT J 56573 AU Wang, CG 56574 Bai, YJ 56575 TI Investigation on the surface coating of grinding balls 56576 SO RARE METALS 56577 DT Article 56578 DE coating; ball grinding; plastic deformation 56579 AB The surface coating of grinding balls was investigated experimentally. 56580 The results show that a coating may form on the surface of grinding 56581 balls when Cr or Al powders are subjected to ball grinding. The plastic 56582 deformation of the ball surface plays an important role during the 56583 coating formation, and the strong binding force between the powders and 56584 the balls is a necessary pre-condition. The thickness of coating 56585 increases with the plasticity of the powders and the balls. Annealing 56586 the balls with coating will result in an obvious diffusion of the 56587 elements in the bonding zone of interface. 56588 C1 Shandong Univ, Coll Mat Sci & Engn, Jinan 250061, Peoples R China. 56589 Shanghai Univ Sci & Technol, Dept Mech, Jinan 250031, Peoples R China. 56590 RP Wang, CG, Shandong Univ, Coll Mat Sci & Engn, Jinan 250061, Peoples R 56591 China. 56592 CR BENJAMIN JS, 1977, MET T A, V8, P1301 56593 GREGORY JK, 1985, METALL TRANS A, V16, P777 56594 HASHIMOTO H, 1994, MATER T JIM, V35, P40 56595 HUANG JY, 1994, J MATER SCI LETT, V13, P1201 56596 KOBAYASHI K, 1995, MATER T JIM, V36, P134 56597 QI BS, 1999, ACTA METALL SIN, V12, P607 56598 SUNDARESAN R, 1987, J MET, V39, P22 56599 WHITTENBERGER DL, 1981, METALL T A, V12, P845 56600 NR 8 56601 TC 0 56602 SN 1001-0521 56603 J9 RARE METALS 56604 JI Rare Metals 56605 PY 2001 56606 VL 20 56607 IS 4 56608 BP 259 56609 EP 264 56610 PG 6 56611 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 56612 Engineering 56613 GA 516XM 56614 UT ISI:000173582100012 56615 ER 56616 56617 PT J 56618 AU Wang, G 56619 Gan, F 56620 Wang, J 56621 Yang, L 56622 Wang, G 56623 Xu, Z 56624 TI Spectroscopic investigations of a novel push-pull azo compound embedded 56625 in rigid polymer 56626 SO JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 56627 DT Article 56628 DE organic compounds; thin films; optical properties 56629 ID REFRACTIVE-INDEX CHANGE; DOPED LIQUID-CRYSTALS; 2ND-HARMONIC 56630 GENERATION; FILMS; DYE; PHOTOISOMERIZATION; POLARIZATION 56631 AB A new heterocyclic push-pull azo compound-in-poly(methymethacrylate) 56632 (PMMA) film has been made by means of the spin-coating method. The 56633 spectroscopic properties of the films have been investigated with the 56634 steady-state absorption spectra, and steady-state fluorescence and 56635 femtosecond time-resolved fluorescence spectra in the first time, which 56636 is an important characteristic for the application of the film. The 56637 excited singlet (S-1) state lifetimes for trans and cis isomers of the 56638 film at room temperature have been measured. The excited triplet (T-1) 56639 state lifetime of cis isomer of the film has been obtained. The 56640 electronic structure of the film has been explained. The results show 56641 that the aggregate state of the azo molecules greatly influences its 56642 absorption spectra. (C) 2002 Elsevier Science Ltd. All rights reserved. 56643 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200433, Peoples R China. 56644 Acad Sinica, Shanghai Inst Opt & Fine Mech, High Intens Light Opt Lab, Shanghai 201800, Peoples R China. 56645 RP Wang, G, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200433, Peoples R 56646 China. 56647 CR AOKI H, 1996, JPN J APPL PHYS 1, V35, P168 56648 BACH H, 1996, J PHYS CHEM-US, V100, P4135 56649 BING X, 1996, ACTA OPT SINICA, V16, P1023 56650 CHEN AG, 1992, OPT LETT, V17, P441 56651 COUTURE JJA, 1991, APPL OPTICS, V30, P2858 56652 EGAMI C, 1997, APPL PHYS B-LASERS O, V64, P471 56653 FULONG T, 1995, J APPL PHYS, V78, P5884 56654 GUANGBIN W, 1998, P SOC PHOTO-OPT INS, V3562, P51 56655 HEQING Y, 1990, NORMAL U, V2, P45 56656 IKEDA T, 1993, NATURE, V361, P428 56657 JIANG SD, 1994, OPT COMMUN, V106, P173 56658 KIPPELEN B, 1994, OPT LETT, V19, P68 56659 LEE GJ, 1995, APPL OPTICS, V34, P138 56660 LEE M, 1986, J CHEM PHYS, V85, P4341 56661 LEGGE CH, 1992, J PHYS D APPL PHYS, V25, P492 56662 MALKIN S, 1962, J PHYS CHEM-US, V66, P2482 56663 MEERHOLZ K, 1994, NATURE, V371, P497 56664 MOHAJERANI E, 1992, OPT COMMUN, V92, P403 56665 MORTAZAVI MA, 1989, J OPT SOC AM B, V6, P733 56666 PHAM VP, 1995, APPL PHYS A-MATER, V60, P239 56667 SEKKAT Z, 1992, J APPL PHYS, V71, P1543 56668 SHI YQ, 1991, APPL PHYS LETT, V58, P1131 56669 TOMOV IV, 1991, J APPL PHYS, V70, P36 56670 TOMOV IV, 1991, J OPT SOC AM B, V8, P1477 56671 WEISS V, 1993, OPT LETT, V18, P1089 56672 ZHIZHAN X, 1997, SCI CHINA SER A, V27, P460 56673 NR 26 56674 TC 2 56675 SN 0022-3697 56676 J9 J PHYS CHEM SOLIDS 56677 JI J. Phys. Chem. Solids 56678 PD MAR 56679 PY 2002 56680 VL 63 56681 IS 3 56682 BP 501 56683 EP 506 56684 PG 6 56685 SC Chemistry, Multidisciplinary; Physics, Condensed Matter 56686 GA 516DA 56687 UT ISI:000173535500019 56688 ER 56689 56690 PT J 56691 AU Liu, YZ 56692 Yuan, YC 56693 Chan, ZH 56694 TI On the combustion mechanism and development of the distillers' 56695 grain-fired boiler 56696 SO APPLIED THERMAL ENGINEERING 56697 DT Article 56698 DE the distillers' grain-fired boiler; combustion mechanism; wastes 56699 AB The utilization of wastes for energy purposes can solve the problems of 56700 energy shortage and environmental protection simultaneously. On the 56701 basis of the studies on the combustion mechanism of the distillers' 56702 grains, a kind of the distillers' grain-fired boiler is designed and 56703 its design features are described in this paper. The operation of this 56704 boiler shows that its performance has achieved the desired results of 56705 energy-saving, environmental protection and comprehensive utilization 56706 of ash. Besides, the distillers' grain-fired boiler is also suitable 56707 for other biomass fuels. (C) 2002 Elsevier Science Ltd. All rights 56708 reserved. 56709 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China. 56710 RP Liu, YZ, Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, 56711 Peoples R China. 56712 CR BHATTACHARYA SC, 1987, ENERGY RES, V11, P429 56713 CHENG GY, 1998, J COMBUSTION SCI TEC, V4, P193 56714 LI P, 2000, IND BOILERS, V1, P31 56715 LIU H, 1995, ENERGY SAVING TECHNO, V3, P10 56716 LIU YQ, 1999, IND BOILERS, P2 56717 ZHAI XM, 2000, IND BOILERS, V2, P9 56718 ZHANG JJ, 1999, ACTA PHYS-CHIM SIN, V15, P15 56719 NR 7 56720 TC 0 56721 SN 1359-4311 56722 J9 APPL THERM ENG 56723 JI Appl. Therm. Eng. 56724 PD FEB 56725 PY 2002 56726 VL 22 56727 IS 3 56728 BP 349 56729 EP 353 56730 PG 5 56731 SC Engineering, Mechanical; Energy & Fuels; Mechanics; Thermodynamics 56732 GA 517XP 56733 UT ISI:000173636000009 56734 ER 56735 56736 PT J 56737 AU Chen, LQ 56738 TI Chaos in perturbed planar non-Hamiltonian integrable systems with 56739 slowly-varying angle parameters 56740 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 56741 DT Article 56742 DE Melnikov method; perturbed integrable system; transversely homoclinic; 56743 chaos 56744 AB The Melnikov method was extended to perturbed planar non-Hamiltonian 56745 integrable systems with slowly-varying angle parameters. Based on the 56746 analysis of the geometric structure of unperturbed systems, the 56747 condition of transversely homoclinic intersection was established. The 56748 generalized Melnikov function of the perturbed system was presented by 56749 applying the theorem on the differentiability of ordinary differential 56750 equation solutions with respect to parameters. Chaos may occur in the 56751 system if the generalized Melnikov function has simple zeros. 56752 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China. 56753 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, 56754 Shanghai 200072, Peoples R China. 56755 CR CHEN LQ, 1991, NATURE J, V14, P619 56756 CHEN LQ, 1996, J SHANGHAI JIAOTONG, V30, P28 56757 HALE J, 1980, ORDINARY DIFFERENTIA 56758 HOLMES PJ, 1980, SIAM J APPL MATH, V38, P65 56759 HOLMES PJ, 1980, SIAM J APPL MATH, V40, P167 56760 JIANG JF, 1987, MATH APPL SINICA, V10, P504 56761 LIU ZR, 1987, MODERN MATH MECH, P269 56762 WIGGINS S, 1988, GLOBAL BIFURCATIONS 56763 WIGGINS S, 1994, NORMALLY HYPERBOLIC 56764 NR 9 56765 TC 0 56766 SN 0253-4827 56767 J9 APPL MATH MECH-ENGL ED 56768 JI Appl. Math. Mech.-Engl. Ed. 56769 PD NOV 56770 PY 2001 56771 VL 22 56772 IS 11 56773 BP 1301 56774 EP 1305 56775 PG 5 56776 SC Mathematics, Applied; Mechanics 56777 GA 516EB 56778 UT ISI:000173538000009 56779 ER 56780 56781 PT J 56782 AU Guo, BY 56783 He, SN 56784 Ma, HP 56785 TI Chebyshev spectral-finite element method for two-dimensional unsteady 56786 Navier-Stokes equation 56787 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 56788 DT Article 56789 DE Navier-Stokes equation; Chebyshev spectral-finite element method 56790 AB A mixed Chebyshev spectral-finite element method is proposed for 56791 solving two-dimensional unsteady Navier-Stokes equation. The 56792 generalized stability and convergence axe proved. The numerical results 56793 show the advantages of this method. 56794 C1 Shanghai Normal Univ, Sch Math Sci, Shanghai 200234, Peoples R China. 56795 Aircraft Coll China, Dept Foundamentary Sci, Tianjin 300300, Peoples R China. 56796 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 56797 CR CANUTO C, 1984, NUMER MATH, V44, P201 56798 CANUTO C, 1984, SPECTRAL METHODS PAR, P55 56799 CANUTO C, 1988, SPECTRAL METHOD FLUI 56800 CIARLET PG, 1978, FINITE ELEMENT METHO 56801 GUO BY, 1988, DIFFERENCE METHODS P 56802 GUO BY, 1989, J COMPUT PHYS, V84, P259 56803 GUO BY, 1993, SIAM J NUMER ANAL, V30, P1066 56804 GUO BY, 1995, SIAM J NUMER ANAL, V33, P1169 56805 GUO BY, 1996, APPL MATH JCU B, V11, P377 56806 GUO BY, 1998, SPECTRAL METHODS THE 56807 LIONS JL, 1968, PROBLEMES LIMITES NO, V1 56808 NR 11 56809 TC 0 56810 SN 0254-9409 56811 J9 J COMPUT MATH 56812 JI J. Comput. Math. 56813 PD JAN 56814 PY 2002 56815 VL 20 56816 IS 1 56817 BP 65 56818 EP 78 56819 PG 14 56820 SC Mathematics, Applied; Mathematics 56821 GA 515EZ 56822 UT ISI:000173483600006 56823 ER 56824 56825 PT J 56826 AU Xu, H 56827 Shao, J 56828 TI Molecular dynamics simulation of fast Li+ conduction in fluoroborate 56829 glasses 56830 SO ACTA PHYSICO-CHIMICA SINICA 56831 DT Article 56832 DE molecular dynamics simulation; fluoroborate glass; fast ion conductor; 56833 conductivity; non-crystal material 56834 AB The conductivities in Fluoroborate glasses were calculated by molecular 56835 dynamics simulation method at near and higher than glass transition 56836 temperatures. There are seven simulated systems which coverd almost all 56837 glass formation area in Li2O-LiF-B2O3 system. The limited 56838 conductivities and their change with temperature, activition energy of 56839 MD simulation are well in agreement with experimental data. 56840 Some early researches showed that in fast conducting solid electrolytes 56841 one of their typical characteristics is that only one kind of carrier 56842 ion migrates. It was shown that in our simulation the contribution to 56843 electrical conductivity from F ion must be taken into account. Using 56844 activation energy data, the relative conductivites among those 56845 simulated systems and experimental systems can be explained perfectly. 56846 C1 Changshu Coll, Dept Chem, Changshu 215500, Peoples R China. 56847 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 56848 RP Xu, H, Changshu Coll, Dept Chem, Changshu 215500, Peoples R China. 56849 CR ANDO H, 1994, ACCOUNTS CHEM RES, V27, P265 56850 ANGELL CA, 1989, REV SOLID STATE SCI, V3, P465 56851 ANGELL CA, 1994, NUOVO CIMENTO D, V16, P993 56852 BUSING WR, 1972, J CHEM PHYS, V57, P3008 56853 MARCH NH, 1985, AMORPHOUS SOLID LIQU 56854 SHAO J, 1990, ACTA PHYS SINICA, V39, P245 56855 SHAO J, 1993, ACTA METALLURGICA SI, V29, B11 56856 SMEDLEY SI, 1987, MAT RES B, V15, P421 56857 VIDEA M, 1999, J PHYS CHEM B, V103, P4185 56858 WOODCOCK LV, 1976, J CHEM PHYS, V65, P1565 56859 XU H, 1999, ACTA METALLURGICA SI, V35, P1065 56860 XU H, 2000, ACTA PHYS-CHIM SIN, V16, P512 56861 NR 12 56862 TC 3 56863 SN 1000-6818 56864 J9 ACTA PHYS-CHIM SIN 56865 JI Acta Phys.-Chim. Sin. 56866 PD JAN 56867 PY 2002 56868 VL 18 56869 IS 1 56870 BP 10 56871 EP 13 56872 PG 4 56873 SC Chemistry, Physical 56874 GA 513FU 56875 UT ISI:000173367900003 56876 ER 56877 56878 PT J 56879 AU Jiang, WZ 56880 Qiu, XJ 56881 Zhu, ZY 56882 He, ZJ 56883 TI Gluonic contributions in a four-fermion interaction model 56884 SO PHYSICAL REVIEW C 56885 DT Article 56886 ID JONA-LASINIO MODEL; ADDITIONAL 4-FERMION INTERACTION; CHIRAL-SYMMETRY 56887 BREAKING; GAUGED NJL MODEL; QUARK CONDENSATE; THERMODYNAMICS; SYSTEM 56888 AB The gap equation for the fermion in nuclear medium is obtained in a 56889 two-flavor gauged Nambu-Jona-Lasino (NJL) model using the 56890 Schwinger-Dyson (SD) equations. The gap equation is solved with a 56891 quenched truncation. Compared to the four-fermion interaction, the 56892 one-gluon-exchange interaction accounts for considerable contributions 56893 (about 15-50%) to dynamically generated fermion mass. With 56894 incorporation of gluonic contributions into a scheme where there is 56895 only four-fermion interaction, the four-fermion coupling constant is 56896 made density dependent. Impacts of the density-dependent four-fermion 56897 (DDFF) coupling constants on quantities,, such as the fermion mass and 56898 the chiral order parameter as well as masses of mesons (sigma, pi), are 56899 estimated, The DDFF coupling constants lead to less density dependence 56900 of hadron masses and the larger critical density of chiral symmetry 56901 restoration than those from the pure four-fermion interaction, The 56902 calculated quantities are somehow dependent on the confinement scale 56903 Lambda(QCD). However, the range of Lambda(QCD) in the present 56904 parametrization can be determined by the saturation property of the 56905 gluonic contribution in the medium and it turns out quite small. 56906 C1 Natl Lab Heavy Ion Accelerator, Ctr Theoret Nucl Phys, Lanzhou 730000, Peoples R China. 56907 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China. 56908 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 56909 RP Jiang, WZ, Natl Lab Heavy Ion Accelerator, Ctr Theoret Nucl Phys, 56910 Lanzhou 730000, Peoples R China. 56911 CR ALKOFER R, 1996, PHYS REP, V265, P139 56912 APPELQUIST T, 1988, P 12 J HOPK WORKSH C 56913 BARDEEN WA, 1989, NUCL PHYS B, V323, P493 56914 BARDEEN WA, 1990, PHYS REV D, V41, P1647 56915 BERNARD V, 1987, PHYS REV D, V36, P818 56916 BERNARD V, 1988, NUCL PHYS A, V489, P647 56917 BIJNENS J, 1991, PHYS LETT B, V273, P483 56918 BIJNENS J, 1996, PHYS REP, V265, P369 56919 CHRISTOV CV, 1990, NUCL PHYS A, V510, P689 56920 CUGNON J, 1996, NUCL PHYS A, V598, P515 56921 ELIZALDE E, 1994, PHYS REV D, V49, P5551 56922 GEYER B, 1996, PHYS REV D, V53, P7321 56923 HARADA M, 1994, PROG THEOR PHYS, V92, P1161 56924 HATSUDA T, 1994, PHYS REP, V247, P221 56925 HENLEY EM, 1990, NUCL PHYS A, V513, P667 56926 HIGASHIJIMA K, 1984, PHYS REV D, V29, P1228 56927 HINCHLIFFE I, 1996, PHYS REV D, V54, P77 56928 KING SF, 1990, PHYS LETT B, V241, P249 56929 KONDO K, 1989, PHYS REV D, V39, P2430 56930 KONDO K, 1993, MOD PHYS LETT A, V8, P2859 56931 KONDO KI, 1991, MOD PHYS LETT A, V6, P3385 56932 LEUNG CN, 1986, NUCL PHYS B, V273, P649 56933 LI GQ, 1994, PHYS LETT B, V338, P118 56934 MARCIANO WJ, 1984, PHYS REV D, V29, P580 56935 MIRANSKY VA, 1989, MOD PHYS LETT A, V4, P129 56936 MIRANSKY VA, 1989, MOD PHYS LETT A, V4, P1409 56937 MIRANSKY VA, 1989, PHYS LETT B, V221, P177 56938 NAMBU Y, 1961, PHYS REV, V122, P345 56939 REINDERS LJ, 1985, PHYS REP, V127, P1 56940 ZHUANG P, 1994, NUCL PHYS A, V576, P525 56941 NR 30 56942 TC 0 56943 SN 0556-2813 56944 J9 PHYS REV C 56945 JI Phys. Rev. C 56946 PD JAN 56947 PY 2002 56948 VL 65 56949 IS 1 56950 AR 015210 56951 DI ARTN 015210 56952 PG 9 56953 SC Physics, Nuclear 56954 GA 512EK 56955 UT ISI:000173308000052 56956 ER 56957 56958 PT J 56959 AU Ling, LW 56960 Wu, WB 56961 Jiang, DL 56962 Tan, SH 56963 Huang, ZR 56964 TI Dispersion and rheology of SiC whisker in mullite slurry 56965 SO JOURNAL OF INORGANIC MATERIALS 56966 DT Article 56967 DE mullite; SiC whisker; dispersant; sedimentational volumn 56968 ID MECHANICAL-PROPERTIES; COMPOSITES 56969 AB The character of dispersion of SiC whiskers in mullite slurry was 56970 studied. The relationship between pH value or/and dispersant and 56971 dispersion of SiC whisker was discussed via the sedimentation 56972 experiment and rheology test. The results show that the rheological 56973 properties of the mullite slurry are affected by the addition of the 56974 whisker. Well dispersed slurry can be obtained with pH value and 56975 dispersant content as 11wt% and 5wt%, respectively. The dispersion 56976 techniques in the study can improve the character of dispersion of SiC 56977 whisker in mullite slurry, increasing the structure uniformity of the 56978 slurry. 56979 C1 Shanghai Univ, Coll Mat, Dept Inorgan Mat, Shanghai 201800, Peoples R China. 56980 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China. 56981 RP Ling, LW, Shanghai Univ, Coll Mat, Dept Inorgan Mat, Shanghai 201800, 56982 Peoples R China. 56983 CR ARMOR JN, 1988, J AM CERAM SOC, V71, P938 56984 BECHER PF, 1988, J AM CERAM SOC, V71, P148 56985 HIRATA Y, 1990, J CERAM SOC JPN, V98, P951 56986 HIRATA Y, 1990, J MATER RES, V5, P640 56987 HIRATA Y, 1991, J AM CERAM SOC, V74, P2438 56988 HOMENY J, 1987, AM CERAM SOC BULL, V66, P333 56989 LIO S, 1989, J AM CERAM SOC, V72, P1880 56990 RUH R, 1988, J AM CERAM SOC, V71, P503 56991 SAMANTA SC, 1985, CERAM ENG SCI P, V6, P663 56992 USHIFUSA N, 1991, J AM CERAM SOC, V74, P2443 56993 WEI GC, 1987, AM CERAM SOC B, V66, P3339 56994 NR 11 56995 TC 0 56996 SN 1000-324X 56997 J9 J INORG MATER 56998 JI J. Inorg. Mater. 56999 PD NOV 57000 PY 2001 57001 VL 16 57002 IS 6 57003 BP 1084 57004 EP 1088 57005 PG 5 57006 SC Materials Science, Ceramics 57007 GA 512HY 57008 UT ISI:000173320000009 57009 ER 57010 57011 PT J 57012 AU Pu, DG 57013 Tian, WW 57014 TI Globally convergent inexact generalized Newton's methods for nonsmooth 57015 equations 57016 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 57017 DT Article 57018 DE nonsmooth equations; inexact generalized Newton's method; global 57019 convergence; superlinear convergence rate 57020 AB In this paper, motivated by the Martinez and Qi methods (J. Comput. 57021 Appl. Math. 60 (1995) 127), we propose one type of globally convergent 57022 inexact generalized Newton's methods to solve nonsmooth equations in 57023 which the functions are nondifferentiable, but arc Lipschitz 57024 continuous. The methods make the norm of the functions decreasing. 57025 These methods are implementable and globally convergent. We also prove 57026 that the algorithms have superlinear convergence rates under some mild 57027 conditions. (C) 2002 Published by Elsevier Science B.V. 57028 C1 Tongji Univ, Dept Math, Tongji, Peoples R China. 57029 Shanghai Univ, Dept Math, Shanghai 200041, Peoples R China. 57030 RP Pu, DG, Tongji Univ, Dept Math, Tongji, Peoples R China. 57031 CR CLARKE FH, 1990, OPTIMIZATION NONSMOO 57032 DEMBO RS, 1982, SIAM J NUMER ANAL, V19, P400 57033 DEMBO RS, 1983, MATH PROGRAM, V26, P190 57034 EISENSTAT SC, 1994, SIAM J OPTIMIZ, V4, P393 57035 FISCHER A, 1992, OPTIMIZATION, V24, P269 57036 GOWDA MS, 1998, ALGORIC THEOREMS NON 57037 GOWDA MS, 1998, CHARACTERIZATIONS P 57038 MARTINEZ JM, 1995, J COMPUT APPL MATH, V60, P127 57039 PANG JS, 1995, J OPTIMIZ THEORY APP, V85, P633 57040 PU DG, 1998, J COMPUT APPL MATH, V93, P107 57041 QI L, 1993, MATH PROGRAM, V58, P353 57042 QI L, 1996, 965 AMR U NEW S WAL 57043 QI LQ, 1993, MATH OPER RES, V18, P227 57044 NR 13 57045 TC 0 57046 SN 0377-0427 57047 J9 J COMPUT APPL MATH 57048 JI J. Comput. Appl. Math. 57049 PD JAN 1 57050 PY 2002 57051 VL 138 57052 IS 1 57053 BP 37 57054 EP 49 57055 PG 13 57056 SC Mathematics, Applied 57057 GA 511EV 57058 UT ISI:000173252400003 57059 ER 57060 57061 PT J 57062 AU Wei, Q 57063 Wang, Q 57064 Shi, JL 57065 Chen, YY 57066 TI Nonlinear interaction between solitons and radiation 57067 SO ACTA PHYSICA SINICA 57068 DT Article 57069 DE dressing method; soliton-like wave; soliton; radiation 57070 ID FIBERS 57071 AB In this paper, the explicit formula of Jost function pairs in the case 57072 of pure radiation is derived by using the dressing method and, the 57073 analysis of the interaction between solitons and radiation is made. It 57074 is found that in the course of transmission, the optical pulse, whose 57075 amplitude decays according to the law of the negative square root of 57076 power index along the propagating direction, ultimately evolves into 57077 the form of soliton-like wave in the absence of radiation. It is 57078 revealed that the factor gamma plays an important role in the spectrum 57079 properties for the output of the optical pulse. The dynamical behaviour 57080 of the evolution of soliton-like waves during the interaction of 57081 solitons and radiation is also analyzed. 57082 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 57083 RP Wei, Q, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 57084 CR ALONSO LM, 1985, PHYS REV D, V32, P1459 57085 GORDON JP, 1983, OPT LETT, V8, P596 57086 KUZNETSOV EA, 1995, PHYSICA D, V87, P201 57087 MANAKOV SV, 1973, ZH EKSP TEOR FIZ, V65, P1392 57088 MOLLENAUER LF, 1985, OPT LETT, V10, P229 57089 MOLLENAUER LF, 1993, ELECTRON LETT, V29, P910 57090 SATSUMA J, 1974, PROGR THEOR PHYS S, V55, P284 57091 SEGUR H, 1976, J MATH PHYS, V17, P714 57092 ZAKHAROV VE, 1971, ZH EKSP TEOR FIZ, V61, P118 57093 ZAKHAROV VE, 1974, SOV PHYS JETP, V38, P693 57094 ZAKHAROV VE, 1978, ZH EKSP TEOR FIZ, V74, P1953 57095 ZAKHAROV VE, 1980, THEORY SOLITONS 57096 NR 12 57097 TC 2 57098 SN 1000-3290 57099 J9 ACTA PHYS SIN-CHINESE ED 57100 JI Acta Phys. Sin. 57101 PD JAN 57102 PY 2002 57103 VL 51 57104 IS 1 57105 BP 99 57106 EP 103 57107 PG 5 57108 SC Physics, Multidisciplinary 57109 GA 512CZ 57110 UT ISI:000173304700017 57111 ER 57112 57113 PT J 57114 AU Zhang, JC 57115 Chen, ZP 57116 Li, PL 57117 Cao, SX 57118 TI Positron annihilation in oxygen-deficient YBa2Cu3O7-delta cuprate at 77 57119 K and 300 K 57120 SO MODERN PHYSICS LETTERS B 57121 DT Article 57122 ID SUPERCONDUCTIVITY; TEMPERATURE; LIFETIME; ELECTRON; IMPURITIES; 57123 BEHAVIOR; VACANCY; DENSITY 57124 AB The YBa2Cu3O7-delta cuprate with oxygen-deficiency (delta = 0.06 57125 similar to 0.68) has been systematically studied by positron lifetime 57126 experiment at 77 K and 300 K. It is found that there exists an evident 57127 dependence of positron lifetime parameters on oxygen-deficiency 6 and 57128 an abrupt change near the orthorhombic-tetragonal phase transition. The 57129 local electron density n(e) and vacancy concentration C-v are evaluated 57130 as a function of oxygen deficiency delta. The effect of the mechanism 57131 of charge transfer on local electronic structure is given in detail. 57132 The results show the existence of a weak localization of electrons in 57133 the tetragonal phase. The positron annihilation mechanism and its 57134 relation to superconductivity are also discussed. 57135 C1 CCAST, World Lab, Beijing 100080, Peoples R China. 57136 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 57137 Zhengzhou Inst Light Ind, Dept Phys, Zhengzhou 450002, Peoples R China. 57138 RP Zhang, JC, CCAST, World Lab, POB 8730, Beijing 100080, Peoples R China. 57139 CR BANERJEE T, 2000, SOLID STATE COMMUN, V114, P655 57140 BARBIELLINI B, 1991, PHYS REV B, V43, P7810 57141 BERGERSEN B, 1969, SOLID STATE COMMUN, V7, P1203 57142 BHARATHI A, 1989, J PHYS-CONDENS MAT, V1, P1467 57143 BOBROFF J, 1999, PHYS REV LETT, V83, P4381 57144 BRANDT W, 1971, PHYS LETT A, V35, P109 57145 CHAKRABORTY B, 1989, PHYS REV B, V39, P215 57146 DE UY, 2000, PHYS REV B, V62, P14519 57147 GINSBERG DM, 1990, PHYSICAL PROPERTIES, P314 57148 GUPTA RP, 1977, PHYS REV LETT, V39, P1212 57149 HAUTOJARRI P, 1979, POSITRON SOLIDS 57150 JEAN YC, 1988, PHYS REV LETT, V60, P1069 57151 JEAN YC, 1990, PHYS REV LETT, V64, P1593 57152 JORGENSEN JD, 1987, PHYS REV B, V36, P5731 57153 JORGENSEN JD, 1991, PHYS TODAY, V44, P34 57154 KWOK WK, 1988, PHYS REV B, V37, P106 57155 TARASCON JM, 1988, PHYS REV B, V37, P7458 57156 VEHANEN A, 1982, PHYS REV B, V25, P762 57157 ZHANG J, 1994, MOD PHYS LETT B, V8, P1577 57158 ZHANG J, 1999, PHYS LETT A, V26, P452 57159 ZHANG JC, 1993, PHYS REV B, V48, P16830 57160 ZHANG QR, 1993, CHIN SCI A, V23, P409 57161 NR 22 57162 TC 0 57163 SN 0217-9849 57164 J9 MOD PHYS LETT B 57165 JI Mod. Phys. Lett. B 57166 PD NOV 10 57167 PY 2001 57168 VL 15 57169 IS 26 57170 BP 1181 57171 EP 1189 57172 PG 9 57173 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical 57174 GA 507ZK 57175 UT ISI:000173061400002 57176 ER 57177 57178 PT J 57179 AU Gao, Y 57180 TI Newton methods for solving nonsmooth equations via a new subdifferential 57181 SO MATHEMATICAL METHODS OF OPERATIONS RESEARCH 57182 DT Article 57183 DE nonsmooth equations; nonsmooth optimization; Newton methods; 57184 inexact-Newton methods; semismoothness; composite functions 57185 AB A new subdifferential for a locally Lipschitzian function is proposed. 57186 Based on this subdifferential, Newton methods and inexact-Newton 57187 methods for solving the system of nonsmooth equations and for solving 57188 the system of equations of smooth compositions of nonsmooth functions, 57189 are developed. The Q-superlinear convergence of Newton methods and the 57190 Q-linear convergence of inexact-Newton methods are shown. The present 57191 Newton methods and inexact-Newton methods could be viewed as the 57192 extensions of previous ones with same convergent results. 57193 C1 Shanghai Univ Sci & Technol, Sch Management, Shanghai 200093, Peoples R China. 57194 RP Gao, Y, Shanghai Univ Sci & Technol, Sch Management, Jungong Rd, 57195 Shanghai 200093, Peoples R China. 57196 CR CHEN WJ, 1996, SCI CHINA SER A, V39, P528 57197 CHEN X, 1997, COMPUTING, V58, P281 57198 CLARKE FH, 1983, OPTIMIZATION NONSMOO 57199 DEMYANOV VF, 1996, QUASIDIFFERENTIABILI 57200 HIRIARTURRUTY JB, 1993, CONVEX ANAL MINIMIZA 57201 MENG F, 1998, J DALIAN U TECHNOLOG, V38, P621 57202 MIFFLIN R, 1977, SIAM J CONTROL OPTIM, V15, P957 57203 ORTEGA JM, 1970, ITERATIVE SOLUTION N 57204 POTRA FA, 1998, NUMER MATH, V80, P305 57205 QI L, 1993, MATH PROGRAM, V58, P353 57206 QI LQ, 1993, MATH OPER RES, V18, P227 57207 SUN DF, 1997, SIAM J OPTIMIZ, V7, P463 57208 NR 12 57209 TC 1 57210 SN 1432-2994 57211 J9 MATH METHODS OPER RES 57212 JI Math. Method Oper. Res. 57213 PD DEC 57214 PY 2001 57215 VL 54 57216 IS 2 57217 BP 239 57218 EP 257 57219 PG 19 57220 SC Mathematics, Applied; Operations Research & Management Science 57221 GA 510DV 57222 UT ISI:000173194200004 57223 ER 57224 57225 PT J 57226 AU Xu, SB 57227 Zhu, YD 57228 Xing, H 57229 Zhou, BN 57230 Yu, ZX 57231 TI Corrosion resistance of the intermetallic compound, NiAl,in a molten 57232 carbonate fuel cell environment 57233 SO JOURNAL OF POWER SOURCES 57234 DT Article 57235 DE corrosion resistance; molten carbonate; intermetallic compound NiAl 57236 ID SURFACE CHARACTERIZATION METHODS; BIPOLAR PLATE MATERIALS; WET-SEAL 57237 AREA; BEHAVIOR; ALLOYS; NICKEL; OXIDATION; REDUCTION; CHROMIUM; IRON 57238 AB The corrosion resistance of intermetallic NiAl, superalloy GH217 and an 57239 18-8 stainless steel in molten carbonates at 923 K was determined by 57240 weight loss and electrochemical measurements. Morphology and structure 57241 of the corrosion products were characterized using a combination of 57242 electron probe and X-ray diffraction (XRD). The corrosion resistance of 57243 NiAl is the best among the materials investigated. NiAl produces more 57244 protective corrosion products and forms more complete oxide films on 57245 the surface than GH217 or 18-8 stainless steel. (C) 2002 Elsevier 57246 Science B.V. All rights reserved. 57247 C1 Univ New Brunswick, Dept Chem Engn, Fredericton, NB E3B 5A3, Canada. 57248 Shanghai Univ, Dept Mat Sci & Engn, Shanghai, Peoples R China. 57249 RP Xu, SB, Univ New Brunswick, Dept Chem Engn, Fredericton, NB E3B 5A3, 57250 Canada. 57251 CR APPLEBY AJ, 1989, FUEL CELL HDB 57252 BIEDENKOPF P, 1998, ELECTROCHIM ACTA, V44, P683 57253 BRUMM MW, 1992, CORROS SCI, V33, P1677 57254 BRUMM MW, 1994, CORROS SCI, V36, P37 57255 DONADO RA, 1984, J ELECTROCHEM SOC, V131, P2535 57256 FUJIMOTO N, 1998, J POWER SOURCES, V71, P231 57257 HSU HS, 1986, J ELECTROCHEM SOC, V133, P2077 57258 HWANG ER, 1998, J POWER SOURCES, V76, P48 57259 INGRAM MD, 1965, ELECTROCHIM ACTA, V10, P783 57260 JANZ GJ, 1964, ELECTROCHIM ACTA, V9, P1269 57261 KAWABATA Y, 2000, J POWER SOURCES, V86, P324 57262 NISHINA T, 1990, P ELECTROCHEM SOC, V90, P438 57263 NISHINA T, 1992, P INT FUEL CELL C NE, P189 57264 RYBICKI GC, 1989, OXID MET, V32, P431 57265 SAUTHOFF G, 1990, Z METALLKD, V81, P855 57266 SHORES PA, P 3 S MOLT CARB FUEL, P214 57267 TOMCZYK P, 1993, J ELECTROANAL CHEM, V353, P177 57268 UCHIDA I, 1986, J ELECTROANAL CH INF, V206, P229 57269 VOSEN JPT, P 3 INT S CELL TECHN, P278 57270 VOSSEN JPT, 1994, J ELECTROCHEM SOC, V141, P3040 57271 VOSSEN JPT, 1996, J ELECTROCHEM SOC, V143, P58 57272 VOSSEN JPT, 1996, J ELECTROCHEM SOC, V143, P66 57273 XIE G, 1990, J POWER SOURCES, V32, P135 57274 XING H, 2000, J SHANGHAI U, V6, P199 57275 YUH CY, 1987, CORROSION, V87, P176 57276 YUH CY, 1988, AICHE J, V34, P1949 57277 ZHU BH, 1999, CORROS SCI, V41, P1497 57278 ZHU BH, 1999, CORROS SCI, V41, P1515 57279 NR 28 57280 TC 3 57281 SN 0378-7753 57282 J9 J POWER SOURCES 57283 JI J. Power Sources 57284 PD JAN 1 57285 PY 2002 57286 VL 103 57287 IS 2 57288 BP 230 57289 EP 236 57290 PG 7 57291 SC Electrochemistry; Energy & Fuels 57292 GA 509TX 57293 UT ISI:000173166700008 57294 ER 57295 57296 PT J 57297 AU Li, ZN 57298 Feng, ZZ 57299 TI Counterexamples against some families of chromatically unique graphs 57300 SO DISCRETE MATHEMATICS 57301 DT Article 57302 DE graphs; chromatically unique graphs; chromatic polynomials 57303 AB In this note, we show that there are some counterexamples against two 57304 families of chromatically unique graphs H-5(j,k, l) and H-6(p, q) given 57305 by Koh and Teo ([1],[2]). (C) 2002 Elsevier Science B.V. All rights 57306 reserved. 57307 C1 Shanghai Univ, Dept Appl Math, Shanghai 200041, Peoples R China. 57308 RP Li, ZN, Shanghai Univ, Dept Appl Math, 80 Shanxi Beilu, Shanghai 57309 200041, Peoples R China. 57310 CR KOH KM, 1990, GRAPH COMBINATOR, V6, P259 57311 KOH KM, 1994, DISCRETE MATH, V127, P243 57312 ZU LN, 1997, DISCRETE MATH, V172, P193 57313 NR 3 57314 TC 0 57315 SN 0012-365X 57316 J9 DISCRETE MATH 57317 JI Discret. Math. 57318 PD JAN 28 57319 PY 2002 57320 VL 243 57321 IS 1-3 57322 BP 257 57323 EP 258 57324 PG 2 57325 SC Mathematics 57326 GA 507ZL 57327 UT ISI:000173061500023 57328 ER 57329 57330 PT J 57331 AU Wan, JTK 57332 Gu, GQ 57333 Yu, KW 57334 TI Nonlinear ER effects in an ac applied field 57335 SO COMPUTER PHYSICS COMMUNICATIONS 57336 DT Article 57337 DE electrorheology; dipole approximation; nonlinear polarization; 57338 multipolar polarizability; multiple images method 57339 ID INTERPARTICLE FORCE; HYPERSPHERICAL INCLUSIONS; ELECTRORHEOLOGICAL 57340 FLUIDS; DIELECTRIC FUNCTION; COMPOSITES; O(C(2)) 57341 AB The electric field used in most electrorheological (FR) experiments is 57342 usually quite high, and nonlinear ER effects have been theoretically 57343 predicted and experimentally measured recently. 57344 A direct method of measuring the nonlinear ER effects is to examine the 57345 frequency dependence of the same effects. For a sinusoidal applied 57346 field, we calculate the ac response which generally includes higher 57347 harmonics. 57348 In is work, we develop a multiple image formula, and calculate the 57349 total dipole moments of a pair of dielectric spheres, mbedded in a 57350 nonlinear host. The higher harmonics due to the nonlinearity are 57351 calculated systematically. (C) 2001 Elsevier Science B.V. All rights 57352 reserved. 57353 C1 Chinese Univ Hong Kong, Dept Phys, Sha Tin, Hong Kong, Peoples R China. 57354 Shanghai Univ Sci & Technol, Sch Comp Engn, Shanghai 200093, Peoples R China. 57355 RP Wan, JTK, Chinese Univ Hong Kong, Dept Phys, Sha Tin, Hong Kong, 57356 Peoples R China. 57357 CR CHOY TC, 1998, P ROY SOC LOND A MAT, V454, P1973 57358 CHOY TC, 1998, P ROY SOC LOND A MAT, V454, P1993 57359 FELICI N, 1994, ELECTRORHEOLOGICAL F, P139 57360 GAO L, 2000, PHYS REV E B, V61, P6011 57361 GU GQ, 1992, PHYS REV B, V46, P4502 57362 GU GQ, 2000, PHYSICA B, V279, P62 57363 KLINGENBERG DJ, 1998, MRS BULL, V23, P30 57364 LEVY O, 1995, PHYS REV E, V52, P3184 57365 POLADIAN L, 1991, PHYS REV B, V44, P2092 57366 WAN JTK, 2000, INT J MOD PHYS B, V14, P603 57367 WAN JTK, 2000, PHYS REV E B, V62, P6846 57368 WAN JTK, 2000, PHYSICA B, V279, P75 57369 WAN JTK, 2001, PHYS REV E 1, V63 57370 WAN JTK, 2001, TECHN P 2001 INT C C, P165 57371 WAN WMV, 1996, PHYS REV B, V54, P3946 57372 YU KW, 1993, PHYS REV B, V47, P14150 57373 YU KW, 1996, PHYS LETT A, V210, P115 57374 YU KW, 2000, COMPUT PHYS COMMUN, V129, P177 57375 YU KW, 2000, PHYSICA B, V279, P78 57376 NR 19 57377 TC 1 57378 SN 0010-4655 57379 J9 COMPUT PHYS COMMUN 57380 JI Comput. Phys. Commun. 57381 PD DEC 15 57382 PY 2001 57383 VL 142 57384 IS 1-3 57385 BP 457 57386 EP 463 57387 PG 7 57388 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical 57389 GA 508QD 57390 UT ISI:000173099200089 57391 ER 57392 57393 PT J 57394 AU Wang, Y 57395 Zhang, C 57396 Song, Y 57397 Yang, K 57398 Fang, G 57399 Xin, X 57400 TI Nonlinear refraction and absorption in heterothiometallic planar 57401 clusters 57402 SO APPLIED PHYSICS B-LASERS AND OPTICS 57403 DT Article 57404 ID OPTICAL LIMITING PROPERTIES; CRYSTAL-STRUCTURE 57405 AB The nonlinear absorption and refraction of the clusters 57406 [MoS4Cu4Br2(py)(6)] and [Et4N](2)[MoS4Cu4(SCN)(4) (2-pic)(4)] have been 57407 investigated using the z-scan technique with a ns laser at 532 nm 57408 wavelength. They have the same planar 'open' structures and the same 57409 skeleton metal atoms; the only difference is that the former has 57410 halogen ligands while the latter possesses pseudo-halogen groups - SCN 57411 - as ligands. Alteration of nonlinear refractive index and enhancement 57412 of nonlinear absorption were found in these two clusters. A steady 57413 state model of excited state nonlinear refraction was proposed to 57414 explain this phenomenon. 57415 C1 Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China. 57416 Nanjing Univ, Dept Chem, State Key Lab Coordinat Chem, Nanjing 210093, Peoples R China. 57417 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China. 57418 RP Wang, Y, Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China. 57419 CR CHEN ZR, 1995, J PHYS CHEM-US, V99, P8717 57420 FANG G, 2000, OPT COMMUN, V181, P523 57421 FANG GY, 2000, OPT COMMUN, V181, P97 57422 GE P, 1997, J PHYS CHEM B, V101, P27 57423 HEFLIN JR, 1996, OPT SOC A, V9, P179 57424 HOGGARD PE, 1996, CHEM MATER, V8, P2218 57425 HOU HW, 1996, J CHEM SOC FARADAY T, V92, P2343 57426 JI W, 1995, J PHYS CHEM-US, V99, P17297 57427 LI CF, 1994, J OPT SOC AM B, V11, P1356 57428 SALANE G, 1995, INORG CHEM, V34, P4785 57429 SHEIKBAHAE M, 1990, IEEE J QUANTUM ELECT, V26, P760 57430 SHEIKBAHAE M, 1990, PHYS REV LETT, V65, P96 57431 SHI S, 1994, J AM CHEM SOC, V116, P3615 57432 SHI S, 1995, CHEM MATER, V7, P1519 57433 SONG YL, 1999, OPT COMMUN, V168, P131 57434 SONG YL, 2000, OPT COMMUN, V186, P105 57435 TUTT L, 1992, NATURE, V356, P255 57436 ZHANG C, 2001, CHEM COMMUN, V182, P843 57437 ZHENG HG, 1997, J CHEM SOC DALT 0707, P2357 57438 NR 19 57439 TC 0 57440 SN 0946-2171 57441 J9 APPL PHYS B-LASERS OPT 57442 JI Appl. Phys. B-Lasers Opt. 57443 PD JAN 57444 PY 2002 57445 VL 74 57446 IS 1 57447 BP 43 57448 EP 46 57449 PG 4 57450 SC Physics, Applied; Optics 57451 GA 509WC 57452 UT ISI:000173171900007 57453 ER 57454 57455 PT J 57456 AU Cheng, JL 57457 Li, L 57458 Yu, SJ 57459 Song, Y 57460 Wen, XL 57461 TI Assessing changes in the mechanical condition of rock masses using 57462 P-wave computerized tomography 57463 SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES 57464 DT Article 57465 C1 Shanghai Univ Sci & Technol, Res Inst Special Min, Shandong 271019, Peoples R China. 57466 China Univ Min & Technol, Coll Earth Sci, Xuzhou 221008, Peoples R China. 57467 RP Cheng, JL, Shanghai Univ Sci & Technol, Res Inst Special Min, Shandong 57468 271019, Peoples R China. 57469 CR CHENG JL, 1999, J CHINA COAL SOC, V24, P576 57470 CHENG JL, 2000, ROCKS TEST DETECTION, P91 57471 GUO WJ, 1998, RECENT STUDY PROGRES, P46 57472 NOLET G, 1990, SEISMIC TOMOGRAPHY, P69 57473 WANG YS, 1992, CALCULATION GEOPHYS, V15, P32 57474 YANG WC, 1993, APPL SEISMIC TOMOGRA, P5 57475 YANG WC, 1997, THEORY METHODS GEOPH, P134 57476 NR 7 57477 TC 1 57478 SN 1365-1609 57479 J9 INT J ROCK MECH MINING SCI 57480 JI Int. J. Rock Mech. Min. Sci. 57481 PD OCT 57482 PY 2001 57483 VL 38 57484 IS 7 57485 BP 1065 57486 EP 1070 57487 PG 6 57488 SC Engineering, Geological; Mining & Mineral Processing 57489 GA 506PZ 57490 UT ISI:000172982100012 57491 ER 57492 57493 PT J 57494 AU Jiang, EX 57495 TI An extension of the roots separation theorem 57496 SO ANNALS OF OPERATIONS RESEARCH 57497 DT Article 57498 DE eigenvalue problem; symmetric tridiagonal matrix; interlace theorem; 57499 divide-and-conquer method 57500 ID TRIDIAGONAL EIGENPROBLEM; DIVIDE 57501 AB Let T-n be an n x n unreduced symmetric tridiagonal matrix with 57502 eigenvalues lambda (1)<<lambda>(2)<... <lambda (n) and W-k, is an (n-1) 57503 x (n-1) submatrix by deleting the kth row and the kth column from T-n, 57504 k = 1, 2,..., n. Let mu (1)less than or equal to mu (2)less than or 57505 equal to...less than or equal to mu (n-1) be the eigenvalues of W-k. It 57506 is proved that if W-k has no multiple eigenvalue, then 57507 lambda (1)<<mu>(1)<<lambda>(2)<<mu>(2)<...<lambda 57508 (n-1)<<mu>(n-1)<<lambda>(n): 57509 otherwise if mu (i) = mu (i+1) is a multiple eigenvalue of W-k, then 57510 the above relationship still holds except that the inequality 57511 mu (i)<<lambda>(i+1)<<mu>(i+1) 57512 is replaced by mu (1)=lambda (i+1)=mu (i+1). 57513 C1 Shanghai Univ, Dept Math, Shanghai, Peoples R China. 57514 RP Jiang, EX, Shanghai Univ, Dept Math, Shanghai, Peoples R China. 57515 CR CUPPEN JJM, 1981, NUMER MATH, V36, P177 57516 DEMMEL JW, 1997, APPL NUMERICAL LINEA 57517 GLADWELL GML, 1986, INVERSE PROBLEMS VIB 57518 GU M, 1995, SIAM J MATRIX ANAL A, V16, P172 57519 HILL RO, 1992, SIAM J MATRIX ANAL A, V13, P239 57520 JIANG EX, 1984, SYMMETRIC MATRIX COM 57521 PAIGE CC, 1971, THESIS U LONDON 57522 RALSTON A, 1968, MATH METHODS DIAGONA 57523 SORENSEN DC, 1991, SIAM J NUMER ANAL, V28, P1752 57524 NR 9 57525 TC 1 57526 SN 0254-5330 57527 J9 ANN OPER RES 57528 JI Ann. Oper. Res. 57529 PY 2001 57530 VL 103 57531 BP 315 57532 EP 327 57533 PG 13 57534 SC Operations Research & Management Science 57535 GA 507TN 57536 UT ISI:000173045500019 57537 ER 57538 57539 PT J 57540 AU Jiang, XY 57541 Zhang, ZL 57542 Zheng, XY 57543 Wu, YZ 57544 Xu, SH 57545 TI A blue organic emitting diode from anthracene derivative 57546 SO THIN SOLID FILMS 57547 DT Article 57548 DE blue organic emitting diode; anthracene derivative; stability; 57549 distyrylarylene 57550 ID ELECTROLUMINESCENT DEVICE; LAYER; DOPANT 57551 AB A blue, organic, light-emitting diode (OLED) has been made from a new 57552 blue emitting material. The structure of the blue device is indium tin 57553 oxide (ITO)/CuPc/NPB/JBEM:perylene/Alq/MgAg. Here copper phthalocyanine 57554 (CuPc) is used as a buffer layer, 57555 N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) as 57556 the hole transporting layer, 9,10-bis(3'5'-diaryl)phenyl anthracene 57557 (JBEM) as the blue emitting host, perylene as the blue dopant, 57558 Tris(8-guinolinolato) aluminium complex (Alq) as the electron 57559 transporting material, and M-Ag alloy as the cathode. The blue device 57560 has a maximum luminance of 7526 cd/m(2), and the luminance at a 57561 cut-rent density of 20 mA/cm(2) is 408 cd/m(2). It has a maximum 57562 efficiency of 1.45 lm/W., Commission Internationale de l'Eclairage 57563 (CIE) co-ordinates x = 0.14, y = 0.21, and a half-life of 1035 h at 57564 initial luminance of 100 cd/m(2). It shows a better stability than the 57565 blue device from distyrylarylene derivatives as the blue emitting host, 57566 and also perylene as the dopant with the same structure. (C) 2001 57567 Elsevier Science B.V. All rights reserved. 57568 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China. 57569 RP Jiang, XY, Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R 57570 China. 57571 CR BURROWS PE, 1997, IEEE T ELECTRON DEV, V44, P1188 57572 BURROWS PE, 2000, APPL PHYS LETT, V76, P2493 57573 CHEN CH, 1998, COORDIN CHEM REV, V171, P161 57574 CHOONG VE, 1999, APPL PHYS LETT, V75, P172 57575 ERA M, 1991, CHEM PHYS LETT, V178, P488 57576 GAO ZQ, 1999, APPL PHYS LETT, V74, P865 57577 HAMADA Y, 1992, JPN J APPL PHYS PT 1, V31, P1812 57578 HAMADA Y, 1997, IEEE T ELECTRON DEV, V44, P1208 57579 HAMADA Y, 1999, APPL PHYS LETT, V75, P1682 57580 HOSOKAWA C, 1995, APPL PHYS LETT, V67, P3853 57581 JIANG XZ, 2000, APPL PHYS LETT, V76, P1813 57582 KIDO J, 1995, SCIENCE, V267, P1332 57583 MI BX, 1999, APPL PHYS LETT, V75, P4055 57584 SAKAKIBARA Y, 1999, APPL PHYS LETT, V74, P2587 57585 SHEN ZL, 1997, SCIENCE, V276, P2009 57586 SHI JM, 1997, APPL PHYS LETT, V70, P1665 57587 SHI JM, 1999, 5972247, US 57588 STRUKELJ M, 1996, J AM CHEM SOC, V118, P1213 57589 TANG CW, 1987, APPL PHYS LETT, V51, P913 57590 TAO XT, 1999, APPL PHYS LETT, V75, P1655 57591 YOSHIDA M, 1996, JPN J APPL PHYS 2, V35, L397 57592 YU WL, 1999, APPL PHYS LETT, V75, P3270 57593 NR 22 57594 TC 8 57595 SN 0040-6090 57596 J9 THIN SOLID FILMS 57597 JI Thin Solid Films 57598 PD DEC 17 57599 PY 2001 57600 VL 401 57601 IS 1-2 57602 BP 251 57603 EP 254 57604 PG 4 57605 SC Materials Science, Multidisciplinary; Physics, Applied; Physics, 57606 Condensed Matter 57607 GA 505EW 57608 UT ISI:000172900200036 57609 ER 57610 57611 PT J 57612 AU Guo, BY 57613 Ma, HP 57614 Tadmor, E 57615 TI Spectral vanishing viscosity method for nonlinear conservation laws 57616 SO SIAM JOURNAL ON NUMERICAL ANALYSIS 57617 DT Article 57618 DE spectral method; vanishing viscosity; conservation law 57619 ID APPROXIMATIONS; CONVERGENCE; EDGES 57620 AB We propose a new spectral viscosity (SV) scheme for the accurate 57621 solution of nonlinear conservation laws. It is proved that the SV 57622 solution converges to the unique entropy solution under appropriate 57623 reasonable conditions. The proposed SV scheme is implemented directly 57624 on high modes of the computed solution. This should be compared with 57625 the original nonperiodic SV scheme introduced by Maday, Ould Kaber, and 57626 Tadmor in [SIAM J. Numer. Anal., 30 (1993), 321-342], where SV is 57627 activated on the derivative of the SV solution. The new proposed SV 57628 method could be viewed as a correction of the former, and it offers an 57629 improvement which is confirmed by our numerical experiments. A 57630 postprocessing method is implemented to greatly enhance the accuracy of 57631 the computed SV solution. The numerical results show the efficiency of 57632 the new method. 57633 C1 Shanghai Normal Univ, Sch Math Sci, Shanghai 200234, Peoples R China. 57634 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 57635 Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA. 57636 RP Guo, BY, Shanghai Normal Univ, Sch Math Sci, Shanghai 200234, Peoples R 57637 China. 57638 CR ABARBANEL S, 1986, NUMERICAL METHODS FL, V2, P129 57639 ANDREASSEN O, 1994, J COMPUT PHYS, V110, P257 57640 BERNARDI C, 1992, APPROXIMATIONS SPECT 57641 CANUTO C, 1988, SPECTRAL METHOD FLUI 57642 CHEN GQ, 1990, MSRI0052791 57643 CHEN GQ, 1993, MATH COMPUT, V61, P629 57644 GELB A, 1999, APPL COMPUT HARMON A, V7, P101 57645 GELB A, 2000, APPL NUMER MATH, V33, P3 57646 GELB A, 2000, SIAM J NUMER ANAL, V38, P1389 57647 GOTTLIEB D, 1977, NUMERICAL ANAL SPECT 57648 GOTTLIEB D, 1985, PROGR SCI COMPUTING, V6, P357 57649 GOTTLIEB D, 1987, SIAM J NUMER ANAL, V24, P241 57650 GOTTLIEB D, 1992, J COMPUT APPL MATH, V43, P81 57651 GOTTLIEB D, 1997, SIAM REV, V39, P644 57652 GUO BY, 1998, SPECTRAL METHODS THE 57653 JOSEPH KT, 1999, ARCH RATION MECH AN, V147, P47 57654 KABER SMO, 1996, J COMPUT PHYS, V128, P165 57655 KARAMANOS GS, 2000, J COMPUT PHYS, V163, P22 57656 LAX PD, 1972, CBMS NSF REGIONAL C, V11 57657 LIE I, 1996, P 3 INT C SPECTR HIG, P121 57658 MA HP, 1998, SIAM J NUMER ANAL, V35, P869 57659 MA HP, 1998, SIAM J NUMER ANAL, V35, P893 57660 MADAY Y, 1989, SIAM J NUMER ANAL, V26, P854 57661 MADAY Y, 1993, SIAM J NUMER ANAL, V30, P321 57662 MAJDA A, 1978, MATH COMPUT, V30, P1041 57663 SCHOCHET S, 1990, SIAM J NUMER ANAL, V27, P1142 57664 SHU CW, 1995, J SCI COMPUT, V10, P357 57665 SMOLLER J, 1983, SHOCK WAVES REACTION 57666 TADMOR E, 1989, SIAM J NUMER ANAL, V26, P30 57667 TADMOR E, 1990, COMPUT METHOD APPL M, V80, P197 57668 TADMOR E, 1991, SIAM J NUMER ANAL, V28, P891 57669 TADMOR E, 1993, MATH COMPUT, V60, P245 57670 TADMOR E, 1993, NUMERICAL METHODS FL, V4, P69 57671 TARTAR L, 1979, RES NOTES MATH, V39, P136 57672 NR 34 57673 TC 5 57674 SN 0036-1429 57675 J9 SIAM J NUMER ANAL 57676 JI SIAM J. Numer. Anal. 57677 PD DEC 4 57678 PY 2001 57679 VL 39 57680 IS 4 57681 BP 1254 57682 EP 1268 57683 PG 15 57684 SC Mathematics, Applied 57685 GA 505RB 57686 UT ISI:000172928400008 57687 ER 57688 57689 PT J 57690 AU Ma, HP 57691 Sun, WW 57692 TI Optimal error estimates of the Legendre-Petrov-Galerkin method for the 57693 Korteweg-de Vries equation 57694 SO SIAM JOURNAL ON NUMERICAL ANALYSIS 57695 DT Article 57696 DE Legendre-Petrov-Galerkin; pseudospectral; Korteweg-de Vries equation 57697 ID PSEUDOSPECTRAL METHOD; DEVRIES EQUATION; DIRECT SOLVERS; POLYNOMIALS; 57698 STABILITY; 3RD-ORDER; 2ND-ORDER 57699 AB In this paper, the Legendre-Petrov-Galerkin method for the Korteweg de 57700 Vries equation with nonperiodic boundary conditions is analyzed. The 57701 nonlinear term is computed with the Legendre spectral method and some 57702 pseudospectral methods, respectively. Optimal error estimates in 57703 L-2-norm are obtained for both semidiscrete and fully discrete schemes. 57704 The method is also applicable to some (2m + 1)th-order differential 57705 equations. 57706 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 57707 City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China. 57708 City Univ Hong Kong, Ctr Math Sci, Half Year Programme Numer Anal, Kowloon, Hong Kong, Peoples R China. 57709 RP Ma, HP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 57710 CR ABE K, 1980, J COMPUT PHYS, V34, P202 57711 BERNARDI C, 1992, J COMPUT APPL MATH, V43, P53 57712 BERNARDI C, 1997, HDBK NUM AN 2, V5, P209 57713 BRESSAN N, 1990, COMPUT METHODS APPL, V80, P443 57714 CANUTO C, 1988, SPECTRAL METHODS FLU 57715 CAREY GF, 1991, COMPUT METHOD APPL M, V93, P1 57716 CHAN TF, 1985, SIAM J NUMER ANAL, V22, P441 57717 COUTSIAS EA, 1996, P 3 INT C SPECTR HIG, P21 57718 DJIDJELI K, 1995, J COMPUT APPL MATH, V58, P307 57719 FORNBERG B, 1978, PHILOS T ROY SOC A, V289, P373 57720 FORNBERG B, 1999, J COMPUT PHYS, V155, P456 57721 HUANG WZ, 1992, SIAM J NUMER ANAL, V29, P1626 57722 KUO PY, 1985, ACTA MATH SINICA, V28, P1 57723 LEVY D, 1998, SIAM REV, V40, P40 57724 LI J, 2000, NUMER METH PART D E, V16, P513 57725 MA HP, 1986, J COMPUT PHYS, V65, P120 57726 MA HP, 2000, SIAM J NUMER ANAL, V38, P1425 57727 MA HP, 2001, ADV SCI COMPUTING, P116 57728 MADAY Y, 1988, RAIRO MODEL MATH ANA, V22, P499 57729 MERRYFIELD WJ, 1993, J COMPUT PHYS, V105, P182 57730 PAVONI D, 1988, CALCOLO, V25, P311 57731 SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489 57732 SHEN J, 1995, SIAM J SCI COMPUT, V16, P74 57733 SZEGO G, 1975, ORTHOGONAL POLYNOMIA 57734 NR 24 57735 TC 4 57736 SN 0036-1429 57737 J9 SIAM J NUMER ANAL 57738 JI SIAM J. Numer. Anal. 57739 PD DEC 4 57740 PY 2001 57741 VL 39 57742 IS 4 57743 BP 1380 57744 EP 1394 57745 PG 15 57746 SC Mathematics, Applied 57747 GA 505RB 57748 UT ISI:000172928400014 57749 ER 57750 57751 PT J 57752 AU Yang, XC 57753 Bao, BR 57754 Cao, WG 57755 Sun, GX 57756 Li, Z 57757 TI Extraction of uranium(VI) with N,N '-dilauroylpiperazine in carbon 57758 tetrachloride 57759 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY 57760 DT Article 57761 AB A novel extractant, N,N'-dilauroylpiperazine (DLPEZ), was synthesized 57762 for the first time. The extraction of uranium(VI) with the novel 57763 extractant in carbon tetrachloride from aqueous nitric acid media has 57764 been studied. The dependence of extraction distribution ratio on the 57765 concentration of aqueous nitric acid, extractant salting-out agent and 57766 temperature was investigated and the enthalpy of the extraction was 57767 determined. 57768 C1 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China. 57769 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 57770 Jinan Univ, Dept Chem, Jinan 250022, Peoples R China. 57771 RP Yang, XC, Chinese Acad Sci, Shanghai Inst Nucl Res, POB 800-204, 57772 Shanghai 201800, Peoples R China. 57773 CR CARBORNNEL MC, 1988, SOLV EXTR ION EXCH, V5, P151 57774 MUSIKAS C, 1987, SOLVENT EXTR ION EXC, V5, P151 57775 NAKAMURA T, 1995, SOLVENT EXTR ION EXC, V13, P253 57776 SHEN CH, 1993, J NUCL RADIOCHEM, V15, P243 57777 SIDDALL TH, 1963, J INORG NUCL CHEM, V25, P883 57778 SUN GX, 1998, THESIS CHINESE ACAD, P16 57779 WANG YS, 1997, THESIS CHINESE ACAD, P43 57780 WANG YS, 1997, THESIS CHINESE ACAD, P71 57781 NR 8 57782 TC 2 57783 SN 0236-5731 57784 J9 J RADIOANAL NUCL CHEM 57785 JI J. Radioanal. Nucl. Chem. 57786 PD DEC 57787 PY 2001 57788 VL 250 57789 IS 3 57790 BP 559 57791 EP 561 57792 PG 3 57793 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science 57794 & Technology 57795 GA 504DV 57796 UT ISI:000172842800024 57797 ER 57798 57799 PT J 57800 AU Yang, XC 57801 Bao, BR 57802 Zhou, F 57803 Cao, WG 57804 Li, YL 57805 TI Thermodynamics of the extraction of U(VI) by N,N'-didecanoylpiperazine 57806 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY 57807 DT Article 57808 AB A novel extractant, N, N'-didecanoylpiperazine (DDPEZ), was synthesized 57809 for the first time. The extraction of U(VI) by DDPEZ from aqueous 57810 nitric acid media in carbon tetrachloride has been studied. The 57811 dependence of extraction distribution ratio on concentration of aqueous 57812 nitric acid. extractant salting-out agent and temperature was 57813 investigated and the enthalpy of the extraction was calculated. 57814 C1 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China. 57815 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 57816 Shandong Comm Communist Party China, Jinan 250001, Peoples R China. 57817 RP Yang, XC, Chinese Acad Sci, Shanghai Inst Nucl Res, POB 800-204, 57818 Shanghai 201800, Peoples R China. 57819 CR CHARBORNNEL MC, 1988, SOLVENT EXTR ION EXC, V5, P151 57820 CURTIS NF, 1965, INORG CHEM, V4, P804 57821 MUSIKAS C, 1987, SOLVENT EXTR ION EXC, V5, P151 57822 NAKAMURA T, 1995, SOLVENT EXTR ION EXC, V13, P253 57823 SHEN CH, 1993, J NUCL RADIOCHEM, V15, P243 57824 SIDDALL TH, 1963, J INORG NUCL CHEM, V25, P883 57825 WANG YS, 1997, THESIS CHINESE ACAD, P43 57826 WANG YS, 1997, THESIS CHINESE ACAD, P71 57827 NR 8 57828 TC 1 57829 SN 0236-5731 57830 J9 J RADIOANAL NUCL CHEM 57831 JI J. Radioanal. Nucl. Chem. 57832 PD DEC 57833 PY 2001 57834 VL 250 57835 IS 3 57836 BP 573 57837 EP 575 57838 PG 3 57839 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science 57840 & Technology 57841 GA 504DV 57842 UT ISI:000172842800029 57843 ER 57844 57845 PT J 57846 AU Xiang, Q 57847 Bao, BR 57848 Li, Z 57849 Han, JT 57850 Shao, H 57851 TI The extraction of U(VI) with N-octanoyl-2-methylpiperidine in toluene 57852 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY 57853 DT Article 57854 AB A new extractant. N-octanoyl-2-methylpiperidine (OMPPD) has been 57855 synthesized. The extraction of U(VI) with N-octanoyl-2-methylpiperidine 57856 (OMPPD) in nitric acid has been studied. The dependence of the 57857 partition reaction of U(VT) on the concentrations of nitric acid, 57858 extractant. salting-out agent LiNO3, and temperature has been studied. 57859 In the light of the results, the extraction mechanism is discussed. The 57860 synergistic extracted complexes may be presented as 57861 UO2(NO3)(2)(OMPPD)(2). The related thermodynamic functions were 57862 calculated. 57863 C1 Shanghai Univ, Dept Chem, Shanghai, Peoples R China. 57864 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai, Peoples R China. 57865 RP Xiang, Q, Shanghai Univ, Dept Chem, Shanghai, Peoples R China. 57866 CR DONG LY, 1982, ANAL CHEM URANIUM, P158 57867 HAN JT, 1998, NUCL SCI TECHNOL, V10, P54 57868 HAN JT, 1999, J RADIOANAL NUCL CH, V241, P679 57869 SHAO H, 2000, J RADIOANAL NUCL CHE, V243, P831 57870 SIDDALL TH, 1960, J PHYS CHEM-US, V64, P1863 57871 NR 5 57872 TC 0 57873 SN 0236-5731 57874 J9 J RADIOANAL NUCL CHEM 57875 JI J. Radioanal. Nucl. Chem. 57876 PD DEC 57877 PY 2001 57878 VL 250 57879 IS 3 57880 BP 577 57881 EP 579 57882 PG 3 57883 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science 57884 & Technology 57885 GA 504DV 57886 UT ISI:000172842800030 57887 ER 57888 57889 PT J 57890 AU Guo, BY 57891 Shen, J 57892 Wang, ZQ 57893 TI Chebyshev rational spectral and pseudospectral methods on a 57894 semi-infinite interval 57895 SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING 57896 DT Article 57897 DE Chebyshev rational polynomials; rational approximation; spectral 57898 method; pseudospectral method; semi-infinite interval 57899 ID DIFFERENTIAL-EQUATIONS; GALERKIN METHOD; APPROXIMATIONS 57900 AB A weighted orthogonal system on the half-line based on the Chebyshev 57901 rational functions is introduced. Basic results on Chebyshev rational 57902 approximations of several orthogonal projections and interpolations are 57903 established. To illustrate the potential of the Chebyshev rational 57904 spectral method, a model problem is considered both theoretically and 57905 numerically: error estimates for the Chebyshev rational spectral and 57906 pseudospectral methods are established; preliminary numerical results 57907 agree well with the theoretical estimates and demonstrate the 57908 effectiveness of this approach. Copyright (C) 2001 John Wiley & Sons, 57909 Ltd. 57910 C1 Penn State Univ, Dept Math, University Pk, PA 16802 USA. 57911 Shanghai Normal Univ, Sch Math Sci, Shanghai 200234, Peoples R China. 57912 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 57913 RP Shen, J, Penn State Univ, Dept Math, University Pk, PA 16802 USA. 57914 CR ADAMS RA, 1975, SOBLOV SPACES 57915 BERNARDI C, 1997, HDB NUMERICAL ANAL 2, V5 57916 BOYD JP, 1987, J COMPUT PHYS, V69, P112 57917 BOYD JP, 1987, J COMPUT PHYS, V70, P63 57918 BURNETT DS, 1994, J ACOUST SOC AM, V96, P2798 57919 CANUTO C, 1987, SPECTRAL METHODS FLU 57920 CHRISTOV CI, 1982, SIAM J APPL MATH, V42, P1337 57921 DEMKOWICZ L, 1998, NUMER MATH, V79, P11 57922 FUNARO D, 1990, APPL NUMER MATH, V6, P447 57923 GOTTLIEB D, 1977, NUMERICAL ANAL SPECT 57924 GUO BY, 1998, J MATH ANAL APPL, V226, P180 57925 GUO BY, 2000, J MATH ANAL APPL, V243, P373 57926 GUO BY, 2000, J SCI COMPUT, V15, P117 57927 GUO BY, 2000, NUMER MATH, V86, P635 57928 KARNIADAKIS GE, 1999, SPECTRAL HP ELEMENT 57929 LEIS R, 1996, INITIAL BOUNDARY VAL 57930 MADAY Y, 1985, RECH AEROSPATIALE, V6, P13 57931 MADAY Y, 1989, STATE ART SURVEYS CO, P71 57932 SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489 57933 SHEN J, 1996, HOUSTON J MATH, P233 57934 NR 20 57935 TC 8 57936 SN 0029-5981 57937 J9 INT J NUMER METHOD ENG 57938 JI Int. J. Numer. Methods Eng. 57939 PD JAN 10 57940 PY 2002 57941 VL 53 57942 IS 1 57943 BP 65 57944 EP 84 57945 PG 20 57946 SC Engineering, Multidisciplinary; Mathematics, Applied 57947 GA 504KV 57948 UT ISI:000172856600005 57949 ER 57950 57951 PT J 57952 AU Shang, HJ 57953 Lu, YC 57954 Xu, XM 57955 Chen, Q 57956 TI The 'hybrid' technique for risk analysis of some diseases 57957 SO CHINESE ANNALS OF MATHEMATICS SERIES B 57958 DT Article 57959 DE illness fuzzy set; statistics; fuzzy comprehensive evaluation; 57960 information distribution; optimization 57961 AB Based on the data obtained from a survey recently made in Shanghai, 57962 this paper presents the hybrid technique for risk analysis and 57963 evaluation of some diseases. 57964 After determination of main risk factors of these diseases by analysis 57965 of variance, the authors introduce a new concept 'Illness Fuzzy Set' 57966 and use fuzzy comprehensive evaluation to evaluate the risk of 57967 suffering from a disease for residents. Optimal technique is used to 57968 determine the weights w(i) in fuzzy comprehensive evaluation, and a new 57969 method 'Improved Information Distribution' is also introduced for the 57970 treatment of small sample problem. 57971 It is shown that the results obtained by using the hybrid technique are 57972 better than by using single fuzzy technique or single statistical 57973 method. 57974 C1 Fudan Univ, Dept Math, Shanghai 200433, Peoples R China. 57975 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 57976 Fudan Univ, Inst Math, Shanghai 200433, Peoples R China. 57977 CR CHEN JJG, 1997, FUZZY SET SYST, V88, P1 57978 CUMMINS JD, 1997, N AM ACTUARIAL J, V1, P21 57979 HUANG CF, 1995, TECHNOLOGY FUZZY INF 57980 ZHANG SW, 1991, FUZZY MATH ITS APPL 57981 NR 4 57982 TC 0 57983 SN 0252-9599 57984 J9 CHIN ANN MATH SER B 57985 JI Chin. Ann. Math. Ser. B 57986 PD OCT 57987 PY 2001 57988 VL 22 57989 IS 4 57990 BP 475 57991 EP 484 57992 PG 10 57993 SC Mathematics 57994 GA 505AF 57995 UT ISI:000172888000005 57996 ER 57997 57998 PT J 57999 AU Shi, LY 58000 Li, CZ 58001 Chen, AP 58002 Zhu, YH 58003 Fang, DY 58004 TI Morphological structure of nanometer TiO2-Al2O3 composite powders 58005 synthesized in high temperature gas phase reactor 58006 SO CHEMICAL ENGINEERING JOURNAL 58007 DT Article 58008 DE composite powder; nanometer powder; gas phase reaction 58009 ID ALUMINUM TITANATE FORMATION; SOLID-STATE REACTION; TIO2 POWDERS; 58010 RESEARCH NEEDS; PARTICLES; AL2O3 58011 AB In this research, nanometer TiO2-Al2O3 Composite powders were 58012 synthesized by the gas-phase oxidation of TiCl4 and AlCl3 in a high 58013 temperature tubular aerosol flow reactor. The measurement of EDS, XPS, 58014 XRD and TEM were used to characterize the chemical composition, crystal 58015 structure, and size of the particles. The crystal structure of titania 58016 and alumina in composite particles was affected by the AlO3 and TiCl4 58017 feed ratio. Aluminum titanate was formed when residence time was 1.73 58018 s, reaction temperature was 1400 degreesC, and AlCl3 and TiCl4 feed 58019 ratio was 2.80. The effect of processing parameters on the particle 58020 size and distribution of composite particles was studied. As the 58021 preheating temperature of oxygen increased, average particle size of 58022 the composite particles became smaller and size distribution more 58023 uniform. Enhancement of flow rate of cooling gas injected into reactor 58024 tail was benefit controlling the particle size. The composite particle 58025 size increased, respectively, with increasing reaction temperature and 58026 residence time. (C) 2001 Elsevier Science B.V. All rights reserved. 58027 C1 Shanghai Univ, Dept Chem, Shanghai 200072, Peoples R China. 58028 E China Univ Sci & Technol, Shanghai 200237, Peoples R China. 58029 RP Shi, LY, Shanghai Univ, Dept Chem, Shanghai 200072, Peoples R China. 58030 CR AKHTAR MK, 1994, J MATER RES, V9, P1241 58031 BOWEN HK, 1980, MATER SCI ENG, V44, P1 58032 FEGLEY B, 1984, J AM CERAM SOC, V67, C113 58033 FREUDENBERG B, 1987, J AM CERAM SOC, V70, P33 58034 FREUDENBERG B, 1988, J AM CERAM SOC, V71, P22 58035 HUNG CH, 1992, J MATER RES, V7, P1870 58036 JANG HD, 1995, AEROSOL SCI TECH, V23, P553 58037 KRUIS FE, 1998, J AEROSOL SCI, V29, P511 58038 KUSTERS KA, 1995, POWDER TECHNOL, V82, P79 58039 LANGE FF, 1989, J AM CERAM SOC, V72, P3 58040 LI CZ, 1997, THIN SOLID FILMS, V310, P238 58041 LIU SH, 1988, XRAY PHOTOELECTRON S, V305, P313 58042 OKUMURA H, 1986, J AM CERAM SOC, V69, C22 58043 PRATSINIS SE, 1996, POWDER TECHNOL, V88, P267 58044 SHI LY, 1998, MAT REV, V12, P23 58045 SHI LY, 1999, J ECUST, V25, P151 58046 SHI LY, 1999, J INORG MATER, V14, P717 58047 STAMATAKIS P, 1991, AEROSOL SCI TECH, V14, P316 58048 SUYAMA Y, 1985, J AM CERAM SOC, V68, C154 58049 THOMAS HAJ, 1989, BRIT CERAM TRANS J, V88, P144 58050 THOMAS HAJ, 1989, BRIT CERAM TRANS J, V88, P184 58051 VEMURY S, 1995, J AM CERAM SOC, V78, P2984 58052 WOJGNIER T, 1988, J NONCRYSTALLINE SOL, V100, P325 58053 YANG GX, 1996, NANOSTRUCT MATER, V7, P675 58054 YU JG, 1991, CHEM B, V10, P25 58055 NR 25 58056 TC 0 58057 SN 1385-8947 58058 J9 CHEM ENG J 58059 JI Chem. Eng. J. 58060 PD DEC 15 58061 PY 2001 58062 VL 84 58063 IS 3 58064 BP 405 58065 EP 411 58066 PG 7 58067 SC Engineering, Chemical 58068 GA 505LW 58069 UT ISI:000172915100024 58070 ER 58071 58072 PT J 58073 AU Li, Q 58074 Zhou, BX 58075 TI A study of microstructure of alloy 690 58076 SO ACTA METALLURGICA SINICA 58077 DT Article 58078 DE alloy 690; heat treatment; microstructure; carbide 58079 AB The microstructures of alloy 690 after solid solution treatment 58080 followed by aging treatments at different temperatures (600-800 58081 degreesC) for various times (0.5-200 h) have been investigated by means 58082 of transmission electron microscopy (TEM). The results are as follows: 58083 the carbides precipitated on the grain boundaries have been identified 58084 as M23C6; the carbides nucleate preferentially at the positions where 58085 grain boundary dislocations tangled and easily precipitate in high 58086 angle grain boundaries nearly parallel to the (100) plane of grain on 58087 one side. The carbides always exhibit a cube-on-cube orientation 58088 relationship with matrix of one side, and don't precipitate on twinning 58089 plane but easily precipitate on the non-coherent boundaries of twin end 58090 where carbides grow fast along < 110 > direction and appear as 58091 needlelike. By controlling the growth of carbides and the content of 58092 chromium in depleted zone by special heat treatments, the corrosion 58093 resistance of alloy 690 can be optimized. 58094 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 58095 RP Li, Q, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 58096 CR ANGELIU TM, 1990, METALL TRANS A, V21, P2097 58097 DIETZ W, 1994, MAT SCI TECHNOLOGY B, V10, P101 58098 KAI JJ, 1989, METALL TRANS A, V20, P2057 58099 QIU SY, 1995, NUCL POWER ENG, V16, P340 58100 NR 4 58101 TC 0 58102 SN 0412-1961 58103 J9 ACTA METALL SIN 58104 JI Acta Metall. Sin. 58105 PD JAN 18 58106 PY 2001 58107 VL 37 58108 IS 1 58109 BP 8 58110 EP 12 58111 PG 5 58112 SC Metallurgy & Metallurgical Engineering 58113 GA 502WQ 58114 UT ISI:000172766100002 58115 ER 58116 58117 PT J 58118 AU Lu, XG 58119 Ding, WZ 58120 Li, FS 58121 Li, LF 58122 Zhou, GZ 58123 TI Study of electronic conductivity of molten slags with Wagner 58124 polarization technique 58125 SO ACTA METALLURGICA SINICA 58126 DT Article 58127 DE Wagner polarization technique; smelt slag; electronic conductivity 58128 AB Wagner polarization technique has been used to measure the electronic 58129 conductivity of CaO-SiO2-Al2O3-FeOx slag system in this paper. The 58130 experimental results show that electronic conductivities of the slags 58131 consist of free electron conductivity and electron hole conductivity. 58132 The two conductivities are related to the content of Fe3+ and Fe2+ 58133 respectively. As experimental temperature increased, the free electron 58134 conductivity decreases, and the electron hole conductivity increases 58135 while Fe3+ changes to Fe2+. It is found that there is always a maximum 58136 electronic conductivity value at some ratio of Fe3+ content to the 58137 total iron content for different slag systems at a special temperature. 58138 Under the present experimental condition, the electronic conductivity 58139 is in the range of 10(-4)-10(-2) S(.)cm(-1). 58140 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 58141 Univ Sci & Technol Beijing, Lab Solid Electrolytes & Met Testing Tech, Beijing 100083, Peoples R China. 58142 RP Lu, XG, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, 58143 Peoples R China. 58144 CR DANCY EA, 1966, T TMS AIME, V236, P1642 58145 DICKSON WR, 1962, T METALL SOC AIME, V224, P505 58146 DUKELOW DA, 1960, T AIME, V218, P1386 58147 ENGELL HJ, 1968, BER BUNSEN PHYS CHEM, V72, P5 58148 FONTANA A, 1984, ELECT CONDUCTIVITY F, P59 58149 HAARBERG GM, 1993, METALL TRANS B, V24, P729 58150 INOUYE H, 1953, T FARADAY SOC, V49, P796 58151 KATO M, 1969, T IRON STEEL I JPN, V9, P39 58152 KRISHAMUETHY GG, 1993, IRONMAK STEELMAK, V20, P191 58153 KROGER FA, 1974, CHEM IMPERFECT CRYST, V3, P149 58154 LU XG, 1999, J UNIV SCI TECHNOL B, V6, P27 58155 PAL U, 1985, METALL TRANS B, V16, P77 58156 PASTUKHOV EA, 1966, ELEKTROCHEM, V2, P209 58157 SIMNAD MT, 1953, J CHEM PHYS, V21, P933 58158 SIMNAD MT, 1954, T AIME, V200, P1386 58159 SPEELMAN JL, 1989, METALL T B, V20, P31 58160 WAGNER C, 1957, P INT COMM ELECTROCH, V7, P361 58161 NR 17 58162 TC 2 58163 SN 0412-1961 58164 J9 ACTA METALL SIN 58165 JI Acta Metall. Sin. 58166 PD FEB 18 58167 PY 2001 58168 VL 37 58169 IS 2 58170 BP 184 58171 EP 188 58172 PG 5 58173 SC Metallurgy & Metallurgical Engineering 58174 GA 502WT 58175 UT ISI:000172766300015 58176 ER 58177 58178 PT J 58179 AU Xu, KD 58180 Jiang, GC 58181 Hong, X 58182 Zheng, SB 58183 Xu, JL 58184 TI Discussion on new process making clean-steel from scrap 58185 SO ACTA METALLURGICA SINICA 58186 DT Article 58187 DE steel making process; clean steel; scrap 58188 AB The enrichment of harmful impurities during the recycle of scrap limits 58189 the effective use of scrap source in clean steel production. Attempts 58190 so far to separate residual elements one by one from steel bath seems 58191 expensive, low efficient and difficult for industrial application. This 58192 paper put forward consequently the "slagging-reduction process", in 58193 which melting FeO will be obtained with oxidizing method as pure raw 58194 material for following hydrogen-based reduction procedure. This will be 58195 a way to use low-class mixed scrap in production of special steel, 58196 whose total content of residual elements is strictly restrained. 58197 Moreover, the enrichment and concentration of impurities like Cu can 58198 make their extraction and recycle easier and cheaper. 58199 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 58200 RP Xu, KD, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, 58201 Peoples R China. 58202 CR FEINMAN J, 1999, IRON STEEL ENG, V76, P75 58203 HONG X, 1992, SIMULATION OPTIMIERU, P168 58204 SUGIURA S, 1988, T ISIJ, V28, P325 58205 WEI SK, 1980, THERMODYNAMICS METAL, P56 58206 XU KD, 2000, CHIN ENG SCI, V2, P1 58207 ZHANG HJ, 1996, DISCUSS REFORM EAF S, P212 58208 ZHAO BJ, 1994, COLLECTED WORKS INFL, P1 58209 ZHAO BJ, 1994, COLLECTED WORKS INFL, P7 58210 NR 8 58211 TC 1 58212 SN 0412-1961 58213 J9 ACTA METALL SIN 58214 JI Acta Metall. Sin. 58215 PD APR 18 58216 PY 2001 58217 VL 37 58218 IS 4 58219 BP 395 58220 EP 399 58221 PG 5 58222 SC Metallurgy & Metallurgical Engineering 58223 GA 502WW 58224 UT ISI:000172766600013 58225 ER 58226 58227 PT J 58228 AU Feng, PX 58229 James, B 58230 Liu, MH 58231 Lee, S 58232 Chen, YH 58233 TI A pinhole transmission grating spectrograph used in the 58234 characterization of the spatial distribution plasma x-ray spectrum 58235 SO PLASMA SOURCES SCIENCE & TECHNOLOGY 58236 DT Article 58237 ID FOCUS 58238 AB A pinhole transmission grating spectrograph has been used for measuring 58239 the soft x-ray spectrum front a laser-irradiated solid target plasma 58240 and gas-filled plasma focus. This spectrograph can be used together 58241 with a soft x-ray streak camera or a soft x-ray CCD detector for 58242 time-resolved studies. The spectrograph has provided a spatially 58243 resolved spectrum with a wavelength range of 0.3-50 nm. It is a cheap, 58244 compact and easily adjusted and has been used for both laser-produced 58245 plasma and plasma focus. Preliminary experimental results have been 58246 obtained for the plasma x-ray spectrum and the spatial structure both 58247 from the laser-produced plasma and the plasma focus. 58248 C1 Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. 58249 Nanyang Technol Univ, Sch Sci, Singapore 259756, Singapore. 58250 Shanghai Univ Sci & Technol, Inst Dynam, Shanghai 200345, Peoples R China. 58251 RP Feng, PX, Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. 58252 CR BRUNER ME, 1988, P SOC PHOTO-OPT INS, V982, P299 58253 BRYUNETKIN BA, 1992, LASER PART BEAMS, V10, P849 58254 BURKHALTER PG, 1992, REV SCI INSTRUM, V63, P5053 58255 FEDER R, 1984, J MICROSCOPY, V135, P347 58256 FENG X, 1992, P 10 VUV INT C PAR 9 58257 FENG X, 1994, J LASER B, V3, P414 58258 FENG XP, 1989, J FIZ MALAYSIA, V10, P49 58259 GUENTHER R, 1990, MODERN OPTICS, P87 58260 HIRANO K, 1994, J PHYS SOC JPN, V63, P3657 58261 KATO Y, 1986, APPL PHYS LETT, V48, P686 58262 KATO Y, 1992, JPN J APPL PHYS PT 1, V31, P3695 58263 LEE S, 1983, AUST J PHYS, V36, P891 58264 LEE S, 1996, RES REPORT NIE SSC P 58265 LEE S, 1997, P SOC PHOTO-OPT INS, V3183, P112 58266 MICHELIS CD, 1981, NUCL FUSION, V21, P677 58267 MOO SP, 1991, IEEE T PLASMA SCI, V19, P515 58268 MOO SP, 1993, J RADIOL PROTECT, V13, P207 58269 PEALMAN JS, 1981, J VAC SCI TECHNOL, V19, P1190 58270 PORTER JL, 1992, PHYS REV LETT, V68, P796 58271 ROTHWEILER D, 1993, I PHYS C SER, V130, P47 58272 SCHNOPPER HW, 1977, APPL OPTICS, V16, P1088 58273 TAKAHAMA Y, 1994, REV SCI INSTRUM, V65, P2505 58274 WANG XF, 1991, J APPL PHYS, V69, P2015 58275 NR 23 58276 TC 0 58277 SN 0963-0252 58278 J9 PLASMA SOURCES SCI TECHNOL 58279 JI Plasma Sources Sci. Technol. 58280 PD NOV 58281 PY 2001 58282 VL 10 58283 IS 4 58284 BP 589 58285 EP 594 58286 PG 6 58287 SC Physics, Fluids & Plasmas 58288 GA 503BM 58289 UT ISI:000172777300007 58290 ER 58291 58292 PT J 58293 AU Zhou, SF 58294 TI Attractors for second-order lattice dynamical systems with damping 58295 SO JOURNAL OF MATHEMATICAL PHYSICS 58296 DT Article 58297 AB We consider the existence and the approximation of the global attractor 58298 for second-order damped lattice dynamical systems. (C) 2002 American 58299 Institute of Physics. 58300 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 58301 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 58302 CR CHATE H, 1997, PHYSICA D, V103, P1 58303 CHOW SN, 1998, J DIFFER EQUATIONS, V149, P248 58304 GHIDAGLIA JM, 1991, SIAM J MATH ANAL, V22, P861 58305 HALE JK, 1988, ASYMPTOTIC BEHAV DIS 58306 JIANG MH, 1999, J STAT PHYS, V95, P791 58307 SHEN WX, 1996, SIAM J APPL MATH, V56, P1379 58308 TEMAM R, 1988, APPL MATH SCI, V68 58309 WANG Z, 1997, MATH APPL, V10, P97 58310 YU J, 1998, PHYS LETT A, V240, P60 58311 ZHOU SF, 1999, J MATH ANAL APPL, V233, P102 58312 NR 10 58313 TC 0 58314 SN 0022-2488 58315 J9 J MATH PHYS-NY 58316 JI J. Math. Phys. 58317 PD JAN 58318 PY 2002 58319 VL 43 58320 IS 1 58321 BP 452 58322 EP 465 58323 PG 14 58324 SC Physics, Mathematical 58325 GA 503GF 58326 UT ISI:000172790200028 58327 ER 58328 58329 PT J 58330 AU Wan, JTK 58331 Yu, KW 58332 Gu, GQ 58333 TI Relaxation of surface charge on rotating dielectric spheres: 58334 Implications on dynamic electrorheological effects 58335 SO PHYSICAL REVIEW E 58336 DT Article 58337 ID SUSPENSIONS; SIMULATION; SHEAR; FLUIDS; FIELD 58338 AB We have examined the effect of an oscillatory rotation of a polarized 58339 dielectric particle, The rotational motion leads to a redistribution of 58340 the polarization charge on the surface of the particle. We show that 58341 the time-averaged steady-state dipole moment is along the field 58342 direction, but its magnitude is reduced by a factor that depends on the 58343 angular velocity of rotation. As a result, the rotational motion of the 58344 particle reduces the electrorheological effect. We further assume that 58345 the relaxation of the polarized charge is arised from a finite 58346 conductivity of the particle or host medium. We calculate the 58347 relaxation time based on the Maxwell-Wagner theory, suitably 58348 generalized to include the rotational motion. Analytic expressions for 58349 the reduction factor and the relaxation time are given and their 58350 dependence on the angular velocity of rotation will be discussed. 58351 C1 Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. 58352 Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 200093, Peoples R China. 58353 RP Wan, JTK, Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples 58354 R China. 58355 CR HALSEY TC, 1990, J STAT PHYS, V61, P1257 58356 HALSEY TC, 1992, SCIENCE, V258, P761 58357 JONES TK, 2000, PHYS REV E, V62, P6846 58358 KLINGENBERG DJ, 1989, J CHEM PHYS, V91, P7888 58359 KLINGENBERG DJ, 1990, LANGMUIR, V6, P15 58360 KLINGENBERG DJ, 1991, J CHEM PHYS, V94, P6160 58361 KLINGENBERG DJ, 1998, MRS BULL, V23, P30 58362 LADD AJC, 1988, J CHEM PHYS, V88, P5051 58363 LOBRY L, 1999, J ELECTROSTAT, V47, P61 58364 MAZUR P, 1974, PHYSICA, V76, P235 58365 PHULE PP, 1998, MRS BULL, V23, P19 58366 RUSSEL WB, 1989, COLLOIDAL DISPERSION 58367 TAO R, 1991, PHYS REV LETT, V67, P398 58368 WANG ZW, 1996, INT J MOD PHYS B, V10, P1153 58369 WANG ZW, 1997, J PHYS D APPL PHYS, V30, P1265 58370 NR 15 58371 TC 4 58372 SN 1063-651X 58373 J9 PHYS REV E 58374 JI Phys. Rev. E 58375 PD DEC 58376 PY 2001 58377 VL 6406 58378 IS 6 58379 PN Part 1 58380 AR 061501 58381 DI ARTN 061501 58382 PG 4 58383 SC Physics, Fluids & Plasmas; Physics, Mathematical 58384 GA 502CN 58385 UT ISI:000172726300027 58386 ER 58387 58388 PT J 58389 AU Zhang, NH 58390 Cheng, CJ 58391 TI A time domain method for quasi-static analysis of viscoelastic thin 58392 plates 58393 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 58394 DT Article 58395 DE viscoelastic thin plate; von Karman's hypothesis; Galerkin method; 58396 quasistatic response; direct method; integro-differential equation 58397 AB Based on the Boltzmann's superposition principles of linear 58398 viscoelastic materials and the von Karman's hypotheses of thin plates 58399 with large deflections, a mathematical model for quasi-static problems 58400 of viscoelastic thin plates was given. By the Galerkin method in 58401 spatial domain, the original integro-partial-differential system could 58402 be transformed into an integral system. The latter further was reduced 58403 to a differential system by using the new method for temporal domain 58404 presented in this paper. Numerical results show that compared with the 58405 ordinary finite difference method, the new method in this paper is 58406 simpler to operate and has some advantages, such as, no storage and 58407 quicker computational speed etc. 58408 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 58409 Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China. 58410 RP Zhang, NH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 58411 200072, Peoples R China. 58412 CR CHENG CJ, 1998, ACTA MECH SINICA, V30, P690 58413 CHENG CJ, 1998, INT J SOLIDS STRUCT, V35, P4491 58414 JANOVSKY V, 1995, J COMPUT APPL MATH, V63, P91 58415 SHENG YP, 1994, ADV MECH, V24, P265 58416 YANG TQ, 1993, THEORY VISCOELASTICI 58417 ZHANG NH, 1998, COMPUT METHODS APPL, V165, P3074 58418 NR 6 58419 TC 0 58420 SN 0253-4827 58421 J9 APPL MATH MECH-ENGL ED 58422 JI Appl. Math. Mech.-Engl. Ed. 58423 PD OCT 58424 PY 2001 58425 VL 22 58426 IS 10 58427 BP 1109 58428 EP 1117 58429 PG 9 58430 SC Mathematics, Applied; Mechanics 58431 GA 500YV 58432 UT ISI:000172657000001 58433 ER 58434 58435 PT J 58436 AU Fu, JL 58437 Chen, LQ 58438 Luo, SK 58439 Chen, XW 58440 Wang, XM 58441 TI Study on dynamics of relativistic Birkhoff systems 58442 SO ACTA PHYSICA SINICA 58443 DT Article 58444 DE relativity; Birkhoff system; noether symmetry; Lie symmetry; algebraic 58445 structure; Poisson integral 58446 ID CONSERVED QUANTITIES; ROTATIONAL SYSTEMS; LIE SYMMETRIES 58447 AB The Birkhoffian, the Birkhoff's functions, the Pfaff action, the 58448 Pfaff-Birkhoff principle and the Birkhoff equations of relativistic 58449 Birkhoff systems are given. The Birkhoff representation of relativistic 58450 dynamical systems is studied. Then the theory of Noether symmetries and 58451 Lie symmetries of the relativistic Birkhoff systems is obtained by the 58452 invariance of relativistic Pfaff action and relativistic Birkhoff 58453 equations under infinitesimal transformations. Finally the algebraic 58454 structure and Poisson integrals for the relativistic Birkhoff systems 58455 are studied. 58456 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 58457 Shangqiu Teachers Coll, Inst Math Mech & Math Phys, Shangqiu 476000, Peoples R China. 58458 RP Fu, JL, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 58459 Peoples R China. 58460 CR ARNOLD VI, 1978, MATH METOD CLASSICAL 58461 BIRKHOFF GD, 1927, AMS COLL PUBLICATION 58462 FANG JH, 2000, ACTA PHYS SIN-CH ED, V49, P1028 58463 FU JL, 1999, APPL MATH MECH-ENGL, V20, P1266 58464 FU JL, 1999, JIANGXI SCI, V17, P137 58465 FU JL, 2000, ACTA PHYS SIN-CH ED, V49, P1023 58466 FU JL, 2000, APPL MATH MECH-ENGL, V21, P549 58467 FU JL, 2000, J SHANGQIU TEACHERS, V16, P10 58468 FU JL, 2000, J YUNNAN U, V22, P194 58469 FU JL, 2000, JIANGXI SCI, V18, P68 58470 GUO ZH, 1987, MODERN MATH MECH 58471 LI JB, 1994, THEORY GEN HAMILTON 58472 LUO SK, 1987, TEACHING MAT COMMUNI, P31 58473 LUO SK, 1988, J XINJIAN U, V5, P50 58474 LUO SK, 1990, P ICDVC, P645 58475 LUO SK, 1991, SHANGHAI J MECH, V12, P67 58476 LUO SK, 1992, ACTA MATH SCI, V12, P27 58477 LUO SK, 1992, COLL PHYS, V11, P14 58478 LUO SK, 1996, APPL MATH MECH, V17, P683 58479 LUO SK, 1996, J BEIJING I TECHNOL, V16, P154 58480 LUO SK, 1998, APPL MATH MECH-ENGL, V19, P45 58481 LUO SK, 2001, ACTA PHYS SINICA, V50, P384 58482 LUO SK, 2001, CHINESE PHYS, V10, P271 58483 MEI FX, 1985, FDN MECH NONHOLONOMI 58484 MEI FX, 1992, DYNAMICS BIRKHOFF SY, P33 58485 MEI FX, 1993, CHINESE SCI BULL, V38, P311 58486 MEI FX, 1993, SCI CHINA SER A, V23, P709 58487 MEI FX, 1994, CHAPLYGIN NONHOLONOM, P60 58488 MEI FX, 1995, CHINESE SCI BULL, V40, P1947 58489 MEI FX, 1996, DYNAMICS BIRKHOFF SY 58490 MEI FX, 1996, MECH PRACT, V18, P1 58491 MEI FX, 1999, APPL LIE GROUP ALGEB, P39 58492 SANTILLI RM, 1983, FDN THEORETICAL MECH, V2 58493 SANTILLI RM, 1987, FDN THEORETICAL MECH, V1 58494 SHI RC, 1994, MECH RES COMMUN, V21, P269 58495 XU ZD, 1994, 30 YEARS NONHOLONOMI, P169 58496 YONG ZS, 1995, ADV QUANTUM MECH, P34 58497 ZHANG YL, 1999, ACTA MECH SOLIDA SIN, V20, P356 58498 NR 38 58499 TC 14 58500 SN 1000-3290 58501 J9 ACTA PHYS SIN-CHINESE ED 58502 JI Acta Phys. Sin. 58503 PD DEC 58504 PY 2001 58505 VL 50 58506 IS 12 58507 BP 2289 58508 EP 2295 58509 PG 7 58510 SC Physics, Multidisciplinary 58511 GA 501HL 58512 UT ISI:000172679200003 58513 ER 58514 58515 PT J 58516 AU Wu, YQ 58517 Hou, HY 58518 Chen, H 58519 You, JL 58520 Jiang, GC 58521 TI Coordination and bond properties of Al and Si ions in system of 58522 Al2O3-SiO2 melts 58523 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA 58524 DT Article 58525 DE Al2O3-SiO2 melts; coordination and bond properties; molecular dynamics 58526 simulation 58527 ID CALCIUM ALUMINOSILICATE GLASSES; NUCLEAR MAGNETIC-RESONANCE; 58528 MOLECULAR-DYNAMICS; COMPUTER-SIMULATION; SIO2-AL2O3 GLASSES; SI-29; 58529 SPECTROSCOPY; LIQUIDS; AL-27; NMR 58530 AB The coordination and bond properties of aluminium and silicon ions were 58531 discussed by means of molecular dynamics simulation. By combining KA 58532 and MATSUMIYA potentials, the results of simulations agree better with 58533 the experiments. Trend of coordination and bond properties changing 58534 along with the increasing content Al2O3 from 0 to 100 % (mole fraction) 58535 was obtained. Average bond lengths of Si-O in these simulations are 58536 within the range of 1.60 similar to1.63 Angstrom and become smaller 58537 from 1.63 Angstrom in sample 0 to 1.60 Angstrom in sample 9 along with 58538 increasing content of Al2O3. Average bond lengths of Al-O are within 58539 the range from 1.77 Angstrom in sample 1 to 1.86 Angstrom in sample 10. 58540 By analyzing the relation of CN(T) and CNSi(T) with Si/(Si+Al), it is 58541 found that Al mainly locates on the tetrahedral sites which neighbor 58542 the Si tetrahedra but avoid the Al tetrahedra while alumina content is 58543 low. Whereas when Si/ (Si+Al)<0.5, Al-octahedral units appeared and 58544 became predominant gradually. Meanwhile, Al avoidance principle can 58545 only be maintained at low alumina content. With increasing alumina, 58546 this principle would be broken gradually. 58547 C1 Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai 200072, Peoples R China. 58548 CR AKSAY IA, 1979, J AM CERAM SOC, V62, P332 58549 ATHANASOPOULOS DC, 1992, SURF SCI, V273, P129 58550 DANIEL I, 1995, PHYS CHEM MINER, V22, P74 58551 ENGELHARDT G, 1985, PHYS CHEM GLASSES, V26, P157 58552 HANADA T, 1982, COMMU AM CERAM SOC, V6, C84 58553 HATALOVA B, 1992, J NON-CRYST SOLIDS, V146, P218 58554 HIMMEL B, 1991, J NON-CRYST SOLIDS, V136, P27 58555 HUFF NT, 1999, J NON-CRYST SOLIDS, V253, P133 58556 KIEFFER J, 1989, J CHEM PHYS, V90, P4982 58557 LOEWENSTEIN W, 1954, AM MINERAL, V39, P92 58558 MATSUMIYA T, 1993, ISIJ INT, V33, P210 58559 MCMILLAN P, 1982, GEOCHIM COSMOCHIM AC, V46, P2021 58560 MERZBACHER CI, 1990, J NON-CRYST SOLIDS, V124, P194 58561 MIURA Y, 2000, PHYS CHEM GLASSES, V41, P24 58562 MORIKAWA H, 1982, J AM CERAM SOC, V65, P78 58563 MYSEN BO, 1990, AM MINERAL, V75, P120 58564 NOFZ M, 1989, PHYS CHEM GLASSES, V30, P46 58565 NOFZ M, 1990, PHYS CHEM GLASSES, V31, P57 58566 OESTRIKE R, 1987, GEOCHIM COSMOCHIM AC, V51, P2199 58567 POE BT, 1992, CHEM GEOL, V96, P333 58568 SCAMEHORN CA, 1991, GEOCHIM COSMOCHIM AC, V55, P721 58569 STEIN DJ, 1995, AM MINERAL, V80, P417 58570 NR 22 58571 TC 6 58572 SN 1003-6326 58573 J9 TRANS NONFERROUS METAL SOC CH 58574 JI Trans. Nonferrous Met. Soc. China 58575 PD DEC 58576 PY 2001 58577 VL 11 58578 IS 6 58579 BP 965 58580 EP 971 58581 PG 7 58582 SC Metallurgy & Metallurgical Engineering 58583 GA 499CW 58584 UT ISI:000172554300037 58585 ER 58586 58587 PT J 58588 AU Li, L 58589 Van Der Biest, O 58590 Wang, PL 58591 Vleugels, J 58592 Chen, WW 58593 Huang, SG 58594 TI Estimation of the phase diagram for the ZrO2-Y2O3-CeO2 system 58595 SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 58596 DT Article 58597 DE CeO2; phase equilibria; thermodynamic calculation; Y2O3; ZrO2 58598 ID ZRO2-CEO2 SYSTEM; ZIRCONIA; EQUILIBRIA; OPTIMIZATION 58599 AB Comprehensive descriptions of the thermodynamic properties and 58600 experimental information in three oxide Systems ZrO2-Y2O3, ZrO2-CeO2 58601 and Y2O3-CeO2 are given and thermodynamic models for the calculation of 58602 these systems are discussed. The phase diagrams of the quasi-ternary 58603 ZrO2-Y2O3-CeO2 system in the zirconia-rich corner are estimated at 58604 different temperatures with a substitutional model and Muggianu's 58605 extrapolation. The equilibrium phase diagram calculation is extended to 58606 low temperatures, as well as the Gibbs free energy of the tetragonal, 58607 monoclinic and cubic phases of zirconia doped with yttria and ceria. 58608 (C) 2001 Elsevier Science Ltd. All rights reserved. 58609 C1 Katholieke Univ Leuven, Dept Met & Mat, B-3001 Louvain, Belgium. 58610 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China. 58611 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China. 58612 RP Van Der Biest, O, Katholieke Univ Leuven, Dept Met & Mat, B-3001 58613 Louvain, Belgium. 58614 CR DU Y, 1991, J AM CERAM SOC, V74, P1569 58615 DU Y, 1994, SCRIPTA METALL MATER, V31, P327 58616 DURAN P, 1990, J MATER SCI, V25, P5001 58617 DUWEZ P, 1950, J AM CERAM SOC, V33, P274 58618 DUWEZ P, 1951, J ELECTROCHEM SOC, V98, P356 58619 ESQUIVIAS L, 1996, J ALLOY COMPD, V239, P71 58620 GUILLERMET AF, 1981, METALL T B, V12, P745 58621 HANNINK RHJ, 2000, J AM CERAM SOC, V83, P461 58622 HILLERT M, 1975, METALL T B, V6, P37 58623 HUANG SG, 2000, J SHANGHAI U, V6, P189 58624 JANG BH, 1996, MATER T JIM, V37, P1284 58625 JORDAN AS, 1979, CALCULATION PHASE DI 58626 KAUFMAN L, 1978, CALPHAD, V2, P35 58627 KONDOH J, 1998, J ELECTROCHEM SOC, V145, P1550 58628 LELAIT L, 1991, SCRIPTA METALL MATER, V25, P1815 58629 LI L, UNPUB CALPHAD 58630 LI L, 1996, J MATER SCI TECHNOL, V12, P159 58631 LI L, 1997, PHYS CHEM GLASSES, V38, P323 58632 LI L, 1999, J MATER SCI TECHNOL, V15, P439 58633 LI L, 1999, PHYS CHEM GLASSES, V40, P126 58634 LONGO V, 1973, J AM CERAM SOC DISCU, V56, P600 58635 LONGO V, 1981, J MATER SCI, V16, P839 58636 LONGO V, 1984, CERAMICA, V37, P18 58637 LUKAS HL, 1977, CALPHAD, V1, P225 58638 NOGUCHI T, 1970, B CHEM SOC JPN, V43, P2614 58639 ONDIK HM, 1998, PHASE DIAGRAMS ZIRCO, P114 58640 PASCUAL C, 1983, J AM CERAM SOC, V66, P23 58641 PICONI C, 1999, BIOMATERIALS, V20, P1 58642 RAMESH PD, 1996, J MATER SYNTH PROC, V4, P163 58643 RAY SP, 1977, MATER RES B, V12, P549 58644 ROUANET A, 1971, REV INT HAUTES TEMP, V8, P161 58645 ROUANET MA, 1968, COMP REND HEBD SEA C, V267, P1581 58646 RUH R, 1984, J AM CERAM SOC, V67, P190 58647 SRIVASTAVA KK, 1974, BRIT CERAM TRANS J, V73, P85 58648 STUBICAN VS, 1978, J AM CERAM SOC, V61, P17 58649 TANI E, 1982, YOGVO KYOKAI SHI, V90, P195 58650 TANI E, 1983, J AM CERAM SOC, V66, P506 58651 YASHIMA M, 1994, J AM CERAM SOC, V77, P1869 58652 YU ZY, 1996, MATER T JIM, V37, P1281 58653 NR 39 58654 TC 8 58655 SN 0955-2219 58656 J9 J EUR CERAM SOC 58657 JI J. European Ceram. Soc. 58658 PD DEC 58659 PY 2001 58660 VL 21 58661 IS 16 58662 BP 2903 58663 EP 2910 58664 PG 8 58665 SC Materials Science, Ceramics 58666 GA 499XD 58667 UT ISI:000172595200014 58668 ER 58669 58670 PT J 58671 AU Fan, YM 58672 Ju, JH 58673 Zhang, WL 58674 Xia, YB 58675 Wang, ZM 58676 Fang, ZJ 58677 Wang, LJ 58678 TI A new passivation method for porous silicon 58679 SO SOLID STATE COMMUNICATIONS 58680 DT Article 58681 DE porous silicon; passivation; diamond-like film 58682 AB In this paper, we show the enhancement and stabilization of the 58683 luminescence when depositing diamond-like carbon (DLC) thin films on 58684 top of porous silicon (PS) layers. DLC thin films reduce the influence 58685 of different ambients to PS, which can cause the desorption of hydrogen 58686 molecules from the Si-H-x bonds leaving dangling bonds which operate as 58687 non-radiative recombination traps. So DLC thin films can lead to a more 58688 stable luminescence from PS layers. At the same time, hydrogenated 58689 carbon nitride films can further enhance the photoluminescence 58690 efficiency of PS because more dangling bonds are passivated by 58691 nitridation. (C) 2001 Published by Elsevier Science Ltd. 58692 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 58693 RP Fan, YM, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R 58694 China. 58695 CR GLASS JA, 1995, SURF SCI, V338, P125 58696 GRERREROLEMUS R, 1999, SOLID STATE ELECT, V43, P1165 58697 HERINO R, 1993, J LUMIN, V57, P111 58698 SHIH S, 1992, APPL PHYS LETT, V61, P943 58699 TISCHLER MA, 1992, APPL PHYS LETT, V60, P639 58700 XIONG ZH, 2001, THIN SOLID FILMS, V388, P271 58701 NR 6 58702 TC 7 58703 SN 0038-1098 58704 J9 SOLID STATE COMMUN 58705 JI Solid State Commun. 58706 PY 2001 58707 VL 120 58708 IS 11 58709 BP 435 58710 EP 437 58711 PG 3 58712 SC Physics, Condensed Matter 58713 GA 497DL 58714 UT ISI:000172437400004 58715 ER 58716 58717 PT J 58718 AU Cao, MY 58719 Wang, X 58720 Yu, DY 58721 TI Reliable recognition of ultrasonic echo-signal under high-noise 58722 background using digital signal processing 58723 SO PROGRESS IN NATURAL SCIENCE 58724 DT Article 58725 DE digital signal processing; recognition; ultrasound 58726 AB In practice. it is very important to recognize the ultrasonic 58727 echo-signal under high-noise background. In this paper, the Fourier 58728 spectrum and composition of ultrasonic ranging signals under high-noise 58729 background have been analyzed firstly, then the recognition of 58730 ultrasonic echo-signal has been realized using three methods: frequency 58731 filter, auto-correlation and the effective combination of the former 58732 two methods. The mathematical models are established and the results 58733 are given both theoretically and experimentally. 58734 C1 Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China. 58735 CME, State Key Lab Optoelect Informat Sci & Technol, Tianjin 300072, Peoples R China. 58736 Shanghai Univ Sci & Technol, Informat & Elect Engn Sch, Jinan 250031, Peoples R China. 58737 RP Cao, MY, Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 58738 300072, Peoples R China. 58739 CR *MATH WORKS INC, 1995, STUD ED MATLAB 58740 OPPENHEIM AV, 1975, DIGITAL SIGNAL PROCE 58741 SOPHOCLES J, 1996, INTRO SIGNAL PROCESS 58742 NR 3 58743 TC 0 58744 SN 1002-0071 58745 J9 PROG NAT SCI 58746 JI Prog. Nat. Sci. 58747 PD MAY 58748 PY 2001 58749 VL 11 58750 SU Suppl. S 58751 BP S102 58752 EP S105 58753 PG 4 58754 SC Multidisciplinary Sciences 58755 GA 496WM 58756 UT ISI:000172420100024 58757 ER 58758 58759 PT J 58760 AU He, JH 58761 TI Modified Lindstedt-Poincare methods for some strongly non-linear 58762 oscillations Part I: expansion of a constant 58763 SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS 58764 DT Article 58765 DE perturbation method; non-linear equations; duffing equation; 58766 Lindstedt-Poincare method 58767 ID PERTURBATION TECHNIQUE 58768 AB In this paper, a modified Lindstedt-Poincare method is proposed. In 58769 this technique. a constant. rather than the non-linear frequency, is 58770 expanded in powers of the expanding parameter to avoid the occurrence 58771 of secular terms in the perturbation series solution. Some examples are 58772 given here to illustrate its effectiveness and convenience. The results 58773 show that the obtained approximate solutions are uniformly valid on the 58774 whole solution domain, and they are suitable not only for weakly 58775 non-linear systems, but also for strongly non-linear systems. (C) 2001 58776 Elsevier Science Ltd. All rights reserved. 58777 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 58778 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd, 58779 Shanghai 200072, Peoples R China. 58780 CR ACTON JR, 1985, SOLVING EQUATIONS PH 58781 CHEUNG YK, 1991, INT J NONLINEAR MECH, V26, P367 58782 DAI SQ, 1990, SCI CHIN SER A, V2, P153 58783 HAGEDORN P, 1981, NONLINEAR OSCILLATIO 58784 HE JH, 1998, COMPUT METHOD APPL M, V167, P57 58785 HE JH, 1998, COMPUT METHOD APPL M, V167, P69 58786 HE JH, 1999, COMMUN NONL SCI NUM, V4, P78 58787 HE JH, 1999, COMMUN NONLINEAR SCI, V4, P103 58788 HE JH, 1999, COMMUNICATIONS NONLI, V4, P81 58789 HE JH, 1999, COMPUT METHOD APPL M, V178, P257 58790 HE JH, 1999, INT J NONLINEAR MECH, V34, P699 58791 HE JH, 2000, INT J NONLINEAR MECH, V35, P37 58792 HE JH, 2000, INT J NONLINEAR SCI, V1, P51 58793 HE JH, 2000, J SOUND VIB, V229, P1257 58794 MICKENS RE, 1981, INTRO NONLINEAR OSCI 58795 NAYFEH AH, 1979, NONLINEAR OSCILLATIO 58796 NAYFEH AH, 1985, PROBLEMS PERTURBATIO 58797 NR 17 58798 TC 25 58799 SN 0020-7462 58800 J9 INT J NON-LINEAR MECH 58801 JI Int. J. Non-Linear Mech. 58802 PD MAR 58803 PY 2002 58804 VL 37 58805 IS 2 58806 BP 309 58807 EP 314 58808 PG 6 58809 SC Mechanics 58810 GA 497WA 58811 UT ISI:000172477400012 58812 ER 58813 58814 PT J 58815 AU He, JH 58816 TI Modified Lindstedt-Poincare methods for some strongly non-linear 58817 oscillations Part II: a new transformation 58818 SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS 58819 DT Article 58820 DE perturbation method; non-linear equation; Duffing equation; van der Pol 58821 equation; Lindstedt-Poincare method 58822 AB In this paper, a modified Lindstedt-Poincare method is proposed. In 58823 this technique, we introduce a new transformation of the independent 58824 variable. This transformation will also allow us to avoid the 58825 occurrence of secular terms in the perturbation series solution, Some 58826 examples are given here to illustrate its effectiveness and 58827 convenience. The results show that the obtained approximate solutions 58828 are uniformly valid on the whole solution domain, and they are suitable 58829 not only for weakly non-linear systems. but also for strongly 58830 non-linear systems. (C) 2001 Elsevier Science Ltd. All rights reserved. 58831 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 58832 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd, 58833 Shanghai 200072, Peoples R China. 58834 CR ANDERSEN CM, 1982, SIAM J APPL MATH, V42, P678 58835 DAI SQ, 1990, ACTA MECH SINICA, V6, P111 58836 DAI SQ, 1990, SCI CHINA SER A, V33, P153 58837 DAI SQ, 1991, APPL MATH MECH, V12, P255 58838 HAGEDORN P, 1981, NONLINEAR OSCILLATIO 58839 HE JH, 2000, INT J NONLINEAR SCI, V1, P51 58840 HE JH, 2002, INT J NONLINEAR MECH, V37, P309 58841 NAYFEH AH, 1979, NONLINEAR OSCILLATIO 58842 NR 8 58843 TC 25 58844 SN 0020-7462 58845 J9 INT J NON-LINEAR MECH 58846 JI Int. J. Non-Linear Mech. 58847 PD MAR 58848 PY 2002 58849 VL 37 58850 IS 2 58851 BP 315 58852 EP 320 58853 PG 6 58854 SC Mechanics 58855 GA 497WA 58856 UT ISI:000172477400013 58857 ER 58858 58859 PT J 58860 AU Ye, Q 58861 Cao, WG 58862 Gao, JS 58863 TI Recent advances in the syntheses and applications of thiolester 58864 derivatives 58865 SO CHINESE JOURNAL OF ORGANIC CHEMISTRY 58866 DT Article 58867 DE thiolester; synthesis; application 58868 ID PALLADIUM-CATALYZED THIOCARBONYLATION; CARBON-MONOXIDE; 58869 ALPHA,BETA-UNSATURATED THIOESTERS; REGIOSELECTIVE THIOCARBONYLATION; 58870 TRIFLUOROMETHYLATED ACIDS; CONVENIENT SYNTHESIS; CONJUGATE ADDITIONS; 58871 TELLUROL ESTERS; THIOLS; ALCOHOLS 58872 AB Recent advances in the syntheses and applications of thiolester are 58873 reviewed in this paper. 65 References are cited here. 58874 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 58875 RP Ye, Q, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 58876 CR ADAM W, 1992, TETRAHEDRON LETT, V33, P469 58877 ADAMCZYK M, 1996, TETRAHEDRON LETT, V37, P4305 58878 ANBAZHAGAN M, 1997, J CHEM SOC PERK 0607, P1623 58879 ANBAZHAGAN M, 1998, TETRAHEDRON LETT, V39, P3609 58880 AYERS JT, 1999, SYNTHETIC COMMUN, V29, P351 58881 BARRETT AGM, 1995, J CHEM SOC PERK 0421, P1009 58882 BATEY RA, 1999, TETRAHEDRON LETT, V40, P2669 58883 BILLARD T, 1999, J ORG CHEM, V64, P3813 58884 BILLARD T, 2000, TETRAHEDRON LETT, V41, P3069 58885 BRAGA AL, 1998, TETRAHEDRON LETT, V39, P3395 58886 BYEON CH, 2000, SYNLETT JAN, P119 58887 CHATTERJEE P, 1994, J CHEM SOC P1, P2403 58888 CLIVE DLJ, 1999, CHEM COMMUN, P2251 58889 CRUDDEN CM, 1995, J ORG CHEM, V60, P5579 58890 DANHEISER RL, 1996, ORG SYNTH, V73, P61 58891 DIETER RK, 1997, J ORG CHEM, V62, P3798 58892 FUKUYAMA T, 1990, J AM CHEM SOC, V112, P7050 58893 GAO JS, 1999, J SHANGHAI U NATURL, V5, P491 58894 GONG P, 1998, CHIN J MED CHEM, V8, P139 58895 HAMILTON GS, 1999, 5990131, US 58896 HAN YL, 1999, J ORG CHEM, V64, P1972 58897 HARRIS WT, 1998, SYNTHETIC COMMUN, V28, P1117 58898 INOUE T, 1994, J ORG CHEM, V59, P5824 58899 JACKSON RFW, 1993, CHEM COMMUN, V11, P889 58900 JACKSON RFW, 1994, TETRAHEDRON LETT, V35, P7433 58901 JOUIN P, 1988, TETRAHEDRON LETT, V29, P2661 58902 KHAN JA, 1999, J AGR FOOD CHEM, V47, P3269 58903 KHUMTAVEEPORN K, 1994, J ORG CHEM, V59, P1414 58904 KISHIMOTO N, 1999, J ORG CHEM, V64, P5988 58905 KOBAYASHI K, 1995, ANAL SCI, V11, P1029 58906 KOBAYASHI S, 1994, J AM CHEM SOC, V116, P9805 58907 KOBAYASHI S, 1996, TETRAHEDRON LETT, V37, P2809 58908 KOBAYASHI S, 1996, TETRAHEDRON, V52, P7277 58909 KOPPENHOEFER B, 1997, SYNTHESIS-STUTTG MAY, P515 58910 KUNIYASU H, 1993, TETRAHEDRON LETT, V34, P2491 58911 LIU HJ, 1992, CANJ CHEM, V70, P128 58912 MANABE K, 1999, TETRAHEDRON LETT, V40, P3773 58913 MATSUNAGA PT, 1994, ANGEW CHEM INT EDIT, V33, P1748 58914 MUKAIYAMA T, 1990, CHEM LETT, P1019 58915 MUKAIYAMA T, 1999, CHEM LETT NOV, P1157 58916 NAKATANI S, 1993, TETRAHEDRON, V49, P2011 58917 PAK TH, 1993, J ORG CHEM, V58, P2313 58918 PESTI JA, 1999, SYNTHETIC COMMUN, V29, P3811 58919 PONDE DE, 1998, J ORG CHEM, V63, P1058 58920 RAHIM A, 1999, SYNLETT, V7, P1029 58921 RAHIM MA, 1998, TETRAHEDRON LETT, V39, P2153 58922 ROBERTO D, 1989, J AM CHEM SOC, V111, P7539 58923 RULEV AY, 1999, J CHEM SOC PERK 0607, P1567 58924 SABITHA G, 1999, SYNTHETIC COMMUN, V29, P2311 58925 SILVEIRA CC, 1999, ORGANOMETALLICS, V18, P5183 58926 SKARIA S, 2000, POLYMER, V41, P2737 58927 STAVROPOULOS P, 1990, J AM CHEM SOC, V112, P5385 58928 SUCHETA K, 1994, TETRAHEDRON LETT, V35, P4415 58929 TOKUYAMA H, 1998, TETRAHEDRON LETT, V39, P3189 58930 VLATTAS I, 1997, TETRAHEDRON LETT, V38, P7321 58931 VOSS J, 1991, COMPREHENSIVE ORGANI, V6, P435 58932 WANG ZM, 1992, CURRENT STRUCTURED D, P1936 58933 WEBER N, 1999, J AM OIL CHEM SOC, V76, P1297 58934 XIAO WJ, 1997, J ORG CHEM, V62, P3422 58935 XIAO WJ, 1998, J ORG CHEM, V63, P2609 58936 XIAO WJ, 1998, J ORG CHEM, V63, P7939 58937 XIAO WJ, 1999, J ORG CHEM, V64, P2080 58938 YOSHIMATSU M, 1995, J ORG CHEM, V60, P4798 58939 ZHENG TC, 1999, TETRAHEDRON LETT, V40, P603 58940 NR 64 58941 TC 1 58942 SN 0253-2786 58943 J9 CHINESE J ORG CHEM 58944 JI Chin. J. Org. Chem. 58945 PD OCT 58946 PY 2001 58947 VL 21 58948 IS 10 58949 BP 697 58950 EP 707 58951 PG 11 58952 SC Chemistry, Organic 58953 GA 497UQ 58954 UT ISI:000172474200001 58955 ER 58956 58957 PT J 58958 AU Shen, Y 58959 Zhang, JC 58960 Gu, F 58961 Chen, JM 58962 Huang, HH 58963 TI Photoconductivity study of doping in C-60-toluene derivative 58964 SO MATERIALS CHEMISTRY AND PHYSICS 58965 DT Article 58966 DE C-60; C-60-toluene derivative; fluorescence; photoconductivity; doping 58967 ID C-60; PHTHALOCYANINE 58968 AB The influence of the dopant iodine (I-2) on fluorescence spectra, 58969 UV-VIS spectra and photoconductivity of the C-60-toluene derivative is 58970 studied. The results show that the photoconductivity of the derivative 58971 doped with I-2 has increased by one order of magnitude. The 58972 fluorescence and UV-VIS analyses indicate that a charge-transfer 58973 complex (CTC) Of C-60-toluene and I-2 may be formed. (C) 2001 Published 58974 by Elsevier Science B.V. 58975 C1 Shanghai Univ Sci & Technol, Dept Inorgan Mat, Shanghai 201800, Peoples R China. 58976 RP Shen, Y, Shanghai Univ Sci & Technol, Dept Inorgan Mat, Shanghai 58977 201800, Peoples R China. 58978 CR ALLEMAND PM, 1991, SCIENCE, V253, P301 58979 CHANGCHUN W, 1994, CHEM J CHINESE U, V15, P1559 58980 CHEN HZ, 1993, J PHOTOCH PHOTOBIO A, V70, P179 58981 CHEN Y, 1996, J POLYM SCI POL PHYS, V34, P631 58982 DAYIN L, 1993, J CHEM SOC CHEM COMM, P603 58983 KROTO HW, 1985, NATURE, V318, P162 58984 SHEN Y, 1999, ACTA CHIM SINICA, V57, P1034 58985 SMILOWITZ L, 1993, PHYS REV B, V47, P13853 58986 TANG BZ, 1998, MACROMOLECULES, V31, P103 58987 WANG Y, 1992, NATURE, V356, P585 58988 WANG Y, 1993, J AM CHEM SOC, V115, P3844 58989 XU ZD, 1995, J MATER SCI LETT, V14, P1030 58990 YONEHARA H, 1996, THIN SOLID FILMS, V278, P108 58991 YOSHINO K, 1993, SOLID STATE COMMUN, V85, P85 58992 NR 14 58993 TC 2 58994 SN 0254-0584 58995 J9 MATER CHEM PHYS 58996 JI Mater. Chem. Phys. 58997 PD DEC 1 58998 PY 2001 58999 VL 72 59000 IS 3 59001 BP 405 59002 EP 407 59003 PG 3 59004 SC Materials Science, Multidisciplinary 59005 GA 494YF 59006 UT ISI:000172312900017 59007 ER 59008 59009 PT J 59010 AU Fang, YH 59011 Hu, A 59012 Ouyang, SX 59013 Oh, JJ 59014 TI The effect of calcination on the microwave dielectric properties of 59015 Ba(Mg1/3Ta2/3)O-3 59016 SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 59017 DT Article 59018 DE dielectric properties; calcination; microwave processing 59019 ID CERAMICS 59020 AB In this study, the role of calcination, its effect upon microstructural 59021 development and the correlation with dielectric losses at microwave 59022 frequencies were investigated. Ceramics with the composition 59023 Ba(Mg1.3Ta2/3)O-3 (BMT) were prepared by a conventional mixed-oxide 59024 route using controlled calcination. Commercial processing often uses 59025 sintering and calcination conditions to modify the dielectric 59026 properties of ceramics. However, the mechanism by which the calcination 59027 conditions influence the dielectric losses is not clear. The BMT 59028 powders were calcinated at 1000-1300 degreesC for 4-10 h in air or 59029 flowing oxygen. Resonator samples were then sintered at 1600-1650 59030 degreesC for 3 It. Scanning electron microscopy and X-ray diffraction 59031 were used to examine the phase composition and the microstructure of 59032 the sintered bodies. The microwave dielectric properties were measured 59033 at 10 GHz. We found a significant influence of the calcination 59034 conditions on the quality factor (Qf) -value. The influences of the 59035 phase composition on dielectric losses appear to dominate those of the 59036 microstructure. A significant effect was also found for specimens 59037 calcinated in different atmospheres. By controlling the calcination and 59038 sintering a pure BMT ceramic with a dielectric constant of 24.5, a Qf 59039 -value of 120,000 GHz and an r tau (f) of 6 ppm/degreesC was obtained. 59040 (C) 2001 Elsevier Science Ltd. All rights reserved. 59041 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China. 59042 Chinese Bldg Mat Acad, Beijing, Peoples R China. 59043 Korea Inst Sci & Technol, Seoul 130650, South Korea. 59044 RP Fang, YH, Shanghai Univ, Dept Inorgan Mat, 20 Chengzhong Rd, Shanghai 59045 201800, Peoples R China. 59046 CR CHEN XM, 1994, J MATER SCI-MATER EL, V5, P244 59047 DAVIES PK, 1997, J AM CERAM SOC, V80, P1727 59048 FREER R, 1993, SILICATES IND, V9, P191 59049 HU A, UNPUB FORMATION BAMG 59050 KAWASHIMA S, 1983, J AM CERAM SOC, V66, P421 59051 KINGERY WD, 1976, INTRO CERAMICS, P448 59052 MATSUMOTO K, 1986, P 6 IEEE INT S APPL, P118 59053 NOMURA S, 1982, JPN J APPL PHYS, V21, P624 59054 SUGIYAMA M, 1990, CERAM T, V15, P153 59055 TSUYOSHI KK, 1983, J AM CERAM SOC, V69, C82 59056 WAKINO K, 1990, BRIT CERAM TRANS J, V89, P39 59057 YOUN HJ, 1996, JPN J APPL PHYS 1, V35, P3947 59058 NR 12 59059 TC 9 59060 SN 0955-2219 59061 J9 J EUR CERAM SOC 59062 JI J. European Ceram. Soc. 59063 PY 2001 59064 VL 21 59065 IS 15 59066 BP 2745 59067 EP 2750 59068 PG 6 59069 SC Materials Science, Ceramics 59070 GA 494ZU 59071 UT ISI:000172316400030 59072 ER 59073 59074 PT J 59075 AU Wu, NH 59076 Bao, BR 59077 Yoshii, F 59078 Makuuchi, K 59079 TI Irradiation of crosslinked, poly(vinyl alcohol) blended hydrogel for 59080 wound dressing 59081 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY 59082 DT Article 59083 ID GELS 59084 AB In order to obtain a more ideal hydrogel wound dressing, crosslinked 59085 hydrogel films blended with polyvinyl alcohol (PVA), polyvinyl 59086 pyrrolidone, kappa-carrageenan (KC), and powder silk were prepared by 59087 electron beam, and their physiochemical properties were investigated as 59088 a combination of function factors. The experimental results showed that 59089 the gel fraction of the hydrogel films depended mainly on irradiation 59090 dose and the monomer concentration of the polymers, the properties of 59091 hydrogel could be greatly extended or improved by blending 59092 homopolymers. The rate of gel formation of the hydro.-el was raised, 59093 and the water evaporation from hydrogel could be retarded after mixing 59094 with KC, while the tensile strength of hydrogel films were obviously 59095 increased after mixing with silk. Toxicity and healing effect of 59096 PVA/PVP/KC/silk blended hydrogel films as wound dressings were 59097 evaluated. The irradiated blended hydrogel showed satisfactory 59098 properties for wound dressing, the hydrogel did not induce any acute 59099 general toxic effects, and it is effective for fast healing of wound. 59100 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China. 59101 Japan Atom Energy Res Inst, Takasaki Radiat Chem Res Estab, Takasaki, Gumma, Japan. 59102 RP Wu, NH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, 59103 Peoples R China. 59104 CR DAVIES JWL, 1983, BURNS, V10, P94 59105 GULDALIAN J, 1973, J TRAUMA, V13, P32 59106 HYON SH, 1989, KOBUNSHI RONBUNSHU, V46, P673 59107 KABRA BG, 1992, POLYMER, V33, P990 59108 MORRIS ER, 1980, J MOL BIOL, V138, P149 59109 NISHITANI K, 1983, PLANT CELL PHYSL, V24, P345 59110 PEPPAS NA, 1992, J CONTROL RELEASE, V18, P95 59111 QUEEN D, 1986, BURNS, V12, P161 59112 ROSIAK JM, 1991, ACS SYM SER, V475, P271 59113 WATASE M, 1983, POLYM COMMUN, V24, P52 59114 WU MH, 1996, RADIAT PHYS CHEM, V48, P525 59115 WU MH, 2000, NUCL SCI TECHN, V11, P72 59116 YOSHII F, 1995, RADIAT PHYS CHEM, V46, P169 59117 NR 13 59118 TC 1 59119 SN 0236-5731 59120 J9 J RADIOANAL NUCL CHEM 59121 JI J. Radioanal. Nucl. Chem. 59122 PD NOV 59123 PY 2001 59124 VL 250 59125 IS 2 59126 BP 391 59127 EP 395 59128 PG 5 59129 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science 59130 & Technology 59131 GA 494FJ 59132 UT ISI:000172270800030 59133 ER 59134 59135 PT J 59136 AU Xu, F 59137 Wang, Z 59138 Xu, SY 59139 Sun, DW 59140 TI Cryostability of frozen concentrated orange juices produced by 59141 enzymatic process 59142 SO JOURNAL OF FOOD ENGINEERING 59143 DT Article 59144 DE browning; concentrated orange juice; cryostability; glass transition 59145 temperature; storage; turbidity; viscosity 59146 ID GLASS-TRANSITION; STABILITY; WATER 59147 AB The cryostability of frozen concentrated orange juices (FCOJ) produced 59148 by an enzymatic process (enzymatic juice) and a squeezing process 59149 (squeezed juice) was investigated. The results showed that after 59150 thawing the enzymatic juice was superior in colour stability and cloud 59151 stability to the squeezed juice. The influence of glass transition 59152 temperature and viscosity of juices on the cryostability was examined 59153 and the data showed that some physico-chemical changes/reactions in 59154 juices during storage were controlled by diffusion. The composition of 59155 carbohydrates in juices was determined by high performance liquid 59156 chromatography (HPLC). Results obtained showed that the dominant 59157 solutes (low molecular weight compounds) of FCOJ governed the glass 59158 transition temperature of juices while the smaller fractions (high 59159 molecular weight carbohydrates) of the total solids of FCOJ had 59160 significant effects on the viscosity of FCOJ. (C) 2001 Elsevier Science 59161 Ltd. All rights reserved. 59162 C1 Natl Univ Ireland Univ Coll Dublin, Dept Agr & Food Engn, FRCFT, Dublin 2, Ireland. 59163 Shanghai Univ Sci & Technol, Inst Food Sci & Engn, Shanghai 200093, Peoples R China. 59164 Wuxi Univ Light Ind, Sch Food Sci & Engn, Wuxi 214036, Jiangsu, Peoples R China. 59165 RP Sun, DW, Natl Univ Ireland Univ Coll Dublin, Dept Agr & Food Engn, 59166 FRCFT, Earlsfort Terrace, Dublin 2, Ireland. 59167 CR BOUTRON P, 1993, CRYOBIOLOGY, V30, P86 59168 CAMERON RG, 1997, J FOOD SCI, V62, P242 59169 DELCASTILLO MD, 1998, J AGR FOOD CHEM, V46, P277 59170 DUBOIS M, 1956, ANAL CHEM, V28, P3 59171 DUXBURY DD, 1993, FOOD PROCESSING MAY, P65 59172 FAIGH JG, 1995, FOOD TECHNOLOGY, P79 59173 FENNEMA OR, 1996, FOOD CHEM 59174 GOFF HD, 1993, J DAIRY SCI, V76, P1268 59175 HANDWERK RL, 1988, J AGR FOOD CHEM, V36, P231 59176 LEA AGH, 1991, ACS S SERIES 59177 LEVINE H, 1990, THERMAL ANAL FOODS 59178 MATTHEW RF, 1994, FROZEN CONCENTRATED 59179 MEYDAV S, 1977, J AGR FOOD CHEM, V25, P602 59180 MOURI T, 1981, 4299849, US 59181 NAIM M, 1997, J AGR FOOD CHEM, V45, P1861 59182 ROOS YH, 1994, J AGR FOOD CHEM, V42, P893 59183 SLADE L, 1991, CRIT REV FOOD SCI, V30, P115 59184 NR 17 59185 TC 1 59186 SN 0260-8774 59187 J9 J FOOD ENG 59188 JI J. Food Eng. 59189 PD DEC 59190 PY 2001 59191 VL 50 59192 IS 4 59193 BP 217 59194 EP 222 59195 PG 6 59196 SC Engineering, Chemical; Food Science & Technology 59197 GA 494ZQ 59198 UT ISI:000172316100004 59199 ER 59200 59201 PT J 59202 AU He, JH 59203 TI A universal variational formulation for two dimensional fluid mechanics 59204 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 59205 DT Article 59206 DE fluid mechanics; variational theory 59207 ID SEMI-INVERSE METHOD; UNKNOWN SHAPE; FLOW; TURBOMACHINERY; PRINCIPLES 59208 AB A universal variational formulation for two dimensional fluid mechanics 59209 is obtained. which is subject to the so-called parameter-constrained 59210 equations (the relationship between parameters in two governing 59211 equations). By eliminating the constraints the generalized variational 59212 principle (GVPs) can be readily derived from the formulation The 59213 formulation can be applied to any conditions in case the governing 59214 equations can be converted into conservative forms. Some illustrative 59215 examples are given to testify the effectiveness and simplicity of the 59216 method. 59217 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 59218 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 59219 Peoples R China. 59220 CR BRETHERTON FP, 1970, J FLUID MECH 1, V44, P19 59221 CHIEN WZ, 1983, APPL MATH MECH, V4, P143 59222 CHIEN WZ, 1984, APPL MATH MECH, V5, P1281 59223 CHIEN WZ, 1985, GEN VARIATIONAL PRIN 59224 HE JH, 1997, INT J TURBO JET ENG, V14, P23 59225 HE JH, 1997, MODERN MECH ADV SCI, P603 59226 HE JH, 1997, SHANGHAI J MECH, V18, P305 59227 HE JH, 1997, TESIS SHANGHAI U SHA 59228 HE JH, 1998, INT J TURBO JET ENG, V15, P95 59229 HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154 59230 HE JH, 1999, J U SHANGHAI SCI TEC, V21, P127 59231 HE JH, 1999, J U SHANGHAI SCI TEC, V21, P29 59232 HE JH, 1999, J U SHANGHAI SCI TEC, V21, P356 59233 HE JH, 2000, AIRCR ENG AEROSP TEC, V72, P18 59234 HE JH, 2000, ASME, V67, P326 59235 HE JH, 2000, GEN VARIATIONAL PRIN 59236 HE JH, 2000, INT J ENG SCI, V39, P323 59237 HE JH, 2000, INT J NONLINEAR SCI, V1, P133 59238 HE JH, 2000, INT J NONLINEAR SCI, V1, P139 59239 HERIVEL JW, 1955, P CAMBRIDGE PHIL SOC, V51, P344 59240 LIN CC, 1963, P INT SCH PHYS COURS, P93 59241 LIU GL, 1981, P 2 AS C FLUID MECH, P698 59242 LIU GL, 1989, SHANGHAI J MECH, V10, P73 59243 LIU GL, 1990, J ENG THERMOPHYSICS, V11, P136 59244 SALMON R, 1988, ANNU REV FLUID MECH, V20, P225 59245 NR 25 59246 TC 1 59247 SN 0253-4827 59248 J9 APPL MATH MECH-ENGL ED 59249 JI Appl. Math. Mech.-Engl. Ed. 59250 PD SEP 59251 PY 2001 59252 VL 22 59253 IS 9 59254 BP 989 59255 EP 996 59256 PG 8 59257 SC Mathematics, Applied; Mechanics 59258 GA 495AB 59259 UT ISI:000172317100001 59260 ER 59261 59262 PT J 59263 AU Gu, CQ 59264 Li, CJ 59265 TI Computation formulas of generalized inverse Pade approximants using for 59266 solution of integral equations 59267 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 59268 DT Article 59269 DE Pade approximant; determinantal formula; existence; integral equation 59270 AB For the generalized inverse function-valued Pade approximants, its 59271 intact computation formulas are given. The explicit determinantal 59272 formulas for the denominator scalar polynomials and the numerator 59273 function-valued polynomials are first established. A useful existence 59274 condition is given by means of determinant form. 59275 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 59276 Tongji Univ, Dept Math, Shanghai 200331, Peoples R China. 59277 RP Gu, CQ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 59278 CR BAKER GA, 1978, NUMERICAL TREATMENT 59279 CHISHOLM JSR, 1963, J MATH PHYS, V4, P1506 59280 GRAVESMORRIS PR, 1986, CONSTR APPROX, V2, P263 59281 GRAVESMORRIS PR, 1990, J COMPUT APPL MATH, V32, P117 59282 GU CQ, 1997, NUMER SINICA, V19, P19 59283 GU CQ, 1999, LINEAR ALGEBRA APPL, V295, P7 59284 SLOAN I, 1976, MATH COMPUT, V30, P758 59285 NR 7 59286 TC 1 59287 SN 0253-4827 59288 J9 APPL MATH MECH-ENGL ED 59289 JI Appl. Math. Mech.-Engl. Ed. 59290 PD SEP 59291 PY 2001 59292 VL 22 59293 IS 9 59294 BP 1057 59295 EP 1063 59296 PG 7 59297 SC Mathematics, Applied; Mechanics 59298 GA 495AB 59299 UT ISI:000172317100009 59300 ER 59301 59302 PT J 59303 AU Wang, ZY 59304 Liao, HY 59305 Zhou, SP 59306 TI Studies of the dc biased Josephson junction coupled to a resonant tank 59307 SO ACTA PHYSICA SINICA 59308 DT Article 59309 DE Josephson junction; chaos; attractor; basin of attraction; Poincare 59310 map; Lyapunov exponents 59311 ID CONTROLLING CHAOS 59312 AB We have investigated the dynamics of a Josphson junction circuit, which 59313 consists of a dc biased Josephson junction coupled to a resonant tank. 59314 Numerical simulations indicate that period-3 and chaotic states coexist 59315 when this system is driven by a proper external dc current. The 59316 detailed structures of the attractors and the basins of attraction are 59317 given to specify the features of these states. This provides one with 59318 valuable information to avoid chaos in Josephson junction devices. 59319 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 59320 RP Wang, ZY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 59321 CR ABRAHAM E, 1999, IEEE T APPL SUPERC 3, V9, P4166 59322 ATKIN IL, 1997, IEEE T APPL SUPERC 3, V7, P2894 59323 BENJACOB E, 1981, APPL PHYS LETT, V38, P822 59324 HUBERMAN BA, 1980, APPL PHYS LETT, V37, P750 59325 JENSEN HD, 1990, PHYSICA B, V165, P1661 59326 KAUTZ RL, 1981, J APPL PHYS, V52, P6241 59327 MACDONALD AH, 1983, PHYS REV B, V27, P201 59328 NERENBERG MAH, 1987, PHYS REV B, V36, P8333 59329 PEDERSEN NF, 1988, STIMULATED EFFECTS J, P227 59330 YANG TH, 1999, PHYS REV E A, V59, P5393 59331 NR 10 59332 TC 4 59333 SN 1000-3290 59334 J9 ACTA PHYS SIN-CHINESE ED 59335 JI Acta Phys. Sin. 59336 PD OCT 59337 PY 2001 59338 VL 50 59339 IS 10 59340 BP 1996 59341 EP 2000 59342 PG 5 59343 SC Physics, Multidisciplinary 59344 GA 493ZA 59345 UT ISI:000172252300030 59346 ER 59347 59348 PT J 59349 AU Zhuang, YL 59350 Yuan, YG 59351 Zhang, RL 59352 TI The progress of photoisomerizable intellectual biological switches 59353 SO PROGRESS IN CHEMISTRY 59354 DT Article 59355 DE photoisomerization; biological switches; biosensors 59356 ID BACTERIORHODOPSIN PHOTOSYNTHESIS; ALPHA-CHYMOTRYPSIN; PROTEIN 59357 CATALYSIS; GLUCOSE-OXIDASE; ENZYME-ACTIVITY; ION-TRANSPORT; LIGHT; 59358 PHOTOREGULATION; MECHANISM; IMMOBILIZATION 59359 AB The novel concept of the biological intellectual switch is introduced. 59360 The mechanism and characteristics on the photoisomerization of 59361 biological switch materials are described. The progress and the 59362 development in this field are discussed, such as the applications of 59363 reversibly photoisomerized biomaterials in optical memory, 59364 electrochemical control, biosensors,etc. The future prospect for the 59365 intellectual biological switches is presented. 59366 C1 Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072, Peoples R China. 59367 RP Zhuang, YL, Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072, 59368 Peoples R China. 59369 CR 1998, SAVING TECHNOLOGY DI, P3 59370 ADAMS SR, 1989, J AM CHEM SOC, V111, P7957 59371 AIZAWA M, 1977, ARCH BIOCHEM BIOPHYS, V182, P305 59372 AMIT B, 1974, J ORG CHEM, V39, P192 59373 BERTELSON RC, 1971, PHOTOCHROMISM, P45 59374 BINKLEY RW, 1984, SYNTHETIC ORGANIC PH, P375 59375 BIRGE RR, 1990, BIOCHIM BIOPHYS ACTA, V1016, P293 59376 BOUASLAURENT H, 1992, APPL PHOTOCHROMIC PO, V56, P1 59377 CIARDELLI F, 1984, BIOPOLYMERS, V23, P1423 59378 DIMITRI AP, 1989, SCIENCE, V245, P843 59379 ELLISDAVIES GCR, 1988, J ORG CHEM, V53, P1966 59380 ELSAYED MA, 1997, PURE APPL CHEM, V69, P749 59381 ELSTOV AV, 1990, ORGANIC PHOTOCHROMIS 59382 FEHER G, 1989, NATURE, V339, P111 59383 FENG G, 1998, SCIENCE, V887, P279 59384 GIGORIEFF N, 1996, J MOL BIOL, V259, P393 59385 GILAT SL, 1993, J CHEM SOC CHEM COMM, P1439 59386 GILAT SL, 1995, CHEM-EUR J, V1, P275 59387 GOVINDJEE R, 1990, BIOPHYS J, V58, P597 59388 GURNEY AM, 1987, PHYSIOL REV, V67, P583 59389 HASEBE Y, 1988, J PHYS ORG CHEM, V1, P309 59390 HAUPTS U, 1997, BIOCHEMISTRY-US, V36, P2 59391 HEINZ D, 1990, PHOTOCHROMISM MOL SY 59392 HIDEKI K, 1998, J PHYS CHEM-US, V102, P7899 59393 HOUBEN JL, 1983, INT J BIOL MACROMOL, V5, P94 59394 HUCK NPM, 1995, J CHEM SOC CHEM COMM, P1095 59395 KAPLAN JH, 1980, NATURE, V288, P587 59396 KAWAI SH, 1995, CHEM-EUR J, V1, P285 59397 KIMURA Y, 1997, NATURE, V389, P206 59398 KYOICHI S, 1998, J APPL PHYS, V83, P2894 59399 LANYI JK, 1993, BIOCHIM BIOPHYS ACTA, V241, P1183 59400 LANYI JK, 1997, J BIOL CHEM, V272, P31209 59401 LESTER HA, 1982, ANNU REV BIOPHYS BIO, V11, P151 59402 LEUCKE H, 1998, SCIENCE, V280, P1934 59403 LING LJ, 1989, ACTA BIOPHYS SINCA, V5, P293 59404 LIONDAGAN M, 1995, ANGEW CHEM INT EDIT, V34, P1604 59405 LIU ZF, 1990, NATURE, V347, P658 59406 MALCOLM RB, 1990, BIOPOLYMERS, V9, P1121 59407 MATHIES RA, 1991, ANNU REV BIOPHYS BIO, V20, P491 59408 MCAVDLE CB, 1992, APPL PHOTOCHROMIC PO, P1 59409 MONTI S, 1977, J AM CHEM SOC, V99, P3808 59410 NARGEOT J, 1983, P NATL ACAD SCI-BIOL, V80, P2395 59411 NERBONNE JM, 1984, NATURE, V310, P74 59412 NORBERT H, 1990, BIOPHYSICAL SOC, V58, P83 59413 OTTOLENGHI M, 1967, J CHEM PHYS, V46, P4613 59414 PEBAYPEYROULA E, 1997, SCIENCE, V277, P1676 59415 PIERONI O, 1980, J AM CHEM SOC, V102, P5913 59416 PIERONI O, 1992, J PHOTOCH PHOTOBIO B, V12, P125 59417 PILLAI VNR, 1990, SYNTHESIS, V1 59418 PORTER NA, 1990, PHOTOCHEM PHOTOBIOL, V51, P37 59419 RENTZEPIS PM, 1968, CHEM PHYS LETT, V2, P117 59420 ROHR M, 1992, J PHYS CHEM-US, V96, P6055 59421 ROTHSCHILD KJ, 1992, J BIOENERG BIOMEMBR, V24, P147 59422 SALTIEL J, 1992, APPL PHOTOCHROMIC PO, V64, P1 59423 SONG L, 1993, SCIENCE, V261, P891 59424 SONG L, 1996, J PHYS CHEM-US, V100, P10479 59425 SPUDICH JL, 1996, CURR OPIN CELL BIOL, V8, P452 59426 STRYER L, 1986, ANNU REV NEUROSCI, V9, P87 59427 STRYER L, 1988, BIOCHEMISTRY-US, P1028 59428 STRYER L, 1988, BIOCHEMISTRY-US, P25 59429 TOMLINSON WJ, 1984, APPL OPTICS, V23, P3990 59430 TURNER AD, 1988, J AM CHEM SOC, V110, P244 59431 VEDA T, 1994, J CHEM SOC, V225, P334 59432 WALKER JW, 1987, NATURE, V327, P249 59433 WESTMARK PR, 1993, J AM CHEM SOC, V115, P3416 59434 WHITTALL J, 1992, APPL PHOTOCHROMIC PO, V46, P1 59435 WILLNER I, 1991, J AM CHEM SOC, V113, P3321 59436 WILLNER I, 1991, J AM CHEM SOC, V113, P4013 59437 WILLNER I, 1993, BIOORGANIC PHOTOCHEM 59438 WILLNER I, 1993, J AM CHEM SOC, V115, P8690 59439 WILLNER I, 1993, REACT POLYM, V21, P177 59440 WILLNER I, 1996, ANGEW CHEM INT EDIT, V35, P367 59441 WILLNER I, 1996, J AM CHEM SOC, V118, P5310 59442 WILLNER I, 1998, J PHYS ORG CHEM, V11, P546 59443 NR 74 59444 TC 0 59445 SN 1005-281X 59446 J9 PROG CHEM 59447 JI Prog. Chem. 59448 PD JUL 59449 PY 2001 59450 VL 13 59451 IS 4 59452 BP 276 59453 EP 282 59454 PG 7 59455 SC Chemistry, Multidisciplinary 59456 GA 492DD 59457 UT ISI:000172152400006 59458 ER 59459 59460 PT J 59461 AU Lu, HQ 59462 Shen, LM 59463 Sun, NJ 59464 Ji, GF 59465 TI Bianchi type-I, -VII0 and -V cosmological models of Weyssenhoff fluid 59466 with magnetic moment 59467 SO NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS 59468 RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS 59469 DT Article 59470 ID EARLY UNIVERSE; INFLATION; SPIN; FIELD 59471 AB We derive the system of field equations for a Weyssenhof fluid 59472 including magnetic interaction among the spinning particles prevailing 59473 in spatially homogeneous, but. anisotropic cosmological models of 59474 Bianchi types I, VII0 and V based on the Einstein-Cartan theory. We 59475 have analyzed the field equations in three different equations of 59476 states specified by p = 1/3 rho, p = rho and p = 0. We have obtained. 59477 singular and non-singular solutions for Bianchi modes of types I and 59478 VII0 under the state p = rho but have found that. the non-singular 59479 solutions are unphysical. During the radiation epoch (p = 1/3 rho) and 59480 the matter epoch (p = 0), the analytical solutions found are 59481 non-singular for all the stated three Bianchi models; provided that the 59482 combined energy arising from matter spin and magnetic interaction among 59483 particles overcomes the anisotropy energy in the Universe. We have 59484 deduced that the minimum particle numbers for the radiation and matter 59485 epochs are, respectively, 10(88) and 10(108), leading to the conclusion 59486 that we must. consider the existence of neutrinos and other creation of 59487 particles and anti-particles under torsion and strong gravitational 59488 field in the early Universe. 59489 C1 Shanghai Univ, Dept Phys, Shanghai 200041, Peoples R China. 59490 RP Lu, HQ, Shanghai Univ, Dept Phys, Shanghai 200041, Peoples R China. 59491 CR BARROW JD, 1977, MON NOT R ASTRON SOC, V178, P625 59492 CARTON E, 1985, MANIFOLD AFFINE CONN 59493 DAVIDSON S, 1996, PHYS LETT B, V380, P253 59494 DEMIANSKI M, 1987, PHYS REV D, V35, P1181 59495 DERITIS SP, 1986, P 7 IT C GEN REL GRA 59496 DESABBATA V, 1980, LETT NUOVO CIMENTO, V27, P133 59497 DESABBATA V, 1990, NUOVO CIMENTO B, V105, P603 59498 DESABBATA V, 1994, SPIN TORSION GRAVITA 59499 HEHL FW, 1976, REV MOD PHYS, V48, P393 59500 ISHAM CJ, 1971, PHYS REV D, V3, P867 59501 ISHAM CJ, 1973, NATURE-PHYS SCI, V244, P82 59502 KERIMOV BK, 1992, PHYS LETT B, V274, P477 59503 KOPCZYNSKI W, 1973, PHYS LETT A, V43, P63 59504 LU HQ, 1995, CLASSICAL QUANT GRAV, V12, P2755 59505 MARTINEZGONZALE.E, 1986, PHYS LETT B, V167, P37 59506 OBUKHOV YN, 1987, CLASSICAL QUANT GRAV, V4, P1633 59507 RAYCHAUDHURI AK, 1975, PHYS REV D, V12, P952 59508 RYAN MP, 1975, HOMOGENEOUS RELATIVI 59509 SOFFEL M, 1979, PHYS LETT A, V70, P167 59510 TSOUBELIS D, 1979, PHYS REV D, V20, P3004 59511 TSOUBELIS D, 1981, PHYS REV D, V23, P823 59512 TURNER MS, 1988, PHYS REV D, V37, P2743 59513 ZELDOVICH YB, 1970, JETP LETT, V12, P307 59514 NR 23 59515 TC 0 59516 SN 0369-3554 59517 J9 NUOVO CIMENTO B-GEN PHYS R 59518 JI Nouvo Cimento Soc. Ital. Fis. B-Gen. Phys. Relativ. Astron. Math. Phys. 59519 Methods 59520 PD JUL 59521 PY 2001 59522 VL 116 59523 IS 7 59524 BP 829 59525 EP 844 59526 PG 16 59527 SC Physics, Multidisciplinary 59528 GA 491ZX 59529 UT ISI:000172141800007 59530 ER 59531 59532 PT J 59533 AU Zhang, ZL 59534 Jiang, XY 59535 Zhu, WQ 59536 Zhang, BX 59537 Xu, SH 59538 TI A white organic light emitting diode with improved stability 59539 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS 59540 DT Article 59541 ID ELECTROLUMINESCENT DEVICES; LAYERS 59542 AB A white organic light emitting diode (OLED) has been constructed by 59543 employing a new blue material and a red dye directly doped in the blue 59544 emitting layer. For comparison, another white cell with a blocking 59545 layer has also been made. The configurations of the devices are 59546 ITO/CuPc/NPB/JBEM(P):DCJT/Alq/MgAg (device 1) and 59547 ITO/CuPc/NPB/TPBi:DCJT/Alq/MgAg (device 2) where copper phthalocyanine 59548 (CuPc) is the buffer layer, 59549 N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'biphenyl-4-4'-diamine (NPB) is 59550 the hole transporting layer, 9, 10-bis(3'5'-diaryl)phenyl anthracene 59551 doped with perylene (JBEM(P)) is the new blue emitting material, 59552 N,arylbenzimidazoles (TPBi) is the hole blocking layer, 59553 tris(8-quinolinolato)aluminium complex (Alq) is the electron 59554 transporting layer, and DCJT is a red dye. A stable and current 59555 independent white OLED has been obtained in device 1, which has a 59556 maximum luminance of 14 850 cd m(-2), an efficiency of 2.88 Lm W-1, 59557 Commission Internationale de l'Eclairage coordinates of x = 0.32, y = 59558 0.38 between 4-200 mA cm(-2), and a half lifetime of 2860 h at the 59559 starting luminance of 100 cd m(-2). Device 1 has a stability more than 59560 50 times better than that of device 2. 59561 C1 Shanghai Univ Sci & Technol, Dept Mat Sci, Shanghai 201800, Peoples R China. 59562 RP Zhang, ZL, Shanghai Univ Sci & Technol, Dept Mat Sci, Shanghai 201800, 59563 Peoples R China. 59564 CR ADACHI C, 1995, APPL PHYS LETT, V66, P2679 59565 CHEN CH, 1997, MACROMOL S, V125, P1 59566 DESHPANDE RS, 1999, APPL PHYS LETT, V75, P888 59567 FORREST SR, 1997, SYNTHETIC MET, V91, P9 59568 GAO ZQ, 1999, APPL PHYS LETT, V74, P865 59569 GRANSTROM M, 1996, APPL PHYS LETT, V68, P147 59570 HAMADAY Y, 1993, JPN J APPL PHYS, V32, L917 59571 JIANG XY, 2000, J PHYS D APPL PHYS, V33, P473 59572 JORDAN RH, 1996, APPL PHYS LETT, V68, P1192 59573 KIDO J, 1994, APPL PHYS LETT, V64, P815 59574 LIU SY, 2000, THIN SOLID FILMS, V363, P294 59575 SHI JM, 1999, 5972247, US 59576 STRUKELJ M, 1996, J AM CHEM SOC, V118, P1213 59577 TOKITO S, 1995, J APPL PHYS, V77, P1985 59578 NR 14 59579 TC 9 59580 SN 0022-3727 59581 J9 J PHYS-D-APPL PHYS 59582 JI J. Phys. D-Appl. Phys. 59583 PD OCT 21 59584 PY 2001 59585 VL 34 59586 IS 20 59587 BP 3083 59588 EP 3087 59589 PG 5 59590 SC Physics, Applied 59591 GA 493DU 59592 UT ISI:000172207400014 59593 ER 59594 59595 PT J 59596 AU Zhao, JX 59597 Li, Y 59598 TI Analysis of millimeter wave power density received by cell monolayers 59599 inside culture dishes 59600 SO INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES 59601 DT Article 59602 DE millimeter wave; power density; culture dish; cell monolayer; FDTD 59603 method 59604 AB One sort of experiment concerning biological effects of millimeter 59605 waves (MMWs) at the cellular level is performed using a culture dish 59606 containing a cell monolayer with MMW irradiated from the underneath. 59607 For culture dishes with diameters much larger than the wavelength. 59608 analysis is carried out with respect to the relationship between the 59609 portion of the incident MMW power density (PD) received by the cell 59610 monolayer and influencing factors such as the culture dish bottom 59611 thickness. MMW wavelength. and the electromagnetic properties of the 59612 dish and culture solution. Another analysis is conducted by the FDTD 59613 method to reveal the effect of culture dish configuration on MMW PD 59614 received by the cell monolayer in a typical culture dish with a 59615 diameter not much longer than the wavelength. With the illustrated 59616 results. the conclusion is reached that rigorous analysis. precise 59617 measurement and accurate calculation of MMW PD should accompany such 59618 experiments. and large-diameter culture dishes are more preferred in 59619 experiments to small-caliber dishes. 59620 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China. 59621 RP Zhao, JX, Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R 59622 China. 59623 CR ANDREI G, 1998, BIOELECTROMAGNETICS, V19, P393 59624 CHEN HY, 1994, IEEE T MICROW THEO 1, V42, P2249 59625 DAVID K, 1983, FIELD WAVE ELECTROMA 59626 MUR G, 1981, IEEE T ELECTROMAGN C, V23, P377 59627 NR 4 59628 TC 3 59629 SN 0195-9271 59630 J9 INT J INFRAR MILLIM WAVE 59631 JI Int. J. Infrared Millimeter Waves 59632 PD NOV 59633 PY 2001 59634 VL 22 59635 IS 11 59636 BP 1577 59637 EP 1586 59638 PG 10 59639 SC Engineering, Electrical & Electronic; Physics, Applied; Optics 59640 GA 492RP 59641 UT ISI:000172181600003 59642 ER 59643 59644 PT J 59645 AU Iso, M 59646 Chen, BX 59647 Eguchi, M 59648 Kudo, T 59649 Shrestha, S 59650 TI Production of biodiesel fuel from triglycerides and alcohol using 59651 immobilized lipase 59652 SO JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC 59653 DT Article 59654 DE enzyme biocatalysis; lipase; transesterification; Immobilized enzyme; 59655 biodiesel fuel 59656 ID SUNFLOWER OIL 59657 AB Transesterification reaction was performed using triglycerides and 59658 short-chain alcohol by immobilized lipase in non-aqueous conditions. 59659 The long-chain fatty acid ester, which is the product of this reaction, 59660 can be used as a diesel fuel that does not produce sulfur oxide and 59661 minimize the soot particulate. Immobilized Pseudomonas fluorescens 59662 lipase showed the highest activity in this reaction. Immobilization of 59663 lipase was carried out using porous kaolinite particle as a carrier. 59664 When methanol and ethanol were used as alcohol, organic solvent like 59665 1,4-dioxane was required. The reaction could be performed in absence of 59666 solvent when 1-propanol and 1-butanol were used as short-chain alcohol. 59667 The activity of immobilized lipase was highly increased in comparison 59668 with free lipase because its activity sites became more effective. 59669 Immobilized enzyme could be repeatedly used without troublesome method 59670 of separation and the decrease in its activity was not largely 59671 observed. (C) 2001 Elsevier Science B.V. All rights reserved. 59672 C1 Tokyo Univ Agr & Technol, Dept Chem Engn, Tokyo 1848588, Japan. 59673 Shanghai Univ Sci & Technol, Coll Opt & Electron Informat Engn, Shanghai 200093, Peoples R China. 59674 RP Iso, M, Tokyo Univ Agr & Technol, Dept Chem Engn, 2-24-16 Nakamachi, 59675 Tokyo 1848588, Japan. 59676 CR LINKO YY, 1994, J AM OIL CHEM SOC, V71, P1411 59677 LINKO YY, 1998, J BIOTECHNOL, V66, P41 59678 MITTELBACH M, 1990, J AM OIL CHEM SOC, V67, P168 59679 NELSON LA, 1996, J AM OIL CHEM SOC, V73, P1191 59680 OHIRA H, 1998, P 31 C SOC CHEM ENG, P217 59681 SELMI B, 1998, J AM OIL CHEM SOC, V75, P691 59682 SHIMADA Y, 1999, J AM OIL CHEM SOC, V76, P789 59683 TANAKA K, 1997, P 62 C SOC CHEM ENG, P82 59684 WATANABE Y, 2000, J AM OIL CHEM SOC, V77, P355 59685 NR 9 59686 TC 23 59687 SN 1381-1177 59688 J9 J MOL CATAL B-ENZYM 59689 JI J. Mol. Catal. B-Enzym. 59690 PD NOV 20 59691 PY 2001 59692 VL 16 59693 IS 1 59694 BP 53 59695 EP 58 59696 PG 6 59697 SC Chemistry, Physical; Biochemistry & Molecular Biology 59698 GA 489XQ 59699 UT ISI:000172018400007 59700 ER 59701 59702 PT J 59703 AU Zhu, LH 59704 Ma, XM 59705 Zhao, L 59706 TI Study on phase transformation of Fe-Ni powders during mechanical 59707 alloying 59708 SO JOURNAL OF MATERIALS SCIENCE 59709 DT Article 59710 ID X-RAY-DIFFRACTION; MARTENSITIC-TRANSFORMATION; MAGNETIC-PROPERTIES; 59711 PARTICLES; ENERGY 59712 AB Fe-Ni ultra-fine particles were prepared by mechanical alloying and 59713 phase transformation during mechanical alloying was studied. Results 59714 show that phase transformation tendency is different during mechanical 59715 alloying of Fe-Ni powders with different nickel content. For Fe-30Ni 59716 powder, martensite is the only product obtained with the increase of 59717 milling time, while for Fe-35Ni powder, a part of martensite has been 59718 transformed into austenite when milling time is prolonged to above 40 59719 h. It indicates that the nickel content plays an important role in the 59720 phase transformation tendency during mechanical alloying of Fe-Ni 59721 powders. (C) 2001 Kluwer Academic Publishers. 59722 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China. 59723 RP Zhu, LH, Shanghai Univ, Dept Mat Sci & Engn, Yanchang Rd, Shanghai 59724 200072, Peoples R China. 59725 CR ASAKA K, 1999, MAT SCI ENG A-STRUCT, V275, P262 59726 BALDOKHIN YV, 1999, J MAGN MAGN MATER, V203, P313 59727 CHEN Y, 1997, MAT SCI ENG A-STRUCT, V226, P38 59728 DONG XL, 1999, J MATER RES, V14, P398 59729 FECHT HJ, 1994, SCI TECHNOLOGY NANOS, P125 59730 JARTYCH E, 2000, J MAGN MAGN MATER, V208, P221 59731 JIANG HG, 1999, J MATER RES, V14, P549 59732 KAJIWARA S, 1991, PHILOS MAG A, V63, P625 59733 KUHRT C, 1993, J APPL PHYS 2B, V73, P6588 59734 KUSUNOKI M, 1996, ULTRAFINE PARTICLES, P98 59735 LI XG, 1997, J MAGN MAGN MATER, V170, P339 59736 PEKALA M, 1999, NANOSTRUCT MATER, V11, P789 59737 RAWERS J, 1995, SCRIPTA METALL MATER, V32, P1319 59738 RAWERS JC, 1996, MAT SCI ENG A-STRUCT, V220, P162 59739 TADAKI T, 1996, MAT SCI ENG A-STRUCT, V217, P235 59740 ZHOU YH, 1990, MAT SCI ENG A-STRUCT, V124, P241 59741 ZHOU YH, 1991, MAT SCI ENG A-STRUCT, V133, P775 59742 NR 17 59743 TC 4 59744 SN 0022-2461 59745 J9 J MATER SCI 59746 JI J. Mater. Sci. 59747 PD DEC 59748 PY 2001 59749 VL 36 59750 IS 23 59751 BP 5571 59752 EP 5574 59753 PG 4 59754 SC Materials Science, Multidisciplinary 59755 GA 489VD 59756 UT ISI:000172012400007 59757 ER 59758 59759 PT J 59760 AU Li, CP 59761 Chen, GR 59762 TI Bifurcation analysis of the Kuramoto-Sivashinsky equation in one 59763 spatial dimension 59764 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS 59765 DT Article 59766 AB In this Letter, we study the bifurcation of the Kuramoto-Sivashinsky 59767 (K-S) equation in one-spatial dimension with three kinds of boundary 59768 value conditions. Using the Liapunov-Schmidt reduction technique, the 59769 original equation is first reduced to one or two bifurcation equations, 59770 so that bifurcation analysis of the original equation can be 59771 transformed to that of the reduced-order systems, and can therefore be 59772 carried out in detail. 59773 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 59774 City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China. 59775 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 59776 CR CHOW SN, 1982, METHODS BIFURCATION 59777 FOIAS C, 1988, J DIFF EQS, V73, P93 59778 GOLUBITSKY M, 1985, SINGULARITIES GROUPS, V1 59779 KUKAVICA I, 1992, J MATH ANAL APPL, V166, P601 59780 KURAMOTO Y, 1978, PROG THEOR PHYS S, V64, P346 59781 LI CP, 2000, APPL MATH MECH-ENGL, V21, P265 59782 LI CP, 2000, MATH APPL, V13, P46 59783 LI CP, 2001, INT J BIFURCAT CHAOS, V11, P1295 59784 LI CP, 2001, MATH APPL, V14, P22 59785 NICOLAENKO B, 1985, PHYSICA D, V16, P155 59786 SIVASHINSKY GI, 1977, ACTA ASTRONAUT, V4, P1177 59787 SIVASHINSKY GI, 1980, SIAM J APPL MATH, V39, P67 59788 TEMAM R, 1988, INFINITE DIMENSIONAL 59789 YANG ZH, 2000, IN PRESS J COMPUT AP 59790 NR 14 59791 TC 3 59792 SN 0218-1274 59793 J9 INT J BIFURCATION CHAOS 59794 JI Int. J. Bifurcation Chaos 59795 PD SEP 59796 PY 2001 59797 VL 11 59798 IS 9 59799 BP 2493 59800 EP 2499 59801 PG 7 59802 SC Mathematics, Applied; Multidisciplinary Sciences 59803 GA 489MV 59804 UT ISI:000171996000012 59805 ER 59806 59807 PT J 59808 AU Wang, XC 59809 Qiu, XJ 59810 Zheng, LP 59811 TI Influence of relative phase on the enhanced ionization behaviour of 59812 linear multiatomic molecular ions in two-color laser fields 59813 SO ACTA PHYSICA SINICA 59814 DT Article 59815 DE two-color laser fields; relative phase; enhanced ionization 59816 ID INTENSE; H-2+; DISSOCIATION; H-2(+) 59817 AB The enhanced ionization(EI) behaviour of linear multiatomic molecular 59818 ions is studied in two-color(fundamental radiation: 780 nm, the second 59819 harmonic-390 nm) laser fields by the numerical solution of the 59820 time-dependent Schrodinger equation with the symmetrical splitting of 59821 the short-time exponential propagator. The influence of the relative 59822 phase between the two-color laser fields on the ionization probability 59823 is given. The numerical results demonstrate that the influence of the 59824 relative phase on the ionization probability is the strongest in the 59825 range of the inter-nuclear distance where the EI occurs. The influence 59826 can be explained in terms of the field-induced over-the-barrier 59827 ionization model. 59828 C1 Shanghai Univ, Sch Sci, Shanghai 200436, Peoples R China. 59829 RP Wang, XC, Shanghai Univ, Sch Sci, Shanghai 200436, Peoples R China. 59830 CR BANDRACK AD, 1994, MOL LASER FIELDS, P156 59831 FEIT MD, 1982, J COMPUT PHYS, V47, P412 59832 GIBSON GN, 1997, PHYS REV LETT, V79, P2022 59833 GIUSTISUZOR A, 1990, PHYS REV LETT, V64, P515 59834 HEATHER RW, 1991, COMPUT PHYS COMMUN, V63, P446 59835 HEATHER RW, 1991, PHYS REV A, V44, P7560 59836 HU SX, 1998, SCI CHINA SER A, V41, P198 59837 JAVANAINEN J, 1988, PHYS REV A, V38, P3430 59838 LEI AL, 1999, CHINESE PHYS LETT, V16, P264 59839 SEIDEMAN T, 1995, PHYS REV LETT, V75, P2819 59840 ZUO T, 1995, PHYS REV A, V52, R2511 59841 ZUO T, 1996, PHYS REV A, V54, P3254 59842 NR 12 59843 TC 0 59844 SN 1000-3290 59845 J9 ACTA PHYS SIN-CHINESE ED 59846 JI Acta Phys. Sin. 59847 PD NOV 59848 PY 2001 59849 VL 50 59850 IS 11 59851 BP 2155 59852 EP 2158 59853 PG 4 59854 SC Physics, Multidisciplinary 59855 GA 489QZ 59856 UT ISI:000172004100022 59857 ER 59858 59859 PT J 59860 AU Bian, JJ 59861 Zhong, YG 59862 Wang, H 59863 TI Effect of PMW addition on the microwave dielectric properties of PCFNS 59864 dielectric ceramic 59865 SO JOURNAL OF MATERIALS SCIENCE LETTERS 59866 DT Article 59867 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China. 59868 RP Bian, JJ, Shanghai Univ, Dept Inorgan Mat, 20 ChenZhong Rd, Shanghai 59869 201800, Peoples R China. 59870 CR HUANG CL, 2000, MATER LETT, V43, P32 59871 ISHZAKI T, 1994, IEEE T MICROW THEORY, V42, P2017 59872 KAGATA H, 1994, NATL TECHNICAL REPOR, V40, P17 59873 KIM HT, 1999, J AM CERAM SOC, V82, P3476 59874 KUCHEIKO S, 1997, J AM CERAM SOC, V80, P2937 59875 NR 5 59876 TC 1 59877 SN 0261-8028 59878 J9 J MATER SCI LETT 59879 JI J. Mater. Sci. Lett. 59880 PY 2001 59881 VL 20 59882 IS 19 59883 BP 1767 59884 EP 1768 59885 PG 2 59886 SC Materials Science, Multidisciplinary 59887 GA 488GD 59888 UT ISI:000171927100005 59889 ER 59890 59891 PT J 59892 AU Hassan, AKA 59893 Xu, DM 59894 Niu, MD 59895 Zhang, YJ 59896 TI An improved technique for measuring electromagnetic properties of 59897 curved surfaces coating materials with open-ended coaxial line probe 59898 SO CHINESE JOURNAL OF ELECTRONICS 59899 DT Article 59900 DE coating materials testing; open-ended coaxial probe; complex 59901 permittivity and permeability; finite-difference time-domain (FDTD) 59902 AB An improved open-ended coaxial probe technique for measuring 59903 electromagnetic properties of coating materials with curved surfaces 59904 (both convex and concave) is studied. FDTD modeling indicates that the 59905 reflection coefficient of the loaded probe is more sensitive to concave 59906 surface samples than to those with convex surface. In order to satisfy 59907 concave surface materials testing, we proposed a technique to improve 59908 the measurement accuracy by modifying the standard coaxial probe. A 59909 ring patch is added at the end of extended inner conductor throughout 59910 the air gap between the probe and the material under test. The 59911 performance of the proposed technique is examined. The derived epsilon* 59912 and mu* of several microwave absorbing materials coated on prototype 59913 boxes by using the new probe are relatively in agreement with the 59914 published data. 59915 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China. 59916 RP Hassan, AKA, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 59917 200072, Peoples R China. 59918 CR ATHEY TW, 1982, IEEE T MICROW THEORY, V30, P82 59919 BAKERJARVIS J, 1994, IEEE T INSTRUM MEAS, V43, P711 59920 BRINGHURST S, 1997, IEEE T MICROW THEO 1, V45, P2073 59921 LAUGHE PD, 1993, IEEE T INSTRUM MEAS, V42, P879 59922 LI CL, 1995, IEEE T INSTRUM MEAS, V44, P19 59923 MUR G, 1981, IEEE T ELECTROMAGN C, V23, P377 59924 NIU M, 1999, IEEE T INSTRUM MEAS, V47, P476 59925 TOFLOVE A, 1980, IEEE T ELECTROMAGNET, V22, P191 59926 WANG S, 1998, KIEEE T MICROWAVE TH, V45, P2145 59927 XU DM, 1987, IEEE T MICROW THEORY, V35, P1424 59928 YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302 59929 ZHANG Z, 1995, J MICROWAVES CHINA, V11, P171 59930 NR 12 59931 TC 0 59932 SN 1022-4653 59933 J9 CHINESE J ELECTRON 59934 JI Chin. J. Electron. 59935 PD OCT 59936 PY 2001 59937 VL 10 59938 IS 4 59939 BP 539 59940 EP 543 59941 PG 5 59942 SC Engineering, Electrical & Electronic 59943 GA 487WR 59944 UT ISI:000171902500027 59945 ER 59946 59947 PT J 59948 AU Leng, GS 59949 Zhang, LS 59950 TI Extreme properties of quermassintegrals of convex bodies 59951 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY 59952 DT Article 59953 DE convex body; quermassintegral; mixed volume 59954 ID DUAL MIXED VOLUMES; BUSEMANN-PETTY PROBLEM; INTERSECTION BODIES; 59955 INEQUALITY 59956 AB In this paper, we establish two theorems for the quermassintegrals of 59957 convex bodies, which are the generalizations of the well-known 59958 Aleksandrov's projection theorem and Loomis-Whitney's inequality, 59959 respectively. Applying these two theorems, we obtain a number of 59960 inequalities for the volumes of projections of convex bodies. Besides, 59961 we introduce the concept of the perturbation element of a convex body, 59962 and prove an extreme property of it. 59963 C1 Hunan Normal Univ, Dept Math, Changsha 410006, Peoples R China. 59964 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 59965 RP Leng, GS, Hunan Normal Univ, Dept Math, Changsha 410006, Peoples R 59966 China. 59967 CR BALL K, 1991, J LOND MATH SOC, V44, P351 59968 BALL K, 1991, T AM MATH SOC, V327, P891 59969 BOURGAIN J, 1988, LECT NOTES MATH, V1317, P250 59970 BRASCAMP HJ, 1976, ADV MATH, V20, P151 59971 BURAGO YD, 1988, GEOMETRIC INEQUALITI 59972 CHAKERIAN GD, 1997, T AM MATH SOC, V349, P1811 59973 GARDNER RJ, 1994, ANN MATH, V140, P435 59974 GARDNER RJ, 1994, T AM MATH SOC, V342, P435 59975 GOODEY P, 1997, B LOND MATH SOC 1, V29, P82 59976 GRINBERG EL, 1991, MATH ANN, V291, P75 59977 KAWASHIMA T, 1991, GEOM DEDICATA, V38, P73 59978 LEICHTWEISS K, 1980, KONVEXE MENGEN 59979 LUTWAK E, 1985, T AM MATH SOC, V287, P92 59980 LUTWAK E, 1988, ADV MATH, V71, P232 59981 LUTWAK E, 1990, P LOND MATH SOC, V60, P365 59982 PETTY CM, 1967, P COLL CONV COP 1965, P234 59983 REN DL, 1988, INTRO INTEGRAL GEOME 59984 SCHNEIDER R, 1967, MATH Z, V101, P71 59985 SCHNEIDER R, 1983, ZONOIDS RELATED TOPI, P296 59986 SCHNEIDER R, 1993, CONVEX BODIES BRUNNM 59987 SCHNEIDER R, 1998, DETERMINATION CONVEX, V33, P155 59988 THOMPSON AC, 1996, MINKOWSKI GEOMETRY 59989 YANG L, 1986, ACTA MATH SINICA, V6, P802 59990 ZHANG GY, 1994, T AM MATH SOC, V345, P777 59991 ZHANG GY, 1999, T AM MATH SOC, V351, P985 59992 ZHENG JZ, 1981, ACTA MATH SINICA, V4, P481 59993 NR 26 59994 TC 2 59995 SN 1006-9283 59996 J9 SCI CHINA SER A 59997 JI Sci. China Ser. A-Math. Phys. Astron. 59998 PD JUL 59999 PY 2001 60000 VL 44 60001 IS 7 60002 BP 837 60003 EP 845 60004 PG 9 60005 SC Mathematics, Applied; Mathematics 60006 GA 487CR 60007 UT ISI:000171856500004 60008 ER 60009 60010 PT J 60011 AU Tao, DH 60012 Zhang, JH 60013 TI Several difficult problems in lubrication 60014 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY 60015 DT Article 60016 DE lubrication; ZDTP; chlorowax; green compressor oil; lubrication of 60017 cystoscope and catheter 60018 AB Whether in industry or in our human life, we will encounter many 60019 lubrication problems. A good lubricant not only should have good 60020 performance, but also should meet the needs of the specific conditions. 60021 Here we give some examples about the difficult problems in lubrication 60022 and their solutions. These examples are: (i) hydrolysis and emulsion of 60023 ZDTP; (ii) corrosion of chlorowax; (iii) coexistence of green 60024 compressor oil and cryogen (R-134A); (iv) lubrication of cystoscope and 60025 catheter. On the same time, some achievements in lubrication field 60026 provided by Lubrication Chemistry Laboratory of Shanghai University 60027 will be introduced in this paper. 60028 C1 Shanghai Univ, Lubricat Chem Lab, Shanghai 200072, Peoples R China. 60029 RP Tao, DH, Shanghai Univ, Lubricat Chem Lab, Shanghai 200072, Peoples R 60030 China. 60031 CR 871010011, CN 60032 SAKURAI T, 1979, ADDITIVE PETROLEUM P 60033 TAO D, 1996, LUBRI SCI, V8, P397 60034 TAO DH, 1994, LUBR ENG, V50, P385 60035 TAO DH, 2000, CHIN SCI ABSTR, V6, P106 60036 NR 5 60037 TC 0 60038 SN 1006-9283 60039 J9 SCI CHINA SER A 60040 JI Sci. China Ser. A-Math. Phys. Astron. 60041 PD AUG 60042 PY 2001 60043 VL 44 60044 SU Suppl. S 60045 BP 46 60046 EP 48 60047 PG 3 60048 SC Mathematics, Applied; Mathematics 60049 GA 485ZH 60050 UT ISI:000171793000008 60051 ER 60052 60053 PT J 60054 AU Chen, XY 60055 Shen, XJ 60056 Lu, JT 60057 TI Tribological problems of surface IC processed MEMS 60058 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY 60059 DT Article 60060 DE MEMS; surface micromachining; tribology; silicon 60061 ID FRICTION; DEVICES 60062 AB Successful microactuators of simple mechanics on silicon chip are a 60063 prerequisite for monolithic microrobotic systems. Recent development in 60064 microelectromechanical systems (MEMS) has led to the success in 60065 building new types of microactuators. Based on the design of 60066 microgrippers and linear microvibromotor, which were fabricated using 60067 surface micromachining, the analysis of contact pairs and opposite 60068 movement forming of moving elements is given in this paper. The source 60069 and mechanism of tribology of MEMS are discussed. Associated with the 60070 developing history of macro-machine, several research methods and 60071 possible existing problems about the tribology of surface IC processed 60072 MEMS are pointed out. 60073 C1 Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China. 60074 RP Chen, XY, Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, 60075 Peoples R China. 60076 CR CHO YH, 1994, J MICROELECTROMECH S, V3, P81 60077 DANEMAN MJ, 1996, J MICROELECTROMECH S, V5, P159 60078 HOWE RT, 1988, J VAC SCI TECHNOL B, V6, P1809 60079 KIANG MH, 1998, J MICROELECTROMECH S, V7, P27 60080 LIM MG, 1990, P IEEE MICR EL MECH, P82 60081 LU JT, 1997, 4 FRENCH SIN WORKSH, P109 60082 MILLER SL, 1997, P SOC PHOTO-OPT INS, V3224, P24 60083 SENFT DC, 1997, P SOC PHOTO-OPT INS, V3224, P31 60084 TANG WC, 1997, P 34 DES AUT C AN CA, P670 60085 NR 9 60086 TC 0 60087 SN 1006-9283 60088 J9 SCI CHINA SER A 60089 JI Sci. China Ser. A-Math. Phys. Astron. 60090 PD AUG 60091 PY 2001 60092 VL 44 60093 SU Suppl. S 60094 BP 443 60095 EP 448 60096 PG 6 60097 SC Mathematics, Applied; Mathematics 60098 GA 485ZH 60099 UT ISI:000171793000071 60100 ER 60101 60102 PT J 60103 AU Deng, SF 60104 Chen, DY 60105 TI The novel multisoliton solutions of KP equations 60106 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN 60107 DT Article 60108 DE KP equation; Hirota method; novel-multisoliton solution 60109 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 60110 RP Deng, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 60111 CR ABLOWITZ MJ, 1981, SOLITONS INVERSE SCA 60112 CHEN DY, 2000, NOVEL MULTISOLITON S 60113 HIROTA R, 1971, PHYS REV LETT, V27, P1192 60114 HIROTA R, 1980, TOP CURR PHYS, V17, P157 60115 SATSUMA J, 1976, J PHYS SOC JPN, V40, P286 60116 NR 5 60117 TC 12 60118 SN 0031-9015 60119 J9 J PHYS SOC JPN 60120 JI J. Phys. Soc. Jpn. 60121 PD OCT 60122 PY 2001 60123 VL 70 60124 IS 10 60125 BP 3174 60126 EP 3175 60127 PG 2 60128 SC Physics, Multidisciplinary 60129 GA 484RZ 60130 UT ISI:000171704500064 60131 ER 60132 60133 PT J 60134 AU Song, LP 60135 Zhu, SZ 60136 TI Regioselective synthesis of fluorinated pyrazole derivatives from 60137 trifluoromethyl-1,3-diketone 60138 SO JOURNAL OF FLUORINE CHEMISTRY 60139 DT Article 60140 DE trifluoromethyl-1,3-diketone; per(poly)fluorophenylhydrazine; 60141 regioselective; fluorinated pyrazole derivatives 60142 AB 1,1,1-Trifluoropentane-2,4-dione (1a) and 60143 1-(thien-2-yl)-4,4,4-trifluorobutane-1,3-dione (1b) reacted readily 60144 with per(poly)fluorophenylhydrazines ArfNHNH2 (Ar-f: C6F5, HC6F4, 60145 CIC6F4) to give N-per(poly)fluorophenyl-5-methyl(or 60146 thien-2-yl)-3-trifluoromethylpyrazoles 3 and 3-methyl (or 60147 thien-2-yl)-5-hydroxy-5-trifluoromethyl-4,5-dihydropyrazoles 4, 60148 respectively. Treatment of 4 with P2O5 yielded the dehydrated product 60149 N-per(poly)fluorophenyl-3-methyl(or 60150 thien-2-yl)-5-trifluoromethyl-pyrazole in good yield. (C) 2001 Elsevier 60151 Science B.V. All rights reserved. 60152 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Organofluorine Chem, Shanghai 200032, Peoples R China. 60153 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 60154 RP Zhu, SZ, Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Organofluorine 60155 Chem, 354 Fenglin Lu Rd, Shanghai 200032, Peoples R China. 60156 CR BANK RE, 1994, ORGANOFLUORINE CHEM 60157 HUDLICKY M, 1992, CHEM ORGANIC FLUORIN 60158 LEE LF, 1990, J HETEROCYCLIC CHEM, V27, P243 60159 LOUPY A, 1995, J FLUORINE CHEM, V75, P215 60160 REID JC, 1950, J AM CHEM SOC, V72, P2948 60161 SINGH SP, 1997, J FLUORINE CHEM, V83, P73 60162 SINGH SP, 1999, J FLUORINE CHEM, V94, P199 60163 SONG LP, 2001, J FLUORINE CHEM, V107, P107 60164 WELCH JT, 1987, TETRAHEDRON, V43, P3123 60165 YAMAGUCHI Y, 1998, J HETEROCYCLIC CHEM, V35, P805 60166 NR 10 60167 TC 12 60168 SN 0022-1139 60169 J9 J FLUORINE CHEM 60170 JI J. Fluor. Chem. 60171 PD OCT 28 60172 PY 2001 60173 VL 111 60174 IS 2 60175 SI Sp. Iss. SI 60176 BP 201 60177 EP 205 60178 PG 5 60179 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic 60180 GA 485NF 60181 UT ISI:000171759900014 60182 ER 60183 60184 PT J 60185 AU Mo, YW 60186 Okawa, Y 60187 Tajima, M 60188 Nakai, T 60189 Yoshiike, N 60190 Natukawa, K 60191 TI Micro-machined gas sensor array based on metal film micro-heater 60192 SO SENSORS AND ACTUATORS B-CHEMICAL 60193 DT Article 60194 DE gas detectors; sensors; arrays; micro-electromechanical devices 60195 AB An integrated gas sensor array is promising to overcome the poor 60196 selectivity and drift encountered by individual gas sensor. 60197 Micromachined gas sensor array was fabricated using the post-process 60198 micro-machining technology of silicon integrated circuit (IC). The size 60199 of a 2 x 4 array is 2 mm x 4 mm, and the active area of each cell is 50 60200 [im x 50 tm. The electric properties, thermal characteristics. and the 60201 response to standard gases of the sensor array were investigated. The 60202 micro-heater can be driven to 400 degreesC with about 9 mW applied 60203 power, and thermal response time constant of a micro-heater is about 10 60204 ms. The techniques of oxygen radical assisted EB evaporation was 60205 utilized to prepare SnO2. sensitive films that show high sensitivity 60206 and good selectivity to C2H5OH. (C) 2001 Elsevier Science B.V. All 60207 rights reserved. 60208 C1 Shanghai Univ, Shanghai 201800, Peoples R China. 60209 Technol Res Inst Osaka Prefecture, Izumi, Osaka 5941157, Japan. 60210 Kubota Co Ltd, Amagasaki, Hyogo 6618567, Japan. 60211 Hochiki Co Ltd, Machida, Tokyo 1948577, Japan. 60212 Matsushita Elect Ind Co Ltd, Moriguchi, Osaka 5700005, Japan. 60213 RP Mo, YW, Shanghai Univ, Shanghai 201800, Peoples R China. 60214 CR CAVICCHI RE, 1995, APPL PHYS LETT, V66, P812 60215 CAVICCHI RE, 1995, SENSOR ACTUAT B-CHEM, V24, P478 60216 CHUNG W, 1998, T IEE JPN E, V118, P147 60217 GAEDNER JW, 1991, SENSOR ACTUAT B-CHEM, V4, P109 60218 GUIDI V, 1998, SENSOR ACTUAT B-CHEM, V49, P88 60219 LYLE RP, 1997, MICROSTRUCT MICROFAB, V3, P188 60220 PERSAUD K, 1982, NATURE, V299, P352 60221 ROSSI C, 1997, SENSOR ACTUAT A-PHYS, V63, P183 60222 SHENG LY, 1998, SENSOR ACTUAT B-CHEM, V49, P81 60223 SHURMER HV, 1990, SENSOR ACTUAT B-CHEM, V1, P256 60224 SUEHLE JS, 1993, IEEE ELECTR DEVICE L, V14, P118 60225 ZARCOMB S, 1984, SENSOR ACTUATOR, V6, P225 60226 NR 12 60227 TC 9 60228 SN 0925-4005 60229 J9 SENSOR ACTUATOR B-CHEM 60230 JI Sens. Actuator B-Chem. 60231 PD OCT 15 60232 PY 2001 60233 VL 79 60234 IS 2-3 60235 BP 175 60236 EP 181 60237 PG 7 60238 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation 60239 GA 484FM 60240 UT ISI:000171679600014 60241 ER 60242 60243 PT J 60244 AU Li, D 60245 Sun, XL 60246 TI Convexification and existence of a saddle point in a pth-power 60247 reformulation for nonconvex constrained optimization 60248 SO NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS 60249 DT Article 60250 DE nonconvex constrained optimization; Lagrangian duality; saddle point; 60251 p-th power reformulation 60252 AB It is well-known that saddle point criteria is a sufficient optimality 60253 condition for constrained optimization problems. Convexity is a basic 60254 requirement for the development of duality theory and saddle point 60255 optimality. In this paper we show that, under some mild conditions, the 60256 local convexity of Lagrangian function and hence the existence of a 60257 local saddle point pair can be ensured in an equivalent p-th power 60258 reformulation for a general class of nonconvex constrained optimization 60259 problems. We further investigate the conditions under which a global 60260 saddle point pair can be guaranteed to exist. These results expand 60261 considerably the class of optimization problems where a saddle point 60262 pair exists, thus enlarging the family of nonconvex problems to which 60263 the dual-search methods can be applied. 60264 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China. 60265 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 60266 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, 60267 Shatin, Hong Kong, Peoples R China. 60268 CR BERTSEKAS DP, 1982, CONSTRAINED OPTIMIZA 60269 KARLIN S, 1959, MATH METHODS THEORY, V1 60270 LI D, 1995, J OPTIMIZ THEORY APP, V85, P309 60271 LI D, 2000, J OPTIMIZ THEORY APP, V104, P109 60272 LUENBERGER DG, 1984, LINEAR NONLINEAR PRO 60273 MINOUX M, 1986, MATH PROGRAMMING THE 60274 NGUYEN VH, 1979, J OPTIMIZATION THEOR, V27, P495 60275 ROCKAFELLAR RT, 1970, CONVEX ANAL 60276 ROCKAFELLAR RT, 1971, P C PROBAB, P73 60277 TSENG P, 1993, MATH PROGRAM, V60, P1 60278 XU ZK, 1997, J OPTIMIZ THEORY APP, V94, P739 60279 NR 11 60280 TC 1 60281 SN 0362-546X 60282 J9 NONLINEAR ANAL-THEOR METH APP 60283 JI Nonlinear Anal.-Theory Methods Appl. 60284 PD AUG 60285 PY 2001 60286 VL 47 60287 IS 8 60288 PN Part 8 Sp. Iss. SI 60289 BP 5611 60290 EP 5622 60291 PG 12 60292 SC Mathematics, Applied; Mathematics 60293 GA 482UN 60294 UT ISI:000171595800050 60295 ER 60296 60297 PT J 60298 AU Wang, ZH 60299 Peng, GD 60300 Ankiewicz, A 60301 Chu, PL 60302 TI A new recursion method for fiber grating analysis 60303 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 60304 DT Article 60305 DE gratings; optical fibers; optical-fiber devices; coupled-mode theory 60306 ID WAVE-GUIDE GRATINGS; PERIODIC STRUCTURES 60307 AB A new recursion method for the analysis of fiber gratings has been 60308 derived. Bragg-matched and detuned uniform gratings and nonuniform 60309 gratings have been analyzed by using this method. The results have been 60310 compared with that by using the coupled-mode theory g the coupled and 60311 other methods. (C) 2001 John Wiley & Sons, Inc. 60312 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China. 60313 Univ New S Wales, Opt Commun Grp, Sch Elect Engn, Sydney, NSW 2052, Australia. 60314 Australian Natl Univ, Res Sch Phys Sci & Engn, Ctr Opt Sci, Canberra, ACT 0200, Australia. 60315 RP Wang, ZH, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, 60316 Peoples R China. 60317 CR ERDOGAN T, 1997, J LIGHTWAVE TECHNOL, V15, P1277 60318 HILL KO, 1997, J LIGHTWAVE TECHNOL, V15, P1263 60319 KOGELNIK H, 1976, BELL SYST TECH J, V55, P109 60320 WANG X, 1993, OPT LETT, V18, P805 60321 WELLERBROPHY LA, 1985, J OPT SOC AM A, V2, P863 60322 WINICK KA, 1992, APPL OPTICS, V31, P757 60323 YAMADA M, 1987, APPL OPTICS, V26, P3474 60324 YARIV A, 1977, IEEE J QUANTUM ELECT, V13, P233 60325 NR 8 60326 TC 0 60327 SN 0895-2477 60328 J9 MICROWAVE OPT TECHNOL LETT 60329 JI Microw. Opt. Technol. Lett. 60330 PD NOV 20 60331 PY 2001 60332 VL 31 60333 IS 4 60334 BP 308 60335 EP 313 60336 PG 6 60337 SC Engineering, Electrical & Electronic; Optics 60338 GA 483YF 60339 UT ISI:000171662900020 60340 ER 60341 60342 PT J 60343 AU Li, Z 60344 Bao, BR 60345 Wu, MH 60346 TI The influence of diluent on the extraction behavior of uranium with 60347 N-octanoylpyrrolidine 60348 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY 60349 DT Article 60350 AB Extraction of uranium(VT) from nitric acid solutions with 60351 N-octanoylpyrrolidine (OPOD) in a series of diluents has been studied. 60352 The dependence of the extraction distribution ratios on the 60353 concentrations of aqueous nitric acid, extractant, salting-out agent 60354 and the temperature was investigated. The experimental results showed 60355 that the extracting capacity of OPOD in different diluents increases in 60356 the order: chloroform, carbon tetrachloride, 1,2-dichloroethane, 60357 n-dodecane, n-octane, cyclohexane, toluene and benzene. This can not be 60358 explained only on the theory of polarity of the diluents. The 60359 interaction between extractant and the extracted complex and diluent is 60360 discussed. 60361 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China. 60362 RP Li, Z, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, 60363 Peoples R China. 60364 CR HAN JT, 1999, THESIS SHANGHAI I NU 60365 HENGLI M, 1964, NUCL SCI TECHN, V6, P728 60366 KOMASAWA I, 1984, J CHEM ENG JPN, V17, P410 60367 LI Z, 2000, NUCL SCI TECHN, V4, P205 60368 LU JF, 1993, SEPARATION CHEM, P47 60369 MUSIKAS C, 1988, SEPAR SCI TECHNOL, V23, P1211 60370 NR 6 60371 TC 1 60372 SN 0236-5731 60373 J9 J RADIOANAL NUCL CHEM 60374 JI J. Radioanal. Nucl. Chem. 60375 PD OCT 60376 PY 2001 60377 VL 250 60378 IS 1 60379 BP 195 60380 EP 197 60381 PG 3 60382 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science 60383 & Technology 60384 GA 482LC 60385 UT ISI:000171576800031 60386 ER 60387 60388 PT J 60389 AU Gerhard, M 60390 Buelau, S 60391 Oleastro, M 60392 Karttunen, R 60393 Boren, T 60394 Olfat, F 60395 Zheng, Q 60396 Prinz, C 60397 TI Correlation of the Helicobacter pylori virulence and adherence factors 60398 vacA, cagA and babA with ulcer disease in four different European 60399 countries 60400 SO GUT 60401 DT Meeting Abstract 60402 C1 Tech Univ Munich, Dept Med 2, D-8000 Munich, Germany. 60403 Inst Nacl Saude Dr Ricado Jorge, Lisbon, Portugal. 60404 Dept Oral Biol, Umea, Sweden. 60405 Swedish Inst Infect Dis Control, Stockholm, Sweden. 60406 Shanghai Univ, Shanghai, Peoples R China. 60407 NR 0 60408 TC 0 60409 SN 0017-5749 60410 J9 GUT 60411 JI Gut 60412 PD SEP 60413 PY 2001 60414 VL 49 60415 SU Suppl. 2 60416 BP A15 60417 EP A15 60418 PG 1 60419 SC Gastroenterology & Hepatology 60420 GA 476NB 60421 UT ISI:000171232500053 60422 ER 60423 60424 PT J 60425 AU Chen, YL 60426 Ding, WY 60427 Cao, WG 60428 Lu, C 60429 TI Study on the reaction of electron-deficient cyclopropane derivatives 60430 with amines 60431 SO CHINESE JOURNAL OF CHEMISTRY 60432 DT Article 60433 DE gamma-butyrolactam; inner ammonium salt; high stereoselective synthesis 60434 ID EFFICIENT SYNTHESIS; OXIDATION 60435 AB Reaction of electron deficient cyclopropane derivatives 60436 cis-1-methoxycarbonyl-2-aryl-6, 6-dimethyl-5, 7-dioxa-spiro-[ 60437 2,5]-4,8-octadiones (1a-d) (X = CH3, H, Cl, NO2) with anilines (2a-e) 60438 (Y = p-CH3, H, p-Br, p-NO2, o-CH3) at room temperature gives 60439 N-aryl-trans, trans-alpha -carboxyl-beta -methoxycarbonyl-gamma 60440 -aryl-gamma -butyrolactams (3a-p) in high yields with high 60441 stereoselectivity. For example, la (X = CH3) reacts with ammonia 4 or 60442 benzyl amine 5 at room temperature to give inner ammonium salt 6 or 7 60443 in the yield of 83% or 97% respectively. The reaction mechanisms for 60444 formation of the products are proposed. 60445 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R China. 60446 Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China. 60447 RP Chen, YL, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R 60448 China. 60449 CR BARRY BS, 1999, TETRAHEDRON LETT, V40, P3339 60450 DEXTER CS, 1999, J ORG CHEM, V64, P7579 60451 DING WY, 1996, CHEM RES CHINESE U, V12, P50 60452 JOLLY RS, 1988, J AM CHEM SOC, V110, P7536 60453 MADER M, 1988, TETRAHEDRON LETT, V29, P3049 60454 MARFAT A, 1987, TETRAHEDRON LETT, V28, P4027 60455 MORI M, 1978, J ORG CHEM, V43, P1684 60456 MORIARTY RM, 1988, TETRAHEDRON LETT, V29, P6913 60457 PADWA A, 1983, TETRAHEDRON LETT, V24, P4303 60458 WANG ZM, 1993, CURRENT STRUCTURED D, P890 60459 NR 10 60460 TC 2 60461 SN 1001-604X 60462 J9 CHINESE J CHEM 60463 JI Chin. J. Chem. 60464 PD SEP 60465 PY 2001 60466 VL 19 60467 IS 9 60468 BP 901 60469 EP 906 60470 PG 6 60471 SC Chemistry, Multidisciplinary 60472 GA 480RJ 60473 UT ISI:000171475700016 60474 ER 60475 60476 PT J 60477 AU Wan, YB 60478 Chu, JH 60479 Yu, TY 60480 Yu, BK 60481 Pan, SK 60482 TI Growth and characterisation of ferroelectric potassium lithium niobate 60483 crystals 60484 SO MATERIALS SCIENCE AND TECHNOLOGY 60485 DT Article 60486 ID SINGLE-CRYSTALS 60487 AB Potassium lithium niobate crystals have been grown by the resistance 60488 heating Czochralski technique. The optical transmission spectrum of the 60489 crystal has been determined. The results showed that the spectrum 60490 properties of potassium lithium niobate crystals grown from a melt with 60491 a higher Li2O content are better than that of crystals grown from the 60492 melt with a lower Li2O content. The crystals grown by this method have 60493 good quality and second harmonic generation properties. Frequency 60494 doubling results of a quasi cw-Ti: sapphire laser using crystal samples 60495 showed that potassium lithium niobate can be used to double the 60496 frequency of near infrared quasi cw-lasers in the 890-960 nm wavelength 60497 range. 60498 C1 Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China. 60499 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 60500 Chinese Acad Sci, Shanghai Inst Opt & Precis Mech, Shanghai 201800, Peoples R China. 60501 RP Wan, YB, Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared 60502 Phys, Shanghai 200083, Peoples R China. 60503 CR CHENG WD, 1996, CHEM PHYS LETT, V261, P66 60504 CLARK R, 1973, J PHYSIQUE, V22, P143 60505 REID JJE, 1993, APPL PHYS LETT, V62, P19 60506 SONG YT, 1998, J CRYST GROWTH, V194, P379 60507 VANUITERT LG, 1967, APPL PHYS LETT, V11, P161 60508 WAN YB, 1998, J SYNTH CRYST, V27, P36 60509 WAN YB, 1999, CHIN J LASER, V26, P837 60510 XIA HR, 1997, CRYST RES TECHNOL, V32, P311 60511 XIA HR, 1997, PHYS REV B, V55, P14892 60512 NR 9 60513 TC 0 60514 SN 0267-0836 60515 J9 MATER SCI TECHNOL 60516 JI Mater. Sci. Technol. 60517 PD SEP 60518 PY 2001 60519 VL 17 60520 IS 9 60521 BP 1166 60522 EP 1168 60523 PG 3 60524 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 60525 Engineering 60526 GA 478GM 60527 UT ISI:000171337400023 60528 ER 60529 60530 PT J 60531 AU Li, L 60532 Huang, SG 60533 Xu, LP 60534 Van Der Biest, O 60535 Vleugels, J 60536 TI Prediction of the isothermal sections in the ZrO2-YO1.5-CeO2 system 60537 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 60538 DT Article 60539 ID PHASE-DIAGRAM; ZRO2-CEO2 SYSTEM; ZIRCONIA; EQUILIBRIA; ZRO2-Y2O3 60540 AB The experimental work on the ZrO2-YO1.5-CeO2 system, its limiting 60541 quasi-binaries and previous thermodynamic assessments are reviewed and 60542 evaluated. Isothermal sections of ZrO2-YO1.5-CeO2 system in the 60543 temperature region between 1450 and 1800 C are estimated according to 60544 the substitutional model using the Bonnier equation. The CSS + YSS 60545 two-phase region of the calculated isothermal section at 1700 degreesC 60546 was found to be in good agreement with the experimentally obtained 60547 ternary diagram of Longo and Podda. The phase composition in the 60548 ZrO2-rich corner however disagreed significantly. 60549 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China. 60550 Katholieke Univ Leuven, Dept Mat & Met, B-3001 Heverlee, Belgium. 60551 RP Li, L, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R 60552 China. 60553 CR CHEVALIER J, 1999, J AM CERAM SOC, V82, P2150 60554 DU Y, 1991, J AM CERAM SOC, V74, P1569 60555 DU Y, 1991, J AM CERAM SOC, V74, P2107 60556 DUH JG, 1992, J MATER SCI, V27, P6197 60557 DURAN P, 1990, J MATER SCI, V25, P5001 60558 ESQUIVIAS L, 1996, J ALLOY COMPD, V239, P71 60559 GUILLERMET AF, 1981, METALL T B, V12, P747 60560 HAO YU, 1999, THESIS CENTRAL S U T 60561 HILLERT M, 1975, METALL T B, V6, P37 60562 HINATSU Y, 1986, MATER RES BULL, V21, P1343 60563 HUANG SG, 2000, J SHANGHAI U, V6, P189 60564 JANG BH, 1996, MATER T JIM, V37, P1284 60565 KAUFMAN L, 1978, CALPHAD, V2, P35 60566 KHAN N, 1989, BR CERAM P, V42, P133 60567 KONDOH J, 1998, J ELECTROCHEM SOC, V145, P1550 60568 LELAIT L, 1991, SCRIPTA METALL MATER, V25, P1815 60569 LI L, IN PRESS CALPHAD 60570 LI L, 1996, J MATER SCI TECHNOL, V12, P59 60571 LI L, 1997, PHYS CHEM GLASSES, V38, P323 60572 LI L, 1999, J MATER SCI TECHNOL, V15, P439 60573 LI L, 1999, PHYS CHEM GLASSES, V40, P126 60574 LONGO V, 1973, J AM CERAM SOC DISCU, V56, P600 60575 LONGO V, 1981, J MATER SCI, V16, P839 60576 LONGO V, 1984, CERAMICA, V37, P18 60577 LUKAS HL, 1977, CALPHAD, V1, P225 60578 NAKAMURA K, 1975, YOGYO-KYOKAI-SHI, V83, P570 60579 NEGAS T, 1976, 12 RAR EARTH RES C V, P32 60580 NOGUCHI T, 1970, B CHEM SOC JPN, V43, P2614 60581 ONDIK HM, 1998, PHASE DIAGRAMS ZIRCO, P100 60582 ONDIK HM, 1998, PHASE DIAGRAMS ZIRCO, P114 60583 ONDIK HM, 1998, PHASE DIAGRAMS ZIRCO, P123 60584 PICONI C, 1999, BIOMATERIALS, V20, P1 60585 RAMESH PD, 1996, J MATER SYNTH PROC, V4, P163 60586 ROUANET MA, 1968, COMP REND HEBD SEA C, V267, P1581 60587 SATO T, 1986, INT J HIGH TECH CERA, V2, P167 60588 SRIVASTAVA KK, 1974, BRIT CERAM TRANS J, V73, P85 60589 STUBICAN VS, 1978, J AM CERAM SOC, V61, P17 60590 STUBICAN VS, 1988, ADV CERAM, V24, P71 60591 TANI E, 1982, YOGVO KYOKAI SHI, V90, P195 60592 TANI E, 1983, J AM CERAM SOC, V66, P506 60593 XU ZY, 1996, MATER T JIM, V37, P1281 60594 YASHIMA M, 1994, J AM CERAM SOC, V77, P1869 60595 NR 42 60596 TC 3 60597 SN 1005-0302 60598 J9 J MATER SCI TECHNOL 60599 JI J. Mater. Sci. Technol. 60600 PD SEP 60601 PY 2001 60602 VL 17 60603 IS 5 60604 BP 529 60605 EP 534 60606 PG 6 60607 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 60608 Engineering 60609 GA 478AR 60610 UT ISI:000171321200010 60611 ER 60612 60613 PT J 60614 AU Chen, YL 60615 Ding, WY 60616 Cao, WG 60617 Lu, C 60618 TI The stereoselective synthesis of 60619 N-aryl-trans,trans-alpha-carboxyl-beta-methoxycarbonyl-gamma-aryl-gamma- 60620 butyrolactams 60621 SO SYNTHETIC COMMUNICATIONS 60622 DT Article 60623 DE gamma-butyrolactam; high stereoselective synthesis 60624 ID EFFICIENT SYNTHESIS; OXIDATION 60625 AB Cis-1-methoxycarbonyl-2-aryl-6,6-dimethyl-5,7-dioxa- 60626 spiro[2,5]-4,8-octadiones (1) in dimethyl ethylene glycol at room 60627 temperature react with anilines (2) to give N-aryl-trans, trans-alpha 60628 -carboxyl-beta -methoxycarbonyl-gamma -aryl-gamma -butyrolactams (3) in 60629 good to excellent yields and high stereoselectivity. 60630 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 60631 RP Chen, YL, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 60632 CR DING WY, 1996, CHEM RES CHINESE U, V12, P50 60633 JOLLY RS, 1988, J AM CHEM SOC, V110, P7536 60634 MADER M, 1988, TETRAHEDRON LETT, V29, P3049 60635 MARFAT A, 1987, TETRAHEDRON LETT, V28, P4027 60636 MORIARTY RM, 1988, TETRAHEDRON LETT, V29, P6913 60637 WANG ZM, 1993, CURRENT STRUCTURED D 60638 NR 6 60639 TC 2 60640 SN 0039-7911 60641 J9 SYN COMMUN 60642 JI Synth. Commun. 60643 PY 2001 60644 VL 31 60645 IS 20 60646 BP 3107 60647 EP 3112 60648 PG 6 60649 SC Chemistry, Organic 60650 GA 476TU 60651 UT ISI:000171245500008 60652 ER 60653 60654 PT J 60655 AU Huang, H 60656 Ding, PX 60657 Lu, XH 60658 TI Nonlinear unified equations for water waves propagating over uneven 60659 bottoms in the nearshore region 60660 SO PROGRESS IN NATURAL SCIENCE 60661 DT Article 60662 DE unified equations; Hamiltonian variational principle for water waves; 60663 extended mild-slope equation; higher order Boussinesq-type equations 60664 ID EVOLUTION; MODEL 60665 AB Considering the continuous characteristics for water waves propagating 60666 over complex topography in the nearshore region, the unified nonlinear 60667 equations, based on the hypothesis for a typical uneven bottom, are 60668 presented by employing the Hamiltonian variational principle for water 60669 waves. It is verified that the equations include the following special 60670 cases: the extension of Airy's nonlinear shallow-water equations, the 60671 generalized mild-slope equation, the dispersion relation for the 60672 second-order Stokes waves and the higher order Boussinesq-type 60673 equations. 60674 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 60675 E China Normal Univ, State Key Lab Estuarine & Coastal Res, Shanghai 200062, Peoples R China. 60676 Shanghai Univ, Div Grad Studies, Shanghai 200072, Peoples R China. 60677 RP Huang, H, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 60678 200072, Peoples R China. 60679 CR BERKHOFF JCW, 1972, P 13 INT C COAST ENG, P471 60680 DEMIRBILEK Z, 1999, DEV OFFSHORE ENG, P1 60681 DINGMANS MW, 1997, WATER WAVE PROPAGATI, P263 60682 HUANG H, 2000, PROGR NATURAL SCI, V10, P24 60683 KARAMBAS TV, 1999, J COASTAL RES, V15, P128 60684 KIRBY JT, 1986, J FLUID MECH, V162, P171 60685 LIU PLF, 1989, WAVE MOTION, V11, P41 60686 LIU PLF, 1995, ADV COAST OCEAN ENG, V1, P125 60687 MADSEN PA, 1998, PHILOS T ROY SOC A, V356, P1 60688 RADDER AC, 1985, WAVE MOTION, V7, P473 60689 WITTING JM, 1984, J COMPUT PHYS, V56, P203 60690 NR 11 60691 TC 0 60692 SN 1002-0071 60693 J9 PROG NAT SCI 60694 JI Prog. Nat. Sci. 60695 PD OCT 60696 PY 2001 60697 VL 11 60698 IS 10 60699 BP 746 60700 EP 753 60701 PG 8 60702 SC Multidisciplinary Sciences 60703 GA 475ZT 60704 UT ISI:000171200500004 60705 ER 60706 60707 PT J 60708 AU Ji, PY 60709 TI Photon acceleration based on plasma 60710 SO PHYSICAL REVIEW E 60711 DT Article 60712 ID LASER WAKEFIELD ACCELERATION; IONIZATION FRONTS; PULSES; OPTICS; WAVES 60713 AB A formalism is presented to examine the interaction of laser field with 60714 plasma wave in which the interaction is described as some geometric 60715 metric (optical metric) and then a laser beam is treated as a packet of 60716 photons moving along null geodesics with respect to that metric. Photon 60717 motion equations are derived and solved analytically in both the 60718 one-dimensional and the three-dimensional cases. The expressions for 60719 the frequency shifts of laser pulses are presented and it is found that 60720 the frequency shifting results from the plasma density gradient. 60721 Three-dimensional solution shows that a laser beam diffraction occurs 60722 in the presence of a radial variation of the plasma density. It is 60723 argued that the focusing mechanism originated from the plasma wave can 60724 curb laser diffracting, so that photons can be trapped in the plasma 60725 wave and accelerated continuously. 60726 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 60727 RP Ji, PY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 60728 CR AMIRANOFF F, 1998, PHYS REV LETT, V81, P995 60729 BINGHAM R, 1997, PHYS REV LETT, V78, P247 60730 DIAS JM, 1997, PHYS REV LETT, V78, P4773 60731 DIAS JM, 1998, PHYS REV ST ACCEL BE, V103, P1301 60732 ESAREY E, 1990, PHYS REV A, V42, P3526 60733 ESAREY E, 1991, PHYS REV A, V44, P3908 60734 ESAREY E, 1996, IEEE T PLASMA SCI, V24, P252 60735 GORDON W, 1923, ANN PHYS-BERLIN, V72, P421 60736 GUO H, 1995, J OPT SOC AM A, V12, P600 60737 LEONHARDT U, 1999, PHYS REV A, V60, P4301 60738 MENDONCA JT, 1994, PHYS REV E, V49, P3520 60739 MISNER CW, 1973, GRAVITATION, P582 60740 MODENA A, 1995, NATURE, V377, P606 60741 SCHROEDER CB, 1999, PHYS REV LETT, V82, P1177 60742 SHEN WD, 1998, ACTA PHYS SIN-OV ED, V7, P1 60743 SILVA LOE, 1996, IEEE T PLASMA SCI, V24, P316 60744 SILVA LOE, 1998, PHYS REV E B, V57, P3423 60745 SPRANGLE P, 1988, APPL PHYS LETT, V53, P2146 60746 TAJIMA T, 1979, PHYS REV LETT, V43, P267 60747 WEINBERG S, 1972, GRAVITATION COSMOLOG 60748 WILKS SC, 1989, PHYS REV LETT, V62, P2600 60749 ZHU S, 1997, ACTA OPT SINICA, V17, P1677 60750 ZHU ST, 1995, INT J THEOR PHYS, V34, P169 60751 ZHU ST, 1997, SCI CHINA SER A, V40, P755 60752 NR 24 60753 TC 3 60754 SN 1063-651X 60755 J9 PHYS REV E 60756 JI Phys. Rev. E 60757 PD SEP 60758 PY 2001 60759 VL 6403 60760 IS 3 60761 PN Part 2 60762 AR 036501 60763 DI ARTN 036501 60764 PG 6 60765 SC Physics, Fluids & Plasmas; Physics, Mathematical 60766 GA 474ZD 60767 UT ISI:000171136400081 60768 ER 60769 60770 PT J 60771 AU Sun, XL 60772 McKinnon, KIM 60773 Li, D 60774 TI A convexification method for a class of global optimization problems 60775 with applications to reliability optimization 60776 SO JOURNAL OF GLOBAL OPTIMIZATION 60777 DT Article 60778 DE global optimization; monotone optimization; convexification method; 60779 concave minimization; reliability optimization 60780 ID NONCONVEX OPTIMIZATION; ALGORITHM; MINIMIZATION 60781 AB A convexification method is proposed for solving a class of global 60782 optimization problems with certain monotone properties. It is shown 60783 that this class of problems can be transformed into equivalent concave 60784 minimization problems using the proposed convexification schemes. An 60785 outer approximation method can then be used to find the global solution 60786 of the transformed problem. Applications to mixed-integer nonlinear 60787 programming problems arising in reliability optimization of complex 60788 systems are discussed and satisfactory numerical results are presented. 60789 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China. 60790 Univ Edinburgh, Dept Math & Stat, Edinburgh EH9 3JZ, Midlothian, Scotland. 60791 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 60792 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, 60793 Shatin, Hong Kong, Peoples R China. 60794 CR BARHEN J, 1997, SCIENCE, V276, P1094 60795 BENSON HP, 1996, NAV RES LOG, V43, P765 60796 CVIJOVIC D, 1995, SCIENCE, V267, P664 60797 GE R, 1990, MATH PROGRAM, V46, P191 60798 HOFFMAN KL, 1981, MATH PROGRAM, V20, P22 60799 HORST R, 1990, NAV RES LOG, V37, P433 60800 HORST R, 1993, GLOBAL OPTIMIZATION 60801 KAN AHGR, 1987, MATH PROGRAM, V39, P27 60802 KAN AHGR, 1987, MATH PROGRAM, V39, P57 60803 LEVY AV, 1985, SIAM J SCI STAT COMP, V6, P15 60804 LI D, 1995, J OPTIMIZ THEORY APP, V85, P309 60805 LI D, 1996, J OPTIMIZ THEORY APP, V88, P177 60806 LI D, 2000, J OPTIMIZ THEORY APP, V104, P109 60807 LI D, 2001, IN PRESS ANN OPERATI 60808 MISRA KB, 1991, IEEE T RELIAB, V40, P81 60809 PARDALOS PM, 1987, CONSTRAINED GLOBAL O 60810 TILLMAN FA, 1980, OPTIMIZATION SYSTEM 60811 TZAFESTAS SG, 1980, INT J SYST SCI, V11, P455 60812 NR 18 60813 TC 11 60814 SN 0925-5001 60815 J9 J GLOBAL OPTIM 60816 JI J. Glob. Optim. 60817 PD OCT 60818 PY 2001 60819 VL 21 60820 IS 2 60821 BP 185 60822 EP 199 60823 PG 15 60824 SC Mathematics, Applied; Operations Research & Management Science 60825 GA 477PM 60826 UT ISI:000171293500004 60827 ER 60828 60829 PT J 60830 AU Ma, H 60831 Kamiya, N 60832 TI A general algorithm for accurate computation of field variables and its 60833 derivatives near the boundary in BEM 60834 SO ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS 60835 DT Article 60836 DE BEM; boundary layer effect; singularity; modified Gauss-Tschebyscheff 60837 quadrature; field variable; numerical computation 60838 AB A general algorithm was proposed in the paper for the accurate 60839 computation of the field variables and its derivatives at domain points 60840 near the boundary in attempt to solve the so-called boundary layer 60841 effect in the boundary element method. The algorithm is based on the 60842 parameter, including modified Gauss-Tschebyscheff quadrature formula 60843 with the aid of the approximate distance function introduced, where the 60844 parameter is defined as the ratio of the minimum distance of the domain 60845 point to the boundary and the length of the boundary element. The 60846 algorithm is not only numerically stable because the singular part of 60847 the integrand serves as the weight function in the modified 60848 Gauss-Tschebyscheff quadrature formula but also independent of the kind 60849 of boundary elements. The method can be extended to the 60850 three-dimensional case with little modifications. 60851 Numerical examples of the potential problem and the elastic problem of 60852 plane strain were given by using the cubic and the quadratic boundary 60853 elements, respectively, showing the feasibility and the effectiveness 60854 of the proposed algorithm. (C) 2001 Elsevier Science Ltd. All rights 60855 reserved. 60856 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Sch Sci, Dept Mech, Shanghai 200436, Peoples R China. 60857 Nagoya Univ, Sch Informat & Sci, Nagoya, Aichi 4648601, Japan. 60858 RP Ma, H, Shanghai Univ, Shanghai Inst Appl Math & Mech, Sch Sci, Dept 60859 Mech, Shanghai 200436, Peoples R China. 60860 CR ALIABADI MH, 1985, INT J NUMER METH ENG, V21, P2221 60861 BREBBIA CA, 1984, BOUNDARY ELEMENT TEC 60862 CRISTESCU M, 1978, RECENT ADV BOUNDARY, P375 60863 CRUSE TA, 1993, INT J NUMER METH ENG, V36, P237 60864 GUIGGIANI M, 1990, J APPL MECH, V57, P906 60865 MA H, 1999, ENG ANAL BOUND ELEM, V23, P281 60866 PARTRIDGE PW, 1992, DUAL RECIPROCITY BOU 60867 TANAKA M, 1991, BOUNDARY ELEMENT MET 60868 WANG D, 1992, J MECH STRENGTH, V14, P23 60869 ZHANG GH, 1990, P 3 JAP CHIN S BOUND, P73 60870 NR 10 60871 TC 0 60872 SN 0955-7997 60873 J9 ENG ANAL BOUND ELEM 60874 JI Eng. Anal. Bound. Elem. 60875 PD DEC 60876 PY 2001 60877 VL 25 60878 IS 10 60879 BP 833 60880 EP 841 60881 PG 9 60882 SC Engineering, Multidisciplinary; Mathematics, Applied 60883 GA 476ZW 60884 UT ISI:000171259500001 60885 ER 60886 60887 PT J 60888 AU Zhang, WG 60889 Chang, QS 60890 Jiang, BG 60891 TI Explicit exact solitary-wave solutions for compound KdV-type and 60892 compound KdV-Burgers-type equations with nonlinear terms of any order 60893 SO CHAOS SOLITONS & FRACTALS 60894 DT Article 60895 AB In this paper, we consider compound KdV-type and KdV-Burgers-type 60896 equations with nonlinear terms of any order. The explicit exact 60897 solitary-wave solutions for the equations are obtained by means of 60898 proper transformation, which degrades the order of nonlinear terms, and 60899 an undetermined coefficient method. A solitary-wave solution with 60900 negative velocity for the generalized KdV-Burgers equation u(t) + 60901 u(p)u(x) - alphau(xx) + u(xxx) = 0 is found. (C) 2001 Elsevier Science 60902 Ltd. All rights reserved. 60903 C1 Shanghai Univ Sci & Technol, Dept Basic Sci, Shanghai 200093, Peoples R China. 60904 Chinese Acad Sci, Inst Appl Math, Beijing 100080, Peoples R China. 60905 Changsha Railway Univ, Dept Math & Mech, Changsha 410075, Peoples R China. 60906 RP Zhang, WG, Shanghai Univ Sci & Technol, Dept Basic Sci, Shanghai 60907 200093, Peoples R China. 60908 CR BONA JL, 1985, P ROY SOC EDINB A, V101, P207 60909 COFFEY MW, 1990, SIAM J APPL MATH, V50, P1580 60910 DEY B, 1986, J PHYS A, V19, L9 60911 PEGO RL, 1992, PHILOS T ROY SOC A, V340, P47 60912 PEGO RL, 1993, PHYSICA D, V67, P45 60913 WADATI M, 1975, J PHYS SOC JPN, V38, P673 60914 WANG ML, 1996, PHYS LETT A, V213, P279 60915 ZHANG WG, 1996, ACTA MATH SCI, V16, P241 60916 NR 8 60917 TC 25 60918 SN 0960-0779 60919 J9 CHAOS SOLITON FRACTAL 60920 JI Chaos Solitons Fractals 60921 PD FEB 60922 PY 2002 60923 VL 13 60924 IS 2 60925 BP 311 60926 EP 319 60927 PG 9 60928 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary 60929 GA 477HA 60930 UT ISI:000171276600013 60931 ER 60932 60933 PT J 60934 AU Huang, H 60935 Ding, PX 60936 Lu, XH 60937 TI Extended mild-slope equation 60938 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 60939 DT Article 60940 DE mild-slope equation; slowly varying three-dimensional currents; rapidly 60941 varying topography; Hamiltonian formalism for surface waves 60942 ID VARYING TOPOGRAPHY; WAVES 60943 AB The Hamiltonian formalism for surface waves and the mild-slope 60944 approximation were empolyed in handling the case of slowly varying 60945 three-dimensional currents and an uneven bottom, thus leading to an 60946 extended mild-slope equation. The bottom topography consists of two 60947 components: the slowly varying component whose horizontal length scale 60948 is longer than the surface wave length, and the fast varying component 60949 with the amplitude being smaller than that of the surface wave. ne 60950 frequency of the fast varying depth component is, however, comparable 60951 to that of the surface waves. The extended mild-slope equation is more 60952 widely applicable and contains as special cases famous mild-slope 60953 equations below: the classical mild-slope equation of Berkhoff, Kirby's 60954 mild-slope equation with current, and Dingemans's mild-slope equation 60955 for rippled bed. The extended shallow water equations for ambient 60956 currents and rapidly varying topography are also obtained. 60957 C1 E China Normal Univ, State Key Lab Estuarine & Coastal Res, Shanghai 200062, Peoples R China. 60958 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 60959 RP Huang, H, E China Normal Univ, State Key Lab Estuarine & Coastal Res, 60960 Shanghai 200062, Peoples R China. 60961 CR BERKHOFF JCW, 1972, 13TH P INT C COAST E, P471 60962 BROER LJF, 1974, APPL SCI RES, V30, P430 60963 CHAMBERLAIN PG, 1995, J FLUID MECH, V291, P393 60964 CHANDRASEKERA CN, 1997, J WATERW PORT C-ASCE, V123, P280 60965 DINGEMANS MW, 1997, WATER WAVE PROPAGATI 60966 KIRBY JT, 1984, J GEOPHYS RES-OCEANS, V89, P745 60967 KIRBY JT, 1986, J FLUID MECH, V162, P171 60968 KIRBY JT, 1997, GRAVITY WAVES WATER, P55 60969 LEE CH, 1998, COAST ENG, V34, P243 60970 LIU PLF, 1990, SEA OCEAN ENG SCI, V9, P27 60971 MILES JW, 1977, J FLUID MECH, V83, P153 60972 THOMAS GP, 1997, GRAVITY WAVES WATER, P255 60973 YOON SB, 1989, J FLUID MECH, V205, P397 60974 ZAKHAROV VE, 1968, J APPL MECH TECH PHY, V2, P190 60975 NR 14 60976 TC 0 60977 SN 0253-4827 60978 J9 APPL MATH MECH-ENGL ED 60979 JI Appl. Math. Mech.-Engl. Ed. 60980 PD JUN 60981 PY 2001 60982 VL 22 60983 IS 6 60984 BP 724 60985 EP 729 60986 PG 6 60987 SC Mathematics, Applied; Mechanics 60988 GA 476CF 60989 UT ISI:000171208100014 60990 ER 60991 60992 PT J 60993 AU Huang, H 60994 Zhou, XR 60995 TI On the resonant generation of weakly nonlinear Stokes waves in regions 60996 with fast varying topography and free surface current 60997 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 60998 DT Article 60999 DE nonlinear resonance; weakly nonlinear Stokes waves; a free surface 61000 current; rippled beds; dynamical system 61001 AB The effect of nonlinearity on the free surface wave resonated by an 61002 incident flow over rippled beds, which consist of fast varying 61003 topography superimposed on an otherwise slowly varying mean depth, is 61004 studied using a WKBJ-type perturbation approach. Synchronous, 61005 superharmonic and in particular subharmonic resonance were selectively 61006 excited over the fast varying topography with corresponding 61007 wavelengths. For a steady current the dynamical system is autonomous 61008 and the possible nonlinear steady states and their stability were 61009 investigated. When the current has a small oscillatory component the 61010 dynamical system becomes non-autonomous, chaos is now possible. 61011 C1 Tianjin Univ, Sch Civil Engn, Tianjin 300072, Peoples R China. 61012 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 61013 RP Huang, H, Tianjin Univ, Sch Civil Engn, Tianjin 300072, Peoples R China. 61014 CR BEGI S, 1994, COAST ENG, V23, P1 61015 DAVIES AG, 1984, J FLUID MECH, V144, P419 61016 GUCKENHEIMER J, 1983, NONLINEAR OSCILLATIO 61017 HEATHERSHAW AD, 1982, NATURE, V296, P343 61018 KENNEDY JF, 1963, J FLUID MECH, V16, P521 61019 NACIRI M, 1992, J FLUID MECH, V235, P415 61020 SAMMARCO P, 1994, J FLUID MECH, V279, P377 61021 NR 7 61022 TC 0 61023 SN 0253-4827 61024 J9 APPL MATH MECH-ENGL ED 61025 JI Appl. Math. Mech.-Engl. Ed. 61026 PD JUN 61027 PY 2001 61028 VL 22 61029 IS 6 61030 BP 730 61031 EP 740 61032 PG 11 61033 SC Mathematics, Applied; Mechanics 61034 GA 476CF 61035 UT ISI:000171208100015 61036 ER 61037 61038 PT J 61039 AU Li, GH 61040 Zhou, SP 61041 Xu, DM 61042 TI Research on dynamics in modulation-doped GaAs/AlxGa1-xAs 61043 heterostructures 61044 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 61045 DT Article 61046 DE chaos; heterostructure; negative differential conductivity 61047 ID CURRENT-DENSITY FILAMENTS; SEMICONDUCTOR-DEVICE; DOMAIN FORMATION; 61048 CHAOTIC MOTIONS; OSCILLATOR 61049 AB We discuss the dynamics of the forced modulation-doped AlxGa1-xAs 61050 heterostructure device governed by the coupled differential equations, 61051 which is operative in the state far from thermodynamic equilibrium. 61052 Biased with an appropriate do field, the system exhibits two states: 61053 spontaneous current oscillation and fixed points. Under an ac driving 61054 force imposed on a do bias, the dynamical system shows the expected 61055 characteristics of frequency locking, quasiperiodicity, and chaos, 61056 which are sensitive to the amplitude and frequency, of the external 61057 applied microwave field. In particular, the basins of attraction of 61058 both an ordinary attractor and a chaotic attractor are presented. (C) 61059 2001 John Wiley & Sons, Inc. 61060 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China. 61061 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 61062 RP Li, GH, Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R 61063 China. 61064 CR AOKI K, 1982, J PHYS SOC JPN, V51, P2373 61065 AOKI K, 1989, SOLID STATE ELECTRON, V32, P1149 61066 DOTTING R, 1992, CHAOTIC DYNAMICS THE 61067 DOTTLING R, 1994, SOLID STATE ELECTRON, V37, P685 61068 LURYI S, 1991, PHYS REV LETT, V67, P2351 61069 NIEDERNOSTHEIDE FJ, 1996, PHYS REV B, V54, P14012 61070 NIEDERNOSTHEIDE FJ, 1999, PHYS REV B, V59, P7663 61071 SCHOLL E, 1991, APPL PHYS LETT, V58, P1277 61072 ZHANG YH, 1996, APPL PHYS LETT, V69, P1116 61073 NR 9 61074 TC 0 61075 SN 0895-2477 61076 J9 MICROWAVE OPT TECHNOL LETT 61077 JI Microw. Opt. Technol. Lett. 61078 PD OCT 20 61079 PY 2001 61080 VL 31 61081 IS 2 61082 BP 93 61083 EP 95 61084 PG 3 61085 SC Engineering, Electrical & Electronic; Optics 61086 GA 473HK 61087 UT ISI:000171034600006 61088 ER 61089 61090 PT J 61091 AU Ren, ZM 61092 Dong, HF 61093 Deng, K 61094 Jiang, GC 61095 TI Influence of high frequency electromagnetic field on the initial 61096 solidification during electromagnetic continuous casting 61097 SO ISIJ INTERNATIONAL 61098 DT Article 61099 DE electromagnetic force; continuous casting; alternative electromagnetic 61100 field; initial solidification; electromagnetic continuous casting; heat 61101 transfer; numerical simulation 61102 AB The initial solidification during electromagnetic continuous casting of 61103 metal has been investigated experimentally and numerically. The 61104 temperature profile in the metal was measured and the starting point of 61105 the initial solidification was detected. It was found that the magnetic 61106 field influenced the temperature profile greatly, and lowered the 61107 starting position of the initial solidification profoundly. Further, 61108 the induction heat in the metal was calculated according to the 61109 measured magnetic flux in the mold. The heat induced in the wall was 61110 converted from the temperature detected in the mold wall. In order to 61111 understand the influence of the magnetic field on the behavior of the 61112 interfacial heat exchange between the metal and the mold wall, a 61113 special experiment was carried out to measure the heat exchange 61114 coefficient on the interface. 61115 Based on above measurement, a numerical model was built to describe the 61116 heat transfer and solidification of the metal. The influence of the 61117 magnetic field on the solidification was figured out. The role of the 61118 three main effects of the magnetic field, that is, inducing heat in the 61119 metal, inducing heat in the mold wall, and decreasing-the heat transfer 61120 rate on the interface between the metal and mold wall, was analyzed. It 61121 was shown that, the induced heat in the mold wall and the effect of 61122 decreasing the heat transfer on the interface between the mold and the 61123 metal may played a more important role in influencing the 61124 solidification. 61125 C1 Shanghai Univ, Dept Mat, Shanghai 200072, Peoples R China. 61126 RP Ren, ZM, Shanghai Univ, Dept Mat, Shanghai 200072, Peoples R China. 61127 CR MORISHITA M, 1992, MAGNETOHYDRODYNAMICS, P267 61128 NAKATA M, 1992, PROCESS METALLURGY, P203 61129 SIMPSON PG, 1960, INDUCTION HEATING OI, P11 61130 TANAKA T, 1994, P INT S EL PROC MAT, P248 61131 TINGJU L, 1996, TETSU TO HAGANE, V82, P197 61132 TOH T, 1994, P INT S EL PROC MAT, P254 61133 VIVES C, 1989, METALL TRANS B, V20, P623 61134 NR 7 61135 TC 5 61136 SN 0915-1559 61137 J9 ISIJ INT 61138 JI ISIJ Int. 61139 PY 2001 61140 VL 41 61141 IS 9 61142 BP 981 61143 EP 985 61144 PG 5 61145 SC Metallurgy & Metallurgical Engineering 61146 GA 473ZY 61147 UT ISI:000171080900006 61148 ER 61149 61150 PT J 61151 AU Chen, LQ 61152 Liu, ZR 61153 TI Control of a hyperchaotic discrete system 61154 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 61155 DT Article 61156 DE controlling chaos; hyperchaotic map; Liapunov direct method; 61157 stabilization; tracking 61158 AB The Control of a hyperchaotic discrete system is investigated, A 61159 time-varying feedback control law is established on the base of local 61160 linearization. The Liapunov direct method is applied to estimate the 61161 neighborhood in which the control law can be effectively used. 61162 Numerical examples are presented to demonstrate the applications of the 61163 control law to solve the problem of stabilizing unstable periodic 61164 orbits and the problem of tracking an arbitrarily given periodic orbit. 61165 C1 Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China. 61166 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 61167 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China. 61168 CR CHEN LQ, 1998, J SHANGHAI JIAOTONG, V32, P108 61169 HU HY, 1996, ADV MECH, V26, P453 61170 JACKSON EA, 1991, PHYSICA D, V50, P341 61171 LIU ZR, 1996, STRANGE ATTRACTORS 2 61172 LIU ZR, 1999, ACTA MECH SINICA, V15, P366 61173 OTT E, 1990, PHYS REV LETT, V64, P1196 61174 YANG L, 2000, PHYS REV LETT, V84, P67 61175 NR 7 61176 TC 1 61177 SN 0253-4827 61178 J9 APPL MATH MECH-ENGL ED 61179 JI Appl. Math. Mech.-Engl. Ed. 61180 PD JUL 61181 PY 2001 61182 VL 22 61183 IS 7 61184 BP 741 61185 EP 746 61186 PG 6 61187 SC Mathematics, Applied; Mechanics 61188 GA 475BC 61189 UT ISI:000171140900001 61190 ER 61191 61192 PT J 61193 AU Xiong, Y 61194 Shi, DH 61195 TI Affine transformation in random iterated function systems 61196 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 61197 DT Article 61198 DE fractal; random iterated function system; affine transformation 61199 AB Random iterated function systems (IFSs) is discussed, which is one of 61200 the methods for fractal drawing. A certain figure can be reconstructed 61201 by a random IFS. One approach is presented to determine a new random 61202 IFS, that the figure reconstructed by the new random IFS is the image 61203 of the origin figure reconstructed by old IFS under a given affine 61204 transformation. Two particular examples are used to show this approach. 61205 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 61206 RP Xiong, Y, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 61207 CR BARNSLEY MF, 1988, FRACTALS EVERYWHERE 61208 LASOTA A, 1994, CHAOS FRACTALS NOISE 61209 LIN YP, 1999, DYN CONTIN DISCRET I, V5, P53 61210 SU BQ, 1990, COURSE APPL GEOMETRY 61211 NR 4 61212 TC 0 61213 SN 0253-4827 61214 J9 APPL MATH MECH-ENGL ED 61215 JI Appl. Math. Mech.-Engl. Ed. 61216 PD JUL 61217 PY 2001 61218 VL 22 61219 IS 7 61220 BP 820 61221 EP 826 61222 PG 7 61223 SC Mathematics, Applied; Mechanics 61224 GA 475BC 61225 UT ISI:000171140900011 61226 ER 61227 61228 PT J 61229 AU Xiao, XS 61230 Dong, YD 61231 Qiao, XY 61232 Mo, ZS 61233 Wang, XH 61234 Wang, Q 61235 Xu, H 61236 TI Studies on the morphology transition of micro-crystal growth in polymer 61237 films in high vacuum and strong electrostatic field 61238 SO ACTA POLYMERICA SINICA 61239 DT Article 61240 DE electrostatic field; polymer film micro-crystals; morphology 61241 AB The morphology of films of isotactic polypropylene poly 61242 (3-dodecylthiophene) and iPP/P3DDT blend formed in electrostatic fields 61243 has been investigated by using scanning electron microscope. The 61244 experiment results show that the micro-crystal morphology of polymer 61245 films was strongly dependent on electrostatic fields. It was found that 61246 the effect of the electrostatic field led to the formation of dendrite 61247 crystals aligned in the field direction, and some branches of P3DDT 61248 ruptured. However, the micro-crystals in these films grew into 61249 spherulites without electrostatic field,and have no crystal orientation. 61250 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 61251 Chinese Acad Sci, Changchun Inst Appl Chem, Polymer Phys Lab, Changchun 130022, Peoples R China. 61252 RP Xiao, XS, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 61253 CR SERPICO JM, 1991, MACROMOLECULES, V24, P6879 61254 VENUGOPAL G, 1990, POLYM PREPR, V31, P377 61255 XIAO XS, 2000, CHINESE J SCI INSTRU, V21, P75 61256 NR 3 61257 TC 1 61258 SN 1000-3304 61259 J9 ACTA POLYM SIN 61260 JI Acta Polym. Sin. 61261 PD APR 61262 PY 2001 61263 IS 2 61264 BP 261 61265 EP 264 61266 PG 4 61267 SC Polymer Science 61268 GA 473LA 61269 UT ISI:000171044400028 61270 ER 61271 61272 PT J 61273 AU Li, D 61274 Sun, XL 61275 TI Existence of a saddle point in nonconvex constrained optimization 61276 SO JOURNAL OF GLOBAL OPTIMIZATION 61277 DT Article 61278 DE nonconvex constrained optimization; saddle point; dual method; p-th 61279 power formulation; global solution 61280 AB The existence of a saddle point in nonconvex constrained optimization 61281 problems is considered in this paper. We show that, under some mild 61282 conditions, the existence of a saddle point can be ensured in an 61283 equivalent p-th power formulation for a general class of nonconvex 61284 constrained optimization problems. This result expands considerably the 61285 class of optimization problems where a saddle point exists and thus 61286 enlarges the family of nonconvex problems that can be solved by 61287 dual-search methods. 61288 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China. 61289 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 61290 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, 61291 Shatin, Hong Kong, Peoples R China. 61292 CR KARLIN S, 1959, MATH METHODS THEORY, V1 61293 LI D, 1995, J OPTIMIZ THEORY APP, V85, P309 61294 LI D, 1997, NONLINEAR ANAL-THEOR, V30, P4339 61295 LUENBERGER DG, 1984, LINEAR NONLINEAR PRO 61296 MINOUX M, 1986, MATH PROGRAMMING THE 61297 XU ZK, 1997, J OPTIMIZ THEORY APP, V94, P739 61298 NR 6 61299 TC 1 61300 SN 0925-5001 61301 J9 J GLOBAL OPTIM 61302 JI J. Glob. Optim. 61303 PD SEP 61304 PY 2001 61305 VL 21 61306 IS 1 61307 BP 39 61308 EP 50 61309 PG 12 61310 SC Mathematics, Applied; Operations Research & Management Science 61311 GA 471YJ 61312 UT ISI:000170956000004 61313 ER 61314 61315 PT J 61316 AU Yang, GH 61317 Feng, SX 61318 Ni, GJ 61319 Duan, YS 61320 TI Relations of two transversal submanifolds and global manifold 61321 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A 61322 DT Article 61323 ID GAUGE FIELD-THEORY; TOPOLOGICAL QUANTIZATION; DISCLINATION CONTINUUM; 61324 LINEAR DEFECTS; BIFURCATION; DISLOCATION; STRINGS; BRANES; ORIGIN 61325 AB In Riemann geometry, the relations of two transversal submanifolds and 61326 global manifold are discussed without any concrete models. By replacing 61327 the normal vector of a submanifold with the tangent vector of another 61328 submanifold, the metric tensors, Christoffel symbols and curvature 61329 tensors of the three manifolds are connected at the intersection points 61330 of the two submanifolds. When the inner product of the two tangent 61331 vectors of submanifolds vanishes, some corollaries of these relations 61332 give the most important second fundamental form and Gauss-Codazzi 61333 equation in the conventional submanifold theory. As a special case, the 61334 global manifold which is Euclidean is considered. It is pointed out 61335 that, in order to obtain the nonzero energy-momentum tensor of matter 61336 field in a submanifold, there must be the contributions of the above 61337 inner product and the other submanifold. Generally speaking, a 61338 submanifold is closely related to the matter fields of the other 61339 submanifold and the two submanifolds affect each other through the 61340 above inner product. 61341 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 61342 Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. 61343 Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China. 61344 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 61345 CR CHU CS, 1998, PHYS LETT B, V428, P59 61346 DUAN YS, HEPTH9809011 61347 DUAN YS, HEPTH9810111 61348 DUAN YS, 1998, CHINESE PHYS LETT, V15, P781 61349 DUAN YS, 1998, IN PRESS COMMUN THEO 61350 DUAN YS, 1999, CHINESE PHYS LETT, V16, P157 61351 DUAN YS, 1999, INT J THEOR PHYS, V38, P563 61352 EISENHART L, 1964, RIEMANNIAN GEOMETRY 61353 ERLICH J, 1998, PHYS REV D, V58 61354 FERRARA S, 1998, PHYS LETT B, V431, P42 61355 HAWKING SW, 1998, PHYS REV D, V58 61356 HYUN SJ, 1998, PHYS REV D, V57, P4856 61357 KISHIMOTO I, 1998, PHYS LETT B, V432, P305 61358 YANG GH, 1998, INT J MOD PHYS B, V12, P2599 61359 YANG GH, 1998, INT J THEOR PHYS, V37, P2371 61360 YANG GH, 1998, MOD PHYS LETT A, V13, P2123 61361 YANG GH, 1998, MOD PHYS LETT A, V13, P745 61362 YANG GH, 1999, INT J ENG SCI, V37, P1037 61363 NR 18 61364 TC 0 61365 SN 0217-751X 61366 J9 INT J MOD PHYS A 61367 JI Int. J. Mod. Phys. A 61368 PD AUG 20 61369 PY 2001 61370 VL 16 61371 IS 21 61372 BP 3535 61373 EP 3551 61374 PG 17 61375 SC Physics, Nuclear; Physics, Particles & Fields 61376 GA 472UZ 61377 UT ISI:000171004500002 61378 ER 61379 61380 PT J 61381 AU Wu, MY 61382 Zhu, J 61383 Wan, XJ 61384 TI The effect of B addition on charge distribution in Co3Ti 61385 SO INTERMETALLICS 61386 DT Article 61387 DE intermetallics; miscellaneous; brittleness and ductility; bonding; 61388 crystallography; electron microscopy; transmission 61389 ID BEAM ELECTRON-DIFFRACTION; ENVIRONMENTAL EMBRITTLEMENT; DENSITY 61390 DISTRIBUTION; BORON; NI3AL; DUCTILITY; HYDROGEN; PATTERNS 61391 AB In this paper. the chemistries at grain boundaries in Co3Ti 61392 intermetallics with and without boron doping were examined. The charge 61393 density distributions of the two kinds of alloys were obtained by their 61394 experimentally determined structure factors. The differences between 61395 them were analyzed and compared with the effect of boron on charge 61396 density distribution in Ni3Al. It is found that B has quite different 61397 effects on the charge distribution, and segregation behavior as well as 61398 mechanical properties in Co3Ti and Ni3Al. It is concluded that boron 61399 has no effect on suppressing the environmental embrittlement in Co3Ti 61400 because of the weakened Co-B-Co bonding. (C) 2001 Elsevier Science Ltd. 61401 All rights reserved. 61402 C1 Tsing Hua Univ, Sch Mat Sci & Engn, Electron Microscopy Lab, Beijing 100084, Peoples R China. 61403 Cent Iron & Steel Res Inst, Beijing 100081, Peoples R China. 61404 Shanghai Univ, Shanghai 200072, Peoples R China. 61405 RP Zhu, J, Tsing Hua Univ, Sch Mat Sci & Engn, Electron Microscopy Lab, 61406 Beijing 100084, Peoples R China. 61407 CR AOKI K, 1979, J JPN I MET, V43, P1190 61408 BAKER I, 1988, PHILOS MAG B, V57, P379 61409 CHENG XY, 1997, SCRIPTA MATER, V37, P1065 61410 GEORGE EP, 1989, SCRIPTA METALL, V23, P979 61411 GEORGE EP, 1995, MATER RES SOC S P, V364, P1131 61412 HOLMESTAD R, 1995, PHILOS MAG A, V72, P579 61413 HOLMESTAD R, 1998, PHILOS MAG A, V77, P1231 61414 LIU CT, 1985, ACTA METALL, V33, P213 61415 LIU Y, 1989, ACTA METALL, V37, P507 61416 LU G, 1996, ACTA MATER, V44, P4019 61417 MIAO Y, 1995, J MATER RES, V10, P1913 61418 SAUNDERS M, 1995, ULTRAMICROSCOPY, V60, P311 61419 SHINOHARA T, 1996, J MATER RES, V8, P1285 61420 SIELOFF DD, 1989, P MAT RES SOC S PITT, P155 61421 SUZUKI T, 1996, MATER T JIM, V37, P1 61422 TAKASUGI T, 1986, ACTA METALL, V34, P607 61423 TAKASUGI T, 1989, ACTA METALL, V37, P507 61424 TAKASUGI T, 1990, J MATER SCI, V25, P4226 61425 TAKASUGI T, 1993, SCRIPTA METALL MATER, V29, P1587 61426 TAUB AI, 1989, METALL TRANS A, V20, P2025 61427 VAINSHTEIN BK, 1990, SOVREMENNAYA KRISTAL, V2 61428 WU MY, 1999, ACTA CRYSTALLOGR A, V56, P189 61429 WU MY, 2000, J APPL CRYSTALLOGR 4, V33, P1119 61430 ZHU J, 1997, ACTA MATER, V45, P1989 61431 ZUO JM, 1991, ULTRAMICROSCOPY, V35, P185 61432 NR 25 61433 TC 1 61434 SN 0966-9795 61435 J9 INTERMETALLICS 61436 JI Intermetallics 61437 PD AUG 61438 PY 2001 61439 VL 9 61440 IS 8 61441 BP 705 61442 EP 709 61443 PG 5 61444 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & 61445 Metallurgical Engineering 61446 GA 472VV 61447 UT ISI:000171006400007 61448 ER 61449 61450 PT J 61451 AU Sun, XL 61452 Li, D 61453 TI On the relationship between the integer and continuous solutions of 61454 convex programs 61455 SO OPERATIONS RESEARCH LETTERS 61456 DT Article 61457 DE nonlinear integer program; convex program; quadratic program; proximity 61458 analysis 61459 ID OPTIMIZATION; BRANCH 61460 AB A bound is obtained in this note for the distance between the integer 61461 and real solutions to convex quadratic programs. This bound is a 61462 function of the condition number of the Hessian matrix. We further 61463 extend this proximity result to convex programs and mixed-integer 61464 convex programs. We also show that this bound is achievable in certain 61465 situations and the distance between the integer and continuous 61466 minimizers may tend to infinity. (C) 2001 Elsevier Science B.V. All 61467 rights reserved. 61468 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China. 61469 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 61470 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, 61471 Shatin, Hong Kong, Peoples R China. 61472 CR BALDICK R, 1995, LINEAR ALGEBRA APPL, V226, P389 61473 BLAIR CE, 1979, DISCRETE MATH, V25, P7 61474 COOK W, 1986, MATH PROGRAM, V34, P251 61475 GRANOT F, 1990, MATH PROGRAM, V47, P259 61476 GUPTA OK, 1985, MANAGE SCI, V31, P1533 61477 HOCHBAUM DS, 1990, J ASSOC COMPUT MACH, V37, P843 61478 KORNER F, 1983, COMPUTING, V30, P253 61479 SCHRIJVER A, 1986, THEORY LINEAR INTEGE 61480 THOAI NV, 1998, COMPUT OPTIM APPL, V10, P149 61481 WERMAN M, 1991, MATH PROGRAM, V51, P133 61482 NR 10 61483 TC 0 61484 SN 0167-6377 61485 J9 OPER RES LETT 61486 JI Oper. Res. Lett. 61487 PD SEP 61488 PY 2001 61489 VL 29 61490 IS 2 61491 BP 87 61492 EP 92 61493 PG 6 61494 SC Operations Research & Management Science 61495 GA 470DG 61496 UT ISI:000170854700005 61497 ER 61498 61499 PT J 61500 AU Gao, Y 61501 TI Calculating an element of B-differential for a vector-valued maximum 61502 function 61503 SO NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 61504 DT Article 61505 DE nonsmooth equations; nonsmooth optimization; B-differential; Clarke 61506 generalized Jacobian; maximum function 61507 ID NONSMOOTH EQUATIONS 61508 AB In this paper, we propose a method of calculating an element of 61509 B-differential, also an element of Clarke generalized Jacobian, for a 61510 vector-valued maximum function. This calculation is required in many 61511 existing numerical methods for the solution of nonsmooth equations and 61512 for the nonsmooth optimization. The generalization of our method to a 61513 vector-valued smooth composition of maximum functions is also 61514 discussed. Particularly, we propose a method of obtaining the set of 61515 B-differential for a vector-valued maximum of affine functions. 61516 C1 Shanghai Univ Sci & Technol, Sch Management, Shanghai 200031, Peoples R China. 61517 CR CHANEY RW, 1990, NONLINEAR ANAL-THEOR, V15, P649 61518 CHEN WJ, 1996, SCI CHINA SER A, V39, P528 61519 CHEN X, 1997, COMPUTING, V58, P281 61520 CLARKE FH, 1983, OPTIMIZATION NONSMOO 61521 DEMYANOV VF, 1996, QUASIDIFFERENTIABILI 61522 GAO Y, 1994, ARCH CONTROL SCI, V3, P181 61523 HIRIARTURRUTY JB, 1993, CONVEX ANAL MINIMIZA 61524 LEMARECHAL C, 1994, ALGORITHMS CONTINUOU, P357 61525 MAKELA MM, 1992, NONSMOOTH OPTIMIZATI 61526 PANG JS, 1996, MATH OPER RES, V21, P401 61527 QI L, 1993, MATH PROGRAM, V58, P353 61528 QI LQ, 1993, MATH OPER RES, V18, P227 61529 NR 12 61530 TC 0 61531 SN 0163-0563 61532 J9 NUMER FUNC ANAL OPTIMIZ 61533 JI Numer. Funct. Anal. Optim. 61534 PY 2001 61535 VL 22 61536 IS 5-6 61537 BP 561 61538 EP 575 61539 PG 15 61540 SC Mathematics, Applied 61541 GA 470RV 61542 UT ISI:000170885700006 61543 ER 61544 61545 PT J 61546 AU Yu, XJ 61547 Wang, QP 61548 Lu, LJ 61549 Pan, HB 61550 Xu, FQ 61551 Xu, PS 61552 TI Optimization of a variable-angle spherical grating monochromator 61553 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION 61554 A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 61555 DT Article 61556 DE beamline design; grating monochromator; VUV; soft X-ray 61557 ID SYNCHROTRON-RADIATION 61558 AB A beamline covering photon energy of 10-300eV is now under construction 61559 in National Synchrotron Radiation Laboratory. The monochromator, 61560 optimized for maximum flux and medium resolution, has two working 61561 modes. One is to vary the grating including angle during wavelength 61562 scanning by rotating a plane mirror in the monochromator. At this case, 61563 the entrance and exit slit are both fixed during the wavelength 61564 scanning. The other is to translate exit slit while the grating 61565 including angle is fixed. The monochromator is provided for 61566 angle-resolved spectroscopic and angle-integrated spectroscopic 61567 experiments with medium resolving power (E/DeltaE > 1 0 0 0). (C) 2001 61568 Elsevier Science B.V. All rights reserved. 61569 C1 Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China. 61570 Shanghai Univ, Dept Precis Machinery, Shanghai 201800, Peoples R China. 61571 RP Yu, XJ, Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 61572 230029, Anhui, Peoples R China. 61573 CR CHEN CT, 1987, NUCL INSTRUM METH A, V256, P595 61574 LU LJ, 1996, APPL OPTICS, V35, P3627 61575 MELPIGNANO P, 1995, REV SCI INSTRUM 2, V66, P2125 61576 PADMORE HA, 1989, REV SCI INSTRUM 2A, V60, P1608 61577 PEATMAN WB, 1995, REV SCI INSTRUM, V66, P2801 61578 PIMPALE AV, 1991, APPL OPTICS, V30, P1591 61579 NR 6 61580 TC 1 61581 SN 0168-9002 61582 J9 NUCL INSTRUM METH PHYS RES A 61583 JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. 61584 Equip. 61585 PD JUL 21 61586 PY 2001 61587 VL 467 61588 PN Part 1 61589 BP 597 61590 EP 600 61591 PG 4 61592 SC Physics, Particles & Fields; Instruments & Instrumentation; Nuclear 61593 Science & Technology; Spectroscopy 61594 GA 470YR 61595 UT ISI:000170900500143 61596 ER 61597 61598 PT J 61599 AU Wu, MH 61600 Chen, J 61601 Bao, B 61602 TI The effect of monomer molecular weight of acrylate on radiation 61603 grafting of polyethylene 61604 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY 61605 DT Article 61606 ID SURFACES 61607 AB A series of condensed ethylene glycol acrylate monomers with different 61608 molecular weight was grafted to polyethylene films by means of 61609 preirradiation. The effect of the molecular weight of monomer and 61610 co-solvent system on the grafting reaction and the properties of the 61611 grafted sample were studied. The experimental results showed that the 61612 initial rate of grafting reaction decreased and the molar degrees of 61613 grafting linearly decreased with the increment of molecular weight of 61614 the monomer. The grafting degree was increased with the swelling degree 61615 of the grafted film. The biocompatibility and blood compatibility of 61616 the grafted PE films were evaluated by the determination of 61617 hydrophilicity and anti-thrombus. 61618 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China. 61619 RP Wu, MH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, 61620 Peoples R China. 61621 CR ANDRADE JD, 1987, T AM SOC ART INT ORG, V33, P75 61622 DUNKIRK SG, 1991, J BIOMATER APPL, V6, P131 61623 HADDADIASL V, 1995, RADIAT PHYS CHEM, V45, P191 61624 HAYASHI K, 1983, SEITAI ZEIRYO, V1, P59 61625 HOFFMAN AS, 1982, ADV CHEM SER, V199, P3 61626 HOFFMAN AS, 1988, J APPL POLYM SCI APP, V42, P251 61627 IMAI Y, 1972, J BIOMED MATER RES, V6, P165 61628 JEONG BJ, 1996, J COLLOID INTERF SCI, V178, P757 61629 KRONICK PL, 1983, SYNTHETIC BIOMEDICAL, P132 61630 RATNER BD, 1981, BIOCOMPATIBILITY CLI, P145 61631 WU MH, 1996, RADIAT PHYS CHEM, V48, P525 61632 YEH YS, 1988, J BIOMED MATER RES, V22, P795 61633 NR 12 61634 TC 0 61635 SN 0236-5731 61636 J9 J RADIOANAL NUCL CHEM 61637 JI J. Radioanal. Nucl. Chem. 61638 PD SEP 61639 PY 2001 61640 VL 249 61641 IS 3 61642 BP 639 61643 EP 642 61644 PG 4 61645 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science 61646 & Technology 61647 GA 469WY 61648 UT ISI:000170840100021 61649 ER 61650 61651 PT J 61652 AU Ding, YP 61653 Wu, JS 61654 Meng, ZY 61655 TI Abnormalities in the ferroelectric behavior of Ba0.7Sr0.3TiO3 thin 61656 films caused by fluctuations in Ba/Sr ratios in micro-regions 61657 SO JOURNAL OF MATERIALS SCIENCE LETTERS 61658 DT Article 61659 C1 Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China. 61660 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 61661 RP Ding, YP, Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, 61662 Peoples R China. 61663 CR DING YP, 2000, J MATER SCI LETT, V19, P163 61664 DING YP, 2000, MAT RES B, V35 61665 KNANSS LA, 1996, APPL PHYS LETT, V69, P25 61666 ONEILL D, 1998, J MATER SCI-MATER EL, V9, P199 61667 QU BD, 1998, APPL PHYS LETT, V72, P1394 61668 NR 5 61669 TC 0 61670 SN 0261-8028 61671 J9 J MATER SCI LETT 61672 JI J. Mater. Sci. Lett. 61673 PY 2001 61674 VL 20 61675 IS 16 61676 BP 1469 61677 EP 1471 61678 PG 3 61679 SC Materials Science, Multidisciplinary 61680 GA 469KZ 61681 UT ISI:000170815000002 61682 ER 61683 61684 PT J 61685 AU Zhu, WM 61686 Li, CE 61687 Guo, CJ 61688 Yan, LH 61689 TI Influence of phase composition on the piezoelectric properties of 61690 PMN-PT ceramic 61691 SO JOURNAL OF INORGANIC MATERIALS 61692 DT Article 61693 DE chemical composition; phase composition; MPB; piezoelectric properties 61694 ID LEAD MAGNESIUM NIOBATE; BOUNDARY; TITANATE; SYSTEM 61695 AB The influence of chemical and phase composition on the piezoelectric 61696 properties of PMN-PT ceramics with chemical compositions near the 61697 morphotropic phase boundary(MPB) sintered at different temperatures was 61698 investigated. It showed that a phase conversion from rhombohedral to 61699 tetragonal phase took place when the sintering temperature of PMN-PT 61700 ceramic with a definite chemical composition increased. Meanwhile, the 61701 piezoelectric properties of PMN-PT ceramics were significantly enhanced 61702 when the amount of rhombohedral phase approached to that of tetragonal 61703 phase in ceramics. At the same time, it was discovered that the 61704 chemical composition corresponding to optimal piezoelectric properties 61705 varied with the change of sintering temperature. Based on above 61706 results, the authors found that the piezoelectric properties of PMN-PT 61707 near the MPB are not only related to the chemical composition but also 61708 significantly impacted by the phase composition in ceramics. With the 61709 change of sintering temperature, the MPB of PMN-PT ceramic system 61710 shifts slightly. 61711 C1 Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China. 61712 Shanghai Univ, Sch Mat Sci, Shanghai 201800, Peoples R China. 61713 RP Zhu, WM, Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, 61714 Peoples R China. 61715 CR ARIGUR P, 1975, J PHYS D, V8, P1856 61716 BAREWALD HG, 1957, PHYS REV, V105, P480 61717 CAO WW, 1992, JPN J APPL PHYS PT 1, V31, P1399 61718 CARL K, 1971, PHYS STATUS SOLIDI A, V8, P87 61719 CHOI SW, 1989, FERROELECTRICS, V100, P29 61720 FANG F, 1997, J CHINESE CERAMIC SO, V25, P688 61721 GUPTA SM, 1998, J APPL PHYS, V83, P407 61722 HILTON AD, 1989, FERROELECTRICS, V93, P379 61723 HO JC, 1993, J MATER SCI, V28, P4497 61724 ISUPOV VA, 1968, TELA FIS TVERD, V10, P1244 61725 ISUPOV VA, 1983, FERROELECTRICS, V46, P217 61726 JAFFE B, 1971, PIEZOELECTRIC CERAMI 61727 KELLY J, 1997, J AM CERAM SOC, V80, P957 61728 KIM N, 1989, FERROELECTRICS, V93, P341 61729 PARK SE, 1997, J APPL PHYS, V82, P1840 61730 SWARTZ SL, 1982, MATER RES BULL, V17, P1245 61731 XIA F, 1998, J CHINESE CERAMIC SO, V26, P114 61732 NR 17 61733 TC 0 61734 SN 1000-324X 61735 J9 J INORG MATER 61736 JI J. Inorg. Mater. 61737 PD JUL 61738 PY 2001 61739 VL 16 61740 IS 4 61741 BP 641 61742 EP 648 61743 PG 8 61744 SC Materials Science, Ceramics 61745 GA 469NZ 61746 UT ISI:000170822900011 61747 ER 61748 61749 PT J 61750 AU Xiao, XS 61751 Qiao, XY 61752 Mo, ZS 61753 Dong, YD 61754 Wang, Q 61755 Wang, XH 61756 Xu, H 61757 TI The effect of electrostatic field on the micro-crystal morphology of 61758 polymer films 61759 SO EUROPEAN POLYMER JOURNAL 61760 DT Article 61761 DE electrostatic field; isotactic polypropylene; poly(3-dodecylthiophene); 61762 crystallite size; morphology 61763 AB The micro-crystal morphology of the films of isotactic polypropylene 61764 (iPP), poly(3-dodecylthiophene) (P3DDT) and iPP/P3DDT blend grown in 61765 different electrostatic environments has been investigated by using 61766 scanning electron microscope. The experimental results show that the 61767 micro-crystal morphology of polymer films was strongly dependent on 61768 electrostatic field. It was found that the micro-crystal morphology of 61769 the films of iPP, P3DDT and iPP/P3DDT blend grown in the electrostatic 61770 field was in the form of dendrite crystals, in which main stems were 61771 aligned in the field direction, and some branches of P3DDT were 61772 ruptured. However, the micro-crystals of the films of iPP, P3DDT and 61773 iPP/P3DDT blend have no crystal orientation in the absence of 61774 electrostatic field. (C) 2001 Elsevier Science Ltd. All rights reserved. 61775 C1 Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China. 61776 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 61777 RP Mo, ZS, Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab 61778 Polymer Phys & Chem, Changchun 130022, Peoples R China. 61779 CR BRISKMAN V, AIAA960257 61780 FURUKAWA T, 1989, PHASE TRANSIT, V18, P143 61781 JACBS EW, 1984, APPL PHYS LETT, V44, P44 61782 KAWAI H, 1969, JPN J APPL PHYS, V8, P975 61783 SERPICO JM, 1991, MACROMOLECULES, V24, P6879 61784 VENUGOPAL G, 1990, POLYM PREPR, V31, P377 61785 XIAO X, 1999, J SHANGHAI U, V5, P66 61786 XIAO X, 2000, CHINESE J SCI INSTRU, V21, P23 61787 NR 8 61788 TC 0 61789 SN 0014-3057 61790 J9 EUR POLYM J 61791 JI Eur. Polym. J. 61792 PD NOV 61793 PY 2001 61794 VL 37 61795 IS 11 61796 BP 2339 61797 EP 2343 61798 PG 5 61799 SC Polymer Science 61800 GA 470QQ 61801 UT ISI:000170883000023 61802 ER 61803 61804 PT J 61805 AU Sheng, YJ 61806 Ru, HY 61807 Min, ZK 61808 TI R(C-6, K-5)=21 and R(C-7, K-5)=25 61809 SO EUROPEAN JOURNAL OF COMBINATORICS 61810 DT Article 61811 ID NUMBERS; GRAPHS 61812 AB The Ramsey number R(C-n, K-m) is the smallest integer p such that any 61813 graph G on p vertices either contains a cycle C-n with length n or 61814 contains an independent set with order m. In this paper we prove that 61815 R(C-n, K-5) = 4(n - 1) + 1 (n = 6, 7). (C) 2001 Academic Press. 61816 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 61817 RP Sheng, YJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 61818 CR BOLLOBAS B, IN PRESS CONJECTURE 61819 CHVATAL V, 1972, PAC J MATH, V41, P335 61820 CLANCY M, 1977, J GRAPH THEOR, V1, P89 61821 FAUDREE RJ, 1974, DISCRETE MATH, V8, P313 61822 HENDRY GRT, 1989, J GRAPH THEOR, V13, P245 61823 JAYAWARDENE CJ, SOEM RAMSEY NUMBERS 61824 RADZISZOWSKI SP, 2000, ELECT J COMB, V1, P1 61825 ROSTA V, 1973, J COMB THEORY B, V15, P94 61826 SCHELP RH, 1978, LECT NOTES MATH, V642, P500 61827 YANG WY, 1999, APPL MATH MECH-ENGL, V20, P205 61828 NR 10 61829 TC 0 61830 SN 0195-6698 61831 J9 EUR J COMBINATORIC 61832 JI Eur. J. Comb. 61833 PD MAY 61834 PY 2001 61835 VL 22 61836 IS 4 61837 BP 561 61838 EP 567 61839 PG 7 61840 SC Mathematics 61841 GA 470GA 61842 UT ISI:000170861200014 61843 ER 61844 61845 PT J 61846 AU Yang, GH 61847 TI Topological structure of entropy of (3+1)-dimensional spherically 61848 symmetric black holes 61849 SO MODERN PHYSICS LETTERS A 61850 DT Article 61851 ID EXTREME STATE; AREA 61852 AB Using the relationship between the entropy arid the Euler 61853 characteristic, an entropy density is introduced to describe the inner 61854 topological structure of the entropy of (3 + 1)-dimensional spherically 61855 symmetric black holes. It is pointed out that the density of entropy is 61856 determined by the singularities of the timelike Killing vector field of 61857 spacetime, and these singularities carry the topological numbers, Hopf 61858 indices and Brouwer degrees, naturally, which are topological 61859 invariants. Taking account of the physical meaning in statistics, the 61860 entropy of black holes is given by the Hopf indices merely, which will 61861 lead to the increasing principle of entropy of black holes. 61862 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 61863 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 61864 CR BARDEEN JM, 1973, COMMUN MATH PHYS, V31, P161 61865 BEKENSTEIN JD, 1973, PHYS REV D, V7, P2333 61866 CHERN SS, 1944, ANN MATH, V45, P747 61867 CHERN SS, 1945, ANN MATH, V46, P674 61868 CHERN SS, 1959, LECT NOTES 61869 CHRISTODOULOU D, 1971, PHYS REV D, V4, P3552 61870 DUAN YS, 1993, J MATH PHYS, V34, P1149 61871 DUAN YS, 1997, HELV PHYS ACTA, V70, P565 61872 DUAN YS, 1998, NUCL PHYS B, V514, P705 61873 GELFAND IM, 1958, GEN FUNCTION 61874 GHOSH A, 1997, PHYS REV LETT, V78, P1858 61875 GIBBONS GW, 1977, PHYS REV D, V15, P2752 61876 GIBBONS GW, 1995, PHYS REV D, V51, P2839 61877 HAWKING SW, 1975, COMMUN MATH PHYS, V43, P199 61878 HAWKING SW, 1995, PHYS REV D, V51, P4302 61879 HAWKING SW, 1996, CLASSICAL QUANT GRAV, V13, P1487 61880 LIBERATI S, 1997, PHYS REV D, V56, P6458 61881 MALDACENA JM, 1996, PHYS REV LETT, V77, P428 61882 ZASLAVSKII OB, 1996, PHYS REV LETT, V76, P2211 61883 ZASLAVSKII OB, 1997, PHYS REV D, V56, P2188 61884 NR 20 61885 TC 1 61886 SN 0217-7323 61887 J9 MOD PHYS LETT A 61888 JI Mod. Phys. Lett. A 61889 PD JUL 20 61890 PY 2001 61891 VL 16 61892 IS 22 61893 BP 1457 61894 EP 1464 61895 PG 8 61896 SC Physics, Mathematical; Physics, Nuclear; Physics, Particles & Fields 61897 GA 467MR 61898 UT ISI:000170708800007 61899 ER 61900 61901 PT J 61902 AU Zhang, ZQ 61903 Mo, YL 61904 TI Coding of image objects based on wavelet transform using lifting scheme 61905 SO JOURNAL OF INFRARED AND MILLIMETER WAVES 61906 DT Article 61907 DE MPEG-4; transform coding of arbitrarily shaped image objects; wavelet 61908 transforms using lifting scheme 61909 ID SHAPE-ADAPTIVE DCT; VIDEO 61910 AB Wavelet lifting scheme was applied to the transform coding of 61911 arbitrarily shaped image objects. There are two approaches: one needs 61912 the extrapolation of the image object and the other is a shape-adopted 61913 algorithm by modifying the lifting scheme. The experiment result shows 61914 that the image compression performance of the two approaches is better 61915 than Katata's approach which uses the classical wavelet transform. 61916 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China. 61917 RP Zhang, ZQ, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, 61918 Peoples R China. 61919 CR DAUBECHIES I, 1998, J FOURIER ANAL APPL, V4, P247 61920 KATATA H, 1997, IEEE T CIRC SYST VID, V7, P234 61921 KAUFF P, 1997, IEEE T CIRC SYST VID, V7, P181 61922 KAUFF P, 1998, IEEE T CIRC SYST VID, V8, P237 61923 LEE SH, 1999, IEEE T CIRC SYST VID, V9, P44 61924 LEWIS AS, 1992, IEEE T IMAGE PROCESS, V1, P244 61925 SIKORA T, 1995, IEEE T CIRC SYST VID, V5, P59 61926 SIKORA T, 1997, IEEE T CIRC SYST VID, V7, P19 61927 SWELDENS W, 1994, LIFTING SCHEME CUSTO, P1 61928 NR 9 61929 TC 0 61930 SN 1001-9014 61931 J9 J INFRARED MILIM WAVES 61932 JI J. Infrared Millim. Waves 61933 PD AUG 61934 PY 2001 61935 VL 20 61936 IS 4 61937 BP 296 61938 EP 300 61939 PG 5 61940 SC Optics 61941 GA 467GL 61942 UT ISI:000170694000014 61943 ER 61944 61945 PT J 61946 AU Zhang, ZC 61947 Huang, BB 61948 Yu, YQ 61949 Cui, DL 61950 TI Electrical properties and Raman spectra of undoped and Al-doped ZnO 61951 thin films by metalorganic vapor phase epitaxy 61952 SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED 61953 TECHNOLOGY 61954 DT Article 61955 DE ZnO; resistivity; carrier concentration; hall mobility; Raman spectra 61956 ID DEPOSITION; GROWTH 61957 AB Undoped and Al-doped ZnO thin films have been deposited on Si 61958 substrates using metalorganic vapor phase epitaxy at atmospheric 61959 pressure. The as-deposited ZnO films showed good crystalline character 61960 and exhibited (002) orientation with the c axis perpendicular to the 61961 substrate surface. The carrier concentration of ZnO films was found to 61962 be dependent upon the doping of Al, and varied in the range from 10(19) 61963 to 10(20) cm(-3). The resistivity of ZnO films was in the order of 61964 magnitude of 10(-3) Omega cm. The Hall mobility decreased with the 61965 doping of Al and was in the range 5-53 cm(2) (V(.)s)(-1). Raman spectra 61966 indicated the observed A(1)(LO) and E-2(high) bands shifted towards the 61967 low-frequency side. (C) 2001 Elsevier Science B.V. All rights reserved. 61968 C1 Shanghai Univ, Chinese Acad Sci, Dept Elect Informat Mat, Shanghai 201800, Peoples R China. 61969 Shandong Univ, Inst Crystal Mat, Jinan 250100, Peoples R China. 61970 RP Zhang, ZC, Shanghai Univ, Chinese Acad Sci, Dept Elect Informat Mat, 61971 865 Changning Rd, Shanghai 201800, Peoples R China. 61972 CR BAGNALL DM, 1997, APPL PHYS LETT, V70, P2230 61973 DAMEN TC, 1966, PHYS REV, V142, P570 61974 MINEGISHI K, 1997, JPN J APPL PHYS 2, V36, L1453 61975 SOULETIE P, 1988, J CRYST GROWTH, V86, P248 61976 TONG YZ, 1996, J INFARED MILLIM WAV, V15, P6 61977 WRIGHT PJ, 1984, J CRYST GROWTH, V66, P26 61978 NR 6 61979 TC 12 61980 SN 0921-5107 61981 J9 MATER SCI ENG B-SOLID STATE M 61982 JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 61983 PD SEP 25 61984 PY 2001 61985 VL 86 61986 IS 2 61987 BP 109 61988 EP 112 61989 PG 4 61990 SC Materials Science, Multidisciplinary; Physics, Condensed Matter 61991 GA 465HR 61992 UT ISI:000170584000002 61993 ER 61994 61995 PT J 61996 AU Zhang, ZC 61997 Huang, BB 61998 Cui, DL 61999 TI Growth of AlxGa1-xP on GaAs substrate by metalorganic vapor phase 62000 epitaxy 62001 SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED 62002 TECHNOLOGY 62003 DT Article 62004 DE AlGaP; metalorganic vapor phase epitaxy; back-scattering spectrometry; 62005 Raman spectroscopy 62006 ID MOLECULAR-BEAM EPITAXY; RAMAN-SCATTERING; GAP; PRESSURE; INP 62007 AB The crystalline perfection of the AlxGa1-xP film grown on GaAs 62008 substrate by atmospheric pressure metalorganic vapor phase epitaxy has 62009 been studied using double-crystal X-ray diffraction and back-scattering 62010 spectrometry, and the behavior for the optical phonons of the AlxGa1-xP 62011 epilayer investigated by the Raman scattering technique. In addition, 62012 the reflection spectra in the visible-light spectra region from 62013 multilayer structures constructed by AlxGa1-xP/GaP pairs have been 62014 measured. The measurement of the full-width at half-maximum of the 62015 X-ray diffraction peak of the AlxGa1-xP epilayer showed that the 62016 crystalline perfection of the AlxGa1-xP film was improved by growing a 62017 GaP buffer layer and using a misoriented GaAs substrate. Corresponding 62018 to the temperature range 750-820 degreesC, the higher crystalline 62019 perfection was obtained at the lower growth temperature. The value of 62020 the minimum yield of back-scattering spectrometry of Al0.24Ga0.76P/GaAs 62021 (3.4 x 10(-2)) revealed that the epilayer was not perfect and contained 62022 both elastic strain and misfit dislocations. A two-mode Raman 62023 characteristic of Al0.21Ga0.79P/GaAs was clearly seen with two LO 62024 modes, AIP-like LO and GaP-like LO located at 460 and 392 cm(-1), 62025 respectively. For the (Al0.2Ga0.79P)10/(GaP)(10) structure, a 62026 reflectivity above 60% was realized. (C) 2001 Elsevier Science B.V. All 62027 rights reserved. 62028 C1 Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800, Peoples R China. 62029 Shandong Univ, Inst Crystal Mat, Jinan 250100, Peoples R China. 62030 RP Zhang, ZC, Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800, 62031 Peoples R China. 62032 CR *I SEM CHIN AC SCI, 1984, TEST AN SEM, P135 62033 ADOMI K, 1992, J CRYST GROWTH, V124, P570 62034 BAILLARGEON JN, 1990, APPL PHYS LETT, V56, P2201 62035 BHAT R, 1992, J CRYST GROWTH, V124, P311 62036 CHU WK, 1978, BACKSCATTERING SPECT, P233 62037 ESTRERA JP, 1992, APPL PHYS LETT, V61, P1927 62038 FRANK FC, 1949, P ROY SOC LOND A MAT, V198, P216 62039 ILLEGEMS M, 1970, PHYS REV B, V1, P1576 62040 LAO PD, 1989, J APPL PHYS, V65, P1676 62041 LIU J, 1992, J CRYST GROWTH, V124, P415 62042 LUCOVSKY G, 1975, PHYS REV B, V12, P4135 62043 LUCOVSKY G, 1976, PHYS REV B, V14, P2503 62044 MENG G, 1984, CHEM VAPOR EPITAXY N, P147 62045 MOWBRAY DJ, 1987, SEMICOND SCI TECH, V2, P822 62046 VANDEVEN J, 1986, J CRYST GROWTH, V76, P352 62047 WAKAHARA A, 1992, J CRYST GROWTH, V124, P118 62048 WEINSTEIN BA, 1975, PHYS REV B, V12, P1172 62049 ZHANG ZC, 2000, MAT SCI ENG B-SOLID, V77, P24 62050 NR 18 62051 TC 1 62052 SN 0921-5107 62053 J9 MATER SCI ENG B-SOLID STATE M 62054 JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 62055 PD SEP 25 62056 PY 2001 62057 VL 86 62058 IS 2 62059 BP 147 62060 EP 151 62061 PG 5 62062 SC Materials Science, Multidisciplinary; Physics, Condensed Matter 62063 GA 465HR 62064 UT ISI:000170584000009 62065 ER 62066 62067 PT J 62068 AU Cheng, CJ 62069 Fan, XJ 62070 TI Nonlinear mathematical theory of perforated viscoelastic thin plates 62071 with its applications 62072 SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES 62073 DT Article 62074 DE perforated viscoelastic plate; nonlinear mathematical model; nonlinear 62075 stability; Lyapunov exponent spectrum; chaos; periodic motion; limit 62076 cycle; effect of parameter 62077 ID ANNULAR PLATES; SHEARING; STATES 62078 AB In this paper, the nonlinear mathematical theory of perforated 62079 viscoelastic thin plates, by the Karman's hypotheses of plates with 62080 large deflection and the Boltzmann's constitutive law of linear 62081 viscoelastic materials, is established. One could see that the 62082 governing equations, boundary conditions and constraining conditions 62083 generally are of nonlinear integro-differential operator types and that 62084 they further generalize the mathematical theory for perforated elastic 62085 thin plates and could be also reduced to the existing mathematical 62086 theory of viscoelastic thin plates without holes. As an application, 62087 the nonlinear dynamical stability of a viscoelastic annular plate is 62088 analyzed and the effect of parameters on the stability is considered by 62089 using Galerkin averaging method and numerical methods in nonlinear 62090 dynamics. Some helpful conclusions are obtained. Specially, a new 62091 method calculating the Lyapunov exponent spectrum of dynamical systems 62092 excited periodically is suggested. By using this method, the 62093 computation time can be greatly reduced. (C) 2001 Elsevier Science Ltd. 62094 All rights reserved. 62095 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China. 62096 Xian Jiaotong Univ, Sch Civil Engn & Mech, Xian 710049, Peoples R China. 62097 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, 62098 Shanghai 200072, Peoples R China. 62099 CR CEDERBAUM G, 1991, INT J SOLIDS STRUCT, V28, P317 62100 CEDERBAUM G, 1994, INT J MECH SCI, V36, P149 62101 CHENG CJ, 1986, SCI SINICA SER A, V29, P956 62102 CHENG CJ, 1989, J ENG MATH, V23, P29 62103 CHENG CJ, 1991, BUCKLING BUFOCATION 62104 CHENG CJ, 1991, COMPUT METHOD APPL M, V92, P157 62105 CHENG CJ, 1991, COMPUT METHOD APPL M, V92, P173 62106 CHENG CJ, 1996, APPL MATH MECH, V17, P109 62107 CHENG CJ, 1998, ACTA MECH SINICA, V30, P690 62108 CHENG CJ, 1998, INT J SOLIDS STRUCT, V35, P4491 62109 CHRISTENSEN RM, 1982, THEORY VISCOELASTICI 62110 DROZDOV AD, 1994, STABILITY VISCOELAST 62111 PARKER TS, 1989, PRACTICAL NUMERICAL 62112 TOUATI D, 1995, ACTA MECH, V113, P215 62113 ZHANG NH, 1998, COMPUT METHOD APPL M, V165, P307 62114 ZHU ZY, 1986, ACTA MECH SINICA, V2, P278 62115 NR 16 62116 TC 2 62117 SN 0020-7683 62118 J9 INT J SOLIDS STRUCT 62119 JI Int. J. Solids Struct. 62120 PD SEP 62121 PY 2001 62122 VL 38 62123 IS 36-37 62124 BP 6627 62125 EP 6641 62126 PG 15 62127 SC Mechanics 62128 GA 464GK 62129 UT ISI:000170524700013 62130 ER 62131 62132 PT J 62133 AU He, JH 62134 TI Comments and author's reply on "Derivation and transformation of 62135 variational principles with emphasis on inverse and hybrid problems in 62136 fluid mechanics: a systematic approach" 62137 SO ACTA MECHANICA 62138 DT Letter 62139 ID FLOW 62140 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 62141 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd, 62142 Shanghai 200072, Peoples R China. 62143 CR HE JH, 1997, INT J TURBO JET ENG, V14, P23 62144 HE JH, 2000, AIRCR ENG AEROSP TEC, V72, P18 62145 LIU GL, 1999, ACTA MECH SINICA, V31, P165 62146 LIU GL, 1999, INT J TURBO JET ENG, V16, P141 62147 LIU GL, 2000, ACTA MECH, V140, P73 62148 NR 5 62149 TC 3 62150 SN 0001-5970 62151 J9 ACTA MECH 62152 JI Acta Mech. 62153 PY 2001 62154 VL 149 62155 IS 1-4 62156 BP 247 62157 EP 249 62158 PG 3 62159 SC Mechanics 62160 GA 465UE 62161 UT ISI:000170607700018 62162 ER 62163 62164 PT J 62165 AU Liu, GL 62166 TI Comments and author's reply on "Derivation and transformation of 62167 variational principles with emphasis on inverse and hybrid problems in 62168 fluid mechanics: a systematic approach" - Reply 62169 SO ACTA MECHANICA 62170 DT Letter 62171 C1 Shanghai Univ, Inst Mech, Shanghai 200072, Peoples R China. 62172 RP Liu, GL, Shanghai Univ, Inst Mech, 149 Yan Chang Rd, Shanghai 200072, 62173 Peoples R China. 62174 CR FINLAYSON BA, 1972, METHOD WEIGHTED RESI, P312 62175 HE JH, COMMENTS LIUS SYSTEM 62176 LIU GL, 1990, CHINESE J ENG THERMO, V11, P136 62177 LIU GL, 2000, ACTA MECH, V140, P73 62178 ZIENKIEWICZ OC, 1989, FINITE ELEMENT METHO, V1, P248 62179 NR 5 62180 TC 0 62181 SN 0001-5970 62182 J9 ACTA MECH 62183 JI Acta Mech. 62184 PY 2001 62185 VL 149 62186 IS 1-4 62187 BP 249 62188 EP 250 62189 PG 2 62190 SC Mechanics 62191 GA 465UE 62192 UT ISI:000170607700019 62193 ER 62194 62195 PT J 62196 AU Wan, XJ 62197 Chen, YX 62198 Cheng, XY 62199 TI Environmental embrittlement of intermetallics 62200 SO PROGRESS IN NATURAL SCIENCE 62201 DT Review 62202 DE intermetallics; environmental embrittlement; alloying element; hydrogen 62203 diffusivity; surface reaction 62204 ID ROOM-TEMPERATURE; CO3TI ALLOYS; POLYCRYSTALLINE NI3AL; 62205 MECHANICAL-PROPERTIES; WATER-VAPOR; BORON; FRACTURE 62206 AB The effect of alloying elements on the environmental embrittlement of 62207 L1(2) type intermetallics is summarized. The results show that the 62208 ductilizing effect of boron doping in Ni3Al is mainly to suppress the 62209 moisture-induced environmental embrittlement. The mechanism of this 62210 suppression effect is proved to lie in the fact that it severely 62211 reduces the hydrogen diffusivity along the grain boundaries. However, 62212 the boron doping in Co3Ti alloys does not have the same effect of 62213 suppressing the environmental embrittlement. The different behavior of 62214 boron doping in Ni3Al and Co3Ti may be attributed to its different 62215 segregation behavior on the grain boundaries. Boron in Co3Ti does not 62216 segregate on the grain boundaries and cannot effectively reduce the 62217 hydrogen diffusivity along the grain boundaries. The moisture-induced 62218 environmental embrittlement of Co3Ti alloy can be completely suppressed 62219 by the addition of Fe. As proved by Auger, this suppression effect is 62220 due to its obvious reduction of the surface kinetic reaction with water 62221 vapor. 62222 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 62223 RP Wan, XJ, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 62224 CR CHEN YX, 1998, J MATER SCI LETT, V17, P1627 62225 CHEN YX, 2000, INTERMETALLICS, V8, P585 62226 CHENG XY, 1997, SCRIPTA MATER, V37, P1065 62227 CHENG XY, 1998, SCRIPTA MATER, V38, P959 62228 GEORGE EP, 1992, SCRIPTA METALL MATER, V27, P365 62229 GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37 62230 GEORGE EP, 1995, MAT SCI ENG A-STRUCT, V192, P277 62231 KIMURA A, 1994, MATER T JIM, V35, P879 62232 LIU CT, 1985, ACTA METALL, V33, P213 62233 LIU CT, 1992, SCRIPTA METALL MATER, V27, P25 62234 LIU Y, 1989, J MATER SCI, V24, P4458 62235 TAKASUGI T, 1986, ACTA METALL, V34, P607 62236 TAKASUGI T, 1990, J MATER SCI, V25, P4239 62237 TAKASUGI T, 1993, SCRIPTA METALL MATER, V29, P1587 62238 WAN X, 1994, J MATER SCI TECHNOL, V10, P39 62239 WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473 62240 WAN XJ, 1992, SCRIPTA METALL MATER, V26, P479 62241 WAN XJ, 1994, SCRIPTA METALL MATER, V31, P677 62242 WAN XJ, 1995, ACTA METALL SINICA, V8, P299 62243 WAN XJ, 1998, ACTA METALLURGICA SI, V34, P141 62244 WAN XJ, 1999, ACTA METALLURGICA S, V35, P44 62245 WU MY, 1999, 5 IUMRS INT C ADV MA, V64, P187 62246 ZHU JH, 1993, SCRIPTA METALL MATER, V29, P429 62247 NR 23 62248 TC 0 62249 SN 1002-0071 62250 J9 PROG NAT SCI 62251 JI Prog. Nat. Sci. 62252 PD AUG 62253 PY 2001 62254 VL 11 62255 IS 8 62256 BP 561 62257 EP 568 62258 PG 8 62259 SC Multidisciplinary Sciences 62260 GA 462TN 62261 UT ISI:000170436000001 62262 ER 62263 62264 PT J 62265 AU Yin, LW 62266 Li, MS 62267 Hao, ZY 62268 Zhang, JF 62269 TI Inclusions related to catalyst and medium for transmitting pressure in 62270 diamond single crystals grown at high temperature and high pressure 62271 from the Fe-C system 62272 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS 62273 DT Article 62274 ID NITROGEN 62275 AB Inclusion entrapment in a crystal is one of the most important 62276 characteristics for the crystal growth technique from solution. Diamond 62277 single crystals grown from the Fe-C system at high temperature-high 62278 pressure usually contain inclusions related to the molten catalyst and 62279 the medium (pyrophyllite) for transmitting pressure. During the growth 62280 of the diamond, the inclusions are trapped by the growth front or are 62281 formed through reaction between the contaminants trapped in the 62282 diamond. In the present article, the inclusions related to the catalyst 62283 and pyrophyllite were systemically examined by transmission electron 62284 microscopy. The chemical composition and crystal structure of the 62285 inclusions were, for the first time, determined by selected area 62286 electron diffraction pattern combined with energy dispersive x-ray 62287 spectrometry. It was shown that the inclusions are mainly composed of 62288 orthorhombic Fe3C, orthorhombic FeSi2, hexagonal SiO2 and face-centred 62289 cubic SiC. 62290 C1 Shandong Univ, Coll Mat Sci & Engn, Jinan 250061, Peoples R China. 62291 Jilin Univ, Natl Key Lab Superhard Mat, Changchun 130012, Peoples R China. 62292 Shanghai Univ Sci & Technol, Occupat Coll, Jinan 271021, Peoples R China. 62293 RP Yin, LW, Shandong Univ, Coll Mat Sci & Engn, 73 Jing Shi Rd, Jinan 62294 250061, Peoples R China. 62295 CR ANTHONY TR, 1999, DIAM RELAT MATER, V8, P78 62296 BUNDY FP, 1955, NATURE, V176, P51 62297 DAVIS G, 1992, PHYS REV B, V46, P157 62298 GOSS J, 1995, MATER SCI FORUM, V196, P67 62299 HAO ZY, 1994, J CRYST GROWTH, V135, P370 62300 HUGGINS CM, 1961, NATURE, V120, P829 62301 KIFLAWI I, 1997, DIAM RELAT MATER, V6, P1643 62302 MAINWOOD A, 1994, PHYS REV B, V49, P7934 62303 MICHAU D, 1999, DIAM RELAT MATER, V140, P441 62304 NAZARE MH, 1995, MATER SCI FORUM, V196, P73 62305 NEWTON ME, 1991, J PHYS-CONDENS MAT, V3, P3591 62306 SHIMOMURA S, 1997, DIAM RELAT MATER, V6, P1680 62307 SINGH BP, 1990, J MATER SCI, V25, P1487 62308 ZHANG SD, 1986, J CRYST GROWTH, V79, P542 62309 NR 14 62310 TC 1 62311 SN 0022-3727 62312 J9 J PHYS-D-APPL PHYS 62313 JI J. Phys. D-Appl. Phys. 62314 PD JUN 21 62315 PY 2001 62316 VL 34 62317 IS 12 62318 BP L57 62319 EP L60 62320 PG 4 62321 SC Physics, Applied 62322 GA 462MR 62323 UT ISI:000170424300001 62324 ER 62325 62326 PT J 62327 AU Wang, XG 62328 Ding, WZ 62329 Tang, K 62330 Jiang, GC 62331 Xu, KD 62332 TI Experimental thermodynamic research on equilibrium between silicon 62333 alloy and SiO2-CaO-Al2O3 melt 62334 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA 62335 DT Article 62336 DE silicon; oxidation refining; thermodynamic equilibrium 62337 AB The equilibria of Al and Ca between silicon alloy and the SO2-Al2O3-CaO 62338 ternary slags were investigated using graphite crucible at 1550 62339 degreesC. With increasing Al2O3 and CaO content in the slags, the Al 62340 and Ca content increase respectively. The variation of the impurities 62341 are also affected by the silica content in slag which provides the 62342 oxidant during the oxidation refining process. The distributions of the 62343 impurities Al and Ca in silicon were given in terms of isoconcentration 62344 curves for Al and Ca in the ternary slags of SiO2-Al2O3-CaO. The 62345 present experimental work provided available data to analyze the action 62346 of Al and Ca during oxidation refining process for silicon alloy. 62347 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 62348 CR CHU TL, 1983, J ELECTROCHEM SOC, V30, P455 62349 HOLTA H, 1995, INFACON 7 TRONDH NOR, P463 62350 HUNT LP, 1976, 12 IEEE PHOT SPEC C, P125 62351 HUNT LP, 1976, SOL ENERGY, P200 62352 JUNEJA JM, 1986, HYDROMETALLURGY, V16, P69 62353 KAY DAR, 1960, T FARADAY SOC, V56, P1372 62354 MARGARIA T, 1996, SILICON REFINING EXP, P21 62355 OHTA H, 1996, METALL MATER TRANS B, V27, P943 62356 OTTEM L, 1993, STF34F93112 SINTEF 62357 REIN RH, 1965, T METALL SOC AIME, V233, P415 62358 SCHEI A, 1998, PRODUCTION HIGH SILI, P13 62359 SCHEI A, 1998, PRODUCTION HIGH SILI, P265 62360 VOOS W, 1961, 2972521, US 62361 WEISS T, 1994, METALL MATER TRANS B, V25, P497 62362 WU XX, 1999, CHINESE J NONFERROUS, V9, P627 62363 NR 15 62364 TC 0 62365 SN 1003-6326 62366 J9 TRANS NONFERROUS METAL SOC CH 62367 JI Trans. Nonferrous Met. Soc. China 62368 PD AUG 62369 PY 2001 62370 VL 11 62371 IS 4 62372 BP 535 62373 EP 539 62374 PG 5 62375 SC Metallurgy & Metallurgical Engineering 62376 GA 461PX 62377 UT ISI:000170373600016 62378 ER 62379 62380 PT J 62381 AU Li, CF 62382 Wang, Q 62383 TI Duration of tunneling photons in a frustrated-total-internal-reflection 62384 structure 62385 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS 62386 DT Article 62387 ID SUPERLUMINAL GROUP VELOCITIES; DELAY TIMES; QUANTUM; TRAVERSAL; 62388 MECHANICS; MEDIA 62389 AB A new definition for tunneling time of photons in a 62390 frustrated-total-internal-reflection structure is introduced under the 62391 assumption that the tunneling speed of photons is the energy-transfer 62392 speed of light in the tunneling region. This definition eliminates the 62393 problem of superluminality, and the suggested tunneling speed defines 62394 an orbit equation that gives a lateral shift of tunneling photons. (C) 62395 2001 Optical Society of America. 62396 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 62397 CCAST, World Lab, Beijing 100080, Peoples R China. 62398 RP Li, CF, Shanghai Univ, Dept Phys, 99 Shangda Rd,Baoshan, Shanghai 62399 200436, Peoples R China. 62400 CR 1994, PHYS REV A, V49, P3283 62401 BALCOU P, 1997, PHYS REV LETT, V78, P851 62402 BOHM D, 1951, QUANTUM THEORY, P240 62403 BOHM D, 1952, PHYS REV, V85, P166 62404 BOHM D, 1987, PHYS REP, V144, P321 62405 BUTTIKER M, 1982, PHYS REV LETT, V49, P1739 62406 CARNIGLIA CK, 1971, J OPT SOC AM, V61, P1035 62407 CARNIGLIA CK, 1971, J OPT SOC AM, V61, P1423 62408 CHIAO RY, 1997, PROG OPTICS, V37, P345 62409 CONDON EU, 1931, REV MOD PHYS, V3, P43 62410 DEUTCH JM, 1993, ANN PHYS-NEW YORK, V228, P184 62411 DIENER G, 1996, PHYS LETT A, V223, P327 62412 DIENER G, 1997, PHYS LETT A, V235, P118 62413 HARTMAN TE, 1962, J APPL PHYS, V33, P3427 62414 HASS K, 1994, PHYS LETT A, V185, P9 62415 HAUGE EH, 1989, REV MOD PHYS, V61, P917 62416 JAPHA Y, 1996, PHYS REV A, V53, P586 62417 LEAVENS CR, 1998, PHYS REV A, V58, P840 62418 LEE B, 1997, J OPT SOC AM B, V14, P777 62419 MACCOLL LA, 1932, PHYS REV, V40, P621 62420 MCKINNON WR, 1995, PHYS REV A, V51, P2748 62421 NIMTZ G, 1997, PROG QUANT ELECTRON, V21, P81 62422 SMITH FT, 1960, PHYS REV, V118, P349 62423 STEINBERG AM, 1994, PHYS REV A, V49, P3283 62424 NR 24 62425 TC 2 62426 SN 0740-3224 62427 J9 J OPT SOC AM B-OPT PHYSICS 62428 JI J. Opt. Soc. Am. B-Opt. Phys. 62429 PD AUG 62430 PY 2001 62431 VL 18 62432 IS 8 62433 BP 1174 62434 EP 1179 62435 PG 6 62436 SC Optics 62437 GA 459YZ 62438 UT ISI:000170280200018 62439 ER 62440 62441 PT J 62442 AU Luo, X 62443 Roetzel, W 62444 TI The single-blow transient testing technique for plate-fin heat 62445 exchangers 62446 SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER 62447 DT Article 62448 DE heat exchangers; measurement techniques; transient 62449 ID NUMERICAL INVERSION; LAPLACE TRANSFORMS; TEMPERATURE 62450 AB A new model of the single-blow problem is proposed, considering the 62451 lateral heat conduction resistance along the fins. the axial heat 62452 conduction along the separating plates and the axial thermal dispersion 62453 in the fluid. For plate-fin heat exchangers made up of stainless steel, 62454 the effect of the lateral heat conduction resistance along the fins can 62455 usually not be neglected. This effect is taken into account by solving 62456 the temperature dynamics in the fluid, separating plates and fins 62457 simultaneously. The axial dispersion model is used to take flow 62458 maldistribution in plate-fin heat exchangers into account. The effect 62459 of the axial heat conduction in separating plates is also considered. 62460 The governing equation system is solved by means of Laplace transform 62461 and numerical inverse transform algorithms. The investigation confirms: 62462 for plate-fin heat exchangers of aluminium the effect of the lateral 62463 heat conduction resistance of fins can usually be neglected because of 62464 their high fin efficiency. However, the assumption of uniform porous 62465 medium is not valid if the plate-fin heat exchangers are made up of 62466 stainless steel. In such a case the heat conduction resistance of fins 62467 has significant influence on the outlet fluid temperature variation. 62468 (C) 2001 Elsevier Science Ltd. All rights reserved. 62469 C1 Univ Fed Armed Forces, Inst Thermodynam, D-22039 Hamburg, Germany. 62470 Shanghai Univ Sci & Technol, Inst Thermal Engn & Air Conditioning, Shanghai 2000093, Peoples R China. 62471 RP Luo, X, Univ Fed Armed Forces, Inst Thermodynam, D-22039 Hamburg, 62472 Germany. 62473 CR 1979, HDB MATH, P537 62474 ANZELIUS A, 1926, Z ANGEW MATH MECH, V6, P291 62475 CAI ZH, 1984, INT J HEAT MASS TRAN, V27, P971 62476 CRESWICK FA, 1957, IND MATH, V8, P61 62477 CRUMP KS, 1976, J ASSOC COMPUT MACH, V23, P89 62478 DANCKWERTS PV, 1953, CHEM ENG SCI, V2, P1 62479 FURNAS CC, 1932, US BUREAU MINES B, V361 62480 HAUSEN H, 1929, Z ANGEW MATH MECH, V9, P173 62481 HEGGS PJ, 1988, EXP THERM FLUID SCI, V1, P243 62482 HOWARD CP, 1964, 64GTP11 ASME 62483 ICHIKAWA S, 1972, KYOTO U MEMORIES 1, V34, P53 62484 JACQUOT RG, 1983, IEEE CIRCUITS SYSTEM, V5, P4 62485 KAYS WM, 1984, COMPACT HEAT EXCHANG 62486 LIANG CY, 1975, J HEAT TRANSFER, V97, P16 62487 LUO X, 1987, HEAT TRANSFER SCI TE, P218 62488 LUO X, 1990, J SHANGHAI I MECH EN, V12, P40 62489 LUO X, 1998, FORTSCHRITT BERICHTE, V19 62490 LUO X, 1999, SCI COMPUTING CHEM E, V2, P167 62491 LUO X, 2000, HEAT TRANSFER SCI TE, P691 62492 LUO X, 2000, INT J HEAT MASS TRAN, V44, P121 62493 MULLISEN RS, 1986, J HEAT TRANS-T ASME, V108, P370 62494 NUSSELT W, 1927, Z VER DTSCH ING 1, V71, P85 62495 ROETZEL W, 1994, INT J HEAT MASS TRAN, V37, P325 62496 ROETZEL W, 1996, NEW DEV HEAT EXCHANG, P547 62497 ROETZEL W, 1998, REV GEN THERM, V37, P277 62498 ROETZEL W, 1999, DYNAMIC BEHAV HEAT E 62499 ROETZEL W, 2000, P 3 EUR THERM SCI C, P1149 62500 SCHUMANN TEW, 1929, J FRANKL INST, V208, P405 62501 STEHFEST H, 1970, COMMUN ACM, V13, P47 62502 ZHANG H, 1999, PROGR ENG HEAT TRANS, P607 62503 ZHOU CW, 1988, P NAT C HEAT MASS TR 62504 ZHOU K, 1998, P INT C HEAT EXCH SU, P645 62505 NR 32 62506 TC 3 62507 SN 0017-9310 62508 J9 INT J HEAT MASS TRANSFER 62509 JI Int. J. Heat Mass Transf. 62510 PD OCT 62511 PY 2001 62512 VL 44 62513 IS 19 62514 BP 3745 62515 EP 3753 62516 PG 9 62517 SC Engineering, Mechanical; Mechanics; Thermodynamics 62518 GA 460AG 62519 UT ISI:000170283200006 62520 ER 62521 62522 PT J 62523 AU Yang, GH 62524 TI Inner structure of entropy of Reissner-Nordstrom black holes 62525 SO GENERAL RELATIVITY AND GRAVITATION 62526 DT Article 62527 DE Black holes; entropy 62528 ID SPACE-TIME DEFECTS; BONNET-CHERN DENSITY; GAUGE FIELD-THEORY; 62529 DISCLINATION CONTINUUM; TOPOLOGICAL-STRUCTURE; EARLY UNIVERSE; EXTREME 62530 STATE; BIFURCATION; ORIGIN; QUANTIZATION 62531 AB Using the relationship between the entropy and the Euler 62532 characteristic, and the usual decomposition of spin connection, an 62533 entropy density is introduced to describe the inner structure of the 62534 entropy of RN black holes. It is pointed out that the entropy of RN 62535 black holes is determined by the singularities of the timelike Killing 62536 vector field of RN spacetime, and that these singularities carry the 62537 topological numbers, Hopf indices and Brouwer degrees, naturally, which 62538 are topological invariants. Taking account of the physical meaning of 62539 entropy in statistics, the entropy and its density of RN black holes 62540 are modified and they are given by the Hopf indices merely. 62541 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 62542 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 62543 CR BARDEEN JM, 1973, COMMUN MATH PHYS, V31, P161 62544 BEKENSTEIN JD, 1973, PHYS REV D, V7, P2333 62545 CHERN SS, 1944, ANN MATH, V45, P747 62546 CHERN SS, 1945, ANN MATH, V46, P674 62547 CHERN SS, 1959, LECT NOTES 62548 CHRISTODOULOU D, 1971, PHYS REV D, V4, P3552 62549 DUAN YS, 1993, J MATH PHYS, V34, P1149 62550 DUAN YS, 1995, HELV PHYS ACTA, V68, P513 62551 DUAN YS, 1997, GEN RELAT GRAVIT, V29, P715 62552 DUAN YS, 1997, HELV PHYS ACTA, V70, P565 62553 GELFAND IM, 1958, GEN FUNCTION 62554 GHOSH A, 1997, PHYS REV LETT, V78, P1858 62555 GIBBONS GW, 1977, PHYS REV D, V15, P2752 62556 GIBBONS GW, 1995, PHYS REV D, V51, P2839 62557 HAWKING SW, 1975, COMMUN MATH PHYS, V43, P199 62558 HAWKING SW, 1995, PHYS REV D, V51, P4302 62559 HAWKING SW, 1996, CLASSICAL QUANT GRAV, V13, P1487 62560 LIBERATI S, 1997, PHYS REV D, V56, P6458 62561 MALDACENA JM, 1996, PHYS REV LETT, V77, P428 62562 TEITELBOIM C, 1995, PHYS REV D, V51, P4315 62563 WANG B, 1998, PHYS LETT B, V432, P69 62564 WANG B, 1998, PHYS REV D, V57, P5284 62565 YANG GH, 1998, INT J MOD PHYS B, V12, P2599 62566 YANG GH, 1998, INT J THEOR PHYS, V37, P2371 62567 YANG GH, 1998, INT J THEOR PHYS, V37, P2953 62568 YANG GH, 1998, MOD PHYS LETT A, V13, P2123 62569 YANG GH, 1998, MOD PHYS LETT A, V13, P745 62570 YANG GH, 1999, INT J ENG SCI, V37, P1037 62571 ZASLAVSKII OB, 1996, PHYS REV LETT, V76, P2211 62572 ZASLAVSKII OB, 1997, PHYS REV D, V56, P2188 62573 NR 30 62574 TC 2 62575 SN 0001-7701 62576 J9 GEN RELATIV GRAVIT 62577 JI Gen. Relativ. Gravit. 62578 PD JUN 62579 PY 2001 62580 VL 33 62581 IS 6 62582 BP 1027 62583 EP 1040 62584 PG 14 62585 SC Physics, Multidisciplinary 62586 GA 461UX 62587 UT ISI:000170382800005 62588 ER 62589 62590 PT S 62591 AU Wang, XP 62592 Chen, XJ 62593 Zhu, LJ 62594 Wang, W 62595 TI Machine tool spindles and active magnetic bearings 62596 SO ADVANCES IN ABRASIVE PROCESSES 62597 SE KEY ENGINEERING MATERIALS 62598 DT Article 62599 DE AMB; machine tool spindle; industrial application 62600 AB Active magnetic bearing (AMB) is a suspension component that makes use 62601 of magnetic force to support the body (such as the rotor) without 62602 contact and it has many advantages such as high stability and no wear. 62603 There are many successful applications on machine tools around the 62604 world instead of the ball bearings or oil film bearings. The excellence 62605 of the AMB shows it is ones of the best units of suspension for the 62606 rotating shaft in the future. Here, the technique and some 62607 characteristics of the bearings applied in machine tool spindle are 62608 introduced briefly. The research and the application actuality of AMB 62609 in China are stated. Some experiment results of the AMB achieved by the 62610 Research Institute of Bearings (RIB), Shanghai University are 62611 presented. Maybe this would push the technique to be widely accepted. 62612 by industry in China. 62613 C1 Shanghai Univ, Res Inst Bearings, Shanghai 200072, Peoples R China. 62614 Shanghai Univ Engn Sci, Coll Elect & Elect Eng, Shanghai, Peoples R China. 62615 RP Wang, XP, Shanghai Univ, Res Inst Bearings, Shanghai 200072, Peoples R 62616 China. 62617 CR BRUNET M, 1994, P 4 INT S MAGN BEAR, P519 62618 HARADA S, 1992, P 3 INT S MAGN BEAR, P421 62619 LIU YS, 2000, CHINESE J MECH ENG, V36, P5 62620 MEKHICHE M, 2000, P 7 INT S MAGN BEAR, P123 62621 SIEGWART R, 1990, P 2 INT S MAGN BEAR, P197 62622 WANG XP, 1994, THESIS XIAN JIAOTONG 62623 WANG XP, 2000, P 7 INT S MAGN BEAR, P39 62624 NR 7 62625 TC 0 62626 SN 1013-9826 62627 J9 KEY ENG MAT 62628 PY 2001 62629 VL 202-2 62630 BP 465 62631 EP 468 62632 PG 4 62633 GA BS53W 62634 UT ISI:000170264200091 62635 ER 62636 62637 PT J 62638 AU Li, GH 62639 Zhou, SP 62640 Xu, DM 62641 TI Research on the dynamical behaviors of GaAs/AlGaAs heterostructures 62642 SO ACTA PHYSICA SINICA 62643 DT Article 62644 DE negative differential conductivity; heterostructure; bifurcation; chaos 62645 ID CURRENT-DENSITY FILAMENTS; DRIVEN GUNN-DIODES; SEMICONDUCTOR-DEVICE; 62646 QUASI-PERIODICITY; CHAOTIC MOTIONS; MODE-LOCKING; OSCILLATOR 62647 AB We develop the physical model based on the real space charge transfer 62648 mechanism and derive the dynamic equations of GaAs/AlGaAs 62649 heterostructures. Complex bifurcations are studied in detail for the 62650 forced and unforced cases. It is shown that both periodic attractors 62651 and fixed points attractors can coexist under a right de bias. The 62652 hysteresis phenomena are also investigated in theory. For the forced 62653 GaAs/AlGaAs, numerical simulation shows that the occurance of 62654 frequency-locking, quasiperiodicity, and chaos depends on the frequency 62655 and amplitude of the externally applied microwave field, as expected. 62656 C1 Shanghai Univ, Coll Commun & Informat Engn, Shanghai 200072, Peoples R China. 62657 Shanghai Univ, Coll Sci, Shanghai 201800, Peoples R China. 62658 RP Li, GH, Shanghai Univ, Coll Commun & Informat Engn, Shanghai 200072, 62659 Peoples R China. 62660 CR AOKI K, 1982, J PHYS SOC JPN, V51, P2373 62661 AOKI K, 1989, SOLID STATE ELECTRON, V32, P1149 62662 GLAZIER JA, 1988, IEEE T CIRCUITS SYST, V35, P790 62663 HEINZ G, 1993, PHYS REV B, V48, P12603 62664 HELD GA, 1986, PHYS REV LETT, V56, P1183 62665 JIANG ZF, 1991, APPL PHYS A-SOLID, V52, P10 62666 LU YL, 2000, ACTA PHYS SIN-CH ED, V49, P1394 62667 MOSEKILDE E, 1990, PHYS REV B, V41, P2298 62668 MOSEKILDE E, 1993, PHYSICA D, V66, P143 62669 NIEDERNOSTHEIDE FJ, 1996, PHYS REV B, V54, P14012 62670 NIEDERNOSTHEIDE FJ, 1999, PHYS REV B, V59, P7663 62671 SCHOLL E, 1991, APPL PHYS LETT, V58, P1277 62672 NR 12 62673 TC 0 62674 SN 1000-3290 62675 J9 ACTA PHYS SIN-CHINESE ED 62676 JI Acta Phys. Sin. 62677 PD AUG 62678 PY 2001 62679 VL 50 62680 IS 8 62681 BP 1567 62682 EP 1573 62683 PG 7 62684 SC Physics, Multidisciplinary 62685 GA 460XD 62686 UT ISI:000170333200031 62687 ER 62688 62689 PT J 62690 AU Sheng, PX 62691 TI Chaotic phenomena of superconductivity 62692 SO ACTA PHYSICA SINICA 62693 DT Article 62694 DE superconductors; G-L equations; infinite-dimensional dynamic system; 62695 chaotic phenomena 62696 ID GINZBURG-LANDAU EQUATIONS 62697 AB One-dimensional steady state and evolutionary Ginzburg-Landau equations 62698 for superconductivity is disussed. Instability of constant steady state 62699 solutions and the existence of limit sets of infinite-dimensional 62700 dynamic system are proved. Using the author's definition of chaos for 62701 finite-and infinite-dimensional dynamic systems, we conclude that 62702 superconductors governed by GL equations possess chaotic phenomena. 62703 Therefore strange phenomena may occur in conducting. The theoretical 62704 results indicate that it is advisable to improve the design of 62705 experiments or try to find new structures of superconductors in future 62706 research to suppress the chaotic behavior. 62707 C1 Shanghai Univ, Coll Nat Sci, Dept Math, Shanghai 200436, Peoples R China. 62708 RP Sheng, PX, Shanghai Univ, Coll Nat Sci, Dept Math, Shanghai 200436, 62709 Peoples R China. 62710 CR AFTALION A, 1999, PHYSICA D, V132, P214 62711 AFTALION A, 2000, SIAM J APPL MATH, V60, P1157 62712 GINZBURG VL, 1950, ZH EKSP TEOR FIZ, V20, P1064 62713 GUO BL, 1995, NONLINEAR EVOLUTIONA 62714 HASTINGS SP, 1999, SIAM J MATH ANAL, V30, P1 62715 LIU YP, 2000, PHYSICS, V29, P444 62716 SHA CW, 2000, COMMUN HIGH TECHNOLO, V10, P91 62717 SHENG PX, 1994, COMMUN APPL COMPUT M, V8, P34 62718 SHENG PX, 1997, J SHANGHAI U, V1, P91 62719 SHENG PX, 1997, P MOD MATH MECH, V7, P408 62720 SHENG PX, 2000, J SHANGQIU TEACHERS, V16, P96 62721 SHENG PX, 2000, P MOD MATH MECH, V8, P115 62722 WEN HM, 2000, COMMUN HIGH TECHNOLO, V10, P105 62723 YU WH, 2000, ANN MATH, V21, P1 62724 NR 14 62725 TC 0 62726 SN 1000-3290 62727 J9 ACTA PHYS SIN-CHINESE ED 62728 JI Acta Phys. Sin. 62729 PD AUG 62730 PY 2001 62731 VL 50 62732 IS 8 62733 BP 1596 62734 EP 1599 62735 PG 4 62736 SC Physics, Multidisciplinary 62737 GA 460XD 62738 UT ISI:000170333200036 62739 ER 62740 62741 PT J 62742 AU Liu, WQ 62743 Zhou, BX 62744 Li, Q 62745 TI Corrosion resistance of Zr-1Nb alloy in lithium hydroxide aqueous 62746 solution 62747 SO RARE METALS 62748 DT Article 62749 DE Zr-1Nb alloys; beta-niobium; corrosion resistance 62750 ID OXIDATION; ZR; NB 62751 AB The corrosion resistance of Zr-1Nb alloy was compared with that of 62752 Zr-Sn-Nb-Fe and Zr-4 alloys, and the effect of hydrochemistry on the 62753 corrosion resistance of Zr-1Nb alloy was discussed. Experimental 62754 results show that niobium oxide is partly soluble in LiOH aqueous 62755 solution. Therefore, when Zr-1Nb alloy is corroded in LiOH aqueous 62756 solution, a soluble niobate produced by the reaction between the 62757 corrosion products of beta -Nb particles and LiOH results in the 62758 formation of pores in the zirconium oxide films and causes the 62759 degradation of the corrosion resistance of Zr-1Nb alloy tested in LiOH 62760 aqueous solution. 62761 C1 Shanghai Univ, Mat Inst, Shanghai 200072, Peoples R China. 62762 RP Liu, WQ, Shanghai Univ, Mat Inst, Shanghai 200072, Peoples R China. 62763 CR ANADA H, 1996, ASTM STP, V1295, P35 62764 COMSTOCK RJ, 1996, ASTM STP, V1295, P710 62765 COX B, 1996, ASTM STP, V1295, P114 62766 LIN YP, 2000, J NUCL MATER, V277, P11 62767 LUO Y, 1998, INORGANIC CHEM SERIE, V8, P354 62768 NIKULINA AV, 1996, ASTM STP, V1295, P785 62769 PECHEUR D, 2000, J NUCL MATER, V278, P195 62770 PERKINS RA, 1991, ASTM STP, V1132, P595 62771 RAMASUBRAMANIAN N, 1994, AM SOC TEST MATER, V1245, P378 62772 SHEBALDOV PV, 2000, AM SOC TEST MATER, V1354, P545 62773 NR 10 62774 TC 0 62775 SN 1001-0521 62776 J9 RARE METALS 62777 JI Rare Metals 62778 PD JUN 62779 PY 2001 62780 VL 20 62781 IS 2 62782 BP 78 62783 EP 80 62784 PG 3 62785 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 62786 Engineering 62787 GA 458MJ 62788 UT ISI:000170197900003 62789 ER 62790 62791 PT J 62792 AU Zhang, QY 62793 Wu, GM 62794 Zhou, B 62795 Shen, J 62796 Wang, J 62797 Wu, ZG 62798 Ji, XH 62799 TI Electrochromic properties of sol-gel deposited V2O5 and TiO2-V2O5 62800 binary thin films 62801 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 62802 DT Article 62803 ID VANADIUM-OXIDE 62804 AB Transparent mixed phase (1 - x)V2O5 -xTiO(2) (x=0,0.1,0.2,0.3,0.4) thin 62805 films were prepared on indium tin oxide (ITO) coated glass via sol-gel 62806 process. The films were characterized by cyclic voltammetry, optical 62807 spectroscopy, scanning electron microscopy, IR and X-ray 62808 diffractometer. Electrochemical lithium insertion/extraction showed 62809 that the porous structure of sol-gel (1 - x)V2O5-xTiO(2) thin films 62810 exhibited good recharge ability of Li+/e(-) insertion/extraction 62811 process. For a 220 nm thick (1 - x)V2O5-xTiO(2) film with 90% V2O5, the 62812 capacity of charge exchange reached 9 mC/cm(2). In both Li+ 62813 intercalated and free states, the films were highly transparent to 62814 visible light. Such films have potential applications in counter 62815 electrodes for electrochromic smart windows and other electrochemical 62816 devices. 62817 C1 Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800, Peoples R China. 62818 RP Zhang, QY, Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800, 62819 Peoples R China. 62820 CR CHAIN EE, 1987, J VAC SCI TECHNOL A, V5, P1836 62821 COGAN SF, 1989, J APPL PHYS, V66, P1333 62822 GOLDNER RB, 1988, SOLID STATE IONICS, V28, P1715 62823 JULIEN C, 1999, MAT SCI ENG B-SOLID, V65, P170 62824 KOBAYASHI S, 1987, JPN J APPL PHYS, V26, L1274 62825 OREL ZC, 1999, SOLID STATE IONICS, V116, P105 62826 OZER N, 1999, THIN SOLID FILMS, V338, P201 62827 RAUH RD, 1988, SOLID STATE IONICS, V28, P1707 62828 SHIMIZU Y, 1990, JPN J APPL PHYS, V29, L1708 62829 SURCA A, 1999, J ELECTROCHEM SOC, V146, P232 62830 SZORENYI T, 1980, J NONCRYST SOLIDS, V35, P1245 62831 WRUCK D, 1989, THIN SOLID FILMS, V182, P79 62832 NR 12 62833 TC 1 62834 SN 1005-0302 62835 J9 J MATER SCI TECHNOL 62836 JI J. Mater. Sci. Technol. 62837 PD JUL 62838 PY 2001 62839 VL 17 62840 IS 4 62841 BP 417 62842 EP 420 62843 PG 4 62844 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 62845 Engineering 62846 GA 458JJ 62847 UT ISI:000170191000006 62848 ER 62849 62850 PT J 62851 AU Wang, XG 62852 Ding, WZ 62853 Jiang, GC 62854 Xu, KD 62855 TI Experimental research on oxidation refining of ferrosilicon 62856 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL 62857 DT Article 62858 DE FeSi75; oxidation refining; thermodynamics; equilibrium 62859 AB The equilibrium between ferrosilicon and SiO2-Al2O3-CaO ternary slag 62860 have been experimentally investigated using graphite crucible at 1 550 62861 degreesC. The Al and Ca contents in ferrosilicon were given in terms of 62862 isoconcentration curves in equilibrium with the ternary slag of 62863 SiO2-Al2O3-CaO. The present experimental work provides available data 62864 to analyze the behavior of Al and Ca during oxidation refining process 62865 for silicon alloy. 62866 C1 Shanghai Univ, Shanghai 200072, Peoples R China. 62867 RP Wang, XG, Shanghai Univ, Shanghai 200072, Peoples R China. 62868 CR DING W, 1996, FERROALLOYS, P1 62869 HOLTA H, 1995, INFACON, V7, P164 62870 KAY DAR, 1960, T FARADAY SOC, V56, P1372 62871 OHTA H, 1996, METALL MATER TRANS B, V27, P943 62872 REIN RH, 1965, T METALL SOC AIME, V233, P415 62873 ROINE A, 1992, HSC CHEM 62874 SCHEI A, 1998, PRODUCTION HIGH SILI 62875 TUSET J, 1985, PRINCIPLES SILICON R 62876 ZHOU JH, 1991, PRODUCTION TECHNOLOG 62877 NR 9 62878 TC 3 62879 SN 1006-706X 62880 J9 J IRON STEEL RES INT 62881 JI J. Iron Steel Res. Int. 62882 PD MAY 62883 PY 2001 62884 VL 8 62885 IS 1 62886 BP 6 62887 EP 10 62888 PG 5 62889 SC Metallurgy & Metallurgical Engineering 62890 GA 459PK 62891 UT ISI:000170259700002 62892 ER 62893 62894 PT J 62895 AU He, JH 62896 TI Hamilton principle and generalized variational principles of linear 62897 thermopiezoelectricity 62898 SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME 62899 DT Article 62900 AB Via the semi-inverse method. a family of various variational principles 62901 is established for thermopiezoelectricity, including a Hamilton 62902 principle and a minimum complementary energy principle. 62903 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 62904 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 62905 Peoples R China. 62906 CR CHANDRASEKHARAI.DS, 1988, ACTA MECH, V71, P39 62907 HE JH, 1999, J U SHANGHAI SCI TEC, V21, P356 62908 HE JH, 2000, ASME, V67, P326 62909 HE JH, 2000, INT J NONLINEAR SCI, V1, P133 62910 LIU GL, 1999, ACTA MECH SINICA, V31, P165 62911 NR 5 62912 TC 14 62913 SN 0021-8936 62914 J9 J APPL MECH 62915 JI J. Appl. Mech.-Trans. ASME 62916 PD JUL 62917 PY 2001 62918 VL 68 62919 IS 4 62920 BP 666 62921 EP 667 62922 PG 2 62923 SC Mechanics 62924 GA 459NV 62925 UT ISI:000170257900022 62926 ER 62927 62928 PT J 62929 AU Liu, ZH 62930 Wang, L 62931 Pan, LZ 62932 TI Stability of beams on bi-moduli elastic foundation 62933 SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME 62934 DT Article 62935 AB This paper adopts the newly structured delta function and displacement 62936 function. Using two adjacent transition points as two interval 62937 terminals while beams buckle makes the interval [x(i-1),x(i)]. 62938 According to the Winkler's beam buckling theory on elastic foundation, 62939 we present the energy solutions of beams and then the exact solutions 62940 of buckling load of simple supported beams on bi-moduli elastic 62941 foundation. 62942 C1 Shandong Univ, Dept Civil Engn, Jinan 250061, Peoples R China. 62943 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200000, Peoples R China. 62944 RP Liu, ZH, Shandong Univ, Dept Civil Engn, Jinan 250061, Peoples R China. 62945 CR ADIN MA, 1985, COMPUT METHOD APPL M, V49, P319 62946 SELVADURAI APS, 1979, ELASTIC ANAL SOIL FD 62947 TSAI N, 1967, J ENG MECH DIV P ASC, V93, P1 62948 NR 3 62949 TC 0 62950 SN 0021-8936 62951 J9 J APPL MECH 62952 JI J. Appl. Mech.-Trans. ASME 62953 PD JUL 62954 PY 2001 62955 VL 68 62956 IS 4 62957 BP 668 62958 EP 670 62959 PG 3 62960 SC Mechanics 62961 GA 459NV 62962 UT ISI:000170257900023 62963 ER 62964 62965 PT J 62966 AU Wang, S 62967 Ren, Z 62968 Cao, W 62969 Tong, W 62970 TI The Knoevenagel condensation of aromatic aldehydes with malononitrile 62971 or ethyl cyanoacetate in the presence of CTMAB in water 62972 SO SYNTHETIC COMMUNICATIONS 62973 DT Article 62974 ID DIELS-ALDER REACTIONS; CHEMISTRY 62975 AB A new route of Knoevenagel condensation of aldehydes with malononitrile 62976 or ethyl cyanoacetate in the presence of CTMAB in water is described. 62977 CTMAB is the most effective catalyst to increase yield among CTMAB, 62978 BTEAC and TBAI. 62979 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 62980 RP Ren, Z, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 62981 CR ANDRE L, 1992, TETRAHEDRON LETT, V33, P8071 62982 BRANDES E, 1989, J ORG CHEM, V54, P515 62983 BRESLOW R, 1983, TETRAHEDRON LETT, V24, P1901 62984 CABELLO JA, 1984, J ORG CHEM, V49, P5195 62985 CORSON BB, 1928, J AM CHEM SOC 3, V50, P2825 62986 DAI GY, 1995, YING YONG HUA XUE, V12, P103 62987 GRIECO PA, 1983, J ORG CHEM, V48, P3137 62988 GRIECO PA, 1989, J ORG CHEM, V54, P5849 62989 HEINOSUKE Y, 1966, B CHEM SOC JPN, V39, P1754 62990 HIDEKI Y, 1999, TETRAHEDRON LETT, V40, P519 62991 KEI M, 1999, TETRAHEDRON LETT, V40, P3773 62992 LI CJ, 1993, CHEM REV, V93, P2023 62993 QI Z, 1991, YING YONG HUA XUE, V8, P17 62994 RIDEOUT DC, 1980, J AM CHEM SOC, V102, P7816 62995 STURZ HG, 1949, J AM CHEM SOC, V71, P2949 62996 TROST BM, 1991, COMPREHENSIVE ORGANI, V2, P341 62997 NR 16 62998 TC 13 62999 SN 0039-7911 63000 J9 SYN COMMUN 63001 JI Synth. Commun. 63002 PY 2001 63003 VL 31 63004 IS 5 63005 BP 673 63006 EP 677 63007 PG 5 63008 SC Chemistry, Organic 63009 GA 455TY 63010 UT ISI:000170044900006 63011 ER 63012 63013 PT J 63014 AU Ni, GJ 63015 Yang, GH 63016 Fu, RT 63017 Wang, HB 63018 TI Running coupling constants of fermions with masses in quantum 63019 electrodynamics and quantum chromodynamics 63020 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A 63021 DT Article 63022 ID DIFFERENTIAL RENORMALIZATION; FIELD-THEORIES; GAUGE-THEORY; 63023 HIGGS-BOSON; REGULARIZATION; BOUNDS 63024 AB Based on a simple but effective regularization-renormalisation method 63025 (RRM), the running coupling constants (RCC) of fermions with masses in 63026 quantum electrodynamics (QED) and quantum chromodynamics (QCD) are 63027 calculated by renormalization group equation (RGE). Starting at Q = 0 63028 (Q being the momentum transfer), the RCC in QED increases with the 63029 increase of Q whereas the RCCs for different flavors of quarks with 63030 masses in QCD are different and they increase with the decrease of Q to 63031 reach a maximum at low Q for each flavor of quark and then decreases to 63032 zero at Q --> O. Thus a constraint on the mass of light quarks, the 63033 hadronization energy scale of quark-antiquark pairs are derived. 63034 C1 Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. 63035 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 63036 Univ Michigan, Randall Lab, Ann Arbor, MI 48109 USA. 63037 RP Ni, GJ, Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. 63038 CR AITCHISON I, 1982, GAUGE THEORIES PARTI, P284 63039 BJORKEN JD, 1964, RELATIVISTIC QUANTUM 63040 BURKHARDT H, 1995, PHYS LETT B, V356, P398 63041 COLLINS J, 1984, RENORMALIZATION 63042 DUNNE G, 1992, PHYS LETT B, V293, P367 63043 DUTCH M, 1991, PHYS LETT B, V258, P457 63044 DVOEGLAZOV V, 1999, PHOTO OLD PROBLEMS L, P248 63045 EPSTEIN H, 1973, ANN I H POINCARE-AN, V19, P211 63046 FENG SS, 1999, INT J MOD PHYS A, V14, P4259 63047 FIELD RD, 1989, APPL PERTURBATIVE QC 63048 FREEDMAN DZ, 1992, NUCL PHYS B, V371, P353 63049 GAO DN, 1997, PHYS REV D, V56, P4115 63050 GIRONE M, 1996, PHYS REV LETT, V76, P3061 63051 GLIMM J, 1985, COLLECTED PAPERS, V2 63052 GROOM DE, 1996, PHYS REV D, V54, P37 63053 GROOM DE, 1996, PHYS REV D, V54, P44 63054 GROOM DE, 1996, PHYS REV D, V54, P547 63055 GROOM DE, 2000, EUR PHYS J C, V15, P40 63056 GROOM DE, 2000, EUR PHYS J C, V15, P49 63057 GROOM DE, 2000, EUR PHYS J C, V15, P672 63058 GROSS DJ, 1974, PHYS REV D, V10, P3235 63059 HAAGENSEN PE, 1992, PHYS LETT B, V283, P293 63060 ITZYKSON C, 1980, QUANTUM FIELD THEORY 63061 LEE TD, 1981, PARTICLE PHYSICS INT 63062 LOU SY, 1989, PHYS REV D, V40, P3040 63063 NI GJ, HEPTH9708155 63064 NI GJ, 1988, PHYS LETT B, V200, P161 63065 NI GJ, 1998, ACTA PHYS SIN-OV ED, V7, P401 63066 NI GJ, 1998, FRONTIERS QUANTUM FI, P169 63067 NI GJ, 1998, J FUDAN U NATURAL SC, V37, P304 63068 NI GJ, 1998, PHYSICS PARITY SYMME, P436 63069 NI GJ, 1998, SEICNE, V50, P36 63070 NI GJ, 2000, ADV QUANTUM MECH, V24, P400 63071 PESKIN ME, 1995, INTRO QUANTUM FIELD 63072 RAMOND P, 1981, FIELD THEORY MODERN 63073 SAKURAI JJ, 1967, ADV QUANTUM MECH 63074 SCHARF G, 1989, FINITE ELECTRODYNAMI 63075 SCHMELLING M, HEPEX9701002 63076 SMIRNOV VA, 1994, NUCL PHYS B, V427, P325 63077 WEINBERG S, 1955, QUANTUM THEORY FIELD, V1 63078 WEINBERG S, 1955, QUANTUM THEORY FIELD, V2 63079 YANG JF, 1994, THESIS FUDAN U 63080 YANG JF, 1995, ACTA PHYS SIN-OV ED, V4, P88 63081 YANG JF, 1997, HEPTH9708104 63082 NR 44 63083 TC 0 63084 SN 0217-751X 63085 J9 INT J MOD PHYS A 63086 JI Int. J. Mod. Phys. A 63087 PD JUN 30 63088 PY 2001 63089 VL 16 63090 IS 16 63091 BP 2873 63092 EP 2894 63093 PG 22 63094 SC Physics, Nuclear; Physics, Particles & Fields 63095 GA 455YL 63096 UT ISI:000170055300007 63097 ER 63098 63099 PT J 63100 AU Ma, HL 63101 Li, MS 63102 Yang, FJ 63103 TI Changes of the nuclear charge distribution of Nd from optical isotope 63104 shifts 63105 SO CHINESE PHYSICS LETTERS 63106 DT Article 63107 ID HYPERFINE-STRUCTURE MEASUREMENTS; RADII; SPECTROSCOPY 63108 AB The isotope shifts and hyperfine structures of seven optical 63109 transitions for all seven stable isotopes of Nd II were measured by 63110 using collinear fast-ion-beam laser spectroscopy. The nuclear parameter 63111 lambda was obtained from the measured optical isotope shifts for all 63112 seven stable isotopes with improved accuracy. The lambda values were 63113 analysed by using the Fermi distribution for the nuclear charge 63114 density. The values of delta <r(2)>, delta <r(4)> and delta <r(6)> were 63115 determined. 63116 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 63117 Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China. 63118 Fudan Univ, Inst Modern Phys, Shanghai 200433, Peoples R China. 63119 RP Ma, HL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 63120 CR AHMAD SA, 1988, NUCL PHYS A, V483, P244 63121 AUFMUTH P, 1987, ATOM DATA NUCL DATA, V37, P455 63122 AUFMUTH P, 1992, Z PHYS D ATOM MOL CL, V23, P19 63123 BLUNDELL SA, 1985, Z PHYS A ATOMS NUCL, V321, P31 63124 CHEN MH, 1999, J PHYS SOC JPN, V68, P2934 63125 GERSTENKON S, 1978, ATLAS SPECTRA ABSORP 63126 HELIG K, 1974, ATOM DATA NUCL DATA, V14, P613 63127 KING WH, 1984, ISOTOPE SHIFTS ATOMI, CH6 63128 KOPFERMANN H, 1958, NUCL MOMENTS PURE AP 63129 LEE PL, 1973, PHYS REV C, V8, P819 63130 LI MS, 2000, PHYS SCRIPTA, V61, P449 63131 MA HL, 1998, CHINESE PHYS LETT, V15, P178 63132 RAMAN S, 1987, ATOM DATA NUCL DATA, V36, P1 63133 SELTZER EC, 1969, PHYS REV, V188, P1916 63134 NR 14 63135 TC 2 63136 SN 0256-307X 63137 J9 CHIN PHYS LETT 63138 JI Chin. Phys. Lett. 63139 PD JUL 63140 PY 2001 63141 VL 18 63142 IS 7 63143 BP 903 63144 EP 905 63145 PG 3 63146 SC Physics, Multidisciplinary 63147 GA 455YW 63148 UT ISI:000170056200019 63149 ER 63150 63151 PT J 63152 AU Wei, EB 63153 Gu, GQ 63154 TI An effective medium approximation of nonlinear composites with 63155 spherical particle 63156 SO CHINESE PHYSICS LETTERS 63157 DT Article 63158 ID EFFECTIVE CONDUCTIVITY; FIELD 63159 AB We have proposed a nonlinear effective medium approximation (EMA) 63160 method to estimate the bulk effective conductivities of weakly 63161 nonlinear composite media, which obey a current-field relation of the 63162 form J = sigmaE + x \E\(2) E. As an example in three dimensions, we 63163 apply the EMA method to deal with a spherical inclusion in a host and 63164 derive the approximate analytic formulae of nonlinear effective 63165 response, which are suitable for the larger volume fraction of 63166 spherical inclusion. From our results, we can exactly obtain the 63167 generalized Landau formulae in the dilute limit. 63168 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China. 63169 RP Wei, EB, Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, 63170 Peoples R China. 63171 CR BLUMENFELD R, 1991, PHYS REV B, V44, P7378 63172 BRUGGEMAN DAG, 1935, ANN PHYS-BERLIN, V24, P636 63173 DANIEL J, 1998, MAT RES SOC B AUG, P30 63174 GARNETT JCM, 1906, PHILOS T R SOC LOND, V205, P237 63175 GU GQ, 1992, PHYS REV B, V46, P4502 63176 GU GQ, 1995, J APPL PHYS, V78, P1737 63177 GU GQ, 2000, J U SHANGHAI SCI TEC, V22, P95 63178 LEE HC, 1995, J PHYS-CONDENS MAT, V7, P8785 63179 STROUD D, 1988, PHYS REV B, V37, P8719 63180 YU KW, 1993, PHYS REV B, V47, P1782 63181 YU KW, 1996, PHYS LETT A, V210, P115 63182 ZENG XC, 1988, PHYS REV B, V38, P10970 63183 ZENG XC, 1989, PHYSICA A, V157, P192 63184 NR 13 63185 TC 3 63186 SN 0256-307X 63187 J9 CHIN PHYS LETT 63188 JI Chin. Phys. Lett. 63189 PD JUL 63190 PY 2001 63191 VL 18 63192 IS 7 63193 BP 960 63194 EP 962 63195 PG 3 63196 SC Physics, Multidisciplinary 63197 GA 455YW 63198 UT ISI:000170056200039 63199 ER 63200 63201 PT J 63202 AU You, JL 63203 Jiang, GC 63204 Yang, SH 63205 Ma, JC 63206 Xu, KD 63207 TI Temperature dependence of the Raman spectra and phase transition of 63208 zirconia 63209 SO CHINESE PHYSICS LETTERS 63210 DT Article 63211 AB A newly constructed high-temperature Raman spectrometer was used to 63212 study the temperature-dependence Raman spectra (up to 2023 K) and 63213 transformation of zirconia crystal. High-temperature Raman scattering 63214 is a useful tool in characterizing the different structures of zirconia 63215 and offers the possibility of identifying the phase transformation. It 63216 shows that monoclinic zirconia transforms to tetragonal phase at about 63217 1440 K during the process of increasing temperature, but shows a lower 63218 transformation temperature from tetragonal to monoclinic phase at about 63219 1323 K while the temperature decreases. 63220 C1 Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai 200072, Peoples R China. 63221 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai 63222 200072, Peoples R China. 63223 CR CLARKE DR, 1982, J AM CERAM SOC, V65, P284 63224 GARVIE RC, 1988, PHYSICA B, V150, P203 63225 GU JQ, 1995, SPECTROSCOPY SPECTRA, V15, P45 63226 ISHIGAME M, 1977, J AM CERAM SOC, V60, P367 63227 KOUROUKLIS GA, 1991, J AM CERAM SOC, V74, P520 63228 KULCINSKI GL, 1968, J AM CERAM SOC, V51, P582 63229 MYSEN BO, 1982, AM MINERAL, V67, P686 63230 PERRY CH, 1985, J AM CERAM SOC, V68, P184 63231 TEUFER G, 1962, ACTA CRYSTALLOGR, V15, P1187 63232 YASHIMA M, 1997, APPL SPECTROSC, V51, P1224 63233 YOU JL, 1998, J CHINESE RARE EARTH, V16, P505 63234 YOU JL, 2001, CHINESE PHYS LETT, V18, P408 63235 NR 12 63236 TC 7 63237 SN 0256-307X 63238 J9 CHIN PHYS LETT 63239 JI Chin. Phys. Lett. 63240 PD JUL 63241 PY 2001 63242 VL 18 63243 IS 7 63244 BP 991 63245 EP 993 63246 PG 3 63247 SC Physics, Multidisciplinary 63248 GA 455YW 63249 UT ISI:000170056200049 63250 ER 63251 63252 PT J 63253 AU Cao, WG 63254 Ding, WY 63255 Wang, LY 63256 Song, LP 63257 Zhang, QY 63258 TI Convenient synthesis of 4-perfluoroalkyl-6-(2-naphthyl)-2-pyranones 63259 SO JOURNAL OF FLUORINE CHEMISTRY 63260 DT Article 63261 DE phosphoranes; fluorinated ylides; 63262 4-perfluoroalkyl-6-(2-naphthoyl)-6-pyranones 63263 ID METHYL 63264 AB In the presence of K2CO3, reaction of 63265 (2-naphthoyl)methyltriphenylphosphonium bromide (1) with methyl 63266 2-perfluoroalkynoates (2) in CH2Cl2 at room temperature gave methyl 63267 4-(2- 63268 naphthoyl)-2-triphenylphosphoranylidene-3-perfluoroalkyl-3-butenoates 63269 (3) as major products and methyl 63270 4-(2-naphthoyl)-4-triphenylphosphoranylidene-3-perfluoroalkyl-2-butenoat 63271 es r4) as minor products in excellent yields. 63272 4-Perfluoroalkyl-6-(2-naphthyl)-2-pyranones (5) were obtained in high 63273 yield by hydrolysis of the methylene phosphoranes (3) in hot aqueous 63274 methanol in a sealed tube. The structures of compounds 3, 4, and 5 were 63275 confirmed by IR, MS, H-1, F-19 and C-13 NMR, and microanalyses. 63276 Reaction mechanisms are proposed to account for the formation of 63277 products 3, 4, and 5. (C) 2001 Elsevier Science B.V. All rights 63278 reserved. 63279 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China. 63280 RP Cao, WG, Shanghai Univ, Dept Chem, 99 Shang Da Rd, Shanghai 200436, 63281 Peoples R China. 63282 CR BANKS RE, 1979, ORGANOFLUORINE CHEM 63283 CAO WG, 1998, J FLUORINE CHEM, V91, P99 63284 CAO WG, 1999, ACTA CHIM SINICA, V57, P1270 63285 CAO WG, 1999, J FLUORINE CHEM, V95, P135 63286 DING WY, 1986, ACTA CHIM SINICA, V44, P255 63287 HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47 63288 MANN J, 1987, CHEM SOC REV, V16, P381 63289 TAO WT, 1983, CHINESE J ORG CHEM, V3, P129 63290 WELCH JT, 1987, TETRAHEDRON, V43, P3123 63291 NR 9 63292 TC 2 63293 SN 0022-1139 63294 J9 J FLUORINE CHEM 63295 JI J. Fluor. Chem. 63296 PD JUL 63297 PY 2001 63298 VL 109 63299 IS 2 63300 BP 201 63301 EP 204 63302 PG 4 63303 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic 63304 GA 454CD 63305 UT ISI:000169954100015 63306 ER 63307 63308 PT J 63309 AU Wei, JH 63310 Xiang, SH 63311 Fan, YY 63312 Yu, NW 63313 Ma, JC 63314 Yang, SL 63315 TI Basic equations and calculation procedure for analysis of gas flow 63316 properties in tuyere under the influence of heat source 63317 SO STEEL RESEARCH 63318 DT Article 63319 ID DESIGN; LANCES 63320 AB Based on fundamentals of the dynamics and thermodynamics of 63321 compressible fluid flow as well as heat transfer, the basic equations 63322 and formulae for characterizing and calculating the gas flow properties 63323 in tubular and annular type tuyeres (constant cross-sectional area 63324 lances) under the influence of a heat source are derived. The 63325 calculation procedures of the properties at different discharge states 63326 through a tuyere are given. For the case of an annular-tube type tuyere 63327 used for an AOD (argon-oxygen decarburization) vessel of 18 t capacity, 63328 the distributions of the inner wall temperatures of the tuyere and the 63329 gas stagnation temperatures along its length have been more reasonably 63330 determined. The friction coefficients of its main tuyere and subtuyere 63331 to the gas flows during injection refining have been fixed by 63332 comparison of the pressure-flowrate (P-Q) experimentally measured in 63333 relationship to the results of trial calculations. 63334 C1 Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China. 63335 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China. 63336 CR BENNETT O, 1974, MOMENTUM HEAT MASS T 63337 BIRD RB, 1960, TRANSPORT PHENOMENA 63338 CARLSSON G, 1986, SCAND J METALL, V15, P298 63339 DEISSLER RG, 1950, 2138 NACA 63340 FARMER D, 1989, STEELM C P ISS US, V72, P487 63341 GEIGER GH, 1973, TRANSPORT PHENOMENA 63342 HODGE AL, 1977, IRONMAK STEELMAK, V4, P81 63343 ISHIDA J, 1978, P 3 INT IR STEEL C C, P150 63344 KAYE J, 1951, GEN DISC HEAT TRANSM 63345 KORIA SC, 1989, IRONMAK STEELMAK, V16, P21 63346 KORIA SC, 1989, ISIJ INT, V29, P650 63347 LEACH JCC, 1978, IRONMAK STEELMAK, V5, P107 63348 MOODY LF, 1944, T AM SOC MECH ENG, V66, P671 63349 SHAPIRO AH, 1953, DYNAMICS THERMODYNAM, V1, P219 63350 SHAPIRO AH, 1953, DYNAMICS THERMODYNAM, V2, P1131 63351 SHARMA SK, 1986, STEELM C P ISS US, V69, P653 63352 YUN L, 1990, P 4 NAT S STEELM CS, P83 63353 NR 17 63354 TC 4 63355 SN 0177-4832 63356 J9 STEEL RES 63357 JI Steel Res. 63358 PD MAY-JUN 63359 PY 2001 63360 VL 72 63361 IS 5-6 63362 BP 161 63363 EP 167 63364 PG 7 63365 SC Metallurgy & Metallurgical Engineering 63366 GA 450VV 63367 UT ISI:000169766300001 63368 ER 63369 63370 PT J 63371 AU Wei, JH 63372 Xiang, SH 63373 Fan, YY 63374 Yu, NW 63375 Ma, JC 63376 Yang, SL 63377 TI Calculation results and analysis of gas flow properties in tuyere under 63378 the influence of heat source 63379 SO STEEL RESEARCH 63380 DT Article 63381 AB The flow properties of the gases in an annular-tube type tuyere used 63382 for an 18 t AOD vessel were analyzed using the equations and 63383 calculation formulas presented in Part I of this work. The influence of 63384 the heating and friction effects, the gas supply pressure, and the gas 63385 type and composition, on the properties were examined. The results 63386 showed that the properties in a tuyere are significantly changed due to 63387 the presence of a heat source. This has a similar effectiveness as 63388 increasing the friction action and obviously reduces the gas flowrate 63389 at the tuyere outlet. When designing a tuyere used in a practical 63390 process of metallurgy and calculating the flow properties of gas in the 63391 tuyere, the heating effect from the high temperature melt and 63392 refractory lining should be taken into account. The gas supply pressure 63393 has a decisive effect on the properties. The type and composition of 63394 the blowing gas will also influence the properties. For a given tuyere 63395 and blowing system, appropriate blowing pressures for different gases, 63396 particularly for subtuyere gases, should be used according to the 63397 technological requirements of the different refining periods. 63398 C1 Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China. 63399 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China. 63400 CR WEI JH, 1999, IRONMAK STEELMAK, V26, P363 63401 WEI JH, 2000, IRONMAK STEELMAK, V27, P294 63402 WEI JH, 2001, STEEL RES, V72, P161 63403 NR 3 63404 TC 3 63405 SN 0177-4832 63406 J9 STEEL RES 63407 JI Steel Res. 63408 PD MAY-JUN 63409 PY 2001 63410 VL 72 63411 IS 5-6 63412 BP 168 63413 EP 172 63414 PG 5 63415 SC Metallurgy & Metallurgical Engineering 63416 GA 450VV 63417 UT ISI:000169766300002 63418 ER 63419 63420 PT J 63421 AU Yu, XL 63422 You, JL 63423 Wang, Y 63424 Cheng, ZX 63425 Yu, BK 63426 Zhang, SJ 63427 Sun, DL 63428 Jiang, GC 63429 TI Microprobe of structure of crystal/liquid interface boundary layers 63430 SO SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES 63431 DT Article 63432 DE boundary layer; molecular structure; microprobe; KDP; DKDP 63433 ID AQUEOUS-SOLUTIONS; GROWTH 63434 AB The molecular structures and its evolutive regularities within the 63435 boundary layers in the crystal growth of KDP and DKDP have been studied 63436 in real time by using holography and Raman microprobe. The experiments 63437 show that the molecular structure of mother solution within the 63438 boundary layers is distinctly different from that of the solutions 63439 alone. In this paper, the effects of cations within the boundary layers 63440 on the structure of solution are considered. Within the characteristic 63441 boundary layers, the effects of cations cause the changes in O-P-O bond 63442 angle, electronic density redistribution of the phosphate groups, and 63443 significant changes in the bond intensity, thus leading to the breaking 63444 of partial hydrogen bonds of the phosphate associations, the 63445 readjustment of geometry of anionic phosphate groups and desolvation, 63446 and the forming of the smectic ordering structure of the 63447 anions-cations. Finally, the crystallization unit of anion-cation 63448 should be formed at the proximate interface. 63449 C1 Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China. 63450 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 63451 RP Yu, XL, Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples 63452 R China. 63453 CR ADAMS WA, 1979, J CHEM PHYS, V70, P2074 63454 CERRETA MK, 1987, J CRYST GROWTH, V84, P577 63455 CHAPMAN AC, 1964, SPECTROCHIM ACTA, V20, P937 63456 CHAPMAN AC, 1965, SPECTROCHIM ACTA, V21, P633 63457 CHERNOV AA, 1993, PROG CRYST GROWTH CH, V26, P121 63458 DEVRIES SA, 1998, PHYS REV LETT, V80, P2229 63459 LIEBMANN P, 1982, J AM CHEM SOC, V104, P691 63460 PRESTON CM, 1979, J PHYS CHEM-US, V83, P814 63461 YU XL, 1990, J CRYST GROWTH, V106, P690 63462 YU XL, 1994, CRYST RES TECHNOL, V29, P229 63463 YU XL, 2000, 98110030, ZL 63464 NR 11 63465 TC 4 63466 SN 1006-9321 63467 J9 SCI CHINA SER E 63468 JI Sci. China Ser. E-Technol. Sci. 63469 PD JUN 63470 PY 2001 63471 VL 44 63472 IS 3 63473 BP 265 63474 EP 273 63475 PG 9 63476 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary 63477 GA 450RJ 63478 UT ISI:000169756600006 63479 ER 63480 63481 PT J 63482 AU Li, CP 63483 Chen, GR 63484 TI Bifurcations of one-dimensional reaction-diffusion equations 63485 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS 63486 DT Article 63487 AB Bifurcations of a class of one-dimensional reaction-diffusion equations 63488 of the form u " + muu - u(k) = 0, where mu is a parameter, 2 less than 63489 or equal to k is an element of Z(+), with boundary value condition u(0) 63490 = u(pi) = 0, are investigated. Using the singularity theory based on 63491 the Liapunov-Schmidt reduction, some characterization results are 63492 obtained. 63493 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 63494 Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA. 63495 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 63496 CR BEBERNES J, 1989, MATH PROBLEMS COMBUS 63497 CHOW SN, 1982, METHODS BIFURCATION 63498 FIFE PC, 1979, LECT NOTES BIOMATHEM, V28 63499 GOLUBITSKY M, 1985, SINGULARITIES GROUPS, V1 63500 IPSEN M, 1997, INT J BIFURCAT CHAOS, V7, P1539 63501 LI CP, 2000, APPL MATH MECH-ENGL, V21, P265 63502 ZHABOTINSKY AM, 1991, CHAOS, V1, P379 63503 NR 7 63504 TC 1 63505 SN 0218-1274 63506 J9 INT J BIFURCATION CHAOS 63507 JI Int. J. Bifurcation Chaos 63508 PD MAY 63509 PY 2001 63510 VL 11 63511 IS 5 63512 BP 1295 63513 EP 1306 63514 PG 12 63515 SC Mathematics, Applied; Multidisciplinary Sciences 63516 GA 452HY 63517 UT ISI:000169853300005 63518 ER 63519 63520 PT J 63521 AU Xia, SJ 63522 Xu, CX 63523 Tang, XD 63524 Wang, WZ 63525 Du, DL 63526 TI Apoptosis and hormonal milieu in ductal system of normal prostate and 63527 benign prostatic hyperplasia 63528 SO ASIAN JOURNAL OF ANDROLOGY 63529 DT Article 63530 DE prostate; ductal system; hormonal milieu; androgen; estrogen; apoptosis 63531 ID CELL-DEATH; ANDROGEN; EPITHELIUM; ESTROGEN; STROMA 63532 AB Aim: To study the apoptotic rate (AR) and the androgen and estrogen 63533 milieu in the proximal and distal ductal systems of prostate, in order 63534 to help exploring the effects of these factors on prostatic growth and 63535 the pathogenesis of benign prostatic hypertrophy (BPH). Methods: The 63536 proximal and distal ends of the ductal system were incised from 20 63537 normal prostate as well as the hypertrophic prostate tissue from 20 63538 patients with BPH. The AR was determined by the DNA end-labeling method 63539 and dihydrotestosterone (DHT) and estrodiol (E-2), by radioimmunoassay. 63540 Results: There was no significant difference in DHT and E-2 density 63541 between the proximal and distal ends of the ductal systems in normal 63542 prostate. E-2 appeared to be higher in BPH than in normal prostatic 63543 tissues, but the difference was statistically insignificant. In normal 63544 prostatic tissue, the AR was significantly higher in the distal than in 63545 the proximal ends of the ductal system (P < 0.05), while the AR of the 63546 proximal ends was significantly higher (P < 0.01) than that in the BPH 63547 tissue. No significant correlation was noted between the DHT and E-2 63548 density and the AR both in the normal prostate and BPH tissues. 63549 Conclusion: The paper is the first time describing a difference in AR 63550 in different regions of the ductal system of normal prostate, while the 63551 hormonal milieu is similar, indicating a functional inhomogeneity of 63552 these regions. A low AR in the proximal duct, where BPH originates, and 63553 an even lower AR in the BPH tissue, sug gesting the participation of 63554 apoptosis in the BPH pathogenesis. 63555 C1 Shanghai Univ, Peoples Hosp 1, Dept Urol, Shanghai 200080, Peoples R China. 63556 Shandong Provincial Hosp, Dept Urol, Jinan 250021, Peoples R China. 63557 Shandong Provincial Hosp, Dept Pathol, Jinan 250021, Peoples R China. 63558 RP Xia, SJ, Shanghai Univ, Peoples Hosp 1, Dept Urol, 85 Wu Jin Rd, 63559 Shanghai 200080, Peoples R China. 63560 CR COLLINS AT, 1994, J ENDOCRINOL, V143, P269 63561 FARNSWORTH WE, 1996, PROSTATE, V28, P17 63562 GAVRIELI Y, 1992, J CELL BIOL, V119, P493 63563 ISAACS JT, 1984, PROSTATE, V5, P545 63564 ISAACS JT, 1994, SEMIN CANCER BIOL, V5, P391 63565 JUNIEWICZ PE, 1994, J UROLOGY, V152, P996 63566 KRIEG M, 1983, J STEROID BIOCHEM, V19, P155 63567 KRIEG M, 1993, J CLIN ENDOCR METAB, V77, P375 63568 KYPRIANOU N, 1996, HUM PATHOL, V27, P668 63569 LEE C, 1981, J ANDROL, V2, P293 63570 LEE C, 1990, BIOL REPROD, V43, P1079 63571 LEE C, 1997, PROSTATE, V31, P131 63572 MCNEAL JE, 1975, DHEW PUBLICATION, P1 63573 MCNEAL JE, 1988, AM J SURG PATHOL, V12, P619 63574 MCNEIL JE, 1983, MONOGR UROL, V4, P3 63575 NR 15 63576 TC 3 63577 SN 1008-682X 63578 J9 ASIAN J ANDROL 63579 JI Asian J. Androl. 63580 PD JUN 63581 PY 2001 63582 VL 3 63583 IS 2 63584 BP 131 63585 EP 134 63586 PG 4 63587 SC Andrology; Respiratory System; Urology & Nephrology 63588 GA 451KK 63589 UT ISI:000169801100009 63590 ER 63591 63592 PT J 63593 AU Dai, SQ 63594 TI Poincare-Lighthill-Kuo method and symbolic computation 63595 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 63596 DT Article 63597 DE PLK method; perturbation methods; symbolic computation; intermediate 63598 expression swell; semi-inverse algorithm 63599 AB This paper elucidates the effectiveness of combining the 63600 Poincare-Lighthill-Kuo method (PLK method, for short) and symbolic 63601 computation. Firstly, the idea and history of the PLK method are 63602 briefly introduced. Then, the difficulty of intermediate expression 63603 swell, often encountered in symbolic computation, is outlined. For 63604 overcoming the difficulty, a semi-inverse algorithm was proposed by the 63605 author, with which the lengthy ports of intermediate expressions are 63606 first frozen in the form of symbols till the Fnal stage of seeking 63607 perturbation solutions. Tn discuss the applications of the above 63608 algorithm, the related work of the author and his research group on 63609 nonlinear oscillations and waves is concisely reviewed. The 63610 computer-extended perturbation solution of the Duffing equation shows 63611 that the asymptotic solution obtained with the PLK method possesses the 63612 convergence radius of 1 and thus the range of validity of the solution 63613 is considerably enlarged. The studies on internal solitary waves in 63614 stratified fluid and on the head-on collision between two solitary 63615 waves in a hyperelastic rod indicate that by means of the presented 63616 methods, very complicated manipulation, unconceivable in hand 63617 calculation, can be conducted and thus result in higher-order evolution 63618 equations and asymptotic solutions. The examples illustrate that the 63619 algorithm helps to realize the symbolic computation on 63620 micro-commputers. Finally, it is concluded that,vith the aid of 63621 symbolic computation, the vitality of the PLK method is greatly. 63622 Strengthened and at least for the solutions to conservative systems of 63623 oscillations and waves, it is a powerful tool. 63624 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 63625 RP Dai, SQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 63626 200072, Peoples R China. 63627 CR BELTZER AIB, 1990, APPL MECH REV, V403, P119 63628 CALMET J, 1988, COMPUTER ALGEBRA SYM 63629 CHENG YL, 1997, J SHANGHAI U, V1, P130 63630 CHENG YL, 1998, P 3 INT C HYDR 63631 CHENG YL, 1998, THESIS SHANGHAI U 63632 DAI HH, 2000, WAVE MOTION, V32, P93 63633 DAI SQ, 1981, SINGULAR PETURBATION, P33 63634 DAI SQ, 1982, ADV MECH, V12, P2 63635 DAI SQ, 1982, APPL MATH MECHANICS, V3, P777 63636 DAI SQ, 1983, ACTA MECH SINICA, V15, P623 63637 DAI SQ, 1984, APPL MATH MECH, V5, P1469 63638 DAI SQ, 1984, SIENTIA SINICA, V27, P507 63639 DAI SQ, 1987, KEXUE TONGBAO, V32, P589 63640 DAI SQ, 1990, ACTA MECH SINICA, V6, P111 63641 DAI SQ, 1991, APPL MATH MECH, V12, P255 63642 DAI SQ, 1991, SCI SINICA A, V34, P843 63643 DAI SQ, 1992, J HYDRODYN A, V7, P1 63644 DAI SQ, 1992, NONLINEAR PROBLEMS E 63645 DAI SQ, 1995, J NATURE, V17, P177 63646 DAI SQ, 1995, MODERN MATH MECH 63647 DAI SQ, 1997, APPL MATH MECH-ENGL, V18, P113 63648 HECK A, 1993, INTRO MAPLE 63649 KUO YH, 1953, J MATH PHYS, V32, P83 63650 KUO YH, 1956, J AERONAUT SCI, V23, P125 63651 LIGHTHILL MJ, 1949, PHIL MAG 7, V40, P1179 63652 LIU YL, 1987, APPL MATH MECH, V8, P497 63653 POINCARE H, 1967, TTF450 NASA 63654 RAND HR, 1987, ARMBRUSTER D PERTURB 63655 TANG L, 1993, APPL MATH MECH, P400 63656 TIAN M, 1995, MODERN MATH MECH 63657 TSIEN HS, 1956, ADV APPL MECH, V4, P281 63658 WANG MQ, 1994, J SHANGHAI U TECHNOL, V15, P384 63659 WANG MQ, 1995, APPL MATH MECH, V16, P429 63660 ZANG HM, 1993, J SHANGHAI U TECHNOL, V14, P189 63661 ZANG HM, 1993, THESIS SHANGHAI U TE 63662 ZANG HM, 1994, P 1 INT C HYDR BEIJ 63663 ZHANG SG, 1986, J COMM APPL MATH COM, V1, P61 63664 ZHANG SG, 1986, J SHANGHAI U TECHNOL, V7, P375 63665 ZHU Y, 1989, APPL MATH MECH, V10, P213 63666 ZHU Y, 1991, ACTA MECH SINICA, V7, P300 63667 ZHU Y, 1992, APPL MATH MECH, V13, P407 63668 NR 41 63669 TC 0 63670 SN 0253-4827 63671 J9 APPL MATH MECH-ENGL ED 63672 JI Appl. Math. Mech.-Engl. Ed. 63673 PD MAR 63674 PY 2001 63675 VL 22 63676 IS 3 63677 BP 261 63678 EP 269 63679 PG 9 63680 SC Mathematics, Applied; Mechanics 63681 GA 450BW 63682 UT ISI:000169722500001 63683 ER 63684 63685 PT J 63686 AU Jiang, FR 63687 TI On the asymptotic solutions of boundary value problems for a class of 63688 systems of nonlinear differential equations (I) 63689 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 63690 DT Article 63691 DE system of nonlinear differential equations; boundary value problems; 63692 asymptotic solution 63693 AB A new method is applied to study the asymptotic behavior of solutions 63694 of boundary value problems for a class of systems of nonlinear 63695 differential equations 63696 u" = nu, epsilon nu" + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon 63697 much less than 1). 63698 The asymptotic expansions of solutions are constructed, the remainders 63699 are estimated. The former works are improved and generalized. 63700 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 63701 RP Jiang, FR, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 63702 200072, Peoples R China. 63703 CR DORR FW, 1970, J MATH ANAL APPL, V29, P273 63704 DORR FW, 1973, SIAM REV, V15, P43 63705 HARRIS WA, 1991, J DIFFER EQUATIONS, V92, P125 63706 HOWES FA, 1989, NONLINEAR ANAL, V13, P1013 63707 JIANG FR, 1981, APPL MATH MECH, V2, P505 63708 JIANG FR, 1987, SCI SINICA, V30, P588 63709 NR 6 63710 TC 1 63711 SN 0253-4827 63712 J9 APPL MATH MECH-ENGL ED 63713 JI Appl. Math. Mech.-Engl. Ed. 63714 PD MAR 63715 PY 2001 63716 VL 22 63717 IS 3 63718 BP 282 63719 EP 293 63720 PG 12 63721 SC Mathematics, Applied; Mechanics 63722 GA 450BW 63723 UT ISI:000169722500003 63724 ER 63725 63726 PT J 63727 AU Li, GG 63728 Zhu, ZY 63729 Cheng, CJ 63730 TI Dynamical stability of viscoelastic column with fractional derivative 63731 constitutive relation 63732 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 63733 DT Article 63734 DE viscoelastic column; fractional derivative constitutive relation; 63735 averaging method; weakly singular Volterra integro-differential 63736 equation; dynamical stability 63737 ID CALCULUS 63738 AB The dynamic stability of simple supported viscoelastic column, 63739 subjected to a periodic axial force, is investigated. The viscoelastic 63740 material was assumed to obey the fractional derivative constitutive 63741 relation. The governing equation of motion was derived as a weakly 63742 singular Volterra integro-partial-differential equation, and it was 63743 simplified into weakly singular Volterra integro-ordinary-differential 63744 equation by the Galerkin method. In terms of the averaging method, the 63745 dynamical stability was analyzed. A new numerical method is proposed to 63746 avoid storing all history data. Numerical examples are presented and 63747 the numerical results agree with the analytical ones. 63748 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 63749 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 63750 Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China. 63751 RP Li, GG, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 63752 Peoples R China. 63753 CR BAGLEY RL, 1983, AIAA J, V21, P741 63754 BAGLEY RL, 1983, J RHEOL, V27, P201 63755 CEDERBAUM G, 1992, J APPL MECH-T ASME, V59, P16 63756 CHENG CJ, 1998, ACTA MECH SINICA, V30, P690 63757 DROZDOV AD, 1997, ACTA MECH, V124, P155 63758 ENELUND M, 1999, INT J SOLID STRUT, V36, P1417 63759 HUANG WH, 1997, ADV MECH, V27, P5 63760 LIU YZ, 1998, MECH VIBRATIONS 63761 ROSSIKHIN YA, 1997, APPL MECH REV, V50, P15 63762 SAMKO SG, 1993, FRACTIONAL INTEGRALS 63763 NR 10 63764 TC 4 63765 SN 0253-4827 63766 J9 APPL MATH MECH-ENGL ED 63767 JI Appl. Math. Mech.-Engl. Ed. 63768 PD MAR 63769 PY 2001 63770 VL 22 63771 IS 3 63772 BP 294 63773 EP 303 63774 PG 10 63775 SC Mathematics, Applied; Mechanics 63776 GA 450BW 63777 UT ISI:000169722500004 63778 ER 63779 63780 PT J 63781 AU Jiang, JB 63782 Lu, ZM 63783 Liu, XM 63784 Liu, YL 63785 TI Models for the counter-gradient-transport phenomena 63786 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 63787 DT Article 63788 DE turbulence; counter-gradient-transport; TSDIA 63789 ID TURBULENT SHEAR FLOWS; PASSIVE SCALARS; DIFFUSION 63790 AB The counter gradient transport phenomena on momentum, energy and 63791 passive scalar in turbulent flows were studied by use of the single 63792 response friction for TSDIA. As a result, models that can describe 63793 qualitatively the phenomena are obtained. Then the results are 63794 simplified by use of the internal range theory, and the results for 63795 lower degrees agree with results of predecessor. Finally the counter 63796 gradient-transport phenomena in channel flow and circular wake flow are 63797 analyzed. 63798 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 63799 RP Jiang, JB, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 63800 200072, Peoples R China. 63801 CR ESKINAZEI S, 1988, PHYS FLUIDS, V12, P1988 63802 HAMBA F, 1987, J PHYS SOC JPN, V56, P79 63803 HANJALIC K, 1972, J FLUID MECH, V51, P301 63804 KRAICHNAN RH, 1959, J FLUID MECH, V5, P497 63805 LESLIE DC, 1972, DEV THEORY TURBULENC 63806 SHIMOMURA Y, 1998, PHYS FLUIDS, V10, P2636 63807 SREENIVASAN KR, 1982, TURBULENT SHEAR FLOW, V3, P96 63808 VEERAVALLI S, 1990, J FLUID MECH, V216, P35 63809 YOSHIZAWA A, 1984, PHYS FLUIDS, V27, P1337 63810 YOSHIZAWA A, 1988, J FLUID MECH, V195, P541 63811 NR 10 63812 TC 0 63813 SN 0253-4827 63814 J9 APPL MATH MECH-ENGL ED 63815 JI Appl. Math. Mech.-Engl. Ed. 63816 PD MAR 63817 PY 2001 63818 VL 22 63819 IS 3 63820 BP 312 63821 EP 319 63822 PG 8 63823 SC Mathematics, Applied; Mechanics 63824 GA 450BW 63825 UT ISI:000169722500006 63826 ER 63827 63828 PT J 63829 AU Jiang, FR 63830 Jin, QN 63831 TI Asymptotic solutions of boundary value problems for third-order 63832 ordinary differential equations with turning points 63833 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 63834 DT Article 63835 DE boundary value problems; ordinary differential equations; turning 63836 points; asymptotic solutions 63837 ID PROBLEMS EXHIBITING RESONANCE 63838 AB Boundary value problem; for third-order ordinary differential equations 63839 with turning points are studied as follows : 63840 epsilon gamma ' " + f(x ; epsilon) gamma " + g(x ; epsilon) gamma ' 63841 +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1), 63842 where f(x ; 0) has several multiple zero points in ( - n, b). the 63843 necessary conditions for exhibiting resonance is given, and the 63844 uniformly valid asymptotic solutions and the estimations of remainder 63845 terms are obtained. 63846 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 63847 Nanjing Univ, Dept Math, Nanjing 210000, Peoples R China. 63848 RP Jiang, FR, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 63849 200072, Peoples R China. 63850 CR ACKERBERG RC, 1970, STUD APPL MATH, V49, P277 63851 JIANG FR, 1989, APPL MATH MECH, V10, P289 63852 JIANG FR, 1994, COMPUTATIONAL FLUID, V2, P471 63853 MATKOWSKY BJ, 1975, SIAM REV, V17, P82 63854 NAGUMO M, 1937, P PHYS-MATH SOC JPN, V19, P861 63855 ZHAO WL, 1984, J JILIN U, P10 63856 NR 6 63857 TC 0 63858 SN 0253-4827 63859 J9 APPL MATH MECH-ENGL ED 63860 JI Appl. Math. Mech.-Engl. Ed. 63861 PD APR 63862 PY 2001 63863 VL 22 63864 IS 4 63865 BP 394 63866 EP 403 63867 PG 10 63868 SC Mathematics, Applied; Mechanics 63869 GA 450WP 63870 UT ISI:000169768100003 63871 ER 63872 63873 PT J 63874 AU Wei, EB 63875 Tian, JW 63876 Gu, GQ 63877 TI A new inverse method and application to ocean data 63878 SO SCIENCE IN CHINA SERIES D-EARTH SCIENCES 63879 DT Article 63880 DE reconstructed phase space; conditional probability density; 63881 normalization 63882 ID STRANGE ATTRACTORS; VECTOR-FIELDS; TIME-SERIES; RECONSTRUCTION; SYSTEMS 63883 AB A new method is proposed to inverse normalization data of hidden 63884 variables in a dynamical system by embedding a time series in 63885 multidimensional spaces and applying a normalization analysis to the 63886 conditional probability density of points in the reconstructed phase 63887 spaces, The method is robust in the application to Lorenz system and 63888 4-dimensional Rossler system by testing quantitatively and 63889 qualitatively the correlation coefficient between inverse data and 63890 original data in time domain and in frequency domain, respectively. By 63891 applying the method to analyzing the South China Sea data, the 63892 normalization data of wind speed is extracted from the sea surface 63893 temperature time series. 63894 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China. 63895 Ocean Univ Qingdao, Phys Oceanog Lab, Qingdao 266003, Peoples R China. 63896 RP Gu, GQ, Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, 63897 Peoples R China. 63898 CR BREEDEN JL, 1990, PHYS REV A, V42, P5817 63899 ECKMANN JP, 1985, REV MOD PHYS, V57, P617 63900 FRASER AM, 1986, PHYS REV A, V33, P1134 63901 GOUESBET G, 1991, PHYS REV A, V43, P5321 63902 GOUESBET G, 1991, PHYS REV A, V44, P6264 63903 GOUESBET G, 1992, PHYS REV A, V46, P1784 63904 GRASSBERGER P, 1983, PHYSICA D, V9, P189 63905 GRASSBERGER P, 1984, PHYSICA D, V13, P34 63906 JUDD K, 1998, PHYSICA D, V120, P273 63907 MANUCA R, 1996, PHYSICA D, V93, P78 63908 ORTEGA GJ, 1995, PHYS LETT A, V209, P351 63909 PACKARD NH, 1980, PHYS REV LETT, V45, P712 63910 ROSSLER OE, 1979, PHYS LETT A, V71, P155 63911 SCELLER LL, 1996, PHYS LETT A, V211, P211 63912 TAKENS F, 1981, LECT NOTES MATH, V898, P366 63913 NR 15 63914 TC 0 63915 SN 1006-9313 63916 J9 SCI CHINA SER D 63917 JI Sci. China Ser. D-Earth Sci. 63918 PD JUN 63919 PY 2001 63920 VL 44 63921 IS 6 63922 BP 490 63923 EP 497 63924 PG 8 63925 SC Geosciences, Multidisciplinary 63926 GA 448FZ 63927 UT ISI:000169617400002 63928 ER 63929 63930 PT J 63931 AU Cul, JH 63932 Zhong, SS 63933 Yu, C 63934 TI Accurate modeling of shorted microstrip patch antennas using the 63935 locally conformal FDTD method 63936 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 63937 DT Article 63938 DE microstrip antennas; conformal FDTD method; shorted microstrip patch 63939 antennas 63940 ID DIFFERENCE TIME-DOMAIN 63941 AB An accurate analysis of shorted microstrip patch antennas is presented 63942 based on the use of the locally conformal finite-difference time-domain 63943 (CFDTD) method. This approach enables the positions and dimensions of 63944 the probe and the shorting pin to be chosen independently. The 63945 calculated result is compared with the measured result, and good 63946 agreement is observed. (C) 2001 John Wiley & Sons, Inc. 63947 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China. 63948 RP Cul, JH, Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R 63949 China. 63950 CR DEY S, 1998, MICROW OPT TECHN LET, V17, P349 63951 WATERHOUSE R, 1995, ELECTRON LETT, V31, P604 63952 WATERHOUSE RB, 1997, IEEE AP S INT S, P1852 63953 WATERHOUSE RB, 1998, IEEE T ANTENN PROPAG, V46, P1629 63954 YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302 63955 YEE KS, 1992, IEEE T ANTENN PROPAG, V40, P1068 63956 YEE KS, 1994, IEEE T ANTENN PROPAG, V42, P1450 63957 YEE KS, 1997, IEEE T ANTENN PROPAG, V45, P354 63958 NR 8 63959 TC 0 63960 SN 0895-2477 63961 J9 MICROWAVE OPT TECHNOL LETT 63962 JI Microw. Opt. Technol. Lett. 63963 PD AUG 5 63964 PY 2001 63965 VL 30 63966 IS 3 63967 BP 216 63968 EP 218 63969 PG 3 63970 SC Engineering, Electrical & Electronic; Optics 63971 GA 448LB 63972 UT ISI:000169627400022 63973 ER 63974 63975 PT J 63976 AU He, JH 63977 TI Iteration perturbation method for strongly nonlinear oscillations 63978 SO JOURNAL OF VIBRATION AND CONTROL 63979 DT Article 63980 DE perturbation method; nonlinear oscillation; iteration method 63981 ID PARAMETERS 63982 AB In this paper, the author proposes a new perturbation technique 63983 coupling with iteration method, yielding a powerful mathematical tool 63984 for an analytical solution of nonlinear equations. The obtained results 63985 are valid not only for weakly nonlinear problems but also for strongly 63986 nonlinear ones. Furthermore, the approximate solutions are valid for 63987 the whole solution domain, and even the first-step iteration leads to 63988 high accuracy. Some examples are given to illustrate its effectiveness. 63989 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 63990 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 63991 Peoples R China. 63992 CR ACTON JR, 1985, SOLVING EQUATIONS PH 63993 ANDRIANOV I, 2000, INT J NONLINEAR SCI, V1, P327 63994 HE JH, 1999, COMMUN NONL SCI NUM, V4, P109 63995 HE JH, 1999, COMMUN NONL SCI NUM, V4, P78 63996 HE JH, 1999, COMMUNICATIONS NONLI, V4, P81 63997 HE JH, 1999, COMPUT METHOD APPL M, V178, P257 63998 HE JH, 1999, MECCANICA, V34, P287 63999 HE JH, 1999, MECH PRACTICE, V21, P17 64000 HE JH, 2000, INT J NONLINEAR MECH, V35, P37 64001 HE JH, 2000, INT J NONLINEAR SCI, V1, P51 64002 HE JH, 2000, J SOUND VIB, V229, P1257 64003 HE JH, 2000, MECCANICA, V35, P299 64004 HOWARTH L, 1938, PROC R SOC LON SER-A, V164, P547 64005 LIAO SJ, 1995, INT J NONLINEAR MECH, V30, P371 64006 LIAO SJ, 1999, J FLUID MECH, V385, P101 64007 NAYFEH AH, 1981, INTRO PERTURBATION T 64008 NAYFEH AH, 1985, PROBLEMS PERTURBATIO 64009 NR 17 64010 TC 8 64011 SN 1077-5463 64012 J9 J VIB CONTROL 64013 JI J. Vib. Control 64014 PD JUL 64015 PY 2001 64016 VL 7 64017 IS 5 64018 BP 631 64019 EP 642 64020 PG 12 64021 SC Engineering, Mechanical; Acoustics; Mechanics 64022 GA 447NP 64023 UT ISI:000169579600001 64024 ER 64025 64026 PT J 64027 AU Ma, HL 64028 Yang, FJ 64029 TI Measurement of hyperfine coupling constants of the excited states 64030 4f(7)(S-8(7/2)0)6p(3/2)(7/2,3/2) in Eu-151,153(+) 64031 SO CHINESE PHYSICS 64032 DT Article 64033 DE fast-ion-beam laser spectroscopy; hyperfine structure; magnetic dipole 64034 and electronic quadrupole coupling constants 64035 ID BEAM LASER SPECTROSCOPY; FINE 64036 AB Hyperfine structure spectra of singly ionized europium have been 64037 measured by collinear fast-ion-beam laser spectroscopy. All the 64038 spectral lines were resolved and the magnetic dipole and electric 64039 quadrupole coupling constants of the metastable and excited levels were 64040 determined. 64041 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 64042 Fudan Univ, Inst Modern Phys, Shanghai 200433, Peoples R China. 64043 RP Ma, HL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 64044 CR ANDRA HJ, 1975, ATOMIC PHYSICS, V4, P365 64045 ANDRA HJ, 1979, PROGR ATOMIC SPECT B 64046 BELLAHMANSOUR N, 1989, PHYS REV A, V39, P5762 64047 BENGTSON A, 1980, PHYS LETT A, V76, P45 64048 GINIBRE A, 1989, PHYS SCR, V39, P694 64049 HOHLE C, 1982, Z PHYS A, V304, P279 64050 IIMURA H, 1994, PHYS REV C, V50, P661 64051 KUWAMOTO T, 1996, J PHYS SOC JPN, V65, P3180 64052 MA HL, 1999, J PHYS B-AT MOL OPT, V32, P1345 64053 SEN A, 1986, PHYS REV A, V36, P233 64054 NR 10 64055 TC 2 64056 SN 1009-1963 64057 J9 CHIN PHYS 64058 JI Chin. Phys. 64059 PD JUN 64060 PY 2001 64061 VL 10 64062 IS 6 64063 BP 512 64064 EP 515 64065 PG 4 64066 SC Physics, Multidisciplinary 64067 GA 449RR 64068 UT ISI:000169701400010 64069 ER 64070 64071 PT J 64072 AU Zhou, SP 64073 TI Ginzburg-Landau theory and vortex lattice of high-temperature 64074 superconductors 64075 SO CHINESE PHYSICS 64076 DT Article 64077 DE Ginzburg-Landau theory; vortex lattice; high-temperature superconductor 64078 ID II SUPERCONDUCTORS; PAIRING SYMMETRY; YBA2CU3O7-DELTA; STATE; MODEL; PB 64079 AB The thermodynamics of the vortex lattice of high-temperature 64080 superconductors has been studied by solving the generalised 64081 Ginzburg-Landau equations derived microscopically. Our numerical 64082 simulation indicates that the structure of the vortex lattice is 64083 oblique at the temperature far away from the transition temperature T-C 64084 where the mixed s-d(x2-y2) state is expected to have the lowest energy. 64085 Whereas, very close to T-c, the d(x2-y2) wave is slightly lower 64086 energetically, and a triangular vortex lattice recovers. The 64087 coexistence and the coupling between the s and d waves would account 64088 for the unusual dynamic behaviours such as the upward curvature of the 64089 upper critical field curve H-C2(T), as observed in de magnetization 64090 measurements on single-crystal YBa2Cu3O7 samples. 64091 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 64092 RP Zhou, SP, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 64093 CR ABRIKOSOV AA, 1957, ZH EKSP TEOR FIZ, V32, P1442 64094 ABRIKOSOV AA, 1957, ZH EKSP TEOR FIZ, V5, P1174 64095 ANDERSON PW, 1987, SCIENCE, V235, P1196 64096 CHAKRAVARTY S, 1993, SCIENCE, V261, P337 64097 DORIA MM, 1989, PHYS REV B, V39, P9573 64098 DU Q, 1993, SIAM J APPL MATH, V53, P689 64099 GORKOV LP, 1960, SOV PHYS JETP, V9, P1364 64100 GUO BY, 1988, NUMER METH PART D E, P43 64101 JOYNT R, 1990, PHYS REV B, V41, P4271 64102 KEIMER B, 1994, J APPL PHYS 2, V76, P6778 64103 KLEINER R, 1996, PHYS REV LETT, V76, P2161 64104 KOUZNETSOV KA, 1997, PHYS REV LETT, V79, P3050 64105 LEE PA, 1987, PHYS REV LETT, V58, P2891 64106 LIECHTENSTEIN AI, 1995, PHYS REV LETT, V74, P2303 64107 MILLIS AJ, 1994, PHYS REV B, V49, P15408 64108 MONTHOUX P, 1994, PHYS REV B, V49, P4261 64109 PALSTRA TTM, 1988, PHYS REV LETT, V61, P1662 64110 REN Y, 1995, PHYS REV LETT, V74, P3680 64111 RUGGIERO S, 1982, PHYS REV B, V26, P4897 64112 SOININEN PI, 1994, PHYS REV B, V50, P13883 64113 TINKHAM M, 1964, GROUP THEORY QUANTUM 64114 TSUEI CC, 1994, PHYS REV LETT, V73, P593 64115 VOLOVIK GE, 1993, JETP LETT, V58, P469 64116 WELP U, 1989, PHYS REV LETT, V62, P1908 64117 WOLLMAN DA, 1993, PHYS REV LETT, V71, P2134 64118 ZHANG FC, 1988, PHYS REV B, V37, P3759 64119 ZHANG SC, 1997, SCIENCE, V275, P1089 64120 ZHOU SP, 1999, ACTA PHYS SIN-CH ED, V48, P342 64121 NR 28 64122 TC 13 64123 SN 1009-1963 64124 J9 CHIN PHYS 64125 JI Chin. Phys. 64126 PD JUN 64127 PY 2001 64128 VL 10 64129 IS 6 64130 BP 541 64131 EP 549 64132 PG 9 64133 SC Physics, Multidisciplinary 64134 GA 449RR 64135 UT ISI:000169701400015 64136 ER 64137 64138 PT J 64139 AU Chen, XY 64140 Cheng, CJ 64141 TI Reconstruction of relaxation modulus for viscoelastic medium with 64142 complete data 64143 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 64144 DT Article 64145 DE viscoelastic medium; reconstruction of the relaxation modulus; 64146 scattering and propagation operators; wave impedance mismatch; volterra 64147 integral equation 64148 ID INVERSE SCATTERING 64149 AB The inverse scattering problem for viscoelastic medium with wave 64150 impedance mismatch at the rear boundary is studied in this paper. The 64151 propagation operators of the viscoelastic medium are defined first and 64152 the integro-differential equations of these operators are derived via 64153 the invariant imbedding technique. For the inverse scattering problem, 64154 a new inversion procedure to reconstruct the relaxation modulus of the 64155 viscoelastic medium is developed, which utilizes a complete set of 64156 data, namely the one-side reflection data for one round trip through 64157 the viscoelastic slab. These data are complete in the sense that they 64158 can be extended to arbitrary time t in the inversion procedure. This 64159 inverse method is implemented numerically on several problems at the 64160 end of the paper. The more general case of a medium consisting of a 64161 stack of homogeneous viscoelastic medium layers is also considered. (C) 64162 2001 Elsevier Science B.V. All rights reserved. 64163 C1 SOA, Inst Oceanog 1, Key Lab Marine Sci & Numer Modeling, Qingdao 266061, Peoples R China. 64164 Shanghai Univ, Dept Mech, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China. 64165 RP Chen, XY, SOA, Inst Oceanog 1, Key Lab Marine Sci & Numer Modeling, 64166 Qingdao 266061, Peoples R China. 64167 CR AMMICHT E, 1987, J ACOUST SOC AM, V81, P827 64168 BEEZLEY RS, 1985, J MATH PHYS, V26, P317 64169 BUI DD, 1995, INVERSE PROBL, V11, P835 64170 CHRISTENSON RM, 1982, THEORY VISCOELASTICI 64171 CORONES JP, 1988, INVERSE PROBL, V4, P643 64172 KARLSSON A, 1987, INVERSE PROBL, V3, P691 64173 KRESS R, 1989, LINEAR INTEGRAL EQUA 64174 REDHEFFER R, 1962, J MATH PHYS, V41, P1 64175 NR 8 64176 TC 0 64177 SN 0377-0427 64178 J9 J COMPUT APPL MATH 64179 JI J. Comput. Appl. Math. 64180 PD JUN 1 64181 PY 2001 64182 VL 131 64183 IS 1-2 64184 BP 445 64185 EP 456 64186 PG 12 64187 SC Mathematics, Applied 64188 GA 444QK 64189 UT ISI:000169410900025 64190 ER 64191 64192 PT J 64193 AU Zhou, GH 64194 Liu, L 64195 Xiu, XL 64196 Jian, HM 64197 Wang, LZ 64198 Sun, BZ 64199 Tong, BS 64200 TI Productivity and carcass characteristics of pure and crossbred Chinese 64201 Yellow Cattle 64202 SO MEAT SCIENCE 64203 DT Article 64204 DE productivity; carcass characteristics; Chinese Yellow Cattle; meat 64205 performance 64206 AB The carcass characteristics of 334 Chinese Yellow Cattle, and their 64207 Simmental and Limousin crosses, were investigated in abattoirs in Hebei 64208 and Sandong provinces of China. The overall slaughter age was 4.8 64209 +/-2.2 years at a mean liveweight of 527.28 +/- 77.0 kg. Mean ages and 64210 liveweights for Yellow Cattle and its crosses were, respectively, 5.29 64211 +/-2.03 and 2.85 +/-1.71 years and 519.43 +/- 78.7 and 563.13 +/- 56.8 64212 kg. Carcass weights varied considerably and, consequently, so did 64213 subcutaneous fat depths and dressing percentages. Overall, mean carcass 64214 weights, subcutaneous fat depths and, dressing percentages and 64215 eyemuscle areas were 283.9 +/- 64.1 kg, 14.0 +/-8.0 mm, 54.0 +/-4.0%, 64216 and 62.7 +/- 13.3 cm(2), respectively; Compared with pure Yellow 64217 Cattle, the crosses were slaughtered at younger age, and had larger 64218 live and carcass weights, higher dressing percentages, less 64219 subcutaneous fat depth and bigger eyemuscle areas. It is concluded that 64220 crossbreeding can significantly improve Yellow Cattle' meat 64221 productivity, however feeding systems need to be improved and an 64222 appropriate grading system developed to improve beef production and 64223 quality in China. (C) 2001 Elsevier Science Ltd. All rights reserved. 64224 C1 Nanjing Agr Univ, Coll Food Sci & Technol, Meat Res Lab, Nanjing 210095, Peoples R China. 64225 Shanghai Univ, Coll Agr, Dept Food Engn, Shanghai 200041, Peoples R China. 64226 Beijing Acad Agr Sci, Inst Anim Husb, Beijing, Peoples R China. 64227 RP Zhou, GH, Nanjing Agr Univ, Coll Food Sci & Technol, Meat Res Lab, 64228 Nanjing 210095, Peoples R China. 64229 CR LIU L, 1998, J YELLOW CATTLE, V24, P32 64230 MAY SG, 1992, J ANIM SCI, V70, P2431 64231 TATUM D, 1997, BEEF FACTS 64232 ZHANG CG, 1999, CATTLE BEEF IND CHIN, P1 64233 ZHOU GH, 1998, ANN RECIPROCAL MEAT, V51, P92 64234 NR 5 64235 TC 1 64236 SN 0309-1740 64237 J9 MEAT SCI 64238 JI Meat Sci. 64239 PD AUG 64240 PY 2001 64241 VL 58 64242 IS 4 64243 BP 359 64244 EP 362 64245 PG 4 64246 SC Food Science & Technology 64247 GA 443VZ 64248 UT ISI:000169364000004 64249 ER 64250 64251 PT J 64252 AU Cong, YH 64253 Zhu, ZY 64254 TI A homotopy method of switching solution branches at the pitchfork 64255 bifurcation point 64256 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 64257 DT Article 64258 DE homotopy method; switching solution branches; pitchfork point 64259 AB By introducing proper parameters in the original nonlinear system, a 64260 continuation method for switching solution branches at a pitchfork 64261 point is proposed and their theories have been established in this 64262 paper. It is sufficient to implement this method that a standard 64263 continuation procedure is only used. Some numerical examples are given 64264 to illustrate the effectiveness of this method. 64265 C1 Shandong Teachers Univ, Coll Math Sci, Shanghai 200234, Peoples R China. 64266 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 64267 Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China. 64268 CR ALLGOWER EL, 1981, LECT NOTES MATH, V878 64269 CHOW SN, 1982, METHOD BIFURCATION T 64270 GOLUBITSKY M, 1984, SINGULARITIES GROUP, V1 64271 KELLER HB, 1977, P APPL BIFURCATION T, P359 64272 RHEINBOLDT WC, 1978, SIAM J NUMER ANAL, V15, P321 64273 NR 5 64274 TC 0 64275 SN 0254-9409 64276 J9 J COMPUT MATH 64277 JI J. Comput. Math. 64278 PD MAY 64279 PY 2001 64280 VL 19 64281 IS 3 64282 BP 299 64283 EP 308 64284 PG 10 64285 SC Mathematics, Applied; Mathematics 64286 GA 443YR 64287 UT ISI:000169371600008 64288 ER 64289 64290 PT J 64291 AU Li, YM 64292 Xing, SM 64293 Zhai, QJ 64294 TI Numerical simulation of semisolid continuous casting process 64295 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA 64296 DT Article 64297 DE semisolid continuous casting; numerical simulation; mathematical model 64298 ID RHEOLOGICAL BEHAVIOR 64299 AB A general mathematical model and boundary condition applicable to 64300 momentum and heat transfer in the semisolid continuous casting(SCC) 64301 process was established. Using the model, the numerical simulation of 64302 the momentum and heat transfer of molten metal was carried out in the 64303 SCC system. The obtained results fit well with the measured ones. 64304 Moreover, using the numerical simulating software, the effect of 64305 various factors on breakout and breakage was explored. The obtained 64306 results show that heat flow density of copper mold and the withdrawal 64307 beginning time are two major influencing factors. The larger the heat 64308 flow density of copper mold, or the shorter the withdrawal beginning 64309 time, the more stable the semisolid continuous casting process. 64310 C1 Hebei Univ Sci & Technol, Sch Mat Sci & Engn, Shijiazhuang 050054, Peoples R China. 64311 Tsing Hua Univ, Dept Mech Engn, Beijing 100084, Peoples R China. 64312 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200027, Peoples R China. 64313 CR CHEN HQ, 1990, NUMERICAL SIMULATION 64314 CHEN SS, 1978, SEMISOLID CASTING 64315 MATSUMIYA T, 1981, METALL T B, V12, P17 64316 PATANKAR SV, 1982, NUMERICAL METHOD HEA 64317 SPENCER DB, 1972, METALL T, V3, P1925 64318 TAHA MA, 1988, J MATER SCI, V23, P1385 64319 TAHA MA, 1998, MAT SCI, V23, P1379 64320 WEI PY, 1996, CHINESE J NONFERROUS, V4, P98 64321 XING SM, 1996, STUDY SEMISOLID CONT, P51 64322 XING SM, 2000, CHINESE J NONFERROUS, V10, P800 64323 XING SM, 2000, SPECIAL CASTING NONF, P16 64324 NR 11 64325 TC 1 64326 SN 1003-6326 64327 J9 TRANS NONFERROUS METAL SOC CH 64328 JI Trans. Nonferrous Met. Soc. China 64329 PD JUN 64330 PY 2001 64331 VL 11 64332 IS 3 64333 BP 378 64334 EP 381 64335 PG 4 64336 SC Metallurgy & Metallurgical Engineering 64337 GA 440RK 64338 UT ISI:000169187900015 64339 ER 64340 64341 PT J 64342 AU Yang, GH 64343 Jiang, Y 64344 Duan, YS 64345 TI Topological quantization of k-dimensional topological defects and 64346 motion equations 64347 SO CHINESE PHYSICS LETTERS 64348 DT Article 64349 ID SPACE-TIME DEFECTS; GAUGE FIELD-THEORY; DISCLINATION CONTINUUM; 64350 COORDINATE CONDITION; LINEAR DEFECTS; TENSOR CURRENT; P-BRANES; 64351 BIFURCATION; STRINGS; DISLOCATION 64352 AB Using the phi -mapping method and kth-order topological tenser current 64353 theory, we present a unified theory of describing k-dimensional 64354 topological defects and obtain their topological quantization and 64355 motion equations. It is shown that the inner structure of the 64356 topological tenser current is just the dynamic form of the topological 64357 defects, which are generated from the zeros of the m-component order 64358 parameter vector held. In this dynamic form, the topological defects 64359 are topologically quantized naturally and the topological quantum 64360 numbers are determined by the Hopf indices and the Brouwer degrees. As 64361 the generalization of Nielsen's Lagrangian and Nambu's action for 64362 strings, the action and the motion equations of the topological defects 64363 are also derived. 64364 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 64365 Chinese Acad Sci, Inst Theoret Phys, Beijing 100080, Peoples R China. 64366 Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China. 64367 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 64368 CR CARROLL SM, 1998, PHYS REV D, V57, P5189 64369 CHEN G, 2000, CHINESE PHYS LETT, V17, P82 64370 DAI J, 1989, MOD PHYS LETT A, V4, P2073 64371 DIAMANTINI MC, 1996, PHYS LETT B, V388, P273 64372 DUAN YS, 1992, GEN RELAT GRAVIT, V24, P1033 64373 DUAN YS, 1997, HELV PHYS ACTA, V70, P565 64374 DUAN YS, 1998, CHINESE PHYS LETT, V15, P781 64375 DUAN YS, 1999, CHINESE PHYS LETT, V16, P157 64376 DUAN YS, 2000, J MATH PHYS, V41, P4379 64377 DUFF MJ, 1991, PHYS LETT B, V273, P409 64378 DUFFY LC, 1991, EPIDEMIOLOGY, V2, P141 64379 HOROWITZ GT, 1991, NUCL PHYS B, V360, P197 64380 JIANG Y, 2000, J MATH PHYS, V41, P2616 64381 LALAK Z, HEPPH9702405 64382 LI S, HEPTH0001007 64383 NAMBU Y, 1970, UNPUB LECT COPENHAGE 64384 NIELSEN HB, 1973, NUCL PHYS B, V57, P367 64385 POLYAKOV A, 1986, NUCL PHYS B, V268, P406 64386 SCHOUTEN JA, 1965, TENSOR ANAL PHYSICIT, P415 64387 TAO BX, 1999, CHINESE PHYS LETT, V16, P701 64388 TOWNSEND PK, 1988, PHYS LETT B, V202, P53 64389 TOWNSEND PK, 1995, PHYS LETT B, V350, P184 64390 TUROK N, ASTROPH9612242 64391 VILENKIN A, 1994, COSMIC STRINGS OTHER 64392 YANG GH, 1998, INT J MOD PHYS B, V12, P2599 64393 YANG GH, 1998, INT J THEOR PHYS, V37, P2371 64394 YANG GH, 1998, INT J THEOR PHYS, V37, P2953 64395 YANG GH, 1998, MOD PHYS LETT A, V13, P745 64396 YANG GH, 1999, INT J ENG SCI, V37, P1037 64397 NR 29 64398 TC 6 64399 SN 0256-307X 64400 J9 CHIN PHYS LETT 64401 JI Chin. Phys. Lett. 64402 PD MAY 64403 PY 2001 64404 VL 18 64405 IS 5 64406 BP 631 64407 EP 633 64408 PG 3 64409 SC Physics, Multidisciplinary 64410 GA 440GX 64411 UT ISI:000169168500003 64412 ER 64413 64414 PT J 64415 AU Gu, GD 64416 TI Some conditions for existence and stability of relaxed incomplete LU 64417 factorizations 64418 SO APPLIED NUMERICAL MATHEMATICS 64419 DT Article 64420 DE linear systems; preconditioners; incomplete factorizations; relaxation 64421 parameter 64422 ID LINEAR-SYSTEMS; MATRICES 64423 AB We present a condition for the existence of the relaxed incomplete LU 64424 factorization (RILU) (Axelsson and Lindskog, 1986), and based on the 64425 analytical results of Elman (1986, 1989), we show the conditions for 64426 the stability of the computations involving the triangular factors in 64427 the RILU preconditioning operation during the preconditioned iterative 64428 process, These conditions are related to the relaxation parameter omega 64429 and the focus is mainly on RILU(L,w). Our analysis consists of an 64430 analytical and numerical study of a class of pentadiagonal matrices. 64431 The numerical experiments show that these conditions play an important 64432 role in obtaining an efficient RILU preconditioner, and show that the 64433 relaxation parameter w could also play an important role in obtaining 64434 an efficient RILU preconditioner. (C) 2001 IMACS. Published by Elsevier 64435 Science B.V. All rights reserved. 64436 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 64437 RP Gu, GD, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 64438 CR AXELSSON O, 1984, FINITE ELEMENT SOLUT 64439 AXELSSON O, 1986, NUMER MATH, V48, P479 64440 AXELSSON O, 1994, NUMER LINEAR ALGEBR, V1, P155 64441 BRUASET AM, 1990, MATH COMPUT, V54, P701 64442 CHOW E, 1997, J COMPUT APPL MATH, V86, P387 64443 ELMAN HC, 1986, MATH COMPUT, V47, P191 64444 ELMAN HC, 1989, BIT, V29, P890 64445 GU GD, 1987, SOLUTION NONSYMMETRI 64446 GU GD, 1999, LINEAR ALGEBRA APPL, V299, P1 64447 GUSTAFSSON I, 1978, BIT, V18, P142 64448 GUSTAFSSON I, 1983, PRECONDITIONING METH, P265 64449 GUSTAFSSON I, 1996, BIT, V36, P86 64450 MANTEUFFEL TA, 1980, MATH COMPUT, V34, P473 64451 MEIJERINK JA, 1977, MATH COMPUT, V31, P148 64452 MEIJERINK JA, 1981, J COMPUT PHYS, V44, P134 64453 SAAD Y, 1996, ITERATIVE METHODS SP 64454 VANDERVORST HA, 1981, J COMPUT PHYS, V44, P1 64455 WITTUM G, 1989, SIAM J SCI STAT COMP, V10, P699 64456 NR 18 64457 TC 0 64458 SN 0168-9274 64459 J9 APPL NUMER MATH 64460 JI Appl. Numer. Math. 64461 PD JUL 64462 PY 2001 64463 VL 38 64464 IS 1-2 64465 BP 105 64466 EP 121 64467 PG 17 64468 SC Mathematics, Applied 64469 GA 442FB 64470 UT ISI:000169273600006 64471 ER 64472 64473 PT J 64474 AU Wang, NN 64475 TI A theoretical and experimental study to measure the concentration and 64476 particle size distribution in two-phase flows 64477 SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION 64478 DT Article 64479 AB Based on light scattering theory, an optical method is presented for 64480 measuring the concentration and particle size distribution of the 64481 dispersed phase in two-phase flows. A prototype was also constructed. 64482 Comprehensive computer simulation and numerical calculations were 64483 carried out to calibrate the correctness of this method. An 64484 experimental study was also performed in gas-solid and gas-liquid 64485 two-phase flows. The results of the measurements are given and 64486 discussed in detail. 64487 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China. 64488 RP Wang, NN, Shanghai Univ Sci & Technol, 516 Jun Gong Rd, Shanghai 64489 200093, Peoples R China. 64490 CR BARTH HG, 1984, MODERN METHODS PARTI 64491 BAYVEL LP, 1981, ELECTROMAGNETIC SCAT 64492 KERKER M, 1969, SCATTERING LIGHT OTH 64493 MILLER BV, 1988, CRC CRIT R ANAL CHEM, V20, P75 64494 VANDEHULST HC, 1957, LIGHT SCATTERING SMA 64495 WANG NN, 1995, P 1 INT S 2 PHAS FLO, P695 64496 WANG NN, 1995, P INT S MEAS TECHN M, P127 64497 WANG NN, 2000, OPTICAL PARTICLE SIZ 64498 YU SM, 1999, THESIS U SHANGHAI SC 64499 NR 9 64500 TC 3 64501 SN 0934-0866 64502 J9 PART PART SYST CHARACT 64503 JI Part. Part. Syst. Charact. 64504 PD MAY 64505 PY 2001 64506 VL 18 64507 IS 1 64508 BP 26 64509 EP 32 64510 PG 7 64511 SC Engineering, Chemical; Materials Science, Characterization & Testing 64512 GA 439EZ 64513 UT ISI:000169099000004 64514 ER 64515 64516 PT J 64517 AU Wang, XZ 64518 Lu, HB 64519 Wang, XF 64520 Yu, DY 64521 Qian, F 64522 Fang, ZJ 64523 TI Effect of wavelength-modulating parameters on intensity fluctuations of 64524 the light source in a photothermal-modulating laser-diode interferometer 64525 SO JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS 64526 DT Article 64527 DE interferometer; photothermal effect; laser diode; optical testing 64528 AB In the laser diode interferometer with a photothermal wavelength 64529 modulation which is used for optical fine measurement, intensity 64530 fluctuations of the light source cause measurement errors though the 64531 fluctuations decrease greatly as compared with the injection current 64532 modulation of wavelength. In this paper, we investigated the effect of 64533 photothermal-modulation parameters of wavelength on the intensity 64534 fluctuations of the light source. Choosing appropriate 64535 photothermal-modulation parameters, we measured microdisplacements of 64536 objects with a high measurement accuracy. 64537 C1 Acad Sinica, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China. 64538 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. 64539 RP Wang, XZ, Acad Sinica, Shanghai Inst Opt & Fine Mech, POB 800-211, 64540 Shanghai 201800, Peoples R China. 64541 CR CASEY HC, 1978, HETEROSTRUCTURE LA A 64542 KAKUMA S, 1994, OPT ENG, V33, P2992 64543 KLIMCAK CM, 1988, J OPT SOC AM B, V5, P211 64544 SASAKI O, 1990, OPT ENG, V29, P1511 64545 WANG XF, 1999, OPT LASER TECHNOL, V31, P559 64546 NR 5 64547 TC 2 64548 SN 1464-4258 64549 J9 J OPT A-PURE APPL OPT 64550 JI J. Opt. A-Pure Appl. Opt. 64551 PD MAY 64552 PY 2001 64553 VL 3 64554 IS 3 64555 BP 222 64556 EP 224 64557 PG 3 64558 SC Optics 64559 GA 438UU 64560 UT ISI:000169073300016 64561 ER 64562 64563 PT J 64564 AU Shang, XC 64565 Cheng, CJ 64566 TI Exact solution for cavitated bifurcation for compressible hyperelastic 64567 materials 64568 SO INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE 64569 DT Article 64570 DE cavitation; hyperelastic materials; bifurcation; exact solution 64571 ID NONLINEARLY ELASTIC SPHERES; SOLIDS; GROWTH; ELASTODYNAMICS; 64572 ELASTOSTATICS; EQUILIBRIA; EXAMPLE; FINITE 64573 AB In this paper, a new exact analytic solution for spherical cavitated 64574 bifurcation is presented for a class of compressible hyperelastic 64575 materials. The strain energy density of the materials is assumed to be 64576 a linear function of three strain invariants, which may be regarded as 64577 a first-order approximation to the general strain energy density near 64578 the reference configuration, and also may satisfy certain constitutive 64579 inequalities of hyperelastic materials. An explicit formula for the 64580 critical stretch for the cavity nucleation and a simple bifurcation 64581 solution for the deformed cavity radius which describes the cavity 64582 growth are obtained. The potential energy associated with the cavitated 64583 deformation is examined. It is always lower than that associated with 64584 the homogeneous deformation, thus the state of cavitated deformation is 64585 relatively stable. On the basis of the presented analytic solutions for 64586 the stretches and stresses, the catastrophic transition of deformation 64587 and the jumping of stresses for the cavitation are discussed in detail. 64588 The boundary layers of the displacements, the strain energy 64589 distribution and stresses near the formed cavity wall are observed. 64590 These investigations illustrate that cavitation reflects a local 64591 behaviour of materials. (C) 2001 Elsevier Science Ltd. All rights 64592 reserved. 64593 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 64594 Univ Sci & Technol Beijing, Dept Math & Mech, Beijing 100083, Peoples R China. 64595 Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China. 64596 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 64597 200072, Peoples R China. 64598 CR ABEYARATNE R, 1991, Q J MECH APPL MATH, V44, P429 64599 ANTMAN SS, 1983, ARCH RATION MECH AN, V83, P1 64600 ANTMAN SS, 1987, J ELASTICITY, V18, P131 64601 BADEA L, 1996, MECH RES COMMUN, V23, P461 64602 BALL JM, 1982, PHILOS T ROY SOC A, V306, P557 64603 BIWA S, 1994, J APPL MECH-T ASME, V61, P395 64604 BIWA S, 1995, INT J NONLINEAR MECH, V30, P899 64605 CHOUWANG MS, 1989, INT J ENG SCI, V27, P967 64606 CIARLET PG, 1988, MATH ELASTICITY, V1 64607 ERINGEN AC, 1962, NONLINEAR THEORY CON 64608 ERTAN N, 1988, ASCE J ENG MECHANICS, V114, P1231 64609 GENT AN, 1958, P ROY SOC LOND A MAT, V249, P195 64610 HAUGHON DM, 1990, INT J ENG SCI, V28, P162 64611 HORGAN CO, 1986, J ELASTICITY, V16, P189 64612 HORGAN CO, 1989, P ROY IRISH ACAD A, V89, P185 64613 HORGAN CO, 1992, INT J SOLIDS STRUCT, V29, P279 64614 HORGAN CO, 1995, APPL MECH REV, V48, P471 64615 HORGAN CO, 1995, J APPL MATH PHYS, V46, S107 64616 HOU HS, 1992, J MECH PHYS SOLIDS, V40, P571 64617 HOU HS, 1993, J APPL MECH-T ASME, V60, P1 64618 LEI HC, 1996, J ENG MATH, V30, P693 64619 MERNARD F, 1992, Q APPL MATH, V50, P201 64620 MURPHY JG, 1997, INT J SOLIDS STRUCT, V34, P3859 64621 PERICAKSPECTOR KA, 1988, ARCH RATION MECH AN, V101, P293 64622 PODIOGUIDUGLI P, 1986, J ELASTICITY, V16, P75 64623 POLIGNONE DA, 1993, INT J SOLIDS STRUCT, V30, P3381 64624 POLIGNONE DA, 1993, J ELASTICITY, V33, P27 64625 SHANG XC, 1996, ACTA MECH SINICA, V28, P751 64626 SIVALOGANATHAN J, 1986, ARCH RATION MECH AN, V96, P97 64627 SIVALOGANATHAN J, 1986, MATH PROC CAMBRIDGE, V99, P589 64628 STUART CA, 1985, ANN I H POINCARE-AN, V2, P33 64629 TIANHU H, 1990, INT J FRACTURE, V43, R51 64630 TIMOSHENKO S, 1956, THEORY ELASTICITY 64631 TRUESDELL C, 1965, ENCY PHYSICS, V3 64632 NR 34 64633 TC 15 64634 SN 0020-7225 64635 J9 INT J ENG SCI 64636 JI Int. J. Eng. Sci. 64637 PD JUL 64638 PY 2001 64639 VL 39 64640 IS 10 64641 BP 1101 64642 EP 1117 64643 PG 17 64644 SC Engineering, Multidisciplinary 64645 GA 438NR 64646 UT ISI:000169060400002 64647 ER 64648 64649 PT J 64650 AU Dong, CH 64651 TI Higher-order fluctuations and their squeezing of angular momentum in 64652 atomic coherent states 64653 SO ACTA PHYSICA SINICA 64654 DT Article 64655 DE atomic coherent state; Bloch state; SU(2)squeezing 64656 ID QUANTUM-OPTICS 64657 AB The second-,fourth-and sixth-order fluctuations have been discussed by 64658 making use of SU(2)Lie algebra. On the basis of higher-order 64659 uncertainty relation,the definition of higher-order squeezing for the 64660 fluctuations of angular momentum has been put forward. In 64661 particular,the second-,fourth-and sixth-order squeezing in atomic 64662 coherent states are investigated. These methods and definition can be 64663 used for studying much higher-order squeezing. The higher-order 64664 squeezing can be generalized to the fluctuations of atomic variances 64665 thereby. 64666 C1 Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China. 64667 RP Dong, CH, Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China. 64668 CR ARECCHI FT, 1972, PHYS REV A, V6, P2211 64669 DONG CH, 1996, ACTA OPT SINICA, V16, P1543 64670 DONG CH, 1996, ACTA PHYS SINICA, V46, P946 64671 HILLERY M, 1987, PHYS REV A, V36, P3796 64672 HONG CK, 1985, PHYS REV A, V32, P974 64673 NASREEN T, 1992, PHYS REV A, V46, P4161 64674 TU HT, 1993, J MOD OPTIC, V40, P57 64675 WILSONGORDON AD, 1991, PHYS REV A, V44, P7647 64676 WODKIEWICZ K, 1985, J OPT SOC AM B, V2, P458 64677 NR 9 64678 TC 2 64679 SN 1000-3290 64680 J9 ACTA PHYS SIN-CHINESE ED 64681 JI Acta Phys. Sin. 64682 PD JUN 64683 PY 2001 64684 VL 50 64685 IS 6 64686 BP 1058 64687 EP 1063 64688 PG 6 64689 SC Physics, Multidisciplinary 64690 GA 438CT 64691 UT ISI:000169036700012 64692 ER 64693 64694 PT J 64695 AU Wu, Z 64696 Wang, Q 64697 TI Propagation properties of magnetic surface waves on the interface 64698 between two nonlinear antiferromagnets 64699 SO ACTA PHYSICA SINICA 64700 DT Article 64701 DE antiferromagnetic crystals; nonlinear surface waves 64702 ID MICROWAVE-ENVELOPE SOLITONS; IRON-GARNET FILMS; SPATIAL SOLITONS; 64703 FERROMAGNETIC-FILMS; COLLISION; BEAMS 64704 AB The nonlinear behavior of surface waves on the interface between two 64705 uni-axis antiferromagnets is studied. The theoretical analysis and the 64706 numerical simulation show that there exist two thresholds: frequency 64707 threshold and power threshold. All the incident waves satisfying the 64708 two thresholds can steadily propagate in this new guiding structure. It 64709 is indicated that the peak field will jump from one antiferromagnet 64710 into another when the power increases. It;is also revealed that the 64711 magnetic field amplitude on the interface is not power-dependent but 64712 frequency-dependent. 64713 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 64714 RP Wu, Z, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 64715 CR AITCHISON JS, 1991, J OPT SOC AM B, V8, P1290 64716 ALMEIDA NS, 1987, PHYS REV B, V36, P2015 64717 BOARDMAN AD, 1990, PHYS REV B, V41, P717 64718 BOARDMAN AD, 1993, PHYS REV B, V48, P13602 64719 BORDMAN AD, 1994, IEEE T MAGN, V30, P14 64720 BOYLE JW, 1996, PHYS REV B, V53, P12173 64721 CHEN M, 1994, PHYS REV B, V49, P12773 64722 CHIAO RY, 1964, PHYS REV LETT, V13, P479 64723 DEGASPERIS P, 1988, J APPL PHYS, V63, P4136 64724 HAUS HA, 1996, REV MOD PHYS, V68, P423 64725 JUN S, 1997, J MAGN MAGN MATER, V167, P223 64726 KELLEY PL, 1965, PHYS REV LETT, V15, P1005 64727 LEDERER F, 1983, APPL PHYS B-PHOTO, V31, P69 64728 MA JG, 1995, IEEE T MICROW THEORY, V43, P790 64729 MANEUF S, 1988, OPT COMMUN, V65, P193 64730 MOLLENAUER LF, 1998, IEEE J QUANTUM ELECT, V34, P2089 64731 NEWELL AC, 1991, NONLINEAR OPTICS, P129 64732 REYNAUD F, 1992, NONLINEAR GUIDED WAV 64733 SEGEV M, 1998, PHYS TODAY 1, V51, P42 64734 SHI TT, 1990, OPT LETT, V15, P1123 64735 SNYDER AW, 1994, PHYS REV LETT, V72, P1012 64736 TSANKOV MA, 1994, J APPL PHYS, V76, P4274 64737 WANG Q, 1998, J APPL PHYS, V83, P382 64738 WANG Q, 1999, SCI CHINA SER A, V42, P310 64739 WANG Q, 2000, J APPL PHYS, V87, P1998 64740 WANG YF, 1998, J APPL PHYS, V84, P6233 64741 ZHANG HY, 1998, J APPL PHYS, V84, P3776 64742 NR 27 64743 TC 1 64744 SN 1000-3290 64745 J9 ACTA PHYS SIN-CHINESE ED 64746 JI Acta Phys. Sin. 64747 PD JUN 64748 PY 2001 64749 VL 50 64750 IS 6 64751 BP 1178 64752 EP 1184 64753 PG 7 64754 SC Physics, Multidisciplinary 64755 GA 438CT 64756 UT ISI:000169036700033 64757 ER 64758 64759 PT J 64760 AU Peng, YZ 64761 Fan, TY 64762 Jiang, FR 64763 Zhang, WG 64764 Sun, YF 64765 TI Perturbative method for solving elastic problems of one-dimensional 64766 hexagonal quasicrystals 64767 SO JOURNAL OF PHYSICS-CONDENSED MATTER 64768 DT Article 64769 ID ICOSAHEDRAL QUASI-CRYSTALS; STRAIGHT DISLOCATIONS; SYMMETRY; 64770 EXPRESSIONS; ALLOYS; ORDER; POINT; CRACK 64771 AB A new perturbation technique for solving elastic three-dimensional 64772 problems of quasicrystals is supplied. The key idea of this technique 64773 is to simplify the equations by introducing a parameter which does not 64774 exist in the original equations, and then look for the perturbation 64775 solution for the problems of interest. To illustrate the utility of our 64776 method and for comparison, we consider the crack problem for 64777 one-dimensional hexagonal quasicrystals with point groups 6mm, 64778 62(h)2(h), 6(m)2(h) and 6/m(h)mm, whose exact solution has been 64779 obtained by the first two authors of this paper. Only up to the order 64780 zero approximation, we get the exact expression for the stress 64781 intensity factor, which is the most important physical quantity in 64782 fracture theory. Moreover, the same procedure can be used to deal with 64783 the elastic problems for two- and three-dimensional quasicrystals. A 64784 simple review of the method is finally given. 64785 C1 Beijing Inst Technol, Res Ctr Mat Sci, Beijing 100080, Peoples R China. 64786 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 64787 Shanghai Univ Sci & Technol, Dept Basic Sci, Shanghai 200093, Peoples R China. 64788 Tsing Hua Univ, Dept Automat, Beijing 100084, Peoples R China. 64789 RP Peng, YZ, Beijing Inst Technol, Res Ctr Mat Sci, POB 327, Beijing 64790 100080, Peoples R China. 64791 CR BAK P, 1985, PHYS REV LETT, V54, P1517 64792 BENDER CM, 1978, ADV MATH METHODS SCI, CH8 64793 BUSBRIDGE IW, 1938, P LOND MATH SOC, V44, P114 64794 DAI MX, 1993, PHIL MAG LETT, V67, P67 64795 DE P, 1987, PHYS REV B, V35, P8609 64796 DE P, 1987, PHYS REV B, V36, P9304 64797 DING DH, 1993, PHYS REV B, V48, P7003 64798 DING DH, 1995, J PHYS-CONDENS MAT, V7, P5423 64799 DING DH, 1995, PHIL MAG LETT, V72, P353 64800 EBERT P, 1996, PHYS REV LETT, V77, P3827 64801 FAN TY, 1999, MATH THEORY ELASTICI 64802 FENG YC, 1989, J PHYS-CONDENS MAT, V1, P3695 64803 HE LX, 1988, PHYS REV LETT, V61, P1116 64804 ISHIMASA T, 1985, PHYS REV LETT, V55, P511 64805 LEVINE D, 1985, PHYS REV LETT, V54, P1520 64806 LI XF, 1999, PHILOS MAG A, V79, P1943 64807 MERLIN R, 1985, PHYS REV LETT, V55, P1768 64808 PENG YZ, 2000, CHINESE PHYS, V9, P764 64809 PENG YZ, 2000, J PHYS-CONDENS MAT, V12, P9381 64810 QIN YL, 1997, J PHYS-CONDENS MAT, V9, P859 64811 SHECHTMAN D, 1984, PHYS REV LETT, V53, P1951 64812 SOCOLAR JES, 1986, PHYS REV B, V34, P3345 64813 TITCHMARSH EC, 1937, INTRO THEORY FOURIER, P337 64814 WANG N, 1987, PHYS REV LETT, V59, P1010 64815 WANG R, 1994, ACTA CRYSTALLOGR A, V50, P366 64816 WANG RH, 1997, J PHYS-CONDENS MAT, V9, P2411 64817 YANG WG, 1995, PHYS LETT A, V200, P177 64818 YANG WG, 1998, PHILOS MAG A, V77, P1481 64819 NR 28 64820 TC 0 64821 SN 0953-8984 64822 J9 J PHYS-CONDENS MATTER 64823 JI J. Phys.-Condes. Matter 64824 PD MAY 7 64825 PY 2001 64826 VL 13 64827 IS 18 64828 BP 4123 64829 EP 4128 64830 PG 6 64831 SC Physics, Condensed Matter 64832 GA 435YY 64833 UT ISI:000168910800022 64834 ER 64835 64836 PT J 64837 AU Wei, EB 64838 Gu, GQ 64839 TI The effective AC response of nonlinear composites 64840 SO COMMUNICATIONS IN THEORETICAL PHYSICS 64841 DT Article 64842 DE nonlinear composite; effective nonlinear susceptibility 64843 ID EFFECTIVE CONDUCTIVITIES; DIELECTRIC-CONSTANT; MEDIA; ABSORPTION; 64844 GENERATION; SPHERES 64845 AB A perturbative approach is used to study the AC response of nonlinear 64846 composite media, which obey a current-field relation of the form J = 64847 sigmaE + chi \E \ E-2 with components having nonlinear response at 64848 finite frequencies. For a sinusoidal applied field, we extend the local 64849 potential in terms of sinusoidal components at fundamental frequency 64850 and high-order harmonic frequencies to treat the nonlinear composites. 64851 For nonlinear composite media with a low concentrations of spherical 64852 inclusions, we give the formulae of the nonlinear effective AC 64853 susceptibility chi (*)(3 omega) at the third harmonic frequency. 64854 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China. 64855 RP Wei, EB, Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, 64856 Peoples R China. 64857 CR BERGMAN DJ, 1979, J PHYS C SOLID STATE, V12, P4947 64858 BLUMENFELD R, 1989, PHYS REV B, V40, P1987 64859 CHEN G, 1994, COMMUN THEOR PHYS, V22, P265 64860 GERARDY JM, 1980, PHYS REV B, V22, P4950 64861 GU GQ, 1988, PHYS REV B, V37, P8612 64862 GU GQ, 1992, PHYS REV B, V46, P4502 64863 GU GQ, 1995, J APPL PHYS, V78, P1737 64864 GU GQ, 2000, PHYSICA B, V279, P62 64865 HUI PM, 1998, J APPL PHYS, V84, P3451 64866 KLINGENBERG DJ, 1998, MRS BULL, V23, P30 64867 LEVY O, 1995, PHYS REV E, V52, P3184 64868 LU SY, 1994, J APPL PHYS, V76, P2641 64869 MCPHYEDRAN RC, 1987, P ROY SOC LOND A MAT, V395, P45 64870 POLADIAN L, 1991, PHYS REV B, V44, P2092 64871 SUEN WM, 1979, J PHYS D, V12, P1325 64872 YU KW, 1992, PHYS LETT A, V168, P313 64873 YU KW, 1993, PHYS REV B, V47, P14150 64874 ZENG XC, 1989, PHYSICA A, V157, P192 64875 NR 18 64876 TC 6 64877 SN 0253-6102 64878 J9 COMMUN THEOR PHYS 64879 JI Commun. Theor. Phys. 64880 PD APR 15 64881 PY 2001 64882 VL 35 64883 IS 4 64884 BP 501 64885 EP 504 64886 PG 4 64887 SC Physics, Multidisciplinary 64888 GA 436MM 64889 UT ISI:000168939700024 64890 ER 64891 64892 PT J 64893 AU Lu, ZM 64894 Liu, YL 64895 Jiang, JB 64896 TI Experimental study on turbulent features in the negative transport 64897 region of asymmetric plane channel flow 64898 SO ACTA MECHANICA SINICA 64899 DT Article 64900 DE negative transport; asymmetric channel flow turbulent characteristics 64901 AB Turbulent features of streamwise and vertical components of velocity in 64902 the negative transport region of asymmetric plane channel flow have 64903 been studied experimentally in details. Experiments show that turbulent 64904 fluctuations in negative transport region are suppressed, and their 64905 probability distributions are far from Gaussian. Besides, the skewness 64906 factors attain their negative maxima at the position of the maximum 64907 mean velocity, whereas the flatness factors attain their positive 64908 maxima at the same position. 64909 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 64910 RP Lu, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 64911 Peoples R China. 64912 CR CIOFALO M, 1992, INT J NUMER METH FL, V15, P453 64913 ESKINAZI S, 1956, J AERONAUT SCI, V23, P23 64914 ESKINAZI S, 1969, PHYS FLUIDS, V12, P1988 64915 HANJALIC K, 1972, J FLUID MECH, V51, P301 64916 JIANG JB, 2000, ADV MECH, V30, P425 64917 LAUNDER BE, 1975, J FLUID MECHANICS 3, V68, P537 64918 NR 6 64919 TC 2 64920 SN 0567-7718 64921 J9 ACTA MECH SINICA 64922 JI Acta Mech. Sin. 64923 PD MAY 64924 PY 2001 64925 VL 17 64926 IS 2 64927 BP 125 64928 EP 132 64929 PG 8 64930 SC Engineering, Mechanical; Mechanics 64931 GA 437HR 64932 UT ISI:000168986700003 64933 ER 64934 64935 PT J 64936 AU Zhang, Y 64937 Ji, YF 64938 Zhao, DQ 64939 Zhuang, YX 64940 Wang, RJ 64941 Pan, MX 64942 Dong, YD 64943 Wang, WH 64944 TI Glass forming ability and properties of Zr/Nb-based bulk metallic 64945 glasses 64946 SO SCRIPTA MATERIALIA 64947 DT Article 64948 DE metallic glasses; casting; acoustic measurements 64949 ID MECHANICAL-PROPERTIES; ALLOYS; CRYSTALLIZATION 64950 C1 Chinese Acad Sci, Inst Phys, Ctr Condensed Matter Phys, Beijing 100080, Peoples R China. 64951 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China. 64952 Chinese Acad Sci, Natl Micrograv Lab, Beijing 100080, Peoples R China. 64953 RP Zhang, Y, Chinese Acad Sci, Inst Phys, Ctr Condensed Matter Phys, POB 64954 603, Beijing 100080, Peoples R China. 64955 CR CONNER RD, 1998, ACTA MATER, V46, P6089 64956 ECKERT J, 1999, MATER SCI FORUM, V312, P3 64957 FAN C, 1999, MATER T JIM, V40, P42 64958 GREER AL, 1993, NATURE, V366, P303 64959 INOUE A, 1995, MATER T JIM, V36, P866 64960 LI Y, 1997, SCRIPTA MATER, V36, P783 64961 LIU W, 1999, PHYS REV B, V59, P11755 64962 LU ZP, 2000, J NON-CRYST SOLIDS, V270, P103 64963 PEKER A, 1993, APPL PHYS LETT, V63, P2341 64964 TURNBULL D, 1969, CONTEMP PHYS, V10, P473 64965 WANG WH, 1998, PHYS REV B, V57, P8211 64966 WANG WH, 1999, APPL PHYS LETT, V74, P1803 64967 WANG WH, 2000, ACTA METALL SINICA, V36, P329 64968 ZHANG Y, 1999, ACTA PHOTONICA SINIC, V28, P35 64969 NR 14 64970 TC 4 64971 SN 1359-6462 64972 J9 SCRIPTA MATER 64973 JI Scr. Mater. 64974 PD APR 17 64975 PY 2001 64976 VL 44 64977 IS 7 64978 BP 1107 64979 EP 1112 64980 PG 6 64981 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 64982 Engineering 64983 GA 433DE 64984 UT ISI:000168739400017 64985 ER 64986 64987 PT J 64988 AU Lu, HQ 64989 Harko, T 64990 Mak, MK 64991 TI Cosmic no-hair conjecture in Einstein-Cartan theory 64992 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS D 64993 DT Article 64994 ID HOMOGENEOUS COSMOLOGICAL MODELS; POWER-LAW INFLATION; R2 COSMOLOGY; 64995 SPACETIME; SPIN 64996 AB We prove the cosmic no-hair conjecture in the Einstein-Cartan theory by 64997 taking into account the effects due to the spin of matter. If the 64998 ordinary matter forming the cosmological fluid satisfies the dominant 64999 and strong energy conditions and the anisotropy energy sigma (2) is 65000 larger than the spin energy S-2 (i.e. sigma (2) - S-2 greater than or 65001 equal to 0), then all initially expanding Bianchi cosmologies-except 65002 type IX- evolve toward the de Sitter spacetime on a Hubble expansion 65003 time root3/Lambda. The behavior of the Bianchi type IX Universe is 65004 similar, provided that the cosmological constant is larger than the 65005 half of the largest scalar spatial curvature R-(3)(max). 65006 C1 Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. 65007 Shanghai Univ, Dept Phys, Shanghai, Peoples R China. 65008 Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China. 65009 RP Lu, HQ, Univ Hong Kong, Dept Phys, Pokfulam, Hong Kong, Hong Kong, 65010 Peoples R China. 65011 CR ABBOTT LF, 1984, NUCL PHYS B, V244, P541 65012 AMSTERDAMSKI P, 1985, PHYS REV D, V31, P3037 65013 BARROW JD, 1977, MON NOT R ASTRON SOC, V178, P625 65014 BICAK J, 1992, ABSTR C GEN REL CORD, V13, P12 65015 CHAMBERS CM, 1994, PHYS REV LETT, V73, P617 65016 COTSAKIS S, 1993, PHYS LETT B, V319, P69 65017 COTSAKIS S, 1998, CLASSICAL QUANT GRAV, V15, P2795 65018 DEMIANSKI M, 1987, PHYS REV D, V35, P1181 65019 FUTAMASE T, 1984, PHYS REV D, V29, P2783 65020 GIBBONS GW, 1977, PHYS REV D, V15, P2738 65021 GUTH AH, 1981, PHYS REV D, V23, P347 65022 HEHL FW, 1976, REV MOD PHYS, V48, P393 65023 JENSEN LG, 1986, PHYS REV D, V34, P831 65024 KASPER U, GRQC9410030 65025 KITADA Y, 1992, PHYS REV D, V45, P1416 65026 KLUSKE S, GRQC9503021 65027 KONG KH, 1998, ASTROPHYS SPACE SCI, V260, P521 65028 LINDE AD, 1982, PHYS LETT B, V108, P389 65029 LINDE AD, 1983, PHYS LETT B, V129, P177 65030 LINDE AD, 1984, REP PROG PHYS, V47, P925 65031 LU HQ, 1995, CLASSICAL QUANT GRAV, V12, P2755 65032 LU HQ, 1996, 21 CENT CHIN ASTR C, P473 65033 LUCCHIN F, 1985, PHYS REV D, V32, P1316 65034 MAEDA K, 1988, PHYS REV D, V37, P858 65035 MAEDA K, 1992, ABSTR C GEN REL CORD, V13, P296 65036 MARTINEZGONZALE.E, 1986, PHYS LETT B, V167, P37 65037 MIJIC MB, 1986, PHYS REV D, V34, P2934 65038 MONDAINI R, 1993, INT J MOD PHYS D, V2, P47 65039 MOSS IG, 1986, PHYS LETT B, V178, P15 65040 OBUKHOV YN, 1987, CLASSICAL QUANT GRAV, V4, P1633 65041 ROTHMAN T, 1985, PHYS LETT B, V159, P256 65042 ROTHMAN T, 1986, PHYS LETT B, V180, P19 65043 STAROBINSKY AA, 1980, PHYS LETT B, V91, P99 65044 STEIGMAN G, 1983, PHYS LETT B, V128, P129 65045 TORII T, 1999, PHYS REV D, V59 65046 TURNER MS, 1986, PHYS REV LETT, V57, P2237 65047 WALD RM, 1983, PHYS REV D, V28, P2118 65048 YOKOYAMA J, 1990, PHYS REV D, V41, P1047 65049 ZARDECKI A, 1985, PHYS REV D, V31, P718 65050 NR 39 65051 TC 3 65052 SN 0218-2718 65053 J9 INT J MOD PHYS D 65054 JI Int. J. Mod. Phys. D 65055 PD JUN 65056 PY 2001 65057 VL 10 65058 IS 3 65059 BP 315 65060 EP 324 65061 PG 10 65062 SC Astronomy & Astrophysics 65063 GA 433XQ 65064 UT ISI:000168786300006 65065 ER 65066 65067 PT J 65068 AU Gu, GQ 65069 Hui, PM 65070 TI Interaction between particles and particle chains in electrorheological 65071 fluids 65072 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B 65073 DT Article 65074 ID SUSPENSIONS; CONDUCTIVITY; SIMULATION; SPHERES 65075 AB The electric potential in a granular system consisting of spherical 65076 inclusions in the presence of an external applied electric field is 65077 studied in detail within the framework of the Rayleigh identity. The 65078 effects of induced charges on the inclusions are taken into account 65079 explicitly. The method, in principle, includes the effects of all 65080 multipoles. The method is applied to study the interaction between two 65081 inclusions. The standard form of interaction between inclusions widely 65082 used in studying ER fluids is recovered as an approximation of our 65083 general approach. We then apply the method to a chain of inclusions. 65084 Analytic expressions for the electrostatic energy per inclusion and the 65085 electric field are obtained for the case in which the chain is parallel 65086 to the applied field. Our result reduces to the form used in the 65087 literature when appropriate approximation is taken. The method is 65088 further extended to study the interaction between chains of inclusions. 65089 An approximate expression is obtained for the force between two chains 65090 of inclusions. Our approach provides a rigorous framework for 65091 determining the interaction between inclusions and chains of inclusions 65092 to arbitrary accuracy. 65093 C1 Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 201800, Peoples R China. 65094 Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. 65095 RP Gu, GQ, Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 201800, 65096 Peoples R China. 65097 CR GERARDY JM, 1982, PHYS REV B, V25, P4204 65098 GU GQ, UNPUB 65099 GU GQ, 1998, PHYS REV B, V58, P3057 65100 HALSEY TC, 1990, J STAT PHYS, V61, P1257 65101 JACKSON JD, 1975, CLASSICL ELECTRODYNA 65102 KLINGENBERG DJ, 1989, J CHEM PHYS, V91, P7888 65103 KLINGENBERG DJ, 1991, J CHEM PHYS, V94, P6160 65104 KLINGENBERG DJ, 1998, MRS BULL, V23, P30 65105 MCPHEDRAN RC, 1978, P ROY SOC LOND A MAT, V359, P45 65106 PHULE PP, 1998, MRS BULL, V23, P19 65107 RAYLEIGH, 1892, PHILOS MAG, V34, P481 65108 TAO R, 1991, PHYS REV LETT, V67, P398 65109 NR 12 65110 TC 2 65111 SN 0217-9792 65112 J9 INT J MOD PHYS B 65113 JI Int. J. Mod. Phys. B 65114 PD MAR 20 65115 PY 2001 65116 VL 15 65117 IS 6-7 65118 SI Sp. Iss. SI 65119 BP 1033 65120 EP 1041 65121 PG 9 65122 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical 65123 GA 434TQ 65124 UT ISI:000168832300058 65125 ER 65126 65127 PT J 65128 AU Xiang, ZH 65129 Jiang, L 65130 Kang, ZM 65131 TI Transient expression of somatostatin mRNA in developing ganglion cell 65132 layers of rat retina 65133 SO DEVELOPMENTAL BRAIN RESEARCH 65134 DT Article 65135 DE somatostatin; ganglion cell; retina; development; in situ 65136 hybridization; immunocytochemistry 65137 ID INSITU HYBRIDIZATION; CAT RETINA; IMMUNOREACTIVE CELLS; VISUAL-SYSTEM; 65138 MESSENGER-RNA; RABBIT RETINA; NEURONS; DEATH; DIFFERENTIATION; PEPTIDE 65139 AB Somatostatin (SOM) mRNA in developing ganglion cell layer (GCL) 65140 detected by in situ hybridization histochemistry anti SOM peptide in 65141 developing optic chiasma and optic tract detected by 65142 immunocytochemistry were monitored to explore whether ganglion cells 65143 expressing SOM project to the visual center. Most of these cells in the 65144 developing GCL expressed SOM transiently from embryonic day 13 (E13) to 65145 E21. The cells expressing SOM mRNA initially followed a 65146 central-to-peripheral pattern of development. The cells expressing SOM 65147 mRNA in the retinas of fetuses became detectable at E13. From E14 to 65148 E17 the number of cells expressing SOM mRNA increased rapidly. At E17 65149 most of the cells in the developing GCL expressed SOM mRNA. From E18 to 65150 postnatal days the positive cells became sparse except at the postnatal 65151 day 0 (PND0) the positive cells decreased dramatically in comparison 65152 with that at the E21. At PND15, the positive cells only can be found in 65153 the inner neuroblastic layer and in the ganglion cell layer. At PND20 65154 the distribution pattern and the number of the positive cells were 65155 essentially the same as that in adult rat. SOM immunoreactivity was 65156 detectable at E16 in the developing optic chiasma and optic tract; the 65157 majority of the fibers in these area were SOM positive. From E16 to E18 65158 the density of the immunostaining increased rapidly, whereas from E19 65159 to E21 the density decreased. At PND0 no positive fibers were seen. The 65160 transient presence of SOM in most of the ganglion cells in the 65161 developing ganglion cell layer has prompted us to study the rc,le of 65162 SOM in generation and differentiation of the retinal ganglion cells, 65163 and formation of the retina-visual center projections. (C) 2001 65164 Elsevier Science B.V. All rights reserved. 65165 C1 Second Military Med Univ, Dept Histol & Embryol, Shanghai 200433, Peoples R China. 65166 Shanghai Univ Sci & Technol, Elect Engn Coll, Shanghai 200433, Peoples R China. 65167 RP Xiang, ZH, Second Military Med Univ, Dept Histol & Embryol, Shanghai 65168 200433, Peoples R China. 65169 CR BODENANT C, 1991, NEUROSCIENCE, V41, P595 65170 ELLIS JP, 1983, P SOC EXP BIOL MED, V172, P463 65171 ENGELMANN R, 1996, EUR J NEUROSCI, V8, P220 65172 FAWCETT JW, 1984, P NATL ACAD SCI USA, V81, P5589 65173 FERRIERO DM, 1987, BRAIN RES, V431, P207 65174 FERRIERO DM, 1990, DEV BRAIN RES, V57, P15 65175 FINLEY JCW, 1978, AM J ANAT, V153, P483 65176 FONTANESI G, 1997, DEV BRAIN RES, V103, P119 65177 GOODMAN RH, 1982, J BIOL CHEM, V257, P1156 65178 HOEFLER H, 1986, HISTOCHEM J, V18, P597 65179 HOFLER H, 1987, ACTA HISTOCHEM S, V34, P101 65180 HUTSLER JJ, 1995, J COMP NEUROL, V361, P152 65181 INAGAKI S, 1989, MOL BRAIN RES, V6, P289 65182 ISHIMOTO I, 1982, J HIRN FORSCHUNG, V23, P127 65183 JU G, 1987, CELL TISSUE RES, V247, P417 65184 KATZ DM, 1992, J NEUROBIOL, V23, P855 65185 KIRSCH B, 1979, CELL TISSUE RES, V204, P127 65186 KIYAMA H, 1990, NEUROSCIENCE, V38, P223 65187 KUNGEL M, 1997, DEV BRAIN RES, V101, P107 65188 LARSEN JNB, 1990, VISUAL NEUROSCI, V5, P441 65189 LUGO N, 1997, CELL BIOL INT, V21, P447 65190 MCCABE KL, 1999, DEVELOPMENT, V126, P5713 65191 MITROFANIS J, 1989, NEUROSCI LETT, V104, P209 65192 REESE BE, 1992, NEUROSCIENCE, V46, P419 65193 RICKMAN DW, 1996, J COMP NEUROL, V365, P491 65194 SAGAR SM, 1987, J COMP NEUROL, V266, P291 65195 SCHWARTZ JP, 1998, PERSPECT DEV NEUROBI, V5, P427 65196 SENGELAUB DR, 1982, J COMP NEUROL, V204, P311 65197 TRAINA G, 1994, VISUAL NEUROSCI, V11, P165 65198 WHITE CA, 1991, J COMP NEUROL, V304, P1 65199 WHITE CA, 1992, J COMP NEUROL, V317, P129 65200 XIANG Z, 1997, CHIN J ANAT, V20, P21 65201 XIANG ZH, 1998, BRAIN RES, V813, P390 65202 YOUNG RW, 1984, J COMP NEUROL, V229, P362 65203 NR 34 65204 TC 8 65205 SN 0165-3806 65206 J9 DEVELOP BRAIN RES 65207 JI Dev. Brain Res. 65208 PD MAY 31 65209 PY 2001 65210 VL 128 65211 IS 1 65212 BP 25 65213 EP 33 65214 PG 9 65215 SC Developmental Biology; Neurosciences 65216 GA 434ET 65217 UT ISI:000168802700004 65218 ER 65219 65220 PT J 65221 AU Liu, YR 65222 Liu, ZR 65223 Zheng, YA 65224 TI Attractors of nonautonomous Schrodinger equations 65225 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 65226 DT Article 65227 DE nonautonomous Schrodinger equations; uniform attractor; Hausdorff 65228 dimension 65229 AB The long-time behaviour of a two-dimensional nonautonomous nonlinear 65230 Schrodinger equation is considered. The existence! of uniform attractor 65231 is proved and the upper bound of the uniform attractor's Housdorff 65232 dimension is given. 65233 C1 Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China. 65234 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 65235 Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China. 65236 RP Liu, YR, Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China. 65237 CR BABIN AV, 1992, ATTRACTORS EVOLUTION 65238 CHEPYZHOV VV, 1994, J MATH PURE APPL, V73, P279 65239 GUO BL, 1995, NONLINEAR EVOLUTION 65240 HALE JK, 1987, MATH SURVEYS MONOGRA, V25 65241 MIRANVILLE A, 1997, NONLINEARITY, V10, P1047 65242 PAZY A, 1983, APPL MATH SCI, V40 65243 TEMAM R, 1988, APPL MATH SCI, V68 65244 NR 7 65245 TC 0 65246 SN 0253-4827 65247 J9 APPL MATH MECH-ENGL ED 65248 JI Appl. Math. Mech.-Engl. Ed. 65249 PD FEB 65250 PY 2001 65251 VL 22 65252 IS 2 65253 BP 180 65254 EP 189 65255 PG 10 65256 SC Mathematics, Applied; Mechanics 65257 GA 435GF 65258 UT ISI:000168868500007 65259 ER 65260 65261 PT J 65262 AU Zhou, J 65263 Pun, EYB 65264 Chung, PS 65265 Zhang, XH 65266 TI Z-scan measurement of a novel amorphous molecular material 65267 SO OPTICS COMMUNICATIONS 65268 DT Article 65269 DE polymer; Z-scan; nonlinear optics; saturation absorption 65270 ID OPTICAL NONLINEARITIES; WAVE-GUIDE 65271 AB The nonlinear optical refractive and absorption of the novel amorphous 65272 molecular material. 5.5 ' -bis(dimesitylboryl)-2,2 ' -bithiophene have 65273 been investigated by using the Z-scan technique with a 65274 nanosecond-pulsed Nd:YAG laser at its second harmonic (532 nm) 65275 radiation. The nonlinear transmission characteristics exhibit saturable 65276 absorption at 532 nm and are explained by using the three-level 65277 saturable model. The saturation intensity, the real and imaginary parts 65278 of the nonlinear refraction index along with their sign were 65279 determined. These results indicate that BMB-2T is promising material 65280 for photonic applications. (C) 2001 Published by Elsevier Science B.V. 65281 C1 Shanghai Univ Sci & Technol, Inst Engn Phys, Shandong 271019, Peoples R China. 65282 City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China. 65283 Chinese Acad Sci, Inst Photography Chem, Beijing 100101, Peoples R China. 65284 RP Zhou, J, Shanghai Univ Sci & Technol, Inst Engn Phys, Shandong 271019, 65285 Peoples R China. 65286 CR BRANGER C, 1996, J MATER CHEM, V6, P555 65287 BREDAS JL, 1994, CHEM REV, V94, P243 65288 DEMENICIS L, 1997, J OPT SOC AM B, V14, P609 65289 GANG Y, 1998, ADV MATER, V11, P1431 65290 GUBLER U, 1998, APPL PHYS LETT, V73, P2396 65291 KAJZAR F, 1987, NONLINEAR OPTICAL PR, V2, P51 65292 KUZYK M, 1996, ORGANIC THIN FILMS W, P759 65293 MA H, 1995, APPL PHYS LETT, V66, P1581 65294 MA SJ, 1998, OPT COMMUN, V149, P8 65295 MOHAN RK, 1997, OPT COMMUN, V144, P322 65296 NODA T, 1999, ADV MATER, V11, P283 65297 NORMAN P, 1999, J CHEM PHYS, V111, P7758 65298 OLIVEIRA LC, 1996, JPN J APPL PHYS 1, V35, P2649 65299 PETROV DV, 1994, APPL PHYS LETT, V65, P1067 65300 PRASAD PN, 1991, INTRO NONLINEAR OPTI 65301 SAMOC M, 1998, J OPT SOC AM B, V15, P817 65302 SHEIKBAHAE M, 1990, IEEE J QUANTUM ELECT, V26, P760 65303 WANG J, 1994, J OPT SOC AM B, V11, P1009 65304 WANG WS, 1999, IEEE PHOTONIC TECH L, V11, P51 65305 XIA T, 1994, OPT LETT, V19, P317 65306 YANG L, 1992, OPT LETT, V17, P323 65307 ZHOU J, 1997, OPT LETT, V22, P1482 65308 NR 22 65309 TC 5 65310 SN 0030-4018 65311 J9 OPT COMMUN 65312 JI Opt. Commun. 65313 PD MAY 8 65314 PY 2001 65315 VL 191 65316 IS 3-6 65317 BP 427 65318 EP 433 65319 PG 7 65320 SC Optics 65321 GA 431FV 65322 UT ISI:000168621900034 65323 ER 65324 65325 PT J 65326 AU Yu, LM 65327 Wang, Q 65328 TI Analysis of the existence of magnetostatic solitons in ferromagnetic 65329 films under the influence of carriers 65330 SO ACTA PHYSICA SINICA 65331 DT Article 65332 DE magnetostatic solitons; carriers; ferromagnetic film; magnetostatic 65333 surface wave 65334 ID MICROWAVE-ENVELOPE SOLITONS; IRON-GARNET FILMS 65335 AB Under the influence of semiconductor carriers, within certain 65336 frequencies, along the direction of propagation perpendicular to the 65337 external magnetic field, magnetostatic surface wave can develop into 65338 magnetostatic solitons, with the group velocity and phase velocity 65339 being opposite to each other, and the magnitude of the velocity changes 65340 with the carriers density. 65341 C1 Shanghai Univ, Coll Pure Sci, Dept Phys, Shanghai 200436, Peoples R China. 65342 RP Yu, LM, Shanghai Univ, Coll Pure Sci, Dept Phys, Shanghai 200436, 65343 Peoples R China. 65344 CR AWAI I, 1976, JPN J APPL PHYS, V15, P1297 65345 BOARDMAN AD, 1993, PHYS REV B, V48, P13602 65346 BOARDMAN AD, 1994, IEEE T MAGN, V30, P14 65347 CHEN M, 1994, PHYS REV B, V49, P12773 65348 LIGHTHILL MJ, 1965, J I MATH APPL, V1, P269 65349 TSANKOV MA, 1994, J APPL PHYS, V76, P4274 65350 NR 6 65351 TC 0 65352 SN 1000-3290 65353 J9 ACTA PHYS SIN-CHINESE ED 65354 JI Acta Phys. Sin. 65355 PD MAY 65356 PY 2001 65357 VL 50 65358 IS 5 65359 BP 958 65360 EP 963 65361 PG 6 65362 SC Physics, Multidisciplinary 65363 GA 430VF 65364 UT ISI:000168595600031 65365 ER 65366 65367 PT J 65368 AU Hua, ZZ 65369 Xu, HY 65370 Zhou, GY 65371 Liu, JF 65372 Huang, HM 65373 Ding, WX 65374 TI Analyses of thermal stress and fracture during cryopreservation of 65375 blood vessel 65376 SO SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES 65377 DT Article 65378 DE blood vessel; thermal stress; fracture; cryopreservation 65379 ID ARTERIES 65380 AB The occurrence of fractures in the vessel wall has been a major problem 65381 for human blood vessel cryopreservation. The large volumetric expansion 65382 of water during crystallization produces great inner stresses. To solve 65383 these complicated heat transfer and thermal stress problems, a model 65384 and an analytic method are presented in this paper, with which 65385 transient temperature field, the transient stress field inside the 65386 blood vessels during freezing can be calculated and analyzed, and the 65387 probable cracks or fractures can be predicted. The analytic results of 65388 sheep thoracic artery are consistent with the experimental observations 65389 of fractures. 65390 C1 Shanghai Univ Sci & Technol, Inst Cryobiol & Food Sci, Shanghai 200093, Peoples R China. 65391 Shanghai Second Med Univ, Shanghai 200092, Peoples R China. 65392 RP Hua, ZZ, Shanghai Univ Sci & Technol, Inst Cryobiol & Food Sci, 65393 Shanghai 200093, Peoples R China. 65394 CR BATESON EAJ, 1994, CRYOLETT, V15, P15 65395 CALDWELL J, 1998, NUMER HEAT TR B-FUND, V33, P99 65396 HU HY, 2000, J CRYOGENICS, P22 65397 HUA TC, 1994, CRYOBIOMEDICAL TECHN, P20 65398 PEGG DE, 1997, CRYOBIOLOGY, V34, P183 65399 RABIN Y, 1996, CRYOBIOLOGY, V33, P276 65400 SHI X, 1998, T ASAE, V41, P1407 65401 SHI X, 1999, T ASME, V120, P720 65402 TIMOSHENKO S, 1970, THEORY ELASTICITY, P443 65403 ZHANG J, 2000, J ENG THERMOPHYSICS, V21, P350 65404 ZHAO MJ, 1995, THESIS SHANGHAI 2 ME 65405 NR 11 65406 TC 4 65407 SN 1006-9321 65408 J9 SCI CHINA SER E 65409 JI Sci. China Ser. E-Technol. Sci. 65410 PD APR 65411 PY 2001 65412 VL 44 65413 IS 2 65414 BP 158 65415 EP 163 65416 PG 6 65417 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary 65418 GA 429HF 65419 UT ISI:000168509900006 65420 ER 65421 65422 PT J 65423 AU Liu, WQ 65424 Li, Q 65425 Zhou, BX 65426 TI Discussion on corrosion transition mechanism of zircaloy 65427 SO RARE METAL MATERIALS AND ENGINEERING 65428 DT Review 65429 DE zircaloy; corrosion; transition; phase transformation 65430 ID RESISTANCE 65431 AB Several hypotheses on the corrosion transition phenomenon of zircaloy 65432 are presented. Among those, the phase transformation mechanism suggests 65433 that the oxide growth rate of zircaloy is mainly controlled by the 65434 transformation from t-ZrO2 to m-ZrO2 near the oxide/metal interface, 65435 and the t-m transfomation is enhanced due to stress relaxation in 400 65436 degreesC, 10.3 MPa superheated steam or triggered by the interaction of 65437 OH- with oxygen vacanices in 300 degreesC aqueous lithium hydroxide 65438 solution. More attention is paid to this hypothesis and the mechanism 65439 is discussed in this papier. Lastly, authors' view is put forwards: the 65440 break of the barrier leger of oxide-film, which may be caused by the 65441 compressive stress reaching a definite value or the degradation of its 65442 mechanical properties because of the lithium coming into the oxide 65443 film, will bring about the corrosion acceleration and transition 65444 phenomenon. 65445 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 65446 RP Liu, WQ, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. 65447 CR ANADA H, 1996, ZIRCONIUM NUCL IND, P35 65448 BEIE HJ, 1994, ZIRCONIUM NUCL IND, P615 65449 GARZAROLLI F, 1991, ZIRC NUCL IND 9 INT, P395 65450 GODLESWSKI J, 1991, ZIRC NUCL IND 9 INT, P416 65451 GODLEWSKI J, 1994, ZIRCONIUM NUCL IND, P663 65452 KIDO T, 2000, ZIRCONIUM NUCL IND, P773 65453 KIM YS, 1999, J NUCL MATER, V270, P165 65454 LI ZK, 1999, RARE METAL MAT ENG, V28, P101 65455 LI ZK, 1999, RARE METAL MAT ENG, V28, P380 65456 PECHEUR D, 1996, ZIRCONIUM NUCL IND, P94 65457 PECHEUR D, 2000, ZIRCONIUM NUCL IND, P793 65458 SAARIO T, 1993, REZ, P4 65459 ZHOU BX, 1991, HIGH TEMP CORR PROT, P121 65460 ZHOU BX, 2000, NUCL POWER ENG, V21, P439 65461 NR 14 65462 TC 5 65463 SN 1002-185X 65464 J9 RARE METAL MAT ENG 65465 JI Rare Metal Mat. Eng. 65466 PD APR 65467 PY 2001 65468 VL 30 65469 IS 2 65470 BP 81 65471 EP 84 65472 PG 4 65473 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 65474 Engineering 65475 GA 430DC 65476 UT ISI:000168557400001 65477 ER 65478 65479 PT J 65480 AU Liu, TY 65481 Zhang, QR 65482 Mi, XW 65483 Feng, XQ 65484 TI A new absorption band and the decomposition of the 350 nm absorption 65485 band of PbWO4 65486 SO PHYSICA STATUS SOLIDI A-APPLIED RESEARCH 65487 DT Article 65488 ID SINGLE-CRYSTALS 65489 AB Single crystal PbWO4 has been grown by the improved Bridgman method. 65490 The absorption spectra in polarized light of the sample with the 65491 crystal c-axis parallel to its surface have been measured. The 65492 absorption spectra of the as-grown crystal show a 350 nm weak band with 65493 dichroism in polarized light. Subtracting the polarized light 65494 absorption spectrum with the electric vector E parallel to the c-axis 65495 by that one with E perpendicular to the c-axis, the polarized light 65496 difference spectrum is obtained. The polarized light difference 65497 spectrum indicates that the 350 nm band has two peaks and can be 65498 decomposed into two bands peaking at 330 and 360 nm, respectively. In 65499 order to determine the detailed structure of the 350 nm band, annealing 65500 experiments in air condition of the as grown crystal at different 65501 temperatures were performed. Difference spectra of the annealed crystal 65502 have been obtained by subtracting the absorption spectra of the crystal 65503 annealed at different annealing temperatures by that one of the 65504 as-grown crystal. The absorption spectra features also indicate that 65505 the 350 nm absorption band is composed of two bands peaking at 330 and 65506 360 nm, respectively. The annealing properties of the 330 nm and the 65507 350 nm band are obviously different. We come to the conclusion that the 65508 350 nm band is a composed band and can be decomposed into two bands 65509 peaking at 360 and 330 nm, respectively. The two bands are suggested to 65510 belong to different color centers. 65511 C1 Shanghai Univ Sci & Technol, Dept Basic Sci, Shanghai 200093, Peoples R China. 65512 Chinese Acad Sci, Shanghai Inst Ceram, Lab Funct Inorgan Mat, Shanghai 200050, Peoples R China. 65513 RP Liu, TY, Shanghai Univ Sci & Technol, Dept Basic Sci, 516 Jun Gong Rd, 65514 Shanghai 200093, Peoples R China. 65515 CR AAMIO PA, 1993, NUCL INCTRUM METHO A, V336, P98 65516 ANNENKOV AN, 1996, PHYS STATUS SOLIDI A, V156, P493 65517 KOBAYASHI M, 1993, NUCL INSTRUM METH A, V333, P429 65518 KORZHIK MV, 1996, P INT C IN SCINT THE, P241 65519 NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311 65520 NIKL M, 1996, PHYS STATUS SOLIDI B, V196, K7 65521 NIKL M, 1997, J APPL PHYS, V82, P5758 65522 NIKL M, 1997, MATER SCI FORUM, V239, P271 65523 VANLOO W, 1975, PHYS STATUS SOLIDI A, V28, P227 65524 XIQI F, 1997, J INORGANIC MAT, V12, P449 65525 NR 10 65526 TC 10 65527 SN 0031-8965 65528 J9 PHYS STATUS SOLIDI A-APPL RES 65529 JI Phys. Status Solidi A-Appl. Res. 65530 PD APR 16 65531 PY 2001 65532 VL 184 65533 IS 2 65534 BP 341 65535 EP 348 65536 PG 8 65537 SC Physics, Condensed Matter 65538 GA 430DW 65539 UT ISI:000168559200011 65540 ER 65541 65542 PT J 65543 AU Gu, LW 65544 Weng, XC 65545 TI Antioxidant activity and components of Salvia plebeia R.Br. - a Chinese 65546 herb 65547 SO FOOD CHEMISTRY 65548 DT Article 65549 DE Salvia plebeia R.Br.; herb; antioxidants; royleanonic acid; hispidulin; 65550 eupatorin 65551 AB The antioxidant properties of the extracts from Salvia plebeia R.Br. 65552 which was screened out of over 700 species of Chinese herbs, were 65553 tested in lard at 110 degreesC using the Oxidative Stability 65554 Instrument. The ethyl acetate extract of the herb was re-extracted by 65555 solvents (with increasing polarity) into petroleum ether-, diethyl 65556 ether-, acetone-and-ethanol-soluble fractions. The fractions obtained 65557 were then separated according to their acidic properties. From the most 65558 active sub-fractions, namely the acidic sub-fraction of the petroleum 65559 ether-soluble fraction and the weakly acidic sub-fraction of the 65560 diethyl ether-soluble fraction, three antioxidant components were 65561 isolated and identified as royleanonic acid, hispidulin and eupatorin. 65562 The royleanonic acid was a novel compound and eupatorin was isolated 65563 for the first time from the herb. Though royleanonic acid and 65564 hispidulin prolonged the induction period significantly, their 65565 antioxidant activities were much weaker than the crude extracts, 65566 implying that synergistic effects might be responsible for the high 65567 activity of the crude extracts. (C) 2001 Elsevier Science Ltd. All 65568 rights reserved. 65569 C1 Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China. 65570 RP Weng, XC, Shanghai Univ, Sch Life Sci, Shangda Rd 99, Shanghai 200436, 65571 Peoples R China. 65572 CR *AOCS, 1994, 12B92 AOCS CD 65573 *JIANGS NEW MED CO, 1993, DICT CHIN TRAD 65574 ADAMS JH, 1976, PLANTA MED, V31, P86 65575 ANGELO AJ, 1996, CRIT REV FOOD SCI NU, V36, P175 65576 CHONG PZ, 1987, APPL MASS SPECTRUM N 65577 DAS NP, 1990, J AM OIL CHEM SOC, V67, P253 65578 DZIEDZIC SZ, 1983, FOOD CHEM, V11, P161 65579 GORDON MH, 1995, J AGR FOOD CHEM, V43, P1784 65580 GU LW, 1997, CHINA OILS FATS, V22, P37 65581 GU LW, 2000, THESIS WUXI U LIGHT 65582 HERNANDEZ M, 1988, PHYTOCHEMISTRY, V27, P3297 65583 HOPIA AI, 1996, J AGR FOOD CHEM, V44, P2030 65584 HUANG L, 1988, UV SPECTRUM ORGANIC 65585 KARTNIG T, 1977, PLANTA MED, V32, P347 65586 KIM SY, 1994, J AM OIL CHEM SOC, V71, P633 65587 MARKHAM KR, 1982, TECHNIQUE FLAVONOID 65588 MICHAVILA A, 1988, PHYTOCHEMISTRY, V25, P268 65589 SAUCIER CT, 1999, J AGR FOOD CHEM, V47, P4491 65590 SU JD, 1986, AGR BIOL CHEM TOKYO, V50, P199 65591 SU JD, 1987, AGR BIOL CHEM TOKYO, V51, P2801 65592 SUKH D, 1986, CRC HDB TERPENOIDS D 65593 WENG XC, 1998, J CHINESE CEREAL OIL, V13, P46 65594 WENKERT E, 1965, J ORG CHEM, V30, P2931 65595 ZHANG HY, 1998, J AM OIL CHEM SOC, V75, P1705 65596 ZHANG KQ, 1990, J AGR FOOD CHEM, V38, P1194 65597 NR 25 65598 TC 13 65599 SN 0308-8146 65600 J9 FOOD CHEM 65601 JI Food Chem. 65602 PD MAY 65603 PY 2001 65604 VL 73 65605 IS 3 65606 BP 299 65607 EP 305 65608 PG 7 65609 SC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics 65610 GA 428TA 65611 UT ISI:000168475700006 65612 ER 65613 65614 PT J 65615 AU Cheng, CJ 65616 Zhang, NH 65617 TI Dynamical behavior of viscoelastic cylindrical shells under axial 65618 pressures 65619 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 65620 DT Article 65621 DE Karman-Donnell theory; viscoelastic cylindrical shell; chaos; 65622 hyperchaos; strange attractor; limit cycle 65623 ID THIN PLATES 65624 AB The hypotheses of the Karman-Donnell theory of thin shells with large 65625 deflections and the Boltzmann laws for isotropic linear, viscoelastic 65626 materials, the constitutive equations of shallow shells are first 65627 derived. Then the governing equations for the deflection and stress 65628 function are formulated by using the procedure similar to establishing 65629 the Karman equations of elastic thin plates. Introducing proper 65630 assumptions, an approximate theory for viscoelastic cylindrical shells 65631 under axial pressures can be obtained. Finally, the dynamical behavior 65632 is studied in detail by using several numerical methods. Dynamical 65633 properties, such ns, hyperchaos, chaos, strange attractor, limit cycle 65634 etc., are discovered. 65635 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China. 65636 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, 65637 Shanghai 200072, Peoples R China. 65638 CR BROTSKAYA VY, 1995, MECH SOLIDS, V30, P139 65639 CHENG CJ, 1991, BUCKLING BIFURCATION 65640 CHENG CJ, 1998, ACTA MECH SINICA, V30, P690 65641 CHENG CJ, 1998, INT J SOLIDS STRUCT, V35, P4491 65642 DING R, 1997, THESIS LANZHOU U LAN 65643 DROZDOV A, 1993, MECH RES COMMUN, V20, P481 65644 KUBICEK M, 1983, COMPUTATIONAL METHOD 65645 MINAKOVA NI, 1978, MECH SOLIDS, V13, P134 65646 POTAPOV VD, 1978, J APPL MECH TECH PHY, V18, P586 65647 SHIMADA I, 1979, PROG THEOR PHYS, V61, P1605 65648 XU ZL, 1988, THEORY ELASTICITY 65649 ZHANG NH, 1998, COMPUT METHOD APPL M, V165, P307 65650 NR 12 65651 TC 12 65652 SN 0253-4827 65653 J9 APPL MATH MECH-ENGL ED 65654 JI Appl. Math. Mech.-Engl. Ed. 65655 PD JAN 65656 PY 2001 65657 VL 22 65658 IS 1 65659 BP 1 65660 EP 9 65661 PG 9 65662 SC Mathematics, Applied; Mechanics 65663 GA 428VQ 65664 UT ISI:000168482700001 65665 ER 65666 65667 PT J 65668 AU Zheng, LP 65669 Wang, SJ 65670 Liao, YS 65671 Feng, ZJ 65672 TI CO2 gas pools in Jiyang sag, China 65673 SO APPLIED GEOCHEMISTRY 65674 DT Article 65675 ID MID-ATLANTIC RIDGE; NATURAL GASES; ISOTOPIC COMPOSITION; VOLATILE 65676 FLUXES; SUBDUCTION-ZONE; CARBON ISOTOPES; HELIUM; MANTLE; SYSTEMATICS; 65677 VOLCANO 65678 AB The CO2 gas pools of Jiyang sag are located along the Gaoqing-Pingnan 65679 fault within a region of alkaline basalts. The concentration of CO2 in 65680 the gas pools is in the range of 68.85-96.99%. All of the geochemical 65681 tracers for the CO2 gas pools support the suggestion that CO2 was 65682 mainly derived from mantle degassing. The delta C-13 values of CO2 in 65683 the gas pools are in the range of -5.67-3.41%, which are higher than 65684 those of organogenic CO2, and near to those of abiogenic CO2. Their 65685 He-3/He-4 ratios are 2.80-4.47x10(6), i.e. the R/Ra ratios are 65686 2.00-3.19, showing that the Jiyang sag had undergone strong mantle 65687 degassing. CO2/He-3 ratios are 0.59-0.89x10(9), which are identical to 65688 those for N-MORB, indicating that CO2 in these CO2 gas pools was mainly 65689 derived from the mantle. Accompanying the intrusion of mantle-derived 65690 magma, the mantle-derived CO2 migrated upwards along deep faults and 65691 was trapped in advantageous structures forming gas pools. (C) 2001 65692 Elsevier Science Ltd. All rights reserved. 65693 C1 Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China. 65694 Chinese Acad Sci, Inst Geochem, State Key Lab Environm Geochem, Guiyang 550002, Peoples R China. 65695 Shengli Oil Co, Res Inst Geol Sci, Dongying, Peoples R China. 65696 Nanjing Univ, Dept Earth Sci, Nanjing 210008, Peoples R China. 65697 RP Zheng, LP, Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, 65698 Peoples R China. 65699 CR *IGSSB, 1987, TANCH LUJ FAULTS 65700 CHU X, 1995, CHINESE SCI BULL, P62 65701 DAI J, 1995, INORGANIC GASES FORM 65702 DAI JX, 1993, THESIS CHICAGO 65703 EXLEY RA, 1986, EARTH PLANET SC LETT, V78, P189 65704 FROST DJ, 1997, GEOCHIM COSMOCHIM AC, V61, P1565 65705 GERLACH TM, 1990, GEOCHIM COSMOCHIM AC, V54, P2051 65706 HENNECKE EW, 1975, EARTH PLANET SC LETT, V27, P346 65707 HOEFS J, 1979, STABLE ISOTOPE GEOCH 65708 HUNT JM, 1979, PETROLEUM GEOCHEMIST, P162 65709 JAMBON A, 1987, CHEM GEOL, V62, P177 65710 JAVOY M, 1986, CHEM GEOL, V57, P41 65711 JAVOY M, 1991, EARTH PLANET SC LETT, V107, P598 65712 JINXING D, 1998, MINERAL MAG A, V62, P716 65713 LI D, 1982, PETROLEUM EXPLORATIO, V2, P1 65714 LUPTON JE, 1983, ANNU REV EARTH PL SC, V11, P371 65715 MA X, 1987, LITHOSPHERIC DYNAMIC 65716 MAMYRIN BA, 1984, HELIUM ISOTOPES NATU 65717 MARTY B, 1987, EARTH PLANET SC LETT, V83, P16 65718 MARTY B, 1989, CHEM GEOL, V76, P25 65719 MARTY B, 1998, CHEM GEOL, V145, P233 65720 MATTEY DP, 1990, CONTRIB MINERAL PETR, V104, P492 65721 NAGAO K, 1981, EARTH PLANET SC LETT, V53, P175 65722 NISHIO Y, 1998, EARTH PLANET SC LETT, V154, P127 65723 ONIONS RK, 1988, EARTH PLANET SC LETT, V90, P331 65724 PANKINA RG, 1978, INT GEOL REV, V21, P535 65725 PINEAU F, 1976, EARTH PLANET SC LETT, V29, P413 65726 PINEAU F, 1983, EARTH PLANET SC LETT, V62, P239 65727 PINEAU F, 1990, GEOCHIM COSMOCHIM AC, V54, P217 65728 POREDA RJ, 1988, CHEM GEOL, V71, P199 65729 SANO Y, 1994, APPL GEOCHEM, V9, P371 65730 SHEN W, 1998, J NANJING U NATURAL, V34, P308 65731 SHENG X, 1995, GEOCHIM COSMOCHIM AC, V59, P4675 65732 SHERWOODLOLLAR B, 1994, GEOCHIM COSMOCHIM AC, V58, P5279 65733 TAYLOR BE, 1986, REV MINERAL, V16, P185 65734 TRULL T, 1993, EARTH PLANET SC LETT, V118, P43 65735 WAKITA H, 1983, NATURE, V305, P792 65736 XIANBIN W, 1998, MINERAL MAG A, V62, P1665 65737 XU Y, 1990, EXPT PETROLEUM GEOLO, V12, P316 65738 ZHANG YX, 1993, EARTH PLANET SC LETT, V117, P331 65739 ZHENG L, 1996, CHINESE SCI BULL, V41, P624 65740 ZHOU XH, 1986, TERRA COGNITA, V6, P244 65741 NR 42 65742 TC 2 65743 SN 0883-2927 65744 J9 APPL GEOCHEM 65745 JI Appl. Geochem. 65746 PD JUL 65747 PY 2001 65748 VL 16 65749 IS 9-10 65750 BP 1033 65751 EP 1039 65752 PG 7 65753 SC Geochemistry & Geophysics 65754 GA 429AA 65755 UT ISI:000168492800003 65756 ER 65757 65758 PT J 65759 AU Wang, YD 65760 TI Theorems about the existence of solutions to problems with nonlocal 65761 initial value 65762 SO ACTA MATHEMATICA SINICA-ENGLISH SERIES 65763 DT Article 65764 DE nonlocal problem; nonlinear boundary condition; parabolic equation; 65765 solution; existence; generalized Poincare e operator 65766 ID PARABOLIC EQUATIONS; BOUNDARY-CONDITIONS; CAUCHY-PROBLEM 65767 AB Recently much work has been devoted to nonlocal problems. However, very 65768 little has been accomplished in the literature For nonlocal initial 65769 problems with nonlinear boundary conditions. It is the purpose of this 65770 paper to prove the existence results for solutions to a semilinear 65771 parabolic PDE with linear homogeneous boundary conditions. and to 65772 of-her ones with nonlinear boundary conditions, provided the ordered 65773 upper and lower solutions are given. Semigroup, fractional order 65774 function spaces and generalized Poincare operators play an important 65775 role in proving the existence of solutions. 65776 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 65777 RP Wang, YD, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 65778 CR AMANN H, 1978, NONLINEAR ANAL COLLE, P1 65779 AMANN H, 1988, J DIFFER EQUATIONS, V72, P201 65780 BYSZEWSKI L, 1991, J MATH ANAL APPL, V162, P494 65781 CHABROWSKI J, 1984, NAGOYA MATH J, V93, P109 65782 DENG K, 1993, J MATH ANAL APPL, V179, P630 65783 GRISVARD P, 1969, ANN SCI ECOLE NORM S, V2, P311 65784 KEREFOV AA, 1979, DIFF URAVN, V15, P74 65785 LIN YP, 1996, NONLINEAR ANAL-THEOR, V26, P1023 65786 PAO CV, 1995, J MATH ANAL APPL, V195, P702 65787 PAZY A, 1983, SEMIGROUPS LINEAR OP 65788 SEELEY R, 1972, STUD MATH, V44, P47 65789 VABISHCHEVICH PN, 1981, DIFF URAVN, V17, P1193 65790 XIANG X, 1995, ACTA MATH SIN, V11, P439 65791 NR 13 65792 TC 0 65793 SN 1000-9574 65794 J9 ACTA MATH SIN-ENGLISH SERIES 65795 JI Acta. Math. Sin.-English Ser. 65796 PD APR 65797 PY 2001 65798 VL 17 65799 IS 2 65800 BP 197 65801 EP 206 65802 PG 10 65803 SC Mathematics, Applied; Mathematics 65804 GA 428QR 65805 UT ISI:000168472800002 65806 ER 65807 65808 PT J 65809 AU Jin, H 65810 McLean, D 65811 TI Design of a state feedback controller to achieve minimum eigenvalue 65812 differential sensitivity 65813 SO TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL 65814 DT Article 65815 DE eigenstructure assignment; eigenvalues; robustness; sensitivity 65816 ID EIGENSTRUCTURE ASSIGNMENT 65817 AB This paper introduces a new design method using eigenstructure 65818 assignment. The differential sensitivity of the eigenvalues of the 65819 system is minimized. The method involves minimizing the least-squared 65820 error between the achievable and the desired eigenspace to achieve mode 65821 decoupling. A global measure of eigenvalue sensitivity for all desired 65822 eigenvalues that make the closed-loop system insensitive to 65823 perturbations or parameter Variations is included in the method. The 65824 technique requires the use of a gradient-based algorithm. The method is 65825 illustrated by an example, which is intended to show a more flexible 65826 approach to eigenstructure assignment. 65827 C1 Univ Southampton, Dept Aeronaut & Astronaut, Sch Engn Sci, Southampton SO17 1BJ, Hants, England. 65828 Shanghai Univ, Shanghai 200041, Peoples R China. 65829 RP McLean, D, Univ Southampton, Dept Aeronaut & Astronaut, Sch Engn Sci, 65830 Southampton SO17 1BJ, Hants, England. 65831 CR ANDRY AN, 1983, IEEE T AERO ELEC SYS, V19, P711 65832 APKARIAN PR, 1989, J GUID CONTROL DYNAM, V12, P162 65833 BRYSON A, 1975, APPL OPTIMAL CONTROL 65834 BURROWS SP, 1992, J GUID CONTROL DYNAM, V15, P779 65835 CUNNINGHAM TB, 1980, P IEEE C DEC CONTR A 65836 DAVIDSON JB, 1994, 109130 NASA 65837 LAM J, 1997, P I MECH ENG 1, V211, P631 65838 MIYAZAWA Y, 1992, J GUID CONTROL DYNAM, V15, P785 65839 PATEL Y, 1993, J GUID CONTROL DYNAM, V16, P118 65840 PATTON RJ, 1993, P AIAA GUID NAV CONT, P924 65841 SMITH PR, 1990, AIAA GUID NAV CONTR 65842 WHITE BA, 1997, P I MECH ENG I-J SYS, V211, P35 65843 YU WL, 1991, J GUID CONTROL DYNAM, V14, P621 65844 NR 13 65845 TC 0 65846 SN 0142-3312 65847 J9 TRANS INST MEASURE CONTROL 65848 JI Trans. Inst. Meas. Control 65849 PY 2001 65850 VL 23 65851 IS 2 65852 BP 127 65853 EP 138 65854 PG 12 65855 SC Automation & Control Systems; Instruments & Instrumentation 65856 GA 426EA 65857 UT ISI:000168335800004 65858 ER 65859 65860 PT J 65861 AU Lin, QS 65862 Feng, XQ 65863 Man, ZY 65864 Zhang, YX 65865 Yin, ZW 65866 Zhang, QR 65867 TI Origin of the radiation-induced 420 nm color center absorption band in 65868 PbWO4 crystals 65869 SO SOLID STATE COMMUNICATIONS 65870 DT Article 65871 DE color center; optical properties; light absorption 65872 ID LEAD TUNGSTATE CRYSTALS; SINGLE-CRYSTALS; DAMAGE 65873 AB Polarized absorption spectra experiments were carried out to 65874 investigate the structural symmetries of color centers of PbWO4 65875 crystals. It was found that the intensity of the electrical vector E 65876 perpendicular to c of the radiation-induced 320 nm absorption band 65877 equals that of the E parallel to c, indicating the non-dichroic 65878 character of the band. Based on the analysis of the energy band 65879 structure and the crystal structure of PbWO4, the origin of the 65880 radiation-induced 320 nm absorption band was ascribed to the V-F(0) 65881 di-hole center. (C) 2001 Published by Elsevier Science Ltd. 65882 C1 Chinese Acad Sci, Lab Funct Inorgan Mat, Shanghai 200050, Peoples R China. 65883 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China. 65884 RP Feng, XQ, Chinese Acad Sci, Lab Funct Inorgan Mat, Shanghai 200050, 65885 Peoples R China. 65886 CR ANNENKOV A, 1998, PHYS STATUS SOLIDI A, V170, P47 65887 AUFFRAY E, 1996, SCINT 95, P282 65888 BACCARO S, 1999, IEEE T NUCL SCI 1, V46, P292 65889 BARISHEVSKI VG, 1992, NUCL INSTRUM METH A, V322, P231 65890 BIEDERBICK R, 1975, PHYS STATUS SOLIDI B, V69, P55 65891 HAN BG, 1999, J APPL PHYS, V86, P3571 65892 LAGUTA VV, 1998, J PHYS-CONDENS MAT, V10, P7293 65893 LAGUTA VV, 2000, PHYS REV B, V62, P10109 65894 LECOQ P, 1995, NUCL INSTRUM METH A, V365, P291 65895 LIN QS, 2000, PHYS STATUS SOLIDI A, V181, R1 65896 NESSITEDALDI F, 1998, NUCL INSTRUM METH A, V408, P266 65897 NIKL M, 1996, PHYS STATUS SOLIDI B, V196, K7 65898 NIKL M, 1997, J APPL PHYS, V82, P5758 65899 NIKL M, 1997, MATER SCI FORUM, V239, P271 65900 WILLIAMS RT, 2000, SCINT 99, P118 65901 ZHANG Y, 1998, PHYS REV B, V57, P12738 65902 NR 16 65903 TC 19 65904 SN 0038-1098 65905 J9 SOLID STATE COMMUN 65906 JI Solid State Commun. 65907 PY 2001 65908 VL 118 65909 IS 5 65910 BP 221 65911 EP 223 65912 PG 3 65913 SC Physics, Condensed Matter 65914 GA 425XV 65915 UT ISI:000168317700001 65916 ER 65917 65918 PT J 65919 AU Wan, YB 65920 Li, J 65921 Chu, JH 65922 Bo, LX 65923 Yu, TY 65924 Yu, BK 65925 TI The study of frequency-doubling properties of ferroelectric potassium 65926 lithium niobate 65927 SO JOURNAL OF INFRARED AND MILLIMETER WAVES 65928 DT Article 65929 DE potassium lithium niobate; frequency-doubling; phase-matching 65930 ID K3LI2-XNB5+XO15+2X 65931 AB The frequency-doubling properties of potassium lithium niobate crystals 65932 grown from melts with different content of Li2O were studied by using 65933 quasi cw-Ti:sapphire laser. The results showed that potassium lithium 65934 niobate crystal does not have nonlinear optical performance unless the 65935 Li content in the crystal reached a certain amount. The higher the 65936 content of Li in the crystal the better the frequency-doubling 65937 performance. The results of frequency-doubling experiment of the 65938 potassium:lithium niobate crystal grown from the melt with Li2O 26mol% 65939 showed that the crystal can double the cw-Ti:sapphire laser with the 65940 wavelength of 820 similar to 960nm so as to obtain the output of 65941 blue-green beam. The crystal showed good second harmonic generation 65942 properties. 65943 C1 Chinese Acad Sci, Shanghai Inst Tech, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China. 65944 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 65945 RP Wan, YB, Chinese Acad Sci, Shanghai Inst Tech, Natl Lab Infrared Phys, 65946 Shanghai 200083, Peoples R China. 65947 CR CHENG WD, 1996, CHEM PHYS LETT, V261, P66 65948 IMAI K, 1997, J CRYST GROWTH, V177, P79 65949 OWERKERK M, 1991, 409339, EP 65950 REID JJE, 1993, APPL PHYS LETT, V62, P19 65951 SONG YT, 1998, J CRYST GROWTH, V194, P379 65952 WAN YB, 1998, J SYNTH CRYST, V27, P34 65953 WAN YB, 1999, ACTA OPT SINICA, V19, P863 65954 WAN YB, 1999, CHIN J LASER, V26, P837 65955 WAN YB, 1999, J SYNTH CRYST, V28, P149 65956 NR 9 65957 TC 0 65958 SN 1001-9014 65959 J9 J INFRARED MILIM WAVES 65960 JI J. Infrared Millim. Waves 65961 PD APR 65962 PY 2001 65963 VL 20 65964 IS 2 65965 BP 147 65966 EP 150 65967 PG 4 65968 SC Optics 65969 GA 425DB 65970 UT ISI:000168272100016 65971 ER 65972 65973 PT J 65974 AU Ma, HP 65975 Guo, BY 65976 TI Composite Legendre-Laguerre pseudospectral approximation in unbounded 65977 domains 65978 SO IMA JOURNAL OF NUMERICAL ANALYSIS 65979 DT Article 65980 DE composite Legendre-Laguerre; pseudospectral method; half-line 65981 ID PARTIAL-DIFFERENTIAL EQUATIONS; NONLINEAR CONSERVATION-LAWS; HERMITE 65982 SPECTRAL METHOD; GALERKIN METHOD; POLYNOMIALS; INTERVAL 65983 AB A composite Legendre-Laguerre pseudospectral approximation in unbounded 65984 domains is developed. Some approximation results are obtained. As an 65985 application, a composite pseudospectral scheme is proposed for the 65986 Burgers equation on the half-line. The stability and convergence of the 65987 scheme are proved. By choosing appropriate base functions, the 65988 resulting system of this method has a sparse structure and can be 65989 solved in parallel. Numerical results are given to show the efficiency 65990 of this new method. 65991 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 65992 RP Ma, HP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 65993 CR ADAMS RA, 1975, SOBOLEV SPACES 65994 BERNARDI C, 1992, J COMPUT APPL MATH, V43, P53 65995 BERNARDI C, 1997, HDBK NUM AN 2, V5, P209 65996 BOYD JP, 1987, J COMPUT PHYS, V69, P112 65997 CANUTO C, 1988, SPECTRAL METHODS FLU 65998 DAVIS PJ, 1984, METHODS NUMERICAL IN 65999 FUNARO D, 1990, MATH COMPUT, V57, P597 66000 FUNARO D, 1991, ORTHOGONAL POLYNOMIA, P263 66001 GELB A, 2000, APPL NUMER MATH, V33, P3 66002 GUO BY, 1999, MATH COMPUT, V68, P1067 66003 GUO BY, 2000, NUMER MATH, V86, P635 66004 GUO BY, 2001, IN PRESS J COMPUT MA 66005 MADAY Y, 1985, RECH AEROSPATIALE, P353 66006 MADAY Y, 1993, SIAM J NUMER ANAL, V30, P321 66007 MASTROIANNI G, 1997, IMA J NUMER ANAL, V17, P621 66008 SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489 66009 SZEGO G, 1975, ORTHOGONAL POLYNOMIA 66010 TADMOR E, 1989, SIAM J NUMER ANAL, V26, P30 66011 TANG T, 1993, SIAM J SCI COMPUT, V14, P594 66012 XU CL, 2001, IN PRESS J COMPUT MA 66013 NR 20 66014 TC 0 66015 SN 0272-4979 66016 J9 IMA J NUMER ANAL 66017 JI IMA J. Numer. Anal. 66018 PD APR 66019 PY 2001 66020 VL 21 66021 IS 2 66022 BP 587 66023 EP 602 66024 PG 16 66025 SC Mathematics, Applied 66026 GA 424ZK 66027 UT ISI:000168263700007 66028 ER 66029 66030 PT J 66031 AU You, JL 66032 Jiang, GC 66033 Xu, KD 66034 TI High temperature Raman spectra of sodium disilicate crystal, glass and 66035 its liquid 66036 SO JOURNAL OF NON-CRYSTALLINE SOLIDS 66037 DT Article 66038 ID ALKALI-SILICATE-GLASSES; SPECTROSCOPY; MELTS; PRESSURE; NMR 66039 AB Raman spectra of Na2Si2O5 in solid and liquid states from room 66040 temperature to 1773 K were measured to observe phase transition and 66041 analyze the temperature-dependent variations of the structure units, 66042 five kinds of SiO4 tetrahedrons, which are defined as Q(4), Q(3), Q(2), 66043 Q(1) and Q(0) species corresponding to the number of bridging oxygen 66044 binding to each Si. A pulsed copper vapor laser was used as laser 66045 source coupled with time resolved detection system to eliminate the 66046 dense thermal emission background while temperature was >1273 K. 66047 Temperature-dependent Raman spectra can clearly indicate melting point 66048 of a crystal around 1143 K. Gaussian deconvolutions of complex 66049 stretching vibrational bands of crystal and amorphous states (glass and 66050 liquid) were described. Raman sensitivity factors were introduced to 66051 calculate the mole fractions of the different SiO4 tetrahedrons. There 66052 is a decrease of Q(3) species and an increase of Q(4) and Q(2) species 66053 with increasing temperature. And after melting, the ratio of the 66054 components remain unchanged. Q(3) species decomposes again after about 66055 1573 K. More Q(n) species would form with increasing temperature. 66056 Although the Q(n) distribution of the glass is similar to that of the 66057 liquid of melting temperature, T-m similar to 1143 K, the liquid 66058 structure has a greater disorder than that of the glass. (C) 2001 66059 Published by Elsevier Science B.V. 66060 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 66061 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 66062 200072, Peoples R China. 66063 CR DOMINE F, 1983, J NON-CRYST SOLIDS, V55, P125 66064 DORFELD WG, 1988, PHYS CHEM GLASSES, V29, P179 66065 DOWEIDAR H, 1996, J NON-CRYST SOLIDS, V194, P155 66066 FURUKAWA T, 1981, J CHEM PHYS, V75, P3226 66067 GASKELL PH, 1967, PHYS CHEM GLASSES, V8, P69 66068 GILLET P, 1996, PHYS CHEM MINER, V23, P263 66069 GUOCHANG J, 1993, ISIJ INT, V33, P20 66070 GURMAN SJ, 1990, J NON-CRYST SOLIDS, V125, P151 66071 HANDKE M, 1993, VIB SPECTROSC, V5, P75 66072 HASS M, 1970, J PHYS CHEM SOLIDS, V31, P415 66073 JINGLIN Y, IN PRESS 66074 JINGLIN Y, 1998, J CHIN RARE EARTH SC, V16, P505 66075 JINGLIN Y, 1999, CHIN J LIGHT SCATTER, V11, P378 66076 JINGLIN Y, 1999, OPT INSTR, V21, P21 66077 KASHIO S, 1980, T IRON STEEL I JPN, V20, P251 66078 KUANGDI X, 1999, SCI CHINA SER E, V22, P77 66079 LIEBAU F, 1985, STRUCTURAL CHEM SILI 66080 LONG DA, 1977, RAMAN SPECTROSCOPY, CH4 66081 MAEKAWA H, 1991, J NON-CRYST SOLIDS, V127, P53 66082 MAEKAWA H, 1992, P 4 INT C MOLT SLAGS, P35 66083 MARKIN EP, 1960, OPT SPECTROSC, V9, P309 66084 MATSON DW, 1983, J NON-CRYST SOLIDS, V58, P323 66085 MCMILLAN P, 1984, AM MINERAL, V69, P622 66086 MYSEN BO, 1982, AM MINERAL, V67, P686 66087 MYSEN BO, 1990, J GEOPHYS RES-SOLID, V95, P15733 66088 MYSEN BO, 1992, CHEM GEOL, V96, P321 66089 PEICANG X, 1996, RAMAN SPECTROSCOPY G, CH7 66090 SEIFERT FA, 1981, GEOCHIM COSMOCHIM AC, V45, P1879 66091 SHARMA SK, 1978, CARNEGIE I WASHINGTO, V77, P649 66092 SHIPING H, 2000, CHINESE PHYS LETT, V17, P279 66093 SMITH W, 1995, J NONCRYST SOLIDS, V192, P267 66094 STEBBINS JF, 1988, J NONCRYST SOLIDS, V106, P359 66095 STEBBINS JF, 1995, J NONCRYST SOLIDS, V192, P298 66096 SWAMY V, 1997, J AM CERAM SOC, V80, P2237 66097 URNES S, 1967, PHYS CHEM GLASSES, V8, P125 66098 VORONKO YK, 1991, GROWTH CRYSTALS, V16, P199 66099 ZHANG P, 1996, J NON-CRYST SOLIDS, V204, P294 66100 NR 37 66101 TC 15 66102 SN 0022-3093 66103 J9 J NON-CRYST SOLIDS 66104 JI J. Non-Cryst. Solids 66105 PD APR 66106 PY 2001 66107 VL 282 66108 IS 1 66109 BP 125 66110 EP 131 66111 PG 7 66112 SC Materials Science, Ceramics; Materials Science, Multidisciplinary 66113 GA 423XE 66114 UT ISI:000168202400015 66115 ER 66116 66117 PT J 66118 AU Jin, Z 66119 TI Boundedness and convergence of solutions of a second-order nonlinear 66120 differential system 66121 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 66122 DT Article 66123 ID RETARDED LIENARD EQUATION; X+F(1)(X)X+F(2)(X)X(2)+G(X)=0; BEHAVIOR 66124 AB Consider the second-order nonlinear differential system 66125 (x) over dot = 1/a(x)[h(y) - F(x)], 66126 (y) over dot = -a(x)[g(x) - e(t)], 66127 where a is a positive and continuous function on R - (-infinity, 66128 +infinity); II, F, and g are continuous functions on R; and e(t) is a 66129 continuous function on I = [0, +infinity) We obtain sufficient and 66130 necessary conditions for ail solutions to be bounded and to converge to 66131 zero. Our results can be applied to the well-known equation 66132 (x) double over dot + f(1)(x)(x) over dot + f(2)(x)(x) over dot(2) + 66133 g(x) - e(t), 66134 which substantially extends and improves important results in the 66135 literature. (C) 2001 Academic Press. 66136 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 66137 Hebei Univ Technol, Dept Math Appl, Tianjin 300130, Peoples R China. 66138 RP Jin, Z, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 66139 CR ANTOSIEWICZ HA, 1955, J LOND MATH SOC, V30, P64 66140 BURTON TA, 1970, ANN MAT PUR APPL, V85, P277 66141 BUSHAW DW, 1958, DIFFERENTIAL EQUATIO 66142 FREEDMAN HI, 1990, NONLINEAR ANAL-THEOR, V15, P333 66143 GRAEF JR, 1972, J DIFFER EQUATIONS, V12, P34 66144 GUIDORIZZI HL, 1993, J MATH ANAL APPL, V176, P11 66145 HUANG LH, 1995, MATH JPN, V2, P283 66146 JIAN JF, 1997, NONLINEAR ANAL, V5, P855 66147 JIANG JF, 1995, J MATH ANAL APPL, V194, P597 66148 LASALLE JP, 1961, STABILITY LIAPUNOVS 66149 LASALLE JP, 1976, NONLINEAR ANAL, V1, P83 66150 LI HQ, 1988, ACTA MATH SINICA, V31, P209 66151 PAN ZG, 1992, J SYS SCI MATH SCI, V12, P376 66152 QIAN CX, 1992, B LOND MATH SOC, V24, P281 66153 QIAN CX, 1994, NONLINEAR ANAL, V7, P823 66154 SUGIE J, 1987, NONLINEAR ANAL-THEOR, V11, P1391 66155 VILLARI G, 1987, J DIFFER EQUATIONS, V67, P267 66156 YOSHIZAWA T, 1963, CONTRIB DIFFERENTIAL, V1, P371 66157 ZHANG B, 1992, P AM MATH SOC, V115, P779 66158 ZHANG B, 1993, NONLINEAR ANAL-THEOR, V20, P303 66159 ZHANG B, 1996, J MATH ANAL APPL, V200, P453 66160 ZHOU J, 1996, NONLINEAR ANAL, V12, P1463 66161 NR 22 66162 TC 1 66163 SN 0022-247X 66164 J9 J MATH ANAL APPL 66165 JI J. Math. Anal. Appl. 66166 PD APR 15 66167 PY 2001 66168 VL 256 66169 IS 2 66170 BP 360 66171 EP 374 66172 PG 15 66173 SC Mathematics, Applied; Mathematics 66174 GA 422ET 66175 UT ISI:000168106100002 66176 ER 66177 66178 PT J 66179 AU Ji, PY 66180 Bao, JS 66181 TI Photon acceleration driven by an intense laser pulse 66182 SO CHINESE PHYSICS 66183 DT Article 66184 DE photon acceleration; frequency upshifting; plasma wave; optical metric 66185 ID WAKEFIELD ACCELERATION; PLASMA 66186 AB Interaction of a laser field with a plasma wave is studied by metric 66187 optics. Analysis shows that the frequency upshifting of the laser pulse 66188 results from the plasma density gradient. A laser beam can be thought 66189 of as a packet of photons moving in a plasma and thus the laser 66190 frequency upshifting is equivalent to photon acceleration. Examination 66191 of the three-dimensional motion equations shows that a laser beam 66192 diffraction occurs in the presence of a radial variation of the plasma 66193 density. It is argued that the focusing mechanism originating from the 66194 plasma wave can curb laser diffraction so that photons may be trapped 66195 in the plasma wave and accelerated continuously. 66196 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 66197 RP Ji, PY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 66198 CR AMIRANOFF F, 1998, PHYS REV LETT, V81, P995 66199 BINGHAM R, 1997, PHYS REV LETT, V78, P247 66200 GORDON W, 1923, ANN PHYS-BERLIN, V72, P421 66201 GUO H, 1995, J OPT SOC AM A, V12, P600 66202 MENDONCA JT, 1994, PHYS REV E, V49, P3520 66203 MISNER CW, GRAVITATION, P582 66204 SCHROEDER CB, 1999, PHYS REV LETT, V82, P1177 66205 SHEN WD, 1998, ACTA PHYS SIN-OV ED, V7, P1 66206 SPRANGLE P, 1988, APPL PHYS LETT, V53, P2146 66207 TAJIMA T, 1979, PHYS REV LETT, V43, P267 66208 WILKS SC, 1989, PHYS REV LETT, V62, P2600 66209 ZHU S, 1997, ACTA OPT SINICA, V17, P1677 66210 ZHU ST, 1995, INT J THEOR PHYS, V34, P169 66211 ZHU ST, 1997, SCI CHINA SER A, V40, P755 66212 NR 14 66213 TC 5 66214 SN 1009-1963 66215 J9 CHIN PHYS 66216 JI Chin. Phys. 66217 PD APR 66218 PY 2001 66219 VL 10 66220 IS 4 66221 BP 314 66222 EP 319 66223 PG 6 66224 SC Physics, Multidisciplinary 66225 GA 423KP 66226 UT ISI:000168175700010 66227 ER 66228 66229 PT J 66230 AU Chen, LQ 66231 TI An open-plus-closed-loop control for discrete chaos and hyperchaos 66232 SO PHYSICS LETTERS A 66233 DT Article 66234 ID MULTIPLE-ATTRACTOR SYSTEMS; COMPLEX DYNAMIC-SYSTEMS; MIGRATION 66235 CONTROLS; OPCL CONTROL; ENTRAINMENT 66236 AB An open-plus-closed-loop control law is presented for chaotic maps. 66237 Some entrainment capabilities for the logistic map, the Henon map and a 66238 hyperchaotic map are respectively analyzed. Numerical examples of 66239 controlling chaos are given to demonstrate the application of the 66240 method. The robustness to the model error is proved. (C) 2001 Elsevier 66241 Science B.V. All rights reserved. 66242 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200030, Peoples R China. 66243 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 66244 200030, Peoples R China. 66245 CR CHEN G, 1997, CHAOS ORDER 66246 CHEN LQ, 1998, PHYS LETT A, V245, P87 66247 HUBLER A, 1989, NATURWISSENSCHAFTEN, V76, P67 66248 JACKSON EA, 1990, PHYS LETT A, V151, P478 66249 JACKSON EA, 1990, PHYSICA D, V44, P407 66250 JACKSON EA, 1991, PHYSICA D, V50, P341 66251 JACKSON EA, 1992, PHYSICA D, V54, P253 66252 JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1255 66253 JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1767 66254 JACKSON EA, 1995, PHYSICA D, V85, P1 66255 JACKSON EA, 1997, CHAOS, V7, P550 66256 KAPITANIAK T, 1996, CONTROLLING CHAOS TH 66257 LASALLE JP, 1976, STABILITY DYNAMICAL 66258 LIU ZR, 1999, ACTA MECH SINICA, V15, P366 66259 OTT E, 1994, COPING CHAOS 66260 WEIGEL R, 1998, INT J BIFURCAT CHAOS, V8, P173 66261 NR 16 66262 TC 7 66263 SN 0375-9601 66264 J9 PHYS LETT A 66265 JI Phys. Lett. A 66266 PD APR 2 66267 PY 2001 66268 VL 281 66269 IS 5-6 66270 BP 327 66271 EP 333 66272 PG 7 66273 SC Physics, Multidisciplinary 66274 GA 420YK 66275 UT ISI:000168032700009 66276 ER 66277 66278 PT J 66279 AU Li, CF 66280 Wang, Q 66281 TI A traversal time for tunneling particles through a potential barrier 66282 SO PHYSICA B 66283 DT Article 66284 DE traversal time; superluminality; tunneling; energy speed 66285 ID QUANTUM-THEORY; LARMOR CLOCK; TRANSMISSION; DISTRIBUTIONS; 66286 PROBABILITIES; SCATTERING; MECHANISM; DELAY 66287 AB A new kind of traversal time for tunneling particles through a 66288 potential barrier that has no problem of superluminality is introduced. 66289 Its physical significance is investigated. Several limits are 66290 considered, which are physically meaningful. Comparisons with dwell 66291 time and phase time are also made. (C) 2001 Elsevier Science B.V. All 66292 rights reserved. 66293 C1 CCAST, World Lab, Beijing 100080, Peoples R China. 66294 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 66295 RP Li, CF, CCAST, World Lab, POB 8730, Beijing 100080, Peoples R China. 66296 CR BOHM D, 1951, QUANTUM THEORY, P240 66297 BOHM D, 1952, PHYS REV, V85, P166 66298 BOHM D, 1987, PHYS REP, V144, P321 66299 BRILLOUIN L, 1960, WAVE PROPAGATION GRO 66300 BROUARD S, 1994, PHYS REV A, V49, P4312 66301 BUTTIKER M, 1982, PHYS REV LETT, V49, P1739 66302 BUTTIKER M, 1983, PHYS REV B, V27, P6178 66303 CHIAO RY, 1997, PROG OPTICS, V37, P345 66304 CONDON EU, 1931, REV MOD PHYS, V3, P43 66305 DEUTCH JM, 1993, ANN PHYS-NEW YORK, V228, P184 66306 DIENER G, 1996, PHYS LETT A, V223, P327 66307 HARTMAN TE, 1962, J APPL PHYS, V33, P3427 66308 HASS K, 1994, PHYS LETT A, V185, P9 66309 HAUGE EH, 1989, REV MOD PHYS, V61, P917 66310 JAPHA Y, 1996, PHYS REV A, V53, P586 66311 JAUCH JM, 1967, HELV PHYS A, V40, P217 66312 KRENZLIN HM, 1996, PHYS REV A, V53, P3749 66313 LEAVENS CR, 1993, PHYS LETT A, V178, P27 66314 LEAVENS CR, 1995, PHYS LETT A, V197, P88 66315 LI CF, 1996, ANN PHYS-NEW YORK, V252, P329 66316 LI CF, 1997, PHYSICA B, V240, P98 66317 MACCOLL LA, 1932, PHYS REV, V40, P621 66318 MCKINNON WR, 1995, PHYS REV A, V51, P2748 66319 MUGA JG, 1992, J PHYS CONDENS MATT, V4, L579 66320 MUGA JG, 1992, PHYS LETT A, V167, P24 66321 SMITH FT, 1960, PHYS REV, V118, P349 66322 SOKOLOVSKI D, 1990, PHYS REV A, V42, P6512 66323 STEINBERG AM, 1995, PHYS REV A, V52, P32 66324 STEINBERG AM, 1995, PHYS REV LETT, V74, P2405 66325 NR 29 66326 TC 1 66327 SN 0921-4526 66328 J9 PHYSICA B 66329 JI Physica B 66330 PD MAR 66331 PY 2001 66332 VL 296 66333 IS 4 66334 BP 356 66335 EP 360 66336 PG 5 66337 SC Physics, Condensed Matter 66338 GA 420MC 66339 UT ISI:000168007900010 66340 ER 66341 66342 PT J 66343 AU Xu, KX 66344 TI Decoupling of vortex-antivortex pairs: a possible explanation for 66345 nonequilibrium microwave response of YBa2Cu3O7-delta granular films 66346 SO PHYSICA C 66347 DT Article 66348 DE granular films; vortex excitation; nonbolometric photoresponse 66349 ID KOSTERLITZ-THOULESS TRANSITION; JOSEPHSON-JUNCTION ARRAYS; O 66350 THIN-FILMS; RADIATION 66351 AB A two-dimensional Josephson-junction array has been employed as a model 66352 system for YBa2Cu3O7-delta (YBCO) granular films. Based on this model, 66353 the dissociation process of the vortex-antivortex pairs is discussed in 66354 terms of applied current activation, and the unbinding vortices 66355 distribution n(T, I) is calculated as a function of temperature and 66356 applied current. When I/I-c << 1 is satisfied, the value of the n(T, I) 66357 could only be observed within the temperature region of (2/3)T-KT < T < 66358 T-KT, this behavior is analogous to that of photoresponse dissipation 66359 measured from the granular YBCO films. This similitude implies that the 66360 unbinding process of the vortex pairs might be responsible for the 66361 nonequilibrium photoresponse dissipation in granular superconducting 66362 films. (C) 2001 Elsevier Science B.V. All rights reserved. 66363 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 66364 RP Xu, KX, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 66365 CR BEASLEY MR, 1979, PHYS REV LETT, V42, P1165 66366 BOONE BG, 1991, J APPL PHYS, V69, P2676 66367 CHANG K, 1991, J APPL PHYS, V69, P7316 66368 CULBERTSON JC, 1991, PHYS REV B, V44, P9609 66369 DAVIS LC, 1990, PHYS REV B, V42, P99 66370 ENOMOTO Y, 1986, J APPL PHYS, V59, P3807 66371 FIORY AT, 1988, PHYS REV LETT, V61, P1419 66372 HERTER ST, 1998, PHYS REV B, V57, P1154 66373 LOBB CJ, 1983, PHYS REV B, V27, P150 66374 MARTIN S, 1989, PHYS REV LETT, V62, P677 66375 PHILLIPS JR, 1993, PHYS REV B, V47, P5219 66376 PHONG LN, 1993, J APPL PHYS, V74, P7414 66377 RZCHOWSKI MS, 1990, PHYS REV B, V42, P2041 66378 STROM U, 1990, PHYS REV B, V42, P4059 66379 TINKHAM M, 1995, INTRO SUPERCONDUCTIV 66380 XU KX, 1999, ACTA PHYS SIN-CH ED, V48, P1152 66381 XU KX, 1999, PHYSICA C, V321, P258 66382 YING QY, 1990, PHYS REV B, V42, P2242 66383 NR 18 66384 TC 0 66385 SN 0921-4534 66386 J9 PHYSICA C 66387 JI Physica C 66388 PD APR 1 66389 PY 2001 66390 VL 351 66391 IS 3 66392 BP 274 66393 EP 280 66394 PG 7 66395 SC Physics, Applied 66396 GA 418NA 66397 UT ISI:000167897200008 66398 ER 66399 66400 PT J 66401 AU He, JH 66402 TI A modified perturbation technique depending upon an artificial parameter 66403 SO MECCANICA 66404 DT Article 66405 DE perturbation method; nonlinear equation; Duffing equation; van der Pol 66406 equation; artificial parameter 66407 AB In this paper, a modified perturbation method is proposed to search for 66408 analytical solutions of nonlinear oscillators without possible small 66409 parameters. An artificial perturbation equation is carefully 66410 constructed by embedding an artificial parameter, which is used as 66411 expanding parameter. It reveals that various traditional perturbation 66412 techniques can be powerfully applied in this theory. Some examples, 66413 such as the Duffing equation and the van der Pol equation, are given 66414 here to illustrate its effectiveness and convenience. The results show 66415 that the obtained approximate solutions are uniformly valid on the 66416 whole solution domain, and they are suitable not only for weak 66417 nonlinear systems, but also for strongly nonlinear systems. In applying 66418 the new method, some special techniques have been emphasized for 66419 different problems. 66420 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 66421 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang 66422 Rd,POB 189, Shanghai 200072, Peoples R China. 66423 CR CHEUNG YK, 1991, INT J NONLINEAR MECH, V26, P367 66424 HE JH, 1998, COMPUT METHOD APPL M, V167, P57 66425 HE JH, 1998, COMPUT METHOD APPL M, V167, P69 66426 HE JH, 1999, COMMUN NONL SCI NUM, V4, P109 66427 HE JH, 1999, COMMUN NONL SCI NUM, V4, P78 66428 HE JH, 1999, COMMUNICATIONS NONLI, V4, P81 66429 HE JH, 1999, COMPUT METHOD APPL M, V178, P257 66430 HE JH, 1999, INT J NONLINEAR MECH, V34, P699 66431 HE JH, 1999, MECCANICA, V34, P287 66432 HE JH, 2000, INT J NONLINEAR MECH, V35, P37 66433 HE JH, 2000, INT J NONLINEAR SCI, V1, P51 66434 LIU GL, 1997, NAT C 7 MOD MATH MEC, P47 66435 NAYFEH AH, 1979, NONLINEAR OSCILLATIO 66436 NAYFEH AH, 1985, PROBLEMS PERTURBATIO 66437 NR 14 66438 TC 5 66439 SN 0025-6455 66440 J9 MECCANICA 66441 JI Meccanica 66442 PY 2000 66443 VL 35 66444 IS 4 66445 BP 299 66446 EP 311 66447 PG 13 66448 SC Mechanics 66449 GA 419FL 66450 UT ISI:000167938600001 66451 ER 66452 66453 PT J 66454 AU Bian, JJ 66455 Zhu, XW 66456 Jiang, WZ 66457 Sun, ZH 66458 Wang, H 66459 TI Microwave characteristics of (Pb,Ca) (Fe,Nb,Zr)O-3 dielectric ceramics 66460 SO JOURNAL OF MATERIALS SCIENCE LETTERS 66461 DT Article 66462 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China. 66463 RP Bian, JJ, Shanghai Univ, Dept Inorgan Mat, 20 ChengZhong Rd, Shanghai 66464 201800, Peoples R China. 66465 CR KATO J, 1992, JPN J APPL PHYS 1, V31, P3144 66466 KUCHEIKO S, 1997, J AM CERAM SOC, V80, P2937 66467 NAKANO M, 1993, JPN J APPL PHYS 1, V32, P4314 66468 TAKAHASHI H, 1996, JPN J APPL PHYS 1, V35, P5069 66469 WAKINO K, 1989, FERROELECTRICS, V91, P68 66470 WERSING W, 1991, ELECT CERAMICS 66471 YOON KH, 1996, JPN J APPL PHYS 1, V35, P5145 66472 NR 7 66473 TC 3 66474 SN 0261-8028 66475 J9 J MATER SCI LETT 66476 JI J. Mater. Sci. Lett. 66477 PD FEB 66478 PY 2001 66479 VL 20 66480 IS 4 66481 BP 353 66482 EP 354 66483 PG 2 66484 SC Materials Science, Multidisciplinary 66485 GA 417WZ 66486 UT ISI:000167859600018 66487 ER 66488 66489 PT J 66490 AU Chu, QL 66491 Song, LP 66492 Jin, GF 66493 Zhu, SZ 66494 TI Study of the reactions of fluorinated alpha,beta-unsaturated carbonyl 66495 compounds with nitrogen and sulfur dinucleophiles 66496 SO JOURNAL OF FLUORINE CHEMISTRY 66497 DT Article 66498 DE fluorinated alpha,beta-unsaturated carbonyl compounds; fluorinated 66499 heterocycles; dinucleophiles; nucleophilic reactions; thiazine 66500 ID KETONES 66501 AB The fluorinated alpha,beta -unsaturated ketone 66502 1,1,1-trifluoro-4-ethoxy-3-butene-2-one reacted with dinucleophiles 66503 such as 2-aminothiophenol and 2-amino-ethanethiol to give 66504 trifluoroacetyl substituted 4H-1,4-benzothiazine, or 4H-1,4-thiazine, 66505 while the reaction of 5-trifluoroacetyl-3,4-dihydro-2H-pyran or 66506 4-trifluoroacetyl-2,3-dihydro-furan with 2-amino-phenthiol gave 66507 3-(2,2,3-2H-benzothiazolyl)-2-(trifluoromethyl)-tetrahydrofuran-2-ol or 66508 3-(2-2,3-2H-benzothiazolyl)-2-(trifluoromethyl)- 66509 tetrahydro-2H-pyran-2-ol, respectively. (C) 2001 Elsevier Science B.V. 66510 All rights reserved. 66511 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Shanghai 200032, Peoples R China. 66512 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 66513 RP Zhu, SZ, Chinese Acad Sci, Shanghai Inst Organ Chem, 345 Fenglin Rd, 66514 Shanghai 200032, Peoples R China. 66515 CR BUDESINSKY BW, 1971, J INORG NUCL CHEM, V33, P3795 66516 CHU QL, 2000, SYNTHETIC COMMUN, V30, P677 66517 FILLER R, 1979, ORGANOFLUORINE CHEM 66518 FILLER R, 1982, BIOMEDICINAL ASPECTS 66519 FILLER R, 1993, ORGANOFLUORINE COMPO 66520 GERUS II, 1994, J FLUORINE CHEM, V69, P195 66521 GORBUNOVA MG, 1993, J FLUORINE CHEM, V65, P25 66522 LISO G, 1981, J HETEROCYCLIC CHEM, V18, P279 66523 MARTINS MAP, 1999, J HETEROCYCLIC CHEM, V36, P837 66524 MIYANO S, 1975, J CHEM SOC CHEM COMM, P760 66525 WELCH JT, 1987, TETRAHEDRON, V43, P3123 66526 YOSHIOKA H, 1984, J SYN ORG CHEM JPN, V42, P809 66527 ZHU SZ, 1999, MONATSH CHEM, V130, P671 66528 NR 13 66529 TC 7 66530 SN 0022-1139 66531 J9 J FLUORINE CHEM 66532 JI J. Fluor. Chem. 66533 PD MAR 66534 PY 2001 66535 VL 108 66536 IS 1 66537 BP 51 66538 EP 56 66539 PG 6 66540 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic 66541 GA 416UB 66542 UT ISI:000167797600007 66543 ER 66544 66545 PT J 66546 AU You, JL 66547 Jiang, GC 66548 Xu, KD 66549 TI Temperature dependence of the Raman spectra of Na2Si2O5 66550 SO CHINESE PHYSICS LETTERS 66551 DT Article 66552 ID SPECTROSCOPY; MELT 66553 AB The microstructures of Na2Si2O5 from room temperature up to 1773 K are 66554 studied by high-temperature Raman spectroscopy. Deconvolutions of 66555 complex Raman spectra of crystal and amorphous states (glass and melt) 66556 are described. The results show that the temperature-dependent Raman 66557 spectra clearly indicate phase transition. The relative abundance of 66558 various kinds of SiO4 tetrahedrons (each Si binding to different 66559 numbers of bridging oxygens) can be qualitatively and quantitatively 66560 resolved as to be varied obviously with different temperatures. This 66561 shows that high-temperature Raman spectroscopy provides a useful tool 66562 for microstructure research under high temperature and helps to explain 66563 the properties of silicate glasses and melts. 66564 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China. 66565 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 66566 200072, Peoples R China. 66567 CR DOMINE F, 1983, J NON-CRYST SOLIDS, V55, P125 66568 HANDKE M, 1993, VIB SPECTROSC, V5, P75 66569 HUANG SP, 2000, CHINESE PHYS LETT, V17, P279 66570 JIANG GC, 1993, ISIJ INT, V33, P20 66571 LONG DA, 1977, RAMAN SPECTROSCOPY, CH4 66572 MYSEN BO, 1990, J GEOPHYS RES-SOLID, V95, P15733 66573 SMITH W, 1995, J NONCRYST SOLIDS, V192, P267 66574 XU KD, 1999, SCI CHINA, V22, P77 66575 XU PC, 1996, RAMAN SPECTROSCOPY G, CH7 66576 YOU JL, 1998, J CHINESE RARE EARTH, V16, P505 66577 YOU JL, 1999, OPTICAL INSTRUMENT, V21, P21 66578 YOU JL, 2000, IN PRESS J SHANGHAI 66579 NR 12 66580 TC 2 66581 SN 0256-307X 66582 J9 CHIN PHYS LETT 66583 JI Chin. Phys. Lett. 66584 PD MAR 66585 PY 2001 66586 VL 18 66587 IS 3 66588 BP 408 66589 EP 410 66590 PG 3 66591 SC Physics, Multidisciplinary 66592 GA 417RM 66593 UT ISI:000167848000033 66594 ER 66595 66596 PT J 66597 AU Cheng, JR 66598 Meng, ZY 66599 TI Thickness-dependent microstructures and electrical properties of PZT 66600 films derived from sol-gel process 66601 SO THIN SOLID FILMS 66602 DT Article 66603 DE PZT films; sol-gel; thickness-dependent properties 66604 ID THIN-FILMS; ORIENTATION 66605 AB Crack free Pb(ZrxTi1-x)O-3 (x = 0.45) films with various thicknesses 66606 were prepared by a sol-gel multiple coating process on Pt-coated 66607 Si(100) substrates. Rapid thermal annealing (RTA) methods were used to 66608 crystallize the amorphous PZT films. Field emission scanning electron 66609 microscopy (FESEM) and X-ray diffraction (XRD) techniques were utilized 66610 to study the thickness dependent morphology and phase content. The 66611 relationship between the thickness and electrical properties of PZT 66612 films was investigated. The dielectric constants of PZT films increased 66613 with increasing film thickness. It was observed that the PZT films 66614 revealed spontaneous piezoelectric responses without poling process, 66615 which decreased with increasing film thickness. By poling the film with 66616 26 V/mum, the piezoelectric responses of the thin PZT films was not 66617 obviously improved. However, the piezoelectric constant of thick PZT 66618 films increased obviously after poling. The phenomenon of 66619 thickness-dependent spontaneous polarization of PZT films was utilized 66620 to interpret the thickness dependent piezoelectric properties. The I-V 66621 characteristics and the dielectric breakdown strength of PZT films have 66622 also been examined and discussed. (C) 2001 Elsevier Science B.V. All 66623 rights reserved. 66624 C1 Shanghai Jiao Tong Univ, Sch Mat Sci, Shanghai 200030, Peoples R China. 66625 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China. 66626 RP Cheng, JR, Shanghai Jiao Tong Univ, Sch Mat Sci, Shanghai 200030, 66627 Peoples R China. 66628 CR AMANUMA K, 1993, JPN J APPL PHYS 1, V32, P4150 66629 BUDD KD, 1985, BR CERAM P, V36, P107 66630 CHENG JR, 1999, ADV SCI TECH, V25, P61 66631 KHOLKIN AL, 1998, INTEGR FERROELECTR, V22, P525 66632 KIM CJ, 1998, THIN SOLID FILMS, V312, P130 66633 LEFKI K, 1994, J APPL PHYS, V76, P1764 66634 LIU DDH, 1997, INTEGR FERROELECTR, V18, P263 66635 MIYAZAWA K, 1998, J AM CERAM SOC, V81, P2333 66636 PHILLIPS NJ, 1991, J MATER CHEM, V1, P893 66637 QU X, 1986, THIN FILM PHYSICS CH, P124 66638 SCOTT JF, 1989, SCIENCE, V246, P1400 66639 SWARTZ SL, 1992, MATER RES SOC S P, V243, P533 66640 TANI T, 1993, MATER RES SOC S P, V310, P296 66641 WILLEMS GJ, 1997, INTEGR FERROELECTR, V15, P19 66642 YAMASHITA K, 1980, JPN J APPL PHYS, V19, P867 66643 YI G, 1988, J APPL PHYS, V64, P2713 66644 NR 16 66645 TC 16 66646 SN 0040-6090 66647 J9 THIN SOLID FILMS 66648 JI Thin Solid Films 66649 PD APR 2 66650 PY 2001 66651 VL 385 66652 IS 1-2 66653 BP 5 66654 EP 10 66655 PG 6 66656 SC Materials Science, Multidisciplinary; Physics, Applied; Physics, 66657 Condensed Matter 66658 GA 414KW 66659 UT ISI:000167666600002 66660 ER 66661 66662 PT J 66663 AU Cheng, XY 66664 Wan, XJ 66665 Wu, QY 66666 Sun, XK 66667 TI Diffusion of hydrogen along the grain boundaries in Ni3Al alloys 66668 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 66669 DT Article 66670 ID ENVIRONMENTAL EMBRITTLEMENT; NICKEL; TRANSPORT; SEGREGATION 66671 AB The diffusivity of hydrogen in two Ni3Al alloys (No.1 and No.2) has 66672 been measured in the temperature range of 100 degreesC to 420 degreesC 66673 using an ultrahigh vacuum gaseous permeation technique. The diffusivity 66674 data fall into two segments, in which the hydrogen diffusivity adheres 66675 to the Arrhenius form, respectively. From the hydrogen diffusivity, it 66676 is conjectured that the hydrogen diffusivity reflects the hydrogen 66677 transportation along the grain boundaries at lower temperature and the 66678 hydrogen transportation in the lattice at higher temperature. The 66679 intergranular fracture of Lit-type intermetallics induced by hydrogen 66680 at relative low temperature results from hydrogen transportation along 66681 the grain boundaries and not in the lattice. 66682 C1 Shanghai Univ, Mat Res Inst, Shanghai 200072, Peoples R China. 66683 Chinese Acad Sci, Met Res Inst, State Key Lab RSA, Shenyang 110015, Peoples R China. 66684 RP Cheng, XY, Shanghai Univ, Mat Res Inst, Shanghai 200072, Peoples R 66685 China. 66686 CR CHENG XY, UNPUB 66687 CHENG XY, 1998, SCRIPTA MATER, V38, P959 66688 FUKUSHIMA H, 1984, ACTA METALL, V32, P851 66689 GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37 66690 HARRIS TM, 1991, METALL TRANS A, V22, P351 66691 HUANG JH, 1996, DIFFUSION METALS ALL 66692 KIRMURA A, 1988, ACTA METALL, V36, P757 66693 LADNA B, 1987, ACTA METALL, V35, P1775 66694 PALUMBO G, 1991, SCRIPTA METALL MATER, V25, P679 66695 TAKASUGI T, 1993, SCRIPTA METALL MATER, V29, P1587 66696 TSURU T, 1982, SCRIPTA METALL, V16, P575 66697 WAN X, 1994, J MATER SCI TECHNOL, V10, P39 66698 WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473 66699 XU J, 1993, ACTA METALL MATER, V41, P1455 66700 NR 14 66701 TC 0 66702 SN 1005-0302 66703 J9 J MATER SCI TECHNOL 66704 JI J. Mater. Sci. Technol. 66705 PD MAR 66706 PY 2001 66707 VL 17 66708 IS 2 66709 BP 207 66710 EP 210 66711 PG 4 66712 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 66713 Engineering 66714 GA 415KL 66715 UT ISI:000167720500003 66716 ER 66717 66718 PT J 66719 AU Guo, GY 66720 Chen, YL 66721 TI High-quality zirconia powder resulting from the attempted separation of 66722 acetic acid from acrylic acid with zirconium oxychloride 66723 SO JOURNAL OF MATERIALS CHEMISTRY 66724 DT Article 66725 ID TEMPERATURE; PRECURSOR; ALKOXIDE 66726 AB Both acetic and acrylic acids are low molecular weight carboxylic acids 66727 with very similar physical and chemical properties. As a result it is 66728 difficult to separate these two acids by the now commercially 66729 significant separation techniques such as distillation, solvent 66730 extraction, adsorption, ion exchange, calcium salt precipitation, and 66731 membrane processes. We propose a metal-organic precipitation process 66732 using zirconium oxychloride to separate acetic acid from acrylic acid 66733 in the effluent of an acrylic acid plant. The process developed is 66734 based on the selective precipitation of acrylic acid, at suitable pH 66735 values, by the addition of zirconium oxychloride to the effluent. The 66736 resulting precipitate is a precursor that can yield a pure, ultrafine, 66737 and partially-stabilized zirconia powder which has been characterised 66738 using thermal analysis, infrared spectroscopy, and X-ray diffraction. 66739 Environmental, technological and cost advantages will make the present 66740 process feasible for the manufacture of advanced zirconia-based 66741 ceramics. 66742 C1 Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Shanghai 200030, Peoples R China. 66743 Shanghai Univ, Coll Chem & Chem Engn, Shanghai 200072, Peoples R China. 66744 RP Guo, GY, Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Shanghai 200030, 66745 Peoples R China. 66746 CR ALCOCK NW, 1976, J CHEM SOC DA, P2243 66747 CHEN YL, 1997, CERAM INT, V23, P267 66748 DJURADO E, 1998, J SOLID STATE CHEM, V141, P191 66749 GU GY, 1992, J AM CERAM SOC, V75, P1294 66750 GUO GY, 1991, J MATER SCI, V26, P3511 66751 GUO GY, 2000, GREEN CHEM, V2, G42 66752 HAYASHI H, 1998, J SOL-GEL SCI TECHN, V12, P87 66753 HU MZC, 1999, J AM CERAM SOC, V82, P2313 66754 JANA S, 1997, J SOL-GEL SCI TECHN, V9, P227 66755 KOMISSAROVA LN, 1966, RUSS J INORG CHEMN, V11, P2035 66756 MCDEVITT NT, 1964, SPECTROCHIM ACTA, V20, P799 66757 MEHROTRA RC, 1983, METAL CARBOXYLATES, P238 66758 MICHELI AL, 1989, CERAM INT, V15, P131 66759 PAUL RC, 1976, AUST J CHEM, V29, P1605 66760 PROZOROVSKAYA ZN, 1968, RUSS J INORG CHEM, V13, P965 66761 SOREK Y, 1997, CHEM MATER, V9, P670 66762 TOSAN JL, 1994, J NON-CRYST SOLIDS, V168, P23 66763 TSUKADA T, 1999, J AM CERAM SOC, V82, P1169 66764 UCHIKOSHI T, 1998, J MATER RES, V13, P840 66765 VEYTIZOU C, 2000, J MATER CHEM, V10, P365 66766 YOKOTA O, 1999, J AM CERAM SOC, V82, P1333 66767 NR 21 66768 TC 1 66769 SN 0959-9428 66770 J9 J MATER CHEM 66771 JI J. Mater. Chem. 66772 PY 2001 66773 VL 11 66774 IS 4 66775 BP 1283 66776 EP 1287 66777 PG 5 66778 SC Chemistry, Physical; Materials Science, Multidisciplinary 66779 GA 415NR 66780 UT ISI:000167728100050 66781 ER 66782 66783 PT J 66784 AU Wan, YB 66785 Chu, JH 66786 Guo, SL 66787 Bo, LX 66788 Yu, TY 66789 Yu, BK 66790 TI A ferroelectric frequency-doubling material-potassium lithium niobate 66791 SO INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES 66792 DT Article 66793 DE crystal growth; ferroelectrics; optical transmission spectrum; domain 66794 structure; Second Harmonic Generation 66795 ID SINGLE-CRYSTALS; GROWTH 66796 AB The potassium lithium niobate crystals have been grown up. The shapes 66797 of solid-melt interfaces which maintaining the steady growth of the 66798 potassium lithium niobate crystals have been described. The optical 66799 transmission spectrum of the crystal has been surveyed. The perfected 66800 crystals showed good Second Harmonic Generation properties. 66801 C1 Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China. 66802 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 66803 RP Wan, YB, Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared 66804 Phys, Shanghai 200083, Peoples R China. 66805 CR CLARK R, 1973, J PHYSIQUE, V22, P143 66806 REID JJE, 1993, APPL PHYS LETT, V62, P19 66807 SONG YT, 1998, J CRYST GROWTH, V194, P379 66808 VANUITERT LG, 1967, APPL PHYS LETT, V11, P161 66809 WAN YB, 1998, J SYNTH CRYST, V27, P36 66810 WAN YB, 1999, CHIN J LASER, V26, P837 66811 XIA HR, 1997, CRYST RES TECHNOL, V32, P311 66812 NR 7 66813 TC 0 66814 SN 0195-9271 66815 J9 INT J INFRAR MILLIM WAVE 66816 JI Int. J. Infrared Millimeter Waves 66817 PD JAN 66818 PY 2001 66819 VL 22 66820 IS 1 66821 BP 197 66822 EP 205 66823 PG 9 66824 SC Engineering, Electrical & Electronic; Physics, Applied; Optics 66825 GA 414FL 66826 UT ISI:000167655300017 66827 ER 66828 66829 PT J 66830 AU Pan, SK 66831 Yuan, QX 66832 Xu, J 66833 Yu, TY 66834 Yu, BK 66835 Wan, YB 66836 TI Crack-free K3Li2-xNb5+2xO15+2x crystals grown by the resistance-heated 66837 Czochralski technique 66838 SO JOURNAL OF CRYSTAL GROWTH 66839 DT Article 66840 DE Czochralski method; growth from melt; single crystal growth; lithium 66841 compound; niobate; potassium compounds; ferroelectric materials; 66842 nonlinear optic materials; harmonic generators; nonlinear optical 66843 ID POTASSIUM 66844 AB We report that crack-free K3Li2-chiNb5+2 chiO15+2 chi crystals (KLN) 66845 have been grown by the resistance-heated Czochralski technique. The 66846 influence of melt composition and growth parameters on crystal growth 66847 and crystal cracks are described. Blue light (445-476nm) has been 66848 obtained by frequency doubling of the light wave (890-952nm) generated 66849 from a Ti:sapphire laser. (C) 2001 Published by Elsevier Science B.V. 66850 C1 Acad Sinica, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China. 66851 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China. 66852 Acad Sinica, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China. 66853 RP Pan, SK, Acad Sinica, Shanghai Inst Opt & Fine Mech, POB 800211, 66854 Shanghai 201800, Peoples R China. 66855 CR FERRIOL M, 1997, J CRYST GROWTH, V173, P226 66856 OUWERKER M, 1991, ADV MATER, V3, P339 66857 SCOTT BA, 1970, MATER RES B, V5, P47 66858 VANUITERT LG, 1967, APPL PHYS LETT, V11, P161 66859 WAN YB, 1997, J SYNTH CRYST, V2, P36 66860 WAN YB, 1999, J CHIN LASERS, V8, P15 66861 YOON DH, 1994, J CRYST GROWTH, V144, P207 66862 NR 7 66863 TC 2 66864 SN 0022-0248 66865 J9 J CRYST GROWTH 66866 JI J. Cryst. Growth 66867 PD MAR 66868 PY 2001 66869 VL 223 66870 IS 3 66871 BP 389 66872 EP 393 66873 PG 5 66874 SC Crystallography 66875 GA 411FL 66876 UT ISI:000167487400011 66877 ER 66878 66879 PT J 66880 AU Ma, JY 66881 Qiu, XJ 66882 TI Interaction between an electronic system and multiphotons in a strong 66883 laser field 66884 SO ACTA PHYSICA SINICA 66885 DT Article 66886 DE strong laser field; multiphoton; nonlinear optics 66887 ID PARTIALLY STRIPPED PLASMAS; COHERENT CONTROL; PULSES; PROPAGATION; 66888 PHOTODISSOCIATION; STABILITY; DYNAMICS 66889 AB Under the framework of nonlinear quantum field theory,we show the total 66890 Hamiltonian operator H-tot for the interaction between an electron 66891 field and a photon field,and study the contribution of the nonlinear 66892 term A(2) in the strong laser field. In this paper,we describe 66893 electrons with the Schrodinger quantum wave field of Fermi-Dirac 66894 statistics. By applying "self-consistent mean field","effective mass" 66895 approximation and the displaced harmonic oscillator coherent theory,we 66896 derive the Lee-Low-Pines expression f(b(+)) of electron wave-photon 66897 field operator function. Then using the differential formula of partial 66898 derivativef(b+)/partial derivativeb+ we derive some relevant 66899 calculating formulas, including detailed expressions of electron energy 66900 El and abt wave field parameter beta (w). Furthermore,we also derive 66901 self-energy E-k=0 and renormalized mass m** of electrons according to 66902 these expressions. 66903 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 66904 RP Ma, JY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 66905 CR BARTY CPJ, 1996, LASER FOCUS WORLD, V32, P93 66906 BORGHESI M, 1998, PHYS REV E, V57, P4899 66907 CHARRON E, 1995, J CHEM PHYS, V103, P7359 66908 CHARRON E, 1995, PHYS REV LETT, V75, P2815 66909 CLARK TR, 1997, PHYS REV LETT, V78, P2773 66910 GIUSTISUZOR A, 1995, J PHYS B-AT MOL OPT, V28, P309 66911 GUO DS, 1992, PHYS REV A, V45, P6622 66912 HAKEN H, 1976, QUANTUM FIELD THEORY 66913 KRUSHELNICK K, 1997, PHYS REV LETT, V78, P4047 66914 LANGE HR, 1998, OPT LETT, V23, P120 66915 MENG SX, 1999, PROGR PHYSICS, V19, P236 66916 MILCHBERG HM, 1996, PHYS PLASMAS 2, V3, P2149 66917 MOUROU GA, 1998, PHYS TODAY, V51, P22 66918 SPRANGLE P, 1997, PHYS REV E B, V56, P5894 66919 SPRANGLE P, 1997, PHYS REV LETT, V79, P1046 66920 SPRANGLE P, 1999, PHYS REV LETT, V82, P1173 66921 NR 16 66922 TC 0 66923 SN 1000-3290 66924 J9 ACTA PHYS SIN-CHINESE ED 66925 JI Acta Phys. Sin. 66926 PD MAR 66927 PY 2001 66928 VL 50 66929 IS 3 66930 BP 416 66931 EP 421 66932 PG 6 66933 SC Physics, Multidisciplinary 66934 GA 412UJ 66935 UT ISI:000167572500010 66936 ER 66937 66938 PT J 66939 AU Xue, Y 66940 Dong, LY 66941 Dai, SQ 66942 TI An improved one-dimensional cellular automaton model of traffic flow 66943 and the effect of deceleration probability 66944 SO ACTA PHYSICA SINICA 66945 DT Article 66946 DE traffic flow; cellular automaton; probability of deceleration; jam phase 66947 AB Based upon the single-lane traffic cellular automaton (CA) model 66948 introduced by Negel and Schreckenberg, an improved single-lane traffic 66949 CA model has been proposed by the consideration of the relative motion 66950 of vehicles and the relation of deceleration probability with the 66951 density. Numerical simulations have been carried out. The results show 66952 the complicated evolution process of traffic flow. The flow of vehicles 66953 can be controlled by the definition of the relation between 66954 deceleration probability and the exponet v of density P-noise similar 66955 to rho (v) Different values of v have different effect on the critical 66956 point from free phase to jam phase. The simulation agrees with the 66957 measurement as v is about 0.75. With the increase of vehicles and the 66958 evolution process of traffic flow,the free and jam phases will become 66959 unsteady and appear alternatively, similiar to the propagation of wave. 66960 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 66961 Guangxi Univ, Dept Phys, Nanning 530003, Peoples R China. 66962 RP Xue, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, 66963 Peoples R China. 66964 CR BIHAM O, 1992, PHYS REV A, V46, P6124 66965 ISHIBASHI Y, 1994, J PHYS SOC JPN, V63, P2882 66966 NAGEL K, 1992, J PHYS I, V2, P2221 66967 NAGEL K, 1997, TRANSIMS TRAFFIC FLO 66968 SCHREKENBERG M, 1995, PHYS REV E A, V51, P2939 66969 TOROK J, 1996, PHYSICA A, V231, P515 66970 WAGNER P, 1996, TRAFFIC GRANULAR FLO, P193 66971 WANG BH, 1996, J PHYS A-MATH GEN, V29, L31 66972 WANG BH, 1998, ACTA PHYS SINICA, V47, P906 66973 WOLFRAM S, 1986, THEORY APPL CELLULAR 66974 NR 10 66975 TC 21 66976 SN 1000-3290 66977 J9 ACTA PHYS SIN-CHINESE ED 66978 JI Acta Phys. Sin. 66979 PD MAR 66980 PY 2001 66981 VL 50 66982 IS 3 66983 BP 445 66984 EP 449 66985 PG 5 66986 SC Physics, Multidisciplinary 66987 GA 412UJ 66988 UT ISI:000167572500015 66989 ER 66990 66991 PT J 66992 AU Ma, HL 66993 Tang, JY 66994 TI Measurement of isotope shifts among Nd-142-146,148,150(+) by using 66995 collinear fast-ion-beam laser spectroscopy 66996 SO ACTA PHYSICA SINICA 66997 DT Article 66998 DE isotope shifts; fast-ion-beam laser spectroscopy 66999 ID ND-II 67000 AB In atomic spectroscopy, the subject of isotope shifts is one of the few 67001 problems that links atomic and nuclear physics. The isotope shifts 67002 among all the seven stable isotopes in Nd II were measured by means of 67003 collinear fast-ion-beam laser spectroscopy. Compared with the data that 67004 have been published,our experimental accuracy is improved by one order 67005 of magnitude and some of the results are obtained for the first time, 67006 as far as we know. 67007 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 67008 Fudan Univ, Inst Modern Phys, Shanghai 200433, Peoples R China. 67009 RP Ma, HL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 67010 CR AHMAD SA, 1983, SPECTROCHIM ACTA B, V36, P943 67011 BLAISE J, 1984, PHYS SCR, V29, P119 67012 GERSTENKON S, 1978, ATLAS SPECTRA ABSORP 67013 KING WK, 1984, ISOTOPE SHIFTS ATOMI, CH6 67014 MA HL, 1997, J PHYS B-AT MOL OPT, V30, P3355 67015 MA HL, 1998, ACTA PHYS SIN-OV ED, V7, P572 67016 MA HL, 1999, CHINESE PHYS LETT, V6, P411 67017 WAKASUGI M, 1990, J PHYS SOC JPN, V59, P2700 67018 NR 8 67019 TC 0 67020 SN 1000-3290 67021 J9 ACTA PHYS SIN-CHINESE ED 67022 JI Acta Phys. Sin. 67023 PD MAR 67024 PY 2001 67025 VL 50 67026 IS 3 67027 BP 453 67028 EP 456 67029 PG 4 67030 SC Physics, Multidisciplinary 67031 GA 412UJ 67032 UT ISI:000167572500017 67033 ER 67034 67035 PT J 67036 AU Li, SM 67037 Wang, Q 67038 Wu, Z 67039 Wei, Q 67040 TI Slow Bragg solitons in a periodic structure with Kerr nonlinearity 67041 SO ACTA PHYSICA SINICA 67042 DT Article 67043 DE solitary wave; slow Bragg solitons; gap solitons; coupled-mode theory 67044 ID GAP SOLITONS; OPTICAL-RESPONSE; BISTABILITY; SUPERLATTICES 67045 AB On the basis of coupled-mode theory we find a class of solitary 67046 solutions for the electromagnetic wave propagating in an infinite 67047 one-dimensional periodic structure with an intensity-dependent 67048 refractive index. We show that the amplitude of the solitary wave is 67049 dependent of the incident frequency and the pulse width. In the Bragg 67050 resonance limit, the solitary wave can he Simplified to a soliton-like 67051 solution which was named as "gap soliton" or "slow Bragg soliton". 67052 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 67053 RP Li, SM, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 67054 CR CHEN W, 1987, PHYS REV B, V36, P6269 67055 CHEN W, 1987, PHYS REV LETT, V58, P160 67056 CHRISTODOULIDES DN, 1989, PHYS REV LETT, V62, P1746 67057 DESTERKE CM, 1989, J OPT SOC AM B, V6, P1722 67058 DRAGOMAN M, 1993, APPL PHYS LETT, V62, P110 67059 FENG J, 1993, OPT LETT, V18, P1302 67060 FENG JH, 1993, IEEE J QUANTUM ELECT, V29, P590 67061 HERBERT CJ, 1993, OPT LETT, V18, P1783 67062 KUO CP, 1988, OPT LETT, V13, P1032 67063 MILLS DL, 1987, PHYS REV B, V36, P947 67064 WINFUL HG, 1979, APPL PHYS LETT, V35, P379 67065 WINFUL HG, 1985, APPL PHYS LETT, V46, P527 67066 NR 12 67067 TC 4 67068 SN 1000-3290 67069 J9 ACTA PHYS SIN-CHINESE ED 67070 JI Acta Phys. Sin. 67071 PD MAR 67072 PY 2001 67073 VL 50 67074 IS 3 67075 BP 489 67076 EP 495 67077 PG 7 67078 SC Physics, Multidisciplinary 67079 GA 412UJ 67080 UT ISI:000167572500024 67081 ER 67082 67083 PT J 67084 AU Gan, JY 67085 Chau, KT 67086 Wang, Y 67087 Chan, CC 67088 Jiang, JZ 67089 TI Design and analysis of a new permanent magnet brushless DC machine 67090 SO IEEE TRANSACTIONS ON MAGNETICS 67091 DT Article 67092 DE flux regulation; permanent magnet brushless dc machine; square wave; 67093 time-stepping finite element method 67094 AB A new permanent magnet (PM) brushless de machine with a unique feature 67095 of flux regulation is proposed in this paper. The originality is that 67096 the air-gap flux of the machine is generated by both the PM excitation 67097 and the specially controlled stator current under the same PM pole, The 67098 machine possesses advantageous characteristics of both the PM brushless 67099 de machine and the de series machine, The rotor configuration and 67100 principle of operation are so novel that the magnetic field 67101 distribution and performances of the machine are analyzed by use of a 67102 time-stepping finite element method. The theoretical calculation is 67103 also verified by experimental measurement. 67104 C1 Univ Hong Kong, Dept Elect Engn & Elect, Hong Kong, Hong Kong, Peoples R China. 67105 Shanghai Univ, Sch Automat, Shanghai 200072, Peoples R China. 67106 RP Gan, JY, Univ Hong Kong, Dept Elect Engn & Elect, Hong Kong, Hong Kong, 67107 Peoples R China. 67108 CR CHAN CC, 1996, IEEE T IND ELECTRON, V43, P331 67109 CHAN CC, 1998, IEEE T, V4, P16 67110 CHAN CC, 1999, P INT EL VEH S, P1 67111 LAW JD, 1994, IEEE T IND APPL, V30, P1185 67112 MAYER R, 1986, P INT C EL MACH, P1138 67113 NR 5 67114 TC 2 67115 SN 0018-9464 67116 J9 IEEE TRANS MAGN 67117 JI IEEE Trans. Magn. 67118 PD SEP 67119 PY 2000 67120 VL 36 67121 IS 5 67122 PN Part 1 67123 BP 3353 67124 EP 3356 67125 PG 4 67126 SC Engineering, Electrical & Electronic; Physics, Applied 67127 GA 409EN 67128 UT ISI:000167371700380 67129 ER 67130 67131 PT J 67132 AU Gan, JY 67133 Chau, KT 67134 Chan, CC 67135 Jiang, JZ 67136 TI A new surface-inset, permanent-magnet, brushless DC motor drive for 67137 electric vehicles 67138 SO IEEE TRANSACTIONS ON MAGNETICS 67139 DT Article 67140 DE brushless dc motors; electric vehicles; motor drives; permanent magnet 67141 motors 67142 ID OPERATING LIMITS; DESIGN; PERFORMANCE; MACHINES 67143 AB A new five-phase, surface-inset, permanent-magnet (PM), brushless de 67144 motor drive is proposed in this paper The motor drive has advantages of 67145 both the PM brushless de motor drive and the de series motor drive, The 67146 originlity is that the air-gap flux of the motor is generated by both 67147 the PM excitation and the specially controlled stator currents (two 67148 particular phases) under the same PM pole. The motor configuration and 67149 principle of operation are so unusual that the magnetic field 67150 distribution and steady-state performance are analyzed by the 67151 finite-element method (FEM), Experimental results for a prototype 67152 verify that the proposed motor drive is promising for modern electric 67153 vehicle applications. 67154 C1 Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China. 67155 Shanghai Univ, Sch Automat, Shanghai 200072, Peoples R China. 67156 RP Gan, JY, Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, 67157 Peoples R China. 67158 CR CHAN CC, 1993, P IEEE, V81, P1202 67159 CHAN CC, 1994, IEEE T IND APPL, V30, P1258 67160 CHAN CC, 1995, IEEE T POWER ELECTR, V10, P539 67161 JAHNS TM, 1987, IEEE T IND APPL, V23, P681 67162 LAW JD, 1994, IEEE T IND APPL, V30, P1185 67163 MAYER R, 1988, P INT C EL MACH, P1138 67164 MORIMOTO S, 1990, IEEE T IND APPL, V26, P866 67165 SCHIFERL RF, 1990, IEEE T IND APPL, V26, P115 67166 SEBASTIAN T, 1987, IEEE T IND APPL, V23, P327 67167 SEBSTIAN T, 1986, IEEE T MAGN, V22, P1069 67168 SOONG WL, 1994, IEE P-ELECT POW APPL, V141, P331 67169 WEH H, 1984, IEEE T MAGN, V20, P1756 67170 WEH H, 1985, P EUR POW EL C EPE B, P1147 67171 XU LY, 1995, IEEE T IND APPL, V31, P373 67172 ZHU ZQ, 1994, IEEE T MAGN, V30, P98 67173 NR 15 67174 TC 6 67175 SN 0018-9464 67176 J9 IEEE TRANS MAGN 67177 JI IEEE Trans. Magn. 67178 PD SEP 67179 PY 2000 67180 VL 36 67181 IS 5 67182 PN Part 2 67183 BP 3810 67184 EP 3818 67185 PG 9 67186 SC Engineering, Electrical & Electronic; Physics, Applied 67187 GA 409EQ 67188 UT ISI:000167371900009 67189 ER 67190 67191 PT J 67192 AU Ren, ZJ 67193 Cao, WG 67194 Tong, WQ 67195 Xi, JJ 67196 TI Novel synthesis of unsymmetrical azines from semicarbazones and 67197 aldehydes 67198 SO SYNTHETIC COMMUNICATIONS 67199 DT Article 67200 AB A new synthesis of unsymmetrical azines utilizing semicarbazones and 67201 aldehyde is described. 67202 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 67203 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 67204 CR BARLUENGA J, 1982, SYNTHESIS-STUTTGART, P966 67205 GEORGIA MA, 1987, ORGANOMETALLICS, V6, P421 67206 KOZIARA A, 1986, SYNTHESIS-STUTTGART, P298 67207 TENNANT G, 1979, COMPREHENSIVE ORGANI, V2, P455 67208 UGRIUMOV PG, 1959, ZH OBSHCH KHIM, V29, P4091 67209 NR 5 67210 TC 1 67211 SN 0039-7911 67212 J9 SYN COMMUN 67213 JI Synth. Commun. 67214 PY 2001 67215 VL 31 67216 IS 1 67217 BP 125 67218 EP 129 67219 PG 5 67220 SC Chemistry, Organic 67221 GA 409LC 67222 UT ISI:000167384300017 67223 ER 67224 67225 PT J 67226 AU Jin, H 67227 Wang, Q 67228 Li, ZY 67229 TI Biocatalytic resolution of para-nitrostyrene oxide by resting cells of 67230 different Aspergillus niger strains 67231 SO CHINESE JOURNAL OF CHEMISTRY 67232 DT Article 67233 DE epoxide hydrolase; kinetic resolution; chiral epoxide; chiral vicinal 67234 diol 67235 ID MICROBIOLOGICAL TRANSFORMATIONS; EPOXIDE HYDROLASES 67236 AB Biocatalytic resolution of racemic para-nitrostyrene oxide was 67237 accomplished by employing the epoxide hydrolases from the whole cells 67238 of several Aspergillus niger (A. niger) strains. In the eases 67239 investigated, excellent selectivity was achieved with such strains as 67240 A. niger 5450, A. niger 5320. 67241 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Bioorgan & Nat Prod Chem, Shanghai 200032, Peoples R China. 67242 Shanghai Univ, Dept Biotechnol, Shanghai 200072, Peoples R China. 67243 RP Li, ZY, Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab 67244 Bioorgan & Nat Prod Chem, 345 Lingling Lu, Shanghai 200032, Peoples R 67245 China. 67246 CR ARAND M, 1994, FEBS LETT, V338, P251 67247 ARAND M, 1996, J BIOL CHEM, V271, P4223 67248 ARCHELAS A, 1997, ANNU REV MICROBIOL, V51, P491 67249 CHEN XJ, 1993, J ORG CHEM, V58, P5528 67250 FABER K, 1996, ACTA CHEM SCAND, V50, P249 67251 JACOBSEN EN, 1997, TETRAHEDRON LETT, V38, P773 67252 JOHNSON RA, 1993, CATALYTIC ASYMMETRIC, P103 67253 KATSUKI T, 1995, J SYN ORG CHEM JPN, V53, P940 67254 KOLB HC, 1994, CHEM REV, V94, P2483 67255 LARROW JF, 1996, J AM CHEM SOC, V50, P249 67256 MOREAU P, 1997, TETRAHEDRON, V53, P9707 67257 MORISSEAU C, 1997, ENZYME MICROB TECH, V20, P446 67258 MORISSEAU C, 1998, BIOTECHNOL TECH, V12, P805 67259 MOUSSOU P, 1996, J ORG CHEM, V61, P7402 67260 PEDRAGOSAMOREAU S, 1997, TETRAHEDRON, V53, P9707 67261 WEIJERS CAGM, 1997, TETRAHEDRON-ASYMMETR, V8, P639 67262 NR 16 67263 TC 0 67264 SN 1001-604X 67265 J9 CHINESE J CHEM 67266 JI Chin. J. Chem. 67267 PD MAR 67268 PY 2001 67269 VL 19 67270 IS 3 67271 BP 272 67272 EP 275 67273 PG 4 67274 SC Chemistry, Multidisciplinary 67275 GA 408AP 67276 UT ISI:000167304600011 67277 ER 67278 67279 PT J 67280 AU Xu, K 67281 Zhou, S 67282 Bao, JS 67283 TI Nonequilibrium photoresponse of YBa2Cu3O7-x granular films to 8 mm 67284 microwave radiation 67285 SO JOURNAL OF APPLIED PHYSICS 67286 DT Article 67287 ID KOSTERLITZ-THOULESS TRANSITION; O THIN-FILMS; ANTIVORTEX PAIR 67288 DISSOCIATION; SUPERCONDUCTING WEAK LINKS; JOSEPHSON-JUNCTION ARRAYS; 67289 OPTICAL-RESPONSE; RESISTIVE TRANSITION; TEMPORAL RELAXATION; 67290 FLUCTUATIONS; CRYSTALS 67291 AB Nonequilibrium photoresponse behavior has been investigated for 67292 YBa2Cu3O7-x (YBCO) granular films to 8 mm microwave radiation under 67293 various bias currents and magnetic fields. The measurements reveal that 67294 the nonequilibrium photoresponse mode occurs only in the tail region of 67295 the resistance transition curve R(T) from the normal to the 67296 superconducting state, where transportation behavior of the granular 67297 superconducting film is found to be characterized by the 67298 Kosterlitz-Thouless (KT) phase transition model. Based on the KT model, 67299 the photoresponse mechanism has been interpreted in terms of the 67300 depinning process of the unbinding vortices, which are generated from 67301 the decoupling process of the vortex-antivortex pairs by current, and 67302 are held at the intrinsic pinning sites of the granular high-T-c 67303 superconducting films at low temperature. Under the co-action of the 67304 bias current and the incident microwave photons, these unbinding 67305 vortices will be driven out of the pinning center, creating viscous 67306 motion in the Josephson junction array system. An analytical result of 67307 the unbinding vortices density n(T,I) induced by applied current has 67308 been worked out based on the model of two-dimensional Josephson 67309 junction arrays that is employed as a model system for the YBCO 67310 granular films. The distribution of the n(T,I) is found to be analogous 67311 to that of the photoresponse measured in the temperature region of 67312 2/3T(KT)<T <T-KT. Additionally, the measurements reveal that the 67313 magnitude of the photoresponse is linearly increased with an increase 67314 of the incident microwave power. These results imply that the 67315 nonequilibrium photoresponse induced by microwave irradiation may be 67316 intrinsically related to the decoupling process of the 67317 vortex-antivortex pairs, as well as to the depinning dynamics of the 67318 unbinding vortices in the granular high-T-c superconducting films. (C) 67319 2001 American Institute of Physics. 67320 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 67321 RP Xu, K, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 67322 CR ABRAHAM DW, 1982, PHYS REV B, V26, P5268 67323 AMBEGAOKAR V, 1963, PHYS REV LETT, V10, P486 67324 BEASLEY MR, 1979, PHYS REV LETT, V42, P1165 67325 BHATTACHARYA S, 1994, J APPL PHYS, V76, P5829 67326 BLUZER N, 1991, PHYS REV B, V44, P10222 67327 BLUZER N, 1992, J APPL PHYS, V71, P1336 67328 BLUZER N, 1993, IEEE T APPL SUPERCON, V3, P2869 67329 BOONE BG, 1991, J APPL PHYS, V69, P2676 67330 CHANG K, 1991, J APPL PHYS, V69, P7316 67331 CHEN CD, 1994, PHYSICA B 1, V194, P989 67332 CHERN JD, 1993, IEEE T APPL SUPERCON, V3, P2128 67333 CHO S, 1999, J APPL PHYS, V84, P5657 67334 CULBERTSON JC, 1991, PHYS REV B, V44, P9609 67335 DAVIS LC, 1990, PHYS REV B, V42, P99 67336 DEMSAR J, 1997, J SUPERCOND, V10, P455 67337 EPSTEIN K, 1981, PHYS REV LETT, V47, P534 67338 FARDMANESH M, 1995, J APPL PHYS, V77, P4568 67339 FENKEL A, 1993, PHYS REV B, V48, P9717 67340 FIORY AT, 1988, PHYS REV LETT, V61, P1419 67341 FRENKEL A, 1990, J APPL PHYS, V67, P3054 67342 GOLTSMAN GN, 1994, J SUPERCOND, V7, P751 67343 HARRIS DC, 1991, PHYS REV LETT, V67, P3606 67344 HEBARD AF, 1980, PHYS REV LETT, V44, P291 67345 HEGMANN FA, 1993, PHYS REV B, V48, P16023 67346 HEGMANN FA, 1995, APPL PHYS LETT, V67, P285 67347 HERTER ST, 1998, PHYS REV B, V57, P1154 67348 HU Q, 1989, APPL PHYS LETT, V55, P2444 67349 HUBER WM, 1996, APPL PHYS LETT, V68, P3338 67350 KADOWAKI K, 1994, SUPERCOND SCI TECH, V7, P519 67351 KAILA MM, 1998, J SUPERCOND, V11, P463 67352 LOBB CJ, 1983, PHYS REV B, V27, P150 67353 MARTIN S, 1989, PHYS REV LETT, V62, P677 67354 PHONG LN, 1993, J APPL PHYS, V74, P7414 67355 RESNICK DJ, 1981, PHYS REV LETT, V47, P1542 67356 RZCHOWSKI MS, 1990, PHYS REV B, V42, P2041 67357 STROM U, 1990, PHYS REV B, V42, P4059 67358 TINKHAM M, 1995, INTRO SUPERCONDUCTIV, CH6 67359 WU PH, 1987, JPN J APPL PHYS, V26, L1579 67360 XU KX, 1999, ACTA PHYS SIN-CH ED, V48, P1152 67361 YEH NC, 1989, PHYS REV B, V39, P9708 67362 YESHURUN Y, 1988, PHYS REV LETT, V60, P2202 67363 YING QY, 1990, PHYS REV B, V42, P2242 67364 YUZHELEVSKI Y, 1999, PHYS REV B, V60, P9726 67365 ZELDOV E, 1989, PHYS REV B, V39, P9712 67366 NR 44 67367 TC 2 67368 SN 0021-8979 67369 J9 J APPL PHYS 67370 JI J. Appl. Phys. 67371 PD MAR 15 67372 PY 2001 67373 VL 89 67374 IS 6 67375 BP 3352 67376 EP 3361 67377 PG 10 67378 SC Physics, Applied 67379 GA 406ZZ 67380 UT ISI:000167248100043 67381 ER 67382 67383 PT J 67384 AU He, JH 67385 TI Generalized Hellinger-Reissner principle 67386 SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME 67387 DT Article 67388 ID PARAMETRIZED VARIATIONAL-PRINCIPLES; MECHANICS 67389 AB By the semi-inverse method of establishing variational principles, the 67390 Hellinger-Reissner principle can be obtained straightforwardly from 67391 energy trial-functionals without using Lagrange multipliers, and a 67392 family of generalized Hellinger-Reissner principles with an arbitrary 67393 constant are also obtained, some of which are unknown to us at the 67394 present time. The present theory provides a straightforward tool to 67395 search for various variational principles directly from governing 67396 equations and boundary conditions. 67397 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 67398 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd, 67399 Shanghai 200072, Peoples R China. 67400 CR CHIEN WZ, 1983, APPL MATH MECH, V4, P137 67401 CHIEN WZ, 1984, ADV APPL MECH, V24, P93 67402 FELIPPA CA, 1989, COMMUN APPL NUMER M, V5, P79 67403 FELIPPA CA, 1994, COMPUT METHOD APPL M, V113, P109 67404 FELIPPA CA, 1996, COMPUT MECH, V18, P159 67405 GOLDSTEIN H, 1981, CLASSICAL MECH 67406 HE JH, 1997, INT J TURBO JET ENG, V14, P23 67407 HE JH, 1997, J ENG THERMOPHYSICS, V18, P440 67408 HE JH, 1997, J SHANGHAI U, V1 67409 HE JH, 1997, J SHANGHAI U, V1, P36 67410 HE JH, 1997, MODERN MECH ADV SCI, P1417 67411 HE JH, 1997, MODERN MECH ADV SCI, P603 67412 LIU GL, 1990, P 1 INT S AER INT FL, P128 67413 WASHIZU K, 1982, VARIATIONAL METHODS 67414 NR 14 67415 TC 3 67416 SN 0021-8936 67417 J9 J APPL MECH 67418 JI J. Appl. Mech.-Trans. ASME 67419 PD JUN 67420 PY 2000 67421 VL 67 67422 IS 2 67423 BP 326 67424 EP 331 67425 PG 6 67426 SC Mechanics 67427 GA 404PK 67428 UT ISI:000167109400013 67429 ER 67430 67431 PT J 67432 AU Chen, DD 67433 Shi, WH 67434 TI On the formal solution of initial value problem of Navier-Stokes 67435 equation 67436 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 67437 DT Article 67438 DE Navier-Stokes equation; formal solution; stratification; equation 67439 secondaire 67440 AB A necessary and sufficient conditions of the existence of formal 67441 solution to the initial value problem of Navier-Stokes equation an R-3 67442 x R are presented. A computation case is also given. 67443 C1 Shanghai Univ, Dept Math, Shanghai 200041, Peoples R China. 67444 RP Chen, DD, Shanghai Univ, Dept Math, Shanghai 200041, Peoples R China. 67445 CR LANDAU J, 1971, MECHANIQUE FLUIDES 67446 SHI WH, 1994, APPL MATH MECH, V15, P1125 67447 SHIH WH, 1992, SOLUTIONS ANAL QUELQ 67448 NR 3 67449 TC 0 67450 SN 0253-4827 67451 J9 APPL MATH MECH-ENGL ED 67452 JI Appl. Math. Mech.-Engl. Ed. 67453 PD DEC 67454 PY 2000 67455 VL 21 67456 IS 12 67457 BP 1432 67458 EP 1439 67459 PG 8 67460 SC Mathematics, Applied; Mechanics 67461 GA 406LG 67462 UT ISI:000167217200011 67463 ER 67464 67465 PT J 67466 AU He, YH 67467 Shi, WH 67468 TI The C-k instability of Navier-Stokes equation appending polynomials of 67469 unknown functions 67470 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 67471 DT Article 67472 DE Navier-Stokes equation; unstable equation; strate transversale 67473 AB Applying the theory of stratification, the solution space structure 67474 about a class of deformed Navier-Stokes equation is determined. It is 67475 proved that such kind of equation has no C-k( k greater than or equal 67476 to2) stable solution by the fact that the strate transversale is a null 67477 set. 67478 C1 Shanghai Univ, Dept Math, Shanghai 210800, Peoples R China. 67479 RP He, YH, Shanghai Univ, Dept Math, Shanghai 210800, Peoples R China. 67480 CR CHEN DD, 1996, APPL MATH MECH, V17, P541 67481 LANDAU L, 1971, MECHANIQUE FLUIDES 67482 RIDE H, 1971, MATH GEOPHYSICAL SCI 67483 SHIH W, 1987, CR ACAD SCI I-MATH, V304, P103 67484 SHIH WH, 1995, SOLUTIONS ANAL QUELQ 67485 SHIH WH, 1998, ICNM 3 INT C NONL ME, P848 67486 SHIH WS, 1986, DIAGRAMMES, P1 67487 TANG YM, 1997, MODERN MATH MECH MMM, P445 67488 TROTMANN D, 1997, SINGULARITIES MAPS A 67489 NR 9 67490 TC 0 67491 SN 0253-4827 67492 J9 APPL MATH MECH-ENGL ED 67493 JI Appl. Math. Mech.-Engl. Ed. 67494 PD DEC 67495 PY 2000 67496 VL 21 67497 IS 12 67498 BP 1440 67499 EP 1449 67500 PG 10 67501 SC Mathematics, Applied; Mechanics 67502 GA 406LG 67503 UT ISI:000167217200012 67504 ER 67505 67506 PT J 67507 AU Cheng, XY 67508 Wan, XJ 67509 TI The influence of atomic ordering on the hydrogen embrittlement of 67510 (Co,Fe)(3)V polycrystal 67511 SO SCRIPTA MATERIALIA 67512 DT Article 67513 DE scanning electron microscopy (SEM); intermetallics; hydrogen 67514 embrittlement; order-disorder phenomena 67515 ID ENVIRONMENTAL EMBRITTLEMENT; MECHANICAL-PROPERTIES; DUCTILITY; 67516 FRACTURE; ALLOYS; NI3FE; NI3AL 67517 C1 Shanghai Univ, Mat Res Inst, Shanghai 200072, Peoples R China. 67518 RP Cheng, XY, Shanghai Univ, Mat Res Inst, Shanghai 200072, Peoples R 67519 China. 67520 CR CAMUS GM, 1989, ACTA METALL, V37, P1497 67521 COHRON JW, 1996, INTERMETALLICS, V4, P497 67522 GEORGE EP, 1993, SCRIPTA METALL MATER, V28, P857 67523 KURUVILLA AK, 1982, 3RD P INT C HYDR MET, V2, P629 67524 KURUVILLA AK, 1985, MATER RES SOC S P, V39, P229 67525 LIU CT, 1979, METALL T A, V10, P1515 67526 LIU CT, 1989, SCRIPTA METALL, V23, P875 67527 LIU CT, 1990, SCRIPTA METALL MATER, V24, P385 67528 MARCUS P, 1985, HYDROGEN DEGRADATION, P36 67529 TAKASUGI T, 1986, ACTA METALL, V34, P607 67530 TAKASUGI T, 1991, J MATER SCI, V26, P1173 67531 TAKASUGI T, 1991, J MATER SCI, V26, P3032 67532 TAKASUGI T, 1992, J MATER RES, V7, P2739 67533 TAKASUGI T, 1994, INTERMETALLICS, V2, P225 67534 WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473 67535 WANG S, 1999, ACTA METALL SINICA, V35, P1262 67536 XIAOJING W, 1994, J MATER SCI TECHNOL, V10, P39 67537 NR 17 67538 TC 5 67539 SN 1359-6462 67540 J9 SCRIPTA MATER 67541 JI Scr. Mater. 67542 PD FEB 2 67543 PY 2001 67544 VL 44 67545 IS 2 67546 BP 325 67547 EP 329 67548 PG 5 67549 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 67550 Engineering 67551 GA 403JF 67552 UT ISI:000167038200022 67553 ER 67554 67555 PT J 67556 AU Jiang, GC 67557 Guo, SQ 67558 Zhang, XB 67559 Zhuang, YQ 67560 Xu, KD 67561 TI Investigation on dephosphorization of stainless steel 67562 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL 67563 DT Article 67564 AB The principle of the dephosphorization for stainless steels differs 67565 from that of other low alloy steels, which should not only decrease 67566 phosphorous content efficiently but also keep the concentration of Cr 67567 almost lossless. In these cases, two techniques can be selected. The 67568 strategy for oxidational dephosphorization is illustrated in terms of 67569 "the selective oxidation among elements [Cr], EP] and [C]. So there are 67570 two critical W-[C] values. If the real W-[C] locates between these two 67571 critical values, the dephosphorization process will be optimized. The 67572 optimized region deduced theoretically coincides with the reported 67573 range very well. The experiment of reductional dephosphorization was 67574 carried out in a sealed reactor. The dephosphorization degree reached 67575 55.4%-78.0% when the original phosphorous content was 0.04%-0.05%. The 67576 processing parameters and the way to avoid pollution were suggested. So 67577 this process seems to be possibly adopted in industrial scale. 67578 C1 Shanghai Univ, Shanghai 200072, Peoples R China. 67579 RP Jiang, GC, Shanghai Univ, Shanghai 200072, Peoples R China. 67580 CR KITAMURA K, 1984, T ISIJ, V24, P631 67581 KOROS PJ, 1986, IRON STEEL MAKER, V13, P21 67582 ZHANG X, 1997, CALPHAD, V21, P301 67583 ZHANG XB, 1997, CALPHAD, V21, P311 67584 NR 4 67585 TC 0 67586 SN 1006-706X 67587 J9 J IRON STEEL RES INT 67588 JI J. Iron Steel Res. Int. 67589 PD NOV 67590 PY 2000 67591 VL 7 67592 IS 2 67593 BP 50 67594 EP 54 67595 PG 5 67596 SC Metallurgy & Metallurgical Engineering 67597 GA 403DY 67598 UT ISI:000167028400010 67599 ER 67600 67601 PT J 67602 AU Tao, H 67603 Ma, HW 67604 TI Experimental research of the synthesizing of 13X molecular sieves from 67605 potash feldspar ores 67606 SO JOURNAL OF INORGANIC MATERIALS 67607 DT Article 67608 DE potash feldspar; 13X molecular sieves; synthesis 67609 AB 13X molecular sieve was synthesized from potash feldspar ores by baking 67610 and hydrothermal synthesizing procedures. The optimal technological 67611 parameters were determined by means of quadrature experiment. The 67612 properties of the synthesis powder such as XRD, crystal constants, SEM, 67613 DTA, chemical composition, SiO2/Al2O3 are similar to those of the ideal 67614 13X moleclar sieve. And its absorbability comes up to the state 67615 standards of chemical industry of China. 67616 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China. 67617 China Univ Geosci, Beijing 100083, Peoples R China. 67618 RP Tao, H, Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China. 67619 NR 0 67620 TC 1 67621 SN 1000-324X 67622 J9 J INORG MATER 67623 JI J. Inorg. Mater. 67624 PD JAN 67625 PY 2001 67626 VL 16 67627 IS 1 67628 BP 63 67629 EP 68 67630 PG 6 67631 SC Materials Science, Ceramics 67632 GA 401UV 67633 UT ISI:000166947400010 67634 ER 67635 67636 PT J 67637 AU Ye, Z 67638 Zhou, Z 67639 TI The bending of composite shallow revolutional shells 67640 SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL 67641 OF AEROSPACE ENGINEERING 67642 DT Article 67643 DE composite revolutional shell; composite spherical shell; non-orthogonal 67644 series method (NOSM) 67645 ID LAMINATED CYLINDRICAL PLATES 67646 AB This paper deals with the bending problem of composite revolutional 67647 shells under the action of distributed loading using a new approach, 67648 the non-orthogonal series method, i.e. NOSM. The formulation is based 67649 on the thin shell theory of small strains. The basic equations are 67650 developed and can be expressed in matrix form for composite 67651 revolutional shells. In general, because of the anisotropic 67652 characteristics, there will be a coupling effect in the boundary 67653 conditions, even including the axisymmetrical bending case. The 67654 non-orthogonal function series adopted showed very significant coupling 67655 effects in such anisotropic and orthotropic revolutional shells. 67656 Finally, a composite shallow spherical shell was investigated and the 67657 results show that the coupling effect at the boundary conditions makes 67658 the maximum displacement smaller than in the case of no coupling. 67659 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 67660 RP Ye, Z, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yan Chang Rd, 67661 Shanghai 200072, Peoples R China. 67662 CR CHEN LW, 1987, COMPOS STRUCT, V8, P189 67663 LOU KA, 1991, J COMPOS MATER, V25, P162 67664 REKTORYS K, 1975, VARIATIONAL METHODS 67665 SOLDATOS KP, 1984, INT J ENG SCI, V21, P217 67666 TIMOSHENKO S, 1959, THEORY PLATES SHELLS 67667 VOLMIR AC, 1963, FLEXIBLE PLATES SHEL 67668 WHITNEY JM, 1984, AIAA J, V22, P1641 67669 YE ZM, 1995, COMPUT STRUCT, V55, P325 67670 NR 8 67671 TC 0 67672 SN 0954-4100 67673 J9 PROC INST MECH ENG PT G-J A E 67674 JI Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. 67675 PY 2000 67676 VL 214 67677 IS G6 67678 BP 369 67679 EP 376 67680 PG 8 67681 SC Engineering, Aerospace; Engineering, Mechanical 67682 GA 400QP 67683 UT ISI:000166883300004 67684 ER 67685 67686 PT J 67687 AU Yang, YZ 67688 Zhu, YL 67689 Li, QS 67690 Ma, XM 67691 Dong, YD 67692 Wang, GM 67693 Wei, SQ 67694 TI Mechanical alloying, fine structure and thermal decomposition of 67695 nanocrystalline FCC-Fe60Cu40 67696 SO PHYSICA B 67697 DT Article 67698 DE mechanical alloying; nanocrystalline solid solution; Mossbauer effect; 67699 thermal decomposition; EXAFS 67700 ID FEXCU100-X SOLID-SOLUTIONS; FE-CU ALLOYS; MAGNETIC-PROPERTIES; 67701 STABILITY; BEHAVIOR; POWDERS; SYSTEM 67702 AB The solid dissolution of Fe atoms into Cu matrix induced by mechanical 67703 alloying and subsequent thermal decomposition of Fe atoms from the 67704 solid solution in composition of Fe60Cu40 have been studied by X-ray 67705 diffraction (XRD), Mossbauer spectroscopy and the extended X-ray 67706 absorption fine structure (EXAFS) technique. The disappearance of 67707 elemental Fe and Cu XRD peaks and the presence of FCC structural XRD 67708 peaks illustrate the formation of FCC-Fe60Cu40 solid solution. 67709 Meanwhile, the new sextet spectrum with a broadening hyperfine magnetic 67710 field distribution also demonstrates that the alloying is on an atomic 67711 level and there exist complex coordination environments in the solid 67712 solution. EXAFS results Further prove the reality of atomic alloying 67713 from the clear observation of Fe atoms taking on FCC coordination in 67714 the solid solution. Additionally, a large reduction in the first shell 67715 coordination number for a center iron atom but not for a center Cu atom 67716 indicates the composition non-uniformity, which suggests that Fe atoms 67717 enrich the surface while Cu atoms enrich the core of a FCC nanocrystal. 67718 The variation of Mossbauer spectra against the annealing temperatures 67719 during thermal decomposition indicates that the Fe atoms at the surface 67720 readily nucleate and cluster into alpha -Fe at a temperature slightly 67721 below 250 degreesC, whereas the Fe atoms in the core of nano-sized 67722 crystals first cluster into gamma -Fe cohering to the FCC matrix at a 67723 temperature about 350 degreesC and then transform to alpha -Fe for 67724 further annealing at a higher temperature or for a longer time. (C) 67725 2001 Elsevier Science B.V. All rights reserved. 67726 C1 Guangdong Univ Technol, Dept Mat Sci & Engn, Guangzhou 510090, Peoples R China. 67727 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China. 67728 Univ Sci & Technol China, Ctr Struct Anal, Anhua 230026, Peoples R China. 67729 RP Yang, YZ, Guangdong Univ Technol, Dept Mat Sci & Engn, Guangzhou 67730 510090, Peoples R China. 67731 CR CHIEN CL, 1986, PHYS REV B, V33, P3247 67732 CRESPO P, 1993, PHYS REV B, V48, P7134 67733 CRESPO P, 1994, J APPL PHYS 2, V76, P6322 67734 CRESPO P, 1994, PHYS REV B, V49, P13227 67735 DICICCO A, 1994, PHYS REV B, V50, P12386 67736 DRBOHLAV O, 1995, ACTA METALL MATER, V43, P1799 67737 ECKERT J, 1993, J APPL PHYS, V73, P131 67738 ECKERT J, 1993, J APPL PHYS, V73, P2794 67739 FECHT HJ, 1990, METALL TRANS A, V21, P2333 67740 HARRIS VG, 1996, PHYS REV B, V54, P6929 67741 HUANG JY, 1997, ACTA MATER, V45, P113 67742 JIANG JZ, 1993, APPL PHYS LETT, V63, P1056 67743 JIANG JZ, 1993, APPL PHYS LETT, V63, P2768 67744 MA E, 1993, J APPL PHYS, V74, P955 67745 MACRI PP, 1994, J APPL PHYS, V76, P4061 67746 MASSALSKI TB, 1986, BINARY PHASE DIAGRAM, P916 67747 NIESSEN AK, 1983, CALPHAD, V7, P51 67748 SCHILLING PJ, 1996, APPL PHYS LETT, V68, P767 67749 SUMIYAMA K, 1985, ACTA METALL MATER, V33, P1785 67750 UENISHI K, 1992, Z METALLKD, V83, P132 67751 YANG YZ, 1992, ACTA METALL SINICA, V28, P399 67752 YANG YZ, 1994, J MATER SCI TECHNOL, V10, P135 67753 YAVARI AR, 1992, PHYS REV LETT, V68, P2235 67754 NR 23 67755 TC 4 67756 SN 0921-4526 67757 J9 PHYSICA B 67758 JI Physica B 67759 PD JAN 67760 PY 2001 67761 VL 293 67762 IS 3-4 67763 BP 249 67764 EP 259 67765 PG 11 67766 SC Physics, Condensed Matter 67767 GA 401LV 67768 UT ISI:000166929800006 67769 ER 67770 67771 PT J 67772 AU Tan, WH 67773 TI Damped Jaynes-Cummings model including spontaneous emission 67774 SO CHINESE PHYSICS LETTERS 67775 DT Article 67776 ID COLLAPSE; REVIVAL; STATES; CAVITY; FIELD 67777 AB As a continuation of the previous paper 'Collapse and revival in the 67778 damped Jaynes-Cummings model' [Chin. Phys. Lett. 16 (1999) 895], at 67779 present the problem is solved under the condition that the atomic 67780 spontaneous emission is included. In the case of no damping, c = 0, 67781 gamma (1) not equal 0, gamma (2) not equal 0, the half atomic inversion 67782 operator (sigma (z)) possesses an analytic solution, whereas in the 67783 general case c not equal 0, the problem is reduced to the numerical 67784 evaluation of first-order nonlinear differential equations. The final 67785 results show that with the increase of gamma (1) and gamma (2), the 67786 kinetic quantities converge rapidly to stationary solutions. 67787 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 67788 RP Tan, WH, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China. 67789 CR BARNETT SM, 1986, PHYS REV A, V33, P2444 67790 BUCK B, 1981, PHYS LETT, V81, A132 67791 EBERLY JH, 1980, PHYS REV LETT, V44, P1323 67792 GERRY CC, 1996, PHYS REV A, V53, P2857 67793 HAKEN H, 1970, ENCYCL PHYS, V25, P41 67794 JAYNES ET, 1963, P IEEE, V51, P89 67795 KUKLINSKI JR, 1988, PHYS REV A, V37, P3175 67796 RAIMOND JM, 1982, PHYS REV LETT, V49, P117 67797 SHAO B, 1997, CHINESE PHYS LETT, V14, P905 67798 ZHENG SB, 1997, CHINESE PHYS LETT, V14, P273 67799 NR 10 67800 TC 1 67801 SN 0256-307X 67802 J9 CHIN PHYS LETT 67803 JI Chin. Phys. Lett. 67804 PD FEB 67805 PY 2001 67806 VL 18 67807 IS 2 67808 BP 220 67809 EP 222 67810 PG 3 67811 SC Physics, Multidisciplinary 67812 GA 402FX 67813 UT ISI:000166976300022 67814 ER 67815 67816 PT J 67817 AU Shen, HC 67818 Wang, XG 67819 TI Multiple hypotheses testing method for distributed multisensor systems 67820 SO JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS 67821 DT Article 67822 DE hypothesis testing; decision making; uncertainty; multisensor fusion 67823 ID FUSION STRATEGIES; TARGET DETECTION; DECISION FUSION; ARCHITECTURES; 67824 ENVIRONMENTS 67825 AB In this paper, we propose a two-layer sensor fusion scheme for multiple 67826 hypotheses multisensor systems. To reflect reality in decision making, 67827 uncertain decision regions are introduced in the hypotheses testing 67828 process. The entire decision space is partitioned into distinct regions 67829 of "correct", "uncertain" and "incorrect" regions. The first layer of 67830 decision is made by each sensor indepedently based on a set of optimal 67831 decision rules. The fusion process is performed by treating the fusion 67832 center as an additional "virtual" sensor to the system. This "virtual" 67833 sensor makes decision based on the decisions reached by the set of 67834 sensors in the system. The optimal decision rules are derived by 67835 minimizing the Bayes risk function. As a consequence, the performance 67836 of the system as well as individual sensors can be quantified by the 67837 probabilities of correct, incorrect and uncertain decisions. Numerical 67838 examples of three hypotheses, two and four sensor systems are presented 67839 to illustrate the proposed scheme. 67840 C1 Hong Kong Univ Sci & Technol, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China. 67841 Shanghai Univ, Coll Mech Engn & Automat, Shanghai 200072, Peoples R China. 67842 RP Shen, HC, Hong Kong Univ Sci & Technol, Dept Comp Sci, Clear Water Bay, 67843 Kowloon, Hong Kong, Peoples R China. 67844 CR DASARATHY BV, 1994, DECISION FUSION 67845 DASARATHY BV, 1997, OPT ENG, V36, P632 67846 DASARATHY BV, 1997, P IEEE, V85, P24 67847 DASARATHY BV, 1997, P SOC PHOTO-OPT INS, V3067, P14 67848 DASARATHY BV, 1997, P SOC PHOTO-OPT INS, V3067, P26 67849 HALL D, 1997, P IEEE, V85, P1 67850 HALL DL, 1992, MATH TECHNIQUES MULT 67851 HOBALLAH IY, 1989, IEEE T INFORM THEORY, V35, P995 67852 LEE CC, 1989, IEEE T AERO ELEC SYS, V25, P536 67853 LUO RC, 1995, MULTISENSOR INTEGRAT 67854 SADJADI FA, 1986, IEEE T AERO ELEC SYS, V22, P134 67855 SAMARASOORIYA VNS, 1997, P IEEE, V85, P54 67856 TENNEY RR, 1981, IEEE T AERO ELEC SYS, V17, P501 67857 THOMOPOLOUS SCA, 1990, INT J ROBOTICS, V17, P337 67858 THOMOPOULOS SCA, 1987, IEEE T AERO ELEC SYS, V23, P644 67859 THOMOPOULOS SCA, 1990, SPIE, V1383, P623 67860 THOMOPOULOS SCA, 1996, P SOC PHOTO-OPT INS, V2905, P127 67861 TSITSIKLIS JN, 1985, IEEE T AUTOMAT CONTR, V30, P440 67862 VARSHNEY PK, 1996, DISTRIBUTED DETECTIO 67863 WANG XG, 1996, P IEEE SICE RSJ INT, P166 67864 WANG XG, 1998, P IEEE INT C ROB AUT, P3407 67865 WANG XG, 1999, P IEEE INT C INT ROB, P1008 67866 WANG XG, 1999, P IEEE INT C ROB AUT, P2090 67867 NR 23 67868 TC 0 67869 SN 0921-0296 67870 J9 J INTELL ROBOT SYST 67871 JI J. Intell. Robot. Syst. 67872 PD FEB 67873 PY 2001 67874 VL 30 67875 IS 2 67876 BP 119 67877 EP 141 67878 PG 23 67879 SC Computer Science, Artificial Intelligence; Robotics 67880 GA 398TY 67881 UT ISI:000166773600001 67882 ER 67883 67884 PT J 67885 AU Li, CF 67886 Wang, Q 67887 TI Tunneling time of particles through a potential barrier 67888 SO CHINESE PHYSICS LETTERS 67889 DT Article 67890 ID TRAVERSAL TIME; DISTRIBUTIONS 67891 AB A new tunneling time is proposed by introducing the transfer speed of 67892 energy carried by tunneling particles. This speed is similar to the 67893 energy transfer speed in electromagnetism, and with the tunneling time, 67894 the well-known superluminality may be avoided. The low energy limit, 67895 the critical limit, and the opaque limit are considered, which are 67896 physically meaningful. Comparisons with dwell time and Buttiker and 67897 landauer's semiclassical time are also made. 67898 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 67899 CCAST, World Lab, Beijing 100080, Peoples R China. 67900 RP Li, CF, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China. 67901 CR BAZ AI, 1967, SOV J NUCL PHYS, V5, P161 67902 BOHM D, 1952, PHYS REV, V85, P166 67903 BOLUN D, 1951, QUANTUM THEORY, P240 67904 BOLUN D, 1987, PHYS REP, V144, P321 67905 BRILLOUIN L, 1960, WAVE PROPAGATION GRO, P98 67906 BUTTIKER M, 1982, PHYS REV LETT, V49, P1739 67907 BUTTIKER M, 1983, PHYS REV B, V27, P6178 67908 CARNIGLIA CK, 1971, J OPT SOC AM, V61, P1035 67909 CHIAO RY, 1997, PROG OPTICS, V37, P345 67910 CONDON EU, 1931, REV MOD PHYS, V3, P43 67911 DEUTCH JM, 1993, ANN PHYS-NEW YORK, V228, P184 67912 DIENER G, 1996, PHYS LETT A, V223, P327 67913 HARTMAN TE, 1962, J APPL PHYS, V33, P3427 67914 HASS K, 1994, PHYS LETT A, V185, P9 67915 HAUGE EH, 1989, REV MOD PHYS, V61, P917 67916 JAPHA Y, 1996, PHYS REV A, V53, P586 67917 JAUCH JM, 1967, HELV PHYS A, V40, P217 67918 KRENZLIN HM, 1996, PHYS REV A, V53, P3749 67919 LEAVENS CR, 1993, PHYS LETT A, V178, P27 67920 MACCOLL LA, 1932, PHYS REV, V40, P621 67921 MCKINNON WR, 1995, PHYS REV A, V51, P2748 67922 RYBACHENKO VF, 1967, SOV J NUCL PHYS, V5, P635 67923 SMITH FT, 1960, PHYS REV, V118, P349 67924 WIGNER EP, 1955, PHYS REV, V98, P145 67925 ZHU S, 1986, AM J PHYS, V54, P601 67926 NR 25 67927 TC 2 67928 SN 0256-307X 67929 J9 CHIN PHYS LETT 67930 JI Chin. Phys. Lett. 67931 PY 2000 67932 VL 17 67933 IS 12 67934 BP 902 67935 EP 904 67936 PG 3 67937 SC Physics, Multidisciplinary 67938 GA 400QB 67939 UT ISI:000166882100016 67940 ER 67941 67942 PT J 67943 AU Jinhua, W 67944 Yoshii, F 67945 Makuuchi, K 67946 TI Radiation vulcanization of ethylene-propylene rubber with 67947 polyfunctional monomers 67948 SO RADIATION PHYSICS AND CHEMISTRY 67949 DT Article 67950 DE ethylene-propylene rubber; polyfunctional monomer; radiation 67951 vulcanization 67952 AB This paper reports on the sensitizing efficiency of several 67953 polyfunctional monomers to radiation vulcanization of 67954 ethylene-propylene rubber. And the results show that triethyleneglycol 67955 dimethacrylate (TEGDMA) gave the best results. TEGDMA not only lowers 67956 the vulcanization dose (D-v), but also increases the tensile strength 67957 greatly. The content of TEGDMA does not affect the D-v of TEGDMA-EPM, 67958 but affects the tensile strength at the D-v. At best content (0.04 67959 mol/100 g EPM), the tensile strength is increased from 6.0 to 12 MPa, 67960 and the elongation is 790% at the D-v. (C) 2001 Elsevier Science Ltd. 67961 All rights reserved. 67962 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China. 67963 Japan Atom Energy Res Inst, Takasaki Radiat Chem Res Estab, Takasaki, Gumma 37012, Japan. 67964 RP Jinhua, W, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, 67965 Peoples R China. 67966 CR AOSHIMA M, 1991, CELL POLYM, V10, P359 67967 ODIAN G, 1964, J POLYM SCI A, V2, P2835 67968 ODIAN G, 1968, J POLYM SCI C, V16, P3619 67969 SPENADEL L, 1979, RADIAT PHYS CHEM, V14, P683 67970 XIE SZ, 1989, HDB RUBBER IND, V1, P254 67971 XU Y, 1994, J RAD RES RAD P, V12, P155 67972 XU Y, 1995, J MACROMOL SCI PURE, V32, P1801 67973 YOSHII F, 1993, J RAD STERILIZATION, V1, P171 67974 NR 8 67975 TC 0 67976 SN 0969-806X 67977 J9 RADIAT PHYS CHEM 67978 JI Radiat. Phys. Chem. 67979 PD JAN 67980 PY 2001 67981 VL 60 67982 IS 1-2 67983 BP 139 67984 EP 142 67985 PG 4 67986 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear 67987 Science & Technology 67988 GA 396ZP 67989 UT ISI:000166668500022 67990 ER 67991 67992 PT J 67993 AU Song, LP 67994 Chu, QL 67995 Zhu, SZ 67996 TI Synthesis of fluorinated pyrazole derivatives from beta-alkoxyvinyl 67997 trifluoroketones 67998 SO JOURNAL OF FLUORINE CHEMISTRY 67999 DT Article 68000 DE beta-alkoxyvinyl trifluoromethylketone pentafluorophenylhydrazine 68001 per(poly)fluoroacectyl-hydrazine; fluorinated pyrazole; derivatives 68002 AB 1.1.1-Trifluoro-4-ethoxy-3-butane-2-one, 3-trifluoroacetyl-3, 68003 4-dihydro-2H-pyran or furan reacted readily with 68004 pentafluorophenylhydrazine or per(poly)fluoroacectylhydrazine 68005 RtCO-NHNH2 (R-1: BrCF2, C3F7) to give 68006 N-substituted-5-hydroxy-5-trifluoromrthyl I heterocycles 68007 Y-N-N=CH-CH(R)C(OH)CF3 (Y: H, Ar-f - or RtCO), which were dehydrated by 68008 treatment with P2O5 or SOCl2 to form N-substituted 5-trifluoromethyl 68009 pyrazoles Y-N-N=CH-C(R)=C CF3 (Y: H, Ar-f - or RtCO) in good yields. 68010 [GRAPHICS] 68011 (C) 2001 Elsevier Science B.V. All rights reserved. 68012 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Shanghai 200032, Peoples R China. 68013 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China. 68014 RP Zhu, SZ, Chinese Acad Sci, Shanghai Inst Organ Chem, 354 Fenglin Rd, 68015 Shanghai 200032, Peoples R China. 68016 CR ATHERTON JH, 1968, J CHEM SOC C, P1507 68017 BANK RE, 1994, ORGANOFLUORINE CHEM 68018 BRAIBANTE MEF, 1993, J HETEROCYCLIC CHEM, V30, P1159 68019 GERUS II, 1991, KHIM GETEROTSIKL+, P502 68020 GERUS II, 1994, J FLUORINE CHEM, V69, P195 68021 HOJO M, 1976, CHEM LETT, P499 68022 HUDLICKY M, 1992, CHEM ORGANIC FLUORIN 68023 SINGH SP, 1999, J FLUORINE CHEM, V94, P199 68024 SOUFYANE M, 1993, TETRAHEDRON LETT, V34, P7737 68025 WELCH JT, 1987, TETRAHEDRON, V43, P3123 68026 YOSHIOKA H, 1984, J SYN ORG CHEM JPN, V42, P809 68027 ZHU SZ, 1999, MONATSH CHEM, V130, P671 68028 NR 12 68029 TC 18 68030 SN 0022-1139 68031 J9 J FLUORINE CHEM 68032 JI J. Fluor. Chem. 68033 PD JAN 68034 PY 2001 68035 VL 107 68036 IS 1 68037 BP 107 68038 EP 112 68039 PG 6 68040 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic 68041 GA 397CR 68042 UT ISI:000166676200017 68043 ER 68044 68045 PT J 68046 AU Yong, KL 68047 Lu, JG 68048 TI Common and diverse characteristics of three-dimensional fluorescence 68049 spectra of crude oils 68050 SO SPECTROSCOPY LETTERS 68051 DT Article 68052 DE three-dimensional fluorescence spectra; crude oil; fingerprint 68053 ID SYNCHRONOUS EXCITATION 68054 AB According to the contour maps of the three-dimensional fluorescence 68055 spectra of non-quenching crude oil samples, we have found the common 68056 and diverse fluorescence characteristics of various crude oils. The 68057 common fluorescence characteristic is that the main peaks of various 68058 crude oils are located in around the position of excitation/emission 68059 wavelength pair 228nm/340nm. The diversity of fluorescence 68060 characteristics can be represented with several indexes alpha, K, F and 68061 R, and these indexes provide measurable parameters for division of 68062 fluorescence fingerprints of crude oils. The fluorescence fingerprints 68063 of crude oils can be divided into three models named O, B and Q that 68064 are corresponding to condensate oil, light oil, and heavy oil 68065 respectively. 68066 C1 Shanghai Univ Sci & Technol, Sch Life Sci, Shanghai 201800, Peoples R China. 68067 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 201800, Peoples R China. 68068 RP Yong, KL, Shanghai Univ Sci & Technol, Sch Life Sci, Shanghai 201800, 68069 Peoples R China. 68070 CR BENTZ AP, 1976, ANAL CHEM, V48, A455 68071 DESIDERI PG, 1986, J CHROMATOGR, V235, P165 68072 JOHN P, 1976, ANAL CHEM, V48, P520 68073 KARYAKIN AV, 1995, J ANAL CHEM+, V50, P1078 68074 KENNICUTT MC, 1983, MAR POLL B, V14, P342 68075 LU JC, 1998, FENXI SHIYANSHI, V17, P28 68076 MASON RP, 1988, OIL CHEM POLL, V4, P57 68077 RALSTON CY, 1996, APPL SPECTROSC, V50, P1563 68078 VONDERDICK H, 1986, ORG GEOCHEM, V10, P633 68079 XIAO X, 1991, PROG NAT SCI, V1, P240 68080 NR 10 68081 TC 0 68082 SN 0038-7010 68083 J9 SPECTROSC LETT 68084 JI Spectr. Lett. 68085 PY 2000 68086 VL 33 68087 IS 6 68088 BP 963 68089 EP 970 68090 PG 8 68091 SC Spectroscopy 68092 GA 394CQ 68093 UT ISI:000166506800015 68094 ER 68095 68096 PT J 68097 AU Guo, BY 68098 Ma, HP 68099 TI Composite Legendre-Laguerre approximation in unbounded domains 68100 SO JOURNAL OF COMPUTATIONAL MATHEMATICS 68101 DT Article 68102 DE composite spectral approximation; unbounded domains; exterior problems 68103 ID EQUATIONS 68104 AB Composite Legendre-Laguerre approximation in unbounded domains is 68105 developed. Some approximation results are obtained. As an example, a 68106 composite spectral scheme is provided for the Burgers equation on the 68107 half line. The stability and convergence of proposed scheme are proved 68108 strictly. Two-dimensional exterior problems are discussed. 68109 C1 Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China. 68110 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China. 68111 CR ADAMS RA, 1975, SOBOLEV SPACES 68112 BERNARDI C, 1992, APPROXIMATIONS SPECT 68113 BOYD JP, 1987, J COMPUT PHYS, V69, P112 68114 COULAUD O, 1990, COMPUT METHOD APPL M, V80, P451 68115 FUNARO D, 1990, MATH COMPUT, V57, P597 68116 FUNARO D, 1991, ORTHOGONAL POLYNOMIA, P263 68117 GUO BY, IN PRESS NUMER MATH 68118 GUO BY, 1999, MATH COMPUT, V68, P1067 68119 MADAY Y, 1985, RECH AEROSPATIALE, P353 68120 MASTROIANNI G, 1997, IMA J NUMER ANAL, V17, P621 68121 QUARTERONI A, 1990, SIAM J SCI STAT COMP, V11, P1029 68122 NR 11 68123 TC 0 68124 SN 0254-9409 68125 J9 J COMPUT MATH 68126 JI J. Comput. Math. 68127 PD JAN 68128 PY 2001 68129 VL 19 68130 IS 1 68131 BP 101 68132 EP 112 68133 PG 12 68134 SC Mathematics, Applied; Mathematics 68135 GA 393TQ 68136 UT ISI:000166486100011 68137 ER 68138 68139 PT J 68140 AU Deng, BQ 68141 Wu, WQ 68142 Xi, ST 68143 TI A near-wall two-equation heat transfer model for wall turbulent flows 68144 SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER 68145 DT Article 68146 DE two-equation model; turbulent flow; heat transfer 68147 ID PREDICTING FLUID-FLOW; FIELD CALCULATIONS; REATTACHING FLOWS; 68148 2-EQUATION MODEL 68149 AB A proposed near-wall (t(2)) over bar-epsilon (t) two-equation model for 68150 turbulent heat transport reproduces the correct near-wall behavior of 68151 temperature under various wall thermal boundary conditions. In this 68152 model, a mixing timescale is introduced to model the production term of 68153 epsilon (t) equation, and a more convenient boundary condition for 68154 epsilon (t) under the uniform wall heat flux is suggested. The present 68155 model is tasted through application to turbulent heat transfer for 68156 channel flow. Predicted results are compared with direct numerical 68157 simulation (DNS) data. The near-wall (t(2)) over bar-epsilon (t) 68158 two-equation model predicts reasonably well the distributions of the 68159 time-mean temperature. normal turbulent heat flux, temperature 68160 variance, dissipation rate and their near-wall budgets. (C) 2001 68161 Elsevier Science Ltd. All rights reserved. 68162 C1 Shanghai Univ Sci & Technol, Dept Power Engn, Shanghai 200093, Peoples R China. 68163 Shanghai Jiao Tong Univ, Sch Power & Energy Engn, Shanghai 200030, Peoples R China. 68164 RP Deng, BQ, Shanghai Univ Sci & Technol, Dept Power Engn, Shanghai 68165 200093, Peoples R China. 68166 CR ABE K, 1994, INT J HEAT MASS TRAN, V37, P139 68167 ABE K, 1995, INT J HEAT MASS TRAN, V38, P1467 68168 ELGOBASHI SE, 1983, PHYS FLUIDS, V26, P2415 68169 JONES WP, 1973, INT J HEAT MASS TRAN, V16, P1119 68170 JONES WP, 1988, PHYS FLUIDS, V31, P3589 68171 KASAGI N, 1992, J HEAT TRANS-T ASME, V114, P598 68172 KIM J, 1989, TURBULENT SHEAR FLOW, V6, P85 68173 LAM CKG, 1981, J FLUIDS ENG, V103, P456 68174 LAUNDER BE, 1976, TURBULENCE, P232 68175 LAUNDER BE, 1988, J HEAT TRANS-T ASME, V110, P1112 68176 NAGANO Y, 1988, J HEAT TRANSFER, V110, P583 68177 NEWMAN GR, 1981, J FLUID MECH, V111, P217 68178 PARK TS, 1996, INT J HEAT MASS TRAN, V39, P3465 68179 PATANKAR SV, 1980, NUMERICAL HEAT TRANS 68180 SHIKAZONO N, 1993, P 9 S TURB SHEAR FLO 68181 SOMMER TP, 1992, INT J HEAT MASS TRAN, V35, P3375 68182 TORRI S, 1996, NUMER HEAT TRANSFER, V29, P417 68183 YOUSSEF MS, 1992, INT J HEAT MASS TRAN, V35, P3095 68184 NR 18 68185 TC 2 68186 SN 0017-9310 68187 J9 INT J HEAT MASS TRANSFER 68188 JI Int. J. Heat Mass Transf. 68189 PD FEB 68190 PY 2001 68191 VL 44 68192 IS 4 68193 BP 691 68194 EP 698 68195 PG 8 68196 SC Engineering, Mechanical; Mechanics; Thermodynamics 68197 GA 394NL 68198 UT ISI:000166530100001 68199 ER 68200 68201 PT J 68202 AU Ying, TL 68203 Gao, MJ 68204 Zhang, XL 68205 TI Highly selective technique-molecular imprinting 68206 SO CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 68207 DT Article 68208 DE molecular imprinting; molecular imprinted polymer; review 68209 ID AMINO-ACID DERIVATIVES; ANALOG-BUILT POLYMERS; MACROPOROUS POLYMERS; 68210 RACEMIC-RESOLUTION; RECOGNITION SITES; FREE SUGARS; SENSOR; MIMICS; 68211 DEPENDENCE; MEMBRANES 68212 AB Some aspects of molecular imprinting including models of self-assemble 68213 and preorganized approach. The selection of the imprint molecules, 68214 functional monomer, the condition of polymerization are summarized. The 68215 application, character and prospect of molecular imprinting are also 68216 discussed. 68217 C1 Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China. 68218 RP Ying, TL, Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, 68219 Peoples R China. 68220 CR ANDERSSON LI, 1988, TETRAHEDRON LETT, V29, P5437 68221 ANDERSSON LI, 1990, J CHROMATOGR, V513, P167 68222 ANDERSSON LI, 1990, J CHROMATOGR, V516, P313 68223 CRAM DJ, 1988, ANGEW CHEM INT EDIT, V27, P1009 68224 DABULIS K, 1992, BIOTECHNOL BIOENG, V39, P176 68225 DICKERT FL, 1999, TRAC-TREND ANAL CHEM, V18, P192 68226 DUNKIN IR, 1993, POLYMER, V34, P77 68227 EKBERG B, 1989, TRENDS BIOTECHNOL, V7, P92 68228 FISCHER L, 1991, J AM CHEM SOC, V113, P9358 68229 HAUPT K, 1998, ANAL CHEM, V70, P628 68230 KENNETH JS, 1993, J AM CHEM SOC, V115, P3368 68231 KRIZ D, 1995, ANAL CHIM ACTA, V300, P71 68232 KRIZ D, 1997, ANAL CHEM, V69, P345 68233 LELE BS, 1999, REACT FUNCT POLYM, V39, P37 68234 LINDSEY JS, 1991, NEW J CHEM, V15, P153 68235 LIU Q, 1999, CHINESE J ANAL CHEM, V27, P1341 68236 MATSUI J, 1998, ANAL COMMUN, V35, P225 68237 MENG ZH, 1997, CHINESE J ANAL CHEM, V25, P349 68238 MENG ZH, 1998, CHINESE J ANAL CHEM, V26, P1251 68239 MOSBACH K, 1996, BIO-TECHNOL, V14, P163 68240 NICHOLLS IA, 1995, J CHROMATOGR A, V691, P349 68241 NILSSON K, 1994, J CHROMATOGR A, V680, P57 68242 OSHANNESSY DJ, 1989, ANAL BIOCHEM, V177, P144 68243 PAULING L, 1940, J AM CHEM SOC, V62, P2443 68244 PAULING L, 1942, J EXP MED, V76, P211 68245 RAMSTROM O, 1993, J ORG CHEM, V58, P7562 68246 RAMSTROM O, 1994, ANAL CHEM, V66, P2636 68247 RAMSTROM O, 1998, ANAL COMMUN, V35, P9 68248 RICHARD JA, 1998, ANALYST, V123, P1611 68249 SELLERGREN B, 1985, J CHROMATOGR, V347, P1 68250 SELLERGREN B, 1994, ANAL CHEM, V66, P1578 68251 SERGEYEVA TA, 1999, ANALYST, V124, P331 68252 SREENIVASAN K, 1997, TALANTA, V44, P1137 68253 TURKEWITSCH P, 1998, ANAL CHEM, V70, P2025 68254 VLATAKIS G, 1993, NATURE, V361, P645 68255 WANG JF, 1999, ACTA CHIM SINICA, V57, P1147 68256 WANG WQ, 1999, J CLIMATE 2, V12, P1423 68257 WU M, 1997, CHEM SENSORS, V17, P292 68258 WULFF G, 1991, J ORG CHEM, V56, P395 68259 WULFF G, 1991, MAKROMOL CHEM, V192, P1329 68260 WULFF G, 1995, ANGEW CHEM INT EDIT, V34, P1812 68261 WULLF G, 1990, J LIQ CHROMATOGR, V13, P2987 68262 YOSHIKAWA M, 1996, CHEM LETT, P611 68263 NR 43 68264 TC 0 68265 SN 0253-3820 68266 J9 CHINESE J ANAL CHEM 68267 JI Chin. J. Anal. Chem. 68268 PD JAN 20 68269 PY 2001 68270 VL 29 68271 IS 1 68272 BP 99 68273 EP 102 68274 PG 4 68275 SC Chemistry, Analytical 68276 GA 395MK 68277 UT ISI:000166584000026 68278 ER 68279 68280 PT J 68281 AU Cui, JH 68282 Zhong, SS 68283 Yu, C 68284 TI FDTD analysis of a compact microstrip antenna with a C-shaped slot 68285 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 68286 DT Article 68287 DE microstrip antennas; FDTD; small antennas 68288 AB A novel small microstrip patch antenna with a C-shaped slot is 68289 presented in this paper: The size of the antenna is only 33% of a 68290 conventional microstrip patch antenna, and is much easier for 68291 fabrication than shorted patch antennas. The antenna is theoretically 68292 investigated using the finite-difference time-domain (FDTD) method and 68293 its return loss and radiation properties are presented. For purposes of 68294 comparison, method-of-moment (MoM) results are also presented, and good 68295 agreement is achieved. Such an antenna may be useful for applications 68296 where reduced antenna size and simplicity are major concerns. (C) 2001 68297 John Wiley & Sons, Inc. 68298 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China. 68299 RP Cui, JH, Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R 68300 China. 68301 CR BERENGER JP, 1996, J COMPUT PHYS, V127, P363 68302 BERENGER JP, 1997, IEEE T ANTENN PROPAG, V45, P466 68303 LO TK, 1997, ELECTRON LETT, V33, P9 68304 WATERHOUSE R, 1995, ELECTRON LETT, V31, P604 68305 WATERHOUSE RB, 1997, IEEE AP S INT S, P1852 68306 WATERHOUSE RB, 1998, IEEE T ANTENN PROPAG, V46, P1629 68307 WONG KL, 1997, ELECTRON LETT, V33, P433 68308 YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302 68309 NR 8 68310 TC 0 68311 SN 0895-2477 68312 J9 MICROWAVE OPT TECHNOL LETT 68313 JI Microw. Opt. Technol. Lett. 68314 PD FEB 5 68315 PY 2001 68316 VL 28 68317 IS 3 68318 BP 170 68319 EP 172 68320 PG 3 68321 SC Engineering, Electrical & Electronic; Optics 68322 GA 391KC 68323 UT ISI:000166354300006 68324 ER 68325 68326 PT J 68327 AU Xing, SM 68328 Zhai, QJ 68329 Hu, HQ 68330 TI Effect of process factors on microstructure of semisolid continuous 68331 casting billets 68332 SO JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING 68333 DT Article 68334 DE semisolid metal; continuous casting; process factors; microstructure 68335 AB Semisolid continuous casting (SSCC) is a new technology to produce 68336 billets for semisolid metal forming (SSMF). The effect of process 68337 factors, such as pouring temperature, stirring rate, preheating 68338 temperature and thermal conductivity of stirring chamber, on the 68339 microstructure of SSCC billets was studied by means of the factorial 68340 experimental method. The results show that the microstructure of SSCC 68341 billets can be controlled by the above-mentioned four process factors. 68342 In order to obtain fine and rounded granular grains in an SSCC billet, 68343 the pouring temperature, preheating temperature and stirring rate 68344 should be kept in a moderate range, and the thermal conductivity of 68345 stirring chamber should be high. The regression equations with the 68346 process factors connecting the microstructure was also set up based on 68347 experimental data. 68348 C1 Tsing Hua Univ, Dept Mech Engn, Beijing 100084, Peoples R China. 68349 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China. 68350 Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China. 68351 RP Xing, SM, Tsing Hua Univ, Dept Mech Engn, Beijing 100084, Peoples R 68352 China. 68353 CR BLAZEK K, 1995, 5379828, US 68354 FLEMINGS MC, 1975, 3902544, US 68355 HIRT G, 1994, J MATER PROCESS TECH, V45, P359 68356 JABRANE S, 1992, P C PROC SEM ALL COM, P223 68357 WAGNER RS, 1996, T METALL SOC AIME, V236, P554 68358 NR 5 68359 TC 0 68360 SN 1005-8850 68361 J9 J UNIV SCI TECHNOL BEIJING 68362 JI J. Univ. Sci. Technol. Beijing 68363 PD DEC 68364 PY 2000 68365 VL 7 68366 IS 4 68367 BP 242 68368 EP 245 68369 PG 4 68370 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical 68371 Engineering; Mining & Mineral Processing 68372 GA 390YA 68373 UT ISI:000166326300002 68374 ER 68375 68376 PT J 68377 AU Wei, JH 68378 Xiang, SH 68379 Fan, YY 68380 Yu, NW 68381 Ma, JC 68382 Yang, SL 68383 TI Design and calculation of gas property parameters for constant area 68384 lance under conditions of friction flow with heating 68385 SO IRONMAKING & STEELMAKING 68386 DT Article 68387 AB Formulae for calculating the outlet property parameters of gas heating 68388 and friction streams in tubular and annular type lances with constant 68389 area (tuyeres) are given, and have been applied to the case of an 68390 annular type used for an AOD (argon-oxygen decarburisation) vessel of 68391 18 t capacity. The distributions of both the inner wall temperatures of 68392 the tuyere and the gas stagnation temperatures along its length have 68393 been more reasonably fixed. The friction factors for the gas flows 68394 through the main and subtuyeres during blowing refining have been 68395 determined by comparison of the practically measured P-Q relationships 68396 with the results from trial calculations. The outlet parameters of the 68397 gas streams for the central tube (main tuyere) and annular slit pipe 68398 (subtuyere) of the tuyere have been calculated. The influences of the 68399 gas supply pressure, the length and diameter of the tuyere, and the 68400 type and composition of the gases, as well as the heating effect, on 68401 the gas outlet parameters have been considered. The results obtained 68402 may be expected to offer useful information and a reliable basis for 68403 tuyere design and determination, control, and optimisation of the gas 68404 blowing parameters and technology, as well as for the investigation of 68405 hydraulic modelling of the blowing processes. I&S/1440. 68406 C1 Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China. 68407 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China. 68408 CR CARLSSON G, 1986, SCAND J METALL, V15, P298 68409 DEISSLER RG, 1950, 2138 NACA 68410 FARMER L, 1989, ISS STEELMAKING C P, V72, P487 68411 ISHIDA J, 1978, P 3 INT IR STEEL C C, P150 68412 KAYE J, 1951, GEN DISC HEAT TRANSM 68413 KEENAN JH, 1946, J APPL MECH, V13, A91 68414 KORIA SC, 1989, IRONMAK STEELMAK, V16, P21 68415 KORIA SC, 1989, ISIJ INT, V29, P650 68416 LEACH JCC, 1978, IRONMAK STEELMAK, V5, P107 68417 MOODY LF, 1944, T AM SOC MECH ENG, V66, P671 68418 SHAPIRO AH, 1953, DYNAMICS THERMODYNAM, V1, P219 68419 SHAPIRO AH, 1953, DYNAMICS THERMODYNAM, V2, P1131 68420 SHARMA SK, 1986, I SS STEELMAKING C P, V69, P653 68421 WEI JH, IN PRESS METALL MAT 68422 NR 14 68423 TC 4 68424 SN 0301-9233 68425 J9 IRONMAKING STEELMAKING 68426 JI Ironmak. Steelmak. 68427 PY 2000 68428 VL 27 68429 IS 4 68430 BP 294 68431 EP 301 68432 PG 8 68433 SC Metallurgy & Metallurgical Engineering 68434 GA 392RA 68435 UT ISI:000166424400004 68436 ER 68437 68438 PT J 68439 AU He, JH 68440 TI Coupled variational principles of piezoelectricity 68441 SO INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE 68442 DT Article 68443 DE piezoelectricity; elasticity; variational theory; the semi-inverse 68444 method; trial-functional 68445 ID SEMI-INVERSE METHOD; FLOW 68446 AB A family of generalized variational principles of piezoelectricity carl 68447 be obtained straightforwardly from the field equations and boundary 68448 conditions via the semi-inverse method of establishing variational 68449 principles proposed by He without using Lagrange multipliers. The 68450 present theory provides a quite straightforward tool to search for 68451 various variational principles for physical problems. This paper aims 68452 at providing a more complete theoretical basis for the finite element 68453 applications and other direct variational methods such as Ritz's, 68454 Trefftz's and Kantorovitch's methods. (C) 2001 Elsevier Science Ltd. 68455 All rights reserved. 68456 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China. 68457 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd, 68458 Shanghai 200072, Peoples R China. 68459 CR CHIEN WZ, 1983, APPL MATH MECH, V4, P137 68460 FELIPPA CA, 1989, COMMUN APPL NUMER M, V5, P79 68461 HE JH, IN PRESS ASME J APPL 68462 HE JH, 1997, INT J TURBO JET ENG, V14, P17 68463 HE JH, 1997, INT J TURBO JET ENG, V14, P23 68464 HE JH, 1997, J SHANGHAI U, V1, P117 68465 HE JH, 1997, SHANGHAI J MECH, V18, P305 68466 HE JH, 1998, APPL MATH MODEL, V22, P395 68467 HE JH, 1998, INT J TURBO JET ENG, V15, P101 68468 HE JH, 1998, INT J TURBO JET ENG, V15, P95 68469 LIU GL, 1990, 1 INT S EXP COMP AER, P128 68470 LIU GL, 1998, J SHANGHAI U, V4, P591 68471 MAUGIN GA, 1984, MECH BEHAV ELECTROMA 68472 MAUGIN GA, 1991, CONTINUUM MECH ELECT 68473 SANTILLI RM, 1978, FDN THEORETICAL MECH, V1 68474 SANTILLI RM, 1983, FDN THEORETICAL MECH, V2 68475 TONTI E, 1968, VARIATIONAL PRINCIPL 68476 WASHIZU K, 1982, VARIATIONAL METHODS 68477 ZHOU SA, 1986, INT J SOLIDS STRUCT, V22, P1411 68478 NR 19 68479 TC 8 68480 SN 0020-7225 68481 J9 INT J ENG SCI 68482 JI Int. J. Eng. Sci. 68483 PD FEB 68484 PY 2001 68485 VL 39 68486 IS 3 68487 BP 323 68488 EP 341 68489 PG 19 68490 SC Engineering, Multidisciplinary 68491 GA 391MU 68492 UT ISI:000166360400005 68493 ER 68494 68495 PT J 68496 AU Ru, HY 68497 Sheng, YJ 68498 TI New upper and lower bounds for Ramsey numbers 68499 SO EUROPEAN JOURNAL OF COMBINATORICS 68500 DT Article 68501 AB The Ramsey number R(G(1), G(2)) is the smallest integer p such that for 68502 any graph G on p vertices either G contains G(1) or (G) over bar 68503 contains G(2), where (G) over bar denotes the complement of G. Let R(m, 68504 a) = R(K-m, K-n). Some new upper and lower bound formulas are obtained 68505 for R(G(1), G(2)) and R(m, n). (C) 2001 Academic Press. 68506 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 68507 RP Ru, HY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 68508 CR BONDY JA, 1976, GRAPH THEORY APPL 68509 RU HY, 1998, EUR J COMBIN, V19, P391 68510 RU HY, 1998, JCMCC, V28, P347 68511 NR 3 68512 TC 0 68513 SN 0195-6698 68514 J9 EUR J COMBINATORIC 68515 JI Eur. J. Comb. 68516 PD JAN 68517 PY 2001 68518 VL 22 68519 IS 1 68520 BP 101 68521 EP 105 68522 PG 5 68523 SC Mathematics 68524 GA 392NF 68525 UT ISI:000166417000012 68526 ER 68527 68528 PT J 68529 AU Huang, H 68530 Zhou, XR 68531 Ding, PX 68532 TI A note on the third-order evolution equation of Liu and Dingemans - 68533 Discussion 68534 SO WAVE MOTION 68535 DT Editorial Material 68536 AB Three kinds of errors involving the expressions of concepts, the 68537 algebraic operations, and the typographical in the derivation of the 68538 third-order evolution equation of Liu and Dingmans are pointed out to 68539 make the detailed corrected equations available. (C) 2001 Elsevier 68540 Science B.V. All rights reserved. 68541 C1 Tianjin Univ, Dept Hydraul Engn, Sch Construct Engn, Tianjin 300072, Peoples R China. 68542 E China Normal Univ, State Key Lab Estuarine & Coastal Res, Shanghai 200062, Peoples R China. 68543 RP Huang, H, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang 68544 Rd, Shanghai 200072, Peoples R China. 68545 CR LIU PLF, 1989, WAVE MOTION, V11, P41 68546 NR 1 68547 TC 1 68548 SN 0165-2125 68549 J9 WAVE MOTION 68550 JI Wave Motion 68551 PD FEB 68552 PY 2001 68553 VL 33 68554 IS 2 68555 BP 209 68556 EP 210 68557 PG 2 68558 SC Physics, Multidisciplinary; Acoustics; Mechanics 68559 GA 391BP 68560 UT ISI:000166334500005 68561 ER 68562 68563 PT J 68564 AU Ma, HP 68565 Sun, WW 68566 TI A Legendre-Petrov-Galerkin and Chebyshev collocation method for 68567 third-order differential equations 68568 SO SIAM JOURNAL ON NUMERICAL ANALYSIS 68569 DT Article 68570 DE third-order differential equation; Korteweg-de Vries equation; 68571 Legendre-Petrov-Galerkin and Chebyshev collocation 68572 ID KORTEWEG-DEVRIES EQUATION; PSEUDOSPECTRAL METHOD; WAVE EQUATIONS; 68573 DIRECT SOLVERS; POLYNOMIALS; ALGORITHM; 3RD-ORDER; OPERATORS; 2ND-ORDER 68574 AB A Legendre Petrov Galerkin ( LPG) method for the third-order 68575 differential equation is developed. By choosing appropriate base 68576 functions, the method can be implemented efficiently. Also, this new 68577 approach enables us to derive an optimal rate of convergence in 68578 L-2-norm. The method is applied to some nonlinear problems such as the 68579 Korteweg de Vries ( KdV) equation with the Chebyshev collocation 68580 treatment for the nonlinear term. It is a Legendre Petrov Galerkin and 68581 Chebyshev collocation ( LPG-CC) method. Numerical experiments are given 68582 to con rm the theoretical result. 68583 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 68584 City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China. 68585 RP Ma, HP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 68586 CR ALPERT BK, 1991, SIAM J SCI STAT COMP, V12, P158 68587 ASCHER UM, 1995, SIAM J NUMER ANAL, V32, P797 68588 BERNARDI C, 1997, HDBK NUM AN 2, V5, P209 68589 BRESSAN N, 1990, COMPUT METHODS APPL, V80, P443 68590 CANUTO C, 1988, SPECTRAL METHODS FLU 68591 CAREY GF, 1991, COMPUT METHOD APPL M, V93, P1 68592 CHAN TF, 1985, SIAM J NUMER ANAL, V22, P441 68593 COUTSIAS EA, 1996, P 3 INT C SPECTR HIG, P21 68594 DJIDJELI K, 1995, J COMPUT APPL MATH, V58, P307 68595 DJIDJELI K, 1998, COMMUN NUMER METH EN, V14, P977 68596 DON WS, 1994, SIAM J NUMER ANAL, V31, P1519 68597 FORNBERG B, 1978, PHILOS T ROY SOC A, V289, P373 68598 FORNBERG B, 1999, J COMPUT PHYS, V155, P456 68599 GUO BY, 1998, SPECTRAL METHODS THE 68600 HESTHAVEN JS, 1998, SIAM J NUMER ANAL, V35, P1571 68601 HUANG WZ, 1992, SIAM J NUMER ANAL, V29, P1626 68602 KREISS H, 1978, LECT NOTES U MONTREA 68603 LI J, IN PRESS NUMER METHO 68604 MA HP, 1986, J COMPUT PHYS, V65, P120 68605 MADAY Y, 1988, RAIRO MODEL MATH ANA, V22, P499 68606 MERRYFIELD WJ, 1993, J COMPUT PHYS, V105, P182 68607 PAVONI D, 1988, CALCOLO, V25, P311 68608 SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489 68609 SHEN J, 1995, SIAM J SCI COMPUT, V16, P74 68610 NR 24 68611 TC 6 68612 SN 0036-1429 68613 J9 SIAM J NUMER ANAL 68614 JI SIAM J. Numer. Anal. 68615 PD DEC 14 68616 PY 2000 68617 VL 38 68618 IS 5 68619 BP 1425 68620 EP 1438 68621 PG 14 68622 SC Mathematics, Applied 68623 GA 389AG 68624 UT ISI:000166214900002 68625 ER 68626 68627 PT J 68628 AU Sun, XL 68629 Li, D 68630 TI Asymptotic strong duality for bounded integer programming: A 68631 logarithmic-exponential dual formulation 68632 SO MATHEMATICS OF OPERATIONS RESEARCH 68633 DT Article 68634 DE integer programming; nonlinear integer programming; duality theory; 68635 logarithmic-exponential dual formulation; strong duality; primal 68636 feasibility 68637 ID NONCONVEX OPTIMIZATION PROBLEMS; GAP 68638 AB A logarithmic-exponential dual formulation is proposed in this paper 68639 for bounded integer programming problems. This new dual formulation 68640 possesses an asymptotic strong duality property and guarantees the 68641 identification of an optimal solution of the primal problem. These 68642 prominent features are achieved by exploring a novel nonlinear 68643 Lagrangian function, deriving an asymptotic zero duality gap, 68644 investigating the unimodality of the associated dual function and 68645 ensuring the primal feasibility of optimal solutions in the dual 68646 formulation. One other feature of the logarithmic-exponential dual 68647 formulation is that no actual dual search is needed when parameters are 68648 set above certain threshold-values. 68649 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 68650 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Sha Tin, Hong Kong, Peoples R China. 68651 RP Sun, XL, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 68652 CR BERTSEKAS DP, 1982, CONSTRAINED OPTIMIZA 68653 BLAIR CE, 1982, MATH PROGRAM, V23, P237 68654 CHAVATAL V, 1973, DISCRETE MATH J, V4, P305 68655 FISHER ML, 1981, MANAGE SCI, V27, P1 68656 FLOUDAS CA, 1996, STATE ART GLOBAL OPT 68657 GEOFFRION AM, 1974, MATHEMATICAL PROGRAM, V2, P82 68658 GILL PE, 1981, PRACTICAL OPTIMIZATI 68659 GOH CJ, 1997, APPL MATH LETT, V10, P9 68660 GOH CJ, 2000, IN PRESS THEORY APPL 68661 GONDRAN M, 1970, RIRO, V5, P108 68662 GUIGNARD M, 1993, MATH PROGRAM, V33, P262 68663 GUPTA OK, 1985, MANAGE SCI, V31, P1533 68664 HESTENES MR, 1969, J OPTIMIZATION THEOR, V4, P303 68665 KAN AHG, 1989, HDB OPERATIONS RES M, V1 68666 LI D, 1995, J OPTIMIZ THEORY APP, V85, P309 68667 LI D, 1999, OPER RES LETT, V25, P89 68668 LI D, 2000, IN PRESS ANN OPER RE 68669 LI D, 2000, IN PRESS J GLOBAL OP 68670 LI XS, 1991, COMPUTATIONAL STRUCT, V8, P85 68671 LI XS, 1991, SCI CHINA SER A, V34, P1283 68672 LLEWELLYN DC, 1993, DISCRETE APPL MATH, V45, P262 68673 MICHELON P, 1991, MATH PROGRAM, V52, P303 68674 MICHELON P, 1993, DISCRETE APPL MATH, V42, P257 68675 MISRA KB, 1991, IEEE T RELIAB, V40, P81 68676 POWELL MJD, 1969, OPTIMIZATION, P283 68677 ROCKAFELLAR RT, 1973, J OPTIMIZATION THEOR, V12, P555 68678 SUN XL, 1999, J OPTIMIZ THEORY APP, V102, P385 68679 TANG HW, 1994, CHINESE SCI BULL, V39, P682 68680 TZAFESTAS SG, 1980, INT J SYST SCI, V11, P455 68681 WILLIAMS HP, 1996, J OPTIMIZ THEORY APP, V90, P257 68682 WOLSEY LA, 1981, MATH PROGRAM, V20, P173 68683 XU ZK, 1997, J OPTIMIZ THEORY APP, V94, P739 68684 YANG XQ, 2000, IN PRESS LOCAL GLOBA 68685 NR 33 68686 TC 5 68687 SN 0364-765X 68688 J9 MATH OPER RES 68689 JI Math. Oper. Res. 68690 PD NOV 68691 PY 2000 68692 VL 25 68693 IS 4 68694 BP 625 68695 EP 644 68696 PG 20 68697 SC Mathematics, Applied; Operations Research & Management Science 68698 GA 388YN 68699 UT ISI:000166210800006 68700 ER 68701 68702 PT J 68703 AU Gu, CQ 68704 TI Generalized inverse matrix Pade approximation on the basis of scalar 68705 products 68706 SO LINEAR ALGEBRA AND ITS APPLICATIONS 68707 DT Article 68708 DE scalar product of matrices; generalized inverse; matrix Pade 68709 approximation; algebraic properties; determinantal formula; Thiele-type 68710 continued fraction; epsilon-algorithm 68711 ID RATIONAL INTERPOLANTS; ALGORITHM 68712 AB A new type of generalized matrix inverse is used to define the 68713 generalized inverse matrix Pade approximants (GMPA), GMPA is introduced 68714 on the basis of scalar product of matrices, with the form of matrix 68715 numerator and scalar denominator. It is different from the existing 68716 matrix Pade approximants in that it does not need multiplication of 68717 matrices in the construction process. Some algebraic properties are 68718 discussed. The representations of GMPA are provided with the following 68719 three forms: (i) the explicit determinantal formulas for the 68720 denominator scalar polynomials and the numerator matrix polynomials; 68721 (ii) E-algorithm expression; (iii) Thiele-type continued fraction 68722 expression. The equivalence relations above three representations are 68723 proposed. (C) 2001 Elsevier Science Inc. All rights reserved. 68724 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China. 68725 RP Gu, CQ, Shanghai Univ, Dept Math, 99 Qi Xiang Rd, Shanghai 200436, 68726 Peoples R China. 68727 CR ANTOULAS AC, 1986, IEEE T AUTOMAT CONTR, V31, P1121 68728 ANTOULAS AC, 1988, LINEAR ALGEBRA APPL, V108, P157 68729 BAKER GA, 1981, PADE APPROXIMANTS 1 68730 BAKER GA, 1981, PADE APPROXIMANTS 2 68731 BECKERMANN B, 1994, SIAM J MATRIX ANAL A, V15, P804 68732 BOSE NK, 1980, IEEE T CIRCUITS SYST, V27, P322 68733 BULTHEEL A, 1980, MATH COMPUT, V35, P875 68734 BULTHEEL A, 1986, J COMPUT APPL MATH, V14, P401 68735 BULTHEEL A, 1990, CONTINUED FRACTIONS, P11 68736 CABAY S, 1993, SIAM J MATRIX ANAL A, V14, P735 68737 CHUANQING G, 1995, MATH NUMER SINICA, V17, P73 68738 CHUANQING G, 1996, J MATH RES EXPOSITIO, V16, P301 68739 CHUANQING G, 1997, J COMPUT APPL MATH, V80, P71 68740 CHUANQING G, 1997, J COMPUT APPL MATH, V84, P137 68741 CHUANQING G, 1997, NUMER SINICA, V19, P19 68742 CHUANQING G, 1998, J NUMER METH COMPUT, V19, P283 68743 CHUANQING G, 1999, LINEAR ALGEBRA APPL, V295, P7 68744 DRAUX A, 1984, AN9145 U SCI TECHN L 68745 GRAGG WB, 1972, SIAM REV, V14, P1 68746 GRAVESMORRIS PR, 1983, NUMER MATH, V42, P331 68747 GRAVESMORRIS PR, 1984, IMA J NUMER ANAL, V4, P209 68748 GRAVESMORRIS PR, 1986, CONSTR APPROX, V2, P263 68749 GRAVESMORRIS PR, 1994, J COMPUT APPL MATH, V51, P205 68750 GRAVESMORRIS PR, 1996, J COMPUT APPL MATH, V66, P255 68751 GUOLIANG X, 1990, LINEAR ALGEBRA APPL, V107, P67 68752 KLABAHN G, 1989, SIAM J CIMPUT, V4, P639 68753 PESTANOGABINO C, 1998, J COMPUT APPL MATH, V94, P23 68754 STARKAND Y, 1979, J COMPUT APPL MATH, V5, P63 68755 NR 28 68756 TC 4 68757 SN 0024-3795 68758 J9 LINEAR ALGEBRA APPL 68759 JI Linear Alg. Appl. 68760 PD JAN 1 68761 PY 2001 68762 VL 322 68763 IS 1-3 68764 BP 141 68765 EP 167 68766 PG 27 68767 SC Mathematics, Applied 68768 GA 387QX 68769 UT ISI:000166134200009 68770 ER 68771 68772 PT J 68773 AU Ju, JH 68774 Xia, YB 68775 Zhang, WL 68776 Wang, LJ 68777 Tang, DY 68778 TI Infrared optical properties of amorphous hydrogenated carbon nitride 68779 film 68780 SO JOURNAL OF NON-CRYSTALLINE SOLIDS 68781 DT Letter 68782 ID THIN-FILMS 68783 AB The microstructure and optical properties of nitrogen-doped 68784 hydrogenated carbon DLC:N films deposited by the rf plasma-enhanced 68785 chemical vapor deposition (PECVD) method were studied by atomic force 68786 microscopy (AFM), Raman, Fourier-transform infrared (FTIR) and infrared 68787 ellipsometric (IRE) spectrometry. The absorption intensities of the 68788 peaks CNH (1600 cm(-1)), CN (2200 cm(-1)) and NH (3250 cm(-1)) in the 68789 IR spectra increase with the N-2/CH4 flux ratio. Raman spectra show 68790 that the shape of the D and G bands of DLC:N film varies slightly with 68791 the increase of N content, which means that the main structures of 68792 N-doped films are still diamond-like carbon (DLC).