Warning, /office/kbibtex-testset/isi/tougao.isi is written in an unsupported language. File is not indexed.

0001 FN ISI Export Format
0002 VR 1.0
0003 PT J
0004 AU Li, KY
0005    Yam, LH
0006 TI An optimization design method for large scale structures
0007 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
0008 DT Article
0009 ID STRESS CONSTRAINTS; PLATE STRUCTURES; APPROXIMATION
0010 AB In this paper, based on the mechanical property of structures, a
0011    unified approximate formula with high precision suitable to several
0012    structural response functions and various types of finite elements is
0013    introduced first and then an algorithm for solving the nonlinear
0014    program is presented. This algorithm is not only effective for solving
0015    the program constructed by this unified approximate formula, but also
0016    easy to change the objective function and to solve the structural
0017    optimization problem with dual or multiple objective functions. (C)
0018    1998 Elsevier Science S.A. All rights reserved.
0019 C1 Hong Kong Polytech Univ, Dept Engn Mech, Hong Kong, Peoples R China.
0020    Shanghai Univ, Dept Mech, Shanghai, Peoples R China.
0021 RP Yam, LH, Hong Kong Polytech Univ, Dept Engn Mech, Hong Kong, Peoples R
0022    China.
0023 CR ARORA JS, 1975, J STRUCT DIV ASCE, V101, P2063
0024    BERKE L, 1974, AGARD LS, V70, P1
0025    CANFIELD RA, 1990, AIAA J, V28, P1116
0026    FLEURY C, 1983, COMPUT METHODS APPL, V37, P249
0027    LI KY, 1980, P 1 NAT C COMP MECH, P146
0028    LI KY, 1991, COMPT STRUCT MECH AP, V2, P178
0029    PRASAD B, 1979, J STRUCT DIV ASCE, V105, P2376
0030    SCHMIT LA, 1960, P 2 ASCE C EL COMP P, P105
0031    SCHMIT LA, 1976, NASA CR, P2552
0032    STARNES JH, 1979, J AIRCRAFT, V16, P564
0033    STORAASLI OO, 1974, AIAA J, V12, P231
0034    VANDERPLAATS GN, 1989, AIAA J, V27, P352
0035    VANDERPLAATS GN, 1993, STRUCT OPTIMIZATION, V6, P1
0036    VENKAYYA VB, 1971, J COMPUT STRUCT, V1, P239
0037    ZHOU M, 1993, AIAA J, V31, P2169
0038 NR 15
0039 TC 1
0040 SN 0045-7825
0041 J9 COMPUT METHOD APPL MECH ENG
0042 JI Comput. Meth. Appl. Mech. Eng.
0043 PD NOV 2
0044 PY 1998
0045 VL 165
0046 IS 1-4
0047 BP 273
0048 EP 289
0049 PG 17
0050 SC Computer Science, Interdisciplinary Applications; Engineering,
0051    Mechanical; Mechanics
0052 GA 147XW
0053 UT ISI:000077523700014
0054 ER
0055 
0056 PT J
0057 AU Zhang, NH
0058    Cheng, CJ
0059 TI Non-linear mathematical model of viscoelastic thin plates with its
0060    applications
0061 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
0062 DT Article
0063 ID SOLIDS
0064 AB In this paper, the nonlinear mathematical model of viscoelastic thin
0065    prates, by the Karman's hypotheses of a large deflection plate and the
0066    Boltzmann's law of anisotropic viscoelastic materials, is established
0067    by means of the Laplace transformation and its inverse as well as
0068    so-called structural functions introduced in this paper. In the case of
0069    isotropic viscoelastic materials with Poisson's ratio nu = const, the
0070    quasi-static problems of a simply-supported rectangular plate are
0071    investigated by using the Galerkin method for the spatial domain and
0072    two finite difference schemes for the temporal domain. It could be seen
0073    that the numerical method in this paper is Very simple and has some
0074    advantages, such as, smaller storage and quicker computational speed.
0075    (C) 1998 Elsevier Science S.A. All rights reserved.
0076 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
0077 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
0078    Shanghai 200072, Peoples R China.
0079 CR ARGYRIS J, 1991, COMPUT METHOD APPL M, V88, P135
0080    CHEN Q, 1990, COMPUT STRUCT MECH A, V7, P27
0081    CHEN WH, 1993, COMPUT METHOD APPL M, V109, P315
0082    CHENG CJ, 1991, BUCKLING BIFURCATION
0083    CHRISTENSEN RM, 1982, THEORY VISCOELASTICI
0084    DUAN Q, 1995, J APPL MECH, V62, P407
0085    GAUL L, 1994, EUR J MECH A-SOLID, V13, P43
0086    LEITMAN JM, 1973, HDB PHYSIK, V6, P10
0087    LETALLEC P, 1993, COMPUT METHOD APPL M, V109, P233
0088    SCHANZ M, 1993, APPL MECH REV, V46, P41
0089    TIMOSHENKO S, 1959, THEORY PLATES SHELLS
0090    YANG TQ, 1990, THEORY VISCOELASTICI
0091 NR 12
0092 TC 3
0093 SN 0045-7825
0094 J9 COMPUT METHOD APPL MECH ENG
0095 JI Comput. Meth. Appl. Mech. Eng.
0096 PD NOV 2
0097 PY 1998
0098 VL 165
0099 IS 1-4
0100 BP 307
0101 EP 319
0102 PG 13
0103 SC Computer Science, Interdisciplinary Applications; Engineering,
0104    Mechanical; Mechanics
0105 GA 147XW
0106 UT ISI:000077523700016
0107 ER
0108 
0109 PT J
0110 AU Yang, YZ
0111    Zhu, YL
0112    Li, QS
0113    Ma, XM
0114    Dong, YD
0115    Chuang, YZ
0116 TI A Mossbauer study on the mechanically alloyed Cu-Sn alloys
0117 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
0118 DT Article
0119 ID SYSTEM
0120 AB Nanocrystalline epsilon and eta electron compounds and supersaturated
0121    solid solution of the Cu-Sn system have been prepared by mechanical
0122    alloying of elemental Cu and Sn powders. The atomic alloying and
0123    microstructure of the resultant alloys have been investigated by XRD,
0124    DSC and Sn-119 Mossbauer spectroscopy. A little amount of SnO2 was
0125    detected by Mossbauer spectroscopy, although no trace of diffraction
0126    peaks occurred in the XRD pattern. Thus the spectra for all the milled
0127    samples should be fitted using two quadrupole-splitting doublets: one
0128    corresponding to SnO2, the other corresponding to the resultant alloys.
0129    The composition dependence of the hyperfine parameters has been
0130    extensively discussed and explained well with respect to oxidation,
0131    surface effect resulting from grain refinement, coordination
0132    environment asymmetry and distortion caused or/and induced by
0133    mechanical alloying.
0134 C1 Guangdong Univ Technol, Dept Mat Sci & Engn, Guangzhou 510090, Peoples R China.
0135    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
0136    Chinese Acad Sci, Inst Met Res, Shenyang 110015, Peoples R China.
0137 RP Yang, YZ, Guangdong Univ Technol, Dept Mat Sci & Engn, Guangzhou
0138    510090, Peoples R China.
0139 CR CAER GL, 1992, J MATER RES, V7, P1387
0140    CORTIE MB, 1991, METALL TRANS A, V22, P11
0141    GENTE C, 1993, PHYS REV B, V48, P13244
0142    KOCH CC, 1991, MAT SCI TECHNOLOGY, V15, P193
0143    MASSALSKI TB, 1987, BINARY ALLOY PHASE D, P965
0144    STEVENS JG, 1981, ISOMER SHIFT REFEREN
0145    YANG YZ, 1994, CHINESE SCI BULL, V39, P1956
0146    YANG YZ, 1994, J MATER SCI TECHNOL, V10, P135
0147    ZHANG DY, 1991, ACTA PHYS SINICA, V40, P844
0148 NR 9
0149 TC 1
0150 SN 1005-0302
0151 J9 J MATER SCI TECHNOL
0152 JI J. Mater. Sci. Technol.
0153 PD NOV
0154 PY 1998
0155 VL 14
0156 IS 6
0157 BP 551
0158 EP 554
0159 PG 4
0160 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
0161    Engineering
0162 GA 142QN
0163 UT ISI:000077212000013
0164 ER
0165 
0166 PT J
0167 AU Ni, JS
0168    Wan, XJ
0169    Chen, WJ
0170    Wang, S
0171 TI Effect of mineral oil on the mechanical properties and fractographs of
0172    Fe-3(Al,Cr,Zr) intermetallic alloy
0173 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
0174 DT Article
0175 ID FE3AL-BASED ALLOYS; FRACTURE; FE3AL
0176 AB The effect of mineral oil on the mechanical properties and fractographs
0177    of Fe-3(Al,Cr,Zr) intermetallic alloy has been investigated. The
0178    results show that the tensile ductility of the Fe-3(Al,Cr,Zr) alloy
0179    tested in oil is comparable with the results obtained in oxygen and is
0180    insensitive to strain rate. The fracture mode of the Fe-3(Al,Cr,Zr)
0181    alloy, treated at 700 degrees C/1.5 h and tested in oil, is cleavage
0182    and with dimples in some areas.
0183 C1 Shanghai Univ, Inst Met & Mat Sci, Shanghai 200072, Peoples R China.
0184 RP Ni, JS, Shanghai Univ, Inst Met & Mat Sci, Shanghai 200072, Peoples R
0185    China.
0186 CR LIU CT, 1990, SCRIPTA METALL MATER, V24, P385
0187    MCKAMEY CG, 1991, J MATER RES, V6, P1779
0188    MORET M, 1994, SCRIPTA METALL MATER, V31, P1135
0189    NI JS, 1994, J SHANGHAI U TECHNOL, V15, P457
0190    QIAO L, 1996, METALL MATER TRANS A, V27, P3949
0191    ZHU JH, 1995, SCRIPTA METALL MATER, V32, P1399
0192 NR 6
0193 TC 0
0194 SN 1005-0302
0195 J9 J MATER SCI TECHNOL
0196 JI J. Mater. Sci. Technol.
0197 PD NOV
0198 PY 1998
0199 VL 14
0200 IS 6
0201 BP 564
0202 EP 566
0203 PG 3
0204 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
0205    Engineering
0206 GA 142QN
0207 UT ISI:000077212000016
0208 ER
0209 
0210 PT J
0211 AU Wang, NN
0212    Wei, JM
0213    Cai, XS
0214    Zhang, ZW
0215    Zheng, G
0216    Yu, XH
0217 TI Optical measurement of wet steam in turbines
0218 SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE
0219    ASME
0220 DT Article
0221 AB The wetness fraction of steam causes dangerous erosion of turbine
0222    blades and other components, and decreases efficiency of stages. The
0223    instrumentation of wet steam has, therefore, attracted growing interest
0224    from the point of safety and economical operation of power stations.
0225    Based on the light scattering technique, a method is presented that is
0226    capable of measuring the wetness fraction of steam, the mean water
0227    droplet diameter as well as their full size distribution. An optical
0228    probe has been constructed that can be used in the turbines in
0229    operation. Its main characteristic and features are discussed in this
0230    paper. Experimental results in a 200 MW condensing steam turbine are
0231    also given.
0232 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
0233 RP Wang, NN, Shanghai Univ Sci & Technol, Coll Power Engn, 516 Jun Gong
0234    Rd, Shanghai 200093, Peoples R China.
0235 CR ACCORNERO A, 1987, AEROTHERMODYNAMIC LO, P185
0236    BARBACCI P, 1991, P INT C MULT FLOW TS, P132
0237    CAI XS, 1991, THESIS U SHANGHAI SC
0238    CAI XS, 1994, P 3 INT S MULT FLOW, P432
0239    KASPRZYK S, 1964, BRENNSTUFF WARME KRA, V16, P350
0240    KLEITZ A, 1991, P EUR C TURB LOND, P176
0241    MOORE MJ, 1987, AEROTHERMODYNAMIC LO
0242    RENNER M, 1994, P 12 S MEAS TECHN TR, P171
0243    ROEGENER H, 1960, BWK, V12, P220
0244    WALTER PT, 1985, JOINT ASME AEEE POW
0245    WANG NN, 1982, THESIS U STUTTGART G
0246    WANG NN, 1994, PART PART SYST CHAR, V11, P309
0247    WILLIAMS GH, 1978, P I MECH ENG, V190
0248 NR 13
0249 TC 0
0250 SN 0742-4795
0251 J9 J ENG GAS TURB POWER-T ASME
0252 JI J. Eng. Gas. Turbines Power-Trans. ASME
0253 PD OCT
0254 PY 1998
0255 VL 120
0256 IS 4
0257 BP 867
0258 EP 871
0259 PG 5
0260 SC Engineering, Mechanical
0261 GA 142EH
0262 UT ISI:000077186600026
0263 ER
0264 
0265 PT J
0266 AU Wang, ZJ
0267    Ying, TL
0268    Wu, XX
0269    Qi, DY
0270 TI Study on a horseradish peroxidase biosensor based on N-methylene
0271    phenazine as a mediator
0272 SO ACTA BIOCHIMICA ET BIOPHYSICA SINICA
0273 DT Article
0274 DE biosensor; N-methyl phenazine; horseradish peroxidase; hydrogen peroxide
0275 ID AMPEROMETRIC ENZYME ELECTRODES; GLUCOSE-OXIDASE; GRAPHITE
0276 AB Horseradish peroxidase biosensors highly sensitive to hydrogen peroxide
0277    were constructed with N-methyl phenazine as mediator and
0278    coimmobilization of N-methyl phenazine, bovine serum albumin and
0279    glutaraldehyde. The sensor possesses perfect stability and high
0280    sensitivity, and its linear range is from 1 x 10(-6) to 5 x 10(-4)
0281    mol/L with the response time of less than 10 s.
0282 C1 Shanghai Fisheries Univ, Coll Food, Shanghai 200090, Peoples R China.
0283    Shanghai Univ, Shanghai 200072, Peoples R China.
0284 CR ALBERY WJ, 1985, J ELECTROANAL CH INF, V194, P211
0285    ALBERY WJ, 1985, J ELECTROANAL CH INF, V194, P223
0286    ALBERY WJ, 1987, J ELECTROANAL CH INF, V218, P127
0287    BIFULCO L, 1994, ANAL LETT, V27, P1443
0288    KATAKIS I, 1994, J AM CHEM SOC, V116, P3617
0289    KULYS J, 1990, BIOELECTROCH BIOENER, V24, P305
0290    MULCHANDANI A, 1995, ANAL CHEM, V67, P94
0291    PISHKO MV, 1990, ANGEW CHEM INT EDIT, V29, P82
0292    RUZGAS T, 1995, J ELECTROANAL CHEM, V391, P41
0293    SCOTT DL, 1992, J ELECTROANAL CHEM, V341, P307
0294    TATSUMA T, 1992, ANAL CHEM, V64, P1183
0295    TORSTENSSON A, 1981, J ELECTROANAL CHEM, V148, P130
0296 NR 12
0297 TC 0
0298 SN 0582-9879
0299 J9 ACTA BIOCHIM BIOPHYS SINICA
0300 JI Acta Biochim. Biophys. Sin.
0301 PD NOV
0302 PY 1998
0303 VL 30
0304 IS 6
0305 BP 641
0306 EP 643
0307 PG 3
0308 SC Biochemistry & Molecular Biology; Biophysics
0309 GA 141UW
0310 UT ISI:000077163500022
0311 ER
0312 
0313 PT J
0314 AU Wong, PL
0315    Huang, P
0316    Wang, W
0317    Zhang, Z
0318 TI Effect of geometry change of rough point contact due to lubricated
0319    sliding wear on lubrication
0320 SO TRIBOLOGY LETTERS
0321 DT Article
0322 DE wear; roughness; micro-EHL
0323 ID THERMAL-ELASTOHYDRODYNAMIC LUBRICATION; RUNNING-IN; TRACTION; SURFACES;
0324    MODEL; STEEL
0325 AB The geometry change of a single asperity due to lubricated wear was
0326    studied by an experimental simulation with a ball-on-disc set up. The
0327    wear leads to the formation of a tilted section at the tip of the ball,
0328    which is proved to be due to the presence of oil during the process.
0329    The effect of the geometry change of rough surface contacts due to wear
0330    was examined by a micro-EHL analysis. A non-Newtonian visco-plastic
0331    fluid model which includes the effect of a limiting sheer strength was
0332    used.
0333 C1 City Univ Hong Kong, Mfg Engn & Engn Management Dept, Hong Kong, Hong Kong.
0334    S China Univ Technol, Dept Engn Mech, Guangzhou, Peoples R China.
0335    Shanghai Univ, Bearing Res Ctr, Shanghai, Peoples R China.
0336 RP Wong, PL, City Univ Hong Kong, Mfg Engn & Engn Management Dept, Hong
0337    Kong, Hong Kong.
0338 CR CARSLAW HS, 1959, CONDUCTION HEAT SOLI
0339    CHANG L, 1992, T ASME, V114, P186
0340    DOWSON D, 1977, ELASTO HYDRODYNAMIC
0341    HSIAO HS, 1992, T ASME, V114, P540
0342    HSIAO HS, 1994, J TRIBOL-T ASME, V116, P559
0343    HU YZ, 1991, J TRIBOL-T ASME, V113, P499
0344    HUANG P, 1994, ACTA TRIBOLOGICA, V2, P23
0345    KWEH CC, 1998, T ASME, V110, P421
0346    PATCHING MJ, 1996, TRIBOL T, V39, P595
0347    PATIR N, 1978, T ASME, V100, P12
0348    PAWLUS P, 1997, WEAR, V209, P69
0349    ROELANDS CJA, 1966, THESIS TU DELFT DELF
0350    SUZUKI M, 1987, J TRIBOL-T ASME, V109, P587
0351    WANG FX, 1991, J TRIBOL-T ASME, V113, P755
0352 NR 14
0353 TC 3
0354 SN 1023-8883
0355 J9 TRIBOL LETT
0356 JI Tribol. Lett.
0357 PY 1998
0358 VL 5
0359 IS 4
0360 BP 265
0361 EP 274
0362 PG 10
0363 SC Engineering, Chemical; Engineering, Mechanical
0364 GA 138ZF
0365 UT ISI:000077002400003
0366 ER
0367 
0368 PT J
0369 AU Xu, KY
0370    Cheng, CJ
0371 TI The subharmonic bifurcation of a viscoelastic circular cylindrical shell
0372 SO NONLINEAR DYNAMICS
0373 DT Article
0374 DE viscoelasticity; circular cylindrical shell; resonance; subharmonic
0375    bifurcation
0376 AB In this paper the nonlinear dynamic behavior of a viscoelastic circular
0377    cylindrical shell under a harmonic excitation applied at both ends is
0378    studied. The modified Flugge partial differential equations of motion
0379    are reduced to a system of finite degrees of freedom using the Galerkin
0380    method. The equations are solved by the Liapunov-Schmidt reduction
0381    procedure. In order to study 1/2 and 1/4 subharmonic parametric
0382    resonance of the shell, the transition sets in parameter plane and
0383    bifurcation diagrams are plotted for a number of situations. Results
0384    indicate that, for certain static loads, the shell may display jumps
0385    due to the presence of dynamic periodic load with small amplitude.
0386    Additionally, different physical situations are identified in which
0387    periodic oscillating phenomena can be observed, and where 1/4
0388    subharmonic parametric resonance is simpler than the 1/2-one.
0389 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
0390 RP Xu, KY, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
0391    Shanghai 200072, Peoples R China.
0392 CR BELIAEV NM, 1924, ENG CONSTRUCTIONS ST, P149
0393    BOLOTIN VV, 1964, DYNAMIC STABILITY EL
0394    CHOW SN, 1982, METHODS BIFURCATION
0395    EVENSEN HA, 1967, AIAA J, V5, P969
0396    GOLUBISKY M, 1985, SINGULARITIES GROUPS, V1
0397    GURGOZE M, 1985, J SOUND VIB, V102, P415
0398    HUANG NC, 1972, INT J SOLIDS STRUCT, V8, P315
0399    HUANG NC, 1982, STABILITY MECH CONTI, P215
0400    IWATSUBO T, 1972, J SOUND VIBRATION, V23, P245
0401    KOUNADIS AN, 1977, J STRUCTURAL MECHANI, V5, P383
0402    SIMITSES GJ, 1987, APPL MECH REV, V40, P1403
0403    XU KY, 1995, MMM, V6, P247
0404    XU KY, 1996, THESIS SHANGHAI U
0405    YAMAKI N, 1984, ELASTIC STABILITY CI
0406    YAO JC, 1963, AIAA J, V1, P1391
0407    YAO JC, 1965, J APPL MECH, V32, P109
0408    ZHU YY, 1996, ACTA MECH SOLIDA SIN, V17, P257
0409 NR 17
0410 TC 0
0411 SN 0924-090X
0412 J9 NONLINEAR DYNAMICS
0413 JI Nonlinear Dyn.
0414 PD OCT
0415 PY 1998
0416 VL 17
0417 IS 2
0418 BP 159
0419 EP 171
0420 PG 13
0421 SC Engineering, Mechanical; Mechanics
0422 GA 138AX
0423 UT ISI:000076950200004
0424 ER
0425 
0426 PT J
0427 AU Wang, YF
0428    Wang, Q
0429    Bao, JS
0430 TI Nonlinear TE surface waves on an antiferromagnetic crystal
0431 SO JOURNAL OF APPLIED PHYSICS
0432 DT Article
0433 AB A study of nonlinear magnetodynamic waves in antiferromagnetic
0434    materials is presented. Attention is restricted to an exact theory of
0435    electromagnetic waves along the single interface between a linear
0436    dielectric material and an antiferromagnetic crystal. The nonlinear
0437    motion equation for the TE waves is converted to the Bernoulli
0438    differential equation and its exact solution is found in a form of
0439    inverse function, and the exact dispersion relation is obtained. The
0440    necessary condition for the existence of the nonlinear TE surface wave
0441    is mu(x)(L) > 0. The dispersion equation and the frequency regime are
0442    analyzed. The theoretical results show that the peak position of the
0443    magnetic field is not a function of the effective index and is located
0444    steadily at the surface of the crystal, and in some cases one guided
0445    power corresponds to two different effective refraction indexes showing
0446    the bistable property of the waves. (C) 1998 American Institute of
0447    Physics. [S0021-8979(98)01823-4].
0448 C1 Shanghai Maritime Univ, Dept Elect Engn, Shanghai 200135, Peoples R China.
0449    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
0450 RP Wang, YF, Shanghai Maritime Univ, Dept Elect Engn, Shanghai 200135,
0451    Peoples R China.
0452 CR ALMEIDA NS, 1987, PHYS REV B, V36, P2015
0453    BOARDMAN AD, 1986, IEEE J QUANTUM ELECT, V22, P319
0454    BOARDMAN AD, 1990, PHYS REV B, V41, P717
0455    BOARDMAN AD, 1993, PHYS REV B, V48, P13602
0456    LAX B, 1962, MICROWAVE FERRIMAGNE, CH6
0457    MIHALACHE D, 1987, OPT LETT, V12, P187
0458    VUKOVICH S, 1990, SOV PHYS JETP, V71, P964
0459 NR 7
0460 TC 4
0461 SN 0021-8979
0462 J9 J APPL PHYS
0463 JI J. Appl. Phys.
0464 PD DEC 1
0465 PY 1998
0466 VL 84
0467 IS 11
0468 BP 6233
0469 EP 6238
0470 PG 6
0471 SC Physics, Applied
0472 GA 137RN
0473 UT ISI:000076930100060
0474 ER
0475 
0476 PT J
0477 AU Gan, JP
0478    Xu, DM
0479 TI Technique for optically tuning dielectric resonators
0480 SO ELECTRONICS LETTERS
0481 DT Article
0482 AB A novel technique is presented for optically tuning dielectric
0483    resonators at microwave frequencies. The resonator is tuned by coupling
0484    it to two sections of microstrip tuning line which are connected by a
0485    photoconductor patch. The resonant frequency of the dielectric
0486    resonator is changed when the photoconductor is illuminated. With 200
0487    mW optical power, an 86 MHz tuning range has been achieved, which is
0488    the best result ever reported.
0489 C1 Shanghai Univ, Coll Commun, Shanghai 201800, Peoples R China.
0490 RP Gan, JP, Shanghai Univ, Coll Commun, 20 Chengzhong Rd, Shanghai 201800,
0491    Peoples R China.
0492 CR BUER KV, 1995, IEEE T MICROW THEORY, V43, P36
0493    GU ML, 1997, MICR C CHIN, P101
0494    HERCZFELD PR, 1985, RCA REV, V46, P528
0495    KAJFEZ D, 1986, DIELECTRIC RESONATOR
0496    RAMO S, 1984, FIELDS WAVES COMMUNI
0497    SHEN Y, 1993, IEEE T MICROW THEORY, V41, P1005
0498    XU DM, 1990, APMC 90
0499 NR 7
0500 TC 0
0501 SN 0013-5194
0502 J9 ELECTRON LETT
0503 JI Electron. Lett.
0504 PD OCT 29
0505 PY 1998
0506 VL 34
0507 IS 22
0508 BP 2137
0509 EP 2138
0510 PG 2
0511 SC Engineering, Electrical & Electronic
0512 GA 138NL
0513 UT ISI:000076978600045
0514 ER
0515 
0516 PT J
0517 AU Feng, SS
0518    Wang, B
0519    Qiu, XJ
0520 TI Bosonization to order 1/m by duality in three dimensions
0521 SO MODERN PHYSICS LETTERS A
0522 DT Article
0523 ID WAVE FUNCTIONALS; FIELD-THEORIES
0524 AB The recently discovered bosonization via duality transform can be used
0525    in arbitrary space-time dimensions. It is stressed that because of the
0526    gauge invariance of the resulting bosonic model for D greater than or
0527    equal to 3, the generating functional is not well-defined. This
0528    weakness can be eliminated by decomposing the bosonic field into
0529    transverse and longitudinal parts and only the transverse part is
0530    relevant. In this way the massive Thirring model in (2 + 1) dimensions
0531    is bosonized. It is found that the current-current coupling bosonizes
0532    into a Maxwell term.
0533 C1 CCAST, World Lab, Beijing 100080, Peoples R China.
0534    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
0535    Shanghai Normal Univ, Ctr String Theory, Shanghai 200234, Peoples R China.
0536 RP Qiu, XJ, CCAST, World Lab, POB 8730, Beijing 100080, Peoples R China.
0537 EM xjqiu@fudan.ac.cn
0538 CR ABDALLA E, 1991, NONPERTURBATIVE METH
0539    BANERJEE R, 1996, NUCL PHYS B, V465, P157
0540    BURGESS CP, 1994, NUCL PHYS B, V421, P373
0541    BURGESS CP, 1994, PHYS LETT B, V329, P457
0542    BURGESS CP, 1994, PHYS LETT B, V336, P18
0543    CASTRONETO AH, 1994, PHYS REV B, V49, P10877
0544    DESER S, 1988, PHYS REV LETT, V61, P1541
0545    FENG SS, 1995, INT J THEOR PHYS, V34, P1827
0546    FRADKIN E, 1991, FIELD THEORIES CONDE
0547    FRADKIN E, 1993, NUCL PHYS B, V389, P587
0548    FRADKIN E, 1993, NUCL PHYS B, V392, P667
0549    FRADKIN E, 1994, PHYS LETT B, V338, P253
0550    FROHLICH J, 1997, PHYS REV B, V55, P6788
0551    ITOH T, HEPTH9411201
0552    LEGUILLOU JC, 1997, NPB PREPRINT
0553    LOPEZ A, 1992, PHYS REV LETT, V69, P2126
0554    SCHAPOSNIK FA, 1995, PHYS LETT B, V356, P39
0555    TSVELIK AM, 1995, QUANTUM FIELD THEORY
0556 NR 18
0557 TC 1
0558 SN 0217-7323
0559 J9 MOD PHYS LETT A
0560 JI Mod. Phys. Lett. A
0561 PD SEP 21
0562 PY 1998
0563 VL 13
0564 IS 29
0565 BP 2393
0566 EP 2398
0567 PG 6
0568 SC Physics, Mathematical; Physics, Nuclear; Physics, Particles & Fields
0569 GA 133FZ
0570 UT ISI:000076677300009
0571 ER
0572 
0573 PT J
0574 AU Ye, ZM
0575    Lu, JM
0576 TI Iterative analytical solution of nonlinear analysis of shallow
0577    spherical shell with computer algebra systems - MapleV
0578 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
0579 DT Article
0580 ID SOFTWARE
0581 AB This paper is concerned with the application of Computer algebra
0582    System-MapleV to the nonlinear analysis of shallow spherical shells. In
0583    the present paper, the nonlinear equations of the shell to the
0584    nonlinear problem could be solved by using CASes method. Detailed
0585    high-order iterative solution expressions and analytical results for
0586    the third iteration are given in CASes forms. The numerical results
0587    show that the solutions of this paper contain other cases where the
0588    solutions were the second iteration. The effects of various inner
0589    radius parameters have been investigated in detail. The results of the
0590    third iterative expressions are obtained firstly. It has been shown
0591    that the adoption of CASes method would be useful in nonlinear
0592    problems. (C) 1998 Elsevier Science S.A. All rights reserved.
0593 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
0594 RP Ye, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yan Chang
0595    Rd, Shanghai 200072, Peoples R China.
0596 CR *MAPLE, 1992, SYMB COMP GROUP
0597    FOSTER KR, 1989, SCIENCE, V243, P679
0598    HANSEN P, 1991, MATH PROGRAM, V52, P227
0599    IOAKIMIDIS NI, 1991, ENG FRACT MECH, V38, P95
0600    IOAKIMIDIS NI, 1992, COMPUT METHOD APPL M, V94, P229
0601    IOAKIMIDIS NI, 1993, COMPUT STRUCT, V47, P233
0602    IOAKIMIDIS NI, 1993, INT J COMPUT MATH, V49, P75
0603    IOAKIMIDIS NI, 1994, COMPUT STRUCT, V53, P63
0604    YE Z, 1997, MECH PRACTICE, V19, P1
0605    YE ZM, 1990, J APPL MECH-T ASME, V57, P1026
0606    YE ZM, 1993, MECH RES COMMUN, V20, P83
0607    YE ZM, 1995, COMPUT STRUCT, V55, P325
0608    YE ZM, 1997, J SOUND VIB, V202, P303
0609 NR 13
0610 TC 1
0611 SN 0045-7825
0612 J9 COMPUT METHOD APPL MECH ENG
0613 JI Comput. Meth. Appl. Mech. Eng.
0614 PD SEP 21
0615 PY 1998
0616 VL 163
0617 IS 1-4
0618 BP 383
0619 EP 394
0620 PG 12
0621 SC Computer Science, Interdisciplinary Applications; Engineering,
0622    Mechanical; Mechanics
0623 GA 134JR
0624 UT ISI:000076740200025
0625 ER
0626 
0627 PT S
0628 AU Cao, Q
0629    Hua, TC
0630 TI Effects on rapid cooling of small samples in quenching
0631 SO BIOTRANSPORT: HEAT AND MASS TRANSFER IN LIVING SYSTEMS
0632 SE ANNALS OF THE NEW YORK ACADEMY OF SCIENCES
0633 DT Article
0634 ID CURVES; RATES
0635 AB Rapid cooling of small samples is necessary both to cryofixation for
0636    electron microscopy and to vitrification for cryopreservation, Several
0637    effects on the cooling rates of small samples quenched into liquid
0638    nitrogen were studied, including the diameter of samples, the
0639    subcooling of liquid nitrogen, the quenching speed, and the quenching
0640    distance, The heat flux is up to 1.4 X 10(6) W/m(2); the cooling rate
0641    is also up to 8200 K/s at the CRF point of boiling curves for sphere of
0642    diameter 0.287 mm quenching into subcooled liquid nitrogen, It is also
0643    found that if the time of sample moving inside the liquid nitrogen is
0644    not longer than the time required for forming stable vapor in the
0645    liquid, the quenching boiling heat transfer is not influenced by the
0646    quenching speed, Several equations for calculating heat flux of samples
0647    are also presented.
0648 C1 Shanghai Univ Sci & Technol, Inst Refrigerat & Cryogen Engn, Shanghai 200093, Peoples R China.
0649 RP Cao, Q, Shanghai Marine Equipment Res Inst, Shanghai 200031, Peoples R
0650    China.
0651 CR BALD WB, 1987, QUANTITATIVE CRYOFIX
0652    CAO Q, 1998, P ICCR 98 HANGZH CHI, P117
0653    DED JS, 1972, AICHE J, V18, P337
0654    ELKASSABGI Y, 1988, ASME, V110, P479
0655    FAHY GM, 1988, LOW TEMPERATURE BIOT, P113
0656    HAN RH, 1995, CRYOLETT, V16, P157
0657    HENDRICKS RC, 1969, TND5124 NASA
0658    RYAN KP, 1985, J MICROSC-OXFORD, V140, P47
0659    RYAN KP, 1987, J MICROSC-OXFORD, V145, P89
0660    TAJIMA M, 1990, JSME, V33, P340
0661    WESTWATER JW, 1986, IND ENG CHEM FUND, V25, P685
0662    YU GX, 1991, THESIS SHANGHAI I ME
0663    ZUBER N, 1958, T AM SOC MECH ENG, V80, P711
0664    ZUBER N, 1961, P 2 INT HEAT TRANSF, P27
0665    ZUBER N, 1963, ASME NEW YORK, V27, P230
0666 NR 15
0667 TC 0
0668 SN 0077-8923
0669 J9 ANN N Y ACAD SCI
0670 JI Ann.NY Acad.Sci.
0671 PY 1998
0672 VL 858
0673 BP 262
0674 EP 269
0675 PG 8
0676 GA BL74B
0677 UT ISI:000076515800026
0678 ER
0679 
0680 PT S
0681 AU Zhao, H
0682    Hua, TC
0683    Zhou, YZ
0684    Wang, QF
0685    Yang, Y
0686    Bao, LL
0687 TI Cryopreservation and transplantation of dog trachea
0688 SO BIOTRANSPORT: HEAT AND MASS TRANSFER IN LIVING SYSTEMS
0689 SE ANNALS OF THE NEW YORK ACADEMY OF SCIENCES
0690 DT Article
0691 ID CANINE
0692 AB In order to meet the need of trachea transplantation for clinical
0693    application, it is important to research the methods of
0694    cryopreservation and transplantation of trachea. By the thermal
0695    analyses and thermal control techniques, combined with electron
0696    microscopy, the effects of cooling and warming rates with different
0697    concentrations of cryoprotective agents were studied. Also the
0698    transplantation technique was studied, eighty five percent ( 17/20) of
0699    the dogs were survival after the transplantation with cryopreserved
0700    tracheas.
0701 C1 Shanghai Chest Hosp, Dept Gen Thorac Surg, Shanghai 200030, Peoples R China.
0702    Shanghai Univ Sci & Technol, Cryobiol Engn Lab, Shanghai 200093, Peoples R China.
0703 RP Zhao, H, Shanghai Chest Hosp, Dept Gen Thorac Surg, Shanghai 200030,
0704    Peoples R China.
0705 CR BATESON EAJ, 1994, CRYOLETT, V15, P15
0706    CHEN RT, 1988, CRYOBIOLOGY, V25, P549
0707    DESCHAMPS C, 1989, ANN THORAC SURG, V47, P208
0708    HUA TC, 1991, J BIOMEDICAL ENG, V10, P118
0709    HUA TC, 1994, CRYOBIOMEDICAL TECHN
0710    LETANG E, 1990, ANN THROAC SURG, V49, P951
0711    YOKOMISE H, 1994, J THORAC CARDIOV SUR, V107, P1391
0712 NR 7
0713 TC 0
0714 SN 0077-8923
0715 J9 ANN N Y ACAD SCI
0716 JI Ann.NY Acad.Sci.
0717 PY 1998
0718 VL 858
0719 BP 270
0720 EP 275
0721 PG 6
0722 GA BL74B
0723 UT ISI:000076515800027
0724 ER
0725 
0726 PT J
0727 AU Zhu, XH
0728    Xu, J
0729    Meng, ZY
0730 TI Ionic interdiffusion of functionally gradient piezoelectric materials
0731    in PNN/PZT system
0732 SO JOURNAL OF INORGANIC MATERIALS
0733 DT Article
0734 DE ionic interdiffusion; compositional distribution; piezoelectric
0735    materials; PNN/PZT system; functionally gradient materials
0736 ID ACTUATOR
0737 AB The ionic interdiffusions for Nb5+, Ni2+, Zr4+ and Ti4+ ions in the
0738    PNN/PZT functionally gradient piezoelectric materials were investigated
0739    as a function of diffusion temperature and time respectively. The ionic
0740    compositional distribution profiles were examined by electron probe
0741    microbeam analysis (EPMA), from which the thickness of the
0742    interdiffusion layers were determined. Based on a diffusion model of
0743    the overlapped diffusion solute from thin slub, the numerical
0744    simulation of the ionic concentration distributions for Nb5+, Ni2+,
0745    Zr4+ and Ti4+ ions was carried out by computer, which was in agreement
0746    with the EPMA experimental result. The ionic diffusivities and apparent
0747    activation energies were estimated, and discussed.
0748 C1 Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.
0749    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
0750 RP Zhu, XH, Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing
0751    210093, Peoples R China.
0752 CR CHAWIA KK, 1995, CERAMIC MATRIX COMPO
0753    SHEWMON PG, 1963, DIFFUSION SOLIDS, CH1
0754    TAKAHASHI H, 1990, JSME INT J A-SOLID M, V33, P281
0755    ZHU XH, 1995, J MATER SCI LETT, V14, P516
0756    ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169
0757 NR 5
0758 TC 0
0759 SN 1000-324X
0760 J9 J INORG MATER
0761 JI J. Inorg. Mater.
0762 PD APR
0763 PY 1998
0764 VL 13
0765 IS 2
0766 BP 181
0767 EP 188
0768 PG 8
0769 SC Materials Science, Ceramics
0770 GA 127AA
0771 UT ISI:000076326500010
0772 ER
0773 
0774 PT J
0775 AU Jin, Y
0776    Jin, L
0777    Jiang, XY
0778    Zhang, ZL
0779    Xu, SC
0780 TI Two various element doped ZnS cluster
0781 SO JOURNAL OF INORGANIC MATERIALS
0782 DT Article
0783 DE cluster; dope; quantum size effect; time decay
0784 AB Manganese-doped zinc sulfide and copper-doped zinc sulfide were
0785    prepared by a chemical precipitation method. The structures and sizes
0786    of these clusters were detected by X-ray diffraction. Photoluminescence
0787    measurements demonstrate some changes in optical property due to
0788    quantum size effect, such as excitation blue shift with size decreasing
0789    and faster decay time. The mechanisms of various luminescent centers in
0790    zinc sulfide cluster were discussed.
0791 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
0792 RP Jin, Y, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
0793    China.
0794 CR BHARGAVA RN, 1994, J LUMIN, V60, P275
0795    BHARGAVA RN, 1994, PHYS REV LETT, V72, P416
0796    BRUS L, 1986, J PHYS CHEM-US, V90, P2555
0797    KHOSRAVI AA, 1995, APPL PHYS LETT, V67, P2702
0798 NR 4
0799 TC 0
0800 SN 1000-324X
0801 J9 J INORG MATER
0802 JI J. Inorg. Mater.
0803 PD APR
0804 PY 1998
0805 VL 13
0806 IS 2
0807 BP 225
0808 EP 228
0809 PG 4
0810 SC Materials Science, Ceramics
0811 GA 127AA
0812 UT ISI:000076326500017
0813 ER
0814 
0815 PT J
0816 AU Li, J
0817    Guo, BY
0818    Cao, WM
0819 TI Fourier-Chebyshev pseudospectral method for three-dimensional vorticity
0820    equation
0821 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
0822 DT Article
0823 DE pseudospectral method; vorticity equation; error estimates
0824 ID FINITE-ELEMENT; FLOW
0825 AB In this paper, a Fourier-Chebyshev pseudospectral scheme with mixed
0826    filtering is proposed for three-dimensional vorticity equation. The
0827    generalized stability and convergence are proved. The numerical results
0828    show the advantages of this method.
0829 C1 Chinese Acad Sci, ICMSEC, State Key Lab Sci & Engn Comp, Beijing 100080, Peoples R China.
0830    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
0831 CR CANUTO C, 1984, NUMER MATH, V44, P201
0832    CANUTO C, 1988, SPECTRAL METHODS FLU
0833    GUO BY, UNPUB GEN BOCHNER SU
0834    GUO BY, 1988, DIFFERENCE METHODS P
0835    GUO BY, 1989, J COMPUT PHYS, V84, P259
0836    GUO BY, 1990, COMPUTATIONAL TECHNI, P253
0837    GUO BY, 1991, SIAM J NUMER ANAL, V28, P113
0838    GUO BY, 1992, J COMPUT PHYS, V101, P207
0839    GUO BY, 1993, NUMER MATH, V66, P329
0840    GUO BY, 1995, ACTA MATH APPL SINIC, V11, P94
0841    KUO PY, 1983, J COMPUT MATH, V1, P353
0842    LIONS JL, 1969, QUELQUES METHODES RE
0843    MA HP, 1986, J COMPUT PHYS, V65, P120
0844    MA HP, 1988, J COMPUT MATH, V6, P48
0845    MACARAEG MG, 1982, J COMPUT PHYS, V62, P297
0846    MURDOK JW, 860434 AIAA
0847    VANDEVEN H, 1987, F56 CNRS CTR MATH AP
0848    WOODWARD P, 1984, J COMPUT PHYS, V54, P115
0849 NR 18
0850 TC 0
0851 SN 0254-9409
0852 J9 J COMPUT MATH
0853 JI J. Comput. Math.
0854 PD SEP
0855 PY 1998
0856 VL 16
0857 IS 5
0858 BP 417
0859 EP 436
0860 PG 20
0861 SC Mathematics, Applied; Mathematics
0862 GA 126AX
0863 UT ISI:000076271500004
0864 ER
0865 
0866 PT J
0867 AU Lu, MG
0868    Cai, YC
0869 TI Chen's theorem in short intervals
0870 SO CHINESE SCIENCE BULLETIN
0871 DT Letter
0872 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
0873    Shandong Normal Univ, Dept Math, Jinan 250014, Peoples R China.
0874 RP Lu, MG, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
0875 CR CHEN JR, 1966, KEXUE TONGBAO, V17, P385
0876    CHEN JR, 1973, SCI SINICA, V16, P157
0877    CHEN JR, 1978, SCI SINICA, V21, P421
0878    SALERNO S, 1993, NOTE MAT, V13, P309
0879    WU J, 1993, Q J MATH, V44, P109
0880    WU J, 1994, J LOND MATH SOC, V49, P61
0881 NR 6
0882 TC 0
0883 SN 1001-6538
0884 J9 CHIN SCI BULL
0885 JI Chin. Sci. Bull.
0886 PD AUG
0887 PY 1998
0888 VL 43
0889 IS 16
0890 BP 1401
0891 EP 1403
0892 PG 3
0893 SC Multidisciplinary Sciences
0894 GA 126CQ
0895 UT ISI:000076275700020
0896 ER
0897 
0898 PT J
0899 AU Jiang, WZ
0900    Qiu, XJ
0901 TI Medium effects on dynamical properties of the fermion and mesons in the
0902    gauged Nambu-Jona-Lasinio model
0903 SO CHINESE PHYSICS LETTERS
0904 DT Article
0905 ID ADDITIONAL 4-FERMION INTERACTION; THERMODYNAMICS
0906 AB The gap equation for the fermion in the gauged Nambu-Jona-Lasinio (NJL)
0907    model is derived in nuclear medium with flavors N-f = 2. Based on the
0908    gap equation, the fermion mass in nuclear medium is obtained and used
0909    to determine the properties of the scalar and pseudoscalar mesons. In
0910    contrast to the NJL model, the gluonic part has the one-fourth
0911    contribution to the fermion mass. The critical density with the chiral
0912    symmetry restored is about 6 rho(0).
0913 C1 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
0914    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
0915 RP Jiang, WZ, Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800,
0916    Peoples R China.
0917 CR APPELQUIST T, 1988, P 12 J HOPK WORKSH C, P197
0918    BERNARD V, 1987, PHYS REV D, V36, P818
0919    BERNARD V, 1988, NUCL PHYS A, V489, P647
0920    CHRISTOV CV, 1990, NUCL PHYS A, V510, P689
0921    CUGNON J, 1996, NUCL PHYS A, V598, P515
0922    HENLEY EM, 1990, NUCL PHYS A, V513, P667
0923    JIANG WZ, UNPUB COVARIANT GAP
0924    KONDO K, 1993, MOD PHYS LETT A, V8, P2859
0925    KONDO K, 1993, PROG THEOR PHYS, V89, P1249
0926    KONDO KI, 1991, MOD PHYS LETT A, V6, P3385
0927    LEUNG CN, 1986, NUCL PHYS B, V273, P649
0928    MIRANSKY VA, 1989, MOD PHYS LETT A, V4, P129
0929    MIRANSKY VA, 1989, MOD PHYS LETT A, V4, P1409
0930    NAMBU Y, 1961, PHYS REV, V122, P345
0931    ZHUANG P, 1994, NUCL PHYS A, V576, P525
0932 NR 15
0933 TC 0
0934 SN 0256-307X
0935 J9 CHIN PHYS LETT
0936 JI Chin. Phys. Lett.
0937 PY 1998
0938 VL 15
0939 IS 9
0940 BP 639
0941 EP 641
0942 PG 3
0943 SC Physics, Multidisciplinary
0944 GA 126XR
0945 UT ISI:000076320700006
0946 ER
0947 
0948 PT J
0949 AU Gao, SC
0950    Zhong, SS
0951 TI Dual-polarized microstrip antenna array with high isolation fed by
0952    coplanar network
0953 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
0954 DT Article
0955 DE dual polarization; microstrip antenna array; coplanar network
0956 AB Serial corner feeding of a square patch with two ports is proposed to
0957    realize dual-polarized operation. A novel coplanar feedline network is
0958    also presented for the array. A method of analysis is developed. The
0959    measured isolation is less than -40 dB at 6.07 GHz. The array has a
0960    small size and is easy to be combined further to form a larger coplanar
0961    array (C) 1998 John Wiley & Sons, Inc.
0962 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
0963 RP Gao, SC, Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R
0964    China.
0965 CR DANIEL JP, 1985, P ISAP 85, P121
0966    DUTOLT LJ, 1987, IEEE ANTENNAS PROPAG, V2, P810
0967    GUPT KC, 1987, IEEE AP S INT S ANT, V2, P786
0968    GUPTA KC, 1981, COMPUTER AIDED DESIG
0969    JAMES JR, 1981, MICROSTRIP ANTENNA T, P166
0970    LO YT, 1988, ANTENNA HDB THEORY
0971 NR 6
0972 TC 14
0973 SN 0895-2477
0974 J9 MICROWAVE OPT TECHNOL LETT
0975 JI Microw. Opt. Technol. Lett.
0976 PD OCT 20
0977 PY 1998
0978 VL 19
0979 IS 3
0980 BP 214
0981 EP 216
0982 PG 3
0983 SC Engineering, Electrical & Electronic; Optics
0984 GA 124EG
0985 UT ISI:000076168000012
0986 ER
0987 
0988 PT J
0989 AU Guo, BY
0990 TI Gegenbauer approximation and its applications to differential equations
0991    on the whole line
0992 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
0993 DT Article
0994 DE Gegenbauer approximations; differential equations on the whole line;
0995    convergences
0996 ID DOMAINS
0997 AB A Gegenbauer approximation is discussed. Several imbedding inequalities
0998    and inverse inequalities are obtained. some approximation results are
0999    given. By variable transformation, differential equations on the whole
1000    lint: are changed to certain equations on a finite interval. Gegenbauer
1001    polynomials are used for their numerical solutions. The stabilities and
1002    convergences of proposed schemes are proved. The main idea and
1003    techniques used in this paper are also applicable to other
1004    multiple-dimensional problems in unbounded domains. (C) 1998 Academic
1005    Press.
1006 C1 Shanghai Univ, Dept Math, Shanghai, Peoples R China.
1007    Pohang Univ Sci & Technol, Dept Math, Pohang, South Korea.
1008 RP Guo, BY, Shanghai Univ, Dept Math, Shanghai, Peoples R China.
1009 CR ADAMS RA, 1975, SOBOLEV SPACES
1010    ASKEY R, 1975, REGIONAL C SERIES AP, V21
1011    BERGH J, 1976, INTERPOLATION SPACES
1012    BOYD JP, 1987, J COMPUT PHYS, V69, P112
1013    CANUTO C, 1982, MATH COMPUT, V38, P67
1014    CHRISTOV CI, 1982, SIAM J APPL MATH, V42, P1337
1015    COULAUD O, 1990, COMPUT METHOD APPL M, V80, P451
1016    COURANT R, 1928, MATH ANN, V100, P32
1017    FUNARO D, 1990, MATH COMPUT, V57, P597
1018    FUNARO D, 1991, ORTHOGONAL POLYNOMIA, P263
1019    GOTTLIEB D, 1995, MATH COMPUT, V64, P1081
1020    GUO BY, IN PRESS MATH COMP
1021    GUO BY, 1965, TR SUST
1022    GUO BY, 1994, CONT MATH, V163, P33
1023    IRANZO V, 1992, COMPUT METHOD APPL M, V98, P105
1024    MADAY Y, 1985, RECH AEROSPATIALE, P353
1025    MAVRIPLIS C, 1989, J COMPUT PHYS, V80, P480
1026    RICHTMEYER RD, 1967, FINITE DIFFERENCE ME
1027    STETTER HJ, 1966, NUMERICAL SOLUTIONS, P111
1028    TIMAN AF, 1963, THEORY APPROXIMATION
1029 NR 20
1030 TC 14
1031 SN 0022-247X
1032 J9 J MATH ANAL APPL
1033 JI J. Math. Anal. Appl.
1034 PD OCT 1
1035 PY 1998
1036 VL 226
1037 IS 1
1038 BP 180
1039 EP 206
1040 PG 27
1041 SC Mathematics, Applied; Mathematics
1042 GA 123CQ
1043 UT ISI:000076108600013
1044 ER
1045 
1046 PT J
1047 AU Xu, YR
1048    Hou, DH
1049    Wang, DY
1050    Xu, WP
1051 TI Hot deformation and modeling of flow stress for a Ti-containing HSLA
1052    steel
1053 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
1054 DT Article
1055 ID STRIP; PREDICTION
1056 AB Single-stage and double-stage interrupted hot compression tests for
1057    simulating hot rolling have been carried out for a Ti-containing HSLA
1058    steel (10Ti). Physical simulation of hot rolling was in progress
1059    utilizing a Thermecmastor-Z simulator in 850 similar to 1150 degrees C
1060    and strain rate of 0.1 similar to 60 s(-1) A model for residual strain
1061    ratio lambda was designed, and a model of flow stress considering
1062    residual strain has been obtained.
1063    sigma = 8.176(epsilon + Delta epsilon(i)) .(epsilon) over
1064    dot(5.69x10-5T)..exp(3634/T)
1065    Delta epsilon(i) = lambda(i)[epsilon(0(i-1))+
1066    lambda((i-1))(epsilon(0(i-2)))+ lambda((i-2))(epsilon(0(i-3)))+ ...]
1067    The hot deformation behaviour at various strain rates has been studied.
1068 C1 Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
1069 RP Xu, YR, Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai
1070    201800, Peoples R China.
1071 CR BEYNON JH, 1992, ISIJ INT, V32, P259
1072    DEARDO AJ, 1988, THERMEC882029
1073    DEARDO AJ, 1995, MICROALLOYING 95, P15
1074    FABREGUE P, 1994, ADV HOT DEFORMATION, P75
1075    HODGSON PD, 1993, MODELLING METAL ROLL
1076    KWON O, 1992, ISIJ INT, V32, P350
1077    LAASRAOUI A, 1991, ISIJ INT, V31, P95
1078    SAMUEL FH, 1989, ISIJ INT, V29, P878
1079    SAMUEL FH, 1990, ISIJ INT, V30, P216
1080    SELLARS CM, 1990, MATER SCI TECH SER, V6, P1072
1081    TAMURE I, 1988, THERMOMECHANICAL PRO
1082    XU YR, 1991, CHIN J MET SCI TECHN, V7, P317
1083    XU YR, 1993, P 4 INT C TECHN PLAS
1084 NR 13
1085 TC 0
1086 SN 1005-0302
1087 J9 J MATER SCI TECHNOL
1088 JI J. Mater. Sci. Technol.
1089 PD SEP
1090 PY 1998
1091 VL 14
1092 IS 5
1093 BP 419
1094 EP 424
1095 PG 6
1096 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
1097    Engineering
1098 GA 125AB
1099 UT ISI:000076214300009
1100 ER
1101 
1102 PT J
1103 AU Feng, SS
1104    Qiu, XJ
1105    Zhu, ZY
1106 TI Energy spectrum of excitations in the Proca-Chern-Simons system
1107 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
1108 DT Article
1109 ID FRACTIONAL SPIN; QUANTUM-MECHANICS; FIELD-THEORY; QUANTIZATION;
1110    STATISTICS
1111 AB We quantize the Proca-Chern-Simons system via the path-integral
1112    approach and diagonalize the Hamiltonian by canonical transformations.
1113    We find that the mass spectrum of the system is equivalent to a system
1114    of two free scalar fields; the statistical partition function, which
1115    does not exhibit any exotic properties, is also evaluated from the
1116    diagonalized Hamiltonian.
1117 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
1118    Shandong Teachers Univ, Ctr String Theory, Shanghai 200234, Peoples R China.
1119    Acad Sinica, Inst Nucl Res, Shanghai 201800, Peoples R China.
1120 RP Feng, SS, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
1121 CR BAILIN D, 1986, INTRO GAUGE FIELD TH
1122    BANERJEE R, 1994, PHYS REV D, V49, P5431
1123    BAXTER C, 1995, PHYS REV LETT, V74, P514
1124    BERNARD CW, 1974, PHYS REV D, V9, P3312
1125    BOWICK MJ, 1986, NUCL PHYS B, V271, P417
1126    DESER S, 1982, ANN PHYS-NEW YORK, V140, P372
1127    DIRAC PAM, 1964, LECT QUANTUM DYNAMIC
1128    DUNNE GV, 1990, PHYS REV D, V41, P661
1129    FENG SS, 1995, INT J THEOR PHYS, V34, P1827
1130    FORTE S, 1992, REV MOD PHYS, V64, P193
1131    GITMAN DM, 1990, QUANTIZATION FIELDS
1132    NIEMI AJ, 1994, PHYS LETT B, V336, P381
1133    SEMENOFF GW, 1988, PHYS REV LETT, V61, P517
1134 NR 13
1135 TC 0
1136 SN 0020-7748
1137 J9 INT J THEOR PHYS
1138 JI Int. J. Theor. Phys.
1139 PD AUG
1140 PY 1998
1141 VL 37
1142 IS 8
1143 BP 2105
1144 EP 2113
1145 PG 9
1146 SC Physics, Multidisciplinary
1147 GA 123ZX
1148 UT ISI:000076156800003
1149 ER
1150 
1151 PT J
1152 AU Deng, K
1153    Shen, M
1154    Ren, ZM
1155 TI Lateral stability of alternative horizontal levitation electromagnetic
1156    continuous casting of aluminium sheet
1157 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
1158 DT Article
1159 DE stability; horizontal continuous casting; electromagnetic casting;
1160    aluminium sheet
1161 AB The lateral stability of alternative horizontal levitation
1162    electromagnetic continuous casting process of aluminium sheet was
1163    analyzed by correlating the lateral electromagnetic force on the
1164    aluminium sheet to the lateral position disturbance of the sheet which
1165    was set between the side blocks. The results show that when a small
1166    disturbance occurs to the lateral position of the sheet, the unbalanced
1167    lateral force caused by disturbance will make it greater. Therefore,
1168    the lateral position of the sheet is an unstable balanced position,
1169    which explains the observation of instability in experiment. Based on
1170    the analyses, an explanation for the formation of rod after the
1171    appearance of the instability in the casting process of aluminium sheet
1172    was given.
1173 C1 Shanghai Univ, Coll Mat Sci & Engn, Shanghai 200072, Peoples R China.
1174    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
1175 CR ASAI S, 1989, TETSU TO HAGANE, V75, P32
1176    REN ZM, 1991, J DALIAN U TECH, V31, P419
1177    REN ZM, 1992, J DALIAN U TECH, V32, P121
1178    REN ZM, 1993, CHINESE J NONFERROUS, V3, P93
1179    REN ZM, 1994, CHINESE J NONFERROUS, V4, P78
1180    REN ZM, 1994, J DALIAN U TECH, V34, P556
1181    REN ZM, 1996, ACTA METALL SINICA, V36, P462
1182    REN ZM, 1996, CHINESE J NONFERROUS, V6, P108
1183    SAKANE J, 1988, METALL T B, V19, P397
1184    ZHU SJ, 1996, T NONFERR METAL SOC, V6, P42
1185 NR 10
1186 TC 0
1187 SN 1003-6326
1188 J9 TRANS NONFERROUS METAL SOC CH
1189 JI Trans. Nonferrous Met. Soc. China
1190 PD SEP
1191 PY 1998
1192 VL 8
1193 IS 3
1194 BP 441
1195 EP 444
1196 PG 4
1197 SC Metallurgy & Metallurgical Engineering
1198 GA 121TW
1199 UT ISI:000076030900016
1200 ER
1201 
1202 PT J
1203 AU Wang, W
1204    Wong, PL
1205    Luo, JB
1206    Zhang, Z
1207 TI A new optical technique for roughness measurement on moving surface
1208 SO TRIBOLOGY INTERNATIONAL
1209 DT Article
1210 DE surface roughness; speckle; scattering
1211 ID REAL-TIME MEASUREMENT
1212 AB A new optical technique which allows the roughness of moving surfaces
1213    to be determined was developed. The new technique which is called the
1214    dark/bright ratio (DBR) method utilizes the combined effects of speckle
1215    and scattering phenomena. The roughness of surfaces is inferred from
1216    the dimensions of the recorded dark or bright area in the speckle
1217    pattern. Although it is a relative method, it has great potential to be
1218    used for in-process measurement and automation owing to the simplicity
1219    of both its principle and required optical set-up. The new technique
1220    has also been proved to have large measuring range and with high
1221    precision, The principle of this technique and the set-up of the
1222    measuring system are described. Experimental results for both static
1223    and dynamic conditions, which were compared to those obtained using the
1224    traditional stylus technique, were found to be in good agreement. The
1225    reliability of the new technique in obtaining roughness data of
1226    surfaces under various speed conditions (from 0 to 0.017 m/s) was
1227    validated. (C) 1998 Elsevier Science Ltd. All rights reserved.
1228 C1 City Univ Hong Kong, Dept Mfg Engn & Engn Management, Kowloon, Hong Kong.
1229    Tsing Hua Univ, Natl Tribol Lab, Beijing 100084, Peoples R China.
1230    Shanghai Univ, Bearing Res Ctr, Shanghai, Peoples R China.
1231 RP Wang, W, City Univ Hong Kong, Dept Mfg Engn & Engn Management, Tat Chee
1232    Ave, Kowloon, Hong Kong.
1233 CR BECKMANN P, 1987, SCATTERING ELECTROMA
1234    BENNETT JM, 1985, OPT ENG, V24, P380
1235    BROADMAN R, 1986, P 3 INT C METR PROP, P1
1236    CLARKE GM, 1979, WEAR, V57, P107
1237    HUANG P, 1994, J TRIBO, V14, P175
1238    LEGER D, 1976, J OPT SOC AM, V66, P1210
1239    LIANG X, 1989, WEAR, V132, P221
1240    LUO JB, 1996, WEAR, V194, P107
1241    MITSUI K, 1986, PRECIS ENG, V8, P212
1242    PERSSON U, 1992, OPT LASER ENG, V17, P61
1243    PERSSON U, 1993, WEAR, V160, P221
1244    SIROHI RS, 1993, SPECKLE METROLOGY, P380
1245 NR 12
1246 TC 3
1247 SN 0301-679X
1248 J9 TRIBOL INT
1249 JI Tribol. Int.
1250 PD MAY
1251 PY 1998
1252 VL 31
1253 IS 5
1254 BP 281
1255 EP 287
1256 PG 7
1257 SC Engineering, Mechanical
1258 GA 120XE
1259 UT ISI:000075982100008
1260 ER
1261 
1262 PT J
1263 AU Tu, DW
1264 TI Range image acquisition for machine vision
1265 SO OPTICAL ENGINEERING
1266 DT Article
1267 DE range finding; laser scanning; target acquisition; machine vision
1268 AB An optical 3-D imaging system for autonomous vehicle and mobile robot
1269    navigation is presented. The system is based on a phase comparison
1270    range finder using a 30-mW laser diode modulated at a 5-MHz frequency,
1271    and a scanning mechanism, consisting of a nodding mirror and an
1272    eight-faced polygon and providing 30 X 30-deg total view with only
1273    0.5-deg instantaneous fields of view for the receiver optics. A
1274    Si-avalanche photodiode (APD) optoelectric detector and low-noise
1275    preamplifier can detect very low levels of returned energy. With an
1276    integrated MC4044 circuit for phase comparison, pixel range information
1277    can be represented by gray level on the high-resolution video monitor.
1278    A 3-D range image is obtained in the experiment, and a range accuracy
1279    of 0.08 m at 10 m outdoors in sunlight is achieved. (C) 1998 Society of
1280    Photo-Optical Instrumentation Engineers.
1281 C1 Shanghai Univ, Sch Mech Engn, Shanghai 200072, Peoples R China.
1282 RP Tu, DW, Shanghai Univ, Sch Mech Engn, 149 Yanchang Rd, Shanghai 200072,
1283    Peoples R China.
1284 CR CAMERON ES, 1989, P SOC PHOTO-OPT INS, V1103, P190
1285    DAVIS WC, 1985, NSFECS85003 NTIS CUR
1286    MORING I, 1989, OPT ENG, V28, P897
1287    SAMPSON RE, 1987, IEEE COMPUT, V20, P23
1288    VEATCH PA, 1990, COMPUT VISION GRAPH, V50, P50
1289    WESOLOWICZ KG, 1987, P SOC PHOTO-OPT INS, V783, P152
1290    ZUK DM, 1983, 3 DIMENSIONAL VISION
1291 NR 7
1292 TC 1
1293 SN 0091-3286
1294 J9 OPT ENG
1295 JI Opt. Eng.
1296 PD SEP
1297 PY 1998
1298 VL 37
1299 IS 9
1300 BP 2531
1301 EP 2535
1302 PG 5
1303 SC Optics
1304 GA 120BV
1305 UT ISI:000075935400014
1306 ER
1307 
1308 PT J
1309 AU Shen, M
1310    Deng, K
1311    Ren, ZM
1312 TI Stability of alternative horizontal levitation electromagnetic
1313    continuous casting of aluminum sheet
1314 SO ISIJ INTERNATIONAL
1315 DT Article
1316 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
1317    Shanghai Univ, Coll Mat Sci, Shanghai 200072, Peoples R China.
1318 RP Shen, M, Shanghai Univ, Shanghai Inst Appl Math & Mech, Box 189,149 Yan
1319    Chang Rd, Shanghai 200072, Peoples R China.
1320 EM shenw@online.sh.cn
1321 CR ASAI S, 1989, TETSU TO HAGANE, V75, P32
1322    OHNO A, 1986, J MET, V38, P14
1323    REN Z, 1994, J SYNCHROTRON RADIAT, V1, P78
1324    REN ZM, 1991, J DALIAN U TECH, V31, P419
1325    REN ZM, 1992, J DALIAN U TECH, V32, P121
1326    REN ZM, 1993, T NONFERR METAL SOC, V3, P93
1327    REN ZM, 1994, J DALIAN U TECH, V34, P556
1328    REN ZM, 1996, ACTA METALL SINICA, V36, P462
1329    REN ZM, 1996, T NONFEROUS MET SOC, V6, P108
1330    SAKANE J, 1988, METALL T B, V19, P397
1331    ZHU SJ, 1996, T NONFERR METAL SOC, V6, P42
1332 NR 11
1333 TC 0
1334 SN 0915-1559
1335 J9 ISIJ INT
1336 JI ISIJ Int.
1337 PY 1998
1338 VL 38
1339 IS 9
1340 BP 1035
1341 EP 1037
1342 PG 3
1343 SC Metallurgy & Metallurgical Engineering
1344 GA 120PQ
1345 UT ISI:000075965100018
1346 ER
1347 
1348 PT J
1349 AU Ho, SL
1350    Fu, WN
1351    Wong, HC
1352 TI Estimation of stray losses of skewed rotor induction motors using
1353    coupled 2-D and 3-D time stepping finite element methods
1354 SO IEEE TRANSACTIONS ON MAGNETICS
1355 DT Article
1356 DE induction machines; losses; finite element methods
1357 ID MACHINES; MODEL
1358 AB A precise estimation of stray losses in skewed rotor induction motors
1359    is an important and yet very challenging topic for machine designers,
1360    Methods for evaluating the stray losses in skewed rotor induction
1361    motors by coupling a 2-D multi-slice time stepping finite element model
1362    into a 3-D time stepping finite element method are presented in this
1363    paper, The model tan take into account the inter-bar currents which are
1364    ignored if a 2-D finite element model only is used, New formulas, which
1365    are based on the actual changes in the magnetic flux densities and can
1366    be easily coupled into a time stepping finite element method for
1367    estimating the iron losses, are also described.
1368 C1 Hong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong.
1369    Shanghai Univ, Sch Automat, Shanghai 200041, Peoples R China.
1370    Hong Kong Polytech Univ, Ind Ctr, Hong Kong, Hong Kong.
1371 RP Ho, SL, Hong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong.
1372 CR ALGER PL, 1970, INDUCTION MACH
1373    ARKKIO A, 1992, P ICEM MANCH, P317
1374    HO SL, 1995, C P, V412, P93
1375    HO SL, 1997, 1997 IEEE INT EL MAC
1376    HO SL, 1997, IEEE T MAGN, V33, P2265
1377    JIMOH AA, 1985, IEEE T PAS, V104, P1506
1378    JIMOH AA, 1985, IEEE T POWER AP SYST, V104, P1500
1379    PIRIOU F, 1990, IEEE T MAGN, V26, P1096
1380    SALON SJ, 1984, IEEE T MAGN, V20, P1992
1381 NR 9
1382 TC 14
1383 SN 0018-9464
1384 J9 IEEE TRANS MAGN
1385 JI IEEE Trans. Magn.
1386 PD SEP
1387 PY 1998
1388 VL 34
1389 IS 5
1390 PN Part 1
1391 BP 3102
1392 EP 3105
1393 PG 4
1394 SC Engineering, Electrical & Electronic; Physics, Applied
1395 GA 120MM
1396 UT ISI:000075960200173
1397 ER
1398 
1399 PT J
1400 AU Zhou, HY
1401    Gu, SW
1402    Shi, YM
1403 TI Effects of strong coupling magnetopolaron in quantum dot
1404 SO MODERN PHYSICS LETTERS B
1405 DT Article
1406 ID OPTICAL POLARON; MAGNETIC-FIELD; STATE
1407 AB With the use of variational method of Pekar type, we have calculated
1408    both the ground state energy and the excited state energy of strong
1409    coupling magnetopolaron in disk-shape quantum dot. The dependence of
1410    cyclotron resonance frequency of magnetopolaron on the magnetic field
1411    and the confinement strength of quantum dot and quantum well is
1412    depicted. The limiting case of bulk type and strict two-dimensional
1413    type is discussed.
1414 C1 Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China.
1415    Shanghai Jiao Tong Univ, Dept Appl Phys, Shanghai 200030, Peoples R China.
1416    Shanghai Jiao Tong Univ, Inst Condensed Matter Phys, Shanghai 200030, Peoples R China.
1417 RP Zhou, HY, Shanghai Univ, Dept Phys, 149 Yanchang Rd, Shanghai 200072,
1418    Peoples R China.
1419 CR CHATTERJEE A, 1990, PHYS REV B, V41, P1668
1420    DAVYDOV AS, 1976, QUANTUM MECH
1421    DEMEL T, 1990, PHYS REV LETT, V64, P788
1422    DEVREESE JT, 1972, POLARONS IONIC CRYST
1423    FROHLICH H, 1954, ADV PHYS, V3, P325
1424    HUYBRECHTS WJ, 1977, J PHYS C SOLID STATE, V10, P3761
1425    KUPER CG, 1963, POLARONS EXCITONS
1426    LARSEN DM, 1987, PHYS REV B, V35, P4435
1427    LEE TD, 1953, PHYS REV, V90, P297
1428    LEPINE Y, 1984, PHYS STATUS SOLIDI B, V122, P151
1429    LORKE A, 1990, PHYS REV LETT, V64, P2559
1430    MASALE M, 1993, PHYS REV B, V48, P11128
1431    PAN JS, 1985, PHYS STATUS SOLIDI B, V128, P287
1432    PEETERS FM, 1987, PHYS REV B, V36, P4442
1433    PEKAR SI, 1954, UNTERSUCHUNGEN ELEKT
1434    PETERS FM, 1982, PHYS REV B, V25, P7281
1435    PETERS FM, 1982, PHYS REV B, V25, P7302
1436    SIKORSKI C, 1989, PHYS REV LETT, V62, P2164
1437    TOKUDA N, 1987, J PHYS C SOLID STATE, V20, P3021
1438    YILDIRIM T, 1991, J PHYS-CONDENS MAT, V3, P1271
1439    ZHU KD, 1993, PHYS REV B, V47, P12941
1440    ZHU KD, 1994, PHYS LETT A, V190, P337
1441    ZHU KD, 1994, SOLID STATE COMMUN, V92, P353
1442 NR 23
1443 TC 1
1444 SN 0217-9849
1445 J9 MOD PHYS LETT B
1446 JI Mod. Phys. Lett. B
1447 PD JUL 20
1448 PY 1998
1449 VL 12
1450 IS 17
1451 BP 693
1452 EP 701
1453 PG 9
1454 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
1455 GA 117WN
1456 UT ISI:000075805800005
1457 ER
1458 
1459 PT J
1460 AU Ji, PY
1461    Zhu, ST
1462    Shen, WD
1463 TI Gravitational perturbation induced by an intense laser pulse
1464 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
1465 DT Article
1466 AB The energy-level shifts of the hydrogen spectrum in curved spacetime
1467    induced by intense short laser pulses are studied. With present
1468    high-power laser pulses the magnitude of the energy-level shifts of
1469    highly excited hydrogen atom should be detectable.
1470 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
1471    Acad Sinica, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
1472 RP Ji, PY, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
1473 CR MANASSE FK, 1963, J MATH PHYS, V4, P785
1474    PARKER L, 1980, PHYS REV D, V22, P1922
1475    PARKER L, 1982, PHYS REV D, V25, P3180
1476    SCULLY MO, 1979, PHYSICAL REV D, V19, P3582
1477 NR 4
1478 TC 1
1479 SN 0020-7748
1480 J9 INT J THEOR PHYS
1481 JI Int. J. Theor. Phys.
1482 PD JUN
1483 PY 1998
1484 VL 37
1485 IS 6
1486 BP 1779
1487 EP 1791
1488 PG 13
1489 SC Physics, Multidisciplinary
1490 GA 117RB
1491 UT ISI:000075794600010
1492 ER
1493 
1494 PT J
1495 AU Feng, SH
1496    Qiu, XJ
1497 TI A renormalization group study of the Ising model on a triangular
1498    lattice with long-range interactions
1499 SO COMMUNICATIONS IN THEORETICAL PHYSICS
1500 DT Article
1501 DE renormalization group; Ising model; long-range interaction
1502 ID HEISENBERG
1503 AB The critical exponents of the triangular lattice Ising model with
1504    long-range interactions r(-s) are calculated by the real space
1505    renormalization group. Using the simplest Kadanoff blocks and the
1506    lowest approximation of cumulant expansion, it is shown that there
1507    exists a finite critical temperature when 4(1 - ln 2/ln 3) < s < 4.
1508 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
1509    Acad Sinica, Inst Nucl Res, Shanghai 201800, Peoples R China.
1510 RP Feng, SH, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
1511 CR CANNAS SA, 1995, PHYS REV B, V52, P3034
1512    HALDANE FDM, 1988, PHYS REV LETT, V60, P635
1513    NAKANO H, 1995, PHYS REV B, V52, P6606
1514 NR 3
1515 TC 1
1516 SN 0253-6102
1517 J9 COMMUN THEOR PHYS
1518 JI Commun. Theor. Phys.
1519 PD JUL 30
1520 PY 1998
1521 VL 30
1522 IS 1
1523 BP 129
1524 EP 132
1525 PG 4
1526 SC Physics, Multidisciplinary
1527 GA 118DU
1528 UT ISI:000075823800023
1529 ER
1530 
1531 PT J
1532 AU Jiang, XY
1533    Jin, Y
1534    Zhang, ZL
1535    Xu, SH
1536 TI Mn-doped nanometer-size ZnS clusters in chitosan film matrix prepared
1537    by ion-coordination reaction
1538 SO JOURNAL OF CRYSTAL GROWTH
1539 DT Article
1540 DE Mn-doped ZnS nanocluster; chitosan film; ion-coordination reaction;
1541    quantum size effect; emission efficiency
1542 ID QUANTUM CONFINEMENT; MICROCRYSTALLITES
1543 AB A novel method, the so called ion-coordination reaction, was introduced
1544    to prepare nanometer-sized Mn-doped ZnS clusters stuck to a chitosan
1545    medium. A possible growth mechanism of the Mn-doped ZnS clusters in a
1546    chitosan film has been proposed. The X-ray diffraction showed that the
1547    ZnS clusters have a cubic structure like bulk crystals and the cluster
1548    sizes were estimated from the diffraction linewidth to be 2-4 nm based
1549    on Scherre's equation. The emission of Mn ion was observed through
1550    band-to-band excitation of ZnS. The excitation spectrum showed a large
1551    blue shift relative to that of ZnS bulk material. The effect of Zn ion
1552    concentration on the luminescence intensity reveals that the emission
1553    efficiency of Mn ion increases with the decrease of the ZnS cluster
1554    size. (C) 1998 Elsevier Science B.V. All rights reserved.
1555 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
1556 RP Jiang, XY, Shanghai Univ, Dept Mat Sci, Jiading Campus, Shanghai
1557    201800, Peoples R China.
1558 CR BHARGAVA RN, 1994, PHYS REV LETT, V72, P416
1559    BORRELLI NF, 1987, J APPL PHYS, V61, P5399
1560    STUCKY GD, 1990, SCIENCE, V247, P669
1561    WANG Y, 1987, OPT COMMUN, V61, P233
1562    WANG Y, 1991, J PHYS CHEM-US, V95, P525
1563    YOFFE AD, 1993, ADV PHYS, V42, P173
1564 NR 6
1565 TC 0
1566 SN 0022-0248
1567 J9 J CRYST GROWTH
1568 JI J. Cryst. Growth
1569 PD AUG
1570 PY 1998
1571 VL 191
1572 IS 4
1573 BP 692
1574 EP 696
1575 PG 5
1576 SC Crystallography
1577 GA 115WE
1578 UT ISI:000075688600015
1579 ER
1580 
1581 PT J
1582 AU He, JH
1583 TI A family of variational principles for compressible rotational
1584    blade-to-blade flow using semi-inverse method
1585 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
1586 DT Article
1587 AB By means of semi-inverse method of establishing generalized variational
1588    principles, a family of variational principles for compressible
1589    rotational blade-to-blade now has been rederived in detail. The present
1590    variational theory provides a straightforward way to arrive at various
1591    variational principles. This paper aims at providing a more complete
1592    theoretical basis for finite element applications.
1593 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
1594 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
1595    Peoples R China.
1596 CR HE JH, 1996, J SHANGHAI U, V2, P129
1597    HE JH, 1997, 40 ANN M CHIN MECH, P71417
1598    HE JH, 1997, INT J TURBO JET ENG, V14, P23
1599    HE JH, 1997, J ENG THERMOPHYSICS, V18, P440
1600    HE JH, 1997, J SHANGHAI U, V3, P99
1601    LIU GL, 1979, ACTA MECH SINICA, V11, P303
1602    LIU GL, 1980, SCI SINICA, V23, P1339
1603    LIU GL, 1982, P INT C FEM SHANGH C, P520
1604    LIU GL, 1992, FLOW MODELING TURBUL, P243
1605    LIU GL, 1993, INT J TURBO JET ENGI, V10, P273
1606    LIU GL, 1995, INT GAS TURB C YOK J
1607    LIU GL, 1995, P 6 AS C FLUID MECH
1608 NR 12
1609 TC 8
1610 SN 0334-0082
1611 J9 INT J TURBO JET ENGINES
1612 JI Int. J. Turbo. Jet-Engines
1613 PY 1998
1614 VL 15
1615 IS 2
1616 BP 95
1617 EP 100
1618 PG 6
1619 SC Engineering, Aerospace
1620 GA 116GJ
1621 UT ISI:000075715700003
1622 ER
1623 
1624 PT J
1625 AU He, JH
1626 TI Generalized variational principle for compressible S2-flow in
1627    mixed-flow turbomachinery using semi-inverse method
1628 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
1629 DT Article
1630 AB Using semi-inverse method of establishing generalized variational
1631    principle, a family of variational principles for compressible S-2-flow
1632    in mixed-flow turbomachinery has been rederived in detail The present
1633    theory provides a convenient way to arrive at a variational functional
1634    and a more complete theoretical basis for finite element applications.
1635 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
1636 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
1637    Peoples R China.
1638 CR CAI RQ, 1988, INT J HEAT FLUID FL, V9, P302
1639    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
1640    HE JH, 1996, THESIS SHANGHAI U
1641    HE JH, 1997, INT J TURBO JET ENG, V14, P23
1642    HE JH, 1997, J ENG THERMOPHYSICS, V18, P440
1643    HE JH, 1997, J SHANGHAI U, V1, P117
1644    LIU GL, 1990, P 1 INT S AER INT FL, P128
1645    LIU GL, 1995, INT J TURBO JET ENG, V12, P213
1646 NR 8
1647 TC 8
1648 SN 0334-0082
1649 J9 INT J TURBO JET ENGINES
1650 JI Int. J. Turbo. Jet-Engines
1651 PY 1998
1652 VL 15
1653 IS 2
1654 BP 101
1655 EP 107
1656 PG 7
1657 SC Engineering, Aerospace
1658 GA 116GJ
1659 UT ISI:000075715700004
1660 ER
1661 
1662 PT J
1663 AU Chen, LQ
1664    Liu, YZ
1665 TI A modified open-plus-closed-loop approach to control chaos in nonlinear
1666    oscillations
1667 SO PHYSICS LETTERS A
1668 DT Article
1669 ID COMPLEX DYNAMIC-SYSTEMS; MIGRATION CONTROLS; ATTRACTORS
1670 AB We present a modified form of open-plus-closed-loop control for chaotic
1671    oscillations described by a non-autonomous second-order ordinary
1672    differential equation. The Duffing-Helmholtz oscillator is treated as a
1673    numerical example to demonstrate the effectiveness and robustness of
1674    the method. (C) 1998 Elsevier Science B.V.
1675 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
1676    Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China.
1677 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
1678    200072, Peoples R China.
1679 CR CHEN G, 1997, CHAOS ORDER
1680    CHEN LQ, 1991, A MECH SOLI SINI, V4, P381
1681    JACKSON EA, 1990, PHYS LETT A, V151, P478
1682    JACKSON EA, 1991, PHYS REV A, V44, P4839
1683    JACKSON EA, 1991, PHYSICA D, V50, P341
1684    JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1255
1685    JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1767
1686    JACKSON EA, 1995, PHYSICA D, V85, P1
1687    KAPITANIAK T, 1996, CHONTROLLING CHAOS T
1688 NR 9
1689 TC 7
1690 SN 0375-9601
1691 J9 PHYS LETT A
1692 JI Phys. Lett. A
1693 PD AUG 10
1694 PY 1998
1695 VL 245
1696 IS 1-2
1697 BP 87
1698 EP 90
1699 PG 4
1700 SC Physics, Multidisciplinary
1701 GA 112PG
1702 UT ISI:000075502600016
1703 ER
1704 
1705 PT J
1706 AU Zhang, XB
1707    Jiang, GC
1708    Ding, WZ
1709    Xu, KD
1710 TI Evaluation of component activities in C-Mn-Fe-Si with model SELF-SReM4
1711 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
1712 DT Article
1713 DE sub-regular solution model; component activity; C-Mn-Si-Fe alloy
1714 AB A sub-regular solution model SELF-SReM4 used to evaluate activities of
1715    thr components in a homogeneous region of a quaternary system has been
1716    developed in Shanghai Enhanced Lab of Ferrometallurgy. This paper
1717    introduces the application cf SELF-SReM4 in evaluating activities of
1718    the components in C-Mn-Fe-Si system without SiC precipitation.
1719 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
1720 RP Zhang, XB, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
1721    200072, Peoples R China.
1722 CR CHIPMAN J, 1952, T AM SOC MET, V44, P1215
1723    CHIPMAN J, 1963, T METALL SOC AIME, V227, P473
1724    DRESLER W, 1990, T ISS, V3, P95
1725    GEE R, 1978, SCAND J METALL, V7, P38
1726    HULTGREN R, 1973, SELECTED VALUES THER, P487
1727    JIANG GC, 1992, ACTA METALLURGICA SI, V5, P476
1728    KATSNELSON A, 1993, ISIJ INT, V33, P1045
1729    SCHURMANN E, 1969, GIESSEREI FORSCH, V21, P29
1730    TANAKA A, 1979, T JIM, V20, P516
1731    TUSET J, 1970, 340358 SINTEF
1732    ZHANG XB, 1996, THESIS SHANGHAI U
1733 NR 11
1734 TC 1
1735 SN 1006-706X
1736 J9 J IRON STEEL RES INT
1737 JI J. Iron Steel Res. Int.
1738 PD APR
1739 PY 1998
1740 VL 5
1741 IS 1
1742 BP 28
1743 EP 33
1744 PG 6
1745 SC Metallurgy & Metallurgical Engineering
1746 GA 113NL
1747 UT ISI:000075558100006
1748 ER
1749 
1750 PT J
1751 AU Cao, WG
1752    Ding, WY
1753    Huang, TH
1754    Huang, H
1755    Wei, CH
1756 TI Convenient syntheses of 4-perfluoroalkyl-6-(alpha-thienyl)-2-pyranones
1757    and methyl 4-(alpha-thienacyl)-3-perfluoroalkyl-3-butenoates
1758 SO JOURNAL OF FLUORINE CHEMISTRY
1759 DT Article
1760 DE methyl 2-perfluoroalkynoates;
1761    4-perfluoroalkyl-6-(alpha-thienyl)-2-pyranones; methyl
1762    4-(alpha-thienacyl)-3-perfluoroalkyl-3-butenoates
1763 ID ELEMENTO-ORGANIC COMPOUNDS; STEREOSELECTIVE SYNTHESIS; 6TH GROUPS;
1764    ARSORANE; 2-PERFLUOROALKYNOATES; PHOSPHONIUM; CHEMISTRY; 5TH
1765 AB In the presence of K2CO3, reaction of (alpha-thienacyl) methyltriphenyl
1766    phosphonium bromide (1) with methyl 2-perfluoroalkynoates (2) in CH2Cl2
1767    at room temperature gave methyl
1768    4-(alpha-thienacyl)-2-triphenylphosphoranylidene-3-perfluoroalkyl-3-bute
1769    noates (3) in excellent yields.
1770    4-Perfluoroalkyl-6-(alpha-thienyl)-6-pyranones (4) and methyl
1771    4-(alpha-thienacyl)-3-perfluoroalkyl-3-butenoates (5) were obtained in
1772    high yield by hydrolysis of these methylene phosphoranes (3) with hot
1773    aqueous methanol. The butenoates (5) were isolated chromatographically
1774    as mixtures of Z and E isomers, the ratios of which were estimated by
1775    H-1 NMR. Reaction mechanisms are proposed to account for the formation
1776    of products 3, 4 and 5. (C) 1998 Elsevier Science S.A. All rights
1777    reserved.
1778 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
1779 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
1780 CR BANKS RE, 1979, ORGANOFLUORINE CHEM
1781    DING WY, 1986, ACTA CHIM SINICA, V44, P255
1782    DING WY, 1986, ACTA CHIM SINICA, V44, P62
1783    DING WY, 1987, ACTA CHIM SINICA, V45, P47
1784    DING WY, 1987, CHINESE J ORG CHEM, P435
1785    DING WY, 1991, ACTA CHIM SINICA, V49, P284
1786    DING WY, 1991, J CHEM SOC PERK  JUN, P1369
1787    DING WY, 1992, CHEM RES CHINESE U, V8, P224
1788    HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47
1789    MANN J, 1987, CHEM SOC REV, V16, P381
1790    TAO WT, 1983, CHINESE J ORG CHEM, P129
1791    WELCH JT, 1987, TETRAHEDRON, V43, P3123
1792 NR 12
1793 TC 4
1794 SN 0022-1139
1795 J9 J FLUORINE CHEM
1796 JI J. Fluor. Chem.
1797 PD AUG 10
1798 PY 1998
1799 VL 91
1800 IS 1
1801 BP 99
1802 EP 101
1803 PG 3
1804 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
1805 GA 112MA
1806 UT ISI:000075497400020
1807 ER
1808 
1809 PT J
1810 AU Ma, JH
1811    Chen, YS
1812    Liu, ZR
1813 TI Threshold value for diagnosis of chaotic nature of the data obtained in
1814    nonlinear dynamic analysis
1815 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
1816 DT Article
1817 DE chaotic timeseries; surrogate-data; threshold value; random timeseries
1818 ID CORRELATION DIMENSION; TIME-SERIES; NOISE
1819 AB In this paper surrogate data method of phase-randomized is proposed to
1820    identify the random or chaotic nature of the data obtained in dynamic
1821    analysis: The calculating results validate the phase-randomized method
1822    to be useful as it can increase the extent of accuracy of the results.
1823    And the calculating results show that threshold values of the random
1824    timeseries and nonlinear chaotic timeseries have marked difference.
1825 C1 SE Univ, Inst Syst Engn, Nanjing 210018, Peoples R China.
1826    Tianjin Univ, Dept Mech, Tianjin 300072, Peoples R China.
1827    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
1828 RP Ma, JH, SE Univ, Inst Syst Engn, Nanjing 210018, Peoples R China.
1829 CR ABARBANEL HDI, 1991, INT J MOD PHYS B, V5, P1347
1830    CABRERA JL, 1995, PHYS LETT A, V197, P19
1831    CASDAGLI M, 1992, J ROY STAT SOC B MET, V54, P303
1832    GRASSBERGER P, 1988, PHYS LETT A, V128, P369
1833    KENNEL MB, 1992, PHYS REV A, V46, P3111
1834    KOSTELICH EJ, 1992, PHYSICA D, V58, P138
1835    PRICHARD D, 1993, GEOPHYS RES LETT, V20, P2817
1836    PRICHARD D, 1994, PHYS LETT A, V191, P245
1837    PRICHARD D, 1994, PHYS REV LETT, V191, P230
1838    RAPP PE, 1993, PHYS REV E, V47, P2289
1839    RAPP PE, 1994, PHYS LETT A, V192, P27
1840    ROMBOUTS SAR, 1995, PHYS LETT A, V202, P352
1841    SCHIFF SJ, 1992, PHYS REV LETT A, V67, P378
1842    TAKALO J, 1993, GEOPHYS RES LETT, V20, P1527
1843    THEILER J, 1986, PHYS REV A, V34, P2427
1844    THEILER J, 1991, PHYS LETT A, V155, P480
1845    THEILER J, 1992, PHYSICA D, V58, P77
1846 NR 17
1847 TC 5
1848 SN 0253-4827
1849 J9 APPL MATH MECH-ENGL ED
1850 JI Appl. Math. Mech.-Engl. Ed.
1851 PD JUN
1852 PY 1998
1853 VL 19
1854 IS 6
1855 BP 513
1856 EP 520
1857 PG 8
1858 SC Mathematics, Applied; Mechanics
1859 GA 113CA
1860 UT ISI:000075530700002
1861 ER
1862 
1863 PT J
1864 AU Xu, DH
1865    Jin, C
1866    Li, MZ
1867 TI On the stability estimation of analytic continuation for potential field
1868 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
1869 DT Article
1870 DE Cauchy problems for Laplace equations; analytic continuation of
1871    potential field; ill-posed problems; stability estimation
1872 AB This paper discusses the stability of solutions to a class of Cauchy
1873    problems for Laplace equations under two kinds of nonclassical
1874    circumstances. By means of conformal mapping and Tikhonov, Luan Wengui
1875    and Yamamoto's methods for solving ill-posed problems respectively, the
1876    stability estimations of weighted Holder type and logarithmic type,
1877    have been obtained accordingly.
1878 C1 E China Geol Inst, Fuzhou 344000, Peoples R China.
1879    Fudan Univ, Dept Math, Shanghai 200433, Peoples R China.
1880    Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China.
1881 RP Xu, DH, E China Geol Inst, POB 267, Fuzhou 344000, Peoples R China.
1882 CR CHENG J, 1996, J NINGXIA U, V17, P74
1883    HETIAN R, 1982, FOURIER ANAL, P108
1884    LI MZ, 1990, THEORY BOUNDARY VALU, P228
1885    LUAN WG, 1985, SCI CHINA SER A, V9, P824
1886    LUAN WG, 1989, INVERSE PROBLEMS GEO, P32
1887    NIRENBERG L, 1957, COMMUN PUR APPL MATH, V10, P89
1888    TIKHONOV AN, 1977, SOLUTIONS ILL POSED, P27
1889    YAMAMOTO M, 1993, MATH COMPUT MODEL, V18, P79
1890 NR 8
1891 TC 0
1892 SN 0253-4827
1893 J9 APPL MATH MECH-ENGL ED
1894 JI Appl. Math. Mech.-Engl. Ed.
1895 PD JUN
1896 PY 1998
1897 VL 19
1898 IS 6
1899 BP 563
1900 EP 572
1901 PG 10
1902 SC Mathematics, Applied; Mechanics
1903 GA 113CA
1904 UT ISI:000075530700008
1905 ER
1906 
1907 PT J
1908 AU Gu, GQ
1909    Yu, KW
1910    Hui, PM
1911 TI First-principles approach to conductivity of a nonlinear composite
1912 SO PHYSICAL REVIEW B
1913 DT Article
1914 ID DIELECTRIC-CONSTANT; MEDIA; SPHERES; APPROXIMATION; LATTICE; FIELD
1915 AB The Rayleigh method is extended to study the effective response in
1916    weakly nonlinear composites within a perturbative approach. The
1917    Rayleigh identity is used to obtain a set of equations for zeroth-order
1918    and higher-order potentials, with the latter resulted from the presence
1919    of nonlinearity in the problem. The formalism is applied to study the
1920    effective response in an array of cylinders embedded in a host. Results
1921    are compared with those obtained by other approximations previously
1922    proposed in the literature. Results from the present approach show that
1923    while the previous approach of applying the Rayleigh identity to
1924    determine the zeroth-order potential and neglecting the induced fields
1925    due to the higher-order potentials is valid for a wide range of
1926    nonlinear composites, the effects of induced fields due to the
1927    higher-order potentials are important in composites with high
1928    concentrations of inclusions, and in systems with a low value for the
1929    ratio of the Linear conductivities and a high value of the ratio of the
1930    third-order nonlinear conductivities. The present approach, thus,
1931    provides a general formalism for treating nonlinear composites and
1932    establishes the range of validity of previous approximations.
1933 C1 Chinese Ctr Adv Sci & Technol, World Lab, Beijing 100080, Peoples R China.
1934    Shanghai Univ Sci & Technol, Coll Syst Sci & Syst Engn, Shanghai 201800, Peoples R China.
1935    Chinese Univ Hong Kong, Dept Phys, Shatin, New Territories, Hong Kong.
1936 RP Gu, GQ, Chinese Ctr Adv Sci & Technol, World Lab, POB 8730, Beijing
1937    100080, Peoples R China.
1938 CR BERGMAN DJ, 1979, J PHYS C SOLID STATE, V12, P4947
1939    BLUMENFELD R, 1989, PHYS REV B, V40, P1987
1940    BLUMENFELD R, 1991, PHYS REV B, V44, P7378
1941    CHEN G, 1994, COMMUN THEOR PHYS, V22, P265
1942    FULLER KA, 1991, APPL OPTICS, V30, P4716
1943    GERARDY JM, 1980, PHYS REV B, V22, P4950
1944    GU GQ, 1988, J APPL PHYS, V64, P2968
1945    GU GQ, 1988, PHYS REV B, V37, P8612
1946    GU GQ, 1992, PHYS REV B, V46, P4502
1947    GU GQ, 1995, J APPL PHYS, V78, P1737
1948    GU GQ, 1997, COMMUN THEOR PHYS, V27, P395
1949    LU SY, 1994, J APPL PHYS, V76, P2641
1950    MCPHEDRAN RC, 1978, P ROY SOC LOND A MAT, V359, P45
1951    NEMATNASSER S, 1981, Q APPL MATH, V39, P43
1952    RAYLEIGH JW, 1892, PHILOS MAG, V34, P481
1953    STROUD D, 1988, PHYS REV B, V37, P8719
1954    STROUD D, 1989, J OPT SOC AM B, V6, P778
1955    SUEN WM, 1979, J PHYS D, V12, P1325
1956    YU KW, 1992, PHYS LETT A, V168, P313
1957    YU KW, 1993, PHYS REV B, V47, P14150
1958    ZENG XC, 1988, PHYS REV B, V38, P10970
1959    ZENG XC, 1989, PHYSICA A, V157, P192
1960 NR 22
1961 TC 2
1962 SN 0163-1829
1963 J9 PHYS REV B
1964 JI Phys. Rev. B
1965 PD AUG 1
1966 PY 1998
1967 VL 58
1968 IS 6
1969 BP 3057
1970 EP 3062
1971 PG 6
1972 SC Physics, Condensed Matter
1973 GA 110BN
1974 UT ISI:000075359500027
1975 ER
1976 
1977 PT J
1978 AU Zhuang, J
1979    Tan, WH
1980 TI Cooperative frequency locking and spatiotemporal chaos in a
1981    photorefractive oscillator
1982 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS
1983 DT Article
1984 ID UNIDIRECTIONAL RING OSCILLATOR; 2-WAVE MIXING EXPERIMENTS; BI12SIO20
1985    CRYSTALS; DYNAMICS; LASERS; GAIN
1986 AB The spatiotemporal dynamics of a unidirectional ring oscillator with
1987    photorefractive gain are studied numerically. Some interesting
1988    spatiotemporal phenomena observed in the experiments were obtained even
1989    though intermodal gratings were neglected in the weak-field limit;
1990    These phenomena include cooperative frequency locking, spatiotemporal
1991    periodic behavior, and spatiotemporal chaos. Moreover, our results show
1992    that the spatiotemporal chaos that appears in the photorefractive
1993    oscillator can be induced by intermittence. (C) 1998 Optical Society of
1994    America [S0740-3224(98)01008-X] OCIS codes: 190.5330, 190.4420,
1995    130.4970.
1996 C1 Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
1997    Shanghai Univ, Acad Sinica, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
1998 RP Zhuang, J, Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
1999 CR ANDERSON DZ, 1987, J OPT SOC AM B, V4, P164
2000    ARECCHI FT, 1990, PHYS REV LETT, V65, P2531
2001    ARECCHI FT, 1991, PHYS REV LETT, V67, P3794
2002    DALESSANDRO G, 1992, PHYS REV A, V46, P2791
2003    HENNEQUIN D, 1994, J OPT SOC AM B, V11, P676
2004    HUIGNARD JP, 1981, OPT COMMUN, V38, P249
2005    JOST BM, 1995, PHYS REV A, V51, P1539
2006    JUN ZA, 1996, PHYS REV A, V54, P5201
2007    KLISCHE W, 1989, PHYS REV A, V39, P919
2008    LUGIATO LA, 1988, J OPT SOC AM B, V5, P879
2009    LUGIATO LA, 1988, OPT COMMUN, V68, P63
2010    MALOS J, 1996, PHYS REV A, V53, P3559
2011    MARRAKCHI A, 1981, APPL PHYS, V24, P131
2012    STALIUNAS K, 1995, PHYS REV A, V51, P4140
2013 NR 14
2014 TC 2
2015 SN 0740-3224
2016 J9 J OPT SOC AM B-OPT PHYSICS
2017 JI J. Opt. Soc. Am. B-Opt. Phys.
2018 PD AUG
2019 PY 1998
2020 VL 15
2021 IS 8
2022 BP 2249
2023 EP 2254
2024 PG 6
2025 SC Optics
2026 GA 108LP
2027 UT ISI:000075268100008
2028 ER
2029 
2030 PT J
2031 AU Chen, DY
2032 TI The potential constraints of the complex (1+2)-dimensional soliton
2033    systems and related Hamiltonian equations
2034 SO JOURNAL OF MATHEMATICAL PHYSICS
2035 DT Article
2036 AB Potential complete constraints (symmetric and nonsymmetric) of the
2037    complex KP and MKP systems are derived by using the general theory for
2038    a nonlinear equation to be a Hamiltonian system. All the complex
2039    Hamiltonian equations corresponding to this kind of constraint are
2040    obtained, which contain the famous nonlinear Schrodinger equations and
2041    several new Hamiltonian equations. In addition, the classical
2042    Kaup-Newell system and the Heisenberg system are also led by a new
2043    reduction approach from the MKP system. (C) 1998 American Institute of
2044    Physics.
2045 C1 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
2046 RP Chen, DY, Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800,
2047    Peoples R China.
2048 CR CHEN DY, 1984, ACTA MATH SINICA, V27, P624
2049    CHEN DY, 1994, J MATH PHYS, V35, P4725
2050    CHENG Y, 1991, PHYS LETT A, V157, P22
2051    CHENG Y, 1992, J MATH PHYS, V33, P3774
2052    CHENG Y, 1992, J PHYS A, V25, P419
2053    FUCHSSTEINER B, 1981, PHYSICA D, V4, P47
2054    KAUP DJ, 1978, J MATH PHYS, V19, P798
2055    KONOPELCHENKO B, 1991, PHYS LETT A, V157, P17
2056    LI YS, 1982, ACTA MATH SINICA, V25, P464
2057    ZHU M, 1993, POTENTIAL CONSTRAINT
2058 NR 10
2059 TC 0
2060 SN 0022-2488
2061 J9 J MATH PHYS-NY
2062 JI J. Math. Phys.
2063 PD JUN
2064 PY 1998
2065 VL 39
2066 IS 6
2067 BP 3246
2068 EP 3259
2069 PG 14
2070 SC Physics, Mathematical
2071 GA 108KC
2072 UT ISI:000075264200018
2073 ER
2074 
2075 PT J
2076 AU Cheng, CJ
2077    Zhang, NH
2078 TI Variational principles on static-dynamic analysis of viscoelastic thin
2079    plates with applications
2080 SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
2081 DT Article
2082 ID PERTURBED MOTION
2083 AB In this paper, according to the integral-type constitutive relation of
2084    linear viscoelastic materials, the initial-boundary-value problem on
2085    the static-dynamic analysis of viscoelastic thin plates is established
2086    by introducing a "structural function". The corresponding variational
2087    principles are presented by means of convolution bilinear forms. As
2088    applications, we consider the quasi-static responses of a
2089    simply-supported square plate with three different load histories in
2090    which the classical Ritz method on the spatial response and the
2091    interpolation technique of Legendre polynomials on the temporal
2092    response are used. The obtained results are compared with the
2093    analytical solutions given in this paper. One can see that the
2094    approximate solutions agree well with the analytical solutions. (C)
2095    1998 Elsevier Science Ltd. All rights reserved.
2096 C1 Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
2097 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
2098    200072, Peoples R China.
2099 CR CHIEN WZ, 1982, VARIATIONAL METHODS
2100    CHRISTENSEN RM, 1982, THEORY VISCOELASTICI
2101    DAI TM, 1995, P MMM, V6, P28
2102    DALLASTA A, 1993, INT J SOLIDS STRUCT, V30, P325
2103    DALLASTA A, 1994, INT J SOLIDS STRUCT, V31, P247
2104    GURTIN ME, 1963, ARCH RATIONAL MECH A, V3, P179
2105    HOFF NJ, 1958, P 3 US NAT C APPL ME
2106    LEITMAN JM, 1973, HDB PHYSIK, V6, P10
2107    LUO E, 1990, ACTA MECH SINICA, V22, P484
2108    REDDY JN, 1976, INT J SOLIDS STRUCT, V12, P227
2109 NR 10
2110 TC 8
2111 SN 0020-7683
2112 J9 INT J SOLIDS STRUCT
2113 JI Int. J. Solids Struct.
2114 PD NOV
2115 PY 1998
2116 VL 35
2117 IS 33
2118 BP 4491
2119 EP 4505
2120 PG 15
2121 SC Mechanics
2122 GA 108RE
2123 UT ISI:000075278600010
2124 ER
2125 
2126 PT J
2127 AU Ragone, E
2128    Strazzullo, P
2129    Siani, A
2130    Iacone, R
2131    Russo, L
2132    Sacchi, A
2133    Cipriano, P
2134    Mancini, M
2135    Zhao, GS
2136    Yuan, XY
2137    Li, DY
2138    Gong, LS
2139 TI Ethnic differences in red blood cell sodium/lithium countertransport
2140    and metabolic correlates of hypertension - An international
2141    collaborative study
2142 SO AMERICAN JOURNAL OF HYPERTENSION
2143 DT Article
2144 DE erythrocyte Na/Li countertransport; hypertension; metabolic
2145    abnormalities; insulin resistance; Chinese population; electrolyte
2146    excretion
2147 ID SODIUM-LITHIUM COUNTERTRANSPORT; INSULIN-RESISTANCE; FAT DISTRIBUTION;
2148    BODY-MASS; PRESSURE; UTAH; POPULATION; TRANSPORT; DISEASE; CHINA
2149 AB Arterial hypertension is frequently associated with metabolic
2150    abnormalities. An abnormal activity of the erythrocyte sodium/lithium
2151    countertransport (Na/Li CT), an ion transport system under strong
2152    genetic control, is also found in people with hypertension and
2153    concomitant metabolic abnormalities. However, little information exists
2154    with regard to these clinical associations in different racial groups.
2155    The aim of this international collaborative study was to investigate
2156    Na/Li CT and the metabolic correlates of hypertension in two comparable
2157    samples of normotensive and hypertensive populations in the cities of
2158    Naples, Italy, and Shanghai, China, using identical, carefully
2159    standardized techniques. flood pressure, anthropometric and metabolic
2160    variables, Na/Li CT, and 24-h urinary Na and K excretion were measured
2161    in untreated essential hypertensive (HPT) and normotensive (NT)
2162    individuals selected by age (35-60 years), body mass index (BMI; < 30
2163    kg/m(2)), and blood pressure (BP; HPT, DBP greater than or equal to 95
2164    mm Hg; NT, DBP < 90 mm Hg). The analysis of variance with adjustment
2165    for age was used to compare the groups. In the Neapolitan population,
2166    hypertensive individuals had higher serum triglyceride (P <.05) and
2167    uric acid levels (P <.001) than the normotensive group and also had a
2168    reduced glucose tolerance (P <.01) and an enhanced insulin response to
2169    the oral glucose tolerance test (OGTT) (P <.05). No such differences
2170    were seen between normotensive and hypertensive Chinese participants.
2171    The Neapolitan population (both NT and HPT) had a higher BMI (P <.01)
2172    than their Chinese peers. In the comparison of hypertensive patients in
2173    Shanghai and in Naples, the Neapolitans were heavier (P <.001), had a
2174    lower HDL/total cholesterol ratio (P <.01), an elevated fasting blood
2175    glucose (P <.05), and also a higher glucose (P <.001) and insulin
2176    response (P <.001) to OGTT. By contrast, they showed a significantly
2177    lower urinary Na/K ratio (P <.001). Na/Li CT was significantly
2178    increased in HPT both in Naples (286 +/- 24 v 224 +/- 13 mu mol/L RBC x
2179    h; P <.05, M +/- SE) and in Shanghai (388 +/- 45 v 265 +/- 30 mu mol/L
2180    RBC x h; P <.05). Furthermore, Na/Li CT was significantly and inversely
2181    associated with HDL cholesterol both in the Neapolitan (P <.01) and in
2182    the Chinese (P <.05) population, whereas it was directly correlated
2183    with serum triglyceride (P <.001) and serum uric acid (P =.001) only in
2184    the Neapolitan population. These results indicate that essential
2185    hypertension is associated with a higher prevalence of obesity,
2186    impaired glucose tolerance, and hyperinsulinemia in Naples than in
2187    Shanghai; and Na/Li CT is linked to both high blood pressure and
2188    metabolic abnormalities in the Italian sample, whereas it is an
2189    isolated marker of hypertension in the Chinese sample. Am J Hypertens
2190    1998;11:935-941 (C) 1998 American Journal of Hypertension, Ltd.
2191 C1 Univ Naples Federico II, Dept Clin & Expt Med, Sch Med, I-80131 Naples, Italy.
2192    Natl Res Council, Epidemiol & Prevent Unit, Inst Food Sci & Technol, Avellino, Italy.
2193    Shanghai Univ, Inst Hypertens, Dept Internal Med, Shanghai, Peoples R China.
2194 RP Strazzullo, P, Univ Naples Federico II, Dept Clin & Expt Med, Sch Med,
2195    Via S Pansini 5, I-80131 Naples, Italy.
2196 EM strazzul@unina.it
2197 CR *WORK GROUP MAN PA, 1991, ANN INTERN MED, V114, P224
2198    BUNKER CH, 1993, J HYPERTENS, V5, P7
2199    CANESSA M, 1980, NEW ENGL J MED, V302, P772
2200    CANESSA M, 1984, HYPERTENSION, V6, P334
2201    DADONE MM, 1984, AM J MED GENET, V17, P565
2202    DORIA A, 1991, AM J PHYSIOL, V261, P684
2203    DOUGLAS JG, 1993, AM J KIDNEY DIS, V21, P46
2204    ELLIOTT P, 1988, BRIT MED J, V297, P319
2205    FOLSOM AR, 1994, J CLIN EPIDEMIOL, V47, P173
2206    HAFFNER SM, 1992, DIABETES, V41, P715
2207    HASSTEDT SJ, 1988, AM J HUM GENET, V43, P14
2208    HUNT SC, 1986, HYPERTENSION, V8, P30
2209    HUNT SC, 1990, CARDIOVASC DRUG THER, V4, P357
2210    IBSEN KK, 1982, HYPERTENSION, V4, P703
2211    KAPLAN NM, 1989, ARCH INTERN MED, V149, P1514
2212    LAW MR, 1991, BRIT MED J, V302, P811
2213    LAW YT, 1992, CLIN EXP HYPERTENS A, V14, P489
2214    PAGANO E, 1997, LIFE SCI, V26, P2389
2215    RAGONE E, 1993, J HYPERTENS, V11, S256
2216    REAVEN GM, 1989, AM J MED, V87, S2
2217    REAVEN GM, 1991, AM HEART J, V121, P1283
2218    SEMPLICINI A, 1997, NUTR METAB CARDIOVAS, V7, P81
2219    SIANI A, 1994, HIGH BLOOD PRESS, V3, P7
2220    SIANI A, 1996, NUTR METAB CARDIOVAS, V6, P245
2221    STAMLER R, 1978, JAMA-J AM MED ASSOC, V240, P1607
2222    STRAZZULLO P, 1993, J HYPERTENS, V11, P815
2223    TREVISAN M, 1984, AM J EPIDEMIOL, V120, P537
2224    TREVISAN M, 1992, LIFE SCI, V51, P687
2225    WEDER AB, 1993, NUTR METAB CARDIOVAS, V3, P38
2226    WEIR MR, 1993, AM J KIDNEY DIS, V21, P58
2227    WILLIAMS RR, 1988, JAMA-J AM MED ASSOC, V259, P3579
2228    WU XG, 1996, J HYPERTENS, V14, P1267
2229 NR 32
2230 TC 6
2231 SN 0895-7061
2232 J9 AMER J HYPERTENS
2233 JI Am. J. Hypertens.
2234 PD AUG
2235 PY 1998
2236 VL 11
2237 IS 8
2238 PN Part 1
2239 BP 935
2240 EP 941
2241 PG 7
2242 SC Peripheral Vascular Disease
2243 GA 108CH
2244 UT ISI:000075248100005
2245 ER
2246 
2247 PT J
2248 AU Mo, Y
2249    Xia, Y
2250    Wu, W
2251 TI A nucleation mechanism for diamond film deposited on alumina substrates
2252    by microwave plasma CVD
2253 SO JOURNAL OF CRYSTAL GROWTH
2254 DT Article
2255 DE diamond; microwave plasma; chemical vapor deposition; aluminium oxide
2256 AB Diamond films were deposited on alumina substrates by a microwave
2257    plasma chemical vapor deposition (MPCVD) method. It is shown that by
2258    using appropriate pre-treatments, such as polishing the substrate
2259    surface carefully and by in situ pre-deposition of a carbon layer on
2260    the alumina substrate surface, one can significantly enhance the
2261    nucleation of diamond. The mechanism of the process has been considered
2262    using a droplet model with a quasi-equilibrium approximation. (C) 1998
2263    Elsevier Science B.V. All rights reserved.
2264 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
2265 RP Mo, Y, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
2266    China.
2267 CR BARNES PN, 1993, APPL PHYS LETT, V62, P37
2268    HSU JY, 1989, J AM CERAM SOC, V72, P1861
2269    MO Y, 1995, ICEM ICSA95 XIAN
2270    MO YW, 1997, ACTA PHYS SINICA, V46, P618
2271    NAZERI A, 1993, AM CERAM SOC B, V75, P59
2272    NEMANICH RJ, 1991, ANNU REV MATER SCI, V21, P535
2273    SOMMER M, 1990, J MATER RES, V5, P2433
2274    XIA YB, 1996, CHINESE PHYS LETT, V13, P557
2275    YARBROUGH WA, 1992, J AM CERAM SOC, V75, P3179
2276 NR 9
2277 TC 8
2278 SN 0022-0248
2279 J9 J CRYST GROWTH
2280 JI J. Cryst. Growth
2281 PD JUL
2282 PY 1998
2283 VL 191
2284 IS 3
2285 BP 459
2286 EP 465
2287 PG 7
2288 SC Crystallography
2289 GA 104TY
2290 UT ISI:000075032500021
2291 ER
2292 
2293 PT J
2294 AU He, JH
2295 TI A variational theory for one-dimensional unsteady compressible flow -
2296    an image plane approach
2297 SO APPLIED MATHEMATICAL MODELLING
2298 DT Article
2299 DE 1-dimensional unsteady flow; variational principle; semi-inverse
2300    method; trial-functional
2301 AB Via a semi-inverse method of establishing generalized variational
2302    principles, two families of variational principles and generalized
2303    variational principles for one-dimensional unsteady compressible flow
2304    in an imagine plane tau-Psi (defined by tau = t, Psi - path-function)
2305    have been deduced. The calculation domain in the image plane has the
2306    regular form of rectangle, which gives much advantage of utilizing
2307    variational-based FEM or other direct variational methods such as
2308    Kantrovich-FEM method to solve the problem. (C) 1998 Elsevier Science
2309    Inc. All rights reserved.
2310 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
2311 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
2312    Shanghai 200072, Peoples R China.
2313 CR CHIEN WZ, 1983, APPL MATH MECH, V4, P137
2314    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
2315    HE JH, 1996, 4 C CHIN IND APPL MA
2316    HE JH, 1996, J SHANGHAI U, V2, P129
2317    HE JH, 1996, J SHANGHAI U, V2, P584
2318    HE JH, 1997, INT J TURBO JET ENG, V14, P23
2319    HE JH, 1997, J ENG THERMOPHYSICS, V18, P440
2320    LIU GL, 1995, P 6 AS C FLUID MECH
2321    SHAPIRO AH, 1953, DYNAMICS THERMODYNAM
2322 NR 9
2323 TC 7
2324 SN 0307-904X
2325 J9 APPL MATH MODEL
2326 JI Appl. Math. Model.
2327 PD JUN
2328 PY 1998
2329 VL 22
2330 IS 6
2331 BP 395
2332 EP 403
2333 PG 9
2334 SC Mathematics, Applied; Mechanics; Operations Research & Management
2335    Science
2336 GA 106JW
2337 UT ISI:000075127000002
2338 ER
2339 
2340 PT J
2341 AU Du, J
2342    Rui, HB
2343 TI Based algebras and standard bases for quasi-hereditary algebras
2344 SO TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
2345 DT Article
2346 ID SCHUR ALGEBRA; IRREDUCIBLE REPRESENTATIONS; CANONICAL BASES; QUANTUM
2347    GL(N)
2348 AB Quasi-hereditary algebras can be viewed as a Lie theory approach to the
2349    theory of finite dimensional algebras. Motivated by the existence of
2350    certain nice bases for representations of semisimple Lie algebras and
2351    algebraic groups, we will construct in this paper nice bases for
2352    (split) quasi-hereditary algebras and characterize them using these
2353    bases. We first introduce the notion of a standardly based algebra,
2354    which is a generalized version of a cellular algebra introduced by
2355    Graham and Lehrer, and discuss their representation theory. The main
2356    result is that an algebra over a commutative local noetherian ring with
2357    finite rank is split quasi-hereditary if and only if it is standardly
2358    full-based. As an application, we will give an elementary proof of the
2359    fact that split symmetric algebras are not quasi-hereditary unless they
2360    are semisimple. Finally, some relations between standardly based
2361    algebras and cellular algebras are also discussed.
2362 C1 Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia.
2363    Shanghai Univ Sci & Technol, Dept Math, Shanghai 200093, Peoples R China.
2364 RP Du, J, Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia.
2365 EM jied@maths.unsw.edu.au
2366    hbruik@online.sh.cn
2367 CR BARBASCH D, 1982, MATH ANN, V259, P153
2368    BEILINSON AA, 1990, DUKE MATH J, V61, P655
2369    BERGE C, 1971, PRINCIPLES COMBINATO
2370    CLINE E, 1988, J REINE ANGEW MATH, V391, P85
2371    CLINE E, 1989, CONT MATH, V82, P7
2372    CLINE E, 1990, J ALGEBRA, V131, P126
2373    DIPPER R, 1986, P LOND MATH SOC, V52, P20
2374    DIPPER R, 1989, P LOND MATH SOC, V59, P23
2375    DIPPER R, 1991, T AM MATH SOC, V327, P251
2376    DLAB V, 1989, ILLINOIS J MATH, V33, P280
2377    DLAB V, 1992, LONDON MATH SOC LECT, V168, P200
2378    DU J, NEW PROOF CANONICAL
2379    DU J, 1992, B LOND MATH SOC 4, V24, P325
2380    DU J, 1992, CONT MATH, V139, P121
2381    DU J, 1992, MANUSCRIPTA MATH, V75, P411
2382    DU J, 1994, J REINE ANGEW MATH, V455, P141
2383    DU J, 1994, P S PURE MATH 2, V56, P135
2384    DU J, 1995, J LOND MATH SOC, V51, P461
2385    GRAHAM JJ, 1996, INVENT MATH, V123, P1
2386    GREEN JA, 1980, LECT NOTES MATH, V830
2387    GREEN JA, 1990, J ALGEBRA, V131, P265
2388    GREEN JA, 1993, J PURE APPL ALGEBRA, V88, P89
2389    GREEN R, 1994, THESIS
2390    KAZHDAN D, 1979, INVENT MATH, V53, P155
2391    KONIG S, 1997, INVENT MATH, V127, P481
2392    LUSZTIG G, 1993, INTRO QUANTUM GROUPS
2393    PARSHALL B, 1991, MEMOIRS AM MATH SOC, V89
2394    SCOTT LL, 1987, P S PURE MATH 2, V47, P271
2395 NR 28
2396 TC 7
2397 SN 0002-9947
2398 J9 TRANS AMER MATH SOC
2399 JI Trans. Am. Math. Soc.
2400 PD AUG
2401 PY 1998
2402 VL 350
2403 IS 8
2404 BP 3207
2405 EP 3235
2406 PG 29
2407 SC Mathematics
2408 GA 103WZ
2409 UT ISI:000074982000012
2410 ER
2411 
2412 PT J
2413 AU Huang, DB
2414    Zhao, XH
2415    Liu, ZR
2416 TI Divergence-free vector-field and reduction
2417 SO PHYSICS LETTERS A
2418 DT Article
2419 AB By the Lie symmetry group, the reduction for divergence-free
2420    vector-fields (DFVs) is studied, and the following results are found. A
2421    n-dimensional DFV can be locally reduced to a (n - 1)-dimensional DFV
2422    if it admits a one-parameter symmetry group that is spatial and
2423    divergenceless. More generally, a n-dimensional DFV admitting a
2424    r-parameter, spatial, divergenceless Abelian (commutable) symmetry
2425    group can be locally reduced to a (n - r)-dimensional DFV. (C) 1998
2426    Elsevier Science B.V.
2427 C1 Chinese Acad Sci, LNM, Inst Mech, Shanghai 201800, Peoples R China.
2428    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
2429    Yunnan Univ, Dept Math, Kunming 650091, Peoples R China.
2430 RP Huang, DB, Chinese Acad Sci, LNM, Inst Mech, Shanghai 201800, Peoples R
2431    China.
2432 CR GASCON FG, 1996, PHYS LETT A, V225, P269
2433    HUANG DB, 1997, IN PRESS SCI SIN A
2434    JANAKI MS, 1987, J PHYS A, V20, P3679
2435    LORENZ EN, 1987, J ATMOS SCI, V44, P2940
2436    MEZIC I, 1994, J NONLINEAR SCI, V4, P157
2437    OLVER PJ, 1986, APPL LIE GROUP DIFFE
2438    QUISPEL GRW, 1995, PHYS LETT A, V206, P26
2439    XIA ZH, 1992, ERGOD THEOR DYN SYST, V12, P621
2440 NR 8
2441 TC 2
2442 SN 0375-9601
2443 J9 PHYS LETT A
2444 JI Phys. Lett. A
2445 PD JUL 27
2446 PY 1998
2447 VL 244
2448 IS 5
2449 BP 377
2450 EP 382
2451 PG 6
2452 SC Physics, Multidisciplinary
2453 GA 104XC
2454 UT ISI:000075040600010
2455 ER
2456 
2457 PT J
2458 AU Wang, NN
2459    Shen, JQ
2460 TI A study of the influence of misalignment on measuring results for laser
2461    particle analyzers
2462 SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION
2463 DT Article
2464 AB Light scattering-based laser particle analyzers have found wide use in
2465    powder technology and many-particle systems. It is very important that
2466    the photodetector of the analyzer is in good alignment with the
2467    incident laser beam, otherwise errors will occur. In this paper, the
2468    influences of misalignment on the final results of measurements are
2469    discussed.
2470 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
2471 RP Wang, NN, Shanghai Univ Sci & Technol, 516 Jun Gong Rd, Shanghai
2472    200093, Peoples R China.
2473 CR ALLEN T, 1990, PARTICLE SIZE MEASUR
2474    BARTH GB, 1995, ANAL CHEM, V67, R257
2475    HIRLEMAN ED, 1984, ASTM STP, V848, P35
2476    VANDEHULST HC, 1957, LIGHT SCATTERING SMA
2477 NR 4
2478 TC 2
2479 SN 0934-0866
2480 J9 PART PART SYST CHARACT
2481 JI Part. Part. Syst. Charact.
2482 PD JUN
2483 PY 1998
2484 VL 15
2485 IS 3
2486 BP 122
2487 EP 126
2488 PG 5
2489 SC Engineering, Chemical; Materials Science, Characterization & Testing
2490 GA 103NH
2491 UT ISI:000075162100003
2492 ER
2493 
2494 PT J
2495 AU Feng, SS
2496 TI Some exact results of Hubbard model at finite temperature
2497 SO MODERN PHYSICS LETTERS B
2498 DT Article
2499 ID LONG-RANGE ORDER; STRONGLY CORRELATED ELECTRONS; GROUND-STATE;
2500    SUPERCONDUCTIVITY; THEOREMS
2501 AB Two theorems of the Hubbard model at finite temperature are proven
2502    employing the fluctuation-dissipation theorem and particle-hole
2503    transform. The main conclusion states that for the prototype Kubbard
2504    model, the expectation value of (S) over tilde(2) - (S) over
2505    tilde(z)(2) will be of order N-Lambda at any temperature except those
2506    critical.
2507 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
2508    CCAST, World Lab, Beijing 100080, Peoples R China.
2509 RP Feng, SS, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
2510 CR DEBOER J, 1995, PHYS REV LETT, V74, P789
2511    ESSLER FHL, 1992, PHYS REV LETT, V68, P2960
2512    ESSLER FHL, 1993, PHYS REV LETT, V70, P73
2513    JONES W, 1973, THEORETICAL SOLID ST, V1, CH4
2514    LIEB EH, 1989, PHYS REV LETT, V62, P1201
2515    NIEH HT, 1995, PHYS REV B, V51, P3760
2516    SEWELL GL, 1990, J STAT PHYS, V61, P415
2517    SHEN SQ, 1993, PHYS REV LETT, V71, P4238
2518    SHEN SQ, 1994, PHYS REV LETT, V72, P1280
2519    SINGH RRP, 1991, PHYS REV LETT, V66, P3203
2520    TIAN GS, 1992, PHYS REV B, V45, P3145
2521    YANG CN, 1962, REV MOD PHYS, V34, P694
2522    YANG CN, 1990, MOD PHYS LETT B, V4, P759
2523 NR 13
2524 TC 3
2525 SN 0217-9849
2526 J9 MOD PHYS LETT B
2527 JI Mod. Phys. Lett. B
2528 PD JUN 30
2529 PY 1998
2530 VL 12
2531 IS 14-15
2532 BP 555
2533 EP 559
2534 PG 5
2535 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
2536 GA 105QZ
2537 UT ISI:000075086300001
2538 ER
2539 
2540 PT J
2541 AU Wu, MH
2542    Bao, BR
2543    Zhou, RM
2544    Zhu, JL
2545    Hu, LX
2546 TI The regeneration of polluted activated carbon by radiation techniques
2547 SO RADIATION PHYSICS AND CHEMISTRY
2548 DT Article
2549 DE regeneration; radiation; activated carbon
2550 AB In this paper, the regeneration of used activated carbon from
2551    monosodium glutamate factory was experimented using radiation and
2552    acid-alkali chemical cleaning method. Results showed that the activated
2553    carbon saturated with pollutants can be wash away easily by flushing
2554    with chemical solution prior irradiation. DSC was used to monitor the
2555    change of carbon adsorption (C) 1998 Elsevier Science Ltd. All rights
2556    reserved.
2557 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
2558    Acad Sinica, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
2559 RP Wu, MH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
2560    Peoples R China.
2561 CR BLULELY JP, 1965, CARBON, V3, P269
2562    CASE FN, 1973, 2179129, FR
2563    HERNANDEZ LA, 1976, ENVIRON SCI TECHNOL, V10, P454
2564    HOSONO M, 1993, APPL RADIAT ISOTOPES, V44, P1199
2565    KLEI HE, 1975, IEC RES REV, V14, P471
2566    KUZUYUKI C, 1981, AICHE J, V27, P20
2567    SHUBIN VN, 1980, ZH FIG KHIM, V54, P2557
2568    STRANGE JF, 1976, CARBON, V14, P345
2569    SUZUKI M, 1978, CHEM ENG SCI, V33, P271
2570 NR 9
2571 TC 2
2572 J9 RADIAT PHYS CHEM
2573 JI Radiat. Phys. Chem.
2574 PD OCT
2575 PY 1998
2576 VL 53
2577 IS 4
2578 BP 431
2579 EP 435
2580 PG 5
2581 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
2582    Science & Technology
2583 GA 100TY
2584 UT ISI:000074832500012
2585 ER
2586 
2587 PT J
2588 AU Gu, GQ
2589    Yu, KW
2590 TI Homotopy continuation approach to electrostatic boundary-value problems
2591    of nonlinear media
2592 SO COMMUNICATIONS IN THEORETICAL PHYSICS
2593 DT Article
2594 DE nonlinear media; homotopy continuation method; electrostatic
2595    boundary-value problem
2596 ID EFFECTIVE CONDUCTIVITY; DECOUPLING APPROXIMATION; COMPOSITE MEDIA;
2597    BEHAVIOR
2598 AB The homotopy continuation method is employed to solve electrostatic
2599    boundary-value problems of nonlinear media. The difficulty associated
2600    with matching the inherently nonlinear boundary conditions on the
2601    interface is overcome by the mode expansion method, by which the
2602    nonlinear partial differential equations of the original problem are
2603    transformed into an infinite set of nonlinear ordinary differential
2604    equations. In this regard, the homotopy method has to be modified to
2605    handle the nonlinear boundary conditions. As an illustration, we study
2606    two cases: (a) nonlinear inclusion in linear host and (b) linear
2607    inclusion in nonlinear host, both in two dimensions. The homotopy
2608    method is validated by comparing the results with the exact solution of
2609    case (a) and the results derived by perturbation method in case (b).
2610 C1 Shanghai Univ Sci & Technol, Coll Syst Sci & Syst Engn, Shanghai 200093, Peoples R China.
2611    Chinese Univ Hong Kong, Dept Phys, Shatin, New Territories, Hong Kong.
2612 RP Gu, GQ, Shanghai Univ Sci & Technol, Coll Syst Sci & Syst Engn,
2613    Shanghai 200093, Peoples R China.
2614 CR BARDHAN KK, 1994, SPRINGER LECT NOTES, V437, P1
2615    BERGMAN DJ, 1992, SOLID STATE PHYS, V46, P147
2616    BERGMAN DJ, 1994, PHYSICA A, V207, P1
2617    BLUMENFELD R, 1991, PHYS REV B, V44, P7378
2618    FLYTZANIS C, 1992, PROG OPTICS, V29, P2539
2619    GU GQ, 1992, PHYS REV B, V46, P4502
2620    GU GQ, 1995, J APPL PHYS, V78, P1737
2621    HAUS JW, 1989, PHYS REV A, V40, P5729
2622    LEE HC, 1995, PHYS LETT A, V197, P341
2623    LEE HC, 1995, PHYS REV B, V52, P4217
2624    LI K, 1993, NUMER ALG, V4, P167
2625    LIAO SJ, 1992, INT J NUMER METH FL, V15, P595
2626    LIAO SJ, 1992, J APPL MECH-T ASME, V59, P970
2627    LUI SH, 1995, NUMER ALGORITHMS, V10, P363
2628    PONTECASTANEDA P, 1991, J MECH PHYS SOLIDS, V39, P45
2629    STROUD D, 1988, PHYS REV B, V37, P8719
2630    STROUD D, 1989, J OPT SOC AM B, V6, P778
2631    YU KW, 1993, PHYS REV B, V47, P14150
2632    YU KW, 1993, PHYS REV B, V47, P1782
2633    YU KW, 1993, PHYS REV B, V47, P7568
2634    YU KW, 1994, PHYS LETT A, V193, P311
2635    YU KW, 1994, PHYS REV B, V50, P13327
2636    YU KW, 1996, PHYS LETT A, V210, P115
2637    ZENG XC, 1988, PHYS REV B, V38, P10970
2638 NR 24
2639 TC 1
2640 SN 0253-6102
2641 J9 COMMUN THEOR PHYS
2642 JI Commun. Theor. Phys.
2643 PD JUN 15
2644 PY 1998
2645 VL 29
2646 IS 4
2647 BP 523
2648 EP 530
2649 PG 8
2650 SC Physics, Multidisciplinary
2651 GA 100WG
2652 UT ISI:000074837900008
2653 ER
2654 
2655 PT J
2656 AU Zhang, QL
2657    Qiu, XJ
2658 TI A chiral breaking field theory for giant multipole states of nuclei
2659 SO COMMUNICATIONS IN THEORETICAL PHYSICS
2660 DT Article
2661 DE giant multipole states of nuclei; chiral breaking field theory
2662 ID THOMAS-FERMI APPROXIMATION; QUADRUPOLE STATES; MATTER; MONOPOLE
2663 AB The isoscalar giant monopole and quadrupole states of finite nuclei are
2664    studied in a relativistic chiral breaking held theory by making use of
2665    local Lorentz-boost and scaling method. The nuclear surface effect and
2666    the density distribution are treated in the relativistic Thomas-Fermi
2667    approximation. The excitation energies of the giant resonances are
2668    self-consistently calculated. The numerical results for the excitation
2669    energies are in agreement with experimental data for all nuclei.
2670 C1 Ningxia Univ, Dept Phys, Yinchuan 750021, Peoples R China.
2671    Acad Sinica, Inst Nucl Res, Shanghai 201800, Peoples R China.
2672    Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
2673 RP Zhang, QL, Ningxia Univ, Dept Phys, Yinchuan 750021, Peoples R China.
2674 CR BOGUTA J, 1977, NUCL PHYS A, V292, P413
2675    BOGUTA J, 1983, PHYS LETT B, V120, P34
2676    CLARK BC, 1983, PHYS REV LETT, V51, P1803
2677    HOROWITZ CJ, 1987, NUCL PHYS A, V464, P613
2678    NISHIZAKI S, 1987, NUCL PHYS A, V462, P687
2679    RING P, 1980, NUCL MANY BODY PROBL, P528
2680    SEROT BD, 1986, ADV NUCL PHYS, V16
2681    SERR FE, 1978, PHYS LETT B, V79, P10
2682    SUZUKI T, 1980, PROG THEOR PHYS, V64, P1627
2683    WALECKA JD, 1974, ANN PHYS-NEW YORK, V83, P491
2684    ZHANG QL, 1992, HIGH ENERG PHYS NUCL, V16, P615
2685    ZHU CY, 1990, HIGH ENERG PHYS NUCL, V14, P76
2686    ZHU CY, 1991, COMMUN THEOR PHYS, V15, P27
2687    ZHU CY, 1991, J PHYS G, V17, L11
2688 NR 14
2689 TC 0
2690 SN 0253-6102
2691 J9 COMMUN THEOR PHYS
2692 JI Commun. Theor. Phys.
2693 PD JUN 15
2694 PY 1998
2695 VL 29
2696 IS 4
2697 BP 563
2698 EP 570
2699 PG 8
2700 SC Physics, Multidisciplinary
2701 GA 100WG
2702 UT ISI:000074837900016
2703 ER
2704 
2705 PT J
2706 AU Liu, ZG
2707    Tang, CJ
2708    Zhao, WM
2709    Zhang, ZL
2710    Jiang, XY
2711    Xu, SH
2712    Nazare, MH
2713 TI Effects of microcavities on the spontaneous emission of organic
2714    light-emitting diodes with ZnO : Al as the anode
2715 SO JOURNAL OF PHYSICS-CONDENSED MATTER
2716 DT Article
2717 ID ELECTROLUMINESCENT DIODES; PLANAR MICROCAVITY; DEVICES; SEMICONDUCTORS;
2718    VINYLENE); PHYSICS
2719 AB Organic light-emitting diodes (LED) with a microcavity structure and an
2720    aluminium-doped zinc oxide ZnO:Al (AZO) anode have been fabricated.
2721    Effects of microcavities on the spontaneous emission of the organic
2722    LED, such as spectral narrowing, intensity enhancement and angle
2723    dependence of the emission, have been observed. Different emission
2724    colours have been obtained by changing the thickness of the AZO layer
2725    and that of a TiO2 filler layer. The wavelengths of the cavity modes
2726    can be explained on the basis of the calculated total optical thickness
2727    of the individual cavities.
2728 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
2729    Univ Aveiro, Dept Phys, P-3810 Aveiro, Portugal.
2730 RP Liu, ZG, Univ Aveiro, Dept Phys, P-3810 Aveiro, Portugal.
2731 CR BECKER H, 1997, J APPL PHYS, V81, P2825
2732    CHANG KY, 1998, APPL PHYS LETT, V72, P335
2733    CIMROVA V, 1996, APPL PHYS LETT, V69, P608
2734    CIMROVA V, 1996, J APPL PHYS, V79, P3299
2735    DODABALAPUR A, 1994, APPL PHYS LETT, V65, P2308
2736    DODABALAPUR A, 1994, ELECTRON LETT, V30, P1000
2737    DODABALAPUR A, 1996, J APPL PHYS, V80, P6954
2738    DUTRA SM, 1996, PHYS REV A, V53, P3587
2739    EBINA K, 1995, APPL PHYS LETT, V66, P2783
2740    FISHER TA, 1995, APPL PHYS LETT, V67, P1355
2741    HUNT NEJ, 1992, APPL PHYS LETT, V61, P2287
2742    JORDAN RH, 1996, APPL PHYS LETT, V69, P1997
2743    LEMMER U, 1995, APPL PHYS LETT, V66, P1301
2744    LEMMER U, 1996, APPL PHYS LETT, V68, P3007
2745    LIDZEY DG, 1997, APPL PHYS LETT, V71, P744
2746    LIU ZG, 1996, J PHYS-CONDENS MAT, V8, P3221
2747    MINAMI T, 1985, JPN J APPL PHYS, V24, L605
2748    RIGNEAULT H, 1996, PHYS REV A, V54, P2356
2749    TAKADA N, 1993, APPL PHYS LETT, V63, P2032
2750    TANG CW, 1995, EL SOC FALL M PRINC, P1215
2751    TESSLER N, 1996, NATURE, V382, P695
2752    TESSLER N, 1997, APPL PHYS LETT, V70, P566
2753    TSUTSUI T, 1994, APPL PHYS LETT, V65, P1868
2754    YAMAMOTO Y, 1993, PHYS TODAY, V46, P66
2755    YOKOYAMA H, 1992, SCIENCE, V256, P66
2756    ZHANG B, 1996, SOLID STATE COMMUN, V97, P445
2757 NR 26
2758 TC 5
2759 SN 0953-8984
2760 J9 J PHYS-CONDENS MATTER
2761 JI J. Phys.-Condes. Matter
2762 PD JUL 6
2763 PY 1998
2764 VL 10
2765 IS 26
2766 BP 6019
2767 EP 6025
2768 PG 7
2769 SC Physics, Condensed Matter
2770 GA ZZ898
2771 UT ISI:000074780600025
2772 ER
2773 
2774 PT J
2775 AU Chen, J
2776    Nho, YC
2777    Park, JS
2778 TI Grafting polymerization of acrylic acid onto preirradiated
2779    polypropylene fabric
2780 SO RADIATION PHYSICS AND CHEMISTRY
2781 DT Article
2782 ID CATIONIC SALTS; POLYETHYLENE; STYRENE
2783 AB Acrylic acid (AAc) was grafted onto polypropylene (PP) fabric by a
2784    preirradiation method using a Co-60 gamma ray. The effect of absorbed
2785    dose, AAc concentration, reaction temperature, reaction time, storage
2786    time, as well as the effect of ferrous ion and sulfuric acid on the
2787    degree of grafting were determined. It has been shown that the
2788    synergistic effect of sulfuric acid with the ferrous sulfate can not
2789    only increase the grafting yield, but also decrease the apparent
2790    activation energy for the grafting. It leads to the possibility of
2791    getting a particular grafting yield at a lower absorbed dose. In this
2792    experiment, It has also been shown that the grafting activity of
2793    preirradiated PP fabric in AAc aqueous solution could be well kept at
2794    room temperature for a long period.
2795 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
2796    Korea Atom Energy Res Inst, Radiat Proc Project, Taejon 305600, South Korea.
2797 RP Chen, J, Shanghai Univ, Shanghai Appl Radiat Inst, Jiading Campus,
2798    Shanghai 201800, Peoples R China.
2799 CR CHAPIRO A, 1962, RAD CHEM POLYM SYSTE, P690
2800    DUNN TS, 1979, RADIAT PHYS CHEM, V14, P625
2801    GARGAN K, 1990, RADIAT PHYS CHEM, V36, P757
2802    GARNETT JL, 1980, J MACROMOL SCI CHEM, V14, P87
2803    ISHIGAKI I, 1982, J APPL POLYM SCI, V27, P1043
2804    NHO YC, 1992, J POLYM SCI POL CHEM, V30, P1219
2805    NHO YC, 1993, J POLYM SCI POL CHEM, V31, P1621
2806    NHO YC, 1995, 5 INT C RAD CUR DEC, P389
2807    ONELL T, 1972, J POLYM SCI POL CHEM, V10, P569
2808 NR 9
2809 TC 14
2810 J9 RADIAT PHYS CHEM
2811 JI Radiat. Phys. Chem.
2812 PD JUN
2813 PY 1998
2814 VL 52
2815 IS 1-6
2816 BP 201
2817 EP 206
2818 PG 6
2819 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
2820    Science & Technology
2821 GA ZX723
2822 UT ISI:000074548000041
2823 ER
2824 
2825 PT J
2826 AU Chen, GS
2827    Wang, Q
2828 TI Mode coupling in single-mode helical fibres under perturbations
2829 SO OPTICAL AND QUANTUM ELECTRONICS
2830 DT Article
2831 ID OPTICAL FIBERS
2832 AB The mode coupling in a helical fibre with a circular cross-section
2833    undergoing perturbations is investigated in the Serret-Frenet frame.
2834    The coupled-mode equations have been derived and are compared with the
2835    conventional ones. Applying the coupled-mode equations to a helical
2836    fibre with an elliptical core deformation, we obtained, for the first
2837    time, a rigorous analysis of the transmission characteristics of the
2838    fibre. The numerical examples show that the mode ellipticity and
2839    elliptical birefringence increase as the core ellipticity increases and
2840    also vary as the pitch or the core offset change.
2841 C1 Zhongshan Univ, Dept Elect, Guangzhou 510275, Guangdong Prov, Peoples R China.
2842    Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
2843 RP Chen, GS, Zhongshan Univ, Dept Elect, Guangzhou 510275, Guangdong Prov,
2844    Peoples R China.
2845 CR BIRCH RD, 1987, ELECTRON LETT, V23, P50
2846    CHEN GS, UNPUB OPT QUANTUM EL
2847    FANG XS, 1985, IEEE T MICROW THEORY, V33, P1150
2848    LEWIN L, 1977, ELECTROMAGNETIC WAVE
2849    PAPP A, 1977, APPL OPTICS, V16, P1315
2850    QIAN JR, 1988, IEE PROC-J, V135, P178
2851    SAKAI JI, 1981, IEEE J QUANTUM ELECT, V17, P1041
2852    TANG CH, 1970, I ELECT ELECTRON ENG, V18, P69
2853 NR 8
2854 TC 0
2855 SN 0306-8919
2856 J9 OPT QUANT ELECTRON
2857 JI Opt. Quantum Electron.
2858 PD MAR
2859 PY 1998
2860 VL 30
2861 IS 3
2862 BP 209
2863 EP 216
2864 PG 8
2865 SC Engineering, Electrical & Electronic; Optics
2866 GA ZY605
2867 UT ISI:000074640400008
2868 ER
2869 
2870 PT J
2871 AU Wang, HX
2872    Dai, YL
2873 TI Population-size-dependent branching processes in Markovian random
2874    environments
2875 SO CHINESE SCIENCE BULLETIN
2876 DT Article
2877 DE Markov chains in random environments; stochastic population models;
2878    branching processes
2879 ID PROBABILITIES; CHAINS
2880 AB A branching model \Z(n)\(n greater than or equal to 0) is considered
2881    where the offspring distribution of the population's evolution is not
2882    only dependent on the population size, but also controlled by a
2883    Markovian environmental process {xi(n)}(n greater than or equal to 0).
2884    For this model, asymptotic behaviour is studied such as
2885    [GRAPHICS]
2886    Z(n) and
2887    [GRAPHICS]
2888    Z(n)/m(n) in the case that the mean m(k,0) of the offspring
2889    distribution converges to m > 1 as the population size k grows to
2890    infinity. In the case that {xi(n)}(n greater than or equal to 0) is an
2891    irreducible positive recurrent Markov chain, certain extinction (i. e.
2892    P(Z(n) = 0 for some n) = 1) and noncertain extinction (i. e. P(Z(n) = 0
2893    for some n) < l) are studied.
2894 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
2895    Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China.
2896 RP Wang, HX, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
2897 CR ATHREYA KB, 1971, ANN MATH STAT, V42, P1499
2898    COGBURN R, 1984, Z WAHRSCHEINLICHKEIT, V66, P109
2899    KLEBANER FC, 1983, J APPL PROBAB, V20, P242
2900    KLEBANER FC, 1984, ADV APPL PROBAB, V16, P30
2901    OREY S, 1991, ANN PROBAB, V19, P907
2902    VIAUD DPL, 1994, J APPL PROBAB, V31, P22
2903 NR 6
2904 TC 1
2905 SN 1001-6538
2906 J9 CHIN SCI BULL
2907 JI Chin. Sci. Bull.
2908 PD APR
2909 PY 1998
2910 VL 43
2911 IS 8
2912 BP 635
2913 EP 638
2914 PG 4
2915 SC Multidisciplinary Sciences
2916 GA ZX142
2917 UT ISI:000074483600005
2918 ER
2919 
2920 PT J
2921 AU Huang, DB
2922    Zhao, XH
2923    Liu, ZR
2924 TI Reduction of the vector fields preserving n-form and the study of their
2925    interrelated problems
2926 SO CHINESE SCIENCE BULLETIN
2927 DT Letter
2928 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
2929    Yunnan Univ, Dept Math, Kunming 650091, Peoples R China.
2930 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
2931 CR CHENG CQ, 1990, CELESTIAL MECH, V47, P275
2932    MARSDEN J, 1974, REP MATH PHYS, V5, P121
2933    MEZIC I, 1994, J NONLINEAR SCI, V4, P157
2934    QUISPEL GRW, 1995, PHYS LETT A, V206, P26
2935    XIA ZH, 1992, ERGOD THEOR DYN SYST, V12, P621
2936 NR 5
2937 TC 0
2938 SN 1001-6538
2939 J9 CHIN SCI BULL
2940 JI Chin. Sci. Bull.
2941 PD MAY
2942 PY 1998
2943 VL 43
2944 IS 9
2945 BP 788
2946 EP 789
2947 PG 2
2948 SC Multidisciplinary Sciences
2949 GA ZX144
2950 UT ISI:000074483800023
2951 ER
2952 
2953 PT J
2954 AU Liu, GL
2955 TI Variational principles for 1-D unsteady compressible flow in a
2956    deforming tube of variable cross section
2957 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
2958 DT Article
2959 AB The 1-D unsteady compressible, homentropic, inviscid now in a flexible
2960    tube of varying cross-sectional area A(x,t) is formulated by two
2961    variational principle (VP) families in terms of the potential-and
2962    path-functions respectively. In addition, a novel approach to dealing
2963    with the initial/final conditions is suggested in order to be able to
2964    incorporate physical initial conditions into the VP and to exclude
2965    final conditions from the VP so as to ensure the properly-posedness of
2966    the hyperbolic problem under study. Thus, a sound theoretical basis for
2967    the finite element analysis of unsteady now is founded.
2968 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
2969    Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
2970 RP Liu, GL, Shanghai Univ, Shanghai 200072, Peoples R China.
2971 CR BENSON RS, 1982, THERMODYNAMICS GAS D, V1
2972    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
2973    LIU GL, 1990, P 1 INT S AER INT FL, P128
2974    LIU GL, 1993, P 2 INT C FLUID MECH, P359
2975    RAO SS, 1982, FINITE ELEMENT METHO
2976    SHAPIRO AH, 1953, DYNAMICS THERMODYNAM, V2, CH23
2977 NR 6
2978 TC 3
2979 SN 0334-0082
2980 J9 INT J TURBO JET ENGINES
2981 JI Int. J. Turbo. Jet-Engines
2982 PY 1998
2983 VL 15
2984 IS 1
2985 BP 1
2986 EP 5
2987 PG 5
2988 SC Engineering, Aerospace
2989 GA ZT828
2990 UT ISI:000074131800001
2991 ER
2992 
2993 PT J
2994 AU Guo, BQ
2995    Cao, WM
2996 TI Domain decomposition method for the h-p version finite element method
2997 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
2998 DT Article
2999 ID ELLIPTIC PROBLEMS; 3 DIMENSIONS; ITERATIVE METHODS; 2 DIMENSIONS;
3000    PRECONDITIONER
3001 AB Domain decomposition method for the h-p version of the finite element
3002    method in two and three dimensions are discussed. Using the framework
3003    of additive Schwarz method, various iterative methods are described,
3004    with their condition numbers estimated. Further, to reduce the cost for
3005    solving the sub-problems on element interfaces, different inexact
3006    interface solvers are proposed. The effects on the overall condition
3007    number, as well as their efficient implementation, are analyzed. (C)
3008    1998 Elsevier Science S.A.
3009 C1 Univ Manitoba, Dept Appl Math, Winnipeg, MB R3T 2N2, Canada.
3010    Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
3011 RP Guo, BQ, Univ Manitoba, Dept Appl Math, Winnipeg, MB R3T 2N2, Canada.
3012 CR AINSWORTH M, 1996, SIAM J NUMER ANAL, V33, P1358
3013    BABUSKA I, 1988, SIAM J NUMER ANAL, V25, P837
3014    BABUSKA I, 1989, INT J NUMER METH ENG, V28, P1891
3015    BABUSKA I, 1991, SIAM J NUMER ANAL, V28, P624
3016    BJORSTAD PE, 1986, SIAM J NUMER ANAL, V23, P1097
3017    BRAMBLE J, 1986, MATH COMPUT, V175, P103
3018    BRAMBLE JH, 1989, MATH COMPUT, V53, P1
3019    CANUTO C, 1987, SPECTRAL METHODS FLU
3020    CAO WM, IN PRESS SIAM J SCI
3021    CASARIN M, 1995, 704 NEW YORK U COUR
3022    CIARLET PG, 1978, FINITE ELEMENT METHO
3023    DON WS, 1994, SIAM J NUMER ANAL, V31, P1519
3024    DRUJA M, 1990, P 3 INT S DOM DEC ME
3025    DRYJA M, 1987, 339 NEW YORK U COUR
3026    DRYJA M, 1989, ITERATIVE METHODS LA, P273
3027    DRYJA M, 1994, SIAM J NUMER ANAL, V31, P1662
3028    GUO B, 1986, COMPUT MECH, V1, P203
3029    GUO B, 1986, COMPUT MECH, V1, P21
3030    GUO BQ, IN PRESS SIAM J SCI
3031    GUO BQ, 1996, NUMER MATH, V75, P59
3032    GUO BQ, 1997, P ROY SOC EDINB A 1, V127, P77
3033    GUO BQ, 1997, P ROY SOC EDINB A 3, V127, P517
3034    LIONS JL, 1972, NONHOMOGENEOUS BOUND, V1
3035    LIONS PL, 1988, P 1 INT S DOM DEC ME
3036    MANDEL J, 1990, COMPUT METHOD APPL M, V80, P117
3037    MANDEL J, 1990, INT J NUMER METH ENG, V29, P1095
3038    ODEN JT, 1994, 9411 TICAM
3039    ODEN JT, 1994, CONT MATH, V180, P295
3040    PAVARINO LF, 1994, IN PRESS COMPUTERS M
3041    PAVARINO LF, 1996, SIAM J NUMER ANAL, V33, P1303
3042    SZABO B, 1990, FINITE ELEMETN ANAL
3043    WDLUND OB, 1988, P 1 INT S DOM DEC ME
3044    WIDLUND OB, 1989, P 2 INT S DOM DEC ME
3045    XU JC, 1992, SIAM REV, V34, P581
3046 NR 34
3047 TC 3
3048 SN 0045-7825
3049 J9 COMPUT METHOD APPL MECH ENG
3050 JI Comput. Meth. Appl. Mech. Eng.
3051 PD MAY 11
3052 PY 1998
3053 VL 157
3054 IS 3-4
3055 BP 425
3056 EP 440
3057 PG 16
3058 SC Computer Science, Interdisciplinary Applications; Engineering,
3059    Mechanical; Mechanics
3060 GA ZT934
3061 UT ISI:000074142800018
3062 ER
3063 
3064 PT J
3065 AU Bai, ZZ
3066    Wang, DR
3067    Evans, DJ
3068 TI A class of asynchronous matrix multi-splitting multi-parameter
3069    relaxation iterations
3070 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
3071 DT Article
3072 DE system of linear equations; asynchronous iteration; matrix
3073    multisplitting; relaxation; convergence
3074 ID MULTISPLITTING RELAXED ITERATIONS; PARALLEL; CONVERGENCE; ALGORITHM;
3075    EQUATIONS; MODELS
3076 AB A class of asynchronous matrix multi-splitting multi-parameter
3077    relaxation methods, including the asynchronous matrix multisplitting
3078    SAOR, SSOR and SGS methods as well. as the known asynchronous matrix
3079    multisplitting AOR, SOR and GS methods, etc., is proposed for solving
3080    the large sparse systems of linear equations by making use of the
3081    principle of sufficiently using the delayed information. These new
3082    methods can greatly execute the parallel computational efficiency of
3083    the MIMD-systems, and are shown to be convergent when the coefficient
3084    matrices are H-matrices. Moreover, necessary and sufficient conditions
3085    ensuring the convergence of these methods are concluded for the case
3086    that the coefficient matrices are L-matrices.
3087 C1 Chinese Acad Sci, ICMSEC, Beijing 100080, Peoples R China.
3088    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
3089    Loughborough Univ Technol, Dept Comp Studies, Loughborough LE11 3TU, Leics, England.
3090 CR BAI ZZ, 1993, CHINESE J ENG MATH, V10, P107
3091    BAI ZZ, 1993, J NATU SCI HEILONGJI, V10, P1
3092    BAI ZZ, 1993, NUMER MATH J CHINESE, V2, P87
3093    BAI ZZ, 1993, THESIS SHANGHAI U SC
3094    BAI ZZ, 1994, APPL MATH JCU B, V9, P189
3095    BAI ZZ, 1994, CHINESE J ENG MATH, V11, P99
3096    BAI ZZ, 1994, J UEST CHINA, V23, P207
3097    BAI ZZ, 1994, NUMER MATH J CHINESE, V16, P107
3098    BAI ZZ, 1995, APPL MATH JCU A, V10, P133
3099    BAI ZZ, 1995, COMMUN NUMER METH EN, V11, P363
3100    BAI ZZ, 1995, INT J COMPUT MATH, V55, P223
3101    BAI ZZ, 1995, J COMPUT MATH, V13, P369
3102    BAI ZZ, 1995, J FUDAN U, V34, P139
3103    BAI ZZ, 1995, J SHANGHAI TEACHERS, V24, P13
3104    BAI ZZ, 1995, NUMER MATH J CHINESE, V17, P127
3105    BAI ZZ, 1995, PARALLEL COMPUT, V21, P565
3106    BRU R, 1988, LINEAR ALGEBRA APPL, V103, P175
3107    EVANS DJ, 1991, PARALLEL COMPUT, V17, P165
3108    EVANS DJ, 1992, INT J COMPUT MATH, V43, P173
3109    FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141
3110    NEUMANN M, 1987, LINEAR ALGEBRA APPL, V88, P559
3111    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
3112    VARGA RS, 1961, MATRIX ITERATIVE ANA
3113    WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473
3114    WANG DR, 1994, INT J COMPUT MATH, V54, P57
3115    WANG DR, 1994, P 92 SHANGH INT NUME
3116    WANG DR, 1994, PARALLEL ALGORITHMS, V2, P173
3117    WANG DR, 1994, PARALLEL ALGORITHMS, V2, P209
3118    WHITE RE, 1989, SIAM J MATRIX ANAL A, V10, P481
3119 NR 29
3120 TC 3
3121 SN 0254-9409
3122 J9 J COMPUT MATH
3123 JI J. Comput. Math.
3124 PD MAY
3125 PY 1998
3126 VL 16
3127 IS 3
3128 BP 221
3129 EP 238
3130 PG 18
3131 SC Mathematics, Applied; Mathematics
3132 GA ZQ797
3133 UT ISI:000073904000004
3134 ER
3135 
3136 PT J
3137 AU Wang, J
3138    Fiebig, M
3139 TI Absolute measurements of the thermal diffusivity of aqueous solutions
3140    of sodium chloride
3141 SO INTERNATIONAL JOURNAL OF THERMOPHYSICS
3142 DT Article
3143 DE aqueous solution; diffraction; laser-induced thermal grating; sodium
3144    chloride; thermal conductivity; thermal diffusivity
3145 ID GRATING TECHNIQUE; CONDUCTIVITY; LIQUIDS; PRESSURES; NACL
3146 AB The laser-induced thermal grating technique was used to determine the
3147    thermal diffusivity of aqueous solutions of sodium chloride. In
3148    comparison with conventional measurement methods, this noninvasive
3149    optical technique has the advantage that no sensors need to be inserted
3150    in the sample. Therefore, this technique is especially suitable for the
3151    measurement of electrically conducting and corrosive liquids. The
3152    aqueous solutions studied have weight fractions of 5, 10, 15, and 20%
3153    sodium chloride. Measurement results for the thermal diffusivity are
3154    presented for aqueous solutions of sodium chloride in the temperature
3155    range 293 to 373 K at atmospheric pressure.
3156 C1 Ruhr Univ Bochum, Inst Thermo & Fluiddynam, D-44780 Bochum, Germany.
3157    Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
3158 RP Fiebig, M, Ruhr Univ Bochum, Inst Thermo & Fluiddynam, D-44780 Bochum,
3159    Germany.
3160 CR 1991, VDI WARMEATLAS
3161    ABDULAGATOV IM, 1994, INT J THERMOPHYS, V15, P401
3162    ASSAEL MJ, 1991, EXPT THERMODYNAMICS, V3, P184
3163    BLANKE W, 1989, THERMOPHYSIKALISCHE, P112
3164    DAVIS PS, 1971, J CHEM PHYS, V55, P4776
3165    ELDAROV VS, 1986, ZH FIZ KHIM, V60, P603
3166    GANIEV Y, 1990, P 11 INT C PROP WAT, P132
3167    KAPUSTINSKII AF, 1955, ZH FIZ KHIM, V29, P2222
3168    MAGOMEDOV UB, 1989, GEOTHERMICS, P103
3169    NAGASAKA Y, 1983, BER BUNSEN PHYS CHEM, V87, P859
3170    NAGASAKA Y, 1984, P 10 INT C PROP STEA, V2, P203
3171    NAGASAKA Y, 1988, REV SCI INSTRUM, V59, P1156
3172    PERRY RH, 1984, PERRYS CHEM ENG HDB
3173    PRESS WH, 1992, NUMERICAL RECIPES FO, P678
3174    RAMIRES MLV, 1994, J CHEM ENG DATA, V39, P186
3175    RIEDEL L, 1951, CHEM ING TECHNIK, V3, P59
3176    URBACH W, 1978, MOL CRYST LIQ CRYST, V46, P209
3177    VARGAFTIK NB, 1956, TEPLOENERGETIKA, V7, P11
3178    WANG J, 1995, INT J THERMOPHYS, V16, P1353
3179    WANG J, 1995, MESSUNG TEMPERATURLE, P48
3180    WANG J, 1996, EXP THERM FLUID SCI, V13, P38
3181    WANG J, 1996, INT J THERMOPHYS, V17, P1229
3182    WANG J, 1996, INT J THERMOPHYS, V17, P329
3183    WU G, 1988, INT J HEAT MASS TRAN, V31, P1471
3184    WU G, 1993, FLUID PHASE EQUILIBR, V88, P239
3185    YUSUFOVA VD, 1975, INZH FIZ ZH, V29, P600
3186 NR 26
3187 TC 2
3188 SN 0195-928X
3189 J9 INT J THERMOPHYS
3190 JI Int. J. Thermophys.
3191 PD JAN
3192 PY 1998
3193 VL 19
3194 IS 1
3195 BP 15
3196 EP 25
3197 PG 11
3198 SC Chemistry, Physical; Physics, Applied; Mechanics; Thermodynamics
3199 GA ZN249
3200 UT ISI:000073627000003
3201 ER
3202 
3203 PT J
3204 AU Liu, RH
3205    Tan, WH
3206 TI Nonlinear control of chaos
3207 SO CHINESE PHYSICS LETTERS
3208 DT Article
3209 ID SYSTEMS
3210 AB The nonlinear and the exact control of chaos is deduced. Using these
3211    methods we achieve a simultaneous and instantaneous control of the
3212    scheduled unstable 2(k)p points for the logistic and the Henon map. The
3213    derivatives needed in the nonlinear method have been evaluated
3214    experimentally from the time series x(n), without the preknowledge of
3215    the function f(x). The difficulty confronted in the optimum control may
3216    be overcome by introducing the nonlinear control.
3217 C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
3218    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
3219 RP Liu, RH, Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai
3220    201800, Peoples R China.
3221 CR HUBERMAN BA, 1990, IEEE T CIRCUITS SYST, V37, P547
3222    HUNT ER, 1991, PHYS REV LETT, V67, P1953
3223    JACKSON EA, 1990, PHYS LETT A, V151, P478
3224    LIMA R, 1990, PHYS REV A, V41, P726
3225    OTT E, 1990, PHYS REV LETT, V64, P1196
3226    PYRAGAS K, 1992, PHYS LETT A, V170, P423
3227    TONG PQ, 1995, ACTA PHYS SINICA, V44, P169
3228    WANSUN NI, 1994, CHINESE PHYS LETT, V11, P325
3229 NR 8
3230 TC 4
3231 SN 0256-307X
3232 J9 CHIN PHYS LETT
3233 JI Chin. Phys. Lett.
3234 PY 1998
3235 VL 15
3236 IS 4
3237 BP 249
3238 EP 251
3239 PG 3
3240 SC Physics, Multidisciplinary
3241 GA ZN653
3242 UT ISI:000073668200006
3243 ER
3244 
3245 PT J
3246 AU Cheng, XY
3247    Wan, XJ
3248 TI Hydrogen diffusivity in a Fe3Al-based alloy
3249 SO SCRIPTA MATERIALIA
3250 DT Article
3251 ID ROOM-TEMPERATURE DUCTILITY; UNIDIRECTIONAL SOLIDIFICATION;
3252    ENVIRONMENTAL EMBRITTLEMENT; NI3AL; CO3TI; BORON
3253 C1 Shanghai Univ, Inst Met & Mat Sci, Shanghai 200072, Peoples R China.
3254 RP Cheng, XY, Shanghai Univ, Inst Met & Mat Sci, Shanghai 200072, Peoples
3255    R China.
3256 CR CASTAGNA A, 1992, SCRIPTA METALL, V26, P273
3257    GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37
3258    HIRANO T, 1991, SCRIPTA METALL MATER, V25, P1747
3259    LIU CT, 1989, SCRIPTA METALL, V23, P875
3260    LIU CT, 1990, SCRIPTA METALL MATER, V24, P385
3261    MCKAMEY CG, 1993, SCRIPTA METALL MATER, V28, P1173
3262    NI JS, 1994, J SHANGHAI U TECHNOL, V15, P81
3263    NISHIMURA C, 1993, SCRIPTA METALL MATER, V29, P1205
3264    SANDERS PG, 1991, SCRIPTA METALL MATER, V25, P2365
3265    TAKASUGI T, 1986, ACTA METALL, V34, P607
3266    TAKASUGI T, 1993, SCRIPTA METALL MATER, V29, P1587
3267    WAN X, 1994, J MATER SCI TECHNOL, V10, P39
3268    WAN XJ, 1995, ACTA METALL SINICA B, V31, B183
3269    ZHANG DZ, 1993, SCRIPTA METALL MATER, V29, P901
3270    ZHU JH, 1994, ACTA METALL SINICA, V30, A139
3271    ZHU JH, 1994, J SHANGHAI U TECHNOL, V15, P81
3272 NR 16
3273 TC 4
3274 SN 1359-6462
3275 J9 SCRIPTA MATER
3276 JI Scr. Mater.
3277 PD APR 14
3278 PY 1998
3279 VL 38
3280 IS 10
3281 BP 1505
3282 EP 1509
3283 PG 5
3284 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
3285    Engineering
3286 GA ZM587
3287 UT ISI:000073555100005
3288 ER
3289 
3290 PT J
3291 AU Feng, F
3292    Ping, XY
3293    Zhou, ZQ
3294    Geng, MM
3295    Han, JW
3296    Northwood, DO
3297 TI The relationship between equilibrium potential during discharge and
3298    hydrogen concentration in a metal hydride electrode
3299 SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
3300 DT Article
3301 ID BATTERY; ALLOYS; POWDER; MODEL
3302 AB Based on the static equilibrium of electrochemical reaction kinetics,
3303    i.e, the same static reaction current density of forward and backward
3304    reactions, a relationship has been established between the equilibrium
3305    potential during discharge (E-e) and hydrogen concentration (C-H) in a
3306    hydride alloy (Mm(0.4)Ml(0.6)Ni(3.8)Co(0.5)Al(0.3)Mn(0.4)) at an
3307    equilibrium discharge condition. The theoretical results are in an
3308    agreement with the experimental electrochemical data in the two-phase
3309    (alpha-beta) region of the hydrogen-absorbing alloy. The enthalpy
3310    (Delta H) and entropy (Delta S), which is a function of hydrogen
3311    concentration in the electrode alloy, were obtained by fitting the
3312    curve of the equilibrium potential vs hydrogen concentration. (C) 1998
3313    International Association for Hydrogen Energy.
3314 C1 Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China.
3315    Univ Windsor, Dept Mech & Mat Engn, Windsor, ON N9B 3P4, Canada.
3316 RP Northwood, DO, Ryerson Polytech Univ, Fac Engn & Appl Sci, 350 Victoria
3317    St, Toronto, ON M5B 2K3, Canada.
3318 CR BJURSTROM H, 1987, J LESS-COMMON MET, V130, P365
3319    DRIESSEN A, 1985, Z PHYS CHEM NEUE FOL, V143, P145
3320    FUJITANI S, 1993, Z PHYS CHEM, V179, P27
3321    GENG MM, 1996, INT J HYDROGEN ENERG, V21, P887
3322    JARMAN RH, 1982, J ELECTROCHEM SOC, V129, P2276
3323    LEE SG, 1996, INT J HYDROGEN ENERG, V21, P733
3324    NOTTEN PHL, 1991, J ELECTROCHEM SOC, V138, P1877
3325    PONS M, 1994, Z PHYS CHEM, V183, P213
3326    RATNAKUMAR BV, 1996, J ELECTROCHEM SOC, V143, P2578
3327    SAKAI T, 1990, J ELECTROCHEM SOC, V137, P795
3328    SAKAI T, 1991, J LESS-COMMON MET, V1175, P172
3329    SUZUKI K, 1993, J ALLOY COMPD, V192, P173
3330    WILLEMS JJG, 1984, PHILIPS J RES S1, V39, P1
3331    YANG QM, 1994, J ELECTROCHEM SOC, V141, P2108
3332    YAYAMA H, 1985, TECHNOLOGY REPORT KY, V58, P139
3333    YE Z, 1995, J ELECTROCHEM SOC, V142, P4045
3334 NR 16
3335 TC 5
3336 SN 0360-3199
3337 J9 INT J HYDROGEN ENERG
3338 JI Int. J. Hydrog. Energy
3339 PD JUL
3340 PY 1998
3341 VL 23
3342 IS 7
3343 BP 599
3344 EP 602
3345 PG 4
3346 SC Physics, Atomic, Molecular & Chemical; Energy & Fuels; Environmental
3347    Sciences
3348 GA ZN252
3349 UT ISI:000073627300010
3350 ER
3351 
3352 PT J
3353 AU Ru, HY
3354    Min, ZK
3355 TI New upper bounds for Ramsey numbers
3356 SO EUROPEAN JOURNAL OF COMBINATORICS
3357 DT Article
3358 AB Ramsey number R(G(1),G(2)) is the smallest integer p such that for any
3359    graph G on p vertices either G contains G(1) or (G) over bar contains
3360    G(2), where (G) over bar denotes the complement of G. Let R(m, n) =
3361    R(K-m, K-n). Some new upper bound formulas are obtained for
3362    R(G(1),G(2)) and R(m, n), and we derive some new upper bounds for
3363    Ramsey numbers here. (C) 1998 Academic Press Limited.
3364 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
3365    Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China.
3366 CR BONDY JA, 1976, GRAPH THEORY APPL
3367    RADZISZOWSKI SP, 1996, ELECT J COMBIN, V1, P1
3368    RU HY, 1997, JCMCC
3369    WALKER K, 1968, J COMB THEORY, V5, P238
3370 NR 4
3371 TC 1
3372 SN 0195-6698
3373 J9 EUR J COMBINATORIC
3374 JI Eur. J. Comb.
3375 PD APR
3376 PY 1998
3377 VL 19
3378 IS 3
3379 BP 391
3380 EP 394
3381 PG 4
3382 SC Mathematics
3383 GA ZM774
3384 UT ISI:000073574500012
3385 ER
3386 
3387 PT J
3388 AU Guan, HW
3389    Ip, HHS
3390    Zhang, YC
3391 TI Java-based approaches for accessing databases on the Internet and a
3392    JDBC-ODBC implementation
3393 SO COMPUTING & CONTROL ENGINEERING JOURNAL
3394 DT Article
3395 AB An important area of Java development is to create Java-based software
3396    or tools with the capability of accessing databases over the Internet.
3397    In this article JDBC and its various properties are explored. Several
3398    Java-based technical approaches for accessing databases on the Internet
3399    are proposed and investigated in detail. A design and implementation of
3400    the Java software for accessing databases on the Internet is proposed
3401    and described, where the design scheme of an interactive applet by
3402    using Java JDBC programming is proposed and investigated, the main JDBC
3403    classes used in the Java program and the relationship between them are
3404    discussed, the implementation of the software is provided, and some
3405    instances for running the Java program are given. This Java software
3406    provides an interactive and user-friendly interface on the browser
3407    which supports Java JDK 1.1 or later and the software has the
3408    capability for the connection, SQL access, retrieval and display of a
3409    database on the Internet.
3410 C1 Shanghai Univ, Dept Comp Engn, Shanghai 200072, Peoples R China.
3411    IPSI, GMD, Darmstadt, Germany.
3412    City Univ Hong Kong, Dept Comp Sci, Hong Kong, Hong Kong.
3413    Univ So Queensland, Dept Math & Comp, Toowoomba, Qld 4350, Australia.
3414 RP Guan, HW, Shanghai Univ, Dept Comp Engn, Shanghai 200072, Peoples R
3415    China.
3416 CR GOSLING J, 1996, JAVA LANGUAGE SPECIF
3417    HELLER P, 1997, JAVA 1 1 DEV HDB
3418    JENNINGS R, 1997, VISUAL BASIC PROGRAM, V7, P22
3419    JEPSON B, 1997, JAVA DATABASE PROGRA
3420    LINDHOLM T, 1997, JAVA VIRTUAL MACHINE
3421    URQUHART K, 1997, IEEE MICRO, V17, P11
3422 NR 6
3423 TC 1
3424 SN 0956-3385
3425 J9 COMPUTING CONTROL ENGINEER J
3426 JI Comput. Control Eng. J.
3427 PD APR
3428 PY 1998
3429 VL 9
3430 IS 2
3431 BP 71
3432 EP 78
3433 PG 8
3434 SC Automation & Control Systems
3435 GA ZM371
3436 UT ISI:000073531800005
3437 ER
3438 
3439 PT J
3440 AU Ma, HP
3441 TI Chebyshev-Legendre spectral viscosity method for nonlinear conservation
3442    laws
3443 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
3444 DT Article
3445 DE conservation laws; Chebyshev-Legendre method; spectral viscosity;
3446    convergence
3447 ID RECOVERING EXPONENTIAL ACCURACY; PIECEWISE ANALYTIC-FUNCTION; GIBBS
3448    PHENOMENON; PARTIAL SUM; CONVERGENCE; APPROXIMATIONS
3449 AB In this paper, a Chebyshev-Legendre spectral viscosity (CLSV) method is
3450    developed for nonlinear conservation laws with initial and boundary
3451    conditions. The boundary conditions are dealt with by a penalty method.
3452    The viscosity is put only on the high modes, so accuracy may be
3453    recovered by postprocessing the CLSV approximation. It is proved that
3454    the bounded solution of the CLSV method converges to the exact scalar
3455    entropy solution by compensated compactness arguments. Also, a new
3456    spectral viscosity method using the Chebyshev differential operator D =
3457    root 1-x(2) partial derivative(x) is introduced, which is a little
3458    weaker than the usual one while guaranteeing the convergence of the
3459    bounded solution of the Chebyshev Galerkin, Chebyshev collocation, or
3460    Legendre Galerkin approximation to nonlinear conservation laws. This
3461    kind of viscosity is ready to be generalized to a super viscosity
3462    version.
3463 C1 Brown Univ, Div Appl Math, Providence, RI 02912 USA.
3464    Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
3465 RP Ma, HP, Brown Univ, Div Appl Math, Providence, RI 02912 USA.
3466 CR ABARBANEL S, 1986, NUMERICAL METHODS FL, V2, P129
3467    ALPERT BK, 1991, SIAM J SCI STAT COMP, V12, P158
3468    BENNETT C, 1988, INTERPOLATION OPERAT
3469    BERNARDI C, 1992, J COMPUT APPL MATH, V43, P53
3470    CAI W, 1992, SIAM J NUMER ANAL, V29, P905
3471    CANUTO C, 1988, SPECTRAL METHODS FLU
3472    DON WS, 1994, SIAM J NUMER ANAL, V31, P1519
3473    FUNARO D, 1988, MATH COMPUT, V51, P599
3474    FUNARO D, 1991, MATH COMPUT, V57, P585
3475    GOTTLIEB D, 1977, SIAM CBMS, V26
3476    GOTTLIEB D, 1985, PROGR SUPERCOMPUTING, P357
3477    GOTTLIEB D, 1992, J COMPUT APPL MATH, V43, P81
3478    GOTTLIEB D, 1995, MATH COMPUT, V64, P1081
3479    GOTTLIEB D, 1995, NUMER MATH, V71, P511
3480    GOTTLIEB D, 1996, SIAM J NUMER ANAL, V33, P280
3481    KABER SMO, 1991, THESIS U P M CURIE P
3482    MA HP, 1988, J COMPUT MATH, V6, P48
3483    MADAY Y, 1989, SIAM J NUMER ANAL, V26, P854
3484    MADAY Y, 1991, THESIS U P M CURIE P
3485    MADAY Y, 1993, SIAM J NUMER ANAL, V30, P321
3486    MITRINOVIC DS, 1991, INEQUALITIES INVOLVI
3487    MUCKENHOUPT B, 1969, P AM MATH SOC, V23, P306
3488    MUCKENHOUPT B, 1970, T AM MATH SOC, V147, P433
3489    REYNA LG, 1988, J SCI COMPUT, V3, P1
3490    TADMOR E, 1989, SIAM J NUMER ANAL, V26, P30
3491    TADMOR E, 1990, COMPUT METHOD APPL M, V80, P197
3492    TADMOR E, 1993, NUMERICAL METHODS FL, V4, P69
3493    TARTAR L, 1975, RES NOTES MATH 39, V4, P136
3494 NR 28
3495 TC 10
3496 SN 0036-1429
3497 J9 SIAM J NUMER ANAL
3498 JI SIAM J. Numer. Anal.
3499 PD JUN
3500 PY 1998
3501 VL 35
3502 IS 3
3503 BP 869
3504 EP 892
3505 PG 24
3506 SC Mathematics, Applied
3507 GA ZL417
3508 UT ISI:000073430800001
3509 ER
3510 
3511 PT J
3512 AU Ma, HP
3513 TI Chebyshev-Legendre super spectral viscosity method for nonlinear
3514    conservation laws
3515 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
3516 DT Article
3517 DE conservation laws; Chebyshev-Legendre method; super spectral viscosity;
3518    convergence
3519 ID RECOVERING EXPONENTIAL ACCURACY; PIECEWISE ANALYTIC-FUNCTION; GIBBS
3520    PHENOMENON; PARTIAL SUM; APPROXIMATIONS; CONVERGENCE
3521 AB In this paper, a super spectral viscosity method using the Chebyshev
3522    differential operator of high order D-s = (root 1-x(2) partial
3523    derivative(x))(s) is developed for nonlinear conservation laws. The
3524    boundary conditions are treated by a penalty method. Compared with the
3525    second-order spectral viscosity method, the super one is much weaker
3526    while still guaranteeing the convergence of the bounded solution of the
3527    Chebyshev-Galerkin, Chebyshev collocation, or Legendre-Galerkin
3528    approximations to nonlinear conservation laws, which is proved by
3529    compensated compactness arguments.
3530 C1 Brown Univ, Div Appl Math, Providence, RI 02912 USA.
3531    Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
3532 RP Ma, HP, Brown Univ, Div Appl Math, Providence, RI 02912 USA.
3533 CR ABARBANEL S, 1986, NUMERICAL METHODS FL, V2, P129
3534    CANUTO C, 1988, SPCTRAL METHODS FLUI
3535    CHEN GQ, 1993, MATH COMPUT, V61, P629
3536    DON WS, 1994, J COMPUT PHYS, V110, P103
3537    DON WS, 1994, SIAM J NUMER ANAL, V31, P1519
3538    FUNARO D, 1988, MATH COMPUT, V51, P599
3539    FUNARO D, 1991, MATH COMPUT, V57, P585
3540    GOTTLIEB D, COMMUNICATION
3541    GOTTLIEB D, 1985, PROGR SUPERCOMPUTING, P357
3542    GOTTLIEB D, 1992, J COMPUT APPL MATH, V43, P81
3543    GOTTLIEB D, 1995, MATH COMPUT, V64, P1081
3544    GOTTLIEB D, 1995, NUMER MATH, V71, P511
3545    GOTTLIEB D, 1996, SIAM J NUMER ANAL, V33, P280
3546    KWONG MK, 1991, LECT NOTES PURE APPL, V129, P91
3547    MA HP, 1998, SIAM J NUMER ANAL, V35, P901
3548    MADAY Y, 1989, SIAM J NUMER ANAL, V26, P854
3549    MADAY Y, 1993, SIAM J NUMER ANAL, V30, P321
3550    SHU CW, 1995, J SCI COMPUT, V10, P357
3551    TADMOR E, 1989, SIAM J NUMER ANAL, V26, P30
3552    TADMOR E, 1990, COMPUT METHOD APPL M, V80, P197
3553    TADMOR E, 1993, NUMERICAL METHODS FL, V4, P69
3554    TARTAR L, 1979, RES NOTES MATH, V39, P136
3555 NR 22
3556 TC 15
3557 SN 0036-1429
3558 J9 SIAM J NUMER ANAL
3559 JI SIAM J. Numer. Anal.
3560 PD JUN
3561 PY 1998
3562 VL 35
3563 IS 3
3564 BP 893
3565 EP 908
3566 PG 16
3567 SC Mathematics, Applied
3568 GA ZL417
3569 UT ISI:000073430800002
3570 ER
3571 
3572 PT J
3573 AU Chen, RD
3574    Ding, AH
3575    Bao, PY
3576    Guo, ZG
3577    Luo, HZ
3578    Sun, SF
3579    Han, R
3580    Xu, SP
3581 TI Chemoprevention of cancer of uterine cervix: A study on chemoprevention
3582    of Retinamide II from cervical precancerous lesions
3583 SO JOURNAL OF CELLULAR BIOCHEMISTRY
3584 DT Article
3585 DE chemoprevention; precancerous lesions; uterine cervix Retinamide II
3586    (RII)
3587 AB Dysplasia of the uterine cervix is a recognized precancerous condition.
3588    Because of the observed ability of retinoids to suppress various cell
3589    lines in vitro, a number of clinical studies have examined tie effect
3590    these agents have on cervical dysplasia, with the object of developing
3591    a means of chemoprevention of cervical malignancies in women at risk.
3592    Three cervical cancer chemoprevention trials with Retinamide II (RII)
3593    have been conducted at the Cancer Institute, Chinese Academy of Medical
3594    Sciences, Beijing, China.
3595    A pilot study used RII to intervene in cases of precancerous cervical
3596    dysplasia. Twenty-seven women with mild, moderate, or servere cervical
3597    dysplasia, pathologically confirmed, were treated by RII suppositories,
3598    10 mg QD, given intravaginally for 6 months teach course lasting 3
3599    months). The results indicated that after the second course, the
3600    overall response rate was 96.29% and the complete response rate was
3601    88.89%. In general, side effects were mild. A little cervical and
3602    vaginal irritation was well tolerated. in the second double-blind
3603    study, patients with precancerous cervical lesions were randomized into
3604    two groups, one treated with RII suppository intravaginally and the
3605    other with a placebo, once daily for 50 days in two courses.
3606    Precancerous lesions in 68.76% of patients in the treatment arm
3607    disappeared, with an overall effective rate of 74.29% after two courses
3608    of treatment with RII. its curative effect was approximately that of
3609    laser beam radiation and electrocautery (P > 0.05), and differed
3610    significantly (P < 0.01) from that of traditional antiinflammatories.
3611    RII can be a major measure in prevention and treatment of cervical
3612    cancer in high-incidence areas in China. in the third trial, we are
3613    conducting a randomized double-blind study placebo controlled, in a
3614    high-incidence area of cervical cancer (Xiang-Yuan county, Shang Xi
3615    Province, China). At present, the patients are being followed up and
3616    the study will be completed after 2 years. (C) 1998 Wiley-Liss, inc.
3617 C1 Chinese Acad Med Sci, Inst Canc, Beijing 100021, Peoples R China.
3618    Shanghai Univ, Med Ctr, Shanghai Obstect Gynecol Hosp, Shanghai, Peoples R China.
3619    Hebei Med Coll, Affiliated Hosp 4, Shijiazhuang Shi, Peoples R China.
3620    Chinese Acad Med Sci, Inst Mat Med, Beijing 100050, Peoples R China.
3621 RP Chen, RD, Chinese Acad Med Sci, Inst Canc, Beijing 100021, Peoples R
3622    China.
3623 CR CAI H, 1981, ACTA PHARM SINCA, V16, P648
3624    CHEN R, 1987, CHINESE J ONCOL, V9, P348
3625    CHEN R, 1993, CHINESE J ONCOL, V15, P272
3626    CHU EW, 1965, CANCER RES, V25, P884
3627    ROBERTS AB, 1979, FED PROC, V38, P2524
3628    STAFL A, 1976, OBSTET GYNECOL, V48, P123
3629    WANG R, 1983, CHINESE J ONCOL, V15, P243
3630    XU S, 1981, ACTA PHARM SINCA, V16, P686
3631 NR 8
3632 TC 0
3633 SN 0730-2312
3634 J9 J CELL BIOCHEM
3635 JI J. Cell. Biochem.
3636 PY 1997
3637 SU Suppl. 28-29
3638 BP 140
3639 EP 143
3640 PG 4
3641 SC Biochemistry & Molecular Biology; Cell Biology
3642 GA ZL634
3643 UT ISI:000073454800016
3644 ER
3645 
3646 PT J
3647 AU Ding, R
3648    Zhu, ZY
3649    Cheng, CJ
3650 TI Boundary element method for solving dynamical response of viscoelastic
3651    thin plate (II) - Theoretical analysis
3652 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
3653 DT Article
3654 DE dynamic response; viscoelasticity; approximate boundary element method;
3655    error estimation
3656 AB In this paper, the necessary theoretical analysis for the approximation
3657    boundary element method to solve dynamical response of viscoelastic
3658    thin plate presented in [1] is discussed. The theorem of existence and
3659    uniqueness of the approximate solution and the error estimation are
3660    also obtained. Based on these conclusions, the principle for choosing
3661    the mesh size and the number of truncated terms in the fundamental
3662    solution are given. It is shown that the theoretical analysis in this
3663    paper are consistent with the numerical results in [1].
3664 C1 SW Jiaotong Univ, Mech Postdoctoral Stn, Chengdu 610031, Peoples R China.
3665    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
3666 RP Ding, R, SW Jiaotong Univ, Mech Postdoctoral Stn, Chengdu 610031,
3667    Peoples R China.
3668 CR BELLMAN R, 1966, NUMERICAL INVERSION, P624
3669    DING FY, 1995, J LANZHOU U, V31, P30
3670    DING R, 1997, APPL MATH MECH-ENGL, V18, P229
3671    RUOTSALAINEN K, 1988, NUMER MATH, V53, P229
3672    ZHU JL, 1987, BOUNDARY ELEMENT ANA
3673 NR 5
3674 TC 2
3675 SN 0253-4827
3676 J9 APPL MATH MECH-ENGL ED
3677 JI Appl. Math. Mech.-Engl. Ed.
3678 PD FEB
3679 PY 1998
3680 VL 19
3681 IS 2
3682 BP 101
3683 EP 110
3684 PG 10
3685 SC Mathematics, Applied; Mechanics
3686 GA ZL516
3687 UT ISI:000073441400001
3688 ER
3689 
3690 PT J
3691 AU Li, HH
3692    Yan, SH
3693    Qi, DY
3694    Liu, HY
3695 TI Biosensors and clinic application based on immobilization of enzymes
3696    with beta-cyclodextrin.
3697 SO PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS
3698 DT Article
3699 DE biosensor; Eastman-AQ polymer; N-methyl phenazine methosulphate;
3700    horseradish peroxidase; glucose; lactose; beta-cyclodextrin
3701 ID HORSERADISH-PEROXIDASE; ELECTRODE
3702 AB Biosensor highly sensitive to hydrogen peroxide has constructed by
3703    immobilizing horseradish peroxidase in Eastman-AQ-N-methyl phenazine
3704    methosulphate modified electrode via cross-linking. Cyclic voltammetry
3705    and chronamperometry were employed to demonstrate the effective
3706    electron transfer between immobilized horseradish peroxidase and a
3707    glassy carbon electrode via N-methyl phenazine methosulphate in
3708    Eastman-AQ polymer film. Because of high efficiency of
3709    bioelectrocatalytic reduction of hydrogen peroxide via N-methyl
3710    phenazine methosulphate, the hydrogen peroxide sensor was combined with
3711    glucose oxidase and beta-galactosidase for bienzyme and trienzyme-based
3712    biosensor for determination of low glucose and lactose. The biosensors
3713    for hydrogen peroxide, glucose and lactose possessed a wide variety of
3714    advantages including long stability, rapid response times, wide dynamic
3715    range, high sensitivity and selectivity. Comparison of glucose
3716    biosensor with colorimetric method with glucose oxidase and peroxidase
3717    for the determination of serum glucose from diabetic patients indicates
3718    that the results display a good consistency.
3719 C1 Weimei Cooperat Zhejiang, Clin Dept, Hangzhou 310015, Peoples R China.
3720    Shanghai Univ, Dept Chem & Chem Engn, Shanghai 200072, Peoples R China.
3721 CR BERGMEYER HU, 1984, METHOD ENZYMAT AN, V1, P178
3722    BOURDILLON C, 1993, J AM CHEM SOC, V115, P12264
3723    GARGUILO MG, 1993, ANAL CHEM, V65, P523
3724    LIU H, 1995, ANAL P, V32, P437
3725    LIU YC, 1996, ELECTROCHIM ACTA, V41, P77
3726    REEKE M, 1995, ANALC HEM, V67, P303
3727    RUZGAS T, 1995, J ELECTROANAL CHEM, V391, P41
3728 NR 7
3729 TC 2
3730 SN 1000-3282
3731 J9 PROG BIOCHEM BIOPHYS
3732 JI Prog. Biochem. Biophys.
3733 PD APR
3734 PY 1998
3735 VL 25
3736 IS 2
3737 BP 162
3738 EP 166
3739 PG 5
3740 SC Biochemistry & Molecular Biology; Biophysics
3741 GA ZK264
3742 UT ISI:000073301800018
3743 ER
3744 
3745 PT J
3746 AU Lu, HQ
3747    Fung, PCW
3748 TI Contribution of vacuum field to angular deviation of light path and
3749    radar echo delay
3750 SO ASTROPHYSICS AND SPACE SCIENCE
3751 DT Article
3752 ID GRAVITATIONAL LENS; Q0957+561
3753 AB The discovery of 'twin quasistellar objects' arose interests among
3754    astronomers and astrophysicists to study gravitational lensing
3755    problems. The deviation of light from its straight line path is caused
3756    by two sources according to the general theory of relativity: (i) the
3757    presence of massive objects, i.e. the presence of gravitational field
3758    and (ii) the presence of a 'vacuum field' which arises because there is
3759    a non-zero cosmological vacuum energy.
3760    Recently, the research on the relationship between cosmological
3761    constant and gravitational lensing process is rather active (see
3762    reference [1, 2, 3]. According to the Kottler space time metric, we
3763    have deduced an explicit representation of the angular deviation of
3764    light path. The deviation term is found to be simply -4GM/r(min)c(2)
3765    (Lambda/6r(min)(2)), where nd is the mass of the 'astronomical lens',
3766    r(min) is the distance between the point of nearest approach and the
3767    centre of M, other symbols have their usual meaning. The presence of
3768    this term may be meaningful to the study of cosmological constant using
3769    the concept of gravitational lensing; however more sophisticated
3770    analysis awaits.
3771    Consider a signal radar to be sent from one planet to another. We have
3772    found that the radar echo delay contributed by the existence of the
3773    cosmological constant Lambda is expressible as 2
3774    Lambda/9c(r(A)(3)+r(B)(3)) [1-r(min)(2)/2r(A)(2)+r(min)(2)/2r(B)(2)].
3775 C1 Shanghai Univ, Dept Phys, Shanghai 200041, Peoples R China.
3776    Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China.
3777 RP Lu, HQ, Shanghai Univ, Dept Phys, Shanghai 200041, Peoples R China.
3778 CR EPSTEIN R, 1980, PHYS REV D, V22, P2947
3779    FAN JH, 1992, ASTROPHYS SPACE SCI, V197, P269
3780    FAN LZ, 1981, FUNDAMENTAL CONCEPT, P55
3781    FOMALONT EB, 1976, PHYS REV LETT, V36, P1475
3782    FORT B, 1997, ASTRON ASTROPHYS, V321, P353
3783    IBANEZ J, 1983, ASTRON ASTROPHYS, V124, P175
3784    IM MS, 1997, ASTROPHYS J 1, V475, P457
3785    KOCHANEK CS, 1996, ASTROPHYS J 1, V466, P638
3786    KOLB EW, 1990, EARLY UNIVERSE, P308
3787    KOTTLER F, 1922, ENCY MATH WISS A, V22, P231
3788    LIEBES S, 1964, PHYS REV B, V133, P835
3789    SCHNEIDER P, 1987, MITT ASTRON GES, V70, P219
3790    SHAPIRO II, 1971, ASTRON J, V76, P588
3791    WALSH D, 1979, NATURE, V279, P381
3792    YOUNG P, 1981, ASTROPHYS J, V244, P756
3793    YOUNG P, 1981, ASTROPHYS J, V249, P415
3794 NR 16
3795 TC 1
3796 SN 0004-640X
3797 J9 ASTROPHYS SPACE SCI
3798 JI Astrophys. Space Sci.
3799 PY 1997
3800 VL 253
3801 IS 2
3802 BP 291
3803 EP 299
3804 PG 9
3805 SC Astronomy & Astrophysics
3806 GA ZK077
3807 UT ISI:000073282600013
3808 ER
3809 
3810 PT J
3811 AU Pu, DG
3812    Tian, WW
3813 TI A class of Broyden algorithms with revised search directions
3814 SO ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH
3815 DT Article
3816 DE variable metric algorithms; line search; convergence; convergence rate
3817 AB In this paper we discuss the convergence of the Broyden algorithms with
3818    revised search direction. We prove that the algorithms are globally
3819    convergent for continuously differentiable functions and the rate of
3820    convergence of the algorithms is one-step superlinear and n-step
3821    second-order for uniformly convex objective functions.
3822 C1 City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong.
3823    Shanghai Univ, Dept Math, Jiading, Peoples R China.
3824 CR BYRD RH, 1987, SIAM J NUMER ANAL, V24, P1171
3825    FLETCHER R, 1987, PRACTICAL METHODS OP, V1
3826    OREN SS, 1974, MANAGE SCI, V20, P845
3827    POWELL MJD, 1971, J I MATHS APPLICS, V7, P21
3828    POWELL MJD, 1976, SIAM AMS P, V6
3829    POWELL MJD, 1987, MATH PROGRAM, V38, P29
3830    PU D, 1989, ACTA MATH APPL SINIC, V13, P118
3831    PU D, 1989, CHINESE J OPERATIONS, V8, P53
3832    PU D, 1990, J ANN OPERATIONS RES, V24, P175
3833    PU D, 1992, ASIA PACIFIC J OPERA, V9, P207
3834    PU D, 1994, J COMPUTATIONAL MATH, V8, P366
3835    PU D, 1995, APPL MATH J CHINESE, V10, P313
3836    TIAN W, 1993, COMMUNICATION APPL M, V7, P50
3837 NR 13
3838 TC 3
3839 SN 0217-5959
3840 J9 ASIA PAC J OPER RES
3841 JI Asia Pac. J. Oper. Res.
3842 PD NOV
3843 PY 1997
3844 VL 14
3845 IS 2
3846 BP 93
3847 EP 109
3848 PG 17
3849 SC Operations Research & Management Science
3850 GA ZK325
3851 UT ISI:000073307800006
3852 ER
3853 
3854 PT J
3855 AU Liu, RH
3856    Tan, WH
3857    Xu, WC
3858    Zhang, JF
3859 TI A quantum mode theory of the micromaser
3860 SO CHINESE SCIENCE BULLETIN
3861 DT Article
3862 DE quantum mode; threshold condition
3863 ID LASERS
3864 AB Failure of the steady solution of the master equation was analysed. It
3865    was found that the state of sustained oscillation exists only when the
3866    ratio of photon decay rate gamma to injection late tau is satisfied.
3867    Based on this understanding, a quantum mode micromaser theory was
3868    developed. The threshold nu(th) and photon distribution for pi and 2 pi
3869    mode were calculated. The instability of quantum mode was analyzed as
3870    well.
3871 C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
3872    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
3873 RP Liu, RH, Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai
3874    201800, Peoples R China.
3875 CR BENKERT C, 1993, PHYS REV A, V47, P1564
3876    DAVIDOVICH L, 1992, PHYS REV A, V46, P1630
3877    FILIPOWICZ P, 1986, J OPT SOC AM B, V3, P906
3878    FILIPOWICZ P, 1986, PHYS REV A, V34, P3077
3879    GOLUBEV YM, 1984, ZH EKSP TEOR FIZ, V60, P234
3880    GUERRA ES, 1991, PHYS REV A, V44, P7785
3881    HAAK F, 1989, PHYS REV A, V40, P712
3882    TAN WH, 1994, PHYS LETT A, V190, P13
3883    TAN WH, 1995, OPT COMMUN, V115, P303
3884 NR 9
3885 TC 1
3886 SN 1001-6538
3887 J9 CHIN SCI BULL
3888 JI Chin. Sci. Bull.
3889 PD MAR
3890 PY 1998
3891 VL 43
3892 IS 5
3893 BP 425
3894 EP 430
3895 PG 6
3896 SC Multidisciplinary Sciences
3897 GA ZJ371
3898 UT ISI:000073207900018
3899 ER
3900 
3901 PT J
3902 AU Guo, XM
3903 TI The existence of solution to the finite elastodynamics with mixed
3904    boundary conditions
3905 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
3906 DT Article
3907 DE finite deformation; nonlinear constitutive; elastodynamics; existence
3908    of solution
3909 ID INITIAL-VALUE PROBLEM; INCOMPRESSIBLE BODIES
3910 AB In this paper the existence of solution to finite elastodynamics
3911    constrainted by mixed boundary conditions is derived when the
3912    hyperpotential and its gradient (for Green's strain) satisfy adequate
3913    conditions.
3914 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
3915 RP Guo, XM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
3916    200072, Peoples R China.
3917 CR ADAM RA, 1975, SOBOLEV SPACES
3918    BERGER MS, 1977, NONLINEARITY FUNCTIO
3919    CHEN C, 1982, J REINE ANGEW MATH, V337, P77
3920    DAFERMOS CM, 1985, ARCH RATION MECH AN, V87, P267
3921    EBIN DG, 1986, ARCH RATION MECH AN, V94, P15
3922    EBIN DG, 1992, ARCH RATION MECH AN, V120, P61
3923    GURTIN ME, 1981, INTRO CONTINUM MECH
3924    HUGHES TJR, 1977, ARCH RATIONAL MECH A, V63, P273
3925    HUGHES TJR, 1983, MATH FDN ELASTICITY
3926    KATO T, 1976, HYPERBOLICITY, P125
3927    LIONS JL, 1969, QUELQUES METHODES RE
3928 NR 11
3929 TC 0
3930 SN 0253-4827
3931 J9 APPL MATH MECH-ENGL ED
3932 JI Appl. Math. Mech.-Engl. Ed.
3933 PD JAN
3934 PY 1998
3935 VL 19
3936 IS 1
3937 BP 27
3938 EP 35
3939 PG 9
3940 SC Mathematics, Applied; Mechanics
3941 GA ZH202
3942 UT ISI:000073083100005
3943 ER
3944 
3945 PT J
3946 AU Ye, ZM
3947 TI The damage process zone characteristics at crack tip in concrete
3948 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
3949 DT Article
3950 DE concrete; crack tip; damage zone; nonlinear softening model
3951 AB This paper presents a comprehensive derivation of fracture process zone
3952    size which closely parallels similar work in fracture of metals and
3953    anisotropic solid, but is adapted to conrete. Some nonlinear mechanics
3954    models of concrete materials will be discussed by using uniaxial stress
3955    assumptions. For uniaxial stress assumption, energy model and fracture
3956    model will be presented for nonlinear softening models. Finally, we
3957    make a comparison with those models.
3958 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
3959 RP Ye, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
3960    Peoples R China.
3961 CR AYARI ML, 1988, THESIS U COLORADO
3962    BAZANT ZP, 1984, J ENG MECH-ASCE, V110, P518
3963    BAZANT ZP, 1985, POLI ANNIVERSARY VOL, P3335
3964    BAZANT ZP, 1986, APPL MECH REV, V39, P674
3965    HILLERBORG A, 1976, CEMENT CONCRETE RES, V6, P773
3966    LIEBOWITZ H, 1986, FRACTURE ADV TREATIS, V2
3967    SHAH SP, 1985, J ENG MECH-ASCE, V111, P275
3968    SWARTZ SE, 1982, P INT C FRACT MECH C
3969    YE ZM, 1995, INT J FRACTURE, V74, R3
3970 NR 9
3971 TC 0
3972 SN 0253-4827
3973 J9 APPL MATH MECH-ENGL ED
3974 JI Appl. Math. Mech.-Engl. Ed.
3975 PD JAN
3976 PY 1998
3977 VL 19
3978 IS 1
3979 BP 37
3980 EP 43
3981 PG 7
3982 SC Mathematics, Applied; Mechanics
3983 GA ZH202
3984 UT ISI:000073083100006
3985 ER
3986 
3987 PT J
3988 AU Chen, YX
3989    Wan, XJ
3990 TI Hydrogen effects on the mechanical properties of Ti-24Al-11Nb-3V-1Mo
3991    alloy
3992 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
3993 DT Article
3994 ID TITANIUM ALUMINIDE ALLOY; HYDRIDES; TI3AL
3995 AB The effects of hydrogen on the mechanical properties at room
3996    temperature of a Ti3Al based alloy Ti-24Al-11Nb-3V-1Mo have been
3997    investigated. The results show a parabolic rate relationship between
3998    the average hydrogen concentration of the alloy at constant temperature
3999    and charging time. The mechanical properties (ultimate bending strength
4000    and deflection) decrease with increasing hydrogen content in the alloy.
4001    The fractographic feature indicates that the decrease of the mechanical
4002    properties is due to the crack nucleation and propagation at the
4003    hydride Ti3AlH.
4004 C1 Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
4005 RP Chen, YX, Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
4006 CR CHU WY, 1992, ACTA METALL MATER, V40, P455
4007    CHU WY, 1992, METALL TRANS A, V23, P1299
4008    FLEISCHER RL, 1989, ANNU REV MATER SCI, V19, P231
4009    GAO M, 1990, SCRIPTA METALL MATER, V24, P2135
4010    MANOR E, 1989, SCRIPTA METALL, V23, P313
4011    RUDMAN PS, 1978, J LESS-COMMON MET, V58, P231
4012    SCHWARTZ DS, 1991, ACTA METALL MATER, V39, P2799
4013    SHIH DS, 1989, SCRIPTA METALL, V23, P973
4014    SUBRAHMANYAM J, 1988, J MATER SCI, V23, P1906
4015 NR 9
4016 TC 3
4017 SN 1005-0302
4018 J9 J MATER SCI TECHNOL
4019 JI J. Mater. Sci. Technol.
4020 PD MAR
4021 PY 1998
4022 VL 14
4023 IS 2
4024 BP 176
4025 EP 178
4026 PG 3
4027 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
4028    Engineering
4029 GA ZG171
4030 UT ISI:000072974000017
4031 ER
4032 
4033 PT J
4034 AU Guo, BY
4035    He, LP
4036 TI The fully discrete Legendre spectral approximation of two-dimensional
4037    unsteady incompressible fluid flow in stream function form
4038 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
4039 DT Article
4040 DE incompressible fluid flow in stream function form; fully discrete
4041    Legendre spectral scheme; convergence; numerical results
4042 ID EQUATIONS
4043 AB The initial-boundary value problem of two-dimensional incompressible
4044    fluid flow in stream function form is considered. A fully discrete
4045    Legendre spectral scheme is proposed. By a series of a priori
4046    estimations and a compactness argument, it is proved that the numerical
4047    solution converges to the weak solution of the original problem. If the
4048    genuine solution is suitably smooth, then this approach provides higher
4049    accuracy. The numerical results show the advantages of this method. The
4050    techniques used in this paper are also applicable to other related
4051    problems with derivatives of high order in space.
4052 C1 City Univ Hong Kong, Dept Math, Kowloon, Hong Kong.
4053    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
4054 RP Guo, BY, City Univ Hong Kong, Dept Math, Kowloon, Hong Kong.
4055 EM maguo@cityu.edu.hk
4056 CR ADAMS RA, 1975, SOBOLEV SPACE
4057    BERNARDI C, 1992, MATH COMPUT, V59, P63
4058    CANTO C, 1982, MATH COMPUT, V38, P67
4059    CANUTO C, 1988, SPECTRAL METHODS FLU
4060    CHORIN AJ, 1967, J COMPUT PHYS, V2, P12
4061    GIRAULT V, 1979, LECT NOTES MATH, V794
4062    GOTTLIEB D, 1977, CBMS NSF REGIONAL C, V26
4063    GRESHO PM, 1987, INT J NUMER METH FL, V7, P1111
4064    GUO BY, 1988, FINITE DIFFERENT MET
4065    GUO BY, 1997, J MATH ANAL APPL, V20, P1
4066    KUO PY, 1977, SCI SINICA, V20, P287
4067    LIONS JL, 1968, PROBLEMES AUX LIMITE, V1
4068    LIONS JL, 1969, QUELQUES METHODES RE
4069    LIONS JL, 1970, NUMERICAL SOLUTION F, P11
4070    ODEN JT, 1974, FINITE ELEMENT METHO
4071    ROACH PJ, 1976, COMPUTATIONAL FLUID
4072    SHEN J, 1992, ADV COMPUTER METHODS, V7, P658
4073    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
4074    TEMAM R, 1977, NAVIER STOKES EQUATI
4075 NR 19
4076 TC 5
4077 SN 0036-1429
4078 J9 SIAM J NUMER ANAL
4079 JI SIAM J. Numer. Anal.
4080 PD FEB
4081 PY 1998
4082 VL 35
4083 IS 1
4084 BP 146
4085 EP 176
4086 PG 31
4087 SC Mathematics, Applied
4088 GA ZC436
4089 UT ISI:000072578000008
4090 ER
4091 
4092 PT J
4093 AU Guo, BQ
4094    Cao, WM
4095 TI An additive Schwarz method for the h-p version of the finite element
4096    method in three dimensions
4097 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
4098 DT Article
4099 DE additive Schwarz method; the h-p version; condition number; iterative
4100    and parallel solver
4101 ID 3 DIMENSIONS; ELLIPTIC PROBLEMS; DOMAIN DECOMPOSITION; 2 DIMENSIONS;
4102    APPROXIMATION; PRECONDITIONER; POLYNOMIALS; SPACES
4103 AB In this paper, we study the additive Schwarz method for the h-p version
4104    of the finite element method in three dimensions. The main idea is to
4105    treat separately the h-version (linear) components and the p-version
4106    (high-order) components by a vertex-based method. It can also be viewed
4107    as a three-level method with the level being the linear finite element
4108    approximation on the coarse mesh, the linear finite element
4109    approximation on the fine mesh, and the high-order finite element
4110    approximation on the fine mesh, respectively. The resulting algorithm
4111    can be implemented in parallel on the subdomain level for the h-version
4112    components and on the element level for the p-version components. The
4113    condition number is of order
4114    [GRAPHICS]
4115    where H-i stands for the diameter of the subdomain Omega(i), h(i) is
4116    the diameter of the elements in Omega(i), and p(i) is the maximum of
4117    the polynomial degrees used in Omega(i).
4118 C1 Univ Manitoba, Dept Appl Math, Winnipeg, MB R3T 2N2, Canada.
4119    Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
4120 RP Guo, BQ, Univ Manitoba, Dept Appl Math, Winnipeg, MB R3T 2N2, Canada.
4121 CR AINSWORTH M, 1996, SIAM J NUMER ANAL, V33, P1358
4122    BABUSKA I, 1991, SIAM J NUMER ANAL, V28, P624
4123    BABUSKA I, 1996, COMPUT METHOD APPL M, V133, P319
4124    BABUSKA I, 1996, IN PRESS H P VERSION
4125    BRAMBLE JH, 1989, MATH COMPUT, V53, P1
4126    BRAMBLE JH, 1991, MATH COMPUT, V56, P463
4127    CAI XC, 1993, NONESTED COARSE SPAC
4128    CANUTO C, 1982, MATH COMPUT, V38, P67
4129    CASARIN MA, 1995, 705 NEW YORK U COUR
4130    CHAN TF, 1994, 948 CAM UCLA DEP MAT
4131    CIARLET PG, 1978, FINITE ELEMENT METHO
4132    CLEMENT P, 1975, RAIRO ANAL NUMER, V9, P77
4133    DRYJA M, 1988, P 1 INT S DOM DEC ME
4134    DRYJA M, 1994, SIAM J NUMER ANAL, V31, P1662
4135    DRYJA M, 1995, COMMUN PUR APPL MATH, V48, P121
4136    DRYJA M, 1996, NUMER MATH, V72, P313
4137    GUO B, 1996, HOUSTON J MATH, P487
4138    GUO B, 1997, IN PRESS REGULARIT 3
4139    GUO BQ, 1994, BOUNDARY VALUE PROBL, P101
4140    GUO BQ, 1996, NUMER MATH, V75, P59
4141    GUO BQ, 1997, P ROY SOC EDINB A 1, V127, P77
4142    GUO BQ, 1997, SIAM J SCI COMPUT, V18, P1267
4143    LIONS JL, 1972, NONHOMOGENEOUS BOUND, V1
4144    MADAY Y, 1989, CR ACAD SCI I-MATH, V309, P463
4145    MANDEL J, 1990, INT J NUMER METH ENG, V29, P1095
4146    ODEN JT, 1994, CONT MATH, V180, P295
4147    PAVARINO LF, 1994, 663 NEW YORK U DEP C
4148    PAVARINO LF, 1996, SIAM J NUMER ANAL, V33, P1303
4149    SZABO B, 1990, FINITE ELEMENT ANAL
4150    WIDLUND OB, 1988, P 1 S DOM DEC METH P
4151    WIDLUND OB, 1995, COMMUNICATION
4152 NR 31
4153 TC 15
4154 SN 0036-1429
4155 J9 SIAM J NUMER ANAL
4156 JI SIAM J. Numer. Anal.
4157 PD APR
4158 PY 1998
4159 VL 35
4160 IS 2
4161 BP 632
4162 EP 654
4163 PG 23
4164 SC Mathematics, Applied
4165 GA ZC449
4166 UT ISI:000072580500013
4167 ER
4168 
4169 PT J
4170 AU Cao, WM
4171    He, GQ
4172 TI Rigorous analysis of an implicit spectral method for KdV equation
4173 SO ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING
4174 DT Article
4175 DE KdV equation; spectral method; implicit scheme; existence; convergence;
4176    iteration method
4177 ID WAVE
4178 AB A Fourier spectral method in combination with the standard midpoint
4179    Euler temporal discretization for the KdV equation is considered. The
4180    global existence and convergence of the numerical solution are
4181    investigated rigorously. An iteration method for solving the nonlinear
4182    algebraic systems at each time level is also proposed, with its
4183    compression factor strictly estimated.
4184 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
4185 RP He, GQ, Shanghai Univ, Dept Math, Jiading Campus, Shanghai 201800,
4186    Peoples R China.
4187 CR ADAMS RA, 1975, SOBOLEV SPACES
4188    BENYU G, 1978, CHINESE SCI BULL, V23, P592
4189    BENYU G, 1985, ACTA MATH SINICA, V28, P1
4190    FORNBERG B, 1978, PHILOS T ROY SOC A, V289, P373
4191    FRUTOS JD, 1992, J COMPUT PHYS, V103, P160
4192    HE GQ, 1990, COMM APPL MATH COMP, V4, P51
4193    HE GQ, 1993, COMM APPL MATH COMPU, V7, P41
4194    HE GQ, 1993, J SHANGHAI U SCI TEC, V16, P111
4195    JEEFREY A, 1972, SIAM REV, V14, P582
4196    QUARTERONI A, 1984, JAPAN J APPL MATH, V1, P173
4197    TAHA TR, 1984, J COMPUT PHYS, V55, P231
4198    WINEBERG SB, 1991, J COMPUT PHYS, V97, P311
4199    ZABUSKY NJ, 1965, PHYS REV LETT, V15, P240
4200 NR 13
4201 TC 0
4202 SN 0377-9211
4203 J9 ARAB J SCI ENG
4204 JI Arab. J. Sci. Eng.
4205 PD DEC
4206 PY 1997
4207 VL 22
4208 IS 2C
4209 BP 159
4210 EP 167
4211 PG 9
4212 SC Multidisciplinary Sciences
4213 GA ZC497
4214 UT ISI:000072586000014
4215 ER
4216 
4217 PT J
4218 AU Zhang, JC
4219    Zhang, YH
4220    Yang, YF
4221    Sen, Y
4222    Wu, WH
4223 TI Modification of surface properties of PbSe by ion implantation
4224 SO RADIATION PHYSICS AND CHEMISTRY
4225 DT Article
4226 ID PBTE
4227 AB P-type PbSe was implanted by phosphorous ion (P+) with incident energy
4228    of E-0 = 200 keV and doses of D-s = 1 x 10(14), 5 x 10(14) x 10(15)
4229    ions cm(-2), respectively. R-p, Delta R-p and the depth of the junction
4230    which was formed on the surface of the implanted (Pi) PbSe were
4231    measured and compared with theoretical calculation by means of
4232    modification of LSS theory. The electrical parameters of the pn
4233    junctions in PbSe were also discussed. PbSe photodiode implanted by P+
4234    ion with performance was: ideal factor of the diode m = 2.31, diffusion
4235    length L = 51.4 mu m, diffusion coefficient D = 26.52 cm(2) s(-1),
4236    non-equilibrium minority carrier lifetime tau = 9.96 x 10(-7) s. (C)
4237    1998 Elsevier Science Ltd. All rights reserved.
4238 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
4239 RP Zhang, JC, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R
4240    China.
4241 CR BAN Y, 1970, J APPL PHYS, V41, P2817
4242    CARTER G, 1976, ION IMPLANTATION SEM, P42
4243    COLLOT P, 1994, SEMICONDUCTOR SCI TE, V9, P1135
4244    DALVEN R, 1969, INFRARED PHYS, V9, P141
4245    DONNELLY JP, 1973, PHYSICS 4 6 COMPOUND, P47
4246    GIBBONS JN, 1973, PROJECTED RANGE STAT, P78
4247    IGAKI K, 1963, J PHYSICS SOC JAPAN, V18, P143
4248    KOMAROV FF, 1991, VACUUM TECHNIQUE TEC, V1, P28
4249    LINDHARD J, 1963, MAT FYS MEDD K DAN V, V33, P14
4250    MARCHETTI S, 1993, INFRARED PHYS, V34, P137
4251    NORR MK, 1962, J ELECTROCHEM SOC, V109, P433
4252    SHI Z, 1995, APPL PHYS LETT, V66, P2537
4253    STOBER D, 1992, J CRYST GROWTH, V121, P656
4254    WANG DN, 1980, ACTA PHYS SINICA, V29, P14
4255    WANG HT, 1992, TECHNICAL PRINCIPLES, CH3
4256    ZHANG JC, 1989, P ICSICT 89, P53
4257    ZLOMANOV VP, 1974, J CRYST GROWTH, V26, P261
4258 NR 17
4259 TC 0
4260 J9 RADIAT PHYS CHEM
4261 JI Radiat. Phys. Chem.
4262 PD FEB
4263 PY 1998
4264 VL 51
4265 IS 2
4266 BP 129
4267 EP 133
4268 PG 5
4269 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
4270    Science & Technology
4271 GA ZB067
4272 UT ISI:000072431700003
4273 ER
4274 
4275 PT J
4276 AU Min-Ning, J
4277 TI Phase retardation measurement of single-mode optical fibers
4278 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
4279 DT Article
4280 DE optical fibers; single-mode fibers; phase retardation measurements
4281 AB Two new methods for measuring the phase retardation R of a "nominal"
4282    single-mode optical fiber are demonstrated. One of them is based on the
4283    polarization magnitude measure; the other is based on the polarization
4284    direction measure. Their effectiveness is confirmed by experiments. (C)
4285    1998 John Wiley & Sons, Inc.
4286 C1 Shanghai Univ Sci & Technol, Inst Fiber Opt, Shanghai 201800, Peoples R China.
4287 RP Min-Ning, J, Shanghai Univ Sci & Technol, Inst Fiber Opt, Shanghai
4288    201800, Peoples R China.
4289 CR JONES RC, 1941, J OPT SOC AM, V31, P488
4290    JONES RC, 1948, J OPT SOC AM, V38, P671
4291    KAPRON FP, 1972, IEEE J QUANTUM ELECT, V8
4292 NR 3
4293 TC 1
4294 SN 0895-2477
4295 J9 MICROWAVE OPT TECHNOL LETT
4296 JI Microw. Opt. Technol. Lett.
4297 PD APR 5
4298 PY 1998
4299 VL 17
4300 IS 5
4301 BP 303
4302 EP 306
4303 PG 4
4304 SC Engineering, Electrical & Electronic; Optics
4305 GA ZB601
4306 UT ISI:000072488900008
4307 ER
4308 
4309 PT J
4310 AU Wang, ZH
4311 TI Free-space mode approximation for radiation modes of a slab waveguide
4312    and its application
4313 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
4314 DT Article
4315 DE slab waveguide; radiation modes
4316 ID WAVE-GUIDES; BRANCHES
4317 AB The symmetric slab waveguide as an example, we show that radiation
4318    modes of a weakly guiding planar optical waveguide can be approximated
4319    by the free-space modes; their field expressions and normalization
4320    constants are simple and physically understandable, and can be obtained
4321    directly without any calculation. By applying this approximation, the
4322    far-field and radiation loss calculations caused by random wall
4323    imperfections have been greatly simplified. (C) 1998 John Wiley & Sons,
4324    Inc.
4325 C1 Shanghai Univ Sci & Technol, Wave Sci Lab, Shanghai 201800, Peoples R China.
4326 RP Wang, ZH, Shanghai Univ Sci & Technol, Wave Sci Lab, Shanghai 201800,
4327    Peoples R China.
4328 CR BENECH P, 1992, OPT COMMUN, V88, P96
4329    CHU FS, 1991, OPT LETT, V16, P309
4330    LACEY JPR, 1990, IEE PROC-J, V137, P282
4331    LEE SL, 1994, J LIGHTWAVE TECHNOL, V12, P2073
4332    MARCUSE D, 1974, THEORY DIELECTIC OPT
4333    MARCUSE D, 1982, LIGHT TRANSMISSION O
4334    MARCUSE D, 1990, IEEE J QUANTUM ELECT, V26, P675
4335    ROZZI TE, 1978, IEEE T MICROW THEORY, V26, P738
4336    SNYDER AW, 1983, OPTICAL WAVEGUIDE TH
4337    YAP D, 1984, APPL OPTICS, V23, P2991
4338 NR 10
4339 TC 0
4340 SN 0895-2477
4341 J9 MICROWAVE OPT TECHNOL LETT
4342 JI Microw. Opt. Technol. Lett.
4343 PD APR 5
4344 PY 1998
4345 VL 17
4346 IS 5
4347 BP 313
4348 EP 315
4349 PG 3
4350 SC Engineering, Electrical & Electronic; Optics
4351 GA ZB601
4352 UT ISI:000072488900011
4353 ER
4354 
4355 PT J
4356 AU Bing, ZX
4357    Chang, JG
4358    Kai, T
4359    Lun, XJ
4360    Zhong, DW
4361    Di, XK
4362 TI A sub-regular solution model used to predict the component activities
4363    of quaternary systems
4364 SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY
4365 DT Article
4366 AB A sub-regular solution model used to predict the component activities
4367    in a homogeneous region of a quaternary system was developed in
4368    Shanghai Enhanced Lab of Ferrometallurgy. It was designated as
4369    SELF-SReM4. The component activities were described with the
4370    polynomials of the content variables, in which a group of A(jkl)
4371    parameters involves. It was evaluated along with the reliable boundary
4372    conditions. The deduction of the model and the procedure of the
4373    evaluation of A(jkl), parameters were introduced in detail in this
4374    paper.
4375 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
4376 RP Bing, ZX, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
4377    200072, Peoples R China.
4378 CR CHANG JG, 1992, ACTA METALLURGICAL B, V5, P476
4379    CHANG WZ, 1986, CHINESE SCI A, V8, P862
4380    CHOU KC, 1994, CALPHAD, V23
4381    DARKEN LS, 1950, J AM CHEM SOC, V72, P2909
4382    PELTON AD, 1969, CAN J CHEM, V47, P2283
4383 NR 5
4384 TC 0
4385 SN 0364-5916
4386 J9 CALPHAD-COMPUT COUP PHASE DIA
4387 JI Calphad-Comput. Coupling Ph. Diagrams Thermochem.
4388 PD SEP
4389 PY 1997
4390 VL 21
4391 IS 3
4392 BP 301
4393 EP 309
4394 PG 9
4395 SC Chemistry, Physical; Thermodynamics
4396 GA ZA668
4397 UT ISI:000072389100003
4398 ER
4399 
4400 PT J
4401 AU Bing, ZX
4402    Chang, JG
4403    Di, XK
4404 TI Prediction of component activities of quaternary systems using the
4405    sub-regular solution model
4406 SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY
4407 DT Article
4408 ID MELTS
4409 AB A sub-regular solution model used to predict the component activities
4410    in a homogeneous region of a quaternary system was developed in
4411    Shanghai Enhanced Lab of Ferrometallurgy. It was designated as
4412    SELF-SReM4. The previous paper elucidated the model and the evaluating
4413    procedures of A(jkl) parameters(1). In this paper, SELF-SReM4 is used
4414    to predict the component activities for the systems of C-Mn-Fe-Si,
4415    C-Cr-Fe-Ni, C-Cr-Fe-P and MnO-SiO2-Al2O3-CaO.
4416 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
4417 RP Bing, ZX, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
4418    200072, Peoples R China.
4419 CR ABRAHAM KP, 1960, J IRON STEEL I, V196, P82
4420    BAYYA S, 1993, ISIJ INT, P17
4421    BING ZX, IN PRESS
4422    CHANG JG, 1992, ACTA METALLURGICAL B, V5, P476
4423    CHIPMAN J, 1952, T AM SOC MET, V44, P1215
4424    CHIPMAN J, 1980, T JIK, V21, P27
4425    DARKEN LS, 1967, T METALL SOC AIME, V239, P90
4426    DRESLER W, 1990, I SM, P95
4427    FROHBERG MG, 1968, ARCH EISENHUTTENWES, V39, P587
4428    GEE R, 1978, SCAND J METALL, V7, P38
4429    GILBY SW, 1969, T METALL SOC AIME, V245, P1749
4430    HADRYS HG, 1970, METALL T, V1, P1867
4431    HEALY GW, 1987, I SM, P51
4432    HULTGREN R, 1973, SELECTED VALUES THER, P487
4433    KATSNELSON A, 1993, ISIJ INT, V33, P1045
4434    KATSNELSON AM, 1993, STEEL RES, V64, P197
4435    KUBASCHEWSKI O, 1979, METALLURGICAL THERMO
4436    MEHTA SR, 1965, J IRON STEEL I, V203, P524
4437    REIN RH, 1965, J CHIPMAN, P415
4438    RISBUD SH, 1977, J AM CERAM SOC, V60, P418
4439    SCHURMANN E, 1969, GIESSEREI FORSCH, V21, P29
4440    SHARMA RA, 1961, J IRON ST I, V198, P386
4441    SHARMA RA, 1965, T AIME, P1586
4442    TANAKA A, 1979, T JIM, V20, P516
4443    TURKGOGAN ET, 1956, JISI, P69
4444    TUSET JK, 1970, 340358 SINTEF
4445    WARREN GF, 1974, INFACON, V1, P175
4446    YAMADA A, 1990, TETSU TO HAGANE, V76, P2137
4447    ZHONG DW, 1993, THESIS TRONDHEIM U N
4448 NR 29
4449 TC 0
4450 SN 0364-5916
4451 J9 CALPHAD-COMPUT COUP PHASE DIA
4452 JI Calphad-Comput. Coupling Ph. Diagrams Thermochem.
4453 PD SEP
4454 PY 1997
4455 VL 21
4456 IS 3
4457 BP 311
4458 EP 320
4459 PG 10
4460 SC Chemistry, Physical; Thermodynamics
4461 GA ZA668
4462 UT ISI:000072389100004
4463 ER
4464 
4465 PT J
4466 AU Li, L
4467    Hsu, TY
4468 TI Gibbs free energy evaluation of the fcc(gamma) and hcp(epsilon) phases
4469    in Fe-Mn-Si alloys
4470 SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY
4471 DT Article
4472 ID SHAPE MEMORY ALLOYS; TRANSFORMATION; SYSTEM
4473 AB The Gibbs free energy as a function of temperature of the fcc(gamma)
4474    and hcp(epsilon) phases in the Fe-Mn-Si system is evaluated by the
4475    application of the general model for predicting thermodynamic
4476    properties for ternary systems from binary ones, suggested by Chou and
4477    by the utilization of the available data from binary Fe-Mn, Fe-Si and
4478    Mn-Si systems and the SGTE DATA given by Dinsdale. The calculated
4479    result seems reasonable as compared with the experimental data.
4480 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
4481    Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China.
4482 RP Li, L, Shanghai Univ, Shanghai 200072, Peoples R China.
4483 CR *SHANGH I MECH ENG, 1984, APPL FORTR PROGR, P29
4484    ANSARA I, 1979, INT METAL REV, V1, P20
4485    CHOU KC, 1995, CALPHAD, V19, P315
4486    DINSDALE AT, 1991, CALPHAD, V15, P317
4487    DONNER P, 1989, MARTENSITIC TRANSFOR, P267
4488    FORSBERG A, 1993, J PHASE EQUILIB, V14, P354
4489    GHOSH G, 1989, MRS INT M ADV MAT MA, P9
4490    HILLERT M, 1978, CALPHAD, V2, P227
4491    HILLERT M, 1980, CALPHAD, V4, P1
4492    HUANG WM, 1989, CALPHAD, V13, P243
4493    INDEN G, 1976, PROJ M CALPHAD 5 JUN
4494    LACAZE J, 1991, METALL TRANS A, V22, P2211
4495    MURAKAMI M, 1987, P INT C MARTENS TRAN, P985
4496    OTSUKA H, 1990, ISIJ INT, V30, P674
4497    SADE M, 1990, J MATER SCI LETT, V9, P112
4498    SATO A, 1982, ACTA METALL, V30, P1177
4499    TIBALLS JE, 1991, 8902215MNSI SI NORW
4500 NR 17
4501 TC 12
4502 SN 0364-5916
4503 J9 CALPHAD-COMPUT COUP PHASE DIA
4504 JI Calphad-Comput. Coupling Ph. Diagrams Thermochem.
4505 PD SEP
4506 PY 1997
4507 VL 21
4508 IS 3
4509 BP 443
4510 EP 448
4511 PG 6
4512 SC Chemistry, Physical; Thermodynamics
4513 GA ZA668
4514 UT ISI:000072389100016
4515 ER
4516 
4517 PT J
4518 AU Yang, X
4519    Cheng, CJ
4520 TI Some identity relations between plane problems for visco- and elasticity
4521 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
4522 DT Article
4523 DE viscoelasticity; plane problem; Airy stress function; identity
4524    relation; integral constitutive relation
4525 AB In this paper, the boundary value problems of plane problems with a
4526    simply- or multiply-connected domain for isotropic linear
4527    visco-elasticity are first established by terms of Airy stress function
4528    F(chi(a) t). Secondly, some identity relations between displacements
4529    and stresses for plane problems of visco- and elasticity are discussed
4530    in detail and some meaningful conclusions are obtained. As an example,
4531    the deformation response for viscoelastic plate with a small circular
4532    hole at the center is analyzed under a uniaxial uniform extension.
4533 C1 Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
4534    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
4535 RP Yang, X, Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
4536 CR CHEN CJ, 1995, THEORY ELASTICITY
4537    CHRISTENSEN RM, 1982, THEORY VISCOELASTICI
4538    HUANG KZ, 1986, ANAL TENSOR
4539    MILLER MK, 1966, SIAM J NUMER ANAL, V3, P624
4540    YANG TQ, 1984, ASME 1984 PVP C
4541    YANG TQ, 1990, THEORY VISCOELASTICI
4542 NR 6
4543 TC 0
4544 SN 0253-4827
4545 J9 APPL MATH MECH-ENGL ED
4546 JI Appl. Math. Mech.-Engl. Ed.
4547 PD DEC
4548 PY 1997
4549 VL 18
4550 IS 12
4551 BP 1159
4552 EP 1167
4553 PG 9
4554 SC Mathematics, Applied; Mechanics
4555 GA ZB193
4556 UT ISI:000072445700004
4557 ER
4558 
4559 PT J
4560 AU Cheng, XY
4561    Wan, XJ
4562    Guo, JT
4563    Liu, CT
4564 TI Effect of Zr and B on environmental embrittlement in Ni(3)AI alloys
4565 SO SCRIPTA MATERIALIA
4566 DT Article
4567 ID POLYCRYSTALLINE NI3AL; BORON; SEGREGATION
4568 C1 Shanghai Univ, Inst Mat Res, Shanghai, Peoples R China.
4569    Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA.
4570    Acad Sinica, Inst Met Res, Shenyang, Peoples R China.
4571 RP Cheng, XY, Shanghai Univ, Inst Mat Res, Shanghai, Peoples R China.
4572 CR AOKI K, 1979, NIPPON KINZOKU GAKKA, V43, P1190
4573    CHOUDHURY A, 1992, ACTA METALL MATER, V40, P57
4574    CHUANG TH, 1991, MAT SCI ENG A-STRUCT, V141, P169
4575    GEORGE EP, 1992, SCRIPTA METALL MATER, V27, P365
4576    GEORGE EP, 1995, MATER RES SOC S P, V364, P1131
4577    GEORGE EP, 1996, ACTA MATER, V44, P1757
4578    GU YF, 1994, THESIS SHANGHAI JIAO
4579    LIU CT, 1985, ACTA METALL, V33, P213
4580    LIU CT, 1992, NATO ASI SER, V213, P321
4581    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
4582    WAN XJ, 1994, SCRIPTA METALL MATER, V31, P677
4583    XIAOJING W, 1995, ACTA METALL SINICA, V8, P299
4584    ZHEN Z, 1992, ACTA METALL SINICA, V28, A202
4585 NR 13
4586 TC 10
4587 SN 1359-6462
4588 J9 SCRIPTA MATER
4589 JI Scr. Mater.
4590 PD FEB 13
4591 PY 1998
4592 VL 38
4593 IS 6
4594 BP 959
4595 EP 964
4596 PG 6
4597 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
4598    Engineering
4599 GA ZA001
4600 UT ISI:000072317800015
4601 ER
4602 
4603 PT J
4604 AU Wei, MM
4605    Zhuang, L
4606 TI Preparation of SrTiO3-based ceramic material for boundary layer
4607    capacitor by vacuum sintering method
4608 SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY
4609 DT Article
4610 ID POLYCRYSTALLINE
4611 AB Applying the vacuum sintering method instead of the sintering in
4612    reducing atmosphere (N-2+H-2) to achieve semiconduction for ceramic
4613    material of SrTiO3 with donor Nb2O5 has been researched preliminarily.
4614    The vacuum sintering method can produce n-type semiconductor, strontium
4615    titanate based ceramics, which is fired at 1350 degrees C for 3 h under
4616    a vacuum condition of 5 Pa, with resistivity about 2 Omega.cm. The
4617    process under vacuum condition allows promotion of the sintering as
4618    well as grain growth when compared with the process in atmosphere
4619    condition. The vacuum sintering can lower the sintering temperature by
4620    about 100 degrees C, and raise the density of ceramics and the apparent
4621    permittivity of GBLC of SrTiO3-based ceramics. The above mentioned
4622    advantages are the key factors of improving the properties of GBLC.
4623 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
4624    Shanghai Univ, Sch Technol Phys, Shanghai 201800, Peoples R China.
4625 RP Wei, MM, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
4626    China.
4627 CR BURN I, 1982, J MATER SCI, V17, P3510
4628    SHIRASAKI S, 1980, J CHEM PHYS, V73, P4640
4629    WEI MM, 1992, FERROELECTRICS, V133, P301
4630    ZHONG JP, 1987, J INORG MATER, V2, P22
4631 NR 4
4632 TC 0
4633 SN 0374-4884
4634 J9 J KOREAN PHYS SOC
4635 JI J. Korean Phys. Soc.
4636 PD FEB
4637 PY 1998
4638 VL 32
4639 PN Part 3 Suppl. S
4640 BP S1180
4641 EP S1182
4642 PG 3
4643 SC Physics, Multidisciplinary
4644 GA YZ022
4645 UT ISI:000072212300093
4646 ER
4647 
4648 PT J
4649 AU Cheng, DH
4650    Xu, WY
4651    Hua, LQ
4652    Zhang, ZY
4653    Wan, XJ
4654 TI Electrochemical preparation & mechanical properties of amorphous
4655    nickel-SiC composites
4656 SO PLATING AND SURFACE FINISHING
4657 DT Article
4658 ID ALLOYS
4659 AB In this study, an attempt was made to incorporate SiC particles into an
4660    amorphous nickel-phosphorus alloy matrix by electrodeposition. The bath
4661    composition and operating conditions of electrodeposited Ni-P-SiC
4662    composite coatings were studied and the structure and mechanical
4663    properties of the deposits were determined.
4664 C1 Shanghai Univ, Dept Chem Engn, Shanghai 200072, Peoples R China.
4665    Shanghai Univ, Met Res Ctr, Shanghai 200072, Peoples R China.
4666 RP Cheng, DH, Shanghai Univ, Dept Chem Engn, 149 Yanchang Rd, Shanghai
4667    200072, Peoples R China.
4668 CR CARGILL GS, 1970, J APPL PHYS, V41, P12
4669    GROUSE M, 1980, MET FINISH, V78, P31
4670    MUKHERJEE D, 1989, B ELECTROCHEM, V5, P656
4671    RAJAGOPAL C, 1984, MET FINISH, V82, P59
4672 NR 4
4673 TC 7
4674 SN 0360-3164
4675 J9 PLAT SURF FINISH
4676 JI Plat. Surf. Finish.
4677 PD FEB
4678 PY 1998
4679 VL 85
4680 IS 2
4681 BP 61
4682 EP 64
4683 PG 4
4684 SC Materials Science, Coatings & Films; Metallurgy & Metallurgical
4685    Engineering
4686 GA YY160
4687 UT ISI:000072119300021
4688 ER
4689 
4690 PT J
4691 AU Liu, GL
4692 TI Variable-domain variational finite element method: A general approach
4693    to free/moving boundary problems in heat and fluid flow
4694 SO NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
4695 DT Article
4696 DE finite element method; variational principle; free & moving boundary
4697    problems; fluid dynamics; heat transfer
4698 ID INCOMPRESSIBLE ROTOR FLOW; HYBRID PROBLEMS; POTENTIAL FLOW; PRINCIPLES;
4699    SHOCKS
4700 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
4701 RP Liu, GL, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
4702    200072, Peoples R China.
4703 CR 1990, AGARDCP463
4704    CRANK J, 1984, FREE MOVING BOUNDARY
4705    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
4706    GUO JH, 1993, P 1 INT C AER BEIJ, P75
4707    LIU GI, 1986, J ENG GAS TURB POWER, V108, P254
4708    LIU GL, 1987, NUM METHODS THERMAL, V5, P284
4709    LIU GL, 1990, P 1 INT S AER INT FL, P128
4710    LIU GL, 1992, ACTA MECH, V95, P117
4711    LIU GL, 1993, INT J TURBO JET ENGI, V10, P273
4712    LIU GL, 1993, P 2 INT S AER INT FL, V2, P355
4713    LIU GL, 1993, P 2 INT S AER INT FL, V2, P361
4714    LIU GL, 1995, ACTA MECH, V108, P207
4715    LIU GL, 1995, INVERSE PROBL ENG, V2, P1
4716    LIU GL, 1996, 2 INT C HYDR DEC 16
4717    YAN S, 1994, INT J TURBO JET ENG, V11, P71
4718 NR 15
4719 TC 5
4720 SN 0362-546X
4721 J9 NONLINEAR ANAL-THEOR METH APP
4722 JI Nonlinear Anal.-Theory Methods Appl.
4723 PD DEC
4724 PY 1997
4725 VL 30
4726 IS 8
4727 BP 5229
4728 EP 5239
4729 PG 11
4730 SC Mathematics, Applied; Mathematics
4731 GA YX561
4732 UT ISI:000072052900064
4733 ER
4734 
4735 PT J
4736 AU Xueming, MA
4737    Gang, JI
4738    Ling, Z
4739    Yuanda, D
4740 TI Structure and properties of bulk nano-structured WC-CO alloy by
4741    mechanical alloying
4742 SO JOURNAL OF ALLOYS AND COMPOUNDS
4743 DT Article
4744 DE nanocrystalline; WC-Co; mechanical alloying
4745 AB Mixtures of elemental powders of nominal composition WC-6wt% Co and
4746    WC-6wt% Co-1wt% VC were prepared using 99.5% purity tungsten, graphite,
4747    cobalt and vanadium powders with particle sizes smaller than 75 mu m.
4748    Mechanical alloying (MA) was performed in a QM-1 planetary ball mill.
4749    The structural evolution and the crystallite size changes of the
4750    powders during MA were monitored by X-ray diffraction. The results show
4751    that cemented carbides of WC-Co powder with crystalline sizes of about
4752    10 nm were directly synthesized from elemental powders by mechanical
4753    alloying. Cold compacting was carried our at a pressure of 800 MPa
4754    using a manual uniaxial press with carbide insert dies. The hardness
4755    and sintered density of sintered samples were measured. The effects of
4756    small VC additions on the grain size, density and hardness of sintered
4757    samples were also investigated. (C) 1998 Elsevier Science S.A.
4758 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
4759 RP Xueming, MA, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072,
4760    Peoples R China.
4761 CR GLEITER H, 1984, Z METALLKD, V75, P263
4762    SHINGU PH, 1988, T JIM S, V29, P3
4763    XUEMING MA, 1996, J ALLOY COMPD, V245, L30
4764    YUANZHENG Y, 1992, CHINESE PHYS LETT, V5, P266
4765    YUANZHENG Y, 1994, CHINESE SCI BULL, V17, P1626
4766 NR 5
4767 TC 5
4768 SN 0925-8388
4769 J9 J ALLOYS COMPOUNDS
4770 JI J. Alloy. Compd.
4771 PD JAN 9
4772 PY 1998
4773 VL 264
4774 IS 1-2
4775 BP 267
4776 EP 270
4777 PG 4
4778 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
4779    Metallurgical Engineering
4780 GA YX365
4781 UT ISI:000072032900050
4782 ER
4783 
4784 PT J
4785 AU Zhao, XH
4786    Chen, WF
4787 TI Effective elastic moduli of concrete with interface layer
4788 SO COMPUTERS & STRUCTURES
4789 DT Article
4790 DE concrete; effective elastic moduli; engineering mechanics; interface
4791    layer; microstructure; stress analysis
4792 ID CEMENT PASTE; COMPOSITES; MORTAR
4793 AB In this paper, the effective elastic moduli E* and mu* of concrete are
4794    obtained from the analytical solution of a two-dimensional
4795    microstructural model, and the relationships between E*, mu* and the
4796    elastic moduli of each constituent of concrete are studied. Engineering
4797    formulas of the effective elastic :moduli on the basis of engineering
4798    mechanics are also derived and their advantages and limitations are
4799    assessed. The variation of E* and mu* values with the basic elastic
4800    moduli E-1, E-2 and E-3 of sand (or aggregate), interface and cement
4801    paste is given. It is found that the E* and mu* values are affected
4802    significantly by the interface layer. The results provide a deeper
4803    understanding of the influences of each constituent of the
4804    microstructure on the overall behavior of concrete, and an analytical
4805    relationship between the nonlinear behavior of concrete and the
4806    properties of its constituent. They are also helpful for developing new
4807    high-strength concrete materials with an improved strength and
4808    stiffness. (C) 1997 Elsevier Science Ltd.
4809 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
4810    Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA.
4811 RP Zhao, XH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
4812    200072, Peoples R China.
4813 CR BENVENISTE Y, 1989, MECH MATER, V7, P305
4814    CHEN WF, 1994, CONCRETE PLASTICITY, P146
4815    CHRISTENSEN RM, 1979, J MECH PHYS SOLIDS, V27, P315
4816    CLYNE TW, 1993, INTRO METAL MATRIX C
4817    COHEN MD, 1994, CEMENT CONCRETE RES, V24, P95
4818    COHEN MD, 1995, MATER RES SOC S P, V370, P407
4819    DASGUPTA A, 1992, MECH MATER, V14, P67
4820    HASHIN Z, 1962, J APPL MECH, V29, P144
4821    HASHIN Z, 1964, J APPL MECH        E, V31, P223
4822    JONES RM, 1975, MECH COMPOSITE MAT
4823    LUO HA, 1989, MECH MATER, V8, P77
4824    SIBONI G, 1991, MECH MATER, V11, P107
4825    WANG ZM, 1991, MECH STRUCTURAL MECH, P67
4826    WINSLOW DN, 1994, CEMENT CONCRETE RES, V24
4827    ZHAO XH, 1996, CESTR962 PURD U
4828    ZHAO XH, 1996, INT J NUMER ANAL MET, V20, P215
4829    ZHAO XH, 1996, INT J NUMER ANAL MET, V20, P275
4830 NR 17
4831 TC 3
4832 SN 0045-7949
4833 J9 COMPUT STRUCT
4834 JI Comput. Struct.
4835 PD JAN
4836 PY 1998
4837 VL 66
4838 IS 2-3
4839 BP 275
4840 EP 288
4841 PG 14
4842 SC Computer Science, Interdisciplinary Applications; Engineering, Civil
4843 GA YX439
4844 UT ISI:000072040100012
4845 ER
4846 
4847 PT J
4848 AU Liu, HY
4849    Li, HH
4850    Ying, TL
4851    Sun, K
4852    Qin, YQ
4853    Qi, DY
4854 TI Amperometric biosensor sensitive to glucose and lactose based on
4855    co-immobilization of ferrocene, glucose oxidase, beta-galactosidase and
4856    mutarotase in beta-cyclodextrin polymer
4857 SO ANALYTICA CHIMICA ACTA
4858 DT Article
4859 DE biosensor; glucose oxidase; beta-galactosidase; mutarotase; glucose;
4860    lactose; ferrocene; beta-cyclodextrin
4861 ID ENZYME ELECTRODE; INCLUSION; MILK; SENSOR
4862 AB An amperometric biosensor sensitive to glucose and lactose has been
4863    developed by immobilizing glucose oxidase (GOD), beta-galactosidase,
4864    mutarotase and ferrocene in beta-cyclodextrin polymer. The ferrocene is
4865    included in the cavities of the beta-cyclodextrin polymer through a
4866    host-guest chemical reaction whereas glucose oxidase,
4867    beta-galactosidase and mutarotase are cross-linked with the
4868    beta-cyclodextrin polymer. Cyclic voltammetry and amperometric
4869    measurement have been employed for the first time to show the efficacy
4870    of electron transfer between immobilized glucose oxidase and a glassy
4871    carbon electrode via ferrocene included in the cavities of
4872    beta-cyclodextrin polymer. Performance and characteristics of the
4873    biosensor were evaluated with respect to response time, detection
4874    limit, selectivity, and dependence on applied potential, temperature
4875    and pH as well as operating and storage stability. The stability of the
4876    enzyme membrane was greatly enhanced by cross-linking of the enzymes
4877    with beta-cyclodextrin polymer because of the water absorbability of
4878    the beta-cyclodextrin polymer. (C) 1998 Elsevier Science B.V.
4879 C1 Shanghai Univ, Dept Chem & Chem Engn, Shanghai 200072, Peoples R China.
4880    Weimei Cooperat Hangzhou, Clin Dept, Hangzhou 310016, Zhejiang Prov, Peoples R China.
4881 RP Liu, HY, Shanghai Univ, Dept Chem & Chem Engn, Shanghai 200072, Peoples
4882    R China.
4883 CR *INT DAIR FED, 1974, 28A INT DAIR FED
4884    CHENG FS, 1977, ANALYST, V102, P124
4885    DUBOIS M, 1956, ANAL CHEM, V28, P350
4886    GRIMBLEBY FH, 1956, J DAIRY RES, V23, P229
4887    HAMID JA, 1989, ANALYST, V114, P1587
4888    HARADA A, 1984, J CHEM SOC CHEM COMM, P645
4889    HARADA A, 1984, J INCLUSION PHENOM, V2, P791
4890    HARRIS WM, 1986, ANALYST, V111, P37
4891    JAGER A, 1994, ANALYST, V119, P1251
4892    KARASZ AB, 1971, J ASSOC OFF ANA CHEM, V54, P1436
4893    KORADECKI D, 1991, J INCLUS PHENOM MOL, V10, P79
4894    KUTNER W, 1992, J INCLUS PHENOM MOL, V13, P257
4895    LI S, 1992, CHEM REV, V92, P1457
4896    LIU HY, 1995, ANAL CHIM ACTA, V300, P65
4897    LIU HY, 1997, ANAL CHIM ACTA, V344, P187
4898    LUNDBACK H, 1985, ANAL LETT PT B, V18, P871
4899    MATSUMOTO K, 1985, AGR BIOL CHEM TOKYO, V49, P2131
4900    PFEIFFER D, 1990, J CHEM TECHNOL BIOT, V49, P255
4901    PILLOTON R, 1987, ANAL LETT, V20, P1803
4902    SAENGER W, 1980, ANGEW CHEM INT EDIT, V19, P344
4903    TAKAHASHI K, 1994, J INCLUS PHENOM MOL, V17, P1
4904    WALLENFELS K, 1972, ENZYMES, V7, P617
4905    WATANABE E, 1991, BIOTECHNOL BIOENG, V38, P99
4906    XU YH, 1990, ENZYME MICROB TECH, V12, P104
4907    YANG MT, 1981, J CHROMATOGR, V209, P316
4908 NR 25
4909 TC 30
4910 SN 0003-2670
4911 J9 ANAL CHIM ACTA
4912 JI Anal. Chim. Acta
4913 PD JAN 30
4914 PY 1998
4915 VL 358
4916 IS 2
4917 BP 137
4918 EP 144
4919 PG 8
4920 SC Chemistry, Analytical
4921 GA YX680
4922 UT ISI:000072065700005
4923 ER
4924 
4925 PT J
4926 AU Zhang, C
4927    Qiu, ZG
4928 TI Effects of surface texture on hydrodynamic lubrication of dynamically
4929    loaded journal bearings
4930 SO TRIBOLOGY TRANSACTIONS
4931 DT Article
4932 DE hydrodynamic lubrication; journal bearing; surface roughness
4933 AB The effects of two-sided purely longitudinal, transverse and isotropic
4934    surface roughness on the hydrodynamic lubrication of dynamically loaded
4935    finite journal bearings are analyzed using Christensen's stochastic
4936    model of hydrodynamic lubrication of rough surfaces and considering
4937    running-in effect on roughness height distributions. A detailed study
4938    of the above system in terms of the nominal minimum film thickness and
4939    the maximum film pressure demonstrates that the effects of roughness
4940    are closely tied to the roughness texture and structure, features of
4941    nominal geometry, and operating factors.
4942 C1 Shanghai Univ, Res Inst Bearings, Shanghai 200072, Peoples R China.
4943    Fudan Univ, Dept Appl Mech, Shanghai 200433, Peoples R China.
4944 RP Zhang, C, Northwestern Univ, Evanston, IL 60201 USA.
4945 CR BOEDO S, 1995, P INT TRIB C YOK, P1061
4946    CHRISTENSEN H, 1969, P I MECH ENGRS     1, V184, P1013
4947    ELROD HG, 1973, ASME, V93, P324
4948    PATIR N, 1978, T ASME, V100, P12
4949    PRAKASH J, 1984, ASME, V106, P324
4950    RHOW SK, 1974, ASME, V94, P554
4951    TONDER K, 1977, WEAR, V44, P329
4952    ZHANG C, 1995, CHINESE INTERNAL COM, V16, P69
4953    ZHANG C, 1995, P INT TRIB C YOK, P1005
4954 NR 9
4955 TC 3
4956 SN 1040-2004
4957 J9 TRIBOL TRANS
4958 JI Tribol. Trans.
4959 PD JAN
4960 PY 1998
4961 VL 41
4962 IS 1
4963 BP 43
4964 EP 48
4965 PG 6
4966 SC Engineering, Mechanical
4967 GA YW245
4968 UT ISI:000071913000006
4969 ER
4970 
4971 PT J
4972 AU Wang, DR
4973    Zhao, FG
4974 TI The globalization of Durand-Kerner algorithm
4975 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
4976 DT Article
4977 DE Durand-Kerner algorithm; continuous homotopy; path tracing; global
4978    convergence; point estimation
4979 ID EIGENVALUE PROBLEMS; POLYNOMIAL SYSTEMS; HOMOTOPY; EQUATIONS; ZEROS
4980 AB Making use of the theory of continuous homotopy and the relation
4981    between symmetric polynomial and polynomial in one variable the authors
4982    devoted this article to constructing a regularly homotopic curve with
4983    probability one. Discrete tracing along this homotopic curve leads to a
4984    class of Durand-Kerner algorithm with step parameters. The convergence
4985    of this class of algorithms is given, which solves the conjecture about
4986    the global property of Durand-Kerner algorithm. The problem for
4987    steplength selection is thoroughly discussed. Finally, sufficient
4988    numerical examples are used to verify our theory.
4989 C1 Shanghai Univ, Shanghai 201800, Peoples R China.
4990    Fudan Univ, Shanghai 200433, Peoples R China.
4991 RP Wang, DR, Shanghai Univ, Shanghai 201800, Peoples R China.
4992 CR ALEFELD G, 1974, SIAM J NUMER ANAL, V11, P237
4993    ALLGOWER EL, 1990, NUMERICAL CONTINUATI
4994    CHOW SN, 1978, MATH COMPUT, V32, P887
4995    DEREN W, 1987, COMPUTING, V38, P75
4996    DEREN W, 1989, COMPUTING, V43, P187
4997    DEREN W, 1993, JCAM, V60, P253
4998    DURAND E, 1960, SOLUTIONS NAMERIQUES, V1
4999    GARCIA CB, 1979, MATH PROGRAM, V16, P159
5000    KERNER IO, 1966, NUMER MATH, V8, P290
5001    LI TY, 1987, LINEAR ALGEBRA APPL, V91, P65
5002    LI TY, 1987, SIAM J NUMER ANAL, V24, P435
5003    LI TY, 1989, SIAM J NUMER ANAL, V26, P1241
5004    LI TY, 1992, SIAM J NUMER ANAL, V29, P229
5005    MO ZJ, 1987, ALGEBRA, V1
5006    SCHWARTZ ST, 1969, NONLINEAR FUNCTIONAL
5007    SENLIN X, 1989, SYSTEM ALGEBRAIC EQU
5008    SMALE S, 1986, MERGING DISCIPLINES, P185
5009    ZHAO FG, 1993, MATH NUMERICA SINICA, V2, P196
5010    ZHENG SM, 1982, CHINESE SCI BULL, V9, P515
5011 NR 19
5012 TC 0
5013 SN 0253-4827
5014 J9 APPL MATH MECH-ENGL ED
5015 JI Appl. Math. Mech.-Engl. Ed.
5016 PD NOV
5017 PY 1997
5018 VL 18
5019 IS 11
5020 BP 1045
5021 EP 1057
5022 PG 13
5023 SC Mathematics, Applied; Mechanics
5024 GA YW736
5025 UT ISI:000071967700003
5026 ER
5027 
5028 PT J
5029 AU Guo, BY
5030    Wang, YM
5031 TI An almost monotone approximation for a nonlinear two-point boundary
5032    value problem
5033 SO ADVANCES IN COMPUTATIONAL MATHEMATICS
5034 DT Article
5035 DE nonlinear two-point problem; almost monotone approximation; nonlinear
5036    Jacobi and Gauss-Seidel iterations
5037 ID PETROV-GALERKIN
5038 AB Almost monotone approximation is proposed for nonlinear two-points
5039    problem. A general framework is given for studying the existence and
5040    uniqueness of numerical solutions. A discrete approximation with high
5041    accuracy is constructed. Nonlinear Jacobi iteration and Gauss-Seidel
5042    iteration are introduced to save work. The continuous approximation is
5043    also considered. The numerical results show the advantages of such an
5044    approach.
5045 C1 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
5046    Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
5047 CR BABUSKA I, 1966, NUMERICAL PROCESSES
5048    BABUSKA I, 1983, SIAM J NUMER ANAL, V20, P510
5049    BERMAN A, 1979, NONNEGATIVE MATRICES
5050    BOGLAEV IP, 1988, P ROY IRISH ACAD A, V88, P153
5051    CHANG KW, 1984, APPL MATH SCI, V56
5052    COLLATZ L, 1960, NUMERICAL TREATMENT
5053    COLLATZ L, 1964, FUNKTIONALANALYSIS N
5054    GUO BY, 1986, NUMER MATH, V49, P511
5055    GUO BY, 1988, DIFFERENCE METHODS P
5056    GUO BY, 1991, NUMER METH PART D E, P23
5057    GUO BY, 1992, J APPL SCI, V10, P1
5058    GUO BY, 1992, MATH COMPUT, V58, P531
5059    HOWES FA, 1978, MEMOIRS AM MATH SOC, V203
5060    LADDE GS, 1985, MONOTONE ITERATIVE T
5061    NUMEROV BV, 1924, MON NOT R ASTRON SOC, V84, P592
5062    RABINOWITZ PH, 1970, LECT NOTES MATH, V648, P97
5063    ROSE ME, 1964, MATH COMPUT, V18, P179
5064    VARGA RS, 1962, MATRIX ITERATIVE ANA
5065 NR 18
5066 TC 5
5067 SN 1019-7168
5068 J9 ADV COMPUT MATH
5069 JI Adv. Comput. Math.
5070 PY 1998
5071 VL 8
5072 IS 1-2
5073 BP 65
5074 EP 96
5075 PG 32
5076 SC Mathematics, Applied
5077 GA YW687
5078 UT ISI:000071962500005
5079 ER
5080 
5081 PT J
5082 AU Zhang, ZL
5083    Jiang, XY
5084    Xu, SH
5085    Nagatomo, T
5086    Omoto, O
5087 TI Stability enhancement of organic electroluminescent diode through
5088    buffer layer or rubrene doping in hole-transporting layer
5089 SO SYNTHETIC METALS
5090 DT Article
5091 DE buffer layers; organic electroluminescent diodes; rubrene
5092 AB The stability of organic electroluminescent devices is significantly
5093    improved by inserting a buffer layer between ITO and the
5094    hole-transporting layer or by doping rubrene in the hole layer, The
5095    durabilities of the improved devices increase by a factor of about 10.
5096    The reasons for the improvements are discussed based on tunnelling
5097    theory and the energy-level diagram of the device, (C) 1997 Elsevier
5098    Science S.A.
5099 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
5100    Shibaura Inst Technol, Tokyo 108, Japan.
5101 RP Zhang, ZL, Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R
5102    China.
5103 CR ADACHI C, 1995, APPL PHYS LETT, V66, P2679
5104    SANO T, P IN ORG EL EL 96 BE, P249
5105    SHIROTA Y, 1994, APPL PHYS LETT, V65, P807
5106 NR 3
5107 TC 26
5108 SN 0379-6779
5109 J9 SYNTHET METAL
5110 JI Synth. Met.
5111 PD DEC
5112 PY 1997
5113 VL 91
5114 IS 1-3
5115 BP 131
5116 EP 132
5117 PG 2
5118 SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
5119    Polymer Science
5120 GA YU803
5121 UT ISI:000071756200032
5122 ER
5123 
5124 PT J
5125 AU Zhang, BW
5126    Zhao, W
5127    Cao, Y
5128    Wang, XS
5129    Zhang, ZL
5130    Jiang, XY
5131    Xu, SH
5132 TI Photoluminescence and electroluminescence of squarylium cyanine dyes
5133 SO SYNTHETIC METALS
5134 DT Article
5135 DE organic devices; photoluminescence; electroluminescence; squarylium
5136    cyanine-doped 8-hydroxyquinoline aluminium; energy transfer mechanism
5137 ID FILMS
5138 AB A series of squarylium cyanine dyes (Sq1, Sq2 and Sq3) were synthesized
5139    to explore their applications in organic electroluminescence devices
5140    (ELDs) with the aim of achieving highly efficient red emission. The
5141    absorption and fluorescence spectra of squarylium cyanine dyes (Sqs) in
5142    organic solvents, as well as their interaction with S-hydroxyquinoline
5143    aluminum (Alq) in solution and in film, were investigated to help
5144    understand the EL mechanism. The basic device structure consists of a
5145    hole-transport layer (HTL) of
5146    N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD)
5147    and an emission layer (EML) of Sq-doped Alq. By the doping method, the
5148    EL color can be readily tuned from green (EL of Alq) to red (EL of Sq)
5149    upon varying application of voltage. The EL mechanism is suggested to
5150    be associated with the energy transfer from the excited Alq to the
5151    dopant Sq. (C) 1997 Elsevier Science S.A.
5152 C1 Acad Sinica, Inst Photog Chem, Photochem Lab, Beijing 100101, Peoples R China.
5153    Shanghai Univ Sci & Technol, Dept Mat Sci, Shanghai 201800, Peoples R China.
5154 RP Zhang, BW, Acad Sinica, Inst Photog Chem, Photochem Lab, Beijing
5155    100101, Peoples R China.
5156 CR ABKOWITZ M, 1986, PHILOS MAG B, V53, P193
5157    BORSENBERGER PM, 1978, J APPL PHYS, V49, P273
5158    DALEEP SD, 1961, J ORG CHEM, V26, P3527
5159    EMMELIUS M, 1989, ANGEW CHEM INT EDIT, V28, P1445
5160    GALE DJ, 1974, J SOC DYERS COLOUR, V90, P97
5161    GRIFFITHS J, 1976, COLOR CONSTITUTION O
5162    HENG LS, 1995, J SICHUAN U, V32, P566
5163    HUGO I, 1968, J ORG CHEM, V33, P4283
5164    JOHNSON GE, 1995, PURE APPL CHEM, V67, P175
5165    LAW KY, 1993, CHEM REV, V93, P449
5166    LI CP, 1995, J POLYM RES, V2, P133
5167    MILON WB, 1956, J AM CHEM SOC, V78, P5854
5168    PIECHOWSKI A, 1984, J PHYS CHEM-US, V88, P933
5169    SANO T, 1995, 5432014, US
5170    SPRENGER HE, 1967, ANGEW CHEM INT EDIT, V6, P553
5171    TANG CW, 1987, APPL PHYS LETT, V51, P913
5172    TANG CW, 1989, J APPL PHYS, V65, P3610
5173    TANG CW, 1995, 5409783, US
5174 NR 18
5175 TC 8
5176 SN 0379-6779
5177 J9 SYNTHET METAL
5178 JI Synth. Met.
5179 PD DEC
5180 PY 1997
5181 VL 91
5182 IS 1-3
5183 BP 237
5184 EP 241
5185 PG 5
5186 SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
5187    Polymer Science
5188 GA YU803
5189 UT ISI:000071756200057
5190 ER
5191 
5192 PT J
5193 AU Li, L
5194    Tang, Z
5195    Sun, W
5196    Wang, P
5197 TI Calculation of phase diagrams of Al2O3-SiO2-R2O3 systems
5198 SO PHYSICS AND CHEMISTRY OF GLASSES
5199 DT Article
5200 ID GLASSES
5201 AB Binary oxide diagrams of Al2O3-SiO2, SiO2-R2O3, Al2O3-R2O3 (R=Nd, Sm)
5202    were thermodynamically assessed. The obtained Gibbs free energies of
5203    components and stoichiometric phases and solution parameters were used
5204    for the estimation of liquidus surface and isothermal sections of
5205    Al2O3-SiO2-Nd2O3 and Al2O3-SiO2-Sm2O3 systems. The eutectics in
5206    Al2O3-SiO2-Nd2O3 ternary phase diagram were also calculated in this
5207    work.
5208 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200027, Peoples R China.
5209    Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
5210 RP Li, L, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200027, Peoples R
5211    China.
5212 CR ARAMAKI S, 1962, J AM CERAM SOC, V45, P229
5213    BONDAR A, 1966, B ACAD SCI USSR CH, P195
5214    COUTURES JP, 1985, J AM CERAM SOC, V68, P105
5215    ERBE EM, 1990, J AM CERAM SOC, V73, P2708
5216    ERIKSSON G, 1993, METALL TRANS B, V24, P807
5217    KAUFMAN L, 1978, CALPHAD, V2, P35
5218    KOHLI JT, 1991, PHYS CHEM GLASSES, V32, P67
5219    LUKAS HL, 1977, CALPHAD, V1, P225
5220    LUO W, 1990, PHYSICAL CHEM, P316
5221    PELTON AD, 1986, METALL TRANS B, V17, P805
5222    SUN G, 1991, J CHIN RARE EARTH EL, V9, P118
5223    TOROPOV NA, 1960, T 7 INT CER C LOND, P440
5224    TOROPOV NA, 1961, B ACAD SCI USSR CH, P1279
5225    WU P, 1992, J ALLOY COMPD, V179, P259
5226 NR 14
5227 TC 8
5228 SN 0031-9090
5229 J9 PHYS CHEM GLASSES
5230 JI Phys. Chem. Glasses
5231 PD DEC
5232 PY 1997
5233 VL 38
5234 IS 6
5235 BP 323
5236 EP 326
5237 PG 4
5238 SC Chemistry, Physical; Materials Science, Ceramics
5239 GA YV402
5240 UT ISI:000071819400008
5241 ER
5242 
5243 PT J
5244 AU Zhang, ZL
5245    Jiang, XY
5246    Xu, SH
5247    Nagatomo, T
5248    Omoto, O
5249 TI The effect of rubrene as a dopant on the efficiency and stability of
5250    organic thin film electroluminescent devices
5251 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
5252 DT Article
5253 ID LIGHT-EMITTING-DIODES
5254 AB Rubrene was doped into the hole transport layer of an organic thin film
5255    electroluminescent (OTFEL) device with a double-layered structure. It
5256    was found that the dopant has a profound influence on the EL
5257    characteristics - it changed the region of light emission, increased
5258    the luminescence efficiency by more than 50% and improved the device
5259    stability tenfold. The reasons for these effects are discussed based on
5260    injection theory and the energy level diagram of the device.
5261 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
5262    Shibaura Inst Technol, Minato Ku, Tokyo 108, Japan.
5263 RP Zhang, ZL, Shanghai Univ, Dept Mat Sci, Jiading Campus, Shanghai
5264    201800, Peoples R China.
5265 CR ADACHI C, 1995, APPL PHYS LETT, V66, P2679
5266    BROWN AR, 1992, APPL PHYS LETT, V61, P2793
5267    PARKER ID, 1994, APPL PHYS LETT, V65, P1272
5268    SANO T, 1996, INORGANIC ORGANIC EL, P249
5269    SHIROTA Y, 1994, APPL PHYS LETT, V65, P807
5270    TANG CW, 1987, APPL PHYS LETT, V51, P913
5271    YANG Y, 1994, APPL PHYS LETT, V64, P1245
5272    ZHANG ZL, 1996, CHINESE PHYS LETT, V4, P301
5273 NR 8
5274 TC 11
5275 SN 0022-3727
5276 J9 J PHYS-D-APPL PHYS
5277 JI J. Phys. D-Appl. Phys.
5278 PD JAN 7
5279 PY 1998
5280 VL 31
5281 IS 1
5282 BP 32
5283 EP 35
5284 PG 4
5285 SC Physics, Applied
5286 GA YV414
5287 UT ISI:000071820600005
5288 ER
5289 
5290 PT J
5291 AU Wen, HQ
5292    Mao, XM
5293    Xu, KD
5294 TI High strength conductor by directional solidification
5295 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
5296 DT Article
5297 AB The directional solidification of Cu-0.8 wt pet Cr alloy was
5298    investigated for high-strength conductors. An in-situ composite
5299    material in which the matrix is in cellular morphology and the
5300    well-distributed eutectics around the cells is formed in the
5301    directional solidification process. In such microstructure, the
5302    cellular matrix is as conductor and the coated-around eutectics as
5303    reinforcement. The formation mechanism of this microstructure is
5304    discussed from the interfacial instability. As a result, the tensile
5305    strength of the material along the solidification direction is two
5306    times more than that of the conventionally cast one, while the
5307    electrical conductivity is reduced a little by comparison with the pure
5308    Cu.
5309 C1 Shanghai Univ, Inst Mat Sci & Technol, Shanghai 200072, Peoples R China.
5310 RP Mao, XM, Shanghai Univ, Inst Mat Sci & Technol, Shanghai 200072,
5311    Peoples R China.
5312 CR ANDERSON KR, 1995, METALL MATER TRANS A, V9, P1197
5313    HANQI HU, 1991, SOLIDIFICATION FUNDA
5314    HARDWICH DA, 1993, METALL T A, V1, P27
5315    KURZ W, 1981, ACTA METALL, V29, P11
5316    TILLER WA, 1953, ACTA METALL, V1, P428
5317    VERHOEVEN JD, 1990, J MAT ENG, V2, P27
5318    WANG YW, 1995, FUNCTIONAL MAT, V3, P220
5319    ZHAO ZD, 1993, HDB CU ITS ALLOYS MA, P3
5320 NR 8
5321 TC 0
5322 SN 1005-0302
5323 J9 J MATER SCI TECHNOL
5324 JI J. Mater. Sci. Technol.
5325 PD JAN
5326 PY 1998
5327 VL 14
5328 IS 1
5329 BP 89
5330 EP 91
5331 PG 3
5332 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
5333    Engineering
5334 GA YV447
5335 UT ISI:000071825100022
5336 ER
5337 
5338 PT J
5339 AU Zhu, XH
5340    Xu, J
5341    Meng, ZY
5342 TI Interdiffusion reaction in the PZT/PNN functionally gradient
5343    piezoelectric ceramic materials
5344 SO JOURNAL OF MATERIALS SCIENCE
5345 DT Article
5346 ID ACTUATOR
5347 AB The interfacial diffusion reaction between lead zirconate titanate
5348    (PZT) and lead nickel niobate (PbNi1/3Nb2/3O3:PNN) phases in the
5349    PZT/PNN functionally gradient piezoelectric ceramics were investigated
5350    as a function of the diffusion temperature and time, respectively. The
5351    ionic composition distribution profiles in the interdiffusion region
5352    were examined by electron probe microbeam analysis (EPMA). Based on a
5353    diffusion model of the overlapped diffusion solution from thin slab,
5354    the numerical simulation for the ionic composition distribution was
5355    carried out by computer, which was in agreement with the EPMA result.
5356    The diffusion coefficients for the Ni2+, Nb5+, Ti4+ and Zr4+ ions were
5357    determined, which were 33.8, 22.6, 10.8 and 9.9 x 10(-12) m(2) s(-1),
5358    respectively. The apparent activation energies for these ions were
5359    94.4, 171.7, 257.5 and 325.8 kJ mol(-1), respectively. The differences
5360    in the ionic diffusion coefficients and apparent activation energies
5361    were discussed from the viewpoint of the crystal chemistry. (C) 1998
5362    Chapman & Hall.
5363 C1 Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China.
5364    Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.
5365    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
5366 RP Zhu, XH, Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China.
5367 CR CHAWLA KK, 1995, CERAMIC MATRIX COMPO
5368    ZHU XH, 1995, J MATER SCI LETT, V14, P516
5369    ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169
5370    ZHU XH, 1995, THESIS XIAN JIAOTONG
5371 NR 4
5372 TC 13
5373 SN 0022-2461
5374 J9 J MATER SCI
5375 JI J. Mater. Sci.
5376 PD FEB 15
5377 PY 1998
5378 VL 33
5379 IS 4
5380 BP 1023
5381 EP 1030
5382 PG 8
5383 SC Materials Science, Multidisciplinary
5384 GA YU268
5385 UT ISI:000071699300022
5386 ER
5387 
5388 PT J
5389 AU Huang, SR
5390    Luo, J
5391    Leonardi, F
5392    Lipo, TA
5393 TI A general approach to sizing and power density equations for comparison
5394    of electrical machines
5395 SO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS
5396 DT Article
5397 DE ferrites; magnets; motors; power density; sizing equation
5398 AB Whenever an electrical machine is meant to be fed lug a power
5399    converter, the design should be approached as a system optimization,
5400    more than a simple machine sizing. A great variety of electrical
5401    machines is available to accomplish this goal, and the task of
5402    comparing the different options tan be very difficult, A general
5403    purpose sizing equation, easily adjustable for every topology, that
5404    could take into account different waveforms and machine
5405    characteristics, would be a very desirable tool, In this paper, a
5406    general approach is presented to develop and to discuss such an
5407    equation. Sample applications of the sizing and power density equations
5408    are utilized to compare the induction machine and the doubly salient
5409    permanent magnet (DSPM) machine.
5410 C1 Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA.
5411 RP Huang, SR, Shanghai Univ, Coll Automat, Shanghai 200072, Peoples R
5412    China.
5413 CR CHEN SQ, 1982, ELECT MACHINE DESIGN
5414    HONSINGER VB, 1987, IEEE T ENERGY CONVER, V2, P116
5415    HUANG S, 1997, 1997 IEEE POW ENG SO
5416    LEONARDI F, 1996, IEEE IAS ANN M M SAN
5417    LEVI E, 1984, POLYPHASE MOTORS DIR
5418    LI Y, 1995, C DES MAN MOD IND DM
5419    LIPO TA, 1984, IEEE T IND APPL, V20, P834
5420    LIPO TA, 1995, P IPEC 95, P1
5421    LIPO TA, 1996, INTRO AC MACHINE DES
5422    SCHUISKY W, 1957, INDUKTIONSMASCHIMEN
5423 NR 10
5424 TC 5
5425 SN 0093-9994
5426 J9 IEEE TRANS IND APPL
5427 JI IEEE Trans. Ind. Appl.
5428 PD JAN-FEB
5429 PY 1998
5430 VL 34
5431 IS 1
5432 BP 92
5433 EP 97
5434 PG 6
5435 SC Engineering, Electrical & Electronic; Engineering, Multidisciplinary
5436 GA YU517
5437 UT ISI:000071725800012
5438 ER
5439 
5440 PT J
5441 AU Zhang, GL
5442    Yu, FH
5443    Weng, HM
5444    Zhang, HH
5445 TI Annealing behavior of Fe-57 implanted in ZrO2(Y)
5446 SO HYPERFINE INTERACTIONS
5447 DT Article
5448 AB Using conversion electron Mossbauer spectroscopy(CEMS) and slow
5449    positron beam, the chemical states of the implanted Fe-57 (100keV,3 x
5450    10(16) ions/cm(2)) in ZrO2 containing 3 mol% Y2O3 (ZY(3)) and its
5451    thermodynamic behavior during annealing process with the temperature
5452    from 200 to 500 degrees C were studied. After annealing at 400 degrees
5453    C the complex of Fe3+-V has been mostly dissolved, and the prior phase
5454    to alpha-Fe and alpha-Fe nano-crystalline cluster were present in the
5455    sample. Meanwhile the mixed conducting of oxygen-ions and electrons in
5456    the ZY(3) containing Fe sample appeared.
5457 C1 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
5458    Univ Sci & Technol China, Hefei 230026, Peoples R China.
5459    Shanghai Univ Sci & Technol, Coll Mat Sci, Shanghai 201800, Peoples R China.
5460 RP Zhang, GL, Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800,
5461    Peoples R China.
5462 CR BURGGRAAF AJ, 1988, PHYS RES B, V32, P32
5463    MAREST G, 1990, HYPERFINE INTERACT, V56, P1605
5464    SAWICKI JA, 1988, NUCL INSTRUM METH B, V32, P79
5465    WELLER M, 1986, J AM CERAM SOC, V69, P573
5466    ZHANG G, 1986, PHYS LETT A, V119, P251
5467 NR 5
5468 TC 0
5469 SN 0304-3843
5470 J9 HYPERFINE INTERACTIONS
5471 JI Hyperfine Interact.
5472 PY 1998
5473 VL 112
5474 IS 1-4
5475 BP 197
5476 EP 200
5477 PG 4
5478 SC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter;
5479    Physics, Nuclear
5480 GA YV034
5481 UT ISI:000071783000042
5482 ER
5483 
5484 PT J
5485 AU Zhao, XH
5486    Chen, WF
5487 TI Solutions of multilayer inclusion problems under uniform field
5488 SO JOURNAL OF ENGINEERING MECHANICS-ASCE
5489 DT Article
5490 ID STRESS-FIELDS; COMPOSITES
5491 AB In this paper, a general solution of an n-layer inclusion problem in a
5492    limited region is obtained for the first time. The solutions of
5493    three-layer inclusion problems in a limited region under uniform strain
5494    field and under uniform stress field are given also. These solutions
5495    with undetermined constants are all expressed in closed form. The
5496    validity of these solutions is verified by numerical examples of
5497    several special cases. These solutions will enable us to study various
5498    stress distributions and elastic behavior of concrete materials in
5499    microscale.
5500 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
5501    Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA.
5502 RP Zhao, XH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
5503    200072, Peoples R China.
5504 CR BENVENISTE Y, 1989, MECH MATER, V7, P305
5505    CHEN T, 1990, MECH MATER, V9, P17
5506    CHRISTENSEN RM, 1979, J MECH PHYS SOLIDS, V27, P315
5507    DASGUPTA A, 1992, MECH MATER, V14, P67
5508    GOODIER JN, 1933, J APPL MECH, V1, P39
5509    LING CB, 1966, APPL SCI RES THE HAG, V18, P32
5510    SIBONI G, 1991, MECH MATER, V11, P107
5511    TIMOSHENKO S, 1951, THEORY ELASTICITY
5512    ZHAO XH, 1990, APPL MATH MECH, V11, P207
5513    ZHAO XH, 1996, INT J NUMER ANAL MET, V20, P275
5514 NR 10
5515 TC 3
5516 SN 0733-9399
5517 J9 J ENG MECH-ASCE
5518 JI J. Eng. Mech.-ASCE
5519 PD FEB
5520 PY 1998
5521 VL 124
5522 IS 2
5523 BP 209
5524 EP 216
5525 PG 8
5526 SC Engineering, Mechanical
5527 GA YT178
5528 UT ISI:000071573300012
5529 ER
5530 
5531 PT J
5532 AU Ma, XG
5533    Chen, ZH
5534 TI Heat recovery from the starting vessel of a once-through boiler system
5535 SO APPLIED THERMAL ENGINEERING
5536 DT Article
5537 DE heat recovery; deaerator; boiler; start-up system
5538 AB An increasing number of coal-and oil-fired boilers are employed in
5539    covering the week-day load and are shut down at weekends. This paper
5540    describes an attempt to calculate the amount of heat recovery in a
5541    once-through boiler system during its start-up. A mathematical model
5542    has been firstly developed, and an experimental study is carried out to
5543    check the model. The 300 MW once-through boiler system is taken as an
5544    example. Both theoretical analysis and an experimental study show that
5545    the capacity for heat recovery in the deaerator tank largely depends on
5546    the working pressure of the deaerator tank and the starting vessel. The
5547    volume of the deaerator tank, especially the volume of water, has a
5548    large effect on the heat recovery capacity. (C) 1997 Published by
5549    Elsevier Science Ltd.
5550 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
5551 RP Ma, XG, Shanghai Univ Sci & Technol, Coll Power Engn, 516 Jun Gong Rd,
5552    Shanghai 200093, Peoples R China.
5553 CR HIRSCH C, 1988, NUMERICAL COMPUTATIO
5554    HUANG CM, 1982, HYDRODYNAMICS HEAT T
5555    RAY A, 1976, J DYNAMIC SYSTEM MEA, V9, P332
5556    XU HZ, 1996, POWER STATION AUXILI, V1, P1
5557    ZHANG CY, 1976, DYNAMIC RESPONSE MAT
5558 NR 5
5559 TC 0
5560 SN 1359-4311
5561 J9 APPL THERM ENG
5562 JI Appl. Therm. Eng.
5563 PD MAR-APR
5564 PY 1998
5565 VL 18
5566 IS 3-4
5567 BP 179
5568 EP 186
5569 PG 8
5570 SC Engineering, Mechanical; Energy & Fuels; Mechanics; Thermodynamics
5571 GA YR474
5572 UT ISI:000071498900011
5573 ER
5574 
5575 PT J
5576 AU Huang, DB
5577    Zhao, XH
5578    Dai, HH
5579 TI Invariant tori and chaotic streamlines in the ABC flow
5580 SO PHYSICS LETTERS A
5581 DT Article
5582 DE ABC flow; action-angle-angle; invariant tori; Melnikov method; chaos
5583 AB We study the dynamical system associated with fluid particle motions of
5584    the Arnold-Beltrami-Childress (ABC) flow, defined by (x) over dot = A
5585    sin z + C cos y, (y) over dot = B sin x + A cos z, (z) over dot = C sin
5586    y + B cos x, where A, B, C are real parameters and \C\ much less than
5587    1. First, we reduce this system to action-angle-angle coordinates.
5588    Then, by using the new-KAM-like theorems for perturbations of a
5589    three-dimensional, volume-preserving map, we obtain the conditions of
5590    existence of invariant tori in the ABC flow. In addition, by using a
5591    high-dimensional generalization of the Melnikov method, we obtain the
5592    analytical criterion for the existence of chaotic streamlines in the
5593    ABC flow. (C) 1998 Published by Elsevier Science B.V.
5594 C1 Yunnan Univ, Dept Math, Kunming 650091, Peoples R China.
5595    City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong.
5596 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
5597 CR ARNOLD VI, 1965, CR HEBD ACAD SCI, V261, P17
5598    ARNOLD VI, 1978, MATH METHODS CLASSIC
5599    CHENG CQ, 1990, CELESTIAL MECH, V47, P275
5600    DOMBRE T, 1986, J FLUID MECH, V167, P353
5601    GALLOWAY D, 1987, J FLUID MECH, V180, P557
5602    GUCHENHEIMER J, 1983, NONLINEAR OSCILLATIO
5603    HENON M, 1966, CR HEBD ACAD SCI, V262, P312
5604    MEIZE J, 1994, J NONLINEAR SCI, V4, P157
5605    WIGGINS S, 1988, GLOBAL BIFURCATIONS
5606    WIGGINS S, 1990, INTRO APPL NONLINEAR
5607    YOCCOZ JC, 1992, ASTERISQUE, V206, P311
5608    ZHAO XH, 1993, SIAM J APPL MATH, V53, P71
5609 NR 12
5610 TC 4
5611 SN 0375-9601
5612 J9 PHYS LETT A
5613 JI Phys. Lett. A
5614 PD JAN 5
5615 PY 1998
5616 VL 237
5617 IS 3
5618 BP 136
5619 EP 140
5620 PG 5
5621 SC Physics, Multidisciplinary
5622 GA YQ830
5623 UT ISI:000071427400006
5624 ER
5625 
5626 PT J
5627 AU Liu, GL
5628    He, JH
5629 TI New research and concepts in turbo-jet engine design
5630 SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY
5631 DT Article
5632 DE aerospace engineering; design; engines; 3D
5633 AB Presents a brief overview of some new concepts and research results
5634    concerning aerodynamic computation and design of jet-propulsion engines
5635    with emphasis on turbomachinery (TM) developed in China, without any
5636    attempt to be exhaustive.
5637 C1 Shanghai Univ, Inst Mech, Shanghai, Peoples R China.
5638 RP Liu, GL, Shanghai Univ, Inst Mech, Shanghai, Peoples R China.
5639 CR DEICH ME, 1963, THERMAL ENERGETICS
5640    EPPLER R, 1980, TM80210 NASA, P82
5641    GAO JH, 1997, THESIS SHANGHAI U
5642    LI XD, 1996, AIAA J, V34, P1097
5643    LIU GL, 1993, P I MECH ENG A-J POW, V207, P23
5644    LIU GL, 1995, INT J TURBO JET ENG, V12, P109
5645    LIU GL, 1996, 19 INT C THEOR APPL
5646    LIU GL, 1996, ACTA AERODYNAMICA SI, V14, P1
5647    LIU GL, 1996, INT J TURBO JET ENG, V13, P1
5648    LIU GL, 1998, IN PRESS INT S INV P
5649    MIAO RT, 1991, J AEROSPACE POWER, V6, P13
5650    OHTSUKA M, 1974, 74GT2 ASME
5651    SELIG MS, 1992, AIAA J, V30, P1162
5652    WANG ZQ, 1981, 5 INT S AIR BREATH E
5653    WANG ZQ, 1994, J ENG THERMOPHYSICS, V15, P147
5654    ZHANG ZC, 1996, J ENG THERMOPHYSICS, V17, P180
5655 NR 16
5656 TC 2
5657 SN 0002-2667
5658 J9 AIRCRAFT ENG AEROSP TECHNOL
5659 JI Aircr. Eng. Aerosp. Technol.
5660 PY 1997
5661 VL 69
5662 IS 6
5663 BP 527
5664 EP +
5665 PG 8
5666 SC Engineering, Aerospace
5667 GA YQ732
5668 UT ISI:000071417700003
5669 ER
5670 
5671 PT J
5672 AU Chen, LQ
5673    Liu, YZ
5674 TI Parametric open-plus-closed-loop control of chaos in continuous
5675    dynamical systems
5676 SO ACTA MECHANICA SOLIDA SINICA
5677 DT Article
5678 DE continuous dynamical system; chaos; parametric open-plus-closed-loop
5679    control; the Lorenz model
5680 ID MIGRATION CONTROLS; ENTRAINMENT
5681 AB This paper presents a parametric open-plus-closed-loop control approach
5682    to controlling chaos in continuous dynamical systems. As an example,
5683    chaos in the Lorenz model is controlled to demonstrate its application.
5684    Finally. the relations between the parametric open-plus-closed-loop
5685    control and the former control methods, such as the
5686    open-plus-closed-loop control and the parametric entrainment control.
5687    are discussed.
5688 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
5689    Shanghai Jiao Tong Univ, Dept Mech Engn, Shanghai 200030, Peoples R China.
5690 CR CHEN LQ, IN PRESS APPL MATH M
5691    CHEN LQ, 1996, PHYS, V25, P278
5692    HU HY, 1996, ADV MECH, V26, P453
5693    HUBLER A, 1989, NATURWISSENSCHAFTEN, V76, P67
5694    JACKSON EA, 1990, PHYS LETT A, V151, P478
5695    JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1255
5696    JACKSON EA, 1995, PHYSICA D, V85, P1
5697    METTIN R, 1995, PHYS REV E A, V51, P4065
5698 NR 8
5699 TC 2
5700 SN 0894-9166
5701 J9 ACTA MECH SOLIDA SINICA
5702 JI Acta Mech. Solida Sin.
5703 PD DEC
5704 PY 1997
5705 VL 10
5706 IS 4
5707 BP 316
5708 EP 321
5709 PG 6
5710 SC Materials Science, Multidisciplinary; Mechanics
5711 GA YR176
5712 UT ISI:000071468000004
5713 ER
5714 
5715 PT J
5716 AU Wang, Q
5717    Awai, I
5718 TI Frequency characteristics of the magnetic spatial solitons on the
5719    surface of an antiferromagnet
5720 SO JOURNAL OF APPLIED PHYSICS
5721 DT Article
5722 ID CROSS-PHASE MODULATION; WAVE-GUIDES; FERROMAGNETIC-FILMS; ENVELOPE
5723    SOLITONS; OPTICAL SOLITONS; SPIN-WAVES; PROPAGATION
5724 AB The frequency characteristics of magnetic spatial solitons on the
5725    surface of two-sublattice uniaxial antiferromagnetic crystal have been
5726    studied. The distinguishing feature of the solitons is the existence of
5727    the frequency passband(s) and stopband(s) that can be switched into
5728    each other by varying the power. This is because the nonlinear
5729    permeability is not only power dependent but also frequency dependent
5730    in infrared frequency region. The passband width may increase sharply
5731    with the power when the dielectric constant of the antiferromagnetic
5732    crystal is smaller than that of the nonmagnetic substrate. The passband
5733    may vary as much as 100 GHz below the infrared resonance frequency of
5734    the system. (C) 1998 American Institute of Physics.
5735 C1 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
5736    Yamaguchi Univ, Dept Elect & Elect Engn, Ube, Yamaguchi 755, Japan.
5737 RP Wang, Q, Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800,
5738    Peoples R China.
5739 CR AITCHISON JS, 1991, J OPT SOC AM B, V8, P1290
5740    AITCHISON JS, 1992, ELECTRON LETT, V28, P1879
5741    AKHMANOV SA, 1968, SOV PHYS USP, V10, P609
5742    ALMEIDA NS, 1987, PHYS REV B, V36, P2015
5743    BARTHELEMY A, 1985, OPT COMMUN, V55, P201
5744    BEEMAN DE, 1966, J APPL PHYS, V37, P1136
5745    BOARDMAN AD, 1988, PHYS REV B, V38, P1144
5746    BOARDMAN AD, 1989, PHYS REV A, V39, P2481
5747    BOARDMAN AD, 1990, PHYS REV B, V41, P717
5748    BOARDMAN AD, 1993, PHYS REV B, V48, P13602
5749    BOARDMAN AD, 1993, RADIO SCI, V28, P891
5750    BOARDMAN AD, 1994, IEEE T MAGN, V30, P1
5751    BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
5752    CAMLEY RE, 1987, SURF SCI REP, V7, P103
5753    CARNLEY RE, 1980, PHYS REV LETT, V45, P283
5754    COSTA BV, 1993, PHYS REV B, V47, P5059
5755    DEGASPERIS P, 1988, J APPL PHYS, V63, P4136
5756    DELAFUENTE R, 1992, IEEE J QUANTUM ELECT, V28, P547
5757    DELAFUENTE R, 1992, OPT COMMUN, V88, P419
5758    FETISOV YK, 1983, SOV PHYS-SOLID STATE, V25, P1634
5759    GATZ S, 1991, J OPT SOC AM B, V8, P2296
5760    GORDON NI, 1965, SOV PHYS JETP, V21, P576
5761    GULYAEV YV, 1986, SOV PHYS-SOLID STATE, V28, P1553
5762    KADIGROBOV MI, 1965, SOV PHYS JETP, V21, P576
5763    KALINIKOS BA, 1990, IEEE T MAGN, V26, P1477
5764    KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712
5765    LIU SL, 1995, PHYS REV A, V51, R38
5766    MOLONEY JV, 1992, NATO ASI SER E, V214, P341
5767    MOLONEY JV, 1992, OPT QUANTUM ELECT, V24, S1269
5768    QI W, 1995, J APPL PHYS, V77, P1
5769    QI W, 1995, SCI CHINA SER A, V24, P1108
5770    STAMPS RL, 1984, J APPL PHYS, V56, P3497
5771    TEMIRYAZEV AG, 1987, SOV PHYS-SOLID STATE, V29, P179
5772    VUKOVICH S, 1990, SOV PHYS JETP, V71, P964
5773    ZHANG HK, 1990, J APPL PHYS 2B, V67, P5498
5774 NR 35
5775 TC 6
5776 SN 0021-8979
5777 J9 J APPL PHYS
5778 JI J. Appl. Phys.
5779 PD JAN 1
5780 PY 1998
5781 VL 83
5782 IS 1
5783 BP 382
5784 EP 387
5785 PG 6
5786 SC Physics, Applied
5787 GA YP836
5788 UT ISI:000071320400055
5789 ER
5790 
5791 PT J
5792 AU Zhao, XH
5793    Chen, WF
5794 TI The effective elastic moduli of concrete and composite materials
5795 SO COMPOSITES PART B-ENGINEERING
5796 DT Article
5797 DE effective elastic modulus; concrete; composite materials; micromechanics
5798 ID CEMENT PASTE; MORTAR
5799 AB In this paper, the analytical expressions of the effective elastic
5800    moduli E* for concrete or other composite materials under a uniform
5801    stress field, a uniform strain field and a uniform field at infinity
5802    are obtained based on elastic theory. The new expressions provide a
5803    better estimate of E* than the existing engineering formulas, and the
5804    differences between them are compared numerically. It is found that the
5805    effective elastic modulus E* depends not only on the geometrical and
5806    physical parameters of microstructure, but also on stress state. The
5807    value of E* is found to vary within a narrow region. (C) 1997 Elsevier
5808    Science Ltd. All rights reserved.
5809 C1 Purdue Univ, Sch Civil Engn, Dept Struct Engn, W Lafayette, IN 47907 USA.
5810    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
5811 RP Chen, WF, Purdue Univ, Sch Civil Engn, Dept Struct Engn, W Lafayette,
5812    IN 47907 USA.
5813 CR BENVENISTE Y, 1989, MECH MATER, V7, P305
5814    CHEN WF, 1994, CONCRETE PLASTICITY
5815    CHRISTENSEN RM, 1979, J MECH PHYS SOLIDS, V27, P315
5816    COHEN MD, 1994, CEMENT CONCRETE RES, V24, P95
5817    COHEN MD, 1995, MATER RES SOC S P, V370, P407
5818    HASHIN Z, 1962, ASME J APPL MECH, V29, P144
5819    HASHIN Z, 1964, J APPL MECH        E, V31, P223
5820    HASHIN Z, 1983, ASME, V50, P481
5821    HERVE E, 1993, INT J ENG SCI, V31, P1
5822    HILL R, 1963, J MECH PHYS SOLIDS, V11, P357
5823    JONES RM, 1975, MECH COMPOSITE MAT
5824    LUO HA, 1989, MECH MATER, V8, P77
5825    SIBONI G, 1991, MECH MATER, V11, P107
5826    TORQUATO S, 1991, APPL MECH REV, V44, P37
5827    WISLOW DN, 1994, CEMENT CONCRETE RES, V24
5828    ZHAO XH, 1996, INT J NUMER ANAL MET, V20, P215
5829    ZHAO XH, 1996, INT J NUMER ANAL MET, V20, P275
5830    ZHAO XH, 1997, IN PRESS COMPUTERS S, V64
5831    ZHAO XH, 1998, IN PRESS J ENG MECH, V124
5832 NR 19
5833 TC 2
5834 SN 1359-8368
5835 J9 COMPOS PART B-ENG
5836 JI Compos. Pt. B-Eng.
5837 PY 1998
5838 VL 29
5839 IS 1
5840 BP 31
5841 EP 40
5842 PG 10
5843 SC Engineering, Multidisciplinary; Materials Science, Composites
5844 GA YP479
5845 UT ISI:000071280900005
5846 ER
5847 
5848 PT J
5849 AU Chien, WZ
5850 TI The first order approximation of non-Kirchhoff-Love theory for elastic
5851    circular plate with fixed boundary under uniform surface loading (I)
5852 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
5853 DT Article
5854 DE elastic circular plate; Kirchhoff-Love assumption; generalized
5855    variational principle
5856 AB Based on the approximation theory adopting non-Kirchhoff-love
5857    assumption for three dimensional elastic plates with arbitrary
5858    shapes([1], [2]), the author derives a functional of generalized
5859    variation for three dimensional elastic circular plates, thereby
5860    obtains a set of differential equations and the relate boundary
5861    conditions to establish a first order approximation theory for elastic
5862    circular plate with fixed boundary and under uniform loading on one of
5863    its surface. The analytical solution of this problem will present in
5864    another paper.
5865 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
5866 RP Chien, WZ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
5867    200072, Peoples R China.
5868 CR CHIEN WZ, 1984, ADV APPL MECH, V24, P93
5869    CHIEN WZ, 1995, APPL MATH MECH, V16, P203
5870    CHIEN WZ, 1995, APPL MATH MECH, V16, P405
5871    CHIESA P, 1987, MEDIOEVO RINASCIMENT, V1, P1
5872 NR 4
5873 TC 3
5874 SN 0253-4827
5875 J9 APPL MATH MECH-ENGL ED
5876 JI Appl. Math. Mech.-Engl. Ed.
5877 PD JAN
5878 PY 1997
5879 VL 18
5880 IS 1
5881 BP 1
5882 EP 18
5883 PG 18
5884 SC Mathematics, Applied; Mechanics
5885 GA YP169
5886 UT ISI:000071249500001
5887 ER
5888 
5889 PT J
5890 AU Wu, JC
5891    Pan, LZ
5892 TI Nonlinear theory of multilayer sandwich shells and its application (I)
5893    - General theory
5894 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
5895 DT Article
5896 DE multilayer sandwich shells; nonlinear theory
5897 AB In this paper, a nonlinear theory is given for multilayer sandwich
5898    shells undergoing small strains and moderate rotations. Then a
5899    simplified theory for the shells undergoing moderate or moderate/small
5900    rotations are obtained.
5901 C1 Tongji Univ, Dept Engn Mech, Shanghai 200092, Peoples R China.
5902    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
5903 RP Wu, JC, Tongji Univ, Dept Engn Mech, Shanghai 200092, Peoples R China.
5904 CR ABDULHADI F, 1971, 71VIBR48 ASME
5905    AZAR JJ, 1968, AIAA J, V6, P2166
5906    AZAR JJ, 1970, AIAA J, V8, P157
5907    CHIEN WZ, 1944, Q APPL MATH, V2, P120
5908    JOHN F, 1965, COMMUN PUR APPL MATH, V18, P235
5909    KOITER WT, 1980, MECHANICS TODAY, V5, P139
5910    LIAW BD, 1967, AIAA J, V5, P301
5911    LIAW BD, 1969, AERONAUTICAL Q, V20, P61
5912    LIU RH, NONLINEAR THEORY SAN
5913    PIETRASZKIEWICZ W, 1985, INT J NONLINEAR MECH, V19, P115
5914    RAJAGOPAL SV, 1978, AIAA J, V25, P130
5915    WONG JP, 1968, DEV MECH, V4, P289
5916 NR 12
5917 TC 2
5918 SN 0253-4827
5919 J9 APPL MATH MECH-ENGL ED
5920 JI Appl. Math. Mech.-Engl. Ed.
5921 PD JAN
5922 PY 1997
5923 VL 18
5924 IS 1
5925 BP 19
5926 EP 27
5927 PG 9
5928 SC Mathematics, Applied; Mechanics
5929 GA YP169
5930 UT ISI:000071249500002
5931 ER
5932 
5933 PT J
5934 AU Zhu, Y
5935 TI Strongly oblique interactions between internal solitary waves with the
5936    same mode
5937 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
5938 DT Article
5939 DE solitary waves; strong interaction; stratified fluids; 3D problem
5940 AB In this paper, by using the Lagrangian coordinates, the strongly
5941    oblique interactions between solitary waves with the same mode in a
5942    stratified fluid ape discussed, which includes the shallow fluid case
5943    and deep fluid case. It is found that the interactions are described by
5944    the KP equation for the shallow fluid case, the two-dimensional
5945    intermediate long wave equation (2D-ILW equation) for the deep fluid
5946    case and the two-dimensional BO equation (2D-BO equation) for the
5947    infinite deep fluid case.
5948 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
5949 RP Zhu, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
5950    Peoples R China.
5951 CR ABLOWITZ MJ, 1980, STUD APPL MATH, V62, P249
5952    ABLOWITZ MJ, 1981, SOLITONS INVERSE SCA
5953    GRIMSHAW R, 1994, STUD APPL MATH, V92, P249
5954    MILES JW, 1977, J FLUID MECH, V79, P157
5955    MILES JW, 1977, J FLUID MECH, V79, P171
5956    ZABUSKY NJ, 1965, PHYS REV LETT, V15, P240
5957 NR 6
5958 TC 0
5959 SN 0253-4827
5960 J9 APPL MATH MECH-ENGL ED
5961 JI Appl. Math. Mech.-Engl. Ed.
5962 PD OCT
5963 PY 1997
5964 VL 18
5965 IS 10
5966 BP 957
5967 EP 962
5968 PG 6
5969 SC Mathematics, Applied; Mechanics
5970 GA YP725
5971 UT ISI:000071308200005
5972 ER
5973 
5974 PT J
5975 AU Wu, YJ
5976 TI Remarks on nonlinear Galerkin method for Kuramoto-Sivashinsky equation
5977 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
5978 DT Article
5979 DE nonlinear Galerkin method; Kuramoto-Sivashinsky equation; infinite
5980    dimensional dynamical systems
5981 ID APPROXIMATE INERTIAL MANIFOLDS; NAVIER-STOKES EQUATIONS
5982 AB This paper is concentrated on a nonlinear Galerkin method with s(m)
5983    small-scale components for Kuramoto-Sivashinsky equation, in which
5984    convergence results and the analysis of error estimates are given. The
5985    conclusion shows that this choice of modes is efficient for the method
5986    modified.
5987 C1 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
5988    Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China.
5989 RP Wu, YJ, Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800,
5990    Peoples R China.
5991 CR FOIAS C, 1983, PHYSICA D, V9, P157
5992    FOIAS C, 1988, RAIRO MODEL MATH ANA, V22, P93
5993    LIONS JL, 1969, QUELQUES METHODES RE
5994    MARION M, 1989, SIAM J NUMER ANAL, V26, P1139
5995    NICOLAENKO B, 1985, PHYSICA D, V16, P155
5996    SHEN J, 1990, APPL ANAL, V38, P201
5997    TEMAM R, 1983, CBMS NSF REGIONAL C
5998    TEMAM R, 1984, NAVIER STOKES EQUATI
5999    TEMAM R, 1988, APPL MATH SCI, V68
6000    TEMAM R, 1988, CR ACAD SCI II-MEC P, V306, P399
6001    TEMAM R, 1989, LECT NOTES PHYSICS
6002    TEMAM R, 1989, RAIRO-MATH MODEL NUM, V23, P541
6003    WU YJ, IN PRESS J COMPUT MA
6004    WU YJ, 1994, ADV MECH, V24, P145
6005    YANG ZH, 1997, J SHANGHAI U, V1, P20
6006 NR 15
6007 TC 0
6008 SN 0253-4827
6009 J9 APPL MATH MECH-ENGL ED
6010 JI Appl. Math. Mech.-Engl. Ed.
6011 PD OCT
6012 PY 1997
6013 VL 18
6014 IS 10
6015 BP 1005
6016 EP 1013
6017 PG 9
6018 SC Mathematics, Applied; Mechanics
6019 GA YP725
6020 UT ISI:000071308200011
6021 ER
6022 
6023 PT J
6024 AU Chien, WZ
6025 TI The first-order approximation of non-Kirchhoff-Love theory for elastic
6026    circular plate with fixed boundary under uniform surface loading (II)
6027 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6028 DT Article
6029 DE elasticity; circular plate; Kirchhoff-Love assumptions; generalized
6030    variational principle
6031 AB Based upon the differential equations and their related boundary
6032    conditions given in !he previous paper([I]), this paper finds the
6033    analytical solution of non-Kirchhoff-love theory for elastic circular
6034    plate with fixed boundary conditions under uniform surface loading.
6035    Hailer er, for. the sake of saving computational work, the first order
6036    approximation theory can be further simplified in more rational bases.
6037 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6038 RP Chien, WZ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
6039    200072, Peoples R China.
6040 CR CHIEN WZ, 1997, APPL MATH MECH-ENGL, V18, P1
6041    KIRCHHOFF G, 1850, J REINE ANGEW MATH, V40, P51
6042    LOVE AEN, 1937, TREATISE MATH THEORY
6043    MCPHERSON AE, 1943, 744 NACA
6044 NR 4
6045 TC 1
6046 SN 0253-4827
6047 J9 APPL MATH MECH-ENGL ED
6048 JI Appl. Math. Mech.-Engl. Ed.
6049 PD FEB
6050 PY 1997
6051 VL 18
6052 IS 2
6053 BP 103
6054 EP 112
6055 PG 10
6056 SC Mathematics, Applied; Mechanics
6057 GA YP170
6058 UT ISI:000071249600001
6059 ER
6060 
6061 PT J
6062 AU Dai, SQ
6063    Zang, HM
6064 TI A semi-inverse algorithm in application of computer algebra
6065 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6066 DT Article
6067 DE computer algebra; symbolic computation; intermediate expression swell;
6068    perturbation method; nonlinear analysis
6069 AB For the purpose of overcoming the difficulty of the so-called
6070    "intermediate expression swell" in applying computer algebra, a
6071    semi-inverse algorithm is proposed. The or del of seeking solutions for
6072    various problems is partly inverted, i. e., the intermediate
6073    expressions appearing in computation are "frozen" in the symbolic form
6074    at first, and "unfrozen" till the formal expressions of final solutions
6075    are found out. In this rca!, the overflow due to the shortage of saving
6076    space is avoided. The applications of the algorithm in the problems on
6077    nonlinear oscillation, dynamical optimization and interfacial solitary
6078    waves are described, which show the effectiveness of the semi-inverse
6079    algorithm.
6080 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6081 RP Dai, SQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
6082    200072, Peoples R China.
6083 CR BELTZER AI, 1990, APPL MECH REV, V43, P119
6084    CALMET J, 1988, COMPUTER ALGEBRA SYM, P245
6085    DAI SQ, 1981, SINGULAR PETURBATION, P33
6086    DAI SQ, 1982, APPL MATH MECHANICS, V3, P777
6087    RAND HR, 1987, PERTURBATION METHODS
6088    VANDYKE M, 1984, ANNU REV FLUID MECH, V16, P287
6089    WANG MQ, 1995, APPL MATH MECH ENGLI, V16, P421
6090    ZANG HM, 1991, J SHANGHAI U TECHNOL, V12, P283
6091    ZANG HM, 1993, J SHANGHAI U TECHNOL, V14, P189
6092    ZANG HM, 1993, THESIS SHANGHAI U TE
6093    ZANG HM, 1994, P INT C HYDR, P691
6094 NR 11
6095 TC 2
6096 SN 0253-4827
6097 J9 APPL MATH MECH-ENGL ED
6098 JI Appl. Math. Mech.-Engl. Ed.
6099 PD FEB
6100 PY 1997
6101 VL 18
6102 IS 2
6103 BP 113
6104 EP 119
6105 PG 7
6106 SC Mathematics, Applied; Mechanics
6107 GA YP170
6108 UT ISI:000071249600002
6109 ER
6110 
6111 PT J
6112 AU Wu, JC
6113    Pan, LZ
6114 TI Nonlinear theory of multilayer sandwich shells and its application (II)
6115    - Fundamental equations for orthotropic shallow shells
6116 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6117 DT Article
6118 DE multilayer sandwich shallow shells; orthotropic; fundamental equation
6119 AB This paper-applied the simplified theory for multilayer sandwich shells
6120    undergoing moderate/small rotations in Ref.[1] to shallow shells. The
6121    equilibrium equations and boundary conditions of large deflection of
6122    orthotropic and the special case, isotropic shells, are presented.
6123 C1 Tongji Univ, Inst Engn Mech, Shanghai 200092, Peoples R China.
6124    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6125 RP Wu, JC, Tongji Univ, Inst Engn Mech, Shanghai 200092, Peoples R China.
6126 CR *I MECH AC SIN, 1977, STAB VIBR SANDW PLAT
6127    CHENG ZQ, 1994, APPL MATH MECH, V15, P605
6128    CHIEN WZ, 1944, Q APPL MATH, V2, P120
6129    WU JC, 1997, APPL MATH MECH-ENGL, V18, P19
6130 NR 4
6131 TC 1
6132 SN 0253-4827
6133 J9 APPL MATH MECH-ENGL ED
6134 JI Appl. Math. Mech.-Engl. Ed.
6135 PD FEB
6136 PY 1997
6137 VL 18
6138 IS 2
6139 BP 129
6140 EP 139
6141 PG 11
6142 SC Mathematics, Applied; Mechanics
6143 GA YP170
6144 UT ISI:000071249600004
6145 ER
6146 
6147 PT J
6148 AU Feng, SW
6149    Zang, GC
6150 TI The study of sabot-discarding mechanism of gas-propelled APDS
6151 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6152 DT Article
6153 DE gas-propelled APDS; gas-filling; gas-ejecting; sabot-discarding motion
6154 AB With the advantages of simpler structure, smaller disturbance and no
6155    self-hurt while discarding sabot, the gas-propelled amor-piercing
6156    projectile with discarding sabot (APDS) owns its promissing prospect.
6157    This paper has studied the gas-filling and ejecting characteristics
6158    between the gas chamber iir saber and the environment. A dynamical
6159    model describing the sabot-discarding process I?as been established The
6160    authors have also given the starling condition and the parting
6161    criterion of the parting motion during the sabot-discarding. The mellon
6162    of fire gas-propelled APDS has been carefully calculated. Finally, the
6163    effect of the gashole area has been analyzed not only on the pressure
6164    in the gas chamber near the barrel exit, but also on the
6165    sabot-discarding time and distance away from the barrel.
6166 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6167    Nanjing Univ Sci & Technol, Ballist Res Lab China, Nanjing 210094, Peoples R China.
6168 RP Feng, SW, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
6169    200072, Peoples R China.
6170 CR *E CHIN I TECHN 10, 1978, INN BALL
6171    FENG SW, 1995, THESIS NANJING U SCI
6172    ZANG GC, 1989, AERODYNAMICS PROJECT
6173    ZUCROW MJ, 1976, GAS DYNAMICS
6174 NR 4
6175 TC 0
6176 SN 0253-4827
6177 J9 APPL MATH MECH-ENGL ED
6178 JI Appl. Math. Mech.-Engl. Ed.
6179 PD FEB
6180 PY 1997
6181 VL 18
6182 IS 2
6183 BP 151
6184 EP 156
6185 PG 6
6186 SC Mathematics, Applied; Mechanics
6187 GA YP170
6188 UT ISI:000071249600006
6189 ER
6190 
6191 PT J
6192 AU Ding, R
6193    Zhu, ZY
6194    Cheng, CJ
6195 TI Boundary element method for solving dynamical response of viscoelastic
6196    thin plate (I)
6197 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6198 DT Article
6199 DE dynamic response; viscoelasticity; BEM
6200 AB In this paper, a boundary element method for solving dynamical response
6201    of viscoelastic thin plate is given. In Laplace domain, we propose two
6202    methods to approximate the fundamental solution and develop the
6203    corresponding boundary element method. Then using the improved
6204    Bellman's numerical inversion of the Laplace transform, the solution of
6205    the original problem is obtained. The numerical results show that this
6206    method has higher accuracy and faster convergence.
6207 C1 Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
6208    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6209 RP Ding, R, Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
6210 CR BELLMAN R, 1966, NUMERICAL INVERSION
6211    BREBBIA CA, 1984, BOUNDARY ELEMENT TEC
6212    DURBIN F, 1974, COMPUT J, V17, P371
6213    GU P, 1990, COMPUTATIONAL STRUCT, V7, P65
6214    MILLER MK, 1966, SIAM J NUMER ANAL, V3, P624
6215    SUN B, 1990, COMPUTATIONAL STRUCT, V7, P19
6216    SUN B, 1990, SHANGHAI MECH, V11, P1
6217    YANG T, 1990, ACTA MECH SINICA, V22, P217
6218 NR 8
6219 TC 2
6220 SN 0253-4827
6221 J9 APPL MATH MECH-ENGL ED
6222 JI Appl. Math. Mech.-Engl. Ed.
6223 PD MAR
6224 PY 1997
6225 VL 18
6226 IS 3
6227 BP 229
6228 EP 235
6229 PG 7
6230 SC Mathematics, Applied; Mechanics
6231 GA YP171
6232 UT ISI:000071249700003
6233 ER
6234 
6235 PT J
6236 AU Guo, XM
6237 TI The existence of solutions in nonlinear elastodynamics
6238 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6239 DT Article
6240 DE nonlinear; constitutive law; elastodynamics; existence
6241 AB Under the small deformation assumption this paper shows the existence
6242    of solution for the system of elastic dynamics with the general
6243    nonlinear constitutive laws, and the existence of classical solution
6244    can be found under weaker conditions.
6245 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6246 RP Guo, XM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
6247    200072, Peoples R China.
6248 CR DUVAUT G, 1976, INEQUALITIES MECH PH
6249    GUO YZ, 1987, MORDEN MATH MECH, P143
6250    GURTIN ME, 1972, HDB PHYSIK A, V6
6251    LENE F, 1974, J MECANIQUE, V13, P499
6252    MOREAU JJ, 1974, LECT NOTES EC MATH S, V102, P141
6253    NAYROLES B, 1974, DAULITY CONVEXITY SO
6254    PANAGITOPOLUOS PD, 1985, INEQUALITY PROBLEMS
6255    VALENT T, 1988, BOUNDARY VALUE PROBL
6256 NR 8
6257 TC 0
6258 SN 0253-4827
6259 J9 APPL MATH MECH-ENGL ED
6260 JI Appl. Math. Mech.-Engl. Ed.
6261 PD MAR
6262 PY 1997
6263 VL 18
6264 IS 3
6265 BP 243
6266 EP 249
6267 PG 7
6268 SC Mathematics, Applied; Mechanics
6269 GA YP171
6270 UT ISI:000071249700005
6271 ER
6272 
6273 PT J
6274 AU Shi, WH
6275    Chen, DD
6276    Tang, YM
6277 TI On the exact solution to certain non-linear partial differential
6278    equations
6279 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6280 DT Article
6281 DE Janet number; bad system of equations; good system of equation
6282 AB This paper, based on the theory of stratifications, gives a brand-new
6283    classification of partial differential equations.
6284 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
6285 RP Shi, WH, Shanghai Univ, Shanghai 200072, Peoples R China.
6286 CR HADAMARD J, 1964, THEORIE EQUATIONS DE
6287    SHIH JE, IN PRESS UN PROBLEME
6288    SHIH WH, 1986, UNE METHODE ELEMENTA
6289    SHIH WH, 1987, CR HEBD ACAD SCI, V364, P535
6290    SHIH WH, 1992, SOLUTIONS ANAL QUELQ
6291    SHIH WY, IN PRESS STRATIFICAT
6292    SIH JA, 1994, THESIS
6293    THOM R, 1986, C HONN MME SCHW
6294 NR 8
6295 TC 0
6296 SN 0253-4827
6297 J9 APPL MATH MECH-ENGL ED
6298 JI Appl. Math. Mech.-Engl. Ed.
6299 PD MAR
6300 PY 1997
6301 VL 18
6302 IS 3
6303 BP 259
6304 EP 265
6305 PG 7
6306 SC Mathematics, Applied; Mechanics
6307 GA YP171
6308 UT ISI:000071249700007
6309 ER
6310 
6311 PT J
6312 AU Lu, ZM
6313    Liu, YL
6314 TI A calculation method for fully developed flows in curved rectangular
6315    tubes
6316 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6317 DT Article
6318 DE curved tube; Galerkin method; Dean number
6319 ID BIFURCATION
6320 AB In this paper, A method, consisted of perturbation method, Garlerkin
6321    method and finite-difference method, is designed to calculate fully
6322    developed flows in curved tubes of rectangular cross-section. It costs
6323    less computation than that of direct solving N-S equations, and
6324    prevents from building high-order difference equations and extra
6325    dealing with the boundary conditions. Numerical results in the
6326    situation of small curvature and low Dean number is in accordance with
6327    former's numerical and experimental results in quality, and it shows
6328    the feasibility of this paper's method.
6329 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6330 RP Lu, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
6331    Peoples R China.
6332 CR BARA B, 1992, J FLUID MECH, V244, P339
6333    BERGER SA, 1983, ANNU REV FLUID MECH, V15, P461
6334    DEAN WR, 1927, PHILOS MAG, V4, P208
6335    DEAN WR, 1928, PHILOS MAG, V5, P673
6336    DEAN WR, 1959, MATHEMATIKA, V6, P77
6337    DEVRIEND HJ, 1981, J FLUID MECH, V107, P423
6338    GHIA KN, 1977, T ASME           DEC, P640
6339    LIU YL, 1995, P 6 C MOD MATH MECHS
6340    SAAD Y, 1986, SIAM J SCI STAT COMP, V7, P856
6341    SELMI M, 1994, J FLUID MECH, V262, P353
6342    THANGAM S, 1990, J FLUID MECH, V217, P421
6343    WINTERS KH, 1987, J FLUID MECH, V180, P343
6344 NR 12
6345 TC 0
6346 SN 0253-4827
6347 J9 APPL MATH MECH-ENGL ED
6348 JI Appl. Math. Mech.-Engl. Ed.
6349 PD APR
6350 PY 1997
6351 VL 18
6352 IS 4
6353 BP 315
6354 EP 320
6355 PG 6
6356 SC Mathematics, Applied; Mechanics
6357 GA YP172
6358 UT ISI:000071249800001
6359 ER
6360 
6361 PT J
6362 AU Wu, JC
6363    Pan, LZ
6364 TI Nonlinear theory of multilayer sandwich shells and its application
6365    (III) - Large deflection and postbuckling of shallow shells
6366 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6367 DT Article
6368 DE multilayer sandwich shallow shells; nonlinear; deflection; postbuckling
6369 ID VIBRATION
6370 AB In this paper, exact solutions of large deflection of multilayer
6371    sandwich shallow shells under transverse forces and different boundary
6372    conditions are presented. Exactly results of postbuckling of multilayer
6373    sandwich plates, shallow cylindrical shells and nonlinear deflection of
6374    general shallow shells such as spherical shells under inplane edge
6375    forces are also obtained by the same procedure.
6376 C1 Tongji Univ, Inst Engn Mech, Shanghai 200092, Peoples R China.
6377    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6378 RP Wu, JC, Tongji Univ, Inst Engn Mech, Shanghai 200092, Peoples R China.
6379 CR CHENG ZQ, 1994, APPL MATH MECH, V15, P605
6380    CHIA CY, 1980, NONLINEAR ANAL PLATE
6381    CHIA CY, 1987, INT J SOLIDS STRUCT, V23, P1123
6382    LIU RH, 1993, APPL MATH MECH, V14, P217
6383    RAJAGOPAL SV, 1987, AIAA J, V25, P130
6384    WU JC, 1997, APPL MATH MECH-ENGL, V18, P129
6385 NR 6
6386 TC 0
6387 SN 0253-4827
6388 J9 APPL MATH MECH-ENGL ED
6389 JI Appl. Math. Mech.-Engl. Ed.
6390 PD APR
6391 PY 1997
6392 VL 18
6393 IS 4
6394 BP 321
6395 EP 329
6396 PG 9
6397 SC Mathematics, Applied; Mechanics
6398 GA YP172
6399 UT ISI:000071249800002
6400 ER
6401 
6402 PT J
6403 AU Chien, WZ
6404    Sheng, SZ
6405 TI The first-order approximation of non-Kirchhoff-Love theory for elastic
6406    circular plate with fixed boundary under uniform surface loading (III)
6407    - Numerical results
6408 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6409 DT Article
6410 DE elasticity; circular plate; non-Kirchhoff-Love theory; global
6411    interpolation method
6412 AB Based upon the differential equations and their related boundary
6413    conditions given in the previous papers([1,2]), using a global
6414    interpolation method, this paper presents a numerical solution to the
6415    axisymmetric bending problem of non-Kirchhoff-Love theory for circular
6416    plate with fired boundary under uniform surface loading. AN the
6417    numerical results obtained in this paper are compared with that of
6418    Kirchhoff-Love classical theory([3]) and E. Resisner's modified
6419    theory([4]).
6420 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6421 RP Chien, WZ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
6422    200072, Peoples R China.
6423 CR CAO ZY, 1983, DYNAMIC THEORY THICK
6424    CHIEN WZ, 1980, MECH ELASTICITY
6425    CHIEN WZ, 1997, APPL MATH MECH-ENGL, V18, P1
6426    CHIEN WZ, 1997, APPL MATH MECH-ENGL, V18, P103
6427    MCPHERSON AE, 1942, NORMAL PRESSURE TEST, P744
6428    REISSNER E, 1945, J APPL MECH, V12, P69
6429 NR 6
6430 TC 0
6431 SN 0253-4827
6432 J9 APPL MATH MECH-ENGL ED
6433 JI Appl. Math. Mech.-Engl. Ed.
6434 PD MAY
6435 PY 1997
6436 VL 18
6437 IS 5
6438 BP 411
6439 EP 419
6440 PG 9
6441 SC Mathematics, Applied; Mechanics
6442 GA YP173
6443 UT ISI:000071249900001
6444 ER
6445 
6446 PT J
6447 AU Zhu, Y
6448 TI Resonant flow of a fluid past a concave topography
6449 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6450 DT Article
6451 DE nonlinear waves; fKdV equation; surface tension
6452 ID GENERATION
6453 AB In this paper, the resonant generation of nonlinear capillary-gravity
6454    waves in a fluid system with the effect of surface tension and the
6455    concave topography is examined by using a perturbation method and
6456    numerical method.
6457 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6458 RP Zhu, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
6459    Peoples R China.
6460 CR FORNBERG B, 1978, PHILOS T ROY SOC A, V289, P373
6461    GRIMSHAW R, 1992, C P NONLINEAR DISPER, P1
6462    WU TYT, 1987, J FLUID MECH, V184, P75
6463    ZHU Y, 1995, PHYS FLUIDS, V7, P2294
6464 NR 4
6465 TC 1
6466 SN 0253-4827
6467 J9 APPL MATH MECH-ENGL ED
6468 JI Appl. Math. Mech.-Engl. Ed.
6469 PD MAY
6470 PY 1997
6471 VL 18
6472 IS 5
6473 BP 479
6474 EP 482
6475 PG 4
6476 SC Mathematics, Applied; Mechanics
6477 GA YP173
6478 UT ISI:000071249900007
6479 ER
6480 
6481 PT J
6482 AU Cheng, CJ
6483    Shang, XC
6484 TI The growth of the void in a hyperelastic rectangular plate under a
6485    uniaxial extension
6486 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6487 DT Article
6488 DE hyperelastic rectangular plate; finite deformation; growth of void;
6489    variational principle
6490 ID CAVITATION
6491 AB In the present paper, the finite deformation and stress analysis for a
6492    hyperelastic rectangular plate with a center void under a uniaxial
6493    extension is studied. In order to consider the effect of the existence
6494    of the void on the deformation and stress of the plate, the problem is
6495    reduced to the deformation and stress analysis for a hyperelastic
6496    annular plate and its approximate solution is obtained from the minimum
6497    potential energy principle. The growth of the cavitation is also
6498    numerically computed and analysed.
6499 C1 Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
6500    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6501 RP Cheng, CJ, Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
6502 CR BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
6503    HAUGHTON DM, 1990, INT J ENG SCI, V28, P163
6504    HORGAN CO, 1986, J ELASTICITY, V16, P189
6505    HORGAN CO, 1989, J APPL MECH, V56, P302
6506    HOU HS, 1993, J APPL MECH-T ASME, V60, P1
6507    ODEN TT, 1972, FINITE ELEMENTS NONL
6508    PODIOGUIDUGLI P, 1986, J ELASTICITY, V16, P75
6509    POLIGNONE DA, 1993, EFFECT MAT ANISOTROP, V3, P3381
6510    SHIELD RT, 1983, ASME J APPL MECH
6511 NR 9
6512 TC 1
6513 SN 0253-4827
6514 J9 APPL MATH MECH-ENGL ED
6515 JI Appl. Math. Mech.-Engl. Ed.
6516 PD JUL
6517 PY 1997
6518 VL 18
6519 IS 7
6520 BP 615
6521 EP 621
6522 PG 7
6523 SC Mathematics, Applied; Mechanics
6524 GA YP175
6525 UT ISI:000071250100001
6526 ER
6527 
6528 PT J
6529 AU Cheng, CJ
6530    Yang, X
6531 TI Nonlinear stability analysis of a clamped rod carrying electric current
6532 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6533 DT Article
6534 DE magnetoelasticity; bifurcation; limit point; numerical method; straight
6535    rod carrying electric current
6536 ID BIFURCATION-THEORY; MAGNETIC FORCES; SUBJECT; STATES; FIELD; WIRE
6537 AB This paper is devoted to the analysis of the nonlinear stability of a
6538    clamped rod carrying electric current in the magnetic field which is
6539    produced by the current flowing in a pair of infinitely long parallel
6540    rigid wires. The natural state of the rod is in the plane of the wires
6541    and is equidistant from them. Firstly under the assumption of spatial
6542    deformation, the governing equations of the problem are derived, and
6543    the linearized problem and critical currents are discussed. Secondly,
6544    it is proved that the buckled states of the rod are always in planes.
6545    Finally, the global responses of the bifurcation problem of the rod are
6546    computed numerically and the distributions of the deflections, axial
6547    forces and bending moments are obtained. The results show that the
6548    buckled states of the rod and the wires. Furthermore, it is found that
6549    there exists a limit point on the branch solution of the supercritical
6550    buckled state. This is distinctively different from the buckled state
6551    of the elastic compressive rods.
6552 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6553    Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
6554 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
6555    200072, Peoples R China.
6556 CR ANTMAN SS, 1976, ARCH RATION MECH AN, V61, P307
6557    BUJANO E, 1985, ARCH RATIONAL MECH A, V89, P307
6558    HEALEY TJ, 1990, J ELASTICITY, V24, P211
6559    SEIDMAN T, 1988, ARCH RATION MECH AN, V102, P307
6560    WOLFE P, 1983, T AM MATH SOC, V278, P377
6561    WOLFE P, 1988, Q J MECH APPL MATH, V41, P265
6562    WOLFE P, 1990, INT J NONLINEAR MECH, V25, P597
6563    WOLFE P, 1990, J ELASTICITY, V23, P201
6564    WOODSON HH, 1968, ELECTROMECHANICAL DY
6565    ZHU ZY, 1989, NUMERICAL METHOD BIF
6566 NR 10
6567 TC 0
6568 SN 0253-4827
6569 J9 APPL MATH MECH-ENGL ED
6570 JI Appl. Math. Mech.-Engl. Ed.
6571 PD SEP
6572 PY 1997
6573 VL 18
6574 IS 9
6575 BP 825
6576 EP 834
6577 PG 10
6578 SC Mathematics, Applied; Mechanics
6579 GA YP177
6580 UT ISI:000071250300002
6581 ER
6582 
6583 PT J
6584 AU Shen, WD
6585    Mao, LY
6586    Gao, W
6587    Zhu, ST
6588 TI Light tracks in the anisotropic optical fiber with two types of
6589    parabolic refractive indices
6590 SO ACTA PHYSICA SINICA-OVERSEAS EDITION
6591 DT Article
6592 ID STRONG-LASER PLASMA; RIEMANNIAN GEOMETRY
6593 AB The light tracks in an anisotropic optical fiber are studied by the
6594    optical metric model. The ordinary and extraordinary light tracks are
6595    determined by solving the null geodesic equation. In the paraxial
6596    approximation the birefringence of the fiber is analyzed. The focusing
6597    and defocusing characteristics of alight beam are described via the
6598    geodesic deviation equation.
6599 C1 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
6600 RP Shen, WD, Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800,
6601    Peoples R China.
6602 CR ERDELYI A, 1995, HIGHER TRANSCENDENTA, V2
6603    GORDON W, 1923, ANN PHYS-BERLIN, V72, P421
6604    GUO QZ, 1995, ACTA PHYS SINICA, V44, P210
6605    GUO QZ, 1995, ACTA PHYS SINICA, V44, P396
6606    MISNER C, 1973, GRAVITATION, P1108
6607    MISNER CW, 1973, GRAVITATION, P219
6608    SHEN W, 1996, CHIN J LASERS B, V5, P516
6609    SHEN WD, 1995, INT J THEOR PHYS, V34, P2085
6610    SHEN WD, 1995, INT J THEOR PHYS, V34, P2095
6611    ZHU ST, 1993, ACTA PHYS SINICA, V42, P1471
6612    ZHU ST, 1993, ACTA PHYS SINICA, V42, P1483
6613    ZHU ST, 1995, INT J THEOR PHYS, V34, P169
6614 NR 12
6615 TC 10
6616 SN 1004-423X
6617 J9 ACTA PHYS SIN-OVERSEAS ED
6618 JI Acta Phys. Sin.-Overseas Ed.
6619 PD JAN
6620 PY 1998
6621 VL 7
6622 IS 1
6623 BP 1
6624 EP 11
6625 PG 11
6626 SC Physics, Multidisciplinary
6627 GA YP854
6628 UT ISI:000071322500001
6629 ER
6630 
6631 PT J
6632 AU Wang, Q
6633    Li, CF
6634    Bao, JS
6635    Awai, I
6636    Boardman, AD
6637 TI Nonlinear magnetization and frequency conversion of magnetostatic waves
6638    in a ferromagnetic slab
6639 SO ACTA PHYSICA SINICA-OVERSEAS EDITION
6640 DT Article
6641 ID ENVELOPE SOLITONS; SURFACE-WAVES; GARNET-FILMS
6642 AB The possibilities of the generation of second-order dc and
6643    second-harmonic magnetic fields excited by the magnetostatic surface
6644    wave (MSSW) and backward volume wave (MSBVW) in ferromagnetic films
6645    have been analyzed and discussed through the calculations of source
6646    terms in the equations satisfying the magnetostatic potentials. The
6647    results show that the nonlinear magnetization responses of the film to
6648    the MSSW can generate neither de nor the second-harmonic magnetic
6649    fields. And the responses to the MSBVW will not induce the de field,
6650    but can excite second-harmonics under some conditions. The general
6651    expressions of third-order nonlinear magnetization are also derived and
6652    discussed.
6653 C1 Shanghai Univ Sci & Technol, Sch Sci, Dept Phys, Shanghai 201800, Peoples R China.
6654 RP Wang, Q, Shanghai Univ Sci & Technol, Sch Sci, Dept Phys, Shanghai
6655    201800, Peoples R China.
6656 CR AGRAWAL GP, 1989, NONLINEAR FIBER OPTI
6657    BOARDMAN AD, 1988, PHYS REV B, V38, P11444
6658    BOARDMAN AD, 1990, NONLINEAR WAVES SOLI
6659    BOARDMAN AD, 1994, IEEE T MAGN, V30, P1
6660    BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
6661    DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308
6662    DEGASPERIS P, 1987, PHYS REV LETT, V59, P481
6663    DEGASPERIS P, 1988, J APPL PHYS, V63, P4136
6664    GUREVICH AG, 1963, FERRITE MICROWAVE FR, P135
6665    GUSEV BN, 1986, SOV PHYS-SOLID STATE, V28, P1669
6666    KALINIKOS BA, 1988, ZH EKSP TEOR FIZ, V67, P303
6667    KALINIKOS BA, 1990, PHYS REV B B, V42, P8658
6668    KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712
6669    MENDNIKOV AM, 1981, SOV PHYS-SOLID STATE, V23, P136
6670    QI W, 1994, J INFRARED MILLIMETE, V13, P131
6671    SUHL H, 1957, J PHYS CHEM SOLIDS, V1, P109
6672    TEMIRYAZEV AG, 1987, SOV PHYS-SOLID STATE, V29, P179
6673    YARIV A, 1989, QUANTUM ELECT
6674 NR 18
6675 TC 0
6676 SN 1004-423X
6677 J9 ACTA PHYS SIN-OVERSEAS ED
6678 JI Acta Phys. Sin.-Overseas Ed.
6679 PD JAN
6680 PY 1998
6681 VL 7
6682 IS 1
6683 BP 47
6684 EP 60
6685 PG 14
6686 SC Physics, Multidisciplinary
6687 GA YP854
6688 UT ISI:000071322500006
6689 ER
6690 
6691 PT J
6692 AU Wang, Q
6693    Li, CF
6694    Bao, JS
6695    Awai, I
6696    Boardman, AD
6697 TI Frequency conversion of magnetostatic waves through nonlinear
6698    magnetization
6699 SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES &
6700    REVIEW PAPERS
6701 DT Article
6702 DE magnetostatic wave; nonlinear magnetization; frequency conversion;
6703    ferromagnet; second harmonics
6704 ID ENVELOPE SOLITONS; SURFACE-WAVES; GARNET-FILMS
6705 AB The possibilities of the generation of the second-order de and
6706    second-harmonic magnetic fields excited by the magnetostatic surface
6707    wave (MSSW) and backward volume wave (MSBVW) in ferromagnetic films
6708    have been analyzed and discussed through the calculations of the source
6709    terms in the equations satisfying the magnetostatic potentials. The
6710    results show that the nonlinear magnetization responses of the film to
6711    the MSSW can generate neither de nor the second-harmonic magnetic
6712    fields, and the responses to the MSBVW will not induce the de held, but
6713    could excite second-harmonics in the conditions of phase-matching and
6714    H-0/M-0 less than or equal to cos(2) (theta/3). The general expressions
6715    of the third-order nonlinear magnetization induced by electromagnetic
6716    waves are also derived, and the contributions of the second-order
6717    magnetization are analyzed.
6718 C1 Shanghai Univ Sci & Technol, Sch Sci, Dept Phys, Shanghai 201800, Peoples R China.
6719    Yamaguchi Univ, Fac Engn, Ube, Yamaguchi 755, Japan.
6720    Univ Salford, Dept Phys, Salford M5 4WT, Lancs, England.
6721 RP Wang, Q, Shanghai Univ Sci & Technol, Sch Sci, Dept Phys, Shanghai
6722    201800, Peoples R China.
6723 CR AGRAWAL GP, 1989, NONLINEAR FIBER OPTI
6724    BLOEBERGEN N, 1965, NONLINEAR OPTICS
6725    BOARDMAN AD, 1988, PHYS REV B, V38, P1144
6726    BOARDMAN AD, 1990, NONLINEAR WAVES SOLI
6727    BOARDMAN AD, 1991, ACTA PHYS SINICA, V40, P1703
6728    BOARDMAN AD, 1994, IEEE T MAGN, V30, P1
6729    BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
6730    DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308
6731    DEGASPERIS P, 1987, PHYS REV LETT, V59, P481
6732    DEGASPERIS P, 1988, J APPL PHYS, V63, P4136
6733    GUREVICH AG, 1963, FERRITE MICROWAVE FR, P135
6734    GUSEV BN, 1986, SOV PHYS-SOLID STATE, V28, P1669
6735    KALINIKOS BA, 1988, ZH EKSP TEOR FIZ, V67, P303
6736    KALINIKOS BA, 1990, PHYS REV B B, V42, P8658
6737    KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712
6738    MENDNIKOV AM, 1981, SOV PHYS-SOLID STATE, V23, P136
6739    QI W, 1993, ACTA PHYS SINICA, V42, P2005
6740    QI W, 1994, J INFRARED MILLIMETE, V13, P131
6741    SHEN YR, 1984, PRINCIPLES NONLINEAR
6742    SUHL H, 1957, J PHYS CHEM SOLIDS, V1, P109
6743    TEMIRYAZEV AG, 1987, SOV PHYS-SOLID STATE, V29, P179
6744    YARIV A, 1989, QUANTUM ELECT
6745 NR 22
6746 TC 1
6747 SN 0021-4922
6748 J9 JPN J APPL PHYS PT 1
6749 JI Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap.
6750 PD NOV
6751 PY 1997
6752 VL 36
6753 IS 11
6754 BP 7064
6755 EP 7072
6756 PG 9
6757 SC Physics, Applied
6758 GA YN475
6759 UT ISI:000071172300093
6760 ER
6761 
6762 PT J
6763 AU Wang, YS
6764    Bao, BR
6765    Cao, WC
6766 TI N,N,N ',N '-tetrabutylsuccinylamide as a new extractant in n-dodecane
6767    for extraction of uranium(VI) and thorium(IV) ions
6768 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
6769 DT Letter
6770 ID SOLVENT-EXTRACTION; N,N,N,N-TETRABUTYLSUCCINYLAMIDE
6771 AB N,N,N',N'-tetrabutylsuccinylamide (TBSA) was synthesized, characterised
6772    and used for the extradion of U(VI) and Th(IV) from nitric acid
6773    solutions into n-dodecane. Extraction distribution coefficients of
6774    U(VI) and Th(IV) as a function of aqueous nitric acid concentration
6775    extractant concentration and temperature have been measured and found
6776    that n-dodecane as diluent was superior to 50% 1,2,4-trimethyl benzene
6777    (TMB) and 50% kerosene (OK) system for extraction of U(VI) and Th(IV).
6778    The compositions of extracted species, equilibrium constants and
6779    enthalpies of extraction reactions have also been calculated. The
6780    formation of the 1 : 2 : 1 complex of uranyl(II) ion or the 1 : 4 : 1
6781    complex of thorium(IV) ion, nitrate ion and TBSA and extracted species
6782    was further confirmed by the IR spectra of saturated extract of U(VI)
6783    and Th(IV).
6784 C1 Chinese Acad Sci, Inst Nucl Res, Shanghai 201800, Peoples R China.
6785    Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
6786    Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
6787 RP Wang, YS, Chinese Acad Sci, Inst Nucl Res, POB 800 204, Shanghai
6788    201800, Peoples R China.
6789 CR MUSIKAS C, 1988, SEPAR SCI TECHNOL, V23, P1211
6790    NAIR GM, 1993, SOL EXTR ION EXCH, V11, P813
6791    SIDDALL TH, 1963, J INORG NUCL CHEM, V26, P883
6792    STANLEY RS, 1968, ORGANIC FUNCTIONAL G, V1, P277
6793    TIAN QZ, 1993, P ISEC 93, V1, P404
6794    WANG YS, 1996, J RADIOAN NUCL CH LE, V212, P101
6795    WANG YS, 1996, J RADIOAN NUCL CH LE, V213, P199
6796    WANG YS, 1996, J RADIOAN NUCL CH LE, V214, P67
6797    YIN YJ, 1985, HDB COLLEGE CHEM, P302
6798 NR 9
6799 TC 5
6800 SN 0236-5731
6801 J9 J RADIOANAL NUCL CHEM
6802 JI J. Radioanal. Nucl. Chem.
6803 PD AUG
6804 PY 1997
6805 VL 222
6806 IS 1-2
6807 BP 279
6808 EP 281
6809 PG 3
6810 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
6811    & Technology
6812 GA YL699
6813 UT ISI:000070983600051
6814 ER
6815 
6816 PT J
6817 AU Wang, ZH
6818 TI Orthogonal condition between two types of radiation modes for
6819    multilayer dielectric waveguides
6820 SO OPTICS COMMUNICATIONS
6821 DT Article
6822 ID WAVE-GUIDES
6823 AB A simplified orthogonal condition between two types of radiation modes
6824    for multilayer structures is presented by using their plane wave
6825    expressions, which is dependent on the ratios of amplitudes or relative
6826    phases of the fields at the outermost interfaces only, regardless of
6827    the number of layers and without detailed knowledge of field
6828    distribution inside this structure. It is a universal orthogonal
6829    condition, all the previously presented orthogonal conditions are
6830    special cases of this condition. (C) 1997 Elsevier Science B.V.
6831 RP Wang, ZH, SHANGHAI UNIV,WAVE SCI LAB,SHANGHAI 201800,PEOPLES R CHINA.
6832 CR BENECH P, 1992, OPT COMMUN, V88, P96
6833    DING H, 1995, IEEE J QUANTUM ELECT, V31, P411
6834    KOGELNIK H, 1998, GUIDED WAVE OPTOELEC, P7
6835    LEE SL, 1994, J LIGHTWAVE TECHNOL, V12, P2073
6836    MARCUSE D, 1982, LIGHT TRANSMISSION, P313
6837    MARCUSE D, 1990, IEEE J QUANTUM ELECT, V26, P675
6838    MARCUSE D, 1991, THEORY DIELECTRIC OP
6839    SNYDER AW, 1983, OPTICAL WAVEGUIDE TH
6840 NR 8
6841 TC 0
6842 SN 0030-4018
6843 J9 OPT COMMUN
6844 JI Opt. Commun.
6845 PD DEC 15
6846 PY 1997
6847 VL 144
6848 IS 4-6
6849 BP 187
6850 EP 191
6851 PG 5
6852 SC Optics
6853 GA YH847
6854 UT ISI:A1997YH84700007
6855 ER
6856 
6857 PT J
6858 AU Wang, SJ
6859    Hu, LL
6860    Xu, DM
6861 TI Open resonator technique for measuring multilayer dielectrics
6862 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
6863 DT Article
6864 DE open resonator; complex permittivity; multilayer dielectrics; Q-factor;
6865    length-varying method
6866 ID PERMITTIVITY
6867 AB In the present work, the open resonator technique is extended to
6868    measure multilayer dielectrics. The difficulties that limit the open
6869    resonator in measuring easy warped thin films can be overcome by
6870    flattening a heavy sample to eliminate air gaps. Applying the simply
6871    equipped length-varying method, measurements on several thin films were
6872    carried out, and encouraging results were achieved. (C) 1997 John Wiley
6873    & Sons, Inc.
6874 RP Wang, SJ, SHANGHAI UNIV SCI & TECHNOL,SCH COMMUN & INFORMAT
6875    ENGN,SHANGHAI 201800,PEOPLES R CHINA.
6876 CR *NAT STAND BUR PR, 1988, 953488 GB NAT STAND
6877    AFSAR MN, 1990, IEEE T MICROW THEORY, V38, P1845
6878    CHAN WFP, 1987, IEEE T MICROW THEORY, V35, P1429
6879    COOK RJ, 1976, ELECTRON LETT, V12, P1
6880    CULLEN AL, 1971, P ROY SOC LOND A MAT, V325, P493
6881    HIRVONEN TM, 1996, IEEE T INSTRUM MEAS, V45, P780
6882    JONES RG, 1976, P I ELECTR ENG, V123, P285
6883    LYNCH AC, 1982, P ROY SOC LOND A MAT, V380, P73
6884    VONHIPPEL AR, 1954, DIELECTRIC MATERIALS
6885    XU D, 1989, J ELECT MEAS INSTRUM, V3
6886    YU PK, 1982, P ROY SOC LOND A MAT, V380, P49
6887 NR 11
6888 TC 3
6889 SN 0895-2477
6890 J9 MICROWAVE OPT TECHNOL LETT
6891 JI Microw. Opt. Technol. Lett.
6892 PD DEC 20
6893 PY 1997
6894 VL 16
6895 IS 6
6896 BP 368
6897 EP 371
6898 PG 4
6899 SC Engineering, Electrical & Electronic; Optics
6900 GA YH635
6901 UT ISI:A1997YH63500012
6902 ER
6903 
6904 PT J
6905 AU Liu, GL
6906 TI Variational formulation of 3-D unsteady transonic flow past oscillating
6907    rotor bladings .1. Potential flow
6908 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
6909 DT Article
6910 ID SHOCKS
6911 AB A family of variational principles (VP) and generalized VP have been
6912    derived for fully 3-D unsteady transonic potential flow past
6913    periodically oscillating rotating bladings with an interblade phase
6914    angle, accounting also for the distributed mass suction/blowing along
6915    the blade/annular walls and converting the matching conditions across
6916    all unknown oscillating discontinuities (such as shocks and free
6917    trailing vortex sheets) into natural ones. In addition, taking
6918    advantage of the periodicity of blade oscillation, it has succeeded in
6919    transforming the original initial-boundary-value problem into a pure
6920    boundary-value problem to facilitate finite element (FE) computations.
6921    This work provides a sound theoretical basis for FE analysis of
6922    unsteady flow and also constitutes an important ingredient of the
6923    coupled aeroelasticity theory of blade vibration /13,14/.
6924 C1 SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA.
6925 RP Liu, GL, SHANGHAI UNIV,SHANGHAI 200072,PEOPLES R CHINA.
6926 CR DOWELL EH, 1988, APPL MECH REV, V41, P299
6927    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
6928    HAFEZ MM, 1979, AIAA J, V17, P838
6929    LIU GL, 1987, 871426 AIAA
6930    LIU GL, 1989, P 5 INT S UNST AER A, P76
6931    LIU GL, 1989, SCI CHINA SER A, V32, P707
6932    LIU GL, 1990, P 1 INT S AER INT FL, P128
6933    LIU GL, 1992, ACTA MECH, V95, P117
6934    LIU GL, 1992, P 4 CHIN NAT AER C S, P358
6935    LIU GL, 1993, P 2 INT C FLUID MECH, P438
6936    LIU GL, 1993, P 2 INT S AER INT FL, P361
6937    LIU GL, 1996, 19 INT C THEOR APPL
6938    POLING DR, 1986, AIAA J, V24, P193
6939    TRAUPEL W, 1977, THERMISCHE TURBOMASC, V1, P3
6940    XU JZ, 1980, CHINESE J MECH ENG, V16, P66
6941 NR 15
6942 TC 2
6943 SN 0334-0082
6944 J9 INT J TURBO JET ENGINES
6945 JI Int. J. Turbo. Jet-Engines
6946 PY 1997
6947 VL 14
6948 IS 2
6949 BP 71
6950 EP 77
6951 PG 7
6952 SC Engineering, Aerospace
6953 GA YH439
6954 UT ISI:A1997YH43900002
6955 ER
6956 
6957 PT J
6958 AU Zhao, H
6959    Fu, RT
6960    Sun, X
6961    Zhang, ZL
6962 TI Off-diagonal interactions, bond density correlation, and their effects
6963    on the excitons in conjugated polymers
6964 SO PHYSICAL REVIEW B
6965 DT Article
6966 ID CHARGE COULOMB REPULSION; PEIERLS-HUBBARD MODELS; N-ELECTRONS SYSTEM;
6967    BAND-GAP; OPTICAL-SPECTRA; ONE DIMENSION; GROUND-STATE; POLYACETYLENE;
6968    SUPERCONDUCTIVITY; ALTERNATION
6969 AB The effects of electron-electron interactions with both diagonal and
6970    off-diagonal parts on the excitons in conjugated polymers are studied,
6971    and it is found that the bond-charge interaction W and the bond-site
6972    interaction X affect the excitons oppositely: the former suppresses the
6973    excitation energy of excitons whereas the latter increases it except
6974    for the 2A(g) state. We find that the screening (originating from the
6975    bond density correlation effect of pi electrons), which controls the
6976    bond correlation, is a reason that the binding energy of the exciton is
6977    reduced. Our calculation shows that the off-diagonal interactions
6978    affect the singlet exciton with small binding energy even at normal
6979    screening, but for large exciton energy, such effects are negligible.
6980 C1 FUDAN UNIV,DEPT PHYS,SHANGHAI 200433,PEOPLES R CHINA.
6981    ACAD SINICA,SHANGHAI INST TECH PHYS,SHANGHAI 200083,PEOPLES R CHINA.
6982    SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SCI,SHANGHAI 201800,PEOPLES R CHINA.
6983 RP Zhao, H, FUDAN UNIV,TD LEE PHYS LAB,SHANGHAI 200433,PEOPLES R CHINA.
6984 CR ABE S, 1992, PHYS REV B, V45, P8264
6985    ABE S, 1992, PHYS REV B, V45, P9432
6986    BAERISWYL D, 1985, PHYS REV B, V31, P6633
6987    BEDNORZ JG, 1986, Z PHYS B CON MAT, V64, P189
6988    CAMPBELL DK, 1988, PHYS REV B B, V38, P12043
6989    CAMPBELL DK, 1990, PHYS REV B, V42, P475
6990    CAMPBELL IH, 1996, PHYS REV LETT, V76, P1900
6991    CHNO K, 1964, THEOR CHIM ACTA, V2, P219
6992    DACOSTA PG, 1993, PHYS REV B, V48, P1993
6993    EMERY VJ, 1976, PHYS REV B, V14, P2898
6994    GRANT PM, 1979, SOLID STATE COMMUN, V29, P225
6995    HAYASHI H, 1985, PHYS REV B, V32, P5295
6996    HIRSCH JE, 1983, PHYS REV LETT, V51, P296
6997    HIRSCH JE, 1989, PHYS LETT A, V134, P451
6998    HIRSCH JE, 1989, PHYS LETT A, V138, P83
6999    HIRSCH JE, 1989, PHYS REV B, V39, P11515
7000    HIRSCH JE, 1989, PHYS REV B, V40, P2354
7001    HORSCH P, 1981, PHYS REV B, V24, P7351
7002    HUBBARD J, 1963, P ROY SOC LOND A MAT, V276, P238
7003    HUBBARD J, 1978, PHYS REV B, V17, P494
7004    KIVELSON S, 1987, PHYS REV LETT, V58, P1899
7005    LENG JM, 1994, PHYS REV LETT, V72, P156
7006    LOF RW, 1992, PHYS REV LETT, V68, P3924
7007    MARTIN RL, 1993, PHYS REV B, V48, P4845
7008    MAZUMDAR S, 1989, SOLID STATE COMMUN, V66, P427
7009    MEINDERS MBJ, 1995, PHYS REV B, V52, P2484
7010    NASU K, 1983, J PHYS SOC JPN, V52, P3865
7011    NASU K, 1983, J PHYS SOC JPN, V53, P302
7012    NASU K, 1984, J PHYS SOC JPN, V53, P427
7013    PAINELLI A, 1988, SOLID STATE COMMUN, V66, P273
7014    PAINELLI A, 1989, PHYS REV B, V39, P2830
7015    PARISER R, 1953, J CHEM PHYS, V21, P767
7016    PARR RG, 1950, J CHEM PHYS, V18, P1561
7017    PARR RG, 1952, J CHEM PHYS, V20, P1499
7018    POPLE JA, 1955, P PHYS SOC         A, V68, P81
7019    RNOX RS, 1963, SOLID STATE PHYSIC S, V5
7020    SCHUTEN K, 1975, J CHEM PHYS, V64, P4422
7021    SONDHI SL, 1995, PHYS REV B, V51, P5943
7022    STRACK R, 1993, PHYS REV LETT, V70, P2637
7023    SU WP, 1979, PHYS REV LETT, V42, P1698
7024    SUN X, 1991, PHYS REV B, V44, P11042
7025    WU C, 1987, PHYS REV LETT, V59, P831
7026    WU CQ, 1993, PHYS REV B, V47, P4204
7027    ZAANEN J, 1990, J SOLID STATE CHEM, V88, P8
7028 NR 44
7029 TC 3
7030 SN 0163-1829
7031 J9 PHYS REV B
7032 JI Phys. Rev. B
7033 PD NOV 15
7034 PY 1997
7035 VL 56
7036 IS 19
7037 BP 12268
7038 EP 12276
7039 PG 9
7040 SC Physics, Condensed Matter
7041 GA YH165
7042 UT ISI:A1997YH16500048
7043 ER
7044 
7045 PT J
7046 AU Feng, SS
7047    Qiu, XJ
7048 TI Energy-momentum and angular-momentum in ISO(1,2) Chern-Simons gravity
7049 SO PHYSICS LETTERS B
7050 DT Article
7051 DE enegy-momentum; angular-momentum; ISO(1,2) Chern-Simons
7052 ID 2+1 DIMENSIONAL GRAVITY; GRAVITATIONAL ANYONS; SPIN
7053 AB Using local SO(1,2) transform and general displacement transform, We
7054    obtain generally covariant conservation laws of angular -momentum and
7055    energy-momentum for ISO(1,2) Chern-Simons gravity. The currents have
7056    also superpotentials and are therefore identically conserved. The
7057    structure of the superpotentials are simpler than those in the
7058    conventional SO(1,2) topologically massive gravity (TMG). The
7059    reasonableness of the definitions may be supported by the correct
7060    energy momentum and angular-momentum for Cho-Lee's exact solution. (C)
7061    1997 Elsevier Science B.V.
7062 C1 SHANGHAI TEACHERS UNIV,CTR STRING THEORY,SHANGHAI 200234,PEOPLES R CHINA.
7063 RP Feng, SS, SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
7064 CR BAK D, 1994, PHYS REV D, V49, P5173
7065    CHO JH, 1995, PHYS LETT B, V351, P111
7066    DESER S, 1982, ANN PHYS-NEW YORK, V140, P372
7067    DESER S, 1984, ANN PHYS-NEW YORK, V152, P220
7068    DESER S, 1990, NUCL PHYS B, V344, P747
7069    DESER S, 1990, PHYS REV LETT, V64, P611
7070    DUAN YS, 1963, ACTA PHYS SINICA, V19, P589
7071    DUAN YS, 1988, GEN RELAT GRAVIT, V20, P5
7072    FENG SS, GEN COVARIANT CONSER
7073    FENG SS, 1995, GEN RELAT GRAVIT, V27, P887
7074    FENG SS, 1996, NUCL PHYS B, V468, P163
7075    WITTEN E, 1988, NUCL PHYS B, V311, P46
7076    WITTEN E, 1989, NUCL PHYS B, V323, P113
7077 NR 13
7078 TC 2
7079 SN 0370-2693
7080 J9 PHYS LETT B
7081 JI Phys. Lett. B
7082 PD OCT 16
7083 PY 1997
7084 VL 411
7085 IS 3-4
7086 BP 256
7087 EP 260
7088 PG 5
7089 SC Physics, Multidisciplinary
7090 GA YG529
7091 UT ISI:A1997YG52900004
7092 ER
7093 
7094 PT J
7095 AU Feng, W
7096    Hoa, SV
7097    Huang, Q
7098 TI Classification of stress modes in assumed stress fields of hybrid
7099    finite elements
7100 SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
7101 DT Article
7102 DE finite element; stress modes; classification
7103 ID INVARIANT; 20-NODE
7104 AB A classification method is presented to classify stress modes in
7105    assumed stress fields of hybrid finite element based on the eigenvalue
7106    examination and the concept of natural deformation modes. It is assumed
7107    that there only exist m (=n - r) natural deformation modes in a hybrid
7108    finite element which has n degrees of freedom and r rigid-body modes.
7109    For a hybrid element, stress modes in various assumed stress fields
7110    proposed by different researchers can be classified into m stress mode
7111    groups corresponding to m natural deformation modes and a zero-energy
7112    stress mode group corresponding to rigid-body modes by the m natural
7113    deformation modes. It is proved that if the flexibility matrix CHI is a
7114    diagonal matrix, the classification of stress modes is unique. Each
7115    stress mode group, except the zero-energy stress mode group, contains
7116    many stress modes that are interchangeable in an assumed stress field
7117    and do not cause any kinematic deformation modes in the element. A
7118    necessary and sufficient condition for avoiding kinematic deformation
7119    modes in a hybrid element is also presented. By means of the m
7120    classified stress mode groups and the necessary and sufficient
7121    condition, assumed stress fields with the minimum number of stress
7122    modes can be constructed and the resulting elements are free from
7123    kinematic deformation modes. Moreover, an assumed stress field cap be
7124    constructed according to the problem to be solved. As examples, 2-D,
7125    4-node plane element and 3-D, 8-node solid element are discussed. (C)
7126    1997 John Wiley & Sons, Ltd.
7127 C1 CONCORDIA UNIV,DEPT MECH ENGN,MONTREAL,PQ H3G 1M8,CANADA.
7128    SHANGHAI UNIV,SHANGHAI,PEOPLES R CHINA.
7129 CR AHMAD S, 1974, FINITE ELEMENT METHO, P85
7130    BABUSKA I, 1977, COMPUT METHODS APPL, V11, P175
7131    BREZZI F, 1974, RAIRO, V8, P129
7132    CHEN WJ, 1992, INT J NUMER METH ENG, V35, P1871
7133    DEVEUBAKE BMF, 1965, P C MATR METH STRUCT
7134    FENG W, 1996, INT J NUMER METH ENG, V39, P3625
7135    HAN J, 1990, P 2 INT C COMP AID D, P189
7136    HAN JH, 1993, INT J NUMER METH ENG, V36, P3903
7137    HAO SV, 1995, COMPUTER AIDED DESIG
7138    HENSHELL RD, 1972, P BRUN U C I MATH IT
7139    HUANG Q, 1989, THESIS CONCORDIA U M
7140    PIAN THH, 1964, AIAA J, V2, P1333
7141    PIAN THH, 1969, INT J NUMER METH ENG, V1, P3
7142    PIAN THH, 1983, INT J NUMER METH ENG, V19, P1741
7143    PIAN THH, 1986, INT J NUMER METH ENG, V22, P173
7144    PIAN THH, 1987, FINITE ELEMENT HDB
7145    PIAN THH, 1988, INT J NUMER METH ENG, V26, P2331
7146    PIAN THH, 1995, FINITE ELEM ANAL DES, V21, P5
7147    PUNCH EF, 1984, COMPUT METHOD APPL M, V47, P331
7148    RUBINSTEIN R, 1983, COMPUT METHOD APPL M, V38, P63
7149    SZE KY, 1990, FINITE ELEM ANAL DES, V7, P61
7150    SZE KY, 1994, INT J NUMER METH ENG, V37, P2235
7151    WU CC, 1995, FINITE ELEM ANAL DES, V21, P111
7152 NR 23
7153 TC 7
7154 SN 0029-5981
7155 J9 INT J NUMER METHOD ENG
7156 JI Int. J. Numer. Methods Eng.
7157 PD DEC 15
7158 PY 1997
7159 VL 40
7160 IS 23
7161 BP 4313
7162 EP 4339
7163 PG 27
7164 SC Engineering, Multidisciplinary; Mathematics, Applied
7165 GA YG117
7166 UT ISI:A1997YG11700002
7167 ER
7168 
7169 PT J
7170 AU Chen, ZL
7171    Lu, Q
7172    Tang, GC
7173 TI Single machine scheduling with discretely controllable processing times
7174 SO OPERATIONS RESEARCH LETTERS
7175 DT Article
7176 DE single machine scheduling; discretely controllable processing times;
7177    NP-hardness; dynamic programming
7178 ID EARLINESS; COMMON; JOBS; DATE; COST
7179 AB In the field of machine scheduling problems with controllable
7180    processing times, it is often assumed that the possible processing time
7181    of a job can be continuously controlled, i.e. it can be any number in a
7182    given interval. In this paper, we introduce a discrete model in which
7183    job processing times are discretely controllable, i.e. the possible
7184    processing time of a job can only be controlled to be some specified
7185    lengths. Under this discrete model, we consider a class of single
7186    machine problems with the objective of minimizing the sum of the total
7187    processing cost and the cost measured by a standard criterion. We
7188    investigate most common criteria, e.g. makespan, maximum tardiness,
7189    total completion time, weighted number of tardy jobs, and total
7190    earliness-tardiness penalty. The computational complexity of each
7191    problem is analyzed, and pseudo-polynomial dynamic programming
7192    algorithms are proposed for hard problems. (C) 1997 Elsevier Science
7193    B.V.
7194 C1 NATL UNIV SINGAPORE,DEPT DECIS SCI,SINGAPORE 0511,SINGAPORE.
7195    SHANGHAI UNIV,DEPT MANAGEMENT,SHANGHAI 200041,PEOPLES R CHINA.
7196 RP Chen, ZL, PRINCETON UNIV,DEPT CIVIL ENGN & OPERAT RES,PRINCETON,NJ
7197    08544.
7198 CR AHUJA RK, 1993, NETWORKS FLOWS THEOR
7199    ALIDAEE B, 1993, EUR J OPER RES, V70, P335
7200    BAKER KR, 1990, OPER RES, V38, P22
7201    CHENG TCE, SCHEDULING MINIMIZE
7202    CHENG TCE, 1996, IIE TRANS, V28, P177
7203    CHENG TCE, 1996, OPER RES LETT, V19, P237
7204    DANIELS RL, 1994, OPER RES, V42, P504
7205    GAREY MR, 1978, COMPUTERS INTRACTABI
7206    GRAHAM RL, 1979, ANN DISCRETE MATH, V5, P287
7207    HALL NG, 1991, OPER RES, V39, P847
7208    KARP RM, 1972, REDUCIBILITY COMBINA
7209    MOORE JM, 1968, MANAGE SCI, V15, P334
7210    NOWICKI E, 1990, DISCRETE APPLIED MAT, V25, P271
7211    PANWALKAR SS, 1982, OPER RES, V30, P391
7212    PANWALKAR SS, 1992, EUR J OPER RES, V59, P298
7213    TRICK MA, 1994, OPER RES, V42, P234
7214    VANWASSENHOVE LN, 1982, EUR J OPER RES, V11, P48
7215    VICKSON RG, 1980, AIIE T, V12, P258
7216    VICKSON RG, 1980, OPS RES, V28, P1155
7217    ZDRZALKA S, 1991, OPER RES LETT, V10, P519
7218 NR 20
7219 TC 15
7220 SN 0167-6377
7221 J9 OPER RES LETT
7222 JI Oper. Res. Lett.
7223 PD SEP
7224 PY 1997
7225 VL 21
7226 IS 2
7227 BP 69
7228 EP 76
7229 PG 8
7230 SC Operations Research & Management Science
7231 GA YE472
7232 UT ISI:A1997YE47200003
7233 ER
7234 
7235 PT J
7236 AU Gu, CQ
7237 TI Multivariate generalized inverse vector-valued rational interpolants
7238 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
7239 DT Article
7240 DE generalized inverse for vectors; bivariate rational interpolants;
7241    characterisation
7242 AB Bivariate rational interpolating functions of the type introduced in
7243    [9, 1] are shown to have a natural extension to the case of rational
7244    interpolation of vector-valued quantities using the formalism of
7245    Graves-Morris [2]. In this paper, the convergence of Stieltjes-type
7246    branched vector-valued continued fractions for two-variable functions
7247    are constructed by using the Samelson inverse. Based on them, a kind of
7248    bivariate vector-valued rational interpolating function is defined on
7249    plane grids. Sufficient conditions for existence, characterisation and
7250    uniqueness for the interpolating functions are proved. The results in
7251    the paper are illustrated with some examples.
7252 C1 SHANGHAI UNIV,DEPT MATH,SHANGHAI 200072,PEOPLES R CHINA.
7253 CR CUTY AM, 1985, COMPUTING, V34, P41
7254    GRAVESMORRIS PR, 1983, NUMER MATH, V42, P331
7255    GRAVESMORRIS PR, 1983, PADE APPROXIMATION I, P144
7256    GRAVESMORRIS PR, 1984, IMA J NUMER ANAL, V4, P209
7257    GU CQ, 1993, NUMER MATH J CHINESE, V15, P99
7258    GU CQ, 1994, NUMER MATH J CHINESE, V16, P293
7259    GU CQ, 1995, MATH NUMER SINICA, V17, P73
7260    GU CQ, 1995, P INT C NUM APPR
7261    MURPHY JA, 1978, J COMPUT APPL MATH, V4, P181
7262    WYNN P, 1963, ARCH RATION MECH AN, V12, P273
7263    ZHU GQ, 1990, CHINESE J NUMER MATH, V12, P66
7264 NR 11
7265 TC 4
7266 SN 0377-0427
7267 J9 J COMPUT APPL MATH
7268 JI J. Comput. Appl. Math.
7269 PD OCT 28
7270 PY 1997
7271 VL 84
7272 IS 2
7273 BP 137
7274 EP 146
7275 PG 10
7276 SC Mathematics, Applied
7277 GA YD221
7278 UT ISI:A1997YD22100001
7279 ER
7280 
7281 PT J
7282 AU Sang, WB
7283    Durose, K
7284    Brinkman, AW
7285    Woods, J
7286 TI In situ mass spectroscopic investigation of the pyrolysis mechanism of
7287    (C3H7)(2)Te and (CH3)(2)Cd during MOCVD
7288 SO ACTA CHIMICA SINICA
7289 DT Article
7290 ID GROWTH; CDTE
7291 AB Pyrolysis properties of metallo - organic precursors, di -
7292    isopropyltelluride (DIPTe) and dimethylcadmium (DMCd), in a MOCVD
7293    reactor have been investigated by in - situ mass spectroscopy. In
7294    particular, possible gas phase reactions as well as pyrolysis mechanism
7295    are analysed. Interaction between the two precursors and its influence
7296    on pyrolysis temperature are explored under the CdTe, CdTe growth
7297    conditions.
7298 C1 UNIV DURHAM,DEPT PHYS,APPL PHYS GRP,DURHAM DH1 3LE,ENGLAND.
7299 RP Sang, WB, SHANGHAI UNIV,DEPT INORGAN MAT,JIADING CAMPUS,SHANGHAI
7300    201800,PEOPLES R CHINA.
7301 CR CZERNIAK MR, 1984, J CRYST GROWTH, V68, P128
7302    DAVIES JI, 1986, J CRYST GROWTH, V79, P363
7303    FUJII S, 1988, J CRYST GROWTH, V93, P750
7304    GAILS JE, 1991, MATER RES SOC S P, V204, P155
7305    HOKE WE, 1985, APPL PHYS LETT, V46, P398
7306    JAXKSON DA, 1988, J CRYST GROWTH, V87, P205
7307    KIRSS RU, 1991, ORGANOMETALLICS, V10, P3589
7308    KONDRATEV VN, 1970, RATE CONSTANTS GAS P
7309    LAURIE CM, 1957, T FARADAY SOC, V53, P1431
7310    LOVERGINE N, 1991, CHEMTRONICS, V5, P11
7311    MCALLISTER T, 1989, J CRYST GROWTH, V96, P552
7312    MULLIN JB, 1981, J CRYST GROWTH, V55, P92
7313    NISHIO M, 1990, JPN J APPL PHYS, V29, P145
7314    OGAWA H, 1988, J APPL PHYS, V64, P6750
7315    SANG WB, 1991, CHEMTRONICS, V5, P179
7316    TROTMANDICKENSO.AF, 1973, COMPREHENSIVE INORGA, P991
7317 NR 16
7318 TC 0
7319 SN 0567-7351
7320 J9 ACTA CHIM SIN
7321 JI Acta Chim. Sin.
7322 PY 1997
7323 VL 55
7324 IS 6
7325 BP 578
7326 EP 584
7327 PG 7
7328 SC Chemistry, Multidisciplinary
7329 GA YD106
7330 UT ISI:A1997YD10600009
7331 ER
7332 
7333 PT J
7334 AU Wong, PL
7335    Xu, H
7336    Zhang, Z
7337 TI Performance evaluation of high pressure sleeve seal
7338 SO WEAR
7339 DT Article
7340 DE high pressure; sleeve seal; elastohydrodynamics
7341 AB Sealing problems for reciprocating pumps or intensifiers operating at
7342    high pressures (above 100 MPa) may be solved by adopting a closely
7343    fitting externally pressurized sleeve. This paper presents an
7344    elastohydrodynamic (EHD) analysis for such high pressure sleeve type
7345    seals and examines the effects of structural and operational parameters
7346    on their high pressure performance characteristics. The effects of
7347    pressure on the viscosity and density of the working fluid are also
7348    considered in the analysis. The numerical results clearly indicate that
7349    the sealing efficiency of high pressure sleeve seals can be enhanced
7350    with elastic deformation of both the sleeve and the plunger. The effect
7351    of working pressure on the stiffness of the sleeve seal and the induced
7352    frictional force are also presented. The study of the effect of
7353    eccentricity on the radial stiffness shows that it leads to a large
7354    radial force and the plunger is pressed on the sleeve surface, hereby
7355    termed 'hydraulic locking'. This phenomenon results in an increase in
7356    frictional forces which is one of the key factors for the limited
7357    working life of the seal. (C) 1997 Elsevier Science S.A.
7358 C1 SHANGHAI UNIV,BEARING RES INST,SHANGHAI,PEOPLES R CHINA.
7359 RP Wong, PL, CITY UNIV HONG KONG,DEPT MFG ENGN,KOWLOON,HONG KONG.
7360 CR HARRIS HD, 1972, ASME, V94, P335
7361    JOHANNESSON HL, 1983, 198313 TULEA
7362    KAMAL MM, 1968, ASME, V90, P412
7363    VENKATARAMAN B, 1996, ASME, V118, P509
7364    WANG NM, 1970, ASME, V92, P310
7365    XU H, 1991, THESIS ACAD MACH SCI
7366    XU H, 1995, 22 LEEDS LYON S TRIB
7367    YOUNG WC, 1989, ROARKS FORMULAE STRE
7368 NR 8
7369 TC 1
7370 SN 0043-1648
7371 J9 WEAR
7372 JI Wear
7373 PD SEP
7374 PY 1997
7375 VL 210
7376 IS 1-2
7377 BP 104
7378 EP 111
7379 PG 8
7380 SC Engineering, Mechanical; Materials Science, Multidisciplinary
7381 GA YC793
7382 UT ISI:A1997YC79300014
7383 ER
7384 
7385 PT J
7386 AU Guo, BQ
7387    Cao, WM
7388 TI An iterative and parallel solver based on domain decomposition for the
7389    h-p version of the finite element method
7390 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
7391 DT Article
7392 DE iterative and parallel solver; preconditioning; the h-p version of the
7393    finite element method
7394 ID ELLIPTIC PROBLEMS; 2 DIMENSIONS; PRECONDITIONER
7395 AB In this paper, we propose a new interative and parallel solver, based
7396    on domain decomposition, for the h-p version of the finite element
7397    method in two dimensions. It improves our previous work in two aspects:
7398    (1) A subdomain may contain several super-elements of the coarse mesh,
7399    thus can be of arbitrary shape and size. This makes the solver more
7400    efficient and more flexible in computational practice. (2) The
7401    p-version components (i.e., the high order side and internal modes) in
7402    every element are treated separately, which results in better
7403    parallelism.
7404 C1 UNIV MANITOBA,DEPT APPL MATH,WINNIPEG,MB R3T 2N2,CANADA.
7405    SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
7406 CR AINSWORTH M, 1996, SIAM J NUMER ANAL, V33, P1358
7407    BABUSKA I, 1988, SIAM J MATH ANAL, V19, P257
7408    BABUSKA I, 1988, SIAM J NUMER ANAL, V25, P837
7409    BABUSKA I, 1989, INT J NUMER METH ENG, V28, P1891
7410    BABUSKA I, 1991, SIAM J NUMER ANAL, V28, P624
7411    BJORSTAD PE, 1986, SIAM J NUMER ANAL, V23, P1097
7412    BRAMBLE J, 1986, J MATH COMPUT, V175, P103
7413    BRAMBLE JH, 1989, MATH COMPUT, V53, P1
7414    CIARLET PG, 1978, FINITE ELEMENT METHO
7415    DRYJA M, 1989, ITERATIVE METHODS LA, P273
7416    DRYJA M, 1990, P 3 INT S DOM DEC ME
7417    DRYJA M, 1994, SIAM J SCI COMPUT, V15, P604
7418    GUO B, 1986, COMPUT MECH, V1, P203
7419    GUO B, 1986, COMPUT MECH, V1, P21
7420    GUO BQ, IN PRESS SIAM J SCI
7421    GUO BQ, 1996, NUMER MATH, V75, P59
7422    MANDEL J, 1990, COMPUT METHOD APPL M, V80, P117
7423    MANDEL J, 1993, SOLVING LARGE SCALE, P65
7424    ODEN JT, 1994, 9411 TICAM
7425    ODEN JT, 1994, CONT MATH, V180, P295
7426    PAVARINO LF, 1994, IN PRESS COMPUT MATH
7427    PAVARINO LF, 1996, SIAM J NUMER ANAL, V33, P1303
7428    SZABO B, 1990, FINITE ELEMENT ANAL
7429    WIDLUND OB, 1988, P 1 INT S DOM DEC ME
7430    XU JC, 1992, SIAM REV, V34, P581
7431    ZIENKIEWICZ OC, 1989, FINITE ELEMENT METHO, V1
7432 NR 26
7433 TC 6
7434 SN 0377-0427
7435 J9 J COMPUT APPL MATH
7436 JI J. Comput. Appl. Math.
7437 PD SEP 30
7438 PY 1997
7439 VL 83
7440 IS 1
7441 BP 71
7442 EP 85
7443 PG 15
7444 SC Mathematics, Applied
7445 GA YA600
7446 UT ISI:A1997YA60000005
7447 ER
7448 
7449 PT J
7450 AU Li, CF
7451 TI Globalism of commutation relation and mechanism of momentum transfer in
7452    the Aharonov-Bohm effect
7453 SO PHYSICA B
7454 DT Article
7455 DE globalism of a commutation relation; Aharonov-Bohm effect; momentum
7456    transfer
7457 ID WAVE
7458 AB After examining the domain of an operator that has classical analog,
7459    which is shown to be the whole spatial space, the concept of globalism
7460    of a commutation relation is introduced through analyzing the
7461    quantization of the kinetic angular momentum in the Aharonov-Bohm
7462    effect. Its applications are also given to explain in an elegant and
7463    precise way, the mechanism of momentum transfer in the Aharonov-Bohm
7464    scattering and to study the probability distribution of the momentum
7465    for a particle in a one-dimensional infinitely deep square potential
7466    well.
7467 RP Li, CF, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,20 CHENGZHONG RD,SHANGHAI
7468    201800,PEOPLES R CHINA.
7469 CR AFANASEV GN, 1990, SOV J PART NUCL, V21, P74
7470    AHARONOV Y, 1959, PHYS REV, V115, P485
7471    CHAMBERS RG, 1960, PHYS REV LETT, V5, P3
7472    DIRAC PAM, 1958, PRINCIPLES QUANTUM M, P140
7473    ERIZ CP, 1973, PAULI LECT PHYSICS, V5, P24
7474    JACKIW R, 1983, PHYS REV LETT, V50, P555
7475    KRETZSCHMAR M, 1965, Z PHYS, V185, P97
7476    LANDAU LD, 1977, QUANTUM MECH NONRELA, P65
7477    LI CF, 1995, PHYSICA B, V212, P436
7478    LI CF, 1996, ANN PHYS-NEW YORK, V252, P329
7479    LI CF, 1996, PHYSICA B, V226, P406
7480    LI CF, 1997, PHYSICA B, V229, P354
7481    PESHKIN M, 1981, PHYS REP, V80, P375
7482    ROY SM, 1984, NUOVO CIMENTO A, V79, P391
7483    SAKURAI JJ, 1985, MODERN QUANTUM MECH, P55
7484    TONOMURA A, 1986, PHYS REV LETT, V56, P792
7485 NR 16
7486 TC 1
7487 SN 0921-4526
7488 J9 PHYSICA B
7489 JI Physica B
7490 PD SEP
7491 PY 1997
7492 VL 240
7493 IS 1-2
7494 BP 98
7495 EP 103
7496 PG 6
7497 SC Physics, Condensed Matter
7498 GA XZ736
7499 UT ISI:A1997XZ73600015
7500 ER
7501 
7502 PT J
7503 AU Shen, WD
7504    Zhang, JF
7505    Wang, ST
7506    Zhu, ST
7507 TI Fermat's principle, the general eikonal equation, and space geometry in
7508    a static anisotropic medium
7509 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND
7510    VISION
7511 DT Article
7512 DE anisotropic medium; Fermat's principle; Riemannian manifold; optical
7513    metric; general eikonal equation; geodesic equation
7514 ID TRANSMISSION SCALAR THEORY; STRONG-LASER PLASMA; RIEMANNIAN GEOMETRY;
7515    OPTICS
7516 AB Fermat's principle and the optical metric are generalized to the case
7517    of an anisotropic medium. The metric tensor of a three-dimensional
7518    Riemannian manifold is related to the dielectric tensor of the medium.
7519    The general eikonal equation in a static anisotropic medium is derived.
7520    The expressions for the curvature tensor and the curvature scalar that
7521    characterize the geometrical structure of a three-dimensional manifold
7522    are given. For an isotropic medium the derived expressions for the
7523    curvature tensor and curvature scalar reduce to the previous results.
7524    (C) 1997 Optical Society of America.
7525 C1 SHANGHAI INST EDUC,DEPT PHYS,SHANGHAI 200031,PEOPLES R CHINA.
7526    ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI 201800,PEOPLES R CHINA.
7527 RP Shen, WD, SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
7528 CR BORN M, 1980, PRINCIPLES OPTICS, P122
7529    BORN M, 1980, PRINCIPLES OPTICS, P666
7530    CARINENA JF, 1996, FORTSCHR PHYS, V44, P181
7531    CARINENA JF, 1996, J PHYS A-MATH GEN, V29, P1695
7532    CARMELI M, 1982, CLASSICAL FIELDS GEN, P67
7533    GUO H, 1995, J OPT SOC AM A, V12, P600
7534    GUO H, 1995, J OPT SOC AM A, V12, P607
7535    GUO QZ, 1995, ACTA PHYS SINICA, V44, P210
7536    GUO QZ, 1995, ACTA PHYS SINICA, V44, P396
7537    MISNER CW, 1973, GRAVITATION, P293
7538    RIVERA AL, 1995, J OPT SOC AM A, V12, P1380
7539    SHEN W, 1996, CHIN J LASERS B, V5, P516
7540    SHEN WD, 1995, INT J THEOR PHYS, V34, P2085
7541    SHEN WD, 1995, INT J THEOR PHYS, V34, P2095
7542    ZHU S, 1993, WORLD OPT C SHANGH C
7543    ZHU ST, 1987, J OPT SOC AM B, V4, P739
7544    ZHU ST, 1988, P TOP M LAS MAT LAS, P190
7545    ZHU ST, 1989, ACTA PHYS SINICA, V38, P1167
7546    ZHU ST, 1989, ACTA PHYS SINICA, V38, P559
7547    ZHU ST, 1993, ACTA PHYS SINICA, V42, P1471
7548    ZHU ST, 1995, INT J THEOR PHYS, V34, P169
7549 NR 21
7550 TC 0
7551 SN 0740-3232
7552 J9 J OPT SOC AM A-OPT IMAGE SCI
7553 JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis.
7554 PD OCT
7555 PY 1997
7556 VL 14
7557 IS 10
7558 BP 2850
7559 EP 2854
7560 PG 5
7561 SC Optics
7562 GA XY742
7563 UT ISI:A1997XY74200029
7564 ER
7565 
7566 PT J
7567 AU Mo, YW
7568    Xia, YB
7569    Huang, XQ
7570    Wang, H
7571 TI Dielectric properties of diamond film alumina composites
7572 SO THIN SOLID FILMS
7573 DT Article
7574 DE diamond; aluminium oxide; dielectric properties; chemical vapour
7575    deposition (CVD)
7576 AB Diamond films were deposited on alumina substrates both by microwave
7577    plasma chemical vapor deposition and hot filament chemical vapor
7578    deposition techniques. The qualities of deposited films were
7579    characterized by X-ray diffraction and Raman scattering spectrometry.
7580    The dielectric properties of the diamond film/alumina composites were
7581    measured, and were compared with the results also calculated by the
7582    model of series capacitors. (C) 1997 Elsevier Science S.A.
7583 RP Mo, YW, SHANGHAI UNIV,SCH MAT SCI & ENGN,SHANGHAI 201800,PEOPLES R
7584    CHINA.
7585 CR CHU MY, 1992, J MATER RES, V7, P3010
7586    HSU JY, 1989, J AM CERAM SOC, V72, P1861
7587    JOHNSON WB, 1993, J MATER RES, V8, P1169
7588    MO YW, 1995, ICEM ICSA 95 XIAN
7589    MO YW, 1997, IN PRESS ACTA PHYS S, V46
7590    NAZERI A, 1993, AM CERAM SOC B, V75, P59
7591    NEMANICH RJ, 1991, ANNU REV MATER SCI, V21, P535
7592    YARBROUGH WA, 1992, J AM CERAM SOC, V75, P3179
7593    YIBEN XIA, 1996, CHINESE PHYS LETT, V13, P557
7594 NR 9
7595 TC 9
7596 SN 0040-6090
7597 J9 THIN SOLID FILMS
7598 JI Thin Solid Films
7599 PD AUG 15
7600 PY 1997
7601 VL 305
7602 IS 1-2
7603 BP 266
7604 EP 269
7605 PG 4
7606 SC Materials Science, Multidisciplinary; Physics, Applied; Physics,
7607    Condensed Matter
7608 GA XX864
7609 UT ISI:A1997XX86400035
7610 ER
7611 
7612 PT J
7613 AU Xu, WP
7614    Gu, M
7615    Zheng, LR
7616    Xin, HP
7617    Cao, ZC
7618    Okuyama, M
7619    Lin, CG
7620 TI Pulsed laser deposition of PZT/BaRuO3 bi-layered films on silicon
7621    substrate
7622 SO FERROELECTRICS
7623 DT Article
7624 ID CAPACITORS; FATIGUE
7625 AB Bi-layered thin films of PZT(70/30) on BaRuO3 have been prepared on
7626    silicon substrate by AF excimer laser deposition(PLD). BaRuO3 thin film
7627    crystallized into perovskite-like structure with (110) orientation and
7628    became highly conductive after atmospheric thermal annealing at 700
7629    degrees C for 30 minutes. It was found the subsequent PLD-deposited PZT
7630    film can be efficiently transformed to its perovskite structure by
7631    rapid thermal processing(RTP) at 700 degrees C for 100sec.
7632 C1 SHANGHAI UNIV,DEPT MAT SCI,SHANGHAI 201800,PEOPLES R CHINA.
7633    OSAKA UNIV,FAC ENGN SCI,DEPT ELECT ENGN,OSAKA 560,JAPAN.
7634 RP Xu, WP, CHINESE ACAD SCI,SHANGHAI INST MET,STATE KEY LAB FUNCT MAT
7635    INFORMAT,SHANGHAI 200050,PEOPLES R CHINA.
7636 CR ALSHAREEF HN, 1994, J MATER RES, V9, P2968
7637    DAT R, 1994, APPL PHYS LETT, V64, P2673
7638    EOM CB, 1992, SCIENCE, V258, P1766
7639    RAMESH R, 1992, APPL PHYS LETT, V61, P1537
7640    RANDALL JJ, 1959, J AM CHEM SOC, V81, P2629
7641    TAKIKAVA O, 1986, IEEE P EL COMP C IEE, P214
7642    XU WP, IN PRESS PHYS STAT A
7643    XU WP, UNPUB MAT LETT
7644 NR 8
7645 TC 2
7646 SN 0015-0193
7647 J9 FERROELECTRICS
7648 JI Ferroelectrics
7649 PY 1997
7650 VL 195
7651 IS 1-4
7652 BP 199
7653 EP 202
7654 PG 4
7655 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
7656 GA XX634
7657 UT ISI:A1997XX63400048
7658 ER
7659 
7660 PT J
7661 AU Yu, JD
7662    Sasaki, S
7663    Sugiura, H
7664    Huang, TK
7665    Inaguma, Y
7666    Itoh, M
7667 TI Compressibility and pressure dependence of charge transfer and T-c in
7668    pristine and iodine-intercalated single crystals of
7669    Bi2.2Sr1.8CaCu2O8+delta
7670 SO PHYSICA C
7671 DT Article
7672 DE electrical resistivity; Hall concentration; high pressure effect
7673 ID SUPERCONDUCTING TRANSITION-TEMPERATURE; HALL-COEFFICIENT; EPITAXIAL
7674    INTERCALATION; RESISTIVITY TENSOR
7675 AB Compressibility measurements for Bi2.2Sr1.8CaCu2O8+delta
7676    (Bi-2.2:1.8:1:2) and IBi2.2Sr1.8CaCu2O8+delta (IBi-2.2:1.8:1:2) single
7677    crystals were carried out in a diamond-anvil pressure cell up to 9 GPa.
7678    The values of bulk modulus are 68.56 and 48.21 Gpa for Bi-2.2:1.8:1:2
7679    and for IBi-2.2:1.8:1:2 single crystals, respectively. Hall
7680    coefficients and resistivities for oxygen annealed Bi-2.2:1.8:1:2 and
7681    I0.7Bi-2.2:1.8:1:2 single crystals were measured under high pressure up
7682    to 1.5 GPa. The value of dR(H)/dP for the oxygen annealed crystal is
7683    -0.06 x 10(-3) cm(3) C-1 GPa(-1), which is one third of the as-grown
7684    crystal. The decrease of dR(H)/dP after oxygen annealing is considered
7685    to be due to the increase of homogeneity of oxygen during high
7686    temperature annealing, The dR(H)/dP of I0.7Bi-2.2:1.8:1:2 is -0.39 x
7687    10(-3) cm(3) C-1 GPa(-1), which is nearly the same as that of
7688    IBi-2.2:1.8:1:2. That the negative dR(H)/dP of intercalated crystals is
7689    nearly twice as large as that of pristine crystals is concerned with
7690    the deposition of the iodine molecular state under pressure. The T-c of
7691    oxygen-annealed Bi-2.2:1.8:1:2 increases with increasing pressure at a
7692    parabolic curve below 1.5 Cpa. By using the Gupta model, we simulated
7693    T-c(P) up to 6 GPa, and found that the maximum value of T-c(P) is 88 K
7694    at P = 4.1 GPa. This is in good agreement with the experimental result
7695    measured by Klotz et al. [Physica C 209 (1993) 499]. The T-c of the
7696    I0.7Bi-2.2:1.8:1:2 crystal increased linearly at a rate of dT(c)/dP =
7697    3.5 K/GPa. This is the opposite of the behaviour of IBi-2.2:1.8:1:2
7698    which decreased linearly at a rate of dT(c)/dP = -3.6 K/GPa, although
7699    both intercalated crystals are overdoped compounds. (C) 1997 Elsevier
7700    Science B.V.
7701 C1 TOKYO INST TECHNOL,MAT & STRUCT LAB,MIDORI KU,YOKOHAMA,KANAGAWA 226,JAPAN.
7702    YOKOHAMA CITY UNIV,GRAD SCH INTEGRATED SCI,KANAZAWA KU,YOKOHAMA,KANAGAWA 236,JAPAN.
7703    SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
7704 CR ALMASAN CC, 1992, PHYS REV LETT, V69, P680
7705    CRUSELLAS MA, 1991, PHYSICA C, V180, P313
7706    FAULQUES E, 1992, SOLID STATE COMMUN, V82, P531
7707    FUJIWARA A, 1992, PHYSICA C, V203, P411
7708    GROEN WA, 1990, PHYSICA C, V165, P55
7709    GUPTA RP, 1995, PHYS REV B, V51, P11760
7710    HUANG TK, 1993, PHYS REV B, V48, P7712
7711    HUANG TK, 1994, PHYS REV B, V49, P9885
7712    HUANG TK, 1996, PHYSICA C, V271, P103
7713    HYBERTSEN MS, 1988, PHYS REV LETT, V60, P1661
7714    KLOTZ S, 1993, PHYSICA C, V209, P499
7715    KOSUGE M, 1992, PHYS REV B, V45, P10713
7716    MARTIN S, 1988, PHYS REV LETT, V60, P2194
7717    MURAYAMA C, 1991, PHYSICA C 2, V185, P1293
7718    MURAYAMA C, 1991, PHYSICA C, V183, P277
7719    MURNAGHAN FD, 1951, FINITE DEFORMATION E
7720    NEUMEIER JJ, 1993, PHYS REV B, V47, P8385
7721    OLSEN JS, 1991, PHYS SCR, V44, P211
7722    POOKE D, 1992, PHYSICA C, V198, P349
7723    TAJIMA Y, 1989, PHYSICA C, V158, P237
7724    THOMPSON JD, 1984, REV SCI INSTRUM, V55, P231
7725    WIJNGAARDEN RJ, 1989, STUDIES HIGH TEMPERA, V2, P29
7726    XIANG XD, 1990, NATURE, V348, P145
7727    XIANG XD, 1991, PHYS REV B B, V43, P11496
7728    XIANG XD, 1991, SCIENCE, V254, P1487
7729    XIANG XD, 1992, PHYS REV LETT, V68, P530
7730 NR 26
7731 TC 4
7732 SN 0921-4534
7733 J9 PHYSICA C
7734 JI Physica C
7735 PD JUL 21
7736 PY 1997
7737 VL 281
7738 IS 1
7739 BP 45
7740 EP 54
7741 PG 10
7742 SC Physics, Applied
7743 GA XX217
7744 UT ISI:A1997XX21700006
7745 ER
7746 
7747 PT J
7748 AU Cheng, XY
7749    Wan, XJ
7750    Chen, YX
7751 TI Environmental embrittlement and hydrogen diffusion in Co3Ti alloys
7752 SO SCRIPTA MATERIALIA
7753 DT Article
7754 ID MECHANICAL-PROPERTIES; NI3AL; BORON; INTERMETALLICS; NI3(SI,TI);
7755    DUCTILITY
7756 RP Cheng, XY, SHANGHAI UNIV,SHANGHAI 200072,PEOPLES R CHINA.
7757 CR GEORGE EP, 1993, SCRIPTA METALL MATER, V28, P857
7758    GEORGE EP, 1993, STRUCTURAL INTERMETA, P431
7759    GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37
7760    GEORGE EP, 1995, MATER RES SOC S P, V364, P1131
7761    LIU CT, 1985, ACTA METALL, V33, P213
7762    LIU CT, 1992, NATO ASI SER, V213, P321
7763    LIU CT, 1992, SCRIPTA METALL MATER, V27, P25
7764    TAKASUGI T, 1986, ACTA METALL, V34, P607
7765    TAKASUGI T, 1988, MATERIALS FORUM, V12, P8
7766    TAKASUGI T, 1990, J MATER SCI, V25, P4239
7767    TAKASUGI T, 1991, J MATER SCI, V26, P1173
7768    TAKASUGI T, 1991, MATER RES SOC S P, V213, P403
7769    TAKASUGI T, 1993, SCRIPTA METALL MATER, V29, P1587
7770    WAN X, 1994, J MATER SCI TECHNOL, V10, P39
7771    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
7772    WAN XJ, 1994, SCRIPTA METALL MATER, V31, P677
7773    WAN XJ, 1995, ACTA METALL SINICA, V8, P299
7774 NR 17
7775 TC 4
7776 SN 1359-6462
7777 J9 SCRIPTA MATER
7778 JI Scr. Mater.
7779 PD OCT 1
7780 PY 1997
7781 VL 37
7782 IS 7
7783 BP 1065
7784 EP 1069
7785 PG 5
7786 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
7787    Engineering
7788 GA XW414
7789 UT ISI:A1997XW41400025
7790 ER
7791 
7792 PT J
7793 AU Zhang, RJ
7794    Dai, SG
7795    Mu, PA
7796 TI A spherical capacitive probe for measuring the thickness of coatings on
7797    metals
7798 SO MEASUREMENT SCIENCE & TECHNOLOGY
7799 DT Article
7800 AB This paper proposes a new method of using the spherical capacitive
7801    probe instead of the common planar probe to increase the accuracy in
7802    measuring the thickness of non-conducting coatings on metals. The
7803    measuring conversion model of the spherical capacitive probe and Its
7804    electric circuit are discussed and effective methods for overcoming the
7805    unfavourable influence caused by the spherical capacitive probe are
7806    introduced as well.
7807 RP Zhang, RJ, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 200093,PEOPLES R CHINA.
7808 CR *ISO, 1982, 2178 ISO
7809    *ISO, 1982, 2360 ISO
7810 NR 2
7811 TC 1
7812 SN 0957-0233
7813 J9 MEAS SCI TECHNOL
7814 JI Meas. Sci. Technol.
7815 PD SEP
7816 PY 1997
7817 VL 8
7818 IS 9
7819 BP 1028
7820 EP 1033
7821 PG 6
7822 SC Engineering, Multidisciplinary; Instruments & Instrumentation
7823 GA XW071
7824 UT ISI:A1997XW07100011
7825 ER
7826 
7827 PT J
7828 AU Tu, LH
7829 TI Asymptotic Hodge theory in several variables: The flat case
7830 SO CHINESE ANNALS OF MATHEMATICS SERIES B
7831 DT Article
7832 DE canonical extension; Gauss-Manin connection; monodromy transformation
7833 AB In the flat case, the answer to the problem posed by Steenbrink and
7834    Zucker is given.
7835 RP Tu, LH, SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
7836 CR CLEMENS CH, 1977, DUKE MATH J, V44, P215
7837    DELIGNE P, 1970, LECT NOTES MAT, V163
7838    DELIGNE P, 1971, PUBL MATH IHES, V40, P5
7839    DELIGNE P, 1974, PUBL MATH IHES, V44, P5
7840    SCHMID W, 1973, INVENT MATH, V22, P211
7841    STEENBRINK J, 1976, INVENT MATH, V31, P229
7842    STEENBRINK J, 1985, INVENT MATH, V80, P489
7843    TU LH, 1990, J SYS SCI MATH SCI, V10, P277
7844    TU LH, 1991, CHIN ANN MATH A, V12, P766
7845    ZUCKER S, 1984, ANN MATH STUD, V106, P121
7846    ZUCKER S, 1985, INVENT MATH, V80, P543
7847 NR 11
7848 TC 0
7849 SN 0252-9599
7850 J9 CHIN ANN MATH SER B
7851 JI Chin. Ann. Math. Ser. B
7852 PD JUL
7853 PY 1997
7854 VL 18
7855 IS 3
7856 BP 277
7857 EP 282
7858 PG 6
7859 SC Mathematics
7860 GA XV663
7861 UT ISI:A1997XV66300002
7862 ER
7863 
7864 PT J
7865 AU Huang, HC
7866 TI Practical circular-polarization-maintaining optical fiber
7867 SO APPLIED OPTICS
7868 DT Article
7869 ID PROPOSALS; FIELD
7870 AB The author describes a new idea for making
7871    circular-polarization-maintaining optical fiber with an existing
7872    fabrication technique. The method simply requires one to spin at a
7873    constant rate a special preform consisting of only one off-axis
7874    stress-applying element in addition to the on-axis core. Measurements
7875    taken with such a fiber specimen verify the existence of circular
7876    eigenmodes, the ease of joining or splicing two fiber segments, the
7877    tolerance to macrobending with a small radius, etc. Good agreement
7878    exists between the experimental data and the theoretical analysis.
7879    Prospective applications are discussed. (C) 1997 Optical Society of
7880    America.
7881 RP Huang, HC, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
7882 CR BARLOW AJ, 1981, ELECTRON LETT, V17, P388
7883    BIRCH RD, 1987, ELECTRON LETT, V23, P50
7884    CASTELLI R, 1989, OPT QUANT ELECTRON, V21, P35
7885    DANDLIKER R, 1992, OPTICAL WAVE SCI TEC, V2, P39
7886    FANG XS, 1985, IEEE T MICROW THEORY, V33, P1150
7887    FUJII Y, 1986, IEE PROC-J, V133, P249
7888    GAUTHIER F, 1981, P INT C FIB ROT SENS, P196
7889    HUANG HC, IN PRESS MICROWAVE A
7890    HUANG HC, 1960, SCI SINICA, V9, P142
7891    HUANG HC, 1990, 4943132, US
7892    HUANG HC, 1992, 5096312, US
7893    HUANG HC, 1995, 5452394, US
7894    HUANG HC, 1995, MICROW OPT TECHN LET, V9, P37
7895    HUANG HC, 1997, APPL OPTICS, V36, P4241
7896    HUSSEY CD, 1986, ELECTRON LETT, V22, P129
7897    JEUNHOMME L, 1980, ELECTRON LETT, V16, P921
7898    MACHIDA S, 1982, T IECE JPN E, V65, P642
7899    MAYSTRE F, 1989, OPT LETT, V14, P587
7900    RAMASWAMY V, 1978, APPL OPTICS, V17, P3014
7901    ROGERS AJ, 1995, J LIGHTWAVE TECHNOL, V13, P1371
7902    SAKAI JI, 1981, OPT LETT, V6, P496
7903    SOMEDA CG, 1985, 41584, IT
7904    SOMEDA CG, 1986, 41638, IT
7905    SOMEDA CG, 1991, OPT QUANT ELECTRON, V23, P713
7906    ULRICH R, 1979, APPL OPTICS, V18, P2241
7907    VARNHAM MP, 1985, P IOOC ECOC VEN, P135
7908    VARNHAM MP, 1986, M OPT FIB COMM, P68
7909 NR 27
7910 TC 2
7911 SN 0003-6935
7912 J9 APPL OPT
7913 JI Appl. Optics
7914 PD SEP 20
7915 PY 1997
7916 VL 36
7917 IS 27
7918 BP 6968
7919 EP 6975
7920 PG 8
7921 SC Optics
7922 GA XV502
7923 UT ISI:A1997XV50200036
7924 ER
7925 
7926 PT J
7927 AU Feng, SS
7928    Zong, HS
7929    Wang, ZX
7930    Qiu, XJ
7931 TI Induced electronic interactions in Chern-Simons systems
7932 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
7933 DT Article
7934 ID GAUGE NONINVARIANCE; 3 DIMENSIONS; FIELD-THEORY; QUANTIZATION
7935 AB The induced electronic interactions in (I + 2)-dimensional vector
7936    Chem-Simons systems are studied by means of path-integral quantization.
7937    We consider four cases: relativistic, and nonrelativistic fermion
7938    Maxwell-Chern-Simons models, and relativistic and nonrelativistic
7939    fermion Chern-Simons models. It is shown that the Chern-Simons term may
7940    induce exotic electronic interactions which can be local or nonlocal
7941    and small Chern-Simons coupling may have a considerable effect in some
7942    cases.
7943 C1 ACAD SINICA,INST THEORET PHYS,BEIJING 100080,PEOPLES R CHINA.
7944    ACAD SINICA,INST NUCL PHYS,SHANGHAI 201800,PEOPLES R CHINA.
7945    SHANGHAI TEACHERS UNIV,CTR STRING THEORY,SHANGHAI 200234,PEOPLES R CHINA.
7946 RP Feng, SS, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
7947    R CHINA.
7948 CR ANDRES K, 1975, PHYS REV LETT, V35, P1779
7949    BARASHENKOV IV, 1994, PHYS REV LETT, V72, P1575
7950    DESER S, 1982, ANN PHYS-NEW YORK, V140, P372
7951    FENG D, 1992, NEW PERSPECTIVES CON
7952    FENG SS, 1995, INT J THEOR PHYS, V34, P1827
7953    FENG SS, 1997, INT J THEORETICAL PH, V36, P41
7954    FRADKIN E, 1991, FIELD THEORIES CONDE
7955    GITMANN DM, 1990, QUANTIZATION FIELDS
7956    HAGEN CR, 1985, PHYS REV D, V31, P2135
7957    HAGEN CR, 1985, PHYS REV D, V31, P848
7958    JACKIW R, 1990, PHYS REV LETT, V64, P2969
7959    JONES W, 1973, THEORETICAL SOLID ST
7960    KIM YW, 1995, PHYS REV D, V51, P2943
7961    LOPEZ A, 1991, PHYS REV B, V44, P5246
7962    NI GJ, 1995, LEVINSON THEOREM ANO
7963    POLYAKOV AM, 1988, MOD PHYS LETT A, V3, P325
7964    REDLICH AN, 1984, PHYS REV D, V29, P2366
7965    REDLICH AN, 1984, PHYS REV LETT, V52, P18
7966    SEMENOFF GW, 1988, PHYS REV LETT, V61, P517
7967    YANG CN, 1989, PHYS REV LETT, V63, P2144
7968    YANG JF, 1995, PHYS LETT B, V343, P249
7969 NR 21
7970 TC 1
7971 SN 0020-7748
7972 J9 INT J THEOR PHYS
7973 JI Int. J. Theor. Phys.
7974 PD AUG
7975 PY 1997
7976 VL 36
7977 IS 8
7978 BP 1717
7979 EP 1731
7980 PG 15
7981 SC Physics, Multidisciplinary
7982 GA XU738
7983 UT ISI:A1997XU73800003
7984 ER
7985 
7986 PT J
7987 AU Zhang, LX
7988    Wu, YS
7989    Yang, LX
7990    Fang, MX
7991    Fan, CZ
7992 TI Relationship between bronze alloy composition and corrosion
7993 SO CHINESE SCIENCE BULLETIN
7994 DT Letter
7995 RP Zhang, LX, SHANGHAI UNIV SCI & TECHNOL,JINAN 250061,PEOPLES R CHINA.
7996 CR FAN CZ, 1992, CHINESE J CHE PHYS, V6, P479
7997    FAN CZ, 1993, SCI CHINA SER B, V36, P659
7998    WANG CS, 1995, J U SCI TECH CHINA, V25, P448
7999    WU LM, 1986, CULTURAL RELICS, V11, P76
8000    WU YS, 1992, ACTA PHYS SINICA, V1, P79
8001 NR 5
8002 TC 0
8003 SN 1001-6538
8004 J9 CHIN SCI BULL
8005 JI Chin. Sci. Bull.
8006 PD SEP
8007 PY 1997
8008 VL 42
8009 IS 17
8010 BP 1494
8011 EP 1496
8012 PG 3
8013 SC Multidisciplinary Sciences
8014 GA XU001
8015 UT ISI:A1997XU00100025
8016 ER
8017 
8018 PT J
8019 AU Bi, PZ
8020    Shi, YM
8021 TI A revised approach of the two phase model for quark-gluon deconfinement
8022    phase transition
8023 SO ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS
8024 DT Article
8025 ID HARD-CORE RADIUS; FINITE TEMPERATURE; BAG CONSTANT; THERMODYNAMICS;
8026    DENSITY; CHROMODYNAMICS; PHENOMENOLOGY; RESTORATION; CHARMONIUM;
8027    SPECTRUM
8028 AB The two phase model for the quark-gluon deconfinement phase transition
8029    is modified based on the temperature and density related properties of
8030    the hadron. The revised approach is consistent with the single body
8031    description. Its consequences on the pressure and energy density of the
8032    hadron gas is investigated, and the critical value of temperature and
8033    chemical potential of the phase transition from the hadron gas to a
8034    non-interacting quark matter are calculated. Our results agree with the
8035    recent lattice gauge calculations.
8036 C1 FUDAN UNIV,DEPT PHYS 2,SHANGHAI 200433,PEOPLES R CHINA.
8037    CCAST,WORLD LAB,BEIJING 100080,PEOPLES R CHINA.
8038    SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA.
8039 RP Bi, PZ, FUDAN UNIV,TD LEE PHYS LAB,SHANGHAI 200433,PEOPLES R CHINA.
8040 CR BERNARD C, HEPLAT950993 MILK CO
8041    BI PZ, 1988, J PHYS G, V14, P681
8042    BI PZ, 1989, J PHYS G, V15, P1653
8043    BI PZ, 1991, QUARK GLUON STRUCTUR
8044    BI PZ, 1992, Z PHYS C, V54, P543
8045    BROWN GE, SUNYNTG966
8046    BROWN GE, 1991, NUCL PHYS A, V535, P701
8047    BROWN GE, 1991, PHYS REV LETT, V66, P2720
8048    CLEYMANS J, 1986, Z PHYS C PART FIELDS, V33, P151
8049    CLEYMANS J, 1987, Z PHYS C, V37, P51
8050    CLEYMANS J, 1993, Z PHYS C, V57, P135
8051    DEFORCRAND P, 1985, PHYS LETT B, V160, P137
8052    HARRINGTON BJ, 1974, PHYS REV LETT, V33, P324
8053    HASHIMOTO T, 1986, PHYS REV LETT, V57, P2123
8054    HASHIMOTO T, 1988, Z PHYS C, V38, P251
8055    HATSUDA T, 1992, NUCL PHYS A, V544, C27
8056    KAPUSTA JI, 1981, PHYS REV D, V23, P2444
8057    KOCH V, 1993, NUCL PHYS A, V560, P345
8058    KOGUT JB, 1991, PHYS LETT B, V263, P101
8059    KOUNO H, 1982, Z PHYS C, V42, P209
8060    LI SX, 1991, INT J MOD PHYS A, V6, P501
8061    LINDE AD, 1979, REPORTS PROGR PHYSIC, V42, P25
8062    PISARSKI R, 1982, PHYS LETT B, V110, P155
8063    PISARSKI RD, 1982, PHYS REV D, V26, P3735
8064    PISARSKI RD, 1984, PHYS REV D, V29, P338
8065    REINHARDT H, 1986, PHYS LETT B, V173, P473
8066    RISCHKE DH, 1991, Z PHYS C, V51, P584
8067    SHURYAK EV, 1980, PHYS REP           C, V61, P71
8068    TAKAGI F, 1986, PHYS REV D, V34, P1646
8069    TAKAGI F, 1987, PHYS REV D, V35, P2226
8070    UDDIN S, 1992, Z PHYS C PART FIELDS, V53, P319
8071    VOGT R, 1988, PHYS LETT B, V206, P333
8072 NR 32
8073 TC 2
8074 SN 0170-9739
8075 J9 Z PHYS C-PAR FIELD
8076 JI Z. Phys. C-Part. Fields
8077 PD AUG
8078 PY 1997
8079 VL 75
8080 IS 4
8081 BP 735
8082 EP 738
8083 PG 4
8084 SC Physics, Particles & Fields
8085 GA XT297
8086 UT ISI:A1997XT29700017
8087 ER
8088 
8089 PT J
8090 AU Zhu, XH
8091    Xu, J
8092    Meng, ZY
8093 TI Dielectric and piezoelectric properties of
8094    Pb(Ni1/3Nb2/3)O-3-PbTiO3-PbZrO3 ceramics modified with bismuth and zinc
8095    substitutions
8096 SO JOURNAL OF MATERIALS SCIENCE
8097 DT Article
8098 ID ACTUATOR
8099 AB The dielectric and piezoelectric properties of the
8100    (Pb0.985Bi0.01)(Ni1/4Zn1/12Nb2/3)(x)(ZrsigmaTi1-sigma)(1-x)O-3
8101    piezoelectric ceramic system (0.2 less than or equal to x less than or
8102    equal to 0.7, 0.1 less than or equal to sigma less than or equal to
8103    0.9) were systematically investigated. The results showed that, after
8104    poling, the dielectric constant, epsilon(33)(T), increased for the
8105    tetragonal compositions but decreased for the rhombohedral
8106    compositions. Furthermore, high values of epsilon(33)(T) and
8107    piezoelectric modulus, d(31) were found for the compositions along the
8108    extension of the morphotropic phase boundary. The highest values of the
8109    planar electromechanical coupling factor, K-p, and the piezoelectric
8110    modulus, d(31), were found to be 0.70 and -274 x 10(-12) C N-1,
8111    respectively. The Curie temperature, remanent polarization, coercive
8112    field and the lattice constants of the a and c axes in relation to the
8113    Pb(Ni1/3Nb2/3)O-3 content and the Zr/Zr + Ti ratio were also determined.
8114 C1 NANJING UNIV,NATL LAB SOLID STATE MICROSTRUCT,NANJING 210093,PEOPLES R CHINA.
8115    SHANGHAI UNIV SCI & TECHNOL,SCH MAT SCI & ENGN,SHANGHAI 201800,PEOPLES R CHINA.
8116 RP Zhu, XH, NANJING UNIV,DEPT PHYS,NANJING 210093,PEOPLES R CHINA.
8117 CR ADACHI M, 1987, JPN J APPL PHYS, V29, P68
8118    GERSON R, 1960, J APPL PHYS, V31, P188
8119    HAUN MJ, 1989, FERROELECTRICS, V99, P13
8120    JAFFE B, 1971, PIEZOELECTRIC CERAMI
8121    JONTS L, 1994, SMART MATER STRUCT, V3, P147
8122    KITAMURA T, 1981, JPN J APPL PHYS, V20, P97
8123    KULCSAR F, 1959, J AM CERAM SOC, V42, P343
8124    MOON JH, 1993, J MATER RES, V8, P3184
8125    OUCHI H, 1965, J AM CERAM SOC, V48, P630
8126    OUCHI H, 1968, J AM CERAM SOC, V51, P169
8127    ROBBINS WP, 1991, IEEE T ULTRASON FERR, V38, P454
8128    TAKAHASHI M, 1970, JPN J APPL PHYS, V9, P1236
8129    ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169
8130    ZHU XH, 1996, J MATER SCI, V31, P2171
8131 NR 14
8132 TC 8
8133 SN 0022-2461
8134 J9 J MATER SCI
8135 JI J. Mater. Sci.
8136 PD AUG 15
8137 PY 1997
8138 VL 32
8139 IS 16
8140 BP 4275
8141 EP 4282
8142 PG 8
8143 SC Materials Science, Multidisciplinary
8144 GA XT184
8145 UT ISI:A1997XT18400014
8146 ER
8147 
8148 PT J
8149 AU Guo, BQ
8150    Cao, WM
8151 TI Additive Schwarz methods for the h-p version of the finite element
8152    method in two dimensions
8153 SO SIAM JOURNAL ON SCIENTIFIC COMPUTING
8154 DT Article
8155 DE additive Schwarz method; the h-p version; condition number; iterative
8156    and parallel solver
8157 ID ITERATIVE METHODS; ELLIPTIC PROBLEMS; DECOMPOSITION
8158 AB Two additive Schwarz methods (ASMs) are proposed for the h-p version of
8159    the finite element method for two-dimensional elliptic problems in
8160    polygonal domains. One is based on generous overlapping of the
8161    h-version components (i.e., the linear nodal modes) and nonoverlapping
8162    of the p-version components (i.e., the high-order side modes and
8163    internal modes). Another is based on nonoverlapping for both the
8164    h-version and the p-version components. Their implementations are in
8165    parallel on the subdomain level for the h-version components and on the
8166    element level for the p-version components. The condition number for
8167    the first method is of order O(1 + ln p)(2), and for the second one is
8168    max(i)(1 + ln(H(i)p(i)/h(i)))(2), where H-i is the diameter of the
8169    subdomain Omega(i), h(i) is the characteristic diameter of the elements
8170    in Omega(i), p(i) is the maximum polynomial degree used in Omega(i),
8171    and p = max(i)p(i) .
8172 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
8173 RP Guo, BQ, UNIV MANITOBA,DEPT APPL MATH,WINNIPEG,MB R3T 2N2,CANADA.
8174 CR AINSWORTH M, 1996, SIAM J NUMER ANAL, V33, P1358
8175    BABUSKA I, 1988, SIAM J MATH ANAL, V19, P257
8176    BABUSKA I, 1988, SIAM J NUMER ANAL, V25, P837
8177    BABUSKA I, 1989, INT J NUMER METH ENG, V28, P1891
8178    BABUSKA I, 1991, SIAM J NUMER ANAL, V28, P624
8179    BJORSTAD PE, 1986, SIAM J NUMER ANAL, V23, P1097
8180    BRAMBLE JH, 1986, MATH COMPUT, V47, P103
8181    CIARLET PG, 1978, FINITE ELEMENT METHO
8182    CLEMENT P, 1975, RAIRO ANAL NUMER R, V2, P77
8183    DRYJA M, 1987, 339 NEW YORK U COUR
8184    DRYJA M, 1989, ITERATIVE METHODS LA, P273
8185    DRYJA M, 1990, P 3 INT S DOM DEC ME
8186    DRYJA M, 1994, CONT MATH, V157, P53
8187    GRISVARD P, 1985, ELLIPTIC PROBLEMS NO
8188    GUO B, 1986, COMPUT MECH, V1, P203
8189    GUO B, 1986, COMPUT MECH, V1, P21
8190    GUO BQ, 1996, NUMER MATH, V75, P59
8191    GUO BQ, 1997, IN PRESS J COMPUT AP
8192    LIONS PL, 1988, P 1 INT S DOM DEC ME
8193    MANDEL J, 1990, COMPUT METHOD APPL M, V80, P117
8194    MANDEL J, 1990, INT J NUMER METH ENG, V29, P1095
8195    ODEN JT, 1994, 9411 U TEX AUST TICA
8196    PAVARINO LF, 1992, THESIS NEW YORK U NE
8197    WIDLUDN OB, 1988, P 1 INT S DOM DEC ME
8198    WILUND OB, 1989, P 2 INT S DOM DEC ME
8199    XU JC, 1992, SIAM REV, V34, P581
8200 NR 26
8201 TC 6
8202 SN 1064-8275
8203 J9 SIAM J SCI COMPUT
8204 JI SIAM J. Sci. Comput.
8205 PD SEP
8206 PY 1997
8207 VL 18
8208 IS 5
8209 BP 1267
8210 EP 1288
8211 PG 22
8212 SC Mathematics, Applied
8213 GA XT113
8214 UT ISI:A1997XT11300003
8215 ER
8216 
8217 PT J
8218 AU Xin, HP
8219    Lin, CL
8220    Wang, JX
8221    Zou, SC
8222    Shi, XH
8223    Lin, ZX
8224    Zhou, ZY
8225    Liu, ZG
8226 TI Experimental studies of N+ implantation into CVD diamond thin films
8227 SO SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES
8228 DT Article
8229 DE N+ implantation into diamond films; Raman spectroscopy; ultraviolet
8230    photoluminescence spectroscopy (UV-PL); electrically inactive
8231    deep-level impurity; C N covalent bond; carbon nitride; x-ray
8232    photoelectron spectroscopy (XPS)
8233 ID ION
8234 AB The effects of N+ implantation under various conditions on CVD diamond
8235    films were analyzed with Raman spectroscopy, four-point probe method,
8236    X-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS),
8237    ultraviolet photoluminescence spectroscopy (UV-PL), Fourier
8238    transformation infrared absorption spectroscopy (FTIR) and X-ray
8239    photoelectron spectroscopy (XPS). The results show that the N+
8240    implantation doping without any graphitization has been successfully
8241    realized when 100 keV N+ ions at a dosage of 2 x 10(16) cm(-2) were
8242    implanted into diamond films at 550 degrees C. UV-PL spectra indicate
8243    that the implanted N+ ions formed an electrically inactive deep-level
8244    impurity in diamond films. So the sheet resistance of the sample after
8245    N+ implantation changed little. Carbon nitride containing C=N covalent
8246    bond has been successfully synthesized by 100 keV, 1.2 x 10(18) N/cm(2)
8247    N+ implantation into diamond films. Most of the implanted N+ ions
8248    formed C=N covalent bonds with C atoms. The others were free state
8249    nitrogen, which existed in the excessive nitrogen layers. C(1s) XPS
8250    studies show the existence of three different C(1s) bonding states,
8251    corresponding to graphite, i-carbon and the carbon of C=N covalent
8252    bonding state, respectively, which agrees well with the Raman results.
8253 C1 CHINESE ACAD SCI,SHANGHAI INST TECH PHYS,NATL LAB INFRARED PHYS,SHANGHAI 200083,PEOPLES R CHINA.
8254    CHINESE ACAD SCI,SHANGHAI INST MET,ION BEAM LAB,SHANGHAI 200050,PEOPLES R CHINA.
8255    SHANGHAI UNIV,DEPT MAT SCI,SHANGHAI 201800,PEOPLES R CHINA.
8256 RP Xin, HP, CHINESE ACAD SCI,SHANGHAI INST MET,NATL LAB FUNCT MAT
8257    INFORMAT,SHANGHAI 200050,PEOPLES R CHINA.
8258 CR ANSELL RO, 1979, J ELECTROANAL CHEM, V98, P79
8259    BROWER KL, 1982, PHYS REV B, V26, P6040
8260    CHU WK, 1978, BACKSCATTERING SPECT
8261    HARTNETT TM, 1988, THESIS PENNSYLVANIA
8262    LIN CG, 1990, SCI CHINA, P976
8263    MITCHELL JB, 1975, J APPL PHYS, V46, P332
8264    MITCHELL JB, 1975, J APPL PHYS, V46, P335
8265    SATO S, 1991, NUCL INSTRUM METH B, V59, P1391
8266    SCHER H, 1970, J CHEM PHYS, V53, P3759
8267    XIN HP, 1995, APPL PHYS LETT, V66, P3290
8268    XIN HP, 1995, CHINESE PHYSICS, V24, P147
8269    XIN HP, 1996, SCI CHINA SER E, V26, P210
8270    ZHANG XK, 1992, VACUUM, V43, P1047
8271    ZHU W, 1990, THESIS SOLID STATE S
8272 NR 14
8273 TC 0
8274 SN 1006-9321
8275 J9 SCI CHINA SER E
8276 JI Sci. China Ser. E-Technol. Sci.
8277 PD AUG
8278 PY 1997
8279 VL 40
8280 IS 4
8281 BP 361
8282 EP 368
8283 PG 8
8284 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary
8285 GA XR161
8286 UT ISI:A1997XR16100004
8287 ER
8288 
8289 PT J
8290 AU Zhu, XH
8291    Li, Q
8292    Ming, NB
8293    Meng, ZY
8294 TI Origin of optical nonlinearity for PbO, TiO2, K2O, and SiO2 optical
8295    glasses
8296 SO APPLIED PHYSICS LETTERS
8297 DT Article
8298 ID SINGLE-BEAM
8299 AB The nonlinear optical properties for the PbO, TiO2, K2O, and SiO2
8300    system have been measured by the Z-scan method. The magnitude and sign
8301    of the nonlinear refractive index n(2) were determined, as was the
8302    negative sign, which indicated a self-defocusing optical nonlinearity.
8303    Two optical absorption bands at 540 and 660 nm, respectively, are
8304    observed in the optical absorption spectra. The sources of the
8305    absorption bands are attributed to the 3 d-shell electronic transitions
8306    of Ti3+ ions from the ground state to the excited states. The origin of
8307    the negative nonlinear refractive index was the contribution of
8308    resonant electronic transition processes, which can cancel the positive
8309    nonresonant refractive index that mainly resulted from the
8310    hyperpolarizabilities of the Pb-O and Ti-O pairs. (C) 1997 American
8311    Institute of Physics.
8312 C1 NANJING UNIV,CTR ADV STUDIES SCI & TECHNOL MICROSTRUCT,NANJING 210093,PEOPLES R CHINA.
8313    CCAST,WORLD LAB,BEIJING 100080,PEOPLES R CHINA.
8314    SHANGHAI UNIV,SCH MAT SCI & ENGN,SHANGHAI 201800,PEOPLES R CHINA.
8315 RP Zhu, XH, NANJING UNIV,NATL LAB SOLID STATE MICROSTRUCT,DEPT
8316    PHYS,NANJING 210093,PEOPLES R CHINA.
8317 CR BORRELLI NF, 1991, OPTICAL PROPERTIES G, P87
8318    BORRELLI NF, 1995, J NON-CRYST SOLIDS, V185, P109
8319    FRIBERG SR, 1987, IEEE J QUANTUM ELECT, V23, P2089
8320    GAN F, 1991, OPTICAL SPECTRAL PRO, P203
8321    KAMIYA K, 1985, J MATER SCI, V20, P906
8322    MIYAJI F, 1992, APPL PHYS LETT, V60, P2060
8323    NASU H, 1987, OPT ENG, V26, P102
8324    NASU H, 1995, J NON-CRYST SOLIDS, V182, P321
8325    SHEIKBAHAE M, 1989, OPT LETT, V14, P955
8326    SHEIKBAHAE M, 1990, IEEE J QUANTUM ELECT, V26, P760
8327    SHEN YR, 1984, PRINCIPLES NONLINEAR
8328    ZHU XH, 1994, J APPL PHYS, V75, P3756
8329 NR 12
8330 TC 17
8331 SN 0003-6951
8332 J9 APPL PHYS LETT
8333 JI Appl. Phys. Lett.
8334 PD AUG 18
8335 PY 1997
8336 VL 71
8337 IS 7
8338 BP 867
8339 EP 869
8340 PG 3
8341 SC Physics, Applied
8342 GA XR278
8343 UT ISI:A1997XR27800003
8344 ER
8345 
8346 PT J
8347 AU He, JH
8348 TI A generalized variational principle for 3-D unsteady transonic
8349    rotational flow in rotor using Clebsch variables
8350 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
8351 DT Article
8352 AB Via semi-inverse method /1,2/, a generalized variational principle with
8353    only 6 independent variables for 3-D unsteady compressible rotational
8354    transonic rotor-flow with shocks has been successfully formulated,
8355    which has been unknown till the present time, and the matching
8356    conditions across all unknown oscillating discontinuities (such as
8357    shocks, free surface and free trailing vortex sheets) have been deduced
8358    via variable-domain variable principle. This theory aims at rendering a
8359    general, rigorous theoretical basis for the finite element method and
8360    other direct variational methods.
8361 RP He, JH, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI
8362    200072,PEOPLES R CHINA.
8363 CR CHAN STK, 1977, FE APPL UNSTEADY TRA
8364    ECER A, 1983, AIAA J, V21, P343
8365    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
8366    HE JH, IN PRESS INT J TURBO
8367    HE JH, 1996, 4 C CHIN IND APPL MA
8368    LIU GL, 1989, SCI CHINA, V32, P271
8369    LIU GL, 1991, 3 INT C INV DES OPT, P337
8370    LIU GL, 1991, J ENG THERMOPHYSICS, V12, P280
8371    LIU GL, 1993, ACTA MECH, V99, P219
8372    MCCROSKEY WJ, 1977, J FLUIDS ENG, V99, P8
8373    SELIGER RL, 1968, P ROY SOC LOND A MAT, V305, P1
8374    SERRIN J, 1959, HDB PHYSIK, V8
8375 NR 12
8376 TC 11
8377 SN 0334-0082
8378 J9 INT J TURBO JET ENGINES
8379 JI Int. J. Turbo. Jet-Engines
8380 PY 1997
8381 VL 14
8382 IS 1
8383 BP 17
8384 EP 21
8385 PG 5
8386 SC Engineering, Aerospace
8387 GA XR112
8388 UT ISI:A1997XR11200002
8389 ER
8390 
8391 PT J
8392 AU He, JH
8393 TI Semi-inverse method of establishing generalized variational principles
8394    for fluid mechanics with emphasis on turbomachinery aerodynamics
8395 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
8396 DT Article
8397 DE blade-to-blade flow in turbomachinery; variational principle in fluid
8398    mechanics; semi-inverse method; trial-functional
8399 AB The semi-inverse method suggested by the author is one of the best and
8400    most convenient ways to deduce generalized variational principles with
8401    multi-variables from 1) partial differential equations (PDE) and
8402    boundary conditions (BC), or 2) known variational principles with
8403    single variable or double variables, or 3) a suitable energy
8404    trial-functional, without any crisis variational phenomenon.
8405    As a result two families of generalized variational principles for
8406    irrotational compressible blade-to-blade flow have been deduced without
8407    using the Lagrange multiplier method. The method will have a great
8408    effect not only in fluid mechanics, but also in elasticity theorems.
8409 RP He, JH, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI
8410    200072,PEOPLES R CHINA.
8411 CR CHIEN WZ, 1983, APPL MATH MECH, V4, P137
8412    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
8413    HE JH, 1996, 4 C CHIN IND APPL MA
8414    LIU GL, 1990, P 1 INT S AER INT FL, P128
8415    LIU GL, 1993, INT J TURBO JET ENGI, V10, P273
8416    LIU GL, 1995, P 6 AS C FLUID MECH
8417 NR 6
8418 TC 48
8419 SN 0334-0082
8420 J9 INT J TURBO JET ENGINES
8421 JI Int. J. Turbo. Jet-Engines
8422 PY 1997
8423 VL 14
8424 IS 1
8425 BP 23
8426 EP 28
8427 PG 6
8428 SC Engineering, Aerospace
8429 GA XR112
8430 UT ISI:A1997XR11200003
8431 ER
8432 
8433 PT J
8434 AU Wang, YS
8435    Sun, GX
8436    Xie, DF
8437    Bao, BR
8438    Cao, WG
8439 TI Extraction of uranium(VI) and thorium(IV) ions from nitric acid
8440    solutions by N,N,N',N'-tetrabutyladipicamide
8441 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY-LETTERS
8442 DT Article
8443 AB A new symmetrical diamide, the straight-chain alkyl substituted neutral
8444    tetrabutyladipicamide (TBAA) has been synthesized, characterized and
8445    used for the extraction of U(V) and Th(IV) from nitric acid solutions
8446    in a diluent composed of 50% 1,2,4-trimethylbenzene (TMB) and 50%
8447    kerosene (OK). Extraction distribution coefficients of U(VI) and Th(IV)
8448    as a function of aqueous nitric acid concentration, extractant
8449    concentration and temperature have been studied. Back-extraction of
8450    U(VI) and Th(IV) from organic phases by dilute nitric acid has been
8451    undertaken. From the data, the compositions of extracted species,
8452    equilibrium constants and enthalpies of extraction reactions have also
8453    been calculated.
8454 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
8455 RP Wang, YS, CHINESE ACAD SCI,INST NUCL RES,POB 800-204,SHANGHAI
8456    201800,PEOPLES R CHINA.
8457 CR BAO BR, 1992, J RADIOAN NUCL CH AR, V162, P391
8458    CUILLERDIER C, 1991, SEPAR SCI TECHNOL, V26, P1229
8459    MUSIKAS C, 1988, SEPAR SCI TECHNOL, V23, P1211
8460    NAIR GM, 1993, SOL EXTR ION EXCH, V11, P813
8461    SEHN CH, 1996, J RADIOANAL NUCL CHE, V212, P187
8462    SIDDAL TE, 1996, J INORG NUCL CHEM, V26, P883
8463    YIN YJ, 1985, HDB COLLEGE CHEM, P302
8464 NR 7
8465 TC 24
8466 SN 0236-5731
8467 J9 J RADIOANAL NUCL CHEM LETT
8468 JI J. Radioanal. Nucl. Chem.-Lett.
8469 PD SEP 2
8470 PY 1996
8471 VL 214
8472 IS 1
8473 BP 67
8474 EP 76
8475 PG 10
8476 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
8477    & Technology
8478 GA XQ095
8479 UT ISI:A1996XQ09500007
8480 ER
8481 
8482 PT J
8483 AU Yu, BC
8484    Chen, Y
8485    Cai, RF
8486    Huang, ZE
8487    Xiao, YW
8488 TI Synthesis and structural characterization of a novel and starlike
8489    C-60(PMS)(x)(CH3)(x) copolymer
8490 SO EUROPEAN POLYMER JOURNAL
8491 DT Article
8492 ID MAGNETIC-RESONANCE; OPTICAL-PROPERTIES; C-60; FULLERENES; SPECTROSCOPY;
8493    POLYSTYRENE; POLYMERS; STYRENE; CARBON; FORM
8494 AB A novel starlike C-60(PMS)(x)(CH3)(x) (x=1-3) copolymer was prepared by
8495    reaction of a living poly(alpha-methylstyrene) (PMS) carbanion with
8496    C-60, followed by a capping reaction with methyl iodine. The
8497    characterization techniques used are UV-vis, FT-IR, GPC, DSC, TGA, ESR,
8498    C-13 NMR, SEM, XRD, cyclic voltammetry (CV) and fluorescence
8499    spectroscopy. This starlike polymer has a visibly earthy yellow cast
8500    when compared with the unfunctionalized parent polymer (PMS), and is
8501    highly soluble in some common organic solvents.
8502    Poly(alpha-methylstyrene) is essentially transparent at wavelengths
8503    longer than 280 nm, and its main absorption band is at 250 (vs) nm.
8504    Covalent attachment of the multiple PMS arms to the C-60 core results
8505    in the bathochromic shift of the above band and the appearance of a new
8506    absorption band at 328 nm (pi-->pi*). This new band is one of the
8507    characteristic absorptions for organofullerenes. The thermal stability
8508    and oxidation/reduction activation of pure PMS are enhanced apparently
8509    by C-60 chemical modifiction. It is also found that in this copolymer
8510    there are mainly two kinds of paramagnetic species, whereas no ESR
8511    signal in pure poly(a-methylstyrene) is detected, and this indicates
8512    the non-existence of unpaired electron or free radical. (C) 1997
8513    Elsevier Science Ltd.
8514 C1 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
8515    SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
8516 CR BABU GN, 1984, J POLYM SCI POL CHEM, V22, P213
8517    BALCH AL, 1992, J AM CHEM SOC, V114, P5455
8518    BERGER PA, 1992, MACROMOLECULES, V25, P7227
8519    BUNKER CE, 1995, MACROMOLECULES, V28, P3744
8520    CAO T, 1995, MACROMOLECULES, V28, P3741
8521    CHEN Y, IN PRESS EUR POLYM J
8522    CHEN Y, 1996, J POLYM SCI POL PHYS, V34, P631
8523    CHEN Y, 1996, SOLID STATE COMMUN, V97, P239
8524    CHILKOTI A, 1991, APPL SPECTROSC, V45, P209
8525    DAVID C, 1974, EUR POLYM J, V10, P1181
8526    DIEDERICH F, 1996, SCIENCE, V271, P317
8527    ELGERT KF, 1975, POLYMER, V16, P465
8528    FUJIMOTO T, 1965, J POLYM SCI A, V3, P2259
8529    GALLAGHER PK, 1992, J THERM ANAL, V38, P2247
8530    GECKELER KE, 1993, J AM CHEM SOC, V115, P3850
8531    GECKELER KE, 1994, TRENDS POLYM SCI, V2, P355
8532    GILMAN H, 1964, J ORGANOMET CHEM, V2, P447
8533    GUILLET JE, 1985, POLYM PHOTOPHYSICS P
8534    HADDON RC, 1986, CHEM PHYS LETT, V125, P459
8535    HARADA K, 1981, J APPL POLYM SCI, V26, P3395
8536    HARE JP, 1991, CHEM PHYS LETT, V177, P394
8537    HAWKER CJ, 1994, J CHEM SOC CHEM COMM, P925
8538    HAWKER CJ, 1994, MACROMOLECULES, V27, P4836
8539    HIRSCH A, 1992, ANGEW CHEM INT EDIT, V31, P766
8540    HIRSCH A, 1993, ADV MATER, V5, P859
8541    INOUE Y, 1972, MAKROMOL CHEM, V156, P207
8542    ISAACS L, 1993, HELV CHIM ACTA, V76, P1231
8543    KIMURA A, 1970, J POLYM SCI       A2, V8, P643
8544    KRATSCHMER W, 1990, NATURE, V347, P354
8545    KUST EG, 1993, J AM CHEM SOC, V115, P3850
8546    KUWASHIMA SY, 1994, TETRAHEDRON LETT, V35, P4371
8547    LOY DA, 1992, J AM CHEM SOC, V114, P3977
8548    MCCORMICK HW, 1957, J POLYM SCI, V25, P488
8549    MIZOGUCHI K, 1993, J PHYS CHEM SOLIDS, V54, P1693
8550    MUTO S, 1989, J APPL PHYS, V66, P3912
8551    NEPPEL A, 1984, SPECTROCHIM ACTA A, V40, P1095
8552    OKAMURA S, 1958, J POLYM SCI, V33, P491
8553    PATIL AO, 1993, POLYM BULL, V30, P187
8554    SAMULSKI ET, 1992, CHEM MATER, V4, P1153
8555    STEVENS MP, 1975, POLYM CHEM INTRO, P63
8556    SUN YP, 1991, J INORG ORGANOMET P, V1, P3
8557    SUN YP, 1993, J AM CHEM SOC, V115, P6376
8558    TAYLOR R, 1990, J CHEM SOC CHEM COMM, P1423
8559    VOLLMERT B, 1957, POLYM CHEM, P175
8560    WEBBER SE, 1986, ENCY POLYM SCI ENG, V6, P83
8561    WEIS C, 1995, MACROMOLECULES, V28, P403
8562    WORSFOLD DJ, 1957, J POLYM SCI, V26, P299
8563    WUDL F, 1992, ACCOUNTS CHEM RES, V25, P157
8564    WYMAN DP, 1968, MAKROMOL CHEM, V115, P64
8565 NR 49
8566 TC 11
8567 SN 0014-3057
8568 J9 EUR POLYM J
8569 JI Eur. Polym. J.
8570 PD JUL
8571 PY 1997
8572 VL 33
8573 IS 7
8574 BP 1049
8575 EP 1056
8576 PG 8
8577 SC Polymer Science
8578 GA XM230
8579 UT ISI:A1997XM23000010
8580 ER
8581 
8582 PT J
8583 AU Wang, BH
8584    Yuan, GX
8585 TI Compression of ECG data by vector quantization
8586 SO IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE
8587 DT Article
8588 RP Wang, BH, SHANGHAI UNIV,DEPT BIOMED ENGN,SHANGHAI 201800,PEOPLES R
8589    CHINA.
8590 CR BERGER T, 1971, RATE DISTORTION THEO
8591    FOSTER J, 1985, IEEE T INFORM THEORY, V31
8592    GRAY RM, 1984, IEEE ASSP MAG    APR, P4
8593    HAMILTON PS, 1991, IEEE T BIOMED ENG, V38
8594    LINDE Y, 1986, IEEE T COMMUN, V28, P1105
8595    MAMMEN CP, 1990, IEEE T BIOMED ENG, V37
8596    SATEH MS, 1990, IEEE T BIOMED ENG, V37
8597    SHANNON CE, 1948, BELL SYST TECH J, V27, P379
8598    SHANNON CE, 1948, BELL SYST TECH J, V27, P623
8599 NR 9
8600 TC 4
8601 SN 0739-5175
8602 J9 IEEE ENG MED BIOL MAG
8603 JI IEEE Eng. Med. Biol. Mag.
8604 PD JUL-AUG
8605 PY 1997
8606 VL 16
8607 IS 4
8608 BP 23
8609 EP 26
8610 PG 4
8611 SC Engineering, Biomedical; Medical Informatics
8612 GA XL193
8613 UT ISI:A1997XL19300009
8614 ER
8615 
8616 PT J
8617 AU Gao, FL
8618 TI A new way of predicting cement strength - Fuzzy logic
8619 SO CEMENT AND CONCRETE RESEARCH
8620 DT Article
8621 AB This paper is to analyse the fuzzy logic method of predicting cement
8622    strength and to calculate some samples with fuzzy models. In order to
8623    compare, samples of them are calculated with regression method. All of
8624    results are shown in both root mean square error and scattered map. (C)
8625    1997 Elsevier Science Ltd.
8626 RP Gao, FL, SHANGHAI UNIV,FUZZY ENGN RES INST,149 YAN CHANG RD,SHANGHAI
8627    200072,PEOPLES R CHINA.
8628 CR GAO FL, P 5 IFSA WORLD C, P1163
8629    GAO FL, P 6 IFSA WORLD C 95, P113
8630    GAO FL, P 7 CFSM C 94 TAI YA, P468
8631    GAO FL, 1994, J SHANGHAI U TECHNOL, P28
8632    GAO FL, 1994, J SHANGHAI U TECHNOL, P517
8633    GAO FL, 1996, CHINA BUILDING MAT S, P24
8634    ZADEH LA, 1965, INFORM CONTR, V8, P338
8635 NR 7
8636 TC 1
8637 SN 0008-8846
8638 J9 CEM CONCR RES
8639 JI Cem. Concr. Res.
8640 PD JUN
8641 PY 1997
8642 VL 27
8643 IS 6
8644 BP 883
8645 EP 888
8646 PG 6
8647 SC Materials Science, Multidisciplinary; Construction & Building Technology
8648 GA XK977
8649 UT ISI:A1997XK97700011
8650 ER
8651 
8652 PT J
8653 AU Ying, TL
8654    Wang, ZJ
8655    Liu, HY
8656    Sun, K
8657    Deng, JQ
8658 TI Hydrogen peroxide biosensor based on methylene blue incorporated into
8659    nafion membrane as electron transfer mediator
8660 SO PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS
8661 DT Article
8662 DE biosensor; methylene blue; nafion; horseradish peroxidase; hydrogen
8663    peroxide
8664 AB A new amperometic biosensor for hydrogen peroxide based on methylene
8665    blue incorporated into Nafion membrane as electron transfer mediator
8666    was fabricated. It was found that methylene blue incorporated into
8667    Nafion membrane by ion-exchanging could effectively transfer electrons
8668    between horseradish peroxidase and glassy carbon electrode.
8669    Bio-electrocatalytic reduction of hydrogen peroxide al the biosensor
8670    was evaluated with respect to solution pH, temperature, operating
8671    potential and influences of ascorbic acid etc. The biosensor response
8672    exhibited fine selectivity, high sensitivity and a linear dependence on
8673    the analytic concentration range 5 x 10(-7) similar to 2 x 10(-4)
8674    mol/L. Response time less than 30 s.
8675 C1 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
8676    FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
8677 CR BIFULCO L, 1994, ANAL LETT, V27, P1443
8678    DENG Q, 1994, J ELECTROANAL CHEM, V377, P191
8679    FREW JE, 1986, J ELECTROANAL CH INF, V201, P1
8680    GUADALUPE AR, 1991, ELECTROCHIM ACTA, V36, P881
8681    HURRELL HC, 1988, ANAL CHEM, V60, P254
8682    KUWABATA S, 1989, J ELECTROANAL CH INF, V261, P363
8683    LIU KE, 1989, ANAL CHEM, V61, P2599
8684    SWAMIDOSS A, 1994, CHEM SOC FARADAY T, V90, P1241
8685 NR 8
8686 TC 4
8687 SN 1000-3282
8688 J9 PROG BIOCHEM BIOPHYS
8689 JI Prog. Biochem. Biophys.
8690 PY 1997
8691 VL 24
8692 IS 3
8693 BP 254
8694 EP 258
8695 PG 5
8696 SC Biochemistry & Molecular Biology; Biophysics
8697 GA XK091
8698 UT ISI:A1997XK09100015
8699 ER
8700 
8701 PT J
8702 AU Li, W
8703    Shi, DH
8704    Chao, XL
8705 TI Reliability analysis of M/G/1 queueing systems with server breakdowns
8706    and vacations
8707 SO JOURNAL OF APPLIED PROBABILITY
8708 DT Article
8709 DE server breakdowns and repairs; queues with vacations; reliability
8710 ID BERNOULLI SCHEDULES
8711 AB This note introduces reliability issues to the analysis of queueing
8712    systems, We consider an M/G/1 queue with Bernoulli vacations and sen;er
8713    breakdowns. The server uptimes are assumed to be exponential, and the
8714    server repair times are arbitrarily distributed. Using a supplementary
8715    variable method we obtain a transient solution for both queueing and
8716    reliability measures of interest. These results provide insight into
8717    the effect of server breakdowns and repairs on system performance.
8718 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
8719    NEW JERSEY INST TECHNOL,DEPT IND & MFG ENGN,NEWARK,NJ 07102.
8720 RP Li, W, CHINESE ACAD SCI,INST APPL MATH,BEIJING 100080,PEOPLES R CHINA.
8721 CR COX DR, 1955, P CAMB PHILOS SOC, V51, P433
8722    DOSHI BT, 1990, STOCHASTIC ANAL COMP
8723    HSU GH, 1988, STOCHASTIC SERVICE S
8724    KEILSON J, 1960, ANN MATH STAT, V31, P104
8725    KEILSON J, 1986, J APPL PROBAB, V23, P790
8726    SERVI LD, 1986, IEEE J SEL AREA COMM, V4, P813
8727    SHI DH, 1985, ACTA MATH APPL SINIC, V8, P101
8728    SHI DH, 1990, CHINESE J OPERAT RES, V2, P38
8729    TAKACS L, 1962, INTRO THEORY QUEUES
8730 NR 9
8731 TC 7
8732 SN 0021-9002
8733 J9 J APPL PROBAB
8734 JI J. Appl. Probab.
8735 PD JUN
8736 PY 1997
8737 VL 34
8738 IS 2
8739 BP 546
8740 EP 555
8741 PG 10
8742 SC Statistics & Probability
8743 GA XK077
8744 UT ISI:A1997XK07700023
8745 ER
8746 
8747 PT J
8748 AU Wang, DW
8749    Qian, GZ
8750    Zhang, ML
8751    Farkas, LG
8752 TI Differences in horizontal, neoclassical facial canons in Chinese (Han)
8753    and North American Caucasian populations
8754 SO AESTHETIC PLASTIC SURGERY
8755 DT Article
8756 DE anthropometry; horizontal neoclassical facial canons; canon,
8757    variations; Chinese (Han) population; North American Caucasians
8758 AB To better our ability to analyze the facial disproportions of patients
8759    of Chinese ancestry, we compared the validity of four neoclassical
8760    canons of facial proportion in Chinese and North American Caucasians
8761    populations. We tested the frequency of four horizontal facial canons
8762    and their eight variations in 206 healthy adults (105 males and 101
8763    females, 18-25 years old) belonging to the predominant ethnic group
8764    (Han: 400 million) of the Chinese population, and compared them to
8765    those of 103 healthy young North American Caucasian adults. The nose
8766    width corresponded to one-quarter of the face width (the nasofacial
8767    canon) significantly more frequently in Chinese participants (51.5%)
8768    than in Caucasian adults (36.9%). The nose was narrower than
8769    one-quarter of the face width in 38.8% of North American Caucasians and
8770    in 21.8% of Chinese; this difference was also statistically
8771    significant. In defiance of the naso-oral canon, the mouths of Chinese
8772    people were significantly more often narrower than 1.5 times the nose
8773    width (71.8%), while in North American Caucasian ethnics the mouth was
8774    significantly more frequently wider (60.2%).
8775 RP Wang, DW, SHANGHAI UNIV,CHANGHAI HOSP,DEPT PLAST & RECONSTRUCT SURG,174
8776    CHANG HAI RD,SHANGHAI,PEOPLES R CHINA.
8777 CR BERGMULLER JG, 1723, ANTHROPOMETRIA
8778    BROADBENT TR, 1957, PLAST RECONSTR SURG, V20, P1
8779    CONVERSE JM, 1977, RECONSTRUCTIVE PLAST, V1, P24
8780    DAVINCI L, 1898, 1 MANOSCRITTI L DAVI
8781    DURER A, 1557, QUATRE LIVES A DURER
8782    ELSHOLTZ JS, 1663, ANTHROPOMETRIA SIVE
8783    FARKAS LG, 1981, ANTHROPOMETRY HEAD F
8784    FARKAS LG, 1985, PLAST RECONSTR SURG, V75, P328
8785    FARKAS LG, 1987, ANTHROPOMETRIC FACIA
8786    FARKAS LG, 1987, CLIN PLAST SURG, V14, P599
8787    FARKAS LG, 1994, ANTHROPOMETRY HEAD F
8788    GONZALEZULLOA M, 1975, CIRURGIA PLASTICA IB, V1, P13
8789    HAJNIS K, 1994, ANTHROPOMETRY HEAD F, P201
8790    HUGHES DR, 1967, MAN, V2, P119
8791    ROGERS BO, 1974, CLIN PLAST SURG, V1, P439
8792    SEGHERS MJ, 1964, PLAST RECONSTR SURG, V34, P382
8793    SHAO XG, 1985, HDB ANTHROPOMETRY
8794    TESSIER P, 1987, ANTHROPOMETRIC FACIA, R9
8795 NR 18
8796 TC 6
8797 SN 0364-216X
8798 J9 AESTHET PLAST SURG
8799 JI Aesthet. Plast. Surg.
8800 PD JUL-AUG
8801 PY 1997
8802 VL 21
8803 IS 4
8804 BP 265
8805 EP 269
8806 PG 5
8807 SC Surgery
8808 GA XK111
8809 UT ISI:A1997XK11100011
8810 ER
8811 
8812 PT J
8813 AU Ye, ZM
8814 TI A new finite element formulation for planar elastic deformation
8815 SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
8816 DT Article
8817 DE finite element model; planar elastic deformation; 3-D solution
8818 AB For the stress analysis of planar deformable bodies, we usually refer
8819    to either plane stress or plane strain hypothesis. Three-dimensional
8820    analysis is required when neither hypothesis is applicable, e.g. bodies
8821    with finite thickness. In this paper, we derive an 'exact' solution for
8822    the plane stress problem based on a less restrictive hypothesis than
8823    sigma(z) = 0. By requiring the out-plane stress sigma(z) to be a
8824    harmonic function, the three-dimensional solution is obtained. In
8825    addition, we present a two-dimensional finite element for planar
8826    analysis of problems where the thickness of the body 2h is comparable
8827    to other characteristic dimensions. This element is presented as a
8828    substitute for classical plane stress and plane strain finite elements.
8829    The typical plane stress and plane strain state are recovered in the
8830    case where h --> 0 and the case h --> infinity, respectively. As an
8831    example for the application of such formulation, the behaviour of a
8832    concrete gravity dam is investigated. It is shown that this structure,
8833    typically analysed by using plane strain hypothesis, has its out-plane
8834    stress underestimated. (C) 1997 by John Wiley & Sons, Ltd.
8835 RP Ye, ZM, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,149 YAN CHANG
8836    RD,SHANGHAI 200072,PEOPLES R CHINA.
8837 CR BROEK D, 1982, ELEMENTARY ENG FRACT
8838    FUNG YC, 1965, FDN SOLID MECH
8839    LOVE AEH, 1927, TREATISE MATH THEORY
8840    PAL N, 1976, J STRUCT DIV P ASCE, V102
8841    TIMOSHENKO SP, 1954, THEORY ELASTICITY
8842    YE ZM, 1987, MECH PRACTICE, V8, P26
8843    ZHOU S, 1988, ENG FRACT MECH, V29, P41
8844 NR 7
8845 TC 5
8846 SN 0029-5981
8847 J9 INT J NUMER METHOD ENG
8848 JI Int. J. Numer. Methods Eng.
8849 PD JUL 30
8850 PY 1997
8851 VL 40
8852 IS 14
8853 BP 2579
8854 EP 2591
8855 PG 13
8856 SC Engineering, Multidisciplinary; Mathematics, Applied
8857 GA XJ723
8858 UT ISI:A1997XJ72300002
8859 ER
8860 
8861 PT J
8862 AU Cao, WG
8863    Ding, WY
8864    Ding, WL
8865    Huang, H
8866 TI A facile synthesis of dimethyl 4-(alpha-furyl)- and
8867    4-(alpha-thienyl)-6-perfluoroalkylisophthalates via acyclic precursors
8868 SO JOURNAL OF FLUORINE CHEMISTRY
8869 DT Article
8870 DE phosphoranes; acyclic precursors; intramolecular Wittig reaction;
8871    dimethyl 4-(alpha-furyl)-perfluoroalkylisophthalates;
8872    4-(alpha-thienyl)-6-perfluoroalkylisophthalates
8873 AB In the presence of K2CO3, reaction of methyl propynoate 2 with
8874    (alpha-furoyl)methyltriphenylphosphorium bromide la or
8875    (alpha-thienacyl)methyltriphenylphosphonium bromide Ib gave methyl
8876    4-(alpha-furoyl)-2-(triphenylphosphoranylidene)but-3-enoate 4a or
8877    methyl 4-(alpha-thienacyl)-2-(triphenylphosphoranylidene)but-3-enoate
8878    4b as the major product. Phosphorane 4a or 4b could react further with
8879    methyl perfluoroalkynoates 5a-b to afford dimethyl
8880    2-(alpha-furoyl-1-perfluoroalkylvinyl)-4-(triphenylphosphoranylidene)pen
8881    t-2-enedioates 7a-b or dimethyl
8882    2-(alpha-thienacyl-1-perfluoroalkylvinyl)-4-(triphenylphosphoranylidene)
8883    pent-2-enedioates 7c-d, respectively. Dimethyl
8884    4-(alpha-furyl)-6-perfluoroalkylisophthalates 8a-b or dimethyl
8885    4-(alpha-thienyl) -6-perfluoroalkylisophthalates 8c-d were prepared in
8886    high yields via intramolecular Wittig reaction of phosphoranes 7a-d
8887    under heating in a sealed tube in xylenes. The structures of these
8888    compounds were confirmed by IR spectroscopy, mass spectrometry, H-1,
8889    F-19 and C-13 NMR spectra, and elemental analyses. Reaction mechanisms
8890    of the formation of compounds 4, 6, 7 and 8 were also proposed. (C)
8891    Elsevier Science S.A.
8892 RP Cao, WG, SHANGHAI UNIV,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
8893 CR BANKS RE, 1979, ORGANOFLUORINE CHEM
8894    CAO WG, 1997, J FLUORINE CHEM, V81, P153
8895    DING WY, 1987, TETRAHEDRON LETT, V28, P81
8896    DING WY, 1992, SYNTHESIS-STUTTGART, P635
8897    DING WY, 1993, CHINESE J CHEM, V11, P81
8898    DING WY, 1993, J CHEM SOC P1, P855
8899    DING WY, 1995, CHINESE J CHEM, V13, P468
8900    HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47
8901    JAMES DS, 1962, J ORG CHEM, V27, P3346
8902    TAO WT, 1983, YOUJI HUAXUE, P129
8903    WELCH JT, 1987, TETRAHEDRON, V43, P3123
8904 NR 11
8905 TC 4
8906 SN 0022-1139
8907 J9 J FLUORINE CHEM
8908 JI J. Fluor. Chem.
8909 PD JUN
8910 PY 1997
8911 VL 83
8912 IS 1
8913 BP 21
8914 EP 26
8915 PG 6
8916 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
8917 GA XJ678
8918 UT ISI:A1997XJ67800004
8919 ER
8920 
8921 PT J
8922 AU Dong, YD
8923    Ma, XM
8924    Yang, YZ
8925    Liu, FX
8926    Wang, GM
8927 TI Mechanically driven alloying and structural evolution of
8928    nanocrystalline Fe60Cu40 powder
8929 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
8930 DT Article
8931 ID SYSTEM; AMORPHIZATION
8932 AB Highly supersaturated nanocrystalline fee Fe60Cu40 alloy has been
8933    prepared by mechanical alloying of elemental powders. The phase
8934    transformation is monitored by X-ray diffraction (XRD), Mossbauer
8935    spectroscopy and extended X-ray absorption fine structure (EXAFS). The
8936    powder obtained after milling is of single fee structure with grain
8937    size of nanometer order. The Mossbauer spectra of the milled powder can
8938    be fitted by two subspectra whose hyperfine magnetic fields are 16 MA/m
8939    and 20 MA/m while that of pure Fe disappeared. EXAFS results show that
8940    the radial structure function (RSF) of Fe K-edge changed drastically
8941    and finally became similar to that of reference Cu K-edge, while that
8942    of Cu K-edge nearly keeps unchanged in the process of milling.
8943    These,imply that bcc Fe really transforms to fee structure and alloying
8944    between Fe and Cu occurs truly on an atomic scale. EXAFS results
8945    indicate that iron atoms tend to segregate at the boundaries and Cu
8946    atoms are rich in the fee lattice. Annealing experiments show that the
8947    Fe atoms at the interfaces are easy to cluster to alpha-Fe at a lower
8948    temperature, whereas the iron atoms in the lattice will form gamma-Fe
8949    first at temperature above 350 degrees C, and then transform to bcc Fe.
8950 C1 S CHINA UNIV TECHNOL,DEPT MECH ENGN 2,GUANGZHOU 510641,PEOPLES R CHINA.
8951    UNIV SCI & TECHNOL CHINA,LAB STRUCT ANAL,HEFEI 230026,PEOPLES R CHINA.
8952 RP Dong, YD, SHANGHAI UNIV,SCH MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R
8953    CHINA.
8954 CR ECKERT J, 1988, APPL PHYS LETT, V55, P117
8955    FUKUNAGA T, 1990, J NON-CRYST SOLIDS, V117, P700
8956    FUKUNAGA T, 1991, MAT SCI ENG A-STRUCT, V134, P863
8957    GAFFET E, 1991, MAT SCI ENG A-STRUCT, V134, P1380
8958    JIMAN PS, 1983, ANN REV MAT SCI, V13, P279
8959    JOHNSON WL, 1986, PROG MATER SCI, V30, P81
8960    KOCH CC, 1983, APPL PHYS LETT, V43, P1017
8961    SCHULTZ L, 1988, MATER SCI ENG, V97, P15
8962    SHINGU PH, 1990, SOLID STATE POWDER P, P21
8963    WILLIAMSON GK, 1953, ACTA METALL, V1, P23
8964    YANG YZ, 1992, ACTA METALL SINICA, V28, A399
8965 NR 11
8966 TC 0
8967 SN 1005-0302
8968 J9 J MATER SCI TECHNOL
8969 JI J. Mater. Sci. Technol.
8970 PD JUL
8971 PY 1997
8972 VL 13
8973 IS 4
8974 BP 354
8975 EP 358
8976 PG 5
8977 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
8978    Engineering
8979 GA XJ724
8980 UT ISI:A1997XJ72400032
8981 ER
8982 
8983 PT J
8984 AU Li, YZ
8985    Yan, MS
8986    Fang, RS
8987 TI Two-area power system costing by the cumulant method using available
8988    capacity distribution
8989 SO ELECTRIC POWER SYSTEMS RESEARCH
8990 DT Article
8991 DE two-area power system; stochastic production simulation; equivalent
8992    available capacity; cumulant method
8993 AB This paper extends the cumulant method using available capacity
8994    distribution to evaluate the production costs of two-area power
8995    systems, in which the random characters of generating available
8996    capacity and the transmission capacity limit have been considered
8997    accurately. By means of the independence of both systems equivalent
8998    available capacity based on a chronological load curve, the
8999    single-variant cumulant and single-variant Gram-Charlier Series A
9000    approximation are adequate for the two-area production simulation. The
9001    method gives a new approach to stochastic production simulation for a
9002    two-area power system, and is easily extended to three-areas or
9003    multi-areas. Sample studies show favourable accuracy and efficiency
9004    results. (C) 1997 Elsevier Science S.A.
9005 RP Li, YZ, SHANGHAI UNIV,POB 9,SHANGHAI 200072,PEOPLES R CHINA.
9006 CR AHSAN Q, 1983, IEEE T POWER APPAR S, V102, P2155
9007    AHSAN Q, 1985, IEEE T POWER AP SYST, V104, P2140
9008    BALERIAUX H, 1967, REVU E, V5, P3
9009    BOOTH RR, 1972, IEEE T PAS, V91, P62
9010    HYEDT GT, 1980, IEEE T PAS 99, V5, P1916
9011    NOYES LR, 1983, IEEE T PAS, V2, P433
9012    RAU NS, 1980, IEEE T POWER APPARAT, V99, P1908
9013    SAGER MA, 1972, IEEE T PAS, V91, P2114
9014    STREMD JP, 1980, IEEE T PAS 99, V5, P1947
9015    YEN MS, 1992, 3 BIENN IND EL POW A, P11
9016    ZAHAVI J, 1977, IEEE T POWER APPAR S, V96, P285
9017 NR 11
9018 TC 1
9019 SN 0378-7796
9020 J9 ELEC POWER SYST RES
9021 JI Electr. Power Syst. Res.
9022 PD JUL
9023 PY 1997
9024 VL 42
9025 IS 1
9026 BP 55
9027 EP 61
9028 PG 7
9029 SC Engineering, Electrical & Electronic
9030 GA XJ526
9031 UT ISI:A1997XJ52600011
9032 ER
9033 
9034 PT J
9035 AU Yen, MS
9036    Zhang, SH
9037 TI An efficient method for pumped-storage planning and evaluation
9038 SO ELECTRIC POWER SYSTEMS RESEARCH
9039 DT Article
9040 DE pumped-storage plants; evaluation; production costing; optimization;
9041    planning
9042 AB An efficient method for systematic planning and evaluation of
9043    pumped-storage plants is developed, in which a detailed operation
9044    simulation using an hourly chronological probabilistic production
9045    costing model is introduced so that the time dependency of storage
9046    operation policies through the charging and discharging processes is
9047    reflected. The optimum capacity of pumped-storage plants is chosen to
9048    minimize the overall system cost. In addition, peaking constraints are
9049    incorporated both in the thermal unit planning model and in the daily
9050    operation simulation model. So it is well-suited to the planning and
9051    evaluation of peaking plants. In this paper, a detailed description of
9052    the algorithm is provided and a real application to the East China
9053    Electric Power System is discussed. (C) 1997 Elsevier Science S.A.
9054 RP Yen, MS, SHANGHAI UNIV,AUTOMAT SCH,POB 9,SHANGHAI 200072,PEOPLES R
9055    CHINA.
9056 CR EA1411 EPRI, V1
9057    *E CHIN EL POW ADM, 1990, ECEPA REP
9058    FINGER S, 1975, 75009WP MITEL
9059    LEE BY, 1987, IEEE T POWER SYST, V2, P486
9060    PARK YM, 1985, IEEE T POWER APPARAT, V104, P390
9061    YEN MS, 1992, P 3 BIENN S IND EL P, P1
9062    YEN MS, 1992, P 3 BIENN S IND EL P, P11
9063    YEN MS, 1993, IEE CONF PUBL, P578
9064 NR 8
9065 TC 1
9066 SN 0378-7796
9067 J9 ELEC POWER SYST RES
9068 JI Electr. Power Syst. Res.
9069 PD JUL
9070 PY 1997
9071 VL 42
9072 IS 1
9073 BP 63
9074 EP 70
9075 PG 8
9076 SC Engineering, Electrical & Electronic
9077 GA XJ526
9078 UT ISI:A1997XJ52600012
9079 ER
9080 
9081 PT J
9082 AU Feng, SX
9083    Duan, YS
9084 TI About the energy of the universe - Reply
9085 SO CHINESE PHYSICS LETTERS
9086 DT Editorial Material
9087 C1 LANZHOU UNIV,INST THEORET PHYS,LANZHOU 730000,PEOPLES R CHINA.
9088 RP Feng, SX, SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
9089 CR DUAN YS, 1963, ACTA PHYS SINICA, V19, P589
9090    DUAN YS, 1996, COMMUN THEOR PHYS, V25, P99
9091    EINSTEIN A, 1955, MEANING RELATIVITY 4, P90
9092    FENG SX, 1996, CHINESE PHYS LETT, V13, P409
9093 NR 4
9094 TC 0
9095 SN 0256-307X
9096 J9 CHIN PHYS LETT
9097 JI Chin. Phys. Lett.
9098 PY 1997
9099 VL 14
9100 IS 5
9101 BP 400
9102 EP 400
9103 PG 1
9104 SC Physics, Multidisciplinary
9105 GA XH742
9106 UT ISI:A1997XH74200022
9107 ER
9108 
9109 PT J
9110 AU Ma, XM
9111    Ling, Z
9112    Gang, J
9113    Dong, YD
9114 TI Preparation and structure of bulk nanostructured WC-Co alloy by high
9115    energy ball-milling
9116 SO JOURNAL OF MATERIALS SCIENCE LETTERS
9117 DT Article
9118 RP Ma, XM, SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R
9119    CHINA.
9120 CR GLEITER H, 1984, Z METALLKD, V75, P263
9121    MA XM, IN PRESS J ALLOYS CO
9122    PETZOLDT F, 1987, MATER LETT, V5, P280
9123    SHINGU PH, 1988, T JIM S, V29, P3
9124    YANG YZ, 1992, CHINESE PHYS LETT, V5, P266
9125    YANG YZ, 1994, CHINESE SCI BULL, V17, P1626
9126 NR 6
9127 TC 3
9128 SN 0261-8028
9129 J9 J MATER SCI LETT
9130 JI J. Mater. Sci. Lett.
9131 PD JUN 15
9132 PY 1997
9133 VL 16
9134 IS 12
9135 BP 968
9136 EP 970
9137 PG 3
9138 SC Materials Science, Multidisciplinary
9139 GA XG479
9140 UT ISI:A1997XG47900002
9141 ER
9142 
9143 PT J
9144 AU Yang, YZ
9145    Zhu, YL
9146    Li, QS
9147    Ma, XM
9148    Dong, YD
9149    Wang, GM
9150    Wei, SQ
9151    Liu, FX
9152    Chuang, YZ
9153 TI Local structure of mechanically alloyed nanocrystalline BCC Fe80Cu20
9154    solid solution
9155 SO PHYSICA B
9156 DT Article
9157 DE mechanical alloying; nanocrystalline solid solutions; fine structure;
9158    EXAFS
9159 ID FE-CU SYSTEM; THERMAL-STABILITY; DECOMPOSITION; IRON
9160 AB The fine structure of mechanically alloyed BCC Fe80Cu20 solid solution
9161    has been studied by X-ray diffraction (XRD), Mossbauer spectroscopy and
9162    the extended X-ray absorption fine structure (EXAFS) technique. The
9163    appearance of Mossbauer spectrum with a broad hyperfine magnetic field
9164    distribution demonstrates that the alloying is at an atomic level and
9165    complex forms of coordination exist in the solution. EXAFS results
9166    further prove the atomic alloying from the clear observation of Cu
9167    atoms taking on BCC coordination in the solution. Furthermore, a
9168    reduction in the nearest-neighbor coordination number of a center Cu
9169    atom but not for a center Fe atom due to surface effect and structure
9170    defects indicates the composition nonuniformity that Cu atoms are rich
9171    at interface and Fe atoms are slightly rich in the core of a BCC
9172    nanocrystal.
9173 C1 SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R CHINA.
9174    UNIV SCI & TECHNOL CHINA,CTR STRUCT ANAL,HEFEI 230026,PEOPLES R CHINA.
9175    ACAD SINICA,INST MET RES,SHENYANG 110015,PEOPLES R CHINA.
9176 RP Yang, YZ, GUANGDONG UNIV TECHNOL,DEPT MAT SCI & ENGN,GUANGZHOU
9177    510090,PEOPLES R CHINA.
9178 CR DICICCO A, 1994, PHYS REV B, V50, P12386
9179    DRBOHLAV O, 1995, ACTA METALL MATER, V43, P1799
9180    ECKERT J, 1993, J APPL PHYS, V73, P131
9181    ECKERT J, 1993, J APPL PHYS, V73, P2794
9182    HUANG JY, 1994, NANOSTRUCT MATER, V4, P1
9183    JIANG JZ, 1993, APPL PHYS LETT, V63, P1056
9184    JIANG JZ, 1993, APPL PHYS LETT, V63, P2768
9185    LIU FX, 1993, CHINESE SCI BULL, V38, P1565
9186    MA E, 1993, J APPL PHYS, V74, P955
9187    SCHILLING PJ, 1996, APPL PHYS LETT, V68, P767
9188    SUMIYAMA K, 1985, T JPN I MET, V26, P217
9189    UENISHI K, 1992, Z METALLKD, V83, P132
9190    YANG YZ, 1992, ACTA METALL SINICA, V28, A399
9191    YANG YZ, 1994, ACTA PHYS SIN-OV ED, V3, P567
9192    YANG YZ, 1994, J MATER SCI TECHNOL, V10, P135
9193    YAVARI AR, 1992, PHYS REV LETT, V68, P2235
9194 NR 16
9195 TC 2
9196 SN 0921-4526
9197 J9 PHYSICA B
9198 JI Physica B
9199 PD MAY
9200 PY 1997
9201 VL 233
9202 IS 2-3
9203 BP 119
9204 EP 124
9205 PG 6
9206 SC Physics, Condensed Matter
9207 GA XG331
9208 UT ISI:A1997XG33100004
9209 ER
9210 
9211 PT J
9212 AU Lu, MG
9213    Yu, G
9214 TI On a problem of sums of mixed powers .2.
9215 SO CHINESE ANNALS OF MATHEMATICS SERIES B
9216 DT Article
9217 DE mixed power; Warings problem and variants; asymptotic formulae
9218 ID WARING PROBLEM
9219 AB Let R-b,R-c(n) denote the number of representations of n as the sum of
9220    one square, four cubes, one b-th power and one c-th power of natural
9221    numbers. It is shown that if b = 4, 4 less than or equal to c less than
9222    or equal to 35, or b = 5,5 less than or equal to c less than or equal
9223    to 13, or b = 6,6 less than or equal to c less than or equal to 9, or b
9224    = c = 7, then R-b,R-c(n) much greater than n(5/6+1/b+1/c) for all
9225    sufficiently large n.
9226 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
9227    UNIV GEORGIA,DEPT MATH,ATHENS,GA 30602.
9228 CR BRUDERN J, 1987, J LOND MATH SOC, V35, P233
9229    BRUDERN J, 1988, MATH P CAMBRIDGE PHI, V103, P27
9230    HOOLEY C, 1981, RECENT PROGR ANAL NU, V1, P127
9231    LU MG, 1991, ACTA ARITH, V58, P89
9232    LU MG, 1991, SCI CHINA SER A, V34, P385
9233    SELBERG A, 1954, J INDIAN MATH SOC, V18, P83
9234    VAUGHAN RC, 1984, TOPICS CLASSICAL NUM, V34, P1585
9235    VAUGHAN RC, 1986, J REINE ANGEW MATH, V365, P122
9236    VAUGHAN RC, 1989, ACTA MATH-DJURSHOLM, V162, P1
9237    WOOLEY TD, 1992, ANN MATH, V135, P131
9238 NR 10
9239 TC 0
9240 SN 0252-9599
9241 J9 CHIN ANN MATH SER B
9242 JI Chin. Ann. Math. Ser. B
9243 PD APR
9244 PY 1997
9245 VL 18
9246 IS 2
9247 BP 243
9248 EP 248
9249 PG 6
9250 SC Mathematics
9251 GA XG384
9252 UT ISI:A1997XG38400011
9253 ER
9254 
9255 PT J
9256 AU Ding, WZ
9257    Olsen, SE
9258 TI Reactions between multicomponent slags and Mn-Fe-Si-C alloys:
9259    Equilibrium and stoichiometry
9260 SO SCANDINAVIAN JOURNAL OF METALLURGY
9261 DT Article
9262 DE manganese ferroalloys; equilibrium relations; reaction stoichiometry;
9263    equilibrium diagrams
9264 AB Background/aims: The purpose was to establish equilibrium and
9265    stoichiometric relations associated with production of manganese
9266    ferroalloys, and to determine experimentally equilibrium distribution
9267    between multicomponent slags and Mn-Fe-Si-C-sat alloys.
9268    Methods: Measurements were carried out in a resistance furnace in an
9269    argon and carbon monoxide atmosphere in the temperature range 1350
9270    degrees C to 1500 degrees C. Graphite crucibles were used. Only a small
9271    amount of slag was charged to expose both metal and slag to the gas
9272    phase. In this way, complete equilibrium was established relatively
9273    fast. Metal samples were analyzed by wet chemical methods and slag
9274    samples by electron microprobe analysis.
9275    Results and conclusions: A thermodynamic analysis has been made and a
9276    graphical method is developed for simultaneous description of
9277    equilibrium and stoichiometric relations in slag diagrams. The results
9278    of equilibrium measurements are compared with previous results, and the
9279    effect of adding MgO to the slag and Fe to the metal is especially
9280    discussed.
9281 C1 NORWEGIAN UNIV SCI & TECHNOL,DEPT MET,N-7034 TRONDHEIM,NORWAY.
9282 RP Ding, WZ, SHANGHAI UNIV,DEPT MET,SHANGHAI 200072,PEOPLES R CHINA.
9283 CR *NAT BUR STAND, 1985, JANAF THERM TABL
9284    BARCZA NA, 1981, CAN METAL Q, V20, P285
9285    BARIN I, 1989, THERMOCHEMICAL DATA
9286    BLOISE R, 1990, P INT S FERR NON FER, P75
9287    CHIPMAN J, 1963, T METALL SOC AIME, V227, P473
9288    DING WZ, 1993, THESIS NORWEGIAN I T
9289    DING WZ, 1996, METALL MATER TRANS B, V27, P5
9290    ELYUTIN VP, 1961, PRODUCTION FERROALLO
9291    GZIELO A, 1986, NEUE HUTTE, P100
9292    KOR GJW, 1979, METAL T B, V10, P367
9293    LEE YE, 1980, CAN METALL Q, V19, P315
9294    OLSEN SE, 1995, P 7 INT FERR C, P591
9295    RANKIN WJ, 1978, 1959 NIM
9296    RISS M, 1967, PRODUCTION FERROALLO
9297    TANAKA A, 1980, TETSU TO HAGANE, V66, P1474
9298    TURKDOGAN ET, 1958, T I MIN METALL, V67, P573
9299    TUSET JK, 1970, 340358 SINTEF
9300    TUSET JK, 1970, 340420 SINTEF
9301 NR 18
9302 TC 3
9303 SN 0371-0459
9304 J9 SCAND J METALL
9305 JI Scand. J. Metall.
9306 PD DEC
9307 PY 1996
9308 VL 25
9309 IS 6
9310 BP 232
9311 EP 243
9312 PG 12
9313 SC Metallurgy & Metallurgical Engineering
9314 GA XG283
9315 UT ISI:A1996XG28300001
9316 ER
9317 
9318 PT J
9319 AU Zhu, ST
9320    Shen, WD
9321 TI Light trajectory in geometrical optics and metric optics
9322 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
9323 DT Article
9324 DE light trajectory; geometrical optics; metric optics; Fermat's
9325    principle; null geodesic
9326 ID STRONG-LASER PLASMA; RIEMANNIAN GEOMETRY
9327 AB The light trajectory in an inhomogeneous medium is studied by the
9328    variation of Lagrangians L and L which correspond to Fermat's principle
9329    in the geometrical optics and the null geodesic in the metric optics,
9330    respectively. The relation between the metric coefficients of the
9331    three-dimensional space and of the four-dimensional space-time is
9332    established. The physical meaning of the equivalence and difference of
9333    both the descriptions is revealed. It is shown that Fermat's principle
9334    is a direct result of the null geodesic.
9335 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
9336 RP Zhu, ST, CHINESE ACAD SCI,SHANGHAI INST OPT & FINE MECH,SHANGHAI
9337    201800,PEOPLES R CHINA.
9338 CR BORN M, 1975, PRINCIPLES OPTICS
9339    GORDON W, 1923, ANN PHYS-BERLIN, V72, P421
9340    GUO QZ, 1995, ACTA PHYS SINICA, V44, P210
9341    GUO QZ, 1995, ACTA PHYS SINICA, V44, P396
9342    SHEN WD, 1995, INT J THEOR PHYS, V34, P2085
9343    SHEN WD, 1995, INT J THEOR PHYS, V34, P2095
9344    ZHU ST, 1987, J OPT SOC AM B, V4, P739
9345    ZHU ST, 1988, P TOP M LAS MAT LAS, P190
9346    ZHU ST, 1989, ACTA PHYS SINICA, V38, P1167
9347    ZHU ST, 1989, ACTA PHYS SINICA, V38, P559
9348    ZHU ST, 1993, ACTA PHYS SINICA, V42, P1438
9349    ZHU ST, 1993, ACTA PHYS SINICA, V42, P1471
9350    ZHU ST, 1995, INT J THEOR PHYS, V34, P169
9351 NR 13
9352 TC 2
9353 SN 1006-9283
9354 J9 SCI CHINA SER A
9355 JI Sci. China Ser. A-Math. Phys. Astron.
9356 PD JUL
9357 PY 1997
9358 VL 40
9359 IS 7
9360 BP 755
9361 EP 760
9362 PG 6
9363 SC Mathematics, Applied; Mathematics
9364 GA XG055
9365 UT ISI:A1997XG05500011
9366 ER
9367 
9368 PT J
9369 AU Liu, HY
9370    Ying, TL
9371    Sun, K
9372    Li, HH
9373    Qi, DY
9374 TI Reagentless amperometric biosensors highly sensitive to hydrogen
9375    peroxide, glucose and lactose based on N-methyl phenazine methosulfate
9376    incorporated in a Nafion film as an electron transfer mediator between
9377    horseradish peroxidase and an electrode
9378 SO ANALYTICA CHIMICA ACTA
9379 DT Article
9380 DE biosensors; nafion; N-methyl phenazine methosulfate; horseradish
9381    peroxidase; hydrogen peroxide; glucose oxidase; beta-galactosidase;
9382    glucose; lactose
9383 ID CYTOCHROME-C PEROXIDASE; SILK FIBROIN MEMBRANE; ENZYME ELECTRODES;
9384    ELECTROCHEMICAL-BEHAVIOR; GRAPHITE-ELECTRODES; PYROLYTIC-GRAPHITE;
9385    SHUTTLE; SENSOR; FERROCENE; TETRATHIAFULVALENE
9386 AB Reagentless biosensors highly sensitive to hydrogen peroxide, glucose
9387    and lactose have been developed by immobilizing horseradish peroxidase
9388    (HRP), glucose oxidase (GOD) and beta-galactosidase (GAL) on
9389    Nafion-N-methyl phenazine methosulfate modified electrode. The cationic
9390    exchange of a perfluorosulfonic acid cation-exchange polymer (Nafion)
9391    film coated on a glassy carbon electrode was used to provide high local
9392    concentrations of the N-methyl phenazine ion in the Nafion film via a
9393    process of ion exchange from the solution. The incorporated N-methyl
9394    phenazine ions displayed an electrochemical behavior different from
9395    that in aqueous solution. Cyclic voltammetry and chronamperometry were
9396    employed to demonstrate the suitability of electron transfer between
9397    immobilized HRP and a glassy carbon electrode via N-methyl phenazine
9398    methosulfate (NMP) in a Nafion film. A hydrogen peroxide biosensor,
9399    prepared by immobilization of HRP alone, provided a detection limit of
9400    75 nM. Comparison of the NMP-mediated biosensor to the mediatorless
9401    biosensor indicated that the high sensitivity of the biosensor to
9402    hydrogen peroxide arose from the high efficiency of bioelectrocatalytic
9403    reduction of hydrogen peroxide via NMP incorporated in the Nafion film.
9404    Coimmobilization of HRP and GOD was employed to establish the
9405    feasibility of highly effective bienzyme-based biosensors for low
9406    glucose concentrations. Addition of GAL to the glucose biosensor
9407    provided a sensitive response to lactose, which illustrated the
9408    suitability of trienzyme-based biosensors. Performance and
9409    characteristics of the biosensors were evaluated with respect to
9410    response time, detection limit, selectivity, and dependence on applied
9411    potential, thickness of the Nafion film, temperature and pH as well as
9412    operating and storage stability.
9413 C1 WEIMEI COOPERAT HANGZHOU,CLIN DEPT,HANGZHOU 310000,PEOPLES R CHINA.
9414 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R
9415    CHINA.
9416 CR 1991, SIGMA CHEM CATALOGUE, P771
9417    ANDRIEUX CP, 1990, J ELECTROANAL CH INF, V296, P117
9418    ARMSTRONG FA, 1993, ANALYST, V118, P973
9419    AUDEBERT P, 1989, J CHEM SOC CHEM COMM, P939
9420    BIFULCO L, 1994, ANAL LETT, V27, P1443
9421    CASS AEG, 1984, ANAL CHEM, V56, P667
9422    FURBEE JW, 1993, ANAL CHEM, V65, P1654
9423    GARCIA O, 1990, J ELECTROANAL CH INF, V279, P79
9424    GIERKE TD, 1982, PERFLUORINATED IONOM, V180
9425    GORTON L, 1991, ANAL CHIM ACTA, V249, P43
9426    GORTON L, 1992, ANALYST, V117, P1235
9427    HAMID JA, 1989, ANALYST, V114, P1587
9428    HO WO, 1993, J ELECTROANAL CHEM, V351, P185
9429    JENSEN MH, 1994, J ELECTROANAL CHEM, V377, P131
9430    KAMIN RA, 1980, ANAL CHEM, V52, P1198
9431    KATAKIS I, 1994, J AM CHEM SOC, V116, P3617
9432    KULYS J, 1990, BIOELECTROCH BIOENER, V24, P305
9433    LIU H, 1995, ANAL P, V32, P375
9434    LIU HY, 1995, ANAL CHIM ACTA, V300, P65
9435    LIU HY, 1995, ELECTROCHIM ACTA, V40, P1845
9436    LIU HY, 1996, ANAL CHIM ACTA, V329, P97
9437    LIU HY, 1996, TALANTA, V43, P111
9438    LIU YC, 1995, ANAL CHIM ACTA, V316, P65
9439    LIU YC, 1996, ELECTROCHIM ACTA, V41, P77
9440    MULCHANDANI A, 1995, ANAL CHEM, V67, P94
9441    PFEIFFER D, 1990, J CHEM TECHNOL BIOT, V49, P255
9442    PISHKO MV, 1990, ANGEW CHEM INT EDIT, V29, P82
9443    POPESCU IC, 1995, BIOSENS BIOELECTRON, V10, P443
9444    QIAN JH, 1995, J ELECTROANAL CHEM, V397, P157
9445    RANDIN JP, 1982, J ELECTROCHEM SOC, V129, P1215
9446    RAZUMAS V, 1992, BIOELECTROCH BIOENER, V28, P159
9447    RUZGAS T, 1995, J ELECTROANAL CHEM, V391, P41
9448    RYSWYK HV, 1989, J ELECTROANAL CHEM, V265, P317
9449    SANCHEZ PD, 1990, ELECTROANAL, V2, P303
9450    SCOTT DL, 1992, J ELECTROANAL CHEM, V341, P307
9451    TATSUMA T, 1992, ANAL CHEM, V64, P1183
9452    TATSUMA T, 1995, ANAL CHEM, V67, P283
9453    VREEKE M, 1995, ANAL CHEM, V67, P303
9454    WILDES PD, 1978, J AM CHEM SOC, V100, P6568
9455 NR 39
9456 TC 21
9457 SN 0003-2670
9458 J9 ANAL CHIM ACTA
9459 JI Anal. Chim. Acta
9460 PD JUN 10
9461 PY 1997
9462 VL 344
9463 IS 3
9464 BP 187
9465 EP 199
9466 PG 13
9467 SC Chemistry, Analytical
9468 GA XF798
9469 UT ISI:A1997XF79800005
9470 ER
9471 
9472 PT J
9473 AU Huang, HC
9474 TI Fiber-optic analogs of bulk-optic wave plates
9475 SO APPLIED OPTICS
9476 DT Article
9477 AB The author's discovery of an unusual fiber element that is simply a
9478    variably spun birefringent fiber with a spin rate that varies from fast
9479    to zero or vice versa is revealed. The novel fiber element can be
9480    readily made by the existing fabrication technique, with fairly loose
9481    tolerances of the structural parameters. Analytic theory predicts that
9482    such a nonuniform fiber element can function as a bulk-optic
9483    quarter-wave plate, but with the advantage of being inherently wide
9484    band. Experimental evidence confirms the theoretical prediction. With
9485    such a fiber-optic analog of a quarter-wave plate as a building block,
9486    wide-band half-wave plates and full wave plates can likewise be made in
9487    the form of variably spun birefringent fibers. (C) 1997 Optical Society
9488    of America.
9489 RP Huang, HC, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
9490 CR BARLOW AJ, 1981, APPL OPTICS, V20, P2962
9491    COOK JS, 1955, BELL SYST TECH J, V34, P807
9492    FOX AG, 1955, BELL SYST TECH J, V34, P823
9493    HUANG HC, IN PRESS MICROWAVE A
9494    HUANG HC, 1960, SCI SINICA, V9, P142
9495    HUANG HC, 1961, ACTA MATH SINICA, V11, P238
9496    HUANG HC, 1990, 4943132, US
9497    HUANG HC, 1992, 5096312, US
9498    HUANG HC, 1995, 5452394, US
9499    KAPRON FP, 1972, IEEE J QUANTUM ELECT, V8, P222
9500    KELLER HB, 1962, J SOC IND APPL MATH, V10, P246
9501    LEFEVRE HC, 1983, 4389090, US
9502    LOUISELL WH, 1955, BELL SYST TECH J, V34, P853
9503    MATSUMOTO T, 1989, 4793678, US
9504    MCINTYRE P, 1978, J OPT SOC AM, V68, P149
9505    SHAW HJ, 1989, 4801189, US
9506 NR 16
9507 TC 3
9508 SN 0003-6935
9509 J9 APPL OPT
9510 JI Appl. Optics
9511 PD JUN 20
9512 PY 1997
9513 VL 36
9514 IS 18
9515 BP 4241
9516 EP 4258
9517 PG 18
9518 SC Optics
9519 GA XE301
9520 UT ISI:A1997XE30100030
9521 ER
9522 
9523 PT J
9524 AU Jian, GC
9525    Zhu, YR
9526    Guo, SQ
9527    Xu, JL
9528    Wang, YQ
9529    Pan, LY
9530    Yu, DW
9531 TI The existence of intragranular ferrite plates and nucleating inclusions
9532    in the heat affected zone of X-60 pipe steel
9533 SO JOURNAL OF MATERIALS SCIENCE
9534 DT Article
9535 AB In order to improve the heat affected zone (HAZ) toughness of X-60 pipe
9536    steel, we have applied intragranular ferrite plate (IFP) technology.
9537    The characteristic of IFP is the appearance of fine ferrite plates
9538    inside the original austenite grains. By means of suitable Re, Zr and
9539    Ti additions at high initial oxygen potentials, and good control of the
9540    peak temperature and the cooling rate during welding simulation, one
9541    can obtain IFP contents over 50 vol% with a resultant increase in the
9542    toughness from 55-160 J. It was found that the inclusions that were
9543    most effective in nucleating the IFP were deformable complex silicates
9544    which either entrap Re, Zr and Ti oxides or contain these elements. The
9545    greater the number of the evenly distributed and effectively nucleating
9546    inclusions, the greater the IFP content, and the finer the
9547    microstructure of the HAZ, and the greater the relevant toughness.
9548    Generally, these silicates behave as fine spheres along a line. The
9549    present authors show that these fine spheres result from the remelting
9550    of the shuttle-like silicates due to heating in the process of welding
9551    simulation. These silicates contain a high sulfur capacity and thus MnS
9552    deposits are often observed on the periphery of the silicates. The IFP
9553    was shown to be directly rooted in the Mn depletion zone which is
9554    located beside the MnS deposits.
9555 C1 BAO SHAN IRON & STEEL CORP,BAOSHAN,PEOPLES R CHINA.
9556 RP Jian, GC, SHANGHAI UNIV,SHANGHAI ENHANCED LAB FERROMET,SHANGHAI,PEOPLES
9557    R CHINA.
9558 CR *IR STEEL I JAP, 1990, P 6 INT IR STEEL C N, V1, P591
9559    GRAY JM, 1985, P HSLA STEELS MET AP, P557
9560    JIANG GC, 1996, CLEAN STEELS SECONDA
9561    LEE JL, 1995, ISIJ INT, V35, P1027
9562    TOMITA Y, 1994, ISIJ INT, V34, P829
9563 NR 5
9564 TC 2
9565 SN 0022-2461
9566 J9 J MATER SCI
9567 JI J. Mater. Sci.
9568 PD JUN 1
9569 PY 1997
9570 VL 32
9571 IS 11
9572 BP 2985
9573 EP 2989
9574 PG 5
9575 SC Materials Science, Multidisciplinary
9576 GA XD827
9577 UT ISI:A1997XD82700022
9578 ER
9579 
9580 PT J
9581 AU Zhang, ZL
9582    Jiang, XY
9583    Xu, SH
9584    Nagatomo, T
9585    Omoto, O
9586 TI Improving stability of organic electroluminescent diode by inserting
9587    copper phthalocyanine between the anode and hole transport layer
9588 SO CHINESE PHYSICS LETTERS
9589 DT Article
9590 AB Copper phthalocyanine(CuPc) thin film layer was inserted between the
9591    anode indium tin oxide and the hole transport layer TPD of an organic
9592    thin film electroluminescent device with a. double-layered structure.
9593    It is found that the CuPc layer greatly improves the device stability.
9594    The durability of the device with CuPc layer increases about 8 times.
9595    The fact that at a constant current density the driving voltage remains
9596    unchanged with operation time for the device with CuPc layer means that
9597    the barriers of the carriers injection are stable due to the inserted
9598    CuPc layer.
9599 C1 SHIBAURA INST TECHNOL,MINATO KU,TOKYO 108,JAPAN.
9600 RP Zhang, ZL, SHANGHAI UNIV,DEPT MAT SCI,JIADING CAMPUS,SHANGHAI
9601    201800,PEOPLES R CHINA.
9602 CR ADACHI C, 1995, APPL PHYS LETT, V66, P2679
9603    HAMADA Y, 1995, JPN J APPL PHYS, V34, P824
9604    SHIROTA Y, 1994, APPL PHYS LETT, V65, P807
9605    TANG CW, 1987, APPL PHYS LETT, V51, P913
9606 NR 4
9607 TC 2
9608 SN 0256-307X
9609 J9 CHIN PHYS LETT
9610 JI Chin. Phys. Lett.
9611 PY 1997
9612 VL 14
9613 IS 4
9614 BP 302
9615 EP 305
9616 PG 4
9617 SC Physics, Multidisciplinary
9618 GA XE116
9619 UT ISI:A1997XE11600018
9620 ER
9621 
9622 PT J
9623 AU Feng, SS
9624    Huang, CG
9625 TI Can Dirac observability apply to gravitational systems?
9626 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
9627 DT Article
9628 ID GRAVITY
9629 AB The problem of what is observable in general relativity is
9630    investigated. With the help of Landau's observable space interval. the
9631    observational frames for individual observers are established. Within
9632    the Ashtekar formulation of general relativity, we argue from the
9633    nonvanishing Poisson brackets of the Yang-Mills fi-ld and the
9634    constraints that Dirac observability does not apply to gravitational
9635    systems.
9636 C1 ACAD SINICA,INST HIGH ENERGY PHYS,BEIJING 100039,PEOPLES R CHINA.
9637    SHANDONG TEACHERS UNIV,CTR STRING THEORY,SHANGHAI 200234,PEOPLES R CHINA.
9638 RP Feng, SS, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
9639    R CHINA.
9640 CR ASHTEKAR A, 1989, PHYS REV D, V40, P2572
9641    DIRAC PAM, 1964, LECTURES QUANTUM MEC
9642    DUAN YS, 1988, GENERAL RELATIVITY G, V20
9643    DUAN YS, 1996, COMMUN THEOR PHYS, V25, P99
9644    EINSTEIN A, 1979, MEANING RELATIVITY
9645    FENG SS, 1995, GEN RELAT GRAVIT, V27, P887
9646    FENG SS, 1996, INT J THEOR PHYS, V35, P267
9647    FENG SS, 1996, NUCL PHYS B, V468, P163
9648    GITMAN DM, 1990, QUANTIZATION FIELDS
9649    HAWKING SW, 1988, BRIEF HIST TIME BIG
9650    KUCHAR K, 1991, CONCEPTUAL PROBLEMS
9651    LANDAU LD, 1951, CLASSICAL THEORY FIE
9652    ROVELLI C, 1991, CLASSICAL QUANT GRAV, V8, P297
9653    STACHEL J, 1986, GENERAL RELATIVITY G
9654    WALD RM, 1984, GENERAL RELATIVITY
9655 NR 15
9656 TC 7
9657 SN 0020-7748
9658 J9 INT J THEOR PHYS
9659 JI Int. J. Theor. Phys.
9660 PD MAY
9661 PY 1997
9662 VL 36
9663 IS 5
9664 BP 1179
9665 EP 1187
9666 PG 9
9667 SC Physics, Multidisciplinary
9668 GA XE078
9669 UT ISI:A1997XE07800009
9670 ER
9671 
9672 PT J
9673 AU Gu, CQ
9674 TI Bivariate Thiele-type matrix-valued rational interpolants
9675 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
9676 DT Article
9677 DE matrix-valued rational interpolants; branched continued fractions;
9678    generalized inverse
9679 AB A new method for the construction of bivariate matrix-valued rational
9680    interpolants on a rectangular grid is introduced in this paper. The
9681    rational interpolants are of the continued fraction form, with scalar
9682    denominator. In this respect the approach is essentially different from
9683    that of Bose and Basu (1980) where a rational matrix-valued approximant
9684    with matrix-valued numerator and denominator is used for the
9685    approximation of a bivariate matrix power series. The matrix quotients
9686    are based on the generalized inverse for a matrix introduced by Gu
9687    Chuanqing and Chen Zhibing (1995) which is found to be effective in
9688    continued fraction interpolation. A sufficient condition of existence
9689    is obtained. Some important conclusions such as characterisation and
9690    uniqueness are proven respectfully. The inner connection between two
9691    type interpolating functions is investigated. Some examples are given
9692    so as to illustrate the results in the paper.
9693 C1 SHANGHAI UNIV,DEPT MATH,SHANGHAI 200072,PEOPLES R CHINA.
9694 CR BOSE NK, 1978, P C DEC CONTR IEEE C
9695    BOSE NK, 1980, IEEE T AUTOMAT CONTR, V25, P509
9696    BULTHEEL A, 1986, J COMPUT APPL MATH, V14, P401
9697    COORE CJ, 1977, INT J ELECTRON, V43, P449
9698    GRAVESMORRIS PR, 1983, NUMER MATH, V42, P331
9699    GU CQ, 1993, NUMER MATH J CHINESE, V15, P99
9700    GU CQ, 1995, MATH NUMER SINICA, V17, P73
9701    GU CQ, 1996, J MATH RES EXPOSITIO, P301
9702    SHIEH LS, 1975, IEEE T CIRCUITS SYST, V22, P721
9703    SIEMASZKO W, 1978, J COMPUT APPL MATH, V4, P181
9704    SIEMASZKO W, 1983, J COMPUT APPL MATH, V9, P137
9705    ZHU GQ, 1990, CHINESE J NUMER MATH, V12, P66
9706 NR 12
9707 TC 5
9708 SN 0377-0427
9709 J9 J COMPUT APPL MATH
9710 JI J. Comput. Appl. Math.
9711 PD APR 14
9712 PY 1997
9713 VL 80
9714 IS 1
9715 BP 71
9716 EP 82
9717 PG 12
9718 SC Mathematics, Applied
9719 GA XC667
9720 UT ISI:A1997XC66700005
9721 ER
9722 
9723 PT J
9724 AU Duan, YS
9725    Feng, SS
9726 TI General covariant conservative angular momentum for topologically
9727    massive gravity
9728 SO COMMUNICATIONS IN THEORETICAL PHYSICS
9729 DT Article
9730 ID GRAVITATIONAL ANYONS
9731 AB We obtain the general covariant conservation law of angular momentum
9732    for gravitational anyons by means of global rather than local SO(1,2)
9733    transforms. Two examples show that our conservation law is reasonable.
9734    The general covariance suggests that this definition of angular
9735    momentum is better than the usual Aux-integral definition.
9736 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
9737 RP Duan, YS, LANZHOU UNIV,INST THEORET PHYS,LANZHOU 730000,PEOPLES R CHINA.
9738 CR BAK D, 1994, PHYS REV D, V49, P5173
9739    CLEMENT G, 1992, CLASSICAL QUANT GRAV, V9, P2615
9740    CLEMENT G, 1992, CLASSICAL QUANT GRAV, V9, P2635
9741    DESER S, 1982, ANN PHYS-NEW YORK, V140, P372
9742    DESER S, 1984, ANN PHYS-NEW YORK, V152, P220
9743    DESER S, 1990, NUCL PHYS B, V344, P747
9744    DESER S, 1990, PHYS REV LETT, V64, P611
9745    DESER S, 1992, CLASSICAL QUANT GRAV, V9, P61
9746    DUAN YS, 1996, COMMUN THEOR PHYS, V25, P99
9747    FENG SS, 1994, THESIS LANZHOU U
9748    FENG SS, 1996, INT J THEOR PHYS, V35, P327
9749    FRADKIN E, 1991, FIELD THEORIES CONDE
9750 NR 12
9751 TC 0
9752 SN 0253-6102
9753 J9 COMMUN THEOR PHYS
9754 JI Commun. Theor. Phys.
9755 PD APR 30
9756 PY 1997
9757 VL 27
9758 IS 3
9759 BP 343
9760 EP 348
9761 PG 6
9762 SC Physics, Multidisciplinary
9763 GA XC049
9764 UT ISI:A1997XC04900014
9765 ER
9766 
9767 PT J
9768 AU Wang, BH
9769    Hui, PM
9770    Gu, GQ
9771 TI Dynamical evolution of highway traffic flow: From microscopic to
9772    macroscopic
9773 SO CHINESE PHYSICS LETTERS
9774 DT Article
9775 ID MODEL
9776 AB In this paper, a derivation of the macroscopic mean field theory of the
9777    cellular automaton (CA) model of highway traffic flow starting from the
9778    microscopic dynamical point of view is presented. Starting from an
9779    equation describing the time evolution of the Boolean state variable at
9780    each site of the basic CA model, and using a two-site approximation for
9781    the multi-site correlation functions, a dynamical mapping between the
9782    macroscopic average speeds v(t + 1) and v(t) at different time can be
9783    derived. Mean field results consistent with the simulation data are
9784    obtained by considering the attractors of the mapping and their
9785    corresponding basins.
9786 C1 UNIV SCI & TECHNOL CHINA,CTR NONLINEAR SCI,HEFEI 230026,PEOPLES R CHINA.
9787    CHINESE UNIV HONG KONG,DEPT PHYS,SHATIN,NT,HONG KONG.
9788    SHANGHAI UNIV SCI & TECHNOL,DEPT SYST ENGN,SHANGHAI 200093,PEOPLES R CHINA.
9789 RP Wang, BH, UNIV SCI & TECHNOL CHINA,DEPT MODERN PHYS,HEFEI
9790    230026,PEOPLES R CHINA.
9791 CR CHUNG KH, 1994, J PHYS SOC JPN, V63, P4338
9792    NAGATANI T, 1995, J PHYS SOC JPN, V64, P1421
9793    NAGEL K, 1992, J PHYS I, V2, P2221
9794    SCHREKENBERG M, 1995, PHYS REV E A, V51, P2939
9795    WANG BH, 1996, J PHYS A-MATH GEN, V29, L31
9796    WANG BH, 1996, J PHYS SOC JPN, V65, P2345
9797    WOLFRAM S, 1986, THEORY APPL CELLULAR
9798 NR 7
9799 TC 8
9800 SN 0256-307X
9801 J9 CHIN PHYS LETT
9802 JI Chin. Phys. Lett.
9803 PY 1997
9804 VL 14
9805 IS 3
9806 BP 202
9807 EP 205
9808 PG 4
9809 SC Physics, Multidisciplinary
9810 GA XA764
9811 UT ISI:A1997XA76400012
9812 ER
9813 
9814 PT J
9815 AU Bai, ZZ
9816    Wang, DR
9817 TI A class of new hybrid algebraic multilevel preconditioning methods
9818 SO LINEAR ALGEBRA AND ITS APPLICATIONS
9819 DT Article
9820 AB A class of new hybrid algebraic multilevel. preconditioning methods is
9821    presented for solving the large sparse systems of linear equations with
9822    symmetric positive definite coefficient matrices resulting from the
9823    discretization of many second-order elliptic boundary-value problems by
9824    the finite-element method. The new preconditioners are shown to be of
9825    optimal orders of complexities for two-dimensional and
9826    three-dimensional problem domains, and their relative condition numbers
9827    are estimated to be bounded uniformly, independent of the numbers of
9828    both the levels and the nodes. (C) Elsevier Science Inc., 1997.
9829 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
9830 RP Bai, ZZ, CHINESE ACAD SCI,INST COMPUTAT MATH & SCI ENGN COMP,POB
9831    2719,BEIJING 100080,PEOPLES R CHINA.
9832 CR AXELSSON O, 1983, MATH COMPUT, V40, P219
9833    AXELSSON O, 1989, NUMER MATH, V56, P157
9834    AXELSSON O, 1990, SIAM J NUMER ANAL, V27, P1569
9835    AXELSSON O, 1991, DOMAIN DECOMPOSITION, P163
9836    BAI ZZ, 1993, THESIS SHANGHAI U SC
9837    BAI ZZ, 1996, APPL NUMER MATH, V19, P389
9838    CAO ZH, 1993, INT J COMPUT MATH, V47, P77
9839    CAO ZH, 1993, NUMER MATH J CHINESE, V1, P25
9840    VASSILEVSKI PS, 198909 U WYOM I SCI
9841    VASSILEVSKI PS, 1992, MATH COMPUT, V58, P489
9842    WANG DR, 1997, LINEAR ALGEBRA APPL, V250, P317
9843    YSERENTANT H, 1986, NUMER MATH, V49, P379
9844 NR 12
9845 TC 2
9846 SN 0024-3795
9847 J9 LINEAR ALGEBRA APPL
9848 JI Linear Alg. Appl.
9849 PD JUL 15
9850 PY 1997
9851 VL 260
9852 BP 223
9853 EP 255
9854 PG 33
9855 SC Mathematics, Applied
9856 GA XA857
9857 UT ISI:A1997XA85700011
9858 ER
9859 
9860 PT J
9861 AU Cao, WG
9862    Ding, WY
9863    Yi, T
9864    Zhu, ZM
9865 TI A simple approach to the synthesis of ethyl
9866    2-ethoxy-4-methoxy-6-perfluoroalkylbenzoates via acyclic precursors
9867 SO JOURNAL OF FLUORINE CHEMISTRY
9868 DT Article
9869 DE synthesis; phosphoranes; acyclic precursors; intramolecular Wittig
9870    reaction; ethyl 2-ethoxy-4-methoxy-6-perfluoroalkylbenzoates
9871 ID FACILE SYNTHESIS
9872 AB The acyclic precursors, methyl
9873    3-perfluoroalkyl-4-carboethoxy-5-ethoxy-6-(triphenylphosphoranylidene)he
9874    xa-2,4-dienoates 3a-c were obtained through the addition reaction of
9875    ethyl 3-ethoxy-4-(triphenylphosphoranylidene)but-2-enoate 1 with
9876    equally molar of methyl 2-perfluoroalkynoates 2a-c. Ethyl
9877    2-ethoxy-4-methoxy-6-perfluoroalkylbenzoates 4a-c were synthesized with
9878    high yields via an intramolecular elimination of Ph3PO of 3a-c by
9879    heating in anhydrous benzene in a sealed tube. The structures of these
9880    compounds were confirmed by IR, MS, H-1, C-13 and F-19 NMR spectra, and
9881    elemental analyses. The reaction mechanisms were also proposed.
9882 RP Cao, WG, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
9883    R CHINA.
9884 CR BANKS RE, 1979, ORGANOFLUORINE CHEM
9885    COFFEY S, RODDS CHEM CARBON CO, P403
9886    DING WY, 1987, TETRAHEDRON LETT, V28, P81
9887    DING WY, 1992, SYNTHESIS-STUTTGART, P635
9888    DING WY, 1993, CHINESE J CHEM, V11, P81
9889    DING WY, 1993, J CHEM SOC P1, P855
9890    DING WY, 1995, CHINESE J CHEM, V13, P468
9891    HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47
9892    KOCHHAR KS, 1984, J ORG CHEM, V49, P3222
9893    MCCLINTON MA, 1992, TETRAHEDRON, V48, P6555
9894    TENDIL J, 1977, B SOC CHIM FR, P565
9895    WELCH JT, 1987, TETRAHEDRON, V43, P3123
9896 NR 12
9897 TC 6
9898 SN 0022-1139
9899 J9 J FLUORINE CHEM
9900 JI J. Fluor. Chem.
9901 PD MAR
9902 PY 1997
9903 VL 81
9904 IS 2
9905 BP 153
9906 EP 155
9907 PG 3
9908 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
9909 GA XA484
9910 UT ISI:A1997XA48400009
9911 ER
9912 
9913 PT J
9914 AU Ye, ZM
9915 TI The non-linear vibration and dynamic instability of thin shallow shells
9916 SO JOURNAL OF SOUND AND VIBRATION
9917 DT Article
9918 ID RECTANGULAR-PLATES; NONLINEAR VIBRATION; SPHERICAL-SHELL; CIRCULAR
9919    PLATES
9920 AB In this paper, the non-linear vibration and dynamic instability of thin
9921    shallow spherical and conical shells subjected to periodic transverse
9922    and in-plane loads are investigated. The Marguerre type dynamic
9923    equations used for the analysis of shallow shells, when treated by the
9924    Galerkin method, will result in a system of total differential
9925    equations in the time functions, known as Duffing and Mathieu
9926    equations, from which the various kinds of non-linear vibration and
9927    dynamic instability are determined by using numerical methods.
9928    Numerical results are presented for axisymmetric vibrations and dynamic
9929    instabilities of shallow spherical and conical shells with (a) clamped
9930    and (b) supported edge conditions. As numerical examples, non-linear
9931    vibration frequencies and instability regions for shells are
9932    determined. The effects of static load as well as static snap-through
9933    buckling on the instability are also investigated. (C) 1997 Academic
9934    Press Limited.
9935 RP Ye, ZM, SHANGHAI UNIV,DEPT CIVIL ENGN,149 YAN CHANG RD,SHANGHAI
9936    200072,PEOPLES R CHINA.
9937 CR BHUSHAN B, 1991, COMPOS STRUCT, V18, P263
9938    CHIA CY, 1985, J SOUND VIB, V101, P539
9939    CHIA CY, 1992, COMPUT STRUCT, V44, P797
9940    DENISOV VN, 1985, MECH SOLIDS, V20, P142
9941    DUMIR PC, 1986, J SOUND VIB, V107, P253
9942    EVANSEN DA, 1967, TND4090 NASA
9943    GONCALVES PB, 1988, J SOUND VIBRATION, V127, P133
9944    HUI D, 1985, INT J MECH SCI, V27, P397
9945    JAIN RK, 1987, AIAA J, V25, P630
9946    LEISSA AW, 1961, J AEROSP SCI, V29, P1381
9947    MAHRENHOLTZ O, 1987, APPL MATH MECH, V67, P218
9948    MEI C, 1985, AIAA J, V23, P1104
9949    NATH Y, 1985, INT J NUMER METH ENG, V21, P565
9950    NATH Y, 1987, J SOUND VIBRATION, V112, P53
9951    SANDERS JL, 1959, TRR24 NASA
9952    TSAI CT, 1989, INT J NONLINEAR MECH, V24, P127
9953    WANG XX, 1991, COMPUT METHOD APPL M, V86, P73
9954    YASUDA K, 1984, B JSME, V27, P2233
9955    YE ZM, 1984, ACTA MECH SINICA, V16, P634
9956    YE ZM, 1988, APPL MATH MECH, V9, P153
9957    YE ZM, 1993, MECH RES COMMUN, V20, P83
9958 NR 21
9959 TC 11
9960 SN 0022-460X
9961 J9 J SOUND VIB
9962 JI J. Sound Vibr.
9963 PD MAY 8
9964 PY 1997
9965 VL 202
9966 IS 3
9967 BP 303
9968 EP 311
9969 PG 9
9970 SC Engineering, Mechanical; Acoustics; Mechanics
9971 GA WY075
9972 UT ISI:A1997WY07500001
9973 ER
9974 
9975 PT J
9976 AU Liu, GL
9977    Wang, HG
9978 TI A new pseudo-potential model for rotational turbo-flow .1. Variational
9979    formulation and finite element solution for transonic blade-to-blade
9980    flow
9981 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
9982 DT Article
9983 ID PRINCIPLES; SHOCKS; ROTOR
9984 AB A new general function - the pseudo-potential function - is introduced
9985    via the term-condensing method /13/, being a simple and consistent
9986    generalization of the potential function to general rotational
9987    turbo-now. It retains almost all advantages of the potential function,
9988    while removing its restriction to now potentiality (namely homentropy
9989    and homrothalpy). The general formulation of rotational now along S-1-
9990    and S-2-stream sheets in turbomachines is derived, and methods of
9991    solution are given with special attention to transonic and supersonic
9992    flows, providing a new physically self-consistent and computationally
9993    simple now model and allowing for the vorticity generated just behind
9994    shocks. Then, a family of variational principles for S-1-flow is
9995    established and based thereupon finite element solutions to some
9996    transonic now examples are obtained, which agree fairly well with the
9997    Euler's equation solutions and the measurements. This model can be
9998    further generalized to fully 3-D now, especially transonic turbo-now.
9999 C1 E CHINA UNIV TECHNOL,POWER ENGN DEPT,SHANGHAI 200093,PEOPLES R CHINA.
10000 RP Liu, GL, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI
10001    200072,PEOPLES R CHINA.
10002 CR AKAY HU, 1984, FINITE ELEMENTS FLUI, V5, P173
10003    BAKER TJ, 1983, COMPUTATION TRANSONI
10004    BOSMAN C, 1974, 3746 ARC RM
10005    CAI RQ, 1988, INT J HEAT FLUID FL, V9, P302
10006    DECONINCK H, 1981, ASME, V103, P665
10007    HAFEZ M, 1988, INT J NUMER METH FL, V8, P31
10008    HAFEZ MM, 1983, AIAA J, V21, P327
10009    HIRSCH C, 1990, NUMERICAL COMPUTATIO, V2
10010    KLOPFER GH, 1984, AIAA J, V22, P770
10011    LIU GL, 1980, FUNDAMENTALS AERODYN
10012    LIU GL, 1980, SCI SINICA, V23, P1339
10013    LIU GL, 1982, CHINESE J ENG THERMO, V3, P138
10014    LIU GL, 1982, P INT C FEM SHANGH C, P520
10015    LIU GL, 1983, 2ND P AS C FLUID MEC, P698
10016    LIU GL, 1989, NUMERICAL METHODS LA, V6, P1289
10017    LIU GL, 1990, EXPT COMPUTATIONAL A, P128
10018    LIU GL, 1992, ACTA MECH, V95, P117
10019    LIU GL, 1993, ACTA MECH, V97, P229
10020    NI RH, 1982, AIAA J, V20, P1565
10021    SARATHY KP, 1982, T ASME, V104, P394
10022    WU CH, 1952, 2604 NACA TN
10023    XU HY, 1990, P 1 INT S AER DYN IN, P121
10024    XU JZ, 1980, CHINESE J MECH ENG, V16, P3
10025 NR 23
10026 TC 1
10027 SN 0334-0082
10028 J9 INT J TURBO JET ENGINES
10029 JI Int. J. Turbo. Jet-Engines
10030 PY 1996
10031 VL 13
10032 IS 4
10033 BP 263
10034 EP 275
10035 PG 13
10036 SC Engineering, Aerospace
10037 GA WW120
10038 UT ISI:A1996WW12000003
10039 ER
10040 
10041 PT J
10042 AU Li, X
10043    Guo, BY
10044 TI A Legendre pseudospectral method for solving nonlinear Klein-Gordon
10045    equation
10046 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
10047 DT Article
10048 ID SOBOLEV SPACES
10049 AB A Legendre pseudospectral scheme is proposed for solving
10050    initial-boundary value problem of nonlinear Klein-Gordon equation. The
10051    numerical solution keeps the discrete conservation. Its stability and
10052    convergence are investigated. Numerical results are also presented,
10053    which show the high accuracy. The technique in the theoretical analysis
10054    provides a framework for Legendre pseudospectral approximation of
10055    nonlinear multi-dimensional problems.
10056 C1 CHINESE UNIV HONG KONG,HONG KONG,HONG KONG.
10057    SHANGHAI UNIV,SHANGHAI,PEOPLES R CHINA.
10058 CR BERNARDI C, 1992, J COMPUT APPL MATH, V43, P53
10059    CANUTO C, 1982, MATH COMPUT, V38, P67
10060    CANUTO C, 1988, SPECTRAL METHODS FLU
10061    CAO WM, 1993, J COMPUT PHYS, V108, P296
10062    GUO BY, 1982, NUMERICAL MATH, V4, P46
10063    GUO BY, 1982, SCI SINICA A, V25, P702
10064    GUO BY, 1983, J APPL SCI, V1, P25
10065    GUO BY, 1988, DIFFERENCE METHODS P
10066    GUO BY, 1993, NUMERICAL MATH, V2, P38
10067    GUO BY, 1996, J COMP PHYS APPL MAT, V15, P19
10068    HARDY GH, 1952, INEQUALITES
10069    LIONS JL, 1969, QUELQUES METHODES RE
10070    MA HP, 1987, J COMPUT MATH, V4, P337
10071    NEVAI P, 1979, MEN AM MATH SOC, V213
10072    RICHTMYER RD, 1967, FINITE DIFFERENCE ME
10073    STRAUSS W, 1978, J COMP PHYSIOL, V28, P271
10074    SZABADOS J, 1992, J COMPUT APPL MATH, V43, P3
10075 NR 17
10076 TC 2
10077 SN 0254-9409
10078 J9 J COMPUT MATH
10079 JI J. Comput. Math.
10080 PD APR
10081 PY 1997
10082 VL 15
10083 IS 2
10084 BP 105
10085 EP 126
10086 PG 22
10087 SC Mathematics, Applied; Mathematics
10088 GA WV929
10089 UT ISI:A1997WV92900002
10090 ER
10091 
10092 PT J
10093 AU Chen, H
10094    Shi, YM
10095    Yu, JZ
10096    Zhu, JL
10097    Kawazoe, Y
10098 TI Phonon-associated conductance through a quantum point contact
10099 SO PHYSICAL REVIEW B
10100 DT Article
10101 ID DOUBLE-BARRIER; BALLISTIC RESISTANCE; TRANSPORT; MODEL
10102 AB By using an independent-boson model we: study the electronic
10103    conductance through a quantum point contact in the presence of the
10104    electron-phonon interaction. We find that the phonon energy plays a
10105    crucial role in the quantum behavior of the conductance.
10106 C1 FUDAN UNIV,DEPT PHYS,SHANGHAI 200433,PEOPLES R CHINA.
10107    SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA.
10108 RP Chen, H, TOHOKU UNIV,INST MAT RES,SENDAI,MIYAGI 98077,JAPAN.
10109 CR AVISHAI Y, 1989, PHYS REV B, V40, P12535
10110    BLICK RH, 1995, APPL PHYS LETT, V67, P3924
10111    CAI W, 1989, PHYS REV LETT, V63, P418
10112    CAI W, 1990, PHYS REV LETT, V65, P104
10113    CHEN H, 1993, PHYS REV B, V48, P8790
10114    DREXLER H, 1995, APPL PHYS LETT, V67, P2616
10115    GELFAND BY, 1989, PHYS REV LETT, V62, P1683
10116    GOLDMAN VJ, 1987, PHYS REV B, V36, P7635
10117    GUIMARAES PSS, 1993, PHYS REV LETT, V70, P3792
10118    GUREVICH VL, 1995, PHYS REV B, V51, P5219
10119    KEAY BJ, 1995, PHYS REV LETT, V75, P4098
10120    KOUWENHOVEN LP, 1994, PHYS REV LETT, V73, P3443
10121    MAHAN GD, 1981, MANY PARTICLE PHYSIC, P269
10122    RICCO B, 1984, PHYS REV B, V29, P1970
10123    STAFFORD CA, 1996, PHYS REV LETT, V76, P1916
10124    VANWEES BJ, 1988, PHYS REV LETT, V60, P848
10125    WHARAM DA, 1988, J PHYS C SOLID STATE, V21, L209
10126    WHARAM DA, 1988, J PHYS C SOLID STATE, V21, L887
10127    WROBEL J, 1995, EUROPHYS LETT, V29, P481
10128 NR 19
10129 TC 2
10130 SN 0163-1829
10131 J9 PHYS REV B
10132 JI Phys. Rev. B
10133 PD APR 15
10134 PY 1997
10135 VL 55
10136 IS 15
10137 BP 9935
10138 EP 9940
10139 PG 6
10140 SC Physics, Condensed Matter
10141 GA WV251
10142 UT ISI:A1997WV25100120
10143 ER
10144 
10145 PT J
10146 AU Liu, HY
10147    Deng, HH
10148    Sun, K
10149    Qi, DY
10150    Deng, JQ
10151    Liu, YC
10152    Yu, TY
10153 TI Structure and properties of porous composite membranes of regenerated
10154    silk fibroin and poly(vinyl alcohol) and biosensing of glucose via
10155    Meldola blue dispersed in polyester ionomer as an electron transfer
10156    mediator
10157 SO FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY
10158 DT Article
10159 ID ENZYME ELECTRODES; SENSOR; OXIDASE; IMMOBILIZATION; TETRATHIAFULVALENE;
10160    FERROCENE; SHUTTLE; NAFION
10161 AB Porous composite membranes of regenerated silk fibroin and poly(vinyl
10162    alcohol) were prepared by adding polyethyleneglycol to the composite
10163    solution to reduce the mass-transfer resistance to the diffusion of
10164    substrate material transport; their surfaces were visualized with
10165    scanning electron microscopy. An amperometric glucose biosensor
10166    employing Meldola blue dispersed in polyester ionomer as electron
10167    transfer mediator was prepared to test the feasibility and workability
10168    of the composite membrane as immobilization matrix for glucose oxidase.
10169    The cationic exchange property of the polyester ionomer was employed to
10170    provide high local concentrations of Meldola blue (MB(+)) in the
10171    polymer film via ion exchange. Performance and characteristics of the
10172    glucose biosensor were evaluated with respect to response time,
10173    detection limit, applied potential, thickness of polyester ionomer
10174    membrane, pH and temperature. The glucose biosensor possesses a variety
10175    of advantages including easy maintenance of enzyme, simplicity of
10176    construction, fast response time and high stability.
10177 C1 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
10178    FUDAN UNIV,DEPT MACROMOL SCI,SHANGHAI 200433,PEOPLES R CHINA.
10179 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R
10180    CHINA.
10181 CR BADIA A, 1993, J AM CHEM SOC, V115, P7053
10182    BARKER SA, 1989, BIOSENSORS FUNDAMENT, P85
10183    BARTLETT PN, 1987, BIOSENSORS, V3, P359
10184    CLARK LC, 1962, ANN NY ACAD SCI, V102, P29
10185    CSOREGI E, 1995, ANAL CHEM, V67, P1240
10186    DEMURA M, 1989, BIOTECHNOL BIOENG, V33, P598
10187    DEMURA M, 1989, J BIOTECHNOL, V10, P113
10188    FORTIER G, 1990, ANAL LETT, V23, P1607
10189    GRUNDIG B, 1989, ANAL CHIM ACTA, V222, P75
10190    HARKNESS JK, 1993, J ELECTROANAL CHEM, V357, P261
10191    JIANG L, 1995, J CHEM SOC CHEM 0621, P1293
10192    KUWABATA S, 1994, ANAL CHEM, V66, P2757
10193    LIU H, 1997, IN PRESS FRESENIUS J, V357
10194    LIU HY, 1995, ANAL CHIM ACTA, V300, P65
10195    LIU HY, 1996, BIOSENS BIOELECTRON, V11, P103
10196    LIU Y, 1985, ANAL CHEM, V316, P65
10197    LIU YC, 1995, J CHEM TECHNOL BIOT, V64, P269
10198    MALITESTA C, 1990, ANAL CHEM, V62, P2735
10199    PANDEY PC, 1988, J CHEM SOC F1, V84, P2259
10200    PANDEY PC, 1995, BIOSENS BIOELECTRON, V10, P669
10201    PAZUR JH, 1965, ARCH BIOCHEM BIOPHYS, V111, P351
10202    QIAN JH, 1996, FRESEN J ANAL CHEM, V354, P173
10203    TRANMINH C, 1985, ION SEL ELECTRODE R, V7, P41
10204    WANG J, 1989, ANAL CHEM, V61, P1397
10205    WILSON GS, 1992, ANAL CHEM, V64, A381
10206    ZHAO SS, 1993, ANAL CHIM ACTA, V282, P319
10207 NR 26
10208 TC 4
10209 SN 0937-0633
10210 J9 FRESENIUS J ANAL CHEM
10211 JI Fresenius J. Anal. Chem.
10212 PD APR
10213 PY 1997
10214 VL 357
10215 IS 7
10216 BP 812
10217 EP 816
10218 PG 5
10219 SC Chemistry, Analytical
10220 GA WT961
10221 UT ISI:A1997WT96100006
10222 ER
10223 
10224 PT J
10225 AU Li, CF
10226 TI Gauge transformation and A-B effect
10227 SO PHYSICA B
10228 DT Article
10229 DE gauge transformation; Aharonov-Bohm effect; momentum transfer
10230 ID AHARONOV-BOHM INTERFERENCE; MULTIPLY CONNECTED SPACES;
10231    ANGULAR-MOMENTUM; MAGNETIC-FLUX; QUANTUM-MECHANICS; PATH-INTEGRALS;
10232    STATISTICS; ROTATIONS
10233 AB The aim of this paper is to show that the vector potential in the
10234    so-called Aharonov-Bohm (A-B) effect is not a gauge transformation of
10235    the vacuum, even when alpha = integer(not equal 0) (where alpha =
10236    Phi/Phi(0) represents the magnetic flux in the long cylindrical
10237    solenoid and Phi(0) = h/e). To this end, it is discussed that the wave
10238    function of the electron and the gauge function in a gauge
10239    transformation are required to be single-valued so that the Schrodinger
10240    wave mechanics and the Maxwell electromagnetic theory are
10241    well-formulated. It is also discussed that the gauge transformation of
10242    wave functions and the representation change of operators of Kobe's
10243    meaning are the same thing.
10244 RP Li, CF, SHANGHAI UNIV,DEPT PHYS,20 CHENGZHONG RD,SHANGHAI
10245    201800,PEOPLES R CHINA.
10246 CR AFANASEV GN, 1990, SOV J PART NUCL, V21, P74
10247    AHARONOV Y, 1959, PHYS REV, V115, P485
10248    AHARONOV Y, 1961, PHYS REV, V123, P1511
10249    AHARONOV Y, 1967, PHYS REV, V158, P1237
10250    AHARONOV Y, 1984, P INT S FDN QUANT ME, P10
10251    AHARONOV Y, 1984, PHYS REV D, V29, P2396
10252    BAWIN M, 1983, J PHYS A, V16, P2173
10253    BAWIN M, 1985, J PHYS A-MATH GEN, V18, P2123
10254    BIEDENHARN LC, 1981, ANGULAR MOMENTUM QUA, P319
10255    BLATT JM, 1952, THEORETICAL NUCL PHY, P783
10256    BOCCHIERI P, 1978, NUOVO CIMENTO      A, V47, P475
10257    BOHM D, 1951, QUANTUM THEORY, P389
10258    BOHM D, 1979, NUOVO CIMENTO A, V52, P295
10259    GRIFFITHS DJ, 1981, INTRO ELECTRODYNAMIC, P283
10260    GUPTA BD, 1978, MATH PHYSICS, P127
10261    HORVATHY PA, 1985, PHYS REV A, V31, P1151
10262    JACKIW R, 1983, PHYS REV LETT, V50, P555
10263    KLEIN AG, 1976, PHYS REV LETT, V37, P238
10264    KOBE DH, 1982, PHYS REV LETT, V49, P1592
10265    KRETZSCHMAR M, 1965, Z PHYS, V185, P73
10266    KRETZSCHMAR M, 1965, Z PHYS, V185, P97
10267    LANDAU LD, 1975, CLASSICAL THEORY FIE, P49
10268    LI CF, IN PRESS ANN PHYS
10269    LI CF, IN PRESS PHYSICA B
10270    LI CF, 1995, PHYSICA B, V212, P436
10271    LIANG JQ, 1988, PHYS REV LETT, V60, P836
10272    LIANG JQ, 1988, PHYSICA B C, V151, P239
10273    MERZBACHER E, 1962, AM J PHYSIOL, V30, P237
10274    NIETO MM, 1984, PHYS REV A, V29, P3413
10275    PANDRES D, 1962, J MATH PHYS, V3, P305
10276    PAULI W, 1939, HELV PHYS ACTA, V12, P147
10277    PESHKIN M, 1961, ANN PHYS-NEW YORK, V12, P426
10278    PESHKIN M, 1989, LECT NOTES PHYSICS, V340
10279    RAUCH H, 1978, Z PHYSIK           B, V29, P281
10280    ROY SM, 1984, NUOVO CIMENTO A, V79, P391
10281    RUIJSENAARS SNM, 1983, ANN PHYS-NEW YORK, V146, P1
10282    SAKURAI JJ, 1985, MODERN QUANTUM MECH, P101
10283    SAKURAI JJ, 1985, MODERN QUANTUM MECHD, P162
10284    TASSIE LJ, 1961, ANN PHYS-NEW YORK, V16, P177
10285    WERNER SA, 1975, PHYS REV LETT, V35, P1053
10286    WILCZEK F, 1982, PHYS REV LETT, V48, P1144
10287    WILCZEK F, 1982, PHYS REV LETT, V49, P957
10288    WU TT, 1975, PHYS REV D, V12, P3845
10289    WU YS, 1984, PHYS REV LETT, V53, P111
10290    ZEILINGER A, 1979, LETT NUOVO CIMENTO, V25, P333
10291 NR 45
10292 TC 1
10293 SN 0921-4526
10294 J9 PHYSICA B
10295 JI Physica B
10296 PD MAR
10297 PY 1997
10298 VL 229
10299 IS 3-4
10300 BP 354
10301 EP 360
10302 PG 7
10303 SC Physics, Condensed Matter
10304 GA WT606
10305 UT ISI:A1997WT60600020
10306 ER
10307 
10308 PT J
10309 AU Zhu, Y
10310 TI Interactions of atmospheric solitary waves of different modes
10311 SO ACTA MECHANICA SINICA
10312 DT Article
10313 DE atmospheric solitary waves; BO equation; perturbation methods
10314 AB The interactions of atmospheric solitary waves with different modes are
10315    investigated by a perturbation method. The model considered in this
10316    paper consists of a lower layer with exponential density profile and an
10317    infinitely deep upper layer with constant density. The analysis show
10318    that the waves obey the Benjamin-Ono equation before and after
10319    interaction, and the main effect of the interaction is the phase shifts
10320    for each wave.
10321 RP Zhu, Y, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,149 YANCHANG
10322    RD,SHANGHAI 200072,PEOPLES R CHINA.
10323 CR BENJAMIN TB, 1967, J FLUID MECH, V29, P249
10324    CHRISTIE DR, 1981, NATURE, V293, P46
10325    DAVIS RE, 1967, J FLUID MECH, V29, P593
10326    GEAR J, 1984, STUD APPL MATH, V70, P233
10327    GRIMSHAW R, 1994, STUD APPL MATH, V92, P249
10328    MILES JW, 1977, J FLUID MECH, V79, P157
10329    MILES JW, 1980, ANNU REV FLUID MECH, V12, P11
10330    ONO H, 1975, J PHYS SOC JPN, V39, P1082
10331    SMITH RK, 1988, EARTH-SCI REV, V25, P267
10332    SU CH, 1980, J FLUID MECH, V98, P509
10333    ZHU Y, 1996, ATMOSPHERIC SCI, V20, P751
10334 NR 11
10335 TC 0
10336 SN 0567-7718
10337 J9 ACTA MECH SINICA
10338 JI Acta Mech. Sin.
10339 PD FEB
10340 PY 1997
10341 VL 13
10342 IS 1
10343 BP 10
10344 EP 16
10345 PG 7
10346 SC Engineering, Mechanical; Mechanics
10347 GA WT856
10348 UT ISI:A1997WT85600002
10349 ER
10350 
10351 PT J
10352 AU Wu, MH
10353    Zhou, RM
10354    Ma, ZT
10355    Bao, BR
10356    Lei, JQ
10357 TI Preparation of acrylate IPN copolymer latexes by radiation emulsion
10358    polymerization
10359 SO RADIATION PHYSICS AND CHEMISTRY
10360 DT Article
10361 ID SHELL
10362 AB Radiation-induced and chemical initiation are compared in the
10363    initiation of acrylate emulsion copolymer latexes. The particle
10364    diameter, distribution and microstructure are influenced by emulsifier
10365    concentration, radiation dose and temperature. The results show that
10366    the emulsion particle diameter of radiation polymerization is smaller
10367    and better distributed in comparison to using chemical polymerization.
10368    In addition, interlude polymer net (IPN) core-shell copolymer latexes
10369    are observed by transimission electron microscope (TEM). The bounding
10370    face of core-shell acrylate copolymer latexes of radiation
10371    polymerization is clearer. The morphology of acrylate IPN copolymer
10372    latexes is further investigated. (C) 1997 Elsevier Science Ltd.
10373 C1 ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI 201800,PEOPLES R CHINA.
10374 RP Wu, MH, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,JIADING
10375    CAMPUS,SHANGHAI 201800,PEOPLES R CHINA.
10376 CR BALITER B, 1987, J POLYM SCI A, V25, P135
10377    HOIGNE H, 1972, J POLYM SCI A, V10, P581
10378    LEE DI, 1983, J POLYM SCI POL CHEM, V21, P147
10379    MCCARTY W, 1984, HUS US, V444, P923
10380    PIRMA I, 1976, ACS SYM SER, V24, P306
10381    SAKOTA K, 1976, J APPL POLYM SCI, V20, P1735
10382    SPERLING LH, 1973, J APPL POLYM SCI, V17, P2443
10383    WU MH, 1993, RADIAT PHYS CHEM, V42, P171
10384 NR 8
10385 TC 0
10386 J9 RADIAT PHYS CHEM
10387 JI Radiat. Phys. Chem.
10388 PD MAR
10389 PY 1997
10390 VL 49
10391 IS 3
10392 BP 371
10393 EP 375
10394 PG 5
10395 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
10396    Science & Technology
10397 GA WM139
10398 UT ISI:A1997WM13900010
10399 ER
10400 
10401 PT J
10402 AU Chen, YL
10403    Guo, GY
10404 TI Preparation and characterization of yttria-stabilized zirconia powders
10405    by solvent extraction process
10406 SO CERAMICS INTERNATIONAL
10407 DT Article
10408 ID ZRO2; DENSIFICATION
10409 AB This study demonstrates that zirconium and yttrium can quantitatively
10410    be coextracted with di-(2-ethylhexyl) phosphoric acid or
10411    2-ethylhexyl-phosphonic acid mono-2-ethylhexylester from commercial
10412    grade of starting materials under suitable conditions, End that both
10413    zirconium and yttrium can be stripped completely with oxalic acid from
10414    the extractants under some specific conditions. The resulting oxalates,
10415    after careful washing with absolute ethanol, may be calcined to both
10416    ultrafine and pure yttria-stabilized zirconia powders, while the
10417    stripped extractants can be recycled to extract zirconium and yttrium.
10418    The present process, therefore, is a more economical technique than the
10419    metal alkoxide process - one of the most popular chemical processing
10420    routes for the preparation of advanced ceramic powder, yet it is a very
10421    efficient technique for controlling the purity, particle size, and
10422    crystalline phase composition of the powders. (C) 1997 Elsevier Science
10423    Limited and Techna S.r.l.
10424 C1 SHANGHAI JIAO TONG UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200030,PEOPLES R CHINA.
10425 RP Chen, YL, SHANGHAI UNIV,COL CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R
10426    CHINA.
10427 CR BOURELL DL, 1993, J AM CERAM SOC, V76, P705
10428    DESCEMOND M, 1993, J MATER SCI, V28, P3754
10429    DOYLE FM, 1992, HYDROMETALLURGY, V29, P527
10430    FEGLEY B, 1985, AM CERAM SOC BULL, V64, P1115
10431    FOSTER CM, 1993, J MATER RES, V8, P1977
10432    GHONELM NM, 1986, CFI-CERAM FORUM INT, V3, P96
10433    GONGYI G, 1988, PRODUCTION PROCESSIN, P627
10434    GONGYI G, 1991, J MATER SCI, V26, P3511
10435    GONGYI G, 1992, J AM CERAM SOC, V75, P1294
10436    HABERKO K, 1979, CERAMURGIA INT, V5, P148
10437    ISHIZAWA H, 1986, AM CERAM SOC BULL, V65, P1399
10438    RHODES WH, 1989, AM CERAM SOC BULL, V68, P1804
10439 NR 12
10440 TC 1
10441 SN 0272-8842
10442 J9 CERAM INT
10443 JI Ceram. Int.
10444 PY 1997
10445 VL 23
10446 IS 3
10447 BP 267
10448 EP 272
10449 PG 6
10450 SC Materials Science, Ceramics
10451 GA WM133
10452 UT ISI:A1997WM13300013
10453 ER
10454 
10455 PT J
10456 AU Lin, D
10457    Fuchs, EF
10458    Doyle, M
10459 TI Computer-aided testing of electrical apparatus supplying nonlinear loads
10460 SO IEEE TRANSACTIONS ON POWER SYSTEMS
10461 DT Article
10462 DE computer-aided testing; electrical machines; transformers; electrical
10463    apparatus; nonlinear loads; derating
10464 AB A computer-aided testing program for electrical apparatus (CATEA) is
10465    designed to test the performance of single and polyphase electrical
10466    devices. It has been applied to measure the losses of single- and
10467    three-phase ac and dc electrical machines, single- and three-phase
10468    transformers with linear and nonlinear loads. On-line measurements of
10469    iron-core and copper losses of single- and three-phase transformers
10470    with rectifier load are presented and compared with the results of the
10471    open- and short-circuit tests.
10472 C1 TU ELECT,FT WORTH,TX 76101.
10473    SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
10474 RP Lin, D, UNIV COLORADO,BOULDER,CO 80309.
10475 CR FUCHS EF, 1994, IEEE IND APPLIC SOC, P128
10476 NR 1
10477 TC 5
10478 SN 0885-8950
10479 J9 IEEE TRANS POWER SYST
10480 JI IEEE Trans. Power Syst.
10481 PD FEB
10482 PY 1997
10483 VL 12
10484 IS 1
10485 BP 11
10486 EP 21
10487 PG 11
10488 SC Engineering, Electrical & Electronic
10489 GA WK945
10490 UT ISI:A1997WK94500004
10491 ER
10492 
10493 PT J
10494 AU Zhou, HY
10495    Deng, ZY
10496 TI Electronic and hydrogenic impurity states in a corner under an applied
10497    electric field
10498 SO JOURNAL OF PHYSICS-CONDENSED MATTER
10499 DT Article
10500 ID QUANTUM-WELL WIRES; 2 ORTHOGONAL SURFACES; DEPENDENCE; VICINITY;
10501    SPECTRA; GROWTH; ENERGY
10502 AB With the use of a variational method to solve the effective-mass
10503    equation, we have studied the electronic and hydrogenic impurity states
10504    in a corner under an applied electric field. The electron energy levels
10505    and the impurity binding energies are calculated. Our results show
10506    that, with the increasing strength of the electric field, the electron
10507    energy levels increase, and the impurity binding energy in the ground
10508    state increases at first, to a peak value, then decreases to a value
10509    which is determined by the impurity position in the corner. The
10510    dependence of the impurity binding energy on the applied electric field
10511    and impurity position is discussed in detail.
10512 C1 CHINESE ACAD SCI,SHANGHAI INST CERAM,SHANGHAI 200050,PEOPLES R CHINA.
10513    CHINA CTR ADV SCI & TECHNOL,WORLD LAB,BEIJING 100080,PEOPLES R CHINA.
10514    SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA.
10515 CR BASTARD G, 1981, PHYS REV B, V24, P4714
10516    BASTARD G, 1983, PHYS REV B, V28, P3241
10517    BRANIS SV, 1993, PHYS REV B, V47, P1316
10518    BROWN JW, 1986, J APPL PHYS, V59, P1179
10519    BRUM JA, 1985, SOLID STATE COMMUN, V54, P179
10520    BRYANT GW, 1984, PHYS REV B, V29, P6632
10521    BRYANT GW, 1985, PHYS REV B, V31, P7812
10522    CAO HT, 1995, PHYSICA B, V205, P273
10523    CHEN H, 1991, PHYS REV B, V44, P6220
10524    DENG ZY, 1994, J PHYS-CONDENS MAT, V6, P9729
10525    FUJIWARA K, 1989, PHYS REV B, V40, P9698
10526    GEROHONI D, 1990, PHYS REV LETT, V65, P1631
10527    KHOO GS, 1993, J PHYS-CONDENS MAT, V5, P6507
10528    LANDAU LD, 1977, QUANTUM MECHANICS
10529    LEE WW, 1989, PHYS REV B, V40, P3352
10530    LEE WW, 1989, PHYS REV B, V40, P9920
10531    NAMBA H, 1993, PHYS REV LETT, V71, P4027
10532    TANAKA M, 1988, JPN J APPL PHYS 2, V27, L2025
10533    TANAKA M, 1989, APPL PHYS LETT, V54, P1326
10534    TSUCHIYA M, 1989, PHYS REV LETT, V62, P466
10535    WEBER G, 1988, PHYS REV B, V38, P2179
10536    WEISBUCH C, 1980, J VAC SCI TECHNOL, V17, P1128
10537 NR 22
10538 TC 8
10539 SN 0953-8984
10540 J9 J PHYS-CONDENS MATTER
10541 JI J. Phys.-Condes. Matter
10542 PD FEB 10
10543 PY 1997
10544 VL 9
10545 IS 6
10546 BP 1241
10547 EP 1248
10548 PG 8
10549 SC Physics, Condensed Matter
10550 GA WK618
10551 UT ISI:A1997WK61800010
10552 ER
10553 
10554 PT J
10555 AU Yang, T
10556    Yang, LB
10557 TI Application of fuzzy cellular neural networks to Euclidean Distance
10558    Transformation
10559 SO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND
10560    APPLICATIONS
10561 DT Article
10562 DE distance transformation; Euclidean distance; fuzzy cellular neural
10563    network; image processing; mathematical morphology
10564 AB A new structure of fuzzy cellular neural network (FCNN) is proposed in
10565    this brief. In this FCNN, the relationship between fuzzy templates and
10566    input or/and output is defined by addition but not multiplication.
10567    Unlike the FCNN we proposed before [I], which can only implement
10568    morphological operators with flat structuring elements, this FCNN can
10569    implement morphological operators with all the types of structuring
10570    elements. This: FCNN is used to implement Euclidean Distance Transform.
10571    Simulation results are given.
10572 C1 UNIV E ZHOU,E ZHOU 436000,HUBEI,PEOPLES R CHINA.
10573 RP Yang, T, SHANGHAI UNIV SCI & TECHNOL,DEPT AUTOMAT CONTROL ENGN,SHANGHAI
10574    200072,PEOPLES R CHINA.
10575 CR CHUA LO, 1988, IEEE T CIRCUITS SYST, V35, P1257
10576    HARALICK RM, 1987, IEEE T PATTERN ANAL, V9, P532
10577    HEIJMANS HJA, 1994, MORPHOLOGICAL IMAGE
10578    MARAGOS PA, 1986, IEEE T ACOUST SPEECH, V34, P1228
10579    ROSKA T, 1993, IEEE T CIRCUITS-II, V40, P163
10580    SERRA J, 1982, IMAGE ANAL MATH MORP
10581    SERRA J, 1988, IMAGE ANAL MATH MORP, V2
10582    SHIH FY, 1992, IEEE T IMAGE PROCESS, V1, P197
10583    YANG T, 1996, IEEE T CIRCUITS-I, V43, P880
10584    YANG T, 1996, P 4 IEEE INT WORKSH, P181
10585 NR 10
10586 TC 5
10587 SN 1057-7122
10588 J9 IEEE TRANS CIRCUIT SYST-I
10589 JI IEEE Trans. Circuits Syst. I-Fundam. Theor. Appl.
10590 PD MAR
10591 PY 1997
10592 VL 44
10593 IS 3
10594 BP 242
10595 EP 246
10596 PG 5
10597 SC Engineering, Electrical & Electronic
10598 GA WK578
10599 UT ISI:A1997WK57800006
10600 ER
10601 
10602 PT J
10603 AU Liu, HY
10604    Zhang, ZN
10605    Fan, YB
10606    Dai, M
10607    Zhang, XL
10608    Wei, JJ
10609    Qiu, ZN
10610    Li, HB
10611    Wu, XX
10612    Deng, JQ
10613    Qi, DY
10614 TI Reagentless amperometric biosensor highly sensitive to hydrogen
10615    peroxide based on the incorporation of Meldola Blue, fumed silica and
10616    horseradish peroxidase into carbon paste
10617 SO FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY
10618 DT Article
10619 ID ELECTROCATALYTIC OXIDATION; ENZYME ELECTRODES; LACTATE OXIDASE;
10620    SENSORS; DEHYDROGENASE; PROTEINS; GRAPHITE; NADH
10621 AB A reagentless amperometric sensor highly sensitive to H2O2 has been
10622    prepared by incorporating fumed silica, horseradish peroxidase (HRP)
10623    and Meldola Blue into carbon paste. The efficient mediating ability to
10624    shift electrons between HRP and the carbon paste electrode via Meldola
10625    Blue was investigated by cyclic voltammetric and amperometric
10626    measurements. Reproducibility, response time, detection limit,
10627    selectivity and effects of applied potential, temperature and pH on the
10628    response of the sensor are reported. The high sensitivity of the sensor
10629    with a detection limit of 0.1 mu mol/l arose from the high efficiency
10630    of the bioelectrocatalytic reduction of hydrogen peroxide via HRP and
10631    Meldola Blue. The dependence of the Michaelis-Menten constant on the
10632    applied potential and the mediator concentration has been investigated
10633    and the results are presented.
10634 C1 SUZHOU INST CITY CONSTRUCT & ENVIRONM PROTECT,DEPT ENVIRONM PROTECT,SUZHOU 300111,JIANSU,PEOPLES R CHINA.
10635    FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
10636 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R
10637    CHINA.
10638 CR BIFULCO L, 1994, ANAL LETT, V27, P1443
10639    BONAKDAR M, 1989, J ELECTROANAL CH INF, V266, P47
10640    FORZANI ES, 1995, J ELECTROANAL CHEM, V382, P33
10641    FREW JE, 1986, J ELECTROANAL CH INF, V201, P1
10642    GARGUILO MG, 1993, ANAL CHEM, V65, P523
10643    GUO LH, 1991, ADV INORG CHEM RAD, V36, P341
10644    HURDIS EC, 1954, ANAL CHEM, V26, P320
10645    KAMIN RA, 1980, ANAL CHEM, V52, P1198
10646    KORELL U, 1994, ANAL CHEM, V66, P510
10647    KULYS J, 1990, BIOELECTROCH BIOENER, V24, P305
10648    KULYS J, 1992, ANAL LETT, V25, P1011
10649    KULYS J, 1993, ANAL CHIM ACTA, V274, P53
10650    KULYS J, 1994, ANAL CHIM ACTA, V288, P193
10651    KULYS J, 1994, J ELECTROANAL CHEM, V372, P49
10652    LIU HY, 1995, ANAL PROC, V32, P475
10653    LIU YC, 1996, ELECTROCHIM ACTA, V41, P77
10654    MULCHANDANI A, 1995, ANAL CHEM, V67, P94
10655    NAGY G, 1995, ANAL CHIM ACTA, V305, P65
10656    PERSSON B, 1990, J ELECTROANAL CH INF, V287, P61
10657    PERSSON B, 1990, J ELECTROANAL CH INF, V292, P115
10658    SANCHEZ PD, 1990, ELECTROANAL, V2, P303
10659    SCOTT DL, 1992, J ELECTROANAL CHEM, V341, P307
10660    SPRULES SD, 1995, ANAL CHIM ACTA, V304, P17
10661    WANG J, 1991, ANAL CHEM, V63, P2993
10662    WANG J, 1993, ANAL CHIM ACTA, V284, P385
10663    WOLLENBERGER U, 1991, BIOELECTROCH BIOENER, V26, P287
10664 NR 26
10665 TC 14
10666 SN 0937-0633
10667 J9 FRESENIUS J ANAL CHEM
10668 JI Fresenius J. Anal. Chem.
10669 PD FEB
10670 PY 1997
10671 VL 357
10672 IS 3
10673 BP 297
10674 EP 301
10675 PG 5
10676 SC Chemistry, Analytical
10677 GA WJ843
10678 UT ISI:A1997WJ84300010
10679 ER
10680 
10681 PT J
10682 AU Liu, HY
10683    Qian, JH
10684    Liu, YC
10685    Yu, TY
10686    Deng, JG
10687    Qi, DY
10688 TI Amperometric methylene blue-mediated sensor highly sensitive to
10689    hydrogen peroxide based on a composite membrane of regenerated silk
10690    fibroin and poly-vinyl alcohol as immobilization matrix for horseradish
10691    peroxidase
10692 SO FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY
10693 DT Article
10694 ID ENZYME ELECTRODES; BIOELECTROCATALYTIC REDUCTION; CARBON; SYSTEM;
10695    ASSAY; ACID
10696 AB Horseradish peroxidase (HRP) was effectively entrapped in a novel
10697    composite membrane of poly-vinyl alcohol and regenerated silk fibroin,
10698    and IR was employed to provide a useful insight into the structure of
10699    the composite membrane. A methylene blue-mediated sensor highly
10700    sensitive to hydrogen peroxide was constructed, which was based on the
10701    immobilization of HRP in the composite membrane. Cyclic voltammetry and
10702    amperometric measurement were utilized to demonstrate the feasibility
10703    of electron communication between immobilized HRP and a glassy carbon
10704    electrode in the bioelectrocatalytic reduction of hydrogen peroxide via
10705    methylene blue. Performance and characteristics of the sensor were
10706    evaluated with regard to response time, detection limit, selectivity,
10707    and dependence on temperature and pH as well as operating and storage
10708    stability. The sensor possesses a variety of characteristics including
10709    high sensitivity, rapid response time and a low detection limit of 0.1
10710    mu mol/L.
10711 C1 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
10712    FUDAN UNIV,DEPT MACROMOL SCI,SHANGHAI 200433,PEOPLES R CHINA.
10713 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R
10714    CHINA.
10715 CR AIZAWA M, 1984, ANAL LETT PT B, V17, P555
10716    BENNETTO HP, 1987, INT ANAL, V8, P22
10717    BIFULCO L, 1994, ANAL LETT, V27, P1443
10718    CLARK LC, 1979, METHOD ENZYMOL, V56, P448
10719    FREW JE, 1983, ANAL CHIM ACTA, V155, P139
10720    FREW JE, 1986, J ELECTROANAL CH INF, V201, P1
10721    GARGUILO MG, 1993, ANAL CHEM, V65, P523
10722    HO WO, 1993, J ELECTROANAL CHEM, V351, P185
10723    HURDIS EC, 1954, ANAL CHEM, V26, P320
10724    IANNIELLO RM, 1981, ANAL CHEM, V53, P2090
10725    JONSSON G, 1989, ELECTROANAL, V1, P465
10726    KAMIN RA, 1980, ANAL CHEM, V52, P1198
10727    LIU HY, 1995, ANAL PROC, V32, P475
10728    MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801
10729    OHARA TJ, 1993, ELECTROANAL, V5, P823
10730    OLSSON B, 1988, ANAL CHIM ACTA, V206, P49
10731    QIAN JH, 1995, J ELECTROANAL CHEM, V397, P157
10732    SANCHEZ PD, 1990, ELECTROANAL, V2, P303
10733    SANCHEZ PD, 1991, ELECTROANAL, V3, P281
10734    TATSUMA T, 1991, ANAL CHIM ACTA, V242, P85
10735    WANG J, 1991, ANAL CHEM, V63, P2993
10736    WANG J, 1992, ANAL CHEM, V64, P1285
10737    WELINDER KG, 1979, EUR J BIOCHEM, V96, P483
10738    WOLLENBERGER U, 1990, ANAL LETT, V23, P1795
10739    WOLLENBERGER U, 1991, BIOELECTROCH BIOENER, V26, P287
10740    YAMADA H, 1974, ARCH BIOCHEM BIOPHYS, V165, P728
10741    YAROPOLOV AI, 1979, DOKL AKAD NAUK SSSR, V249, P1399
10742    ZHANG Z, 1996, IN PRESS ANAL CHEM
10743 NR 28
10744 TC 5
10745 SN 0937-0633
10746 J9 FRESENIUS J ANAL CHEM
10747 JI Fresenius J. Anal. Chem.
10748 PD FEB
10749 PY 1997
10750 VL 357
10751 IS 3
10752 BP 302
10753 EP 307
10754 PG 6
10755 SC Chemistry, Analytical
10756 GA WJ843
10757 UT ISI:A1997WJ84300011
10758 ER
10759 
10760 PT J
10761 AU Wang, ZH
10762 TI Analysis of graded-index optical fibers by expansion of the fields in
10763    terms of partial-waveguide modes
10764 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
10765 DT Article
10766 DE optical fibers; mode-field and propagation constant; partial-waveguide
10767    mode; coupled-mode theory
10768 AB According to the core-cladding interface of an ideal waveguide, a
10769    step-index fiber, the transverse plane has been divided into two
10770    regions. Mode fields and propagation constants of the graded-index
10771    optical fibers have been calculated by the use of
10772    partial-waveguide-mode expansion and coupled-mode theory.
10773 RP Wang, ZH, SHANGHAI UNIV,WAVE SCI LAB,SHANGHAI 201800,PEOPLES R CHINA.
10774 CR CLARRICOATS PJB, 1970, ELECTRON LETT, V6, P694
10775    GLOGE D, 1971, APPL OPTICS, V10, P2252
10776    HENRY CH, 1989, J LIGHTWAVE TECHNOL, V7, P308
10777    OKOSHI T, 1982, OPTICAL FIBERS
10778    SNYDER AW, 1983, OPTICAL WAVEGUIDE TH
10779    WANG ZH, 1996, MICROW OPT TECHN LET, V12, P90
10780 NR 6
10781 TC 1
10782 SN 0895-2477
10783 J9 MICROWAVE OPT TECHNOL LETT
10784 JI Microw. Opt. Technol. Lett.
10785 PD MAR
10786 PY 1997
10787 VL 14
10788 IS 4
10789 BP 236
10790 EP 239
10791 PG 4
10792 SC Engineering, Electrical & Electronic; Optics
10793 GA WH757
10794 UT ISI:A1997WH75700013
10795 ER
10796 
10797 PT J
10798 AU Luo, WL
10799    Liu, HY
10800    Deng, HH
10801    Sun, K
10802    Zhao, CH
10803    Qi, DY
10804    Deng, JQ
10805 TI Biosensing of hydrogen peroxide at carbon paste electrode incorporating
10806    N-methyl phenazine methosulphate, fumed-silica and horseradish
10807    peroxidase
10808 SO ANALYTICAL LETTERS
10809 DT Article
10810 DE biosensor; N-methyl phenazine methosulphate; horseradish peroxidase;
10811    hydrogen peroxide; fumed silica; carbon paste electrode
10812 ID CYTOCHROME-C PEROXIDASE; SPECTROPHOTOMETRIC DETERMINATION;
10813    PYROLYTIC-GRAPHITE; ACTIVATED CARBON; SENSORS; DEHYDROGENASE; POLYMER;
10814    GLUCOSE; ENZYMES
10815 AB Biosensing of hydrogen peroxide was made at a carbon paste electrode
10816    incorporating fumed silica, horseradish peroxidase and N-methyl
10817    phenazine methosulphate. Cyclic voltammetric and amperometric
10818    measurements were used for the first time to demonstrate the
10819    suitability of electron communication between horseradish peroxidase
10820    and a carbon paste electrode via N-methyl phenazine methosulphate, an
10821    electron transfer mediator. Performance and characteristics of the
10822    biosensor were evaluated with respect to response time, detection
10823    limit, applied potential and concentration of the mediator. Effect of
10824    applied potential and amount of the mediator in carbon paste on the
10825    Michaelis-Menten constant of the biosensor was investigated. The
10826    biosensor possessed a variety of characteristics including long
10827    stability and rapid response and high sensitivity to hydrogen peroxide,
10828    with a detection limit of 0.08 mu M.
10829 C1 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
10830    FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
10831 CR AIZAWA M, 1984, ANAL LETT PT B, V17, P555
10832    AKIMOTO K, 1990, ANAL BIOCHEM, V189, P182
10833    BIFULCO L, 1994, ANAL LETT, V27, P1443
10834    BONAKDAR M, 1989, J ELECTROANAL CH INF, V266, P47
10835    CHICHARRO M, 1994, ANAL LETT, V27, P1809
10836    CLAPP PA, 1989, ANAL CHIM ACTA, V218, P331
10837    CSOREGI E, 1994, ANAL CHEM, V66, P3604
10838    FREW JE, 1986, J ELECTROANAL CH INF, V201, P1
10839    GARGUILO MG, 1993, ANAL CHEM, V65, P523
10840    GORTON L, 1986, J MOL CATAL, V38, P157
10841    GORTON L, 1991, ANAL CHIM ACTA, V249, P43
10842    GUO LH, 1991, ADV INORG CHEM RAD, V36, P341
10843    HO WO, 1993, J ELECTROANAL CHEM, V351, P185
10844    HURDIS EC, 1954, ANAL CHEM, V26, P320
10845    IANNIELLO RM, 1981, ANAL CHEM, V53, P448
10846    JOHANSSON G, 1989, ELECTROANAL, V1, P465
10847    KAMIN RA, 1980, ANAL CHEM, V52, P1198
10848    KOK GM, 1978, ENVIRON SCI TECHNOL, V12, P1073
10849    KORELL U, 1994, ANAL CHEM, V66, P510
10850    KULYS J, 1990, BIOELECTROCH BIOENER, V24, P305
10851    KULYS J, 1993, ANAL CHIM ACTA, V274, P53
10852    KUWANA T, 1964, ANAL CHEM, V36, P241
10853    LIU H, 1995, ANAL P, V32, P375
10854    LIU YC, 1996, ELECTROCHIM ACTA, V41, P77
10855    MOTTA N, 1994, ANAL CHEM, V66, P566
10856    OHARA TJ, 1993, ELECTROANAL, V5, P823
10857    RUZGAS T, 1995, J ELECTROANAL CHEM, V391, P41
10858    SCOTT DL, 1992, J ELECTROANAL CHEM, V341, P307
10859    SCOTT DL, 1994, ANAL CHEM, V66, P1217
10860    SELLERS RM, 1980, ANALYST, V105, P950
10861    SHU HC, 1995, BIOTECHNOL BIOENG, V46, P270
10862    WANG J, 1991, ANAL CHEM, V63, P2993
10863    WANG J, 1993, ANAL CHIM ACTA, V284, P385
10864    WIJESURIYA DC, 1993, BIOSENS BIOELECTRON, V8, P155
10865    WOLLENBERGER U, 1990, ANAL LETT, V23, P1795
10866    YAROPOLOV AI, 1979, DOKL AKAD NAUK SSSR, V249, P1399
10867    ZHANG ZE, 1996, ANAL CHEM, V68, P1632
10868 NR 37
10869 TC 7
10870 SN 0003-2719
10871 J9 ANAL LETT
10872 JI Anal. Lett.
10873 PY 1997
10874 VL 30
10875 IS 2
10876 BP 205
10877 EP 220
10878 PG 16
10879 SC Chemistry, Analytical
10880 GA WH284
10881 UT ISI:A1997WH28400001
10882 ER
10883 
10884 PT J
10885 AU Bai, ZZ
10886    Wang, DR
10887 TI The monotone convergence of the two-stage iterative method for solving
10888    large sparse systems of linear equations
10889 SO APPLIED MATHEMATICS LETTERS
10890 DT Article
10891 DE linear system of equations; two-stage iterative method; Monotone
10892    convergence; Monotone convergence rate
10893 AB This paper sets up the monotone convergence theory for the two-stage
10894    iterative method proposed by Frommer and Szyld in [1], and investigates
10895    the influence of the splitting matrices and the inner iteration number
10896    sequence on the monotone convergence rate of this method.
10897 C1 SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
10898 RP Bai, ZZ, CHINESE ACAD SCI,INST COMPUTAT MAT & SCI ENGN COMP,STATE KEY
10899    LAB SCI ENGN COMP,POB 2719,BEIJING 100080,PEOPLES R CHINA.
10900 CR FROMMER A, 1992, NUMER MATH, V63, P345
10901    GOLUB GH, 1988, NUMER MATH, V53, P571
10902    LANZKRON PJ, 1991, NUMER MATH, V58, P685
10903    NICHOLS NK, 1973, SIAM J NUMER ANAL, V10, P460
10904    WACHSPRESS EL, 1966, ITERATIVE SOLUTION E
10905 NR 5
10906 TC 8
10907 SN 0893-9659
10908 J9 APPL MATH LETT
10909 JI Appl. Math. Lett.
10910 PD JAN
10911 PY 1997
10912 VL 10
10913 IS 1
10914 BP 113
10915 EP 117
10916 PG 5
10917 SC Mathematics, Applied
10918 GA WH071
10919 UT ISI:A1997WH07100021
10920 ER
10921 
10922 PT J
10923 AU Cheng, CJ
10924    Shang, XC
10925 TI Mode jumping of simply supported rectangular plates on non-linear
10926    elastic foundation
10927 SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS
10928 DT Article
10929 DE non-linear stability; non-linear elastic foundation; secondary
10930    bifurcation; mode jumping; stability of bifurcation solution
10931 AB In this paper, we study the non-linear stability of simply supported
10932    rectangular plates on a non-linear elastic foundation and use the
10933    theory of singularities to analyse the effect of the coefficients of
10934    the foundation on the stability behaviour. The results point out that
10935    the instability behaviour of the rectangular plate near a double
10936    eigenvalue is very complex due to the interaction between the
10937    foundation and plate. And the stability behaviour of the plate not only
10938    depends on the elastic coefficients of the foundation but also the
10939    modes of the plate when it losses its stability. From 45 bifurcation
10940    diagrams given in the paper, one can see that the rectangular plate not
10941    only occurs the secondary bifurcation but also has very complex
10942    super-critical behaviour like mode jumping. In these figures, we still
10943    discover the new manners of mode transition. Finally, we discuss all
10944    possible bifurcation behaviours of rectangular plates. Copyright (C)
10945    1996 Elsevier Science Ltd.
10946 C1 SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA.
10947 RP Cheng, CJ, LANZHOU UNIV,DEPT MECH,LANZHOU 730000,PEOPLES R CHINA.
10948 CR BAUER L, 1965, SIAM J APPL MATH, V13, P603
10949    BAUER L, 1975, SIAM REV, V17, P101
10950    CHENG CJ, 1992, LIXUE YU SHIJIAN, V14, P12
10951    CHOW SN, 1982, GRUHDLEHREN, V251
10952    HOLDER EJ, 1984, SIAM J MATH ANAL, V15, P446
10953    MAOSKANT R, 1992, INT J SOLIDS STRUCT, V29, P1209
10954    MATHOWSKY BJ, 1973, INT J NONLINEAR MECH, V9, P84
10955    POSTON T, 1978, CATASTROPHE THEORY I
10956    SCHAEFFER D, 1979, COMMUN MATH PHYS, V69, P209
10957    STEIN M, 1959, R40 NASA
10958    STROEBEL GJ, 1973, J ELASTICITY, V3, P185
10959    SUCHY H, 1985, Z ANGEW MATH MECH, V65, P71
10960    SUPPLE WJ, 1970, INT J SOLIDS STRUCT, V6, P1234
10961    UEMURA M, 1977, INT J NONLINEAR MECH, V12, P355
10962 NR 14
10963 TC 1
10964 SN 0020-7462
10965 J9 INT J NON-LINEAR MECH
10966 JI Int. J. Non-Linear Mech.
10967 PD JAN
10968 PY 1997
10969 VL 32
10970 IS 1
10971 BP 161
10972 EP 172
10973 PG 12
10974 SC Mechanics
10975 GA WG519
10976 UT ISI:A1997WG51900013
10977 ER
10978 
10979 PT J
10980 AU Sang, WB
10981    Durose, K
10982    Brinkman, AW
10983    Tanner, BK
10984 TI Growth and characterization of magnetic metal Mn film by MOCVD
10985 SO MATERIALS CHEMISTRY AND PHYSICS
10986 DT Article
10987 DE metal organic chemical vapour deposition; Mn film growth; growth
10988    kinetics
10989 ID MOVPE
10990 AB Metal manganese films have successfully been grown on (100) and (111)
10991    GaAs substrates by metal organic chemical vapour deposition using
10992    tricarbonyl (methylcyclopentadienyl) manganese (TCMn) as the Mn source
10993    material. The onset of diffusion limited growth occurs at a temperature
10994    of similar to 470 degrees C. Above this transition temperature, the
10995    growth is relatively independent of the temperature and limited only by
10996    the rate at which the precursor is able to diffuse to the substrate. At
10997    the low temperatures, the growth rate is limited by the pyrolysis
10998    behaviour of the TCMn and is thermally activated with an activation
10999    energy of similar to 220 kJ mol(-1). This compares with the activation
11000    energy obtained for the decomposition of the TCMn of 236 kJ mol(-1).
11001    The growth characteristic of Mn films has also shown that no growth
11002    took place below the temperature of 410 degrees C and the morphology of
11003    the layers grown at the higher temperature of 470 degrees C was
11004    considerably better than that of the layers grown at lower
11005    temperatures. Ex-situ reflection high-energy electron diffraction
11006    (RHEED) showed the films to be polycrystalline Mn, with good surface
11007    morphology. Surface roughness was measured to be similar to 4 nm and
11008    was probably limited by oxidation, when exposed to air.
11009 C1 UNIV DURHAM,DEPT PHYS,DURHAM DH1 3LE,ENGLAND.
11010 RP Sang, WB, SHANGHAI UNIV,JIADING CAMPUS,SHANGHAI 201800,PEOPLES R CHINA.
11011 CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472
11012    DUB M, 1966, ORGANOMETALLIC COMPO, V1, P1445
11013    HAILS JE, 1986, J CRYST GROWTH, V79, P940
11014    MOTOMURA Y, 1988, SUPERLATTICE MICROST, V4, P479
11015    SANG WB, 1991, J CRYST GROWTH, V113, P1
11016 NR 5
11017 TC 0
11018 SN 0254-0584
11019 J9 MATER CHEM PHYS
11020 JI Mater. Chem. Phys.
11021 PD JAN
11022 PY 1997
11023 VL 47
11024 IS 1
11025 BP 75
11026 EP 77
11027 PG 3
11028 SC Materials Science, Multidisciplinary
11029 GA WG642
11030 UT ISI:A1997WG64200013
11031 ER
11032 
11033 PT J
11034 AU Yao, DM
11035    Li, CF
11036 TI Field and intensity expectation values of quantum solitons in optical
11037    fibers
11038 SO ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER
11039 DT Article
11040 ID FLUCTUATIONS; APPROXIMATION; PROPAGATION
11041 AB Expectation values of the field and intensity operators are evaluated
11042    for quantum solitons in the normalized fundamental soliton states with
11043    a Gaussian momentum superposition and a Poisson distribution for photon
11044    numbers. The associate quantum diffusion effects are discussed and the
11045    conditions which lead to the classical limit are identified. A
11046    numerical estimate is given using experimental data.
11047 C1 UNIV SCI & TECHNOL CHINA,CTR FUNDAMENTAL PHYS,HEFEI 230026,ANHUI,PEOPLES R CHINA.
11048    SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
11049 RP Yao, DM, CHINA CTR ADV SCI & TECHNOL,WORLD LAB,POB 8730,BEIJING
11050    100080,PEOPLES R CHINA.
11051 CR BELINSKII AV, 1991, JETP LETT, V53, P74
11052    BELINSKII AV, 1992, SOV J QUANTUM ELECTR, V22, P828
11053    CARTER SJ, 1987, PHYS REV LETT, V58, P1841
11054    DESURVIRE E, 1994, PHYS TODAY, V62, P20
11055    DRUMMOND PD, 1993, NATURE, V365, P307
11056    GLASS AM, 1993, PHYS TODAY, V61, P34
11057    GORDON JP, 1986, OPT LETT, V11, P665
11058    HASEGAWA A, 1990, OPTICAL SOLUTIONS FI
11059    KARTNER FX, 1996, PHYS REV A, V53, P454
11060    KUZNETSOV DY, 1991, JETP LETT, V54, P568
11061    KUZNETZOV DY, 1992, QUANTUM OPT, V4, P221
11062    LAI Y, 1989, PHYS REV A, V40, P854
11063    LAI YC, 1993, J OPT SOC AM B, V10, P475
11064    MOLLENAUER LF, 1980, PHYS REV LETT, V45, P1095
11065    NOHL CR, 1976, ANN PHYS-NEW YORK, V96, P234
11066    ROSENBLUH M, 1991, PHYS REV LETT, V66, P153
11067    WADACHI M, 1984, J PHYS SOC JPN, V53, P1933
11068    WADATI M, 1985, SPRINGER SERIES SYNE, V30, P68
11069    WRIGHT EM, 1991, PHYS REV A, V43, P3836
11070    YAO DM, 1995, PHYS REV A, V52, P1574
11071    YAO DM, 1995, PHYS REV A, V52, P4871
11072 NR 21
11073 TC 0
11074 SN 0722-3277
11075 J9 Z PHYS B-CONDENS MATTER
11076 JI Z. Phys. B-Condens. Mat.
11077 PD FEB
11078 PY 1997
11079 VL 102
11080 IS 2
11081 BP 239
11082 EP 243
11083 PG 5
11084 SC Physics, Condensed Matter
11085 GA WF434
11086 UT ISI:A1997WF43400012
11087 ER
11088 
11089 PT J
11090 AU Sang, WB
11091    Zhou, SQ
11092    Wu, WH
11093 TI Investigation of equilibrium partial pressures over (Hg1-xCdx)(y)Te-1-y
11094    (y<0.5) melts
11095 SO JOURNAL OF CRYSTAL GROWTH
11096 DT Article
11097 ID TRAVELING HEATER METHOD; CRYSTAL-GROWTH; LPE GROWTH; TE; HG1-XCDXTE
11098 AB A double optical path system was designed for the optical absorbance
11099    measurement. The equilibrium partial pressures of Hg and Te-2 over the
11100    (Hg1-xCdx)(y)Te-1-y (y < 0.5) melts with x = 0.13-0.55 and y =
11101    0.21-0.41 between 500 and 750 degrees C were determined by this method.
11102    The experimental results were reproducible and the errors were
11103    estimated as about 5%. The data achieved show that p(Hg) increases with
11104    the rise of y when T and x remain unchanged, and decreases slightly
11105    with the increase of x when T and y are kept constant. The cause of
11106    these phenomena is discussed.
11107 RP Sang, WB, SHANGHAI UNIV SCI & TECHNOL,JIADING CAMPUS,SHANGHAI
11108    201800,PEOPLES R CHINA.
11109 CR ASTLES MG, 1992, J CRYST GROWTH, V117, P213
11110    BERNARDI S, 1988, J CRYST GROWTH, V87, P365
11111    BREBRICK RF, 1965, J PHYS CHEM SOLIDS, V26, P989
11112    DENOBEL D, 1959, PHILIPS RES REP, V14, P361
11113    GILLE P, 1991, J CRYST GROWTH, V114, P77
11114    GOLDFINGER P, 1963, T FARADAY SOC, V59, P2851
11115    HARMAN TC, 1980, J ELECTRON MATER, V9, P945
11116    HUA SC, 1985, J ELECTROCHEM SOC, V132, P942
11117    MOCHIZUKI K, 1990, J CRYST GROWTH, V99, P722
11118    PELLICIARI B, 1988, J CRYST GROWTH, V86, P146
11119    PELLICIARI B, 1994, PROG CRYST GROWTH CH, V29, P1
11120    SCHMIT JL, 1968, INFRARED PHYS, V8, P247
11121    SCHWARTZ JP, 1981, J ELECTROCHEM SOC, V128, P438
11122    SHUQUAN Z, 1989, J APPL SCI, V7, P271
11123    STEININGER J, 1976, J ELECTRON MATER, V5, P299
11124    UEDA R, 1972, J CRYST GROWTH, V13, P668
11125 NR 16
11126 TC 0
11127 SN 0022-0248
11128 J9 J CRYST GROWTH
11129 JI J. Cryst. Growth
11130 PD JAN
11131 PY 1997
11132 VL 171
11133 IS 1-2
11134 BP 45
11135 EP 49
11136 PG 5
11137 SC Crystallography
11138 GA WE271
11139 UT ISI:A1997WE27100007
11140 ER
11141 
11142 PT J
11143 AU Guo, BY
11144    He, LP
11145    Mao, DK
11146 TI On the two-dimensional Navier-Stokes equations in stream function form
11147 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
11148 DT Article
11149 AB In this paper the initial-boundary value problem of the Navier-Stokes
11150    equations in stream function form is considered. A trilinear form is
11151    introduced to deal with the nonlinear term. A weak formulation of this
11152    problem is provided. The existence of a weak solution is proved by an
11153    auxiliary semi-discrete Faedo-Galerkin scheme and a compactness
11154    argument. The uniqueness and regularity of the solution are discussed.
11155    Finally the convergence of the numerical solution and the converge rate
11156    with a certain choice of basis in the Faedo-Galerkin method are given.
11157    (C) 1997 Academic Press
11158 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
11159 RP Guo, BY, CITY UNIV HONG KONG,DEPT MATH,KOWLOON,HONG KONG.
11160 CR ADAMS RA, 1975, SOBOLEV SPACES
11161    BERNARDI C, 1992, MATH COMPUT, V59, P63
11162    CANUTO C, 1988, SPECTRAL METHODS FLU
11163    GOTTLIEB D, 1977, CBMS REGIONAL C SERI, V26
11164    GUO B, 1985, SCI SINICA SER A, V28, P1139
11165    GUO BY, 1988, FINITE DIFFERENCE ME
11166    LIONS JL, 1969, QUELQUES METHODES RE
11167    ODEN JT, 1974, FINITE ELEMENTS MATH
11168    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
11169    TEMANS R, 1977, NAVIER STOKES EQUATI
11170 NR 10
11171 TC 3
11172 SN 0022-247X
11173 J9 J MATH ANAL APPL
11174 JI J. Math. Anal. Appl.
11175 PD JAN 1
11176 PY 1997
11177 VL 205
11178 IS 1
11179 BP 1
11180 EP 31
11181 PG 31
11182 SC Mathematics, Applied; Mathematics
11183 GA WD284
11184 UT ISI:A1997WD28400001
11185 ER
11186 
11187 PT J
11188 AU Feng, SS
11189    Zhu, ZY
11190 TI Path integral quantization and the ground-state wave functional for
11191    multiplier scalar-vector field systems
11192 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
11193 DT Article
11194 AB With the help of path-integral quantization and Fradkin's approach, we
11195    obtain a new representation in the Schrodinger picture of the
11196    multiplier scalar-vector fields and the ground-state functional. We
11197    show that the model is equivalent to free scalar fields with the same
11198    mass.
11199 C1 ACAD SINICA,INST NUCL RES,SHANGHAI 201800,PEOPLES R CHINA.
11200 RP Feng, SS, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
11201    R CHINA.
11202 CR DIRAC PAM, 1964, LECTURES QUANTUM MEC
11203    FENG SS, 1995, INT J THEOR PHYS, V34, P1827
11204    FRADKIN E, 1993, NUCL PHYS B, V389, P587
11205    FRADKIN E, 1993, NUCL PHYS B, V392, P667
11206    LI ZP, 1991, J PHYS A-MATH GEN, V24, P4261
11207    LOPEZ A, 1992, PHYS REV LETT, V69, P2126
11208 NR 6
11209 TC 1
11210 SN 0020-7748
11211 J9 INT J THEOR PHYS
11212 JI Int. J. Theor. Phys.
11213 PD JAN
11214 PY 1997
11215 VL 36
11216 IS 1
11217 BP 41
11218 EP 46
11219 PG 6
11220 SC Physics, Multidisciplinary
11221 GA WD241
11222 UT ISI:A1997WD24100005
11223 ER
11224 
11225 PT J
11226 AU Bai, ZZ
11227    Sun, JC
11228    Wang, DR
11229 TI A unified framework for the construction of various matrix
11230    multisplitting iterative methods for large sparse system of linear
11231    equations
11232 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
11233 DT Article
11234 DE system of linear equations; parallel iteration; matrix multisplitting;
11235    relaxation method; convergence theory
11236 ID PARALLEL SOLUTION; CONVERGENCE; SPLITTINGS; ALGORITHM; 2-STAGE
11237 AB A unified framework for the construction of various synchronous and
11238    asynchronous parallel matrix multisplitting iterative methods, suitable
11239    to the SIMD and MIMD multiprocessor systems, respectively, is
11240    presented, and its convergence theory is established under rather weak
11241    conditions. These afford general method models and systematical
11242    convergence criterions for studying the parallel iterations in the
11243    sense of matrix multisplitting. In addition, how the known parallel
11244    matrix multisplitting iterative methods can be classified into this new
11245    framework, and what novel ones can be generated by it are shown in
11246    detail.
11247 C1 CHINESE ACAD SCI,INST SOFTWARE,BEIJING 100080,PEOPLES R CHINA.
11248    SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
11249 RP Bai, ZZ, CHINESE ACAD SCI,INST COMPUTAT MATH & SCI ENGN COMP,STATE KEY
11250    LAB SCI ENGN COMP,BEIJING 100080,PEOPLES R CHINA.
11251 CR BAI ZZ, IN PRESS COMP MULTIS
11252    BAI ZZ, IN PRESS J COMP MATH
11253    BAI ZZ, 1993, CHINESE J ENG MATH, V10, P107
11254    BAI ZZ, 1993, J NATU SCI HEILONGJI, V10, P1
11255    BAI ZZ, 1993, NUMER MATH J CHINESE, V2, P87
11256    BAI ZZ, 1993, THESIS SHANGHAI U SC
11257    BAI ZZ, 1994, CHINESE J ENG MATH, V11, P99
11258    BAI ZZ, 1994, NUMER MATH J CHINESE, V16, P107
11259    BAI ZZ, 1995, APPL MATH JCU A, V10, P133
11260    BAI ZZ, 1995, COMMUN NUMER METH EN, V11, P363
11261    BAI ZZ, 1995, J FUDAN U, V34, P139
11262    BAI ZZ, 1995, PARALLEL COMPUT, V21, P565
11263    BRU R, 1988, LINEAR ALGEBRA APPL, V103, P175
11264    BRU R, 1990, APPL MATH LETT, V3, P65
11265    CHAZAN D, 1969, LINEAR ALGEBRA APPL, V2, P199
11266    EVANS DJ, 1991, PARALLEL COMPUT, V17, P165
11267    EVANS DJ, 1992, INT J COMPUT MATH, V43, P173
11268    FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141
11269    FROMMER A, 1992, NUMER MATH, V63, P345
11270    HADJIDIMOS A, 1978, MATH COMPUT, V32, P149
11271    NEUMANN M, 1987, LINEAR ALGEBRA APPL, V88, P559
11272    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
11273    SZYLD DB, 1992, SIAM J MATRIX ANAL A, V13, P671
11274    VARGA RS, 1961, MATRIX ITERATIVE ANA
11275    WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473
11276    WANG DR, 1994, P 92 SHANGH INT NUM
11277    WANG DR, 1994, PARALLEL ALGORITHMS, V2, P173
11278    WHITE RE, 1989, SIAM J MATRIX ANAL A, V10, P481
11279 NR 28
11280 TC 15
11281 SN 0898-1221
11282 J9 COMPUT MATH APPL
11283 JI Comput. Math. Appl.
11284 PD DEC
11285 PY 1996
11286 VL 32
11287 IS 12
11288 BP 51
11289 EP 76
11290 PG 26
11291 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
11292 GA WC720
11293 UT ISI:A1996WC72000005
11294 ER
11295 
11296 PT J
11297 AU Sang, WB
11298    Wu, WH
11299 TI Thermodynamic investigation of equilibrium partial pressures over
11300    Hg1-xCdxTe melts
11301 SO ACTA CHIMICA SINICA
11302 DT Article
11303 AB Equilibrium partial pressures over Hg1-xCdxTe(MCT) melts have been
11304    considered as important thermodynamic parameters in high quality MCT
11305    crystal growth, However, these parameters reported until present in
11306    literatures are highly different from each other, which has become an
11307    obstacle to furthering studies on the crystal growth of MCT. This work
11308    determined systematically Hg and Te partial pressures over the MCT
11309    melts in the range of x = 0 similar to 0.4, based on the principles of
11310    the optical absorption, Cd partial pressure is calculated from our
11311    experimental results and known thermodynamic data. Relationship between
11312    P-Hg and composition re is discussed, Comparison has been made between
11313    our results and other author's data. The cause of difference is pursued.
11314 RP Sang, WB, SHANGHAI UNIV SCI & TECHNOL,DEPT INORGAN MAT,SHANGHAI
11315    201800,PEOPLES R CHINA.
11316 CR BREBRICK RF, 1965, J PHYS CHEM SOLIDS, V26, P989
11317    DENOBEL D, 1959, PHILIPS RES REP, V14, P361
11318    GOLDFINGER P, 1963, T FARADAY SOC, V59, P2851
11319    HARMAN TC, 1967, PHYSICS CHEM 2 6 COM, P725
11320    HULTGREN R, 1963, SELECTED VALUES THER, P592
11321    SCHMIT JL, 1968, INFRARED PHYS, V8, P247
11322    SCHWARTZ JP, 1981, J ELECTROCHEM SOC, V128, P438
11323    STEININGER J, 1970, J APPL PHYS, V41, P2713
11324    STEININGER J, 1976, J ELECTRON MATER, V5, P299
11325    SUGAWARA S, 1971, B JAP SOC MECH ENG, V118, P2014
11326 NR 10
11327 TC 0
11328 SN 0567-7351
11329 J9 ACTA CHIM SIN
11330 JI Acta Chim. Sin.
11331 PY 1996
11332 VL 54
11333 IS 12
11334 BP 1151
11335 EP 1158
11336 PG 8
11337 SC Chemistry, Multidisciplinary
11338 GA WC584
11339 UT ISI:A1996WC58400002
11340 ER
11341 
11342 PT J
11343 AU Zhu, SJ
11344    Ren, ZM
11345    Deng, K
11346    Jiang, GC
11347 TI Numerical simulation of alternative horizontal levitation
11348    electromagnetic continuous casting
11349 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
11350 DT Article
11351 DE horizontal electromagnetic continuous casting; electromagnetic
11352    levitation; numerical simulation
11353 AB Electromagnetic problem of horizontal electromagnetic continuous
11354    casting (HEMC) had been studied. The influence of structure of
11355    apparatus and power frequency on maximum electromagnetic levitation
11356    pressure had been analyzed. The results show that, in order to get
11357    large electromagnetic levitation pressure at high frequency, the screen
11358    must be wide but can be thin, and the width of the sheet should be
11359    closed to the distance of the flanges.
11360 C1 SHANGHAI UNIV,SHANGHAI ENHANCED LAB FERROMET,SHANGHAI 200072,PEOPLES R CHINA.
11361 CR ASAI S, 1989, TETSU TO HAGANE, V75, P32
11362    REN ZM, 1991, J DALIAN U TECH, V31, P419
11363    REN ZM, 1993, CHINESE J NONFERROUS, V3, P93
11364    REN ZM, 1994, CHINESE J NONFERROUS, V4, P78
11365    REN ZM, 1994, J DALIAN U TECH, V34, P556
11366    REN ZM, 1996, CHINESE J NONFERROUS, V6, P108
11367    SAKANE J, 1988, METALL T B, V9, P397
11368    ZHU SJ, 1995, T SHANGHAI U, V1, P68
11369 NR 8
11370 TC 2
11371 SN 1003-6326
11372 J9 TRANS NONFERROUS METAL SOC CH
11373 JI Trans. Nonferrous Met. Soc. China
11374 PD DEC
11375 PY 1996
11376 VL 6
11377 IS 4
11378 BP 42
11379 EP 46
11380 PG 5
11381 SC Metallurgy & Metallurgical Engineering
11382 GA WC539
11383 UT ISI:A1996WC53900010
11384 ER
11385 
11386 PT J
11387 AU Huang, YX
11388    Senos, AMR
11389    Rocha, J
11390    Baptista, JL
11391 TI Gel formation in mullite precursors obtained via
11392    tetraethylorthosilicate (TEOS) pre-hydrolysis
11393 SO JOURNAL OF MATERIALS SCIENCE
11394 DT Article
11395 ID ALUMINOSILICATE GELS; SPINEL PHASE; XEROGELS
11396 AB Tetraethylorthosilicate (TEOS) and aluminium chloride were taken as
11397    sources of SiO2 and Al2O3 to prepare precursors of mullite by
11398    pre-hydrolysis of TEOS under refluxing conditions. Gelation was carried
11399    out at different pH values and the effect of the pH of gelation on the
11400    subsequent temperature-induced phase transformations was characterized
11401    by differential thermal analysis, powder X-ray diffraction and Si-29
11402    and Al-27 solid-state nuclear magnetic resonance spectroscopy. A
11403    pH-dependent exothermic peak was observed at similar to 980 degrees C.
11404    Strong acidic conditions (pH = 1.5) were found to be beneficial for
11405    improving the mixing scale of the Al-Si components, leading to a
11406    mullitization temperature of similar to 1200 degrees C and a sharp 980
11407    degrees C exothermic peak. In strong basic conditions (pH = 11.5), no
11408    evident similar to 980 degrees C exothermic peak was detected, and the
11409    mullitization temperature was as high as 1350 degrees C, probably due
11410    to heterogeneity in the mixing scale of the Al-Si components in the
11411    precursor system. A gel formation process has been proposed.
11412 C1 INESC,DEPT ENGN CERAM & VIDRO,P-3800 AVEIRO,PORTUGAL.
11413    UNIV AVEIRO,DEPT QUIM,P-3800 AVEIRO,PORTUGAL.
11414    SHANGHAI UNIV,FAC MAT SCI & ENGN,SHANGHAI,PEOPLES R CHINA.
11415 CR CHAKRABORTY AK, 1978, J AM CERAM SOC, V61, P170
11416    CHAKRAVORTY AK, 1994, J MATER SCI, V29, P1558
11417    HULING JC, 1991, J AM CERAM SOC, V74, P2374
11418    HYATT MJ, 1990, J MATER SCI, V25, P2815
11419    LI DX, 1991, J AM CERAM SOC, V74, P2382
11420    LIPPMAA E, 1980, J AM CHEM SOC, V102, P4889
11421    OKADA K, 1986, J AM CERAM SOC, V69, P652
11422    OKADA K, 1986, J AM CERAM SOC, V69, C251
11423    ROCHA J, 1990, PHYS CHEM MINER, V17, P17
11424    SACKS MD, 1990, CERAMIC T, V6, P167
11425    SCHNEIDER H, 1992, J MATER SCI, V27, P805
11426    SCHNEIDER H, 1994, J EUR CERAM SOC, V13, P441
11427    SUNDARESAN S, 1991, J AM CERAM SOC, V74, P2388
11428    YAMANE M, 1984, J NON-CRYST SOLIDS, V63, P13
11429    YANG H, 1989, J CHINESE CERAM SOC, V17, P204
11430 NR 15
11431 TC 5
11432 SN 0022-2461
11433 J9 J MATER SCI
11434 JI J. Mater. Sci.
11435 PD JAN 1
11436 PY 1997
11437 VL 32
11438 IS 1
11439 BP 105
11440 EP 110
11441 PG 6
11442 SC Materials Science, Multidisciplinary
11443 GA WC325
11444 UT ISI:A1997WC32500013
11445 ER
11446 
11447 PT J
11448 AU Bi, PZ
11449    Shi, YM
11450 TI The P-T spectra of pion from resonance decays
11451 SO NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND
11452    FIELDS
11453 DT Article
11454 ID HEAVY-ION COLLISIONS; NUCLEAR COLLISIONS; FINITE TEMPERATURE; CHARMONIUM
11455 AB The PT spectra of pion from resonance decay are studied. It is found
11456    that the reduction of effective mass increases the emission of low P-T
11457    pions. The approach to explain the enhancement of low-P-T pion observed
11458    by the NA35 Collaboration in 200 GeV S+S collisions with the
11459    contribution from the resonance decays can be improved by the mass
11460    reduction.
11461 C1 FUDAN UNIV,DEPT PHYS 2,SHANGHAI 200433,PEOPLES R CHINA.
11462    SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA.
11463 RP Bi, PZ, FUDAN UNIV,TD LEE PHYS LAB,SHANGHAI 200433,PEOPLES R CHINA.
11464 CR BARZ HW, 1991, PHYS LETT B, V254, P332
11465    BROWN GE, SUBYNTC9013
11466    HARRINGTON BJ, 1974, PHYS REV LETT, V33, P324
11467    HASHIMOTO T, 1986, PHYS REV LETT, V57, P2123
11468    HASHIMOTO T, 1988, Z PHYS C, V38, P251
11469    KICG P, 1986, PHYS REP, V142, P167
11470    KUSENEZOV D, 1989, PHYS REV C, V40, P2075
11471    KUSENEZOV D, 1991, PHYS REV C, V44, P902
11472    LI CQ, NUCLTH9504025
11473    PINZHEN B, 1988, J PHYS G, V14, P681
11474    PINZHEN B, 1989, J PHYS G NUCL PARTIC, V15, P1653
11475    PISARSKI RD, 1982, PHYS REV D, V26, P3735
11476    PISARSKI RD, 1985, PHYS LETT B, V160, P137
11477    SOLLFRANK J, 1990, PHYS LETT B, V252, P256
11478    SOLLFRANK J, 1991, Z PHYS C PART FIELDS, V52, P593
11479    STROBELE H, 1988, Z PHYS C, V38, P89
11480    VOGT R, 1988, PHYS LETT B, V206, P333
11481 NR 17
11482 TC 0
11483 SN 0369-3546
11484 J9 NUOVO CIMENTO A-NUCL PART F
11485 JI Nuovo Cimento Soc. Ital. Fis. A-Nucl. Part. Fields
11486 PD NOV
11487 PY 1996
11488 VL 109
11489 IS 11
11490 BP 1601
11491 EP 1604
11492 PG 4
11493 SC Physics, Particles & Fields
11494 GA WC189
11495 UT ISI:A1996WC18900008
11496 ER
11497 
11498 PT J
11499 AU Shao, HQ
11500    Gao, XH
11501    Cao, ZC
11502 TI Effect of annealing on phase structure and degradation of a zinc oxide
11503    varistor with Si-additive
11504 SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
11505 DT Article
11506 ID ANTIMONY OXIDE; ZNO; CERAMICS; MICROSTRUCTURE; BI2O3
11507 AB The effect of annealing of phase structure and degradation of the
11508    current-voltage characteristics for a ZnO varistor with Si-additive has
11509    been investigated. By means of X-ray diffraction, analytical electron
11510    microscopy and thermal analysis, it is found that a phase transition
11511    from delta-Bi2O3 (with dissolved Si), to Bi24Si2O40 (bismuth silicate)
11512    took place in the ZnO varistor after annealing at 470 degrees C. This
11513    transition is associated with a volume contraction, no notable thermal
11514    effect, a high transition rate and reversibility. It is calculated by
11515    crystallography that the volume contraction of the phase transition is
11516    6.02%. The transition of the Bi-rich phase results in decreased levels
11517    of degradation and improved stability of the ZnO varistor. (C) 1996
11518    Elsevier Science Limited.
11519 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SCI & ENGN,SHANGHAI 201800,PEOPLES R CHINA.
11520 CR ASOKAN T, 1990, J MATER SCI, V25, P2447
11521    EDU K, 1980, J APPL PHYS, V51, P2678
11522    HAYASHI M, 1982, J APPL PHYS, V53, P5754
11523    IGN A, 1976, JPN J APPL PHYS, V15, P1161
11524    INADA M, 1978, JPN J APPL PHYS, V17, P1
11525    INADA M, 1980, JPN J APPL PHYS, V19, P409
11526    KIM J, 1989, J AM CERAM SOC, V72, P1390
11527    KIM J, 1989, J MATER SCI, V24, P213
11528    MEDERNACH JW, 1978, J AM CERAM SOC, V61, P494
11529    OLSSON E, 1989, J APPL PHYS, V66, P3666
11530    OLSSON E, 1989, J APPL PHYS, V66, P4317
11531    TAKEMURA T, 1986, JPN J APPL PHYS PT 1, V25, P293
11532    TAKEMURA T, 1986, JPN J APPL PHYS PT 1, V25, P295
11533    TAKEMURA T, 1987, J AM CERAM SOC, V70, P237
11534    WONG J, 1975, J APPL PHYS, V46, P1653
11535 NR 15
11536 TC 2
11537 SN 0955-2219
11538 J9 J EUR CERAM SOC
11539 JI J. European Ceram. Soc.
11540 PY 1997
11541 VL 17
11542 IS 1
11543 BP 55
11544 EP 59
11545 PG 5
11546 SC Materials Science, Ceramics
11547 GA WB693
11548 UT ISI:A1997WB69300008
11549 ER
11550 
11551 PT J
11552 AU Xueming, MA
11553    Gang, JI
11554 TI Nanostructured WC-Co alloy prepared by mechanical alloying
11555 SO JOURNAL OF ALLOYS AND COMPOUNDS
11556 DT Letter
11557 DE nanocrystalline alloys; mechanical alloying; WC-Co cemented carbide
11558    powder
11559 AB Nanocrystalline cemented carbide powder of WC-Co was directly
11560    synthesized by mechanical alloying. The structure evolution of the
11561    powders was monitored by X-ray diffration, scanning electron microscope
11562    and thermal analysis. Results show that the formation of the compounds
11563    is controlled by an inter-diffusion reaction between elements. Powders
11564    of WC-Co milled for 100 h were compacted and sintered to a cylinder
11565    with the size circle divide 6 mmx8 mm. The hardness and sintered
11566    density were measured.
11567 RP Xueming, MA, SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES
11568    R CHINA.
11569 CR GLEITER H, 1984, Z METALLKD, V75, P263
11570    PETZOLDT F, 1987, MATER LETT, V5, P280
11571    SHINGU PH, 1988, T JIM S, V29, P3
11572    YANG YZ, 1992, CHINESE PHYS LETT, V5, P266
11573    YANG YZ, 1994, CHINESE SCI BULL, V17, P1626
11574 NR 5
11575 TC 8
11576 SN 0925-8388
11577 J9 J ALLOYS COMPOUNDS
11578 JI J. Alloy. Compd.
11579 PD NOV 15
11580 PY 1996
11581 VL 245
11582 BP L30
11583 EP L32
11584 PG 3
11585 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
11586    Metallurgical Engineering
11587 GA WB358
11588 UT ISI:A1996WB35800009
11589 ER
11590 
11591 PT J
11592 AU Xie, FQ
11593    Zhang, J
11594    Mao, XM
11595    Li, DL
11596    Fu, HZ
11597 TI Rapid directional solidification excited from bulk supercooled melt
11598 SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
11599 DT Article
11600 DE supercooling; directional solidification; rapid solidification;
11601    excitation
11602 AB With the organic combination of melt supercooling and directional
11603    solidification techniques, a new concept of rapid directional
11604    solidification excited from superceded melt has been advanced. in this
11605    paper, the experimental method of this new technique is reviewed. The
11606    difference between the new and the conventional directional
11607    solidification processing is illustrated diagramatically. The latest
11608    experimental results are given for Cu-Ni alloy, which indicate the
11609    attractive prospects of the new technique.
11610 C1 SHANGHAI UNIV,INST MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R CHINA.
11611 RP Xie, FQ, NORTHWESTERN POLYTECH UNIV,STATE KEY LAB SOLIDIFICAT PROC,XIAN
11612    710072,PEOPLES R CHINA.
11613 CR BAYUZICK RJ, 1991, METALL T A, V22, P2713
11614    BEINGBO W, 1990, ACTA METAL SINICA, V5, B343
11615    DELI L, 1993, P 1 NAT C PHASE TRAN
11616    HERLACH DM, 1988, MATER SCI ENG, V98, P339
11617    LUX B, 1981, METALL, V95, P1235
11618    MEYER E, 1989, J NON-CRYST SOLIDS, V107, P163
11619    SCHLEIP R, 1990, APPL PHYS LETT, V62, P2707
11620    SHAM PR, 1989, MAT SCI LETT, V8, P201
11621    WU XY, 1994, THESIS NW POLYTECHNI
11622 NR 9
11623 TC 3
11624 SN 0924-0136
11625 J9 J MATER PROCESS TECHNOL
11626 JI J. Mater. Process. Technol.
11627 PD JAN
11628 PY 1997
11629 VL 63
11630 IS 1-3
11631 BP 776
11632 EP 778
11633 PG 3
11634 SC Engineering, Industrial; Engineering, Manufacturing; Materials Science,
11635    Multidisciplinary
11636 GA WA730
11637 UT ISI:A1997WA73000133
11638 ER
11639 
11640 PT J
11641 AU Zhu, Y
11642 TI Interactions of internal solitary waves in deep stratified fluids -
11643    Weak interactions
11644 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
11645 DT Article
11646 DE internal solitary waves; weak interactions; deep stratified fluids
11647 AB The weak interactions of internal solitary waves in deep stratified
11648    fluids are investigated in terns of Lagrangian coordinates, which
11649    include the head-on and overtaking collisions of solitary waves with
11650    different modes, and the head-on collision of waves with the same mode.
11651    The analysis shows that each wave is governed by the intermediately
11652    long wave (ILW) equation for finitely deep fluids and the Benjamin-Ono
11653    (BO) equation for infinitely deep fluids. The main effect of the
11654    interaction is the phase shifts of each wave.
11655 RP Zhu, Y, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI
11656    200072,PEOPLES R CHINA.
11657 CR GEAR JA, 1984, STUD APPL MATH, V70, P235
11658    GRIMSHAW R, 1986, ENCY FLUID MECH, V2, P1
11659    MILES JW, 1977, J FLUID MECH, V79, P157
11660    MILES JW, 1980, ANNU REV FLUID MECH, V12, P11
11661    MIRIE RM, 1982, J FLUID MECH, V147, P475
11662    SU CH, 1980, J FLUID MECH, V98, P509
11663    ZHU Y, IN PRESS ATMOSPHERIC
11664    ZHU Y, 1992, APPL MATH MECH, V13, P407
11665 NR 8
11666 TC 0
11667 SN 1006-9283
11668 J9 SCI CHINA SER A
11669 JI Sci. China Ser. A-Math. Phys. Astron.
11670 PD JUL
11671 PY 1996
11672 VL 39
11673 IS 7
11674 BP 728
11675 EP 737
11676 PG 10
11677 SC Mathematics, Applied; Mathematics
11678 GA WA869
11679 UT ISI:A1996WA86900006
11680 ER
11681 
11682 PT J
11683 AU Ding, YY
11684    Chen, YL
11685    Zhang, Y
11686    Yao, Y
11687 TI A highly stereoselective synthesis of
11688    2-carbomethoxy-3-aryl-4-carboethoxy-5-methyl-cis-2,3-dihydrofurans
11689 SO CHEMICAL RESEARCH IN CHINESE UNIVERSITIES
11690 DT Article
11691 DE arsorane; stereoselective synthesis; 2,3-dihydrofuran
11692 AB Carbomethoxymethylenetriphenylarsorane reacts with ethyl
11693    2-acetyl-3-arylacrylates to afford
11694    2-carbomethoxy-3-aryl-4-carboethoxy-5-methyl-2,3-dihydrofuran via
11695    Michael addition in high to excellent yields with high
11696    stereoselectivity.
11697 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
11698 CR BRUCKNER C, 1988, J ORG CHEM, V53, P2440
11699    DANION BR, 1968, B SOC CHIM FR, V6, P2526
11700    HUANG YZ, 1978, ACTA CHIM SINICA, V36, P215
11701    KOO G, 1993, J HETEROCYCLIC CHEM, V30, P1213
11702    MCDONALD FE, 1993, J ORG CHEM, V58, P6952
11703    SUGIMURA H, 1994, J ORG CHEM, V59, P7653
11704 NR 6
11705 TC 2
11706 SN 1005-9040
11707 J9 CHEM RES CHINESE UNIV
11708 JI Chem. Res. Chin. Univ.
11709 PD NOV
11710 PY 1996
11711 VL 12
11712 IS 4
11713 BP 354
11714 EP 359
11715 PG 6
11716 SC Chemistry, Multidisciplinary
11717 GA VZ675
11718 UT ISI:A1996VZ67500007
11719 ER
11720 
11721 PT J
11722 AU Wan, DC
11723    Liu, YZ
11724    Miao, GP
11725 TI The interactions between wave-currents and offshore structures with
11726    consideration of fluid viscosity
11727 SO ACTA MECHANICA SINICA
11728 DT Article
11729 DE interactions among waves; viscous currents and bodies; depth-averaged
11730    Reynolds equations; depth-averaged kappa epsilon turbulence model
11731 ID OPEN-CHANNEL FLOW; WATER
11732 AB Study of the how held around the large scale offshore structures under
11733    the action of waves and viscous currents is of primary importance for
11734    the scouring estimation and protection in the vicinity of the
11735    structures. But very little has been known in its mechanism when the
11736    viscous effects is taken into consideration. As a part of the efforts
11737    to tackle the problem, a numerical model is presented for the
11738    simulation of the how held around a fixed vertical truncated circular
11739    cylinder subjected to waves and viscous currents based on the
11740    depth-averaged Reynolds equations and depth-averaged k-epsilon
11741    turbulence model. Finite difference method with a suitable iteration
11742    defect correct method and an artificial open boundary condition are
11743    adopted in the numerical process. Numerical results presented relate to
11744    the interactions of a pure incident viscous current with Reynolds
11745    number Re = 10(5), a pure incident regular sinusoidal wave, and the
11746    coexisting of viscous current and wave with a circular cylinder,
11747    respectively. Flow fields associated with the hydrodynamic coefficients
11748    of the fixed cylinder, as well as corresponding free surface profiles
11749    and wave amplitudes, are discussed. The present method is found to be
11750    relatively straightforward, computationally effective and numerically
11751    stable for treating the problem of interactions among waves, viscous
11752    currents and bodies.
11753 C1 SHANGHAI JIAO TONG UNIV, DEPT NAVAL ARCHITECTURE & OCEAN ENGN, SHANGHAI 200030, PEOPLES R CHINA.
11754 RP Wan, DC, SHANGHAI UNIV, SHANGHAI INST APPL MATH & MECH, SHANGHAI
11755    200072, PEOPLES R CHINA.
11756 CR BORTHWICK AGL, 1993, INT J NUMER METH FL, V17, P417
11757    CHENG J, 1992, THESIS SHANGHAI JIAO, P1
11758    FISCHER HB, 1973, ANNU REV FLUID MECH, V5, P59
11759    GIVOLI D, 1991, J COMPUT PHYS, V94, P1
11760    HINZE JO, 1975, TURBULENCE, P78
11761    KAWAMURA T, 1984, 840340 AIAA, P1
11762    LAUFER J, 1951, 1053 NACA, P312
11763    LAUNDER BE, 1974, COMPUTER METHODS APP, V3, P269
11764    MCGUIRK JJ, 1978, J FLUID MECH, V86, P761
11765    MEI CC, 1978, ANNU REV FLUID MECH, V10, P393
11766    RASTOGI AK, 1978, J HYDRAULICS DIVISIO, V104, P397
11767    SARPKAYA T, 1981, MECH WAVE FORCES OFF, P54
11768    SPALDING DB, 1975, HTS754 IMP COLL DEPT, P890
11769    STETTER HJ, 1978, NUMER MATH, V29, P234
11770    THOMPSON JF, 1984, AIAA J, V22, P1505
11771    WAN DC, 1993, J SHANGHAI JIAOTONG, V27, P9
11772    WAN DC, 1994, INT S WAVES PHYSICAL, V2, P951
11773    WAN DC, 1995, J HYDRODYNAMICS B, V7, P105
11774    WAN DC, 1995, P 5 INT OFFSH POL EN, V3, P182
11775    YOON SB, 1989, J FLUID MECH, V205, P397
11776    ZHAO R, 1988, 5 C BEH OFFSH STRUCT, P623
11777 NR 21
11778 TC 0
11779 SN 0567-7718
11780 J9 ACTA MECH SINICA
11781 JI Acta Mech. Sin.
11782 PD NOV
11783 PY 1996
11784 VL 12
11785 IS 4
11786 BP 307
11787 EP 322
11788 PG 16
11789 SC Engineering, Mechanical; Mechanics
11790 GA VZ544
11791 UT ISI:A1996VZ54400003
11792 ER
11793 
11794 PT J
11795 AU Liu, HY
11796    Ying, TL
11797    Sun, K
11798    Qi, DY
11799 TI A reagentless biosensor highly sensitive to hydrogen peroxide based on
11800    new methylene blue N dispersed in Nafion(R) gel as the electron shuttle
11801 SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY
11802 DT Article
11803 DE biosensor; horseradish peroxidase; Nafion(R); new methylene blue N;
11804    hydrogen peroxide
11805 ID CYTOCHROME-C PEROXIDASE; SILK FIBROIN MEMBRANE; HORSERADISH-PEROXIDASE;
11806    ENZYME ELECTRODES; CARBON; GRAPHITE; SENSOR; OXIDATION
11807 AB A reagentless biosensor highly sensitive to hydrogen peroxide was
11808    constructed by immobilizing horseradish peroxidase on Nafion(R)-new
11809    methylene blue N modified electrode. Cyclic voltammetry and
11810    chronamperometry were for the first time employed to demonstrate the
11811    feasibility of electron transfer between immobilized horseradish
11812    peroxidase and a glassy carbon electrode via new methylene blue N
11813    incorporated in Nafion(R) gel. Performance and characteristics of the
11814    sensor were evaluated with respect to response time, detection limit,
11815    selectivity, and dependence on applied potential, thickness of
11816    Nafion(R) membrane, ionic strength, temperature and pH as well as
11817    operating and storage stability. High sensitivity of the sensor with a
11818    detection limit of 0.5 mu M was due to high efficiency of the electron
11819    communication between immobilized horseradish peroxidase and the
11820    electrode via new methylene blue N.
11821 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R
11822    CHINA.
11823 CR BIFULCO L, 1994, ANAL LETT, V27, P1443
11824    CLARK LC, 1979, METHOD ENZYMOL, V56, P448
11825    COOPER JM, 1991, J ELECTROANAL CH INF, V312, P155
11826    CSOREGI E, 1994, ANAL CHEM, V66, P3604
11827    DENG Q, 1994, J ELECTROANAL CHEM, V377, P191
11828    FREW JE, 1986, J ELECTROANAL CH INF, V201, P1
11829    GORTON L, 1992, ANALYST, V117, P1235
11830    HO WO, 1993, J ELECTROANAL CHEM, V351, P185
11831    HURDIS EC, 1954, ANAL CHEM, V26, P320
11832    IANNIELLO RM, 1981, ANAL CHEM, V53, P2090
11833    KAMIN RA, 1980, ANAL CHEM, V52, P1198
11834    LIU H, IN PRESS J ANAL CHEM
11835    LIU H, 1995, ANAL P, V32, P375
11836    LIU HY, 1996, TALANTA, V43, P111
11837    LIU YC, 1995, ANAL CHIM ACTA, V316, P65
11838    LIU YC, 1996, ELECTROCHIM ACTA, V41, P77
11839    MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801
11840    MULCHANDANI A, 1995, ANAL CHEM, V67, P94
11841    POPESCU IC, 1995, BIOSENS BIOELECTRON, V10, P443
11842    QIAN JH, 1995, J ELECTROANAL CHEM, V397, P157
11843    RUZGAS T, 1995, J ELECTROANAL CHEM, V391, P41
11844    SANCHEZ PD, 1990, ELECTROANAL, V2, P303
11845    SCHUBERT F, 1991, ANAL CHIM ACTA, V245, P133
11846    SCOTT DL, 1992, J ELECTROANAL CHEM, V341, P307
11847    TATSUMA T, 1992, ANAL CHEM, V64, P1183
11848    TATSUMA T, 1995, ANAL CHEM, V67, P283
11849    VREEKE M, 1995, ANAL CHEM, V67, P303
11850    WANG J, 1992, ANAL CHEM, V64, P1285
11851    WELINDER KG, 1979, EUR J BIOCHEM, V96, P483
11852    WOLLENBERGER U, 1991, BIOELECTROCH BIOENER, V26, P287
11853    YAMADA H, 1974, ARCH BIOCHEM BIOPHYS, V165, P728
11854    YANG L, 1995, ANAL CHEM, V67, P1325
11855    ZHANG ZE, 1996, ANAL CHEM, V68, P1632
11856    ZHAO JG, 1992, J ELECTROANAL CHEM, V327, P109
11857 NR 34
11858 TC 11
11859 SN 0022-0728
11860 J9 J ELECTROANAL CHEM
11861 JI J. Electroanal. Chem.
11862 PD NOV 7
11863 PY 1996
11864 VL 417
11865 IS 1-2
11866 BP 59
11867 EP 64
11868 PG 6
11869 SC Chemistry, Analytical; Electrochemistry
11870 GA VZ349
11871 UT ISI:A1996VZ34900009
11872 ER
11873 
11874 PT J
11875 AU Gu, M
11876    Xu, WP
11877    Zheng, LR
11878    Lin, CL
11879    Cao, ZC
11880 TI Multiple conduction behavior of BaRuO3 thin film prepared by pulsed
11881    laser ablation deposition
11882 SO THIN SOLID FILMS
11883 DT Article
11884 DE ruthenium; oxides; laser ablation; conductivity
11885 AB In this paper, thin films of BaRuO3 prepared on a Si substrate by the
11886    pulsed laser ablation deposition method under oxygen ambient have been
11887    studied by means of X-ray diffraction, emission spectroscopy,
11888    Rutherford backscattering spectroscopy, RT Hall measurement and
11889    resistivity measurement. It is interesting to find that BaRuO3 thin
11890    films, having a different thermal history examined in the same
11891    temperature range, show different conduction types including
11892    metallicity, semiconduction and semiconductor-metal transition. The
11893    explanation about the findings are given using a suggested modified
11894    energy band diagram. It is believed that the versatile electrical
11895    behavior is helpful for the use in electrical contact materials.
11896 C1 CHINESE ACAD SCI,SHANGHAI INST MET,STATE KEY LAB MAT INFORMAT,SHANGHAI 200050,PEOPLES R CHINA.
11897 RP Gu, M, SHANGHAI UNIV SCI & TECHNOL,DEPT INORGAN MAT,JIADING
11898    CAMPUS,SHANGHAI 201800,PEOPLES R CHINA.
11899 CR COX PA, 1992, TRANSITION METAL OXI, P237
11900    DONOHUE PC, 1965, INORG CHEM, V4, P306
11901    EOM CB, 1993, APPL PHYS LETT, V63, P2570
11902    NEWNHAM RE, 1975, STRUCTURE PROPERTY R
11903    RICE CE, 1977, ACTA CRYSTALLOGR B, V33, P1342
11904    TAKIKAVA O, 1986, IEEE P EL COMP C IEE, P214
11905    VANLOAN PR, 1972, CERAM B, V51, P231
11906 NR 7
11907 TC 2
11908 SN 0040-6090
11909 J9 THIN SOLID FILMS
11910 JI Thin Solid Films
11911 PD NOV 15
11912 PY 1996
11913 VL 288
11914 IS 1-2
11915 BP 95
11916 EP 98
11917 PG 4
11918 SC Materials Science, Multidisciplinary; Physics, Applied; Physics,
11919    Condensed Matter
11920 GA VZ205
11921 UT ISI:A1996VZ20500018
11922 ER
11923 
11924 PT J
11925 AU Wang, ZX
11926    Luo, WY
11927    Wang, CS
11928    Wang, WM
11929 TI Modelling of the angular distribution of sputtered particles from
11930    roughened elemental and alloy targets
11931 SO VACUUM
11932 DT Article
11933 ID SCANNING TUNNELING MICROSCOPY; MULTICOMPONENT MATERIALS; GRAPHITE
11934    SURFACE; ION-BOMBARDMENT; IMPACTS
11935 AB A solid surface subjected to energetic ion bombardment generally
11936    develops characteristic structures, which may change the total and
11937    partial sputtering yields significantly. The change is caused by
11938    several competing effects, for instance, change of the effective
11939    projectile incidence angle, recapture of obliquely ejected particles
11940    (shadowing effect), and element local-enrichment in different
11941    micro-regions on the alloy surface. In this article, we have developed
11942    a new theoretical method to take account of all the above effects. This
11943    method and its application to the analysis of experimental results for
11944    elemental (Cd) and alloy system (Al-x-Sn-100-x) targets is described in
11945    detail. Copyright (C) 1996 Elsevier Science Ltd
11946 C1 SHANGHAI UNIV,SHANGHAI APPL RADIAT INST,SHANGHAI 201800,PEOPLES R CHINA.
11947    CCAST,WORLD LAB,BEIJING 100080,PEOPLES R CHINA.
11948 RP Wang, ZX, ACAD SINICA,INST NUCL RES,POB 800204,SHANGHAI 201800,PEOPLES
11949    R CHINA.
11950 CR ANDERSEN HH, 1985, NUCL INSTRUM METH B, V6, P459
11951    ANDERSEN HH, 1988, NUCL INSTRUM METH B, V33, P466
11952    BETZ G, 1983, TOP APPL PHYS, V52, P11
11953    CARTER G, 1983, TOPICS APPL PHYSICS, V52
11954    DEVILLENEUVE CH, 1990, VACUUM, V41, P1686
11955    DODONOV AI, 1988, RADIAT EFF, V107, P15
11956    EMMOTH B, 1980, S SPUTT PERCHT VIENN
11957    FETZ H, 1942, Z PHYS, V119, P590
11958    HUCKS P, 1978, J NUCL MATER, V76, P736
11959    JISHENG P, 1992, NUCL INSTRUM METH B, V67, P514
11960    KELLY R, 1984, ION BOMBARDMENT MODI, V1
11961    LINDHARD J, 1963, KGL DANSKE VIDENSKAB, V33, P10
11962    LITTMARK U, 1978, J MATER SCI, V13, P2577
11963    OECHSNER H, 1975, APPL PHYS, V8, P185
11964    PORTE L, 1989, NUCL INSTRUM METH B, V44, P116
11965    SIGMUND P, 1969, PHYS REV, V184, P383
11966    SIGMUND P, 1982, NUCL INSTRUM METHODS, V194, P541
11967    SIGMUND P, 1982, TOP APPL PHYS, V47, P9
11968    VOSSEN JL, 1974, J VAC SCI TECHNOL, V11, P875
11969    WILSON IH, 1989, J VAC SCI TECHNOL A, V7, P2840
11970    ZHENXIA W, 1993, NUCL INSTRUM METH B, V74, P380
11971    ZHENXIA W, 1993, PHYS LETT A, V177, P275
11972 NR 22
11973 TC 0
11974 SN 0042-207X
11975 J9 VACUUM
11976 JI Vacuum
11977 PD DEC
11978 PY 1996
11979 VL 47
11980 IS 12
11981 BP 1465
11982 EP 1472
11983 PG 8
11984 SC Materials Science, Multidisciplinary; Physics, Applied
11985 GA VY916
11986 UT ISI:A1996VY91600010
11987 ER
11988 
11989 PT J
11990 AU Li, CF
11991 TI Pauli criterion and the vector Aharonov-Bohm effect
11992 SO ANNALS OF PHYSICS
11993 DT Article
11994 ID MAGNETIC-FLUX QUANTIZATION; ELECTROMAGNETIC POTENTIALS;
11995    QUANTUM-MECHANICS; ANGULAR-MOMENTUM
11996 AB After discussing the commutation relations of the kinetic angular
11997    momentum of the electron in the vector Aharonov-Bohm effect, the author
11998    shows that the Pauli criterion for admissibility of the wave function
11999    is inapplicable. The point is that the kinetic angular momentum does
12000    not satisfy the fundamental commutation relations of the angular
12001    momentum. The inapplicability of the Pauli criterion reflects the
12002    breakdown of the symmetry of the electron's motion around the solenoid.
12003    (C) 1996 Academic Press, Inc.
12004 RP Li, CF, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,20 CHENGZHONG RD,SHANGHAI
12005    201800,PEOPLES R CHINA.
12006 CR AFANASEV GN, 1990, SOV J PART NUCL, V21, P74
12007    AHARONOV Y, 1959, PHYS REV, V115, P485
12008    CABRERA B, 1989, PHYS REV LETT, V62, P2040
12009    DIRAC PAM, 1958, PRINCIPLES QUANTUM M, P140
12010    HENNEBERGER WC, 1981, J MATH PHYS, V22, P116
12011    JACKIW R, 1983, PHYS REV LETT, V50, P555
12012    KAWAMOTO H, 1994, PHYS LETT A, V190, P9
12013    KRETZSCHMAR M, 1965, Z PHYS, V185, P97
12014    LIANG JQ, 1988, PHYS REV LETT, V60, P836
12015    MAGNI C, 1995, J MATH PHYS, V36, P177
12016    PAULI W, 1939, HELV PHYS ACTA, V12, P147
12017    PAULI W, 1980, GEN PRINCIPLES QUANT, P47
12018    PESHKIN M, 1981, PHYS REP, V80, P375
12019    ROY SM, 1984, NUOVO CIMENTO A, V79, P391
12020    RUBIO H, 1991, NUOVO CIMENTO B, V106, P407
12021    SPAVIERI G, 1994, NUOVO CIMENTO B, V109, P675
12022 NR 16
12023 TC 3
12024 SN 0003-4916
12025 J9 ANN PHYS N Y
12026 JI Ann. Phys.
12027 PD DEC 15
12028 PY 1996
12029 VL 252
12030 IS 2
12031 BP 329
12032 EP 335
12033 PG 7
12034 SC Physics, Multidisciplinary
12035 GA VY568
12036 UT ISI:A1996VY56800004
12037 ER
12038 
12039 PT J
12040 AU Wang, DR
12041    Bai, ZZ
12042 TI Parallel multilevel iterative methods
12043 SO LINEAR ALGEBRA AND ITS APPLICATIONS
12044 DT Article
12045 ID PRECONDITIONING METHODS
12046 AB For large-scale system of linear equations with symmetric positive
12047    definite block coefficient matrix resulting from the discretization of
12048    a self-adjoint elliptic boundary-value problem, by making use of
12049    blocked multilevel iteration we construct preconditioning matrices for
12050    the coefficient matrix and set up a class of parallel multilevel
12051    iterative methods for solving such system. Theoretical analysis shows
12052    that besides lending themselves to strongly parallel computation these
12053    new methods have convergence rates independent of both the sizes and
12054    the level numbers of the grids, and their computational work loads are
12055    also bounded by linear functions about the step sizes of the finest
12056    grids. (C) Elsevier Science Inc., 1997
12057 C1 CHINESE ACAD SCI,INST COMPUTAT MATH & SCI ENGN COMP,BEIJING 100080,PEOPLES R CHINA.
12058 RP Wang, DR, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
12059 CR AXELSSON O, 1984, FINITE ELEMENT SOLUT
12060    AXELSSON O, 1989, BIT, V29, P769
12061    AXELSSON O, 1989, NUMER MATH, V56, P157
12062    AXELSSON O, 1990, SIAM J NUMER ANAL, V27, P1569
12063    BAI ZZ, 1993, THESIS SHANGHAI U SC
12064    BANK RE, 1988, NUMER MATH, V52, P427
12065    BERTSEKAS DP, 1989, PARALLEL DISTRIBUTED
12066    CIARLET PG, 1978, FINITE ELEMENT METHO
12067    HACKBUSCH W, 1985, MULTIGRID METHODS
12068    YSERENTANT H, 1986, NUMER MATH, V49, P379
12069 NR 10
12070 TC 3
12071 SN 0024-3795
12072 J9 LINEAR ALGEBRA APPL
12073 JI Linear Alg. Appl.
12074 PD JAN 1
12075 PY 1997
12076 VL 250
12077 BP 317
12078 EP 347
12079 PG 31
12080 SC Mathematics, Applied
12081 GA VX450
12082 UT ISI:A1997VX45000018
12083 ER
12084 
12085 PT J
12086 AU Liu, HY
12087    Zhang, ZN
12088    Zhang, XL
12089    Qi, DY
12090    Liu, YC
12091    Yu, TY
12092    Deng, JQ
12093 TI A phenazine methosulphate-mediated sensor sensitive to lactate based on
12094    entrapment of lactate oxidase and horseradish peroxidase in composite
12095    membrane of poly(vinyl alcohol) and regenerated silk fibroin
12096 SO ELECTROCHIMICA ACTA
12097 DT Article
12098 DE sensor; phenazine methosulphate; L-lactate; lactate oxidase;
12099    horseradish peroxidase; poly(vinyl alcohol); regenerated silk fibroin
12100 ID CARBON-PASTE ELECTRODES; LACTIC-ACID; SYSTEMS
12101 AB An amperometric phenazine methosulphate-mediated sensor sensitive to
12102    lactate was fabricated, which was based on immobilization of lactate
12103    oxidase and horseradish peroxidase in a novel composite membrane of
12104    poly(vinyl alcohol) and regenerated silk fibroin. The water
12105    absorbability and mechanical properties of the composite membrane were
12106    investigated. Horseradish peroxidase (HRP) was employed in the
12107    catalytic reduction of hydrogen peroxide, formed by the lactate oxidase
12108    reaction, to amplify the amperometric response of the lactate sensor.
12109    In this bienzyme configuration, phenazine methosulphate was used as an
12110    electron transfer mediator between immobilized HRP and a glassy carbon
12111    electrode. Effects of pH, temperature, applied potential and
12112    concentration of phenazine methosulphate on the steady-state
12113    bioelectrocatalytic oxidation of lactate at the sensor were evaluated.
12114    Dependence of Michaelis-Menten constant K-m(app) on the concentration
12115    of phenazine methosulphate and applied potential was also investigated.
12116    The response of the sensor to lactate reached 95% steady-state current
12117    within 20 s. Copyright (C) 1996 Elsevier Science Ltd
12118 C1 SUZHOU INST CITY CONSTRUCT & ENVIRONM PROTECT,DEPT ENVIRONM PROTECT,SUZHOU 300111,JIANSU PROVINCE,PEOPLES R CHINA.
12119    FUDAN UNIV,DEPT MACROMOL SCI,SHANGHAI 200433,PEOPLES R CHINA.
12120    FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
12121 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R
12122    CHINA.
12123 CR *SIGM CHEM CO, 1991, CAT, P771
12124    DURLIAT H, 1979, ANAL CHIM ACTA, V106, P131
12125    HU YB, 1993, ANAL CHIM ACTA, V281, P503
12126    HUCK H, 1984, ANALYST, V109, P147
12127    KAMIN RA, 1980, ANAL CHEM, V52, P1198
12128    KATAKIS I, 1992, ANAL CHEM, V64, P1008
12129    KULYS J, 1992, ANAL LETT, V25, P1011
12130    LIU HY, 1995, ELECTROCHIM ACTA, V40, P1845
12131    LIU YC, 1996, ELECTROCHIM ACTA, V41, P77
12132    MAKOVOS EB, 1985, BIOTECHNOL BIOENG, V27, P167
12133    MASCINI M, 1984, ANAL CHIM ACTA, V157, P45
12134    MITZUTANI F, 1984, CHEM LETT, V2, P199
12135    MITZUTANI F, 1985, ANAL CHIM ACTA, V177, P153
12136    NEWMAN JD, 1992, ANAL CHIM ACTA, V262, P13
12137    SCHUBERT F, 1985, ANAL CHIM ACTA, V169, P391
12138    SPRULES SD, 1995, ANAL CHIM ACTA, V304, P17
12139    WANG DL, 1993, ANAL CHEM, V65, P1069
12140    WANG J, 1995, ANAL CHIM ACTA, V304, P41
12141    YAO T, 1979, ANAL CHIM ACTA, V110, P203
12142 NR 19
12143 TC 2
12144 SN 0013-4686
12145 J9 ELECTROCHIM ACTA
12146 JI Electrochim. Acta
12147 PY 1997
12148 VL 42
12149 IS 3
12150 BP 349
12151 EP 355
12152 PG 7
12153 SC Electrochemistry
12154 GA VW704
12155 UT ISI:A1997VW70400001
12156 ER
12157 
12158 PT J
12159 AU Guo, BY
12160    Ma, HP
12161    Hou, JY
12162 TI Chebyshev pseudospectral-hybrid finite element method for
12163    two-dimensional vorticity equation
12164 SO RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION
12165    MATHEMATIQUE ET ANALYSE NUMERIQUE
12166 DT Article
12167 DE two-dimensional vorticity equation; Chebyshev pseudospectral-finite
12168    element approximation
12169 ID NAVIER-STOKES EQUATIONS; SPECTRAL APPROXIMATIONS
12170 AB Chebyshev pseudospectral-hybrid finite element schemes are proposed for
12171    two-dimensional vorticity equation. Some approximation results in
12172    non-isotropic Sobolev spaces are presented. The generalized stability
12173    and the convergence are proved. The hybrid finite element approximation
12174    provides the optimal convergence rate. The numerical results show the
12175    advantages of the approach. The technique in this paper is also
12176    applicable to other nonlinear problems in computational fluid dynamics.
12177 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
12178 RP Guo, BY, CITY UNIV HONG KONG,KOWLOON,HONG KONG.
12179 CR BERNARDI C, 1989, SIAM J NUMER ANAL, V26, P769
12180    CANUTO C, 1982, NUMER MATH, V39, P205
12181    CANUTO C, 1984, NUMER MATH, V44, P201
12182    CANUTO C, 1984, SPECTRAL METHODS PAR, P55
12183    CANUTO C, 1988, SPECTRAL METHODS FLU
12184    CIARLET PG, 1978, FINITE ELEMENT METHO
12185    GUO BY, UNPUB CHEBYSHEV SPEC
12186    GUO BY, 1983, J COMPUT MATH, V1, P353
12187    GUO BY, 1987, SCI SINICA SER A, V30, P696
12188    GUO BY, 1988, DIFFERENCE METHODS P
12189    GUO BY, 1988, J COMPUT MATH, V6, P238
12190    GUO BY, 1991, SIAM J NUMER ANAL, V28, P113
12191    GUO BY, 1992, J COMPUT PHYS, V101, P207
12192    GUO BY, 1992, J COMPUT PHYS, V101, P375
12193    GUO BY, 1993, NUMER MATH, V66, P329
12194    INGHAM DB, 1985, P ROY SOC LOND A MAT, V402, P109
12195    LIONS JL, 1969, QUELQUES METHODES RE
12196    MA HP, 1987, IMA J NUMER ANAL, V7, P47
12197    MA HP, 1988, J COMPUT MATH, V6, P48
12198    MADAY Y, 1981, NUMER MATH, V37, P321
12199    MURDOCK JW, 1977, AIAA J, V15, P1167
12200    ODEN JT, 1974, FINITE ELEMENTS MATH
12201    RAVIART PA, 1979, COURS ECOLE ETE ANAL
12202    ROACHE PJ, 1976, COMPUTATIONAL FLUID
12203 NR 24
12204 TC 1
12205 SN 0764-583X
12206 J9 RAIRO-MATH MODEL NUMER ANAL
12207 JI Rairo-Math. Model. Numer. Anal.-Model. Math. Anal. Numer.
12208 PD DEC
12209 PY 1996
12210 VL 30
12211 IS 7
12212 BP 873
12213 EP 905
12214 PG 33
12215 SC Mathematics, Applied
12216 GA VX586
12217 UT ISI:A1996VX58600004
12218 ER
12219 
12220 PT J
12221 AU Sakatsume, O
12222    Tsutsui, H
12223    Wang, YF
12224    Gao, H
12225    Tang, XR
12226    Yamauchi, T
12227    Murata, T
12228    Itakura, K
12229    Yokoyama, KK
12230 TI Binding of THZif-1, a MAZ-like zinc finger protein to the
12231    nuclease-hypersensitive element in the promoter region of the c-MYC
12232    protooncogene
12233 SO JOURNAL OF BIOLOGICAL CHEMISTRY
12234 DT Article
12235 ID TRIPLE-HELIX FORMATION; IN-VITRO; EMBRYONIC LETHALITY;
12236    BURKITT-LYMPHOMA; TRANSCRIPTIONAL INITIATION; FORMING OLIGONUCLEOTIDES;
12237    TARGETED DISRUPTION; MODULATE EXPRESSION; REGULATORY ELEMENTS;
12238    CHROMATIN STRUCTURE
12239 AB A detailed analysis is reported of the binding of the zinc finger
12240    protein THZif-1 to the nuclease hypersensitive element (NHE) in the
12241    promoter region of the c-MYC gene using the electrophoretic mobility
12242    shift assay and a series of mutants of a fusion protein composed of
12243    glutathione S-transferase and THZif-1. The THZif-1 protein bound
12244    specifically to the single-stranded (ss) pyrimidine-rich DNA of the NHE
12245    (ss c-myc NHE-C) with an apparent dissociation constant (K-d(app)) of
12246    0.077 mu M. By contrast, no binding to the single-stranded purine rich
12247    DNA of the NHE (ss c-myc NHE-me(5)C) was detected. Moreover, the
12248    binding affinity of THZif-1 protein was S-fold higher for the
12249    single-stranded 5-methyl-2'-deoxycytidine derivative of NHE (ss c-myc
12250    NHE-me(5)C) than for the unmethylated NHE, in the case of the binding
12251    of THZif-1 to methylated double-stranded (ds) NHE (ds c-myc
12252    NHE-me(5)CG), no significant binding to the DNA was observed. The
12253    decrease in binding: to DNA of THZif-1 was significant in the case of
12254    mutated ds c-myc NHE, in which more than two sites of deoxycytidine
12255    residues were methylated, However, the binding affinity of THZif-1
12256    protein for methylated and for unmethylated triple-helical DNA of the
12257    NHE was almost identical, Moreover, the domain of the THZif-1 protein
12258    that made the major contribution to binding to ss c-myc NHE-C or ss
12259    c-myc NHE-me(5)C corresponded to the amino-terminal second zinc finger
12260    motif. Taken together, the results indicate that the THZif-1 protein
12261    exhibits preferential DNA-binding activity with ss c-myc NHE-C, ds
12262    c-myc NHE-CG, and ts c-myc NHE but not with ss c-myc NHE-G and ds c-myc
12263    NRE-me(5)CG in vitro.
12264 C1 INST PHYS & CHEM RES,TSUKUBA LIFE SCI CTR,TSUKUBA,IBARAKI 305,JAPAN.
12265    SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
12266    W CHINA UNIV MED SCI,DEPT MED GENET,SHENYANG,PEOPLES R CHINA.
12267    CITY HOPE NATL MED CTR,BECKMAN RES INST,DEPT MOL GENET,DUARTE,CA 91010.
12268 CR ARCINAS M, 1994, ONCOGENE, V9, P2699
12269    ASSELIN C, 1989, ONCOGENE, V4, P549
12270    BATTEY J, 1983, CELL, V34, P779
12271    BEAL PA, 1991, SCIENCE, V251, P1360
12272    BENTLEY DL, 1986, MOL CELL BIOL, V6, P3481
12273    BENTLEY DL, 1986, NATURE, V321, P702
12274    BLACKWOOD EM, 1992, CURR OPIN GENE DEV, V2, P227
12275    BOLES TC, 1987, BIOCHEMISTRY-US, V26, P367
12276    BOSSONE SA, 1992, P NATL ACAD SCI USA, V89, P7452
12277    CHARRON J, 1992, GENE DEV, V6, P2248
12278    CHRISTMAN JK, 1995, P NATL ACAD SCI USA, V92, P7347
12279    CHUNG J, 1986, P NATL ACAD SCI USA, V83, P7918
12280    COLE MD, 1986, ANNU REV GENET, V20, P361
12281    CONREY AJ, 1988, CELL, V55, P887
12282    COONEY M, 1988, SCIENCE, V241, P456
12283    DAVIS AC, 1993, GENE DEV, V7, P671
12284    DAVIS TL, 1989, P NATL ACAD SCI USA, V86, P9682
12285    DESJARDINS E, 1993, MOL CELL BIOL, V13, P5710
12286    DURLAND RH, 1991, BIOCHEMISTRY-US, V30, P9246
12287    DYSON PJ, 1985, EMBO J, V4, P2885
12288    EBBINGHAUS SW, 1993, J CLIN INVEST, V92, P2433
12289    EHRLICH M, 1981, SCIENCE, V212, P1350
12290    EICK D, 1989, EMBO J, V8, P1965
12291    EVAN GI, 1992, CELL, V69, P119
12292    FANG GW, 1993, CELL, V74, P875
12293    FILIPPOVA GN, 1996, MOL CELL BIOL, V16, P2802
12294    FIRULLI AB, 1994, ARCH BIOCHEM BIOPHYS, V310, P236
12295    GLASER RL, 1990, J MOL BIOL, V211, P751
12296    GORMAN CM, 1982, MOL CELL BIOL, V2, P1044
12297    GRIGORIEV M, 1992, J BIOL CHEM, V267, P3389
12298    HALL DJ, 1990, ONCOGENE, V5, P47
12299    HAY N, 1987, GENE DEV, V1, P659
12300    HELM CW, 1993, GYNECOL ONCOL, V49, P339
12301    KAWASAKI H, 1996, ARTIF ORGANS, V20, P836
12302    KENNEDY GC, 1992, P NATL ACAD SCI USA, V89, P11498
12303    KIMURA A, 1986, CELL, V44, P261
12304    KINNIBURGH AJ, 1989, NUCLEIC ACIDS RES, V17, P771
12305    KITABAYASHI I, 1992, EMBO J, V11, P167
12306    KITABAYASHI I, 1995, EMBO J, V14, P3496
12307    KLENOVA EM, 1993, MOL CELL BIOL, V13, P7612
12308    KOHWI Y, 1988, P NATL ACAD SCI USA, V85, P3781
12309    KOLLURI R, 1992, NUCLEIC ACIDS RES, V20, P111
12310    LI E, 1992, CELL, V69, P915
12311    LIPP M, 1987, MOL CELL BIOL, V7, P1393
12312    LUCKOW B, 1987, NUCLEIC ACIDS RES, V15, P5490
12313    MAHER LJ, 1989, SCIENCE, V245, P725
12314    MARCU KB, 1992, ANNU REV BIOCHEM, V61, P809
12315    MAYFIELD C, 1994, BIOCHEMISTRY-US, V33, P3358
12316    MAYFIELD C, 1994, J BIOL CHEM, V269, P18232
12317    MICHELOTTI EF, 1995, J BIOL CHEM, V270, P9494
12318    MICHELOTTI EF, 1996, MOL CELL BIOL, V16, P2350
12319    MICHELOTTI GA, 1996, MOL CELL BIOL, V16, P2656
12320    MOBERG KH, 1992, ONCOGENE, V7, P411
12321    MOSER HE, 1987, SCIENCE, V238, P645
12322    ORSON FM, 1991, NUCLEIC ACIDS RES, V19, P3435
12323    POSTEL EH, 1989, MOL CELL BIOL, V9, P5123
12324    POSTEL EH, 1991, P NATL ACAD SCI USA, V88, P8227
12325    POSTEL EH, 1993, SCIENCE, V261, P478
12326    POVSIC TJ, 1989, J AM CHEM SOC, V111, P3059
12327    PYRC JJ, 1992, BIOCHEMISTRY-US, V31, P4102
12328    RAJAGOPAL P, 1989, NATURE, V339, P637
12329    SAWAI S, 1993, DEVELOPMENT, V117, P1445
12330    SCHMID P, 1989, SCIENCE, V243, P226
12331    SIEBENLIST U, 1984, CELL, V37, P381
12332    SIEBENLIST U, 1988, MOL CELL BIOL, V8, P867
12333    SPENCER CA, 1991, ADV CANCER RES, V56, P1
12334    STANTON BR, 1992, GENE DEV, V6, P2235
12335    TAKIMOTO M, 1993, J BIOL CHEM, V268, P18249
12336    TOMONAGA T, 1995, J BIOL CHEM, V270, P4875
12337    TOMONAGA T, 1996, P NATL ACAD SCI USA, V93, P5830
12338    TOTH M, 1990, J MOL BIOL, V214, P673
12339    WELLS RD, 1988, FASEB J, V2, P2939
12340    XODO LE, 1991, NUCLEIC ACIDS RES, V19, P5625
12341    YOKOYAMA K, 1987, P NATL ACAD SCI USA, V84, P7363
12342    YOKOYAMA K, 1990, PROSPECT ANTISENSE N, P35
12343    YOKOYAMA K, 1991, ANTISENSE RNA DNA, P335
12344 NR 76
12345 TC 17
12346 SN 0021-9258
12347 J9 J BIOL CHEM
12348 JI J. Biol. Chem.
12349 PD DEC 6
12350 PY 1996
12351 VL 271
12352 IS 49
12353 BP 31322
12354 EP 31333
12355 PG 12
12356 SC Biochemistry & Molecular Biology
12357 GA VW686
12358 UT ISI:A1996VW68600050
12359 ER
12360 
12361 PT J
12362 AU Guo, BQ
12363    Cao, WM
12364 TI A preconditioner for the h-p version of the finite element method in
12365    two dimensions
12366 SO NUMERISCHE MATHEMATIK
12367 DT Article
12368 ID ITERATIVE METHODS; DECOMPOSITION
12369 AB A preconditioner, based on a two-level mesh and a two-level
12370    orthogonalization, is proposed for the h-p version of the finite
12371    element method for two dimensional elliptic problems in polygonal
12372    domains. Its implementation is in parallel on the subdomain level for
12373    the linear or bilinear (nodal) modes, and in parallel on the element
12374    level for the high order (side and internal) modes. The condition
12375    number of the preconditioned linear system is of order
12376    [GRAPHICS]
12377    where H-i is the diameter of the i-th subdomain, h(i) and p(i) are the
12378    diameter of elements and the maximum polynomial degree used in the
12379    subdomain. This result reduces to well-known results for the h-version
12380    (i.e. p(i) = 1) and the p-version (i.e. h(i) = H-i) as the special
12381    cases of the h-p version.
12382 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
12383 RP Guo, BQ, UNIV MANITOBA,DEPT APPL MATH,WINNIPEG,MB R3T 2N2,CANADA.
12384 CR AINSWORTH M, 1993, MATH COMPUT SCI TECH, V16
12385    BABUSKA I, 1988, SIAM J MATH ANAL, V19, P257
12386    BABUSKA I, 1988, SIAM J NUMER ANAL, V25, P837
12387    BABUSKA I, 1989, J COMPUT APPL MATH, V27, P157
12388    BABUSKA I, 1991, SIAM J NUMER ANAL, V28, P624
12389    BJORSTAD PE, 1986, SIAM J NUMER ANAL, V23, P1097
12390    BRAMBLE J, 1986, MATH COMPUT, V175, P103
12391    BRAMBLE JH, 1991, MATH COMPUT, V56, P463
12392    CIARLET PG, 1978, FINITE ELEMENT METHO
12393    DRYJA M, 1989, ITERATIVE METHODS LA, P273
12394    DRYJA M, 1990, P 3 INT S DOM DEC ME
12395    GRISVARD P, 1985, ELLIPTIC PROBLEMS NO
12396    GUO B, 1986, COMPUT MECH, V1, P203
12397    GUO B, 1986, COMPUT MECH, V1, P21
12398    MANDEL J, 1990, COMPUT METHOD APPL M, V80, P117
12399    MANDEL J, 1990, INT J NUMER METH ENG, V29, P1095
12400    ODEN JT, 1994, 9411 TICAM
12401    WIDLUND OB, 1988, P 1 INT S DOM DEC ME
12402    XU JC, 1992, SIAM REV, V34, P581
12403 NR 19
12404 TC 15
12405 SN 0029-599X
12406 J9 NUMER MATH
12407 JI Numer. Math.
12408 PD NOV
12409 PY 1996
12410 VL 75
12411 IS 1
12412 BP 59
12413 EP 77
12414 PG 19
12415 SC Mathematics, Applied
12416 GA VW511
12417 UT ISI:A1996VW51100004
12418 ER
12419 
12420 PT J
12421 AU Wei, GP
12422    Wu, WB
12423    Kita, T
12424    Nakayama, H
12425    Nishino, T
12426    Ma, W
12427    Okamoto, H
12428    Okuyama, M
12429    Hamakawa, Y
12430 TI Hydrogenated amorphous silicon crystalline silicon double
12431    heterojunction X-ray sensor
12432 SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES &
12433    REVIEW PAPERS
12434 DT Article
12435 DE amorphous silicon (a-Si); X-ray; sensor; heterojunction
12436 AB With full utilization of the low-temperature process of hydrogenated
12437    amorphous silicon (a-Si) thin-him deposition and long carrier lifetime
12438    of high-purity crystalline silicon (c-Si), we have developed a new type
12439    of a-Si/c-Si double heterojunction X-ray sensor. The sensor has the
12440    structure of Au/p a-SiC/n NTD c-Si/n a-SilAl. High-purity NTD (neutron
12441    transmutation doping) crystalline silicon wafers were used as
12442    substrates. The high-purity NTD crystalline silicon has a long carrier
12443    lifetime (about 400 mu s), and the low deposition temperature of a-Si
12444    has no adverse effects on the carrier lifetime. Therefore, high
12445    photogenerated carrier collection efficiency and high sensitivity can
12446    be obtained. The characteristics of this kind of X-ray sensor have been
12447    examined. The linearity of the relationship between output current and
12448    X-ray intensity was good, and the sensitivity was high.
12449 C1 KOBE UNIV,INST NAT SCI,NADA KU,KOBE 657,JAPAN.
12450    OSAKA UNIV,FAC ENGN SCI,DEPT ELECT ENGN,TOYONAKA,OSAKA 560,JAPAN.
12451 RP Wei, GP, SHANGHAI UNIV SCI & TECHNOL,INST MAT SCI & ENGN,SHANGHAI
12452    201800,PEOPLES R CHINA.
12453 CR HALLER EE, 1981, HDB SEMICONDUCTORS, V4, P799
12454    JACOB G, 1972, NUCL INSTRUM METHODS, V101, P51
12455    KIM C, 1982, NUCL INSTRUM METHODS, V193, P69
12456    SAKAI E, 1973, OYO BUTURI, V42, P97
12457    SHIRAISHI F, 1982, OYO BUTURI, V51, P299
12458    WEI GP, IN PRESS
12459    WEI GP, 1985, JPN J APPL PHYS PT 1, V24, P1105
12460    WEI GP, 1986, OYO BUTURI, V55, P824
12461 NR 8
12462 TC 0
12463 SN 0021-4922
12464 J9 JPN J APPL PHYS PT 1
12465 JI Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap.
12466 PD OCT
12467 PY 1996
12468 VL 35
12469 IS 10
12470 BP 5342
12471 EP 5345
12472 PG 4
12473 SC Physics, Applied
12474 GA VU822
12475 UT ISI:A1996VU82200022
12476 ER
12477 
12478 PT J
12479 AU Huang, TK
12480    Yu, LM
12481    Zhang, YB
12482    Itoh, M
12483    Yu, JD
12484    Inaguma, Y
12485    Nakamura, T
12486 TI Hall coefficient and resistivity measurements for oxygen-annealed
12487    Bi2.2Sr1.8CaCu2O8+y single crystals under pressure
12488 SO PHYSICA C
12489 DT Article
12490 DE electrical resistivity; Hall effect; high pressure effect
12491 ID SUPERCONDUCTING TRANSITION-TEMPERATURE; HIGH-TC SUPERCONDUCTORS;
12492    HYDROSTATIC-PRESSURE; EPITAXIAL INTERCALATION; IODINE INTERCALATION;
12493    CHARGE-TRANSFER; DEPENDENCE; BI2SR2CACU2O8+DELTA; OXIDE; BI
12494 AB Hall coefficients and resistivities have been measured on
12495    oxygen-annealed Bi2.2Sr1.8CaCu2O8+y single crystals under hydrostatic
12496    pressure up to 1.6 GPa and the results are compared with those on
12497    as-grown and iodine-intercalated ones. Under pressure, the Hall
12498    coefficient of the oxygen-annealed crystal decreases and the pressure
12499    derivative of the Hall coefficient is - 0.12 x 10(-3)
12500    cm(3)C(-1)GPa(-1). The variation of T-c, contrary to the
12501    iodine-intercalated crystal, shows a linear increase at the rate of
12502    dT(c)/dP = 2.3 K GPa(-1), whereas the Hall coefficient at ambient
12503    pressure is 2.15 x 10(-3) cm(3)C(-1), very close to the value of the
12504    iodine-intercalated one. The positive behavior of dT(c)/dP is an
12505    indication that the hole concentration in the CuO2 layers is located at
12506    the underdoped region and holes derived from extra oxygen are probable
12507    in other layers, e.g., Bi2O2 layers. The resistivities along the c-axis
12508    direction are semiconductor-like, indicating the holes from extra
12509    oxygen are two-dimensional.
12510 C1 TOKYO INST TECHNOL,ENGN MAT RES LAB,MIDORI KU,YOKOHAMA,KANAGAWA 227,JAPAN.
12511    UTSUNOMIYA UNIV,FAC ENGN,DEPT APPL CHEM,UTSUNOMIYA,TOCHIGI 321,JAPAN.
12512 RP Huang, TK, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI
12513    201800,PEOPLES R CHINA.
12514 CR ALLGEIER C, 1989, PHYSICA C, V162, P741
12515    ALLGEIER C, 1990, PHYSICA C, V168, P499
12516    BERKLEY DD, 1993, PHYS REV B, V47, P5524
12517    ERSKINE D, 1987, J MATER RES, V2, P783
12518    FUJIWARA A, 1992, PHYSICA C, V203, P411
12519    GROEN WA, 1989, PHYSICA C, V159, P417
12520    HUANG T, 1993, ADV SUPERCONDUCTIVIT, V6, P359
12521    HUANG T, 1993, REP RES LAB ENG MAT, V18, P83
12522    HUANG TK, 1993, PHYS REV B, V48, P7712
12523    HUANG TK, 1994, PHYS REV B, V49, P9885
12524    HYBERTSEN MS, 1988, PHYS REV LETT, V60, P1661
12525    KATO M, 1994, PHYSICA C, V226, P243
12526    KENDZIORA C, 1993, PHYS REV B, V48, P3531
12527    KLOTZ S, 1991, PHYSICA C, V172, P423
12528    KLOTZ S, 1993, PHYSICA C, V209, P499
12529    KOSUGE M, 1992, PHYS REV B, V45, P10713
12530    KUBIAK R, 1990, PHYSICA C, V166, P532
12531    LI TW, 1994, PHYSICA C, V224, P110
12532    MA J, 1994, PHYSICA C, V227, P371
12533    MORI N, 1990, J PHYS SOC JPN, V59, P3839
12534    MURAYAMA C, 1991, PHYSICA C, V183, P277
12535    NEUMEIER JJ, 1993, PHYS REV B, V47, P8385
12536    PRESLAND MR, 1991, PHYSICA C, V176, P95
12537    SCHILLING JS, 1992, PHYSICAL PROPERTIES, V3, P59
12538    SCHOLTZ JJ, 1992, PHYS REV B, V45, P3077
12539    SIEBURGER R, 1991, PHYSICA C, V181, P335
12540    THOMPSON JD, 1984, REV SCI INSTRUM, V55, P231
12541    VANEENIGE EN, 1992, EUROPHYS LETT, V20, P41
12542    WHEATLEY JM, 1988, NATURE, V333, P121
12543    WIJNGAARDEN RJ, 1991, FRONTIERS HIGH PRESS, P339
12544    XIANG XD, 1990, NATURE, V348, P145
12545    XIANG XD, 1991, PHYS REV B B, V43, P11496
12546    XIANG XD, 1992, PHYS REV LETT, V68, P530
12547    YAMAMOTO A, 1990, PHYS REV B A, V42, P4228
12548 NR 34
12549 TC 8
12550 SN 0921-4534
12551 J9 PHYSICA C
12552 JI Physica C
12553 PD NOV 1
12554 PY 1996
12555 VL 271
12556 IS 1-2
12557 BP 103
12558 EP 110
12559 PG 8
12560 SC Physics, Applied
12561 GA VU642
12562 UT ISI:A1996VU64200013
12563 ER
12564 
12565 PT J
12566 AU Tan, WH
12567    Li, QN
12568 TI On the general and resonant solutions of atoms reflected by an
12569    evanescent laser wave
12570 SO CHINESE PHYSICS LETTERS
12571 DT Article
12572 AB Usually the reflection of two level atoms by a detuning evanescent
12573    laser wave was studied in past few years.(1-3) In previous paper we
12574    have presented an exact solution for this model based on the matrix
12575    Laplace transformation technique, and proceeded the numerical
12576    calculations for a given set of parameters.(4) However in the special
12577    case of resonance interaction considered in this paper, the solution
12578    for Schrodinger wave equation and reflectivity calculation can be
12579    greatly simplified; besides, the resonant solution provides a check to
12580    the numerical data based on the general solution of the previous paper.
12581 RP Tan, WH, SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA.
12582 CR BALYKIN VI, 1988, PHYS REV LETT, V60, P2137
12583    COOK RJ, 1982, OPT COMMUN, V43, P250
12584    DEUTSCHMANN R, 1993, PHYS REV A, V47, P2169
12585    TAN WH, 1995, ACTA SINICA QUANTUM, V1, P55
12586 NR 4
12587 TC 0
12588 SN 0256-307X
12589 J9 CHIN PHYS LETT
12590 JI Chin. Phys. Lett.
12591 PY 1996
12592 VL 13
12593 IS 8
12594 BP 587
12595 EP 589
12596 PG 3
12597 SC Physics, Multidisciplinary
12598 GA VT945
12599 UT ISI:A1996VT94500008
12600 ER
12601 
12602 PT J
12603 AU Chen, DY
12604    Zhang, DJ
12605 TI Lie algebraic structures of (1+1)-dimensional Lax integrable systems
12606 SO JOURNAL OF MATHEMATICAL PHYSICS
12607 DT Article
12608 AB An approach of constructing isospectral flows K-l, nonisospectral flows
12609    sigma(k) and their implicit representations of a general Lax integrable
12610    system is proposed. By introducing product function matrices, it is
12611    shown that the two sets of flows and of related symmetries both
12612    constitute infinite-dimensional Lie algebras with respect to the
12613    commutator [.,.] given in this paper. Algebraic properties for some
12614    well-known integrable systems such as the AKNS system, the generalized
12615    Harry Dym system, and the n-wave interaction system are obtained as
12616    particular examples. (C) 1996 American Institute of Physics.
12617 RP Chen, DY, SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
12618 CR ANTONOWICZ M, 1989, COMMUN MATH PHYS, V124, P456
12619    BOWMAN S, 1987, MATH PROC CAMBRIDGE, V102, P173
12620    CHEN DG, 1991, J PHYS A-MATH GEN, V24, P377
12621    CHEN DY, 1993, ACTA MATH APPL SINIC, V13, P324
12622    CHEN DY, 1994, ACTA MATH APPL SINIC, V17, P300
12623    CHENG Y, 1990, CHINESE SCI BULL, V35, P1631
12624    FOKAS AS, 1982, J MATH PHYS, V23, P1066
12625    LI YS, 1991, CHINESE SCI BULL, V36, P496
12626    MA WX, 1992, J MATH PHYS, V33, P2464
12627 NR 9
12628 TC 6
12629 SN 0022-2488
12630 J9 J MATH PHYS-NY
12631 JI J. Math. Phys.
12632 PD NOV
12633 PY 1996
12634 VL 37
12635 IS 11
12636 BP 5524
12637 EP 5538
12638 PG 15
12639 SC Physics, Mathematical
12640 GA VQ507
12641 UT ISI:A1996VQ50700021
12642 ER
12643 
12644 PT J
12645 AU Pu, HT
12646    Ding, ZL
12647    Ma, Z
12648 TI Preparation, characterization, and properties of EVA preirradiation
12649    grafted NIPAAm
12650 SO JOURNAL OF APPLIED POLYMER SCIENCE
12651 DT Article
12652 ID GELS; POLYMER; HYDROGEL; MEMBRANE; COLLAPSE; RELEASE
12653 AB An ethyl-vinyl acetate copolymer (EVA) preirradiation-grafted with
12654    N-isopropylacrylamide (NIPAAm) was prepared. Various methods which can
12655    be used to control the grafting reaction are described. DSC and TMA
12656    were employed to characterize the surface thermosensitivity of the
12657    graft copolymer. It is indicated that the surface of EVA grafted with
12658    NIPAAm shows thermosensitivity similar to a partially crosslinked
12659    poly-NIPAAm (PNIPAAm) gel. The response to the change of temperature
12660    through the lower critical solution temperature (LCST) of the graft was
12661    swifter than that of the PNIPAAm gel. SEM revealed a micropore
12662    structure in the surface layer of the sample. DSC was also used to
12663    analyze the water state in the surface layer of the sample. (C) 1996
12664    John Wiley & Sons, Inc.
12665 C1 UNIV WASHINGTON,CTR BIOENGN,SEATTLE,WA 98195.
12666    SHANGHAI UNIV,INST CHEM & CHEM ENGN,SHANGHAI 201800,PEOPLES R CHINA.
12667 RP Pu, HT, TONGJI UNIV,DEPT MAT SCI,SHANGHAI 200092,PEOPLES R CHINA.
12668 CR ALHAIQUE F, 1981, J PHARM, V33, P413
12669    BEA YH, 1987, MAKROMOL CHEM-RAPID, V8, P481
12670    CHAPIRO A, 1962, RAD CHEM POLYM SYSTE, CH12
12671    DONG LC, 1986, J CONTROL RELEASE, V4, P223
12672    DONG LC, 1991, J CONTROL RELEASE, V15, P141
12673    DUSEK K, 1968, J POLYM SCI       A2, V6, P1209
12674    EISENBERG SR, 1984, J MEMBRANE SCI, V19, P173
12675    FRELTAS RFS, 1987, SEPAR SCI TECHNOL, V22, P911
12676    HIROTSU S, 1987, J CHEM PHYS, V87, P1392
12677    HIROTSU S, 1989, J PHYS SOC JPN, V58, P1508
12678    HOFFMAN AS, 1986, J CONTROL RELEASE, V4, P213
12679    ILAVASK M, 1985, POLYMER, V26, P26
12680    ISHIHARA K, 1984, J APPL POLYM SCI, V29, P211
12681    KUNGWATCHAKUN D, 1988, MAKROMOL CHEM-RAPID, V9, P243
12682    MATSUO ES, 1988, J CHEM PHYS, V89, P1696
12683    MUKAE K, 1990, POLYM J, V22, P206
12684    OKANO T, 1990, J CONTROL RELEASE, V11, P255
12685    TANAKA T, 1978, PHYS REV LETT, V40, P820
12686    TANAKA T, 1980, PHYS REV LETT, V45, P1637
12687    TANAKA T, 1982, SCIENCE, V218, P467
12688    ULBRICH K, 1979, J POLYM SCI POLYM S, V66, P209
12689    YOSHIDA M, 1989, EUR POLYM J, V25, P1197
12690 NR 22
12691 TC 5
12692 SN 0021-8995
12693 J9 J APPL POLYM SCI
12694 JI J. Appl. Polym. Sci.
12695 PD DEC 5
12696 PY 1996
12697 VL 62
12698 IS 10
12699 BP 1529
12700 EP 1535
12701 PG 7
12702 SC Polymer Science
12703 GA VQ475
12704 UT ISI:A1996VQ47500005
12705 ER
12706 
12707 PT J
12708 AU Wu, YX
12709    Liu, HY
12710    Qi, DY
12711    Liu, YC
12712    Qian, JH
12713    Liu, SH
12714    Yu, TY
12715    Deng, JQ
12716 TI Methylene green-mediated sensor highly sensitive to hydrogen peroxide
12717    based on entrapment of horseradish peroxidase in composite membrane of
12718    regenerated silk fibroin and poly(vinyl alcohol)
12719 SO CHINESE JOURNAL OF CHEMISTRY
12720 DT Article
12721 DE sensor; poly(vinyl alcohol); regenerated silk fibroin; methylene green;
12722    horseradish peroxidase; hydrogen peroxide
12723 ID BIOELECTROCATALYTIC REDUCTION; ELECTRODE; CARBON; SYSTEM; ASSAY
12724 AB A novel composite membrane of poly(vinyl alcohol) and regenerated silk
12725    fibroin was employed to immobilize horseradish peroxidase (HRP) and IR
12726    was used to give a useful insight into the structure of the composite
12727    membrane before and after ethanol treatment. A methylene green-mediated
12728    sensor sensitive to hydrogen peroxide was fabricated, based on the
12729    composite membrane as immobilization matrix for HRP. Cyclic voltammetry
12730    and amperometric measurement were for the first time utilized to
12731    demonstrate the suitability of methylene green as an electron transfer
12732    mediator between immobilized HRP and a glassy carbon electrode in
12733    bioelectrocatalytic reduction of hydrogen peroxide. Performance and
12734    characteristics of the sensor were evaluated in respect to response
12735    time, detection limit, applied potential and concentration of the
12736    mediator. The sensor possesses a variety of characteristics including
12737    good sensitivity, rapid response time and low detection of limit of 0.1
12738    mu mol/L.
12739 C1 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
12740    FUDAN UNIV,DEPT MACROMOL SCI & CHEM,SHANGHAI 200433,PEOPLES R CHINA.
12741 CR DUNFORD HB, 1991, PEROXIDASES CHEM BIO, V2, P1
12742    GARGUILO MG, 1993, ANAL CHEM, V65, P523
12743    HO WO, 1993, J ELECTROANAL CHEM, V351, P185
12744    JONSSON G, 1989, ELECTROANAL, V1, P465
12745    KAMIN RA, 1980, ANAL CHEM, V52, P1198
12746    LIU HY, 1995, ANAL PROC, V32, P475
12747    MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801
12748    MINOURA N, 1990, POLYMER, V31, P430
12749    OHARA TJ, 1993, ELECTROANAL, V5, P823
12750    OLSSON B, 1988, ANAL CHIM ACTA, V206, P49
12751    SANCHEZ PD, 1990, ELECTROANAL, V2, P303
12752    SANCHEZ PD, 1991, ELECTROANAL, V3, P281
12753    TATSUMA T, 1991, ANAL CHIM ACTA, V242, P85
12754    WANG J, 1991, ANAL CHEM, V63, P2993
12755    WOLLENBERGER U, 1990, ANAL LETT, V23, P1795
12756    YAROPOLOV AI, 1979, DOKL AKAD NAUK SSSR, V249, P1399
12757 NR 16
12758 TC 0
12759 SN 1001-604X
12760 J9 CHINESE J CHEM
12761 JI Chin. J. Chem.
12762 PY 1996
12763 VL 14
12764 IS 4
12765 BP 359
12766 EP 366
12767 PG 8
12768 SC Chemistry, Multidisciplinary
12769 GA VQ561
12770 UT ISI:A1996VQ56100012
12771 ER
12772 
12773 PT J
12774 AU Bi, PZ
12775    Shi, YM
12776 TI The Psi' in the relativistic heavy ion collision
12777 SO ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS
12778 DT Article
12779 ID HADRONIC TRANSITIONS; TEMPERATURE; STATES; SYSTEM; DECAY; MASS
12780 AB We have investigated the temperature influence on the hadronic decay
12781    width Psi'. Contrary to the divergence of the decay width of rho-meson,
12782    pi-meson at critical temperature as suggested in some papers, we find
12783    that the decay width of Psi' decreases with increasing temperature.
12784    Thus the leptonic decay can be used to measure the number of produced
12785    Psi' at finite temperature just as at zero temperature.
12786 C1 FUDAN UNIV,DEPT PHYS 2,SHANGHAI 200433,PEOPLES R CHINA.
12787    CHINA CTR ADV SCI & TECHNOL,WORLD LAB,BEIJING 100080,PEOPLES R CHINA.
12788    SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA.
12789 RP Bi, PZ, FUDAN UNIV,TD LEE PHYS LAB,SHANGHAI 200433,PEOPLES R CHINA.
12790 CR BHANOT G, 1979, NUCL PHYS B, V156, P391
12791    BI P, 1988, J PHYS G, V15, P1653
12792    BI PZ, 1991, PHYS LETT B, V262, P485
12793    BI PZ, 1992, MOD PHYS LETT A, V7, P3161
12794    BI PZ, 1992, Z PHYS C PART FIELDS, V54, P453
12795    CRAIGIE NS, 1978, PHYS REP, V49, P1
12796    DOMINGUEZ CA, 1993, Z PHYS C PART FIELDS, V59, P63
12797    HASHIMOTO T, 1986, PHYS REV LETT, V57, P2123
12798    HASHIMOTO T, 1988, PHYS REV D, V37, P3331
12799    HIOKI S, 1991, PHYS LETT B, V261, P5
12800    KOCH P, 1986, PHYS REP, V142, P262
12801    KUANG YP, 1981, PHYS REV D, V24, P2874
12802    LIU DS, 1987, Z PHYS C PART FIELDS, V37, P119
12803    MATSUI T, 1986, PHYS LETT B, V178, P416
12804    VARELA J, 1991, NUCL PHYS A, V525, P275
12805    VOLOSHIN M, 1980, PHYS REV LETT, V45, P688
12806    YAN TM, 1980, PHYS REV D, V22, P1652
12807 NR 17
12808 TC 1
12809 SN 0170-9739
12810 J9 Z PHYS C-PAR FIELD
12811 JI Z. Phys. C-Part. Fields
12812 PD OCT
12813 PY 1996
12814 VL 72
12815 IS 3
12816 BP 497
12817 EP 499
12818 PG 3
12819 SC Physics, Particles & Fields
12820 GA VQ431
12821 UT ISI:A1996VQ43100014
12822 ER
12823 
12824 PT J
12825 AU Bai, ZZ
12826    Wang, DR
12827 TI A class of parallel nonlinear multisplitting relaxation methods for the
12828    large sparse nonlinear complementarity problems
12829 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
12830 DT Article
12831 DE nonlinear complementarity problem; nonlinear multisplitting; relaxation
12832    method; local convergence; parallel computation
12833 ID NEWTON METHODS; EQUATIONS
12834 AB By making use of the nonlinear multisplitting and the nonlinear
12835    relaxation techniques, we present, in this paper, a class of parallel
12836    nonlinear multisplitting successive overrelaxation methods for solving
12837    the large sparse nonlinear complementarity problems on the modern
12838    high-speed multiprocessors. These new methods particularly include the
12839    so-called nonlinear multisplitting SOR Newton method, the nonlinear
12840    multisplitting SOR-chord method, and the nonlinear multisplitting
12841    SOR-Steffensen method. Under suitable conditions, we establish the
12842    local convergence theories of the new methods, and investigate their
12843    asymptotic convergence rates. A lot of numerical results show that our
12844    new methods are feasible and efficient for parallel solving the
12845    nonlinear complementarity problems.
12846 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
12847 RP Bai, ZZ, CHINESE ACAD SCI,STATE KEY LAB SCI ENGN COMP,INST COMPUTAT
12848    MATH & SCI ENGN COMP,POB 2719,BEIJING 100080,PEOPLES R CHINA.
12849 CR BAI ZZ, 1995, J FUDAN U NATURAL SC, V34, P683
12850    BAI ZZ, 1996, COMPUT MATH APPL, V31, P17
12851    BAI ZZ, 1996, COMPUT MATH APPL, V32, P41
12852    BAI ZZ, 1996, J FUDAN U NATURAL SC, V35
12853    DELEONE R, 1988, MATH PROGRAM, V42, P347
12854    FROMMER A, 1989, NUMER MATH, V56, P269
12855    HARKER PT, 1990, MATH PROGRAM, V48, P339
12856    IP CM, 1992, MATH PROGRAM, V56, P71
12857    MANGASARIAN OL, 1976, SIAM J APPL MATH, V31, P89
12858    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
12859    ORTEGA JM, 1970, ITERATIVE SOLUTION N
12860    PANG JS, 1982, MATH PROGRAM, V24, P284
12861    PANG JS, 1988, MATH PROGRAM, V42, P407
12862    VARGA RS, 1962, MATRIX ITERATIVE ANA
12863    WANG DR, 1995, APPL MATH JCU B, V10, P251
12864 NR 15
12865 TC 3
12866 SN 0898-1221
12867 J9 COMPUT MATH APPL
12868 JI Comput. Math. Appl.
12869 PD OCT
12870 PY 1996
12871 VL 32
12872 IS 8
12873 BP 79
12874 EP 95
12875 PG 17
12876 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
12877 GA VM923
12878 UT ISI:A1996VM92300008
12879 ER
12880 
12881 PT J
12882 AU Shen, WH
12883    VanBrunt, V
12884    Xu, XW
12885    Hsu, HW
12886 TI Dynamic analysis of gas stripping during ethanol fermentation in CSTR
12887 SO CHINESE JOURNAL OF CHEMICAL ENGINEERING
12888 DT Article
12889 DE gas stripping; bifurcation; stability; product-substrate inhibition
12890 ID INHIBITION; REACTOR; BEHAVIOR
12891 AB The dynamic behavior of gas stripping during ethanol fermentation
12892    (GSEF) in a CSTR for a combined product-substrate inhibition case has
12893    been investigated in terms of bifurcation and regional stability
12894    theory. The region of optimal operating steady states and the effect of
12895    initial concentration on the attraction region have been established.
12896    The analytical results can be used to predict and promote the GSEF
12897    system moving towards an optimal operating steady state.
12898 C1 UNIV S CAROLINA,DEPT CHEM ENGN,COLUMBIA,SC 29208.
12899    UNIV TENNESSEE,DEPT CHEM ENGN,KNOXVILLE,TN 37996.
12900 RP Shen, WH, SHANGHAI UNIV,COLL CHEM & CHEM ENGN,JIADING CAMPUS,SHANGHAI
12901    201800,PEOPLES R CHINA.
12902 CR AGRAWAL P, 1982, CHEM ENG SCI, V37, P453
12903    CYSEWSKI GR, 1977, BIOTECHNOL BIOENG, V19, P1125
12904    DALE MC, 1985, BIOTECHNOL BIOENG, V27, P932
12905    GHOSE TK, 1979, BIOTECHNOL BIOENG, V21, P1387
12906    HAZWINKEL M, 1985, BIFURCATION ANAL, P13
12907    HONDA H, 1986, J CHEM ENG JPN, V19, P268
12908    LENBURY Y, 1987, APPL MICROBIOL BIOT, V25, P532
12909    LIU HS, 1990, CHEM ENG SCI, V45, P1289
12910    LIU HS, 1991, CHEM ENG SCI, V46, P2551
12911    LUEDEKING R, 1959, J BIOCHEM MICROBIOL, V1, P393
12912    LUONG JHT, 1985, BIOTECHNOL BIOENG, V27, P280
12913    MARGARITIS A, 1978, BIOTECHNOL BIOENG, V20, P727
12914    POORE BA, 1973, ARCH RATION MECH AN, V52, P358
12915    RION WL, 1990, COMPUT CHEM ENG, V14, P889
12916    SEVELY Y, 1980, 5 IFAC TRIEN C KYOT
12917    THIBAULT J, 1987, BIOTECHNOL BIOENG, V29, P74
12918    UPPAL A, 1976, CHEM ENG SCI, V31, P205
12919 NR 17
12920 TC 1
12921 SN 1004-9541
12922 J9 CHINESE J CHEM ENG
12923 JI Chin. J. Chem. Eng.
12924 PD SEP
12925 PY 1996
12926 VL 4
12927 IS 3
12928 BP 236
12929 EP 245
12930 PG 10
12931 SC Engineering, Chemical
12932 GA VM719
12933 UT ISI:A1996VM71900006
12934 ER
12935 
12936 PT J
12937 AU Shi, DH
12938    Liu, LM
12939 TI Availability analysis of a two-unit series system with a priority
12940    shut-off rule
12941 SO NAVAL RESEARCH LOGISTICS
12942 DT Article
12943 AB This study shows that the steady-state availability of a two-unit
12944    series system, which operates under a one-direction shut-off rule with
12945    a preemptive repair priority for unit 1, depends only on the
12946    first-order system parameters. First we obtain both transient and
12947    steady-state system availability and failure frequency when the
12948    lifetime of Unit 1 is Erlang and the other distributions are general.
12949    When the lifetime of Unit 1 is general, the system process has no
12950    regenerative point. Using supplementary variables, we establish a
12951    vector Markov process and hence transfer the problem to the solution of
12952    a system of integrodifferential equations. We can then obtain explicit
12953    formulas for the steady-state system availability and failure
12954    frequency, respectively. In concluding this article we make some
12955    conjectures on series systems and point out future research
12956    opportunities. (C) 1996 John Wiley & Sons, Inc.
12957 RP Shi, DH, SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
12958 CR BARLOW RE, 1979, ASYMPTOTIC MEASURES
12959    BARLOW RE, 1981, STATISTICAL THEORY R
12960    BARLOW RE, 1985, THEORY RELIABILITY S, P67
12961    CAO J, 1987, RELIABILITY THEORY A, P1
12962    KHALIL ZS, 1985, IEEE T RELIAB, V34, P181
12963    KLEINROCK L, 1976, QUEUEING SYSTEMS
12964    SHI DH, 1985, ACTA AUTOMATICA SINI, V1, P71
12965    SHI DH, 1985, ACTA MATH APPL SINIC, V1, P101
12966    SHI DH, 1993, ACTA MATH APPL SINTC, V1, P88
12967 NR 9
12968 TC 6
12969 SN 0894-069X
12970 J9 NAV RES LOG
12971 JI Nav. Res. Logist.
12972 PD OCT
12973 PY 1996
12974 VL 43
12975 IS 7
12976 BP 1009
12977 EP 1024
12978 PG 16
12979 SC Operations Research & Management Science
12980 GA VK759
12981 UT ISI:A1996VK75900005
12982 ER
12983 
12984 PT J
12985 AU Li, CF
12986 TI A note on the boundary condition in the Aharonov-Bohm scattering for
12987    alpha=integer
12988 SO PHYSICA B
12989 DT Article
12990 AB The boundary condition under which the Aharonov-Bohm scattering
12991    solution was obtained is examined. It is shown that when alpha =
12992    integer (where alpha = Phi/Phi(0) represents the magnetic flux in the
12993    long cylindrical solenoid, and Phi(0) = h/e), scattering does not
12994    happen only if the electron enters the region where the magnetic field
12995    exists. This result is not only in contrast with Aharonov and Bohm's
12996    result that there will be no scattering if the electron does not enter
12997    the field, but is also rather surprising, because it means that the
12998    electron passing through the magnetic field does not experience any
12999    effect.
13000 RP Li, CF, SHANGHAI UNIV,DEPT PHYS,20 CHENGZHONG RD,SHANGHAI
13001    201800,PEOPLES R CHINA.
13002 CR AHARONOV Y, 1959, PHYS REV, V115, P485
13003    CHAMBERS RG, 1960, PHYS REV LETT, V5, P3
13004    PAGE L, 1930, PHYS REV, V36, P444
13005    TONOMURA A, 1986, PHYS REV LETT, V56, P792
13006 NR 4
13007 TC 2
13008 SN 0921-4526
13009 J9 PHYSICA B
13010 JI Physica B
13011 PD AUG
13012 PY 1996
13013 VL 226
13014 IS 4
13015 BP 406
13016 EP 408
13017 PG 3
13018 SC Physics, Condensed Matter
13019 GA VJ660
13020 UT ISI:A1996VJ66000020
13021 ER
13022 
13023 PT J
13024 AU Wu, MH
13025    Jie, C
13026    Ding, ZL
13027    Ma, ZT
13028 TI Preparation of a new thermo-sensitive material by preirradiation
13029    grafting
13030 SO RADIATION PHYSICS AND CHEMISTRY
13031 DT Article
13032 ID GELS
13033 AB In this paper, a new thermo-sensitive material that NIPAAm was grafted
13034    onto EVA by preirradiation grafting was obtained, and the effects of
13035    reaction condition on grafting reaction were discussed. The
13036    experimental results showed that the swelling of the grafted EVA was
13037    reversible and the lower critical solution temperature (LCST) of the
13038    surface was 32 degrees C. Compared with the poly-NIPAAm gel, the
13039    grafted EVA with high mechanical strength behaves with similar
13040    thermo-sensitivity and the more swift response to the change of
13041    temperature. When acrylic or acrylamide was added to NIPAAm, the LCST
13042    of the grafted surface shifts higher with the increase of the grafted
13043    component hydrophilicity. Copyright (C) 1996 Elsevier Science Ltd
13044 RP Wu, MH, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI
13045    201800,PEOPLES R CHINA.
13046 CR BAE YH, 1987, MAKROMOL CHEM-RAPID, V8, P481
13047    DONG LC, 1986, J CONTROL RELEASE, V4, P223
13048    FREITAS RFS, 1987, SEPAR SCI TECHNOL, V22, P911
13049    HIROTSU S, 1987, J CHEM PHYS, V87, P1392
13050    HOFFMAN AS, 1986, AM CHEM SOC M NEW YO
13051    HOFFMAN AS, 1986, J CONTROL RELEASE, V4, P213
13052    MATSUO ES, 1988, J CHEM PHYS, V89, P1695
13053    MUKAE K, 1990, POLYM J, V22, P206
13054    TANAKA T, 1978, PHYS REV LETT, V40, P820
13055    ULBRICK K, 1979, J POLYM SCI PS, V66, P206
13056 NR 10
13057 TC 7
13058 J9 RADIAT PHYS CHEM
13059 JI Radiat. Phys. Chem.
13060 PD OCT
13061 PY 1996
13062 VL 48
13063 IS 4
13064 BP 525
13065 EP 527
13066 PG 3
13067 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
13068    Science & Technology
13069 GA VJ820
13070 UT ISI:A1996VJ82000019
13071 ER
13072 
13073 PT J
13074 AU Yan, H
13075    Wang, Q
13076    Awai, I
13077 TI Resonant frequency shift in a MSSW-SER with excitation power
13078 SO ELECTRONICS LETTERS
13079 DT Article
13080 DE magnetostatic surface waves; magnetostatic wave devices
13081 AB Owing to the nonlinear effect of LPE-YIG film and the energy
13082    confinement effect in the resonator, the resonant frequency of a
13083    MSSW-SER shifts appreciably with exciting power increase. Using this
13084    principle, an experimental method is proposed to investigate the
13085    nonlinear MSSW dispersion without large excitation power. The MSSW
13086    nonlinear prpoagation theory is verified by experimental results.
13087 C1 SHANGHAI UNIV,SCH SCI,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
13088 RP Yan, H, YAMAGUCHI UNIV,DEPT ELECT & ELECT ENGN,TOKIWADAI
13089    2557,UBE,YAMAGUCHI 755,JAPAN.
13090 CR BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
13091    CHANG KW, 1985, CIRC SYST SIGNAL PR, V4, P201
13092 NR 2
13093 TC 2
13094 SN 0013-5194
13095 J9 ELECTRON LETT
13096 JI Electron. Lett.
13097 PD SEP 12
13098 PY 1996
13099 VL 32
13100 IS 19
13101 BP 1787
13102 EP 1789
13103 PG 3
13104 SC Engineering, Electrical & Electronic
13105 GA VJ628
13106 UT ISI:A1996VJ62800032
13107 ER
13108 
13109 PT J
13110 AU Kostreva, MM
13111    Zheng, Q
13112    Zhuang, DM
13113 TI Upper robust mappings and vector minimization: An integral approach
13114 SO EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
13115 DT Article
13116 DE programming nonlinear; programming multiple criteria
13117 ID OPTIMIZATION PROBLEMS
13118 AB A study of upper robust mapping from a topological space to R(n) and
13119    development of optimality conditions for vector minimization of upper
13120    robust mappings are presented in the framework of integral based
13121    optimization theory. Under some general assumptions, optimality
13122    conditions are established for several well developed scalarization
13123    techniques such as weighting, E-constraint and reference point. These
13124    optimality conditions are applied to design integral algorithms for
13125    finding the set of efficient solutions of a vector optimization
13126    problem. A numerical example is presented to illustrate the
13127    effectiveness of the algorithm.
13128 C1 SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
13129    MT ST VINCENT UNIV,DEPT MATH & COMP STUDIES,HALIFAX,NS B3M 2J6,CANADA.
13130 RP Kostreva, MM, CLEMSON UNIV,DEPT MATH SCI,CLEMSON,SC 29634.
13131 CR BORWEIN JM, 1993, T AM MATH SOC, V338, P105
13132    CHANKONG V, 1983, MULTIOBJECTIVE DECIS
13133    CHEW SH, 1988, LECTURE NOTES EC MAT, V298
13134    HAIMES YY, 1971, IEEE T SYST MAN CYB, V1, P296
13135    JAHN J, 1984, MATH PROGRAM, V29, P203
13136    JAHN J, 1986, MATH VECTOR OPTIMIZA
13137    JAHN J, 1988, OPERATIONS RES P 198, P576
13138    JAHN J, 1992, J OPTIMIZ THEORY APP, V74, P87
13139    JAHN J, 1992, LECTURE NOTES EC MAT, V378
13140    KURATOWSKI K, 1966, TOPOLOGY, V1
13141    ROCKAFELLAR RT, 1970, CONVEX ANAL
13142    SHI SZ, 1994, J MATH ANAL APPL, V183, P706
13143    SHI SZ, 1995, T AM MATH SOC, V347, P4943
13144    WIERZBICKI AP, 1982, MATH MODELLING, V3, P391
13145    WIERZBICKI AP, 1986, OR SPEKTRUM, V8, P73
13146    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205
13147    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317
13148    ZHENG Q, 1992, THESIS CLEMSON U
13149 NR 18
13150 TC 0
13151 SN 0377-2217
13152 J9 EUR J OPER RES
13153 JI Eur. J. Oper. Res.
13154 PD SEP 20
13155 PY 1996
13156 VL 93
13157 IS 3
13158 BP 565
13159 EP 581
13160 PG 17
13161 SC Operations Research & Management Science
13162 GA VJ553
13163 UT ISI:A1996VJ55300009
13164 ER
13165 
13166 PT J
13167 AU Sang, WB
13168    Qian, YB
13169    Guan, XD
13170    Wu, WH
13171    Liu, YF
13172    Zhang, KJ
13173    Wang, J
13174    Hua, JD
13175 TI Synthesis and characterisation of nanometre-sized CdS clusters in
13176    chitosan film
13177 SO ADVANCED MATERIALS FOR OPTICS AND ELECTRONICS
13178 DT Article
13179 DE CdS; nanometer-sized clusters; chitosan; complexes
13180 ID QUANTUM CONFINEMENT
13181 AB A novel process using chitosan containing ligand groups as a medium for
13182    forming CdS clusters in chitosan films by an ion co-ordinate method has
13183    been investigated. The CdS clusters in the chitosan have been
13184    identified by X-ray diffraction and by their infrared, ultraviolet and
13185    visible absorption spectra and shown to possess high stability with a
13186    specific structure. Notable quantum size effects have been shown
13187    through their absorption spectra. By changing the reaction conditions,
13188    the wavelength edge of the absorption can be blue-shifted from 470 to
13189    375 nm.
13190 C1 SHANGHAI UNIV,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
13191 RP Sang, WB, SHANGHAI UNIV,DEPT INORGAN MAT,JIADING CAMPUS,SHANGHAI
13192    201800,PEOPLES R CHINA.
13193 CR BORRELLI NF, 1987, J APPL PHYS, V61, P5399
13194    DEAN JA, 1985, LANGES HDB CHEM, CH5
13195    KLUG HP, 1974, XRAY DIFFRACTION PRO, P635
13196    MAHLER W, 1988, INORG CHEM, V27, P435
13197    PILENI MP, 1992, CHEM MATER, V4, P345
13198    ROSSETTI R, 1984, J CHEM PHYS, V80, P4464
13199    STUCKY GD, 1990, SCIENCE, V247, P669
13200    TAYLOR A, 1961, XRAY METALLOGRAPHY
13201    WANG Y, 1987, OPT COMMUN, V61, P223
13202    WANG Y, 1990, J CHEM PHYS, V92, P6977
13203    WANG Y, 1991, J PHYS CHEM-US, V95, P525
13204 NR 11
13205 TC 1
13206 SN 1057-9257
13207 J9 ADV MATER OPT ELECTRON
13208 JI Adv. Mater. Opt. Electron.
13209 PD JUL-AUG
13210 PY 1996
13211 VL 6
13212 IS 4
13213 BP 197
13214 EP 202
13215 PG 6
13216 SC Chemistry, Applied; Chemistry, Multidisciplinary; Engineering,
13217    Electrical & Electronic; Materials Science, Multidisciplinary; Optics
13218 GA VH708
13219 UT ISI:A1996VH70800006
13220 ER
13221 
13222 PT J
13223 AU Liu, LM
13224    Shi, DH
13225 TI Busy period in GI(X)/G/infinity
13226 SO JOURNAL OF APPLIED PROBABILITY
13227 DT Article
13228 DE busy period; busy cycle; idle period; vector Markov process method;
13229    renewal method
13230 ID QUEUE
13231 AB Busy period problems in infinite server queues are studied
13232    systematically, starting from the batch service time. General relations
13233    are given for the lengths of the busy cycle, busy period and idle
13234    period, and for the number of customers served in a busy period. These
13235    relations show that the idle period is the most difficult while the
13236    busy cycle is the simplest of the four random variables. Renewal
13237    arguments are used to derive explicit results for both general and
13238    special cases.
13239 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
13240 RP Liu, LM, HONG KONG UNIV SCI & TECHNOL,DEPT IND ENGN,CLEAR WATER
13241    BAY,KOWLOON,HONG KONG.
13242 CR BROWN M, 1969, J APPL PROBAB, V6, P604
13243    BROWNE S, 1993, J APPL PROBAB, V30, P589
13244    CHAUDHRY ML, 1992, QUEUEING SYST, V10, P105
13245    DVURECENSKIJ A, 1984, J APPL PROBAB, V21, P207
13246    HOLMAN DF, 1982, SANKHYA A, V44, P294
13247    KEILSON J, 1994, J APPL PROBAB, V31, P157
13248    LIU L, 1990, J APPL PROBAB, V27, P671
13249    LIU L, 1993, QUEUEING SYSTEMS, V14, P313
13250    SHANBHAG DN, 1966, J APPL PROBAB, V3, P274
13251    SHI DH, 1990, ANN OPERAT RES, V24, P185
13252    STADJE W, 1985, J APPL PROBAB, V22, P694
13253    TAKACS L, 1962, INTRO THEORY QUEUES
13254 NR 12
13255 TC 1
13256 SN 0021-9002
13257 J9 J APPL PROBAB
13258 JI J. Appl. Probab.
13259 PD SEP
13260 PY 1996
13261 VL 33
13262 IS 3
13263 BP 815
13264 EP 829
13265 PG 15
13266 SC Statistics & Probability
13267 GA VH253
13268 UT ISI:A1996VH25300020
13269 ER
13270 
13271 PT J
13272 AU Liu, JR
13273    Wang, YZ
13274 TI Velocity-selective population and quantum collapse-revival phenomena of
13275    the atomic motion for a motion-quantized Raman-coupled Jaynes-Cummings
13276    model
13277 SO PHYSICAL REVIEW A
13278 DT Article
13279 ID NONDEMOLITION MEASUREMENTS; RABI OSCILLATIONS; PHOTON STATISTICS;
13280    SQUEEZED STATES; BEAM DEFLECTION; SUPER-RADIANCE; CAVITY FIELDS;
13281    2-LEVEL ATOM; MASER; DYNAMICS
13282 AB An extension of the standard Raman-coupled Jaynes-Cummings model has
13283    been made to include atomic external effects dire to quantization of
13284    atomic motion. The collapse-and-revival phenomena in population
13285    inversion and in atomic motion, the velocity-selective population and
13286    their relation for a motion-quantized atom are given on the basis of a
13287    fundamental constant characterizing the interaction strength between
13288    the field modes and the atomic internal and external states. This study
13289    reveals how the initial statistics of atomic momentum affect the atomic
13290    internal dynamics and how those of the fields affect the atomic
13291    external dynamics through the atomic internal states. An exact
13292    expression for the time evolution of the density operator has been
13293    given for two fields and the center-of-mass motion initially in
13294    coherent states and in an arbitrary superposition of atomic momentum
13295    eigenstates. The statistics of atomic external and internal quantities
13296    such as the radiation force and the atomic momentum are given.
13297 RP Liu, JR, SHANGHAI UNIV SCI & TECHNOL,JOINT LAB QUANTUM OPT,SHANGHAI
13298    201800,PEOPLES R CHINA.
13299 CR AGARWAL GS, 1984, PHYS REV LETT, V53, P1732
13300    AGARWAL GS, 1985, J OPT SOC AM B, V2, P480
13301    AGARWAL GS, 1991, PHYS REV LETT, V67, P3665
13302    ARVINDA PK, 1988, PHYSICA C, V150, P427
13303    BRUNE M, 1987, PHYS REV LETT, V59, P1899
13304    BUZEK V, 1992, PHYS REV A, V45, P8190
13305    CARDIMONA DA, 1991, PHYS REV A, V43, P3710
13306    CIRAC JI, 1993, PHYS REV LETT, V70, P556
13307    CUMMINGS FW, 1965, PHYS REV, V140, A1051
13308    EBERLY JH, 1977, J OPT SOC AM, V67, P1257
13309    EBERLY JH, 1980, J PHYS B ATOM MOL PH, V13, P217
13310    EBERLY JH, 1980, PHYS REV LETT, V44, P1383
13311    ENGLERT BG, 1991, EUROPHYS LETT, V14, P25
13312    FOX RF, 1986, PHYS REV A, V34, P482
13313    GENTILE TR, 1989, PHYS REV A, V40, P5103
13314    GERRY CC, 1990, PHYS REV A, V42, P6805
13315    HAROCHE S, 1984, NEW TRENDS ATOMIC PH
13316    HAROCHE S, 1991, EUROPHYS LETT, V14, P19
13317    HERKOMMER AM, 1992, PHYS REV LETT, V69, P3298
13318    HOLLAND MJ, 1991, PHYS REV LETT, V67, P1716
13319    ITANO WM, 1982, PHYS REV A, V25, P35
13320    JAYNES ET, 1963, P IEEE, V51, P89
13321    KALUZNY Y, 1983, PHYS REV LETT, V51, P1175
13322    KLEPPNER D, 1981, PHYS REV LETT, V47, P233
13323    KNIGHT PL, 1982, PHYS LETT A, V90, P342
13324    KNIGHT PL, 1986, PHYS SCRI T, V12, P51
13325    KUKLINSKI JR, 1988, PHYS REV A, V37, P317
13326    LOWELL S, 1991, PHYS REV LETT, V66, P527
13327    MAHRAN MH, 1992, PHYS REV A, V45, P5113
13328    MESCHEDE D, 1985, PHYS REV LETT, V54, P551
13329    MEYSTRE P, 1975, NUOVO CIMENTO B, V25, P21
13330    MEYSTRE P, 1982, PHYS LETT A, V89, P390
13331    MILBURN GJ, 1984, OPT ACTA, V31, P671
13332    MILONNI PW, 1983, PHYS REV LETT, V50, P966
13333    MOLER K, 1992, PHYS REV A, V45, P342
13334    NAROZHNY NB, 1981, PHYS REV A, V23, P236
13335    PURI RR, 1987, PHYS REV A, V35, P3433
13336    PURI RR, 1992, PHYS REV A, V45, P5073
13337    RAIMOND JM, 1982, PHYS REV LETT, V49, P117
13338    RAIMOND JM, 1982, PHYS REV LETT, V49, P1924
13339    REMPE G, 1987, PHYS REV LETT, V51, P550
13340    REMPE G, 1987, PHYS REV LETT, V58, P353
13341    RITI C, 1982, OPT COMMUN, V44, P105
13342    SANCHEZMONDRAGO.JJ, 1983, PHYS REV LETT, V51, P550
13343    SCHOENDORFF L, 1990, PHYS REV A, V41, P5147
13344    SHORE BW, 1993, J MOD OPTIC, V40, P1195
13345    SHORT R, 1983, PHYS REV LETT, V51, P384
13346    SLEATOR T, 1993, PHYS REV A, V48, P3286
13347    STOREY P, 1992, PHYS REV LETT, V68, P472
13348    WALLS DF, 1970, Z PHYS, V237, P224
13349    YOO HI, 1981, J PHYS A, V14, P1383
13350    YOO HI, 1985, PHYS REP, V118, P239
13351    YURKE B, 1986, PHYS REV LETT, V57, P13
13352    YURKE B, 1990, PHYS REV A, V42, P1703
13353 NR 54
13354 TC 5
13355 SN 1050-2947
13356 J9 PHYS REV A
13357 JI Phys. Rev. A
13358 PD SEP
13359 PY 1996
13360 VL 54
13361 IS 3
13362 BP 2444
13363 EP 2450
13364 PG 7
13365 SC Physics, Atomic, Molecular & Chemical; Optics
13366 GA VH090
13367 UT ISI:A1996VH09000086
13368 ER
13369 
13370 PT J
13371 AU Liu, HY
13372    Zhang, XL
13373    Zhang, ZN
13374    Qi, DY
13375    Fan, YB
13376    Liu, YC
13377    Liu, SH
13378    Yu, TY
13379    Deng, JQ
13380 TI Characterization of composite membrane of poly(vinyl alcohol) and
13381    regenerated silk fibroin for immobilization of horseradish peroxidase
13382    and an amperometric neckelocene-mediated sensor sensitive to hydrogen
13383    peroxide
13384 SO JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY
13385 DT Article
13386 DE sensor; poly(vinyl alcohol); regenerated silk fibroin; nickelocene;
13387    horseradish peroxidase; hydrogen peroxide
13388 ID DIRECT ELECTRON-TRANSFER; ENZYME ELECTRODES; POTENTIAL APPLICATION;
13389    ORGANIC PEROXIDES; ACTIVATED CARBON; BIOSENSORS; POLYMER; OXIDASE
13390 AB Horseradish peroxidase (HRP) was effectively entrapped in a novel
13391    composite membrane of poly(vinyl alcohol) and regenerated silk fibroin.
13392    IR spectroscopy was employed to characterize the structure of the
13393    composite membrane and scanning electron microscopy was used to
13394    visualize the morphology of the composite membrane. HRP was utilized to
13395    amplify the amperometric response of the sensor by catalyzing reduction
13396    of hydrogen peroxide via nickelocene, an electron transfer mediator
13397    between immobilized HRP and a glassy carbon electrode. The influence of
13398    various experimental parameters such as pH, temperature and applied
13399    potential were explored for optimum analytical performance. The sensor
13400    possessed a variety of characteristics including good sensitivity,
13401    rapid response time and a low detection of limit of 0.1 mu mol dm(-3),
13402    which arose from the efficiency of electron transfer between
13403    immobilized HRP and the electrode via nickelocene.
13404 C1 SUZHOU INST CITY CONSTRUCT & ENVIRONM PROTECT,DEPT ENVIRONM PROTECT,SUZHOU 300111,JIANSU,PEOPLES R CHINA.
13405    FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
13406 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R
13407    CHINA.
13408 CR ADEYOJU O, 1995, ANAL CHIM ACTA, V305, P57
13409    ASAKURA T, 1989, BIOTECHNOL BIOENG, V33, P598
13410    BIFULCO L, 1994, ANAL LETT, V27, P1443
13411    CSOREGI E, 1994, ANAL CHEM, V66, P3604
13412    DEMURA M, 1992, BIOMATERIALS, V13, P276
13413    DENG Q, 1994, J ELECTROANAL CHEM, V377, P191
13414    DORDICK JS, 1992, TRENDS BIOTECHNOL, V10, P287
13415    DUNFORD HB, 1991, PEROXIDASES CHEM BIO, V2, P1
13416    FREW JE, 1986, J ELECTROANAL CH INF, V201, P1
13417    GARGUILO MG, 1993, ANAL CHEM, V65, P523
13418    GORTON L, 1992, ANALYST, V117, P1235
13419    HO WO, 1993, J ELECTROANAL CHEM, V351, P185
13420    HO WO, 1995, BIOSENS BIOELECTRON, V10, P683
13421    LIU YC, 1995, J CHEM TECHNOL BIOT, V64, P269
13422    LIU YC, 1996, ELECTROCHIM ACTA, V41, P77
13423    MULCHANDANI A, 1995, ANAL CHEM, V67, P94
13424    OLIVER JM, 1984, METHOD ENZYMOL, V108, P336
13425    POPESCU IC, 1995, BIOSENS BIOELECTRON, V10, P443
13426    RENZ M, 1984, NUCLEIC ACIDS RES, V12, P3435
13427    RUZGAS T, 1995, J ELECTROANAL CHEM, V391, P41
13428    SMITH AT, 1992, BIOCHEM SOC T, V20, P340
13429    TAKAHASHI K, 1984, BIOCHEM BIOPH RES CO, V121, P261
13430    TATSUMA T, 1992, ANAL CHEM, V64, P1183
13431    TATSUMA T, 1995, ANAL CHEM, V67, P283
13432    TSUKADA M, 1994, J POLYM SCI POL PHYS, V32, P1407
13433    VREEKE M, 1995, ANAL CHEM, V67, P303
13434    WANG J, 1991, ANAL CHIM ACTA, V254, P81
13435    WOLLENBERGER U, 1991, BIOELECTROCH BIOENER, V26, P287
13436    YANG L, 1995, ANAL CHEM, V67, P1326
13437    ZHAO JG, 1992, J ELECTROANAL CHEM, V327, P109
13438 NR 30
13439 TC 2
13440 SN 0268-2575
13441 J9 J CHEM TECHNOL BIOTECHNOL
13442 JI J. Chem. Technol. Biotechnol.
13443 PD SEP
13444 PY 1996
13445 VL 67
13446 IS 1
13447 BP 77
13448 EP 83
13449 PG 7
13450 SC Chemistry, Multidisciplinary; Engineering, Chemical; Biotechnology &
13451    Applied Microbiology
13452 GA VF658
13453 UT ISI:A1996VF65800010
13454 ER
13455 
13456 PT J
13457 AU Zhu, MY
13458    Zhang, HY
13459    Zhu, YL
13460    Jin, HM
13461    Jin, HJ
13462    Xu, GQ
13463 TI Study on the easy direction of magnetization of Sm0.88Dy0.12Fe2 alloy
13464 SO JOURNAL OF RARE EARTHS
13465 DT Article
13466 DE Sm0.88Dy0.12Fe2 alloy; easy direction of magnetization;
13467    magnetostriction; Mossbauer-effect
13468 AB By Mossbauer-effect, the changes of easy direction of magnetization for
13469    Sm0.88Dy0.12. Fe-2 alloy have been studied in this paper. It was found
13470    that as temperature increases, the easy direction of magnetization
13471    changes gradually from [110] to [111] axis in the temperature range of
13472    153 to 213 K. Two easy directions of magnetization [110] and [111]
13473    coexist and do not change suddenly from [110] to [111] at the same
13474    temperature.
13475 C1 SHANGHAI UNIV,DEPT MAT ENGN,SHANGHAI 200072,PEOPLES R CHINA.
13476    SHANGHAI IRON & STEEL RES INST,SHANGHAI 200940,PEOPLES R CHINA.
13477 CR ANNAPOORNI S, 1990, J APPL PHYS, V67, P424
13478    ATZMONY U, 1973, P 10 RAR EARTH C, V1, P605
13479    CLARK AE, 1980, FERROMAGNETIC MAT
13480    VANDIEPEN AM, 1973, PHYS REV B, V8, P1125
13481 NR 4
13482 TC 0
13483 SN 1002-0721
13484 J9 J RARE EARTH
13485 JI J. Rare Earths
13486 PD SEP
13487 PY 1996
13488 VL 14
13489 IS 3
13490 BP 185
13491 EP 188
13492 PG 4
13493 SC Chemistry, Applied
13494 GA VF262
13495 UT ISI:A1996VF26200005
13496 ER
13497 
13498 PT J
13499 AU Sang, WB
13500    Qian, YB
13501    Shi, WM
13502    Wang, DM
13503    Min, JH
13504    Wu, WH
13505    Liu, YF
13506    Hua, JD
13507    Fang, J
13508    Yue, YF
13509 TI A primary study on the synthesis and characterization of ZnS clusters
13510    in chitosan film
13511 SO JOURNAL OF PHYSICS-CONDENSED MATTER
13512 DT Letter
13513 ID QUANTUM CONFINEMENT
13514 AB A novel process using chitosan containing ligand groups as a medium for
13515    forming ZnS clusters by an ion-coordination method is investigated for
13516    the first time. The ZnS clusters in the chitosan film have been
13517    identified by x-ray diffraction, ultraviolet-visible absorption and
13518    photoluminescence spectra. The ZnS cluster size was estimated to be
13519    about 2-6 nm, depending on the processing conditions. Blue luminescence
13520    for the undoped ZnS clusters was observed and its mechanism is briefly
13521    discussed.
13522 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
13523    CHINESE ACAD SCI,SHANGHAI INST CERAM,SHANGHAI 200050,PEOPLES R CHINA.
13524 RP Sang, WB, SHANGHAI UNIV SCI & TECHNOL,DEPT INORGAN MAT,SHANGHAI
13525    201800,PEOPLES R CHINA.
13526 CR BORRELLI NF, 1987, J APPL PHYS, V61, P5399
13527    GARLICK GFJ, 1966, P INT C LUMINESCENCE, P56
13528    KLUG HP, 1974, XRAY DIFFRACTION PRO, P635
13529    MAHLER W, 1988, INORG CHEM, V27, P435
13530    PILENI MP, 1992, CHEM MATER, V4, P345
13531    ROSSETTI R, 1984, J CHEM PHYS, V80, P4464
13532    STUCKY GD, 1990, SCIENCE, V247, P669
13533    TAYLOR A, 1961, XRAY METALLOGRAPHY
13534    WANG Y, 1987, OPT COMMUN, V61, P233
13535    WANG Y, 1990, J CHEM PHYS, V92, P6977
13536    WANG Y, 1991, J PHYS CHEM-US, V95, P525
13537 NR 11
13538 TC 4
13539 SN 0953-8984
13540 J9 J PHYS-CONDENS MATTER
13541 JI J. Phys.-Condes. Matter
13542 PD SEP 2
13543 PY 1996
13544 VL 8
13545 IS 36
13546 BP L499
13547 EP L504
13548 PG 6
13549 SC Physics, Condensed Matter
13550 GA VF317
13551 UT ISI:A1996VF31700001
13552 ER
13553 
13554 PT J
13555 AU Wang, ZC
13556    Wang, SF
13557    Shen, SH
13558    Zou, SC
13559    Zhang, ZM
13560 TI Intrinsic periodicity associated with quantum-well states in a magnetic
13561    sandwich
13562 SO JOURNAL OF PHYSICS-CONDENSED MATTER
13563 DT Article
13564 ID OSCILLATORY INTERLAYER EXCHANGE; NONMAGNETIC METALLIC LAYER; GIANT
13565    MAGNETORESISTANCE; TRANSPORT-PROPERTIES; THIN-FILMS; FE LAYERS;
13566    MULTILAYERS; SUPERLATTICES; MECHANISM; TRILAYERS
13567 AB zFrom a simplified quantum-well model for a magnetic sandwich, it can
13568    be shown that in the variation of the number of occupied levels with
13569    the spacer layers, there exists an intrinsic periodicity, which leads
13570    the Fermi level to oscillate periodically. The intrinsic periodicity
13571    does not depend on the magnetic alignment but only on the quantum-well
13572    states themselves. The oscillation period can be approximately given by
13573    T = (1/beta) (3) root pi mu(parallel to)/(3n(0) mu(perpendicular to)),
13574    where mu(parallel to) and mu(perpendicular to) are the effective masses
13575    of the electron in the lateral and perpendicular directions
13576    respectively, beta is the distance between the two neighbouring atomic
13577    layers, and n(0) is the electron density in the spacer layers. This
13578    makes one speculate that the long periodicity of the oscillatory
13579    coupling could be a result of the intrinsic periodicity, if mu(parallel
13580    to)/mu(perpendicular to) >> 1 and a small s-electron density are
13581    assumed. On the other hand, from the calculated energy bands for a thin
13582    film, it is found that the electronic structure is highly anisotropic,
13583    which is in agreement with this assumption. Therefore, it can be
13584    confirmed that the intrinsic periodicity plays an important role in the
13585    oscillatory coupling. An inverse photoemission experiment on Cu(100)
13586    films over Co can be explained quite well using this physical picture.
13587 C1 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA.
13588 RP Wang, ZC, CHINESE ACAD SCI,SHANGHAI INST MET,STATE KEY LAB FUNCT MAT
13589    INFORMAT,865 CHANGNING RD,SHANGHAI 200050,PEOPLES R CHINA.
13590 CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472
13591    BARNAS J, 1992, J MAGN MAGN MATER, V111, L215
13592    BENNETT WR, 1990, PHYS REV LETT, V65, P3169
13593    BRUBAKER ME, 1991, APPL PHYS LETT, V58, P2307
13594    BRUNO P, 1991, PHYS REV LETT, V67, P1602
13595    BRUNO P, 1992, J MAGN MAGN MATER, V116, L13
13596    BRUNO P, 1993, J MAGN MAGN MATER, V121, P248
13597    CAMLEY RE, 1989, PHYS REV LETT, V63, P664
13598    CARBONE C, 1987, PHYS REV B, V36, P2433
13599    CARBONE C, 1993, PHYS REV LETT, V71, P2805
13600    CELINSKI Z, 1991, J MAGN MAGN MATER, V99, L25
13601    DOSE V, 1983, PROG SURF SCI, V13, P225
13602    EDWARDS DM, 1990, S C E MRS SPRING M S
13603    EDWARDS DM, 1991, J MAGN MAGN MATER, V93, P85
13604    EDWARDS DM, 1991, J PHYS-CONDENS MAT, V3, P4941
13605    EDWARDS DM, 1991, PHYS REV LETT, V67, P493
13606    EHRLICH AC, 1993, J APPL PHYS, V73, P5536
13607    EHRLICH AC, 1993, PHYS REV LETT, V71, P2300
13608    EUCEDA A, 1983, PHYS REV B, V27, P659
13609    GARCIA N, 1991, J MAGN MAGN MATER, V99, L12
13610    GARRISON K, 1993, PHYS REV LETT, V71, P2801
13611    GRUNBERG P, 1986, PHYS REV LETT, V57, P2442
13612    HEINRICH B, 1990, PHYS REV LETT, V64, P673
13613    HIMPSEL FJ, 1991, PHYS REV B, V44, P5966
13614    JIN QY, 1994, PHYS REV LETT, V72, P5
13615    JONES BA, 1993, PHYS REV LETT, V71, P4253
13616    KRAKAUER H, 1979, PHYS REV B, V19, P1706
13617    LACROIX C, 1991, J MAGN MAGN MATER, V93, P413
13618    LEVY PM, 1990, J APPL PHYS 2B, V67, P5914
13619    LEVY PM, 1990, PHYS REV LETT, V65, P1643
13620    MANKEY J, 1993, PHYS REV B, V47, P1540
13621    MATHON J, 1991, J MAGN MAGN MATER, V100, P527
13622    MATHON J, 1992, J PHYS-CONDENS MAT, V4, P9873
13623    NEDOREZOV SS, 1967, SOV PHYS JETP, V24, P578
13624    ORTEGA JE, 1992, PHYS REV LETT, V69, P844
13625    PARKIN SSP, 1990, PHYS REV LETT, V64, P2304
13626    PARKIN SSP, 1991, PHYS REV LETT, V66, P2152
13627    PARKIN SSP, 1991, PHYS REV LETT, V67, P3598
13628    PESCIA D, 1990, Z PHYS B, V78, P475
13629    PETROFF F, 1991, PHYS REV B, V44, P5355
13630    QIU ZQ, 1992, PHYS REV, V46, P5810
13631    RUDERMAN MA, 1954, PHYS REV, V96, P99
13632    SEGALL B, 1962, PHYS REV, V125, P109
13633    SOHN KS, 1976, PHYS REV B, V13, P1515
13634    STILES MD, 1990, PHYS REV B, V64, P2304
13635    STILES MD, 1993, PHYS REV B, V48, P7238
13636    TRIVEDI N, 1988, PHYS REV B, V38, P12298
13637    VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P3870
13638    WALKER TG, 1993, PHYS REV, V48
13639    WANG SF, 1995, PHYS REV B, V51, P15156
13640    WANG Y, 1990, PHYS REV LETT, V65, P2732
13641    WANG Y, 1991, J MAGN MAGN MATER, V93, P359
13642    WANG ZC, 1994, PHYS LETT A, V193, P480
13643    YAFET Y, 1987, PHYS REV B, V36, P3948
13644    ZHANG S, 1992, PHYS REV B, V45, P8689
13645 NR 55
13646 TC 1
13647 SN 0953-8984
13648 J9 J PHYS-CONDENS MATTER
13649 JI J. Phys.-Condes. Matter
13650 PD AUG 26
13651 PY 1996
13652 VL 8
13653 IS 35
13654 BP 6381
13655 EP 6391
13656 PG 11
13657 SC Physics, Condensed Matter
13658 GA VE807
13659 UT ISI:A1996VE80700007
13660 ER
13661 
13662 PT J
13663 AU Chen, WJ
13664    Wan, XJ
13665    Jin, C
13666 TI Environmental effects on the room temperature ductility of a TiAl based
13667    alloy
13668 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
13669 DT Article
13670 ID EMBRITTLEMENT
13671 AB The effects of different environments and strain rates on the room
13672    temperature ductility of a TiAl based alloy with the composition
13673    Ti-46Al-2Cr-0.2Si-0.1Nd have been investigated in this paper. The
13674    results show that the TiAl based alloy is susceptible to environmental
13675    embrittlement at room temperature. The tensile ductility of the TiAl
13676    based alloy in different test environments decreases in the sequence of
13677    oxygen > air > hydrogen > argon saturated with water vapor. The
13678    ductility is also sensitive to strain rate. It increases with
13679    increasing strain rate when tested in hydrogen gas. Both H2O and H-2
13680    cause environmental embrittlement, with the former being a more potent
13681    embrittler.
13682 C1 SHANGHAI UNIV,INST MET & MAT SCI,SHANGHAI 200072,PEOPLES R CHINA.
13683 CR CHAN KS, 1992, METALL T A, V23, P1663
13684    CHRISTODOULOU L, 1990, HYDROGEN EFFECTS MAT, P515
13685    GEORGE EP, 1994, HIGH TEMPERATURE ORD, V6, P1131
13686    KANE RD, 1991, ENV EFFECTS ADV MAT, P35
13687    KIM YW, 1990, HIGH TEMPERATURE ALU, P465
13688    LIU CT, 1989, SCRIPTA METALL, V23, P875
13689    LIU CT, 1990, HIGH TEMPERATURE ALU, P133
13690    LIU CT, 1990, SCRIPTA METALL MATER, V24, P1583
13691    LIU CT, 1990, SCRIPTA METALL MATER, V24, P385
13692    LIU CT, 1992, SCRIPTA METALL MATER, V27, P599
13693    MASAHASHI N, 1988, METALL T, V19, P535
13694    TAKASUGI T, 1986, ACTA METALL, V34, P607
13695    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
13696    YAMAGUCHI M, 1990, PROG MATER SCI, V34, P1
13697 NR 14
13698 TC 0
13699 SN 1005-0302
13700 J9 J MATER SCI TECHNOL
13701 JI J. Mater. Sci. Technol.
13702 PD OCT
13703 PY 1996
13704 VL 12
13705 IS 5
13706 BP 373
13707 EP 376
13708 PG 4
13709 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
13710    Engineering
13711 GA VE553
13712 UT ISI:A1996VE55300011
13713 ER
13714 
13715 PT J
13716 AU Fang, JH
13717    Lu, WC
13718    Ding, YM
13719    Yan, LC
13720 TI Self-organization neural tree applied to structure-activity
13721    relationship of 3-methylfentanyl derivatives
13722 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
13723 DT Article
13724 DE 3-methylfentanyl derivatives; structure-activity relationship;
13725    artificial neural network; self-organization neural tree
13726 AB In this paper, the non-linear relationship between the characteristic
13727    parameters and analgesic activities of a series of 3-methylfentanyl
13728    derivatives was calculated by self-organization neural tree model, The
13729    results show that the performance of the self-organization neural tree
13730    is quite good and the successful classification rare is high,
13731    Therefore, we can expect that this model might be used as an effective
13732    assistant technique for the investigation of structure-activity
13733    relationship of drugs.
13734 C1 CHINESE ACAD SCI,SHANGHAI INST MET,SHANGHAI,PEOPLES R CHINA.
13735 RP Fang, JH, SHANGHAI UNIV,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
13736 CR HANSCH C, 1962, NATURE, V194, P178
13737    HANSCH C, 1973, J MED CHEM, V16, P1207
13738    HANSCH C, 1977, J MED CHEM, V20, P304
13739    HOFFMANN R, 1963, J CHEM PHYS, V39, P1397
13740    LI T, 1993, NEUROCOMPUTING, V5, P231
13741    LU WC, 1993, J MOL SCI, V9, P123
13742    ZHU YC, 1981, ACTA PHARMACOL SINIC, V16, P97
13743    ZHU YC, 1983, ACTA PHARMACEUTICA S, V18, P591
13744    ZHU YC, 1985, ACTA PHARMACOL SINIC, V20, P267
13745 NR 9
13746 TC 0
13747 SN 0251-0790
13748 J9 CHEM J CHINESE UNIV-CHINESE
13749 JI Chem. J. Chin. Univ.-Chin.
13750 PD AUG
13751 PY 1996
13752 VL 17
13753 IS 8
13754 BP 1280
13755 EP 1284
13756 PG 5
13757 SC Chemistry, Multidisciplinary
13758 GA VE173
13759 UT ISI:A1996VE17300032
13760 ER
13761 
13762 PT J
13763 AU Gu, XR
13764    Zhu, YZ
13765 TI Optimal heapsort algorithm
13766 SO THEORETICAL COMPUTER SCIENCE
13767 DT Article
13768 AB A new heapsort algorithm is given in this paper. Its practical value is
13769    that the efficiency of it is two times as high as that of the original
13770    algorithm in Horowitz and Sahni (1978). Also, its theoretical
13771    significance lies in the order and the main term coefficient of the
13772    complexity has optimal performance.
13773 RP Gu, XR, SHANGHAI UNIV SCI & TECHNOL,DEPT COMP SCI,SHANGHAI
13774    201800,PEOPLES R CHINA.
13775 CR AHO AV, 1975, DESIGN ANAL COMPUTER
13776    HOROWITZ E, 1978, FUNDAMENTALS COMPUTE
13777    KNUTH DE, 1973, ART COMPUTER PROGRAM, V3
13778    WEGENER I, 1992, SIMPLE MODIFICATION
13779    XUNRANG G, 1990, COMPUT J, V33, P281
13780    XUNRANG G, 1994, THEORET COMPUT SCI, V134, P559
13781 NR 6
13782 TC 2
13783 SN 0304-3975
13784 J9 THEOR COMPUT SCI
13785 JI Theor. Comput. Sci.
13786 PD AUG 30
13787 PY 1996
13788 VL 163
13789 IS 1-2
13790 BP 239
13791 EP 243
13792 PG 5
13793 SC Computer Science, Theory & Methods
13794 GA VE225
13795 UT ISI:A1996VE22500010
13796 ER
13797 
13798 PT J
13799 AU Liu, GL
13800 TI Generalized Euler's turbomachine equation and free vortex sheet
13801    conditions in separated/cavitated turbo-flows
13802 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
13803 DT Article
13804 ID INCOMPRESSIBLE ROTOR FLOW; 3-D TRANSONIC FLOW; VARIATIONAL-PRINCIPLES;
13805    VARIABLE-DOMAIN; HYBRID PROBLEMS; SHOCKS
13806 AB In the present paper four fundamental problems in turbomachinery
13807    aerodynamic theory are studied in depth: (1) It is shown that the
13808    well-known Euler's equation for turbomachine power is valid only for
13809    shrouded impellers. Then, a generalization of it to unshrouded
13810    impellers is carried out. (2) An equation relating the free trailing
13811    vortex distribution along the blade span to that of the swirl moment
13812    rV(theta) is derived, yielding a condition for the vanishing of free
13813    trailing vortex sheets. (3) The free surface conditions in separated
13814    now are shown to be entirely different from those in cavitated flow.
13815    (4) Generalized Kutta conditions for 3-D rotor bladings in separated
13816    and cavitated flows are also derived. All these results are of
13817    fundamental value in both analytical and numerical handlings of fully
13818    3-D rotor-flows.
13819 RP Liu, GL, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI
13820    200072,PEOPLES R CHINA.
13821 CR DRING RP, 1971, J ENG POWER, V93, P4
13822    HAWTHORNE WR, 1964, AERODYNAMICS TURBINE
13823    HIRSCH C, 1974, 74GT72 ASME
13824    HORLOCK JH, 1974, AGARDOGRAPH, V185
13825    KIRILLOV II, 1972, THEORY TURBOMACHINES
13826    LASKARIS TE, 1978, AIAA J, V16, P717
13827    LIU GI, 1986, J ENG GAS TURB POWER, V108, P254
13828    LIU GL, 1980, FUNDAMENTALS AERODYN
13829    LIU GL, 1992, ACTA MECH, V95, P117
13830    LIU GL, 1992, P 3 E CHIN C FLUID M, P156
13831    LIU GL, 1993, ACTA MECH, V97, P229
13832    SPALDING DB, 1958, ENG THERMODYNAMICS
13833    STODOLA A, 1945, STEAM GAS TURBINES
13834    TRAPEL W, 1966, THERMISCHE TURBOMASC, V1
13835    VAVRA MH, 1960, AEROTHERMODYNAMICS F
13836    WISLICENUS GF, 1965, FLUID MECH TURBOMACH, V1
13837    WU CH, 1965, CHINESE J MECH ENG, V13, P43
13838    YAN S, 1994, INT J TURBO JET ENG, V11, P71
13839    YAN S, 1996, IN PRESS INT J TURBO
13840 NR 19
13841 TC 9
13842 SN 0334-0082
13843 J9 INT J TURBO JET ENGINES
13844 JI Int. J. Turbo. Jet-Engines
13845 PY 1996
13846 VL 13
13847 IS 1
13848 BP 1
13849 EP 11
13850 PG 11
13851 SC Engineering, Aerospace
13852 GA VE151
13853 UT ISI:A1996VE15100001
13854 ER
13855 
13856 PT J
13857 AU Yan, S
13858    Liu, GL
13859 TI Variable-domain finite element method based on variational principles
13860    for solving hybrid problems of fully 3-D compressible rotor flow
13861 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
13862 DT Article
13863 AB Based on a unified variable-domain variational theory (Liu, 1988), a
13864    new finite element method (FEM) with self-adjusting nodes for
13865    determining the unknown boundaries (shape of the blade and of the
13866    annulus walls) in hybrid problems is presented. Two hybrid problem
13867    types H(A)xD and [H-C+D]xD are tested numerically by this FEM and the
13868    geometry of the rotor bladings thus obtained coincides with the
13869    original one quite well. Thus, a new numerical method with great
13870    generality and versatility for practical 3-D blading design and/or
13871    modification is provided.
13872 C1 SHANGHAI UNIV,SHANGHAI 200072,PEOPLES R CHINA.
13873 RP Yan, S, E CHINA UNIV TECHNOL,SHANGHAI 200093,PEOPLES R CHINA.
13874 CR CHUNG TJ, 1989, FINITE ELEMENT ANAL
13875    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
13876    LIU GI, 1986, J ENG GAS TURB POWER, V108, P254
13877    LIU GL, 1980, SCI SINICA, V23, P1339
13878    LIU GL, 1988, COMPUTATIONAL FLUID, P473
13879    LIU GL, 1993, INT J TURBO JET ENGI, V10, P273
13880    LIU GL, 1994, INT J TURBO JET ENG, V11, P53
13881    LIU GL, 1995, 95GT171 ASME
13882    LIU GL, 1995, ACTA MECH, V108, P207
13883    MARCHUK GI, 1982, METHODS NUMERICAL MA, CH4
13884    PENG HW, 1975, KEXUE TONGBAO, V20, P416
13885    SIEVERDING CH, 1984, J ENG GAS TURB POWER, V106, P437
13886    WU CH, 1952, 2604 NACA TN
13887    YAN S, 1989, VARIATIONAL FINITE E
13888    YAN S, 1990, EXP COMPUT AEROTHERM, P457
13889    YAN S, 1994, INT J TURBO JET ENG, V11, P71
13890 NR 16
13891 TC 0
13892 SN 0334-0082
13893 J9 INT J TURBO JET ENGINES
13894 JI Int. J. Turbo. Jet-Engines
13895 PY 1996
13896 VL 13
13897 IS 1
13898 BP 13
13899 EP 23
13900 PG 11
13901 SC Engineering, Aerospace
13902 GA VE151
13903 UT ISI:A1996VE15100002
13904 ER
13905 
13906 PT J
13907 AU Xia, YB
13908    Mo, YW
13909    Wang, Y
13910    Huang, XQ
13911    Chen, DM
13912    Wang, H
13913 TI Nucleation mechanism of polycrystalline diamond film deposited on
13914    ceramic alumina by microwave plasma chemical vapor deposition
13915 SO CHINESE PHYSICS LETTERS
13916 DT Article
13917 ID PHASE
13918 AB Polycrystalline diamond films have been deposited on ceramic alumina
13919    substrates by microwave plasma chemical vapor deposition method,
13920    Variation of the emission spectra in the microwave plasma with the
13921    microwave power and the vapor pressure in the reaction chamber is
13922    studied, respectively. Relationships between the hydrogen atomic
13923    spectra and the average energy of the electrons in the plasma, as well
13924    as the mechanism of diamond film deposition on ceramic alumina are
13925    discussed.
13926 RP Xia, YB, SHANGHAI UNIV SCI & TECHNOL,COLL MAT SCI & ENGN,SHANGHAI
13927    201800,PEOPLES R CHINA.
13928 CR BAKEFI G, 1976, PRINCIPLES LASER PLA, P592
13929    BARNES PN, 1993, APPL PHYS LETT, V62, P37
13930    CHEN Y, 1993, THIN FILMS SCI TECH, V6, P277
13931    DAWSON PH, 1969, ADV ELECT ELECTR PHY, V27, P60
13932    FRENKLACH M, 1991, PHYS REV B, V43, P1520
13933    SHECHTMAN D, 1993, J MATER RES, V8, P473
13934    SPEAR KE, 1989, J AM CERAM SOC, V72, P171
13935    YARBROUGH WA, 1992, J AM CERAM SOC, V75, P3179
13936 NR 8
13937 TC 1
13938 SN 0256-307X
13939 J9 CHIN PHYS LETT
13940 JI Chin. Phys. Lett.
13941 PY 1996
13942 VL 13
13943 IS 7
13944 BP 557
13945 EP 560
13946 PG 4
13947 SC Physics, Multidisciplinary
13948 GA VE315
13949 UT ISI:A1996VE31500021
13950 ER
13951 
13952 PT J
13953 AU Wu, XY
13954    Zhou, SP
13955    Xu, DM
13956 TI The photoinduced carrier distribution in a semiconductor waveguide and
13957    the FDTD analysis for millimeter-wave propagation
13958 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
13959 DT Article
13960 DE photoinduced carrier; semiconductor waveguide; FDTD analysis
13961 ID OPTICAL CONTROL; GUIDES
13962 AB Exact solutions for millimeter-wave propagation in an optically
13963    controlled rectangular semiconductor waveguide were presented. This was
13964    implemented by strictly solving the continuity equation that the
13965    photoinduced carriers hold and by finite-difference-time-domain (FDTD)
13966    modeling for the wave propagation in the waveguide. The laser intensity
13967    dependence of the millimeter-wave signal's amplitude and phase shift
13968    was obtained. Excellent agreement between numerical results and
13969    experiments was found. (C) 1996 John Wiley & Sons, Inc.
13970 RP Wu, XY, SHANGHAI UNIV,SHANGHAI 201800,PEOPLES R CHINA.
13971 CR LEE CH, 1980, IEEE QUANTUM ELECTRO, V16, P277
13972    LEE CH, 1984, PICOSECOND OPTOELECT
13973    LUEBBERS RJ, 1991, IEEE T ANTENN PROPAG, V39, P29
13974    PLATTE W, 1989, IEEE T MICROW THEORY, V37, P139
13975    SEEDS AJ, 1990, IEEE T MICROW THEORY, V38, P577
13976    SHEN Y, 1993, IEEE T MICROW THEORY, V41, P1005
13977    TSUTSUMI M, 1991, IEE PROC-H, V138, P527
13978 NR 7
13979 TC 0
13980 SN 0895-2477
13981 J9 MICROWAVE OPT TECHNOL LETT
13982 JI Microw. Opt. Technol. Lett.
13983 PD SEP
13984 PY 1996
13985 VL 13
13986 IS 1
13987 BP 35
13988 EP 38
13989 PG 4
13990 SC Engineering, Electrical & Electronic; Optics
13991 GA VC405
13992 UT ISI:A1996VC40500012
13993 ER
13994 
13995 PT J
13996 AU Yang, ZH
13997    Ye, RS
13998 TI Symmetry-breaking and bifurcation study on the laminar flows through
13999    curved pipes with a circular cross section
14000 SO JOURNAL OF COMPUTATIONAL PHYSICS
14001 DT Article
14002 ID TUBE; POINTS
14003 AB The Dean problem of steady viscous flow through a coiled circular pipe
14004    is studied numerically. We compute the structure of the symmetric
14005    families of the flows that exist as the crucial parameter D varies,
14006    which is in accordance with those stated in Yang and Keller (Appl.
14007    Numer. Math. 2, 257, 1986), Furthermore, we find a asymmetric flow
14008    emanating from the symmetry-breaking bifurcation point, which they
14009    could not find since they restricted the numerical study on the flows
14010    symmetric about the x-axis. (C) 1996 Academic Press, Inc.
14011 C1 SHANTOU UNIV,INST MATH,GUANGDONG 515063,PEOPLES R CHINA.
14012 RP Yang, ZH, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES
14013    R CHINA.
14014 CR BREZZI F, 1981, NUMER MATH, V38, P1
14015    COLLINS WM, 1975, Q J MECH APPL MATH, V28, P133
14016    DASKOPOULOS P, 1989, J FLUID MECH, V203, P125
14017    DEAN WR, 1927, PHILOS MAG, V4, P208
14018    DEAN WR, 1928, PHILOS MAG, V5, P673
14019    DENNIS SCR, 1980, J FLUID MECH, V99, P449
14020    DENNIS SCR, 1982, Q J MECH APPL MATH, V35, P305
14021    KELLER HB, 1977, APPL BIFURCATION THE, P359
14022    MOORE G, 1980, SIAM J NUMER ANAL, V17, P567
14023    VANDYKE M, 1978, J FLUID MECH, V86, P129
14024    WERNER B, 1984, SIAM J NUMER ANAL, V21, P388
14025    WINTERS KH, 1987, J FLUID MECH, V180, P343
14026    YANG ZH, 1986, APPL NUMER MATH, V2, P257
14027 NR 13
14028 TC 2
14029 SN 0021-9991
14030 J9 J COMPUT PHYS
14031 JI J. Comput. Phys.
14032 PD AUG
14033 PY 1996
14034 VL 127
14035 IS 1
14036 BP 73
14037 EP 87
14038 PG 15
14039 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
14040 GA VB430
14041 UT ISI:A1996VB43000007
14042 ER
14043 
14044 PT J
14045 AU Liu, HY
14046    Zhang, XL
14047    Wei, JJ
14048    Wu, XX
14049    Qi, DY
14050    Liu, YC
14051    Dai, M
14052    Yu, TY
14053    Deng, JQ
14054 TI An amperometric Meldola Blue-mediated sensor high sensitive to hydrogen
14055    peroxide based on immobilization of horseradish peroxidase in a
14056    composite membrane of regenerated silk fibroin and poly(vinyl alcohol)
14057 SO ANALYTICA CHIMICA ACTA
14058 DT Article
14059 DE sensors; poly(vinyl alcohol); regenerated silk fibroin; Meldola Blue;
14060    horseradish peroxidase; hydrogen peroxide
14061 ID ENZYME ELECTRODES; BIOELECTROCATALYTIC REDUCTION; CARBON; ASSAY
14062 AB A new composite membrane of poly(vinyl alcohol) (PVA) and regenerated
14063    silk fibroin (RSF) was successfully employed to immobilize horseradish
14064    peroxidase (HRP) and infrared (IR) was used to get insight in the
14065    structure of the composite membrane. An amperometric HRP-based sensor
14066    highly sensitive to hydrogen peroxide was fabricated, which was based
14067    on Meldola Blue as a mediator to facilitate efficient electron transfer
14068    between immobilized HRP and a glassy carbon electrode. Performance and
14069    characteristics of the sensor were evaluated with respect to response
14070    time, detection limit, selectivity, operating and storage stability,
14071    and dependence on temperature, pH, applied potential and mediator
14072    concentration. The sensor displayed high sensitivity to hydrogen
14073    peroxide with low detection of limit of 0.1 mu M.
14074 C1 FUDAN UNIV,DEPT MACROMOLEC SCI,SHANGHAI 200433,PEOPLES R CHINA.
14075    FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
14076 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R
14077    CHINA.
14078 CR 1991, SIGMA CATALOG, V771
14079    BIFULCO L, 1994, ANAL LETT, V27, P1443
14080    FREW JE, 1986, J ELECTROANAL CH INF, V201, P1
14081    GARGUILO MG, 1993, ANAL CHEM, V65, P523
14082    HO WO, 1993, J ELECTROANAL CHEM, V351, P185
14083    HURDIS EC, 1954, ANAL CHEM, V26, P320
14084    JONSSON G, 1989, ELECTROANAL, V1, P465
14085    KAMIN RA, 1980, ANAL CHEM, V52, P1198
14086    KORELL U, 1994, ANAL CHEM, V66, P510
14087    KULYS JJ, 1980, FEBS LETT, V114, P7
14088    LIU HY, 1995, ANAL PROC, V32, P475
14089    LIU YC, 1996, ELECTROCHIM ACTA, V41, P77
14090    MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801
14091    OHARA TJ, 1993, ELECTROANAL, V5, P823
14092    QIAN JH, 1995, J ELECTROANAL CHEM, V397, P157
14093    SANCHEZ PD, 1990, ELECTROANAL, V2, P303
14094    SANCHEZ PD, 1991, ELECTROANAL, V3, P281
14095    TATSUMA T, 1989, ANAL CHEM, V61, P2352
14096    TATSUMA T, 1992, ANAL CHEM, V64, P1183
14097    WANG J, 1991, ANAL CHEM, V63, P2993
14098    WELINDER KG, 1979, EUR J BIOCHEM, V96, P483
14099    WOLLENBERGER U, 1990, ANAL LETT, V23, P1795
14100    WOLLENBERGER U, 1991, BIOELECTROCH BIOENER, V26, P287
14101    YAMADA H, 1974, ARCH BIOCHEM BIOPHYS, V165, P728
14102    YAROPOLOV AI, 1979, DOKL AKAD NAUK SSSR, V249, P1399
14103 NR 25
14104 TC 16
14105 SN 0003-2670
14106 J9 ANAL CHIM ACTA
14107 JI Anal. Chim. Acta
14108 PD AUG 9
14109 PY 1996
14110 VL 329
14111 IS 1-2
14112 BP 97
14113 EP 103
14114 PG 7
14115 SC Chemistry, Analytical
14116 GA VB446
14117 UT ISI:A1996VB44600012
14118 ER
14119 
14120 PT J
14121 AU Hsu, TY
14122    Li, L
14123    Jiang, BH
14124 TI Thermodynamic calculation of the equilibrium temperature between the
14125    tetragonal and monoclinic phases in CeO2-ZrO2
14126 SO MATERIALS TRANSACTIONS JIM
14127 DT Article
14128 DE thermodynamics; martensitic transformation; CeO2-ZrO2
14129 ID MARTENSITIC-TRANSFORMATION; ZIRCONIA MICROCRYSTALS; APPLIED STRESS;
14130    DRIVING FORCE; AL ALLOYS; FE-C; MS; SYSTEM
14131 AB Gibbs free energies of tetragonal and monoclinic phases at various
14132    temperatures are calculated for 8, 10 and 12 mol% CeO2-ZrO2 by
14133    referring to the revised CeO2-ZrO2 phase diagram given by Tani ct al.
14134    and utilizing the Lukas program. The equilibrium temperatures T-0,
14135    between t and m phases are obtained as 999, 838 and 697 K for 8, 10 and
14136    12 mol% CeO2-ZrO2, respectively, being much lower than the T-0 of ZrO2.
14137 C1 SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R CHINA.
14138 RP Hsu, TY, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI,SHANGHAI 200030,PEOPLES R
14139    CHINA.
14140 CR DU Y, 1991, J AM CERAM SOC, V74, P1569
14141    GARVIE RC, 1965, J PHYS CHEM-US, V69, P1238
14142    GARVIE RC, 1978, J PHYS CHEM-US, V82, P218
14143    GARVIE RC, 1985, J MATER SCI, V20, P1193
14144    GARVIE RC, 1985, J MATER SCI, V20, P3479
14145    GARVIE RC, 1986, J MATER SCI, V21, P1253
14146    HANNINK RHJ, 1981, ADV CERAM, V3, P116
14147    HSU TY, 1983, J MATER SCI, V18, P3206
14148    HSU TY, 1984, ACTA METALL, V32, P343
14149    HSU TY, 1985, J MATER SCI, V20, P23
14150    HSU TY, 1989, ACTA METALL, V37, P3091
14151    HSU TY, 1994, CHINESE J MATER RES, V8, P50
14152    HSU TY, 1995, CHINESE J MATER RES, V9, P338
14153    KAUFMAN L, 1978, CALPHAD, V2, P35
14154    LUKAS HL, 1977, CALPHAD, V1, P225
14155    TANI E, 1983, J AM CERAM SOC, V66, P506
14156    TU JB, 1994, J MATER SCI, V29, P1662
14157    ZHOU XW, 1991, ACTA METALL MATER, V39, P1041
14158    ZHOU XW, 1991, ACTA METALL MATER, V39, P1045
14159 NR 19
14160 TC 3
14161 SN 0916-1821
14162 J9 MATER TRANS JIM
14163 JI Mater. Trans. JIM
14164 PD JUN
14165 PY 1996
14166 VL 37
14167 IS 6
14168 BP 1281
14169 EP 1283
14170 PG 3
14171 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
14172    Engineering
14173 GA VB574
14174 UT ISI:A1996VB57400002
14175 ER
14176 
14177 PT J
14178 AU Jiang, BH
14179    Li, L
14180    Hsu, TY
14181 TI Thermodynamic calculation of the M(s) temperature in 8 mol% CeO2-ZrO2
14182 SO MATERIALS TRANSACTIONS JIM
14183 DT Article
14184 DE thermodynamics; martensitic transformation; CeO2-ZrO2
14185 ID ZIRCONIA MICROCRYSTALS; PHASE-TRANSFORMATION; APPLIED STRESS; ZRO2
14186 AB The M(s) temperature in 8 mol% CeO2-ZrO2 with a mean grain size of 1.38
14187    mu m is calculated by using the calculated results of the Gibbs
14188    energies of both tetragonal and monoclinic phases in our previous
14189    paper((1)), The required parameters for M(s) calculation are obtained
14190    by experimental measurements or through estimation from some available
14191    data. The calculated M(s) temperature is in good agreement with the
14192    experimental one and the difference of them is less than 5 degrees,
14193    showing that the approach given in this article is suitable for the
14194    prediction of M(s) in zirconia ceramics.
14195 C1 SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R CHINA.
14196 RP Jiang, BH, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI,SHANGHAI 200030,PEOPLES
14197    R CHINA.
14198 CR BANSAL GK, 1972, ACTA METALL, V20, P1281
14199    EVANS AG, 1981, ACTA METALL, V79, P447
14200    GARVIE RC, 1965, J PHYS CHEM-US, V69, P1238
14201    GARVIE RC, 1978, J PHYS CHEM-US, V82, P218
14202    GARVIE RC, 1980, CERAM INT, V6, P19
14203    GARVIE RC, 1985, J MATER SCI, V20, P1193
14204    GARVIE RC, 1985, J MATER SCI, V20, P3479
14205    GARVIE RC, 1986, J MATER SCI, V21, P1253
14206    HANNINK RHJ, 1981, ADV CERAM, V3, P116
14207    HOMES H, 1972, J PHYS CHEM-US, V76, P1497
14208    HSU TY, 1996, MATER T JIM, V37, P1281
14209    HUGO GR, 1990, MATER SCI FORUM, V56, P357
14210    LEE RR, 1988, J AM CERAM SOC, V71, P694
14211    SAMSONOV GV, 1982, OXIDE HDB, P183
14212 NR 14
14213 TC 2
14214 SN 0916-1821
14215 J9 MATER TRANS JIM
14216 JI Mater. Trans. JIM
14217 PD JUN
14218 PY 1996
14219 VL 37
14220 IS 6
14221 BP 1284
14222 EP 1286
14223 PG 3
14224 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
14225    Engineering
14226 GA VB574
14227 UT ISI:A1996VB57400003
14228 ER
14229 
14230 PT J
14231 AU Guo, GY
14232    Chen, YL
14233 TI Thermal analysis and infrared measurements of a lead-barium-aluminum
14234    phosphate glass
14235 SO JOURNAL OF NON-CRYSTALLINE SOLIDS
14236 DT Letter
14237 ID VIBRATIONS
14238 AB Thermal properties of a recently-developed lead-barium-aluminum
14239    phosphate glass were examined by means of differential thermal analysis
14240    (DTA) and thermal mechanical analysis (TMA). DTA curve shows that the
14241    melting of the crystalline phases (devitrified phases) appears at 891
14242    +/- 3 degrees C. The glass transition temperature, softening
14243    temperature and thermal expansion coefficient obtained from TMA are 528
14244    +/- 3 degrees C, 565 +/- 3 degrees C and (11.7 +/- 0.4) x
14245    10(-6)/degrees C (30 degrees C < T < 520 degrees C), respectively.
14246    Infrared spectra were measured on samples of the glass to investigate
14247    the structure of the glass. The infrared spectrum of the glass has an
14248    absorption band due to water in the near-infrared region, the absence
14249    of a characteristic P=O absorption band at around 1280 cm(-1) in the
14250    mid-infrared region, and three well-resolved absorption bands at 403
14251    +/- 10, 124 +/- 7, 115 +/- 5 cm(-1) in the far-infrared region.
14252 C1 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
14253 RP Guo, GY, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI & ENGN,SHANGHAI
14254    200030,PEOPLES R CHINA.
14255 CR CHAKRABORTY S, 1989, J MATER SCI LETT, V8, P1358
14256    CORBRIDGE DEC, 1954, J CHEM SOC, P493
14257    EXARHOS GJ, 1972, SOLID STATE COMMUN, V11, P755
14258    EXARHOS GJ, 1974, J CHEM PHYS, V60, P4145
14259    GUO GY, 1993, J NON-CRYST SOLIDS, V162, P164
14260    GUO GY, 1993, MATER CHEM PHYS, V35, P49
14261    GUO GY, 1995, J AM CERAM SOC, V78, P501
14262    HIGAZY AA, 1985, J MATER SCI, V20, P2345
14263    LAPP JC, 1992, AM CERAM SOC B, V71, P1545
14264    MORIKAWA H, 1981, J NONCRYST SOLIDS, V44, P107
14265    NELSON BN, 1979, J CHEM PHYS, V71, P2739
14266    OUCHETTO M, 1991, PHYS CHEM GLASSES, V32, P22
14267    SALES BC, 1987, J AM CERAM SOC, V70, P615
14268 NR 13
14269 TC 6
14270 SN 0022-3093
14271 J9 J NON-CRYST SOLIDS
14272 JI J. Non-Cryst. Solids
14273 PD JUN
14274 PY 1996
14275 VL 201
14276 IS 3
14277 BP 262
14278 EP 266
14279 PG 5
14280 SC Materials Science, Ceramics; Materials Science, Multidisciplinary
14281 GA VA912
14282 UT ISI:A1996VA91200010
14283 ER
14284 
14285 PT J
14286 AU Jiang, WZ
14287    Zhu, ZY
14288    Qiu, XJ
14289 TI Relativistic density-dependent Hartree approach for nuclear matter in
14290    the chiral-symmetry-breaking model
14291 SO CHINESE PHYSICS LETTERS
14292 DT Article
14293 AB A relativistic density-dependent Hartree approach in the
14294    chiral-symmetry-breaking field model has been developed for nuclear
14295    matter. The coupling constants of the relativistic Hartree-Lagrangian
14296    are made density dependence and obtained from the relativistic
14297    Brueckner-Bethe-Goldstone results of nuclear matter. The calculated
14298    saturation nuclear density, binding-energy and compressibility for
14299    nuclear matter are close to the empirical ones.
14300 C1 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
14301 RP Jiang, WZ, CHINESE ACAD SCI,SHANGHAI INST NUCL RES,SHANGHAI
14302    201800,PEOPLES R CHINA.
14303 CR BOGUTA J, 1977, NUCL PHYS A, V292, P413
14304    BROCKMANN R, 1992, PHYS REV LETT, V68, P3408
14305    GELLMANN M, 1960, NUOVO CIMENTO, V16, P705
14306    JIANG WH, IN PRESS COMMUN THEO
14307    SEROT BD, 1986, ADV NUCLEAR PHYSICS, V16, CH1
14308    ZHANG XO, IN PRESS CHIN J NUCL
14309 NR 6
14310 TC 0
14311 SN 0256-307X
14312 J9 CHIN PHYS LETT
14313 JI Chin. Phys. Lett.
14314 PY 1996
14315 VL 13
14316 IS 6
14317 BP 416
14318 EP 419
14319 PG 4
14320 SC Physics, Multidisciplinary
14321 GA VA453
14322 UT ISI:A1996VA45300005
14323 ER
14324 
14325 PT J
14326 AU Bi, PZ
14327    Shi, YM
14328 TI The temperature influence on the Q(2)(Q)over-bar(2) system
14329 SO NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND
14330    FIELDS
14331 DT Article
14332 ID ANNIHILATIONS; STATES; REST
14333 AB The Q(2) (Q) over bar(2) system at finite temperature is investigated
14334    based on the ellipsoidal bag model. It is found that the binding energy
14335    decreases with increasing temperature.
14336 C1 FUDAN UNIV,DEPT PHYS 2,SHANGHAI 200433,PEOPLES R CHINA.
14337    SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA.
14338 RP Bi, PZ, FUDAN UNIV,TD LEE PHYS LAB,SHANGHAI 200433,PEOPLES R CHINA.
14339 CR ADER JP, 1982, PHYS REV D, V25, P2370
14340    BI PZ, 1988, J PHYS G, V14, P681
14341    BI PZ, 1991, PHYS LETT B, V262, P485
14342    BI PZ, 1991, Z PHYS C PART FIELDS, V52, P105
14343    BI PZ, 1992, Z PHYS C PART FIELDS, V54, P453
14344    BRIDGES D, 1986, PHYS REV LETT, V56, P211
14345    BRIDGES D, 1986, PHYS REV LETT, V56, P215
14346    HELLER L, 1985, PHYS REV D, V32, P755
14347    LIU KF, 1987, PHYS REV LETT, V58, P2288
14348 NR 9
14349 TC 0
14350 SN 0369-3546
14351 J9 NUOVO CIMENTO A-NUCL PART F
14352 JI Nuovo Cimento Soc. Ital. Fis. A-Nucl. Part. Fields
14353 PD MAY
14354 PY 1996
14355 VL 109
14356 IS 5
14357 BP 593
14358 EP 596
14359 PG 4
14360 SC Physics, Particles & Fields
14361 GA UZ797
14362 UT ISI:A1996UZ79700009
14363 ER
14364 
14365 PT J
14366 AU Hu, YT
14367    Zhao, XH
14368 TI Collinear periodic cracks in an anisotropic medium
14369 SO INTERNATIONAL JOURNAL OF FRACTURE
14370 DT Article
14371 ID ELASTIC-MATERIALS; LINE FORCES; DISLOCATIONS
14372 AB The problem of collinear periodic cracks in an anisotropic medium is
14373    examined in this paper. By means of Stroh formalism and the conformal
14374    mapping method, we obtain general periodic solutions for collinear
14375    cracks. The corresponding stress intensity factors, crack opening
14376    displacements and strain energy release rate are found.
14377 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA.
14378 RP Hu, YT, HUAZHONG UNIV SCI & TECHNOL,DEPT MECH,WUHAN 430074,PEOPLES R
14379    CHINA.
14380 CR ASARO RJ, 1973, PHYS STATUS SOLIDI B, V60, P261
14381    BARNETT DM, 1973, J PHYS F MET PHYS, V3, P1083
14382    BARNETT DM, 1974, J PHYS F MET PHYS, V4, P1618
14383    CHADWICK P, 1977, ADV APPL MECH, V17, P303
14384    HOWLAND RCJ, 1935, P ROY SOC LOND A MAT, V148, P471
14385    HWU C, 1989, Q J MECH APPL MATH, V42, P553
14386    HWU CB, 1991, INT J FRACTURE, V52, P239
14387    JIANKE L, 1986, PERIODIC PROBLEMS PL
14388    KARIHALOO BL, 1979, ENG FRACT MECH, V12, P49
14389    KOITER WT, 1959, ING ARCH, V28, P168
14390    LI QQ, 1989, J APPL MECH, V56, P556
14391    MUSKHELISHVILI NI, 1953, SOME BASIC PROBLEMS
14392    STROH AN, 1958, PHILOS MAG, V3, P625
14393    STROH AN, 1962, J MATH PHYS, V41, P77
14394    SUO ZG, 1990, P ROY SOC LOND A MAT, V427, P331
14395    TING TCT, 1982, INT J SOLIDS STRUCT, V18, P139
14396    TING TCT, 1988, PHYS STATUS SOLIDI B, V146, P81
14397 NR 17
14398 TC 3
14399 SN 0376-9429
14400 J9 INT J FRACTURE
14401 JI Int. J. Fract.
14402 PY 1996
14403 VL 76
14404 IS 3
14405 BP 207
14406 EP 219
14407 PG 13
14408 SC Mechanics
14409 GA UZ448
14410 UT ISI:A1996UZ44800002
14411 ER
14412 
14413 PT J
14414 AU Qiao, ZC
14415    Dai, SQ
14416 TI Limit cycle analysis of a class of strongly nonlinear oscillation
14417    equations
14418 SO NONLINEAR DYNAMICS
14419 DT Article
14420 DE strongly nonlinear oscillation; limit cycle; asymptotic analysis;
14421    modified KBM method
14422 ID NON-LINEAR OSCILLATOR; BIFURCATIONS
14423 AB The limit cycle of a class of strongly nonlinear oscillation equations
14424    of the form u double over dot + g(u) = epsilon f(u, u over dot) is
14425    investigated by means of a modified version of the KBM method, where
14426    epsilon is a positive small parameter. The advantage of our method is
14427    its straightforwardness and effectiveness, which is suitable for the
14428    above equation, where g(u) need not be restricted to an odd function of
14429    u, provided that the reduced equation, corresponding to epsilon = 0,
14430    has a periodic solution. A specific example is presented to demonstrate
14431    the validity and accuracy of our method by comparing our results with
14432    numerical ones, which are in good agreement with each other even for
14433    relatively large epsilon.
14434 RP Qiao, ZC, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI
14435    200072,PEOPLES R CHINA.
14436 CR BURTON TD, 1982, INT J NONLINEAR MECH, V17, P7
14437    BYRD PF, 1971, HDB ELLIPTIC INTEGRA
14438    CHEN SH, 1991, INT J NONLINEAR MECH, V26, P125
14439    DAI SQ, 1985, APPL MATH MECH, V6, P409
14440    HOLMES P, 1980, INT J NONLINEAR MECH, V15, P449
14441    KNOBLOCH E, 1981, J FLUID MECH, V108, P2911
14442    MARGALLO JG, 1987, J SOUND VIBRATION, V116, P591
14443    MARGALLO JG, 1988, J SOUND VIBRATION, V125, P13
14444    MARGALLO JG, 1990, INT J NONLINEAR MECH, V25, P663
14445    MOREMEDI GM, 1993, INT J NONLINEAR MECH, V28, P237
14446    NAYFEH AH, 1973, PERTURBATION METHODS
14447    NAYFEH AH, 1981, INTRO PERTURBATION T
14448    SHEN JQ, 1988, ACTA MATH SINICA, V31, P215
14449 NR 13
14450 TC 1
14451 SN 0924-090X
14452 J9 NONLINEAR DYNAMICS
14453 JI Nonlinear Dyn.
14454 PD JUL
14455 PY 1996
14456 VL 10
14457 IS 3
14458 BP 221
14459 EP 233
14460 PG 13
14461 SC Engineering, Mechanical; Mechanics
14462 GA UZ339
14463 UT ISI:A1996UZ33900002
14464 ER
14465 
14466 PT J
14467 AU Grabb, ML
14468    Wang, SZ
14469    Birdsall, TG
14470 TI Deterministic three-dimensional analysis of long-range sound
14471    propagation through internal-wave fields
14472 SO IEEE JOURNAL OF OCEANIC ENGINEERING
14473 DT Article
14474 AB A Munk profile and a set of propagating internal-wave modes are used to
14475    construct a three-dimensional time-varying ocean sound-speed model.
14476    Three-dimensional ray tracing is employed to simulate long-range sound
14477    propagation of a broad-band acoustic signal. Methods are developed to
14478    convert three-dimensional ray-tracing results to acoustic time-domain
14479    amplitude and phase measurements. The ocean sound-speed model is
14480    defined deterministically, and the model acoustic receptions are
14481    analyzed deterministically. A single internal-wave mode that is
14482    ''spatially synchronized'' to an arrival can coherently focus and
14483    defocus the acoustic energy. These internal waves ran cause an
14484    arrival's amplitude fluctuation to mimic Rayleigh fading; however, the
14485    time-domain phase is stable, in contradiction to the classical Rayleigh
14486    fading environment where the received phase is uniformly distributed.
14487    for example, the received power attributed to an early arrival
14488    propagated over a 750-km range can fluctuate over 40 dB, while the
14489    time-domain phase remains within a quarter of a 75-Hz cycle, The
14490    characteristics of the time-domain phase are important for establishing
14491    coherent integration times at the receiver.
14492 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT ELECTR & TELECOMMUN ENGN,SHANGHAI 200072,PEOPLES R CHINA.
14493 RP Grabb, ML, UNIV MICHIGAN,DEPT ELECT & COMP SCI,ANN ARBOR,MI 48109.
14494 CR BOLD GEJ, 1986, 112 AC SOC AM M F FF, S63
14495    BOLD GEJ, 1986, J ACOUST SOC AM, P656
14496    CERVENY V, 1987, SEISMIC TOMOGRAPHY
14497    COLOSI JA, 1994, J ACOUST SOC AM, V96, P452
14498    CORNUELLE BD, 1992, J GEOPHYS RES, V11, P680
14499    ECKART C, 1961, HYDRODYNAMICS OCEANS
14500    FLATTE SM, 1979, SOUND PROPAGATION FL
14501    FLATTE SM, 1983, P IEEE, V71, P1267
14502    FLATTE SM, 1987, J ACOUST SOC AM, V82, P967
14503    FLATTE SM, 1988, J ACOUST SOC AM, V84, P1414
14504    FLATTE SM, 1992, INT M WAV PROP RAND
14505    GARRETT C, 1975, J GEOPHYS RES, V80, P291
14506    GRABB ML, 1996, THESIS U MICHIGAN AN
14507    MUNK WH, 1974, J ACOUST SOC AM, V55, P220
14508    PHILLIPS OM, 1977, DYNAMICS UPPER OCEAN
14509    TAPPERT FD, UNPUB J ACOUST SOC A
14510    TECHAU P, UNPUB
14511 NR 17
14512 TC 1
14513 SN 0364-9059
14514 J9 IEEE J OCEANIC ENG
14515 JI IEEE J. Ocean. Eng.
14516 PD JUL
14517 PY 1996
14518 VL 21
14519 IS 3
14520 BP 260
14521 EP 272
14522 PG 13
14523 SC Engineering, Civil; Engineering, Electrical & Electronic; Engineering,
14524    Ocean; Oceanography
14525 GA UY891
14526 UT ISI:A1996UY89100003
14527 ER
14528 
14529 PT J
14530 AU Deng, K
14531    Zhou, YM
14532    Ren, ZM
14533    Zhu, SJ
14534    Wei, JH
14535    Jiang, GC
14536 TI Electromagnetic model of levitation melting with cold crucible
14537 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
14538 DT Article
14539 DE cold crucible; electromagnetic induction; levitation melting
14540 AB The electromagnetic problems of levitation melting with cold crucible
14541    were studied. A quasi-three dimensional model of electromagnetic field
14542    in this levitation melting process and the modified coupled current
14543    method were presented. The influences of crucible structure and power
14544    frequency on the electromagnetic field in this process were analyzed.
14545 C1 SHANGHAI UNIV,SHANGHAI ENHANCED LAB FERROMET,SHANGHAI 200072,PEOPLES R CHINA.
14546 CR CISZEK TF, 1985, J ELECTROCHEM SOC, V132, P963
14547    DENG K, 1994, T SHANGHAI U TECHN, V15, P87
14548    TANAKA T, 1991, ISIJ INT, V31, P1416
14549    TANAKA T, 1991, ISIJ INT, V31, P350
14550    TARAPORE ED, 1976, METALL T B B, V7, P343
14551    TOH T, 1990, P 6 INT IRON STEEL C, P239
14552 NR 6
14553 TC 3
14554 SN 1003-6326
14555 J9 TRANS NONFERROUS METAL SOC CH
14556 JI Trans. Nonferrous Met. Soc. China
14557 PD JUN
14558 PY 1996
14559 VL 6
14560 IS 2
14561 BP 12
14562 EP 17
14563 PG 6
14564 SC Metallurgy & Metallurgical Engineering
14565 GA UY040
14566 UT ISI:A1996UY04000003
14567 ER
14568 
14569 PT J
14570 AU Fang, ZH
14571    Zhang, J
14572    Wang, Y
14573 TI The HAL-3 airborne navigation radar
14574 SO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS
14575 DT Letter
14576 AB This correspondence describes the HAL-3 navigation radar which was
14577    designed specially for civil airplanes. The main technical functions of
14578    the radar have been extensively tested on Boeing 707 and Y-7A airplanes
14579    to the military standard on aeronautic airborne facilities. The rest
14580    results [1] are qualified by the Chinese Appraisal Committee of
14581    Aeronautics Facilities. The technical specifications of the radar are
14582    similar to those of the RDR-1F radar manufactured in tie U.S. with
14583    several added, operational functions. The radar includes 7 units:
14584    antenna, transceiver, servo unit, control box, two display units and
14585    power supply. Operational principles and functions of each unit ore
14586    described briefly. The current research project for interfacing the
14587    radar to a fibre-optic gyroscope is in process and some initial
14588    experimental results are described.
14589 RP Fang, ZH, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI INST ELECTR
14590    PHYS,SHANGHAI 201800,PEOPLES R CHINA.
14591 CR *CHIN APPR COMM AE, 1985, QUAL REP HAL 3 RAD
14592    DEFANG Z, 1990, TECHNICAL MANUAL HAL
14593    JI Y, 1995, THESIS SHANGHAI U
14594 NR 3
14595 TC 0
14596 SN 0018-9251
14597 J9 IEEE TRANS AEROSP ELECTRON SY
14598 JI IEEE Trans. Aerosp. Electron. Syst.
14599 PD JUL
14600 PY 1996
14601 VL 32
14602 IS 3
14603 BP 1208
14604 EP 1211
14605 PG 4
14606 SC Engineering, Aerospace; Engineering, Electrical & Electronic;
14607    Telecommunications
14608 GA UX978
14609 UT ISI:A1996UX97800038
14610 ER
14611 
14612 PT J
14613 AU Zhang, LS
14614    Sun, XL
14615 TI An algorithm for minimizing a class of locally Lipschitz functions
14616 SO JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
14617 DT Article
14618 DE nondifferentiable optimization; locally Lipschitz functions;
14619    generalized gradients; global convergence methods
14620 ID OPTIMIZATION
14621 AB In this paper, we present an algorithm for minimizing a class of
14622    locally Lipschitz functions. The method generalizes the E-smeared
14623    method to a class of functions whose Clarke generalized gradients are
14624    singleton at almost all differentiable points. We analyze the global
14625    convergence of the method and report some numerical results.
14626 RP Zhang, LS, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI
14627    201800,PEOPLES R CHINA.
14628 CR BIHAIN A, 1984, J OPTIMIZ THEORY APP, V44, P545
14629    CLARKE FH, 1983, OPTIMIZATION NONSMOO
14630    KIWIEL KC, 1985, LECTURE NOTES MATH, V1133
14631    LEMARECHAL C, 1975, MATH PROGRAMMING STU, V3, P95
14632    MIFFLIN R, 1977, MATH OPER RES, V2, P191
14633    POLAK E, 1983, SIAM J CONTROL OPTIM, V21, P179
14634    POLAK E, 1985, SIAM J CONTROL OPTIM, V23, P477
14635    SHOR NZ, 1985, MINIMIZATION METHODS
14636    WOLFE P, 1975, MATHEMATICAL PROGRAM, V3, P145
14637    ZHANG LS, 1988, ACTA MATH APPL SINIC, V4, P200
14638    ZOWE J, 1985, COMPUTATIONAL MATH P, P323
14639 NR 11
14640 TC 0
14641 SN 0022-3239
14642 J9 J OPTIMIZ THEOR APPL
14643 JI J. Optim. Theory Appl.
14644 PD JUL
14645 PY 1996
14646 VL 90
14647 IS 1
14648 BP 203
14649 EP 212
14650 PG 10
14651 SC Mathematics, Applied; Operations Research & Management Science
14652 GA UX337
14653 UT ISI:A1996UX33700011
14654 ER
14655 
14656 PT J
14657 AU Zhang, F
14658    Cao, ZC
14659 TI Study on the electrical properties of single grain boundaries in BaTiO3
14660    ceramics
14661 SO JOURNAL OF APPLIED PHYSICS
14662 DT Article
14663 AB In the article, the electrical properties of single grains and single
14664    grain boundaries in donor doped BaTiO3 ceramics have been investigated.
14665    The results show that the grains have no positive temperature
14666    coefficient of resistance effect (PTCR effect) if the influence of
14667    electrode was neglected. The results also show that different grain
14668    boundaries have various PTCR effect. The characteristics of
14669    current-voltage do not follow the Heywang model and accord with our
14670    modified model. The maximum barrier heights of single grain boundaries
14671    are also deduced experimentally. (C) 1996 American Institute of Physics.
14672 C1 SHANGHAI UNIV,SHANGHAI 201800,PEOPLES R CHINA.
14673 RP Zhang, F, CHINESE ACAD SCI,SHANGHAI INST MET,ION BEAM LAB,SHANGHAI
14674    200050,PEOPLES R CHINA.
14675 CR GOODMAN G, 1963, J AM CERAM SOC, V46, P48
14676    HEYWANG W, 1961, SOLID STATE ELECTRON, V3, P51
14677    HEYWANG W, 1964, J AM CERAM SOC, V47, P484
14678    NEMOTO H, 1980, J AM CERAM SOC, V63, P398
14679    OMISSON E, 1989, J APPL PHYS, V6, P3666
14680    RHODERICK EH, 1978, METAL SEMICONDUCTOR
14681    TAO M, 1987, J APPL PHYS, V61, P1562
14682    ZHANG F, IN PRESS J APPL PHYS
14683 NR 8
14684 TC 0
14685 SN 0021-8979
14686 J9 J APPL PHYS
14687 JI J. Appl. Phys.
14688 PD JUL 15
14689 PY 1996
14690 VL 80
14691 IS 2
14692 BP 1033
14693 EP 1036
14694 PG 4
14695 SC Physics, Applied
14696 GA UX156
14697 UT ISI:A1996UX15600061
14698 ER
14699 
14700 PT J
14701 AU Xu, KX
14702    Zhou, SP
14703    Bao, JS
14704    Xu, WW
14705    Wang, HB
14706 TI Optical detector using granular YBa2Cu3O7-delta weak link-type junctions
14707 SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY
14708 DT Article
14709 ID THIN-FILMS
14710 AB Experimental photoresponse study of granular YBa2Cu3O7-x (YBCO) weak
14711    link is reported, The Josephson critical current I-c is suppressed with
14712    light illumination of the junction, produced mainly from optical
14713    generation of quasiparticles. At lower temperature (T = 64.5 K), the
14714    hysteresis in I-V characteristic of the weak link appears, which may be
14715    found useful for optical detection purpose. This was supported from
14716    preliminary experiments.
14717 C1 NANJING UNIV,NANJING 210093,PEOPLES R CHINA.
14718 RP Xu, KX, SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
14719 CR BAO J, 1995, J SHANGHAI U NATURAL, V1, P48
14720    BARONE A, 1982, PHYSICS APPL JOSEPHS, P322
14721    BHATTACHARYA S, 1993, APPL PHYS LETT, V63, P2279
14722    BLUZER N, 1991, PHYS REV B, V44, P10222
14723    BLUZER N, 1993, IEEE T APPL SUPERCON, V3, P2869
14724    CARSLAW HS, 1986, CONDUCTION HEAT SOLI, P75
14725    ENOMOTO Y, 1986, J APPL PHYS, V59, P3807
14726    FENKEL A, 1993, PHYS REV B, V48, P9717
14727    FRENKEL A, 1990, J APPL PHYS, V67, P3054
14728    GHIS A, 1993, IEEE T APPL SUPERCON, V3, P2136
14729    TESTARDI LR, 1971, PHYS REV           B, V4, P2189
14730    XU KX, 1995, J INFRARED MILLIM WA, V14, P341
14731 NR 12
14732 TC 0
14733 SN 1051-8223
14734 J9 IEEE TRANS APPL SUPERCONDUCT
14735 JI IEEE Trans. Appl. Supercond.
14736 PD JUN
14737 PY 1996
14738 VL 6
14739 IS 2
14740 BP 87
14741 EP 89
14742 PG 3
14743 SC Engineering, Electrical & Electronic; Physics, Applied
14744 GA UW838
14745 UT ISI:A1996UW83800006
14746 ER
14747 
14748 PT J
14749 AU Wang, DR
14750    Bai, ZZ
14751    Evans, DJ
14752 TI On the monotone convergence of multisplitting method for a class of
14753    systems of weakly nonlinear equations
14754 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
14755 DT Article
14756 DE system of weakly nonlinear equations; matrix multisplitting; monotone
14757    convergence; convergence rate
14758 ID REGULAR SPLITTINGS
14759 AB In this paper, we set up a parallel matrix multisplitting iterative
14760    method for a class of system of weakly nonlinear equations, Au = G(u),
14761    A is an element of L(R(n)), G:R(n) --> R(n), which is generally
14762    resulted from the discretization of many classical differential
14763    equations. For the new method, the two-sided approximation property is
14764    deliberately shown, and the comparison theorems between the convergence
14765    rates of different multisplittings as well as multisplitting and single
14766    splittings of the coefficient matrix A is an element of L(R(n)) are
14767    given in detail in the sense of monotonicity. Therefore, the monotone
14768    convergence theory about this method is thoroghly established. Finally,
14769    we apply the built conclusions to several special but very important
14770    and practical multisplittings to confirm the correctness and
14771    effectiveness of our theory.
14772 C1 FUDAN UNIV,INST MATH,SHANGHAI 200433,PEOPLES R CHINA.
14773    LOUGHBOROUGH UNIV TECHNOL,PARALLEL ALGORITHMS RES CTR,LOUGHBOROUGH LE11 3TU,LEICS,ENGLAND.
14774 RP Wang, DR, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES
14775    R CHINA.
14776 CR ALEFELD G, 1985, NUMER MATH, V46, P213
14777    ELSNER L, 1989, NUMER MATH, V56, P283
14778    NEUMANN M, 1987, LINEAR ALGEBRA APPL, V88, P559
14779    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
14780    ORTEGA JM, 1970, ITERATIVE SOLUTION N
14781    VARGA RS, 1961, MATRIX ITERATIVE ANA
14782 NR 6
14783 TC 8
14784 SN 0020-7160
14785 J9 INT J COMPUT MATH
14786 JI Int. J. Comput. Math.
14787 PY 1996
14788 VL 60
14789 IS 3-4
14790 BP 229
14791 EP 242
14792 PG 14
14793 SC Mathematics, Applied
14794 GA UW399
14795 UT ISI:A1996UW39900006
14796 ER
14797 
14798 PT J
14799 AU Xu, KX
14800    Zhou, SP
14801    Bao, JS
14802 TI Optically tuned superconductive-dielectric resonators with
14803    whispering-gallery modes
14804 SO JOURNAL OF SUPERCONDUCTIVITY
14805 DT Article
14806 DE optical effect; superconductive-dielectric resonator;
14807    whispering-gallery mode; modified partial region method
14808 AB An analytical method is presented for calculating the resonant
14809    frequency and Q-factor of a superconducting dielectric disk resonator
14810    operating in millimeter-wave regime with whispering-gallery mode.
14811    Resonant frequency shift due to the optical generation of
14812    quasi-particles in superconducting film is investigated as a function
14813    of photon flux. An optically tunable resonant frequency of about 500
14814    MHz is estimated, and good agreement is found between numerical results
14815    and experimental ones.
14816 RP Xu, KX, SHANGHAI UNIV,DEPT PHYS,JIA DING,SHANGHAI 201800,PEOPLES R
14817    CHINA.
14818 CR ARNAUD JA, 1976, BEAM FIBER OPTICS
14819    FRENKEL A, 1990, J APPL PHYS, V67, P3054
14820    FRENKEL A, 1993, PHYS REV B, V48, P9717
14821    HERCZFELD PR, 1984, P 14 EUR MICR C  SEP, P268
14822    INVENOV EN, 1992, IEEE MTT, V41, P632
14823    JONSE SK, 1988, ELECTRON LETT, V23, P807
14824    KAJFEZ D, 1988, DIELECTRIC RESONATOR
14825    LEE CH, 1980, IEEE QUANTUM ELECTRO, V16, P277
14826    LEE CH, 1990, IEEE T MICROW THEORY, V38, P596
14827    LONDON F, 1935, PROC R SOC LON SER-A, V149, P71
14828    MEI KK, 1991, IEEE T MICROW THEORY, V39, P1545
14829    NEIKIRK P, 1990, IEEE MTT, V38, P586
14830    OWEN CS, 1972, PHYS REV LETT, V28, P1559
14831    PARKER WH, 1972, PHYS REV LETT, V29, P925
14832    SECMNOV AD, 1993, APPL PHYS LETT, V63, P681
14833    SEEDS AJ, 1990, IEEE T MICROW THEORY, V38, P577
14834    TESTARDI LR, 1971, PHYS REV           B, V4, P2189
14835    TOBAR M, 1991, IEEE MTT, V39, P2073
14836    TSINDLEKHT M, 1994, APPL PHYS LETT, V65, P2875
14837    XU KX, 1995, J INFRARED MILLIM WA, V14, P341
14838    ZHOU SP, 1991, J SUPERCOND, V4, P227
14839    ZHOU SP, 1992, J APPL PHYS, V71, P2789
14840 NR 22
14841 TC 0
14842 SN 0896-1107
14843 J9 J SUPERCOND
14844 JI J. Supercond.
14845 PD APR
14846 PY 1996
14847 VL 9
14848 IS 2
14849 BP 193
14850 EP 199
14851 PG 7
14852 SC Physics, Applied; Physics, Condensed Matter
14853 GA UV423
14854 UT ISI:A1996UV42300008
14855 ER
14856 
14857 PT J
14858 AU Lin, D
14859    Batan, T
14860    Fuchs, EF
14861    Grady, WM
14862 TI Harmonic losses of single-phase induction motors under nonsinusoidal
14863    voltages
14864 SO IEEE TRANSACTIONS ON ENERGY CONVERSION
14865 DT Article
14866 DE time harmonics; single-phase induction machines
14867 AB Parameters of a capacitor-start, capacitor-run single-phase induction
14868    motor with closed or semi-closed rotor slots are measured and a model
14869    for the investigation of the performance of the machine in the
14870    frequency domain under the influence of harmonic voltages is presented,
14871    An algorithm taking into account the nonlinear rotor leakage inductance
14872    is established, This algorithm is applied to estimate the current in
14873    the time domain, and the harmonic losses at rated-load operation
14874    without and with run capacitors are calculated, Computational results
14875    are compared with those from experimentation and the differences
14876    between both are discussed.
14877 C1 UNIV TEXAS,AUSTIN,TX 78712.
14878    SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
14879 RP Lin, D, UNIV COLORADO,BOULDER,CO 80309.
14880 CR DUFFEY CK, 1989, IEEE T IND APPL, V25
14881    FUCHS EF, 1994 IEEE IAS ANN M
14882    FUCHS EF, 1987, OPTIMIZATION INDUCTI, V2
14883    HU Z, 1989, ANAL CALCULATION ELE
14884    HUANG Y, 1986, SMALL MEDIUM ELECT M
14885    VANDERMERWE C, IEEE PES 1994 SUMM M
14886 NR 6
14887 TC 4
14888 SN 0885-8969
14889 J9 IEEE TRANS ENERGY CONVERS
14890 JI IEEE Trans. Energy Convers.
14891 PD JUN
14892 PY 1996
14893 VL 11
14894 IS 2
14895 BP 273
14896 EP 279
14897 PG 7
14898 SC Engineering, Electrical & Electronic; Energy & Fuels
14899 GA UU449
14900 UT ISI:A1996UU44900001
14901 ER
14902 
14903 PT J
14904 AU Liu, YC
14905    Qian, JH
14906    Liu, HY
14907    Zhang, XL
14908    Deng, JQ
14909    Yu, TY
14910 TI Blend membrane of regenerated silk fibroin, poly(vinyl alcohol), and
14911    peroxidase and its application to a ferrocene-mediating hydrogen
14912    peroxide sensor
14913 SO JOURNAL OF APPLIED POLYMER SCIENCE
14914 DT Article
14915 ID HORSERADISH-PEROXIDASE; IMMOBILIZATION; BEADS; ENZYME
14916 AB Before or after the blend membrane of regenerated silk fibroin (RSF),
14917    poly(vinyl alcohol) (PVA), and peroxidase is treated with ethanol, RSF,
14918    PVA, and peroxidase maintain their own structures. The conformational
14919    transition of RSF in the blend membrane is accomplished from the silk I
14920    structure to the silk II structure by ethanol treatment, which is used
14921    to immobilize peroxidase. A ferrocene-mediating sensor for H2O2 is
14922    made, which is based on the immobilization of peroxidase in the blend
14923    membrane of RSF and PVA. Performance and characteristics of the sensor
14924    were evaluated with respect to response time, detection limit,
14925    selectivity, and dependencies on temperature and pH as well as on
14926    operating and storage stability. (C) 1996 John Wiley & Sons, Inc.
14927 C1 FUDAN UNIV,DEPT MACROMOLEC SCI,SHANGHAI 200433,PEOPLES R CHINA.
14928    SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
14929    FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
14930 CR AMPON K, 1992, J CHEM TECHNOL BIOT, V55, P185
14931    BAHADUR A, 1985, MAKROMOL CHEM, V186, P1387
14932    BARTLETT PN, 1993, J ELECTROANAL CHEM, V362, P1
14933    BOYER RF, 1991, BIOTECHNOL EDUC, V2, P17
14934    CHIBATA I, 1987, BIOTECHNOLOGY A, V7, P653
14935    DALVIE SK, 1992, BIOTECHNOL BIOENG, V40, P1173
14936    DINELLI D, 1976, METHOD ENZYMOL, V44, P227
14937    DRIOLI E, 1986, NATO ASI SER C, P667
14938    HAYASHI T, 1991, J APPL POLYM SCI, V42, P85
14939    HAYASHI T, 1992, J APPL POLYM SCI, V44, P143
14940    HAYASHI T, 1993, MAKROMOL CHEM-M SYMP, V70, P137
14941    HURDIS EC, 1954, ANAL CHEM, V26, P320
14942    KARUBE I, 1987, BIOTECHNOLOGY A, V7, P685
14943    LINKO P, 1984, CRC CRIT R BIOTECH, V1, P289
14944    LIU F, 1993, BIOTECHNOL APPL BIOC, V18, P57
14945    LIU H, IN PRESS BIOELECTROC
14946    LIU Y, IN PRESS ELECTROCHIM
14947    MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801
14948    OHKI A, 1994, CHEM LETT, V6, P1065
14949    SCHUHMANN W, 1992, BIOELECTROANAL S, V2, P113
14950    TARHAN L, 1991, J FS EGE U A, V14, P11
14951    WANG J, 1994, ANAL CHEM, V66, P1988
14952    WELINDER KG, 1979, EUR J BIOCHEM, V96, P483
14953    YAMADA H, 1974, ARCH BIOCHEM BIOPHYS, V165, P728
14954    YU T, IN PRESS J APPL POLY
14955 NR 25
14956 TC 2
14957 SN 0021-8995
14958 J9 J APPL POLYM SCI
14959 JI J. Appl. Polym. Sci.
14960 PD JUL 25
14961 PY 1996
14962 VL 61
14963 IS 4
14964 BP 641
14965 EP 647
14966 PG 7
14967 SC Polymer Science
14968 GA UU473
14969 UT ISI:A1996UU47300007
14970 ER
14971 
14972 PT J
14973 AU Bradbury, I
14974    Kirkby, R
14975    Guanbao, S
14976 TI Development and environment: The case of rural industrialization and
14977    small-town growth in China
14978 SO AMBIO
14979 DT Article
14980 AB Rural industrialization and small-town growth are prominent and
14981    distinctive features oi China's phenomenal economic growth since the
14982    Open Door Policy was introduced;around 1980. Such developments are most
14983    advanced in the coastal provinces, but are steadily diffusing
14984    westwards. Major concerns of these developments are their impact on
14985    China's food production capability and a general degradation of the
14986    rural environment. The trend of progressive land loss since the 1950s
14987    has been accentuated, the pollution burden in rural areas has risen,
14988    and workers have been attracted away from agriculture by the greater
14989    rewards oi industrial work with a consequent lowering of land
14990    maintenance and husbandry standards. Resource constraints and the
14991    administrative system limit the likely effectiveness oi environmental
14992    protection by coercion. Incentives, through the lax system, are
14993    suggested as a possible approach to limiting the environmental impacts
14994    of rural industrialization, but must be complemented by strenuous
14995    measures to enhance environmental awareness.
14996 C1 UNIV LIVERPOOL,DEPT CIV DESIGN,LIVERPOOL L69 3BX,MERSEYSIDE,ENGLAND.
14997    SHANGHAI UNIV,DEPT SOCIOL,SHANGHAI 200434,PEOPLES R CHINA.
14998 RP Bradbury, I, UNIV LIVERPOOL,DEPT GEOG,POB 147,LIVERPOOL L69
14999    3BX,MERSEYSIDE,ENGLAND.
15000 CR *CHIN AC SOC SCI, 1994, POL CHOIC CHIN EC DE
15001    *NATL ENV PROT AG, 1994, ZHONGG HUANJ BAOH XI
15002    *STAT PLANN COMM, 1994, CHIN AG 21 PAP CHIN
15003    BYRD W, 1990, CHINAS RURAL IND STR
15004    EDMONDS RL, 1994, PATTERNS CHINAS LOST
15005    GLAESER B, 1990, GEOGRAPHY CONT CHINA, P249
15006    KIRKBY R, 1994, CHINA NEXT DECADES, P128
15007    LIU Q, 1995, P BAND S SMALL CIT
15008    LUK S, 1993, MEGAPROJECT CASE STU
15009    MA R, 1992, URBANIZING CHINA, P119
15010    SMIL V, 1984, BAD EARTH
15011    SMIL V, 1993, CHINAS ENV CRISIS
15012    STONE B, 1988, CHINA Q, V116, P767
15013 NR 13
15014 TC 7
15015 SN 0044-7447
15016 J9 AMBIO
15017 JI Ambio
15018 PD MAY
15019 PY 1996
15020 VL 25
15021 IS 3
15022 BP 204
15023 EP 209
15024 PG 6
15025 SC Engineering, Environmental; Environmental Sciences
15026 GA UQ531
15027 UT ISI:A1996UQ53100011
15028 ER
15029 
15030 PT J
15031 AU Bi, PZ
15032    Shi, YM
15033 TI The influence of mass reduction on pion momentum spectra from
15034    relativistic collisions
15035 SO PHYSICS LETTERS B
15036 DT Article
15037 ID HEAVY-ION COLLISIONS; FINITE TEMPERATURE; NUCLEAR COLLISIONS; MODEL;
15038    DECONFINEMENT; CHARMONIUM; TRANSITION; DENSITY; MESONS
15039 AB The influence of mass reduction on the momentum spectra is
15040    investigated. We find that the enhancement of the low P-T pion observed
15041    by the NA35 Collabration in 200 GeV S+S collisions can be understood as
15042    a consequence of pion mass reduction.
15043 C1 FUDAN UNIV,DEPT PHYS 2,SHANGHAI 200433,PEOPLES R CHINA.
15044    SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA.
15045    CHINA CTR ADV SCI & TECHNOL,WORLD LAB,BEIJING 100080,PEOPLES R CHINA.
15046 RP Bi, PZ, FUDAN UNIV,TD LEE PHYS LAB,SHANGHAI 200433,PEOPLES R CHINA.
15047 CR ATWATER TW, 1987, PHYS LETT B, V199, P30
15048    BARZ HW, 1991, PHYS LETT B, V254, P332
15049    BERTSCH G, 1989, PHYS REV C, V40, P1830
15050    BROWN GE, SUNYNTC9013
15051    BROWN GE, 1991, NUCL PHYS A, V535, P701
15052    COLLAB NA, 1988, Z PHYS C, V38, P89
15053    DEFORCRAND P, 1985, PHYS LETT B, V160, P137
15054    HARRINGTON BJ, 1974, PHYS REV LETT, V33, P324
15055    HASHIMOTO T, 1986, PHYS REV LETT, V57, P2123
15056    HASHIMOTO T, 1988, Z PHYS C, V38, P251
15057    KOCH P, 1986, PHYS REP, V142, P167
15058    KOCH V, 1993, NUCL PHYS A, V560, P345
15059    KUSENEZOV D, 1989, PHYS REV C, V40, P2075
15060    KUSENEZOV D, 1991, PHYS REV C, V44, P902
15061    LEE KS, 1989, Z PHYS C PART FIELDS, V43, P425
15062    PINZHEN B, 1988, J PHYS G, V14, P681
15063    PINZHEN B, 1989, J PHYS G NUCL PARTIC, V15, P1653
15064    PISARSKI RD, 1982, PHYS REV D, V26, P3735
15065    SOLLFRANK J, 1990, PHYS LETT B, V252, P256
15066    SOLLFRANK J, 1991, Z PHYS C PART FIELDS, V52, P593
15067    TAKAGI F, 1986, PHYS REV D, V34, P1646
15068    VOGT R, 1988, PHYS LETT B, V206, P333
15069    WENIG S, 1990, THESIS I KERNPHYS FR
15070 NR 23
15071 TC 2
15072 SN 0370-2693
15073 J9 PHYS LETT B
15074 JI Phys. Lett. B
15075 PD MAY 16
15076 PY 1996
15077 VL 375
15078 IS 1-4
15079 BP 355
15080 EP 357
15081 PG 3
15082 SC Physics, Multidisciplinary
15083 GA UP263
15084 UT ISI:A1996UP26300053
15085 ER
15086 
15087 PT J
15088 AU Zhang, ZL
15089    Jiang, XY
15090    Xu, SH
15091    Nagatomo, T
15092    Omoto, O
15093 TI Threshold lowering and by intensity and efficiency enhancement by
15094    dopants in polymer emitting diodes
15095 SO CHINESE PHYSICS LETTERS
15096 DT Article
15097 ID ELECTROLUMINESCENT
15098 AB A new method to increase the luminance and quantum efficiency of
15099    polymer light emitting diodes with a lower threshold voltage has been
15100    reported. The threshold voltage, luminance and quantum efficiency have
15101    been significantly improved by doping certain dopants with a lower
15102    highest occupied molecular orbital (HOMO) level into the hole
15103    transporting layer. A high performance device has been achieved by
15104    addition of the perylene and triphenylamine as a dopant into
15105    poly(N-vinylcarbazole). The luminance and quantum efficiency increase
15106    by 2-3 times in comparison with the undoped device, reaching 10000
15107    cd/m(2) in luminance and 0.58% in quantum efficiency. While threshold
15108    voltage is reduced to one half value. The energy diagram has been
15109    obtained by measuring the HOMO levels and band gap values. Based on
15110    this, the carriers injection and balance between electrons and holes as
15111    well as the action of dopant are discussed.
15112 C1 SHIBAURA INST TECHNOL, MINATO KU, TOKYO 108, JAPAN.
15113 RP Zhang, ZL, SHANGHAI UNIV SCI & TECHNOL, DEPT MAT SCI, JIADING CAMPUS,
15114    SHANGHAI 201800, PEOPLES R CHINA.
15115 CR BROWN AR, 1992, APPL PHYS LETT, V61, P2793
15116    PARKER ID, 1994, APPL PHYS LETT, V65, P1272
15117    TANG CW, 1987, APPL PHYS LETT, V51, P913
15118    YANG Y, 1994, APPL PHYS LETT, V64, P1245
15119    ZHANG ZL, 1994, CHINESE J LUMINESCEN, V15, P363
15120 NR 5
15121 TC 0
15122 SN 0256-307X
15123 J9 CHIN PHYS LETT
15124 JI Chin. Phys. Lett.
15125 PY 1996
15126 VL 13
15127 IS 4
15128 BP 301
15129 EP 304
15130 PG 4
15131 SC Physics, Multidisciplinary
15132 GA UM282
15133 UT ISI:A1996UM28200016
15134 ER
15135 
15136 PT J
15137 AU Li, L
15138    Delaey, L
15139    Wollants, P
15140    Biest, VD
15141 TI Thermodynamic calculation of segregation in multicomponent steels
15142 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
15143 DT Article
15144 ID REGULAR SOLUTION MODEL; PHASES
15145 AB The thermodynamic equation for segregation in multicomponent steels is
15146    extended from that in ternary system and the segregation amounts of Cr,
15147    C and P in the intergranular phase in a Cr-steel are estimated.
15148 C1 KATHOLIEKE UNIV LEUVEN,DEPT MTM,B-3001 HEVERLEE,BELGIUM.
15149 RP Li, L, SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 2000072,PEOPLES R
15150    CHINA.
15151 CR CHANDRASEKARAN L, 1987, CALPHAD, V11, P163
15152    DEFAY R, 1966, SURFACE TENSION ADSO
15153    GUTTMANN M, 1979, INTERFACIAL SEGREGAT
15154    GUTTMANN M, 1982, MET T A, V13, P1693
15155    HERTZMAN S, 1987, METALL TRANS A, V18, P1767
15156    HILLERT M, 1970, ACTA CHEM SCAND, V24, P3618
15157    LI L, 1993, J CHIM PHYS, V90, P305
15158    LI L, 1994, CALPHAD, V18, P89
15159    SUNDMAN B, 1981, J PHYS CHEM SOLIDS, V42, P297
15160 NR 9
15161 TC 0
15162 SN 1005-0302
15163 J9 J MATER SCI TECHNOL
15164 JI J. Mater. Sci. Technol.
15165 PY 1996
15166 VL 12
15167 IS 3
15168 BP 238
15169 EP 240
15170 PG 3
15171 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
15172    Engineering
15173 GA UL673
15174 UT ISI:A1996UL67300017
15175 ER
15176 
15177 PT J
15178 AU Wang, ZH
15179 TI Application of the coupled mode theory to eigenvalue problems of
15180    graded-index optical fibers
15181 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
15182 DT Article
15183 DE coupled mode theory; eigenvalue and eigenmode; optical fibers
15184 AB The propagation constant and the modal field distribution for guided
15185    modes of an arbitrary graded-index optical fiber have been calculated
15186    with the use of the coupled mode theory. The infinitely extended
15187    parabolic profile fiber is taken as an ideal waveguide, and an
15188    arbitrary radially inhomogenous optical fiber can be viewed as a
15189    perturbation. Its modal field can be expanded in terms of complete set
15190    of ideal waveguide modes. Eigenvalues and modal fields are then
15191    obtained from coupled mode equations that have been transformed into a
15192    set of linear equations. Numerical results have been presented and
15193    compared with exact values. (C) 1996 John Wiley & Sons, Inc.
15194 RP Wang, ZH, SHANGHAI UNIV SCI & TECHNOL,WAVE SCI LAB,SHANGHAI
15195    201800,PEOPLES R CHINA.
15196 CR ABRAMOWITZ M, 1964, HDB MATH FUNCTIONS
15197    ADAMS MJ, 1981, INTRO OPTICAL WAVEGU
15198    GLOGE D, 1971, APPL OPTICS, V10, P2252
15199    KOGELNIK H, 1975, INTEGRATED OPTICS, CH2
15200    MARCUSE D, 1974, THEORY DIELECTRIC OP
15201    MILLER SE, 1954, BELL SYST TECH J, V33, P661
15202    OKOSHI T, 1982, OPTICAL FIBERS
15203    SHEN YR, 1984, PRINCIPLES NONLINEAR, CH6
15204    SNYDER AW, 1983, OPTICAL WAVEGUIDE TH
15205    YAMADA R, 1977, J OPT SOC AM, V67, P96
15206    YARIV A, 1973, IEEE J QUANTUM ELECT, V9, P919
15207 NR 11
15208 TC 1
15209 SN 0895-2477
15210 J9 MICROWAVE OPT TECHNOL LETT
15211 JI Microw. Opt. Technol. Lett.
15212 PD JUN 5
15213 PY 1996
15214 VL 12
15215 IS 2
15216 BP 90
15217 EP 93
15218 PG 4
15219 SC Engineering, Electrical & Electronic; Optics
15220 GA UL075
15221 UT ISI:A1996UL07500011
15222 ER
15223 
15224 PT J
15225 AU Wang, W
15226    Wong, PL
15227    Zhang, Z
15228 TI Partial EHL analysis of rib-roller end contact in tapered roller
15229    bearings
15230 SO TRIBOLOGY INTERNATIONAL
15231 DT Article
15232 DE tapered roller bearing; partial elastohydrodynamic lubrication; surface
15233    roughness
15234 ID TORQUE
15235 AB A partial EHL analysis was performed for the tapered rib/spherical
15236    roller end contact in tapered roller bearings. The average Reynolds
15237    equation, the elasticity equation and the pressure-viscosity relation
15238    were solved simultaneously. The effects of the surface roughness as
15239    well as the peculiar geometrical and kinematics parameters of the
15240    rib-roller end contact on the friction torque and film thickness were
15241    investigated. The optimal ratios of radius of curvature of roller end
15242    to rib face were deduced, which confirm the previous finding with the
15243    theory of smooth surfaces. The significant range of surface roughness,
15244    and the optimal surface roughness for the roller big end were obtained.
15245    It was found that asperity contacts extend into the outlet zone. The
15246    results are significant for the design of rib faces and roller ends.
15247    The theoretical treatment is validated by its good correlation with the
15248    existing experimental data for smooth surface contact. Copyright (C)
15249    1996 Elsevier Science Ltd
15250 C1 CITY UNIV HONG KONG,DEPT MFG ENGN,KOWLOON,HONG KONG.
15251 RP Wang, W, SHANGHAI UNIV,DEPT ENGN MECH,POB 224,149 YAN CHANG RD,SHANGHAI
15252    200072,PEOPLES R CHINA.
15253 CR AIHARA S, 1987, J TRIBOL-T ASME, V109, P471
15254    DALMAZ G, 1980, P 7 LEEDS LYON S TRI, V7, P175
15255    ELROD HG, 1979, ASME, V101, P8
15256    GADALLAH N, 1984, J TRIBOL-T ASME, V106, P265
15257    GREENWOOD JA, 1970, P I MECH ENG, V185, P625
15258    JAMISON WE, 1976, ASLE T, V20, P79
15259    JIANG XF, 1994, ASME STLE ANN C HAW
15260    KLECKNER RJ, 1982, ASME T, V104, P99
15261    KORRENN H, 1967, FORTSCHR BER, V1, P11
15262    PATIR N, 1978, ASME, V100, P12
15263    ROELANDS CJA, 1966, CORRELATIONAL ASPECT
15264    TRIPP JH, 1983, ASME, V105, P458
15265    ZHANG Z, 1988, STLE T, V31, P461
15266    ZHOU RS, 1991, J TRIBOL-T ASME, V113, P590
15267    ZHU D, 1988, ASME, V110, P32
15268 NR 15
15269 TC 1
15270 SN 0301-679X
15271 J9 TRIBOL INT
15272 JI Tribol. Int.
15273 PD JUN
15274 PY 1996
15275 VL 29
15276 IS 4
15277 BP 313
15278 EP 321
15279 PG 9
15280 SC Engineering, Mechanical
15281 GA UJ716
15282 UT ISI:A1996UJ71600007
15283 ER
15284 
15285 PT J
15286 AU Huang, HC
15287 TI Elliptically birefringent optical fiber transmission characteristics
15288 SO FIBER AND INTEGRATED OPTICS
15289 DT Article
15290 DE birefringence; Faraday effect; optical fiber; optical sensors;
15291    polarization optics
15292 AB This paper presents a rigorous analysis of spun hi-bi (highly
15293    birefringent) fibers, loosely categorized as elliptically bi fibers,
15294    via the initial value problem approach. Two kinds of transmission
15295    problem are treated. In the single-eigenmode transmission regime, it is
15296    found that the major technological difficulty inherent to spun hi-bi
15297    fibers concerns excitation of the eigenmode, which strictly requires
15298    that the launched light be exactly oriented in conformity with one or
15299    the other local principal axes of the fiber and, meanwhile, that the
15300    ellipticity of the launched light be exactly equal to the
15301    eigen-ellipticity of the same fiber. In the second kind of problem that
15302    involves the interaction of two eigenmodes, a basic result is derived
15303    to show that an arbitrary polarization mode of excitation will
15304    reproduce itself in integer multiples of the local beat length. Such a
15305    kind of transmission regime is relieved of the excitation difficulty
15306    but, because of being severely length-sensitive, is inherently
15307    impractical from the application viewpoint.
15308 RP Huang, HC, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
15309 CR BORN M, 1964, PRINCIPLES OPTICS, P36
15310    HUANG HC, 1960, SCI SINICA, V9, P142
15311    HUANG HC, 1983, OPTICAL WAVEGUIDE SC, P57
15312    LI L, 1986, ELECTRON LETT, V22, P1142
15313 NR 4
15314 TC 1
15315 SN 0146-8030
15316 J9 FIBER INTEGRATED OPT
15317 JI Fiber Integr. Opt.
15318 PY 1996
15319 VL 15
15320 IS 2
15321 BP 71
15322 EP 80
15323 PG 10
15324 SC Optics
15325 GA UJ548
15326 UT ISI:A1996UJ54800001
15327 ER
15328 
15329 PT J
15330 AU Zhu, XH
15331    Meng, ZY
15332 TI The influence of the morphotropic phase boundary on the dielectric and
15333    piezoelectric properties of the PNN-PZ-PT ternary system
15334 SO JOURNAL OF MATERIALS SCIENCE
15335 DT Article
15336 AB The influence of the morphotropic phase boundary (MPB) on the
15337    dielectric and piezoelectric properties of PbNi1/3Nb2/3-PbZrO3-PbTiO3
15338    (PNN-PZ-PT) ternary system were systematically investigated. The
15339    results showed that the piezoelectric constant d(31) and plane coupling
15340    factor k(p) reached a maximum in the vicinity of morphotropic phase
15341    boundary. The highest value of the piezoelectric constant d(31) was 260
15342    x 10(-12) C/N. The Curie temperature T-c decreased rapidly with
15343    increasing content of PNN. The lattice parameters a increased and c
15344    decreased with increasing PNN content and the Zr/Zr + Ti ratio as a
15345    result of the crystal structural transformation from tetragonal to
15346    rhombohedral phases.
15347 C1 SHANGHAI UNIV,SCH MAT SCI & ENGN,SHANGHAI 201800,PEOPLES R CHINA.
15348 RP Zhu, XH, XIAN JIAOTONG UNIV,SCH ELECT & INFORMAT ENGN,XIAN
15349    710049,PEOPLES R CHINA.
15350 CR 1961, P IRE, V49, P1161
15351    BUYANOVA EA, 1965, IZV AN SSSR FIZ, V29, P1877
15352    KITAMURA T, 1981, JPN J APPL PHYS, V20, P97
15353    KO JS, 1992, P 8 IEEE S APPL FERR, P395
15354    KUDO T, 1970, J AM CERAM SOC, V53, P326
15355    MOON JH, 1993, J AM CERAM SOC, V76, P549
15356    UCHINO K, 1986, PIEZOELECTRIC ELECTR
15357    WANG TB, 1986, J INORGANIC MAT, V2, P143
15358 NR 8
15359 TC 12
15360 SN 0022-2461
15361 J9 J MATER SCI
15362 JI J. Mater. Sci.
15363 PD APR 15
15364 PY 1996
15365 VL 31
15366 IS 8
15367 BP 2171
15368 EP 2175
15369 PG 5
15370 SC Materials Science, Multidisciplinary
15371 GA UJ408
15372 UT ISI:A1996UJ40800028
15373 ER
15374 
15375 PT J
15376 AU Liu, ZG
15377    Zhao, WM
15378    Ji, RB
15379    Zhang, ZL
15380    Jiang, XY
15381    Xue, MZ
15382    Fang, B
15383 TI Organic thin film electroluminescent devices with ZnO:Al as the anode
15384 SO JOURNAL OF PHYSICS-CONDENSED MATTER
15385 DT Article
15386 ID DIODES; POLY(3-ALKYLTHIOPHENE)
15387 AB Some organic thin film electroluminescent (EL) devices with
15388    aluminium-doped zinc oxide as the hole-injecting electrode have now
15389    been manufactured. Their EL spectra and J-V and B-V characteristics
15390    have been studied in detail. The work function and ionization potential
15391    of the materials composing the devices have been measured and their
15392    energy models given. The EL performance properties have been explained
15393    well.
15394 C1 E CHINA UNIV CHEM TECHNOL,ELECTRICALLY CONDUCTING POLYMER LAB,SHANGHAI 200237,PEOPLES R CHINA.
15395 RP Liu, ZG, SHANGHAI UNIV SCI & TECHNOL,SCH MAT,SHANGHAI 201800,PEOPLES R
15396    CHINA.
15397 CR ADACHI C, 1988, JPN J APPL PHYS, V27, L269
15398    ADACHI C, 1990, APPL PHYS LETT, V57, P531
15399    AMINAKA E, 1994, JPN J APPL PHYS PT 1, V33, P1061
15400    FOWLER RH, 1928, P R SOC LOND A-CONTA, V119, P173
15401    FUKUDA M, 1989, JPN J APPL PHYS, V28, L1433
15402    HOSOKAWA C, 1992, APPL PHYS LETT, V61, P2503
15403    KAO KC, 1981, ELECT TRANSPORT SOLI
15404    KEDO J, 1993, APPL PHYS LETT, V63, P2627
15405    LIU ZG, 1993, CHIN J LUMIN, V14, P185
15406    OHMORI Y, 1991, JPN J APPL PHYS, V30, P1938
15407    OHMORI Y, 1992, JPN J APPL PHYS 2, V31, L568
15408    ONODA M, 1992, JPN J APPL PHYS, V31, P1107
15409    TANG CW, 1987, APPL PHYS LETT, V51, P913
15410    TANG CW, 1989, J APPL PHYS, V65, P3610
15411    ZHANG C, 1993, J APPL PHYS, V73, P5177
15412    ZHANG ZL, 1994, CHINESE J LUMINESCEN, V15, P363
15413    ZHAO WM, 1995, THIN FILM SCI TECHNO, V8, P153
15414 NR 17
15415 TC 3
15416 SN 0953-8984
15417 J9 J PHYS-CONDENS MATTER
15418 JI J. Phys.-Condes. Matter
15419 PD APR 29
15420 PY 1996
15421 VL 8
15422 IS 18
15423 BP 3221
15424 EP 3228
15425 PG 8
15426 SC Physics, Condensed Matter
15427 GA UJ327
15428 UT ISI:A1996UJ32700014
15429 ER
15430 
15431 PT J
15432 AU Qian, JH
15433    Liu, YC
15434    Liu, HY
15435    Yu, TY
15436    Deng, JQ
15437 TI An amperometric new methylene blue N-mediating sensor for hydrogen
15438    peroxide based on regenerated silk fibroin as an immobilization matrix
15439    for peroxidase
15440 SO ANALYTICAL BIOCHEMISTRY
15441 DT Article
15442 ID ENZYME ELECTRODE
15443 AB A simple and effective procedure was described for the immobilization
15444    of peroxidase in regenerated silk. fibroin membrane prepared from waste
15445    silk. The membranes of regenerated silk fibroin with or without
15446    peroxidase, before or after the ethanol treatment, were characterized
15447    by ir spectra. An amperometric H2O2 sensor, based on the immobilized
15448    peroxidase in regenerated silk fibroin membrane, in the use of new
15449    methylene blue N as an electron transfer mediator, was fabricated. The
15450    characteristics of the sensor with respect to linearity, response time,
15451    effect of pH and temperature, stability, and reproducibility were
15452    investigated. Dependences of Michaelis-Menten constant K-M(app) on the
15453    concentration of the mediator, and the applied potential were also
15454    studied and the results were presented. The sensor was highly sensitive
15455    to H2O2 with a detection limit of 1.0 x 10(-7) M and with response time
15456    of less than 40 s. (C) 1996 Academic Press, Inc.
15457 C1 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
15458    FUDAN UNIV,DEPT MACROMOLEC SCI,SHANGHAI 200433,PEOPLES R CHINA.
15459    SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
15460 CR ALBERY J, 1975, ELECTRODE KINETICS
15461    BIFULCO L, 1994, ANAL LETT, V27, P1443
15462    DEMURA M, 1989, J BIOTECHNOL, V10, P113
15463    DENG Q, 1994, J ELECTROANAL CHEM, V377, P191
15464    DURLIAT H, 1989, BIOELECTROCH BIOENER, V22, P197
15465    FREW JE, 1986, J ELECTROANAL CH INF, V201, P1
15466    HOOGVLIET JC, 1991, BIOSENS BIOELECTRON, V6, P413
15467    HURDIS EC, 1954, ANAL CHEM, V26, P320
15468    ITO Y, 1981, J ASSOC OFF ANA CHEM, V64, P1448
15469    KAMIN RA, 1980, ANAL CHEM, V52, P1198
15470    LIU Y, 1995, ANAL CHEM, V67, P1326
15471    LIU YC, 1995, J CHEM TECHNOL BIOT, V64, P269
15472    MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801
15473    MATSUBARA C, 1985, ANAL CHEM, V57, P1107
15474    OLSSON B, 1982, ANAL CHIM ACTA, V136, P113
15475    POPESCU IC, 1995, BIOSENS BIOELECTRON, V10, P443
15476    QIAN JH, 1995, J ELECTROANAL CHEM, V397, P157
15477    SCHUBERT F, 1991, ANAL CHIM ACTA, V245, P133
15478    SHCELLER FW, 1989, BIOSENSORS
15479    TATSUMA T, 1989, ANAL CHEM, V61, P2352
15480    WANG J, 1989, ELECTROANAL, V1, P43
15481    ZHOU XJ, 1995, ANAL CHIM ACTA, V304, P147
15482 NR 22
15483 TC 13
15484 SN 0003-2697
15485 J9 ANAL BIOCHEM
15486 JI Anal. Biochem.
15487 PD MAY 1
15488 PY 1996
15489 VL 236
15490 IS 2
15491 BP 208
15492 EP 214
15493 PG 7
15494 SC Chemistry, Analytical; Biochemical Research Methods; Biochemistry &
15495    Molecular Biology
15496 GA UJ495
15497 UT ISI:A1996UJ49500003
15498 ER
15499 
15500 PT J
15501 AU Lu, WC
15502    Yan, LC
15503    Liu, HL
15504    Chen, NY
15505 TI Expert system RECORES for classification and prediction of
15506    resistivities of rare earth complex oxides
15507 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
15508 DT Article
15509 DE rare earth complex brides; pattern recognition; expert system
15510 AB The relationship between the resistivities of rare earth complex oxides
15511    and their characteristic parameters was studied by chemical bond
15512    parameter-pattern recognition method, An expert system, RECORES, for
15513    the classification and prediction of resistivities of the compounds has
15514    been built on the basis of the classification diagrams and rules found
15515    by the principal; component analysis and Fisher method, The expert
15516    system posesses the basic properties of common expert system as well as
15517    the pattern recognition package used as a visual and effective tool to
15518    save, represent and acquire the knowledges.
15519 C1 ACAD SINICA,SHANGHAI INST MET,SHANGHAI 200050,PEOPLES R CHINA.
15520 RP Lu, WC, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R
15521    CHINA.
15522 CR CHEN N, 1988, ANAL CHIM ACTA, V210, P175
15523    LIU HL, 1992, CHINESE SCI BULL, V2, P113
15524    LIU ZX, 1981, ACTA METALLURGICA SI, V17, P652
15525    LU WC, 1994, CHEM J CHINESE U, V15, P882
15526 NR 4
15527 TC 0
15528 SN 0251-0790
15529 J9 CHEM J CHINESE UNIV-CHINESE
15530 JI Chem. J. Chin. Univ.-Chin.
15531 PD APR
15532 PY 1996
15533 VL 17
15534 IS 4
15535 BP 505
15536 EP 508
15537 PG 4
15538 SC Chemistry, Multidisciplinary
15539 GA UH847
15540 UT ISI:A1996UH84700002
15541 ER
15542 
15543 PT J
15544 AU Cai, YD
15545    Tang, Y
15546    Lu, WC
15547    Yan, LC
15548 TI Learning association by self-organization neural tree applied to the
15549    estimation of formation condition for amorphous phase of trinal
15550    fluorides
15551 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
15552 DT Article
15553 DE fluoride; condition for amorphous formation; artificial neural network;
15554    learning association by self-organization neural tree (LASSONT)
15555 AB In this paper, Learning Association by Self-organization neural
15556    tree(LASSONT) was applied to the estimation of the formation condition
15557    for amorphous phase of trinal fluorides by using the chemical bond
15558    parameters, and the intelligential expert systems for computer
15559    estimation was established, The classification results show that the
15560    performance of the neural tree is good, and therefore LASSONT might be
15561    referred as an effective assistant technique for the investigation of
15562    formation condition of amorphous phase of trinal fluorides.
15563 C1 CHINESE ACAD SCI,SHANGHAI RES CTR BIOTECHNOL,SHANGHAI 200233,PEOPLES R CHINA.
15564    SHANGHAI UNIV,DEPT CHEM,SHANGHAI,PEOPLES R CHINA.
15565 CR FRANK IE, 1982, ANAL CHEM, V54, P232
15566    LI T, 1993, NEUROCOMPUTING, P5
15567    LUO MQ, 1991, 3 NAT C COMP CHEM HA, P102
15568 NR 3
15569 TC 0
15570 SN 0251-0790
15571 J9 CHEM J CHINESE UNIV-CHINESE
15572 JI Chem. J. Chin. Univ.-Chin.
15573 PD APR
15574 PY 1996
15575 VL 17
15576 IS 4
15577 BP 531
15578 EP 534
15579 PG 4
15580 SC Chemistry, Multidisciplinary
15581 GA UH847
15582 UT ISI:A1996UH84700009
15583 ER
15584 
15585 PT J
15586 AU Ding, WY
15587    Han, ZH
15588    Chen, YL
15589    Zou, YJ
15590    Liu, X
15591 TI Stereoselective synthesis of cis-1,2-cyclopropane derivatives
15592 SO CHEMICAL RESEARCH IN CHINESE UNIVERSITIES
15593 DT Article
15594 DE cyclopropanation; stereoselective synthesis; arsenic ylide
15595 AB Carbomethoxymethylenetriphenylarsorane 1, or its arsonium bromide in
15596    the presence of K2CO3, reacts with 2, 2-dialkyl-1,
15597    3-dioxa-5-substituted-benzal-4, 6-dione 2 to give
15598    cis-1-methoxycarbonyl-2-aryl-6, 6-dialky-5, 7-dioxa-spiro-[2, 5]-4,
15599    8-octanadione 3 with a moderate to good yield.
15600 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
15601 CR DAVIDSON D, 1948, J AM CHEM SOC, V70, P3426
15602    NICOLAOU KC, 1981, J CHEM SOC CHEM COMM, P1195
15603    SCHUSTER P, 1964, MH CHEM, V95, P53
15604    SHEN YC, 1981, ACTA CHIM SINICA, V39, P243
15605    TROST BM, 1991, COMPREHENSIVE ORGANI, V4, P951
15606 NR 5
15607 TC 12
15608 SN 1005-9040
15609 J9 CHEM RES CHINESE UNIV
15610 JI Chem. Res. Chin. Univ.
15611 PD FEB
15612 PY 1996
15613 VL 12
15614 IS 1
15615 BP 50
15616 EP 55
15617 PG 6
15618 SC Chemistry, Multidisciplinary
15619 GA UH840
15620 UT ISI:A1996UH84000009
15621 ER
15622 
15623 PT J
15624 AU Wang, SZ
15625 TI Finite-difference time-domain approach to underwater acoustic
15626    scattering problems
15627 SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
15628 DT Article
15629 ID ABSORBING BOUNDARY-CONDITIONS; RADIATION; EQUATIONS
15630 AB The finite-difference time-domain (FDTD) recurrence expressions are
15631    formulated, and the numerical algorithm developed for underwater
15632    acoustic scattering applications, based upon the basic motion equation
15633    and the equation of continuity. The boundary condition implementation
15634    for both soft and rigid surfaces, and the absorbing boundary conditions
15635    on the truncating surface are described. The algorithm simulates the
15636    sound wave propagation in the time domain. As the time-stepping
15637    proceeds,boundary conditions are satisfied naturally. The method is
15638    particularly suited for scattering from complex objects. Near-field
15639    distributions of waves scattered from cylinders with ideal boundary
15640    conditions, insonified by a plane incident wave, are first computed.
15641    Far-field directional patterns are then derived using a Fourier
15642    transform method. The method is then applied to some other objects,
15643    including a square cylinder with an arbitrary aspect angle, and wedges
15644    with either ideally soft or ideally rigid surfaces. A good agreement
15645    between the FDTD and the theoretical results is demonstrated, showing
15646    the potential of the method in the studies of underwater scattering
15647    problems. (C) 1996 Acoustical Society of America.
15648 RP Wang, SZ, SHANGHAI UNIV,SHANGHAI 200072,PEOPLES R CHINA.
15649 CR BOBBER RJ, 1970, UNDERWATER ELECTROAC, P193
15650    CHANG WF, 1989, B SEISMOL SOC AM, V79, P211
15651    CLARK JA, 1992, IEEE 6 SP WORKSH STA, P338
15652    DOUGHERTY M, 1987, J ACOUST SOC AM, V82, P239
15653    FANG J, 1988, P 1988 IEEE AP S INT, P472
15654    FRICKE JR, 1993, J ACOUST SOC AM, V93, P1784
15655    JULL EV, 1981, APERTURE ANTENNAS DI, P38
15656    KELLY KR, 1974, P ROY IR AC C NUM AN, P57
15657    LUEBBERS RJ, 1992, IEEE T ANTENN PROPAG, V40, P1403
15658    MALONEY JG, 1993, IEEE T ANTENN PROPAG, V41, P668
15659    MORSE PM, 1983, VIBRATION SOUND, P347
15660    MUR G, 1981, IEEE T ELECTROMAGN C, V23, P377
15661    RAILTON CJ, 1992, ELECTRON LETT, V628, P1891
15662    ROACHE PJ, 1972, COMPUTATIONAL FLUID
15663    SCHINZINGER R, 1991, CONFORMAL MAPPING ME, P339
15664    STEPHEN RA, 1988, REV GEOPHYS, V26, P445
15665    TAFLOVE A, 1975, IEEE T MICROW THEORY, V23, P623
15666    TAFLOVE A, 1989, P IEEE, V77, P682
15667    TIRKAS PA, 1993, IEEE T ELECTROMAGN C, V35, P192
15668    WANG S, UNPUB EFFICIENT ABSO
15669    WANG S, 1984, CHIN J ACOUST, V3, P121
15670    WANG S, 1985, ACTA ACUST, V10, P247
15671    YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302
15672 NR 23
15673 TC 7
15674 SN 0001-4966
15675 J9 J ACOUST SOC AMER
15676 JI J. Acoust. Soc. Am.
15677 PD APR
15678 PY 1996
15679 VL 99
15680 IS 4
15681 PN Part 1
15682 BP 1924
15683 EP 1931
15684 PG 8
15685 SC Acoustics
15686 GA UF398
15687 UT ISI:A1996UF39800014
15688 ER
15689 
15690 PT J
15691 AU Zhang, XL
15692    Liu, HY
15693    Wu, XX
15694    Qi, DY
15695    Zhang, ZY
15696    Dai, M
15697    Deng, JQ
15698    Feng, F
15699 TI Amperometric tetrathiafulvalene-mediated sensor sensitive to reduced
15700    nicotinamide adenine dinucleotide based on co-immobilized lactate
15701    oxidase and lactate dehydrogenase
15702 SO ANALYTICAL COMMUNICATIONS
15703 DT Article
15704 ID CHEMICALLY MODIFIED ELECTRODES; ELECTROCATALYTIC OXIDATION; ENZYME
15705    ELECTRODE; CARBON ELECTRODES; NADH; ADSORPTION; COENZYMES; ACID; SALT
15706 AB An amperometric tetrathiafulvalene (TTF) mediated reduced nicotinamide
15707    adenine dinucleotide (NADH) sensor has been fabricated by
15708    co-immobilizing lactate oxidase and lactate dehydrogenase on an
15709    Eastman-AQ-TTF-modified electrode. The sensor provides low detection
15710    limits of 0.01 mmol l(-1) NADH and 1.0 mu mol l(-1) L-lactate and
15711    pyruvate by means of amplification of the bioelectrocatalytic oxidation
15712    current by the recycling of L-lactate and pyruvate, The response of the
15713    sensor to NADH under N-2 saturation reaches a 95% steady-state current
15714    within 2 min with a linear response at concentrations of 0.05-2.5 mmol
15715    l(-1), The dependence of the apparent Michaelis-Menten constant on
15716    applied potential was studied.
15717 C1 SUZHOU INST CITY CONSTRUCT & ENVIRONM PROTECT,DEPT ENVIRONM PROTECT,SUZHOU 300111,JIANSU,PEOPLES R CHINA.
15718    FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
15719    SHANGHAI UNIV,INST HYDROGEN STORAGE MAT,SHANGHAI 200072,PEOPLES R CHINA.
15720 RP Zhang, XL, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES
15721    R CHINA.
15722 CR ALBERY WJ, 1987, J ELECTROANAL CH INF, V218, P127
15723    BARD AJ, 1990, ANAL CHEM, V62, P2658
15724    CENAS NK, 1981, J ELECTROANAL CHEM, V128, P103
15725    DEMPSEY E, 1992, BIOSENS BIOELECTRON, V7, P323
15726    ESSAADI K, 1994, J ELECTROANAL CHEM, V367, P275
15727    GABBAY EJ, 1976, BIOCHEMISTRY-US, V15, P2062
15728    GENTILOMI G, 1991, ANAL CHIM ACTA, V255, P387
15729    GORTON L, 1984, J ELECTROANAL CH INF, V161, P103
15730    GORTON L, 1986, J CHEM SOC FARAD T 1, V82, P1245
15731    GORTON L, 1991, ANAL CHIM ACTA, V250, P203
15732    HAJIZADEH K, 1991, ANAL LETT, V24, P1453
15733    HALE PD, 1993, ANAL LETT, V26, P1073
15734    HIN BFYY, 1987, ANAL CHEM, V59, P2111
15735    JAEGFELDT H, 1980, J ELECTROANAL CHEM, V110, P295
15736    KAMACHE M, 1982, J AM CHEM SOC, V104, P4520
15737    KATZ E, 1994, J ELECTROANAL CHEM, V373, P189
15738    KUO KN, 1979, ANAL CHEM, V51, P745
15739    MCNEIL CJ, 1989, ANAL CHEM, V61, P25
15740    MOIROUX J, 1978, ANAL CHEM, V50, P1056
15741    MURTHY ASN, 1994, BIOELECTROCH BIOENER, V33, P71
15742    ONSAKA T, 1993, J CHEM SOC CHEM COMM, P222
15743    RIVERA N, 1994, BIOELECTROCH BIOENER, V34, P169
15744    RYAN MD, 1994, ANAL CHEM, V66, R360
15745    SCOTT DA, 1992, ANAL CHIM ACTA, V256, P47
15746    SIM KW, 1993, ANAL CHIM ACTA, V273, P165
15747    SPRULES SD, 1994, ANALYST, V119, P253
15748    SYMONS RH, 1989, J VIROL METHODS, V23, P299
15749    UEDA C, 1982, ANAL CHEM, V54, P850
15750    XU FQ, 1994, J ELECTROANAL CHEM, V368, P221
15751    YAMADA H, 1994, BIOELECTROCH BIOENER, V33, P91
15752 NR 30
15753 TC 4
15754 SN 1359-7337
15755 J9 ANAL COMMUN
15756 JI Anal. Commun.
15757 PD MAR
15758 PY 1996
15759 VL 33
15760 IS 3
15761 BP 111
15762 EP 114
15763 PG 4
15764 SC Chemistry, Analytical
15765 GA UE375
15766 UT ISI:A1996UE37500008
15767 ER
15768 
15769 PT J
15770 AU Li, L
15771    Xu, ZY
15772    Hsu, TY
15773    Ao, Q
15774 TI Optimization of the phase diagram of CeO2-ZrO2 system
15775 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
15776 DT Article
15777 AB Revised phase diagram of the CeO2-ZrO2 system is optimized and the
15778    lattice stability parameters of CeO2 of various phases as well as
15779    solution parameters of phases (liquid, cubic, tetragonal and
15780    monoclinic) are simultaneously obtained by using the Kaufman and
15781    Nesor's model for describing the ceramic solutions and the Lukas
15782    program.
15783 C1 SHANGHAI JIAO TONG UNIV,DEPT MAT SCI,SHANGHAI 200030,PEOPLES R CHINA.
15784    SHANDONG POLYTECH UNIV,DEPT MAT ENGN,JINAN 250014,PEOPLES R CHINA.
15785 RP Li, L, SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R
15786    CHINA.
15787 CR DU Y, 1991, J AM CERAM SOC, V74, P1569
15788    DUWEZ P, 1950, J AM CERAM SOC, V33, P274
15789    GARVIE RC, 1965, J PHYS CHEM-US, V69, P1238
15790    KAUFMAN L, 1987, CALPHAD, V2, P35
15791    LANGE FF, 1981, 12 ROCHW INT, P19
15792    LIN L, 1995, J MATER SCI TECHNOL, V11, P276
15793    LONGO V, 1971, CERAMURGIA INT, V1, P4
15794    LUKAS HL, 1977, CALPHAD, V1, P225
15795    NEGAS T, 1976, 12TH P RAR EARTH RES, P605
15796    ROITTI S, 1972, CERAMURGIA INT, V2, P97
15797    STUBICAN VS, 1981, ADV CERAM, V3, P25
15798    TANI E, 1982, YOGVO KYOKAI SHI, V90, P195
15799    TANI E, 1983, J AM CERAM SOC, V66, P506
15800 NR 13
15801 TC 11
15802 SN 1005-0302
15803 J9 J MATER SCI TECHNOL
15804 JI J. Mater. Sci. Technol.
15805 PY 1996
15806 VL 12
15807 IS 2
15808 BP 159
15809 EP 160
15810 PG 2
15811 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
15812    Engineering
15813 GA UD933
15814 UT ISI:A1996UD93300015
15815 ER
15816 
15817 PT J
15818 AU Guo, BY
15819    Li, X
15820    Vazquez, L
15821 TI A Legendre spectral method for solving the nonlinear Klein-Gordon
15822    education
15823 SO COMPUTATIONAL AND APPLIED MATHEMATICS
15824 DT Article
15825 DE Legendre spectral scheme; Klein-Gordon equation
15826 ID EQUATION
15827 AB A Legendre spectral scheme is proposed for solving the initial boundary
15828    value problem of the nonlinear Klein-Gordon equation. The numerical
15829    solution keeps the conservation. Its stability and convergence are
15830    investigated. Numerical results show the advantages of such
15831    approximation.
15832 C1 CITY UNIV HONG KONG,DEPT MATH,KOWLOON,HONG KONG.
15833    SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
15834    UNIV COMPLUTENSE MADRID,FAC CIENCIAS FIS,DEPT FIS TEOR,E-28040 MADRID,SPAIN.
15835 CR CANUTO C, 1988, SPECTRAL METHODS FLU
15836    CAO WM, 1993, J COMPUT PHYS, V108, P296
15837    GOU BY, 1982, NUMERICAL MATH, V4, P46
15838    GOU BY, 1982, SCI SINICA A, V25, P702
15839    GOU BY, 1983, J APPL SCI, V1, P25
15840    GOU BY, 1988, DIFFERENCE METHODS P
15841    GOU BY, 1993, NUMERICAL MATH, V2, P38
15842    LIONS JL, 1969, QUELQUES METHODES RE
15843    RICHTMYER RD, 1967, FINITE DIFFERENCE ME
15844    STRAUSS W, 1978, J COMP PHYSIOL, V28, P271
15845 NR 10
15846 TC 1
15847 SN 0101-8205
15848 J9 COMPUT APPL MATH
15849 JI Comput. Appl. Math.
15850 PY 1996
15851 VL 15
15852 IS 1
15853 BP 19
15854 EP 36
15855 PG 18
15856 SC Mathematics, Applied
15857 GA UD917
15858 UT ISI:A1996UD91700002
15859 ER
15860 
15861 PT J
15862 AU Lin, L
15863    Delaey, L
15864    VanDerBiest, O
15865    Wollants, P
15866 TI Calculation of isothermal sections of three ternary Ti-Zr-X systems
15867 SO SCRIPTA MATERIALIA
15868 DT Article
15869 C1 KATHOLIEKE UNIV LEUVEN,DEPT MET & MAT ENGN,B-3001 HEVERLEE,BELGIUM.
15870 RP Lin, L, SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R
15871    CHINA.
15872 CR ABRIATA JP, 1982, B ALLOY PHASE DIAGR, V3, P34
15873    ABRIATA JP, 1982, B ALLOY PHASE DIAGRA, V3, P29
15874    AUFFREDIC JP, 1982, J LESS-COMMON MET, V84, P49
15875    BALAKRISHNA SS, 1990, T INDIAN I METALS, V33, P155
15876    BOYER HE, 1973, METALS HDB, V8, P310
15877    BROWN ARG, 1966, MEM SCI REV METALL, V63, P575
15878    BUDBERG PB, 1967, IAN SSSR NEORG MATER, V3, P656
15879    CHAN YA, 1966, AFMLTR652 USAF 2, P5
15880    CHATTERJI D, 1971, MET T, V2, P1271
15881    DOMAGALA RF, 1966, J LESS-COMMON MET, V11, P70
15882    FAN MY, 1982, OPTIMUM TECHNIQUE, P159
15883    FARRAR PA, 1966, T AIME, V236, P1061
15884    FLEWITT PEJ, 1972, J APPL CRYSTALLOGR, V5, P423
15885    GUILLERMET AF, 1991, Z METALLKD, V82, P478
15886    HAYES ET, 1957, USBMU345 US AT EN CO
15887    HAYES ET, 1957, USBMV345
15888    IMGRAM AG, 1961, 59595 WADC BATT MEM
15889    IMGRAM AG, 1962, J LESS-COMMON MET, V4, P217
15890    KAUFMAN L, 1970, COMPUTER CALCULATION
15891    LIN L, 1994, CALPHAD, V18, P89
15892    MAYKUTH DJ, 1953, T AIME, V197, P231
15893    MURRAY JL, COMMUNICATION
15894    MURRAY JL, 1981, B ALLOY PHASE DIAGRA, V2, P181
15895    MURRAY JL, 1981, B ALLOY PHASE DIAGRA, V2, P55
15896    MURRAY JL, 1981, BAPD, V2, P197
15897    MURRAY JL, 1981, BAPD, V2, P62
15898    MURRAY JL, 1987, PHASE DIAGRAMS BINAR, P340
15899    NELDER JA, 1965, COMPUT J, V7, P308
15900    RAUB CJ, 1965, PHYS REV A, V137, P142
15901    RUDY E, 1969, AFMLTR652 USAF 5
15902    VANEFFENTEREE P, 1972, CEAR4330 CTR ET NUCL
15903 NR 31
15904 TC 0
15905 SN 1359-6462
15906 J9 SCRIPTA MATER
15907 JI Scr. Mater.
15908 PD MAY 1
15909 PY 1996
15910 VL 34
15911 IS 9
15912 BP 1411
15913 EP 1416
15914 PG 6
15915 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
15916    Engineering
15917 GA UD557
15918 UT ISI:A1996UD55700012
15919 ER
15920 
15921 PT J
15922 AU Bai, ZZ
15923    Wang, DR
15924 TI Improved comparison theorem for the nonlinear multisplitting relaxation
15925    method
15926 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
15927 DT Article
15928 DE nonlinear multisplitting; relaxation method; monotone convergence;
15929    convergence rate
15930 ID PARALLEL; ALGORITHM
15931 AB A new comparison theorem is given for the nonlinear multisplitting
15932    relaxation method [1], and an important modification is proposed for
15933    it, too.
15934 C1 SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
15935 RP Bai, ZZ, CHINESE ACAD SCI,INST COMPUTAT MATH & SCI ENGN COMP,POB
15936    2719,BEIJING 100080,PEOPLES R CHINA.
15937 CR BAI ZZ, 1993, THESIS SHANGHAI U SC
15938    BAI ZZ, 1994, CHINESE J ENG MATH, V11, P99
15939    BAI ZZ, 1996, COMPUT MATH APPL, V31, P21
15940    FROMMER A, 1989, NUMER MATH, V56, P269
15941    MORE JJ, 1972, SIAM J NUMER ANAL, V9, P357
15942    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
15943    ORTEGA JM, 1970, ITERATIVE SOLUTION N
15944    RHEINBOLDT WC, 1970, J MATH ANAL APPL, V32, P274
15945    WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473
15946    WANG DR, 1994, CHINESE ANN MATH B, V15, P335
15947    WANG DR, 1994, P 92 SHANGH INT NUM, P125
15948    WHITE RE, 1986, SIAM J ALGEBRA DISCR, V7, P137
15949    WHITE RE, 1986, SIAM J NUMER ANAL, V23, P639
15950 NR 13
15951 TC 1
15952 SN 0898-1221
15953 J9 COMPUT MATH APPL
15954 JI Comput. Math. Appl.
15955 PD APR
15956 PY 1996
15957 VL 31
15958 IS 8
15959 BP 23
15960 EP 30
15961 PG 8
15962 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
15963 GA UD547
15964 UT ISI:A1996UD54700003
15965 ER
15966 
15967 PT J
15968 AU Lin, SP
15969    Zhou, ZW
15970 TI The hydrodynamic stability of pendent drop under a liquid column
15971 SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME
15972 DT Article
15973 AB The hydrodynamic stability of a liquid column resting on a gas in a
15974    vertical tube with its upper end closed is analyzed. The maximum height
15975    above which the interface is unstable is given as a function of the
15976    Bond number and the density ratio. The instability is shown to be
15977    monotonic, i.e., nonoscillatory.
15978 C1 SHANGHAI UNIV SCI & TECHNOL,INST APPL MATH & MECH,SHANGHAI,PEOPLES R CHINA.
15979 RP Lin, SP, CLARKSON UNIV,DEPT MECH & AERONAUT ENGN,POTSDAM,NY 13699.
15980 CR DUSSAN V, 1975, ARCH RATION MECH AN, V57, P363
15981    HUH C, 1969, THESIS U MINNESOTA
15982    JOSEPH DD, 1976, STABILITY FLUID MOTI
15983    LIN SP, 1990, J FLUID MECH, V218, P641
15984    PITTS E, 1973, J FLUID MECH, V59, P753
15985    PITTS E, 1974, J FLUID MECH, V63, P487
15986 NR 6
15987 TC 0
15988 SN 0021-8936
15989 J9 J APPL MECH
15990 JI J. Appl. Mech.-Trans. ASME
15991 PD MAR
15992 PY 1996
15993 VL 63
15994 IS 1
15995 BP 106
15996 EP 109
15997 PG 4
15998 SC Mechanics
15999 GA UC815
16000 UT ISI:A1996UC81500015
16001 ER
16002 
16003 PT J
16004 AU Wang, HZ
16005 TI Incidence-radiation condition of an artificial boundary
16006 SO COMPUTERS & STRUCTURES
16007 DT Article
16008 ID FINITE
16009 AB In this paper, the incidence-radiation composite boundary is presented
16010    for simulating the radiation condition on load incidence boundary. The
16011    theoretical foundations of the composite boundary are region-wise
16012    virtual work equations of wave motion in the finite and infinite
16013    domain. By studying the virtual work equations of changed domain and
16014    original domain, the correct boundary condition of wave motion problems
16015    concerning infinite domain is obtained. This revises the mistake caused
16016    by the current generally used method. Numerical results also show that
16017    the presented incidence-radiation composite boundary is very effective.
16018 RP Wang, HZ, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI
16019    200072,PEOPLES R CHINA.
16020 CR CHEW WC, 1990, WAVES FIELDS INHOMOG
16021    CHIEN W, 1989, ACTA MECH SINICA, V21, P300
16022    LIAO ZP, 1984, SCI SINICA SER A, V27, P1063
16023    LYSMER J, 1969, J ENG MECH DIV ASCE, V95, P859
16024    MEDINA F, 1983, INT J NUMER METH ENG, V19, P1209
16025    SUN J, 1993, SELECTED PAPERS TONG, P71
16026    WHITE W, 1977, J ENG MECH DIV ASCE, V103, P949
16027    WOLF JP, 1981, DYNAMIC SOIL STRUCTU
16028    ZIENKIEWICZ OC, 1991, FINITE ELEMENT METHO, V2
16029 NR 9
16030 TC 0
16031 SN 0045-7949
16032 J9 COMPUT STRUCT
16033 JI Comput. Struct.
16034 PD MAY 17
16035 PY 1996
16036 VL 59
16037 IS 4
16038 BP 743
16039 EP 749
16040 PG 7
16041 SC Computer Science, Interdisciplinary Applications; Engineering, Civil
16042 GA UC192
16043 UT ISI:A1996UC19200014
16044 ER
16045 
16046 PT J
16047 AU Xiao, YW
16048    Zhang, ZW
16049 TI Investigation on the potentiostatic polymerization of low concentration
16050    aniline
16051 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
16052 DT Article
16053 DE potentiostatic method; electrochemical polymerization; low
16054    concentration aniline
16055 AB In this paper, the electrochemical polymerization of low concentration
16056    aniline was studied by potentiostatic method. The equation of polymeric
16057    current simultaneously controlled by diffusion and electrode reaction
16058    was derived and verified successfully, Some electrochemical parameters
16059    of polymeric reaction, such as alpha(boolean AND), k(s)' and D-R, were
16060    determined.
16061 C1 NANJING UNIV, DEPT CHEM, NANJING 210093, PEOPLES R CHINA.
16062 RP Xiao, YW, SHANGHAI UNIV SCI & TECHNOL, DEPT CHEM, SHANGHAI 201800,
16063    PEOPLES R CHINA.
16064 CR BREITENHACH M, 1971, ELECTROANAL CHEM ELE, V29, P29
16065    DIAZ AF, 1980, J ELECTROANAL CHEM, V111, P111
16066    DUNSCH L, 1975, J ELECTROANAL CHEM, V61, P61
16067    MOHILNER DM, 1962, J AM CHEM SOC, V84, P3618
16068    XIAO YW, IN PRESS ACTA CHIM S
16069    YIN B, IN PRESS ACTA CHIMIC
16070    YIN B, 1995, ACTA CHIM SINICA, V53, P73
16071 NR 7
16072 TC 0
16073 SN 0251-0790
16074 J9 CHEM J CHINESE UNIV-CHINESE
16075 JI Chem. J. Chin. Univ.-Chin.
16076 PD DEC
16077 PY 1995
16078 VL 16
16079 IS 12
16080 BP 1852
16081 EP 1855
16082 PG 4
16083 SC Chemistry, Multidisciplinary
16084 GA UC194
16085 UT ISI:A1995UC19400007
16086 ER
16087 
16088 PT J
16089 AU Zhao, PS
16090    Yun, S
16091    Hu, ZM
16092    Qi, DY
16093 TI Quantitative analysis of a mixture with reversible electrode processes
16094    by cyclic voltammetry and linear sweep voltammetry
16095 SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY
16096 DT Article
16097 DE digital simulation; quantitative analysis; reversible electrode
16098    processes; cyclic voltammetry; linear sweep voltammetry
16099 ID RESOLUTION ENHANCEMENT
16100 AB The theories of the linear sweep voltammetry (LSV) and cyclic
16101    voltammetry (CV), including branch cyclic voltammetry (BACV), of a
16102    mixture containing two components whose electrode processes are
16103    reversible and independent are described. The digital simulation method
16104    is used to simulate the theoretical linear sweep and cyclic
16105    voltammograms at spherical electrodes. A mixture of Pb2+ and Cd2+ at
16106    hanging mercury drop electrodes is used to test the theories. Both
16107    theory and experiment show that, in the presence of a species which is
16108    reduced at more positive potentials, it is difficult to determine the
16109    concentration of another species; considerable error could be caused in
16110    LSV, but CV based on the reverse branch of a cyclic voltammogram and
16111    BACV show less error. The allowed concentration of the more positively
16112    reduced species with a 10% relative error in CV and BACV is about four
16113    to twenty times more than that in LSV. However, in the presence of a
16114    species that is reduced at more negative potentials, LSV shows far less
16115    error than BACV and CV. The theoretical and experimental results are
16116    consistent.
16117 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
16118 CR BARD AJ, 1980, ELECTROCHEMICAL METH, P232
16119    BOND AM, 1980, MODERN POLAROGRAPHIC, P207
16120    ENGBLOM SO, 1990, J ELECTROANAL CH INF, V296, P371
16121    FELDBERG SW, 1969, ELECTROANALYTICAL CH, V3, P199
16122    KISSINGER PT, 1983, J CHEM EDUC, V60, P702
16123    MABBOTT GA, 1983, J CHEM EDUC, V60, P697
16124    MYLAND JC, 1983, J ELECTROANAL CH INF, V153, P43
16125    MYLAND JC, 1986, J ELECTROANAL CH INF, V206, P1
16126    NICHOLSON RS, 1964, ANAL CHEM, V36, P706
16127    OLDHAM KB, 1983, ANAL CHEM, V55, P1992
16128    OSTERYOUNG J, 1986, ANAL CHEM S SER, V25, P3
16129    OSTERYOUNG J, 1986, ELECTROANAL CHEM, V14, P209
16130    PALYS M, 1991, TALANTA, V38, P723
16131    PIZETA I, 1990, J ELECTROANAL CH INF, V296, P395
16132    POLCYN DS, 1966, ANAL CHEM, V38, P370
16133    ROONEY RC, 1963, J POLAROGRAPH SOC, V9, P45
16134    TOKUDA K, 1983, J ELECTROANAL CH INF, V159, P23
16135    ZHAO P, 1987, ACTA CHIM SINICA, V45, P1163
16136 NR 18
16137 TC 0
16138 SN 0022-0728
16139 J9 J ELECTROANAL CHEM
16140 JI J. Electroanal. Chem.
16141 PD FEB 7
16142 PY 1996
16143 VL 402
16144 IS 1-2
16145 BP 11
16146 EP 17
16147 PG 7
16148 SC Chemistry, Analytical; Electrochemistry
16149 GA UC280
16150 UT ISI:A1996UC28000002
16151 ER
16152 
16153 PT J
16154 AU Chian, JF
16155 TI Ceramic glass from flying-ash
16156 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
16157 DT Meeting Abstract
16158 C1 SUNY COLL ONEONTA,DEPT CHEM,ONEONTA,NY 13820.
16159    SHANGHAI UNIV,SHANGHAI,PEOPLES R CHINA.
16160 NR 0
16161 TC 0
16162 SN 0065-7727
16163 J9 ABSTR PAP AMER CHEM SOC
16164 JI Abstr. Pap. Am. Chem. Soc.
16165 PD MAR 24
16166 PY 1996
16167 VL 211
16168 PN Part 1
16169 BP 631
16170 EP INOR
16171 PG 1
16172 SC Chemistry, Multidisciplinary
16173 GA UA482
16174 UT ISI:A1996UA48203648
16175 ER
16176 
16177 PT J
16178 AU Zhao, XH
16179    Chen, WF
16180 TI The influence of interface layer on microstructural stresses in mortar
16181 SO INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN
16182    GEOMECHANICS
16183 DT Article
16184 DE concrete; interface layer; microstructure; mortar; stress
16185 AB In this paper, the influence of geometrical and physical parameters
16186    (size of the sand particle, thickness of the interface layer and ratios
16187    of the modulus of elasticity) on stress distributions in a mortar is
16188    studied. It is found that a weak or soft interface layer in the mortar
16189    will greatly reduce the strength of the concrete; if the modulus of the
16190    interface layer approaches to that of the cement paste and the modulus
16191    of the sand particle (or aggregate) is 4-10 times as large as that of
16192    the cement paste, the concrete will possess a much higher strength and
16193    thus has a better property.
16194 C1 PURDUE UNIV,SCH CIVIL ENGN,W LAFAYETTE,IN 47907.
16195 RP Zhao, XH, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI,PEOPLES
16196    R CHINA.
16197 CR BENVENISTE Y, 1989, MECH MATER, V7, P305
16198    CHEN WF, 1994, 146 ASME AMR
16199    CHRISTENSEN RM, 1979, J MECH PHYS SOLIDS, V27, P315
16200    COHEN MD, 1994, CEMENT CONCRETE RES, V24, P95
16201    YAMAGUCHI E, 1991, J ENG MECH-ASCE, V117, P653
16202    ZHAO XH, 1994, CESTR9423 PURD U SCH
16203 NR 6
16204 TC 2
16205 SN 0363-9061
16206 J9 INT J NUMER ANAL METH GEOMECH
16207 JI Int. J. Numer. Anal. Methods Geomech.
16208 PD MAR
16209 PY 1996
16210 VL 20
16211 IS 3
16212 BP 215
16213 EP 228
16214 PG 14
16215 SC Engineering, Geological; Materials Science, Multidisciplinary; Mechanics
16216 GA UA784
16217 UT ISI:A1996UA78400005
16218 ER
16219 
16220 PT J
16221 AU Zhang, F
16222    Cao, ZC
16223 TI Modified model in positive temperature coefficient of resistance BaTiO3
16224    ceramics
16225 SO JOURNAL OF APPLIED PHYSICS
16226 DT Article
16227 AB Current-voltage and resistivity-voltage measurements have been made on
16228    donor-doped BaTiO3 ceramics in order to investigate the nature of the
16229    current transport processes. It is found that the characteristics of
16230    the current-voltage do not follow the Heywang model [Solid-State
16231    Electron. 3, 51 (1961)]. Hence, the classical Heywang model is modified
16232    and the thermionic emission model with smoothly changed barrier
16233    resulted from image force is suggested. The modified theory coincides
16234    better with the experimental observation. The dependence between
16235    current density and voltage is J=J(0) exp[-(phi(0)-beta V-1/2)/kT]. The
16236    relationship between resistivity and voltage (voltage effect) is
16237    rho=(2kT/dJ(0) beta)V-1/2 exp[(phi(0)-beta V-1/2)/kT]. From the
16238    modified model, the maximum barrier height of BaTiO3 ceramics can be
16239    deduced experimentally as well. (C) 1996 American Institute of Physics.
16240 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SCI & ENGN,SHANGHAI 201800,PEOPLES R CHINA.
16241 RP Zhang, F, CHINESE ACAD SCI,SHANGHAI INST MET,ION BEAM LAB,SHANGHAI
16242    200050,PEOPLES R CHINA.
16243 CR HAAYMAN PW, 1995, 925350, GE
16244    HEYWANG W, 1961, SOLID STATE ELECTRON, V3, P51
16245    HEYWANG W, 1964, J AM CERAM SOC, V47, P484
16246    JONKER GH, 1964, SOLID STATE ELECTRON, V7, P895
16247    NEMOTO H, 1980, J AM CERAM SOC, V63, P398
16248    SIMMONS JG, 1964, J APPL PHYS, V35, P2472
16249    SMYTHE WR, 1950, STATIC DYNAMIC ELECT
16250 NR 7
16251 TC 3
16252 SN 0021-8979
16253 J9 J APPL PHYS
16254 JI J. Appl. Phys.
16255 PD MAR 1
16256 PY 1996
16257 VL 79
16258 IS 5
16259 BP 2487
16260 EP 2490
16261 PG 4
16262 SC Physics, Applied
16263 GA TY119
16264 UT ISI:A1996TY11900046
16265 ER
16266 
16267 PT J
16268 AU Ye, ZM
16269 TI Plastic zone characteristics of crack tip in anisotropic solids
16270 SO INTERNATIONAL JOURNAL OF FRACTURE
16271 DT Article
16272 RP Ye, ZM, SHANGHAI UNIV,DEPT CIVIL ENGN,149 YAN CHANG RD,SHANGHAI
16273    200072,PEOPLES R CHINA.
16274 CR ERDOGAN F, 1963, J BASIC ENG, V85, P519
16275    LIEBOWITZ H, 1968, FRACTURE ADV TREATIS, V2
16276    SIH GC, 1974, INT J FRACTURE MECH, V10, P305
16277    WU EM, 1968, COMP MAT WORKSH, P20
16278    ZHIMING Y, 1994, ENG FRACT MECH, V49, P797
16279 NR 5
16280 TC 0
16281 SN 0376-9429
16282 J9 INT J FRACTURE
16283 JI Int. J. Fract.
16284 PY 1996
16285 VL 74
16286 IS 1
16287 BP R3
16288 EP R10
16289 PG 8
16290 SC Mechanics
16291 GA TX339
16292 UT ISI:A1996TX33900008
16293 ER
16294 
16295 PT J
16296 AU Ding, WZ
16297    Olsen, SE
16298 TI Reaction equilibria in the production of manganese ferroalloys
16299 SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND
16300    MATERIALS PROCESSING SCIENCE
16301 DT Article
16302 AB A laboratory investigation has been carried out to determine slag/metal
16303    and slag/metal/gas equilibria relevant to production of manganese
16304    ferroalloys. The metal phase was normally composed of Mn-Si-C-sat
16305    alloys, but in some experiments, the alloys contained up to 15 wt pet
16306    Fe. Different slag systems were used: MnO-SiO2, MnO-SiO2-CaO,
16307    MnO-SiO2-Al2O3, and quaternary MnO-SiO2-CaO-Al2O3 with fixed CaO/Al2O3
16308    weight ratios of 1.5 and 3. The experiments were normally made in CO
16309    gas atmosphere at temperatures ranging from 1450 degrees C to 1600
16310    degrees C. The results give comprehensive information about equilibrium
16311    relations. Partial and complete equilibria are illustrated in
16312    equilibrium diagrams. Partial equilibrium is a situation in which
16313    equilibrium is established with respect to certain variables but not to
16314    others, in this case, between slag and metal but not with the gas
16315    phase. The effect of temperature was found to be of minor importance
16316    for the partial slag/metal equilibrium, whereas the complete
16317    slag/metal/gas equilibrium is considerably influenced by both
16318    temperature and CO pressure. As expected, increasing temperature and
16319    decreasing CO pressure will reduce the equilibrium MnO content of
16320    slags. The influence of alumina addition to the slag phase and of iron
16321    to the metal phase is also discussed.
16322 C1 UNIV TRONDHEIM,NORWEGIAN INST TECHNOL,DEPT MET,N-7034 TRONDHEIM,NORWAY.
16323 RP Ding, WZ, SHANGHAI UNIV SCI & TECHNOL,DEPT MET,SHANGHAI 200072,PEOPLES
16324    R CHINA.
16325 CR ABRAHAM KP, 1960, J IRON STEEL I, V196, P82
16326    AHMAD N, 1978, METALL T A, V9, P1857
16327    ASHIN AK, 1977, IZV AKAD NAUK SSSR M, P232
16328    BALATIN GI, 1974, UKR KHIM ZH, V40, P542
16329    CENGIZLER H, 1992, P 6 INT FERR C 1992, P167
16330    CHIPMAN J, 1952, T AM SOC MET, V44, P1215
16331    DARKEN RS, 1953, PHYSICAL CHEM METALS, P144
16332    DING W, 1993, THESIS NORWEGIAN I T
16333    ESIN OA, 1954, RUSS ZH APPL CHEM, V27, P1252
16334    FUJISAWA T, 1977, TETSU TO HAGANE, V63, P1494
16335    GEE R, 1976, SCAND J METALL, V5, P57
16336    GEE R, 1978, SCAND J METALL, V7, P38
16337    GELDENHUIS JMA, 1992, P 6 INT FERR C 1992, P105
16338    GLASSER FP, 1962, J AM CERAM SOC, V45, P242
16339    GZIELO A, 1986, NEUE HUTTE, P100
16340    KOR GJW, 1979, METAL T B, V10, P367
16341    KORBER F, 1936, MITT KAIS WILH I EIS, V18, P109
16342    LEE YE, 1980, CAN METALL Q, V19, P315
16343    MEHTA SR, 1965, J IRON STEEL I, V203, P524
16344    MUAN A, 1965, PHASE EQUILIBRIA OXI
16345    NI RM, 1990, STEEL RES, V61, P113
16346    PETRUSHEVSKII MS, 1959, J PRIKLADNOI KHEMI, V32, P86
16347    PETRUSHEVSKII MS, 1973, RUSS J PHYS CHEM, V47, P158
16348    RANKIN WJ, 1978, 1959 NIM
16349    RAO BKD, 1981, METALL T B, V12, P469
16350    RAO BKDP, 1981, METALL TRANS B, V12, P311
16351    REIN RH, 1963, T METALL SOC AIME, V227, P1193
16352    RESER MK, PHASE DIAGRAMS CERAM, P630
16353    SHARMA RA, 1965, T METALL SOC AIME, V233, P1586
16354    SKIREDJ O, 1963, T TMS AIME, V227, P536
16355    STAPLETON JM, 1961, J MET, V13, P45
16356    TANAKA A, 1977, J JPN I MET, V41, P601
16357    TANAKA A, 1980, MURORAN KOGYO DAIGAK, V10, P19
16358    TANAKA A, 1980, TETSU TO HAGANE, V66, P1474
16359    TURKDOGAN ET, 1956, J IRON STEEL I, V182, P274
16360    TURKDOGAN ET, 1957, T I MIN METALL, V67, P573
16361    TUSET JK, 1970, 340358 SINTEF
16362    TUSET JK, 1970, 340420 SINTEF
16363    VORONOV VA, 1982, RUSS METALL+, P22
16364    WARREN GF, 1975, P 1 INT FERR C 1974, P175
16365    YAKOSHEVITCH NF, 1969, IZV VUZ CHERN METALL, P48
16366    ZAITSEV AI, 1989, RASPLAVY, V3, P9
16367 NR 42
16368 TC 10
16369 SN 1073-5623
16370 J9 METALL MATER TRANS B
16371 JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci.
16372 PD FEB
16373 PY 1996
16374 VL 27
16375 IS 1
16376 BP 5
16377 EP 17
16378 PG 13
16379 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
16380    Engineering
16381 GA TW621
16382 UT ISI:A1996TW62100001
16383 ER
16384 
16385 PT J
16386 AU Ye, RS
16387    Yang, ZH
16388 TI Double S-breaking cubic turning points and their computation
16389 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
16390 DT Article
16391 AB In the paper we are concerned with double S-breaking cubic turning
16392    points of two-parameter nonlinear problems in the presence of
16393    Z(2)-symmetry. Three extended systems are proposed to determine double
16394    S-breaking cubic turning points. We show that there exist two kinds of
16395    singular point path passing through double S-breaking cubic turning
16396    point, One is the simple quadratic turning point path, the other is the
16397    pitchfork bifurcation point path.
16398 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
16399 CR ALLGOWER EL, 1984, ISNM70, P15
16400    GOLUBITSKY M, 1985, SINGULARITIES GROUPS, V2
16401    MA YN, 1990, J COMPUT MATH, V8, P261
16402    SPENCE A, 1982, IMA J NUMER ANAL, V2, P413
16403    WERNER B, 1984, ISNM70, P562
16404    WERNER B, 1984, SIAM J NUMER ANAL, V21, P388
16405    WU W, 1993, NUMERICAL MATH J CHI, V2, P101
16406    YANG ZH, 1991, J COMPUT MATH, V9, P149
16407 NR 8
16408 TC 0
16409 SN 0254-9409
16410 J9 J COMPUT MATH
16411 JI J. Comput. Math.
16412 PD JAN
16413 PY 1996
16414 VL 14
16415 IS 1
16416 BP 8
16417 EP 22
16418 PG 15
16419 SC Mathematics, Applied; Mathematics
16420 GA TU315
16421 UT ISI:A1996TU31500002
16422 ER
16423 
16424 PT J
16425 AU Ding, WY
16426    Cao, WG
16427    Yao, Y
16428    Zhu, ZM
16429 TI Synthesis of dimethyl
16430    3-perfluoroalkyl-4-(3-oxo-2-triphenylphosphoranylidenbutanylidene)-pent-
16431    2-enedioate and its cyclization
16432 SO CHINESE JOURNAL OF CHEMISTRY
16433 DT Article
16434 DE phosphorane; polysubstituted arene; intramolecular cyclization
16435 ID ACYCLIC PRECURSORS; FACILE SYNTHESIS; METHYL
16436 AB The title compounds 5a-5c were prepared via the reaction of methyl
16437    2-perfluoroalkynoates (4) with methyl
16438    5-oxo-4-(triphenylphosphoranylidene)hex-2-enoate (3), which was
16439    obtained from the reaction of methyl propynate (2) with
16440    acetylmethylenetriphenylphosphorane (1) at -5-0 degrees C.
16441    Intramolecular elimination of Ph(3)PO took place when compound 5 was
16442    heated in aqueous methanol at 115-120 degrees C in sealed tube,
16443    yielding dimethyl 2-trifluoromethyl-4-methylisophthalate (6a) from 5a
16444    and methyl 5-acetyl-4-hydroxy-2-heptafluoropropanylbenzoate (6b) from
16445    5b, respectively. The structures of compounds 5, 6a and 6b were
16446    confirmed by IR, MS, H-1 NMR, F-19 NMR and C-13 NMR spectroscopy and
16447    elemental analyses. Rection mechanisms for the formation of compounds
16448    5, 6a and 6b were proposed.
16449 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
16450 CR BANKS RE, 1979, ORGANOFLUORINE CHEM
16451    DING WY, 1986, ACTA CHIM SINICA, V44, P62
16452    DING WY, 1987, TETRAHEDRON LETT, V28, P81
16453    DING WY, 1992, SYNTHESIS-STUTTGART, P635
16454    DING WY, 1993, CHINESE J CHEM, V11, P81
16455    DING WY, 1993, J CHEM SOC P1, P855
16456    HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47
16457    JUNG ME, 1988, J AM CHEM SOC, V110, P3965
16458    MANN J, 1987, CHEM SOC REV, V16, P381
16459    MCCLINTON MA, 1992, TETRAHEDRON, V48, P6555
16460    RAMIREZ F, 1957, J ORG CHEM, V22, P41
16461    WELCH JT, 1987, TETRAHEDRON, V43, P3123
16462    WOLF V, 1953, CHEM BER, V86, P735
16463 NR 13
16464 TC 6
16465 SN 1001-604X
16466 J9 CHINESE J CHEM
16467 JI Chin. J. Chem.
16468 PD SEP
16469 PY 1995
16470 VL 13
16471 IS 5
16472 BP 468
16473 EP 474
16474 PG 7
16475 SC Chemistry, Multidisciplinary
16476 GA TU139
16477 UT ISI:A1995TU13900014
16478 ER
16479 
16480 PT J
16481 AU Jiang, XF
16482    Wong, PL
16483    Zhang, ZM
16484 TI Thermal non-Newtonian EHL analysis of rib-roller end contact in tapered
16485    roller bearings
16486 SO JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME
16487 DT Article
16488 ID LUBRICATION
16489 AB An EHL approach to the rib-roller end contact in tapered roller
16490    bearings has been achieved by taking into account the non-Newtonian
16491    behavior of lubricants and thermal effects and with full consideration
16492    of the peculiar geometrical and kinematic conditions. Two kinds of
16493    geometrical configurations of rib and roller end were investigated
16494    tapered rib/spherical roller end and spherical rib/spherical roller
16495    end. Optimal ratios of curvature radius of roller end to rib face were
16496    deduced. The film thickness, friction torque, lubricant temperature,
16497    and surface temperature at various speeds and loads were calculated.
16498 C1 CITY UNIV HONG KONG,DEPT MFG ENGN,KOWLOON,HONG KONG.
16499    SHANGHAI UNIV,DEPT ENGN MECH,SHANGHAI 200072,PEOPLES R CHINA.
16500 CR ARAMAKI H, 1992, J TRIBOL-T ASME, V114, P311
16501    BAIR S, 1979, ASME, V101, P258
16502    CARSLAW HS, 1959, CONDUCTION HEAT SOLI
16503    CHITTENDEN RJ, 1985, P ROY SOC LOND A MAT, V397, P245
16504    DALMAZ G, 1980, 7TH P LEEDS LY S TRI, V7, P175
16505    DOWSON D, 1977, ELASTOHYDRODYNAMIC L
16506    GADALLAH N, 1984, J TRIBOL-T ASME, V106, P265
16507    HAMROCK BJ, 1981, BALL BEARING LUBRICA
16508    JAMISON WE, 1977, ASLE T, V20, P79
16509    JIANG XF, 1993, P INT S TRIBOLOGY 93, P147
16510    JOHNSON KL, 1977, P ROY SOC LOND A MAT, V356, P215
16511    KORRENN H, 1970, FORTSCHR BER, V1, P11
16512    ROELANDS CJA, 1966, CORRELATIONAL ASPECT
16513    WANG SH, 1987, J TRIBOL-T ASME, V109, P666
16514    ZHANG Z, 1988, STLE T, V31, P461
16515    ZHOU RS, 1991, J TRIBOL-T ASME, V113, P590
16516 NR 16
16517 TC 2
16518 SN 0742-4787
16519 J9 J TRIBOL-TRANS ASME
16520 JI J. Tribol.-Trans. ASME
16521 PD OCT
16522 PY 1995
16523 VL 117
16524 IS 4
16525 BP 646
16526 EP 654
16527 PG 9
16528 SC Engineering, Mechanical
16529 GA TT886
16530 UT ISI:A1995TT88600016
16531 ER
16532 
16533 PT J
16534 AU Du, B
16535    Yang, KZ
16536    Zhong, SS
16537 TI Theoretical analysis of a parabolic torus reflector antenna with
16538    multibeam
16539 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
16540 DT Article
16541 DE multibeam antenna; single offset antenna; parabolic torus reflector
16542    antenna
16543 AB The parametric equations and the formulas of unit normal vector and
16544    surface element for a parabolic torus reflector antenna are derived and
16545    the mechanism of producing multibeam is proposed. Based on physical
16546    optics, the radiation pattern formulas for the antenna are given, with
16547    which the effects of geometric parameters on the antenna are studied.
16548    The good agreement between the calculated patterns and the measured
16549    ones shows that the theory is helpful for designing parabolic torus
16550    antennas.
16551 C1 MINIST ELECTR IND,INST 54,SHIJIAZHUANG 050081,PEOPLES R CHINA.
16552 RP Du, B, SHANGHAI UNIV SCI & TECHNOL,DEPT ELECTR ENGN,SHANGHAI
16553    201800,PEOPLES R CHINA.
16554 CR HDB MATH, P307
16555    1979, HDB MATH, V415, P416
16556    BOSWELL AGP, 1978, MARCONI REV, V41, P237
16557    HYDE G, 1974, COMSAT TECH REV, V4, P231
16558    LUDWING AC, 1973, IEEE T ANTENN PROPAG, V2, P116
16559 NR 5
16560 TC 1
16561 SN 1001-6511
16562 J9 SCI CHINA SER A
16563 JI Sci. China Ser. A-Math. Phys. Astron.
16564 PD DEC
16565 PY 1995
16566 VL 38
16567 IS 12
16568 BP 1520
16569 EP 1531
16570 PG 12
16571 SC Mathematics, Applied; Mathematics
16572 GA TQ966
16573 UT ISI:A1995TQ96600012
16574 ER
16575 
16576 PT J
16577 AU Wang, ZX
16578    Pan, JS
16579    Luo, WY
16580    Li, XN
16581    Wang, CS
16582 TI Preferential sputtering from Ni-Pd alloy in the phase transition region
16583 SO JOURNAL OF MATERIALS SCIENCE LETTERS
16584 DT Article
16585 ID PARTICLES
16586 C1 ACAD SINICA,INST NUCL RES,SHANGHAI 201800,PEOPLES R CHINA.
16587    SHANGHAI UNIV,SHANGHAI APPL RADIAT INST,SHANGHAI 201800,PEOPLES R CHINA.
16588 RP Wang, ZX, CCAST,WORLD LAB,POB 8730,BEIJING 100080,PEOPLES R CHINA.
16589 CR BETZ G, 1983, SPUTTERING PARTICLE, V2, P11
16590    KELLY R, 1985, SURF INTERFACE ANAL, V7, P1
16591    KIRSCHNER J, 1985, NUCL INSTRUM METH B, V7, P742
16592    SHAKIROV R, 1992, NUCL INSTRUM METH B, V67, P540
16593    SIGMUND P, 1969, PHYS REV, V184, P383
16594    SIGMUND P, 1982, NUCL INSTRUM METHODS, V194, P541
16595    SLUSSER GJ, 1979, SURF SCI, V84, P211
16596    WANG ZX, 1993, NUCL INSTRUM METH B, V74, P380
16597    YURASOVA VE, 1983, VACUUM, V33, P565
16598    YURASOVA VE, 1986, VACUUM, V36, P630
16599 NR 10
16600 TC 0
16601 SN 0261-8028
16602 J9 J MATER SCI LETT
16603 JI J. Mater. Sci. Lett.
16604 PD JAN 15
16605 PY 1996
16606 VL 15
16607 IS 2
16608 BP 149
16609 EP 150
16610 PG 2
16611 SC Materials Science, Multidisciplinary
16612 GA TQ664
16613 UT ISI:A1996TQ66400017
16614 ER
16615 
16616 PT J
16617 AU Ma, GB
16618    Tan, WH
16619 TI Field enhancement due to anomalous skin effect inside a target
16620 SO PHYSICS OF PLASMAS
16621 DT Article
16622 ID HIGH-DENSITY PLASMA; LASER-PULSES; ABSORPTION
16623 AB A new method based on Fourier transformation to study the skin effects
16624    is presented. Using this method, the field amplitude in plasma is
16625    represented in terms of electric conductivity, and the normal and
16626    anomalous skin effects are described through one formula by omitting
16627    the plasma dispersion or not. The results are in agreement with other
16628    publications [e.g., J. P. Matte and K. Aguenaou, Phys. Rev. A 45, 2558
16629    (1992)] for equivalent parameters. But for deeper positions inside a
16630    target, which have not been studied by others, it is found that the
16631    field amplitude is considerably enhanced due to an anomalous skin
16632    effect, even for constant collision frequency. In addition, the skin
16633    absorptions and some calculations on an anomalous skin effect for
16634    different collision frequencies are also presented. (C) 1996 American
16635    Institute of Physics.
16636 C1 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
16637 RP Ma, GB, ACAD SINICA,SHANGHAI INST OPT & FINE MECH,POB 800211,SHANGHAI
16638    201800,PEOPLES R CHINA.
16639 CR BLEVIN HA, 1970, PHYS FLUIDS, V10, P1259
16640    BLEVIN HA, 1973, PHYS FLUIDS, V13, P82
16641    BRUNEL F, 1988, PHYS FLUIDS, V31, P2714
16642    BULANOV SV, 1994, PHYS PLASMAS, V1, P745
16643    DENAVIT J, 1992, PHYS REV LETT, V69, P3052
16644    FEDOSEJEVS R, 1990, APPL PHYS B-PHOTO, V50, P79
16645    FEDOSEJEVS R, 1990, PHYS REV LETT, V64, P1250
16646    FRIED BD, 1961, PLASMA DISPERSION FU
16647    GAMALIY EG, 1990, PHYS REV A, V42, P929
16648    GAUTSCHI W, 1964, APPLIED MATH SERIES, V55, P295
16649    GIBBON P, 1992, PHYS REV LETT, V68, P1535
16650    ICHIMARU S, 1973, BASIC PRINCIPLES PLA, CH3
16651    JACKSON JD, 1962, CLASSICAL ELECTRODYN, P220
16652    KIEFFER JC, 1989, PHYS REV LETT, V62, P760
16653    KIEFFER JC, 1991, PHYS FLUIDS B-PLASMA, V3, P167
16654    MATTE JP, 1992, PHYS REV A, V45, P2558
16655    MURNANE MM, 1989, PHYS REV LETT, V62, P155
16656    NG A, 1994, PHYS REV LETT, V72, P3351
16657    ROZMUS W, 1990, PHYS REV A, V42, P7401
16658    SAUERBREY R, 1994, PHYS PLASMAS, V1, P1635
16659    WEIBEL ES, 1967, PHYS FLUIDS, V10, P741
16660    WILKS SC, 1992, PHYS REV LETT, V69, P1383
16661    ZIGLER A, 1991, APPL PHYS LETT, V59, P534
16662    ZIMAN JM, 1969, PRINCIPLES THEORY SO, P241
16663    ZIMAN JM, 1981, PHYS MET, V1, P102
16664 NR 25
16665 TC 2
16666 SN 1070-664X
16667 J9 PHYS PLASMAS
16668 JI Phys. Plasmas
16669 PD JAN
16670 PY 1996
16671 VL 3
16672 IS 1
16673 BP 349
16674 EP 353
16675 PG 5
16676 SC Physics, Fluids & Plasmas
16677 GA TP807
16678 UT ISI:A1996TP80700040
16679 ER
16680 
16681 PT J
16682 AU Bai, ZZ
16683    Wang, DR
16684    Evans, DJ
16685 TI Models of asynchronous parallel nonlinear multisplitting relaxed
16686    iterations
16687 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
16688 DT Article
16689 ID ALGORITHM; CONVERGENCE
16690 AB In the sense of the nonlinear multisplitting and based on the principle
16691    of sufficiently using the delayed information, we propose models of
16692    asynchronous parallel accelerated overrelaxation iteration methods for
16693    solving large scale system of nonlinear equations. Under proper
16694    conditions, we set up the local convergence theories of these new
16695    method models.
16696 C1 CHINESE ACAD SCI,INST COMPUTAT MATH & SCI ENGN COMP,BEIJING,PEOPLES R CHINA.
16697    SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
16698    LOUGHBOROUGH UNIV TECHNOL,PARALLEL ALGORITHMS RES CTR,LOUGHBOROUGH LE11 3TU,LEICS,ENGLAND.
16699 CR BAI ZZ, 1995, PARALLEL COMPUT, V21, P565
16700    BERTSEKAS DP, 1989, PARALLEL DISTRIBUTED
16701    BRU R, 1988, LINEAR ALGEBRA APPL, V103, P175
16702    EVANS DJ, 1991, PARALLEL COMPUT, V17, P165
16703    FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141
16704    FROMMER A, 1989, NUMER MATH, V56, P269
16705    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
16706    ORTEGA JM, 1970, ITERATIVE SOLUTION N
16707    VARGA RS, 1961, MATRIX ITERATIVE ANA
16708    WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473
16709    WANG DR, 1994, CHINESE ANN MATH B, V15, P335
16710    WANG DR, 1994, PARALLEL ALGORITHMS, V2, P173
16711    WANG DR, 1994, PARALLEL ALGORITHMS, V2, P209
16712    WANG DR, 1995, IN PRESS APPL MATH J
16713    WHITE RE, 1986, SIAM J ALGEBRA DISCR, V7, P137
16714    WHITE RE, 1986, SIAM J NUMER ANAL, V23, P639
16715 NR 16
16716 TC 3
16717 SN 0254-9409
16718 J9 J COMPUT MATH
16719 JI J. Comput. Math.
16720 PD OCT
16721 PY 1995
16722 VL 13
16723 IS 4
16724 BP 369
16725 EP 386
16726 PG 18
16727 SC Mathematics, Applied; Mathematics
16728 GA TP800
16729 UT ISI:A1995TP80000009
16730 ER
16731 
16732 PT J
16733 AU Shi, SZ
16734    Zheng, QA
16735    Zhuang, DM
16736 TI Discontinuous robust mappings are approximatable
16737 SO TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
16738 DT Article
16739 DE robust sets; robust mappings; approximatable mappings; integral global
16740    optimization
16741 AB The concepts of robustness of sets and and functions were introduced to
16742    form the foundation of the theory of integral global optimization. A
16743    set A of a topological space X is said to be robust iff cl A = cl int
16744    A. A mapping f: X --> Y is said to be robust iff for each open set U-Y
16745    of Y, f(-1)(U-Y) is robust. We prove that if X is a Baire space and Y
16746    satisfies the second axiom of countability, then a mapping f: X --> Y
16747    is robust iff it is approximatable in the sense that the set of points
16748    of continuity of f is dense in X and that for any other point x is an
16749    element of X, (x, f(x)) is the limit of {(x(alpha), f(x(alpha)))},
16750    where for all alpha, x(alpha) is a continuous point of f. This result
16751    justifies the notion of robustness.
16752 C1 SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
16753    MT ST VINCENT UNIV,DEPT MATH & COMP STUDIES,HALIFAX,NS B3M 2J6,CANADA.
16754 RP Shi, SZ, NANKAI INST MATH,DIV THEORET PHYS,TIANJIN 300071,PEOPLES R
16755    CHINA.
16756 CR BATUCHTIN LV, 1984, OPTIMIZATION DISCONT
16757    CHEW SH, 1988, LECTURE NOTES EC MAT, V298
16758    CHOQUET G, 1969, LECTURES ANAL, V1
16759    CHOQUET G, 1969, OUTILS TOPOLOGIQUES
16760    MAYUROVA IV, 1984, USSR COMP MATH MATH, V24, P121
16761    OXTOBY JC, 1980, MEASURE CATEGORY
16762    SEMANDENI Z, 1971, BANACH SPACES CONTIN
16763    SHI SZ, 1994, J MATH ANAL APPL, V183, P706
16764    ZANG I, 1981, MATH OPER RES, V6, P140
16765    ZHENG Q, IN PRESS GLOBAL MINI
16766    ZHENG Q, 1978, ACTA MATH APPL SINIC, V1, P161
16767    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205
16768    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317
16769    ZHENG Q, 1991, COMPUT MATH APPL, V21, P17
16770    ZHENG Q, 1991, RECENT ADV GLOBAL OP
16771    ZHENG Q, 1993, COMPUT MATH APPL, V25, P79
16772 NR 16
16773 TC 4
16774 SN 0002-9947
16775 J9 TRANS AMER MATH SOC
16776 JI Trans. Am. Math. Soc.
16777 PD DEC
16778 PY 1995
16779 VL 347
16780 IS 12
16781 BP 4943
16782 EP 4957
16783 PG 15
16784 SC Mathematics
16785 GA TM686
16786 UT ISI:A1995TM68600016
16787 ER
16788 
16789 PT J
16790 AU Liu, GL
16791 TI A unified variable-domain variational theory of hybrid problems for
16792    compressible S-2-flow in mixed-flow turbomachinery
16793 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
16794 DT Article
16795 ID PRINCIPLES; ROTOR
16796 AB Using the functional variation with variable domain, two families of
16797    variational principles (VPs) for the hybrid problem types H-A and H-B
16798    of S-2-flow in mixed-flow turbomachinery are established. The new
16799    theory provides both rational ways for best contouring the hub/casing
16800    walls to meet various practical design requirements and a theoretical
16801    basis for introducing the finite element method (FEM) into
16802    computational aerodynamics of turbomachinery
16803 C1 SHANGHAI INST APPL MATHS & MECH,SHANGHAI 200072,PEOPLES R CHINA.
16804 RP Liu, GL, SHANGHAI UNIV,SHANGHAI 200072,PEOPLES R CHINA.
16805 CR BOSMAN C, 1974, ARC RM3746
16806    CAI RQ, 1983, ACTA AERODYNAMICA SI, V1, P25
16807    CAI RQ, 1988, INT J HEAT FLUID FL, V9, P302
16808    COURANT R, 1953, METHODS MATH PHYSICS, V1
16809    DORMAN TE, 1968, ASME, V90
16810    LIU GI, 1986, J ENG GAS TURB POWER, V108, P254
16811    LIU GL, 1978, VARIATIONAL PRINCIPL
16812    LIU GL, 1979, ACTA MECH SINICA, V11, P303
16813    LIU GL, 1980, SCI SINICA, V23, P1339
16814    LIU GL, 1981, CHINESE J ENG THERMO, V2, P335
16815    LIU GL, 1981, THERMOPHYSICS
16816    LIU GL, 1982, AUG P INT C FEM SHAN, P520
16817    LIU GL, 1986, 6TH P INT S FEM FLOW, P125
16818    LIU GL, 1986, 6TH P INT S FEM FLOW, P137
16819    LIU GL, 1987, AIAA871426 PAP
16820    LIU GL, 1990, 1 INT S EXP COMP AER, P128
16821    LIU GL, 1993, ACTA MECH, V97, P229
16822    LIU GL, 1993, ACTA MECHANICA 1, V95, P117
16823    LIU GL, 1993, INT J TURBO JET ENGI, V10, P273
16824    LIU RX, 1981, SEISMOL GEOL, V3, P1
16825    MARSH H, 1968, ARC RM3509
16826    MCNALLY WD, 1985, J FLUID ENG-T ASME, V107, P6
16827    OATES GC, 1976, ASME, V98, P1
16828    PENG HW, 1975, KEXUE TONGBAO, V20, P416
16829    WU CH, 1952, NACA TN2604
16830    WU CH, 1965, CHINESE J MECH ENG, V13, P43
16831    YAN S, 1990, 1ST P INT S EXP COMP, P457
16832 NR 27
16833 TC 1
16834 SN 0334-0082
16835 J9 INT J TURBO JET ENGINES
16836 JI Int. J. Turbo. Jet-Engines
16837 PY 1995
16838 VL 12
16839 IS 3
16840 BP 213
16841 EP 222
16842 PG 10
16843 SC Engineering, Aerospace
16844 GA TN109
16845 UT ISI:A1995TN10900005
16846 ER
16847 
16848 PT J
16849 AU Liu, GL
16850 TI Optimization of axial-flow pump cascade solidity subject to cavitation
16851    and separation-free constraints
16852 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
16853 DT Article
16854 AB The solidity optimization of 2-D axial-flow pump cascades is formulated
16855    as a nonlinear programming problem that minimizes the profile losses
16856    subject to separation/cavitation-free constraints. Both constraints are
16857    expressed in terms of the Lieblen's equivalent diffusion ratio D-eq.
16858    Analytical solutions are obtained in the form of formulae convenient
16859    for design. The method is further extended to 3-D pump stages.
16860 C1 SHANGHAI INST APPL MATHS & MECH,SHANGHAI 200072,PEOPLES R CHINA.
16861 RP Liu, GL, SHANGHAI UNIV,SHANGHAI 200072,PEOPLES R CHINA.
16862 CR BEVERIDGE GSG, 1970, OPTIMIZATION THEORY
16863    BRUCE EP, 1974, NASA SP304, P795
16864    CONRAD A, 1965, MTZ
16865    LIEBLEIN S, 1959, ASME, V81, P387
16866    LIEBLEIN S, 1965, NASA SP, V36, CH6
16867    LIU GL, 1983, 6TH P INT S AIR BREA, P313
16868    LIU GL, 1987, NUMERICAL METHODS LA, V5, P1739
16869    LIU GL, 1993, INT J TURBO JET ENGI, V10, P127
16870    OKIISHI TH, 1975, INT J MECH SCI, V17, P633
16871    REKLAITIS GV, 1983, ENG OPTIMIZATION MET
16872 NR 10
16873 TC 0
16874 SN 0334-0082
16875 J9 INT J TURBO JET ENGINES
16876 JI Int. J. Turbo. Jet-Engines
16877 PY 1995
16878 VL 12
16879 IS 3
16880 BP 231
16881 EP 236
16882 PG 6
16883 SC Engineering, Aerospace
16884 GA TN109
16885 UT ISI:A1995TN10900007
16886 ER
16887 
16888 PT J
16889 AU Tu, DW
16890 TI In-process sensor for surface profile measurement applying a
16891    common-mode rejection technique
16892 SO OPTICS AND LASER TECHNOLOGY
16893 DT Article
16894 DE interferometers; profilometers; noise suppression; common-mode rejection
16895 AB An optical non-contact profilometer is presented for super-smooth
16896    surfaces, which applies a so-called common-mode rejection technique.
16897    Environmental disturbances and laser amplitude noise, which commonly
16898    exist in similar instruments, are overcome in this system. The overall
16899    simplicity of the optics and electronics, the low cost of the
16900    components and the ease of alignment make this a convenient system to
16901    implement.
16902 RP Tu, DW, SHANGHAI UNIV SCI & TECHNOL,SCH MECH AUTOMAT,POB 27,SHANGHAI
16903    200072,PEOPLES R CHINA.
16904 CR DAUDRIDGE A, 1981, APPL OPTICS, V20, P2337
16905    DOWNS MJ, 1985, PRECIS ENG, V7, P211
16906    HUANG CC, 1984, OPT ENG, V23, P356
16907    MITSUI K, 1986, PRECIS ENG, V8, P212
16908    PANTZER D, 1986, APPL OPTICS, V25, P4168
16909 NR 5
16910 TC 0
16911 SN 0030-3992
16912 J9 OPT LASER TECHNOL
16913 JI Opt. Laser Technol.
16914 PD DEC
16915 PY 1995
16916 VL 27
16917 IS 6
16918 BP 351
16919 EP 353
16920 PG 3
16921 SC Optics
16922 GA TN089
16923 UT ISI:A1995TN08900012
16924 ER
16925 
16926 PT J
16927 AU Zhu, JL
16928    Chadderton, LT
16929    Fink, D
16930    Cruz, SA
16931    Ghosh, S
16932    Zhu, DZ
16933 TI Electronic stopping and etched particle tracks in polymers .2. Boron
16934    and lithium tracks
16935 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
16936    INTERACTIONS WITH MATERIALS AND ATOMS
16937 DT Article
16938 ID DETECTORS; CR-39; IONS
16939 AB This work is the second one in a series of papers on the correlation of
16940    etched particle tracks with the projectiles' electronic energy
16941    transfer. The plastic detector CR39 was bombarded with boron and
16942    lithium ions at different energies, and subsequently etched. The
16943    relation between the diameter of etched tracks and the projectile
16944    energy was studied in detail. Maximum diameters were found after boron
16945    irradiation at 2.1 MeV, and after lithium irradiation at about 1.1 MeV.
16946    These values closely coincide with those ion energies at which they
16947    deposit their maximum electronic energy in the target surface area. The
16948    observations also point at a linear relationship between the maximum
16949    electronic stopping power and the atomic number of the projectile ions.
16950 C1 AUSTRALIAN NATL UNIV,RES SCH PHYS SCI,CANBERRA,ACT 2601,AUSTRALIA.
16951    SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI 201800,PEOPLES R CHINA.
16952    HAHN MEITNER INST BERLIN GMBH,DEPT FD,D-14109 BERLIN,GERMANY.
16953    UNIV AUTONOMA METROPOLITANA IZTAPALAPA,DEPT FIS,MEXICO CITY 09340,DF,MEXICO.
16954    NE HILL UNIV,DEPT CHEM,SHILLONG 793003,MEGHALAYA,INDIA.
16955    ACAD SINICA,JOINT OPEN LAB ANALYT NUCL TECH,SHANGHAI BRANCH,SHANGHAI 201800,PEOPLES R CHINA.
16956 RP Zhu, JL, CSIRO,DIV APPL PHYS,GPO 4,CANBERRA,ACT 2601,AUSTRALIA.
16957 CR ALNAJJAR SAR, 1984, NUCL TRACKS RAD MEAS, V8, P45
16958    BERNARDI L, 1991, NUCL INSTRUM METH B, V53, P61
16959    BIERSACK JP, 1980, NUCL INSTRUM METHODS, V174, P257
16960    CHADDERTON LT, 1994, NUCL INSTRUM METH B, V91, P168
16961    CROSS WG, 1986, NUCL TRACKS RAD MEAS, V12, P533
16962    FINK D, 1992, NUCL INSTRUM METH B, V65, P432
16963    FLEISCHER RL, 1975, NUCLEAR TRACKS SOLID
16964    JONSSON G, 1992, NUCL INSTRUM METH B, V63, P399
16965    ZIEGLER JF, 1985, STOPPING RANGES IONS, V1
16966 NR 9
16967 TC 0
16968 SN 0168-583X
16969 J9 NUCL INSTRUM METH PHYS RES B
16970 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
16971 PD NOV
16972 PY 1995
16973 VL 105
16974 IS 1-4
16975 BP 208
16976 EP 211
16977 PG 4
16978 SC Physics, Atomic, Molecular & Chemical; Physics, Nuclear; Instruments &
16979    Instrumentation; Nuclear Science & Technology
16980 GA TM152
16981 UT ISI:A1995TM15200043
16982 ER
16983 
16984 PT J
16985 AU Xu, QJ
16986    Deng, XN
16987 TI Oscillating behaviour on electrodeposited CuInSe2 thin-films during
16988    H2O2 cathodic reduction
16989 SO ACTA CHIMICA SINICA
16990 DT Article
16991 ID IRON-SULFIDE ELECTRODES; SUSTAINED OSCILLATIONS; CATALYTIC REDUCTION;
16992    HYDROGEN-PEROXIDE
16993 AB CuInSe2 thin films prepared by electrodeposition method can produce
16994    periodically electrochemistry oscillation phenomenna during H2O2
16995    cathodic reduction. The dynamic current-voltage curve from -1.80V to
16996    0.00V((vsSCE)) appears a pronounced current wave. When the potential is
16997    set in the oscillating potential region, the cell response may be
16998    accounted for, in the equivalent circuit representation, by the
16999    presence of negative resistances and inductances with A.C. methods. The
17000    negative resistances and inductances may indicate an autocatalytio
17001    reaction with an adsorbed intermediate.
17002 C1 SHANGHAI UNIV,ELECTROCHEM RES CTR,SHANGHAI 201800,PEOPLES R CHINA.
17003 RP Xu, QJ, SHANGHAI INST ELECT POWER,ELECTROCHEM RES CTR,SHANGHAI
17004    200090,PEOPLES R CHINA.
17005 CR ARMSTRONG RD, 1972, J ELECTROANAL CHEM, V39, P81
17006    CATTARIN S, 1988, BER BUNSEN PHYS CHEM, V92, P1345
17007    CATTARIN S, 1990, J ELECTROCHEM SOC, V137, P3475
17008    SCHUMANN D, 1968, J ELECTROANAL CHEM, V17, P451
17009    TRIBUTSCH H, 1975, BER BUNSEN PHYS CHEM, V79, P570
17010    TRIBUTSCH H, 1975, BER BUNSEN PHYS CHEM, V79, P580
17011    WOJTOWICZ J, 1973, MOD ASPECT ELECTROC, P47
17012 NR 7
17013 TC 0
17014 SN 0567-7351
17015 J9 ACTA CHIM SIN
17016 JI Acta Chim. Sin.
17017 PY 1995
17018 VL 53
17019 IS 11
17020 BP 1076
17021 EP 1081
17022 PG 6
17023 SC Chemistry, Multidisciplinary
17024 GA TL445
17025 UT ISI:A1995TL44500007
17026 ER
17027 
17028 PT J
17029 AU Wang, CS
17030    Luo, WY
17031    Gu, JQ
17032    Tabata, T
17033    Ito, R
17034 TI A comparison of calculated and measured absorbed doses of electron beams
17035 SO RADIATION PHYSICS AND CHEMISTRY
17036 DT Article
17037 ID DOSIMETERS; ALGORITHM
17038 AB A semiempirical code to compute the absorbed dose in a single- to
17039    five-layer slab absorbers irradiated by electron beams has been
17040    developed. The doses estimated by the code have been compared with the
17041    experimental results obtained with a pyrolitic-graphite calorimeter for
17042    the electron beams of 1.5 and 1.75-MeV energy, and these have shown
17043    agreement within about 3%.
17044 C1 UNIV OSAKA PREFECTURE,ADV SCI & TECHNOL RES INST,SAKAI,OSAKA 593,JAPAN.
17045    SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI 201800,PEOPLES R CHINA.
17046    SHANGHAI INST METROL TECHNOL,SHANGHAI 200233,PEOPLES R CHINA.
17047 CR 1992, EDMULT 311 MICRO ELE
17048    GARTH JC, 1986, T AM NUCL SOC, V52, P377
17049    HUMPHREYS JC, 1990, RADIAT PHYS CHEM, V35, P744
17050    ITO R, 1987, RCOPTR8 RAD CTR OS P
17051    KOBETICH EJ, 1968, PHYS REV, V170, P391
17052    KOBETICH EJ, 1969, NUCL INSTRUM METHODS, V71, P269
17053    MCLAUGHLIN WL, 1989, DOSIMETRY RAD PROCES
17054    MILLER A, 1985, NUCL INSTRUM METH B, V10, P994
17055    MILLER A, 1990, RADIAT PHYS CHEM, V35, P774
17056    TABATA T, 1974, NUCL SCI ENG, V53, P226
17057    TABATA T, 1981, JPN J APPL PHYS, V20, P249
17058    TABATA T, 1989, RADIAT PHYS CHEM, V33, P411
17059    TABATA T, 1990, RADIAT PHYS CHEM, V35, P821
17060    TABATA T, 1993, NOV RADT AS 93 C P T, P574
17061    TANAKA R, 1971, 32ND PREPR AUT M JAP, P231
17062    ZHANG LM, 1993, RADIAT PHYS CHEM, V42, P765
17063 NR 16
17064 TC 3
17065 J9 RADIAT PHYS CHEM
17066 JI Radiat. Phys. Chem.
17067 PD FEB
17068 PY 1996
17069 VL 47
17070 IS 2
17071 BP 167
17072 EP 170
17073 PG 4
17074 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
17075    Science & Technology
17076 GA TK581
17077 UT ISI:A1996TK58100001
17078 ER
17079 
17080 PT J
17081 AU YANG, T
17082 TI RECOVERY OF DIGITAL SIGNALS FROM CHAOTIC SWITCHING
17083 SO INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS
17084 DT Letter
17085 ID CHUA CIRCUIT
17086 RP YANG, T, SHANGHAI UNIV SCI & TECHNOL,DEPT AUTOMAT ENGN,CAMPUS BOX
17087    14,SHANGHAI 200072,PEOPLES R CHINA.
17088 CR CHUA LO, 1992, AEU-ARCH ELEKTRON UB, V46, P250
17089    CRUZ JM, 1993, IEEE T CIRCUITS-II, V40, P614
17090    CUOMO KM, 1993, 1993 P IEEE ASSP C M, P137
17091    CUOMO KM, 1993, IEEE T CIRCUITS-II, V40, P626
17092    KOCAREV L, 1992, INT J BIFURCAT CHAOS, V2, P709
17093    PARLITZ U, 1992, INT J BIFURCAT CHAOS, V2, P973
17094    YANG T, 1994, INT J CIRC THEOR APP, V22, P399
17095 NR 7
17096 TC 41
17097 SN 0098-9886
17098 J9 INT J CIRCUIT THEOR APPL
17099 JI Int. J. Circuit Theory Appl.
17100 PD NOV-DEC
17101 PY 1995
17102 VL 23
17103 IS 6
17104 BP 611
17105 EP 615
17106 PG 5
17107 SC Engineering, Electrical & Electronic
17108 GA TJ622
17109 UT ISI:A1995TJ62200006
17110 ER
17111 
17112 PT J
17113 AU GUO, BY
17114    CAO, WM
17115 TI A SPECTRAL METHOD FOR THE FLUID-FLOW WITH LOW MACH NUMBER ON THE
17116    SPHERICAL SURFACE
17117 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
17118 DT Article
17119 DE FLUID FLOW WITH LOW MACH NUMBER; SPHERICAL SURFACE; SPECTRAL METHOD
17120 AB A spectral scheme is proposed for the fluid flow with low Mach number
17121    on the spherical surface. The stability and the convergence are proved.
17122    some skills in this paper can be extended to tackle problems defined on
17123    manifolds.
17124 RP GUO, BY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
17125 CR CANUTO C, 1987, SPECTRAL METHODS FLU
17126    COURANT R, 1953, METHODS MATH PHYSICS, V1
17127    GOTTLIEB D, 1977, NUMERICAL ANAL SPECT
17128    GUO BY, 1994, J COMPUT MATH, V12, P173
17129    GUO BY, 1995, MATH COMPUT, V64, P1067
17130    HALTINER GJ, 1980, NUMERICAL PREDICTION
17131    JARUND M, 1985, LECTURE NOTES APPLIE, V22, P1
17132    LIONS JL, 1972, NONHOMOGENEOUS BOUND, V1
17133    ROACHE PJ, 1976, COMPUTATIONAL FLUID
17134    WILLIAMSON DL, 1992, J COMPUT PHYS, V102, P211
17135    ZEN QC, 1979, PHYSICAL MATH BASIS, V1
17136 NR 11
17137 TC 0
17138 SN 0036-1429
17139 J9 SIAM J NUMER ANAL
17140 JI SIAM J. Numer. Anal.
17141 PD DEC
17142 PY 1995
17143 VL 32
17144 IS 6
17145 BP 1764
17146 EP 1777
17147 PG 14
17148 SC Mathematics, Applied
17149 GA TH076
17150 UT ISI:A1995TH07600004
17151 ER
17152 
17153 PT J
17154 AU ZHU, Y
17155 TI GENERATION OF SOLITARY WAVES IN A 3-LAYER FLUID SYSTEM
17156 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY & TECHNOLOGICAL
17157    SCIENCES
17158 DT Article
17159 DE SOLITARY WAVES; STRATIFIED FLUID; KDV EQUATION
17160 ID GRAVITATIONAL COLLAPSE; STRATIFIED FLUID; INTERNAL WAVES
17161 AB Based on the generalized Boussinesq equations for the three-layer fluid
17162    system, the KdV equations for the interfaces are obtained by using a
17163    perturbation method and the effect of fluid depth on the generation of
17164    solitary waves is discussed. By classifying the waves into fast-,
17165    medium- and slow-modes, it is found that the results on the slow-mode
17166    waves is qualitatively consistent with the experimental ones, and there
17167    may exist concave solitary waves on free surface, which is yet to be
17168    verified by experiments.
17169 RP ZHU, Y, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI
17170    200072,PEOPLES R CHINA.
17171 CR ABLOWITZ MJ, 1981, SOLITONS INVERSE SCA
17172    AMEN R, 1980, J FLUID MECH, V96, P65
17173    GILREATH HE, 1985, AIAA J, V23, P693
17174    KAKUTANI T, 1978, J PHYS SOC JPN, V45, P674
17175    MAXWORTHY T, 1980, J FLUID MECH, V96, P47
17176    WHITHAM GB, 1974, LINEAR NONLINEAR WAV
17177    ZHU Y, IN PRESS J HYDRODYNA
17178 NR 7
17179 TC 0
17180 SN 1001-6511
17181 J9 SCI CHINA SER A
17182 JI Sci. China Ser. A-Math. Phys. Astron. Technol. Sci.
17183 PD OCT
17184 PY 1995
17185 VL 38
17186 IS 10
17187 BP 1239
17188 EP 1245
17189 PG 7
17190 SC Mathematics, Applied; Mathematics
17191 GA TH029
17192 UT ISI:A1995TH02900008
17193 ER
17194 
17195 PT J
17196 AU XU, WP
17197    ZHENG, LR
17198    XIN, HP
17199    LIN, CL
17200    GU, M
17201    CAO, ZC
17202    OKUYAMA, M
17203 TI BARUO3 THIN-FILMS PREPARED BY PULSED-LASER DEPOSITION
17204 SO MATERIALS LETTERS
17205 DT Article
17206 ID FERROELECTRIC MEMORIES
17207 AB High electrical conductive BaRuO3 thin films with (110) perovskite
17208    orientation have been successfully fabricated on Si(100) substrates by
17209    pulsed ArF excimer laser deposition and post-annealing. The resistivity
17210    of the films at room temperature is in the range of 10(-2)-10(-3) Ohm
17211    cm. Auger electron spectroscopy (AES) measurement shows that the
17212    compositions uniformly distributed throughout the film. Rutherford
17213    backscattering spectroscopy (RES) analysis indicates that the chemical
17214    stoichiometric ratio is well consistent with the ideal one as in BaRuO3.
17215 C1 SHANGHAI UNIV,FAC MAT,JIADING 201800,PEOPLES R CHINA.
17216    OSAKA UNIV,FAC ENGN SCI,DEPT ELECT ENGN,TOYONAKA,OSAKA 560,JAPAN.
17217 RP XU, WP, CHINESE ACAD SCI,SHANGHAI INST MET,STATE KEY LAB FUNCT MAT
17218    INFORMAT,SHANGHAI 200050,PEOPLES R CHINA.
17219 CR BENSCH W, 1990, SOLID STATE IONICS, V43, P171
17220    CHEUNG JT, 1993, APPL PHYS LETT, V62, P2045
17221    DONOHUE PC, 1965, INORG CHEM, V4, P306
17222    EOM CB, 1992, SCIENCE, V258, P1766
17223    KIM TW, 1994, APPL PHYS LETT, V64, P2676
17224    LARSEN PK, 1992, FERROELECTRICS, V128, P265
17225    SCOTT JF, 1989, SCIENCE, V246, P1400
17226    TAKIKAWA O, 1986, 36TH IEEE P EL COMP, P214
17227    VANLOAN PR, 1992, CERAM B, V51, P231
17228    VIJAY DP, 1993, J ELECTROCHEM SOC, V140, P2640
17229    XU W, 1995, IN PRESS PHYS STAT A
17230    YOON YS, 1993, J APPL PHYS, V73, P1547
17231 NR 12
17232 TC 5
17233 SN 0167-577X
17234 J9 MATER LETT
17235 JI Mater. Lett.
17236 PD NOV
17237 PY 1995
17238 VL 25
17239 IS 3-4
17240 BP 175
17241 EP 178
17242 PG 4
17243 SC Materials Science, Multidisciplinary; Physics, Applied
17244 GA TG742
17245 UT ISI:A1995TG74200021
17246 ER
17247 
17248 PT J
17249 AU WANG, ZH
17250 TI SPLICE LOSS ANALYSIS OF 2 NONIDENTICAL SINGLE-MODE SLAB WAVE-GUIDES
17251    WITH SIMULTANEOUS TILT AND OFFSET MISALIGNMENTS
17252 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
17253 DT Article
17254 DE PLANAR OPTICAL WAVE-GUIDES; SPLICE LOSS
17255 AB By using the Gaussian approximation of the fundamental mode of a
17256    symmetric slab waveguide, the splice losses due to simultaneous tilt,
17257    offset, and waveguide-parameter mismatch of single-mode slab waveguides
17258    have been calculated Very simple formulas have been derived, and
17259    numerical examples have been given. (C) 1995 John Wiiey & Sons, Inc.
17260 RP WANG, ZH, SHANGHAI UNIV,WAVE SCI LAB,SHANGHAI 201800,PEOPLES R CHINA.
17261 NR 0
17262 TC 0
17263 SN 0895-2477
17264 J9 MICROWAVE OPT TECHNOL LETT
17265 JI Microw. Opt. Technol. Lett.
17266 PD DEC 5
17267 PY 1995
17268 VL 10
17269 IS 5
17270 BP 291
17271 EP 294
17272 PG 4
17273 SC Engineering, Electrical & Electronic; Optics
17274 GA TE780
17275 UT ISI:A1995TE78000009
17276 ER
17277 
17278 PT J
17279 AU LIU, HY
17280    QIAN, JH
17281    LIU, YC
17282    YU, TY
17283    DENG, JQ
17284 TI NICKELOCENE-MEDIATING SENSOR FOR HYDROGEN-PEROXIDE BASED ON
17285    BIOELECTROCATALYTIC REDUCTION OF HYDROGEN-PEROXIDE
17286 SO ANALYTICAL PROCEEDINGS
17287 DT Article
17288 ID HORSERADISH-PEROXIDASE; MODIFIED ELECTRODES; CARBON
17289 AB An amperometric H2O2 sensor using nickelocene as the electron transfer
17290    agent between immobilized horseradish peroxide and a glassy carbon
17291    electrode was fabricated. The sensor was highly sensitive to H2O2 with
17292    a detection limit of 5.0 X 10(-7) mol l(-1) H2O2 and a response time of
17293    less than 20 s. The effect of applied potential and temperature on the
17294    Michaelis-Menten constant was calculated and the influence of various
17295    experimental parameters such as pH, temperature and applied potential
17296    were explored for optimum analytical performance.
17297 C1 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
17298    FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
17299    FUDAN UNIV,DEPT MACROMOLEC SCI,SHANGHAI 200433,PEOPLES R CHINA.
17300 CR 1991, SIGMA CHEM CATALOGUE, P771
17301    BIFULCO L, 1994, ANAL LETT, V27, P1443
17302    BOGDANOVSKAYA VA, 1988, BIOELECTROCH BIOENER, V19, P581
17303    CHEN L, 1991, ANAL LETT, V24, P1
17304    DANNER DJ, 1973, ARCH BIOCHEM BIOPHYS, V156, P759
17305    DUNFORD HB, 1982, ADV INORG BIOCHEM, V4, P41
17306    DUNFORD HB, 1987, COORD CHEM, V19, P187
17307    DURLIAT H, 1989, BIOELECTROCH BIOENER, V22, P197
17308    FREW JE, 1986, J ELECTROANAL CH INF, V201, P1
17309    GORTIER G, 1990, ANAL LETT, V23, P1607
17310    HO WO, 1993, J ELECTROANAL CHEM, V351, P185
17311    HURDIS EC, 1954, ANAL CHEM, V26, P320
17312    JONSSONPETTERSS.G, 1991, ELECTROANAL, V3, P741
17313    LIU H, IN PRESS TALANTA
17314    LIU Y, IN PRESS J ELECTROAN
17315    MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801
17316    OYYAMA N, 1985, ANAL CHEM, V57, P1526
17317    TATSUMA T, 1991, ANAL CHEM, V63, P1580
17318    ZHAO JG, 1992, J ELECTROANAL CHEM, V327, P109
17319 NR 19
17320 TC 9
17321 SN 0144-557X
17322 J9 ANALYT PROC
17323 JI Anal. Proc.
17324 PD NOV
17325 PY 1995
17326 VL 32
17327 IS 11
17328 BP 475
17329 EP 477
17330 PG 3
17331 SC Chemistry, Analytical
17332 GA TE648
17333 UT ISI:A1995TE64800006
17334 ER
17335 
17336 PT J
17337 AU CHEN, GS
17338    WANG, Q
17339 TI LOCAL-FIELDS IN SINGLE-MODE HELICAL FIBERS
17340 SO OPTICAL AND QUANTUM ELECTRONICS
17341 DT Article
17342 ID OPTICAL FIBERS; BIREFRINGENCE; POLARIZATION
17343 AB The scalar local-field wave equations in helical fibres are derived
17344    and, with the aid of a special mathematical treatment, solved
17345    approximately in a local coordinate system - the Serret-Frenet frame
17346    from the Maxwell's equations. Two basic results are obtained: (1) The
17347    local modes in a single-mode helical fibre are circularly polarized.
17348    (2) The difference of the propagation constants between the two
17349    fundamental modes is 2 tau, where tau is the torsion. They agree well
17350    with the known experimental measurements.
17351 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
17352 RP CHEN, GS, ZHONGSHAN UNIV,DEPT ELECTR,CANTON,PEOPLES R CHINA.
17353 CR BIRCH RD, 1987, ELECTRON LETT, V23, P50
17354    COLLIN RE, 1991, FIELD THEORY GUIDED, P637
17355    FANG XS, 1985, IEEE T MICROWAVE THE, V33, P150
17356    FUJII Y, 1986, IEE PROC-J, V133, P249
17357    LALOV IJ, 1992, INT J OPTOELECTRON, V7, P479
17358    LEWIN L, 1977, ELECTROMAGNETIC WAVE, P16
17359    LOVE JD, 1987, ELECTRON LETT, V23, P1109
17360    PAPP A, 1977, APPL OPTICS, V16, P1315
17361    PHILLIPS RS, 1950, Q APPL MATH, V8, P229
17362    PIERCE JR, 1950, BELL SYST TECH J, V29, P189
17363    PIERCE JR, 1950, BELL SYST TECH J, V29, P390
17364    PIERCE JR, 1950, BELL SYST TECH J, V29, P608
17365    QIAN J, 1986, ELECTRON LETT, V22, P515
17366    QIAN JR, 1988, IEE PROC-J, V135, P178
17367    ROSS JN, 1984, OPT QUANT ELECTRON, V16, P455
17368    SOLLFREY W, 1951, J APPL PHYS, V22, P905
17369    TANG CH, 1970, I ELECT ELECTRON ENG, V18, P69
17370    ULRICH R, 1979, APPL OPTICS, V10, P2241
17371    VARNHAM MP, 1986, P OFC ATLANTA, P68
17372 NR 19
17373 TC 3
17374 SN 0306-8919
17375 J9 OPT QUANT ELECTRON
17376 JI Opt. Quantum Electron.
17377 PD NOV
17378 PY 1995
17379 VL 27
17380 IS 11
17381 BP 1069
17382 EP 1074
17383 PG 6
17384 SC Engineering, Electrical & Electronic; Optics
17385 GA TD876
17386 UT ISI:A1995TD87600004
17387 ER
17388 
17389 PT J
17390 AU SHEN, WD
17391    ZHU, ST
17392 TI WAVE-FUNCTION OF A FREE-ELECTRON IN A LASER-PLASMA VIA RIEMANNIAN
17393    GEOMETRY
17394 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
17395 DT Article
17396 AB The wave function of a free electron in a laser plasma described via
17397    Riemannian geometry is derived by solving the Dirac equation in the
17398    associated curved spacetime. If the laser field vanishes, the wave
17399    function naturally reduces to the case in flat space-time.
17400 C1 ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI 201800,PEOPLES R CHINA.
17401 RP SHEN, WD, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
17402    R CHINA.
17403 CR SCHIFF LI, 1968, QUANTUM MECHANICS
17404    SHEN W, 1988, PHYSICAL REV A, V37, P4387
17405    ZHU ST, 1995, IN PRESS INT J THEOR
17406 NR 3
17407 TC 4
17408 SN 0020-7748
17409 J9 INT J THEOR PHYS
17410 JI Int. J. Theor. Phys.
17411 PD OCT
17412 PY 1995
17413 VL 34
17414 IS 10
17415 BP 2085
17416 EP 2094
17417 PG 10
17418 SC Physics, Multidisciplinary
17419 GA TA672
17420 UT ISI:A1995TA67200009
17421 ER
17422 
17423 PT J
17424 AU SHEN, WD
17425    ZHU, ST
17426    GUO, QZ
17427 TI CLASSICAL DESCRIPTION OF THE RADIATION OF A CHARGED-PARTICLE IN A
17428    STRONG-LASER PLASMA
17429 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
17430 DT Article
17431 AB The behavior of a charged particle in it strong-laser plasma is
17432    discussed by solving the generally covariant equation of motion for a
17433    charged particle. The classical description for the radiation of a
17434    charged particle in a strong-laser plasma is given, and the intensity
17435    and the radiation power are derived in detail.
17436 C1 ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI 201800,PEOPLES R CHINA.
17437 RP SHEN, WD, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
17438    R CHINA.
17439 CR JACKSON JD, 1976, CLASSICAL ELECTRODYN
17440    SARACHIK ES, 1970, PHYS REV D, V1, P2738
17441    WEINBERG S, 1972, GRAVITATION COSMOLOG
17442    ZHU ST, 1995, IN PRESS INT J THEOR
17443 NR 4
17444 TC 4
17445 SN 0020-7748
17446 J9 INT J THEOR PHYS
17447 JI Int. J. Theor. Phys.
17448 PD OCT
17449 PY 1995
17450 VL 34
17451 IS 10
17452 BP 2095
17453 EP 2104
17454 PG 10
17455 SC Physics, Multidisciplinary
17456 GA TA672
17457 UT ISI:A1995TA67200010
17458 ER
17459 
17460 PT J
17461 AU FENG, SS
17462    QIU, XJ
17463 TI PATH-INTEGRAL QUANTIZATION AND THE GROUND-STATE FUNCTIONAL FOR
17464    MAXWELL-CHERN-SIMONS SYSTEM
17465 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
17466 DT Article
17467 ID WAVE
17468 AB The Maxwell-Chern-Simons system as a constrained system is quantized in
17469    the path integral formulation. Using the functional partition function
17470    and the method proposed by Fradkin, we obtain the correct absolute
17471    value squared of the ground state.
17472 C1 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
17473 RP FENG, SS, ACAD SINICA,INST NUCL RES,SHANGHAI 201800,PEOPLES R CHINA.
17474 CR DESER S, 1982, ANN PHYS-NEW YORK, V140, P372
17475    FRADKIN E, 1993, NUCL PHYS B, V362, P667
17476    FRADKIN E, 1993, NUCL PHYS B, V389, P587
17477    GITMAN DM, 1990, QUANTIZATION FIELDS
17478    LI ZP, 1993, CLASSICAL QUANTUM CO
17479    LOPEZ A, 1992, PHYS REV LETT, V69, P2126
17480 NR 6
17481 TC 5
17482 SN 0020-7748
17483 J9 INT J THEOR PHYS
17484 JI Int. J. Theor. Phys.
17485 PD SEP
17486 PY 1995
17487 VL 34
17488 IS 9
17489 BP 1827
17490 EP 1833
17491 PG 7
17492 SC Physics, Multidisciplinary
17493 GA RX153
17494 UT ISI:A1995RX15300001
17495 ER
17496 
17497 PT J
17498 AU WANG, DR
17499    ZHAO, FG
17500 TI THE THEORY OF SMALES POINT ESTIMATION AND ITS APPLICATIONS
17501 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
17502 DT Article
17503 DE POINT ESTIMATION; NEWTON METHOD; DURAND-KERNER METHOD
17504 AB The main result of this paper is that we exact Smale's point estimation
17505    theory, i.e., without assuming gamma(k) = parallel to P'(z)(-1)
17506    P-(k)(z)/k! parallel to (k greater than or equal to 2) being bounded by
17507    gamma, the point estimation convergence theorem of the Newton method is
17508    set up by making use of the majorizing method. The proof of the theorem
17509    is simple and precise, while the required point estimation conditions
17510    are weaker than all those of known point estimation convergence
17511    theorems.
17512    Another result of this paper is an application of the above new theory
17513    to the Durand-Kerner method. We compare the point estimation conditions
17514    for the Durand-Kerner method with other known point estimation
17515    conditions. Numerical results show that our results have evident
17516    advantages.
17517 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
17518 CR KERNER IO, 1966, NUMER MATH, V8, P290
17519    SMALE S, 1986, INT C MATH BERK CAL, P1
17520    SMALE S, 1986, INT C MATH BERK CAL, P1
17521    SMALE S, 1989, P C HONOR G YOUNG LA, P1
17522    WANG X, 1989, SCI SINICA A, P905
17523    ZHAO F, 1993, MATH NUMER SINICA, V15, P196
17524 NR 6
17525 TC 15
17526 SN 0377-0427
17527 J9 J COMPUT APPL MATH
17528 JI J. Comput. Appl. Math.
17529 PD JUN 20
17530 PY 1995
17531 VL 60
17532 IS 1-2
17533 BP 253
17534 EP 269
17535 PG 17
17536 SC Mathematics, Applied
17537 GA RV875
17538 UT ISI:A1995RV87500017
17539 ER
17540 
17541 PT J
17542 AU LIU, GQ
17543    YUAN, B
17544    ZHANG, NG
17545    GONG, XY
17546 TI CALCULATION OF THE MAGNETIC-SUSCEPTIBILITY AND THE VERDET CONSTANT IN
17547    NEODYMIUM TRIFLUORIDE
17548 SO JOURNAL OF APPLIED PHYSICS
17549 DT Article
17550 ID OPTICAL-ABSORPTION
17551 AB This paper first considers the effects of multielectron interaction,
17552    L-S interaction and the weak crystal-field on the 4f(3) ground state of
17553    Nd3+ ion in the paramagnetic medium NdF3; then, further takes account
17554    of the splitting of the crystal-field ground levels caused by both the
17555    effective superexchange field H upsilon and the applied field H-e, and
17556    calculates quantitatively the temperature dependence of the magnetic
17557    susceptibility chi in NdF3. For the splitting of 4f(2)5d excited state
17558    of Nd3+ ion in NdF3, the paper investigates the effect of the strong
17559    crystal-held on the 5d electrons. Using the model of three-level
17560    transition, the specific Faraday rotation theta(F), the Verdet constant
17561    V, and their temperature dependence, which originate from the
17562    electronic transitions between the electron configurations 4f(3) and
17563    4f(2)5d, are calculated quantitatively, The theoretical calculations
17564    show that the superexchange interaction between Nd3+ ions has an
17565    important effect on the magneto-optical properties in NdF3, and both
17566    V-1 and chi(-1) are linearly dependent on T in the temperature range 70
17567    K < T < 300 K. The theory is in good agreement with the experimental
17568    results. (C) 1995 American Institute of Physics.
17569 C1 JIAO TONG UNIV,DEPT APPL PHYS,SHANGHAI 200030,PEOPLES R CHINA.
17570    SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
17571 RP LIU, GQ, CHINA CTR ADV SCI & TECHNOL,WORLD LAB,POB 8730,BEIJING
17572    100080,PEOPLES R CHINA.
17573 CR ASANO S, 1979, J PHYS C SOLID STATE, V12, P4081
17574    BENNETT HS, 1965, PHYS REV, V137, A448
17575    CARNALL WT, 1977, ENERGY LEVEL STRUCTU
17576    CARO P, 1981, J CHEM PHYS, V74, P2698
17577    CROSSLEY WA, 1969, PHYS REV, V181, P896
17578    DAVIS JA, 1984, APPL OPTICS, V23, P633
17579    FREISER MJ, 1968, IEEE T MAGN, V4, P152
17580    GOLDSCHMILT ZB, HDB PHYSICS CHEM RAR, V1
17581    JUDD BR, 1966, PHYS REV, V141, P1
17582    JUDD BR, 1966, PHYS REV, V141, P91
17583    LEYCURAS C, 1984, J APPL PHYS, V55, P2161
17584    LIU GQ, 1990, PHYS REV B, V41, P749
17585    LIU GQ, 1993, PHYS REV B, V48, P16091
17586    LIU GQ, 1994, J PHYS-CONDENS MAT, V6, P453
17587    NIELSON CW, 1963, SPECTROSCOPIC COEFFI
17588    OFTEDAL I, 1931, Z PHYS CHEM B-CHEM E, V13, P190
17589    RACAH G, 1942, PHYS REV, V61, P186
17590    RACAH G, 1942, PHYS REV, V62, P438
17591    RACAH G, 1943, PHYS REV, V63, P367
17592    RACAH G, 1949, PHYS REV, V76, P1352
17593    ROTENBERG M, 1963, 3J 6J SYMBOLS
17594    SHEN YR, 1964, PHYS REV, V133, A511
17595    STAROSTIN NV, 1976, CRYSTAL SPECTROSCOPY, P216
17596    SUITS JC, 1972, IEEE T MAGN, V8, P95
17597    VANVLECK JH, 1934, PHYS REV, V46, P17
17598    WYBOURNE BG, 1965, SPECTROSCOPIC PROPER
17599    YANASE A, 1970, PROG THEOR PHYS S, V46, P338
17600    YANASE A, 1977, J PHYS SOC JPN, V42, P1680
17601    YOU Y, 1992, PHYS REV B, V46, P11636
17602 NR 29
17603 TC 5
17604 SN 0021-8979
17605 J9 J APPL PHYS
17606 JI J. Appl. Phys.
17607 PD SEP 15
17608 PY 1995
17609 VL 78
17610 IS 6
17611 BP 4054
17612 EP 4059
17613 PG 6
17614 SC Physics, Applied
17615 GA RU953
17616 UT ISI:A1995RU95300074
17617 ER
17618 
17619 PT J
17620 AU LI, L
17621    AO, Q
17622    VANDERBIEST, O
17623    WOLLANTS, P
17624    DELAEY, L
17625 TI CALCULATION OF THE QUASI-TERNARY SYSTEMS - SI3N4-Y2O3-SIO2,
17626    Y2O3-SIO2-BEO AND Y2O3-AL2O3-BEO
17627 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
17628 DT Article
17629 AB Based on the thermodynamic model of Kaufman for the calculation of
17630    quasibinary and quasiternary system, numerical method for the
17631    calculation of stable equilibrium is developed and thermodynamic data
17632    of undefined phases are discussed in this work for several ceramic
17633    systems. The calculated isothermal sections in Si3N4-Y2O3-SiO2 system
17634    meet well with other previous calculated phase diagrams and
17635    experimental results. The diagrams in Y2O3-SiO2-BeO and Y2O3-Al2O3-BeO
17636    systems are calculated for the approach of prediction.
17637 C1 SHANDONG POLYTECH UNIV,DEPT MAT ENGN,JINAN 250014,PEOPLES R CHINA.
17638    KATHOLIEKE UNIV LEUVEN,DEPT MTM,B-3001 LOUVAIN,BELGIUM.
17639 RP LI, L, SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R
17640    CHINA.
17641 CR COHEN AM, 1973, NUMERICAL ANAL, P270
17642    DORNER P, 1979, CALPHAD, P241
17643    KAUFMAN L, 1978, CALPHAD, P35
17644    KAUFMAN L, 1979, CALCULATION PHASE DI, P46
17645    KAUFMAN L, 1979, CALPHAD, P27
17646    KAUFMAN L, 1979, CALPHAD, P275
17647    KAUFMAN L, 1981, CALPHAD, P163
17648    LEVIN EM, 1964, PHASE DIAGRAMS CERAM, V1, P99
17649    LI L, 1994, CALPHAD, V18, P89
17650    ROTH RS, 1983, PHASE DIAGRAMS CERAM, V5, P308
17651    ROTH RS, 1983, PHASE DIAGRAMS CERAM, V5, P309
17652    SINGHAL SC, 1976, CERAMURGIA INT, V2, P123
17653    TORRE JP, 1977, NITROGEN CERAMICS, P63
17654 NR 13
17655 TC 0
17656 SN 1005-0302
17657 J9 J MATER SCI TECHNOL
17658 JI J. Mater. Sci. Technol.
17659 PY 1995
17660 VL 11
17661 IS 4
17662 BP 276
17663 EP 280
17664 PG 5
17665 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
17666    Engineering
17667 GA RT533
17668 UT ISI:A1995RT53300005
17669 ER
17670 
17671 PT J
17672 AU REN, JS
17673    ZHANG, GS
17674    WANG, ZS
17675    ZHAO, JW
17676 TI SPUTTERING RATES OF ALLOYS IN GLOW-DISCHARGE
17677 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
17678 DT Article
17679 AB The sputtering rates of alloys were investigated under constant Ar
17680    pressure and voltage supplied. The alloys studied in this work range
17681    from binary intermetallic alloys to ternary and quaternary alloys. It
17682    is revealed that the sputtering rates of alloy targets under steady
17683    states are
17684    q = 1/Sigma C-i/q(i)(0)
17685    where q is the sputtering rates of alloys, C-i the weight percentage of
17686    i-th component in the alloy, and q(i)(0) the sputtering rate of pure
17687    metal of i-th component.
17688 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 200072,PEOPLES R CHINA.
17689 RP REN, JS, CHINESE ACAD SCI,INST MET RES,SHENYANG 110015,PEOPLES R CHINA.
17690 CR BOUMANS PWJ, 1972, ANAL CHEM, V44, P1219
17691    DUENCHENG F, 1988, JAAS, V3, P873
17692    GREENE JE, 1978, J APPL PHYS, V49, P417
17693    PONSCORBEAU J, 1985, SURF INTERFACE ANAL, V7, P169
17694    REN JS, 1983, ANAL CHEM, V11, P586
17695    REN JS, 1992, ACTA METALL SIN B, V5, P462
17696    ZHAO JW, 1992, THESIS SHANGHAI IND
17697 NR 7
17698 TC 0
17699 SN 1005-0302
17700 J9 J MATER SCI TECHNOL
17701 JI J. Mater. Sci. Technol.
17702 PY 1995
17703 VL 11
17704 IS 4
17705 BP 295
17706 EP 298
17707 PG 4
17708 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
17709    Engineering
17710 GA RT533
17711 UT ISI:A1995RT53300009
17712 ER
17713 
17714 PT J
17715 AU HU, XL
17716 TI LANGUAGE AND LEARNING - EDUCATING LINGUISTICALLY DIVERSE STUDENTS -
17717    MCLEOD,B
17718 SO BRITISH JOURNAL OF EDUCATIONAL STUDIES
17719 DT Book Review
17720 RP HU, XL, SHANGHAI UNIV,SHANGHAI,PEOPLES R CHINA.
17721 CR MCLEOD B, 1994, LANGUAGE LEARNING ED
17722 NR 1
17723 TC 0
17724 SN 0007-1005
17725 J9 BRIT J EDUC STUD
17726 JI Br. J. Educ. Stud.
17727 PD SEP
17728 PY 1995
17729 VL 43
17730 IS 3
17731 BP 358
17732 EP 360
17733 PG 3
17734 SC Education & Educational Research
17735 GA RU011
17736 UT ISI:A1995RU01100023
17737 ER
17738 
17739 PT J
17740 AU ZHU, Y
17741 TI RESONANT GENERATION OF NONLINEAR CAPILLARY-GRAVITY WAVES
17742 SO PHYSICS OF FLUIDS
17743 DT Note
17744 ID FLOW; TOPOGRAPHY; SOLITONS
17745 AB The model considered in this paper consists of an incompressibie,
17746    inviscid fluid flow over bottom topography with the surface tension
17747    acting on it. A forced KdV equation with negative dispersion for
17748    capillary-gravity waves is derived with the inclusion of the effect of
17749    surface tension (for the case of Bond number being larger than 1/3)
17750    when the flow is near resonant. The most important result is that a
17751    typical solution of the present forced KdV equation consists of a train
17752    of concave solitary-like waves which propagate downward, a convex near
17753    the topography and a train of upstream dispersive waves. (C) 1995
17754    American Institute of Physics.
17755 RP ZHU, Y, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI
17756    200072,PEOPLES R CHINA.
17757 CR AKYLAS TR, 1984, J FLUID MECH, V141, P455
17758    COLE SL, 1985, WAVE MOTION, V7, P579
17759    FORNBERG B, 1978, PHILOS T R SOC LON A, V289, P337
17760    GRIMSHAW R, 1992, NONLINEAR DISPERSIVE, P1
17761    GRIMSHAW RHJ, 1986, J FLUID MECH, V169, P429
17762    MEI CC, 1986, J FLUID MECH, V162, P53
17763    MELVILLE WK, 1987, J FLUID MECH, V178, P31
17764    MILES JW, 1986, J FLUID MECH, V62, P489
17765    WU DM, 1980, 14TH P S NAV HYDR WA, P103
17766    WU TYT, 1987, J FLUID MECH, V184, P75
17767 NR 10
17768 TC 2
17769 SN 1070-6631
17770 J9 PHYS FLUIDS
17771 JI Phys. Fluids
17772 PD SEP
17773 PY 1995
17774 VL 7
17775 IS 9
17776 BP 2294
17777 EP 2296
17778 PG 3
17779 SC Physics, Fluids & Plasmas; Mechanics
17780 GA RR501
17781 UT ISI:A1995RR50100025
17782 ER
17783 
17784 PT J
17785 AU ZOU, GP
17786 TI THE MIXED-STATE HAMILTONIAN DYNAMIC ELEMENT AND A SEMI-ANALYTICAL
17787    SOLUTION FOR THE ANALYSIS OF THICK LAMINATED COMPOSITE PLATES
17788 SO ACTA MECHANICA SOLIDA SINICA
17789 DT Article
17790 DE HAMILTON CANONICAL EQUATION; LAMINATED COMPOSITE PLATE
17791 ID TRANSIENT
17792 AB Through introducing the Laplace transformation in the time direction,
17793    the mixed state Hamilton canonical equation and a semi-analytical
17794    solution are presented for analyzing the dynamic response of laminated
17795    composite plates. This method accounts for the separation of variables,
17796    the finite element discretization can be employed in the plane of
17797    laminar, and the exact solution in the thickness direction is derived
17798    by the state space control method. To apply the transfer matrix method,
17799    the relational expression at the top and bottom surface is established.
17800    So the general solution in transformation space is deduced by the spot
17801    method. By the application of inversion of Laplace transformation, the
17802    transient displacements and stresses can be derived.
17803 C1 SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA.
17804    DALIAN UNIV TECHNOL,ENGN MECH RES INST,DALIAN 116024,PEOPLES R CHINA.
17805 CR KANT T, 1988, COMPOS STRUCT, V9, P319
17806    KHDEIR AA, 1989, COMPOS SCI TECHNOL, V34, P205
17807    PAGANO NJ, 1970, J COMPOS MATER, V4, P20
17808    PAPOULIS A, 1982, APPL MATH MODEL, V6, P238
17809    REDDY JN, 1983, INT J NUMER METH ENG, V19, P237
17810    ROCK TA, 1976, COMPUT STRUCT, V6, P37
17811    TANG LM, 1992, COMPUT STRUCT MECH A, V9, P347
17812    ZOU GP, 1994, ACTA MATERIAL COMPOS, V11, P95
17813 NR 8
17814 TC 1
17815 SN 0894-9166
17816 J9 ACTA MECH SOLIDA SINICA
17817 JI Acta Mech. Solida Sin.
17818 PD JUN
17819 PY 1995
17820 VL 8
17821 IS 2
17822 BP 154
17823 EP 162
17824 PG 9
17825 SC Materials Science, Multidisciplinary; Mechanics
17826 GA RR435
17827 UT ISI:A1995RR43500005
17828 ER
17829 
17830 PT J
17831 AU LIU, YF
17832    ZHANG, KJ
17833    HE, XL
17834    HUA, JD
17835 TI DETERMINATION OF STABILITY CONSTANT OF POLYVINYLPYRIDINE-CU(II) COMPLEX
17836    BY VISIBLE SPECTROSCOPY
17837 SO JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS
17838 DT Article
17839 DE POLYMER METAL COMPLEX; STABILITY CONSTANT; VISIBLE SPECTROSCOPY
17840 AB This paper suggests a broadly applicable method for the determination
17841    of the stability constant and formation function of metal-polymer
17842    complexes in which only the visible spectrum of metal ion is used. The
17843    basic principle has been proved through an experiment on the polyvinyl
17844    pyridine-Cu(II) complex system.
17845 RP LIU, YF, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
17846    R CHINA.
17847 CR BJERRUM J, 1941, METAL AMINE FORMATIO
17848    BRUEHLMAN RC, 1948, J AM CHEM SOC, V70, P1401
17849    FUOSS RM, 1950, IND ENG CHEM, V42, P1603
17850    GREGOR HP, 1955, J PHYS CHEM-US, V59, P34
17851    HISHIKAWA H, 1975, J PHYS CHEM-US, V79, P2072
17852    ISE N, 1979, KANKYO KAGAKU TOKUBE, V1, P5
17853    KHANLAROV TG, 1992, ZH ANAL KHIM, V47, P1817
17854    MAS F, 1993, ANAL CHIM ACTA, V273, P297
17855    SKURLATOV YI, 1982, VYSOKOMOL SOEDIN A+, V24, P1874
17856 NR 9
17857 TC 4
17858 SN 0022-2348
17859 J9 J MACROMOL SCI-PHYS
17860 JI J. Macromol. Sci-Phys.
17861 PY 1995
17862 VL B34
17863 IS 3
17864 BP 311
17865 EP 324
17866 PG 14
17867 SC Polymer Science
17868 GA RQ884
17869 UT ISI:A1995RQ88400011
17870 ER
17871 
17872 PT J
17873 AU MA, GB
17874    TAN, WH
17875 TI CALCULATION OF SOFT-X-RAY LASER IN AN EXPANDING HE-LIKE MG PLASMA
17876    PUMPED BY A SHORT LASER-PULSE
17877 SO OPTICS COMMUNICATIONS
17878 DT Note
17879 ID AMPLIFICATION
17880 AB Using the analytical solution of hydrodynamic equations, energy level
17881    populations of the plasma dominated by He-Like Mg ions are obtained by
17882    solving the rate equations numerically for a short pulsed pumping
17883    laser. Variations of gain coefficient for the lasing transition
17884    1s3d-1s4f of MgXI (lambda = 154 Angstrom) versus time and space are
17885    calculated. Also, the influence of pumping laser pulse duration on gain
17886    coefficient is discussed.
17887 C1 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
17888 RP MA, GB, ACAD SINICA,SHANGHAI INST OPT & FINE MECH,NATL LAB HIGH POWER
17889    LASER & PHYS,POB 800211,SHANGHAI 201800,PEOPLES R CHINA.
17890 CR BURNETT NH, 1989, J OPT SOC AM B, V6, P1195
17891    CARILLON A, 1992, PHYS REV LETT, V68, P2971
17892    CHARATIS G, 1992, J OPT SOC AM B, V9, P1278
17893    COWAN RD, 1968, J OPT SOC AM, V58, P808
17894    COWAN RD, 1968, J OPT SOC AM, V58, P924
17895    DASILVA LB, 1992, SCIENCE, V258, P269
17896    EDER DC, 1992, PHYS REP A, V45, P6741
17897    FARNSWORTH AV, 1980, PHYS FLUIDS, V23, P1496
17898    JAEGLE P, 1987, J OPT SOC AM B, V4, P563
17899    KOCH JA, 1992, PHYS REV LETT, V68, P3291
17900    LANDSHOFF RK, 1976, PHYS REV A, V13, P1619
17901    LEE TN, 1987, PHYS REV LETT, V59, P1185
17902    LIN Z, 1988, OPT COMMUN, V65, P445
17903    LOCHTEHOLTGREVE.W, 1968, PLASMA DIAGNOSTICS
17904    LONDON RA, 1989, APPL OPTICS, V28, P3397
17905    LUTHERDAVIES B, 1992, SOV J QUANTUM ELECTR, V422, P289
17906    MA GB, 1991, ACTA OPT SINICA, V11, P1057
17907    MACGOWAN BJ, 1992, PHYS FLUIDS B-PLASMA, V4, P2326
17908    MATTHEWS DL, 1985, PHYS REV LETT, V54, P110
17909    MCWRITER RWP, 1965, PLASMA DIAGNOSTIC TE
17910    STEYER M, 1990, APPL PHYS B-PHOTO, V50, P265
17911    SUCKEWER S, 1985, PHYS REV LETT, V55, P1753
17912    TALLENTS GJ, 1991, XRAY LASERS 1990
17913    TAN W, 1988, J APPL PHYS, V64, P6182
17914    VALEO EJ, 1993, PHYS REV E, V47, P1321
17915    ZHANG J, 1994, PHYS REV A, V49, P4024
17916 NR 26
17917 TC 2
17918 SN 0030-4018
17919 J9 OPT COMMUN
17920 JI Opt. Commun.
17921 PD AUG 15
17922 PY 1995
17923 VL 119
17924 IS 1-2
17925 BP 125
17926 EP 131
17927 PG 7
17928 SC Optics
17929 GA RP774
17930 UT ISI:A1995RP77400023
17931 ER
17932 
17933 PT J
17934 AU HU, ZM
17935    ZHANG, WQ
17936    ZHAO, PS
17937    QI, DY
17938 TI STUDY OF CATION TRANSFER ACROSS THE WATER/NITROBENZENE INTERFACE
17939    FACILITATED BY A SYNTHETIC NEUTRAL DICARBOXAMIDE
17940 SO ELECTROANALYSIS
17941 DT Article
17942 DE WATER/NITROBENZENE INTERFACE; IONOPHORE; ION TRANSFER; CYCLIC
17943    VOLTAMMETRY
17944 ID WATER-NITROBENZENE INTERFACE; IMMISCIBLE ELECTROLYTE-SOLUTIONS; LIQUID
17945    MEMBRANE ELECTRODES; ION TRANSFER; METAL-CATIONS; LITHIUM; ALKALI;
17946    VOLTAMMETRY; IONOPHORES; POTASSIUM
17947 AB The transfer of proton, alkali, and alkaline earth metal ions across
17948    the water/nitrobenzene interface, facilitated by a synthetic neutral
17949    dicarboxamide ionophore in the nitrobenzene phase was investigated
17950    using cyclic voltammetry. The ionophore-facilitated transfer of Li+
17951    Ca2+, and Ba2+ ions showed cathodic current peaks, and the transfer of
17952    H+ ions apparently resulted in peaks of both anodic and cathodic
17953    currents within the potential window. The transfer process of these
17954    ions was found to be controlled by the diffusion of the ionophore in
17955    the nitrobenzene. The formation of a 1:1 complex for H+ and of 1:2
17956    (cation to ionophore) complexes for Li+, Ca2+, and Ba2+ ions was
17957    inferred, through peak separation or the dependence of the cathodic
17958    peak potential on the logarithm of the ionophore concentration, to be
17959    involved in the transfer process. The equilibrium constants K-Li,K-M
17960    for the exchange reaction of the ion M(Z+) with the Li-(+)ionophore
17961    complex at the water/nitrobenzene interface were evaluated and
17962    correlated with the potentiometric selectivity coefficients K-Li,M(Pot).
17963 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
17964 CR AMMANN D, 1986, ION SELECTIVE MICROE, P55
17965    BARUZZI AM, 1990, J ELECTROANAL CH INF, V279, P19
17966    FAN R, 1988, J ELECTROANAL CHEM, V256, P207
17967    FAN RX, 1992, J ELECTROANAL CHEM, V324, P107
17968    HOFMANOVA A, 1982, J ELECTROANAL CH INF, V135, P257
17969    HOMOLKA D, 1981, J ELECTROANAL CHEM, V125, P243
17970    HOMOLKA D, 1982, J ELECTROANAL CHEM, V138, P29
17971    KAKUTANI T, 1986, B CHEM SOC JPN, V59, P781
17972    KETAZAWA S, 1985, ANALYST, V110, P295
17973    KORYTA J, 1983, ION SEL ELECTRODE R, V5, P131
17974    KORYTA J, 1983, ION SELECTIVE ELECTR, P39
17975    MEIER PC, 1980, MED BIOL APPLICATION, P13
17976    METZGER E, 1984, CHIMIA, V38, P440
17977    METZGER E, 1986, ANAL CHEM, V58, P132
17978    METZGER E, 1986, HELV CHIM ACTA, V69, P1821
17979    MORF WE, 1983, ION SELECTIVE ELECTR, V1, P39
17980    PARHAM H, 1991, J ELECTROANAL CH INF, V314, P71
17981    SAMEC Z, 1982, J ELECTROANAL CHEM, V135, P265
17982    SAMEC Z, 1990, ANAL CHEM, V62, P1010
17983    SHAO Y, 1991, J ELECTROANAL CHEM, V318, P101
17984    SUN ZH, 1989, ELECTROANAL, V1, P441
17985    SUN ZS, 1990, ANAL CHIM ACTA, V228, P241
17986    TAN SN, 1992, J ELECTROANAL CHEM, V332, P101
17987    VANYSEK P, 1983, J ELECTROANAL CH INF, V148, P117
17988    WANG E, 1986, J ELECTROANAL CHEM, V214, P465
17989    WANG EK, 1990, ELECTROCHIM ACTA, V35, P1965
17990    WANG EK, 1993, ELECTROANAL, V5, P149
17991    XIA XH, 1992, J ELECTROANAL CHEM, V324, P59
17992    XIE RY, 1986, ANAL CHEM, V58, P1806
17993 NR 29
17994 TC 2
17995 SN 1040-0397
17996 J9 ELECTROANAL
17997 JI Electroanalysis
17998 PD JUL
17999 PY 1995
18000 VL 7
18001 IS 7
18002 BP 681
18003 EP 686
18004 PG 6
18005 SC Chemistry, Analytical
18006 GA RN553
18007 UT ISI:A1995RN55300015
18008 ER
18009 
18010 PT J
18011 AU ZHANG, JK
18012    HUANG, JZ
18013    YANG, JZ
18014 TI RESEARCH INTO THE SYNTHETIC CALCULATION OF THE PLACE-AND-POSE ERROR
18015    (SCPPE) OF THE PARTS IN A MACHINE
18016 SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
18017 DT Article
18018 AB During machine design and manufacturing, the analyses and calculations
18019    of the structural or assembling accuracy are very important for
18020    ensuring the quality of the mechanical product. However, the structural
18021    or assembling accuracy is the result of synthesizing the place-and-pose
18022    error of the parts required to be assembled. Due to every part in the
18023    machine being a Three-Dimensional (3-D) Space Substance, in this paper
18024    the place-and-pose error of every part is described in a 3-D coordinate
18025    system. Further, it is shown how the SCPPE of the parts concerned in a
18026    machine can be researched, analyzed and calculated by vector and matrix
18027    operations. Finally, the satisfactory results obtained are illustrated.
18028 RP ZHANG, JK, SHANGHAI UNIV SCI & TECHNOL,DEPT ENGN MECH,149 YAN CHANG
18029    RD,SHANGHAI 200072,PEOPLES R CHINA.
18030 CR CHAKRABORTY J, 1975, MECHANISM MACHINE TH, V10, P155
18031    SHAHEEN A, 1988, IEEE J ROBOTICS AUTO, V14
18032    SHARFI OMA, 1983, MECH MACH THEORY, V18, P123
18033    WILLIAM KV, 1988, IEEE J ROBOTICS AUTO, V14
18034 NR 4
18035 TC 0
18036 SN 0924-0136
18037 J9 J MATER PROCESS TECHNOL
18038 JI J. Mater. Process. Technol.
18039 PD MAY
18040 PY 1995
18041 VL 52
18042 IS 1
18043 BP 151
18044 EP 173
18045 PG 23
18046 SC Engineering, Industrial; Engineering, Manufacturing; Materials Science,
18047    Multidisciplinary
18048 GA RM653
18049 UT ISI:A1995RM65300016
18050 ER
18051 
18052 PT J
18053 AU GUO, BY
18054    LI, J
18055 TI FOURIER-CHEBYSHEV PSEUDOSPECTRAL METHODS FOR THE 2-DIMENSIONAL
18056    NAVIER-STOKES EQUATIONS
18057 SO RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION
18058    MATHEMATIQUE ET ANALYSE NUMERIQUE
18059 DT Article
18060 DE NAVIER-STOKES EQUATIONS; FOURIER-CHEBYSHEV PSEUDOSPECTRAL
18061    APPROXIMATION; SUBJECT CLASSIFICATION; AMS(MOS), 65N30; 76D99
18062 ID SPECTRAL METHOD; APPROXIMATION
18063 AB Fourier-Chebyshev pseudospectral approximation for the two-dimensional
18064    unsteady Naviel-Stokes equations is analyzed. The generalized stability
18065    and convergence are proved strictly The numerical results are presented.
18066 RP GUO, BY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
18067 CR CANUTO C, 1982, MATH COMPUT, V38, P67
18068    CANUTO C, 1984, SPECTRAL METHODS PAR, P55
18069    CANUTO C, 1988, SPECTRAL METHODS FLU
18070    CAO WM, 1992, APPL MATH J CHINESE, V7, P350
18071    GOTTLIEB D, 1977, NUMERICAL ANAL SPECT
18072    GUO B, 1985, SCI SINICA SER A, V28, P1139
18073    GUO BY, 1988, ACTA MATH APPL SINIC, V4, P55
18074    GUO BY, 1988, DIFFERENCE METHODS P
18075    GUO BY, 1992, J COMPUT PHYS, V101, P207
18076    GUO BY, 1994, NUMER MATH, V66, P329
18077    KUO PY, 1983, J COMPUT MATH, V1, P353
18078    MA HP, 1988, J COMPUT MATH, V6, P48
18079    MADAY Y, 1981, NUMER MATH, V37, P321
18080    MADAY Y, 1982, SIAM J NUMER ANAL, V19, P761
18081    MADAY Y, 1987, RAIRO-MATH MODEL NUM, V21, P93
18082    ROACHE PJ, 1976, COMPUTATIONAL FLUID
18083 NR 16
18084 TC 3
18085 SN 0764-583X
18086 J9 RAIRO-MATH MODEL NUMER ANAL
18087 JI Rairo-Math. Model. Numer. Anal.-Model. Math. Anal. Numer.
18088 PD MAY
18089 PY 1995
18090 VL 29
18091 IS 3
18092 BP 303
18093 EP 337
18094 PG 35
18095 SC Mathematics, Applied
18096 GA RJ578
18097 UT ISI:A1995RJ57800002
18098 ER
18099 
18100 PT J
18101 AU GUO, BY
18102 TI A SPECTRAL METHOD FOR THE VORTICITY EQUATION ON THE SURFACE
18103 SO MATHEMATICS OF COMPUTATION
18104 DT Article
18105 DE VORTICITY EQUATION; SPHERICAL SURFACE; SPECTRAL METHOD; APPROXIMATION
18106    THEORY
18107 AB A spectral scheme is proposed for the vorticity equation defined on the
18108    spherical surface. Generalized stability and convergence are proved.
18109    The approximation results in this paper are also useful for other
18110    nonlinear problems.
18111 RP GUO, BY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
18112 CR BRAMBLE JH, 1985, APPL NUMER MATH, V1, P493
18113    CANUTO C, 1988, SPECTRAL METHODS FLU
18114    CURANT R, 1953, METHODS MATH PHYSICS, V1
18115    GOTTLIEB D, 1977, REGIONAL C SERIES AP, V26
18116    GUO B, 1985, SCI SINICA SER A, V28, P1139
18117    GUO BY, 1987, CALCOLO, V24, P263
18118    GUO BY, 1988, DIFFERENCE METHOD PA
18119    GUO BY, 1992, J COMPUT PHYS, V101, P207
18120    HALTINER GJ, 1971, NUMERICAL PREDICTION
18121    HALTINER GJ, 1980, NUMERICAL PREDICTION
18122    JARRAUD M, 1985, LECTURES APPLIED MAT, V22, P1
18123    KREISS HO, 1979, SIAM J NUMER ANAL, V16, P421
18124    KUO PY, 1983, J COMPUT MATH, V1, P353
18125    LIONS JL, 1969, QUELQUES METHODES RE
18126    LIONS JL, 1972, NONHOMOGENEOUS BOUND, V1
18127    MADAY Y, 1982, SIAM J NUMER ANAL, V19, P761
18128    PASCIAK J, 1982, SIAM J NUMER ANAL, V19, P142
18129    RICHTMYER RD, 1967, DIFFERENCE METHODS I
18130    ZEN QG, 1979, PHYSICAL MATH BASIS, V1
18131 NR 19
18132 TC 2
18133 SN 0025-5718
18134 J9 MATH COMPUT
18135 JI Math. Comput.
18136 PD JUL
18137 PY 1995
18138 VL 64
18139 IS 211
18140 BP 1067
18141 EP 1079
18142 PG 13
18143 SC Mathematics, Applied
18144 GA RJ128
18145 UT ISI:A1995RJ12800008
18146 ER
18147 
18148 PT J
18149 AU WANG, ZX
18150    LI, XN
18151    WANG, CS
18152 TI LOCALIZED COMPOSITIONAL DEPTH PROFILES IN NEAR-SURFACE OF CU-50 WT
18153    PERCENT AG ALLOY
18154 SO JOURNAL OF MATERIALS SCIENCE LETTERS
18155 DT Article
18156 ID SEGREGATION
18157 C1 ACAD SINICA,SHANGHAI INST NUCL RES,SHANGHAI 201800,PEOPLES R CHINA.
18158    SHANGHAI UNIV,SHANGHAI APPL RADIAT INST,SHANGHAI 201800,PEOPLES R CHINA.
18159 RP WANG, ZX, CCAST,WORLD LAB,POB 8730,BEIJING 100080,PEOPLES R CHINA.
18160 CR ANDERSEN HH, 1983, NUCL INSTRUM METHODS, V209, P487
18161    ANDERSON GS, 1969, J APPL PHYS, V40, P2884
18162    BETZ G, 1980, SURF SCI, V92, P283
18163    BRIZZOLARA RA, 1987, NUCL INSTRUM METH B, V26, P528
18164    HOFF HA, 1988, SURF SCI, V204, P233
18165    KELLY R, 1989, NUCL INSTRUM METH B, V39, P43
18166    WANG ZX, 1992, J MATER SCI LETT, V11, P719
18167    WANG ZX, 1993, NUCL INSTRUM METH B, V74, P380
18168    WANG ZX, 1994, J MATER SCI LETT, V13, P427
18169 NR 9
18170 TC 1
18171 SN 0261-8028
18172 J9 J MATER SCI LETT
18173 JI J. Mater. Sci. Lett.
18174 PD JUN 15
18175 PY 1995
18176 VL 14
18177 IS 12
18178 BP 892
18179 EP 894
18180 PG 3
18181 SC Materials Science, Multidisciplinary
18182 GA RG754
18183 UT ISI:A1995RG75400018
18184 ER
18185 
18186 PT J
18187 AU JIANG, XY
18188    ZHANG, ZL
18189    XU, SH
18190 TI MULTI-DIFFUSED REFLECTION SPECTROSCOPY OF RARE-EARTHS DOPED LAOCL
18191    POWDER SAMPLES AND THE CALCULATION OF QUANTUM EFFICIENCY
18192 SO JOURNAL OF RARE EARTHS
18193 DT Article
18194 DE POWDERED MATERIAL; MULTI-DIFFUSED REFLECTION; DIFFUSED REFLECTION
18195    ABSORPTION SPECTRUM; QUANTUM EFFICIENCY
18196 AB The excitation and emission spectra, the relaxation time of principal
18197    spectral lines and multi-diffused reflection spectra in LaOCl : Er,
18198    LaOCl : Ho powder samples were measured. The diffused absorption
18199    spectrum was derived from the multi-diffused reflection spectrum.
18200    According to Judd-Ofelt theory, the intensity parameters, radiative
18201    transition probabilities and quantum efficiencies of luminescence
18202    emission were calculated. Then comparison with erbium and holmium doped
18203    floride glass and other matrices were made.
18204 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MAT,SHANGHAI 201800,PEOPLES R CHINA.
18205 CR CAMALL WJ, 1968, J CHEM PHYS, V49, P4412
18206    CAMALL WT, 1968, J CHEM PHYS, V49, P4424
18207    HEBET T, 1990, APPL PHYS LETT, V67, P1727
18208    JIANG XY, 1990, CHINESE J LUMIN, V11, P79
18209    JIANG XY, 1993, ACTA PHYS SINICA, V2, P333
18210    JIANG XY, 1993, CHINESE J LUMIN, V14, P307
18211    QI CH, 1985, LUMINESCENCE DISPLAY, V6, P18
18212    WU S, 1986, CHINESE J LUMINESCEN, V7, P252
18213    ZHANG ZL, 1989, 2ND P INT S RAR EART, P353
18214    ZHANG ZL, 1991, ACTA OPT SINICA, V11, P312
18215 NR 10
18216 TC 0
18217 SN 1002-0721
18218 J9 J RARE EARTH
18219 JI J. Rare Earths
18220 PD JUN
18221 PY 1995
18222 VL 13
18223 IS 2
18224 BP 94
18225 EP 98
18226 PG 5
18227 SC Chemistry, Applied
18228 GA RG278
18229 UT ISI:A1995RG27800004
18230 ER
18231 
18232 PT J
18233 AU WANG, JR
18234    WEI, GL
18235 TI KINETICS OF THE TRANSFORMATION PROCESS OF PBSO4 TO PBO2 IN A LEAD
18236    ANODIC FILM
18237 SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY
18238 DT Article
18239 DE FILM GROWTH; LEAD-ACID BATTERY; POTENTIOSTATIC OXIDATION; PBSO4; PBO2
18240 ID SULFURIC-ACID; ACTIVE MASS; OXIDATION; SULFATE
18241 AB The kinetics of the nucleation and growth of PbO2 during the
18242    potentiostatic oxidation of PbSO4 in a lead anodic film was studied
18243    using linear sweep voltammetry, potential-step and ac impedance tracing
18244    methods. The film investigated is the partially reduced anodic PbO2
18245    film formed by. polarizing a lead electrode in 4.5 M H2SO4 solution
18246    first at 1.3 V vs. Hg\HgSO4 for 20 min and then at 0.9 V for 5 min. The
18247    nucleation and growth process begins some time after the potential step
18248    and is completed within 60 s. The pre- and post-nucleation and growth
18249    processes correspond to the growth of the anodic film formed by the
18250    oxidation of the lead substrate. The mathematical equations
18251    representing the current-time and capacitance-time transients are
18252    derived laking the background oxidation current into account. The
18253    experimental results are well fitted by these equations. The process
18254    obeys the laws of two-dimensional instantaneous nucleation and growth.
18255 C1 SHANGHAI UNIV,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
18256 CR CARR JP, 1970, J ELECTROANAL CHEM, V27, P201
18257    DAWSON JL, 1975, POWER SOURCES, V5, P70
18258    FLEISCHMANN M, 1955, T FARADAY SOC, V51, P71
18259    HAMEENOJA E, 1984, J APPL ELECTROCHEM, V14, P449
18260    HAMPSON NA, 1980, J ELECTROANAL CHEM, V107, P177
18261    LAITINEN T, 1989, ELECTROCHIM ACTA, V134, P3
18262    MONAHOV B, 1993, J APPL ELECTROCHEM, V23, P1244
18263    PAVLOV D, 1989, J ELECTROCHEM SOC, V136, P3189
18264    PAVLOV D, 1990, J POWER SOURCES, V30, P77
18265    PAVLOV D, 1992, J ELECTROCHEM SOC, V139, P3075
18266    TAKEHARA Z, 1990, J POWER SOURCES, V30, P55
18267    VALERIOTE EML, 1975, POWER SOURCES, V5, P55
18268    VALERIOTE EML, 1977, J ELECTROCHEM SOC, V124, P370
18269    WEI C, 1989, ACTA CHIM SINICA, V47, P569
18270 NR 14
18271 TC 4
18272 SN 0022-0728
18273 J9 J ELECTROANAL CHEM
18274 JI J. Electroanal. Chem.
18275 PD JUN 15
18276 PY 1995
18277 VL 390
18278 IS 1-2
18279 BP 29
18280 EP 33
18281 PG 5
18282 SC Chemistry, Analytical; Electrochemistry
18283 GA RG024
18284 UT ISI:A1995RG02400004
18285 ER
18286 
18287 PT J
18288 AU LIU, GL
18289 TI THE GENERALIZED UNTWIST PROBLEM OF ROTATING BLADES - A COUPLED
18290    AEROELASTIC FORMULATION
18291 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
18292 DT Article
18293 ID 3-D TRANSONIC FLOW; VARIATIONAL-PRINCIPLES; TURBO-ROTOR; SHOCKS
18294 AB The untwist of rotating blades in turbomachines treated so far in the
18295    literature simply as a pure elasticity problem is generalized and
18296    formulated rigorously as a problem of aeroelasticity by variational
18297    principles (VPs) and generalized VP (GVP). It takes into account not
18298    only the centrifugal force, but also the aeroelastic interaction
18299    between blades and the flow as well as the elastic distortion of the
18300    cross section shape of blades, assuming the material to be linearly
18301    elastic but anisotropic. Thus, a new rigorous theoretical basis for the
18302    finite element analysis of blade untwist in turbomachine design is
18303    provided.
18304 C1 SHANGHAI UNIV,SHANGHAI,PEOPLES R CHINA.
18305 RP LIU, GL, SHANGHAI INST APPL MATH & MECH,SHANGHAI,PEOPLES R CHINA.
18306 CR BIEZENO CB, 1953, TECHNISCHE DYNAMIK, V1
18307    CHIEN WZ, 1980, CALCULUS VARIATIONS
18308    DOWELL EH, 1978, MODERN COURSE AEROEL
18309    FUNG YC, 1965, F SOLID MECHANICS
18310    LIU GL, 1981, ACTA MECH SINICA, V13, P421
18311    LIU GL, 1988, COMPUTATIONAL FLUID, P473
18312    LIU GL, 1990, 1 INT S EXP COMP AER, P128
18313    LIU GL, 1992, ACTA MECH, V95, P117
18314    LIU GL, 1993, 1993 P INT C FLUID M, P359
18315    LIU GL, 1993, ACTA MECH, V97, P229
18316    LIU GL, 1993, MEMORIAL TRIBUTE VOL
18317    OHTSUKA M, 1974, ASME74GT2 PAP
18318    TRAUPEL W, 1977, THERMISCHE TURBOMASC, V1
18319    TRAUPEL W, 1982, THERMISCHE TURBOMASC, V2
18320    WASHIZU K, 1982, VARIATIONAL METHODS
18321    WU CH, 1952, NACA TN2604
18322 NR 16
18323 TC 4
18324 SN 0334-0082
18325 J9 INT J TURBO JET ENGINES
18326 JI Int. J. Turbo. Jet-Engines
18327 PY 1995
18328 VL 12
18329 IS 2
18330 BP 109
18331 EP 117
18332 PG 9
18333 SC Engineering, Aerospace
18334 GA RE849
18335 UT ISI:A1995RE84900003
18336 ER
18337 
18338 PT J
18339 AU FINK, D
18340    HU, HW
18341    KLETT, R
18342    MULLER, M
18343    ZHU, J
18344    LI, CL
18345    SUN, YM
18346    MA, F
18347    WANG, LH
18348 TI CONDUCTIVITY OF AGED NONOVERLAPPING AND OVERLAPPING TRACKS IN
18349    ION-IRRADIATED POLYIMIDE
18350 SO RADIATION MEASUREMENTS
18351 DT Article
18352 DE CONDUCTIVITY; NUCLEAR TRACKS; POLYIMIDE; ELECTRONIC ENERGY TRANSFER;
18353    TRACK RADIUS
18354 AB Non-overlapping as well as overlapping tracks of energtic ions have
18355    been introduced into polyimide foils. After aging their conductivity
18356    was measured. This - to our knowledge - first systematic study shows
18357    that conductivity does not only result from multiple track overlapping,
18358    but can be found already in single ion tracks. This conductivity is
18359    shown to be primarily a consequence of electronic energy transfer. The
18360    conductivity of single ion tracks is higher than that of typical
18361    insulators, but still orders of magnitude lower than that of typical
18362    semiconductors. The conductivity is independent of the applied electric
18363    field strength until at excessive voltages the electric current
18364    increases nonlinearly up to complete breakthrough. The total
18365    conductivity of an irradiated polyimide foil increases proportionally
18366    with ion fluence for large ion track spacings, and approaches
18367    saturation when the electronically active track regimes begin to
18368    overlap. Above some thousand times track overlapping however, new
18369    chemical and structural changes in the irradiated material lead to
18370    another strong increase in conductivity.
18371 C1 CHINESE INST ATOM ENERGY,BEIJING,PEOPLES R CHINA.
18372    SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI 201800,PEOPLES R CHINA.
18373    ACAD SINICA,INST MODERN PHYS,LANZHOU,PEOPLES R CHINA.
18374    GESELL SCHWERIONENFORSCH MBH,D-64291 DARMSTADT,GERMANY.
18375 RP FINK, D, HAHN MEITNER INST BERLIN GMBH,GLIENICKER STR 100,D-14109
18376    BERLIN,GERMANY.
18377 CR CARDOSO J, 1994, IN PRESS COMMUNICATI
18378    FINK D, 1990, NUCL INSTRUM METH B, V46, P342
18379    FINK D, 1990, NUCL INSTRUM METH B, V46, P342
18380    FINK D, 1994, RAD EFF DEF SOLIDS, V25, P27
18381    FINK D, 1994, UNPUB RAD EFF DE SOL
18382 NR 5
18383 TC 3
18384 SN 1350-4487
18385 J9 RADIAT MEAS
18386 JI Radiat. Meas.
18387 PY 1995
18388 VL 25
18389 IS 1-4
18390 BP 51
18391 EP 54
18392 PG 4
18393 SC Nuclear Science & Technology
18394 GA RE480
18395 UT ISI:A1995RE48000011
18396 ER
18397 
18398 PT J
18399 AU ZHOU, SP
18400 TI NOVEL METHODOLOGY TO INVESTIGATE SUPERCONDUCTING DIELECTRIC RESONATORS
18401 SO JOURNAL OF SUPERCONDUCTIVITY
18402 DT Article
18403 DE YBA2CU3O7-DELTA (DELTA-APPROXIMATE-TO-0) RESONATOR; NEGATIVE DIELECTRIC
18404    CONSTANT; CONFORMAL TRANSFORMATION
18405 AB An analytical method is presented for investigating the resonant
18406    behavior of a c-axis oriented YBa2Cu2O7-delta (delta approximate to 0)
18407    thin film on a resonator composed of LaAlO3 (001). The concept of the
18408    negative dielectric medium for a superconductor is introduced within
18409    the framework of the two-fluid model, which permits us to treat a
18410    superconductor as any other penetrable materials so that only its
18411    electromagnetics are concerned. A conformal transformation is further
18412    suggested to map the original open boundary-value problem to a closed
18413    one. This not only makes the original problem readily solvable by using
18414    the variational technique, but is also a powerful tool for analyzing
18415    some kinds of problems such as the propagation characteristics of the
18416    superconducting microstripe and coplanar waveguide structures.
18417 RP ZHOU, SP, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
18418    R CHINA.
18419 CR ALLENDER D, 1973, PHYS REV B, V7, P1020
18420    BAO JS, 1992, CHIN J LOW TEMP PHYS, V14, P383
18421    BARDEEN J, 1957, PHYS REV, V108, P1175
18422    GOULD SH, 1986, VARIATIONAL METHOD E
18423    KLOPMAN BBG, 1993, IEEE T MICROW THEORY, V41, P781
18424    MATTIS DC, 1958, PHYS REV, V111, P412
18425    RIBBER JC, 1991, IEEE T MAGN, V27, P2533
18426    SCHLUTER M, 1989, PHYSICA C, V162, P583
18427    TURENEAURE JP, 1967, THESIS STANFORD U
18428    VANDUZER T, 1990, 2ND WORKSH HIGH TEMP
18429    ZHOU SP, 1993, J APPL PHYS, V71, P2789
18430 NR 11
18431 TC 0
18432 SN 0896-1107
18433 J9 J SUPERCOND
18434 JI J. Supercond.
18435 PD APR
18436 PY 1995
18437 VL 8
18438 IS 2
18439 BP 211
18440 EP 219
18441 PG 9
18442 SC Physics, Applied; Physics, Condensed Matter
18443 GA RD121
18444 UT ISI:A1995RD12100003
18445 ER
18446 
18447 PT J
18448 AU ZHOU, SP
18449    COURT, GR
18450 TI MAGNETIC-BEHAVIOR AND VORTEX LATTICE TRANSITION IN YBA2CU3O7-DELTA
18451 SO JOURNAL OF SUPERCONDUCTIVITY
18452 DT Article
18453 DE SUSCEPTIBILITY; MIXED STATE; PINNING; STRUCTURE VORTEX LATTICE
18454    TRANSITION
18455 ID HIGH-TC SUPERCONDUCTORS; MULTILAYERS; MODEL
18456 AB Magnetic susceptibility measurements on YBa2Cu3O7-delta rod materials
18457    by an ac balanced bridge technique are made in fields of up to 50 mT
18458    and over the temperature range from 4.2 K to just below T-c. A large
18459    H-c2 accompanied by characteristic form of hysteresis has been shown. A
18460    modified critical state model of Anderson [Phys. Rev. Lett. 9, 309
18461    (1962)] is adapted to fit the curves in the region where hysteresis is
18462    dominant because of flux trapping. A conceptual model of structure
18463    vortex lattice transition due to the intrinsic pinning of the layering
18464    configuration is suggested, which can provide an explanation of the
18465    magnetic behaviour of oxide superconductors.
18466 C1 UNIV LIVERPOOL,DEPT PHYS,LIVERPOOL L69 3BX,MERSEYSIDE,ENGLAND.
18467 RP ZHOU, SP, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI,PEOPLES R
18468    CHINA.
18469 CR ANDERSON PW, 1962, PHYS REV LETT, V9, P309
18470    ANDERSON PW, 1964, REV MOD PHYS, V36, P39
18471    ARATS J, 1990, EUROPHYS LETT, V12, P447
18472    BAK P, 1988, PHYS REV A, V38, P364
18473    BEAN CP, 1962, PHYS REV LETT, V8, P250
18474    CHADWICK J, 1989, SOLID STATE COMMUN, V69, P19
18475    CHAKRAVARTY S, 1989, PHYS REV LETT, V60, P1057
18476    CLEM JR, 1991, PHYS REV B, V43, P7837
18477    DOLAN GJ, 1989, PHYS REV LETT, V62, P8276
18478    DREW HD, 1993, PHYS REV B, V47, P586
18479    HAGEN CW, 1989, PHYS REV LETT, V62, P2857
18480    KES PH, 1988, PHYSICA C, V153, P1121
18481    KES PH, 1989, PHYSICA C, V153, P1121
18482    KES PH, 1991, PHYSICA C, V185, P2071
18483    KIM YB, 1962, PHYS REV LETT, V9, P306
18484    KRRAI K, 1992, PHYS REV LETT, V69, P355
18485    KUMAR GR, 1989, PHYS REV B, V39, P4704
18486    KUWASAWA Y, 1990, PHYSICA C, V165, P173
18487    LARKIN AI, 1979, J LOW TEMP PHYS, V34, P409
18488    LARKIN AI, 1989, SOLID STATE COMMUN, V70, P291
18489    MAJ W, 1992, SUPERCOND SCI TECH, V5, P483
18490    ROSSAT J, 1989, SEP P INT FOR PHYS H
18491    SUN JZ, 1989, PHYS REV LETT, V63, P4861
18492    TACHIKI M, 1989, SOLID STATE COMMUN, V70, P361
18493    TAKAHASHI S, 1986, PHYS REV B, V33, P4620
18494 NR 25
18495 TC 0
18496 SN 0896-1107
18497 J9 J SUPERCOND
18498 JI J. Supercond.
18499 PD FEB
18500 PY 1995
18501 VL 8
18502 IS 1
18503 BP 79
18504 EP 85
18505 PG 7
18506 SC Physics, Applied; Physics, Condensed Matter
18507 GA RD078
18508 UT ISI:A1995RD07800014
18509 ER
18510 
18511 PT J
18512 AU LI, J
18513    GUO, BY
18514 TI FOURIER-LEGENDRE SPECTRAL METHOD FOR THE UNSTEADY NAVIER-STOKES
18515    EQUATIONS
18516 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
18517 DT Article
18518 ID FINITE-ELEMENT; APPROXIMATION
18519 AB Fourier-Legendre spectral approximation for the unsteady Navier-Stokes
18520    equations is analyzed. The generalized stability and convergence are
18521    proved respectively.
18522 C1 ACAD SINICA,CTR COMP,BEIJING 100080,PEOPLES R CHINA.
18523    SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
18524 CR BERNARDI C, 1987, NUMER MATH, V51, P655
18525    CANTO C, 1982, MATH COMPUT, V38, P67
18526    CANUTO C, 1984, NUMER MATH, V44, P201
18527    GIRAULT V, 1986, FINITE ELEMENT APPRO
18528    GUO BY, 1985, SCI SINICA, V28, P1138
18529    GUO BY, 1988, DIFFERENCE METHODS P
18530    GUO BY, 1992, J COMPUT PHYS, V101, P375
18531    HUANG W, 1992, NE MATH J, V8, P157
18532    LIONS JL, 1970, 2 SIAM AMS P, V2, P11
18533    MADAY Y, 1981, NUMER MATH, V37, P321
18534    MADAY Y, 1982, SIAM J NUMER ANAL, V19, P761
18535 NR 11
18536 TC 1
18537 SN 0254-9409
18538 J9 J COMPUT MATH
18539 JI J. Comput. Math.
18540 PD APR
18541 PY 1995
18542 VL 13
18543 IS 2
18544 BP 144
18545 EP 155
18546 PG 12
18547 SC Mathematics, Applied; Mathematics
18548 GA RB379
18549 UT ISI:A1995RB37900005
18550 ER
18551 
18552 PT J
18553 AU WANG, Q
18554    SHI, JL
18555    BAO, JS
18556 TI THEORY OF NONLINEAR MAGNETOSTATIC SURFACE-WAVE IN A PERIODICALLY
18557    CORRUGATED FERROMAGNETIC SLAB
18558 SO JOURNAL OF APPLIED PHYSICS
18559 DT Article
18560 ID YTTRIUM-IRON-GARNET; ENVELOPE SOLITONS; SPIN-WAVES; FILMS; PROPAGATION
18561 RP WANG, Q, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
18562    R CHINA.
18563 CR ANISIMOV AN, 1976, SOV PHYS-SOLID STATE, V18, P20
18564    BOARDMAN AD, 1988, PHYS REV B, V38, P11444
18565    BOARDMAN AD, 1990, NONLINEAR WAVES SOLI, P235
18566    BOARDMAN AD, 1994, IEEE T MAGN, V30, P1
18567    BRILLOUIN L, 1953, WAVE PROPAGATION PER
18568    DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308
18569    DEAGUIAR FM, 1986, PHYS REV LETT, V56, P1070
18570    DEGASPERIS P, 1987, PHYS REV LETT, V59, P481
18571    DEGASPERIS P, 1988, J APPL PHYS, V63, P3335
18572    ELACHI C, 1975, IEEE T MAGN, V11, P36
18573    GULYAEV YV, 1980, SOV PHYS-SOLID STATE, V22, P1651
18574    GULYAEV YV, 1986, SOV PHYS-SOLID STATE, V28, P1553
18575    JEFFRIES CD, 1988, J APPL PHYS, V64, P5382
18576    KALINIKOS BA, 1983, JETP LETT, V38, P413
18577    KALINIKOS BA, 1988, ZH EKSP TEOR FIZ, V67, P303
18578    KALINIKOS BA, 1990, PHYS REV B B, V42, P8658
18579    KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712
18580    KOGELNIK H, 1972, J APPL PHYS, V43, P2327
18581    MCKINSTRY KD, 1985, J APPL PHYS, V58, P925
18582    MEDNIKOV AM, 1981, SOV PHYS-SOLID STATE, V23, P136
18583    PATTON CE, 1969, J APPL PHYS, V40, P2837
18584    PENG ST, 1975, IEEE T MICROW THEORY, V23, P123
18585    POLZIKOVA NI, 1984, SOV PHYS-SOLID STATE, V26, P2113
18586    QI W, 1994, SCI CHINA SER A, V24, P160
18587    SYKES CG, 1976, APPL PHYS LETT, V29, P388
18588    TSUTSUMI M, 1977, IEEE T MICROWAVE THE, V25, P224
18589    VENDIK OG, 1977, SOV PHYS-SOLID STATE, V19, P222
18590    WANG Q, 1993, ACTA PHYSIC SINICA, V42, P2005
18591    WEISS MT, 1959, J APPL PHYS, V30, P2014
18592    ZVEZDIN AK, 1983, ZH EKSP TEOR FIZ, V57, P350
18593 NR 30
18594 TC 8
18595 SN 0021-8979
18596 J9 J APPL PHYS
18597 JI J. Appl. Phys.
18598 PD JUN 1
18599 PY 1995
18600 VL 77
18601 IS 11
18602 BP 5831
18603 EP 5837
18604 PG 7
18605 SC Physics, Applied
18606 GA QZ282
18607 UT ISI:A1995QZ28200047
18608 ER
18609 
18610 PT J
18611 AU WEI, GL
18612    CHEN, XL
18613    ZHOU, WF
18614 TI OXIDATION PROCESSES OF LEAD SULFATE IN THE ANODIC FILMS ON PURE AND
18615    ANTIMONIAL LEAD
18616 SO ACTA CHIMICA SINICA
18617 DT Article
18618 ID SULFURIC-ACID; SULFATE
18619 AB The oxidation processes of lead sulphate in the anodic films on lead
18620    and Pb-5wt% Sb alloy, which were formed by the reduction at 0.9 V (vs.
18621    Hg / Hg2SO4, the same reference electrode below) for 5 min of the
18622    anodic films grown in a 4.5 mol . dm(-3) H2SO4 solution (30 degrees C)
18623    at 1.3 V for 20 min, have been studied using potential. step and a.c.
18624    impedance methods respectively. The experimental results show that the
18625    lead sulphate, which is formed by reducing lead dioxide, can be
18626    reoxidized to lead dioxide within 1 min at 1.4 V. This is due to the
18627    fact that this kind of lead sulphate is at the surface layers of the
18628    lead sulphate grains in the anodic film, The oxidation process of lead
18629    sulphate in the inner part of the grain, which is formed directly by
18630    anodizing lead, is much slower. The antimony in the lead alloy inhibits
18631    significantly the nucleation and growth of lead dioxide crystals,
18632 C1 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
18633 RP WEI, GL, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
18634    R CHINA.
18635 CR DAWSON JL, 1979, ELECTROCHEMISTRY LEA, P309
18636    ELLIS SR, 1986, J APPL ELECTROCHEM, V16, P159
18637    FLEISCHMANN M, 1963, ADV ELECTROCHEMISTRY, V3, P123
18638    HAN J, 1994, J ELECTROANAL CHEM, V368, P43
18639    LAITINEN T, 1991, ELECTROCHIM ACTA, V36, P605
18640    RAND DAJ, 1988, J POWER SOURCES, V23, P269
18641    TAKEHARA Z, 1990, J POWER SOURCES, V30, P55
18642    VALERIOTE EML, 1977, J ELECTROCHEM SOC, V124, P370
18643 NR 8
18644 TC 1
18645 SN 0567-7351
18646 J9 ACTA CHIM SIN
18647 JI Acta Chim. Sin.
18648 PY 1995
18649 VL 53
18650 IS 4
18651 BP 313
18652 EP 317
18653 PG 5
18654 SC Chemistry, Multidisciplinary
18655 GA QY409
18656 UT ISI:A1995QY40900001
18657 ER
18658 
18659 PT J
18660 AU JIN, C
18661    WANG, JG
18662    CHEN, WJ
18663 TI IN-SITU OBSERVATION OF FRACTURE PROCESS OF A TIAL ALLOY WITH FULLY
18664    LAMELLAR MICROSTRUCTURE
18665 SO SCRIPTA METALLURGICA ET MATERIALIA
18666 DT Article
18667 ID GAMMA-TITANIUM ALUMINIDE; INTERMETALLICS; TOUGHNESS
18668 RP JIN, C, SHANGHAI UNIV,INST MET & MAT,YANCHANG RD 149,SHANGHAI
18669    200072,PEOPLES R CHINA.
18670 CR CAO HC, 1989, ACTA METALL, V37, P2969
18671    CHAN KS, 1991, METALL TRANS A, V22, P2021
18672    CHAN KS, 1992, JOM-J MIN MET MAT S, V44, P30
18673    CHAN KS, 1992, METALL T A, V23, P1663
18674    DEVE HE, 1990, ACTA METALL MATER, V38, P1491
18675    DEVE HE, 1991, ACTA METALL MATER, V39, P2275
18676    DEVE HE, 1992, ACTA METALL MATER, V40, P1259
18677    JIN C, IN PRESS
18678    JIN C, UNPUB
18679    KIM YW, 1989, JOM-J MIN MET MAT S, V41, P24
18680    KIM YW, 1991, JOM, V43, P40
18681    LONDON B, 1991, MICROSTRUCTURE PROPE, P285
18682 NR 12
18683 TC 0
18684 SN 0956-716X
18685 J9 SCR METALL MATER
18686 JI Scr. Metall. Materialia
18687 PD MAY 15
18688 PY 1995
18689 VL 32
18690 IS 10
18691 BP 1579
18692 EP 1584
18693 PG 6
18694 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
18695    Engineering
18696 GA QX018
18697 UT ISI:A1995QX01800011
18698 ER
18699 
18700 PT J
18701 AU GUAN, HW
18702 TI TECHNICAL APPROACHES TO REAL-TIME CONTROL-BASED ON TRANSPUTERS
18703 SO COMPUTING & CONTROL ENGINEERING JOURNAL
18704 DT Article
18705 AB An important application of modern microcomputer systems is in the area
18706    of real-time control. The transputer is a novel RISC microcomputer that
18707    provides a few of the facilities which may be obtained in a general
18708    microcomputer. The various kinds of real-time control methods based on
18709    transputers are investigated in this article. Some practical real-time
18710    control techniques are proposed according to the properties of the
18711    transputer and the capability of Occam programming. The outlines of
18712    Occam code for the various real-time control applications are given.
18713 RP GUAN, HW, SHANGHAI UNIV,DEPT COMP SCI & ENGN,SHANGHAI,PEOPLES R CHINA.
18714 CR 1987, REFERENCE MANUAL TRA
18715    1987, TUTORIAL INTRO OCCAM
18716    1989, TRANSPUTER APPLICATI
18717    1989, TRANSPUTER DATABOOK
18718    1991, TRANSPURTER DEV IQ S
18719    GUAN HW, 1993, CHINESE J COMPUTERS, V16, P488
18720    GUAN HW, 1993, DEC P INT C MOD SIM
18721    GUAN HW, 1993, SEP P IEEE INT C NET
18722 NR 8
18723 TC 1
18724 SN 0956-3385
18725 J9 COMPUTING CONTROL ENGINEER J
18726 JI Comput. Control Eng. J.
18727 PD APR
18728 PY 1995
18729 VL 6
18730 IS 2
18731 BP 75
18732 EP 78
18733 PG 4
18734 SC Automation & Control Systems
18735 GA QX091
18736 UT ISI:A1995QX09100008
18737 ER
18738 
18739 PT J
18740 AU SHE, JW
18741    LI, MY
18742    HUAN, LJ
18743    YU, YZ
18744 TI DYNAMIC CHARACTERISTICS OF PROSTHETIC HEART-VALVES
18745 SO MEDICAL ENGINEERING & PHYSICS
18746 DT Article
18747 DE PROSTHETIC HEART VALVE; PRESSURE DROP; FLOW RATE; DYNAMIC
18748    CHARACTERISTIC; CIRCULATION; POWER LOSS
18749 ID BJORK-SHILEY; INVITRO; HYPERTENSION; MODEL
18750 AB The relation between flow rate (Q) and transvalvular pressure-drop (DP)
18751    is of fundamental importance for a prosthetic heart value tested in
18752    steady flow conditions. The Q-DP Plot can thus be called the static
18753    characteristic of the valve. While in pulsatile flow, with time (t) as
18754    a parameter, the instantaneous Q(t)-DP(t) relation can also be
18755    obtained. The Q-DP relation forms a phase graph on an X-Y plane during
18756    a whole cardiac cycle, and can be regarded as the dynamic
18757    characteristic, which to our knowledge has never been systematically
18758    explored before. With in vitro experiment the Q(t)-DP(t) relations are
18759    presented for five different aortic valves. Properly modelling the
18760    characteristics of heart valves is a key link in modelling the
18761    interaction between the ventricle and arterial system. Treatments for
18762    valves, such as diode analogue and orifice area assumption governed by
18763    the Gorlin formula, are found unsatisfactory. A simple one-dimensional
18764    flow equation is used to futher examine the Q-DP graph, and both the
18765    dynamic resistance characteristic and the dynamic flow characteristic
18766    can be obtained. It is found that the dynamic characteristic differs
18767    from the static one not only in the inertance effect but also in the
18768    transient process, which can be quite energy-consuming and therefore
18769    important. Geometric relations of these phase graphs with the
18770    transvalvular power loss are discussed. The method of dynamic
18771    characteristics provides a new way to evaluate the performance of a
18772    tested valve.
18773 C1 SHANGHAI MED UNIV,DEPT ANAT,SHANGHAI,PEOPLES R CHINA.
18774    SHANGHAI MED UNIV,DEPT BIOMED ENGN,SHANGHAI,PEOPLES R CHINA.
18775    SHANGHAI UNIV SCI & TECHNOL,DEPT MECH ENGN,SHANGHAI,PEOPLES R CHINA.
18776 CR 1986, REPLACEMENT HEART VA
18777    AVANZOLINI G, 1989, IEEE T BIO-MED ENG, V36, P462
18778    BARBARO V, 1992, J MED ENG TECHNOL, V16, P10
18779    BURKHOFF D, 1988, AM J PHYSIOL, V255, H742
18780    COCHRANE T, 1991, J BIOMED ENG, V13, P335
18781    COHN JN, 1992, J HYPERTENS, V10, S61
18782    GROSS JM, 1991, ASAIO T, V37, P7357
18783    HAGGAG YAM, 1989, J BIOMED ENG, V12, P63
18784    HENZE A, 1974, J THORACIC CARDIOVAS, V4, P167
18785    JANSEN J, 1992, J MED ENG TECHNOL, V16, P27
18786    KNOTT E, 1988, J THORAC CARDIOV SUR, V96, P952
18787    LEVENSON J, 1992, EUR HEART J, V13, P48
18788    LIVNAT A, 1981, AM J PHYSIOL, V240, R370
18789    MILLMAN J, 1965, PULSE DIGITAL SWITCH
18790    OLIN C, 1971, J THORACIC CARDIOVAS, V5, P1
18791    RUEL H, 1987, ENG MED, V16, P67
18792    SABBAH HN, 1984, J BIOMECH ENG-T ASME, V106, P66
18793    SHE JW, 1990, J BIOMED ENG, V12, P375
18794    SUGA H, 1971, IEEE T BIOMED ENG, V18, P47
18795    SWANSON WM, 1984, MED INSTRUM, V18, P318
18796    TSITLIK JE, 1992, ANN BIOMED ENG, V20, P595
18797    WALKER DK, 1984, J THORACIC CARDIOVAS, V88, P673
18798    WENDT MO, 1991, J BIOMED ENG, V13, P126
18799    WILLSHAW P, 1986, J BIOMED ENG, V8, P43
18800    YAGANATHAN AP, 1979, J BIOMECH, V12, P153
18801 NR 25
18802 TC 2
18803 SN 1350-4533
18804 J9 MED ENG PHYS
18805 JI Med. Eng. Phys.
18806 PD JUN
18807 PY 1995
18808 VL 17
18809 IS 4
18810 BP 273
18811 EP 281
18812 PG 9
18813 SC Engineering, Biomedical
18814 GA QW624
18815 UT ISI:A1995QW62400005
18816 ER
18817 
18818 PT J
18819 AU DEREN, W
18820    BAI, ZZ
18821    EVANS, DJ
18822 TI ASYNCHRONOUS MULTISPLITTING RELAXED ITERATIONS FOR WEAKLY
18823    NONLINEAR-SYSTEMS
18824 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
18825 DT Article
18826 DE SYSTEM OF WEAKLY NONLINEAR EQUATIONS; MATRIX MULTISPLITTING;
18827    ASYNCHRONOUS PARALLEL ITERATION; RELAXATION; GLOBAL CONVERGENCE
18828 ID PARALLEL ALGORITHM; CONVERGENCE
18829 AB In this paper, we propose a class of asynchronous parallel
18830    multisplitting accelerated overrelaxation methods for solving the
18831    system of weakly nonlinear equations A phi(x) + B psi(x) = G(x) with
18832    A,B is an element of L(R(n)), phi, psi:R(n) --> R(n) being diagonal
18833    mappings and G:R(n) --> R(n) a general mapping, which is constantly
18834    resulted from the discretization of many classical differential
18835    equations. Under suitable conditions of both the coefficient matrices
18836    and the nonlinear mappings, as well as reasonable constraints of the
18837    multiple splittings and the relaxation parameters, the global
18838    convergence theories of these new methods are set up thoroughly.
18839 C1 FUDAN UNIV,INST MATH,SHANGHAI 200433,PEOPLES R CHINA.
18840    LOUGHBOROUGH UNIV TECHNOL,DEPT COMP STUDIES,LOUGHBOROUGH LE11 3TU,LEICS,ENGLAND.
18841 RP DEREN, W, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES
18842    R CHINA.
18843 CR BAI ZZ, 1993, IN PRESS MODELS ASYN
18844    BAI ZZ, 1994, IN PRESS APPL MATH B
18845    BERTSEKAS DP, 1989, NUMERICAL METHODS
18846    BRU R, 1989, LINEAR ALGEBRA APPL, V103, P175
18847    EVANS DJ, 1991, PARALLEL COMPUT, V17, P165
18848    FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141
18849    MEMON RA, 1994, J SHANGHAI U SCI TEC
18850    NEUMANN M, 1987, LINEAR ALGEBRA APPL, V88, P559
18851    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
18852    ORTEGA JM, 1970, ITERATIVE SOLUTION N
18853    VARGA RS, 1961, MATRIX ITERATIVE ANA
18854    WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473
18855    WANG D, 1991, NUMER MATH SINICA, V13, P297
18856    WANG D, 1993, IN PRESS MONOTONE CO
18857    WANG D, 1993, IN PRESS MULTISPLITT
18858    WANG DR, 1994, PARALLEL ALGORITHMS, V2, P173
18859    WHITE RE, 1986, SIAM J ALGEBRA DISCR, V7, P137
18860    WHITE RE, 1986, SIAM J NUMER ANAL, V23, P639
18861 NR 18
18862 TC 1
18863 SN 0020-7160
18864 J9 INT J COMPUT MATH
18865 JI Int. J. Comput. Math.
18866 PY 1994
18867 VL 54
18868 IS 1-2
18869 BP 57
18870 EP 76
18871 PG 20
18872 SC Mathematics, Applied
18873 GA QV102
18874 UT ISI:A1994QV10200006
18875 ER
18876 
18877 PT J
18878 AU BAI, ZZ
18879    WANG, DR
18880    EVANS, DJ
18881 TI MODELS OF ASYNCHRONOUS PARALLEL MATRIX MULTISPLITTING RELAXED ITERATIONS
18882 SO PARALLEL COMPUTING
18883 DT Article
18884 DE SYSTEM OF LINEAR EQUATIONS; ASYNCHRONOUS PARALLEL ITERATION; MATRIX
18885    MULTISPLITTING; RELAXATION; CONVERGENCE
18886 ID CONVERGENCE
18887 AB By making use of the principle of sufficiently using the delayed
18888    information, we propose two models of asynchronous parallel matrix
18889    multisplitting accelerated overrelaxation iterative methods for solving
18890    systems of linear equations, which have the merits of convenient
18891    computations, flexible and free communications, and can cover all the
18892    known synchronous as well as asynchronous parallel matrix
18893    multisplitting relaxation methods and their special cases. When the
18894    coefficient matrix is an H-matrix, we prove the convergence and
18895    estimate the convergence rates of these models in a detailed manner.
18896 C1 LOUGHBOROUGH UNIV TECHNOL,DEPT COMP STUDIES,LOUGHBOROUGH LE11 3TU,LEICS,ENGLAND.
18897    FUDAN UNIV,INST MATH,SHANGHAI 200433,PEOPLES R CHINA.
18898    SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
18899 CR BAUDET GM, 1978, J ASSOC COMPUT MACH, V25, P226
18900    BERTSEKAS DP, 1978, PARALLEL DISTRIBUTED
18901    BRU R, 1989, LINEAR ALGEBRA APPL, V103, P175
18902    CHAZAN D, 1969, LINEAR ALGEBRA APPL, V2, P199
18903    DEREN W, 1991, LINEAR ALGEBRA APPL, V154, P473
18904    DEREN W, 1993, PARALLEL ALGORITHMS, V1
18905    ELTARAZI MN, 1982, NUMER MATH, V39, P325
18906    EVANS DJ, 1991, PARALLEL COMPUT, V17, P165
18907    FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141
18908    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
18909    VARGA RS, 1961, MATRIX ITERATIVE ANA
18910    YANGFENG S, 1991, J FUDAN U NATURAL SC, V4, P444
18911    YOUNG DM, 1971, ITERATIVE SOLUTION L
18912 NR 13
18913 TC 15
18914 SN 0167-8191
18915 J9 PARALLEL COMPUT
18916 JI Parallel Comput.
18917 PD APR
18918 PY 1995
18919 VL 21
18920 IS 4
18921 BP 565
18922 EP 582
18923 PG 18
18924 SC Computer Science, Theory & Methods
18925 GA QU875
18926 UT ISI:A1995QU87500003
18927 ER
18928 
18929 PT J
18930 AU ZHU, JH
18931    HUANG, SB
18932    WAN, XJ
18933 TI SURFACE-REACTION OF FE3AL WITH WATER-VAPOR AND OXYGEN
18934 SO SCRIPTA METALLURGICA ET MATERIALIA
18935 DT Article
18936 ID ENVIRONMENTAL EMBRITTLEMENT; CRACK-GROWTH; FRACTURE
18937 C1 SHANGHAI UNIV SCI & TECHNOL,INST MET & MAT SCI,SHANGHAI 200072,PEOPLES R CHINA.
18938 CR GAO SJ, 1984, MATER SCI ENG, V62, P65
18939    GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37
18940    LIU CT, 1989, SCRIPTA METALL, V23, P875
18941    LIU CT, 1990, HIGH TEMPERATURE ALU, P133
18942    LIU CT, 1990, SCRIPTA METALL MATER, V24, P385
18943    LIU CT, 1991, INT J IRON STEEL OCT
18944    LIU CT, 1992, ORDERED INTERMETALLI, P321
18945    LIU CT, 1992, SCRIPTA METALL MATER, V27, P599
18946    SHEA M, 1992, MAT RES SOC P, V213, P609
18947    SIMMONS GW, 1978, METALL T A, V9, P1147
18948    WAN X, 1994, J MATER SCI TECHNOL, V10, P39
18949    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
18950    WEI RP, 1980, MET T              A, V11, P151
18951 NR 13
18952 TC 9
18953 SN 0956-716X
18954 J9 SCR METALL MATER
18955 JI Scr. Metall. Materialia
18956 PD MAY 1
18957 PY 1995
18958 VL 32
18959 IS 9
18960 BP 1399
18961 EP 1404
18962 PG 6
18963 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
18964    Engineering
18965 GA QU727
18966 UT ISI:A1995QU72700018
18967 ER
18968 
18969 PT J
18970 AU HUANG, HC
18971    HE, YC
18972 TI POLARIZATION BEHAVIOR OF SPUN FIBER VERSUS CONVENTIONAL FIBER UNDER
18973    STRONG SLIGHT TWISTING
18974 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
18975 DT Article
18976 DE FIBER OPTICS; POLARIZATION OPTICS; OPTOELECTRONICS; PHOTONICS;
18977    SPECIALIZED FIBER
18978 AB In this article, the authors attempt to treat both strong twisting and
18979    slight twisting of fiber via a consistent asymptotic approach to the
18980    coupled-mode theory. In strong twisting, an admirably simple and useful
18981    asymptotic equation is derived in the form R(2) tau = const., which
18982    relates the minimum required twist rate tau with the minimum allowable
18983    radius of curvature R. In slight twisting, an oscillatory pattern of
18984    the polarization behavior clearly reveals the advantageous feature of a
18985    twist-spun fiber, which is made by a prior spinning of the fiber before
18986    a twisting. (C) 1995 John Wiley & Sons, Inc.
18987 RP HUANG, HC, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
18988 NR 0
18989 TC 1
18990 SN 0895-2477
18991 J9 MICROWAVE OPT TECHNOL LETT
18992 JI Microw. Opt. Technol. Lett.
18993 PD MAY
18994 PY 1995
18995 VL 9
18996 IS 1
18997 BP 37
18998 EP 41
18999 PG 5
19000 SC Engineering, Electrical & Electronic; Optics
19001 GA QT782
19002 UT ISI:A1995QT78200013
19003 ER
19004 
19005 PT J
19006 AU DING, S
19007    KHAN, RD
19008    ZHANG, JL
19009    SHEN, WD
19010 TI QUANTUM HARMONIC-OSCILLATOR WITH TIME-DEPENDENT MASS AND FREQUENCY
19011 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
19012 DT Article
19013 ID FABRY-PEROT CAVITY; FIELD FLUCTUATIONS; COHERENT STATES; VARIABLE MASS;
19014    2-LEVEL ATOMS; INVARIANTS; HAMILTONIANS; RESONANCE; RESERVOIR
19015 AB The quantum harmonic oscillator with time-dependent mass and frequency
19016    is analyzed by using the canonical transformation method. The varying
19017    mass and frequency of the system are reduced to constant mass and
19018    frequency, and the corresponding eigenvalues and eigenvectors are
19019    derived. The exact time-dependent coherent state of the harmonic
19020    oscillator is constructed and shown to be equivalent to the squeezed
19021    state. Damped harmonic oscillators with different frictions and forced
19022    time-dependent harmonic oscillators are also discussed.
19023 RP DING, S, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
19024    R CHINA.
19025 CR ABDALLA MS, 1986, PHYS REV A, V34, P4598
19026    BASEIA B, 1992, PHYS REV A, V45, P5308
19027    COLEGRAVE RK, 1981, J PHYS A-MATH GEN, V14, P2269
19028    COLEGRAVE RK, 1981, OPT ACTA, V28, P495
19029    COLEGRAVE RK, 1982, J PHYS A, V15, P1549
19030    COLEGRAVE RK, 1983, OPT ACTA, V30, P849
19031    COLEGRAVE RK, 1983, OPT ACTA, V30, P861
19032    DANTAS CMA, 1992, PHYS REV A, V45, P1320
19033    GUNTHER NJ, 1977, J MATH PHYS, V18, P572
19034    HARTLEY JG, 1982, PHYS REV A, V25, P2388
19035    HARTLEY JG, 1982, PHYS REV D, V25, P382
19036    JANNUSSIS A, 1988, NUOVO CIMENTO B, V102, P33
19037    JANNUSSIS AD, 1988, PHYS LETT A, V129, P2631
19038    LEACH PGL, 1977, J MATH PHYS, V18, P1608
19039    LEACH PGL, 1977, J MATH PHYS, V18, P1902
19040    LEACH PGL, 1978, J MATH PHYS, V19, P446
19041    LEACH PGL, 1983, J PHYS A-MATH GEN, V16, P3261
19042    LEWIS HR, 1969, J MATH PHYS, V10, P1458
19043    LO CF, 1990, NUOVO CIMENTO B, V105, P497
19044    LO CF, 1992, PHYS REV A, V45, P5262
19045    PEDROSA IA, 1987, J MATH PHYS, V28, P2662
19046    PEDROSA IA, 1987, PHYS REV D, V36, P1279
19047    YUAN HP, 1976, PHYSICAL REV A, V131, P2226
19048 NR 23
19049 TC 0
19050 SN 0020-7748
19051 J9 INT J THEOR PHYS
19052 JI Int. J. Theor. Phys.
19053 PD MAR
19054 PY 1995
19055 VL 34
19056 IS 3
19057 BP 355
19058 EP 368
19059 PG 14
19060 SC Physics, Multidisciplinary
19061 GA QR832
19062 UT ISI:A1995QR83200004
19063 ER
19064 
19065 PT J
19066 AU ZHU, ST
19067    GUO, QZ
19068    SHEN, WD
19069    WANG, ST
19070 TI RIEMANNIAN GEOMETRY OF STRONG-LASER PLASMA
19071 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
19072 DT Article
19073 AB The optical metric for a strong-laser plasma is derived. The affine
19074    connection and curvature related to the optical metric are given and
19075    their spatial distributions are studied numerically.
19076 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
19077    CHINESE ACAD SCI,SHANGHAI INST EDUC,DEPT PHYS,SHANGHAI 200031,PEOPLES R CHINA.
19078 RP ZHU, ST, ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI
19079    201800,PEOPLES R CHINA.
19080 CR GORDON W, 1923, ANN PHYS-BERLIN, V72, P421
19081    SHEN W, 1988, PHYSICAL REV A, V37, P4387
19082    WEINBERG S, 1972, GRAVITATION COSMOLOG
19083    ZHU ST, 1987, J OPT SOC AM B, V4, P739
19084    ZHU ST, 1988, SATELLITE M IQFC 88
19085    ZHU ST, 1989, ACTA PHYS SINICA, V38, P1167
19086    ZHU ST, 1989, ACTA PHYSICA SINIA, V38, P560
19087    ZHU ST, 1991, CNOC 91
19088    ZHU ST, 1992, INT LASER C BEIJING
19089 NR 9
19090 TC 6
19091 SN 0020-7748
19092 J9 INT J THEOR PHYS
19093 JI Int. J. Theor. Phys.
19094 PD FEB
19095 PY 1995
19096 VL 34
19097 IS 2
19098 BP 169
19099 EP 177
19100 PG 9
19101 SC Physics, Multidisciplinary
19102 GA QR441
19103 UT ISI:A1995QR44100002
19104 ER
19105 
19106 PT J
19107 AU CHEN, CH
19108 TI A FORMULA FOR DETERMINING LIMIT NONINTERFERENCE CURVATURE IN PURE
19109    ROLLING CONJUGATION GEARS BY USING GEOMETRO-KINEMATICAL CONCEPTS
19110 SO JOURNAL OF MECHANICAL DESIGN
19111 DT Article
19112 AB Pure rolling conjugation gears are very useful in the cases where
19113    lubrication is difficult to implement, such as in cryogenic and/or
19114    vacuum environments, and at slow operating speeds.  The main problem
19115    confronted in the design of the pure rolling conjugation gears is to
19116    determine the limit noninterference curvature of one gear when the
19117    curvature of the conjugate gear is prescribed.  The way of solving this
19118    problem becomes very complicated when using the conventional concepts
19119    from the classical differential geometry.  However, when using the
19120    geometro-kinematical concepts from the theory of conjugate surfaces,
19121    this problem can be solved explicitly and simply.  In this paper, these
19122    concepts are introduced, and a closed-form formula for determining the
19123    limit noninterference curvature is derived.  A numerical example is
19124    cited.
19125 RP CHEN, CH, SHANGHAI UNIV SCI & TECHNOL,LANE 200,HOUSE 23,ROOM
19126    401,SHANGHAI 200063,PEOPLES R CHINA.
19127 NR 0
19128 TC 5
19129 SN 1050-0472
19130 J9 J MECH DESIGN
19131 JI J. Mech. Des.
19132 PD MAR
19133 PY 1995
19134 VL 117
19135 IS 1
19136 BP 180
19137 EP 184
19138 PG 5
19139 SC Engineering, Mechanical
19140 GA QR245
19141 UT ISI:A1995QR24500027
19142 ER
19143 
19144 PT J
19145 AU ZHANG, JL
19146    JIAN, XY
19147    XU, SH
19148    SAITO, S
19149    NAGAMOTO, T
19150 TI BRIGHT BLUE EMISSION FROM A NEW SPECIES OF POLYMER DIODE
19151 SO CHINESE PHYSICS LETTERS
19152 DT Article
19153 ID LIGHT-EMITTING-DIODES; ELECTROLUMINESCENT
19154 AB Blue emitting electroluminescent diode using PVCz doped with perylene
19155    and BBOT as electron transport has been constructed. The emission
19156    spectrum is a mixture of spectra of BBOT and perylene. A luminance of
19157    as high as 680 cd/m(2) with lumen efficiency more then 0.028 lm/W ham
19158    been obtained.
19159 C1 SHIBAURA INST TECHNOL,MINATO KU,TOKYO 108,JAPAN.
19160 RP ZHANG, JL, SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SCI,SHANGHAI
19161    201800,PEOPLES R CHINA.
19162 CR BROWN AR, 1992, APPL PHYS LETT, V61, P2793
19163    BURROUGHES JH, 1990, NATURE, V347, P539
19164    KIGO J, 1993, APPL PHYS LETT, V63, P2627
19165    TANG CW, 1987, APPL PHYS LETT, V51, P913
19166    TANG CW, 1989, J APPL PHYS, V65, P3610
19167    ZHANG ZL, IN PRESS J LUMINESCE
19168 NR 6
19169 TC 1
19170 SN 0256-307X
19171 J9 CHIN PHYS LETT
19172 JI Chin. Phys. Lett.
19173 PY 1995
19174 VL 12
19175 IS 1
19176 BP 54
19177 EP 57
19178 PG 4
19179 SC Physics, Multidisciplinary
19180 GA QL804
19181 UT ISI:A1995QL80400015
19182 ER
19183 
19184 PT J
19185 AU TAN, WH
19186 TI THE GENERAL PROCESS IN LASERS
19187 SO OPTICS COMMUNICATIONS
19188 DT Note
19189 ID PUMP
19190 AB Generalizing the results of previous papers, a model of general process
19191    in lasers is described. It is shown that a three-level laser system can
19192    generate nonclassical light with sub-Poissonian distribution, where as
19193    the four-level system generates light essentially Poisson distributed
19194    at threshold.
19195 C1 ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI 201800,PEOPLES R CHINA.
19196 RP TAN, WH, SHANGHAI UNIV,DEPT PHYS,JOINT LAB QUANTUM OPT,POB
19197    800-211,SHANGHAI 201800,PEOPLES R CHINA.
19198 CR GOLUBEV YM, 1984, ZH EKSP TEOR FIZ, V60, P234
19199    HAAKE F, 1989, PHYS REV A, V40, P7121
19200    MARTE MAM, 1989, PHYS REV A, V40, P5774
19201    RITSCH H, 1991, PHYS REV A, V44, P3361
19202    SARGENT M, 1974, LASER PHYSICS, P297
19203    SCULLY MO, 1967, PHYS REV, V159, P208
19204    TAN WH, 1994, PHYS LETT A, V190, P13
19205    WIESMAN HM, 1992, PHYS REV A, V46, P2853
19206    YAMAMOTO Y, 1989, PHYS REV A, V40, P7121
19207    YAMAMOTO Y, 1990, PHYS REV A, V41, P2808
19208 NR 10
19209 TC 3
19210 SN 0030-4018
19211 J9 OPT COMMUN
19212 JI Opt. Commun.
19213 PD MAR 15
19214 PY 1995
19215 VL 115
19216 IS 3-4
19217 BP 303
19218 EP 307
19219 PG 5
19220 SC Optics
19221 GA QL915
19222 UT ISI:A1995QL91500014
19223 ER
19224 
19225 PT J
19226 AU GU, HY
19227 TI STUDIES ON OPTIMUM CONDITION-MONITOR CYCLE TIME POLICIES WITH GENERAL
19228    REPAIR RESULT
19229 SO RELIABILITY ENGINEERING & SYSTEM SAFETY
19230 DT Article
19231 AB In this paper we consider that an equipment life is subjected to a
19232    general distribution and its condition-monitor cycle time is T. No
19233    sooner is the failure monitored than the equipment is repaired. After
19234    being repaired, the equipment does not function as a new, but as one
19235    which has been used for a period of time. Let Y indicate such a period
19236    of time, standing as a random variable. Hence, assuming the same repair
19237    conditions at each repair, we get a Y distribution after each repair.
19238    Using the following method, E(X) = E(y)(E(x)(X \ Y)), we can obtain a
19239    mean condition-monitor cycle time and mean repair cost between two
19240    adjacent maintenance intervals. Finally, considering an objective
19241    function with bound condition, and using Lagrange's method of
19242    multipliers, we obtain an optimum condition-monitor cycle time T-*,
19243    where the minimum total repairing cost is achieved.
19244 RP GU, HY, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,BOX 30,149 YANCHANG
19245    RD,SHANGHAI 200072,PEOPLES R CHINA.
19246 CR GERTSBAKH IB, 1977, MODELS PREVENTIVE MA
19247    GU HY, 1993, RELIAB ENG SYST SAFE, V41, P197
19248    NAKAFAWA T, 1977, THESIS KYOTO U JAPAN
19249    NAKAGAWA T, 1976, Z OPNS RES, V20, P171
19250 NR 4
19251 TC 0
19252 SN 0951-8320
19253 J9 RELIAB ENG SYST SAFETY
19254 JI Reliab. Eng. Syst. Saf.
19255 PY 1994
19256 VL 46
19257 IS 3
19258 BP 245
19259 EP 252
19260 PG 8
19261 SC Engineering, Industrial; Operations Research & Management Science
19262 GA QK577
19263 UT ISI:A1994QK57700006
19264 ER
19265 
19266 PT J
19267 AU YAN, Q
19268    HOFFMAN, AS
19269 TI SYNTHESIS OF MACROPOROUS HYDROGELS WITH RAPID SWELLING AND DESWELLING
19270    PROPERTIES FOR DELIVERY OF MACROMOLECULES
19271 SO POLYMER
19272 DT Note
19273 DE MACROPOROUS HYDROGEL; SWELLING KINETICS; PORE SIZE
19274 AB Thermally reversible macroporous poly(N-isopropylacrylamide)
19275    (polyNIPAAm) hydrogel has been synthesized in aqueous solution at a
19276    temperature above the lower critical solution temperature (LCST). Rapid
19277    swelling and deswelling kinetics of this macroporous hydrogel are
19278    characterized. Pore size measurement by a solute exclusion technique
19279    reveals that this macroporous hydrogel has a larger pore size
19280    distribution than the hydrogel synthesized at a temperature below the
19281    LCST. This kind of thermally reversible macroporous hydrogel will be
19282    very useful in delivery of macromolecules.
19283 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
19284    UNIV WASHINGTON,CTR BIOENGN,SEATTLE,WA 98105.
19285 CR DONG LC, 1990, P INT S CONTROL REL, V17, P325
19286    PARKER L, 1988, LEARN MOTIV, V19, P1
19287    SATO S, 1974, INT J PHARM, V22, P229
19288 NR 3
19289 TC 49
19290 SN 0032-3861
19291 J9 POLYMER
19292 JI Polymer
19293 PD FEB
19294 PY 1995
19295 VL 36
19296 IS 4
19297 BP 887
19298 EP 889
19299 PG 3
19300 SC Polymer Science
19301 GA QK671
19302 UT ISI:A1995QK67100029
19303 ER
19304 
19305 PT J
19306 AU WANG, XW
19307    ZHU, XH
19308 TI NUMERICAL-SIMULATION OF DEEP-DRAWING PROCESS
19309 SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
19310 DT Article
19311 AB In this pager, both rigid-plastic FEM simulation and experimental
19312    methods are used to systematically analyze axisymmetric deep-drawing
19313    process, summarize material flow law in deep-drawing process. The
19314    relation between punch force and drawing depth is measured with
19315    transducer and other equipment. Contrasting to the experimental result,
19316    it shows that this method is successfully applied to simulate
19317    deep-drawing process. The method of dealing with boundary conditions
19318    raised in this paper precisely simulate the material warping in the
19319    center and the cavity in the flange, and investigate the influence of
19320    friction and other parameters on the limit depth of deep-drawing.
19321    Although the program shown in this paper deals merely with the
19322    axisymmetric deep-drawing deformation, it could be applied to upsetting
19323    and forging process either.
19324 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MAT ENGN,SHANGHAI 200335,PEOPLES R CHINA.
19325 RP WANG, XW, SHANGHAI JIAO TONG UNIV,DEPT MAT ENGN,1954 HUA SHAN
19326    RD,SHANGHAI 200030,PEOPLES R CHINA.
19327 CR BIANCHI JH, 1987, INT J MECH SCI, V29, P61
19328    CHEN CC, 1979, T ASME, V101, P23
19329    KANETAKE N, 1987, ADV TECHNOLOGY PLAST, P493
19330    LEE CH, 1973, J ENG IND-T ASME, V95, P865
19331    OH SI, 1979, T ASME B, V101, P36
19332    TEKKAYA AE, 1985, SIMULATION METAL FOR, P50
19333    ZICNKIWICZ OC, 1984, NUMERICAL ANAL FORMI
19334 NR 7
19335 TC 0
19336 SN 0924-0136
19337 J9 J MATER PROCESS TECHNOL
19338 JI J. Mater. Process. Technol.
19339 PD JAN 15
19340 PY 1995
19341 VL 48
19342 IS 1-4
19343 BP 123
19344 EP 127
19345 PG 5
19346 SC Engineering, Industrial; Engineering, Manufacturing; Materials Science,
19347    Multidisciplinary
19348 GA QJ335
19349 UT ISI:A1995QJ33500016
19350 ER
19351 
19352 PT J
19353 AU TAN, WH
19354    MA, GB
19355    ZHUANG, J
19356    LIU, RH
19357 TI INFLUENCE OF DETUNING ON THE BUTTERFLY EFFECT OF LASER OSCILLATION
19358 SO ACTA PHYSICA SINICA-OVERSEAS EDITION
19359 DT Article
19360 AB In this paper the butterfly effects of single mode laser oscillation
19361    are studied.  It is shown that the detuning between laser oscillation
19362    and atomic transition frequency leads to a decrease in second
19363    threshold, which makes the demonstration of chaos theory in experiment
19364    easy.
19365 RP TAN, WH, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
19366    R CHINA.
19367 NR 0
19368 TC 1
19369 SN 1004-423X
19370 J9 ACTA PHYS SIN-OVERSEAS ED
19371 JI Acta Phys. Sin.-Overseas Ed.
19372 PD DEC
19373 PY 1994
19374 VL 3
19375 IS 12
19376 BP 884
19377 EP 890
19378 PG 7
19379 SC Physics, Multidisciplinary
19380 GA QH441
19381 UT ISI:A1994QH44100002
19382 ER
19383 
19384 PT J
19385 AU WANG, Q
19386    WEN, GJ
19387    CAI, YS
19388 TI THEORY OF OPTICAL-WAVE COUPLING IN THE PRESENCE OF MAGNETOSTATIC
19389    SURFACE-WAVES
19390 SO ACTA PHYSICA SINICA-OVERSEAS EDITION
19391 DT Article
19392 AB The general expression of magneto-optical permittivity tensor including
19393    the Faraday and Cotton-Mouton effects is derived and the coupled wave
19394    equations for the optical modes propagating in an arbitrary direction
19395    with respect to the magnetostatic surface wave are obtained.  The
19396    optical multimode coupled wave equations will reduce to the bi-mode
19397    ones in the phase-matching conditions.  The behaviors of four types of
19398    important optical bi-mode coupling are discussed and some new results
19399    are obtained.  In the limits of alpha = 0 and pi/2, all results
19400    obtained reduce to those reported in the literature.
19401 RP WANG, Q, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
19402    R CHINA.
19403 NR 0
19404 TC 0
19405 SN 1004-423X
19406 J9 ACTA PHYS SIN-OVERSEAS ED
19407 JI Acta Phys. Sin.-Overseas Ed.
19408 PD NOV
19409 PY 1994
19410 VL 3
19411 IS 11
19412 BP 849
19413 EP 860
19414 PG 12
19415 SC Physics, Multidisciplinary
19416 GA QH440
19417 UT ISI:A1994QH44000008
19418 ER
19419 
19420 PT J
19421 AU GUO, GY
19422    CHEN, YL
19423 TI FORMATION AND PROPERTIES OF A LEAD-BARIUM-ALUMINUM PHOSPHATE-GLASS
19424 SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
19425 DT Note
19426 AB A lead-barium-aluminum phosphate glass has been prepared by a wet
19427    chemical process. The phosphate glass exhibits high transmission in the
19428    visible region of the spectrum and into the mid-infrared and can
19429    strongly absorb in the ultraviolet at wavelengths of less than 344 nm.
19430    In addition, the glass has a relatively high index of refraction and a
19431    good chemical durability, Therefore, the phosphate glass can be used
19432    for general-purpose optical applications.
19433 C1 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
19434 RP GUO, GY, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI & ENGN,SHANGHAI
19435    200030,PEOPLES R CHINA.
19436 CR BROW RK, 1993, J AM CERAM SOC, V76, P913
19437    BUNKER BC, 1984, J NON-CRYST SOLIDS, V64, P291
19438    GUO GY, 1993, J NON-CRYST SOLIDS, V162, P164
19439    GUO GY, 1993, MATER CHEM PHYS, V35, P409
19440    HE Y, 1992, GLASS TECHNOL, V33, P214
19441    PENG YB, 1991, GLASS TECHNOL, V32, P166
19442    PENG YB, 1991, GLASS TECHNOL, V32, P200
19443    SALES BC, 1987, J AM CERAM SOC, V70, P615
19444    VOLF MB, 1984, CHEM APPROACH GLASS, P277
19445 NR 9
19446 TC 5
19447 SN 0002-7820
19448 J9 J AMER CERAM SOC
19449 JI J. Am. Ceram. Soc.
19450 PD FEB
19451 PY 1995
19452 VL 78
19453 IS 2
19454 BP 501
19455 EP 503
19456 PG 3
19457 SC Materials Science, Ceramics
19458 GA QG272
19459 UT ISI:A1995QG27200036
19460 ER
19461 
19462 PT J
19463 AU WEI, GL
19464    WANG, JR
19465 TI KINETICS OF THE FORMATION PROCESS OF PBO2 ON LEAD ANTIMONY ELECTRODES
19466 SO JOURNAL OF POWER SOURCES
19467 DT Article
19468 DE ELECTRODES; LEAD; ANTIMONY; FORMATION PROCESS
19469 ID ACID; OXIDATION
19470 AB The kinetics of the formation process of PbO2 on Pb-1wt.%Sb and
19471    Pb-7wt.%Sb electrodes, together with the influence of antimony on this
19472    process, are studied with potential-step and a.c. impedance methods.
19473    Relationships between the current density and time, and between the
19474    capacitance and time, are investigated. The oxidation current of the
19475    lead substrate is considered. Results show that the formation process
19476    of PbO2 on lead-antimony electrodes follows a two-dimensional
19477    instantaneous nucleation/growth process. Antimony enhances the
19478    formation of PbO2 nuclei, but inhibits their growth.
19479 RP WEI, GL, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
19480    R CHINA.
19481 CR DAWSON JL, 1979, POWER SOURCES, V7, P1
19482    HAMEENOJA E, 1984, J APPL ELECTROCHEM, V14, P449
19483    HAMPSON NA, 1980, J ELECTROANAL CHEM, V107, P177
19484    LAITINEN T, 1989, ELECTROCHIM ACTA, V134, P3
19485    LAITINEN T, 1991, ELECTROCHIM ACTA, V36, P605
19486    PAVLOV D, 1993, J POWER SOURCES, V42, P345
19487    RITCHIE EJ, 1970, J ELECTROCHEM SOC, V117, P299
19488    THIRSK HR, 1972, GUIDE STUDY ELECTROD, P116
19489    VALERIOTE EML, 1977, J ELECTROCHEM SOC, V124, P370
19490    WEI C, 1989, ACTA CHIM SINICA, V47, P569
19491 NR 10
19492 TC 3
19493 SN 0378-7753
19494 J9 J POWER SOURCES
19495 JI J. Power Sources
19496 PD DEC
19497 PY 1994
19498 VL 52
19499 IS 2
19500 BP 193
19501 EP 196
19502 PG 4
19503 SC Electrochemistry; Energy & Fuels
19504 GA QD431
19505 UT ISI:A1994QD43100005
19506 ER
19507 
19508 PT J
19509 AU LI, B
19510    MA, XM
19511    LIU, L
19512    QI, ZH
19513    DONG, YD
19514 TI INVESTIGATION OF AMORPHIZATION OF NB-SI ALLOYS BY MECHANICAL ALLOYING
19515 SO CHINESE PHYSICS LETTERS
19516 DT Article
19517 ID AMORPHOUS-ALLOYS; ZR ALLOYS; POWDERS; NI
19518 AB Amorphous Nb62.5 Si37.5 and Nb75Si25 alloys were produced from mixtures
19519    of elemental Nb and Si powders by mechanical alloying (MA).  The
19520    structural changes of mechanically alloyed powders were monitored by
19521    x-ray diffraction.  It was found that NbSi2 intermetallic compound was
19522    formed in the initial stage of MA of Nb62.5 Si37.5 or Nb75Si25 powders.
19523     With continued milling, the mixtures of intermetallic NbSi2 and
19524    elemental Nb transformed into amorphous Nb-Si alloys (Nb62.5 Si37.5 or
19525    Nb75Si25).  The slow interdiffusion of Nb and Si and the slower
19526    diffusion of silicon atoms to niobium matrix than that of niobium atoms
19527    to silicon matrix were suggested to be responsible for the formation of
19528    intermetallic NbSi2.  The amorphization of 3NbSi2 + 7Nb mixtures (or
19529    NbSi2 + 5Nb mixtures) is believed to be controlled by material
19530    transfer, which moves composition of line intermetallic NbSi2, off
19531    stoichiometry, and causes the matrix of elemental Nb deformed.
19532 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MET & MAT,SHANGHAI 200072,PEOPLES R CHINA.
19533 RP LI, B, ACAD SINICA,INST SOLID STATE PHYS,HEFEI 230031,PEOPLES R CHINA.
19534 CR CALKA A, 1991, APPL PHYS LETT, V58, P119
19535    HELLSTERN E, 1986, APPL PHYS LETT, V48, P124
19536    HIKATA A, 1987, APPL PHYS LETT, V50, P478
19537    KOCH CC, 1983, APPL PHYS LETT, V43, P1017
19538    LEE PY, 1987, APPL PHYS LETT, V50, P1578
19539    LI B, UNPUB APPL PHYS LETT
19540    LI B, 1993, J ALLOY COMPD, V202, P161
19541    MIEDEMA AR, 1980, PHYSICA B, V100, P1
19542    OMURO K, 1992, APPL PHYS LETT, V60, P1433
19543    POUNDER NM, 1991, J PHYS-CONDENS MAT, V3, P2069
19544    SCHWARZ RB, 1985, J NON-CRYST SOLIDS, V76, P281
19545    SCHWARZ RB, 1986, APPL PHYS LETT, V49, P146
19546    WANG WK, 1988, Z PHYS B, V69, P481
19547 NR 13
19548 TC 1
19549 SN 0256-307X
19550 J9 CHIN PHYS LETT
19551 JI Chin. Phys. Lett.
19552 PY 1994
19553 VL 11
19554 IS 11
19555 BP 681
19556 EP 684
19557 PG 4
19558 SC Physics, Multidisciplinary
19559 GA QD297
19560 UT ISI:A1994QD29700007
19561 ER
19562 
19563 PT J
19564 AU YU, JD
19565    ITOH, M
19566    HUANG, T
19567    INAGUMA, Y
19568    NAKAMURA, T
19569 TI ELECTRONIC TRANSPORT PROPERTY OF LA2CUO4+DELTA
19570    (0-LESS-THAN-DELTA-LESS-THAN-0.35) SINGLE-CRYSTAL BELOW 320-K
19571 SO PHYSICA C
19572 DT Article
19573 ID PHASE-SEPARATION
19574 AB The excess oxygen contents of La2CuO4+delta single crystals grown by
19575    the TSFZ method were changed in the range 0.000 less than or equal to
19576    delta less than or equal to 0.035 by the heat treatments under high and
19577    low oxygen pressures. Measurements of the electrical resistivity under
19578    hydrostatic pressure up to 11 kbar, magnetic susceptibility, and
19579    thermoelectric power were carried out below 320 K for the samples with
19580    different excess oxygen contents. The results of all measurements
19581    indicated that, except for superconducting transition temperature,
19582    there are three characteristic temperatures below 320 K, i.e., aroud
19583    295 K, around 265 K, around 195 K.
19584 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
19585 RP YU, JD, TOKYO INST TECHNOL,ENGN MAT RES LAB,MIDORI KU,4259
19586    NAGATSUTA,YOKOHAMA,KANAGAWA 227,JAPAN.
19587 CR BEDNORZ JG, 1986, Z PHYS B CON MAT, V64, P189
19588    CHAILLOUT C, 1990, PHYSICA C, V170, P87
19589    HUNDLEY MF, 1990, PHYS REV B, V41, P4062
19590    HUNDLEY MF, 1991, PHYSICA C, V172, P455
19591    ITOH M, 1994, SOLID STATE COMMUN, V90, P787
19592    JORGENSEN JD, 1988, PHYS REV B, V38, P11337
19593    RADAELLI PG, 1994, PHYS REV B, V49, P6239
19594    VAKNIN D, 1994, PHYS REV B, V49, P9057
19595 NR 8
19596 TC 1
19597 SN 0921-4534
19598 J9 PHYSICA C
19599 JI Physica C
19600 PD DEC
19601 PY 1994
19602 VL 235
19603 PN Part 2
19604 BP 1323
19605 EP 1324
19606 PG 2
19607 SC Physics, Applied
19608 GA QC694
19609 UT ISI:A1994QC69400301
19610 ER
19611 
19612 PT J
19613 AU LIU, GL
19614 TI RESEARCH ON INVERSE, HYBRID AND OPTIMIZATION PROBLEMS IN ENGINEERING
19615    SCIENCES WITH EMPHASIS ON TURBOMACHINE AERODYNAMICS - A REVIEW OF
19616    CHINESE ADVANCES
19617 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
19618 DT Article
19619 AB A brief review of advances in the inverse design and optimization
19620    theory in the following engineering fields in China is presented:  I)
19621    turbomachine aerodynamic inverse design:  including mainly:  (i) two
19622    original approaches - image-space approach and variational approach,
19623    (ii) improved mean-streamline (stream surface) method, (iii)
19624    optimization theory based on optimal control; II) other engineering
19625    fields:  inverse problem of heat conduction, free-surface flow,
19626    variational cogeneration of optimal grid and flow field, optimal
19627    meshing theory of gears, etc.
19628 C1 SHANGHAI INST APP MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA.
19629 RP LIU, GL, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 200072,PEOPLES R CHINA.
19630 CR CAI R, 1984, ASME, V106, P300
19631    CAI R, 1987, ASME87GT147 PAP
19632    CAI RQ, 1983, INT J HEAT FLUID FL, V9, P302
19633    CHEN KM, NUMERICAL METHOD C 2, P1355
19634    CHEN NI, 1986, INT J NUMER METH ENG, V22, P456
19635    CHEN NI, 1987, ASME87GT29 PAP
19636    CHEN XI, 1986, ASME86GT159 PAP
19637    CHEN Z, 1982, CHINESE J ENG THERMO, V3, P353
19638    GE M, 1987, CHINESE J ENG THERMO, V8, P243
19639    GE M, 1987, CHINESE J ENG THERMO, V8, P31
19640    GE M, 1988, ASME88GT PAP
19641    GU CG, 1986, ASME86FT182 PAP
19642    GU CG, 1987, 2ND P CHIN JAP JOINT, P416
19643    HAFEZ MM, 1983, AIAA J, V21, P327
19644    HUA YN, 1983, 6TH P INT S AIR BREA, P487
19645    JIANG HX, 1983 P TOK INT GAS T
19646    LING ZU, 1985, CHINESE J ENG THERMO, V6, P245
19647    LIU GL, 1964, UNIVERSAL COMPUTER M
19648    LIU GL, 1980, ACTA MECHANICA SIN, V12, P337
19649    LIU GL, 1980, FUNDAMENTALS AERODYN
19650    LIU GL, 1980, J SHANGAI I MECH ENG, V2, P25
19651    LIU GL, 1981, CHINESE J ENG THERMO, V23, P335
19652    LIU GL, 1981, J SHANGHAI I MECHANI, V3, P1
19653    LIU GL, 1982, ACTA MECHANICA SIN, V14, P122
19654    LIU GL, 1982, CHINESE J ENG THERMO, V3, P138
19655    LIU GL, 1983, 6TH P INT S AIR BREA, P313
19656    LIU GL, 1984, CHINESE J ENG THERMO, V5, P27
19657    LIU GL, 1985, ACTA AERODYN SINICA, V3, P24
19658    LIU GL, 1985, OPTIMAL TYPE FLOW PA
19659    LIU GL, 1986, 6TH P INT S FEM FLOW, P137
19660    LIU GL, 1986, 6TH P INT S FEM FLOW, P39
19661    LIU GL, 1987, 1987 TOKY INT GAS TU, V2, P259
19662    LIU GL, 1987, NUM METHODS THERMAL, V5, P284
19663    LIU GL, 1987, NUMERICAL METHODS LA, V5, P1739
19664    LIU GL, 1987, TURBULENCE MEASUREME, P323
19665    LIU GL, 1988, 3RD P INT S REF FLOW, P283
19666    LIU GL, 1989, NUM METHODS THERMAL, V6, P1712
19667    LIU GL, 1989, NUMERICAL METHODS C, V6, P1343
19668    LIU GL, 1989, NUMERICAL METHODS LA, V6, P1289
19669    LIU GL, 1990, 4TH P INT S REF FLOW, P175
19670    LIU GL, 1990, CHINESE J ENG THERMO, V11, P136
19671    LIU GL, 1991, ASME91GT169 PAP
19672    LIU GL, 1991, ASME91GT3085 PAP
19673    LIU GL, 1993, 2ND P INT S AER INT, P361
19674    LIU GL, 1993, ACTA MECH, V99, P219
19675    LU WC, 1987, 2ND P CHIN JAP JOINT, P481
19676    QIN R, ASME J TURBOMACHINER, V110, P545
19677    SHEN MY, 1983, ACTA MECH SINICA, V15, P1
19678    SUN XY, 1988, ASME88GT113 PAP
19679    TAO C, 1990, 3RD P JAP CHIN JOINT
19680    THOMAS KM, 1974, ASME74GT82 PAP
19681    WANG XJ, 1983, THESIS NE U TECHNOLO
19682    WANG ZM, 1985, ASME85GT6 PAP
19683    WANG ZM, 1988, ASME, V110, P181
19684    WANG ZM, 1989, 9TH INTL S AIR BREAT
19685    WANG ZM, 1990, 1ST P ISAIF BEIJ, P482
19686    WANG ZM, 1991, ASME91GT76 PAP
19687    WILKINSON DH, 1970, ARC RM3704
19688    WU BR, 1984, ADV MECHANICS, V14, P161
19689    WU CH, 1952, JAS, V19, P3
19690    WU CH, 1952, NACA TN2604
19691    WU CH, 1976, 3RD P ISABE MUN, P233
19692    WU GC, 1987, 87TOKYOIGTC19 PAP
19693    XU HY, 1990, ACTA AERODYNAMICS SI, V8, P103
19694    XUE MI, 1975, OPTIMUM AERODYNAMICS
19695    YAN S, 1ST INT S BEIJ, P457
19696    YAO FS, 1979, CHINESE J MECH ENG
19697    YAO Z, 1982, THESIS SHANGHAI I ME
19698    YAO Z, 1984, COMPUTL TURBOMACHINE, P237
19699    ZHAO SL, 1989, ASME89GT73 PAP
19700    ZHAO XL, 1985, ASME, V107, P293
19701    ZHOU XH, 1985, CHEM J ENGN THERMOPH, V6, P331
19702    ZOU ZX, 1980, CHINESE J ENG THERMO, V1, P341
19703 NR 73
19704 TC 3
19705 SN 0334-0082
19706 J9 INT J TURBO JET ENGINES
19707 JI Int. J. Turbo. Jet-Engines
19708 PY 1994
19709 VL 11
19710 IS 1
19711 BP 53
19712 EP 70
19713 PG 18
19714 SC Engineering, Aerospace
19715 GA QC854
19716 UT ISI:A1994QC85400005
19717 ER
19718 
19719 PT J
19720 AU YAN, S
19721    LIU, GL
19722 TI VARIATIONAL VARIABLE-DOMAIN FINITE-ELEMENT METHOD FOR HYBRID PROBLEMS
19723    OF 3-DIMENSIONAL INCOMPRESSIBLE ROTOR FLOW
19724 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
19725 DT Article
19726 AB Based on the variational theory developed by Liu (1986), a new finite
19727    element method (FEM) with self-adapting nodes is suggested in this
19728    paper for determining the unknown shape of the boundaries in hybrid
19729    problems of three-dimensional incompressible rotor flow.  The
19730    computational results of two different kinds of hybrid problems show
19731    that the rotor geometry obtained from the calculation coincides with
19732    the original one quite well.  A new numerical method for cascade design
19733    and modification is thus provided and recommended for practical use. 
19734    It can be extended to compressible flow (Liu, 1988).
19735 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
19736    SHANGHAI INST APPL MATH & MECH,SHANGHAI,PEOPLES R CHINA.
19737 RP YAN, S, SHANGHAI INST MECH & ELECT ENGN,SHANGHAI 200093,PEOPLES R CHINA.
19738 CR BORGES JE, 1989, ASME89GT136 PAP
19739    BORGES JE, 1989, ASME89GT137 PAP
19740    CHUNG TJ, 1978, FINITE ELEMENT ANAL
19741    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
19742    GHALY WS, 1990, INT J NUMER METH FL, V10, P179
19743    HAWTHORNE WR, 1987, P ICIDES 2 DULIKRAVI, P207
19744    LIU GL, 1986, ASME, V108, P254
19745    LIU GL, 1988, COMPUTATIONAL FLUID, P473
19746    MARCHUK GI, 1982, METHODS NUMERICAL MA
19747    MIZUKI S, 1975, ASME75GT14 PAP
19748    MIZUKI S, 1979, PERFORMANCE PREDICTI, P13
19749    STANITZ JD, 1988, APPLIED MECHANICS RE, V41, P217
19750    YAN S, 1989, VARIATIONAL FINITE E
19751    YAN S, 1990, 1ST P INT S EXP COMP, P457
19752 NR 14
19753 TC 3
19754 SN 0334-0082
19755 J9 INT J TURBO JET ENGINES
19756 JI Int. J. Turbo. Jet-Engines
19757 PY 1994
19758 VL 11
19759 IS 1
19760 BP 71
19761 EP 82
19762 PG 12
19763 SC Engineering, Aerospace
19764 GA QC854
19765 UT ISI:A1994QC85400006
19766 ER
19767 
19768 PT J
19769 AU WANG, ZX
19770    PAN, JS
19771    ZHANG, JP
19772    TAO, ZL
19773    DU, GT
19774    WANG, CH
19775    LI, XN
19776    XIE, YF
19777    LUO, WY
19778    ZHOU, SX
19779 TI TOPOGRAPHY AND ANGULAR-DISTRIBUTION OF SPUTTERED ATOMS OF SILVER TARGET
19780    BOMBARDED BY SIN- (N=1,2) IONS
19781 SO JOURNAL OF MATERIALS SCIENCE LETTERS
19782 DT Article
19783 ID MOLECULAR-DYNAMICS SIMULATION; FILMS
19784 C1 SHANGHAI UNIV SCI & TECHNOL,INST APPL RADIAT,SHANGHAI 201800,PEOPLES R CHINA.
19785 RP WANG, ZX, ACAD SINICA,INST NUCL RES,POB 800204,SHANGHAI 201800,PEOPLES
19786    R CHINA.
19787 CR ANDERSEN HH, 1975, J APPL PHYS, V46, P2416
19788    JOHAR SS, 1979, SURF SCI, V90, P319
19789    OASTA DJ, 1988, PHYS REV LETT, V61, P1392
19790    ROOSENDAAL HE, 1982, NUCL INSTRUM METHODS, V194, P579
19791    SHAPIRO MH, 1990, NUCL INSTRUM METH B, V48, P557
19792    SHAPIRO MH, 1991, NUCL INSTRUM METH B, V62, P35
19793    SZYMONSKI M, 1978, J PHYS             D, V11, P751
19794    THOMPSON DA, 1977, RADIAT EFF, V32, P135
19795    THOMPSON DA, 1979, APPL PHYS LETT, V34, P342
19796    WANG ZX, 1993, NUCL INSTRUM METH B, V74, P380
19797 NR 10
19798 TC 0
19799 SN 0261-8028
19800 J9 J MATER SCI LETT
19801 JI J. Mater. Sci. Lett.
19802 PD JAN 1
19803 PY 1995
19804 VL 14
19805 IS 1
19806 BP 33
19807 EP 34
19808 PG 2
19809 SC Materials Science, Multidisciplinary
19810 GA QB226
19811 UT ISI:A1995QB22600013
19812 ER
19813 
19814 PT J
19815 AU WEI, GP
19816    ZHENG, YM
19817    HUANG, ZJ
19818    LI, Y
19819    FENG, JW
19820    MO, YW
19821 TI POROUS SILICON AND ITS APPLICATION TEST FOR PHOTOVOLTAIC DEVICES
19822 SO SOLAR ENERGY MATERIALS AND SOLAR CELLS
19823 DT Article
19824 AB Porous silicon was prepared by anodization of a p/p(+) epitaxial c-Si
19825    wafer. Its structure was examined by electron microscopy, Raman
19826    spectroscopy, and infrared spectroscopy. The results of the examination
19827    show that the porous Si consists of many nano-scale pores and
19828    crystalline slices, and that there is a thin molecular film containing
19829    Si-H, Si-O and SI-H-2 bonds at the surface of the slices. Some solar
19830    cells were fabricated from the porous Si wafers, and about 7%
19831    efficiency was obtained.
19832 RP WEI, GP, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
19833 CR BRANDT MS, 1992, SOLID STATE COMMUN, V81, P307
19834    CANHAM LT, 1990, APPL PHYS LETT, V57, P1046
19835    KOSHIDA N, 1992, JPN J APPL PHYS, V60, P1
19836    LEHMANN V, 1991, APPL PHYS LETT, V58, P856
19837    NAKAGAWA K, 1992, JPN J APPL PHYS, V31, L515
19838    NISHIDA A, 1992, JPN J APPL PHYS, V31, P1219
19839 NR 6
19840 TC 6
19841 SN 0927-0248
19842 J9 SOLAR ENERG MATER SOLAR CELLS
19843 JI Sol. Energy Mater. Sol. Cells
19844 PD SEP
19845 PY 1994
19846 VL 35
19847 IS 1-4
19848 BP 319
19849 EP 324
19850 PG 6
19851 SC Materials Science, Multidisciplinary; Energy & Fuels
19852 GA PX516
19853 UT ISI:A1994PX51600042
19854 ER
19855 
19856 PT J
19857 AU GUO, BY
19858    XIONG, YS
19859 TI FOURIER PSEUDOSPECTRAL-FINITE DIFFERENCE METHOD FOR 2-DIMENSIONAL
19860    VORTICITY EQUATION
19861 SO CHINESE ANNALS OF MATHEMATICS SERIES B
19862 DT Article
19863 DE VORTICITY EQUATION; FOURIER PSEUDOSPECTRAL-FINITE DIFFERENCE METHOD;
19864    GENERALIZED STABILITY; CONVERGENCE
19865 ID BAROCLINIC PRIMITIVE EQUATION; NAVIER-STOKES EQUATIONS; RESTRAIN
19866    OPERATOR; ERROR ESTIMATION; SPECTRAL METHOD; ELEMENT METHOD; FLOW;
19867    APPROXIMATION
19868 AB A Fourier pseudospectral-finite difference scheme is proposed for
19869    solving two-dimensional vorticity equations.  The generalized stability
19870    and the convergence are proved.  The numerical results are given.
19871 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
19872 CR CANUTO C, 1982, MATH COMPUT, V38, P67
19873    CANUTO C, 1984, NUMER MATH, V44, P201
19874    CANUTO C, 1988, SPECTRAL METHODS FLU
19875    GOTTLIEB D, 1977, NUMERICAL ANAL SPECT
19876    GUO B, 1985, SCI SINICA SER A, V28, P1139
19877    GUO B, 1988, J COMPUT PHYS, V74, P110
19878    GUO BY, 1974, ACTA MATH SINICA, V17, P242
19879    GUO BY, 1987, SCI SINICA SER A, V30, P696
19880    GUO BY, 1988, J COMPUT MATH, V6, P238
19881    GUO BY, 1989, J COMPUT PHYS, V84, P259
19882    GUO BY, 1991, SIAM J NUMER ANAL, V28, P113
19883    GUO BY, 1992, J COMPUT PHYS, V101, P207
19884    GUO BY, 1992, J COMPUT PHYS, V101, P375
19885    GUO BY, 1992, SCI CHINA SER A, V35, P1
19886    INGHAM DB, 1978, J APPL MATH PHYS, V29, P871
19887    INGHAM DB, 1984, J COMPUT PHYS, V53, P90
19888    KREISS HO, 1979, SIAM J NUMER ANAL, V16, P421
19889    KUO PY, 1981, COMMUNICATION    MAR
19890    KUO PY, 1983, J COMPUT MATH, V1, P353
19891    KUO PY, 1985, ACTA MATH SINICA, V28, P1
19892    LIONS JL, 1969, QUELQUES METHODES RE
19893    MA HP, 1986, J COMPUT PHYS, V65, P120
19894    MA HP, 1987, IMA J NUMER ANAL, V7, P47
19895    MACARAEG MG, 1986, J COMPUT PHYS, V62, P297
19896    MOIN P, 1982, J FLUID MECH, V118, P341
19897    MURDOCK JW, 1977, AIAA J, V15, P1167
19898    VANDEVEN H, 1987, FAMILY SPECTRAL FILT
19899    WOODWARD P, 1984, J COMPUT PHYS, V54, P115
19900 NR 28
19901 TC 0
19902 SN 0252-9599
19903 J9 CHIN ANN MATH SER B
19904 JI Chin. Ann. Math. Ser. B
19905 PD OCT
19906 PY 1994
19907 VL 15
19908 IS 4
19909 BP 469
19910 EP 488
19911 PG 20
19912 SC Mathematics
19913 GA PX887
19914 UT ISI:A1994PX88700008
19915 ER
19916 
19917 PT J
19918 AU WANG, SZ
19919    GRABB, ML
19920    BIRDSALL, TG
19921 TI DESIGN OF PERIODIC SIGNALS USING FM SWEEPS AND AMPLITUDE-MODULATION FOR
19922    OCEAN ACOUSTIC TRAVEL-TIME MEASUREMENTS
19923 SO IEEE JOURNAL OF OCEANIC ENGINEERING
19924 DT Article
19925 ID TOMOGRAPHY
19926 AB A design procedure for an amplitude-modulated and nonlinear
19927    frequency-modulated (AM-NLFM) signal is introduced. The designed signal
19928    can drive a given transducer to its peak power to produce a sound
19929    pressure waveform into the water with a desired power spectrum and
19930    maximum possible energy. The signal can be formed either in the time
19931    domain or in the frequency domain. The frequency domain approach gives
19932    an output power spectrum precisely identical to a preferred shape.
19933    Therefore, the sidelobe levels after matched filtering are not raised
19934    by unwanted spectral magnitude ripples which exist when a time domain
19935    method is adopted. The absence of spectral ripples is desirable for
19936    applications requiring long range transmission and good multipath
19937    discrimination capability. An acceptable tradeoff between time
19938    resolution and sidelobe levels is achieved by properly choosing the
19939    desired power spectral shape. As the time resolution is usually the
19940    most critical specification for precision travel-time measurements, it
19941    is shown that by sacrificing some of the transducer's output power
19942    capability, a waveform with a considerably wider band, width can be
19943    transmitted, resulting in a significantly enhanced time resolution. A
19944    quasi-steady-stale (QSS) approximation is used in the signal design,
19945    leading to a manageable and intuitive design procedure.
19946 C1 UNIV MICHIGAN,DEPT ELECT ENGN & COMP SCI,ANN ARBOR,MI 48109.
19947 RP WANG, SZ, SHANGHAI UNIV SCI & TECHNOL,DEPT ELECTR & TELECOMMUN
19948    ENGN,SHANGHAI 200072,PEOPLES R CHINA.
19949 CR BAGGEROER A, 1992, PHYSICS TODAY    SEP, P22
19950    BATTEN HW, 1952, 3 U MICH DEPT EL ENG
19951    BEHRINGER D, 1982, NATURE, V299, P121
19952    BIRDSALL TG, 1976, IEEE T EDUC, V19, P168
19953    BIRDSALL TG, 1986, J ACOUST SOC AM, V79, P91
19954    BUTLER MBN, 1980, P IEE F, V127, P118
19955    DUDA TF, 1993, IEEE J OCEANIC ENG, V18, P87
19956    JOHNSTON A, 1983, RADIO ELECTRON ENG, V53, P138
19957    JOHNSTON JA, 1986, IEE PROC-F, V133, P163
19958    JUDD GW, 1973, P IEEE ULTR S MONT, P478
19959    MUNK W, 1993, SCIENCES, V33, P21
19960    NATHANSON FE, 1991, RADAR DESIGN PRINCIP, P624
19961    SPIESBERGER JL, 1991, J GEOPHYS RES-OCEANS, V96, P4869
19962    WORCESTER PF, 1991, REV GEOPHYS S, P557
19963 NR 14
19964 TC 0
19965 SN 0364-9059
19966 J9 IEEE J OCEANIC ENG
19967 JI IEEE J. Ocean. Eng.
19968 PD OCT
19969 PY 1994
19970 VL 19
19971 IS 4
19972 BP 611
19973 EP 618
19974 PG 8
19975 SC Engineering, Civil; Engineering, Electrical & Electronic; Engineering,
19976    Ocean; Oceanography
19977 GA PX325
19978 UT ISI:A1994PX32500014
19979 ER
19980 
19981 PT J
19982 AU MAK, AFT
19983    HUANG, LD
19984    WANG, QQ
19985 TI A BIPHASIC POROELASTIC ANALYSIS OF THE PLOW DEPENDENT SUBCUTANEOUS
19986    TISSUE PRESSURE AND COMPACTION DUE TO EPIDERMAL LOADINGS - ISSUES IN
19987    PRESSURE SORE
19988 SO JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME
19989 DT Article
19990 ID ARTICULAR-CARTILAGE; FLUID TRANSPORT; INDENTATION; COMPRESSION; MODEL;
19991    SKIN; FLOW
19992 AB A layer of skin and subcutaneous tissue on a bony substratum was
19993    modeled as a homogeneous layer of biphasic poroelastic material with
19994    uniform thickness. The epidermal surface and the bony interface were
19995    taken to be impervious. The soft tissue on the bony interface was
19996    assumed either fully adhered or completely free to slide on the bone.
19997    The cases for surface pressure loadings and displacement controlled
19998    indentations were simulated The resultant biomechanical responses of
19999    the layer, including the transient tissue hydrostatic pressure and the
20000    tissue compaction, were presented. A new hypothesis is offered to
20001    interpret the threshold pressure-time curve for pressure sores in term
20002    of the time required for a particular area in the tissue layer to reach
20003    tr critical compaction for a given level of applied pressure.
20004 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PRECIS MECH ENGN,SHANGHAI 201800,PEOPLES R CHINA.
20005 RP MAK, AFT, HONG KONG POLYTECH,CTR REHABIL ENGN,HONG KONG,HONG KONG.
20006 CR BADER DL, 1988, CLIN PHYS PHYSL MEAS, V9, P33
20007    BADER DL, 1990, PRESSURE SORES CLIN
20008    BENNETT L, 1979, ARCH PHYS MED REHAB, V60, P309
20009    BIOT MA, 1941, J APPL PHYS, V12, P155
20010    BOWEN RM, 1976, CONTINUUM PHYSICS, V3
20011    CHOW WW, 1978, J BIOMECH ENG, V100, P79
20012    CRENSHAW RP, 1989, J REHABIL RES DEV, V26, P63
20013    DANIEL RK, 1981, ARCH PHYS MED REHAB, V62, P492
20014    DRUMMOND DS, 1982, J BONE JOINT SURG AM, V64, P1034
20015    FERGUSONPELL MW, 1992, P RESNA INT 92, P219
20016    HAYES WC, 1972, J BIOMECH, V5, P541
20017    HIVDBERY E, 1960, ACTA PARMACAL KOBENH, V16, P245
20018    IRANI KD, 1985, MED REHABILITATION
20019    KENYON DE, 1979, B MATH BIOL, V41, P79
20020    KOSIAK M, 1959, ARCH PHYS MED REHAB, V40, P62
20021    KROUSKOP TA, 1983, MED HYPOTHESES, V11, P255
20022    LANIR Y, 1987, HDB BIOENGINEERING
20023    LANIR Y, 1990, J BIOMECH ENG-T ASME, V112, P63
20024    LIVESLEY B, 1990, PRESSURE SORES CLIN, P27
20025    MAK AF, 1986, J BIOMECH ENG-T ASME, V108, P123
20026    MAK AF, 1987, J BIOMECH, V20, P703
20027    MCNAMEE J, 1960, Q J MECH APPL MATH, V13, P98
20028    MICHEL CC, 1990, PRESSURE SORES CLIN, P153
20029    MONTAGNA W, 1962, STRUCTURE FUNCTION S
20030    MOW VC, 1977, J BIOMECH, V10, P31
20031    MOW VC, 1980, J BIOMECH ENG, V102, P73
20032    MOW VC, 1984, J BIOMECH, V17, P377
20033    MOW VC, 1986, FRONTIERS BIOMECHANI
20034    OOMENS CWJ, 1982, J BIOMECH, V20, P877
20035    OOMENS CWJ, 1987, J BIOMECH, V20, P923
20036    PAPIR YS, 1985, BIOCHIM BIOPHYS ACTA, V399, P170
20037    PETERSON MJ, 1982, PHYS THER, V62, P990
20038    POULOS HG, 1974, ELASTIC SOLUTIONS SO
20039    REDDY NP, 1981, J BIOMECH, V14, P879
20040    REDDY NP, 1982, J BIOMECH, V15, P493
20041    REDDY NP, 1986, TISSUE NUTRITION VIA, P215
20042    REDDY NP, 1990, PRESSURE SORES CLIN, P203
20043    REGER SI, 1990, PRESSURE SORES CLIN, P177
20044    RESWICK JB, 1976, BEDSORE BIOMECHANICS, P301
20045    SACKS AH, 1985, J REHAB RES DEV, P1
20046    SACKS AH, 1989, J REHABIL RES DEV, V26, P27
20047    SALZETEIN RA, 1987, J BIOMECH, V20, P681
20048    SANGEORZAN BJ, 1989, J ORTHOPAED RES, V7, P425
20049    SCALES JT, 1990, PRESSURE SORES CLIN, P15
20050    SCHOCK RB, 1982, ADV BIOENG, P88
20051    SIMON BR, 1985, J BIOMECH ENG-T ASME, V107, P327
20052    SNASHALL PD, 1971, CLIN SCI, V41, P35
20053    SPILKER RL, 1990, J BIOMECH ENG-T ASME, V112, P138
20054    STEEGE JW, 1987, 10TH RESNA ANN C, P814
20055    TABER LA, 1992, 1991 ADV BIOENGINEER, P623
20056    TODD BA, 1992, P RESNA INT 92, P222
20057    TORZILLI PA, 1976, J BIOMECH, V9, P587
20058 NR 52
20059 TC 13
20060 SN 0148-0731
20061 J9 J BIOMECH ENG
20062 JI J. Biomech. Eng.-Trans. ASME
20063 PD NOV
20064 PY 1994
20065 VL 116
20066 IS 4
20067 BP 421
20068 EP 429
20069 PG 9
20070 SC Engineering, Biomedical; Biophysics
20071 GA PW301
20072 UT ISI:A1994PW30100007
20073 ER
20074 
20075 PT J
20076 AU SKIDMORE, MJ
20077 TI ETHICS AND PUBLIC-SERVICE
20078 SO ANNALS OF THE AMERICAN ACADEMY OF POLITICAL AND SOCIAL SCIENCE
20079 DT Article
20080 AB There is widespread concern for ethics in government, and news reports
20081    justify that concern.  The public's emphasis, fueled by both accurate
20082    and inaccurate reporting, appears to center upon the conduct of elected
20083    officials.  Some of that reporting is significant, and some is trivial.
20084     Professional literature tends to concentrate upon the bureaucracy. 
20085    This article traces the history in general of ethical thought regarding
20086    public service in America and sketches attempts to require adherence to
20087    ethical standards.  It concludes that-with notable exceptions and
20088    despite considerable insightful work from ethicists - the strongest
20089    reactions have often come in response to relatively trivial infractions
20090    and that prescriptions tend to be entirely negative.  Such negative
20091    approaches are unlikely to result in significant improvement of ethics
20092    in public service, whether judged by standards of personal conduct or
20093    the even more important standard of institutional performance and
20094    integrity.
20095 C1 UNIV MISSOURI,COLUMBIA,MO 65201.
20096    SHANGHAI UNIV,SHANGHAI,PEOPLES R CHINA.
20097 CR BOHR JA, 1991, PUBLIC ADMIN REV, V51, P283
20098    BOWMAN JE, 1991, ETHICAL FRONTIERS PU, P2
20099    COOPER TL, 1982, RESPONSIBLE ADM, P8
20100    DEGEORGE RT, 1982, BUSINESS ETHICS
20101    DENHARDT K, 1991, ETHICAL FRONTEIRS PU, P100
20102    DENHARDT KG, 1988, ETHICS PUBLIC SERVIC, P5
20103    DVORIN EP, 1972, AMORAL HUMANE BUREAU, P1
20104    FINER H, 1994, PUBLIC ADM REV, V1
20105    FRIEDRICH CJ, 1940, PUBLIC POLICY
20106    GABRIS GT, 1991, ETHICAL FRONTIERS PU, P217
20107    GAWTHROP LC, 1984, PUBLIC SECTOR MANAGE, P142
20108    GOLEMBIEWSKI RT, 1962, PUBLIC ADM REV, V22
20109    GOLEMBIEWSKI RT, 1965, MEN MANAGEMENT MORAL
20110    HARMON MM, 1971, NEW PUBLIC MINNOWBRO, P172
20111    JENNINGS B, 1991, ETHICAL FRONTIERS PU, P67
20112    LEYS WAR, 1944, ETHICS SOCIAL POLICY
20113    LUKE IS, 1991, ETHICAL FRONTIERS PU, P160
20114    MERGET AE, 1989, GOVERNING, V3, P90
20115    NORTON DL, 1988, PAPERS ETHICS ADM, P47
20116    PUGH DL, 1991, ETHICAL FRONTIERS PU, P10
20117    ROHR JA, 1978, ETHICS BUREAUCRATS
20118    ROHR JA, 1989, ETHICS BUREAUCRATS
20119    SCOTT WG, 1988, PAPERS ETHICS ADM, P29
20120    THOMPSON DF, 1987, POLITICAL ETHICS PUB
20121    VENTRISS C, 1991, ETHICAL FRONTIERS PU, P114
20122    WALDO D, 1948, ADM STATE STUDY POLI, P18
20123    WALL B, 1991, ETHICAL FRONTIERS PU, P136
20124    WILSON W, 1987, POLITICAL SCI Q, V2
20125    WRIGHT ND, 1988, PAPERS ETHICS ADM, P15
20126 NR 29
20127 TC 1
20128 SN 0002-7162
20129 J9 ANN AMER ACAD POLIT SOC SCI
20130 JI Ann. Am. Acad. Polit. Soc. Sci.
20131 PD JAN
20132 PY 1995
20133 VL 537
20134 BP 25
20135 EP 36
20136 PG 12
20137 SC Social Sciences, Interdisciplinary; Political Science
20138 GA PX926
20139 UT ISI:A1995PX92600004
20140 ER
20141 
20142 PT J
20143 AU LIU, GL
20144 TI A UNIFIED VARIATIONAL THEORY OF HYBRID PROBLEMS FOR FULLY 3-D TRANSONIC
20145    ROTOR-FLOW WITH SHOCKS .1. POTENTIAL FLOW
20146 SO ACTA MECHANICA
20147 DT Article
20148 ID TURBO-ROTOR; PRINCIPLES
20149 AB Based on [3], the unified variable-domain variational theory of hybrid
20150    problems for rotor-flow [1], [2], [16], [24] is extended to fully 3-D
20151    transonic rotor-flows with shocks, unifying and generalizing the direct
20152    and inverse problems. Three variational principle (VP) families
20153    together with a general form of generalized VPs have been established,
20154    taking distributed suction and/or blowing along blade- and annular
20155    walls into account. All unknown boundaries are successfully handled via
20156    functional variations with variable domain, converting almost all
20157    boundary and interface conditions, including the Rankine-Hugoniot shock
20158    relations, into natural ones. This theory provides a series of novel
20159    ways for blade design and a theoretical basis for finite element
20160    applications and also constitutes an important part of the optimal
20161    design theory of rotor-bladings [6]. Numerical solutions by finite
20162    elements in [22]-[24] show good agreement with experimental results.
20163 C1 SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA.
20164 RP LIU, GL, SHANGHAI UNIV,149 YAN CHANG RD,SHANGHAI 200072,PEOPLES R CHINA.
20165 CR ECER A, 1983, AIAA J, V21, P343
20166    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
20167    LIU GI, 1986, J ENG GAS TURB POWER, V108, P254
20168    LIU GL, 1979, ACTA MECH SINICA, V11, P303
20169    LIU GL, 1980, LECTURE NOTES SHANGH
20170    LIU GL, 1980, SCI SINICA, V23, P1339
20171    LIU GL, 1981, CHINESE J ENG THERMO, V2, P335
20172    LIU GL, 1982, 1982 P INT C FEM SHA, P520
20173    LIU GL, 1983, 6TH P INT S AIR BREA, P313
20174    LIU GL, 1985, ACTA AERODYN SINICA, V3, P24
20175    LIU GL, 1986, 6TH P INT S FEM FLOW, P137
20176    LIU GL, 1987, NUM METHODS THERMAL, V5, P284
20177    LIU GL, 1987, TURBULENCE MEASUREME, P323
20178    LIU GL, 1988, COMPUTATIONAL FLUID, P473
20179    LIU GL, 1990, 1 INT S EXP COMP AER, P128
20180    LIU GL, 1992, ACTA MECH, V95, P117
20181    LIU GL, 1993, 2ND INT S EXP COMP A, P355
20182    LIU GL, 1993, ACTA MECH, V97, P229
20183    LIU GL, 1993, INT J TURBO JET ENGI, V10, P273
20184    MCNALLY WD, 1985, J FLUID ENG-T ASME, V107, P6
20185    MEAUZE G, 1982, ASME, V104, P650
20186    PENG HW, 1975, KEXUE TONGBAO, V20, P416
20187    SERRIN J, 1959, HDB PHYSIK, V7
20188    THOMPKINS WT, 1982, ASME, V104, P282
20189    WU CH, 1952, NACA TN2604
20190    YAN S, 1990, EXP COMP AEROTHERMOD, P449
20191    YAN S, 1991, 1991 P YOK INT GAS T, P35
20192    YAO Z, 1984, IMECHE PAPER, V69, P237
20193 NR 28
20194 TC 3
20195 SN 0001-5970
20196 J9 ACTA MECH
20197 JI Acta Mech.
20198 PY 1995
20199 VL 108
20200 IS 1-4
20201 BP 207
20202 EP 217
20203 PG 11
20204 SC Mechanics
20205 GA PW711
20206 UT ISI:A1995PW71100016
20207 ER
20208 
20209 PT J
20210 AU RODGERS, GJ
20211    HASSAN, MK
20212 TI FRAGMENTATION OF PARTICLES WITH MORE THAN ONE DEGREE-OF-FREEDOM
20213 SO PHYSICAL REVIEW E
20214 DT Article
20215 ID KINETICS; DEGRADATION
20216 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SYLHET,BANGLADESH.
20217 RP RODGERS, GJ, BRUNEL UNIV,DEPT PHYS,UXBRIDGE UB8 3PH,MIDDX,ENGLAND.
20218 CR AMEMIYA A, 1962, J PHYS SOC JPN, V17, P1245
20219    AMEMIYA A, 1962, J PHYS SOC JPN, V17, P1694
20220    BAK TA, 1959, ACTA CHEM SCAND, V13, P1997
20221    BALLAUFF M, 1981, MACROMOLECULES, V14, P654
20222    BASEDOW AM, 1978, MACROMOLECULES, V11, P774
20223    CHARLESBY A, 1954, P ROY SOC LOND A MAT, V224, P120
20224    DEMJANENKO M, 1980, MACROMOLECULES, V13, P571
20225    ERNST MH, 1993, J PHYS A-MATH GEN, V26, P6085
20226    FAMILY F, 1986, PHYS REV LETT, V57, P727
20227    FILIPPOV AF, 1961, THEORY PROBABILITY I, V6, P275
20228    GILVARRY JJ, 1961, J APPL PHYS, V32, P391
20229    MCGRADY ED, 1987, PHYS REV LETT, V58, P892
20230    MEYER R, 1966, BR J APPL PHYS, V17, P409
20231    SHINNAR R, 1961, J FLUID MECH, V10, P259
20232    VICSEK T, 1984, PHYS REV LETT, V52, P1669
20233    ZIFF RM, 1985, J PHYS A-MATH GEN, V18, P3027
20234    ZIFF RM, 1986, MACROMOLECULES, V19, P2513
20235    ZIFF RM, 1991, J PHYS A-MATH GEN, V24, P2821
20236 NR 18
20237 TC 10
20238 SN 1063-651X
20239 J9 PHYS REV E
20240 JI Phys. Rev. E
20241 PD NOV
20242 PY 1994
20243 VL 50
20244 IS 5
20245 BP 3458
20246 EP 3463
20247 PG 6
20248 SC Physics, Fluids & Plasmas; Physics, Mathematical
20249 GA PV863
20250 UT ISI:A1994PV86300033
20251 ER
20252 
20253 PT J
20254 AU WANG, ZX
20255    PAN, JS
20256    ZHANG, JP
20257    WANG, CS
20258    LUO, WY
20259    LI, XN
20260    ZHOU, SX
20261    ZHANG, HM
20262    ZHAO, L
20263 TI SURFACE-TOPOGRAPHY EFFECT ON PREFERENTIAL SPUTTERING FROM CU76NI15SN9
20264    ALLOY
20265 SO JOURNAL OF MATERIALS SCIENCE LETTERS
20266 DT Article
20267 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI INST APPL RADIAT,SHANGHAI 201800,PEOPLES R CHINA.
20268    HANGZHOU UNIV,CENT LAB,HANGZHOU 310028,PEOPLES R CHINA.
20269 RP WANG, ZX, ACAD SINICA,SHANGHAI INST NUCL RES,POB 800-204,SHANGHAI
20270    201800,PEOPLES R CHINA.
20271 CR BETZ G, 1980, NUCL INSTRUM METHODS, V170, P347
20272    BETZ G, 1981, SURF SCI, V104, L185
20273    MATTIEU HJ, 1979, APPL SURF SCI, V3, P348
20274    WITTMAACK K, 1980, NUCL INSTRUM METHODS, V170, P331
20275    ZHENXIA W, 1992, J MATER SCI LETT, V11, P719
20276    ZHENXIA W, 1993, NUCL INSTRUM METH B, V74, P380
20277 NR 6
20278 TC 0
20279 SN 0261-8028
20280 J9 J MATER SCI LETT
20281 JI J. Mater. Sci. Lett.
20282 PD DEC 1
20283 PY 1994
20284 VL 13
20285 IS 23
20286 BP 1667
20287 EP 1669
20288 PG 3
20289 SC Materials Science, Multidisciplinary
20290 GA PX084
20291 UT ISI:A1994PX08400004
20292 ER
20293 
20294 PT J
20295 AU KLINGENBERG, C
20296    MAO, DK
20297 TI THE TOTAL VARIATION DECREASING PROPERTY OF A CONSERVATIVE FRONT
20298    TRACKING TECHNIQUE
20299 SO MATHEMATICAL AND COMPUTER MODELLING
20300 DT Article
20301 DE CONSERVATION LAWS; CONSERVATIVE NUMERICAL SCHEME; TOTAL VARIATION
20302    DECREASING
20303 ID FINITE-DIFFERENCE METHODS; HIGH-RESOLUTION SCHEMES; LAWS;
20304    DISCONTINUITIES
20305 AB In [1-4], one of the authors developed a conservative front tracking
20306    technique. In this paper, we study the effect of the technique on the
20307    total variation of the numerical solution when the underlying scheme is
20308    total variation decreasing (TVD). We prove that the first order
20309    technique will retain the TVD property for the overall scheme.
20310    Numerical examples are presented to support the conclusion even for
20311    higher order front tracking techniques.
20312 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
20313 RP KLINGENBERG, C, UNIV HEIDELBERG,DEPT APPL MATH,NEUENHEIMER FELD
20314    294,D-69120 HEIDELBERG,GERMANY.
20315 CR CRANDALL MG, 1980, MATH COMPUT, V34, P1
20316    HARTEN A, 1983, J COMPUT PHYS, V49, P357
20317    MAO D, IN PRESS J COMPUT PH
20318    MAO D, UNPUB CONSERVATIVE F
20319    MAO DK, 1991, J COMPUT PHYS, V92, P422
20320    MAO DK, 1992, J COMPUT PHYS, V103, P359
20321    OSHER S, 1984, SIAM J NUMER ANAL, V21, P955
20322    SHU CW, 1987, MATH COMPUT, V49, P105
20323 NR 8
20324 TC 2
20325 SN 0895-7177
20326 J9 MATH COMPUT MODELLING
20327 JI Math. Comput. Model.
20328 PD NOV-DEC
20329 PY 1994
20330 VL 20
20331 IS 10-11
20332 BP 89
20333 EP 99
20334 PG 11
20335 SC Computer Science, Interdisciplinary Applications; Computer Science,
20336    Software Engineering; Mathematics, Applied
20337 GA PV700
20338 UT ISI:A1994PV70000007
20339 ER
20340 
20341 PT J
20342 AU WEI, GL
20343    WANG, JR
20344 TI ELECTROCHEMICAL-BEHAVIOR OF LEAD ELECTRODE IN SULFURIC-ACID-SOLUTION
20345    CONTAINING CITRIC-ACID
20346 SO JOURNAL OF POWER SOURCES
20347 DT Article
20348 DE LEAD ELECTRODES; SULFURIC ACID; CITRIC ACID
20349 ID PBO2/PBSO4 ELECTRODE; POSITIVE PLATES; PBO2 ELECTRODE; ANTIMONY; SWEEP;
20350    H3PO4; TIN
20351 AB The electrochemical behaviour of a lead electrode as the positive
20352    electrode (in PbO2 form) and the negative electrode of a lead/acid
20353    battery in sulfuric acid solution containing different concentrations
20354    of citric acid has been studied by cyclic voltammetry.  For the
20355    behaviour of lead as a positive electrode, a new layer of PbO2 is
20356    formed in the presence of citric acid.  It is difficult for this layer
20357    to be reduced and, therefore, the conductivity between the positive
20358    grid and the positive active material will be greater than that in pure
20359    sulfuric acid solution.  The peak currents attributed to the formation
20360    and reduction of PbO2, and to the evolution of oxygen, increase with
20361    the concentration of citric acid.  The limits of the effects are
20362    reached at about 2 g/l citric acid in 4.5 M H2SO4.  For the behaviour
20363    of lead as a negative electrode, the peak currents attributed to the
20364    oxidation of lead to PbSO4 and to the evolution of hydrogen gas also
20365    increase with the concentration of citric acid.  In 4.5 M H2SO4, the
20366    limits of these effects are reached at a citric acid concentration of 2
20367    and 3 g/l, respectively.  The observed behaviour is caused by the
20368    adsorption of citric acid on the PbO2, lead and PbSO4 surfaces.
20369 RP WEI, GL, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
20370    R CHINA.
20371 CR BULLOCK KR, 1977, J ELECTROCHEM SOC, V124, P1478
20372    CULPIN B, 1992, J POWER SOURCES, V38, P63
20373    DORING H, 1992, J POWER SOURCES, V38, P261
20374    HULLMEINE U, 1990, J POWER SOURCES, V30, P99
20375    LAITINEN HA, 1975, ANAL CHEM, V47, P135
20376    LAITINEN T, 1991, ELECTROCHIM ACTA, V36, P605
20377    MAHATO BK, 1980, J ELECTROCHEM SOC, V127, P1679
20378    MAHATO BK, 1983, J ELECTROCHEM SOC, V130, P2139
20379    MOHAMMADI AT, 1992, J POWER SOURCES, V40, P323
20380    PAVLOV D, 1990, J POWER SOURCES, V30, P117
20381    SATO Y, 1992, J POWER SOURCES, V39, P43
20382    SHARPE TF, 1975, J ELECTROCHEM SOC, V122, P845
20383    STERNBERG S, 1987, ELECTROCHIM ACTA, V32, P349
20384    VOSS E, 1990, J POWER SOURCES, V30, P33
20385 NR 14
20386 TC 4
20387 SN 0378-7753
20388 J9 J POWER SOURCES
20389 JI J. Power Sources
20390 PD NOV
20391 PY 1994
20392 VL 52
20393 IS 1
20394 BP 25
20395 EP 29
20396 PG 5
20397 SC Electrochemistry; Energy & Fuels
20398 GA PV022
20399 UT ISI:A1994PV02200003
20400 ER
20401 
20402 PT J
20403 AU WEI, GL
20404    WANG, JR
20405 TI ELECTROCHEMICAL-BEHAVIOR OF SNSO4 IN SULFURIC-ACID-SOLUTION
20406 SO JOURNAL OF POWER SOURCES
20407 DT Article
20408 DE SULFURIC ACID; TIN SULFATE; LEAD ACID BATTERIES
20409 ID ANODIC BEHAVIOR; TIN; LEAD; ELECTRODE
20410 AB The effect of SnSO4 on the deep-discharge capacity of lead/acid
20411    batteries is investigated when it is added to the sulfuric acid
20412    electrolyte.  The electrochemical behaviour of Sn2+ ions in sulfuric
20413    acid is studied by using chemical-analysis and cyclic-voltammetry
20414    methods.  In the battery system, Sn2+ ions will be reduced to tin on
20415    the negative plates or will be oxidized to tin(IV) species on the
20416    positive plates.  Tin metal formed on the negative plates will improve
20417    the charge/discharge properties.  Tin(IV) species formed on the
20418    positive plates may be incorporated as SnO2 in the positive active
20419    material (PAM) as well as in the anodic film that is produced at the
20420    grid/active-material interface.  The effect of SnO2 on the properties
20421    of the PAM are explained in terms of the gel-crystal model.  The SnO2
20422    is stable during the discharge process.  The compound increases the
20423    electronic conductivity of the gel zones, thereby, enhances the
20424    capacity of the PAM.  The SnO2 species may also act as nuclei for the
20425    formation of beta-PbO2 in the crystal zones.  The corrosion of positive
20426    grids is inhibited by the presence of SnO2.  By virtue of these
20427    effects, the addition of SnSO4 is beneficial to the operation of
20428    lead/acid batteries.
20429 RP WEI, GL, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
20430    R CHINA.
20431 CR BAGSHAW N, 1988, POWER SOURCES 12, P113
20432    BURBANK J, 1971, ADV ELECTROCHEMISTRY, V8, P109
20433    CULPIN B, 1992, J POWER SOURCES, V38, P63
20434    DORING H, 1990, J POWER SOURCES, V30, P41
20435    GALUS Z, 1975, ENCY ELECTROCHEMISTR, V4, P229
20436    GALUS Z, 1975, ENCY ELECTROCHEMISTR, V4, P233
20437    ISHIKAWA Y, 1987, 8751161, JA
20438    LAITINEN T, 1992, ELECTROCHIM ACTA, V37, P1797
20439    NELSON RF, 1991, J POWER SOURCES, V33, P165
20440    PAVLOV D, 1984, POWER SOURCES ELECTR, P237
20441    PAVLOV D, 1992, J ELECTROCHEM SOC, V139, P3075
20442    SALMI K, 1992, J POWER SOURCES, V40, P217
20443    SUGIKARA M, 1979, 7960424, JA
20444    TERADA M, 1988, 202862, JA
20445    TOKUNAGA A, 1979, 79495386, JA
20446    VOSS E, 1990, J POWER SOURCES, V30, P33
20447    WILL FG, 1982, 4324848, US
20448    WILL FG, 1982, 4326017, US
20449 NR 18
20450 TC 5
20451 SN 0378-7753
20452 J9 J POWER SOURCES
20453 JI J. Power Sources
20454 PD NOV
20455 PY 1994
20456 VL 52
20457 IS 1
20458 BP 81
20459 EP 85
20460 PG 5
20461 SC Electrochemistry; Energy & Fuels
20462 GA PV022
20463 UT ISI:A1994PV02200011
20464 ER
20465 
20466 PT J
20467 AU GU, XR
20468    ZHU, YZ
20469 TI ASYMPTOTIC OPTIMAL HEAPSORT ALGORITHM
20470 SO THEORETICAL COMPUTER SCIENCE
20471 DT Note
20472 AB Heapsort algorithm HEAPSORT runs in a higher efficiency way. It has
20473    been improved to reduce the constant factor of the complexity. An
20474    asymptotic optimal heapsort algorithm is given in this paper. When the
20475    efficiency becomes the lowest, the constant factor of its complexity
20476    will not be more than 4/3.
20477 RP GU, XR, SHANGHAI UNIV SCI & TECHNOL,DEPT COMP SCI,SHANGHAI
20478    201800,PEOPLES R CHINA.
20479 CR AHO AV, 1975, DESIGN ANAL COMPUTER
20480    BAASE S, 1978, COMPUTER ALGORITHMS
20481    GU X, 1990, COMPUT J, V33, P281
20482    HOROWITZ E, 1978, FUNDAMENTALS COMPUTE
20483    WEGENER I, 1992, SIMPLE MODIFICATION
20484 NR 5
20485 TC 0
20486 SN 0304-3975
20487 J9 THEOR COMPUT SCI
20488 JI Theor. Comput. Sci.
20489 PD NOV 21
20490 PY 1994
20491 VL 134
20492 IS 2
20493 BP 559
20494 EP 565
20495 PG 7
20496 SC Computer Science, Theory & Methods
20497 GA PR819
20498 UT ISI:A1994PR81900016
20499 ER
20500 
20501 PT J
20502 AU GUO, BY
20503    XIONG, YS
20504 TI FOURIER PSEUDOSPECTRAL-FINITE DIFFERENCE METHOD FOR INCOMPRESSIBLE-FLOW
20505 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
20506 DT Article
20507 ID NAVIER-STOKES EQUATIONS; VORTICITY EQUATIONS; ELEMENT METHOD;
20508    APPROXIMATION
20509 AB A Fourier pseudospectral-finite difference scheme is proposed for
20510    unsteady Navier-Stokes equation.  It is showed that the numerical
20511    solution keeps semi-discrete conservation.  The strict error estimation
20512    is established.  The numerical results are presented.
20513 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
20514 CR CANUTO C, 1982, MATH COMPUT, V38, P67
20515    CANUTO C, 1984, NUMER MATH, V44, P201
20516    CANUTO C, 1988, SPECTRAL METHOD FLUI
20517    CHORIN AJ, 1967, J COMPUT PHYS, V2, P12
20518    GOTTLIEB D, 1977, NUMERICAL ANAL SPECT
20519    GUO BY, 1981, SCI SINICA A, V24, P297
20520    GUO BY, 1987, SCI SINICA A, V30, P6963
20521    GUO BY, 1989, J COMPUT PHYS, V84, P259
20522    GUO BY, 1991, J COMPUT MATH, V9, P57
20523    GUO BY, 1991, MATH NUMER SINICA, V13, P331
20524    GUO BY, 1991, SCI SINICA A, V35, P1
20525    GUO BY, 1991, SIAM J NUMER ANAL, V28, P113
20526    GUO BY, 1992, J COMPUT PHYS, V101, P207
20527    GUO BY, 1992, J COMPUT PHYS, V101, P375
20528    GUO BY, 1992, P BAIL, V6, P34
20529    GUO BY, 1993, SIAM J NUMER ANAL, V30, P1066
20530    INGHAM DB, 1985, P ROY SOC LOND A MAT, V402, P109
20531    KUO PY, 1983, J COMPUT MATH, V1, P353
20532    LIONS JL, 1970, 2 SIAM AMS P, P11
20533    MA HP, 1986, J COMPUT PHYS, V65, P120
20534    MACARAEG MG, 1982, J COMPUT PHYS, V62, P297
20535    MOIN P, 1982, J FLUID MECH, V118, P341
20536    MULHOLLAND LS, 1991, J COMPUT PHYS, V96, P369
20537    MURDOCK JW, AIAA860434
20538    ROACHE PJ, 1976, COMPUTATIONAL FLUID
20539    VANDEVEN H, 1987, CNRS F56 CTR MATH AP
20540    WOODWARD P, 1984, J COMPUT PHYS, V54, P115
20541 NR 27
20542 TC 1
20543 SN 0254-9409
20544 J9 J COMPUT MATH
20545 JI J. Comput. Math.
20546 PD OCT
20547 PY 1994
20548 VL 12
20549 IS 4
20550 BP 312
20551 EP 329
20552 PG 18
20553 SC Mathematics, Applied; Mathematics
20554 GA PR581
20555 UT ISI:A1994PR58100003
20556 ER
20557 
20558 PT J
20559 AU PU, DG
20560    TIAN, WW
20561 TI A CLASS OF MODIFIED BROYDEN ALGORITHMS
20562 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
20563 DT Article
20564 ID QUASI-NEWTON METHODS
20565 AB In this paper we dicuss the convergence of the modified Broyden
20566    algorithms.  We prove that the algorithms are globally convergent for
20567    the continuous differentiable function and the rate of convergence of
20568    the algorithms is one-step superlinear and n-step second-order for the
20569    uniformly convex objective function.  From the discussion of this
20570    paper, we may get some convergence properties of the Broyden algorithms.
20571 C1 SHANGHAI INST RAILWAY TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
20572    SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
20573 CR BYRD RH, 1987, SIAM J NUMER ANAL, V24, P1171
20574    BYRD RH, 1989, SIAM J NUMER ANAL, V26, P727
20575    CONN NI, 1991, MATH PROG, V52, P177
20576    FLETCHER R, 1987, PRACTICAL METHODS OP
20577    HUANG HY, 1970, J OPTIM THEORY APPL, V5, P405
20578    POWELL MJD, 1971, J I MATHS APPLICS, V7, P21
20579    POWELL MJD, 1972, NUMERICAL METHODS NO, P1
20580    POWELL MJD, 1976, 6 SIAM AMS P, P53
20581    PU D, 1987, J SHANGHAI I RAILWAY, V8, P19
20582    PU D, 1989, J OPER RES CHINA, V8, P53
20583    PU D, 1989, L ACTA MATHEMATICAE, V13, P118
20584    PU D, 1990, J ANN OPERATIONS RES, V24, P175
20585    PU D, 1990, J OPER RES CHINA, V9, P49
20586    PU D, 1992, ASIA PACIFIC J OPERA, V9, P207
20587    PU D, 1993, J OPER RES CHINA, V22, P2
20588    TIAN W, 1992, J APPL MATH COMP MAT, V6, P42
20589    TIAN W, 1993, J APPL MATH COMP MAT, V7, P50
20590    WU F, 1991 P C APOR SOC BE, P35
20591    WU F, 1981, J ACTA MATH SINICA C, V24, P921
20592    YUAN YX, 1991, IMA J NUMER ANAL, V11, P325
20593 NR 20
20594 TC 2
20595 SN 0254-9409
20596 J9 J COMPUT MATH
20597 JI J. Comput. Math.
20598 PD OCT
20599 PY 1994
20600 VL 12
20601 IS 4
20602 BP 366
20603 EP 379
20604 PG 14
20605 SC Mathematics, Applied; Mathematics
20606 GA PR581
20607 UT ISI:A1994PR58100008
20608 ER
20609 
20610 PT J
20611 AU YANG, T
20612 TI BLIND SIGNAL SEPARATION USING CELLULAR NEURAL NETWORKS
20613 SO INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS
20614 DT Article
20615 AB In this paper a two-layer cellular neural network (CNN) is used to
20616    separate blind signals. The topological structures of the CNN and the
20617    inner parameters are presented. The first CNN layer functions as an
20618    adaptive filter which converges asymptotically to an equilibrium point
20619    in the mean. A stochastic stability model is used to find conditions
20620    under which cells in the first layer converge. Conditions leading to
20621    correct equilibrium solutions are also presented using this model. The
20622    second CNN layer functions as a signal separator. Simulations show that
20623    the CNN blind signal separator has strong robustness and works even
20624    better than the theory predicts.
20625 RP YANG, T, SHANGHAI UNIV SCI & TECHNOL,DEPT AUTOMAT CONTROL ENGN,POB
20626    14,SHANGHAI 200072,PEOPLES R CHINA.
20627 CR CARDOSO J, 1989, P IEEE ICASSP, V4, P2109
20628    CHUA LO, 1988, IEEE T CIRCUITS SYST, V35, P1257
20629    CHUA LO, 1988, IEEE T CIRCUITS SYST, V35, P1273
20630    CHUA LO, 1992, P CNNA 92, P1
20631    COMON P, 1991, SIGNAL PROCESS, V24, P11
20632    JUTTEN C, 1991, SIGNAL PROCESS, V24, P1
20633    SOROUCHYARI E, 1991, SIGNAL PROCESS, V24, P21
20634    TONG L, 1991, IEEE T CIRCUITS SYST, V38, P499
20635 NR 8
20636 TC 2
20637 SN 0098-9886
20638 J9 INT J CIRCUIT THEOR APPL
20639 JI Int. J. Circuit Theory Appl.
20640 PD SEP-OCT
20641 PY 1994
20642 VL 22
20643 IS 5
20644 BP 399
20645 EP 408
20646 PG 10
20647 SC Engineering, Electrical & Electronic
20648 GA PN991
20649 UT ISI:A1994PN99100006
20650 ER
20651 
20652 PT J
20653 AU XU, HP
20654    LEI, TJ
20655 TI A RINGLESS HIGH-PRESSURE MOVING SEAL UP TO 1200 MPA
20656 SO TRIBOLOGY TRANSACTIONS
20657 DT Article
20658 DE HIGH PRESSURE; MOVING SEAL; RINGLESS SEAL
20659 AB A ringless high pressure moving seal has been developed which can reach
20660    pressures as high as 1200 MPa.  A unique feature of the seal is the
20661    elastic action of its plunger.  This action results in full oil film
20662    operation that enhances volumetric efficiency while reducing leakage. 
20663    Analysis and results of the pressure examination are presented.  It is
20664    shown that the seal operates with high volumetric efficiency, very low
20665    friction and no wear.
20666 C1 ACAD MACHINE SCI,BEIJING 100044,PEOPLES R CHINA.
20667 RP XU, HP, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 200072,PEOPLES R CHINA.
20668 CR BRIDGMAN PW, 1953, PHYSICS HIGH PRESSUR
20669    XU H, 1991, 911084401, CH
20670    XU H, 1991, THESIS ACADEMY MACHI
20671    XU H, 1994, CHINESE J MECH ENG, V7, P2
20672 NR 4
20673 TC 1
20674 SN 0569-8197
20675 J9 TRIBOL TRANS
20676 JI Tribol. Trans.
20677 PD OCT
20678 PY 1994
20679 VL 37
20680 IS 4
20681 BP 767
20682 EP 770
20683 PG 4
20684 SC Engineering, Mechanical
20685 GA PN115
20686 UT ISI:A1994PN11500013
20687 ER
20688 
20689 PT J
20690 AU ZHU, ST
20691    SHEN, WD
20692 TI GLOBALLY REGULAR MODEL OF THE ELECTRON IN GENERAL-RELATIVITY
20693 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
20694 DT Article
20695 AB Necessary conditions on a reasonable description of a physical object
20696    are suggested.  The globally regular solutions of Petrov type D of the
20697    Einstein - Maxwell field equations and their generation solutions are
20698    derived for a charged perfect fluid sphere.  A globally regular model
20699    of a stationary electron is established in the framework of general
20700    relativity.  The quantitative relations between the inertial and the
20701    electromagnetic mass of an electron and between the electron mass and
20702    radius are explained.
20703 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
20704 RP ZHU, ST, ACAD SINICA,SHANGHAI INST OPT & FINE MECH,POB 800-211,SHANGHAI
20705    201800,PEOPLES R CHINA.
20706 CR FUKUDA H, 1949, PROG THEOR PHYS, V4, P121
20707    GAUTREAU R, 1985, PHYS REV D, V31, P1860
20708    HAWKING SW, 1973, LARGE SCALE STRUCTUR
20709    HORWITZ G, 1971, NUOVO CIMENTO B, V3, P245
20710    ISRAEL W, 1970, PHYS REV           D, V2, P641
20711    JACKSON JD, 1975, CLASSICAL ELECTRODYN
20712    KATZ J, 1971, NUOVO CIMENTO B, V5, P59
20713    KRAMER D, 1980, EXACT SOLUTIONS EINS, P164
20714    PAULI W, 1958, THEORY RELATIVITY
20715    SHEN WD, 1985, GEN RELAT GRAVIT, V17, P739
20716    TIWARI RN, 1985, PHYSICAL REV D, V30, P489
20717 NR 11
20718 TC 0
20719 SN 0020-7748
20720 J9 INT J THEOR PHYS
20721 JI Int. J. Theor. Phys.
20722 PD AUG
20723 PY 1994
20724 VL 33
20725 IS 8
20726 BP 1687
20727 EP 1697
20728 PG 11
20729 SC Physics, Multidisciplinary
20730 GA PL431
20731 UT ISI:A1994PL43100009
20732 ER
20733 
20734 PT J
20735 AU SUN, Z
20736    ZHENG, Z
20737    XU, N
20738    SUN, Y
20739    JI, R
20740    ZHAO, W
20741 TI DIAMOND FILM DEPOSITED ON A SILICA SUBSTRATE WITH A ZNOAL INTERMEDIATE
20742    LAYER BY HOT-FILAMENT CHEMICAL-VAPOR-DEPOSITION
20743 SO JOURNAL OF APPLIED PHYSICS
20744 DT Note
20745 ID THIN-FILMS; OPTICAL-PROPERTIES; LOW-PRESSURE
20746 AB Diamond films were deposited on ZnO:Al thin-film silica substrates by
20747    hot-filament chemical vapor deposition.  Ultrasonic irradiation in a
20748    diamond suspension enhanced the diamond nucleation density on a
20749    ZnO:Al-silica substrate.  The nucleation density and the growth rate of
20750    diamond film deposited on ZnO:Al thin film is higher than on the
20751    silica.  The cracks on a ZnO:Al-silica substrate occurred during the
20752    diamond deposition process.  It is proposed that the cracks were caused
20753    by the stress in ZnO:Al film and diamond film, and the peak frequency
20754    shift of the Raman line of diamond indicates the presence of
20755    compressive stress in the diamond film.
20756 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SCI,SHANGHAI,PEOPLES R CHINA.
20757 RP SUN, Z, E CHINA NORMAL UNIV,DEPT PHYS,SHANGHAI 200062,PEOPLES R CHINA.
20758 CR ANGUS JC, 1988, SCIENCE, V241, P913
20759    BONNOT AM, 1990, PHYS REV B, V41, P6040
20760    CELII FG, 1992, NAV RES REV, V44, P23
20761    DEVERIES RC, 1987, ANNU REV MATER SCI, V17, P161
20762    JIN ZC, 1987, APPL PHYS LETT, V51, P149
20763    JIN ZC, 1988, J APPL PHYS 1, V64, P5117
20764    LEE YH, 1990, APPL PHYS LETT, V57, P1916
20765    RAVI KV, 1993, MAT SCI ENG B-SOLID, V19, P203
20766    SHPAK MT, 1985, PHYS CHEM MECH SURF, V3, P1412
20767    SOOD DK, 1992, SURF COAT TECH, V51, P307
20768    TANIGUCHI Y, 1989, JPN J APPL PHYS, V28, L1848
20769    VANDEPOL FCM, 1990, AM CERAM SOC BULL, V69, P1959
20770    WINDISCHMANN H, 1991, J APPL PHYS, V69, P2231
20771    YARBROUGH WA, 1990, SCIENCE, V247, P688
20772    YOSHIKAWA M, 1989, APPL PHYS LETT, V55, P2608
20773 NR 15
20774 TC 1
20775 SN 0021-8979
20776 J9 J APPL PHYS
20777 JI J. Appl. Phys.
20778 PD OCT 1
20779 PY 1994
20780 VL 76
20781 IS 7
20782 BP 4446
20783 EP 4447
20784 PG 2
20785 SC Physics, Applied
20786 GA PK458
20787 UT ISI:A1994PK45800078
20788 ER
20789 
20790 PT J
20791 AU CHEN, CH
20792    CHEN, HJ
20793 TI DOF OF EQUIVALENT CONJUGATE MOTION BETWEEN 2 BODIES IN A MECHANICAL
20794    SYSTEM
20795 SO MECHANISM AND MACHINE THEORY
20796 DT Article
20797 AB In modern mechanical systems, especially in robotics and bio-mechanics,
20798    there are needs to investigate higher pairs in more details, and to
20799    compute the d.o.f. of the relative motion between two bodies, rather
20800    than the d.o.f. of the whole system.  In this paper, conjugate pairs
20801    are investigated with the aid of the theory of conjugate surfaces. 
20802    This investigation provides a geometrical insight of the d.o.f. of a
20803    joint.  The conjugation chain and the corresponding algorithm are
20804    introduced.  They provide an instrumental tool for computing the d.o.f.
20805    of the equivalent conjugate motion between two bodies in a mechanical
20806    system.  The existence of the redundant and the complementary d.o.f. is
20807    briefly explained.
20808 RP CHEN, CH, SHANGHAI UNIV SCI & TECHNOL,LANE 200,HOUSE 23,ROOM
20809    401,SHANGHAI 20063,PEOPLES R CHINA.
20810 CR BAGCI C, 1971, T ASME, V93, P140
20811    BAUSCH JJ, 1990, P MANUFACTURING INT, V1, P225
20812    CHEN CH, 1985, FUNDAMENTALS THEORY, P107
20813    LIU T, 1992, ASME, V47, P653
20814    REULEAUX F, 1963, KINEMATICS MACHINERY
20815    WARNAAR DB, 1992, ASME DE, V47, P143
20816 NR 6
20817 TC 6
20818 SN 0094-114X
20819 J9 MECH MACH THEOR
20820 JI Mech. Mach. Theory
20821 PD NOV
20822 PY 1994
20823 VL 29
20824 IS 8
20825 BP 1143
20826 EP 1150
20827 PG 8
20828 SC Engineering, Mechanical
20829 GA PJ582
20830 UT ISI:A1994PJ58200005
20831 ER
20832 
20833 PT J
20834 AU ZHONG, SS
20835    LIU, G
20836    QASIM, G
20837 TI CLOSED-FORM EXPRESSIONS FOR RESONANT-FREQUENCY OF RECTANGULAR PATCH
20838    ANTENNAS WITH MULTIDIELECTRIC LAYERS
20839 SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
20840 DT Note
20841 ID MICROSTRIP ANTENNAS; DIELECTRIC LAYER; ACCURATE MODEL; LINES
20842 AB The conformal mapping approach combined with a generalized transmission
20843    line model has been developed to predict the resonant frequency of
20844    rectangular patch antennas with multidielectric layers. A set of closed
20845    form expressions is derived, which is suitable for direct application
20846    in CAD programs. Numerical results are presented to validate this
20847    method.
20848 C1 NWFP UNIV ENGN & TECHNOL,PESHAWAR,PAKISTAN.
20849 RP ZHONG, SS, SHANGHAI UNIV SCI & TECHNOL,DEPT RADIO & ELECTR,SHANGHAI
20850    201800,PEOPLES R CHINA.
20851 CR BAHL IJ, 1982, IEEE T ANTENN PROPAG, V30, P314
20852    BENALLA A, 1990, IEE PROC-H, V137, P377
20853    KIRSCHNING M, 1981, ELECTRON LETT, V17, P123
20854    KIRSCHNING M, 1982, ELECTRON LETT, V18, P272
20855    NELSON RM, 1990, IEEE T ANTENN PROPAG, V38, P978
20856    PRIBETICH J, 1988, ELECTRON LETT, V24, P1464
20857    QQASIM G, 1991, J SHANGHAI U SCI TEC, V14, P77
20858    RAMAHI OM, 1992, MICROW OPT TECHN LET, V5, P254
20859    SVACINA J, 1992, IEEE T MICROW THEORY, V40, P769
20860    VERMA AK, 1991, IEICE T COMMUN, V74, P1270
20861    WHEELER HA, 1964, IEEE T MICROW THEORY, V12, P280
20862 NR 11
20863 TC 6
20864 SN 0018-926X
20865 J9 IEEE TRANS ANTENNAS PROPAGAT
20866 JI IEEE Trans. Antennas Propag.
20867 PD SEP
20868 PY 1994
20869 VL 42
20870 IS 9
20871 BP 1360
20872 EP 1363
20873 PG 4
20874 SC Engineering, Electrical & Electronic; Telecommunications
20875 GA PH084
20876 UT ISI:A1994PH08400024
20877 ER
20878 
20879 PT J
20880 AU WANG, DR
20881    BAI, ZZ
20882 TI ON MONOTONE CONVERGENCE OF NONLINEAR MULTISPLITTING RELAXATION METHODS
20883 SO CHINESE ANNALS OF MATHEMATICS SERIES B
20884 DT Article
20885 DE NONLINEAR SYSTEM OF EQUATIONS; NONLINEAR MULTISPLITTING; MONOTONICITY;
20886    GLOBAL CONVERGENCE
20887 ID PARALLEL; ALGORITHM
20888 AB A class of parallel nonlinear multisplitting AOR methods is et up by
20889    directly multisplitting the nonlinear mapping F : D subset-of R(n) -->
20890    R(n) for solving the nonlinear system of equations F(x) = 0.  The
20891    different choices of the relaxation parameters can yield all the known
20892    and a lot of new relaxation methods as well as a lot of new relaxation
20893    parallel nonlinear multisplitting methods. The two-sided approximation
20894    properties and the influences on convergence from the relaxation
20895    parameters about the new methods are shown, and the sufficient
20896    conditions guaranteeing the methods to converge globally are discussed.
20897    Finally, a lot of numerical results show that the methods are feasible
20898    and efficient.
20899 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
20900    EUDAN UNIV,INST MATH,SHANGHAI 200433,PEOPLES R CHINA.
20901 CR FROMMER A, 1989, NUMER MATH, V56, P269
20902    MORE J, 1970, SIAM J NUMER ANAL, V9, P357
20903    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
20904    RHEINBOLDT WC, 1970, ITERATIVE SOLUTION N
20905    RHEINBOLDT WC, 1970, J MATH ANAL APPL, V32, P274
20906    WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473
20907    WHITE RE, 1986, SIAM J ALGEBRA DISCR, V7, P137
20908    WHITE RE, 1986, SIAM J NUMER ANAL, V23, P639
20909 NR 8
20910 TC 5
20911 SN 0252-9599
20912 J9 CHIN ANN MATH SER B
20913 JI Chin. Ann. Math. Ser. B
20914 PD JUL
20915 PY 1994
20916 VL 15
20917 IS 3
20918 BP 335
20919 EP 348
20920 PG 14
20921 SC Mathematics
20922 GA PG700
20923 UT ISI:A1994PG70000009
20924 ER
20925 
20926 PT J
20927 AU LI, YZ
20928    DAVID, AK
20929 TI WHEELING RATES OF REACTIVE POWER-FLOW UNDER MARGINAL COST PRICING
20930 SO IEEE TRANSACTIONS ON POWER SYSTEMS
20931 DT Article
20932 DE WHEELING; POWER WHEELING; WHEELING RATES; MARGINAL COST PRICING;
20933    ECONOMIC DISPATCH
20934 AB Wheeling is the transmission of electrical power and reactive power
20935    from a seller to a buyer through a transmission network owned by a
20936    third party.  The wheeling rate is an area of intense research at
20937    present in view of increased deregulation.  This paper uses a wheeling
20938    rate based on marginal cost pricing and implemented using a
20939    modification of the OPF.  A case study based on the IEEE 30-bus system
20940    illustrates the magnitudes and ranges that wheeling rates might have in
20941    different circumstances.  Special attention is paid to reactive
20942    wheeling, which cannot be analyzed with a DC model used by previous
20943    authors.  The ratio of wheeling rates between real and reactive flow
20944    shows the importance of the latter.  The paper also discusses the
20945    significance of this for the trade-off between paying for reactive
20946    wheel or investing in compensating plant.
20947 C1 HONG KONG POLYTECH,KOWLOON,HONG KONG.
20948 RP LI, YZ, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
20949 CR BAUGHMAN ML, 1991, IEEE T POWER SYST, V6, P23
20950    CARAMANIS MC, 1986, IEEE T POWER SYST, V1, P63
20951    CARAMANIS MC, 1989, IEEE T POWER SYST, V4, P594
20952    LI YZ, IN PRESS P IEE C
20953    LI YZ, 1992, WIN IEEE P M
20954    MERRILL HM, 1989, IEEE T POWER SYST, V4, P1445
20955    MUKERJI R, 1992, IEEE T POWER SYST, V7, P201
20956    SCHWEPPE FC, 1988, SPOT PRICING ELECTRI
20957 NR 8
20958 TC 16
20959 SN 0885-8950
20960 J9 IEEE TRANS POWER SYST
20961 JI IEEE Trans. Power Syst.
20962 PD AUG
20963 PY 1994
20964 VL 9
20965 IS 3
20966 BP 1263
20967 EP 1269
20968 PG 7
20969 SC Engineering, Electrical & Electronic
20970 GA PF168
20971 UT ISI:A1994PF16800014
20972 ER
20973 
20974 PT J
20975 AU CHEN, DY
20976    ZHU, NS
20977    ZHU, M
20978 TI THE POTENTIAL CONSTRAINTS OF THE KP SYSTEM AND THE CORRESPONDING
20979    HAMILTONIAN EQUATIONS
20980 SO JOURNAL OF MATHEMATICAL PHYSICS
20981 DT Article
20982 AB In this paper all the potential constraints (wither without first-order
20983    partial derivatives) of the KP system, from which the associated linear
20984    problem can be restricted into a (1+1)-dimensional Hamiltonian
20985    equation, are obtained by using the sufficient and necessary condition
20986    for a nonlinear equation to be a Hamiltonian system. Some well-known
20987    integrable systems, such as (1+1)-dimensional AKNS system, generalized
20988    NS system, and several new Hamiltonian equations, are deduced as
20989    particular examples.
20990 RP CHEN, DY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
20991 CR ADLER M, 1979, INVENT MATH, V50, P219
20992    CEWEN C, 1987, HENAN SCI, V5, P2
20993    CHEN HH, 1979, PHYS SCR, V20, P490
20994    DENGYUNA C, 1992, SYMMETRIC CONSTRAINT
20995    FLASCHKA H, 1983, 1981 P RIMS S NONL I, P219
20996    FUCHSSTEINER B, 1981, PHYSICA D, V4, P47
20997    KONOPELCHENKO B, 1991, PHYS LETT A, V157, P17
20998    YI C, 1991, PHYS LETT A, V157, P22
20999    YI C, 1992, J PHYS A, V25, P419
21000    YUNBO Z, 1989, J MATH PHYS, V30, P1679
21001 NR 10
21002 TC 1
21003 SN 0022-2488
21004 J9 J MATH PHYS-NY
21005 JI J. Math. Phys.
21006 PD SEP
21007 PY 1994
21008 VL 35
21009 IS 9
21010 BP 4725
21011 EP 4738
21012 PG 14
21013 SC Physics, Mathematical
21014 GA PF137
21015 UT ISI:A1994PF13700022
21016 ER
21017 
21018 PT J
21019 AU CHEN, WR
21020    ZHANG, B
21021    CHEN, WJ
21022    WANG, J
21023    WAN, X
21024 TI TEMPERATURE-DEPENDENCE OF THE MECHANICAL-PROPERTIES OF A TI-AL-CR ALLOY
21025 SO SCRIPTA METALLURGICA ET MATERIALIA
21026 DT Article
21027 ID ELEVATED-TEMPERATURES; DEFORMATION; FRACTURE
21028 RP CHEN, WR, SHANGHAI UNIV SCI & TECHNOL,INST MAT SCI,149 YANCHANG
21029    RD,SHANGHAI 200072,PEOPLES R CHINA.
21030 CR CHEN WR, UNPUB
21031    CHEN WR, 1994, SCRIPTA METALL, V30, P83
21032    HUANG SC, 1988, SCRIPTA METALL, V22, P1885
21033    HUANG SC, 1991, METALL T A, V22, P427
21034    KIM YW, 1989, JOM-J MIN MET MAT S, V41, P24
21035    KIM YW, 1990, HIGH TEMPERATURE ALU, P465
21036    KIM YW, 1991, JOM, V43, P40
21037    KIMURA M, 1992, MAT SCI ENG A-STRUCT, V152, P54
21038    LIPSITT HA, 1975, METALL T A, V6, P1991
21039    LIPSITT HA, 1980, METALLURG T A, V11, P1369
21040    LIPSITT HA, 1985, MATER RES SOC S P, V39, P351
21041    WUNDERLICH W, 1990, Z METALLKD, V81, P802
21042    ZHENG Y, 1992, SCRIPTA METALL MATER, V26, P219
21043 NR 13
21044 TC 1
21045 SN 0956-716X
21046 J9 SCR METALL MATER
21047 JI Scr. Metall. Materialia
21048 PD NOV 15
21049 PY 1994
21050 VL 31
21051 IS 10
21052 BP 1297
21053 EP 1300
21054 PG 4
21055 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
21056    Engineering
21057 GA PE217
21058 UT ISI:A1994PE21700003
21059 ER
21060 
21061 PT J
21062 AU LU, DY
21063    LIANG, G
21064    ZHANG, MJ
21065    XU, B
21066 TI SERUM CONTENTS OF SIALIC ACIDS IN MICE BEARING DIFFERENT TUMORS
21067 SO CHINESE SCIENCE BULLETIN
21068 DT Article
21069 DE SIALIC ACIDS; HPLC; ANTINEOPLASTIC DRUGS; NEOPLASM METASTASES;
21070    CARCINOGENESIS
21071 RP LU, DY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
21072 NR 0
21073 TC 0
21074 SN 1001-6538
21075 J9 CHIN SCI BULL
21076 JI Chin. Sci. Bull.
21077 PD JUL
21078 PY 1994
21079 VL 39
21080 IS 14
21081 BP 1220
21082 EP 1233
21083 PG 14
21084 SC Multidisciplinary Sciences
21085 GA PD156
21086 UT ISI:A1994PD15600017
21087 ER
21088 
21089 PT J
21090 AU DUNHAM, CB
21091    ZHU, CZ
21092 TI COMPUTATION OF THE MODIFIED STRONG UNIQUENESS CONSTANTS
21093 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
21094 DT Article
21095 DE COMPUTATION; MINIMAX APPROXIMATION; MODIFIED STRONG UNIQUENESS
21096    CONSTANT; NEARNESS OF COEFFICIENTS (PARAMETERS); HAAR CONDITION
21097 AB Paralleling the classical strong uniqueness, in this paper we consider
21098    the modified strong uniqueness which measures the distance between the
21099    best approximation and the achieved approximation in the parameter norm
21100    instead of uniform (function) norm in which the classical strong
21101    uniqueness measures the distance.  We introduce a quantity called
21102    modified strong uniqueness constant which can be used to bound the
21103    distance mentioned above (if we can bound the difference between the
21104    minimal approximation error norm and the achieved approximation error
21105    norm), and deduce a computation formula for it for both linear and
21106    nonlinear uniform approximations. Cline's arguments for the classical
21107    strong uniqueness constant are used, but we make some modifications due
21108    to the turning of our attention from uniform (function) norm to
21109    parameter norm. Implementation of the computation, and examples for
21110    computing both classical and modified strong uniqueness constants are
21111    given. We also introduce a quantity which is analogous to Lipschitz
21112    constant.
21113 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
21114 RP DUNHAM, CB, UNIV WESTERN ONTARIO,DEPT COMP SCI,LONDON N6A
21115    5B7,ONTARIO,CANADA.
21116 CR CLINE AK, 1973, J APPROXIMATION THEO, V8, P160
21117    CROMME L, 1978, NUMER MATH, V29, P179
21118    DUNHAM C, 1980, J COMPUT APPL MATH, V6, P241
21119    DUNHAM C, 1986, C NUMERANTIUM, V51, P123
21120    DUNHAM C, 1988, 204 U W ONT DEP COMP
21121    DUNHAM C, 1989, APPROX THEORY APPL, V5, P43
21122    DUNHAM C, 1992, 312 U W ONT DEP COMP
21123    DUNHAM C, 1993, 377 U W ONT DEP COMP
21124    JITTORNTRUM K, 1980, NUMER MATH, V34, P439
21125    RICE JR, 1964, APPROXIMATION FUNCTI, V1
21126    SMITH, 1979, THESIS U CALIFORNIA
21127 NR 11
21128 TC 1
21129 SN 0020-7160
21130 J9 INT J COMPUT MATH
21131 JI Int. J. Comput. Math.
21132 PY 1994
21133 VL 52
21134 IS 1-2
21135 BP 83
21136 EP 97
21137 PG 15
21138 SC Mathematics, Applied
21139 GA PA314
21140 UT ISI:A1994PA31400008
21141 ER
21142 
21143 PT J
21144 AU LIU, HL
21145    CHEN, NY
21146    LU, WC
21147    ZHU, XW
21148 TI MULTITARGET CLASSIFICATION PATTERN-RECOGNITION APPLIED TO
21149    COMPUTER-AIDED MATERIALS DESIGN
21150 SO ANALYTICAL LETTERS
21151 DT Article
21152 DE CLASSIFICATION PATTERN RECOGNITION; PRINCIPAL COMPONENT ANALYSIS;
21153    INVERSE MAPPING; OPTIMIZATION; MATERIALS DESIGN
21154 AB A multi-target classification pattern recognition method based on the
21155    principal component analysis (PCA) has been proposed for computer-aided
21156    materials design considering the multiple specialties of materials. The
21157    designed sample with probable optimal specialties is determined in such
21158    way that its representing point should be at the optimal region in the
21159    PC sub-space, where most optimal samples can be discriminated from
21160    nonoptimal samples by means of features. The experimental parameters of
21161    the sample represented by this point can be obtained using a non-linear
21162    inverse mapping method from the PC sub-space to the original space.
21163    Based on the information provided using the method, several samples of
21164    V-PTC materials with optimal multiple specialties are synthesized.
21165 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
21166 RP LIU, HL, CHINESE ACAD SCI,SHANGHAI INST MET,SHANGHAI 200050,PEOPLES R
21167    CHINA.
21168 CR CHEN N, 1988, ANAL CHIM ACTA, V210, P175
21169    CHEN NY, 1990, 1990 INT S P MECH PR, P777
21170    CHEN Y, 1990, ABIT, V4, P29
21171    HAYMANN PW, 1955, 929350, GE
21172    KAZUSHIRO H, 1985, 5329234, JA
21173    KOWALSKI BR, 1982, CLASSIFICATION PATTE, P673
21174    LIU HL, 1991, CHINESE SCI BULL, V36, P991
21175    LIU HL, 1993, PATT RECOG ARTI, V6, P399
21176    SAMMON JW, 1969, IEEE T COMPUT, V18, P401
21177    VARMUZA K, 1980, PATTERN RECOGNITION
21178 NR 10
21179 TC 7
21180 SN 0003-2719
21181 J9 ANAL LETT
21182 JI Anal. Lett.
21183 PY 1994
21184 VL 27
21185 IS 11
21186 BP 2195
21187 EP 2203
21188 PG 9
21189 SC Chemistry, Analytical
21190 GA NY067
21191 UT ISI:A1994NY06700014
21192 ER
21193 
21194 PT J
21195 AU TAN, WH
21196 TI THE EXACT SOLUTION TO THE REGULAR PUMP MODEL OF PHOTON NOISE-REDUCTION
21197    IN LASERS
21198 SO PHYSICS LETTERS A
21199 DT Article
21200 ID FEEDBACK
21201 AB An exact solution to the regular pump model of photon reduction in
21202    lasers is presented.
21203 RP TAN, WH, SHANGHAI UNIV SCI TECHNOL,ACAD SINICA,SHANGHAI INST OPT & FINE
21204    MECH,JOINT LAB QUANTUM OPT,SHANGHAI 201800,PEOPLES R CHINA.
21205 CR GOLUBEV YM, 1984, ZH EKSP TEOR FIZ, V60, P234
21206    HAAK F, 1989, PHYS REV A, V40, P712
21207    HAUS HA, 1986, PHYS REV A, V34, P270
21208    MACHIDA S, 1986, OPT COMMUN, V57, P290
21209    SARGENT M, 1974, LASER PHYSICS, P297
21210 NR 5
21211 TC 7
21212 SN 0375-9601
21213 J9 PHYS LETT A
21214 JI Phys. Lett. A
21215 PD JUL 11
21216 PY 1994
21217 VL 190
21218 IS 1
21219 BP 13
21220 EP 16
21221 PG 4
21222 SC Physics, Multidisciplinary
21223 GA NX957
21224 UT ISI:A1994NX95700004
21225 ER
21226 
21227 PT J
21228 AU MA, RD
21229    ZHANG, QL
21230    DING, WY
21231    ZHANG, QR
21232    XU, MJ
21233 TI STRUCTURE OF PEROXIDE FORMED DURING PREIRRADIATION OF STYRENE AND ITS
21234    INITIATING REACTIVITY
21235 SO ACTA CHIMICA SINICA
21236 DT Article
21237 AB Preirradiation of styrene under total dosage 5 x 10(4) Gy of gamma-ray
21238    radiation and different dose rate 2.9 Gy/s, 0.7 Gy/s, 0.5Gy/s and 0.3
21239    Gy/s were investigated. The peroxides formed during Preirradiation were
21240    separated by silica gel column chromatography in three components, 1,2
21241    and 3 respectively. The distribution of components was different with
21242    the different dose rate. The peroxide isolated only the single
21243    component 2 when dose rate was 0.3 Gy/s. Their structures were studied
21244    by IR, H-1 NM R and MS. It was found the component 2 possesses strong
21245    initiating reactivity with the structure of alternating peroxide,
21246    initiates smoother polymerization than BPO under lower temperature and
21247    shorter time. It also initiates copolymerization with other monomer.
21248 RP MA, RD, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R
21249    CHINA.
21250 CR MUKUNDAN T, 1989, J POLYM SCI C, V2, P455
21251 NR 1
21252 TC 0
21253 SN 0567-7351
21254 J9 ACTA CHIM SIN
21255 JI Acta Chim. Sin.
21256 PY 1994
21257 VL 52
21258 IS 6
21259 BP 603
21260 EP 608
21261 PG 6
21262 SC Chemistry, Multidisciplinary
21263 GA NX086
21264 UT ISI:A1994NX08600014
21265 ER
21266 
21267 PT J
21268 AU FANG, ZH
21269    ZHANG, MX
21270    SHEN, CH
21271    WANG, Y
21272 TI THE HAL-3 RADAR TEST SET
21273 SO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS
21274 DT Article
21275 AB This paper presents the HAL-3 radar test set (called the set in the
21276    following) used to measure the technical specifications of the HAL-3
21277    airborne radar and to maintain it based on tested results. Some new
21278    techniques are employed in the set, including sinusoidal pulsewidth
21279    modulation (SPWM) in the power supply, digital gyro simulator and
21280    automatic test module (ATM) with STD industrial control microprocessor
21281    series. The specially designed software implements man-machine
21282    interaction with menu in chinese, selects parameters and operation
21283    mode, and controls testing procedures. These techniques may be
21284    extensively applied to other automatic test instruments.
21285 RP FANG, ZH, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI INST ELECTRON
21286    PHYS,SHANGHAI 201800,PEOPLES R CHINA.
21287 CR ZHENHE F, 1992, 1992 AMSE MSC 92 C P, P69
21288 NR 1
21289 TC 0
21290 SN 0018-9251
21291 J9 IEEE TRANS AEROSP ELECTRON SY
21292 JI IEEE Trans. Aerosp. Electron. Syst.
21293 PD JUL
21294 PY 1994
21295 VL 30
21296 IS 3
21297 BP 919
21298 EP 924
21299 PG 6
21300 SC Engineering, Aerospace; Engineering, Electrical & Electronic;
21301    Telecommunications
21302 GA NV887
21303 UT ISI:A1994NV88700025
21304 ER
21305 
21306 PT J
21307 AU SHENG, ZL
21308    WOLFE, MA
21309 TI AN INTERVAL ALGORITHM FOR NONDIFFERENTIABLE GLOBAL OPTIMIZATION
21310 SO APPLIED MATHEMATICS AND COMPUTATION
21311 DT Article
21312 AB An interval algorithm for constrained nondifferentiable global
21313    optimization in which an exact penalty function is used is described,
21314    and the determination of the penalty function parameter is discussed.
21315    Numerical results are presented.
21316 C1 UNIV ST ANDREWS,SCH MATH & COMP SCI,ST ANDREWS KY15 9SS,FIFE,SCOTLAND.
21317 RP SHENG, ZL, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R
21318    CHINA.
21319 CR ALEFELD G, 1983, INTRO INTERVAL COMPU
21320    BRACKEN J, 1968, SELECTED APPLICATION
21321    GOULD FJ, 1972, NONLINEAR TOLERANCE
21322    HESTENES MR, 1975, OPTIMIZATION THEORY
21323    MOORE RE, 1979, SIAM STUDIES, V2
21324    NEUMAIER A, 1988, PERSPECTIVES COMPUTI, V9
21325    NEUMAIER A, 1990, ENCY MATH ITS APPLIC
21326    RATSCHEK H, 1988, E HORWOOD SERIES MAT
21327    SHEN ZH, 1990, APPL MATH COMPUT, V39, P89
21328    WOLFE MA, 1994, J COMPUT APPL MATH, V50, P1
21329 NR 10
21330 TC 2
21331 SN 0096-3003
21332 J9 APPL MATH COMPUT
21333 JI Appl. Math. Comput.
21334 PD JUL
21335 PY 1994
21336 VL 63
21337 IS 2-3
21338 BP 101
21339 EP 122
21340 PG 22
21341 SC Mathematics, Applied
21342 GA NV827
21343 UT ISI:A1994NV82700001
21344 ER
21345 
21346 PT J
21347 AU RASHID, A
21348    WEIMING, C
21349    BENYU, G
21350 TI 3 LEVEL FOURIER SPECTRAL APPROXIMATIONS FOR FLUID-FLOW WITH LOW MACH
21351    NUMBER
21352 SO APPLIED MATHEMATICS AND COMPUTATION
21353 DT Article
21354 ID TIME
21355 AB Fourier spectral approximation, combined with a second-order time
21356    differencing technique for fluid flow with low Mach number is
21357    considered in this paper. Its generalized stability and convergence are
21358    strictly proven.
21359 RP RASHID, A, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
21360 CR BENYU G, 1986, CHINESE SCI BULL, V31, P1081
21361    CANUTO C, 1987, SPECTRAL FLUID DYNAM
21362    MA HP, 1986, J COMPUT PHYS, V65, P120
21363    PENYU K, 1990, NUMER MATH J CHINESE, V2, P64
21364    RASHID A, 1992, FOURIER PSEUDOSPECTR
21365    ROACHE PJ, 1976, COMPUTATIONAL FLUID
21366    TALEZER H, 1989, SIAM J NUMER ANAL, V26, P1
21367    ZAKARIA A, 1985, THESIS U NICE
21368    ZLATEV Z, 1984, J COMPUT PHYS, V55, P278
21369 NR 9
21370 TC 0
21371 SN 0096-3003
21372 J9 APPL MATH COMPUT
21373 JI Appl. Math. Comput.
21374 PD JUL
21375 PY 1994
21376 VL 63
21377 IS 2-3
21378 BP 131
21379 EP 149
21380 PG 19
21381 SC Mathematics, Applied
21382 GA NV827
21383 UT ISI:A1994NV82700003
21384 ER
21385 
21386 PT J
21387 AU BOARDMAN, AD
21388    NIKITOV, SA
21389    WANG, Q
21390 TI THEORY OF BISTABLE MAGNETOSTATIC SURFACE-WAVES
21391 SO IEEE TRANSACTIONS ON MAGNETICS
21392 DT Article
21393 ID OPTICAL BISTABILITY; BEHAVIOR
21394 AB A comprehensive theory of nonlinear magnetostatic wave propagation in a
21395    corrugated ferromagnetic film is presented. The applied magnetic field
21396    is in the plane of the film, and is perpendicular to the propagation
21397    direction. A portion of the film has its upper boundary periodically
21398    corrugated, and an analysis close to the Bragg condition is carried
21399    out. Typical bistable loops of output power against input power are
21400    obtained. Multistability is predicted for input powers, in the range
21401    50-150 mW/mm. The threshold power is rather sensitive to the modulation
21402    of the upper surface, i.e., to the amplitude of the geometric
21403    variations on the periodic surface. Small amplitudes suppress the
21404    multistability and this critical region is investigated quantitatively.
21405    It is concluded that the multistable effects should be readily
21406    observable.
21407 C1 RUSSIAN ACAD SCI,INST RADIOENGN & ELECTR,MOSCOW,RUSSIA.
21408    SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
21409 RP BOARDMAN, AD, UNIV SALFORD,DEPT PURE & APPL PHYS,SALFORD M5
21410    4WT,LANCS,ENGLAND.
21411 CR ADAM JD, 1977, IEEE T MAG, V13, P1246
21412    ALMEIDA NS, 1987, PHYS REV B, V36, P2015
21413    AN NB, 1989, PHYS LETT A, V136, P71
21414    BASHAROV AM, 1988, ZH EKSP TEOR FIZ, V67, P1741
21415    BAZHENOV VY, 1990, P SPIE INT SOC OPT E, V1280, P289
21416    BOARDMAN AD, 1990, NATO ASI SER B-PHYS, V247, P239
21417    BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
21418    BRILLOUIN L, 1953, WAVE PROPAGATION PER
21419    ELACHI C, 1975, IEEE T MAGN, V11, P36
21420    EMPSTEN A, 1990, IEEE J QUANTUM ELECT, V26, P1089
21421    ESIPOV SE, 1988, SOV PHYS JETP, V67, P1363
21422    FELBER FS, 1976, APPL PHYS LETT, V28, P731
21423    GIBBS HM, 1985, OPTICAL BISTABILITY
21424    GULYAEV YV, 1980, SOV PHYS-SOLID STATE, V22, P1651
21425    GULYAEV YV, 1981, SOV PHYS-SOLID STATE, V23, P2138
21426    GULYAEV YV, 1981, SOV PHYS-SOLID STATE, V23, P724
21427    KAWARSCHIK R, 1982, OPT ACT, V29, P455
21428    KOGELNIK H, 1972, J APPL PHYS, V43, P2327
21429    KUZNETSOV AV, 1988, SOV PHYS SEMICOND+, V22, P1143
21430    LEUNG KM, 1989, PHYS REV B, V39, P3590
21431    OKUDA M, 1977, JPN J APPL PHYS, V16, P769
21432    PENG ST, 1975, IEEE T MICROW THEORY, V23, P123
21433    SUNG CC, 1984, J OPT SOC AM B, V1, P476
21434    TSUTSUMI M, 1975, IEEE T MICROWAVE THE, V58, P16
21435    TSUTSUMI M, 1975, J I ELECTRON COMMU B, V58, P16
21436    TSUTSUMI M, 1977, IEEE T MICROWAVE THE, V25, P224
21437    VUKOVICH S, 1990, SOV PHYS JETP, V71, P964
21438    WINFUL HG, 1979, APPL PHYS LETT, V35, P379
21439 NR 28
21440 TC 20
21441 SN 0018-9464
21442 J9 IEEE TRANS MAGN
21443 JI IEEE Trans. Magn.
21444 PD JAN
21445 PY 1994
21446 VL 30
21447 IS 1
21448 BP 1
21449 EP 13
21450 PG 13
21451 SC Engineering, Electrical & Electronic; Physics, Applied
21452 GA NC483
21453 UT ISI:A1994NC48300001
21454 ER
21455 
21456 PT J
21457 AU BOARDMAN, AD
21458    WANG, Q
21459    NIKITOV, SA
21460    SHEN, J
21461    CHEN, W
21462    MILLS, D
21463    BAO, JS
21464 TI NONLINEAR MAGNETOSTATIC SURFACE-WAVES IN FERROMAGNETIC-FILMS
21465 SO IEEE TRANSACTIONS ON MAGNETICS
21466 DT Article
21467 ID ENVELOPE SOLITONS
21468 AB A comprehensive perturbation theory is presented, that enables the
21469    nonlinear wavenumber shift of magnetostatic surface waves (MSSW) on a
21470    thin ferromagnetic film to be calculated from first principles. The
21471    MSSW propagate, in this case, perpendicularly or obliquely to the
21472    applied magnetic field and their group-velocity dispersion is positive.
21473    Detailed calculations show that the nonlinear coefficient is also
21474    positive so that bright envelope solitons are forbidden. Nevertheless,
21475    nonlinear pulse shaping is possible so the use of the nonlinear
21476    Schrodinger equation is discussed in detail, together with the role of
21477    damping.
21478 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
21479    RUSSIAN ACAD SCI,INST RADIOENGN & ELECTR,MOSCOW,RUSSIA.
21480    UNIV CALIF IRVINE,DEPT PHYS,IRVINE,CA 92717.
21481    ROCKWELL INT CORP,CTR SCI,THOUSAND OAKS,CA 91360.
21482 RP BOARDMAN, AD, UNIV SALFORD,DEPT PURE & APPL PHYS,SALFORD M5
21483    4WT,LANCS,ENGLAND.
21484 CR BLOW KJ, 1985, OPT COMMUN, V52, P367
21485    BOARDMAN AD, 1988, PHYS REV B, V38, P1144
21486    BOARDMAN AD, 1991, NATO ASI SER B-PHYS, V247, P235
21487    DEGASPERIS P, 1987, PHYS REV LETT, V59, P481
21488    DEGASPERIS P, 1988, J APPL PHYS, V63, P4136
21489    GUREVICH AG, 1963, FERRITE MICROWAVE FR, P135
21490    KALINIKOS BA, 1988, ZH EKSP TEOR FIZ, V67, P303
21491    KALINIKOS BA, 1990, IEEE T MAGN, V26, P1477
21492    KALINIKOS BA, 1990, PHYS REV B B, V42, P8658
21493    SCHILZ W, 1973, PHILIPS RES REP, V28, P50
21494    SCOTT AC, 1973, P IEEE, V61, P1443
21495    SODHA MS, 1981, MICROWAVE PROPAGATIO
21496    ZVEZDIN AK, 1983, ZH EKSP TEOR FIZ, V57, P350
21497 NR 13
21498 TC 37
21499 SN 0018-9464
21500 J9 IEEE TRANS MAGN
21501 JI IEEE Trans. Magn.
21502 PD JAN
21503 PY 1994
21504 VL 30
21505 IS 1
21506 BP 14
21507 EP 22
21508 PG 9
21509 SC Engineering, Electrical & Electronic; Physics, Applied
21510 GA NC483
21511 UT ISI:A1994NC48300002
21512 ER
21513 
21514 PT J
21515 AU WAN, XJ
21516    ZHU, JH
21517    JING, KL
21518    LIU, CT
21519 TI HYDROGEN DIFFUSIVITY IN BORON-DOPED POLYCRYSTALLINE NI3AL
21520 SO SCRIPTA METALLURGICA ET MATERIALIA
21521 DT Article
21522 ID ENVIRONMENTAL EMBRITTLEMENT; DUCTILITY
21523 C1 OAK RIDGE NATL LAB,DIV MET & CERAM,OAK RIDGE,TN 37831.
21524 RP WAN, XJ, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 200072,PEOPLES R CHINA.
21525 CR AOKI K, 1979, NIPPON KINZOKU GAKKA, V43, P1190
21526    CHOUDHURY A, 1987, ORNLTM10508 OAK RIDG
21527    DEVANATHAN MAV, 1962, P ROY SOC LOND A MAT, V270, P90
21528    GEORGE EP, 1992, SCRIPTA METALL MATER, V27, P365
21529    GEORGE EP, 1993, SCRIPTA METALL MATER, V28, P857
21530    GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37
21531    GEROGE EP, 1993, STRUCTURAL INTERMETA, P431
21532    HANADA S, 1985, J MATER SCI, V21, P203
21533    LIU CT, 1985, ACTA METALL, V33, P213
21534    LIU CT, 1992, NATO ASI SER, V213, P321
21535    LIU CT, 1992, SCRIPTA METALL MATER, V27, P25
21536    LIU CT, 1993, MATER RES SOC S P, V288, P3
21537    MASAHASHI N, 1988, ACTA METALL, V36, P1823
21538    TAKASUGI T, 1991, MATER RES SOC S P, V213, P403
21539    TAUB AI, 1984, METALL TRANS A, V15, P399
21540    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
21541    YAO J, 1993, METALL TRANS A, V24, P105
21542    ZHU JH, 1993, SCRIPTA METALL MATER, V29, P429
21543 NR 18
21544 TC 29
21545 SN 0956-716X
21546 J9 SCR METALL MATER
21547 JI Scr. Metall. Materialia
21548 PD SEP 15
21549 PY 1994
21550 VL 31
21551 IS 6
21552 BP 677
21553 EP 681
21554 PG 5
21555 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
21556    Engineering
21557 GA NW207
21558 UT ISI:A1994NW20700006
21559 ER
21560 
21561 PT J
21562 AU GRIMSHAW, R
21563    ZHU, Y
21564 TI OBLIQUE INTERACTIONS BETWEEN INTERNAL SOLITARY WAVES
21565 SO STUDIES IN APPLIED MATHEMATICS
21566 DT Article
21567 ID ATMOSPHERE
21568 AB In this paper, we study the oblique interaction of weakly, nonlinear,
21569    long internal gravity waves in both shallow and deep fluids. The
21570    interaction is classified as weak when DELTA1,2 much greater than alpha
21571    where DELTA1 = \c(m)/c(n) - cos delta\, DELTA2 = \c(n)/c(m) - cos
21572    delta\, c(m,n) are the linear, long wave speeds for waves with mode
21573    numbers m, n, delta is the angle between the respective propagation
21574    directions, and alpha measures the wave amplitude. In this case, each
21575    wave is governed by its own Kortweg-de Vries (KdV) equation' for a
21576    shallow fluid, or intermediate long-wave (ILW) equation for a deep
21577    fluid, and the main effect of the interaction is an 0(alpha) phase
21578    shift. A strong interaction (I) occurs when DELTA1,2 are 0(alpha), and
21579    this case is governed by two coupled Kadomtsev-Petviashvili (KP)
21580    equations for a shallow fluid, or two coupled, two-dimensional ILW
21581    equations for deep fluids. A strong interaction (II) occurs when DELTA1
21582    is 0(alpha), and DELTA2 much greater than a (or vice versa), and in
21583    this case, each wave is governed by its own KdV equation for a shallow
21584    fluid, or ILW equation for a deep fluid. The main effect of the
21585    interaction is that the phase shift associated with DELTA1 leads to a
21586    local distortion of the wave speed of the mode n. When the interacting
21587    waves belong to the same mode (i.e., m = n) the general results
21588    simplify and we show that for a weak interaction (\1 - cos delta\ much
21589    greater than alpha) the phase shift for obliquely interacting waves
21590    always negative (positive) for (1/2 + cos delta) > 0(< 0), while the
21591    interaction term always has the same polarity as the interacting waves.
21592 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
21593 RP GRIMSHAW, R, MONASH UNIV,DEPT MATH,CLAYTON,VIC 3168,AUSTRALIA.
21594 CR ABLOWITZ MJ, 1981, SOLITONS INVERSE SCA
21595    APEL JR, 1980, ANN REV EARTH PLANET, V8, P303
21596    BENNEY DJ, 1966, J MATH PHYS, V45, P52
21597    CHRISTIE DR, 1978, J ATMOS SCI, V35, P805
21598    DAI SQ, 1984, APPL MATH MECH, V5, P1469
21599    ECKART C, 1961, PHYS FLUIDS, V4, P791
21600    FARMER DM, 1978, J PHYS OCEANOGR, V8, P63
21601    GEAR JA, 1984, STUD APPL MATH, V70, P235
21602    GEAR JA, 1985, STUD APPL MATH, V72, P95
21603    GRIMSHAW R, 1983, 1982 P IUTAM S TALL, P431
21604    GRIMSHAW RHJ, 1986, ENCY FLUID MECHANICS, P3
21605    LIU AK, 1980, STUD APPL MATH, V63, P25
21606    MILES JW, 1977, J FLUID MECH, V79, P157
21607    MILES JW, 1977, J FLUID MECH, V79, P170
21608    SMITH RK, 1988, EARTH-SCI REV, V25, P267
21609 NR 15
21610 TC 12
21611 SN 0022-2526
21612 J9 STUD APPL MATH
21613 JI Stud. Appl. Math.
21614 PD JUL
21615 PY 1994
21616 VL 92
21617 IS 3
21618 BP 249
21619 EP 270
21620 PG 22
21621 SC Mathematics, Applied
21622 GA NV263
21623 UT ISI:A1994NV26300004
21624 ER
21625 
21626 PT J
21627 AU CHADDERTON, LT
21628    ZHU, JL
21629    CRUZ, SA
21630    FINK, D
21631    GHOSH, S
21632 TI ELECTRONIC STOPPING AND ETCHED PARTICLE TRACKS IN POLYMERS
21633 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
21634    INTERACTIONS WITH MATERIALS AND ATOMS
21635 DT Article
21636 ID IMPLANTATION; DAMAGE
21637 AB The existence of a maximum in the electronic stopping power when an
21638    energetic ion reaches some depth in a solid target is well known.
21639    Experiments are described in which lithium ions - in the energy range
21640    0.6 to 3 MeV - were used to bombard the common polymer and particle
21641    dosimeter CR-39, so that the position of the stopping power peak
21642    relative to the polymer surface could be systematically varied.
21643    Differences in etched surface track diameters measured by optical
21644    microscopy and corresponding to differences in energy approximately 0.2
21645    MeV could be readily distinguished. Maximum etched track diameters
21646    clearly coincided with the intersection of maximum electronic energy
21647    losses with the CR-39 surface. Implications of this to more general
21648    stopping are discussed, including a linear relationship between the
21649    maximum electronic stopping power at a surface and the atomic number of
21650    the projectile ion.
21651 C1 SHANGHAI UNIV SCI & TECHNOL, INST APPL RADIAT, SHANGHAI, PEOPLES R CHINA.
21652    UNIV AUTONOMA METROPOLITANA IZTAPALAPA, DEPT FIS, MEXICO CITY 09340, DF, MEXICO.
21653    HAHN MEITNER INST BERLIN GMBH, DEP P-3, D-14109 BERLIN, GERMANY.
21654    NE HILL UNIV, DEPT CHEM, SHILLONG, INDIA.
21655    AUSTRALIAN NATL UNIV, RES SCH PHYS SCI, INST ADV STUDIES, CANBERRA, ACT 2601, AUSTRALIA.
21656 RP CHADDERTON, LT, AUSTRALIAN NATL UNIV, CSIRO, DIV APPL PHYS, GPO BOX 4,
21657    CANBERRA, ACT 2601, AUSTRALIA.
21658 CR BERNARDI L, 1991, NUCL INSTRUM METH B, V53, P61
21659    BIERSACK JP, 1982, Z PHYS A, V305, P95
21660    DAVENAS J, 1989, NUCL INSTRUM METH B, V39, P796
21661    FINK D, 1992, NUCL INSTRUM METH B, V65, P432
21662    GIBBONS JF, 1972, P IEEE, V60, P1062
21663 NR 5
21664 TC 4
21665 SN 0168-583X
21666 J9 NUCL INSTRUM METH PHYS RES B
21667 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
21668 PD JUN
21669 PY 1994
21670 VL 91
21671 IS 1-4
21672 BP 168
21673 EP 171
21674 PG 4
21675 SC Physics, Atomic, Molecular & Chemical; Physics, Nuclear; Instruments &
21676    Instrumentation; Nuclear Science & Technology
21677 GA NR935
21678 UT ISI:A1994NR93500027
21679 ER
21680 
21681 PT J
21682 AU LIU, ZM
21683    ZHU, JL
21684    GUO, YP
21685    YU, ZW
21686    QIAN, PP
21687    MA, ZT
21688 TI CHEMICAL EFFECTS OF ION-IMPLANTATION IN POLYANILINE
21689 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
21690    INTERACTIONS WITH MATERIALS AND ATOMS
21691 DT Article
21692 AB The chemical changes of polyaniline resulted from implantation of H, B,
21693    P, F, BF2, or Ar ions have been studied. From ESCA studies it is
21694    concluded that the number of nitrogen atoms in polyaniline decreases
21695    with increasing ion dose, while the number of oxygen atoms in the ion
21696    implanted layer of polyaniline increases. ESR (electron spin resonance)
21697    spectra show that the radical concentration in polyaniline increases
21698    with the ion dose. From FTIR analysis, two different kinds of chemical
21699    changes in the irradiated polyaniline are found, one from implanting H,
21700    F, or BF2 ions and the other from implanting B, P, or Ar ions.
21701 RP LIU, ZM, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI
21702    201800,PEOPLES R CHINA.
21703 CR DESURVILLE R, 1968, ELECTROCHIM ACTA, V13, P1451
21704    KITANI A, 1988, J POLYM SCI A, V88, P2385
21705    SILVERSTEIN RM, 1974, SPECTROMETRIC IDENTI
21706    WANG LX, 1990, APPL CHEM, V75, P1
21707    WANG ZM, 1982, APPLIED INFRARED SPE
21708    ZHU JL, 1994, NUCL INSTRUM METH B, V91, P469
21709 NR 6
21710 TC 2
21711 SN 0168-583X
21712 J9 NUCL INSTRUM METH PHYS RES B
21713 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
21714 PD JUN
21715 PY 1994
21716 VL 91
21717 IS 1-4
21718 BP 465
21719 EP 468
21720 PG 4
21721 SC Physics, Atomic, Molecular & Chemical; Physics, Nuclear; Instruments &
21722    Instrumentation; Nuclear Science & Technology
21723 GA NR935
21724 UT ISI:A1994NR93500088
21725 ER
21726 
21727 PT J
21728 AU ZHU, JL
21729    LIU, ZM
21730    YU, ZW
21731    GUO, YP
21732    MA, ZT
21733    BENG, RZ
21734 TI EFFECTS OF ION-IMPLANTATION ON THE ELECTRICAL-CONDUCTIVITY OF
21735    POLYANILINE
21736 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
21737    INTERACTIONS WITH MATERIALS AND ATOMS
21738 DT Article
21739 AB Polyaniline with a marked environmental stability was bombarded by
21740    beams of hydrogen, boron, fluorine, phosphorus and argon ions. All
21741    irradiated surfaces displayed substantial changes in physical
21742    properties (e.g. electrical conductivity, colour, etc.). The highest
21743    measured conductivity was approximately 100 S/cm and the irradiated
21744    samples have now been shown to be environmentally stable. The
21745    conductivity of the irradiated zone depended upon the deposited
21746    electronic energy density and also upon the chemical structure and
21747    composition. The radicals appeared prior to nitrogen release when the
21748    electronic energy deposition density was at the lower threshold in the
21749    irradiated layer. The radical concentration, nitrogen release and
21750    carbon richness contributed to the conductivity. Shrinkage and colour
21751    changes accompanied by nitrogen release and remnant nitrogen reduction
21752    or oxidation and also a higher conductivity value were observed.
21753 C1 SHANGHAI DEVICES FACTORY 5,SHANGHAI 20041,PEOPLES R CHINA.
21754 RP ZHU, JL, SHANGHAI UNIV SCI & TECHNOL,INST APPL RADIAT,SHANGHAI
21755    201800,PEOPLES R CHINA.
21756 CR CHADDERTON LT, 1994, NUCL INSTRUM METH B, V91, P71
21757    FINK D, 1992, COMMUNICATION
21758    FRIEND R, 1992, PHYS WORLD       NOV, P42
21759    LIU ZM, 1994, NUCL INSTRUM METH B, V91, P465
21760    RUDY FH, 1988, J MATER RES, V3, P1253
21761    VANKKATESSAN T, 1983, POLYM SCI ENG, V23, P931
21762 NR 6
21763 TC 13
21764 SN 0168-583X
21765 J9 NUCL INSTRUM METH PHYS RES B
21766 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
21767 PD JUN
21768 PY 1994
21769 VL 91
21770 IS 1-4
21771 BP 469
21772 EP 472
21773 PG 4
21774 SC Physics, Atomic, Molecular & Chemical; Physics, Nuclear; Instruments &
21775    Instrumentation; Nuclear Science & Technology
21776 GA NR935
21777 UT ISI:A1994NR93500089
21778 ER
21779 
21780 PT J
21781 AU GUO, BY
21782    ZHENG, JD
21783 TI A SPECTRAL APPROXIMATION OF THE BAROTROPIC VORTICITY EQUATION
21784 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
21785 DT Article
21786 ID BAROCLINIC PRIMITIVE EQUATION; DIFFERENCE METHOD; ERROR ESTIMATION
21787 AB A spectral scheme is considered for solving the barotropic vorticity
21788    equation. The error estimates are proved strictly. The technique used
21789    in this paper is also useful for other nonlinear problems defined on a
21790    spherical surface.
21791 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
21792    SHANGHAI INST COMP TECHNOL,SHANGHAI,PEOPLES R CHINA.
21793 CR ARAKAWA A, 1966, J COMPUT PHYS, V1, P119
21794    CANUTO C, 1988, SPECTRAL METHODS FLU
21795    COURANT R, 1953, METHODS MATH PHYSICS, V1
21796    GUO BY, 1974, ACTA MATH SINICA, V17, P242
21797    GUO BY, 1983, J COMPUT MATH, V1, P353
21798    GUO BY, 1987, SCI SINICA SER A, V30, P696
21799    GUO BY, 1988, DIFFERENCE METHOD PA
21800    GUO BY, 1989, J COMPUT PHYS, V84, P259
21801    GUO BY, 1992, SCI CHINA SER A, V35, P1
21802    HALTINER GJ, 1971, NUMERICAL WEATHER PR
21803    HALTINER GJ, 1980, NUMERICAL PREDICTION
21804    JARRAUD M, 1985, LECTURES APPLIED MAT, V22, P1
21805    LIONS JL, 1972, NONHOMOGENEOUS BOUND, V1
21806    ZEN QC, 1979, PHYSICAL MATH BASIS, V1
21807 NR 14
21808 TC 1
21809 SN 0254-9409
21810 J9 J COMPUT MATH
21811 JI J. Comput. Math.
21812 PD APR
21813 PY 1994
21814 VL 12
21815 IS 2
21816 BP 173
21817 EP 184
21818 PG 12
21819 SC Mathematics, Applied; Mathematics
21820 GA NT096
21821 UT ISI:A1994NT09600009
21822 ER
21823 
21824 PT J
21825 AU SHI, SZ
21826    ZHENG, Q
21827    ZHUANG, DM
21828 TI SET-VALUED ROBUST MAPPINGS AND APPROXIMATABLE MAPPINGS
21829 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
21830 DT Article
21831 ID MAPS
21832 AB The concepts of robustness of sets and mappings were proposed for the
21833    theory of integral global optimization. This paper discusses the
21834    robustness of a set-valued mapping, associating with the stability
21835    problem. We extend the equivalence between the robustness and the
21836    approximatability to the case of a set-valued mapping. We deal also
21837    with ''bi-robustness'' and ''in-robustness.''   (C) 1994 Academic
21838    Press, Inc.
21839 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
21840    MT ST VINCENT UNIV,DEPT MATH & COMP STUDIES,HALIFAX B3M 2J6,NS,CANADA.
21841 RP SHI, SZ, NANKAI INST MATH,TIANJIN 300071,PEOPLES R CHINA.
21842 CR AUBIN JP, 1988, ANN I H POINCARE-AN, V5, P519
21843    AUBIN JP, 1990, SET VALUED ANAL
21844    BORWEIN JM, 1988, J MATH ANAL APPL, V134, P441
21845    CHEW SH, 1988, LECTURE NOTES ECONOM, V298
21846    CHOQUET G, 1969, LECTURES ANAL, V1
21847    CHOQUET G, 1969, OUTILS TOPOLOGIQUES
21848    FRANKOWSKA H, CONICAL INVERSE MAPP
21849    FRANKOWSKA H, 1987, J MATH ANAL APPL, V127, P172
21850    FRANKOWSKA H, 1990, ANN I H POINCARE-AN, V7, P183
21851    OXTOBY JC, 1957, ANN MATH STUD, V39, P159
21852    PREISS D, 1990, ISRAEL J MATH, V72, P257
21853    SHI SZ, IN PRESS DISCONTINUO
21854    SHI SZ, 1981, C R ACAD SCI I, V293, P27
21855    ZHENG Q, IN PRESS GLOBAL MINI
21856    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205
21857    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317
21858    ZHENG Q, 1991, COMPUT MATH APPL, V21, P17
21859    ZHENG Q, 1991, RECENT ADV GLOBAL OP, P298
21860    ZHENG Q, 1992, 2ND P INT C FIX POIN, P346
21861 NR 19
21862 TC 5
21863 SN 0022-247X
21864 J9 J MATH ANAL APPL
21865 JI J. Math. Anal. Appl.
21866 PD MAY 1
21867 PY 1994
21868 VL 183
21869 IS 3
21870 BP 706
21871 EP 726
21872 PG 21
21873 SC Mathematics, Applied; Mathematics
21874 GA NN729
21875 UT ISI:A1994NN72900022
21876 ER
21877 
21878 PT J
21879 AU LUO, ZF
21880    XU, ZZ
21881    QIU, XJ
21882 TI ENERGY-DEPENDENT POTENTIAL AND HYPERFINE MASS SPLITTING OF QUARKONIUM
21883 SO COMMUNICATIONS IN THEORETICAL PHYSICS
21884 DT Article
21885 AB For scalar and vector interactions, the relativistic two-body Dirac
21886    equation is reduced in the nonrelativistic approximation by expanding
21887    in powers of E-1 to obtain energy-dependent effective potential. The
21888    spin-spin part of the resulting potential is applied to analyze the
21889    hyperfine mass splitting of quarkonium. It is found that the formula
21890    established with such a potential improves the description of hyperfine
21891    mass splittings for most ground state and excited state mesons of
21892    isospin nonzero and isospin zero.
21893 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
21894 RP LUO, ZF, ACAD SINICA,SHANGHAI INST OPT & FINE MECH,POB 800-211,SHANGHAI
21895    201800,PEOPLES R CHINA.
21896 CR 1988, PHYS LETT B, V204, P1
21897    1990, PHYS LETT B, V239, P1
21898    BARKER WA, 1955, PHYS REV, V99, P317
21899    BREIT G, 1958, PHYS REV, V111, P652
21900    BUCHMULLER W, 1981, PHYS REV D, V24, P3003
21901    CHAKRABARTY S, 1990, J PHYS G NUCL PARTIC, V16, P185
21902    FELDMAN G, 1973, PHYS REV A, V8, P1149
21903    FRANK M, 1985, PHYS LETT B, V159, P174
21904    FRANK M, 1987, Z PHYS C PART FIELDS, V34, P39
21905    GRATER HW, 1981, PHYS LETT B, V100, P166
21906    GREEN AES, 1967, NUCL PHYS B, V2, P267
21907    GROMES D, 1977, NUCL PHYS B, V131, P80
21908    IGI K, 1985, PHYS REV D, V32, P232
21909    JACOBS S, 1987, PHYS REV D, V35, P2448
21910    LICHTENBERG DB, 1987, PHYS LETT, V193, P95
21911    SATO S, 1990, NUOVO CIMENTO A, V103, P471
21912    SONG XT, 1989, PHYS REV D, V40, P3655
21913 NR 17
21914 TC 0
21915 SN 0253-6102
21916 J9 COMMUN THEOR PHYS
21917 JI Commun. Theor. Phys.
21918 PD MAR 15
21919 PY 1994
21920 VL 21
21921 IS 2
21922 BP 217
21923 EP 222
21924 PG 6
21925 SC Physics, Multidisciplinary
21926 GA NM498
21927 UT ISI:A1994NM49800015
21928 ER
21929 
21930 PT J
21931 AU DING, ZL
21932    YOSHIDA, M
21933    ASANO, M
21934    MA, ZT
21935    OMICHI, H
21936    KATAKAI, R
21937 TI THERMORESPONSIVE BEHAVIOR OF A METHACRYLOYL-DL-ALANINE METHYL-ESTER
21938    POLYMER GEL PREPARED BY RADIATION-INDUCED POLYMERIZATION
21939 SO RADIATION PHYSICS AND CHEMISTRY
21940 DT Article
21941 ID FUNCTIONAL CAPSULE MEMBRANES; PHASE-TRANSITION; THERMOSENSITIVE
21942    HYDROGEL; PERMEABILITY CONTROL; TEMPERATURE;
21943    POLY(N-ISOPROPYLACRYLAMIDE); PERMEATION; NETWORKS; COLLAPSE; RELEASE
21944 AB Loosely cross-linked poly(methacryloyl-DL-alanine methyl ester,
21945    MA-DL-AlaOMe) gels, which were prepared by radiation-induced
21946    polymerization, exhibited a reversible low-temperature swelling and
21947    high-temperature deswelling when cycled in water at different
21948    temperatures at 24-h intervals, in the range of 0 and 40-degrees-C. The
21949    thermo-response strongly depended upon irradiation condition.
21950    Increasing the irradiation dose resulted in a formation of lower
21951    molecular weight polymer owing to the scission of polymer chain, in
21952    which it gave a high swelling ability at low temperature, in contrast
21953    to a sluggish shrinkage at high temperature. On the other hand, no
21954    irradiation temperature affects the thermo-response of the gel. An
21955    important characteristic of the MA-DL-AlaOMe polymer gel is the
21956    formation of the membrane barrier at the surface with the rise in
21957    temperature, but it disappears in reswelling, to be termed
21958    ''surface-controlling on-off switch system''. Brilliant blue FCF (BB)
21959    as a model compound was incorporated into the gel to evaluate the
21960    capability as a thermo-responsive carrier for application in drug
21961    delivery systems, and it was found that the reversibly
21962    surface-controlling on-off switch function responsible to temperature
21963    changes plays an important role in a pulsatile release of BB from the
21964    gel in vitro.
21965 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,JIA DING,SHANGHAI,PEOPLES R CHINA.
21966    JAPAN ATOM ENERGY RES INST,TAKASAKI RADIAT CHEM RES ESTAB,DEPT MAT DEV,TAKASAKI,GUNMA 37012,JAPAN.
21967    GUNMA UNIV,FAC ENGN,DEPT CHEM,KIRYU,GUNMA 376,JAPAN.
21968 CR DONG LC, 1986, J CONTROL RELEASE, V4, P223
21969    FREITAS RFS, 1987, CHEM ENG SCI, V42, P97
21970    FUJISHIGE S, 1989, J PHYS CHEM-US, V93, P331
21971    HESKINS M, 1968, J MACROMOL SCI CHEM, V2, P1441
21972    HIROSE Y, 1987, MACROMOLECULES, V20, P1342
21973    HIROTSU S, 1987, J PHYS SOC JPN, V56, P233
21974    HOFFMAN AS, 1986, J CONTROL RELEASE, V4, P213
21975    ILAVSKY M, 1985, POLYMER, V26, P1514
21976    ISHIHARA K, 1985, J POLYM SCI POL CHEM, V23, P2841
21977    ITO R, 1990, INT J PHARM, V61, P109
21978    KUNGWATCHAKUN D, 1988, MAKROMOL CHEM-RAPID, V9, P243
21979    MUKAE K, 1990, POLYM J, V22, P206
21980    MUKAE K, 1990, POLYM J, V22, P250
21981    OHMINE I, 1982, J CHEM PHYS, V77, P5725
21982    OKAHATA Y, 1983, J AM CHEM SOC, V105, P4855
21983    OKAHATA Y, 1986, MACROMOLECULES, V19, P493
21984    OKANO T, 1990, J CONTROL RELEASE, V11, P255
21985    OSADA Y, 1985, CHEM LETT, P1285
21986    PALASIS M, 1992, J CONTROL RELEASE, V18, P1
21987    SAEKI S, 1976, POLYMER, V17, P685
21988    SATOH K, 1989, CHEM PHARM BULL, V37, P1642
21989    SCHILD HG, 1991, MACROMOLECULES, V24, P948
21990    TANAKA T, 1978, PHYS REV LETT, V40, P820
21991    TANAKA T, 1982, SCIENCE, V218, P467
21992    WINNIK FM, 1990, MACROMOLECULES, V23, P2414
21993    YOSHIDA M, 1989, EUR POLYM J, V25, P1197
21994    YOSHIDA M, 1991, DRUG DESIGN DELIVERY, V7, P159
21995    YOSHIDA M, 1991, EUR POLYM J, V27, P997
21996    YOSHIDA M, 1991, RADIAT PHYS CHEM, V38, P7
21997    YOSHIDA M, 1992, EUR POLYM J, V28, P1141
21998    YOSHIDA M, 1993, POLYM J, V25, P215
21999 NR 31
22000 TC 11
22001 SN 0146-5724
22002 J9 RADIAT PHYS CHEM
22003 JI Radiat. Phys. Chem.
22004 PD SEP
22005 PY 1994
22006 VL 44
22007 IS 3
22008 BP 263
22009 EP 272
22010 PG 10
22011 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
22012    Science & Technology
22013 GA NL474
22014 UT ISI:A1994NL47400004
22015 ER
22016 
22017 PT J
22018 AU LI, YZ
22019    DAVID, AK
22020 TI OPTIMAL MULTIAREA WHEELING
22021 SO IEEE TRANSACTIONS ON POWER SYSTEMS
22022 DT Article
22023 DE WHEELING; POWER TRANSMISSION ECONOMICS; POWER SYSTEM ECONOMICS;
22024    OPTIMIZATION METHODS; NONLINEAR PROGRAMMING
22025 ID MARGINAL-COST; RATES
22026 AB An important consideration in wheeling is where a transaction involves
22027    several parties, that is, multi-area wheeling. Power from seller to
22028    buyer flows through several intermediate utilities. Each utility
22029    represents an individual control area, engaged in part of a more
22030    complex wheeling transaction. Individual wheeling rates then have to be
22031    computed for each area. The question of how much energy should be
22032    transported through each path and what wheeling price should be payed
22033    is then an issue of importance. This is formulated as a nonlinear
22034    optimisation program with linear constraints and solved by a gradient
22035    projection method. The availability of FACTS capability to implement
22036    the optimal wheeling strategy once determined, is assumed in this paper.
22037 C1 HONG KONG POLYTECH,KOWLOON,HONG KONG.
22038 RP LI, YZ, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
22039 CR CARAMANIS MC, 1986, IEEE T POWER SYST, V1, P63
22040    CARAMANIS MC, 1989, IEEE T POWER SYST, V4, P594
22041    MERRILL HM, 1989, IEEE T POWER SYST, V4, P1445
22042    POWELL MJD, 1987, LECTURES NOTES MATH, V630
22043    SCHWEPPE FC, 1988, SPOT PRICING ELECTRI
22044    TALUKDAR SN, 1982, IEEE T PAS, V101, P415
22045    WOLFE P, 1967, NONLINEAR PROGRAMMIN, P120
22046 NR 7
22047 TC 8
22048 SN 0885-8950
22049 J9 IEEE TRANS POWER SYST
22050 JI IEEE Trans. Power Syst.
22051 PD FEB
22052 PY 1994
22053 VL 9
22054 IS 1
22055 BP 288
22056 EP 294
22057 PG 7
22058 SC Engineering, Electrical & Electronic
22059 GA NL152
22060 UT ISI:A1994NL15200095
22061 ER
22062 
22063 PT J
22064 AU JIANG, XY
22065    ZHANG, ZL
22066    ZHAO, WM
22067    LUI, ZG
22068    XU, SH
22069 TI A QUANTITATIVE-EVALUATION OF THE EXCITATION MECHANISM OF TM3+ IN A ZNS
22070    THIN-FILM
22071 SO JOURNAL OF PHYSICS-CONDENSED MATTER
22072 DT Article
22073 ID IMPACT EXCITATION; ELECTROLUMINESCENCE; TRANSPORT
22074 AB The impact excitation rates, and consequently the emission intensities,
22075    of various energy states of Tm3+ in ZnS thin-film electroluminescence
22076    (TFEL) have been quantitatively evaluated by calculating the radiative
22077    transition rates and the impact cross section, together with a Baraff
22078    distribution function of hot-electron energy The results show that the
22079    direct impact excitation rate of the 1G4 state of Tm3+ is very small,
22080    while that of the F-3(4) state is fairly large, resulting in a weak
22081    blue light intensity relative to the IR light in TFEL. Different
22082    theories of the electron distribution function are compared and
22083    discussed.
22084 RP JIANG, XY, SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SCI,SHANGHAI
22085    201800,PEOPLES R CHINA.
22086 CR ALLEN JW, 1986, J PHYS C SOLID STATE, V19, L369
22087    BARAFF GA, 1962, PHYS REV, V128, P2507
22088    BARAFF GA, 1964, PHYS REV, V133, A26
22089    BHATTACHARYYA K, 1993, J APPL PHYS, V73, P3390
22090    BRENNAN K, 1988, J APPL PHYS, V64, P4024
22091    BRINGUIER E, 1991, J APPL PHYS, V70, P4505
22092    BRINGUIER E, 1992, ELECTROLUMINESCENCE, P379
22093    FITTING HJ, 1990, PHYS STATUS SOLIDI A, V121, P305
22094    HUANG SH, 1983, LUMIN DISPLAY, V4, P23
22095    KOBAYASHI H, 1985, PHYS STATUS SOLIDI A, V88, P713
22096    KRUPKA DC, 1972, J APPL PHYS, V43, P476
22097    MA L, 1985, LUMIN DISPLAY DEVICE, V6, P192
22098    MACH R, 1984, PHYS STATUS SOLIDI A, V81, P609
22099    MACH R, 1990, J CRYST GROWTH, V101, P967
22100    OKAMOTO K, 1986, APPL PHYS LETT, V49, P1596
22101    ONO YA, 1993, SID F 1
22102    PAPPALARDO R, 1976, J LUMIN, V14, P159
22103    RIDLEY BK, 1983, J PHYS C SOLID STATE, V16, P3373
22104    SHOCKLEY W, 1961, SOLID STATE ELECTRON, V2, P35
22105    TANAKA S, 1992, J CRYST GROWTH, V117, P997
22106    WOLFF PA, 1954, PHYS REV, V95, P1415
22107    YU JQ, SPRINGER P PHYSICS, V38, P24
22108 NR 22
22109 TC 3
22110 SN 0953-8984
22111 J9 J PHYS-CONDENS MATTER
22112 JI J. Phys.-Condes. Matter
22113 PD APR 25
22114 PY 1994
22115 VL 6
22116 IS 17
22117 BP 3279
22118 EP 3290
22119 PG 12
22120 SC Physics, Condensed Matter
22121 GA NH957
22122 UT ISI:A1994NH95700018
22123 ER
22124 
22125 PT J
22126 AU TAO, DH
22127    LU, SP
22128    LI, ZY
22129    SHI, YP
22130 TI THE LUBRICATION EFFECT OF THE GLYCOLIPID-TYPE BIONIC SYNOVIAL-FLUID ON
22131    A BONE JOINT
22132 SO LUBRICATION ENGINEERING
22133 DT Article
22134 DE BIONIC SYNOVIAL FLUID; BONE JOINT; LUBRICATION EFFECT; FRICTION
22135    COEFFICIENT
22136 AB A new concept is proposed, using a glycolipid bionic lubricant to
22137    improve the behavior of pathologically-changed bone joints, such that
22138    an artificial joint might not be required.
22139    The experiments were made on a simulated bone joint test machine. The
22140    results showed that the lubrication behavior was excellent when an
22141    ethyl sophorosolipid aqueous solution of 50% concentration was used.
22142    The friction coefficient was only 13 to 20 percent, compared with dry
22143    friction under heavy load.
22144 C1 SHANGHAI INST ORGAN CHEM,SHANGHAI 200020,PEOPLES R CHINA.
22145 RP TAO, DH, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 200072,PEOPLES R CHINA.
22146 CR COOKE A, 1974, THESIS LEEDS U LEEDS
22147    DAVIES DV, 1967, P I MECH ENG, V181, P25
22148    DAVIES WH, 1987, ARTHRITIS RHEUM, V21, P754
22149    DUMBIETON JH, 1981, TRIBOLOGY NATURAL AR
22150    MANSOUR JM, 1977, ASME JUL TECH F, V99, P163
22151    OGSTON AG, 1950, BIOCHEM J, V46, P364
22152    OGSTON AG, 1951, BIOCHEM J, V49, P585
22153 NR 7
22154 TC 0
22155 SN 0024-7154
22156 J9 LUBRIC ENG
22157 JI Lubric. Eng.
22158 PD MAY
22159 PY 1994
22160 VL 50
22161 IS 5
22162 BP 386
22163 EP 389
22164 PG 4
22165 SC Engineering, Mechanical
22166 GA NJ065
22167 UT ISI:A1994NJ06500005
22168 ER
22169 
22170 PT J
22171 AU WANG, DR
22172    HUANG, ZJ
22173 TI ON THE CONVERGENCE OF THE BRENT METHOD
22174 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
22175 DT Article
22176 ID INEXACT NEWTON METHODS
22177 AB In this paper, we establish the semi-local convergence theorem of the
22178    rent method with regional estimation. By an in-depth investigation in
22179    to the algorithm structure of the method, we convert the Brent method
22180    into an approximate Newton method with a special error term. Bsaed on
22181    such equivalent variation, under a similar condition of the
22182    Newton-Kantorovich theorem of the Newton method, we establish a
22183    semi-local convergence theorem of the Brent method. This theorem
22184    provides a sufficient theoretical basis for initial choices of the
22185    Brent method.
22186 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
22187    FUDAN UNIV,DEPT STAT & OPERAT RES,SHANGHAI,PEOPLES R CHINA.
22188 CR BRENT RP, 1973, SIAM J NUMER ANAL, V10, P327
22189    BROWN KM, 1969, SIAM J NUMER ANAL, V6, P560
22190    DEMBO RS, 1982, SIAM J NUMER ANAL, V19, P400
22191    DENNIS JE, 1971, MATH COMPUT, V25, P559
22192    DENNIS JE, 1983, NUMERICAL METHODS UN
22193    GAY DM, 1975, BROWN METHOD SOME GE, P75
22194    KANTOROVICH LV, 1948, DOKL AKAD NAUK SSSR, V59, P1237
22195    MIEL GJ, 1979, NUMER MATH, V33, P391
22196    MORE JJ, 1979, ACM T MATH SOFTWARE, V5, P64
22197    MORET I, 1986, COMPUTING, V37, P185
22198    ORTEGA JM, 1970, ITERATIVE SOLUTION N
22199    YPMA TJ, 1984, SIAM J NUMER ANAL, V21, P583
22200 NR 12
22201 TC 2
22202 SN 0254-9409
22203 J9 J COMPUT MATH
22204 JI J. Comput. Math.
22205 PD JAN
22206 PY 1994
22207 VL 12
22208 IS 1
22209 BP 1
22210 EP 20
22211 PG 20
22212 SC Mathematics, Applied; Mathematics
22213 GA ND010
22214 UT ISI:A1994ND01000001
22215 ER
22216 
22217 PT J
22218 AU DONG, Y
22219    LIU, L
22220 TI MECHANICALLY DRIVEN AMORPHIZATION IN THE TA-CU SYSTEM
22221 SO ZEITSCHRIFT FUR METALLKUNDE
22222 DT Article
22223 ID METALS; ALLOYS
22224 AB Amorphizing transformation by ball milling was studied in a system
22225    without miscibility of the elements, Ta-Cu, with nominal compositions
22226    of Ta50Cu50 to Ta90Cu10. X-ray diffractometry, scanning and
22227    transmission electron microscopy were employed to monitor the
22228    structural evolution of the samples. The results show that a single
22229    phase of amorphous product was obtained for all the given samples after
22230    100 h of milling. Differential thermal analysis shows that both the
22231    temperature and the activation energy for crystallization increase with
22232    the Ta content, implying that the Ta-rich alloys exhibit a better
22233    thermal stability. The atomic structure of the Ta-Cu amorphous alloys
22234    was studied by radial distribution function analysis. The region of
22235    short-range ordering (SRO) increases with Cu content, which means that
22236    SRO became stronger in those alloys with a higher Cu content. The
22237    nearest-neighbor coordination number was estimated to be 12 to 13 for
22238    all the alloys, which indicates that the amorphous materials formed by
22239    mechanical alloying are also of topologically dense packing structure.
22240 C1 ACAD SINICA,INST SOLID STATE PHYS,HEFEI 230031,PEOPLES R CHINA.
22241 RP DONG, Y, SHANGHAI UNIV SCI & TECHNOL,DEPT MET & MAT,SHANGHAI
22242    200072,PEOPLES R CHINA.
22243 CR BENJAMIN JS, 1970, METALL T, V1, P2943
22244    DEBOER FR, 1988, COHESION METALS
22245    FECHT HJ, 1990, METALL TRANS A, V21, P2333
22246    GESSINGER GH, 1984, POWDER METALLURGY SU, P273
22247    JOHNSON WL, 1988, PROG MATER SCI, V30, P87
22248    KOCH CC, 1983, APPL PHYS LETT, V43, P1017
22249    KOCH CC, 1989, ANNU REV MATER SCI, V19, P121
22250    SCHULTZ L, 1987, J APPL PHYS, V61, P3183
22251    SCHWARZ RB, 1986, APPL PHYS LETT, V49, P146
22252    SCHWARZ RB, 1988, J LESS-COMMON MET, V140, P171
22253 NR 10
22254 TC 2
22255 SN 0044-3093
22256 J9 Z METALLK
22257 JI Z. Metallk.
22258 PD FEB
22259 PY 1994
22260 VL 85
22261 IS 2
22262 BP 140
22263 EP 142
22264 PG 3
22265 SC Metallurgy & Metallurgical Engineering
22266 GA NA295
22267 UT ISI:A1994NA29500013
22268 ER
22269 
22270 PT J
22271 AU ZHOU, ZQ
22272    ZHANG, JL
22273    GE, JS
22274    FENG, F
22275    DAI, ZM
22276 TI MATHEMATICAL-MODELING OF THE PCT CURVE OF HYDROGEN STORAGE ALLOYS
22277 SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
22278 DT Article
22279 AB The PCT curve presents the thermodynamic characteristics of hydrogen
22280    storage alloys, which consist of hydrogen storage capacity, the
22281    temperature, and the equilibrium presure in hydriding and dehydriding,
22282    the mathematical modeling of which is important for the application of
22283    hydrogen storage alloys in various techniques. Mathematical modeling of
22284    the PCT curve of hydrogen storage alloys was studied. It has been shown
22285    that the calculated PCT curves are in good agreement with the
22286    experimental curves, and a lot of physical parameters, which are very
22287    useful, can be estimated from the modeling.
22288 RP ZHOU, ZQ, SHANGHAI UNIV SCI & TECHNOL,149 YANCHANG RD,SHANGHAI,PEOPLES
22289    R CHINA.
22290 CR JORDY C, 1991, J LESS-COMMON MET, V172, P1236
22291    SAKAI T, 1990, J LESS-COMMON MET, V159, P127
22292    WILLEMS JJG, 1984, PHILIPS J RES S1, V39
22293    ZHOU ZQ, P S HYDROGEN STORAGE, P139
22294 NR 4
22295 TC 7
22296 SN 0360-3199
22297 J9 INT J HYDROGEN ENERG
22298 JI Int. J. Hydrog. Energy
22299 PD MAR
22300 PY 1994
22301 VL 19
22302 IS 3
22303 BP 269
22304 EP 273
22305 PG 5
22306 SC Physics, Atomic, Molecular & Chemical; Energy & Fuels; Environmental
22307    Sciences
22308 GA MZ473
22309 UT ISI:A1994MZ47300014
22310 ER
22311 
22312 PT J
22313 AU XU, BM
22314    YIN, ZW
22315    WANG, H
22316 TI MICROSTRUCTURE DEVELOPMENT OF THE SINGLE-STEP, LOW-TEMPERATURE SINTERED
22317    SRTIO3 GBBL CAPACITOR MATERIALS
22318 SO FERROELECTRICS LETTERS SECTION
22319 DT Article
22320 ID POLYCRYSTALLINE
22321 AB The microstructure development of the single-step, low-temperature
22322    sintered SrTiO3 GBBL capacitor materials is studied according to the
22323    microstructure analysis, mass transfer and defect chemical reactions
22324    during sintering process. The sintering mechanism is the reactive
22325    liquid phase sintering with the participation of solid state diffusion
22326    caused by the volatilization of oxygen. Insulating grain boundaries are
22327    formed by the grain boundary segregation of Li2O, which is caused by
22328    the donor enhanced volatilization of oxygen. Grains are
22329    semiconductorized during grain growth process which incorporates the
22330    donor dopant into SrTiO3 lattice.
22331 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
22332 RP XU, BM, CHINESE ACAD SCI,SHANGHAI INST CERAM,SHANGHAI 200050,PEOPLES R
22333    CHINA.
22334 CR BURN I, 1982, J MATER SCI, V17, P3510
22335    GOODMAN G, 1981, ADV CERAM, V1, P215
22336    SHIRASAKI S, 1980, J CHEM PHYS, V73, P4640
22337    XU BM, 1991, J CHIN CERAM SOC, V19, P354
22338    XU BM, 1992, J CHIN CERAM SOC, V20, P16
22339    YAN MF, 1983, ADV CERAM, V7, P226
22340 NR 6
22341 TC 1
22342 SN 0731-5171
22343 J9 FERROELECTRICS LETT SECT
22344 JI Ferroelectr. Lett. Sect.
22345 PY 1993
22346 VL 16
22347 IS 5-6
22348 BP 157
22349 EP 165
22350 PG 9
22351 SC Physics, Condensed Matter
22352 GA MY696
22353 UT ISI:A1993MY69600003
22354 ER
22355 
22356 PT J
22357 AU CAO, ZC
22358    WU, RJ
22359    SONG, RS
22360 TI INEFFECTIVE GRAIN-BOUNDARIES AND BREAKDOWN THRESHOLD OF ZINC-OXIDE
22361    VARISTORS
22362 SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
22363    TECHNOLOGY
22364 DT Article
22365 ID ZNO VARISTORS
22366 AB In order to evaluate the breakdown threshold of ZnO varistor ceramic,
22367    the geometry-independent average breakdown voltage per grain boundary,
22368    or V-gb was examined. The discrepancy between the average breakdown
22369    voltage per grain in ZnO varistor ceramic and the breakdown voltage of
22370    a single grain boundary in this material is interesting and worth study
22371    for practical purposes. The contradiction is imputed to the existence
22372    of ineffective grain boundaries in this material. The ineffective grain
22373    boundary is demonstrated by elaborately designed experiments.
22374    Observation also shows that the presence of ineffective grain
22375    boundaries is related to deficiency of oxygen in the grain boundary
22376    region. Using computer-aided simulation, the influence of ineffective
22377    grain boundaries on the breakdown threshold of the component is
22378    discussed.
22379 RP CAO, ZC, SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SIC & ENGN,SHANGHAI
22380    201800,PEOPLES R CHINA.
22381 CR ALLES AB, 1991, J APPL PHYS, V70, P6883
22382    CAO ZC, 1990, J EUR CERAM SOC, V6, P85
22383    EDA K, 1984, J APPL PHYS, V56, P2948
22384    EMTAGE PR, 1979, J APPL PHYS, V50, P6833
22385    FUJITSU S, 1988, J CERAM SOC JPN, V96, P119
22386    GUPTA TK, 1990, J AM CERAM SOC, V73, P1817
22387    LEVINSON LM, 1988, B AM CERAM SOC, V65, P639
22388    OLSSON E, 1989, J APPL PHYS, V66, P3666
22389    SONDER E, 1983, J APPL PHYS, V54
22390    SONDER E, 1985, J APPL PHYS, V58, P4420
22391    SONG RS, 1992, 1992 P INT C EL COMP, P31
22392    TRONTELJ M, 1983, ADDITIVES INTERFACES, P107
22393 NR 12
22394 TC 8
22395 SN 0921-5107
22396 J9 MATER SCI ENG B-SOLID STATE M
22397 JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
22398 PD JAN
22399 PY 1994
22400 VL 22
22401 IS 2-3
22402 BP 261
22403 EP 266
22404 PG 6
22405 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
22406 GA MR122
22407 UT ISI:A1994MR12200023
22408 ER
22409 
22410 PT J
22411 AU KHAN, RD
22412    ZHANG, JL
22413    SHENG, D
22414    WENDA, S
22415 TI EVOLUTION OF A VELOCITY-DEPENDENT QUANTUM FORCED ANHARMONIC-OSCILLATOR
22416 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
22417 DT Article
22418 AB The exact solution to a velocity-dependent quantum forced anharmonic
22419    oscillator is derived by using integral operators and an iteration
22420    method. The study is carried out in operational form by use of the
22421    creation and annihilation operators of the oscillator. The time
22422    development of the displacement and momentum operators of the
22423    anharmonic oscillator is given. These operators are presented as a
22424    Laplace transform and a subsequent inverse Laplace transform of
22425    suitable functionals.
22426 RP KHAN, RD, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
22427    R CHINA.
22428 CR CARUSOTTO S, 1988, PHYS REV A, V38, P3249
22429    LOUISELL WH, 1973, QUANTUM STATISTICAL, P137
22430    SAAVEDRA FA, 1990, PHYSICAL REV A, V42, P5073
22431    ZHANG JL, 1992, IN PRESS SPIE, V1726
22432 NR 4
22433 TC 0
22434 SN 0020-7748
22435 J9 INT J THEOR PHYS
22436 JI Int. J. Theor. Phys.
22437 PD NOV
22438 PY 1993
22439 VL 32
22440 IS 11
22441 BP 2023
22442 EP 2029
22443 PG 7
22444 SC Physics, Multidisciplinary
22445 GA MQ896
22446 UT ISI:A1993MQ89600004
22447 ER
22448 
22449 PT J
22450 AU ZHANG, B
22451    WANG, JG
22452    WAN, XJ
22453    CHEN, WJ
22454 TI A STUDY ON THE BETA AND OMEGA PHASES IN A TI-AL-CR ALLOY
22455 SO SCRIPTA METALLURGICA ET MATERIALIA
22456 DT Article
22457 ID MICROSTRUCTURE EVOLUTION; BASE ALLOYS
22458 AB The beta phase obtained in the Ti-42Al-3Cr alloy has an ordered B.C.C.
22459    structure with a0=0.3197nm, which is rich in chromium. The omega phase
22460    precipitated from the beta phase in this alloy has an ordered hexagonal
22461    structure with a0=0.452nm and c0=0.577nm. The orientation relationship
22462    between the omega phase and the parent beta phase yields the usual
22463    orientation relationship: [111]c\\[0001]h and {110}c\\{1120}h.
22464 RP ZHANG, B, SHANGHAI UNIV SCI & TECHNOL,INST MAT SCI,149 YANCHANG
22465    RD,SHANGHAI 200072,PEOPLES R CHINA.
22466 CR BENDERSKY LA, 1990, ACTA METALL MATER, V38, P931
22467    CHEN WJ, IN PRESS
22468    CUI YY, 1993, ACTA METALLURGICA A, V29, P61
22469    HUANG SC, 1991, METALL TRANS A, V22, P2619
22470    JONES SA, 1988, SCRIPTA METALL, V22, P1235
22471    KIMURA M, 1992, MAT SCI ENG A-STRUCT, V152, P54
22472    LIPSITT HA, 1985, MATER RES SOC S P, V39, P351
22473    MURRAY JL, 1981, B ALLOY PHASE DIA, V2, P174
22474    PEREPEZKO JH, 1991, ISIJ INT, V31, P1080
22475    SASTRY SML, 1977, METALL T A, V8, P299
22476    VALENCIA JJ, 1987, SCRIPTA METALL, V21, P1341
22477    WILLIAMS JC, 1978, PRECIPITATION PROCES, P191
22478    ZHENG Y, 1992, SCRIPTA METALL MATER, V26, P219
22479 NR 13
22480 TC 7
22481 SN 0956-716X
22482 J9 SCR METALL MATER
22483 JI Scr. Metall. Materialia
22484 PD FEB 15
22485 PY 1994
22486 VL 30
22487 IS 4
22488 BP 399
22489 EP 404
22490 PG 6
22491 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
22492    Engineering
22493 GA MN519
22494 UT ISI:A1994MN51900003
22495 ER
22496 
22497 PT J
22498 AU CHEN, WJ
22499    WANG, JG
22500    ZHANG, B
22501    WAN, XJ
22502 TI MECHANICAL-PROPERTIES OF A TI-AL-CR ALLOY
22503 SO SCRIPTA METALLURGICA ET MATERIALIA
22504 DT Article
22505 RP CHEN, WJ, SHANGHAI UNIV SCI & TECHNOL,INST MAT SCI,149 YANCHANG
22506    RD,SHANGHAI 200072,PEOPLES R CHINA.
22507 CR COURT SA, 1989, MATER RES SOC S P, V133, P675
22508    HAYES FH, TERNARY ALLOYS, V4, P430
22509    KIM YW, 1990, HIGH TEMPERATURE ALU, P465
22510    KIMURA M, 1992, MAT SCI ENG A-STRUCT, V152, P54
22511    LIPSITT HA, 1985, MATER RES SOC S P, V39, P351
22512    MURALEEDHARAN K, 1989, METALL TRANS A, V20, P1139
22513    ROWE RG, 1990, HIGH TEMPERATURE ALU, P375
22514    TSUJIMOTO T, 1992, MATER T JIM, V33, P989
22515    ZHANG B, UNPUB
22516    ZHENG Y, 1992, SCRIPTA METALL MATER, V26, P219
22517 NR 10
22518 TC 1
22519 SN 0956-716X
22520 J9 SCR METALL MATER
22521 JI Scr. Metall. Materialia
22522 PD JAN 1
22523 PY 1994
22524 VL 30
22525 IS 1
22526 BP 83
22527 EP 87
22528 PG 5
22529 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
22530    Engineering
22531 GA ME906
22532 UT ISI:A1994ME90600016
22533 ER
22534 
22535 PT J
22536 AU GUO, BY
22537    LI, J
22538 TI FOURIER-CHEBYSHEV PSEUDOSPECTRAL METHOD FOR 2-DIMENSIONAL VORTICITY
22539    EQUATION
22540 SO NUMERISCHE MATHEMATIK
22541 DT Article
22542 ID NAVIER-STOKES EQUATIONS; FINITE-ELEMENT; FLOW
22543 AB A Fourier-Chebyshev pseudospectral scheme is proposed for
22544    two-dimensional unsteady vorticity equation. The generalized stability
22545    and convergence are proved strictly. The numerical results are
22546    presented.
22547 RP GUO, BY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
22548 CR CANUTO C, 1984, NUMER MATH, V44, P201
22549    CANUTO C, 1988, SPECTRAL METHODS FLU
22550    GUO BY, 1988, DIFFERENCE METHODS P
22551    GUO BY, 1989, J COMPUT PHYS, V84, P259
22552    GUO BY, 1992, J COMPUT PHYS, V101, P207
22553    GUO BY, 1992, J COMPUT PHYS, V101, P375
22554    INGHAM DB, 1985, P ROY SOC LOND A MAT, V402, P109
22555    KUO PY, 1983, J COMPUT MATH, V1, P353
22556    MA HP, 1986, J COMPUT PHYS, V65, P120
22557    MA HP, 1988, J COMPUT MATH, V6, P48
22558    MACARAEG MG, 1982, J COMPUT PHYS, V62, P297
22559    MOIN P, 1982, J FLUID MECH, V118, P341
22560    MURDOK JW, 1986, AIAA860434
22561    VANDEVEN H, 1987, FAMILY SPECTRAL FILT
22562    WOODWARD P, 1984, J COMPUT PHYS, V54, P115
22563 NR 15
22564 TC 3
22565 SN 0029-599X
22566 J9 NUMER MATH
22567 JI Numer. Math.
22568 PD DEC
22569 PY 1993
22570 VL 66
22571 IS 3
22572 BP 329
22573 EP 346
22574 PG 18
22575 SC Mathematics, Applied
22576 GA ML599
22577 UT ISI:A1993ML59900004
22578 ER
22579 
22580 PT J
22581 AU LI, B
22582    LIU, L
22583    MA, XM
22584    DONG, YD
22585 TI AMORPHIZATION IN THE NB-SI SYSTEM BY MECHANICAL ALLOYING
22586 SO JOURNAL OF ALLOYS AND COMPOUNDS
22587 DT Article
22588 ID NI; POWDERS
22589 AB Amorphous Nb50Si50 alloy was produced from crystalline elemental
22590    powders by high-energy ball milling; the amorphization mechanisms of
22591    Nb50Si50 powders are discussed.
22592 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MET & MAT,SHANGHAI 200072,PEOPLES R CHINA.
22593 RP LI, B, ACAD SINICA,INST SOLID STATE PHYS,POB 1129,HEFEI 230031,PEOPLES
22594    R CHINA.
22595 CR BRANDES EA, 1983, SMITHELLS METALS REF
22596    CALKA A, 1991, APPL PHYS LETT, V58, P119
22597    KOCH CC, 1983, APPL PHYS LETT, V43, P1017
22598    KOCH CC, 1989, ANNU REV MATER SCI, V19, P121
22599    LEE PY, 1987, APPL PHYS LETT, V50, P1578
22600    MIEDEMA AR, 1980, PHYSICA B, V100, P1
22601    OMURO K, 1992, APPL PHYS LETT, V60, P1433
22602    SCHWARZ RB, 1985, J NON-CRYST SOLIDS, V76, P281
22603 NR 8
22604 TC 6
22605 SN 0925-8388
22606 J9 J ALLOYS COMPOUNDS
22607 JI J. Alloy. Compd.
22608 PD DEC 10
22609 PY 1993
22610 VL 202
22611 BP 161
22612 EP 163
22613 PG 3
22614 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
22615    Metallurgical Engineering
22616 GA MK678
22617 UT ISI:A1993MK67800036
22618 ER
22619 
22620 PT J
22621 AU SHAO, J
22622 TI STRUCTURAL-CHANGE OF SIO2 GLASS UNDER HIGH-PRESSURE - A
22623    MOLECULAR-DYNAMICS STUDY
22624 SO CHINESE PHYSICS LETTERS
22625 DT Article
22626 ID INDUCED COORDINATION CHANGES; X-RAY-DIFFRACTION; QUARTZ
22627 AB Pressure-induced structural transition in SiO2 glass at 300 K has been
22628    investigated by molecular dynamics simulation. The compression of SiO2
22629    glass appears to be accommodated by three processes occuring in our
22630    calculation. Below 10 GPa, the Si-O, O-O and Si-Si bond distances
22631    decrease with compression. Also in this pressure region the O-Si-O
22632    angle is always peaked at about 109-degrees. Above 10 GPa, the Si-O
22633    bond distance increase quickly with compression and the O-Si-O angle
22634    deviates from 109-degrees. At about 46 GPa, the structural information
22635    shows that the coordination number of Si becomes six. Then, the
22636    structural behavior of SiO2 glass becomes normal with further
22637    compression.
22638 RP SHAO, J, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
22639    R CHINA.
22640 CR DURBEN DJ, 1990, PHYS REV B, V43, P2355
22641    GIBBS GV, 1982, AM MINERAL, V67, P421
22642    GRIMSDITCH M, 1984, PHYS REV LETT, V52, P2379
22643    HAZEN RM, 1989, SOLID STATE COMMUN, V72, P507
22644    HEMLEY RJ, 1986, PHYS REV LETT, V57, P747
22645    ITIE JP, 1989, PHYS REV LETT, V63, P398
22646    LEVIEN L, 1980, AM MINERAL, V65, P920
22647    MEADE C, 1992, PHYS REV LETT, V69, P1387
22648    TSUJI K, 1989, REV SCI INSTRUM, V60, P2425
22649    WEIDNER DJ, 1982, J GEOPHYS RES, V87, P4740
22650    WILLIAMS Q, 1988, SCIENCE, V239, P902
22651    WOODCOCK LV, 1976, J CHEM PHYS, V65, P1565
22652 NR 12
22653 TC 4
22654 SN 0256-307X
22655 J9 CHIN PHYS LETT
22656 JI Chin. Phys. Lett.
22657 PY 1993
22658 VL 10
22659 IS 11
22660 BP 669
22661 EP 672
22662 PG 4
22663 SC Physics, Multidisciplinary
22664 GA MK170
22665 UT ISI:A1993MK17000009
22666 ER
22667 
22668 PT J
22669 AU REN, XH
22670    YU, XJ
22671 TI CHARACTERIZATION OF NUCLEOLAR ORGANIZER REGIONS OF 12 SPECIES OF
22672    CHINESE CYPRINID FISHES
22673 SO CARYOLOGIA
22674 DT Article
22675 ID CHROMOSOMES; PISCES
22676 AB Silver staining technique was used to study the chromosomal NORs of 12
22677    species of Chinese cyprinids. The NOR number varies from 2 to 7. Only a
22678    single pair of NOR-bearing chromosomes was detected in 5 species
22679    respectively. The remaining species each possess two or more pairs of
22680    NOR-bearing homologues. NORs may be located at submetacentric,
22681    subtelocentric or metacentric chromosomes. NOR heteromorphism was
22682    common. Finally, it is suggested, in the discussion, that further
22683    studies should be made on the overall Cyprinidae.
22684 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT BIOTECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
22685 RP REN, XH, WUHAN UNIV,DEPT BIOL,WUSHAN 430072,PEOPLES R CHINA.
22686 CR AMEMIYA CT, 1990, HEREDITAS, V112, P231
22687    FORESTI F, 1981, CYTOGENET CELL GENET, V31, P137
22688    GALETTI PM, 1984, CARYOLOGIA, V37, P401
22689    GOODPASTURE C, 1975, CHROMOSOMA, V53, P37
22690    HOWELL WM, 1980, EXPERIENTIA, V36, P1014
22691    HOWELL WM, 1982, CELL NUCLEUS, V11, P89
22692    HSU TC, 1975, CHROMOSOMA, V53, P25
22693    MAYR B, 1987, GENETICA, V75, P199
22694    OBERDORFF T, 1990, CARYOLOGIA, V43, P9
22695    PHILLIPS RB, 1989, COPEIA, P47
22696    REN X, 1991, CHIN J GENET, V18, P219
22697    REN X, 1991, CYTOLOGIA, V56, P673
22698    TAKAI A, 1984, P JPN ACAD B-PHYS, V60, P410
22699    THODE G, 1985, CYTOBIOS, V43, P73
22700    WU XW, 1977, CYPRINIDAE FISHES CH, P229
22701    YU XJ, 1989, CHROMOSOMES FRESHWAT, P1
22702 NR 16
22703 TC 0
22704 SN 0008-7114
22705 J9 CARYOLOGIA
22706 JI Caryologia
22707 PD APR-SEP
22708 PY 1993
22709 VL 46
22710 IS 2-3
22711 BP 201
22712 EP 207
22713 PG 7
22714 SC Genetics & Heredity
22715 GA MH884
22716 UT ISI:A1993MH88400011
22717 ER
22718 
22719 PT J
22720 AU GU, Y
22721    WANG, YG
22722    FU, SZ
22723    WU, J
22724    YU, SY
22725    WAN, BG
22726    ZHOU, GL
22727    WANG, X
22728    HAN, GJ
22729    ZENG, YX
22730    MA, MX
22731 TI HUGONIOT MEASUREMENTS ON COPPER TO 0.8 TPA BY LASER-DRIVEN SHOCK-WAVES
22732 SO LASER AND PARTICLE BEAMS
22733 DT Article
22734 AB An experiment on Al-Cu impedance-match targets, carried out at the
22735    Shenguang high-power laser facility, is described. The shock adiabat of
22736    Cu in the pressure region 0.4-0.8 TPa, measured experimentally, is
22737    close to the extrapolated results of the data at lower pressure
22738    obtained with a high-explosive loading facility and also is in with the
22739    data at high pressure measured in the underground nuclear test
22740    environment.
22741 C1 SHANGHAI UNIV,COLL ENGN,SHANGHAI,PEOPLES R CHINA.
22742 RP GU, Y, CHINA ACAD ENGN PHYS,SHANGHAI LASER LAB,SHANGHAI,PEOPLES R CHINA.
22743 CR DE XM, 1986, APPL OPTICS, V25, P377
22744    ELIEZER S, 1986, INTRO EQUATIONS STAT
22745    ELIEZER S, 1990, J APPL PHYS, V68, P356
22746    FORTOV VE, 1991, E FERMI SUMMER SCH 1
22747    GU Y, 1986, P INT S INTENSE DYNA, P131
22748    GU Y, 1988, ACTA PHYS SINICA, V37, P1690
22749    MCQUEEN RG, 1970, HIGH VELOCITY IMPACT, P530
22750    NELLIS WJ, 1988, PHYS REV LETT, V60, P1414
22751    XU XS, 1986, INTRO APPLIED THEORY, P521
22752 NR 9
22753 TC 0
22754 SN 0263-0346
22755 J9 LASER PART BEAM
22756 JI Laser Part. Beams
22757 PY 1993
22758 VL 11
22759 IS 3
22760 BP 611
22761 EP 616
22762 PG 6
22763 SC Physics, Applied
22764 GA MF947
22765 UT ISI:A1993MF94700019
22766 ER
22767 
22768 PT J
22769 AU LU, WC
22770    YAN, LC
22771    LIU, HL
22772    HUANG, SP
22773    CHEN, NY
22774    LI, JL
22775    XU, YM
22776 TI STUDIES ON STRUCTURE-ACTIVITY RELATIONSHIP OF THE ETHOFENPROX ANALOGOUS
22777    OF PESTICIDE BY PATTERN-RECOGNITION METHOD
22778 SO CHINESE SCIENCE BULLETIN
22779 DT Article
22780 DE PATTERN RECOGNITION; ETHOFENPROX ANALOGOUS; HAMMETT CONSTANT; MOLAR
22781    REFLECTIVITY; HYDROPHOBIC PARAMETER
22782 RP LU, WC, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R
22783    CHINA.
22784 NR 0
22785 TC 1
22786 SN 1001-6538
22787 J9 CHIN SCI BULL
22788 JI Chin. Sci. Bull.
22789 PD SEP
22790 PY 1993
22791 VL 38
22792 IS 18
22793 BP 1534
22794 EP 1537
22795 PG 4
22796 SC Multidisciplinary Sciences
22797 GA ME840
22798 UT ISI:A1993ME84000009
22799 ER
22800 
22801 PT J
22802 AU CAO, WM
22803    GUO, BY
22804 TI FOURIER COLLOCATION METHOD FOR SOLVING NONLINEAR KLEIN-GORDON EQUATION
22805 SO JOURNAL OF COMPUTATIONAL PHYSICS
22806 DT Article
22807 RP CAO, WM, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
22808 CR ADAMS RA, 1975, SOBOLEV SPACES
22809    CANUTO C, 1982, MATH COMPUT, V38, P67
22810    GUO B, IN PRESS J APPL MATH
22811    GUO B, 1988, DIFFERENCE METHODS P
22812    HARDY GH, 1952, INEQUALITIES
22813    KUO P, 1983, J APPL SCI, V1, P25
22814    LIONS JL, 1969, QUELQUES METHODES RE
22815    QUARTERONI A, 1984, JAPAN J APPL MATH, V1, P173
22816    STRAUSS W, 1978, J COMP PHYSIOL, V28, P271
22817    WHITHAM GB, 1974, LINEAR NONLINEAR WAV
22818 NR 10
22819 TC 4
22820 SN 0021-9991
22821 J9 J COMPUT PHYS
22822 JI J. Comput. Phys.
22823 PD OCT
22824 PY 1993
22825 VL 108
22826 IS 2
22827 BP 296
22828 EP 305
22829 PG 10
22830 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
22831 GA MC593
22832 UT ISI:A1993MC59300009
22833 ER
22834 
22835 PT J
22836 AU GU, HY
22837    HE, YH
22838 TI THE CLOSENESS FOR (NBU) AND (NWU)
22839 SO MICROELECTRONICS AND RELIABILITY
22840 DT Note
22841 AB In this note an n mutually independent unit coherent system is
22842    considered. Using the minimal path method, it is proved that if every
22843    unit lifetime distribution belongs to {NBU} (which is a class of new
22844    better than used), the system lifetime distribution belongs to {NBU}
22845    also. Finally, by using an example, it is proposed that {NWU} (which is
22846    a class of new worse than used) is not closed.
22847 RP GU, HY, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,149 YANCHANG RD,SHANGHAI
22848    200072,PEOPLES R CHINA.
22849 CR BARLOW RE, 1981, STATISTICAL THEORY R, P158
22850    KLEFSJO B, 1982, NAVAL RES LOGIST Q, V29, P331
22851    KLEFSJO B, 1985, IEEE T RELIAB, V33
22852 NR 3
22853 TC 0
22854 SN 0026-2714
22855 J9 MICROELECTRON REL
22856 JI Microelectron. Reliab.
22857 PD OCT
22858 PY 1993
22859 VL 33
22860 IS 13
22861 BP 2053
22862 EP 2054
22863 PG 2
22864 SC Engineering, Electrical & Electronic
22865 GA LZ803
22866 UT ISI:A1993LZ80300014
22867 ER
22868 
22869 PT J
22870 AU DENG, XN
22871    FAN, QB
22872    YIN, JH
22873    LIANG, PH
22874    ZHANG, WQ
22875 TI THE EFFECT OF LONG-CHAIN COUMARIN FILMS ON THE ELECTRON-TRANSFER AT THE
22876    LIQUID-JUNCTION ON N-SI/NI
22877 SO ACTA CHIMICA SINICA
22878 DT Article
22879 AB The modification of stearic acid-coumarin LB films on the performance
22880    of n-Si/Ni electrode has been studied in this paper The deposition of
22881    the LB film was Z-type. There was a blue shift of absorption peak (from
22882    343 nm to 325 nm) after the film had been prepared on a glass plate.
22883    Under the illumination of 60 m W degrees cm-2 bromine-tungstem lamp
22884    light, the energy conversion efficiency of n-Si/Ni/3LB/Fe(CN)63-/4-/Pt
22885    cell has been increased by 100% and the stability has been apparently
22886    enhanced. The AC impedance measurement has shown that the charge
22887    transfer resistance of n-Si/Ni/3LB electrode decreased greatly under
22888    the irradiation. The research results indicates that the modification
22889    of stearic acid-coumarin LB films on the photoelectron transfer process
22890    on n-Si/Ni electrode is good.
22891 C1 ACAD SINICA,SHANGHAI INST OPT MECH,SHANGHAI 201800,PEOPLES R CHINA.
22892 RP DENG, XN, SHANGHAI UNIV SCI & TECHNOL,ELECTROCHEM RES CTR,SHANGHAI
22893    201800,PEOPLES R CHINA.
22894 CR CHANDRASEKARAN K, 1987, ELECTROCHIM ACTA, V32, P1392
22895    FURUNO T, 1988, THIN SOLID FILMS, V160, P145
22896    HIGUCHI Y, 1986, CHEM LETT, V12, P1651
22897    HOLDCROFT S, 1988, J ELECTROCHEM SOC, V135, P3106
22898    HOME AT, 1987, J ELECTROCHEM SOC, V134, P7
22899    KAKIMOTO M, 1986, CHEM LETT, V2, P173
22900    KAKIMOTO M, 1986, CHEM LETT, V6, P823
22901    KUHN H, 1985, P INT S FUTURE ELECT, P1
22902 NR 8
22903 TC 0
22904 SN 0567-7351
22905 J9 ACTA CHIM SIN
22906 JI Acta Chim. Sin.
22907 PY 1993
22908 VL 51
22909 IS 8
22910 BP 743
22911 EP 747
22912 PG 5
22913 SC Chemistry, Multidisciplinary
22914 GA LX882
22915 UT ISI:A1993LX88200003
22916 ER
22917 
22918 PT J
22919 AU GU, HY
22920 TI STUDIES ON OPTIMUM PREVENTIVE MAINTENANCE POLICIES FOR GENERAL REPAIR
22921    RESULT
22922 SO RELIABILITY ENGINEERING & SYSTEM SAFETY
22923 DT Note
22924 AB In this paper we consider that a unit is repaired preventively after it
22925    has operated for time T. After repair, the unit is not as good as a new
22926    one, but is equivalent to one which has been used for a period of time.
22927    If we let Y indicate such a period of time, then Y is a random variable
22928    related to the time for which the unit has already operated     .
22929    Hence, under the same repair condition as above, we obtain the unit's
22930    renovation degree distribution Of Y after the unit is repaired
22931    preventively at time kT (k = 2, 3, . . . ). Further, using the method
22932    of leading variables, we obtain the mean number of times the unit has
22933    broken down from time (k - 1)T to time kT (k = 1, 2, . . . ). Finally,
22934    considering an objective function with a bound condition and using the
22935    Lagrange multipliers method, we obtain an optimal preventive
22936    maintenance time T, for which the minimum total repair cost is achieved.
22937 RP GU, HY, SHANGHAI UNIV SCI & TECHNOL,ROOM 402 6 LANE 840,TIAN SHAN
22938    RD,SHANGHAI 200051,PEOPLES R CHINA.
22939 CR GERTSBAKH IB, 1977, MODELS PREVENTIVE MA
22940    NAKAGAWA T, 1976, Z OPNS RES, V20, P171
22941    NAKAGAWA T, 1977, THESIS KYOTO U
22942 NR 3
22943 TC 4
22944 SN 0951-8320
22945 J9 RELIAB ENG SYST SAFETY
22946 JI Reliab. Eng. Syst. Saf.
22947 PY 1993
22948 VL 41
22949 IS 2
22950 BP 197
22951 EP 201
22952 PG 5
22953 SC Engineering, Industrial; Operations Research & Management Science
22954 GA LX684
22955 UT ISI:A1993LX68400011
22956 ER
22957 
22958 PT J
22959 AU GUO, GY
22960    CHEN, YL
22961 TI PREPARATION AND THERMAL-PROPERTIES OF A LEAD INDIUM ALUMINUM
22962    PHOSPHATE-GLASS
22963 SO JOURNAL OF NON-CRYSTALLINE SOLIDS
22964 DT Article
22965 AB A wet chemical process has been developed for the preparation of a
22966    lead-indium phosphate compound, and the effect of incorporation of
22967    aluminum into the compound on the thermal properties of the resulting
22968    glass is reported. High field Al-27 NMR in combination with a magic
22969    angle spinning technique was used to investigate the aluminum
22970    coordination in the lead-indium-aluminum phosphate glass. The
22971    transition, crystallization and softening temperatures and thermal
22972    expansion coefficient of the glass were determined by means of DTA, TMA
22973    and dilatometric measurements.
22974 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
22975 RP GUO, GY, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI & ENGN,SHANGHAI
22976    200030,PEOPLES R CHINA.
22977 CR GUO GY, 1993, J MATER SCI LETT, V12, P265
22978    MULLER D, 1983, PHYS CHEM GLASSES, V24, P37
22979    PENG YB, 1991, GLASS TECHNOL, V32, P166
22980    SALES BC, 1987, J AM CERAM SOC, V70, P615
22981    SCALES BC, 1986, J NONCRYSTALLINE SOL, V79, P83
22982 NR 5
22983 TC 8
22984 SN 0022-3093
22985 J9 J NON-CRYST SOLIDS
22986 JI J. Non-Cryst. Solids
22987 PD SEP
22988 PY 1993
22989 VL 162
22990 IS 1-2
22991 BP 164
22992 EP 168
22993 PG 5
22994 SC Materials Science, Ceramics; Materials Science, Multidisciplinary
22995 GA LX484
22996 UT ISI:A1993LX48400017
22997 ER
22998 
22999 PT J
23000 AU LI, YZ
23001    DAVID, AK
23002 TI PRICING REACTIVE POWER CONVEYANCE
23003 SO IEE PROCEEDINGS-C GENERATION TRANSMISSION AND DISTRIBUTION
23004 DT Article
23005 DE FINANCIAL MANAGEMENT; POWER SYSTEM ECONOMICS; POWER SYSTEM OPERATION
23006 ID WHEELING RATES; MARGINAL-COST
23007 AB The transmission of electrical power and reactive power from a seller
23008    to a buyer through a transmission network obviously has cost
23009    implications. The costs incurred are of interest to transmission system
23010    owners in view of the increased interest in deregulation in recent
23011    years. The paper provides a theory of an ideal conveyance rate based on
23012    marginal cost pricing theory. An analysis is made of the marginal cost
23013    of reactive transportation using a modification of the optimal power
23014    flow algorithm, followed by a case study illustrating the magnitudes
23015    and ranges that reactive transportation rates may take on under
23016    different circumstances. The ratio of marginal prices between real and
23017    reactive power conveyance shows that the costs of reactive power
23018    transport is of as much interest because of its impact on real power
23019    transport as in itself.
23020 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT AUTOMAT,SHANGHAI,PEOPLES R CHINA.
23021 RP LI, YZ, HONG KONG POLYTECH,DEPT ELECT ENGN,KOWLOON,HONG KONG.
23022 CR BAUGHMAN ML, 1991, IEEE T POWER SYST, V6, P23
23023    CARAMANIS MC, 1986, IEEE T POWER SYST, V1, P63
23024    CARAMANIS MC, 1989, IEEE T POWER SYST, V4, P594
23025    MERRILL HM, 1989, IEEE T POWER SYST, V4, P1445
23026    POWELL MJD, 1987, LECTURE NOTES MATH, V630
23027    SCHWEPPE FC, 1988, SPOT PRICING ELECTRI
23028    TALUKDAR SN, 1982, IEEE T PAS, V101, P415
23029 NR 7
23030 TC 6
23031 SN 0143-7046
23032 J9 IEE PROC-C GEN TRANSM DISTRIB
23033 PD MAY
23034 PY 1993
23035 VL 140
23036 IS 3
23037 BP 174
23038 EP 180
23039 PG 7
23040 SC Engineering, Electrical & Electronic
23041 GA LW324
23042 UT ISI:A1993LW32400003
23043 ER
23044 
23045 PT J
23046 AU GUO, BY
23047    MA, HP
23048 TI COMBINED FINITE-ELEMENT AND PSEUDOSPECTRAL METHOD FOR THE 2-DIMENSIONAL
23049    EVOLUTIONARY NAVIER-STOKES EQUATIONS
23050 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
23051 DT Article
23052 DE NAVIER-STOKES EQUATION; COMBINED FINITE ELEMENT AND PSEUDOSPECTRAL
23053    APPROXIMATION; INF-SUP CONDITION AND ERROR ESTIMATION
23054 ID RESTRAIN OPERATOR; APPROXIMATION
23055 AB A combined finite element and pseudospectral scheme is proposed for
23056    solving the two-dimensional evolutionary Navier-Stokes equations. The
23057    artificial compressibility and filtering techniques are used. It is
23058    also shown that the inf-sup condition holds naturally for this combined
23059    method.  The generalized stability and optimal convergence rate in
23060    L2-norm are proved. Some numerical results are presented.
23061 RP GUO, BY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
23062 CR BERINGEN S, 1984, J FLUID MECH, V148, P413
23063    CANUTO C, 1982, NUMER MATH, V39, P205
23064    CANUTO C, 1983, SIAM J NUMER ANAL, V20, P873
23065    CANUTO C, 1984, NUMER MATH, V44, P201
23066    CAO W, 1991, J COMPUT MATH, V9, P278
23067    CHORIN AJ, 1967, J COMPUT PHYS, V2, P12
23068    CIARLET PG, 1978, FINITE ELEMENT METHO
23069    GIRAULT V, 1979, LECTURE NOTES MATH, V794
23070    GUO B, 1985, SCI SINICA SER A, V28, P1139
23071    GUO B, 1988, DIFFERENCE METHODS P
23072    GUO B, 1988, J COMPUT PHYS, V74, P110
23073    GUO B, 1991, ACTA MATH APPL SINIC, V7, P257
23074    GUO BY, 1987, SCI SINICA A, V30, P697
23075    GUO BY, 1988, J COMPUT MATH, V6, P238
23076    GUO BY, 1991, SIAM J NUMER ANAL, V28, P113
23077    HALD O, 1981, J COMPUT PHYS, V40, P305
23078    INGHAM DB, 1984, J COMPUT PHYS, V53, P90
23079    INGHAM DB, 1985, P ROY SOC LOND A MAT, V402, P109
23080    KREISS HO, 1979, SIAM J NUMER ANAL, V16, P421
23081    KUO PY, 1983, J COMPUT MATH, V1, P353
23082    LIONS JL, 1972, NONHOMOGENEOUS BOUND
23083    MA H, 1992, MATH ANN B, V13, P96
23084    MA HP, 1986, J COMPUT PHYS, V65, P120
23085    MADAY Y, 1982, SIAM J NUMER ANAL, V19, P761
23086    MILINAZZO FA, 1985, J FLUID MECH, V160, P281
23087    MULHOLLAND LS, 1991, J COMPUT PHYS, V96, P369
23088    MURDOCK JW, 1977, AIAA J, V15, P1167
23089    MURDOCK JW, 1986, AIAA J
23090    ROACHE PJ, 1976, COMPUTATIONAL FLUID
23091    TEMAM R, 1977, NAVIER STOKES EQUATI
23092 NR 30
23093 TC 4
23094 SN 0036-1429
23095 J9 SIAM J NUMER ANAL
23096 JI SIAM J. Numer. Anal.
23097 PD AUG
23098 PY 1993
23099 VL 30
23100 IS 4
23101 BP 1066
23102 EP 1083
23103 PG 18
23104 SC Mathematics, Applied
23105 GA LR663
23106 UT ISI:A1993LR66300008
23107 ER
23108 
23109 PT J
23110 AU CHENG, WM
23111    CHEN, MY
23112 TI TRANSFORMATION AND CONNECTION OF SUBAPERTURES IN THE MULTIAPERTURE
23113    OVERLAP-SCANNING TECHNIQUE FOR LARGE OPTICS TESTS
23114 SO OPTICAL ENGINEERING
23115 DT Article
23116 DE OVERLAP SCANNING; SUBAPERTURE CONNECTION; LARGE OPTICS TESTING
23117 AB The multiaperture overlap-scanning technique (MAOST) is a new method
23118    for large optics testing. We describe the mathematical model and the
23119    performance procedure of the transformation and connection of
23120    subapertures for MAOST. Computer simulation results show that the
23121    theoretical accuracy of a pair of two-subaperture connections tested
23122    with MAOST could be reached up to lambda/600. The experimental test
23123    with a magnification ratio of 1.7 in a four-aperture overlap-scanning
23124    configuration is conducted and its result is analyzed in detail.
23125 RP CHENG, WM, SHANGHAI UNIV SCI & TECHNOL,APPL OPT & METROL LAB,SOUTH
23126    GATE,JIADING 201800,PEOPLES R CHINA.
23127 CR BRUNING JH, 1978, OPTICAL SHOP TESTING, P425
23128    CHEN MY, 1991, P SOC PHOTO-OPT INS, V1553, P626
23129    JENSEN SC, 1984, APPL OPTICS, V23, P740
23130    KIM CJ, 1982, THESIS U ARIZONA
23131    THUNEN JG, 1982, P SOC PHOTO-OPT INS, V351, P19
23132    WILLIAMS RA, 1987, J OPT SOC AM A, V4, P1855
23133 NR 6
23134 TC 4
23135 SN 0091-3286
23136 J9 OPT ENG
23137 JI Opt. Eng.
23138 PD AUG
23139 PY 1993
23140 VL 32
23141 IS 8
23142 BP 1947
23143 EP 1950
23144 PG 4
23145 SC Optics
23146 GA LR112
23147 UT ISI:A1993LR11200037
23148 ER
23149 
23150 PT J
23151 AU LIU, GL
23152 TI THE RADIAL EQUILIBRIUM PROBLEM OF FLOW IN WAVE MACHINERY
23153 SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL
23154    OF POWER AND ENERGY
23155 DT Article
23156 AB The present paper deals with the radial equilibrium problem of gas flow
23157    at the inlet and outlet of a wave rotor theoretically, presenting a
23158    method of solution. The salient feature of this method is that, in
23159    contrast to turbomachinery, the outlet flow parameters are related to
23160    those at inlet by the state characteristic (compatibility) equations of
23161    unsteady rotor flow. The numerical example has shown that the radial
23162    equilibrium effect plays a very important role in the design and
23163    performance of wave machinery and hence it is suggested that a complete
23164    gas dynamic design procedure of a wave machine should include two
23165    parts: (a) solution of the one-dimensional unsteady relative flow in
23166    rotor at the mean radius; (b) solution of the radial equilibrium
23167    problem of gas flow at the rotor inlet and outlet.
23168 RP LIU, GL, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
23169 NR 0
23170 TC 1
23171 SN 0957-6509
23172 J9 PROC INST MECH ENG A-J POWER
23173 JI Proc. Inst. Mech. Eng. Part A-J. Power Energy
23174 PY 1993
23175 VL 207
23176 IS A1
23177 BP 23
23178 EP 30
23179 PG 8
23180 SC Engineering, Mechanical
23181 GA LQ983
23182 UT ISI:A1993LQ98300003
23183 ER
23184 
23185 PT J
23186 AU LI, W
23187    SHI, DH
23188 TI RELIABILITY-ANALYSIS OF A 2-UNIT PARALLEL SYSTEM WITH PREEMPTIVE
23189    PRIORITY RULE
23190 SO MICROELECTRONICS AND RELIABILITY
23191 DT Article
23192 AB This paper deals with a two-dissimilar-unit parallel redundant system
23193    in which unit 1 has preemptive priority in being repaired. Under the
23194    assumptions that the life time of unit 1 is an mth Erlang distribution,
23195    the life time of unit 2 and the repaired time of unit i(i = 1, 2) are
23196    all general continuous distributions, we obtain almost all of the
23197    interesting reliability indices of the system. Finally, we give the
23198    upper and lower limits of a special case which has not been discussed
23199    elsewhere.
23200 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
23201 RP LI, W, CHINESE ACAD SCI,INST APPL MATH,BEIJING 100080,PEOPLES R CHINA.
23202 CR CHENG K, 1978, ACTA MATH APPL SINIC, V4, P341
23203    LINTON DG, 1976, MICROELECTRON RELIAB, V15, P39
23204    NAKAGAWA T, 1975, MICROELECTRON RELIAB, V14, P457
23205    SHI DH, 1985, ACTA MATH APPL SINIC, V8, P101
23206    SHI DH, 1985, ACTA MATH APPL SINIC, V8, P159
23207 NR 5
23208 TC 6
23209 SN 0026-2714
23210 J9 MICROELECTRON REL
23211 JI Microelectron. Reliab.
23212 PD AUG
23213 PY 1993
23214 VL 33
23215 IS 10
23216 BP 1447
23217 EP 1453
23218 PG 7
23219 SC Engineering, Electrical & Electronic
23220 GA LQ167
23221 UT ISI:A1993LQ16700002
23222 ER
23223 
23224 PT J
23225 AU JIN, C
23226    CHEN, WJ
23227    JING, KL
23228    WAN, XJ
23229 TI THE INFLUENCE OF CR ON OXIDATION BEHAVIOR OF TIAL AT 1173K
23230 SO SCRIPTA METALLURGICA ET MATERIALIA
23231 DT Article
23232 RP JIN, C, SHANGHAI UNIV SCI & TECHNOL,INST MET & MAT SCI,YANCHANG RD
23233    149,SHANGHAI 200072,PEOPLES R CHINA.
23234 CR HUANG SC, 1991, METALL TRANS A, V22, P2619
23235    JIN C, UNPUB
23236    PERKINS RA, 1987, SCRIPTA METALL MATER, V21, P1505
23237    PU Z, IN PRESS SCRIPTA MET
23238    TANIGUCHI S, 1991, MATER T JIM, V32, P151
23239    WELSCH G, 1988, OXIDATION HIGH TEMPE, P207
23240 NR 6
23241 TC 2
23242 SN 0956-716X
23243 J9 SCR METALL MATER
23244 JI Scr. Metall. Materialia
23245 PD SEP 15
23246 PY 1993
23247 VL 29
23248 IS 6
23249 BP 747
23250 EP 751
23251 PG 5
23252 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
23253    Engineering
23254 GA LP598
23255 UT ISI:A1993LP59800006
23256 ER
23257 
23258 PT J
23259 AU GUO, GY
23260    CHEN, YL
23261 TI OPTICAL-PROPERTIES AND CHEMICAL DURABILITY OF LEAD INDIUM ALUMINUM
23262    PHOSPHATE-GLASS
23263 SO MATERIALS CHEMISTRY AND PHYSICS
23264 DT Article
23265 ID THERMAL-EXPANSION
23266 AB The optical properties and chemical durability of lead-indium-aluminum
23267    phosphate glass prepared by a wet-chemical process have been
23268    investigated. Ultraviolet-visible and infrared spectra were recorded
23269    for the glass. The refraction index of the glass was measured as a
23270    function of wavelength in the visible region of the spectrum. The
23271    long-term chemical durability of the glass in acidic and basic aqueous
23272    solutions was examined at a high temperature. The results are compared
23273    with recent data for other phosphate glasses, and indicate that
23274    lead-indium-aluminum phosphate glass has a promising combination of
23275    good optical properties and chemical durability.
23276 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
23277 RP GUO, GY, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI & ENGN,SHANGHAI
23278    200030,PEOPLES R CHINA.
23279 CR BUNKER BC, 1984, J NON-CRYST SOLIDS, V64, P291
23280    BUNKER BC, 1987, J AM CERAM SOC, V70, P425
23281    GUO GY, IN PRESS 1993 AM CER
23282    MINAMI T, 1977, J AM CERAM SOC, V60, P232
23283    MULLER D, 1983, PHYS CHEM GLASSES, V24, P37
23284    PENG YB, 1991, GLASS TECHNOL, V32, P166
23285    PENG YB, 1991, GLASS TECHNOL, V32, P200
23286    RAY NH, 1979, BRIT POLYM J, V11, P63
23287    SALES BC, 1986, J NON-CRYST SOLIDS, V79, P83
23288    SALES BC, 1987, J AM CERAM SOC, V70, P615
23289 NR 10
23290 TC 4
23291 SN 0254-0584
23292 J9 MATER CHEM PHYS
23293 JI Mater. Chem. Phys.
23294 PD AUG
23295 PY 1993
23296 VL 35
23297 IS 1
23298 BP 49
23299 EP 52
23300 PG 4
23301 SC Materials Science, Multidisciplinary
23302 GA LP402
23303 UT ISI:A1993LP40200009
23304 ER
23305 
23306 PT J
23307 AU BAI, ZZ
23308    WANG, DR
23309 TI ON THE CONVERGENCE OF THE FACTORIZATION UPDATE ALGORITHM
23310 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
23311 DT Article
23312 AB In this paper, we make a Kantorovich-type analysis for the sparse
23313    Johnson and Austria's algorithm given in [2], which is called
23314    factorization update algorithm. When the mapping is linear, it is shown
23315    that a modification of that algorithm leads to global and Q-superlinear
23316    convergence. Finally, we point out the modification is also of local
23317    and Q-superlinear convergence for nonlinear systems of equations and
23318    give its corresponding Kantorovich-type convergence result.
23319 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
23320 CR DENNIS JE, 1971, MATH COMPUT, V25, P559
23321    JOHNSON GW, 1983, SIAM J NUMER ANAL, V20, P315
23322    LAM B, 1978, MATH COMPUT, V32, P447
23323    MARWIL E, 1979, SIAM J NUMER ANAL, V16, P558
23324    WANG DR, 1989, IN PRESS CLASS FACTO
23325    WANG DR, 1991, COMMUN APPL MATH COM, V5, P50
23326 NR 6
23327 TC 1
23328 SN 0254-9409
23329 J9 J COMPUT MATH
23330 JI J. Comput. Math.
23331 PD JUL
23332 PY 1993
23333 VL 11
23334 IS 3
23335 BP 236
23336 EP 249
23337 PG 14
23338 SC Mathematics, Applied; Mathematics
23339 GA LN497
23340 UT ISI:A1993LN49700006
23341 ER
23342 
23343 PT J
23344 AU LIU, GL
23345 TI A VARIABLE-DOMAIN VARIATIONAL THEORY USING CLEBSCH VARIABLES FOR HYBRID
23346    PROBLEMS OF 2-D TRANSONIC ROTATIONAL FLOW
23347 SO ACTA MECHANICA
23348 DT Note
23349 AB By means of functional variations with variable domain the variational
23350    principles of [7], [8] are extended to inverse and hybrid flow problems.
23351 C1 SHANGHAI INST APPL MATH & MECH,SHANGHAI,PEOPLES R CHINA.
23352 RP LIU, GL, SHANGHAI UNIV SCI & TECHNOL,149 YAN CHANG RD,SHANGHAI
23353    200072,PEOPLES R CHINA.
23354 CR ECER A, 1983, AIAA J, V21, P343
23355    LIU GI, 1986, J ENG GAS TURB POWER, V108, P254
23356    LIU GL, 1980, SCI SINICA, V23, P1339
23357    LIU GL, 1981, J ENG THERMOPHYS, V2, P335
23358    LIU GL, 1985, ACTA AERODYN SINICA, V3, P24
23359    LIU GL, 1986, 6TH P INT S FEM FLOW, P137
23360    LIU GL, 1991, ASME91GT169 PAP
23361    MEAUZE G, 1982, ASME, V104, P650
23362    SELIGER RL, 1968, P ROY SOC LOND A MAT, V305, P1
23363    YAO Z, 1984, IMECHE PUBLICATION, P237
23364 NR 10
23365 TC 3
23366 SN 0001-5970
23367 J9 ACTA MECH
23368 JI Acta Mech.
23369 PY 1993
23370 VL 99
23371 IS 1-4
23372 BP 219
23373 EP 223
23374 PG 5
23375 SC Mechanics
23376 GA LK575
23377 UT ISI:A1993LK57500017
23378 ER
23379 
23380 PT J
23381 AU HE, ZM
23382    SHEN, BG
23383    JIN, JH
23384    XIONG, CS
23385 TI MAGNETIC-PROPERTIES AND MAGNETOSTRICTION AT ROOM-TEMPERATURE OF THE
23386    AMORPHOUS RARE EARTH-FE ALLOYS (RBFECOCU) (R = ND, SM)
23387 SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
23388 DT Article
23389 AB The following three systems of the amorphous alloy specimens have been
23390    prepared and measured: NdxB20-x (Fe78Co1.7Cu0.3)(x = 0, 1, 2, 3, 4, 5),
23391    SmxB20-x (Fe78CO17Cu0.3)(x = 0, 1, 3), Fe79.7-xCox (Cu0.3B17Sm3)(x = 0,
23392    1.7, 3.7, 5.7, 7.7). The results show that the specific magnetizing
23393    moment sigma(s) varies with temperature T, and that the anisotropy
23394    constant K(u) and saturation magnetostriction constant lambda(s) vary
23395    with composition x at room temperature. It is shown that small amounts
23396    of rare earth elements alloyed into Fe-based amorphous alloys can
23397    increase K(u), lambda(s) and the crystallization temperature T(cr) of
23398    the amorphous alloys. It stands to reason that the local magnetic
23399    anisotropy and the exchange interaction are both effected. Although
23400    sigma(s) and T(c) may decrease as the small amount of R elements is
23401    alloyed, they can be compensated with an increase in the composition of
23402    Co.
23403 C1 ACAD SINICA,INST PHYS,MAGNETISM LAB,BEIJING 100080,PEOPLES R CHINA.
23404    UNIV SCI & TECHNOL CHINA,DEPT PHYS,HEFEI 230026,PEOPLES R CHINA.
23405 RP HE, ZM, SHANGHAI UNIV SCI & TECHNOL,PHYS TEACHING & RES OFF,BOX
23406    146,SHANGHAI 200072,PEOPLES R CHINA.
23407 CR DAI DS, 1987, FERROMAGNETISM, P135
23408    GROSSINGER R, 1990, J MAGN MAGN MATER, V86, P219
23409    HE ZM, 1989, ACTA METALLURGICA SI, V25, B329
23410    KHAN Y, 1990, J MAGN MAGN MATER, V86, L143
23411 NR 4
23412 TC 0
23413 SN 0304-8853
23414 J9 J MAGN MAGN MATER
23415 JI J. Magn. Magn. Mater.
23416 PD JUN
23417 PY 1993
23418 VL 124
23419 IS 1-2
23420 BP 47
23421 EP 50
23422 PG 4
23423 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
23424 GA LK585
23425 UT ISI:A1993LK58500008
23426 ER
23427 
23428 PT J
23429 AU CHEN, J
23430    YANG, YQ
23431    QIAN, PB
23432    MA, ZT
23433    WU, WB
23434    SUNG, PZ
23435    WANG, XG
23436    LI, JH
23437 TI DRUG CARRYING HYDROGEL BASE WOUND DRESSING
23438 SO RADIATION PHYSICS AND CHEMISTRY
23439 DT Article
23440 DE HYDROGEL; WOUND DRESSING; DRUG RELEASE; RADIATION CROSS-LINKING
23441 AB A special drug carrying hydrogel base wound dressing by radiation
23442    preparation is developed for hospital uses. The dressing possesses high
23443    water absorption property. Radiation preparation is carried out using a
23444    Van de Graaff Accelerator as an electron radiation source. The effect
23445    of absorbed dose and amount of crosslinking agent on the gel fraction
23446    and swelling ratio of the hydrogel were determined respectively. As a
23447    bio-medical material, standard tests were made. Results showed
23448    properties conforming with requirements for clinical applications.
23449    Results obtained from clinical tests were good.
23450 C1 NAVY HOSP 411,SHANGHAI 200081,PEOPLES R CHINA.
23451 RP CHEN, J, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI
23452    201800,PEOPLES R CHINA.
23453 CR PEPPAS NA, 1986, HYDROGELS MED PHARM, V3, P180
23454    RUCINSKA A, 1988, 4TH C RAD PROC IND, P218
23455 NR 2
23456 TC 4
23457 SN 0146-5724
23458 J9 RADIAT PHYS CHEM
23459 JI Radiat. Phys. Chem.
23460 PD OCT-DEC
23461 PY 1993
23462 VL 42
23463 IS 4-6
23464 BP 915
23465 EP 918
23466 PG 4
23467 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
23468    Science & Technology
23469 GA LK325
23470 UT ISI:A1993LK32500075
23471 ER
23472 
23473 PT J
23474 AU LIU, ZM
23475    MA, ZT
23476 TI RADIATION GRAFTING KINETICS OF HEMA/DGDA ONTO SILASTIC IN DIFFERENT
23477    ATMOSPHERES
23478 SO RADIATION PHYSICS AND CHEMISTRY
23479 DT Article
23480 DE RADIATION GRAFTING; GRAFTING KINETICS; GRAFTING ATMOSPHERES; GRAFTING
23481    DISTRIBUTION
23482 AB The radiation grafting kinetics of HEMA, as well as that of the mixture
23483    monomers of HEMA and DGDA have been researched. The effects of
23484    radiation dose, dose rate, and temperature on grafting are
23485    systematically researched in different atmospheres. It has been found
23486    that grafting is different in different atmospheres. The findings show
23487    that the depth distribution of HEMA/DGDA monomer units in grafting
23488    layer is nonuniform. At first, HEMA grafting is superior, in the later
23489    stage of grafting, however, DGDA grafting is increased. The temperature
23490    effect on grafting is great at the beginning, it is less in the later
23491    stage of grafting.
23492 RP LIU, ZM, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI
23493    201800,PEOPLES R CHINA.
23494 CR CHAPIRO A, 1962, RAD CHEM POLYM SYSTE
23495    COHN D, 1984, J APPL POLYM SCI, V29, P2645
23496    HOFFMAN AS, 1982, IND APPL RADIOISOTOP, P279
23497    MA ZT, 1986, J SHANGHAI U SCI TEC, P1
23498    YASUDA H, 1964, J POLYM SCI A2, P5093
23499 NR 5
23500 TC 0
23501 SN 0146-5724
23502 J9 RADIAT PHYS CHEM
23503 JI Radiat. Phys. Chem.
23504 PD OCT-DEC
23505 PY 1993
23506 VL 42
23507 IS 4-6
23508 BP 939
23509 EP 942
23510 PG 4
23511 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
23512    Science & Technology
23513 GA LK325
23514 UT ISI:A1993LK32500081
23515 ER
23516 
23517 PT J
23518 AU ZHOU, RM
23519    MA, ZT
23520    KAETUS, I
23521    KUMAKURA, M
23522 TI IMMOBILIZATION OF TRICHORDEMA REESEI BY RADIATION POLYMERIZATION
23523 SO RADIATION PHYSICS AND CHEMISTRY
23524 DT Article
23525 DE RADIATION POLYMERIZATION; IMMOBILIZATION; FERMENTATION; CELL
23526 AB Immobilization of trichordema Reesei(QM9414) was prepared by radiation
23527    polymerization. It was found that the activity of fixed cells increased
23528    with inseasing surface area of the carrier and was affected by the
23529    concentration of monomer tetraethylenglycol dimethacrylate (4G) and the
23530    shape of the substrate composition and structure of cotton textile
23531    fabics.
23532 C1 JAPAN ATOM ENERGY RES INST,TAKASAKI RADIAT CHEM INST,TAKASAKI,GUNMA 37012,JAPAN.
23533 RP ZHOU, RM, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT
23534    INST,SHANGHAI 201800,PEOPLES R CHINA.
23535 CR ARCURI EJ, 1982, BIOTECHNOL BIOENG, V24, P595
23536    MA ZT, 1986, IND MICROBIOLOGY, V16, P21
23537    ZHOU RM, 1987, IND MICROBIOLOGY, V17, P5
23538 NR 3
23539 TC 1
23540 SN 0146-5724
23541 J9 RADIAT PHYS CHEM
23542 JI Radiat. Phys. Chem.
23543 PD OCT-DEC
23544 PY 1993
23545 VL 42
23546 IS 4-6
23547 BP 943
23548 EP 945
23549 PG 3
23550 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
23551    Science & Technology
23552 GA LK325
23553 UT ISI:A1993LK32500082
23554 ER
23555 
23556 PT J
23557 AU WU, WB
23558    SUNG, PZ
23559    WANG, XG
23560    LI, JH
23561    CHEN, J
23562    YANG, YQ
23563    SHEN, YH
23564    MA, ZT
23565 TI SLOW-RELEASE OF WOUND-HEALING DRUG FROM HYDROGEL WOUND DRESSING
23566    PREPARED BY RADIATION CROSS-LINKING METHOD
23567 SO RADIATION PHYSICS AND CHEMISTRY
23568 DT Article
23569 DE WOUND DRESSING; DRUG RELEASE; HYDROGEL; RADIATION CROSS-LINKING
23570 AB The hydrogel wound dressing was prepared by radiation crosslinking. It
23571    was used of on patients in the Navy 411 Hospital and some other
23572    hospitals.From sixty case studies of the clinical effects, the results
23573    showed that: 1. drug releasing slowly relieves       the pain
23574    effectively for prolonged period of application; 2. The dressing can
23575    reduce the oozing liquid from the wound and make the wound heal faster
23576    ;3.The number of the dressing change is greatly reduced. All the data
23577    indicates that the dressing is superior to the conventional kinds.
23578 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
23579 RP WU, WB, NAVY HOSP 411,SHANGHAI 200081,PEOPLES R CHINA.
23580 CR QUEEN D, 1987, BURNS, V13, P218
23581 NR 1
23582 TC 1
23583 SN 0146-5724
23584 J9 RADIAT PHYS CHEM
23585 JI Radiat. Phys. Chem.
23586 PD OCT-DEC
23587 PY 1993
23588 VL 42
23589 IS 4-6
23590 BP 947
23591 EP 948
23592 PG 2
23593 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
23594    Science & Technology
23595 GA LK325
23596 UT ISI:A1993LK32500083
23597 ER
23598 
23599 PT J
23600 AU DING, ZL
23601    YOSHIDA
23602    MA, ZT
23603    KUMAKURA, M
23604 TI A STUDY ON THE DESWELLING BEHAVIOR OF A THERMORESPONSIVE HYDROGEL
23605    PREPARED BY RADIATION POLYMERIZATION
23606 SO RADIATION PHYSICS AND CHEMISTRY
23607 DT Article
23608 DE THERMORESPONSIVE HYDROGEL; RADIATION POLYMERIZATION; SWELLING
23609 AB A new kind of thermo-responsive hydrogel, poly(methacryloyl-DL-alanie
23610    methyl ester), was synthesized by means of radiation polymerization.
23611    The swelling and deswelling were reversible.The deswelling kinetics
23612    changes with the variation of temperature. It was found that a rigid
23613    membrane was formed during deswlling at 40-degrees-C . In the case of
23614    deswelling at 20-degrees-C , no skin was found. The hydrogel deswelled
23615    uniformly.
23616 C1 JAPAN ATOM ENERGY RES INST,TAKASAKI RADIAT CHEM RES INST,TAKASAKI,GUNMA 37012,JAPAN.
23617 RP DING, ZL, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT
23618    INST,SHANGHAI 201800,PEOPLES R CHINA.
23619 CR DONG LC, 1986, J CONTROL RELEASE, V4, P223
23620    FREITAS RFS, 1987, CHEM ENG SCI, V42, P97
23621    OKANO T, 1990, J CONTROL RELEASE, V11, P255
23622 NR 3
23623 TC 2
23624 SN 0146-5724
23625 J9 RADIAT PHYS CHEM
23626 JI Radiat. Phys. Chem.
23627 PD OCT-DEC
23628 PY 1993
23629 VL 42
23630 IS 4-6
23631 BP 959
23632 EP 962
23633 PG 4
23634 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
23635    Science & Technology
23636 GA LK325
23637 UT ISI:A1993LK32500086
23638 ER
23639 
23640 PT J
23641 AU WU, MH
23642    SHEN, WP
23643    MA, ZT
23644 TI SYNTHESIS OF POLYACRYLATE CORE-SHELL STRUCTURE LATEX BY RADIATION
23645    TECHNIQUES
23646 SO RADIATION PHYSICS AND CHEMISTRY
23647 DT Article
23648 DE CORE-SHELL STRUCTURE; POLYACRYLATE; EMULSION POLYMERIZATION
23649 AB A series of poly(butyl acrylate-co-methyl methacrylate)/poly (ethyl
23650    acrylate-co-acrylic acid) interpenetrating polymer network (IPN) was
23651    synthesized in latex form by emulsion polymerization. The multiphase
23652    morphology of the latex particles was studied after two-stage
23653    polymerization by using transimission electron microscope (TEM), the
23654    result indicated that the morphology of the particles comprises
23655    gradient shell structure, cellular structure and core-shell structure.
23656    The change of morphology might stem from emulsion polymerization by
23657    radiation initiation or chemical initiation and the weight composition
23658    of poly(EA-co-MMA) seed latex which formed the core. By radiation
23659    techniques, we successfully synthesized poly( BA-co-MMA)/poly(EA-co-AA)
23660    latex of core-shell structure having (42-8)/(46-4) weight compositions.
23661    The PA core-shell structure latex applied to textile as a water
23662    proofing coating showed higher water-pressure and easier handling than
23663    that with PA homogeneous phase structure latex.
23664 RP WU, MH, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI RADIAT APPLICAT
23665    INST,SHANGHAI 201800,PEOPLES R CHINA.
23666 CR 1983, PROGR ORGANIC COATIN, V11, P205
23667    MCCARTY WHU, 1984, 44492324, US
23668    PIRMA I, 1976, ACS SYM SER, V24, P306
23669    SPERLING LH, 1972, INT J POLYM MATER, V1, P331
23670    SPERLING LH, 1973, J APPL POLYM SCI, V17, P2443
23671    WANDERHOFF TW, 1984, J POLYM CHEM, V22
23672 NR 6
23673 TC 1
23674 SN 0146-5724
23675 J9 RADIAT PHYS CHEM
23676 JI Radiat. Phys. Chem.
23677 PD JUL-SEP
23678 PY 1993
23679 VL 42
23680 IS 1-3
23681 BP 171
23682 EP 174
23683 PG 4
23684 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
23685    Science & Technology
23686 GA LK323
23687 UT ISI:A1993LK32300038
23688 ER
23689 
23690 PT J
23691 AU DENG, XN
23692    YIN, JH
23693    FAN, QB
23694    SHEN, ZD
23695    LIANG, PH
23696    ZHANG, WQ
23697 TI THE MODIFICATION OF NI, PB AND LB FILMS ON THE BEHAVIOR OF N-SI
23698    PHOTOELECTRODE
23699 SO ACTA CHIMICA SINICA
23700 DT Article
23701 ID SILICON PHOTOELECTRODES
23702 AB The effects of metal (Ni or Pb) and Langmuir-Blodgett films on the PEC
23703    behavior of n-Si have been studied. It is observed that Ni and Pb can
23704    improve the energy conversion efficiency and the stability of n-Si. The
23705    modification of LB films prepared with eight different organic
23706    compounds on n-Si/Ni have been determined and discussed, its efficiency
23707    has been doubled by the best one (long-chain coumarin LB film). The
23708    photoelectrochemical properties of Si/LB/Al electrode having the MIS
23709    structure has also been researched. It is discovered that it exhibits
23710    good photoelectric effect.
23711 C1 ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI 201800,PEOPLES R CHINA.
23712 RP DENG, XN, SHANGHAI UNIV SCI & TECHNOL,ELECTROCHEM RES CTR,SHANGHAI
23713    201800,PEOPLES R CHINA.
23714 CR BAKER S, 1983, THIN SOLID FILMS, V99, P53
23715    BATEY J, 1983, THIN SOLID FILMS, V99, P283
23716    BOLTS JM, 1979, J AM CHEM SOC, V101, P1378
23717    FURUNO T, 1988, THIN SOLID FILMS, V160, P145
23718    HIGUCHI Y, 1986, CHEM LETT, V12, P1651
23719    HOME AT, 1987, J ELECTROCHEM SOC, V134, P72
23720    LI G, 1990, Z NATURFORSCH, V45, P695
23721    NAKATO Y, 1987, BER BUNSEN PHYS CHEM, V91, P405
23722    TSUBOMURA H, 1987, NEW J CHEM, V11, P167
23723 NR 9
23724 TC 0
23725 SN 0567-7351
23726 J9 ACTA CHIM SIN
23727 JI Acta Chim. Sin.
23728 PY 1993
23729 VL 51
23730 IS 5
23731 BP 432
23732 EP 437
23733 PG 6
23734 SC Chemistry, Multidisciplinary
23735 GA LJ879
23736 UT ISI:A1993LJ87900003
23737 ER
23738 
23739 PT J
23740 AU HUANG, HC
23741 TI FIBEROPTICS IN CHINA - INTRODUCTION
23742 SO FIBER AND INTEGRATED OPTICS
23743 DT Editorial Material
23744 RP HUANG, HC, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
23745 NR 0
23746 TC 0
23747 SN 0146-8030
23748 J9 FIBER INTEGRATED OPT
23749 JI Fiber Integr. Opt.
23750 PY 1993
23751 VL 12
23752 IS 1
23753 BP 1
23754 EP 1
23755 PG 1
23756 SC Optics
23757 GA LJ499
23758 UT ISI:A1993LJ49900001
23759 ER
23760 
23761 PT J
23762 AU HUANG, HC
23763 TI PASSIVE POLARIZATION-CONTROLLED ALL-FIBER GYROSCOPE AND OTHER
23764    INTERFEROMETRIC ARCHITECTURES
23765 SO FIBER AND INTEGRATED OPTICS
23766 DT Article
23767 AB A novel all-fiber gyroscope architecture is disclosed making use of the
23768    author's U. S. -patented Passive Polarization Control (PPC) invention
23769    to stabilize the polarization state of the counter-propagating beams in
23770    the rotating Sagnac fiber loop. The PPC is simply a piece of variably
23771    spun birefringent optical fiber capable of transforming a circularly
23772    polarized light into a linearly polarized light that automatically
23773    aligns itself along a principal axis of the fiber. The all-fiber
23774    gyroscope architecture uses two cascaded directional couplers operating
23775    on circular SOP, thus providing an ''SOP matching '' with the
23776    PPC-terminated fiber loop. The predicted PPC performance has been
23777    confirmed experimentally in a laboratory.
23778 RP HUANG, HC, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
23779 CR CULSHAW B, 1991, PROGR ELECTROMAGNETI
23780    HUNGCHIA H, 1960, SCIENTIA SINICA, V9, P142
23781    HUNGCHIA H, 1961, ACTA MATH SINICA, V11, P238
23782    HUNGCHIA H, 1981, RADIO SCI, V16, P494
23783    HUNGCHIA H, 1984, COUPLED MODE THEORY
23784    HUNGCHIA H, 1990, 10422442, CH
23785    HUNGCHIA H, 1990, 4943132, US
23786    HUNGCHIA H, 1991, 91107430, CH, APPL
23787    HUNGCHIA H, 1991, COUPLED MODES NONIDE, P81
23788    HUNGCHIA H, 1991, PROGR ELECTROMAGNETI
23789    HUNGCHIA H, 1992, 5096312, US
23790    HUNGCHIA H, 1992, 92108559, CH, APPL
23791    KELLER HB, 1962, J SOC IND APPL MATH, V10, P246
23792 NR 13
23793 TC 3
23794 SN 0146-8030
23795 J9 FIBER INTEGRATED OPT
23796 JI Fiber Integr. Opt.
23797 PY 1993
23798 VL 12
23799 IS 1
23800 BP 21
23801 EP 29
23802 PG 9
23803 SC Optics
23804 GA LJ499
23805 UT ISI:A1993LJ49900004
23806 ER
23807 
23808 PT J
23809 AU ZHU, JH
23810    WAN, XJ
23811    WU, Y
23812 TI EFFECT OF BORON DOPING ON ENVIRONMENTAL EMBRITTLEMENT OF NI3(AL,MN)
23813 SO SCRIPTA METALLURGICA ET MATERIALIA
23814 DT Article
23815 ID INTERGRANULAR HYDROGEN EMBRITTLEMENT; MECHANICAL-PROPERTIES;
23816    GRAIN-BOUNDARIES; NI3AL; DUCTILITY; ALLOYS; FEAL; CO3TI; BERYLLIUM;
23817    COMPOUND
23818 RP ZHU, JH, SHANGHAI UNIV SCI & TECHNOL,INST MET & MAT SCI,SHANGHAI
23819    200072,PEOPLES R CHINA.
23820 CR GAYDOSH DJ, 1990, SCRIPTA METALL MATER, V24, P1281
23821    GEORGE EP, 1992, SCRIPTA METALL MATER, V27, P365
23822    HORTON JA, 1984, HIGH TEMPERATURE ALL, P309
23823    HORTON JA, 1987, ACTA METALL, V35, P133
23824    LIU CT, 1985, ACTA METALL, V33, P213
23825    LIU CT, 1989, SCRIPTA METALL, V23, P875
23826    LIU CT, 1990, SCRIPTA METALL MATER, V24, P1285
23827    LIU CT, 1990, SCRIPTA METALL MATER, V24, P385
23828    LIU CT, 1991, ISIJ INT, V31, P1192
23829    LIU CT, 1991, SCRIPTA METALL MATER, V25, P1933
23830    LIU CT, 1992, SCRIPTA METALL MATER, V27, P25
23831    LIU CT, 1992, SCRIPTA METALL MATER, V27, P599
23832    LYNTH R, 1991, SCRIPTA METALL, V25, P2147
23833    MASAHASHI N, 1988, ACTA METALL, V36, P1823
23834    MASAHASHI N, 1988, METALL T A, V19, P345
23835    MASAHASHI N, 1988, METALL T A, V19, P353
23836    MCKAMEY CG, 1990, SCRIPTA METALL MATER, V24, P2119
23837    NISHIMURA C, 1991, SCRIPTA METALL MATER, V25, P791
23838    NISHIMURA C, 1992, ACTA METALL MATER, V40, P723
23839    SIKKA VK, 1991, SAMPE QUART, V22, P2
23840    TAKASUGI T, 1985, SCRIPTA METALL, V19, P903
23841    TAKASUGI T, 1986, ACTA METALL, V34, P607
23842    TAKASUGI T, 1986, SCRIPTA METALL, V20, P1317
23843    TAKASUGI T, 1990, J MATER SCI, V25, P4239
23844    TAKASUGI T, 1991, ACTA METALL MATER, V39, P2157
23845    TAKASUGI T, 1991, J MATER SCI, V26, P1179
23846    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
23847    WHITE CL, 1984, SCRIPTA METALL, V18, P1417
23848 NR 28
23849 TC 10
23850 SN 0956-716X
23851 J9 SCR METALL MATER
23852 JI Scr. Metall. Materialia
23853 PD AUG 1
23854 PY 1993
23855 VL 29
23856 IS 3
23857 BP 429
23858 EP 432
23859 PG 4
23860 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
23861    Engineering
23862 GA LJ115
23863 UT ISI:A1993LJ11500026
23864 ER
23865 
23866 PT J
23867 AU WANG, E
23868    YU, ZM
23869    XU, CM
23870    QI, DY
23871 TI BARIUM ION TRANSFER ACROSS THE WATER NITROBENZENE INTERFACE FACILITATED
23872    BY AN IONOPHORE N,N,N',N'-TETRACYCLOHEXYL-3-OXAPENTANEDIAMIDE (ETH129)
23873 SO ANALYTICAL SCIENCES
23874 DT Note
23875 ID MECHANISM; TRANSPORT
23876 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
23877 RP WANG, E, CHINESE ACAD SCI,CHANGCHUN INST APPL CHEM,ELECTROANALYT CHEM
23878    LAB,CHANGCHUN 130022,PEOPLES R CHINA.
23879 CR HOMOLKA D, 1982, J ELECTROANAL CHEM, V138, P29
23880    KAKIUCHI T, 1991, J ELECTROANAL CH INF, V300, P431
23881    KAKUTANI T, 1986, B CHEM SOC JPN, V59, P781
23882    KORYTA J, 1979, ELECTROCHIM ACTA, V24, P293
23883    KORYTA J, 1983, ION SEL ELECTRODE R, V5, P131
23884    PRETSCH E, 1980, HELV, V63, P191
23885    QI DY, 1992, ACTA CHIM SINICA, V50, P479
23886    VANYSEK P, 1984, J ELECTROANAL CH INF, V163, P1
23887    WANG E, 1987, J CHEM SOC F1, V83, P2993
23888    YOSHIDA Z, 1984, J ELECTROANAL CH INF, V179, P31
23889 NR 10
23890 TC 1
23891 SN 0910-6340
23892 J9 ANAL SCI
23893 JI Anal. Sci.
23894 PD JUN
23895 PY 1993
23896 VL 9
23897 IS 3
23898 BP 405
23899 EP 408
23900 PG 4
23901 SC Chemistry, Analytical
23902 GA LG425
23903 UT ISI:A1993LG42500014
23904 ER
23905 
23906 PT J
23907 AU YANG, ZJ
23908    YAO, KY
23909 TI EFFECTS OF SEVERAL KINDS OF ANISOTROPY ON THE COERCIVITY BEHAVIORS OF
23910    IRON-OXIDES
23911 SO JOURNAL OF APPLIED PHYSICS
23912 DT Article
23913 AB Coercivity behaviors of iron oxides during phase changes between Fe3O4
23914    and gamma-Fe2O3 for granular powders and continuous thin films, which
23915    can be interpreted in a unified framework by an intermediate product
23916    hypothesis, are investigated. There exists a critical value c(cr) of
23917    Fe3O4 concentration for different samples. The intermediate product
23918    Fe3-zO4 in oxidation and reduction processes is a mixture of two phases
23919    when Fe3O4 concentration c is smaller than C(cr); but it may exist in
23920    the form of a homogeneous solid solution (single-phase)
23921    (Fe3O4)1-x(gamma-Fe2O3)x when c is larger than c(cr). The difference in
23922    lattice constants will produce a tensive stress (sigma>0) on
23923    gamma-Fe2O3 and compressive stress (sigma<0) on Fe3O4 at interfaces.
23924    Superposition of a positive stress anisotropy on the easy axes [111] of
23925    magnetocrystalline anisotropy for Fe3O4 and on the easy axes [110] for
23926    gamma-Fe2O3 will cause an increase in the coercivity H(c) for spherical
23927    particle and thin film samples. The coercivity behavior of our acicular
23928    particle sample is contrary to that of thin film and spherical particle
23929    samples. Also, the switching field distribution curve showed a peak
23930    near c=0.4. There always exist some two-phase intermediate compounds in
23931    Fe3-zO4 due to the incomplete reaction of single domain particles. The
23932    decrease in coercivity of acicular particles is affected by the shape
23933    anisotropy related to changes in effective particle sizes.
23934 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI,PEOPLES R CHINA.
23935 RP YANG, ZJ, ARIZONA STATE UNIV,DEPT PHYS,TEMPE,AZ 85287.
23936 CR BATE G, 1980, FERROMAGNETIC MATERI, V2, P381
23937    BEAN CP, 1959, J APPL PHYS, V30, P1205
23938    BICKFORD LR, 1956, P I ELECTR ENG S5, V104, P238
23939    BORRELLI NF, 1972, IEEE MAGNET, V8, P648
23940    CHIKAZUMI S, 1964, PHYSICS MAGNETISM
23941    COLOMBO U, 1967, MATER SCI ENG, V2, P125
23942    EAGLE DF, 1967, J APPL PHYS, V38, P995
23943    GUSTARD B, 1969, IEEE T MAGN, V5, P326
23944    HANDERS PJ, 1962, J APPL PHYS, V33, P216
23945    IMAOKA Y, 1968, J ELECTRON SOC JPN, V36, P15
23946    IMAOKA Y, 1971, P INT C FERRITES, P467
23947    KOJIMA H, 1980, IEEE T MAGN, V16, P11
23948    NEEL L, 1947, CR HEBD ACAD SCI, V224, P488
23949    NEEL L, 1955, ADV PHYS, V4, P191
23950    SHTRIKMAN S, 1959, J PHYS RADIUM, V20, P286
23951    STONER EC, 1948, PHILOS T ROY SOC A, V240, P599
23952    TAKEI H, 1966, J PHYS SOC JPN, V21, P1255
23953    WATT LAK, 1960, J APPL PHYS, V31, S71
23954    WOHLFARTH EP, 1964, J APPL PHYS, V35, P783
23955 NR 19
23956 TC 2
23957 SN 0021-8979
23958 J9 J APPL PHYS
23959 JI J. Appl. Phys.
23960 PD MAY 15
23961 PY 1993
23962 VL 73
23963 IS 10
23964 PN Part 2B
23965 BP 6665
23966 EP 6667
23967 PG 3
23968 SC Physics, Applied
23969 GA LD865
23970 UT ISI:A1993LD86500196
23971 ER
23972 
23973 PT J
23974 AU CHEN, ZX
23975    YU, GB
23976 TI LONG-TIME BEHAVIORS OF THE SPATIALLY UNIFORM DISCRETE NAGUMO MODEL
23977 SO MATHEMATICAL METHODS IN THE APPLIED SCIENCES
23978 DT Article
23979 AB In this paper a spatially uniform discrete Nagumo model is considered.
23980    The relation between the number and positions of period-2 solutions,
23981    and the parameter and initial values are discovered. The long-time
23982    behaviours of the solutions are discussed for different parameters and
23983    initial values.
23984 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
23985 RP CHEN, ZX, SHANGHAI JIAO TONG UNIV,DEPT APPL MATH,SHANGHAI
23986    200030,PEOPLES R CHINA.
23987 CR BRITTON NF, 1986, REACTION DIFFUSION E
23988    BURATTI RJ, 1968, P IEEE, V56, P1392
23989    CHEN ZX, 1992, IMA J APPL MATH, V48, P107
23990    DEVANCY RL, 1986, INTRO CHAOTIC DYNAMI
23991    DEVANEY RL, 1989, CHAOS FRACTALS MATH
23992    GUO B, 1989, APPL ANAL, V33, P215
23993    JONES DS, 1983, DIFFERENTIAL EQUATIO
23994    NAGUMO J, 1962, P IRE, V50, P2061
23995    NAGUMO J, 1965, IREE T CIRCUIT THEOR, V12, P400
23996    PICKARD WF, 1966, J THEOR BIOL, V11, P30
23997    SCOTT AC, 1963, P IEEE, V51, P240
23998    SLEEMAN BD, 1988, SIAM J SCI STAT COMP, V9, P543
23999    SMIONOV VI, 1952, KUS VYESHEI MATEMATI, V1
24000    SMOLLER J, 1983, SHOCK WAVES REACTION
24001    WEINBERGER HF, 1982, SIAM J MATH ANAL, V13, P353
24002 NR 15
24003 TC 0
24004 SN 0170-4214
24005 J9 MATH METH APPL SCI
24006 JI Math. Meth. Appl. Sci.
24007 PD MAY
24008 PY 1993
24009 VL 16
24010 IS 5
24011 BP 305
24012 EP 325
24013 PG 21
24014 SC Mathematics, Applied
24015 GA LD445
24016 UT ISI:A1993LD44500001
24017 ER
24018 
24019 PT J
24020 AU HUA, JD
24021    LIU, YF
24022    ZHANG, KJ
24023    JIANG, SR
24024 TI THE COMPATIBILITY OF A POLYMERIC CATALYST SUBSTRATE SOLVENT AND
24025    REACTION-RATE .3.
24026 SO JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS
24027 DT Article
24028 AB In the presence of solvent, the catalytic rate in a polymeric metal
24029    complex catalyst (2)-substrate (1)-solvent (0) system is related to the
24030    solubility parameters (delta(i)) of the three components. According to
24031    thermodynamic and kinetic theories, an approximate relationship between
24032    the reaction rate and solubility parameters has been deduced as follows:
24033    [GRAPHICS] where phi2 is volume fraction of polymeric catalyst and V1
24034    is mole volume of substrate. For a given polymeric catalyst and a given
24035    substrate, the effect of different solvents on the rate could be
24036    simplified as r = A/1 + D . exp(-B (delta0 - delta2)2) where A, B, and
24037    D are constants. From this formula it can be seen that the rate is a
24038    function of solubility parameter of solvent in the form of the
24039    reciprocal of a normal distribution. This result has been supported by
24040    experiment.
24041 RP HUA, JD, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
24042    R CHINA.
24043 CR HANSEN CM, 1967, J PAINT TECHNOL, V39, P104
24044    HANSEN CM, 1967, J PAINT TECHNOL, V39, P511
24045    HANSEN CM, 1969, IND ENG CHEM PROD RD, V2, P8
24046    HUA J, 1989, J APPL POLYM SCI, V38, P1211
24047    HUA J, 1989, J MACROMOL SCI PHY B, V28, P455
24048 NR 5
24049 TC 2
24050 SN 0022-2348
24051 J9 J MACROMOL SCI-PHYS
24052 JI J. Macromol. Sci.-Phys.
24053 PY 1993
24054 VL B32
24055 IS 2
24056 BP 183
24057 EP 204
24058 PG 22
24059 SC Polymer Science
24060 GA LB533
24061 UT ISI:A1993LB53300004
24062 ER
24063 
24064 PT J
24065 AU WANG, X
24066    WANG, ZH
24067    HUANG, ZM
24068 TI PROPAGATION CONSTANT OF A PLANAR DIELECTRIC WAVE-GUIDE WITH ARBITRARY
24069    REFRACTIVE-INDEX VARIATION
24070 SO OPTICS LETTERS
24071 DT Article
24072 ID OPTICAL WAVE-GUIDE; MATRIX
24073 AB The calculation of a propagation constant is an interesting problem in
24074    the study of planar waveguides. We present a new method for solving the
24075    problem of a planar dielectric waveguide with arbitrary
24076    refractive-index variation for either TE or TM modes, and this method
24077    is simpler than other methods. Taking a parabolic refractive-index
24078    profile as an example, we show that high accuracy can be attained with
24079    this new method, provided that the waveguide is divided into layers of
24080    proper number and thickness.
24081 RP WANG, X, SHANGHAI UNIV SCI & TECHNOL,WAVE SCI LAB,SHANGHAI
24082    201800,PEOPLES R CHINA.
24083 CR CHILWELL J, 1984, J OPT SOC AM A, V1, P742
24084    HUANG HC, 1981, ELECTRON LETT, V17, P202
24085    POLKY JN, 1974, J OPT SOC AM, V64, P274
24086    TAMIR T, 1979, INTEGRATED OPTICS, CH2
24087    WALPITA LM, 1985, J OPT SOC AM A, V2, P595
24088    WANG ZH, 1989, J OPT SOC AM A, V6, P142
24089 NR 6
24090 TC 1
24091 SN 0146-9592
24092 J9 OPTICS LETTERS
24093 JI Opt. Lett.
24094 PD MAY 15
24095 PY 1993
24096 VL 18
24097 IS 10
24098 BP 805
24099 EP 807
24100 PG 3
24101 SC Optics
24102 GA LA947
24103 UT ISI:A1993LA94700017
24104 ER
24105 
24106 PT J
24107 AU LIU, RH
24108    ZOU, RP
24109 TI NONLINEAR BENDING OF A CORRUGATED ANNULAR PLATE WITH A PLANE BOUNDARY
24110    REGION AND A NON-DEFORMABLE RIGID-BODY AT THE CENTER UNDER COMPOUND LOAD
24111 SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS
24112 DT Article
24113 ID LARGE DEFLECTION; CIRCULAR PLATE
24114 AB In this paper, based on the non-linear bending theories of isotropic
24115    and anisotropic annular plates, the non-linear bending of a corrupted
24116    annular plate with a plane boundary region and a non-deformable rigid
24117    body at the center has been investigated under the combined action of
24118    uniform pressure and a single concentrated load at the center. For two
24119    kinds of outer edges, namely, rigidly and loosely clamped edges,
24120    analytical solutions of the plate have been obtained by the modified
24121    iteration method.
24122 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA.
24123 RP LIU, RH, JINAN UNIV,CANTON 510632,PEOPLES R CHINA.
24124 CR AKASAKA T, 1955, J JAP SOC AERONAUT E, V3, P279
24125    ANDRYEVA LE, 1962, ELASTIC ELEMENTS INS
24126    ANDRYEWA LE, 1955, ENG COLLECTION SBORN, V21, P128
24127    BURMISTROV EV, 1960, ENG COLLECTION, V27, P185
24128    CHEN SL, 1980, APPL MATH MECH, V1, P261
24129    FEODOSEV VI, 1945, PRIKL MAT MEKH, V9, P389
24130    FEODOSEV VI, 1949, ELASTIC ELEMENTS PRE
24131    HARINGX JA, 1956, APPL SCI RES A, V16, P45
24132    HARINGX JA, 1957, T ASME, V79, P55
24133    LIU RH, 1965, B SCI, V3, P253
24134    LIU RH, 1978, ACTA MECH SINICA, V1, P47
24135    LIU RH, 1979, J CHINA U SCI TECHNO, V9, P75
24136    LIU RH, 1984, INT J NONLINEAR MECH, V19, P409
24137    LIU RH, 1984, SCI SINICA SER A, V27, P640
24138    LIU RH, 1984, SOLID MECH ARCH, V9, P383
24139    LIU RH, 1985, SCI SINICA SER A, V28, P959
24140    LIU RH, 1987, ADV APPL MATH MECH C, V1, P138
24141    LIU RH, 1988, APPL MATH MECH, V9, P711
24142    LIU RH, 1989, INT J NONLINEAR MECH, V24, P165
24143    PANOV DY, 1941, PRIKL MAT MEKH, V5, P308
24144    YEH KY, 1965, B SCI, V2, P142
24145    YEH KY, 1965, B SCI, V2, P145
24146 NR 22
24147 TC 2
24148 SN 0020-7462
24149 J9 INT J NON-LINEAR MECH
24150 JI Int. J. Non-Linear Mech.
24151 PD MAY
24152 PY 1993
24153 VL 28
24154 IS 3
24155 BP 353
24156 EP 364
24157 PG 12
24158 SC Mechanics
24159 GA KZ772
24160 UT ISI:A1993KZ77200007
24161 ER
24162 
24163 PT J
24164 AU DAVID, AK
24165    LI, YZ
24166 TI EFFECT OF INTER-TEMPORAL FACTORS ON THE REAL-TIME PRICING OF ELECTRICITY
24167 SO IEEE TRANSACTIONS ON POWER SYSTEMS
24168 DT Article
24169 DE REAL TIME PRICING; POWER ECONOMICS; POWER GENERATION DISPATCH; LOAD
24170    MANAGEMENT; ENERGY MANAGEMENT
24171 AB Dynamic tariffs such as spot pricing are meaningful as indirect load
24172    management tools only if customers are sensitive to inter-temporal
24173    price variations. However, little attention has been paid so far to
24174    understanding the mechanisms of cross-time price elasticity of demand,
24175    inter-temporal definitions of customer utility, and the interaction of
24176    these two effects with the supply side factors of least cost system
24177    operation and dispatch. The importance of these interactions is
24178    enhanced in circumstances where competition between suppliers is
24179    envisaged or when it is desired to use a common spot price for several
24180    disparate customers. This paper develops conceptual and theoretical
24181    models for this purpose, describes computerized solution algorithms and
24182    provides simulation examples.
24183 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
24184 RP DAVID, AK, HONG KONG POLYTECH,KOWLOON,HONG KONG.
24185 CR DAVID AK, IN PRESS INT J ELECT
24186    DAVID AK, 1988, IEE P-GENER TRANSM D, V135, P378
24187    DAVID AK, 1989, IEEE T POWER SYST, V4, P904
24188    DAVID AK, 1991, NOV P IEE C ADV POW
24189    SCHWEPPE FC, 1988, SPOT PRICING ELECTRI
24190 NR 5
24191 TC 4
24192 SN 0885-8950
24193 J9 IEEE TRANS POWER SYST
24194 JI IEEE Trans. Power Syst.
24195 PD FEB
24196 PY 1993
24197 VL 8
24198 IS 1
24199 BP 44
24200 EP 52
24201 PG 9
24202 SC Engineering, Electrical & Electronic
24203 GA KZ377
24204 UT ISI:A1993KZ37700007
24205 ER
24206 
24207 PT J
24208 AU HE, GQ
24209    CHEN, YM
24210 TI AN INVERSE PROBLEM FOR THE BURGERS-EQUATION
24211 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
24212 DT Article
24213 AB In this paper the Generalized Pulse-Spectrum Technique (GPST) is
24214    extended to solve an inverse problem for the Burgers equation. We prove
24215    that the GPST is equivalent in some sense to the Newton-Kautorovich
24216    iteration method. A feasible numerical implementation is presented in
24217    the paper and some examples are excuted. The numerical results show
24218    that this procedure works quite well.
24219 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
24220    SUNY STONY BROOK,DEPT APPL MATH & STAT,STONY BROOK,NY 11794.
24221 CR BURGERS JM, 1948, ADV APPL MECH, V1, P171
24222    BURGERS JM, 1974, NONLINEAR DIFFUSION
24223    CHEN YM, 1983, J COMPUT PHYS, V50, P193
24224    CHEN YM, 1983, SEP US CHIN WORKSH A
24225    LIONS JL, 1972, NONHOMOGENEOUS BOUND
24226    LIU XY, 1987, SIAM J SCI STAT COMP, V8, P436
24227    TEMAM R, 1982, J DIFFER EQUATIONS, V43, P73
24228    TEMAM R, 1984, NAVIER STOKES EQUATI
24229    TIKHONOV AN, 1977, SOLUTIONS ILL POSED
24230    WHITHAM GB, 1974, LINEAR NONLINEAR WAV
24231 NR 10
24232 TC 0
24233 SN 0254-9409
24234 J9 J COMPUT MATH
24235 JI J. Comput. Math.
24236 PD APR
24237 PY 1993
24238 VL 11
24239 IS 2
24240 BP 103
24241 EP 112
24242 PG 10
24243 SC Mathematics, Applied; Mathematics
24244 GA KZ192
24245 UT ISI:A1993KZ19200002
24246 ER
24247 
24248 PT J
24249 AU LIN, CS
24250    YAQOOB, MT
24251 TI AN EFFICIENT FORMULATION TO FIND THE SCATTERING FIELD OF A CONDUCTING
24252    CYLINDER COATED WITH LOSSY MAGNETIC MATERIAL
24253 SO JOURNAL OF APPLIED PHYSICS
24254 DT Article
24255 AB A new formulation for the scattered field from a two dimensional
24256    conducting cylinder coated with a lossy magnetic material is presented
24257    for transverse electric polarization of the incident field. A
24258    conduction current on the conducting surface and a magnetic
24259    polarization current in the coating material is supposed to be induced
24260    when an electromagnetic field is incident over the cylinder. The
24261    scattered field is supposed to be originated in these induced currents.
24262    Two H-field integral equations are developed, which are then solved by
24263    the Method of Moments to find these currents. Scattering cross section
24264    for circular configuration is calculated and compared with exact
24265    solution. Good agreement of results is achieved. The advantage of the
24266    formulation is that it solves the scattered field without the
24267    computation of complex argument Hankel functions. Second, by
24268    considering the polarization of the magnetic coating, the effects of
24269    surface wave excitation are automatically included in the solution.
24270 C1 GOVT COLL,DEPT PHYS,BHAKKAR,PAKISTAN.
24271 RP LIN, CS, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
24272 CR ANTAR YMM, 1989, IEEE T ANTENN PROPAG, V37, P564
24273    ARVAS E, 1989, IEEE T ANTENN PROPAG, V37, P546
24274    HARRINGTON RF, 1968, FIELD COMPUTATION MO
24275    HELSTROM CW, 1963, SCATTERING CYLINDER, P133
24276    JIN JM, 1988, IEEE T ANTENN PROPAG, V36, P50
24277    LIN CS, 1992, J APPL PHYS, V72, P788
24278 NR 6
24279 TC 0
24280 SN 0021-8979
24281 J9 J APPL PHYS
24282 JI J. Appl. Phys.
24283 PD APR 15
24284 PY 1993
24285 VL 73
24286 IS 8
24287 BP 4038
24288 EP 4041
24289 PG 4
24290 SC Physics, Applied
24291 GA KY567
24292 UT ISI:A1993KY56700068
24293 ER
24294 
24295 PT J
24296 AU DING, WY
24297    CAO, WG
24298    XU, ZR
24299    YAO, Y
24300    SHI, ZJ
24301    HAN, ZH
24302 TI SIMPLE SYNTHESIS OF DIMETHYL 4-METHYL-6-PERFLUOROALKYLISOPHTHALATES AND
24303    DIMETHYL 5-PERFLUOROALKYLBIPHENYL-2,4-DICARBOXYLATES VIA ACYCLIC
24304    PRECURSORS
24305 SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 1
24306 DT Article
24307 AB Reaction of methyl propynoate 2 with
24308    acetylmethylenetriphenylphosphorane 1 a or
24309    benzoylmethylenetriphenylphosphorane 1b at 90-degrees-C gives methyl
24310    5-oxo-2-(triphenylphosphoranylidene)hex-3-enoate 4a or methyl
24311    4-benzoyl-2-(triphenylphosphoranylidene)but-3-enoate 4b as the main
24312    product, respectively. Phosphoranes 4a or 4b can further react with
24313    methyl perfluoroalkynoates 5a and 5b to afford dimethyl
24314    2-(3-oxo-1-perfluoroalkylbut-1-enyl)-4-(triphenylphosphoranylidene)pent-
24315    2-enedioates 6a and 6b or dimethyl
24316    2-(2-benzoyl-1-perfluoroalkylvinyl)-4-(triphenylphosphoranylidene)pent-2
24317    -enedioates 6c and 6d, respectively. Diemethyl
24318    4-methyl-6-perfluoroalkylisophthalates 7a and 7b or dimethyl
24319    5-perfluoroalkylbiphenyl-2,4-dicarboxylates 7c and 7d were prepared in
24320    high yield via intramolecular Wittig reaction of phosphoranes 6a/6b or
24321    6c/6d in benzene or methanol. The structures of compounds 4a, 6a and 7a
24322    were confirmed by IR, MS and H-1, F-19 and C-13 NMR spectroscopy and
24323    elemental analyses. Reaction mechanisms for the formation of compounds
24324    4, 6 and 7 are proposed.
24325 RP DING, WY, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
24326    R CHINA.
24327 CR DING WY, 1987, TETRAHEDRON LETT, V28, P81
24328    DING WY, 1992, SYNTHESIS-STUTTGART, P635
24329    DING WY, 1993, UNPUB CHIN J CHEM, V11, P67
24330    HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47
24331    JUNG ME, 1988, J AM CHEM SOC, V110, P3965
24332    RAMIREZ F, 1957, J ORG CHEM, V22, P41
24333    WOLF V, 1953, CHEM BER, V86, P735
24334 NR 7
24335 TC 10
24336 SN 0300-922X
24337 J9 J CHEM SOC PERKIN TRANS 1
24338 JI J. Chem. Soc.-Perkin Trans. 1
24339 PD APR 7
24340 PY 1993
24341 IS 7
24342 BP 855
24343 EP 858
24344 PG 4
24345 SC Chemistry, Organic
24346 GA KX923
24347 UT ISI:A1993KX92300020
24348 ER
24349 
24350 PT J
24351 AU HE, GQ
24352 TI A KIND OF A POSTERIORI PARAMETER CHOICES FOR THE ITERATED TIKHONOV
24353    REGULARIZATION METHOD
24354 SO CHINESE SCIENCE BULLETIN
24355 DT Article
24356 DE ILL-POSED PROBLEM; REGULARIZATION METHOD; A POSTERIORI PARAMETER CHOICE
24357 RP HE, GQ, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
24358 NR 0
24359 TC 1
24360 SN 1001-6538
24361 J9 CHIN SCI BULL
24362 JI Chin. Sci. Bull.
24363 PD MAR
24364 PY 1993
24365 VL 38
24366 IS 5
24367 BP 356
24368 EP 360
24369 PG 5
24370 SC Multidisciplinary Sciences
24371 GA KV496
24372 UT ISI:A1993KV49600002
24373 ER
24374 
24375 PT J
24376 AU XIE, XY
24377    EVANS, RJ
24378 TI FREQUENCY-WAVE-NUMBER TRACKING USING HIDDEN MARKOV-MODELS
24379 SO IEEE TRANSACTIONS ON SIGNAL PROCESSING
24380 DT Letter
24381 ID MULTIPLE
24382 AB This correspondence extends earlier work by the authors on multiple
24383    frequency line tracking using hidden Markov models (HMM's) to also
24384    include wavenumber estimation. The main idea is to model the frequency
24385    and wavenumber of each target using HMM and then to track these signals
24386    using a Viterbi algorithm. The input measurements to the Viterbi
24387    algorithm are two-dimensional (2-D) Fourier transforms of the array
24388    output signals. Several supporting simulations show that the approach
24389    works well, although it is computationally expensive.
24390 C1 UNIV MELBOURNE,DEPT ELECT & ELECTR ENGN,PARKVILLE,VIC 3052,AUSTRALIA.
24391 RP XIE, XY, SHANGHAI UNIV SCI & TECHNOL,DEPT COMP SCI,SHANGHAI,PEOPLES R
24392    CHINA.
24393 CR BARSHALOM Y, 1988, TRACKING DATA ASS
24394    DAVENPORT WB, 1987, INTRO THEORY RANDOM
24395    DEGRAAF SR, 1983, IEEE T ACOUST SPEECH, V33, P1368
24396    HALPENY OS, 1975, IEEE T CIRCUITS SYST, V22, P552
24397    HAYKIN S, 1983, NONLINEAR METHODS SP, CH1
24398    JOHNSON DH, 1982, P IEEE, V70, P1018
24399    RABINER LR, 1986, IEEE ASSP MAGAZI JAN, P4
24400    RABINER LR, 1989, P IEEE, V77, P257
24401    SCHMIDT RO, 1986, IEEE T ANTENN PROPAG, V34, P276
24402    STARKEY PG, 1987, GEC-J RES, V5, P193
24403    STREIT RL, 1990, IEEE T ACOUST SPEECH, V38, P586
24404    SWORD CK, 1990, IEEE T AERO ELEC SYS, V26, P367
24405    XIE XY, 1991, IEEE T SIGNAL PROCES, V39, P2659
24406    XIE XY, 1993, IEEE T SIGNAL PROCES, V41, P334
24407 NR 14
24408 TC 2
24409 SN 1053-587X
24410 J9 IEEE TRANS SIGNAL PROCESS
24411 JI IEEE Trans. Signal Process.
24412 PD MAR
24413 PY 1993
24414 VL 41
24415 IS 3
24416 BP 1391
24417 EP 1394
24418 PG 4
24419 SC Engineering, Electrical & Electronic
24420 GA KU545
24421 UT ISI:A1993KU54500029
24422 ER
24423 
24424 PT J
24425 AU TU, RJ
24426    ZHENG, Q
24427 TI INTEGRAL GLOBAL OPTIMIZATION METHOD IN STATISTICAL APPLICATIONS
24428 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
24429 DT Article
24430 ID MAXIMUM-LIKELIHOOD; EM ALGORITHM
24431 AB Many statistical computations need a minimization method which can find
24432    global of a nonconvex, nonsmooth and even discontinuous objective
24433    function. Conventional optimization methods hardly serve that. The
24434    integral optimization method has been developed to satisfy such
24435    requirements. In this paper, we apply this method to several problems
24436    in statistics, such as nonlinear regression, maximum likelihood
24437    estimation for three-pararmeter Weibull distribution, mixture densities
24438    and sampling, and show that the results obtained by a global
24439    minimization method are better than those by a gradient-based one.
24440 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
24441 RP TU, RJ, WICHITA STATE UNIV,DEPT MATH,WICHITA,KS 67208.
24442 CR ARTHANARI TS, 1981, MATH PROGRAMMING STA
24443    CHEW SH, 1988, LECTURE NOTES EC MAT, V298
24444    DEMPSTER AP, 1977, J ROY STAT SOC B MET, V39, P1
24445    MCCORMICK GP, 1983, NONLINEAR PROGRAMMIN
24446    MCCORMICK GP, 1988, EXAMPLE 2 LOCAL MAXI
24447    RATKOWSKY DA, 1983, NONLINEAR REGRESSION
24448    REDNER RA, 1984, SIAM REV, V26, P195
24449    ROCHETTE H, 1974, J AM STAT ASSOC, V69, P246
24450    ZANAKIS SH, 1986, J STATISTICAL COMPUT, V25, P53
24451    ZHENG Q, 1978, ACTAMATH APPLICATAE, V2, P161
24452    ZHENG Q, 1985, ACTA MATH APPL SINIC, V1, P118
24453    ZHENG Q, 1985, ACTA MATH APPLICATAE, V1, P67
24454    ZHENG Q, 1988, LECTURE NOTES EC MAT, V302, P18
24455    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205
24456    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317
24457    ZHENG Q, 1991, COMPUT MATH APPL, V21, P17
24458 NR 16
24459 TC 1
24460 SN 0898-1221
24461 J9 COMPUT MATH APPL
24462 JI Comput. Math. Appl.
24463 PD MAY-JUN
24464 PY 1993
24465 VL 25
24466 IS 10-11
24467 BP 9
24468 EP 17
24469 PG 9
24470 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
24471 GA KU420
24472 UT ISI:A1993KU42000003
24473 ER
24474 
24475 PT J
24476 AU ZHENG, Q
24477 TI DISCONTINUITY AND MEASURABILITY OF ROBUST FUNCTIONS IN THE INTEGRAL
24478    GLOBAL MINIMIZATION
24479 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
24480 DT Article
24481 AB Robustness and measurability of a set and of a function are the
24482    foundation of the integral approach to global minimization. However, a
24483    robust function may be discontinuous and nonmeasurable. In this paper,
24484    we show that the set of points of discontinuity of a robust function
24485    has empty interior and is of the first category. A robust function on
24486    the interval [0,1] is constructed such that the Lebesgue measure of its
24487    set of points of discontinuity approaches 1. We also show that there is
24488    a robust set on [0,1] which is Lebesgue nonmeasurable, and then a
24489    Lebesgue nonmeasurable robust function is constructed.
24490 RP ZHENG, Q, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R
24491    CHINA.
24492 CR BAIRE R, 1905, LECONS FONCTIONS DIS
24493    BOREL E, 1905, LECONS FONCTIONS VAR
24494    GALPERIN E, IN PRESS INTEGRAL GL
24495    GALPERIN E, 1991, GLOBAL SOLUTIONS OPT
24496    HEWITT E, 1975, REAL ABSTRACT ANAL
24497    KULLER RG, 1969, TOPICS MODERN ANAL
24498    LEBESGUE MH, 1898, B SCI MATH
24499    OXTOBY JC, 1980, MEASURE CATEGORY
24500    ROYDEN HL, 1968, REAL ANAL
24501    ZHENG Q, 1985, NUMERICAL ANAL J CHI, V8, P31
24502    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205
24503    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317
24504    ZHENG Q, 1991, COMPUT MATH APPL, V21, P17
24505 NR 13
24506 TC 3
24507 SN 0898-1221
24508 J9 COMPUT MATH APPL
24509 JI Comput. Math. Appl.
24510 PD MAY-JUN
24511 PY 1993
24512 VL 25
24513 IS 10-11
24514 BP 79
24515 EP 88
24516 PG 10
24517 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
24518 GA KU420
24519 UT ISI:A1993KU42000011
24520 ER
24521 
24522 PT J
24523 AU GALPERIN, EA
24524    ZHENG, Q
24525 TI SOLUTION AND CONTROL OF PDE VIA GLOBAL OPTIMIZATION METHODS
24526 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
24527 DT Article
24528 ID PARTIAL-DIFFERENTIAL EQUATIONS; COMPUTATIONAL FLUID-DYNAMICS; DATA
24529    APPROXIMATION SCHEME; FINITE-ELEMENT METHOD; PARABOLIC EQUATIONS;
24530    MULTIQUADRICS; SYSTEMS
24531 AB Based on the concept of eta-equivalent solutions (not to be confused
24532    with approximations to the exact solution), a new consideration is
24533    given to ill-posed [1,2] and overdetermined PDE problems and to
24534    problems with nonexistent solutions [3]. Then a new method based on
24535    full global optimization techniques is developed for solution and
24536    control of processes described by partial differential equations. The
24537    ideas are illustrated by examples, and a case study is presented in
24538    comparison with the quasi-reversibility method [4].
24539 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
24540 RP GALPERIN, EA, UNIV QUEBEC,DEPT MATH & INFORMAT,CP 8888,SUCC A,MONTREAL
24541    H3C 3P8,QUEBEC,CANADA.
24542 CR BAKER GA, 1980, NONL ANAL THEORY MET, V4, P579
24543    BENISRAEL A, 1974, GENERALIZED INVERSES
24544    CHEW SH, 1988, LECTURE NOTES EC MAT, V298
24545    COPSON ET, 1975, PARTIAL DIFFERENTIAL
24546    COURANT R, 1928, MATH ANN, V100, P32
24547    DOUGLAS J, 1970, SIAM J NUMER ANAL, V7, P575
24548    EPSTEIN B, 1975, PARTIAL DIFFERENTIAL
24549    FARAGO I, 1991, COMPUT MATH APPL, V21, P49
24550    FARAGO I, 1991, COMPUT MATH APPL, V21, P59
24551    GALPERIN EA, 1990, CUBIC ALGORITHM OPTI
24552    GALPERIN EA, 1990, NEW THEORY CONTINUOU
24553    GARABEDIAN PR, 1964, PARTIAL DIFFERENTIAL
24554    GROMOV ML, 1973, MATH USSR IZV, V7, P329
24555    HADAMARD J, 1952, LECTURES CAUCHYS PRO
24556    HARDY RL, 1990, COMPUT MATH APPL, V19, P163
24557    KANSA EJ, 1990, COMPUT MATH APPL, V19, P127
24558    KANSA EJ, 1990, COMPUT MATH APPL, V19, P147
24559    LATTES R, 1967, METHODE QUASIREVERSI
24560    PENROSE R, 1955, P CAMBRIDGE PHILOS S, V51, P406
24561    PENROSE R, 1956, P CAMBRIDGE PHILOS S, V52, P17
24562    SPRING D, 1983, ANN I FOURIER, V33, P121
24563 NR 21
24564 TC 4
24565 SN 0898-1221
24566 J9 COMPUT MATH APPL
24567 JI Comput. Math. Appl.
24568 PD MAY-JUN
24569 PY 1993
24570 VL 25
24571 IS 10-11
24572 BP 103
24573 EP 118
24574 PG 16
24575 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
24576 GA KU420
24577 UT ISI:A1993KU42000013
24578 ER
24579 
24580 PT J
24581 AU GALPERIN, EA
24582    PAN, ZX
24583    ZHENG, Q
24584 TI APPLICATION OF GLOBAL OPTIMIZATION TO IMPLICIT SOLUTION OF
24585    PARTIAL-DIFFERENTIAL EQUATIONS
24586 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
24587 DT Article
24588 ID COMPUTATIONAL FLUID-DYNAMICS; DATA APPROXIMATION SCHEME; MULTIQUADRICS
24589 AB A numerical method of finding implicit eta-solutions of partial
24590    differential equations is presented.
24591 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
24592 RP GALPERIN, EA, UNIV QUEBEC,DEPT MATH & COMP SCI,CP 8888,SUCC A,MONTREAL
24593    H3C 3P8,QUEBEC,CANADA.
24594 CR GALPERIN EA, 1991, GLOBAL SOLUTIONS OPT
24595    HARDY RL, 1990, COMPUT MATH APPL, V19, P163
24596    KANSA EJ, 1990, COMPUT MATH APPL, V19, P127
24597    KANSA EJ, 1990, COMPUT MATH APPL, V19, P147
24598    LEVEQUE RJ, 1982, SIAM J NUMER ANAL, P1091
24599    RICHTMYER RD, 1967, DIFFERENCE METHODS I
24600 NR 6
24601 TC 0
24602 SN 0898-1221
24603 J9 COMPUT MATH APPL
24604 JI Comput. Math. Appl.
24605 PD MAY-JUN
24606 PY 1993
24607 VL 25
24608 IS 10-11
24609 BP 119
24610 EP 124
24611 PG 6
24612 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
24613 GA KU420
24614 UT ISI:A1993KU42000014
24615 ER
24616 
24617 PT J
24618 AU GUO, YP
24619    DENG, XN
24620 TI ELECTRODEPOSITION OF CDTE THIN-FILMS AND THEIR PHOTOELECTROCHEMICAL
24621    BEHAVIOR
24622 SO SOLAR ENERGY MATERIALS AND SOLAR CELLS
24623 DT Article
24624 ID SOLAR-CELLS; CADMIUM; DEPOSITION; TELLURIDE
24625 AB CdTe thin films were electrodeposited on Ni substrates from aqueous
24626    solutions containing CdSO4, TeO2 and H2SO4 with an interchangeable
24627    rotating disk electrode. The variations in the composition of the CdTe
24628    films with cathodic potentials and heat treatment temperatures were
24629    studied by the polarographic method. The deposition and annealing
24630    parameters had been optimized to yield a good photoelectrochemical
24631    performance. After surface modification, the conversion efficiencies
24632    were 0.61% and 5.3% for the cells p-CdTe/SnCl2 (sat.), 0.2M HCl/C and
24633    n-CdTe/1 M Na2S, 1 M S, 1 M NaOH/C, respectively.
24634 RP GUO, YP, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
24635    R CHINA.
24636 CR BHATTACHARYA RN, 1984, J ELECTROCHEM SOC, V131, P2033
24637    DANAHER WJ, 1983, AUST J CHEM, V36, P1011
24638    DARKOWSKI A, 1985, J ELECTROCHEM SOC, V132, P2768
24639    DARKOWSKI A, 1986, TALANTA, V33, P187
24640    FULOP G, 1982, APPL PHYS LETT, V40, P327
24641    GORE RB, 1989, J APPL PHYS, V65, P2693
24642    GORE RB, 1989, SOL ENERG MATER, V18, P159
24643    GUO YP, IN PRESS SOC ENERGY
24644    LICHT S, 1986, J PHYS CHEM-US, V90, P1096
24645    LLABRES J, 1984, J ELECTROCHEM SOC, V131, P464
24646    LOAEZA P, 1990, J MATER SCI LETT, V9, P11
24647    PANICKER MPR, 1978, J ELECTROCHEM SOC, V125, P566
24648    SANYAL GS, 1990, SOL ENERG MATER, V20, P395
24649    SHEN J, 1986, ACTA PHYSICOCHIMICA, V2, P554
24650    TAKAHASHI M, 1985, J APPL PHYS, V58, P4292
24651    UOSAKI K, 1984, ELECTROCHIM ACTA, V29, P279
24652 NR 16
24653 TC 10
24654 SN 0927-0248
24655 J9 SOLAR ENERG MATER SOLAR CELLS
24656 JI Sol. Energy Mater. Sol. Cells
24657 PD MAR
24658 PY 1993
24659 VL 29
24660 IS 2
24661 BP 115
24662 EP 122
24663 PG 8
24664 SC Materials Science, Multidisciplinary; Energy & Fuels
24665 GA KU287
24666 UT ISI:A1993KU28700003
24667 ER
24668 
24669 PT J
24670 AU GUO, YP
24671    DENG, XN
24672 TI EFFECTS OF SURFACE MODIFICATION ON THE PEC PERFORMANCE OF
24673    ELECTROCHEMICALLY DEPOSITED N-CDTE FILMS
24674 SO SOLAR ENERGY MATERIALS AND SOLAR CELLS
24675 DT Article
24676 ID P-TYPE CDTE; THIN-FILMS; CADMIUM TELLURIDE; PHOTOELECTROCHEMICAL CELLS;
24677    INSITU PREPARATION; SOLAR-CELLS; ELECTRODEPOSITION; EFFICIENCY;
24678    ELECTROLYTES; STABILITY
24679 AB Modification of electrodeposited n-CdTe thin films by PbS showed
24680    considerably improvement of the performance and stability of n-CdTe
24681    photoelectrochemical cells. The enhanced parameters of PEC solar cells
24682    after modification are V(oc) = 0.515 V, I(sc) = 13 mA/cm2, FF = 0.385
24683    and eta = 5.2% under 50 mW/cm2 illumination, compared to V(oc) = 0.44
24684    V, I(sc) = 6 mA/cm2, FF = 0.31 and eta = 1.6% observed before
24685    modification. The enhanced parameters are attributed to the greater
24686    band bending induced by excess surface charge, as well as the enhanced
24687    solution kinetics due to a good electrocatalysis of PbS for the
24688    polysulfide redox system.
24689 RP GUO, YP, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
24690    R CHINA.
24691 CR BASOL BM, 1984, J APPL PHYS, V55, P601
24692    BHATTACHARYA RN, 1984, J ELECTROCHEM SOC, V131, P2032
24693    BHATTACHARYA RN, 1985, J ELECTROCHEM SOC, V132, P732
24694    BOSE DN, 1984, J ELECTROCHEM SOC, V131, P850
24695    CAHEN D, 1979, J AM CHEM SOC, V101, P3969
24696    DANAHER WJ, 1983, AUST J CHEM, V36, P1011
24697    DARKOWSKI A, 1985, J ELECTROCHEM SOC, V132, P2768
24698    ELLIS AB, 1977, J AM CHEM SOC, V99, P2839
24699    FULOP G, 1982, APPL PHYS LETT, V40, P327
24700    GAUGASH P, 1981, J ELECTROCHEM SOC, V128, P924
24701    GROE RB, 1989, SOL ENERG MATER, V18, P159
24702    GUTIERREZ MT, 1990, SOL ENERG MATER, V20, P387
24703    HELLER A, 1978, J AM CHEM SOC, V100, P684
24704    HODES G, 1980, J ELECTROCHEM SOC, V127, P544
24705    HODES G, 1981, SOL ENERG MATER, V4, P373
24706    LLABRES J, 1984, J ELECTROCHEM SOC, V131, P464
24707    LOAEZA P, 1990, J MATER SCI LETT, V9, P11
24708    MANDAL KC, 1987, J PHYS CHEM-US, V91, P4011
24709    MANDAL KC, 1987, J SOLID STATE CHEM, V71, P559
24710    MULLER N, 1981, APPL PHYS LETT, V39, P283
24711    PANICKER MPR, 1978, J ELECTROCHEM SOC, V125, P566
24712    PARKINSON BA, 1979, J ELECTROCHEM SOC, V126, P954
24713    PENG R, 1984, B MATER ENERGY SYSTE, V2, P25
24714    TAKAHASHI M, 1984, J APPL PHYS, V55, P3879
24715    TAKAHASHI M, 1986, J ELECTROCHEM SOC, V133, P266
24716    TENNE R, 1983, APPL PHYS LETT, V43, P201
24717    TENNE R, 1983, J ELECTROANAL CH INF, V143, P103
24718    UOSAKI K, 1984, ELECTROCHIM ACTA, V29, P279
24719 NR 28
24720 TC 1
24721 SN 0927-0248
24722 J9 SOLAR ENERG MATER SOLAR CELLS
24723 JI Sol. Energy Mater. Sol. Cells
24724 PD MAR
24725 PY 1993
24726 VL 29
24727 IS 2
24728 BP 123
24729 EP 130
24730 PG 8
24731 SC Materials Science, Multidisciplinary; Energy & Fuels
24732 GA KU287
24733 UT ISI:A1993KU28700004
24734 ER
24735 
24736 PT J
24737 AU WANG, EK
24738    YU, ZM
24739    QI, DY
24740    XU, CM
24741 TI ALKALI AND ALKALINE-EARTH METAL-ION TRANSFER ACROSS THE LIQUID-LIQUID
24742    INTERFACE FACILITATED BY IONOPHORE ETH157
24743 SO ELECTROANALYSIS
24744 DT Article
24745 DE LIQUID-LIQUID INTERFACE; ION TRANSFER; IONOPHORE
24746 ID WATER
24747 AB The H+, Li+, Na+, K+, Mg2+, Ca2+ and Ba2+ ion transfer across the
24748    water/nitrobenzene (NB) and water/1,2-dichloroethane (DCE) interfaces,
24749    facilitated by the ionophore ETH157, has been investigated by cyclic
24750    voltammetry (CV). The mechanism of the transfer process has been
24751    discussed, and the diffusion coefficients and the stability constants
24752    of the complexes formed in the nitrobenzene phase have been determined.
24753 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 20072,PEOPLES R CHINA.
24754 RP WANG, EK, CHINESE ACAD SCI,CHANGCHUN INST APPL CHEM,ELECTROANALYT CHEM
24755    LAB,CHANGCHUN 130022,PEOPLES R CHINA.
24756 CR AMMANN D, 1985, NEUROSCI LETT, V57, P267
24757    FUJINAGA T, 1982, BUNSEKI KAGAKU, V31, E301
24758    HOMOLKA D, 1982, J ELECTROANAL CHEM, V138, P29
24759    KIHARA S, 1982, BUNSEKI KAGAKU, V31, E293
24760    KORYTA J, 1983, ION SEL ELECTRODE R, V5, P131
24761    VANYSEK P, 1985, ELECTROCHEMISTRY LIQ
24762 NR 6
24763 TC 6
24764 SN 1040-0397
24765 J9 ELECTROANAL
24766 JI Electroanalysis
24767 PD FEB
24768 PY 1993
24769 VL 5
24770 IS 2
24771 BP 149
24772 EP 154
24773 PG 6
24774 SC Chemistry, Analytical
24775 GA KT389
24776 UT ISI:A1993KT38900008
24777 ER
24778 
24779 PT J
24780 AU GUO, GY
24781    CHEN, YL
24782 TI OPTICAL-PROPERTIES OF A CHEMICALLY DURABLE PHOSPHATE-GLASS
24783 SO JOURNAL OF MATERIALS SCIENCE LETTERS
24784 DT Article
24785 ID THERMAL-EXPANSION
24786 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
24787 RP GUO, GY, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI & ENGN,SHANGHAI
24788    200030,PEOPLES R CHINA.
24789 CR BUNKER BC, 1984, J NON-CRYST SOLIDS, V64, P291
24790    BUNKER BC, 1987, J AM CERAM SOC, V70, P425
24791    MINAMI T, 1977, J AM CERAM SOC, V60, P232
24792    MULLER D, 1983, PHYS CHEM GLASSES, V24, P37
24793    PENG YB, 1991, GLASS TECHNOL, V32, P166
24794    PENG YB, 1991, GLASS TECHNOL, V32, P200
24795    RAY NH, 1979, BRIT POLYM J, V11, P63
24796    SALES BC, 1986, J NON-CRYST SOLIDS, V79, P83
24797    SALES BC, 1987, J AM CERAM SOC, V70, P615
24798 NR 9
24799 TC 3
24800 SN 0261-8028
24801 J9 J MATER SCI LETT
24802 JI J. Mater. Sci. Lett.
24803 PD MAR 1
24804 PY 1993
24805 VL 12
24806 IS 5
24807 BP 265
24808 EP 267
24809 PG 3
24810 SC Materials Science, Multidisciplinary
24811 GA KR345
24812 UT ISI:A1993KR34500002
24813 ER
24814 
24815 PT J
24816 AU LIU, GL
24817 TI VARIATIONAL-PRINCIPLES AND GENERALIZED VARIATIONAL-PRINCIPLES FOR FULLY
24818    3-D TRANSONIC FLOW WITH SHOCKS IN A TURBO-ROTOR .2. ROTATIONAL FLOW
24819 SO ACTA MECHANICA
24820 DT Article
24821 AB Two variational principle (VP) families for fully 3-D transonic
24822    potential, Beltrami rotational flows with shocks in a rotor are put
24823    forth in terms of stream functions. By making use of functional
24824    variations with variable domain one succeeded in converting most of the
24825    boundary conditions and matching conditions across unknown
24826    discontinuities (such as shocks and free trailing vortex sheets),
24827    including the generalized Rankine-Hugoniot shock relations, into
24828    natural ones. This paper is intended to provide a rigorous theoretical
24829    foundation for constructing a novel computational method which
24830    incorporating a new finite element with self-adapting embedded
24831    discontinuities (now under development) and the artificial density
24832    concept, could capture all unknown discontinuities automatically and
24833    clearly. The applicability of VPs for rotational flow, in contrast to
24834    those for Beltrami flow, is not limited to transonic flow with moderate
24835    Mach numbers.
24836 C1 SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA.
24837 RP LIU, GL, SHANGHAI UNIV SCI & TECHNOL,149 YAN CHANG RD,SHANGHAI
24838    200072,PEOPLES R CHINA.
24839 CR CAREY GF, 1978, COMPUTER METHODS APP, V13, P129
24840    CHAN SKT, 1975, AIAA7579 PAP
24841    CHEN KM, 1982, CHINESE J ENG THERMO, V3, P145
24842    DECONINCK H, 1981, ASME, V103, P665
24843    GIESE JH, 1951, J MATH PHYS, V30, P31
24844    HAFEZ MM, 1983, AIAA J, V21, P327
24845    KRIMERMAN Y, 1978, J MECH ENG SCI, V20, P149
24846    KUZNETSOV BG, 1959, J NAT TOM U, V144, P117
24847    LASKARIS TE, 1978, AIAA J, V16, P717
24848    LIU GI, 1986, J ENG GAS TURB POWER, V108, P254
24849    LIU GL, 1979, ACTA MECH SINICA, V11, P303
24850    LIU GL, 1980, SCI SINICA, V23, P1339
24851    LIU GL, 1981, ACTA MECH SINICA, V13, P421
24852    LIU GL, 1981, CHINESE J ENG THERMO, V2, P335
24853    LIU GL, 1981, LECTURE NOTES
24854    LIU GL, 1982, P INT C FEM SHANGH C, P520
24855    LIU GL, 1983, 2ND P AS C FLUID MEC, P698
24856    LIU GL, 1983, 6TH P INT S AIR BREA, P313
24857    LIU GL, 1986, 6TH P INT S FEM FLOW, P125
24858    LIU GL, 1987, 1987 P TOK INT GAS T, V2, P256
24859    LIU GL, 1990, CHINESE J ENG THERMO, V2, P480
24860    LIU GL, 1991, ASME91GT169 PAP
24861    LIU GL, 1992, ACTA MECH, V95, P117
24862    LIU RX, 1981, SEISMOL GEOL, V3, P1
24863    NORRIE DH, 1978, FINITE ELEMENTS FLUI, V3, P363
24864    OATES GC, 1976, ASME, V98, P1
24865    QIN R, 1988, J TURBOMACH, V110, P545
24866    SERRIN J, 1959, HDB PHYSIK, V8
24867    WU CH, 1952, NACA TN2604
24868    WU WQ, 1979, CHINESE J MECH ENG, V15
24869    XU JZ, 1980, CHINESE J MECHANICAL, V16, P61
24870 NR 31
24871 TC 7
24872 SN 0001-5970
24873 J9 ACTA MECH
24874 JI Acta Mech.
24875 PY 1993
24876 VL 97
24877 IS 3-4
24878 BP 229
24879 EP 238
24880 PG 10
24881 SC Mechanics
24882 GA KN932
24883 UT ISI:A1993KN93200008
24884 ER
24885 
24886 PT J
24887 AU WEI, CH
24888    XIANG, SH
24889 TI ELECTRICAL-CONDUCTIVITY OF MOLTEN SLAGS OF CAF2+AL2O3 AND
24890    CAF2+AL2O3+CAO SYSTEMS FOR ESR
24891 SO ISIJ INTERNATIONAL
24892 DT Article
24893 DE ELECTROSLAG REMELTING; MOLTEN SLAGS OF CAF2+AL2O3 AND CAF2+AL2O3+CAO
24894    SYSTEMS; ELECTRICAL CONDUCTIVITY; CONSTANT-CURRENT SINGLE PULSE
24895    TECHNIQUE WITH 3 LEAD-ELECTRODES
24896 AB The electrical conductivity of the molten slags of the CaF2 + Al2O3 and
24897    CaF2 + Al2O3 + CaO systems for the practical ESR was determined, using
24898    the constant-current single pulse technique with three lead-electrodes.
24899    All the measurements were carried out under high-purity argon
24900    atmosphere, employing a high-purity molybdenum metal crucible with pure
24901    iron wire electrodes. The effects of FeO, MnO, MgO, Cr2O3, TiO2, SiO2
24902    and other oxide components and temperature on the conductivity of the
24903    slags were examined. The results indicated that in the common
24904    concentration ranges for the ESR practice, the specific conductivity
24905    values of the slags in these two systems are monotonously increasing
24906    with the FeO and MnO contents in the slags following an essentially
24907    similar pattern; the additions of MgO, Cr2O3, and TiO2 change also
24908    evidently the conductivity but in another roughly similar mode and make
24909    it have a maximum value, whilst the influence due to a small amount of
24910    SiO2 (less-than-or-equal-to 1.5 mass%) is relatively not large; the
24911    conduction of CaF2-based multi-component and complicate liquid slags
24912    may be treated as a rate process.
24913 C1 XIAN INST MET & CONSTRUCT ENGN,DEPT MET,XIAN,PEOPLES R CHINA.
24914 RP WEI, CH, SHANGHAI UNIV SCI & TECHNOL,DEPT MET & MAT
24915    ENGN,SHANGHAI,PEOPLES R CHINA.
24916 CR 1972, HDB PROPERTIES LIQUI, P244
24917    ELGAMMAL T, 1978, ARCH EISENHUTTENWES, V49, P235
24918    EVSEEV PP, 1965, IZV VUZ CHERNAYA MET, V8, P74
24919    EVSEEV PP, 1967, AUTOMAT WELD, V20, P12
24920    EVSEEV PP, 1967, IZV VYSSH UCHEBN ZAV, V10, P55
24921    HAJDUK M, 1979, STAHL EISEN, V99, P113
24922    ISOTOMIN SA, 1975, 220275 REP
24923    KOLISNYK VN, 1964, AUTOMAT WELD, V17, P9
24924    KOLISNYK VN, 1965, AUTOMAT WELD, V18, P80
24925    KOVAL AE, 1970, IZV VUZ CHERNAYA MET, V13, P71
24926    KRAUS S, 1973, THESIS BERGAHAD
24927    KUO CK, 1964, ACTA CHIM SINICA, V30, P381
24928    LATASH YL, 1960, AUTOMAT WELD, V13, P14
24929    LOPAEV BE, 1966, AUTOMAT WELD, V19, P31
24930    MANAKOV AI, 1975, IZV VUZ CHERNAYA MET, V18, P14
24931    MILLS KC, 1979, NPL103 REP CHEM
24932    MILLS KS, 1981, INT METALS REV, V1, P21
24933    MITCHELL A, 1971, METALL T, V3, P3361
24934    OGINO K, 1977, TETSU TO HAGANE, V63, P2141
24935    OGINO K, 1978, TETSU TO HAGANE, V64, P225
24936    OGINO K, 1978, TETSU TO HAGANE, V64, P232
24937    POVOLOTSKII DY, 1970, IZV VUZ CHERN MET, V13, P8
24938    WEAST RC, 1979, HDB CHEM PHYSICS
24939    WEI CH, 1984, ACTA METALL SINICA, V20, B261
24940    WEI CH, 1987, ACTA METALL SINICA, V23, B126
24941    WEI CH, 1989, CHIN ENG CHEM METAL, V10, P87
24942    WEI CH, 1989, CHIN J MET SCI TECHN, V5, P235
24943    XIANG SH, 1989, THESIS XIAN I METALL
24944    ZHMOIDIN G, 1970, IZV AKAD NAUK SSSR M, V3, P69
24945 NR 29
24946 TC 0
24947 SN 0915-1559
24948 J9 ISIJ INT
24949 JI ISIJ Int.
24950 PY 1993
24951 VL 33
24952 IS 2
24953 BP 239
24954 EP 244
24955 PG 6
24956 SC Metallurgy & Metallurgical Engineering
24957 GA KM872
24958 UT ISI:A1993KM87200001
24959 ER
24960 
24961 PT J
24962 AU MAO, DK
24963 TI A TREATMENT OF DISCONTINUITIES FOR FINITE-DIFFERENCE METHODS IN THE
24964    2-DIMENSIONAL CASE
24965 SO JOURNAL OF COMPUTATIONAL PHYSICS
24966 DT Article
24967 ID FRONT TRACKING; CONSERVATION-LAWS; ENTROPY CONDITION; SCHEMES; WAVES;
24968    INTERFACES; RESOLUTION
24969 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
24970 RP MAO, DK, UNIV CALIF LOS ANGELES,DEPT MATH,LOS ANGELES,CA 90024.
24971 CR CHANG SH, 1989, NASA TM102384
24972    CHERN IL, 1986, J COMPUT PHYS, V62, P83
24973    GLIMM J, 1981, ADV APPL MATH, V2, P91
24974    GLIMM J, 1985, ADV APPL MATH, V6, P259
24975    GLIMM J, 1985, ADV APPL MATH, V6, P422
24976    GLIMM J, 1986, SIAM J SCI STAT COMP, V7, P280
24977    GLIMM J, 1988, COMMUN PUR APPL MATH, V41, P569
24978    GLIMM J, 1988, SIAM J SCI STAT COMP, V9, P61
24979    GROVE J, 1989, ADV APPL MATH, V10, P201
24980    HARTEN A, 1989, J COMPUT PHYS, V83, P148
24981    HENSHAW WD, 1987, J COMPUT PHYS, V68, P25
24982    LEVEQUE RJ, 1988, NASA TM100075
24983    MAO D, 1985, J COMPUT MATH, V3, P256
24984    MAO D, 1990, UCLA CAM9019 REP
24985    MAO DK, 1991, J COMPUT PHYS, V92, P422
24986    MORETTI G, 1972, PIBAL7237 POLYT I BR
24987    OSHER S, 1984, SIAM J NUMER ANAL, V21, P217
24988    OSHER S, 1984, SIAM J NUMER ANAL, V21, P955
24989    OSHER S, 1986, IMA VOLUMES MATH ITS, V2, P229
24990    RICHTMYER RD, 1967, DIFFERENCE METHODS I
24991    SHU CW, 1987, MATH COMPUT, V49, P105
24992    SWARTZ BK, 1986, APPL NUMER MATH, V2, P385
24993    WAGNER DH, 1983, SIAM J MATH ANAL, V14, P3
24994 NR 23
24995 TC 14
24996 SN 0021-9991
24997 J9 J COMPUT PHYS
24998 JI J. Comput. Phys.
24999 PD FEB
25000 PY 1993
25001 VL 104
25002 IS 2
25003 BP 377
25004 EP 397
25005 PG 21
25006 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
25007 GA KM221
25008 UT ISI:A1993KM22100008
25009 ER
25010 
25011 PT J
25012 AU GUO, BY
25013    HUANG, W
25014 TI THE SPECTRAL-DIFFERENCE METHOD FOR COMPRESSIBLE FLOW
25015 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
25016 DT Article
25017 AB A spectral-difference scheme is proposed for semi-periodic compressible
25018    flow with strict estimation.
25019 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
25020 CR GUO BY, 1981, SCI SINICA A, V24, P297
25021    GUO BY, 1987, CALCOLO, V24, P263
25022    GUO BY, 1989, J COMPUT PHYS, V84, P259
25023    INGHAM DB, 1985, P ROY SOC LOND A MAT, V402, P109
25024    MACARAEG MG, 1986, J COMPUT PHYS, V62, P297
25025    MURDOCK JW, 1977, AIAA J, V15, P1167
25026    TANI A, 1976, P JAPAN ACAD, V52, P334
25027 NR 7
25028 TC 0
25029 SN 0254-9409
25030 J9 J COMPUT MATH
25031 JI J. Comput. Math.
25032 PD JAN
25033 PY 1993
25034 VL 11
25035 IS 1
25036 BP 37
25037 EP 49
25038 PG 13
25039 SC Mathematics, Applied; Mathematics
25040 GA KM180
25041 UT ISI:A1993KM18000004
25042 ER
25043 
25044 PT J
25045 AU CHEN, Q
25046    WANG, ZH
25047 TI EXACT DISPERSION-RELATIONS FOR TM WAVES GUIDED BY THIN DIELECTRIC FILMS
25048    BOUNDED BY NONLINEAR MEDIA
25049 SO OPTICS LETTERS
25050 DT Article
25051 AB Exact dispersion relations for TM waves guided by thin dielectric
25052    films, surrounded on one or both sides by media with
25053    intensity-dependent refractive indices, have been derived. Numerical
25054    results for a symmetric structure are in complete agreement with those
25055    obtained by the finite-element method.
25056 RP CHEN, Q, SHANGHAI UNIV SCI & TECHNOL,WAVE SCI LAB,SHANGHAI
25057    201800,PEOPLES R CHINA.
25058 CR AGRANOVICH VM, 1981, JETP LETT+, V32, P512
25059    BERKHOER AL, 1970, ZH EKSP TEOR FIZ, V31, P486
25060    BOARDMAN AD, 1985, IEEE J QUANTUM ELECT, V21, P1701
25061    BOARDMAN AD, 1987, IEE PROC-J, V134, P152
25062    HAYATA K, 1988, IEEE T MICROW THEORY, V36, P1207
25063    MIHALACHE D, 1987, OPT LETT, V12, P187
25064    OGUSU K, 1989, IEEE T MICROW THEORY, V37, P941
25065    SEATON CT, 1985, IEEE J QUANTUM ELECT, V21, P774
25066    SEATON CT, 1985, OPT LETT, V10, P149
25067    STEGEMAN GI, 1986, NONLINEAR OPTICS MAT
25068 NR 10
25069 TC 3
25070 SN 0146-9592
25071 J9 OPTICS LETTERS
25072 JI Opt. Lett.
25073 PD FEB 15
25074 PY 1993
25075 VL 18
25076 IS 4
25077 BP 260
25078 EP 262
25079 PG 3
25080 SC Optics
25081 GA KK808
25082 UT ISI:A1993KK80800002
25083 ER
25084 
25085 PT J
25086 AU ZHANG, LA
25087    QIU, WD
25088 TI DECOMPOSITIONS OF RECOGNIZABLE STRONG MAXIMAL CODES
25089 SO THEORETICAL COMPUTER SCIENCE
25090 DT Article
25091 AB In this paper, we study the decompositions of recognizable strong
25092    maximal codes and obtain the following results: Every recognizable
25093    strong maximal code is a composition of a finite number of
25094    indecomposable (in the sense of strong codes) recognizable strong
25095    maximal codes. In particular, every solvable strong code is a
25096    composition of a finite number of indecomposable (in the sense of
25097    general codes) strong maximal codes and, for the latter, a structure
25098    formula is given.
25099 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT COMP SCI,SHANGHAI 200072,PEOPLES R CHINA.
25100 RP ZHANG, LA, SHANGHAI INST URBAN CONSTRUCT,DEPT BASIC COURSES,SHANGHAI
25101    200092,PEOPLES R CHINA.
25102 CR BERSTEL J, 1985, THEORY CODES
25103    LALLEMENT G, 1979, SEMIGROUPS COMBINATO
25104    SHYR HJ, 1977, SOOCHOW J MATH NAT S, V3, P9
25105    SHYR HJ, 1979, LECTURE NOTES MATH D
25106    ZHANG LX, 1987, SEMIGROUP FORUM, V35, P181
25107 NR 5
25108 TC 1
25109 SN 0304-3975
25110 J9 THEOR COMPUT SCI
25111 JI Theor. Comput. Sci.
25112 PD FEB 1
25113 PY 1993
25114 VL 108
25115 IS 1
25116 BP 173
25117 EP 183
25118 PG 11
25119 SC Computer Science, Theory & Methods
25120 GA KK389
25121 UT ISI:A1993KK38900010
25122 ER
25123 
25124 PT J
25125 AU YE, ZM
25126 TI AN OPTIMIZATION OF NONLINEAR BENDING AND STABILITY OF REVOLUTIONAL
25127    PARABOLIC SHELL WITH VARIABLE THICKNESS
25128 SO MECHANICS RESEARCH COMMUNICATIONS
25129 DT Article
25130 RP YE, ZM, SHANGHAI UNIV SCI & TECHNOL,DEPT CIVIL ENGN,SHANGHAI
25131    200072,PEOPLES R CHINA.
25132 CR BANERJEE B, 1982, J APPL MECH, V49, P268
25133    BANERJEE B, 1983, INT J SOLIDS STRUCT, V19, P202
25134    TIMOSHENKO SP, 1959, THEORY PLATES SHELLS
25135    YE ZM, 1984, ACTA MECH SINICA, V16, P634
25136    YE ZM, 1988, APPL MATH MECH, V9, P153
25137    YE ZM, 1989, ACTA MECH SINICA, V5, P152
25138    YE ZM, 1990, ASME, V57, P1026
25139 NR 7
25140 TC 3
25141 SN 0093-6413
25142 J9 MECH RES COMMUN
25143 JI Mech. Res. Commun.
25144 PD JAN-FEB
25145 PY 1993
25146 VL 20
25147 IS 1
25148 BP 83
25149 EP 88
25150 PG 6
25151 SC Mechanics
25152 GA KH577
25153 UT ISI:A1993KH57700011
25154 ER
25155 
25156 PT J
25157 AU SHEN, YD
25158    CHENG, DJ
25159    TONG, F
25160    SOENEN, R
25161    TAHON, C
25162 TI ON THE COMPLETED DATABASE SEMANTICS FOR NEGATION
25163 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
25164 DT Article
25165 DE NEGATION AS FAILURE; THE COMPLETED DATABASE; CONSISTENCY
25166 AB As a semantics for negation. the completed database appears to be a
25167    little too strong. It makes no sense when it is inconsistent. However,
25168    as has been shown by Shepherdson, the general problem of determining
25169    whether the completed database is consistent is recursively
25170    undecidable. In this paper, we present a necessary and sufficient
25171    condition for the consistency of the completed database and use it to
25172    prove the consistency of the completed database for definite, locally
25173    stratified and R-terminable programs, respectively. We then establish a
25174    weak version of the completed database semantics for negation.
25175    Informally, the semantics says that for any function-free logic program
25176    P the results inferred by applying the SLDNF-refutation procedure via
25177    the ''Latest-first'' computation rule are logical consequences of the
25178    relevant completed database comp(REL(P)), where comp(REL(P)) is always
25179    consistent even if comp(P) is inconsistent.
25180 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT COMP SCI,SHANGHAI 201800,PEOPLES R CHINA.
25181    UNIV VALENCIA,LGIL,CNRS,URIAH 1118,F-59326 VALENCIENNES,FRANCE.
25182 RP SHEN, YD, CHONGQING UNIV,DEPT COMP SCI,CHONGQING 630044,PEOPLES R CHINA.
25183 CR APT KR, 1988, FDN DEDUCTIVE DATABA, P89
25184    CLARK KL, 1978, LOGIC DATA BASES, P293
25185    CLOCKSIN WF, 1984, PROGRAMMING PROLOG
25186    LLOYD JW, 1984, F LOGIC PROGRAMMING
25187    LOVELAND DW, 1978, AUTOMATED THEOREM PR
25188    PRZMUSINSKI TC, 1988, FDN DEDUCTIVE DATABA, P193
25189    SHEPHERDSON JC, 1988, FDN DEDUCTIVE DATABA, P19
25190    VANEMDEN MH, 1976, J ASSOC COMPUT MACH, V23, P733
25191 NR 8
25192 TC 0
25193 SN 1001-6511
25194 J9 SCI CHINA SER A
25195 JI Sci. China Ser. A-Math. Phys. Astron.
25196 PD DEC
25197 PY 1992
25198 VL 35
25199 IS 12
25200 BP 1516
25201 EP 1528
25202 PG 13
25203 SC Mathematics, Applied; Mathematics
25204 GA KJ935
25205 UT ISI:A1992KJ93500011
25206 ER
25207 
25208 PT J
25209 AU JIANG, GC
25210    XU, KD
25211    WEI, SK
25212 TI SOME ADVANCES ON THE THEORETICAL RESEARCH OF SLAG
25213 SO ISIJ INTERNATIONAL
25214 DT Review
25215 DE SLAG MODEL; BASICITY; CELL STRUCTURE
25216 ID OPTICAL BASICITY
25217 AB This pasper is a review and a comment regarding slag models and optical
25218    basicity. It was thought to be better to establish slag model and
25219    basicity concept based on the cell structure of slag.
25220 C1 BEIJING UNIV SCI & ENGN,BEIJING 100083,PEOPLES R CHINA.
25221 RP JIANG, GC, SHANGHAI UNIV SCI & TECHNOL,YANCHANG RD,SHANGHAI
25222    200072,PEOPLES R CHINA.
25223 CR APPEN AA, 1974, GLASS CHEM, P268
25224    BANYA S, 1988, TETSU TO HAGANE, V74, P1701
25225    BOOM R, 1988, 3RD P INT C MOLT SLA, P273
25226    BOTTINGA Y, 1981, THERMODYNAMICS MINER, P207
25227    DUFFY JA, 1976, J NON-CRYST SOLIDS, V21, P373
25228    GAYE H, 1984, 2ND P INT S MET SLAG, P257
25229    HASTIE JW, 1988, 3RD P INT C MOLT SLA, P254
25230    HILLERT M, 1990, METALL TRANS B, V21, P303
25231    HINO M, 1990, 6TH P IISC TOK, V1, P264
25232    HYUN DB, 1988, T ISIJ, V28, P736
25233    HYUN DB, 1990, 6TH P IISC TOK, V1, P177
25234    INGRAM MD, 1988, 3RD P INT C MOLT SLA, P166
25235    JIANG GC, 1989, J SHANGHAI U TECHNOL, V10, P257
25236    JIANG GC, 1990, 6TH P IISC TOK, V1, P240
25237    JIANG GC, 1992, 4TH P INT C MOLT SLA
25238    JIANG GC, 1992, ACTA METALL SIN B, V28, P240
25239    KAPOOR ML, 1971, P INT S MET CHEM APP, P17
25240    KAY DAR, 1988, 3RD P INT C MOLT SLA, P263
25241    LEHMAN J, 1990, 6TH P INT IR STEEL C, V1, P256
25242    MASSON CR, 1971, P S CHEM METALLURGY, P3
25243    MYSEN BO, 1988, STRUCTURE PROPERTIES, P48
25244    NAGABAYASHI R, 1988, 3RD P INT C MOLT SLA, P24
25245    NAKAMURA T, 1986, J JPN I MET, V50, P456
25246    PELTON AD, 1986, METALL TRANS B, V17, P805
25247    PELTON AD, 1988, 3RD P INT C MOLT SLA, P66
25248    QI GJ, 1984, 5TH P NAT C MET PHYS, P227
25249    RICHARSAON RD, 1974, PHYSICOCHEMISTRY MEL, P116
25250    SAINTJOURS C, 1988, 3RD P INT C MOLT SLA, P65
25251    SHARMA RC, 1979, MET T              B, V10, P103
25252    SOMMERVILLE ID, 1986, SEP P TECHN ADV MET
25253    SOSINSKY DJ, 1986, METALL TRANS B, V17, P331
25254    VARSHAL VG, 1972, IZV A N SSSR INORG M, P934
25255    YOKOKAWA T, 1969, T JAPAN I MET, V10, P3
25256    YOKOKAWA T, 1969, T JPN I MET, V10, P81
25257    YOKOKAWA T, 1986, B JIM, V25, P3
25258    ZHANG J, COMMUNICATION
25259    ZHANG J, 1986, P NATIONAL ACADEMIC, P1
25260    ZHANG J, 1990, P WEI SHOUKUN S, P57
25261 NR 38
25262 TC 4
25263 SN 0915-1559
25264 J9 ISIJ INT
25265 JI ISIJ Int.
25266 PY 1993
25267 VL 33
25268 IS 1
25269 BP 20
25270 EP 25
25271 PG 6
25272 SC Metallurgy & Metallurgical Engineering
25273 GA KH294
25274 UT ISI:A1993KH29400004
25275 ER
25276 
25277 PT J
25278 AU XU, KD
25279    JIANG, GC
25280    DING, WZ
25281    GU, LP
25282    GUO, SQ
25283    ZHAO, BX
25284 TI THE KINETICS OF REDUCTION OF MNO IN MOLTEN SLAG WITH CARBON SATURATED
25285    LIQUID-IRON
25286 SO ISIJ INTERNATIONAL
25287 DT Article
25288 DE KINETICS, REDUCTION OF (MNO), CARBON SATURATED IRON; SLAG METAL REACTION
25289 ID OXIDE
25290 AB This investigation devotes to the kinetics of the reduction of (MnO)
25291    with carbon-saturated liquid iron. The experiment condition involves
25292    high content realm of both (%MnO) and %Mn. It was found that the
25293    reduction is limited by the interfacial reaction. By means of a X-TV
25294    dynamic metallurgical phenomena displaying device, the slag-iron
25295    interface was proved to be the essential site for evolving the
25296    reduction product CO. The content variation of surface active agent S
25297    affects obviously on the reduction rate. If no carbon is added in slag,
25298    then a hump emerges on the curve of (%FeO) vs. reaction time. In this
25299    case, the apparent reaction order is 2. If there is a carbon addition
25300    in slag, the process is of apparent first order. Based on the three
25301    step model of reactions in series, the aforementioned phenomena and
25302    regularities were elucidated unitedly.
25303 RP XU, KD, SHANGHAI UNIV SCI & TECHNOL,YANCHANG RD,SHANGHAI 200072,PEOPLES
25304    R CHINA.
25305 CR CHEN JX, 1984, HDB DATA ATLAS STEEL, P412
25306    FANG YY, 1986, SHANGHAI METALS, V3, P47
25307    FUJITA M, 1988, TETSU TO HAGANE, V74, P801
25308    FUWA T, 1987, B JPN I MET, V26, P365
25309    HAN QY, 1983, KINETICS METALLURGIC, P24
25310    PLASHEVSKY AA, 1984, IZV VUZ CHERNAYA MET, V10, P16
25311    POMFRET RJ, 1984, P CENTENARY C CELEBR
25312    POMFRET RJ, 1987, IRONMAK STEELMAK, V5, P191
25313    QY Y, 1980, PRINCIPLE STEELMAKIN, P72
25314    SATO A, 1987, TETSU TO HAGANE, V73, P812
25315    SHINOTAKE A, 1987, TETSU TO HAGANE, V73, S121
25316    SHINOZAKI N, 1984, TETSU TO HAGANE, V70, P73
25317    SUITO H, 1984, TETSU TO HAGANE, V70, P672
25318    TURKDOGAN ET, 1953, J IRON STEEL I, V173, P217
25319    WAGNER C, 1958, PHYSICAL CHEM STEELM, P237
25320 NR 15
25321 TC 5
25322 SN 0915-1559
25323 J9 ISIJ INT
25324 JI ISIJ Int.
25325 PY 1993
25326 VL 33
25327 IS 1
25328 BP 104
25329 EP 108
25330 PG 5
25331 SC Metallurgy & Metallurgical Engineering
25332 GA KH294
25333 UT ISI:A1993KH29400016
25334 ER
25335 
25336 PT J
25337 AU XU, DM
25338    SONG, LP
25339 TI A NEW TYPE OF OPTOELECTRONIC MILLIMETER-WAVE FINLINE SWITCHES
25340 SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES
25341 DT Article
25342 AB A new type of millimeter-wave finline switches constructed on teflon
25343    substrates is proposed, which can be easily fabricated and mounted. The
25344    experimental results are reported, which show less than 2 dB insertion
25345    loss in the region of 26-40 GHz and 23.4 dB on/off ratio have been
25346    reached. Because of its good compatibility with the conventional
25347    finline structures, it will have a wide application field. A very
25348    simple method has been given to analyze its behaviors which has
25349    successfully predicted the experimental results. A nonlinear relation
25350    between the photoconductivity and the light power is given which has
25351    been confirmed by experiment.
25352 RP XU, DM, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
25353 CR 1975, HP183 APPL NOT
25354    CHEUNG P, 1990, IEEE T MICROW THEORY, V38, P586
25355    GUPTA KC, 1981, COMPUT AIDED DESIGN, P39
25356    LEE CH, 1990, IEEE T MICROW THEORY, V38, P596
25357    PLATTE W, 1984, ELECTRON LETT, V20, P608
25358    SCHIEBLICH C, 1984, IEEE T MICROW THEORY, V32, P1638
25359    SEEGER K, 1985, SEMICONDUCTOR PHYSIC, P386
25360    UHDE K, 1990, IEEE T MICROW THEORY, V38, P679
25361 NR 8
25362 TC 0
25363 SN 0018-9480
25364 J9 IEEE TRANS MICROWAVE THEORY
25365 JI IEEE Trans. Microw. Theory Tech.
25366 PD DEC
25367 PY 1992
25368 VL 40
25369 IS 12
25370 BP 2392
25371 EP 2396
25372 PG 5
25373 SC Engineering, Electrical & Electronic
25374 GA KH463
25375 UT ISI:A1992KH46300035
25376 ER
25377 
25378 PT J
25379 AU XIE, XY
25380    EVANS, RJ
25381 TI MULTIPLE FREQUENCY LINE TRACKING WITH HIDDEN MARKOV-MODELS - FURTHER
25382    RESULTS
25383 SO IEEE TRANSACTIONS ON SIGNAL PROCESSING
25384 DT Article
25385 AB This paper extends our earlier work on the application of hidden Markov
25386    models (HMM's) to the problem of multiple frequency line tracking using
25387    the concept of a mixed track. Here we introduce an alternative
25388    definition of measurement vector which avoids the use of thresholds and
25389    is shown to yield superior performance to threshold based schemes. We
25390    also present an improved method for separating the mixed track into its
25391    component tracks.
25392 C1 UNIV NEWCASTLE,DEPT ELECT ENGN & COMP SCI,NEWCASTLE,NSW 2308,AUSTRALIA.
25393    UNIV MELBOURNE,DEPT ELECT & ELECTR ENGN,PARKVILLE,VIC 3052,AUSTRALIA.
25394 RP XIE, XY, SHANGHAI UNIV SCI & TECHNOL,DEPT COMP SCI,SHANGHAI
25395    201800,PEOPLES R CHINA.
25396 CR ADAMS G, 1991, EE9125 U NEWC DEP EL
25397    BARNIV Y, 1985, IEEE T AERO ELEC SYS, V21, P144
25398    BARNIV Y, 1987, IEEE T AERO ELEC SYS, V23, P776
25399    BARSHALOM Y, 1988, TRACKING DATA ASS
25400    BLACKMAN SS, 1986, MULTIPLE TARGET TRAC
25401    DAVENPORT WB, 1987, INTRO THEORY RANDOM
25402    FORNEY GD, 1973, P IEEE, V61, P268
25403    RABINER LR, 1986, IEEE ASSP MAGAZI JAN, P4
25404    RABINER R, 1989, P IEEE, V77, P257
25405    SCHMIDT RO, 1986, IEEE T ANTENN PROPAG, V34, P276
25406    STEELE A, 1989, APR P ASSP 89 SIGN P, P17
25407    STREIT RL, 1990, IEEE T ACOUST SPEECH, V38, P586
25408    WHALEN AD, 1971, DETECTION SIGNALS NO
25409    XIANYA X, 1990, EE9007 U NEWC DEP EL
25410    XIANYA X, 1990, EE9032 U NEWC DEP EL
25411    XIE XY, 1991, IEEE T SIGNAL PROCES, V39, P2659
25412 NR 16
25413 TC 5
25414 SN 1053-587X
25415 J9 IEEE TRANS SIGNAL PROCESS
25416 JI IEEE Trans. Signal Process.
25417 PD JAN
25418 PY 1993
25419 VL 41
25420 IS 1
25421 BP 334
25422 EP 343
25423 PG 10
25424 SC Engineering, Electrical & Electronic
25425 GA KG148
25426 UT ISI:A1993KG14800029
25427 ER
25428 
25429 PT J
25430 AU WEI, MM
25431    GU, F
25432    XIE, WY
25433 TI STUDY ON THE PREPARATION OF PZT CERAMIC MATERIAL FOR MEDIUM
25434    HIGH-FREQUENCY SAW DEVICES BY LOW VACUUM ATMOSPHERE SINTERING
25435 SO FERROELECTRICS
25436 DT Article
25437 AB Ternary PZT-PNM* ceramics is prepared by low vacuum atmosphere(5 x
25438    10(-2) bar) sintering technique to improve the microstructure, density,
25439    polished surface smoothness, as well as the piezoelectric properties.
25440    The grain growth has been restrained by doping small amount of CeO2. At
25441    the same time. The density up to 7.97 g/cm3 and grain size less than 2
25442    um have also been obtained. The size of pits on the polished surface is
25443    less than 0.5 um. It is suitable for manufacturing SAW devices in
25444    medium high frequency of 10 to 40 MHz.
25445 RP WEI, MM, SHANGHAI UNIV SCI & TECHNOL,DEPT MAT,JIADING SHANGHAI
25446    201800,PEOPLES R CHINA.
25447 CR LEVIN EM, 1969, PHASE DIAGRAM CERAMI, P39
25448    SHIGERU J, 1981, J APPL PHYS, V52, P4472
25449    TAKAHASHI M, 1974, J JPN SOC POWD METAL, V20, P274
25450 NR 3
25451 TC 1
25452 SN 0015-0193
25453 J9 FERROELECTRICS
25454 PY 1992
25455 VL 133
25456 IS 1-4
25457 BP 301
25458 EP 306
25459 PG 6
25460 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
25461 GA KF791
25462 UT ISI:A1992KF79100052
25463 ER
25464 
25465 PT J
25466 AU MAO, DK
25467 TI A TREATMENT OF DISCONTINUITIES FOR FINITE-DIFFERENCE METHODS
25468 SO JOURNAL OF COMPUTATIONAL PHYSICS
25469 DT Article
25470 ID FRONT-TRACKING; CONSERVATION-LAWS; SCHEMES
25471 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
25472 RP MAO, DK, UNIV CALIF LOS ANGELES,DEPT MATH,LOS ANGELES,CA 90024.
25473 CR CHARRIER P, 1986, SIAM J NUMER ANAL, V23, P461
25474    CHEN IL, 1986, J COMPUT PHYS, V62, P83
25475    CHORIN A, 1979, MATH INTRO FLUID MEC
25476    GLIMM J, 1985, ADV APPL MATH, V6, P259
25477    HARTEN A, 1989, J COMPUT PHYS, V83, P148
25478    MAO D, 1985, J COMPUT MATH, V3, P256
25479    MO D, 1991, J COMPUT PHYS, V92, P422
25480    MORETTI, 1972, PIBAL7237 POL I BROO
25481    OSHER S, 1986, IMA VOLUMES MATH ITS, V2, P229
25482    SHU CW, 1987, MATH COMPUT, V49, P105
25483    SJOGREEN B, 1991, 3RD P INT C HYP PROB, P848
25484    SWARTZ BK, 1986, APPL NUMER MATH, V2, P385
25485 NR 12
25486 TC 12
25487 SN 0021-9991
25488 J9 J COMPUT PHYS
25489 JI J. Comput. Phys.
25490 PD DEC
25491 PY 1992
25492 VL 103
25493 IS 2
25494 BP 359
25495 EP 369
25496 PG 11
25497 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
25498 GA KD206
25499 UT ISI:A1992KD20600012
25500 ER
25501 
25502 EF
25503 
25504 FN ISI Export Format
25505 VR 1.0
25506 PT J
25507 AU Cao, WG
25508    Ding, WY
25509    Chen, YL
25510    Gao, JS
25511 TI An efficient and highly stereoselective synthesis of
25512    cis-1-acetyl-2-aryl-6,6-dimethyl-5,7-dioxo-spiro-[2,5]-4,8-octadiones
25513    and beta,gamma-trans-beta-acetyl-gamma-aryl-butyrolactones
25514 SO SYNTHETIC COMMUNICATIONS
25515 DT Article
25516 DE stereoselective synthesis; acetylmethyltriphenylarsonium bromide;
25517    2,2-dimethyl-1,3-dioxa-5-substituted-benzylidene-4,6-dione;
25518    cis-1-acetyl-2-aryl-6,6-dimethyl-5,7-dioxo-spiro-[2,5]-4,8-octadiones;
25519    beta,gamma-trans-beta-acetyl-gamma-aryl-gamma-butyrolactones
25520 AB Acetylmethyltriphenylarsonium bromide 6 in the presence of potassium
25521    carbonate and trace water reacted with
25522    2,2-dimethyl-1,3-dioxa-5-substituted-benzylidene-4,6-dione 2 at room
25523    temperature to give cyclopropane derivatives
25524    cis-1-acetyl-2-aryl-6,6-dimethyl-5,7-dioxo-spiro-[2,5]-4,8-octadiones 7
25525    (X=p-CH3, p-Cl, H, p-NO2) or beta,gamma -trans-beta -acetyl-gamma
25526    -aryl-gamma -butyrolactones 8 (X=p-CH3O, p-N(CH3)(2), 3',4'-OCH2O-)
25527    with good yield and high stereoselectivity.
25528 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
25529    Chinese Acad Sci, Shanghai Inst Organ Chem, Organomet Chem Lab, Shanghai 200032, Peoples R China.
25530 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
25531 CR CAO WG, IN PRESS SYNTH COMMU
25532    CHEN YL, 1998, CHEM J CHINESE U, V19, P1614
25533    DING WY, 1965, B NAT SCI U CHEM CE, P540
25534    DING WY, 1996, CHEM RES CHINESE U, V12, P51
25535    HUDLICKY T, 1990, SYNTHETIC COMMUN, V20, P1721
25536    JAIN PT, 1991, DISS ABSTR INT B, P195
25537    SCHUSTER P, 1964, MH CHEM, V95, P53
25538    SHI DQ, 1998, CHINESE J ORG CHEM, V18, P82
25539 NR 8
25540 TC 6
25541 SN 0039-7911
25542 J9 SYN COMMUN
25543 JI Synth. Commun.
25544 PY 2000
25545 VL 30
25546 IS 24
25547 BP 4523
25548 EP 4530
25549 PG 8
25550 SC Chemistry, Organic
25551 GA 381YX
25552 UT ISI:000165792600018
25553 ER
25554 
25555 PT J
25556 AU Cao, WG
25557    Ding, WY
25558    Chen, YL
25559    Gao, JS
25560 TI Study on the reaction of
25561    cis-1-acetyl-2-aryl-6,6-dimethyl-5,7-dioxo-spiro-[2,5]-4,8-octadiones
25562    with methanol
25563 SO SYNTHETIC COMMUNICATIONS
25564 DT Article
25565 DE cis-1-acetyl-2-aryl-6,6-dimethyl-5,7-dioxo-spiro-[2,5]-4,8-octadione;
25566    trans,cis-alpha-carbomethoxy-beta-(alpha'-methoxy-alpha'-aryl)-gamma-met
25567    hoxy-gamma-methyl-gamma-butyrolactones;
25568    cis,cis-alpha-carbomethoxy-beta-(alpha'-methoxy-alpha'-aryl)-gamma-metho
25569    xy-gamma-methyl-gamma-butyrolactones
25570 AB Cis-1-acetyl-2-aryl-6,6-dimethyl-5,7-dioxo-spiro-[2,5]-4,8-octadiones
25571    3a-d (X=p-CH3, p-Cl, H, p-NO2) reacted with anhydrous methanol in a
25572    sealed tube at 80 degreesC to form trans, cis-alpha
25573    -carbomethoxy-beta-(alpha'-methoxy-alpha'-aryl)-gamma -methoxy-gamma
25574    -methyl-gamma -butyrolactones 4a-d and cis,cis-alpha-alpha
25575    -carbomethoxy-beta-(alpha'-methoxy-alpha'-aryl)-gamma -methoxy-gamma
25576    -methyl-gamma -butyrolactones 5a-d in good yield.
25577 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
25578    Chinese Acad Sci, Shanghai Inst Organ Chem, Organomet Chem Lab, Shanghai 200032, Peoples R China.
25579 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
25580 CR CAO WG, IN PRESS CHEM J CHIN
25581    CAO WG, IN PRESS SYNTH COMMU
25582    CHEN YL, 1998, CHEM J CHINESE U, V19, P1614
25583    GAO JS, 1999, J SHANGHAI U NATURL, V5, P491
25584    HUDLICKY T, 1990, SYNTHETIC COMMUN, V20, P1721
25585 NR 5
25586 TC 3
25587 SN 0039-7911
25588 J9 SYN COMMUN
25589 JI Synth. Commun.
25590 PY 2000
25591 VL 30
25592 IS 24
25593 BP 4531
25594 EP 4541
25595 PG 11
25596 SC Chemistry, Organic
25597 GA 381YX
25598 UT ISI:000165792600019
25599 ER
25600 
25601 PT J
25602 AU Zhou, JM
25603    Wang, Q
25604    Wu, Z
25605    Li, CF
25606 TI Frequency properties of nonlinear transverse electric surface waves
25607 SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES &
25608    REVIEW PAPERS
25609 DT Article
25610 DE frequency region; passband; stopband; antiferromagnet; dielectric;
25611    nonlinear TE surface wave
25612 ID MICROWAVE-ENVELOPE SOLITONS; IRON-GARNET FILMS
25613 AB The frequency properties of the nonlinear transverse electric (TE)
25614    waves on the interface between a dielectric and a nonlinear
25615    antiferromagnet are studied. The analyzed expressions of the field
25616    components of TE waves are derived in a large power case. We find that
25617    the peak magnetic field moves into the nonlinear antiferromagnet from
25618    the interface when the power of TE waves increases. Using the explicit
25619    dispersion equation obtained in this article we analyze in detail the
25620    frequency regions of the TE surface waves. The results show the
25621    nonlinear TE surface waves have frequency passband and stopband, which
25622    can be switched into each other by varying the power. Ii is also
25623    revealed that, under certain conditions, the nonlinear TE waves on the
25624    interface are backward surface waves with the group and phase
25625    velocities opposite in direction.
25626 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
25627 RP Zhou, JM, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
25628 CR ALMEIDA NS, 1987, PHYS REV B, V36, P2015
25629    BOARDMAN AD, 1990, PHYS REV B, V41, P717
25630    BOARDMAN AD, 1993, PHYS REV B, V48, P13602
25631    BOARDMAN AD, 1994, IEEE T MAGN, V30, P1
25632    CHEN M, 1994, PHYS REV B, V49, P12773
25633    DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308
25634    MIHALACHE D, 1987, OPT LETT, V12, P187
25635    TSANKOV MA, 1994, J APPL PHYS, V76, P4274
25636    VUKOVIH S, 1990, SOV PHYS JETP, V71, P864
25637    WANG Q, 1995, J APPL PHYS, V77, P5831
25638    WANG Q, 1999, SCI CHINA SER A, V42, P310
25639    WANG YF, 1998, J APPL PHYS, V84, P6233
25640 NR 12
25641 TC 1
25642 SN 0021-4922
25643 J9 JPN J APPL PHYS PT 1
25644 JI Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap.
25645 PD NOV
25646 PY 2000
25647 VL 39
25648 IS 11
25649 BP 6223
25650 EP 6229
25651 PG 7
25652 SC Physics, Applied
25653 GA 382PL
25654 UT ISI:000165831400021
25655 ER
25656 
25657 PT J
25658 AU Chen, LQ
25659    Cheng, CJ
25660 TI Stability and chaotic motion in columns of nonlinear viscoelastic
25661    material
25662 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
25663 DT Article
25664 DE stability; chaos; averaging method; Galerkin method; viscoelastic column
25665 ID DYNAMIC STABILITY; PLATES
25666 AB The dynamical stability of a homogeneous, simple supported column,
25667    subjected to a periodic axial force, is investigated. The viscoelastic
25668    material is assumed to obey the Leaderman nonlinear constitutive
25669    relation. The equation of motion was derived as a nonlinear
25670    integro-partial-differential equation, and was simplified into a
25671    nonlinear integro-differential equation by the Galerkin method. The
25672    averaging method was employed to carry out the stability analysis.
25673    Numerical results are presented to compare with the analytical ones.
25674    Numerical results also indicate that chaotic motion appears.
25675 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
25676    Shanghai Univ, Dept Mech, Shanghai 201800, Peoples R China.
25677 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
25678    200072, Peoples R China.
25679 CR ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151
25680    CEDERBAUM G, 1992, J APPL MECH-T ASME, V59, P16
25681    CHEN LQ, 1999, APPL MATH MECH, V20, P1224
25682    CHENG CJ, 1998, ACTA MECH SINICA, V30, P690
25683    GLUCKNER PG, 1987, ENCY CIV ENG PRAC TE, V23, P577
25684    LEADERMAN H, 1962, T SOC RHEOL, V6, P361
25685    MATYASH VI, 1964, MECH POLY, V2, P293
25686    NAYFEF AH, 1979, NONLINEAR OSCILLATIO
25687    SANDERS JA, 1985, AVERAGING METHODS NO
25688    SMART J, 1972, J MECH PHYS SOLIDS, V20, P313
25689    STEVENS KK, 1966, AIAA J, V12, P2111
25690    SUIRE G, 1994, ARCH APPL MECH-ING, V64, P307
25691    SUIRE G, 1995, INT J MECH SCI, V37, P753
25692    SZYSZKOWSKI W, 1985, INT J SOLIDS STRUCT, V6, P545
25693    TOUATI D, 1994, INT J SOLIDS STRUCT, V31, P2367
25694    TOUATI D, 1995, ACTA MECH, V113, P215
25695    ZHANG NH, 1998, P 3 INT C NONL MECH, P432
25696    ZHU YY, 1998, P 3 INT C NONL MECH, P445
25697 NR 18
25698 TC 0
25699 SN 0253-4827
25700 J9 APPL MATH MECH-ENGL ED
25701 JI Appl. Math. Mech.-Engl. Ed.
25702 PD SEP
25703 PY 2000
25704 VL 21
25705 IS 9
25706 BP 987
25707 EP 994
25708 PG 8
25709 SC Mathematics, Applied; Mechanics
25710 GA 381DZ
25711 UT ISI:000165748200002
25712 ER
25713 
25714 PT J
25715 AU Chen, LQ
25716    Cheng, CJ
25717 TI Dynamical behavior of nonlinear viscoelastic beams
25718 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
25719 DT Article
25720 DE viscoelastic beam; differential equation of motion; Leaderman relation;
25721    Galerkin method
25722 ID CHAOTIC VIBRATIONS
25723 AB The integro-partial-differential equation that governs the dynamical
25724    behavior of homogeneous viscoelastic beams was established. The
25725    material of the beams obeys the Leaderman nonlinear constitutive
25726    relation. rn the case of two simply supported ends, the mathematical
25727    model is simplified into an integro-differential equation after a
25728    2nd-order truncation by the Galerkin method. Then the equation is
25729    further reduced to an ordinary differential equation which is
25730    convenient to carry out numerical experiments. Finally, the dynamical
25731    behavior of Ist-order and 2nd-order truncation are numerically compared.
25732 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
25733    Shanghai Univ, Dept Mech, Shanghai 201800, Peoples R China.
25734 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
25735    200072, Peoples R China.
25736 CR ABHYANKAR NS, 1993, J APPL MECH-T ASME, V60, P167
25737    ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151
25738    CHEN LQ, 1999, NATURAL J, V21, P1
25739    LEADERMAN H, 1962, T SOC RHEOL, V6, P361
25740    MOON FC, 1979, J SOUND VIB, V65, P285
25741    NAYFEF AH, 1979, NONLINEAR OSCILLATIO
25742    POTAPOV VD, 1997, INT J SOLIDS STRUCT, V34, P1367
25743    SMART J, 1972, J MECH PHYS SOLIDS, V20, P313
25744    SUIRE G, 1995, INT J MECH SCI, V37, P753
25745    WOJCIECH S, 1990, ACTA MECH, V85, P43
25746 NR 10
25747 TC 5
25748 SN 0253-4827
25749 J9 APPL MATH MECH-ENGL ED
25750 JI Appl. Math. Mech.-Engl. Ed.
25751 PD SEP
25752 PY 2000
25753 VL 21
25754 IS 9
25755 BP 995
25756 EP 1001
25757 PG 7
25758 SC Mathematics, Applied; Mechanics
25759 GA 381DZ
25760 UT ISI:000165748200003
25761 ER
25762 
25763 PT J
25764 AU Lai, JW
25765    Zhou, SP
25766    Li, GH
25767    Xu, DM
25768 TI A method for computing Lyapunov exponents spectra without
25769    reorthogonalization
25770 SO ACTA PHYSICA SINICA
25771 DT Article
25772 DE chaos; Lyapunov exponents; compound matrix; eigenvalue
25773 ID SYSTEMS
25774 AB We present a method for the computation of Lyapunov exponents without
25775    reorthogonalization. In the low dimension of system( n<5), the
25776    equations needed. in present algorithm is less than those in normal
25777    methods such as QR, SVD etc. This method is applicable to both discrete
25778    systems and continuous systems, and is still valid when the Lyapunov
25779    spectra is degenerate. Numerical analysis to Lorenz dynamical system
25780    indicates that the method converges quickly and steadly for arbitrary
25781    nonzero initial state.
25782 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
25783    Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800, Peoples R China.
25784 RP Lai, JW, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
25785 CR ARGYRIS J, 1994, EXPLORATION CHAOS, CH5
25786    CHOQUETBRUHAT Y, 1977, ANAL MANIFOLDS PHYSI, P258
25787    ECKMANN JP, 1985, REV MOD PHYS, V57, P617
25788    GEIST K, 1990, PROG THEOR PHYS, V83, P875
25789    GREENE JM, 1987, PHYSICA D, V24, P213
25790    HEINXOTTOPEITGE., 1992, CHAOS FRACTALS, CH12
25791    PECORA LM, 1990, PHYS REV LETT, V64, P821
25792    PECORA LM, 1991, PHYS REV A, V44, P2374
25793    RANGARAJAN G, 1998, PHYS REV LETT, V80, P3743
25794    ROSSLER OE, 1979, PHYS LETT A, V71, P155
25795    VONBREMEN HF, 1997, PHYSICA D, V101, P1
25796    WANG DS, 1995, CHAOS FRACTAL APPL, CH2
25797    WILKINSM JH, 1987, ALGEBRAIC EIGENVALUE, CH1
25798    WOLF A, 1985, PHYSICA D, V16, P285
25799    ZHANG XK, 1998, ADV ALGEBRA, P22
25800 NR 15
25801 TC 3
25802 SN 1000-3290
25803 J9 ACTA PHYS SIN-CHINESE ED
25804 JI Acta Phys. Sin.
25805 PD DEC
25806 PY 2000
25807 VL 49
25808 IS 12
25809 BP 2328
25810 EP 2332
25811 PG 5
25812 SC Physics, Multidisciplinary
25813 GA 382WB
25814 UT ISI:000165849400003
25815 ER
25816 
25817 PT J
25818 AU Lai, GJ
25819    Ji, PY
25820 TI Photon acceleration based on laser-plasma
25821 SO ACTA PHYSICA SINICA
25822 DT Article
25823 DE electron density perturbation; optical metric; photon acceleration
25824 AB The one-dimensional electron density perturbation is derived by using
25825    the cold fluid equation, Poisson's equation and the continuity
25826    equation, which is generated by a driving laser pulse propagating
25827    through a tenuous plasma. The upshifting of the frequency of a trailing
25828    pulse induced by density perturbation is studied by using optical
25829    metric. The results show that it is possible that the photon will gain
25830    energy from the wake field when assuming photon number to be conserved,
25831    i. e., the photon will be accelerated.
25832 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
25833 RP Lai, GJ, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
25834 CR GORDON W, 1923, ANN PHYS-BERLIN, V72, P421
25835    JOSHI C, 1984, NATURE, V311, P525
25836    MENDONCA JT, 1994, PHYS REV E, V49, P3520
25837    NAKAJIMA K, 1995, PHYS REV LETT, V74, P4428
25838    TAJIMA T, 1979, PHYS REV LETT, V43, P267
25839    WEINBERG S, 1972, GRAVITATION COSMOLOG
25840    WILKS SC, 1989, PHYS REV LETT, V62, P2600
25841    ZHU ST, 1993, ACTA PHYS SINICA, V42, P1438
25842 NR 8
25843 TC 4
25844 SN 1000-3290
25845 J9 ACTA PHYS SIN-CHINESE ED
25846 JI Acta Phys. Sin.
25847 PD DEC
25848 PY 2000
25849 VL 49
25850 IS 12
25851 BP 2399
25852 EP 2403
25853 PG 5
25854 SC Physics, Multidisciplinary
25855 GA 382WB
25856 UT ISI:000165849400015
25857 ER
25858 
25859 PT J
25860 AU You, JL
25861    Jiang, GC
25862    Xu, KD
25863 TI High temperature Raman spectroscopic study of the structure of sodium
25864    disilicate crystal, glass and its melt
25865 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
25866 DT Article
25867 DE high temperature; Raman spectroscopy; melts; sodium disilicate
25868 AB The structure of Na2Si2O5 from room temperature up to 1 773 K are
25869    studied by high temperature Raman spectroscopy using copper vapor pulse
25870    laser and integral time-resolved detection technique without any
25871    black-body radiation effect on spectral record. Backscattering optical
25872    configuration is coupled with confocal collection of Raman signal of
25873    macro-sample in the high temperature shaft tube furnace. Results show
25874    that temperature-dependent Raman spectra can clearly indicate phase
25875    transition during melting. Relative densities of various kinds of
25876    SiO4(n-4) (n, bridging-oxygen number binding to one tetrahedron former
25877    Si) tetrahedrons can be qualitatively and quantitatively resolved by
25878    Gaussian spectral deconvolution. Obviously high temperature Raman
25879    spectroscopy provides an useful tool for the micro-structure research
25880    of materials under high temperature.
25881 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
25882 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
25883    200072, Peoples R China.
25884 CR DOMINE F, 1983, J NON-CRYST SOLIDS, V55, P125
25885    HANDKE M, 1993, VIB SPECTROSC, V5, P75
25886    SMITH W, 1995, J NONCRYST SOLIDS, V192, P267
25887    XU KD, 1999, SCI CHINA, V22, P77
25888    YOU JL, 1998, J CHINESE RARE EARTH, V16, P505
25889 NR 5
25890 TC 3
25891 SN 1000-0593
25892 J9 SPECTROSC SPECTR ANAL
25893 JI Spectrosc. Spectr. Anal.
25894 PD DEC
25895 PY 2000
25896 VL 20
25897 IS 6
25898 BP 797
25899 EP 799
25900 PG 3
25901 SC Spectroscopy
25902 GA 379NP
25903 UT ISI:000165649400015
25904 ER
25905 
25906 PT J
25907 AU Ben-Yu, G
25908    Cheng-Long, X
25909 TI On two-dimensional unsteady incompressible fluid flow in an infinite
25910    strip
25911 SO MATHEMATICAL METHODS IN THE APPLIED SCIENCES
25912 DT Article
25913 DE incompressible fluid flow; stream function form; infinite strip;
25914    existence; uniqueness and regularity of solution
25915 ID NAVIER-STOKES EQUATIONS; STREAM FUNCTION FORM
25916 AB In this paper, we study two-dimensional incompressible fluid flow in an
25917    infinite strip. The stream function form of Navier-Stokes equation is
25918    considered, which keeps the physical boundary condition and avoids some
25919    difficulties in numerical simulations. The existence and uniqueness of
25920    global solution are proved. Some results on the regularity of solution
25921    are obtained. Copyright (C) 2000 John Wiley & Sons, Ltd.
25922 C1 Shanghai Normal Univ, Sch Math Sci, Shanghai 200234, Peoples R China.
25923    Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
25924 RP Ben-Yu, G, Shanghai Normal Univ, Sch Math Sci, Shanghai 200234, Peoples
25925    R China.
25926 CR BERNARDI C, 1992, MATH COMPUT, V59, P63
25927    CHAZARAIN J, 1982, INTRO THEORY LINEAR
25928    GUO BY, 1997, J MATH ANAL APPL, V205, P1
25929    GUO BY, 1998, SIAM J NUMER ANAL, V35, P146
25930    GUO BY, 1999, MATH COMPUT, V68, P1067
25931    HE LP, 1999, RAIRO MATH MODEL NUM, V33, P113
25932    KWEON JR, 1998, J MATH ANAL APPL, V220, P657
25933    LADYZHENSKAJA OA, 1969, MATH THEORY VISCOUS
25934    LIONS JL, 1969, QUELQUES METHODES RE
25935    MADAY Y, 1985, RECH AEROSPATIALE, P353
25936    TEMAM R, 1977, NAVIERSTOKES EQUATIO
25937 NR 11
25938 TC 0
25939 SN 0170-4214
25940 J9 MATH METH APPL SCI
25941 JI Math. Meth. Appl. Sci.
25942 PD DEC
25943 PY 2000
25944 VL 23
25945 IS 18
25946 BP 1617
25947 EP 1636
25948 PG 20
25949 SC Mathematics, Applied
25950 GA 380WJ
25951 UT ISI:000165726200002
25952 ER
25953 
25954 PT J
25955 AU Bai, YJ
25956    Liu, YX
25957    Sun, DS
25958    Bian, XF
25959    Xiao, LM
25960    Geng, GL
25961 TI Atmospheric oxidation of CuZnAlMnNi shape memory alloy
25962 SO MATERIALS LETTERS
25963 DT Article
25964 DE shape memory alloy (CuZnAlMnNi), oxidation of; microstructure;
25965    transmission electron microscopy
25966 ID CU-ZN-AL; MARTENSITIC-TRANSFORMATION; THERMOELASTICITY; TEMPERATURE;
25967    BEHAVIOR
25968 AB The microstructures of CuZnAlMnNi alloy after ion-polishing and
25969    subsequent exposure for 60 days in the ambient atmosphere were examined
25970    by transmission electron microscopy (TEM). It was found that a large
25971    number of fine oxide grains, with various sizes, appear homogeneously
25972    on the surface of the alloy after being held in atmosphere. The oxides
25973    form along the planes of stacking fault, at the plate boundaries or
25974    around the dislocations, resulting in the decrease of the stacking
25975    faults in the original quenched martensite plates, and even the
25976    complete disappearance in local zones. (C) 2000 Elsevier Science B.V.
25977    All rights reserved.
25978 C1 Shanghai Univ Sci & Technol, Dept Mech, Jinan 250031, Shandong, Peoples R China.
25979    Shandong Univ Technol, Mat Testing Ctr, Jinan 250061, Shandong, Peoples R China.
25980 RP Bai, YJ, Shanghai Univ Sci & Technol, Dept Mech, Jinan 250031,
25981    Shandong, Peoples R China.
25982 CR BAI YJ, 1999, J MATER SCI LETT, V18, P1509
25983    DELAEY L, 1974, J MATER SCI, V9, P1521
25984    GENG GL, 1999, MATER CHARACT, V42, P45
25985    GU NJ, 1996, METALL MATER TRANS A, V27, P3108
25986    LOVEY FC, 1990, PHILOS MAG A, V61, P159
25987    LOVEY FC, 1995, J PHYS IV, V5, C2
25988    LOVEY FC, 1999, PROG MATER SCI, V44, P189
25989    PELEGRINA JL, 1992, ACTA METALL MATER, V40, P3205
25990    PONS J, 1990, ACTA METALL MATER, V38, P2733
25991    PONS J, 1993, ACTA METALL MATER, V41, P2547
25992    STALMANS R, 1992, ACTA METALL MATER, V40, P501
25993    WEI ZG, 1998, J MATER SCI, V33, P3743
25994 NR 12
25995 TC 1
25996 SN 0167-577X
25997 J9 MATER LETT
25998 JI Mater. Lett.
25999 PD DEC
26000 PY 2000
26001 VL 46
26002 IS 6
26003 BP 358
26004 EP 361
26005 PG 4
26006 SC Materials Science, Multidisciplinary; Physics, Applied
26007 GA 380KV
26008 UT ISI:000165701800009
26009 ER
26010 
26011 PT J
26012 AU Luo, X
26013    Roetzel, W
26014    Ludersen, U
26015 TI The single-blow transient testing technique considering longitudinal
26016    core conduction and fluid dispersion
26017 SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
26018 DT Article
26019 DE heat exchangers; measurement techniques; transient
26020 ID NUMERICAL INVERSION; LAPLACE TRANSFORMS; COEFFICIENTS
26021 AB Single-blow transient testing technique has been widely used to measure
26022    the thermal performance of compact heat exchangers. For compact heat
26023    exchangers with short length the effect of longitudinal core conduction
26024    can usually not be neglected. Furthermore, the flow nonuniformity in a
26025    heat exchanger has also a significant influence on its temperature
26026    response. A new conduction/dispersion model for the single-blow
26027    transient testing technique is developed to include the effects of the
26028    longitudinal core conduction and fluid dispersion. Because the axial
26029    dispersion coefficient depends on the flow pattern in the heat
26030    exchanger which is usually unknown, both the heat transfer coefficient
26031    and the axial dispersion coefficient are determined with the whole
26032    curve matching simultaneously. The experiments are conducted in an open
26033    circuit wind tunnel. Comparison is made between the experimental
26034    results and data available in the literature. The software TAIHE
26035    (Transient Analysis In Heat Exchangers) developed by the authors is
26036    applied to the data analysis to evaluate heat transfer coefficients and
26037    axial dispersion coefficients. The results show that the pulse testing
26038    technique developed in the present investigation can easily be carried
26039    out and gives good evaluated results. (C) 2000 Elsevier Science Ltd.
26040    All rights reserved.
26041 C1 Univ Fed Armed Forces Hamburg, Inst Thermodynam, D-22039 Hamburg, Germany.
26042    Shanghai Univ Sci & Technol, Inst Thermal Engn & Air Conditioning, Shanghai 200093, Peoples R China.
26043 RP Luo, X, Univ Fed Armed Forces Hamburg, Inst Thermodynam, D-22039
26044    Hamburg, Germany.
26045 CR 1979, HDB MATH
26046    ANZELIUS A, 1926, Z ANGEW MATH MECH, V6, P291
26047    CAI ZH, 1984, INT J HEAT MASS TRAN, V27, P971
26048    CRUMP KS, 1976, J ASSOC COMPUT MACH, V23, P89
26049    DANCKWERTS PV, 1953, CHEM ENG SCI, V2, P1
26050    FURNAS CC, 1932, US BUREAU MINES B, V361
26051    HAUSEN H, 1929, Z ANGEW MATH MECH, V9, P173
26052    HEGGS PJ, 1988, EXP THERM FLUID SCI, V1, P243
26053    HOWARD CP, 1964, 64GTP11 ASME
26054    ICHIKAWA S, 1972, KYOTO U MEMORIES 1, V34, P53
26055    JACQUOT RG, 1983, IEEE CIRCUITS SYSTEM, V5, P4
26056    KOHLMAYR GF, 1966, INT J HEAT MASS TRAN, V9, P671
26057    KOHLMAYR GF, 1968, INT J HEAT MASS TRAN, V11, P567
26058    KOHLMAYR GF, 1968, J HEAT TRANSFER, V90, P130
26059    LIANG CY, 1975, J HEAT TRANSFER, V97, P16
26060    LOEHRKE RI, 1990, EXP THERM FLUID SCI, V3, P574
26061    LUO X, 1998, FORTSCHRITT BERICHTE, V19
26062    LUO X, 1999, SCI COMPUTING CHEM E, V2, P167
26063    MULLISEN RS, 1986, J HEAT TRANS-T ASME, V108, P370
26064    NUSSELT W, 1927, Z VER DTSCH ING 1, V71, P85
26065    PUCCI PF, 1967, J ENG PWR, V89, P29
26066    ROETZEL W, 1996, NEW DEV HEAT EXCHANG, P547
26067    ROETZEL W, 1997, COMPACT HEAT EXCHANG, P381
26068    ROETZEL W, 1997, REV GEN THERM, V36, P635
26069    ROETZEL W, 1998, REV GEN THERM, V37, P277
26070    ROETZEL W, 1999, DYNAMIC BEHAV HEAT E
26071    SCHUMANN TEW, 1929, J FRANKL INST, V208, P405
26072    STEHFEST H, 1970, COMMUN ACM, V13, P47
26073    ZHOU K, 1998, P INT C HEAT EXCH SU, P645
26074 NR 29
26075 TC 4
26076 SN 0017-9310
26077 J9 INT J HEAT MASS TRANSFER
26078 JI Int. J. Heat Mass Transf.
26079 PD JAN
26080 PY 2001
26081 VL 44
26082 IS 1
26083 BP 121
26084 EP 129
26085 PG 9
26086 SC Engineering, Mechanical; Mechanics; Thermodynamics
26087 GA 380ND
26088 UT ISI:000165707200011
26089 ER
26090 
26091 PT J
26092 AU Deng, K
26093    Ren, ZM
26094    Jiang, GC
26095 TI Theoretical and experimental analyses of continuous casting with
26096    soft-contacted mould - (II) - EMF calculation and experimental analyses
26097 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
26098 DT Article
26099 DE electromagnetic continuous casting (EMC); soft-contacted mould;
26100    electromagnetic field (EMF)
26101 AB Coupling the quasi-3D numerical simulation of the electromagnetic field
26102    and the experiments with some metals, a series of phenomena in the
26103    processes of continuous casting with soft-contacted mould was analyzed.
26104    Some theoretical and experimental models were presented, from which
26105    following results were obtained. 1) The electromagnetic force is
26106    related with electric conductivity of billet as a power function to
26107    0.4. 2) The heat transfer between billet and mould is related with the
26108    contacting pressure, and it is a linear function for tin billet
26109    approximately. 3) The distance between initial solidification point and
26110    meniscus in billet is related with the surface magnetic flux density as
26111    a fourth root function. 4) The temperature gradient in the initial
26112    solidifying shell is reduced, which can decrease the tendency of hot
26113    tearing on the surface of billet, and increase the equiaxed crystal
26114    zone in billet. 5) The stronger the magnetic flux density is, the more
26115    shallow and the thinner the oscillation mark on the surface of billet
26116    is. 6) The depth of oscillation mark on the billet cast by the
26117    soft-contacted mould can be reduced to about 10% in comparison with
26118    that on the billets cast by traditional mould. 7) In non-dimensional
26119    condition, the average depth of the oscillation marks on the billets
26120    cast by the soft-contacted mould decreases with increasing magnetic
26121    flux density on there as a complementary error function.
26122 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
26123 CR AYATA K, 1997, CAMP ISIJ, V10, P828
26124    CHA PR, 1998, ISIJ INT, V38, P403
26125    DENG K, 1996, T NONFERR METAL SOC, V6, P12
26126    DONG HF, 1998, J IRON STEEL, V10, P5
26127    FURUHASHI S, 1998, TETSU TO HAGANE, V84, P625
26128    LI TJ, 1997, ACTA METALLURGICA SI, V33, P524
26129    MORISHITA M, 1991, MAGNETOHYDRODYNAMICS, P267
26130    REN ZM, 1999, ACTA METALL SIN, V35, P851
26131    SIMPSON PG, 1960, INDUCTION HEATING CO
26132    VIVES C, 1989, METALL TRANS B, V20, P623
26133 NR 10
26134 TC 0
26135 SN 1003-6326
26136 J9 TRANS NONFERROUS METAL SOC CH
26137 JI Trans. Nonferrous Met. Soc. China
26138 PD DEC
26139 PY 2000
26140 VL 10
26141 IS 6
26142 BP 726
26143 EP 731
26144 PG 6
26145 SC Metallurgy & Metallurgical Engineering
26146 GA 379EE
26147 UT ISI:000165627300006
26148 ER
26149 
26150 PT J
26151 AU Yoshida, F
26152    Horiike, K
26153    Huang, SP
26154 TI Time-dependent concentration profile of secreted molecules in the
26155    intercellular signaling
26156 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
26157 DT Article
26158 DE diffusion equation; secretion rate; communication distance; cytokine;
26159    hormone; signal transduction
26160 ID CELLS; DIFFUSION; VESICLES
26161 AB The concentration profile of secreted molecules is studied to
26162    understand characteristic properties of the intercellular signaling.
26163    Diffusion equations are solved for the concentration by assuming the
26164    rectangular, triangular and oscillatory lime-dependence of the flux at
26165    the cell surface. The concentration is examined as a function of time
26166    and distance from a secreting cell by varying both the strength of an
26167    enhanced secretion rate and a secretion time. The time-dependence of
26168    the secretion rate is found to be inevitable for the concept of
26169    communication distance and characteristic time. Realistic estimations
26170    of these quantities are given for human cytokines.
26171 C1 Shiga Univ Med Sci, Dept Phys, Otsu, Shiga 5202192, Japan.
26172    Shiga Univ Med Sci, Dept Biochem, Otsu, Shiga 5202192, Japan.
26173    Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
26174 RP Yoshida, F, Shiga Univ Med Sci, Dept Phys, Seta Tsukinowa Cho, Otsu,
26175    Shiga 5202192, Japan.
26176 CR ALBERTS B, 1994, MOL BIOL CELL, CH13
26177    BROCK TG, 1999, J BIOL CHEM, V274, P11660
26178    CARSLAW HS, 1959, CONDUCTION HEAT SOLI
26179    CIOLKOWSKI EL, 1992, J AM CHEM SOC, V114, P2815
26180    CRANK J, 1975, MATH DIFFUSION, CH14
26181    FRANCIS K, 1997, P NATL ACAD SCI USA, V94, P12258
26182    LAUFFENBURGER DA, 1993, RECEPTORS MODELS BIN
26183    NICHOLSON C, 1995, BIOPHYS J, V68, P1699
26184    NISHIKI T, 1997, BIOCHEM BIOPH RES CO, V239, P57
26185    PALSSON BO, 1997, NAT BIOTECHNOL, V15, P3
26186    SAVINELL JM, 1989, BIOPROCESS ENG, V4, P231
26187    WIGHTMAN RM, 1995, BIOPHYS J, V68, P383
26188    YOSHIDA F, 1999, P JPN ACAD B-PHYS, V75, P87
26189 NR 13
26190 TC 6
26191 SN 0031-9015
26192 J9 J PHYS SOC JPN
26193 JI J. Phys. Soc. Jpn.
26194 PD NOV
26195 PY 2000
26196 VL 69
26197 IS 11
26198 BP 3736
26199 EP 3743
26200 PG 8
26201 SC Physics, Multidisciplinary
26202 GA 378DH
26203 UT ISI:000165569400046
26204 ER
26205 
26206 PT J
26207 AU Li, D
26208    Sun, XL
26209 TI Success guarantee of dual search in integer programming: p-th power
26210    Lagrangian method
26211 SO JOURNAL OF GLOBAL OPTIMIZATION
26212 DT Article
26213 DE integer programming; dual search; Lagrangian method
26214 ID GLOBAL OPTIMIZATION METHODS; CONSTRAINTS; BRANCH; GAP
26215 AB Although the Lagrangian method is a powerful dual search approach in
26216    integer programming, it often fails to identify an optimal solution of
26217    the primal problem. The p-th power Lagrangian method developed in this
26218    paper offers a success guarantee for the dual search in generating an
26219    optimal solution of the primal integer programming problem in an
26220    equivalent setting via two key transformations. One other prominent
26221    feature of the p-th power Lagrangian method is that the dual search
26222    only involves a one-dimensional search within [0,1]. Some potential
26223    applications of the method as well as the issue of its implementation
26224    are discussed.
26225 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
26226    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
26227 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management,
26228    Shatin, Hong Kong, Peoples R China.
26229 CR BARHEN J, 1997, SCIENCE, V276, P1094
26230    BELL DE, 1977, OPER RES, V25, P419
26231    COOPER MW, 1981, MANAGE SCI, V27, P353
26232    CVIJOVIC D, 1995, SCIENCE, V267, P664
26233    FISHER ML, 1974, SIAM J APPL MATH, V27, P31
26234    FISHER ML, 1981, MANAGE SCI, V27, P1
26235    FLETCHER R, 1994, MATH PROGRAM, V66, P327
26236    GE R, 1990, MATH PROGRAM, V46, P191
26237    GEOFFRION AM, 1974, MATHEMATICAL PROGRAM, V2, P82
26238    GLOVER F, 1968, OPER RES, V16, P741
26239    GUPTA OK, 1985, MANAGE SCI, V31, P1533
26240    HORST R, 1993, GLOBAL OPTIMIZATION
26241    KAN AHGR, 1987, MATH PROGRAM, V39, P27
26242    KAN AHGR, 1987, MATH PROGRAM, V39, P57
26243    KARWAN MH, 1979, MATH PROGRAM, V17, P320
26244    KARWAN MH, 1980, OPER RES, V28, P1251
26245    KRAAY D, 1991, OPER RES, V39, P82
26246    LI D, 1995, J OPTIMIZ THEORY APP, V85, P309
26247    LI D, 1999, OPER RES LETT, V25, P89
26248    MICHELON P, 1991, MATH PROGRAM, V52, P303
26249    OHTAGAKI H, 1995, MATH COMPUT MODEL, V22, P261
26250    PARKER RG, 1988, DISCRETE OPTIMIZATIO
26251    SHAPIRO JF, 1979, ANN DISCRETE MATH, V5, P113
26252    SKORINKAPOV J, 1987, OPER RES LETT, V6, P269
26253    SUNG CS, 1999, IEEE T RELIAB, V48, P108
26254    TILLMAN FA, 1980, OPTIMIZATION SYSTEM
26255    TZAFESTAS SG, 1980, INT J SYST SCI, V11, P455
26256 NR 27
26257 TC 4
26258 SN 0925-5001
26259 J9 J GLOBAL OPTIM
26260 JI J. Glob. Optim.
26261 PD NOV
26262 PY 2000
26263 VL 18
26264 IS 3
26265 BP 235
26266 EP 254
26267 PG 20
26268 SC Mathematics, Applied; Operations Research & Management Science
26269 GA 379JB
26270 UT ISI:000165638000003
26271 ER
26272 
26273 PT J
26274 AU Wu, MH
26275    Bao, BR
26276    Chen, J
26277 TI Reduction of the thrombogenicity of polyethylene membranes by radiation
26278    grafting
26279 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
26280 DT Article
26281 ID ACRYLIC-ACID; BIOMATERIALS
26282 AB A new anti-thrombosis dialytic membrane with a hydrophilic-hydrophobic
26283    microphase structure was prepared by pre-irradiation grafting of beta
26284    -hydroxyethyl methacrylate (HEMA) and styrene (St) onto polyethylene
26285    (PE) membranes. The effects of reaction conditions on the degree of
26286    grafting were determined, and the properties of the grafted films were
26287    investigated. Compared with PE grafted with hydrophilic monomer, the
26288    antithrombogenicity and permeability of the PE-g-(HEMA-co-St) were 30
26289    and 15 times higher than that of the ungrafted films, respectively, if
26290    the volume ratio (HEMA:St) is about 1:1.
26291 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
26292    Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai, Peoples R China.
26293 RP Wu, MH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
26294    Peoples R China.
26295 CR CHE JT, 1993, RADIAT PHYS CHEM, V42, P85
26296    CHEN J, 1998, NUCL TECH, V21, P498
26297    EUSTACE DJ, 1988, J APPL POLYM SCI, V35, P707
26298    HOFFMAN AS, 1981, RADIAT PHYS CHEM, V18, P323
26299    IMAI Y, 1972, J BIOMED MATER RES, V6, P165
26300    ISHIGAKI I, 1982, J APPL POLYM SCI, V27, P1033
26301    LINARES HA, 1972, J INVEST DERMATOL, V59, P323
26302    MERRILL EW, 1987, HYDROGELS MED PHARM, P31
26303    MULLERSCHULTE D, 1993, RADIAT PHYS CHEM, V42, P891
26304    RATNER BD, 1981, BIOCOMPATIBILITY CLI, P145
26305    RATNER BD, 1996, HYDROGELS BIOMATERIA, P60
26306    WU MH, 1995, J RAD RES RAD PROCES, V13, P145
26307    ZHOU RM, 1993, J RAD RES RAD PROCES, V11, P170
26308 NR 13
26309 TC 2
26310 SN 0236-5731
26311 J9 J RADIOANAL NUCL CHEM
26312 JI J. Radioanal. Nucl. Chem.
26313 PD NOV
26314 PY 2000
26315 VL 246
26316 IS 2
26317 BP 457
26318 EP 461
26319 PG 5
26320 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
26321    & Technology
26322 GA 375EZ
26323 UT ISI:000165387700039
26324 ER
26325 
26326 PT J
26327 AU Shi, LY
26328    Zhang, Y
26329    Fang, DY
26330    Li, CZ
26331    Gu, HC
26332 TI The effect of SnO2 on the photocatalytic activity of aerosol-made TiO2
26333    particles
26334 SO JOURNAL OF MATERIALS SYNTHESIS AND PROCESSING
26335 DT Article
26336 DE composite particles; photodegradation; titanium dioxide
26337 ID DEGRADATION; PHENOL; POWDERS; FILMS
26338 AB Ultrafine titania particles were prepared by gas-phase oxidation of
26339    titanium tetrachloride in a high-temperature tubular aerosol how
26340    reactor. Homogeneous precipitation method was used to deposit SnO2 on
26341    the surface of lab-made TiO2. The composite particles were
26342    characterized by TEM, ICP, XRD, and BET surface area analysis. The
26343    composite particles, pure ultrafine TiO2, commercial TiO2, and pure
26344    SnO2 were employed for photocatalytic degradation of azo dye active red
26345    X-3B in aerated solutions. The result showed that the photoactivity of
26346    the composite particles was higher than that of pure ultrafine TiO2 and
26347    commercial TiO2, and the optimum loading of SnO2 on TiO2 is 15.3%. The
26348    enhanced degradation rate of X-3B using SnO2-TiO2 composite particles
26349    was attributed to increased charge separation in these systems.
26350 C1 Shanghai Univ, Dept Chem, Shanghai 200072, Peoples R China.
26351 RP Shi, LY, Shanghai Univ, Dept Chem, Box 59,149 Yanchang Rd, Shanghai
26352    200072, Peoples R China.
26353 CR BEDJA I, 1994, J PHYS CHEM-US, V98, P4133
26354    CHHABRA V, 1995, LANGMUIR, V11, P3307
26355    FOTOU GP, 1994, CHEM ENG SCI, V49, P4939
26356    FOTOU GP, 1996, CHEM ENG COMMUN, V151, P251
26357    GERISCHER H, 1991, J PHYS CHEM-US, V95, P5261
26358    GOPIDAS KR, 1994, J PHYS CHEM-US, V98, P3822
26359    HIROSHI Y, 1989, J PHYS CHEM-US, V93, P4833
26360    JUDIN VPS, 1993, CHEM BRIT, V29, P503
26361    KRUIS FE, 1998, J AEROSOL SCI, V29, P511
26362    LEGRINI O, 1993, CHEM REV, V93, P671
26363    LOOK JL, 1992, J COLLOID INTERF SCI, V153, P461
26364    SCLAFANI A, 1990, J PHYS CHEM-US, V94, P829
26365    SHI LY, 1998, J ECUST CH, V24, P291
26366    SHI LY, 1998, MAT REV, V12, P23
26367    SHI LY, 1999, J CATAL, V20, P338
26368    SHI LY, 1999, J ECUST, V25, P151
26369    SHI LY, 1999, J INORG MATER, V14, P717
26370    SHI LY, 1999, THESIS
26371    TSAI SJ, 1997, CATAL TODAY, V33, P227
26372    VINODGOPAL K, 1995, ENVIRON SCI TECHNOL, V29, P841
26373    VINODGPAL K, 1998, CHEM MATER, V8, P2180
26374    WEI TY, 1991, IND ENG CHEM RES, V30, P1293
26375 NR 22
26376 TC 3
26377 SN 1064-7562
26378 J9 J MATER SYNTH PROCESS
26379 JI J. Mater. Synth. Process
26380 PD NOV
26381 PY 1999
26382 VL 7
26383 IS 6
26384 BP 357
26385 EP 363
26386 PG 7
26387 SC Materials Science, Multidisciplinary
26388 GA 376NW
26389 UT ISI:000165464500003
26390 ER
26391 
26392 PT J
26393 AU Wan, JTK
26394    Yu, KW
26395    Gu, GQ
26396 TI Dynamic electrorheological effects and interparticle force between a
26397    pair of rotating spheres
26398 SO PHYSICAL REVIEW E
26399 DT Article
26400 ID SUSPENSIONS; SIMULATION; SHEAR; FLUIDS; FIELD
26401 AB We consider a two-particle system in which a particle is held fixed,
26402    and the other one rotates around the axis perpendicular to the line
26403    joining the particles' centers. The rotating particle leads to a
26404    displacement of its polarization charge on the surface. Our results
26405    show that the rotational motion of the particles generally reduces the
26406    force between the particles. The dependence of interparticle force on
26407    the angular velocity of rotation will be discussed.
26408 C1 Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China.
26409    Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 200093, Peoples R China.
26410 RP Wan, JTK, Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples
26411    R China.
26412 CR HALSEY TC, 1990, J STAT PHYS, V61, P1257
26413    HALSEY TC, 1992, SCIENCE, V258, P761
26414    JACKSON JD, 1975, CLASSICAL ELECTRODYN
26415    JONES TK, 1998, THESIS CHINESE U HON
26416    KLINGENBERG DJ, 1989, J CHEM PHYS, V91, P7888
26417    KLINGENBERG DJ, 1990, LANGMUIR, V6, P15
26418    KLINGENBERG DJ, 1991, J CHEM PHYS, V94, P6160
26419    KLINGENBERG DJ, 1998, MRS BULL, V23, P30
26420    LADD AJC, 1988, J CHEM PHYS, V88, P5051
26421    LOBRY L, 1999, J ELECTROSTAT, V47, P61
26422    PHULE PP, 1998, MRS BULL, V23, P19
26423    POLADIAN L, 1991, PHYS REV B, V44, P2092
26424    RUSSEL WB, 1989, COLLOIDAL DISPERSION
26425    TAO R, 1991, PHYS REV LETT, V67, P398
26426    WANG ZW, COMMUNICATION
26427    WANG ZW, 1996, INT J MOD PHYS B, V10, P1153
26428    WANG ZW, 1997, J PHYS D APPL PHYS, V30, P1265
26429    YU KW, 2000, COMPUT PHYS COMMUN, V129, P177
26430    YU KW, 2000, PHYSICA B, V279, P78
26431 NR 19
26432 TC 10
26433 SN 1063-651X
26434 J9 PHYS REV E
26435 JI Phys. Rev. E
26436 PD NOV
26437 PY 2000
26438 VL 62
26439 IS 5
26440 PN Part B
26441 BP 6846
26442 EP 6850
26443 PG 5
26444 SC Physics, Fluids & Plasmas; Physics, Mathematical
26445 GA 374JK
26446 UT ISI:000165341900020
26447 ER
26448 
26449 PT J
26450 AU Zhou, SP
26451 TI The s+id(x2-y2) pairing symmetry in high temperature superconductors
26452 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
26453 DT Article
26454 DE Ginzburg-Landau theory; energy gap; Josephson effect
26455 ID TIME-REVERSAL SYMMETRY; ORDER-PARAMETER; THIN-FILMS; YBA2CU3O7-DELTA;
26456    JUNCTIONS; VORTICES; WAVE; PB
26457 AB The pairing symmetry in high temperature superconductors
26458    YBa2Cu3O7-delta a is studied. In the framework of Ginzburg-Landau
26459    model, the coexistence of s- and d-wave states has been discussed from
26460    the group theory analysis point of view. The s + id(x2-y2) pairing
26461    symmetry argument can provide us a plausible account of the
26462    experimental results of the Josephson tunneling along in
26463    YBa2Cu3O7-delta/YB2Cu3O7-delta junctions and the c-axis tunneling
26464    between YBCO/Pb junctions as well. (C) 2000 Elsevier Science B.V. All
26465    rights reserved.
26466 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
26467 RP Zhou, SP, Shanghai Univ, Dept Phys, 20 Chengzhong Rd, Shanghai 201800,
26468    Peoples R China.
26469 CR BARONE A, 1982, PHYSICS APPL JOSEPHS, CH2
26470    CHAKRAVARTY S, 1993, SCIENCE, V261, P337
26471    CHAUDHARI P, 1994, PHYS REV LETT, V72, P1084
26472    ELLIOTT JP, 1984, SYMMETRY PHYSICS
26473    GORKOV LP, 1959, ZH EKSP TEOR FIZ, V36, P1918
26474    GORKOV LP, 1960, SOV PHYS JETP, V9, P1364
26475    IGUCHI I, 1994, PHYS REV B, V49, P12388
26476    KHOMSKII DI, 1995, PHYS REV LETT, V75, P1384
26477    KOUZNETSOV KA, 1997, PHYS REV LETT, V79, P3050
26478    KRESIN VZ, 1993, PHYS REV B, V48, P9012
26479    LESUEUR J, 1997, PHYS REV B, V55, P3398
26480    LI QP, 1993, PHYS REV B, V48, P437
26481    LIHN HTS, 1996, PHYS REV LETT, V76, P3810
26482    LYONS KB, 1990, PHYS REV LETT, V64, P2949
26483    MILLIS AJ, 1994, PHYS REV B, V49, P15408
26484    ROBERTAZZI RP, 1992, PHYS REV B, V46, P8456
26485    ROHKSAR DS, 1993, PHYS REV LETT, V70, P493
26486    SIGRIST M, 1989, PHYS REV LETT, V63, P1727
26487    SIGRIST M, 1995, PHYS REV LETT, V74, P3249
26488    SIGRIST M, 1996, PHYS REV B, V53, P2835
26489    SPIELMAN S, 1990, PHYS REV LETT, V65, P123
26490    SUN AG, 1994, PHYS REV LETT, V72, P2267
26491    TINKHAM M, 1964, GROUP THEORY QUANTUM
26492    TSUEI CC, 1994, PHYS REV LETT, V73, P593
26493    VOLOVIK GE, 1985, SOV PHYS JETP, V61, P843
26494    WEBER HJ, 1990, SOLID STATE COMMUN, V76, P511
26495    WEI CD, 1992, GREENS FUNCTION METH, CH8
26496    WOLLMAN DA, 1993, PHYS REV LETT, V71, P2134
26497    WU S, 1996, PHYS REV B, V54, P13343
26498    ZHANG FC, 1988, PHYS REV B, V37, P3759
26499 NR 30
26500 TC 3
26501 SN 0921-4534
26502 J9 PHYSICA C
26503 JI Physica C
26504 PD NOV 1
26505 PY 2000
26506 VL 339
26507 IS 4
26508 BP 258
26509 EP 268
26510 PG 11
26511 SC Physics, Applied
26512 GA 372YC
26513 UT ISI:000165260800006
26514 ER
26515 
26516 PT J
26517 AU Zhang, TS
26518    Hing, P
26519    Zhang, RF
26520    Zhang, JC
26521    Li, Y
26522 TI Phase evolution, microstructure, and gas-sensing characteristics of the
26523    Sb2O3-Fe2O3 system prepared by coprecipitation
26524 SO JOURNAL OF MATERIALS RESEARCH
26525 DT Article
26526 ID ALPHA-FE2O3 CERAMICS; FILM; SENSITIVITY; SENSORS; FE2O3; AIR
26527 AB Precursor powders with antimony-to-iron (Sb/Fe) atomic ratios ranging
26528    from 0 to 2.0 were prepared by chemical coprecipitation. The origin of
26529    enhanced gas-sensing behavior at a higher calcining temperature was
26530    investigated, based on phase evolution and microstructure characterized
26531    by means of thermal analysis, x-ray diffraction, Brunauer-Emmett-Teller
26532    surface area measurement, and electron microscopy. Only one
26533    iron-antimony oxide (i.e., FeSbO4) could be obtained under present
26534    experimental conditions. Pure FeSbO4 exhibited a high gas sensitivity,
26535    only when calcining temperature was below 600 degreesC. A rapid
26536    crystallite growth, as well as hard agglomeration, occurred in pure
26537    FeSbO4 powder calcined at 600-1000 degreesC, and thus led to poor
26538    gas-sensing behavior. However, there existed an optimal Sb/Fe ratio
26539    range (i.e., 0.25 to 0.65) in which crystallite growth of both alpha
26540    -Fe2O3 and FeSbO4 could be efficiently depressed up to 800 degreesC.
26541    The samples (with Sb/Fe ratio in the range 0.25-0.65) calcined at
26542    600-800 degreesC displayed a high sensitivity to liquid petroleum gas
26543    due to their large specific surface area and poor crystallinity.
26544 C1 Nanyang Technol Univ, Sch Appl Sci, Div Mat Engn, Singapore 639798, Singapore.
26545    Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
26546    Univ Sci & Technol China, Struct Res Lab, Hefei 230026, Peoples R China.
26547 RP Zhang, TS, Nanyang Technol Univ, Sch Appl Sci, Div Mat Engn, Nanyang
26548    Ave, Singapore 639798, Singapore.
26549 CR ASO I, 1980, J CATAL, V64, P29
26550    BABDO Y, 1965, JPN J APPL PHYS, V4, P240
26551    BADAWY WA, 1988, THIN SOLID FILMS, V158, P277
26552    BERRY FJ, 1987, J SOLID STATE CHEM, V71, P582
26553    BONDIOLI F, 1998, MATER RES BULL, V33, P723
26554    CANTALINI C, 1994, SENSOR ACTUAT B-CHEM, V18, P437
26555    CHUNG WY, 1991, THIN SOLID FILMS, V200, P329
26556    COLOMBO P, 1991, J EUR CERAM SOC, V8, P383
26557    DEBOER FE, 1954, J AM CHEM SOC, V76, P3365
26558    EWISS MAZ, 1998, PHYS CHEM GLASSES, V39, P236
26559    FANG YK, 1989, THIN SOLID FILMS, V169, P51
26560    IPPOMMATSU M, 1989, J ELECTROCHEM SOC, V136, P2123
26561    KIM KH, 1994, J AM CERAM SOC, V77, P915
26562    KIM TH, 1991, J APPL PHYS, V70, P2739
26563    KOHL D, 1989, SENSOR ACTUATOR, V18, P71
26564    MATSUOKA M, 1978, NAT TECH REPORT, V24, P461
26565    NAKATANI Y, 1982, JPN J APPL PHYS, V21, L758
26566    NAKATANI Y, 1983, JPN J APPL PHYS PT 1, V22, P233
26567    NAKATANI Y, 1983, JPN J APPL PHYS PT 1, V22, P912
26568    SARALA G, 1995, SENSOR ACTUAT B-CHEM, V28, P31
26569    SCHIERBAUM KD, 1991, SENSOR ACTUAT B-CHEM, V3, P205
26570    WALCZAK J, 1997, SOLID STATE IONICS 2, V101, P1363
26571    ZHANG TS, 1999, J MATER SCI-MATER EL, V10, P509
26572    ZHANG TS, 2000, J MATER SCI, V35, P1419
26573 NR 24
26574 TC 3
26575 SN 0884-2914
26576 J9 J MATER RES
26577 JI J. Mater. Res.
26578 PD NOV
26579 PY 2000
26580 VL 15
26581 IS 11
26582 BP 2356
26583 EP 2363
26584 PG 8
26585 SC Materials Science, Multidisciplinary
26586 GA 373EL
26587 UT ISI:000165275400016
26588 ER
26589 
26590 PT J
26591 AU Rocha, A
26592    Tong, F
26593    Yan, ZZ
26594 TI A logic filter for tumor detection on mammograms
26595 SO JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
26596 DT Article
26597 DE logic filter; mammogram diagnosis; image processing for mammograms
26598 AB This paper presents a novel approach for detection of suspicious
26599    regions in digitized mammograms. The edges of the suspicious region in
26600    mammogram are enhanced using an improved logic filter. The result of
26601    further image processing gives a gray-level histogram with
26602    distinguished characteristics, which facilitates the segmentation of
26603    the suspicious masses. The experiment results based on 25 digital
26604    sample mammograms, which are definitely diagnosed, are analyzed and
26605    evaluated briefly.
26606 C1 Shanghai Univ, Dept Comp Sci, Shanghai 201800, Peoples R China.
26607    Shanghai Univ, Dept Biomed Engn, Shanghai 201800, Peoples R China.
26608 RP Rocha, A, Shanghai Univ, Dept Comp Sci, Shanghai 201800, Peoples R
26609    China.
26610 CR BASSMANN H, 1995, DIGITAL IMAGE PROCES, P117
26611    BOVIK AC, 1987, IEEE T PATTERN ANAL, V9, P181
26612    HALL EL, 1971, IEEE T COMPUTER, V20
26613    LAI SM, 1989, IEEE T MED IMAGING, V8, P377
26614    LAMARQUE JL, 1981, ATLS BREAST CLIN RAD
26615    ROCHA A, 1999, J SHANGHAI U, V3, P293
26616    TSIRIKOLIAS K, 1991, P INT C DIG SIGN PRO, P285
26617    TSIRIKOLIAS K, 1993, IMAGE PROCESSING THE, P251
26618 NR 8
26619 TC 1
26620 SN 1000-9000
26621 J9 J COMPUT SCI TECHNOL
26622 JI J. Comput. Sci. Technol.
26623 PD NOV
26624 PY 2000
26625 VL 15
26626 IS 6
26627 BP 629
26628 EP 632
26629 PG 4
26630 SC Computer Science, Hardware & Architecture; Computer Science, Software
26631    Engineering
26632 GA 373JC
26633 UT ISI:000165284800015
26634 ER
26635 
26636 PT J
26637 AU Peng, LM
26638    Mao, XM
26639    Wen, HQ
26640 TI Directional solidification properties of the in-situ composite Cu-Cr
26641    alloy
26642 SO RARE METAL MATERIALS AND ENGINEERING
26643 DT Article
26644 DE in-situ composite; primary dendritic spacing; axial length
26645 AB The in-situ. composite cable ingots of the alloy Cu-Cr have been
26646    produced by a directional solidification and continuous casting
26647    process. The directional solidification properties of the alloy Cu-Cr,
26648    such as microstructure, primary dendritic spacing, and axial length of
26649    crystal, are studied. The experimental results show that the planar or
26650    cellular solidification interface is beneficial to forming the in-situ
26651    composite reinforced by fibers. As G(L) = 210 degreesC/cm, and V = 0.6
26652    mm/min, the solidification interface of the alloy Cu-0. 8%Cr is planar.
26653    With the increase of the solidification rate, the primary dendritic
26654    spacing of the alloy Cu-Cr increases at the beginning, and then
26655    decreases while the axial length increases all the time.
26656 C1 Shanghai Univ, Inst Mat Sci & Engn, Shanghai 200072, Peoples R China.
26657    Bao Steel Co, Shanghai 201900, Peoples R China.
26658 RP Peng, LM, Shanghai Univ, Inst Mat Sci & Engn, Shanghai 200072, Peoples
26659    R China.
26660 CR HU HQ, 1991, PRINCIPLE METAL SOLI, P109
26661    PAN Y, 1999, RARE METAL MAT ENG, V28, P85
26662    VERHOEVEN JD, 1990, J MATER ENG, V12, P127
26663    WAN CK, 1993, MAT REV, V2, P23
26664    WEN HQ, 1995, J FUNCTIONAL MAT, V26, P553
26665    WEN HQ, 1998, RARE METALS, V17, P23
26666    WU NP, 1993, ELECT MAT, P24
26667    ZHAO ZD, 1990, HDB COPPER COPPER AL, P3
26668 NR 8
26669 TC 1
26670 SN 1002-185X
26671 J9 RARE METAL MAT ENG
26672 JI Rare Metal Mat. Eng.
26673 PD OCT
26674 PY 2000
26675 VL 29
26676 IS 5
26677 BP 307
26678 EP 310
26679 PG 4
26680 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
26681    Engineering
26682 GA 370QR
26683 UT ISI:000165134200006
26684 ER
26685 
26686 PT J
26687 AU Cheng, JR
26688    Meng, ZY
26689 TI Orientation controlling of PZT thin films derived from sol-gel
26690    techniques
26691 SO JOURNAL OF MATERIALS SCIENCE LETTERS
26692 DT Article
26693 C1 Shanghai Univ, Sch Mat Sci & Technol, Shanghai 201800, Peoples R China.
26694    Shanghai Jiao Tong Univ, Sch Mat Sci, Shanghai 200030, Peoples R China.
26695 RP Meng, ZY, Shanghai Univ, Sch Mat Sci & Technol, Shanghai 201800,
26696    Peoples R China.
26697 CR ADACHI M, 1987, JPN J APPL PHYS PT 1, V26, P550
26698    BROOKS KG, 1994, J MATER RES, V9, P2540
26699    CHEN SY, 1994, J AM CERAM SOC, V77, P2337
26700    CHEN SY, 1997, JPN J APPL PHYS 1, V36, P4451
26701    CHEN SY, 1998, J AM CERAM SOC, V81, P97
26702    CHENG JR, 1999, ADV SCI TECH, V25, P61
26703    CLEE M, 1992, J APPL PHYS, V72, P1566
26704    FOSTER CM, 1995, MATER RES SOC S P, V361, P307
26705    KANG YM, 1997, FERROELECTRICS, V196, P5
26706    KWOK CK, 1993, J MATER RES, V8, P339
26707    LAKEMAN CDE, 1992, CERAMIC T, V25, P413
26708    WILLEMS GJ, 1995, MICROELECTRON ENG, V29, P217
26709    WILLEMS GJ, 1997, INTEGR FERROELECTR, V15, P19
26710    WOOD VE, 1992, J APPL PHYS, V71, P4557
26711 NR 14
26712 TC 6
26713 SN 0261-8028
26714 J9 J MATER SCI LETT
26715 JI J. Mater. Sci. Lett.
26716 PD NOV
26717 PY 2000
26718 VL 19
26719 IS 21
26720 BP 1945
26721 EP 1949
26722 PG 5
26723 SC Materials Science, Multidisciplinary
26724 GA 369WK
26725 UT ISI:000165090600019
26726 ER
26727 
26728 PT J
26729 AU Li, GH
26730    Zhou, SP
26731    Xu, DM
26732    Lai, JW
26733 TI An occasional linear feedback approach to control chaos
26734 SO ACTA PHYSICA SINICA
26735 DT Article
26736 DE occasional linear feedback; chaos; Henon-like mapping; Lyapunov exponent
26737 AB This paper proposes an approach to control chaos based on occasional
26738    linear feedback. This scheme is composed of control and non-control
26739    phases. The different stable periodic orbits are obtained by adjusting
26740    the feedback coefficients and the time duration which the control phase
26741    occupies. We also simulate acousto-optic bistable model and Henon-like
26742    attactor. The results from the numerical simulation show that the
26743    method can switch effectively the system to the desired periodic orbits.
26744 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800, Peoples R China.
26745    Shanghai Univ, Sch Sci, Shanghai 201800, Peoples R China.
26746 RP Li, GH, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800,
26747    Peoples R China.
26748 CR BERNARDO M, 1996, PHYS LETT A, V214, P139
26749    GUEMEZ J, 1993, PHYS LETT A, V181, P29
26750    LIM TK, 1998, PHYS LETT A, V240, P289
26751    LIU ZH, 1997, PHYS LETT A, V232, P55
26752    MATIAS MA, 1994, PHYS REV LETT, V72, P1455
26753    OTT E, 1990, PHYS REV LETT, V64, P1196
26754 NR 6
26755 TC 9
26756 SN 1000-3290
26757 J9 ACTA PHYS SIN-CHINESE ED
26758 JI Acta Phys. Sin.
26759 PD NOV
26760 PY 2000
26761 VL 49
26762 IS 11
26763 BP 2123
26764 EP 2128
26765 PG 6
26766 SC Physics, Multidisciplinary
26767 GA 371XH
26768 UT ISI:000165204200003
26769 ER
26770 
26771 PT J
26772 AU Ju, JH
26773    Xia, YB
26774    Zhang, WL
26775    Wang, LJ
26776    Shi, WM
26777    Huang, ZM
26778    Li, ZF
26779    Zheng, GZ
26780    Tang, DY
26781 TI Effect of nitrogen on the residual stress and adhesion of diamond-like
26782    amorphous carbon nitride films
26783 SO ACTA PHYSICA SINICA
26784 DT Article
26785 DE diamond-like carbon film; microstructure; adhesion properties
26786 ID THIN-FILMS; INDENTATION; ADHERENCE
26787 AB Microstructure and adhesion properties of nitrogen - doped diamond-like
26788    amorphous carbon (DLC) film deposited by r f plasma-enhanced chemical
26789    vapor deposition method is studied by atomic force microscope, Auger
26790    electron spectroscopy (AES) and micro-indentation analysis. Results
26791    show that, with the increase of nitrogen content, particles of tens of
26792    nanometer in size appear in the film. The atomic lateral force
26793    microscope and AES analyses show that these nano particles are
26794    nitrogen-rich amorphous carbon nitride CNx, where x is larger than
26795    0.126. Micro-indentation measurement shows that this DLC/CNx
26796    nano-composite structure reduces the residual stress of the film and
26797    improves the adhesion between DLC film and Si substrate.
26798 C1 Shanghai Univ, Sch Mat & Engn, Shanghai 201800, Peoples R China.
26799    Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China.
26800 RP Ju, JH, Shanghai Univ, Sch Mat & Engn, Shanghai 201800, Peoples R China.
26801 CR ANGUS JC, 1988, J VAC SCI TECHNOL  2, V6, P1778
26802    CHOI W, 1998, J ADHES SCI TECHNOL, V12, P29
26803    FRANCESCHINI DF, 1992, APPL PHYS LETT, V60, P3229
26804    JU JH, IN PRESS J APPL SCI
26805    MARSHALL DB, 1984, J APPL PHYS, V56, P2632
26806    ROSSINGTON C, 1984, J APPL PHYS, V56, P2639
26807    SILVA SRP, 1997, J APPL PHYS, V81, P2626
26808    ZOU JW, 1988, J VAC SCI TECHNOL A, V6, P3103
26809    ZOU JW, 1989, J APPL PHYS, V65, P3914
26810 NR 9
26811 TC 3
26812 SN 1000-3290
26813 J9 ACTA PHYS SIN-CHINESE ED
26814 JI Acta Phys. Sin.
26815 PD NOV
26816 PY 2000
26817 VL 49
26818 IS 11
26819 BP 2310
26820 EP 2314
26821 PG 5
26822 SC Physics, Multidisciplinary
26823 GA 371XH
26824 UT ISI:000165204200038
26825 ER
26826 
26827 PT J
26828 AU Han, JT
26829    Bao, BR
26830    Sun, GX
26831    Yang, Y
26832    Yang, YH
26833    Chen, MQ
26834    Sun, SX
26835 TI Synthesis and structure of dinitrato Di(N-dodecanoylpyrrolidine)
26836    uranyl(II)
26837 SO ACTA CHIMICA SINICA
26838 DT Article
26839 DE N - dodecanoylpyrrolidine; crystal structures; uranyl complex
26840 ID EXTRACTION; URANIUM(VI); TOLUENE
26841 AB The complex UO2(DOPOD)(2)(NO3)(2) has been prepared and characterized
26842    by elemental analysis and IR spectroscopy. The crystal structure of the
26843    complex has been determined by four - circle X - ray diffractometer.
26844    The complex crystal belongs to the orthorhombic system and space group
26845    Pbca, with cell parameters: a=0.9301(5), b=1.7017(2), c=5.1171(11)nm,
26846    V=8.099(5)nm(3), Z = 8, D-c = 1.478g/ cm(3),mu>(*) over bar * (MoK
26847    alpha) = 4.061mm(-1), F(000) = 3632, final R = 0.0655 and R-w = 0.1907
26848    for 3006 observed reflections [I > 2 sigma>(*) over bar * (I)], The
26849    results indicate that uranyl ion is coordinated to six oxygen atoms,
26850    four of them are from two nitrate groups and other two are from
26851    carbonyl groups of organic ligands. The uranium atom in the structure
26852    is hexagonal bipyramid cooperated.
26853 C1 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
26854    Shanghai Univ, Sch Chem & Chem Engn, Shanghai 201800, Peoples R China.
26855    Fudan Univ, Ctr Anal & Measurement, Shanghai 200433, Peoples R China.
26856    Shandong Univ, Dept Chem, Jinan 250100, Peoples R China.
26857 RP Han, JT, Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800,
26858    Peoples R China.
26859 CR HAN JT, 1999, J RADIOANAL NUCL CH, V241, P215
26860    HAN JT, 1999, J RADIOANAL NUCL CH, V241, P679
26861    JIANG D, 1992, ACTA CHIM SINICA, V50, P1091
26862    PANATTONI C, 1969, INORG CHEM, V8, P320
26863    SUN GX, 1998, J RADIOANAL NUCL CH, V232, P245
26864    SUN GX, 1998, RADIOCHIM ACTA, V83, P27
26865    THIOLLET G, 1989, SOLVENT EXTR ION EXC, V7, P813
26866    XU G, 1984, PRINCIPLES EXTRACTIO, P161
26867    ZHOU G, 1989, BASIC STRUCTURAL CHE, P246
26868 NR 9
26869 TC 4
26870 SN 0567-7351
26871 J9 ACTA CHIM SIN
26872 JI Acta Chim. Sin.
26873 PY 2000
26874 VL 58
26875 IS 10
26876 BP 1286
26877 EP 1290
26878 PG 5
26879 SC Chemistry, Multidisciplinary
26880 GA 371YX
26881 UT ISI:000165207800021
26882 ER
26883 
26884 PT J
26885 AU Li, XS
26886    Tanaka, T
26887    Suzuki, Y
26888 TI Preferred orientation and ferroelectric properties of lead zirconate
26889    titanate thin films
26890 SO THIN SOLID FILMS
26891 DT Article
26892 DE PZT thin film; facing target sputtering; ferroelectric properties;
26893    preferred orientation
26894 ID AXIS-ORIENTED PB(ZR; DEPOSITION; GROWTH; RF
26895 AB Highly (111) oriented perovskite PZT thin films have been prepared by
26896    annealing FTS-deposited samples. The effects of the substrate
26897    temperature, sputtering power, annealing temperature and heating rate
26898    for annealing on the crystalline orientation were investigated. The
26899    sample prepared under the optimum condition showed excellent
26900    ferroelectric properties with P-r of 45 muC/cm(2) and P-s of 79
26901    muC/cm(2). (C) 2000 Elsevier Science S.A. All rights reserved.
26902 C1 Technol Res Inst Osaka Prefecture, Super Eye Image Sensor Project, Osaka 5941157, Japan.
26903    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
26904 RP Li, XS, Technol Res Inst Osaka Prefecture, Super Eye Image Sensor
26905    Project, Ayumino 2-7-1, Osaka 5941157, Japan.
26906 CR BAI GR, 1998, APPL PHYS LETT, V72, P1572
26907    CHEN SY, 1994, J AM CERAM SOC, V77, P2337
26908    FUJII S, 1997, JPN J APPL PHYS 1, V36, P6065
26909    FUKAMI T, 1991, JPN J APPL PHYS PT 1, V30, P2155
26910    LEE KB, 1999, APPL PHYS LETT, V74, P1484
26911    MATSUOKA M, 1986, J APPL PHYS, V60, P2096
26912    RANDALL CA, 1998, J AM CERAM SOC, V81, P677
26913    SONG YJ, 1998, APPL PHYS LETT, V72, P2686
26914    TYUNINA M, 1998, J APPL PHYS, V83, P5489
26915    UDAYAKUMAR KR, 1995, J APPL PHYS, V77, P3981
26916    YAMAUCHI S, 1993, JPN J APPL PHYS 1, V32, P4118
26917 NR 11
26918 TC 7
26919 SN 0040-6090
26920 J9 THIN SOLID FILMS
26921 JI Thin Solid Films
26922 PD OCT 31
26923 PY 2000
26924 VL 375
26925 IS 1-2
26926 BP 91
26927 EP 94
26928 PG 4
26929 SC Materials Science, Multidisciplinary; Physics, Applied; Physics,
26930    Condensed Matter
26931 GA 369LU
26932 UT ISI:000165067400022
26933 ER
26934 
26935 PT J
26936 AU Ding, YP
26937    Jin, CY
26938    Meng, ZY
26939 TI The effects and mechanism of chemical additives on the pyrolysis
26940    evolution and microstructure of sol-gel derived Ba1-xSrxTiO3 thin films
26941 SO THIN SOLID FILMS
26942 DT Article
26943 DE BST film; deposition process; crystallization; microstructure
26944 ID BARIUM-TITANATE
26945 AB The dependence of phase evolution on preparation conditions of
26946    precursor sols were investigated by DSC and XRD experiments during the
26947    sol-gel processing for Ba1-xSrxTiO3(BST) thin films. Two kinds of
26948    crystallization paths of perovskite BST were found during the
26949    annealing, which are closely dependent on chelating agent and solution
26950    aging. One path was the decomposition of all oxycarbonate intermediate,
26951    the other was the solid reaction between Ba/Sr carbonates and titanium
26952    oxides. For fresh sol, the addition of acetylacetone (HAcAc) as a
26953    chelating agent reduced the crystallization temperature by similar to
26954    70 degreesC. Moreover, the back scattered scanning electron microscopy
26955    (BS-SEM) revealed that the HAcAc-derived films were homogeneous in
26956    composition in comparison with the heterogeneity of the films prepared
26957    with no chelating agent addition. The Variations mentioned above were
26958    considered originating from different molecule structures of the
26959    precursors. (C) 2000 Elsevier Science S.A. All rights reserved.
26960 C1 Shanghai Univ Sci & Technol, Dept Mat Sci, Shanghai 201800, Peoples R China.
26961    Jiao Tong Univ, Dept Mat Sci, Shanghai 20030, Peoples R China.
26962 RP Meng, ZY, Shanghai Univ Sci & Technol, Dept Mat Sci, Shanghai 201800,
26963    Peoples R China.
26964 CR ALSHAREEF HN, 1997, J ELECTROCERAM, V1, P145
26965    CHANDLER CD, 1993, CHEM REV, V93, P1025
26966    DING Y, 1998, P 9 INT C MOD MAT TE, P615
26967    GRAMMATICO JP, 1997, J MAT SCI LETT ELECT, V3, P82
26968    GUST MC, 1997, J AM CERAM SOC, V80, P2828
26969    HOFFMAN W, 1997, THIN SOLID FILMS, V305, P305
26970    KRUPANIDHI SB, 1997, THIN SOLID FILMS, V305, P144
26971    MOSSET A, 1988, J NONCRYST SOLIDS, V100, P339
26972    SCOTT JF, 1992, P 8 IEEE INT S APPL, P356
26973    SHAIKH AS, 1986, J AM CERAM SOC, V69, P682
26974    TSAY JD, 1998, J MATER SCI, V33, P3721
26975    UEDA T, 1995, INTEGR FERROELECTR, V7, P45
26976 NR 12
26977 TC 10
26978 SN 0040-6090
26979 J9 THIN SOLID FILMS
26980 JI Thin Solid Films
26981 PD OCT 31
26982 PY 2000
26983 VL 375
26984 IS 1-2
26985 BP 196
26986 EP 199
26987 PG 4
26988 SC Materials Science, Multidisciplinary; Physics, Applied; Physics,
26989    Condensed Matter
26990 GA 369LU
26991 UT ISI:000165067400045
26992 ER
26993 
26994 PT J
26995 AU Li, XS
26996    Tanaka, T
26997    Suzuki, Y
26998 TI Characterization of lead zirconate titanate thin films deposited at low
26999    temperature by reactive facing target sputtering
27000 SO THIN SOLID FILMS
27001 DT Article
27002 DE reactive facing target sputtering; lead zirconate titanate thin film;
27003    orientation; ferroelectric property
27004 ID PB(ZR,TI)O-3 FILMS; PB(ZR; RF; GROWTH
27005 AB Lead zirconate titanate thin films have been deposited on platinized
27006    silicon substrate at low temperature by reactive facing target
27007    sputtering. The effects of substrate temperature, total gas pressure,
27008    sputtering ambience, input power and target composition on the phase
27009    composition of PZT thin film were investigated. By controlling the
27010    sputtering conditions, highly (111) oriented perovskite PZT thin films
27011    can be obtained, and the samples show ferroelectric properties. (C)
27012    2000 Elsevier Science S.A. All rights reserved.
27013 C1 Technol Res Inst Osaka Prefecture, Super Eye Image Sensor Project, Osaka 5941157, Japan.
27014    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
27015 RP Li, XS, Technol Res Inst Osaka Prefecture, Super Eye Image Sensor
27016    Project, Ayumino 2-7-1, Osaka 5941157, Japan.
27017 CR CHEN SY, 1994, J AM CERAM SOC, V77, P2332
27018    FUJISAWA A, 1993, JPN J APPL PHYS 1, V32, P4048
27019    HASE T, 1991, JPN J APPL PHYS, V30, P2159
27020    HASE T, 1994, JPN J APPL PHYS 1, V33, P5244
27021    HAYASHI K, 1993, JPN J APPL PHYS 1, V32, P4122
27022    LEE HS, 1998, JPN J APPL PHYS 1, V37, P5630
27023    MATSUOKA M, 1986, J APPL PHYS, V60, P2096
27024    MATSUOKA M, 1988, J APPL PHYS, V63, P2098
27025    NAM HJ, 1998, JPN J APPL PHYS 1, V37, P3462
27026    TOMINAGA K, 1991, JPN J APPL PHYS PT 1, V30, P2574
27027    TRISCONE JM, 1996, J APPL PHYS 1, V79, P4298
27028    YAMAUCHI S, 1993, JPN J APPL PHYS 1, V32, P4118
27029    ZHANG WX, 1995, JPN J APPL PHYS 1, V34, P5120
27030    ZHANG WX, 1996, JPN J APPL PHYS 1, V35, P5084
27031 NR 14
27032 TC 2
27033 SN 0040-6090
27034 J9 THIN SOLID FILMS
27035 JI Thin Solid Films
27036 PD OCT 31
27037 PY 2000
27038 VL 375
27039 IS 1-2
27040 BP 267
27041 EP 270
27042 PG 4
27043 SC Materials Science, Multidisciplinary; Physics, Applied; Physics,
27044    Condensed Matter
27045 GA 369LU
27046 UT ISI:000165067400061
27047 ER
27048 
27049 PT J
27050 AU Wen, Q
27051    You, JL
27052    Huang, SP
27053    Yu, BK
27054    Jiang, GC
27055    Zhou, CD
27056 TI High temperature Raman spectra and micro-structure study of lithium
27057    metaborate and its melt
27058 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
27059 DT Article
27060 DE high temperature Raman spectroscopy; lithium metaborate (LiBO2); melt
27061 AB Lithium metaborate (LiBO2) is studied by high temperature Raman
27062    spectroscopy from room temperature up to 1 673 K,and spectra drawing in
27063    different temperature are got. By analyzing, it focus on the phase
27064    transition,it is that the endless chains of BO3 triangles transform
27065    into rings of (B3O6)(3-) at about 1 123 K,and then the different kind
27066    of phase balance's motion occurs after 1 273 K which implies that both
27067    endless chain and ring have changed to CRN. In the drawing, the
27068    variation of peak's area rate implies the microstructure
27069    information,and shows the process from order to disorder.
27070 C1 Shanghai City Key Lab Ferromet, Shanghai 200072, Peoples R China.
27071    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
27072 RP Wen, Q, Shanghai City Key Lab Ferromet, Shanghai 200072, Peoples R
27073    China.
27074 CR BRONSWIJK JP, 1977, J NONCRYST SOLIDS, V24, P145
27075    CHRYSSIKOS GD, 1990, J NONCRYSTALL SOLIDS, V42, P126
27076    JIANG YJ, 1996, ACTA PHYS SINICA, V45, P885
27077    LIU HS, 1996, SPECTROSC SPECT ANAL, V16, P66
27078    MAREZIO M, 1963, ACTA CRYSTALLOGR, V16, P390
27079    MAREZIO M, 1963, ACTA CRYSTALLOGR, V16, P594
27080    RULMONT A, 1989, SPECTROCHIM ACTA A, V45, P603
27081    SASTRY BSR, 1995, J AM CERAM SOC, V42, P218
27082    YOU JL, 1999, OPTICAL INSTRUMENT, V21, P21
27083    ZACHARIASEN WH, 1964, ACTA CRYSTALLOGR, V17, P749
27084    ZHOU XW, 1997, PROGR LIQUID PHYSI 1, V7, P12
27085 NR 11
27086 TC 2
27087 SN 1000-0593
27088 J9 SPECTROSC SPECTR ANAL
27089 JI Spectrosc. Spectr. Anal.
27090 PD OCT
27091 PY 2000
27092 VL 20
27093 IS 5
27094 BP 694
27095 EP 696
27096 PG 3
27097 SC Spectroscopy
27098 GA 369AR
27099 UT ISI:000090150100036
27100 ER
27101 
27102 PT J
27103 AU Liu, ZY
27104    Lin, L
27105    Shi, CC
27106 TI Nonstationary two-stage multisplitting methods for symmetric positive
27107    definite matrices
27108 SO APPLIED MATHEMATICS LETTERS
27109 DT Article
27110 DE nonstationary two-stage multisplitting; diagonal compensation
27111    reduction; block diagonal conformable
27112 ID LINEAR-SYSTEMS; OVERLAPPING BLOCKS; ITERATIVE METHODS; PARALLEL
27113    SOLUTION; CONVERGENCE; 2-STAGE
27114 AB Nonstationary synchronous two-stage multisplitting methods for the
27115    solution of the symmetric positive definite linear system of equations
27116    are considered. The convergence properties of these methods are
27117    studied. Relaxed variants are also discussed. The main tool for the
27118    construction of the two-stage multisplitting and related theoretical
27119    investigation is the diagonally compensated reduction (cf. [1]). (C)
27120    2000 Elsevier Science Ltd. All rights reserved.
27121 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
27122    Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China.
27123    Fudan Univ, Dept Math, Shanghai 200433, Peoples R China.
27124 RP Liu, ZY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
27125 CR AXELSSON O, 1994, NUMER LINEAR ALGEBR, V1, P155
27126    BERMAN A, 1979, NONNEGATIVE MATRICES
27127    BRU R, 1988, LINEAR ALGEBRA APPL, V103, P175
27128    BRU R, 1990, APPL MATH LETT, V3, P65
27129    BRU R, 1995, ELECTRONIC T NUMERIC, V3, P24
27130    BRU R, 1995, SIAM J MATRIX ANAL A, V16, P1210
27131    CAO ZH, 1998, LINEAR ALGEBRA APPL, V285, P153
27132    CAO ZH, 1998, LINEAR ALGEBRA APPL, V285, P309
27133    CASTEL MJ, 1998, MATH COMPUT, V67, P209
27134    FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141
27135    JONES MT, 1996, NUMER LINEAR ALGEBR, V3, P113
27136    LANZKRON PJ, 1991, NUMER MATH, V58, P685
27137    MIGALLON V, 1997, APPL MATH LETT, V10, P79
27138    NEUMANN M, 1987, LINEAR ALGEBRA APPL, V88, P559
27139    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
27140    ORTEGA JM, 1972, NUMERICAL ANAL 2 COU
27141    SZYLD DB, 1992, SIAM J MATRIX ANAL A, V13, P671
27142    VARGA RS, 1962, MATRIX ITERATIVE ANA
27143 NR 18
27144 TC 5
27145 SN 0893-9659
27146 J9 APPL MATH LETT
27147 JI Appl. Math. Lett.
27148 PD NOV
27149 PY 2000
27150 VL 13
27151 IS 8
27152 BP 49
27153 EP 54
27154 PG 6
27155 SC Mathematics, Applied
27156 GA 369ZM
27157 UT ISI:000165097700009
27158 ER
27159 
27160 PT J
27161 AU Du, B
27162    Yung, EKN
27163    Yang, KZ
27164    Zhong, SS
27165 TI Design of multibeam parabolic torus reflector antennas
27166 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
27167 DT Article
27168 DE parabolic torus reflector antenna; multibeam antenna; offset antenna;
27169    antenna design
27170 AB Design formulas, principles, and procedures for a multibeam parabolic
27171    tones reflector antenna (PTRA) are presented. A six-beam PTRA with 15
27172    degrees geostationary are coverage for satellite communication is
27173    described. Experimental and theoretical radiation patterns are given.
27174    Six identical beams are obtained with low sidelobe and low
27175    cross-polarization lei els. A comparison between the calculated and
27176    measured patterns of the central beam shows good agreement. (C) 2000
27177    John Wiley & Sons, Inc.
27178 C1 City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China.
27179    Commun Telemetry & Telecontrol Res Inst, Shijiazhuang 050081, Hebei, Peoples R China.
27180    Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800, Peoples R China.
27181 RP Du, B, City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong,
27182    Peoples R China.
27183 CR BOSWELL AGP, 1978, MARCONI REV, V41, P237
27184    CHU TS, 1989, IEEE T ANTENN PROPAG, V37, P865
27185    CLARRICOATS PJB, 1984, CORRUGATED HORNS MIC, P141
27186    DU B, 1995, SCI CHINA SER A, V38, P1520
27187    DU B, 1997, CHINESE J ELECTRON, V6, P86
27188    DU B, 1997, P 4 INT S ANT EM THE, P148
27189    HOFERER RA, 1998, IEEE T ANTENN PROPAG, V46, P1449
27190    ZHONG SS, 1998, P IEEE AP S S ATL GA, P848
27191 NR 8
27192 TC 0
27193 SN 0895-2477
27194 J9 MICROWAVE OPT TECHNOL LETT
27195 JI Microw. Opt. Technol. Lett.
27196 PD DEC 5
27197 PY 2000
27198 VL 27
27199 IS 5
27200 BP 343
27201 EP 347
27202 PG 5
27203 SC Engineering, Electrical & Electronic; Optics
27204 GA 367FM
27205 UT ISI:000090051100016
27206 ER
27207 
27208 PT J
27209 AU Li, CF
27210    Wang, Q
27211 TI Negative phase time for particles passing through a potential well
27212 SO PHYSICS LETTERS A
27213 DT Article
27214 DE negative phase time; negative lateral shift; potential well;
27215    quantum-like dependence of phase on potential-well thickness
27216 ID TOTAL-INTERNAL-REFLECTION; TUNNELING TIMES; DELAY
27217 AB It is reported that the phase time of particles passing through a
27218    potential well is negative when the energy of incident particles and
27219    the thickness of potential well satisfy certain conditions. Similar
27220    results are also found in a fully-relativistic optical analog. The
27221    2-dimensional optical case gives rise to a lateral shift of the wave
27222    packet. It is shown that the phase-time associated lateral shift can
27223    also be negative. (C) 2000 Published by Elsevier Science B.V.
27224 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
27225    CCAST, World Lab, Beijing 100080, Peoples R China.
27226 RP Li, CF, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200436,
27227    Peoples R China.
27228 CR BALCOU P, 1997, PHYS REV LETT, V78, P851
27229    BRILLOUIN L, 1960, WAVE PROPAGATION GRO, P121
27230    CARNIGLIA CK, 1971, J OPT SOC AM, V61, P1035
27231    CHIAO RY, 1997, PROG OPTICS, V37, P345
27232    ENDERS A, 1992, J PHYS I, V2, P1693
27233    ENDERS A, 1993, J PHYS I, V3, P1089
27234    GARRETT CGB, 1970, PHYS REV A-GEN PHYS, V1, P305
27235    HARTMAN TE, 1962, J APPL PHYS, V33, P3427
27236    HAUGE EH, 1989, REV MOD PHYS, V61, P917
27237    LEE B, 1997, J OPT SOC AM B, V14, P777
27238    MACCOLL LA, 1932, PHYS REV, V40, P621
27239    MARTIN T, 1992, PHYS REV A, V45, P2611
27240    MERZBACHER E, 1970, QUANTUM MECH, P112
27241    SPIELMANN C, 1994, PHYS REV LETT, V73, P2308
27242    STEINBERG AM, 1993, PHYS REV LETT, V71, P708
27243    STEINBERG AM, 1994, PHYS REV A, V49, P3283
27244    WANG LJ, 2000, NATURE, V406, P277
27245    WIGNER EP, 1955, PHYS REV, V98, P145
27246 NR 18
27247 TC 12
27248 SN 0375-9601
27249 J9 PHYS LETT A
27250 JI Phys. Lett. A
27251 PD OCT 16
27252 PY 2000
27253 VL 275
27254 IS 4
27255 BP 287
27256 EP 291
27257 PG 5
27258 SC Physics, Multidisciplinary
27259 GA 365QL
27260 UT ISI:000089961900009
27261 ER
27262 
27263 PT J
27264 AU Mao, JM
27265    Liu, ZR
27266    Ling, Y
27267 TI Straight-line stabilization
27268 SO PHYSICAL REVIEW E
27269 DT Article
27270 ID CHAOS; SYSTEMS
27271 AB For finite-dimensional maps, an unstable orbit in a neighborhood of an
27272    unstable fixed point can be stabilized by adjusting parameters so that
27273    the orbit goes to the fixed point along the straight line connecting
27274    the orbit (at a given time) and the fixed point [Yang Ling, Liu
27275    Zengrong and Jian-min Mao, Phys. Rev. Lett. 83, 67 (2000)]. This is
27276    called straight-line stabilization. In this paper, we derive the
27277    expression for the region of stabilization, i.e., the region within
27278    which the straight-line stabilization method is valid. For
27279    two-dimensional maps, the parameter adjustments needed by the
27280    stabilization method are explicitly given for nine cases. Stabilization
27281    of unstable flows, with or without introducing a Poincare map, is also
27282    investigated.
27283 C1 Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China.
27284    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
27285 RP Mao, JM, Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong,
27286    Peoples R China.
27287 CR AYNG L, 2000, PHYS REV LETT, V84, P67
27288    GARFINKEL A, 1992, SCIENCE, V257, P1230
27289    HUNT ER, 1991, PHYS REV LETT, V67, P1953
27290    MYNENI K, 1999, PHYS REV LETT, V83, P2175
27291    OSIPOV G, 1998, CHAOS SOLITON FRACT, V9, P307
27292    OSIPOV GV, 1998, PHYS LETT A, V247, P119
27293    OTT E, 1990, PHYS REV LETT, V64, P1196
27294    PETTOV V, 1993, NATURE, V361, P240
27295    ROMEIRAS FJ, 1992, PHYSICA D, V58, P165
27296    ROY R, 1992, PHYS REV LETT, V68, P1259
27297 NR 10
27298 TC 3
27299 SN 1063-651X
27300 J9 PHYS REV E
27301 JI Phys. Rev. E
27302 PD OCT
27303 PY 2000
27304 VL 62
27305 IS 4
27306 PN Part A
27307 BP 4846
27308 EP 4849
27309 PG 4
27310 SC Physics, Fluids & Plasmas; Physics, Mathematical
27311 GA 365XY
27312 UT ISI:000089976800050
27313 ER
27314 
27315 PT J
27316 AU Li, J
27317    Ma, HP
27318    Sun, WW
27319 TI Error analysis for solving the Korteweg-de Vries equation by a Legendre
27320    pseudo-spectral method
27321 SO NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
27322 DT Article
27323 DE Korteweg-de Vries equation; Legendre pseudo-spectral method
27324 ID KORTEWEG-DEVRIES EQUATION; PSEUDOSPECTRAL METHOD; GALERKIN METHOD;
27325    DIRECT SOLVERS; POLYNOMIALS; 3RD-ORDER; 2ND-ORDER
27326 AB A Legendre pseudo-spectral method is proposed for the Korteweg-de Vries
27327    equation with nonperiodic boundary conditions. Appropriate base
27328    functions are chosen to get an efficient algorithm. Error analysis is
27329    given for both semi-discrete and fully discrete schemes. The numerical
27330    results confirm to the theoretical analysis. (C) (2000) John Wiley &
27331    Sons, Inc.
27332 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
27333    Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100080, Peoples R China.
27334    City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China.
27335 RP Ma, HP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
27336 CR BERNARD C, 1997, SPECIAL METHODS HDB, V5, P209
27337    BERNARDI C, 1992, J COMPUT APPL MATH, V43, P53
27338    BRESSAN N, 1990, COMPUT METHODS APPL, V80, P443
27339    CANUTO C, 1988, SPECTRAL METHODS FLU
27340    CAREY GF, 1991, COMPUT METHOD APPL M, V93, P1
27341    CHAN TF, 1985, SIAM J NUMER ANAL, V22, P441
27342    DJIDJELI K, 1995, J COMPUT APPL MATH, V58, P307
27343    GOTTLIEB D, 1977, NUMERICAL ANAL SPECT
27344    GUO BY, 1988, DIFFERENCE MEHTODS P
27345    GUO BY, 1998, SPECTRAL METHODS THE
27346    HUANG WZ, 1992, SIAM J NUMER ANAL, V29, P1626
27347    MA HP, 1986, J COMPUT PHYS, V65, P120
27348    MADAY Y, 1988, MEAN MODEL MATH AN N, V22, P499
27349    MERRYFIELD WJ, 1993, J COMPUT PHYS, V105, P182
27350    MITRINOVIE DS, 1991, INEQUALITIES INVOLVI
27351    PAVONI D, 1988, CALCOLO, V25, P311
27352    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
27353    SHEN J, 1995, SIAM J SCI COMPUT, V16, P74
27354    SZEGO G, 1975, ORTHOGONAL POLYNOMIA
27355 NR 19
27356 TC 4
27357 SN 0749-159X
27358 J9 NUMER METHOD PARTIAL DIFFER E
27359 JI Numer. Meth. Part Differ. Equ.
27360 PD NOV
27361 PY 2000
27362 VL 16
27363 IS 6
27364 BP 513
27365 EP 534
27366 PG 22
27367 SC Mathematics, Applied
27368 GA 364UJ
27369 UT ISI:000089911100002
27370 ER
27371 
27372 PT J
27373 AU Hua, TC
27374    Xu, JJ
27375 TI Quenching boiling in subcooled liquid nitrogen for solidification of
27376    aqueous materials
27377 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
27378    MICROSTRUCTURE AND PROCESSING
27379 DT Article
27380 DE rapid cooling; quenching boiling; subcooled liquid nitrogen;
27381    solidification
27382 ID SPECIMENS
27383 AB Rapid cooling is of great importance in solidification of aqueous
27384    materials, such as in vitrification of biological cells and tissues,
27385    and in quick freezing of food. Quenching of samples into liquid
27386    nitrogen is a typical technique to obtain high cooling rate. This paper
27387    investigates the quenching boiling of small spheres and a circular
27388    plate into saturated and subcooled liquid nitrogen. Effects of the
27389    diameters of spheres, the inclination angles of the plate, and the
27390    subcooling of liquid nitrogen on quenching boiling are investigated
27391    systematically. Boiling characteristics of the small spheres
27392    (representing small samples) and the circular plate (representing large
27393    samples) are very different from each other. The scale effect of small
27394    samples and the inclination effect of large plate on heat transfer
27395    performance are obvious. The subcooling of liquid nitrogen can enhance
27396    the heat fluxes in all cases, especially in the cases of small samples.
27397    (C) 2000 Elsevier Science S.A. All rights reserved.
27398 C1 Shanghai Univ Sci & Technol, Inst Cryogen & Refrigerat, Shanghai 200093, Peoples R China.
27399 RP Hua, TC, Shanghai Univ Sci & Technol, Inst Cryogen & Refrigerat, 516
27400    Jun Gong Rd, Shanghai 200093, Peoples R China.
27401 CR CAO Q, 1998, CRYOGENICS REFRIGERA, P117
27402    COSTELLO MJ, 1978, J MICROSC, V112, P17
27403    ELKASSABGI Y, 1988, ASME, V110, P479
27404    HAN RH, 1995, CRYOLETT, V16, P157
27405    HUA TC, 1998, HEAT TRANSFER 1998, V1, P357
27406    KUTATELADZE SS, 1961, INT J HEAT MASS TRAN, V4, P31
27407    RYAN KP, 1987, J MICROSC-OXFORD, V145, P89
27408    STEPONKUS PL, 1990, NATURE, V345, P170
27409    XU JJ, 1998, CRYOGENICS REFRIGERA, P301
27410    ZUBER N, 1958, T ASME, V83, P351
27411 NR 10
27412 TC 1
27413 SN 0921-5093
27414 J9 MATER SCI ENG A-STRUCT MATER
27415 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
27416 PD NOV 30
27417 PY 2000
27418 VL 292
27419 IS 2
27420 BP 169
27421 EP 172
27422 PG 4
27423 SC Materials Science, Multidisciplinary
27424 GA 364HE
27425 UT ISI:000089886300007
27426 ER
27427 
27428 PT J
27429 AU Xu, SY
27430    Frank, TJ
27431 TI Forecasting the efficiency of test generation algorithms for
27432    combinational circuits
27433 SO JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
27434 DT Article
27435 DE testability; genetic algorithm; forecasting; test generation
27436 AB In this era of VLSI circuits, testability is truly a very crucial
27437    issue. To generate a test set for a given circuit, choice of an
27438    algorithm from a number of existing test generation algorithms to apply
27439    is bound to vary from circuit to circuit. In this paper, the Genetic
27440    Algorithm is used in order to construct an accurate model for some
27441    existing test generation algorithms that are being used everywhere in
27442    the world. Some objective quantitative measures are used as an
27443    effective tool in making such choice. Such measures are so important to
27444    the analysis of algorithms that they become one of the subjects of this
27445    work.
27446 C1 Shanghai Univ, Sch Comp, Shanghai 200072, Peoples R China.
27447 RP Xu, SY, Shanghai Univ, Sch Comp, Shanghai 200072, Peoples R China.
27448 CR *TEX INSTR INC, 1982, BIP DIG INT CIRC D 1
27449    ABRAMOVICI M, 1986, IEEE DES TEST COMPUT, V3, P43
27450    ABRAMOVICI M, 1990, DIGITAL SYSTEMS TEST
27451    BRGLEZ F, 1985, INT TEST S CIRC SYST
27452    CHA CW, 1978, IEEE T COMPUT, V27, P193
27453    FOGEL LJ, 1966, ARTIFICIAL INTELLIGE
27454    FUJIWARA H, 1983, IEEE T COMPUT, V32, P1137
27455    GLOVER F, 1977, DECISION SCI, V8, P156
27456    GOEL P, 1981, IEEE T COMPUT, V30, P215
27457    HOLLAND JH, 1975, ADAPTATION NATURAL A
27458    HU Y, 1997, THESIS SHANGHAI U
27459    JOHNSON BW, 1989, DESIGN ANAL FAULT TO
27460    KIRKLAND T, 1987, P 24 DES AUT C JUN, P502
27461    KOZA JR, 1991, GENETIC PROGRAMMING
27462    MAHFOUD S, 1996, APPL ARTIF INTELL, V10, P543
27463    MICHALEWICZ Z, 1994, GENETIC ALGORITHMS D
27464    MUTH P, 1976, IEEE T COMPUT, V25, P630
27465    ROTH JP, 1966, IBM J RES DEV, V10, P278
27466    ROTH JP, 1967, IEEE T ELECTRON COMP, V16, P567
27467    RUSSELL SJ, 1995, ARTIF INTELL, P619
27468    SCHNEIDER PR, 1967, IBM J RES DEV    JAN, V11, P14
27469    SCHWEFEL HP, 1981, NUMERICAL OPTIMIZATI
27470    WELSTEAD ST, 1994, NEURAL NETWORK FUZZY, P283
27471    XI SY, 1995, P IEEE 4 AS TEST S N, P199
27472    XU SY, 1997, P IEEE 6 AS TEST S N, P126
27473    XU SY, 1999, P IEEE 8 AS TEST S N, P63
27474 NR 26
27475 TC 1
27476 SN 1000-9000
27477 J9 J COMPUT SCI TECHNOL
27478 JI J. Comput. Sci. Technol.
27479 PD JUL
27480 PY 2000
27481 VL 15
27482 IS 4
27483 BP 326
27484 EP 337
27485 PG 12
27486 SC Computer Science, Hardware & Architecture; Computer Science, Software
27487    Engineering
27488 GA 365EZ
27489 UT ISI:000089936800002
27490 ER
27491 
27492 PT J
27493 AU Lin, QS
27494    Feng, XQ
27495    Man, ZY
27496    Shi, ZS
27497    Zhang, QR
27498 TI Formation of the 350 nm intrinsic color center in PbWO4 crystals
27499 SO PHYSICA STATUS SOLIDI A-APPLIED RESEARCH
27500 DT Article
27501 ID SINGLE-CRYSTALS; ORIGIN; DAMAGE; BAND
27502 C1 Chinese Acad Sci, Lab Funct Inorgan Mat, Shanghai 200050, Peoples R China.
27503    Natl Synchrotron Radiat Lab, Hefei 230039, Peoples R China.
27504    Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
27505 RP Feng, XQ, Chinese Acad Sci, Lab Funct Inorgan Mat, Shanghai 200050,
27506    Peoples R China.
27507 CR ANNENKOV A, 1998, PHYS STATUS SOLIDI A, V170, P47
27508    BACCARO S, 1997, J LUMIN, V72, P748
27509    BACCARO S, 1998, P SCINT 98 U STUD SE, P129
27510    BIEDERBICK R, 1975, PHYS STATUS SOLIDI B, V69, P55
27511    HAN BG, 1998, J APPL PHYS, V84, P2831
27512    HAN BG, 1999, J APPL PHYS, V86, P3571
27513    KOBAYASHI M, 1999, NUCL INSTRUM METH A, V434, P412
27514    LIN QS, UNPUB
27515    NESSITEDALDI F, 1998, NUCL INSTRUM METH A, V408, P266
27516    NIKL M, 1996, PHYS STATUS SOLIDI B, V196, K7
27517    NIKL M, 1997, MATER SCI FORUM, V239, P271
27518    VANLOO W, 1975, J SOLID STATE CHEM, V14, P359
27519    WILLIAMS RT, 1999, P SCINT 99 MOSC
27520    ZHANG Y, 1998, PHYS REV B, V57, P12738
27521 NR 14
27522 TC 24
27523 SN 0031-8965
27524 J9 PHYS STATUS SOLIDI A-APPL RES
27525 JI Phys. Status Solidi A-Appl. Res.
27526 PD SEP 16
27527 PY 2000
27528 VL 181
27529 IS 1
27530 BP R1
27531 EP R3
27532 PG 3
27533 SC Physics, Condensed Matter
27534 GA 363GV
27535 UT ISI:000089827900001
27536 ER
27537 
27538 PT J
27539 AU Hassan, AKA
27540    Xu, DM
27541    Maode, N
27542    Zhang, YJ
27543 TI EM-properties measurement of concave-surface coating materials using a
27544    modified open-ended coaxial probe
27545 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
27546 DT Article
27547 DE coating materials testing; open-ended coaxial probe; concave-surface
27548    materials; complex permittivity and permeability; air gap; FDTD
27549 AB In this work, a new aspect of the utilization and development of the
27550    open-ended coaxial probe technique for EM-properties measurement of
27551    coating materials with a concave surface is studied. it is found from
27552    the results of an analysis performed using FDTD modeling that the
27553    reflection coefficient is strongly affected, even for large sample
27554    radii. In order to satisfy concave-surface materials measurement, rte
27555    propose a technique to modify the standard open-ended coaxial probe to
27556    improve measurement accuracy. It is based on adding a ring patch at the
27557    end of the extended length of the inner conductor throughout the air
27558    gap between the probe and the material under test. The proposed
27559    technique is analyzed and verified by experiments. Results of the
27560    measured epsilon* and mu* of the several microwave-absorbing materials
27561    coated on prototype boxes with different radii for shielding are in
27562    relative agreement with the published data. (C) 2000 John Wiley & Sons,
27563    Inc.
27564 C1 Shanghai Univ Sci & Technol, Coll Commun & Informat Engn, Shanghai 201800, Peoples R China.
27565 RP Hassan, AKA, Shanghai Univ Sci & Technol, Coll Commun & Informat Engn,
27566    Shanghai 201800, Peoples R China.
27567 CR BAKERJARVIS J, 1994, IEEE T INSTRUM MEAS, V43, P711
27568    HASSAN AKA, 1999, INT UN RAD SCI C URS
27569    HASSAN AKA, 2000, MICROW OPT TECHN LET, V24, P117
27570    LAUGHE PD, 1993, IEEE T INSTRUM MEAS, V42, P879
27571    LI CL, 1995, IEEE T INSTRUM MEAS, V44, P19
27572    NIU M, 1999, IEEE T INSTRUM MEAS, V47, P476
27573    WANG S, 1998, IEEE T MICROWAVE THE, V45, P2145
27574 NR 7
27575 TC 0
27576 SN 0895-2477
27577 J9 MICROWAVE OPT TECHNOL LETT
27578 JI Microw. Opt. Technol. Lett.
27579 PD NOV 20
27580 PY 2000
27581 VL 27
27582 IS 4
27583 BP 278
27584 EP 281
27585 PG 4
27586 SC Engineering, Electrical & Electronic; Optics
27587 GA 363ZB
27588 UT ISI:000089866600019
27589 ER
27590 
27591 PT J
27592 AU Weng, XC
27593    Wang, W
27594 TI Antioxidant activity of compounds isolated from Salvia plebeia
27595 SO FOOD CHEMISTRY
27596 DT Article
27597 DE Salvia plebeia; natural antioxidant; antioxidant activity; compound
27598 AB Six compounds, hispidulin-glucuronide (1), hispidulin-7-O-D-glucoside
27599    (2), 6-methoxy-luteolin-7-glucoside (3), p-sitosterol (4),
27600    2'-hydroxy-5'-methoxybiochanin A (5) and coniferyl aldehyde (6), were
27601    isolated from Salvia plebeia and identified by UV, IR, Mass, H-1 and
27602    (CNMR)-C-13 spectra. Their antioxidant activities were investigated
27603    individually and compared with butylatedhydroxytoluene (BHT) (8) and
27604    alpha-tocopherol (7) by the oxidative stability instrument (OSI) at 100
27605    degrees C. Compounds 3, 4 and 5 had strong antioxidant activities, but
27606    compounds 1, 2 and 6 had low antioxidant activities at 0.02 and 0.04%
27607    levels. (C) 2000 Elsevier Science Ltd. All rights reserved.
27608 C1 Shanghai Univ, Sch Life Sci, Shanghai 201800, Peoples R China.
27609 RP Weng, XC, Shanghai Univ, Sch Life Sci, 20 Chengzhong Rd, Shanghai
27610    201800, Peoples R China.
27611 CR AUGUSTIN EN, 1989, J NAT PRODUCTS, V52, P320
27612    CHIPAULT JR, 1952, FOOD RES, V17, P45
27613    DUAN S, 1998, FOOD CHEM, V61, P101
27614    GRICE HC, 1986, FOOD CHEM TOXICOL, V24, P1127
27615    GUPTA HC, 1975, J CHEM, V13, P215
27616    JIAN Y, 1987, J PHARM IND, V18, P349
27617    KOSUGE K, 1994, CHEM PHARM BULL, V42, P1669
27618    MARIA CG, 1986, PHYTOCHEMISTRY, V25, P272
27619    PLATTNER RD, 1978, PHYTOCHEMISTRY, V17, P149
27620    RICHARD GP, 1976, PHYTOCHEMISTRY, V15, P1963
27621    SU JD, 1986, AGR BIOL CHEM TOKYO, V50, P199
27622    WENG XC, 1993, J ZHENGZHOU GRAIN CO, P20
27623    WENG XC, 1997, J YANTAI U, V104, P304
27624    WENG XC, 1998, J CHINESE CEREAL OIL, V13, P46
27625    WENG XC, 1998, J CHINESE CEREALS OI, V13, P25
27626    WICHI HP, 1988, FOOD CHEM TOXICOL, V26, P717
27627 NR 16
27628 TC 9
27629 SN 0308-8146
27630 J9 FOOD CHEM
27631 JI Food Chem.
27632 PD DEC
27633 PY 2000
27634 VL 71
27635 IS 4
27636 BP 489
27637 EP 493
27638 PG 5
27639 SC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics
27640 GA 362YT
27641 UT ISI:000089806400011
27642 ER
27643 
27644 PT J
27645 AU He, JH
27646 TI Semi-inverse method and generalized variational principles with
27647    multi-variables in elasticity
27648 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
27649 DT Article
27650 DE variational principle in elasticy; Chien's generalized variational
27651    principles; Hu-Washizu principle; semi-inverse method;
27652    trial-functional; variational crisis
27653 ID MIXED-FLOW TURBOMACHINERY; COMPRESSIBLE S2-FLOW
27654 AB Semi-inverse method, which is an integration and an extension of Hu's
27655    try-and-error method, Chien's veighted residual method and Liu's
27656    systematic method, is proposed to establish generalized variational
27657    principles with multi-variables without arty variational crisis
27658    phenomenon. The method is to construct an energy trial-functional with
27659    an unknown function F, which can be readily identified by making the
27660    trial-functional stationary and using known constraint equations. As a
27661    result generalized variational principles with two kinds of independent
27662    variables (such as well-known Hellinger-Reissner variational principle
27663    and Hu-Washizu principle) and generalized variational principles with
27664    three kinds of independent variables (such as Chien's generalized
27665    variational principles) in elasticity have been deduced without using
27666    Lagrange multiplier method. By semi-inverse method, the author has also
27667    proved that Hu-Washizu principle is actually a variational principle
27668    with only two kinds of independent variables, stress-strain relations
27669    are still its constraints.
27670 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
27671 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
27672    Peoples R China.
27673 CR CHIEN WZ, 1983, APPL MATH MECH, V4, P143
27674    CHIEN WZ, 1984, ADV APPL MECH, V24, P93
27675    CHIEN WZ, 1985, APPL MATH MECH, V6, P25
27676    CHIEN WZ, 1989, SELECTED WORKS WEI Z, P419
27677    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
27678    GU CH, 1990, SOLITON THEORY ITS A
27679    HE JH, 1997, INT J TURBO JET ENG, V14, P23
27680    HE JH, 1997, J ENG THERMOPHYSICS, V18, P440
27681    HE JH, 1998, INT J TURBO JET ENG, V15, P101
27682    HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154
27683    HE JH, 1999, APPL MATH MECH-ENGL, V20, P545
27684    HE JH, 1999, SHANGHAI J MECH, V20, P365
27685    HU HC, 1954, PHYSICS J, V10, P259
27686    HU HC, 1955, SCI SINICA, V4, P33
27687    HU JH, 1992, J U SHANGHAI SCI TEC, V21, P29
27688    HU JH, 1997, SHANGHAI J MECH, V18, P305
27689    LIU GL, 1990, P 1 INT S AER DYN IN, V11, P128
27690    LIU GL, 1995, P 6 AS C FLUID MECH
27691 NR 18
27692 TC 5
27693 SN 0253-4827
27694 J9 APPL MATH MECH-ENGL ED
27695 JI Appl. Math. Mech.-Engl. Ed.
27696 PD JUL
27697 PY 2000
27698 VL 21
27699 IS 7
27700 BP 797
27701 EP 808
27702 PG 12
27703 SC Mathematics, Applied; Mechanics
27704 GA 361NT
27705 UT ISI:000089729700010
27706 ER
27707 
27708 PT J
27709 AU Wang, W
27710    Wong, PL
27711    Zhang, Z
27712 TI Experimental study of the real time change in surface roughness during
27713    running-in for PEHL contacts
27714 SO WEAR
27715 DT Article
27716 DE running-in; surface roughness
27717 ID ASPERITY LEVEL CONFORMITY; PARTIAL-EHL; LUBRICATION
27718 AB An optical system for the implementation of a new real time roughness
27719    measuring technique was incorporated to a two-dish machine. The change
27720    in surface roughness during the running-in stage of partial
27721    elastohydrodynamic lubricated wear tests was measured in a real time
27722    mode. The results were compared with the experimental data, which were
27723    measured, in a conventional manner, at discrete intervals of time by
27724    stopping the wear test. The apparent discrepancies reveal that the wear
27725    is enhanced by the stop/start actions. The effects of different initial
27726    roughness, sliding/rolling ratios and loading on the change in surface
27727    roughness during lubricated running-in tests were also studied with the
27728    current set up. (C) 2000 Published by Elsevier Science S.A.
27729 C1 City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China.
27730    Shanghai Univ, Dept Mech Engn, Shanghai, Peoples R China.
27731 RP Wong, PL, City Univ Hong Kong, Dept Mfg Engn & Engn Management, Tat
27732    Chee Ave, Hong Kong, Hong Kong, Peoples R China.
27733 CR BECKMANN P, 1987, SCATTERING ELECTROMA
27734    BOOSER ER, 1983, HDB LUBRICATION
27735    FOUCHER D, 1977, P 4 LEEDS LYON S TRI, P109
27736    HAMROCK BJ, 1981, BALL BEARING LUBRICA
27737    LUO JB, 1996, WEAR, V194, P107
27738    MITSUI K, 1986, PRECIS ENG, V8, P212
27739    PAWLUS P, 1991, WEAR, V176, P323
27740    PERSSON U, 1993, WEAR, V160, P221
27741    STOUT KJ, 1977, WEAR, V43, P99
27742    THOMAS TR, 1977, P 4 LEEDS LYN S TRIB, P99
27743    TYAGI MR, 1996, WEAR, V197, P89
27744    TYAGI MR, 1996, WEAR, V197, P98
27745    WANG FX, 1991, J TRIBOL-T ASME, V113, P755
27746    WANG W, 1998, TRIBOL INT, V31, P281
27747    WU CG, 1991, WEAR, V147, P323
27748    WU SF, 1991, J TRIBOL-T ASME, V113, P134
27749 NR 16
27750 TC 1
27751 SN 0043-1648
27752 J9 WEAR
27753 JI Wear
27754 PD SEP
27755 PY 2000
27756 VL 244
27757 IS 1-2
27758 BP 140
27759 EP 146
27760 PG 7
27761 SC Engineering, Mechanical; Materials Science, Multidisciplinary
27762 GA 360TH
27763 UT ISI:000089683000016
27764 ER
27765 
27766 PT J
27767 AU Ding, YP
27768    Jin, CY
27769    Meng, ZY
27770 TI Investigation on the amorphous-crystalline transition and
27771    microstructure of sol-gel derived (Ba1-xSrx)TiO3 thin films
27772 SO MATERIALS RESEARCH BULLETIN
27773 DT Article
27774 DE thin films; sol-gel chemistry; phase transitions; microstructure
27775 ID TITANATE
27776 AB (Ba1-xSrx)TiO3 (BST) ferroelectric thin films were fabricated by
27777    sol-gel processing, using Ba(Ac)(2), Sr(Ac)(2), and Ti(OC4H9)(4) as
27778    starting materials. Differential scanning calorimetry (DSC),
27779    backscattering scanning electronic microscopy (BS-SEM), and X-ray
27780    diffraction (XRD) were employed to investigate the effect of chelating
27781    agents on the phase formation characteristics and microstructure of the
27782    BST films. It was found that the chelating agents, acetate acid (HAc)
27783    and acetylacetone (HAcAc), changed the crystallization path from
27784    amorphous to crystalline phase during annealing. BS-SEM revealed that
27785    HAcAc improved the densification and compositional homogeneity in the
27786    microregion of the films. These phenomena were explained by the
27787    modified condensation property of the precursors. (C) 2000 Elsevier
27788    Science Ltd. All rights reserved.
27789 C1 Jiao Tong Univ, Dept Mat Sci, Shanghai 200030, Peoples R China.
27790    Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
27791 RP Meng, ZY, Jiao Tong Univ, Dept Mat Sci, Shanghai 200030, Peoples R
27792    China.
27793 CR ALSHAREEF HN, 1997, J ELECTROCERAM, V1, P145
27794    CHANDLER CD, 1993, CHEM REV, V93, P1025
27795    DING YP, 1999, CHIN J MAT RES, V13, P21
27796    FUJII E, 1992, IEDM, P267
27797    GRAMMATICO JP, 1997, J MAT SCI LETT ELECT, V3, P82
27798    GUST MC, 1997, J AM CERAM SOC, V80, P2828
27799    HOFFMAN W, 1997, THIN SOLID FILMS, V305, P305
27800    KRUPANIDHI SB, 1997, THIN SOLID FILMS, V305, P144
27801    MOSSET A, 1988, J NONCRYST SOLIDS, V100, P339
27802    SCHWARTZ RW, 1997, J MATER RES, V12, P444
27803    SHAIKH AS, 1986, J AM CERAM SOC, V69, P682
27804    UEDA T, 1995, INTEGR FERROELECTR, V7, P45
27805 NR 12
27806 TC 8
27807 SN 0025-5408
27808 J9 MATER RES BULL
27809 JI Mater. Res. Bull.
27810 PD MAY
27811 PY 2000
27812 VL 35
27813 IS 7
27814 BP 1187
27815 EP 1193
27816 PG 7
27817 SC Materials Science, Multidisciplinary
27818 GA 360MA
27819 UT ISI:000089670600021
27820 ER
27821 
27822 PT J
27823 AU Yan, KZ
27824    Tan, WH
27825 TI Bose-Einstein condersation of neutral atoms with attractive interaction
27826    in a harmonic trap
27827 SO ACTA PHYSICA SINICA
27828 DT Article
27829 DE Bose-Einstein condensation; bistability
27830 ID CONDENSATION; GAS
27831 AB In this paper we present the numerical solutions of neutral atoms with
27832    attractive interaction in a harmonic trap. The calculated result shows
27833    the bistability curve of the number of condensate atoms versus the
27834    energy eigenvalues. The maximum number of atoms in and attractive
27835    Bose-Einstein condensate deduced hereby is in agreement with the
27836    experimental on the whole.
27837 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
27838 RP Yan, KZ, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
27839 CR ANDERSON MH, 1995, SCIENCE, V269, P198
27840    BAYM G, 1996, PHYS REV LETT, V76, P6
27841    BRADLEY CC, 1995, PHYS REV LETT, V75, P1687
27842    BRADLEY CC, 1997, PHYS REV LETT, V78, P985
27843    DAVIS KB, 1995, PHYS REV LETT, V75, P3969
27844    DODD RJ, 1996, PHYS REV A, V54, P661
27845    KAGAN Y, 1996, PHYS REV LETT, V76, P2670
27846    NOZIERES P, 1990, THEORY QUANTUM LIQUI, V2
27847    RUPRECHT PA, 1996, PHYS REV A, V54, P4178
27848    SHURYAK EV, 1996, PHYS REV A, V54, P3151
27849    UEDA M, 1998, PHYS REV LETT, V80, P1576
27850    YAN KZ, 1999, ACTA PHYS SIN-CH ED, V48, P1185
27851 NR 12
27852 TC 5
27853 SN 1000-3290
27854 J9 ACTA PHYS SIN-CHINESE ED
27855 JI Acta Phys. Sin.
27856 PD OCT
27857 PY 2000
27858 VL 49
27859 IS 10
27860 BP 1909
27861 EP 1911
27862 PG 3
27863 SC Physics, Multidisciplinary
27864 GA 360NA
27865 UT ISI:000089673000003
27866 ER
27867 
27868 PT J
27869 AU Zheng, LP
27870    Qiu, XJ
27871 TI The influence of the intensity and the frequency on the enhanced
27872    ionization behavior of multiatomic molecular ions in the intense laser
27873    fields
27874 SO ACTA PHYSICA SINICA
27875 DT Article
27876 DE intense laser field; molecular ion; enhanced ionization
27877 ID MULTIPHOTON IONIZATION; ELECTRON; H-2(+); PULSES
27878 AB The enhanced ionization(EI) behavior of multiatomic molecular ions is
27879    studied in intense laser fields by the numerical solution of
27880    time-dependent Schrodinger equation with the symmetrical splitting of
27881    the short-time exponential propagator and fast fourier
27882    transformation(FFT). The influence of the intensity and the frequency
27883    of the laser on EI is given. With the laser frequency increasing, the
27884    criticla value of bond length for EI decreases and the ionization
27885    probability decreases too. The ionization probability increases with
27886    increasing laser intensity. The EI disappeares when the intensity
27887    reaches a certain value.
27888 C1 Shanghai Univ, Sch Sci, Shanghai 201800, Peoples R China.
27889 RP Zheng, LP, Shanghai Univ, Sch Sci, Shanghai 201800, Peoples R China.
27890 CR BAIK MG, 1996, PHYS REV A, V54, P1570
27891    BANDRACK AD, 1994, MOL LASER FIELDS, P156
27892    BANDRAUK AD, 1993, J CHEM PHYS, V99, P1185
27893    EBERLY JH, 1989, PHYS REV LETT, V62, P881
27894    FEIT MD, 1982, J COMPUT PHYS, V47, P412
27895    FRASINSKI LJ, 1992, PHYS REV A, V46, R6789
27896    GIBSON GN, 1997, PHYS REV LETT, V79, P2022
27897    HEATHER RW, 1991, COMPUT PHYS COMMUN, V63, P446
27898    HU SX, 1998, SCI CHINA SER A, V41, P198
27899    JAVANAINEN J, 1988, PHYS REV A, V38, P3430
27900    LEI AL, 1999, CHINESE PHYS LETT, V16, P264
27901    MAINE P, 1988, IEEE J QUANTUM ELECT, V24, P398
27902    SCHMIDT M, 1994, PHYS REV A A, V50, P5037
27903    SEIDEMAN T, 1995, PHYS REV LETT, V75, P2819
27904    ZUO T, 1995, PHYS REV A, V52, R2511
27905 NR 15
27906 TC 0
27907 SN 1000-3290
27908 J9 ACTA PHYS SIN-CHINESE ED
27909 JI Acta Phys. Sin.
27910 PD OCT
27911 PY 2000
27912 VL 49
27913 IS 10
27914 BP 1965
27915 EP 1968
27916 PG 4
27917 SC Physics, Multidisciplinary
27918 GA 360NA
27919 UT ISI:000089673000013
27920 ER
27921 
27922 PT J
27923 AU Jing, C
27924    Jin, XF
27925    Dong, GS
27926    Gong, XY
27927    Yu, LM
27928    Zheng, WM
27929 TI Exchange biasing in molecular-beam-epitaxy-grown Fe/Fe50Mn50 bilayers
27930 SO ACTA PHYSICA SINICA
27931 DT Article
27932 DE MBE; Fe/Fe50Mn50; bilayer; exchange biasing
27933 ID NIFE/COO BILAYERS; DEPENDENCE; ANISOTROPY; LAYER
27934 AB Exchange biasing and coercive field of molecular-beam-epitaxy-grown
27935    Fe/Fe50Mn50 bilayers have been investigated by Surface Magneto-optical
27936    Kerr Effect(SMOKE) and ferromagnetic resonance measurements. The
27937    results indicate that there is no exchange biasing when the thickness
27938    of antiferromagnetic layer is less than 5.5 nm. The exchange biasing
27939    appears when the thickness of antiferromagnetic layer is greater than
27940    5.5 nm,and the maximum value is reached when the thickness is about 7
27941    nm. Exchange biasing and coercive field decrease with further increase
27942    of the thickness of the antiferrmagnetic layer. The ferromagnetic
27943    resonance measurement results show that there exists unidirectional
27944    anisotropy. The above results are discussed in the paper.
27945 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
27946    Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China.
27947    Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China.
27948 RP Jing, C, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
27949 CR AMBROSE T, 1998, J APPL PHYS 2, V83, P6822
27950    AMBROSE T, 1998, J APPL PHYS 2, V83, P7222
27951    DIENY B, 1991, PHYS REV B, V43, P1297
27952    GOKEMEIJER NJ, 1997, PHYS REV LETT, V79, P4270
27953    JUNGBLUT R, 1995, J MAGN MAGN MATER, V148, P300
27954    MAURI D, 1987, J APPL PHYS, V62, P2929
27955    MEIKLEJOHN WH, 1956, PHYS REV, V102, P1413
27956    MEIKLEJOHN WH, 1957, PHYS REV, V105, P904
27957    MEIKLEJOHN WH, 1962, J APPL PHYS, V33, P1328
27958    TSANG C, 1981, J APPL PHYS, V52, P2471
27959    ZHU WR, 1997, VACUUM SCI TECHNOLOG, V17, P243
27960    ZHU XG, 1993, CHINESE J SEMICONDUC, V14, P719
27961 NR 12
27962 TC 0
27963 SN 1000-3290
27964 J9 ACTA PHYS SIN-CHINESE ED
27965 JI Acta Phys. Sin.
27966 PD OCT
27967 PY 2000
27968 VL 49
27969 IS 10
27970 BP 2022
27971 EP 2026
27972 PG 5
27973 SC Physics, Multidisciplinary
27974 GA 360NA
27975 UT ISI:000089673000024
27976 ER
27977 
27978 PT J
27979 AU Cheng, CJ
27980    Fan, XJ
27981 TI A method for calculating the Lyapunov exponent spectrum of a
27982    periodically excited non-autonomous dynamical system.
27983 SO ACTA MECHANICA SOLIDA SINICA
27984 DT Article
27985 DE periodically excited dynamical system; Lyapunov exponent spectrum;
27986    Lyapunov dimension; Duffing equation; van der Pol equation
27987 AB The relation between the Lyapunov exponent spectrum of a periodically
27988    excited non-autonomous dynamical system and the Lyapunov exponent
27989    spectrum of the corresponding autonomous system is given and the
27990    validity of the relation is verified theoretically and computationally.
27991    A direct method for calculating the Lyapunov exponent spectrum of
27992    non-autonomous dynamical systems is suggested in this paper, which
27993    makes it more convenient to calculate the Lyapunov exponent spectrum of
27994    the dynamical system periodically excited. Following the definition of
27995    the Lyapunov dimension D-L((A)) of the autonomous system, the
27996    definition of the Lyapunov dimension D-L of the non-autonomous
27997    dynamical system is also given, and the difference between them is the
27998    integer 1, namely, D-L((A)) - D-L = 1. For a quasi-periodically excited
27999    dynamical system, similar conclusions are formed.
28000 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
28001    Xian Jiao Tong Univ, Sch Civil Engn & Mech, Xian 710049, Peoples R China.
28002 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
28003    Shanghai 200072, Peoples R China.
28004 CR KREUZER E, 1989, NUMERISCHE UNTERSUCH
28005    PARKER TS, 1989, PRACTICAL NUMERICAL
28006    SHIMADA I, 1979, PROG THEOR PHYS, V61, P1605
28007    WOLF A, 1985, PHYSICA D, V16, P285
28008 NR 4
28009 TC 1
28010 SN 0894-9166
28011 J9 ACTA MECH SOLIDA SINICA
28012 JI Acta Mech. Solida Sin.
28013 PD SEP
28014 PY 2000
28015 VL 13
28016 IS 3
28017 BP 254
28018 EP 261
28019 PG 8
28020 SC Materials Science, Multidisciplinary; Mechanics
28021 GA 359EQ
28022 UT ISI:000089598900009
28023 ER
28024 
28025 PT J
28026 AU Xu, KX
28027    Essa, AA
28028    Zhou, SP
28029    Bao, JS
28030 TI Microwave detection using Y-Ba-Cu-O granular film bridge device
28031 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
28032 DT Article
28033 DE granular superconductivity; Josephson effect; microwave detection
28034 ID TRANSPORT; BOLOMETER
28035 AB High-T-c superconducting microwave video detection is investigated
28036    based on the Y-Ba-Cu-O granular film bridge device. By optimizing the
28037    device parameters, a detectivity of about 10(4) V/W is achievable, and
28038    the noise equivalent power at T = 70 K is about 5.2 x 10(-14)
28039    W/Hz(1/2). To identify the response time of the device, the response
28040    voltage is measured with incident radiation chopped at 500 kHz, and a
28041    rise time of less than 3.9 x 10(-8) s is observed. These results
28042    compare favorably with that of high-T-c superconducting bolometers for
28043    millimeter wave bands. On the other hand, the dynamic resistance R-N of
28044    the device is found to increase as the device is illuminated by
28045    incident irradiation. This effect cannot be interpreted in terms of the
28046    Josephson dissipation mechanism, and a discussion about this is
28047    presented. (C) 2000 Elsevier Science B.V. All rights reserved.
28048 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
28049 RP Xu, KX, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
28050 CR BARONE A, 1982, PHYSICS APPL JOSEPHS, CH11
28051    BLUZER N, 1995, J APPL PHYS, V78, P7340
28052    BOONE BG, 1991, J APPL PHYS, V69, P2676
28053    CHERN JD, 1993, IEEE T APPL SUPERCON, V3, P2128
28054    CONSTANTINIAN KY, 1997, I PHYS C SER, V158, P417
28055    CULBERTSON JC, 1991, PHYS REV B, V44, P9609
28056    GRIMES CC, 1968, J APPL PHYS, V39, P3905
28057    KAILA MM, 1997, SUPERCOND SCI TECH, V10, P763
28058    KAILA MM, 1998, J SUPERCOND, V11, P463
28059    KANTER H, 1972, J APPL PHYS, V43, P3714
28060    PHONG LN, 1993, J APPL PHYS, V74, P7414
28061    PIQUE A, 1995, APPL PHYS LETT, V67, P1920
28062    RICHARDS PL, 1989, APPL PHYS LETT, V54, P283
28063    WOLF SA, 1988, 13TH INT C INFR MILL, V1039, P253
28064    XU KX, UNPUB PHYSICA C
28065 NR 15
28066 TC 1
28067 SN 0921-4534
28068 J9 PHYSICA C
28069 JI Physica C
28070 PD SEP 15
28071 PY 2000
28072 VL 339
28073 IS 1
28074 BP 42
28075 EP 48
28076 PG 7
28077 SC Physics, Applied
28078 GA 357ZJ
28079 UT ISI:000089532500006
28080 ER
28081 
28082 PT J
28083 AU Wu, MH
28084    Bao, BR
28085    Chen, J
28086 TI Study on antithrombosis dialytic membrane prepared by preirradiation
28087    grafting
28088 SO JOURNAL OF APPLIED POLYMER SCIENCE
28089 DT Article
28090 DE radiation grafting; antithrombosis; ethylene-vinyl acetate;
28091    beta-hydroxyethyl methacrylate; styrene
28092 ID ACRYLIC-ACID; RADIATION; BIOMATERIALS
28093 AB A new antithrombosis dialytic membrane with a hydrophilic-hydrophobic
28094    microphase structure was prepared by preirradiation grafting of
28095    beta-hydroxyethyl methacrylate (HEMA) and styrene (St) onto
28096    ethylene-vinyl acetate (EVA). The influence of some effects, such as
28097    preirradiation dose, dose rate, grafting reaction temperature, reaction
28098    time, and monomer component, on the degree of grafting was determined,
28099    and the properties of the grafted films were investigated. Compared
28100    with the conventional EVA-grafted hydrophilic monomer, the EVA films
28101    grafted with HEMA and St have superior antithrombogenicity; the
28102    antithrombogenicity and permeability of EVA-g-(HEMA-co-St) were 30 and
28103    20 times higher than those of the ungrafted films, respectively, when
28104    the volume ratio (HEMA versus St) was about 7:3. (C) 2000 John Wiley &
28105    Sons, Inc.
28106 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
28107    Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai, Peoples R China.
28108 RP Wu, MH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
28109    Peoples R China.
28110 CR CHAPIRO A, 1980, RADIAT PHYS CHEM, V15, P423
28111    CHE JT, 1993, RADIAT PHYS CHEM, V42, P85
28112    CHEN J, 1998, NUCL TECH, V21, P498
28113    CRANK J, 1956, MATH DIFFUSION, P291
28114    EUSTACE DJ, 1988, J APPL POLYM SCI, V35, P707
28115    HOFFMAN AS, 1981, RADIAT PHYS CHEM, V18, P323
28116    ISHIGAKI I, 1982, J APPL POLYM SCI, V27, P1033
28117    LINARES HA, 1972, J INVEST DERMATOL, V59, P323
28118    MERRILL EW, 1987, HYDROGELS MED PHARM, P31
28119    MULLERSCHULTE D, 1993, RADIAT PHYS CHEM, V42, P891
28120    RATNER BD, 1981, BIOCOMPATIBILITY CLI, P145
28121    RATNER BD, 1996, HYDROGELS BIOMATERIA, P60
28122    URGUHART J, 1980, OPHTHALMIC DRUG DELI, P105
28123    WU MH, 1995, J RAD RES RAD PROCES, V13, P145
28124    ZHOU RM, 1993, J RAD RES RAD PROCES, V11, P170
28125 NR 15
28126 TC 0
28127 SN 0021-8995
28128 J9 J APPL POLYM SCI
28129 JI J. Appl. Polym. Sci.
28130 PD NOV 14
28131 PY 2000
28132 VL 78
28133 IS 7
28134 BP 1321
28135 EP 1327
28136 PG 7
28137 SC Polymer Science
28138 GA 357ZH
28139 UT ISI:000089532400002
28140 ER
28141 
28142 PT J
28143 AU Ding, WH
28144    Olsen, SE
28145 TI Manganese and silicon distribution between slag and metal in
28146    silicomanganese production
28147 SO ISIJ INTERNATIONAL
28148 DT Article
28149 DE silicon distribution; manganese distribution; silicomanganese;
28150    equilibrium relations; equilibrium diagrams
28151 AB Laboratory measurements have been carried out to investigate the
28152    equilibrium distribution of manganese and silicon between slag and
28153    metal in silicomanganese production. Graphite crucibles have been used
28154    to study equilibrium between Mn-Si-C-sat alloys and
28155    MnQ-SiO2-CaO-Al2O3-MgO slags in CO gas at 1 600 degrees C, 1 650
28156    degrees C and 1 700 degrees C.
28157    The equilibrium content of Si in the metal is mainly controlled by the
28158    temperature, the silica content of the slag and the mass ratio
28159    R=(CaO+MgO)/Al2O3. The silicon content increases with the temperature
28160    and the silica content, and decreases with increasing R-ratio. The
28161    silicon content remains approximately the same when some MgO replaces
28162    CaO in the slag.
28163    The equilibrium content of MnO in silicomanganese slags is primarily
28164    controlled by the temperature and the silica content of the slag.
28165    Addition of Al2O3 to acid slags will result in somewhat lower MnO
28166    contents, and addition to more basic slags has the opposite effect. The
28167    equilibrium content of MnO in the slag is slightly increased when some
28168    CaO is replaced by MgO.
28169 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
28170    Norwegian Univ Sci & Technol, Dept Mat Technol & Electrochem, N-7491 Trondheim, Norway.
28171 RP Ding, WH, Shanghai Univ, Dept Mat Sci & Engn, 149 Yan Shang Rd,
28172    Shanghai 200072, Peoples R China.
28173 CR ABRAHAM KP, 1960, J IRON STEEL I, V196, P82
28174    DING W, 1993, THESIS NORWEGIAN I T
28175    DING WZ, 1996, METALL MATER TRANS B, V27, P5
28176    GZIELO A, 1986, NEUE HUTTE, P100
28177    KOR GJW, 1979, METAL T B, V10, P367
28178    OLSEN SE, 1995, P 7 INT FERR C, P591
28179    OLSEN SE, 1996, STF24 SINTEF
28180    OLSEN SE, 1997, STF24 SINTEF
28181    RANKIN WJ, 1979, T I MIN METALL C, V88, C167
28182    REIN RH, 1963, T METALL SOC AIME, V227, P1193
28183    SWINBOURNE DR, 1995, METALL MATER TRANS B, V26, P59
28184    TANAKA A, 1980, TETSU TO HAGANE, V66, P1474
28185    TUSET JK, 1979, 340420 SINTEF
28186    YOKOKAWA T, 1969, T JPN I MET, V10, P81
28187 NR 14
28188 TC 1
28189 SN 0915-1559
28190 J9 ISIJ INT
28191 JI ISIJ Int.
28192 PY 2000
28193 VL 40
28194 IS 9
28195 BP 850
28196 EP 856
28197 PG 7
28198 SC Metallurgy & Metallurgical Engineering
28199 GA 356TF
28200 UT ISI:000089458400004
28201 ER
28202 
28203 PT J
28204 AU Guo, BY
28205    Xu, CL
28206 TI Hermite pseudospectral method for nonlinear partial differential
28207    equations
28208 SO ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION
28209    MATHEMATIQUE ET ANALYSE NUMERIQUE
28210 DT Article
28211 DE hermite pseudospectral approximation; nonlinear partial differential
28212    equations
28213 AB Hermite polynomial interpolation is investigated. Some approximation
28214    results are obtained. As an example, the Burgers equation on the whole
28215    line is considered. The stability and the convergence of proposed
28216    Hermite pseudospectral scheme are proved strictly. Numerical results
28217    are presented.
28218 C1 Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China.
28219    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
28220 RP Guo, BY, Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R
28221    China.
28222 CR ADAMS RA, 1975, SOBOLEV SPACES
28223    BERNARDI C, 1997, TECHNIQUES SCI COM 2, P209
28224    COULAUD O, 1990, COMPUT METHOD APPL M, V80, P451
28225    COURANT R, 1928, MATH ANN, V100, P32
28226    FUNARO D, 1990, MATH COMPUT, V57, P597
28227    FUNARO D, 1991, ORTHOGONAL POLYNOMIA, P263
28228    GUO BY, 1974, ACTA MATH SINICA, V17, P242
28229    GUO BY, 1994, CONT MATH, V163, P33
28230    GUO BY, 1998, SPECTRAL METHODS THE
28231    GUO BY, 1999, MATH COMPUT, V68, P1067
28232    LEVIN AL, 1992, CONSTR APPROX, V8, P461
28233    LUBINSKY DS, 1994, J APPROX THEORY, V77, P42
28234    MADAY Y, 1985, RECH AEROSPATIALE, V6, P353
28235    RICHITMEYER RD, 1967, FINITE DIFFERENCE ME
28236    STETTER HJ, 1966, NUMERICAL SOLUTIONS, P111
28237    SZEGO G, 1967, ORTHOGONAL POLYNOMIA
28238    TIMAN AF, 1963, THEORY APPROXIMATION
28239 NR 17
28240 TC 6
28241 SN 0764-583X
28242 J9 ESAIM-MATH MODEL NUMER ANAL
28243 JI ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer.
28244 PD JUL-AUG
28245 PY 2000
28246 VL 34
28247 IS 4
28248 BP 859
28249 EP 872
28250 PG 14
28251 SC Mathematics, Applied
28252 GA 357KL
28253 UT ISI:000089499000007
28254 ER
28255 
28256 PT J
28257 AU Cao, WG
28258    Ding, WY
28259    Chen, YL
28260    Qiu, MY
28261 TI An efficient and highly stereoselective synthesis of
28262    beta,gamma-trans-beta-benzoyl-gamma-aryl-gamma-butyrolactones
28263 SO SYNTHETIC COMMUNICATIONS
28264 DT Article
28265 DE benzoylmethyltriphenylarsonium bromide;
28266    2,2-dialkyl-1,3-dioxa-5-substituted-benzylidene-4,6-dione;
28267    beta,gamma-trans-beta-benzoyl-gamma-aryl-gamma-butyrolactone
28268 AB Benzoylmethyltriphenylarsonium bromide 6 in the presence of potassium
28269    carbonate reacted with
28270    2,2-dialkyl-1,3-dioxa-5-substituted-benzylidene-4,6-dione 2 at room
28271    temperature to give
28272    beta,gamma-trans-beta-benzoyl-gamma-aryl-gamma-butyrolactones 7 in good
28273    yield.
28274 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
28275    Acad Sinica, Organomet Chem Lab, Shanghai 200032, Peoples R China.
28276 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
28277 CR CHEN YL, 1998, CHEM J CHINESE U, V19, P1614
28278    DING WY, 1965, B NAT SCI U CHEM CE, P540
28279    HUDLICKY T, 1990, SYNTHETIC COMMUN, V20, P1721
28280    SCHUSTER P, 1964, MH CHEM, V95, P53
28281    SHI DQ, 1998, CHINESE J ORG CHEM, V18, P82
28282 NR 5
28283 TC 4
28284 SN 0039-7911
28285 J9 SYN COMMUN
28286 JI Synth. Commun.
28287 PY 2000
28288 VL 30
28289 IS 20
28290 BP 3793
28291 EP 3799
28292 PG 7
28293 SC Chemistry, Organic
28294 GA 356PA
28295 UT ISI:000089450600019
28296 ER
28297 
28298 PT J
28299 AU Chen, J
28300    Yang, LM
28301    Wu, MH
28302    Xi, Q
28303    He, SM
28304    Li, YW
28305    Nho, YC
28306 TI Preparation of interpenetrating polymer networks by two times grafting
28307    of monomers onto preirradiated polypropylene film
28308 SO RADIATION PHYSICS AND CHEMISTRY
28309 DT Article
28310 DE radiation grafting; electron beam (EB); acrylamide (AAm); acrylic acid
28311    (AAc); polypropylene (PP)
28312 AB An interpenetrating polymer network (IPN) hydrogel was made by the
28313    grafting of acrylamide (AAm) and acrylic acid (AAc) onto preirradiated
28314    polypropylene (PP) film. AAm and AAc were grafted onto preirradiated PP
28315    film by two times grafting reaction. Thermo-sensitive behaviors were
28316    determined. The effect of first and second reactions on the degree of
28317    grafting was studied. Trapped radicals on samples with different
28318    storage conditions and reaction conditions were determined by electron
28319    spin resonance (ESR). (C) 2000 Elsevier Science Ltd. All rights
28320    reserved.
28321 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
28322    Shanghai Second Med Univ, Shanghai Biomat Res & Test Ctr, Shanghai, Peoples R China.
28323    Korea Atom Energy Res Inst, Radiat Applicat Div, Taejon, South Korea.
28324 RP Chen, J, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
28325    Peoples R China.
28326 CR CHAPIRO A, 1962, RAD CHEM POLYM SYSTE, P690
28327    CHEN YG, 1998, MAT SCI ENG B-SOLID, V52, P1
28328    HOFFMAN AS, 1991, MRS BULL, V16, P42
28329    KATANO H, 1991, POLYM J, V23, P1179
28330    NHO YC, 1998, RADIAT PHYS CHEM, V54, P317
28331    PEPPAS NA, 1986, HYDROGELS MED PHARM, P1
28332    PU HT, 1994, J SHANGHAI JIAOTONG, V28, P102
28333    WU MH, 1999, THESIS CHINESE ACAD, P73
28334 NR 8
28335 TC 11
28336 SN 0969-806X
28337 J9 RADIAT PHYS CHEM
28338 JI Radiat. Phys. Chem.
28339 PD SEP
28340 PY 2000
28341 VL 59
28342 IS 3
28343 BP 313
28344 EP 316
28345 PG 4
28346 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
28347    Science & Technology
28348 GA 353UY
28349 UT ISI:000089294900012
28350 ER
28351 
28352 PT J
28353 AU Shi, LY
28354    Li, CZ
28355    Chen, AP
28356    Zhu, YH
28357    Fang, DY
28358 TI Morphology and structure of nanosized TiO2 particles synthesized by
28359    gas-phase reaction
28360 SO MATERIALS CHEMISTRY AND PHYSICS
28361 DT Article
28362 DE rutile; titanium dioxide; nanosized particle; gas-phase reaction
28363 ID TITANIA; DOPANTS; POWDERS
28364 AB Nanosized titania particles are synthesized by the gas-phase oxidation
28365    of titanium tetrachloride in a high temperature tubular aerosol flow
28366    reactor that consists of two preheaters for oxygen and vaporized
28367    titanium tetrachloride, a reaction zone, and a cooling zone for
28368    particles. The effect of process parameters on the morphology and
28369    structure of titania particles is studied. As the preheating
28370    temperature of oxygen increases, the average particle size of titania
28371    decreases and the size distribution becomes more uniform. The addition
28372    of AlCl3 can reduce the particle size, and enhance the rutile weight
28373    fraction. The effect of reaction temperature (T) on the characteristics
28374    of nanosized titania particles is also investigated. The results show
28375    that the particle size increases with increasing temperature, acid a
28376    maximum rutile fraction is attained at 1200 degrees C and AlCl3 and
28377    TiCl4 feed ratio (X-inlet) of 0.09. Pure rutile titania particles is
28378    formed when T=1373 K and X-inlet=0.25. The average grain size of the
28379    particles is 29.0 nm, and the BET specific surface area is 23.4 m(2)
28380    g(-1). (C) 2000 Elsevier Science S.A. All rights reserved.
28381 C1 Shanghai Univ, Dept Chem, Shanghai 200072, Peoples R China.
28382    E China Univ Sci & Technol, Shanghai 200237, Peoples R China.
28383 RP Shi, LY, Shanghai Univ, Dept Chem, Shanghai 200072, Peoples R China.
28384 CR AKHTAR MK, 1991, AICHE J, V37, P1561
28385    AKHTAR MK, 1992, J AM CERAM SOC, V75, P3408
28386    KOBATA A, 1991, AICHE J, V37, P347
28387    MACHENZIE K, 1975, BRIT CERAM TRANS J, V74, P29
28388    MOROOKA S, 1989, INT CHEM ENG, V29, P119
28389    PIERRE AC, 1991, AM CERAM SOC BULL, V70, P1281
28390    SETO T, 1995, AEROSOL SCI TECH, V23, P183
28391    SHANNON RD, 1965, J AM CERAM SOC, V48, P391
28392    SHI LY, 1998, FUNCT MAT, V29, P136
28393    SHI LY, 1998, MAT REV, V12, P23
28394    SHI LY, 1999, J INORG MATER, V14, P717
28395    SPURR RA, 1957, ANAL CHEM, V29, P760
28396    SUYAMA Y, 1985, J AM CERAM SOC, V68, C154
28397    VEMURY S, 1995, J AM CERAM SOC, V78, P2984
28398    XIONG Y, 1991, J AEROSOL SCI, V22, P637
28399    YU JG, 1991, CHEM B, V10, P25
28400    ZHOU M, 1996, COAT IND, V4, P36
28401 NR 17
28402 TC 6
28403 SN 0254-0584
28404 J9 MATER CHEM PHYS
28405 JI Mater. Chem. Phys.
28406 PD SEP 15
28407 PY 2000
28408 VL 66
28409 IS 1
28410 BP 51
28411 EP 57
28412 PG 7
28413 SC Materials Science, Multidisciplinary
28414 GA 354ZG
28415 UT ISI:000089360700008
28416 ER
28417 
28418 PT J
28419 AU Forchielli, ML
28420    Gura, K
28421    Anessi-Pessina, E
28422    Richardson, D
28423    Cai, W
28424    Lo, CW
28425 TI Success rates and cost-effectiveness of antibiotic combinations for
28426    initial treatment of central-venous-line infections during total
28427    parenteral nutrition
28428 SO JOURNAL OF PARENTERAL AND ENTERAL NUTRITION
28429 DT Article
28430 ID INTENSIVE-CARE UNIT; CATHETER INFECTIONS; SEPSIS; MANAGEMENT; RISK;
28431    SEPTICEMIA; BACTEREMIA; CHILDREN; CANCER; FEVER
28432 AB Background: Central-venous-line infections can be successfully treated
28433    with appropriate antibiotics, thus avoiding the need for catheter
28434    removal. Based on our experience, vancomycin, gentamicin, piperacillin,
28435    ceftazidime, and amphotericin, alone or in combination, are usually
28436    administered, pending sensitivity results. This empirical list,
28437    however, has never been verified against actual sensitivity results nor
28438    has it been tested for cost or efficacy. Methods: Medical records of
28439    inpatients on hyperalimentation over 1 year were reviewed. Success
28440    rate, therapy duration, and drug acquisition cost and charge were
28441    assessed for central-venous-line infections. Antibiotics then were
28442    paired and evaluated in terms of charge and efficacy against all
28443    microorganisms as determined by sensitivity results. Results: In 500
28444    inpatients receiving hyperalimentation for 9698 patient-days, 8.4
28445    central-venous-line infections/1000 patient-days occurred.
28446    Staphylococcus non-aureus, Candida species, Enterococcus faecium, and
28447    Staphylococcus aureus predominantly were isolated. Of the infections,
28448    51 (67%) were sensitive to one or more of the initial antibiotics. A
28449    2-week course of antibiotics successfully treated 50 (66%) catheter
28450    infections without line removal. Appropriate initial therapy on average
28451    reduced treatment duration by 8 to 10 days and drug charges by $400 to
28452    $700. Conclusions: Amikacin-vancomycin appears to be the most
28453    cost-effective selection for presumed central-venous-line infections,
28454    pending sensitivity results, followed by valid alternatives. Lower
28455    failure rates are well worth the extra cost in pharmaceutical charges.
28456 C1 Univ Bologna, Dept Pediat, I-41038 Bologna, Italy.
28457    Childrens Hosp, Combined Program Gastroenterol & Nutr, Boston, MA 02115 USA.
28458    Childrens Hosp, Dept Pharm, Boston, MA 02115 USA.
28459    Catholic Univ, Dept Business Adm, Milan, Italy.
28460    Shanghai Univ, Xin Hua Hosp, Dept Pediat Surg, Shanghai 200041, Peoples R China.
28461 RP Forchielli, ML, Univ Bologna, Dept Pediat, 11 V Massarenti, I-41038
28462    Bologna, Italy.
28463 CR 1995, FED REG, V60, P49978
28464    *HOSP INF CONTR PR, 1995, INFECT CONT HOSP EP, V16, P105
28465    ABRAHM JL, 1982, JAMA-J AM MED ASSOC, V248, P2868
28466    BALAGTAS RC, 1971, PEDIATRICS, V48, P359
28467    BATTISTI O, 1981, ARCH DIS CHILD, V56, P775
28468    BENOIT JL, 1995, CLIN INFECT DIS, V21, P1286
28469    COLLIGNON PJ, 1984, MED J AUSTRALIA, V141, P345
28470    DECKER MD, 1988, PEDIATR CLIN N AM, V35, P579
28471    FLEER A, 1983, PEDIATR INFECT DIS J, V2, P426
28472    KING DR, 1985, J PEDIATR SURG, V20, P728
28473    KRAUSS AN, 1972, NY STATE J MED, V72, P1136
28474    LEIBOVICI L, 1992, J INTERN MED, V231, P371
28475    MCKINNON PS, 1997, CLIN INFECT DIS, V24, P57
28476    MULLOY RH, 1991, JPEN-PARENTER ENTER, V15, P460
28477    NELSON DB, 1986, DRESSING CHANGES SPE, V19, P220
28478    PALADINO JA, 1994, PHARMACOECONOMICS, V5, P505
28479    PARTSCH DJ, 1997, ANN PHARMACOTHER, V31, P1137
28480    PESSION A, 1997, CHEMOTHERAPY, V43, P358
28481    PINILLA JC, 1983, CRIT CARE MED, V11, P21
28482    PRESS OW, 1984, MEDICINE, V63, P189
28483    PRINCE A, 1986, PEDIATR INFECT DIS J, V5, P20
28484    REINHARDT GF, 1978, AM J SURG, V49, P401
28485    RICARD P, 1985, CRIT CARE MED, V13, P541
28486    RIIKONEN P, 1993, SCAND J INFECT DIS, V25, P357
28487    RYAN JA, 1974, NEW ENGL J MED, V290, P757
28488    SALZMAN MB, 1995, ADV PEDIAT INFECT DI, V10, P337
28489    SHAPIRO ED, 1982, AM J DIS CHILD, V136, P679
28490    VISCOLI C, 1988, RECENT RESULTS CANC, V108, P71
28491    WEBER TR, 1983, AM J SURG, V145, P202
28492 NR 29
28493 TC 4
28494 SN 0148-6071
28495 J9 J PARENT ENTER NUTR
28496 JI J. Parenter. Enter. Nutr.
28497 PD MAR-APR
28498 PY 2000
28499 VL 24
28500 IS 2
28501 BP 119
28502 EP 125
28503 PG 7
28504 SC Nutrition & Dietetics
28505 GA 355MG
28506 UT ISI:000089389000013
28507 ER
28508 
28509 PT J
28510 AU Guo, SQ
28511    Jiang, GC
28512    Xu, JL
28513    Xu, KD
28514 TI Kinetics of reduction of MnO in molten slag with carbon undersaturated
28515    liquid iron
28516 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
28517 DT Article
28518 DE MnO; kinetics; smelting reduction
28519 ID REGULAR SOLUTION MODEL
28520 AB The reduction of MnO in molten slag with carbon undersaturated iron was
28521    studied. It was found that the process is affected by the carbon
28522    content of molten metal and the temperature. The higher the carbon
28523    content and the temperature, the faster both the reduction and the
28524    emerging of the hump on curve of omega(FeO), the larger the difference
28525    between omega(FeO, max) and omega(FeO, e). The phenomena were explained
28526    with three-step reaction model.
28527 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
28528 RP Guo, SQ, Shanghai Univ, Shanghai 200072, Peoples R China.
28529 CR BANYA S, 1985, TETSU TO HAGANE, V71, P853
28530    BANYA S, 1986, TETSU TO HAGANE, V72, S223
28531    BANYA S, 1987, TETSU TO HAGANE, V73, P476
28532    BANYA S, 1993, ISIJ INT, V33, P2
28533    MARTIN E, 1974, T B I MIN METALL, V83, C193
28534    SHINOZAKI N, 1982, TETSU TO HAGANE, V68, P72
28535    SOMMERVILLE ID, 1982, CAN METALL Q, V21, P145
28536    XU KD, 1990, P 6 NAT C STEELM C B
28537    XU KD, 1993, ISIJ INT, V33, P104
28538 NR 9
28539 TC 4
28540 SN 1006-706X
28541 J9 J IRON STEEL RES INT
28542 JI J. Iron Steel Res. Int.
28543 PD MAY
28544 PY 2000
28545 VL 7
28546 IS 1
28547 BP 1
28548 EP 5
28549 PG 5
28550 SC Metallurgy & Metallurgical Engineering
28551 GA 356DW
28552 UT ISI:000089429900001
28553 ER
28554 
28555 PT J
28556 AU Zhang, XB
28557    Jiang, GC
28558    Xu, KD
28559 TI Evaluation of component activity in molten MnO-SiO2-Al2O3-CaO system
28560    with model SELF-SReM4
28561 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
28562 DT Article
28563 DE sub-regular solution model; component activity; molten slag;
28564    MnO-SiO2-Al2O3-CaO
28565 AB A sub-regular solution model SELF-SReM4 used to evaluate activity of
28566    the components in a homogeneous region of a quaternary system has been
28567    developed in Shanghai Enhanced Laboratory of Ferrometallurgy. The
28568    application of SELF-SReM4 in C-Mn-Fe-Si system without the SIC
28569    formation has been introduced in previous paper. It's application for
28570    molten slag of MnO-SiO2-Al2O3-CaO was introduced in this paper. They
28571    provide a basis for the prediction of the metal-slag equilibrium
28572    conditions.
28573 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
28574 RP Zhang, XB, Shanghai Univ, Shanghai 200072, Peoples R China.
28575 CR ABRAHAM KP, 1960, ISIJ
28576    MEHTA SR, 1965, J IRON STEEL I, V203, P524
28577    REIN RH, 1965, T AIME, P415
28578    RISBUD SH, 1977, J AM CERAM SOC, V60, P418
28579    SHARMA RA, 1961, J IRON ST I, V198, P386
28580    SHARMA RA, 1965, T AIME, P1586
28581    TANG K, 1995, RARE METALS, V14, P137
28582    WARREN GF, 1975, INT C FERR ALL 1974, P175
28583    YA SB, 1991, CHEM PROPERTIES MELT
28584    ZHANG XB, 1998, J IRON STEEL RES INT, V5, P28
28585 NR 10
28586 TC 1
28587 SN 1006-706X
28588 J9 J IRON STEEL RES INT
28589 JI J. Iron Steel Res. Int.
28590 PD MAY
28591 PY 2000
28592 VL 7
28593 IS 1
28594 BP 6
28595 EP 8
28596 PG 3
28597 SC Metallurgy & Metallurgical Engineering
28598 GA 356DW
28599 UT ISI:000089429900002
28600 ER
28601 
28602 PT J
28603 AU Lu, XG
28604    Li, FS
28605    Li, LF
28606    Chou, KC
28607 TI Study on electronic conductivity of CaO-SiO2-Al2O3-FeOx slag system
28608 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
28609 DT Article
28610 DE smelt slag; electron hole; electronic conductivity
28611 AB A study on electronic conductivity of CaO-SiO2-Al2O3-FeOx slag system
28612    with Wagner polarization technique was carried out. The experimental
28613    data show that electronic conductivity is consisted of free electron
28614    conductivity and electron hole conductivity and both are related to the
28615    content of Fe3+ and Fe2+. Free electron conductivity is decreasing and
28616    electron hole conductivity is increasing while Fe3+ changes to Fe2+.
28617    There is a maximum electronic conductivity at some ratio of ferric ions
28618    Fe3+ to total ion content. Under the experimental conditions, the
28619    electronic conductivity is in the range of 10(-4)-10(-2) S/cm.
28620 C1 Univ Sci & Technol Beijing, Beijing 100083, Peoples R China.
28621    Shanghai Univ, Shanghai 200072, Peoples R China.
28622 RP Lu, XG, Univ Sci & Technol Beijing, Beijing 100083, Peoples R China.
28623 CR BOCKRIS JOM, 1952, T FARADAY SOC, V48, P75
28624    DANCY EA, 1966, T TMS AIME, V236, P1642
28625    DICKSON WR, 1962, T METALL SOC AIME, V224, P505
28626    DUKELOW DA, 1960, T AIME, V218, P136
28627    ENGELL HJ, 1968, BER BUNSEN PHYS CHEM, V72, P5
28628    FARUP F, 1924, CHEM IND, V12, P11
28629    FONTANA A, 1984, TMS AIME PAPER SELEC, P53
28630    GOEL RP, 1980, MET T              B, V11, P107
28631    GOTO KS, 1977, T ISIJ, V20, P212
28632    GOTO KS, 1984, P INT S MET SLAG NEW, P839
28633    HAARBERG GM, 1988, BER BUNSEN PHYS CHEM, V92, P139
28634    HAARBERG GM, 1990, J ELECTROCHEM SOC, V137, P2777
28635    HAARBERG GM, 1993, METALL TRANS B, V24, P729
28636    INOUYE H, 1953, T FARADAY SOC, V49, P796
28637    KATO M, 1969, T IRON STEEL I JPN, V9, P39
28638    KRISHNA GGM, 1993, IRONMAK STEELMAK, V20, P198
28639    KROGER FA, 1974, CHEM IMPERFECT CRYST, V3, P149
28640    MARTIN AE, 1942, T AIME, V154, P104
28641    PAL U, 1985, J AM CERAM SOC, V68, P104
28642    PAL U, 1985, METALL TRANS B, V16, P77
28643    PASTUKHOV EA, 1966, ELEKTROCHEM, V2, P209
28644    SANERWALD F, 1925, ZISCH ELEKTROCHEM, V31, P643
28645    SIMNAD MT, 1953, J CHEM PHYS, V21, P933
28646    SIMNAD MT, 1954, T AIME, V200, P1386
28647    SPEELMAN JL, 1989, METALL T B, V20, P31
28648    WAGNER C, 1957, P 7 M INT COMM EL TH, P361
28649    WEJNARTH A, 1934, ELECTROCHEM SOC, V66, P329
28650    WEJNARTH A, 1934, T AM, V63, P177
28651 NR 28
28652 TC 1
28653 SN 1006-706X
28654 J9 J IRON STEEL RES INT
28655 JI J. Iron Steel Res. Int.
28656 PD MAY
28657 PY 2000
28658 VL 7
28659 IS 1
28660 BP 9
28661 EP 13
28662 PG 5
28663 SC Metallurgy & Metallurgical Engineering
28664 GA 356DW
28665 UT ISI:000089429900003
28666 ER
28667 
28668 PT J
28669 AU Yan, KZ
28670    Tan, WH
28671 TI A model for macroscopic quantum tunneling of Bose-Einstein condensate
28672    with attractive interaction
28673 SO CHINESE PHYSICS LETTERS
28674 DT Article
28675 ID NONLINEAR SCHRODINGER-EQUATION; NEUTRAL ATOMS; GAS; EXCITATIONS; TRAP
28676 AB Based on the numerical wave function solutions of neutral atoms with
28677    attractive interaction in a harmonic trap, we propose an exactly
28678    solvable model for macroscopic quantum tunneling of a Bose condensate
28679    with attractive interaction. me calculate the rate of macroscopic
28680    quantum tunneling from a metastable condensate state to the collapse
28681    state and analyze the stability of the attractive Bose-Einstein
28682    condensation.
28683 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
28684 RP Yan, KZ, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
28685 CR ANDERSON MH, 1995, SCIENCE, V269, P198
28686    BRADLEY CC, 1995, PHYS REV LETT, V75, P1687
28687    BRADLEY CC, 1997, PHYS REV LETT, V78, P985
28688    DAVIS KB, 1995, PHYS REV LETT, V75, P3969
28689    DUAN YW, 1999, CHINESE PHYS LETT, V15, P568
28690    HONG T, 1998, CHINESE PHYS LETT, V15, P550
28691    HUANG H, 1999, CHINESE PHYS LETT, V16, P9
28692    KAGAN Y, 1996, PHYS REV LETT, V76, P2670
28693    KAGAN Y, 1998, PHYS REV LETT, V81, P933
28694    KUANG LM, 1998, CHINESE PHYS LETT, V15, P703
28695    RUPRECHT PA, 1995, PHYS REV A, V51, P4704
28696    RUPRECHT PA, 1996, PHYS REV A, V54, P4178
28697    SHURYAK EV, 1996, PHYS REV A, V54, P3151
28698    STOOF HTC, 1997, J STAT PHYS, V87, P1353
28699    UEDA M, 1998, PHYS REV LETT, V80, P1576
28700    YAN KZ, 1999, ACTA PHYS SIN-CH ED, V48, P1185
28701 NR 16
28702 TC 3
28703 SN 0256-307X
28704 J9 CHIN PHYS LETT
28705 JI Chin. Phys. Lett.
28706 PY 2000
28707 VL 17
28708 IS 9
28709 BP 631
28710 EP 633
28711 PG 3
28712 SC Physics, Multidisciplinary
28713 GA 356JT
28714 UT ISI:000089440700003
28715 ER
28716 
28717 PT J
28718 AU Wang, W
28719    Wong, PL
28720 TI Wear volume determination during running-in for PEHL contacts
28721 SO TRIBOLOGY INTERNATIONAL
28722 DT Article
28723 DE running-in; zero-wear; surface roughness
28724 ID SURFACE
28725 AB The relation of wear volume and the change of average surface roughness
28726    under the "zero-wear" condition was derived, with the assumption that
28727    the original profiles of the surface below the wear plane remain
28728    exactly the same as before, i.e. no plastic deformation. The flattening
28729    of asperities on an engineering rough surface was simulated with
28730    numerical techniques. The variation in wear volume and average surface
28731    roughness with the depth of wear was studied. The pattern and the
28732    correlation length of rough surface were checked and found to have no
28733    effect on the relation of wear volume and change of average roughness.
28734    The simulated results show that the variation of wear volume and the
28735    change of average roughness can be described by a second order
28736    polynomial. The model was also validated with experimental results
28737    obtained by using a two-disc wear machine. (C) 2000 Elsevier Science
28738    Ltd. All rights reserved.
28739 C1 City Univ Hong Kong, Dept Mfg Engn & Engn Management, Kowloon, Hong Kong, Peoples R China.
28740    Shanghai Univ, Dept Mech Engn, Shanghai, Peoples R China.
28741 RP Wong, PL, City Univ Hong Kong, Dept Mfg Engn & Engn Management, Tat
28742    Chee Ave, Kowloon, Hong Kong, Peoples R China.
28743 CR LI N, 1990, THESIS TSINGHUA U
28744    PATIR N, 1978, WEAR, V47, P263
28745    PAWLUS P, 1994, WEAR, V176, P247
28746    REDFERN D, 1998, MATLAB 5 HDB
28747    STOUT KJ, 1977, WEAR, V43, P99
28748    THOMAS TR, 1972, WEAR, V22, P83
28749    WANG W, 1998, 24 LEEDS LYON S TRIB, P275
28750    WANG W, 1998, TRIBOL INT, V31, P281
28751    ZHANG B, 1989, WEAR, V129, P37
28752 NR 9
28753 TC 1
28754 SN 0301-679X
28755 J9 TRIBOL INT
28756 JI Tribol. Int.
28757 PD JUL
28758 PY 2000
28759 VL 33
28760 IS 7
28761 BP 501
28762 EP 506
28763 PG 6
28764 SC Engineering, Mechanical
28765 GA 352VC
28766 UT ISI:000089237700008
28767 ER
28768 
28769 PT J
28770 AU Liu, XM
28771    Lu, ZM
28772    Liu, YL
28773 TI Krylov subspace projection method and its application on oil reservoir
28774    simulation
28775 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
28776 DT Article
28777 DE Krylov subspace methods; block PE method; numerical oil reservoir
28778    simulation
28779 ID NONSYMMETRIC LINEAR-SYSTEMS; CONJUGATE-GRADIENT; ITERATIVE METHODS;
28780    BI-CGSTAB; ALGORITHM; GMRES; EQUATIONS; VARIANT; QMR
28781 AB Krylov subspace projection methods are known to be highly efficient for
28782    solving large linear systems. Many different versions arise from
28783    different choices to the left and right subspaces. These methods were
28784    classified into two groups in terms of the different forms of matrix
28785    H-m, the main properties in applications and the new versions of these
28786    two types of methods were briefly reviewed, then one of the most
28787    efficient versions, GMRES method was applied to oil reservoir
28788    simulation. The block Pseudo-Elimination method was used to generate
28789    the preconditioned matrix. Numerical results show much better
28790    performance of this preconditioned techniques and the GMRES method than
28791    that of preconditioned ORTHMIN method, which is now in use in oil
28792    reservoir simulation. Finally, some limitations of Krylov subspace
28793    methods and some potential improvements to this type of methods are
28794    further presented.
28795 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
28796 RP Liu, XM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
28797    200072, Peoples R China.
28798 CR BROWN PN, 1991, SIAM J SCI STAT COMP, V12, P58
28799    CHAN TF, 1994, SIAM J SCI COMPUT, V15, P338
28800    CHEN YM, 1989, FUNDAMENTALS NUMERIC
28801    DESA C, 1992, SIAM J SCI STAT COMP, V13, P30
28802    ERN A, 1994, SIAM J SCI COMPUT, V15, P681
28803    FREUND RW, 1991, NUMER MATH, V60, P315
28804    FREUND RW, 1992, NUMER MATHS, V14, P470
28805    FROMMER A, 1998, SIAM J SCI COMPUT, V19, P15
28806    HU JG, 1991, ITERATIVE METHODS SO
28807    KASENALLY EM, 1995, SIAM J SCI COMPUT, V16, P698
28808    LU ZM, 1993, THESIS FUDAN U SHANG
28809    PAIGE CC, 1975, SIAM J NUMER ANAL, V12, P617
28810    PARLETT BN, 1985, MATH COMPUT, V44, P105
28811    RESSEL KJ, 1998, SIAM J SCI COMPUT, V19, P55
28812    SAAD Y, 1981, MATH COMPUT, V37, P105
28813    SAAD Y, 1985, MATH COMPUT, V44, P417
28814    SAAD Y, 1986, SIAM J SCI COMPUT, V7, P859
28815    SAAD Y, 1993, SIAM J SCI COMPUT, V14, P461
28816    SAUNDERS MA, 1988, SIAM J NUMER ANAL, V25, P927
28817    SONNEVELD P, 1989, SIAM J SCI STAT COMP, V10, P36
28818    TAN LH, 1991, COMPUT STRUCT, V40, P441
28819    VANDERVORST HA, 1992, SIAM J SCI STAT COMP, V13, P631
28820    ZHOU L, 1994, SIAM J SCI COMPUT, V15, P297
28821 NR 23
28822 TC 0
28823 SN 0253-4827
28824 J9 APPL MATH MECH-ENGL ED
28825 JI Appl. Math. Mech.-Engl. Ed.
28826 PD JUN
28827 PY 2000
28828 VL 21
28829 IS 6
28830 BP 607
28831 EP 616
28832 PG 10
28833 SC Mathematics, Applied; Mechanics
28834 GA 353GM
28835 UT ISI:000089266500001
28836 ER
28837 
28838 PT J
28839 AU Li, Q
28840    Zhou, BX
28841 TI TEM sample preparation of melt-spun Nd-Fe-B powders
28842 SO RARE METAL MATERIALS AND ENGINEERING
28843 DT Article
28844 DE Ni-Fe-B permanent magnet; transmission electron microscopy;
28845    microstructure
28846 AB A method of TEM sample preparation for melt-spun Nd-Fe-B powders is
28847    presented. The TEM samples were prepared by mixing the Nd-Fe-B powders
28848    (30% in volume) with pure aluminium powders, followed by blending,
28849    compacting into pellets, rolling into flakes, punching, grinding and
28850    ion-sputter thinning.
28851 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
28852 RP Li, Q, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
28853 CR MISHRA RK, 1991, MAT SCI ENG B-SOLID, V7, P297
28854    MISHRA RK, 1994, J APPL PHYS 2B, V75, P6652
28855    ZHOU BX, 1996, CNIC01111
28856 NR 3
28857 TC 0
28858 SN 1002-185X
28859 J9 RARE METAL MAT ENG
28860 JI Rare Metal Mat. Eng.
28861 PD AUG
28862 PY 2000
28863 VL 29
28864 IS 4
28865 BP 283
28866 EP 284
28867 PG 2
28868 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
28869    Engineering
28870 GA 351YD
28871 UT ISI:000089186900019
28872 ER
28873 
28874 PT J
28875 AU Chen, LQ
28876    Cheng, CJ
28877 TI Dynamical behavior of nonlinear viscoelastic columns based on 2-order
28878    Galerkin truncation
28879 SO MECHANICS RESEARCH COMMUNICATIONS
28880 DT Article
28881 ID CHAOTIC VIBRATIONS; STABILITY ANALYSIS; PLATES; BEAM
28882 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
28883    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
28884 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
28885    200072, Peoples R China.
28886 CR ABHYANKAR NS, 1993, J APPL MECH-T ASME, V60, P167
28887    ABOUDI J, 1990, J SOUND VIB, V139, P459
28888    ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151
28889    CEDERBAUM G, 1992, J APPL MECH-T ASME, V59, P16
28890    CHEN LQ, IN PRESS APPL MATH M
28891    CHENG CJ, 1998, ACTA MECH SINICA, V30, P690
28892    CHENG CJ, 1998, SHANGHAI J MECH, V19, P326
28893    LEADERMAN H, 1962, T SOC RHEOL, V6, P361
28894    MOON FC, 1979, J SOUND VIB, V65, P285
28895    NAYFEH AH, 1979, NONLINEAR OSCILLATIO
28896    SUIRE G, 1994, ARCH APPL MECH-ING, V64, P307
28897    SUIRE G, 1995, INT J MECH SCI, V37, P753
28898    TOUATI D, 1995, ACTA MECH, V113, P215
28899    WOJCIECH S, 1990, ACTA MECH, V85, P43
28900    XU KY, NONLINEAR DYNAMICS
28901    ZHANG NH, IN PRESS ACTA MECH S
28902    ZHANG NH, 1998, P 3 INT C NONL MECH, P432
28903    ZHU YY, 1998, P 3 INT C NONL MECH, P445
28904 NR 18
28905 TC 5
28906 SN 0093-6413
28907 J9 MECH RES COMMUN
28908 JI Mech. Res. Commun.
28909 PD JUL-AUG
28910 PY 2000
28911 VL 27
28912 IS 4
28913 BP 413
28914 EP 419
28915 PG 7
28916 SC Mechanics
28917 GA 352CP
28918 UT ISI:000089197200005
28919 ER
28920 
28921 PT J
28922 AU He, JH
28923 TI A variational approach to electroelastic analysis of piezoelectric
28924    ceramics with surface electrodes
28925 SO MECHANICS RESEARCH COMMUNICATIONS
28926 DT Article
28927 ID SEMI-INVERSE METHOD; FLOW; PRINCIPLES
28928 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
28929 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
28930    Peoples R China.
28931 CR HE JH, IN PRESS ASME
28932    HE JH, 1997, INT J TURBO JET ENG, V14, P17
28933    HE JH, 1997, INT J TURBO JET ENG, V14, P23
28934    HE JH, 1997, J SHANGHAI U, V1, P117
28935    HE JH, 1998, APPL MATH MODEL, V22, P395
28936    HE JH, 1998, COMMUNICATIONS NONLI, V3, P179
28937    HE JH, 1998, INT J TURBO JET ENG, V15, P101
28938    HE JH, 1998, INT J TURBO JET ENG, V15, P95
28939    HE JH, 2000, INT J NONLINEAR SCI, V1, P133
28940    SHINDO Y, 1998, INT J ENG SCI, V36, P1001
28941    ZHOU SA, 1986, INT J SOLIDS STRUCT, V22, P1411
28942 NR 11
28943 TC 16
28944 SN 0093-6413
28945 J9 MECH RES COMMUN
28946 JI Mech. Res. Commun.
28947 PD JUL-AUG
28948 PY 2000
28949 VL 27
28950 IS 4
28951 BP 445
28952 EP 450
28953 PG 6
28954 SC Mechanics
28955 GA 352CP
28956 UT ISI:000089197200009
28957 ER
28958 
28959 PT J
28960 AU He, JH
28961 TI Exact resonances of nonlinear vibration of rotor-bearings system
28962    without small parameter
28963 SO MECHANICS RESEARCH COMMUNICATIONS
28964 DT Article
28965 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
28966 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
28967    Peoples R China.
28968 CR FINLAYSON BA, 1972, METHOD WEIGHTED RESI
28969    HE JH, 1997, COMMUNICATIONS NONLI, V2, P235
28970    HE JH, 1998, COMPUT METHOD APPL M, V167, P57
28971    HE JH, 1998, P INT C VIBR ENG 98, P288
28972    HE JH, 1999, INT J NONLINEAR MECH, V34, P699
28973    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
28974    INOKUTI M, 1978, VARIATIONAL METHOD M, P156
28975    LIU CS, 1998, P INT C VIBR ENG 98, P435
28976    NAYFEH AH, 1981, INTRO PERTURBATION T
28977 NR 9
28978 TC 3
28979 SN 0093-6413
28980 J9 MECH RES COMMUN
28981 JI Mech. Res. Commun.
28982 PD JUL-AUG
28983 PY 2000
28984 VL 27
28985 IS 4
28986 BP 451
28987 EP 456
28988 PG 6
28989 SC Mechanics
28990 GA 352CP
28991 UT ISI:000089197200010
28992 ER
28993 
28994 PT J
28995 AU Zhao, DP
28996    Feng, SS
28997    Yang, GH
28998 TI Mass density of Dp-branes
28999 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
29000 DT Article
29001 AB It is shown that the generally covariant definition of mass equals the
29002    ADM mass for Dp-branes.
29003 C1 Univ Sci & Technol China, Dept Astron & Appl Phys, Hefei 230026, Peoples R China.
29004    Anhui Post & Telecommun Sch, Hefei 230031, Peoples R China.
29005    Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
29006 RP Feng, SS, Univ Sci & Technol China, Dept Astron & Appl Phys, Hefei
29007    230026, Peoples R China.
29008 CR DAURIA R, HEPTH9812160
29009    DUAN YS, 1963, ACTA PHYS SINICA, V19, P589
29010    DUAN YS, 1988, GEN RELAT GRAVIT, V20, P485
29011    FENG SS, HEPTH9902082
29012    FENG SS, HEPTH9902108
29013    PETERSEN JL, HEPTH9902131
29014    STELLE KS, HEPTH9803116
29015 NR 7
29016 TC 0
29017 SN 0020-7748
29018 J9 INT J THEOR PHYS
29019 JI Int. J. Theor. Phys.
29020 PD JUN
29021 PY 2000
29022 VL 39
29023 IS 6
29024 BP 1637
29025 EP 1642
29026 PG 6
29027 SC Physics, Multidisciplinary
29028 GA 351XJ
29029 UT ISI:000089184500017
29030 ER
29031 
29032 PT J
29033 AU Wang, LJ
29034    Jiang, XY
29035    Zhang, ZL
29036    Xu, SH
29037 TI Organic thin film electroluminescent devices using Gaq3 as emitting
29038    layers
29039 SO DISPLAYS
29040 DT Article
29041 DE electroluminescence; Gaq3; Alq3; Znq2; organic materials
29042 ID IMPROVED STABILITY
29043 AB Organic electroluminescent (EL) devices using
29044    tris(8-hydroxyquinoline)-gallium complex (Gaq3) as the emitting layer
29045    were developed. Results indicated that EL devices using Gaq3 as
29046    emitting layers emitted light at a peak wavelength of 540 nm. The
29047    maximum luminance of these devices was obviously higher than that of
29048    devices using Alq3 and Znq2 as emitting layers prepared with the same
29049    structures and under the same conditions as Gaq3. The greatest maximum
29050    luminance of Gaq3 devices was attributed to the higher breakdown
29051    voltage and quantum efficiency than those of the other two devices. (C)
29052    2000 Elsevier Science B.V. All rights reserved.
29053 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
29054 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
29055    China.
29056 CR ADACHI C, 1990, APPL PHYS LETT, V57, P531
29057    HAMADA Y, 1993, JPN J APPL PHYS, V32, P514
29058    LIU ZG, 1997, J SHANGHAI U, V3, P157
29059    SHI JM, 1997, APPL PHYS LETT, V70, P1665
29060    TANG CW, 1987, APPL PHYS LETT, V51, P913
29061    VANSLYKE SA, 1996, APPL PHYS LETT, V69, P2160
29062    WAGNER J, 1982, J MATER SCI, V17, P27
29063    ZHANG ZQ, 1996, ELECTROPHORESIS, V17, P372
29064 NR 8
29065 TC 7
29066 SN 0141-9382
29067 J9 DISPLAYS
29068 JI Displays
29069 PD AUG 1
29070 PY 2000
29071 VL 21
29072 IS 2-3
29073 BP 47
29074 EP 49
29075 PG 3
29076 SC Computer Science, Hardware & Architecture; Engineering, Electrical &
29077    Electronic; Instruments & Instrumentation; Optics
29078 GA 351AT
29079 UT ISI:000089134400002
29080 ER
29081 
29082 PT J
29083 AU Wang, LJ
29084    Xia, YB
29085    Ju, JH
29086    Zhang, WG
29087 TI Electrical properties of chemical vapor deposition diamond films and
29088    electrical response to X-ray
29089 SO DIAMOND AND RELATED MATERIALS
29090 DT Article
29091 DE microwave plasma chemical vapor deposition; electrical properties;
29092    diamond films; optoelectronic properties
29093 ID CVD DIAMOND; DETECTORS
29094 AB In this paper, dark current-voltage (I-V) characteristics,
29095    current-temperature (I-T) characteristics, and photocurrents under
29096    steady-state X-ray excitation of CVD diamond films were investigated.
29097    Results indicated that dark currents and photocurrents by X-ray
29098    irradiation for the [001] textured CVD diamond film were greater than
29099    those for the non-textured one. The differences in dark currents and
29100    resistivities were attributed to a large number of grain boundaries
29101    contained in the non-textured diamond films. From the I-T curves, at
29102    the temperature higher than 500 K, currents clearly followed an
29103    exponential behavior because of the activation energy of E-a = 1.68 eV
29104    which was normally attributed to Si trapped to a vacancy in the diamond
29105    lattice. (C) 2000 Elsevier Science S.A. All rights reserved.
29106 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
29107 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
29108    China.
29109 CR BEHNKE T, 1998, NUCL INSTRUM METH A, V414, P340
29110    FERNANDES AJ, 1999, VACUUM, V52, P215
29111    FOULON F, 1994, IEEE T NUCL SCI, V41, P927
29112    GALLUZZI F, 1998, NUCL INSTRUM METH A, V409, P423
29113    MANFREDOTTI C, 1998, NUCL INSTRUM METH A, V410, P96
29114    POCHET T, 1993, MATER RES SOC S P, V302, P369
29115    WEILHAMMER P, 1998, NUCL INSTRUM METH A, V409, P264
29116 NR 7
29117 TC 7
29118 SN 0925-9635
29119 J9 DIAM RELAT MATER
29120 JI Diam. Relat. Mat.
29121 PD SEP-OCT
29122 PY 2000
29123 VL 9
29124 IS 9-10
29125 BP 1617
29126 EP 1620
29127 PG 4
29128 SC Materials Science, Multidisciplinary
29129 GA 352FD
29130 UT ISI:000089203100011
29131 ER
29132 
29133 PT J
29134 AU Xia, YB
29135    Sekiguchi, T
29136    Zhang, WJ
29137    Jiang, X
29138    Ju, JH
29139    Wang, LJ
29140    Yao, T
29141 TI Surfaces of undoped and boron doped polycrystalline diamond films
29142    influenced by negative DC bias voltage
29143 SO DIAMOND AND RELATED MATERIALS
29144 DT Article
29145 DE diamond; penetrating effects; thin film; cathodoluminescence
29146 ID CHEMICAL-VAPOR-DEPOSITION
29147 AB The hydrogen ion bombardment is performed by applying a negative bias
29148    voltage to the substrate during microwave plasma chemical vapor
29149    deposition process, using only hydrogen as reactant gas. The size of
29150    (001) faces increases after hydrogen ion etching while other grains are
29151    etched off. The surfaces of [001]-oriented films after doping boron are
29152    investigated by scanning electron microscopy (SEM) and
29153    cathodoluminescent (CL) spectra. The absence of the band-A emission in
29154    the CL spectra means a low density of dislocation in the films. It is
29155    the first time that the peak at 741.5 nm and the broad peak at
29156    approximately 575 and 625 nm in the CL spectra were reduced efficiently
29157    after boron doping in (001) polycrystalline diamond films and to
29158    propose that these phenomena should be explained in simple terms with
29159    penetration of the lattice nets of the [001]-oriented faces model. (C)
29160    2000 Elsevier Science S.A. All rights reserved.
29161 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
29162    Tohoku Univ, Inst Mat Res, Sendai, Miyagi 980, Japan.
29163    Fraunhofer Inst Thin Films & Surface Engn, D-38108 Braunschweig, Germany.
29164 RP Xia, YB, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R
29165    China.
29166 CR COLLINS AT, 1990, J MATER RES, V5, P2507
29167    DAVIS JW, 1987, J NUCL MATER, V145, P417
29168    HAYASHI K, 1997, J APPL PHYS, V81, P744
29169    HAYASHI K, 1998, J CRYST GROWTH, V183, P338
29170    ROBINS LH, 1989, PHYS REV B, V39, P13367
29171    WON J, 1996, RECENT PROG DIAMOND, V1, P103
29172    YOKOTA Y, 1990, MAT RES SOC S P PITT, P162
29173    ZHANG WJ, 1997, J APPL PHYS, V82, P1896
29174 NR 8
29175 TC 1
29176 SN 0925-9635
29177 J9 DIAM RELAT MATER
29178 JI Diam. Relat. Mat.
29179 PD SEP-OCT
29180 PY 2000
29181 VL 9
29182 IS 9-10
29183 BP 1636
29184 EP 1639
29185 PG 4
29186 SC Materials Science, Multidisciplinary
29187 GA 352FD
29188 UT ISI:000089203100015
29189 ER
29190 
29191 PT J
29192 AU Zhang, WG
29193    Xia, YB
29194    Shi, WM
29195    Wang, LJ
29196    Fang, ZJ
29197 TI Effect of substrate temperature on the selective deposition of diamond
29198    films
29199 SO DIAMOND AND RELATED MATERIALS
29200 DT Article
29201 DE diamond films; deposition; chemical vapor deposition
29202 ID CHEMICAL-VAPOR-DEPOSITION; BIAS-ENHANCED NUCLEATION; SILICON; GROWTH
29203 AB Selective diamond films on roughened Si(100) substrates with
29204    patternings have been achieved by microwave plasma chemical vapor
29205    deposition (MP-CVD). The films have been characterized by scanning
29206    electron microscopy (SEM) and Raman spectra. The influence of substrate
29207    temperature on the selective deposition of diamond films has been
29208    discussed in detail: the diamond nucleation density on the SiO2 mask
29209    increased with substrate temperature while the effect of the selective
29210    deposition of diamond films deteriorated; the optimized deposition
29211    temperature conditions have been concluded. (C) 2000 Elsevier Science
29212    S.A. All rights reserved.
29213 C1 Shanghai Univ, Sch Mat Sci & Engn, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
29214 RP Zhang, WG, Shanghai Univ, Sch Mat Sci & Engn, Dept Inorgan Mat,
29215    Shanghai 201800, Peoples R China.
29216 CR DAVIDSON JL, 1989, J ELECTRON MATER, V18, P711
29217    IRWIN MD, 1997, APPL PHYS LETT, V71, P716
29218    JIANG X, 1991, PROGR STUDY DIAMOND, P21
29219    JIANG X, 1993, APPL PHYS LETT, V62, P3438
29220    JOFFREAN PO, 1988, INT J REFRACT HARD M, V7, P186
29221    LEE JS, 1997, J APPL PHYS, V81, P486
29222    MA JS, 1989, APPL PHYS LETT, V55, P1071
29223    MO Y, 1997, THESIS CHINESE ACAD, P35
29224    RANKIN J, 1994, J MATER RES, V9, P2164
29225    STONER BR, 1993, J MATER RES, V8, P1334
29226    ZEMANSKY MW, 1981, HEAT THERMODYN, V4, P267
29227 NR 11
29228 TC 1
29229 SN 0925-9635
29230 J9 DIAM RELAT MATER
29231 JI Diam. Relat. Mat.
29232 PD SEP-OCT
29233 PY 2000
29234 VL 9
29235 IS 9-10
29236 BP 1687
29237 EP 1690
29238 PG 4
29239 SC Materials Science, Multidisciplinary
29240 GA 352FD
29241 UT ISI:000089203100026
29242 ER
29243 
29244 PT J
29245 AU Shi, LY
29246    Li, CZ
29247    Fang, DY
29248    Gu, HC
29249    Zhu, YH
29250    Chen, AP
29251 TI Morphology of high temperature vapor-phase synthesized nanophase
29252    TiO2-Al2O3 composite particles
29253 SO CHINESE JOURNAL OF INORGANIC CHEMISTRY
29254 DT Article
29255 DE nanophase particles; vapor-phase reaction; functional ceramic
29256 AB Nanophase TiO2-Al2O3 composite particles synthesized by gas-phase
29257    oxidation of TiCl4 and AlCl3 in an aerosol reactor were characterized
29258    by EDS, XPS, TG-DTA, TEM, XRD and BET surface area analysis. The
29259    results showed that the morphological structure of the composite
29260    particles were influenced by AlCl3 feed ratio and reaction temperature.
29261    When X-inlet = 2.80 and T = 1400 degrees C; the composite particles
29262    were mainly composed of rutile TiO2, alpha-Al2O3, and Al2TiO5, the
29263    average particle size was 25.3 nm and GSD (Geometric tandaed Squace
29264    Deviation) was 1.51. Other processing parameters affecting the particle
29265    size was also analyzed.
29266 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200072, Peoples R China.
29267    E China Univ Sci & Technol, Inst Tech Chem Phys, Shanghai 200237, Peoples R China.
29268    E China Univ Sci & Technol, Dept Chem Engn, Shanghai 200237, Peoples R China.
29269 RP Shi, LY, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200072, Peoples R
29270    China.
29271 CR CHENG HM, 1996, CHEM J CHINESE U, V17, P833
29272    HUNG CH, 1992, J MATER RES, V7, P1870
29273    LI HR, 1987, PRACTICAL COMPLEXING, P227
29274    LIU SH, 1988, XRAY PHOTOELECTRON S, V305, P313
29275    MO SF, 1991, GUSUANYAN TONGBAO, P4
29276    OKUMURA H, 1986, J AM CERAM SOC, V69, C22
29277    SHI LY, 1999, HUAXUE FANYING GONGC, V15, P213
29278    SHI LY, 1999, J INORG MATER, V14, P717
29279    WOIGNIER T, 1988, J NONCRYST SOLIDS, V100, P325
29280 NR 9
29281 TC 0
29282 SN 1001-4861
29283 J9 CHIN J INORG CHEM
29284 JI Chin. J. Inorg. Chem.
29285 PD JUL
29286 PY 2000
29287 VL 16
29288 IS 4
29289 BP 683
29290 EP 687
29291 PG 5
29292 SC Chemistry, Inorganic & Nuclear
29293 GA 351PA
29294 UT ISI:000089166300026
29295 ER
29296 
29297 PT J
29298 AU Tu, DW
29299    Lin, CX
29300 TI Spy quantitative inspection with a machine vision light sectioning
29301    method
29302 SO MEASUREMENT SCIENCE & TECHNOLOGY
29303 DT Article
29304 DE spy inspection; machine vision; light sectioning; non-contact sensor
29305 AB Machine vision light sectioning sensing is developed and expanded to
29306    the range of spy quantitative inspection for hole-like work pieces in
29307    this paper. A light beam from a semiconductor laser diode is converged
29308    into a line-shape by a cylindrical lens. A special compact
29309    reflecting-refracting, prism group is designed to ensure that such a
29310    sectioning light is projected axially onto the inner surface, and to
29311    make the deformed Line be imaged onto a CCD sensitive area. The image
29312    is digitized and captured into a computer by a 512 x 512 pixel card,
29313    and machine vision image processing methods such as thresholding, line
29314    centre detect and the least-squares method are developed for contour
29315    feature extraction and description. Two other important problems in
29316    such an inspection system are how to orientate the deep-going optical
29317    probe and how to bring the projected line into focus. A focusing
29318    criterion based on image position deviation and a four-step orientating
29319    procedure are put forward, and analysed to be feasible respectively.
29320    The experimental results show that the principle is correct and the
29321    techniques are realizable, and a good future for application in
29322    industry is possible.
29323 C1 Shanghai Univ, Sch Mechatron & Automat, Shanghai 200072, Peoples R China.
29324 RP Tu, DW, Shanghai Univ, Sch Mechatron & Automat, POB 17,149 Yanchang Rd,
29325    Shanghai 200072, Peoples R China.
29326 CR MIYOSHI T, 1992, J JAPAN SOC PRECISIO, P98
29327    SCHALKOFF RJ, 1989, DIGITAL IMAGE PROCES
29328    VANDERHEIJDEN F, 1996, IMAGE BASED MEASUREM
29329    ZHANG WW, 1998, MEAS SCI TECHNOL, V9, P1380
29330 NR 4
29331 TC 0
29332 SN 0957-0233
29333 J9 MEAS SCI TECHNOL
29334 JI Meas. Sci. Technol.
29335 PD AUG
29336 PY 2000
29337 VL 11
29338 IS 8
29339 BP 1187
29340 EP 1192
29341 PG 6
29342 SC Engineering, Multidisciplinary; Instruments & Instrumentation
29343 GA 349KU
29344 UT ISI:000089044900015
29345 ER
29346 
29347 PT J
29348 AU Zhang, BX
29349    Zhao, WM
29350    Zhu, WQ
29351    Wang, KS
29352    Jiang, XY
29353 TI Transition of Eu3+ ion in SiO2 aerogel thin film
29354 SO JOURNAL OF INORGANIC MATERIALS
29355 DT Article
29356 DE SiO2 aerogel; doped-nanocrystals; rare-earth luminescent centers;
29357    time-resolved emission spectroscopy
29358 AB The Eu3+ ion doped SiO2 aerogel film was prepared by a sol-gel process,
29359    and the luminescence and transitions of this aerogel film were
29360    investigated. The surface structure of the film was observed by AFM.
29361    Its microstructure was investigated by XRD and IR. Its excitation,
29362    emission, absorption, and time-resolved spectra were measured. The
29363    luminescence properties were discussed. The radiative transition
29364    probabilities of D-5(0) energy levels in Eu3+ ion were calculated by
29365    Judd-Ofelt theory. According to the time-resolved spectra, the
29366    nonradiative transition probabilities and decay properties of D-5(1)
29367    were also studied. The results are not quite different to Eu3+ ion in
29368    silicate glass, but a fine thin film doped with rare earth ions can be
29369    obtained by using a facile and low temperature method, and this film,
29370    having luminescent light glass qualities, can possess potential
29371    applications.
29372 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
29373 RP Zhang, BX, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples
29374    R China.
29375 CR JUDD BR, 1962, PHYS REV, V127, P750
29376    KAMISKI AA, 1981, LASER CRYSTALS, P166
29377    OFELT GS, 1962, J CHEM PHYS, V37, P511
29378    REISFELD R, 1972, J RES NBS          A, V76, P613
29379    WEBER MJ, 1967, OPTICAL PROPERTIES I, P467
29380 NR 5
29381 TC 0
29382 SN 1000-324X
29383 J9 J INORG MATER
29384 JI J. Inorg. Mater.
29385 PD AUG
29386 PY 2000
29387 VL 15
29388 IS 4
29389 BP 727
29390 EP 732
29391 PG 6
29392 SC Materials Science, Ceramics
29393 GA 348MW
29394 UT ISI:000088989400026
29395 ER
29396 
29397 PT J
29398 AU Mao, RH
29399    Guo, CJ
29400 TI Preparation of nanosized anatase titania
29401 SO JOURNAL OF INORGANIC MATERIALS
29402 DT Article
29403 DE titania; nanonmeter; colloid; anatase
29404 ID POWDER
29405 AB Nanosized anatase titania colloid and powders were prepared by
29406    hydrolysis of titanium-tetrabutoxide in basic media and then dehydrated
29407    at 700C in acid media. The powder and colloid were characterized by
29408    XRD, BET, TEM, HREM and TG-DTA. methods. The results show that after
29409    dehydrated in acid media the titania particles in colloid are already
29410    anatase crystallites with good crystal lattices. The average diameter
29411    of the nanosized titania powder after calcination at 220 degrees C is
29412    9nm and surface area is 171m(2)/g.
29413 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
29414 RP Mao, RH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
29415    China.
29416 CR CHEN JY, 1996, J MATER SCI, V31, P3497
29417    DOUGLAS C, 1994, J AM CERAM SOC, V77, P1957
29418    HUANG JH, 1996, J INORG MATER, V11, P51
29419    KEICHI T, 1991, CHEM PHYS LETT, V187, P73
29420    OREGAN B, 1991, NATURE, V353, P737
29421    ZHAO WK, 1998, J INORG MATER, V13, P608
29422 NR 6
29423 TC 1
29424 SN 1000-324X
29425 J9 J INORG MATER
29426 JI J. Inorg. Mater.
29427 PD AUG
29428 PY 2000
29429 VL 15
29430 IS 4
29431 BP 761
29432 EP 764
29433 PG 4
29434 SC Materials Science, Ceramics
29435 GA 348MW
29436 UT ISI:000088989400032
29437 ER
29438 
29439 PT J
29440 AU Zhang, J
29441    Hua, TC
29442    Chen, ET
29443 TI Experimental measurement and theoretical analyses of the
29444    freezing-thawing processes around a probe
29445 SO CRYO-LETTERS
29446 DT Article
29447 DE cryosurgery; cryoprobe; phase-changing problem; heat transfer; enthalpy
29448    method
29449 ID NONIDEAL BIOLOGICAL TISSUES; INVERSE-STEFAN PROBLEM; CRYOGENIC
29450    TEMPERATURES; CRYOSURGERY
29451 AB Both the experimental and the analytical studies of the
29452    freezing/thawing process around a cryosurgical cylinder probes in a
29453    simulative biological tissue are presented in this paper. The enthalpy
29454    method and the finite element scheme are applied to solve the
29455    multidimensional phase change problems in cryosurgery. A very good
29456    agreement is found between the computed solutions and the experimental
29457    results. The influences of different cooling-warming schemes of the
29458    probe on the ice ball development, the temperature variation, the axial
29459    and the radial temperature gradients inside the tissues, and the
29460    requirement of cooling power are analyzed.
29461 C1 Shanghai Univ Sci & Technol, Inst Cryobiol & Food Freezing, Shanghai 200093, Peoples R China.
29462 RP Hua, TC, Shanghai Univ Sci & Technol, Inst Cryobiol & Food Freezing,
29463    516 Jun Gong Rd, Shanghai 200093, Peoples R China.
29464 CR BUDMAN HM, 1991, J BIOMECH ENG-T ASME, V113, P430
29465    DILLER KR, 1992, ADV HEAT TRANSFER, V22, P177
29466    GAGE AA, 1998, CRYOBIOLOGY, V37, P171
29467    GAO DY, 1995, CRYOBIOLOGY, V32, P270
29468    HUA TC, 1994, CRYOBIOMEDICAL TECHN, P325
29469    HUNT CJ, 1994, CRYOBIOLOGY, V31, P506
29470    OZIZIK MN, 1993, HEAT CONDUCTION, P423
29471    RABIN Y, 1995, J HEAT TRANSFER, V117, P425
29472    RABIN Y, 1996, CRYOBIOLOGY, V33, P472
29473    RABIN Y, 1997, J BIOMECH ENG-T ASME, V119, P146
29474    RABIN Y, 1998, J BIOMECH ENG-T ASME, V120, P259
29475    RABIN Y, 1998, J BIOMECH ENG-T ASME, V120, P32
29476    RUBINSKY B, 1980, CRYOBIOLOGY, V17, P66
29477    SHAMSUNDAR N, 1975, J HEAT TRANSFER, V97, P333
29478    YOO J, 1986, INT J NUMER METH ENG, V23, P1785
29479 NR 15
29480 TC 2
29481 SN 0143-2044
29482 J9 CRYO-LETT
29483 JI Cryo-Lett.
29484 PD JUL-AUG
29485 PY 2000
29486 VL 21
29487 IS 4
29488 BP 245
29489 EP 254
29490 PG 10
29491 SC Biology; Physiology
29492 GA 348PK
29493 UT ISI:000088993700006
29494 ER
29495 
29496 PT J
29497 AU Chen, XY
29498    Cheng, CJ
29499 TI Discrete inverse method for viscoelastic medium with complete data
29500 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
29501 DT Article
29502 DE viscoelastic medium; scattering and propagation operator; discrete
29503    inverse method; imbedding equation; reconstruction of the relaxation
29504    modulus; extent of the reflection data; volterra integral equation
29505 ID DISSIPATIVE WAVE-EQUATION; TIME DOMAIN; SCATTERING OPERATORS;
29506    DISPERSIVE MEDIA
29507 AB The discrete inverse scattering problem for viscoelastic medium is
29508    studied in this paper. It is assumed that the relaxation modulus varies
29509    only with time t. The object of this paper is to develop a method to
29510    reconstruct the relaxation modulus with less measurement data than
29511    before. The propagation operators of the viscoelastic medium are
29512    defined first and the imbedding equations governing the behavior of the
29513    propagation operators are derived with the invariant imbedding
29514    techniques. Using the finite difference method, these equations can be
29515    discretized to obtain a system of linear algebraic equations about the
29516    propagation operators and the material modulus. For the inverse
29517    scattering problem, it is assumed that the reflection data obtained
29518    from the scattering experiments are only available on one side of the
29519    medium and for one round trip through the viscoelastic slab. To
29520    reconstruct the unknown relaxation modulus, an inversion procedure is
29521    developed using this set of data that are complete in the sense that
29522    they can be extended to arbitrary rime t and the other scattering and
29523    propagation operators can also be determined by the inversion procedure
29524    described in this paper. The inversion algorithm is implemented
29525    numerically on several examples at the end of the paper. It can be seen
29526    that the obtained curves of the material modulus coincide with the
29527    original relaxation modulus very well. (C) 2000 Elsevier Science S.A.
29528    All rights reserved.
29529 C1 Shanghai Univ, Dept Mech, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China.
29530    Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
29531 RP Cheng, CJ, Shanghai Univ, Dept Mech, Shanghai Inst Math & Mech,
29532    Shanghai 200072, Peoples R China.
29533 CR AMMICHT E, 1987, J ACOUST SOC AM, V81, P827
29534    BEEZLEY RS, 1985, J MATH PHYS, V26, P317
29535    BUI DD, 1995, INVERSE PROBL, V11, P835
29536    CHENG CJ, 2000, J MATH PHYS, V41, P2839
29537    CHRISTENSON RM, 1982, THEORY VISCOELASTICI
29538    CORONES JP, 1983, J ACOUST SOC AM, V74, P1535
29539    FUKS P, 1994, INVERSE PROBL, V10, P555
29540    KRESS R, 1989, LINEAR INTEGRAL EQUA
29541    KRISTENSSON G, 1986, J MATH PHYS, V27, P1667
29542    KRISTENSSON G, 1986, J MATH PHYS, V27, P1683
29543    KRISTENSSON G, 1987, J MATH PHYS, V28, P360
29544 NR 11
29545 TC 1
29546 SN 0045-7825
29547 J9 COMPUT METHOD APPL MECH ENG
29548 JI Comput. Meth. Appl. Mech. Eng.
29549 PY 2000
29550 VL 189
29551 IS 1
29552 BP 77
29553 EP 90
29554 PG 14
29555 SC Computer Science, Interdisciplinary Applications; Engineering,
29556    Mechanical; Mechanics
29557 GA 349DQ
29558 UT ISI:000089028800002
29559 ER
29560 
29561 PT J
29562 AU He, JH
29563 TI Variational iteration method for autonomous ordinary differential
29564    systems
29565 SO APPLIED MATHEMATICS AND COMPUTATION
29566 DT Article
29567 DE nonlinearity; variational technique; autonomous ordinary differential
29568    equations
29569 ID APPROXIMATE
29570 AB In this paper, a new iteration technique is proposed to solve
29571    autonomous ordinary differential systems. In this method, general
29572    Lagrange multipliers are introduced to construct correction functionals
29573    for the systems. The multipliers in the functionals can be identified
29574    by the variational theory. The initial approximations can be freely
29575    chosen with possible unknown constants, which can be determined by
29576    imposing the boundary/initial conditions. Some examples are given. The
29577    results reveal that the method is very effective and convenient. (C)
29578    2000 Elsevier Science Inc. All rights reserved.
29579 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
29580    Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
29581 RP He, JH, Shanghai Univ, Shanghai 200072, Peoples R China.
29582 CR DRIVER RD, 1977, ORDINARY DELAY DIFFE
29583    HE JH, 1996, THESIS SHANGHAI U
29584    HE JH, 1997, COMM NONLINEAR SCI N, V2, P230
29585    HE JH, 1997, COMMUNICATIONS NONLI, V2, P235
29586    HE JH, 1998, COMPUT METHOD APPL M, V167, P57
29587    HE JH, 1998, COMPUT METHOD APPL M, V167, P69
29588    HE JH, 1998, GEN VARIATIONAL PRIN
29589    HE JH, 1998, INT C VIBR ENG 98 DA
29590    HE JH, 1998, MECH PRACTICE, V20, P30
29591    HE JH, 1998, MECH SCI TECHNOL, V17, P221
29592    INOKUTI M, 1978, VARIATIONAL METHOD M, P156
29593    NAYFEH AH, 1985, PROBLEMS PERTURBATIO
29594    SMITH DR, 1985, SINGULAR PERTURBATIO
29595 NR 13
29596 TC 17
29597 SN 0096-3003
29598 J9 APPL MATH COMPUT
29599 JI Appl. Math. Comput.
29600 PD SEP 11
29601 PY 2000
29602 VL 114
29603 IS 2-3
29604 BP 115
29605 EP 123
29606 PG 9
29607 SC Mathematics, Applied
29608 GA 349ZG
29609 UT ISI:000089075100001
29610 ER
29611 
29612 PT J
29613 AU Xu, H
29614    He, KY
29615    Qiu, YQ
29616    Wang, ZJ
29617    Feng, W
29618    Dong, YD
29619    Xiao, XS
29620    Wang, Q
29621 TI Intense milling nanocrystalline Fe73.5Cu1Nb3Si13.5B9: a soft magnetic
29622    material in powdered form
29623 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
29624    MICROSTRUCTURE AND PROCESSING
29625 DT Article
29626 DE intense milling; nanocrystalline; dust core
29627 ID GRAIN-STRUCTURE; FERROMAGNETS
29628 AB The change of structure by intense milling on the nanocrystalline
29629    Fe73.5Cu1Nb3Si13.5B9 alloy was investigated. The magnetic properties of
29630    nanocrystalline Fe73.5Cu1Nb3Si13.5B9 dust cores (core of compacted
29631    powder) were studied. It was found that the nanostructured ribbons
29632    obtained from the crystallization of amorphous state by a proper
29633    annealing treatment could be changed into amorphous powder via short
29634    time milling. By increasing the milling time, the milled powder return
29635    to crystallization. It was also found that the permeability of the
29636    nanocrystalline dust cores had nearly not any changes in the frequency
29637    range from 1 to 100 kHz. The quality factor Q of the nanocrystalline
29638    dust cores increased gradually with increasing frequency. The quality
29639    factor Q of nanocrystalline dust cores became higher at the frequency
29640    over 50 similar to 70 kHz n comparison with that of the permalloy dust
29641    core. Published by Elsevier Science S.A.
29642 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
29643    Northeastern Univ, Shenyang 110006, Peoples R China.
29644    Cent Iron & Steel Res Inst, Beijing 100081, Peoples R China.
29645    Liaoning Sch Light Ind, Shenyang 110036, Peoples R China.
29646 RP Xu, H, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
29647 CR HERZER G, 1989, IEEE T MAGN, V25, P3327
29648    HERZER G, 1990, IEEE T MAGN, V26, P1397
29649    SCHULZ R, 1994, MAT SCI ENG A-STRUCT, V179, P516
29650    YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044
29651    YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6047
29652 NR 5
29653 TC 7
29654 SN 0921-5093
29655 J9 MATER SCI ENG A-STRUCT MATER
29656 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
29657 PD JUN 30
29658 PY 2000
29659 VL 286
29660 IS 1
29661 BP 197
29662 EP 200
29663 PG 4
29664 SC Materials Science, Multidisciplinary
29665 GA 347EP
29666 UT ISI:000088914700036
29667 ER
29668 
29669 PT J
29670 AU Zhu, XH
29671    Xu, J
29672    Meng, ZY
29673    Zhu, JM
29674    Zhou, SH
29675    Li, Q
29676    Liu, ZG
29677    Ming, NB
29678 TI Microdisplacement characteristics and microstructures of functionally
29679    graded piezoelectric ceramic actuator
29680 SO MATERIALS & DESIGN
29681 DT Article
29682 DE composites; sandwich structures; microstructure; bonding diffusion;
29683    powder metallurgy
29684 AB In this work, we report a functionally gradient piezoelectric ceramic
29685    actuator with sandwiched structure prepared by the powder metallurgical
29686    method. The functional gradients of piezoelectric activity and
29687    dielectric activity vary inversely across the thickness of the
29688    actuator. Such functional gradients are obtained by interdiffusion
29689    reaction between a high piezoelectric composition [Pb(Zr,Ti)O-3/PZT]
29690    and a high dielectric composition (PbNi1/3Nb2/3O3/PNN). The bending
29691    displacement at the free end of the PNN/PZT functionally graded
29692    piezoelectric ceramic actuator was approximately 20 mu m when 1.4-kV/mm
29693    electric field was applied. The grain morphology and compositional
29694    distribution across the actuator section and the microstructures of the
29695    sandwiched layer were investigated by scanned electron microscopy
29696    equipped with energy-dispersive spectroscopy, transmission electron
29697    microscopy, and selected area electron diffraction patterns,
29698    respectively. (C) 2000 Elsevier Science Ltd. All rights reserved.
29699 C1 Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.
29700    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
29701    CCAST World Lab, Beijing 100080, Peoples R China.
29702    Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.
29703 CR BERLINCOURT D, 1959, J APPL PHYS, V30, P1804
29704    CHEN J, 1989, J AM CERAM SOC, V72, P593
29705    GERSON R, 1960, J APPL PHYS, V31, P188
29706    HAERTLING GH, 1994, AM CERAM SOC BULL, V73, P93
29707    ROBBINS WP, 1991, IEEE T ULTRASON FERR, V38, P634
29708    SHANNON RD, 1976, ACTA CRYSTALLOGR A, V32, P751
29709    SUGAWARA Y, 1992, J AM CERAM SOC, V75, P996
29710    YAOMAJI A, 1977, J AM CERAM SOC, V60, P97
29711    ZHU XH, 1995, J MATER SCI LETT, V14, P516
29712    ZHU XH, 1998, J MATER SCI, V33, P1023
29713 NR 10
29714 TC 17
29715 SN 0261-3069
29716 J9 MATER DESIGN
29717 JI Mater. Des.
29718 PD DEC
29719 PY 2000
29720 VL 21
29721 IS 6
29722 BP 561
29723 EP 566
29724 PG 6
29725 SC Materials Science, Multidisciplinary
29726 GA 345ZB
29727 UT ISI:000088844400015
29728 ER
29729 
29730 PT J
29731 AU Zhang, ZL
29732    Jiang, XY
29733    Xu, SH
29734 TI A white emitting organic diode with a doped blocking layer
29735 SO CHINESE PHYSICS LETTERS
29736 DT Article
29737 ID ELECTROLUMINESCENT DEVICES; STABILITY
29738 AB A novel white emitting organic diode has been simply realized by
29739    inserting a doped hole-blocking layer between the hole transporting
29740    layer (RTL) and the electron transporting layer (ETL). The structure of
29741    this device is ITO/CuPc/NPB/blocking layer:rubrene/Alq/MgAg. Copper
29742    phthalocyanine(CuPc) was used as a buffer layer,
29743    N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) as
29744    the HTL, and trimer of N-arylbenzimidazoles (TPBi) as the blocking
29745    layers, in which rubrene is doped. Tris(8-quinolinolato)aluminum
29746    complex(Alq) as ETL. Indium tin oxide and MgAg were the anode and
29747    cathode, respectively. The emission spectrum of this device covers a
29748    wide range of visible region and can be sensitively adjusted by the
29749    concentration of rubrene. The white emission with the CIE (Commission
29750    International de I' Eclairage) color coordinates x = 0.31, y = 0.32, a
29751    maximum luminance of 8635 cd/m(2), and the luminous efficiency 1.39
29752    lm/W at the luminance of 100 cd/m(2) were obtained in the device with
29753    1.5% rubrene concentration in TPBi.
29754 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
29755 RP Zhang, ZL, Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R
29756    China.
29757 CR FORREST SR, 1997, SYNTHETIC MET, V91, P9
29758    GAO ZQ, 1999, APPL PHYS LETT, V74, P865
29759    GRANSTROM M, 1996, APPL PHYS LETT, V68, P147
29760    HOSOKAWA C, 1997, SOC INFORMATION DISP, V91, P1037
29761    JORDAN RH, 1996, APPL PHYS LETT, V68, P1192
29762    KIDO J, 1994, APPL PHYS LETT, V64, P815
29763    KIDO J, 1995, SCIENCE, V267, P1332
29764    MIYAGUCHI S, 1998, 9 INT WORKSH IN ORG, P137
29765    SATO Y, 1997, SYNTHETIC MET, V91, P103
29766    TAN HS, 1998, CHINESE PHYS LETT, V15, P137
29767    TANG CW, 1987, APPL PHYS LETT, V51, P913
29768    VANSLYKE SA, 1996, APPL PHYS LETT, V69, P2160
29769    YANG Y, 1997, J APPL PHYS, V81, P3294
29770    ZHANG ZL, 1998, J PHYS D APPL PHYS, V31, P32
29771 NR 14
29772 TC 3
29773 SN 0256-307X
29774 J9 CHIN PHYS LETT
29775 JI Chin. Phys. Lett.
29776 PY 2000
29777 VL 17
29778 IS 7
29779 BP 534
29780 EP 536
29781 PG 3
29782 SC Physics, Multidisciplinary
29783 GA 346VM
29784 UT ISI:000088891800026
29785 ER
29786 
29787 PT J
29788 AU Hu, YY
29789    Li, HB
29790    Sun, L
29791    Shen, YJ
29792    Qiu, ZC
29793 TI Synthesis of 1-amino-2-(2 '-methyl-4 '-methyl propionate)
29794    phenoxy-4-hydroxy anthraquinone
29795 SO CHINESE JOURNAL OF ORGANIC CHEMISTRY
29796 DT Article
29797 DE 2-methyl-4-beta- cyanoethylphenol; 1-amino-2-(2 ' - methyl-4 '-
29798    methylpropionate) phenoxy-4-hydroxy anthraquinone; synthesis
29799 AB 2- Methyl - 4 - beta - cyanoethylphenol was synthesized via Friedel -
29800    Crafts reaction between o - cresol and acrylonitrile. It was condensed
29801    with 1 - amino - 2 - bromo - 4 - hydroxy anthraquinone by the
29802    nucleophilic reaction. The product was hydrolyzed in alkaline medium
29803    and esterified with methanol to afford the title compound. Mass, H-1
29804    NMR, element analyses, Vis spectra and the melting points of the title
29805    compound and the intermediates were measured.
29806 C1 Shanghai Univ, Sch Environm & Architectural Engn, Shanghai 200072, Peoples R China.
29807    E China Univ Sci & Technol, Inst Fine Chem, Shanghai 200237, Peoples R China.
29808    Shanghai Analyt Instrument Gen Factory, Shanghai 200233, Peoples R China.
29809 RP Hu, YY, Shanghai Univ, Sch Environm & Architectural Engn, Shanghai
29810    200072, Peoples R China.
29811 CR CHENG ZS, 1994, JINGXI HUAXUEPIN HUA, P70
29812    JOHNSTON HW, 1957, J ORG CHEM, V22, P1264
29813    RICHTER RH, 1977, 4051166, US
29814    SATO YSK, 1969, 15316, JP
29815    SUN SD, 1992, CHINESE J ORG CHEM, V12, P96
29816    ZHANG ZY, 1995, JINGXI YOUJI HECHENG, P270
29817    ZHOU QK, 1993, SHANGHAI RANLIAO, V105, P5
29818 NR 7
29819 TC 0
29820 SN 0253-2786
29821 J9 CHINESE J ORG CHEM
29822 JI Chin. J. Org. Chem.
29823 PD AUG
29824 PY 2000
29825 VL 20
29826 IS 4
29827 BP 533
29828 EP 536
29829 PG 4
29830 SC Chemistry, Organic
29831 GA 346VC
29832 UT ISI:000088890900015
29833 ER
29834 
29835 PT J
29836 AU Liu, GL
29837 TI A new generation of inverse shape design problem in aerodynamics and
29838    aerothermoelasticity: concepts, theory and methods
29839 SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY
29840 DT Article
29841 DE aerodynamics; inverse problems; finite element method; wings; fluid
29842    mechanics
29843 AB So far the literature on inverse shape design in aerodynamics is still
29844    confined to the single-point (nominal design point) design and to
29845    steady flow. This situation cannot cope with the modern development of
29846    internal and external aerodynamics and aerothermoelasticity, especially
29847    turbomachinery and aircraft flows. Accordingly, in recent years a new
29848    generation of inverse shape design problem has been suggested and
29849    investigated theoretically and computationally, consisting mainly of:
29850    unsteady inverse and hybrid problems; multipoint inverse and hybrid
29851    problems; and inverse problem in aerothermoelasticity. It opens a new
29852    area of research in fluid mechanics and aerothermoelasticity. An
29853    overview of its status and perspective is given herein, emphasizing the
29854    new concepts, theory and methods of solution involved.
29855 C1 Shanghai Univ, Inst Mech, Shanghai, Peoples R China.
29856 RP Liu, GL, Shanghai Univ, Inst Mech, Shanghai, Peoples R China.
29857 CR DULIKRAVICH GS, 1992, J AIRCRAFT, V29, P1020
29858    EPPLER R, 1979, J SHIP RES, V23, P191
29859    EPPLER R, 1979, J SHIP RES, V23, P209
29860    EPPLER R, 1980, TM80210 NASA
29861    EPPLER R, 1985, J SHIP RES, V29, P30
29862    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
29863    JAMESON A, 1990, AGARDCP463, P1
29864    LIGHTHILL MJ, 1945, 2112 ARC R D
29865    LIU GL, IN PRESS ACTA MECH
29866    LIU GL, 1980, SCI SINICA, V23, P1339
29867    LIU GL, 1987, NUMERICAL METHODS LA, V5, P1739
29868    LIU GL, 1995, INT J TURBO JET ENG, V12, P109
29869    LIU GL, 1995, INVERSE PROBL ENG, V2, P1
29870    LIU GL, 1996, ACTA AERODYNAMICA SI, V14, P1
29871    LIU GL, 1997, AIRCR ENG AEROSP TEC, V69, P527
29872    LIU GL, 1997, NONLINEAR ANAL-THEOR, V30, P5229
29873    LIU GL, 1998, HYDRODYNAMICS THEORY, V2, P901
29874    LIU GL, 1998, IN PRESS ACTA MECH
29875    LIU GL, 1998, INVERSE PROBL ENG, P391
29876    LIU GL, 1998, P 3 INT C FLUID MECH, P809
29877    LIU GL, 1998, P 3 INT C NONL MECH, P502
29878    LIU GL, 1999, P 14 INT S AIRBR ENG
29879    LIU GL, 1999, P 4 INT S AER INT FL
29880    LOIU GL, 1999, ACTA MECH SINICA, V31, P165
29881    MANGLER W, 1938, JB DTSCH LUFTFAHRTFO, V1, P46
29882    NAKAZAKI M, 1986, J KANSAI SOC NAVAL A
29883    OHTSUKA M, 1974, 74GT2 ASME
29884    SELIG MS, 1992, AIAA J, V30, P1162
29885    SHEN YT, 1981, J SHIP RES, V25, P191
29886    WEINIG F, 1929, Z ANGEANDTE MATH MEC, V9, P507
29887    YIU KFC, 1994, MATH COMPUT MODEL, V20, P3
29888 NR 31
29889 TC 1
29890 SN 0002-2667
29891 J9 AIRCRAFT ENG AEROSP TECHNOL
29892 JI Aircr. Eng. Aerosp. Technol.
29893 PY 2000
29894 VL 72
29895 IS 4
29896 BP 334
29897 EP 344
29898 PG 11
29899 SC Engineering, Aerospace
29900 GA 346TM
29901 UT ISI:000088887200002
29902 ER
29903 
29904 PT J
29905 AU Wan, DC
29906    Wei, GW
29907 TI Numerical solutions of incompressible Euler and Navier-Stokes equations
29908    by efficient discrete singular convolution method
29909 SO ACTA MECHANICA SINICA
29910 DT Article
29911 DE incompressible flows; periodic boundary; DSC method; fourth-order
29912    Runge-Kutta method
29913 ID SCHEMES
29914 AB An efficient discrete singular convolution (DSC) method is introduced
29915    to the numerical solutions of incompressible Euler and Navier-Stokes
29916    equations with periodic boundary conditions. Two numerical tests of
29917    two-dimensional Navier-Stokes equations with periodic boundary
29918    conditions and Euler equations for doubly periodic shear layer flows
29919    are carried out by using the DSC method for spatial derivatives and
29920    fourth-order Runge-Kutta method for time advancement, respectively. The
29921    computational results show that the DSC method is efficient and robust
29922    for solving tho problems of incompressible flows, and has the potential
29923    of being extended to numerically solve much broader problems in fluid
29924    dynamics.
29925 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
29926    Natl Univ Singapore, Dept Computat Sci, Singapore 119260, Singapore.
29927 RP Wan, DC, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
29928    200072, Peoples R China.
29929 CR BELL JB, 1989, J COMPUT PHYS, V85, P257
29930    BELLMAN R, 1972, J COMPUT PHYS, V10, P40
29931    CANUTO C, 1988, SPECTRAL METHODS FLU
29932    CHEUNG YK, 1976, FINITE STRIP METHODS
29933    CHUI CK, 1992, INTRO WAVELETS
29934    E WN, 1996, J COMPUT PHYS, V126, P122
29935    FORNBERG B, 1996, PRACTICAL GUIDE PSEU
29936    FORSYTHE GE, 1960, FINITE DIFFERENCE ME
29937    HARTEN A, 1983, J COMPUT PHYS, V49, P357
29938    HARTEN A, 1987, SIAM J NUMER ANAL, V24, P279
29939    HIRSH RS, 1975, J COMPUT PHYS, V19, P90
29940    KOREVAAR J, 1968, MATH METHODS, V1
29941    LOU JZ, 1996, J COMPUT PHYS, V125, P225
29942    MA YW, 1999, INT J NUMER METH FL, V30, P509
29943    MEAD JL, 1999, J COMPUT PHYS, V152, P404
29944    ORSZAG SA, 1972, STUD APPL MATH, V51, P253
29945    PATANKAR SV, 1980, NUMERICAL HEAT TRANS
29946    SCHWARTZ L, 1951, THEORE DISTRIBUTIONS
29947    TOLSTYKH A, 1994, SERIES ADV MATH APPL, V21
29948    WALKER JS, 1996, FAST FOURIER TRANSFO
29949    WAN DC, 2000, P 4 INT C HYDR SEPT
29950    WEI GW, 1997, PHYS REV LETT, V79, P775
29951    WEI GW, 1998, CHEM PHYS LETT, V296, P215
29952    WEI GW, 1999, J CHEM PHYS, V110, P8930
29953    WEI GW, 2000, J PHYS B-AT MOL OPT, V33, P343
29954    WEI GW, 2000, PHYSICA D, V137, P247
29955    WEINAN E, 1994, J COMPUT PHYS, V110, P39
29956    ZIENKIEWICZ OC, 1971, FINITE ELEMENT METHO
29957 NR 28
29958 TC 1
29959 SN 0567-7718
29960 J9 ACTA MECH SINICA
29961 JI Acta Mech. Sin.
29962 PD AUG
29963 PY 2000
29964 VL 16
29965 IS 3
29966 BP 223
29967 EP 239
29968 PG 17
29969 SC Engineering, Mechanical; Mechanics
29970 GA 346NK
29971 UT ISI:000088877800003
29972 ER
29973 
29974 PT J
29975 AU Wang, W
29976    Weng, XC
29977    Cheng, DL
29978 TI Antioxidant activities of natural phenolic components from Dalbergia
29979    odorifera T. Chen
29980 SO FOOD CHEMISTRY
29981 DT Article
29982 ID LIPID-PEROXIDATION; RED WINE
29983 AB The antioxidant activities on oil of natural phenolic components
29984    extracted from Dalbergia odorifera T. Chen were investigated. A new
29985    benzophenone 2,4-dihydroxy-5-methoxybenzophenone (1), together with
29986    eight known components, were isolated. The eight components were
29987    identified by chemical and spectroscopic methods as
29988    2',3',7-trihydroxy-4'-methoxyisoflavanone (2), 3'-methoxydaidzein (3),
29989    4',5,7-trihydroxy-3-methoxyflavone (4), vestitol (5), medicarpin (6),
29990    hexanoic acid, 2-propenylester (7), hexadecanoic acid, ethyl ester (8)
29991    and 3,8,-nonadien-2-one (9). Their antioxidant activities were
29992    investigated and compared with butylated hydroxyluene (BHT) and
29993    alpha-tocopherol. The results showed that components 1, 3, 5 and 6 had
29994    antioxidant activity and components 2 and 4 had strong antioxidant
29995    activity at 0.02 and 0.04% levels. When the individual components
29996    (0.02%) were mixed with 0.02% BHT, or 0.02% cr-tocopherol, their
29997    protection factor was increased, but there was no synergistic effect.
29998    When the individual component had 4 ppm added Fe3+, components 1, 2, 3
29999    and 4 had antioxidant activity. Their antioxidant activities were
30000    tested by an oxidative stability instrument (OSI) at 100 degrees C. Six
30001    of the phenolic components showed antioxidant activities. (C) 2000
30002    Elsevier Science Ltd. All rights reserved.
30003 C1 Lanzhou Univ, Dept Chem, Natl Lab Appl Organ Chem, Lanzhou 730000, Gansu, Peoples R China.
30004    Shanghai Univ, Sch Life Sci, Shanghai, Peoples R China.
30005 RP Cheng, DL, Lanzhou Univ, Dept Chem, Natl Lab Appl Organ Chem, Lanzhou
30006    730000, Gansu, Peoples R China.
30007 CR FUHRMAN B, 1995, AM J CLIN NUTR, V61, P549
30008    GRICE HC, 1986, FOOD CHEM TOXICOL, V24, P1127
30009    HELLER SR, 1978, EPA NIH MASS SPECTRA, V1, P336
30010    HELLER SR, 1978, EPA NIH MASS SPECTRA, V1, P547
30011    HELLER SR, 1978, EPA NIH MASS SPECTRA, V3, P2090
30012    HELLER SR, 1978, EPA NIH MASS SPECTRA, V3, P234
30013    KANNER J, 1991, J AGR FOOD CHEM, V39, P1017
30014    KROYER G, 1986, Z ERNAHRUNGSWISS, V25, P63
30015    PRATT DE, 1990, FOOD ANTIOXIDANTS, P171
30016    RUSZNYAK S, 1936, NATURE, V138, P27
30017    SHOJI Y, 1989, CHEM PHARM BULL, V31, P979
30018    TETSU O, 1990, CHEM PHARM BULL, V38, P2750
30019    WENG XC, 1998, J CHINESE CEREAL OIL, V13, P46
30020    WHITEHEAD TP, 1995, CLIN CHEM, V41, P32
30021    WICHI HP, 1988, FOOD CHEM TOXICOL, V26, P717
30022    YUKIHIRO G, 1992, CHEM PHARM BULL, V40, P2452
30023    ZLOCH Z, 1969, INT Z VITAMINFORSCH, V39, P269
30024 NR 17
30025 TC 7
30026 SN 0308-8146
30027 J9 FOOD CHEM
30028 JI Food Chem.
30029 PD OCT
30030 PY 2000
30031 VL 71
30032 IS 1
30033 BP 45
30034 EP 49
30035 PG 5
30036 SC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics
30037 GA 344YW
30038 UT ISI:000088789500004
30039 ER
30040 
30041 PT J
30042 AU Peng, LM
30043    Mao, XM
30044    Xu, KD
30045 TI Simulation and control model for interactions among process parameters
30046    of directional solidification continuous casting
30047 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
30048 DT Article
30049 DE directional solidification; continuous casting; control model
30050 AB On the basis of analyzing the principles, equipment and control needs
30051    of directional solidification continuous casting (DSCC) process, the
30052    building and fulfilling methods of control model of DSCC procedure by
30053    neural network control (NNC) method were proposed and discussed.
30054    Combining the experimental researches, firstly the computer is used to
30055    simulate the effects of those solidification parameters on destination
30056    control variable (S/L interface) and the reactions among those
30057    parameters during DSCC procedure; secondly many training samples can be
30058    obtained. Moreover, after these samples are input into neural network
30059    software (NNs) and trained, the control model can be built.
30060 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
30061 CR CHANG GW, 1999, FOUNDRY, V40, P18
30062    FAN XH, 1996, CHINESE J MAT RES, V10, P364
30063    FAN XH, 1997, CHINESE J NONFERROUS, V7, P134
30064    LI SY, 1996, THEORY FUZZY CONTROL, P85
30065    NI WD, 1996, SEVERAL PROBLEMS MOD, P10
30066    OHNO A, 1989, LIGHT METAL, V39, P735
30067    OHNO A, 1990, ADV MATER, V28, P161
30068    OHNO A, 1991, T JAPAN I METALS, V30, P448
30069    SU YJ, 1996, J HARBIN U SCI TECHN, V1, P60
30070    WANG W, 1997, CONTROL DECISION S, V12, P385
30071    WANG YN, 1996, INTELLIGENT CONTROL, P96
30072    XU ZM, 1997, P 9 CHIN FOUNDR C C, P345
30073    XU ZM, 1998, T NONFERR METAL SOC, V8, P277
30074 NR 13
30075 TC 1
30076 SN 1003-6326
30077 J9 TRANS NONFERROUS METAL SOC CH
30078 JI Trans. Nonferrous Met. Soc. China
30079 PD AUG
30080 PY 2000
30081 VL 10
30082 IS 4
30083 BP 449
30084 EP 452
30085 PG 4
30086 SC Metallurgy & Metallurgical Engineering
30087 GA 343GQ
30088 UT ISI:000088693700006
30089 ER
30090 
30091 PT J
30092 AU Zhang, H
30093    Zou, XW
30094    Wang, ZH
30095    Chen, YX
30096 TI A comparative investigation of oxygen in-diffusion in the orthorhombic
30097    phase of REBCO (RE:: Y, Sm, Nd) by in situ electrical resistance
30098 SO PHYSICA C
30099 DT Article
30100 DE REBCO (RE : Y, Sm, Nd) curprate; in situ electrical resistance; oxygen
30101    in-diffusion
30102 ID TRACER DIFFUSION; SINGLE-CRYSTAL; YBA2CU3O7-DELTA; YBA2CU3O6+X;
30103    SUPERCONDUCTORS
30104 AB The relaxation behavior of the isothermal electrical resistance has
30105    been comparatively investigated in the single orthorhombic phase of
30106    REBCO (RE: Y, Sm, Nd) powder sinters in oxygen uptaking processes. It
30107    can be well described by an oxygen uptaking process controlled by the
30108    lattice diffusion. The relaxation activation energy, i.e., the
30109    diffusion activation energy is 1.2, 1.0 and 0.7 eV for YBa2Cu3Oy,
30110    SmBa2Cu3Oy and Nd1.1Ba1.9Cu3Oy, respectively. It indicates that the
30111    diffusion activation energy of oxygen in REBCO decreases with the
30112    increase of RE ion size. It may be connected with the repulsive energy
30113    between O(1) and O(5). (C) 2000 Elsevier Science B.V. All rights
30114    reserved.
30115 C1 Chinese Acad Sci, Shanghai Inst Met, Shanghai 200050, Peoples R China.
30116    Shanghai Univ, Shanghai 200072, Peoples R China.
30117 RP Zhang, H, Chinese Acad Sci, Shanghai Inst Met, Shanghai 200050, Peoples
30118    R China.
30119 CR CRANK J, 1956, MATH DIFFUSION
30120    ERB A, 1997, APPL SUPERCOND, V158, P1109
30121    HIKUMOTO N, 1997, PHYSICA C, V278, P187
30122    KLAUSER M, 1998, PHYSICA C, V306, P188
30123    LAGRAFF JR, 1993, PHYS REV B, V47, P3380
30124    LAGRAFF JR, 1993, PHYSICA C, V212, P470
30125    LAGRAFF JR, 1993, PHYSICA C, V212, P487
30126    MURAKAMI M, 1994, JPN J APPL PHYS, V33, P715
30127    MURAKAMI M, 1997, PHYSICA C 1, V282, P371
30128    ROTHMAN SJ, 1989, PHYS REV B, V40, P8852
30129    ROTHMAN SJ, 1991, PHYS REV B, V44, P2326
30130    SHAKED H, 1990, PHYS REV B, V41, P4173
30131    TALLON JL, 1992, SCIENCE, V258, P781
30132    TU KN, 1989, PHYS REV B, V39, P304
30133    XIA XM, 1989, PHYS REV B, V40, P4549
30134    YOO SI, 1994, APPL PHYS LETT, V65, P633
30135 NR 16
30136 TC 5
30137 SN 0921-4534
30138 J9 PHYSICA C
30139 JI Physica C
30140 PD JUL
30141 PY 2000
30142 VL 337
30143 IS 1-4
30144 BP 307
30145 EP 311
30146 PG 5
30147 SC Physics, Applied
30148 GA 343DL
30149 UT ISI:000088686400062
30150 ER
30151 
30152 PT J
30153 AU Tan, WH
30154    Yan, KZ
30155    Liu, RH
30156 TI The enhancement of spontaneous and induced transition rates by a
30157    Bose-Einstein condensate
30158 SO JOURNAL OF MODERN OPTICS
30159 DT Article
30160 ID RESONANCE OPTICS; H-DOWN; GAS; ATOMS; LIGHT
30161 AB In this paper, an exactly solved model for the emission by N atoms is
30162    presented, the spontaneous and induced transition rates obtained, are
30163    enhanced by a factor which is proportional to the number of atoms n in
30164    the volume lambda(3)/(2 pi(2)) (lambda is the transition wavelength of
30165    the atom) and dependent on the de-Broglie wavelength lambda(B) in a
30166    more complicated way.
30167 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
30168    Acad Sinica, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
30169 RP Tan, WH, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
30170 CR ANDERSON MH, 1995, SCIENCE, V269, P198
30171    BRADLEY CC, 1995, PHYS REV LETT, V75, P1787
30172    DAVIS KB, 1995, PHYS REV LETT, V75, P3969
30173    GLAUBER RJ, 1959, LECTURES THEORETICAL, V1, P315
30174    HOPE JJ, 1996, PHYS REV A, V54, P3177
30175    HUANG H, 1997, PHYS REV LETT, V79, P2923
30176    JAVANAINEN JH, 1994, PHYS REV LETT, V72, P2375
30177    LEHMBERG RH, 1970, PHYS REV A-GEN PHYS, V2, P883
30178    LEVI BG, 1998, PHYS TODAY      1017
30179    POLITZER HD, 1991, PHYS REV A, V43, P6444
30180    SCHIFF LI, 1968, QUANTUM MECH, P533
30181    SVISTUNOV BV, 1990, ZH EKSP TEOR FIZ, V97, P821
30182    SVISTUNOV BV, 1990, ZH EKSP TEOR FIZ, V98, P129
30183    TAYLOR JR, 1987, SCATTERING THEORY QU
30184    WEISSKOPF V, 1930, Z PHYS, V63, P54
30185    WEISSKOPF VG, 1990, QUANTUM STAT PROPERT, P285
30186    YOU L, 1994, PHYS REV A, V50, R3365
30187    YOU L, 1996, PHYS REV A, V53, P329
30188 NR 18
30189 TC 0
30190 SN 0950-0340
30191 J9 J MOD OPTIC
30192 JI J. Mod. Opt.
30193 PD AUG
30194 PY 2000
30195 VL 47
30196 IS 10
30197 BP 1729
30198 EP 1737
30199 PG 9
30200 SC Optics
30201 GA 341DF
30202 UT ISI:000088575200011
30203 ER
30204 
30205 PT J
30206 AU Sun, JA
30207    Zhu, ZY
30208 TI Upwind local differential quadrature method for solving incompressible
30209    viscous flow
30210 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
30211 DT Article
30212 DE upwind local differential quadrature method; incompressible viscous
30213    flow; navier-stokes equations
30214 ID EQUATIONS
30215 AB The differential quadrature method (DQM) is able to obtain quite
30216    accurate numerical solutions of differential equations with few grid
30217    points and less computational effort. The successful applications of
30218    DQM have been reported to solve various problems of fluid mechanics.
30219    But, owing to the limitation of its quadrature rules, DQM is convenient
30220    only For regular regions and lacks upwind mechanism to characterize the
30221    convection of the fluid flow. In the present paper, a local
30222    differential quadrature method (LDQM) with upwind mechanism is proposed
30223    to solve incompressible viscous fluid flow problems in irregular
30224    regions. As its application, planar contraction flows in irregular
30225    regions is numerically solved and excellent numerical results are
30226    obtained for coarse meshes, (C) 2000 Elsevier Science S.A. All rights
30227    reserved.
30228 C1 Shanghai Univ, Dept Math, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
30229    NW Normal Univ, Dept Phys, Lanzhou 730070, Peoples R China.
30230 RP Sun, JA, Shanghai Univ, Dept Math, Shanghai Inst Appl Math & Mech,
30231    Shanghai 200072, Peoples R China.
30232 CR BELLMAN R, 1971, J MATH ANAL APPL, V34, P235
30233    BELLMAN R, 1972, J COMPUT PHYS, V10, P40
30234    BERT CW, 1996, APPL MECH REV, V49, P1
30235    BOGER DV, 1987, ANNU REV FLUID MECH, V19, P157
30236    CIVAN F, 1983, INT J NUMER METH ENG, V19, P711
30237    JANG SK, 1989, INT J NUMER METH ENG, V28, P561
30238    KINE ME, 1983, J NONNEWTONIAN FLUID, V13, P341
30239    SHU C, 1990, 3RD P INT C ADV NUM, V2, P978
30240    SHU C, 1992, COMPUTING SYSTEMS EN, V3, P271
30241    SHU C, 1992, INT J NUMER METH FL, V15, P791
30242    SHU C, 1993, P 1 PAN PAC C COMP E, P131
30243    STRIZ AG, 1994, INT J NONLINEAR MECH, V29, P665
30244    VIRIYAYUTHAKORN M, 1980, J NONNEWTONIAN FLUID, V6, P245
30245    VRENTAS JS, 1973, APPL SCI RES, V28, P241
30246 NR 14
30247 TC 0
30248 SN 0045-7825
30249 J9 COMPUT METHOD APPL MECH ENG
30250 JI Comput. Meth. Appl. Mech. Eng.
30251 PY 2000
30252 VL 188
30253 IS 1-3
30254 BP 495
30255 EP 504
30256 PG 10
30257 SC Computer Science, Interdisciplinary Applications; Engineering,
30258    Mechanical; Mechanics
30259 GA 342TR
30260 UT ISI:000088661700030
30261 ER
30262 
30263 PT J
30264 AU Wang, YF
30265    Wang, ZH
30266    Bialkowski, ME
30267 TI All-optical logic devices with cascaded nonlinear couplers
30268 SO APPLIED OPTICS
30269 DT Article
30270 ID DIRECTIONAL-COUPLERS
30271 AB The switching behaviors of cascaded nonlinear couplers were
30272    investigated. They have nearly ideal digital-switching characteristics,
30273    and their output power levels can he adjusted by means of varying the
30274    nonlinear coupling coefficient of the final coupler. The two-input
30275    excitation nonlinear cascaded couplers can perform not only switching
30276    operations but also a series of logic operations; The logic operations
30277    depend mainly on the coupling length of the two-input coupler and its
30278    initial inputs. The power corresponding to the rising and falling ridge
30279    of the logic operating waveforms can be shifted effectively by means of
30280    varying the switching power of the reshaper. Allowable ranges of three
30281    important parameters-coupling length of the two-input coupler L-1, bias
30282    optical power P-bia, and phase difference Jr between the signal and
30283    bias beams for six fundamental logic operations-were calculated. Curves
30284    for design considerations and suggestions for the best choice of
30285    parameters for stable and reliable logic operations AND, OR, XOR, NAND,
30286    NOR, and NXOR are also presented individually. (C) 2000 Optical Society
30287    of America OCIS codes: 060.0060, 130.0130, 190.0190, 220.0220, 230.0230.
30288 C1 Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore.
30289    Shanghai Univ, Wave Sci Lab, Shanghai 201800, Peoples R China.
30290 RP Wang, YF, Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore
30291    639798, Singapore.
30292 CR AITCHISON JS, 1995, OPT LETT, V20, P698
30293    CHEN Y, 1990, ELECTRON LETT, V26, P77
30294    CHEN YJ, 1992, IEEE J QUANTUM ELECT, V28, P239
30295    FUKUSHIMA T, 1995, P ILLMC 95, P250
30296    JENSEN SM, 1982, IEEE J QUANTUM ELECT, V18, P1580
30297    KITAYAMA K, 1983, APPL PHYS LETT, V43, P17
30298    PHAM AT, 1990, INT J OPTOELECTRON, V5, P367
30299    PHAM AT, 1991, J OPT SOC AM B, V8, P1914
30300    VILLENEUVE A, 1992, APPL PHYS LETT, V61, P147
30301    WANG YF, 1999, IEEE PHOTONIC TECH L, V11, P72
30302    WANG YF, 1999, J LIGHTWAVE TECHNOL, V17, P292
30303    YANG CC, 1992, IEEE J QUANTUM ELECT, V28, P479
30304 NR 12
30305 TC 1
30306 SN 0003-6935
30307 J9 APPL OPT
30308 JI Appl. Optics
30309 PD AUG 10
30310 PY 2000
30311 VL 39
30312 IS 23
30313 BP 4143
30314 EP 4152
30315 PG 10
30316 SC Optics
30317 GA 342KE
30318 UT ISI:000088643100011
30319 ER
30320 
30321 PT J
30322 AU Chen, MY
30323    Guo, HW
30324    Wei, CL
30325 TI Algorithm immune to tilt phase-shifting error for phase-shifting
30326    interferometers
30327 SO APPLIED OPTICS
30328 DT Article
30329 ID STEPPING ALGORITHM; SURFACES
30330 AB As a phase shifter usually suffers from both translational and
30331    tilt-shift errors during shifting, so every pixel in the same
30332    interferogram will have a different phase-shift value. Thus nonlinear
30333    phase-measurement errors cannot be avoided, but even
30334    translational-shift error has been corrected effectively. However,
30335    based on the fact that the shifted phases of all the pixels in the same
30336    interferogram remain on the phase-shift plane, by defining this plane
30337    one can eliminate a significant number of phase errors. A new algorithm
30338    that is immune to both translational- and tilt-shift errors in a phase
30339    shifter for phase-stepping interferometers is presented. A first-order
30340    Taylor series expansion replaces the nonlinear equations for defining
30341    the phase-shift plane, and iteration of the algorithm guarantees its
30342    accuracy. Results of a computer simulation show that phase-measurement
30343    errors caused by both translation- and tilt-shift error can be
30344    compensated for completely, even when the tilt-shift error is not more
30345    than +/-1%. (C) 2000 Optical Society of America. OCIS codes: 050.5080,
30346    120.3180, 120.5050.
30347 C1 Shanghai Univ, Lab Appl Opt & Metrol, Shanghai 201800, Peoples R China.
30348    Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
30349 RP Chen, MY, Shanghai Univ, Lab Appl Opt & Metrol, Shanghai 201800,
30350    Peoples R China.
30351 CR BRUNING JH, 1974, APPL OPTICS, V13, P2693
30352    CARRE P, 1966, METROLOGIA, V2, P13
30353    CREATH K, 1993, INTERFEROGRAM ANAL, P94
30354    KONG IB, 1995, OPT ENG, V34, P1400
30355    KONG IB, 1995, OPT ENG, V34, P183
30356    MORGAN CJ, 1982, OPT LETT, V7, P368
30357    OKADA K, 1991, OPT COMMUN, V84, P118
30358    WEI CL, 1998, P SOC PHOTO-OPT INS, V3478, P411
30359    WEI CL, 1999, OPT ENG, V38, P1357
30360 NR 9
30361 TC 6
30362 SN 0003-6935
30363 J9 APPL OPT
30364 JI Appl. Optics
30365 PD AUG 1
30366 PY 2000
30367 VL 39
30368 IS 22
30369 BP 3894
30370 EP 3898
30371 PG 5
30372 SC Optics
30373 GA 338MZ
30374 UT ISI:000088425000011
30375 ER
30376 
30377 PT J
30378 AU Xu, JQ
30379    Shun, YA
30380    Pan, QY
30381    Qin, JH
30382 TI Sensing characteristics of double layer film of ZnO
30383 SO SENSORS AND ACTUATORS B-CHEMICAL
30384 DT Article
30385 DE zinc oxide; gas selectivity; gas sensor; double layer film; catalyst
30386    coating
30387 AB Pure ZnO powder was made by chemical precipitation. ZnO-based gas
30388    sensing materials and Al2O3-based catalysts doped with a noble metal
30389    were prepared with impregnation. Gas sensitivity of ZnO single layer
30390    and double layer film gas sensors was measured in static state. It can
30391    be shown from experimental results that the gas sensitivity and
30392    selectivity of ZnO gas sensor can be improved by doping noble metal and
30393    using noble metal catalyst coating, (C) 2000 Elsevier Science B.V. All
30394    rights reserved.
30395 C1 Zhengzhou Inst Light Ind, Dept Chem Engn, Zhengzhou 450002, Peoples R China.
30396    Shanghai Univ, Sch Chem Engn, Shanghai 210072, Peoples R China.
30397 RP Xu, JQ, Zhengzhou Inst Light Ind, Dept Chem Engn, Zhengzhou 450002,
30398    Peoples R China.
30399 CR LOU X, 1991, J SENS T TECHNOL, V3, P1
30400    XU J, 1993, J FUNCT MAT, V24, P30
30401    XU J, 1997, SENS WORLD, V3, P7
30402    XU J, 1998, J FUNCT MAT, V29, P281
30403 NR 4
30404 TC 16
30405 SN 0925-4005
30406 J9 SENSOR ACTUATOR B-CHEM
30407 JI Sens. Actuator B-Chem.
30408 PD JUL 25
30409 PY 2000
30410 VL 66
30411 IS 1-3
30412 BP 161
30413 EP 163
30414 PG 3
30415 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
30416 GA 337TV
30417 UT ISI:000088378500050
30418 ER
30419 
30420 PT J
30421 AU Pan, QY
30422    Xu, JQ
30423    Dong, XW
30424    Zhang, JP
30425 TI Gas-sensitive properties of nanometer-sized SnO2
30426 SO SENSORS AND ACTUATORS B-CHEMICAL
30427 DT Article
30428 DE sol-gel method; nanometer; tin peroxide; doping; reducing gas
30429 AB Nanometer-sized SnO2 particles were prepared by a sol-gel method using
30430    inorganic salt as a precursor material. The investigated results
30431    indicate that well-crystallized nano-sized SnO2 with size around 15 nm
30432    was obtained at annealing temperature 600 degrees C. The activation
30433    energy for the growth of nano-SnO2 was calculated to be 26.55 kJ
30434    mol(-1) when the annealing temperature was higher than 500 degrees C.
30435    The measurements also show that there is a peculiar resistance change
30436    as a function of temperature for nano-SnO2. It has relevance to the
30437    increase of surface adsorbed oxygen. The selective detection for C4H10
30438    and patrol can be increased when ruthenium ion was doped in nano-SnO2
30439    as a catalyst. The gas sensitivity to CO, CH4, H-2, etc., can be
30440    increased when rhodium ion was doped in nano-SnO2 as a catalyst and the
30441    detection to the several reducing gas can be realized ranging in
30442    temperature from 260 degrees C to 400 degrees C. (C) 2000 Elsevier
30443    Science S.A. All rights reserved.
30444 C1 Shanghai Univ, Sch Chem Engn, Shanghai 200072, Peoples R China.
30445    Zhengzhou Inst Light Ind, Dept Chem Engn, Zhengzhou 450002, Peoples R China.
30446 RP Pan, QY, Shanghai Univ, Sch Chem Engn, Shanghai 200072, Peoples R China.
30447 CR CULLITY BD, 1977, ELEMENTS XRAY DIFFRA
30448    RAMAMURTHI SD, 1990, J AM CERAM SOC, V73, P2760
30449    SCOTT MG, AMORPHOUS METALLIC A
30450    ZHOU QF, 1995, J TRANSDUCTION TECHN, V8, P22
30451 NR 4
30452 TC 12
30453 SN 0925-4005
30454 J9 SENSOR ACTUATOR B-CHEM
30455 JI Sens. Actuator B-Chem.
30456 PD JUL 25
30457 PY 2000
30458 VL 66
30459 IS 1-3
30460 BP 237
30461 EP 239
30462 PG 3
30463 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
30464 GA 337TV
30465 UT ISI:000088378500075
30466 ER
30467 
30468 PT J
30469 AU Xu, JQ
30470    Pan, QY
30471    Shun, YA
30472    Tian, ZZ
30473 TI Grain size control and gas sensing properties of ZnO gas sensor
30474 SO SENSORS AND ACTUATORS B-CHEMICAL
30475 DT Article
30476 DE zinc oxide; nanometer material; grain size control; gas sensor;
30477    emulsion synthesis
30478 AB Nanometer ZnO gas sensing material with different particle size were
30479    made by chemical precipitation, emulsion and microemulsion,
30480    respectively. Crystal structure and ceramic microstructure of powders
30481    were determined by XRD and TEM. The mean grain size and lattice
30482    distortion of the materials were calculated with the Cauchy-Cauchy and
30483    Debye-Scherrer methods, respectively. Gas sensitivity of ZnO to H-2,
30484    SF6, C4H10, gasoline, C2H5OH was measured. It Fan be shown from
30485    experimental results that grain size of ZnO gas-sensitive materials can
30486    be controlled by means of different processes or surfactants. The gas
30487    sensitivity of ZnO gas sensor depends upon its grain size. (C) 2000
30488    Elsevier Science S.A. All rights reserved.
30489 C1 Zhengzhou Inst Light Ind, Dept Chem Engn, Zhengzhou 450002, Peoples R China.
30490    Shanghai Univ, Sch Chem Engn, Shanghai 210072, Peoples R China.
30491 RP Xu, JQ, Zhengzhou Inst Light Ind, Dept Chem Engn, Zhengzhou 450002,
30492    Peoples R China.
30493 CR LOU X, 1991, J SENS T TECHNOL, V3, P1
30494    PAN S, 1993, J SENS TRANS TECHNOL, V3, P18
30495    SEIYAMA T, 1962, ANAL CHEM, V34, P1502
30496    XU J, 1993, J FUNCT MAT, V24, P30
30497    XU J, 1998, J INORG CHEM, V14, P355
30498 NR 5
30499 TC 40
30500 SN 0925-4005
30501 J9 SENSOR ACTUATOR B-CHEM
30502 JI Sens. Actuator B-Chem.
30503 PD JUL 25
30504 PY 2000
30505 VL 66
30506 IS 1-3
30507 BP 277
30508 EP 279
30509 PG 3
30510 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
30511 GA 337TV
30512 UT ISI:000088378500086
30513 ER
30514 
30515 PT J
30516 AU Adikary, SU
30517    Meng, ZY
30518    Jin, DR
30519 TI A resistivity gradient piezoelectric FGM actuator
30520 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
30521 DT Article
30522 AB A resistivity gradient actuator based on lead zirconate titanate
30523    ceramics was successfully developed and the bending deflections up to
30524    140 mu m were obtained. The actuator material was a matrix of PZT
30525    ceramic into which smooth gradient of piezoelectric activity was
30526    introduced. The application of an electric field then causes the
30527    actuator to bend due to differential strains induced by the
30528    piezoelectric effect. The resistivity gradient of the actuator was
30529    achieved by doping PZT with suitable donor and acceptor dopants. PZT
30530    powder was modified and synthesized by using two stage powder
30531    fabrication method. The actuator was fabricated by uniaxial pressing
30532    followed by isostatic pressing with two layers of different
30533    resistivities.
30534 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
30535    Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China.
30536 RP Meng, ZY, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
30537    China.
30538 CR HEARTLING GH, 1994, AM CERAM SOC B, V73, P93
30539    HEARTLING GH, 1997, SPIE, V3040, P81
30540    NINO M, 1990, ISIJ INT, V30, P699
30541    ONITSUKA K, 1995, J INTEL MAT SYST STR, V6, P447
30542    ROBBINS WP, 1991, IEEE T ULSR FERR FRE, V68, P634
30543    SUGAWARA Y, 1992, J AM CERAM SOC, V75, P996
30544    TOMIKAWA Y, 1986, FERROELECTRICS, V68, P235
30545    UCHINO K, 1997, PIEZOELECTRIC ACTUAT
30546    WU CCM, 1996, J AM CERAM SOC, V79, P809
30547    ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169
30548    ZHU XH, 1998, J MATER SCI, V33, P1023
30549 NR 11
30550 TC 2
30551 SN 1005-0302
30552 J9 J MATER SCI TECHNOL
30553 JI J. Mater. Sci. Technol.
30554 PD JUL
30555 PY 2000
30556 VL 16
30557 IS 4
30558 BP 383
30559 EP 386
30560 PG 4
30561 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
30562    Engineering
30563 GA 337QA
30564 UT ISI:000088372100007
30565 ER
30566 
30567 PT J
30568 AU Cheng, XY
30569    Wan, XJ
30570    Chen, YX
30571    Yao, MY
30572 TI The effect of Al and Fe on the intergranular embrittlement of Co3Ti
30573    alloys by hydrogen transport from the external surface
30574 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
30575 DT Article
30576 ID ENVIRONMENTAL EMBRITTLEMENT; MECHANICAL-PROPERTIES; ORDERED ALLOYS;
30577    WATER-VAPOR; POLYCRYSTALS; FRACTURE; NI3FE
30578 AB Some observation relating tp the solubility, diffusivity and
30579    intergranular cracking by hydrogen transport from the external surface
30580    in Co3Ti, Co3Ti-Al and Co3Ti-Fe alloys have been carried out. The
30581    results show that the addition of alloying elements Al or Fe to Co3Ti
30582    alloy can increase the critical hydrogen concentration for changing
30583    from transgranular to brittle intergranular fracture, therefore
30584    suppress the moisture induced environmental embrittlement.
30585 C1 Shanghai Univ, Inst Met & Mat Sci, Shanghai 200072, Peoples R China.
30586 RP Cheng, XY, Shanghai Univ, Inst Met & Mat Sci, Shanghai 200072, Peoples
30587    R China.
30588 CR CAMUS GM, 1989, ACTA METALL, V37, P1497
30589    CHEN YX, 1998, J MATER SCI LETT, V17, P1627
30590    CHENG XY, 1997, J IRON STEEL RES S, V9, P270
30591    CHENG XY, 1997, SCRIPTA MATER, V37, P1065
30592    CHU WY, 1981, CORROSION, V37, P514
30593    CHU WY, 1982, CORROSION, V38, P514
30594    CHU WY, 1982, CORROSION, V38, P561
30595    KIMURA A, 1994, MATER T JIM, V35, P879
30596    KIMURA A, 1995, INTERMETALLICS, V3, P115
30597    KURUVILLA AK, 1985, SCRIPTA METALL, V19, P83
30598    LIU CT, 1984, INT MET REV, V29, P168
30599    LIU CT, 1990, SCRIPTA METALL MATER, V24, P1583
30600    LIU Y, 1989, ACTA METALL, V37, P507
30601    LIU Y, 1989, J MATER SCI, V24, P4458
30602    SHUTT RC, 1985, WELD J, V64, P19
30603    TAKASUGI T, 1986, ACTA METALL, V34, P607
30604    TAKASUGI T, 1997, INTERMETALLICS, V5, P443
30605    ZHANG DZ, 1993, SCRIPTA METALL MATER, V29, P901
30606 NR 18
30607 TC 0
30608 SN 1005-0302
30609 J9 J MATER SCI TECHNOL
30610 JI J. Mater. Sci. Technol.
30611 PD JUL
30612 PY 2000
30613 VL 16
30614 IS 4
30615 BP 431
30616 EP 434
30617 PG 4
30618 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
30619    Engineering
30620 GA 337QA
30621 UT ISI:000088372100018
30622 ER
30623 
30624 PT J
30625 AU Wang, LJ
30626    Sang, WB
30627    Shi, WM
30628    Qian, YB
30629    Min, JH
30630    Liu, DH
30631    Xia, YB
30632 TI Electrical properties of contacts on P-type Cd0.8Zn0.2Te crystal
30633    surfaces
30634 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION
30635    A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
30636 DT Article
30637 DE cadmium zinc telluride; electrical contacts; gamma-ray detectors
30638 ID RADIATION DETECTORS; TELLURIDE
30639 AB In this payer effects of surface treatments of p-type Cd0.8Zn0.2Te
30640    devices were studied by Atomic Force Microscopy (AFM), I-V
30641    measurements, and electrical properties as well as different contact
30642    technologies using Au, Al: In and electroless Au. It is shown that
30643    electroless Au film deposited by the chemical method can form a heavily
30644    doped pf layer on a smooth surface, which is nearly ohmic on p-type
30645    material. Electroless Au gives better contact than evaporated Au, Al or
30646    In. A post-annealing treatment of electroless Au film improves the
30647    ohmic quality of contacts and enhances the adhesion between contact
30648    layer and the Cd0.8Zn0.2Te crystal surface. (C) 2000 Elsevier Science
30649    B.V. All rights reserved.
30650 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
30651 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
30652    China.
30653 CR AZOULAY M, 1993, J VAC SCI TECHNOL B, V11, P148
30654    BUTLER JF, 1992, IEEE T NUCL SCI, V39, P605
30655    CHEN KT, 1997, J VAC SCI TECHNOL  1, V15, P850
30656    GEORGE MA, 1995, J APPL PHYS, V77, P3134
30657    LACHISH U, 1998, NUCL INSTRUM METH A, V403, P417
30658    MUSA A, 1983, J APPL PHYS, V54, P3260
30659    NEMIROVSKY Y, 1996, J ELECTRON MATER, V25, P1221
30660    RABINAL MK, 1997, J ELECTRON MATER, V26, P893
30661    SUZUKI K, 1996, J CRYST GROWTH, V159, P388
30662    VERGER L, 1997, J ELECT MAT, V26, P738
30663    YOON H, 1997, J ELECTRON MATER, V26, P529
30664 NR 11
30665 TC 2
30666 SN 0168-9002
30667 J9 NUCL INSTRUM METH PHYS RES A
30668 JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
30669    Equip.
30670 PD JUL 1
30671 PY 2000
30672 VL 448
30673 IS 3
30674 BP 581
30675 EP 585
30676 PG 5
30677 SC Physics, Particles & Fields; Instruments & Instrumentation; Nuclear
30678    Science & Technology; Spectroscopy
30679 GA 336CU
30680 UT ISI:000088285000012
30681 ER
30682 
30683 PT J
30684 AU Xia, SL
30685    Zhao, MJ
30686    Wu, ZY
30687    Li, ZP
30688 TI Detection of Lis1 gene frame shift mutation in human hepatocarcinoma
30689 SO ACTA BIOCHIMICA ET BIOPHYSICA SINICA
30690 DT Article
30691 DE PTT; Lis1 gene; frame shift mutation; GST fusion protein
30692 ID CANCER PATIENTS
30693 AB GST fusion protein expression system combined with protein truncation
30694    test(PTT) protocol was used to detect gene frame shift mutation. The
30695    RT-PCR products of Lis1 genes from hepatocarcinoma samples were
30696    respectively cloned into a GST fusion protein expression vector pGEX-1,
30697    then expressed in E. coli. The results showed a truncated 33 kD fusion
30698    protein in SDS-PAGE, although the full-translated product of Lis1 gene
30699    should be of 71 kD. Sequencing revealed insertion of an A residue,
30700    causing the premature termination of translation, between the 163th and
30701    164th nucleotide of Lis1 gene. This improved PTT assay was proved to be
30702    a fast and effective way in detecting gene frame shift mutation.
30703 C1 Shanghai Univ, Sch Life Sci, Dept Biochem Engn, Shanghai 201800, Peoples R China.
30704    Chinese Acad Sci, Shanghai Inst Biochem, Shanghai 200031, Peoples R China.
30705 CR DANIELA TP, 1998, HUM MOL GENET, V13, P2029
30706    DUNNEN JT, 1999, HUM MUTAT, V14, P95
30707    FARRINGTON SM, 1998, AM J HUM GENET, V63, P749
30708    ORLY R, 1993, NAT GENET, V364, P717
30709    OZCELIK H, 1997, NAT GENET, V16, P17
30710 NR 5
30711 TC 1
30712 SN 0582-9879
30713 J9 ACTA BIOCHIM BIOPHYS SINICA
30714 JI Acta Biochim. Biophys. Sin.
30715 PD JUL
30716 PY 2000
30717 VL 32
30718 IS 4
30719 BP 401
30720 EP 405
30721 PG 5
30722 SC Biochemistry & Molecular Biology; Biophysics
30723 GA 336TQ
30724 UT ISI:000088319400019
30725 ER
30726 
30727 PT J
30728 AU De-Kang, M
30729 TI Toward front tracking based on conservation in two space dimensions
30730 SO SIAM JOURNAL ON SCIENTIFIC COMPUTING
30731 DT Article
30732 DE front tracking; cell-average; recovery of discontinuity curve
30733 ID FINITE-DIFFERENCE METHODS; WAVE-PROPAGATION METHODS; DISCONTINUITIES;
30734    SCHEMES
30735 AB A two-dimensional front tracking method based on conservation for
30736    scalar conservation law and for the Euler system of gas dynamics is
30737    being developed. In the method, discontinuities are tracked by
30738    enforcing the conservation properties of the PDEs. Unlike the
30739    traditional front tracking methods, for which the conservation is only
30740    a property that may or may not be preserved, in this front tracking
30741    method the conservation is the mechanism by which the tracking is
30742    performed. The method is also extended to treat the reflection wall
30743    boundary in the Euler system. As an attempt to treat the interactions
30744    of discontinuities by enforcing the conservation properties without
30745    solving two-dimensional Riemann problems, three special cases of
30746    treatment of discontinuity interactions in scalar conservation law and
30747    in the Euler system of gas dynamics are studied. Finally, numerical
30748    experiments are implemented in both scalar and system cases to show the
30749    efficiency of the method.
30750 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
30751 RP De-Kang, M, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
30752 CR CHERN IL, 1986, J COMPUT PHYS, V62, P83
30753    CHERN IL, 1987, UCRL97200 L LIV NAT
30754    CHORIN AJ, 1993, MATH INTRO FLUID MEC
30755    COLELLA P, 1984, J COMPUT PHYS, V54, P174
30756    DESCHAMBAULT RL, 1983, J FLUID MECH, V131, P27
30757    FORRER H, 1996, 9304 EIDG TH
30758    FORRER H, 1996, 9613 EIDG TH
30759    GLIMM J, 1985, ADV APPL MATH, V6, P259
30760    GLIMM J, 1986, SIAM J SCI STAT COMP, V7, P230
30761    GLIMM J, 1988, COMMUN PUR APPL MATH, V41, P569
30762    GLIMM J, 1988, SIAM J SCI STAT COMP, V9, P61
30763    GLIMM J, 1998, COMPUT MATH APPL, V35, P1
30764    GLIMM J, 1998, SIAM J SCI COMPUT, V19, P703
30765    GROVE J, 1989, ADV APPL MATH, V10, P201
30766    HARTEN A, 1987, J COMPUT PHYS, V71, P231
30767    HARTEN A, 1987, SIAM J NUMER ANAL, V24, P279
30768    HENSHAW WD, 1987, J COMPUT PHYS, V68, P25
30769    KLINGENBERG C, 1994, MATH COMPUT MODEL, V20, P89
30770    LEVEQUE RJ, 1990, 9037 2CASE
30771    LEVEQUE RJ, 1990, NUMERICAL METHODS CO
30772    LEVEQUE RJ, 1995, SIAM J SCI COMPUT, V16, P348
30773    LEVEQUE RJ, 1996, J COMPUT PHYS, V123, P354
30774    MAJDA A, 1984, APPL MATH SCI, V53
30775    MAO D, 1985, J COMPUT MATH, V3, P356
30776    MAO D, 1991, P 3 INT C HYP PROBL
30777    MAO DK, 1991, J COMPUT PHYS, V92, P422
30778    MAO DK, 1992, J COMPUT PHYS, V103, P359
30779    MAO DK, 1993, J COMPUT PHYS, V104, P377
30780    MAO DK, 1995, SIAM J NUMER ANAL, V32, P1677
30781    MAO DK, 1999, SIAM J NUMER ANAL, V36, P529
30782    MORETTI G, 1972, PIBAL7237 POL I BROO
30783    OSHER S, 1986, IMA VOLUMES MATH ITS, V2, P229
30784    SHU CW, 1987, J COMPUT PHYS, V83, P439
30785    SWARTZ BK, 1986, APPL NUMER MATH, V2, P385
30786    VANLEER B, 1977, J COMPUT PHYS, V23, P276
30787    WANGER DH, 1983, SIAM J MATH ANAL, V14, P534
30788    WOODWARD P, 1984, J COMPUT PHYS, V54, P115
30789    ZHU YL, 1980, DIFFERENCE METHODS I
30790 NR 38
30791 TC 0
30792 SN 1064-8275
30793 J9 SIAM J SCI COMPUT
30794 JI SIAM J. Sci. Comput.
30795 PD JUN 23
30796 PY 2000
30797 VL 22
30798 IS 1
30799 BP 113
30800 EP 151
30801 PG 39
30802 SC Mathematics, Applied
30803 GA 334BP
30804 UT ISI:000088165500007
30805 ER
30806 
30807 PT J
30808 AU Wei, JH
30809    Zhu, SJ
30810    Yu, NW
30811 TI Kinetic model of desulphurisation by powder injection and blowing in RH
30812    refining of molten steel
30813 SO IRONMAKING & STEELMAKING
30814 DT Article
30815 ID IRON
30816 AB The desulphurisation by powder injection and blowing in the RH refining
30817    of molten steel and its mechanism have been considered and analysed.
30818    Based on the two-resistance mass transfer theory and the mass balance
30819    of sulphur in the system, a kinetic model for the process has been
30820    developed. The related parameters of the model, including the mass
30821    transfer coefficients and the effective amount of powder in the molten
30822    steel being treated for desulphurisation, have been reasonably
30823    determined. Modelling and predictions of the process of injecting and
30824    blowing the lime based powder flux under assumed operating modes with
30825    the different initial contents of sulphur and amounts of powder
30826    injected and blown in a RH degasser of 300 t capacity have been carried
30827    out using the model, The relevant circulation rate of the liquid steel
30828    and the powder injection and blowing rate were taken to be 100 t
30829    min(-1) and 150 kg min(-1), respectively, The initial contents of
30830    sulphur in the liquid steel to be treated a nd the amounts of powder
30831    injection and blowing were respectively assumed to be 0.007, 0.006,
30832    0.005, 0.004, 0.003, 0.002 wt-% and 10, 8, 6, 5, 4, 3 kg/t steel, The
30833    total treatment time for desulphurisation under each mode was set at 24
30834    min, equivalent to eight circulation cycles of the liquid steel to be
30835    treated. The results indicated that the predictions made by this model
30836    are in good agreement with data from industrial experiments and
30837    practice. By injecting and blowing the lime based powder flux with the
30838    composition of 85 wt-% lime (CaO) + 15 wt-% fluorspar (CaF2) of 3-5
30839    kg/t steel, it is possible to decrease the sulphur content in the
30840    molten steel to an ultralow level below (5-10) x 10(-4) wt-% from
30841    (60-80) x 10(-4) wt-%. The total treatment time needed will be 12-20
30842    min. Intensifying the powder injection and blowing operation and
30843    increasing the circulation rate of the liquid steel may effectively
30844    increase the rate of the process in RH refining. The model may be
30845    expected to offer some useful information and a reliable basis for
30846    determining the reasonable process parameters and help in optimising
30847    the technology of desulphurisation by powder injection and blowing in
30848    the RH refining of molten steel.
30849 C1 Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China.
30850 RP Wei, JH, Univ Iowa, Dept Mech Engn, Iowa City, IA 52242 USA.
30851 CR *ISIJ, 1971, YOUT YOUK NO MON YAS, P70
30852    ENDOH K, 1989, SADA TETSU TOGISATA, P20
30853    ENDOH K, 1990, NIPP STEEL TECH REP, P45
30854    ENGH TA, 1972, SCAND J METALL, V1, P103
30855    FARIAS LR, 1985, METALL TRANS B, V16, P211
30856    GEIGER GH, 1973, TRANSPORT PHENOMENA, P18
30857    GHOSH DN, 1982, IRONMAK STEELMAK, V9, P136
30858    HALE RJ, 1990, ISS STEELM C P, V73, P69
30859    HANDA N, 1977, TETSU TO HAGANE, V63, P163
30860    HATAKEYAMA T, 1989, IRON STEELMAKER, V15, P23
30861    IRONS GA, 1986, P INT C INJ MET SC 1
30862    KAWAI Y, 1975, TETSU TO HAGANE, V61, P29
30863    KAWAI Y, 1984, T IRON STEEL I JPN, V24, P509
30864    KIRHARA T, 1992, CAMP ISIJ, V5, P1239
30865    KOMAI T, 1982, P 7 INT C VAC MET TO, P1383
30866    LEHNER T, 1977, P INT C INJ MET SCAN
30867    MCNALLEN M, 1980, P INT C INJ MET SCAN
30868    MCNALLEN M, 1983, P INT INJ MET SCAN 3
30869    MYRAYAMA N, 1990, P 6 INT IR STEEL C N, V3, P151
30870    OETERS F, 1973, ARCH EISENHUTTENWES, V44, P727
30871    OETERS F, 1983, P INT C INJ MET SC 1
30872    OHGUCHI S, 1984, IRONMAK STEELMAK, V11, P262
30873    OHGUCHI S, 1984, IRONMAK STEELMAK, V11, P274
30874    OKADA Y, 1992, CAMP ISIJ, V5, P1238
30875    OKADA Y, 1994, TETSU TO HAGANE, V80, T9
30876    RANZ WE, 1952, CHEM ENG PROG, V48, P141
30877    ROBERTSON DGC, 1980, P INT C INJ MET SCAN
30878    SZATKOWSHI M, 1991, IRONMAK STEELMAK, V17, P65
30879    TSUJINO R, 1989, ISIJ INT, V29, P589
30880    UEHARAL H, 1992, CAMP ISIJ, V5, P1240
30881    WEI JH, 1997, UNPUB
30882 NR 31
30883 TC 2
30884 SN 0301-9233
30885 J9 IRONMAKING STEELMAKING
30886 JI Ironmak. Steelmak.
30887 PY 2000
30888 VL 27
30889 IS 2
30890 BP 129
30891 EP 137
30892 PG 9
30893 SC Metallurgy & Metallurgical Engineering
30894 GA 332JE
30895 UT ISI:000088069900007
30896 ER
30897 
30898 PT J
30899 AU Xiao, HT
30900    Xu, HY
30901 TI In situ permeability measurements to establish the influence of slice
30902    mining on floor rocks
30903 SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES
30904 DT Article
30905 C1 Shanghai Univ Sci & Technol, Ctr Special Mining, Tainan 271019, Taiwan.
30906    Shanghai Univ Sci & Technol, Dept Civil Engn, Tainan 271019, Taiwan.
30907 RP Xiao, HT, Shanghai Univ Sci & Technol, Ctr Special Mining, Tainan
30908    271019, Taiwan.
30909 CR CAI DB, 1981, HDB MINE GEOLOGY, P10
30910    JING ZG, 1984, J CHINA COAL SOC, V9, P81
30911    PANG YH, 1982, COAL GEOLOGY EXPLORA, V10, P37
30912    SUN GZ, 1988, STRUCTURE MECH ROCKS, P92
30913    TANG MX, 1988, THESIS SHANDONG U SC
30914    XIAO HT, 1989, COAL GEOLOGY EXPLORA, V17, P39
30915 NR 6
30916 TC 2
30917 SN 1365-1609
30918 J9 INT J ROCK MECH MINING SCI
30919 JI Int. J. Rock Mech. Min. Sci.
30920 PD JUL
30921 PY 2000
30922 VL 37
30923 IS 5
30924 BP 855
30925 EP 860
30926 PG 6
30927 SC Engineering, Geological; Mining & Mineral Processing
30928 GA 332XA
30929 UT ISI:000088098600008
30930 ER
30931 
30932 PT J
30933 AU Lin, L
30934    Liu, ZY
30935 TI Algebraic multilevel iterative preconditioning methods for H-matrices
30936 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
30937 DT Article
30938 DE algebraic multilevel; H-compatible splitting; diagonal compensation
30939    reduction; optimal order preconditioners
30940 AB A purely algebraic method is presented to construct preconditioners for
30941    symmetric positive definite H-matrices. The main technique is
30942    H-compatible splitting and diagonal compensation reduction. Associated
30943    with some special matrix polynomials, under certain condition, this
30944    method is optimal with respect to the rate of convergence and
30945    computational complexity. Numerical results that illustrate these
30946    properties are provided.
30947 C1 Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China.
30948    Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
30949    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
30950 RP Lin, L, Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China.
30951 CR AXELSSON O, 1984, LINEAR ALGEBRA APPL, V58, P3
30952    AXELSSON O, 1989, NUMER MATH, V56, P157
30953    AXELSSON O, 1990, 9045 CATH U DEP MATH
30954    AXELSSON O, 1990, SIAM J NUMER ANAL, V27, P1569
30955    AXELSSON O, 1991, J COMPUT APPL MATH, V38, P31
30956    AXELSSON O, 1994, NUMER LINEAR ALGEBR, V1, P155
30957    AXELSSON O, 1994, NUMER LINEAR ALGEBR, V1, P213
30958    KOLOTILINA LY, 1993, SIAM J MATRIX ANAL A, V14, P45
30959    VASSILEVSKI PS, 1997, SIAM REV, V39, P18
30960 NR 9
30961 TC 0
30962 SN 0020-7160
30963 J9 INT J COMPUT MATH
30964 JI Int. J. Comput. Math.
30965 PY 2000
30966 VL 74
30967 IS 1
30968 BP 97
30969 EP 111
30970 PG 15
30971 SC Mathematics, Applied
30972 GA 333LK
30973 UT ISI:000088131600008
30974 ER
30975 
30976 PT J
30977 AU Hong-Yi, L
30978 TI The calculation of global error for initial value problem of ordinary
30979    differential equations
30980 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
30981 DT Article
30982 DE ordinary differential equation; initial value problem; global error;
30983    numerical analysis
30984 AB This paper presents a simple but reliable method to calculate global
30985    error of ordinary differential equations. The results show that the
30986    global error can be calculated very simply and satisfactory. Several
30987    numerical examples are given to verify the method.
30988 C1 Shanghai Univ, Polytech 2, Shanghai 200041, Peoples R China.
30989 RP Hong-Yi, L, Shanghai Univ, Polytech 2, 80 Shan Xi Rd, Shanghai 200041,
30990    Peoples R China.
30991 CR BRUSA L, 1980, INT J NUMER METH ENG, V15, P685
30992    DORMAND JR, 1978, CELESTIAL MECH, V18, P223
30993    GEAR CW, 1971, NUMERICAL INITIAL VA
30994    PLISCHKE M, 1994, EQUILIBRIUM STAT PHY
30995    RICE JR, 1993, NUMERICAL METHODS SO
30996 NR 5
30997 TC 0
30998 SN 0020-7160
30999 J9 INT J COMPUT MATH
31000 JI Int. J. Comput. Math.
31001 PY 2000
31002 VL 74
31003 IS 2
31004 BP 237
31005 EP 245
31006 PG 9
31007 SC Mathematics, Applied
31008 GA 333LL
31009 UT ISI:000088131700009
31010 ER
31011 
31012 PT J
31013 AU Yan, KZ
31014    Tan, WH
31015 TI The growth rate and statistical fluctuation of Bose-Einstein condensate
31016    formation
31017 SO CHINESE PHYSICS
31018 DT Article
31019 DE Bbose-Einstein condensate; atom laser; growth rate
31020 ID QUANTUM KINETIC-THEORY; EQUATION; TRAP
31021 AB Using the generating function method to solve the master equation of
31022    Bose-Einstein condensate and to evaluate the growth rate, statistical
31023    fluctuation of condensate atoms, we find out that there is a plateau in
31024    the growth rate curve and a super-Poisson distribution observed.
31025 C1 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
31026 RP Yan, KZ, Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800,
31027    Peoples R China.
31028 CR GARDINER CW, 1997, PHYS REV LETT, V79, P1793
31029    GARDINER CW, 1998, PHYS REV A, V58, P536
31030    GARDINER CW, 1998, PHYS REV LETT, V81, P5266
31031    MIESNER HJ, 1998, SCIENCE, V279, P1005
31032    TAN WH, 1994, PHYS LETT A, V190, P13
31033    TAN WH, 1995, OPT COMMUN, V115, P203
31034    WANG ZX, 1956, INTRO STAT PHYSICS, P186
31035    YAN KZ, 1999, ACTA PHYS SIN-CH ED, V48, P1185
31036 NR 8
31037 TC 4
31038 SN 1009-1963
31039 J9 CHIN PHYS
31040 JI Chin. Phys.
31041 PD JUL
31042 PY 2000
31043 VL 9
31044 IS 7
31045 BP 485
31046 EP 489
31047 PG 5
31048 SC Physics, Multidisciplinary
31049 GA 333PY
31050 UT ISI:000088139500002
31051 ER
31052 
31053 PT J
31054 AU Li, HY
31055    Lee, HY
31056 TI One-parameter equation of state for gases and gas mixtures
31057 SO CHINESE JOURNAL OF CHEMICAL ENGINEERING
31058 DT Article
31059 DE equation of state; virial equation; gases; fugacity; correlation;
31060    mixture; polar; nonpolar
31061 ID CORRESPONDING-STATES
31062 C1 Shanghai Univ, Shanghai 200041, Peoples R China.
31063 RP Lee, HY, Shanghai Univ, Shanghai 200041, Peoples R China.
31064 CR CHUECH PL, 1967, IND ENG CHEM FUND, V6, P442
31065    KELL GS, 1968, J CHEM PHYS, V48, P3805
31066    KNAPP H, 1982, CHEM DATA SER, V6
31067    LEE BI, 1975, AICHE J, V21, P510
31068    LEE HY, 1992, FLUID PHASE EQUILIBR, V81, P152
31069    LEE HY, 1997, J SHANGHAI 2 POLYTEC, V14, P13
31070    MARTIN JJ, 1979, IND ENG CHEM FUND, V18, P81
31071    PLOCKER U, 1978, IND ENG CHEM PROC DD, V17, P324
31072    PRAUSNITZ JM, 1968, COMPUTER CALCULATION
31073    SMITH SM, 1975, INTRO CHEM ENG THERM
31074    SOAVE G, 1972, CHEM ENG SCI, V27, P1197
31075    VARGAFTIK NB, 1975, TABLES THERMOPHYSICA
31076 NR 12
31077 TC 0
31078 SN 1004-9541
31079 J9 CHINESE J CHEM ENG
31080 JI Chin. J. Chem. Eng.
31081 PD JUN
31082 PY 2000
31083 VL 8
31084 IS 2
31085 BP 163
31086 EP 166
31087 PG 4
31088 SC Engineering, Chemical
31089 GA 332UJ
31090 UT ISI:000088091500014
31091 ER
31092 
31093 PT J
31094 AU Lu, YL
31095    Zhou, SP
31096    Xu, DM
31097 TI Analysis of properties of high-electron-mobility-transistor under
31098    optical illumination
31099 SO ACTA PHYSICA SINICA
31100 DT Article
31101 DE high electron mobility transistor; photovoltage; charge-controlling
31102    model; 2-dimensional electron gas
31103 ID ANALYTIC MODEL; HEMTS
31104 AB We studied the dynamical behaviors of the depletion-mode AlGaAs/GaAs
31105    high-electron-mobility transistor under optical illumination. The
31106    photovoltage effect and the photogenerated carriers contribution to the
31107    space charge concentration were taken into account. The pinch-off
31108    voltage, the sheet concentration of two-dimensional electron gas
31109    (2-DEG) located at the interface of the: heterojunction, the I-V
31110    characteristic curve, and the transconductance were investigated by
31111    using the charge-controlling model. We found that the pinch-off voltage
31112    was lowered and the sheet concentration of 2-DEG was increased because
31113    of the optical illumination, which, in turn, resulted in an increase in
31114    the current gain and the transconductance of the device.
31115 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
31116    Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
31117 RP Lu, YL, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
31118 CR CHANG CS, 1987, IEEE T ELECTRON DEV, V34, P1456
31119    CHANG CS, 1987, SOLID STATE ELECTRON, V30, P485
31120    CHATURVEDI GJ, 1983, INFRARED PHYS, V23, P65
31121    CHEN CY, 1983, APPL PHYS LETT, V42, P1040
31122    DELAGEBEAUDEUF D, 1982, IEEE T ELECTRON DEV, V29, P955
31123    DESALLES AA, 1990, MICROW OPT TECHN LET, V3, P350
31124    DESALLES AA, 1991, IEEE T MICROW THEORY, V39, P2010
31125    GRAFFEUIL J, 1979, ELECTRON LETT, V15, P439
31126    HUEPPER G, 1991, PHYS REV LETT, V66, P2372
31127    MITRA H, 1998, IEEE T ELECTRON DEV, V45, P68
31128    SIMONS RN, 1987, IEEE T MICROW THEORY, V35, P1444
31129    SIMONS RN, 1990, OPTICAL CONTROL MICR, CH4
31130    SINGHAL A, 1990, SOLID STATE ELECTRON, V33, P1214
31131    SZE SM, 1981, PHYSICS SEMICONDUCTO, CH13
31132    YU LS, 1990, PHYSICS SEMICONDUCTO, CH5
31133 NR 15
31134 TC 1
31135 SN 1000-3290
31136 J9 ACTA PHYS SIN-CHINESE ED
31137 JI Acta Phys. Sin.
31138 PD JUL
31139 PY 2000
31140 VL 49
31141 IS 7
31142 BP 1394
31143 EP 1399
31144 PG 6
31145 SC Physics, Multidisciplinary
31146 GA 333HU
31147 UT ISI:000088125500037
31148 ER
31149 
31150 PT J
31151 AU Dai, HH
31152    Dai, SQ
31153    Huo, Y
31154 TI Head-on collision between two solitary waves in a compressible
31155    Mooney-Rivlin elastic rod
31156 SO WAVE MOTION
31157 DT Article
31158 DE solitary waves; hyperelastic rods
31159 AB The interaction between two solitary waves in hyperelastic rods had
31160    been studied in literature by numerical methods, and here we study the
31161    head-on collision between two solitary waves in a circular cylindrical
31162    rod composed of a compressible Mooney-Rivlin material by a perturbation
31163    approach which combines the reductive perturbation method with the
31164    technique of strained coordinates. The third-order asymptotic solution
31165    which describes the evolution process of interaction is derived. It is
31166    found that the head-on collision does have imprints on the colliding
31167    waves with nonuniform phase shifts at O(epsilon(2)), which cause the
31168    tilting of the wave profiles. Our analytical results provide a formula
31169    for the maximum amplitude during the collision and also successfully
31170    explain the phenomenon that the smaller solitary wave has a larger
31171    distortion while the larger solitary wave has a smaller distortion. (C)
31172    2000 Elsevier Science B.V. All rights reserved.
31173 C1 City Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China.
31174    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
31175 RP Dai, HH, City Univ Hong Kong, Dept Math, Tat Chee Ave, Kowloon Tong,
31176    Hong Kong, Peoples R China.
31177 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
31178    CLARKSON PA, 1986, STUD APPL MATH, V75, P95
31179    COHEN H, 1993, ACTA MECH, V100, P223
31180    COLEMAN BD, 1990, ARCH RATION MECH AN, V109, P39
31181    DAI HH, 1998, ACTA MECH, V127, P193
31182    DAI SQ, 1984, SIENTIA SINICA, V27, P507
31183    DAI SQ, 1992, NONLINEAR PROBLEMS E
31184    DAI SQ, 1997, APPL MATH MECH-ENGL, V18, P113
31185    HECK H, 1993, INTRO MAPLE
31186    MEI CC, 1989, APPL DYNAMICS OCEAN
31187    NARIBOLI GA, 1970, J MATH PHYS SCI, V4, P64
31188    NEWELL AC, 1985, SOLITONS MATH PHYSIC
31189    SAMSONOV AM, 1994, NONLINEAR WAVES SOLI, P349
31190    SOERENSEN MP, 1984, J ACOUST SOC AM, V76, P871
31191    SOERENSEN MP, 1987, J ACOUST SOC AM, V81, P1718
31192    SU CH, 1980, J FLUID MECH, V98, P509
31193    WRIGHT T, 1982, P IUTAM S FIN EL
31194 NR 17
31195 TC 2
31196 SN 0165-2125
31197 J9 WAVE MOTION
31198 JI Wave Motion
31199 PD AUG
31200 PY 2000
31201 VL 32
31202 IS 2
31203 BP 93
31204 EP 111
31205 PG 19
31206 SC Physics, Multidisciplinary; Acoustics; Mechanics
31207 GA 329VE
31208 UT ISI:000087928500001
31209 ER
31210 
31211 PT J
31212 AU Sang, WB
31213    Qian, YB
31214    Shi, WM
31215    Wang, LJ
31216    Yang, J
31217    Liu, DH
31218 TI Equilibrium partial pressures and crystal growth of Cd1-xZnxTe
31219 SO JOURNAL OF CRYSTAL GROWTH
31220 DT Article
31221 DE equilibrium partial pressure; CdZnTe crystal growth; gamma detector
31222 ID CD-TE; SYSTEM
31223 AB The partial pressures, p(Cd) and p(Zn), over Cd1-xZnxTe (CZT) and
31224    Cd1-xZnx, melts were estimated based on known thermodynamic data and
31225    the partial pressures, p(Cd) and p(Zn), over Cd0.86Zn0.14 alloy melt at
31226    a temperature of about 980 degrees C could be equilibrium with those
31227    over Cd0.8Zn0.2Te melt at a melting temperature of 1162 degrees C. The
31228    Cd0.8Zn0.2Te crystal growth from the melt under controlled constituent
31229    partial pressures, provided by Cd0.86Zn0.14 alloy instead of only Cd
31230    source was carried out in this work. The best result for the
31231    resistivity, which has reached up to about 10(10) Omega cm, has been
31232    obtained under the equilibrium partial pressures estimated by
31233    thermodynamic relationships. The axial variation in Zn concentration,
31234    which has been obviously improved due to the Zn replenishment from the
31235    reservoir during the whole growth procedure, is within about 4%. EPD on
31236    the average was about 2 x 10(5) and 4 x 10(4)cm(-2) at the middle of
31237    the bulk. IR transmissivity in the range of 2 to 42 mu m is larger than
31238    60%. In addition, the relationship between resistivities and conducting
31239    types of the crystal and different controlled pressures is also
31240    discussed. (C) 2000 Elsevier Science B.V. All rights reserved.
31241 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
31242 RP Sang, WB, Shanghai Univ, Sch Mat Sci & Engn, Jiading Campus,20
31243    Chengzhong Rd,Jiading, Shanghai 201800, Peoples R China.
31244 CR BREBRICK RF, 1995, METALL MATER TRANS A, V26, P2597
31245    BUTLER JF, 1992, IEEE T NUCL SCI, V39, P605
31246    EISEN Y, 1998, J CRYST GROWTH, V184, P1310
31247    GLASS HL, 1998, J CRYST GROWTH, V184, P1035
31248    HULTGREN R, 1963, SELECTED VALUES THER, P637
31249    JORDAN AS, 1970, MET T, V1, P239
31250    NIEMELA A, 1994, IEEE T NUCL SCI, V41, P1054
31251    PETERS K, 1990, CRYST RES TECHNOL, V25, P1107
31252    TANAKA A, 1989, J CRYST GROWTH, V94, P166
31253    TUNG T, 1982, J VAC SCI TECHNOL, V21, P117
31254    VYDYANATH HR, 1993, J ELECTRON MATER, V22, P1067
31255 NR 11
31256 TC 8
31257 SN 0022-0248
31258 J9 J CRYST GROWTH
31259 JI J. Cryst. Growth
31260 PD JUN
31261 PY 2000
31262 VL 214
31263 BP 30
31264 EP 34
31265 PG 5
31266 SC Crystallography
31267 GA 328WC
31268 UT ISI:000087873200009
31269 ER
31270 
31271 PT J
31272 AU Sang, WB
31273    Ju, JH
31274    Shi, WM
31275    Qian, YB
31276    Wang, LJ
31277    Xia, YB
31278    Wu, WH
31279    Fang, JX
31280    Li, YJ
31281    Zhao, J
31282    Gong, HM
31283 TI Comparison of physical passivation of Hg1-xCdxTe
31284 SO JOURNAL OF CRYSTAL GROWTH
31285 DT Article
31286 DE MCT physical passivation; ZnS/MCT interface; DLC/MCT interface
31287 ID HGCDTE; WINDOW
31288 AB The interface properties between well-polished MCT and ZnS layers
31289    deposited by three different physical techniques, and DLC prepared by
31290    RFPCVD, have been investigated by AES, IRTS, etc. ZnS and DLC films can
31291    prevent the outward diffusion of the components in MCT. However, Zn and
31292    S in the ZnS layer tend to diffuse into the MCT, especially, the S
31293    diffuses deeper in the case of EBV, and O is detected especially after
31294    PLD, but C in the DLC layer diffuses only slightly into the MCT. In
31295    particular, the IR transmission of the MCT with deposited DLC is
31296    obviously raised, and higher than that of the MCT with deposited ZnS at
31297    least in the range of 7.1-7.5 mu m. (C) 2000 Elsevier Science B.V. All
31298    rights reserved.
31299 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
31300    Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China.
31301 RP Sang, WB, Shanghai Univ, Sch Mat Sci & Engn, Jiading Campus, Shanghai
31302    201800, Peoples R China.
31303 CR BUBULAC LO, 1995, J ELECTRON MATER, V24, P1175
31304    HARRIS DC, 1995, P SOC PHOTO-OPT INS, V2552, P325
31305    HOLLAND L, 1979, THIN SOLID FILMS, V58, P107
31306    KINCH MA, 1982, J VAC SCI TECHNOL, V21, P215
31307    MCKINLEY JM, 1995, P SOC PHOTO-OPT INS, V2554, P213
31308    MROCZKOWSKI JA, 1983, J APPL PHYS, V54, P2041
31309    NEMIROVSKY Y, 1989, J VAC SCI TECHNOL A, V7, P450
31310 NR 7
31311 TC 3
31312 SN 0022-0248
31313 J9 J CRYST GROWTH
31314 JI J. Cryst. Growth
31315 PD JUN
31316 PY 2000
31317 VL 214
31318 BP 265
31319 EP 268
31320 PG 4
31321 SC Crystallography
31322 GA 328WC
31323 UT ISI:000087873200057
31324 ER
31325 
31326 PT J
31327 AU Xu, KX
31328    Essa, AA
31329    Zhou, SP
31330    Bao, JS
31331 TI Anomalous microwave response of YBa2Cu3O7-delta granular thin films
31332    under magnetic fields
31333 SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY
31334 DT Article
31335 ID KOSTERLITZ-THOULESS TRANSITION; SINGLE-CRYSTALS; SUPERCONDUCTORS;
31336    RADIATION; ARRAYS
31337 AB The microwave response of YBa2Cu3O7-delta (YBCO) granular films has
31338    been studied at a microwave frequency of 30.5 GHz. In absence of a
31339    magnetic field, the dependencies of a normal microwave response on the
31340    bias current was observed at a temperature close to T-c. When a
31341    magnetic field ranging from 5.0 to 33.0 mT is applied, the responses
31342    broaden and shift toward a lower temperature. In the superconducting
31343    state, the responses were found to be highly dependent on the magnetic
31344    field. For a current of 5.0 mA and a magnetic field above 17.0 mT, the
31345    responses increased and did not vanish, even at a very low temperature,
31346    which is believed to be correlative with the anisotropic character of
31347    the structure.
31348 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
31349 RP Xu, KX, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
31350 CR AFANASYEV AS, 1989, IEEE T MAGN, V25, P2571
31351    BOONE BG, 1991, J APPL PHYS, V69, P2676
31352    CHANG K, 1991, J APPL PHYS, V69, P7316
31353    CHERN JD, 1993, IEEE T APPL SUPERCON, V3, P2128
31354    CULERTSON JC, 1991, PHYS REV B, V44, P9609
31355    DAVIS LC, 1990, PHYS REV B, V42, P99
31356    DONIACH S, 1979, PHYS REV LETT, V42, P1169
31357    ENOMOTO Y, 1986, J APPL PHYS, V59, P3808
31358    GAMMEL PL, 1991, PHYS REV LETT, V66, P953
31359    HERBERT ST, 1998, PHYS REV B, V57, P1154
31360    JUNG G, 1989, APPL PHYS LETT, V54, P2355
31361    KOCH RH, 1990, PHYS REV LETT, V64, P2586
31362    LI Q, 1990, PHYS REV LETT, V64, P3086
31363    MARTIN S, 1989, PHYS REV LETT, V62, P677
31364    PHONG LN, 1993, J APPL PHYS, V74, P7414
31365    ROSE K, 1975, APPL SUPERCONDUCTIVI
31366    RZCHOWSKI MS, 1990, PHYS REV B, V42, P2041
31367    TINHAM M, 1995, INTRO SUPERCONDUCTIV
31368    VADLAMANNATI S, 1991, PHYS REV B, V44, P7094
31369    YEH NC, 1989, PHYS REV B, V39, P9708
31370    YING QY, 1990, PHYS REV B, V42, P2242
31371    YOSOHISATO Y, 1990, JPN J APPL PHYS, V29, P1080
31372 NR 22
31373 TC 0
31374 SN 1051-8223
31375 J9 IEEE TRANS APPL SUPERCONDUCT
31376 JI IEEE Trans. Appl. Supercond.
31377 PD JUN
31378 PY 2000
31379 VL 10
31380 IS 2
31381 BP 1606
31382 EP 1611
31383 PG 6
31384 SC Engineering, Electrical & Electronic; Physics, Applied
31385 GA 329UR
31386 UT ISI:000087927300005
31387 ER
31388 
31389 PT J
31390 AU Yang, XX
31391    Zhong, SS
31392 TI Analysis of two dual-polarization square-patch antennas
31393 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
31394 DT Article
31395 DE patch antenna; dual polarization; Green's function approach; input
31396    impedance
31397 ID MICROSTRIP ANTENNAS
31398 AB New analytical expressions for the input and mutual impedance of two
31399    kinds of dual-polarization square-patch antenna double fed ar the
31400    orthogonal edges or corners are obtained using the Green's function
31401    approach based on the planar circuit principle. The frequency
31402    characteristics of the input impedance, VSWR, and isolation are
31403    analyzed and verified by the published data and experiments. The
31404    calculating formulas are very efficient with little computation, and
31405    are suitable for engineering design. (C) 2000 John Wiley & Sons, Inc.
31406 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
31407 RP Yang, XX, Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R
31408    China.
31409 CR ABDALHAMEED RA, 1998, P I ELECTR ENG, V145, P455
31410    BENALLA A, 1986, IEEE T MICROW THEORY, V34, P733
31411    GATSINGER WJ, 1973, IEEE T MICROWAVE THE, V21, P34
31412    HAMMERSTAD EO, 1975, 5 EUR MICR C SEPT, P268
31413    LO YT, 1979, IEEE T ANTENN PROPAG, V27, P137
31414    MUNSON RE, 1974, IEEE T ANTENN PROPAG, V22, P74
31415    OKOSHI T, 1972, IEEE T MICROW THEORY, V20, P245
31416    RICHARDS WF, 1981, IEEE T ANTENN PROPAG, V29, P38
31417 NR 8
31418 TC 3
31419 SN 0895-2477
31420 J9 MICROWAVE OPT TECHNOL LETT
31421 JI Microw. Opt. Technol. Lett.
31422 PD AUG 5
31423 PY 2000
31424 VL 26
31425 IS 3
31426 BP 153
31427 EP 156
31428 PG 4
31429 SC Engineering, Electrical & Electronic; Optics
31430 GA 328KW
31431 UT ISI:000087850900005
31432 ER
31433 
31434 PT J
31435 AU Zhang, SH
31436    Li, YZ
31437 TI Concise method for evaluating the probability distribution of the
31438    marginal cost of power generation
31439 SO IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION
31440 DT Article
31441 ID CONTRACTS; SYSTEM
31442 AB In the developing electricity market, many questions on electricity
31443    pricing and the risk modelling of forward contracts require the
31444    evaluation of the expected value and probability distribution of the
31445    short-run marginal cast of power generation at any given time. A
31446    concise forecasting method is provided, which is consistent with the
31447    definitions of marginal costs and the techniques of probabilistic
31448    production costing. The method embodies clear physical concepts, so
31449    that it can be easily understood theoretically and computationally
31450    realised. A numerical example has been used to test the proposed method.
31451 C1 Shanghai Univ, Dept Automat, Shanghai 200072, Peoples R China.
31452 RP Zhang, SH, Shanghai Univ, Dept Automat, 149 Yanchang Rd, Shanghai
31453    200072, Peoples R China.
31454 CR BILLINTON R, 1993, RELIABILITY EVALUATI
31455    BILLINTON R, 1994, IEEE T POWER SYST, V9, P68
31456    BLOOM JA, 1984, IEEE T POWER AP SYST, V103, P1725
31457    BLOOM JA, 1992, IEEE T POWER SYST, V7, P1370
31458    DAVID AK, 1994, IEE P-GENER TRANSM D, V141, P75
31459    GEDRA TW, 1994, IEEE T POWER SYST, V9, P1766
31460    KIRSCH LD, 1988, IEEE T PWRS, V3, P1133
31461    RAU NS, 1985, IEEE T POWER APPARAT, V104, P3493
31462    SHIH FR, 1998, IEEE T POWER SYST, V13, P731
31463    SUTANTON D, 1989, IEEE T ENERGY CONVER, V4, P559
31464 NR 10
31465 TC 1
31466 SN 1350-2360
31467 J9 IEE PROC-GENER TRANSM DISTRIB
31468 JI IEE Proc.-Gener. Transm. Distrib.
31469 PD MAY
31470 PY 2000
31471 VL 147
31472 IS 3
31473 BP 137
31474 EP 142
31475 PG 6
31476 SC Engineering, Electrical & Electronic
31477 GA 324AL
31478 UT ISI:000087598100001
31479 ER
31480 
31481 PT J
31482 AU Li, HB
31483    Hu, YY
31484    Sun, L
31485    Shen, YJ
31486 TI Synthesis of 1-amino-2-(4 '-methoxycarbonyl ethyl-2
31487    '-methyl)phenoxy-4-hydroxy anthraquinone
31488 SO DYES AND PIGMENTS
31489 DT Article
31490 DE 1-amino-2-(4 '-methoxylcarbonyl ethyl-2 '-methyl)phenoxy-4-hydroxy
31491    anthraquinone; 4-(beta-cyanoethyl)-2-methylphenol; Friedel-Crafts
31492    reaction; hydrolysis of nitrile
31493 AB 4-(beta-Cyanoethyl)-2-methylphenol was synthesized via the
31494    Friedel-Crafts reaction between o-cresol and acrylonitrile and was then
31495    condensed with 1-amino-2-bromo-4-hydroxy anthraquinone. The resulting
31496    product was hydrolyzed in alkaline medium and esterified with methanol
31497    to afford the title compound. Mass spectra, H-1 NMR and visible spectra
31498    of the title compound and the intermediates were measured. (C) 2000
31499    Elsevier:Science Ltd. All rights reserved.
31500 C1 Shanghai Univ, Sch Environm & Architectural Engn, Shanghai 200072, Peoples R China.
31501    E China Univ Sci & Technol, Inst Fine Chem, Shanghai 200237, Peoples R China.
31502 RP Shen, YJ, Shanghai Univ, Sch Environm & Architectural Engn, Shanghai
31503    200072, Peoples R China.
31504 CR 15316, JP
31505    JOHNSON HW, 1975, J ORG CHEM, V22, P1264
31506    LAI DY, 1981, GONGYE HECHENG RANLI, P82
31507    RICHTER RH, 1977, 4051166, US
31508    SUN SD, 1992, CHINESE J ORG CHEM, V12, P96
31509    ZHANG ZY, 1995, JINGXI YOUJI HECHENG, P270
31510    ZHOU QK, 1993, SHANGHAI RANLIAO, V105, P5
31511 NR 7
31512 TC 0
31513 SN 0143-7208
31514 J9 DYE PIGMENT
31515 JI Dyes Pigment.
31516 PD JUN
31517 PY 2000
31518 VL 45
31519 IS 3
31520 BP 185
31521 EP 188
31522 PG 4
31523 SC Chemistry, Applied; Engineering, Chemical; Materials Science, Textiles
31524 GA 328QJ
31525 UT ISI:000087861300002
31526 ER
31527 
31528 PT J
31529 AU Zhu, WP
31530    Guo, P
31531    Huang, Q
31532 TI General solution for U-shaped bellows overall-bending problems
31533 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
31534 DT Article
31535 DE flexible shells; shells of revolution; circular ring shells; bellows;
31536    U-shaped bellows
31537 AB The formulae for stresses and angular displacements of U-shaped bellows
31538    overall bending in a meridian plane under pure bending moments are
31539    presented based on the general solution for slender ring shells
31540    proposed by Zhu Weiping, et al. and the solution for ring plates. The
31541    results evaluated in this paper are compared with those on EJMA
31542    (standards of the expansion joint manufacturers association) and of the
31543    experiment given by Li Tingxilz, et al.
31544 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
31545 RP Zhu, WP, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
31546    200072, Peoples R China.
31547 CR 1993, STANDARDS EXPANSION
31548    AXELRAD EL, 1976, FLEXIBLE SHELLS M
31549    AXELRAD EL, 1987, THEORY FLEXIBLE SHEL
31550    CHIEN WZ, 1979, J TSINGHUA U, V19, P27
31551    CHIEN WZ, 1980, APPL MATH MECH ENGLI, V1, P305
31552    CHIEN WZ, 1981, APPL MATH MECH ENGLI, V2, P103
31553    CHIEN WZ, 1983, APPL MATH MECH, V4, P649
31554    HAMADA M, 1971, B JSME, V14, P401
31555    HUANG Q, 1986, APPL MATH MECH, V7, P573
31556    LI TX, 1994, J S CHINA U TECH, V22, P94
31557    NARASIMHAM SV, 1997, INT J PRES VES PIP, V71, P35
31558    QIAN H, 1982, APPL MATH MECH, V3, P99
31559    SKOCZEN B, 1992, INT J MECH SCI, V34, P901
31560    ZHU WP, 1998, P 2 ICIWS 1998 SING, P477
31561    ZHU WP, 1999, APPL MATH MECH-ENGL, V20, P952
31562 NR 15
31563 TC 4
31564 SN 0253-4827
31565 J9 APPL MATH MECH-ENGL ED
31566 JI Appl. Math. Mech.-Engl. Ed.
31567 PD APR
31568 PY 2000
31569 VL 21
31570 IS 4
31571 BP 371
31572 EP 382
31573 PG 12
31574 SC Mathematics, Applied; Mechanics
31575 GA 328KN
31576 UT ISI:000087850200001
31577 ER
31578 
31579 PT J
31580 AU Deng, K
31581    Ren, ZM
31582    Jiang, GC
31583 TI Theoretical and experimental analysis of continuous casting with
31584    soft-contacted mould
31585 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
31586 DT Article
31587 DE continuous casting; numerical simulation; soft-contacted mould
31588 AB Coupling the quasi-3D numerical simulation of electromagnetic field and
31589    the experiments with some metals such as tin, aluminum, copper and
31590    steel, the electromagnetic characteristics of continuous casting with
31591    soft-contacted mould, especially the influences of power frequency, the
31592    mould structure, and the inductor position, size and current on the
31593    electromagnetic force and pressure on the billet, were analyzed. The
31594    result shows that, in continuous casting with soft-contacted mould, the
31595    electromagnetic pressure on the surface of billet increases with the
31596    rising of the power frequency as a logarithmically parabolic function
31597    and, with that of inductor current as a parabolic function. The design
31598    principle of the soft-contacted mould is that 1) the mould structure
31599    should be 'more segments and thin slits'; 2) the topside of inductor
31600    should be at the same location with the meniscus of molten metal; 3)
31601    the inductor should cover the initial solidifying shell of billet.
31602 C1 Shanghai Univ, Sch Mat, Shanghai 200072, Peoples R China.
31603 CR AYATA K, 1997, CAMP ISIJ, V10, P828
31604    CHA PR, 1998, ISIJ INT, V38, P403
31605    DENG K, 1994, J SHANGHAI U TECH, V15, P87
31606    DENG K, 1996, T NONFERR METAL SOC, V6, P12
31607    DONG HF, 1998, J IRON STEEL, V10, P5
31608    FURUHASHI S, 1998, TETSU TO HAGANE, V84, P625
31609    LAVERS JD, 1989, ISIJ INT, V29, P993
31610    LI TJ, 1997, ACTA METALLURGICA SI, V33, P524
31611    MORISHITA M, 1991, MAGNETOHYDRODYNAMICS, P267
31612    SAKANE J, 1988, METALL T B, V19, P397
31613    VIVES C, 1989, METALL TRANS B, V20, P623
31614    ZHU XY, 1991, STUDY ELECTROMAGNETI
31615 NR 12
31616 TC 1
31617 SN 1003-6326
31618 J9 TRANS NONFERROUS METAL SOC CH
31619 JI Trans. Nonferrous Met. Soc. China
31620 PD JUN
31621 PY 2000
31622 VL 10
31623 IS 3
31624 BP 314
31625 EP 319
31626 PG 6
31627 SC Metallurgy & Metallurgical Engineering
31628 GA 327KX
31629 UT ISI:000087794000006
31630 ER
31631 
31632 PT J
31633 AU Zhu, XH
31634    Zhu, JM
31635    Zhou, SH
31636    Li, Q
31637    Meng, ZY
31638    Liu, ZG
31639    Ming, NB
31640 TI Domain morphology evolution associated with the relaxer-normal
31641    ferroelectric transition in the Bi- and Zn-modified
31642    Pb(Ni1/3Nb2/3)O-3-PbZrO3-PbTiO3 system
31643 SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
31644 DT Article
31645 DE domains; electron microscopy; ferroelectric properties; Pb(Ni,Nb)O-3;
31646    PbTiO3; PbZrO3; perovskites
31647 ID MODIFIED PB(NI1/3NB2/3)O-3-PBTIO3-PBZRO3 CERAMICS; LEAD-MAGNESIUM
31648    NIOBATE; PEROVSKITE FERROELECTRICS; DIELECTRIC-PROPERTIES; BISMUTH;
31649    BEHAVIOR
31650 AB To understand the dielectric behavior from a viewpoint of domain
31651    configuration, the domain morphology evolution in
31652    (Pb0.985Bi0.01)(Ni1/4Zn1/12Nb2/3)(0.2)(Zr1-sigmaTisigma)(0.8)O-3
31653    ceramics (0.30 less than or equal to sigma less than or equal to 0.60)
31654    has been investigated by transmission electron microscopy and high
31655    resolution electron microscopy. The results indicated that the domain
31656    morphology evolved from the normal micron-sized domains to herringbone
31657    domain patterns, and finally to the polar nanodoamains approximately 3
31658    similar to 6 nm in size when the PT content was decreased from 60 to 30
31659    mol%. The normal twin-related 90 degrees macrodomains are closely
31660    correlated with the normal dielectric response of the composition with
31661    higher PT content, whereas the relaxer response of the composition with
31662    lower PT content is directly attributable to nanometer domains that
31663    contain 1:1 short-range ordering on the B-site sub-lattice. A model is
31664    proposed to describe the effect of the PbTiO3 content on the
31665    ferroelectric domain morphology evolution in the system. (C) 2000
31666    Elsevier Science Ltd. All rights reserved.
31667 C1 Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.
31668    Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
31669    CCAST, World Lab, Beijing 100080, Peoples R China.
31670 RP Zhu, XH, Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct,
31671    Nanjing 210093, Peoples R China.
31672 CR AKBAS MA, 1997, J AM CERAM SOC, V80, P2933
31673    CHEN J, 1989, J AM CERAM SOC, V72, P593
31674    CROSS LE, 1987, FERROELECTRICS, V76, P241
31675    HARMER MP, 1989, FERROELECTRICS, V97, P263
31676    HILTON AD, 1990, J MATER SCI, V25, P3461
31677    HU YH, 1986, J AM CERAM SOC, V69, P594
31678    POKOV VA, 1961, SOV PHYS-SOLID STATE, V3, P613
31679    RANDALL C, 1987, FERROELECTRICS, V76, P277
31680    RANDALL CA, 1990, J MATER RES, V5, P829
31681    RANDALL CA, 1990, JPN J APPL PHYS 1, V29, P327
31682    SETTER N, 1980, J APPL PHYS, V51, P4356
31683    SMOLENSKY GA, 1970, J PHYS SOC JAPAN   S, V28, P26
31684    SWARTZ SL, 1984, J AM CERAM SOC, V67, P311
31685    YAO X, 1983, J APPL PHYS, V54, P3399
31686    YOON MS, 1995, J APPL PHYS, V77, P3991
31687    ZHU XH, 1997, J MATER SCI, V32, P4275
31688    ZHU XH, 1998, FERROELECTRICS, V215, P265
31689    ZHU XH, 1999, J MATER SCI, V34, P1533
31690 NR 18
31691 TC 3
31692 SN 0955-2219
31693 J9 J EUR CERAM SOC
31694 JI J. European Ceram. Soc.
31695 PD AUG
31696 PY 2000
31697 VL 20
31698 IS 9
31699 BP 1251
31700 EP 1255
31701 PG 5
31702 SC Materials Science, Ceramics
31703 GA 324PJ
31704 UT ISI:000087630300004
31705 ER
31706 
31707 PT J
31708 AU Liu, YF
31709    Hua, JD
31710    Sang, WB
31711 TI Dielectric properties in ferroelectric optically active polyamides
31712 SO JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS
31713 DT Article
31714 DE dielectric constant; dielectric loss; dielectric properties; optically
31715    active polymers; polyamides
31716 ID LIQUID-CRYSTALLINE POLYACRYLATES; POLARIZATION; COPOLYMERS
31717 AB A relationship between dielectric constant epsilon or dielectric loss
31718    tan delta and structure was studied for optically active polyamides.
31719    The samples of these polyamides exhibited a chiral smectic phase due to
31720    their asymmetric structures and strong hydrogen bonds. The dielectric
31721    parameters were significantly influenced by temperature, but were
31722    hardly affected by frequency in the high-frequency region. The hindered
31723    rotations of the mesogens, which affect the polarization, depended on
31724    the structures and the phase transitions.
31725 C1 Shanghai Univ Sci & Technol, Dept Polymer Mat, Shanghai 201800, Peoples R China.
31726    Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
31727 RP Liu, YF, Shanghai Univ Sci & Technol, Dept Polymer Mat, Shanghai
31728    201800, Peoples R China.
31729 CR BALIZER E, 1991, IEEE PUBLICATION, P193
31730    CHIELLINI E, 1992, ACS SYM SER, V493, P280
31731    FURUKAWA T, 1992, POLYM PREPR JPN, V41, P4562
31732    KOZLOVSKY MV, 1992, CRYST RES TECHNOL, V27, P1141
31733    LEE JW, 1991, J POLYM SCI POL PHYS, V29, P273
31734    LIU Y, 1999, SHANGHAI DAXUE XUEBA, V5, P165
31735    OHTANI M, 1992, POLYM PREPR JPN, V41, P4559
31736    PORTUGALL M, 1982, MAKROMOL CHEM, V183, P2311
31737    SHIBAEV VP, 1984, POLYM BULL, V12, P299
31738    YAMAMOTO M, 1992, 04223440, JP
31739    ZENTEL R, 1985, MACROMOLECULES, V18, P960
31740 NR 11
31741 TC 0
31742 SN 0022-2348
31743 J9 J MACROMOL SCI-PHYS
31744 JI J. Macromol. Sci.-Phys.
31745 PY 2000
31746 VL B39
31747 IS 3
31748 BP 349
31749 EP 358
31750 PG 10
31751 SC Polymer Science
31752 GA 327AQ
31753 UT ISI:000087770400004
31754 ER
31755 
31756 PT J
31757 AU Hua, JD
31758    Liu, YF
31759    Yuan, WJ
31760 TI The compatibility of a polymeric catalyst-substrate-solvent and
31761    reaction rate. IV
31762 SO JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS
31763 DT Article
31764 DE catalyst; compatibility; electrostatic interaction; hydrogenation;
31765    polymer-metal complex
31766 AB This article focuses on charged polymer catalyst systems. Based on
31767    chemical thermodynamics, kinetics, and interface chemistry, a
31768    quantitative relationship between the catalysis rate and the charge
31769    density on the various components in the catalysis system was obtained.
31770    It can be formulated as follows:
31771    r = A alpha phi(2)(1 - phi(2)) exp {lambda sigma(2) exp(gamma root
31772    alpha(1-phi(2)) + beta root alpha(1 - phi(2))[alpha(1 - phi(2)) +
31773    sigma(2)phi(2)]}
31774    This formula indicates that the larger the value of the charge density
31775    of the polymer backbone, the better the compatibility and, in turn, the
31776    faster the catalysis rate. This result is compared to our experiments
31777    and to literature results.
31778 C1 Shanghai Univ Sci & Technol, Dept Polymer Mat, Shanghai 201800, Peoples R China.
31779 RP Liu, YF, Shanghai Univ Sci & Technol, Dept Polymer Mat, Shanghai
31780    201800, Peoples R China.
31781 CR DEBYE P, 1923, PHYSIK, V2, P185
31782    DEBYE P, 1923, PHYSIK, V2, P24
31783    HUA J, 1989, J APPL POLYM SCI, V38, P1211
31784    HUA J, 1989, J MACROMOL SCI PHY B, V28, P455
31785    HUA J, 1993, J MACROMOL SCI PHY B, V32, P183
31786    ISE N, 1968, J AM CHEM SOC, V90, P4242
31787    YIN Y, 1980, CONCISE TXB PHYSICAL, V2, P214
31788 NR 7
31789 TC 0
31790 SN 0022-2348
31791 J9 J MACROMOL SCI-PHYS
31792 JI J. Macromol. Sci.-Phys.
31793 PY 2000
31794 VL B39
31795 IS 3
31796 BP 359
31797 EP 372
31798 PG 14
31799 SC Polymer Science
31800 GA 327AQ
31801 UT ISI:000087770400005
31802 ER
31803 
31804 PT J
31805 AU Xu, H
31806    Shao, J
31807 TI Molecular dynamics simulation of the phase transition of
31808    alpha-berlinite under high pressure
31809 SO ACTA PHYSICO-CHIMICA SINICA
31810 DT Article
31811 DE molecular dynamics simulation; alpha-berlinite; pressure-induced
31812    amorphization
31813 ID GLASS; ALPO4
31814 AB A Molecular dynamics simulation of the behavior of alpha-berlinite
31815    (AIPO(4)) was performed between -20 GPa to 40 GPa at 300 K, With
31816    increasing pressure, the PO4 tetrahedron almost keeps unchanged, while
31817    the AlO4 tetrahedron becomes more and more distorted, but both P and Al
31818    continue to keep four coordinated with oxygen in the pressure region
31819    studied. The lattice constant a is more compressible than c and the
31820    calculated cell edge compressibilities are in good agreement with the
31821    experimental data available in low pressure region, An amorphous solid
31822    is formed at about 20 GPa and this glass, when releasing the pressure
31823    to zero, will transform back to its original crystal structure. The
31824    crystal structure can remain under tension until -15GPa. Further
31825    tension will make the crystal structure collapse.
31826 C1 Changshu Coll, Dept Chem, Changshu 215500, Peoples R China.
31827    Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
31828 RP Xu, H, Changshu Coll, Dept Chem, Changshu 215500, Peoples R China.
31829 CR ANGELL CA, 1994, NUOVO CIMENTO D, V16, P993
31830    KIEFFER J, 1999, J PHYS CHEM B, V103, P4153
31831    KRUGER MB, 1990, SCIENCE, V249, P647
31832    MCNEW J, 1992, VA QUART REV, V68, P1
31833    SCIORTINO F, 1995, PHYS REV E B, V52, P6484
31834    SHAO J, 1990, ACTA PHYS SINICA, V39, P245
31835    SHAO J, 1993, ACTA METALLURGICA SI, V29, B11
31836    SHAO J, 1993, CHINESE PHYS LETT, V10, P669
31837    SOWA H, 1990, Z KRISTALLOGR, V192, P119
31838    TSE JS, 1993, PHYS REV LETT, V70, P174
31839    VANBEEST BWH, 1990, PHYS REV LETT, V64, P1955
31840    XU H, 1999, ACTA METALLURGICA SI, V35, P1065
31841 NR 12
31842 TC 2
31843 SN 1000-6818
31844 J9 ACTA PHYS-CHIM SIN
31845 JI Acta Phys.-Chim. Sin.
31846 PD JUN
31847 PY 2000
31848 VL 16
31849 IS 6
31850 BP 512
31851 EP 516
31852 PG 5
31853 SC Chemistry, Physical
31854 GA 325GJ
31855 UT ISI:000087667600007
31856 ER
31857 
31858 PT J
31859 AU Wu, YJ
31860    Guo, BY
31861 TI Localization and approximation of attractors for the
31862    Kuramoto-Sivashinsky equations
31863 SO ACTA MATHEMATICA SCIENTIA
31864 DT Article
31865 DE Kuramoto-Sivashinsky equations; attractors; approximate inertial
31866    manifolds
31867 AB The aim of this paper is to provide explicitly a sequence of
31868    m-dimensional approximate inertial manifolds M(m,j,)j = 1,2,, for each
31869    positive integer m, for the Kuramoto-Sivashinsky equations. A very thin
31870    neighborhood into which the orbits enter with an exponential speed and
31871    in a finite time is associated with each manifold. The thickness of
31872    these neighborhoods decreases with increasing m for a fixed order j.
31873    Besides, the neighborhoods localize the global attractor and aid in the
31874    approximate computation of large-time solutions of the
31875    Kuramoto-Sivashinsky equations.
31876 C1 Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China.
31877    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
31878 CR FOIAS C, 1988, J DIFFER EQUATIONS, V73, P309
31879    FOIAS C, 1988, RAIRO MODEL MATH ANA, V22, P93
31880    NICOLAENKO B, 1985, PHYSICA D, V16, P155
31881    PROMISLOW K, 1990, PHYSICA D, P232
31882    PROMISLOW K, 1991, J DYNAMICS DIFFERENT, V3, P491
31883    PROMISLOW K, 1991, NONLINEAR ANAL-THEOR, V16, P959
31884    TEMAM R, 1988, APPL MATH SCI SER, V8
31885    TEMAM R, 1989, J FS TOKYO IA, V36, P629
31886    WU YJ, 1994, ADV MECH, V24, P145
31887    WU YJ, 1999, J COMPUT MATH, V17, P243
31888 NR 10
31889 TC 0
31890 SN 0252-9602
31891 J9 ACTA MATH SCI
31892 JI Acta Math. Sci.
31893 PD APR
31894 PY 2000
31895 VL 20
31896 IS 2
31897 BP 145
31898 EP 154
31899 PG 10
31900 SC Mathematics
31901 GA 324JR
31902 UT ISI:000087619000001
31903 ER
31904 
31905 PT J
31906 AU Chen, YX
31907    Yao, MY
31908    Wan, XJ
31909    Xu, WX
31910 TI Effect of Fe on the environmental embrittlement of Co3Ti alloy
31911 SO INTERMETALLICS
31912 DT Article
31913 DE hydrogen embrittlement
31914 ID MECHANICAL-PROPERTIES
31915 AB The mechanical properties of Co3Ti-based alloys were investigated. The
31916    tensile results show that the environment embrittlement of the alloy
31917    was completely suppressed when third element Fe was added to Ll(2)-type
31918    Co3Ti alloy. The AES result shows that the surface reaction of Co3Ti-Fe
31919    alloy with water vapor saturates at exposure of 2x10(-3) Pa s, bur it
31920    does not saturate at 0.1 Pa s exposure for Co3Ti alloy, and that the
31921    extent of the surface reaction of Co3Ti-Fe with water vapor is much
31922    smaller than that of Co3Ti at the same exposure. It illustrates that
31923    the beneficial effect of Fe in Co3Ti on the environmental embrittlement
31924    is attributed to its obvious reduction of the kinetics of the surface
31925    reaction with water vapor. (C) 2000 Elsevier Science Ltd. All rights
31926    reserved.
31927 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
31928    Shanghai Iron & Steel Res Inst, Shanghai 200940, Peoples R China.
31929 RP Chen, YX, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
31930 CR CHEN TK, UNPUB SCRIPTA MAT
31931    GEORGE EP, 1993, SCRIPTA METALL MATER, V28, P857
31932    LIU CT, 1991, SCRIPTA METALL MATER, V25, P1933
31933    LIU Y, 1989, J MATER SCI, V24, P4458
31934    TAKASUGI T, 1986, ACTA METALL, V34, P607
31935    TAKASUGI T, 1990, J MATER SCI, V25, P4239
31936    TAKASUGI T, 1991, J MATER SCI, V26, P1173
31937    WAN X, 1994, J MATER SCI TECHNOL, V10, P39
31938    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
31939    WAN XJ, 1995, ACTA METALL SINICA, V8, P299
31940 NR 10
31941 TC 1
31942 SN 0966-9795
31943 J9 INTERMETALLICS
31944 JI Intermetallics
31945 PD MAY-JUN
31946 PY 2000
31947 VL 8
31948 IS 5-6
31949 BP 585
31950 EP 588
31951 PG 4
31952 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
31953    Metallurgical Engineering
31954 GA 320GQ
31955 UT ISI:000087393800021
31956 ER
31957 
31958 PT J
31959 AU Wei, EB
31960    Gu, GQ
31961 TI Electrostatic potential of strongly nonlinear composites: Homotopy
31962    continuation approach
31963 SO CHINESE PHYSICS
31964 DT Article
31965 ID BOUNDARY-VALUE-PROBLEMS; DECOUPLING APPROXIMATION; MEDIA; CONDUCTIVITY;
31966    2ND-ORDER
31967 AB The homotopy continuation method is used to solve the electrostatic
31968    boundary-value problems of strongly nonlinear composite media, which
31969    obey a current-field relation of J = sigma E + chi\E\E-2. With the mode
31970    expansion, the approximate analytical solutions of electric potential
31971    in host and inclusion regions are obtained by solving a set of
31972    nonlinear ordinary different equations, which are derived from the
31973    original equations with homotopy method. As an example in dimension
31974    two, we apply the method to deal with a nonlinear cylindrical inclusion
31975    embedded in a host. Comparing the approximate analytical solution of
31976    the potential obtained by homotopy method with that of numerical
31977    method, we can obverse that the homotopy method is valid for solving
31978    boundary-value problems of weakly and strongly nonlinear media.
31979 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
31980 RP Wei, EB, Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093,
31981    Peoples R China.
31982 CR BARDHAN KK, 1994, SPRINGER LECT NOTES
31983    BERGMAN DJ, 1989, PHYS REV B, V39, P4598
31984    BERGMAN DJ, 1992, SOLID STATE PHYS, V46, P147
31985    BLUMENFELD R, 1989, PHYS REV B, V40, P1987
31986    CASTANEDA PP, 1992, PHYS REV B, V46, P4387
31987    CHOY TS, 1995, PHYS LETT A, V202, P129
31988    GU GQ, 1992, PHYS REV B, V46, P4502
31989    GU GQ, 1998, COMMUN THEOR PHYS, V29, P523
31990    LIAO SJ, 1992, INT J NUMER METH FL, V15, P595
31991    LIAO SJ, 1992, J APPL MECH-T ASME, V59, P970
31992    LUI SH, 1995, NUMER ALGORITHMS, V10, P363
31993    NI FS, 1995, CHINESE PHYS LETT, V12, P438
31994    STROUD D, 1989, J OPT SOC AM B, V6, P778
31995    YU KW, 1992, PHYS LETT A, V168, P313
31996    YU KW, 1994, PHYS LETT A, V193, P311
31997    YU KW, 1996, PHYS LETT A, V210, P115
31998    ZENG XC, 1989, PHYSICA A, V157, P192
31999    ZHANG W, 1999, PHYS LETT A, V255, P343
32000 NR 18
32001 TC 3
32002 SN 1009-1963
32003 J9 CHIN PHYS
32004 JI Chin. Phys.
32005 PD JUN
32006 PY 2000
32007 VL 9
32008 IS 6
32009 BP 464
32010 EP 468
32011 PG 5
32012 SC Physics, Multidisciplinary
32013 GA 321QW
32014 UT ISI:000087467000012
32015 ER
32016 
32017 PT J
32018 AU Li, CP
32019 TI A Note on bifurcations of u ''+mu(u-u(k)) = 0(4 <= k epsilon Z(+))
32020 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
32021 DT Article
32022 DE Liapunov-Schmidt reduction; singularity theory; bifurcation
32023 AB Bifurcations of one kind of reaction-diffusion equations, u" + mu ( u -
32024    u(k)) = 0(mu is a parameter, 4 less than or equal to k epsilon Z(+)),
32025    with boundary value condition u(0) = u(rr) = 0 are discussed. By means
32026    of singularity theory based on the method of Liapunov-Schmidt
32027    reduction, satisfactory results can be acquired.
32028 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
32029 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
32030 CR CHOW SN, 1982, METHODS BIFURCATION
32031    FIFE PC, 1979, LECT NOTES BIOMATHEM, V28
32032    GOLUBITSKY M, 1985, SINGULARITIES GROUPS, V1
32033    LU QS, 1995, BIFURCATION SINGULAR
32034    TANG Y, 1998, FDN SYMMETRY BIFURCA
32035    YE QX, 1994, INTRO REACTION DIFFU
32036 NR 6
32037 TC 2
32038 SN 0253-4827
32039 J9 APPL MATH MECH-ENGL ED
32040 JI Appl. Math. Mech.-Engl. Ed.
32041 PD MAR
32042 PY 2000
32043 VL 21
32044 IS 3
32045 BP 265
32046 EP 274
32047 PG 10
32048 SC Mathematics, Applied; Mechanics
32049 GA 321QX
32050 UT ISI:000087467100003
32051 ER
32052 
32053 PT J
32054 AU Gu, GQ
32055    Yu, KW
32056 TI A theoretical research to effective viscosity of colloidal dispersions
32057 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
32058 DT Article
32059 DE multiphase flow; colloidal dispersion; suspension; emulsion
32060 ID PERIODIC SUSPENSION; PARTICLES
32061 AB Colloidal dispersions are common in nature with wide industrial
32062    applications. One of the central theoretical problems in the field is
32063    to determine the rheological properties of the colloidal dispersion
32064    from the microstructures of the systems. Because of the difficulties
32065    associated with the boundary-value problems of the many-particle
32066    system, existing theories for colloidal suspensions are limited to low
32067    particle concentrations. In this work, a method of transformation field
32068    is developed by which one can calculate the effective viscosity of an
32069    incompressible viscous fluid containing colloidal particles ( either
32070    solid particles or liquid drops). The predictions of the theory are in
32071    goad agreement with the Einstein's formula for suspensions and the
32072    Taylor's formula for emulsions at low particle concentrations. At
32073    higher particle concentrations, the results of Nunan and Keller are
32074    produced. The method is also applicable to the viscosity of colloidal
32075    systems with non-spherical particles.
32076 C1 Shanghai Univ Sci & Technol, Sch Comp Engn, Shanghai 200092, Peoples R China.
32077    Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
32078 RP Gu, GQ, Shanghai Univ Sci & Technol, Sch Comp Engn, Shanghai 200092,
32079    Peoples R China.
32080 CR BATCHELOR GK, 1972, J FLUID MECH, V56, P401
32081    BATCHELOR GK, 1976, J FLUID MECH, V74, P1
32082    BEDEAUX D, 1977, PHYSICA            A, V88, P88
32083    CHOW TS, 1993, PHYS REV E, V48, P1977
32084    EINSTEIN A, 1906, ANN PHYS-BERLIN, V19, P289
32085    GU GQ, 1988, PHYS REV B, V37, P8612
32086    GU GQ, 1989, SCI CHINA SER A, V32, P1186
32087    MAZUR P, 1982, PHYSICA A, V115, P21
32088    MELLEMA J, 1983, PHYSICA A, V122, P286
32089    NAGATANI T, 1979, J PHYS SOC JPN, V47, P320
32090    NASSER SN, 1981, Q APPL MATH, V39, P43
32091    NUNAN KC, 1984, J FLUID MECH, V142, P269
32092    PETERSON JM, 1963, J CHEM PHYS, V39, P2516
32093    RAYLEIGH, 1892, PHILOS MAG, V34, P481
32094    TAYLOR GI, 1932, P R SOC LOND A-CONTA, V138, P41
32095 NR 15
32096 TC 0
32097 SN 0253-4827
32098 J9 APPL MATH MECH-ENGL ED
32099 JI Appl. Math. Mech.-Engl. Ed.
32100 PD MAR
32101 PY 2000
32102 VL 21
32103 IS 3
32104 BP 275
32105 EP 282
32106 PG 8
32107 SC Mathematics, Applied; Mechanics
32108 GA 321QX
32109 UT ISI:000087467100004
32110 ER
32111 
32112 PT J
32113 AU Zhang, JK
32114    Huang, YH
32115    Huang, GZ
32116    Chen, CG
32117 TI The Monte-Carlo method for solving the dimensional chain positive
32118    problem
32119 SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
32120 DT Article
32121 DE Monte-Carlo simulation; dimensional chain; pseudo-random number
32122 AB In this paper, the Monte-Carlo method for solving the dimensional chain
32123    positive problem is presented and discussed. By using an electronic
32124    computer to calculate the limit size of piston travel of piston parts,
32125    not only are the calculating results of this method proven to be more
32126    precise than those of the probability method, but also the calculating
32127    speed of this method is proven to be faster than that of the
32128    probability method. (C) 2000 Elsevier Science S.A. All rights reserved.
32129 C1 Shanghai Univ, Ctr Mechanoelect Engn, Shanghai 200072, Peoples R China.
32130    Shanghai Sch Mechanoelect Ind, Shanghai 200093, Peoples R China.
32131    Yuchai Machinery Co, Yulin 537005, Guangxi, Peoples R China.
32132 RP Zhang, JK, Shanghai Univ, Ctr Mechanoelect Engn, 149 Yan Chang Rd,
32133    Shanghai 200072, Peoples R China.
32134 CR *DEP MATH MECH ZHO, 1980, THEOR PROB MATH STAT, V1, P148
32135    *DEP MATH MECH ZHO, 1980, THEOR PROB MATH STAT, V2, P343
32136    JIANZHONG Z, 1974, MONTE CARLO METHOD P, P28
32137 NR 3
32138 TC 1
32139 SN 0924-0136
32140 J9 J MATER PROCESS TECHNOL
32141 JI J. Mater. Process. Technol.
32142 PD JUN 15
32143 PY 2000
32144 VL 103
32145 IS 2
32146 BP 189
32147 EP 193
32148 PG 5
32149 SC Engineering, Industrial; Engineering, Manufacturing; Materials Science,
32150    Multidisciplinary
32151 GA 319RB
32152 UT ISI:000087354400002
32153 ER
32154 
32155 PT J
32156 AU Xia, YB
32157    Sekiguchi, T
32158    Zhang, WJ
32159    Jiang, X
32160    Wu, WH
32161    Yao, T
32162 TI Effects of hydrogen ion bombardment and boron doping on (001)
32163    polycrystalline diamond films
32164 SO JOURNAL OF CRYSTAL GROWTH
32165 DT Article
32166 DE diamond; penetrating effects; thin film; cathodoluminescence
32167 ID CHEMICAL-VAPOR-DEPOSITION; GROWTH; SMOOTH
32168 AB Hydrogen ion bombardment was carried out by applying a negative bias
32169    voltage to the substrate during a microwave plasma chemical vapor
32170    deposition process, using only hydrogen as reactant gas. The sine of (0
32171    0 1) faces increases after hydrogen ion etching while other grains are
32172    etched off. The surfaces of [0 0 1] directionally oriented films after
32173    boron doping were investigated by scanning electron microscopy (SEM)
32174    and cathodoluminescent (CL) spectra. The absence of the band-A emission
32175    in the CL spectra indicates a low density of dislocations in the films.
32176    It is the first indication that the peak at 741.5 Nn and the broad peak
32177    at around 575 and 625 nm in the CL spectra are reduced efficiently
32178    after boron doping in (0 0 1) polycrystalline diamond films. We propose
32179    that these phenomena could be explained in simple terms by penetration
32180    or adsorption through the lattice nets of the [0 0 1] directionally
32181    oriented surfaces model. (C) 2000 Elsevier Science B.V. All rights
32182    reserved.
32183 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
32184    Tohoku Univ, Mat Res Inst, Sendai, Miyagi 980, Japan.
32185    Fraunhofer Inst Thin Films & Surface Engn, D-38108 Braunschweig, Germany.
32186 RP Xia, YB, Shanghai Univ, Sch Mat Sci & Engn, Jiading Campus, Shanghai
32187    201800, Peoples R China.
32188 CR COLLINS AT, 1990, J MATER RES, V5, P2507
32189    DAVIS JW, 1987, J NUCL MATER, V145, P417
32190    HAYASHI K, 1997, J APPL PHYS, V81, P744
32191    HAYASHI K, 1998, J CRYST GROWTH, V183, P338
32192    KAWARADA H, 1995, APPL PHYS LETT, V66, P583
32193    ROBINS LH, 1989, PHYS REV B, V39, P13367
32194    WILD C, 1993, DIAM RELAT MATER, V2, P158
32195    WON J, 1996, RECENT PROG DIAMOND, V1, P103
32196    YOKOTA Y, 1990, MAT RES SOC S P PITT, V160, P162
32197    ZHANG WJ, 1997, J APPL PHYS, V82, P1896
32198 NR 10
32199 TC 4
32200 SN 0022-0248
32201 J9 J CRYST GROWTH
32202 JI J. Cryst. Growth
32203 PD JUN
32204 PY 2000
32205 VL 213
32206 IS 3-4
32207 BP 328
32208 EP 333
32209 PG 6
32210 SC Crystallography
32211 GA 320EX
32212 UT ISI:000087389800017
32213 ER
32214 
32215 PT J
32216 AU Li, SR
32217    Cheng, CJ
32218 TI Analysis of thermal post-buckling of heated elastic rods
32219 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
32220 DT Article
32221 DE elastic straight rod; thermal post-buckling; nonlinear mathematical
32222    model; shooting method; numerical solution
32223 AB Based on the nonlinear geometric theory of extensible rods, an exact
32224    mathematical model of thermal post-buckling behavior of uniformly
32225    heated elastic rods with axially immovable ends is developed, in which
32226    the are length s(x) of axial line and the longitudinal displacement
32227    u(x) are taken as the basic unknown functions. This is a two point
32228    boundary value problem of first order ordinary differential equations
32229    with strong nonlinearity. By using shooting method and analytical
32230    continuation, the nonlinear boundary value problems are numerically
32231    solved. The thermal post-buckled states of the rods with transversely
32232    simply supported and clamped ends are obtained respectively and the
32233    corresponding numerical data tables and characteristic curves are also
32234    given.
32235 C1 Gansu Univ Technol, Dept Basic Sci, Lanzhou 730050, Peoples R China.
32236    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
32237    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
32238 RP Li, SR, Gansu Univ Technol, Dept Basic Sci, Lanzhou 730050, Peoples R
32239    China.
32240 CR CHEN CJ, 1991, BUCKLING BIFURCATION, P83
32241    CHENG JK, 1994, MECH PRACTICE, V16, P23
32242    LI SR, 1997, J LANZHOU U, V33, P43
32243    LI SR, 1998, P INT C NONL MECH, P282
32244    NOWISCKI JL, 1978, THEORY THERMAL ELAST, P547
32245    TAUCHERT TR, 1987, INT J NONLINEAR MECH, V22, P511
32246    TIMOSHENKO SP, 1961, THEORY ELASTIC STABI, P76
32247    WANG CY, 1997, INT J NONLINEAR MECH, V32, P1115
32248    WILLIAM HP, 1986, NUMERICAL RECIPES AR, P578
32249 NR 9
32250 TC 8
32251 SN 0253-4827
32252 J9 APPL MATH MECH-ENGL ED
32253 JI Appl. Math. Mech.-Engl. Ed.
32254 PD FEB
32255 PY 2000
32256 VL 21
32257 IS 2
32258 BP 133
32259 EP 140
32260 PG 8
32261 SC Mathematics, Applied; Mechanics
32262 GA 320DT
32263 UT ISI:000087387100002
32264 ER
32265 
32266 PT J
32267 AU Huang, DB
32268    Zhao, XH
32269 TI The vector fields admitting one-parameter spatial symmetry group and
32270    their reduction
32271 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
32272 DT Article
32273 DE vector field; symmtry group; Lie group; reduction; preserving n-form
32274 AB For a n-dimensional vector fields preserving some n-form, the following
32275    conclusion is reached by the method of Lie group. That is, if it admits
32276    an one-parameter, n-form preserving symmetry group, a transformation
32277    independent of the vector field is constructed explicitly, which can
32278    reduce not only dimesion of the vector field by one, but also make the
32279    reduced vector field preserve the corresponding ( n - 1)-form. In
32280    partic ular, while n = 3, an important result can be directly got which
32281    is given by Me,ie and Wiggins in 1994.
32282 C1 Acad Sinica, Inst Mech, LNM, Beijing 100080, Peoples R China.
32283    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
32284    Yunnan Univ, Dept Math, Kunming 650091, Peoples R China.
32285 RP Huang, DB, Acad Sinica, Inst Mech, LNM, Beijing 100080, Peoples R China.
32286 CR GUO ZH, 1995, APPL MATH MECH, V16, P301
32287    LI JB, 1994, THEORY GEN HAMILTONI
32288    MARSDEN J, 1974, REP MATH PHYS, V5, P121
32289    MARSDEN JE, 1994, INTRO MECH SYMMETRY
32290    MEYER KR, 1973, DYNAMICAL SYSTEMS, P259
32291    MEZIC I, 1994, J NONLINEAR SCI, V4, P157
32292    OLVER PJ, 1986, APPL LIE GROUP DIFFE
32293    OTTINO JM, 1989, KINEMATICS MIXING ST
32294    SEN T, 1990, PHYSICA D, V44, P313
32295    SMALE S, 1970, INVENT MATH, V10, P305
32296    ZHANG JY, 1983, SCI SINICA A, V13, P426
32297 NR 11
32298 TC 0
32299 SN 0253-4827
32300 J9 APPL MATH MECH-ENGL ED
32301 JI Appl. Math. Mech.-Engl. Ed.
32302 PD FEB
32303 PY 2000
32304 VL 21
32305 IS 2
32306 BP 173
32307 EP 180
32308 PG 8
32309 SC Mathematics, Applied; Mechanics
32310 GA 320DT
32311 UT ISI:000087387100006
32312 ER
32313 
32314 PT J
32315 AU Li, HF
32316    Wang, XW
32317    Zhang, RG
32318    Yuan, JH
32319    Xie, Y
32320    Xie, H
32321 TI Discovery of new antimetastatic agents: Review of in vitro and in vivo
32322    screening methods
32323 SO METHODS AND FINDINGS IN EXPERIMENTAL AND CLINICAL PHARMACOLOGY
32324 DT Article
32325 ID TUMOR-CELLS; HEPATOCELLULAR-CARCINOMA; METASTATIC CAPACITY;
32326    BASEMENT-MEMBRANE; LUNG METASTASIS; NUDE-MICE; MODEL; INVASION; CANCER;
32327    MATRIX
32328 C1 Chinese Acad Sci, Shanghai Inst Cell Biol, Dept Biotherapy, Shanghai 200031, Peoples R China.
32329    Shanghai Univ, Coll Life Sci, Dept Biochem, Shanghai 200041, Peoples R China.
32330    Hong Kong Univ Sci & Technol, Dept Biol, Hong Kong, Hong Kong, Peoples R China.
32331 RP Wang, XW, Chinese Acad Sci, Shanghai Inst Cell Biol, Dept Biotherapy,
32332    320 Yue Yang Rd, Shanghai 200031, Peoples R China.
32333 CR ALBINI A, 1987, CANCER RES, V47, P3239
32334    BERLIN J, 1997, J CLIN ONCOL, V15, P781
32335    CORBLEY MJ, 1996, INT J CANCER, V66, P753
32336    FAN TPD, 1995, TRENDS PHARMACOL SCI, V16, P57
32337    FOLKMAN J, 1986, CANCER RES, V46, P467
32338    GREENBERG AH, 1989, INVAS METAST, V9, P360
32339    GUAITANI A, 1985, CANCER RES, V45, P2206
32340    HORI K, 1979, GANN, V70, P383
32341    JAMES SE, 1974, CANCER RES, V34, P839
32342    KARRER K, 1967, INT J CANCER, V2, P213
32343    KOPPER L, 1982, J CANCER RES CLIN, V103, P31
32344    KRAMER RH, 1986, CANCER RES, V46, P1980
32345    KURAMITSU Y, 1998, ANTI-CANCER DRUG, V9, P88
32346    LAFRENLERE R, 1996, J NATL CANCER I, V76, P309
32347    LEONE A, 1991, CELL, V65, P25
32348    LI HF, 1998, ONCOL RES, V10, P569
32349    LIU HY, 1998, ACTA PHARMACOL SINIC, V33, P18
32350    MEHTA RR, 1998, BRIT J CANCER, V77, P595
32351    NICOSIA RF, 1990, LAB INVEST, V63, P115
32352    POHL J, 1988, MOL CELL BIOL, V8, P2078
32353    RABBANI SA, 1998, INT J ONCOL, V12, P911
32354    SAIKI I, 1989, BRIT J CANCER, V59, P194
32355    SATO H, 1961, CANC CHEMOTHER REP, V13, P33
32356    SIDRANSKY D, 1994, J NATL CANCER I, V86, P955
32357    STROEKEN PJM, 1998, CANCER RES, V58, P1569
32358    SUN FX, 1996, INT J CANCER, V66, P239
32359    SUN FX, 1996, J CANCER RES CLIN, V122, P397
32360    TAKASHI T, 1980, CANCER RES, V40, P4758
32361    TAKAZAWA H, 1976, GANN, V67, P403
32362    TERRANOVA VP, 1986, J NATL CANCER I, V77, P311
32363    TSUKAGOSHI S, 1970, CANC CHEMOTHER REP, V54, P311
32364    WEXLER H, 1966, J NATL CANCER I, V36, P641
32365    YAMAMOTO H, 1996, INT J CANCER, V65, P519
32366    YU AE, 1997, DRUG AGING, V11, P229
32367 NR 34
32368 TC 0
32369 SN 0379-0355
32370 J9 METH FIND EXP CLIN PHARMACOL
32371 JI Methods Find. Exp. Clin. Pharmacol.
32372 PD MAR
32373 PY 2000
32374 VL 22
32375 IS 2
32376 BP 123
32377 EP 128
32378 PG 6
32379 SC Pharmacology & Pharmacy
32380 GA 315CJ
32381 UT ISI:000087094800009
32382 ER
32383 
32384 PT J
32385 AU Wei, JH
32386    Shen, XY
32387 TI Study on electroslag remelting of Cu-Cr-Zr alloy
32388 SO METALL
32389 DT Article
32390 AB The ESR of Cu-Cr-Zr alloy has been experimentally investigated. The
32391    remelting experiments have been carried out with different slag fluxes
32392    in the CaF2 + NaF, CaF2 + ZrO2 and CaF2 + NaF + ZrO2 systems on an ESR
32393    furnace of 25 kg capacity, using a water-cooled copper mould of 96.5 mm
32394    diameter, with the forged square bar electrodes of 50 x 50 mm(2). The
32395    slag amount was taken to be 1.5 kg. The remelting current and voltage
32396    used were 1600-1800 A and 15-25 V, respectively. The influence of the
32397    slag composition on the stability of the remelting process and the
32398    losses of alloying elements (Zr and Cr) has been considered and
32399    examined. The technologies of hot working and heat treatment of the ES
32400    ingot have been described and discussed. Some physical properties of
32401    the slag in a CaF2 + NaF + ZrO2 system and the remelted Cu-Cr-Zr alloy
32402    have been determined. The results indicated that with the slag flux of
32403    CaF2 + NaF + 10mass% ZrO2 and the other operation parameters employed,
32404    a high quality ingot of Cu-Cr-Zr alloy can be obtained at the
32405    considerably high yields of Zr and Cr by means of ESR. For the remelted
32406    Cu-Cr-Zr alloy with a specified composition of 0.5 mass% Cr and 0.1
32407    mass% Zr, the appropriate electrical conductivity, hardness and
32408    softening temperature are as high as 45-46 S/m, HRB 82-84 and greater
32409    than or equal to 550 degrees C, respectively. The properties of the
32410    Cu-Cr-Zr alloy products are in accordance with and superior to the
32411    requirements and specifications of ISO5182-1991(E).
32412 C1 Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
32413    Shanghai Elect Apparatus Res Inst, Shanghai, Peoples R China.
32414 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
32415 CR 474258, SU
32416    ANZEL I, 1997, METALL, V5, P189
32417    ANZEL, 1997, METALL, V4, P181
32418    HOYLE G, 1983, ELECTROSLAG PROCESSE
32419    KOROUSIC B, 1983, METALL, V37, P1109
32420    KOROUSIC B, 1984, METALL, V38, P319
32421    KOROUSIK B, 1987, METALL, V41, P153
32422    LODINI A, 1980, REV METALLURGIE, V12, P1061
32423    MILLER RR, 1981, PHARMACOTHERAPY, V1, P21
32424    PATON BE, 1981, ELECTROSLAG TECHNOLO
32425 NR 10
32426 TC 1
32427 SN 0026-0746
32428 J9 METALL
32429 JI Metall
32430 PY 2000
32431 VL 54
32432 IS 4
32433 BP 196
32434 EP 200
32435 PG 5
32436 SC Metallurgy & Metallurgical Engineering
32437 GA 314BX
32438 UT ISI:000087035200005
32439 ER
32440 
32441 PT J
32442 AU Huang, SP
32443    You, JP
32444    Jiang, GC
32445    Yoshida, F
32446    Xu, KD
32447 TI A molecular dynamics simulation of CaSiO3 melt under an electric field
32448 SO CHINESE PHYSICS LETTERS
32449 DT Article
32450 AB The results of a molecular dynamics (MD) simulation are presented for
32451    CaSiO3 melt under an electric field. The two-body interaction potential
32452    is adopted in the simulation, with parameters chosen so that the
32453    calculated static structure is consistent with results of high
32454    temperature x-ray experiments. It is found that the MD results for the
32455    heat capacity at constant volume, the self-diffusion coefficient and
32456    the electrical conductivity change greatly when the electric field is
32457    over 500 MV/m. Discussion is given on these results, together with the
32458    frequency-dependent electrical conductivity.
32459 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
32460    Shiga Univ Med Sci, Dept Phys, Shiga 5202192, Japan.
32461 RP Huang, SP, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
32462    200072, Peoples R China.
32463 CR ENDERLY JE, 1985, AMORPHOUS SOLIDS LIQ
32464    HANSEN JP, 1986, THEORY SIMPLE LIQUID
32465    HEMMATI M, 1995, PHYS REV B, V51, P14841
32466    HUANG SP, 1999, J PHYS-CONDENS MAT, V11, P5429
32467    KATO T, 1990, J CHEM PHYS, V92, P5506
32468    KELLER H, 1979, METALL T B, V10, P1356
32469    KELLER H, 1982, METALL T B, V13, P237
32470    MAEDA M, 1997, P 5 INT C MOLT SLAGS, P423
32471    MATSUI M, 1988, PHYS CHEM MINER, V16, P234
32472    PING HS, 1997, J PHYS SOC JPN, V66, P1356
32473    PING HS, 1997, J PHYS SOC JPN, V66, P392
32474    WANG ZW, 1997, CHINESE PHYS LETT, V14, P151
32475    WASEDA Y, 1989, MAT SCI EARTH INTERI
32476    ZHANG YH, 1999, CHINESE PHYS LETT, V16, P253
32477    ZONG XF, 1998, CHINESE PHYS LETT, V15, P767
32478 NR 15
32479 TC 4
32480 SN 0256-307X
32481 J9 CHIN PHYS LETT
32482 JI Chin. Phys. Lett.
32483 PY 2000
32484 VL 17
32485 IS 4
32486 BP 279
32487 EP 281
32488 PG 3
32489 SC Physics, Multidisciplinary
32490 GA 318EP
32491 UT ISI:000087271200017
32492 ER
32493 
32494 PT J
32495 AU Wang, YS
32496    Bao, BR
32497    Tan, XF
32498    Yang, AP
32499 TI Extraction mechanism of uranium(VI) with N,N,N ',N
32500    '-tetrabutylmalonamide
32501 SO CHINESE JOURNAL OF INORGANIC CHEMISTRY
32502 DT Article
32503 DE N,N,N ',N '-tetrabutylmalonamide (TBMA); extraction uranium (VI);
32504    coordination model
32505 AB The extraction mechanism of HNO3 and UO22+ with TBMA in toluene from
32506    the nitric acid medium has been studied. At the experimental condition,
32507    HNO3 and TBMA can form HNO3. TBMA, and the composition of extracted
32508    species is UO2(NO3)(2). 3TBMA. it was testified that the in the
32509    extraction species UO2(NO3)(2). 3TBMA, NO3- did not directly
32510    participate in coordination of uranyl (VI) ion by IR, and the
32511    coordination mode of the complex was also discussed.
32512 C1 Coll Agr, Laiyang 265200, Peoples R China.
32513    Shanghai Univ, Shanghai 201800, Peoples R China.
32514 RP Wang, YS, Coll Agr, Laiyang 265200, Peoples R China.
32515 CR DAVIS W, 1965, J PHYS CHEM-US, V69, P1094
32516    MUSIKAS C, 1988, SEPAR SCI TECHNOL, V23, P1211
32517    NAIR GM, 1993, SOL EXTR ION EXCH, V11, P813
32518    WANG HZ, 1995, WUJI HUAXUE XUEBAO, V11, P120
32519    WANG YS, 1997, THESIS CHINESE ACAD
32520    XU GX, 1984, EXTRACTION CHEM PRIN, P134
32521 NR 6
32522 TC 1
32523 SN 1001-4861
32524 J9 CHIN J INORG CHEM
32525 JI Chin. J. Inorg. Chem.
32526 PD MAY
32527 PY 2000
32528 VL 16
32529 IS 3
32530 BP 416
32531 EP 420
32532 PG 5
32533 SC Chemistry, Inorganic & Nuclear
32534 GA 317VH
32535 UT ISI:000087247300007
32536 ER
32537 
32538 PT J
32539 AU Cao, WG
32540    Ding, WY
32541    Tong, WQ
32542    Liu, X
32543    Qiu, MY
32544 TI Studies on the reaction of 1,2,3-trisubstituted electron-deficient
32545    cyclopropane derivatives with methanol
32546 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
32547 DT Article
32548 DE 1,2,3-trisubstituted cyclopropane; methanolysis; methyl butyrate
32549 ID STEREOSELECTIVE SYNTHESIS
32550 AB In this paper, the reaction of 1,2,3-trisubstituted electron-deficient
32551    cyclopropane derivatives cis-1-benzoyl-2-p-substituted phenyl-6,
32552    6-dimethyl-5, 7-dioxo-spiro-[2, 5]-4,8-octadiones with methanol was
32553    studied. The structures of the reaction products were confirmed as
32554    methyl beta-benzoyl-gamma-methoxy-gamma-p-substituted phenylbutyrates
32555    by means of IR, MS, microanalysis, H-1, C-13 NMR spectroscopies and APT
32556    techniques. The reaction mechanism for the formation of the product was
32557    also proposed.
32558 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
32559    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
32560 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
32561 CR CHEN YL, 1998, CHEM J CHINESE U, V19, P1614
32562    DING WY, 1996, CHEM RES CHINESE U, V12, P50
32563    DING WY, 1999, CHEM J CHINESE U, V20, P64
32564    MONTI SA, 1974, TETRAHEDRON LETT, P3239
32565    MURPHY WS, 1983, J CHEM SOC P1, P817
32566    POKU SK, 1984, CAN J CHEM, V62, P1217
32567    PU JQ, 2000, IN PRESS SYNTHESIS C
32568    SMITH AB, 1978, TETRAHEDRON LETT, P1649
32569 NR 8
32570 TC 1
32571 SN 0251-0790
32572 J9 CHEM J CHINESE UNIV-CHINESE
32573 JI Chem. J. Chin. Univ.-Chin.
32574 PD MAY
32575 PY 2000
32576 VL 21
32577 IS 5
32578 BP 740
32579 EP 742
32580 PG 3
32581 SC Chemistry, Multidisciplinary
32582 GA 316HH
32583 UT ISI:000087161200022
32584 ER
32585 
32586 PT J
32587 AU Liu, ZR
32588    Chen, LQ
32589    Yang, L
32590 TI On properties of hyperchaos: Case study
32591 SO ACTA MECHANICA SINICA
32592 DT Article
32593 DE hyperchaos; strange attractor; unstable periodic point; pattern
32594    formation
32595 ID CHAOS
32596 AB Some properties of hyperchaos are exploited by studying both uncoupled
32597    and coupled CML. In addition to usual properties of chaotic strange
32598    attractors, there are other interesting properties, such as: the number
32599    of unstable periodic points embedded in the strange attractor increases
32600    dramatically increasing and a large number of low-dimensional chaotic
32601    invariant sets are contained in the strange attractor. These properties
32602    may be useful for regarding the edge of chaos as. the origin of
32603    complexity of dynamical systems.
32604 C1 Acad Sinica, Inst Mech, LNM, Beijing 100080, Peoples R China.
32605    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
32606    Shanghai Univ, Dept Mech, Shanghai 201800, Peoples R China.
32607 RP Liu, ZR, Acad Sinica, Inst Mech, LNM, Beijing 100080, Peoples R China.
32608 CR BADII R, 1997, COMPLEXITY HIERARCHI
32609    CHEN LQ, 1998, APPL MATH MECH-ENGL, V19, P67
32610    CHEN LQ, 1998, J SHANGHAI JIAOTONG, V32, P108
32611    KANEKO K, 1989, PHYSICA D, V34, P1
32612    LIU ZG, 1993, SCI CHINA SER A, V23, P702
32613    LIU ZR, 1997, ACTA MECH SCINICA, V29, P103
32614    MAROTTO FR, 1978, J MATH ANAL APPL, V63, P199
32615    MAROTTO FR, 1979, COMMUN MATH PHYS, V68, P187
32616    MAROTTO FR, 1979, J MATH ANAL APPL, V72, P716
32617    OTT E, 1990, PHYS REV LETT, V64, P1196
32618    WALDROP MM, 1992, COMPLEXITY EMERGING
32619    YANG L, 1998, APPL MATH MECH-ENGL, V19, P1
32620 NR 12
32621 TC 6
32622 SN 0567-7718
32623 J9 ACTA MECH SINICA
32624 JI Acta Mech. Sin.
32625 PD NOV
32626 PY 1999
32627 VL 15
32628 IS 4
32629 BP 366
32630 EP 370
32631 PG 5
32632 SC Engineering, Mechanical; Mechanics
32633 GA 317GF
32634 UT ISI:000087217100008
32635 ER
32636 
32637 PT J
32638 AU Li, XS
32639    Yamashita, K
32640    Tanaka, T
32641    Suzuki, Y
32642    Okuyama, M
32643 TI Structural and electrical properties of highly oriented Pb(Zr,Ti)O-3
32644    thin films deposited by facing target sputtering
32645 SO SENSORS AND ACTUATORS A-PHYSICAL
32646 DT Article
32647 DE PZT thin film; facing target sputtering; crystalline orientation;
32648    ferroelectric property
32649 ID ZIRCONATE-TITANATE FILMS; HEAT-TREATMENT; GEL; SUBSTRATE; GROWTH;
32650    PB(ZR; RF
32651 AB The Pb(Zr,Ti)O-3 thin films with single (111) oriented perovskite phase
32652    and excellent electrical properties have been prepared by annealing the
32653    as-deposited samples. The orientation of crystals depends strongly on
32654    both the deposition temperature and annealing temperature. The sample
32655    annealed at 606 degrees C has the best (111) orientation. When the
32656    sample is annealed at lower temperature, the relative content of (111)
32657    oriented perovskite phase decreases quickly with increase of deposition
32658    temperature. The deposition temperature has little effects on the
32659    orientation when the sample is annealed at higher temperature. The
32660    effects of deposition temperature and annealing temperature on the
32661    crystallographic structures and electrical properties of PZT thin films
32662    were investigated in this paper. The sample deposited at 285 degrees C
32663    and annealed at 606 degrees C has the maximum value of polarization,
32664    which displays excellent ferroelectric properties. The typical P-r and
32665    P-s values are 57 and 101 mu C/cm(2), respectively. (C) 2000 Elsevier
32666    Science S.A. All rights reserved.
32667 C1 Shanghai Univ, Shanghai, Peoples R China.
32668    Osaka Univ, Osaka, Japan.
32669    Technol Res Inst Osaka Prefecture, Super Eye Image Sensor Project, Osaka 5941157, Japan.
32670 RP Li, XS, Shanghai Univ, Shanghai, Peoples R China.
32671 CR CHEN SY, 1994, J AM CERAM SOC, V77, P2337
32672    EAKIM B, 1998, J VAC SCI TECHNOL A, V16, P2876
32673    FUKUDA Y, 1997, JPN J APPL PHYS 1, V36, P5793
32674    HIRATA K, 1992, JPN J APPL PHYS 1, V31, P3021
32675    KIM CJ, 1998, THIN SOLID FILMS, V312, P130
32676    MASUDA Y, 1996, JPN J APPL PHYS 1, V35, P5002
32677    MATSUOKA M, 1986, J APPL PHYS, V60, P2096
32678    NAM HJ, 1998, JPN J APPL PHYS 1, V37, P3462
32679    RANDALL CA, 1998, J AM CERAM SOC, V81, P677
32680    REANEY IM, 1994, J AM CERAM SOC, V77, P1209
32681    SONG YJ, 1998, APPL PHYS LETT, V72, P2686
32682    SPIERINGS GACM, 1991, J APPL PHYS, V70, P2290
32683    TUTTLE BA, 1993, J AM CERAM SOC, V76, P1537
32684    UDAYAKUMAR KR, 1995, J APPL PHYS, V77, P3981
32685 NR 14
32686 TC 6
32687 SN 0924-4247
32688 J9 SENSOR ACTUATOR A-PHYS
32689 JI Sens. Actuator A-Phys.
32690 PD MAY 15
32691 PY 2000
32692 VL 82
32693 IS 1-3
32694 BP 265
32695 EP 269
32696 PG 5
32697 SC Engineering, Electrical & Electronic; Instruments & Instrumentation
32698 GA 314PD
32699 UT ISI:000087063700041
32700 ER
32701 
32702 PT J
32703 AU Xu, KX
32704 TI Non-equilibrium radiation response and decoupling of vortex-antivortes
32705    pairs in two-dimensional high-T-c superconductors
32706 SO ACTA PHYSICA SINICA
32707 DT Article
32708 ID KOSTERLITZ-THOULESS TRANSITION; YBA2CU3O7-DELTA THIN-FILMS;
32709    2-DIMENSIONAL SUPERCONDUCTORS; RENORMALIZATION; PHOTORESPONSE
32710 AB On the basis of the two-dimensional (2D) characteristics of the
32711    superconducting transportation as well as Josephson weak link behaviors
32712    in granular YBCO films,a 2D Josephson junction array is propssed as a
32713    model system for this film. Using this simplified model, we have
32714    discussed the decoupling procedure of vortex-antivortex pairs by bias
32715    current,and analytically developed temperature distribution of free
32716    vortices n(T,I) below T-KT. As compared with experimental results,we
32717    find that the temperature dependency of n(T,I) is similar to the
32718    behaviors of microwave response of granular YBCO films near K-T
32719    transition temperature. This similarity implies, to a certain
32720    extent,some intrinsic relationship between vortex-antivortex decoupling
32721    and non-equilibrium radiation response dissipation in the high-T-c
32722    superconducting granular films.
32723 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
32724 RP Xu, KX, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
32725 CR BEASLEY MR, 1979, PHYS REV LETT, V42, P1165
32726    BOONE BG, 1991, J APPL PHYS, V69, P2676
32727    CHEN JD, 1993, IEEE T APPL SUPERCON, V3, P2128
32728    CULBERTSON JC, 1991, PHYS REV B, V44, P9609
32729    DAVIS LC, 1990, PHYS REV B, V42, P99
32730    DEMSAR J, 1997, J SUPERCOND, V10, P455
32731    DONIACH S, 1979, PHYS REV LETT, V42, P1169
32732    FIORY AT, 1988, PHYS REV LETT, V61, P1419
32733    FRENKEL A, 1993, PHYS REV B, V48, P9717
32734    HABIB YM, 1998, PHYS REV B, V57, P13833
32735    HALPERIN BI, 1979, J LOW TEMP PHYS, V36, P599
32736    HEGMANN FA, 1993, PHYS REV B, V48, P16023
32737    HEGMANN FA, 1995, APPL PHYS LETT, V67, P285
32738    HERTER ST, 1998, PHYS REV B, V57, P1154
32739    HUBER WM, 1996, APPL PHYS LETT, V68, P3338
32740    KADIN AM, 1983, PHYS REV B, V27, P6691
32741    KOSTERLITZ JM, 1973, J PHYS C SOLID STATE, V6, P1181
32742    MARTIN S, 1989, PHYS REV LETT, V62, P677
32743    PHONG LN, 1993, J APPL PHYS, V74, P7414
32744    TINKHAM M, 1995, INTRO SUPERCONDUCTIV
32745    VANVECHTEN D, 1997, APPL PHYS LETT, V71, P1415
32746    WU PH, 1987, JPN J APPL PHYS, V26, L1579
32747    XU KX, 1999, ACTA PHYS SIN-CH ED, V48, P1152
32748    YING QY, 1990, PHYS REV B, V42, P2242
32749    ZHANG ZM, 1994, J SUPERCOND, V7, P871
32750 NR 25
32751 TC 1
32752 SN 1000-3290
32753 J9 ACTA PHYS SIN-CHINESE ED
32754 JI Acta Phys. Sin.
32755 PD MAY
32756 PY 2000
32757 VL 49
32758 IS 5
32759 BP 989
32760 EP 996
32761 PG 8
32762 SC Physics, Multidisciplinary
32763 GA 313XV
32764 UT ISI:000087025700032
32765 ER
32766 
32767 PT J
32768 AU Zhong, YB
32769    Ren, ZM
32770    Deng, K
32771    Jiang, GC
32772    Xu, KD
32773 TI Separation of inclusions from liquid metal contained in a
32774    triangle/square pipe by travelling magnetic field
32775 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
32776 DT Article
32777 DE travelling magnetic fields; purification; inclusion
32778 AB By using plug flow and trajectory model, the elimination efficiency of
32779    the inclusions from liquid metals purified by travelling magnetic field
32780    (TMF) in either a triangle or a square pipe was analyzed theoretically.
32781    The ways to improve the elimination efficiency were suggested. The
32782    results using different kinds of pipes were reciprocally compared. It
32783    is determined that by means of TMF to eliminate inclusions the
32784    efficiency is affected by the diameter of the inclusions, in which the
32785    inclusions can be removed most efficiently, is optimized.
32786 C1 Shanghai Univ, Shanghai Key Lab Ferrous Met, Shanghai 200072, Peoples R China.
32787 CR FLEMINGS MC, 1981, SOLIDIFYING PROCESS, P202
32788    JIANG GC, 1996, CLEAN STEEL SECONDAR, P2
32789    JOON P, 1994, TETSU TO HAGANE, V80, P31
32790    LEENOV D, 1954, J CHEM PHYS, V22, P683
32791    SHANGGUAN D, 1992, METALL TRANS A, V23, P669
32792    SHOJI T, 1994, TETSU TO HAGANE, V80, P24
32793    TANLGUCHI S, 1997, PAR P EMP INT C, P199
32794    YOSHIKO T, 1995, TETSU TO HAGANE, V81, P12
32795    ZHAO XD, 1985, VISCOUS HYDROMECHANI, P62
32796    ZHONG YB, 1988, DEV NOWADAYS LEVEL T, P435
32797    ZHONG YB, 1999, CHINESE J NONFERROUS, V9, P482
32798    ZHONG YB, 1999, SHANGHAI NONFERROUS, P5
32799 NR 12
32800 TC 5
32801 SN 1003-6326
32802 J9 TRANS NONFERROUS METAL SOC CH
32803 JI Trans. Nonferrous Met. Soc. China
32804 PD APR
32805 PY 2000
32806 VL 10
32807 IS 2
32808 BP 240
32809 EP 245
32810 PG 6
32811 SC Metallurgy & Metallurgical Engineering
32812 GA 310PC
32813 UT ISI:000086835700024
32814 ER
32815 
32816 PT J
32817 AU Jiang, GC
32818    You, JL
32819    Yu, BK
32820    Haung, SP
32821 TI Developments of high temperature Raman spectroscopic techniques
32822 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
32823 DT Article
32824 DE high temperature; Raman spectroscopy; melt
32825 AB In recent years,researches on electroluminescence (EL) of organic and
32826    polymer thin film materials have been made with an outstanding
32827    progress,and have attracted much interest because of its large-area,
32828    full color, high luminance displays which can be driven with low de
32829    voltage. In this paper, the history of the development on
32830    electroluminescence, the devices and the selection of luminescent
32831    materials and the electroluminescence principle are introduced briefly.
32832 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
32833 RP Jiang, GC, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
32834    200072, Peoples R China.
32835 CR GILLET P, 1996, PHYS CHEM MINER, V23, P263
32836    IGUCHI Y, 1981, CAN METALL Q, V20, P51
32837    IGUCHI Y, 1984, P 2 INT C MOLT SLAGS, P975
32838    IGUCHI Y, 1988, P 3 INT C MOLT SLAGS, P169
32839    KASHIO S, 1980, RAMAN SPECTROSCOPIC, V20, P251
32840    LONG DA, 1977, RAMAN SPECTROSCOPY
32841    RICHET P, 1993, J APPL PHYS, V74, P5451
32842 NR 7
32843 TC 6
32844 SN 1000-0593
32845 J9 SPECTROSC SPECTR ANAL
32846 JI Spectrosc. Spectr. Anal.
32847 PD APR
32848 PY 2000
32849 VL 20
32850 IS 2
32851 BP 206
32852 EP +
32853 PG 5
32854 SC Spectroscopy
32855 GA 312TD
32856 UT ISI:000086958400018
32857 ER
32858 
32859 PT J
32860 AU Wang, XJ
32861    Zhang, ZM
32862    Zhang, GX
32863 TI Improving the performance of spring-supported thrust bearing by
32864    controlling its deformations
32865 SO TRIBOLOGY INTERNATIONAL
32866 DT Article
32867 DE spring supporting form; thermo-elastic deformation; thrust bearing
32868 ID ELASTIC DISTORTION ANALYSIS
32869 AB The performance of the spring-supported thrust bearing is studied with
32870    three-dimensional thermo-elastic hydrodynamic lubrication theory. The
32871    generalized Reynolds equation, the energy equation, the heat conduction
32872    equation, and the thermo-elastic deformation equation are solved
32873    simultaneously using the combination of the finite difference method
32874    and finite element method. Thermo-elastic deformation plays an
32875    important role in the performance of the spring-supported thrust
32876    bearing. Several factors such as spring pattern, pad thickness and
32877    initial pad geometry are analyzed. The results show that the above
32878    factors influence the performance of the bearing significantly.
32879    Suggestions based on the results are put forward to assist design
32880    considerations. (C) 2000 Elsevier Science Ltd. All rights reserved.
32881 C1 Shanghai Univ, Dept Mech Engn, Shanghai 200072, Peoples R China.
32882 RP Wang, XJ, Shanghai Univ, Dept Mech Engn, Shanghai 200072, Peoples R
32883    China.
32884 CR ASHOUR NME, 1991, TRIBOL INT, V24, P299
32885    ETTLES CM, 1991, J TRIBOL-T ASME, V113, P626
32886    LIAO G, 1994, HUBEI ELECT TECHNOL, V1, P74
32887    SINHA AN, 1993, TRIBOL INT, V26, P251
32888    SINHA AN, 1994, STLE TRIBOL T, V37, P802
32889    WANG X, 1998, P ASIATRIB 98, P30
32890 NR 6
32891 TC 3
32892 SN 0301-679X
32893 J9 TRIBOL INT
32894 JI Tribol. Int.
32895 PD DEC
32896 PY 1999
32897 VL 32
32898 IS 12
32899 BP 713
32900 EP 720
32901 PG 8
32902 SC Engineering, Mechanical
32903 GA 310GA
32904 UT ISI:000086817100003
32905 ER
32906 
32907 PT J
32908 AU Wang, GB
32909 TI Synthesis and characterization of novel complexes of a dipeptide Schiff
32910    base ligand containing DL-alanyl-DL-alanine
32911 SO SYNTHESIS AND REACTIVITY IN INORGANIC AND METAL-ORGANIC CHEMISTRY
32912 DT Article
32913 ID L-AMINO-ACIDS; COORDINATION MODES; HISTIDINE; OXOVANADIUM(IV);
32914    STEREOCHEMISTRY; OXYGENATION; COPPER(II); CRYSTAL
32915 AB A new dipeptide Schiff base obtained by the condensation of
32916    DL-alanyl-DL-alanine with o-vanillin was synthesized and characterized
32917    by H-1 NMR spectroscopy. Cu(II), Zn(II), Ni(II) and Co(II) complexes
32918    were obtained with the dipeptide Schiff base. The COO stretching bands
32919    in the IR spectra suggest that carboxylate acts as a monodentate group
32920    when binding with metal. The ligand is coordinated to the central metal
32921    as tetradentate ligand. The bonding sites are the carboxylate oxygen,
32922    imino nitrogen, amide nitrogen and phenolic oxygen.
32923 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 201800, Peoples R China.
32924 RP Wang, GB, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 201800, Peoples R
32925    China.
32926 CR ABDELMAWGOUD AM, 1991, SYN REACT INORG MET, V21, P1061
32927    ANGOSO A, 1992, INORG CHIM ACTA, V195, P45
32928    CASELLA L, 1984, J CHEM SOC DA, P1033
32929    CASELLA L, 1986, INORG CHEM, V25, P1293
32930    CASELLA L, 1988, INORG CHIM ACTA, V144, P89
32931    CAVACO I, 1994, J CHEM SOC DA, P149
32932    CHAKRAVARTY J, 1994, J CHEM SOC DA, P557
32933    DUTTA S, 1995, POLYHEDRON, V14, P1163
32934    FULWOOD R, 1995, J CHEM SOC CHEM COMM, P1443
32935    GEARY WJ, 1971, COORDIN CHEM REV, V7, P81
32936    GON NK, 1993, POLYHEDRON, V12, P925
32937    MARTELL AE, 1989, ACCOUNTS CHEM RES, V22, P115
32938    MARTELL AE, 1990, J CHEM SOC CHEM COMM, P352
32939    MATHEWS II, 1991, INORG CHEM, V30, P81
32940    MONDAL S, 1995, J CHEM SOC DA, P1115
32941    NAKAMOTO K, 1978, INFRA RED RAMAN SPEC
32942    NATH M, 1998, SYN REACT INORG MET, V28, P715
32943    PESSOA JC, 1992, J CHEM SOC DA, P1745
32944    VOGEL AI, 1978, TXB QUANTITATIVE INO
32945    WANG GB, 1994, SYN REACT INORG MET, V28, P843
32946    YUSUFF KKM, 1991, SYN REACT INORG MET, V21, P553
32947 NR 21
32948 TC 3
32949 SN 0094-5714
32950 J9 SYN REACTIV INORG METAL-ORG C
32951 JI Synth. React. Inorganic Met.-Org. Chem.
32952 PY 2000
32953 VL 30
32954 IS 4
32955 BP 601
32956 EP 608
32957 PG 8
32958 SC Chemistry, Inorganic & Nuclear
32959 GA 310HM
32960 UT ISI:000086820500003
32961 ER
32962 
32963 PT J
32964 AU Yao, LX
32965    Chen, RL
32966    Qin, P
32967    Chen, NY
32968    Lu, WC
32969 TI Regularities of formation of ternary alloy phases between
32970    non-transition metals
32971 SO SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES
32972 DT Article
32973 DE non-transition metals; ternary intermetallic compounds; regularities of
32974    formation
32975 AB Using a four-parameter model based on extended Miedema's cellular model
32976    of alloy phases and pattern recognition methods, the regularities of
32977    formation of ternary intermetallic compounds between non-transition
32978    metals have been investigated. The criterion of formation can be
32979    expressed as some empirical functions of phi (electronegativity),
32980    n(ws)(1/3)(valence electron density in Wagner-Seitz cell), R (Pauling's
32981    metallic radius) and Z (number of valence electrons in atom).
32982 C1 Chinese Acad Sci, Shanghai Inst Met, Shanghai 200050, Peoples R China.
32983    Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
32984 RP Yao, LX, Chinese Acad Sci, Shanghai Inst Met, Shanghai 200050, Peoples
32985    R China.
32986 CR CHEN NY, 1976, BOND PARAMETER FUNCT
32987    CHEN NY, 1996, J ALLOY COMPD, V245, P179
32988    CHEN NY, 1999, CHEMOMETR INTELL LAB, V45, P329
32989    MIEDEMA AR, 1973, J LESS-COMMON MET, V32, P117
32990    NESPER R, 1993, J ALLOY COMPD, V197, P109
32991    PAULING L, 1960, NATURE CHEM BOND
32992    TILLARDCHARBONN.M, 1993, MATER RES BULL, V28, P1285
32993    VILLERS P, 1987, PERSONS HDB CRYSTALL, V1
32994 NR 8
32995 TC 3
32996 SN 1006-9321
32997 J9 SCI CHINA SER E
32998 JI Sci. China Ser. E-Technol. Sci.
32999 PD APR
33000 PY 2000
33001 VL 43
33002 IS 2
33003 BP 199
33004 EP 205
33005 PG 7
33006 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary
33007 GA 309AJ
33008 UT ISI:000086744800011
33009 ER
33010 
33011 PT J
33012 AU Zhao, DQ
33013    Wang, WH
33014    Zhuang, YX
33015    Pan, MX
33016    Ji, YF
33017    Ma, XM
33018    Dong, YD
33019 TI Formation and performance of new Zr-Ti-Cu-Ni-Be-Fe bulk amorphous alloy
33020 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
33021 DT Article
33022 DE bulk amorphous alloy; glass forming ability; Zr-Ti-Cu-Ni-Be-Fe alloy;
33023    hardness; susceptibility
33024 ID METALLIC-GLASS; MICROSTRUCTURE
33025 AB The formation of the new Zr-Ti-Cu-Ni-Be-Fe bulk amorphous alloy with
33026    high strength is reported. The effects of the iron atom on the glass
33027    forming ability, hardness, susceptibility and thermal stability of the
33028    amorphous alloy are investigated. The role of the iron in the formation
33029    of the bulk amorphous alloy is discussed.
33030 C1 Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China.
33031    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
33032 RP Zhao, DQ, Chinese Acad Sci, Inst Phys, POB 603, Beijing 100080, Peoples
33033    R China.
33034 CR DAI DS, 1992, FERROMAGNETICS, P28
33035    GREER AL, 1993, NATURE, V366, P303
33036    INOUE A, 1995, MATER T JIM, V36, P866
33037    JOHNSON WL, 1996, MATER SCI FORUM, V35, P225
33038    PEKER A, 1993, APPL PHYS LETT, V63, P2342
33039    WANG R, 1979, NATURE, V278, P700
33040    WANG WH, 1997, APPL PHYS LETT, V71, P1053
33041    WANG WH, 1998, PHYS REV B, V57, P8211
33042 NR 8
33043 TC 0
33044 SN 1006-9283
33045 J9 SCI CHINA SER A
33046 JI Sci. China Ser. A-Math. Phys. Astron.
33047 PD MAR
33048 PY 2000
33049 VL 43
33050 IS 3
33051 BP 307
33052 EP 311
33053 PG 5
33054 SC Mathematics, Applied; Mathematics
33055 GA 309AP
33056 UT ISI:000086745300009
33057 ER
33058 
33059 PT J
33060 AU Xu, YR
33061    Chen, LS
33062    Wang, DY
33063    Jin, L
33064 TI Flow behavior and evolution of microstructure during hot deformation
33065    for a high Mo stainless steel
33066 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
33067 DT Article
33068 ID PRECIPITATION
33069 AB The mechanical behaviors of high Mo austenitic stainless steel
33070    00Cr20Ni18Mo6Cu[N] have been investigated using the methods of hot
33071    compression simulation test on the Thermecmaster-Z simulator. The
33072    dynamic recrystallization kinetic equation was established, Avrami
33073    coefficient n lies in between 0.9 similar to 2 depending on deformation
33074    parameters. A perfect flow stress model considering dynamic
33075    recrystallization was also established. Dynamic recrystallization tends
33076    to complete at 1050 degrees C and high strain rate, but at temperature
33077    below 950 degrees C, it is hard to occur. Double-stage interrupt
33078    compression tests were carried out. Activation energy for static and
33079    metadynamic recrystallization have been obtained respectively
33080    (Q(SRX)=483.7, Q(MDRX)=253.5 kJ/mol). Avrami coefficient of MDRX is
33081    about 0.5, and t(0.5)-kinetics equations of SRX and MDRX have also been
33082    constructed. The evolution of microstructures during interrupt
33083    compression deformation was investigated. Static and metadynamic
33084    recrystallization is essential to improve plasticity, at temperature
33085    above 1000 degrees C increasing interpass time has advantage for static
33086    and metadynamic recrystallization.
33087 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
33088 RP Xu, YR, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
33089    China.
33090 CR DUTTA B, 1987, MATER SCI TECH SER, V3, P197
33091    FABREGUE P, 1994, ADV HOT DEFORMATION, P75
33092    HERTZMEN S, 1996, SCANDINAVIAN J METAL, V24, P140
33093    HODGSON PD, 1994, ADV HOT DEFORMATION, P41
33094    HOLMVIK AA, 1997, THERM 97 INT C THERM, V1, P241
33095    JARGELIUSPETTER.RF, 1996, SCANDINAVIAN J METAL, V24, P188
33096    MILITZER M, 1994, ACTA METALL MATER, V42, P133
33097    ROBERTS W, 1984, DEFORMATION PROCESSI, P109
33098    ROUCOULES C, 1993, 1 INT C MOD MET ROLL, P165
33099    RYAN ND, 1990, MATER FORUM, V14, P283
33100    RYAN ND, 1994, ADV HOT DEFORMATION, P445
33101 NR 11
33102 TC 0
33103 SN 1005-0302
33104 J9 J MATER SCI TECHNOL
33105 JI J. Mater. Sci. Technol.
33106 PD MAY
33107 PY 2000
33108 VL 16
33109 IS 3
33110 BP 341
33111 EP 344
33112 PG 4
33113 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
33114    Engineering
33115 GA 310FW
33116 UT ISI:000086816700018
33117 ER
33118 
33119 PT J
33120 AU Chen, BL
33121    Lu, W
33122    Wang, ZG
33123    Yang, H
33124    Wang, H
33125 TI Characterization for 64x64 InSb photovoltaic infrared detector array
33126 SO JOURNAL OF INFRARED AND MILLIMETER WAVES
33127 DT Article
33128 DE infrared focal plane array; InSb; microprobing; characterization
33129 AB Statistical characterization and uniformity evaluation for 64 X 64 InSb
33130    photovoltaic detector arrays prepared for fabrication of staring
33131    infrared focal plane array by using modified cryomicroprobing technique
33132    were carried out. Typical values of mean detector impedance 42Mh Omega
33133    at 90K and zero bias with nonuniformity 20%, mean responsivity 2.8A/W
33134    for 1000K blackbody with nonuniformity 6.3%, and electrical crosstalk
33135    rate less than 2% were measured. These performances meet the technical
33136    requirements to fabrication of hybrid InSb focal plane arrays.
33137    Localized electrical crosstalk detected on some abnormal chips was
33138    discussed.
33139 C1 Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China.
33140    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
33141 RP Chen, BL, Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083,
33142    Peoples R China.
33143 CR AMINGUAL D, 1996, P SOC PHOTO-OPT INS, V2894, P95
33144    BLUZER N, 1987, OPT ENG, V26, P241
33145    NAVEH O, 1997, P SOC PHOTO-OPT INS, V3061, P692
33146    PARRISH WJ, 1991, P SOC PHOTO-OPT INS, V1512, P68
33147    TREADO PJ, 1994, APPL SPECTROSC, V48, P607
33148 NR 5
33149 TC 0
33150 SN 1001-9014
33151 J9 J INFRARED MILIM WAVES
33152 JI J. Infrared Millim. Waves
33153 PD APR
33154 PY 2000
33155 VL 19
33156 IS 2
33157 BP 89
33158 EP 92
33159 PG 4
33160 SC Optics
33161 GA 310JD
33162 UT ISI:000086822000002
33163 ER
33164 
33165 PT J
33166 AU Wang, ZH
33167    Peng, GD
33168    Chu, PL
33169 TI Improved Rouard's method for fiber and waveguide gratings
33170 SO OPTICS COMMUNICATIONS
33171 DT Article
33172 DE Rouard's method; fiber gratings
33173 ID WAVE-GUIDE GRATINGS; COUPLED-MODE THEORY; PERIODIC STRUCTURES
33174 AB An improvement has been made to Rouard's method for the analysis of
33175    fiber and waveguide gratings. The real reflectivity of each interface
33176    is used instead of an approximate value obtained by coupled-mode
33177    theory. The improved Rouard's method becomes a complete Rouard's method
33178    and an exact method. It is simple and independent on coupled-mode
33179    theory for no calculation of coupling coefficient required. Numerical
33180    examples of uniform and nonuniform gratings have been given. (C) 2000
33181    Published by Elsevier Science B.V. All rights reserved.
33182 C1 Shanghai Univ, Wave Sci Lab, Shanghai 201800, Peoples R China.
33183    Univ New S Wales, Sch Elect Engn, Opt Commun Grp, Sydney, NSW 2052, Australia.
33184 RP Wang, ZH, Shanghai Univ, Wave Sci Lab, Shanghai 201800, Peoples R China.
33185 CR ERDOGAN T, 1997, J LIGHTWAVE TECHNOL, V15, P1277
33186    HILL KO, 1997, J LIGHTWAVE TECHNOL, V15, P1263
33187    KOGELNIK H, 1976, BELL SYST TECH J, V55, P109
33188    WELLERBROPHY LA, 1985, J OPT SOC AM A, V2, P863
33189    WELLERBROPHY LA, 1987, J OPT SOC AM A, V4, P60
33190    WINICK KA, 1992, APPL OPTICS, V31, P757
33191    YAMADA M, 1987, APPL OPTICS, V26, P3474
33192    YARIV A, 1977, IEEE J QUANTUM ELECT, V13, P233
33193    YARIV A, 1993, OPTICAL WAVES CRYSTA, P177
33194    YEH P, 1977, J OPT SOC AM, V67, P423
33195 NR 10
33196 TC 1
33197 SN 0030-4018
33198 J9 OPT COMMUN
33199 JI Opt. Commun.
33200 PD APR 15
33201 PY 2000
33202 VL 177
33203 IS 1-6
33204 BP 245
33205 EP 250
33206 PG 6
33207 SC Optics
33208 GA 306BW
33209 UT ISI:000086577200029
33210 ER
33211 
33212 PT J
33213 AU Jin, CY
33214    Ding, YP
33215    Meng, ZY
33216 TI Studies on the chemical mechanism of BaxSr1-xTiO3 ferroelectric thin
33217    films by sol-gel method
33218 SO JOURNAL OF INORGANIC MATERIALS
33219 DT Article
33220 DE BST thin films; sol-gel method; FTIR; DSC; XRD; AFM
33221 ID KINETICS
33222 AB FTIR analysis combined with DSC, XRD and AFM experiments was used to
33223    study on the chemical mechanism of thermal evolution for BaxSr1-xTiO3
33224    (BST) thin films derived by sol-gel method. Acetylacetone(HAcAc) was
33225    introduced as a chelating agent to reduce a rapid hydrolysis rate of
33226    Ti-alkoxide, to improve its crystallization path, to decrease its
33227    crystallization temperature. And then the densified and crack-free BST
33228    thin films with better crystallization were fabricated.
33229 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
33230    Shanghai Jiao Tong Univ, Dept Mat Sci, Shanghai 200030, Peoples R China.
33231 RP Jin, CY, Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
33232 CR DING YP, UNPUB MAT RES B
33233    DING YP, 1999, ADV SCI TECHNOLOGY, V20, P615
33234    GUST MC, 1997, J AM CERAM SOC, V80, P2828
33235    JANG SI, 1997, J MATER RES, V12, P1327
33236    KAMALASANAN MN, 1996, J MATER SCI, V31, P2741
33237    OHFUJI S, 1997, JPN J APPL PHYS 1, V36, P5854
33238    SENGUPTA LC, 1994, FERROELECTRICS, V153, P359
33239    SHAIKH AS, 1986, J AM CERAM SOC, V69, P682
33240 NR 8
33241 TC 1
33242 SN 1000-324X
33243 J9 J INORG MATER
33244 JI J. Inorg. Mater.
33245 PD APR
33246 PY 2000
33247 VL 15
33248 IS 2
33249 BP 287
33250 EP 292
33251 PG 6
33252 SC Materials Science, Ceramics
33253 GA 307PA
33254 UT ISI:000086660700015
33255 ER
33256 
33257 PT J
33258 AU Feng, WB
33259    Li, KT
33260 TI The existence and uniqueness of weak solution of the flow between two
33261    concentric rotating spheres
33262 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
33263 DT Article
33264 DE Navier-Stokes equations; stream function; Galerkin method
33265 ID SIMULATION
33266 AB The unsteady axisymmetric incompressible flow between two concentric
33267    spheres was discussed in this paper. It is useful to most
33268    astrophysical, geophysical and engineering applications. In order to
33269    get the existence and uniqueness of weak solution of this flow with the
33270    stream-velocity form, firstly, the relations among the nonlinear terms
33271    in this equation is found; then, the existence is proved by an
33272    auxiliary semi-discrete scheme and a compactness argument.
33273 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
33274    Xian Jiao Tong Univ, Sch Sci, Xian 710049, Peoples R China.
33275 RP Feng, WB, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
33276    200072, Peoples R China.
33277 CR GLOWINSKI R, 1984, NUMERICAL METHODS NO
33278    KHLEBUTIN GN, 1968, FLUID DYN, V3, P31
33279    LI KT, 1992, HILBERT SPACE METHOD
33280    MARCUS PS, 1987, J FLUID MECH, V185, P1
33281    MARCUS PS, 1987, J FLUID MECH, V185, P31
33282    TEMAN R, 1984, NAVIERSTOKES EQUATIO
33283    TUCKERMAN LS, 1983, THESIS MIT MASSACHUS
33284 NR 7
33285 TC 0
33286 SN 0253-4827
33287 J9 APPL MATH MECH-ENGL ED
33288 JI Appl. Math. Mech.-Engl. Ed.
33289 PD JAN
33290 PY 2000
33291 VL 21
33292 IS 1
33293 BP 67
33294 EP 72
33295 PG 6
33296 SC Mathematics, Applied; Mechanics
33297 GA 308DJ
33298 UT ISI:000086695000009
33299 ER
33300 
33301 PT J
33302 AU Cheng, CJ
33303    Chen, XY
33304 TI Inverse scattering for inhomogeneous viscoelastic media
33305 SO JOURNAL OF MATHEMATICAL PHYSICS
33306 DT Article
33307 ID DISSIPATIVE WAVE-EQUATION; ELECTROMAGNETIC SCATTERING; TIME DOMAIN
33308 AB In this paper, the inverse scattering problems for the full
33309    inhomogeneous viscoelastic medium are studied via the invariant
33310    imbedding technique. Special attention is paid to the propagation
33311    operators of the viscoelastic medium and the imbedding equations for
33312    these operators are derived. For the inverse scattering problems, it is
33313    shown that the reflection data can be extended from one round trip
33314    through the iscoelastic slab to arbitrary time with the help of the
33315    propagation operators, hence the reconstruction of the relaxation
33316    modulus is sufficient to be considered only in one round trip. It is
33317    also shown that only one-side measurement reflection data are not
33318    sufficient to reconstruct the relaxation modulus and the density of the
33319    medium simultaneously. The corresponding numerical examples are
33320    presented. For the case that the relaxation modulus of the medium is
33321    modeled by two independent functions, an iterative inversion procedure
33322    is proposed to recover the relaxation modulus and the density
33323    simultaneously with the input two-side normally reflection data. (C)
33324    2000 American Institute of Physics. [S0022-2488(00)06705-0].
33325 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
33326    State Ocean Adm, Key Lab Marine Sci & Numer Modelling, Tsingdao 266003, Peoples R China.
33327 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
33328    Shanghai 200072, Peoples R China.
33329 CR AMMICHT E, 1987, J ACOUST SOC AM, V81, P827
33330    BEEZLEY RS, 1985, J MATH PHYS, V26, P317
33331    BUI DD, 1995, INVERSE PROBL, V11, P835
33332    CHRISTENSON RM, 1982, THEORY VISCOELASTICI
33333    CORONES JP, 1988, INVERSE PROBL, V4, P643
33334    KARLSSON A, 1987, INVERSE PROBL, V3, P691
33335    KREIDER KL, 1989, WAVE MOTION, V11, P427
33336    KRESS R, 1989, APPL MATH SCI
33337    KRISTENSSON G, 1986, J MATH PHYS, V27, P1667
33338    KRISTENSSON G, 1986, J MATH PHYS, V27, P1683
33339    ZHU WH, 1990, J ACOUST SOC AM, V877, P2371
33340 NR 11
33341 TC 1
33342 SN 0022-2488
33343 J9 J MATH PHYS-NY
33344 JI J. Math. Phys.
33345 PD MAY
33346 PY 2000
33347 VL 41
33348 IS 5
33349 BP 2839
33350 EP 2850
33351 PG 12
33352 SC Physics, Mathematical
33353 GA 305YD
33354 UT ISI:000086568600022
33355 ER
33356 
33357 PT J
33358 AU Liu, YF
33359    Wang, SZ
33360    Hua, JD
33361 TI Synthesis of complex polymeric flocculant and its application in
33362    purifying water
33363 SO JOURNAL OF APPLIED POLYMER SCIENCE
33364 DT Article
33365 DE polyacrylamide; complex; flocculant
33366 AB A novel flocculant was synthesized, a method consisting of a
33367    poly(acrylamide-co-acrylic acid) complexed with an inorganic coagulant
33368    through the chemical bond between metal ions and carboxyl acid groups
33369    or amide ligands within the polymer. This complex polymeric flocculant
33370    is more readily available for purifying water than any single or
33371    mechanical mixture. The mechanism of flocculating is discussed and a
33372    practical use performed for wastewater from paper mill. (C) 2000 John
33373    Wiley & Sons, Inc.
33374 C1 Shanghai Univ Sci & Technol, Dept Polymer Mat, Shanghai 201800, Peoples R China.
33375 RP Liu, YF, Shanghai Univ Sci & Technol, Dept Polymer Mat, Shanghai
33376    201800, Peoples R China.
33377 CR CAMPANELLA L, 1995, INQUINAMENTO, V37, P66
33378    CHEN F, 1994, 2110458, CA
33379    FAN R, 1995, ZIRAN KEXUE BAN, V23, P71
33380    FUJII N, 1991, MIYAZAKI DAIGAKU NOG, V38, P131
33381    GOLDBLATT ME, 1995, P 68 ANN C EXP WAT E, V3, P451
33382    GOOSSENS IR, 1993, CM MAG, V19, P20
33383    KOETZ J, 1992, 301010, DE
33384    LAMER VK, 1963, REV PURE APPL CHEM, V13, P112
33385 NR 8
33386 TC 4
33387 SN 0021-8995
33388 J9 J APPL POLYM SCI
33389 JI J. Appl. Polym. Sci.
33390 PD JUN 28
33391 PY 2000
33392 VL 76
33393 IS 14
33394 BP 2093
33395 EP 2097
33396 PG 5
33397 SC Polymer Science
33398 GA 306JF
33399 UT ISI:000086593000013
33400 ER
33401 
33402 PT J
33403 AU He, JH
33404 TI A variational model for compressible rotational blade-to-blade flow
33405    using Liu-type potential function
33406 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
33407 DT Article
33408 ID SEMI-INVERSE METHOD; PRINCIPLES
33409 AB The pseudo-potential function proposed by Liu retains almost all
33410    advantages of the potential function, while removing its restriction to
33411    flow potentiality. To apply the finite element applications for
33412    numerical simulation of the compressible rotational blade-to-blade
33413    flow, it is necessary to establish a generalized variational principle.
33414    In this paper a family of variational principles is established by the
33415    trial-and-error method, the Lagrange multiplier method and the
33416    semi-inverse method.
33417 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
33418 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
33419    Peoples R China.
33420 CR HE JH, 1997, INT J TURBO JET ENG, V14, P23
33421    HE JH, 1997, J SHANGHAI U, V1, P117
33422    HE JH, 1998, APPL MATH MODEL, V22, P395
33423    HE JH, 1998, COMMUNICATIONS NONLI, V3, P176
33424    HE JH, 1998, INT J TURBO JET ENG, V15, P101
33425    HE JH, 1998, INT J TURBO JET ENG, V15, P95
33426    HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154
33427    LIU GH, 1997, AIRCRAFT ENG AEROSPA, V6, P527
33428    LIU GL, 1991, J ENG THERMOPHYSICS, V12, P2026
33429    LIU GL, 1996, INT J TURBO JET ENG, V13, P263
33430    SHEN YS, 1998, THESIS SHANGHAI I AP
33431    WANG HG, 1993, THESIS SHANGHAI I ME, P21
33432 NR 12
33433 TC 0
33434 SN 0334-0082
33435 J9 INT J TURBO JET ENGINES
33436 JI Int. J. Turbo. Jet-Engines
33437 PY 2000
33438 VL 17
33439 IS 2
33440 BP 143
33441 EP 152
33442 PG 10
33443 SC Engineering, Aerospace
33444 GA 305YZ
33445 UT ISI:000086570500004
33446 ER
33447 
33448 PT J
33449 AU Wang, J
33450    Fiebig, M
33451 TI Thermal diffusivity of aqueous solutions of magnesium chloride in the
33452    temperature range from 294 to 371 K
33453 SO INTERNATIONAL JOURNAL OF THERMOPHYSICS
33454 DT Article
33455 DE aqueous solution; diffraction; laser-induced thermal grating; magnesium
33456    chloride; thermal conductivity; thermal diffusivity
33457 ID GRATING TECHNIQUE; METHANOL
33458 AB The thermal diffusivity of aqueous solutions of magnesium chloride was
33459    determined in the temperature range 294 to 371 K and at atmospheric
33460    pressure. Using a noninvasive optical technique-laser-induced thermal
33461    grating ( LTG) the measurements were carried out in aqueous solutions
33462    of weight fractions of 5, 10, 15, and 20% magnesium chloride. The
33463    measurement results for the aqueous solutions are presented as a
33464    Function of temperature and weight fraction.
33465 C1 Ruhr Univ Bochum, Inst Thermo & Fluiddynam, D-44780 Bochum, Germany.
33466    Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
33467 RP Fiebig, M, Ruhr Univ Bochum, Inst Thermo & Fluiddynam, D-44780 Bochum,
33468    Germany.
33469 CR 1991, VDI WARMEATLAS
33470    BLANKE W, 1989, THERMOPHYSIKALISCHE, P112
33471    NAGASAKA Y, 1988, REV SCI INSTRUM, V59, P1156
33472    PRESS WH, 1992, NUMERICAL RECIPES FO, P678
33473    WANG J, 1995, HEAT MASS TRANSFER, V31, P83
33474    WANG J, 1995, INT J THERMOPHYS, V16, P1353
33475    WANG J, 1995, MESSUNG TEMPERATURLE, P48
33476    WANG J, 1996, EXP THERM FLUID SCI, V13, P38
33477    WANG J, 1998, INT J THERMOPHYS, V19, P15
33478    WU G, 1993, FLUID PHASE EQUILIBR, V88, P239
33479 NR 10
33480 TC 1
33481 SN 0195-928X
33482 J9 INT J THERMOPHYS
33483 JI Int. J. Thermophys.
33484 PD JAN
33485 PY 2000
33486 VL 21
33487 IS 1
33488 BP 35
33489 EP 44
33490 PG 10
33491 SC Chemistry, Physical; Physics, Applied; Mechanics; Thermodynamics
33492 GA 304VZ
33493 UT ISI:000086506000003
33494 ER
33495 
33496 PT J
33497 AU Guo, GY
33498    Chen, YL
33499 TI Achieving practically zero discharge for an acrylic acid plant by a
33500    metalorganic precipitation process
33501 SO GREEN CHEMISTRY
33502 DT Article
33503 ID ACETIC-ACID; ION-EXCHANGE; SEPARATION; EXTRACTION; PRECURSOR; PH
33504 C1 Jiao Tong Univ, Shanghai 200030, Peoples R China.
33505    Shanghai Univ, Shanghai 200041, Peoples R China.
33506 RP Guo, GY, Jiao Tong Univ, Shanghai 200030, Peoples R China.
33507 CR ANWAR MM, 1998, SOLVENT EXTR ION EXC, V16, P931
33508    CLOETE FLD, 1995, IND ENG CHEM RES, V34, P2464
33509    DELUCAS A, 1999, SEPAR SCI TECHNOL, V34, P525
33510    DOEUFF S, 1987, J NON-CRYST SOLIDS, V89, P206
33511    GUO GY, 1991, J MATER SCI, V26, P3511
33512    GUO GY, 1992, J AM CERAM SOC, V75, P1294
33513    JOSHI VP, 1998, CHEM ENG SCI, V53, P2271
33514    MICHELI AL, 1989, CERAM INT, V15, P131
33515    RAYNAUDLACROZE PO, 1993, IND ENG CHEM RES, V32, P685
33516    REISINGER H, 1995, IND ENG CHEM RES, V34, P845
33517    SCHIERBAUM B, 1999, CHEM ENG TECHNOL, V22, P37
33518    SHENDE RV, 1997, IND ENG CHEM RES, V36, P4809
33519    SOREK Y, 1997, CHEM MATER, V9, P670
33520    TAKATSUJI W, 1997, J CHEM ENG JPN, V30, P396
33521    WODZKI R, 1997, SOLVENT EXTR ION EXC, V15, P1085
33522    YANG ST, 1991, IND ENG CHEM RES, V30, P1335
33523 NR 16
33524 TC 1
33525 SN 1463-9262
33526 J9 GREEN CHEM
33527 JI Green Chem.
33528 PD APR
33529 PY 2000
33530 VL 2
33531 IS 2
33532 BP G42
33533 EP G45
33534 PG 4
33535 SC Chemistry, Multidisciplinary
33536 GA 305DR
33537 UT ISI:000086524600002
33538 ER
33539 
33540 PT J
33541 AU Wang, LJ
33542    Xia, YB
33543    Ju, JH
33544    Fan, YM
33545    Mo, YW
33546    Shi, WM
33547 TI Efficient luminescence from CVD diamond film-coated porous silicon
33548 SO JOURNAL OF PHYSICS-CONDENSED MATTER
33549 DT Letter
33550 AB In this Letter a novel passivation method for porous silicon (PS)
33551    surfaces, i.e., depositing diamond film on a PS surface by microwave
33552    plasma assisted chemical vapour deposition (MPCVD) method, is reported.
33553    The morphologies, structure and PL of CVD diamond film coated PS were
33554    characterized using scanning electron microscopy (SEM), Raman spectrum
33555    and PL spectroscope. Results indicate that efficient luminescence can
33556    be obtained from diamond film-coated porous silicon Also, the CVD
33557    diamond film may efficiently stabilize the PL wavelength and intensity
33558    of PS, and therefore is a promising candidate for passivation of porous
33559    silicon in the future.
33560 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
33561 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
33562    China.
33563 CR CANHAM LT, 1990, APPL PHYS LETT, V57, P1016
33564    GARDELIS S, 1994, J APPL PHYS, V76, P5327
33565    GILDENBLAT GS, 1991, P IEEE, V79, P647
33566    KALISH R, 1997, APPL SURF SCI, V117, P558
33567    MULLER C, 1993, SCI SOC, V57, P111
33568    PROKES SM, 1995, J APPL PHYS, V78, P2671
33569    TISCHLER MA, 1992, APPL PHYS LETT, V60, P639
33570    ZOUBIR NH, 1994, APPL PHYS LETT, V65, P82
33571 NR 8
33572 TC 3
33573 SN 0953-8984
33574 J9 J PHYS-CONDENS MATTER
33575 JI J. Phys.-Condes. Matter
33576 PD APR 3
33577 PY 2000
33578 VL 12
33579 IS 13
33580 BP L257
33581 EP L260
33582 PG 4
33583 SC Physics, Condensed Matter
33584 GA 303HF
33585 UT ISI:000086415900004
33586 ER
33587 
33588 PT J
33589 AU Chen, LQ
33590    Cheng, CJ
33591 TI Controlling chaotic oscillations of viscoelastic plates by the
33592    linearization via output feedback
33593 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
33594 DT Article
33595 DE controlling chaos; linearization via output feedback; viscoelastic
33596    plate; nonlinearity
33597 ID VIBRATIONS
33598 AB Controlling chaotic oscillations of viscoelastic plates are
33599    investigated in this paper. Based an the exact linearization method in
33600    nonlinear system control theory, a nonlinear feedback control law is
33601    presented for a class of non-affine control systems. The mathematical
33602    model describing motion of nonlinear viscoelastic plates is
33603    established, and it is simplified by the Galerkin method. The phase
33604    space portrait and the power spectrum are employed to demonstrate chaos
33605    in the system. The deflection is treated as an output, and is
33606    controlled to given periodic goals.
33607 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
33608    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
33609 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
33610    200072, Peoples R China.
33611 CR ALVAREZGALLEGOS J, 1994, DYNAM CONTROL, V4, P277
33612    ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151
33613    CHEN LQ, 1998, APPL MATH MECH-ENGL, V19, P67
33614    CHEN LQ, 1998, J SHANGHAI JIAOTONG, V32, P108
33615    DING R, 1996, THESIS LANZHOU U, P56
33616    HALL EK, 1993, J GUID CONTROL DYNAM, V16, P470
33617    HU HY, 1996, ADV MECH, V26, P453
33618    ISIDORI A, 1989, NONLINEAR CONTROL SY, P156
33619    LINDNER JF, 1995, REV APPL MECH, V45, P795
33620    SHINBROT T, 1993, NATURE, V363, P411
33621    SUIRE G, 1995, INT J MECH SCI, V37, P753
33622    TOUATI D, 1994, INT J SOLIDS STRUCT, V31, P2367
33623    YU XH, 1997, INT J BIFURCAT CHAOS, V7, P1659
33624    ZHANG SQ, 1997, CAN AGR ENG, V39, P99
33625 NR 14
33626 TC 2
33627 SN 0253-4827
33628 J9 APPL MATH MECH-ENGL ED
33629 JI Appl. Math. Mech.-Engl. Ed.
33630 PD DEC
33631 PY 1999
33632 VL 20
33633 IS 12
33634 BP 1324
33635 EP 1330
33636 PG 7
33637 SC Mathematics, Applied; Mechanics
33638 GA 301UH
33639 UT ISI:000086328300004
33640 ER
33641 
33642 PT J
33643 AU Sun, J
33644    Zhu, ZY
33645 TI A mixture differential quadrature method for solving two-dimensional
33646    imcompressible Navier-Stokes equations
33647 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
33648 DT Article
33649 DE numerical method; differential quadrature method; Navier-Stokes
33650    equations
33651 AB Differential quadrature method (DQM) is able to obtain high;ly accurate
33652    numerical solutions of differential equations just using a few grid
33653    points. Bat using purely differential quadrature: method, goad
33654    numerical solutions of two-dimensional incompressible Navier-Stokes
33655    equations can be obtained only for lour Reynolds number flow and
33656    numerical solutions will not be convergent for high Reynolds number
33657    flow. For this reason, ill this paper a combinative
33658    predicting-correcting numerical scheme for solving hue-dimensional
33659    incompressible Navier-Stokes equations is presented by mixing upwind
33660    difference method into differential quadrature! one, Using this scheme
33661    and pseudo-time-dependent algorithm, numerical solutions of high
33662    Reynolds number flow are obtained with only a few grid points. For
33663    example?, 1:1 and 1:2 driven cavity flows are calculated and good
33664    numerical solutions ape obtained.
33665 C1 NW Normal Univ, Dept Phys, Lanzhou, Peoples R China.
33666    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
33667    Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China.
33668 RP Sun, J, NW Normal Univ, Dept Phys, Lanzhou, Peoples R China.
33669 CR BELLMAN R, 1971, J MATH ANAL APPL, V34, P235
33670    BELLMAN R, 1972, J COMPUT PHYS, V10, P40
33671    BERT CW, 1996, APPL MECH REV, V49, P1
33672    BURGGRAF OR, 1966, J FLUID MECH, V24, P113
33673    CHIA U, 1982, J COMPUT PHYS, V48, P387
33674    CHU C, 1992, COMPUT SYST ENG, V3, P271
33675    KAWAGUTI M, 1961, J PHYS SOC JPN, V16, P2307
33676    PROSNAK WJ, 1991, ACTA MECH, V89, P45
33677    SHU C, 1992, INT J NUMER METH FL, V15, P791
33678    STRIZ AG, 1994, INT J NONLINEAR MECH, V29, P665
33679 NR 10
33680 TC 0
33681 SN 0253-4827
33682 J9 APPL MATH MECH-ENGL ED
33683 JI Appl. Math. Mech.-Engl. Ed.
33684 PD DEC
33685 PY 1999
33686 VL 20
33687 IS 12
33688 BP 1358
33689 EP 1366
33690 PG 9
33691 SC Mathematics, Applied; Mechanics
33692 GA 301UH
33693 UT ISI:000086328300008
33694 ER
33695 
33696 PT J
33697 AU Huang, DB
33698    Liu, ZR
33699    Wang, LL
33700 TI A family of interesting exact solutions of the sine-Gordon equation
33701 SO CHINESE PHYSICS LETTERS
33702 DT Article
33703 ID SOLITON; SYSTEM; CHAOS
33704 AB By using AKNS [Phys. Rev. Lett. 31 (1973) 125] system and introducing
33705    the wave function, a family of interesting exact solutions of the
33706    sine-Gordon equation are constructed. These solutions seem to be some
33707    soliton, kink, and anti-kink ones respectively for the different choice
33708    of the spectrum, whereas due to the interaction between two
33709    traveling-waves they have some properties different from usual soliton,
33710    kink, and anti-kink solutions.
33711 C1 Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R China.
33712    Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
33713 RP Huang, DB, Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R
33714    China.
33715 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V31, P125
33716    BISHOP AR, 1986, PHYSICA D, V23, P1
33717    BISHOP AR, 1990, SIAM J MATH ANAL, V21, P1511
33718    CAUDREY PJ, 1973, PHYS REV LETT, V30, P237
33719    CROSS MC, 1993, REV MOD PHYS, V65, P851
33720    HIROTA R, 1972, J PHYS SOC JPN, V33, P1459
33721    LIU ZR, 1999, CHINESE PHYS LETT, V16, P313
33722    LOMDAHL PS, 1984, PHYS REV A, V29, P350
33723    OVERMAN EA, 1986, PHYSICA D, V19, P1
33724    WADATI M, 1975, PROG THEOR PHYS, V53, P419
33725    YAN JR, 1997, CHINESE PHYS LETT, V14, P671
33726 NR 11
33727 TC 6
33728 SN 0256-307X
33729 J9 CHIN PHYS LETT
33730 JI Chin. Phys. Lett.
33731 PY 2000
33732 VL 17
33733 IS 1
33734 BP 1
33735 EP 3
33736 PG 3
33737 SC Physics, Multidisciplinary
33738 GA 297RA
33739 UT ISI:000086095400001
33740 ER
33741 
33742 PT J
33743 AU Lu, J
33744    Wang, JK
33745 TI Reactive precipitation of procaine benzylpenicillin
33746 SO CHINESE JOURNAL OF CHEMICAL ENGINEERING
33747 DT Article
33748 DE procaine benzylpenicillin; reactive precipitation; secondary processes;
33749    mixing
33750 ID CRYSTALLIZATION
33751 AB The reactive precipitation process of procaine benzylpenicillin is
33752    reviewed, while such secondary processes as ageing, agglomeration,
33753    breakage, and the effects of operation parameters on crystal size are
33754    emphasized. In the reactive precipitation the ageing of particles has a
33755    little effect on the process. while the greater effect, comes from the
33756    agglomeration and breakage of particles, furthermore, the mixing has
33757    also notable influence on the product; size. All of these provide the
33758    bases for further study on reactive precipitation.
33759 C1 Shanghai Univ, Dept Chem Engn, Shanghai 201800, Peoples R China.
33760    Tianjin Univ, Inst Chem Engn, Tianjin 300072, Peoples R China.
33761 RP Lu, J, Shanghai Univ, Dept Chem Engn, Shanghai 201800, Peoples R China.
33762 CR DAVID R, 1991, CHEM ENG SCI, V46, P205
33763    JONES E, 1992, YOUNG CHILDREN, V47, P12
33764    LU J, 1997, THESIS TIANJIN U TIA
33765    MERSMANN A, 1990, J CRYST GROWTH, V102, P841
33766    MULLIN JW, 1993, CRYSTALLIZATION
33767    MYDLARZ J, 1991, POWDER TECHNOL, V65, P187
33768    NIELSEN AE, 1964, KINETICS PRECIPITATI
33769    NORE PH, 1993, CHEM ENG SCI, V48, P3083
33770    RANDOLPH AD, 1988, THEORY PARTICULATE P
33771    TAVARE NS, 1993, CHEM ENG SCI, V48, P475
33772    WANG ST, 1986, HEAT MASS TRANSFER
33773 NR 11
33774 TC 0
33775 SN 1004-9541
33776 J9 CHINESE J CHEM ENG
33777 JI Chin. J. Chem. Eng.
33778 PD MAR
33779 PY 2000
33780 VL 8
33781 IS 1
33782 BP 68
33783 EP 73
33784 PG 6
33785 SC Engineering, Chemical
33786 GA 299JQ
33787 UT ISI:000086195700012
33788 ER
33789 
33790 PT J
33791 AU Harko, T
33792    Lu, HQ
33793    Mak, MK
33794    Cheng, KS
33795 TI Quantum birth of the Universe in the varying speed of light cosmologies
33796 SO EUROPHYSICS LETTERS
33797 DT Article
33798 ID INFLATION
33799 AB In the framework of the varying speed of light theory the
33800    Wheeler-DeWitt equation is considered in the minisuperspace
33801    approximation. The quantum potential is obtained and the tunneling
33802    probability is studied in bath Vilenkin and Hartle-Hawking approaches.
33803 C1 Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
33804    Shanghai Univ, Dept Phys, Shanghai, Peoples R China.
33805 RP Harko, T, Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R
33806    China.
33807 CR ALBRECHT A, 1999, PHYS REV D, V59
33808    ATKATZ D, 1982, PHYS REV D, V25, P2065
33809    AVELINO PP, 1999, PHYS LETT B, V459, P468
33810    BARROW JD, 1998, PHYS LETT B, V443, P104
33811    BARROW JD, 1999, ASTROPH9904116
33812    BARROW JD, 1999, ASTROPH9907354
33813    BARROW JD, 1999, CLASSICAL QUANT GRAV, V16, P1435
33814    BARROW JD, 1999, PHYS LETT B, V447, P246
33815    BARROW JD, 1999, PHYS REV D, V59
33816    BEKENSTEIN JD, 1982, PHYS REV D, V25, P1527
33817    CLAYTON MA, 1999, PHYS LETT B, V460, P263
33818    COULE DH, 1999, GRQC9905056
33819    COULE DH, 1999, MOD PHYS LETT A, V14, P2437
33820    DEWITT BS, 1967, PHYS REV, V160, P1113
33821    GASPERINI M, 1985, PHYS LETT B, V163, P84
33822    HARKO T, 1999, CLASSICAL QUANT GRAV, V16, P2741
33823    HARTLE JB, 1983, PHYS REV D, V28, P3960
33824    HAWKING SW, 1984, NUCL PHYS B, V239, P257
33825    LINDE AD, 1984, LETT NUOVO CIMENTO, V39, P401
33826    MFFAT JW, 1998, ASTROPH9811390
33827    MOFFAT JW, 1993, INT J MOD PHYS D, V2, P351
33828    NORBURY JW, 1998, PHYS LETT B, V433, P263
33829    RATRA B, 1988, PHYS REV D, V37, P3406
33830    VILENKIN A, 1983, PHYS REV D, V27, P2848
33831    VILENKIN A, 1989, PHYS REV D, V39, P1116
33832    VILENKIN A, 1994, PHYS REV D, V50, P2581
33833    WEINBERG S, 1984, PHYS LETT B, V138, P47
33834 NR 27
33835 TC 4
33836 SN 0295-5075
33837 J9 EUROPHYS LETT
33838 JI Europhys. Lett.
33839 PD MAR
33840 PY 2000
33841 VL 49
33842 IS 6
33843 BP 814
33844 EP 820
33845 PG 7
33846 SC Physics, Multidisciplinary
33847 GA 296RD
33848 UT ISI:000086038800019
33849 ER
33850 
33851 PT J
33852 AU Cai, YC
33853    Lu, MG
33854 TI Chen's theorem in short intervals
33855 SO ACTA ARITHMETICA
33856 DT Article
33857 C1 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
33858 RP Cai, YC, Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800,
33859    Peoples R China.
33860 CR CHEN JR, 1966, REPRESENTATION LARGE, V17, P385
33861    CHEN JR, 1973, SCI SINICA, V16, P157
33862    CHEN JR, 1978, SCI SINICA, V21, P477
33863    IWANIEC H, 1981, RECENT PROGR ANAL NU, V2, P203
33864    JIA CH, 1996, ACTA ARITH, V76, P21
33865    PAN CD, 1981, GOLDBACH CONJECTURE
33866    SALERNO S, 1993, NOTE MAT, V13, P309
33867    WU J, 1993, Q J MATH, V44, P109
33868    WU J, 1994, J LOND MATH SOC, V49, P61
33869 NR 9
33870 TC 1
33871 SN 0065-1036
33872 J9 ACTA ARITHMET
33873 JI Acta Arith.
33874 PY 1999
33875 VL 91
33876 IS 4
33877 BP 311
33878 EP 323
33879 PG 13
33880 SC Mathematics
33881 GA 297ZH
33882 UT ISI:000086113800002
33883 ER
33884 
33885 PT J
33886 AU Weng, XC
33887    Xiang, GQ
33888    Jiang, AL
33889    Liu, YP
33890    Wu, LL
33891    Dong, XW
33892    Duan, S
33893 TI Antioxidant properties of components extracted from puccoon
33894    (Lithospermum erythrorhizon Sieb. et Zucc.)
33895 SO FOOD CHEMISTRY
33896 DT Article
33897 DE puccoon (Lithospermum erythrorhizon Sieb. et Zucc.); antioxidant
33898    activity; beta,beta-dimethyl-acrylshikonin; acetylshikonin; shikonin
33899 AB The petroleum ether extract of puccoon has been separated with
33900    thin-layer chromatography (TLC) and three compounds have been isolated.
33901    The structures of the compounds have been identified by spectroscopic
33902    methods as beta,beta-dimethyl-acrylshikonin, acetylshikonin and
33903    shikonin. Their antioxidant properties in lard have been tested with
33904    the oxidative stability instrument (OSI). The raw extracts and pure
33905    compounds all have obvious antioxidant activity, and all have some
33906    synergistic effects with D,L-alpha-tocopherol (Ve) and
33907    butylatedhydroxytoluene (BHT). They all show antioxidant properties in
33908    lard containing Fe3+, and all show synergistic effects with Ve and
33909    citric acid (CA) with different degrees. In the concentration range of
33910    0.01-0.06%, antioxidant activity of Ve and BHT, on OSI at 100 degrees
33911    C, increases with increase of concentration, but much less than
33912    acetylshikonin, shikonin and beta,beta-dimethyl-acrylshikonin. (C) 2000
33913    Elsevier Science Ltd. All rights reserved.
33914 C1 Shanghai Univ, Sch Life Sci, Shanghai, Peoples R China.
33915    Yantai Univ, Lipid Res Lab, Shandong, Peoples R China.
33916    Acad Sinica, Inst Bot, Beijing 100044, Peoples R China.
33917 RP Weng, XC, Shanghai Univ, Sch Life Sci, 20 Chengzhong Rd, Shanghai,
33918    Peoples R China.
33919 CR GAO JH, 1986, ZHONGCAOYAO, V17, P28
33920    GORDON MH, 1992, FOOD CHEM, V44, P119
33921    HUDSON BJF, 1983, FOOD CHEM, V10, P111
33922    LIN ZB, 1980, J BEIJING MED COLLEG, V12, P101
33923    LIU GS, 1981, PHARM B, V16, P270
33924    LIU YP, 1998, J CHINESE CEREALS OI, V13, P34
33925    LU FS, 1983, ACTA BOT SIN, V25, P454
33926    WENG XC, 1991, THESIS READING U UK
33927    WENG XC, 1998, J CHINESE CEREAL OIL, V13, P46
33928    ZHAO I, 1997, MED J CHINA, V8, P115
33929    ZHOU SB, 1996, J HARBIN MED U, V30, P524
33930 NR 11
33931 TC 2
33932 SN 0308-8146
33933 J9 FOOD CHEM
33934 JI Food Chem.
33935 PD MAY
33936 PY 2000
33937 VL 69
33938 IS 2
33939 BP 143
33940 EP 146
33941 PG 4
33942 SC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics
33943 GA 294FR
33944 UT ISI:000085901300005
33945 ER
33946 
33947 PT J
33948 AU Qiu, ZB
33949    Xiao, XS
33950    Mo, ZS
33951    Yu, YN
33952    Wang, XH
33953    Dong, YD
33954 TI Melt crystallization of poly(ether ether ketone ketone) under strong
33955    electric field
33956 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
33957 DT Letter
33958 DE PEEKK; electric field; crystallization; crystal structure
33959 ID DRAWING-INDUCED POLYMORPHISM; CRYSTAL-STRUCTURE; PEEKK; KINETICS
33960 AB In this paper, melt crystallization of poly(ether ether ketone ketone)
33961    (PEEKK) under strong electric field was investigated. In the crystal
33962    structure of PEEKK, the length of c axis was found to he 1.075 nm,
33963    increasing by 7% compared to that of PEEKK crystallized without strong
33964    electric field. The molecule chains might take a more extended
33965    conformation through the opening of the bridge bond angles by
33966    increasing from 124 degrees to 144 degrees under strong electric field
33967    in the crystal structure.
33968 C1 Acad Sinica, Changchun Inst Appl Chem, Polymer Phys Lab, Changchun 130022, Peoples R China.
33969    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
33970 RP Mo, ZS, Acad Sinica, Changchun Inst Appl Chem, Polymer Phys Lab,
33971    Changchun 130022, Peoples R China.
33972 CR LIU TX, 1997, EUR POLYM J, V33, P1405
33973    LIU TX, 1997, EUR POLYM J, V33, P913
33974    LIU TX, 1997, POLYM ENG SCI, V37, P568
33975    LIU TX, 1998, S POL SHANGH
33976    WANG S, 1997, MACROMOL RAPID COMM, V18, P83
33977    WANG SG, 1997, MACROMOL CHEM PHYSIC, V198, P969
33978    ZIMMERMANN HJ, 1991, POLYMER, V32, P3162
33979 NR 7
33980 TC 1
33981 SN 0251-0790
33982 J9 CHEM J CHINESE UNIV-CHINESE
33983 JI Chem. J. Chin. Univ.-Chin.
33984 PD MAR
33985 PY 2000
33986 VL 21
33987 IS 3
33988 BP 491
33989 EP 492
33990 PG 2
33991 SC Chemistry, Multidisciplinary
33992 GA 294KM
33993 UT ISI:000085910500040
33994 ER
33995 
33996 PT J
33997 AU Yu, TY
33998    Yu, BK
33999    Wang, Q
34000    Wan, YB
34001    Pan, SK
34002 TI Potassium lithium niobate crystal and the second harmonic generation in
34003    IT
34004 SO ACTA PHYSICA SINICA
34005 DT Article
34006 ID SINGLE-CRYSTALS
34007 AB The tetragonal tungsten bronze type potassium lithium niobatc single
34008    crystals grown by the resistance heating Czochralski technique are
34009    reported. Frequency doubling of a quasi-continuous tunable Ti:sapphire
34010    laser is realized in the crystal. Tunable second harmonic generation
34011    within the range of 445-476 nm by noncritical phase matching at room
34012    temperature is obtained. The incident power is 144-269 mW and the power
34013    of the second harmonic generation is 0.58-1.73 mW. The conversion
34014    efficiency is about 0.65 percent.
34015 C1 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
34016    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
34017 RP Yu, TY, Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800,
34018    Peoples R China.
34019 CR BONNER WA, 1967, J CRYST GROWTH, V1, P318
34020    FUKUDA T, 1970, J CRYST GROWTH, V6, P293
34021    GE YM, 1996, CHINESE J LASERS A, V23, P969
34022    OUWERKERK M, 1991, ADV MATER, V3, P399
34023    REID JJE, 1993, APPL PHYS LETT, V62, P19
34024    SMITH AW, 1971, J APPL PHYS, V42, P684
34025    XIA HR, 1997, PHYS REV B, V55, P14892
34026    YOON DH, 1994, JPN J APPL PHYS PT 1, V33, P3510
34027    ZHANG GY, 1984, ACTA OPT SINICA, V4, P515
34028 NR 9
34029 TC 3
34030 SN 1000-3290
34031 J9 ACTA PHYS SIN-CHINESE ED
34032 JI Acta Phys. Sin.
34033 PD MAR
34034 PY 2000
34035 VL 49
34036 IS 3
34037 BP 463
34038 EP 467
34039 PG 5
34040 SC Physics, Multidisciplinary
34041 GA 294WD
34042 UT ISI:000085932700016
34043 ER
34044 
34045 PT J
34046 AU Li, D
34047    Sun, XL
34048 TI Local convexification of the Lagrangian function in nonconvex
34049    optimization
34050 SO JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
34051 DT Article
34052 DE nonconvex optimization; Lagrangian function; local convexification;
34053    local duality; p-power formulation
34054 AB It is well-known that a basic requirement for the development of local
34055    duality theory in nonconvex optimization is the local convexity of the
34056    Lagrangian function. This paper shot-vs how to locally convexify the
34057    Lagrangian function and thus expand the class of optimization problems
34058    to which dual methods can be applied. Specifically, we prove that,
34059    under mild assumptions, the Hessian of the Lagrangian in some
34060    transformed equivalent problem formulations becomes positive definite
34061    in a neighborhood of a local optimal point of the original problem.
34062 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
34063    Shanghai Univ, Dept Math, Shanghai, Peoples R China.
34064 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management,
34065    Shatin, Hong Kong, Peoples R China.
34066 CR LI D, 1995, J OPTIMIZ THEORY APP, V85, P309
34067    LI D, 1997, NONLINEAR ANAL-THEOR, V30, P4339
34068    LUENBERGER DG, 1984, LINEAR NONLINEAR PRO
34069    WOLFE P, 1961, Q APPL MATH, V19, P239
34070    XU ZK, 1997, J OPTIMIZ THEORY APP, V94, P739
34071 NR 5
34072 TC 6
34073 SN 0022-3239
34074 J9 J OPTIMIZ THEOR APPL
34075 JI J. Optim. Theory Appl.
34076 PD JAN
34077 PY 2000
34078 VL 104
34079 IS 1
34080 BP 109
34081 EP 120
34082 PG 12
34083 SC Mathematics, Applied; Operations Research & Management Science
34084 GA 291PR
34085 UT ISI:000085745700007
34086 ER
34087 
34088 PT J
34089 AU Zhang, ZL
34090    Jiang, XY
34091    Xu, SH
34092 TI Energy transfer and white emitting organic thin film electroluminescence
34093 SO THIN SOLID FILMS
34094 DT Article
34095 DE energy transfer; white emitting organic thin film electroluminescence;
34096    full-color display
34097 AB Energy transfer between in
34098    N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4-4'-diamine (NPB)
34099    and rubrene was investigated. The device ITO/CuPc/NPB:rubrene/blocking
34100    layer /Alq/MgAg, in which copper phthalocyanine (CuPc) is used as
34101    buffer layer, NPB as the hole transporting layer (HTL), trimer of
34102    N-arylbenzimidazoles (TPBi) [or
34103    2-(4-biphenylyl)-5-(4-tertbutylphenyl)-1,2,3-oxadiazole(PBD) or
34104    1,2,3-triazolederivative(TAZ)] as the blocking layer,
34105    Tris(8-quinolinolato)aluminum complex (Alq) as electron transporting
34106    layers (ETL), can not give white emitting light. White emitting light
34107    can be realized in a new device with the structure
34108    ITO/CuPc/NPB/blocking layer:rubene/Alq/MeAg, in which rubrene is doped
34109    in blocking layer instead of in NPB. The emission spectrum of this
34110    device covers a wide range of visible region and can be adjusted by the
34111    concentration of rubrene. The white emitting devices with CIE
34112    coordinates x = 0.31, y = 0.32, maximum luminance 8635 cd/m(2) and
34113    luminous efficiency 1.39 Lm/w, were obtained with the blocking layer
34114    TPBi doped with 1.5% rubrene. (C) 2000 Elsevier Science S.A. All rights
34115    reserved.
34116 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
34117 RP Zhang, ZL, Shanghai Univ, Dept Mat Sci, Jiading Campus, Shanghai
34118    201800, Peoples R China.
34119 CR FOREST SR, 1997, SYNTHETIC MET, V91, P9
34120    KIDO J, 1995, SCIENCE, V267, P1332
34121    MIYAGUCHI S, 1998, 9 INT WORKSH IN ORG, P137
34122 NR 3
34123 TC 10
34124 SN 0040-6090
34125 J9 THIN SOLID FILMS
34126 JI Thin Solid Films
34127 PD MAR 1
34128 PY 2000
34129 VL 363
34130 IS 1-2
34131 BP 61
34132 EP 63
34133 PG 3
34134 SC Materials Science, Multidisciplinary; Physics, Applied; Physics,
34135    Condensed Matter
34136 GA 290EU
34137 UT ISI:000085664000016
34138 ER
34139 
34140 PT J
34141 AU Li, PL
34142    Deng, CF
34143    Wang, LL
34144    Xu, MJ
34145 TI Calculation of the productive dilepton spectrum (M <= 4GeV/c(2)) in
34146    U-238+U-238 collisions at E-c,E-m approximate to 200GeV/u
34147 SO HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION
34148 DT Article
34149 DE charm; quark flavour dynamics effect; dilepton spectrum
34150 AB In this paper, besides including u, d, s quarks and their anti-quarks
34151    the charm quarks and their anti-quarks (c (c) over bar) were still
34152    included in the calculation of flavour kinetics of quarks. Using
34153    relativistic hydrodynamics model with the effect of quark flavor
34154    kinetics, invariable mass dilepton spectrum of M less than or equal to
34155    4GeV/c(2) has been calculated. The dileptons are emitted from phase
34156    transition process of an expansion quark matter which is created in
34157    collisions of U-238 + U-238 at energy similar to 200GeV/u. The
34158    numerical results have been compared with experimental data of CERN SPS
34159    qualitatively. A preliminary conclusion has been given: quark
34160    fragmentation and effect of flavour kinetics are the causes of
34161    suppression of the peak of J/psi-->mu(+) + mu(-).
34162 C1 Suzhou Railway Normal Coll, Dept Phys, Suzhou 215009, Peoples R China.
34163    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
34164 RP Li, PL, Suzhou Railway Normal Coll, Dept Phys, Suzhou 215009, Peoples R
34165    China.
34166 CR BARZ HW, 1988, NUCL PHYS A, V484, P661
34167    KAJANTIE K, 1983, NUCL PHYS B, V222, P152
34168    KAJANTIE K, 1986, PHYS REV D, V34, P811
34169    KOCH P, 1986, PHYS REP, V142, P167
34170    LI PL, 1997, HIGH ENERG PHYS, V21, P918
34171    MASERA M, 1995, NUCL PHYS A, V590, C93
34172    WU H, 1999, CHINESE GEN COMPUTAT, V16, P94
34173 NR 7
34174 TC 1
34175 SN 0254-3052
34176 J9 HIGH ENERGY PHYS NUCL PHYS-CH
34177 JI High Energy Phys. Nucl. Phys.-Chin. Ed.
34178 PD JUL
34179 PY 1999
34180 VL 23
34181 IS 7
34182 BP 693
34183 EP 700
34184 PG 8
34185 SC Physics, Nuclear; Physics, Particles & Fields
34186 GA 289PB
34187 UT ISI:000085630200013
34188 ER
34189 
34190 PT J
34191 AU Harko, T
34192    Mak, MK
34193    Lu, HQ
34194    Cheng, KS
34195 TI Bianchi-type I and V cosmologies in Einstein-Cartan theory
34196 SO NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS
34197    RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS
34198 DT Article
34199 ID GENERAL-RELATIVITY; UNIVERSES; MATTER; FLUIDS; MODEL; SPIN
34200 AB Within the framework of the Einstein-Cartan theory a
34201    Weyssenhoff-spinning-fluid-filled homogeneous anisotropic Bianchi-type
34202    I and V space-time is studied. The effects of a cosmological constant
34203    upon the dynamics of the early Universe are also considered. In the
34204    presence of torsion the general solution of the gravitational field
34205    equations for a cosmological fluid obeying a linear barotropic equation
34206    of state can be expressed in an exact parametric form. Several classes
34207    of exact analytical solutions for stiff matter and radiation are also
34208    obtained. In the large-time limit the Bianchi-type-V Universe ends in
34209    an isotropic open non-flat inflationary era but due to the effects of
34210    the spin the isotropization period is shortened. For an appropriate
34211    choice of the parameters non-singular behavior occurs and the evolution
34212    of the cosmological fluid near the bounce is considered in detail.
34213 C1 Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
34214    Shanghai Univ, Dept Phys, Shanghai, Peoples R China.
34215 RP Harko, T, Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R
34216    China.
34217 CR ASSAD MJD, 1990, PHYS LETT A, V145, P74
34218    BAHCALL NA, 1995, APJ, V447, L81
34219    BAHCALL NA, 1997, ASTROPHYS J 2, V485, L53
34220    BAKER WM, 1990, CLASSICAL QUANT GRAV, V7, P717
34221    BARROW JD, 1997, PHYS LETT A, V233, P169
34222    BATAKIS NA, 1982, PHYS REV D, V26, P2611
34223    FENNELLY AJ, 1998, PHYS LETT A, V129, P195
34224    FUKUGITA M, 1993, NATURE, V366, P369
34225    GRON O, 1985, PHYS REV D, V32, P2522
34226    GRONWALD F, GRQC9602013
34227    GUTH AH, 1981, PHYS REV D, V23, P347
34228    HARVEY A, 1997, NUOVO CIMENTO B, V112, P1217
34229    HAWKING SW, 1973, LARGE SCALE STRUCTUR
34230    HEHL FW, 1976, REV MOD PHYS, V48, P393
34231    KOCHANEK CS, 1996, ASTROPHYS J 1, V466, P638
34232    KRAMER D, 1980, EXACT SOLUTIONS EINS
34233    LANDAU LD, 1975, CLASSICAL THEORY FIE
34234    LU HQ, 1995, CLASSICAL QUANT GRAV, V12, P2755
34235    OBREGON O, 1993, PHYS REV D, V48, P5642
34236    RATRA B, 1988, PHYS REV D, V37, P3406
34237    RAY JR, 1982, PHYS REV D, V26, P2615
34238    RAY JR, 1982, PHYS REV D, V26, P2619
34239    SARAJEDINI A, 1989, ASTRON J, V98, P1624
34240    SCIAMA JA, 1964, REV MOD PHYS, V36, P463
34241    SHAPIRO SL, 1983, BLACK HOLES WHITE DW
34242 NR 25
34243 TC 0
34244 SN 0369-3554
34245 J9 NUOVO CIMENTO B-GEN PHYS R
34246 JI Nouvo Cimento Soc. Ital. Fis. B-Gen. Phys. Relativ. Astron. Math. Phys.
34247    Methods
34248 PD DEC
34249 PY 1999
34250 VL 114
34251 IS 12
34252 BP 1389
34253 EP 1407
34254 PG 19
34255 SC Physics, Multidisciplinary
34256 GA 285WT
34257 UT ISI:000085411900006
34258 ER
34259 
34260 PT J
34261 AU Wang, Q
34262    Liu, CQ
34263    Li, Y
34264 TI Quasi-tem analysis of a shielded microstrip line of elliptic
34265    cross-section with finite metallization thickness penetrating into the
34266    substrate by the finite difference method
34267 SO INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES
34268 DT Article
34269 DE MSL; monolithic microwave integrated circuits (MMICs); quasi-static
34270    characteristics; metallization thickness; FDM
34271 ID WAVE-GUIDES; TRANSMISSION-LINES; STATIC ANALYSIS; ELEMENT METHOD;
34272    ELECTRODES
34273 AB A shielded microstripline(MSL) of elliptic cross-section with finite
34274    metallization thickness penetrating into the substrate is presented.
34275    The quasi-static characteristics of this kind of MSL are studied with
34276    finit difference method(FDM),The effect of metal cross-section shape
34277    and metal penetrating depth is also studied.
34278 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
34279 RP Wang, Q, Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R
34280    China.
34281 CR CHANG TN, 1990, IEEE T MICROW THEORY, V38, P1130
34282    FENG NN, 1999, MICROW OPT TECHN LET, V21, P60
34283    GENTILI GG, 1994, IEEE T MICROW THEORY, V42, P249
34284    HEINRICH W, 1994, IEEE T MICROWAVE THE, V41, P249
34285    HOFFMANN RK, 1989, HDB MICROWAVE INTEGR, P142
34286    HONG IP, 1999, INT J RF MICROW C E, V9, P49
34287    IVANOV SA, 1984, IEEE T MICROW THEORY, V32, P450
34288    JIN H, 1991, IEEE J QUANTUM ELECT, V27, P2306
34289    JIN H, 1991, IEEE J QUANTUM ELECT, V27, P243
34290    KE JY, 1995, IEE P-MICROW ANTEN P, V142, P357
34291    KOLLIPARA RT, 1992, IEEE MICROW GUIDED W, V2, P100
34292    KUO JT, 1997, IEEE T MICROW THEORY, V45, P274
34293    LERER AM, 1997, INT J MICROWAVE MILL, V7, P483
34294    MATSUHARA M, 1988, IEICE T C, V71, P1398
34295    PANTIC Z, 1986, IEEE T MICROW THEORY, V34, P1096
34296    SCHMUCKLE FJ, 1991, IEEE T MICROW THEORY, V39, P107
34297    SHIH C, 1989, IEEE T MICROW THEORY, V37, P793
34298    TAO YM, 1994, MICROW OPT TECHN LET, V7, P17
34299    WADELL BC, 1991, TRANSMISSION LINE DE
34300 NR 19
34301 TC 0
34302 SN 0195-9271
34303 J9 INT J INFRAR MILLIM WAVE
34304 JI Int. J. Infrared Millimeter Waves
34305 PD JAN
34306 PY 2000
34307 VL 21
34308 IS 1
34309 BP 91
34310 EP 100
34311 PG 10
34312 SC Engineering, Electrical & Electronic; Physics, Applied; Optics
34313 GA 284AN
34314 UT ISI:000085308700011
34315 ER
34316 
34317 PT J
34318 AU Ma, JH
34319    Chen, YS
34320    Liu, ZG
34321 TI The non-linear chaotic model reconstruction for the experimental data
34322    obtained from different dynamic system
34323 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
34324 DT Article
34325 DE non-linear; chaotic timeseries; Lyapunov exponent; chaotic model;
34326    parameter identification
34327 ID TIME-SERIES; ATTRACTORS
34328 AB The non-linear chaotic model reconstruction is the major important
34329    quantitative index for describing accurate experimental data obtained
34330    in dynamic analysis. A lot of work has been done to distinguish chaos
34331    from,randomness, to calculate fractral dimension and Lyapunov exponent,
34332    to reconstruct the state space and to fix the rank of model. In this
34333    paper, a new improved EAR method is presented in modelling and
34334    predicting chaotic timeseries, and a successful approach to fast
34335    estimation algorithms is proposed. Some illustrative experimental data
34336    examples from known chaotic systems are presented, emphasising the
34337    increase in predicting error with time. The calculating results tell us
34338    that the parameter identification method in this paper can effectively
34339    adjust the initial value row ards the global limit value of the single
34340    peak target Junction nearby. Then the model paremeter can immediately
34341    be obtained by using the improved optimization method rapidly, and
34342    non-linens chaotic models can nor provide long period superior
34343    predictions. Applications of this method are listed to real data from
34344    widely different areas.
34345 C1 Tianjin Finance Univ, Dept Econ & Management, Tianjin 300222, Peoples R China.
34346    Tianjin Univ, Dept Mech, Tianjin 300072, Peoples R China.
34347    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
34348 RP Ma, JH, Tianjin Finance Univ, Dept Econ & Management, Tianjin 300222,
34349    Peoples R China.
34350 CR CHEN CH, 1989, APPL TIMESERIES ANAL
34351    DAVIES ME, 1997, PHYSICA D, V101, P195
34352    LIANG YC, 1995, PHYSICA D, V85, P225
34353    MA JH, 1997, NONLINEAR DYNAMIC SY, P5
34354    MA JH, 1998, APPL MATH MECH-ENGL, V19, P513
34355    MESS AI, 1987, PHYS REV A, V36, P340
34356    NERENBERG MAH, 1990, PHYS REV A, V42, P7065
34357    POTAPOV A, 1997, PHYSICA D, V101, P207
34358    PRICHARD D, 1994, PHYS REV LETT, V191, P230
34359    WOLF A, 1985, PHYSICA D, V16, P285
34360    YA W, 1989, APPL TIME SERIES ANA
34361    YANG SZ, 1992, APPL TIMESERIES ANAL
34362    ZHANG QH, 1992, IEE T NEURAL NETWORK, V6, P889
34363 NR 13
34364 TC 2
34365 SN 0253-4827
34366 J9 APPL MATH MECH-ENGL ED
34367 JI Appl. Math. Mech.-Engl. Ed.
34368 PD NOV
34369 PY 1999
34370 VL 20
34371 IS 11
34372 BP 1214
34373 EP 1221
34374 PG 8
34375 SC Mathematics, Applied; Mechanics
34376 GA 285RP
34377 UT ISI:000085402100005
34378 ER
34379 
34380 PT J
34381 AU Chen, XY
34382    Cheng, CJ
34383 TI Inverse problem for the viscoelastic medium with discontinuous wave
34384    impedance
34385 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
34386 DT Article
34387 DE viscoelastic medium; inverse scattering; inversion procedure; Volterra
34388    integral equation; relaxation modulus; one round trip; numerical
34389    examples
34390 ID DISPERSIVE MEDIA; SCATTERING
34391 AB In this paper, the inverse problem for the viscoelastic medium is
34392    investigated in the time domain, in which the wave impedance of the
34393    medium is discontinuous at the rear interface. The differentio-integral
34394    equations governing the behavior of the scattering and propagation
34395    operators are utilized to reconstruct the relaxation modulus of the
34396    viscoelastic medium. A new approach, in which only the one-side
34397    measurement reflection data for one round trip through the viscoelastic
34398    layer, is developed. The numerical examples are given at the end of the
34399    paper. Ir is shown that the curves of the reconstructed moduli coincide
34400    very well with the original relaxation moduli.
34401 C1 Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
34402    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
34403    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
34404 RP Chen, XY, Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
34405 CR AMMICHT E, 1987, J ACOUST SOC AM, V81, P827
34406    BEEZLEY RS, 1985, J MATH PHYS, V26, P317
34407    CHEN XY, 1999, THESIS LANZHOU U LAN
34408    CHRISTENSON RM, 1982, THOERY VISCOELASTICI
34409    FUKS P, 1994, INVERSE PROBL, V10, P555
34410    KRESS R, 1989, LINEAR INTEGRAL EQUA
34411 NR 6
34412 TC 0
34413 SN 0253-4827
34414 J9 APPL MATH MECH-ENGL ED
34415 JI Appl. Math. Mech.-Engl. Ed.
34416 PD NOV
34417 PY 1999
34418 VL 20
34419 IS 11
34420 BP 1222
34421 EP 1229
34422 PG 8
34423 SC Mathematics, Applied; Mechanics
34424 GA 285RP
34425 UT ISI:000085402100006
34426 ER
34427 
34428 PT J
34429 AU Gu, GQ
34430    Hui, PM
34431    Yu, KW
34432 TI A theory of nonlinear AC response in nonlinear composites
34433 SO PHYSICA B
34434 DT Article
34435 DE nonlinear composites; effective nonlinear conductivity; harmonic
34436    generation
34437 ID EFFECTIVE CONDUCTIVITY; GENERATION
34438 AB A perturbative approach, which has previously been applied to study the
34439    effective nonlinear response in random nonlinear composites consisting
34440    of Kerr materials. is extended to treat random composites with
34441    components having nonlinear response at finite frequencies. For a
34442    sinusoidal applied field, the field in the composite generally includes
34443    components with frequencies at the higher harmonics. Using the
34444    potential in the absence of nonlinearity as the unperturbed potential,
34445    nonlinear response can be studied perturbatively. Expression for the
34446    effective nonlinear susceptibility at the third harmonic is derived in
34447    the dilute limit of one of the nonlinear components. (C) 2000 Elsevier
34448    Science B.V. All rights reserved.
34449 C1 Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 201800, Peoples R China.
34450    Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China.
34451 RP Gu, GQ, Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 201800,
34452    Peoples R China.
34453 CR GU GQ, 1992, PHYS REV B, V46, P4502
34454    HUI PM, 1998, J APPL PHYS, V84, P3451
34455    LEVY O, 1995, PHYS REV E, V52, P3184
34456    YU KW, 1993, PHYS REV B, V47, P14150
34457    YU KW, 1993, PHYS REV B, V47, P1782
34458    YU KW, 1997, PHYS REV B, V56, P14195
34459 NR 6
34460 TC 19
34461 SN 0921-4526
34462 J9 PHYSICA B
34463 JI Physica B
34464 PD APR
34465 PY 2000
34466 VL 279
34467 IS 1-3
34468 BP 62
34469 EP 65
34470 PG 4
34471 SC Physics, Condensed Matter
34472 GA 284DD
34473 UT ISI:000085314700018
34474 ER
34475 
34476 PT J
34477 AU He, JH
34478 TI Modified straightforward expansion
34479 SO MECCANICA
34480 DT Article
34481 DE perturbation technique; nonlinear equation; duffing equation; nonlinear
34482    dynamics
34483 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
34484 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang
34485    Rd,POB 189, Shanghai 200072, Peoples R China.
34486 CR BELLMAN R, 1964, PERTURBATION TECHNIQ
34487    CHEUNG YK, 1991, INT J NONLINEAR MECH, V26, P367
34488    HE JH, IN PRESS J SOUND VIB
34489    MICKENS RE, 1996, J SOUND VIB, V193, P747
34490    NAYFEH AH, 1985, PROBLEMS PERTURBATIO
34491 NR 5
34492 TC 6
34493 SN 0025-6455
34494 J9 MECCANICA
34495 JI Meccanica
34496 PD OCT
34497 PY 1999
34498 VL 34
34499 IS 4
34500 BP 287
34501 EP 289
34502 PG 3
34503 SC Mechanics
34504 GA 283XD
34505 UT ISI:000085300600006
34506 ER
34507 
34508 PT J
34509 AU Feng, F
34510    Han, J
34511    Shen, M
34512    Geng, M
34513    Zhou, Z
34514    Northwood, DO
34515 TI Electrochemical properties of a LaNi4.7Al0.3 alloy used for the
34516    negative electrode in nickel/metal hydride batteries
34517 SO JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS
34518 DT Article
34519 DE metal hydride electrodes; electrochemical characteristics; exchange
34520    current density; symmetry factor
34521 ID HYDROGEN STORAGE ALLOYS; EVOLUTION REACTION; METAL; PERFORMANCE;
34522    DISCHARGE; BEHAVIOR
34523 AB The electrochemical properties of an activated LaNi4.7Al0.3 hydride
34524    electrode (MH) were studied using charge/discharge and polarization
34525    tests. The rests were performed at different steady states of
34526    discharging and temperatures. Both the exchange current density (I-0)
34527    and the symmetry-factor (beta) of the MH electrode in a 6M KOH aqueous
34528    solution decrease with increasing hydrogen concentration and increase
34529    with increasing temperature at a given hydrogen concentration. These
34530    intrinsic parameters (I-0 and beta) were then used to evaluate the
34531    characteristics of the nonequilibrium discharge process of the MH
34532    electrode, including the discharge overpotential and activation. From
34533    the exchange current density measurements, the apparent activation
34534    energy (E-a) was found to be in the range 15.5 to 22.5 kJ.(molH)(-1)
34535    for hydrogen concentrations H/M=0.6 to 0.1 in the temperature range
34536    273-318K. It is suggested that the apparent activation energy (E-a) is
34537    a useful intrinsic parameter for evaluating the electrochemical
34538    characteristics of MH electrodes.
34539 C1 Univ Windsor, Dept Mech & Mat Engn, Windsor, ON N9B 3P4, Canada.
34540    Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China.
34541    Ryerson Polytech Univ, Fac Engn & Appl Sci, Toronto, ON M5B 2K3, Canada.
34542 RP Northwood, DO, Univ Windsor, Dept Mech & Mat Engn, Windsor, ON N9B 3P4,
34543    Canada.
34544 CR BARD AJ, 1980, ELECTROCHEMICAL METH, P106
34545    BOCKRIS JO, 1993, MOD ASPECT ELECTROC, V25, P261
34546    FENG F, 1998, INT J HYDROGEN ENERG, V23, P599
34547    GENG MM, 1996, INT J HYDROGEN ENERG, V21, P887
34548    IWAKURA C, 1992, J POWER SOURCES, V38, P335
34549    IWAKURA C, 1993, J ALLOY COMPD, V192, P152
34550    KIBRIA MF, 1996, INT J HYDROGEN ENERG, V21, P179
34551    KRONBERGER H, 1996, INT J HYDROGEN ENERG, V21, P577
34552    KURIYAMA N, 1993, J ALLOY COMPD, V202, P183
34553    LIU BH, 1996, J ALLOY COMPD, V245, P132
34554    MATSUOKA M, 1993, J ALLOY COMPD, V192, P149
34555    NDZEBET E, 1995, INT J HYDROGEN ENERG, V20, P635
34556    POPOV BN, 1996, J APPL ELECTROCHEM, V26, P603
34557    SAKAI T, 1991, J LESS-COMMON MET, V172, P1175
34558    WANG XL, 1990, J LESS-COMMON MET, V159, P83
34559    WILLEMS JJG, 1984, PHILIPS J RES S1, V39, P1
34560    WILLEMS JJG, 1984, PHILIPS J RES S1, V39, P3
34561 NR 17
34562 TC 3
34563 SN 1480-2422
34564 J9 J NEW MATER ELECTROCHEM SYST
34565 JI J. New Mat.Electrochem. Syst.
34566 PD JAN
34567 PY 1999
34568 VL 2
34569 IS 1
34570 BP 45
34571 EP 50
34572 PG 6
34573 SC Materials Science, Multidisciplinary; Electrochemistry
34574 GA 283LB
34575 UT ISI:000085276100007
34576 ER
34577 
34578 PT J
34579 AU Guo, XM
34580 TI On existence and uniqueness of solution of hyperbolic differential
34581    inclusion with discontinuous nonlinearity
34582 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
34583 DT Article
34584 ID EQUATIONS
34585 AB In this paper a hyperbolic differential inclusion with a discontinuous
34586    and nonlinear multi-valued term is studied, and the existence and
34587    uniqueness of its global weak solutions are obtained. We also study the
34588    asymptotic behavior of the solutions under suitable assumptions. (C)
34589    2000 Academic Press.
34590 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
34591 RP Guo, XM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
34592    200072, Peoples R China.
34593 CR BREZIS H, 1971, CONTRIBUTIONS NONLIN, P101
34594    CARL S, 1992, NONLINEAR ANAL-THEOR, V18, P471
34595    CHANG KC, 1981, J MATH ANAL APPL, V80, P102
34596    CLARK MR, 1996, INT J MATH MATH SCI, V19, P151
34597    DUVAUT G, 1972, INEQUATIONS MECH PHY
34598    FERREIRA J, 1996, INT J MATH MATH SCI, V19, P751
34599    HARAUX A, 1981, LECT NOTES MATH, V841
34600    MACIEL AB, 1993, NONLINEAR ANAL-THEOR, V20, P745
34601    NAKAO M, 1978, MATH REP, V11, P117
34602    PANAGIOTOPOULOS PD, 1985, INEQUALITY PROBLEMS
34603    PANAGIOTOPOULOS PD, 1993, HEMIVARIATIONAL INEQ
34604    RAUCH J, 1977, P AM MATH SOC, V64, P277
34605    ZHANG KC, 1987, COURSE FUNCTIONAL AN
34606    ZHOU MQ, 1985, REAL VARIABLES FUNCT
34607 NR 14
34608 TC 2
34609 SN 0022-247X
34610 J9 J MATH ANAL APPL
34611 JI J. Math. Anal. Appl.
34612 PD JAN 15
34613 PY 2000
34614 VL 241
34615 IS 2
34616 BP 198
34617 EP 213
34618 PG 16
34619 SC Mathematics, Applied; Mathematics
34620 GA 282NQ
34621 UT ISI:000085225300004
34622 ER
34623 
34624 PT J
34625 AU Yan, LC
34626    Lu, WC
34627    Ding, YM
34628    Fang, JH
34629    Chen, NY
34630    Cao, GY
34631    Zhu, JX
34632 TI Thermodynamic stability of LiFeO2 in molten carbonate fuel cell
34633 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
34634 DT Letter
34635 AB LiFeO2, as one of candidate cathode materials or additive for molten
34636    carbonate fuel cell, has been found to be thermodynamically unstable in
34637    CO2 atmosphere at 650 degrees C (the condition of molten carbonate fuel
34638    cell) both by computation and experimental confirmation.
34639 C1 Shanghai Univ Sci & Technol, Dept Chem, Shanghai 201800, Peoples R China.
34640    Jiao Tong Univ, Inst Fuel Cell Technol, Shanghai 200030, Peoples R China.
34641 RP Yan, LC, Shanghai Univ Sci & Technol, Dept Chem, Shanghai 201800,
34642    Peoples R China.
34643 CR DEVAN HSH, 1987, J ELECTROCHEM SOC, P2146
34644    JANZ GJ, 1961, J CHEM ENG DATA, P6321
34645    OTA KI, 1987, 2 S MOLT CARB FUEL C, P53
34646    OTA KI, 1992, P 4 JAP CHIN BIL C M, P34
34647    PLOMP L, 1993, P 3 S MOLT CARB FUEL, P171
34648    SHORES D, 1993, P 3 2NT S CARB FUEL, P254
34649    TANIMOTO K, 1998, P FUEL CELL S, P321
34650 NR 7
34651 TC 0
34652 SN 1005-0302
34653 J9 J MATER SCI TECHNOL
34654 JI J. Mater. Sci. Technol.
34655 PD JAN
34656 PY 2000
34657 VL 16
34658 IS 1
34659 BP 71
34660 EP 72
34661 PG 2
34662 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
34663    Engineering
34664 GA 282AN
34665 UT ISI:000085193800015
34666 ER
34667 
34668 PT J
34669 AU Li, CF
34670    Zhao, XG
34671 TI Spatial rotation and time-evolution operator of two-level systems
34672 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
34673 DT Article
34674 ID 2-LEVEL SYSTEMS; DYNAMICS
34675 AB All the six kinds of rotation approach with the same form to the
34676    evolution problem of arbitrarily time-dependent two-level systems are
34677    investigated in this paper. A time-dependent two-level system can be
34678    viewed as a spin-1/2 system in a time-varying magnetic field. It is
34679    shown that for each kind of rotation approach, we can always find a
34680    rotating frame in which the direction of the effective magnetic field
34681    is fixed. This property reduces the problem of finding the
34682    time-evolution operator to the solution of a second-order differential
34683    equation. Applications are made to the J C model in quantum optics and
34684    the Landau-Zener model in resonance physics.
34685 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
34686    CCAST, World Lab, Beijing 100080, Peoples R China.
34687    Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China.
34688    Acad Sinica, Inst Theoret Phys, Beijing 100080, Peoples R China.
34689 RP Li, CF, Shanghai Univ, Dept Phys, 99 Qixiang Rd, Shanghai 200436,
34690    Peoples R China.
34691 CR ALLEN L, 1975, OPTICAL RESONANCE 2
34692    ERDELYI A, 1953, HIGH TRANSCENDENTAL, V2, P192
34693    FERNANDEZ DJ, 1997, PHYS LETT A, V236, P275
34694    HUANG YH, 1989, PHYS REV A, V40, P4171
34695    LANDAU L, 1932, PHYS Z SOWJETUNION, V2, P46
34696    MAJORANA E, 1932, NUOVO CIMENTO, V9, P43
34697    SAKURAI JJ, 1985, MODERN QUANTUM MECH, P171
34698    VITANOV NV, 1996, PHYS REV A, V53, P4288
34699    WAGH AG, 1993, PHYS REV A, V48, R1729
34700    WANG ZX, 1965, INTRO SPECIAL FUNCTI, P359
34701    ZENER C, 1932, P R SOC LOND A-CONTA, V137, P696
34702    ZHAO XG, 1993, PHYS LETT A, V181, P425
34703    ZHAO XG, 1994, PHYS LETT A, V193, P5
34704    ZHOU JY, 1994, PHYS REV A, V50, P1903
34705 NR 14
34706 TC 0
34707 SN 0217-9792
34708 J9 INT J MOD PHYS B
34709 JI Int. J. Mod. Phys. B
34710 PD JAN 10
34711 PY 2000
34712 VL 14
34713 IS 1
34714 BP 101
34715 EP 112
34716 PG 12
34717 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
34718 GA 282JF
34719 UT ISI:000085214200009
34720 ER
34721 
34722 PT J
34723 AU Liu, GL
34724 TI Derivation and transformation of variational principles with emphasis
34725    on inverse and hybrid problems in fluid mechanics: a systematic approach
34726 SO ACTA MECHANICA
34727 DT Article
34728 ID TRANSONIC FLOW; POTENTIAL FLOW; ROTOR; FORMULATION; SHOCKS
34729 AB A systematic approach to the derivation of variational principles (VPs)
34730    from the partial differential equations of fluid mechanics is suggested
34731    herein, consisting essentially of two major lines: (1) establishing a
34732    first VP via reversed deduction followed by extending it successively
34733    to a Family of subgeneralized VPs via a series of transformations. and
34734    (2) vice versa. Full advantage is taken of four powerful means - the
34735    functional variation with variable domain, the natural boundary/initial
34736    condition (BC/IC), the Lagrange multiplier, and the artificial
34737    interface. The occurrence of three kinds of variational crisis is
34738    demonstrated and methods for their removal are suggested. This approach
34739    has been used with great success in establishing VP-families in fluid
34740    mechanics with special attention to inverse and hybrid problems of flow
34741    in a rotating system.
34742 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
34743    Shanghai Inst Appl Maths & Mechs, Shanghai 200072, Peoples R China.
34744 RP Liu, GL, Shanghai Univ, 149 Yan Chang Rd, Shanghai 200072, Peoples R
34745    China.
34746 CR CHIESA P, 1987, MEDIOEVO RINASCIMENT, V1, P1
34747    COURANT R, 1953, METHODS MATH PHYSICS, V1
34748    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
34749    KOMKOV V, 1986, VARIATIONAL PRINCIPL, V1
34750    LIU GL, 1979, ACTA MECH SINICA, V11, P303
34751    LIU GL, 1980, SCI SINICA, V23, P1339
34752    LIU GL, 1987, TURBULENCE MEASUREME, P323
34753    LIU GL, 1990, J ENG THERMOPHYSICS, V11, P136
34754    LIU GL, 1993, ACTA MECH, V97, P229
34755    LIU GL, 1995, ACTA MECH, V108, P207
34756    LIU GL, 1995, INVERSE PROBL ENG, V2, P1
34757    LIU GL, 1995, P 6 AS C FLUID MECH, V1, P745
34758    LIU GL, 1997, INT J TURBO JET ENG, V14, P71
34759    LIU GL, 1997, NONLINEAR ANAL-THEOR, V30, P5229
34760    LIU GL, 1999, P 14 INT S AIR BREAT
34761    LIU GL, 1999, P 4 INT S AER INT FL, V1, P29
34762    REDDY JN, 1986, APPL FUNCTIONAL ANAL
34763    TONTI E, 1984, INT J ENG SCI, V22, P1343
34764 NR 18
34765 TC 7
34766 SN 0001-5970
34767 J9 ACTA MECH
34768 JI Acta Mech.
34769 PY 2000
34770 VL 140
34771 IS 1-2
34772 BP 73
34773 EP 89
34774 PG 17
34775 SC Mechanics
34776 GA 284EL
34777 UT ISI:000085317700007
34778 ER
34779 
34780 PT J
34781 AU Zhu, XH
34782    Zhu, JM
34783    Zhou, SH
34784    Li, Q
34785    Liu, ZG
34786    Ming, NB
34787    Meng, ZY
34788 TI EPMA and TEM investigations on the interdiffusion layer of the PNN/PZT
34789    functionally gradient piezoelectric ceramics
34790 SO JOURNAL OF MATERIALS SCIENCE
34791 DT Article
34792 ID ACTUATOR
34793 AB The compositional profile, distribution of the phases and the ordering
34794    behavior in the interdiffusion layer of the PNN/PZT functionally
34795    gradient piezoelectric ceramics have been investigated by electron
34796    probe microbeam analyses (EPMA) and transmission electron microscopy
34797    (TEM) respectively. The results show that the thickness of the
34798    interdiffusion layers (d) for Ni2+, Nb5+, Ti4+ and Zr4+ ions are
34799    ordered as d(Ni)(2+) > d(Nb)(5+) > d(Ti)(4+) > d(Zr)(4+). It is
34800    demonstrated by TEM observation and selected area electron diffraction
34801    (SAED) patterns that a clear interface between the rhombohedral and
34802    pseudocubic phases exists in the interdiffusion layer. The SAED studies
34803    also reveal the presence of F spots along the [111] direction of the
34804    perovskite cubic unit cell. The origin of this superstructure is
34805    determined. (C) 2000 Kluwer Academic Publishers.
34806 C1 Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.
34807    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
34808 RP Zhu, XH, Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct,
34809    Nanjing 210093, Peoples R China.
34810 CR CHEN J, 1989, J AM CERAM SOC, V72, P593
34811    CHERRADI N, 1994, COMPOS ENG, V4, P883
34812    HARMER MP, 1989, FERROELECTRICS, V97, P263
34813    HILTON AD, 1990, J MATER SCI, V25, P3461
34814    RANDALL CA, 1990, JPN J APPL PHYS 1, V29, P327
34815    SHANNON RD, 1976, ACTA CRYSTALLOGR A, V32, P751
34816    ZHU XH, 1995, J MATER SCI LETT, V14, P516
34817    ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169
34818    ZHU XH, 1998, J MATER SCI, V33, P1023
34819 NR 9
34820 TC 2
34821 SN 0022-2461
34822 J9 J MATER SCI
34823 JI J. Mater. Sci.
34824 PD FEB
34825 PY 2000
34826 VL 35
34827 IS 4
34828 BP 1031
34829 EP 1036
34830 PG 6
34831 SC Materials Science, Multidisciplinary
34832 GA 279HF
34833 UT ISI:000085037800033
34834 ER
34835 
34836 PT J
34837 AU He, JH
34838 TI Inverse problems of determining the unknown shape of oscillating
34839    airfoils in compressible 2D unsteady flow via variational technique
34840 SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY
34841 DT Article
34842 DE flow; finite element method; inverse problems; aircraft; aerodynamics
34843 AB A generalized variational principle of 2D unsteady compressible flow
34844    around oscillating airfoils is established directly from the governing
34845    equations and boundary/initial conditions via the semi-inverse method
34846    proposed by He. In this method, an energy integral with an unknown F is
34847    used as a trial-functional. The identification of the unknown F is
34848    similar to the identification of the Lagrange multiplier. Based on the
34849    variational theory with variable domain, a variational principle for
34850    the inverse problem (given as the time-averaged pressure over the
34851    airfoil contour, while the corresponding airfoil shape is unknown) is
34852    constructed, and all the boundary/initial conditions are converted into
34853    natural ones, leading to well-posedness and the unique solution of the
34854    inverse problems.
34855 C1 Shanghai Univ, Inst Mech, Shanghai, Peoples R China.
34856 RP He, JH, Shanghai Univ, Inst Mech, Shanghai, Peoples R China.
34857 CR HE JH, 1997, INT J TURBO JET ENG, V14, P23
34858    HE JH, 1998, APPL MATH MODEL, V22, P395
34859    HE JH, 1998, COMMUNICATIONS NONLI, V3, P176
34860    HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154
34861    HE JH, 1999, INT J TURBO JET ENG, V16, P19
34862    LIU GL, 1989, SCI CHINA SER A, V32, P707
34863    LIU GL, 1993, ACTA MECH, V99, P219
34864    LIU GL, 1996, ACTA AERODYNAMICA SI, V14, P1
34865    LIU GL, 1998, INT J HEAT FLUID FL, V9, P302
34866    MEAUZE G, 1982, ASME, V104, P650
34867 NR 10
34868 TC 9
34869 SN 0002-2667
34870 J9 AIRCRAFT ENG AEROSP TECHNOL
34871 JI Aircr. Eng. Aerosp. Technol.
34872 PY 2000
34873 VL 72
34874 IS 1
34875 BP 18
34876 EP 24
34877 PG 7
34878 SC Engineering, Aerospace
34879 GA 281PF
34880 UT ISI:000085169300003
34881 ER
34882 
34883 PT J
34884 AU Li, ZT
34885    Wu, PF
34886    Tao, YQ
34887    Mao, DK
34888 TI Calculation of magnetic entropy changes of gadolinium from
34889    magnetization curves
34890 SO ACTA PHYSICA SINICA
34891 DT Article
34892 AB The magnetization curves of gadolinium were measured with a vibrating
34893    sample magnetometer, from which the function M(H, T) was obtained using
34894    two-step least square fitting. Then magnetic entropy changes can be
34895    calculated. These works can provide the perliminary information needed
34896    for the design of magnetic refrigerator.
34897 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
34898    Shanghai Yuelong NonFerrous Met Co Ltd, Shanghai 200949, Peoples R China.
34899 RP Li, ZT, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R
34900    China.
34901 CR BROWN GV, 1976, J APPL PHYS, V47, P3673
34902    CAO LF, 1986, NUMERICAL ANAL, P399
34903    FOLDEAKI M, 1995, J APPL PHYS, V77, P3528
34904    KUHRT C, 1985, PHYS STATUS SOLIDI A, V91, P105
34905    LI ZT, 1995, PROGR CHEM, V7, P140
34906    TISHIN AM, 1990, CRYOGENICS, V30, P127
34907 NR 6
34908 TC 0
34909 SN 1000-3290
34910 J9 ACTA PHYS SIN-CHINESE ED
34911 JI Acta Phys. Sin.
34912 PD DEC
34913 PY 1999
34914 VL 48
34915 IS 12
34916 SU Suppl. S
34917 BP S126
34918 EP S131
34919 PG 6
34920 SC Physics, Multidisciplinary
34921 GA 279XN
34922 UT ISI:000085070500022
34923 ER
34924 
34925 PT J
34926 AU Wang, Q
34927    Wu, Z
34928    Wang, LQ
34929 TI Nonlinear TM waves on interface of gyromagnets
34930 SO ACTA PHYSICA SINICA
34931 DT Article
34932 ID MICROWAVE-ENVELOPE SOLITONS; IRON-GARNET FILMS; FERROMAGNETIC-FILMS;
34933    LIGHT; PROPAGATION; SURFACE
34934 AB The nonlinear behavior of transverse magnetic (TM) waves on the
34935    interface between an antiferromagnet and a ferromagnet is studied. The
34936    theoretical results show that for TM waves there exist frequency
34937    passband(s) and stopband(s) which can be switched into each other by
34938    varying the power. It is indicated that this surface waveguide may
34939    support backward surface waves, which have opposite group velocities to
34940    their phase velocities. The passbands width of forward and backward
34941    surface waves are about 10 GHz.
34942 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
34943 RP Wang, Q, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
34944 CR ACEVES AB, 1989, PHYS REV A, V39, P1809
34945    ACEVES AB, 1990, J OPT SOC AM B, V7, P963
34946    AGRAWAL GP, 1989, NONLINEAR FIBER OPTI
34947    ALMEIDA NS, 1987, PHYS REV B, V36, P2015
34948    BOARDMAN AD, 1990, OPT COMMUN, V74, P347
34949    BOARDMAN AD, 1993, PHYS REV B, V48, P13602
34950    BOARDMAN AD, 1994, IEEE T MAGN, V30, P1
34951    BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
34952    BOARDMAN AD, 1995, J MAGN MAGN MATER, V145, P357
34953    BOYLE JW, 1996, PHYS REV B, V53, P12173
34954    CHEN M, 1994, PHYS REV B, V49, P12773
34955    CHEN ZG, 1996, OPT LETT, V21, P716
34956    HAUS HA, 1993, IEEE SPECTRUM, V30, P48
34957    KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712
34958    MILLS DL, 1974, REPORTS PROGR PHYSIC, V37, P817
34959    QI W, 1995, J APPL PHYS, V77, P5831
34960    QI W, 1997, JPN J APPL PHYS, V36, P22
34961    TRAN HT, 1992, IEEE J QUANTUM ELECT, V28, P488
34962    TSANKOV MA, 1994, J APPL PHYS, V76, P4274
34963    VARATHARAJAH P, 1990, PHYS REV A, V42, P1767
34964    VUKOVICH S, 1991, SOV PHYS JETP, V71, P964
34965    WANG Q, 1998, J APPL PHYS, V83, P382
34966 NR 22
34967 TC 2
34968 SN 1000-3290
34969 J9 ACTA PHYS SIN-CHINESE ED
34970 JI Acta Phys. Sin.
34971 PD FEB
34972 PY 2000
34973 VL 49
34974 IS 2
34975 BP 349
34976 EP 354
34977 PG 6
34978 SC Physics, Multidisciplinary
34979 GA 281BY
34980 UT ISI:000085139300033
34981 ER
34982 
34983 PT J
34984 AU He, JH
34985 TI A new perturbation technique which is also valid for large parameters
34986 SO JOURNAL OF SOUND AND VIBRATION
34987 DT Letter
34988 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
34989 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
34990    Peoples R China.
34991 CR BELLMAN R, 1964, PERTURBATION TECHNIQ
34992    CHEUNG YK, 1991, INT J NONLINEAR MECH, V26, P367
34993    HE JH, 1999, CHINESE J COMPUTATIO, V16, P121
34994    HE JH, 1999, COMPUT METHOD APPL M, V178, P257
34995    HE JH, 1999, INT J NONLINEAR MECH, V34, P699
34996    HE JH, 2000, INT J NONLINEAR MECH, V35, P37
34997    MICKENS RE, 1996, J SOUND VIB, V193, P747
34998 NR 7
34999 TC 15
35000 SN 0022-460X
35001 J9 J SOUND VIB
35002 JI J. Sound Vibr.
35003 PD FEB 3
35004 PY 2000
35005 VL 229
35006 IS 5
35007 BP 1257
35008 EP 1263
35009 PG 7
35010 SC Engineering, Mechanical; Acoustics; Mechanics
35011 GA 279GH
35012 UT ISI:000085035700011
35013 ER
35014 
35015 PT J
35016 AU Wang, Q
35017    Wu, Z
35018    Li, SM
35019    Wang, LQ
35020 TI Nonlinear behavior of magnetic surface waves on the interface between
35021    ferromagnet and antiferromagnet
35022 SO JOURNAL OF APPLIED PHYSICS
35023 DT Article
35024 ID MICROWAVE-ENVELOPE SOLITONS; IRON-GARNET FILMS; LIGHT; PROPAGATION
35025 AB In this article the nonlinear frequency characteristics of the
35026    transverse magnetic surface waves at microwave frequencies on the
35027    interface between a ferromagnet and an antiferromagnet have been
35028    studied. The results show that the magnetic surface waves have
35029    passband(s) and stopband(s), which are interchangeable through the
35030    variation of the wave power. It is shown that the nonlinear surface
35031    waves excited on the interface can be backward surface waves with group
35032    velocities opposite to their phase velocities in direction. The
35033    passband widths of the forward surface waves are about five times
35034    larger than those of the backward surface waves in the situation. (C)
35035    2000 American Institute of Physics. [S0021-8979(00)00604-6].
35036 C1 Shanghai Univ, Coll Sci, Shanghai 201800, Peoples R China.
35037 RP Wang, Q, Shanghai Univ, Coll Sci, Shanghai 201800, Peoples R China.
35038 CR ACEVES AB, 1989, PHYS REV A, V39, P1809
35039    ACEVES AB, 1990, J OPT SOC AM B, V7, P963
35040    AGRAWAL GP, 1989, NONLINEAR FIBER OPTI
35041    ALMEIDA NS, 1987, PHYS REV B, V36, P2015
35042    BOARDMAN AD, 1990, OPT COMMUN, V74, P347
35043    BOARDMAN AD, 1990, PHYS REV B, V41, P717
35044    BOARDMAN AD, 1993, PHYS REV B, V48, P13602
35045    BOARDMAN AD, 1994, IEEE T MAGN, V30, P1
35046    BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
35047    BOYLE JW, 1996, PHYS REV B, V53, P12173
35048    CHEN M, 1994, PHYS REV B, V49, P12773
35049    CHEN ZG, 1996, OPT LETT, V21, P716
35050    HAUS HA, 1993, IEEE SPECTRUM, V30, P48
35051    KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712
35052    MILLS DL, 1974, REPORTS PROGR PHYSIC, V37, P817
35053    TRAN HT, 1992, IEEE J QUANTUM ELECT, V28, P488
35054    TSANKOV MA, 1994, J APPL PHYS, V76, P4274
35055    VARATHARAJAH P, 1990, PHYS REV A, V42, P1767
35056    VUKOVICH S, 1991, SOV PHYS JETP, V71, P964
35057    WANG Q, 1995, J APPL PHYS, V77, P5831
35058    WANG Q, 1997, JPN J APPL PHYS PT 1, V36, P22
35059    WANG Q, 1998, J APPL PHYS, V83, P382
35060 NR 22
35061 TC 1
35062 SN 0021-8979
35063 J9 J APPL PHYS
35064 JI J. Appl. Phys.
35065 PD FEB 15
35066 PY 2000
35067 VL 87
35068 IS 4
35069 BP 1908
35070 EP 1913
35071 PG 6
35072 SC Physics, Applied
35073 GA 278MA
35074 UT ISI:000084992500048
35075 ER
35076 
35077 PT J
35078 AU Wei, JH
35079    Ma, JC
35080    Fan, YY
35081    Yu, NW
35082    Yang, SL
35083    Xiang, SH
35084    Zhu, DP
35085 TI Water modelling study of fluid flow and mixing characteristics in bath
35086    during AOD process
35087 SO IRONMAKING & STEELMAKING
35088 DT Article
35089 ID METAL
35090 AB The fluid flow and mixing characteristics in the bath during the
35091    argon-oxygen decarburisation (AOD) process have been investigated on a
35092    water model of an 18 t AOD vessel blown th rough two annu lar tube type
35093    lances of constant cross-sectional area. The geometric similarity ratio
35094    between the model and its prototype (including the lances) was 1 :3.
35095    Based on theoretical calculations of the parameters of the gas streams
35096    in the lances, the gas blowing rates used for the model were determined
35097    fairly precisely. Thus, sufficiently full kinematic similarity between
35098    the model and its prototype was ensured. The influence of the gas
35099    flowrate and the angle included between the two lances was examined.
35100    The results demonstrated that the liquid in the bath underwent vigorous
35101    circulatory motion du ring blowing, and there was no obvious dead zone
35102    in the bath, resulting in excellent mixing and a short mixing time. The
35103    gas flowrates, particularly that of the main lance, had a key influence
35104    on these characteristics. However, the gas jet of the sublance had a
35105    physical shielding effect on the gas jet of the main lance, and mixing
35106    efficiency could be improved by a suitable increase in the gas blowing
35107    rate of the sublance. The angular separation of the two lances also had
35108    a marked influence on the flow and mixing in the bath. An excessively
35109    large or small separation of the two lances would reduce the stability
35110    of blowing and would also be unfavourable to mixing. The optimum range
35111    of separation is 60-100 degrees under the conditions of the present
35112    work. The relationships between the mixing time and the gas blowing
35113    rate, the stirring energy, the modified Froude numbers for the main
35114    lance and sublance, the lance arrangement, etc. have been obtained.
35115    I&S/1413.
35116 C1 Shanghai Univ, Dept Metall Mat, Shanghai 200072, Peoples R China.
35117 RP Wei, JH, Shanghai Univ, Dept Metall Mat, Shanghai 200072, Peoples R
35118    China.
35119 CR CHO YW, 1986, SCANINJECT 1, V4
35120    FIGUEIRA RM, 1985, METALL T B, V16, P67
35121    GEIGER GH, 1973, TRANSPORT PHENOMENA, P244
35122    GORGES H, 1978, P 3 INT IR STEEL C C, P161
35123    IGUCHI M, 1992, SCANINJECT 1, V6, P113
35124    KOMAROV SV, 1996, P INT C MSMM 96 BEIJ, P113
35125    LEACH JCC, 1978, IRONMAK STEELMAK, V5, P107
35126    NAKANISHI K, 1975, IRONMAK STEELMAK, V2, P193
35127    SANO M, 1983, T IRON STEEL I JPN, V23, P169
35128    SCHWARZ MP, 1991, ISIJ INT, V30, P947
35129    SZEKELY J, 1984, IRON STEEL MAKER, V11, P22
35130    TOKUNAGA H, 1995, ISIJ INT, V35, P21
35131    WEI JH, 1989, CHIN J MET SCI TECHN, V5, P235
35132    WEI JH, 1997, P 7 NAT S COMP HEAT, P264
35133    ZHANG MH, 1995, P 10 NAT ANN C STAIN, P13
35134 NR 15
35135 TC 8
35136 SN 0301-9233
35137 J9 IRONMAKING STEELMAKING
35138 JI Ironmak. Steelmak.
35139 PY 1999
35140 VL 26
35141 IS 5
35142 BP 363
35143 EP 371
35144 PG 9
35145 SC Metallurgy & Metallurgical Engineering
35146 GA 279NG
35147 UT ISI:000085050600009
35148 ER
35149 
35150 PT J
35151 AU Huang, DB
35152    Liu, ZR
35153 TI On the persistence of lower-dimensional invariant hyperbolic tori for
35154    smooth Hamiltonian systems
35155 SO NONLINEARITY
35156 DT Article
35157 ID QUASI-PERIODIC PERTURBATIONS
35158 AB In this paper, sufficiently smooth Hamiltonian systems with
35159    perturbations are considered. By combining a smooth version of the
35160    Kolmogorov-Arnold-Moser theorem and the theory of normally hyperbolic
35161    invariant manifolds, we show that under the conditions of nonresonance
35162    and nondegeneracy, most hyperbolic invariant tori and their stable and
35163    unstable manifolds survive smoothly under sufficiently smooth
35164    autonomous perturbation. This result can be generalized directly to the
35165    case of time-dependent quasi-periodic perturbations. Finally, an
35166    example from geometrical optics is used to illustrate our method.
35167 C1 Acad China, Inst Mech, LNM, Beijing, Peoples R China.
35168    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
35169 RP Huang, DB, Acad China, Inst Mech, LNM, Beijing, Peoples R China.
35170 CR ARNOLD VI, 1963, RUSS MATH SURV, V18, P9
35171    CHENG CQ, 1990, CELESTIAL MECH, V47, P275
35172    DIEZ C, 1991, CELESTIAL MECH, V50, P13
35173    ELIASSON LH, 1988, ANN SC NORM SUPER S, V15, P115
35174    FENICHEL N, 1971, INDIANA U MATH J, V21, P193
35175    GRAFF SM, 1974, J DIFFER EQUATIONS, V15, P1
35176    HOLM DD, 1991, PHYSICA D, V51, P177
35177    JORBA A, 1996, SIAM J MATH ANAL, V27, P1704
35178    JORBA A, 1997, J NONLINEAR SCI, V7, P427
35179    LERMAN L, 1987, SELECTA MATH SOVIETI, V6, P365
35180    MARSDEN JE, 1994, INTRO MECH SYMMETRY
35181    MOSER J, 1966, ANN SCUOLA NORM, V20, P499
35182    POSCHEL J, 1982, COMMUN PUR APPL MATH, V35, P653
35183    POSCHEL J, 1989, MATH Z, V202, P559
35184    RUDNEV M, 1997, J NONLINEAR SCI, V7, P177
35185    SPIVAK M, 1979, DIFFERENTIAL GEOMETR, V1
35186    WIGGINS S, 1994, NORMALLY HYPERBOLIC
35187    XIA ZH, 1992, ERGOD THEOR DYN SYST, V12, P621
35188 NR 18
35189 TC 0
35190 SN 0951-7715
35191 J9 NONLINEARITY
35192 JI Nonlinearity
35193 PD JAN
35194 PY 2000
35195 VL 13
35196 IS 1
35197 BP 189
35198 EP 202
35199 PG 14
35200 SC Mathematics, Applied; Physics, Mathematical
35201 GA 276TW
35202 UT ISI:000084894300010
35203 ER
35204 
35205 PT J
35206 AU Zhong, SS
35207    Yang, XX
35208    Gao, SC
35209    Ahmed, M
35210 TI A low-cost dual-polarized microstrip antenna array
35211 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
35212 DT Article
35213 DE microstrip antenna array; dual polarization; low cost; radiation
35214    patterns; S-parameters
35215 AB A new low-cost dual-polarized microsrip antenna array with a single
35216    layer is proposed. Its element is the parallel corner-fed square patch
35217    with two ports. The design, analysis, and experimental results of a 12
35218    GHz 16-element array on a 0.8 mm thick substrate are presented. Its
35219    measured isolation is 26.5 dB at 12 GHz and higher than 20 dB over 710
35220    MHz. The 2:1 VSWR bandwidth is wider than 840 MHz (7%). The theoretical
35221    results agree well with the experimental results. (C) 2000 John Wiley &
35222    Sons, Inc.
35223 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
35224 RP Zhong, SS, Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R
35225    China.
35226 CR BRACHAT P, 1995, IEEE T ANTENN PROPAG, V43, P738
35227    CRUZ EM, 1991, ELECTRON LETT, V27, P1410
35228    CRYAN MJ, 1996, ELECTRON LETT, V32, P286
35229    DERNERYD AG, 1976, P 6 EUR MICR C, P339
35230    GAO SC, 1998, MICROW OPT TECHN LET, V19, P214
35231    GAO SC, 1999, THESIS SHANGHAI U PR
35232    LINDMARK B, 1998, IEEE AP-S, P328
35233    MURAKAMI Y, 1996, IEE P-MICROW ANTEN P, V143, P119
35234    RICHARDS WF, 1981, IEEE T ANTENN PROPAG, V29, P38
35235    ZHONG SS, 1991, MICROSTRIP ANTENNA T
35236 NR 10
35237 TC 3
35238 SN 0895-2477
35239 J9 MICROWAVE OPT TECHNOL LETT
35240 JI Microw. Opt. Technol. Lett.
35241 PD FEB 5
35242 PY 2000
35243 VL 24
35244 IS 3
35245 BP 176
35246 EP 179
35247 PG 4
35248 SC Engineering, Electrical & Electronic; Optics
35249 GA 275GU
35250 UT ISI:000084813100009
35251 ER
35252 
35253 PT J
35254 AU Gao, F
35255    Xu, YR
35256    Song, BY
35257    Xia, KN
35258 TI Substructural changes during hot deformation of an Fe-26Cr ferritic
35259    stainless steel
35260 SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND
35261    MATERIALS SCIENCE
35262 DT Article
35263 ID HIGH-TEMPERATURE DEFORMATION; DYNAMIC RECRYSTALLIZATION; MICROSTRUCTURE
35264 AB Dynamic softening and substructural changes during hot deformation of a
35265    ferritic Fe-26Cr stainless steel were studied. The flow stress
35266    increased to reach a steady state in all the cases and the steady-state
35267    stress decreased with decreasing Z the Zener-Hollomon parameter. A
35268    constant subgrain size was observed to correspond to the
35269    steady-state:flow and the steady-state subgrain size increased with
35270    decreasing Z. Substructure examinations revealed-that elongated,
35271    pancake-shaped subgrains formed in the early stage of deformation.
35272    Straight sub-boundaries: and equiaxed subgrains developed pi-ogres
35273    sively with strain, leading eventually to a stable substructure at
35274    strains greater than 0.7. During deformation at 1100 degrees C, dynamic
35275    recrystallization occurred by the migration and coalescence of
35276    subboundaries. Dynamic recovery dominated during deformation at 900
35277    degrees C, resulting in the formation of fine equiaxed subgrains, Based
35278    on microstructural;observations, the process of substructural changes
35279    during hot deformation was described by a schematic-diagram.
35280 C1 Dalian Railway Univ, Dalian 116028, Liaoning, Peoples R China.
35281    Shanghai Univ, Shanghai 201800, Peoples R China.
35282    Univ Melbourne, Dept Mech & Mfg Engn, Parkville, Vic 3052, Australia.
35283 RP Gao, F, Dalian Railway Univ, Dalian 116028, Liaoning, Peoples R China.
35284 CR BELYAKOV AN, 1993, PHYS MET METALLOGR, V76, P162
35285    BOURELL DL, 1987, J MAT SHAPING TECH, V5, P53
35286    CIZEK P, 1989, METALL J, V44, P94
35287    CIZEK P, 1997, MAT SCI ENG A-STRUCT, V230, P88
35288    DOHERTY RD, 1997, MAT SCI ENG A-STRUCT, V238, P219
35289    DRURY MR, 1986, ACTA METALL, V34, P2259
35290    GAO F, 1988, ACTA METALL SINICA, V24, B195
35291    GLOVER G, 1973, METALL T, V4, P765
35292    ION SE, 1982, ACTA METALL, V30, P1909
35293    JONAS JJ, 1969, MET REV, V14, P1
35294    KONOPLEVA EV, 1997, MAT SCI ENG A-STRUCT, V234, P826
35295    MAKI T, 1982, 6 INT C STRENGTH MET, P529
35296    MCQUEEN HJ, 1977, METALL TRANS A, V8, P807
35297    ROBERTS W, 1984, DEFORMATION PROCESSI, P109
35298    SAKAI T, 1984, ACTA METALL, V32, P189
35299    SCHMIDT CG, 1982, MET T A, V13, P447
35300 NR 16
35301 TC 9
35302 SN 1073-5623
35303 J9 METALL MATER TRANS A
35304 JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci.
35305 PD JAN
35306 PY 2000
35307 VL 31
35308 IS 1
35309 BP 21
35310 EP 27
35311 PG 7
35312 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
35313    Engineering
35314 GA 274JQ
35315 UT ISI:000084763100003
35316 ER
35317 
35318 PT J
35319 AU Ding, YP
35320    Meng, ZY
35321 TI The ordered micro-domain in Ba1-xSrxTiO3 thin films and its effect on
35322    phase transition
35323 SO JOURNAL OF MATERIALS SCIENCE LETTERS
35324 DT Article
35325 ID FERROELECTRICS
35326 C1 Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China.
35327    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
35328 RP Ding, YP, Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030,
35329    Peoples R China.
35330 CR CROSS LE, 1987, FERROELECTRICS, V76, P241
35331    DING YP, 1998, IN PRESS 9 INT C MOD
35332    GU BL, 1991, J APPL PHYS, V70, P4224
35333    KING G, 1988, J AM CERAM SOC, V71, P454
35334    RANDALL CA, 1990, J MATER RES, V5, P829
35335    SMOLENSKY GA, 1970, J PHYS SOC JAPAN   S, V28, P26
35336 NR 6
35337 TC 3
35338 SN 0261-8028
35339 J9 J MATER SCI LETT
35340 JI J. Mater. Sci. Lett.
35341 PD JAN
35342 PY 2000
35343 VL 19
35344 IS 2
35345 BP 163
35346 EP 165
35347 PG 3
35348 SC Materials Science, Multidisciplinary
35349 GA 276GR
35350 UT ISI:000084868500021
35351 ER
35352 
35353 PT J
35354 AU Lu, JM
35355    Ye, ZM
35356 TI Application of CASs to iterative solution of nonlinear analysis of
35357    shallow conical shell
35358 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
35359 DT Article
35360 ID COMPUTER ALGEBRA SOFTWARE; MATHEMATICA
35361 AB This paper deals with the application of Computer Algebra Systems
35362    (CASs) - Maple V to the nonlinear analysis of shallow conical shells.
35363    It is shown that the nonlinear equations of the shell to the nonlinear
35364    problem could be solved by using the CASs method. Detailed high-order
35365    iterative solution expressions and analytical results or the third
35366    iteration are given in CASs forms. The numerical results show that the
35367    solutions of this paper contain other cases when the solutions were the
35368    second order iteration. The effects of various inner radius parameters
35369    have been investigated in detail. The results of the third iterative
35370    expressions are obtained first. It has been shown that the adoption of
35371    the CASs method would be useful in nonlinear problems. (C) 2000
35372    Published by Elsevier Science S.A. All rights reserved.
35373 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
35374 RP Lu, JM, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yan Chang
35375    Rd, Shanghai 200072, Peoples R China.
35376 CR HANSEN P, 1991, MATH PROGRAM, V52, P227
35377    IOAKIMIDIS NI, 1991, ENG FRACT MECH, V38, P95
35378    IOAKIMIDIS NI, 1992, COMPUT METHOD APPL M, V94, P229
35379    IOAKIMIDIS NI, 1993, COMPUT STRUCT, V47, P233
35380    IOAKIMIDIS NI, 1993, INT J COMPUT MATH, V49, P75
35381    IOAKIMIDIS NI, 1994, COMPUT STRUCT, V53, P63
35382    IOAKIMIDIS NI, 1995, COMPUT STRUCT, V55, P229
35383    KENNETH R, 1989, SCIENCE, V243, P679
35384    YE Z, 1997, MECH PRACTICE, V19, P1
35385    YE ZM, 1990, J APPL MECH-T ASME, V57, P1026
35386    YE ZM, 1993, MECH RES COMMUN, V20, P83
35387    YE ZM, 1995, COMPUT STRUCT, V55, P325
35388    YE ZM, 1997, J SOUND VIB, V202, P303
35389    YE ZM, 1998, COMPUT METHOD APPL M, V163, P383
35390 NR 14
35391 TC 0
35392 SN 0045-7825
35393 J9 COMPUT METHOD APPL MECH ENG
35394 JI Comput. Meth. Appl. Mech. Eng.
35395 PD JAN 7
35396 PY 2000
35397 VL 181
35398 IS 1-3
35399 BP 345
35400 EP 361
35401 PG 17
35402 SC Computer Science, Interdisciplinary Applications; Engineering,
35403    Mechanical; Mechanics
35404 GA 276PX
35405 UT ISI:000084887500014
35406 ER
35407 
35408 PT J
35409 AU Tan, WH
35410    Yan, KZ
35411 TI Collapse and revival in the damped Jaynes-Cummings model
35412 SO CHINESE PHYSICS LETTERS
35413 DT Article
35414 ID STATES; CAVITY; FIELD
35415 AB We present the first results for the analytic solution of the
35416    dissipative Jaynes-Cummings model and its application to the collapse
35417    and revival of atomic inversion. We find that the atomic inversion
35418    oscillates more and more slowly with decreasing Rabi frequency due to
35419    the cavity losses. At the same time, long drawn-out revivals after
35420    collapse are observed.
35421 C1 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
35422 RP Tan, WH, Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800,
35423    Peoples R China.
35424 CR BARNETT SM, 1986, PHYS REV A, V33, P2444
35425    BUCK B, 1981, PHYS LETT A, V81, P132
35426    DUAN LM, 1997, CHINESE PHYS LETT, V14, P488
35427    EBERLY JH, 1980, PHYS REV LETT, V44, P1323
35428    GERRY CC, 1996, PHYS REV A, V53, P2857
35429    HAKEN H, 1970, ENCYCL PHYS, V25, P41
35430    JAYNES ET, 1963, P IEEE, V51, P89
35431    KUKLINSKI JR, 1988, PHYS REV A, V37, P3175
35432    RAIMOND JM, 1982, PHYS REV LETT, V49, P117
35433    SHAO B, 1997, CHINESE PHYS LETT, V14, P905
35434    YANG XX, 1998, CHINESE PHYS LETT, V15, P186
35435    ZHENG SB, 1997, CHINESE PHYS LETT, V14, P273
35436 NR 12
35437 TC 0
35438 SN 0256-307X
35439 J9 CHIN PHYS LETT
35440 JI Chin. Phys. Lett.
35441 PY 1999
35442 VL 16
35443 IS 12
35444 BP 896
35445 EP 898
35446 PG 3
35447 SC Physics, Multidisciplinary
35448 GA 272KQ
35449 UT ISI:000084649500014
35450 ER
35451 
35452 PT J
35453 AU Li, DZ
35454 TI Universal equation of photovoltage and transverse photovoltage effect
35455 SO ACTA PHYSICA SINICA
35456 DT Article
35457 AB We have derived a universal equation of photovoltage using a physics
35458    model of photovoltage effects, which involves a p(+)-n-n(+) structure.
35459    Under specified condition, the equation is simplified to expressions of
35460    junction field photovoltage, Dem ber photovoltage and transverse
35461    photovoltage.
35462    According to the function relation between the transverse photovoltage
35463    and the position of light point derived from the universal equation of
35464    photovoltage we fabricated the position sensitive detector (PSD) with
35465    excellent characteristics of position sensitivity on photocurrents. The
35466    theory is thus proven by the successful fabrication of the PSD.
35467 C1 Shanghai Univ, Sch Sci, Shanghai 201800, Peoples R China.
35468 RP Li, DZ, Shanghai Univ, Sch Sci, Shanghai 201800, Peoples R China.
35469 CR 1988, POSITION SENSITIVE D
35470    LI DZ, 1998, J SHANGHAI U, V4, P284
35471    PANKORE JI, 1971, OPTICAL PROCESS SEMI, P313
35472    QIAO D, 1980, ELECT MAT, P119
35473    SMITH RA, 1978, SEMICONDUCTOR CAMBRI
35474    SZE SM, 1981, PHYSICS SEMICONDUCTO, P74
35475    WOLTRING H, 1985, J IEEE T ELECT DEVIC, P581
35476    ZHANG YY, 1987, PHOTOELECTRONIC, P81
35477 NR 8
35478 TC 0
35479 SN 1000-3290
35480 J9 ACTA PHYS SIN-CHINESE ED
35481 JI Acta Phys. Sin.
35482 PD JAN
35483 PY 2000
35484 VL 49
35485 IS 1
35486 BP 137
35487 EP 141
35488 PG 5
35489 SC Physics, Multidisciplinary
35490 GA 273EC
35491 UT ISI:000084694100029
35492 ER
35493 
35494 PT J
35495 AU Zhang, TS
35496    Hing, P
35497    Li, Y
35498    Zhang, JC
35499 TI Selective detection of ethanol vapor and hydrogen using Cd-doped
35500    SnO2-based sensors
35501 SO SENSORS AND ACTUATORS B-CHEMICAL
35502 DT Article
35503 DE tin dioxide; CdO doping; ethanol sensor; hydrogen sensor
35504 ID GAS SENSORS; WORK FUNCTION; TIN DIOXIDE; THIN-FILMS; SURFACE; SNO2;
35505    SENSITIVITY; CONDUCTANCE; H2S
35506 AB The effect of CdO doping on microstructure, conductance and gas-sensing
35507    properties of SnO2-based sensors has been presented in this study.
35508    Precursor powders with Cd/Sn molar ratios ranging from 0 to 0.5 were
35509    prepared by chemical coprecipitation. X-ray diffraction (XRD) analysis
35510    indicates that the solid-state reaction in the CdO-SnO2 system occurs
35511    and alpha-CdSnO3 with pervoskite structure is formed between 600 and
35512    650 degrees C. CdO doping suppresses SnO2 crystallite growth
35513    effectively which has been confirmed by means of XRD, transmission
35514    electron microscopy (TEM) and BET method. The 10 mol% Cd-doped
35515    SnO2-based sensor shows an excellent ethanol-sensing performance, such
35516    as high sensitivity (275 for 100 ppm C2H5OH), rapid response rate (12 s
35517    for 90% response time) and high selectivity over CO, H-2 and i-C4H10.
35518    On the other hand, this sensor has good H-2-sensing properties in the
35519    absence of ethanol vapor. The sensor operates at 300 degrees C, the
35520    sensitivity to 1000 ppm H-2 is up to 98, but only 16 and 7 for 1000 ppm
35521    CO and i-C4H10, respectively. (C) 1999 Elsevier Science S.A. All rights
35522    reserved.
35523 C1 Nanyang Technol Univ, Sch Appl Sci, Div Mat Engn, Ctr Adv Mat Res, Singapore 639798, Singapore.
35524    Univ Aveiro, UIMC, Dept Ceram & Glass Engn, P-3810 Aveiro, Portugal.
35525    Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
35526 RP Zhang, TS, Nanyang Technol Univ, Sch Appl Sci, Div Mat Engn, Ctr Adv
35527    Mat Res, Nanyang Ave, Singapore 639798, Singapore.
35528 CR CALDARARU M, 1996, SENSOR ACTUAT B-CHEM, V30, P35
35529    CANTALINI C, 1994, SENSOR ACTUAT B-CHEM, V18, P437
35530    COLES GSV, 1991, SENSOR ACTUAT B-CHEM, V5, P7
35531    COX DF, 1988, PHYS REV B, V38, P2072
35532    FANG YK, 1989, THIN SOLID FILMS, V169, P51
35533    GHIOTTI G, 1995, SENSOR ACTUAT B-CHEM, V24, P520
35534    GUTIERREZ FJ, 1992, SENSOR ACTUAT B-CHEM, V8, P231
35535    HARA K, 1994, SENSOR ACTUAT B-CHEM, V20, P181
35536    HYKAWAY N, 1988, SENSOR ACTUATOR, V15, P105
35537    JIANMING L, 1989, P INT C EL COMP MAT, P197
35538    KOHL D, 1989, SENSOR ACTUATOR, V18, P71
35539    LONG LB, 1996, SENSOR ACTUAT B-CHEM, V30, P217
35540    MAEKAWA T, 1991, CHEM LETT, P575
35541    MAEKAWA T, 1992, SENSOR ACTUAT B-CHEM, V9, P63
35542    MARTINELLI G, 1992, SENSOR ACTUAT B-CHEM, V7, P717
35543    MATSUSHIMA S, 1989, CHEM LETT, P845
35544    MCALEER JF, 1987, J CHEM SOC FARAD T 1, V83, P1323
35545    MISHRA VN, 1994, SENSOR ACTUAT B-CHEM, V21, P209
35546    MIZSEI J, 1991, SENSOR ACTUAT B-CHEM, V4, P163
35547    NITTA M, 1979, J ELECTRON MATER, V8, P571
35548    OGAWA H, 1982, J APPL PHYS, V53, P4448
35549    OYABU T, 1986, SENSOR ACTUATOR, V9, P301
35550    PROMSONG L, 1995, SENSOR ACTUAT B-CHEM, V24, P504
35551    SARALA G, 1995, SENSOR ACTUAT B-CHEM, V28, P31
35552    SBERVEGLIERI G, 1991, SENSOR ACTUAT B-CHEM, V5, P253
35553    SBERVEGLIERI G, 1992, SENSOR ACTUAT B-CHEM, V8, P79
35554    SCHIERBAUM KD, 1991, SENSOR ACTUAT B-CHEM, V3, P205
35555    TAKATA M, 1976, J AM CERAM SOC, V59, P4
35556    TALLAL NM, 1974, ELECT CONDUCTIVITY C, P380
35557    YAMAMOTO N, 1981, JPN J APPL PHYS, V20, P721
35558    YAMAZOE N, 1991, SENSOR ACTUAT B-CHEM, V5, P7
35559 NR 31
35560 TC 8
35561 SN 0925-4005
35562 J9 SENSOR ACTUATOR B-CHEM
35563 JI Sens. Actuator B-Chem.
35564 PD NOV 23
35565 PY 1999
35566 VL 60
35567 IS 2-3
35568 BP 208
35569 EP 215
35570 PG 8
35571 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
35572 GA 269UB
35573 UT ISI:000084495000016
35574 ER
35575 
35576 PT J
35577 AU Yang, L
35578    Liu, ZR
35579    Mao, JM
35580 TI Controlling hyperchaos
35581 SO PHYSICAL REVIEW LETTERS
35582 DT Article
35583 ID DIRECT TRAJECTORIES; CONTROLLING CHAOS; SYSTEMS; TARGETS; ORBITS; MAP
35584 AB For a finite-dimensional dynamical system, whose governing equations
35585    may or may not be analytically available, we show how to stabilize an
35586    unstable orbit in a neighborhood of a "fully"unstable fixed point
35587    (i.e., a fixed point at which all eigenvalues of the Jacobian matrix
35588    have modulus greater than unity). Only one of the unstable directions
35589    is to be stabilized via time-dependent adjustments of control
35590    parameters. The parameter adjustments can be optimized.
35591 C1 Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong.
35592    Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R China.
35593    Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China.
35594    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
35595 RP Mao, JM, Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong.
35596 CR AUERBACH D, 1992, PHYS REV LETT, V69, P3479
35597    DITTO WL, 1990, PHYS REV LETT, V65, P3211
35598    KANEKO K, 1989, PHYSICA D, V34, P1
35599    OTT E, 1990, PHYS REV LETT, V64, P1196
35600    PETROV V, 1992, J CHEM PHYS, V96, P7506
35601    PYRAGAS K, 1992, PHYS LETT A, V170, P421
35602    ROMEIRAS FJ, 1992, PHYSICA D, V58, P165
35603    SHINBROT T, 1990, PHYS REV LETT, V65, P3215
35604    SHINBROT T, 1992, PHYS REV A, V45, P4165
35605    SHINBROT T, 1992, PHYS REV LETT, V68, P2863
35606    SINGER J, 1991, PHYS REV LETT, V66, P1123
35607    SO P, 1996, PHYS REV LETT, V76, P4705
35608 NR 12
35609 TC 22
35610 SN 0031-9007
35611 J9 PHYS REV LETT
35612 JI Phys. Rev. Lett.
35613 PD JAN 3
35614 PY 2000
35615 VL 84
35616 IS 1
35617 BP 67
35618 EP 70
35619 PG 4
35620 SC Physics, Multidisciplinary
35621 GA 271HJ
35622 UT ISI:000084587900017
35623 ER
35624 
35625 PT J
35626 AU Gao, F
35627    Xu, Y
35628    Song, B
35629    Xia, K
35630 TI Thermodynamic study of the critical nucleus size for metadynamic
35631    recrystallisation
35632 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
35633    MICROSTRUCTURE AND PROCESSING
35634 DT Article
35635 DE metadynamic recrystallisation; dynamic recrystallisation; nucleation
35636 ID DYNAMIC RECRYSTALLIZATION; HOT-WORKING; RECOVERY
35637 AB On the basis of thermodynamics, it is shown that the critical nucleus
35638    size for metadynamic recrystallisation is smaller than that for dynamic
35639    recrystallisation. It follows that the nucleation rate of metadynamic
35640    recrystallisation is not zero. A Cr25Ti steel was hot deformed and its
35641    recrystallised structures were examined after delayed quench. It was
35642    observed that after the deformation was terminated, both the grain size
35643    and the subgrain size decreased at first, although the grains
35644    eventually coarsened at longer times. This is attributed to the
35645    conversion of potential embryos formed during dynamic recrystallisation
35646    into true nuclei in metadynamic recrystallisation. The results from the
35647    experiment appear to be consistent with the theoretical analysis. (C)
35648    2000 Elsevier Science S.A. All rights reserved.
35649 C1 Univ Melbourne, Dept Mech & Mfg Engn, Parkville, Vic 3052, Australia.
35650    Shanghai Univ, Shanghai 201800, Peoples R China.
35651    Dalian Railway Univ, Dalian, Lianoning, Peoples R China.
35652 RP Xia, K, Univ Melbourne, Dept Mech & Mfg Engn, Parkville, Vic 3052,
35653    Australia.
35654 CR DJAIC RAP, 1973, MET T, V4, P621
35655    GAO F, 1988, ACTA METALL SINICA, V24, B195
35656    GLOVER G, 1972, METALL T, V3, P2271
35657    HODGSON PD, 1998, THERMEC 97, P121
35658    JONAS JJ, 1994, MAT SCI ENG A-STRUCT, V184, P155
35659    PETKOVIC RA, 1979, ACTA METALL, V27, P1633
35660    ROUCOULES C, 1994, METALL MATER TRANS A, V25, P389
35661    ROUCOULES C, 1995, MATER SCI TECH SER, V11, P548
35662    SAKAI T, 1988, ACTA METALL, V36, P1781
35663 NR 9
35664 TC 0
35665 SN 0921-5093
35666 J9 MATER SCI ENG A-STRUCT MATER
35667 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
35668 PD JAN 31
35669 PY 2000
35670 VL 277
35671 IS 1-2
35672 BP 33
35673 EP 37
35674 PG 5
35675 SC Materials Science, Multidisciplinary
35676 GA 271RQ
35677 UT ISI:000084607600005
35678 ER
35679 
35680 PT J
35681 AU Shi, LY
35682    Li, CZ
35683    Gu, HC
35684    Fang, DY
35685 TI Morphology and properties of ultrafine SnO2-TiO2 coupled semiconductor
35686    particles
35687 SO MATERIALS CHEMISTRY AND PHYSICS
35688 DT Article
35689 DE photocatalytic oxidation; ultrafine particle; dyeing wastewater
35690 ID PHOTOCATALYTIC DEGRADATION; FILMS; TIO2
35691 AB In this paper, a new method to synthesize ultrafine SnO2-TiO2 coupled
35692    particles is presented. The coupled particles are synthesized by
35693    homogeneous precipitation and characterized by EDS, XRD, TEM, HREM and
35694    BET surface area analysis. The coupled particles, pure ultrafine TiO2,
35695    commercial TiO2,and pure SnO2 are employed for photocatalytic
35696    degradation of azo dye active red X-3B in aerated solution. The results
35697    show that a very rapid and complete decolorization of the azo dye can
35698    be achieved, and the photoactivity of the coupled particles is higher
35699    than that of pure ultrafine TiO2 and commercial TiO2 particles, and the
35700    optimum loading of SnO2 on TiO2 is 18.4%. The enhanced degradation rate
35701    of X-3B using SnO2-TiO2 coupled photocatalysts is attributed to
35702    increased charge separation in these systems. (C) 2000 Elsevier Science
35703    S.A. All rights reserved.
35704 C1 Shanghai Univ, Coll Chem & Chem Engn, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China.
35705    E China Univ Sci & Technol, Inst Tech Chem & Phys, Shanghai 200237, Peoples R China.
35706    E China Univ Sci & Technol, Dept Chem Engn, Shanghai 200237, Peoples R China.
35707 RP Shi, LY, Shanghai Univ, Coll Chem & Chem Engn, Dept Environm Sci &
35708    Engn, Box 59,149 Yanchang Rd, Shanghai 200072, Peoples R China.
35709 CR BEDJA I, 1994, J PHYS CHEM-US, V98, P4133
35710    CHAO M, 1993, RES ENV SCI, V6, P58
35711    CRAIG ST, 1990, J CATAL, V122, P178
35712    FOTOU GP, 1996, CHEM ENG COMMUN, V251, P151
35713    GERISCHER H, 1991, J PHYS CHEM-US, V95, P5261
35714    GOPIDAS KR, 1994, J PHYS CHEM-US, V98, P3822
35715    HIROSHI Y, 1989, J PHYS CHEM-US, V93, P4833
35716    JUDIN VPS, 1993, CHEM BRIT, V29, P503
35717    LEGRINI O, 1993, CHEM REV, V93, P671
35718    SHI LY, 1998, J ECUST CH, V24, P291
35719    SHI LY, 1999, IN PRESS J CATAL, V20
35720    SPADARO JT, 1994, ENVIRON SCI TECHNOL, V28, P1389
35721    TSAI SJ, 1997, CATAL TODAY, V33, P227
35722    VINODGOPAL K, 1996, CHEM MATER, V8, P2180
35723    WEI TY, 1991, IND ENG CHEM RES, V30, P1293
35724    ZHANG LD, 1994, FUNCTIONAL MAT, P76
35725 NR 16
35726 TC 25
35727 SN 0254-0584
35728 J9 MATER CHEM PHYS
35729 JI Mater. Chem. Phys.
35730 PD JAN 14
35731 PY 2000
35732 VL 62
35733 IS 1
35734 BP 62
35735 EP 67
35736 PG 6
35737 SC Materials Science, Multidisciplinary
35738 GA 269RV
35739 UT ISI:000084492100009
35740 ER
35741 
35742 PT J
35743 AU Zhang, YJ
35744    Ho, SL
35745    Wong, HC
35746    Xie, GD
35747 TI Analytical prediction of armature-reaction field in disc-type permanent
35748    magnet generators
35749 SO IEEE TRANSACTIONS ON ENERGY CONVERSION
35750 DT Article
35751 DE disc-type machine; permanent magnet; armature reaction field;
35752    analytical method
35753 ID MOTORS
35754 AB A two dimensional (2D) analytical method to predict the
35755    armature-reaction field in the slotted opening airgap/magnet region of
35756    a permanent magnet (PM) disc-type generator is presented. The currents
35757    in the slot is modeled by a uniform distributed current sheet along an
35758    are at the slot opening. The analysis takes into account the harmonics
35759    in the armature current waveforms which are calculated from the voltage
35760    equations. The effects of the stator slot openings are being accounted
35761    for by the introduction of a 2D relative permeance function which is
35762    calculated directly from the nonlinear equation described,by conformal
35763    transformation. A more refined permeance distribution can then be
35764    obtained easily.
35765 C1 Hong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong.
35766    Hong Kong Polytech Univ, Ind Ctr, Hong Kong, Hong Kong.
35767    Shanghai Univ, Dept Elect Engn, Shanghai, Peoples R China.
35768 RP Zhang, YJ, Hong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong
35769    Kong.
35770 CR CAMPBELL P, 1975, IEEE T MAGN, V11, P1541
35771    CHALMERS B, 1990, MACHINES ELECTROMAGN
35772    FURLANI EP, 1994, IEEE T MAGN, V30, P3660
35773    GU CL, 1994, IEEE T MAGN, V30, P3668
35774    HO SL, 1994, INT C EL MACH PAR FR, P477
35775    TAKANO H, 1992, IEEE T IND APPL, V28, P350
35776    ZHU ZQ, 1993, IEEE T MAGN, V29, P144
35777 NR 7
35778 TC 1
35779 SN 0885-8969
35780 J9 IEEE TRANS ENERGY CONVERS
35781 JI IEEE Trans. Energy Convers.
35782 PD DEC
35783 PY 1999
35784 VL 14
35785 IS 4
35786 BP 1385
35787 EP 1390
35788 PG 6
35789 SC Engineering, Electrical & Electronic; Energy & Fuels
35790 GA 271HV
35791 UT ISI:000084588900095
35792 ER
35793 
35794 PT J
35795 AU Ji, YF
35796    Ji, G
35797    Xiao, XS
35798    Dong, YD
35799    Ma, XM
35800    Wang, WH
35801    Zhao, DQ
35802 TI Fabrication of bulk glassy Zr41Ti14Ni8Cu12.5Be22.5Fe2 alloy by water
35803    quenching
35804 SO CHINESE SCIENCE BULLETIN
35805 DT Article
35806 DE bulk amorphous alloy; glass forming ability; supercooled liquid region;
35807    eletronegativity
35808 AB A glassy Zr41Ti14Ni8Cu12.5Be22.5Fe2 rod with a diameter of 9 mm was
35809    successfully produced by water quenching. The effects of iron addition
35810    on thermal stability and hardness of Zr41Ti14Ni8Cu12.5Be22.5Fe2 bulk
35811    amorphous alloy were investigated by XR D, DSC and microhardness test;
35812    It is found that the full annealing would enhance the strength of the
35813    alloy significantly. The cause of the increase in hardness was analyzed
35814    and the formation mechanisms of the bulk amorphous alloy are discussed.
35815 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
35816    Chinese Acad Sci, Inst Phys, Beijing 10080, Peoples R China.
35817 RP Ji, YF, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
35818    China.
35819 CR CHENG HC, 1985, CRYSTALLIZATION CHEM, P116
35820    GREER AL, 1993, NATURE, V366, P303
35821    INOUE A, 1995, MATER T JIM, V36, P866
35822    JOHNSON WL, 1996, MATER SCI FORUM, V225, P35
35823    WANG WH, 1997, APPL PHYS LETT, V71, P1053
35824 NR 5
35825 TC 1
35826 SN 1001-6538
35827 J9 CHIN SCI BULL
35828 JI Chin. Sci. Bull.
35829 PD JAN
35830 PY 2000
35831 VL 45
35832 IS 1
35833 BP 23
35834 EP 27
35835 PG 5
35836 SC Multidisciplinary Sciences
35837 GA 270GE
35838 UT ISI:000084526400004
35839 ER
35840 
35841 PT J
35842 AU Wang, CS
35843    Zhu, JL
35844    Luo, WY
35845    Zhou, SX
35846 TI Measurement of fluorine pollutant in plant leaves and soil using
35847    nuclear reaction analysis
35848 SO BIOLOGICAL TRACE ELEMENT RESEARCH
35849 DT Article
35850 DE fluorine pollution; nuclear reaction analysis; environment; plant
35851    leaves; soil
35852 AB In this article, the soil and the leaves of plants, parasol, cotton,
35853    and glossy privet around a fluorine-polluted area were taken as the
35854    samples, and fluorine concentration of the samples were studied using
35855    the nuclear reaction F-19(P,alpha)O-16, and some results were given.
35856 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
35857 RP Wang, CS, Shanghai Univ, Shanghai Appl Radiat Inst, Jiading Campus,
35858    Shanghai 201800, Peoples R China.
35859 CR ALFASSI ZB, 1990, ACTIVATION ANAL
35860    DECONNINCK G, 1983, NUCL INSTRUM METHODS, V218, P165
35861    DIEUMEGARD D, 1980, NUCL INSTRUM METHODS, V168, P93
35862 NR 3
35863 TC 0
35864 SN 0163-4984
35865 J9 BIOL TR ELEM RES
35866 JI Biol. Trace Elem. Res.
35867 PD WIN
35868 PY 1999
35869 VL 71-2
35870 BP 325
35871 EP 329
35872 PG 5
35873 SC Biochemistry & Molecular Biology; Endocrinology & Metabolism
35874 GA 271TT
35875 UT ISI:000084610100036
35876 ER
35877 
35878 PT J
35879 AU You, JL
35880    Wang, ZS
35881    Zhang, GS
35882    Ren, JS
35883    Jiang, GC
35884 TI Study on magnesium ionization in cathodic sputtering glow discharge
35885    plasma
35886 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
35887 DT Article
35888 DE glow discharge; cathodic sputtering atomizer; atomic absorption
35889    spectrometry; ionic absorption spectrometry; ionization degree
35890 ID ATOMIC-ABSORPTION SPECTROMETRY; ATOMIZATION; METALS; ALLOYS; COPPER
35891 AB A method, based on the Doppler broadening-dependent absorption width
35892    and the ionization degree measured by the ratio of relative atomic and
35893    ionic absorbance in cathodic sputtering glow discharge (CSGD) plasma
35894    with aluminum-magnesium alloys as cathodes,is proposed. The
35895    experimental reveals that the plentiful magnesium ions in the plasma
35896    under the conventional discharge conditions,of the atomizer do
35897    influence the analytic working curves. Corrected method is derived and
35898    factors which result in magnesium ionization degree are disscused.
35899 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
35900    Shanghai Univ, Dept Chem & Chem Engn, Shanghai 200072, Peoples R China.
35901    Acad Sinica, Inst Met Res, Shenyang 110015, Peoples R China.
35902 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
35903    200072, Peoples R China.
35904 CR *CRC, HDB CHEM PHYS
35905    BARSHICK CM, 1994, ANAL CHEM, V66, P730
35906    BATAL A, 1981, SPECTROCHIM ACTA B, V36, P993
35907    BRUHN CG, 1978, ANAL CHEM, V50, P16
35908    CHAKRABARTI CL, 1989, SPECTROCHIM ACTA B, V44, P385
35909    GOUGH DS, 1976, ANAL CHEM, V48, P1926
35910    GRIMM W, 1968, SPECTROCHIM ACTA   B, V23, P443
35911    HARVILLE TR, 1993, ANAL CHEM, V65, P3636
35912    HASEGAWA T, 1985, SPECTROCHIM ACTA B, V40, P123
35913    HEADRICK KL, 1994, SPECTROCHIM ACTA B, V49, P975
35914    JIANSHI REN, 1984, SPECTROSC SPECT ANAL, V4, P32
35915    JINGLIN Y, 1993, ANAL LETT, V26, P541
35916    MEHDI T, 1993, SPECTROCHIM ACTA B, V48, P1023
35917    MEI Y, 1993, ANAL CHEM, V65, P3337
35918    MITCHELL ACG, 1961, RESONANCE RAD EXCITE
35919    TONG SL, 1993, SPECTROCHIM ACTA B, V48, P1237
35920    WAGATSUMA K, 1993, SPECTROCHIM ACTA B, V48, P1039
35921    WEISS Z, 1993, SPECTROCHIM ACTA B, V48, P1247
35922    WINCHESTER MR, 1988, APPL SPECTROSC, V42, P941
35923    WINCHESTER MR, 1990, J ANAL ATOM SPECTROM, V5, P9
35924 NR 20
35925 TC 0
35926 SN 1000-0593
35927 J9 SPECTROSC SPECTR ANAL
35928 JI Spectrosc. Spectr. Anal.
35929 PD DEC
35930 PY 1999
35931 VL 19
35932 IS 6
35933 BP 850
35934 EP 853
35935 PG 4
35936 SC Spectroscopy
35937 GA 268RY
35938 UT ISI:000084430400025
35939 ER
35940 
35941 PT J
35942 AU Hassan, AKA
35943    Xu, DM
35944    Zhang, YJ
35945 TI Modeling and analysis of finite-flange open-ended coaxial probe for
35946    planar and convex surface coating material testing by FDTD method
35947 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
35948 DT Article
35949 DE curved surface testing; FDTD; error analysis; EM properties; complex
35950    permittivity and permeability
35951 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800, Peoples R China.
35952 RP Hassan, AKA, Shanghai Univ, Sch Commun & Informat Engn, Shanghai
35953    201800, Peoples R China.
35954 CR BAKERJARVIS J, 1994, IEEE T INSTRUM MEAS, V43, P711
35955    BAKHTIARI S, 1994, IEEE T MICROW THEORY, V42, P2073
35956    BRINGHURST S, 1997, IEEE T MICROWAVE THE, V45
35957    COLPITTS BG, 1996, IEEE T MICROW THEORY, V44, P160
35958    HASSAN AKA, 1999, 26 GEN ASS INT UN RA
35959    LAUGHE PD, 1993, IEEE T INSTRUM MEAS, V42, P879
35960    MUR G, 1981, IEEE T ELECTROMAGN C, V23, P377
35961    NIU M, 1999, IEEE T INSTRUM MEAS, V47, P476
35962    OKONIEWSKI M, 1994, IEEE ANT PROP SOC IN, V2, P1438
35963    TOFLOVE A, 1980, IEEE T ELECTROMAGNET, V22, P191
35964    XU DM, 1987, IEEE T MICROW THEORY, V35, P1424
35965    YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302
35966    ZHANG Z, 1995, J MICROWAVES CHINA, V11, P171
35967 NR 13
35968 TC 1
35969 SN 0895-2477
35970 J9 MICROWAVE OPT TECHNOL LETT
35971 JI Microw. Opt. Technol. Lett.
35972 PD JAN 20
35973 PY 2000
35974 VL 24
35975 IS 2
35976 BP 117
35977 EP 120
35978 PG 4
35979 SC Engineering, Electrical & Electronic; Optics
35980 GA 268YG
35981 UT ISI:000084447000010
35982 ER
35983 
35984 PT J
35985 AU Qing, AY
35986    Li, J
35987    Ren, L
35988    Lee, CK
35989    Zhong, SS
35990 TI Microwave imaging of multiple perfectly conducting cylinders using
35991    real-coded genetic algorithm
35992 SO CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION
35993 DT Article
35994 DE microwave imaging; two-dimensional perfectly conducting objects;
35995    real-coded genetic algorithm; simulated annealing
35996 ID ELECTROMAGNETICS
35997 AB A novel approach for microwave imaging of two-dimensional perfectly
35998    conducting objects in free space using real-coded genetic algorithm is
35999    put forward in this paper. The shape function of each contour is
36000    approximated by triangular series. A set of integral equations with
36001    respect to the coefficients of these series are derived according to
36002    the boundary conditions. The imaging problem is then reformulated into
36003    a restrained optimization one where the variables to be optimized are
36004    the coefficients of the series and the cost function is defined as the
36005    relative error between the measured scattered electric field and the
36006    simulated one. Using real-coded genetic algorithm, the imaging is done
36007    by genetic operating iteratively. The fitness function is obtained by
36008    transforming and scaling the cost function using simulated annealing
36009    method. Tournament selection, proportional model, one-point crossover
36010    and elitist model are used while the mutation is done by adding a
36011    random purtabation item to the gene to be mutated. Numerical examples
36012    show the validity of this method. Compared with other inversion
36013    algorithms, our method is more simple, versatile and robust.
36014 C1 SW Jiaotong Univ, Inst Electromagnet Theory & Microwave Technol, Chengdu 610031, Peoples R China.
36015    Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore.
36016    Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
36017 RP Qing, AY, SW Jiaotong Univ, Inst Electromagnet Theory & Microwave
36018    Technol, POB 63, Chengdu 610031, Peoples R China.
36019 CR CHENG GL, 1996, GENETIC ALGORITHM AP
36020    CHEW WC, 1990, WAVES FIELDS INHOMOG
36021    CHIU CC, 1992, IEEE T ANTENN PROPAG, V40, P933
36022    DAVIS L, 1987, GENETIC ALGORITHM SI
36023    HARRINGTON RF, 1968, FIELD COMPUTATION MO
36024    HAUPT RL, 1995, IEEE ANTENNAS PROPAG, V37, P7
36025    HOLLAND JH, 1975, ADAPTION NATURAL ART
36026    KLEINMAN RE, 1994, RADIO SCI, V29, P1157
36027    MICHIELSSEN E, 1992, IEE PROC-J, V139, P413
36028    MOGHADDAM M, 1992, IEEE T GEOSCI REMOTE, V30, P147
36029    PENG ZQ, 1993, J APPL SCI, V11, P297
36030    QING A, 1997, J ELECTROMAGNET WAVE, V11, P259
36031    QING AY, 1997, THESIS SW JIAOTONG U
36032    QING AY, 1998, CHINESE J GEOPHYS, V41, P117
36033    WEILE DS, 1997, IEEE T ANTENN PROPAG, V45, P343
36034 NR 15
36035 TC 0
36036 SN 0001-5733
36037 J9 CHINESE J GEOPHYS-CHINESE ED
36038 JI Chinese J. Geophys.-Chinese Ed.
36039 PD NOV
36040 PY 1999
36041 VL 42
36042 IS 6
36043 BP 841
36044 EP 848
36045 PG 8
36046 SC Geochemistry & Geophysics
36047 GA 268JY
36048 UT ISI:000084411600015
36049 ER
36050 
36051 PT J
36052 AU Fang, S
36053    Zhou, ZQ
36054    Zhang, JL
36055    Yao, MY
36056    Feng, F
36057    Northwood, DO
36058 TI The application of mathematical models to the calculation of selected
36059    hydrogen storage properties (formation enthalpy and hysteresis) of
36060    AB(2)-type alloys
36061 SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
36062 DT Article
36063 ID LAVES PHASE; ABSORPTION; HYDRIDES
36064 AB Two mathematical models have been applied to AB(2)-type
36065    hydrogen-absorbing alloys. The first model is for the calculation of
36066    hydride formation enthalpy and the second model allows for the
36067    calculation of P-C-T curves. Certain physical parameters (activity
36068    coefficient of hydrogen (gamma), partial molar volume of hydrogen ((V)
36069    over bar(H)), solution heat of hydrogen (Delta H-s), enthalpy (Delta H)
36070    and entropy (Delta S) of formation of a hydride, slope factor (f(s)) of
36071    a plateau and the variation rate (k) of slope factor with respect to
36072    temperature in a plateau region of P-C-T curves) for these
36073    intermetallic compounds and their hydrides are estimated from these
36074    models. From the second model, the relationship between the hysteresis
36075    factor (RT ln P-a/P-d) and temperature, hydrogen concentration and
36076    slope factor of the plateau region for the P-C-T curves has been
36077    obtained. (C) 1999 International Association for Hydrogen Energy.
36078    published by Elsevier Science Ltd. All rights reserved.
36079 C1 Ryerson Polytech Inst, Fac Engn & Appl Sci, Toronto, ON M5B 2K3, Canada.
36080    Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China.
36081    Univ Windsor, Windsor, ON N9B 3P4, Canada.
36082 RP Northwood, DO, Ryerson Polytech Inst, Fac Engn & Appl Sci, 350 Victoria
36083    St, Toronto, ON M5B 2K3, Canada.
36084 CR BOUTEN PCP, 1980, J LESS-COMMON MET, V71, P147
36085    ESAYED A, 1993, THESIS U WINDSOR CAN
36086    FUJII H, 1981, J PHYS CHEM-US, V85, P3112
36087    FUJITANI S, 1993, Z PHYS CHEM, V179, P27
36088    HONG G, 1990, 1043409, CN
36089    LEE HH, 1993, J ALLOY COMPD, V202, P23
36090    LUNDIN CE, 1977, J LESS-COMMON MET, V58, P19
36091    MIEDEMA AR, 1980, THEORY ALLOY PHASE F, P344
36092    QIAN S, 1988, INT J HYDROGEN ENERG, V13, P25
36093    QIAN S, 1989, THESIS U WINDSOR CAN
36094    SHALTIEL D, 1977, J LESS-COMMON MET, V53, P117
36095    SHITIKOV V, 1984, J LESS-COMMON MET, V102, P29
36096    VANMAL HH, 1974, J LESS-COMMON MET, V35, P65
36097    WICKE E, 1984, J LESS-COMMON MET, V101, P17
36098    XIAO J, 1985, ALLOY ENERGY RELATIO
36099    YANG HW, 1995, J ALLOY COMPD, V227, P69
36100    ZHOU Z, 1991, MAT SCI PROGR, V5, P117
36101    ZHOU Z, 1993, NEW ENERGY SYSTEMS C, P79
36102    ZHOU ZQ, 1994, INT J HYDROGEN ENERG, V19, P269
36103 NR 19
36104 TC 8
36105 SN 0360-3199
36106 J9 INT J HYDROGEN ENERG
36107 JI Int. J. Hydrog. Energy
36108 PD FEB
36109 PY 2000
36110 VL 25
36111 IS 2
36112 BP 143
36113 EP 149
36114 PG 7
36115 SC Physics, Atomic, Molecular & Chemical; Energy & Fuels; Environmental
36116    Sciences
36117 GA 266DT
36118 UT ISI:000084285900006
36119 ER
36120 
36121 PT J
36122 AU Ma, Z
36123    Zhou, ZW
36124 TI On the instability in gas atomization
36125 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
36126 DT Article
36127 DE gas atomization; spray forming; instability of interfacial wave
36128 ID LIQUID
36129 AB The instability theory of fluid flow is applied in gas atomization and
36130    the results show that the instability of interfacial wave is the main
36131    cause of gas atomization. The size of the droplets and its change with
36132    parameters are also studied, the results are compatible with the
36133    experiments.
36134 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
36135 RP Ma, Z, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
36136    Peoples R China.
36137 CR BRADLEY D, 1973, J PHYS D, V6, P1724
36138    BRADLEY D, 1973, J PHYS D, V6, P2267
36139    GRANT NJ, 1983, J MET, V35, P20
36140    LAWLEY A, 1981, J MET, V33, P13
36141    LAWLEY A, 1993, ATOMIZATION PRODUCTI
36142    LUBANSKA H, 1970, J MET, V22, P45
36143    MA Z, 1998, ICFM, V3, P514
36144    MA Z, 1999, APPL MATH MECH-ENGL, V20, P825
36145    REITZ RD, 1982, PHYS FLUIDS, V25, P1730
36146    SEE JB, 1978, POWDER TECHNOL, V21, P119
36147    UNAL A, 1987, MATER SCI TECHNOL, V3, P1029
36148    UNAL A, 1988, MAT SCI TECHNOL, V4, P909
36149 NR 12
36150 TC 1
36151 SN 0253-4827
36152 J9 APPL MATH MECH-ENGL ED
36153 JI Appl. Math. Mech.-Engl. Ed.
36154 PD OCT
36155 PY 1999
36156 VL 20
36157 IS 10
36158 BP 1061
36159 EP 1066
36160 PG 6
36161 SC Mathematics, Applied; Mechanics
36162 GA 266DZ
36163 UT ISI:000084286500001
36164 ER
36165 
36166 PT J
36167 AU Zhu, ZY
36168    Cong, YH
36169 TI The influence of imperfections upon the critical load of structures
36170 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
36171 DT Article
36172 DE imperfections; critical load; pitchfork; universal unfolding
36173 AB By means of the theory of universal unfolding, the influence of
36174    multi-imperfections upon the critical load of structure in engineering
36175    is analysed in this paper. For the pitchfork problem, a lower bound of
36176    increments of the critical loads caused by imperfections of the
36177    structures is given. A simple and available numerical method for
36178    computing the lower bound is described.
36179 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Math, Shanghai 200072, Peoples R China.
36180    Shanghai Normal Univ, Coll Math Sci, Shanghai 200234, Peoples R China.
36181 RP Zhu, ZY, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Math,
36182    Shanghai 200072, Peoples R China.
36183 CR ARNOLD VI, 1981, LONDON MATH SOC LECT, V51
36184    CHOW SN, 1975, ARCH RATIONAL MECH A, V59, P159
36185    ELISHAKOFF I, 1988, BUCKLING STRUCTURES, P195
36186    GOLUBITSKY M, 1984, SINGULARITIES GROUPS, V1
36187    HUNT GW, 1977, P ROY SOC LOND A MAT, V357, P193
36188    IKEDA K, 1990, INT J SOLIDS STRUCT, V26, P865
36189    KIRKPATRICK SW, 1988, J ENG MECH DIV, V115, P1025
36190    KOITER WT, 1967, NASA TECH T F, V10, P833
36191    LINDBERG HE, 1988, J ENG MECH-ASCE, V114, P1144
36192    MUROTA K, 1991, SIAM J APPL MATH, V51, P1222
36193    NIWA Y, 1981, P JAPAN SOC CIVIL EN, V307, P99
36194    THOMSON JMT, 1973, GEN THEORY ELASTIC S
36195 NR 12
36196 TC 0
36197 SN 0253-4827
36198 J9 APPL MATH MECH-ENGL ED
36199 JI Appl. Math. Mech.-Engl. Ed.
36200 PD OCT
36201 PY 1999
36202 VL 20
36203 IS 10
36204 BP 1108
36205 EP 1115
36206 PG 8
36207 SC Mathematics, Applied; Mechanics
36208 GA 266DZ
36209 UT ISI:000084286500006
36210 ER
36211 
36212 PT J
36213 AU Zheng, LP
36214 TI Carbon stable isotopic composition of karst soil CO2 in central
36215    Guizhon, China
36216 SO SCIENCE IN CHINA SERIES D-EARTH SCIENCES
36217 DT Article
36218 DE karst area; soil CO2; carbon stable isotope
36219 ID UNSATURATED ZONE; DIOXIDE; RESPIRATION; CLIMATE; PLAINS; C-14
36220 AB The delta(13)C values of soil CO2 are less than that of atmosphere CO2
36221    in the karst area. On the soil-air interface, the delta(13)C vlaues of
36222    soil CO2 decrease with the increase in soil depth; below the soil-air
36223    interface, the delta(13)C values of soil CO2 are invariable. The type
36224    of vegetation on the land surface has an influence on the delta(13)C
36225    values of soil CO2. Due to the activity of soil microbes, the
36226    delta(13)C values of soil CO2 are variable dth seasonal change in
36227    grass. Isotopic tracer indicates that atmosphere CO2 has a great deal
36228    of contribution to soil CO2 at the lower parts of soil profile.
36229 C1 Chinese Acad Sci, Inst Geochem, State Key Lab Environm Geochem, Guiyang 550002, Peoples R China.
36230    Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China.
36231 RP Zheng, LP, Chinese Acad Sci, Inst Geochem, State Key Lab Environm
36232    Geochem, Guiyang 550002, Peoples R China.
36233 CR BIRD MI, 1996, NATURE, V381, P143
36234    BRULSEMA TW, 1996, SOIL SCI SOC AM J, V60, P1787
36235    BUYANOVSKY GA, 1983, SOIL SCI SOC AM J, V47, P1139
36236    CERLING TE, 1984, EARTH PLANET SC LETT, V71, P229
36237    CERLING TE, 1991, GEOCHIM COSMOCHIM AC, V55, P3403
36238    CRAIG H, 1953, GEOCHIM COSMOCHIM AC, V3, P53
36239    DAVIDSON GR, 1995, GEOCHIM COSMOCHIM AC, V59, P2485
36240    DORR H, 1980, RADIOCARBON, V22, P909
36241    FRITZ P, 1985, CHEM GEOL, V58, P89
36242    HINKLE ME, 1994, APPL GEOCHEM, V9, P53
36243    LI B, 1996, CARSOLOGICA SINICA, V15, P41
36244    PANKINA RG, 1978, INT GEOL REV, V21, P535
36245    PINEAU F, 1983, EARTH PLANET SC LETT, V62, P239
36246    RAICH JW, 1992, TELLUS B, V44, P81
36247    RAICH JW, 1995, GLOBAL BIOGEOCHEM CY, V9, P23
36248    REARDON EJ, 1979, J HYDROL, V43, P355
36249    TANS PP, 1990, SCIENCE, V247, P1431
36250    THORSTENSON DC, 1983, RADIOCARBON, V25, P315
36251    WAN GJ, 1995, CARBONATE ROCK ENV, V1
36252    WANG Y, 1994, GEOCHIM COSMOCHIM AC, V58, P393
36253    WILDUNG RE, 1975, SOIL BIOL BIOCHEM, V7, P373
36254    WOOD WW, 1984, WATER RESOUR RES, V20, P1193
36255    XU SY, CARSOLOGICA SINICA, V15, P50
36256    XU SY, 1997, CHINESE SCI BULL, V42, P953
36257    YUAN D, 1993, QUATERNARY SCI, P1
36258    ZHENG L, 1999, DIZHI DIQIU HUAXUE, P113
36259 NR 26
36260 TC 2
36261 SN 1006-9313
36262 J9 SCI CHINA SER D
36263 JI Sci. China Ser. D-Earth Sci.
36264 PD DEC
36265 PY 1999
36266 VL 42
36267 IS 6
36268 BP 588
36269 EP 594
36270 PG 7
36271 SC Geosciences, Multidisciplinary
36272 GA 266DQ
36273 UT ISI:000084285700004
36274 ER
36275 
36276 PT J
36277 AU Zhu, LH
36278    Zhao, QX
36279    Gu, HC
36280    Lu, YS
36281 TI Application of instrumented impact test for studying dynamic fracture
36282    property of 9Cr-1Mo-V-Nb-N steel
36283 SO ENGINEERING FRACTURE MECHANICS
36284 DT Article
36285 DE heat-resistant steel; dynamic fracture toughness; instrumented impact
36286    test; SZW
36287 ID REACTOR PRESSURE-VESSEL; A533 STEEL; TOUGHNESS
36288 AB Dynamic fracture toughness property of 9Cr-1Mo-V-Nb-N heat-resistant
36289    steel was studied over a broad range of temperatures from -196 to 650
36290    degrees C, Results show that reasonable dynamic fracture toughness
36291    values of 9Cr-1Mo-V-Nb-N steel can be obtained from instrumented impact
36292    test of precracked Charpy specimens, according to the assumption that
36293    crack initiation occurs at a load equal to (P-m + P-y)/2. Fractographic
36294    observation shows, close correspondence exists between P-D oscilloscope
36295    traces and fracture morphology, thus P-D traces can be used to analyse
36296    the fracture process of 9Cr-1Mo-V-Nb-N steel. (C) 1999 Published by
36297    Elsevier Science Ltd. All rights reserved.
36298 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
36299    Xian Jiao Tong Univ, Sch Mat Sci & Engn, Xian 710049, Shaanxi Provinc, Peoples R China.
36300 RP Zhu, LH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
36301    China.
36302 CR 1970, 466 ASTM STP
36303    1974, ASTM STP
36304    CHEN BY, 1990, ENG FRACT MECH, V36, P17
36305    CHINA R, 1992, 1130 ASTM STP
36306    HOLT JM, 1990, 1072 ASTM STP
36307    HUANG FH, 1984, TOPICAL C FERRITIC A, P337
36308    JAMES LA, 1985, J PRESS VESS-T ASME, V107, P271
36309    KALTHOFF JF, CONCEPT INPACT RESPO, V8
36310    KALTHOFF JF, 1986, ENG FRACT MECH, V23, P289
36311    KESSLER SL, 1986, 936 ASTM STP
36312    KOBAYASHI T, 1984, ENG FRACT MECH, V19, P49
36313    KOBAYASHI T, 1984, ENG FRACT MECH, V19, P67
36314    KOBAYASHI T, 1986, ENG FRACT MECH, V24, P773
36315    PUTATUNDA SK, 1986, ENG FRACT MECH, V25, P429
36316    SERVER WL, 1978, J TEST EVAL, V6, P29
36317    SREENIVASAN PR, 1996, INT J PRES VES PIP, V69, P149
36318    WADA H, 1996, ENG FRACT MECH, V54, P805
36319 NR 17
36320 TC 1
36321 SN 0013-7944
36322 J9 ENG FRACTURE MECH
36323 JI Eng. Fract. Mech.
36324 PD OCT
36325 PY 1999
36326 VL 64
36327 IS 3
36328 BP 327
36329 EP 336
36330 PG 10
36331 SC Mechanics
36332 GA 264HL
36333 UT ISI:000084174700004
36334 ER
36335 
36336 PT J
36337 AU Li, DZ
36338 TI Spectral transmission and reflection of the doping semiconductor/metal
36339    films systems
36340 SO ACTA PHYSICA SINICA
36341 DT Article
36342 AB The paper presents that the plasma frequency omega(p) of semiconductor
36343    films are regulated by the way of changing its doping concentration,
36344    which lead to high transmission. Zone of the film shift visible
36345    spectral rang V-omega, the semiconductor film is combined with the
36346    metal which thinness induced transmission frequency omega(g) locate in
36347    the edge of ultra violet range to compose the excellent D/M spectral
36348    transmission and reflection film systems. Besides, it is also necessary
36349    to select the most suitable combination of the thickness between the
36350    semiconductor and the metal films for forming the excellent transparent
36351    heat insulation film.
36352 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
36353 RP Li, DZ, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
36354 CR KARLSSON B, 1986, SPIT, V653, P148
36355    THI ES, 1982, THIN SOLID FILMS, V88, P99
36356    UTSUMI K, 1998, THIN SOLID FILMS, V334, P30
36357    VALKONEN E, 1984, SOL ENERGY, V32, P211
36358    ZHAO JQ, 1998, CHINESE J SEMICONDUC, V19, P752
36359 NR 5
36360 TC 0
36361 SN 1000-3290
36362 J9 ACTA PHYS SIN-CHINESE ED
36363 JI Acta Phys. Sin.
36364 PD DEC
36365 PY 1999
36366 VL 48
36367 IS 12
36368 BP 2349
36369 EP 2356
36370 PG 8
36371 SC Physics, Multidisciplinary
36372 GA 262KM
36373 UT ISI:000084066400031
36374 ER
36375 
36376 PT J
36377 AU Shi, ZD
36378 TI Experimental observation of spectral transmittance of highly
36379    birefringent fibre with high spin rate
36380 SO OPTICS COMMUNICATIONS
36381 DT Article
36382 DE spun high-birefringent fibres; spectral transmittance; microbending loss
36383 ID SINGLE-MODE FIBERS; OPTICAL FIBERS; FABRICATION; PROPOSALS
36384 AB Spectral transmittance of spun hi-bi (highly birefringent) fibres with
36385    different spin rates is studied by an experimental method. It is found
36386    that, as the spin rate is raised to a certain high value, the
36387    transmittance of this kind of fibre drops down in a certain long
36388    wavelength band. This phenomenon of the spun type fibres is attributed
36389    essentially to microbending produced in the spinning-drawing processes.
36390    (C) 1999 Published by Elsevier Science B.V. All rights reserved.
36391 C1 Shanghai Univ, Inst Fibre Opt, Shanghai 201800, Peoples R China.
36392 RP Shi, ZD, Shanghai Univ, Inst Fibre Opt, Shanghai 201800, Peoples R
36393    China.
36394 CR BARLOW AJ, 1981, ELECTRON LETT, V17, P725
36395    BARLOW AJ, 1982, ELECTRON LETT, V18, P200
36396    BIRCH RD, 1987, ELECTRON LETT, V23, P50
36397    CASTELLI R, 1989, OPT QUANT ELECTRON, V21, P35
36398    CHEN Y, 1988, J OPT SOC AM, V5, P380
36399    HUANG HC, MICROWAVE APPROACH H, P172
36400    HUANG HC, 1997, APPL OPTICS, V36, P4241
36401    NORMAN SR, 1979, ELECTRON LETT, V15, P309
36402    SOMEDA CG, 1991, OPT QUANT ELECTRON, V23, P713
36403 NR 9
36404 TC 1
36405 SN 0030-4018
36406 J9 OPT COMMUN
36407 JI Opt. Commun.
36408 PD NOV 15
36409 PY 1999
36410 VL 171
36411 IS 1-3
36412 BP 61
36413 EP 64
36414 PG 4
36415 SC Optics
36416 GA 260QE
36417 UT ISI:000083960700009
36418 ER
36419 
36420 PT J
36421 AU Lu, XG
36422    Li, FS
36423    Li, LF
36424    Chou, KC
36425 TI Electrochemical characteristic of decarburization reaction
36426 SO JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
36427 DT Article
36428 DE melt-slag reaction; decarburization; electrochemistry; electronic
36429    conductor
36430 ID FE-C DROPLETS; REDUCTION; SLAGS
36431 AB The electrochemical mechanism of the reaction between Fe-C melts and
36432    CaO-SiO2-Al2O3-FeOx slag systems has been carried out. The experimental
36433    results suggest that the final content of carbon in melt increases as
36434    the partial oxygen pressure of gas decreases no matter whether there is
36435    electronic conductor or not. However, the final content of carbon in
36436    the system with electronic conductor:is much lower than that without
36437    electronic conductor. It can be deduced that the transfer ability of
36438    oxygen in slag is dominated by electrons. When an electronic conductor
36439    exists, an easy pathway for the electrons is provided and the oxygen
36440    transfer rate is accelerated.
36441 C1 Univ Sci & Technol Beijing, Appl Sci Sch, Beijing 100083, Peoples R China.
36442    Shanghai Univ, Mat Sci & Engn Sch, Shanghai 200072, Peoples R China.
36443 RP Lu, XG, Univ Sci & Technol Beijing, Appl Sci Sch, Beijing 100083,
36444    Peoples R China.
36445 CR LU X, 1997, S PHYS CHEM MET BEIJ, P230
36446    LU XG, 1998, J UNIV SCI TECHNOL B, V5, P20
36447    MURTHY GGK, 1993, IRONMAK STEELMAK, V20, P179
36448    MURTHY GGK, 1993, IRONMAK STEELMAK, V20, P191
36449    SASABE M, 1974, METALLURG T, V5, P2225
36450    WEI S, 1980, THERMODYNAMICS METAL
36451 NR 6
36452 TC 2
36453 SN 1005-8850
36454 J9 J UNIV SCI TECHNOL BEIJING
36455 JI J. Univ. Sci. Technol. Beijing
36456 PD MAR
36457 PY 1999
36458 VL 6
36459 IS 1
36460 BP 27
36461 EP 30
36462 PG 4
36463 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
36464    Engineering; Mining & Mineral Processing
36465 GA 262BF
36466 UT ISI:000084045300008
36467 ER
36468 
36469 PT J
36470 AU Fang, SS
36471    Zhou, ZQ
36472    Zhang, JL
36473    Yao, MY
36474    Feng, F
36475    Northwood, DD
36476 TI Two mathematical models for the hydrogen storage properties of AB(2)
36477    type alloys
36478 SO JOURNAL OF ALLOYS AND COMPOUNDS
36479 DT Article
36480 DE mathematical model; hydrogen storage allay; PCT curve
36481 ID LAVES PHASE; ABSORPTION; BATTERIES
36482 AB Two semi-empirical models have been applied to AB(2) hydrogen storage
36483    alloys. One is concerned with the relation between formation enthalpy
36484    in hydriding and the atomic parameters of the alloys. The other is an
36485    expression for the PCT carves, which can be used for estimating some
36486    physical parameters of these compounds and their hydrides, calculating
36487    unknown PC isotherms at given temperatures and finding the relationship
36488    of hysteresis to temperature and hydrogen concentration. (C) 1999
36489    Published by Elsevier Science S.A. All rights reserved.
36490 C1 Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China.
36491    Univ Windsor, Dept Mech & Mat Engn, Windsor, ON N9B 3P4, Canada.
36492 RP Fang, SS, Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072,
36493    Peoples R China.
36494 CR ESAYED A, 1993, THESIS U WINDSOR CAN, P69
36495    FUJII H, 1981, J PHYS CHEM-US, V85, P3112
36496    GAMO T, 1980, 3RD P WORLD HYDR EN, V4, P2127
36497    HONG G, 1990, 1043409, CN
36498    HUOT J, 1995, J ALLOY COMPD, V228, P69
36499    LEE HH, 1993, J ALLOY COMPD, V202, P23
36500    LEE JH, 1995, J ALLOY COMPD, V221, P174
36501    QIAN S, 1988, INT J HYDROGEN ENERG, V13, P25
36502    QIAN S, 1989, THESIS U WINDSOR CAN, P106
36503    SHALTIEL D, 1977, J LESS-COMMON MET, V53, P117
36504    SHITIKOV V, 1984, J LESS-COMMON MET, V102, P29
36505    VANMAL HH, 1974, J LESS-COMMON MET, V35, P65
36506    YANG HW, 1995, J ALLOY COMPD, V227, P69
36507    ZHOU Z, 1991, MAT SCI PROGR, V5, P117
36508    ZHOU Z, 1993, NEW ENERGY SYSTEMS C, P79
36509    ZHOU ZQ, 1994, INT J HYDROGEN ENERG, V19, P269
36510 NR 16
36511 TC 11
36512 SN 0925-8388
36513 J9 J ALLOYS COMPOUNDS
36514 JI J. Alloy. Compd.
36515 PD DEC 20
36516 PY 1999
36517 VL 295
36518 BP 10
36519 EP 13
36520 PG 4
36521 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
36522    Metallurgical Engineering
36523 GA 262KD
36524 UT ISI:000084065500004
36525 ER
36526 
36527 PT J
36528 AU Zhou, ZQ
36529    Lin, GW
36530    Zhang, JL
36531    Ge, JS
36532    Shen, JR
36533 TI Degradation behavior of foamed nickel positive electrodes of Ni-MH
36534    batteries
36535 SO JOURNAL OF ALLOYS AND COMPOUNDS
36536 DT Article
36537 DE foamed nickel electrode; degradation behavior; phase transformation
36538    stress
36539 AB The extrusion mechanism has been demonstrated to be the major cause for
36540    the capacity decay of the positive electrodes during cycling. However,
36541    based on our SEM and EPMA observations on cycled electrodes we found
36542    that some active material on the foamed nickel electrodes came off into
36543    scales especially as the electrodes cycled at IC rate of discharge.
36544    This phenomena is suggested as another important cause for the capacity
36545    decay of positive electrodes and may be explained by the internal
36546    stress induced by the different volume change at the outer layer and
36547    the core due to phase and structure transformation during cycling. (C)
36548    1999 Elsevier Science S.A. All rights reserved.
36549 C1 Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China.
36550 RP Zhou, ZQ, Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072,
36551    Peoples R China.
36552 CR COATES DK, 1996, 13 INT SEM PRIM SEC
36553    WATADA M, 5366831, US
36554    ZHOU ZQ, 1995, NEW TYPE FUNCTIONAL, P367
36555 NR 3
36556 TC 3
36557 SN 0925-8388
36558 J9 J ALLOYS COMPOUNDS
36559 JI J. Alloy. Compd.
36560 PD DEC 20
36561 PY 1999
36562 VL 295
36563 BP 795
36564 EP 798
36565 PG 4
36566 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
36567    Metallurgical Engineering
36568 GA 262KD
36569 UT ISI:000084065500150
36570 ER
36571 
36572 PT J
36573 AU Zhu, XH
36574    Zhu, JM
36575    Zhou, SH
36576    Li, Q
36577    Meng, ZY
36578    Ming, NB
36579 TI SAED and TEM investigations of domain structure in bismuth- and
36580    zinc-modified Pb(Ni1/3Nb2/3)O-3-PbTiO3-PbZrO3 ceramics at morphotropic
36581    phase boundary
36582 SO FERROELECTRICS
36583 DT Article
36584 DE electron diffraction; transmission electron microscopy; domain
36585    structure; ferroelectric materials; PNN-PT-PZ; morphotropic phase
36586    boundary
36587 ID PIEZOELECTRIC PROPERTIES
36588 AB Transmission electron microscopy and electron diffraction
36589    investigations of the ferroelectric domain structures in the Bi- and
36590    Zn-modified Pb(Ni1/3Nb2/3)O-3-PbTiO3-PbZrO3 (PNN-PT-PZ) ceramics at the
36591    morphotropic phase boundary (MPB) revealed the triplet splitting of
36592    electron diffraction spots due to the coexistence of the tetragonal
36593    (T-1 and T-2) and rhombohedral (R) phases at the microscopic
36594    Ferroelectric-domain level. The angular values formed between the
36595    parallel stripes in the herringbone domain pattern can be explained by
36596    a model of spatial domain configuration previously proposed for BaTiO3
36597    ceramics. A succession model of ferroelectric domain structures T-1 RT
36598    2RT(1)...is proposed to explain the coexistence of T and R phases
36599    in:the same ceramic grain at the MPB. The elastically stored energy in
36600    the mixed T-R wall was estimated, and its uniform distribution confirms
36601    this succession model.
36602 C1 Nanjing Univ, Natl Lab Solid State Microstruct, Dept Phys, Nanjing 210093, Peoples R China.
36603    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
36604    CCAST, World Lab, Beijing 100080, Peoples R China.
36605 RP Zhu, XH, Nanjing Univ, Natl Lab Solid State Microstruct, Dept Phys,
36606    Nanjing 210093, Peoples R China.
36607 CR ARIT G, 1980, J APPL PHYS, V51, P4956
36608    BULAEVSKII LN, 1964, FIZ TVERD TELA, V5, P2329
36609    EDINGTON JW, 1974, PRACTICAL ELECT MICR, P80
36610    GOO EKW, 1981, J APPL PHYS, V52, P2940
36611    HANH L, 1978, JPN J APPL PHYS, V17, P637
36612    KITAMURA T, 1981, JPN J APPL PHYS, V20, P97
36613    RANDALL CA, 1987, J MATER SCI, V22, P925
36614    TAKAHASHI S, 1986, SENSOR TECHNOLOGY, V6, P56
36615    UCHINO K, 1990, THESIS XIAN JIAOTONG, V18, P42
36616    UCHNIO K, 1986, PIEZOELECTRIC ELECTR
36617    ZHIRNOV VA, 1959, ZH EKSP TEOR FIZ, V35, P822
36618    ZHU XH, 1996, J MATER SCI, V31, P2171
36619    ZHU XH, 1997, J MATER SCI, V32, P4275
36620 NR 13
36621 TC 4
36622 SN 0015-0193
36623 J9 FERROELECTRICS
36624 JI Ferroelectrics
36625 PY 1998
36626 VL 215
36627 IS 1-4
36628 BP 265
36629 EP 276
36630 PG 12
36631 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
36632 GA 263BC
36633 UT ISI:000084101900024
36634 ER
36635 
36636 PT J
36637 AU Li, PL
36638    Deng, CF
36639    Wang, LL
36640    Xu, MJ
36641 TI J/psi suppression and the effect of quark flavor kinetics
36642 SO CHINESE PHYSICS LETTERS
36643 DT Article
36644 ID GLUON PLASMA; COLLISIONS
36645 AB The dilepton spectrum emitted in the phase transition process of an
36646    expanding quark gluon plasma formed in the collisions of U-238-U-238
36647    and W-184-W-184 at 200 GeV/(cu) is calculated by using the theoretical
36648    framework of relativistic hydrodynamics, including the effect of quark
36649    flavor kinetics, and phenomenological SU (3) string model is used in
36650    the calculation of the quark flavor kinetics. The calculated results
36651    are compared with the experimental data from the Center of European
36652    Research of Nucleon SPS and analysis is carried out. The results show
36653    that the effects of quark fragmentation and flavor kinetics cause a
36654    peak suppression of J/psi --> mu(+) mu(-), while the dilepton spectrum
36655    increases for small invariant mass. The calculated results show that
36656    the phenomena of suppression under the rich-baryon condition is greater
36657    than those under the poor-baryon conditions. Under the same conditions
36658    of collision, the J/psi, peak suppression produced in U-238-U-238
36659    collisions is greater than that in W-184-W-184 collisions.
36660 C1 Suzhou Railway Normal Coll, Dept Phys, Suzhou 215009, Peoples R China.
36661    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
36662 RP Li, PL, Suzhou Railway Normal Coll, Dept Phys, Suzhou 215009, Peoples R
36663    China.
36664 CR BARZ HW, 1988, NUCL PHYS A, V484, P661
36665    CLEYMANS J, 1984, PHYS LETT B, V147, P186
36666    KAJANTIE K, 1983, NUCL PHYS B, V222, P152
36667    KOCH P, 1986, PHYS REP, V142, P167
36668    LI PL, 1999, HIGH ENERG PHYS, V23, P693
36669    MASERA M, 1995, NUCL PHYS A, V590, C93
36670    WANG LL, 1999, J COMPUT PHYS, V16, P94
36671 NR 7
36672 TC 0
36673 SN 0256-307X
36674 J9 CHIN PHYS LETT
36675 JI Chin. Phys. Lett.
36676 PY 1999
36677 VL 16
36678 IS 11
36679 BP 800
36680 EP 802
36681 PG 3
36682 SC Physics, Multidisciplinary
36683 GA 260YA
36684 UT ISI:000083980000008
36685 ER
36686 
36687 PT J
36688 AU Zhu, WP
36689    Huang, Q
36690    Guo, P
36691 TI Complex equations of flexible circular ring shells overall-bending in a
36692    meridian plane and general solution for the slender ring shells
36693 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
36694 DT Article
36695 DE flexible shells; shells of revolution; circular ring shells;
36696    curved-tubes; bellows
36697 AB Complex equations of circular ring shells and slender ring shells
36698    overall-bending in a meridian plane are presented based on E. L.
36699    Axelrad's equations of flexible shells of revolution render
36700    asymmetrical lending. It turns out that the equations are analogous to
36701    Novozhilov's equations of symmetrical ring shells, where general
36702    sollutions have been given by W. Z. Chien. Therefore, by analogy with
36703    Chien's solution, a general solution for equations of the slender ring
36704    shells is put forward, which can be used to salve bellow's
36705    overall-bending problems.
36706 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
36707 RP Zhu, WP, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
36708    200072, Peoples R China.
36709 CR AXELRAD EL, 1976, FLEXIBLE SHELLS
36710    AXELRAD EL, 1987, THEORY FLEXIBLE SHEL
36711    BLAZEJ S, 1992, INT J MECH SCI, V34, P901
36712    CHIEN WZ, 1979, J TSINGHUA U, V19, P27
36713    CHIEN WZ, 1980, APPL MATH MECH ENGLI, V1, P305
36714    CHIEN WZ, 1981, APPL MATH MECH ENGLI, V2, P103
36715    HUANG Q, 1986, APPL MATH MECH, V7, P125
36716    HUANG Q, 1986, APPL MATH MECH, V7, P573
36717    ZHU WP, 1998, P 2 ICIWS 1998 SING, P477
36718 NR 9
36719 TC 6
36720 SN 0253-4827
36721 J9 APPL MATH MECH-ENGL ED
36722 JI Appl. Math. Mech.-Engl. Ed.
36723 PD SEP
36724 PY 1999
36725 VL 20
36726 IS 9
36727 BP 952
36728 EP 959
36729 PG 8
36730 SC Mathematics, Applied; Mechanics
36731 GA 261DA
36732 UT ISI:000083992200002
36733 ER
36734 
36735 PT J
36736 AU Ma, JH
36737    Chen, YS
36738    Liu, ZG
36739 TI The matric algorithm of Lyapunov exponent for the experimental data
36740    obtained in dynamic analysis
36741 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
36742 DT Article
36743 DE nonlinear chaotic timeseries; Lyapunov exponent; matric algorithm
36744 ID TIME-SERIES; SYSTEM
36745 AB The Lyapunov exponent is important quantitative index for describing
36746    chaotic attractors. Since Wolf put up the trajectory algorithm to
36747    Lyapunov exponent in 1985, how to calculate the Lyapunov exponent with
36748    accuracy has become a very important question. Based on the theoretical
36749    algorithm of Zuo Binwu, the matric algorithm of Lyapunov exponent is
36750    given, and the results with the results of Wolf's algorithm are
36751    compared. The calculating results validate that the matric algorithm
36752    has sufficient accuracy, and the relationship between the character of
36753    attractor and the value of Lyapunov exponent is studied in this paper.
36754    The corresponding conclusions are given in this paper.
36755 C1 Tianjin Finance Univ, Dept Econ & Management, Tianjin 300222, Peoples R China.
36756    Tianjin Univ, Dept Mech, Tianjin 300072, Peoples R China.
36757    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
36758 RP Ma, JH, Tianjin Finance Univ, Dept Econ & Management, Tianjin 300222,
36759    Peoples R China.
36760 CR BROWN R, 1991, PHYS REV A, V43, P2787
36761    ELLNER S, 1991, PHYS LETT A, V153, P357
36762    GENCAY R, 1992, PHYSICA D, V59, P142
36763    KANTZ H, 1994, PHYS LETT A, V185, P77
36764    MA JH, 1997, J NONLINEAR DYNAMICS, V4, P25
36765    NERENBERG MAH, 1990, PHYS REV A, V42, P7065
36766    SHUN GW, 1995, PHYS LETT A, V197, P287
36767    WOLF A, 1985, PHYSICA D, V16, P285
36768    YU QH, 1992, PHYS LETT A, V170, P29
36769    ZUO BW, 1995, PHYS D, V85, P485
36770 NR 10
36771 TC 3
36772 SN 0253-4827
36773 J9 APPL MATH MECH-ENGL ED
36774 JI Appl. Math. Mech.-Engl. Ed.
36775 PD SEP
36776 PY 1999
36777 VL 20
36778 IS 9
36779 BP 985
36780 EP 993
36781 PG 9
36782 SC Mathematics, Applied; Mechanics
36783 GA 261DA
36784 UT ISI:000083992200006
36785 ER
36786 
36787 PT J
36788 AU Bai, ZZ
36789    Wang, DR
36790    Evans, DJ
36791 TI On the convergence of asynchronous nested matrix multisplitting methods
36792    for linear systems
36793 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
36794 DT Article
36795 DE solution of linear systems; asynchronous parallel iteration; matrix
36796    multisplitting; relaxation method; convergence
36797 ID ITERATIVE METHODS; PARALLEL SOLUTION; SPLITTINGS; ALGORITHM; 2-STAGE
36798 AB A class of asynchronous nested matrix multisplitting methods for
36799    solving large-scale systems of linear equations are proposed, and their
36800    convergence characterizations are studied in detail when the
36801    coefficient matrices of the linear systems are monotone matrices and
36802    H-matrices, respectively.
36803 C1 Acad Sinica, State Key Lab Sci Engn Comp, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China.
36804    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
36805    Loughborough Univ Technol, Parallel Algorithms Res Ctr, Loughborough LE11 3TU, Leics, England.
36806 CR BRU R, 1988, LINEAR ALGEBRA APPL, V103, P175
36807    ELSNER L, 1989, NUMER MATH, V56, P283
36808    EVANS DJ, 1991, PARALLEL COMPUT, V17, P165
36809    FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141
36810    FROMMER A, 1992, NUMER MATH, V63, P345
36811    LANZKRON PJ, 1991, NUMER MATH, V58, P685
36812    NEUMANN M, 1987, LINEAR ALGEBRA APPL, V88, P559
36813    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
36814    ORTEGA JM, 1970, ITERATIVE SOLUTIONS
36815    SZYLD DB, 1992, SIAM J MATRIX ANAL A, V13, P671
36816    VARGA RS, 1962, MATRIX ITERATIVE ANA
36817    WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473
36818    WANG DR, 1994, PARALLEL ALGORITHMS, V2, P173
36819    WANG DR, 1994, PARALLEL ALGORITHMS, V2, P209
36820 NR 14
36821 TC 1
36822 SN 0254-9409
36823 J9 J COMPUT MATH
36824 JI J. Comput. Math.
36825 PD NOV
36826 PY 1999
36827 VL 17
36828 IS 6
36829 BP 575
36830 EP 588
36831 PG 14
36832 SC Mathematics, Applied; Mathematics
36833 GA 259FT
36834 UT ISI:000083884400003
36835 ER
36836 
36837 PT J
36838 AU Lu, DY
36839    Cao, JY
36840    Huang, YP
36841    Gong, L
36842    Chen, XL
36843    Chen, EH
36844    Xu, B
36845 TI Comparison of some antineoplastic drugs on inhibiting thrombin
36846    catalizing fibrinogen clotting in vitro
36847 SO CHINESE MEDICAL JOURNAL
36848 DT Article
36849 DE fibrin; fibrinogen; antineoplastic drugs; neoplasm metastasis
36850 ID TUMOR; COAGULATION
36851 AB Objective To classify the effect of thrombin, the key enzyme which
36852    enables fibrinogen to form fibrin (fibrinogen clotting) on the
36853    formation of metastasis by comparing the inhibition of some
36854    antineoplastic drugs on fibrinogen clotting in vitro.
36855    Methods Time intervals of different drugs to reach a maximum OD (340
36856    nm) data in fibrinogen solution added with thrombin were used in this
36857    work.
36858    Results It was found that L-4-oxalysine (8-40 mu g/ml) and arabinosyl
36859    cytosine (10-50 mu g/ml) could inhibit the effect of thrombin by
36860    extending the fibrinogen clotting time to 100% - 150% (P< 0.001) and
36861    61% -100% (P < 0.001) while the other antimetastatic drugs razoxane,
36862    probimane, adriamycin, harringtonine homoharringtonine and
36863    alpha-anordrin at the treatment concentrations showed no such activity.
36864    The positive rate of drugs to thrombin activity was approximately 25%.
36865    Conclusion It suggests that L-4-oxalysine and arabinosyl cytosine may
36866    even exhibit antimetastatic effect through thrombin-fibrinogen pathway,
36867    and thrombin might operate in tumor metastasis for only limited step
36868    but crutial to fibrin formation in tumor nodules.
36869 C1 Shanghai Univ, Sch Life Sci, Shanghai 201800, Peoples R China.
36870    Chinese Acad Sci, Shanghai Inst Mat Med, Dept Pharmacol, Shanghai 200031, Peoples R China.
36871    Cent Hosp Jing An Dist, Dept Oncol, Shanghai 200040, Peoples R China.
36872 RP Lu, DY, Shanghai Univ, Sch Life Sci, Shanghai 201800, Peoples R China.
36873 CR COSTANTINI V, 1992, CANCER METAST REV, V11, P283
36874    DVORAK HF, 1983, CANCER METAST REV, V2, P41
36875    GUNJI Y, 1988, CANCER RES, V48, P5216
36876    LU DY, 1994, HENAN MED RES, V3, P4
36877    LU DY, 1995, ACTA PHARMACOL SINIC, V16, P187
36878    POGGI A, 1977, CANCER RES, V37, P272
36879    YUE XF, 1982, ACTA PHARMACOL SINIC, V3, P124
36880    YUE XF, 1985, ACTA PHARMACOL SINIC, V6, P198
36881    ZACHARSKI LR, 1981, MALIGNANCY HEMOSTATI, P113
36882 NR 9
36883 TC 1
36884 SN 0366-6999
36885 J9 CHIN MED J
36886 JI Chin. Med. J.
36887 PD NOV
36888 PY 1999
36889 VL 112
36890 IS 11
36891 BP 1052
36892 EP 1053
36893 PG 2
36894 SC Medicine, General & Internal
36895 GA 258WZ
36896 UT ISI:000083863800033
36897 ER
36898 
36899 PT J
36900 AU Lu, HQ
36901    Harko, T
36902    Cheng, KS
36903 TI Quantum cosmology with a nonlinear Born-Infeld type scalar field
36904 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS D
36905 DT Article
36906 DE Born-Infeld type scalar field; quantum cosmology
36907 ID WAVE-FUNCTION; UNIVERSE; STATE
36908 AB A quantum model of gravitation interacting with a Born-Infeld type
36909    nonlinear scalar field phi is considered. The corresponding
36910    Wheeler-DeWitt equation can be solved analytically for both large and
36911    small phi-over-dot. In the extreme limits of small and large
36912    cosmological scale factors the wave function of the Universe can also
36913    be obtained by applying the methods developed by Vilenkin and Hartle
36914    and Hawking. An inflationary Universe is predicted with the largest
36915    possible vacuum energy and the largest interaction between the
36916    particles of the nonlinear scalar field.
36917 C1 Shanghai Univ, Dept Phys, Shanghai, Peoples R China.
36918    Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China.
36919 RP Lu, HQ, Shanghai Univ, Dept Phys, Shanghai, Peoples R China.
36920 CR BOILLAT G, 1998, J MATH PHYS, V40, P1
36921    BORN M, 1934, PROC R SOC LON SER-A, V144, P425
36922    DEOLIVEIRA HP, 1995, J MATH PHYS, V36, P2988
36923    DESER S, 1998, CLASSICAL QUANT GRAV, V15, P135
36924    DEWITT BS, 1967, PHYS REV, V160, P1113
36925    FANG LZ, 1986, INT J MOD PHYS D, V4, P887
36926    FEIGENBAUM JA, 1998, PHYS REV D, V5801, P24023
36927    GRADSHTEYN IS, 1983, TABLE INTEGRALS SERI
36928    GRISHCHUK LP, 1988, PHYS LETT B, V208, P369
36929    GRISHCHUK LP, 1990, PHYS LETT B, V234, P9
36930    HARTLE JB, 1983, PHYS REV D, V28, P2960
36931    HAWKING SW, 1984, NUCL PHYS B, V239, P257
36932    HAWKING SW, 1985, PHYS REV D, V32, P2489
36933    HAWKING SW, 1986, NUCL PHYS B, V264, P185
36934    HEISENBERG W, 1952, Z PHYS, V133, P79
36935    LUKAS A, 1995, PHYS LETT B, V347, P13
36936    LYONS GW, 1992, PHYS REV D, V46, P1546
36937    PALATNIK D, 1998, PHYS LETT B, V432, P287
36938    TSEYTLIN AA, 1986, NUCL PHYS B, V276, P391
36939    VILENKIN A, 1983, PHYS REV D, V27, P2848
36940    VILENKIN A, 1984, PHYS REV D, V30, P509
36941    VILENKIN A, 1985, NUCL PHYS B, V252, P141
36942    VILENKIN A, 1986, PHYS REV D, V33, P3560
36943    VILENKIN A, 1988, PHYS REV D, V37, P888
36944    VILENKIN A, 1994, PHYS REV D, V50, P2581
36945 NR 25
36946 TC 8
36947 SN 0218-2718
36948 J9 INT J MOD PHYS D
36949 JI Int. J. Mod. Phys. D
36950 PD OCT
36951 PY 1999
36952 VL 8
36953 IS 5
36954 BP 625
36955 EP 634
36956 PG 10
36957 SC Astronomy & Astrophysics
36958 GA 256NL
36959 UT ISI:000083731400004
36960 ER
36961 
36962 PT J
36963 AU Cao, WG
36964    Ding, WY
36965    Liu, RD
36966    Huang, TH
36967 TI Chemistry and applications of phosphonium and arsonium ylides - XXVI.
36968    Synthesis of arsonium ylides containing perfluoroalkyl group and study
36969    on their hydrolysis
36970 SO ACTA CHIMICA SINICA
36971 DT Article
36972 DE arsonium ylide; hydrolysis;
36973    4-perfluoroalkyl-6-(alpha-furyl)-2-pyranone; methyl
36974    4-(alpha-furoyl)-3-perfluoroalkyl-3-butenoates
36975 ID ELEMENTO-ORGANIC COMPOUNDS; METHYL 2-PERFLUOROALKYNOATES;
36976    STEREOSELECTIVE SYNTHESIS; 6TH GROUPS; ARSORANE; 5TH
36977 AB In the presence of K2CO3, reaction of (alpha - furoyl)methyl -
36978    arsoniumbromide(1) with methyl 2-perfluoroalkynoates(2) in methylene
36979    chloride at 0 similar to 5 degrees C afforded the adduct - methyl 4 -
36980    (alpha furoyl) - 2 - triphenylarsoranylidene - 3 - perfluoroalkyl - 3 -
36981    butenoates(3) in high yield. Hydrolysis of 3 in V(CH3OH): V(H2O) = 9:1
36982    methanolic solution at room temperature, 70 degrees C and 120 degrees C
36983    in a sealed tube respectively, 4 - perfluoroalkyl - 6 - (alpha - furyl)
36984    - 2 - pyranones(4) and methyl 4 - (alpha - furoyl) 3 - perfluoroalkyl -
36985    3 - butenoates(5) were obtained in excellent yield. Compounds 4 and 5
36986    could be separated by column chromatography. 5 is a mixture of Z - and
36987    E - isomers which couldn't be separated by column chromatography, but
36988    the ratio of Z - and E - isomers could be estimated by H-1 NMR. The
36989    catalytic hydrolysis of compound 3 with silica gel and the mechanisms
36990    for the formation of products are also discussed in this paper.
36991 C1 Shanghai Univ, Sch Chem & Chem Engn, Shanghai 201800, Peoples R China.
36992 RP Cao, WG, Shanghai Univ, Sch Chem & Chem Engn, Shanghai 201800, Peoples
36993    R China.
36994 CR *GIB FDN, 1972, CARB FLUOR COMP CHEM
36995    BANKS RE, 1982, PREPARATION PROPERTI
36996    CAO WG, 1998, J FLUORINE CHEM, V91, P99
36997    CAO WG, 1999, J FLUORINE CHEM, V95, P135
36998    DING WY, 1986, ACTA CHIM SINICA, V44, P255
36999    DING WY, 1986, ACTA CHIM SINICA, V44, P62
37000    DING WY, 1987, ACTA CHIM SINICA, V45, P47
37001    DING WY, 1987, CHINESE J ORG CHEM, P435
37002    DING WY, 1991, ACTA CHIM SINICA, V49, P284
37003    DING WY, 1991, J CHEM SOC PERK  JUN, P1369
37004    DING WY, 1992, CHEM RES CHINESE U, V8, P224
37005    HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47
37006    STOLL A, 1933, HELV CHIM ACTA, V16, P703
37007    TAO WT, 1983, CHINESE J ORG CHEM, P129
37008    XU ML, 1982, YAOXUE XUEBAO, V17, P905
37009 NR 15
37010 TC 2
37011 SN 0567-7351
37012 J9 ACTA CHIM SIN
37013 JI Acta Chim. Sin.
37014 PY 1999
37015 VL 57
37016 IS 11
37017 BP 1270
37018 EP 1276
37019 PG 7
37020 SC Chemistry, Multidisciplinary
37021 GA 257LT
37022 UT ISI:000083783900015
37023 ER
37024 
37025 PT J
37026 AU Chen, H
37027    Shi, YM
37028 TI Antiresonances modulated by magnetic flux in an Aharonov-Bohm ring
37029 SO PHYSICS LETTERS A
37030 DT Article
37031 ID FANO RESONANCES; QUANTUM-WELL; SEMICONDUCTORS; TRANSMISSION; TRANSPORT;
37032    PHASE; HETEROSTRUCTURES; OSCILLATIONS; INTERFERENCE; IMPURITIES
37033 AB With or without an inserted quantum dot or an attached side resonator,
37034    the transmission behavior of an Aharonov-Bohm (AB) ring Is investigated
37035    in the framework of quantum waveguide theory in the complex-energy
37036    plane. The calculated results show that the AB ring possesses
37037    antiresonances in the conductance and several kinds of transmission
37038    poles in the complex-energy plane. Piercing the ring, magnetic flux
37039    causes a series of crossovers among zero-pole pairs. zero-double-pole
37040    pairs, peak-double-pole pairs, and peak-pole pairs. With the inserted
37041    quantum dot or attached side resonator in one of its arms, the ring
37042    produces complicated behaviors in conductance: some of the poles are
37043    split into more than two parts. A kind of deformed Fano resonance is
37044    found in the conductance of the AB ring with the attached resonator.
37045    (C) 1999 Published by Elsevier Science B.V. All rights reserved.
37046 C1 Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
37047    Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China.
37048 RP Chen, H, Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
37049 CR BELITSKY VI, 1997, J PHYS-CONDENS MAT, V9, P5965
37050    BELLANI V, 1996, SOLID STATE COMMUN, V97, P459
37051    BOYKIN TB, 1992, PHYS REV B, V46, P12769
37052    BUTTIKER M, 1984, PHYS REV A, V30, P1982
37053    CERDEIRA F, 1973, PHYS REV B, V8, P4734
37054    CHO SY, 1996, INT J MOD PHYS B, V10, P3569
37055    CHOI T, 1998, INT J MOD PHYS B, V12, P2091
37056    DEO PS, 1998, SOLID STATE COMMUN, V107, P69
37057    FANO U, 1961, PHYS REV, V124, P1866
37058    GLUTSCH S, 1994, PHYS REV B, V50, P17009
37059    KO DYK, 1988, SEMICOND SCI TECH, V3, P791
37060    KUNZE C, 1995, PHYS REV B, V51, P13410
37061    MASCHKE K, 1991, PHYS REV LETT, V67, P2646
37062    MELLITI A, 1998, SOLID STATE COMMUN, V105, P747
37063    RYU CM, 1998, PHYS REV B, V58, P3572
37064    SHAO ZA, 1994, PHYS REV B, V49, P7453
37065    SHI YM, 1999, IN PRESS PHYS REV B
37066    TEKMAN E, 1990, PHYS REV B, V42, P9098
37067    TEKMAN E, 1993, PHYS REV B, V48, P2553
37068    TING DZY, 1993, PHYS REV B, V47, P7281
37069    WEI LF, 1998, CHINESE PHYS LETT, V15, P128
37070    WU CH, 1991, PHYS REV B, V43, P5012
37071    XIA JB, 1992, PHYS REV B, V45, P3593
37072 NR 23
37073 TC 2
37074 SN 0375-9601
37075 J9 PHYS LETT A
37076 JI Phys. Lett. A
37077 PD OCT 25
37078 PY 1999
37079 VL 262
37080 IS 1
37081 BP 76
37082 EP 82
37083 PG 7
37084 SC Physics, Multidisciplinary
37085 GA 251ZY
37086 UT ISI:000083477300012
37087 ER
37088 
37089 PT J
37090 AU Mao, JM
37091    Liu, ZR
37092    Cao, YL
37093 TI Constructing new periodic exact solutions of evolution equations
37094 SO PHYSICAL REVIEW E
37095 DT Article
37096 AB For the nonlinear Schrodinger equation, the Korteweg-de Vries equation,
37097    and the modified Korteweg-de Vries equation, periodic exact solutions
37098    are constructed from their stationary periodic solutions, by means of
37099    the Backlund transformation. These periodic solutions were not written
37100    down explicitly before to our knowledge. Their asymptotic behavior when
37101    t-->-infinity is different from that when t-->infinity. Near t=0, the
37102    spatial-temporal pattern can change abruptly, and rational solitons can
37103    appear randomly in space and time. They correspond to new types of
37104    "homoclinic orbits" due to different asymptotic behaviors in time.
37105    [S1063-651X(99)01310-0].
37106 C1 Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong.
37107    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
37108    Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China.
37109 RP Mao, JM, Hong Kong Univ Sci & Technol, Dept Math, Clearwater Bay,
37110    Kowloon, Hong Kong.
37111 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
37112    AKHMEDIEV NN, 1997, SOLITONS NONLINEAR P
37113    CROSS MC, 1993, REV MOD PHYS, V65, P851
37114    HERMAN W, 1985, WAVE MOTION, V7, P283
37115    HERMAN W, 1989, J PHYS A, V22, P241
37116    HERMAN W, 1990, J PHYS A, V23, P4805
37117    KHATER AH, 1988, COMPUT MATH APPL, V17, P1379
37118    KHATER AH, 1989, ASTROPHYS SPACE SCI, V162, P151
37119    KHATER AH, 1997, CHAOS SOLITON FRACT, V8, P1901
37120    KONNO K, 1975, PROG THEOR PHYS, V53, P1652
37121    LI C, 1997, INVARIANT MANIFOLDS
37122    LI Y, 1996, COMMUN PUR APPL MATH, V49, P1175
37123    LI Y, 1997, J NONLINEAR SCI, V7, P211
37124    MALFLIET W, 1991, J PHYS A-MATH GEN, V24, P5499
37125    MCLAUGHLIN DW, 1996, DYN REPORT, V5, P190
37126    OVLVER PJ, 1986, APPL LIE GROUPS DIFF
37127    ROGERS C, 1982, BUCKLUND TRANSFORMAT
37128    WEISS J, 1983, J MATH PHYS, V24, P522
37129 NR 18
37130 TC 0
37131 SN 1063-651X
37132 J9 PHYS REV E
37133 JI Phys. Rev. E
37134 PD OCT
37135 PY 1999
37136 VL 60
37137 IS 4
37138 PN Part A
37139 BP 3589
37140 EP 3596
37141 PG 8
37142 SC Physics, Fluids & Plasmas; Physics, Mathematical
37143 GA 250XD
37144 UT ISI:000083414800022
37145 ER
37146 
37147 PT J
37148 AU Shi, YM
37149    Chen, H
37150 TI Transport through an Aharonov-Casher ring with a quantum gate
37151 SO PHYSICAL REVIEW B
37152 DT Article
37153 ID BOHM OSCILLATIONS; MESOSCOPIC RINGS; GEOMETRIC PHASE; BERRY PHASE; DOT;
37154    SYSTEMS; EVOLUTION; CURRENTS
37155 AB We study the oscillations of the conductance through an Aharonov-Casher
37156    (AC) ring with a quantum gate by using one-dimensional quantum
37157    waveguide theory. The compact formula of the transmission probability
37158    for the ring-stub system in the presence of the spin-orbit interaction
37159    and magnetic flux is obtained under the condition of weak Zeeman
37160    coupling. The formula shows that the competition between AC and
37161    Aharonov-Bohm phases dominates the transport behavior. The stub as a
37162    phase modulator also controls the oscillations of the conductance in
37163    the ring. The perfect reflection condition is obtained. The numerical
37164    results show that the phase shift between g(up arrow)(alpha) and g(down
37165    arrow)(alpha) increases with the magnetic field and the spin-dependent
37166    conductances have parity relation g(up arrow)(- phi) = g(down
37167    arrow)(phi). [S0163-1 829(99)03639-5].
37168 C1 Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
37169    Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China.
37170    CCAST, World Lab, Beijing 100080, Peoples R China.
37171 RP Shi, YM, Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
37172 CR AHARONOV Y, 1987, PHYS REV LETT, V58, P1593
37173    ARONOV AG, 1993, PHYS REV LETT, V70, P343
37174    BERRY MV, 1984, P ROY SOC LOND A MAT, V392, P45
37175    BRUDER C, 1996, PHYS REV LETT, V76, P114
37176    BUKS E, 1996, PHYS REV LETT, V77, P4664
37177    CHEN H, 1998, INT J MOD PHYS B, V12, P1729
37178    CHOI T, 1997, PHYS REV B, V56, P4825
37179    DEO PS, 1996, MOD PHYS LETT B, V10, P787
37180    GRIFFITH S, 1953, T FARADAY SOC, V49, P345
37181    HACKENBROICH G, 1996, PHYS REV LETT, V76, P110
37182    LOSS D, 1990, PHYS REV LETT, V65, P1655
37183    LOSS D, 1992, PHYS REV B, V45, P13544
37184    MEAD CA, 1992, REV MOD PHYS, V64, P51
37185    QIAN TZ, 1993, PHYS REV LETT, V70, P2311
37186    QIAN TZ, 1997, PHYS REV B, V55, P4605
37187    ROTH LM, 1959, PHYS REV, V114, P90
37188    SHAPERE A, 1989, GEOMETRIC PHASE PHYS
37189    WU J, 1998, PHYS REV LETT, V80, P1952
37190    XIA JB, 1992, PHYS REV B, V45, P3593
37191    YACOBY A, 1995, PHYS REV LETT, V74, P4047
37192    YEYATI AL, 1995, PHYS REV B, V52, P14360
37193    YI YS, 1997, PHYS REV B, V55, P10631
37194    ZHU JX, 1997, Z PHYS B CON MAT, V102, P153
37195 NR 23
37196 TC 2
37197 SN 0163-1829
37198 J9 PHYS REV B
37199 JI Phys. Rev. B
37200 PD OCT 15
37201 PY 1999
37202 VL 60
37203 IS 15
37204 BP 10949
37205 EP 10952
37206 PG 4
37207 SC Physics, Condensed Matter
37208 GA 251CT
37209 UT ISI:000083427600077
37210 ER
37211 
37212 PT J
37213 AU Essa, AA
37214    Xu, KX
37215    Zhou, SP
37216    Bao, JS
37217 TI Non-equilibrium microwave response of YBa2Cu3O7-delta granular thin
37218    films under magnetic fields
37219 SO ACTA PHYSICA SINICA-OVERSEAS EDITION
37220 DT Article
37221 ID SUPERCONDUCTORS; TRANSITION; RADIATION
37222 AB Microwave responses of YBa2Cu3O7-delta (YBCO) granular film have been
37223    studied at the microwave frequency of 30.5 GHz. In the absence of a
37224    magnetic field the dependence of a normal microwave response on the
37225    bias current is observed at a temperature close to T-c. When a magnetic
37226    field ranged from 5.0 mT to 33.0 mT is applied, the responses broaden
37227    and shift toward a lower temperature. In the superconducting state, the
37228    responses were found to be highly dependent on the magnetic field. For
37229    the current equal to 5.0 mA and a magnetic field above 17.0 mT the
37230    response increases and did not vanish even at a very low temperature,
37231    the fact is believed to be correlated to the anisotropic character of
37232    the structure.
37233 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
37234 RP Essa, AA, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
37235 CR AFANASYEV AS, 1989, IEEE T MAGN, V25, P2571
37236    AMBEGAOKAR V, 1978, PHYS REV LETT, V40, P783
37237    BOONE BG, 1991, J APPL PHYS, V69, P2676
37238    CHANG K, 1991, J APPL PHYS, V69, P7316
37239    CHERN JD, 1993, IEEE T APPL SUPERCON, V3, P2128
37240    CULERTSON JC, 1991, PHYS REV B, V44, P9609
37241    ENOMOTO Y, 1986, J APPL PHYS, V59, P3808
37242    JUNG G, 1989, APPL PHYS LETT, V54, P2355
37243    KOSTERLITZ JM, 1973, J PHYS C SOLID STATE, V6, P1181
37244    LI Q, 1990, PHYS REV LETT, V64, P3086
37245    MARTIN S, 1989, PHYS REV LETT, V62, P677
37246    PHONG LN, 1993, J APPL PHYS, V74, P7414
37247    ROSE K, 1975, APPL SUPERCONDUCTIVI
37248    SROM U, 1989, IEEE T MAGN, V25, P1315
37249    VADLAMANNATI S, 1991, PHYS REV B, V44, P7094
37250    YING QY, 1990, PHYS REV B, V42, P2242
37251    YOSHISATO Y, 1990, JPN J APPL PHYS PT 1, V29, P1080
37252 NR 17
37253 TC 0
37254 SN 1004-423X
37255 J9 ACTA PHYS SIN-OVERSEAS ED
37256 JI Acta Phys. Sin.-Overseas Ed.
37257 PD NOV
37258 PY 1999
37259 VL 8
37260 IS 11
37261 BP 860
37262 EP 868
37263 PG 9
37264 SC Physics, Multidisciplinary
37265 GA 251BT
37266 UT ISI:000083425300010
37267 ER
37268 
37269 PT J
37270 AU Tan, WH
37271    Yan, KZ
37272 TI A general approach to the Bose-Einstein condensation of neutral atoms
37273    with repellent interaction
37274 SO ACTA PHYSICA SINICA
37275 DT Article
37276 ID TRAP; GAS
37277 AB In this paper a general approach to the Bose-Einstein condensation of
37278    neutral atoms with repellent interaction is presented. Especially in
37279    the case of free atoms (V=0) with repellent interaction, an exact
37280    solution for the atom's wave function, can be derived, and therefore
37281    the calculation of atom's Bose-Einstein condensation is completed.
37282 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
37283 RP Tan, WH, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
37284 CR ABRAMOWITZ M, 1965, HDB MATH FUNCTIONS F, P567
37285    ANDERSON MH, 1995, SCIENCE, V269, P198
37286    BOGOLIUBOV NN, 1947, J PHYS USSR, V11, P23
37287    BRADLEY CC, 1995, PHYS REV LETT, V75, P1687
37288    CHOU TT, 1996, PHYS REV A, V53, P4257
37289    CHOU TT, 1997, PHYS REV A, V55, P1179
37290    DAVIS KB, 1995, PHYS REV LETT, V75, P3969
37291    EINSTEIN A, 1924, SITZBER PREUSS AKAD, P261
37292    EINSTEIN A, 1925, SITZBER PREUSS AKAD, P3
37293    FETTER AL, 1972, ANN PHYS-NEW YORK, V70, P67
37294    HUANG K, 1957, PHYS REV, V105, P767
37295    LANDAU LD, 1958, QUANTUM MNECH, P55
37296    WANG ZX, 1956, INTRO STAT PHYSICS, P279
37297 NR 13
37298 TC 4
37299 SN 1000-3290
37300 J9 ACTA PHYS SIN-CHINESE ED
37301 JI Acta Phys. Sin.
37302 PD NOV
37303 PY 1999
37304 VL 48
37305 IS 11
37306 BP 1983
37307 EP 1991
37308 PG 9
37309 SC Physics, Multidisciplinary
37310 GA 251CA
37311 UT ISI:000083426000005
37312 ER
37313 
37314 PT J
37315 AU Cai, YC
37316 TI On a diophantine inequality involving prime numbers (III)
37317 SO ACTA MATHEMATICA SINICA-ENGLISH SERIES
37318 DT Article
37319 DE prime; inequality; exponential sum
37320 AB Let 1 < c <,. In the present paper it is proved that there exists a
37321    number N(c) > 0 such that for each real number N > N(c) the inequality
37322    \p(1)(c) + p(2)(c) + p(3)(c) - N\ < N-1/C(11/10 - C) log(c1) N is
37323    solvable in prime numbers p(1),p(2),p(3), where cl is some absolute
37324    positive constant. 1991MR Subject Classification 11M.
37325 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
37326 RP Cai, YC, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
37327 CR CAI YC, IN PRESS DIOPHANTINE
37328    CAI YC, 1996, ACTA MATH SINICA, V39, P733
37329    GRITSENKO SA, 1987, MAT ZAMETKI, V39, P625
37330    HEATHBROWN DR, 1982, CAN J MATH, V34, P1365
37331    JIA CH, 1992, SCI SIN A, V22, P812
37332    KARATSUBA AA, 1983, PRINCIPLES ANAL NUMB
37333    PIATETSKISHAPIR.II, 1952, MAT SBORNIK, V30, P105
37334    TITCHMARSH EC, 1986, THEORY RIEMANN ZETA
37335    TOLEV DI, 1990, THESIS MOSCOW U
37336    TOLEV DI, 1992, ACTA ARITH, V61, P289
37337 NR 10
37338 TC 0
37339 SN 1000-9574
37340 J9 ACTA MATH SIN-ENGLISH SERIES
37341 JI Acta. Math. Sin.-English Ser.
37342 PD JUL
37343 PY 1999
37344 VL 15
37345 IS 3
37346 BP 387
37347 EP 394
37348 PG 8
37349 SC Mathematics, Applied; Mathematics
37350 GA 252NR
37351 UT ISI:000083508000008
37352 ER
37353 
37354 PT J
37355 AU Cao, WG
37356    Ding, WY
37357 TI Simple syntheses of polysubstituted arenes via acyclic precursors
37358 SO PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS
37359 DT Article
37360 DE phosphorane; polysubstituted arene; perfluoroalkynoate; acyclic
37361    precursor
37362 ID FACILE SYNTHESIS
37363 AB Summarizes the syntheses of polysubstituted arenes containing
37364    perfluoroalkyl group(s) via acyclic precursors.
37365 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
37366 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
37367 CR BANKS RE, 1979, ORGANOFLUORINE CHEM
37368    CAO WG, 1997, J FLUORINE CHEM, V81, P153
37369    CAO WG, 1997, J FLUORINE CHEM, V83, P21
37370    DING WY, 1987, TETRAHEDRON LETT, V28, P81
37371    DING WY, 1992, SYNTHESIS-STUTTGART, P635
37372    DING WY, 1993, CHINESE J CHEM, V11, P81
37373    DING WY, 1993, J CHEM SOC P1, P855
37374    DING WY, 1995, CHINESE J CHEM, V13, P468
37375    MANN J, 1987, CHEM SOC REV, V16, P381
37376    MCCLINTON MA, 1992, TETRAHEDRON, V48, P6555
37377    WELCH JT, 1987, TETRAHEDRON, V43, P3123
37378 NR 11
37379 TC 0
37380 SN 1042-6507
37381 J9 PHOSPHOR SULFUR SILICON
37382 JI Phosphorus Sulfur Silicon Relat. Elem.
37383 PY 1999
37384 VL 146
37385 BP 705
37386 EP 708
37387 PG 4
37388 SC Chemistry, Inorganic & Nuclear
37389 GA 249EW
37390 UT ISI:000083320800177
37391 ER
37392 
37393 PT J
37394 AU Ma, Z
37395    Zhou, ZW
37396 TI The energy criterion of minimum equivalent diameter in gas atomization
37397 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
37398 DT Article
37399 DE gas atomization; capillary potential energy; equivalent diameter
37400 ID LIQUID
37401 AB Gas atomization has been studied by using energy method in this paper.
37402    It shows that the capillary potential energy of the atomization
37403    droplets is supplied by the impingement of the gas on the liquid. The
37404    energy criterion of the minimum equivalent diameter of the atomization
37405    droplets is obtained. The result is comparable to the empirical
37406    formulae.
37407 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
37408 RP Ma, Z, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
37409    Peoples R China.
37410 CR BRADLEY D, 1973, J PHYS D, V6, P1724
37411    LAWLEY A, 1981, J MET, V33, P13
37412    LAWLEY A, 1993, ATOMIZATION PRODUCTI
37413    LUBANSKA H, 1970, J MET, V22, P45
37414    MATHUR P, 1991, MAT SCI ENG A-STRUCT, V142, P261
37415    REITZ RD, 1982, PHYS FLUIDS, V25, P1730
37416 NR 6
37417 TC 1
37418 SN 0253-4827
37419 J9 APPL MATH MECH-ENGL ED
37420 JI Appl. Math. Mech.-Engl. Ed.
37421 PD AUG
37422 PY 1999
37423 VL 20
37424 IS 8
37425 BP 825
37426 EP 829
37427 PG 5
37428 SC Mathematics, Applied; Mechanics
37429 GA 248JC
37430 UT ISI:000083270500001
37431 ER
37432 
37433 PT J
37434 AU Tang, YM
37435 TI On the stability of general Navier-Stokes type equation
37436 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
37437 DT Article
37438 DE gradue; l-simple; unstable equation
37439 AB In this paper, by proving that the equations discussed here are
37440    l-simple (l greater than or equal to 1) by stratification theory, the
37441    unstability of the equations is proved. And the un-uniqueness of the
37442    solution of forced dissipative non-linear system equations in
37443    atmospheric dynamics is used as an illustration for the result.
37444 C1 Shanghai Univ, Coll Sci, Shanghai 200072, Peoples R China.
37445 RP Tang, YM, Shanghai Univ, Coll Sci, Shanghai 200072, Peoples R China.
37446 CR CHEN DD, 1996, APPL MATH MECH, V17, P541
37447    CHEN DD, 1996, APPL MATH MECH, V17, P541
37448    CHOU J, 1990, NEW DEV ATMOSPHERIC
37449    CHOU JF, 1990, NEW DEV ATMOSPHERIC
37450    EHRESMANN C, 1953, C TOPOLOGIE GEOMETRI, P97
37451    EHRESMANN C, 1953, C TOPOLOGIE GEOMETRI, P97
37452    HADAMARD J, 1964, THEORIE EQUATIONS DE
37453    MARCHONK G, 1980, METHODE CALCUL NUMER
37454    MARCHONK G, 1980, METHODS CALCUL NUMER
37455    SHI WH, 1996, J SHANGHAI U, V2, P355
37456    SHIH WS, 1992, SOLUTIONS ANAL QUELQ
37457    SHIH WS, 1995, IHES M
37458    SHIH WS, 1995, IHES M, V95
37459    SHIN SA, 1994, SATURATION SATABILIT
37460 NR 14
37461 TC 0
37462 SN 0253-4827
37463 J9 APPL MATH MECH-ENGL ED
37464 JI Appl. Math. Mech.-Engl. Ed.
37465 PD AUG
37466 PY 1999
37467 VL 20
37468 IS 8
37469 BP 888
37470 EP 894
37471 PG 7
37472 SC Mathematics, Applied; Mechanics
37473 GA 248JC
37474 UT ISI:000083270500007
37475 ER
37476 
37477 PT J
37478 AU Li, L
37479    Tang, ZJ
37480    Sun, WY
37481    Wang, PL
37482 TI Phase diagram prediction of the Al2O3-SiO2-La2O3 system
37483 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
37484 DT Article
37485 ID REGULAR SOLUTION MODEL; GLASSES
37486 AB Rare earth oxide systems Al2O3-La2O3 and SiO2-La2O3 were
37487    thermodynamically assessed and optimized with the substitution model.
37488    The obtained model parameters and Gibbs free energy of line compounds
37489    and pure components were applied to the prediction of the liquidus
37490    surface and isothermal sections of Al2O3-SiO2-La2O3 system.
37491 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
37492    Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
37493 RP Li, L, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R
37494    China.
37495 CR ARAMAKI S, 1962, J AM CERAM SOC, V45, P229
37496    BONDAR IA, 1964, IAN SSSR KH, V5, P785
37497    CINIBULK MK, 1992, J AM CERAM SOC, V75, P2037
37498    DU Y, 1992, CALPHAD, V16, P221
37499    ERBE EM, 1990, J AM CERAM SOC, V73, P2708
37500    FRITSCHE ET, 1967, J AM CERAM SOC, V50, P167
37501    HILLERT M, 1970, ACTA CHEM SCAND, V24, P3618
37502    HILLERT M, 1992, CALPHAD, V16, P193
37503    HILLERT M, 1992, CALPHAD, V16, P199
37504    HIROSAKI N, 1988, J AM CERAM SOC, V71, C144
37505    HUANG JG, 1993, B CERAM, V6, P50
37506    HYATT MJ, 1987, J AM CERAM SOC, V70, P283
37507    KAUFMAN L, 1978, CALPHAD, V2, P35
37508    KLUG FJ, 1987, J AM CERAM SOC, V70, P750
37509    KOHLI JT, 1991, PHYS CHEM GLASSES, V32, P67
37510    LI C, 1987, B CERAM, V10, P34
37511    LI L, 1995, P 8 NAT S PHAS DIAGR, P125
37512    LI L, 1997, PHYS CHEM GLASSES, V38, P323
37513    LI L, 1999, PHYS CHEM GLASSES, V40, P126
37514    MIZUNO M, 1974, YOGYO-KYOKAI-SHI, V82, P631
37515    PELTON AD, 1986, METALL TRANS B, V17, P805
37516    ROLIN M, 1965, REV HAUTES TEMP REFR, V2, P182
37517    SUN G, 1991, J CHIN RARE EARTH EL, V9, P128
37518    SUNDMAN B, 1981, J PHYS CHEM SOLIDS, V42, P297
37519    TOROPOV NA, 1961, IAN SSSR KH, V5, P740
37520    TOROPOV NA, 1962, T INT CER C 8 COP, P87
37521    WU P, 1992, J ALLOY COMPD, V179, P259
37522    YAMAGUCHI O, 1985, J AM CERAM SOC, V68, C44
37523 NR 28
37524 TC 2
37525 SN 1005-0302
37526 J9 J MATER SCI TECHNOL
37527 JI J. Mater. Sci. Technol.
37528 PD SEP
37529 PY 1999
37530 VL 15
37531 IS 5
37532 BP 439
37533 EP 443
37534 PG 5
37535 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
37536    Engineering
37537 GA 246WV
37538 UT ISI:000083188600011
37539 ER
37540 
37541 PT J
37542 AU Wang, HX
37543    Fang, DF
37544 TI Asymptotic behaviour of population-size-dependent branching processes
37545    in Markovian random environments
37546 SO JOURNAL OF APPLIED PROBABILITY
37547 DT Article
37548 DE Markov chains in random environments; branching models; extinction
37549    probabilities
37550 AB A population-size-dependent branching process {Z(n)} is considered
37551    where the population's evolution is controlled by a Markovian
37552    environment process {xi(n)}. For this model, let m(k,theta) and
37553    sigma(k,theta)(2) be the mean and the variance respectively of the
37554    offspring distribution when the population size is k and a environment
37555    theta is given. Let B = {omega : Z(n)(omega) = 0 for some n} and q =
37556    P(B). The asymptotic behaviour of lim(n) Z(n) and lim(n)
37557    Z(n)/Pi(i=0)(n-1)m(xi n) is studied in the case where sup(theta)
37558    /m(k,theta) - m(theta)/ --> 0 for some real numbers {m(theta)} such
37559    that inf(theta) m(theta) > 1. When the environmental sequence {xi(n)}
37560    is a irreducible positive recurrent Markov chain (particularly, when
37561    its state space is finite), certain extinction (q = 1) and non-certain
37562    extinction (q < 1) are studied.
37563 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
37564    Yueyang Normal Coll, Dept Math, Yueyang 414000, Peoples R China.
37565 RP Wang, HX, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
37566 CR ATHREYA KB, 1971, ANN MATH STAT, V42, P1499
37567    COGBURN R, 1980, ANN PROBAB, V8, P908
37568    COGBURN R, 1984, Z WAHRSCHEINLICHKEIT, V66, P109
37569    FUJIMAGARI T, 1976, KODAI MATH SEM REP, V27, P11
37570    KLEBANER FC, 1984, ADV APPL PROBAB, V16, P30
37571    KLEBANER FC, 1984, J APPL PROBAB, V21, P40
37572    VIAUD DPL, 1994, J APPL PROBAB, V31, P22
37573    WANG HX, 1999, J APPL PROBAB, V36, P146
37574 NR 8
37575 TC 4
37576 SN 0021-9002
37577 J9 J APPL PROBAB
37578 JI J. Appl. Probab.
37579 PD JUN
37580 PY 1999
37581 VL 36
37582 IS 2
37583 BP 611
37584 EP 619
37585 PG 9
37586 SC Statistics & Probability
37587 GA 248PD
37588 UT ISI:000083283200024
37589 ER
37590 
37591 PT J
37592 AU Liu, GL
37593 TI A general variational theory of multipoint inverse design of 2-D
37594    transonic cascades based on an artificial flow-oscillation model
37595 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
37596 DT Article
37597 AB In order to ensure favorable aerodynamic performance of cascades not
37598    only at the nominal design point but also at other off-design points, a
37599    novel variational theory of multipoint inverse design of 2-D transonic
37600    cascades is developed herein, in which along each of the segments of
37601    the cascade airfoil contour the pressure (or velocity) distribution is
37602    specified at a corresponding angle of attack. For this purpose an
37603    artificial flow-oscillation concept is suggested to simulate the
37604    multipoint design problem of steady flow. As a result, a family of
37605    variational principles (VP) for the multipoint inverse problem is
37606    derived, in which all free boundaries/interfaces such as the unknown
37607    airfoil shape, the shocks and trailing vortex sheets are handled by
37608    means of the powerful variable-domain variation of the functional. This
37609    theory is capable of extending to hybrid problems as well as to fully
37610    3-D and/or rotational flows.
37611 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
37612    Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
37613 RP Liu, GL, Shanghai Univ, Shanghai 200072, Peoples R China.
37614 CR BRESLIN JP, 1994, HYDRODYNAMICS SHIP P, P103
37615    DOWELL EH, 1988, APPL MECH REV, V41, P299
37616    DULIKRAVICH GS, 1992, J AIRCRAFT, V29, P1020
37617    EPPLER R, 1979, J SHIP RES, V23, P209
37618    EPPLER R, 1980, TM80210 NASA
37619    EPPLER R, 1985, J SHIP RES, V29, P30
37620    EPPLER R, 1990, AIRFOIL DESIGN DATA
37621    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
37622    JAMESON A, 1985, COMPUT METHOD APPL M, V51, P467
37623    LIU GL, 1987, 871426 AIAA
37624    LIU GL, 1990, EXPT COMPUTATIONAL A, P128
37625    LIU GL, 1992, ACTA MECH, V95, P117
37626    LIU GL, 1993, P INT C AER OCT BEIJ, P82
37627    LIU GL, 1995, INVERSE PROBL ENG, V2, P1
37628    LIU GL, 1996, ACTA AERODYNAMICA SI, V14, P1
37629    LIU GL, 1998, IN PRESS ACTA MECH
37630    LIU GL, 1998, INVERSE PROBL ENG, P391
37631    LIU GL, 1998, P 3 INT C FLUID MECH, P809
37632    NAKAZAKI M, 1986, J KANSAI SOC NAVAL A
37633    NIXON D, 1989, PROGR ASTRONAUTICS A, V120
37634    POLING DR, 1986, AIAA J, V24, P193
37635    SELIG MS, 1992, AIAA J, V30, P1162
37636    SHEN YT, 1981, J SHIP RES, V25, P191
37637 NR 23
37638 TC 1
37639 SN 0334-0082
37640 J9 INT J TURBO JET ENGINES
37641 JI Int. J. Turbo. Jet-Engines
37642 PY 1999
37643 VL 16
37644 IS 3
37645 BP 141
37646 EP 148
37647 PG 8
37648 SC Engineering, Aerospace
37649 GA 247CZ
37650 UT ISI:000083204200002
37651 ER
37652 
37653 PT J
37654 AU Chen, LS
37655    Zhao, XH
37656    Fu, MF
37657 TI The simple shear oscillation and the restrictions to elastic-plastic
37658    constitutive relations
37659 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
37660 DT Article
37661 DE objective rates; elastic-plastic constitutive relation; simple shear
37662    oscillation
37663 ID FINITE
37664 AB Based on the definitions of hardening, softening and ideal plastic
37665    behavior of elastic-plastic materials in the true stress tensor space,
37666    the phenomena of simple shear oscillation are shown to be relative to
37667    the oscillatory occurrence of hardening and softening behavior of
37668    elastic-plastic materials, namely the oscillation of hardening
37669    behavior, by analyzing a simple model of rigid-plastic materials with
37670    kinematical hardening under simple shear deformation. To make the
37671    models of elastic-plastic materials realistic, must be satisfied the
37672    following conditions: for any constitutive model, its response stresses
37673    to any continuous plastic deformation must be non-oscillatory, and
37674    there is no oscillation of hardening behavior during the plastic
37675    deformation.
37676 C1 Univ Nanchang, Inst Engn Mech, Nanchang 330029, Peoples R China.
37677    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
37678 RP Chen, LS, Univ Nanchang, Inst Engn Mech, Nanchang 330029, Peoples R
37679    China.
37680 CR AGAHTEHRANI A, 1987, J MECH PHYS SOLIDS, V35, P519
37681    CASEY J, 1984, Q J MECH APPL MATH, V37, P231
37682    CASEY J, 1988, ARCH RATION MECH AN, V102, P351
37683    CHEN LS, 1999, APPL MATH MECH-ENGL, V20, P476
37684    DIENES JK, 1979, ACTA MECH, V32, P217
37685    MINFU F, 1995, FINTIE DEFORMATION F, P20
37686    NAGTEGAAL JC, 1982, P WORKSH PLAST MET F, P56
37687    NEMATNASSER S, 1983, J APPL MECH-T ASME, V50, P1114
37688    SZABO L, 1989, INT J SOLIDS STRUCT, V25, P279
37689 NR 9
37690 TC 1
37691 SN 0253-4827
37692 J9 APPL MATH MECH-ENGL ED
37693 JI Appl. Math. Mech.-Engl. Ed.
37694 PD JUN
37695 PY 1999
37696 VL 20
37697 IS 6
37698 BP 593
37699 EP 603
37700 PG 11
37701 SC Mathematics, Applied; Mechanics
37702 GA 248FL
37703 UT ISI:000083264400002
37704 ER
37705 
37706 PT J
37707 AU Wang, GX
37708    Liu, ZR
37709 TI On radii of absorbing sets for Kuramoto-Sivashinsky equation
37710 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
37711 DT Article
37712 DE K-S equation; uniform estimate; absorbing set
37713 AB In this article sharper estimates on the radii of absorbing sets for
37714    the Kuramoto-Sivashinsky equation are given. It is proved that radii of
37715    absorbing sets will decay to Zero as the coefficient of viscosity tends
37716    to a certain critical value, which is more reasonable in the physical
37717    sence compared with classical results.
37718 C1 Peking Univ, Dept Math, Beijing 100871, Peoples R China.
37719    Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
37720 RP Wang, GX, Peking Univ, Dept Math, Beijing 100871, Peoples R China.
37721 CR COLLET P, 1993, COMMUN MATH PHYS, V152, P203
37722    GOODMAN J, 1994, COMMUN PUR APPL MATH, V47, P293
37723    KEVREKIDIS IG, 1990, SIAM J APPL MATH, V50, P760
37724    KURAMOTO Y, 1975, PROG THEOR PHYS, V54, P687
37725    LICOLAENKO B, 1985, PHYSICA D, V16, P155
37726    MICHELSON DM, 1977, ACTA ASTRONAUT, V4, P1206
37727    SIVASHINSKY GI, 1977, ACTA ASTRONAUT, V4, P1177
37728    SIVASHINSKY GI, 1980, PROG THEOR PHYS, V63, P2112
37729    WANG GX, 1996, THESIS SUZHOU U
37730 NR 9
37731 TC 0
37732 SN 0253-4827
37733 J9 APPL MATH MECH-ENGL ED
37734 JI Appl. Math. Mech.-Engl. Ed.
37735 PD JUL
37736 PY 1999
37737 VL 20
37738 IS 7
37739 BP 729
37740 EP 738
37741 PG 10
37742 SC Mathematics, Applied; Mechanics
37743 GA 247WU
37744 UT ISI:000083244600003
37745 ER
37746 
37747 PT J
37748 AU Liu, L
37749    Zhang, TJ
37750    Cui, K
37751    Dong, YD
37752 TI Reduction of copper oxide with graphite by mechanical alloying
37753 SO JOURNAL OF MATERIALS RESEARCH
37754 DT Article
37755 ID MECHANOCHEMICAL REDUCTION; SYSTEM; COMBUSTION
37756 AB The reduction of CuO with different amounts of C (CuO:C = 2:1, 2:1.5,
37757    and 2:2 molar ratios) driven by mechanical alloying was examined by
37758    x-ray diffraction and transmission electron microscopy. It was found
37759    that reduction behaviors are closely related to the carbon content. The
37760    reduction of CuO for the mixture with 1 mol of carbon follows a
37761    two-step process; i.e.. CuO --> Cu --> Cu2O. However, the CuO can be
37762    completely converted to Cu for the mixtures with higher carbon content.
37763    A tentative model in terms of solid-state reactions at the interfaces
37764    is proposed to explain the effect of carbon content. Additionally, the
37765    thermal responses of the premilled mixtures were investigated by
37766    thermogravity and differential thermal analysis followed by x-ray
37767    identification. Contrary to mechanical alloying, reduction of CuO
37768    during thermal treatment follows a transition sequence of CuO -- Cu2O
37769    --> Cu. The preferential formation of Cu2O at the early annealing stage
37770    is probably due to the involvement of gaseous reduction.
37771 C1 Huazhong Univ Sci & Technol, Dept Mat Sci & Engn, State Key Lab Plast Forming Stimulat & Die & Moul, Wuhan 430074, Peoples R China.
37772    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
37773 RP Liu, L, Huazhong Univ Sci & Technol, Dept Mat Sci & Engn, State Key Lab
37774    Plast Forming Stimulat & Die & Moul, Wuhan 430074, Peoples R China.
37775 CR BENJAMIN JS, 1970, METALL T, V1, P2943
37776    BRANDES A, 1983, SMITHELLS METALS REF
37777    CHEN Y, 1997, METALL MATER TRANS A, V28, P115
37778    ECKERT J, 1990, Z METALLKD, V81, P862
37779    FECHT HJ, 1990, J APPL PHYS, V67, P1744
37780    GILMAN PS, 1983, ANNU REV MATER SCI, V13, P279
37781    KOCH CC, 1983, APPL PHYS LETT, V43, P1017
37782    LIU L, 1993, NANOSTRUCT MATER, V2, P463
37783    LIU L, 1995, ACTA METALL MATER, V43, P3755
37784    MAGINI M, 1991, J MATER SCI, V26, P3969
37785    MCCORMICK PG, 1995, MATER T JIM, V36, P161
37786    MORRIS DG, 1991, MAT SCI ENG A-STRUCT, V134, P1481
37787    POLITIS C, 1986, J APPL PHYS, V60, P1147
37788    SCHAFFER GB, 1989, APPL PHYS LETT, V55, P45
37789    SCHAFFER GB, 1990, J MATER SCI LETT, V9, P1014
37790    SCHAFFER GB, 1990, METALL TRANS A, V21, P2789
37791    SCHAFFER GB, 1992, METALL TRANS A, V23, P1285
37792    WEAST RC, 1988, HDB CHEM PHYSICS
37793    XU J, 1996, J APPL PHYS 1, V79, P3935
37794    YANG H, 1993, J SOLID STATE CHEM, V107, P258
37795    YANG H, 1994, J SOLID STATE CHEM, V110, P136
37796    YANG H, 1995, SCRIPTA METALL MATER, V32, P681
37797 NR 22
37798 TC 2
37799 SN 0884-2914
37800 J9 J MATER RES
37801 JI J. Mater. Res.
37802 PD OCT
37803 PY 1999
37804 VL 14
37805 IS 10
37806 BP 4062
37807 EP 4069
37808 PG 8
37809 SC Materials Science, Multidisciplinary
37810 GA 246KV
37811 UT ISI:000083163700034
37812 ER
37813 
37814 PT J
37815 AU Weng, PF
37816 TI Investigation of separated flow around a curved air intake
37817 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
37818 DT Article
37819 AB This paper presents the investigation of two-dimensional separated now
37820    in and around a submerged curved intake by experiment and computation.
37821    Elliptic Navier-Stokes equations are employed which are discreted in
37822    body-fitted coordinate system by the SIMPLE method. The results show
37823    that a now separation near and behind the inlet exists and the duct now
37824    is distorted. Comparison between the calculations and experimental data
37825    is fairly satisfactory.
37826 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
37827 RP Weng, PF, Campus Box 189,149 Yanchang Rd, Shanghai, Peoples R China.
37828 CR AUIEHLA F, 1982, ICAS824811
37829    GUO RW, 1983, AERONAUTICAL Q, V32, P130
37830    HUANG XJ, 1987, INT AVIATION, V7, P19
37831    JENKINS RC, 1991, AIAA J, V29, P401
37832    PATANKAR SV, 1980, NUMERICAL HEAT TRANS
37833    THOMPSON JF, 1985, NUMERICAL GRID GENER
37834    YU SMC, 1993, J I ENG, V33, P15
37835 NR 7
37836 TC 0
37837 SN 0334-0082
37838 J9 INT J TURBO JET ENGINES
37839 JI Int. J. Turbo. Jet-Engines
37840 PY 1999
37841 VL 16
37842 IS 2
37843 BP 71
37844 EP 77
37845 PG 7
37846 SC Engineering, Aerospace
37847 GA 244YB
37848 UT ISI:000083077400002
37849 ER
37850 
37851 PT J
37852 AU Zhang, C
37853    Zhang, HS
37854    Qiu, ZG
37855 TI Fast analysis of crankshaft bearings with a database including shear
37856    thinning and viscoelastic effects
37857 SO TRIBOLOGY TRANSACTIONS
37858 DT Article
37859 DE database; hydrodynamic lubrication; journal bearing; non-Newtonian
37860    lubricants; internal combustion engine
37861 ID JOURNAL BEARINGS
37862 AB Database consists of nondimensional data of load capacity, maximum
37863    pressure and its position, flow and power loss factors obtained by
37864    solving the full 2-D Reynolds equation including the effect of oil feed
37865    features of 360 degrees, 180 degrees grooves and a single oil hole.
37866    Aided by the database, dynamically loaded journal bearings are analyzed
37867    without solving the Reynolds equation. The database is interpolated
37868    linearly. The fluids shear thinning and elasticity are characterized by
37869    the power law and Maxwell models. The solutions given by the present
37870    method are almost identical to the expensive FDM solution, and the CPU
37871    time consumed in the former cases almost can be neglected as compared
37872    to the latter cases.
37873 C1 Shanghai Univ, Res Inst Bearings, Shanghai 200072, Peoples R China.
37874    Fudan Univ, Dept Appl Mech, Shanghai 200433, Peoples R China.
37875 RP Zhang, C, Shanghai Univ, Res Inst Bearings, Shanghai 200072, Peoples R
37876    China.
37877 CR BOOKER JF, 1965, T ASME             D, V87, P537
37878    BOOKER JF, 1969, ASME, V91, P534
37879    BOOKER JF, 1971, ASME, V93, P168
37880    CONWAYJONES JM, 1990, P 17 LEEDS LYON S TR, P33
37881    GOENKA PK, 1984, ASME, V106, P429
37882    GOENKA PK, 1984, J TRIBOL-T ASME, V106, P421
37883    JONES GJ, 1982, P 9 LEEDS LYON S TRI, P83
37884    JONES GJ, 1983, P 9 LEEDS LYON S TRI
37885    PARANJPE RS, 1992, J TRIBOL-T ASME, V114, P736
37886    RASTOGI A, 1990, J RHEOL, V34, P1337
37887    ZHANG C, 1995, CHINESE INTERNAL COM, V16, P69
37888    ZHANG C, 1995, P INT TRIB C, P975
37889    ZHONGGANG F, 1995, LUBR ENG, V5, P12
37890 NR 13
37891 TC 2
37892 SN 1040-2004
37893 J9 TRIBOL TRANS
37894 JI Tribol. Trans.
37895 PD OCT
37896 PY 1999
37897 VL 42
37898 IS 4
37899 BP 922
37900 EP 928
37901 PG 7
37902 SC Engineering, Mechanical
37903 GA 243MN
37904 UT ISI:000083002000033
37905 ER
37906 
37907 PT J
37908 AU Xu, KX
37909    Essa, AA
37910    Bao, JS
37911 TI Non-ohmic dissipation in granular YBCO films with microwave radiation
37912 SO PHYSICA C
37913 DT Article
37914 DE granular superconductivity; microwave absorption; K-T transition
37915 ID YBA2CU3O7-DELTA THIN-FILMS; PHOTORESPONSE; SUPERCONDUCTORS
37916 AB The evidence for nonequilibrium response to microwave radiation (37
37917    GHz) from YBa2Cu3O7-delta (YBCO) granular films is presented in this
37918    paper. The experimental results show that the microwave response always
37919    occurs within the "tail" region in R-T curves. The measurements of the
37920    I-V characteristics suggest that the dissipation below the G-L mean
37921    field transition temperature T-co can be described in terms of the
37922    Kosterlitz-Thouless (K-T) transition model, Based on the measurements
37923    with a weak magnetic field. we propose that the origin of the
37924    nonequilibrium microwave response in granular YBCO films may be related
37925    with the photon-vortex interaction process. (C) 1999 Elsevier Science
37926    B.V. All rights reserved.
37927 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
37928 RP Xu, KX, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
37929 CR BATLOGG BJ, 1997, J SUPERCOND, V10, P583
37930    CULBERTSON JC, 1991, PHYS REV B, V44, P9609
37931    ENOMOTO Y, 1986, J APPL PHYS, V59, P3807
37932    FLORY AT, 1983, PHYS REV B, V28, P5075
37933    FORRESTER MG, 1989, IEEE T MAGN, V25, P1327
37934    GEVSHENZON EM, 1991, IEEE T MAGN, V27, P1321
37935    HEGMANN FA, 1993, PHYS REV B, V48, P16023
37936    HEGMANN FA, 1995, APPL PHYS LETT, V67, P285
37937    HERTER ST, 1998, PHYS REV B, V57, P1154
37938    KADIN AM, 1990, APPL PHYS LETT, V57, P2847
37939    KADIN AM, 1990, J APPL PHYS, V68, P5741
37940    KADIN AM, 1990, PHYS REV LETT, V65, P3193
37941    KADOWAKI K, 1994, SUPERCOND SCI TECH, V7, P519
37942    KOSTERLITZ JM, 1973, J PHYS C SOLID STATE, V6, P1181
37943    STROM U, 1990, PHYS REV B, V42, P4059
37944    VECHTEN DV, 1997, APPL PHYS LETT, V71, P1415
37945    YESHURUN Y, 1987, PHYS REV LETT, V58, P2202
37946    YING QY, 1990, PHYS REV B, V42, P2242
37947 NR 18
37948 TC 1
37949 SN 0921-4534
37950 J9 PHYSICA C
37951 JI Physica C
37952 PD AUG 20
37953 PY 1999
37954 VL 321
37955 IS 3-4
37956 BP 258
37957 EP 262
37958 PG 5
37959 SC Physics, Applied
37960 GA 243NP
37961 UT ISI:000083004400015
37962 ER
37963 
37964 PT J
37965 AU Xu, HP
37966    Wong, PL
37967    Zhang, ZM
37968 TI An EHL analysis of an all-metal viscoelastic high-pressure seal
37969 SO JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME
37970 DT Article
37971 AB An EHL (elasto-hydrodynamic lubrication) analysis of art all-metal
37972    viscoelastic high-pressure seal is presented. The fluid flow is assumed
37973    to be laminar and isothermal, and its inertial effect is neglected.
37974    Deformation of the cylinder and plunger is governed by Lame's formula
37975    for a thick-walled cylinder. The pressure-viscosity and
37976    pressure-density relationships of a working fluid are assumed to
37977    satisfy the Burus and Dowson-Higginson formulas, respectively. The
37978    leakage rate of the seal decreases almost exponentially with an
37979    increase in the working pressure, while its minimum film thickness can
37980    remain at about seventy percent of its nominal value at high working
37981    pressures. The radial stiffness increases significantly with an
37982    increase in the working pressure, i.e., stable operations of the seal
37983    can be expected.
37984 C1 City Univ Hong Kong, Dept Mfg Engn, Kowloon, Hong Kong.
37985    Shanghai Univ, Bearing Res Inst, Shanghai 200072, Peoples R China.
37986 RP Xu, HP, Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104
37987    USA.
37988 CR BRIDGMAN P, 1953, PHYSICS HIGH PRESSUR
37989    HARRIS HD, 1972, ASME, V94, P335
37990    JOHANNESSON HL, 1983, INFLUENCE PLUNGER EC, P13
37991    KAMAL MM, 1968, ASME, V90, P412
37992    ROARK JR, 1975, FORMULAS STRESS STRA, P504
37993    WANG NM, 1970, ASME, V92, P310
37994    WONG PL, 1997, WEAR, V210, P104
37995    XU H, 1991, 1084, CN
37996    XU H, 1991, THESIS ACAD MACHINE
37997    XU H, 1994, CHINESE J MECH ENG, V7, P148
37998    XU H, 1995, P 22 LEEDS LYON S TR
37999    XU HP, 1994, TRIBOL T, V37, P767
38000 NR 12
38001 TC 0
38002 SN 0742-4787
38003 J9 J TRIBOL-TRANS ASME
38004 JI J. Tribol.-Trans. ASME
38005 PD OCT
38006 PY 1999
38007 VL 121
38008 IS 4
38009 BP 916
38010 EP 920
38011 PG 5
38012 SC Engineering, Mechanical
38013 GA 243WY
38014 UT ISI:000083021500040
38015 ER
38016 
38017 PT J
38018 AU Hua, JD
38019    Liu, YF
38020    Hu, J
38021    Wang, QQ
38022    Gong, ZB
38023    Guo, XZ
38024 TI Thermal phase transition of poly(N-propionylethyleneimine) hydrogel
38025 SO JOURNAL OF APPLIED POLYMER SCIENCE
38026 DT Article
38027 DE poly(N-propionylethyleneimine); lower critical solution temperature;
38028    hydrogels; interpenetrating polymer network polymer
38029 ID GELS
38030 AB This article presents the preparation of the hydrogel of
38031    poly(N-propionylethyleneimine) and its interpenetrating polymer network
38032    (IPN) hydrogel containing polyacrylamide by means of gamma-ray
38033    radiation and a study of the phase transition temperature of these
38034    hydrogels. As a result, the hydrogel of the crosslinked
38035    poly(N-propionylethyleneimine) exhibited swelling below and shrinking
38036    above the phase transition temperature (about 61 degrees C), as well as
38037    the lower critical solution temperature (LCST) of the liner
38038    polymer-water system. The experiment also showed that the LCST of the
38039    IPN hydrogel could be adjusted by the incorporation of the second
38040    component polyacrylamide. (C) 1999 John Wiley & Sons, Inc.
38041 C1 Shanghai Univ, Dept Polymer Mat & Engn, Shanghai 201800, Peoples R China.
38042    Shanghai Univ, Dept Mech Engn, Shanghai 201800, Peoples R China.
38043 RP Hua, JD, Shanghai Univ, Dept Polymer Mat & Engn, Shanghai 201800,
38044    Peoples R China.
38045 CR BAE YH, 1989, J CONTROL RELEASE, V9, P271
38046    DONG LC, 1986, J CONTROL RELEASE, V4, P223
38047    DONG LC, 1990, J CONTROL RELEASE, V13, P21
38048    FREITAS RFS, 1987, SEPAR SCI TECHNOL, V22, P911
38049    FRELTAS RFS, 1987, CHEM ENG SCI, V42, P79
38050    HIROKAWA Y, 1984, AIP C P PHYS CHEM PO, V107, P203
38051    HIROKAWA Y, 1984, J CHEM PHYS, V81, P6379
38052    HOFFMAN AS, 1986, J CONTROL RELEASE, V4, P213
38053    KISHI R, 1993, J INTEL MAT SYST STR, V4, P533
38054    OSADA Y, 1975, MAKROMOL CHEM, V176, P2761
38055    PARK TG, 1990, BIOTECHNOL BIOENG, V35, P152
38056    PARK TG, 1990, J BIOMED MATER RES, V24, P21
38057    TANAKA T, 1978, PHYS REV LETT, V40, P820
38058 NR 13
38059 TC 2
38060 SN 0021-8995
38061 J9 J APPL POLYM SCI
38062 JI J. Appl. Polym. Sci.
38063 PD DEC 5
38064 PY 1999
38065 VL 74
38066 IS 10
38067 BP 2457
38068 EP 2461
38069 PG 5
38070 SC Polymer Science
38071 GA 242GH
38072 UT ISI:000082931800014
38073 ER
38074 
38075 PT J
38076 AU Liu, GL
38077    Wu, ZC
38078 TI Variational formulation of inverse shape design problem of heat
38079    conductors in an image plane and finite element solutions
38080 SO INVERSE PROBLEMS IN ENGINEERING
38081 DT Article
38082 DE variational principles; heat conduction; finite element method
38083 AB Using an image plane introduced previously by Liu [4] the original
38084    shape design problem of heat conduction is transformed into the one
38085    with known boundary and a pair of complementary variational principles
38086    (VP) for it with complicated boundary conditions are established in
38087    terms of the heat stream function and the temperature function
38088    respectively. Based upon these VP some finite element solutions to the
38089    shape design problem of heat conduction are presented. Finally, a very
38090    interesting invariance rule of inverse problem solutions with respect
38091    to the temperature-dependent conductivity is identified and numerically
38092    demonstrated.
38093 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
38094    Shanghai Met Coll, Shanghai 200233, Peoples R China.
38095 RP Liu, GL, Shanghai Univ, 149 Yan Chang Rd, Shanghai 200072, Peoples R
38096    China.
38097 CR CARSLAW HS, 1986, CONDUCTION HEAT SOLI
38098    CRANK J, 1984, FREE MOVING BOUNDARY
38099    DULIKRAVICH GS, 1988, APPL MECH REV, V41, P270
38100    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
38101    KOZDOBA LA, 1982, METHODS SOLUTION INV
38102    LIU GL, 1987, NUM METHODS THERMAL, V5, P284
38103    LIU GL, 1989, NUM METHODS THERMAL, V6, P1712
38104    LIU GL, 1990, EXPT COMPUTATIONAL A, P128
38105    LIU GL, 1997, NONLINEAR ANAL-THEOR, V30, P5229
38106    RAMM AG, 1986, INVERSE PROBL, V2, L19
38107    STANITZ JD, 1952, TN2593 NACA
38108 NR 11
38109 TC 0
38110 SN 1068-2767
38111 J9 INVERSE PROBL ENG
38112 JI Inverse Probl. Eng.
38113 PY 1999
38114 VL 7
38115 IS 4
38116 BP 385
38117 EP 408
38118 PG 24
38119 SC Engineering, Multidisciplinary; Mathematics, Applied
38120 GA 242VJ
38121 UT ISI:000082962100004
38122 ER
38123 
38124 PT J
38125 AU Zhang, SH
38126    Li, YZ
38127 TI Pumped-storage capacity discount and its effect on capacity planning
38128 SO ELECTRIC POWER SYSTEMS RESEARCH
38129 DT Article
38130 DE pumped-storage plant; probabilistic operation simulation; capacity
38131    discount; capacity benefits; planning
38132 AB Pumped-storage plants can play important roles in several aspects, its
38133    capacity planning is increasingly of great interest, especially in
38134    China. The subject of this paper is an investigation of effect of
38135    pumped-storage capacity discount on its capacity planning. The
38136    probabilistic formulation and cause analysis of pumped-storage capacity
38137    discount are presented. Case studies for a real power system in China
38138    are also discussed. The insight gained from these studies will be
38139    useful in pumped-storage development planning. (C) 1999 Elsevier
38140    Science S.A. All rights reserved.
38141 C1 Shanghai Univ, Automat Sch, Shanghai 200072, Peoples R China.
38142 RP Zhang, SH, Shanghai Univ, Automat Sch, POB 9,149 Yanchang Rd, Shanghai
38143    200072, Peoples R China.
38144 CR CHEN HH, 1991, P INT C HYDR DENV, P1186
38145    KANDIL MS, 1990, IEE P C, V137, P298
38146    LEE BY, 1987, IEEE T POWER SYST, V2, P486
38147    MALIK AS, 1991, P INT C ADV POW SYST, P379
38148    STASCHUS K, 1990, I ELECT ELECT ENG IE, V5, P531
38149    YEN MS, 1993, P INT C ADV POW SYST, P578
38150    YEN MS, 1997, ELECTR POW SYST RES, V42, P63
38151 NR 7
38152 TC 0
38153 SN 0378-7796
38154 J9 ELEC POWER SYST RES
38155 JI Electr. Power Syst. Res.
38156 PD OCT 1
38157 PY 1999
38158 VL 52
38159 IS 1
38160 BP 43
38161 EP 49
38162 PG 7
38163 SC Engineering, Electrical & Electronic
38164 GA 243QQ
38165 UT ISI:000083009100006
38166 ER
38167 
38168 PT J
38169 AU Liu, GL
38170    Guo, JH
38171 TI A variable-domain variational formulation of inverse problem I-A of 2-D
38172    unsteady transonic flow around oscillating airfoils
38173 SO ACTA MECHANICA
38174 DT Article
38175 AB The present paper carries out, for the first time, a detailed
38176    theoretical investigation on the inverse problem in unsteady
38177    aerodynamics. Special attention is paid to finding proper ways of
38178    problem-posing and mathematical formulation. To demonstrate the basic
38179    idea, only an inverse problem of type I-A of unsteady transonic flow
38180    with shocks around oscillating airfoils is studied herein. II has been
38181    formulated by a family of variational principles (VP) with variable
38182    domain, in which all unknown boundary (airfoil contour) and
38183    discontinuities (shocks and free trailing vortex sheets) are handled
38184    (captured) via the functional variation with variable domain. As a
38185    result, almost all boundary- and interface-conditions have been
38186    converted into natural ones. Thus, a rigorous theoretical basis for
38187    unsteady airfoil design and Finite element (FE) applications is
38188    provided. On the basis of these variational principles developed in
38189    this paper, a method using new self-deforming finite element is
38190    suggested for the numerical realization of the variable-domain
38191    variation of the functional and a numerical example is given. Its
38192    suitability and effectiveness are demonstrated by the numerical results.
38193 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
38194 RP Liu, GL, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang
38195    Rd, Shanghai 200072, Peoples R China.
38196 CR *AGARD FLUID DYN P, 1990, AGARDCP463
38197    CHYU WJ, 1981, AIAA J, V19, P684
38198    DULIKRAVICH GS, 1991, P INT C INV DES CONC
38199    FINLAYSON BA, 1970, METHODS WEIGHTED RES, P336
38200    GUO JH, 1993, P 1 INT C AER BEIJ, P75
38201    HAFEZ MM, 1979, AIAA J, V17, P838
38202    HE H, 1993, P 2 INT C FLUID MECH, P359
38203    LIU G, 1986, ASME, V108, P252
38204    LIU GL, 1987, AIAA871426
38205    LIU GL, 1989, P 5 INT S UNST AER A, P76
38206    LIU GL, 1990, EXPT COMPUTATIONAL A, P128
38207    LIU GL, 1992, ACTA MECH, V95, P117
38208    LIU GL, 1993, P 2 INT C FLUID MECH, P438
38209    LIU GL, 1995, INVERSE PROBL ENG, V2, P1
38210    LIU GL, 1997, NONLINEAR ANAL-THEOR, V30, P5229
38211    LIU GL, 1998, P 3 INT C FLUID MECH, P809
38212    POLING DR, 1986, AIAA J, V24, P193
38213 NR 17
38214 TC 0
38215 SN 0001-5970
38216 J9 ACTA MECH
38217 JI Acta Mech.
38218 PY 1999
38219 VL 137
38220 IS 3-4
38221 BP 195
38222 EP 209
38223 PG 15
38224 SC Mechanics
38225 GA 244DA
38226 UT ISI:000083035500005
38227 ER
38228 
38229 PT J
38230 AU Shen, Y
38231    Zhang, JC
38232    Gu, F
38233    Sao, J
38234    Yan, JK
38235    Wu, WB
38236 TI Preparation and spectroscopic properties of C-60-toluene derivative
38237 SO ACTA CHIMICA SINICA
38238 DT Article
38239 DE C-60; C-60 - toluene derivative; photoluminescence
38240 AB A C-60 - toluene derivative is prepared by reaction of C-60 with
38241    toluene in the presence of a proper catalyst. According to the UV and
38242    H-1 NMR spectra, the structure of the product and the reaction
38243    mechanism are discussed. Comparison of the PL spectrum of the
38244    derivative and C-60; shows that the derivative has increased PL
38245    phenomena at 460nm at room temperature.
38246 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
38247 RP Shen, Y, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R
38248    China.
38249 CR EGUCHI S, 1995, FULLERENES ADDUCTS S
38250    FOWLER PW, 1990, J CHEM SOC FARADAY T, V86, P2073
38251    GANG GU, 1995, PROGR PHYSICS, V15, P319
38252    GUO ZX, 1998, PROG CHEM, V10, P1
38253    HARE JP, 1991, CHEM PHYS LETT, V177, P394
38254    HUANG S, 1993, FUNCTIONAL POLYM, V6, P371
38255    OLAH GA, 1991, J AM CHEM SOC, V113, P9387
38256    TAYLOR R, 1992, J CHEM SOC CHEM 0501, P667
38257 NR 8
38258 TC 2
38259 SN 0567-7351
38260 J9 ACTA CHIM SIN
38261 JI Acta Chim. Sin.
38262 PY 1999
38263 VL 57
38264 IS 9
38265 BP 1034
38266 EP 1037
38267 PG 4
38268 SC Chemistry, Multidisciplinary
38269 GA 243BY
38270 UT ISI:000082978300015
38271 ER
38272 
38273 PT J
38274 AU Zhang, TS
38275    Hing, P
38276    Zhang, JC
38277    Kong, LB
38278 TI Ethanol-sensing characteristics of cadmium ferrite prepared by chemical
38279    coprecipitation
38280 SO MATERIALS CHEMISTRY AND PHYSICS
38281 DT Article
38282 DE cadmium oxide; alpha-Fe2O3; cadmium ferrite; ethanol sensor;
38283    coprecipitation
38284 ID SEMICONDUCTOR GAS SENSORS; ELECTRICAL-PROPERTIES; TIN OXIDE; HUMIDITY
38285    SENSORS; SNO2; CO; SENSITIVITY; SELECTIVITY; CONDUCTANCE; ADDITIVES
38286 AB The microstructure, electrical property and gas-sensing characteristics
38287    of complex compounds in the CdO-Fe2O3 system have been investigated.
38288    Raw powder with Cd/Fe = 1:2 was prepared by chemical coprecipitation
38289    method. The results from thermal gravimetric-differential thermal
38290    analysis and X-ray diffraction measurement indicate that decomposition
38291    of CdCO3 takes place from 350 to 500 degrees C, and the solid reaction
38292    in CdO-Fe2O3 system starts at 570 degrees C; the completion of this
38293    reaction is up to 800 degrees C. Single phase of CdFe2O4 is composed of
38294    spheroidic grains with narrow size distribution between 50 and 150 nm.
38295    Sample calcined at 650 degrees C consists of smaller grains with
38296    different shape and sizes due to the presence of three phases, i.e.,
38297    CdFe2O4, CdO and alpha-Fe2O3. The sensors based on Cd-Fe complex oxides
38298    show a high sensitivity and selectivity to C2H5OH gas over CO, H-2 and
38299    i-C4H10. The sensor made of 650 degrees C sample operates at 380
38300    degrees C, and its sensitivity to 200 ppm C2H5OH gas is up to 90, but
38301    its sensitivity to 1000 ppm H-2, CO or i-C4H10 are only 7.5, 4 and 5,
38302    respectively. (C) 1999 Elsevier Science S.A. All rights reserved.
38303 C1 Nanyang Technol Univ, Sch Appl Sci, Div Mat Sci, Ctr Adv Mat Res, Singapore 639798, Singapore.
38304    Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
38305    Nanyang Technol Univ, Sch Elect & Elect Engn, Ctr Microelect, Singapore 639798, Singapore.
38306 RP Zhang, TS, Nanyang Technol Univ, Sch Appl Sci, Div Mat Sci, Ctr Adv Mat
38307    Res, Nanyang Ave, Singapore 639798, Singapore.
38308 CR ALBANESE G, 1992, J MATER SCI, V27, P6146
38309    BEHR G, 1995, SENSOR ACTUAT B-CHEM, V26, P33
38310    CALDARARU M, 1996, SENSOR ACTUAT B-CHEM, V30, P35
38311    CANTALINI C, 1993, SENSOR ACTUAT B-CHEM, V15, P193
38312    CAROTTA MC, 1998, SENSOR ACTUAT B-CHEM, V48, P270
38313    COLES GSV, 1991, SENSOR ACTUAT B-CHEM, V3, P7
38314    DAWSON DH, 1995, SENSOR ACTUAT B-CHEM, V26, P76
38315    FANG YK, 1989, THIN SOLID FILMS, V169, P51
38316    GIBER J, 1994, SENSOR ACTUAT B-CHEM, V18, P113
38317    GUSMANO G, 1993, BRIT CERAM T, V92, P104
38318    GUSMANO G, 1993, J MATER SCI, V28, P6195
38319    HYKAWAY N, 1988, SENSOR ACTUATOR, V15, P105
38320    JIANMING L, 1989, P INT C EL COMP MAT, P197
38321    KUDO S, 1995, SENSOR ACTUAT B-CHEM, V23, P219
38322    LANTTO V, 1987, SURF SCI, V192, P243
38323    LEE DD, 1987, SENSOR ACTUATOR, V12, P441
38324    MAEKAWA T, 1991, CHEM LETT, P575
38325    MAEKAWA T, 1992, SENSOR ACTUAT B-CHEM, V9, P63
38326    MATSUSHIMA S, 1989, CHEM LETT, P845
38327    MCALEER E, 1971, DISCUSS FARADAY SOC, V52, P239
38328    MCALEER JF, 1987, J CHEM SOC FARAD T 1, V83, P1323
38329    NITTA M, 1979, J ELECTRON MATER, V8, P571
38330    PROMSONG L, 1995, SENSOR ACTUAT B-CHEM, V24, P504
38331    SARALA G, 1995, SENSOR ACTUAT B-CHEM, V28, P31
38332    SAYAGO I, 1995, SENSOR ACTUAT B-CHEM, V26, P19
38333    SCHIERBAUM KD, 1991, SENSOR ACTUAT B-CHEM, V3, P205
38334    TAKATA M, 1976, J AM CERAM SOC, V59, P4
38335    TETERYCZ H, 1998, SENSOR ACTUAT B-CHEM, V47, P100
38336    TOURNIER G, 1995, SENSOR ACTUAT B-CHEM, V26, P24
38337    WOLSKA E, 1992, SOLID STATE IONICS, V51, P231
38338    YAMAMOTO N, 1981, JPN J APPL PHYS, V20, P721
38339    YAMAZOE N, 1986, SENSOR ACTUATOR, V10, P379
38340    YAMAZOE N, 1991, SENSOR ACTUAT B-CHEM, V5, P7
38341    YOKOYAMA M, 1996, J APPL PHYS, V80, P1015
38342 NR 34
38343 TC 2
38344 SN 0254-0584
38345 J9 MATER CHEM PHYS
38346 JI Mater. Chem. Phys.
38347 PD NOV 1
38348 PY 1999
38349 VL 61
38350 IS 3
38351 BP 192
38352 EP 198
38353 PG 7
38354 SC Materials Science, Multidisciplinary
38355 GA 241MQ
38356 UT ISI:000082887500002
38357 ER
38358 
38359 PT J
38360 AU He, JH
38361 TI Homotopy perturbation technique
38362 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
38363 DT Article
38364 DE perturbation techniques; homotopy; nonlinearity
38365 AB The homotopy perturbation technique does not depend upon a small
38366    parameter in the equation. By the homotopy technique in topology, a
38367    homotopy is constructed with an imbedding parameter p epsilon [0, 1],
38368    which is considered as a "smalI parameter". Some examples are given.
38369    The approximations obtained by the proposed method are uniformly valid
38370    not only for small parameters, but also for very large parameters. (C)
38371    1999 Elsevier Science S.A. All rights reserved.
38372 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
38373 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
38374    Peoples R China.
38375 CR HE JH, 1997, COMM NONLINEAR SCI N, V2, P230
38376    HE JH, 1998, INT C VIBR ENG 98 DA
38377    LIAO SJ, 1995, INT J NONLINEAR MECH, V30, P371
38378    LIAO SJ, 1997, ENG ANAL BOUND ELEM, V20, P91
38379    LIN CC, 1974, MATH APPL DETERMINIS
38380    NAYFEH AH, 1981, INTRO PERTURBATION T
38381    WANG YB, 1986, INTRO PERTURBATION T
38382 NR 7
38383 TC 45
38384 SN 0045-7825
38385 J9 COMPUT METHOD APPL MECH ENG
38386 JI Comput. Meth. Appl. Mech. Eng.
38387 PD AUG 3
38388 PY 1999
38389 VL 178
38390 IS 3-4
38391 BP 257
38392 EP 262
38393 PG 6
38394 SC Computer Science, Interdisciplinary Applications; Engineering,
38395    Mechanical; Mechanics
38396 GA 239YN
38397 UT ISI:000082798300004
38398 ER
38399 
38400 PT J
38401 AU Wu, MH
38402    Bao, BR
38403    Chen, J
38404    Xu, YJ
38405    Zhao, SR
38406    Ma, ZT
38407 TI Preparation of thermosensitive hydrogel (PP-g-NIPAAm) with one-off
38408    switching for controlled release of drugs
38409 SO RADIATION PHYSICS AND CHEMISTRY
38410 DT Article
38411 ID INTERPENETRATING POLYMER NETWORKS
38412 AB A novel thermosensitive hydrogel with high mechanical strength was
38413    obtained by grafting N-isopropylacrylamide (NIPAAm) onto polypropylene
38414    using a preirradiation grafting method. The effect of radiation dose,
38415    dose rate, grafting temperature and reaction time on the grafting
38416    degree and properties of swelling-deswelling is discussed. Water
38417    absorption of the grafted polypropylene film could be switched on and
38418    off swiftly by control of temperature. The microstructure of grafted
38419    ultra thin porous PP film was studied with scanning electron
38420    microscope. (C) 1999 Elsevier Science Ltd. All rights reserved.
38421 C1 Acad Sinica, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
38422    Shanghai Univ, Sch Chem & Chem Engn, Shanghai 200041, Peoples R China.
38423 RP Wu, MH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
38424    Peoples R China.
38425 CR DONG LC, 1986, J CONTROL RELEASE, V4, P223
38426    HESKINS M, 1968, J MACROMOL SCI CHEM, V2, P1441
38427    HIROSE Y, 1987, MACROMOLECULES, V20, P1342
38428    HOFFMAN AS, 1986, J CONTROL RELEASE, V4, P213
38429    ILAVSKY M, 1985, POLYMER, V26, P1514
38430    MUKAE K, 1990, POLYM J, V22, P206
38431    MUKAE K, 1990, POLYM J, V22, P250
38432    OKANO T, 1990, J CONTROL RELEASE, V11, P255
38433    PALASIS M, 1992, J CONTROL RELEASE, V18, P1
38434    WU MH, 1996, RADIAT PHYS CHEM, V48, P525
38435 NR 10
38436 TC 5
38437 SN 0969-806X
38438 J9 RADIAT PHYS CHEM
38439 JI Radiat. Phys. Chem.
38440 PD SEP
38441 PY 1999
38442 VL 56
38443 IS 3
38444 BP 341
38445 EP 346
38446 PG 6
38447 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
38448    Science & Technology
38449 GA 239LL
38450 UT ISI:000082769600010
38451 ER
38452 
38453 PT J
38454 AU Yuan, Y
38455    Zhang, Q
38456    Huang, PY
38457    Wang, YF
38458    Zhou, QW
38459    Gan, RB
38460    Li, ZP
38461 TI Functional difference between N domain and C domain of hEGF and
38462    hTGF-alpha
38463 SO ACTA BIOCHIMICA ET BIOPHYSICA SINICA
38464 DT Article
38465 DE hEGF; hTGF-alpha; chimera; structure; function
38466 ID EPIDERMAL GROWTH-FACTOR
38467 AB By exchanging the N domain and C domain of hEGF and hTGF-alpha genes by
38468    PCR, two chimeras E-TGF(EGF(1-32)-TGF-alpha(34-50)) and
38469    T-EGF(TGF-alpha(1-33)-EGF(33-53)) were constructed. The wild and
38470    chimeric molecules were expressed in E. coli under phoA system. The
38471    expressed hEGF, hTGF-alpha and two chimeras were purified. The EGF
38472    receptor competitive binding affinity of the four molecules was hEGF >
38473    hTGF-alpha and E-TGF > T-EGF and the cell proliferation stimulating
38474    activity of them was hTGF-alpha and E-TGF > T-EGF > hEGF. The result
38475    suggests that the N domain of hEGF and hTGF-alpha may play a major role
38476    in receptor binding activity and C domain of them may be responsible
38477    for stimulating cell proliferation.
38478 C1 Chinese Acad Sci, Shanghai Inst Biochem, Shanghai 200031, Peoples R China.
38479    Shanghai Univ Sci & Technol, Sch Sci, Shanghai 201800, Peoples R China.
38480 CR ANZANO MA, 1983, P NATL ACAD SCI USA, V80, P6264
38481    BELL GI, 1986, NUCLEIC ACIDS RES, V14, P8427
38482    GAN RB, 1992, ACTA BIOCH BIOPH SIN, V24, P587
38483    MOSMANN T, 1983, J IMMUNOL METHODS, V65, P55
38484    SAMBROOK J, 1989, MOL CLONING LAB MANU
38485    WINKLER ME, 1989, BIOCHEMISTRY-US, V28, P6373
38486    YUAN Y, 1998, ACTA BIOCH BIOPH SIN, V30, P96
38487 NR 7
38488 TC 1
38489 SN 0582-9879
38490 J9 ACTA BIOCHIM BIOPHYS SINICA
38491 JI Acta Biochim. Biophys. Sin.
38492 PD SEP
38493 PY 1999
38494 VL 31
38495 IS 5
38496 BP 519
38497 EP U2
38498 PG 6
38499 SC Biochemistry & Molecular Biology; Biophysics
38500 GA 237UF
38501 UT ISI:000082673900008
38502 ER
38503 
38504 PT J
38505 AU Wang, ZY
38506    Shen, JQ
38507 TI Stimulated radiation from high-lying state of Li-2 generated with
38508    multiphoton in a wide wavelength region
38509 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
38510 DT Article
38511 DE stimulated radiation; ionization recombination process; two-photon
38512    resonant excitation
38513 ID SODIUM VAPOR; DIFFUSE BAND; DIMER
38514 AB The experimental results of ultraviolet diffuse-band of stimulated
38515    radiation from the high-lying state of Li-2 generated with any pumping
38516    wavelength between 620.0-665.0 nm were reported in this paper. In
38517    Li-2-Li system, the high-lying state of Li-2 was generated by
38518    two-photon excitation, ionization recombination process and collision
38519    energy pooling process, and the ultraviolet diffuse-band radiation was
38520    stimulated. The radiation was due to the transition from one of the
38521    comparable high-lying treble states to the low-lying repelling state a
38522    (3)Sigma(u)(+). The excitation mechanisms involved were discussed in
38523    detail.
38524 C1 Wenzhou Teachers Coll, Dept Phys, Wenzhou 325003, Peoples R China.
38525    Shanghai Univ Sci & Technol, Dept Basic Studies, Shanghai 200093, Peoples R China.
38526    E China Normal Univ, Acad Sinica, Shanghai Inst Opt & Fine Mech, Joint Lab Quantum Opt, Shanghai 200062, Peoples R China.
38527 RP Wang, ZY, Wenzhou Teachers Coll, Dept Phys, Wenzhou 325003, Peoples R
38528    China.
38529 CR BAHNS JT, 1984, APPL PHYS LETT, V44, P826
38530    BAHNS JT, 1989, J CHEM PHYS, V90, P2841
38531    RATCLIFF LB, 1987, J MOL SPECTROSC, V122, P293
38532    SHEN JQ, 1987, APPL PHYS B, V43, P225
38533    SHEN JQ, 1992, OPTICS SINICA, V12, P331
38534    WANG ZG, 1986, OPT COMMUN, V58, P315
38535    WANG ZG, 1986, OPTICS SINICA, V6, P1081
38536    WU CYR, 1983, OPT COMMUN, V48, P28
38537 NR 8
38538 TC 0
38539 SN 1000-0593
38540 J9 SPECTROSC SPECTR ANAL
38541 JI Spectrosc. Spectr. Anal.
38542 PD APR
38543 PY 1999
38544 VL 19
38545 IS 2
38546 BP 145
38547 EP 147
38548 PG 3
38549 SC Spectroscopy
38550 GA 237DG
38551 UT ISI:000082639600006
38552 ER
38553 
38554 PT J
38555 AU Sun, XL
38556    Li, D
38557 TI Value-estimation function method for constrained global optimization
38558 SO JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
38559 DT Article
38560 DE constrained global optimization; nonconvex optimization; smoothing
38561    technique; generalized Newton method; bisection method
38562 AB A novel value-estimation function method for global optimization
38563    problems with inequality constraints is proposed in this paper. The
38564    value-estimation function formulation is an auxiliary unconstrained
38565    optimization problem with a univariate parameter that represents an
38566    estimated optimal value of the objective function of the original
38567    optimization problem. A solution is optimal to the original problem if
38568    and only if it is also optimal to the auxiliary unconstrained
38569    optimization with the parameter set at the optimal objective value of
38570    the original problem, which turns out to be the unique root of a basic
38571    value-estimation function. A logarithmic-exponential value-estimation
38572    function formulation is further developed to acquire computational
38573    tractability and efficiency. The optimal objective value of the
38574    original problem as well as the optimal solution are sought iteratively
38575    by applying either a generalized Newton method or a bisection method to
38576    the logarithmic-exponential value-estimation function formulation. The
38577    convergence properties of the solution algorithms guarantee the
38578    identification of an approximate optimal solution of the original
38579    problem, up to any predetermined degree of accuracy, within a finite
38580    number of iterations.
38581 C1 Shanghai Univ, Dept Math, Shanghai, Peoples R China.
38582    Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, New Territories, Hong Kong.
38583 RP Sun, XL, Shanghai Univ, Dept Math, Shanghai, Peoples R China.
38584 CR AUBIN JP, 1984, APPL NONLINEAR ANAL
38585    BERTSEKAS DP, 1976, AUTOMATICA, V12, P133
38586    BRANCH MA, 1996, MATLAB OPTIMIZATION
38587    CETIN BC, 1993, J OPTIMIZ THEORY APP, V77, P97
38588    CHEN CH, 1995, MATH PROGRAM, V71, P51
38589    CLARKE FH, 1983, OPTIMIZATION NONSMOO
38590    DIXON LCW, 1978, GLOBAL OPTIMIZATION, V2
38591    FIACCO AV, 1990, NONLINEAR PROGRAMMIN
38592    GILL PE, 1981, PRACTICAL OPTIMIZATI
38593    GOH CJ, 1997, APPL MATH LETT, V10, P9
38594    HESTENES MR, 1969, J OPTIMIZATION THEOR, V4, P303
38595    HOCK W, 1981, TEST EXAMPLES NONLIN
38596    HORST R, 1995, INTRO GLOBAL OPTIMIZ
38597    KAN AHG, 1989, HDB OPERATIONS RES M, V1, P631
38598    KAN AHGR, 1987, MATH PROGRAM, V39, P57
38599    LEMARECHAL C, 1975, MATH PROGRAMMING STU, V3, P95
38600    LEVY AV, 1985, SIAM J SCI STAT COMP, V6, P15
38601    LI D, 1995, J OPTIMIZ THEORY APP, V85, P309
38602    LI XS, 1991, COMPUTATIONAL STRUCT, V8, P85
38603    RATSCHEK H, 1988, NEW COMPUTER METHODS
38604    ROCKAFELLAR RT, 1973, J OPTIMIZATION THEOR, V12, P555
38605    TANG HW, 1994, CHINESE SCI BULL, V39, P682
38606 NR 22
38607 TC 6
38608 SN 0022-3239
38609 J9 J OPTIMIZ THEOR APPL
38610 JI J. Optim. Theory Appl.
38611 PD AUG
38612 PY 1999
38613 VL 102
38614 IS 2
38615 BP 385
38616 EP 409
38617 PG 25
38618 SC Mathematics, Applied; Operations Research & Management Science
38619 GA 235GP
38620 UT ISI:000082534200010
38621 ER
38622 
38623 PT J
38624 AU He, JH
38625 TI A coupling method of a homotopy technique and a perturbation technique
38626    for non-linear problems
38627 SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS
38628 DT Article
38629 DE perturbation technique; homotopy; non-linearity
38630 AB In this paper, a coupling method of a homotopy technique and a
38631    perturbation technique is proposed to solve non-linear problems. In
38632    contrast to the traditional perturbation methods, the proposed method
38633    does not require a small parameter in the equation. In this method,
38634    according to the homotopy technique, a homotopy with an imbedding
38635    parameter p is an element of [0, 1] is constructed, and the imbedding
38636    parameter is considered as a "small parameter". So the proposed method
38637    can take full advantage of the traditional perturbation methods. Some
38638    examples are given. The results reveal that the new method is very
38639    effective and simple. (C) 1999 Elsevier Science Ltd. All rights
38640    reserved.
38641 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
38642 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
38643    Shanghai 200072, Peoples R China.
38644 CR HE JH, 1997, COMM NONLINEAR SCI N, V2, P230
38645    HE JH, 1998, INT C VIBR ENG 98 DA
38646    LIAO SJ, 1995, INT J NONLINEAR MECH, V30, P371
38647    LIAO SJ, 1997, ENG ANAL BOUND ELEM, V20, P91
38648    LIU GL, 1997, C 7 MOD MATH MECH SH, P47
38649    NAYFEH AH, 1985, PROBLEMS PERTURBATIO
38650 NR 6
38651 TC 62
38652 SN 0020-7462
38653 J9 INT J NON-LINEAR MECH
38654 JI Int. J. Non-Linear Mech.
38655 PD JAN
38656 PY 2000
38657 VL 35
38658 IS 1
38659 BP 37
38660 EP 43
38661 PG 7
38662 SC Mechanics
38663 GA 235WX
38664 UT ISI:000082567200005
38665 ER
38666 
38667 PT J
38668 AU Gao, S
38669    Li, J
38670 TI FDTD analysis of a sized-reduced, dual-frequency patch antenna -
38671    Abstract
38672 SO JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS
38673 DT Article
38674 AB A new single probe-fed, compact, dual-frequency antenna is studied,
38675    which is a rectangular microstrip patch with a rectangular slot cut in
38676    the center. The FDTD method is developed for full-wave analysis of its
38677    characteristics. A simple and accurate probe feed model is proposed,
38678    together with a simple method of calculating the radiation patterns. It
38679    is shown that through loading of the rectangular slot and proper
38680    location of the feed point, dual-frequency operations can be realized
38681    with an antenna-size reduction of similar to 33% and further reductions
38682    are also possible by tuning the length and width of the slot and the
38683    patch. Electric current distributions on the rectangular patch for both
38684    the slot loaded case and the case without slot are given, together with
38685    the radiation patterns. Theoretical analysis is verified by
38686    experimental results.
38687 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
38688 RP Gao, S, Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R
38689    China.
38690 NR 0
38691 TC 0
38692 SN 0920-5071
38693 J9 J ELECTROMAGNET WAVE APPLICAT
38694 JI J. Electromagn. Waves Appl.
38695 PY 1999
38696 VL 13
38697 IS 8
38698 BP 1031
38699 EP 1032
38700 PG 2
38701 SC Engineering, Electrical & Electronic; Physics, Applied; Physics,
38702    Mathematical
38703 GA 232QK
38704 UT ISI:000082381300003
38705 ER
38706 
38707 PT J
38708 AU Liu, L
38709    Yuan, SL
38710    Dong, YD
38711    Cui, K
38712 TI Effect of carbon content on mechanoreduction of copper oxide
38713 SO CHINESE PHYSICS LETTERS
38714 DT Article
38715 ID MECHANOCHEMICAL REDUCTION; COMBUSTION; GRAPHITE
38716 AB The reduction of CuO with different amount of carbon (CuO:C = 2:1,
38717    2:1.5, and 2:2, in molar ratio) induced by ball milling is examined by
38718    x-ray diffraction and transmission electron microscopy. It is found
38719    that reduction process is closely related to the carbon content. CuO
38720    can be completely converted into Cu if an excessive C is used (i.e., C
38721    = 1.5 or 2.0 mol). However, the reduction of CuO follows a two-step
38722    process, CuO --> Cu --> Cu2O, if the mixture only contains a nominal C
38723    content (i.e., C = 1 mol). A tentative model in terms of solid state
38724    reaction at the interfaces is proposed to explain the effect of carbon
38725    content on the mechanoreduction of CuO.
38726 C1 Huazhong Univ Sci & Technol, State Key Lab Plast Forming Stimulat & Die & Moul, Wuhan 430074, Peoples R China.
38727    Huazhong Univ Sci & Technol, Dept Phys, Wuhan 430074, Peoples R China.
38728    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
38729 RP Liu, L, Huazhong Univ Sci & Technol, State Key Lab Plast Forming
38730    Stimulat & Die & Moul, Wuhan 430074, Peoples R China.
38731 CR BRANDES A, 1983, SMITHELLS METALS REF
38732    MATTEAZZI P, 1991, MAT SCI ENG A-STRUCT, V149, P135
38733    MCCORMICK PG, 1995, MATER T JIM, V36, P161
38734    SCHAFFER GB, 1989, APPL PHYS LETT, V55, P45
38735    SCHAFFER GB, 1990, J MATER SCI LETT, V9, P1014
38736    SCHAFFER GB, 1990, METALL TRANS A, V21, P2789
38737    SCHAFFER GB, 1992, METALL TRANS A, V23, P1285
38738    YANG H, 1993, J SOLID STATE CHEM, V107, P258
38739    YANG H, 1994, J SOLID STATE CHEM, V110, P136
38740    YANG H, 1995, SCRIPTA METALL MATER, V32, P681
38741    YANG H, 1998, METALL MATER TRANS B, V29, P449
38742 NR 11
38743 TC 0
38744 SN 0256-307X
38745 J9 CHIN PHYS LETT
38746 JI Chin. Phys. Lett.
38747 PY 1999
38748 VL 16
38749 IS 8
38750 BP 591
38751 EP 593
38752 PG 3
38753 SC Physics, Multidisciplinary
38754 GA 231CH
38755 UT ISI:000082288500017
38756 ER
38757 
38758 PT J
38759 AU Zhou, SP
38760    Xu, KX
38761    Niu, JH
38762    Qu, H
38763 TI Solutions for the wave functions of mixed pairing symmetry
38764    superconductors
38765 SO ACTA PHYSICA SINICA
38766 DT Article
38767 ID HIGH-TEMPERATURE SUPERCONDUCTORS; UPPER CRITICAL-FIELD; YBA2CU3O7-DELTA
38768 AB We study the pairing symmetry in high-temperature superconductors from
38769    the point of view of group theory analysis in the framework of
38770    Ginzburg-Landau model. By considering an orthorhombic distortion from
38771    C-4v point group because of the correlation of intralayers, the two
38772    apparent transitions needed in earlier work on mixed s and d state have
38773    been removed. The structure of a single vortex is presented by solving
38774    the Ginzburg-Landau wave function equations of the mixed s +/-
38775    id(x2-y2) state. The analysis of the magnetic field dependence of the
38776    transport behaviors including the critical current and the R-T curve
38777    expansion reveals the origin of the so-called "eigen-pinning effect"
38778    and offers a good interpretation of the experimental observations.
38779 C1 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
38780 RP Zhou, SP, Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800,
38781    Peoples R China.
38782 CR CAI JH, 1982, THEORY GREENS FUNCTI, P336
38783    CHAKRAVARTY S, 1993, SCIENCE, V261, P337
38784    CHAUDHARI P, 1994, PHYS REV LETT, V72, P1084
38785    DORIA MM, 1989, PHYS REV B, V39, P9537
38786    DORIA MM, 1990, PHYS REV B, V41, P6335
38787    ELLIOTT JP, 1984, SYMMETRY PHYSICS, P43
38788    GUO BY, 1988, DIFFERENCE ALGORITHM, P43
38789    IYE Y, 1987, JPN J APPL PHYS PT 2, V26, L1057
38790    JOYNT R, 1990, PHYS REV B, V41, P4271
38791    KHOMSKII DI, 1995, PHYS REV LETT, V75, P1384
38792    KRESIN VZ, 1993, PHYS REV B, V48, P9012
38793    KUPFER H, 1988, CRYOGENICS, V28, P650
38794    LI QP, 1993, PHYS REV B, V48, P437
38795    NIU JH, 1997, THESIS SHANGHAI U
38796    REN Y, 1995, PHYS REV LETT, V74, P3680
38797    ROBERTAZZI RP, 1992, PHYS REV B, V46, P8456
38798    ROHKSAR DS, 1993, PHYS REV LETT, V70, P493
38799    ROSENTHAL PA, 1993, APPL PHYS LETT, V63, P1984
38800    SIGRIST M, 1989, PHYS REV LETT, V63, P1727
38801    SUN AG, 1994, PHYS REV LETT, V72, P2267
38802    TINKHAM M, 1964, GROUP THEORY QUANTUM
38803    TINKHAM M, 1988, PHYS REV LETT, V61, P1658
38804    TSUEI CC, 1994, PHYS REV LETT, V73, P593
38805    WELP U, 1989, PHYS REV LETT, V62, P1908
38806    XU JH, 1996, PHYS REV B, V53, R2991
38807    ZHANG FC, 1988, PHYS REV B, V37, P3759
38808    ZHOU SP, 1998, IN PRESS ACTA PHYSIC, P807
38809 NR 27
38810 TC 3
38811 SN 1000-3290
38812 J9 ACTA PHYS SIN-CHINESE ED
38813 JI Acta Phys. Sin.
38814 PD FEB
38815 PY 1999
38816 VL 48
38817 IS 2
38818 BP 342
38819 EP 351
38820 PG 10
38821 SC Physics, Multidisciplinary
38822 GA 231VU
38823 UT ISI:000082332800022
38824 ER
38825 
38826 PT J
38827 AU Qu, H
38828    Zhou, SP
38829 TI Vortex lattice in a high-T-c superconductor of mixed pairing symmetry
38830 SO ACTA PHYSICA SINICA
38831 DT Article
38832 ID HIGH-TEMPERATURE SUPERCONDUCTORS
38833 AB Starting from a tight binding description, the existence of mixed s-d
38834    wave pairing stare is discussed. Then, within the framework of the
38835    phenomenological G-L theory, the structure of vortex lattice in a
38836    high-T-c superconductor is studied. It is shown that there is a strong
38837    correlation between the structure of a single vortex and the shape of
38838    the vortex lattice. At low temperatures, with the existence of s-wave
38839    component and its coupling to d-wave component, the d-wave order
38840    parameter and the local magnetic field show tetragonal anisotropy, and
38841    the structure of vortex lattice is oblique; however, when the
38842    temperature is close to T-c, it may become triangular.
38843 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
38844 RP Qu, H, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
38845 CR CAI JH, 1982, THEORY GREENS FUNCTI
38846    CHAKRAVARTY S, 1993, SCIENCE, V261, P337
38847    DERAEDT H, 1990, Z PHYS B CON MAT, V79, P327
38848    DORIA MM, 1990, PHYS REV B, V41, P6335
38849    KEIMER B, 1994, J APPL PHYS 2, V76, P6778
38850    KHOMSKII DI, 1995, PHYS REV LETT, V75, P1384
38851    KLEINER WH, 1964, PHYS REV, V133, P1266
38852    KRESIN VZ, 1993, PHYS REV B, V48, P9012
38853    LEGGETT AJ, 1975, REV MOD PHYS, V47, P331
38854    NIU JH, 1997, THESIS SHANGHAI U
38855    PARKALUOTO R, 1990, PHYS SCR T, V33, P227
38856    SCHNEIDER T, 1990, Z PHYS B CON MAT, V81, P3
38857    WANG ZD, 1991, PHYS REV B, V44, P918
38858    ZHANG FC, 1980, PHYS REV B, V37, P3795
38859    ZHOU SP, 1998, ACTA PHYS SINICA, V47, P807
38860 NR 15
38861 TC 1
38862 SN 1000-3290
38863 J9 ACTA PHYS SIN-CHINESE ED
38864 JI Acta Phys. Sin.
38865 PD FEB
38866 PY 1999
38867 VL 48
38868 IS 2
38869 BP 352
38870 EP 362
38871 PG 11
38872 SC Physics, Multidisciplinary
38873 GA 231VU
38874 UT ISI:000082332800023
38875 ER
38876 
38877 PT J
38878 AU Xu, KX
38879    Yu, LM
38880    Essa, AA
38881    Zhou, SP
38882    Bao, JS
38883 TI Nonequilibrium microwave response and Kosterlitz-Thouless transition in
38884    YBCO granular films
38885 SO ACTA PHYSICA SINICA
38886 DT Article
38887 ID YBA2CU3O7-DELTA THIN-FILMS; HIGH-TEMPERATURE SUPERCONDUCTORS;
38888    PHOTORESPONSE
38889 AB The characteristic of microwave radiation (lambda = 8 mm) response of
38890    YBCO granular films was reported. Experimental results show that the
38891    response behavior can be described with nonequilibrium response effect,
38892    instead of thermal effect model. Near below the transition temperature
38893    T-infinity, nonequilibrium microwave response signal decays gradually
38894    and disappears with the sample resistance becoming zero. It was also
38895    found that the response signal is very sensitive to a weak magnetic
38896    field. The sample I-V curve was studied carefully, and the
38897    Kosterlitz-Thouless transition model can be used to describe the
38898    two-dimensional transport characteristic of the YBCO granular films.
38899    Based on the analysis and experimental results, we believe that the
38900    mechanism of nonequilibrium microwave response may be related with the
38901    breaking of the votex-antivotex pair in high T-c superconductor.
38902 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
38903 RP Xu, KX, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
38904 CR BATLOGG BJ, 1997, J SUPERCOND, V10, P583
38905    CULBERTSON JC, 1991, PHYS REV B, V44, P9609
38906    DEMSAR J, 1997, J SUPERCOND, V10, P455
38907    ENOMOTO Y, 1986, J APPL PHYS, V59, P3807
38908    FARDMANESH M, 1995, J APPL PHYS, V77, P4568
38909    FLORY AT, 1983, PHYS REV B, V28, P5075
38910    FRENKEL A, 1993, PHYS REV B, V48, P9717
38911    HEGMANN FA, 1993, PHYS REV B, V48, P16023
38912    HEGMANN FA, 1995, APPL PHYS LETT, V67, P285
38913    HERTER ST, 1998, PHYS REV B, V57, P1154
38914    HUBER WM, 1996, APPL PHYS LETT, V68, P3338
38915    KADOWAKI K, 1994, SUPERCOND SCI TECH, V7, P519
38916    KOSTERLITZ JM, 1973, J PHYS C SOLID STATE, V6, P1181
38917    VANVECHTEN D, 1997, APPL PHYS LETT, V71, P1415
38918    WU PH, 1987, JPN J APPL PHYS, V26, L1579
38919    XIA RM, 1998, CHINESE J LOW TEMPER, V20, P235
38920    YING QY, 1990, PHYS REV B, V42, P2242
38921    ZHANG ZM, 1994, J SUPERCOND, V7, P871
38922 NR 18
38923 TC 3
38924 SN 1000-3290
38925 J9 ACTA PHYS SIN-CHINESE ED
38926 JI Acta Phys. Sin.
38927 PD JUN
38928 PY 1999
38929 VL 48
38930 IS 6
38931 BP 1152
38932 EP 1162
38933 PG 11
38934 SC Physics, Multidisciplinary
38935 GA 231VY
38936 UT ISI:000082333200027
38937 ER
38938 
38939 PT J
38940 AU Yan, KZ
38941    Tan, WH
38942 TI Stationary solutions of the nonlinear Schrodinger equation for neutral
38943    atoms in a harmonic trap
38944 SO ACTA PHYSICA SINICA
38945 DT Article
38946 ID BOSE-EINSTEIN CONDENSATION; GAS
38947 AB We present a general method to solve the stationary nonlinear
38948    Schrodinger equation (NLSE) with an external potential. We apply it to
38949    the stationary states of NLSE for neutral atoms in a harmonic trap. We
38950    discuss the problems of convergence and normalization of NLSE wave
38951    function. The accuracy of calculation is analyzed.
38952 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
38953 RP Yan, KZ, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
38954 CR ANDERSON MH, 1995, SCIENCE, V269, P198
38955    BRADLEY CC, 1995, PHYS REV LETT, V75, P1687
38956    DAVIS KB, 1995, PHYS REV LETT, V75, P3969
38957    EDWARDS M, 1995, PHYS REV A, V51, P1382
38958    HAO BL, 1997, PROGR PHYSICS, V17, P223
38959    RUPRECHT PA, 1995, PHYS REV A, V51, P4704
38960 NR 6
38961 TC 8
38962 SN 1000-3290
38963 J9 ACTA PHYS SIN-CHINESE ED
38964 JI Acta Phys. Sin.
38965 PD JUL
38966 PY 1999
38967 VL 48
38968 IS 7
38969 BP 1185
38970 EP 1191
38971 PG 7
38972 SC Physics, Multidisciplinary
38973 GA 231VZ
38974 UT ISI:000082333300001
38975 ER
38976 
38977 PT J
38978 AU Zhao, MH
38979    Cheng, CJ
38980    Liu, YJ
38981    Liu, GN
38982    Zhang, SS
38983 TI The method of analysis of crack problem in three-dimensional non-local
38984    elasticity
38985 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
38986 DT Article
38987 DE non-local elasticity; fracture mechanics; boundaryintegral equation
38988    method
38989 ID NONLOCAL ELASTICITY; SUBJECT; SHEAR
38990 AB In this paper, the displacement discontinuity fundamental solution
38991    (DDFS) corresponding to the unit concentrated displacement
38992    discontinuity for three dimensional (3D) non-local elasticity under
38993    symmetrical condition is obtained. Based on the displacement
38994    discontinuity boundary integralequation (DDBIE) and boundary-element
38995    method (DDBEM) of local (classical) elasticity, a method of analysis of
38996    crack in 3D non- local elasticity with wide application is proposed
38997    with the DDFS. Through the method, several important problems of
38998    fracture mechanics are analysed.
38999 C1 Zhengzhou Res Inst Mech Engn, Zhengzhou 450052, Peoples R China.
39000    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
39001    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
39002 RP Zhao, MH, Zhengzhou Res Inst Mech Engn, Zhengzhou 450052, Peoples R
39003    China.
39004 CR BREBBIA CA, 1980, BOUNDARY ELEMENT TEC
39005    CHENG PS, 1992, ACTA MECH SINICA, V24, P329
39006    EDELEN DGB, 1976, NONLOCAL FIELD THEOR
39007    ERINGEN AC, 1976, NONLOCAL POLAR FIELD
39008    ERINGEN AC, 1977, INT J ENG SCI, V15, P177
39009    ERINGEN AC, 1977, J MECH PHYS SOLIDS, V25, P339
39010    ERINGEN AC, 1978, INT J FRACTURE, V14, P367
39011    ERINGEN AC, 1979, ENG FRACT MECH, V12, P211
39012    GAO J, 1989, ACTA MECH SOLIDA SIN, V10, P289
39013    GRADSHTEYN IS, 1965, TABLES INTEGRALS SER
39014    ILCEWICZ L, 1981, ENG FRACT MECH, V14, P801
39015    RAMABRAHAM B, 1985, INDIAN J PURE APPL M, V16, P661
39016    RUI W, 1989, SCI B, V34, P412
39017    SNEDDON IN, 1951, FOURIER TRANSFORMS M
39018    YU JL, 1984, ACTA MECH SINICA, V16, P487
39019    ZHAO MH, 1994, ENG ANAL, V13, P333
39020    ZHAO MH, 1999, APPL MATH MECH-ENGL, V20, P143
39021 NR 17
39022 TC 0
39023 SN 0253-4827
39024 J9 APPL MATH MECH-ENGL ED
39025 JI Appl. Math. Mech.-Engl. Ed.
39026 PD MAY
39027 PY 1999
39028 VL 20
39029 IS 5
39030 BP 469
39031 EP 475
39032 PG 7
39033 SC Mathematics, Applied; Mechanics
39034 GA 230NL
39035 UT ISI:000082257200002
39036 ER
39037 
39038 PT J
39039 AU Chen, LS
39040    Zhao, XH
39041 TI A mathematical theory of materials with elastic range and the
39042    definition of back stress tensor
39043 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
39044 DT Article
39045 DE theory of materials with elastic range; elastic-plastic constitutive
39046    relation; back stress
39047 ID FINITE
39048 AB In this pager, the theory of materials with elastic range by Lucchesi
39049    and Podio-Guidugli(1988) has been generalized. It has also shown that
39050    there are some difficulties on the definition of back stress as the
39051    "center" of the yield surface in the Cauchy space. The back stress
39052    tensor is Lagrangian, and must be defined in the Lagrangian stress
39053    space.
39054 C1 Nanchang Univ, Inst Engn Mech, Nanchang 330029, Peoples R China.
39055    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
39056 RP Chen, LS, Nanchang Univ, Inst Engn Mech, Nanchang 330029, Peoples R
39057    China.
39058 CR AGAHTEHRANI A, 1987, J MECH PHYS SOLIDS, V35, P519
39059    CASEY J, 1988, ARCH RATION MECH AN, V102, P351
39060    CASEY J, 1992, INT J ENG SCI, V30, P1257
39061    DAFALIAS YF, 1987, ACTA MECH, V69, P119
39062    DAFALIAS YF, 1988, ACTA MECH, V73, P121
39063    LUCCHESI M, 1988, ARCH RATION MECH AN, V102, P23
39064    NAGHDI PM, 1990, J APPL MATH PHYS ZAM, V4, P315
39065    NEMATNASSER S, 1983, J APPL MECH-T ASME, V50, P1114
39066    NOLL W, 1958, ARCH RATIONAL MECH A, V2, P197
39067    ZHENG QS, 1992, ACTA MECH, V91, P97
39068 NR 10
39069 TC 1
39070 SN 0253-4827
39071 J9 APPL MATH MECH-ENGL ED
39072 JI Appl. Math. Mech.-Engl. Ed.
39073 PD MAY
39074 PY 1999
39075 VL 20
39076 IS 5
39077 BP 476
39078 EP 484
39079 PG 9
39080 SC Mathematics, Applied; Mechanics
39081 GA 230NL
39082 UT ISI:000082257200003
39083 ER
39084 
39085 PT J
39086 AU He, JH
39087 TI Further study of the equivalent theorem of Hellinger-Reissner and
39088    Hu-Washizu variational principles
39089 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
39090 DT Article
39091 DE variational principles in elasticity; Hellinger-Reissner principle;
39092    Hu-Washizu principle; the semi-inverse method; trial-functional
39093 ID SEMI-INVERSE METHOD; FLOW
39094 AB In this paper, it has been proved that the well-known Hu-Washizu
39095    variational principle is a pseudo-generalized variational principle (
39096    pseudo-GVP). The stationary conditions of its functional may satisfy!
39097    all its field equations and boundary conditions if all the variables in
39098    the functional are considered as independent variations, but there
39099    might exist some kinds of constraints. Some new pseudo-GVPs are
39100    established to distinguish them from genuine ones by the so-called
39101    inverse Lagrange multiplier method. The constrained Hu-Washizu
39102    principle, therefore, is proved to be equivalent with the
39103    Hellinger-Reissner principle under the constraints of stress-strain
39104    relations.
39105 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
39106 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
39107    Peoples R China.
39108 CR CHEIN WZ, 1989, SELECTED WORKS CHIEN, P419
39109    CHEN WZ, 1983, APPL MATH MECH, V4, P143
39110    CHIEN WZ, 1983, ACTA MECH SINICA, V4, P313
39111    CHIEN WZ, 1984, ADV APPL MECH, V24, P93
39112    HE JH, 1997, INT J TURBO JET ENG, V14, P17
39113    HE JH, 1997, INT J TURBO JET ENG, V14, P23
39114    HE JH, 1997, J SHANGHAI U, V1, P117
39115    HE JH, 1998, APPL MATH MODEL, V22, P395
39116    HE JH, 1998, INT J TURBO JET ENG, V15, P101
39117    HE JH, 1998, INT J TURBO JET ENG, V15, P95
39118    HE JH, 1999, ASME
39119    HU HC, 1954, ACTA PHYSICA SINICA, V10, P259
39120    HU HC, 1985, ACTA MECH SINICA, V17, P426
39121    LIU GL, 1990, P 1 INT S AER INT FL, P128
39122    WASHIZU K, 1955, 2518 MIT AER STRUCT
39123 NR 15
39124 TC 2
39125 SN 0253-4827
39126 J9 APPL MATH MECH-ENGL ED
39127 JI Appl. Math. Mech.-Engl. Ed.
39128 PD MAY
39129 PY 1999
39130 VL 20
39131 IS 5
39132 BP 545
39133 EP 556
39134 PG 12
39135 SC Mathematics, Applied; Mechanics
39136 GA 230NL
39137 UT ISI:000082257200012
39138 ER
39139 
39140 PT J
39141 AU Gu, CQ
39142 TI Thiele-type and Lagrange-type generalized inverse rational
39143    interpolation for rectangular complex matrices
39144 SO LINEAR ALGEBRA AND ITS APPLICATIONS
39145 DT Article
39146 ID RECURSIVENESS
39147 AB A variety of matrix rational interpolation problems include the partial
39148    realization problem for matrix power series and the minimal rational
39149    interpolation problem for general matrix functions. Different from the
39150    previous work, in this paper we consider a new method of matrix
39151    rational interpolation, with rectangular real or complex interpolated
39152    matrices and distinct real or complex interpolation points. Based on an
39153    axiomatic definition for the generalized inverse matrix rational
39154    interpolants (GMRI), GMRI are constructed in the following two forms:
39155    (i) Thiele-type continued fraction expression; (ii) an explicit
39156    determinantal formula for the denominator scalar polynomials and for
39157    the numerator matrix polynomials, which are of Lagrange-type
39158    expression. As a direct application of GMRI, a matrix rational
39159    extrapolation is introduced. (C) 1999 Elsevier Science Inc. All rights
39160    reserved.
39161 C1 Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China.
39162 RP Gu, CQ, Shanghai Univ, Dept Math, Box 30,149 Yan Chang Rd, Shanghai
39163    200072, Peoples R China.
39164 CR ANDERSON BDO, 1990, LINEAR ALGEBRA APPL, V137, P479
39165    ANTOULAS AC, 1986, IEEE T AUTOMAT CONTR, V31, P1121
39166    ANTOULAS AC, 1988, LINEAR ALGEBRA APPL, V108, P157
39167    ANTOULAS AC, 1990, LINEAR ALGEBRA APPL, V137, P511
39168    BECKERMANN B, 1992, NUMER ALGORITHMS, V3, P45
39169    BECKERMANN B, 1997, J COMPUT APPL MATH, V77, P5
39170    BULTHEEL A, 1986, J COMPUT APPL MATH, V14, P401
39171    DIECI L, 1994, LINEAR ALGEBRA APPL, V202, P25
39172    GRAVESMORRIS PR, 1983, NUMER MATH, V42, P331
39173    GRAVESMORRIS PR, 1986, CONSTR APPROX, V2, P263
39174    GU CQ, 1993, J HEFEI U TECHNOLOGY, V16, P176
39175    GU CQ, 1995, MATH NUMER SINICA, V17, P73
39176    GU CQ, 1996, J MATH RES EXPOSITIO, V16, P301
39177    GU CQ, 1996, NUMER MATH J CHINESE, V18, P135
39178    GU CQ, 1997, J COMPUT APPL MATH, V80, P71
39179    GU CQ, 1997, J COMPUT APPL MATH, V84, P137
39180    GU CQ, 1997, NUMER MATH J CHINESE, V19, P241
39181    GU CQ, 1997, NUMER SINICA, V19, P19
39182    MESSAOUDI A, 1994, LINEAR ALGEBRA APPL, V202, P71
39183    WUYTACK L, 1970, NUMER MATH, V17, P215
39184 NR 20
39185 TC 4
39186 SN 0024-3795
39187 J9 LINEAR ALGEBRA APPL
39188 JI Linear Alg. Appl.
39189 PD JUL 1
39190 PY 1999
39191 VL 295
39192 IS 1-3
39193 BP 7
39194 EP 30
39195 PG 24
39196 SC Mathematics, Applied
39197 GA 228QX
39198 UT ISI:000082148100002
39199 ER
39200 
39201 PT J
39202 AU Wei, JH
39203    Ma, JC
39204    Fan, YY
39205    Yu, NW
39206    Yang, SL
39207    Xiang, SH
39208 TI Back-attack phenomena of gas jets with submerged horizontally blowing
39209    and effects on erasion and wear of refractory lining
39210 SO ISIJ INTERNATIONAL
39211 DT Article
39212 DE back-attack phenomenon; refractory lining erosion and wear;
39213    annular-straight type tuyere; annular-spiral flat type tuyere;
39214    submerged gas blowing; horizontally side blowing; AOD refining;
39215    non-rotating gas jet; rotating gas jet; water modeling
39216 ID INJECTION
39217 AB Taken the refining process in an 18 t AOD vessel for example, the
39218    "back-attack" phenomena of the horizontal rotating and non-rotating gas
39219    jets and their effects on the erosion and wear of the refractory lining
39220    were investigated in a water model. For this refining process, the
39221    two-tuyere (lance with constant cross-sectional area) blowing of gas is
39222    operated using the annular-tube type tuyere. The geometric similarity
39223    ratio of the model unit (including the tuyere) with its prototype was
39224    1/3. The relations of the gas blowing rate, blowing pressure, angular
39225    separation between the two tuyeres, type of tuyere and other operation
39226    parameters with the back-attack action of the gas jet and the
39227    refractory lining erosion and wear were examined under the different
39228    operating modes. The appropriate back-attack frequencies and pressures
39229    were continuously monitored and measured by means of a dynamic
39230    resistance strain-meter of YD-21 type with an anti-water pressure
39231    sensor made specially. A light-beam oscilloscope of SC16A type recorded
39232    simultaneously the back-attack waves. Also, the modeling experiment on
39233    the erosion and wear of the refractory lining was carried out. The
39234    results indicated that the back-attack phenomena of the horizontal
39235    rotating and non-rotating gas jets have respectively the different
39236    features from that in a bottom blowing. On the back-attack phenomena of
39237    these two kinds of jets, the gas streams of the inner tubes
39238    (main-tuyeres) have all a governing bearing, and the annular slit pipe
39239    (sub-tuyere) streams show an evident alleviation and suppression
39240    effect. The circulative motion of the liquid in the bath would be
39241    another important reason to bring about the back-attack phenomenon of a
39242    submerged gas jet. The buoyancy force gives a considerable influence;
39243    it is able not only to increase the back-attack intensity of a
39244    horizontal gas jet, but also to enlarge the locally eroded and worn
39245    zone of the refractory lining. The influence of the tuyere position
39246    (the angle included between the two tuyeres) is not so remarkable in
39247    the conditions of the present work. The rotating motion of a horizontal
39248    gas jet may decrease the frequency and intensity of the back-attack
39249    action and reduce the eroded and worn rate and area of the refractory
39250    lining under a same blowing pressure. The annular-spiral tube type
39251    tuyere with a reasonable structure may be expected to have a good
39252    latent using power and composite effectiveness.
39253 C1 Shanghai Univ, Dept Metall Mat, Shanghai 200072, Peoples R China.
39254 RP Wei, JH, Shanghai Univ, Dept Metall Mat, Shanghai 200072, Peoples R
39255    China.
39256 CR AOKI T, 1982, INJECTION PHENOMENA, A1
39257    AOKI T, 1990, TETSU TO HAGANE, V76, P2004
39258    BLOSTEIN P, 1992, SCANINJECT 1, V6, P129
39259    BRIMACOMBE JK, 1984, METALL TRANS B, V15, P243
39260    CARLSSON G, 1986, SCAND J METALL, V15, P298
39261    CHO YW, 1986, SCANINJECT 1, V4, P4
39262    FARIAS L, 1982, INJECTION PHENOMENA, V1, E1
39263    FARMER L, 1989, P STEELM C AIME ISS, P487
39264    GUSTAFSSON S, 1984, P S INJ MET SEC REF, R15
39265    LI YZ, 1984, P 2 NAT S KIN MET RE, V2, P335
39266    OZAWA Y, 1983, T IRON STEEL I JPN, V23, P764
39267    SAKAGUCHI S, 1977, TETSU TO HAGANE, V63, S534
39268    SHIBASHI M, 1975, TETSU TO HAGANE, V61, S111
39269    SUZUKI K, 1982, T STEEL I JPN, V22, B237
39270    WEI JH, IN PRESS IRON STEELM
39271    WEI JH, IN PRESS IRONMAKING
39272 NR 16
39273 TC 3
39274 SN 0915-1559
39275 J9 ISIJ INT
39276 JI ISIJ Int.
39277 PY 1999
39278 VL 39
39279 IS 8
39280 BP 779
39281 EP 786
39282 PG 8
39283 SC Metallurgy & Metallurgical Engineering
39284 GA 227XU
39285 UT ISI:000082105900005
39286 ER
39287 
39288 PT J
39289 AU Sun, JA
39290    Zhu, ZY
39291 TI Application of differential quadrature method to solve entry flow of
39292    viscoelastic second-order fluid
39293 SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
39294 DT Article
39295 DE viscoelasticity; second-order fluid; entry flow; differential
39296    quadrature method
39297 ID EQUATIONS; CAVITY
39298 AB The entry flow of viscoelastic second-order fluid between two parallel
39299    plates is discussed. The governing equations of vorticity and the
39300    streamfunction are expanded with respect to a small parameter that
39301    characterizes the elasticity of the fluid by means of the standard
39302    perturbation method. By using the differential quadrature method with
39303    only a few grid points, high-accurate numerical solutions are obtained.
39304    The numerical results show a lot of the features of a viscoelastic
39305    second-order fluid. Copyright (C) 1999 John Wiley & Sons, Ltd.
39306 C1 NW Normal Univ, Dept Phys, Lanzhou 730070, Peoples R China.
39307    Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Math, Shanghai 200072, Peoples R China.
39308    Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
39309 RP Sun, JA, NW Normal Univ, Dept Phys, Lanzhou 730070, Peoples R China.
39310 CR BELLMAN R, 1971, J MATH ANAL APPL, V34, P235
39311    BELLMAN R, 1972, J COMPUT PHYS, V10, P40
39312    BEN CW, 1996, APPL MECH REV, V49, P1
39313    CHANG PW, 1979, COMP FLUIDS, V7, P267
39314    DATTA AB, 1976, RHEOL ACTA, V15, P403
39315    FONG CFC, 1984, NONNEWTONIAN FLUID M
39316    MINGLE JO, 1973, INT J NUMER METH ENG, V7, P103
39317    SHU C, 1992, COMPUT SYST ENG, V3, P281
39318    SHU C, 1992, INT J NUMER METH FL, V15, P791
39319    SHU C, 1994, INT COMMUN HEAT MASS, V21, P809
39320    STRIZ AG, 1994, INT J NONLINEAR MECH, V29, P665
39321    TAN KL, 1977, J NONNEWTONIAN FLUID, V3, P25
39322 NR 12
39323 TC 0
39324 SN 0271-2091
39325 J9 INT J NUMER METHOD FLUID
39326 JI Int. J. Numer. Methods Fluids
39327 PD AUG 30
39328 PY 1999
39329 VL 30
39330 IS 8
39331 BP 1109
39332 EP 1117
39333 PG 9
39334 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied;
39335    Physics, Fluids & Plasmas; Mechanics
39336 GA 228BC
39337 UT ISI:000082114800010
39338 ER
39339 
39340 PT J
39341 AU Liu, ZR
39342    Xu, ZY
39343    Debin, H
39344 TI Homoclinic orbit in ODE on GAIM of the sine-Gordon equation
39345 SO PHYSICS LETTERS A
39346 DT Article
39347 DE infinite dimensional dynamical systems; GIAM; homoclinic orbit
39348 AB In this paper, the existence of the homoclinic orbit is proved under
39349    certain parametric conditions, by studying qualitative properties of
39350    ODE on GAIM of the sine-Gordon equation. (C) 1999 Published by Elsevier
39351    Science B.V. All rights reserved.
39352 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
39353    Acad China, Inst Mech, LNM, Beijing, Peoples R China.
39354    Wuxi Light Ind Univ, Math & Phys Inst, Wuxi, Peoples R China.
39355 RP Liu, ZR, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
39356 CR BISHOP AR, 1990, SIAM J MATH ANAL, V21, P1511
39357    HALLER G, 1993, PHYSICA D, V66, P298
39358    KOVOCIC G, 1992, PHYSICA D, V59, P185
39359    LIU Z, 1995, J NONL DYN, V2, P12
39360    LIU ZG, 1995, PHYS LETT A, V204, P343
39361    TEMAM R, 1988, INFINITE DIMENSIONAL
39362    XU Z, 1993, KEXUE TONGBAO, V38, P1750
39363 NR 7
39364 TC 1
39365 SN 0375-9601
39366 J9 PHYS LETT A
39367 JI Phys. Lett. A
39368 PD JUL 26
39369 PY 1999
39370 VL 258
39371 IS 4-6
39372 BP 249
39373 EP 252
39374 PG 4
39375 SC Physics, Multidisciplinary
39376 GA 225NW
39377 UT ISI:000081968500009
39378 ER
39379 
39380 PT J
39381 AU Li, L
39382    Tang, ZJ
39383    Sun, WY
39384    Wang, PL
39385 TI Phase diagram estimation of the Al2O3SiO2-Gd2O3 system
39386 SO PHYSICS AND CHEMISTRY OF GLASSES
39387 DT Article
39388 ID REGULAR SOLUTION MODEL; OXIDE SYSTEMS; PREDICTION; GLASSES
39389 AB Limiting binaries in the Al2O3-SiO2-Gd2O3 system were assessed The
39390    binary diagrams from Toropov, Mizuno, Aramaki and Roy were optimised
39391    with the substitutional model of Kaufman and Nesor; and the approximate
39392    formula for the free energy effusion of rare earth element oxides of Wu
39393    and Pelton. The Gibbs free energies derived for pure solid oxides and
39394    stoichiometric phases were used with solution parameters to estimate
39395    the corresponding binaries, liquidus surface and isothermal sections of
39396    the ternary system at 2140, 2073 and 2023 K respectively Samples
39397    as-fired at known temperatures but with different compositions were
39398    analysed by x-ray diffraction and the results were used in the
39399    calculation of isothermal sections.
39400 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
39401    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
39402 RP Li, L, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R
39403    China.
39404 CR ARAMAKI S, 1962, J AM CERAM SOC, V45, P229
39405    BONDAR IA, 1973, CERAM INT, V13, P99
39406    BUDNIKOV PP, 1965, VS DOKL AKAD NAUK SS, V165, P1077
39407    CINIBULK MK, 1992, J AM CERAM SOC, V75, P2037
39408    DU Y, 1992, CALPHAD, V16, P221
39409    ERBE EM, 1990, J AM CERAM SOC, V73, P2708
39410    FELSCHE J, 1973, STRUCT BOND, V13, P99
39411    HILLERT M, 1970, ACTA CHEM SCAND, V24, P3618
39412    HILLERT M, 1992, CALPHAD, V16, P193
39413    HILLERT M, 1992, CALPHAD, V16, P199
39414    HIROSAKI N, 1988, J AM CERAM SOC, V71, C144
39415    HUANG JG, 1993, B CERAM, V6, P50
39416    HYATT MJ, 1987, J AM CERAM SOC, V70, P283
39417    KAUFMAN L, 1978, CALPHAD, V2, P35
39418    KLUG FJ, 1987, J AM CERAM SOC, V70, P750
39419    KOHLI JT, 1991, PHYS CHEM GLASSES, V32, P67
39420    KOLITSCH U, 1997, J ALLOY COMPD, V257, P104
39421    LI C, 1987, B CERAM, V10, P34
39422    LI L, 1997, PHYS CHEM GLASSES, V38, P323
39423    LUKAS HL, 1977, CALPHAD, V1, P225
39424    MIZUNO M, 1977, YOGYO-KYOKAI-SHI, V85, P543
39425    PELTON AD, 1986, METALL TRANS B, V17, P805
39426    SHEVTHENKO AV, 1985, THERMOCHIM ACTA, V93, P537
39427    SHISHIDO T, 1979, J MATER SCI, V14, P823
39428    SUN G, 1991, J CHIN RARE EARTH EL, V9, P128
39429    SUNDMAN B, 1981, J PHYS CHEM SOLIDS, V42, P297
39430    TOROPOV NA, 1960, T 7 INT CER C LOND, P441
39431    WANG XH, 1990, J AM CERAM SOC, V73, P770
39432    WU P, 1992, J ALLOY COMPD, V179, P259
39433    WU P, 1992, J ALLOY COMPD, V179, P259
39434 NR 30
39435 TC 4
39436 SN 0031-9090
39437 J9 PHYS CHEM GLASSES
39438 JI Phys. Chem. Glasses
39439 PD JUN
39440 PY 1999
39441 VL 40
39442 IS 3
39443 BP 126
39444 EP 129
39445 PG 4
39446 SC Chemistry, Physical; Materials Science, Ceramics
39447 GA 224PY
39448 UT ISI:000081908500003
39449 ER
39450 
39451 PT J
39452 AU Wei, CL
39453    Chen, MY
39454    Wang, ZL
39455 TI General phase-stepping algorithm with automatic calibration of phase
39456    steps
39457 SO OPTICAL ENGINEERING
39458 DT Article
39459 DE phase-stepping algorithm; Lissajous figures; interferometry
39460 ID SHIFTING INTERFEROMETRY; LEAST-SQUARES; SURFACES
39461 AB A new general algorithm for phase-stepping interferometry is presented.
39462    The calculation of the phase distribution is composed of three
39463    least-squares fitting procedures for an analysis of real
39464    interferograms. First, we calculate the initial phase distribution
39465    utilizing Lissajous figures and elliptic least-squares fitting. Second,
39466    we calculate the phase steps through the spatial least-squares fitting.
39467    Finally, we calculate the exact phase distribution through the serial
39468    least-squares fitting. Both insensitivity to phase-step errors and
39469    automatic calibration of phase steps for the new algorithm are
39470    confirmed by experiment. (C) 1999 Society of Photo-Optical
39471    Instrumentation Engineers.
39472 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
39473    Shanghai Univ, Dept Precis Mech Engn, Shanghai 201800, Peoples R China.
39474    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
39475 RP Wei, CL, Shanghai Univ, Dept Commun Engn, Jiading Campus, Shanghai
39476    201800, Peoples R China.
39477 CR BRUNING JH, 1974, APPL OPTICS, V13, P2693
39478    FARRELL CT, 1994, MEAS SCI TECHNOL, V5, P648
39479    HAN GS, 1994, APPL OPTICS, V33, P7321
39480    KIM SW, 1997, OPT ENG, V36, P3101
39481    KONG IB, 1995, OPT ENG, V34, P1400
39482    KONG IB, 1995, OPT ENG, V34, P183
39483    LASSAHN GD, 1994, OPT ENG, V33, P2039
39484    OKADA K, 1991, OPT COMMUN, V84, P118
39485 NR 8
39486 TC 6
39487 SN 0091-3286
39488 J9 OPT ENG
39489 JI Opt. Eng.
39490 PD AUG
39491 PY 1999
39492 VL 38
39493 IS 8
39494 BP 1357
39495 EP 1360
39496 PG 4
39497 SC Optics
39498 GA 224JZ
39499 UT ISI:000081895900012
39500 ER
39501 
39502 PT J
39503 AU Malomed, BA
39504 TI Multichannel switchable system for spatial solitons
39505 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS
39506 DT Article
39507 ID PHOTOREFRACTIVE MEDIA; OPTICAL SOLITONS; WAVE-GUIDE; LASER-BEAMS
39508 AB We consider a model of a nonlinear planar waveguide with a sinusoidal
39509    modulation of the refractive index in the transverse direction, which
39510    gives rise to a system of parallel troughs that may serve as channels
39511    that trap solitary beams (spatial solitons). The model can also be
39512    considered as an asymptotic one describing a dense planar array of
39513    parallel nonlinear optical fibers, with the modulation representing the
39514    corresponding effective Peierls-Nabarro potential. By means of the
39515    variational approximation and by direct simulations we demonstrate that
39516    the one-soliton state trapped in a channel has no existence threshold
39517    and is always stable. In contrast with this a stationary state of two
39518    beams trapped in two adjacent troughs has an existence border, which is
39519    found numerically. Depending on the values of the parameters, the
39520    two-soliton states are found to be dynamically stable over an
39521    indefinitely long or a finite but large distance. We consider the
39522    possibility of switching the beam from a channel where it was trapped
39523    into an adjacent one by a localized spot attracting the beam through
39524    the cross-phase modulation. The spot can be created between the troughs
39525    by a focused laser beam shone transversely to the waveguide. By means
39526    of the perturbation theory and numerical method we demonstrate that the
39527    switching is possible, provided that the spot's strength exceeds a
39528    certain threshold value. (C) 1999 Optical Society of America
39529    [S0740-3224(99)00908-X].
39530 C1 Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel.
39531    Univ New S Wales, Sch Elect Engn, Opt Commun Grp, Sydney, NSW 2052, Australia.
39532    Shanghai Univ, Wave Sci Lab, Shanghai 201800, Peoples R China.
39533 RP Malomed, BA, Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies,
39534    IL-69978 Tel Aviv, Israel.
39535 CR AFANASJEV VV, 1997, OPT LETT, V22, P1388
39536    AITCHISON JS, 1990, OPT LETT, V15, P471
39537    AITCHISON JS, 1991, OPT LETT, V16, P15
39538    BARTHELEMY A, 1985, OPT COMMUN, V55, P201
39539    BURYAK AV, 1995, PHYS LETT A, V197, P407
39540    CHEN ZG, 1996, OPT LETT, V21, P1436
39541    CHRISTODOULIDES DN, 1997, PHYS REV LETT, V78, P646
39542    CLAUSEN CB, 1997, PHYS REV LETT, V78, P4749
39543    CROSIGNANI B, 1993, J OPT SOC AM B, V10, P446
39544    EISENBERG HS, 1998, PHYS REV LETT, V81, P3383
39545    FAN SH, 1998, OPT EXPRESS, V3, P4
39546    HASEGAWA A, 1995, SOLITONS OPTICAL COM
39547    KIVSHAR YS, 1989, REV MOD PHYS, V61, P763
39548    KIVSHAR YS, 1993, PHYS REV E, V48, P3077
39549    KROLIKOWSKI W, 1998, PHYS REV LETT, V80, P3240
39550    LI QY, 1991, OPT LETT, V16, P1083
39551    MANEUF S, 1988, OPT COMMUN, V65, P193
39552    MANEUF S, 1988, OPT COMMUN, V66, P325
39553    REYNAUD F, 1990, EUROPHYS LETT, V12, P401
39554    SHALABY M, 1991, OPT LETT, V16, P1472
39555    SHIPULIN A, 1997, J OPT SOC AM B, V14, P3393
39556    SNYDER AW, 1993, OPT LETT, V18, P482
39557    VAKHITOV MG, 1973, RADIOPHYS QUANTUM EL, V16, P783
39558 NR 23
39559 TC 27
39560 SN 0740-3224
39561 J9 J OPT SOC AM B-OPT PHYSICS
39562 JI J. Opt. Soc. Am. B-Opt. Phys.
39563 PD AUG
39564 PY 1999
39565 VL 16
39566 IS 8
39567 BP 1197
39568 EP 1203
39569 PG 7
39570 SC Optics
39571 GA 223VU
39572 UT ISI:000081862900003
39573 ER
39574 
39575 PT J
39576 AU Huang, SP
39577    Yoshida, F
39578    You, JL
39579    Jiang, GC
39580    Xu, KD
39581 TI Iom motion in SiO2 melt
39582 SO JOURNAL OF PHYSICS-CONDENSED MATTER
39583 DT Article
39584 ID COMPUTER-SIMULATION; MOLECULAR-DYNAMICS; PRESSURE; SILICA; MODEL; GLASS
39585 AB Dynamical properties of ions are studied in SiO2 melt by using the
39586    molecular dynamics method. The diffusion constant, ionic conductivity
39587    and velocity autocorrelation function are calculated at various
39588    pressures and temperatures. It is found that the simulated ionic
39589    conductivities are close to experimental values, and show an increase
39590    with temperature. Diffusion constants become maximum around 10 GPa, in
39591    close relation with a marked shift in the coordination number of the Si
39592    ion. The velocity autocorrelation function and its spectra are
39593    calculated by using the memory function method. These compare well with
39594    the molecular dynamics results. Discussion is given on the pressure
39595    dependence of dynamical quantities.
39596 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
39597    Shiga Univ Med Sci, Dept Phys, Otsu, Shiga 52021, Japan.
39598 RP Huang, SP, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
39599    200072, Peoples R China.
39600 CR ANGELL CA, 1982, SCIENCE, V218, P885
39601    BERNE BJ, 1966, J CHEM PHYS, V45, P1086
39602    DELLAVALLE RG, 1991, J CHEM PHYS, V94, P5056
39603    HANSEN JP, 1986, THEORY SIMPLE LIQUID, CH7
39604    HEMMATI M, 1997, J NON-CRYST SOLIDS, V217, P236
39605    KATO T, 1990, J CHEM PHYS, V92, P5506
39606    KELLER H, 1982, METALL T B, V13, P237
39607    KUBICKI JD, 1988, AM MINERAL, V73, P941
39608    KUSHIRO I, 1983, GEOCHIM COSMOCHIM AC, V47, P1415
39609    PANISH MB, 1959, J PHYS CHEM-US, V63, P1337
39610    PING HS, 1997, J PHYS SOC JPN, V66, P1356
39611    SJOGREN L, 1982, J CHEM PHYS, V77, P3703
39612    STEBBINS GJ, 1989, AM MINERAL, V74, P960
39613    TSUNEYUKI S, 1988, PHYS REV LETT, V61, P869
39614    TSUNEYUKI S, 1989, NATURE, V339, P209
39615    VANKAMPEN NG, 1981, STOCHASTIC PROCESSES, CH3
39616    YOSHIDA F, 1989, PHYS REP, V173, P301
39617 NR 17
39618 TC 2
39619 SN 0953-8984
39620 J9 J PHYS-CONDENS MATTER
39621 JI J. Phys.-Condes. Matter
39622 PD JUL 19
39623 PY 1999
39624 VL 11
39625 IS 28
39626 BP 5429
39627 EP 5436
39628 PG 8
39629 SC Physics, Condensed Matter
39630 GA 222BU
39631 UT ISI:000081764200009
39632 ER
39633 
39634 PT J
39635 AU Gao, SC
39636    Li, J
39637 TI FDTD analysis of serial corner-fed square patch antennas for single-
39638    and dual-polarised applications
39639 SO IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION
39640 DT Article
39641 ID TIME-DOMAIN METHOD; CIRCUITS
39642 AB The finite-difference time-domain (FDTD) method is developed for the
39643    analysis of serial corner-fed square patch antennas. A special
39644    technique to model the slanted metallic boundaries of the patch antenna
39645    has been used in the general FDTD algorithm to avoid the staircase
39646    approximations. The method improves the accuracy of the original FDTD
39647    algorithm without increasing its complexity. Both the one-port and
39648    two-port cases are studied, which are for single- and dual-polarised
39649    applications, respectively, Several antenna elements are manufactured.
39650    An isolation of -25dB is achieved by the two-port antenna, which makes
39651    it suitable for many dual-polarised applications. The numerical
39652    analysis is confirmed by the experimental results and by results
39653    published elsewhere.
39654 C1 Shanghai Univ, Dept Commun Engn, Jiading 201800, Peoples R China.
39655    Fuyang Normal Univ, Dept Comp, Fuyang 236032, Peoples R China.
39656 RP Gao, SC, Shanghai Univ, Dept Commun Engn, Jiading 201800, Peoples R
39657    China.
39658 CR BAHL IJ, 1980, MICROSTRIP ANTENNAS
39659    BERENGER JP, 1994, J COMPUT PHYS, V114, P185
39660    CHEW WC, 1995, WAVES FIELDS INHOMOG, CH4
39661    CRUZ EM, 1991, ELECTRON LETT, V27, P1410
39662    DANIEL JP, 1985, P ISAP 85, P121
39663    JAMES JR, 1989, HDB MICROSTRIP ANTEN
39664    LIANG GC, 1989, IEEE T MICROW THEORY, V37, P1949
39665    LIAO ZP, 1984, SCI SINICA SER A, V27, P1063
39666    MEI KK, 1992, IEEE T ANTENN PROPAG, V40, P1001
39667    MEZZANOTTE P, 1995, IEEE MICROW GUIDED W, V5, P267
39668    MUR G, 1981, IEEE T ELECTROMAGN C, V23, P1073
39669    PIKETMAY M, 1994, IEEE T MICROW THEORY, V42, P1514
39670    POZAR DM, 1982, IEEE T ANTENN PROPAG, V30, P1191
39671    REIMEIX A, 1989, IEEE T ANTENN PROPAG, V37, P1361
39672    SHEEN DM, 1990, IEEE T MICROW THEORY, V38, P849
39673    TAFLOVE A, 1975, IEEE T MICROW THEORY, V23, P623
39674    TAFLOVE A, 1983, IEEE T ELECTROMAGN C, V25, P433
39675    TIRKAS PA, 1992, IEEE T ANTENN PROPAG, V40, P334
39676    TOLAND B, 1993, IEEE MICROW GUIDED W, V3, P423
39677    YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302
39678    ZHANG X, 1988, IEEE T MICROW THEORY, V36, P263
39679    ZHANG XL, 1988, IEEE T MICROW THEORY, V36, P1775
39680 NR 22
39681 TC 11
39682 SN 1350-2417
39683 J9 IEE PROC-MICROWAVE
39684 JI IEE Proc.-Microw. Antennas Propag.
39685 PD JUN
39686 PY 1999
39687 VL 146
39688 IS 3
39689 BP 205
39690 EP 208
39691 PG 4
39692 SC Engineering, Electrical & Electronic; Telecommunications
39693 GA 223GG
39694 UT ISI:000081832100007
39695 ER
39696 
39697 PT J
39698 AU Sun, XL
39699    Li, D
39700 TI Logarithmic-exponential penalty formulation for integer programming
39701 SO APPLIED MATHEMATICS LETTERS
39702 DT Article
39703 DE nonlinear integer programming; logarithmic-exponential penalty
39704    function; inequality constraints; integer programming
39705 AB The purpose of this note is to present a smooth penalty formulation for
39706    integer programming. By adopting the proposed logarithmic-exponential
39707    penalty function, we are able to transform an inequality constrained
39708    integer programming problem into an equivalent unconstrained problem
39709    with a smooth objective function when choosing an appropriate penalty
39710    parameter. We show that this penalty formulation preserves the
39711    convexity for convex integer programming problems. (C) 1999 Elsevier
39712    Science Ltd. All rights reserved.
39713 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
39714    Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, NT, Hong Kong.
39715 RP Sun, XL, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
39716 CR COOPER MW, 1981, MANAGE SCI, V27, P353
39717    GUPTA OK, 1985, MANAGE SCI, V31, P1533
39718    KORNER F, 1988, BIT, V28, P701
39719    SINCLAIR M, 1986, EUR J OPER RES, V27, P50
39720 NR 4
39721 TC 1
39722 SN 0893-9659
39723 J9 APPL MATH LETT
39724 JI Appl. Math. Lett.
39725 PD OCT
39726 PY 1999
39727 VL 12
39728 IS 7
39729 BP 73
39730 EP 77
39731 PG 5
39732 SC Mathematics, Applied
39733 GA 222VV
39734 UT ISI:000081806800012
39735 ER
39736 
39737 PT J
39738 AU Lu, DQ
39739    Dai, SQ
39740    Zhang, BS
39741 TI Hamiltonian formulation of nonlinear water waves in a two-fluid system
39742 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
39743 DT Article
39744 DE two-fluid system; Hamilton's principle; nonlinear water waves; shallow
39745    water assumption; Hamiltonian cononical equations
39746 ID SURFACE-WAVES; PRINCIPLE
39747 AB In this paper, it is dealt with that the Hamilton formulation of
39748    nonlinear water waves in a two-fluid system, which consists of two
39749    layers of constant-density incompressible inviscid fluid with a
39750    horizontal bottom, an interface and a free surface. The velocity
39751    potentials are expanded in power series of the vertical coordinate. By
39752    taking the kinetic thickness of lower fluid-layer and the reduced
39753    kinetic thickness of upper fluid-layer as the generalized
39754    displacements, choosing the velocity potentials at the interface and
39755    free surface as the generalized momenta and using Hamilton's principle,
39756    the Hamiltonian canonical equations for the system are derived with the
39757    Legendre transformation under the shallow water assumption. Hence the
39758    results for single-layer fluid are extended to the case of stratified
39759    fluid.
39760 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
39761 RP Lu, DQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
39762    Peoples R China.
39763 CR BENJAMIN TB, 1982, J FLUID MECH, V125, P137
39764    CRAIG W, 1994, WAVE MOTION, V19, P367
39765    DIA SQ, 1984, J SCI SINICA A, V27, P507
39766    LU DQ, 1997, MODERN MATH MECH MMM, V7, P387
39767    LUKE JC, 1967, J FLUID MECH, V27, P395
39768    MILDER DM, 1977, J FLUID MECH, V83, P159
39769    MILES JW, 1977, J FLUID MECH, V83, P153
39770    WHITHAM GB, 1967, P ROY SOC LOND A MAT, V299, P6
39771    ZAKHAROV VE, 1968, J APPL MECH TECH PHY, V2, P190
39772    ZHANG BS, 1998, ADV MECH, V28, P521
39773 NR 10
39774 TC 1
39775 SN 0253-4827
39776 J9 APPL MATH MECH-ENGL ED
39777 JI Appl. Math. Mech.-Engl. Ed.
39778 PD APR
39779 PY 1999
39780 VL 20
39781 IS 4
39782 BP 343
39783 EP 349
39784 PG 7
39785 SC Mathematics, Applied; Mechanics
39786 GA 222VP
39787 UT ISI:000081806300001
39788 ER
39789 
39790 PT J
39791 AU Gabriel, B
39792    Jiang, FR
39793 TI Application of the modified method of multiple scales to the bending
39794    problems for circular thin plate at very large deflection and the
39795    asymptotics of solutions(II)
39796 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
39797 DT Article
39798 DE large deflection; modified method of multiple scales; asymptotic
39799    behaviors
39800 AB This paper is a continuation of part ( I ), on the asymptotics
39801    behaviors of the series solutions investigated in ( I ). The remainder
39802    terms of the series solutions are estimated by the maximum norm.
39803 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
39804 RP Gabriel, B, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
39805    200072, Peoples R China.
39806 CR BISSANGA G, 1998, APPL MATH MECH, V19, P937
39807    ECKHAUS W, 1979, STUDIES MATH ITS APP, V9, P190
39808 NR 2
39809 TC 0
39810 SN 0253-4827
39811 J9 APPL MATH MECH-ENGL ED
39812 JI Appl. Math. Mech.-Engl. Ed.
39813 PD APR
39814 PY 1999
39815 VL 20
39816 IS 4
39817 BP 373
39818 EP 378
39819 PG 6
39820 SC Mathematics, Applied; Mechanics
39821 GA 222VP
39822 UT ISI:000081806300005
39823 ER
39824 
39825 PT J
39826 AU Jin, XJ
39827    Xu, ZY
39828    Li, L
39829 TI Critical driving force for martensitic transformation fcc(gamma)->
39830    hcp(epsilon) in Fe-Mn-Si shape memory alloys
39831 SO SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES
39832 DT Article
39833 DE critical driving force; martensitic transformation; Fe-Mn-Si alloy
39834 ID SYSTEM; MODEL
39835 AB By the application of Chou's new geometry model and the available data
39836    from binary Fe-Mn, Fe-Si and Mn-Si systems, as well as SGTE DATA for
39837    lattice stability parameters of three elements from Dinsdale, the Gibbs
39838    free energy as a function of temperature of the fcc(gamma) and
39839    hcp(epsilon) phases in the Fe-Mn-Si system is reevaluated. The
39840    relationship between the Neel temperature of the gamma phase and
39841    concentration of constituents in mole fraction, T-N(gamma) = 67x(Fe) +
39842    5402 x(Mn) + x(Fe)x(Mn) [761 + 689(x(Fe) - x(Mn))] - 850x(Si), is
39843    fitted and verified by the experimental results. The critical driving
39844    force for the martensitic transformation fcc(gamma) --> hcp(epsilon),
39845    Delta G(C)(gamma-->epsilon), defined as the free energy difference
39846    between gamma and epsilon phases at M-S of various alloys can also be
39847    obtained with a known M-S. It is found that the driving force varies
39848    with the composition of alloys, e. g. Delta G(C)(gamma-->epsilon) = -
39849    100.99 J/mol in Fe-27.0Mn-6.0Si and Delta G(C)(epsilon)(gamma-->) = -
39850    122.11 J/mol in Fe-26.91Mn-3.37Si. The compositional dependence of
39851    critical driving force accorded with the expression formulated by Hsu
39852    of the critical driving force for fcc(gamma) --> hcp(epsilon)
39853    transformation in alloys with low stacking fault energy (SFE), i. e.
39854    Delta G(C)(gamma-epsilon) = A . gamma + B, where gamma is the stacking
39855    fault energy (SFE) and A and B are constants related to materials.
39856 C1 Shanghai Jiao Tong Univ, Dept Mat Sci, Shanghai 200030, Peoples R China.
39857    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
39858 RP Xu, ZY, Shanghai Jiao Tong Univ, Dept Mat Sci, Shanghai 200030, Peoples
39859    R China.
39860 CR CHOU KC, 1996, CALPHAD, V20, P395
39861    CHOU KC, 1997, METALL MATER TRANS B, V28, P439
39862    DINSDALE AT, 1991, CALPHAD, V15, P317
39863    FORSBERG A, 1993, J PHASE EQUILIB, V14, P354
39864    HILLERT M, 1978, CALPHAD, V2, P227
39865    HSU TY, 1980, ACTA METALL SIN, V16, P430
39866    HSU TY, 1993, SHANGHAI METALS, V15, P1
39867    HUANG WM, 1989, CALPHAD, V13, P243
39868    INDEN G, 1981, PHYSICA B, V103, P82
39869    LACAZE J, 1991, METALL TRANS A, V22, P2211
39870    LI L, 1997, CALPHAD, V21, P443
39871    MURAKAMI M, 1987, P INT C MARTENS TRAN, P985
39872    SATO A, 1986, ACTA METALL, V34, P287
39873 NR 13
39874 TC 8
39875 SN 1006-9321
39876 J9 SCI CHINA SER E
39877 JI Sci. China Ser. E-Technol. Sci.
39878 PD JUN
39879 PY 1999
39880 VL 42
39881 IS 3
39882 BP 266
39883 EP 274
39884 PG 9
39885 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary
39886 GA 221UG
39887 UT ISI:000081744700005
39888 ER
39889 
39890 PT J
39891 AU Lu, MG
39892    Cai, YC
39893 TI Chen's theorem in arithmetical progressions
39894 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
39895 DT Article
39896 DE Chen's Theorem; sieve; mean value theorem
39897 AB Let N be a sufficiently large even integer and
39898    q greater than or equal to 1, (l(i), q) = 1 (i = 1, 2),
39899    l(1) + l(2) = N(mod q).
39900    It is proved that the equation
39901    N = p + P-2, p = l(1) (mod q), P-2 = l(2) (mod q)
39902    has infinitely many solutions for almost all q less than or equal to
39903    N-1/37, where p is a prime and P-2 is an almost prime with at most two
39904    prime factors.
39905 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
39906 RP Lu, MG, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
39907 CR CHEN JR, 1966, KEXUE TONGBAO, V17, P385
39908    CHEN JR, 1973, SCI SINICA, V16, P157
39909    CHEN JR, 1978, SCI SINICA, V21, P421
39910    IWANIEC H, 1981, RECENT PROGR ANAL NU, V2, P203
39911    LIU JY, 1997, ACTA ARITH, V82, P197
39912    LIU MC, LECT NOTES MATH, V247, P227
39913    PAN CD, 1981, GOLDBACH CONJECTURE
39914    RICHERT HE, 1953, J FUR MATH, V191, P179
39915    TAMES RD, 1942, AM J MATH, V64, P539
39916    VANDERCORPUT JG, 1939, ACTA ARITH, V33, P181
39917    VINOGRADOV IM, 1937, DOKL AKAD NAUK SSSR, V15, P291
39918    ZULAUF A, 1952, J REINE ANGEW MATH, V190, P169
39919 NR 12
39920 TC 0
39921 SN 1006-9283
39922 J9 SCI CHINA SER A
39923 JI Sci. China Ser. A-Math. Phys. Astron.
39924 PD JUN
39925 PY 1999
39926 VL 42
39927 IS 6
39928 BP 561
39929 EP 569
39930 PG 9
39931 SC Mathematics, Applied; Mathematics
39932 GA 219WY
39933 UT ISI:000081632100001
39934 ER
39935 
39936 PT J
39937 AU Han, JT
39938    Sun, GX
39939    Fang, JH
39940    Bao, BR
39941 TI Solvent extraction of uranium (VI) by N-octanoylpyrrolidine in toluene
39942 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
39943 DT Letter
39944 AB The extraction of uranium(VI) from nitric acid by N-octanoylpyrrolidine
39945    (OPOD) in toluene has been investigated at varying concentrations of
39946    nitric acid, extractant salting-out agent LiNO3 and at different
39947    temperatures. The mechanism of extraction is discussed in the light of
39948    the obtained results.
39949 C1 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
39950    Shanghai Univ, Sch Chem & Chem Engn, Shanghai 201800, Peoples R China.
39951 RP Han, JT, Chinese Acad Sci, Shanghai Inst Nucl Res, POB 800-204,
39952    Shanghai 201800, Peoples R China.
39953 CR STANLEY RS, 1968, ORGANIC FUNCTIONAL G, V1, P227
39954    SUN GX, 1998, J RADIOANAL NUCL CH, V232, P245
39955    SUN GX, 1998, NUCL SCI TECHNOL, V9, P115
39956    SUN GX, 1998, THESIS CHINESE ACAD, P50
39957    THIOLLET G, 1989, SOLVENT EXTR ION EXC, V7, P813
39958 NR 5
39959 TC 1
39960 SN 0236-5731
39961 J9 J RADIOANAL NUCL CHEM
39962 JI J. Radioanal. Nucl. Chem.
39963 PD JUL
39964 PY 1999
39965 VL 241
39966 IS 1
39967 BP 215
39968 EP 217
39969 PG 3
39970 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
39971    & Technology
39972 GA 219LF
39973 UT ISI:000081608200035
39974 ER
39975 
39976 PT J
39977 AU Hu, A
39978    Fang, YH
39979    Young, JF
39980 TI Humidity dependence of apparent dielectric constant for DSP cement
39981    materials at high frequencies
39982 SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
39983 DT Article
39984 AB The relationship between humidity and dielectric constant for cement
39985    densified with small particles (DSP) has been studied in the relative
39986    humidity range 0%-93% and the frequency range 1 MHz to 1 GHz. The
39987    calculated dielectric constant appears to increase with increasing
39988    humidity as a linear relation at fixed frequency. According to
39989    experimental data and basic principles for dielectrics, two
39990    experimental expressions are suggested for heterogeneous dielectric
39991    materials to describe the observed behavior of the dielectric constant.
39992    The expressions fit the experimental data well in the frequency range
39993    studied. Apparent dielectric constant decreases with increasing
39994    frequency. Polarization of DSP cement is also discussed.
39995 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
39996    Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA.
39997    Univ Illinois, Ctr Cement Composite Mat, Urbana, IL 61801 USA.
39998 RP Hu, A, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R
39999    China.
40000 CR BACHE HH, 1981, P 2 INT C SUP CONCR, P5
40001    BIRCHALL JD, 1981, NATURE, V289, P388
40002    BRUNAUER S, 1972, 3689294, US
40003    BUCHANAN RC, 1986, CERAMIC MAT ELECT, P39
40004    CARTER WJ, 1984, J MATER SCI LETT, V3, P1083
40005    FRANKLIN AD, 1971, PHYSICS ELECT CERA A, P451
40006    GOODMAN G, 1986, CERAMIC MAT ELECT, P84
40007    HAMMOND E, 1955, ENGINEER, V199, P78
40008    HJORTH L, 1983, PHILOS T ROY SOC A, V310, P167
40009    KINGERY WD, 1976, INTRO CERAMICS, P947
40010    LEIGH DW, 1989, ADV CERAM, V26, P255
40011    MOULSON AJ, 1990, ELECTROCERAMIC MAT P, P62
40012    OTTO GP, 1991, IEEE T INSTRUM MEAS, V40, P742
40013    PAYNE DA, 1977, CERAMIC MICROSTRUCTU, P584
40014    PEREZPENA M, 1987, ADV CERAM, V26, P279
40015    RIXOM MR, 1978, CHEM ADMIXTURE CONCR
40016    ROY DM, 1973, J AM CERAM SOC, V56, P549
40017    SWAMY RN, 1979, J MATER SCI, V14, P1521
40018    TAMAS FD, 1982, CEMENT CONCRETE RES, V12, P115
40019    TAYLOR MA, 1974, CEMENT CONCRETE RES, V4, P881
40020    WILKOSZ DE, 1995, J AM CERAM SOC, V78, P1673
40021    WISE S, 1985, MAT RES SOC S P, V42
40022    YOUNG JF, 1967, J APPL CHEM-USSR, V17, P241
40023 NR 23
40024 TC 6
40025 SN 0002-7820
40026 J9 J AMER CERAM SOC
40027 JI J. Am. Ceram. Soc.
40028 PD JUL
40029 PY 1999
40030 VL 82
40031 IS 7
40032 BP 1741
40033 EP 1747
40034 PG 7
40035 SC Materials Science, Ceramics
40036 GA 215ZY
40037 UT ISI:000081416900013
40038 ER
40039 
40040 PT J
40041 AU Liu, ZR
40042    Huang, DB
40043 TI A method to generate new exact solutions from a known stationary
40044    solution
40045 SO CHINESE PHYSICS LETTERS
40046 DT Article
40047 ID EQUATION; FORM
40048 AB By combining the Backlund transformations and the AKNS system[ Study in
40049    Appl. Math. 53 (1974) 249.] which is a linear eigenvalue problem of the
40050    corresponding evolution equation, a method to find new exact solutions
40051    from known stationary solutions for nonlinear integrable equations is
40052    proposed. As an example, Korteweg de Vries (Kd V) equation is used to
40053    illustrate this method, and a class of new exact solutions of KdV
40054    equation is obtained.
40055 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
40056    Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R China.
40057 RP Liu, ZR, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
40058 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
40059    ALBOWITZ MJ, 1974, STUDY APPL PHYS, V53, P249
40060    CHEN XJ, 1998, CHINESE PHYS LETT, V15, P504
40061    CROSS MC, 1993, REV MOD PHYS, V65, P851
40062    HERMAN W, 1990, J PHYS A, V23, P4805
40063    KHATER AH, 1997, CHAOS SOLITON FRACT, V8, P1901
40064    KONNO K, 1975, PROG THEOR PHYS, V53, P1652
40065    LU XQ, 1997, CHINESE PHYS LETT, V14, P561
40066    MALFLIET W, 1993, J PHYS A, V26, L723
40067    OLVER PJ, 1986, APPL LIE GROUPS DIFF
40068    ROGERS C, 1982, BACKLUND TRANSFORMAT
40069    WEISS J, 1983, J MATH PHYS, V24, P522
40070    WU KX, 1998, CHINESE PHYS LETT, V15, P654
40071 NR 13
40072 TC 3
40073 SN 0256-307X
40074 J9 CHIN PHYS LETT
40075 JI Chin. Phys. Lett.
40076 PY 1999
40077 VL 16
40078 IS 5
40079 BP 313
40080 EP 315
40081 PG 3
40082 SC Physics, Multidisciplinary
40083 GA 215CA
40084 UT ISI:000081363300001
40085 ER
40086 
40087 PT J
40088 AU Deng, K
40089    Zhou, YM
40090    Ren, ZM
40091    Gong, T
40092    Jiang, GC
40093 TI Electromagnetic characteristics of levitation melting with cold crucible
40094 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
40095 DT Article
40096 DE cold crucible; electromagnetic induction; levitation melting; numerical
40097    simulation
40098 AB By using the numerical simulation method with quasi-three-dimensions
40099    and the modified coupled current model presented in the previous work,
40100    the influences of the structure of cold crucible, the power frequency
40101    and the electricity property of melting charge on the electromagnetic
40102    field in the levitation melting processes were analyzed. The
40103    fundamentals for the technique design of levitation melting with cold
40104    crucible were presented. It is shown that the levitation melting with
40105    cold crucible is a self-balanced and self-stable process, and the cold
40106    crucible can be segmented 16 similar to 20 sectors for high frequency
40107    electromagnetic field and/or 4 similar to 8 sectors for lower frequency
40108    one. It is also shown that the change of the power frequency has great
40109    influence on the magnetic flux density on the surface of metallic
40110    charge, but for nonmetallic charge, the main influence on the magnetic
40111    flux density is the segmented number of cold crucible.
40112 C1 Shanghai Univ, Coll Mat, Shanghai 200072, Peoples R China.
40113 CR ASAI S, 1990, P 6 INT IR STEEL CON, P370
40114    DENG K, 1994, J SHANGHAI U TECH, V15, P87
40115    DENG K, 1995, CHINESE J NONFERROUS, V5, P409
40116    DENG K, 1996, T NONFERR METAL SOC, V6, P12
40117    GARINIER M, 1990, P 6 INT IR STEEL CON, P226
40118    TANAKA T, 1991, ISIJ INT, V31, P1416
40119    TANAKA T, 1991, ISIJ INT, V31, P350
40120    TOH T, 1990, P 6 INT IRON STEEL C, P239
40121 NR 8
40122 TC 0
40123 SN 1003-6326
40124 J9 TRANS NONFERROUS METAL SOC CH
40125 JI Trans. Nonferrous Met. Soc. China
40126 PD JUN
40127 PY 1999
40128 VL 9
40129 IS 2
40130 BP 387
40131 EP 392
40132 PG 6
40133 SC Metallurgy & Metallurgical Engineering
40134 GA 212JX
40135 UT ISI:000081214500036
40136 ER
40137 
40138 PT J
40139 AU Ding, R
40140    Zhu, ZY
40141    Cheng, CJ
40142 TI Some dynamical properties of a viscoelastic cylindrical shell
40143 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
40144 DT Article
40145 DE viscoelasticity; cylindrical shell; stability
40146 AB In this paper, the dynamic,stability of a viscoelastic circular
40147    cylindrical shell subject to an axial compressive force and a uniformly
40148    distributed radial compressive load is discussed. By using the Laplace
40149    transformation, stability conditions of viscoelastic shell under
40150    constant loads are yielded. By using synthetically the classical
40151    dynamic methods, the various dynamical properties for the dynamical
40152    system de: fined by the viscoelastic shell and the effect of parameters
40153    on the stability of structure are obtained.
40154 C1 SW Jiaotong Univ, Mech Postdoctoral Stn, Chengdu 610031, Peoples R China.
40155    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
40156 RP Ding, R, SW Jiaotong Univ, Mech Postdoctoral Stn, Chengdu 610031,
40157    Peoples R China.
40158 CR DROZDOV A, 1993, MECH RES COMMUN, V20, P481
40159    LADOPOULOS EG, 1991, MECH RES COMMUN, V18, P111
40160    TYLIKOWSKI A, 1989, INT J MED SCI, V31, P591
40161    YANG TQ, 1989, THEORYT VISCOELASTIC
40162 NR 4
40163 TC 0
40164 SN 0253-4827
40165 J9 APPL MATH MECH-ENGL ED
40166 JI Appl. Math. Mech.-Engl. Ed.
40167 PD MAR
40168 PY 1999
40169 VL 20
40170 IS 3
40171 BP 233
40172 EP 240
40173 PG 8
40174 SC Mathematics, Applied; Mechanics
40175 GA 212FB
40176 UT ISI:000081205600001
40177 ER
40178 
40179 PT J
40180 AU Peng, RR
40181    Chen, JM
40182    Peng, K
40183 TI Construction of wavelet bases with vanishing movement
40184 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
40185 DT Article
40186 DE vanishing movement; scaling function; orthogonal mother wavelet
40187 AB A kind of mother wavelet with good properties is constructed for any N
40188    greater than or equal to 2, which is differentiable for N times,
40189    converges to Zero at the order of O( I t I-N)( t --> infinity) and has
40190    N - 2 order of vanishing movement and some property of symmetry
40191    meanwhile. A computation example for N = 4 is also given.
40192 C1 Shanghai Univ, Coll Sci, Shanghai 200072, Peoples R China.
40193    Changzhou Text Ind Coll, Changzhou 213000, Peoples R China.
40194 RP Peng, RR, Shanghai Univ, Coll Sci, Shanghai 200072, Peoples R China.
40195 CR CHUI JT, 1995, INTRO WAVELET
40196    LI SX, 1994, ELEMENTARY WAVELET I
40197    PENG RR, 1994, J SHANGHAI U TECHNOL, V15, P299
40198 NR 3
40199 TC 0
40200 SN 0253-4827
40201 J9 APPL MATH MECH-ENGL ED
40202 JI Appl. Math. Mech.-Engl. Ed.
40203 PD MAR
40204 PY 1999
40205 VL 20
40206 IS 3
40207 BP 247
40208 EP 253
40209 PG 7
40210 SC Mathematics, Applied; Mechanics
40211 GA 212FB
40212 UT ISI:000081205600003
40213 ER
40214 
40215 PT J
40216 AU Zhang, NH
40217    Cheng, CJ
40218 TI A variational principle of perturbed motion on viscoelastic thin plates
40219    with applications
40220 SO ACTA MECHANICA SOLIDA SINICA
40221 DT Article
40222 DE viscoelastic thin plate; perturbed motion; variational principle;
40223    stability
40224 AB In this paper, in the light of the Boltzmann superposition principle in
40225    linear viscoelasticity, a mathematical model of perturbed motion on
40226    viscoelastic thin plates is established. The corresponding variational
40227    principle is obtained in a convolution bilinear form. For application
40228    the problems of free vibration, forced vibration and stability of a
40229    viscoelastic simply-supported rectangular thin plate are considered.
40230    The results show that numerical solutions agree well with analytical
40231    solutions.
40232 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
40233    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
40234 CR CEDERBAUM G, 1992, J APPL MECH-T ASME, V59, P16
40235    CEDERBAUM G, 1992, MECH STRUCT MACH, V20, P37
40236    CHENG CJ, 1998, INT J SOLIDS STRUCT, V35, P4491
40237    CHIEN WZ, 1980, VARIATIONAL METHODS
40238    DALLASTA A, 1994, INT J SOLIDS STRUCT, V31, P247
40239    LEITMAN JM, HDB PHYSIK, V6, P10
40240    LUO E, 1990, ACTA MECH SINICA, V22, P484
40241    ODEN JT, 1983, VARIATIONAL METHODS
40242    REDDY JN, 1976, INT J SOLIDS STRUCT, V16, P227
40243    SHIMADA I, 1979, PROG THEOR PHYS, V61, P1605
40244    WOLF A, 1985, PHYS D, V16, P545
40245 NR 11
40246 TC 2
40247 SN 0894-9166
40248 J9 ACTA MECH SOLIDA SINICA
40249 JI Acta Mech. Solida Sin.
40250 PD JUN
40251 PY 1999
40252 VL 12
40253 IS 2
40254 BP 121
40255 EP 128
40256 PG 8
40257 SC Materials Science, Multidisciplinary; Mechanics
40258 GA 213TR
40259 UT ISI:000081289800004
40260 ER
40261 
40262 PT J
40263 AU Li, Y
40264 TI On the symmetry group and harmonic potentials of a generalized multipole
40265 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
40266 DT Article
40267 AB The relation between the M function for a generalized multipole and the
40268    pure mathematical M function is discussed. The concept of rotation
40269    sense has been replaced by the clearer and more general concept of
40270    screw sense. The influence of the infinitesimal orders of harmonic
40271    potentials on aberrations in connection with the constraints of the
40272    symmetry group of a GM are discussed. A simple, unified and powerful
40273    method to determine the constraint relations among the harmonic
40274    potentials of a generalized multipole or ordinary multipole is given
40275    and rigorously proved.
40276 C1 Shanghai Univ Sci & Technol, Res Sect Appl Phys, Shanghai 200093, Peoples R China.
40277 RP Li, Y, Shanghai Univ Sci & Technol, Res Sect Appl Phys, Shanghai
40278    200093, Peoples R China.
40279 CR ARFKEN G, 1985, MATH METHODS PHYSICI
40280    HAMERMESH M, 1962, GROUP THEORY ITS APP
40281    JOHN F, 1982, PARTIAL DIFFERENTIAL
40282    LANCASTER P, 1985, THEORY MATRICES
40283    LI Y, 1986, OPTIK, V75, P8
40284    LI Y, 1987, OPTIK, V76, P48
40285    LI Y, 1988, ACTA MATH SCI, V8, P131
40286    LI Y, 1988, OPTIK, V80, P39
40287    LI Y, 1992, ACTA PHYS SINICA, V41, P353
40288    LI Y, 1993, ADV ELECTRON EL PHYS, V85, P231
40289    LI Y, 1995, J PHYS D APPL PHYS, V28, P2007
40290    LI Y, 1995, SCI CHINA SER A, V38, P963
40291    LI Y, 1996, J PHYS D APPL PHYS, V29, P1133
40292    SCHOUTEN JA, 1954, RICCI CALCULUS
40293 NR 14
40294 TC 0
40295 SN 0022-3727
40296 J9 J PHYS-D-APPL PHYS
40297 JI J. Phys. D-Appl. Phys.
40298 PD JUN 21
40299 PY 1999
40300 VL 32
40301 IS 12
40302 BP 1336
40303 EP 1345
40304 PG 10
40305 SC Physics, Applied
40306 GA 211GV
40307 UT ISI:000081153300010
40308 ER
40309 
40310 PT J
40311 AU Feng, SS
40312    Wang, ZX
40313    Qiu, XJ
40314 TI SU(2) charges as angular momentum in N=1 self-dual supergravity
40315 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
40316 DT Article
40317 ID GRAVITY; VARIABLES
40318 AB The N = 1 self-dual supergravity has SL(2, C) symmetry. This symmetry
40319    results in SU(2) charges as the angular momentum. As in
40320    nonsupersymmetric self-dual gravity, the currents are also of their
40321    potentials and are therefore identically conserved. The charges are
40322    generally invariant and gauge covariant under local SU(2) transforms
40323    and approach being, rigid at spatial infinity. The Poisson brackets
40324    constitute the su(2) algebra and hence can be interpreted as the
40325    generally covariant conservative angular momentum.
40326 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
40327    CCAST, World Lab, Beijing 100080, Peoples R China.
40328    Acad Sinica, Inst Nucl Res, Shanghai 201800, Peoples R China.
40329    Shanghai Teachers Univ, Ctr String Theory, Shanghai 200234, Peoples R China.
40330 RP Feng, SS, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
40331 CR ASHTEKAR A, 1986, PHYS REV LETT, V57, P2244
40332    DAI YB, 1987, GAUGE THEORY INTERAC
40333    DUAN YS, 1963, ACTA PHYS SINICA, V19, P589
40334    DUAN YS, 1996, COMMUN THEOR PHYS, V25, P99
40335    FENG SS, 1995, GEN RELAT GRAVIT, V27, P887
40336    FENG SS, 1995, GRAV COS, V1, P319
40337    FENG SS, 1996, COMMUN THEOR PHYS, V25, P485
40338    FENG SS, 1996, INT J THEOR PHYS, V35, P267
40339    FENG SS, 1996, NUCL PHYS B, V468, P163
40340    GOROBEY NN, 1990, CLASSICAL QUANT GRAV, V7, P67
40341    JACOBSON T, 1988, CLASSICAL QUANT GRAV, V5, P923
40342    SAMUEL J, 1987, PRAMANA-J PHYS, V28, L429
40343    WEINBERG S, 1995, QUANTUM THEORY FIELD, V1
40344 NR 13
40345 TC 0
40346 SN 0020-7748
40347 J9 INT J THEOR PHYS
40348 JI Int. J. Theor. Phys.
40349 PD MAY
40350 PY 1999
40351 VL 38
40352 IS 5
40353 BP 1415
40354 EP 1422
40355 PG 8
40356 SC Physics, Multidisciplinary
40357 GA 210QH
40358 UT ISI:000081115800003
40359 ER
40360 
40361 PT J
40362 AU Cha, KH
40363    Guo, BY
40364    Kwon, YH
40365 TI Parameter estimation by spectral approximation
40366 SO APPLIED MATHEMATICS AND COMPUTATION
40367 DT Article
40368 DE parameter estimation; spectral approximation; convergence and spectral
40369    accuracy
40370 AB In this paper, Chebyshev and Legendre approximations are proposed for
40371    estimating parameters in differential equations, which are easy to be
40372    performed. The convergence and the spectral accuracy are proved, even
40373    without some conditions as imposed in other papers. The numerical
40374    results show the advantages of this new approach. (C) 1999 Elsevier
40375    Science Inc. All rights reserved. AMS Classification: 34A55; 65L10;
40376    65L99.
40377 C1 Pohang Univ Sci & Technol, Dept Math, Pohang 790784, South Korea.
40378    Shanghai Univ, Dept Math, Shanghai, Peoples R China.
40379 RP Guo, BY, Pohang Univ Sci & Technol, Dept Math, Pohang 790784, South
40380    Korea.
40381 CR ACAR R, 1993, SIAM J CONTROL OPTIM, V31, P1221
40382    BANKS HT, 1989, ESTIMATION TECHNIQUE
40383    BERNARDI C, 1992, APPROXIMATIONS SPECT
40384    CANUTO C, 1982, MATH COMPUT, V38, P67
40385    CANUTO C, 1988, SPECTRAL METHODS FLU
40386    CHO CK, 1999, APPL MATH COMPUT, V100, P265
40387    FRIND EO, 1973, WATER RES R, V9, P1397
40388    GILBARG D, 1983, PARTIAL DIFFERENTIAL
40389    GOTTLIEB D, 1997, NUMERICAL ANAL SPECT
40390    GUO B, UNPUB PARAMETER IDEN
40391    GUO B, 1998, SPECTRAL METHODS THE
40392    NUTBROWN DA, 1975, WATER RESOUR RES, V11, P581
40393    RABINOWITZ PH, 1970, LECT NOTES MATH, V648, P97
40394    RICHTER GR, 1981, MATH COMPUT, V36, P375
40395    RICHTER GR, 1981, SIAM J APPL MATH, V41, P210
40396    VAINIKKO E, 1992, ACTA COMM U TARTUENS, V937, P90
40397    VAINIKKO E, 1993, Z ANAL ANGW, V12, P327
40398    YEH WWG, 1986, WATER RESOUR RES, V22, P95
40399 NR 18
40400 TC 0
40401 SN 0096-3003
40402 J9 APPL MATH COMPUT
40403 JI Appl. Math. Comput.
40404 PD SEP 1
40405 PY 1999
40406 VL 104
40407 IS 1
40408 BP 1
40409 EP 14
40410 PG 14
40411 SC Mathematics, Applied
40412 GA 210ME
40413 UT ISI:000081108600001
40414 ER
40415 
40416 PT J
40417 AU Guo, BY
40418 TI Error estimation of Hermite spectral method for nonlinear partial
40419    differential equations
40420 SO MATHEMATICS OF COMPUTATION
40421 DT Article
40422 DE Hermite approximation; Burgers equation; error estimations
40423 ID DOMAINS
40424 AB Hermite approximation is investigated. Some inverse inequalities,
40425    imbedding inequalities and approximation results are obtained. A
40426    Hermite spectral scheme is constructed for Burgers equation. The
40427    stability and convergence of the proposed scheme are proved strictly.
40428    The techniques used in this paper are also applicable to other
40429    nonlinear problems in unbounded domains.
40430 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
40431 RP Guo, BY, Pohang Univ Sci & Technol, Pohang 790784, South Korea.
40432 CR ADAMS RA, 1975, SOBOLEV SPACES
40433    BLACK K, UNPUB SPECTRAL ELEME
40434    BOYD JP, 1987, J COMPUT PHYS, V69, P112
40435    CHRISTOV CI, 1982, SIAM J APPL MATH, V42, P1337
40436    COULAUD O, 1990, COMPUT METHOD APPL M, V80, P451
40437    COURANT R, 1928, MATH ANN, V100, P32
40438    FUNARO D, 1990, MATH COMPUT, V57, P597
40439    FUNARO D, 1991, ORTHOGONAL POLYNOMIA, P263
40440    GUO BY, 1965, RR SUST
40441    GUO BY, 1974, ACTA MATH SINICA, V17, P242
40442    GUO BY, 1994, CONT MATH, V163, P33
40443    HARDY GH, 1952, INEQUALITIES
40444    IRANZO V, 1992, COMPUT METHOD APPL M, V98, P105
40445    MADAY Y, 1985, RECH AEROSPATIALE, P353
40446    MAVRIPLIS C, 1989, J COMPUT PHYS, V80, P480
40447    NESSEL RJ, APPROXIMATION THEORY, V2, P479
40448    STETTER HJ, 1966, NUMERICAL SOLUTIONS, P111
40449    WEIDEMAN JAC, 1992, NUMER MATH, V61, P409
40450 NR 18
40451 TC 20
40452 SN 0025-5718
40453 J9 MATH COMPUT
40454 JI Math. Comput.
40455 PD JUL
40456 PY 1999
40457 VL 68
40458 IS 227
40459 BP 1067
40460 EP 1078
40461 PG 12
40462 SC Mathematics, Applied
40463 GA 209PV
40464 UT ISI:000081057700010
40465 ER
40466 
40467 PT J
40468 AU Chen, Y
40469    Wang, JX
40470    Yu, BC
40471    Cai, RF
40472    Huang, ZE
40473    Zhang, JM
40474 TI Preparation and structural characterization of star-shaped
40475    C-60-p-methylstyrene copolymers
40476 SO JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS
40477 DT Article
40478 DE fullerenes; polymers; chemical synthesis; infrared spectroscopy; X-ray
40479    diffraction
40480 ID POLYMER-SUBSTITUTED FULLERENES; ELECTROCHEMICAL DETECTION; C-60;
40481    BUCKMINSTERFULLERENE; <60>FULLERENE; CHEMISTRY; STYRENE; C60;
40482    PARAMAGNETISM; FLAGELLENES
40483 AB Highly soluble star-shaped C-60-p-methylstyrene copolymers with
40484    different C-60 contents were prepared in the toluene-tetrahydrofuran
40485    mixed solvents. The average number of grafted polymer chains onto the
40486    [60]fullerene was approximately between 1 and 4. Covalent attachment of
40487    C-60 to the terminal of active n-butyl-terminated poly(p-methylstyrene)
40488    (PPMS) backbone modified greatly the physical and chemical properties
40489    of the parent polymer. Its thermal stability and absorption degree at
40490    longer wavelengths were apparently enhanced. Interestingly, unlike pure
40491    PPMS polymer without paramagnetism, there are two kinds of paramagnetic
40492    species in the copolymer. This paramagnetic phenomenon can be
40493    interpreted most logically as being associated with a full charge
40494    transfer from a PMS unit of grafted chains to the C-60 core. First, if
40495    upon addition of the C-60 core an electron is transferred from the
40496    nearby PMS unit, then both would be in doublet states, which couple to
40497    give a close-lying singlet and triplet. The effect of C-60 chemical
40498    modification on the morphological structure and the X-ray diffraction
40499    structure of the parent polymer are also discussed. (C) 1999 Elsevier
40500    Science Ltd. All rights reserved.
40501 C1 Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China.
40502    Shanghai Univ, Dept Chem & Chem Engn, Shanghai 201800, Peoples R China.
40503 RP Chen, Y, Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China.
40504 CR CAMPS X, 1997, CHEM-EUR J, V3, P561
40505    CHEN Y, 1995, POLYM BULL, V35, P705
40506    CHEN Y, 1996, J APPL POLYM SCI, V61, P2185
40507    CHEN Y, 1996, J POLYM SCI POL CHEM, V34, P3297
40508    CHEN Y, 1996, J POLYM SCI POL PHYS, V34, P631
40509    CHEN Y, 1996, SOLID STATE COMMUN, V97, P239
40510    CHEN Y, 1996, SYNTHETIC COMMUN, V26, P3699
40511    CHEN Y, 1997, EUR POLYM J, V33, P291
40512    CHEN Y, 1997, EUR POLYM J, V33, P823
40513    CHEN Y, 1998, EUR POLYM J, V34, P137
40514    CHEN Y, 1998, EUR POLYM J, V34, P1755
40515    CHEN Y, 1998, EUR POLYM J, V34, P421
40516    CHEN Y, 1998, J POLYM SCI POL PHYS, V36, P2653
40517    DUBOIS D, 1991, J AM CHEM SOC, V113, P4364
40518    DUBOIS D, 1991, J AM CHEM SOC, V113, P7773
40519    EDERLE Y, 1997, MACROMOLECULES, V30, P2546
40520    FAGAN PJ, 1992, CARBON, V30, P1213
40521    FAGAN PJ, 1992, J AM CHEM SOC, V114, P9697
40522    FISHER JE, 1993, J PHYS CHEM SOLIDS, V54, P1725
40523    FUJIMOTO T, 1965, J POLYM SCI A, V3, P2259
40524    GILMAN H, 1964, J ORGANOMET CHEM, V2, P447
40525    GUERRA G, 1991, POLYM COMMUN, V32, P430
40526    HIGASHI H, 1961, MAKROMOL CHEM, V43, P245
40527    HIRSCH A, 1992, ANGEW CHEM INT EDIT, V31, P766
40528    HIRSCH A, 1993, CHEM BER, V126, P1061
40529    ISAACS L, 1993, HELV CHIM ACTA, V76, P1231
40530    JEHOULET C, 1991, J AM CHEM SOC, V113, P5456
40531    JEHOULET C, 1992, J AM CHEM SOC, V114, P4237
40532    KAWAMURA T, 1982, MAKROMOL CHEM, V183, P153
40533    KRATSCHMER W, 1990, NATURE, V347, P354
40534    MARSHALL GL, 1985, EUR POLYM J, V21, P949
40535    MILLIKEN J, 1991, CHEM MATER, V3, P386
40536    OHSAWA Y, 1992, J CHEM SOC CHEM 0515, P781
40537    PRATO M, 1997, J MATER CHEM, V7, P1097
40538    RASINKANGAS M, 1993, J AM CHEM SOC, V115, P4901
40539    SAMULSKI ET, 1992, CHEM MATER, V4, P1153
40540    STEWART C, 1996, CHEM COMMUN, P1383
40541    SUBRAMANIAN R, 1996, J PHYS CHEM-US, V100, P16327
40542    SUN YP, 1996, MACROMOLECULES, V29, P8441
40543    TADOKORO H, 1959, B CHEM SOC JPN, V32, P313
40544    WIGNALL GD, 1995, MACROMOLECULES, V28, P6000
40545 NR 41
40546 TC 2
40547 SN 0022-3697
40548 J9 J PHYS CHEM SOLIDS
40549 JI J. Phys. Chem. Solids
40550 PD JUL
40551 PY 1999
40552 VL 60
40553 IS 7
40554 BP 949
40555 EP 956
40556 PG 8
40557 SC Chemistry, Multidisciplinary; Physics, Condensed Matter
40558 GA 208DZ
40559 UT ISI:000080976100013
40560 ER
40561 
40562 PT J
40563 AU Cao, WG
40564    Ding, WY
40565    Liu, RD
40566    Huang, TH
40567    Cao, J
40568 TI Facile syntheses of 4-perfluoroalkyl-6-(alpha-furyl)-2-pyranones and
40569    methyl 4-(alpha-furoyl)-3-perfluoroalkyl-3-butenoates
40570 SO JOURNAL OF FLUORINE CHEMISTRY
40571 DT Article
40572 DE methyl 2-perfluoroalkynoates;
40573    4-perfluoroalkyl-6-(alpha-furyl)-2-pyranones; methyl
40574    4-(alpha-furoyl)-3-perfluoroalkyl-3-butenoates
40575 ID ELEMENTO-ORGANIC COMPOUNDS; STEREOSELECTIVE SYNTHESIS; 6TH GROUPS;
40576    ARSORANE; 2-PERFLUOROALKYNOATES; PHOSPHONIUM; CHEMISTRY; 5TH
40577 AB In the presence of K2CO3, reaction of
40578    (alpha-furoyl)methyltriphenylphosphonium bromide (1) with methyl
40579    2-perfluoroalkynoates (2) in CH2Cl2 at room temperature gave methyl
40580    4-(alpha-furoyl)-2-triphenylphospknoranylidene-3-perfluoroalkyl-3-buteno
40581    ates (3) in excellent yields.
40582    4-Perfluoroalkyl-6-(alpha-furyl)-6-phyranones (4) and methyl
40583    4-(alpha-furoyl)-3-perfluoroalkyl-3-butenoates (5) were obtained in
40584    high yield by hydrolysis of these phosphoranes (3) with hot aqueous
40585    methanol. The butenoates (5) were isolated chromatographically as
40586    mixtures of Z and E isomers, the ratios of which were estimated by H-1
40587    NMR Reaction mechanisms are proposed to account for the formation of
40588    products 3, 4 and 5. (C) 1999 Elsevier Science S.A. All rights reserved.
40589 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
40590 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
40591 CR BANKS RE, 1979, ORGANOFLUORINE CHEM
40592    CAO WG, 1998, J FLUORINE CHEM, V91, P99
40593    DING WY, 1986, ACTA CHIM SINICA, V44, P255
40594    DING WY, 1986, ACTA CHIM SINICA, V44, P62
40595    DING WY, 1987, ACTA CHIM SINICA, V45, P47
40596    DING WY, 1987, CHINESE J ORG CHEM, P435
40597    DING WY, 1991, ACTA CHIM SINICA, V49, P284
40598    DING WY, 1991, J CHEM SOC PERK  JUN, P1369
40599    DING WY, 1992, CHEM RES CHINESE U, V8, P224
40600    HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47
40601    MANN J, 1987, CHEM SOC REV, V16, P381
40602    TAO WT, 1983, CHINESE J ORG CHEM, P129
40603    WELCH JT, 1987, TETRAHEDRON, V43, P3123
40604 NR 13
40605 TC 3
40606 SN 0022-1139
40607 J9 J FLUORINE CHEM
40608 JI J. Fluor. Chem.
40609 PD JUN 4
40610 PY 1999
40611 VL 95
40612 IS 1-2
40613 BP 135
40614 EP 140
40615 PG 6
40616 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
40617 GA 207JZ
40618 UT ISI:000080934900016
40619 ER
40620 
40621 PT J
40622 AU Xu, J
40623    Zhu, XH
40624    Meng, ZY
40625 TI Effect of the interdiffusion reaction on the compatibility in PZT PNN
40626    functionally gradient piezoelectric materials
40627 SO IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES
40628 DT Article
40629 DE activation energy; diffusivity; distribution profile; FGM;
40630    interdiffusion couple
40631 AB The interfacial diffusion reaction Pb(Ni1/3Nb2/3)O-3 (PNN) and
40632    Pb(Zr,Ti)O-3 (PZT) phases in functionally gradient materials (FGM) has
40633    been investigated as a function of sintering temperature and time,
40634    respectively. The compositional distribution profiles of the
40635    interaction region were examined by electron probe microbeam analysis
40636    (EPMA). According to the diffusion model, the concentration
40637    distribution profiles were simulated by way of numerical approaches.
40638    The diffusivity and activation energy for Ni2+, Nb5+, Ti4+ and Zr4+
40639    ions have been estimated. The results were discussed.
40640 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
40641 RP Xu, J, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
40642    China.
40643 CR CHAWLA KK, 1995, CERAMIC MATRIX COMPO, CH4
40644    JINPIN L, 1989, CHINESE J MAT SCI, V4
40645    SHEWMON PB, 1963, DIFFUSION SOLIDS, CH1
40646    TAKAHASHI H, 1990, JSME INT J 1, V33
40647    XINHUA Z, 1995, J MATER SCI LETT, V14, P516
40648    ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169
40649 NR 6
40650 TC 4
40651 SN 1521-3331
40652 J9 IEEE TRANS COMPON PACKAGING T
40653 JI IEEE Trans. Compon. Packaging Technol.
40654 PD MAR
40655 PY 1999
40656 VL 22
40657 IS 1
40658 BP 11
40659 EP 16
40660 PG 6
40661 SC Engineering, Electrical & Electronic; Engineering, Manufacturing;
40662    Materials Science, Multidisciplinary
40663 GA 209DD
40664 UT ISI:000081031900004
40665 ER
40666 
40667 PT J
40668 AU Kong, KH
40669    Cheung, PCH
40670    Lu, HQ
40671    Cheng, KS
40672 TI Inflation in Bianchi type-IX Einstein-Cartan cosmological model
40673 SO ASTROPHYSICS AND SPACE SCIENCE
40674 DT Article
40675 ID ANISOTROPIC COSMOLOGIES; PRIMORDIAL SHEAR; UNIVERSE; TORSION; SPIN
40676 AB Within the framework of Einstein-Cartan theory with Weyssenhoff fluid,
40677    we investigate an inflation model for an anisotropic Bianchi type-IX
40678    cosmological model. The system of field equations is solved numerically
40679    and an inflation epoch is achieved. The general condition for the
40680    inflation to occur is also discussed. This anisotropic model evolves
40681    quickly towards to an isotropic one.
40682 C1 Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China.
40683    Shanghai Univ, Dept Phys, Shanghai 200041, Peoples R China.
40684    Univ Oxford, Dept Astrophys, Nucl & Astrophys Lab, Oxford OX1 3RH, England.
40685 RP Kong, KH, Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China.
40686 CR BARROW JD, 1981, NATURE, V292, P35
40687    BRANDENBERGER RH, 1985, REV MOD PHYS, V57, P1
40688    CARTAN E, 1985, MANIFOLD AFFINE CONN
40689    DEMIANSKI M, 1984, NATURE, V307, P140
40690    DEMIANSKI M, 1987, PHYS REV D, V35, P1181
40691    GOENNER H, 1984, CLASSICAL QUANT GRAV, V1, P651
40692    GUTH AH, 1981, PHYS REV D, V23, P347
40693    HEHL FW, 1976, REV MOD PHYS, V48, P393
40694    HENRIQUES AB, 1991, PHYS LETT B, V256, P359
40695    JENSEN LG, 1986, PHYS REV D, V34, P931
40696    LINDE AD, 1984, REP PROG PHYS, V47, P925
40697    LU HQ, 1995, CLASSICAL QUANT GRAV, V12, P2755
40698    MARTINEZGONZALE.E, 1986, PHYS LETT B, V167, P37
40699    OBUKHOV YN, 1987, CLASSICAL QUANT GRAV, V4, P1633
40700    ROTHMAN T, 1985, PHYS LETT B, V159, P256
40701    ROTHMAN T, 1986, PHYS LETT B, V180, P19
40702    STEIGMAN G, 1983, PHYS LETT B, V128, P295
40703    TSAMPARLIS M, 1979, PHYS LETT A, V75, P27
40704    TSOUBELIS D, 1979, PHYS REV D, V20, P3004
40705    TURNER MS, 1986, PHYS REV LETT, V57, P2237
40706    WALD RM, 1983, PHYS REV D, V28, P2118
40707    ZARDECKI A, 1985, PHYS REV D, V31, P718
40708 NR 22
40709 TC 1
40710 SN 0004-640X
40711 J9 ASTROPHYS SPACE SCI
40712 JI Astrophys. Space Sci.
40713 PY 1998
40714 VL 260
40715 IS 4
40716 BP 521
40717 EP 529
40718 PG 9
40719 SC Astronomy & Astrophysics
40720 GA 207RG
40721 UT ISI:000080922200008
40722 ER
40723 
40724 PT J
40725 AU Gu, GQ
40726    Yu, KW
40727 TI New method for effective viscosity of colloidal dispersions with
40728    periodic microstructures
40729 SO ACTA MATHEMATICA SCIENTIA
40730 DT Article
40731 DE colloidal dispersion; effective viscosity; suspension; emulsion
40732 ID EFFECTIVE SHEAR VISCOSITY; CONCENTRATED DISPERSIONS; VOLUME FRACTION;
40733    SPHERES; SUSPENSION; LATTICE; FLOW
40734 AB One of the central theoretical problems in the colloid field is to
40735    determine the rheological relation between the macroscopic properties
40736    of colloidal suspensions and the microstructures of the systems. In
40737    this work, the authors develop a method of transformation field by
40738    which one call calculate the effective viscosity of an incompressible:
40739    viscous fluid containing colloidal particles (either solid particles:
40740    or liquid drops) fixed at the points of a periodic lattice. The
40741    effective viscosity of a colloidal dispersion of spherical particles is
40742    calculated. The predictions of the theory are in good agreement with
40743    the Einstein's formula for suspensions and the Taylor's formula for
40744    emulsions at low particle concentrations. At higher particle
40745    concentrations, the theory reproduces the results of Nunan and Keller.
40746    The method is also applicable to the viscosity of colloidal systems
40747    with non-spherical particles.
40748 C1 Shanghai Univ Sci & Technol, Sch Syst Sci & Syst Engn, Shanghai 200093, Peoples R China.
40749    Chinese Univ Hong Kong, Dept Phys, Shatin, New Territories, Hong Kong.
40750 CR BATCHELOR GK, 1972, J FLUID MECH, V56, P401
40751    BATCHELOR GK, 1977, J FLUID MECH, V83, P97
40752    BEDEAUX D, 1977, PHYSICA            A, V88, P88
40753    BEDEAUX D, 1983, PHYSICA A, V121, P345
40754    CHOW TS, 1993, PHYS REV E, V48, P1977
40755    DEKRUIF CG, 1985, J CHEM PHYS, V83, P4717
40756    EINSTEIN A, 1906, ANN PHYS LEIPAIG, V19, P288
40757    EINSTEIN A, 1911, ANN PHYS-BERLIN, V34, P591
40758    ESHELBY JD, 1957, P ROY SOC LOND A MAT, V241, P376
40759    FREED KF, 1982, J CHEM PHYS, V76, P6187
40760    GU GQ, 1988, PHYS REV B, V37, P8612
40761    KANDYRIN LB, 1992, ADV POLYM SCI, V103, P103
40762    KRIEGER IM, 1972, ADV COLLOID INTERFAC, V3, P111
40763    MCPHEDRAN RC, 1978, P ROY SOC LOND A MAT, V359, P45
40764    MELLEMA J, 1983, PHYSICA A, V122, P268
40765    MUTHUKUMAR M, 1982, J CHEM PHYS, V76, P6195
40766    NAGATANI T, 1979, J PHYS SOC JPN, V47, P320
40767    NEMATNASSER S, 1981, Q APPL MATH, V39, P43
40768    NUNAN KC, 1984, J FLUID MECH, V142, P269
40769    PETERSON JM, 1963, J CHEM PHYS, V39, P2516
40770    RAYLEIGH JW, 1892, PHILOS MAG, V34, P481
40771    SUEN WM, 1979, J PHYS D, V12, P1325
40772    TAYLOR GI, 1932, P R SOC LOND A-CONTA, V138, P41
40773    VANDERWERFF JC, 1989, J RHEOL, V33, P421
40774    ZICK AA, 1982, J FLUID MECH, V115, P13
40775 NR 25
40776 TC 0
40777 SN 0252-9602
40778 J9 ACTA MATH SCI
40779 JI Acta Math. Sci.
40780 PY 1999
40781 VL 19
40782 IS 2
40783 BP 148
40784 EP 157
40785 PG 10
40786 SC Mathematics
40787 GA 208NK
40788 UT ISI:000080997800004
40789 ER
40790 
40791 PT J
40792 AU Chen, J
40793    Nho, YC
40794    Kwon, OH
40795    Hoffman, AS
40796 TI Grafting copolymerization of polyethylene glycol methacrylate (PEGMA)
40797    onto preirradiated PP films
40798 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
40799 DT Letter
40800 ID PEO GRADIENT SURFACES; PROTEIN ADSORPTION; PLATELET-ADHESION;
40801    PREVENTION; COATINGS
40802 AB Polyethylene glycol methacrylate (PEGMA) with different polyethylene
40803    oxide units were grafted onto polypropylene (PP) films by a
40804    preirradiation grafting method. The effect of co-solvent system on the
40805    degree of grafting and water contact angle were determined,
40806    respectively. The grafted sample films were verified by Fourier
40807    Transform Infrared (FTIR) spectroscopy in the attenuated total
40808    reflectance mode (ATR). The biocompatibility and blood compatibility of
40809    the grafted PP films were evaluated by the determination of protein
40810    adsorption, platelet adsorption and thrombus.
40811 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
40812    Korea Atom Energy Res Inst, Radiat Applicat Div, Taejon, South Korea.
40813    Univ Washington, Ctr Bioengn, Seattle, WA 98159 USA.
40814 RP Chen, J, Shanghai Univ, Shanghai Appl Radiat Inst, Jiadiang Campus,
40815    Shanghai 201800, Peoples R China.
40816 CR AMIJI M, 1992, BIOMATERIALS, V13, P682
40817    ANDRADE JD, 1987, T AM SOC ART INT ORG, V33, P75
40818    BAIER RE, 1970, T AM SOC ART INT ORG, V16, P50
40819    DUNKIRK SG, 1991, J BIOMATER APPL, V6, P131
40820    HADDADIASL V, 1995, RADIAT PHYS CHEM, V45, P191
40821    HOFFMAN AS, 1982, ADV CHEM SER, V199, P3
40822    HOFFMAN AS, 1988, J APPL POLYM SCI APP, V42, P251
40823    IKADA Y, 1981, RADIAT PHYS CHEM, V18, P1207
40824    IMAI Y, 1972, J BIOMED MATER RES, V6, P165
40825    JEONG BJ, 1996, J COLLOID INTERF SCI, V178, P757
40826    LEE JH, 1989, J BIOMED MATER RES, V23, P351
40827    LEE JH, 1990, BIOMATERIALS, V11, P455
40828    LEE JH, 1997, J BIOMED MATER RES, V34, P105
40829    NIIO YC, 1993, POLYMER, V17, P433
40830    SUN YH, 1986, J BIOACT COMPAT POL, V1, P316
40831    WILSON JE, 1977, J MACROMOL SCI CHEM, V11, P2113
40832 NR 16
40833 TC 0
40834 SN 0236-5731
40835 J9 J RADIOANAL NUCL CHEM
40836 JI J. Radioanal. Nucl. Chem.
40837 PD JUN
40838 PY 1999
40839 VL 240
40840 IS 3
40841 BP 943
40842 EP 948
40843 PG 6
40844 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
40845    & Technology
40846 GA 207HR
40847 UT ISI:000080931900039
40848 ER
40849 
40850 PT J
40851 AU Guo, XM
40852 TI A new uniqueness theorem of the linear thermo-elastic dynamics on
40853    unbounded domains
40854 SO ACTA MECHANICA SINICA
40855 DT Article
40856 DE linear thermo-elasticity; initial boundary value problem; unique
40857 ID ENERGY
40858 AB In the present paper, the uniqueness of the solution to the initial
40859    boundary value problem of the linear thermo-elastic dynamics on
40860    unbounded domains is obtained under less restrictive conditions,
40861    including abandoning the positive semi-definiteness of the elasticity
40862    tensor and boundness of the material tensor and restrictions on the
40863    acoustic tensor and the coupled tensor, and the results in [1] are
40864    refined. The conclusion here is valid for the case on bounded domains
40865    and the linear elastic dynamics on unbounded domains, hence the results
40866    in [2 similar to 4] are refined too. Abandoning the positive
40867    semi-definiteness of elasticity tensor permits that the uniqueness of
40868    the kinetic process is still valid for deformation of the wider
40869    materials, especially for the case that there are phase-transition
40870    during deformation process provided that the constitutive equations are
40871    unchanged in forms.
40872 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
40873 RP Guo, XM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
40874    200072, Peoples R China.
40875 CR BALL JM, 1987, ARCH RATION MECH AN, V100, P13
40876    CARBONARO B, 1984, J ELASTICITY, V14, P163
40877    CARBONARO B, 1987, J ELASTICITY, V17, P85
40878    CHANDRASEKHARAI.DS, 1984, J TECHN PHYS, V25, P345
40879    ERICKSEN JL, 1975, J ELASTICITY, V5, P191
40880    SHERIEF HH, 1980, J THERMAL STRESSES, V3, P223
40881 NR 6
40882 TC 0
40883 SN 0567-7718
40884 J9 ACTA MECH SINICA
40885 JI Acta Mech. Sin.
40886 PD FEB
40887 PY 1999
40888 VL 15
40889 IS 1
40890 BP 59
40891 EP 62
40892 PG 4
40893 SC Engineering, Mechanical; Mechanics
40894 GA 206VX
40895 UT ISI:000080902000008
40896 ER
40897 
40898 PT J
40899 AU Chen, YS
40900    Ma, JH
40901    Liu, ZR
40902 TI The state space reconstruction technology of different kinds of chaotic
40903    data obtained from dynamical system
40904 SO ACTA MECHANICA SINICA
40905 DT Article
40906 DE nonlinear chaotic data; embedding space matrix; eigenvalue and
40907    eigenvector; state space reconstruction
40908 ID TIME-SERIES; INFORMATION; ATTRACTORS
40909 AB Certain deterministic nonlinear systems may show chaotic behavior. We
40910    consider the motion of qualitative information and the practicalities
40911    of extracting a part from chaotic experimental data. Our approach based
40912    on a theorem of Takens draws on the ideas from the generalized theory
40913    of information known as singular system analysis. We illustrate this
40914    technique by numerical data from the chaotic region of the chaotic
40915    experimental data. The method of the singular-value decomposition is
40916    used to calculate the eigenvalues of embedding space matrix. The
40917    corresponding concrete algorithm to calculate eigenvectors and to
40918    obtain the basis of embedding vector space is proposed in this paper.
40919    The projection on the orthogonal basis generated by eigenvectors of
40920    timeseries data and concrete paradigm are also provided here. Meanwhile
40921    the state space reconstruction technology of different kinds of chaotic
40922    data obtained from dynamical system has also been discussed in detail.
40923 C1 Tianjin Univ, Dept Mech, Tianjin 300072, Peoples R China.
40924    SE Univ, Inst Syst Engn, Nanjing 210096, Peoples R China.
40925    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
40926 RP Chen, YS, Tianjin Univ, Dept Mech, Tianjin 300072, Peoples R China.
40927 CR ALDANO AM, 1988, PHYS REV A, V38, P3017
40928    BROOMHEAD DS, 1986, PHYSICA D, V20, P217
40929    CASDAGLI M, 1991, PHYSICA D, V51, P52
40930    FRASER AM, 1986, PHYS REV A, V33, P1134
40931    FRASER AM, 1989, PHYSICA D, V34, P391
40932    GIBSON JF, 1992, PHYSICA D, V57, P1
40933    JUNHAI M, 1997, THESIS TIANJIAN U CH
40934    LIEBERT W, 1988, PHYS LETT, V142, P101
40935    MA JH, 1998, APPL MATH MECH, V19, P481
40936    MA JH, 1998, APPL MATH MECH-ENGL, V19, P1033
40937    MEES AI, 1987, PHYS REV A, V36, P340
40938    PACKARD NH, 1980, PHYS REV LETT, V45, P712
40939    PALUS M, 1993, PHYS LETT A, V175, P203
40940    TAKENS F, 1981, LECT NOTES MATH, V898, P366
40941 NR 14
40942 TC 1
40943 SN 0567-7718
40944 J9 ACTA MECH SINICA
40945 JI Acta Mech. Sin.
40946 PD FEB
40947 PY 1999
40948 VL 15
40949 IS 1
40950 BP 82
40951 EP 92
40952 PG 11
40953 SC Engineering, Mechanical; Mechanics
40954 GA 206VX
40955 UT ISI:000080902000011
40956 ER
40957 
40958 PT J
40959 AU Hua, B
40960    Li, CZ
40961 TI Production and characterization of nanocrystalline SnO2 films on Al2O3
40962    agglomerates by CVD in a fluidized bed
40963 SO MATERIALS CHEMISTRY AND PHYSICS
40964 DT Article
40965 DE chemical vapor deposition; fluidization; ultrafine particle
40966 AB In this paper, nanocrystalline SnO2 films an coated on ultrafine Al2O3
40967    particles by hydrolyzing SnCl4 vapor using fluidization chemical vapor
40968    deposition (FCVD) technology. The morphology and distribution of SnO2
40969    films in Al2O3 agglomerates as well as on ultrafine Al2O3 particles are
40970    determined by means of X-ray diffraction (XRD), EPMA, high resolution
40971    electron microscopy (HREM) etc. The results show that nanocrystalline
40972    SnO2 films are deposited uniformly throughout the whole agglomerate if
40973    Al2O3 agglomerates are fluidized and the films are made up of both
40974    amorphous SnO2 and 6-10 nm crystallites on the surfaces of ultrafine
40975    Al2O3 particles under different coating conditions. FCVD can be
40976    developed into a competitive method for surface modification of
40977    ultrafine particles. (C) 1999 Published by Elsevier Science S.A. All
40978    rights reserved.
40979 C1 Shanghai Univ, Coll Chem & Chem Engn, Shanghai 200072, Peoples R China.
40980    E China Univ Sci & Technol, Inst Tech Chem Phys, Shanghai 200072, Peoples R China.
40981 RP Hua, B, Shanghai Univ, Coll Chem & Chem Engn, POB 233,Yanchang Rd 149,
40982    Shanghai 200072, Peoples R China.
40983 CR GU Y, 1992, J E CHINA U CHEM TEC, V18, P506
40984    HUA B, 1994, J E CHINA U SCI TECH, V20, P290
40985    HUA B, 1994, J E CHINA U SCI TECH, V20, P294
40986    ITON H, 1988, J MATER SCI, V23, P43
40987    MAUDES JS, 1980, THIN SOLID FILMS, V69, P183
40988    MOROOKA S, 1988, J CHEM ENG JPN, V21, P41
40989    NAGANO M, 1984, J CRYST GROWTH, V67, P639
40990    YAO J, 1990, J E CHINA U CHEM TEC, V16, P249
40991 NR 8
40992 TC 6
40993 SN 0254-0584
40994 J9 MATER CHEM PHYS
40995 JI Mater. Chem. Phys.
40996 PD MAY 25
40997 PY 1999
40998 VL 59
40999 IS 2
41000 BP 130
41001 EP 135
41002 PG 6
41003 SC Materials Science, Multidisciplinary
41004 GA 203NV
41005 UT ISI:000080714500006
41006 ER
41007 
41008 PT J
41009 AU Zhang, YH
41010    Huang, SP
41011 TI Molecular dynamics simulation study of MgO crystal
41012 SO CHINESE PHYSICS LETTERS
41013 DT Article
41014 ID THERMODYNAMIC PROPERTIES; MGSIO3 PEROVSKITE
41015 AB Molecular dynamics simulation of MgO crystal at different temperature
41016    and pressure was carried out by suing the shell model of ionic
41017    polarizability. The prediction of thermal expansion is in good
41018    agreement with the experiment. The heat capacity has been calculated
41019    with a semi-classical approximate method. The calculated values are
41020    less than the experimental data because the anharmonic effect and
41021    quantum correlation were not taken into account. The changes of
41022    transverse-optic and longitudinal-optic modes with the compression
41023    ration are also calculated.
41024 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
41025    Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
41026 RP Zhang, YH, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
41027 CR ALLAN NL, 1987, ADV CERAM, V23, P257
41028    ANDERSON OL, 1990, J PHYS CHEM REF DATA, V19, P69
41029    BORN M, 1954, DYNAMICAL THEORY CRY
41030    BUSH TS, 1994, J MATER CHEM, V4, P831
41031    FINCHAM D, 1994, J PHYS-CONDENS MAT, V6, P393
41032    LEWIS GV, 1985, J PHYS C SOLID STATE, V18, P1140
41033    MAO HK, 1979, J GEOPHYS RES, V84, P4533
41034    MATSUI M, 1989, J CHEM PHYS, V91, P489
41035    MITCHELL PJ, 1993, J PHYS-CONDENS MAT, V5, P1031
41036    PING HS, 1997, J PHYS SOC JPN, V66, P1356
41037    WEI Q, 1998, CHINESE PHYS LETT, V15, P834
41038    WINKLER B, 1992, PHYS CHEM MINER, V18, P407
41039    ZHOU LX, 1998, CHINESE PHYS LETT, V15, P444
41040 NR 13
41041 TC 2
41042 SN 0256-307X
41043 J9 CHIN PHYS LETT
41044 JI Chin. Phys. Lett.
41045 PY 1999
41046 VL 16
41047 IS 4
41048 BP 235
41049 EP 237
41050 PG 3
41051 SC Physics, Multidisciplinary
41052 GA 203MT
41053 UT ISI:000080712000001
41054 ER
41055 
41056 PT J
41057 AU Wu, YJ
41058 TI A nonlinear Galerkin method with variable modes for
41059    Kuramoto-Sivashinsky equation
41060 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
41061 DT Article
41062 DE Kuramoto-Sivaskinsky equation; nonlinear Galerkin method;
41063    approximation; convergence
41064 ID GLOBAL DYNAMICAL PROPERTIES
41065 AB This article proposes a kind of nonlinear Galerkin methods with
41066    variable modes for the long-term integration of Kuramoto-Sivashinsky
41067    equation. It consists of finding an appropriate or best number of modes
41068    in the correction of the method. Convergence results and error
41069    estimates are derived for this method. Numerical examples show also the
41070    efficiency and advantage of our method over the usual nonlinear
41071    Galerkin method and the classical Galerkin method.
41072 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
41073    Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China.
41074 CR CANUTO C, 1988, SPECTRAL METHODS FLU
41075    FOIAS C, 1983, PHYSICA D, V9, P157
41076    FOIAS C, 1988, MATH MODELLING NUMER, V22, P93
41077    MARION M, 1989, SIAM J NUMER ANAL, V26, P1139
41078    NICOLAENKO B, 1985, PHYSICA D, V16, P155
41079    NICOLAENKO B, 1989, COMMUN PART DIFF EQ, V14, P245
41080    TEMAM R, 1989, MATH MODEL NUMER ANA, V3, P541
41081    TEMAM R, 1989, P 11 INT C NUM METH
41082    TEMAN R, 1984, NAVIER STOKES EQUATI
41083    TEMAN R, 1988, APPL MATH SCI, V68
41084    WU YJ, 1994, ADV MECH, V2, P145
41085    YANG ZH, 1997, J SHANGHAI U, V1, P20
41086 NR 12
41087 TC 1
41088 SN 0254-9409
41089 J9 J COMPUT MATH
41090 JI J. Comput. Math.
41091 PD MAY
41092 PY 1999
41093 VL 17
41094 IS 3
41095 BP 243
41096 EP 256
41097 PG 14
41098 SC Mathematics, Applied; Mathematics
41099 GA 201MN
41100 UT ISI:000080599400003
41101 ER
41102 
41103 PT J
41104 AU He, GQ
41105    Liu, JX
41106 TI A kind of implicit iterative methods for ill-posed operator equations
41107 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
41108 DT Article
41109 DE ill-posed equation; implicit iterative method; control parameter;
41110    discrepamcy principle; optimal convergence rate
41111 ID TIKHONOV REGULARIZATION; PARAMETER CHOICE; HILBERT SCALES
41112 AB In this paper we propose a kind of implicit iterative methods for
41113    solving ill-posed operator equations and discuss the properties of the
41114    methods in the case that the control parameter is fixed. The
41115    theoretical results show that the new methods have certain important
41116    features and can overcome some disadvantages of Tikhonov-type
41117    regularization and explicit iterative methods. Numerical examples are
41118    also given in the paper, which coincide well with theoretical results.
41119 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
41120 CR BAUMEISTER J, 1987, STABLE SOLUTION INVE
41121    BRAKHAGE H, 1987, INVERSE ILL POSED PR, P165
41122    GROETSCH CW, 1984, THEORY TIKHONOV REGU
41123    GROETSCH CW, 1989, J APPROX THEORY, V58, P184
41124    HAGEMAN LA, 1981, APPL ITERATIVE METHO
41125    HANKE M, 1991, NUMER MATH, V60, P341
41126    HE GQ, 1993, COMM APPL MATH COMPU, V38, P356
41127    HE GQ, 1993, COMM APPL MATH COMPU, V38, P356
41128    HE GQ, 1993, COMM APPL MATH COMPU, V7, P76
41129    KING JT, 1979, NUMER FUNCT ANAL OPT, V1, P499
41130    LANDWEBER L, 1951, AM J MATH, V73, P615
41131    LUAN WG, 1989, INVERSE PROBLEMS GEO
41132    MOROZOV A, 1966, SOV MATH DOKL, V7, P414
41133    NATTERER F, 1984, APPL ANAL, V18, P29
41134    NEMIROVSKIY AS, 1984, ENG CYBERN, V22, P1
41135    NEUBAUER A, 1988, SIAM J NUMER ANAL, V25, P1313
41136    TIKHONOV AN, 1977, SOLUTION ILL POSED P
41137 NR 17
41138 TC 2
41139 SN 0254-9409
41140 J9 J COMPUT MATH
41141 JI J. Comput. Math.
41142 PD MAY
41143 PY 1999
41144 VL 17
41145 IS 3
41146 BP 275
41147 EP 284
41148 PG 10
41149 SC Mathematics, Applied; Mathematics
41150 GA 201MN
41151 UT ISI:000080599400005
41152 ER
41153 
41154 PT J
41155 AU Wang, HX
41156 TI Extinction of population-size-dependent branching processes in random
41157    environments
41158 SO JOURNAL OF APPLIED PROBABILITY
41159 DT Article
41160 DE stochastic population models; Markov chains in random environments;
41161    extinction probabilities
41162 AB We generalize a population-size-dependent branching process to a more
41163    general branching model called the population-size-dependent branching
41164    process in random environments. For the model where {Zn}(n greater than
41165    or equal to 0) is associated with the stationary environment <(xi)over
41166    bar> = {xi(n)}(n greater than or equal to 0), let B = {omega :
41167    Z(n)(omega) = 0 for some n}, and q(<(xi)over bar>) = P(B \ <(xi)over
41168    bar>, Z(0) = 1). The result is that P(q(<(xi)over bar>) = 1) is either
41169    1 or 0, and sufficient conditions for certain extinction (i.e.
41170    P(q(<(xi)over bar>) = 1) = 1) and for non-certain extinction (i.e.
41171    P(q(<(xi)over bar>) < 1) = 1) are obtained for the model.
41172 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
41173 RP Wang, HX, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
41174 CR ATHREYA KB, 1971, ANN MATH STAT, V42, P1499
41175    COGBURN R, 1984, Z WAHRSCHEINLICHKEIT, V66, P109
41176    KLEBANER FC, 1984, ADV APPL PROBAB, V16, P30
41177    SMITH WL, 1969, ANN MATH STAT, V40, P814
41178    VIAUD DPL, 1994, J APPL PROBAB, V31, P22
41179 NR 5
41180 TC 5
41181 SN 0021-9002
41182 J9 J APPL PROBAB
41183 JI J. Appl. Probab.
41184 PD MAR
41185 PY 1999
41186 VL 36
41187 IS 1
41188 BP 146
41189 EP 154
41190 PG 9
41191 SC Statistics & Probability
41192 GA 202WX
41193 UT ISI:000080676100013
41194 ER
41195 
41196 PT J
41197 AU Li, CF
41198    Wang, Q
41199 TI The quantum behavior of an electron in a uniform magnetic field
41200 SO PHYSICA B
41201 DT Article
41202 DE probability current density; uniform magnetic field; symmetric gauge;
41203    classical correspondence
41204 AB The total probability current of an electron in a uniform magnetic
41205    field is calculated in the symmetric gauge. Even though the eigen
41206    motion of the electron in this gauge is similar to the classical orbit
41207    motion, the total probability current is found to be equal to zero when
41208    the canonical angular momentum is less than zero. The reason is that in
41209    this case, the origin of the coordinate system lies outside the
41210    circular orbit of corresponding classical motion, in addition to the
41211    absence of radial component of the probability current density because
41212    of the indeterminacy of the location of the orbit center. (C) 1999
41213    Published by Elsevier Science B.V. All rights reserved.
41214 C1 CCAST, World Lab, Beijing 100080, Peoples R China.
41215    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
41216 RP Li, CF, CCAST, World Lab, POB 8730, Beijing 100080, Peoples R China.
41217 CR ARFKEN G, 1985, MATH METHODS PHYSICI, P726
41218    BALLENTINE LE, 1990, QUANTUM MECH, P216
41219    CAPRI AZ, 1985, NONRELATIVISTIC QUAN, P457
41220    LANDAU LD, 1977, QUANTUM MECHANICS, P456
41221    PAGE L, 1930, PHYS REV, V36, P444
41222    STONE M, 1992, QUANTUM HALL EFFECT
41223 NR 6
41224 TC 3
41225 SN 0921-4526
41226 J9 PHYSICA B
41227 JI Physica B
41228 PD JUL
41229 PY 1999
41230 VL 269
41231 IS 1
41232 BP 22
41233 EP 27
41234 PG 6
41235 SC Physics, Condensed Matter
41236 GA 200KG
41237 UT ISI:000080538400004
41238 ER
41239 
41240 PT J
41241 AU Huang, SR
41242    Luo, J
41243    Leonardi, F
41244    Lipo, TA
41245 TI A comparison of power density for axial flux machines based on general
41246    purpose sizing equations
41247 SO IEEE TRANSACTIONS ON ENERGY CONVERSION
41248 DT Article
41249 ID ELECTRICAL MACHINES; DESIGN
41250 AB Based on the concept of the converter fed machine (CFM), an optimal
41251    machine design can be considered as the best match of the machine
41252    topology, the power electronic converter and the performance
41253    specification. To compare power production potential of axial flux
41254    machines with various topologies, different waveforms of back emf and
41255    current, general purpose sizing and power density equations for such
41256    machines are needed. In this paper, a general approach is presented to
41257    develop and to interpret these equations. Sample applications of the
41258    sizing and power density equations are utilized to compare the axial
41259    flux toroidal permanent magnet (AFTPM) machine and the axial flux
41260    two-stator permanent magnet (AF2SPM) machine.
41261 C1 Shanghai Univ, Coll Automat, Shanghai 200072, Peoples R China.
41262    McCleer Power Inc, Jackson, MI 49203 USA.
41263    Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA.
41264 RP Huang, SR, Shanghai Univ, Coll Automat, 147 Yan Chang Rd, Shanghai
41265    200072, Peoples R China.
41266 CR CAMPBELL P, 1974, P I ELECTR ENG, V121, P1489
41267    CARICCHI F, 1994, IEEE IAS ANN M DENV, P254
41268    CHAN CC, 1987, IEEE T ENERGY CONVER, V2, P294
41269    DOTE Y, 1990, BRUSHLESS SERVOMOTOR
41270    HUANG S, 1996, IEEE IND APPLIC SOC, P836
41271    JENSEN CC, 1992, IEEE T IND APPL, V28, P646
41272    LI Y, 1995, THESIS U WISCONSIN M
41273    LIPO TA, 1984, IEEE T IND APPL, V20, P834
41274    LIPO TA, 1995, IPEC 95 JAP APR 3 7, P1
41275    SPOONER E, 1988, P INT C EL MACH, V3, P81
41276 NR 10
41277 TC 7
41278 SN 0885-8969
41279 J9 IEEE TRANS ENERGY CONVERS
41280 JI IEEE Trans. Energy Convers.
41281 PD JUN
41282 PY 1999
41283 VL 14
41284 IS 2
41285 BP 185
41286 EP 191
41287 PG 7
41288 SC Engineering, Electrical & Electronic; Energy & Fuels
41289 GA 199CP
41290 UT ISI:000080462000010
41291 ER
41292 
41293 PT J
41294 AU Li, QN
41295 TI Coupled-local-mode theory and study of optical properties of a Gaussian
41296    fiber grating
41297 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND
41298    VISION
41299 DT Article
41300 ID BRAGG GRATINGS; PHASE GRATINGS; FILTERS; PERIOD
41301 AB A coupled-local-mode theory is presented for a nonuniform fiber grating
41302    with slowly varying background induced-index change. On this basis the
41303    transmission spectrum of a Gaussian fiber grating is calculated, and
41304    the underlying physical mechanism is studied in detail. (C) 1999
41305    Optical Society of America [S0740-3232(99)02306-6].
41306 C1 Shanghai Univ, Inst Fiber Opt, Shanghai 201800, Peoples R China.
41307 RP Li, QN, Shanghai Univ, Inst Fiber Opt, Shanghai 201800, Peoples R China.
41308 CR BENNION I, 1996, OPT QUANT ELECTRON, V28, P93
41309    BORN M, 1959, PRINCIPLES OPTICS
41310    CAMPBELL RJ, 1994, INT J OPTOELECTRON, V9, P33
41311    ERDOGAN T, 1996, J OPT SOC AM A, V13, P296
41312    ERDOGAN T, 1997, J LIGHTWAVE TECHNOL, V15, P1277
41313    ERDOGAN T, 1997, J OPT SOC AM A, V14, P1760
41314    FONJALLAZ PY, 1997, J LIGHTWAVE TECHNOL, V15, P371
41315    HILL KO, 1978, APPL PHYS LETT, V32, P647
41316    HUANG HC, 1998, MICROWAVE APPROACH H
41317    KASHYAP R, 1994, OPT FIBRE TECHNOL, V1, P17
41318    KASHYAP R, 1997, INT J OPTOELECTRON, V11, P87
41319    LAM DKW, 1981, APPL OPTICS, V20, P440
41320    LANDAU LD, 1980, QUANTUM MECH
41321    MARCUSE D, 1991, THEORY DIELECTRIC OP
41322    MELTZ G, 1989, OPT LETT, V14, P823
41323    MIZRAHI V, 1993, J LIGHTWAVE TECHNOL, V11, P1513
41324    POLADIAN L, 1993, PHYS REV E, V48, P4758
41325    SIPE JE, 1994, J OPT SOC AM A, V11, P1307
41326    SNYDER AW, 1983, OPTICAL WAVEGUIDE TH
41327    VENGSARKAR AM, 1996, J LIGHTWAVE TECHNOL, V14, P58
41328    ZHAO YY, 1997, J LIGHTWAVE TECHNOL, V15, P154
41329 NR 21
41330 TC 0
41331 SN 0740-3232
41332 J9 J OPT SOC AM A-OPT IMAGE SCI
41333 JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis.
41334 PD JUN
41335 PY 1999
41336 VL 16
41337 IS 6
41338 BP 1312
41339 EP 1325
41340 PG 14
41341 SC Optics
41342 GA 198YQ
41343 UT ISI:000080452500011
41344 ER
41345 
41346 PT J
41347 AU He, JH
41348 TI General Bernoulli equation for rotational flow in rotor
41349 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
41350 DT Article
41351 AB In this paper, a general Bernoulli equation is formulated in terms of
41352    three Clebsch-type variables for unsteady compressible rotational flow
41353    in turbomachine aerodynamics.
41354 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
41355 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
41356    Peoples R China.
41357 CR ECER A, 1983, AIAA J, V21, P343
41358    HE JH, 1997, INT J TURBO JET ENG, V14, P17
41359    LIU GL, 1980, FUNDAMENTALS AERODYN
41360    LIU GL, 1991, 3 INT C INV DES OPT, P337
41361 NR 4
41362 TC 1
41363 SN 0334-0082
41364 J9 INT J TURBO JET ENGINES
41365 JI Int. J. Turbo. Jet-Engines
41366 PY 1999
41367 VL 16
41368 IS 1
41369 BP 17
41370 EP 18
41371 PG 2
41372 SC Engineering, Aerospace
41373 GA 196WU
41374 UT ISI:000080331500002
41375 ER
41376 
41377 PT J
41378 AU He, JH
41379 TI Treatment shocks in transonic aerodynamics in the meshless method Part
41380    I: Lagrange multiplier approach
41381 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
41382 DT Article
41383 DE meshless method; variational principle; transonic flow
41384 ID FREE GALERKIN METHODS; FLUID-MECHANICS
41385 AB The meshless method, which is mainly based on moving least-squares
41386    approximation, has features which make it highly attractive for
41387    simulating problems containing discontinuities (such as material
41388    discontinuities, shocks, and inverse problems). By using the meshless
41389    method, the trial and test functions for variational functional are
41390    constructed with moving least-square interpolants. The Rankine-Hogoniot
41391    shock relations are imposed at the variational level by the Lagrange
41392    multipliers. Treatment of the shocks is discussed as well as accurate
41393    treatment of the unknown discontinuities of shocks has been emphasized.
41394 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
41395 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
41396    Peoples R China.
41397 CR BELYTSCHKO T, 1994, INT J NUMER METH ENG, V37, P229
41398    BELYTSCHKO T, 1995, INT J SOLIDS STRUCT, V32, P2547
41399    BELYTSCHKO T, 1996, COMPUT METHOD APPL M, V139, P3
41400    HE JH, 1997, INT J TURBO JET ENG, V14, P17
41401    HE JH, 1997, INT J TURBO JET ENG, V14, P23
41402    HE JH, 1997, J SHANGHAI U, V1, P117
41403    LISZKA TJ, 1996, COMPUT METHOD APPL M, V139, P263
41404    LIU WK, 1995, INT J NUMER METH FL, V21, P901
41405    LIU WK, 1996, ARCH COMPUTATIONAL M, V3, P3
41406    ONATE E, 1996, COMPUT METHOD APPL M, V139, P315
41407 NR 10
41408 TC 10
41409 SN 0334-0082
41410 J9 INT J TURBO JET ENGINES
41411 JI Int. J. Turbo. Jet-Engines
41412 PY 1999
41413 VL 16
41414 IS 1
41415 BP 19
41416 EP 25
41417 PG 7
41418 SC Engineering, Aerospace
41419 GA 196WU
41420 UT ISI:000080331500003
41421 ER
41422 
41423 PT J
41424 AU Shi, DH
41425 TI Revisiting the state transition frequency formula
41426 SO ANNALS OF OPERATIONS RESEARCH
41427 DT Article
41428 DE supplementary variable technique; VMP method; state transition counting
41429    process; transition frequency formula; fluid model
41430 AB In this paper, we give a new proof of the transition frequency formula
41431    for the state transition counting process in a vector Markov process
41432    (VMP). The formula was first presented by the author in the early
41433    eighties. We also derive the absorbing distribution, the renewal
41434    distribution and the entering probability formulas from the formula. As
41435    an application, we use derived results to reduce the analysis of a
41436    fluid model with random disruptions.
41437 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
41438 RP Shi, DH, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
41439 CR CHEN H, 1992, OPER RES, V40, S324
41440    COX DR, 1955, P CAMBRIDGE PHILOS S, V51, P313
41441    NEUTS MF, 1957, J APPL PROBAB, V17, P764
41442    NEUTS MF, 1975, LIBER AMICORUM PROF, P173
41443    PYKE R, 1961, ANN MATH STAT, V32, P1231
41444    SHI DH, 1985, ACTA MATH APPL SINIC, V1, P101
41445    SHI DH, 1990, ANN OPERAT RES, V24, P185
41446    SHI DH, 1996, NAV RES LOG, V43, P1009
41447    WIDDER DV, 1946, LAPLACE TRANSFORM
41448 NR 9
41449 TC 0
41450 SN 0254-5330
41451 J9 ANN OPER RES
41452 JI Ann. Oper. Res.
41453 PY 1999
41454 VL 87
41455 BP 305
41456 EP 317
41457 PG 13
41458 SC Operations Research & Management Science
41459 GA 197DK
41460 UT ISI:000080349200021
41461 ER
41462 
41463 PT J
41464 AU He, JH
41465 TI Hybrid problems of determining unknown shape of bladings in
41466    compressible S2-flow in mixed-flow turbomachinery via variational
41467    technique
41468 SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY
41469 DT Article
41470 DE aerodynamics; blades; inverse problems
41471 AB Using the semi-inverse method proposed by the present author, a family
41472    of variational principle for direct problem of S2-flow in mixed-flow
41473    turbomachinery is obtained; then, applying the functional variation
41474    with variable domain, two families of variational principles are
41475    established for the hybrid problems of determining the unknown shape of
41476    bladings, where pressure or velocity is over-specified. The present
41477    variational models are well posed for redundant data at boundaries. The
41478    theory provides both rational ways for best contouring the hub/casing
41479    walls to meet various practical design requirements and a theoretical
41480    basis for introducing the finite element method into computational
41481    aerodynamics of turbomachinery.
41482 C1 Shanghai Univ, Inst Mech, Shanghai 200041, Peoples R China.
41483 RP He, JH, Shanghai Univ, Inst Mech, Shanghai 200041, Peoples R China.
41484 CR CAI RQ, 1988, INT J HEAT FLUID FL, V9, P302
41485    HE JH, 1997, INT J TURBO JET ENG, V14, P23
41486    HE JH, 1997, J SHANGHAI U, V1, P117
41487    HE JH, 1998, GEN VARIATIONAL PRIN
41488    HE JH, 1998, INT J TURBO JET ENG, V15
41489    LIU GL, 1997, AIRCR ENG AEROSP TEC, V69, P527
41490    LIU X, 1995, MULT SCLER, V1, P2
41491 NR 7
41492 TC 8
41493 SN 0002-2667
41494 J9 AIRCRAFT ENG AEROSP TECHNOL
41495 JI Aircr. Eng. Aerosp. Technol.
41496 PY 1999
41497 VL 71
41498 IS 2
41499 BP 154
41500 EP 159
41501 PG 6
41502 SC Engineering, Aerospace
41503 GA 195JN
41504 UT ISI:000080247200007
41505 ER
41506 
41507 PT J
41508 AU Wang, Q
41509    Wu, Z
41510    Wang, LQ
41511 TI Nonlinear behavior of electromagnetic waves on surface of
41512    antiferromagnet
41513 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
41514 DT Article
41515 DE antiferromagnet; nonlinear wave; surface wave
41516 ID MICROWAVE-ENVELOPE SOLITONS; IRON-GARNET FILMS
41517 AB The properties of the nonlinear TM waves on the interface between a
41518    dielectric and an antiferromagnet are studied. The relationship between
41519    the field components of TM wave is discussed in detail, and the
41520    dispersion characteristics as well as the position of the peak field
41521    are exposed. The theoretical analysis shows that for the nonlinear TM
41522    waves there exist passband(s) and stopband(s) which can be switched
41523    into each other by varying the power. II is revealed that, in the case
41524    of epsilon(1)>epsilon(2), the nonlinear TM waves on the interface are
41525    backward surface waves with the group and phase velocities opposite.
41526 C1 Shanghai Univ, Coll Sci, Shanghai 201800, Peoples R China.
41527 RP Wang, Q, Shanghai Univ, Coll Sci, Shanghai 201800, Peoples R China.
41528 CR ALMEIDA NS, 1987, PHYS REV B, V36, P2015
41529    BOARDMAN AD, 1994, IEEE T MAGN, V30, P1
41530    BOYLE JW, 1996, PHYS REV B, V53, P12173
41531    CHEN M, 1994, PHYS REV B, V49, P12773
41532    DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308
41533    NEWELL AC, 1991, NONLINEAR OPTICS, P120
41534    TSANKOV MA, 1994, J APPL PHYS, V76, P4274
41535    VUKOVICH S, 1990, SOV PHYS JETP, V71, P964
41536    WANG KCP, 1996, INTERFACES, V26, P77
41537    WANG Q, 1994, SCI CHINA SER A, V24, P160
41538    WANG Q, 1995, J APPL PHYS, V77, P5831
41539 NR 11
41540 TC 4
41541 SN 1006-9283
41542 J9 SCI CHINA SER A
41543 JI Sci. China Ser. A-Math. Phys. Astron.
41544 PD MAR
41545 PY 1999
41546 VL 42
41547 IS 3
41548 BP 310
41549 EP 318
41550 PG 9
41551 SC Mathematics, Applied; Mathematics
41552 GA 193FQ
41553 UT ISI:000080125600011
41554 ER
41555 
41556 PT J
41557 AU Zhao, MH
41558    Cheng, CJ
41559    Liu, GN
41560    Shen, YP
41561 TI The analysis of crack problems with non-local elasticity
41562 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
41563 DT Article
41564 DE crack; boundary integral equation (BIM); boundary element method (BEM);
41565    non-local elasticity; fundamental solution
41566 ID NONLOCAL ELASTICITY; DISLOCATION
41567 AB In this pager, the displacement discontinuity fundamental solutions (
41568    DDFS) corresponding to the unit concentrated displacement discontinuity
41569    for plane problems of non-local elasticity are obtained. Based on the
41570    displacement discontinuity boundary integral equation (DDBIE) and
41571    boundary element method (BEM), a method of analysis of crack problems
41572    in non-local elasticity with generalized purpose is proposed. By using
41573    this method, several important problems in fracture mechanics such as
41574    edge crack are studied. The study of edge crack shows that the stress
41575    concentration factor (SCF) near the crack tip is not a constant but
41576    varies with the crack length. With this result the effect of crack
41577    length on the fracture roughness K (I c) is studied. The results
41578    obtained in this paper are in accordance with the published ones.
41579 C1 Zhengzhou Res Inst Mech Engn, Zhengzhou 450052, Peoples R China.
41580    Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
41581    Xian Jiao Tong Univ, Xian 710049, Peoples R China.
41582 RP Zhao, MH, Zhengzhou Res Inst Mech Engn, Zhengzhou 450052, Peoples R
41583    China.
41584 CR 1986, GB639486
41585    CHENG PS, 1992, ACTA MECH SINICA, V24, P329
41586    CROUCH SL, 1976, INT J NUMER METH ENG, V10, P301
41587    ERINGEN AC, 1977, INT J ENG SCI, V15, P177
41588    ERINGEN AC, 1977, J MECH PHYS SOLIDS, V25, P339
41589    ERINGEN AC, 1979, ENG FRACT MECH, V12, P211
41590    ERINGEN AC, 1983, J APPL PHYS, V54, P6811
41591    ERINGEN AC, 1984, J APPL PHYS, V56, P2675
41592    ERINGEN AC, 1992, INT J ENG SCI, V10, P223
41593    GAO J, 1989, ACTA MECH SOLIDA SIN, V10, P289
41594    HU SH, 1991, P 6 NAT C FRACT C HA, P262
41595    ILCEWICZ L, 1981, ENG FRACT MECH, V14, P801
41596    LI QF, 1985, ENG FRACT MECH, V22, P9
41597    RAMABRAHAM B, 1985, INDIAN J PURE APPL M, V16, P661
41598    SHAH RC, 1974, ASTM STP, V560, P29
41599    SIH GC, 1973, MECH FRACTURE M, V1
41600    WANG R, 1989, SCI CHINA, V34, P1056
41601    YU JL, 1984, ACTA MECH SINICA, V16, P485
41602    ZHAO MH, 1994, ENG ANAL, V13, P333
41603    ZHAO MH, 1995, ACTA MECH SOLIDA SIN, V8, P42
41604    ZHAO TS, 1985, J HUAZHONG CENTRAL C, V13, P47
41605    ZHAO YS, 1987, P INT C FRACT FRACT, P206
41606 NR 22
41607 TC 1
41608 SN 0253-4827
41609 J9 APPL MATH MECH-ENGL ED
41610 JI Appl. Math. Mech.-Engl. Ed.
41611 PD FEB
41612 PY 1999
41613 VL 20
41614 IS 2
41615 BP 143
41616 EP 153
41617 PG 11
41618 SC Mathematics, Applied; Mechanics
41619 GA 193CZ
41620 UT ISI:000080119400004
41621 ER
41622 
41623 PT J
41624 AU Zhu, XH
41625    Zhu, JM
41626    Zhou, SH
41627    Li, Q
41628    Meng, ZY
41629    Ming, NB
41630 TI Configurations of ferroelectric domains in bismuth- and zinc-modified
41631    Pb(Ni1/3Nb2/3)O-3-PbTiO3-PbZrO3 ceramics
41632 SO JOURNAL OF MATERIALS SCIENCE
41633 DT Article
41634 ID PIEZOELECTRIC PROPERTIES; ELECTRON-MICROSCOPY; BATIO3; SYSTEM
41635 AB Transmission electron microscopy was used to investigate the domain
41636    structures of the
41637    (Pb0.985Bi0.01)(Ni1/4Zn1/12Nb2/3)(0.2)(ZrsigmaTi1-sigma)(0.8)O-3 (0.30
41638    less than or equal to sigma less than or equal to 0.70) ceramics, which
41639    are located in the ferroelectric tetragonal and rhombohedral phase
41640    regions, and also near the morphotropic phase boundary (MPB). The
41641    results show that the lamellar twinning domains and the delta-fringe
41642    contrast are most frequently observed in the compositions located in
41643    the ferroelectrc tetragonal phase region. In the compositions near the
41644    MPB, a banded domain structure similar to herringbone pattern is
41645    observed, which contains many parallel bands forming 90 degrees or 70
41646    degrees angles whereas they are inconsistent with one another on both
41647    sides of the herringbone domain patterns. The morphology of the
41648    herringbone domain structure observed in the bismuth- and zinc-modified
41649    PNN-PZ-PT ceramics with composition near the MPB can be described by a
41650    space-stacking succession of two crystallographically equivalent plates
41651    whereas made from different twin-related domains, with the same habit
41652    plane parallel to the (0.11)-type plane. In the compositions located in
41653    the rhombohedral phase region, the stripelike domains are observed, and
41654    a local random contrast representing short-range-ordered 'island'-typed
41655    polar clusters or nanodomains is also found, which is attributed to the
41656    existence of the polar microregions with the dispersed nanometer-sized
41657    short-range-ordered domains in the rhombohedral matrix, because the
41658    free energy of the ensemble of the polar microregion is lowered, and
41659    the relative thermodynamic stability is increased with increasing the
41660    content ratio of Zr to Ti. In addition, the wavy character in the
41661    thickness fringe is commonly observed at the fringe of thin foil, which
41662    is due to continuous bending of the thin foil at various equivalent
41663    directions. (C) 1999 Klumer Academic Publishers.
41664 C1 Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.
41665    Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
41666    CCAST, World Lab, Beijing 100080, Peoples R China.
41667 RP Zhu, XH, Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct,
41668    Nanjing 210093, Peoples R China.
41669 CR ARISTOV VV, 1983, PHYS STATUS SOLIDI A, V78, P229
41670    ARLT G, 1980, J APPL PHYS, V51, P4956
41671    BRADT RC, 1969, J AM CERAM SOC, V52, P192
41672    DEDERICHS H, 1986, FERROELECTRICS, V68, P281
41673    GERSON R, 1960, J APPL PHYS, V31, P188
41674    GOO EKW, 1981, J APPL PHYS, V52, P2940
41675    HU YH, 1986, J AM CERAM SOC, V69, P594
41676    JAFFE B, 1971, PIEZOELECTRIC CERAMI
41677    KING G, 1990, J AM CERAM SOC, V73, P1534
41678    MAFFITT KN, 1968, J APPL PHYS, V39, P3878
41679    OUCHI H, 1965, J AM CERAM SOC, V48, P630
41680    PARK BM, 1994, J AM CERAM SOC, V77, P3193
41681    RANDALL CA, 1987, J MATER SCI, V22, P925
41682    YOON MS, 1995, J APPL PHYS, V77, P3991
41683    ZHANG QM, 1988, J APPL PHYS, V64, P6445
41684    ZHU HX, 1996, SENSOR ACTUAT A-PHYS, V48, P169
41685    ZHU XH, 1995, THESIS XIAN JIAOTONG
41686    ZHU XH, 1996, J MATER SCI, V31, P2171
41687    ZHU XH, 1997, J MATER SCI, V32, P4275
41688    ZHU XH, 1998, FERROELECTRICS, V215, P265
41689 NR 20
41690 TC 2
41691 SN 0022-2461
41692 J9 J MATER SCI
41693 JI J. Mater. Sci.
41694 PD APR 1
41695 PY 1999
41696 VL 34
41697 IS 7
41698 BP 1533
41699 EP 1541
41700 PG 9
41701 SC Materials Science, Multidisciplinary
41702 GA 190DJ
41703 UT ISI:000079946500014
41704 ER
41705 
41706 PT J
41707 AU Zhang, LS
41708    Gao, F
41709    Zhu, WX
41710 TI Nonlinear integer programming and global optimization
41711 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
41712 DT Article
41713 DE integer programming; global minimization problem; Branch-Bound algorithm
41714 AB Various approaches have been developed for solving a variety of
41715    continuous global optimization problems. But up to now, less work has
41716    been devoted to solving nonlinear integer programming problems due to
41717    the inherent difficulty. This paper manages to transform the general
41718    nonlinear integer programming problem into an "equivalent" special
41719    continuous global minimization problem. Thus any effective global
41720    optimization algorithm can be used to solve nonlinear integer
41721    programming problems. This result will also promote the research on
41722    global optimization. We present an interval Branch-and-Bound algorithm.
41723    Numerical experiments show that this approach is efficient.
41724 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
41725 CR BENSON HP, 1990, ANN OPER RES, V25, P243
41726    CHICHINADZE VK, 1991, COMP MATH MATH PHYS+, V30, P170
41727    CONLEY W, 1980, COMPUTER OPTIMIZATIO
41728    GAREY MR, 1979, COMPUTER INTRACTABIL
41729    GE R, 1989, APPL MATH COMPUT, V34, P39
41730    GE R, 1990, MATH PROGRAM, V46, P191
41731    KAN AHG, 1988, HDB OPERATIONS RES M, V1
41732    LEVY AV, 1985, SIAM J SCI STAT COMP, V6, P15
41733    NUMHAAUSER GL, 1988, INTEGER COMBINATORIA
41734    RATSCHEK H, 1988, E HORWOOD SERIES MAT
41735    SCHRIJVER A, 1986, THEORY LINEAR INTEGE
41736 NR 11
41737 TC 2
41738 SN 0254-9409
41739 J9 J COMPUT MATH
41740 JI J. Comput. Math.
41741 PD MAR
41742 PY 1999
41743 VL 17
41744 IS 2
41745 BP 179
41746 EP 190
41747 PG 12
41748 SC Mathematics, Applied; Mathematics
41749 GA 190JB
41750 UT ISI:000079958400007
41751 ER
41752 
41753 PT J
41754 AU Ye, ZM
41755 TI Application of Maple V to the nonlinear vibration analysis of circular
41756    plate with variable thickness
41757 SO COMPUTERS & STRUCTURES
41758 DT Article
41759 DE nonlinear vibration; circular plate with variable thickness; computer
41760    algebra systems method
41761 ID NON-LINEAR VIBRATION; RECTANGULAR-PLATES; SHALLOW SHELLS
41762 AB This paper is concerned with the application of Maple V to the
41763    nonlinear vibration problems of circular plates with variable
41764    thickness. In this paper, the nonlinear equations of plates of variable
41765    thickness to the dynamic case can be solved by using the computer
41766    algebra systems method. Details of solution expressions and numerical
41767    results are given in computer algebra systems forms, for two kinds of
41768    boundary conditions, which are the clamped edge and the supported edge.
41769    The numerical results show that the solutions of the paper contain
41770    other cases when the plates are of uniform thickness. The effect of
41771    various thickness parameters has been investigated in detail. In
41772    addition, a Runge-Kutta method is used to solve the free vibration and
41773    the maximum deflection response to a uniformly distributed step load of
41774    plates with variable thickness. It is shown that the adoption of
41775    variable thickness plate would be useful in engineering design. (C)
41776    1999 Elsevier Science Ltd. All rights reserved.
41777 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
41778 RP Ye, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yan Chang
41779    Rd, Shanghai 200072, Peoples R China.
41780 CR BELTZER AI, 1990, APPL MECH REV, V43, P119
41781    BHUSHAN B, 1991, COMPOS STRUCT, V18, P263
41782    BISWAS P, 1984, J INDIAN I SCI, V65, P29
41783    CHANG WP, 1986, INT J NONLINEAR MECH, V21, P375
41784    CHIA CY, 1985, J SOUND VIB, V101, P539
41785    CHU HN, 1956, J APPLIED MECHANICS, V23, P532
41786    DUMIR PC, 1986, J SOUND VIB, V107, P253
41787    GANDHI M, 1988, T ASME, V110, P140
41788    IOAKIMIDIS NI, 1992, COMPUT STRUCT, V43, P181
41789    IOAKIMIDIS NI, 1994, COMPUT STRUCT, V53, P63
41790    ISAKHANOV GV, 1985, PROBL PROCHN, V11, P74
41791    LI D, 1990, APPL MATH MECH, V11, P13
41792    MEI C, 1985, AIAA J, V23, P1104
41793    RAJAGOPAL SV, 1986, J SOUND VIBR, V110, P261
41794    RAJAGOPAL SV, 1987, AIAA J, V25, P130
41795    TIMOSHENKO S, 1959, THEORY PLATES SHELLS
41796    WAH T, 1963, INT J MECH SCI, V5, P425
41797    WANG XX, 1991, COMPUT METHOD APPL M, V86, P73
41798    YAMAKI N, 1961, Z ANGEW MATH MECH, V41, P501
41799    YE ZM, 1995, COMPUT STRUCT, V55, P325
41800    YE ZM, 1997, J SOUND VIB, V202, P303
41801    YE ZM, 1998, COMPUT METH APPL MEC, V163, P384
41802 NR 22
41803 TC 4
41804 SN 0045-7949
41805 J9 COMPUT STRUCT
41806 JI Comput. Struct.
41807 PD JUN
41808 PY 1999
41809 VL 71
41810 IS 5
41811 BP 481
41812 EP 488
41813 PG 8
41814 SC Computer Science, Interdisciplinary Applications; Engineering, Civil
41815 GA 191WD
41816 UT ISI:000080043800001
41817 ER
41818 
41819 PT J
41820 AU Tian, LX
41821    Liu, ZR
41822 TI p dissipative operator
41823 SO COMMUNICATIONS IN MATHEMATICAL PHYSICS
41824 DT Article
41825 ID NONLINEAR SCHRODINGER-EQUATION; ADJOINT HILLS OPERATORS; POTENTIALS
41826 AB In this paper the authors prove that the generalized positive p
41827    selfadjoint (GPpS) operators in Banach space satisfy the generalized
41828    Schwarz inequality, solve the maximal dissipative extension
41829    representation of p dissipative operators in Banach space by using the
41830    inequality and introducing the generalized indefinite inner product
41831    (GIIP) space, and apply the result to a certain type of Schrodinger
41832    operator.
41833 C1 Jiangsu Uni Sci & Technol, Dept Math & Phys, Zhenjiang 212013, Jiangsu, Peoples R China.
41834    Acad Sinica, Inst Mech, LNM, Beijing 100080, Peoples R China.
41835    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
41836 RP Tian, LX, Jiangsu Uni Sci & Technol, Dept Math & Phys, Zhenjiang
41837    212013, Jiangsu, Peoples R China.
41838 CR ANTOINE JP, 1981, ADV MATH, V41, P281
41839    BERKSON E, 1975, T AM MATH SOC, V116, P376
41840    BONGAR L, 1974, ERGEB MATH GRENZGEB, V78
41841    BRANGES LD, 1988, J FUNCT ANAL, V81, P219
41842    CHANG SS, 1997, INT J MATH MATH SCI, V20, P219
41843    CRANDALL MG, 1968, J FUNCT ANAL, V2, P147
41844    FAULKNER GD, 1977, ROCKY MOUNTAIN J MAT, V7, P789
41845    FLEMING RJ, 1976, T AM MATH SOC, V217, P87
41846    GILES JR, 1967, T AM MATH SOC, V129, P436
41847    GODEFROY G, 1991, J FUNCT ANAL, V98, P229
41848    HALMOS PR, 1967, HILBERT SPACE PROBLE
41849    HAYASHI N, 1993, NONLINEAR ANAL-THEOR, V20, P823
41850    HELFFER B, 1988, LECT NOTE MATH, V1336
41851    HERRERO DA, 1991, B LOND MATH SOC, V23, P513
41852    HERRERO DA, 1992, J OPERAT THEOR, V28, P93
41853    KUKSIN SB, 1996, COMMUN MATH PHYS, V178, P265
41854    LANGER H, 1984, LECT NOTES MATH, V948, P1
41855    LUMER G, 1961, PAC J MATH, V11, P679
41856    LUMER G, 1961, T AM MATH SOC, V100, P29
41857    LUMER G, 1962, B AM MATH SOC, V68, P28
41858    NATH B, 1971, MATH J OKAYANA U, V15, P1
41859    OLSEN PA, 1995, COMMUN PART DIFF EQ, V20, P2005
41860    OLUBUMMO A, 1965, J MATH MECH, V14, P929
41861    OSTENHOF MH, 1995, COMMUN PART DIFF EQ, V20, P1241
41862    PETHE PV, 1976, INDIAN J PURE APPL M, V7, P1024
41863    PETHE PV, 1977, INDIAN J PURE APPL M, V8, P898
41864    PHILLIPS RS, 1959, T AM MATH SOC, V90, P193
41865    PHILLIPS RS, 1966, J MATH MECH, V15, P235
41866    PUTTAMADAIAH C, 1986, INDIAN J PURE APPL M, V17, P919
41867    SANSUC JJ, 1996, J DIFFER EQUATIONS, V125, P366
41868    SEN DK, 1982, MATH JAPN, V27, P151
41869    SIMON B, 1996, J FUNCT ANAL, V140, P541
41870    SOFFER A, 1992, J DIFFER EQUATIONS, V98, P376
41871    STAMPEL JG, 1962, P AM MATH SOC, V13, P796
41872    STAMPEL JG, 1969, CAN J MATH, V21, P505
41873    TIAN LX, 1987, J JIANGSU U SCI TECH, V8, P103
41874    TIAN LX, 1988, J JIANGSU U SCI TECH, V9, P96
41875    TIAN LX, 1991, J JIANGSU U SCI TECH, V12, P121
41876    TIAN LX, 1995, ACTA MATH SCI, V15, P455
41877    TIAN LX, 1995, J JIANGSU U SCI TECH, V16, P82
41878    TIAN LX, 1996, APPL MATH MECH, V17, P155
41879    TIAN LX, 1997, APPL MATH MECH-ENGL, V18, P1021
41880    TIAN LX, 1998, P AM MATH SOC, V126, P203
41881    TKACHENKO V, 1996, ANN MATH, V143, P181
41882    TORRANCE E, 1970, P AM MATH SOC, V76, P108
41883    UNNI KR, 1981, TSUKUBA J MATH, V5, P15
41884    WEI GQ, 1987, CHIN ANN MATH B, V88, P70
41885    YAN SZ, 1990, ADV SCI CHINA MATH, V3, P99
41886    YAN Y, 1993, NONLINEAR ANAL-THEOR, V20, P1417
41887    YANG L, 1994, AUDIT NEUROSCI, V1, P1
41888    YOSIDA K, 1965, FUNCTIONAL ANAL
41889 NR 51
41890 TC 1
41891 SN 0010-3616
41892 J9 COMMUN MATH PHYS
41893 JI Commun. Math. Phys.
41894 PD APR
41895 PY 1999
41896 VL 201
41897 IS 3
41898 BP 519
41899 EP 548
41900 PG 30
41901 SC Physics, Mathematical
41902 GA 190WC
41903 UT ISI:000079987400003
41904 ER
41905 
41906 PT J
41907 AU Chen, J
41908    Nho, YC
41909    Kwon, OH
41910    Hoffman, AS
41911 TI Grafting copolymerization of acrylamides onto preirradiated PP films
41912 SO RADIATION PHYSICS AND CHEMISTRY
41913 DT Article
41914 DE radiation grafting; acrylamide; polypropylene; blood-compatibility
41915 AB Acrylamide (AAm), N,N-Dimethylacrylamide (DMAAm) and
41916    N-(3-Dimethylaminopropyl) methacrylamide (DMAPMAAm) were grafted onto
41917    polypropylene (PP) films by preirradiation grafting respectively. The
41918    effect of irradiation dose, solvent systems and reaction time on the
41919    degree of grafting were determined. The grafted sample films were
41920    verified by Fourier Transform Infrared (FTIR) spectroscopy in the
41921    attenuated total reflectance mode (ATR) and the determination of water
41922    contact angle. The blood compatibility of the grafted PP films were
41923    evaluated by the determination of platelet adsorption and thrombus. The
41924    blood compatibility of grafted PP films seems better than that of
41925    original PP films. (C) 1999 Elsevier Science Ltd. All rights reserved.
41926 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
41927    Korea Atom Energy Res Inst, Radiat Applicat Div, Taejon, South Korea.
41928    Univ Washington, Ctr Bioengn, Seattle, WA 98159 USA.
41929 RP Chen, J, Shanghai Univ, Shanghai Appl Radiat Inst, Jiading Campus,
41930    Shanghai 201800, Peoples R China.
41931 CR DUNKIRK SG, 1991, J BIOMATER APPL, V6, P131
41932    HOFFMAN AS, 1988, J APPL POLYM SCI APP, V42, P251
41933    IMAI Y, 1972, J BIOMED MATER RES, V6, P165
41934    ISHIGAKI I, 1982, J APPL POLYM SCI, V27, P1033
41935    JEONG BJ, 1996, J COLLOID INTERF SCI, V178, P757
41936    MATSUDA T, 1990, T AM SOC ART INT ORG, V36, M161
41937    MERRIL EW, 1987, HYDROGELS MED PHARM, V3, P1
41938    NHO YC, 1993, POLYMER, V17, P433
41939    RATNER BD, 1996, HYDROGELS BIOMATERIA, P60
41940    SUN YH, 1986, J BIOACT COMPAT POL, V1, P316
41941 NR 10
41942 TC 8
41943 SN 0969-806X
41944 J9 RADIAT PHYS CHEM
41945 JI Radiat. Phys. Chem.
41946 PD JUN
41947 PY 1999
41948 VL 55
41949 IS 1
41950 BP 87
41951 EP 92
41952 PG 6
41953 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
41954    Science & Technology
41955 GA 187WX
41956 UT ISI:000079812200011
41957 ER
41958 
41959 PT J
41960 AU Fang, ZM
41961 TI Sci-tech translation and its research in China
41962 SO META
41963 DT Article
41964 C1 Shanghai Univ, Shanghai 200041, Peoples R China.
41965 RP Fang, ZM, Shanghai Univ, Shanghai 200041, Peoples R China.
41966 CR FANG MZ, 1993, SELECTED READINGS TR
41967    JIANG CF, 1984, TAC NEWSLETT, V12
41968    JIN D, 1984, TRANSLATION
41969    LU SY, 1990, SHANGHAI J TRANSLATO, V4
41970    LUO XZ, 1984, SELECTED WRITINGS TR
41971    MACKAY R, 1978, ENGLISH SPECIFIC PUR
41972    NEWMARK P, 1988, TEXTBOOK TRANSLATION
41973    NIDA EA, 1989, FOREIGN LANGUAGES, V4
41974    ZHANG RS, 1994, FOREIGN LANGUAGES, V6
41975 NR 9
41976 TC 0
41977 SN 0026-0452
41978 J9 META
41979 JI Meta
41980 PD MAR
41981 PY 1999
41982 VL 44
41983 IS 1
41984 BP 185
41985 EP 197
41986 PG 13
41987 SC Language & Linguistics Theory
41988 GA 190HU
41989 UT ISI:000079957700013
41990 ER
41991 
41992 PT J
41993 AU Chen, DY
41994    Gu, Y
41995 TI Cole-Hopf quotient and exact solutions of the generalized
41996    Fitzhugh-Nagumo equations
41997 SO ACTA MATHEMATICA SCIENTIA
41998 DT Article
41999 DE Cole-Hopf quotient; reaction-diffusion equation; exact solution
42000 ID LINEAR DIFFUSION EQUATION; SYMMETRY REDUCTIONS
42001 AB Several classes of solution (wavefronts, coalescence of two wavefronts,
42002    solutions with Jacobi elliptic function) of the Fitzhugh-Nagumo
42003    equation and the generalized Fitzhugh-Nagumo equation are constructed
42004    by the Cole-Hopf quotient and the elementary transformations, Pome of
42005    which are new solutions. The close relation of the generalized
42006    Fitzhugh-Nagumo equation and Emden equation are also found.
42007 C1 Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China.
42008 CR ARRIGO DJ, 1994, IMA J APPL MATH, V52, P1
42009    BELLMAN R, 1953, STABILITY THEORY DIF
42010    CARIELLO F, 1989, PHYSICA D, V39, P77
42011    CHEN ZX, 1992, IMA J APPL MATH, V48, P107
42012    CONTE R, 1988, PHYS LETT A, V134, P100
42013    GU Y, 1993, ANAL SOLUTION REACTI
42014    KAWAHARA T, 1983, PHYS LETT A, V97, P311
42015    NUCCI MC, 1992, PHYS LETT A, V164, P49
42016 NR 8
42017 TC 2
42018 SN 0252-9602
42019 J9 ACTA MATH SCI
42020 JI Acta Math. Sci.
42021 PY 1999
42022 VL 19
42023 IS 1
42024 BP 7
42025 EP 14
42026 PG 8
42027 SC Mathematics
42028 GA 188NQ
42029 UT ISI:000079854700002
42030 ER
42031 
42032 PT J
42033 AU Mao, DK
42034 TI Entropy satisfaction of a conservative shock-tracking method
42035 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
42036 DT Article
42037 DE shocking tracking; conservation; entropy condition
42038 ID FINITE-DIFFERENCE METHODS; HIGH-RESOLUTION SCHEMES; APPROXIMATIONS;
42039    LAWS; DISCONTINUITIES
42040 AB In this paper we discuss the entropy satisfaction of the conservative
42041    shock-tracking technique developed in [D. K. Mao, J. Comput. Phys., 92
42042    (1991), pp. 422-455], [D. K. Mao, J. Comput. Phys., 103 (1992), pp.
42043    359-369], and [D. K. Mao, SIAM J. Numer. Anal., 32 (1995), pp.
42044    1677-1703] when it is applied to the Godunov scheme. We consider the
42045    scalar case in one-space dimension and assume that both the flux and
42046    entropy functions are strictly convex. We prove that, when the tracked
42047    shocks are strong enough in comparison with the variation of the
42048    numerical solution around them, the numerical solution satisfies the
42049    entropy condition in a certain sense. We also discuss the entropy
42050    situation when the convexity of the flux function is very weak and the
42051    tracked shock neighbors to strong simple waves.
42052 C1 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
42053 RP Mao, DK, Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800,
42054    Peoples R China.
42055 EM dkmao@guomai.sh.cn
42056 CR ATKINSON K, 1988, INTRO NUMERICAL ANAL
42057    CRANDALL MG, 1980, MATH COMPUT, V34, P1
42058    ENGQUIST B, 1981, MATH COMPUT, V36, P321
42059    HARTEN A, 1976, COMMUN PURE APPL MAT, V29, P297
42060    HARTEN A, 1983, J COMPUT PHYS, V49, P357
42061    KLINGENBERG C, 1994, MATH COMPUT MODEL, V20, P89
42062    KRUZKOV SN, 1970, MAT SBORNIK, V81, P228
42063    LEVEQUE RJ, 1990, NUMERICAL METHODS CO
42064    MAJDA A, 1979, COMMUN PUR APPL MATH, V32, P797
42065    MAO DK, 1991, J COMPUT PHYS, V92, P422
42066    MAO DK, 1992, J COMPUT PHYS, V103, P359
42067    MAO DK, 1995, SIAM J NUMER ANAL, V32, P1677
42068    OSHER S, 1984, SIAM J NUMER ANAL, V21, P955
42069    TADMOR E, 1984, MATH COMPUT, V43, P369
42070 NR 14
42071 TC 2
42072 SN 0036-1429
42073 J9 SIAM J NUMER ANAL
42074 JI SIAM J. Numer. Anal.
42075 PD MAR 5
42076 PY 1999
42077 VL 36
42078 IS 2
42079 BP 529
42080 EP 550
42081 PG 22
42082 SC Mathematics, Applied
42083 GA 179UD
42084 UT ISI:000079347000012
42085 ER
42086 
42087 PT J
42088 AU Yang, YZ
42089    Li, QS
42090    Zhu, YL
42091    Ma, XM
42092    Dong, YD
42093 TI Influence of milling conditions on the mechanical alloying of Fe-B
42094    powders
42095 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
42096 DT Article
42097 AB Amorphous and nanostructural Fe-B alloys made by mechanical alloying of
42098    elemental Fe and amorphous B powders have been studied using X-ray
42099    diffraction, differential scanning calorimetry and Mossbauer
42100    spectroscopy. It has been shown that the milling conditions have a
42101    strong effect on the alloying. The single phase amorphous alloy, which
42102    is limited at nominal composition of Fe60B40, has been produced only by
42103    milling in Ar atmosphere and in other composition range the mixture of
42104    nanostructure Fe-like phase and Fe2B compound with a little amorphous
42105    phase are obtained. While by milling in air atmosphere the introduction
42106    of oxygen in air may suppress the formation of amorphous phase, thus
42107    the compounds Fe2B may be synthesized with no trace of amorphous phase.
42108    The crystallization temperatures of amorphous phase in the resultant
42109    products are higher than those of a single amorphous alloy Fe60B40, and
42110    hardly independent of the milling conditions and the composition. In
42111    addition, it is revealed that detectable B content in the final
42112    products is lower than the nominal composition of all the initial
42113    samples, which indicates that some B atoms may be located in the
42114    disordered interfacial regions of the nanostructural alloyed mixtures.
42115 C1 Guangdong Univ Technol, Dept Mat Sci & Engn, Guangzhou 510090, Peoples R China.
42116    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
42117 RP Yang, YZ, Guangdong Univ Technol, Dept Mat Sci & Engn, Guangzhou
42118    510090, Peoples R China.
42119 CR BALOGH J, 1995, J APPL PHYS, V77, P4997
42120    BLUM NA, 1982, J APPL PHYS, V53, P2074
42121    CALKA A, 1991, APPL PHYS LETT, V58, P119
42122    CHIEN CL, 1979, PHYS REV B, V20, P283
42123    CHIEN CL, 1982, PHYS REV B, V25, P5790
42124    CLAVAGUERAMORA MT, 1990, COLL PHYS, V51, P49
42125    HOVING W, 1984, J NONCRYST SOLIDS, V61, P421
42126    JING J, 1990, J NONCRYST SOLIDS, V116, P247
42127    JING J, 1991, J PHYS-CONDENS MAT, V3, P7413
42128    NAKAJIMA T, 1986, J MATER SCI LETT, V5, P60
42129    OKUMURA H, 1992, J MATER SCI, V27, P153
42130    YANG YZ, 1995, CHIN J MAT RES, V9, P33
42131 NR 12
42132 TC 2
42133 SN 1005-0302
42134 J9 J MATER SCI TECHNOL
42135 JI J. Mater. Sci. Technol.
42136 PD MAR
42137 PY 1999
42138 VL 15
42139 IS 2
42140 BP 137
42141 EP 142
42142 PG 6
42143 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
42144    Engineering
42145 GA 183KD
42146 UT ISI:000079552000007
42147 ER
42148 
42149 PT J
42150 AU Rui, HB
42151 TI On endomorphism algebras arising from Hecke algebras
42152 SO JOURNAL OF ALGEBRA
42153 DT Article
42154 ID REPRESENTATIONS
42155 C1 Shanghai Univ Sci & Technol, Dept Math, Shanghai 200093, Peoples R China.
42156 RP Rui, HB, Shanghai Univ Sci & Technol, Dept Math, Shanghai 200093,
42157    Peoples R China.
42158 CR ARIKI S, 1994, ADV MATH, V106, P216
42159    CLINE E, 1988, J REINE ANGEW MATH, V391, P85
42160    DIPPER R, 1986, P LOND MATH SOC, V52, P20
42161    DIPPER R, 1995, P LOND MATH SOC, V70, P505
42162    DIPPER R, 1998, MATH Z, V229, P385
42163    DIPPER R, 1998, P LOND MATH SOC 2, V77, P327
42164    DU J, IN PRESS J ALGEBRA
42165    DU J, IN PRESS T AM MATH S
42166    DU J, 1998, T AM MATH SOC, V350, P3207
42167    GRAHAM JJ, 1996, INVENT MATH, V123, P1
42168    KAZHDAN D, 1979, INVENT MATH, V53, P155
42169    MURPHY GE, 1995, J ALGEBRA, V173, P97
42170    PALLIKAROS C, 1994, J ALGEBRA, V169, P20
42171    RUI HB, 1997, J ALGEBRA, V195, P308
42172    SHI JY, 1996, J ALGEBRA, V179, P607
42173 NR 15
42174 TC 0
42175 SN 0021-8693
42176 J9 J ALGEBRA
42177 JI J. Algebra
42178 PD APR 1
42179 PY 1999
42180 VL 214
42181 IS 1
42182 BP 342
42183 EP 355
42184 PG 14
42185 SC Mathematics
42186 GA 183TE
42187 UT ISI:000079568900019
42188 ER
42189 
42190 PT J
42191 AU He, JH
42192 TI Variational iteration method - a kind of non-linear analytical
42193    technique: Some examples
42194 SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS
42195 DT Article
42196 DE variational iteration method; duffing equation; non-linear equations
42197 AB In this paper, a new kind of analytical technique for a non-linear
42198    problem called the variational iteration method is described and used
42199    to give approximate solutions for some well-known non-linear problems.
42200    In this method, the problems are initially approximated with possible
42201    unknowns. Then a correction functional is constructed by a general
42202    Lagrange multiplier, which can be identified optimally via the
42203    variational theory. Being different from the other non-linear
42204    analytical methods, such as perturbation methods, this method does not
42205    depend on small parameters, such that it can find wide application in
42206    non-linear problems without linearization or small perturbations.
42207    Comparison with Adomian's decomposition method reveals that the
42208    approximate solutions obtained by the proposed method converge to its
42209    exact solution faster than those of Adomian's method. (C) 1999 Elsevier
42210    Science Ltd. All rights reserved.
42211 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
42212 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
42213    Peoples R China.
42214 CR ADOMIAN G, 1988, J MATH ANAL APPL, V135, P501
42215    CHERRUAULT Y, 1989, KYBERNETES, V18, P31
42216    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
42217    HAGEDORN P, 1981, NONLINEAR OSCILLATIO
42218    HE JH, 1988, INT C VIBR ENG 98 DA
42219    HE JH, 1997, COMM NONLINEAR SCI N, V2, P230
42220    HE JH, 1997, COMMUNICATIONS NONLI, V2, P235
42221    HE JH, 1997, INT J TURBO JET ENG, V14, P23
42222    HE JH, 1998, MECH PRACTICE, V20, P30
42223    HE JH, 1998, MECH SCI TECHNOL, V17, P221
42224    INOKUTI M, 1978, VARIATIONAL METHOD M, P156
42225    MICKENS RE, 1981, INTRO NONLINEAR OSCI
42226    NAYFEH AH, 1985, PROBLEMS PERTURBATIO
42227 NR 13
42228 TC 50
42229 SN 0020-7462
42230 J9 INT J NON-LINEAR MECH
42231 JI Int. J. Non-Linear Mech.
42232 PD JUL
42233 PY 1999
42234 VL 34
42235 IS 4
42236 BP 699
42237 EP 708
42238 PG 10
42239 SC Mechanics
42240 GA 182CV
42241 UT ISI:000079481700010
42242 ER
42243 
42244 PT J
42245 AU Tan, WH
42246    Fan, W
42247 TI Stability of multi-atom micromasers
42248 SO ACTA PHYSICA SINICA-OVERSEAS EDITION
42249 DT Article
42250 ID PHOTON NOISE-REDUCTION; PUMPING STATISTICS; LASERS; MASERS; QUANTUM;
42251    MODEL
42252 AB In view of the one-atom micromasers output sensitive to the interaction
42253    parameters, we propose a new multi-atom micromasers defined by passing
42254    multi-atom each time through the cavity regularly. Through analysis and
42255    numerical simulation, great progress has been made in the improvement
42256    of stability of mean photon number and variance of micromasers.
42257 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
42258 RP Tan, WH, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
42259 CR BENKERT C, 1993, PHYS REV A, V47, P1564
42260    BERGOU J, 1989, OPT COMMUN, V72, P82
42261    DAVIDOVICH L, 1992, PHYS REV A, V46, P1630
42262    FILIPOWICZ P, 1986, J OPT SOC AM B, V3, P906
42263    FILIPOWICZ P, 1986, PHYS REV A, V34, P3077
42264    GOLUBEV YM, 1984, ZH EKSP TEOR FIZ, V60, P234
42265    GUERRA ES, 1991, PHYS REV A, V44, P7785
42266    HAAKE F, 1989, PHYS REV A, V40, P7121
42267    KYUNGWON A, 1994, PHYS REV LETT, V73, P3375
42268    LIU RH, 1998, CHINESE SCI BULL, V43, P425
42269    REMPE G, 1990, PHYS REV A, V42, P1650
42270    REMPE G, 1990, PHYS REV LETT, V64, P2783
42271    TAN WH, 1994, PHYS LETT A, V190, P13
42272    TAN WH, 1995, OPT COMMUN, V115, P303
42273    YAMAMOTO Y, 1986, PHYS REV A, V34, P4025
42274    ZHU SY, 1992, PHYS REV A, V45, P499
42275 NR 16
42276 TC 1
42277 SN 1004-423X
42278 J9 ACTA PHYS SIN-OVERSEAS ED
42279 JI Acta Phys. Sin.-Overseas Ed.
42280 PD APR
42281 PY 1999
42282 VL 8
42283 IS 4
42284 BP 275
42285 EP 283
42286 PG 9
42287 SC Physics, Multidisciplinary
42288 GA 184CX
42289 UT ISI:000079592800005
42290 ER
42291 
42292 PT J
42293 AU Li-Ping, H
42294    De-Kang, M
42295    Ben-Yu, G
42296 TI Prediction-correction Legendre spectral scheme for incompressible fluid
42297    flow
42298 SO ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION
42299    MATHEMATIQUE ET ANALYSE NUMERIQUE
42300 DT Article
42301 DE incompressible fluid flow in stream function form;
42302    prediction-correction Legendre spectral scheme with high accuracy;
42303    convergence and numerical experiments
42304 ID NAVIER-STOKES EQUATIONS; POLYNOMIALS
42305 AB The initial-boundary value problem of two-dimensional incompressible
42306    fluid flow in stream function form is considered. A
42307    prediction-correction Legendre spectral scheme is proposed, which is
42308    easy to be performed. The numerical solution possesses the accuracy of
42309    second-order in time and higher order in space. The numerical
42310    experiments show the high accuracy of this approach.
42311 C1 Shanghai Jiao Tong Univ, Dept Math Appl, Shanghai 200030, Peoples R China.
42312    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
42313 RP Li-Ping, H, Shanghai Jiao Tong Univ, Dept Math Appl, Shanghai 200030,
42314    Peoples R China.
42315 CR ADAMS RA, 1975, SOBOLEV SPACE
42316    BERNSTEIN JM, 1992, RESPIRATION, V59, P3
42317    CANUTO C, 1982, MATH COMPUT, V38, P67
42318    CANUTO C, 1988, SPECTRAL METHODS FLU
42319    CHORIN AJ, 1967, J COMPUT PHYS, V2, P12
42320    GIRAULT V, 1979, LECT NOTE MATH, V794
42321    GOTTLIEB D, 1977, CBMS NSF REGINAL C S, V26
42322    GRESHO PM, 1987, INT J NUMER METH FL, V7, P1111
42323    GUO BY, 1988, FINITE DIFFERENCE ME
42324    GUO BY, 1997, J MATH ANAL APPL, V205, P1
42325    GUO BY, 1998, SIAM J NUMER ANAL, V35, P146
42326    HI LP, 19963 RR SHANGH U DE
42327    KUO PY, 1977, SCI SINICA, V20, P287
42328    LIONS JL, 1968, PROBLEMES LIMITES HO, V1
42329    LIONS JL, 1969, QUELQUES METHODES RE
42330    LIONS JL, 1970, SIAM AMS P, V2, P11
42331    ODEN JT, 1974, FINITE ELEMENT METHO
42332    ROACH PJ, 1976, COMPUTATIONAL FLUID
42333    SHEN J, 1992, ADV COMPUTER METHODS, V7, P658
42334    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
42335    TEMAM R, 1977, NAVIERSTOKES EQUATIO
42336 NR 21
42337 TC 0
42338 SN 0764-583X
42339 J9 RAIRO-MATH MODEL NUMER ANAL
42340 JI Rairo-Math. Model. Numer. Anal.-Model. Math. Anal. Numer.
42341 PD JAN-FEB
42342 PY 1999
42343 VL 33
42344 IS 1
42345 BP 113
42346 EP 120
42347 PG 8
42348 SC Mathematics, Applied
42349 GA 179LZ
42350 UT ISI:000079330100007
42351 ER
42352 
42353 PT J
42354 AU Li, CF
42355    Feng, SS
42356 TI Several aspects of the A-B scattering
42357 SO PHYSICA B
42358 DT Article
42359 DE A-B scattering; single-valuedness of incident wave function; divergence
42360    of total cross section
42361 ID AHARONOV-BOHM SCATTERING; WAVE
42362 AB After a brief review of previous works on the A-B scattering, the
42363    authors show that the multi-valued incident wave function used
42364    originally by Aharonov and Bohm is of no physical significance. The
42365    closed expression for the scattering amplitude that is continuous in
42366    the forward direction apart from a delta-function contribution is also
42367    calculated by the method of partial waves. In contrast with Aharonov
42368    and Bohm's result that no scattering occurs when alpha is an integer,
42369    the differential and total scattering cross sections do not vanish when
42370    a equals an odd number (where alpha = Phi/Phi(0) represents the
42371    magnetic Aux in the infinitely long thin solenoid, and Phi(0) = h/e).
42372    This coincides with the result by Sakoda and Omote [J. Math. Phys. 38
42373    (1997) 716]. It is shown that the divergence of the total cross section
42374    is due to the fact that the A-B solenoid exhibits a
42375    partial-wave-dependent effective scattering potential. (C) 1999
42376    Elsevier Science B.V. All rights reserved.
42377 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
42378    CCAST, World Lab, Beijing 100080, Peoples R China.
42379 RP Feng, SS, Shanghai Univ, Dept Phys, 20 Chengzhong Rd, Shanghai 201800,
42380    Peoples R China.
42381 CR AHARONOV Y, 1959, PHYS REV, V115, P485
42382    AHARONOV Y, 1984, PHYS REV D, V29, P2396
42383    ALVAREZ M, 1996, PHYS REV A, V54, P1128
42384    BOZ M, 1996, ANN PHYS-NEW YORK, V246, P347
42385    HAGEN CR, 1990, PHYS REV D, V41, P2015
42386    HENNEBERGER WC, 1980, PHYS REV A, V22, P1383
42387    HENNEBERGER WC, 1981, J MATH PHYS, V22, P116
42388    JACKIW R, 1990, ANN PHYS-NEW YORK, V201, P83
42389    LI CF, 1995, PHYSICA B, V212, P436
42390    LI CF, 1996, PHYSICA B, V226, P406
42391    RUIJSENAARS SNM, 1983, ANN PHYS-NEW YORK, V146, P1
42392    SAKODA S, 1997, J MATH PHYS, V38, P716
42393    SAKURAI JJ, 1985, MODERN QUANTUM MECH, P424
42394    WEINBERG S, 1995, QUANTUM THEORY FIELD, P112
42395    YANG CN, 1983, P INT S FDN QUANT ME, P5
42396 NR 15
42397 TC 0
42398 SN 0921-4526
42399 J9 PHYSICA B
42400 JI Physica B
42401 PD APR 1
42402 PY 1999
42403 VL 262
42404 IS 3-4
42405 BP 210
42406 EP 217
42407 PG 8
42408 SC Physics, Condensed Matter
42409 GA 178DR
42410 UT ISI:000079251500002
42411 ER
42412 
42413 PT J
42414 AU Hou, JY
42415    Guo, BY
42416 TI Chebyshev pseudospectral-finite element method for the
42417    three-dimensional unsteady Navier-Stokes equation
42418 SO APPLIED MATHEMATICS AND COMPUTATION
42419 DT Article
42420 DE three-dimensional Navier-Stokes equation; Chebyshev
42421    pseudospectral-finite element approximation
42422 ID VORTICITY EQUATIONS
42423 AB A mixed Chebyshev pseudospectral-finite element method is developed for
42424    solving the three-dimensional evolutionary Navier-Stokes equation. The
42425    generalized stability and the convergence of the scheme are proved
42426    strictly. The numerical results presented show the advantages of this
42427    mixed method. (C) 1999 Published by Elsevier Science Inc. All rights
42428    reserved.
42429 C1 Shanghai Univ Sci & Technol, Shanghai 201800, Peoples R China.
42430 RP Guo, BY, Shanghai Univ, President Off, Jiading Campus, Shanghai,
42431    Peoples R China.
42432 CR CANUTO C, 1984, NUMER MATH, V44, P201
42433    CANUTO C, 1984, SPECTRAL METHODS PAR, P55
42434    CANUTO C, 1988, SPECTRAL METHOD FLUI
42435    CIARLET PG, 1978, FINITE ELEMENT METHO
42436    COURANT R, 1953, METHODS MATH PHYSICS, V1
42437    GIRAULT V, 1979, LECT NOTES MATH, V794
42438    GRESHO PM, 1987, INT J NUMER METH FL, V7, P1111
42439    GUO BY, IN PRESS ACTA MATH A
42440    GUO BY, 1987, SCI SINICA A, V30, P697
42441    GUO BY, 1988, DIFFERNCE METHODS PA
42442    GUO BY, 1989, J COMPUT PHYS, V84, P259
42443    GUO BY, 1991, SIAM J NUMER ANAL, V28, P113
42444    GUO BY, 1992, BMN M PHI, V32, P530
42445    GUO BY, 1992, J COMPUT PHYS, V101, P207
42446    GUO BY, 1993, SIAM J NUMER ANAL, V30, P1066
42447    GUO BY, 1995, RAIRO-MATH MODEL NUM, V29, P303
42448    GUO BY, 1996, NUMERICAL MATH, V5, P161
42449    GUO BY, 1996, RAIRO-MATH MODEL NUM, V30, P873
42450    GUO BY, 1997, JPN J APPL MATH, V14, P329
42451    MA HP, 1988, J COMPUT MATH, V6, P48
42452    MA HP, 1990, J HYDRODYNAMICS B, V3, P75
42453    MA HP, 1992, CHINESE ANN MATH B, V13, P350
42454    MOIN P, 1982, J FLUID MECH, V118, P341
42455    ODEN JT, 1974, FINITE ELEMENT METHO
42456    RAVIART PA, 1979, COURS ECOLE ETE ANAL
42457    ROACH PJ, 1976, COMPUTATIONAL FLUID
42458    TEMANN R, 1977, NAVIER STOKES EQUATI
42459 NR 27
42460 TC 0
42461 SN 0096-3003
42462 J9 APPL MATH COMPUT
42463 JI Appl. Math. Comput.
42464 PD JUN 15
42465 PY 1999
42466 VL 101
42467 IS 2-3
42468 BP 209
42469 EP 244
42470 PG 36
42471 SC Mathematics, Applied
42472 GA 179EP
42473 UT ISI:000079312900005
42474 ER
42475 
42476 PT J
42477 AU Du, J
42478    Rui, HB
42479 TI Borel type subalgebras of the q-Schur(m) algebra
42480 SO JOURNAL OF ALGEBRA
42481 DT Article
42482 ID SCHUR ALGEBRA; WEYL MODULES; REPRESENTATIONS
42483 C1 Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia.
42484    Shanghai Univ Sci & Technol, Dept Math, Shanghai 200093, Peoples R China.
42485 RP Du, J, Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia.
42486 EM jied@maths.unsw.edu.au
42487    hbruik@online.sh.cn
42488 CR ARIKI S, 1994, ADV MATH, V106, P216
42489    CLINE E, 1988, J REINE ANGEW MATH, V391, P85
42490    CLINE E, 1990, J ALGEBRA, V131, P126
42491    CURTIS C, 1981, METHODS REPRESENTATI, V1
42492    DIPPER R, 1986, P LOND MATH SOC, V52, P20
42493    DIPPER R, 1991, T AM MATH SOC, V327, P251
42494    DIPPER R, 1998, MATH Z, V229, P385
42495    DIPPER R, 1998, P LOND MATH SOC 2, V77, P327
42496    DU J, IN PRESS T AM MATH S
42497    DU J, 1991, J LOND MATH SOC, V44, P420
42498    DU J, 1994, J REINE ANGEW MATH, V455, P141
42499    DU J, 1998, T AM MATH SOC, V350, P3207
42500    GRAHAM JJ, 1996, INVENT MATH, V123, P1
42501    GREEN JA, 1990, J ALGEBRA, V131, P265
42502    GREEN JA, 1993, J PURE APPL ALGEBRA, V88, P89
42503    PARSHALL B, 1991, MEM AM MATH SOC, V89
42504    RINGEL CM, 1991, MATH Z, V208, P209
42505    SANTANA AP, 1993, J ALGEBRA, V161, P480
42506    SCOTT L, 1995, MATH Z, V220, P421
42507 NR 19
42508 TC 1
42509 SN 0021-8693
42510 J9 J ALGEBRA
42511 JI J. Algebra
42512 PD MAR 15
42513 PY 1999
42514 VL 213
42515 IS 2
42516 BP 567
42517 EP 595
42518 PG 29
42519 SC Mathematics
42520 GA 176ZA
42521 UT ISI:000079181300009
42522 ER
42523 
42524 PT J
42525 AU Liu, RH
42526    Tan, WH
42527 TI Resonance fluorescence spectrum by two-level system without the
42528    rotating wave approximation
42529 SO CHINESE PHYSICS LETTERS
42530 DT Article
42531 AB In this paper the theory of resonance fluorescence spectrum by
42532    two-level system is presented without the assumption of rotating wave
42533    approximation. However, in this case, the application of quantum
42534    fluctuation-regression theorem to evaluate the resonance fluorescence
42535    spectrum tak-es a more complicated form. The prominent features of the
42536    spectrum calculated are the double splitting on the central and side
42537    bands and the emergence of harmonics in the asymmetric spectra.
42538 C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
42539    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
42540 RP Liu, RH, Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai
42541    201800, Peoples R China.
42542 CR BOYD RW, 1992, NONLINEAR OPTICS, P224
42543    DOMHELM MA, 1996, AVIATION WEEK SPACE, V145, P22
42544    MOLLOW BR, 1969, PHYS REV, V188, P1969
42545    TAN WH, 1988, OPT COMMUN, V65, P61
42546 NR 4
42547 TC 4
42548 SN 0256-307X
42549 J9 CHIN PHYS LETT
42550 JI Chin. Phys. Lett.
42551 PY 1999
42552 VL 16
42553 IS 1
42554 BP 23
42555 EP 25
42556 PG 3
42557 SC Physics, Multidisciplinary
42558 GA 175YX
42559 UT ISI:000079124600009
42560 ER
42561 
42562 PT J
42563 AU Ding, WY
42564    Tong, WQ
42565    Zhai, YA
42566    Cai, ZR
42567 TI Studies on stereoselective synthetic methods of
42568    2,3,4,5-tetrasubstituted-cis-2,3-dihydrofurans
42569 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
42570 DT Article
42571 DE arsenic ylid; 2,3-dihydrofuran; stereoselective synthesis
42572 AB Three methods for the stereoselective synthesis of
42573    2-carbomethoxy-3-aryl-4-acethyl-5-methyl-cis-dihydrofurans (7a-7g) were
42574    studied. The Ist method is proceeded through the reaction of
42575    carbomethoxy methylene triphenylarsorane (5) with 3-substituted
42576    benzal-2, 4-pentadione (6) in benzene at room temperature for 4 h and
42577    high yield of the products 7a-7g can be obtained. The 2nd method is
42578    started from the reaction of carbomethoxy methyl triphenylarsonium
42579    bromide(4) with K2CO3 in dimethyl ethyleneglycol at room temperature,
42580    the Ylid 5 formed reacted with 6 in situ, excellent yield of 7 can be
42581    obtained and triphenylarsine recovered quantitatively. The 3rd method
42582    is a stepwise one pot reaction, triphenylarsine(2) and methyl
42583    bromoacetate(3) is refluxed in dimethyl ethyleneglycol for 2. 5 h,
42584    after cooling, potassium carbonate and 6 are added in and the reaction
42585    continued at room temperature for 2 d, the overall yield from starting
42586    material triphenylarsine is about 65%. Although the Ist method is a
42587    very simple process for preparing 2,3-dihydrofuran derivatives, its
42588    application is limited due to the unstability of Ylid 5 during its
42589    preparation and storage, so the last two methods seem preferable. The
42590    structures of the products 7a-7g were confirmed by means of IR, H-1
42591    NMR, MS and elementary analysis and their configurations were
42592    established through the coupling constants of the two protons on 2-C
42593    and 3-C atoms in the dihydrofuran ring. These reactions were all highly
42594    stereoselective and only one kind of stereoisomer with cis
42595    configuration was formed. It is noteworthy that these reactions no
42596    similar normal Wittig reaction products were detected.
42597 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
42598 RP Ding, WY, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
42599 CR DING YY, 1996, CHEM RES CHINESE U, V12, P354
42600    DULERE JP, 1994, J CHEM SOC CHEM COMM, P303
42601    HUANG YZ, 1978, ACTA CHIM SINICA, V36, P215
42602    PALLAUD R, 1963, CHIM IND, V89, P283
42603    SUGIMURA H, 1994, J ORG CHEM, V59, P7653
42604 NR 5
42605 TC 4
42606 SN 0251-0790
42607 J9 CHEM J CHINESE UNIV-CHINESE
42608 JI Chem. J. Chin. Univ.-Chin.
42609 PD JAN
42610 PY 1999
42611 VL 20
42612 IS 1
42613 BP 64
42614 EP 67
42615 PG 4
42616 SC Chemistry, Multidisciplinary
42617 GA 174PQ
42618 UT ISI:000079043900016
42619 ER
42620 
42621 PT J
42622 AU Shen, J
42623    Zhou, L
42624    Li, T
42625 TI Effects of surface-applied ceria on the stability of thermally growing
42626    chromia scale of FeCr alloys and 310 steel
42627 SO JOURNAL OF MATERIALS SCIENCE
42628 DT Article
42629 ID OXIDATION
42630 AB The influence of surface-applied ceria on the oxidation behavior of
42631    FeCr alloys and 310 stainless steel at 1000 degrees C and 1100 degrees
42632    C has been studied. The surface-applied ceria were beneficial in
42633    reducing the growth rate of chromia scale, and were particularly
42634    effective in inhibiting the accelerated breakaway oxidation of Fe20Cr
42635    alloy in wet oxygen and spalling and cracking of the scale under cyclic
42636    oxidation. The beneficial effects of the ceria have been attributed to
42637    the improvement in the stability of the thermally growing chromia
42638    scale. (C) 1998 Kluwer Academic Publishers.
42639 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
42640    State Key Lab Corros & Protect, Shenyang 110015, Peoples R China.
42641 RP Shen, J, Shanghai Univ, Inst Mat, 149 Yanchang Rd, Shanghai 200072,
42642    Peoples R China.
42643 CR HOU PY, 1987, J ELECTROCHEM SOC, V134, P1836
42644    HUSSEY RJ, 1989, MAT SCI ENG A-STRU 1, V120, P147
42645    JING H, IN PRESS CHIN J CORR
42646    LANG E, 1989, ROLE REACTIVE ELEMEN
42647    LI M, 1991, ACTA U BEIJING SCI T, V13, P619
42648    NICHOLLS JR, 1989, ROLE ACTIVE ELEMENTS, P195
42649    SHEN J, 1997, OXID MET, V48, P355
42650    SHEN JN, 1992, CORROS SCI PROT TECH, V4, P289
42651 NR 8
42652 TC 1
42653 SN 0022-2461
42654 J9 J MATER SCI
42655 JI J. Mater. Sci.
42656 PD DEC 15
42657 PY 1998
42658 VL 33
42659 IS 24
42660 BP 5815
42661 EP 5819
42662 PG 5
42663 SC Materials Science, Multidisciplinary
42664 GA 170YG
42665 UT ISI:000078834300012
42666 ER
42667 
42668 PT J
42669 AU Zhao, XH
42670    Shi, ZW
42671 TI A divided region variational principle of A,rho Omega method for 3-D
42672    eddy current problems
42673 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
42674 DT Article
42675 DE 3-D eddy current field; divided region variational principle;
42676    A,phi-Omega method; interface continuity conditions
42677 AB In this paper, a divided region variational principle to solve 3-D eddy
42678    current problems was given. It adopts the magnetic vector potential A
42679    and the electric scalar potential phi in the eddy current regions and
42680    the source regions, and the magnetic scalar potential Omega in the
42681    non-conducting regions (air gap). Using variation of the functional,
42682    all governing equations in various regions, the natural boundary
42683    conditions and the interface continuity conditions which satisfy
42684    electromagnetic continuity are obtained.
42685 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
42686 RP Zhao, XH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
42687    200072, Peoples R China.
42688 CR BROWN ML, 1982, IEE P A, V129, P46
42689    CHARI MVK, 1982, IEEE T MAG, V18, P435
42690    CHEN WH, 1984, J I HA ER BIN ELECTR, V7, P1
42691    CHIEN WZ, 1985, GEN VARIATIONAL PRIN
42692    EMSON CRI, 1983, IEEE T MAGN, V19, P2450
42693    SHI ZW, 1998, APPL MATH MECH-ENGL, V19, P1017
42694 NR 6
42695 TC 0
42696 SN 0253-4827
42697 J9 APPL MATH MECH-ENGL ED
42698 JI Appl. Math. Mech.-Engl. Ed.
42699 PD DEC
42700 PY 1998
42701 VL 19
42702 IS 12
42703 BP 1135
42704 EP 1140
42705 PG 6
42706 SC Mathematics, Applied; Mechanics
42707 GA 173MB
42708 UT ISI:000078983400002
42709 ER
42710 
42711 PT J
42712 AU Ju, XC
42713    Ma, ZT
42714 TI Study on the photochemical properties of benzoyl derivatives
42715 SO RADIATION PHYSICS AND CHEMISTRY
42716 DT Article
42717 AB In this paper, the photochemical properties of benzoyl derivatives,
42718    e.g. KIP-100F and ESACURE TZT were studied using the N121 UV Curing
42719    Tester. It was shown that their photochemical reactivity is higher; the
42720    photoactivation of triethanol amine(TEA) upon ESACURE TZT is greater,
42721    upon KIP-100F is unexpected; the sensitization of fluorescein upon
42722    KIP-100F is larger than upon ESACURE TZT/TEA systems; the synergistic
42723    action of them is very effective; (C) 1999 Elsevier Science Ltd. All
42724    rights reserved.
42725 C1 Beijing Univ, Dept Tech Phys, Beijing 100871, Peoples R China.
42726    Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
42727 RP Ju, XC, Beijing Univ, Dept Tech Phys, Beijing 100871, Peoples R China.
42728 CR LAWSON K, 1997, 9M C P NOV 4 7, P7
42729    XUECHENG J, 1995, PAINT COATINGS IND, V2, P36
42730 NR 2
42731 TC 0
42732 SN 0969-806X
42733 J9 RADIAT PHYS CHEM
42734 JI Radiat. Phys. Chem.
42735 PD MAR
42736 PY 1999
42737 VL 54
42738 IS 3
42739 BP 241
42740 EP 243
42741 PG 3
42742 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
42743    Science & Technology
42744 GA 170GC
42745 UT ISI:000078797100005
42746 ER
42747 
42748 PT J
42749 AU Chen, YX
42750    Wan, XJ
42751    Xu, WX
42752 TI Surface reactions of Co3Ti alloys with water vapor
42753 SO JOURNAL OF MATERIALS SCIENCE LETTERS
42754 DT Article
42755 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
42756    Shanghai Iron & Steel Res Inst, Shanghai 200940, Peoples R China.
42757 RP Chen, YX, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
42758 CR CHEN YX, UNPUB SCRIPTA MAT
42759    CHEN YX, 1997, ACTA METALL SINICA E, V10, P363
42760    CHENG XY, 1997, J IRON STEEL RES S, V9, P270
42761    CHIA WJ, 1995, J VAC SCI TECHNOL A, V13, P1687
42762    KIMURA A, 1994, MATER T JIM, V35, P879
42763    LEE KH, 1996, SCRIPTA MATER, V35, P1153
42764    LIU Y, 1989, J MATER SCI, V24, P4458
42765    WAN XJ, 1995, ACTA METALL SINICA, V8, P299
42766    ZHU JH, 1995, SCRIPTA METALL MATER, V32, P1399
42767 NR 9
42768 TC 2
42769 SN 0261-8028
42770 J9 J MATER SCI LETT
42771 JI J. Mater. Sci. Lett.
42772 PD OCT 1
42773 PY 1998
42774 VL 17
42775 IS 19
42776 BP 1627
42777 EP 1629
42778 PG 3
42779 SC Materials Science, Multidisciplinary
42780 GA 170ZQ
42781 UT ISI:000078837700008
42782 ER
42783 
42784 PT J
42785 AU Liu, XT
42786    Li, B
42787    Yu, R
42788    Liu, XH
42789    Lu, HX
42790    Tang, DY
42791    Yu, BK
42792 TI Protective films of diamond for high T-c superconducting detectors
42793 SO INFRARED PHYSICS & TECHNOLOGY
42794 DT Article
42795 ID LASER
42796 AB Deposition of diamond like carbon (DLC) films on YBCO superconducting
42797    detectors is reported. The method is to make a DLC film by C+
42798    implantation and XeCl excimer laser irradiation. The implantation
42799    energy is 20-35 keV and C+ implantation dosages D = 1 x 10(14)-5 x
42800    10(18) ions/cm(2). The parameters of XeCl excimer laser ablation are:
42801    wavelength 308 nm; energy density, 20-50 mJ/cm(2); and width of pulse,
42802    45 ns. The superconductivity of C+-implanted YBCO is also investigated,
42803    while the damage behavior of C+ implantation and the mechanism of
42804    coating DLC are analyzed. (C) 1999 Elsevier Science B.V. All rights
42805    reserved.
42806 C1 Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China.
42807    Shanghai Univ Sci & Technol, Shanghai 201800, Peoples R China.
42808 RP Liu, XT, Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared
42809    Phys, Shanghai 200083, Peoples R China.
42810 CR BRASUNAS JC, 1994, APPL PHYS LETT, V64, P777
42811    CHEN CF, 1994, P 1 WORLD S CHIN SCI, P53
42812    FABAO W, 1994, CHINESE J LOW TEMPER, V16, P185
42813    NARAYAN J, 1991, SCIENCE, V252, P416
42814    SINGH RK, 1989, MAT SCI ENG B-SOLID, V3, P217
42815    ZAIFU W, 1994, ACTA OPTICAL SINICA, V14, P355
42816 NR 6
42817 TC 0
42818 SN 1350-4495
42819 J9 INFRARED PHYS TECHNOL
42820 JI Infrared Phys. Technol.
42821 PD APR
42822 PY 1999
42823 VL 40
42824 IS 2
42825 BP 87
42826 EP 91
42827 PG 5
42828 SC Physics, Applied; Instruments & Instrumentation; Optics
42829 GA 170FK
42830 UT ISI:000078795500005
42831 ER
42832 
42833 PT J
42834 AU Zheng, Q
42835    Zhang, LS
42836 TI Global minimization of constrained problems with discontinuous penalty
42837    functions
42838 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
42839 DT Article
42840 DE integral global minimization; robust sets and functions; discontinuous
42841    penalty functions
42842 ID OPTIMIZATION
42843 AB With the integral approach to global optimization, a class of
42844    discontinuous penalty functions is proposed to solve constrained
42845    minimization problems. Optimality conditions of a penalized
42846    minimization problem are generalized to a discontinuous case; necessary
42847    and sufficient conditions for an exact penalty function are examined; a
42848    nonsequential algorithm is proposed. Numerical examples are given to
42849    illustrate the effectiveness of the algorithm. (C) 1999 Elsevier
42850    Science Ltd. All rights reserved.
42851 C1 Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada.
42852    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
42853 RP Zheng, Q, Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada.
42854 CR BERTSEKAS DP, 1975, MATH PROG, V9, P87
42855    CHEW SH, 1988, LECT NOTES EC MATH S, V298
42856    CONN AR, 1973, SIAM J NUMER ANAL, V10, P760
42857    COURANT R, 1962, CALCULUS VARIATIONS
42858    DICKMAN BH, 1989, J OPTIMIZ THEORY APP, V60, P149
42859    DIPILLO G, 1988, J OPTIMIZATION THEOR, V57, P399
42860    DIPILLO G, 1989, SIAM J CONTROL OPTIM, V27, P1333
42861    EVANS JP, 1973, MATH PROGRAM, V4, P72
42862    FIACCO AV, 1968, NONLINEAR PROGRAMMIN
42863    FLETCHER R, 1973, MATH PROGRAM, V5, P129
42864    HAN SP, 1979, MATH PROGRAM, V17, P140
42865    HIMMELBLAU DM, 1972, APPL NONLINEAR PROGR
42866    LAWLER EL, 1966, OPER RES, V14, P1098
42867    LEE LF, 1977, 77DET163
42868    PIETRYKOWSKI T, 1969, SIAM J NUMER ANAL, V6, P294
42869    ZANGWILL WI, 1967, MANAGE SCI, V13, P344
42870    ZHENG Q, 1980, COMPUTATIONAL MATH, V3, P146
42871    ZHENG Q, 1981, NUMERICAL COMPUTATIO, V2, P257
42872    ZHENG Q, 1985, ACTA MATH APPL SINIC, V1, P118
42873    ZHENG Q, 1985, ACTA MATH APPL SINIC, V1, P66
42874    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205
42875    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317
42876 NR 22
42877 TC 1
42878 SN 0898-1221
42879 J9 COMPUT MATH APPL
42880 JI Comput. Math. Appl.
42881 PD FEB-MAR
42882 PY 1999
42883 VL 37
42884 IS 4-5
42885 BP 41
42886 EP 58
42887 PG 18
42888 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
42889 GA 170FA
42890 UT ISI:000078794600006
42891 ER
42892 
42893 PT J
42894 AU Pan, XC
42895    Zheng, QA
42896 TI Global optimum shape design
42897 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
42898 DT Article
42899 DE mathematical programming; random number generation; testing; choice of
42900    initial values
42901 ID ROBUST MAPPINGS
42902 AB An optimum shape design problem can be formulated as a minimization
42903    problem of a functional subject to certain constraints. Usually, it is
42904    nonlinear and nonconvex. Conventional optimization techniques are
42905    gradient-based, they highly depend on the initial design, and are
42906    difficult to be applied to find a global solution. Integral global
42907    optimization algorithm is proposed to solve optimum shape design
42908    problems. Three design examples are given to illustrate the
42909    effectiveness of the algorithm. (C) 1999 Elsevier Science Ltd. All
42910    rights reserved.
42911 C1 China Text Univ, Shanghai 200051, Peoples R China.
42912    Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada.
42913    Shanghai Univ, Shanghai 201800, Peoples R China.
42914 RP Pan, XC, China Text Univ, Shanghai 200051, Peoples R China.
42915 CR BREBBIA CA, 1980, BOUNDARY ELEMENT TEC
42916    CHEN D, 1989, COMPUTATIONAL STRUCT, V6, P67
42917    CHEW SH, 1988, LECT NOTES EC MATH S, V298
42918    DIPILLO G, 1989, SIAM J CONTROL OPTIM, V27, P1333
42919    FIACCO AV, 1968, NONLINEAR PROGRAMMIN
42920    FLUGGE W, 1952, 2612 NASA TN
42921    SHI SZ, 1994, J MATH ANAL APPL, V183, P706
42922    SHI SZ, 1995, T AM MATH SOC, V347, P4943
42923    YING K, 1987, ENG MECH, V2, P125
42924    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205
42925    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317
42926    ZHENG Q, 1992, RECENT ADV GLOBAL OP, P298
42927 NR 12
42928 TC 1
42929 SN 0898-1221
42930 J9 COMPUT MATH APPL
42931 JI Comput. Math. Appl.
42932 PD FEB-MAR
42933 PY 1999
42934 VL 37
42935 IS 4-5
42936 BP 151
42937 EP 162
42938 PG 12
42939 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
42940 GA 170FA
42941 UT ISI:000078794600014
42942 ER
42943 
42944 PT J
42945 AU Pan, QY
42946    Xu, JQ
42947    Liu, HM
42948    An, CX
42949    Jia, N
42950 TI Preparation, microstructure and gas sensing properties of nanosized
42951    SnO2 materials made by microemulsions
42952 SO JOURNAL OF INORGANIC MATERIALS
42953 DT Article
42954 DE tin oxides; microemulsion; nanosized materials; gas; sensor; surfactant
42955 AB The application of microemulsion made of anion surfactants in preparing
42956    SnO2 naosized materials was studied, and the influence of different
42957    anion surfactants and assistant surfactants on the mean grain size of
42958    nanosized SnO2 was also researched by XRD and TEM. It can be known from
42959    the experimental results, monodispersed SnO2 nanosized materials with
42960    the mean grain size of about 6nm and average partical size smaller than
42961    20nm can be obtained from the microemulsion composed of AES or K-12
42962    anion surfactant and butanol assistant surfactant and it has high
42963    sensitivity without catalysts and additives.
42964 C1 Shanghai Univ, Sch Chem & Chem Engn, Shanghai 200072, Peoples R China.
42965    Zhengzhou Inst Light Ind, Dept Chem Engn, Zhengzhou 450002, Peoples R China.
42966 RP Pan, QY, Shanghai Univ, Sch Chem & Chem Engn, Shanghai 200072, Peoples
42967    R China.
42968 CR BUTTA N, 1992, SENSOR ACTUAT B-CHEM, V6, P253
42969    NITTA M, 1979, IEEE T ELECTRON DEV, V26, P219
42970    TAMAKI J, 1992, SENSOR ACTUAT B-CHEM, V9, P197
42971    XU C, 1991, SENSOR ACTUAT B-CHEM, V3, P147
42972 NR 4
42973 TC 6
42974 SN 1000-324X
42975 J9 J INORG MATER
42976 JI J. Inorg. Mater.
42977 PD FEB
42978 PY 1999
42979 VL 14
42980 IS 1
42981 BP 83
42982 EP 89
42983 PG 7
42984 SC Materials Science, Ceramics
42985 GA 167PG
42986 UT ISI:000078642000014
42987 ER
42988 
42989 PT J
42990 AU Xu, KD
42991    Jiang, GC
42992    Huang, SP
42993    You, JL
42994 TI A study on the bonding structure of CaO-SiO2 slag by means of molecular
42995    dynamics simulation
42996 SO SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES
42997 DT Article
42998 DE CaO-SiO2 slag; molecular dynamics simulation; vibrational density of
42999    states
43000 ID SILICA; GLASS
43001 AB The investigation results of the bonding structure of CaO-SiO2 slag by
43002    means of molecular dynamics simulation are presented. The
43003    characteristics of partial radial distribution function g(ij)(r) are in
43004    goad agreement with the measurement of X-ray diffraction, and the
43005    variation of Q(n) with different SiO4 tetrahedra following the change
43006    of X-CaO is consistent with the results of Raman spectroscopy. The
43007    partial vibrational density of states Gamma(Si)(omega) shows that two
43008    bands appear in the range of 636-737 cm(-1) and 800-1 200 cm(-1)
43009    respectively which are also consistent with Raman spectroscopy.
43010 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
43011 RP Xu, KD, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072,
43012    Peoples R China.
43013 CR ABRAMO MC, 1992, J CHEM PHYS, V96, P9083
43014    ALLEN MP, 1987, COMPUTER SIMULATION
43015    CHIPMAN J, 1961, PHYSICAL CHEM PROCES
43016    DELLAVALLE RG, 1994, CHEM PHYS, V179, P411
43017    IGUCHI Y, 1981, CAN METALL Q, V20, P51
43018    KIEFFER J, 1989, J CHEM PHYS, V90, P4982
43019    MATSUMIYA T, 1992, 4 INT C MOLT SLAGS F, P115
43020    OKAZAKI S, 1993, J CHEM PHYS, V98, P607
43021    WASEDA Y, 1989, MAT SCI EARTHS INTER, CH1
43022    WOODCOCK LV, 1976, J CHEM PHYS, V65, P1565
43023 NR 10
43024 TC 0
43025 SN 1006-9321
43026 J9 SCI CHINA SER E
43027 JI Sci. China Ser. E-Technol. Sci.
43028 PD FEB
43029 PY 1999
43030 VL 42
43031 IS 1
43032 BP 77
43033 EP 82
43034 PG 6
43035 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary
43036 GA 165LY
43037 UT ISI:000078523700010
43038 ER
43039 
43040 PT J
43041 AU Niu, M
43042    Su, Y
43043    Yan, JK
43044    Fu, CP
43045    Xu, DM
43046 TI An improved open-ended waveguide measurement technique on parameters
43047    epsilon(r) and mu(r) of high-loss materials
43048 SO IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
43049 DT Article
43050 DE electromagnetic parameters; high-loss material; open-ended waveguide;
43051    simultaneous measurement
43052 AB An improved technique of using rectangular waveguide aperture for
43053    simultaneous measurement of the electromagnetic parameters epsilon(r),
43054    mu(r) of materials is developed in this paper, Both multilayer and
43055    single-layer medium sheet samples can be tested, Samples are sandwiched
43056    between a flange of an open-ended waveguide and a shorting plate, The
43057    parameters are obtain by using an optimization technique by fitting the
43058    theoretical values of the reflection coefficients Gamma(epsilon(r),
43059    mu(r)) to the measured values with epsilon(r), mu(r) as the argument.
43060    The related details, such as test theories, waveguide design, sample
43061    preparation, and error analysis are also discussed in this paper. The
43062    experimental results are validated by the measurements performed using
43063    the reflection-transmission method using an automatic network analyzer
43064    and the published data from manufactures. By virtue of its open-ended
43065    waveguide configuration, this technique is well suited for sheet or
43066    coating materials, and it might be applied for industrial
43067    on-the-worksite testing or biomedical analysis.
43068 C1 Shanghai Univ, Shanghai 201800, Peoples R China.
43069    Chinese Univ Hong Kong, Hong Kong, Peoples R China.
43070 RP Niu, M, Shanghai Univ, Shanghai 201800, Peoples R China.
43071 CR 1975, IEE C PUB
43072    ARJALINGAM, 1990, IEEE T MICROWAVE THE, V38
43073    BAKHTIARI S, 1994, IEEE T MICROWAVE THE, V24
43074    CULLEN AL, 1971, P ROY SOC LOND A MAT, V325, P493
43075    DEMING X, 1987, IEEE T MICROW THEORY, V35, P1424
43076    GARDIOL FE, 1985, ADV ELECTRON EL PHYS, V63, P139
43077    HAKKI BW, 1960, IRE T MICROWAVE THEO, V8, P402
43078    KHAN SA, 1992, P INT C MICR COMM NA, P702
43079    LI CL, 1995, IEEE T INSTRUM MEAS, V44, P19
43080    MISRA D, 1990, IEEE T MICROWAVE THE, V38
43081    STUCHLY MA, 1980, IEEE T INSTRUM MEAS, V29, P176
43082    TANABE E, 1976, IEEE T INSTRUM MEAS, V25, P222
43083    WEI YZ, 1991, IEEE T MICROW THEORY, V39, P526
43084    WEIR WB, 1974, P IEEE, V62
43085 NR 14
43086 TC 0
43087 SN 0018-9456
43088 J9 IEEE TRANS INSTRUM MEAS
43089 JI IEEE Trans. Instrum. Meas.
43090 PD APR
43091 PY 1998
43092 VL 47
43093 IS 2
43094 BP 476
43095 EP 481
43096 PG 6
43097 SC Engineering, Electrical & Electronic; Instruments & Instrumentation
43098 GA 166CC
43099 UT ISI:000078557800023
43100 ER
43101 
43102 PT J
43103 AU He, JH
43104 TI Generalized variational principles for 1-D unsteady viscous flow
43105 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
43106 DT Article
43107 ID FLUID
43108 AB In order to solve the I-D unsteady viscous now via the finite element
43109    method, it is necessary to establish a generalized variational
43110    principle. In the present paper, based on the semi-inverse method
43111    proposed by He, two families of variational principles are established
43112    for I-D unsteady compressible, homentropic, viscous now in a flexible
43113    tube of varying cross-sectional area.
43114 C1 Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43115 RP He, JH, Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples
43116    R China.
43117 CR HE JH, 1996, J SHANGHAI U, V2, P129
43118    HE JH, 1996, J SHANGHAI U, V2, P584
43119    HE JH, 1997, GEN VARIATIONAL PRIN, V1, P117
43120    HE JH, 1997, INT J TURBO JET ENG, V14, P23
43121    HE JH, 1997, J SHANGHAI U, V3, P299
43122    HE JH, 1998, ACTA AERODYNAMIC SIN, V16, P352
43123    HE JH, 1998, APPL MATH MODEL, V22, P395
43124    HE JH, 1998, INT J TURBO JET ENG, V15, P101
43125    LIU GL, 1998, INT J TURBO JET ENG, V15, P1
43126    OLSON LG, 1997, J FLUID STRUCT, V11, P207
43127    SHAPIRO AH, 1953, DYNAMICS THERMODYNAM, V2, CH23
43128 NR 11
43129 TC 0
43130 SN 0334-0082
43131 J9 INT J TURBO JET ENGINES
43132 JI Int. J. Turbo. Jet-Engines
43133 PY 1998
43134 VL 15
43135 IS 4
43136 BP 253
43137 EP 258
43138 PG 6
43139 SC Engineering, Aerospace
43140 GA 162YR
43141 UT ISI:000078375500002
43142 ER
43143 
43144 PT J
43145 AU Gao, JH
43146 TI Numerical simulation of the form of the free trailing vortex sheet in
43147    3-D compressible rotor flow
43148 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
43149 DT Article
43150 DE 3-D flow in turbine; trailing vortex sheet; FEM; nonlinear programming
43151 AB This article is based on a unified variable-domain variational theory
43152    and uses the finite element method to solve the unknown boundary
43153    problem of the free trailing vortex sheet which is the natural boundary
43154    condition result in the variational theory. A new nonlinear programming
43155    method is adopted to study the form of the free trailing vortex sheet
43156    and this article proves the method is feasible by numerical simulation
43157    of an example.
43158 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43159 RP Gao, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
43160    200072, Peoples R China.
43161 CR CRANK J, 1984, FREE MOVING BOUNDARY
43162    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
43163    HIMMELBLAU DM, 1972, APPL NONLINEAR PROGR
43164    LIU GL, 1980, SCI SINICA, V23, P1339
43165    RAO SS, 1984, OPTIMIZATION THEORY
43166    SIEVERDING CH, 1984, J ENG GAS TURB POWER, V2, P437
43167    YAN S, 1987, 1 INT C IND APPL MAT
43168    YAN S, 1991, P INT GAS TURB C YOK, V2, P35
43169    ZIENKLEWICZ OC, 1977, FEM
43170 NR 9
43171 TC 0
43172 SN 0334-0082
43173 J9 INT J TURBO JET ENGINES
43174 JI Int. J. Turbo. Jet-Engines
43175 PY 1998
43176 VL 15
43177 IS 4
43178 BP 271
43179 EP 274
43180 PG 4
43181 SC Engineering, Aerospace
43182 GA 162YR
43183 UT ISI:000078375500004
43184 ER
43185 
43186 PT J
43187 AU Chen, YL
43188    Ding, WY
43189 TI A simple approach to highly stereoselective synthesis of
43190    beta,gamma-trans-gamma-butyrolactones
43191 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
43192 DT Article
43193 DE arsenic ylide; stereoselective synthesis; gamma-butyrolactone
43194 AB A simple approach to highly stereoselective synthesis Of
43195    trans-beta-methoxycarbonyl-gamma-aryl-gamma-butyrolactones (5a-5c) is
43196    reported. Methoxycarbonylmethyltriphenylarsonium bromide (1) in
43197    dimethyl ethylene glycol was reacted with
43198    2,2-dimethyl-1,3-dioxa-5-p-methoxybenzal-4, 6-dione(2a) in the presence
43199    of K2CO3 and trace of water at room temperature, to give
43200    trans-beta-methoxycarbonyl-gamma-p-methoxyphenyl- gamma-butyrolactone
43201    (5a) with 64 % yield, whereas 1,2-cis cyclopropane derivatives(3b and
43202    3c) were isolated when started from 2b or 2c, under same conditions.
43203    The gamma-butyrolactones 5b or 5c were obtained with 62% and 57% yields
43204    when compounds 3b or 3c was further heated in acetone-water. The
43205    structures of 5a-5c were established on the basis of IR, H-1 and C-13
43206    NMR, MS and elemental analyses, and their configurations were assigned
43207    via 2D proton NOESY spectrum of compound 5c.
43208 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
43209 RP Chen, YL, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
43210 CR DING WY, 1996, CHEM RES CHINESE U, V12, P50
43211 NR 1
43212 TC 9
43213 SN 0251-0790
43214 J9 CHEM J CHINESE UNIV-CHINESE
43215 JI Chem. J. Chin. Univ.-Chin.
43216 PD OCT
43217 PY 1998
43218 VL 19
43219 IS 10
43220 BP 1614
43221 EP 1616
43222 PG 3
43223 SC Chemistry, Multidisciplinary
43224 GA 160YT
43225 UT ISI:000078261500021
43226 ER
43227 
43228 PT J
43229 AU Liu, LM
43230    Shi, DH
43231 TI An (s,S) model for inventory with exponential lifetimes and renewal
43232    demands
43233 SO NAVAL RESEARCH LOGISTICS
43234 DT Article
43235 AB Inventory control of products with finite lifetimes is important in
43236    many modem business organizations. It has been an important and
43237    difficult research subject. Here, we study the (s, S) continuous review
43238    model for items with an exponential random lifetime and a general
43239    renewal demand process through a Markov process. We derive a
43240    fundamental rate conservation theorem and show that all the other
43241    system performance measures can be obtained easily through the expected
43242    reorder cycle length. This leads to a simple expression for the total
43243    expected long run cost rate function in terms of the expected reorder
43244    cycle length. Subsequently, we derive formulas for computing the
43245    expected cycle lengths for the general renewal demand as well as for a
43246    large class of demands characterized by the phase type interdemand time
43247    distribution. We show analytically when the cost as a function of the
43248    reorder level is monotone, concave, or convex. We also show
43249    analytically that, depending on the behavior of the expected reorder
43250    cycle, the cost as a function of the order-up level is either monotone
43251    increasing or unimodal. These analytical properties enable us to
43252    understand the problem and make the subsequent numerical optimization
43253    much easier. Numerical studies confirm and illustrate some of the
43254    analytical properties. The results also demonstrate the impact of
43255    various parameters on the optimal policy and the cost. (C) 1999 John
43256    Wiley & Sons, Inc.
43257 C1 Hong Kong Univ Sci & Technol, Dept Ind Engn & Engn Management, Hong Kong, Peoples R China.
43258    Shanghai Univ, Dept Math, Shanghai, Peoples R China.
43259 RP Liu, LM, Hong Kong Univ Sci & Technol, Dept Ind Engn & Engn Management,
43260    Hong Kong, Peoples R China.
43261 CR BARLOW RE, 1975, STAT THEORY RELIABIL
43262    BUZACOTT JA, 1993, STOCHASTIC MODELS MA
43263    FRIES B, 1975, OPER RES, V23, P46
43264    GHARE PM, 1963, J IND ENG, V14, P238
43265    GOLDBERG H, 1981, EXTENDING LIMITS REL
43266    KALPAKAM S, 1988, STATISTICS, V19, P389
43267    KALPAKAM S, 1994, OPER RES LETT, V16, P115
43268    KASPI H, 1984, ADV APPL PROBAB, V16, P402
43269    LIU L, 1995, IN PRESS EUR J OPERA
43270    LIU L, 1995, IN PRESS OPERATIONS
43271    LIU LM, 1990, OPER RES LETT, V9, P161
43272    MOORTHY KA, 1992, INT J INF MANAGE SCI, V3, P29
43273    NAHMIAS S, 1975, OPER RES, V23, P735
43274    NAHMIAS S, 1982, OPERATIONS RES SOC A, V30, P680
43275    NANDAKUMAR P, 1993, MANAGE SCI, V39, P1490
43276    NEUTS MF, 1981, MATRIX GEOMETRIC SOL
43277    PIERSKALLA WP, 1972, MANAGE SCI, V18, P603
43278    RAAFAT F, 1991, J OPER RES SOC, V42, P27
43279    ROSS SM, 1983, STOCHASTIC PROCESSES
43280    WEISS HJ, 1980, OPER RES, V28, P365
43281 NR 20
43282 TC 4
43283 SN 0894-069X
43284 J9 NAV RES LOG
43285 JI Nav. Res. Logist.
43286 PD FEB
43287 PY 1999
43288 VL 46
43289 IS 1
43290 BP 39
43291 EP 56
43292 PG 18
43293 SC Operations Research & Management Science
43294 GA 158VX
43295 UT ISI:000078139100003
43296 ER
43297 
43298 PT J
43299 AU Gabriel, B
43300    Jiang, FR
43301 TI Application of the modified method of multiple scales to the bending
43302    problems for circular thin plate at very large deflection and the
43303    asymptotics of solutions (I)
43304 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
43305 DT Article
43306 DE circular plate; large deflection; boundary layer effect; asymptotics;
43307    modified method of multiple scales
43308 AB In this paper, the,modified method of multiple scales is applied to
43309    study the bending problems for circular thin plate with large
43310    deflection under the hinged and simply supported edge conditio,ls. The
43311    series solutions are constructed, the boundary layer effects are
43312    analysed and their asymptotics are proved.
43313 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43314 RP Gabriel, B, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
43315    200072, Peoples R China.
43316 CR CHIEN WZ, 1947, CHINESE J PHYS, V7, P102
43317    CHIEN WZ, 1948, NATIONAL TSING HUA U, V5, P71
43318    CHIEN WZ, 1954, ACTA PHYS SINICA, V10, P209
43319    CHUEN YC, 1980, NONLINEAR ANAL PLATE
43320    QIAO ZC, 1993, APPL MATH MECH, V14, P953
43321    VOLMIL AC, 1956, FLEXIBLE THIN PLATE
43322 NR 6
43323 TC 1
43324 SN 0253-4827
43325 J9 APPL MATH MECH-ENGL ED
43326 JI Appl. Math. Mech.-Engl. Ed.
43327 PD OCT
43328 PY 1998
43329 VL 19
43330 IS 10
43331 BP 937
43332 EP 950
43333 PG 14
43334 SC Mathematics, Applied; Mechanics
43335 GA 158UP
43336 UT ISI:000078135800003
43337 ER
43338 
43339 PT J
43340 AU Shen, M
43341 TI Variational principles in hydrodynamics of a non-Newtonian fluid
43342 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
43343 DT Article
43344 DE non-Newtonian fluid; variational principle; Lagrangian multiplier
43345 AB In this paper, the principle of maximum power losses for the
43346    incompressible viscous fluid proposed by professor Chien Weizang in
43347    reference [1] is further extended to the hydrodynamic problem of the
43348    non-Newtonian fluid with constitutive law expressed as epsilon(y) =
43349    partial derivative tau/partial derivative sigma'(y). The constraint
43350    conditions of variation are eliminated by the method of identified
43351    Lagrangian multiplier and a generalized variational principle is
43352    established.
43353 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43354 RP Shen, M, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
43355    200072, Peoples R China.
43356 CR CHIEN WZ, 1984, APPL MATH MECH, V5, P1281
43357    GROCHET MJ, 1984, NUMERICAL SIMULATION
43358    GUDERLY KG, 1972, SIAN J APPL MATH, V23, P259
43359    HAFEZ M, 1983, AIAA J, V21, P3
43360    LIN CC, 1945, J MATH PHYS, V27, P105
43361    MANWELL AR, 1980, WAVE MOTION, V2, P83
43362    SHEN M, 1995, APPL MATH MECH, V16, P369
43363    SKOBELKIN VI, 1957, SOV PHYS JETP, V4, P68
43364 NR 8
43365 TC 0
43366 SN 0253-4827
43367 J9 APPL MATH MECH-ENGL ED
43368 JI Appl. Math. Mech.-Engl. Ed.
43369 PD OCT
43370 PY 1998
43371 VL 19
43372 IS 10
43373 BP 963
43374 EP 969
43375 PG 7
43376 SC Mathematics, Applied; Mechanics
43377 GA 158UP
43378 UT ISI:000078135800006
43379 ER
43380 
43381 PT J
43382 AU Wang, SJ
43383    Niu, MD
43384    Xu, DM
43385 TI A frequency-varying method for simultaneous measurement of complex
43386    permittivity and permeability with an open-ended coaxial probe
43387 SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES
43388 DT Article
43389 DE frequency-varying method; open-ended coaxial probe; permeability;
43390    permittivity
43391 ID DIELECTRIC-PROPERTIES; MICROWAVE-FREQUENCIES; BIOLOGICAL SUBSTANCES;
43392    LINE SENSOR; CALIBRATION; REFLECTION
43393 AB To measure the complex permittivity and permeability of materials
43394    simultaneously with an open-ended coaxial probe, one needs at least two
43395    independent reflections. Based on the fact that frequency is an
43396    independent variable for the probe's reflection coefficient, a new
43397    concept, namely the frequency-varying method (FVM), which achieves the
43398    independent reflections via changing frequency, has been proposed.
43399    Since the electromagnetic (EM) properties of materials themselves are
43400    functions of frequency, the FVM introduces interpolation techniques
43401    into the process of extracting EM parameters from multiple reflection
43402    coefficients. The successful experimental results on radar-absorbing
43403    coatings show the feasibility and good prospects of the FVM for
43404    characterizing EM properties of materials ill situ, Compared with the
43405    thickness-varying method (TVM), which makes two measurements with two
43406    samples of different thicknesses, the FVM needs only one
43407    frequency-swept reflection measurement, thus simplifying and speeding
43408    up the measurement process, and improving accuracy and repeatability.
43409    Furthermore, the FVM has the ready capability to be extended to
43410    multiple-parameter measurements, and we may also find potential
43411    applications in other fields.
43412 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800, Peoples R China.
43413 RP Wang, SJ, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800,
43414    Peoples R China.
43415 CR CHEN GW, 1994, IEEE T MICROW THEORY, V42, P966
43416    DELANGHE P, 1994, IEEE T INSTRUM MEAS, V43, P810
43417    GRANT JP, 1989, J PHYS E SCI INSTRUM, V22, P757
43418    JARVIS JB, 1994, IEEE T INSTRUM MEAS, V43, P711
43419    JENKINS S, 1992, IEE PROC-H, V139, P179
43420    KRASZEWSKI A, 1983, IEEE T INSTRUM MEAS, V32, P385
43421    LI CL, 1995, IEEE T INSTRUM MEAS, V44, P19
43422    MISRA D, 1990, IEEE T MICROW THEORY, V38, P8
43423    MOSIG JR, 1981, IEEE T INSTRUM MEAS, V30, P46
43424    NIU MD, 1997, IEEE IMTC P, P482
43425    NYSHADHAM A, 1992, IEEE T MICROW THEORY, V40, P305
43426    STUCHLY MA, 1980, IEEE T INSTRUM MEAS, V29, P176
43427    XU DM, 1987, IEEE T MICROW THEORY, V35, P1424
43428 NR 13
43429 TC 1
43430 SN 0018-9480
43431 J9 IEEE TRANS MICROWAVE THEORY
43432 JI IEEE Trans. Microw. Theory Tech.
43433 PD DEC
43434 PY 1998
43435 VL 46
43436 IS 12
43437 PN Part 1
43438 BP 2145
43439 EP 2147
43440 PG 3
43441 SC Engineering, Electrical & Electronic
43442 GA 158CP
43443 UT ISI:000078098700023
43444 ER
43445 
43446 PT J
43447 AU Shi, ZW
43448    Zhao, XH
43449 TI A,phi-Omega method for 3-D eddy current analysis
43450 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
43451 DT Article
43452 DE 3-D eddy current field; A, phi-Omega method; interface continuous
43453    conditions
43454 AB After the field equations and the continuous conditions between the
43455    interfaces for 3-D eddy current problems under various gauges were
43456    discussed, it was pointed out in this paper that using the magnetic
43457    vector potential A, the electric scalar potential phi and Coulomb gauge
43458    del . A = 0 in eddy current regions and using the magnetic scalar
43459    potential Omega in the non-conducting regions are more suitable. All
43460    field equations, the boundary conditions, the interface continuity
43461    conditions and the corresponding variational principle of this method
43462    are also given.
43463 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43464 RP Shi, ZW, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
43465    200072, Peoples R China.
43466 CR 1987, P C COMP EL FIELDS G
43467    1988, IEEE T MAG, V24, P13
43468    BROWN ML, 1982, PIEE, V129, P46
43469    CHARI MVK, 1982, IEEE T MAG, V18, P435
43470    EMSON CRI, 1983, IEEE T MAGN, V19, P2450
43471    EMSON RI, 1988, IEEE T MAG, V24, P86
43472 NR 6
43473 TC 1
43474 SN 0253-4827
43475 J9 APPL MATH MECH-ENGL ED
43476 JI Appl. Math. Mech.-Engl. Ed.
43477 PD NOV
43478 PY 1998
43479 VL 19
43480 IS 11
43481 BP 1017
43482 EP 1023
43483 PG 7
43484 SC Mathematics, Applied; Mechanics
43485 GA 157NN
43486 UT ISI:000078068700001
43487 ER
43488 
43489 PT J
43490 AU Ma, JH
43491    Chen, YS
43492    Liu, ZR
43493 TI The influence of the different distributed phase-randomized on the
43494    experimental data obtained in dynamic analysis
43495 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
43496 DT Article
43497 DE experimental data; surrogate data; critical value; phase-randomized;
43498    random timeseries; chaotic timeseries
43499 ID CORRELATION DIMENSION; NOISE; CHAOS
43500 AB In this paper the influence of the differently distributed
43501    phase-randomized to the data obtained in dynamic analysis for critical
43502    value is studied. The calculation results validate that the sufficient
43503    phase-randomized of the different distributed random numbers are less
43504    influential on the critical value. This offers the theoretical
43505    foundation of the feasibility and practicality of the phase-randomized
43506    method.
43507 C1 Southeast Univ, Inst Syst Engn, Nanjing 210096, Peoples R China.
43508    Tianjin Univ, Dept Mech, Tianjin 300072, Peoples R China.
43509    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
43510 RP Ma, JH, Southeast Univ, Inst Syst Engn, Nanjing 210096, Peoples R China.
43511 CR ABARBANEL HDI, 1991, INT J MOD PHYS B, V5, P1347
43512    CABRERA JL, 1995, PHYS LETT A, V197, P19
43513    CASDAGLI M, 1992, J ROY STAT SOC B MET, V54, P303
43514    GRASSBERGER P, 1988, PHYS LETT A, V128, P369
43515    KENNEL MB, 1992, PHYS REV A, V46, P3111
43516    KOSTELICH EJ, 1992, PHYSICA D, V58, P138
43517    MA JH, 1998, APPL MATH MECH-ENGL, V19, P513
43518    PRICHARD D, 1993, GEOPHYS RES LETT, V20, P2817
43519    PRICHARD D, 1994, PHYS LETT A, V191, P245
43520    PRICHARD D, 1994, PHYS REV LETT, V191, P230
43521    RAPP PE, 1993, PHYS REV E, V47, P2289
43522    RAPP PE, 1994, PHYS LETT A, V192, P27
43523    ROMBOUTS SAR, 1995, PHYS LETT A, V202, P352
43524    SCHIFF SJ, 1992, PHYS REV LETT A, P378
43525    TAKALO J, 1993, GEOPHYS RES LETT, V20, P1527
43526    THEILER J, 1986, PHYS REV A, V34, P2427
43527    THEILER J, 1991, PHYS LETT A, V155, P480
43528 NR 17
43529 TC 3
43530 SN 0253-4827
43531 J9 APPL MATH MECH-ENGL ED
43532 JI Appl. Math. Mech.-Engl. Ed.
43533 PD NOV
43534 PY 1998
43535 VL 19
43536 IS 11
43537 BP 1033
43538 EP 1042
43539 PG 10
43540 SC Mathematics, Applied; Mechanics
43541 GA 157NN
43542 UT ISI:000078068700003
43543 ER
43544 
43545 PT J
43546 AU Lu, DC
43547    Tian, LX
43548    Liu, ZR
43549 TI Wavelet basis analysis in perturbed periodic KdV equation
43550 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
43551 DT Article
43552 DE wavelet basis; approximate inertial manifold; perturbed periodic KdV
43553    equation
43554 AB In the paper by using the spline wavelet basis to construct the
43555    approximate inertial manifold, we study the longtime behavior of
43556    perturbed perodic KdV equation.
43557 C1 Jiangus Univ Sci & Technol, Dept Math & Phys, Zhenjiang 212013, Peoples R China.
43558    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
43559 RP Lu, DC, Jiangus Univ Sci & Technol, Dept Math & Phys, Zhenjiang 212013,
43560    Peoples R China.
43561 CR CHUI CK, 1992, INTRO WAVELET
43562    DEBUSSCHE A, 1992, J DIFFER EQUATIONS, V100, P173
43563    ERCOLANI NM, 1993, J NONLINEAR SCI, V3, P477
43564    GOUBET O, 1992, SIAM J MATH ANAL, V9, P1455
43565    SUN SM, 1994, NONLINEAR ANAL-THEOR, V23, P545
43566    TEMAN R, 1988, APPL MATH SOC, V68
43567    TIAN LX, 1997, APPL MATH MECH-ENGL, V18, P1021
43568    TIAN LX, 1997, WAVELET GALERKIN MET
43569 NR 8
43570 TC 1
43571 SN 0253-4827
43572 J9 APPL MATH MECH-ENGL ED
43573 JI Appl. Math. Mech.-Engl. Ed.
43574 PD NOV
43575 PY 1998
43576 VL 19
43577 IS 11
43578 BP 1053
43579 EP 1058
43580 PG 6
43581 SC Mathematics, Applied; Mechanics
43582 GA 157NN
43583 UT ISI:000078068700005
43584 ER
43585 
43586 PT J
43587 AU Yong, Z
43588 TI Numerical study of a nonlinear integrodifferential equation
43589 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
43590 DT Article
43591 DE integrodifferential equation; spectral method; solitary waves
43592 AB In this paper, by using the pseudo-spectral method of Fornberg and
43593    Whitham, a nonlinear intergrodifferential equations
43594    A(t) + 6AA(x) + 1/2\In epsilon\ integral (+infinity)(-infinity) A(x',
43595    t(.))/{(x' - x)(2) + epsilon(2)}(-1/2) dx' = 0
43596    is investigated numerically. It is found that for small epsilon, the
43597    result is close to that of the KdV equation, whereas the effects of
43598    larger epsilon and the initial condition are significant.
43599 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43600 RP Yong, Z, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
43601    200072, Peoples R China.
43602 CR FORNBERG B, 1978, PHILOS T ROY SOC A, V289, P373
43603    GRIMSHAW R, 1994, CAN APPL MATH Q, V2, P189
43604    LEIBOVICH S, 1970, J FLUID MECH, V42, P803
43605    ZABUSKY NJ, 1965, PHYS REV LETT, V15, P240
43606 NR 4
43607 TC 0
43608 SN 0253-4827
43609 J9 APPL MATH MECH-ENGL ED
43610 JI Appl. Math. Mech.-Engl. Ed.
43611 PD NOV
43612 PY 1998
43613 VL 19
43614 IS 11
43615 BP 1059
43616 EP 1063
43617 PG 5
43618 SC Mathematics, Applied; Mechanics
43619 GA 157NN
43620 UT ISI:000078068700006
43621 ER
43622 
43623 PT J
43624 AU Zhang, BS
43625 TI A comment on the proof of Fermat's last theorem
43626 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
43627 DT Article
43628 DE factorization; cofactor; relative prime; Fermat's last theorem
43629 AB In this paper, some comments on the proof of Fermat's last theorem are
43630    proposed. The main result is that the proof proposed by Wong Chiahe is
43631    only part of proof for Fermat's last theorem. That is to say, the proof
43632    is not all-full proof to Fermat's last theorem.
43633 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43634 RP Zhang, BS, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
43635    200072, Peoples R China.
43636 CR CHEN SS, 1996, MATH DEV, V25, P1
43637    HUA LG, 1959, NUMBER THEORY INTRO, P14
43638    WONG CH, 1996, APPL MATH MECH ENGLI, V17, P1031
43639 NR 3
43640 TC 0
43641 SN 0253-4827
43642 J9 APPL MATH MECH-ENGL ED
43643 JI Appl. Math. Mech.-Engl. Ed.
43644 PD NOV
43645 PY 1998
43646 VL 19
43647 IS 11
43648 BP 1115
43649 EP 1118
43650 PG 4
43651 SC Mathematics, Applied; Mechanics
43652 GA 157NN
43653 UT ISI:000078068700012
43654 ER
43655 
43656 PT J
43657 AU Gu, GQ
43658    Hui, PM
43659    Wang, BH
43660    Dai, SQ
43661 TI Two-dimensional cellular automaton traffic model with randomly
43662    switching traffic lights
43663 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
43664 DT Article
43665 DE cellular automata; traffic model; traffic light; phase transition
43666 ID JAMMING TRANSITION; FLOW PROBLEMS
43667 AB Cellular automation traffic models can include various factors in
43668    traffic systems and the corresponding computational simulations are
43669    rather simple and effective. The Biham-Middleton-Levine model (BML
43670    model) facilitates the simulation of two-dimensional traffic flow
43671    problems via the cellular automaton models. In this paper, the BML
43672    model is improved by removing its limitation of synchronized change of
43673    traffic lights. In the new model, the traffic light at each crossing
43674    could arbitrarily change its starting time and tempo of variation, and
43675    hence the model could more realistically describe the influence of
43676    traffic lights on the performance of traffic systems. Some new effects
43677    appearing in the new model are also elucidated.
43678 C1 Shanghai Univ, Sch Syst Sci & Syst Engn, S&T, Shanghai 200093, Peoples R China.
43679    Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China.
43680    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43681    Chinese Univ Hong Kong, Dept Phys, Shatin, NT, Peoples R China.
43682 RP Gu, GQ, Shanghai Univ, Sch Syst Sci & Syst Engn, S&T, Shanghai 200093,
43683    Peoples R China.
43684 CR BENJAMIN SC, 1996, J PHYS A-MATH GEN, V29, P3119
43685    BIHAM O, 1992, PHYS REV A, V46, P6124
43686    CHUNG KH, 1995, PHYS REV E, V51, P772
43687    CUESTA JA, 1993, PHYS REV E, V48, R4175
43688    GU GQ, 1995, PHYSICA A, V217, P339
43689    GU GQ, 1995, SYST ENG THEOR METH, V14, P12
43690    NAGATANI T, 1993, PHYS REV E, V48, P3290
43691    NAGATANI T, 1994, J PHYS SOC JPN, V63, P1228
43692 NR 8
43693 TC 0
43694 SN 0253-4827
43695 J9 APPL MATH MECH-ENGL ED
43696 JI Appl. Math. Mech.-Engl. Ed.
43697 PD SEP
43698 PY 1998
43699 VL 19
43700 IS 9
43701 BP 807
43702 EP 813
43703 PG 7
43704 SC Mathematics, Applied; Mechanics
43705 GA 157AK
43706 UT ISI:000078036400001
43707 ER
43708 
43709 PT J
43710 AU Qin, KR
43711    Jiang, WY
43712    Li, XX
43713    Liu, ZR
43714 TI On analysis of the steady flow in an irrectangular parallel-plate flow
43715    chamber
43716 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
43717 DT Article
43718 DE irrectangular parallel-plate flow chamber; shear stress; steady flow;
43719    cell's mechanical behaviors
43720 AB The parallel-plate flow chamber (PPFC), of which the height is far
43721    smaller than its own length and width, is one of the main apparatus for
43722    the in vitro study of the mechanical behaviors of cultured cells at the
43723    bottom of PPFC undergoing shear stress. The PPFC of which the upper and
43724    lower plates are rectangular is usually used by research workers, and
43725    the flow field in this kind of PPFC (except for the regions near the
43726    entrance and exit) is uniform([1]), so only the effect the shear stress
43727    with one value has on cultured cells can be observed during each
43728    experiment. A kind of PPFC of which the upper and lower plates are not
43729    rectangular is proposed in this paper. The distributions of the
43730    velocities inside and the shear stresses at the bottom of the chamber
43731    are given by analyzing the flow field of the steady flow in the PPFC.
43732    The results show that the mechanical behaviors of cultured cells
43733    undergoing the shear stresses with various values may be simultaneously
43734    observed by the use of this kind of irrectangular PPFC. The theoretical
43735    and experimental results obtained by Ultrasonic Doppler Technique show
43736    good agreement.
43737 C1 Fudan Univ, Biomech Lab, Shanghai 200433, Peoples R China.
43738    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43739 RP Qin, KR, Fudan Univ, Biomech Lab, Shanghai 200433, Peoples R China.
43740 CR DAVIS RT, 1983, COMPUTATIONAL METHOD
43741    FRANGOS JA, 1988, BIOTECHNOL BIOENG, V32, P1053
43742    HAMMER DA, 1995, P 4 CHIN JAP SING C, P425
43743    JIANG WY, 1996, J APPL BIOMECH, V11, P97
43744    YUNG YC, 1993, BIOMECHANICS KINETIC
43745 NR 5
43746 TC 0
43747 SN 0253-4827
43748 J9 APPL MATH MECH-ENGL ED
43749 JI Appl. Math. Mech.-Engl. Ed.
43750 PD SEP
43751 PY 1998
43752 VL 19
43753 IS 9
43754 BP 851
43755 EP 859
43756 PG 9
43757 SC Mathematics, Applied; Mechanics
43758 GA 157AK
43759 UT ISI:000078036400006
43760 ER
43761 
43762 PT J
43763 AU Nafziger, JAR
43764    Wei, L
43765 TI China's sports law
43766 SO AMERICAN JOURNAL OF COMPARATIVE LAW
43767 DT Article
43768 C1 Willamette Univ, Coll Law, Salem, OR 97301 USA.
43769    Shanghai Univ, Shanghai, Peoples R China.
43770 RP Nafziger, JAR, Willamette Univ, Coll Law, Salem, OR 97301 USA.
43771 CR 1986, BEIJING REV     0203, P32
43772    1994, ASIA WK         1207, P38
43773    1994, CHRIST SCI MONI 0301, P20
43774    1994, MAINICHI DAILY  1205, P1
43775    1994, SPURT Z SPORT RECHT, V1, P6
43776    1994, SPURT Z SPORT RECHT, V1, P73
43777    1994, XINHUA NEWS AGE 1205
43778    1994, XINHUA NEWS AGE 1229
43779    1995, BUS WK          0619, P140
43780    1995, NY TIMES        0728, B8
43781    1995, PEOPLES DAILY   0427, P1
43782    1995, PEOPLES DAILY   1222, P10
43783    1995, PEOPLES DAILY   1227, P5
43784    1995, PEOPLES DAILY   1227, P6
43785    1995, PEOPLES DAILY   1229, P10
43786    1995, SHANGHAI STAR   0901, P1
43787    1995, UPI             0301
43788    1995, ZHONGHUA RENMIN GONG
43789    1996, JAPAN EC NEWSWI 0805
43790    1996, LA TIMES        0212, S1
43791    1997, PEOPLES DAILY   0905, P10
43792    1997, PEOPLES DAILY   1025, P1
43793    1998, PEOPLES DAILY   0115, P2
43794    1998, XINHUA NEWS AGE 0406
43795    *LAW RUL SECT LAW, 1995, YU TIYUF YOUG JIG ZH, P4
43796    BADDELEY, 1997, REV JURIDIQUE EC SPO, P5
43797    BO T, 1993, BEIJING REV     0906, P31
43798    BROWNELL S, 1995, TRAINING BODY CHINA, P39
43799    BUCHBERGER M, 1997, THESIS RUHR U BOCHUM
43800    CHEN XT, 1998, WASH POST       0801, A17
43801    DEMERODE A, 1994, JAPANESE EC NEW 1214
43802    EVANS R, 1993, DENG XIAOPING MAKING, P204
43803    FACHET, 1994, WASH POST       1201, B2
43804    FUMAGALLI, 1995, RIV DIRITTO SPORTIVO, V47, P715
43805    FUNG YL, 1948, SHORT HIST CHINESE P
43806    GABRIEL, 1988, NY TIMS         0424, P30
43807    GABRIEL, 1988, NY TIMS         0424, P33
43808    GOODBODY, 1995, TIMES LONDON    0302
43809    HE ZL, 1995, NEW STRAITS TIM 0107, P48
43810    HERSH, 1996, CHICAGO TRIB    0104, P1
43811    HESS B, 1996, ZZPINT, V1, P371
43812    HLADCZUK J, 1991, SPORTS LAW LEGISLATI, P115
43813    HOBERMAN JM, 1984, SPORTS POLITICAL IDE, P219
43814    HUGHES NC, 1998, FOREIGN AFF      JUL, P67
43815    HUGHES NC, 1998, FOREIGN AFF      JUL, P68
43816    JACQ P, 1993, P 1 INT C SPORTS LAW, P403
43817    JIANG RP, 1994, TIYU FAXUE, P33
43818    KRISTOF ND, 1994, CHINA WAKES, P440
43819    KRISTOF, 1993, INT HERALD TRIB 0729, P17
43820    LAM, 1994, CHINESE BUS REV  NOV, P41
43821    LI P, 1998, PEOPLES DAILY   0321, P1
43822    LI ZH, 1997, PEOPLES DAILY   1128
43823    LIN, 1993, FREE CHINA J    0302, P4
43824    LINDORFF D, 1995, BUS WK          0619, P140
43825    LOU LW, 1993, BEIJING REV     1228, P36
43826    MASTROCOLA, 1995, BC 3 WORLD LJ, V15, P141
43827    MONTVILLE, 1994, SPORTS ILLUS    0919, P40
43828    MUFSON S, 1994, WASH POST       1206, B2
43829    NAFZIGER JAR, 1988, INT SPORTS LAW, P58
43830    NAFZIGER JAR, 1992, AM J INT LAW, V86, P489
43831    NAFZIGER, 1992, AM J INT L, V86, P496
43832    NAFZIGER, 1996, INT COMP LQ, V45, P130
43833    NAFZIGER, 1996, INT COMP LQ, V45, P143
43834    NAN L, 1988, AM J SOCIOL, V93, P793
43835    NAN L, 1988, AM J SOCIOL, V93, P805
43836    PESCANTE, 1997, INT ATHLETIC FDN SUP, P127
43837    QUN W, 1996, PEOPLES DAILY   0105, P10
43838    RIDING, 1993, NY TIMES        0920, B9
43839    RIORDAN J, 1991, SPORTS POLITICS COMM, P5
43840    TYLER, 1993, NY TIMES        0919, A4
43841    WANG JP, 1995, PEOPLES DAILY   0927, P5
43842    WANG SW, 1995, ZHONGHUA RENMIN GONG, P18
43843    WHITTEN, 1994, SWIMMING WORLD J JAN, P34
43844    WILCOX RC, 1994, SPORT GLOBAL VILLAGE, P407
43845    WILL MR, 1988, AUF WEGE EINEM EUROP
43846    YU XG, PEOPLES DAILY   0905, P10
43847    ZOU SC, 1993, BEIJING REV     0920, P22
43848    ZOU SC, 1995, BEIJING REV     0715, P8
43849 NR 78
43850 TC 0
43851 SN 0002-919X
43852 J9 AMER J COMP LAW
43853 JI Am. J. Comp. Law
43854 PD SUM
43855 PY 1998
43856 VL 46
43857 IS 3
43858 BP 453
43859 EP 483
43860 PG 31
43861 SC Law
43862 GA 156UB
43863 UT ISI:000078019500003
43864 ER
43865 
43866 PT J
43867 AU Wan, DC
43868    Wu, GX
43869 TI Numerical simulation of a solitary wave interaction with submerged
43870    multi-bodies
43871 SO ACTA MECHANICA SINICA
43872 DT Article
43873 DE multi-bodies; solitary wave; viscous flows; VOF method
43874 AB The problems of a solitary wave passing over rectangular cylinders have
43875    been analysed. The numerical simulation is based on the full nonlinear
43876    two-dimensional Navier-Stokes equations which are solved by the finite
43877    difference method. The free surface is dealt with by the Volume of
43878    Fluid method (VOF). Results for a solitary wave passing over a single
43879    cylinder are compared with the experimental data of Seabra-Santos,
43880    Penouard and Temperville([2]) and better agreement is obtained than
43881    those obtained from the long wave equation based on the potential flow
43882    theory. Results are also given for two cylinders with different gaps.
43883 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43884    Univ London Univ Coll, Dept Mech Engn, London WC1E 7JE, England.
43885 RP Wan, DC, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
43886    200072, Peoples R China.
43887 CR COOKER MJ, 1990, J FLUID MECH, V215, P1
43888    DJORDJEVIC VD, 1978, J PHYS OCEANOGR, V8, P1016
43889    HIRT CW, 1981, J COMPUT PHYS, V39, P201
43890    MADSEN OS, 1969, J FLUID MECH, V39, P781
43891    NICHOLS BD, 1980, LA8355 LOS AL SCI LA
43892    OHYAMA T, 1992, J CIVIL ENG SOC JAPA, P31
43893    SEABRASANTOS FJ, 1987, J FLUID MECH, V176, P117
43894    WAN DC, 1997, J HYDRODYNAMICS B, V9, P88
43895    WAN DC, 1998, J HYDRODYNAMICS A, V13, P95
43896    WANG YX, 1993, COMMUNICATION CHINES, V3, P553
43897 NR 10
43898 TC 0
43899 SN 0567-7718
43900 J9 ACTA MECH SINICA
43901 JI Acta Mech. Sin.
43902 PD NOV
43903 PY 1998
43904 VL 14
43905 IS 4
43906 BP 297
43907 EP 305
43908 PG 9
43909 SC Engineering, Mechanical; Mechanics
43910 GA 156BQ
43911 UT ISI:000077981900002
43912 ER
43913 
43914 PT J
43915 AU He, JH
43916 TI Approximate analytical solution for seepage flow with fractional
43917    derivatives in porous media
43918 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
43919 DT Article
43920 AB In this paper, a new and more exact model for seepage Row in porous
43921    media with fractional derivatives has been proposed, which has modified
43922    the well-known Darcy law and overcome the continuity assumption of
43923    seepage flow. A new kind of analytical method of nonlinear problem
43924    called the variational iteration method is described and used to give
43925    approximate solutions of the problem. The results show that the
43926    proposed iteration method, requiring no linearization or small
43927    perturbation, is very effective and convenient. (C) 1998 Elsevier
43928    Science S.A. All rights reserved.
43929 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43930 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
43931    Peoples R China.
43932 CR ADOMIAN G, 1988, J MATH ANAL APPL, V135, P510
43933    CAMPOS LMB, 1990, INT J MATH MATH SCI, V13, P481
43934    DELBOSCO D, 1996, J MATH ANAL APPL, V204, P609
43935    DUARTE RT, 1983, P 7 EUR C EARTH ENG
43936    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
43937    HE JH, 1997, COMM NONLINEAR SCI N, V2, P230
43938    HE JH, 1997, COMMUNICATIONS NONLI, V2, P235
43939    HE JH, 1998, MECH PRACTICE, V20, P30
43940    HE JH, 1998, MECH SCI TECHNOL, V17, P221
43941    HUANG AX, 1996, 3 INT S AER INT FLOW, P417
43942    INOKUTI M, 1978, VARIATIONAL METHOD M, P156
43943 NR 11
43944 TC 20
43945 SN 0045-7825
43946 J9 COMPUT METHOD APPL MECH ENG
43947 JI Comput. Meth. Appl. Mech. Eng.
43948 PD DEC 1
43949 PY 1998
43950 VL 167
43951 IS 1-2
43952 BP 57
43953 EP 68
43954 PG 12
43955 SC Computer Science, Interdisciplinary Applications; Engineering,
43956    Mechanical; Mechanics
43957 GA 154KP
43958 UT ISI:000077888300004
43959 ER
43960 
43961 PT J
43962 AU He, JH
43963 TI Approximate solution of nonlinear differential equations with
43964    convolution product nonlinearities
43965 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
43966 DT Article
43967 AB In this paper, a new iteration method is proposed to solve nonlinear
43968    problems. Special attention is paid to nonlinear differential equations
43969    with convolution product nonlinearities, The results reveal the
43970    approximations obtained by the proposed method are uniformly valid for
43971    both small and large parameters in nonlinear problems. Furthermore, the
43972    first order of approximations are more accurate than perturbation
43973    solutions at high order of approximation. (C) 1998 Elsevier Science
43974    S.A. All rights reserved.
43975 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43976 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
43977    Peoples R China.
43978 CR ADOMIAN G, 1986, J MATH ANAL APPL, V114, P171
43979    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
43980    HE JH, IN PRESS J SHANGHAI
43981    HE JH, 1997, COMM NONLINEAR SCI N, V2, P230
43982    HE JH, 1998, MECH PRACTICE, V20, P30
43983    INOKUTI M, 1978, VARIATIONAL METHOD M, P156
43984 NR 6
43985 TC 20
43986 SN 0045-7825
43987 J9 COMPUT METHOD APPL MECH ENG
43988 JI Comput. Meth. Appl. Mech. Eng.
43989 PD DEC 1
43990 PY 1998
43991 VL 167
43992 IS 1-2
43993 BP 69
43994 EP 73
43995 PG 5
43996 SC Computer Science, Interdisciplinary Applications; Engineering,
43997    Mechanical; Mechanics
43998 GA 154KP
43999 UT ISI:000077888300005
44000 ER
44001 
44002 PT J
44003 AU Hu, C
44004    Zhao, XH
44005    Ma, XG
44006    Huang, WH
44007 TI Dynamic stress concentrations in Ambartsumian's plate with a cutout
44008 SO ACTA MECHANICA SOLIDA SINICA
44009 DT Article
44010 DE Ambartsumian's plate; cutout; dynamic stress concentration;
44011    perturbation method
44012 AB Based on the motion equations of flexural wave in Ambartsumian' s
44013    plates including the effects of transverse shear deformations, by using
44014    perturbation method of small parameter, the scattering of flexural
44015    waves and dynamic stress concentrations in the plate with a cutout have
44016    been studied. The asypmtotic solution of the dynamic stress problem is
44017    obtained Numerical results for the dynamic stress concentration factor
44018    in Ambartsumian' s plates with a circular cutout are graphically
44019    presented and discussed.
44020 C1 Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
44021    Harbin Inst Technol, Harbin 150001, Peoples R China.
44022 CR AMBARTSUMIAN SA, 1970, THEORY ANISOTROPIC P
44023    HU HC, 1981, VARIATIONAL PRINCIPL
44024    KLYUKIN II, 1964, SOV PHYS ACOUST, V10, P49
44025    LEKHNITSKII SG, 1963, THEORY ANISOTROPIC P
44026    MA XR, 1997, ACTA MECH SINICA, V29, P269
44027    MUSKHELISHVILI NI, 1958, BASIC PROBLEMS MATH
44028    PANC V, 1975, THEORIES ELASTIC PLA
44029    PAO YH, 1962, J APPL MECH, V29, P299
44030    PAO YH, 1983, J APPL MECH-T ASME, V50, P1152
44031    PAO YH, 1993, DIFFRACTION ELASTIC
44032    QIAN EC, 1981, THEORY SINGULAR PERT
44033    SAVIN GN, 1958, STRESS CONCENTRATION
44034 NR 12
44035 TC 0
44036 SN 0894-9166
44037 J9 ACTA MECH SOLIDA SINICA
44038 JI Acta Mech. Solida Sin.
44039 PD DEC
44040 PY 1998
44041 VL 11
44042 IS 4
44043 BP 341
44044 EP 350
44045 PG 10
44046 SC Materials Science, Multidisciplinary; Mechanics
44047 GA 152ZG
44048 UT ISI:000077807700006
44049 ER
44050 
44051 PT J
44052 AU Gao, SC
44053    Zhong, SS
44054 TI Analysis and design of dual-polarized microstrip antenna array
44055 SO INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING
44056 DT Article
44057 DE microstrip antenna; array; dual polarization; isolation
44058 ID MOBILE SATELLITE-COMMUNICATIONS
44059 AB A new dual-polarized microstrip antenna array is presented. Diagonal
44060    feeding of the square patch with two ports is proposed to obtain dual
44061    linear polarization. A novel coplanar feedline network is also
44062    presented for the dual-polarized array. For engineering purposes, a
44063    CAD-oriented method of analysis is developed. The measured results
44064    demonstrate high isolation between the two input ports. The array has
44065    simple structure and is easy to further combine to form larger coplanar
44066    arrays. (C) 1999 John Wiley & Sons, Inc.
44067 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
44068 RP Gao, SC, Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R
44069    China.
44070 CR BRACHAT P, 1995, IEEE T ANTENN PROPAG, V43, P738
44071    CRYAN MJ, 1996, ELECTRON LETT, V32, P286
44072    DUTOLT LJ, 1987, IEEE AP S INT S LOS, P810
44073    GUPTA KC, 1981, COMPUTER AIDED DESIG, CH11
44074    GUPTA KC, 1987, IEEE AP S INT S, P786
44075    GUPTA KC, 1988, MICROSTRIP ANTENNA D, CH3
44076    HALL PS, 1988, IEE P H, V135, P180
44077    JAMES JR, 1981, MICROSTRIP ANTENNA T, P166
44078    JAMES JR, 1989, HDB MICROSTRIP ANTEN, CH3
44079    LO YT, 1988, ANTENNA HDB THEORY A, CH10
44080    MURAKAMI Y, 1996, IEE P-MICROW ANTEN P, V143, P119
44081    NAKANO M, 1992, IEEE T ANTENN PROPAG, V40, P1269
44082 NR 12
44083 TC 9
44084 SN 1096-4290
44085 J9 INT J RF MICROW COMPUT-AID EN
44086 JI Int. J. RF Microw. Comput-Aid. Eng.
44087 PD JAN
44088 PY 1999
44089 VL 9
44090 IS 1
44091 BP 42
44092 EP 48
44093 PG 7
44094 SC Computer Science, Interdisciplinary Applications; Engineering,
44095    Electrical & Electronic
44096 GA 150NB
44097 UT ISI:000077670100005
44098 ER
44099 
44100 PT J
44101 AU Xu, X
44102    He, FB
44103 TI Three dimensional elasticity solution for vibration problem of thick
44104    plate
44105 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
44106 DT Article
44107 DE thick plate; free vibration; forced vibration
44108 AB In this paper, based upon the basic equations of three dimensional
44109    theory of elastodynamics, the governing differential equations of thick
44110    plate have been formulated The dynamic response of stress and
44111    displacement of thick plate subjected to the transversed forced are
44112    obtained. It is shown that the vibrational characters of thick plate
44113    consist of three modes: thickness shear mode, symmetric mode and
44114    anti-symmetric mode. The characteristic equations;of simply supported
44115    thick plate are derived and rile comparison of the free vibration
44116    frequencies based on the classic. theory, middle thickness plate theory
44117    and three dimensional elasticity theory are given.
44118 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
44119 RP Xu, X, Shanghai Univ, Shanghai 200072, Peoples R China.
44120 CR BARNETT S, 1979, MATRIX METHODS ENG S
44121    CAO GX, 1983, VIBRATION THIN ELAST
44122    CAO ZY, 1983, THEORY THICK PLATE D
44123    CHIEN WZ, 1994, J SHANGHAI U TECHNOL, V15, P1
44124    MINDLIN RD, 1951, J APPLIED MECHANICS, V18, P31
44125    WANG FY, 1985, ACTA MECH SOLIDA SIN, V6, P429
44126    ZE DS, 1994, J TONGJI U, V22, P274
44127 NR 7
44128 TC 0
44129 SN 0253-4827
44130 J9 APPL MATH MECH-ENGL ED
44131 JI Appl. Math. Mech.-Engl. Ed.
44132 PD JUL
44133 PY 1998
44134 VL 19
44135 IS 7
44136 BP 615
44137 EP 624
44138 PG 10
44139 SC Mathematics, Applied; Mechanics
44140 GA 149EC
44141 UT ISI:000077591300002
44142 ER
44143 
44144 PT J
44145 AU Wang, ZX
44146    Fan, XL
44147    Zhu, ZY
44148 TI Inertial manifolds for nonautonomous infinite dimensional dynamical
44149    systems
44150 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
44151 DT Article
44152 DE nonautonomous equations; the spectral gap condition; inertial manifold
44153 AB In this paper, the long time behavior of nonautonomous infinite
44154    dimensional dynamical systems is discussed Under the spectral gap
44155    condition, It is proved that there exist inertial manifolds for a class
44156    of nonautonomous evolution equations.
44157 C1 Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
44158    Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China.
44159    Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China.
44160 RP Wang, ZX, Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
44161 CR BERNAL AR, 1990, APPL ANAL, V37, P95
44162    CHEPYZHOV VV, 1994, J MATH PURE APPL, V73, P297
44163    DAFERMOS CM, 1974, MATH SYST THEORY, V8, P142
44164    DEBUSSCHE A, 1994, J MATH PURE APPL, V73, P489
44165    GILL TL, 1992, SIAM J MATH ANAL, V23, P1204
44166    HALE J, 1988, MATH SURVEYS MONOGRA, V25
44167    HARAUX A, 1988, COMMUN PART DIFF EQ, V13, P1383
44168    SELL GR, 1967, T AM MATH SOC, V127, P241
44169    SMILEY MW, 1993, APPL ANAL, V50, P217
44170    SMILEY MW, 1995, J DYNAMICS DIFFERENT, V7, P237
44171    TEMAM R, 1988, INFINITE DIMENSIONAL
44172 NR 11
44173 TC 1
44174 SN 0253-4827
44175 J9 APPL MATH MECH-ENGL ED
44176 JI Appl. Math. Mech.-Engl. Ed.
44177 PD JUL
44178 PY 1998
44179 VL 19
44180 IS 7
44181 BP 695
44182 EP 704
44183 PG 10
44184 SC Mathematics, Applied; Mechanics
44185 GA 149EC
44186 UT ISI:000077591300011
44187 ER
44188 
44189 PT J
44190 AU Lu, ZM
44191    Liu, YL
44192 TI On the mechanism of turbulent coherent structure (III) - A statistical
44193    and dynamical model of coherent structure and its heat transfer
44194    mechanism
44195 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
44196 DT Article
44197 DE coherent structure; statistical and dynamical model; heat transfer
44198 AB Following Tsai & Ma([1]) and Tsai & Liu([2]), a statistical and
44199    dynamical near-wall turbulent coherent structural model with separate
44200    consideration of two different portions: locally generated and
44201    upstream-transported large eddies has been established. With this
44202    model, heat transfer in a fully developed open channel in the absence
44203    of pressure gradient is numerically simulated. Database of fluctuations
44204    of velocity and temperature has also been set. Numerical analysis shows
44205    the existence of high-low temperature streak caused by near-wall
44206    coherent structure and its swing in the lateral direction. Numerical
44207    results are in accordance with the computations and experimental
44208    results of other researchers.
44209 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
44210 RP Lu, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
44211    Peoples R China.
44212 CR BELL DM, 1993, NEAR WALL TURBULENT, P327
44213    BRADSHAW P, 1967, J FLUID MECH, V30, P241
44214    KASAGI N, 1990, NEAR WALL TURBULENCE, P596
44215    LIU YL, 1996, APPL MATH MECH, V17, P197
44216    LOU JS, 1993, APPL MATH MECH, V14, P993
44217    MA Z, 1996, THESIS TIANJIN U
44218    ROBINSON SK, 1991, ANNU REV FLUID MECH, V23, P601
44219    TSAI ST, 1987, APPL MATH MECH, V8, P901
44220    TSAI ST, 1993, THEORY TURBULENCE
44221    TSAI ST, 1995, APPL MATH MECH, V16, P319
44222    XIONG ZM, 1994, THESIS TIANJIN U
44223    ZHOU H, 1994, SCI CHINA SER A, V24, P941
44224 NR 12
44225 TC 1
44226 SN 0253-4827
44227 J9 APPL MATH MECH-ENGL ED
44228 JI Appl. Math. Mech.-Engl. Ed.
44229 PD AUG
44230 PY 1998
44231 VL 19
44232 IS 8
44233 BP 705
44234 EP 711
44235 PG 7
44236 SC Mathematics, Applied; Mechanics
44237 GA 149ED
44238 UT ISI:000077591400001
44239 ER
44240 
44241 PT J
44242 AU Shen, LJ
44243    Pan, LZ
44244    He, FB
44245 TI Study on the generalized Prandtl-Reuss constitutive equation and the
44246    corotational rates of stress tensor
44247 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
44248 DT Article
44249 DE finite elastic-plastic deformations; generalized Prandtl-Reuss
44250    constitutive equations; the corotational rates of stress tensor; simple
44251    shear stress oscillation
44252 ID PLASTICITY
44253 AB In this paper, the generalized Prandtl-Reuss (P-R) constitutive
44254    equations of elastic-plastic material in the presence of finite
44255    deformations through a new approach are studied. It analyzes the
44256    generalized P-R equation based on the material corotational rate and
44257    clarifies the puzzling problem of the simple shear stress oscillation
44258    mentioned in some literature. The paper proposes a modified relative
44259    rotational rate with which to constitute the objective rates of stress
44260    in the generalized P-R equation and concludes that the decomposition of
44261    total deformation rate into elastic and plastic parts is not necessary
44262    in developing the generalized P-R equations. Finally, the stresses of
44263    simple shear deformation are worked out.
44264 C1 Ningbo Univ, Mat Sci & Mech Res Ctr, Ningbo 315211, Peoples R China.
44265    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
44266 RP Shen, LJ, Ningbo Univ, Mat Sci & Mech Res Ctr, Ningbo 315211, Peoples R
44267    China.
44268 CR DAFALIAS YF, 1983, J APPL MECH-T ASME, V50, P561
44269    DIENES JK, 1979, ACTA MECH, V32, P217
44270    DIENES JK, 1986, ACTA MECH, V65, P1
44271    HUTCHINSON JW, 1973, NUMERICAL SOLUTION N, P17
44272    LEE EH, 1969, J APPLIED MECHANICS, V36, P1
44273    LEE EH, 1983, J APPL MECH-T ASME, V50, P554
44274    METZGER DR, 1987, INT J PLASTICITY, V4, P341
44275    NAGETAAL JC, 1982, P WORKSH PLAST MET F, P65
44276    NAGHDI PM, 1990, Z ANGEW MATH PHYS, V41, P315
44277    SOWERBY R, 1984, INT J SOLIDS STRUCT, V20, P1037
44278    TRUESDELL C, 1966, ELEMENTS CONTINUUM M, P39
44279    TVERGAARD V, 1978, INT J MECH SCI, V20, P651
44280    VOYIADJIS GZ, 1992, INT J PLASTICITY, V8, P271
44281 NR 13
44282 TC 0
44283 SN 0253-4827
44284 J9 APPL MATH MECH-ENGL ED
44285 JI Appl. Math. Mech.-Engl. Ed.
44286 PD AUG
44287 PY 1998
44288 VL 19
44289 IS 8
44290 BP 735
44291 EP 743
44292 PG 9
44293 SC Mathematics, Applied; Mechanics
44294 GA 149ED
44295 UT ISI:000077591400005
44296 ER
44297 
44298 PT J
44299 AU Wang, ZX
44300    Fan, XL
44301    Zhu, ZY
44302 TI Convergent families of approximate inertial manifolds for nonautonomous
44303    evolution equations
44304 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
44305 DT Article
44306 DE nonautonomous equation; approximate inertial manifold; spectral gap
44307    condition
44308 AB In this paper, the long time behavior of nonautonomous infinite
44309    dimensional dynamical systems is studied. A family of convergent
44310    approximate inertial manifolds for a class of evolution equations has
44311    been constructed when the spectral gap condition is satisfied.
44312 C1 Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
44313    Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China.
44314    Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China.
44315 RP Wang, ZX, Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
44316 CR BERNAL AR, 1990, APPL ANAL, V37, P95
44317    CHEPYZHOV VV, 1994, J MATH PURE APPL, V73, P297
44318    DAFERMOS CM, 1974, MATH SYST THEORY, V8, P142
44319    DEBUSSCHE A, 1994, J MATH PURE APPL, V73, P489
44320    GILL TL, 1992, SIAM J MATH ANAL, V23, P1204
44321    HALE J, 1988, MATH SURVEYS MONOGRA, V25
44322    HARAUX A, 1988, COMMUN PART DIFF EQ, V13, P1383
44323    SELL GR, 1967, T AM MATH SOC, V127, P241
44324    SMILEY MW, 1993, APPL ANAL, V50, P217
44325    SMILEY MW, 1995, J DYNAMICS DIFFERENT, V7, P237
44326    TEMAM R, 1988, INFINITE DIMENSIONAL
44327    WANG ZX, 1998, APPL MATH MECH-ENGL, V19, P695
44328 NR 12
44329 TC 0
44330 SN 0253-4827
44331 J9 APPL MATH MECH-ENGL ED
44332 JI Appl. Math. Mech.-Engl. Ed.
44333 PD AUG
44334 PY 1998
44335 VL 19
44336 IS 8
44337 BP 765
44338 EP 775
44339 PG 11
44340 SC Mathematics, Applied; Mechanics
44341 GA 149ED
44342 UT ISI:000077591400008
44343 ER
44344 
44345 EF
44346 FN ISI Export Format
44347 VR 1.0
44348 PT J
44349 AU Qiao, H
44350    Kang, LY
44351    Cardei, M
44352    Du, DZ
44353 TI Paired-domination of trees
44354 SO JOURNAL OF GLOBAL OPTIMIZATION
44355 DT Article
44356 AB Let G 5 (V, E) be a graph without isolated vertices. A set S subset of
44357    or equal to V is a paired-dominating set if it dominates V and the
44358    subgraph induced by S, [S], contains a perfect matching. The
44359    paired-domination number gamma(p)(G) is defined to be the minimum
44360    cardinality of a paired-dominating set S in G. In this paper, we
44361    present a linear-time algorithm computing the paired-domination number
44362    for trees and characterize trees with equal domination and
44363    paired-domination numbers.
44364 C1 City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China.
44365    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
44366    Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA.
44367 RP Qiao, H, City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong
44368    Kong, Hong Kong, Peoples R China.
44369 CR COCKAYNE EJ, 2000, J GRAPH THEOR, V34, P277
44370    HATTINGH JH, 2000, J GRAPH THEOR, V34, P142
44371    HAYNES TW, 1998, DOMINATION GRAPHS AD
44372    HAYNES TW, 1998, FUNDAMENTALS DOMINAT
44373    HAYNES TW, 1998, NETWORKS, V32, P199
44374    MYNHARDT CM, 1999, J GRAPH THEOR, V31, P163
44375 NR 6
44376 TC 4
44377 SN 0925-5001
44378 J9 J GLOBAL OPTIM
44379 JI J. Glob. Optim.
44380 PD JAN
44381 PY 2003
44382 VL 25
44383 IS 1
44384 BP 43
44385 EP 54
44386 PG 12
44387 SC Mathematics, Applied; Operations Research & Management Science
44388 GA 620YE
44389 UT ISI:000179561100003
44390 ER
44391 
44392 PT J
44393 AU Zhang, ZC
44394    Guo, JK
44395 TI Evaluation of thermodynamic properties from alloy phase diagram with
44396    miscibility gap using non-random two-liquid equation
44397 SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY
44398 DT Article
44399 AB The non-random two-liquid equation has been applied to evaluate the
44400    thermodynamic properties of the liquid solution at elevated
44401    temperatures in a binary alloy system with a liquid phase miscibility
44402    gap. Only upon making use of the phase equilibrium data at the critical
44403    and monotectic points of the miscibility gap from a T-X phase diagram
44404    and thermochemical data, the parameters needed for the evaluation,
44405    i.e., (g(12) - g(22)), (g(21) - g(11)) and a of the non-random
44406    two-liquid solution approach, can be determined. The evaluation of
44407    thermodynamic properties was carried out numerically for three binary
44408    alloy systems, i.e., Al-Pb, Zn-Pb and Ga-Hg systems. The application of
44409    the non-random two-liquid equation to these three binary alloy systems
44410    shows that the evaluated results are close to the available
44411    experimental measurements. (C) 2002 Published by Elsevier Science Ltd.
44412 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
44413    Shanghai Univ, Sch Sci, Shanghai 201800, Peoples R China.
44414 RP Zhang, ZC, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples
44415    R China.
44416 CR CHOU KC, 1989, CALPHAD, V13, P301
44417    DARKEN LS, 1953, PHYSICAL CHEM METALS
44418    GANNEESCARD M, 1979, THERMOCHIM ACTA, V31, P323
44419    GUMINSKI C, 1993, J PHASE EQUILIB, V14, P719
44420    HULTGREN R, 1973, SELECTED VALUES THER
44421    LIANG YJ, 1993, HDB THERMODYNAMIC DA
44422    PRIGOGINE I, 1957, MOL THEORY SOLUTIONS
44423    RENON H, 1968, AICHE J, V14, P135
44424    WAGNER C, 1962, THERMODYNAMICS ALLOY
44425    ZHANG ZC, 1998, CALPHAD, V22, P313
44426 NR 10
44427 TC 0
44428 SN 0364-5916
44429 J9 CALPHAD-COMPUT COUP PHASE DIA
44430 JI Calphad-Comput. Coupling Ph. Diagrams Thermochem.
44431 PD SEP
44432 PY 2002
44433 VL 26
44434 IS 3
44435 BP 327
44436 EP 340
44437 PG 14
44438 SC Chemistry, Physical; Thermodynamics
44439 GA 620PF
44440 UT ISI:000179541200002
44441 ER
44442 
44443 PT J
44444 AU You, B
44445    Wang, XD
44446    Ji, WS
44447    Yang, WR
44448    Li, Y
44449 TI Resonant frequency and quality factors of a silver-coated dual-mode
44450    dielectric resonator
44451 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
44452 DT Article
44453 DE dual-mode dielectric resonator; FDTD method; resonant frequency; Q
44454    factor; high permittivity dielectric ceramics
44455 ID FILTERS
44456 AB In this paper, resonant frequency and quality factors of a
44457    square-corner-cut dielectric resonator are obtained by using the
44458    finite-difference time-domain (FDTD) method, and the resonant
44459    frequencies of some modes in the resonator are analyzed. Some useful
44460    results are obtained. (C) 2002 Wiley Periodicals, Inc.
44461 C1 Shanghai Univ, Shc Commun & Informat Engn, Shanghai 200072, Peoples R China.
44462    Shanghai Univ, Microelect Res & Dev Ctr, Shanghai 200072, Peoples R China.
44463 RP You, B, Shanghai Univ, Shc Commun & Informat Engn, Shanghai 200072,
44464    Peoples R China.
44465 CR LIANG XP, 1992, IEEE T MICROW THEORY, V40, P2294
44466    NAVARRO A, 1991, IEEE T MICROW THEORY, V39, P2159
44467    SANO K, 2000, IEEE T MICROW THEORY, V48, P2491
44468    WANG C, 1995, IEEE T MICROW THEORY, V43, P1524
44469 NR 4
44470 TC 0
44471 SN 0895-2477
44472 J9 MICROWAVE OPT TECHNOL LETT
44473 JI Microw. Opt. Technol. Lett.
44474 PD DEC 20
44475 PY 2002
44476 VL 35
44477 IS 6
44478 BP 475
44479 EP 477
44480 PG 3
44481 SC Engineering, Electrical & Electronic; Optics
44482 GA 618GE
44483 UT ISI:000179409700016
44484 ER
44485 
44486 PT J
44487 AU Zhang, DJ
44488 TI Conservation laws of the two-dimensional Toda lattice hierarchy
44489 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
44490 DT Article
44491 DE conservation law; two-dimensional Toda lattice hierarchy; generalized
44492    Riccati equation
44493 ID KP HIERARCHY; EQUATIONS; QUANTITIES; SYMMETRIES; REDUCTIONS
44494 AB A novel method of constructing the conservation laws of (1 +
44495    2)-dimensional differential-difference systems is proposed. By
44496    introducing the generalized Riccati equation related to the
44497    pseudo-difference operator, we obtain the infinitely many conserved
44498    densities and the associated fluxes of the two-dimensional Toda lattice
44499    hierarchy. Moreover, this method presents more forms of the
44500    conservation laws than the previous approach.
44501 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
44502 RP Zhang, DJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
44503 CR ABLOWITZ MJ, 1976, J MATH PHYS, V17, P1011
44504    CHENG Y, 1992, J MATH PHYS, V33, P3774
44505    KAJIWARA K, 1990, PHYS LETT A, V146, P115
44506    KAJIWARA K, 1991, J MATH PHYS, V32, P506
44507    KONNO K, 1974, PROG THEO PHYS, V52, P886
44508    KONOPELCHENKO B, 1992, J MATH PHYS, V33, P3676
44509    MATSUKIDAIRA J, 1990, J MATH PHYS, V31, P1426
44510    MATSUNO Y, 1990, J PHYS SOC JPN, V59, P3093
44511    OHTA Y, 1988, PROG THEOR PHYS SUPP, V94, P210
44512    SATO M, 1981, RIMS KOKYUROKU, V439, P30
44513    SATO M, 1983, NONLINEAR PARTIAL DI, P259
44514    SIDORENKO J, 1993, J MATH PHYS, V34, P1429
44515    TSUCHIDA T, 1998, J MATH PHYS, V39, P4785
44516    TSUCHIDA T, 1998, J PHYS SOC JPN, V67, P1175
44517    TSUCHIDA T, 1999, J PHYS A-MATH GEN, V32, P2239
44518    WADATI M, 1975, PROG THEOR PHYS, V53, P419
44519    WADATI M, 1976, PROG THEOR PHYS SUPP, V59, P36
44520    WADATI M, 1977, PROG THEOR PHYS, V57, P808
44521    ZAKHAROV VE, 1972, SOV PHYS JETP, V34, P62
44522    ZHANG DJ, 2002, CHAOS SOLITON FRACT, V14, P573
44523 NR 20
44524 TC 0
44525 SN 0031-9015
44526 J9 J PHYS SOC JPN
44527 JI J. Phys. Soc. Jpn.
44528 PD NOV
44529 PY 2002
44530 VL 71
44531 IS 11
44532 BP 2583
44533 EP 2586
44534 PG 4
44535 SC Physics, Multidisciplinary
44536 GA 618JB
44537 UT ISI:000179414000001
44538 ER
44539 
44540 PT J
44541 AU Zhang, DJ
44542 TI The N-soliton solutions for the modified KdV equation with
44543    self-consistent sources
44544 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
44545 DT Article
44546 DE modified KdV equation with self consistent sources; Hirota's method;
44547    Wronskian technique; uniformity
44548 ID NONLINEAR INTEGRABLE SYSTEMS; VRIES EQUATION; HIERARCHY; KORTEWEG;
44549    SCATTERING
44550 AB The N-soliton solutions for the modified KdV equation with
44551    self-consistent sources are obtained through Hirota's method and
44552    Wronskian technique respectively. Some novel determinantal identities
44553    are presented to treat the nonlinear term in the time evolution and
44554    finish the Wronskian verifications. The uniformity of these two kinds
44555    of N-soliton solutions is proved.
44556 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
44557 RP Zhang, DJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
44558 CR ABLOWITZ MJ, 1981, SOLITON INVERSE SCAT
44559    CHEN DY, 2001, 3 C SOL INT SYST CHI
44560    CLAUDE C, 1991, J MATH PHYS, V32, P3321
44561    DOKTOROV EV, 1983, OPT ACTA, V30, P223
44562    DOKTOROV EV, 1995, PHYS LETT A, V207, P153
44563    FREEMAN NC, 1983, PHYS LETT A, V95, P1
44564    HIROTA R, LECT NOTES MATH, V515
44565    HIROTA R, 1971, PHYS REV LETT, V27, P1192
44566    KAUP DJ, 1987, PHYS REV LETT, V59, P2063
44567    LEON J, 1990, J PHYS A-MATH GEN, V23, P1385
44568    LIN RL, 2001, PHYSICA A, V291, P287
44569    MELNIKOV VK, 1988, PHYS LETT A, V133, P493
44570    MELNIKOV VK, 1989, COMMUN MATH PHYS, V120, P451
44571    MELNIKOV VK, 1989, COMMUN MATH PHYS, V126, P201
44572    MELNIKOV VK, 1990, J MATH PHYS, V31, P1106
44573    MELNIKOV VK, 1992, INVERSE PROBL, V8, P133
44574    NAKAZAWA M, 1991, PHYS REV LETT, V66, P2625
44575    NIMMO JJC, 1983, PHYS LETT A, V95, P4
44576    NIMMO JJC, 1984, J PHYS A-MATH GEN, V17, P1415
44577    SATSUMA J, 1979, J PHYS SOC JPN, V46, P359
44578    SHCHESNOVICH VS, 1996, PHYS LETT A, V213, P23
44579    URASBOEV GU, 2001, THEOR MATH PHYS+, V129, P1341
44580    VLASOV RA, 1991, DOKL AKAD NAUK BSSR, V26, P17
44581    ZENG YB, 1996, ACTA MATH SINICA, V12, P217
44582    ZENG YB, 1998, PHYSICA A, V259, P278
44583    ZENG YB, 1999, PHYSICA A, V262, P405
44584    ZENG YB, 2000, J MATH PHYS, V41, P5453
44585    ZENG YB, 2001, J MATH PHYS, V42, P2113
44586 NR 28
44587 TC 7
44588 SN 0031-9015
44589 J9 J PHYS SOC JPN
44590 JI J. Phys. Soc. Jpn.
44591 PD NOV
44592 PY 2002
44593 VL 71
44594 IS 11
44595 BP 2649
44596 EP 2656
44597 PG 8
44598 SC Physics, Multidisciplinary
44599 GA 618JB
44600 UT ISI:000179414000018
44601 ER
44602 
44603 PT J
44604 AU Fang, ZJ
44605    Xia, YB
44606    Wang, LJ
44607    Zhang, WL
44608    Ma, ZG
44609    Zhang, ML
44610 TI Effective stress reduction in diamond films on alumina by carbon ion
44611    implantation
44612 SO CHINESE PHYSICS LETTERS
44613 DT Article
44614 ID DEPOSITION
44615 AB We show the effective stress reduction in diamond films by implanting
44616    carbon ions into alumina substrates prior to the diamond deposition.
44617    Residual stresses in the films are evaluated by Raman spectroscopy and
44618    a more reliable method for stress determination is presented for the
44619    quantitative measurement of stress evolution. It is found that
44620    compressive stresses in the diamond films can be partly offset by the
44621    compressive stresses in the alumina substrates, which are caused by the
44622    ion pre-implantation. At the same time, the difference between the
44623    offset by the pre-stressed substrates and the total stress reduction
44624    indicates that some other mechanisms are also active.
44625 C1 Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
44626 RP Fang, ZJ, Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai
44627    201800, Peoples R China.
44628 CR AGER JW, 1993, PHYS REV B, V48, P2601
44629    FAN QH, 1999, J MATER SCI, V34, P1353
44630    FAN WD, 1995, SURF COAT TECH, V72, P78
44631    LIU JF, 2001, SEMICOND SCI TECH, V16, P273
44632    VONKAENEL Y, 1997, J APPL PHYS, V81, P1726
44633    XIA Y, 1996, CHINESE PHYS LETT, V13, P459
44634 NR 6
44635 TC 2
44636 SN 0256-307X
44637 J9 CHIN PHYS LETT
44638 JI Chin. Phys. Lett.
44639 PD NOV
44640 PY 2002
44641 VL 19
44642 IS 11
44643 BP 1663
44644 EP 1665
44645 PG 3
44646 SC Physics, Multidisciplinary
44647 GA 618TK
44648 UT ISI:000179433200028
44649 ER
44650 
44651 PT J
44652 AU Xue, Y
44653 TI Analysis of the stability and density waves for traffic flow
44654 SO CHINESE PHYSICS
44655 DT Article
44656 DE car-following model; traffic flow; density wave; relative velocity
44657 ID CONGESTION; SOLITON; STATES
44658 AB In this paper, the optimal velocity model of traffic is extended to
44659    take into account the relative velocity. The stability and density
44660    waves for traffic flow are investigated analytically with the
44661    perturbation method. The stability criterion is derived by the linear
44662    stability analysis. It is shown that the triangular shock wave, soliton
44663    wave and kink wave appear respectively in our model for density waves
44664    in the three regions: stable, metastable and unstable regions. These
44665    correspond to the solutions of the Burgers equation, Korteweg-de Vries
44666    equation and modified Korteweg-de Vries equation. The analytical
44667    results are confirmed to be in good agreement with those of numerical
44668    simulation. All the results indicate that the interaction of a car with
44669    relative velocity can affect the stability of the traffic flow and
44670    raise critical density.
44671 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
44672    Guangxi Univ, Dept Phys, Nanning 530003, Peoples R China.
44673 RP Xue, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
44674    Peoples R China.
44675 CR BANDO M, 1995, PHYS REV E, V51, P1035
44676    BARLOVIC R, 1998, EUR PHYS J B, V5, P793
44677    CHOWDHURY D, 2000, PHYS REP, V329, P199
44678    KERNER BS, 1993, PHYS REV E, V48, P2335
44679    KOMATSU TS, 1995, PHYS REV E B, V52, P5574
44680    KURTZ DA, 1993, PHYS REV E, V52, P218
44681    MURAMATSU M, 1999, PHYS REV E, V60, P180
44682    NAGATANI T, 1999, PHYS REV E A, V60, P6395
44683    TREIBER M, 2000, PHYS REV E A, V62, P1805
44684    XUE Y, 2002, ACTA PHYS SIN-CH ED, V51, P492
44685    XUE Y, 2002, COMMUN THEOR PHYS, V38, P230
44686 NR 11
44687 TC 3
44688 SN 1009-1963
44689 J9 CHIN PHYS
44690 JI Chin. Phys.
44691 PD NOV
44692 PY 2002
44693 VL 11
44694 IS 11
44695 BP 1128
44696 EP 1134
44697 PG 7
44698 SC Physics, Multidisciplinary
44699 GA 618KT
44700 UT ISI:000179417800007
44701 ER
44702 
44703 PT J
44704 AU Liu, LH
44705    Dong, C
44706    Zhang, JC
44707    Chen, H
44708    Chen, L
44709 TI A simple volumetric method for oxygen content determination in high-T-c
44710    doped YBCO compositions
44711 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
44712 DT Article
44713 DE high-T-c superconductors; oxygen content determination
44714 ID IODOMETRIC TITRATION; SUPERCONDUCTOR; NONSTOICHIOMETRY; FE
44715 AB We have developed a simple volumetric method for oxygen content
44716    determination in high-T-c materials. Application of this method in Fe
44717    and Co doped YBa2Cu3Oy systems is presented in this paper. This method
44718    shows several advantages. First, the apparatus is simple and
44719    inexpensive, so it can be widely used. Second, the operational
44720    procedure is simple and time saving. Moreover, the oxygen contents
44721    determined using this method are quite accurate. According to the error
44722    analysis, we found that the experimental accuracy can be improved
44723    further by reducing the original gas volume in the apparatus and
44724    increasing the sample mass. Besides the high-T-c copper oxides, this
44725    method can also be used to determine the oxygen content of other
44726    materials such as the colossal magnetoresistance materials. (C) 2002
44727    Elsevier Science B.V. All rights reserved.
44728 C1 Chinese Acad Sci, Natl Lab Superconduct, Beijing 100080, Peoples R China.
44729    Univ Houston, Dept Chem, Houston, TX 77204 USA.
44730    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
44731 RP Liu, LH, Chinese Acad Sci, Natl Lab Superconduct, POB 603, Beijing
44732    100080, Peoples R China.
44733 CR BARBOUR JC, 1988, PHYS REV B, V38, P7005
44734    CHEN WM, 1996, PHYSICA C, V270, P349
44735    CHEN WM, 1997, PHYSICA C, V276, P132
44736    CONDER K, 1989, MATER RES BULL, V24, P581
44737    DONG C, 1999, J APPL CRYSTALLOGR, V32, P838
44738    FUEKI K, 1990, PHYSICA C, V166, P261
44739    HARRIS DC, 1987, J SOLID STATE CHEM, V69, P182
44740    HUONG PV, 1990, MAT SCI ENG B-SOLID, V5, P255
44741    JAMES AM, 1992, MACMILLANS CHEM PHYS, P108
44742    KARPPINEN M, 1993, J SOLID STATE CHEM, V104, P276
44743    KISHIO K, 1987, JPN J APPL PHYS, V26, P1228
44744    MIN JR, 1995, PHYSICA C, V249, P196
44745    NAZZAL AI, 1988, PHYSICA C, V153, P1367
44746    OBARA H, 1988, JPN J APPL PHYS, V27, L603
44747    TARASCON JM, 1988, PHYS REV B, V37, P7458
44748 NR 15
44749 TC 2
44750 SN 0921-4534
44751 J9 PHYSICA C
44752 JI Physica C
44753 PD DEC 1
44754 PY 2002
44755 VL 383
44756 IS 1-2
44757 BP 17
44758 EP 22
44759 PG 6
44760 SC Physics, Applied
44761 GA 617HF
44762 UT ISI:000179355700003
44763 ER
44764 
44765 PT J
44766 AU Chen, ZP
44767    Cao, SX
44768    Cao, GX
44769    Zhang, JC
44770 TI Dependence of positron lifetime parameters on the preparation
44771    techniques and structural defects for YBCO cuprates
44772 SO MATERIALS LETTERS
44773 DT Article
44774 DE yttrium barium copper oxide (YBa2CU3O7-delta); orthorhombic
44775 ID OXYGEN-DEFICIENT YBA2CU3O7-DELTA; ELECTRON-STRUCTURE; ANNIHILATION
44776 AB Based on possible existence of technique effect and scattered
44777    distribution in positron results, a special investigation was made for
44778    YBa2Cu3O7 (- delta) systems in this paper. The dependence of
44779    preparation techniques and the structural characteristics on the
44780    sintering temperature and time are also given by positron lifetime, XRD
44781    and SEM experiments. The results show that the positron lifetime
44782    parameters and the microstructure show a significant dependence on
44783    sintering temperature and time. It is proved that, in the range of
44784    920-950 degreesC/12-72 h, the positron results have good stability and
44785    reliability in the sintering times and temperature. The distribution
44786    characteristic of defect was evaluated and bad a good stability in the
44787    preparation technique. The present studies provide an important
44788    experimental evidence for the study of Y-123 systems by positron
44789    experiment. (C) 2002 Elsevier Science B.V. All rights reserved.
44790 C1 Zhengzhou Inst Light Ind, Dept Phys, Zhengzhou 450002, Peoples R China.
44791    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
44792 RP Chen, ZP, Zhengzhou Inst Light Ind, Dept Phys, Zhengzhou 450002,
44793    Peoples R China.
44794 CR BERGERSEN B, 1969, SOLID STATE COMMUN, V7, P1203
44795    BRANDT W, 1967, POSITRON ANNIHILATIO
44796    BRANDT W, 1971, PHYS LETT          A, V35, P109
44797    DU YK, 1994, J LOW TEMP PHYS, V16, P7
44798    HAUTOJARI P, 1979, POSITRON SOLIDS
44799    JEAN YC, 1987, PHYS REV B, V36, P3994
44800    JEAN YC, 1988, PHYS REV LETT, V60, P1069
44801    JINCANG Z, 2002, PHYS REV B, V65
44802    KWOK WK, 1988, PHYS REV B, V37, P106
44803    LU X, 1992, PHYS REV B, V45, P7989
44804    RAO CNR, 1987, ACCOUNTS CHEM RES, V20, P228
44805    SALAMA K, 1989, APPL PHYS LETT, V54, P2352
44806    VONSTETTEN EC, 1988, PHYS REV LETT, V60, P2198
44807    ZHANG JC, 1995, PHYS LETT A, V201, P70
44808    ZHANG JC, 1999, PHYS LETT A, V263, P452
44809 NR 15
44810 TC 2
44811 SN 0167-577X
44812 J9 MATER LETT
44813 JI Mater. Lett.
44814 PD DEC
44815 PY 2002
44816 VL 57
44817 IS 2
44818 BP 374
44819 EP 379
44820 PG 6
44821 SC Materials Science, Multidisciplinary; Physics, Applied
44822 GA 616YY
44823 UT ISI:000179332500019
44824 ER
44825 
44826 PT J
44827 AU Ma, H
44828    Kamiya, N
44829 TI A general algorithm for the numerical evaluation of nearly singular
44830    boundary integrals of various orders for two- and three-dimensional
44831    elasticity
44832 SO COMPUTATIONAL MECHANICS
44833 DT Article
44834 DE boundary element method; nearly singular integrals; elasticity;
44835    distance transformation; numerical integration
44836 ID PRINCIPAL VALUE INTEGRALS; ELEMENT METHOD; HYPERSINGULAR INTEGRALS;
44837    EQUATIONS; TRANSFORMATIONS; REGULARIZATION; FORMULATION
44838 AB A general algorithm of the distance transformation type is presented in
44839    this paper for the accurate numerical evaluation of nearly singular
44840    boundary integrals encountered in elasticity, which, next to the
44841    singular ones, has long been an issue of major concern in computational
44842    mechanics with boundary element methods. The distance transformation is
44843    realized by making use of the distance functions, defined in the local
44844    intrinsic coordinate systems, which plays the role of damping-out the
44845    near singularity of integrands resulting from the very small distance
44846    between the source and the integration points. By taking advantage of
44847    the divergence-free property of the integrals with the nearly
44848    hypersingular kernels in the 3D case, a technique of geometric
44849    conversion over the auxiliary cone surfaces of the boundary element is
44850    designed, which is suitable also for the numerical evaluation of the
44851    hypersingular boundary integrals. The effects of the distance
44852    transformations are studied and compared numerically for different
44853    orders in the 2D case and in the different local systems in the 3D case
44854    using quadratic boundary elements. It is shown that the proposed
44855    algorithm works very well, by using standard Gaussian quadrature
44856    formulae, for both the 2D and 3D elastic problems.
44857 C1 Shanghai Univ, Sch Sci, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200436, Peoples R China.
44858    Nagoya Univ, Sch Informat & Sci, Nagoya, Aichi 4648601, Japan.
44859 RP Ma, H, Shanghai Univ, Sch Sci, Shanghai Inst Appl Math & Mech, Dept
44860    Mech, Shanghai 200436, Peoples R China.
44861 CR ALIABADI MH, 1985, INT J NUMER METH ENG, V21, P2221
44862    ALIABADI MH, 2000, INT J NUMER METH ENG, V48, P995
44863    BREBBIA CA, 1984, BOUNDARY ELEMENT TEC
44864    CERROLAZA M, 1989, INT J NUMER METH ENG, V28, P987
44865    CRISTESCU M, 1978, RECENT ADV BOUNDARY, P375
44866    CRUSE TA, 1993, INT J NUMER METH ENG, V36, P237
44867    DIRGANTARA T, 2000, INT J FRACTURE, V105, P27
44868    DOBLARE M, 1997, INT J NUMER METH ENG, V40, P3325
44869    GRANADOS JJ, 2001, ENG ANAL BOUND ELEM, V25, P165
44870    GUIGGIANI M, 1987, INT J NUMER METH ENG, V24, P1711
44871    GUIGGIANI M, 1990, ASME, V57, P906
44872    GUIGGIANI M, 1992, ASME, V59, P604
44873    JOHNSTON PR, 1999, INT J NUMER METH ENG, V45, P1333
44874    KRISHNASAMY G, 1990, J APPL MECH-T ASME, V57, P404
44875    KRISHNASAMY G, 1994, INT J NUMER METH ENG, V37, P107
44876    LIU YJ, 1998, INT J NUMER METH ENG, V41, P541
44877    LIU YJ, 1999, COMPUT MECH, V24, P286
44878    LIU YJ, 2000, ENG ANAL BOUND ELEM, V24, P789
44879    MA H, 1998, JSCE J APPL MECH, V1, P355
44880    MA H, 1999, ENG ANAL BOUND ELEM, V23, P281
44881    MA H, 2001, ENG ANAL BOUNDARY EL, V25, P843
44882    MARTIN PA, 1996, INT J NUMER METH ENG, V39, P687
44883    MUKHERJEE S, 1982, BOUNDARY ELEMENT MET
44884    MUKHERJEE S, 2000, ENG ANAL BOUND ELEM, V24, P767
44885    SLADEK V, 1993, INT J NUMER METH ENG, V36, P1609
44886    TANAKA M, 1991, BOUNDARY ELEMENT MET
44887    TELLES JCF, 1987, INT J NUMER METH ENG, V24, P959
44888    ZHANG D, 1999, COMPUT MECH, V23, P389
44889 NR 28
44890 TC 5
44891 SN 0178-7675
44892 J9 COMPUTATION MECH
44893 JI Comput. Mech.
44894 PD OCT
44895 PY 2002
44896 VL 29
44897 IS 4-5
44898 BP 277
44899 EP 288
44900 PG 12
44901 SC Mathematics, Applied; Mechanics
44902 GA 616YA
44903 UT ISI:000179330100001
44904 ER
44905 
44906 PT J
44907 AU Wen, TQ
44908    Gu, P
44909    Minning, TA
44910    Wu, Q
44911    Liu, M
44912    Chen, FX
44913    Liu, H
44914    Huangi, HH
44915 TI Microarray analysis of neural stem cell differentiation in the striatum
44916    of the fetal rat
44917 SO CELLULAR AND MOLECULAR NEUROBIOLOGY
44918 DT Article
44919 DE microarray; neural stem cells; differentiation; striatum; rats
44920 ID CENTRAL-NERVOUS-SYSTEM; PROGENITOR CELLS; RECEPTOR; MATURATION;
44921    ACTIVATION; FOREBRAIN; PROMOTES; NEURONS; LINE
44922 AB 1. Gene expression profiles in neural stem cell differentiation in
44923    vitro were determined by cDNA microarray analysis.
44924    2. Total RNA was extracted and reverse transcripted into cDNA from
44925    differentiated and undifferentiated neural stem cells. The P-33 labeled
44926    cDNA was hybridized with a cDNA microarray consisting of 14,000 human
44927    genes.
44928    3. The results showed that a total of 1406 genes were differentially
44929    expressed, of which 148 genes exhibited more than twofold differences.
44930    Some genes were obviously activated while others were strongly
44931    repressed. These changes in gene expression suggest that
44932    differentiation is regulated by different genes at different
44933    expressional levels. By biological classification, the differentially
44934    expressed genes were divided into four functional categories: molecular
44935    function, biological process, cellular component, and new functional
44936    genes or ESTs.
44937    4. These findings will be a valuable contribution for gene expression
44938    profiling and elucidation of neural stem cell differentiation
44939    mechanisms.
44940 C1 Shanghai Univ, Sch Life Sci, Lab Neural Mol Biol, Shanghai 200436, Peoples R China.
44941    Univ Georgia, Dept Cellular Biol, Athens, GA 30602 USA.
44942 RP Wen, TQ, Shanghai Univ, Sch Life Sci, Lab Neural Mol Biol, 99 Shangda
44943    Rd, Shanghai 200436, Peoples R China.
44944 CR AMOUREUX MC, 2000, J NEUROSCI, V20, P3631
44945    ARONOW BJ, 2001, PHYSIOL GENOMICS, V6, P105
44946    BENRAISS A, 2001, J NEUROSCI, V21, P6718
44947    BONNI A, 1997, SCIENCE, V278, P477
44948    DIETZ AB, 2000, BIOCHEM BIOPH RES CO, V275, P731
44949    EISEN MB, 1998, P NATL ACAD SCI USA, V95, P14863
44950    ELBITAR F, 2001, CELL TISSUE RES, V304, P361
44951    FERNANDEZLLEBREZ P, 2001, CELL TISSUE RES, V305, P115
44952    FRANCESCANGELI E, 1997, NEUROCHEM RES, V10, P1299
44953    GADIENT RA, 1998, BRAIN RES, V798, P140
44954    GAGE FH, 2000, SCIENCE, V287, P1433
44955    GESCHWIND DH, 2001, NEURON, V29, P325
44956    HUGHES SM, 1988, NATURE, V335, P70
44957    KAPLANSKI C, 2000, CANCER RES, V60, P580
44958    KELLY DL, 2000, MOL REPROD DEV, V56, P113
44959    KOBLAR SA, 1998, P NATL ACAD SCI USA, V95, P3178
44960    LIU SY, 2000, J 3 MIL MED U, V22, P26
44961    MARMUR R, 1998, J NEUROSCI, V18, P9800
44962    MU XQ, 2001, NUCLEIC ACIDS RES, V29, P4983
44963    PINCUS DW, 1998, ANN NEUROL, V43, P576
44964    SALLY T, 2001, NATURE, V414, P112
44965    SATOH M, 2000, NEUROSCI LETT, V284, P143
44966    SHIMAZAKI T, 2001, J NEUROSCI, V21, P7642
44967    STIER H, 1998, DIFFERENTIATION, V64, P55
44968    SUELVES M, 2002, BLOOD, V99, P2835
44969    TAYLOR MV, 2002, CURR BIOL, V12, R224
44970    TROPEPE V, 1999, DEV BIOL, V208, P166
44971    TSOUKATOS DC, 2001, BIOCHEM J 2, V357, P457
44972    VANDERKOOY D, 2000, SCIENCE, V287, P1439
44973 NR 29
44974 TC 5
44975 SN 0272-4340
44976 J9 CELL MOL NEUROBIOL
44977 JI Cell. Mol. Neurobiol.
44978 PD AUG
44979 PY 2002
44980 VL 22
44981 IS 4
44982 BP 407
44983 EP 416
44984 PG 10
44985 SC Cell Biology; Neurosciences
44986 GA 614GF
44987 UT ISI:000179179400003
44988 ER
44989 
44990 PT J
44991 AU Hu, ZM
44992 TI Application of FTIR micro-spectroscopy in the tribology
44993 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
44994 DT Article
44995 DE FTIR micro-spectroscopy; tribology; hydroxyl vegetable oil fatty acid;
44996    polyester; characteristic absorption peak
44997 AB The wave number of characteristic absorption peak v(C-O-C)(as) of the
44998    polyester formed on the frictional process were determined by Fourier
44999    Transform Infrared (FTIR) Micro-spectroscopy, and the wave number
45000    displacement of characteristic absorption peak v(C-O-C)(as) was
45001    analyzed based on the conversion mass of polyester formed. The internal
45002    relations between anti-wear order rule of hydroxyl fatty acids and
45003    vibration absorption peak v(C-O-C)(as) of polyester formed by hydroxyl
45004    fatty acids was deduced according to these results, and the anti-wear
45005    order of hydroxyl fatty acids was reasonably explained, that is 13,
45006    14-di-hydroxydooosanoic acid > 13 (14)-monohydroxydooosanoic acid = 9,
45007    10-dihydroxyoctadecanoic acid > 9,10, 12-trihydroxyoctadecanoic acid >
45008    9(10)-monohydroxyoctadecanoic acid. A net polyester film is formed by
45009    13, 14-dihydroxydocosanoic acid and a linear polyester film is formed
45010    by 9, (10)-monohydroxyoctadecanoic acid and
45011    13(14)-monohydroxydooosanoic acid.
45012 C1 Tsing Hua Univ, State Key Lab Tribol, Dept Precis Instruments & Mechanol, Beijing 100084, Peoples R China.
45013    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
45014 RP Hu, ZM, Tsing Hua Univ, State Key Lab Tribol, Dept Precis Instruments &
45015    Mechanol, Beijing 100084, Peoples R China.
45016 CR HU ZM, 1993, J SHANGHAI U TECHNOL, V14, P364
45017    HU ZM, 1995, LUBRICATION SCI, V7, P285
45018    HU ZM, 2000, LUBRICATING OIL, V15, P38
45019    HU ZM, 2001, LUBRICATION ENG PERI, V4, P36
45020 NR 4
45021 TC 0
45022 SN 1000-0593
45023 J9 SPECTROSC SPECTR ANAL
45024 JI Spectrosc. Spectr. Anal.
45025 PD OCT
45026 PY 2002
45027 VL 22
45028 IS 5
45029 BP 761
45030 EP 763
45031 PG 3
45032 SC Spectroscopy
45033 GA 612WX
45034 UT ISI:000179099400017
45035 ER
45036 
45037 PT J
45038 AU You, JL
45039    Jiang, GC
45040    Wen, Q
45041    Xu, KD
45042 TI Raman spectroscopic study of silicon-oxygen tetrahedrons microstructure
45043    in x CaSiO3 center dot LiBO2 solid solutions
45044 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
45045 DT Article
45046 DE silicates; LiBO2; Raman spectroscopy
45047 ID SPECTRA
45048 AB Raman spectra of xCaSiO(3) . LiBO2 (by weight ratio, x = 0, 0.25, 0.33,
45049    0.50)crystals were measured. The microstructure of different
45050    silicon-oxygen tetrahedrons and their abundant variations with silica
45051    contents were studied. It shows that all the silicon-oxygen
45052    tetrahedrons are isolated by Si-O-b-B bondings. or free SiO44- No
45053    evidence suggests that there exist considerable Si-O-b-Si bondings. The
45054    abundance of Q(2), Q(4) species increases with the increasing silica
45055    content, there exists barely Q(3) species even at high silica content.
45056    And the sum of integrated Raman peaks for all Q(i) species are linearly
45057    correlated with silica concentration in crystal, which offers the
45058    possibility to analysis silica in minerals, slags, glasses and soil
45059    samples directly.
45060 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
45061 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
45062    200072, Peoples R China.
45063 CR BOCK R, 1979, HDB DECOMPOSITION ME
45064    MCMILLAN P, 1984, AM MINERAL, V69, P622
45065    RULMONT A, 1989, SPECTROCHIM ACTA A, V45, P603
45066    WEN Q, 2000, SPECTROSC SPECT ANAL, V20, P694
45067    YOU JL, 1998, J CHINESE RARE EARTH, V16, P505
45068    YOU JL, 2001, CHINESE PHYS LETT, V18, P991
45069    YOU JL, 2001, J NON-CRYST SOLIDS, V282, P125
45070 NR 7
45071 TC 1
45072 SN 1000-0593
45073 J9 SPECTROSC SPECTR ANAL
45074 JI Spectrosc. Spectr. Anal.
45075 PD OCT
45076 PY 2002
45077 VL 22
45078 IS 5
45079 BP 787
45080 EP 789
45081 PG 3
45082 SC Spectroscopy
45083 GA 612WX
45084 UT ISI:000179099400024
45085 ER
45086 
45087 PT J
45088 AU Huang, SG
45089    Li, L
45090    Vleugels, J
45091    Wang, PL
45092    Van der Biest, O
45093 TI Thermodynamic prediction of the nonstoichiometric phase Zr1-zCezO2-x in
45094    the ZrO2-CeO1.5-CeO2 system
45095 SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
45096 DT Article
45097 DE CeO2; ZrO2; defects; mechanical properties; phase equilibria; sintering
45098 ID ZRO2-CEO2 SYSTEM; DIAGRAM; TRANSFORMATION; OPTIMIZATION; TEMPERATURE
45099 AB A thermodynamic estimation of the ZrO2-CeO2 and ZrO2-CeO1.5 systems, as
45100    well as the cubic phase in the CeO1.5-CeO2 system has been developed
45101    and the complex relation between the nonstoichiometry, y, in CezO2-y
45102    and the oxygen partial pressure at different temperatures is evaluated.
45103    The behavior of the nonstoichiometry phase Zr1-zCezO2-x is described
45104    based on the thermodynamic estimation in the ZrO2-CeO2, CeO1.5-CeO2 and
45105    ZrO2-CeO1.5 systems. Additionally, the interdependence among
45106    miscellaneous factors, which can be used to describe the change in
45107    oxidation states of cerium such as the oxygen partial pressure, the
45108    CeO1.5 fraction in CeO1.5-CeO2 in the quasi-ternary system, the
45109    nonstoichiometry y and the difference between the activity of CeO2 and
45110    CeO1.5 are predicted. The calculated results are found to be very
45111    useful to explain the influence of pressureless sintering at different
45112    O-2 partial pressures on the mechanical properties of CeO2-stabilised
45113    ZrO2 ceramics (C) 2002 Published by Elsevier Science Ltd.
45114 C1 Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Heverlee, Belgium.
45115    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
45116    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
45117 RP Van der Biest, O, Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001
45118    Heverlee, Belgium.
45119 CR ANSTIS GR, 1981, J AM CERAM SOC, V64, P533
45120    CAMPSERVEUX J, 1978, J SOLID STATE CHEM, V23, P73
45121    DU Y, 1991, J AM CERAM SOC, V74, P1569
45122    DU Y, 1994, SCRIPTA METALL MATER, V31, P327
45123    DURAN P, 1990, J MATER SCI, V25, P5001
45124    HANNINK RHJ, 2000, J AM CERAM SOC, V83, P461
45125    HEUSSNER KH, 1989, J AM CERAM SOC, V72, P1044
45126    KAUFMAN L, 1978, CALPHAD, V2, P35
45127    LEONOV AI, 1996, IZV AKAD NAUK SSSR I, V2, P1047
45128    LI L, 1996, J MATER SCI TECHNOL, V12, P159
45129    LI L, 2001, J EUR CERAM SOC, V21, P2903
45130    LI L, 2001, J MATER SCI TECHNOL, V17, P529
45131    LIDE DR, 1998, HDB CHEM PHYSICS
45132    LINDEMER TB, 1986, J AM CERAM SOC, V69, P867
45133    LONGO V, 1973, J AM CERAM SOC DISCU, V56, P600
45134    LUKAS HL, 1977, CALPHAD, V1, P225
45135    MUGGIANU YM, 1975, J CHIMIE PHYSIQUE, V72, P83
45136    PANKRATZ LB, 1982, US DEPT INTERIOR BUR, V672
45137    RICKEN M, 1986, SOLID STATE IONICS, V18, P725
45138    ROEBBEN G, 1997, REV SCI INSTRUM, V68, P4511
45139    ROUANET MA, 1968, COMP REND HEBD SEA C, V267, P1581
45140    TANI E, 1983, J AM CERAM SOC, V66, P506
45141    TULLER HL, 1979, J ELECTROCHEM SOC, V126, P209
45142    YASHIMA M, 1994, J AM CERAM SOC, V77, P1869
45143    YOSHIMURA M, 1972, B TOKYO I TECHNOL, V108, P25
45144 NR 25
45145 TC 2
45146 SN 0955-2219
45147 J9 J EUR CERAM SOC
45148 JI J. European Ceram. Soc.
45149 PD JAN
45150 PY 2003
45151 VL 23
45152 IS 1
45153 BP 99
45154 EP 106
45155 PG 8
45156 SC Materials Science, Ceramics
45157 GA 613GV
45158 UT ISI:000179125300013
45159 ER
45160 
45161 PT J
45162 AU Ren, JS
45163    Cheng, CJ
45164 TI Bifurcation of cavitation solutions for incompressible transversely
45165    isotropic hyper-elastic materials
45166 SO JOURNAL OF ENGINEERING MATHEMATICS
45167 DT Article
45168 DE bifurcation; comparison of energy; incompressible hyper-elastic
45169    material; jumping and concentration of stress; transversely isotropic
45170    cylinder
45171 ID VOID NUCLEATION; HYPERELASTIC MATERIALS; GROWTH; INHOMOGENEITY;
45172    EXAMPLE; SPHERES
45173 AB In this paper, the bifurcation problem of void formation and growth in
45174    a solid circular cylinder, composed of an incompressible, transversely
45175    isotropic hyper-elastic material, under a uniform radial tensile
45176    boundary dead load and an axial stretch is examined. At first, the
45177    deformation of the cylinder, containing an undetermined parameter-the
45178    void radius, is given by using the condition of incompressibility of
45179    the material. Then the exact analytic formulas to determine the
45180    critical load and the bifurcation values for the parameter are obtained
45181    by solving the differential equation for the deformation function.
45182    Thus, an analytic solution for bifurcation problems in incompressible
45183    anisotropic hyper-elastic materials is obtained. The solution depends
45184    on the degree of anisotropy of the material. It shows that the
45185    bifurcation may occur locally to the right or to the left, depending on
45186    the degree of anisotropy, and the condition for the bifurcation to the
45187    right or to the left is discussed. The stress distributions subsequent
45188    to the cavitation are given and the jumping and concentration of
45189    stresses are discussed. The stability of solutions is discussed through
45190    comparison of the associated potential energies. The bifurcation to the
45191    left is a 'snap cavitation'. The growth of a pre-existing void in the
45192    cylinder is also observed. The results for a similar problem in three
45193    dimensions were obtained by Polignone and Horgan.
45194 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
45195 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
45196    Shanghai 200072, Peoples R China.
45197 CR ANTMAN SS, 1987, J ELASTICITY, V18, P131
45198    BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
45199    CHOUWANG MSO, 1989, INT J SOLIDS STRUCT, V25, P1239
45200    GENT AN, 1958, P ROY SOC LOND A MAT, V249, P195
45201    HAO TH, 1990, INT J FRACTURE, V43, R51
45202    HORGAN CO, 1986, J ELASTICITY, V16, P189
45203    HORGAN CO, 1989, J APPL MECH, V56, P302
45204    HORGAN CO, 1989, J ELASTICITY, V21, P61
45205    HORGAN CO, 1992, INT J SOLIDS STRUCT, V29, P279
45206    HORGAN CO, 1995, APPL MECH REV, V48, P471
45207    MEYNARD F, 1992, Q APPL MATH, V50, P210
45208    OGDEN RW, 1972, P ROY SOC LOND A MAT, V326, P565
45209    PODIOGUIDUGLI P, 1986, J ELASTICITY, V16, P75
45210    POLIGNONE DA, 1993, INT J SOLIDS STRUCT, V30, P3381
45211    POLIGNONE DA, 1993, J ELASTICITY, V33, P27
45212    SHANG XC, 1996, ACTA MECH SINICA, V28, P751
45213    SHANG XC, 2001, INT J ENG SCI, V39, P1101
45214    SIVALOGANANTHAN J, 1991, Q APPL MATH, V49, P521
45215    SIVALOGANATHAN J, 1986, ARCH RATIONAL MECH A, V96, P96
45216    STUART CA, 1985, ANN I H POINCARE-AN, V2, P33
45217    YEOH OH, 1997, RUBBER CHEM TECHNOL, V70, P175
45218 NR 21
45219 TC 9
45220 SN 0022-0833
45221 J9 J ENG MATH
45222 JI J. Eng. Math.
45223 PD NOV
45224 PY 2002
45225 VL 44
45226 IS 3
45227 BP 245
45228 EP 257
45229 PG 13
45230 SC Engineering, Multidisciplinary; Mathematics, Applied
45231 GA 611BK
45232 UT ISI:000178996400003
45233 ER
45234 
45235 PT J
45236 AU Liu, WH
45237    Wu, HQ
45238    Lei, YQ
45239    Wang, QD
45240 TI Reaction kinetics of amorphous Mg50Ni50 hydride electrode
45241 SO JOURNAL OF ALLOYS AND COMPOUNDS
45242 DT Article
45243 DE amorphous materials; hydride electrode; Mg-based alloy; electrochemical
45244    impedance spectroscopy
45245 ID ALLOYED MG-NI; ELECTROCHEMICAL IMPEDANCE; AC-IMPEDANCE; BEHAVIOR
45246 AB Mg-based alloy is a promising hydride electrode material. In this
45247    study, the kinetics of the electrode reaction of an amorphous Mg50Ni50
45248    hydride electrode is studied by using electrochemical impedance
45249    spectroscopy (EIS) technique. An equivalent circuit for the hydride
45250    electrode reaction is proposed. Results show that the reaction rate of
45251    the hydride electrode is determined by a charge-transfer reaction at
45252    the alloy surface, which is represented by the EIS responses in the
45253    medium frequency region. The serious corrosion of the active material
45254    on the alloy surface is the main reason for the high charge-transfer
45255    resistance of the electrode reaction. (C) 2002 Elsevier Science B.V.
45256    All rights reserved.
45257 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R China.
45258    Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China.
45259    Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R China.
45260 RP Liu, WH, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R
45261    China.
45262 CR CHEN J, 1998, AL 20 P
45263    CHENG SA, 1999, J ALLOY COMPD, V293, P814
45264    KOHNO T, 1998, INT S MET HYDR SYST
45265    KURIYAMA N, 1993, J ALLOY COMPD, V192, P161
45266    KURIYAMA N, 1993, J ALLOY COMPD, V202, P183
45267    LEI YQ, 1994, Z PHYS CHEM, V183, P379
45268    LIU WH, 1996, J POWER SOURCES, V58, P243
45269    LIU WH, 1997, J ALLOY COMPD, V252, P234
45270    VALOEN LO, 1997, J ALLOY COMPD, V253, P656
45271    WAN X, 1999, J ALLOY COMPD, V293, P788
45272    WANG CS, 1998, J ELECTROCHEM SOC, V145, P1801
45273    ZHANG WL, 1995, J ELECTROCHEM SOC, V142, P2935
45274 NR 12
45275 TC 3
45276 SN 0925-8388
45277 J9 J ALLOYS COMPOUNDS
45278 JI J. Alloy. Compd.
45279 PD NOV 18
45280 PY 2002
45281 VL 346
45282 IS 1-2
45283 BP 244
45284 EP 249
45285 PG 6
45286 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
45287    Metallurgical Engineering
45288 GA 614DF
45289 UT ISI:000179172500042
45290 ER
45291 
45292 PT J
45293 AU Ren, ZJ
45294    Cao, WG
45295    Tong, WQ
45296 TI The Knoevenagel condensation reaction of aromatic aldehydes with
45297    malononitrile by grinding in the absence of solvents and catalysts
45298 SO SYNTHETIC COMMUNICATIONS
45299 DT Article
45300 ID SOLID-STATE; MICROWAVE IRRADIATION; ACID
45301 AB An improved Knoevenagel condensation reaction of aldehydes and
45302    malononitrile can be achieved by grinding at room temperature in the
45303    absence of solvents and catalysts. This process is simple, efficient,
45304    economical, and environmentally benign. Compared to reactions carried
45305    out by microwave irradiation, this procedure is completely free from
45306    organic solvents during both the reaction and separation of the product.
45307 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
45308    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
45309 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
45310 CR ABDALLAHELAYOUB.S, 1994, SYNTHESIS-STUTTGART, P258
45311    CABELLO JA, 1984, J ORG CHEM, V49, P5195
45312    CORSON BB, 1928, J AM CHEM SOC 3, V50, P2825
45313    HAGIWARA H, 1996, MOL CRYST LIQ CRYST, V279, P291
45314    IM J, 1997, TETRAHEDRON LETT, V38, P451
45315    JONES G, 1967, ORG REACTIONS, V15, P204
45316    KIM SY, 1997, SYNTHETIC COMMUN, V27, P533
45317    KNOEVENAGEL E, 1894, CHEM BER, V27, P2345
45318    KWON PS, 1997, SYNTHETIC COMMUN, V27, P4091
45319    LEHNERT W, 1974, SYNTHESIS-STUTTGART, P667
45320    LI JP, 2001, SYNTHETIC COMMUN, V31, P781
45321    PRAJAPATI D, 1992, CHEM LETT        OCT, P1945
45322    PRAJAPATI D, 1993, J CHEM SOC P1, P739
45323    RAO PS, 1991, TETRAHEDRON LETT, V32, P5821
45324    SCHIEMENZ GP, 1962, CHEM BER, V95, P485
45325    SCHMEYERS T, 1998, J CHEM SOC P2, P989
45326    STURZ HG, 1949, J AM CHEM SOC, V71, P2949
45327    TANAKA K, 2000, CHEM REV, V100, P1025
45328    TANAKA M, 1998, J CHEM SOC CHEM COMM, P1965
45329    TODA F, 1989, ANGEW CHEM INT EDIT, V28, P320
45330    TODA F, 1989, CHEM EXP, V4, P507
45331    TODA F, 1989, J ORG CHEM, V54, P3007
45332    TODA F, 1990, J CHEM SOC P1, P3207
45333    TODA F, 1998, J CHEM SOC PERK 1107, P3521
45334    TROST BM, 1991, COMPREHENSIVE ORGANI, V2, P341
45335    VILLEMIN D, 1990, SYNTHETIC COMMUN, V20, P3207
45336    VILLEMIN D, 1996, TETRAHEDRON LETT, V37, P1113
45337    XIAO JP, 2001, SYNTHETIC COMMUN, V31, P661
45338 NR 28
45339 TC 16
45340 SN 0039-7911
45341 J9 SYN COMMUN
45342 JI Synth. Commun.
45343 PY 2002
45344 VL 32
45345 IS 22
45346 BP 3475
45347 EP 3479
45348 PG 5
45349 SC Chemistry, Organic
45350 GA 610VA
45351 UT ISI:000178981000014
45352 ER
45353 
45354 PT J
45355 AU Zhang, XP
45356    Wang, SZ
45357 TI Watermarking scheme capable of resisting attacks based on availability
45358    of inserter
45359 SO SIGNAL PROCESSING
45360 DT Article
45361 DE digital watermarking; attack; inserter
45362 AB Attacks based on the presence of watermark inserter are easy to perform
45363    since they make use of similarity between an original watermark and
45364    additionally added ones by using the same inserter and key. In this
45365    paper, a novel watermarking scheme capable of resisting inserter
45366    attacks is proposed. Watermark signals corresponding to the same key
45367    are mutually independent if they are randomly selected using the
45368    described technique. Thus the inserter attack is invalidated.
45369    Performance of the proposed method is studied, and simulation
45370    experiments presented.
45371    (C) 2002 Elsevier Science B.V. All rights reserved.
45372 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
45373 RP Zhang, XP, Shanghai Univ, Sch Commun & Informat Engn, 149 Yanchang Rd,
45374    Shanghai 200072, Peoples R China.
45375 CR COX IJ, 1998, IEEE J SEL AREA COMM, V16, P587
45376    HARTUNG F, 1999, P IEEE, V87, P1079
45377    KALKER T, 1998, P IEEE INT C IM PROC, V1, P425
45378    PETITCOLAS FAP, 1999, P IEEE MULT SYST 99, V1, P574
45379    PETITCOLAS FAP, 1999, P IEEE, V87, P1062
45380 NR 5
45381 TC 1
45382 SN 0165-1684
45383 J9 SIGNAL PROCESS
45384 JI Signal Process.
45385 PD NOV
45386 PY 2002
45387 VL 82
45388 IS 11
45389 BP 1801
45390 EP 1804
45391 PG 4
45392 SC Engineering, Electrical & Electronic
45393 GA 605ZV
45394 UT ISI:000178707700020
45395 ER
45396 
45397 PT J
45398 AU Li, Q
45399    Liu, WQ
45400    Zhou, BX
45401 TI Effect of the deformation and heat treatment on the decomposition of
45402    beta Zr in Zr-Sn-Nb alloys
45403 SO RARE METAL MATERIALS AND ENGINEERING
45404 DT Article
45405 DE zirconium alloy; secondary phase; heat treatment; microstructure
45406 AB The influence of the deformation and heat treatment on the
45407    decomposition of beta-Zr in Zr-Sn-Nb alloys has been studied by means
45408    of transmission electron microscopy (TEM). After fast cooling by
45409    heating the specimens at 750degreesC - 0.5 h, some lumps of beta-Zr are
45410    formed on grain boundaries and bar - like particles of beta-Zr are
45411    formed within grains. After faster cooling by heating the specimens at
45412    1000degreesC - 0.5 h, a sandwich structure between thin layer G-Zr and
45413    lathy grains of alpha-Zr is formed. By aging the specimens at
45414    560degreesC, the decomposition of beta-Zr existing on the grain
45415    boundaries occurs to form particlelike beta-Nb (100 nm - 200 nm) This
45416    does not occur for bar - like beta-Zr existing within the grains.
45417    Deformation can make the beta-Zr more unstable and promotes the
45418    nucleation of fine particles of beta-Nb (10 nm - 60 nm). The bar-like
45419    particles of beta-Zr, which did not decompose only by aging at
45420    560degreesC, can be decomposed by a deformation - plus - aging heat
45421    treatment. In order to obtain a uniform dispersion and finer second
45422    phase particles of beta-Nb in zirconium alloys containing niobium, the
45423    material should not be heated over 610degreesC to avoid reforming lumps
45424    of beta-Zr on grain boundaries during subsequent processing.
45425 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
45426 RP Li, Q, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
45427 CR DAVID R, 1986, BINARY ALLOY PHASE D, P1711
45428    FOSTER JP, 1990, J NUCL MATER, V173, P146
45429    LIU WQ, 2001, RARE METAL MAT ENG, V30, P81
45430    ROGERS BA, 1955, J MET, V7, P1034
45431 NR 4
45432 TC 2
45433 SN 1002-185X
45434 J9 RARE METAL MAT ENG
45435 JI Rare Metal Mat. Eng.
45436 PD OCT
45437 PY 2002
45438 VL 31
45439 IS 5
45440 BP 389
45441 EP 392
45442 PG 4
45443 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
45444    Engineering
45445 GA 611ZZ
45446 UT ISI:000179049700018
45447 ER
45448 
45449 PT J
45450 AU Lei, JX
45451    Kang, YL
45452    Qu, FQ
45453 TI Prediction and determination of both friction coefficient and forming
45454    force on sheet metal deep-drawing
45455 SO JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
45456 DT Article
45457 DE deep-drawing; friction coefficient; forming force; prediction and
45458    determination
45459 ID FRACTURE LIMIT; WRINKLE LIMIT
45460 AB On the basis of the criterion of no-wrinkle, the principle and method
45461    of prediction and determination of both friction coefficient and
45462    forming force on sheet metal deep-drawing are put forward, and proved
45463    it's expedience and practicability. They are suitable for assessment of
45464    lubricant properties. Friction coefficient and forming force are a
45465    function of material parameter, design parameter and process parameter,
45466    especially relative prevent wrinkle blank-holder force. Product of both
45467    friction coefficient and prevent wrinkle blankholder force is only
45468    function of process parameter eta after determining material parameter
45469    and design parameter.
45470 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
45471    Univ Sci & Technol Beijing, Beijing 100083, Peoples R China.
45472    Yantai Univ, Yantai 263005, Peoples R China.
45473 RP Lei, JX, Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
45474 CR KANG YL, 1999, QUALITY CONTROL FORM
45475    LEI JX, 1998, J UNIV SCI TECHNOL B, V5, P237
45476    LEI JX, 1999, CHINESE J MECH ENG, V12, P288
45477    LEI JX, 1999, J IRON STEEL RES, V11, P194
45478    LEI JX, 1999, J PLASTICITY ENG, V6, P638
45479    LEI JX, 1999, J UNIV SCI TECHNOL B, V6, P201
45480    RU Z, 1992, PLASTICITY WORKING T
45481 NR 7
45482 TC 0
45483 SN 1005-8850
45484 J9 J UNIV SCI TECHNOL BEIJING
45485 JI J. Univ. Sci. Technol. Beijing
45486 PD OCT
45487 PY 2002
45488 VL 9
45489 IS 5
45490 BP 360
45491 EP 362
45492 PG 3
45493 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
45494    Engineering; Mining & Mineral Processing
45495 GA 611KA
45496 UT ISI:000179015000010
45497 ER
45498 
45499 PT J
45500 AU Zhang, SQ
45501    Xu, GQ
45502    Li, ZB
45503 TI General explicit solutions of a classical Boussinesq system
45504 SO CHINESE PHYSICS
45505 DT Article
45506 DE explicit solution; soliton; nonlinear equation
45507 ID NONLINEAR-WAVE EQUATIONS; JACOBI ELLIPTIC FUNCTION; EXPANSION METHOD
45508 AB Seeking a travelling wave solution of the classical Boussinesq system
45509    and making an ansatz for the solution, we obtain a nonlinear system of
45510    algebraic equations. We solve the system using an effective algorithm
45511    and then two general explicit solutions are obtained which are of
45512    physical interest.
45513 C1 E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China.
45514    Shanghai Univ, Dept Informat Engn & Adm, Shanghai 200436, Peoples R China.
45515 RP Zhang, SQ, E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples
45516    R China.
45517 CR BAI CL, 2001, CHINESE PHYS, V10, P1091
45518    FAN EG, 1998, ACTA PHYS SINICA, V47, P353
45519    FAN EG, 2000, ACTA PHYS SIN-CH ED, V49, P1409
45520    FENG X, 2000, INT J THEOR PHYS, V39, P207
45521    LI YS, 2000, PHYS LETT A, V275, P60
45522    LI ZB, 2001, ACTA PHYS SIN-CH ED, V50, P2062
45523    LIU SK, 2001, ACTA PHYS SIN-CH ED, V50, P2068
45524    LIU SK, 2001, PHYS LETT A, V289, P69
45525    LOU SY, 1999, ACTA PHYS SIN S, V8, P280
45526    MALFLIET W, 1992, AM J PHYS, V60, P650
45527    WANG ML, 1996, PHYS LETT A, V213, P279
45528    WU TY, 1996, MATH SOLVING PROBLEM, P233
45529    XU GQ, 2002, ACTA PHYS SIN-CH ED, V51, P946
45530    ZHANG JF, 2002, CHINESE PHYS, V11, P425
45531    ZHANG JF, 2002, CHINESE PHYS, V11, P533
45532    ZHANG YF, 2002, CHINESE PHYS, V11, P319
45533    ZHOU ZJ, 2002, UNPUB J MATH PHYS
45534 NR 17
45535 TC 6
45536 SN 1009-1963
45537 J9 CHIN PHYS
45538 JI Chin. Phys.
45539 PD OCT
45540 PY 2002
45541 VL 11
45542 IS 10
45543 BP 993
45544 EP 995
45545 PG 3
45546 SC Physics, Multidisciplinary
45547 GA 609RU
45548 UT ISI:000178919000003
45549 ER
45550 
45551 PT J
45552 AU Li, WW
45553    Sang, WB
45554    Min, JH
45555    Yu, F
45556    Zhang, B
45557    Wang, KS
45558 TI Cd1-xZnxTe crystal growth controlled by Cd/Zn partial pressures
45559 SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY
45560 DT Article
45561 ID CD-TE; SYSTEM
45562 AB We have estimated the partial pressures, P-Cd and P-Zn over Cd1-xZnxTe
45563    (CZT) and Cd1-xZnx melts based on known thermodynamic data. The partial
45564    pressures, P-Cd and P-Zn over the Cd0.81Zn0.19 alloy melt at a
45565    temperature of about 1003 degreesC could be in equilibrium with those
45566    over the Cd0.9Zn0.1Te melt at a melting temperature of 1120 degreesC.
45567    In this work, we have carried out Cd0.9Zn0.1Te crystal growth from the
45568    melt under controlled constituent partial pressures, provided by the
45569    Cd0.81Zn0.19 alloy instead of only the Cd source. The best result for
45570    the resistivity, which has reached up to about 10(10) Omega cm, has
45571    been obtained under the equilibrium partial pressures estimated by
45572    thermodynamic relationships. The axial variation in Zn concentration,
45573    which has been obviously improved due to Zn being replenished from the
45574    reservoir during the whole growth procedure, is within about 4%. The
45575    etch pit densities were, on average, about 2 x 10(5) and 4 x 10(4)
45576    cm(-2) at the middle of the bulk. Infrared transmissivity in the range
45577    of 2-42 mum is larger than 60%. In addition, we also discuss the
45578    relationship between the resistivities and conducting types of the
45579    crystal and the different controlled pressures.
45580 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
45581 RP Li, WW, Shanghai Univ, Sch Mat Sci & Engn, Jiading Campus,20 Chengzhong
45582    Rd, Shanghai 201800, Peoples R China.
45583 CR BREBRICK RF, 1995, METALL MATER TRANS A, V26, P2597
45584    BUTLER JF, 1992, IEEE T NUCL SCI, V39, P605
45585    EISEN Y, 1998, J CRYST GROWTH, V184, P1310
45586    GLASS HL, 1998, J CRYST GROWTH, V184, P1035
45587    HULTGREN R, 1963, SELECTED VALUES THER, P637
45588    JORDAN AS, 1970, MET T, V1, P239
45589    NIEMELA A, 1994, IEEE T NUCL SCI, V41, P1054
45590    PETERS K, 1990, CRYST RES TECHNOL, V25, P1107
45591    TANAKA A, 1989, J CRYST GROWTH, V94, P166
45592    TUNG T, 1982, J VAC SCI TECHNOL, V21, P117
45593    VYDYANATH HR, 1993, J ELECTRON MATER, V22, P1067
45594 NR 11
45595 TC 2
45596 SN 0268-1242
45597 J9 SEMICOND SCI TECHNOL
45598 JI Semicond. Sci. Technol.
45599 PD OCT
45600 PY 2002
45601 VL 17
45602 IS 10
45603 BP L55
45604 EP L58
45605 PG 4
45606 SC Engineering, Electrical & Electronic; Materials Science,
45607    Multidisciplinary; Physics, Condensed Matter
45608 GA 609AJ
45609 UT ISI:000178880200001
45610 ER
45611 
45612 PT J
45613 AU Zhao, YW
45614    Zhang, GX
45615 TI A new integrated design method based on fuzzy matter-element
45616    optimization
45617 SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
45618 DT Article
45619 DE multi-objective optimization; fuzzy matter-element; genetic algorithms;
45620    scheme design
45621 ID GENETIC ALGORITHMS
45622 AB This paper puts forward a new integrated design method based on fuzzy
45623    matter-element optimization. On the based of analyzing the model of
45624    multi-objective fuzzy matter-element (R) over tilde, the paper defines
45625    the matter-element weighting and changes solving a multi-objective
45626    fuzzy optimization into solving a dependent function K(x) of the
45627    single-objective optimization according to the optimization criterion.
45628    The paper particularly describes the realization approach of the GA
45629    process of multi-objective fuzzy matter-element optimization: encode,
45630    produce initial population, confirm fitness function, select operator,
45631    etc. In the process, the adaptive macro genetic algorithms (AMGA) are
45632    applied to enhance the evolution speed. The paper improves the two
45633    genetic operators: cross-over and mutation operator. The modified
45634    adaptive macro genetic algorithms (MAMGA) are put forward
45635    simultaneously, and adopted to solve the optimization problem.
45636    Three optimization methods, namely the fuzzy matter-element
45637    optimization method, the linearity weighted method and the fuzzy
45638    optimization method, are compared using tables and figures, showing
45639    that not only is MAMMA a little better than AMGA, but also it reaches
45640    the extent to which the effective iteration generation is 62.2% of
45641    simple genetic algorithms (SGA). By the calculation of an optimum
45642    example, the improved genetics method of reported in the paper is much
45643    better than the methods in the references of the paper. (C) 2002
45644    Elsevier Science B.V. All rights reserved.
45645 C1 Zhejiang Univ Technol, Coll Mech Engn, Hangzhou 310014, Zhejiang, Peoples R China.
45646    Shanghai Univ, Coll Mech & Elect Engn, Shanghai 200072, Peoples R China.
45647 RP Zhao, YW, Zhejiang Univ Technol, Coll Mech Engn, Hangzhou 310014,
45648    Zhejiang, Peoples R China.
45649 CR BING Z, 1997, FUZZY MATTER ELEMENT
45650    GAO Y, 2000, P 3 WORLD C INT CONT, P646
45651    HUANG YP, 2000, FUZZY SET SYST, V113, P367
45652    SRINIVAS M, 1994, IEEE T SYST MAN CYB, V24, P656
45653    WEN C, 1999, CHINESE SCI BULL, V44, P673
45654    WU QH, 1998, INT J ELEC POWER, V20, P563
45655 NR 6
45656 TC 0
45657 SN 0924-0136
45658 J9 J MATER PROCESS TECHNOL
45659 JI J. Mater. Process. Technol.
45660 PD OCT 11
45661 PY 2002
45662 VL 129
45663 IS 1-3
45664 BP 612
45665 EP 618
45666 PG 7
45667 SC Engineering, Industrial; Engineering, Manufacturing; Materials Science,
45668    Multidisciplinary
45669 GA 607MJ
45670 UT ISI:000178795100128
45671 ER
45672 
45673 PT J
45674 AU Wang, Y
45675    Chau, KT
45676    Gan, JY
45677    Chan, CC
45678    Jiang, JZ
45679 TI Design and analysis of a new multiphase polygonal-winding
45680    permanent-magnet brushless DC machine
45681 SO IEEE TRANSACTIONS ON MAGNETICS
45682 DT Article
45683 DE brushless dc machine; permanent-magnet machine; time-stepping
45684    finite-element method
45685 ID INSET
45686 AB In this paper, a new multiphase polygonal-winding permanent-magnet
45687    brushless dc (PMBDC) machine is proposed and analyzed. The originality
45688    of the proposed machine lies on the multiphase polygonal-winding stator
45689    and the surface-inset permanent-magnet rotor. Because of its unique
45690    structure and operating principle, a circuit-field-torque coupled time
45691    stepping finite-element method is also employed for analysis. The
45692    designed machine prototyped and the analysis. The designed machine is
45693    prototyped and the analysis is verufied by experimentation.
45694 C1 Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China.
45695    Shanghai Univ, Sch Automat, Shanghai 200072, Peoples R China.
45696 RP Wang, Y, Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong,
45697    Peoples R China.
45698 CR CHAN CC, 1996, IEEE T IND ELECTRON, V43, P331
45699    GAN JY, 2000, IEEE T MAGN 2, V36, P3810
45700    XU LY, 1995, IEEE T IND APPL, V31, P373
45701    ZHU ZQ, 1994, IEEE T MAGN, V30, P98
45702 NR 4
45703 TC 0
45704 SN 0018-9464
45705 J9 IEEE TRANS MAGN
45706 JI IEEE Trans. Magn.
45707 PD SEP
45708 PY 2002
45709 VL 38
45710 IS 5
45711 PN Part 1
45712 BP 3258
45713 EP 3260
45714 PG 3
45715 SC Engineering, Electrical & Electronic; Physics, Applied
45716 GA 608VE
45717 UT ISI:000178867200444
45718 ER
45719 
45720 PT J
45721 AU Chen, DY
45722    Xin, HW
45723    Zhang, DJ
45724 TI Lie algebraic structures of some (1+2)-dimensional Lax integrable
45725    systems
45726 SO CHAOS SOLITONS & FRACTALS
45727 DT Article
45728 ID KADOMTSEV-PETVIASHVILI EQUATION; NONLINEAR EVOLUTION-EQUATIONS;
45729    BI-HAMILTONIAN STRUCTURES; RECURSION OPERATORS; SYMMETRIES;
45730    HIERARCHIES; MULTIDIMENSIONS
45731 AB The paper proposes an approach to constructing the symmetries and their
45732    algebraic structures for isospectral and nonisospectral evolution
45733    equations of (1 + 2)-dimensional systems associated with the linear
45734    problem of Sato theory. To do that, we introduce the implicit
45735    representations of the isospectral flows {K-m} and nonisospectral flows
45736    {sigma(n)} in the high dimensional cases. Three examples, the
45737    Kodomstev-Petviashvili system, BKP system and new CKP system, are
45738    considered to demonstrate our method. (C) 2002 Elsevier Science Ltd.
45739    All rights reserved.
45740 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
45741 RP Chen, DY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
45742 CR CAUDREY PJ, 1990, SOLITON THEORY SURVE, P55
45743    CHEN DY, 1990, ACTA MATH APPL SIN, V13, P324
45744    CHEN DY, 1991, CHIN ANN MATH A, V12, P33
45745    CHEN DY, 1996, J MATH PHYS, V37, P5524
45746    CHEN HH, 1982, PHYS LETT A, V91, P381
45747    CHEN HH, 1983, PHYSICA D, V9, P439
45748    CHEN HH, 1987, PHYSICA D, V26, P171
45749    CHENG Y, 1988, J PHYS A, V21, L443
45750    CHENG Y, 1988, PHYS LETT A, V127, P205
45751    CHENG Y, 1989, PHYSICA D, V34, P277
45752    CHENG Y, 1990, NONLINEAR PHYSICS, P12
45753    CHENG Y, 1990, PHYS D, V46, P286
45754    CHENG Y, 1991, J MATH PHYS, V32, P157
45755    FOKAS AS, 1981, PHYS LETT A, V86, P341
45756    FOKAS AS, 1988, COMMUN MATH PHYS, V116, P449
45757    FUCHSSTEINER B, 1983, PROG THEOR PHYS, V70, P1508
45758    KONOPELCHENKO BG, 1984, PHYS LETT A, V102, P15
45759    LI YS, 1986, J PHYS A-MATH GEN, V19, P3713
45760    MA WX, 1992, J MATH PHYS, V33, P2464
45761    OEVEL W, 1982, PHYS LETT A, V88, P323
45762    SANTINI PM, 1988, COMMUN MATH PHYS, V115, P375
45763 NR 21
45764 TC 4
45765 SN 0960-0779
45766 J9 CHAOS SOLITON FRACTAL
45767 JI Chaos Solitons Fractals
45768 PD FEB
45769 PY 2003
45770 VL 15
45771 IS 4
45772 BP 761
45773 EP 770
45774 PG 10
45775 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
45776 GA 609FT
45777 UT ISI:000178893500018
45778 ER
45779 
45780 PT J
45781 AU Song, FQ
45782    Liu, CQ
45783 TI The transient elliptic flow of power-law fluid in fractal porous media
45784 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
45785 DT Article
45786 DE fractal media; vertically fractured well; transient flow; power-law
45787    fluid
45788 AB The steady oil production and pressure distribution formulae of
45789    vertically fractured well for power-law non-Newtonian fluid were
45790    derived on the basis of the elliptic flow model in fractal reservoirs.
45791    The corresponding transient flow in fractal reservoirs was studied by
45792    numerical differentiation method: the influence of fractal index to
45793    transient pressure of vertically fractured well was analyzed. Finally
45794    the approximate analytical solution of transient flow was given by
45795    average mass conservation law. The study shows that using elliptic flow
45796    method to analyze the flow of vertically fractured well is a simple
45797    method.
45798 C1 Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
45799    Acad Sinica, Inst Porous Flow & Fluid Mech, Langfang 065007, Hebei, Peoples R China.
45800 RP Song, FQ, Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072,
45801    Peoples R China.
45802 CR LIU CQ, 1989, WELL TESTING PRODUCT, V10, P22
45803    LIU CQ, 1996, 10 S HYDR CHIN, P439
45804    LIU J, 1996, BIOMED ENVIRON SCI, V9, P12
45805    SONG FQ, 2000, WELL TESTING PRODUCT, V21, P1
45806 NR 4
45807 TC 0
45808 SN 0253-4827
45809 J9 APPL MATH MECH-ENGL ED
45810 JI Appl. Math. Mech.-Engl. Ed.
45811 PD AUG
45812 PY 2002
45813 VL 23
45814 IS 8
45815 BP 875
45816 EP 880
45817 PG 6
45818 SC Mathematics, Applied; Mechanics
45819 GA 608JB
45820 UT ISI:000178841700002
45821 ER
45822 
45823 PT J
45824 AU Ren, JS
45825    Cheng, CJ
45826 TI Cavitated bifurcation for incompressible hyperelastic material
45827 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
45828 DT Article
45829 DE incompressible hyperelastic material; void nucleation and growth;
45830    catastrophe and concentration of stress
45831 ID NONLINEARLY ELASTIC-MATERIALS; VOID NUCLEATION; GROWTH
45832 AB The spherical cavitated bifurcation for a hyperelastic solid sphere
45833    made of the incompressible Valanis-Landel material under boundary
45834    dead-loading is examined. The analytic solution for the bifurcation
45835    problem is obtained. The catastrophe and concentration of stresses are
45836    discussed. The stability of solutions is discussed through the energy
45837    comparison. And the growth of a pre-existing micro-void is also
45838    observed.
45839 C1 Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
45840    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
45841 RP Ren, JS, Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples
45842    R China.
45843 CR BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
45844    CHOUWANG MSO, 1989, INT J SOLIDS STRUCT, V25, P1239
45845    HORGAN CO, 1986, J ELASTICITY, V16, P189
45846    HORGAN CO, 1989, J ELASTICITY, V21, P61
45847    HORGAN CO, 1992, INT J SOLIDS STRUCT, V29, P279
45848    HORGAN CO, 1995, APPL MECH REV, V48, P471
45849    SHANG XC, 1996, ACTA MECH SINICA, V28, P751
45850    SIVALOGANATHAN J, 1986, ARCH RATION MECH AN, V96, P97
45851    VALANIS KC, 1967, J APPL PHYS, V38, P2997
45852 NR 9
45853 TC 11
45854 SN 0253-4827
45855 J9 APPL MATH MECH-ENGL ED
45856 JI Appl. Math. Mech.-Engl. Ed.
45857 PD AUG
45858 PY 2002
45859 VL 23
45860 IS 8
45861 BP 881
45862 EP 888
45863 PG 8
45864 SC Mathematics, Applied; Mechanics
45865 GA 608JB
45866 UT ISI:000178841700003
45867 ER
45868 
45869 PT J
45870 AU Zhu, WP
45871    Huang, Q
45872 TI General solution of the overall bending of flexible circular ring
45873    shells with moderately slender ratio and applications to the bellows
45874    (I) - Governing equation and general solution
45875 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
45876 DT Article
45877 DE theory of flexible shell; circular ring shell; bellows; lateral bending
45878    load; moderately slender ratio; general solution
45879 AB The overall bending of circular ring shells subjected to bending
45880    moments and lateral forces is discussed. The derivation of the
45881    equations was based upon the theory of flexible shells generalized by
45882    E. L. Axelrad and the assumption of the moderately slender ratio less
45883    than 1/3 (i.e., ratio between curvature radius of the meridian and
45884    distance from the meridional curvature center to the axis of
45885    revolution). The present general solution is an analytical one
45886    convergent in the whole domain of the shell and with the necessary
45887    integral constants for the boundary value problems. It can be used to
45888    calculate the stresses and displacements of the related bellows. The
45889    whole work is arranged into four parts: (I) Governing equation and
45890    general solution; (II) Calculation for Omega-shaped bellows; (III)
45891    Calculation for C-shaped bellows; (IV) Calculation for U-shaped
45892    bellows. This paper is the first part.
45893 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
45894 RP Zhu, WP, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
45895    200072, Peoples R China.
45896 CR AXELRAD EL, 1976, FLEXIBLE SHELLS
45897    AXELRAD EL, 1987, THEORY FLEXIBLE SHEL
45898    CHEN SL, 1987, PROGR APPL MECH, P181
45899    CHIEN WZ, 1979, J LANZHOU U SPECIAL, P1
45900    CHIEN WZ, 1979, J TSINGHUA U, V19, P27
45901    CHIEN WZ, 1979, J TSINGHUA U, V19, P84
45902    CHIEN WZ, 1980, APPL MATH MECH ENGLI, V1, P305
45903    CHIEN WZ, 1981, APPL MATH MECH ENGLI, V2, P103
45904    ZHU WP, 1998, THIN WALL STRUCT, P477
45905    ZHU WP, 1999, APPL MATH MECH-ENGL, V20, P952
45906    ZHU WP, 2000, APPL MATH MECH-ENGL, V21, P371
45907    ZHU WP, 2000, CHINESE Q MECH, V21, P311
45908 NR 12
45909 TC 0
45910 SN 0253-4827
45911 J9 APPL MATH MECH-ENGL ED
45912 JI Appl. Math. Mech.-Engl. Ed.
45913 PD AUG
45914 PY 2002
45915 VL 23
45916 IS 8
45917 BP 889
45918 EP 897
45919 PG 9
45920 SC Mathematics, Applied; Mechanics
45921 GA 608JB
45922 UT ISI:000178841700004
45923 ER
45924 
45925 PT J
45926 AU Zhu, WP
45927    Huang, Q
45928 TI General solution of the overall bending of flexible circular ring
45929    shells with moderately slender ratio and applications to the bellows
45930    (II) - Calculation for Omega-shaped bellows
45931 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
45932 DT Article
45933 DE theory of flexible shell; circular ring shell; Omega-shaped bellows;
45934    general solution
45935 AB (II) is one of the applications of (I), in which the angular stiffness,
45936    the lateral stiffness and the corresponding stress distributions of
45937    Omega-shaped bellows were calculated, and the present results were
45938    compared with those of the other theories and experiments. It is shown
45939    that the non-homogeneous solution of ( I) can solve the pure bending
45940    problem of the bellows by itself, and be more effective than by the
45941    theory of slender ring shells; but if a lateral slide of the bellows
45942    support exists the non-homogeneous solution will no longer entirely
45943    satisfy the boundary conditions of the problem, in this case the
45944    homogeneous solution of ( I) should be included, that is to say, the
45945    full solution of can meet all the requirements.
45946 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
45947 RP Zhu, WP, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
45948    200072, Peoples R China.
45949 CR *EJMA INC, 1998, STAND EXP JOINT MAN
45950    CHIEN WZ, 1979, COLLECTED WORKS APPL, P110
45951    CHIEN WZ, 1979, J TSINGHUA U, V19, P27
45952    CHIEN WZ, 1980, APPL MATH MECH ENGLI, V1, P305
45953    CHIEN WZ, 1980, J INSTRUMENTS METERS, V1, P89
45954    DAHL NC, 1953, J APPL MECH, V20, P497
45955    ZHU WP, 1999, APPL MATH MECH-ENGL, V20, P952
45956    ZHU WP, 1999, J SHANGHAI U, V3, P121
45957 NR 8
45958 TC 0
45959 SN 0253-4827
45960 J9 APPL MATH MECH-ENGL ED
45961 JI Appl. Math. Mech.-Engl. Ed.
45962 PD AUG
45963 PY 2002
45964 VL 23
45965 IS 8
45966 BP 898
45967 EP 905
45968 PG 8
45969 SC Mathematics, Applied; Mechanics
45970 GA 608JB
45971 UT ISI:000178841700005
45972 ER
45973 
45974 PT J
45975 AU He, JH
45976 TI Homotopy perturbation method: a new nonlinear analytical technique
45977 SO APPLIED MATHEMATICS AND COMPUTATION
45978 DT Article
45979 DE perturbation methods; homotopy; duffing equation; nonlinearity
45980 ID APPROXIMATE SOLUTION
45981 AB In this paper, a new perturbation method is proposed. In contrast to
45982    the traditional perturbation methods, this technique does not require a
45983    small parameter in an equation. In this method, according to the
45984    homotopy technique, a homotopy with an imbedding parameter p is an
45985    element of [0, 1] is constructed, and the imbedding parameter is
45986    considered as a "small parameter", so the method is called the homotopy
45987    perturbation method, which can take the full advantages of the
45988    traditional perturbation methods and homotopy techniques. To illustrate
45989    its effectiveness and its convenience, a Duffing equation with high
45990    order of nonlinearity is used; the result reveals that its first order
45991    of approximation obtained by the proposed method is valid uniformly
45992    even for very large parameter, and is more accurate than the
45993    perturbation solutions. (C) 2002 Elsevier Science Inc. All rights
45994    reserved.
45995 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
45996 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
45997    Shanghai 200072, Peoples R China.
45998 CR HE JH, 1998, COMPUT METHOD APPL M, V167, P57
45999    HE JH, 1998, COMPUT METHOD APPL M, V167, P69
46000    HE JH, 1999, COMPUT METHOD APPL M, V178, P257
46001    HE JH, 1999, INT J NONLINEAR MECH, V34, P699
46002    HE JH, 2000, INT J NONLINEAR MECH, V35, P37
46003    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
46004    LIAO SJ, 1995, INT J NONLINEAR MECH, V30, P371
46005    LIAO SJ, 1997, ENG ANAL BOUND ELEM, V20, P91
46006    LIU GL, 1997, C 7 MOD MATH MECH SH
46007    NAYFEH AF, 1985, PROBLEMS PERTURBATIO
46008 NR 10
46009 TC 16
46010 SN 0096-3003
46011 J9 APPL MATH COMPUT
46012 JI Appl. Math. Comput.
46013 PD FEB 15
46014 PY 2002
46015 VL 135
46016 IS 1
46017 BP 73
46018 EP 79
46019 PG 7
46020 SC Mathematics, Applied
46021 GA 609DQ
46022 UT ISI:000178888700006
46023 ER
46024 
46025 PT J
46026 AU He, JH
46027 TI A new iteration method for solving algebraic equations
46028 SO APPLIED MATHEMATICS AND COMPUTATION
46029 DT Article
46030 DE nonlinearity; iteration method
46031 ID PERTURBATION TECHNIQUE
46032 AB In this paper, a nonlinear algebraic equation f (x) = 0, by applying
46033    Taylor's theorem, is converted into a coupled iteration system
46034    L(x(n+1)) + g(x(n)) = 0 and g(x(n)) = f (x(n)) - L(x(n)), where L(x) =
46035    Ax(2) + Bx + C.
46036    The formula is of high convergence. Some examples are given. (C) 2002
46037    Elsevier Science Inc. All rights reserved.
46038 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
46039 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, POB 189,149
46040    Yanchang Rd, Shanghai 200072, Peoples R China.
46041 CR HE JH, 1998, COMMUN NONLINEAR SCI, V3
46042    HE JH, 1999, COMPUT METHOD APPL M, V178, P257
46043    HE JH, 2000, INT J NONLINEAR MECH, V35, P37
46044    HE JH, 2000, INT J NONLINEAR SCI, V1, P239
46045    PETKOVIC L, 1997, NONLINEAR ANAL-THEOR, V30, P669
46046 NR 5
46047 TC 3
46048 SN 0096-3003
46049 J9 APPL MATH COMPUT
46050 JI Appl. Math. Comput.
46051 PD FEB 15
46052 PY 2002
46053 VL 135
46054 IS 1
46055 BP 81
46056 EP 84
46057 PG 4
46058 SC Mathematics, Applied
46059 GA 609DQ
46060 UT ISI:000178888700007
46061 ER
46062 
46063 PT J
46064 AU Zhou, SP
46065    Qu, H
46066    Liao, HY
46067 TI Pairing symmetry and vortex lattice of high temperature superconductors
46068 SO ACTA PHYSICA SINICA
46069 DT Article
46070 DE hight T-c; superconduciivity; vortex structure; Ginzburg-Landau theory
46071 ID S-WAVE; THERMAL-CONDUCTIVITY; II SUPERCONDUCTORS; MODEL;
46072    YBA2CU3O7-DELTA; BI2SR2CACU2O8; STATE; ORDER; PB
46073 AB We studied pairing symmetry of YBa2Cu3O7-delta high-temperature.
46074    superconductor using a generic Ginzburg-Landau model. The phase
46075    transition between the mixed s-d(x2-y2) state and d(x2-y2) wave was
46076    shown. The vortex lattice of a YBa2Cu3O7 superconductor is oblique at
46077    the temperature well below the transition temperature T-c, where the
46078    mixed s-d(x2-y2) state is expected to have the lowest energy. Whereas,
46079    very close to T-c, the d(x2-y2) wave is slightly lower in energy, and a
46080    triangular vortex lattice recovers. The coexistence and the coupling
46081    between the s-and d-waves would account for the unusual behaviours such
46082    as the upward curvature of the upper critical field curve H-c2 (T).
46083 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
46084 RP Zhou, SP, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
46085 CR ABRIKOSOV AA, 1957, ZH EKSP TEOR FIZ, V32, P1442
46086    ABRIKOSOV AA, 1957, ZH EKSP TEOR FIZ, V5, P1174
46087    ANDERSON PW, 1987, SCIENCE, V235, P1196
46088    AUBIN H, 1999, PHYS REV LETT, V82, P624
46089    CHAKRAVARTY S, 1993, SCIENCE, V261, P337
46090    DORIA MM, 1989, PHYS REV B, V39, P9573
46091    DU Q, 1993, SIAM J APPL MATH, V53, P689
46092    GORKOV LP, 1960, SOV PHYS JETP, V9, P1364
46093    HEEB R, 1996, PHYS REV B, V54, P9385
46094    JOYNT R, 1990, PHYS REV B, V41, P4271
46095    KEIMER B, 1994, J APPL PHYS 2, V76, P6778
46096    KLEINER R, 1996, PHYS REV LETT, V76, P2161
46097    KOUZNETSOV KA, 1997, PHYS REV LETT, V79, P3050
46098    KRISHANA K, 1997, SCIENCE, V277, P83
46099    LAUGHLIN RB, 1998, PHYS REV LETT, V80, P5188
46100    LEE PA, 1987, PHYS REV LETT, V58, P2891
46101    LI QP, 1993, PHYS REV B, V48, P437
46102    LIECHTENSTEIN AI, 1995, PHYS REV LETT, V74, P2303
46103    MILLIS AJ, 1994, PHYS REV B, V49, P15408
46104    MONTHOUX P, 1994, PHYS REV B, V49, P4261
46105    MONTHOUX P, 1994, PHYS REV LETT, V72, P1874
46106    REN Y, 1995, PHYS REV LETT, V74, P3680
46107    RUGGIERO S, 1982, PHYS REV B, V26, P4897
46108    SOININEN PI, 1994, PHYS REV B, V50, P13883
46109    TINKHAM M, 1964, GROUP THEORY QUANTUM
46110    TSUEI CC, 1994, PHYS REV LETT, V73, P593
46111    VOLOVIK GE, 1993, JETP LETT, V58, P469
46112    WELP U, 1989, PHYS REV LETT, V62, P1908
46113    WOLLMAN DA, 1993, PHYS REV LETT, V71, P2134
46114    ZHANG FC, 1988, PHYS REV B, V37, P3759
46115    ZHANG SC, 1997, SCIENCE, V275, P1089
46116    ZHOU SP, 1999, ACTA PHYS SIN-CH ED, V48, P342
46117    ZHOU SP, 2000, PHYSICA C, V339, P258
46118    ZHOU SP, 2001, CHINESE PHYS, V10, P541
46119 NR 34
46120 TC 0
46121 SN 1000-3290
46122 J9 ACTA PHYS SIN-CHINESE ED
46123 JI Acta Phys. Sin.
46124 PD OCT
46125 PY 2002
46126 VL 51
46127 IS 10
46128 BP 2355
46129 EP 2361
46130 PG 7
46131 SC Physics, Multidisciplinary
46132 GA 609JF
46133 UT ISI:000178899300036
46134 ER
46135 
46136 PT J
46137 AU Zheng, CL
46138    Zhang, JF
46139 TI General solution and fractal localized structures for the
46140    (2+1)-dimensional generalized Ablowitz-Kaup-Newell-Segur system
46141 SO CHINESE PHYSICS LETTERS
46142 DT Article
46143 ID NONLINEAR SCHRODINGER-EQUATION; COHERENT STRUCTURES; SIMILARITY
46144    REDUCTIONS; BOUSSINESQ EQUATION; EVOLUTION-EQUATIONS; DROMION;
46145    SOLITONS; INTEGRABILITY; SCATTERING; PLASMA
46146 AB Using the standard truncated Painleve expansions, we derive a quite
46147    general solution of the (2+1)-dimensional generalized
46148    Ablowitz-Kaup-Newell-Segur system. Except for the usual localized
46149    solutions, such as dromions, lumps, ring soliton solutions, etc, some
46150    special localized excitations with fractal behaviour, i.e. the fractal
46151    dromion and fractal lump excitations, are obtained by some types of
46152    lower-dimensional fractal patterns.
46153 C1 Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
46154    Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China.
46155    Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
46156    Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China.
46157 RP Zheng, CL, Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000,
46158    Peoples R China.
46159 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V30, P1262
46160    BOITI M, 1988, PHYS LETT A, V132, P116
46161    BOITI M, 1988, PHYS LETT A, V132, P432
46162    BOITI M, 1995, CHAOS SOLITON FRACT, V5, P2377
46163    CLARKSON PA, 1989, J MATH PHYS, V30, P2201
46164    DAVEY A, 1974, P ROY SOC LOND A MAT, V338, P17
46165    FOKAS AS, 1989, PHYS REV LETT, V63, P1329
46166    FOKAS AS, 1994, INVERSE PROBL L, V19, P10
46167    GAO YT, 1997, COMPUT MATH APPL, V33, P115
46168    GEDALIN M, 1997, PHYS REV LETT, V78, P448
46169    HEREMAN W, 1991, COMPUT PHYS COMMUN, V65, P143
46170    HIROTA R, 1971, PHYS REV LETT, V27, P1192
46171    KADOMTSEV BB, 1970, SOV PHYS DOKL, V15, P539
46172    KISELEV OM, 2000, J NONLINEAR MATH PHY, V7, P411
46173    KIVSHAR YS, 1989, REV MOD PHYS, V61, P765
46174    KONOPELCHENKO B, 1991, PHYS LETT A, V158, P391
46175    KONOPELCHENKO BG, 1993, J MATH PHYS, V34, P214
46176    LI YS, 1993, J PHYS A-MATH GEN, V26, P7487
46177    LOU SY, 1990, PHYS LETT A, V151, P133
46178    LOU SY, 1996, J PHYS A-MATH GEN, V29, P5989
46179    LOU SY, 1997, COMMUN THEOR PHYS, V41, P28
46180    LOU SY, 1997, J MATH PHYS, V38, P6401
46181    LOU SY, 2001, EUR PHYS J B, V22, P473
46182    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
46183    LOU SY, 2002, CHINESE PHYS LETT, V19, P769
46184    LOUTSENKO I, 1997, PHYS REV LETT, V78, P3011
46185    NISHINARI K, 1993, J PHYS SOC JPN, V62, P2021
46186    NOVIKOV SP, 1986, PHYSICA D, V18, P267
46187    OIKAWA M, 1989, J PHYS SOC JPN, V58, P4416
46188    RADHA R, 1994, J MATH PHYS, V35, P4746
46189    RADHA R, 1997, CHAOS SOLITON FRACT, V8, P17
46190    RUAN HY, 1997, J MATH PHYS, V38, P3123
46191    RUAN HY, 2000, PHYS REV E B, V62, P5738
46192    TAJIRI M, 1997, PHYS REV E B, V55, P3351
46193    TANG XY, 2002, IN PRESS J PHYS A, V35
46194    TIAN B, 1995, MOD PHYS LETT A, V10, P2937
46195    WEISS J, 1983, J MATH PHYS, V24, P522
46196    YOSHIDA N, 1998, J PHYS A-MATH GEN, V31, P3325
46197    ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P705
46198    ZHANG JF, 2002, COMMUN THEOR PHYS, V37
46199 NR 40
46200 TC 58
46201 SN 0256-307X
46202 J9 CHIN PHYS LETT
46203 JI Chin. Phys. Lett.
46204 PD OCT
46205 PY 2002
46206 VL 19
46207 IS 10
46208 BP 1399
46209 EP 1402
46210 PG 4
46211 SC Physics, Multidisciplinary
46212 GA 606VR
46213 UT ISI:000178755700001
46214 ER
46215 
46216 PT J
46217 AU Ni, FS
46218    Gu, GQ
46219    Chen, KM
46220 TI Low-frequency dielectric dispersion of highly concentrated spherical
46221    particles in an electrolyte solution
46222 SO CHINESE PHYSICS LETTERS
46223 DT Article
46224 ID ELECTROCHEMICAL DOUBLE-LAYER; APPROXIMATION; CONDUCTIVITY; ENHANCEMENT;
46225    SUSPENSION
46226 AB We deal with the problem of calculating the effective dielectric
46227    dispersion and electrical conductivity of colloidal dispersions. A
46228    comparison of the theoretical calculation of first principles with the
46229    experimental data of Schwan shows that our technique proposed here is
46230    no longer restricted to dilute solutions and is very effective for
46231    studying the dielectric properties of colloids with highly concentrated
46232    charged spherical particles in an electrolyte solution.
46233 C1 Hohai Univ, Coll Mech & Elect Engn, Nanjing 210024, Peoples R China.
46234    E China Normal Univ, Coll Informat Technol, Shanghai 200062, Peoples R China.
46235    Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
46236 RP Ni, FS, Hohai Univ, Coll Mech & Elect Engn, Nanjing 210024, Peoples R
46237    China.
46238 CR CARRIQUE F, 1993, J COLLOID INTERF SCI, V156, P117
46239    CHEW WC, 1982, J CHEM PHYS, V77, P4683
46240    CHEW WC, 1984, J CHEM PHYS, V80, P4541
46241    DUNSTAN DE, 1992, J COLLOID INTERF SCI, V152, P308
46242    FIXMAN M, 1980, J CHEM PHYS, V72, P5177
46243    GU GQ, 1991, J APPL PHYS, V70, P4476
46244    GU GQ, 1993, J PHYS D APPL PHYS, V26, P1371
46245    KAN R, 1987, J CHEM PHYS, V86, P5748
46246    LARSON RE, 1989, PHYS FLUIDS A-FLUID, V1, P38
46247    NI FS, 1995, CHINESE PHYS LETT, V12, P438
46248    OBRIEN RW, 1981, J COLLOID INTERF SCI, V81, P234
46249    OKONSKI CT, 1960, J PHYS CHEM-US, V64, P605
46250    PETSEV DN, 1992, J COLLOID INTERF SCI, V149, P329
46251    SCHURR JM, 1964, J PHYS CHEM-US, V68, P2407
46252    SCHWAN HP, 1962, J PHYS CHEM-US, V66, P2626
46253    SCHWARZ G, 1962, J PHYS CHEM-US, V66, P2636
46254 NR 16
46255 TC 0
46256 SN 0256-307X
46257 J9 CHIN PHYS LETT
46258 JI Chin. Phys. Lett.
46259 PD OCT
46260 PY 2002
46261 VL 19
46262 IS 10
46263 BP 1550
46264 EP 1552
46265 PG 3
46266 SC Physics, Multidisciplinary
46267 GA 606VR
46268 UT ISI:000178755700046
46269 ER
46270 
46271 PT J
46272 AU Li, ZJ
46273    Chen, YP
46274    Pan, JM
46275    Tang, J
46276 TI The determination of lead in industrial samples by spectrophotometry
46277    with
46278    2-(2-sulfophenylazo)-7-(2,6dibromo-4-methyphenylazo)-1,8-dihydroxynaphth
46279    alene-3,6-disulfonic acid
46280 SO ANALYTICAL LETTERS
46281 DT Article
46282 DE spectrophotometry; determination of lead; industrial samples;
46283    2-(2-Sulfophenylazo)-7-(2,6-dibromo-4-methyphenylazo)-1,8-dihydroxynapht
46284    halene-3,6-disulfonic acid
46285 ID SOIL
46286 AB An excellent method for spectrophotometric determination of trace lead
46287    in industrial samples has been developed. The method is based on the
46288    reaction of lead(II) with new reagent
46289    2-(2-sulfophenylazo)-7-(2,6-dibromo-4-methyphenylazo)-1,8-dihydroxynapht
46290    halene-3,6-disulfonic acid(SDBM). Under optimal conditions, SDBM reacts
46291    with lead(II) to give a 1: 2 blue complex in a phosphoric acid media,
46292    which has an maximum peak at 630 nm; 0-20 mug of lead(II) obeyed Beer's
46293    law in 25 mL solution. The color reaction is instantaneous and the
46294    absorbance stable for 24 h; its the apparent molar absorption
46295    coefficient, Sandell's sensitivity, the limit of detection and the
46296    limit of quantification were found to be 1.07 x 10(5) L mol(-1)cm(-1),
46297    1.94ng cm(-2), 3.12 ng mL(-1) and 10.0 ng mL(-1) respectively. Effect
46298    of foreign ions have been examined in detail. The experiment indicated
46299    that most of metal ions studied can be tolerated in considerable
46300    amounts, especially transition metal ions such as Ag(I), Fe(III),
46301    Co(II), Ni(II), Cu(II), Zn(II), Al(III), Cr(III) and Hg(II). Therefore,
46302    the proposed method is simple, high sensitive and selective, it has
46303    been applied to determine trace lead in real samples with satisfactory
46304    results.
46305 C1 So Yangtze Univ, Coll Chem & Mat Engn, Wuxi 214036, Peoples R China.
46306    Shanghai Univ, Coll Sci, Dept Chem, Shanghai, Peoples R China.
46307    E China Normal Univ, Dept Chem, Shanghai 200062, Peoples R China.
46308 RP Li, ZJ, So Yangtze Univ, Coll Chem & Mat Engn, Wuxi 214036, Peoples R
46309    China.
46310 CR AHMED MJ, 2001, TALANTA, V55, P43
46311    BALE MN, 1995, TALANTA, V42, P1291
46312    HONGO T, 1988, FRESEN Z ANAL CHEM, V331, P647
46313    KISCH PP, 1984, ZH ANAL KHIM, V39, P1052
46314    KISCH PP, 1984, ZH ANAL KHIM, V39, P820
46315    LONG GL, 1980, ANAL CHEM, V52, P2242
46316    LONG GL, 1983, ANAL CHEM, V55, P712
46317    MEDINILLA J, 1986, TALANTA, V33, P329
46318    PAN J, 1981, CHROMOGENIC REAGENTS, P283
46319    PAN JM, 1996, METALLURGICAL ANAL, V16, P1
46320    RALKAIAH GV, 1985, INDIAN J TECHNOL, V23, P157
46321    RAMESH M, 2000, INDIAN J CHEM A, V39, P1337
46322    THAKUR M, 1999, ANALYST, V124, P1331
46323    TRINDER N, 1966, ANALYST, V91, P587
46324    XIAO M, 1988, LIHUA JIANYAN HUAXUE, V24, P130
46325    ZHAO SL, 1996, ENV SCI, V17, P59
46326 NR 16
46327 TC 1
46328 SN 0003-2719
46329 J9 ANAL LETT
46330 JI Anal. Lett.
46331 PY 2002
46332 VL 35
46333 IS 13
46334 BP 2157
46335 EP 2171
46336 PG 15
46337 SC Chemistry, Analytical
46338 GA 607FA
46339 UT ISI:000178780000008
46340 ER
46341 
46342 PT J
46343 AU Ren, JS
46344    Cheng, CJ
46345 TI Cavitated bifurcation for composed compressible hyper-elastic materials
46346 SO ACTA MECHANICA SOLIDA SINICA
46347 DT Article
46348 DE composed compressible hyper-elastic material; void bifurcation;
46349    catastrophe and concentration of stress; energy comparion
46350 ID VOID NUCLEATION
46351 AB The cavitated bifurcation problem in a solid sphere composed of two
46352    compressible hyper-elastic materials is examined. The bifurcation
46353    solution for the composed sphere under a uniform radial tensile
46354    boundary dead-load is obtained. The bifurcation curves and the stress
46355    contributions subsequent to the cavitation are given. The right and
46356    left bifurcation as well as the catastrophe and concentration of
46357    stresses are analyzed. The stability of solutions is discussed through
46358    an energy comparison.
46359 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
46360 RP Ren, JS, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
46361    Shanghai 200072, Peoples R China.
46362 CR HORGAN CO, 1989, J ELASTICITY, V21, P61
46363    HORGAN CO, 1992, INT J SOLIDS STRUCT, V29, P279
46364    HORGAN CO, 1995, APPL MECH REV, V48, P471
46365    SHANG XC, 1996, ACTA MECH SINICA, V28, P751
46366    SHANG XC, 2001, INT J ENG SCI, V39, P1101
46367 NR 5
46368 TC 7
46369 SN 0894-9166
46370 J9 ACTA MECH SOLIDA SINICA
46371 JI Acta Mech. Solida Sin.
46372 PD SEP
46373 PY 2002
46374 VL 15
46375 IS 3
46376 BP 208
46377 EP 213
46378 PG 6
46379 SC Materials Science, Multidisciplinary; Mechanics
46380 GA 606XE
46381 UT ISI:000178759800003
46382 ER
46383 
46384 PT J
46385 AU Mo, YW
46386    Okawa, Y
46387    Nakai, T
46388    Tajima, M
46389    Natukawa, K
46390 TI Preparation of SnO2 films with high sensitivity and selectivity to
46391    C2H5OH by oxygen radical assisted electron beam evaporation for
46392    micro-machined gas sensors
46393 SO THIN SOLID FILMS
46394 DT Article
46395 DE tin oxide; evaporation; sensors; electrical properties and measurements
46396 AB The oxygen radical assisted electron beam (EB) evaporation was employed
46397    to prepare SnO2 films with high sensitivity and selectivity to C2H5OH
46398    for micro-machined gas sensors. The films deposited by this technique
46399    allow a low-temperature and fast annealing process, and therefore has
46400    high compatibility to the standard integrated circuit process. The
46401    maximum sensitivity is higher than 160, more than 20 times larger than
46402    that of films prepared by the conventional EB evaporation, and
46403    comparable to that of radio frequency reactive sputtered films.
46404    Furthermore, the temperature of maximum sensitivity has also decreased
46405    approximately 100 degreesC compared to a conventional EB evaporated
46406    SnO2 film. (C) 2002 Elsevier Science B.V. All rights reserved.
46407 C1 Shanghai Univ, Shanghai 201800, Peoples R China.
46408    Technol Res Inst Osaka Prefecture, Izumi, Osaka 5941157, Japan.
46409    Hochiki Co Ltd, Machida, Tokyo 1948577, Japan.
46410    Kubota Co Ltd, Amagasaki, Hyogo 6618567, Japan.
46411 RP Mo, YW, Shanghai Univ, Shanghai 201800, Peoples R China.
46412 CR CAVICCHI RE, 1995, APPL PHYS LETT, V66, P812
46413    GAEDNER JW, 1991, SENSOR ACTUAT B-CHEM, V4, P109
46414    GUIDI V, 1998, SENSOR ACTUAT B-CHEM, V49, P88
46415    HEILAND G, 1982, SENSOR ACTUATOR, V2, P343
46416    LYLE RP, 1997, MICROSTRUCT MICROFAB, V3, P188
46417    PERSAUD K, 1982, NATURE, V299, P352
46418    ROSSI C, 1997, SENSOR ACTUAT A-PHYS, V63, P183
46419    SHURMER HV, 1990, SENSOR ACTUAT B-CHEM, V1, P256
46420    ZARCOMB S, 1984, SENSOR ACTUATOR, V6, P225
46421 NR 9
46422 TC 5
46423 SN 0040-6090
46424 J9 THIN SOLID FILMS
46425 JI Thin Solid Films
46426 PD SEP 2
46427 PY 2002
46428 VL 416
46429 IS 1-2
46430 BP 248
46431 EP 253
46432 PG 6
46433 SC Materials Science, Multidisciplinary; Physics, Applied; Physics,
46434    Condensed Matter
46435 GA 603VY
46436 UT ISI:000178582700037
46437 ER
46438 
46439 PT J
46440 AU Ren, ZJ
46441    Ding, WY
46442    Cao, WG
46443    Wang, SH
46444    Huang, ZJ
46445 TI Stereoselective synthesis of
46446    cis-1-carbomethoxy-2-aryl-3,3-dicyanocyclopropanes
46447 SO SYNTHETIC COMMUNICATIONS
46448 DT Article
46449 ID DERIVATIVES
46450 AB The route of preparing of
46451    1-carbomethoxy-2-aryl-3,3-dicyanocyclopropanes through the reaction of
46452    arylidenemalononitrile with methoxycarbonylmethyltriphenylarsonium
46453    bromide in the presence of K2CO3 under mild conditions with high yield
46454    and stereo selectivity is described.
46455 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
46456    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
46457 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
46458 CR ATTAHPOKN SK, 1984, CAN J CHEM, V62, P1217
46459    CHEN YL, 1998, CHEM J CHINESE U, V19, P1614
46460    DING WY, 1996, CHEM RES CHINESE U, V12, P50
46461    DING WY, 1999, CHEM J CHINESE U, V20, P64
46462    DING YY, 1996, CHEM RES CHINESE U, V12, P354
46463    FREY HM, 1966, ADV PHYS ORG CHEM, V4, P147
46464    GRIECO PA, 1972, TETRAHEDRON LETT, P3781
46465    JINHWA L, 1995, J AM CHEM SOC, V117, P9919
46466    MURPHY WS, 1983, J CHEM SOC P1, P817
46467    TRISTM BM, 1967, J AM CHEM SOC, V89, P138
46468    VINOD KS, 1997, SYNTHESIS-STUTTGART, P137
46469    WILLIAM B, 2000, TETRAHEDRON LETT, V41, P1491
46470    WONG HNC, 1989, CHEM REV, V89, P165
46471    YAMAMOTE Y, 1975, CHEM COMMUN, P668
46472    ZWANENBURG B, 1997, HOUBENWEYL METHODS A, V17
46473 NR 15
46474 TC 5
46475 SN 0039-7911
46476 J9 SYN COMMUN
46477 JI Synth. Commun.
46478 PY 2002
46479 VL 32
46480 IS 20
46481 BP 3143
46482 EP 3148
46483 PG 6
46484 SC Chemistry, Organic
46485 GA 602UB
46486 UT ISI:000178521900010
46487 ER
46488 
46489 PT J
46490 AU Miao, LY
46491    Wu, JL
46492 TI Edge-coloring critical graphs with high degree
46493 SO DISCRETE MATHEMATICS
46494 DT Article
46495 DE edge coloring; edge chromatic number; critical graph
46496 AB It is proved here that any edge-coloring critical graph of order n and
46497    maximum degree Delta greater than or equal to 8 has the size at least
46498    3(n + Delta - 8). It generalizes a result of Hugh Hind and Yue Zhao.
46499    (C) 2002 Elsevier Science B.V. All rights reserved.
46500 C1 Shanxi Univ, Sch Sci, Shandong 271018, Peoples R China.
46501    Shanghai Univ Sci & Technol, Jinan 250031, Peoples R China.
46502 RP Miao, LY, Shanxi Univ, Sch Sci, Shandong 271018, Peoples R China.
46503 CR FIORINI S, 1977, RES NOTES MATHS, V16
46504    HIND H, 1998, DISCRETE MATH, V190, P107
46505    MELNIKOV LS, 1970, MATH NOTES, V7, P405
46506    VIZING VG, 1968, RUSS MATH SURV, V23, P125
46507    YAN ZD, 2000, GRAPH COMBINATOR, V16, P245
46508    YAP HP, 1981, DISCRETE MATH, V37, P289
46509    YAP HP, 1986, SOME TOPICS GRAPH TH
46510 NR 7
46511 TC 1
46512 SN 0012-365X
46513 J9 DISCRETE MATH
46514 JI Discret. Math.
46515 PD NOV 6
46516 PY 2002
46517 VL 257
46518 IS 1
46519 BP 169
46520 EP 172
46521 PG 4
46522 SC Mathematics
46523 GA 605KV
46524 UT ISI:000178677800013
46525 ER
46526 
46527 PT J
46528 AU Chen, LQ
46529 TI An open plus nonlinear closed loop control of chaotic oscillators
46530 SO CHINESE PHYSICS
46531 DT Article
46532 DE chaos control; entrainment basin; oscillator
46533 ID MULTIPLE-ATTRACTOR SYSTEMS; COMPLEX DYNAMIC-SYSTEMS; MIGRATION
46534    CONTROLS; ADAPTIVE-CONTROL; OPCL CONTROL; ENTRAINMENT
46535 AB An open plus nonlinear closed loop control law is presented for chaotic
46536    oscillations described by a set of non-autonomous second-order ordinary
46537    differential equations. It is proven that the basins of entrainment are
46538    global when the right-hand sides of the equations are given by
46539    arbitrary polynomial functions. The forced Duffing oscillator and the
46540    forced van der Pol oscillator are treated as numerical examples to
46541    demonstrate the applications of the method.
46542 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
46543 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
46544    Shanghai 200072, Peoples R China.
46545 CR CHEN G, 1998, CHAOS ORDER, P2
46546    CHEN LQ, 1998, PHYS LETT A, V245, P87
46547    CHEN LQ, 1998, PHYS LETT A, V262, P350
46548    CHEN LQ, 1999, CHIN J COMP MATH, V16, P127
46549    CHEN LQ, 1999, J APPL SCI, V17, P443
46550    CHEN LQ, 1999, NONLINEAR DYNAM, V20, P309
46551    CHENG LQ, 1997, J SHANGHAI JIAOTONG, V31, P32
46552    GUAN XP, 2001, ACTA PHYS SIN-CH ED, V50, P2108
46553    HUBLER A, 1989, NATURWISSENSCHAFTEN, V76, P67
46554    JACKSON EA, 1990, PHYS LETT A, V151, P478
46555    JACKSON EA, 1991, PHYS REV A, V44, P4839
46556    JACKSON EA, 1991, PHYSICA D, V50, P341
46557    JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1255
46558    JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1767
46559    JACKSON EA, 1995, PHYSICA D, V85, P1
46560    JACKSON EA, 1997, CHAOS, V7, P550
46561    LI GH, 2000, ACTA PHYS SINICA, V49, P2133
46562    LI LX, 2001, CHINESE PHYS, V10, P708
46563    LI Z, 2001, ACTA PHYS SIN-CH ED, V50, P847
46564    LU JH, 2002, CHINESE PHYS, V11, P12
46565    LUO XS, 1999, ACTA PHYS SIN-CH ED, V48, P402
46566    OGATA K, 1998, MODERN CONTROL ENG, P739
46567    OTT E, 1990, PHYS REV LETT, V64, P1196
46568    PARLITZ U, 1987, PHYS REV A, V36, P1428
46569    REN HP, 2002, ACTA PHYS SIN-CH ED, V51, P982
46570    TANG GN, 2000, ACTA PHYS SIN-CH ED, V49, P30
46571    WANG GY, 2001, ACTA PHYS SIN-CH ED, V50, P2307
46572    WANG J, 2000, INT J CON, V72, P911
46573    WANG ZY, 1999, ACTA PHYS SIN-CH ED, V48, P206
46574    YAN SL, 2001, ACTA PHYS SIN-CH ED, V50, P428
46575 NR 30
46576 TC 4
46577 SN 1009-1963
46578 J9 CHIN PHYS
46579 JI Chin. Phys.
46580 PD SEP
46581 PY 2002
46582 VL 11
46583 IS 9
46584 BP 900
46585 EP 904
46586 PG 5
46587 SC Physics, Multidisciplinary
46588 GA 602DR
46589 UT ISI:000178490900009
46590 ER
46591 
46592 PT J
46593 AU Ma, HL
46594 TI Hyperfine structure of singly ionized lanthanum and praseodymium
46595 SO CHINESE PHYSICS
46596 DT Article
46597 DE hyperfine structure; fast-ion-beam laser spectroscopy; magnetic dipole
46598    and electric quadruple coupling constants
46599 ID FINE
46600 AB Hyperfine structure spectra of singly ionized lanthanum and
46601    praseodymium have been measured by collinear fast-ion-beam laser
46602    spectroscopy. All the spectral lines were resolved and the magnetic
46603    dipole and electric quadruple coupling constants of the metastable
46604    levels and excited levels were determined. Our results are in agreement
46605    with the published data within the experimental uncertainty. For
46606    praseodymium ions, the accuracy of the magnetic dipole coupling
46607    constants are improved by one order of magnitude compared with other
46608    published data, and the electric quadruple coupling constants are
46609    reported for the first time.
46610 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
46611 RP Ma, HL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
46612 CR ANDRA HJ, 1975, P 4 INT C AT PHYS AT, V4, P365
46613    ANDRA HJ, 1979, PROGR ATOMIC SPECT B, P6
46614    BELLAHMANSOUR N, 1989, PHYS REV A, V39, P5762
46615    BENGTSON A, 1980, PHYS LETT A, V76, P45
46616    DUFAY M, 1977, P 3 INT C JACKS LAK, P231
46617    GINIBRE A, 1989, PHYS SCR, V39, P694
46618    HOHLE C, 1982, Z PHYS A, V304, P279
46619    HOLT RA, 1977, PHYS REV A, V15, P2293
46620    JOHANSSON S, 1996, ASTROPHYS J 1, V462, P943
46621    KUWAMOTO T, 1996, J PHYS SOC JPN, V65, P3180
46622    MA HL, 2001, CHINESE PHYS, V10, P512
46623    MEIER T, 1977, OPT COMMUN, V20, P397
46624    WING WH, 1976, PHYS REV LETT, V36, P1488
46625 NR 13
46626 TC 2
46627 SN 1009-1963
46628 J9 CHIN PHYS
46629 JI Chin. Phys.
46630 PD SEP
46631 PY 2002
46632 VL 11
46633 IS 9
46634 BP 905
46635 EP 909
46636 PG 5
46637 SC Physics, Multidisciplinary
46638 GA 602DR
46639 UT ISI:000178490900010
46640 ER
46641 
46642 PT J
46643 AU Huang, SG
46644    Li, L
46645    Biest, OVD
46646    Vleugels, J
46647    Wang, PL
46648 TI Study of thermodynamic properties of nonstoichiometric phase <
46649    Zr1-zCezO2-x > with compound energy model
46650 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
46651 DT Article
46652 DE zirconia; ceria; nonstoichiometry; thermodynamic
46653 ID ZRO2-CEO2 SYSTEM; DIAGRAM; TRANSFORMATION
46654 AB Using compound energy model (CEM), the thermodynamic properties of
46655    <CeO2-y> and <Zr1-zCezO2-x> were evaluated. The evaluation was based on
46656    the optimization of ZrO2-CeO2 and ZrO2-CeO1.5 systems, as well as the
46657    miscibility gap in CeO1.5-CeO2 system. Except the cubic fluorite
46658    structure phase assessed with compound energy model, all the other
46659    solution phases were assessed with subsitutional solution model. The
46660    model parameters were evaluated through fitting the selected
46661    experimental data by means of thermodynamic optimization. A set of
46662    parameters with thermodynamics self-consistency was obtained and
46663    satisfactorily described the complex relation between y in <CeO2-y> and
46664    the partial pressure of oxygen at different temperatures, also the
46665    interdependence among miscellaneous factors such as temperature, oxygen
46666    partial pressure, the reduction amount of CeO2 as well as the
46667    nonstoichiometry in cubic phase <Zr1-zCezO2-x>. The calculated results
46668    seem to be reasonable when put into the explanation of pressureless
46669    sintering of CeO2-stabilized ZrO2 powder compacts at a controlled
46670    oxygen partial pressure.
46671 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
46672    Katholieke Univ Leuven, Dept MTM, B-3001 Heverlee, Belgium.
46673    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
46674 RP Li, L, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
46675    China.
46676 CR BARRY TI, 1992, J PHASE EQUILIB, V13, P459
46677    CAMPSERVEUX J, 1978, J SOLID STATE CHEM, V23, P73
46678    DU Y, 1991, J AM CERAM SOC, V74, P1569
46679    DU Y, 1994, SCRIPTA METALL MATER, V31, P327
46680    DURAN P, 1990, J MATER SCI, V25, P5001
46681    GRUNDY AN, 2001, J PHASE EQUILIB, V22, P105
46682    HANNINK RHJ, 2000, J AM CERAM SOC, V83, P461
46683    HEUSSNER KH, 1989, J AM CERAM SOC, V72, P1044
46684    HILLERT M, 2001, J ALLOY COMPD, V320, P161
46685    HUANG WM, 1995, METALL MATER TRANS A, V26, P2293
46686    KAUFMAN L, 1978, CALPHAD, V2, P35
46687    LEONOV AI, 1966, IAN SSSR NEORG MATER, V2, P1047
46688    LIN LI, 1996, J MATER SCI TECHNOL, V12, P159
46689    LIN LI, 2001, J MATER SCI TECHNOL, V17, P529
46690    LINDEMER TB, 1986, J AM CERAM SOC, V69, P867
46691    LONGO V, 1973, J AM CERAM SOC DISCU, V56, P600
46692    PANKRATZ LB, 1982, BUREAU MINES B, V672
46693    SUNDMAN B, 1991, J PHASE EQUILIB, V12, P127
46694    TANI E, 1983, J AM CERAM SOC, V66, P506
46695    YASHIMA M, 1994, J AM CERAM SOC, V77, P1869
46696 NR 20
46697 TC 0
46698 SN 1005-0302
46699 J9 J MATER SCI TECHNOL
46700 JI J. Mater. Sci. Technol.
46701 PD SEP
46702 PY 2002
46703 VL 18
46704 IS 5
46705 BP 422
46706 EP 426
46707 PG 5
46708 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
46709    Engineering
46710 GA 601JZ
46711 UT ISI:000178443700013
46712 ER
46713 
46714 PT J
46715 AU Chen, GR
46716    Yang, L
46717 TI Chaotifying a continuous-time system near a stable limit cycle
46718 SO CHAOS SOLITONS & FRACTALS
46719 DT Article
46720 ID CONTROLLING CHAOS; FEEDBACK
46721 AB This paper studies the chaotification problem of driving a
46722    continuous-time system chaotic near its stable limit cycle. The
46723    controller is designed to ensure the controlled orbit be bounded and,
46724    meanwhile, have positive Lyapunov exponents. A numerical example is
46725    given to illustrate the effectiveness of the proposed chaotification
46726    algorithm. (C) 2002 Elsevier Science Ltd. All rights reserved.
46727 C1 City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China.
46728    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
46729    Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China.
46730 RP Chen, GR, City Univ Hong Kong, Dept Elect Engn, Tat Chee Ave, Kowloon,
46731    Hong Kong, Peoples R China.
46732 CR CHEN G, 1998, CHAOS ORDER METHODOL
46733    CHEN G, 1999, CONTROLLING CHAOS BI
46734    CHEN GR, 1996, INT J BIFURCAT CHAOS, V6, P1341
46735    CHEN GR, 1998, INT J BIFURCAT CHAOS, V8, P1585
46736    FRADKOV AL, 1999, INTRO CONTROL OSCILL
46737    JUDD K, 1997, CONTROL CHAOS MATH M
46738    KAPITANIAK T, 1998, CHAOS ENGINEERS THEO
46739    LAKSHMANAN M, 1996, CHAOS NONLINEAR OSCI
46740    OTT E, 1990, PHYS REV LETT, V64, P1196
46741    SCHIFF SJ, 1994, NATURE, V370, P615
46742    TRIANDAF I, 2000, PHYS REV E A, V62, P3529
46743    VANECEK A, 1996, CONTROL SYSTEMS LINE
46744    WANG XF, 2000, CHAOS, V10, P771
46745    WANG XF, 2000, INT J BIFURCAT CHAOS, V10, P549
46746    YANG L, 2002, INT J BIFURCAT CHAOS, V12, P1121
46747    YANG WM, 1995, PHYS REV E, V51, P102
46748 NR 16
46749 TC 8
46750 SN 0960-0779
46751 J9 CHAOS SOLITON FRACTAL
46752 JI Chaos Solitons Fractals
46753 PD JAN
46754 PY 2003
46755 VL 15
46756 IS 2
46757 BP 245
46758 EP 253
46759 PG 9
46760 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
46761 GA 601WX
46762 UT ISI:000178472700005
46763 ER
46764 
46765 PT J
46766 AU Mo, YW
46767    Tanaka, T
46768    Arita, S
46769    Tsuchitani, A
46770    Inoue, K
46771    Yamashita, K
46772    Suzuki, Y
46773 TI Integrated analog beam former based on bucket brigade device for
46774    micromachined ultrasonic sensor array
46775 SO SENSORS AND ACTUATORS A-PHYSICAL
46776 DT Article
46777 DE ultrasonic sensors; phased array; microelectromechanical devices;
46778    system analysis and design
46779 AB Micromachined ultrasonic sensors are promising in the applications
46780    including medical imaging, non-destructive evaluation (NDE), ranging,
46781    and object detections. Bucket brigade device (BBD) was used as the
46782    analog beam former for piezoelectric micromachined ultrasonic sensor
46783    phased array. The works on the optimization of BBD, including
46784    improvement of the transfer efficiency and dynamic range, and
46785    simplification of system design were discussed in details. The
46786    parasitic insensitive approach was proposed to optimize the properties
46787    of BBD delay line, and measured results indicated that this approach
46788    achieved larger charge transfer efficiency, larger dynamic range, and
46789    higher frequency than the conventional BBD. Furthermore, the BBD
46790    distributed delay-sum architecture was proposed to reduce chip area,
46791    simplify system design, and achieve monolithic integration. The
46792    measured results indicated that BBD distributed delay-sum architecture
46793    showed the beam forming property that is consistent to the theoretical
46794    calculation very well. (C) 2002 Elsevier Science B.V. All rights
46795    reserved.
46796 C1 Shanghai Univ, Shanghai 201800, Peoples R China.
46797    Technol Res Inst Osaka Prefecture, Izumi, Osaka 5941157, Japan.
46798    Osaka Ind Promot Org, Izumi, Osaka 5941157, Japan.
46799    Osaka Univ, Toyonaka, Osaka 5608531, Japan.
46800 RP Mo, YW, Shanghai Univ, Shanghai 201800, Peoples R China.
46801 CR INOUE K, 1995, P 8 INT C SOL STAT S
46802    KUTTRUFF H, 1991, ULTRASONICS FUNDAMEN
46803    MACOVSKI A, 1975, 3918024, US
46804    MASLAK SH, 1979, 4140022, US
46805    MELEN R, 1977, CHAGE COUPLED DEVICE
46806    ODONNEL MO, 1990, P 1990 IEEE ULTR S, P1499
46807    PELLAM JR, 1946, J CHEM PHYS, V14, P608
46808    VONRAMM OT, 1983, IEEE T BIO-MED ENG, V30, P438
46809    YAMASHITA K, 2002, SENSOR ACTUAT A-PHYS, V97, P302
46810 NR 9
46811 TC 2
46812 SN 0924-4247
46813 J9 SENSOR ACTUATOR A-PHYS
46814 JI Sens. Actuator A-Phys.
46815 PD SEP 30
46816 PY 2002
46817 VL 101
46818 IS 1-2
46819 BP 203
46820 EP 211
46821 PG 9
46822 SC Engineering, Electrical & Electronic; Instruments & Instrumentation
46823 GA 599QC
46824 UT ISI:000178345800028
46825 ER
46826 
46827 PT J
46828 AU Yang, L
46829    Liu, ZR
46830    Zheng, Y
46831 TI "Middle" periodic orbit and its application to chaos control
46832 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
46833 DT Article
46834 DE chaos; chaos control; symbolic dynamics
46835 ID SYSTEMS; HYPERCHAOS; TARGETS
46836 AB In this paper, a new method, by which any point in a chaotic attractor
46837    can be guided to any target periodic orbit, is proposed. The "middle"
46838    periodic orbit is used to lead an initial point in a chaotic attractor
46839    to a neighborhood of the target orbit, and then controlling chaos can
46840    be achieved by the improved OGY method. The time needed in the method
46841    using "middle" periodic orbit is less than that of the OGY method, and
46842    is inversely proportional to the square of the topological entropy of
46843    the given map. An example is used to illustrate the results.
46844 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
46845    Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China.
46846    Yangzhou Univ, Dept Math, Jiangsu 225002, Peoples R China.
46847 RP Yang, L, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
46848 CR AUERBACH D, 1992, PHYS REV LETT, V69, P3479
46849    CHEN GR, 1996, INT J BIFURCAT CHAOS, V6, P1341
46850    CHEN GR, 1998, INT J BIFURCAT CHAOS, V8, P1585
46851    DITTO WL, 1990, PHYS REV LETT, V65, P3211
46852    LIU ZR, 1999, ACTA MECH SINICA, V15, P366
46853    OTT E, 1990, PHYS REV LETT, V64, P1196
46854    SHINBROT T, 1990, PHYS REV LETT, V65, P3215
46855    SHINBROT T, 1992, PHYS LETT A, V169, P349
46856    SHINBROT T, 1992, PHYS REV A, V45, P4165
46857    SINGER J, 1991, PHYS REV LETT, V66, P1123
46858    XIE H, 1996, GRAMMATICAL COMPLEXI
46859    XIE HM, 1995, COMPLEX SYST, V9, P73
46860    YANG L, 1998, APPL MATH MECH-ENGL, V19, P1
46861    YANG L, 2000, PHYS REV LETT, V84, P67
46862 NR 14
46863 TC 0
46864 SN 0218-1274
46865 J9 INT J BIFURCATION CHAOS
46866 JI Int. J. Bifurcation Chaos
46867 PD AUG
46868 PY 2002
46869 VL 12
46870 IS 8
46871 BP 1869
46872 EP 1876
46873 PG 8
46874 SC Mathematics, Applied; Multidisciplinary Sciences
46875 GA 599XX
46876 UT ISI:000178361400013
46877 ER
46878 
46879 PT J
46880 AU Chen, WX
46881    Tu, JP
46882    Ma, XC
46883    Xu, ZD
46884    Chen, WL
46885    Wang, JG
46886    Cheng, DH
46887    Xia, JB
46888    Gan, HY
46889    Jin, YX
46890    Tenne, R
46891    Rosenstveig, R
46892 TI Preparation and tribological properties of Ni-P electroless composite
46893    coating containing inorganic fullerene-like WS2 nanomaterials
46894 SO ACTA CHIMICA SINICA
46895 DT Article
46896 DE inorganic fullerene-like (IF); nanomaterials; composite coating;
46897    tribological properties
46898 ID TUNGSTEN DISULFIDE; NANOPARTICLES; MECHANISM; FRICTION; WEAR
46899 AB Ni-P composite coating containing inorganic fullerene-like WS2 nanosize
46900    particles was prepared by electroless codeposition. Its tribological
46901    performances were evaluated by a ring-on-block wear tester. It was
46902    found that the Ni-P-(IF-WS2) composite coating exhibited both higher
46903    wear resistance and lower friction coefficient than Ni-P, Ni-P-(layer
46904    2H-WS2) and Ni-P-graphite electroless coating. The favorable effects of
46905    inorganic fullerene-like nanomaterials on the tribological properties
46906    of the composite coating were discussed.
46907 C1 Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China.
46908    Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R China.
46909    Zhejiang Univ Technol, Coll Mech & Electr Engn, Hangzhou 310032, Peoples R China.
46910    Shanghai Univ, Dept Environ & Chem Engn, Shanghai 200027, Peoples R China.
46911    Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel.
46912 RP Chen, WX, Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China.
46913 CR CHHOWALLA M, 2000, NATURE, V407, P164
46914    FELDMAN Y, 1996, J AM CHEM SOC, V118, P5362
46915    FELDMAN Y, 2000, SOLID STATE SCI, V2, P663
46916    MARGULIS L, 1993, NATURE, V365, P113
46917    RAPOPORT L, 1997, NATURE, V387, P791
46918    RAPOPORT L, 1999, WEAR, V225, P975
46919    RAPOPORT L, 2001, ADV ENG MATER, V3, P71
46920    RAPOPORT L, 2001, NANO LETTERS, V1, P137
46921    RAPOPORT L, 2001, WEAR, V249, P150
46922    TENNE R, 1992, NATURE, V360, P444
46923    ZAK A, 2000, J AM CHEM SOC, V122, P11108
46924 NR 11
46925 TC 2
46926 SN 0567-7351
46927 J9 ACTA CHIM SIN
46928 JI Acta Chim. Sin.
46929 PD SEP
46930 PY 2002
46931 VL 60
46932 IS 9
46933 BP 1722
46934 EP 1726
46935 PG 5
46936 SC Chemistry, Multidisciplinary
46937 GA 598TK
46938 UT ISI:000178292400033
46939 ER
46940 
46941 PT J
46942 AU Liu, LH
46943    Dong, C
46944    Zhang, JC
46945    Li, JQ
46946 TI The microstructure study of Co-doped YBCO system
46947 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
46948 DT Article
46949 DE Co; Fe-doped YBCO; superconductor; structure phase transition; twin;
46950    tweed; oxygen content
46951 ID HIGH-TC SUPERCONDUCTORS; POSITRON-ANNIHILATION; YBA2CU3O7-DELTA;
46952    PARAMETERS; DENSITY; NI; FE
46953 AB A series of YBa2CU3-xCoxOx (x = 0-0.50) samples have been studied by
46954    means of SEM, TEM, XRD and positron annihilation technology. Oxygen
46955    contents of the samples have been measured using a new volumetric
46956    method The microstructure evolution of the Co-doped YBCO is very
46957    similar to that in the Fe-doped YBCO. YBa2Cu3-xCoxOx undergoes a
46958    structure phase transition from orthorhombic to tetragonal between x =
46959    0.12 and 0.15. Twin structure predominates when x is low (x < 0.05).
46960    With the increasing of x, tweed structure appears and its proportion
46961    increases till it becomes dominant. When x > 0 12, the tweed structure
46962    disappears completely. The grain boundary density increases with x and
46963    shows a sudden drop when x > 0.12. Similarly, the positron short
46964    lifetime component tau(1) shows a sudden drop between x = 0.12 and 0.15
46965    Therefore, positron can be used as a sensitive probe for the O-T phase
46966    transition in this system. A possible model is proposed to describe the
46967    relationship between positron short lifetime component tau(1), and the
46968    concentrations of oxygen vacancy and twin (tweed) boundary. The
46969    experimental results can be satisfactorily explained by this model. (C)
46970    2002 Elsevier Science B.V. All rights reserved.
46971 C1 Chinese Acad Sci, Inst Phys, Natl Lab Superconduct, Beijing 100080, Peoples R China.
46972    Henan Normal Univ, Dept Phys, Xinxiang 453002, Peoples R China.
46973    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
46974 RP Liu, LH, Chinese Acad Sci, Inst Phys, Natl Lab Superconduct, POB 603,
46975    Beijing 100080, Peoples R China.
46976 CR BALOGH AG, 1988, PHYS REV B, V38, P2883
46977    BERGERSEN B, 1969, SOLID STATE COMMUN, V7, P1208
46978    BRANDT W, 1967, POSITRON ANNIHILATIO, P155
46979    CHAKRABORTY B, 1989, PHYS REV B, V39, P215
46980    CONNORS DC, 1969, PHYS LETT A, V30, P24
46981    DONG C, 1999, J APPL CRYSTALLOGR, V32, P838
46982    GASUMYANTS VE, 1992, SFKHT, V5, P674
46983    HAUTOJARVI P, 1983, POSITRONS SOLID, P255
46984    HIROI Z, 1988, JPN J APPL PHYS, V27, L580
46985    JEAN YC, 1990, PHYS REV LETT, V64, P1593
46986    NAROZHNYI VN, 1996, PHYS REV B, V53, P5856
46987    RENEVIER H, 1994, PHYSICA C, V220, P143
46988    RISTO Z, 1991, J PHYS CHEM SOLIDS, V52, P1577
46989    SEEGER A, 1973, J PHYS F MET PHYS, V3, P248
46990    SMEDSKJAER LC, 1988, PHYS REV B, V37, P2330
46991    SYDOW JP, 1998, APPL PHYS LETT, V72, P3512
46992    TARASCON JM, 1988, PHYS REV B, V37, P7458
46993    USMAR SG, 1988, PHYS REV B, V38, P5126
46994    VONSTETTEN EC, 1988, PHYS REV LETT, V60, P2198
46995    WESTERHOLT K, 1989, PHYS REV B, V39, P11680
46996    XU YW, 1989, PHYS REV B, V39, P6667
46997    ZHANG J, 1999, PHYS LETT A, V236, P452
46998    ZHANG JC, 1993, PHYS REV B, V48, P16830
46999 NR 23
47000 TC 0
47001 SN 0921-4534
47002 J9 PHYSICA C
47003 JI Physica C
47004 PD SEP 1
47005 PY 2002
47006 VL 377
47007 IS 3
47008 BP 348
47009 EP 356
47010 PG 9
47011 SC Physics, Applied
47012 GA 596NV
47013 UT ISI:000178171700021
47014 ER
47015 
47016 PT J
47017 AU Darrouzet, V
47018    Hilton, M
47019    Pinder, D
47020    Wang, JL
47021    Guerin, J
47022    Bebear, JP
47023 TI Prognostic value of the blink reflex in acoustic neuroma surgery
47024 SO OTOLARYNGOLOGY-HEAD AND NECK SURGERY
47025 DT Article
47026 ID NERVE; TUMORS
47027 AB OBJECTIVE: The study goal was to demonstrate that blink reflex analysis
47028    can predict postoperative facial nerve outcome in cerebellopontine
47029    angle tumor surgery.
47030    STUDY DESIGN, SETTING, AND PATIENTS: In an open and prospective study
47031    conducted at a single tertiary care center over 3 years, 91 subjects
47032    with a vestibular schwannoma filling the internal auditory meatus were
47033    enrolled and operated on via a translabyrinthine approach. The
47034    difference in latency of the early response (DeltaR1) of the blink
47035    reflex between the pathologic side and the healthy side was calculated
47036    in every patient during a complete electrophysiologic examination of
47037    the facial nerve performed on the day before surgery.
47038    MAIN OUTCOME MEASURES. DeltaR1 was compared with the other preoperative
47039    data (tumor volume, facial function), with the perioperative
47040    observations (difficulties with the dissection of the facial nerve),
47041    and especially with the postoperative status after I year. The
47042    statistical, study was conducted using polynomial, regression.
47043    RESULTS: Patients with a negative or zero DeltaR1 have normal facial
47044    function at I year. For those with a positive DeltaR1 the outcome is
47045    not favorable unless the tumor is small. For patients presenting with
47046    an immediate complete facial paralysis, the value of DeltaR1 is also
47047    indicative of facial function outcome.
47048    CONCLUSION. Statistical analysis shows that the blink reflex, through
47049    DeltaR1, has an excellent prognostic value in anticipating the
47050    difficulties with facial nerve dissection and postoperative facial
47051    function after 1 year.
47052 C1 Univ Hosp, Dept Skull Base Surg, Bordeaux, France.
47053    Univ Bristol, Southmead Hosp, Dept Otolaryngol, Bristol, Avon, England.
47054    Univ Bristol, St Michaels Hosp, Dept Otolaryngol, Bristol, Avon, England.
47055    Shanghai Univ, Rui Jin Hosp, Dept Otolaryngol, Shanghai, Peoples R China.
47056 RP Darrouzet, V, Hop Pellegrin, Serv ORL, Pl Amelie Raba Leon, F-33076
47057    Bordeaux, France.
47058 CR BEBEAR J, 1990, LONG TERM RESULTS IN, P497
47059    BENDER LF, 1969, ARCHIVES PHYSICAL ME, V50, P27
47060    DAVERAT F, 1989, VALEUR PRONOSTIQUE E
47061    GIL R, 1980, ACTA NEUROL BELG, V80, P201
47062    HOUSE JW, 1985, OTOLARYNG HEAD NECK, V93, P146
47063    JESEL M, 1978, REV ELECTROENCEPHALO, V8, P302
47064    KARTUSH JM, 1987, OTOLARYNG HEAD NECK, V97, P257
47065    KIMURA J, 1983, ELECTRODIAGNOSIS DIS
47066    LYON LW, 1972, ARCH OTOLARYNGOL, V95, P100
47067    NAGAHIRO S, 1983, NO TO SHINKEI, V35, P1117
47068    NORMAND MM, 1994, MUSCLE NERVE, V17, P1401
47069    NURLU G, 1994, NEUROSURG REV, V17, P253
47070    PAVESI G, 1992, ELECTROMYOGR CLIN NE, V32, P119
47071    PORTMANN M, 1982, PRECIS OTORHINOLARYN, P139
47072    PORTMANN M, 1988, REV LARYNGOL OTOL RH, V109, P437
47073    ROSLER KM, 1994, MUSCLE NERVE, V17, P183
47074    STERKERS J, 1991, CHIRURGIE NEURINOME, P45
47075    STERKERS JM, 1986, ANN OTOLARYNGOL CHIR, V103, P487
47076 NR 18
47077 TC 2
47078 SN 0194-5998
47079 J9 OTOLARYNGOL HEAD NECK SURG
47080 JI Otolaryngol. Head Neck Surg.
47081 PD SEP
47082 PY 2002
47083 VL 127
47084 IS 3
47085 BP 153
47086 EP 157
47087 PG 5
47088 SC Otorhinolaryngology; Surgery
47089 GA 596MQ
47090 UT ISI:000178169000004
47091 ER
47092 
47093 PT J
47094 AU Chen, LQ
47095    Zhang, NH
47096    Zu, JW
47097 TI Bifurcation and chaos of an axially moving viscoelastic string
47098 SO MECHANICS RESEARCH COMMUNICATIONS
47099 DT Article
47100 ID NONLINEAR VIBRATION; DYNAMICAL BEHAVIOR; STABILITY ANALYSIS; BELTS
47101 AB In this paper, bifurcation and chaos of an axially moving viscoelastic
47102    string are investigated. The 1-term and the 2-term Galerkin truncations
47103    are respectively employed to simplify the partial-differential equation
47104    that governs the transverse motions of the string into a set of
47105    ordinary differential equations. The bifurcation diagrams are presented
47106    in the case that the transport speed, the amplitude of the periodic
47107    perturbation, or the dynamic viscosity is respectively varied while
47108    other parameters are fixed. The dynamical behaviors are numerically
47109    identified based on the Poincare maps. Numerical simulations indicate
47110    that periodic, quasi-periodic and chaotic motions occur in the
47111    transverse vibrations of the axially moving viscoelastic string. (C)
47112    2002 Elsevier Science Ltd. All rights reserved.
47113 C1 Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
47114    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
47115    Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada.
47116 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
47117 CR ABRATE S, 1992, MECH MACH THEORY, V27, P645
47118    CHEN LQ, 2000, APPL MATH MECH-ENGL, V21, P995
47119    CHEN LQ, 2000, MECH RES COMMUN, V27, P413
47120    CHEN LQ, 2001, ADV MECH, V31, P535
47121    FUNG RF, 1997, J SOUND VIB, V201, P153
47122    HUANG JS, 1995, INT J MECH SCI, V37, P145
47123    LUO ACJ, 1995, J HYDRODYNAMICS B, V7, P92
47124    LUO ACJ, 1999, J SOUND VIB, V227, P523
47125    MAHALINGAM S, 1957, BRIT J APPL PHYS, V8, P145
47126    MOCHENSTURM EM, 1996, J VIB ACOUST, V116, P346
47127    MOTE CD, 1972, SHOCK VIBRATION DIGE, V4, P2
47128    PAKDEMIRLI M, 1994, J SOUND VIB, V169, P179
47129    PAKDEMIRLI M, 1997, J SOUND VIB, V203, P815
47130    RAVINDRA B, 1998, ARCH APPL MECH, V68, P195
47131    TAGATA G, 1995, J SOUND VIB, V185, P51
47132    THOMPSON JMT, 1994, PHYS REV E, V49, P1019
47133    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
47134    ZHANG L, 1999, J APPL MECH-T ASME, V66, P396
47135    ZHANG L, 1999, J APPL MECH-T ASME, V66, P403
47136 NR 19
47137 TC 9
47138 SN 0093-6413
47139 J9 MECH RES COMMUN
47140 JI Mech. Res. Commun.
47141 PD APR-JUN
47142 PY 2002
47143 VL 29
47144 IS 2-3
47145 BP 81
47146 EP 90
47147 PG 10
47148 SC Mechanics
47149 GA 595VN
47150 UT ISI:000178129400002
47151 ER
47152 
47153 PT J
47154 AU Zhang, DJ
47155    Chen, DY
47156 TI Hamiltonian structure of discrete soliton systems
47157 SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
47158 DT Article
47159 ID DIFFERENTIAL-DIFFERENCE EQUATIONS; INTEGRABLE SYSTEMS;
47160    EVOLUTION-EQUATIONS; HEREDITARY SYMMETRIES; ALGEBRAIC STRUCTURE; TRACE
47161    IDENTITY; AKNS SYSTEM
47162 AB We describe an approach for investigating the Hamiltonian structures of
47163    the lattice isospectral evolution equations associated with a general
47164    discrete spectral problem. By using the so-called implicit
47165    representations of the isospectral flows, we demonstrate the existence
47166    of the recursion operator L, which is a strong and hereditary symmetry
47167    of the flows. It is then proven that every equation in the isospectral
47168    hierarchy possesses the Hamiltonian structure if L has a skew-symmetric
47169    factorization and the first equation (u(1) = K-(0)) in the hierarchy
47170    satisfies some simple condition. We obtain related properties, such as
47171    the implectic-symplectic factorization of L, the Liouville complete
47172    integrability and the multi-Hamiltonian structures of the isospectral
47173    hierarchy. Four examples are given.
47174 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
47175 RP Zhang, DJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
47176 CR ABLOWITZ MJ, 1975, J MATH PHYS, V16, P598
47177    ABLOWITZ MJ, 1976, J MATH PHYS, V17, P1011
47178    ABLOWITZ MJ, 1976, STUD APPL MATH, V55, P213
47179    ABLOWITZ MJ, 1977, STUD APPL MATH, V57, P1
47180    BLASZAK M, 1994, J MATH PHYS, V35, P4661
47181    CHEN DG, 1991, J PHYS A-MATH GEN, V24, P377
47182    CHEN DY, 1996, J MATH PHYS, V37, P5524
47183    FAN E, 2001, J PHYS A-MATH GEN, V34, P513
47184    FOKAS AS, 1982, J MATH PHYS, V23, P1066
47185    FOKAS AS, 1987, STUD APPL MATH, V77, P253
47186    FUCHSSTEINER B, 1979, NONLINEAR ANAL, V3, P849
47187    FUCHSSTEINER B, 1981, PHYSICA D, V4, P47
47188    LI YS, 1986, J PHYS A-MATH GEN, V19, P3713
47189    LI YS, 1990, J PHYS A-MATH GEN, V23, P721
47190    MA WX, 1990, J PHYS A-MATH GEN, V23, P2707
47191    MA WX, 1999, J MATH PHYS, V40, P2400
47192    MAGRI F, 1978, J MATH PHYS, V19, P1156
47193    TODA M, 1989, THEORY NONLINEAR LAT
47194    TU GZ, 1989, J MATH PHYS, V30, P330
47195    TU GZ, 1990, J PHYS A-MATH GEN, V23, P3903
47196    WADATI M, 1976, PROG THEOR PHYS SUPP, V59, P36
47197    WU YT, 1996, J MATH PHYS, V37, P2338
47198    YAN Z, 2001, J MATH PHYS, V42, P330
47199 NR 23
47200 TC 15
47201 SN 0305-4470
47202 J9 J PHYS-A-MATH GEN
47203 JI J. Phys. A-Math. Gen.
47204 PD AUG 23
47205 PY 2002
47206 VL 35
47207 IS 33
47208 BP 7225
47209 EP 7241
47210 PG 17
47211 SC Physics, Mathematical; Physics, Multidisciplinary
47212 GA 594LP
47213 UT ISI:000178051900017
47214 ER
47215 
47216 PT J
47217 AU Cao, WG
47218    Shi, ZJ
47219    Fan, C
47220    Ding, WY
47221 TI Convenient synthesis of methyl
47222    4-carboethoxy-3-perfluoroalkyl-5-methoxyhexa-2,4-dienoates
47223 SO JOURNAL OF FLUORINE CHEMISTRY
47224 DT Article
47225 DE hexadienoates; fluorinated ylides; methyl 3-perfluoroalkyl-2-propiolates
47226 ID ELEMENTO-ORGANIC COMPOUNDS; STEREOSELECTIVE SYNTHESIS; 6TH GROUPS;
47227    ARSORANE; 5TH
47228 AB In the presence of K2CO3, reaction of ethyl 3-methoxy-4-(triphenyl
47229    phosphoranylidene)but-2-enoate (2), which was derived from the bromide
47230    1, with methyl 3-perfluoroalkyl-2-propiolates (3) in CH2Cl2 at room
47231    temperature, gave methyl
47232    4-carboethoxy-3-perfluoroalkyl-5-methoxy-6-(triphenylphosphoranylidene)h
47233    exa-2,4-dienoate (4) as major products in excellent yields. Methyl
47234    4-carboethoxy-3-perfluoroalkyl-5-methoxyhexa-2,4-dienoates (5) were
47235    obtained in high yield by hydrolysis of (4) in hot aqueous methanol in
47236    a sealed tube. The structure identities of compounds 4 and 5 were
47237    confirmed by IR, MS,H-1, (CNMR)-C-13, 2D C-H COSY and microanalyses.
47238    Reaction mechanisms are proposed to account for the formation of
47239    products 4 and 5. (C) 2002 Elsevier Science B.V. All rights reserved.
47240 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
47241 RP Cao, WG, Shanghai Univ, Dept Chem, 99 Shang Da Rd, Shanghai 200436,
47242    Peoples R China.
47243 CR BANKS RE, 1994, ORGANOFLUORINE CHEM
47244    DING WY, 1986, ACTA CHIM SINICA, V44, P62
47245    DING WY, 1987, ACTA CHIM SINICA, V45, P47
47246    DING WY, 1991, J CHEM SOC PERK  JUN, P1369
47247    DING WY, 1992, CHEM RES CHINESE U, V8, P224
47248    FILLER R, 1993, ORGANOFLUORINE COMPO, P386
47249    HUANG YZ, 1979, HUA XUE XUE BAO, V31, P47
47250    KOCHHAR KS, 1984, J ORG CHEM, V49, P3222
47251    LIEBMAN JF, 1988, FLUORINE CONTAINING
47252    SMISSMAN EE, 1964, J ORG CHEM, V29, P3161
47253 NR 10
47254 TC 0
47255 SN 0022-1139
47256 J9 J FLUORINE CHEM
47257 JI J. Fluor. Chem.
47258 PD AUG 28
47259 PY 2002
47260 VL 116
47261 IS 2
47262 BP 117
47263 EP 120
47264 PG 4
47265 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
47266 GA 594RH
47267 UT ISI:000178064200004
47268 ER
47269 
47270 PT J
47271 AU Zheng, YA
47272    Nian, YB
47273    Liu, ZR
47274 TI Impulsive control for the stabilization of discrete chaotic system
47275 SO CHINESE PHYSICS LETTERS
47276 DT Article
47277 ID VARIABLES; SUPPRESSION
47278 AB We first give the theoretical result of the stabilization of general
47279    discrete chaotic systems by using impulsive control. As an example and
47280    an application of the theoretical result, we derive some sufficient
47281    conditions for the stabilization of the double rotor map via impulsive
47282    control. The computer simulation result is given to demonstrate the
47283    method.
47284 C1 Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China.
47285    Jiangsu Univ, Sch Elect & Infromat Engn, Jiangsu 212013, Peoples R China.
47286    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
47287 RP Zheng, YA, Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China.
47288 CR CHEN YX, 1995, CHINESE SCI BULL, V40, P1748
47289    FRODKOV A, 1996, IEEE T CAS I, V43, P907
47290    GREBOGI C, 1987, PHYSICA D, V25, P347
47291    GUTIERREZ JM, 1996, INT J BIFURCAT CHAOS, V6, P1351
47292    MATIAS MA, 1994, PHYS REV LETT, V72, P1455
47293    MATIAS MA, 1996, PHYS REV E, V54, P198
47294    OTT E, 1990, PHYS REV LETT, V64, P1196
47295    ROMEIRAS FJ, 1992, PHYSICA D, V58, P165
47296    TAO Y, 1997, PHYS LETT A, V232, P356
47297    TIAN YC, 1998, PHYSICA D, V117, P1
47298    WU SG, 2001, CHINESE PHYS LETT, V18, P341
47299    XIE WX, 2000, PHYS LETT A, V275, P67
47300    XU HB, 2001, PHYS REV E 2, V64
47301    YANG T, 1997, PHYSICA D, V110, P18
47302    ZASLAVSKY GM, 1978, PHYS LETT A, V69, P145
47303 NR 15
47304 TC 1
47305 SN 0256-307X
47306 J9 CHIN PHYS LETT
47307 JI Chin. Phys. Lett.
47308 PD SEP
47309 PY 2002
47310 VL 19
47311 IS 9
47312 BP 1251
47313 EP 1253
47314 PG 3
47315 SC Physics, Multidisciplinary
47316 GA 595CD
47317 UT ISI:000178088500010
47318 ER
47319 
47320 PT J
47321 AU Liu, YR
47322    Liu, ZR
47323 TI Some dynamical behavior of discrete Nagumo equation
47324 SO CHAOS SOLITONS & FRACTALS
47325 DT Article
47326 ID COUPLED MAP LATTICE; BREATHERS; ANTIINTEGRABILITY; OSCILLATORS;
47327    EXISTENCE; NETWORKS; CHAOS
47328 AB The spatiotemporal dynamics can be effectively studied by continuation
47329    from an anti-integrable limit. By using the anti-integrability method
47330    we consider the dynamical behavior of discrete Nagumo equation, prove
47331    the existence of breather and discuss the spatial disorder of the
47332    stationary solutions in the system. (C) 2002 Elsevier Science Ltd. All
47333    rights reserved.
47334 C1 Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China.
47335    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
47336 RP Liu, YR, Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China.
47337 CR ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
47338    AUBRY S, 1990, PHYSICA D, V43, P199
47339    AUBRY S, 1995, PHYSICA D, V86, P284
47340    AUBRY S, 1997, PHYSICA D, V103, P201
47341    CHOW SN, 1995, SIAM J APPL MATH, V55, P1764
47342    CROSS MC, 1993, REV MOD PHYS, V65, P3
47343    DEIMLING K, 1985, NONLINEAR FUNCTIONAL
47344    GINZBURG SL, 1999, PHYSICA D, V132, P87
47345    KANEKO K, 1993, PHYSICA D, V68, P299
47346    KANEKO K, 1993, THEORY APPL COUPLED
47347    KEENER JP, 1987, SIAM J APPL MATH, V47, P556
47348    MACKAY RS, 1994, NONLINEARITY, V7, P1623
47349    MARIN JL, 1996, NONLINEARITY, V9, P1501
47350    SEPULCHRE JA, 1997, NONLINEARITY, V10, P679
47351    SEPULCHRE JA, 1998, PHYSICA D, V113, P342
47352 NR 15
47353 TC 0
47354 SN 0960-0779
47355 J9 CHAOS SOLITON FRACTAL
47356 JI Chaos Solitons Fractals
47357 PD DEC
47358 PY 2002
47359 VL 14
47360 IS 9
47361 BP 1457
47362 EP 1464
47363 PG 8
47364 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
47365 GA 595WA
47366 UT ISI:000178130500014
47367 ER
47368 
47369 PT J
47370 AU Chen, ZP
47371    Zhang, JC
47372    Cao, GX
47373    Cao, SX
47374 TI Effect of the lanthanide contraction on the superconduction and local
47375    electronic structure of RBa2Cu3O7-delta systemes
47376 SO ACTA PHYSICA SINICA
47377 DT Article
47378 DE ionic radius of rare earth; high-T-c superconductivity; positron
47379    annihilation; local electronic structure
47380 ID EARTH IONIC RADIUS; POSITRON LIFETIME; DEFECTS
47381 AB A series of RBa2 Cu-3 O-7.8 (R = Tm, Dy, Gd, Eu, Nd and Y) samples were
47382    prepared by the standard solid-state-reaction method. The effect of the
47383    ionic radius of rare earth on the local electronic structure, crystal
47384    structures and superconductivity have been studied by means of positron
47385    annihilation technique(PAT) and x-ray diffraction ( XRD) The results
47386    show that the positron lifetime parameters tau(1) and tau(2) increase
47387    with the increase of the ionic radius of rare earth. But the local
47388    electronic density based on the positron lifetime parameters appears to
47389    decrease with the increase of the ionic radius of rare earth. It is
47390    concluded that the local electronic density and crystal structures are
47391    factors affecting the superconductivity.
47392 C1 Zhengzhou Inst Light Ind, Dept Appl Math & Phys, Zhengzhou 450002, Peoples R China.
47393    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
47394 RP Chen, ZP, Zhengzhou Inst Light Ind, Dept Appl Math & Phys, Zhengzhou
47395    450002, Peoples R China.
47396 CR BRANDT W, 1967, POSITRON ANNIHALATIO
47397    BRANDT W, 1974, APPL PHYS, V5, P1
47398    BUCHNER B, 1990, SOLID STATE COMMUN, V73, P357
47399    CHEN ZP, 2001, ACTA PHYS SIN-CH ED, V50, P550
47400    GOU ZH, 1995, CHINESE J LOW TEMP P, V17, P48
47401    LAVROV AN, 1998, PHYS REV LETT, V81, P5636
47402    LI LJ, 1998, ACTA PHYS SINICA, V47, P844
47403    LIU LH, 2001, ACTA PHYS SINICA, V50, P768
47404    LU X, 1992, PHYS REV B, V45, P7989
47405    NAROZHNYI VN, 1996, PHYS REV B, V53, P5856
47406    POLITY A, 1999, PHYS REV B, V59, P10025
47407    THOMAS J, 1988, SOLID STATE COMMUN, V65, P981
47408    UDAYAN D, 2000, PHYS REV B, V62, P14519
47409    WANG JC, 2000, CHINESE PHYS, V9, P216
47410    XIONG H, 2001, ACTA PHYS SIN-CH ED, V50, P1783
47411    ZHANG JC, 1995, PHYS LETT A, V201, P70
47412    ZHANG JC, 1999, PHYS LETT A, V263, P452
47413    ZHANG LW, 1998, ACTA PHYS SINICA, V47, P1906
47414 NR 18
47415 TC 4
47416 SN 1000-3290
47417 J9 ACTA PHYS SIN-CHINESE ED
47418 JI Acta Phys. Sin.
47419 PD SEP
47420 PY 2002
47421 VL 51
47422 IS 9
47423 BP 2150
47424 EP 2154
47425 PG 5
47426 SC Physics, Multidisciplinary
47427 GA 595LL
47428 UT ISI:000178110800044
47429 ER
47430 
47431 PT J
47432 AU Pike, R
47433    Jiang, SH
47434 TI Ultrahigh-resolution optical imaging of colloidal particles
47435 SO JOURNAL OF PHYSICS-CONDENSED MATTER
47436 DT Article
47437 ID SCANNING MICROSCOPY; SUPERRESOLVING MASKS
47438 AB We continue the theme exploited very effectively by Professor Pusey
47439    over the years of using laser light to measure the size of colloidal
47440    particles. A description of a new measurement technique using a
47441    confocal scanning laser microscope (CSLM) is given in which the
47442    Rayleigh resolution limit of a numerical aperture 1.3 oil-immersion
47443    objective is effectively doubled. The method exploits the 'natural'
47444    bandwidth of an imaging system with a very low number of 'degrees of
47445    freedom' (generalized Shannon number) which is realized in the CSLM by
47446    using the high-aperture objective lens both to illuminate the particles
47447    and to collect the scattered light from them. The available extra
47448    resolution is not visible in the conventional recorded image of the
47449    instrument and the full double-bandwidth 'information' content in the
47450    image plane is extracted in our method by using a specially calculated
47451    optical mask as an instantaneous analogue computer. We have modified a
47452    commercial Bio-Rad 600 confocal microscope to work in this way and
47453    present here the first measurements obtained with it. We compare images
47454    of 100 nm diameter standard PVC fluorescent calibration spheres with
47455    the new and the older modalities. The results confirm the expected
47456    increase in optical resolution.
47457 C1 Univ London Kings Coll, Dept Phys, London WC2R 2LS, England.
47458    Shanghai Univ, Dept Fine Mech Engn, Shanghai, Peoples R China.
47459 RP Pike, R, Univ London Kings Coll, Dept Phys, Strand, London WC2R 2LS,
47460    England.
47461 CR AKDUMAN I, 1998, J OPT SOC AM A, V15, P2275
47462    BERTERO M, 1992, INVERSE PROBL, V8, P1
47463    BERTERO M, 1993, HANDB STAT, V10, P1
47464    BRAND U, 2000, THESIS KINGS COLL LO
47465    CREFFIELD CE, 1995, PHYS REV LETT, V75, P517
47466    DEVILLIERS GD, 1999, INVERSE PROBL, V15, P615
47467    DEVILLIERS GD, 2001, INVERSE PROBL, V17, P1163
47468    GROCHMALICKI J, 1993, J OPT SOC AM A, V10, P1074
47469    IGNATOWSKY VS, 1921, T OPT I PETROGRAD, V1, P1
47470    WILSON T, 1984, THEORY PRACTICE SCAN
47471 NR 10
47472 TC 0
47473 SN 0953-8984
47474 J9 J PHYS-CONDENS MATTER
47475 JI J. Phys.-Condes. Matter
47476 PD AUG 26
47477 PY 2002
47478 VL 14
47479 IS 33
47480 BP 7749
47481 EP 7756
47482 PG 8
47483 SC Physics, Condensed Matter
47484 GA 594PW
47485 UT ISI:000178060400015
47486 ER
47487 
47488 PT J
47489 AU Huang, DB
47490 TI A stable discretization on attractors of the damped and driven
47491    periodically sine-Gordon equation
47492 SO DYNAMIC SYSTEMS AND APPLICATIONS
47493 DT Article
47494 AB In this paper, the rationality of numerical schemes for continuous
47495    systems is studied from viewpoint of dynamics by investigating the
47496    damped and driven periodically sine-Gordon equation. The existence and
47497    convergence of attractors under its spectral discretization are showed,
47498    and such results throw light on the modal truncation of the sine-Gordon
47499    equation which was used in the previous literature.
47500 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
47501 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
47502 CR BIRNIR B, 1994, COMMUN MATH PHYS, V162, P539
47503    BISHOP AR, 1990, PHYS LETT A, V144, P117
47504    BROOMHEAD DS, 1992, DYNAMICS NUMERICS DY
47505    CALINI A, 1996, PHYSICA D, V89, P227
47506    CHEPYZHOV VV, 1994, J MATH PURE APPL, V73, P291
47507    DETTORI L, 1995, SPECTRAL APPROXIMATI
47508    GHIDAGLIA JM, 1987, J MATH PURE APPL, V66, P273
47509    GILL TL, 1992, SIAM J MATH ANAL, V23, P1204
47510    GRAUER R, 1992, PHYSICA D, V56, P165
47511    HALE JK, 1988, MATH COMPUT, V50, P89
47512    HALE JK, 1994, CONT MATH, V172, P1
47513    HARAUX A, 1988, COMMUN PART DIFF EQ, V13, P1383
47514    RAUGEL G, 1990, CR HEBD ACAD SCI, V310, P85
47515    STUART AM, 1996, DYNAMICAL SYSTEMS NU
47516    TEMAM R, 1988, INFINITE DIMENSIONAL
47517 NR 15
47518 TC 1
47519 SN 1056-2176
47520 J9 DYN SYST APPL
47521 JI Dyn. Syst. Appl.
47522 PD MAR
47523 PY 2002
47524 VL 11
47525 IS 1
47526 BP 127
47527 EP 141
47528 PG 15
47529 SC Mathematics, Applied; Mathematics
47530 GA 592GK
47531 UT ISI:000177928400011
47532 ER
47533 
47534 PT J
47535 AU Ding, YP
47536    Su, QD
47537    Wu, QS
47538 TI Ant Colony Algorithm in Chemistry and its application in first
47539    derivative fluorescent spectra analyzing
47540 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
47541 DT Article
47542 DE Ant Colony Algorithm; derivative fluorescent spectra; phenylalanine;
47543    tyrosine; tryptophan
47544 AB A new method of chemometrics - Ant Colony Algorithm in Chemistry has
47545    been developed. In this paper, the evaluation, function, the parameter
47546    choice and the basic principle have been discussed. The proposed method
47547    has been applied to the analysis for first-derivative fluorescent mixed
47548    spectra of tryptophan, tyrosine and phenylalanine, and the relative
47549    errors are within +/-5%. The new method, has obvious superiority on the
47550    sides of the convergence speed and,calculation precision as compared
47551    with Partial Last Squares(PLS) and Genetic Algorithms(GA).
47552 C1 Univ Sci & Technol China, Dept Chem, Hefei 230026, Peoples R China.
47553    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
47554    Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
47555 RP Ding, YP, Univ Sci & Technol China, Dept Chem, Hefei 230026, Peoples R
47556    China.
47557 CR BONABEAU E, 2000, NATURE, V406, P39
47558    COLORNI A, 1991, P 1 EUR C ART LIF, P134
47559    DING YP, 2001, SPECTROSC SPECT ANAL, V21, P212
47560    DING YP, 2002, CHEMISTRY, V65, P257
47561    GAMBARDELLA LM, 1999, NEW IDEAS OPTIMIZATI, P63
47562    HEUSSE M, 1998, ADV COMPLEX SYST, V1, P237
47563    KRIEGER MJB, 2000, NATURE, V406, P992
47564 NR 7
47565 TC 0
47566 SN 0251-0790
47567 J9 CHEM J CHINESE UNIV-CHINESE
47568 JI Chem. J. Chin. Univ.-Chin.
47569 PD SEP
47570 PY 2002
47571 VL 23
47572 IS 9
47573 BP 1695
47574 EP 1697
47575 PG 3
47576 SC Chemistry, Multidisciplinary
47577 GA 594NL
47578 UT ISI:000178056800016
47579 ER
47580 
47581 PT J
47582 AU Lei, ZS
47583    Ren, ZM
47584    Zhang, BW
47585    Deng, K
47586 TI Model experiment of meniscus temperature fluctuation during continuous
47587    casting mold oscillation
47588 SO ACTA METALLURGICA SINICA
47589 DT Article
47590 DE continuous casting; meniscus; temperature fluctuation; mold oscillation
47591 ID STEEL SLABS
47592 AB The temperature at the meniscus during continuous casting was measured
47593    under mold oscillation by model experiments. It is found that the
47594    temperature of meniscus varied periodically along with mold
47595    oscillation. According to the experiments, the temperature fluctuation
47596    of meniscus decreases with increasing the mold oscillation frequency,
47597    decreasing the mold oscillation amplitude, cooling density, and contact
47598    pressure between mold and solidification shell. It is considered that
47599    the temperature fluctuation of meniscus is a key factor for the surface
47600    defect formation of continuous casting billets. Based on the
47601    phenomenon, the mechanisms of improving surface quality of continuous
47602    casting billets including high frequency and low amplitude mold
47603    oscillation, soft-contact mold electromagnetic continuous casting, hot
47604    top mold and so on were analyzed.
47605 C1 Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai 200072, Peoples R China.
47606 RP Lei, ZS, Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai
47607    200072, Peoples R China.
47608 CR ASAI S, 1989, TETSU TO HAGANE, V75, P32
47609    CAI KK, 1990, CONTINUOUS CASTING S, P284
47610    CHENG CG, 2000, STEELMAKING, V16, P55
47611    DENG K, 1999, ACTA METALL SIN, V35, P1112
47612    LI XK, 1992, IRON STEEL, V27, P20
47613    REN ZM, 1999, ACTA METALL SIN, V35, P851
47614    REN ZM, 2001, ISIJ INT, V41, P981
47615    SAUCEDO IG, 1987, 1987 STEELM C P CHIC, P449
47616    SAUCEDO IG, 1991, 1991 STEELM C P WASH, P79
47617    SUZUKI M, 1991, ISIJ INT, V31, P254
47618    SZEKERES ES, 1996, IRON STEEL ENG, V6, P29
47619    TAKEUCHI E, 1984, METALL TRANS B, V15, P493
47620 NR 12
47621 TC 0
47622 SN 0412-1961
47623 J9 ACTA METALL SIN
47624 JI Acta Metall. Sin.
47625 PD AUG
47626 PY 2002
47627 VL 38
47628 IS 8
47629 BP 877
47630 EP 880
47631 PG 4
47632 SC Metallurgy & Metallurgical Engineering
47633 GA 593DY
47634 UT ISI:000177977000019
47635 ER
47636 
47637 PT J
47638 AU Mo, YW
47639    Okawa, YZ
47640    Inoue, KJ
47641    Natukawa, K
47642 TI Low-voltage and low-power optimization of micro-heater and its on-chip
47643    drive circuitry for gas sensor array
47644 SO SENSORS AND ACTUATORS A-PHYSICAL
47645 DT Article
47646 DE arrays; sensors; microelectromechanical devices; low-voltage and
47647    low-power; CMOS
47648 AB Low-voltage and low-power design is the key issue for the portable
47649    electronics applications and has become the major concern for the
47650    system design. Integrated gas sensor array allows the monolithic
47651    realization of multi-species gas sensing systems. This paper reports
47652    the developments of Si-based micro-machined micro-heater array with
47653    extremely low-power consumption, low-voltage operation, and CMOS
47654    compatibility, and low-voltage and low-power CMOS drive circuitry for
47655    the micro-heaters that can provide large drive current and voltage
47656    swing, and heater temperature is continuously adjustable in the full
47657    temperature range. (C) 2002 Elsevier Science B.V. All rights reserved.
47658 C1 Technol Res Inst Osaka Prefecture, Izumi Shi, Osaka 5941157, Japan.
47659    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
47660 RP Mo, YW, Technol Res Inst Osaka Prefecture, 2-7-1 Ayumi No, Izumi Shi,
47661    Osaka 5941157, Japan.
47662 CR CAVICCHI RE, 1995, APPL PHYS LETT, V66, P812
47663    CAVICCHI RE, 1995, SENSOR ACTUAT B-CHEM, V24, P478
47664    CHUNG W, 1998, T IEE JPN E, V118, P147
47665    FUNG SKH, 1996, SENSOR ACTUAT A-PHYS, V54, P482
47666    GAEDNER JW, 1991, SENSOR ACTUAT B-CHEM, V4, P109
47667    GUIDI V, 1998, SENSOR ACTUAT B-CHEM, V49, P88
47668    LYLE RP, 1997, MICROSTRUCT MICROFAB, V3, P188
47669    NATALE CD, 1995, SENSOR ACTUAT B-CHEM, V24, P808
47670    PERSAUD K, 1982, NATURE, V299, P352
47671    ROSSI C, 1997, SENSOR ACTUAT A-PHYS, V63, P183
47672    SHENG LY, 1998, SENSOR ACTUAT B-CHEM, V49, P81
47673    SHURMER HV, 1990, SENSOR ACTUAT B-CHEM, V1, P256
47674    SUEHLE JS, 1993, IEEE ELECTR DEVICE L, V14, P118
47675    ZARCOMB S, 1984, SENSOR ACTUATOR, V6, P225
47676 NR 14
47677 TC 7
47678 SN 0924-4247
47679 J9 SENSOR ACTUATOR A-PHYS
47680 JI Sens. Actuator A-Phys.
47681 PD AUG 15
47682 PY 2002
47683 VL 100
47684 IS 1
47685 BP 94
47686 EP 101
47687 PG 8
47688 SC Engineering, Electrical & Electronic; Instruments & Instrumentation
47689 GA 590GH
47690 UT ISI:000177809900013
47691 ER
47692 
47693 PT J
47694 AU Gu, JM
47695 TI Identification of 2-acetylpyridine in Xiangjing-8618 rice and in
47696    Yahonkaoluo leaves
47697 SO FOOD CHEMISTRY
47698 DT Article
47699 DE 2-acetylpyridine; scented rice; spice; aroma
47700 ID 2-ACETYL-1-PYRROLINE; ODORANTS
47701 AB 2-Acetylpyridine was established, for the first time, as the
47702    characteristic aroma compound of two plants, Yahonkaoluo leaves (a
47703    spice, Acanthaceae strobilanthus sp.), wild in Mengla county of Yunnan
47704    province of China and Xiangjing-8618 rice (a scented rice, Oryza sativa
47705    L.), cultivated in the south of Jiangsu province of China, by means of
47706    ethylene glycol pre-extraction, porapak Q trapping, GC-MS
47707    identification, sniffing technique after capillary column and
47708    verification by authentic compound. Ethylene glycol, as a
47709    pre-extracting solvent, efficently extracted a micro-basic fraction
47710    containing the "scented rice"-like aroma compound in Yahonkaoluo
47711    leaves. (C) 2002 Published by Elsevier Science Ltd.
47712 C1 Shanghai Univ, Sch Life Sci, Dept Food Sci & Engn, Shanghai 200436, Peoples R China.
47713 RP Gu, JM, Shanghai Univ, Sch Life Sci, Dept Food Sci & Engn, 99 Shangda
47714    Rd, Shanghai 200436, Peoples R China.
47715 CR BUTLER LD, 1976, J CHROMATOGR SCI, V14, P117
47716    BUTTERY RG, 1982, CHEM IND-LONDON, P958
47717    BUTTERY RG, 1983, CHEM IND-LONDON, P478
47718    CERNY C, 1992, Z LEBENSM UNTERS FOR, V194, P322
47719    GU J, 1996, J CHINESE CEREALS OI, V11, P34
47720    GU J, 1999, J SHANGHAI U NATURAL, V5, P154
47721    GUIOCHON G, 1964, ANAL CHEM, V36, P661
47722    HOFMANN T, 1995, J AGR FOOD CHEM, V43, P2195
47723    HOFMANN T, 1998, J AGR FOOD CHEM, V46, P2721
47724    JOHNSON BR, 1971, J AGR FOOD CHEM, V19, P1020
47725    JUNK GA, 1974, J CHROMATOGR, V99, P745
47726    KLINGSBERG E, 1960, CHEM HETEROCYCLIC CO
47727    KOVATS E, 1958, HELV CHIM ACTA, V41, P1915
47728    SAKODYNSKII K, 1974, CHROMATOGRAPHIA, V7, P339
47729    YAJIMA I, 1979, AGR BIOL CHEM TOKYO, V43, P2425
47730 NR 15
47731 TC 0
47732 SN 0308-8146
47733 J9 FOOD CHEM
47734 JI Food Chem.
47735 PD AUG
47736 PY 2002
47737 VL 78
47738 IS 2
47739 BP 163
47740 EP 166
47741 PG 4
47742 SC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics
47743 GA 590EC
47744 UT ISI:000177804500004
47745 ER
47746 
47747 PT J
47748 AU Ye, ZM
47749    Kettle, RJ
47750    Li, LY
47751    Schafer, BW
47752 TI Buckling behavior of cold-formed zed-purlins partially restrained by
47753    steel sheeting
47754 SO THIN-WALLED STRUCTURES
47755 DT Article
47756 DE cold-formed; purlin; steel; thin-walled; restrained; sheeting;
47757    buckling; instability
47758 ID GENERALIZED BEAM THEORY
47759 AB This paper presents a study on the buckling behaviour of
47760    purlin-sheeting systems under wind uplift loading. The restraint
47761    provided by the sheeting to the purlin is modeled by using two springs
47762    representing the translational and rotational restraints. The analysis
47763    is performed using finite strip methods in which the pre-buckling
47764    stress is calculated based on the same model used for the buckling
47765    analysis rather than taken as the 'pure bending' stress. The results
47766    obtained from this study show that, for both local and distortional
47767    buckling, the restraints have significant influence on the critical
47768    loads through their influence on the pre-buckling stress rather than
47769    directly on the buckling modes. While for lateral-torsional buckling,
47770    the influence of the restraints on the critical loads is mainly due to
47771    their influence on the buckling modes rather than the pre-buckling
47772    stress. (C) 2002 Elsevier Science Ltd. All rights reserved.
47773 C1 Aston Univ, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands, England.
47774    Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R China.
47775    Johns Hopkins Univ, Dept Civil Engn, Baltimore, MD 21218 USA.
47776 RP Li, LY, Aston Univ, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands,
47777    England.
47778 CR CHEUNG YK, 1976, FINITE STRIP METHOD
47779    DAVIES JM, 1994, J CONSTR STEEL RES, V31, P187
47780    DAVIES JM, 1994, J CONSTR STEEL RES, V31, P221
47781    DAVIES JM, 2000, J CONSTR STEEL RES, V55, P267
47782    GOTLURU BP, 2000, THIN WALL STRUCT, V37, P127
47783    HANCOCK G, 1997, STEEL CONSTRUCTION, V15, P2
47784    HANCOCK GJ, 1994, DESIGN COLD FORMED S
47785    LEACH P, 1993, STRUCTURAL ENG, V71, P250
47786    MOORE DB, 1988, LOAD TESTS FULL SCAL
47787    RHODES J, 1993, 089 SCI
47788    SCHAFER BW, 1997, THESIS CORNELL U ITH
47789    SCHAFER BW, 2001, ELASTIC BUCKLING ANA
47790    TOMA T, 1994, J CONSTR STEEL RES, V31, P149
47791    TRAHAIR NS, 1993, FLEXURAL TORSIONAL B
47792    WALKER AC, 1975, DESIGN ANAL COLD FOR
47793    YE ZM, IN PRESS COMPUTERS S
47794 NR 16
47795 TC 4
47796 SN 0263-8231
47797 J9 THIN WALL STRUCT
47798 JI Thin-Walled Struct.
47799 PD OCT
47800 PY 2002
47801 VL 40
47802 IS 10
47803 BP 853
47804 EP 864
47805 PG 12
47806 SC Engineering, Civil
47807 GA 588QV
47808 UT ISI:000177712900003
47809 ER
47810 
47811 PT J
47812 AU Chu, BL
47813    Liu, XR
47814    Wang, XJ
47815    Zhang, JH
47816    Jiang, XY
47817 TI Luminescence properties of Pr3+ and energy transfer characteristics of
47818    Pr3+-> Gd3+ in CaSiO3
47819 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
47820 DT Article
47821 DE Pr3+; Gd3+; CaSiO3; luminescence spectrum; concentration quenching;
47822    energy transfer
47823 ID PR-3+
47824 AB The excitation spectrum and the emission spectrum of Pr3+ in CaSiO3
47825    under the room temperature were studied. The emission spectrum was
47826    constituted of three emission bands, corresponding to the emissions of
47827    the lowest 4f5d states to the H-3(4), H-3(6), (1)G(4) of the 4f(2)
47828    states. The emission of the P-3(0) and D-1(2) were not observed.,The
47829    concentration quenching of Pr3+ was due to the radiative and
47830    nonradiative energy transfer. There was energy transfer from Pr3+ to
47831    Gd3+ with the transfer rate of 10% of the Pr3+ emission rate.
47832 C1 Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Lab Excited State Proc, Changchun 130021, Peoples R China.
47833    Shanghai Univ, Dept Malerial Sci, Shanghai 201800, Peoples R China.
47834 RP Chu, BL, Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Lab
47835    Excited State Proc, Changchun 130021, Peoples R China.
47836 CR BLASSE G, 1989, J PHYS CHEM SOLIDS, V50, P583
47837    CARNALL WT, 1971, J CHEM PHYS, V54, P1476
47838    DEVRIES AJ, 1986, MATER RES BULL, V21, P683
47839    LIU XR, 1989, CHINESE J LUMINESCEN, V10, P177
47840    LIU XR, 1989, CHINESE J LUMINESCEN, V10, P6
47841    VANDERVOORT D, 1991, J PHYS CHEM SOLIDS, V52, P1149
47842    VANEIJK CWE, 1996, P SOC PHOTO-OPT INS, V2706, P158
47843 NR 7
47844 TC 1
47845 SN 1000-0593
47846 J9 SPECTROSC SPECTR ANAL
47847 JI Spectrosc. Spectr. Anal.
47848 PD AUG
47849 PY 2002
47850 VL 22
47851 IS 4
47852 BP 542
47853 EP 544
47854 PG 3
47855 SC Spectroscopy
47856 GA 590EE
47857 UT ISI:000177804700004
47858 ER
47859 
47860 PT J
47861 AU Voron'ko, YK
47862    Sobol', AA
47863    Ushakov, SN
47864    Jiang, GC
47865    You, JL
47866 TI Phase transformations and melt structure of calcium metasilicate
47867 SO INORGANIC MATERIALS
47868 DT Article
47869 AB The beta --> alpha phase transition, melting, crystallization, and
47870    vitrification of calcium metasilicate were studied by high-temperature
47871    Raman scattering spectroscopy. The results demonstrate that, in the
47872    course of melting, the [Si3O9] metasilicate rings, which form the
47873    structural basis of the a phase, transform mainly into [SiO3](infinity)
47874    anions. The structural similarity or dissimilarity of the CaO . SiO2
47875    melt to crystalline phases is shown to have a crucial effect on its
47876    crystallization/vitrification behavior.
47877 C1 Russian Acad Sci, Inst Gen Phys, Res Ctr Laser Mat & Technol, Moscow 119991, Russia.
47878    Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
47879 RP Voron'ko, YK, Russian Acad Sci, Inst Gen Phys, Res Ctr Laser Mat &
47880    Technol, Ul Vavilova 38, Moscow 119991, Russia.
47881 CR IGUCHI Y, 1981, CAN METALL Q, V20, P51
47882    LAZAREV AN, 1975, KOLEBATELNYE SPEKTRY, P296
47883    MYSEN BO, 1980, AM MINERAL, V65, P690
47884    SWAMY V, 1997, J AM CERAM SOC, V80, P2237
47885    TOROPOV NA, 1969, DIAGRAMMY SOSTOYANIY, P38
47886    VANWAZER JR, 1962, PHOSPHORUS ITS COMPO
47887    VORONKO YK, 1988, ROST KRIST, V16, P178
47888    VORONKO YK, 1992, IZV AKAD NAUK NEORG, V28, P576
47889    WEN SL, 1981, J CHEM SOC CHEM COMM, P662
47890    YANAMAKA T, 1981, ACTA CRYSTALLOGR B, V37, P1010
47891 NR 10
47892 TC 0
47893 SN 0020-1685
47894 J9 INORG MATER-ENGL TR
47895 JI Inorg. Mater.
47896 PD AUG
47897 PY 2002
47898 VL 38
47899 IS 8
47900 BP 825
47901 EP 830
47902 PG 6
47903 SC Materials Science, Multidisciplinary
47904 GA 591DQ
47905 UT ISI:000177864800010
47906 ER
47907 
47908 PT J
47909 AU Wu, QS
47910    Zheng, NW
47911    Ding, YP
47912    Li, YD
47913 TI Micelle-template inducing synthesis of winding ZnS nanowires
47914 SO INORGANIC CHEMISTRY COMMUNICATIONS
47915 DT Article
47916 DE zinc sulfide; nanowires; template synthesis; reverse micelle
47917 ID BUILDING-BLOCKS; BACO3 NANOWIRES; MICROEMULSIONS; CDS
47918 AB Semiconductor single-crystal ZnS nanowires with diameters 40-80 nm and
47919    lengths up to tens of micron, which can bend and wind, have been
47920    synthesis by the reaction of Zn2+ with S2- in reverse micelle for the
47921    inducing template. The formation mechanism of ZnS nanowires has been
47922    studied. The results indicated that the formation of ZnS nanowires
47923    probably was via the process of the directional aggregation and
47924    orientated growth of the ZnS nanoparticles. (C) 2002 Elsevier Science
47925    B.V. All rights reserved.
47926 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
47927    Univ Sci & Technol China, Dept Chem, Hefei 230026, Peoples R China.
47928    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
47929 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
47930 CR CHAE WS, 2001, CHEM PHYS LETT, V341, P279
47931    CUI Y, 2001, SCIENCE, V291, P851
47932    CUI Y, 2001, SCIENCE, V293, P1289
47933    DUAN XF, 2000, ADV MATER, V12, P298
47934    GE SH, 2001, J APPL PHYS, V90, P509
47935    HUANG MH, 2001, SCIENCE, V292, P1897
47936    HUANG Y, 2001, SCIENCE, V294, P1313
47937    JIANG X, CHEM MAT, V13, P1213
47938    LI Y, 1999, MOL CRYST LIQ CRYS A, V337, P193
47939    LI YD, 2001, J AM CHEM SOC, V123, P9904
47940    QI LM, 1997, J PHYS CHEM B, V101, P3460
47941    WALSH D, 1994, SCIENCE, V264, P1576
47942    WU QS, 2000, CHEM J CHINESE U, V21, P1471
47943    WU QS, 2000, J MEMBRANE SCI, V172, P199
47944    WU QS, 2001, CHEM J CHINESE U, V22, P898
47945    WU YY, 2001, ADV MATER, V13, P1487
47946    ZHENG NW, 2000, CHEM LETT       0605, P638
47947 NR 17
47948 TC 37
47949 SN 1387-7003
47950 J9 INORG CHEM COMMUN
47951 JI Inorg. Chem. Commun.
47952 PD SEP
47953 PY 2002
47954 VL 5
47955 IS 9
47956 BP 671
47957 EP 673
47958 PG 3
47959 SC Chemistry, Inorganic & Nuclear
47960 GA 591CZ
47961 UT ISI:000177863300011
47962 ER
47963 
47964 PT J
47965 AU Xue, Y
47966    Dong, LY
47967    Yuan, YW
47968    Dai, SQ
47969 TI The effect of the relative velocity on traffic flow
47970 SO COMMUNICATIONS IN THEORETICAL PHYSICS
47971 DT Article
47972 DE optimal velocity model; relative velocity; jamming transition; traffic
47973    flow
47974 ID SOLITON; CONGESTION; JAMS
47975 AB The optimal velocity model of traffic is extended to take the relative
47976    velocity into account, The traffic behavior is investigated numerically
47977    and analytically with this model. It is shown that the car interaction
47978    with the relative velocity can effect the stability of the traffic flow
47979    and raise critical density. The jamming transition between the freely
47980    moving and jamming phases is investigated with the linear stability
47981    analysis and nonlinear perturbation methods. The traffic jam is
47982    described by the kink solution of the modified Korteweg-de Vries
47983    equation, The theoretical result is in good agreement with the
47984    simulation.
47985 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
47986    Guangxi Univ, Dept Phys, Nanning 530003, Peoples R China.
47987 RP Xue, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
47988    Peoples R China.
47989 CR BANDO M, 1995, PHYS REV E, V51, P1035
47990    CHOWDHURY D, 2000, PHYS REP, V329, P199
47991    GAZIS DC, 1961, OPER RES, V9, P545
47992    KERNER BS, 1993, PHYS REV E, V48, P2335
47993    KOMATSU TS, 1995, PHYS REV E B, V52, P5574
47994    KURTZE DA, 1995, PHYS REV E A, V52, P218
47995    MURAMATSU M, 1999, PHYS REV E, V60, P180
47996    TREIBER M, 2000, PHYS REV E A, V62, P1805
47997 NR 8
47998 TC 3
47999 SN 0253-6102
48000 J9 COMMUN THEOR PHYS
48001 JI Commun. Theor. Phys.
48002 PD AUG 15
48003 PY 2002
48004 VL 38
48005 IS 2
48006 BP 230
48007 EP 234
48008 PG 5
48009 SC Physics, Multidisciplinary
48010 GA 590RN
48011 UT ISI:000177836000023
48012 ER
48013 
48014 PT J
48015 AU Zheng, YG
48016    Liu, ZR
48017    Huang, DB
48018 TI Discrete soliton-like for KdV prototypes
48019 SO CHAOS SOLITONS & FRACTALS
48020 DT Article
48021 ID NETWORKS; BREATHERS; EXISTENCE
48022 AB In this paper we consider space and time discretization of KdV
48023    equation, that is, KdV prototypes by using finite difference
48024    discretization. The existence of discrete soliton-likes for the KdV
48025    prototypes is proved by anti-integrable limit method [S. Aubry, G.
48026    Abramovici, Physica D (1990) 199]. Some of their properties are
48027    discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.
48028 C1 Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China.
48029    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
48030 RP Zheng, YG, Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China.
48031 CR AUBRY S, 1990, PHYSICA D, V43, P199
48032    AUBRY S, 1997, PHYSICA D, V103, P201
48033    BAESENS C, 1997, NONLINEARITY, V10, P931
48034    MACKAY RS, 1994, NONLINEARITY, V7, P1623
48035    MACKAY RS, 1995, PHYSICA D, V82, P243
48036    STERLING D, 1998, PHYS LETT A, V241, P46
48037    ZEIDLER E, 1986, NONLINEAR FUNCTIONAL
48038 NR 7
48039 TC 0
48040 SN 0960-0779
48041 J9 CHAOS SOLITON FRACTAL
48042 JI Chaos Solitons Fractals
48043 PD OCT
48044 PY 2002
48045 VL 14
48046 IS 7
48047 BP 989
48048 EP 994
48049 PG 6
48050 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
48051 GA 589QW
48052 UT ISI:000177772700006
48053 ER
48054 
48055 PT J
48056 AU Xiao, Y
48057    Wang, G
48058    Liu, H
48059    Zhao, H
48060    Zhang, J
48061    Sun, C
48062    Wu, M
48063 TI Treatment of H-acid wastewater by photo-Fenton reagent combined with a
48064    biotreatment process: A study on optimum conditions of pretreatment by
48065    a photo-Fenton process
48066 SO BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY
48067 DT Article
48068 ID DEGRADATION
48069 C1 Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China.
48070    Tsing Hua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China.
48071    Shanghai Univ, Dept Chem, Shanghai 200073, Peoples R China.
48072 RP Xiao, Y, Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023,
48073    Peoples R China.
48074 CR BOX GE, 1978, STAT EXPT INTRO DESI
48075    CHEN RZ, 1997, ENVIRON SCI TECHNOL, V31, P2399
48076    LI J, 1987, DESIGN PROCESS EXPT
48077    LIPCZYNSKAKOCHA.E, 1991, CHEMOSPHERE, V22, P529
48078    OLIVEROS E, 1997, CHEM ENG PROCESS, V36, P397
48079    PIGNATELLO JJ, 1992, ENVIRON SCI TECHNOL, V26, P944
48080    PIGNATELLO JJ, 1995, WATER RES, V29, P1837
48081    WEI FX, 1989, MONITOR ANAL PROCESS
48082    ZHU WP, 1996, ENV SCI, V4, P7
48083 NR 9
48084 TC 2
48085 SN 0007-4861
48086 J9 BULL ENVIRON CONTAM TOXICOL
48087 JI Bull. Environ. Contam. Toxicol.
48088 PD SEP
48089 PY 2002
48090 VL 69
48091 IS 3
48092 BP 430
48093 EP 435
48094 PG 6
48095 SC Environmental Sciences; Toxicology
48096 GA 588LC
48097 UT ISI:000177702100019
48098 ER
48099 
48100 PT J
48101 AU He, JH
48102 TI Generalized variational principles for thermopiezoelectricity
48103 SO ARCHIVE OF APPLIED MECHANICS
48104 DT Article
48105 DE piezoelectricity; elasticity; variational technique; semi-inverse
48106    method; FEM
48107 ID UNKNOWN SHAPE; FLOW; TURBOMACHINERY; AERODYNAMICS
48108 AB Based on the semi-inverse method of establishing variational principles
48109    proposed in [10], a family of variational principles (non Gurtin-type
48110    and not involving convolutions) for thermopiezoelectricity is deduced
48111    directly from the field equations and boundary/initial conditions.
48112    Present theory provides a more complete theoretical basis for the
48113    finite element applications and other direct variational methods such
48114    as Ritz's, Trefftz's and Kantorovitch's methods.
48115 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
48116 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
48117    Shanghai 200072, Peoples R China.
48118 CR ASHIDA F, 1998, J APPL MECH-T ASME, V65, P367
48119    CHANDRASEKHARAI.DS, 1988, ACTA MECH, V71, P39
48120    CHEN TY, 1998, P ROY SOC LOND A MAT, V454, P873
48121    FARES ME, 1999, INT J NONLINEAR MECH, V34, P685
48122    HE JH, 1997, INT J TURBO JET ENG, V14, P23
48123    HE JH, 1998, APPL MATH MODEL, V22, P395
48124    HE JH, 1998, COMMUN NONLINEAR SCI, V3, P215
48125    HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154
48126    HE JH, 1999, APPL MATH MECH-ENGL, V20, P545
48127    HE JH, 1999, INT J TURBO JET ENG, V16, P19
48128    HE JH, 1999, SHANGHAI LIGONG DAXU, V21, P356
48129    HE JH, 2000, AIRCR ENG AEROSP TEC, V72, P18
48130    HE JH, 2000, INT J NONLINEAR SCI, V1, P133
48131    LIU GL, 1988, COMPUTATIONAL FLUID, P473
48132    MAUGIN GA, 1984, MECH BEHAV ELECTROMA
48133    MAUGIN GA, 1988, CONTINUUM MECH ELECT
48134    SANTILLI RM, 1978, FDN THEORETICAL MECH, V1
48135    WASHIZU K, 1982, VARATIONAL METHODS E
48136 NR 18
48137 TC 0
48138 SN 0939-1533
48139 J9 ARCH APPL MECH
48140 JI Arch. Appl. Mech.
48141 PD JUL
48142 PY 2002
48143 VL 72
48144 IS 4-5
48145 BP 248
48146 EP 256
48147 PG 9
48148 SC Mechanics
48149 GA 589AC
48150 UT ISI:000177734400003
48151 ER
48152 
48153 PT J
48154 AU Wan, TQ
48155    Gu, P
48156    Che, FX
48157 TI Discovery of two novel functional genes from differentiation of neural
48158    stem cells in the striatum of the fetal rat
48159 SO NEUROSCIENCE LETTERS
48160 DT Article
48161 DE neural stem cells; striatum; differentiation; differential expression;
48162    differential display polymerase chain reaction; expressed sequence tag
48163 ID CENTRAL-NERVOUS-SYSTEM; MATURATION; FOREBRAIN; RECEPTOR; NEURONS
48164 AB Neural stem cells (NSC) are capable of differentiating into neurons and
48165    glia. However, the molecular mechanisms regulating NSC differentiation
48166    are not well understood. We have used the differential display
48167    polymerase chain reaction to analyze the differentially expressed genes
48168    of NSC from Sprague-Dawley rat striatum. Twelve differentially
48169    expressed sequence tags (ESTs) have been discovered and two of them,
48170    SHD10 and SHD11, were confirmed to be positive by reverse Northern blot
48171    techniques. Sequencing analyses showed that SHD10 shared a 94%
48172    (547/581) homology with mouse EST B1687817, but its biological function
48173    has not been reported. SHD11 shared a 91% (512/562) homology with mouse
48174    EST BG172336. It encodes an open reading frame containing 117 amino
48175    acids. Analysis of protein sequence indicated that it has a 98%
48176    homology with dendritic cell factor (gi18203393). Our research
48177    primarily discovered that these two genes are associated with
48178    differentiation of NSC. How they function in the process of
48179    differentiation needs further study. (C) 2002 Elsevier Science Ireland
48180    Ltd. All rights reserved.
48181 C1 Shanghai Univ, Sch Life Sci, Lab Neural Mol Biol, Shanghai 200436, Peoples R China.
48182 RP Wan, TQ, Shanghai Univ, Sch Life Sci, Lab Neural Mol Biol, 99 Shangda
48183    Rd, Shanghai 200436, Peoples R China.
48184 CR BAIN G, 2000, GENOMICS, V1, P127
48185    BENRAISS A, 2001, J NEUROSCI, V21, P6718
48186    BONNI A, 1997, SCIENCE, V278, P477
48187    DELCERRO M, 2000, INVEST OPHTH VIS SCI, V41, P3142
48188    DIETZ AB, 2000, BIOCHEM BIOPH RES CO, V275, P731
48189    GADIENT RA, 1998, BRAIN RES, V798, P140
48190    GESCHWIND DH, 2001, NEURON, V29, P325
48191    HUGHES SM, 1988, NATURE, V335, P70
48192    KOBLAR SA, 1998, P NATL ACAD SCI USA, V95, P3178
48193    LIU SY, 2000, J 3 MIL MED U, V22, P26
48194    MARMUR R, 1998, J NEUROSCI, V18, P9800
48195    MENG JH, 2000, J 4 MIL MED U, V21, P1026
48196    PINCUS DW, 1998, ANN NEUROL, V43, P576
48197    SATOH M, 2000, NEUROSCI LETT, V284, P143
48198    SEILER MJ, 1998, INVEST OPHTH VIS SCI, V39, P2121
48199    SHIMAZAKI T, 2001, J NEUROSCI, V21, P7642
48200    TEMPLE S, 2001, NATURE, V414, P112
48201    TROPEPE V, 1999, DEV BIOL, V208, P166
48202 NR 18
48203 TC 0
48204 SN 0304-3940
48205 J9 NEUROSCI LETT
48206 JI Neurosci. Lett.
48207 PD AUG 23
48208 PY 2002
48209 VL 329
48210 IS 1
48211 BP 101
48212 EP 105
48213 PG 5
48214 SC Neurosciences
48215 GA 586ZT
48216 UT ISI:000177616600025
48217 ER
48218 
48219 PT J
48220 AU Zhou, SP
48221 TI Oblique vortex lattice implies unconventional pairing symmetry in high
48222    temperature superconductors
48223 SO JOURNAL OF SUPERCONDUCTIVITY
48224 DT Article
48225 DE pairing symmetries; Ginzburg-Landau model; vortex lattice
48226 ID TIME-REVERSAL SYMMETRY; GINZBURG-LANDAU THEORY; D-WAVE SUPERCONDUCTORS;
48227    THERMAL-CONDUCTIVITY; II SUPERCONDUCTORS; YBA2CU3O7; VORTICES; STATE;
48228    MODEL; BI2SR2CACU2O8
48229 AB The symmetry of order parameters of YBa2Cu3O7-delta high temperature
48230    superconductor was studied with the Ginzburg-Landau theory. The vortex
48231    lattice of a YBa2Cu3O7 superconductor is oblique at a temperature well
48232    below the transition temperature T-c, where the mixed s-d(x2-y2) state
48233    is expected to have the lowest energy, whereas very close to T-c, the
48234    d(x2-y2)-wave is slightly lower in energy, and a triangular vortex
48235    lattice recovers. The coexistence and the coupling between the s- and
48236    d-waves would account for the unusual behaviors such as the upward
48237    curvature of the upper critical field curve H-C2(T).
48238 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
48239 RP Zhou, SP, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
48240 CR ABRIKOSOV AA, 1957, ZH EKSP TEOR FIZ, V32, P1442
48241    ABRIKOSOV AA, 1957, ZH EKSP TEOR FIZ, V5, P1174
48242    ANDERSON PW, 1987, SCIENCE, V235, P1196
48243    AUBIN H, 1999, PHYS REV LETT, V82, P624
48244    BERLINSKY AJ, 1995, PHYS REV LETT, V75, P2200
48245    CHAKRAVARTY S, 1993, SCIENCE, V261, P337
48246    DORIA MM, 1989, PHYS REV B, V39, P9573
48247    DU Q, 1993, SIAM J APPL MATH, V53, P689
48248    HEEB R, 1996, PHYS REV B, V54, P9385
48249    JOYNT R, 1990, PHYS REV B, V41, P4271
48250    KEIMER B, 1994, J APPL PHYS 2, V76, P6778
48251    KIRTLEY JR, 1996, PHYS REV LETT, V76, P1336
48252    KLEINER R, 1996, PHYS REV LETT, V76, P2161
48253    KOUZNETSOV KA, 1997, PHYS REV LETT, V79, P3050
48254    KRISHANA K, 1997, SCIENCE, V277, P83
48255    LAUGHLIN RB, 1998, PHYS REV LETT, V80, P5188
48256    LEE PA, 1987, PHYS REV LETT, V58, P2891
48257    LEI B, 2000, PHYS REV B, V62, P8687
48258    LI OP, 1993, PHYS REV B, V48, P437
48259    LIECHTENSTEIN AI, 1995, PHYS REV LETT, V74, P2303
48260    LYONS KB, 1990, PHYS REV LETT, V64, P2949
48261    MILLIS AJ, 1994, PHYS REV B, V49, P15408
48262    MONTHOUX P, 1994, PHYS REV B, V49, P4261
48263    MONTHOUX P, 1994, PHYS REV LETT, V72, P1874
48264    PALSTRA TTM, 1988, PHYS REV LETT, V61, P1662
48265    REN Y, 1995, PHYS REV LETT, V74, P3680
48266    RUGGIERO S, 1982, PHYS REV B, V26, P4897
48267    SOININEN PI, 1994, PHYS REV B, V50, P13883
48268    SPIELMAN S, 1990, PHYS REV LETT, V65, P123
48269    TINKHAM M, 1964, GROUP THEORY QUANTUM
48270    TSUEI CC, 1994, PHYS REV LETT, V72, P1084
48271    TSUEI CC, 1994, PHYS REV LETT, V73, P593
48272    VARMA CM, 2000, PHYS REV B, V61, R3804
48273    VOLOVIK GE, 1993, JETP LETT, V58, P469
48274    WEBER HJ, 1990, SOLID STATE COMMUN, V76, P511
48275    WELP U, 1989, PHYS REV LETT, V62, P1908
48276    WOLLMAN DA, 1993, PHYS REV LETT, V71, P2134
48277    ZHANG FC, 1988, PHYS REV B, V37, P3759
48278    ZHANG SC, 1997, SCIENCE, V275, P1089
48279    ZHOU SP, 2000, PHYSICA C, V339, P258
48280    ZHOU SP, 2001, CHINESE PHYS, V10, P541
48281 NR 41
48282 TC 0
48283 SN 0896-1107
48284 J9 J SUPERCOND
48285 JI J. Supercond.
48286 PD AUG
48287 PY 2002
48288 VL 15
48289 IS 4
48290 BP 307
48291 EP 313
48292 PG 7
48293 SC Physics, Applied; Physics, Condensed Matter
48294 GA 588AL
48295 UT ISI:000177677200012
48296 ER
48297 
48298 PT J
48299 AU Tian, ZX
48300    Tang, LM
48301    Liu, ZX
48302 TI Element functions of discrete operator difference method
48303 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
48304 DT Article
48305 DE discrete operator difference method; element function; reproduce exactly
48306 AB The discrete scheme called discrete operator difference for
48307    differential equations was given. Several difference elements for plate
48308    bending problems and plane problems were given. By investigating these
48309    elements, the ability of the discrete forms expressing to the element
48310    functions was talked about. In discrete operator difference method, the
48311    displacements of the elements can be reproduced exactly in the discrete
48312    forms whether the displacements are conforming or not. According to
48313    this point, discrete operator difference method is a method with good
48314    performance.
48315 C1 Shanghai Univ, Ctr CIMS & Robot, Shanghai 200072, Peoples R China.
48316    Dalian Univ Technol, Dept Engn Mech, Dalian 116024, Peoples R China.
48317    Shanghai Jiao Tong Univ, Dept Engn Mech, Shanghai 200030, Peoples R China.
48318 RP Tian, ZX, Shanghai Univ, Ctr CIMS & Robot, Shanghai 200072, Peoples R
48319    China.
48320 CR CHEN ZY, 1993, NUMERICAL MATH J CHI, V15, P182
48321    LI RH, 1994, GEN DIFFERENCE METHO
48322    TANG LM, 1973, J DALIAN U TECHNOLOG, V13, P27
48323    TANG LM, 1973, J DALIAN U TECHNOLOG, V13, P7
48324    TANG LM, 2001, J DALIAN U TECHNOLOG, V41, P1
48325    TIAN ZX, 2000, CHINESE J COMPUTATIO, V17, P163
48326 NR 6
48327 TC 0
48328 SN 0253-4827
48329 J9 APPL MATH MECH-ENGL ED
48330 JI Appl. Math. Mech.-Engl. Ed.
48331 PD JUN
48332 PY 2002
48333 VL 23
48334 IS 6
48335 BP 619
48336 EP 626
48337 PG 8
48338 SC Mathematics, Applied; Mechanics
48339 GA 586FT
48340 UT ISI:000177574500001
48341 ER
48342 
48343 PT J
48344 AU He, JH
48345 TI A note on delta-perturbation expansion method
48346 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
48347 DT Article
48348 DE perturbation method; artificial parameter; nonlinear equation; homotropy
48349 ID STRONGLY NONLINEAR OSCILLATIONS; LINDSTEDT-POINCARE METHODS
48350 AB The Delta-perturbation expansion method, a kind of new perturbation
48351    technique depending upon an artificial parameter Delta was studied. The
48352    study reveals that the method exits some advantages, but also exits
48353    some limitations. To overcome the limitations, the so-called linearized
48354    perturbation method proposed by HE Ji-huan can be powerfully applied.
48355 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, LNM, Inst Mech, Shanghai 200072, Peoples R China.
48356 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, LNM, Inst Mech,
48357    Shanghai 200072, Peoples R China.
48358 CR ACTON JR, 1985, SOLVING EQUATIONS PH
48359    ANDRIANOV I, 2000, INT J NONLINEAR SCI, V1, P327
48360    AWREJCEWICZ J, 1998, ASYMPTOTIC APPROACHE
48361    BENDER CM, 1989, J MATH PHYS, V30, P1447
48362    HE JH, 1999, COMPUT METHOD APPL M, V178, P257
48363    HE JH, 2000, INT J NONLINEAR MECH, V35, P37
48364    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
48365    HE JH, 2000, J SOUND VIB, V229, P1257
48366    HE JH, 2001, INT J NONLINEAR SCI, V2, P257
48367    HE JH, 2001, INT J NONLINEAR SCI, V2, P317
48368    HE JH, 2001, J VIB CONTROL, V7, P631
48369    HE JH, 2002, INT J NONLINEAR MECH, V37, P309
48370    HE JH, 2002, INT J NONLINEAR MECH, V37, P315
48371 NR 13
48372 TC 3
48373 SN 0253-4827
48374 J9 APPL MATH MECH-ENGL ED
48375 JI Appl. Math. Mech.-Engl. Ed.
48376 PD JUN
48377 PY 2002
48378 VL 23
48379 IS 6
48380 BP 634
48381 EP 638
48382 PG 5
48383 SC Mathematics, Applied; Mechanics
48384 GA 586FT
48385 UT ISI:000177574500003
48386 ER
48387 
48388 PT J
48389 AU Chen, DY
48390    Zhang, DJ
48391    Deng, SF
48392 TI Remarks on some solutions of soliton equations
48393 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
48394 DT Article
48395 DE soliton equation; solutions; Hirota method
48396 ID DE VRIES EQUATION
48397 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
48398 RP Chen, DY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
48399 CR CHEN DY, 2002, J PHYS SOC JPN, V71, P658
48400    CHEN DY, 2002, PREPRINT
48401    DENG SF, 2001, J PHYS SOC JPN, V70, P3174
48402    DENG SF, 2002, PREPRINT
48403    KONNO K, 2002, J PHYS SOC JPN, V71, P2071
48404    KOVALYOV M, 1996, APPL MATH LETT, V9, P89
48405    OLEMEDILLA E, 1987, PHYSICA D, V25, P330
48406    TAKAHASHI M, 1989, J PHYS SOC JPN, V58, P3505
48407    TSURU H, 1984, J PHYS SOC JPN, V53, P2908
48408    WADATI M, 1982, J PHYS SOC JPN, V51, P2029
48409    ZHANG DJ, 2002, PREPRINT
48410 NR 11
48411 TC 6
48412 SN 0031-9015
48413 J9 J PHYS SOC JPN
48414 JI J. Phys. Soc. Jpn.
48415 PD AUG
48416 PY 2002
48417 VL 71
48418 IS 8
48419 BP 2072
48420 EP 2073
48421 PG 2
48422 SC Physics, Multidisciplinary
48423 GA 584NN
48424 UT ISI:000177473900046
48425 ER
48426 
48427 PT J
48428 AU Wang, ZM
48429    Xia, YB
48430    Yang, Y
48431    Fang, ZJ
48432    Wang, LJ
48433    Ju, JH
48434    Fan, YM
48435    Zhang, WL
48436 TI Lower gas pressure enhanced diamond nucleation on alumina by microwave
48437    plasma chemical vapor deposition
48438 SO JOURNAL OF INORGANIC MATERIALS
48439 DT Article
48440 DE diamond film; MPCVD; alumina substrates; gas pressure; nucleation
48441 ID FILMS
48442 AB Under lower gas pressure, the high-density nucleation of diamond films
48443    on alumina was successfully achieved by microwave plasma-enhanced
48444    chemical vapor deposition (MPCVD). It was found that the nucleation
48445    density increased with the decreases of gas pressure. Based on these
48446    results, a kinetic model for diamond nucleation in MPCVD system was
48447    proposed. The critical gas pressure corresponding to the highest
48448    nucleation density was also discussed.
48449 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
48450 RP Wang, ZM, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
48451    China.
48452 CR BACHMANN PK, 1988, DIAMOND DIAMOND LIKE, P99
48453    IIJIMA S, 1990, APPL PHYS LETT, V57, P2646
48454    JIANG X, 2000, DIAM RELAT MATER, V9, P1640
48455    MO Y, 1998, J CRYST GROWTH, V191, P459
48456    WANG JJ, 1996, CHINESE PHYS LETT, V13, P473
48457    YUGO S, 1991, APPL PHYS LETT, V58, P1036
48458 NR 6
48459 TC 1
48460 SN 1000-324X
48461 J9 J INORG MATER
48462 JI J. Inorg. Mater.
48463 PD JUL
48464 PY 2002
48465 VL 17
48466 IS 4
48467 BP 765
48468 EP 770
48469 PG 6
48470 SC Materials Science, Ceramics
48471 GA 581TR
48472 UT ISI:000177309800020
48473 ER
48474 
48475 PT J
48476 AU Xu, H
48477    Ni, JS
48478    Zhu, MY
48479    Zhou, BX
48480    Dong, YD
48481    Xiao, XS
48482 TI Crystallization behavior of melt-spun NdFeB permanent magnets
48483 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
48484 DT Article
48485 DE nanocomposite magnet; crystallization behavior; activation energy
48486 ID ND2FE14B/FE3B MAGNET; FIELD TREATMENT
48487 AB The crystallization behavior of melt-spun Nd8.5Fe78Co5Cu1Nb1B6.5
48488    ribbons was investigated using dynamic differential scanning
48489    calorimetry (DSC) and X-ray diffractometry (XRD). It was found that the
48490    as-spun ribbons crystallize in two steps: at first the Nd3Fe62B14 +
48491    alpha-Fe phases are formed and subsequently Nd3Fe62B14 transformed to
48492    Nd2Fe14B and a-Fe upon heating above 680 US. The effective activation
48493    energy of two crystallization peaks are 332.0 kJ/mol and 470.5 kJ/mol,
48494    respectively. As the wheel speed increases, the magnetic properties of
48495    the magnet change obviously. When the wheel speed is 18 m/s, the best
48496    magnetic properties of the magnet was obtained after the sample was
48497    annealed at 690 degreesC for 8 min: B-x = 0.74T, H-i(c) = 421.7 kA/m,
48498    (BH)(max) = 64.5 kJ/m(3).
48499 C1 Shanghai Univ, Inst Mat Sci & Engn, Shanghai 200072, Peoples R China.
48500 CR CHANG WC, 1998, J APPL PHYS, V83, P2147
48501    COEHOORN R, 1988, J PHYS-PARIS, V49, P669
48502    COEHOORN R, 1989, J MAGN MAGN MATER, V80, P101
48503    GAO YH, 1998, J MAGN MAGN MATER, V186, P97
48504    SCHREFL T, 1994, PHYS REV B, V49, P6100
48505    SKOMSKI R, 1993, IEEE T MAGN, V29, P2860
48506    YANG CJ, 1996, IEEE T MAGN 2, V32, P4428
48507    YANG CJ, 1997, J MAGN MAGN MATER, V166, P243
48508 NR 8
48509 TC 1
48510 SN 1003-6326
48511 J9 TRANS NONFERROUS METAL SOC CH
48512 JI Trans. Nonferrous Met. Soc. China
48513 PD AUG
48514 PY 2002
48515 VL 12
48516 IS 4
48517 BP 720
48518 EP 722
48519 PG 3
48520 SC Metallurgy & Metallurgical Engineering
48521 GA 581WL
48522 UT ISI:000177317200034
48523 ER
48524 
48525 PT J
48526 AU Ni, JS
48527    Xu, H
48528    Zhu, MY
48529    Li, Q
48530    Zhou, BX
48531    Dong, YD
48532 TI Nanocrystalline Nd2Fe14B/alpha-Fe permanent magnet
48533 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
48534 DT Article
48535 DE Nd-Fe-B; permanent magnet; nanocrystalline; grain size
48536 ID NANOCOMPOSITE
48537 AB N8.5Fe75Co5Cu1Zr3Nb1B6.5 bonded magnet was prepared by melt-spinning
48538    (v(s) = 18 m/s) and subsequent heat treatment (670 degreesC, 4 min).
48539    Excellent magnetic properties of the bonded magnet were achieved: B-r =
48540    0.68T, H-i(c) = 620.3 kA/m, (BH)(max) = 74 kJ/m(3). The addition of Cu
48541    and Zr elements shows to be advantageous in improving an intrinsic
48542    coercivity and squareness of hysteresis loop, as well as energy
48543    product. It has a remarkable remanence enhancement and the isctropic
48544    saturation remanence ratio M-r/M-s is 0.83.
48545 C1 Shanghai Univ, Inst Mat Sci & Engn, Shanghai 200072, Peoples R China.
48546 CR CHANG WC, 1996, IEEE T MAGN 2, V32, P4425
48547    COEHOORN R, 1989, J MAGN MAGN MATER, V80, P101
48548    ECKART F, 1991, IEEE T MAGN, V27, P3588
48549    JURCZYK M, 1998, J MAGN MAGN MATER, V185, P66
48550    PANAGIOTOPOULOS I, 1996, J APPL PHYS 2A, V79, P4827
48551    XU H, 2001, NEW MAT SCI ENG 2000, P319
48552    YONEYAMA T, 1990, IEEE T MAGN, V26, P1963
48553    ZHANG MG, 1999, ACTA METALL SIN, V35, P777
48554 NR 8
48555 TC 0
48556 SN 1003-6326
48557 J9 TRANS NONFERROUS METAL SOC CH
48558 JI Trans. Nonferrous Met. Soc. China
48559 PD AUG
48560 PY 2002
48561 VL 12
48562 IS 4
48563 BP 723
48564 EP 725
48565 PG 3
48566 SC Metallurgy & Metallurgical Engineering
48567 GA 581WL
48568 UT ISI:000177317200035
48569 ER
48570 
48571 PT J
48572 AU Cheng, XY
48573    Wan, XJ
48574 TI Effect of atomic ordering on environmental embrittlement of (Co,
48575    Fe)(3)V alloy in gaseous hydrogen
48576 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
48577 DT Article
48578 DE (Co,Fe)(3)V alloy; atomic ordering; environmental embrittlement;
48579    hydrogen gas
48580 ID (CO,FE)(3)V
48581 AB The diffusible hydrogen contents in precharged (Co, Fe)(3)V alloy were
48582    measured. It is found that atomic ordering can not promote hydrogen
48583    penetration in the (Co, Fe)(3)V alloy. The ultimate tensile strength
48584    (UTS) and ductilities in various condition were also investigated. The
48585    results show that the UTS and elongation of disordered alloy are higher
48586    than that of ordered one with fixed diffusible hydrogen content and
48587    (Co, Fe)(3)V alloy with ordered structure is highly susceptible to the
48588    embrittlement in hydrogen gas. The factor which may affect the
48589    susceptibility to the embrittlement of (Co, Fe)(3)V alloy in hydrogen
48590    gas is mainly due to that the atomic ordering may accelerate the
48591    kinetics of the catalytic reaction for the dissociation of molecular
48592    hydrogen into atomic hydrogen. However, it can not be roled out that
48593    atomic ordering intensifies planar slip and restricts cross-slip at the
48594    grain boundaries and enhances the susceptibility of the alloy to
48595    hydrogen embrittlement.
48596 C1 Shanghai Univ, Inst Mat Res, Shanghai 200072, Peoples R China.
48597 CR CAMUS GM, 1989, ACTA METALL, V37, P1497
48598    CHENG XY, 2001, SCRIPTA MATER, V44, P325
48599    CHENG XY, 2002, SCRIPTA MATER, V46, P465
48600    DUS R, 1967, ACTA METALL, V15, P1611
48601    GRIFFITHS M, 1957, CONTACT CATALYSIS
48602    HAMMER B, 1995, SURF SCI, V343, P211
48603    KURUVILLA AK, 1982, 3RD P INT C HYDR MET, V2, P629
48604    LIU CT, 1989, SCRIPTA METALL, V23, P875
48605    MAIER HJ, 1987, ACTA METALL, V35, P875
48606    NISHIMURA C, 1996, SCRIPTA MATER, V35, P1441
48607    NORBERG RE, 1952, PHYS REV, V86, P745
48608    SHUTT RC, 1985, WELD J, V64, P19
48609    TAKASUGI T, 1986, ACTA METALL, V34, P607
48610    TAKASUGI T, 1991, J MATER SCI, V26, P3032
48611    TAKASUGI T, 1992, J MATER RES, V7, P2739
48612    TAKASUGI T, 1994, INTERMETALLICS, V2, P2225
48613    ULMER DG, 1991, ACTA METALL MATER, V39, P1237
48614    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
48615 NR 18
48616 TC 0
48617 SN 1003-6326
48618 J9 TRANS NONFERROUS METAL SOC CH
48619 JI Trans. Nonferrous Met. Soc. China
48620 PD AUG
48621 PY 2002
48622 VL 12
48623 IS 4
48624 BP 785
48625 EP 791
48626 PG 7
48627 SC Metallurgy & Metallurgical Engineering
48628 GA 581WL
48629 UT ISI:000177317200046
48630 ER
48631 
48632 PT J
48633 AU Huang, SG
48634    Li, L
48635    Biest, OVD
48636    Vleugels, J
48637    Wang, PL
48638 TI Thermodynamic assessment of the ZrO2-CeO2 and ZrO2-CeO1.5 binary system
48639 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
48640 DT Article
48641 DE ZrO2-CeO1.5; thermodynamic; phase diagram
48642 ID PHASE-DIAGRAM; TRANSFORMATION; OPTIMIZATION
48643 AB An optimal set of thermodynamic parameters of the ZrO2-CeO1.5 system
48644    has been obtained using phase diagram data by modern CALPHAD
48645    (CALculation of PHAse Diagrams) technique. The liquid and other solid
48646    solution phases were regarded as substitutional solution. The ordered
48647    Zr2Ce2O7 phase was treated as a stoichiometric compound. The ZrO2-CeO2
48648    system has been re-optimized with new reference state. A comparison
48649    between the ZrO2-CeO2 system and ZrO2-CeO1.5 system has been made
48650    through calculation. With the calculation, the experimental information
48651    is well reproduced and a good agreement is obtained.
48652 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
48653    Katholieke Univ Leuven, Dept Mat & Met, B-3001 Heverlee, Belgium.
48654    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
48655 RP Li, L, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R
48656    China.
48657 CR DU Y, 1991, J AM CERAM SOC, V74, P1569
48658    DU Y, 1994, SCRIPTA METALL MATER, V31, P327
48659    DURAN P, 1990, J MATER SCI, V25, P5001
48660    HANNINK RHJ, 2000, J AM CERAM SOC, V83, P461
48661    HEUSSNER KH, 1989, J AM CERAM SOC, V72, P1044
48662    KAUFMAN L, 1978, CALPHAD, V2, P35
48663    LEONOV AI, 1966, IAN SSSR NEORG MATER, V2, P1047
48664    LI L, IN PRESS J EUROPEAN
48665    LI L, 1996, J MATER SCI TECHNOL, V12, P159
48666    LI L, 2001, J MATER SCI TECHNOL, V17, P529
48667    LINDEMER TB, 1986, J AM CERAM SOC, V69, P867
48668    LONGO V, 1973, J AM CERAM SOC DISCU, V56, P600
48669    LUKAS HL, 1977, CALPHAD, V1, P225
48670    PANKRATZ LB, 1982, BUREAU MINES B, V672
48671    ROUANET MA, 1968, COMP REND HEBD SEA C, V267, P1581
48672    TANI E, 1983, J AM CERAM SOC, V66, P506
48673    YASHIMA M, 1994, J AM CERAM SOC, V77, P1869
48674    YOSHIMURA M, 1972, B TOKYO I TECHNOL, V108, P25
48675 NR 18
48676 TC 1
48677 SN 1005-0302
48678 J9 J MATER SCI TECHNOL
48679 JI J. Mater. Sci. Technol.
48680 PD JUL
48681 PY 2002
48682 VL 18
48683 IS 4
48684 BP 325
48685 EP 327
48686 PG 3
48687 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
48688    Engineering
48689 GA 582LD
48690 UT ISI:000177351700011
48691 ER
48692 
48693 PT J
48694 AU Sheng, WC
48695 TI Two-dimensional Riemann problem for scalar conservation laws
48696 SO JOURNAL OF DIFFERENTIAL EQUATIONS
48697 DT Article
48698 AB Using the generalized characteristic analysis method, we study the
48699    two-dimensional Riemann problem for scalar conservation laws, which is
48700    nonconvex along the y direction, and interactions of its elementary
48701    waves, give the classification of initial discontinuities and construct
48702    all Riemann solutions, which Riemann data are two or three pieces of
48703    constants. All kinds of Guckenheimer structure appear in the solutions
48704    and the necessary and sufficient condition of appearance of it is
48705    given. (C) 2002 Elsevier Science (USA).
48706 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
48707 RP Sheng, WC, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
48708 CR CHANG T, 1989, PITMAN MONOGRA SURVE, V41
48709    CHEN GQ, 1996, J DIFFER EQUATIONS, V127, P124
48710    CONWAY E, 1966, COMMUN PUR APPL MATH, V19, P95
48711    GUCKENHEIMER J, 1975, ARCH RATIONAL MECH A, V59, P281
48712    HSIAO L, 1986, STRUCTURE SOLUTION 2
48713    KRUZKOV SN, 1970, MATH USSR SB, V10, P271
48714    LI J, 1999, PITMAN MONOGR SURVEY, V98
48715    LINDQUIST WB, 1986, SIAM J MATH ANAL, V17, P1178
48716    WAGNER D, 1983, SIAM J MATH ANAL, V38, P534
48717    ZHANG P, 1999, J DIFFER EQUATIONS, V152, P409
48718    ZHANG T, 1989, T AM MATH SOC, V312, P589
48719 NR 11
48720 TC 0
48721 SN 0022-0396
48722 J9 J DIFFERENTIAL EQUATIONS
48723 JI J. Differ. Equ.
48724 PD JUL 20
48725 PY 2002
48726 VL 183
48727 IS 1
48728 BP 239
48729 EP 261
48730 PG 23
48731 SC Mathematics
48732 GA 582HH
48733 UT ISI:000177344100010
48734 ER
48735 
48736 PT J
48737 AU Gao, Y
48738    Xia, ZQ
48739    Zhang, LW
48740 TI Kernelled quasidifferential for a quasidifferentiable function in
48741    two-dimensional space
48742 SO JOURNAL OF CONVEX ANALYSIS
48743 DT Article
48744 DE quasidifferential calculus; kernelled quasidifferential; minimal
48745    quasidifferential; nonsmooth analysis
48746 AB For a quasidifferentiable function f defined on R-2, it is proved, in
48747    the sense of Demyanov and Rubinov, that the following assertion
48748    [GRAPHICS]
48749    in this paper, where D f (x) denotes the set of all quasidifferentials
48750    of fat x. It is shown that this way can be viewed as an approach to
48751    determining or choosing a representative of the equivalent class of
48752    quasidifferentials of fat x, in the two-dimensional case.
48753 C1 Shanghai Univ Sci & Technol, Sch Management, Shanghai 200093, Peoples R China.
48754    Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China.
48755 RP Gao, Y, Shanghai Univ Sci & Technol, Sch Management, Shanghai 200093,
48756    Peoples R China.
48757 CR CRZYBOWSKI J, 1994, ARCH MATH, V63, P173
48758    DEMYANOV VF, 1995, CONSTRUCTURE NONSMOO
48759    DENG MR, 1991, CHINESE J OPERATIONS, V10, P65
48760    GAO Y, 1988, J MATH RES EXPOSITIO, V8, P152
48761    PALLASCHKE D, 1991, B POLISH ACAD SCI MA, V39, P1
48762    PALLASCHKE D, 1993, Z OPER RES, V37, P129
48763    PALLASCHKE D, 1994, MATH PROGRAM, V66, P161
48764    SCHOLTES S, 1992, MATHEMATIKA, V39, P267
48765    XIA ZQ, 1987, WP8789 IIASA
48766    XIA ZQ, 1993, DEMONSTRATIO MATH, V26, P159
48767    XIA ZQ, 1993, PUMA, V4, P211
48768 NR 11
48769 TC 2
48770 SN 0944-6532
48771 J9 J CONVEX ANAL
48772 JI J. Convex Anal.
48773 PY 2001
48774 VL 8
48775 IS 2
48776 BP 401
48777 EP 408
48778 PG 8
48779 SC Mathematics
48780 GA 582HX
48781 UT ISI:000177345700006
48782 ER
48783 
48784 PT J
48785 AU Zhang, LW
48786    Xia, ZQ
48787    Gao, Y
48788    Wang, MZ
48789 TI Star-kernels and star-differentials in quasidifferential analysis
48790 SO JOURNAL OF CONVEX ANALYSIS
48791 DT Article
48792 DE quasidifferentiable function; directional derivative;
48793    quasidifferential; kernelled quasidifferential; star-kernel;
48794    star-differential; star-shaped set
48795 AB This paper is devoted to the study of quasidifferential structure.
48796    Three concepts, kernelled quasidifferential, star-kernel and
48797    star-differential, are proposed. Kernelled quasidifferential is used to
48798    describe a special class of quasidifferentiable functions, which covers
48799    convex and concave functions. A sufficiency theorem and a sufficiency
48800    and necessity theorem for a quasi-kernel being a kernelled
48801    quasidifferential are proven. The notion of star-kernel is employed if
48802    the quasi-kernel is not a kernelled quasidifferential. The existence
48803    theorem for a star-kernel of a quasidifferentiable function is
48804    established, which shows that the star-kernel is a pair of star-shaped
48805    sets and the sub-/super-derivative is expressed by the gauge of a
48806    star-shaped set. The notion of star-differential is used to describe
48807    the differential of the class of directionally differentiable functions
48808    which contains the class of quasidifferentiable functions. A
48809    star-differential is also a pair of star-shaped sets and its
48810    operational properties are favourable. A representative of the
48811    star-differential can be easily obtained by decomposing the directional
48812    derivative into the difference of its positive and negative part.
48813 C1 Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China.
48814    Dalian Univ Technol, Dept Appl Math, CORA, Dalian 116024, Peoples R China.
48815    Shanghai Univ Sci & Technol, Sch Management, Shanghai 200093, Peoples R China.
48816 RP Zhang, LW, Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, POB
48817    2719, Beijing 100080, Peoples R China.
48818 CR CRZYBOWSKI J, 1994, ARCH MATH, V63, P173
48819    DEMYANOV VF, 1980, DOKL AKAD NAUK SSSR, V250, P21
48820    DEMYANOV VF, 1986, QUASIDIFFERENTIAL CA
48821    DEMYANOV VF, 1995, CONSTRUCTIVE NONSMOO, V7
48822    DENG MY, 1991, CHINESE J OPERATIONS, V1, P65
48823    GAO Y, 1988, J MATH RES EXPOSITIO, V8, P152
48824    GAO Y, 1997, KERNELLED QUASIDIFFE
48825    GAO Y, 1998, SOOCHOW J MATH, V24, P211
48826    PALLASCHKE D, 1991, B POLISH ACAD SCI MA, V39, P1
48827    PALLASCHKE D, 1993, Z OPER RES, V37, P129
48828    PALLASCHKE D, 1994, MATH PROGRAM, V66, P161
48829    PALLASCHKE D, 1996, J CONVEX ANAL, V3, P83
48830    ROCKAFELLAR RT, 1970, CONVEX ANAL
48831    ROCKAFELLAR RT, 1988, T AM MATH SOC, V307, P75
48832    RUBINOV AM, 1986, MATH PROGRAM STUD, V29, P176
48833    SCHOLTES S, 1992, MATHEMATIKA, V39, P267
48834    XIA ZQ, 1987, WP8766 IIASA
48835 NR 17
48836 TC 2
48837 SN 0944-6532
48838 J9 J CONVEX ANAL
48839 JI J. Convex Anal.
48840 PY 2002
48841 VL 9
48842 IS 1
48843 BP 139
48844 EP 158
48845 PG 20
48846 SC Mathematics
48847 GA 583NH
48848 UT ISI:000177413600007
48849 ER
48850 
48851 PT J
48852 AU Chen, GR
48853    Yang, L
48854    Liu, ZR
48855 TI Anticontrol of chaos for continuous-time systems
48856 SO IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND
48857    COMPUTER SCIENCES
48858 DT Article
48859 DE anticontrol; chaos; impulsive control
48860 ID FEEDBACK
48861 AB This paper studies the anticontrol problem of making a continuous-time
48862    system chaotic by using impulsive control. The controller is designed
48863    to ensure the controlled orbit be bounded and, meanwhile, the
48864    controlled system have positive Lyapunov exponents, which are achieved
48865    near a stable limit cycle of the system, One illustrative example is
48866    given.
48867 C1 City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
48868    Suzhou Univ, Dept Elect Engn, Suzhou, Peoples R China.
48869    Shanghai Univ, Dept Math, Shanghai, Peoples R China.
48870 RP Chen, GR, City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong,
48871    Peoples R China.
48872 CR CHEN G, 1998, CHAOS ORDER METHODOL
48873    CHEN G, 1999, CONTROLLING CHAOS BI
48874    CHEN GR, 1998, INT J BIFURCAT CHAOS, V8, P1585
48875    PARKER TS, 1989, PRACTICAL NUMERICAL
48876    WANG XF, 2000, CHAOS, V10, P771
48877    WANG XF, 2000, INT J BIFURCAT CHAOS, V10, P549
48878    YANG L, 2002, IN PRESS INT J BIFUR, V12
48879 NR 7
48880 TC 3
48881 SN 0916-8508
48882 J9 IEICE TRANS FUND ELEC COM COM
48883 JI IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
48884 PD JUN
48885 PY 2002
48886 VL E85A
48887 IS 6
48888 BP 1333
48889 EP 1335
48890 PG 3
48891 SC Computer Science, Hardware & Architecture; Computer Science,
48892    Information Systems; Engineering, Electrical & Electronic
48893 GA 581YJ
48894 UT ISI:000177322400020
48895 ER
48896 
48897 PT J
48898 AU Lu, TS
48899    Yi, YH
48900    Zhang, ZG
48901    Zhang, ZQ
48902    Hua, N
48903 TI A new 10-hydroxyl anthrone glycoside from Cassia siamea Lam.
48904 SO CHINESE CHEMICAL LETTERS
48905 DT Article
48906 DE Cassia siamea; anthrone;
48907    1,8,10-trihydroxyl-1-O-beta-D-glucopyranosyl-3-methyl-10-C (S) -beta-D;
48908    glucopyranosyl-anthrone-9 1
48909 ID PRODUCTS
48910 AB A new 10-hydroxyl anthrone glycoside, 1, 8, 10 -
48911    trihydroxyl-1-O-beta-D-glucopyranosyl-3-i-nethyl- 10- C (S) - beta - D-
48912    glucopyranosyl-anthrone-9 1 was isolated from the stein of Cassia
48913    siamea Lam. The structure was elucidated by spectral evidences,
48914    especially by 2 D techniques.
48915 C1 Pharm Dept 88th Hosp PLA, Shandong 271000, Peoples R China.
48916    Shanghai Univ, Mil Med 2, Sch Pharm, Ctr Marine Drug Res, Shanghai 200433, Peoples R China.
48917 RP Lu, TS, Pharm Dept 88th Hosp PLA, Shandong 271000, Peoples R China.
48918 CR ERMIAS D, 1996, PHYTOCHEMISTRY, V42, P1683
48919    LU TS, 2001, CHINESE CHEM LETT, V12, P703
48920    MANITTO P, 1993, J CHEM SOC P1, P1577
48921    MANITTO P, 1995, J NAT PRODUCTS, V58, P419
48922    RAUWALD HW, 1992, PLANTA MED, V58, P259
48923 NR 5
48924 TC 0
48925 SN 1001-8417
48926 J9 CHIN CHEM LETT
48927 JI Chin. Chem. Lett.
48928 PD AUG
48929 PY 2002
48930 VL 13
48931 IS 8
48932 BP 731
48933 EP 733
48934 PG 3
48935 SC Chemistry, Multidisciplinary
48936 GA 583CE
48937 UT ISI:000177387300011
48938 ER
48939 
48940 PT J
48941 AU Pu, DG
48942    Tian, WW
48943 TI A class of DFP algorithms with revised search direction
48944 SO NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION
48945 DT Article
48946 DE DFP algorithm; line search; convergence; convergence rate
48947 ID QUASI-NEWTON METHODS; UNCONSTRAINED OPTIMIZATION; BROYDEN FAMILY; BFGS;
48948    CONVERGENCE
48949 AB in this paper, we discuss the convergence of the DFP algorithm with
48950    revised search direction. We prove that the algorithm is globally
48951    convergent for continuously differentiable functions and the rate of
48952    convergence of the algorithm is one-step superlinear and n-step
48953    second-order for uniformly convex objective functions.
48954 C1 Tongji Univ, Shanghai 200092, Peoples R China.
48955    Shanghai Univ, Shanghai 200041, Peoples R China.
48956 CR ALBAALI M, 1993, J OPTIMIZ THEORY APP, V77, P127
48957    ARMAND P, 2000, SIAM J OPTIMIZ, V11, P199
48958    BROYDEN CG, 1965, MATH COMPUT, V19, P577
48959    BYRD RH, 1987, SIAM J NUMER ANAL, V24, P1171
48960    DAVIDON WC, 1959, VARIABLE METRIC ALGO
48961    DAVIDON WC, 1975, MATH PROGRAM, V9, P1
48962    DENNIS JE, 1977, SIAM REV, V19, P46
48963    DIXON LCW, 1972, J OPTIMIZATION THEOR, V10, P34
48964    FLETCHER R, 1963, COMPUT J, V6, P163
48965    FLETCHER R, 1987, UNCONSTRAINED OPTIMI
48966    HU YF, 1994, J OPTIM THEORY APPL, V83, P421
48967    LALEE M, 1993, SIAM J OPTIMIZ, V3, P637
48968    MIFFLIN RB, 1994, MATH PROGRAM, V65, P247
48969    OREN SS, 1972, THESIS STANFORD U
48970    OREN SS, 1974, J OPT THEORY APPL, V37, P137
48971    POWELL MJD, 1971, J I MATHS APPLICS, V7, P21
48972    POWELL MJD, 1976, NONLINEAR PROGRAMMIN, V6
48973    POWELL MJD, 1983, MATH PROGRAMMING STA
48974    POWELL MJD, 1984, LECT NOTES MATH, V1066, P122
48975    POWELL MJD, 1986, MATH PROGRAM, V34, P34
48976    POWELL MJD, 1987, MATH PROGRAM, V38, P29
48977    PU D, 1990, J ACTA MATH APPL SIN, V13, P118
48978    PU D, 1990, J ANN OPERATIONS RES, V24, P175
48979    PU D, 1992, ASIA PACIFIC J OPERA, V9, P207
48980    PU D, 1994, J COMPUTATIONAL MATH, V8, P366
48981    PU D, 1995, J CHINESE U, V10, P313
48982    PU D, 2000, J ACTA MATH APPLICAT, V16, P313
48983    PU D, 2002, J OPTIMIZ THEORY APP, V112, P187
48984    PU DG, 1997, ASIA PAC J OPER RES, V14, P93
48985    QI HD, 2000, SIAM J OPTIMIZ, V11, P113
48986    SIEGEL D, 1993, MATH PROGRAM, V60, P167
48987    SIEGEL D, 1994, MATH PROGRAM, V66, P45
48988    SPEDICATO E, 1976, J OPTIMIZATION THEOR, V20, P315
48989    SPEDICATO E, 1978, MATH PROG, V15, P123
48990    WOLFE P, 1971, SIAM REV, V13, P185
48991    ZHANG Y, 1988, IMA J NUMER ANAL, V8, P487
48992    ZOUTENDIJK G, 1970, INTEGER NONLINEAR PR, P37
48993 NR 37
48994 TC 0
48995 SN 0163-0563
48996 J9 NUMER FUNC ANAL OPTIMIZ
48997 JI Numer. Funct. Anal. Optim.
48998 PD MAY-JUN
48999 PY 2002
49000 VL 23
49001 IS 3-4
49002 BP 383
49003 EP 400
49004 PG 18
49005 SC Mathematics, Applied
49006 GA 580PT
49007 UT ISI:000177243500010
49008 ER
49009 
49010 PT J
49011 AU Bai, YJ
49012    Xu, XG
49013    Liu, YX
49014    Xiao, LM
49015    Geng, GL
49016 TI Structural change due to martensite aging of CuZnAlMnNi shape memory
49017    alloy
49018 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
49019    MICROSTRUCTURE AND PROCESSING
49020 DT Article
49021 DE martensite aging; CuZnAlMnNi shape memory alloy; alpha-phase;
49022    transmission electron microscopy
49023 ID 18R MARTENSITE; AL; TRANSFORMATION; STABILIZATION
49024 AB The microstructures of a CuZnAlMnNi shape memory alloy after one year
49025    aging in martensite phase were investigated by transmission electron
49026    microscopy. It was found that the substructure of stacking faults in
49027    the original martensite plates becomes indistinct, and the amount
49028    decreases. However, the equilibrium face centered cubic (fcc)
49029    alpha-phase can be observed forming at martensite plate boundaries or
49030    inside the plates. The structural variation during aging is responsible
49031    for the degradation of shape memory property and transformation
49032    temperatures when Cu-based SMA actuators are in use. (C) 2002 Elsevier
49033    Science B.V. All rights reserved.
49034 C1 Shanghai Univ Sci & Technol, Dept Mech, Shandong 250031, Peoples R China.
49035    Shandong Univ, Inst Mat Sci & Engn, Shandong 250061, Peoples R China.
49036 RP Bai, YJ, Shanghai Univ Sci & Technol, Dept Mech, Shandong 250031,
49037    Peoples R China.
49038 CR ABUARAB A, 1988, ACTA METALL, V36, P2627
49039    ANDRADE M, 1984, ACTA METALL, V32, P1809
49040    BAI YJ, 2000, MAT SCI ENG A-STRUCT, V284, P25
49041    GOTTHARDT R, 1982, J PHYS S12, V43, P667
49042    KENNON NF, 1982, METALL T A, V13, P551
49043    LOVEY FC, 1984, PHYS STATUS SOLIDI A, V86, P553
49044    SAULE F, 1995, ACTA METALL MATER, V43, P2373
49045    VANHUMBEECK J, 1984, SCRIPTA METALL, V18, P893
49046    WEI ZG, 1997, METALL MATER TRANS A, V28, P955
49047    WU MH, 1989, ACTA METALL, V37, P1821
49048 NR 10
49049 TC 0
49050 SN 0921-5093
49051 J9 MATER SCI ENG A-STRUCT MATER
49052 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
49053 PD SEP 1
49054 PY 2002
49055 VL 334
49056 IS 1-2
49057 BP 49
49058 EP 52
49059 PG 4
49060 SC Materials Science, Multidisciplinary
49061 GA 580LL
49062 UT ISI:000177236000008
49063 ER
49064 
49065 PT J
49066 AU Wei, BC
49067    Wang, WH
49068    Xia, L
49069    Zhang, Z
49070    Zhao, DQ
49071    Pan, MX
49072 TI Glass transition and thermal stability of hard magnetic bulk NdAlFeCo
49073    metallic glass
49074 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
49075    MICROSTRUCTURE AND PROCESSING
49076 DT Article
49077 DE metallic glasses; phase transformations; hard magnetic; glass transition
49078 ID DIFFERENTIAL SCANNING CALORIMETRY; FE-AL ALLOYS; SUPERCOOLED LIQUID;
49079    AMORPHOUS-ALLOYS; CASTING METHOD; ND; PHASES
49080 AB Glass transition and thermal stability of bulk Nd60Al10Fe20Co10
49081    metallic glass were investigated by means of dynamic mechanical thermal
49082    analysis (DMTA), differential scanning calorimetry (DSC), X-ray
49083    diffraction (XRD) and scanning electronic microscopy (SEM). The glass
49084    transition temperature, not revealed by DSC, is alternatively
49085    determined by DMTA via storage modulus E' and loss modulus E"
49086    measurement to be 498 K at a heating rate of 0.167 K s (-1). The
49087    calculated reduced glass transition temperature (T-g/T-m) is 0.63. The
49088    large value of T-g/T-m of this alloy is consistent with its good
49089    glass-forming ability. The crystallization process of the metallic
49090    glass is concluded as follows: amorphous --> amorphous + metastable
49091    FeNdAl phase --> amorphous + primary delta-FeNdAl phase --> primary
49092    delta-phase + eutectic delta-phase + Nd3Al + Nd3Co. The appearance of
49093    hard magnetism in this alloy is ascribed to the presence of amorphous
49094    phase with highly relaxed structure. The hard magnetism disappeared
49095    after the eutectic crystallization of the amorphous phase. (C) 2002
49096    Elsevier Science B.V. All rights reserved.
49097 C1 Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Beijing 100080, Peoples R China.
49098    Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China.
49099    Chinese Acad Sci, Ctr Condensed Matter Phys, Beijing 100080, Peoples R China.
49100    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
49101 RP Wei, BC, Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Beijing
49102    100080, Peoples R China.
49103 CR ANDERSON PM, 1980, MATER SCI ENG, V43, P267
49104    CHEN HS, 1985, J NON-CRYST SOLIDS, V72, P287
49105    DING J, 1999, APPL PHYS LETT, V75, P1763
49106    FAN GJ, 1999, APPL PHYS LETT, V75, P2984
49107    GRIEB B, 1990, IEEE T MAGN, V26, P1367
49108    INOUE A, 1990, MATER T JIM, V31, P425
49109    INOUE A, 1992, MATER T JIM, V33, P937
49110    INOUE A, 1996, MATER T JIM, V37, P636
49111    INOUE A, 1997, APPL PHYS LETT, V71, P58
49112    INOUE A, 1998, METALL MATER TRANS A, V29, P1779
49113    INOUE A, 2000, ACTA MATER, V48, P279
49114    JOHNSON WL, 1996, MATER SCI FORUM, V225, P35
49115    LI Y, 1998, PHIL MAG LETT, V78, P213
49116    NAGAYAMA K, 1990, J PHYS SOC JPN, V59, P2483
49117    NIEH TG, 1999, SCRIPTA MATER, V40, P1021
49118    ORTEGAHERTOGS RJ, 2001, SCRIPTA MATER, V44, P1333
49119    PEKER A, 1993, APPL PHYS LETT, V63, P2342
49120    PIERRE V, 1994, HDB TERNARY ALLOY PH, P3525
49121    RAMBOUSKY R, 1995, MATER SCI FORUM, V179, P761
49122    STADELMAIER HH, 1991, MATER LETT, V10, P303
49123    WANG WH, 1997, APPL PHYS LETT, V71, P1053
49124    WANG XZ, 1999, J ALLOY COMPD, V290, P209
49125    WEI BC, 2001, J APPL PHYS, V89, P3529
49126 NR 23
49127 TC 3
49128 SN 0921-5093
49129 J9 MATER SCI ENG A-STRUCT MATER
49130 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
49131 PD SEP 1
49132 PY 2002
49133 VL 334
49134 IS 1-2
49135 BP 307
49136 EP 311
49137 PG 5
49138 SC Materials Science, Multidisciplinary
49139 GA 580LL
49140 UT ISI:000177236000044
49141 ER
49142 
49143 PT J
49144 AU Zhu, XH
49145    Zhu, JM
49146    Zhou, SH
49147    Li, Q
49148    Liu, ZG
49149    Ming, NB
49150    Meng, ZY
49151    Chan, HLW
49152    Choy, CL
49153 TI Actuators, piezoelectric ceramics and functionally gradient materials
49154 SO FERROELECTRICS
49155 DT Article
49156 DE actuators; piezoelectric ceramics; functional gradient materials
49157 ID FILMS
49158 AB Piezoelectric ceramic actuators and materials play a key role in the
49159    development of advanced precision engineering. The breakthroughs in
49160    this field are closely related to the development of various types of
49161    piezoelectric ceramic actuators and related materials. The likelihood
49162    that the range of applications and demand for actuators will grow
49163    quickly has stimulated intensive researches on piezoelectric ceramics.
49164    Functionally gradient materials (FGMs) are new classes of composites
49165    characterized by compositional and/or microstructural gradation over
49166    macroscopic/microscopic distances. This constitutional gradation can be
49167    tailored to meet specific needs while providing the best utilization of
49168    composite components. Furthermore, FGMs technology is also a novel
49169    interfacial technology to solve the problems associated with the sharp
49170    interface between two dissimilar materials. In recent years significant
49171    advances in the development of FGMs have been achieved. In this paper,
49172    we first briefly review the recent progress of ceramic actuators and
49173    developments of piezoelectric materials, and then focus on summarizing
49174    typical applications of functional gradients in piezoelectric and
49175    ferroelectric materials.
49176 C1 Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.
49177    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
49178    Hong Kong Polytech Univ, Dept Appl Phys, Kowloon, Hong Kong, Peoples R China.
49179    Hong Kong Polytech Univ, Mat Res Ctr, Kowloon, Hong Kong, Peoples R China.
49180 RP Zhu, XH, Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct,
49181    Nanjing 210093, Peoples R China.
49182 CR BANDYOPADHYAY A, 1997, J AM CERAM SOC, V80, P1366
49183    DOGAN A, 1994, FERROELECTRICS, V156, P1
49184    FERNANDEZ JF, 1996, SENSOR ACTUAT A-PHYS, V51, P183
49185    HAERTLING GH, 1994, AM CERAM SOC BULL, V73, P93
49186    KITAMURA T, 1981, JPN J APPL PHYS, V20, P97
49187    MOHAMMED MS, 1998, J APPL PHYS, V84, P3322
49188    SCHUBRING NW, 1992, PHYS REV LETT, V68, P1778
49189    SUGAWARA Y, 1992, J AM CERAM SOC, V75, P996
49190    WEI ZG, 1998, J MATER SCI, V33, P3763
49191    WU CCM, 1996, J AM CERAM SOC, V79, P809
49192    ZHU XH, 1995, J MATER SCI LETT, V14, P516
49193    ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169
49194    ZHU XH, 2001, 13 INT S INT FERR MA
49195 NR 13
49196 TC 0
49197 SN 0015-0193
49198 J9 FERROELECTRICS
49199 JI Ferroelectrics
49200 PY 2001
49201 VL 263
49202 IS 1-4
49203 BP 1367
49204 EP 1376
49205 PG 10
49206 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
49207 GA 580BZ
49208 UT ISI:000177215600011
49209 ER
49210 
49211 PT J
49212 AU Ren, ZJ
49213    Cao, WG
49214    Tong, WQ
49215    Jing, XP
49216 TI Knoevenagel condensation of aldehydes with cyclic active methylene
49217    compounds in water
49218 SO SYNTHETIC COMMUNICATIONS
49219 DT Article
49220 AB A new route of Knoevenagel condensation of aromatic aldehydes with
49221    Meldrum's acid, barbituric acid and dimedone in the presence of
49222    cetyltrimethyl ammonium bromide at room temperature in water is
49223    described.
49224 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
49225 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
49226 CR CONRAD M, 1900, BER DTSCH CHEM GES, V33, P1339
49227    LI CJ, 1993, CHEM REV, V93, P2023
49228    NAGARAJAN K, 1992, INDIAN J CHEM B, V31, P73
49229    SCHUSTER P, 1964, MH CHEM, V95, P53
49230    SHI DQ, 2000, SYNTHETIC COMMUN, V30, P713
49231    TROST RM, 1991, COMPREHENSIVE ORGANI, V2, P369
49232    VVEDENSKII VM, 1969, CHEM HETEROCYCL CMPD, V5, P827
49233    VVEDENSKII VM, 1969, KHIM GETEROTSIKL, P1092
49234    WANG SH, 2001, SYNTHETIC COMMUN, V31, P29
49235 NR 9
49236 TC 7
49237 SN 0039-7911
49238 J9 SYN COMMUN
49239 JI Synth. Commun.
49240 PY 2002
49241 VL 32
49242 IS 13
49243 BP 1947
49244 EP 1952
49245 PG 6
49246 SC Chemistry, Organic
49247 GA 579TZ
49248 UT ISI:000177195100005
49249 ER
49250 
49251 PT J
49252 AU Chen, YL
49253    Ding, WY
49254    Cao, WG
49255    Lu, C
49256 TI Stereoselective synthesis of
49257    trans-beta-methoxycarbonyl-gamma-aryl-gamma-butyrolactones
49258 SO SYNTHETIC COMMUNICATIONS
49259 DT Article
49260 DE arsenic ylide; stepwise synthesis; one-pot synthesis;
49261    gamma-butyrolactone; stereoselective synthesis
49262 AB Stereoselective synthesis of
49263    trans-beta-methoxycarbonyl-gamma-aryl-gamma-butyrolactones (5) by the
49264    reaction of methoxycarbonylmethyl triphenyl arsonium bromide (1) and
49265    2,2-dimethyl-5-substituted-benzal-1,3-dioxa-4,6-dioxa-4,6-dione (2) is
49266    carried out in the presence of potassium carbonate and trace water in
49267    dimethoxyethane. 1,2-Cis-cyclopropane 3 is formed as an intermediate.
49268    The stability of compound 3 in water is related to the property of the
49269    aryl substituent. With strong electron-donating groups [2a-c,
49270    Ar=4-CH3O-C6H4; 3,4-OCH2O-C6H3 or 4-(CH3)(2)N-C6H4] at room temperature
49271    3 is formed in situ and transformed to gamma-butyrolactones 5a-c
49272    immediately, whereas when the aryl substituent is H or a weak
49273    electron-donating or electron-withdrawing group (2d-g, Ar=4-CH3-C6H4;
49274    C6H5; 4-Cl-C6H4 or 4-NO2-C6H4), 3 is stable to water at room
49275    temperature. On further heating in acetone, 3 is transformed to
49276    gamma-butyrolactones 5d-g (stepwise synthesis). One-pot synthesis of
49277    5d-g from the reaction of 1 with 2d-g is also studied.
49278 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
49279    Acad Sinica, Organomet Chem Lab, Shanghai 200032, Peoples R China.
49280 RP Chen, YL, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
49281 CR BARTOLO G, 1997, J CHEM SOC P1, V2, P147
49282    CHEM YL, 1998, J CHIN U, V19, P1614
49283    DING WY, 1996, CHEM RES CHINESE U, V12, P50
49284    UENISHI J, 1997, HETEROCYCLES, V44, P277
49285 NR 4
49286 TC 3
49287 SN 0039-7911
49288 J9 SYN COMMUN
49289 JI Synth. Commun.
49290 PY 2002
49291 VL 32
49292 IS 13
49293 BP 1953
49294 EP 1960
49295 PG 8
49296 SC Chemistry, Organic
49297 GA 579TZ
49298 UT ISI:000177195100006
49299 ER
49300 
49301 PT J
49302 AU Zhou, SF
49303 TI Attractors for lattice systems corresponding to evolution equations
49304 SO NONLINEARITY
49305 DT Article
49306 ID REACTION-DIFFUSION SYSTEMS; DYNAMICAL-SYSTEMS; UNBOUNDED-DOMAINS;
49307    GLOBAL ATTRACTOR; WAVE-EQUATIONS; SPATIAL CHAOS; PROPAGATION;
49308    EXISTENCE; FAILURE
49309 AB We consider the existence of the global attractor and its
49310    finite-dimensional approximation for the lattice dynamical systems
49311    corresponding to the wave equations and reaction diffusion equations.
49312 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
49313 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
49314 CR BELL J, 1984, Q APPL MATH, V42, P1
49315    BELLERI V, 2001, DISCRET CONTIN DYN S, V7, P719
49316    CAHN JW, 1960, ACTA METALL, V8, P554
49317    CHATE H, 1997, PHYSICA D, V103, P1
49318    CHOW SN, 1995, IEEE T CIRCUITS-I, V42, P746
49319    CHOW SN, 1998, J DIFFER EQUATIONS, V149, P248
49320    CHUA LO, 1993, IEEE T CIRCUITS-I, V40, P147
49321    ERNEUX T, 1993, PHYSICA D, V67, P237
49322    FABINY L, 1993, PHYS REV A B, V47, P4287
49323    FEIREISL E, 1996, J DIFFER EQUATIONS, V129, P239
49324    FEIREISL E, 1997, J DYNAM DIFFERENTIAL, V9, P133
49325    FIRTH WJ, 1988, PHYS REV LETT, V61, P329
49326    HALE JK, 1988, ASYMPTOTIC BEHAV DIS
49327    HILLERT M, 1961, ACTA METALL, V9, P525
49328    JIANG MH, 1999, J STAT PHYS, V95, P791
49329    KAPRAL R, 1991, J MATH CHEM, V6, P113
49330    KARACHALIOS NI, 1999, J DIFFER EQUATIONS, V157, P183
49331    KEENER JP, 1987, SIAM J APPL MATH, V47, P556
49332    KEENER JP, 1991, J THEOR BIOL, V148, P49
49333    LAPLANTE JP, 1992, J PHYS CHEM-US, V96, P4931
49334    MERINO S, 1996, J DIFFER EQUATIONS, V132, P87
49335    PECORA LM, 1990, PHYS REV LETT, V64, P821
49336    PEREZMUNUZURI A, 1993, IEEE T CIRCUITS SYST, V40, P872
49337    SHEN WX, 1996, SIAM J APPL MATH, V56, P1379
49338    TEMAM R, 1997, APPL MATH SCI, V68
49339    VONNEUMANN J, 1951, CEREBRAL MECH BEHAV, P9
49340    WANG BX, 1999, PHYSICA D, V128, P41
49341    WEINBERGER HE, 1988, SIAM J MATH ANAL, V19, P1057
49342    WINALOW RL, 1993, PHYSICA D, V64, P281
49343    YU J, 1998, PHYS LETT A, V240, P60
49344 NR 30
49345 TC 2
49346 SN 0951-7715
49347 J9 NONLINEARITY
49348 JI Nonlinearity
49349 PD JUL
49350 PY 2002
49351 VL 15
49352 IS 4
49353 BP 1079
49354 EP 1095
49355 PG 17
49356 SC Mathematics, Applied; Physics, Mathematical
49357 GA 578NE
49358 UT ISI:000177123700007
49359 ER
49360 
49361 PT J
49362 AU Fang, ZJ
49363    Xia, YB
49364    Wang, LJ
49365    Wang, ZM
49366    Zhang, WL
49367    Fan, YM
49368 TI Effect of carbon ion pre-implantation on the stress level of diamond
49369    films formed on alumina substrates
49370 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
49371 DT Article
49372 ID DEPOSITION; NUCLEATION
49373 AB The compressive stress in diamond films formed by hot filament chemical
49374    vapour deposition is reduced by implantation of carbon ions into
49375    alumina substrates before the deposition of diamond films. It is found
49376    that the stress in the diamond films decreases linearly with the
49377    increment of the C+ implantation dose. The reason for the decrease in
49378    the compressive stress is explained in terms of the offset by the
49379    residual compressive stress in the alumina substrates, which is caused
49380    by the ion pre-implantation.
49381 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
49382 RP Fang, ZJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
49383    China.
49384 CR *INT CTR DIFFR DAT, 1988, 10174 JCPDS INT CTR
49385    AGER JW, 1993, PHYS REV B, V48, P2601
49386    FAN QH, 1999, J MATER SCI, V34, P1353
49387    FAN WD, 1995, SURF COAT TECH, V72, P78
49388    ITO T, 1994, JPN J APPL PHYS 1, V33, P5681
49389    MO Y, 1998, J CRYST GROWTH, V191, P459
49390    RALLS KM, 1982, INTRO MAT SCI ENG
49391 NR 7
49392 TC 5
49393 SN 0022-3727
49394 J9 J PHYS-D-APPL PHYS
49395 JI J. Phys. D-Appl. Phys.
49396 PD JUL 7
49397 PY 2002
49398 VL 35
49399 IS 13
49400 BP L57
49401 EP L60
49402 PG 4
49403 SC Physics, Applied
49404 GA 577WL
49405 UT ISI:000177085500001
49406 ER
49407 
49408 PT J
49409 AU Liu, ZG
49410    Chen, GR
49411 TI On the relationship between parametric variation and state feedback in
49412    chaos control
49413 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
49414 DT Article
49415 DE chaos control; feedback control; parametric variation
49416 AB In this Letter, we study the popular parametric variation chaos control
49417    and state-feedback methodologies in chaos control, and point out for
49418    the first time that they are actually equivalent in the sense that
49419    there exist diffeomorphisms that can convert one to the other for most
49420    smooth chaotic systems. Detailed conversions are worked out for typical
49421    discrete chaotic maps (logistic, Henon) and continuous flows (Rosller,
49422    Lorenz) for illustration. This unifies the two seemingly different
49423    approaches from the physics and the engineering communities on chaos
49424    control. This new perspective reveals some new potential applications
49425    such as chaos synchronization and normal form analysis from a unified
49426    mathematical point of view.
49427 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
49428    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
49429 RP Liu, ZG, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
49430 CR CHEN G, 1998, CHAOS ORDER METHODOL
49431    CHEN GR, 2000, INT J BIFURCAT CHAOS, V10, P511
49432    OTT E, 1990, PHYS REV LETT, V64, P1196
49433    PEITGEN HO, 1992, CHAOS FRACTALS NEW F
49434    WIGGINS S, 1990, INTRO APPL NONLINEAR
49435 NR 5
49436 TC 3
49437 SN 0218-1274
49438 J9 INT J BIFURCATION CHAOS
49439 JI Int. J. Bifurcation Chaos
49440 PD JUN
49441 PY 2002
49442 VL 12
49443 IS 6
49444 BP 1411
49445 EP 1415
49446 PG 5
49447 SC Mathematics, Applied; Multidisciplinary Sciences
49448 GA 579KB
49449 UT ISI:000177176200013
49450 ER
49451 
49452 PT J
49453 AU Zhu, WM
49454    Li, CE
49455    Guo, CJ
49456    Yan, HX
49457    He, LX
49458 TI Study of phase conversion in PMN-PT ceramics near the morphotropic
49459    phase boundary
49460 SO FERROELECTRICS
49461 DT Article
49462 DE phase composition; compressive stress; phase conversion
49463 ID TITANATE
49464 AB Phase compositions, grain sizes and domain widths of 0.65PMN-0.35PT
49465    ceramics sintered at various conditions have been investigated. It has
49466    been shown that a phase conversion from rhombohedral to tetragonal took
49467    place when the sintering temperatures were increased. This result is
49468    considered to be attributed to the increase of compressive stress in
49469    the grain, which makes the phase transition from tetragonal to
49470    rhombohedral difficult to occur, due to an expansion of cell volume. As
49471    a result, more tetragonal phases were left unchanged.
49472 C1 Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
49473    Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
49474 RP Zhu, WM, Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050,
49475    Peoples R China.
49476 CR ARIGUR P, 1975, J PHYS D, V8, P1856
49477    ARLT G, 1985, J APPL PHYS, V58, P1619
49478    CHOI SW, 1989, MATER LETT, V8, P253
49479    FERNANDEZ JF, 1998, J EUR CERAM SOC, V18, P1695
49480    FORSBERGH PW, 1954, PHYS REV, V93, P686
49481    HIREMATH BV, 1983, J AM CERAM SOC, V66, P790
49482    KELLY J, 1997, J AM CERAM SOC, V80, P957
49483    SWARTZ SL, 1982, MATER RES BULL, V17, P1245
49484 NR 8
49485 TC 0
49486 SN 0015-0193
49487 J9 FERROELECTRICS
49488 JI Ferroelectrics
49489 PY 2001
49490 VL 251
49491 IS 1-4
49492 BP 45
49493 EP 52
49494 PG 8
49495 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
49496 GA 580BC
49497 UT ISI:000177213400007
49498 ER
49499 
49500 PT J
49501 AU Ding, YP
49502    Wu, JS
49503    Meng, ZY
49504 TI Study on the characterization and formation mechanism of microdomains
49505    in Ba0.7Sr0.3TiO3 thin films by Hrem
49506 SO FERROELECTRICS
49507 DT Article
49508 DE microdomain structure; ferroelectricity; Ba0.7Sr0.3TiO3 thin films
49509 ID BARIUM-TITANATE; PHASE; FERROELECTRICITY; MICROSTRUCTURE; CAPACITORS
49510 AB Microdomain clusters in scope of about 60 nm were observed in
49511    Ba0.7Sr0.3TiO3 thin films by transmission electron microscopy (TEM).
49512    Combined with investigated results by high-resolution electron
49513    microscopy (HREM) and selected area electron diffraction (SAED)
49514    techniques, a reasonable spatial configuration of the microdomains is
49515    proposed, where twin-related microdomain with thickness of several unit
49516    cells are prevailing. The larger c/a value deduced from the doublet
49517    splitting of diffraction spot in SHED pattern confirms that the
49518    microdomains are under highly compressing. This locally compressive
49519    condition is pointed out to be responsible for the formation of small
49520    microdomain uncommitted by critical size and the ferroelectricity of
49521    the thin films.
49522 C1 Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Elect Mat Lab, Shanghai 200030, Peoples R China.
49523    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
49524 RP Ding, YP, Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Elect Mat Lab,
49525    Shanghai 200030, Peoples R China.
49526 CR ARIT G, 1980, J APPL PHYS, V51, P4956
49527    BAUMERT BA, 1998, J MATER RES, V13, P197
49528    BURNS G, 1986, SOLID STATE COMMUN, V58, P567
49529    BURNS G, 1990, FERROELECTRICS, V104, P25
49530    DING YP, 1998, P 1 CHIN INT C HIGH, P489
49531    DING YP, 2000, J MATER SCI LETT, V19, P163
49532    FREY MH, 1993, APPL PHYS LETT, V63, P2753
49533    GUST MC, 1997, J AM CERAM SOC, V80, P2828
49534    ISUPOV VA, 1990, IZV AN SSSR FIZ+, V54, P1131
49535    MARUYAMA T, 1998, APPL PHYS LETT, V73, P3524
49536    QU BD, 1998, APPL PHYS LETT, V72, P1394
49537    SCOTT JF, 1998, FERROELECTRICS REV, V1, P1
49538    TSAI F, 1994, APPL PHYS LETT, V65, P1906
49539    TYBELL T, 1999, APPL PHYS LETT, V75, P856
49540    WASER R, 1998, J KOREAN PHYS SO S 4, V32, S1340
49541    YIN ZW, 1988, FERROELECTRICS, V87, P85
49542 NR 16
49543 TC 0
49544 SN 0015-0193
49545 J9 FERROELECTRICS
49546 JI Ferroelectrics
49547 PY 2001
49548 VL 252
49549 IS 1-4
49550 BP 453
49551 EP 460
49552 PG 8
49553 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
49554 GA 580BD
49555 UT ISI:000177213500028
49556 ER
49557 
49558 PT J
49559 AU Hou, WD
49560    Mo, YL
49561 TI Increasing image resolution in electrical impedance tomography
49562 SO ELECTRONICS LETTERS
49563 DT Article
49564 AB An effective approach to increase the image resolution in static
49565    electrical impedance tomography is proposed, in which the image with
49566    local high resolution is reconstructed by fine meshing only the
49567    impedance abnormal element in the finite element model based on a
49568    genetic algorithm. Experimental results from a laboratory phantom are
49569    presented.
49570 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
49571 RP Hou, WD, Shanghai Univ, Dept Commun Engn, 149 Yanchang Rd, Shanghai
49572    200072, Peoples R China.
49573 CR HOU WD, 2000, J SHANGHAI U, V6, P343
49574    ISAACSON D, 2001, P 11 INT C EL BIOIMP, P387
49575    METHERALL P, 1998, THESIS U SHEFFIELD U
49576    OLMI R, 2000, IEEE T EVOLUT COMPUT, V4, P83
49577 NR 4
49578 TC 0
49579 SN 0013-5194
49580 J9 ELECTRON LETT
49581 JI Electron. Lett.
49582 PD JUL 4
49583 PY 2002
49584 VL 38
49585 IS 14
49586 BP 701
49587 EP 702
49588 PG 2
49589 SC Engineering, Electrical & Electronic
49590 GA 578CZ
49591 UT ISI:000177101000019
49592 ER
49593 
49594 PT J
49595 AU Chien, WZ
49596 TI Second order approximation solution of nonlinear large deflection
49597    problems of Yongjiang Railway Bridge in Ningbo
49598 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
49599 DT Article
49600 DE large deflection; elastic modulus; cantilever beam
49601 AB The solution and computational aspects on nonlinear deflection of
49602    Yongjiang Railway Bridge in Ningbo were investigated. An approximate
49603    iteration algorithm on nonlinear governing equation was presented, and
49604    the obtained results show that, if altitude difference and span of the
49605    riverbanks are taken as 5 meters and 100 meters, respectively, the
49606    maximum gradient in the middle of the bridge exceeds 5%, much larger
49607    than maximum allowance gradient in railway design code. Therefore, a
49608    new solution scheme for decreasing gradient of the bridge is put
49609    forward, that is, the altitude difference between two riverbanks can be
49610    decreased to about 1/10 of the initial magnitude by building roadbeds
49611    with 0.5% gradient and 1 kilometer length at two riverbanks. As a
49612    direct result, the deflection gradient of the railway bridge is much
49613    reduced and the value is between 0.5% similar to 0.6%.
49614 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
49615 RP Chien, WZ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
49616    200072, Peoples R China.
49617 NR 0
49618 TC 1
49619 SN 0253-4827
49620 J9 APPL MATH MECH-ENGL ED
49621 JI Appl. Math. Mech.-Engl. Ed.
49622 PD MAY
49623 PY 2002
49624 VL 23
49625 IS 5
49626 BP 493
49627 EP 506
49628 PG 14
49629 SC Mathematics, Applied; Mechanics
49630 GA 577RJ
49631 UT ISI:000177075200001
49632 ER
49633 
49634 PT J
49635 AU Zhang, JF
49636    Liu, YL
49637 TI Localized coherent structures of the (2+1)-dimensional higher order
49638    Broer-Kaup equations
49639 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
49640 DT Article
49641 DE higher order Broer-Kaup equation; (2+1)-dimension; coherent structure;
49642    homogeneous balance method
49643 ID DROMION-LIKE STRUCTURES; KDV-TYPE EQUATION; WAVE-EQUATIONS;
49644    TRANSFORMATION; SOLITONS
49645 AB By using the extended homogeneous balance method, the localized
49646    coherent structures are studied. A nonlinear transformation was first
49647    established, and then the linearization form was obtained based on the
49648    extended homogeneous balance method for the higher order (2 +
49649    1)-dimensional Broer-Kaup equations. Starting from this linearization
49650    form equation, a variable separation solution with the entrance of some
49651    arbitrary functions and some arbitrary parameters was constructed. The
49652    quite rich localized coherent structures were revealed. This method,
49653    which can be generalized to other (2 + I) -dimensional nonlinear
49654    evolution equation, is simple and powerful.
49655 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
49656 RP Zhang, JF, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
49657    200072, Peoples R China.
49658 CR BOITI M, 1988, PHYS LETT A, V132, P432
49659    FANG EG, 1997, ACTA PHYS SINICA, V46, P1254
49660    FOKAS AS, 1990, PHYS LETT A, V145, P237
49661    HIETARINTA J, 1990, PHYS LETT A, V149, P113
49662    LOU SY, 1995, J PHYS A-MATH GEN, V28, P7227
49663    LOU SY, 1996, COMMUN THEOR PHYS, V26, P487
49664    LOU SY, 1996, J PHYS A-MATH GEN, V29, P5989
49665    LOU SY, 1998, COMMUN THEOR PHYS, V29, P145
49666    LOU SY, 2000, PHYS LETT A, V277, P94
49667    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
49668    RADHA R, 1994, J MATH PHYS, V35, P4746
49669    RADHA R, 1995, PHYS LETT A, V197, P7
49670    RADHA R, 1997, J MATH PHYS, V38, P292
49671    RADHA R, 1997, J PHYS A-MATH GEN, V30, P3229
49672    RADHA R, 1999, CHAOS SOLITON FRACT, V10, P1821
49673    RUAN HY, 1997, J MATH PHYS, V38, P3123
49674    RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P586
49675    WANG ML, 1995, PHYS LETT A, V199, P169
49676    ZHANG JF, 1998, ACTA PHYS SINICA, V47, P1416
49677    ZHANG JF, 1999, ACTA PHYS SIN-OV ED, V8, P326
49678    ZHANG JF, 1999, CHINESE PHYS LETT, V16, P659
49679    ZHANG JF, 2000, COMMUN THEOR PHYS, V33, P577
49680    ZHANG JF, 2001, COMMUNICATION NONLIN, V6, P50
49681 NR 23
49682 TC 1
49683 SN 0253-4827
49684 J9 APPL MATH MECH-ENGL ED
49685 JI Appl. Math. Mech.-Engl. Ed.
49686 PD MAY
49687 PY 2002
49688 VL 23
49689 IS 5
49690 BP 549
49691 EP 556
49692 PG 8
49693 SC Mathematics, Applied; Mechanics
49694 GA 577RJ
49695 UT ISI:000177075200006
49696 ER
49697 
49698 PT J
49699 AU Tian, LX
49700    Xu, G
49701    Liu, ZR
49702 TI The concave or convex peaked and smooth soliton solutions of
49703    Camassa-Holm equation
49704 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
49705 DT Article
49706 DE soliton; peakson; integrable system; traveling wave solution
49707 ID SHALLOW-WATER EQUATION
49708 AB The traveling wave soliton solutions and pair soliton solution to a
49709    class of new completely integrable, shallow water equation,
49710    Camassa-Holm equation are studied. The concept of concave or convex
49711    peaked soliton and smooth soliton were introduced. And the research
49712    shows that the traveling wave solution of that equation possesses
49713    concave and convex peaked soliton and smooth soliton solutions with the
49714    peakson. Simultaneously by applying Backlund transformation the new
49715    pair soliton solutions to this class of equation are given.
49716 C1 Jiangsu Univ Sci & Technol, Dept Math, Zhenjiang 212013, Peoples R China.
49717    Shanghai Univ, Dept Math, Shanghai 200018, Peoples R China.
49718 RP Tian, LX, Jiangsu Univ Sci & Technol, Dept Math, Zhenjiang 212013,
49719    Peoples R China.
49720 CR ALBER MS, 1994, LETT MATH PHYS, V32, P137
49721    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
49722    CLARKSON PA, 1997, MATH COMPUT MODEL, V25, P195
49723    CONSTANTIN A, 1998, COMMUN PUR APPL MATH, V51, P475
49724    CONSTANTIN A, 2000, COMMUN PUR APPL MATH, V53, P603
49725    FISHER M, 1999, PHYS LETT A, V259, P371
49726    TIAN LX, 1998, P AM MATH SOC, V126, P201
49727    TIAN LX, 1999, COMM MATH PHY, V201, P509
49728    TIAN LX, 2000, J MATH PHYS, V41, P5773
49729    XIN ZP, 2000, COMMUN PUR APPL MATH, V53, P1411
49730 NR 10
49731 TC 1
49732 SN 0253-4827
49733 J9 APPL MATH MECH-ENGL ED
49734 JI Appl. Math. Mech.-Engl. Ed.
49735 PD MAY
49736 PY 2002
49737 VL 23
49738 IS 5
49739 BP 557
49740 EP 567
49741 PG 11
49742 SC Mathematics, Applied; Mechanics
49743 GA 577RJ
49744 UT ISI:000177075200007
49745 ER
49746 
49747 PT J
49748 AU Cai, YC
49749 TI Chen's theorem with small primes
49750 SO ACTA MATHEMATICA SINICA-ENGLISH SERIES
49751 DT Article
49752 DE Chen's theorem; sieve; mean value theorem
49753 AB Let N be a sufficiently large even integer. In this paper it is proved
49754    that the equation
49755    N = p + P-2, p less than or equal to N-0.95,
49756    is solvable, where p denotes a prime and P-2 denotes an almost prime
49757    with at most two prime factors.
49758 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
49759 RP Cai, YC, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
49760 CR CHEN JR, 1966, KEXUE TONGBAO, V17, P385
49761    CHEN JR, 1973, SCI SINICA, V16, P157
49762    CHEN JR, 1978, SCI SINICA, V21, P421
49763    CHEN JR, 1978, SCI SINICA, V21, P477
49764    HALBERSTAM H, 1975, ASTERISQUE, V24, P281
49765    IWANIEC H, 1981, RECENT PROGR ANAL NU, V2, P203
49766    LU MG, IN PRESS CHENS THEOR
49767    PAN CD, 1992, GOLDBACH CONJECTURE, P175
49768    WU J, 1993, Q J MATH, V44, P109
49769 NR 9
49770 TC 0
49771 SN 1439-8516
49772 J9 ACTA MATH SIN-ENGLISH SERIES
49773 JI Acta. Math. Sin.-English Ser.
49774 PD JUL
49775 PY 2002
49776 VL 18
49777 IS 3
49778 BP 597
49779 EP 604
49780 PG 8
49781 SC Mathematics, Applied; Mathematics
49782 GA 579MC
49783 UT ISI:000177180900018
49784 ER
49785 
49786 PT J
49787 AU Chen, ZB
49788    Jiao, YH
49789    Xia , SB
49790    Huang, WH
49791    Zhang, ZM
49792 TI An efficient calculation method of nonlinear fluid film forces in
49793    journal bearing
49794 SO TRIBOLOGY TRANSACTIONS
49795 DT Article
49796 DE journal bearing; database; rotor
49797 ID ROTOR; STABILITY
49798 AB An efficient method of fluid film force database is proposed for a
49799    single pad of the journal bearing. By some manipulations on Reynolds
49800    equation, a speed parameter varying within (-1, +1) is introduced to
49801    reflect the relative weights of the bearing journal's rotation and
49802    squeezing effects. Given the bearing aspect ratio and pad angle, the
49803    fluid film force database can be easily established. For a multi-pad
49804    journal bearing, an algorithm is needed to sum the separate fluid
49805    forces generated in every pad. An elliptic beating supporting a rigid
49806    rotor is employed to examine the effectiveness of the suggested method.
49807    The results based on the numerical solution of Reynolds equation is
49808    taken as a yardstick for comparison. It is shown that the database
49809    method provides a way to obtain the bearing fluid forces quickly
49810    without losing accuracy.
49811 C1 Harbin Inst Technol, Dept Engn Mech, Harbin 150001, Peoples R China.
49812    Shanghai Univ, Dept Mech Engn, Shanghai, Peoples R China.
49813 RP Chen, ZB, Harbin Inst Technol, Dept Engn Mech, Harbin 150001, Peoples R
49814    China.
49815 CR CAPONE G, 1990, J TRIBOL-T ASME, V112, P643
49816    CASTELLI V, 1967, J LUBR TECH, V89, P211
49817    DEEPAK JC, 1998, J TRIBOL-T ASME, V120, P605
49818    EHRICH FF, 1991, J VIB ACOUST, V113, P50
49819    KIRK RG, 1976, ASME, V98, P47
49820    LUND JW, 1978, TOPICS FLUID FILM BE, P1
49821    LUND JW, 1987, ASME, V109, P38
49822    PINKUS O, 1961, THEORY HYDRODYNAMIC, P1
49823    QIU ZL, 1996, TRIBOL T, V39, P469
49824    REZVANI MA, 1993, J TRIBOL-T ASME, V115, P544
49825    SUNDARARAJAN P, 1998, J SOUND VIB, V214, P695
49826    TIEU AK, 1995, TRIBOL T, V38, P627
49827    ZHAO JY, 1994, J VIB ACOUST, V116, P357
49828 NR 13
49829 TC 2
49830 SN 1040-2004
49831 J9 TRIBOL TRANS
49832 JI Tribol. Trans.
49833 PD JUL
49834 PY 2002
49835 VL 45
49836 IS 3
49837 BP 324
49838 EP 329
49839 PG 6
49840 SC Engineering, Mechanical
49841 GA 575JE
49842 UT ISI:000176942500007
49843 ER
49844 
49845 PT J
49846 AU Shi, YM
49847    Chen, H
49848 TI Spin-dependent transmission through a mesoscopic ring with a quantum
49849    gate
49850 SO PHYSICS LETTERS A
49851 DT Article
49852 DE spin-dependent transmission; mesoscopic ring; quantum gate
49853 ID AHARONOV-BOHM OSCILLATIONS; WAVE-GUIDE THEORY; DOT; PHASE
49854 AB We investigate the spin-dependent transmission through an Aharonov-Bohm
49855    ring with a quantum gate that is tuned by an uniform external magnetic
49856    field. The formula of spin-dependent transmission coefficient at zero
49857    temperature is obtained as a function of the flux, the magnetic field
49858    and Fermi energy in term of quantum waveguide theory. We found that for
49859    some special Fermi energies, spin-state electrons are driven into a
49860    perfect transmissive state or reflective state, which is not affected
49861    by the flux, when Zeeman energy of electron moving in the stub
49862    coincides with a level of the isolated stub. As Zeeman energy crosses
49863    the level of the stub, Aharonov-Bohm oscillations of spin-state
49864    conductance have no abrupt change of phase by pi and are in phase. The
49865    effect of the magnetic field on transmission behavior of spin-state
49866    electrons are examined. (C) 2002 Elsevier Science B.V. All rights
49867    reserved.
49868 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
49869    Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
49870 RP Shi, YM, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
49871 CR BRUDER C, 1996, PHYS REV LETT, V76, P114
49872    CHEN H, 1998, INT J MOD PHYS B, V12, P1729
49873    DEO PS, 1996, MOD PHYS LETT B, V10, P787
49874    HACKENBROICH G, 1996, PHYS REV LETT, V76, P110
49875    RYU CM, 1996, MOD PHYS LETT B, V10, P401
49876    SCHUSTER R, 1997, NATURE, V385, P417
49877    SHI YM, 1999, J SHANGHAI UNIV, V3, P339
49878    SHI YM, 1999, PHYS RVE B, V60, P1949
49879    TANIGUCHI T, 1999, PHYS REV B, V60, P13841
49880    WU J, 1998, PHYS REV LETT, V80, P1952
49881    WU J, 1999, PHYS LETT A, V262, P245
49882    XIA JB, 1992, PHYS REV B, V45, P3593
49883    YACOBY A, 1995, PHYS REV LETT, V74, P4047
49884    YACOBY A, 1996, PHYS REV B, V53, P9583
49885    YEYATI L, 1995, PHYS REV B, V52
49886    YI YS, 1999, PHYS REV B, V55, P10637
49887 NR 16
49888 TC 0
49889 SN 0375-9601
49890 J9 PHYS LETT A
49891 JI Phys. Lett. A
49892 PD JUL 8
49893 PY 2002
49894 VL 299
49895 IS 4
49896 BP 401
49897 EP 406
49898 PG 6
49899 SC Physics, Multidisciplinary
49900 GA 576WR
49901 UT ISI:000177030600014
49902 ER
49903 
49904 PT J
49905 AU Gu, ZT
49906    Liang, PH
49907    Zhang, WQ
49908 TI Measurement of glass surface layers and their influence on thin-film
49909    optical properties
49910 SO OPTICAL ENGINEERING
49911 DT Article
49912 DE glass surface layer; optical parameter; p-polarized light reflectance;
49913    cleaning treatment
49914 ID ELLIPSOMETRY
49915 AB A new and simple method is proposed to analyze the profiles of glass
49916    surface layers based on their reflectance for p-polarized light. By
49917    measuring the angle spectrum gamma(theta(i)) (gamma equivalent to
49918    I-a/I-b), where I-a and I-b are the intensities of reflection from the
49919    front and the back surface of the glass, and fitting the results with
49920    theoretical relations, the refractive index n(s) and extinction
49921    coefficient k(s) of plane glass surfaces can easily be obtained.
49922    Experimentally, glass samples subjected to different cleaning
49923    treatments have been analyzed. The results show that n(s) and k(s) of
49924    the glass surface increase exponentially with the depth into the
49925    surface layers, and an etched glass sample has a smaller extinction
49926    coefficient on its surface. This is confirmed by
49927    atomic-force-microscope observation and by laser-damage testing. In
49928    addition, the influence of the glass surface layers on the properties
49929    of films coated on one side or both sides of the glass substrate is
49930    analyzed. Dip-coated polymethyltriethoxysilane. (PMTES) films and
49931    spin-coated PMMA films have been measured. It is found that the optical
49932    parameters of PMTES films and azo-doped PMMA films are in agreement
49933    with the experimental results only if the glass surface layers are
49934    considered. (C) 2002 Society of Photo-Optical Instrumentation Engineers.
49935 C1 Shanghai Univ Sci & Technol, Dept Basic Sci, Shanghai 200093, Peoples R China.
49936    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
49937 RP Gu, ZT, Shanghai Univ Sci & Technol, Dept Basic Sci, POB 249,516 Jun
49938    Gong Rd, Shanghai 200093, Peoples R China.
49939 CR AFANASEVA AG, 1990, OPT SPECTROSC, V69, P679
49940    ALVAREZHERRERO A, 2001, APPL OPTICS, V40, P527
49941    BORN M, 1964, PRINCIPLES OPTICS
49942    COUILLARD JG, 1997, J NON-CRYST SOLIDS, V222, P429
49943    GUENTHER KH, 1981, THIN SOLID FILMS, V77, P239
49944    JELLISON GE, 1991, APPL OPTICS, V30, P4310
49945    LIU XL, 1997, APPL OPTICS, V36, P3788
49946    PENZKOFER A, 1998, OPT COMMUN, V158, P221
49947    RADLEIN E, 1997, J NON-CRYST SOLIDS, V222, P69
49948    ROCHE P, 1996, APPL OPTICS, V35, P5059
49949    SCHICHT H, 1997, J NON-CRYST SOLIDS, V218, P210
49950    YOKOTA H, 1969, SURF SCI, V16, P265
49951    ZHANG ZM, 1999, APPL OPTICS, V38, P205
49952 NR 13
49953 TC 0
49954 SN 0091-3286
49955 J9 OPT ENG
49956 JI Opt. Eng.
49957 PD JUL
49958 PY 2002
49959 VL 41
49960 IS 7
49961 BP 1738
49962 EP 1746
49963 PG 9
49964 SC Optics
49965 GA 576TR
49966 UT ISI:000177021900040
49967 ER
49968 
49969 PT J
49970 AU He, JH
49971 TI Smoothed particle technique for treatment shocks in transonic
49972    aerodynamics
49973 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
49974 DT Article
49975 DE meshfree particle method; SPH technique; transonic flow
49976 ID MESHLESS
49977 AB The smoothed particle computing technique has features which make the
49978    technique highly attractive for simulating aerodynamics involving
49979    unknown discontinuities (such as shock and free trailing vortex
49980    sheets). However, full exploitation of the method's potential has been
49981    hampered by the inherent deficiency on the boundaries and the unknown
49982    discontinuities. To remedy the shortcoming, this paper proposes some
49983    heuristic approaches to capturing automatically the unknown
49984    discontinuities. To impose the boundary conditions, a variational-like
49985    approach is suggested so that boundary conditions can be satisfied
49986    optimally.
49987 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
49988 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
49989    Peoples R China.
49990 CR BELYTSCHKO T, 1996, COMPUT METHOD APPL M, V139, P3
49991    CHEN JK, 1999, INT J NUMER METH ENG, V46, P231
49992    CORDES LW, 1996, COMPUT METHOD APPL M, V139, P75
49993    HE JH, 1999, INT J TURBO JET ENG, V16, P19
49994    HE JH, 2000, INT J NONLINEAR SCI, V1, P139
49995    LIU WK, 1996, ARCH COMPUTATIONAL M, V3, P3
49996    LUCKY LB, 1977, ASTRON J, V82, P1013
49997    ONATE E, 1996, COMPUT METHOD APPL M, V139, P315
49998    RANDLES PW, 1996, COMPUT METHOD APPL M, V139, P375
49999    WAGNER GJ, IN PRESS INT J NUMER
50000 NR 10
50001 TC 1
50002 SN 0334-0082
50003 J9 INT J TURBO JET ENGINES
50004 JI Int. J. Turbo. Jet-Engines
50005 PY 2001
50006 VL 18
50007 IS 4
50008 BP 243
50009 EP 249
50010 PG 7
50011 SC Engineering, Aerospace
50012 GA 576LC
50013 UT ISI:000177005400002
50014 ER
50015 
50016 PT J
50017 AU He, JH
50018 TI A variational principle for magnetohydrodynamics with high Hartmann
50019    number flow
50020 SO INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE
50021 DT Article
50022 DE MHD; variational principle; semi-inverse method; Lagrange multiplier
50023 ID SEMI-INVERSE METHOD; AERODYNAMICS; ELASTICITY
50024 AB By the semi-inverse method proposed by He, a variational principle is
50025    established for three-dimensional MHD equations with high Hartmann
50026    number. In order to incorporate the no-slip condition and far distance
50027    boundary condition as natural boundary conditions, a special technique
50028    is proposed in this paper. Lagrange crisis are also illustrated. (C)
50029    2002 Published by Elsevier Science Ltd.
50030 C1 Shanghai Donghua Univ, Coll Basic Sci, Dept Math, Shanghai 200051, Peoples R China.
50031 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, POB 189,149
50032    Yanchang Rd, Shanghai 200072, Peoples R China.
50033 CR BARRETT KE, 2001, INT J ENG SCI, V39, P1577
50034    CHANG ID, 1963, ZAMP, V14, P134
50035    CHIEN WZ, 1983, APPL MATH MECH, V4, P137
50036    FELIPPA CA, 1989, COMMUN APPL NUMER M, V5, P79
50037    HE JH, 1997, INT J TURBO JET ENG, V14, P23
50038    HE JH, 1997, J SHANGHAI U, V1, P117
50039    HE JH, 1997, SHANGHAI J MECH, V18, P305
50040    HE JH, 1999, INT J TURBO JET ENG, V16, P19
50041    HE JH, 1999, J U SHANGHAI SCI TEC, V21, P127
50042    HE JH, 1999, J U SHANGHAI SCI TEC, V21, P29
50043    HE JH, 2000, AIRCR ENG AEROSP TEC, V72, P18
50044    HE JH, 2000, APPL MATH MECH-ENGL, V21, P797
50045    HE JH, 2000, ASME, V67, P326
50046    HE JH, 2000, INT J ENG SCI, V39, P323
50047    HE JH, 2000, INT J NONLINEAR SCI, V1, P139
50048    HE JH, 2001, INT J NONLINEAR SCI, V2, P161
50049    HUNT JCR, 1967, J FLUID MECH, V28, P241
50050    LIU GL, 2000, INT J NONLINEAR SCI, V1, P25
50051    NOOR AK, 1984, UNIFICATION FINITE E, P275
50052 NR 19
50053 TC 3
50054 SN 0020-7225
50055 J9 INT J ENG SCI
50056 JI Int. J. Eng. Sci.
50057 PD JUL
50058 PY 2002
50059 VL 40
50060 IS 12
50061 BP 1403
50062 EP 1410
50063 PG 8
50064 SC Engineering, Multidisciplinary
50065 GA 575RD
50066 UT ISI:000176960900008
50067 ER
50068 
50069 PT J
50070 AU Zhang, JF
50071 TI Backlund transformation and variable separation solutions for the
50072    generalized Nozhnik-Novikov-Veselov equation
50073 SO CHINESE PHYSICS
50074 DT Article
50075 DE extended homogeneous balance method; (2+1) dimensions; GNNV equation;
50076    localized coherent structures
50077 ID COHERENT STRUCTURES; KDV EQUATION
50078 AB Using the extended homogeneous balance method, the Backlund
50079    transformation for a (2+1)-dimensional integrable model, the
50080    generalized Nizhnik-Novikov-Veselov (GNNV) equation, is first obtained.
50081    Also, making use of the Backlund transformation, the GNNV equation is
50082    changed into three equations: linear, bilinear and trilinear form
50083    equations. Starting from these three equations, a rather general
50084    variable separation solution of the model is constructed. The abundant
50085    localized coherent structures of the model can be induced by the
50086    entrance of two variable-separated arbitrary functions.
50087 C1 Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
50088    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
50089 RP Zhang, JF, Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004,
50090    Peoples R China.
50091 CR BOITI M, 1986, INVERSE PROBL, V2, P271
50092    CAO CW, 1990, SCI CHINA SER A, V33, P528
50093    CHEN LL, 1999, ACTA PHYS SIN-CH ED, V48, P2149
50094    CHENG Y, 1991, PHYS LETT A, V157, P22
50095    FAN EG, 1998, ACTA PHYS SINICA, V47, P353
50096    HU XB, 1991, J PHYS A, V24, P1331
50097    HU XB, 1991, J PHYS A-MATH GEN, V24, P1979
50098    KONOPELCHENKO BG, 1991, PHYS LETT A, V175, P17
50099    LOU SY, 1996, J PHYS A, V29, P420
50100    LOU SY, 1997, ACTA PHYS SINICA, V46, P561
50101    LOU SY, 1999, J MATH PHYS, V40, P6491
50102    LOU SY, 2000, CHINESE PHYS LETT, V17, P781
50103    LOU SY, 2000, PHYS LETT A, V277, P94
50104    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
50105    NIZHNIK LP, 1980, SOV PHYS DOKL, V25, P706
50106    NOVIKOV SP, 1986, PHYSICA D, V18, P267
50107    OHTA Y, 1992, J PHYS SOC JPN, V61, P3928
50108    RADHA R, 1994, J MATH PHYS, V35, P4746
50109    RUAN HY, 1999, ACTA PHYS SINICA, V5, P241
50110    RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P586
50111    TAGAMI Y, 1989, PHYS LETT A, V141, P116
50112    WANG MI, 1995, PHYS LETT A, V199, P279
50113    WANG ML, 1995, PHYS LETT A, V199, P169
50114    ZHANG JF, 1998, ACTA PHYS SINICA, V47, P1416
50115    ZHANG JF, 1999, CHINESE PHYS LETT, V16, P659
50116 NR 25
50117 TC 28
50118 SN 1009-1963
50119 J9 CHIN PHYS
50120 JI Chin. Phys.
50121 PD JUL
50122 PY 2002
50123 VL 11
50124 IS 7
50125 BP 651
50126 EP 655
50127 PG 5
50128 SC Physics, Multidisciplinary
50129 GA 576GM
50130 UT ISI:000176995100001
50131 ER
50132 
50133 PT J
50134 AU Zheng, G
50135    Zhang, M
50136    Li, H
50137    Chance, B
50138    Glickson, JD
50139 TI Synthesis and biological evaluation of near infrared fluorescence
50140    probes (NIRFS) for tumors overexpressing LDL receptors
50141 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
50142 DT Meeting Abstract
50143 C1 Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA.
50144    Shanghai Univ, Dept Chem, Shanghai, Peoples R China.
50145    Univ Penn, Dept Biochem & Biophys, Philadelphia, PA 19104 USA.
50146 NR 0
50147 TC 0
50148 SN 0065-7727
50149 J9 ABSTR PAP AMER CHEM SOC
50150 JI Abstr. Pap. Am. Chem. Soc.
50151 PD APR 7
50152 PY 2002
50153 VL 223
50154 PN Part 2
50155 BP B135
50156 EP B135
50157 PG 1
50158 SC Chemistry, Multidisciplinary
50159 GA 564CE
50160 UT ISI:000176296800735
50161 ER
50162 
50163 PT J
50164 AU Li, TY
50165    Wang, SJ
50166    Zheng, LP
50167 TI Comparative study on CO2 sources in soil developed on carbonate rock
50168    and non-carbonate rock in Central Guizhou
50169 SO SCIENCE IN CHINA SERIES D-EARTH SCIENCES
50170 DT Article
50171 DE carbonate rock; non-carbonate rock; soil CO2; sources
50172 ID STABLE ISOTOPIC COMPOSITION; DIOXIDE; AREAS; CHINA
50173 AB In this paper, by using concentration and carbon stable isotope the CO2
50174    sources of soil profiles developed on limestone, dolostone and
50175    claystone basements in Central Guizhou, China are comparatively
50176    studied. The results show that CO2 concentration of soil profiles
50177    developed on different basements is different, having the following
50178    sequence: limestone>dolostone>claystone. Below the soil depth of 20 cm
50179    from the surface the delta(13)C value of CO2 in soil profile developed
50180    on limestone ranges from -12.811parts per thousand - -13.492parts per
50181    thousand(PDB), that in soil profile developed on dolostone varys from
50182    -13.212parts per thousand - -14.271parts per thousand(PDB) and that in
50183    soil profile developed on claystone is about -20.234parts per thousand
50184    - -21.485parts per thousand(PDB). Taking the carbon isotope of soil
50185    organic matter and carbonate rock as two isotopic endmembers, the
50186    proportion of soil CO2 generated by dissolution of carbonate rock is
50187    calculated, about 21%-25% for soil profile developed on limestone
50188    basement, 19%-21% for soil profile developed on dolostone basement.
50189    There is almost no influx of CO2 generated by the dissolution of
50190    carbonate rock in soil profile developed on claystone basement.
50191 C1 Chinese Acad Sci, Inst Geochem, State Key Lab Environm Geochem, Guiyang 550002, Peoples R China.
50192    Grad Sch Chinese Acad Sci, Beijing 100039, Peoples R China.
50193    Shanghai Univ, Dept Environm Engn, Shanghai 200072, Peoples R China.
50194 RP Wang, SJ, Chinese Acad Sci, Inst Geochem, State Key Lab Environm
50195    Geochem, Guiyang 550002, Peoples R China.
50196 CR BUYANOVSKY GA, 1983, SOIL SCI SOC AM J, V47, P1139
50197    CERLING TE, 1984, EARTH PLANET SC LETT, V71, P229
50198    CHIODINI G, 1998, APPL GEOCHEM, V13, P543
50199    CRAIG H, 1953, GEOCHIM COSMOCHIM AC, V3, P53
50200    DAVIDSON GR, 1995, GEOCHIM COSMOCHIM AC, V59, P2485
50201    HE SH, 1997, CARSOLOGICA SINICA, V16, P319
50202    HOEFS J, 1997, STABLE ISOTOPE GEOCH, P153
50203    HSIEH JCC, 1999, GEOCHIM COSMOCHIM AC, V63, P767
50204    JAMES WR, 1995, GLOBAL BIOGEOCHEMICA, V9, P23
50205    JUAN CC, 1998, CHEM GEOL, V149, P251
50206    LIU ZH, 1998, HYDROGEOLOGY ENG GEO, V4, P42
50207    LIU ZH, 2000, SCI CHINA SER D, V43, P569
50208    MARRISON GM, 1991, CHEM GEOL, V86, P97
50209    PAN GX, 1999, CARSOLOGICA SINICA, V18, P287
50210    PARKER LW, 1983, SOIL BIOL BIOCHEM, V15, P303
50211    PIAO HC, 2000, BIOL FERT SOILS, V31, P422
50212    SOLOMON DK, 1987, WATER RESOUR RES, V23, P2257
50213    SONG WZ, 1996, ENV SCI, V17, P85
50214    TANG C, 1999, CARSOLOGICA SINICA, V18, P213
50215    WALTER CO, 1997, GLOBAL BIOGEOCHEMICA, V11, P163
50216    WANG Y, 1994, GEOCHIM COSMOCHIM AC, V58, P393
50217    WENG JT, 1995, ADV EARTH SCI, V10, P154
50218    WITKAMP M, 1969, ECOLOGY, V50, P922
50219    YUAN DX, 1993, QUATERNARY SCI, V1, P1
50220    ZHENG LP, 1999, CHINESE SCI B S2, V44, P93
50221    ZHENG LP, 1999, SCI CHINA SER D, V42, P588
50222 NR 26
50223 TC 1
50224 SN 1006-9313
50225 J9 SCI CHINA SER D
50226 JI Sci. China Ser. D-Earth Sci.
50227 PD AUG
50228 PY 2002
50229 VL 45
50230 IS 8
50231 BP 673
50232 EP 679
50233 PG 7
50234 SC Geosciences, Multidisciplinary
50235 GA 573VD
50236 UT ISI:000176851600001
50237 ER
50238 
50239 PT J
50240 AU Li, CF
50241 TI Comment on "Photonic tunneling time in frustrated total internal
50242    reflection"
50243 SO PHYSICAL REVIEW A
50244 DT Editorial Material
50245 ID NEGATIVE PHASE TIME; ANALOGY; DELAY
50246 AB This is a comment on Stahlhofen's paper [Phys. Rev. A 62, 012112
50247    (2000)]. It is shown by stationary-phase theory that the Goos-Hanchen
50248    shift in frustrated total internal reflection (FTIR) is not independent
50249    of the group delay (or phase time in the literature). The group delay
50250    involves the contribution of Goos-Hanchen shift and is always larger
50251    than zero in FTIR. It is also shown that the group delay in the
50252    two-dimensional (2D) optical FTIR can be written in the same form as
50253    that of the group delay in the 1D quantum tunneling in the sense that
50254    the group delay is the derivative of the total phase shift with respect
50255    to the angular frequency.
50256 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
50257 RP Li, CF, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
50258 CR BUTTIKER M, 1983, PHYS REV B, V27, P6178
50259    LI CF, 2000, PHYS LETT A, V275, P287
50260    MARTIN T, 1992, PHYS REV A, V45, P2611
50261    STAHLHOFEN AA, 2000, PHYS REV A, V62
50262    STEINBERG AM, 1994, PHYS REV A, V49, P3283
50263    VETTER RM, 2001, PHYS REV E 2, V63
50264    WANG LJ, 2000, NATURE, V406, P277
50265 NR 7
50266 TC 4
50267 SN 1050-2947
50268 J9 PHYS REV A
50269 JI Phys. Rev. A
50270 PD JUN
50271 PY 2002
50272 VL 65
50273 IS 6
50274 AR 066101
50275 DI ARTN 066101
50276 PG 3
50277 SC Physics, Atomic, Molecular & Chemical; Optics
50278 GA 572FT
50279 UT ISI:000176763600135
50280 ER
50281 
50282 PT J
50283 AU Xu, T
50284    Li, L
50285    Wang, PL
50286    Van Der Biest, O
50287    Vlengels, J
50288 TI Progress on calculation of phase diagram of ZrO2-containing oxides
50289    systems
50290 SO JOURNAL OF INORGANIC MATERIALS
50291 DT Article
50292 DE phase diagram; calculation of phase diagram; zirconia
50293 ID REGULAR SOLUTION MODEL; COMPOUND-ENERGY MODEL; THERMODYNAMIC
50294    PROPERTIES; OPTIMIZATION
50295 AB Zirconia is a kind of important ceramics materials. Because of its
50296    superior mechanical and electrical properties, zirconia, has been
50297    widely applied as both structural ceramics and functional ceramics.
50298    Based on a brief introduction on the progress and principle of
50299    calculation of phase diagram, the corresponding work on
50300    zirconia-containing systems in recent years was reviewed, and the
50301    results in some important systems were also summarized in detail. It
50302    was expected that the information of zirconia-containing phase diagrams
50303    based on the CALPHAD method would significantly promote the
50304    compositional design of zirconia ceramics.
50305 C1 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
50306    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
50307    Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Louvain, Belgium.
50308 RP Xu, T, Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High
50309    Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
50310 CR ANDERSSON JO, 1986, ACTA METALL, V34, P437
50311    BLANDER M, 1987, GEOCHIM COSMOCHIM AC, V51, P85
50312    BONNIER E, 1960, CR HEBD ACAD SCI, V250, P527
50313    CHOU KC, 1987, CALPHAD, V11, P293
50314    COLINET C, 1967, D E S U GRENOBLE FRA
50315    DEGTYAREV SA, 1988, CALPHAD, V12, P73
50316    DU Y, 1991, J AM CERAM SOC, V74, P1569
50317    DU Y, 1991, J AM CERAM SOC, V74, P2107
50318    HILLERT M, 1969, PHASE TRANSFORMATION, CH5
50319    HILLERT M, 1970, ACTA CHEM SCAND, V24, P3618
50320    HILLERT M, 1980, CALPHAD, V4, P1
50321    HILLERT M, 1985, METALL TRANS A, V16, P261
50322    HILLERT M, 1988, Z METALLKD, V79, P81
50323    HILLERT M, 1998, J PHASE EQUILIB, V19, P206
50324    KAUFMAN L, 1970, COMPUTER CALCULATION
50325    KOHLER F, 1960, MONATSH CHEM, V91, P738
50326    KUBASCHEWSKI O, 1965, J I MET, V93, P329
50327    LI L, 1996, J MATER SCI TECHNOL, V12, P159
50328    LI L, 2001, J EUR CERAM SOC, V21, P2903
50329    MEIJERING JL, 1950, PHILIPS RES REP, V5, P333
50330    MUGGIANU YM, 1975, J CHIMIE PHYSIQUE, V72, P83
50331    ONDIK HM, 1998, PHASE DIAGRAMS ZIRCO
50332    PELTON AD, 1986, METALL TRANS B, V17, P805
50333    PELTON AD, 1988, CALPHAD, V12, P97
50334    SUNDMAN B, 1981, J PHYS CHEM SOLIDS, V42, P297
50335    TOOP GW, 1965, T METALL SOC AIME, V233, P850
50336    VANLAAR JJ, 1908, Z PHYS CHEM-STOCH VE, V63, P216
50337    VANLAAR JJ, 1908, Z PHYS CHEM-STOCH VE, V64, P257
50338    YOKOKAWA H, 1993, SCI TECHNOLOGY ZIRCO, V5, P59
50339 NR 29
50340 TC 0
50341 SN 1000-324X
50342 J9 J INORG MATER
50343 JI J. Inorg. Mater.
50344 PD MAY
50345 PY 2002
50346 VL 17
50347 IS 3
50348 BP 399
50349 EP 406
50350 PG 8
50351 SC Materials Science, Ceramics
50352 GA 574BN
50353 UT ISI:000176868700003
50354 ER
50355 
50356 PT J
50357 AU Chen, XY
50358    Shen, XJ
50359 TI Mechanical model of laterally driven polysilicon microresonant
50360 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
50361 DT Article
50362 DE MEMS; mechanical model; laterally driven micro-resonator; flexural
50363    suspension
50364 AB Surface-polysilicon fabricated comb-drive resonators suspended by
50365    springs are modeled in this paper. Based on the understanding of
50366    symmetry of the microstructures but applied load are not same, the
50367    lateral vibration of the micro-resonators which suspended by four
50368    straight-leg or crab-leg flexure are investigated. It is found that the
50369    simple mechanical models of them are both superfluous systems with
50370    three or five unknown variables. The calculating way of the stress,
50371    lateral displacement, spring coefficient and resonant frequency is
50372    deducted. Compared with the model of steady system, which published
50373    before, the result shows the essential aspect of this problem and
50374    explains why straight-leg flexures are more commonly used in practice.
50375 C1 Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China.
50376 RP Chen, XY, Shanghai Univ, Sch Mechatron Engn & Automat, POB 224,149
50377    Yanchang Rd, Shanghai 200072, Peoples R China.
50378 CR DANEMAN MJ, 1996, J MICROELECTROMECH S, V5, P159
50379    DEB N, 1999, P SOC PHOTO-OPT  1&2, V3680, P58
50380    FEDDER GK, 1995, P 1 INT C SIM DES MI, P175
50381    FEDDER GK, 1997, P TRANSD 97, P1109
50382    HIRANO T, 1992, J MICROELECTROMECH S, V1, P52
50383    PISANO AP, 1989, SENSOR ACTUATOR, V20, P83
50384    PISANO AP, 1990, SENSOR ACTUAT A-PHYS, V21, P1060
50385    TANG WC, 1989, SENSOR ACTUATOR, V20, P25
50386    TANG WC, 1990, SENSOR ACTUAT A-PHYS, V21, P328
50387    TANG WC, 1992, J MICROELECTROMECHAN, V1, P170
50388 NR 10
50389 TC 0
50390 SN 1565-1339
50391 J9 INT J NONLINEAR SCI NUMER SIM
50392 JI Int. J. Nonlinear Sci. Numer. Simul.
50393 PY 2002
50394 VL 3
50395 IS 3-4
50396 SI Sp. Iss. SI
50397 BP 639
50398 EP 642
50399 PG 4
50400 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
50401    Mathematical; Mechanics
50402 GA 574RR
50403 UT ISI:000176903800108
50404 ER
50405 
50406 PT J
50407 AU Lu, ZY
50408    Wang, LH
50409    Yao, DY
50410 TI Study on the modeling of timed-token protocol
50411 SO APPLIED MATHEMATICAL MODELLING
50412 DT Article
50413 DE timed-token protocol (TTP); time-limited service; mathematical modeling
50414 AB The study on the modeling of timed-token protocol (TTP) in metropolitan
50415    area network is presented in this paper. The classification of queueing
50416    models of TTP is given, and the mathematical analysis as well as
50417    numerical emulation for one of the queueing models i.e. L/G/1
50418    [Intermittent, Station priority, TTP, Time-limited service] are
50419    presented. (C) 2002 Elsevier Science Inc. All rights reserved.
50420 C1 Ocean Univ Qingdao, Dept Comp Sci & Technol, Qingdao 266071, Peoples R China.
50421    Yunnan Univ, Informat Engn Coll, Yunnan 650000, Peoples R China.
50422    Shanghai Univ, Coll Comp, Shanghai 200072, Peoples R China.
50423 RP Lu, ZY, Ocean Univ Qingdao, Dept Comp Sci & Technol, Qingdao 266071,
50424    Peoples R China.
50425 CR JAIN R, 1990, P ACM SIGCOMM S COMM, P264
50426    LU ZY, 1994, J ELECT, V16, P148
50427    PANG JWM, 1989, IEEE T COMMUN, V37, P694
50428    RUBIN I, 1992, P IEEE GLOBECOM, P1630
50429    RUBIN I, 1997, COMPUT NETWORKS ISDN, V29, P249
50430    WANG L, 1999, QINGD HONG KONG INT
50431 NR 6
50432 TC 0
50433 SN 0307-904X
50434 J9 APPL MATH MODEL
50435 JI Appl. Math. Model.
50436 PD AUG
50437 PY 2002
50438 VL 26
50439 IS 8
50440 BP 797
50441 EP 805
50442 PG 9
50443 SC Mathematics, Applied; Mechanics; Operations Research & Management
50444    Science
50445 GA 574MU
50446 UT ISI:000176894800002
50447 ER
50448 
50449 PT J
50450 AU Xu, GQ
50451    Li, ZB
50452 TI Extended mixing exponential method and its applications
50453 SO ACTA PHYSICA SINICA
50454 DT Article
50455 DE solitary wave; mixing exponential method; regular long wave equation
50456 ID SOLITARY WAVE SOLUTIONS; EXPLICIT EXACT-SOLUTIONS; TANH-FUNCTION
50457    METHOD; NONLINEAR EVOLUTION; EQUATIONS
50458 AB Mixing exponential method proposed by Hereman for finding the solitary
50459    wave solutions to a nonlinear evolution equation is developed and
50460    perfected. Correspondingly, an extended mixing exponential method is
50461    obtained by expressing the solutions as an infinite series of the real
50462    or complex exponential solutions of the underlying linear equations.
50463    The effectiveness of the extended approach is demonstrated by
50464    application to the well-known regular long wave equation with physical
50465    interest. Not only are steady solitary wave solutions recovered, but
50466    also the diverging and the periodic solutions are obtained.
50467 C1 E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China.
50468    Shanghai Univ, Dept Informat Engn & Adm, Shanghai 200436, Peoples R China.
50469 RP Xu, GQ, E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R
50470    China.
50471 CR FAN EG, 1998, ACTA PHYS SINICA, V47, P353
50472    FAN EG, 2000, PHYS LETT A, V277, P212
50473    HEREMAN W, 1986, J PHYS A-MATH GEN, V19, P607
50474    HEREMAN W, 1990, J PHYS A-MATH GEN, V23, P4805
50475    LI ZB, 1997, ACTA MATH SINICA, V17, P81
50476    LI ZB, 2001, ACTA PHYS SIN-CH ED, V50, P2062
50477    PANIGRAHY E, 1999, PHYS LETT A, V261, P284
50478    PARKES EJ, 1996, COMPUT PHYS COMMUN, V98, P288
50479    XIA TC, 2001, CHINESE PHYS, V10, P694
50480    XU GQ, 2002, ACTA PHYS SIN-CH ED, V51, P946
50481    YAN ZY, 1999, ACTA PHYS SIN-CH ED, V48, P1962
50482    ZHANG GX, 2000, SCI CHINA SER A, V30, P1103
50483    ZHENG Y, 2000, ACTA PHYS SIN-CH ED, V49, P389
50484 NR 13
50485 TC 12
50486 SN 1000-3290
50487 J9 ACTA PHYS SIN-CHINESE ED
50488 JI Acta Phys. Sin.
50489 PD JUL
50490 PY 2002
50491 VL 51
50492 IS 7
50493 BP 1424
50494 EP 1427
50495 PG 4
50496 SC Physics, Multidisciplinary
50497 GA 573VF
50498 UT ISI:000176851800004
50499 ER
50500 
50501 PT J
50502 AU Wu, Z
50503    Wang, Q
50504    Zhou, JM
50505    Li, CF
50506    Shi, JL
50507 TI Nonlinear characteristics of magnetic surface waves with microwave
50508    excitation
50509 SO ACTA PHYSICA SINICA
50510 DT Article
50511 DE antiferromagnet; ferromagnet; nonlinear surface waves
50512 ID IRON-GARNET FILMS; ENVELOPE SOLITONS; FERROMAGNETIC-FILMS; SPATIAL
50513    SOLITONS; TM WAVES; ANTIFERROMAGNETS; PROPAGATION; INTERFACE
50514 AB Properties of transverse-electric surface waves on a plane interface
50515    between a linear ferromagnet and a nonlinear antiferromagnet are
50516    investigated. The dispersion relation and the field distribution are
50517    obtained. The property investigation of the surface waves in this
50518    waveguide shows that there exist passbands and stopbands, which can be
50519    controlled by varying the power in the nonlinear gyromagnetic
50520    waveguide. The results provide ideas to develop devices capable of
50521    working in microwave frequency range.
50522 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
50523 RP Wu, Z, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
50524 CR ALMEIDA NS, 1987, PHYS REV B, V36, P2015
50525    BOARDMAN AD, 1990, OPT COMMUN, V74, P347
50526    BOARDMAN AD, 1990, PHYS REV B, V41, P717
50527    BOARDMAN AD, 1993, PHYS REV B, V48, P13602
50528    BOARDMAN AD, 1994, IEEE T MAGN, V30, P1
50529    BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
50530    BOARDMAN AD, 1995, J MAGN MAGN MATER, V145, P357
50531    BOYLE JW, 1996, PHYS REV B, V53, P12173
50532    CHEN M, 1994, PHYS REV B, V49, P12773
50533    CHEN ZG, 1996, OPT LETT, V21, P716
50534    KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712
50535    NEWELL AC, 1991, NONLINEAR OPTICS, P120
50536    TSANKOV MA, 1994, J APPL PHYS, V76, P4274
50537    VARATHARAJAH P, 1990, PHYS REV A, V42, P1767
50538    VUKOVICH S, 1991, SOV PHYS JETP, V71, P964
50539    WANG Q, 1995, J APPL PHYS, V77, P5831
50540    WANG Q, 1997, JPN J APPL PHYS PT 1, V36, P22
50541    WANG Q, 1998, J APPL PHYS, V83, P382
50542    WANG Q, 2000, ACTA PHYS SIN-CH ED, V49, P349
50543    WANG YF, 1998, J APPL PHYS, V84, P6233
50544    WU Z, 2001, ACTA PHYS SIN-CH ED, V50, P1178
50545 NR 21
50546 TC 2
50547 SN 1000-3290
50548 J9 ACTA PHYS SIN-CHINESE ED
50549 JI Acta Phys. Sin.
50550 PD JUL
50551 PY 2002
50552 VL 51
50553 IS 7
50554 BP 1612
50555 EP 1620
50556 PG 9
50557 SC Physics, Multidisciplinary
50558 GA 573VF
50559 UT ISI:000176851800037
50560 ER
50561 
50562 PT J
50563 AU Yang, L
50564    Liu, ZR
50565    Chen, GR
50566 TI Chaotifying a continuous-time system via impulsive input
50567 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
50568 DT Article
50569 DE chaos; chaotification; impulsive control; Poincare map
50570 ID CHAOS
50571 AB This paper studies the chaotification problem of driving a
50572    continuous-time system to a chaotic state by using an impulsive control
50573    input. The controller is designed to ensure the controlled orbit be
50574    bounded and, meanwhile, have positive Lyapunov exponents. This is
50575    proved to be not only possible but also implementable near a stable
50576    limit cycle of the given system. Two numerical examples are given to
50577    illustrate the effectiveness of the proposed chaotification method.
50578 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
50579    Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China.
50580    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
50581 RP Yang, L, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
50582 CR CHEN G, 1998, CHAOS ORDER METHODOL
50583    CHEN G, 1999, CONTROLLING CHAOS BI
50584    CHEN G, 2002, IN PRESS IEICE T FUN
50585    CHEN GR, 1996, INT J BIFURCAT CHAOS, V6, P1341
50586    CHEN GR, 1998, INT J BIFURCAT CHAOS, V8, P1585
50587    FRADKOV AL, 1999, INTRO CONTROL OSCILL
50588    JUDD K, 1997, CONTORL CHAOS MATH M
50589    KAPITANIAK T, 1998, CHAOS ENG THEORY APP
50590    LAKSHMANAN M, 1996, CHAOS NONLINEAR OSCI
50591    OTT E, 1990, PHYS REV LETT, V64, P1196
50592    PARKER TS, 1989, PRACTICAL NUMERICAL
50593    VANECEK A, 1996, CONTROL SYSTEMS LINE
50594    WANG XF, 2000, CHAOS, V10, P771
50595    WANG XF, 2000, INT J BIFURCAT CHAOS, V10, P549
50596 NR 14
50597 TC 9
50598 SN 0218-1274
50599 J9 INT J BIFURCATION CHAOS
50600 JI Int. J. Bifurcation Chaos
50601 PD MAY
50602 PY 2002
50603 VL 12
50604 IS 5
50605 BP 1121
50606 EP 1128
50607 PG 8
50608 SC Mathematics, Applied; Multidisciplinary Sciences
50609 GA 571JD
50610 UT ISI:000176713500017
50611 ER
50612 
50613 PT J
50614 AU Tang, JG
50615    Ma, HP
50616 TI Single and multi-interval Legendre tau-methods in time for parabolic
50617    equations
50618 SO ADVANCES IN COMPUTATIONAL MATHEMATICS
50619 DT Article
50620 DE interval decomposition; parabolic equation; spectral method in time;
50621    optimal error estimate
50622 ID SPECTRAL-GALERKIN METHOD; HYPERBOLIC-EQUATIONS; ELEMENT METHODS; DIRECT
50623    SOLVERS; 2ND-ORDER; POLYNOMIALS
50624 AB In this paper, we take the parabolic equation with periodic boundary
50625    conditions as a model to present a spectral method with the Fourier
50626    approximation in spatial and single/multi-interval Legendre
50627    Petrov-Galerkin method in time. For the single interval spectral method
50628    in time, we obtain the optimal error estimate in L-2 -norm. For the
50629    multi-interval spectral method in time, the L-2-optimal error estimate
50630    is valid in spatial. Numerical results show the efficiency of the
50631    methods.
50632 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
50633    Lingling Coll, Dept Math, Yongzhou Hunan, Peoples R China.
50634 CR BABUSKA I, 1989, NUMER METH PART D E, V5, P363
50635    BARYOSEPH P, 1995, J COMPUT PHYS, V119, P62
50636    BARYOSEPH PZ, 2000, APPL NUMER MATH, V33, P435
50637    BERNARDI C, 1997, HDBK NUM AN 2, V5, P209
50638    CANUTO C, 1988, SPECTRAL METHODS FLU
50639    COUTSIAS EA, 1996, P 3 INT C SPECTR HIG, P21
50640    GERVASIO P, 1998, NUMER METH PART D E, V14, P115
50641    GLENN I, 1992, J COMPUT PHYS, V102, P88
50642    GUO BY, 1998, SPECTRAL METHODS THE
50643    LI J, 2000, NUMER METH PART D E, V16, P513
50644    LUO Y, 1994, J SCI COMPUT, V9, P123
50645    LUO Y, 1997, J SCI COMPUT, V12, P31
50646    LUO Y, 1997, J SCI COMPUT, V12, P465
50647    MA HP, 2000, SIAM J NUMER ANAL, V38, P1425
50648    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
50649    SHEN J, 1995, SIAM J SCI COMPUT, V16, P74
50650    TALEZER H, 1986, SIAM J NUMER ANAL, V23, P11
50651    TALEZER H, 1989, SIAM J NUMER ANAL, V26, P1
50652    WU SC, 1996, APPL MATH MECH, V17, P357
50653    WU SC, 1997, ACTA MATH APPL SINIC, V13, P314
50654    ZHANG FY, 1998, J COMPUT MATH, V16, P107
50655    ZRAHIA U, 1994, COMPUT METHOD APPL M, V116, P135
50656 NR 22
50657 TC 0
50658 SN 1019-7168
50659 J9 ADV COMPUT MATH
50660 JI Adv. Comput. Math.
50661 PD NOV
50662 PY 2002
50663 VL 17
50664 IS 4
50665 BP 349
50666 EP 367
50667 PG 19
50668 SC Mathematics, Applied
50669 GA 572ZG
50670 UT ISI:000176804400004
50671 ER
50672 
50673 PT J
50674 AU Bian, LJ
50675    Qian, XF
50676    Yin, J
50677    Lu, QH
50678    Liu, L
50679    Zhu, ZK
50680 TI Preparation and properties of rare earth oxide/polyimide hybrids
50681 SO POLYMER TESTING
50682 DT Article
50683 DE hybrid; polyimide; rare earth
50684 ID POLYIMIDE; NANOCLUSTERS; COMPOSITES; FILMS
50685 AB A series of Eu2O3/polyimide hybrids has been successfully prepared via
50686    a solution process. X-ray diffraction and atomic force microscopy were
50687    used to characterize the hybrids. Mechanical tests showed that
50688    introduction of the rare earth can obviously increase the tensile
50689    strength of the polymer. Thermal analysis indicated that the addition
50690    of rare earth can increase the glass transition temperature and thermal
50691    stability of polyimide. The introduction of rare earth also increased
50692    the dimensional stability and refractive index. (C) 2002 Elsevier
50693    Science Ltd. All rights reserved.
50694 C1 Shanghai Jiao Tong Univ, Sch Chem & Chem Technol, Shanghai 200240, Peoples R China.
50695    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
50696 RP Zhu, ZK, Shanghai Jiao Tong Univ, Sch Chem & Chem Technol, Shanghai
50697    200240, Peoples R China.
50698 CR AGAG T, 2001, POLYMER, V42, P3399
50699    BERGMEISTER JJ, 1992, CHEM MATER, V2, P679
50700    EZZELL SA, 1984, MACROMOLECULES, V17, P1627
50701    KIOUL A, 1994, J NON-CRYST SOLIDS, V175, P169
50702    LAN T, 1994, CHEM MATER, V6, P573
50703    NANDI M, 1991, CHEM MATER, V3, P201
50704    PORTA GM, 1989, CHEM MATER, V1, P69
50705    SOUTHWARD RE, 1996, J ADV MATER, V27, P2
50706    THOMPSON DS, 1994, POLYM MAT SCI ENG, V71, P725
50707    TROGER L, 1997, J PHYS CHEM B, V101, P1279
50708    ZHU ZK, 2000, ADV MATER, V12, P1055
50709 NR 11
50710 TC 2
50711 SN 0142-9418
50712 J9 POLYM TEST
50713 JI Polym. Test
50714 PD OCT
50715 PY 2002
50716 VL 21
50717 IS 7
50718 BP 841
50719 EP 845
50720 PG 5
50721 SC Materials Science, Characterization & Testing; Polymer Science
50722 GA 567VA
50723 UT ISI:000176505100016
50724 ER
50725 
50726 PT J
50727 AU Ju, JH
50728    Xia, YB
50729    Sang, WB
50730    Wang, LJ
50731    Wu, WH
50732    Tang, DY
50733 TI Interface analysis of DLC film deposited on Hg1-xCdxTe
50734 SO JOURNAL OF INFRARED AND MILLIMETER WAVES
50735 DT Article
50736 DE diamond like carbon; film; infrared; interfaces
50737 AB A dense and homogeneous nanograins diamond-like carbon (DLC) film was
50738    deposited on the well-polished HgCdTe wafer by radio frequency plasma
50739    chemical vapor deposition at room temperature. The interface of
50740    DLC/HgCdTe was studied by AES and compared with that of ZnS/HgCdTe,
50741    which was prepared by ion sputtering( IS). The result shows that both
50742    DLC film and ZnS film can suppress the dissociation of the weak bonding
50743    HgTe, and prevent Hg escaping from MCT surface to some extent. However,
50744    both Zn and S in ZnS layer tend to diffuse inward MCT, while diffusion
50745    of C from DLC layer into MCT is rather slight. In particular, IR
50746    transmission of MCT deposited with DLC is remarkable raised comparing
50747    to the naked surface and higher than that of MCT deposited with ZnS.
50748 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
50749    Chinese Acad Sci, Natl Lab Infrared Phys, Shanghai, Peoples R China.
50750 RP Ju, JH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
50751    China.
50752 CR ANGUS JC, 1988, SCIENCE, V241, P913
50753    HARRIS DC, 1995, P SOC PHOTO-OPT INS, V2552, P325
50754    HOLLAND L, 1979, THIN SOLID FILMS, V58, P107
50755    HOWLAND R, 1996, PRACTICAL GUIDE SCAN
50756    JU JH, 1992, ACTA ENERGIAE SOLARI, V13, P276
50757    JUNG JW, 1996, THIN SOLID FILMS, V290, P18
50758    MCKINLEY JM, 1995, P SOC PHOTO-OPT INS, V2554, P213
50759    NEMIROVSKY Y, 1990, J VAC SCI TECHNOL A, V8, P1185
50760 NR 8
50761 TC 1
50762 SN 1001-9014
50763 J9 J INFRARED MILIM WAVES
50764 JI J. Infrared Millim. Waves
50765 PD JUN
50766 PY 2002
50767 VL 21
50768 IS 3
50769 BP 238
50770 EP 240
50771 PG 3
50772 SC Optics
50773 GA 570WM
50774 UT ISI:000176682400018
50775 ER
50776 
50777 PT J
50778 AU Jiang, XY
50779    Zhang, ZL
50780    Zhang, BX
50781    Zhu, WQ
50782    Xu, SH
50783 TI Stable and current independent white-emitting organic diode
50784 SO SYNTHETIC METALS
50785 DT Article
50786 DE white OLED; current independence; stability
50787 ID ELECTROLUMINESCENT DEVICES; LAYERS
50788 AB White organic light emitting diodes (OLEDs) with new blue material and
50789    two kinds of structures have been constructed: one with blue and red
50790    emission in a same layer, the other with blue and red emission in
50791    separated layers. The configurations of the devices are
50792    ITO/CuPc/NTPB/JBEM(P):DCJT/Alq/MgAg (Device1) and
50793    ITO/CuPc/NPB/JBEM(P)/Alq:DCJT/Alq/MgAg (Device2). Here, copper
50794    phthalocyanine (CuPc) is the buffer layer;
50795    N,N'-bis(l-naphthyl)-N'-diphenyl-1.1'-biphenyl-4-4'-diamine (NPB) is
50796    the hole transporting layer (HTL); 9,10-bis(3'5'-diaryl)phenyl
50797    anthracene doped with perylene (JBEM(P)) is a new blue emitting
50798    material; tris(8-quinolinolato)aluminum complex (Alq) is the electron
50799    transporting layer (ETL), and DCJT is a red dye. A stable and current
50800    independent white OLED has been obtained in the device with blue and
50801    red emission in the same layer. It shows a maximum luminance of 14 850
50802    cd/m(2), an efficiency of 2.88 Lm/W, Commission Internationale de
50803    l'Eclairage (CIE) co-ordinates x = 0.32, y = 0.38 from 4 to 200
50804    mA/cm(2), and the half lifetime 2860 h at the starting luminance of 100
50805    cd/m(2). It is proved that the device with blue and red in the same
50806    layer has better characteristics than the device with blue and red in
50807    separated layers in luminance, efficiency and stability. (C) 2002
50808    Elsevier Science B.V. All rights reserved.
50809 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
50810 RP Jiang, XY, Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R
50811    China.
50812 CR CHEN CH, 1997, MACROMOL S, V125, P1
50813    DESHPANDE RS, 1999, APPL PHYS LETT, V75, P888
50814    FORREST SR, 1997, SYNTHETIC MET, V91, P9
50815    GRANSTROM M, 1996, APPL PHYS LETT, V68, P147
50816    JIANG XY, 2000, J PHYS D APPL PHYS, V33, P473
50817    JORDAN RH, 1996, APPL PHYS LETT, V68, P1192
50818    KIDO J, 1994, APPL PHYS LETT, V64, P815
50819    LIU SY, 2000, THIN SOLID FILMS, V363, P294
50820    SHI JM, 1999, 5972247, US
50821    STRUKELJ M, 1996, J AM CHEM SOC, V118, P1213
50822    TANG CW, 1987, APPL PHYS LETT, V51, P913
50823    TOKITO S, 1995, J APPL PHYS, V77, P1985
50824 NR 12
50825 TC 10
50826 SN 0379-6779
50827 J9 SYNTHET METAL
50828 JI Synth. Met.
50829 PD JUN 17
50830 PY 2002
50831 VL 129
50832 IS 1
50833 BP 9
50834 EP 13
50835 PG 5
50836 SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
50837    Polymer Science
50838 GA 567DK
50839 UT ISI:000176470000002
50840 ER
50841 
50842 PT J
50843 AU Yang, GH
50844    Zhang, H
50845    Duan, YS
50846 TI Topological aspects of liquid crystals
50847 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
50848 DT Article
50849 DE topological current; wrapping number; disclination point; bifurcation
50850 ID CONDENSED MATTER PHYSICS; SPACE-TIME DEFECTS; BIFURCATION-THEORY; EARLY
50851    UNIVERSE; QUANTIZATION; MEDIA; ORIGIN
50852 AB Using phi-mapping method and topological current theory, the properties
50853    and behaviors of disclination points in three-dimensional liquid
50854    crystals are studied. By introducing the strength density and the
50855    topological current of many disclination points, the total disclination
50856    strength is topologically quantized by the Hopf indices and Brouwer
50857    degrees at the singularities of the general director field when the
50858    Jacobian determinant of the general director field does not vanish.
50859    When the Jacobian determinant vanishes, the origin, annihilation, and
50860    bifurcation of disclination points are detailed in the neighborhoods of
50861    the limit point and bifurcation point, respectively. The branch
50862    solutions at the limit point and the different directions of all branch
50863    curves at the first- and second-order degenerated points are
50864    calculated. It is pointed out that a disclination point with a higher
50865    strength is unstable and will evolve to the lower strength state
50866    through the bifurcation process. An original disclination point can
50867    split into at most four disclination points at one time.
50868 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
50869    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
50870    Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China.
50871 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
50872 CR ANDERSON PW, 1984, BASIC NOTIONS CONDEN
50873    BLAHA S, 1976, PHYS REV LETT, V36, P874
50874    BRAY AJ, 1994, ADV PHYS, V43, P375
50875    DEGENNES PG, 1970, LECT NOTES
50876    DEGENNES PG, 1974, PHYSICS LIQUID CRYST
50877    DUAN YS, 1997, GEN RELAT GRAVIT, V29, P715
50878    DUAN YS, 1997, HELV PHYS ACTA, V70, P565
50879    DUAN YS, 1998, NUCL PHYS B, V514, P705
50880    FINKELSTEIN D, 1966, J MATH PHYS, V7, P1218
50881    FRIEDEL J, 1964, DISLOCATIONS
50882    HOLZ A, 1992, PHYSICA A, V182, P240
50883    JIANG Y, 2000, J MATH PHYS, V41, P2616
50884    KLEMAN M, 1972, LIQUID CRYSTALLINE S
50885    KLEMAN M, 1973, PHILOS MAG, V27, P1057
50886    KLEMAN M, 1977, J PHYSIQUE LETT, V38, L195
50887    KLEMAN M, 1983, POINTS LINES WALLS L
50888    KURIK MV, 1988, SOV PHYS USP, V31, P196
50889    KURIK MV, 1988, USP FIZ NAUK, V154, P381
50890    LUBENSKY TC, 1997, SOLID STATE COMMUN, V102, P187
50891    MERMIN ND, 1979, REV MOD PHYS, V51, P591
50892    NABARRO FRN, 1967, THEORY CRYSTAL DISLO
50893    ROGULA D, 1976, TRENDS APPL PURE MAT
50894    SHANKAR R, 1977, J PHYSIQUE, V38, P1405
50895    TOULOUSE G, 1976, J PHYSIQUE LETT, V37, P149
50896    TREBIN HR, 1982, ADV PHYS, V31, P195
50897    VOLOVIK GE, 1976, SOV PHYS JETP, V48, P561
50898    VOLOVIK GE, 1977, ZH EKSP TEOR FIZ, V45, P1186
50899    VOLOVIK GE, 1977, ZH EKSP TEOR FIZ, V46, P401
50900    YANG GH, 1998, INT J THEOR PHYS, V37, P2371
50901    YANG GH, 1998, MOD PHYS LETT A, V13, P2123
50902    YANG GH, 1999, INT J ENG SCI, V37, P1037
50903 NR 31
50904 TC 0
50905 SN 0020-7748
50906 J9 INT J THEOR PHYS
50907 JI Int. J. Theor. Phys.
50908 PD JUN
50909 PY 2002
50910 VL 41
50911 IS 6
50912 BP 991
50913 EP 1005
50914 PG 15
50915 SC Physics, Multidisciplinary
50916 GA 566FN
50917 UT ISI:000176416400001
50918 ER
50919 
50920 PT J
50921 AU Huang, DB
50922 TI Failure of the Ott-Grebogi-York-type controllers for nonhyperbolic chaos
50923 SO CHINESE PHYSICS LETTERS
50924 DT Article
50925 AB It is considered that nonhyperbolicity affects the achievement of
50926    Ott-Grebogi-York-type (OGY-type) controllers. The result shows that,
50927    without a priori analytical knowledge of the dynamics, it is impossible
50928    to estimate the local dynamics from an experimental time series due to
50929    the singularity of the corresponding least-squares problem which
50930    results from the nonhyperbolicity in the system. Thus, it is necessary
50931    to destroy chaos before obtaining the formation for attempting control
50932    by experimental time series. The result explains a physical
50933    experimental result in the failure of chaos control in a parametrically
50934    excited pendulum model.
50935 C1 Shanghai Univ, Dept Math, Shanghai 200136, Peoples R China.
50936 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 200136, Peoples R China.
50937 CR ECKMANN JP, 1985, REV MOD PHYS, V57, P617
50938    KOSTELICH EJ, 1992, PHYSICA D, V58, P138
50939    LATHROP DP, 1989, PHYS REV A, V40, P4028
50940    OTT E, 1990, PHYS REV LETT, V64, P1196
50941    OTT E, 1993, CHAOS DYNAMICAL SYST
50942    STEWART GW, 1973, INTRO MATRIX COMPUTA
50943    VANDEWATER W, 2000, PHYS REV E A, V62, P6398
50944    XU HB, 2001, CHINESE PHYS LETT, V18, P878
50945    YANG L, 2000, PHYS REV LETT, V84, P67
50946 NR 9
50947 TC 1
50948 SN 0256-307X
50949 J9 CHIN PHYS LETT
50950 JI Chin. Phys. Lett.
50951 PD JUN
50952 PY 2002
50953 VL 19
50954 IS 6
50955 BP 762
50956 EP 764
50957 PG 3
50958 SC Physics, Multidisciplinary
50959 GA 566UV
50960 UT ISI:000176447400006
50961 ER
50962 
50963 PT J
50964 AU Fang, ZJ
50965    Xia, YB
50966    Wang, LJ
50967    Wang, ZM
50968 TI A new quantitative determination of stress by Raman spectroscopy in
50969    diamond grown on alumina
50970 SO JOURNAL OF PHYSICS-CONDENSED MATTER
50971 DT Article
50972 AB Raman spectroscopy is used to study the residual stress in
50973    polycrystalline diamond grown on alumina by chemical vapour deposition.
50974    A new method for stress determination is first presented and used for
50975    the measurement of the stress evolution across the film thickness. The
50976    compressive stress in the very thin film is in good agreement with the
50977    thermal mismatch between diamond and alumina, and the stress declines
50978    with increasing film thickness due to the stress relief during grain
50979    growth. Within thickness up to about 20 mum, the stress values given by
50980    the singlet and doublet Raman modes correspond satisfactorily and the
50981    common assumption of biaxial stress in the plane of the film is
50982    confirmed. With further increasing film thickness, the quantitative
50983    measurement method seems to be inappropriate because of the more
50984    complicated stress state.
50985 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
50986 RP Fang, ZJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
50987    China.
50988 CR AGER JW, 1993, PHYS REV B, V48, P2601
50989    AGER JW, 1995, MATER RES SOC SYMP P, V383, P143
50990    CHAUDHARI P, 1972, J VAC SCI TECHNOL, V9, P520
50991    FIELD JE, 1979, PROPERTIES NATURAL S
50992    GRIMSDITCH MH, 1978, PHYS REV B, V18, P901
50993    MO Y, 1998, J CRYST GROWTH, V191, P459
50994    VONKAENEL Y, 1994, DIAM RELAT MATER, V3, P757
50995 NR 7
50996 TC 4
50997 SN 0953-8984
50998 J9 J PHYS-CONDENS MATTER
50999 JI J. Phys.-Condes. Matter
51000 PD JUN 3
51001 PY 2002
51002 VL 14
51003 IS 21
51004 BP 5271
51005 EP 5276
51006 PG 6
51007 SC Physics, Condensed Matter
51008 GA 565ZP
51009 UT ISI:000176400700004
51010 ER
51011 
51012 PT S
51013 AU Bian, JJ
51014    Zhong, YG
51015    Wang, H
51016 TI Low-temperature-fireable microwave dielectric ceramic
51017    (Pb0.45Ca0.55)[(Fe1/2Nb1/2)(0.9)Sn-0.1]O-3 with addition of CuO-V2O6-LiF
51018 SO HIGH-PERFORMANCE CERAMICS 2001, PROCEEDINGS
51019 SE KEY ENGINEERING MATERIALS
51020 DT Article
51021 DE low-temperature-firing; microwave dielectrics; dielectric properties
51022 AB The sintering behavior, microstructure as well as the microwave
51023    dielectric properties of
51024    (Pb0.45Ca0.55)[(Fe1/2Nb1/2)(0.9)Sn-0.1]O-3(PCFNS) ceramics with the
51025    addition Of CuO-V2O5-LiF(VCL) were investigated. The experimental
51026    results showed that the PCFNS ceramics could be sintered at rather low
51027    temperature (950-1000degreesC) when more than 0.1wt% CuO-V2O5-LiF is
51028    added. Excellent microwave dielectric properties were obtained: Q(.)f =
51029    4000 GHz, epsilon(r) = 85.4,tau(f) = 5 ppm/degreesC, as 0.2wt%
51030    CuO-V2O5-LiF sintering aid was added. The variations of sinterability
51031    and the microwave properties were also discussed based on the
51032    characterization of microstructures.
51033 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
51034 RP Bian, JJ, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R
51035    China.
51036 CR BIAN JJ, IN PRESS J MAT SCI M
51037    BIAN JJ, 2001, J MATER SCI LETT, V20, P1767
51038    HUANG CL, 2000, MATER LETT, V43, P32
51039    ISHZAKI T, 1994, IEEE T MICROW THEORY, V42, P2017
51040    KAGATA H, 1994, NATL TECHNICAL REPOR, V40, P17
51041    KIM HT, 1999, J AM CERAM SOC, V82, P3476
51042    KUCHEIKO S, 1997, J AM CERAM SOC, V80, P2937
51043    ONODA M, 1982, JPN J APPL PHYS, V21, P3731
51044 NR 8
51045 TC 0
51046 SN 1013-9826
51047 J9 KEY ENG MAT
51048 PY 2002
51049 VL 224-2
51050 BP 13
51051 EP 16
51052 PG 4
51053 GA BU56L
51054 UT ISI:000176367400004
51055 ER
51056 
51057 PT S
51058 AU Chen, HY
51059    Guo, XB
51060    Meng, ZY
51061 TI Aging behavior and mechanism of PMMN-PZT quaternary piezoelectric
51062    ceramics
51063 SO HIGH-PERFORMANCE CERAMICS 2001, PROCEEDINGS
51064 SE KEY ENGINEERING MATERIALS
51065 DT Article
51066 DE aging; PMMN-PZT; quaternary piezoelectric ceramics
51067 ID NIOBATE-LEAD TITANATE; RELAXOR FERROELECTRICS
51068 AB Pb(Mg1/3Nb2/3)O-3-Pb(Mn1/3Nb2/3)O-3-PbZrO3-PbTiO3 (PMMN-PZT) quaternary
51069    piezoelectric ceramics in the vicinity of morphotropic phase boundary
51070    (MPB) were fabricated and the piezoelectric properties were
51071    characterized. Aging characteristics of the quaternary systems was
51072    investigated. It was observed that as the Pb(Mg1/3Nb2/3)O-3 (PMN)
51073    content increases, the aging rate decrease. For a certain composition,
51074    the aging rate increases with increasing temperature. It was shown that
51075    the aging observed in these compositions related with logarithmic aging
51076    time is out of line, instead, a stretched exponential time law. The
51077    compositions of rhombohedral phase exhibit a much weaker aging than
51078    that of tetragonal phase. Experimental results also reveal that the
51079    aging rate can be suppressed via post-sintering annealing in oxygen. It
51080    is concluded that the aging mechanism of PMMN-PZT systems is mainly
51081    related to the lattice defects.
51082 C1 Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
51083    Shanghai Jiao Tong Univ, Inst Composite Mat, Shanghai 200030, Peoples R China.
51084 RP Meng, ZY, Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai
51085    201800, Peoples R China.
51086 CR CHEN HY, IN PRESS MAT CHEM PH
51087    COHEN A, 1970, J AM CERAM SOC, V53, P396
51088    CROSS LE, 1987, FERROELECTRICS, V76, P241
51089    IKEGAMI S, 1967, J PHYS SOC JPN, V22, P725
51090    KO JS, 1992, P 8 IEEE S APPL FERR, P395
51091    KUDO T, 1970, J AM CERAM SOC, V53, P326
51092    NOMURA T, 1995, JPN J APPL PHYS 1, V34, P5389
51093    PAN W, 1989, J MATER SCI LETT, V5, P647
51094    SCHULZE WA, 1975, FERROELECTRICS, V9, P203
51095    SCHULZE WA, 1988, FERROELECTRICS, V87, P361
51096    SHROUT TR, 1989, FERROELECTRICS, V93, P361
51097    WARREN WL, 1996, J AM CERAM SOC, V79, P536
51098    ZHANG QM, 1996, J APPL PHYS, V79, P3181
51099    ZHANG QM, 1997, J MATER RES, V12, P1777
51100    ZHOU LQ, 2000, J AM CERAM SOC, V83, P413
51101    ZHU XH, 1996, J MATER SCI, V31, P2175
51102 NR 16
51103 TC 0
51104 SN 1013-9826
51105 J9 KEY ENG MAT
51106 PY 2002
51107 VL 224-2
51108 BP 89
51109 EP 93
51110 PG 5
51111 GA BU56L
51112 UT ISI:000176367400022
51113 ER
51114 
51115 PT S
51116 AU Guo, XB
51117    Chen, HY
51118    Meng, ZY
51119 TI Electro-mechanical properties and their temperature dependence for
51120    PMS-PZ-PT doped with Sr2+
51121 SO HIGH-PERFORMANCE CERAMICS 2001, PROCEEDINGS
51122 SE KEY ENGINEERING MATERIALS
51123 DT Article
51124 DE PMS-PZ-PT; piezoelectric; temperature dependence; Sr2+ doping
51125 ID PIEZOELECTRIC PROPERTIES; RESONANT-FREQUENCY; TI)O-3 CERAMICS;
51126    STABILITY; VICINITY
51127 AB The dielectric and piezoelectric properties of
51128    Pb1-xSr,(Mn1/3Sb2/3)(0.05)Zr0.48Ti0.47O3 + 0.2 wt% CeO2 (PMS-PZ-PT)
51129    were investigated as a function of Sr2+ substituting rate. The
51130    temperature dependence of Electro-mcchanical properties was also
51131    discussed. The lattice parameters determined by XRD patterns indicated
51132    that, with the increasing of Sr2+ substituting rate, the unit cell
51133    shrinked and become more isotropic. A set of optimized piezoelectric
51134    properties, which are better than those of other reports were obtained
51135    in the composition doped with 2mol% Sr2+. The temperature dependence of
51136    resonant frequency was also improved by 2mol% Sr2+. The temperature
51137    coefficient Deltaf/(DeltaT.f(25degreesC)) is 6.62 x 10(-5)/degreesC at
51138    the temperature range of -50-100degreesC. At the temperature range in
51139    which USM was operated practically (20degreesC-80degreesC), K-31 have
51140    high temperature stability (DeltaK(31)/DeltaT=0.014%/degreesC) while Qm
51141    obtained comparatively high value. With increasing of temperature, S11E
51142    decreased at first and then followed by a increasing at higher
51143    temperature region while d(31) increased monotonously.
51144 C1 Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
51145 RP Meng, ZY, Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai
51146    201800, Peoples R China.
51147 CR ALBERTA EF, 2000, FERROELECTRICS, V242, P13
51148    CHEON CI, 1997, J MATER SCI LETT, V16, P2043
51149    CHEON CI, 1999, J MATER SCI-MATER EL, V10, P81
51150    GAO YK, 2001, JPN J APPL PHYS 1, V40, P687
51151    GUO XB, 2002, J CHINESE CERAM SOC, V30, P125
51152    KAMIYA T, 1993, JPN J APPL PHYS 1, V32, P4223
51153    KONDO M, 1999, JPN J APPL PHYS 1, V38, P5539
51154    LEE DL, 1998 IEEE INT C COND, P381
51155    NADOLIISKY MM, 1992, FERROELECTRICS, V129, P141
51156    WANG D, 1998, J APPL PHYS, V83, P5342
51157    YONEDA A, 1990, NIPPON SERAM KYO GAK, V98, P890
51158    YOON SJ, 1998, J AM CERAM SOC, V81, P2473
51159    ZHANG QM, 1994, J APPL PHYS, V75, P454
51160 NR 13
51161 TC 0
51162 SN 1013-9826
51163 J9 KEY ENG MAT
51164 PY 2002
51165 VL 224-2
51166 BP 105
51167 EP 109
51168 PG 5
51169 GA BU56L
51170 UT ISI:000176367400025
51171 ER
51172 
51173 PT J
51174 AU Dong, LY
51175    Xue, Y
51176    Dai, SQ
51177 TI One-dimensional cellular automaton model of traffic flow based on
51178    car-following idea
51179 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
51180 DT Article
51181 DE cellular automaton (CA); traffic model; metastability; hysteresis
51182    phenomenon; car-following model
51183 AB An improved one-dimensional CA ( Cellular Automaton) traffic model was
51184    proposed to describe the highway traffic under the periodic boundary
51185    conditions. This model was based on the idea of the car-following
51186    model, which claims that the motion of a vehicle at one time step
51187    depends on both its headway and the synchronous motion of the front
51188    vehicle, thus including indirectly the influence of its sub-neighboring
51189    vehicle. It? addition, the so-called safety distance was introduced to
51190    consider the deceleration behavior of vehicles and the stochastic
51191    factor was taken into account by introducing the deceleration
51192    probability. Meanwhile, the conditional deceleration in the model gives
51193    a better description of the phenomena observed on highways. It is found
51194    that there exists the metastability and hysteresis effect of traffic
51195    flow in the neighborhood of critical density under different initial
51196    conditions. Since this model gives a reasonable depiction of the motion
51197    of a single vehicle, it is easy to be extended to the case of traffic
51198    flow tinder the control of traffic lights in cities.
51199 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
51200 RP Dong, LY, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
51201    200072, Peoples R China.
51202 CR CHOWDHURY D, 2000, PHYS REP, V329, P199
51203    FUKUI M, 1996, J PHYS SOC JPN, V65, P1868
51204    HELBING D, 1999, PHYS REV E A, V59, R2505
51205    HU YT, 1999, NEW APPROACH CELLULA
51206    KRAUSS S, 1997, PHYS REV E A, V55, P5597
51207    LUBECK S, 1998, PHYS REV E, V57, P1171
51208    NAGEL K, 1992, J PHYS I, V2, P2221
51209    NAGEL K, 1995, PHYS REV E A, V51, P2909
51210    WANG L, 2000, STUDY SELF ORG CRITI
51211    XUE Y, 2001, ACTA PHYS SIN-CH ED, V50, P445
51212 NR 10
51213 TC 4
51214 SN 0253-4827
51215 J9 APPL MATH MECH-ENGL ED
51216 JI Appl. Math. Mech.-Engl. Ed.
51217 PD APR
51218 PY 2002
51219 VL 23
51220 IS 4
51221 BP 363
51222 EP 370
51223 PG 8
51224 SC Mathematics, Applied; Mechanics
51225 GA 565WL
51226 UT ISI:000176392400001
51227 ER
51228 
51229 PT J
51230 AU Wu, MH
51231    Chen, J
51232    Qian, Q
51233    Bao, BR
51234 TI Thermo-responsive interpenetrating polymer networks composed of
51235    AAc/AAm/NMA by radiation grafting
51236 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
51237 DT Article
51238 ID GELS; COLLAPSE
51239 AB Interpenetrating polymer network (IPN) hydrogels were prepared by
51240    grafting of acrylamide (AAm), N-methylol acrylamide (NMA) and acrylic
51241    acid (AAc) onto preirradiated polypropylene (PP) membrane. To obtain
51242    PP-g-AAc/AAm/NMA IPN hydrogels, at first, AAc were grafted onto
51243    preirradiated PP and then AAm were grafted onto the PP-g-AAc membranes.
51244    Finally NMA were grafted onto PP-g-AAc/AAm membranes. In the different
51245    stages of grafting under different reaction conditions, trapped
51246    radicals in the membrane samples were probed by electron spin resonance
51247    (ESR). The temperature response behaviors of the IPN hydrogels were
51248    studied. Reversible behavior and controlled release of drug tests made
51249    reflecting the switching to "on" state at higher temperatures and to
51250    "off" state at lower temperatures were achieved. By increasing the
51251    grafted content of NMA, higher transition temperature of the hydrogel
51252    could be attained.
51253 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
51254 RP Wu, MH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
51255    Peoples R China.
51256 CR BRANNONPEPPAS L, 1989, J CONTROL RELEASE, V8, P267
51257    CHEN J, 2000, RADIAT PHYS CHEM, V59, P313
51258    FENGLIAN B, 1986, MACROMOLECULES, V19, P2248
51259    HOFFMAN AS, 1991, MRS BULL, V16, P42
51260    ILAVSKY M, 1981, POLYMER, V22, P1678
51261    ILAVSKY M, 1982, POLYM B, V7, P107
51262    KATANO H, 1991, J POLYM, V23, P1179
51263    MASAHIRO I, 1986, MACROMOLECULES, V19, P2476
51264    TANAKA T, 1980, PHYS REV LETT, V45, P1636
51265    TANAKA T, 1982, SCIENCE, V218, P467
51266    WU MH, 2000, J RADIOANAL NUCL CH, V246, P457
51267 NR 11
51268 TC 1
51269 SN 0236-5731
51270 J9 J RADIOANAL NUCL CHEM
51271 JI J. Radioanal. Nucl. Chem.
51272 PD JUN
51273 PY 2002
51274 VL 252
51275 IS 3
51276 BP 531
51277 EP 535
51278 PG 5
51279 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
51280    & Technology
51281 GA 562DX
51282 UT ISI:000176183100014
51283 ER
51284 
51285 PT J
51286 AU Zhang, DJ
51287    Chen, DY
51288 TI The conservation laws of some discrete soliton systems
51289 SO CHAOS SOLITONS & FRACTALS
51290 DT Article
51291 ID EQUATIONS; HIERARCHY
51292 AB A systematic approach to constructing an infinite number of
51293    conservation laws for discrete soliton systems is proposed, and three
51294    examples are given. (C) 2002 Elsevier Science Ltd. All rights reserved.
51295 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
51296 RP Zhang, DJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
51297 CR ABLOWITZ MJ, 1975, J MATH PHYS, V16, P598
51298    ABLOWITZ MJ, 1976, J MATH PHYS, V17, P1011
51299    BLASZAK M, 1994, J MATH PHYS, V35, P4661
51300    HIROTA R, 1973, J PHYS SOC JPN, V35, P289
51301    INOUE R, 1997, J PHYS SOC JPN, V66, P1291
51302    KAJIWARA K, 1990, PHYS LETT A, V146, P115
51303    KONNO K, 1974, PROG THEO PHYS, V52, P886
51304    KONOPELCHENKO B, 1992, J MATH PHYS, V33, P3676
51305    MA WX, 1999, J MATH PHYS, V40, P2400
51306    MIURA RM, 1968, J MATH PHYS, V9, P1204
51307    TODA M, 1989, THEORY NONLINEAR LAT
51308    TSUCHIDA T, 1998, J MATH PHYS, V39, P4785
51309    TSUCHIDA T, 1998, J PHYS SOC JPN, V67, P1175
51310    TSUCHIDA T, 1999, J PHYS A-MATH GEN, V32, P2239
51311    WADATI M, 1975, PROG THEOR PHYS, V53, P419
51312    WADATI M, 1976, PROG THEOR PHYS SUPP, V59, P36
51313    WADATI M, 1977, PROG THEOR PHYS, V57, P808
51314    ZAKHAROV VE, 1972, SOV PHYS JETP, V34, P62
51315 NR 18
51316 TC 9
51317 SN 0960-0779
51318 J9 CHAOS SOLITON FRACTAL
51319 JI Chaos Solitons Fractals
51320 PD SEP
51321 PY 2002
51322 VL 14
51323 IS 4
51324 BP 573
51325 EP 579
51326 PG 7
51327 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
51328 GA 562MH
51329 UT ISI:000176200700006
51330 ER
51331 
51332 PT J
51333 AU Sonis, M
51334    Zhou, SF
51335 TI Stability and transverse manifolds of periodic points for coupled maps
51336 SO PHYSICA D-NONLINEAR PHENOMENA
51337 DT Article
51338 DE coupled maps; domain of stability; periodic points; transverse manifold
51339 ID CHAOTIC ELEMENTS; LOGISTIC MAPS; SYNCHRONIZATION; BIFURCATION;
51340    DYNAMICS; NETWORK
51341 AB We consider the domains of stability of periodic points for linear-,
51342    internal- and external-coupled maps. We obtain the approximation
51343    expressions of the transverse manifolds at periodic points, which show
51344    that the transverse manifolds of periodic points are asymptotically
51345    elliptic paraboloids. We point out that the action of maps on the
51346    transverse manifold has the "symmetry" only in two-coupled maps. We
51347    study in detail the hereditary properties of domains of stability of
51348    period-doublmg points for the internal-coupling of an arbitrary
51349    one-dimensional map with the help of its quadratic approximation and
51350    show that these domains follow the universal rules similar to the
51351    Feigenbaum universality rules for one-dimensional maps. (C) 2002
51352    Elsevier Science B.V All rights reserved.
51353 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
51354    Bar Ilan Univ, Dept Geog, IL-52900 Ramat Gan, Israel.
51355 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
51356 CR DENDRINOS DS, 1990, APPL MATH SCI, V86
51357    FEIGENBAUM MJ, 1978, J STAT PHYS, V19, P25
51358    KANEKO K, 1990, PHYSICA D, V41, P137
51359    KAPITANIAK T, 1999, PHYSICA D, V126, P18
51360    KENDALL BE, 1998, THEOR POPUL BIOL, V54, P11
51361    MAISTRENKO Y, 2000, INT J BIFURCAT CHAOS, V10, P179
51362    MAISTRENKO YL, 1998, PHYS REV E A, V57, P2713
51363    MAISTRENKO YL, 1998, PHYS REV LETT, V80, P1638
51364    MAISTRENKO YL, 1999, PHYS LETT A, V262, P355
51365    MAISTRENKO YL, 1999, PHYS REV E, V60, P2817
51366    SHIBATA T, 1998, PHYS REV LETT, V81, P4116
51367    SHIBATA T, 1998, PHYSICA D, V124, P177
51368    SONIS M, 1987, MATH MODELLING, V9, P539
51369 NR 13
51370 TC 1
51371 SN 0167-2789
51372 J9 PHYSICA D
51373 JI Physica D
51374 PD MAY 1
51375 PY 2002
51376 VL 165
51377 IS 1-2
51378 BP 12
51379 EP 25
51380 PG 14
51381 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
51382 GA 560QZ
51383 UT ISI:000176093900002
51384 ER
51385 
51386 PT J
51387 AU Yang, GH
51388    Zhang, H
51389    Duan, YS
51390 TI Topological aspect and bifurcation of disclination lines in
51391    two-dimensional liquid crystals
51392 SO COMMUNICATIONS IN THEORETICAL PHYSICS
51393 DT Article
51394 DE topological current; winding number; director field; disclination line
51395 ID SPACE-TIME DEFECTS; EARLY UNIVERSE; ORDERED MEDIA; QUANTIZATION; ORIGIN
51396 AB Using phi-mapping method and topological current theory, the
51397    topological structure and bifurcation of disclination lines in
51398    two-dimensional liquid crystals are studied. By introducing the
51399    strength density and the topological current of many disclination
51400    lines, the total disclination strength is topologically quantized by
51401    the Hopf indices and Brouwer degrees at the singularities of the
51402    director field when the Jacobian determinant of director field does not
51403    vanish. When the Jacobian determinant vanishes, the origin,
51404    annihilation and bifurcation processes of disclination lines are
51405    studied in the neighborhoods of the limit points and bifurcation
51406    points, respectively. The branch solutions at the limit point and the
51407    different directions of all branch curves at the bifurcation point are
51408    calculated with the conservation law of the topological quantum
51409    numbers. It is pointed out that a disclination line with a higher
51410    strength is unstable and it will evolve to the lower strength state
51411    through the bifurcation process.
51412 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
51413    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
51414    Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China.
51415 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
51416 CR ANDERSON PW, 1984, BASIC NOTIONS CONDEN
51417    BLAHA S, 1976, PHYS REV LETT, V36, P874
51418    BRAY AJ, 1994, ADV PHYS, V43, P375
51419    DEGENNES PG, 1974, PHYSICS LIQUID CRYST
51420    DUAN YS, 1997, GEN RELAT GRAVIT, V29, P715
51421    DUAN YS, 1997, HELV PHYS ACTA, V70, P565
51422    DUAN YS, 1998, NUCL PHYS B, V514, P705
51423    FINKELSTEIN D, 1966, J MATH PHYS, V7, P1218
51424    FRIEDEL J, 1964, DISLOCATIONS
51425    HOLZ A, 1992, PHYSICA A, V182, P240
51426    KLEMAN M, 1977, J PHYSIQUE LETT, V38, L195
51427    KLEMAN M, 1983, POINTS LINES WALLS L
51428    KURIK MV, 1988, SOV PHYS USP, V31, P196
51429    KURIK MV, 1988, USP FIZ NAUK, V154, P381
51430    LI S, HEPTH0001007
51431    LUBENSKY TC, 1997, SOLID STATE COMMUN, V102, P187
51432    MERMIN ND, 1979, REV MOD PHYS, V51, P591
51433    NABARRO FRN, 1967, THEORY CRYSTAL DISLO
51434    ROGULA D, 1976, TRENDS APPL PURE MAT
51435    SHANKAR R, 1977, J PHYSIQUE, V38, P1405
51436    TOULOUSE G, 1976, J PHYS LETT-PARIS, V37, L149
51437    VOLOVIK GE, 1976, JETP LETT, V24, P561
51438    VOLOVIK GE, 1977, ZH EKSP TEOR FIZ, V45, P1186
51439    VOLOVIK GE, 1977, ZH EKSP TEOR FIZ, V46, P401
51440    YANG GH, 1998, INT J THEOR PHYS, V37, P2371
51441    YANG GH, 1998, MOD PHYS LETT A, V13, P2123
51442    YANG GH, 1999, INT J ENG SCI, V37, P1037
51443 NR 27
51444 TC 2
51445 SN 0253-6102
51446 J9 COMMUN THEOR PHYS
51447 JI Commun. Theor. Phys.
51448 PD MAY 15
51449 PY 2002
51450 VL 37
51451 IS 5
51452 BP 513
51453 EP 518
51454 PG 6
51455 SC Physics, Multidisciplinary
51456 GA 558RF
51457 UT ISI:000175979800001
51458 ER
51459 
51460 PT J
51461 AU Guo, GP
51462    Zhang, JF
51463 TI Note on solving solitary wave solution by the hyperbolic function method
51464 SO ACTA PHYSICA SINICA
51465 DT Article
51466 DE hyperbolic function method; solitary wave solution; nonlinear wave
51467    equation
51468 ID EXPANSION METHOD; SHALLOW-WATER; LONG WAVES; EQUATIONS; QUADRATURE;
51469    REDUCTION
51470 AB We give a note on solving the solitary wave solution of the nonlinear
51471    wave equation using the hyperbolic function method. It can be seen that
51472    the hyperbolic function method is a simple and effective method in
51473    studying the solitary wave solution of the nonlinear evolution equation.
51474 C1 Zhejiang Normal Univ, Coll Educ Sci & Technol, Jinhua 321004, Peoples R China.
51475    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
51476 RP Guo, GP, Zhejiang Normal Univ, Coll Educ Sci & Technol, Jinhua 321004,
51477    Peoples R China.
51478 CR ABLOWITZ MJP, 1991, SOLITON NONLINEAR EV, P200
51479    FAN EG, 1998, ACTA PHYS SINICA, V47, P353
51480    FAN EG, 2000, PHYS LETT A, V277, P212
51481    FANG EG, 2000, ACTA PHYS SINICA, V49, P1409
51482    GU CH, 1990, SOLITON THEORY ITS A, P160
51483    HIROTA R, 1973, J MATH PHYS, V14, P810
51484    KUDRYASHOV NA, 1990, PHYS LETT A, V147, P287
51485    LIU SK, 2001, ACTA PHYS SIN-CH ED, V50, P2068
51486    LOU SY, 1998, ACTA PHYS SINICA, V47, P1937
51487    LU KP, 2001, ACTA PHYS SIN-CH ED, V50, P2074
51488    MIURA MR, 1978, BACKUND TRANSFORMATI, P185
51489    OTWINOWSKI M, 1988, PHYS LETT A, V128, P483
51490    SHANG YD, 1998, J NINGXIA U, V19, P110
51491    WANG ML, 1995, PHYS LETT A, V199, P169
51492    YAN CT, 1996, PHYS LETT A, V224, P77
51493    YAN ZY, 1999, ACTA PHYS SIN-CH ED, V48, P1962
51494    YANG L, 2001, PHYS LETT A, V278, P267
51495    ZHANG GX, 2000, CHIN SCI A, V30, P1103
51496    ZHANG JF, 1998, ACTA PHYS SINICA, V47, P1416
51497    ZHANG JF, 2001, ACTA PHYS SIN-CH ED, V50, P1648
51498 NR 20
51499 TC 19
51500 SN 1000-3290
51501 J9 ACTA PHYS SIN-CHINESE ED
51502 JI Acta Phys. Sin.
51503 PD JUN
51504 PY 2002
51505 VL 51
51506 IS 6
51507 BP 1159
51508 EP 1162
51509 PG 4
51510 SC Physics, Multidisciplinary
51511 GA 559XE
51512 UT ISI:000176050800003
51513 ER
51514 
51515 PT J
51516 AU Jiang, GH
51517    Shan, S
51518    Jiang, L
51519    Xu, XS
51520 TI A new rank-size distribution of Zipf's Law and its applications
51521 SO SCIENTOMETRICS
51522 DT Article
51523 AB Developing the probability function to describe rank-size Zipfian
51524    phenomena, i.e., a form like P(R = r)similar toc/r(a) (alpha>0) with a
51525    rank type random variable R, has been an important problem in
51526    scientometrics and informetrics. In this article a new rank-size
51527    distribution of Zipf's law is presented and applied to an actual
51528    distribution of scientific productivities in Chinese universities.
51529 C1 China Natl Inst Educ Res, Beijing 100088, Peoples R China.
51530    Shanghai Univ, Dept Management & Informat Engn, Shanghai, Peoples R China.
51531 RP Jiang, GH, China Natl Inst Educ Res, Beijing 100088, Peoples R China.
51532 CR AUERBACH F, 1913, PETERMANS MITTEILUNG, V59, P74
51533    AYRES LP, 1915, MEASURING SCALE ABIL
51534    CONDON EU, 1928, SCIENCE, V67, P300
51535    GLANZEL W, 1984, Z WAHRSCHEINLICHKEIT, V66, P173
51536    HILL BM, 1974, J AM STAT ASSOC, V69, P1017
51537    KRETSCHMER H, 2000, RES EVLAUATION ITS I, P95
51538    LOTKA AJ, 1925, ELEMENTS MATH BIOL
51539    MANDELBROT B, 1953, COMMUN THEORY, P486
51540    ROUSSEAU R, 2000, RES EVALUATION ITS I, P458
51541    ZIPF GK, 1935, PSYCHOBIOLOGY LANGUA
51542    ZIPF GK, 1949, HUMAN BEHAV PRINCIPL
51543 NR 11
51544 TC 0
51545 SN 0138-9130
51546 J9 SCIENTOMETRICS
51547 JI Scientometrics
51548 PD APR
51549 PY 2002
51550 VL 54
51551 IS 1
51552 BP 119
51553 EP 130
51554 PG 12
51555 SC Computer Science, Interdisciplinary Applications; Information Science &
51556    Library Science
51557 GA 557HJ
51558 UT ISI:000175902800008
51559 ER
51560 
51561 PT J
51562 AU Huang, AM
51563    Liu, YF
51564    Chen, L
51565    Hua, JD
51566 TI Synthesis and property of nanosized palladium catalysts protected by
51567    chitosan/silica
51568 SO JOURNAL OF APPLIED POLYMER SCIENCE
51569 DT Article
51570 DE catalysts; palladium; chitosan; silica; nanotechnology
51571 AB A chitosan (CTN)/silica-supported nanosized palladium catalyst was
51572    obtained from a silica-supported chitosan palladium complex through a
51573    complex transition method. An adsorption model was employed to simplify
51574    the structure of the di-supporter. It was indicated that when the
51575    polymer coil adsorbed on the silica surface with even a monolayer the
51576    catalytic activity would reach an optimum value, and different
51577    situations of the, nanosized palladium particles would cause a
51578    different catalysis. The molar ratio of the chitosan structure unit to
51579    the palladium would affect the metal's size, which therefore influenced
51580    its catalytic activity. The experimental results corresponded with the
51581    inferences. (C) 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85:
51582    989-994,2002.
51583 C1 Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R China.
51584 RP Liu, YF, Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R
51585    China.
51586 CR FELDHEIM DL, 1995, J ELECT CHEM SOC, V142, P32
51587    HIDEFANI NL, 1999, J MOL SCI, V15, P3
51588    HIRAI H, 1998, REACT FUNCT POLYM, V37, P121
51589    RYLANDER PN, 1967, CATALYTIC HYDROGENAT
51590    SANG LY, 1918, POLYM B, V3, P11
51591 NR 5
51592 TC 6
51593 SN 0021-8995
51594 J9 J APPL POLYM SCI
51595 JI J. Appl. Polym. Sci.
51596 PD AUG 1
51597 PY 2002
51598 VL 85
51599 IS 5
51600 BP 989
51601 EP 994
51602 PG 6
51603 SC Polymer Science
51604 GA 558TQ
51605 UT ISI:000175983000010
51606 ER
51607 
51608 PT J
51609 AU Lu, HQ
51610    Shen, LM
51611    Yang, GH
51612    Lai, YY
51613    Cheng, KS
51614 TI Quantum cosmology in CGBD theory
51615 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
51616 DT Article
51617 DE quantum cosmology; Brans-Dicke gravity
51618 ID COMPLEX SCALAR FIELD; GRAVITATIONAL-WAVES; EINSTEIN FRAME; UNIVERSE;
51619    GRAVITY
51620 AB We apply the theory developed in quantum cosmology to a model of
51621    charged generalized Brans-Dicke gravity. This is a quantum model of
51622    gravitation interacting with a charged Brans-Dicke type scalar field
51623    which is considered in the Pauli frame. The Wheeler-DeWitt equation
51624    describing the evolution of the quantum Universe is solved in the
51625    semiclassical approximation by applying the WKB approximation. The wave
51626    function of the Universe is also obtained by applying both the
51627    Vilenkin-like and the Hartle-Hawking-like boundary conditions. We then
51628    make predictions from the wave functions and infer that the Vilenkin's
51629    boundary condition is more reasonable in the Brans-Dicke gravity models
51630    leading a large vacuum energy density at the beginning of the inflation.
51631 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
51632    Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
51633 RP Lu, HQ, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
51634 CR BRACCO C, 1998, GRGC9811090
51635    CHO YM, 1992, PHYS REV LETT, V68, P3133
51636    FARAONI V, 1996, ASTROPHYS LETT COMM, V35, P305
51637    FARAONI V, 1998, ASTRON ASTROPHYS, V332, P1154
51638    FARAONI V, 1998, GRGC9811047
51639    FARAONI V, 1999, INT J THEOR PHYS, V38, P217
51640    HARTLE JB, 1983, PHYS REV D, V28, P2960
51641    HARTLE JB, 1991, QUANTUM COSMOLOGY BA
51642    KAMENSHCHIK AY, 1995, PHYS LETT B, V357, P36
51643    KHALATNIKOV IM, 1992, PHYS LETT A, V169, P308
51644    KHALATNIKOV IM, 1993, PHYS LETT B, V302, P176
51645    KOLB EW, 1990, EARLY UNIVERSE
51646    LU HQ, 1999, INT J MOD PHYS D, V8, P625
51647    LUCA A, 1994, PHYSICAL REV D, V49, P1881
51648    MAGNANO G, 1994, PHYS REV D, V50, P5039
51649    VILENKIN A, 1984, PHYS REV D, V30, P509
51650    VILENKIN A, 1988, PHYS REV D, V37, P888
51651    VILENKIN A, 1989, PHYS REV D, V39, P1116
51652    VILENKIN A, 1998, GRQC9804051
51653    WALD RM, 1984, GEN RELATIVITY
51654 NR 20
51655 TC 1
51656 SN 0020-7748
51657 J9 INT J THEOR PHYS
51658 JI Int. J. Theor. Phys.
51659 PD MAY
51660 PY 2002
51661 VL 41
51662 IS 5
51663 BP 939
51664 EP 951
51665 PG 13
51666 SC Physics, Multidisciplinary
51667 GA 558CK
51668 UT ISI:000175947500011
51669 ER
51670 
51671 PT J
51672 AU Yang, GH
51673 TI Topology in entropy of Schwarzschild black hole
51674 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
51675 DT Article
51676 DE entropy; Euler characteristic; killing vector field
51677 ID EXTREME
51678 AB In the light of phi-mapping method and the relationship between the
51679    entropy and the Euler characteristic, the inner topological structure
51680    of the entropy of Schwarzschild black hole is studied. By introducing
51681    an entropy density, it is shown that the entropy of Schwarzschild black
51682    hole is determined by the singularities of the timelike Killing vector
51683    field of spacetime and these singularities carry the topological
51684    numbers, Hopf indices and Brouwer degrees, naturally. Taking account of
51685    the statistical meaning of entropy in physics, the entropy of
51686    Schwarzschild black hole is merely the sum of the Hopf indices, which
51687    will give the increasing law of entropy of black holes.
51688 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
51689 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
51690 CR CHERN SS, 1944, ANN MATH, V45, P747
51691    CHERN SS, 1945, ANN MATH, V46, P674
51692    CHERN SS, 1959, LECT NOTES U CHICAGO
51693    DUAN YS, 1993, J MATH PHYS, V34, P1149
51694    DUAN YS, 1998, NUCL PHYS B, V514, P705
51695    GELFAND IM, 1958, GEN FUNCTION
51696    GIBBONS GW, 1995, PHYS REV D, V51, P2839
51697    HAWKING SW, 1995, PHYS REV D, V51, P4302
51698    LIBERATI S, 1997, PHYS REV D, V56, P6458
51699    TEITELBOIM C, 1995, PHYS REV D, V51, P4315
51700    WANG B, 1998, PHYS LETT B, V432, P69
51701    WANG B, 1998, PHYS REV D, V57, P5284
51702    YANG GH, 2001, CHINESE PHYS LETT, V18, P631
51703    ZASLAVSKII OB, 1996, PHYS REV LETT, V76, P2211
51704 NR 14
51705 TC 1
51706 SN 0020-7748
51707 J9 INT J THEOR PHYS
51708 JI Int. J. Theor. Phys.
51709 PD MAY
51710 PY 2002
51711 VL 41
51712 IS 5
51713 BP 953
51714 EP 959
51715 PG 7
51716 SC Physics, Multidisciplinary
51717 GA 558CK
51718 UT ISI:000175947500012
51719 ER
51720 
51721 PT J
51722 AU Zhao, WJ
51723    Chen, LQ
51724 TI A numerical algorithm for non-linear parametric vibration analysis of a
51725    viscoelastic moving belt
51726 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
51727 DT Article
51728 DE axially moving belt; transverse parametric vibration; viscoelastic;
51729    implicit Runge-Kutta method; finite difference
51730 ID NONLINEAR VIBRATION; PART I
51731 AB A numerical algorithm for nonlinear partial differential equations is
51732    proposed to analyze the parametric vibrations of viscoelastic moving
51733    belts. The method of finite difference is employed to discrete spatial
51734    variables. The partial differential equation is transformed into a
51735    large system of differential-algebraic equations. Based oil the special
51736    structures in the mathematical model of a viscoelastic belt, the
51737    algorithm is easy to carry out, and it can be efficiently applied to
51738    solve the parametric vibration problems of belts with various kinds of
51739    nonlinear stress-strain relations. As two applications of the
51740    algorithm, the dynamical response of viscoelastic belts, whose
51741    materials are respectively defined by the standard model or the
51742    Maxwell-Kelvin model, are calculated.
51743 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
51744 RP Zhao, WJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
51745    Shanghai 200072, Peoples R China.
51746 CR ABRATE S, 1992, MECH MACH THEORY, V27, P645
51747    BRENAN KE, 1996, NUMERICAL SOLUTION I
51748    CHEN LQ, 2001, ADV MECH, V31, P535
51749    CHRISTENSEN RM, 1982, THEORY VISCOELASTICI
51750    FUNG RF, 1997, J SOUND VIB, V201, P153
51751    MOON J, 1997, J SOUND VIB, V200, P419
51752    PAKDEMIRLI M, 1994, J SOUND VIB, V169, P179
51753    PAKDEMIRLI M, 1997, J SOUND VIB, V203, P815
51754    PALINGREN H, 1986, V BELT HDB
51755    WICKERT JA, 1993, J SOUND VIB, V160, P455
51756    ZHANG L, 1998, J SOUND VIB, V216, P75
51757    ZHANG L, 1999, J APPL MECH-T ASME, V66, P396
51758 NR 12
51759 TC 4
51760 SN 1565-1339
51761 J9 INT J NONLINEAR SCI NUMER SIM
51762 JI Int. J. Nonlinear Sci. Numer. Simul.
51763 PY 2002
51764 VL 3
51765 IS 2
51766 BP 139
51767 EP 144
51768 PG 6
51769 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
51770    Mathematical; Mechanics
51771 GA 557TT
51772 UT ISI:000175924800007
51773 ER
51774 
51775 PT J
51776 AU Li, T
51777    Sheng, WC
51778 TI The general multi-dimensional Riemann problem for hyperbolic systems
51779    with real constant coefficients
51780 SO DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
51781 DT Article
51782 DE general multi-dimensional Riemann problem; hyperbolic system; constant
51783    coefficients; explicit solution
51784 AB In this paper, we give the explicit solution to the general
51785    multi-dimensional Riemann problem for the canonical form of 2 x 2
51786    hyperbolic systems with real constant coefficients.
51787 C1 Fudan Univ, Dept Math, Shanghai 200433, Peoples R China.
51788    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
51789 RP Li, T, Fudan Univ, Dept Math, Shanghai 200433, Peoples R China.
51790 CR GILQUIN H, 1996, RAIRO-MATH MODEL NUM, V30, P527
51791    LAX PD, 1982, B AM MATH SOC, V6, P213
51792    OSHIME Y, 1991, J MATH KYOTO U, V31, P937
51793    OSHIME Y, 1991, J MATH KYOTO U, V31, P983
51794    STRONG G, 1967, J MATH KYOTO U, V6, P397
51795 NR 5
51796 TC 1
51797 SN 1078-0947
51798 J9 DISCRETE CONTIN DYN SYST
51799 JI Discret. Contin. Dyn. Syst.
51800 PD JUL
51801 PY 2002
51802 VL 8
51803 IS 3
51804 BP 737
51805 EP 744
51806 PG 8
51807 SC Mathematics, Applied; Mathematics
51808 GA 557GB
51809 UT ISI:000175899500013
51810 ER
51811 
51812 PT J
51813 AU Xia, N
51814 TI Investigation of the stability of inviscid compressible swirling flows
51815 SO AEROSPACE SCIENCE AND TECHNOLOGY
51816 DT Article
51817 DE flow stability; swirling flow; vortex
51818 AB The stability of an inviscid compressible swirling flow between two
51819    concentric cylinders is analytically investigated. Two stability
51820    criteria are derived for compressible swirling flows under narrow gap
51821    approximation by an analytic method analogous to Ludwieg's method.
51822    Finally, the effect of compressibility is discussed. (C) 2002 Editions
51823    scientifiques et medicales Elsevier SAS. All rights reserved.
51824 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
51825 RP Xia, N, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
51826    Peoples R China.
51827 CR GANS RF, 1975, J FLUID MECH, V68, P403
51828    HOWARD LN, 1962, J FLUID MECH, V14, P463
51829    HOWARD LN, 1973, STUD APPL MATH, V52, P39
51830    LALAS DP, 1975, J FLUID MECH, V69, P65
51831    LEIBOVICH S, 1983, J FLUID MECH, V126, P335
51832    LUDWEIG H, 1964, Z FLUGWISS, V12, P304
51833    LUDWIEG H, 1960, Z FLUGWISS, V8, P135
51834    LUDWIEG H, 1961, Z FLUGWISS WELTRAUM, V9, P350
51835    RAYLEIGH JWS, 1916, P ROY SOC LOND A MAT, V93, P148
51836    WARREN FW, 1975, J FLUID MECH, V68, P413
51837 NR 10
51838 TC 0
51839 SN 1270-9638
51840 J9 AEROSP SCI TECHNOL
51841 JI Aerosp. Sci. Technol.
51842 PD APR
51843 PY 2002
51844 VL 6
51845 IS 2
51846 BP 99
51847 EP 103
51848 PG 5
51849 SC Engineering, Aerospace
51850 GA 558CC
51851 UT ISI:000175946600001
51852 ER
51853 
51854 PT J
51855 AU Leng, GS
51856    Zhou, GB
51857 TI Inverse forms of Hadamard inequality
51858 SO SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS
51859 DT Article
51860 DE parallelotope; inverse forms; canonical volume; inequality
51861 ID MATRICES
51862 AB In this paper we establish the inverse inequalities of the Hadamard
51863    inequality and the Szasz inequality. To prove these results, we give
51864    two sharpenings of the Hadamard inequality and the Szasz inequality.
51865 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
51866    Shanghai Jiao Tong Univ, Dept Appl Math, Shanghai 200030, Peoples R China.
51867 RP Leng, GS, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
51868 CR BECKENBACH EF, 1961, INEQUALITIES
51869    BOOTHBY WM, 1975, INTRO DIFFERENTIABLE
51870    DIXON JD, 1983, SIAM J NUMER ANAL, V20, P812
51871    DIXON JD, 1984, CANAD MATH B, V27, P260
51872    ENGLE GM, 1976, LINEAR MULTILINEAR A, V4, P155
51873    HORN R, 1985, MATRIX ANAL
51874    JOHNSON CR, 1974, J RES NBS, V78, P167
51875    JOHNSON CR, 1985, LINEAR MULTILINEAR A, V18, P23
51876    JOHNSON CR, 1987, CBMS REG C SER MATH, V68
51877    REZNIKOV AG, 1991, LECT NOTES MATH, V1469, P90
51878    REZNIKOV AG, 1995, OPER THEORY ADV APPL, V77, P239
51879    SHIUE JS, 1976, SOOCHOW J MATH NATUR, V2, P57
51880    VELJAN D, 1995, LINEAR ALGEBRA APPL, V219, P79
51881    WOLKOWICZ H, 1980, LINEAR ALGEBRA ITS A, V29, P471
51882    ZHANG XD, 1993, SIAM J MATRIX ANAL A, V14, P705
51883    ZHANG XD, 1997, ACTA MATH APPL SINIC, V20, P269
51884 NR 16
51885 TC 2
51886 SN 0895-4798
51887 J9 SIAM J MATRIX ANAL APPLICAT
51888 JI SIAM J. Matrix Anal. Appl.
51889 PD MAY 10
51890 PY 2002
51891 VL 23
51892 IS 4
51893 BP 990
51894 EP 997
51895 PG 8
51896 SC Mathematics, Applied
51897 GA 555UE
51898 UT ISI:000175811000006
51899 ER
51900 
51901 PT J
51902 AU Cheng, XY
51903    Wan, XJ
51904 TI The effect of ordering on the environmental embrittlement of Ni4Mo alloy
51905 SO SCRIPTA MATERIALIA
51906 DT Article
51907 DE scanning electron microscopy; intermetallics; hydrogen embrittlement;
51908    order-disorder phenomena
51909 ID HYDROGEN EMBRITTLEMENT; (CO,FE)(3)V; NI3FE
51910 AB Hydrogen embrittlement of Ni4Mo alloy in different degree of ordered
51911    conditions was investigated. The results show that the atomic ordering
51912    does not influence the moisture-induced or dynamic hydrogen
51913    charging-induced environmental embrittlement, but has a considerable
51914    effect on the gaseous hydrogen-induced environmental embrittlement. (C)
51915    2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights
51916    reserved.
51917 C1 Shanghai Univ, Mat Res Inst, Shanghai 200072, Peoples R China.
51918 RP Cheng, XY, Shanghai Univ, Mat Res Inst, Box 269,149 Yanchang Rd,
51919    Shanghai 200072, Peoples R China.
51920 CR BROOKS CR, 1984, INT MET REV, V29, P210
51921    CAMUS GM, 1989, ACTA METALL, V37, P1497
51922    CHENG XY, 2001, SCRIPTA MATER, V44, P325
51923    KURUVILLA AK, 1982, 3RD P INT C HYDR MET, V2, P629
51924    LIU CT, 1989, SCRIPTA METALL, V23, P875
51925    LIU CT, 1991, 6 INT S INT COMP STR, P703
51926    NISHIMURA C, 1996, SCRIPTA MATER, V35, P1441
51927    TAKASUGI T, 1986, ACTA METALL, V34, P607
51928    TAKASUGI T, 1992, J MATER RES, V7, P2739
51929    TAKASUGI T, 1994, INTERMETALLICS, V2, P225
51930    TAWANCY HM, 1995, SCRIPTA METALL MATER, V32, P1525
51931    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
51932    WRIGHT JL, 1998, SCRIPTA MATER, V38, P253
51933 NR 13
51934 TC 3
51935 SN 1359-6462
51936 J9 SCRIPTA MATER
51937 JI Scr. Mater.
51938 PD MAR 25
51939 PY 2002
51940 VL 46
51941 IS 6
51942 BP 465
51943 EP 470
51944 PG 6
51945 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
51946    Engineering
51947 GA 555XL
51948 UT ISI:000175818500011
51949 ER
51950 
51951 PT J
51952 AU Fang, GY
51953    Mo, YL
51954    Song, YL
51955    Wang, YX
51956    Li, CF
51957    Song, LC
51958 TI Nonlinear refractive properties of organometallic fullerene-C-60
51959    derivatives
51960 SO OPTICS COMMUNICATIONS
51961 DT Article
51962 DE excited-state nonlinearity; nonlinear refraction; fullerene
51963    derivatives; Z-scan
51964 ID REVERSE SATURABLE ABSORPTION; Z-SCAN; C-60
51965 AB We have studied the nonlinear refractive properties of the
51966    organometalic fullerene-C-60 derivatives fac- and mer- [bis
51967    (1,2-diphenylphosphino) ethane] (tricarbonyl)(eta(2)-fullerene-C-60)
51968    chromium and molybdenum using the Z-scan method. These compounds change
51969    from being self-defocusing to self-focusing as the input light
51970    intensity increases. The experimental results have been interpreted
51971    using rate-equation theory. Critical conditions for the occurrence of
51972    this kind of transition have been elucidated for the steady-state
51973    situation. (C) 2002 Published by Elsevier Science B.V.
51974 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
51975    Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China.
51976    Nankai Univ, Dept Chem, Tianjin 300071, Peoples R China.
51977 RP Fang, GY, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
51978    Peoples R China.
51979 CR BENTIVEGNA F, 1993, APPL PHYS LETT, V62, P1721
51980    FANG GY, 2000, OPT COMMUN, V183, P523
51981    HERMANN JA, 1998, OPT COMMUN, V154, P225
51982    JOSHI MP, 1993, APPL PHYS LETT, V62, P1763
51983    KOST A, 1993, OPT LETT, V18, P334
51984    LI C, 1995, PHYS REV A, V51, P1569
51985    LI CF, 1994, J OPT SOC AM B, V11, P1356
51986    MENGHETTI M, 1997, SYNTHETIC MET, V86, P2353
51987    SHEIKBAHAE M, 1990, IEEE J QUANTUM ELECT, V26, P760
51988    SONG LC, 1998, POLYHEDRON, V17, P469
51989    SONG YL, 1999, APPL PHYS LATT, V74, P334
51990    TUTT L, 1992, NATURE, V356, P255
51991    TUTT LW, 1993, PROG QUANT ELECTRON, V17, P299
51992 NR 13
51993 TC 10
51994 SN 0030-4018
51995 J9 OPT COMMUN
51996 JI Opt. Commun.
51997 PD MAY 1
51998 PY 2002
51999 VL 205
52000 IS 4-6
52001 BP 337
52002 EP 341
52003 PG 5
52004 SC Optics
52005 GA 554KL
52006 UT ISI:000175734500015
52007 ER
52008 
52009 PT J
52010 AU Ma, CQ
52011    Zhang, BX
52012    Liang, Z
52013    Xie, PH
52014    Wang, XS
52015    Zhang, BW
52016    Cao, Y
52017    Jiang, XY
52018    Zhang, ZL
52019 TI A novel n-type red luminescent material for organic light-emitting
52020    diodes
52021 SO JOURNAL OF MATERIALS CHEMISTRY
52022 DT Article
52023 ID ELECTROLUMINESCENT DEVICES; EUROPIUM COMPLEX; EFFICIENT; HOLE;
52024    EMISSION; POLYMERS; INJECTION; DOPANTS; BRIGHT; SERIES
52025 AB A novel red luminescent material
52026    N,N-bis{4-[2-(4-dicyanomethylene-6-methyl-4H-pyran-2-yl)ethylene]phenyl}
52027    aniline (BDCM) with two (4-dicyanomethylene)-4H-pyran electron-acceptor
52028    moieties and a triphenylamine electron-donor moiety for application in
52029    organic light-emitting diodes (OLEDs) was synthesized. The resultant
52030    compound has a sterically well-hindered structure and a high
52031    fluorescence yield. The photoluminescence (PL) of this compound in
52032    solution and solid film and the electroluminescence (EL) have been
52033    studied. Based on its intense sterically hindered structure, the pure
52034    BDCM film prepared shows a bright red PL emission. The three-layered EL
52035    device with the structure ITO/CuPc/DPPhP/BDCM/Mg:Ag has a turn-on
52036    voltage of less than 4 V, which suggests that BDCM has an excellent
52037    electron injection property. A bright luminance of 582 cd m(-2) is
52038    obtained for the device at 19 V.
52039 C1 Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100101, Peoples R China.
52040    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
52041 RP Zhang, BW, Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100101,
52042    Peoples R China.
52043 CR BALDO MA, 1998, NATURE, V395, P151
52044    BELLMANN E, 1999, CHEM MATER, V11, P399
52045    BULOVIC V, 1998, CHEM PHYS LETT, V287, P455
52046    CAMPAIGNE E, 1963, ORG SYNTH, V4, P331
52047    CHEN CH, 1997, MACROMOL S, V125, P1
52048    CHEN CH, 1997, MACROMOL S, V125, P49
52049    CHEN CH, 2000, THIN SOLID FILMS, V363, P327
52050    CUI YT, 1999, MACROMOLECULES, V32, P3824
52051    GREENHAM NC, 1993, NATURE, V365, P628
52052    GU G, 1999, APPL PHYS LETT, V74, P305
52053    HAMMOND PR, 1979, OPT COMMUN, V29, P331
52054    KIDO J, 1990, CHEM LETT, P657
52055    KIDO J, 1991, CHEM LETT, P1267
52056    KIDO J, 1994, APPL PHYS LETT, V65, P2124
52057    KWONG RC, 1999, CHEM MATER, V11, P3709
52058    LI XC, 1999, CHEM MATER, V11, P1568
52059    LOUIE J, 1997, J AM CHEM SOC, V119, P1169
52060    LU JP, 1999, CHEM MATER, V11, P2501
52061    MA CQ, IN PRESS ACTA CHIM S
52062    RIVETT DE, 1979, AUST J CHEM, V32, P1601
52063    ROSENSTEIN RD, 1985, ACTA CRYSTALLOGR C, V41, P967
52064    SANO T, 1995, JPN J APPL PHYS PT 1, V34, P3124
52065    SCHWEIKART KH, 2001, EUR J ORG CHEM   JAN, P293
52066    SHEN ZL, 1997, SCIENCE, V276, P2009
52067    TANG CW, 1989, J APPL PHYS, V65, P3610
52068    TAO XT, 2001, APPL PHYS LETT, V78, P279
52069    TSUTSUI T, 1994, APPL PHYS LETT, V65, P1868
52070    VANSLYKE SA, 1996, APPL PHYS LETT, V69, P2160
52071    WOOD LL, 1958, J AM CHEM SOC, V80, P144
52072    WU F, 2000, THIN SOLID FILMS, V363, P214
52073    WU QG, 2001, CHEM MATER, V13, P71
52074    YANG Y, 1996, J APPL PHYS, V79, P934
52075    ZHANG XH, 2001, CHEM MATER, V13, P1565
52076    ZHANG XJ, 1998, MATER RES SOC SYMP P, V488, P539
52077    ZHANG XJ, 1999, MACROMOLECULES, V32, P7422
52078 NR 35
52079 TC 13
52080 SN 0959-9428
52081 J9 J MATER CHEM
52082 JI J. Mater. Chem.
52083 PY 2002
52084 VL 12
52085 IS 6
52086 BP 1671
52087 EP 1675
52088 PG 5
52089 SC Chemistry, Physical; Materials Science, Multidisciplinary
52090 GA 555AB
52091 UT ISI:000175768600010
52092 ER
52093 
52094 PT J
52095 AU Zhang, JJ
52096    Wang, DR
52097 TI A numerical embedding method for solving the nonlinear complementarity
52098    problem(I) - Theory
52099 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
52100 DT Article
52101 DE B-differentiable equations; nnlinear complementarity problem; nmerical
52102    embedding method
52103 ID NEWTON METHOD; NONSMOOTH EQUATIONS; CONVERGENCE; ALGORITHMS
52104 AB In this paper, we extend the numerical embedding method for solving the
52105    smooth equations to the nonlinear complementarity problem. By using the
52106    nonsmooth theory, we prove the existence and the continuation of the
52107    following path for the corresponding homotopy equations. Therefore the
52108    basic theory of the numerical embedding method for solving the
52109    nonlinear complementarity problem is established. In part II of this
52110    paper, we will further study the implementation of the method and give
52111    some numerical examples.
52112 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
52113 CR HARKER PT, 1990, MATH PROGRAM, V48, P161
52114    HARKER PT, 1990, MATH PROGRAM, V48, P339
52115    IP CM, 1992, MATH PROGRAM, V56, P71
52116    KOJIMA M, 1989, MATH PROGRAM, V43, P107
52117    MANGASARIAN OL, 1976, SIAM J APPL MATH, V31, P89
52118    ORTEGA JM, 1970, ITERATIVE SOLUTION N
52119    PANG JS, 1993, MATH PROGRAM, V60, P295
52120    PANG JS, 1993, SIAM J OPTIMIZ, V3, P443
52121    QI L, 1993, MATH PROGRAM, V58, P353
52122    QI LQ, 1993, MATH OPER RES, V18, P227
52123    RALPH D, 1994, MATH OPER RES, V19, P352
52124    ROBINSON SM, 1987, MATH PROGRAM STUD, V30, P45
52125    ROBINSON SM, 1990, MATH PROGRAM, V48, P221
52126    SHAPIRO A, 1990, J OPTIMIZ THEORY APP, V66, P477
52127    SUBRAMANIAN PK, 1985, 2845 U WISC MATH RES
52128    WATSON LT, 1979, SIAM J CONTROL OPTIM, V17, P36
52129    XIAO BC, 1994, MATH PROGRAM, V65, P151
52130    ZHANG H, 2000, EUR HEART J, V21, P225
52131 NR 18
52132 TC 0
52133 SN 0254-9409
52134 J9 J COMPUT MATH
52135 JI J. Comput. Math.
52136 PD MAY
52137 PY 2002
52138 VL 20
52139 IS 3
52140 BP 257
52141 EP 266
52142 PG 10
52143 SC Mathematics, Applied; Mathematics
52144 GA 555PM
52145 UT ISI:000175802500003
52146 ER
52147 
52148 PT J
52149 AU Luo, X
52150    Li, ML
52151    Roetzel, W
52152 TI A general solution for one-dimensional multistream heat exchangers and
52153    their networks
52154 SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
52155 DT Article
52156 DE heat exchangers; heat recovery; optimization
52157 ID OPTIMIZATION
52158 AB A mathematical model for predicting the steady-state thermal
52159    performance of one-dimensional (cocurrent and countercurrent)
52160    multistream beat exchangers and their networks is developed and is
52161    solved analytically for constant physical properties of streams. By
52162    introducing three matching matrices. the general Solution can be
52163    applied to various types of one-dimensional multistream heat exchangers
52164    such as shell-and-tube heat exchangers. plate heat exchangers and
52165    plate-fin heat exchangers as well as their networks. The general
52166    solution is applied to the calculation and design of multistream heat
52167    exchangers. Examples are given to illustrate the procedures in detail.
52168    Based on this solution the superstructure model is developed for
52169    synthesis of heat exchanger networks, (C) 2002 Elsevier Science Ltd.
52170    All rights reserved.
52171 C1 Univ Fed Armed Forces Hamburg, Inst Thermodynam, D-22039 Hamburg, Germany.
52172    Shanghai Univ Sci & Technol, Inst Thermal Engn, Shanghai 200093, Peoples R China.
52173 RP Roetzel, W, Univ Fed Armed Forces Hamburg, Inst Thermodynam, D-22039
52174    Hamburg, Germany.
52175 CR BRIONES V, 1999, CHEM ENG SCI, V54, P519
52176    CHEN BD, 1998, ENERGY ENV
52177    HASELER LE, 1983, HEAT EXCHANGERS THEO, P495
52178    KAO S, 1961, 61WA255 ASME
52179    LI K, 1992, P INT POW ENG C MAY, P221
52180    LUO X, IN PRESS INT J HEAT
52181    MALINOWSKI L, 1983, INT J HEAT MASS TRAN, V26, P316
52182    ROETZEL W, 2001, P 13 SCH SEM YOUNG S, V2, P401
52183    SETTARI A, 1972, INT J HEAT MASS TRAN, V15, P555
52184    TAYLOR MA, 1987, PLATE FIN HEAT EXCHA
52185    WANG I, 1999, PROGR ENG HEAT TRANS, P597
52186    WOLF J, 1964, INT J HEAT MASS TRAN, V7, P901
52187    YEE TF, 1990, COMPUT CHEM ENG, V14, P1151
52188    ZALESKI T, 1973, INT J HEAT MASS TRAN, V16, P1527
52189    ZALESKI T, 1974, INT J HEAT MASS TRAN, V17, P1116
52190    ZALESKI T, 1984, CHEM ENG SCI, V39, P1251
52191 NR 16
52192 TC 6
52193 SN 0017-9310
52194 J9 INT J HEAT MASS TRANSFER
52195 JI Int. J. Heat Mass Transf.
52196 PD JUN
52197 PY 2002
52198 VL 45
52199 IS 13
52200 BP 2695
52201 EP 2705
52202 PG 11
52203 SC Engineering, Mechanical; Mechanics; Thermodynamics
52204 GA 556JA
52205 UT ISI:000175844600008
52206 ER
52207 
52208 PT J
52209 AU Gu, GD
52210 TI A seed method for solving nonsymmetric linear systems with multiple
52211    right-hand sides
52212 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
52213 DT Article
52214 DE augmented GMRES method; block method; seed method; linear systems;
52215    multiple right-hand sides
52216 ID CONJUGATE-GRADIENT ALGORITHM; GMRES METHOD; BLOCK GMRES
52217 AB We present a seed method for solving large nonsymmetric linear systems
52218    with multiple right-hand sides. The method uses a single augmented
52219    Krylov subspace corresponding to a seed system as a generator of
52220    approximations to the nonseed systems. The residual evaluate of the
52221    method is shown, and a new strategy to form a seed system which could
52222    supply information shareable among the right-hand sides is given.
52223    Numerical experiments indicate that our seed selection strategy is more
52224    efficient than two existing strategies and our method has significant
52225    time saving compared with the block GMRES method and the GMRES method
52226    with a projection process.
52227 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
52228 RP Gu, GD, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
52229 CR CHAN TF, 1997, SIAM J SCI COMPUT, V18, P1698
52230    CHAPMAN A, 1997, NUMER LINEAR ALGEBR, V4, P43
52231    FREUND RW, 1997, LINEAR ALGEBRA APPL, V254, P119
52232    GU GD, IN PRESS APPL MATH C
52233    GU GD, 1997, MATH NUMERICA SINICA, V19, P374
52234    GU GD, 1999, LINEAR ALGEBRA APPL, V299, P1
52235    MORGAN RB, 1991, LINEAR ALGEBRA APPL, V154, P289
52236    MORGAN RB, 1995, SIAM J MATRIX ANAL A, V16, P1154
52237    NIKISHIN AA, 1995, SIAM J MATRIX ANAL A, V16, P1135
52238    OLEARY DP, 1980, LINEAR ALGEBRA APPL, V29, P293
52239    OLEARY DP, 1994, LINEAR ALGEBRA APPL, V212, P153
52240    SAAD Y, 1987, MATH COMPUT, V48, P651
52241    SAAD Y, 1996, ITERATIVE METHODS SP
52242    SAAD Y, 1997, SIAM J MATRIX ANAL A, V18, P435
52243    SIMONCINI V, 1995, SIAM J SCI COMPUT, V16, P917
52244    SIMONCINI V, 1996, J COMPUT APPL MATH, V66, P457
52245    SIMONCINI V, 1996, LINEAR ALGEBRA APPL, V247, P97
52246    SMITH CF, 1987, THESIS U ILLINOIS UR
52247    SMITH CF, 1989, IEEE T ANTENN PROPAG, V37, P1490
52248 NR 19
52249 TC 1
52250 SN 0020-7160
52251 J9 INT J COMPUT MATH
52252 JI Int. J. Comput. Math.
52253 PD MAR
52254 PY 2002
52255 VL 79
52256 IS 3
52257 BP 307
52258 EP 326
52259 PG 20
52260 SC Mathematics, Applied
52261 GA 555XN
52262 UT ISI:000175818700003
52263 ER
52264 
52265 PT J
52266 AU Zheng, YG
52267    Liu, ZR
52268    Zhou, J
52269 TI A new synchronization principle and application to Chua's circuits
52270 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
52271 DT Article
52272 DE synchronization; Liapunov stability; Lipschitz condition
52273 ID CHAOTIC SYSTEMS; FUNDAMENTALS
52274 AB In the paper we propose a new synchronization principle. To guarantee
52275    synchronization between coupled chaotic oscillators, proper coupling
52276    constants are selected by the Liapunov stability theory and Hurwitz
52277    Theorem. As an example and application, we prove the conjecture [Wu &
52278    Chua, 1994] that synchronization between two chaotic Chua's circuits
52279    can be achieved by using the second state as feedback variable for
52280    sufficiently large coupling constant.
52281 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
52282    Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China.
52283 RP Zheng, YG, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
52284 CR CHUA LO, 1993, J CIRCUIT SYST COMP, V3, P93
52285    CHUA LO, 1996, INT J BIFURCAT CHAOS, V6, P189
52286    KOLUMBAN G, 1997, IEEE T CIRCUITS-I, V44, P927
52287    OGORZALEK MJ, 1993, IEEE T CIRCUITS-I, V40, P693
52288    PECORA LM, 1990, PHYS REV LETT, V64, P821
52289    PECORA LM, 1997, CHAOS, V7, P520
52290    RAO RM, 1980, ORDINARY DIFFERENTIA
52291    WANG XF, 1999, INT J BIFURCAT CHAOS, V6, P1169
52292    WU CW, 1994, INT J BIFURCAT CHAOS, V4, P979
52293 NR 9
52294 TC 0
52295 SN 0218-1274
52296 J9 INT J BIFURCATION CHAOS
52297 JI Int. J. Bifurcation Chaos
52298 PD APR
52299 PY 2002
52300 VL 12
52301 IS 4
52302 BP 815
52303 EP 818
52304 PG 4
52305 SC Mathematics, Applied; Multidisciplinary Sciences
52306 GA 554XC
52307 UT ISI:000175761600007
52308 ER
52309 
52310 PT J
52311 AU Cao, WG
52312    Ding, WY
52313    Wang, LY
52314    Song, LP
52315    Zhang, QY
52316 TI Chemistry and applications of phosphonium and arsonium ylides(XXIX) -
52317    Studies on the hydrolysis of arsonium ylides containing perfluoroalkyl
52318    group and synthesis of 2-pyranone derivatives
52319 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
52320 DT Article
52321 DE arsonium ylide; hydrolysis; 2-pyranone derivatives
52322 ID CONVENIENT
52323 AB In the presence of K2CO3, reaction of (2-naphthoyl)methyl arsonium
52324    bromide (1) with methyl 2-perfluoroalkynoates(2) in methylene chloride
52325    at room temperature afforded the adduct - methyl
52326    4-(2-naphthoyl)-2-triphenylarsoranylidene-3-perfluoroalkyl-3-butenoates(
52327    3) as major product and
52328    4-(2-naphthoyl)-4-triphenylarsoranylidene-3-perfluoroalkyl-2-butenoates
52329    (4) as minor product in high yield. Hydrolysis of compound 3 in V
52330    (CH3OH):V(H2O) = 9:1 methanolic solution at 80 degreesC in a sealed
52331    tube, 4-perfluoroalkyl-6-(2-naphthyl)-2-pyranones(5) was obtained in an
52332    excellent yield. The catalytic hydrolysis of compound 3 with silica gel
52333    and the mechanisms for the formation of the products will also be
52334    discussed.
52335 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
52336    Acad Sinica, Shanghai Inst Organ Chem, Lab Organmet Chem, Shanghai Organ Chem Inst, Shanghai 200032, Peoples R China.
52337 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
52338 CR *GIB FDN, 1972, CARB FLOUR COMP CHEM
52339    BANKS RE, 1982, PREPARATION PRINCIPL
52340    CAO WG, 1998, J FLUORINE CHEM, V91, P99
52341    CAO WG, 1999, ACTA CHIM SINICA, V57, P1270
52342    CAO WG, 1999, J FLUORINE CHEM, V95, P135
52343    CAO WG, 2001, J FLUORINE CHEM, V109, P201
52344    DING WY, 1986, ACTA CHIM SINICA, V44, P255
52345    HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47
52346    STOLL A, 1933, HELV CHIM ACTA, V16, P703
52347    TAO WT, 1983, CHINESE J ORG CHEM, V3, P129
52348 NR 10
52349 TC 0
52350 SN 0251-0790
52351 J9 CHEM J CHINESE UNIV-CHINESE
52352 JI Chem. J. Chin. Univ.-Chin.
52353 PD MAY
52354 PY 2002
52355 VL 23
52356 IS 5
52357 BP 839
52358 EP 842
52359 PG 4
52360 SC Chemistry, Multidisciplinary
52361 GA 556CD
52362 UT ISI:000175831000022
52363 ER
52364 
52365 PT J
52366 AU He, JH
52367 TI Linearization and correction method for nonlinear problems
52368 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
52369 DT Article
52370 DE nonlinearity; asymptotic solution; perturbation technique
52371 ID LINDSTEDT-POINCARE METHODS; PERTURBATION TECHNIQUE; EXPANSION
52372 AB A new perturbation-like technique called linearization and correction
52373    method is proposed. Contrary to the traditional perturbation
52374    techniques, the present theory does not assume that the solution is
52375    expressed in the form of a power series of small parameter. To obtain
52376    an asymptotic solution of nonlinear system, the technique first
52377    searched for a solution for the linearized system, then a correction
52378    was added to the linearized solution. So the obtained results are
52379    uniformly valid for both weakly and strongly nonlinear equations.
52380 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
52381 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
52382    Peoples R China.
52383 CR HAGEDORN P, 1981, NONLINEAR OSCILLATIO
52384    HE JH, 1999, COMMUNICATIONS NONLI, V4, P81
52385    HE JH, 1999, COMPUT METHOD APPL M, V178, P257
52386    HE JH, 1999, INT J NONLINEAR MECH, V34, P699
52387    HE JH, 1999, MECCANICA, V34, P287
52388    HE JH, 2000, INT J NONLINEAR MECH, V35, P37
52389    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
52390    HE JH, 2000, J SOUND VIB, V229, P1257
52391    HE JH, 2002, INT J NONLINEAR MECH, V37, P309
52392    HE JH, 2002, INT J NONLINEAR MECH, V37, P315
52393    LIU GL, 1997, C 7 MOD MATH MECH SH, P47
52394    MICKENS RE, 1981, INTRO NONLINEAR OSCI
52395    NAYFEH AH, 1981, INTRO PERTURBATION T
52396 NR 13
52397 TC 0
52398 SN 0253-4827
52399 J9 APPL MATH MECH-ENGL ED
52400 JI Appl. Math. Mech.-Engl. Ed.
52401 PD MAR
52402 PY 2002
52403 VL 23
52404 IS 3
52405 BP 241
52406 EP 248
52407 PG 8
52408 SC Mathematics, Applied; Mechanics
52409 GA 556FJ
52410 UT ISI:000175838500001
52411 ER
52412 
52413 PT J
52414 AU We, JH
52415    Yu, NW
52416 TI Mathematical modelling of decarburisation and degassing during vacuum
52417    circulation refining process of molten steel: mathematical model of the
52418    process
52419 SO STEEL RESEARCH
52420 DT Article
52421 ID ULTRA-LOW-CARBON; RH DEGASSER; DECARBURIZATION RATE; REDUCED PRESSURE;
52422    KINETIC-MODEL
52423 AB Based on the mass and momentum balances in the system, a new
52424    mathematical model for decarburisation and degassing in the vacuum
52425    circulation refining process of molten steel has been proposed and
52426    developed. The refining roles of the three reaction sites, i.e. the
52427    up-snorkel zone, the droplet group and steel bath in the vacuum vessel,
52428    have been considered in the model. It was assumed that the mass
52429    transfer of reactive components in the molten steel is the rate control
52430    step of the refining reactions. And the friction losses and drags of
52431    flows in the snorkels and vacuum vessel were all counted. For the
52432    refining process of molten steel in a 90 t multifunction RH degasser,
52433    the parameters of the model have been discussed and more reasonably
52434    determined.
52435 C1 Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
52436 RP We, JH, Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
52437 CR BAKAKIN AV, 1981, IZV VUZ FERROUS META, P33
52438    CHEN JX, 1984, HDB COMMON USING DAT, P654
52439    DEO B, 1996, STEEL RES, V67, P7
52440    ELLIOTT JF, 1963, THERMOCHEMISTRY STEE, V2
52441    FILLIO GAV, 2001, 84 STEELM C P ISS US, P661
52442    FUJII T, 1970, TETSU TO HAGANE, V56, P1165
52443    GEIGER GH, 1973, TRANSPORT PHENOMENA
52444    HUGHMARK GA, 1967, IND ENG CHEM PROC DD, V6, P218
52445    HUIN D, 2001, 84 STEELM C P ISS US, P601
52446    INOUE A, 1970, T JAPN SOC MECH ENG, V36, P1366
52447    INOUE S, 1992, ISIJ INT, V32, P120
52448    KANG SC, 1999, IRON STEEL S, V34, P352
52449    KATO Y, 1993, ISIJ INT, V33, P1088
52450    KATO Y, 1993, TETSU TO HAGANE, V79, P1248
52451    KATO Y, 1995, KAWASAKI STEEL TECHN, P25
52452    KIRIHARA T, 1994, TETSU TO HAGANE, V80, P705
52453    KISHIMOTO Y, 1993, ISIJ INT, V33, P391
52454    KLEIMT B, 1993, IRONMAK STEELMAK, V20, P390
52455    KLEIMT B, 2000, SCAND J METALL, V29, P194
52456    KORIA SC, 1984, METALL T B, V15, P109
52457    KUWABARA T, 1988, T IRON STEEL I JPN, V28, P305
52458    OETERS F, 1994, METALLURGY STEELMAKI
52459    OU T, 1999, ACTA METALL SIN, V35, P735
52460    QU Y, 1994, FUNDAMENTALS STEELMA, P178
52461    TAKAHASHI M, 1995, ISIJ INT, V35, P1452
52462    TURKDOGAN ET, 1980, PHYSICAL CHEM HIGH T
52463    WATANABE H, 1968, TETSU TO HAGANE, V54, P1327
52464    WEI JH, 2000, IRONMAK STEELMAK, V27, P129
52465    WEI JH, 2000, MAT PROCESSING COMPU, P147
52466    YAMAGUCHI K, 1992, ISIJ INT, V32, P126
52467    YANO M, 1994, STEEL PROC, V77, P117
52468    YAO YB, 1985, HDB PHYSICAL CHEM, P407
52469    YOSHIMURA K, 1982, P 7 INT C VAC MET TO, P1404
52470    YU N, 1998, J NE U NATURAL SCI, V19, P118
52471    YU N, 2000, THESIS SHANGHAI
52472    ZHANG L, 1997, IRON STEEL S, V32, P633
52473    ZHANG L, 2001, 84 STEELM C P, P275
52474    ZHU MY, 2001, ACTA METALL SIN, V37, P91
52475 NR 38
52476 TC 0
52477 SN 0177-4832
52478 J9 STEEL RES
52479 JI Steel Res.
52480 PD APR
52481 PY 2002
52482 VL 73
52483 IS 4
52484 BP 135
52485 EP 142
52486 PG 8
52487 SC Metallurgy & Metallurgical Engineering
52488 GA 551YE
52489 UT ISI:000175590900003
52490 ER
52491 
52492 PT J
52493 AU Wei, JH
52494    Yu, NW
52495 TI Mathematical modelling of decarburisation and degassing during vacuum
52496    circulation refining process of molten steel: application of the model
52497    and results
52498 SO STEEL RESEARCH
52499 DT Article
52500 ID RH
52501 AB The mathematical model for decarburisation and degassing in the vacuum
52502    circulation refining process of molten steel, proposed and presented
52503    earlier, has been applied to the refining process of molten steel in a
52504    multifunction RH degasser of 90 t capacity. The decarburisation and
52505    degassing processes in the degasser under the RH and RH-KTB operating
52506    conditions have been modelled and analysed using this model. It was
52507    demonstrated that for the RH and RH-KTB refining processes, the results
52508    predicted by the model are in good agreement with some plant data. The
52509    mean contributions of the three refining sites in six circulation
52510    cycles to decarburisation are 10.5 - 11.6, 37.4 - 38.0 and 50.5 - 52.1
52511    % of the overall amount of decarburisation, respectively. The KTB
52512    operation can markedly accelerate the decarburisation of molten steel.
52513    Using the top blowing oxygen of 6 min with the flow rate of (600 -
52514    1000) m(3)(STP)/h, the initial carbon mass content of the liquid steel
52515    for the RH refining process may be increased to (550 - 700) . 10(-4)
52516    from 400 . 10(-4) %. And the treatment time needed for reducing the
52517    carbon mass content in the steel to a level of : 20 - 10-4 % may be
52518    shortened over 3 - 4 min. The effectiveness of decarburisation and
52519    degassing cannot be obviously improved by increasing the lifting argon
52520    blow rate to 900 from 600 I(STP)/min under the operating modes examined
52521    in the present work.
52522 C1 Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
52523 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
52524 CR AZUMA K, 1990, CAMP ISIJ, V3, P168
52525    INOUE S, 1990, CAMP ISIJ, V3, P164
52526    KUWABARA T, 1988, T IRON STEEL I JPN, V28, P305
52527    LIU J, 1999, IRON STEEL S10, V34, P527
52528    OU T, 1996, IRON STEEL, V31, P17
52529    TAKAHASHI M, 1995, ISIJ INT, V35, P1452
52530    WATANABE H, 1968, TETSU TO HAGANE, V54, P1327
52531    WEI JH, 2002, STEEL RES, V73, P135
52532    YANO M, 1994, STEEL PROC, V77, P117
52533    YU N, 1998, J NE U NATURAL SCI, V19, P118
52534    YU N, 2000, THESIS SHANGHAI
52535 NR 11
52536 TC 4
52537 SN 0177-4832
52538 J9 STEEL RES
52539 JI Steel Res.
52540 PD APR
52541 PY 2002
52542 VL 73
52543 IS 4
52544 BP 143
52545 EP 148
52546 PG 6
52547 SC Metallurgy & Metallurgical Engineering
52548 GA 551YE
52549 UT ISI:000175590900004
52550 ER
52551 
52552 PT J
52553 AU Zhang, JC
52554    Cao, GX
52555    Chen, ZP
52556    Li, XG
52557    Cao, SX
52558 TI Hole carrier localization and Pr substitution in YBCO systems by
52559    positron experiment
52560 SO MATERIALS LETTERS
52561 DT Article
52562 DE ternary; Y; rare earth barium high-T-c superconductors
52563 ID LIFETIME SPECTROSCOPY; NEUTRON-DIFFRACTION; MOMENTUM DENSITY;
52564    HIGH-TEMPERATURE; SINGLE-CRYSTALS; FERMI-SURFACE; ANNIHILATION;
52565    SUPERCONDUCTIVITY; Y1-XPRXBA2CU3O7-DELTA; DEFECTS
52566 AB Pr-substituted YBCO system has been studied by positron lifetime
52567    experiment in the range from 0.0 to 1.0. The present results show that
52568    the value of short lifetime tau(1) in PrBa2Cu3O7-delta is nearly the
52569    same as in the isostructural YBa2Cu3O7-delta and the defect-related
52570    positron lifetime component tau(2) decreases as a function of
52571    Pr-substitution x. The increase of local electron density n(e),
52572    reflects the electronic intense localization. These experimental
52573    results are interpreted in terms of the localization of hole carriers
52574    in the Cu-O chains on Pr substitution due to disorder in the Ba and Pr
52575    planes by the partly occupation of Ba2+ ion site with Pr3+ ion. These
52576    will destroy the intrinsic conductivity of the Cu-O chains and so
52577    impresses the superconductivity above x=0.6 Pr-substitution
52578    concentration. (C) 2002 Elsevier Science B.V. All rights reserved.
52579 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
52580    Hennan Normal Univ, Dept Phys, Xinxiang 453002, Peoples R China.
52581    Zhengzhou Inst Light Ind, Dept Math & Phys, Zhengzhou 450002, Peoples R China.
52582 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
52583 CR ABDELRAZEK MM, 1999, INT J MOD PHYS B, V13, P3615
52584    BLACKSTEAD HA, 1995, PHYS LETT A, V109
52585    BLACKSTEAD HA, 1995, PHYS REV B, V51, P11830
52586    BOOTHROYD AT, 1997, PHYS REV LETT, V78, P130
52587    CAO G, 1993, PHYSICA B, V186, P1004
52588    CHAKRABORTY B, 1989, PHYS REV B, V39, P215
52589    CHEN CK, 1993, PHYSICA C, V214, P231
52590    FINCHER CR, 1991, PHYS REV LETT, V67, P2902
52591    FINK J, 1990, PHYS REV B, V42, P4823
52592    HAUTOJARVI P, 1977, PHILOS MAG, V35, P973
52593    HOFFMANN L, 1993, PHYS REV LETT, V71, P4047
52594    JEAN YC, 1987, PHYS REV B, V36, P3994
52595    JEAN YC, 1990, PHYS REV LETT, V64, P1593
52596    JUNG K, 1995, J APPL PHYS, V78, P5534
52597    KEBEDE A, 1989, PHYS REV B, V40, P4453
52598    LEVIN GA, 1998, PHYS REV LETT, V80, P841
52599    LIECHTENSTEIN AI, 1995, PHYS REV LETT, V74, P1000
52600    LING CC, 2000, PHYS REV B, V62, P8016
52601    MAHONY J, 1997, PHYS REV B, V55, P9637
52602    MASSIDDA S, 1990, PHYSICA C, V169, P137
52603    NAGEL C, 1999, PHYS REV B, V60, P9212
52604    NEUMEIER JJ, 1990, PHYSICA C, V166, P191
52605    OKAI B, 1988, JPN J APPL PHYS, V27, P41
52606    PANKALUOTO R, 1994, PHYS REV B, V50, P6408
52607    POLITY A, 1998, PHYS REV B, V58, P10363
52608    POLITY A, 1999, PHYS REV B, V59, P10025
52609    REMPEL AA, 2000, PHYS REV B, V61, P5945
52610    ROMANENKO AI, 1996, PHYS LETT A, V223, P132
52611    SANYAL D, 1998, PHYS REV B, V58, P15226
52612    SHUKLA A, 1995, PHYS REV B, V51, P6028
52613    SHUKLA A, 1999, PHYS REV B, V59, P12127
52614    SODERHOLM L, 1987, NATURE, V328, P604
52615    SOMOZA A, 2000, PHYS REV B, V61, P14454
52616    USAGAWA T, 1998, APPL PHYS LETT, V72, P1772
52617    VONSTETTEN EC, 1988, PHYS REV LETT, V60, P2198
52618    WURSCHUM R, 2000, PHYS REV B, V62, P12021
52619    ZHANG JC, 1995, PHYS LETT A, V201, P70
52620    ZOU ZG, 1998, PHYS REV LETT, V80, P1074
52621 NR 38
52622 TC 0
52623 SN 0167-577X
52624 J9 MATER LETT
52625 JI Mater. Lett.
52626 PD JUN
52627 PY 2002
52628 VL 54
52629 IS 4
52630 BP 273
52631 EP 278
52632 PG 6
52633 SC Materials Science, Multidisciplinary; Physics, Applied
52634 GA 553XP
52635 UT ISI:000175702600006
52636 ER
52637 
52638 PT J
52639 AU Yang, GH
52640    Zhang, H
52641    Duan, YS
52642 TI Topological quantization of disclination points in three-dimensional
52643    liquid crystals
52644 SO CHINESE PHYSICS
52645 DT Article
52646 DE topological current; wrapping number; director field; disclination point
52647 ID SPACE-TIME DEFECTS; BIFURCATION-THEORY; EARLY UNIVERSE; ORIGIN; MEDIA
52648 AB Using the phi-mapping method and topological current theory, we study
52649    the inner structure of disclination points in three-dimensional liquid
52650    crystals. By introducing the strength density and the topological
52651    current of many disclination points, it is pointed out that the
52652    disclination points are determined by the singularities of the general
52653    director field and they are topologically quantized by the Hopf indices
52654    and Brouwer degrees.
52655 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
52656    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
52657    Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China.
52658 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
52659 CR ANDERSON PW, 1984, BASIC NOTIONS CONDEN
52660    BLAHA S, 1976, PHYS REV LETT, V36, P874
52661    BRAY AJ, 1994, ADV PHYS, V43, P375
52662    DEGENNES PG, 1970, LECT NOTES
52663    DEGENNES PG, 1974, PHYSICS LIQUID CRYST
52664    DUAN YS, 1997, GEN RELAT GRAVIT, V29, P715
52665    DUAN YS, 1997, HELV PHYS ACTA, V70, P565
52666    DUAN YS, 1998, NUCL PHYS B, V514, P705
52667    FINKELSTEIN D, 1966, J MATH PHYS, V7, P1218
52668    FRIEDEL J, 1964, DISLOCATIONS
52669    HOLZ A, 1992, PHYSICA A, V182, P240
52670    KLEMAN M, 1972, LIQUID CRYSTALLINE S
52671    KLEMAN M, 1973, PHILOS MAG, V27, P1057
52672    KLEMAN M, 1977, J PHYSIQUE LETT, V38, L195
52673    KLEMAN M, 1983, LIQUID CRYSTALS MAGN
52674    KURIK MV, 1988, SOV PHYS USP, V31, P196
52675    KURIK MV, 1988, USP FIZ NAUK, V154, P381
52676    LUBENSKY TC, 1997, SOLID STATE COMMUN, V102, P187
52677    MERMIN ND, 1979, REV MOD PHYS, V51, P591
52678    NABARRO FRN, 1967, THEORY CRYSTAL DISLO
52679    ROGULA D, 1976, TRENDS APPL PURE MAT
52680    SHANKAR R, 1977, J PHYSIQUE, V38, P1405
52681    TOULOUSE G, 1976, J PHYSIQUE LETT, V37, P149
52682    VOLOVIK GE, 1976, JETP LETT, V48, P561
52683    VOLOVIK GE, 1977, ZH EKSP TEOR FIZ, V45, P1186
52684    VOLOVIK GE, 1977, ZH EKSP TEOR FIZ, V46, P401
52685    YANG GH, 1998, INT J THEOR PHYS, V37, P2371
52686    YANG GH, 1998, MOD PHYS LETT A, V13, P2123
52687    YANG GH, 1999, INT J ENG SCI, V37, P1037
52688 NR 29
52689 TC 0
52690 SN 1009-1963
52691 J9 CHIN PHYS
52692 JI Chin. Phys.
52693 PD MAY
52694 PY 2002
52695 VL 11
52696 IS 5
52697 BP 415
52698 EP 418
52699 PG 4
52700 SC Physics, Multidisciplinary
52701 GA 552TD
52702 UT ISI:000175635400001
52703 ER
52704 
52705 PT J
52706 AU Zheng, G
52707    Li, H
52708    Zhang, M
52709    Lund-Katz, S
52710    Chance, B
52711    Glickson, JD
52712 TI Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl
52713    oleate as target-specific photosensitizer
52714 SO BIOCONJUGATE CHEMISTRY
52715 DT Article
52716 ID PHOTODYNAMIC THERAPY; CULTURED-CELLS; IN-VIVO; DELIVERY; DERIVATIVES;
52717    COMPLEXES; DRUGS
52718 AB To target tumors overexpressing low-density lipoprotein receptors
52719    (LDLr), a pyropheophorbide cholesterol oleate conjugate was synthesized
52720    and successfully reconstituted into the low-density lipoprotein (LDL)
52721    lipid core. Laser scanning confocal microscopy studies demonstrated
52722    that this photosensitizer-reconstituted LDL can be internalized via
52723    LDLr by human hepatoblastoma G(2) (HepG(2)) tumor cells.
52724 C1 Univ Penn, Sch Med, Dept Radiol, Philadelphia, PA 19104 USA.
52725    Univ Penn, Sch Med, Dept Biochem & Biophys, Philadelphia, PA 19104 USA.
52726    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
52727    Childrens Hosp Philadelphia, Dept Pediat GI Nutr, Philadelphia, PA 19104 USA.
52728 RP Zheng, G, Univ Penn, Sch Med, Dept Radiol, Chem Bldg,Box 66,231 S 34th
52729    St, Philadelphia, PA 19104 USA.
52730 CR ALLISON BA, 1991, PHOTOCHEM PHOTOBIOL, V54, P709
52731    BROWN MS, 1980, ANN NY ACAD SCI, V348, P48
52732    CANDIDE C, 1986, FEBS LETT, V207, P133
52733    CRAIG IF, 1981, J LIPID RES, V22, P687
52734    DESMIDT PC, 1993, BIOCHEMISTRY-US, V32, P2916
52735    DOUGHERTY TJ, 1998, J NATL CANCER I, V90, P889
52736    FIRESTONE RA, 1994, BIOCONJUGATE CHEM, V5, P105
52737    HENDERSON BW, 1997, CANCER RES, V57, P4000
52738    KRIEGER M, 1979, J BIOL CHEM, V254, P3845
52739    LOWRY OH, 1951, J BIOL CHEM, V193, P265
52740    LUNDBERG B, 1987, CANCER RES, V47, P4105
52741    MOAN J, 1990, J PHOTOCH PHOTOBIO B, V6, P343
52742    MOSLEY ST, 1981, P NATL ACAD SCI USA, V78, P5717
52743    PANDEY RK, 1996, PHOTOCHEM PHOTOBIOL, V64, P194
52744    PANDEY RK, 2000, PORPHYRIN HDB, V6, P157
52745    REDDI E, 1997, J PHOTOCH PHOTOBIO B, V37, P189
52746    SHAW JM, 1987, ANN NY ACAD SCI, V507, P252
52747    STERNBERG ED, 1998, TETRAHEDRON, V54, P4151
52748    VERSLUIS AJ, 1996, BRIT J CANCER, V74, P525
52749 NR 19
52750 TC 10
52751 SN 1043-1802
52752 J9 BIOCONJUGATE CHEMISTRY
52753 JI Bioconjugate Chem.
52754 PD MAY-JUN
52755 PY 2002
52756 VL 13
52757 IS 3
52758 BP 392
52759 EP 396
52760 PG 5
52761 SC Chemistry, Multidisciplinary; Chemistry, Organic; Biochemical Research
52762    Methods; Biochemistry & Molecular Biology
52763 GA 553PN
52764 UT ISI:000175684800002
52765 ER
52766 
52767 PT J
52768 AU He, JH
52769 TI A variational model for a symmetric transonic aerofoil
52770 SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY
52771 DT Article
52772 DE flow; finite element method
52773 ID UNKNOWN SHAPE; TURBOMACHINERY; AERODYNAMICS; FLOW
52774 AB By the semi-inverse method proposed by He, a variational principle is
52775    established for steady flow over a thin, symmetric, non-lifting
52776    aerofoil. The nonlinear, small-disturbance, velocity-potential equation
52777    is obtained by minimizing the obtained functional, and all boundary
52778    conditions are converted into natural boundary conditions, resulting in
52779    much convenience when incorporating the finite element method.
52780 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
52781    Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
52782 RP He, JH, Shanghai Univ, Shanghai 200072, Peoples R China.
52783 CR HE JH, 1997, INT J TURBO JET ENG, V14, P23
52784    HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154
52785    HE JH, 1999, INT J TURBO JET ENG, V16, P19
52786    HE JH, 2000, AIRCR ENG AEROSP TEC, V72, P18
52787    HE JH, 2000, INT J NONLINEAR SCI, V1, P139
52788    LIU GL, 2000, INT J NONLINEAR SCI, V1, P25
52789    MARSH JE, 1980, INT J NUMER METH ENG, V16, P137
52790 NR 7
52791 TC 2
52792 SN 0002-2667
52793 J9 AIRCRAFT ENG AEROSP TECHNOL
52794 JI Aircr. Eng. Aerosp. Technol.
52795 PY 2002
52796 VL 74
52797 IS 1
52798 BP 9
52799 EP 11
52800 PG 3
52801 SC Engineering, Aerospace
52802 GA 554DC
52803 UT ISI:000175717600002
52804 ER
52805 
52806 PT J
52807 AU Ma, CQ
52808    Zhang, LQ
52809    Li, XH
52810    Wang, XS
52811    Zhang, BW
52812    Cao, Y
52813    Wang, DM
52814    Jiang, XY
52815    Zhang, ZL
52816    Zhang, DQ
52817    Qui, Y
52818 TI The luminescent properties of 5-substituted 2-pyrazoline and
52819    application in electroluminescent device
52820 SO ACTA CHIMICA SINICA
52821 DT Article
52822 DE pyrazoline; electroluminescence; thermal stability; hole transport
52823    material; blue electroluminescent material
52824 AB A series of 5-substituted 2-pyrazoline derivatives were synthesized and
52825    their physical properties were measured. The results indicate that the
52826    introduction of bulky groups into the pyrazoline ring increases the
52827    glass transition temperature (T-g) of the compounds and changes the
52828    luminescent mechanism of the compounds. Differential scanning
52829    calorimetry ( DSC) shows that the new pyrazoline derivative,
52830    1,3-diphenyl-5-(9-phenanthrenyl)-2-pyrazoline (TAP7) has high T-g of 96
52831    degreesC. The electroluminescent properties of this compound were
52832    measured. It is demonstrated that TAP7 is a good hole transport
52833    material and blue electroluminescent material with high thermal
52834    stability.
52835 C1 Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100101, Peoples R China.
52836    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
52837    Tsing Hua Univ, Dept Chem, Beijing 100084, Peoples R China.
52838 RP Ma, CQ, Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100101,
52839    Peoples R China.
52840 CR BILOT L, 1962, Z NATURFORSCH      A, V17, P621
52841    BLAIR JT, 1994, J PHOTOCH PHOTOBIO A, V77, P133
52842    CHEN CH, 1997, MACROMOL S, V125, P1
52843    DEAN JA, 1999, LANGES HDB CHEM
52844    DONNALD ER, 1979, AUST J CHEM, V32, P1601
52845    GAO XC, 1999, J MATER CHEM, V9, P1077
52846    MORLEY JO, 1989, J MOL ELECTRON, V5, P117
52847    NAITO K, 1993, J PHYS CHEM-US, V97, P6240
52848    SAHYUN MRV, 1991, P SPIE INT SOC OPT E, V1436, P125
52849    SANO T, 1995, JPN J APPL PHYS PT 1, V34, P3124
52850    WANG Y, 1999, PHOTOGRAPHIC SCI PHO, V1, P73
52851    WU F, 2000, CHEM J CHINESE U, V10, P1581
52852    WU F, 2000, THIN SOLID FILMS, V363, P214
52853    YAN ZL, 1993, J LUMIN, V54, P303
52854    YAN ZL, 1994, THESIS CAS BEIJING
52855    ZHANG LQ, 1999, ACTA PHYS-CHIM SIN, V10, P911
52856 NR 16
52857 TC 7
52858 SN 0567-7351
52859 J9 ACTA CHIM SIN
52860 JI Acta Chim. Sin.
52861 PD MAY
52862 PY 2002
52863 VL 60
52864 IS 5
52865 BP 847
52866 EP 853
52867 PG 7
52868 SC Chemistry, Multidisciplinary
52869 GA 554BD
52870 UT ISI:000175712200016
52871 ER
52872 
52873 PT J
52874 AU Li, Q
52875    Wang, NC
52876    Shi, BC
52877    Zheng, CG
52878 TI Extendible look-up table of twiddle factors and radix-8 based fast
52879    Fourier transform
52880 SO SIGNAL PROCESSING
52881 DT Article
52882 DE fast Fourier transform; twiddle factors; bit-reversed order
52883 ID ALGORITHM
52884 AB An extendible look-up table of the twiddle factors for implementation
52885    of fast Fourier transform (FFT) is introduced in this paper. In fact,
52886    this twiddle factors table is independent of the length of sequence, It
52887    need not be recomputed for shorter sequences. And for longer sequences,
52888    the table can be extended easily. A radix-8 based FFT algorithm for
52889    2(m)-FFT with this table is presented. Experimental comparisons between
52890    our algorithm and FFTW software package have be done. And the results
52891    indicate that our FFT scheme is effective. (C) 2002 Elsevier Science
52892    B.V. All rights reserved.
52893 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
52894 RP Li, Q, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R
52895    China.
52896 CR ALMEIDA LB, 1994, IEEE T SIGNAL PROCES, V42, P3084
52897    CHAN SC, 1992, IEEE T SIGNAL PROCES, V40, P2029
52898    COOLEY JW, 1965, MATH COMPUT, V19, P297
52899    DUHAMEL P, 1984, ELECTRON LETT, V20, P14
52900    DUHAMEL P, 1990, SIGNAL PROCESS, V19, P259
52901    GRIGORYAN AM, 2000, IEEE T SIGNAL PROCES, V48, P172
52902    MA YT, 1999, IEEE T SIGNAL PROCES, V47, P907
52903    RIUS JM, 1995, IEEE T SIGNAL PROCES, V43, P991
52904    SILVIA M, 1999, MOD PHYS C, V10, P781
52905 NR 9
52906 TC 0
52907 SN 0165-1684
52908 J9 SIGNAL PROCESS
52909 JI Signal Process.
52910 PD APR
52911 PY 2002
52912 VL 82
52913 IS 4
52914 BP 643
52915 EP 648
52916 PG 6
52917 SC Engineering, Electrical & Electronic
52918 GA 551NC
52919 UT ISI:000175566900008
52920 ER
52921 
52922 PT J
52923 AU Xu, GQ
52924    Li, ZB
52925 TI Solitary wave solutions of a nonlinear evolution equation using mixed
52926    exponential method
52927 SO ACTA PHYSICA SINICA
52928 DT Article
52929 DE nonlinear differential equations; mixed exponential method; solitary
52930    wave
52931 ID EXPLICIT EXACT-SOLUTIONS
52932 AB Mixed exponential method proposed by Hereman for finding solitary wave
52933    solutions of a nonlinear evolution equation is presented. The method is
52934    developed and perfected according to the theory of mathematical
52935    mechanization, and with this method many solitary wave solutions not
52936    only of a nonlinear evolution equation(s) but also a multi-dimention
52937    equation can be obtained.
52938 C1 E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China.
52939    Shanghai Univ, Dept Informat Engn & Adm, Shanghai 200436, Peoples R China.
52940 RP Xu, GQ, E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R
52941    China.
52942 CR FAN EG, 1998, ACTA PHYS SINICA, V47, P353
52943    FAN EG, 1998, PHYS LETT A, V245, P389
52944    FAN EG, 2000, PHYS LETT A, V277, P212
52945    HEREMAN W, 1986, J PHYS A-MATH GEN, V19, P607
52946    HEREMAN W, 1990, J PHYS A-MATH GEN, V23, P4805
52947    HIROTA R, 1981, PHYS LETT A, V85, P407
52948    LI ZB, 1997, ACTA MATH SINICA, V17, P81
52949    LI ZB, 2001, ACTA PHYS SIN-CH ED, V50, P2062
52950    WANG ML, 1996, PHYS LETT A, V216, P67
52951    YAN ZY, 1999, ACTA PHYS SIN-CH ED, V48, P1962
52952    ZHANG GX, 2000, CHIN SCI A, V30, P1103
52953 NR 11
52954 TC 17
52955 SN 1000-3290
52956 J9 ACTA PHYS SIN-CHINESE ED
52957 JI Acta Phys. Sin.
52958 PD MAY
52959 PY 2002
52960 VL 51
52961 IS 5
52962 BP 946
52963 EP 950
52964 PG 5
52965 SC Physics, Multidisciplinary
52966 GA 550PR
52967 UT ISI:000175511900003
52968 ER
52969 
52970 PT J
52971 AU Gu, ZY
52972    Ji, PY
52973 TI Effects of background plasma density on multi-photon ionization
52974 SO ACTA PHYSICA SINICA
52975 DT Article
52976 DE MPI; plasma
52977 ID MULTIPHOTON IONIZATION; FIELD
52978 AB Multi-photon ionization (MPI) in plasma which is examined in terms of
52979    optical metric and the quantum Volkov state in curved space-time is
52980    derived. The cross section of MPI is derived by virtur of the corrected
52981    Volkov state within the framework of quantum electrodynamics formal
52982    scattering theory. It shows that the plasma medium acts as a
52983    "suppression" on MPI.
52984 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
52985 RP Gu, ZY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
52986 CR GUO DS, 1988, J PHYS A-MATH GEN, V21, P4577
52987    GUO DS, 1989, PHYS REV A, V40, P4997
52988    JI PY, 2001, CHINESE PHYS, V10, P314
52989    KELDYSH LV, 1965, ZH EKSP TEOR FIZ, V20, P1307
52990    LAI GJ, 2000, ACTA PHYS SIN-CH ED, V49, P2399
52991    LEONHARDT U, 1999, PHYS REV A, V60, P4301
52992    REISS HR, 1980, PHYS REV A, V22, P1786
52993    ZHU ST, 1993, ACTA PHYS SINICA, V42, P1438
52994 NR 8
52995 TC 0
52996 SN 1000-3290
52997 J9 ACTA PHYS SIN-CHINESE ED
52998 JI Acta Phys. Sin.
52999 PD MAY
53000 PY 2002
53001 VL 51
53002 IS 5
53003 BP 1022
53004 EP 1025
53005 PG 4
53006 SC Physics, Multidisciplinary
53007 GA 550PR
53008 UT ISI:000175511900017
53009 ER
53010 
53011 PT J
53012 AU Peng, LM
53013    Mao, XM
53014    Xu, KD
53015    Ding, WJ
53016 TI In-situ composite Cu-Cr contact cables with high strength and high
53017    conductivity
53018 SO RARE METALS
53019 DT Article
53020 DE contact cable; in-situ composite; directional solidification continuous
53021    casting process; Cu-Cr alloy
53022 AB In order to develop a new type of contact cable with high strength and
53023    high electrical conductivity, Cu-Cr alloy series were selected as
53024    materials and Cu-Cr alloy castings were produced by means of
53025    directional solidification continuous casting (DSCC) process. The
53026    results show that the fibrillar strengthening phase, beta-Cr, orderly
53027    arranges among the copper matrix phase along the wire direction; and a
53028    microstructure of in-situ composite forms, which retains the basic
53029    property of good conductivity of the copper matrix and meanwhile
53030    obtains the strengthening effect of beta-Cr phase. The production
53031    technology as well as the mechanical property, electrical property, and
53032    synthetic property of the in-situ composite contact cables was
53033    discussed.
53034 C1 Shanghai Jiao Tong Univ, Natl Engn Ctr Light Alloy Netshaping, Shanghai 200030, Peoples R China.
53035    Shanghai Univ, Inst Mat Sci & Engn, Shanghai 200072, Peoples R China.
53036 RP Peng, LM, Shanghai Jiao Tong Univ, Natl Engn Ctr Light Alloy
53037    Netshaping, Shanghai 200030, Peoples R China.
53038 CR CEN X, 1986, WIRE CABLE, V28, P50
53039    KURZ W, 1989, DIRECTIONALLY SOLIDI, P101
53040    LIU LN, 1997, WIRE CABLE, V39, P2
53041    PENG LM, 2000, INTERACTIONS CONTROL, P28
53042    WEN HQ, 1998, RARE METALS, V17, P23
53043    WEN HQ, 1998, STUDY FORMING MECH P, P35
53044    ZHAO ZD, 1993, HDB CU ITS ALLOYS MA, P3
53045 NR 7
53046 TC 1
53047 SN 1001-0521
53048 J9 RARE METALS
53049 JI Rare Metals
53050 PD MAR
53051 PY 2002
53052 VL 21
53053 IS 1
53054 BP 62
53055 EP 66
53056 PG 5
53057 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
53058    Engineering
53059 GA 548AZ
53060 UT ISI:000175366900011
53061 ER
53062 
53063 PT J
53064 AU Xu, KD
53065 TI The 20th century - Ferrometallurgy advanced from skill towards
53066    engineering science
53067 SO RARE METAL MATERIALS AND ENGINEERING
53068 DT Article
53069 DE ferrometallurgy; advancednent of technology; engineering science
53070 ID DIOXINS; SYSTEM
53071 AB In the past century, a considerable development of ferrometallurgy,
53072    including its principle and technology, had been achieved. It was
53073    mainly attributed to the advancement of related theories and the
53074    application of modern industrial technologies, equipments, materials,
53075    analytical techniques and computer/information technology in the
53076    manufacture of steel. Today, the processes of extracting, smelting,
53077    forming and rolling of steel can be completely controlled in accordance
53078    with the requirement of man. Within the prospect in the 21st century
53079    ferrometallurgy will become mature engineering science.
53080 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
53081 RP Xu, KD, Chinese Acad Engn, Postbox 3847, Beijing 100038, Peoples R
53082    China.
53083 CR 1965, CHIPM C C
53084    1981, CHINESE IRONMAKING 3
53085    *NAT SCI FUND SOC, 1997, MET MIN SCI, P30
53086    *SUZHOU IR STEEL G, INT REP INV SULF DIS
53087    AKIYAMA T, 1993, ISIJ INT, V33, P1136
53088    AKIYAMA T, 1998, ISIJ INT, V38, P93
53089    ANELLI E, 1992, ISIJ INT, V32, P440
53090    ARGYROPOULOS SA, 1990, ISIJ INT, V30, P83
53091    ASANUMA M, 2000, ISIJ INT, V40, P240
53092    BAO ZH, 1986, STEEL ROLLING, P1
53093    BIRAT JP, 1999, IRON STEEL S, V34, P416
53094    BRIMACOMBE J, 1986, STEELM C P ISS WASH, P409
53095    BRIMACOME JK, 1976, CANADIAN METALL Q, P38
53096    CHEN JX, 1990, HDB CONTINUOUS CASTI, P4
53097    CHEN YS, 2001, MICROALLOYING TECHNO, V1, P20
53098    DEARDO GA, 1982, THERMOMECHANICAL PRO
53099    DIPPENAAR RJ, 1985, ELECT FURNACE P, P43
53100    DONALDSON JW, 1966, COMPUTER SIMULATION, P780
53101    DRUCKENTHANER H, 2000, REV METALL-PARIS, V97, P481
53102    EKETORP S, 1982, RIST REICHARDT DIAGR
53103    FLEMINGS MC, 1981, SOLIDIFICATION PROCE
53104    FU GR, 1994, IRON STEEL, V29, P26
53105    GAN Y, 2001, MATH PHYSICAL MODELI
53106    GRATACOS P, 1991, P 5 INT ROLL C UK LO, P252
53107    GRAY JM, 2000, P CHIN BRAZ AC C
53108    GUBKIN SE, 1960, PLASTIC DEFORMATION
53109    GUO J, 1995, IRON STEEL, V30, P24
53110    HAN ZC, 2001, ELECTROMAGNETIC META
53111    HARUO K, 1991, J JAPAN SOC TECHNOLO, V32, P441
53112    HORBACH U, 1998, MPT INT, P74
53113    HOU ST, 1995, IRON STEEL, V30, P16
53114    JIANG GC, 1996, CLEAN STEEL SECONDAR
53115    JIANG GL, 1982, IRON STEEL, V4, P13
53116    KASAI E, 2001, ISIJ INT, V41, P86
53117    KASAI E, 2001, ISIJ INT, V41, P93
53118    LAASRAOUI A, 1991, ISIJ INT, V31, P95
53119    LAIT JE, 1974, IRONMAK STEELMAK, V2, P90
53120    LALLY B, 1990, METALL TRANS B, V21, P761
53121    LAROUCHE Y, 1998, LIGHT MET, P1059
53122    LIANG H, 1998, METALL MATER TRANS B, V29, P1345
53123    LIU GX, 1979, PRINCIPLES METALLOGR
53124    LIU MJ, 1995, STEELM C P, V78, P359
53125    LIU XH, 1994, FINITE ELEMENT METHO
53126    MACHIDA S, 1998, CAMP ISIJ, V11, P162
53127    MARUKAWA K, 1989, P 6 GUANX SHANGH EC
53128    MASAMI K, 1990, R D KOBE STEEL ENG R, V40, P23
53129    MATSUDA K, 1990, IRON STEEL I JAPAN, V5, P1
53130    MCPHERSON NA, 1980, IRONMAK STEELMAK, V7, P75
53131    MILZER M, 1999, IRON STEEL, V34, P658
53132    MIZIKAR EA, 1967, T METALLURGICAL SOCI, V239, P1747
53133    OHNO, 1982, T METAL SOLIDIFICATI
53134    PAWELSKI, 1980, P INT STEEL ROLL C J, P27
53135    PU HQ, 1999, IRON STEEL, V34, P5
53136    QIN MS, 1987, IRON STEEL, V22, P1
53137    QU Y, 1980, PRINCIPLE STEELMAKIN, P1
53138    RAND R, 1999, STAHL EISEN, V6, P13
53139    RAUDENSKY M, 1995, STEELM C P, V78, P391
53140    REN ZM, 1999, ACTA METALL SIN, V35, P851
53141    REN ZM, 1999, NATL NATURE SCI FDN
53142    ROBERTS W, 1985, STRENGTH METALS ALLO, V3, P1859
53143    ROWE GW, 1977, PRINCIPLE IND METALW
53144    RUDDLE RW, 1957, SOLIDIFICATION SAND
53145    RUSSWURM D, 1995, MCROALLOYING 95, P377
53146    SAMARASEKERA V, 1982, IRONMAK STEELMAK, V8, P1
53147    SARAFF L, 1972, IRONMAK STEELMAK, P49
53148    SCHENCK H, 1945, PHYSICAL CHEM STEELM
53149    SHI ZB, NONBLAST FURNACE IRO
53150    SZEKERES ES, 1996, IRONMAK STEELMAK, V79, P29
53151    TAMURA I, 1988, THERMOMECHANICAL PRO
53152    TOSHIO S, 1989, HITACHI HYORON, V71, P103
53153    WANG GD, 2000, ARTIFICIAL INTELLIGE
53154    WANG YM, 1995, CONTROLLED ROLLING C
53155    WEI SK, 1980, THERMODYNAMICS METAL
53156    WEN DW, 1999, IRON STEEL, V34, P223
53157    WHITTINGTON KR, 1998, LIGHT MET, P1147
53158    WIKLUND, 1991, P 5 INT ROLL C UK LO, P512
53159    WOLF MM, 1992, STEELM C P ISS, V75, P83
53160    WOLF MM, 1995, P TECH C P NASHV ISI, P99
53161    WOLF MM, 1996, IRON STEELMAKER, V23, P47
53162    XU GJ, 2000, ACTA METALL SIN, V13, P1093
53163    XU JL, 1996, P 4 E CHIN IR C
53164    XU KD, 1985, REFINING STAINLESS S
53165    XU KD, 1998, ACTA METALLURGIC SIN, V34, P467
53166    XU KD, 1999, 125 XIANGSH SCI C P, V125, P31
53167    YE ZP, 1959, DISCUSS BASIC PROBLE
53168    YI SH, 1990, 6 INT IR STEEL C JAP, P379
53169    YONG QL, 1989, MICROALLOYED STEEL P
53170    YU RY, 1989, GENERALITY METALLURG
53171    YUE E, 1990, MATH MODELING HOT RO
53172    ZHANG SR, 1999, IRON STEEL, V34, P43
53173    ZHANG YQ, 2000, IRON STEEL, V35, P43
53174    ZHONG YB, 1999, ACTA METALLURGIC SIN, V35, P503
53175    ZHOU JQ, 1985, P 4 THERM EN THERM T, P10
53176 NR 93
53177 TC 0
53178 SN 1002-185X
53179 J9 RARE METAL MAT ENG
53180 JI Rare Metal Mat. Eng.
53181 PD NOV
53182 PY 2001
53183 VL 30
53184 SU Suppl. S
53185 BP 9
53186 EP 20
53187 PG 12
53188 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
53189    Engineering
53190 GA 548KU
53191 UT ISI:000175387800003
53192 ER
53193 
53194 PT J
53195 AU Yu, QR
53196    Yang, JR
53197    Huang, GS
53198    Chen, XQ
53199    Xia, YB
53200    He, L
53201 TI Ag doping of p-type HgCdTe grown by LPE
53202 SO JOURNAL OF INFRARED AND MILLIMETER WAVES
53203 DT Article
53204 DE HgCdTe; doping; Hall tests; SIMS; electrical properties
53205 ID ELECTRICAL-PROPERTIES; CDXHG1-XTE; IMPURITIES; (HG,CD)TE; ELEMENTS; CDTE
53206 AB SIMS (secondary ion mass spectrum) and variable temperature Hail
53207    measurement were employed to study the doping of Ag and the electrical
53208    properties of Ag-doped HgCdTe films grown by LPE. The results show that
53209    the Ag-doping in HgCdTe by soaking HgCdTe in AgNO3 solution is
53210    effective and the dopant concentration is equal to the Hg vacancy
53211    concentration of undoped HgCdTe film. After Ag doping, the acceptor
53212    energy of p-type HgCdTe has an obvious decrease. It was also found that
53213    the electrical properties of Ag-doped HgCdTe films can keep stable at
53214    room temperature.
53215 C1 Shanghai Univ, Sch Mat, Shanghai 201800, Peoples R China.
53216    Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China.
53217    Chinese Acad Sci, Res Ctr Adv Mat & Devices, Shanghai 200083, Peoples R China.
53218 RP Yu, QR, Shanghai Univ, Sch Mat, Shanghai 201800, Peoples R China.
53219 CR CHEUNG DT, 1985, J VAC SCI TECHNOL A, V3, P128
53220    DESTEFANIS GL, 1988, J CRYST GROWTH, V86, P700
53221    EDWALL DD, 1992, J VAC SCI TECHNOL B, V10, P1423
53222    KENWORTHY I, 1990, SEMICOND SCI TECH, V5, P854
53223    LYUBOMIRSKY I, 1996, J CRYST GROWTH, V159, P1148
53224    SCHAAKE HF, 1985, J VAC SCI TECHNOL A, V3, P143
53225    SCOTT W, 1976, J APPL PHYS, V47, P1408
53226    SHIN SH, 1980, J APPL PHYS, V51, P3772
53227    TANAKA N, 1998, J ELECTRON MATER, V27, P579
53228    TREGILGAS J, 1985, J VAC SCI TECHNOL A, V3, P156
53229    VYDYANATH HR, 1987, J ELECTRON MATER, V16, P13
53230    WILSON RG, 1988, J APPL PHYS, V63, P5121
53231 NR 12
53232 TC 1
53233 SN 1001-9014
53234 J9 J INFRARED MILIM WAVES
53235 JI J. Infrared Millim. Waves
53236 PD APR
53237 PY 2002
53238 VL 21
53239 IS 2
53240 BP 91
53241 EP 94
53242 PG 4
53243 SC Optics
53244 GA 547PY
53245 UT ISI:000175342000003
53246 ER
53247 
53248 PT J
53249 AU Zhou, X
53250    Yan, X
53251    Li, Y
53252 TI 5.8ghz biphase modulator/mixer designed by uniplanar technology
53253 SO JOURNAL OF INFRARED AND MILLIMETER WAVES
53254 DT Article
53255 DE MMIC; uniplanar technology; CPW; biphase modulator/mixer
53256 AB By considering the high flexibility of uniplanar technology to design
53257    complex multifunction subsystems, a design procedure based on a
53258    subsystem repartitioned into elementary blocks and very simple
53259    electrical modeling was proposed and applied to a uniplanar
53260    biphase(0degrees or 180degrees)modulator/mixer, which was intended to
53261    be used as a building block in microwave uncontact impact card of
53262    Intelligent Transportation System(ITS) at 5.8GHz. Theoretical
53263    electromagnetic field calculation methods were combined with
53264    conventional transmission-line and computer-aided design calculations
53265    to analyze and design the critical parts of the subsystems. The
53266    subsystem designed in this paper has the advantages of small size,
53267    compact structure, high performance and low cost.
53268 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
53269 RP Zhou, X, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
53270    Peoples R China.
53271 CR COHN SB, 1969, IEEE T MICROW THEORY, V17, P1091
53272    COHN SB, 1969, IEEE T MICROW THEORY, V17, P768
53273    DIB N, 1991, IEEE T MICROW THEORY, V139, P873
53274    GORUR A, 1996, INT J MICROWAVE MILL, P6297
53275    GRAMMER W, 1993, IEEE T MICROW THEORY, V41, P1653
53276    HETTAK K, 1994, IEEE T MICROW THEORY, V43, P915
53277    HETTAK K, 1996, IEEE T MICROW THEORY, V47, P1831
53278    HILBERG W, 1969, IEEE T           MTT, V17, P259
53279    HIROTA T, 1987, IEEE T MICROW THEORY, V35, P576
53280    HOUDART M, 1976, P 7 EUR MICR C, P49
53281    KATEHI LPB, 1992, P IEEE, V80, P1771
53282    OGAWA H, 1987, IEEE T MICROW THEORY, V35, P1363
53283    PUCEL RA, 1985, MONOLITHIC MICROWAVE, P553
53284    TAMAS V, 1995, MICROWAVE J, P80
53285 NR 14
53286 TC 0
53287 SN 1001-9014
53288 J9 J INFRARED MILIM WAVES
53289 JI J. Infrared Millim. Waves
53290 PD APR
53291 PY 2002
53292 VL 21
53293 IS 2
53294 BP 137
53295 EP 141
53296 PG 5
53297 SC Optics
53298 GA 547PY
53299 UT ISI:000175342000013
53300 ER
53301 
53302 PT J
53303 AU Ma, HL
53304    Lu, FQ
53305 TI Measurement of hyperfine structure coupling constants in the 570.38 nm
53306    line of Nd-143,145(+)
53307 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
53308 DT Article
53309 DE hyperfine structure; fast-ion-beam laser spectroscopy
53310 AB Hyperfine structure in atomic ions is caused by the electromagnetic
53311    interaction between the nucleus and orbital electrons. Information on
53312    the nuclear structure and also on the electronic properties of ions can
53313    be obtained through studying the hyperfine structure. Hyperfine
53314    structure spectrum in the 570.38 nm line of (143), (145) Nd+ was
53315    measured by using collinear fast-ion-beam laser spectroscopy. All the
53316    spectral lines were resolved and the magnetic dipole and electric
53317    quadrupole coupling constants of the corresponding metastable levels
53318    and excited levels were determined.
53319 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
53320    Fudan Univ, Inst Modern Phys, Shanghai 200433, Peoples R China.
53321 RP Ma, HL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
53322 CR BROSTROM L, 1996, PHYS REV A, V53, P109
53323    CHENG KT, 1985, PHYS REV A, V31, P2775
53324    CHILDS WJ, 1984, J OPT SOC AM B, V1, P22
53325    GINIBRE A, 1981, PHYS SCR, V23, P260
53326    GINIBRE A, 1989, PHYS SCR, V39, P694
53327    JOHANSSON S, 1996, ASTROPHYS J 1, V462, P943
53328    LI MS, 2000, PHYS SCRIPTA, V61, P449
53329    MA HL, 1998, CHINESE PHYS LETT, V15, P178
53330 NR 8
53331 TC 1
53332 SN 1000-0593
53333 J9 SPECTROSC SPECTR ANAL
53334 JI Spectrosc. Spectr. Anal.
53335 PD APR
53336 PY 2002
53337 VL 22
53338 IS 2
53339 BP 183
53340 EP 185
53341 PG 3
53342 SC Spectroscopy
53343 GA 546RF
53344 UT ISI:000175286800003
53345 ER
53346 
53347 PT J
53348 AU Ho, SL
53349    Fei, MR
53350    Fu, WN
53351    Wong, HC
53352    Lo, EWC
53353 TI Integrated RBF network based estimation strategy of the output
53354    characteristics of brushless DC motors
53355 SO IEEE TRANSACTIONS ON MAGNETICS
53356 DT Article
53357 DE ANN; brushless dc motor; finite element; non-linear; radial basis
53358    function
53359 AB The circuit-field coupled model is very accurate but it is
53360    computationally inefficient in studying the output performance of
53361    brushless de motors. In order to resolve the problem, an estimation
53362    strategy based on an integrated radial basis function (RBF) network is
53363    proposed in this paper. The strategy introduces new conceptions of the
53364    network group that are being realized by three steps, namely: 1) an
53365    adaptive RBF network is proposed for modeling the center network; 2)
53366    the RBF network group is then used to build the base networks; and 3)
53367    an integrated RBF network based on the base network group is used
53368    subsequently to predict the nontrained output characteristics of the
53369    brushless dc motor.
53370 C1 Hong Kong Polytech Univ, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China.
53371    Shanghai Univ, Dept Automat, Shanghai, Peoples R China.
53372    Hong Kong Polytech Univ, Ind Ctr, Kowloon, Peoples R China.
53373 RP Ho, SL, Hong Kong Polytech Univ, Dept Elect Engn, Kowloon, Hong Kong,
53374    Peoples R China.
53375 CR FEI M, 1999, P IEEE AIM       SEP
53376    FEI M, 1999, P IEEE PEDS      JUL, P1108
53377    HENDERSHOT JR, 1994, DESIGN BRUSHLESS PER
53378    HO SL, 1997, IEEE T MAGN, V33, P2265
53379    HO SL, 2000, P 9 BIENN IEEE C EL
53380    LI HL, 2000, P 9 BIENN IEEE C EL
53381    SALON SJ, 1995, FINITE ELEMENT ANAL
53382    VAS P, 1996, WORKSH AC MOT DRIV T, P55
53383    VAS P, 1998, SENSORLESS VECTOR DI
53384 NR 9
53385 TC 1
53386 SN 0018-9464
53387 J9 IEEE TRANS MAGN
53388 JI IEEE Trans. Magn.
53389 PD MAR
53390 PY 2002
53391 VL 38
53392 IS 2
53393 PN Part 1
53394 BP 1033
53395 EP 1036
53396 PG 4
53397 SC Engineering, Electrical & Electronic; Physics, Applied
53398 GA 543DV
53399 UT ISI:000175086800180
53400 ER
53401 
53402 PT J
53403 AU Wang, Y
53404    Chau, KT
53405    Chan, CC
53406    Jiang, JZ
53407 TI Transient analysis of a new outer-rotor permanent-magnet brushless DC
53408    drive using circuit-field-torque coupled time-stepping finite-element
53409    method
53410 SO IEEE TRANSACTIONS ON MAGNETICS
53411 DT Article
53412 DE brushless dc machines; permanent magnet machines; time-stepping
53413    finite-element method
53414 ID ELECTRIC VEHICLES; MOTOR-DRIVES
53415 AB In this paper, a new outer-rotor permanent magnet (PM) brushless de
53416    drive is designed and analyzed. To enable this drive applicable to
53417    electric vehicles, its transient performances at both normal and
53418    flux-weakening operations are particularly focused. The distinct
53419    feature in design is due to the new motor configuration including the
53420    outer-rotor topology, the multipole magnetic circuit and the full
53421    slot-pitch coil span arrangement. The distinct feature in analysis is
53422    due to the development of the circuit-field-torque coupled
53423    time-stepping finite-element method. The proposed PM brushless dc drive
53424    is prototyped. The analysis results are verified by experimental
53425    measurement.
53426 C1 Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China.
53427    Shanghai Univ, Sch Automat, Shanghai 200072, Peoples R China.
53428 RP Wang, Y, Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong,
53429    Peoples R China.
53430 CR CHAN CC, 1995, IEEE T POWER ELECTR, V10, P539
53431    CHAN CC, 1996, IEEE T IND ELECTRON, V43, P331
53432    CHAN CC, 1997, IEEE T IND ELECTRON, V44, P3
53433    GAN JY, 2000, IEEE T MAGN 1, V36, P3353
53434    PARK SC, 1999, IEEE T MAGN 1, V35, P1302
53435 NR 5
53436 TC 3
53437 SN 0018-9464
53438 J9 IEEE TRANS MAGN
53439 JI IEEE Trans. Magn.
53440 PD MAR
53441 PY 2002
53442 VL 38
53443 IS 2
53444 PN Part 1
53445 BP 1297
53446 EP 1300
53447 PG 4
53448 SC Engineering, Electrical & Electronic; Physics, Applied
53449 GA 543DV
53450 UT ISI:000175086800246
53451 ER
53452 
53453 PT J
53454 AU Qiao, XY
53455    Xiao, XS
53456    Wang, XH
53457    Yang, H
53458    Qiu, ZB
53459    An, LJ
53460    Wang, WK
53461    Mo, ZS
53462 TI External field induced crystallization of poly(3-dodecylthiophene)
53463 SO EUROPEAN POLYMER JOURNAL
53464 DT Article
53465 DE external field; induced crystallization; poly(3-dodecylthiophene)
53466 ID POLY(3-ALKYLTHIOPHENES)
53467 AB In order to investigate the effect of external field on the
53468    crystallization behavior of poly(3-dodecylthiopliene) (P3DDT), the
53469    samples were recrystallized with different electrostatic field
53470    intensity, different pressure and different solidification direction in
53471    temperature gradient field. Measurements of differential scanning
53472    calorimetry and X-ray diffraction were operated to characterize these
53473    samples for analysis. The results suggest that after recrystallization,
53474    whether the external field is added or not, a more compact packing of
53475    molecular chains in P3DDT could be obtained without the change of the
53476    crystal structure model. Moreover, the addition of electrostatic field
53477    has greater effects on the crystallization of rigid main chains than on
53478    that of flexible side chains, Merely great pressure field can effect
53479    the rearrangements of molecular chains greatly. As for the temperature
53480    gradient field induced crystallization, different oriented
53481    solidification direction will lead to different effects on the compact
53482    degree and perfect degree of molecular chains packing, (C) 2002
53483    Elsevier Science Ltd. All rights reserved.
53484 C1 Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China.
53485    Shanghai Univ, Mat Inst, Shanghai 200072, Peoples R China.
53486    Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China.
53487 RP Mo, ZS, Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab
53488    Polymer Phys & Chem, Changchun 130022, Peoples R China.
53489 CR CHEN SA, 1992, MACROMOLECULES, V25, P6081
53490    ELSENBAUMER DLE, 1986, SYNTHETIC MET, V15, P16
53491    HO KS, 1993, SYNTHETIC MET, V55, P384
53492    HSU WP, 1993, MACROMOLECULES, V26, P1318
53493    IWASAKI K, 1994, SYNTHETIC MET, V63, P101
53494    MARDALEN J, 1991, SOLID STATE COMMUN, V77, P337
53495    PROSA TJ, 1992, MACROMOLECULES, V25, P4364
53496    QIAO XY, 1999, CHINESE CHEM LETT, V10, P419
53497    QIAO XY, 2000, CHINESE CHEM LETT, V11, P361
53498    QIAO XY, 2000, SYNTHETIC MET, V113, P1
53499    QIAO XY, 2001, SYNTHETIC MET, V118, P89
53500    SUGIMOTO R, 1986, CHEM EXPRESS, V1, P635
53501    TAMAO K, 1982, TETRAHEDRON, V38, P3347
53502    TASHIRO K, 1991, J POLYM SCI POL PHYS, V29, P1223
53503    WINOKUR MJ, 1989, SYNTHETIC MET, V28, P419
53504    YOSHINO K, 1987, POLYM COMMUN, V28, P30
53505 NR 16
53506 TC 1
53507 SN 0014-3057
53508 J9 EUR POLYM J
53509 JI Eur. Polym. J.
53510 PD JUN
53511 PY 2002
53512 VL 38
53513 IS 6
53514 BP 1183
53515 EP 1190
53516 PG 8
53517 SC Polymer Science
53518 GA 546PP
53519 UT ISI:000175282800017
53520 ER
53521 
53522 PT J
53523 AU Cai, YH
53524 TI A remark on Chen's theorem
53525 SO ACTA ARITHMETICA
53526 DT Article
53527 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
53528 RP Cai, YH, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
53529 CR CHEN JR, 1973, SCI SINICA, V16, P157
53530    CHEN JR, 1973, SCI SINICA, V21, P477
53531    CHEN JR, 1978, SCI SINICA, V21, P421
53532    FOUVRY E, 1986, J REINE ANGEW MATH, V370, P101
53533    FOUVRY E, 1989, DUKE MATH J, V58, P731
53534    HALBERSTAM H, 1974, SIEVE METHODS
53535    HALBERSTAM H, 1975, ASTERISQUE, V24, P281
53536    HARDY GH, 1923, ACTA MATH-DJURSHOLM, V44, P1
53537    IWANIEC H, 1980, ACTA ARITH, V37, P307
53538    LIU HQ, 1990, SCI CHINA SER A, V33, P281
53539    PAN CD, 1992, GOLDBACH CONJECTURE
53540    WU J, 1990, ACTA ARITH, V55, P365
53541 NR 12
53542 TC 1
53543 SN 0065-1036
53544 J9 ACTA ARITHMET
53545 JI Acta Arith.
53546 PY 2002
53547 VL 102
53548 IS 4
53549 BP 339
53550 EP 352
53551 PG 14
53552 SC Mathematics
53553 GA 546YK
53554 UT ISI:000175304400005
53555 ER
53556 
53557 PT J
53558 AU Wang, SL
53559 TI Impact chaos control and stress release - A key for development of
53560    ultra fine vibration milling
53561 SO PROGRESS IN NATURAL SCIENCE
53562 DT Article
53563 DE vibration mills; ultra fine milling; impact chaos control; stress
53564    release
53565 AB Through our previous experimental and analytical studies, it has been
53566    discovered that the key for the development of vibration milling is the
53567    impact chaos control and stress release. The necessities for the chaos
53568    control and stress release are: (i) to strictly eliminate the
53569    sub-harmonics; (ii) to control the super-harmonics to a lower level and
53570    (iii) to load the system compressively with relatively higher period,
53571    in order that the vibration energy can be absorbed by the particles
53572    effectively and sufficiently, A new vibration model for ultra fine
53573    milling is proposed, which has wide applications in preparing ultra
53574    fine particles.
53575 C1 Shanghai Univ Sci & Technol, Dept Power Engn, Shanghai 200093, Peoples R China.
53576 RP Wang, SL, Shanghai Univ Sci & Technol, Dept Power Engn, Shanghai
53577    200093, Peoples R China.
53578 CR GOCK E, 1998, AUFBEREITUNGSTECHNIK, V39, P103
53579    HOEFFL K, 1985, VEB DEUTSCHER VERLAG
53580    JENG JJ, 1992, AUFBERCITUNGSTECHNIK, V33, P361
53581    KANTZ H, 1997, NONLINEAR TIME SERIE
53582    KIESSLING M, 1989, FREIBERGER FORSCH A, V798, P62
53583    KURRER KE, 1988, FREIBERGER FORSCH A, V778, P76
53584    LOEWE J, 1995, AUFBEREITUNGSTECHNIK, V36, P277
53585    LONG YJ, 1998, MODERN ENG DYNAMICS
53586    ROSE HE, 1961, VIBRATION MILL VIBRA
53587    RUMPF H, 1973, AUFBEREIT TECH, V14, P59
53588    WANG SL, 1987, MINING MACHINERY, V14, P24
53589    WANG SL, 1996, P CHIN JAP S PART TS, P336
53590    WANG SL, 1997, CHINESE J MECH ENG, V33, P19
53591    WANG SL, 1997, P MTM BEIJ CHIN MACH, P1144
53592    WANG SL, 1998, J OCEAN U QINGDAO, V28, P457
53593    WANG SL, 1999, IMPACT DYNAMICS VIBR, P465
53594    WANG ZQ, 1995, PLASTIC MICRO MECH
53595 NR 17
53596 TC 1
53597 SN 1002-0071
53598 J9 PROG NAT SCI
53599 JI Prog. Nat. Sci.
53600 PD MAY
53601 PY 2002
53602 VL 12
53603 IS 5
53604 BP 336
53605 EP 341
53606 PG 6
53607 SC Multidisciplinary Sciences
53608 GA 545GX
53609 UT ISI:000175209800003
53610 ER
53611 
53612 PT J
53613 AU Shang, XC
53614    Cheng, CJ
53615 TI Cavitation in Hookean elastic membranes
53616 SO ACTA MECHANICA SOLIDA SINICA
53617 DT Article
53618 DE cavitation; bifurcation; boundary layer; elastic membrane; exact
53619    solution
53620 ID BIFURCATION; GROWTH
53621 AB An exact solution to cavitation is found in tension of a class of
53622    Cauchy elastic membranes. The constitutive relationship of materials is
53623    based on Hookean elastic law and finite logarithmic strain measure. A
53624    variable transformation is used in solving the two-point boundary-value
53625    problem of nonlinear ordinary differential equation. A simple formula
53626    to calculate the critical stretch for cavitation is derived. As the
53627    numerical results, the bifurcation curves describing void nucleation
53628    and suddenly rapidly growth of the cavity are obtained. The boundary
53629    layers of displacements and stresses near the cavity wall are observed.
53630    The catastrophic transition from homogeneous to cavitated deformation
53631    and the jumping of stress distribution are discussed. The result of the
53632    energy comparison shows the cavitated deformation has lower energy than
53633    the homogeneous one, thus the state of cavitated deformation is
53634    relatively stable. All investigations illustrate that cavitation
53635    reflects a local behavior of materials.
53636 C1 Univ Sci & Technol Beijing, Dept Math & Mech, Beijing 100083, Peoples R China.
53637    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
53638    Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
53639 RP Shang, XC, Univ Sci & Technol Beijing, Dept Math & Mech, Beijing
53640    100083, Peoples R China.
53641 CR ASHBY MF, 1989, ACTA METALL, V37, P1857
53642    BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
53643    BIWA S, 1995, INT J NONLINEAR MECH, V30, P899
53644    DURBAN D, 1988, INT J SOLIDS STRUCT, V24, P675
53645    ERTAN N, 1988, ASCE J ENG MECHANICS, V114, P1231
53646    GENT AN, 1958, P ROY SOC LOND A MAT, V249, P195
53647    HAUGHTON DM, 1990, INT J ENG SCI, V28, P163
53648    HORGAN CO, 1986, J ELASTICITY, V16, P189
53649    HORGAN CO, 1992, INT J SOLIDS STRUCT, V29, P279
53650    HORGAN CO, 1995, APPL MECH REV, V48, P471
53651    JIN M, 1999, APPL MECH MATH, V20, P867
53652    SHANG XC, 1996, ACTA MECH SINICA, V28, P755
53653    SHANG XC, 2001, INT J ENG SCI, V39, P1101
53654 NR 13
53655 TC 1
53656 SN 0894-9166
53657 J9 ACTA MECH SOLIDA SINICA
53658 JI Acta Mech. Solida Sin.
53659 PD MAR
53660 PY 2002
53661 VL 15
53662 IS 1
53663 BP 89
53664 EP 94
53665 PG 6
53666 SC Materials Science, Multidisciplinary; Mechanics
53667 GA 544KK
53668 UT ISI:000175156600012
53669 ER
53670 
53671 PT J
53672 AU Chen, WX
53673    Cheng, DH
53674    Liu, SL
53675    Guo, HT
53676 TI Electrocatalytic activity and electrochemical hydrogen storage of Ni-La
53677    alloy prepared by electrodeposition from aqueous electrolyte
53678 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
53679 DT Article
53680 DE Ni-La alloy; electrodeposition; hydrogen evolution reaction; hydrogen
53681    storage
53682 ID WATER ELECTROLYSIS; EVOLUTION REACTION; PERFORMANCES; BATTERIES
53683 AB Ni-La alloy coating was prepared by electrodeposition. The effect of
53684    cathodic current density on the La content of the alloy coatings was
53685    discussed. It is found that the content of La in the alloy increases
53686    with increasing the cathodic current density. The microstructures and
53687    codeposition mechanism of Ni-La alloy coatings were investigated by
53688    means of X-ray diffraction (XRD) and cyclic voltammetry (CV). The
53689    results demonstrate that the Ni-La alloy is FCC and code-posited by the
53690    induced mechanism. The hydrogen evolution reaction (HER) on the
53691    electrodeposited Ni-La alloy electrodes in alkaline solution was
53692    evaluated by Tafel polarization curves. It is found that La-Ni alloy
53693    coating exhibites much higher exchange current density for HER than
53694    pure Ni electrode, and that the exchange current density increases with
53695    increasing the La content of alloys. The good electrocatalytic activity
53696    for HER of this Ni-La ahoy is attributed to the synergism of the
53697    electronic structure of La and Ni. The electrodeposited La-Ni alloys
53698    have a certain electrochemical hydrogen storage capacity of 34 similar
53699    to 143 mAh/g, which increases with increasing the La content of alloys.
53700 C1 Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China.
53701    Shanghai Univ, Coll Environm & Chem Engn, Shanghai 200027, Peoples R China.
53702    Tianjin Univ, Dept Appl Chem, Tianjin 300072, Peoples R China.
53703 CR ANANI A, 1994, J POWER SOURCES, V47, P261
53704    BOCUTTI R, 2000, INT J HYDROGEN ENERG, V25, P1051
53705    CHEN WX, 1998, T NONFERR METAL SOC, V8, P250
53706    CHEN WX, 1999, T NONFERR METAL SOC, V9, P487
53707    EZAKI H, 1993, ELECTROCHIM ACTA, V38, P557
53708    FURUKAWA N, 1994, J POWER SOURCES, V51, P45
53709    GUO ZC, 2000, T NONFERR METAL SOC, V10, P50
53710    HAUNG QAH, 2000, MAT PROTECTION, V33, P51
53711    HU WK, 2000, INT J HYDROGEN ENERG, V25, P111
53712    JAKSIC JM, 2000, ELECTROCHIM ACTA, V45, P4151
53713    JAKSIC MM, 2000, ELECTROCHIM ACTA, V45, P4085
53714    JOVIC VD, 1988, J APPL ELECTROCHEM, V18, P511
53715    MACHIDA K, 1984, B CHEM SOC JPN, V57, P2809
53716    MACHIDA K, 1984, ELECTROCHIM ACTA, V29, P807
53717    METIKOSHUKOVIC M, 2000, ELECTROCHIM ACTA, V45, P4159
53718    TAMURA H, 1983, J LESS-COMMON MET, V89, P567
53719    TANAKA M, 1993, DENKI KAGAKU, V61, P790
53720 NR 17
53721 TC 0
53722 SN 1003-6326
53723 J9 TRANS NONFERROUS METAL SOC CH
53724 JI Trans. Nonferrous Met. Soc. China
53725 PD APR
53726 PY 2002
53727 VL 12
53728 IS 2
53729 BP 269
53730 EP 272
53731 PG 4
53732 SC Metallurgy & Metallurgical Engineering
53733 GA 542BF
53734 UT ISI:000175023100019
53735 ER
53736 
53737 PT J
53738 AU Lu, XG
53739    Ding, WZ
53740    Li, FS
53741    Li, LF
53742    Zhou, GZ
53743 TI Electrochemistry of oxygen ion transport in slag
53744 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
53745 DT Article
53746 DE metal-slag reaction; oxygen ion; electrochemical model
53747 ID FE-C DROPLETS; DECARBURIZATION REACTION; CONDUCTIVITY; REDUCTION; OXIDE
53748 AB A systematic experiment relating to the electrochemistry of oxygen ion
53749    transport in slag has been studied in lab. An equivalent circuit has
53750    been used to describe ion transfer between metal and slag in this paper
53751    and a kinetic model with electrochemical characteristic representing
53752    oxygen ion immigration has been worked out. The different experimental
53753    phenomena ran be explained generally by this model. It can be seen that
53754    the theoretical results are in good agreement with experiments. The
53755    comparison of experimental data with model calculation proved that the
53756    electrochemical model is right.
53757 C1 Shanghai Univ, State Enhance Lab Ferromet, Shanghai 200072, Peoples R China.
53758    Univ Sci & Technol Beijing, Lab Solid Electrolytes & Met Testing Tech, Beijing 100083, Peoples R China.
53759 CR GARE T, 1981, IRONMAK STEELMAK, V8, P169
53760    GOTO KS, 1977, T IRON STEEL I JPN, V17, P212
53761    HASHAM Z, 1995, J ELECTROCHEM SOC, V142, P469
53762    LU XG, 1998, J UNIV SCI TECHNOL B, V5, P20
53763    LU XG, 1999, ENG CHEM METALLURGY, V20, P402
53764    LU XG, 1999, J IRON STEEL RES, V11, P5
53765    LU XG, 1999, J UNIV SCI TECHNOL B, V6, P27
53766    LU XG, 2000, J IRON STEEL RES INT, V7, P9
53767    LU XG, 2001, ACTA METALL SIN, V37, P184
53768    MURTHY GGK, 1993, IRONMAK STEELMAK, V20, P179
53769    MURTHY GGK, 1993, IRONMAK STEELMAK, V20, P191
53770    SASABE M, 1974, METALLURG T, V5, P2225
53771    SPEELMAN JL, 1989, METALL T B, V20, P31
53772    WOOLLEY DE, 1999, METALL MATER TRANS B, V30, P877
53773 NR 14
53774 TC 1
53775 SN 1003-6326
53776 J9 TRANS NONFERROUS METAL SOC CH
53777 JI Trans. Nonferrous Met. Soc. China
53778 PD APR
53779 PY 2002
53780 VL 12
53781 IS 2
53782 BP 326
53783 EP 329
53784 PG 4
53785 SC Metallurgy & Metallurgical Engineering
53786 GA 542BF
53787 UT ISI:000175023100034
53788 ER
53789 
53790 PT J
53791 AU Zhou, HY
53792    Gu, SW
53793    Shi, YM
53794 TI Polar surface-optical phonon modes in a quantum box
53795 SO MODERN PHYSICS LETTERS B
53796 DT Article
53797 ID DOUBLE HETEROSTRUCTURES; INTERFACE PHONONS; ENERGY; SUPERLATTICES;
53798    CONFINEMENT; CRYSTALS; WIRE
53799 AB The polar surface-optical (SO) phonon modes and their dispersion
53800    relations in a quantum box axe derived within the dielectric continuum
53801    approximation. Then, having quantized the vibrational eigenmodes, we
53802    give the electron-SO phonon interaction Hamiltonian in a quantum box.
53803 C1 Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China.
53804    Shanghai Jiao Tong Univ, Dept Appl Phys, Shanghai 200030, Peoples R China.
53805 RP Zhou, HY, Shanghai Univ, Dept Phys, 149 Yanchang Rd, Shanghai 200072,
53806    Peoples R China.
53807 CR DEGANI MH, 1988, SURF SCI, V196, P459
53808    FUCHS R, 1965, PHYS REV           A, V140, P2076
53809    GU SW, 1987, PHYS REV B, V36, P7977
53810    HUANG K, 1988, PHYS REV B, V38, P2183
53811    KITTEL C, 1986, INTRO SOLID STATE PH
53812    KLEIN MC, 1990, PHYS REV B, V42, P11123
53813    KNOPP PA, 1996, SURF SCI, V361, P318
53814    LAMBIN P, 1991, PHYS REV B, V44, P6416
53815    LASSNIG R, 1984, PHYS REV B, V30, P7132
53816    LI WS, 1997, PHYSICA B, V229, P375
53817    LICARI JJ, 1977, PHYS REV B, V15, P2254
53818    MORI N, 1989, PHYS REV B, V40, P6175
53819    SHI JM, 1991, PHYS REV B, V44, P5692
53820    SOOD AK, 1985, PHYS REV LETT, V54, P2115
53821    STROSCIO MA, 1990, PHYS REV B, V42, P1488
53822    TSUCHIYA M, 1989, PHYS REV LETT, V62, P466
53823    ZHOU F, 1988, J LUMIN, V40, P739
53824    ZHU KD, 1992, J PHYS-CONDENS MAT, V4, P1291
53825 NR 18
53826 TC 0
53827 SN 0217-9849
53828 J9 MOD PHYS LETT B
53829 JI Mod. Phys. Lett. B
53830 PD JAN 30
53831 PY 2002
53832 VL 16
53833 IS 1-2
53834 BP 1
53835 EP 9
53836 PG 9
53837 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
53838 GA 542LN
53839 UT ISI:000175045500001
53840 ER
53841 
53842 PT J
53843 AU Wu, WB
53844    Peng, DW
53845    Ding, YP
53846    Meng, ZY
53847 TI Dielectric tunable properties of (Ba1-xSrx)TiO3 thin films on LaAlO3
53848    substrate
53849 SO MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING
53850 DT Article
53851 DE BST; sol-gel; thin film; coplanar capacitor; tunability
53852 ID MICROSTRUCTURE
53853 AB (Ba1-xSrx)TiO3 (1-x = 0.8, 0.7, 0.6 and 0.5) thin films were prepared
53854    on (0 0 1) LaAlO3 substrates by sol-gel method. The films were found to
53855    be crystallized in preferential (0 0 1) orientation after
53856    post-deposition annealing at 750degreesC for 1.5 h and 1100degreesC for
53857    2 h in air, respectively. We investigated the dependence of tunability
53858    and dissipation factor on annealing temperature and different Ba/Sr
53859    ratios. It was found that the tunability increased dramatically and
53860    dissipation factor decreased obviously with increasing annealing
53861    temperature, and Ba0.6Sr0.4TiO3 thin films annealed at 1100degreesC for
53862    2 h have a tunability of 46.9% at 80 kV/cm bias filed and a dissipation
53863    factor of 0.008 at 1 MHz. (C) 2002 Elsevier Science Ltd. All rights
53864    reserved.
53865 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
53866    Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China.
53867 RP Meng, ZY, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
53868    China.
53869 CR ALSHAREEF HN, 1997, J ELECTROCERAM, V1, P145
53870    BABBITT R, 1995, INTEGR FERROELECTR, V8, P65
53871    DEFLAVIIS F, 1997, IEEE T MICROW THEORY, V45, P963
53872    DING Y, 2000, J MATER SCI LETT, V119, P163
53873    DING YP, 2000, MATER RES BULL, V35, P1187
53874    DING YP, 2000, THIN SOLID FILMS, V375, P196
53875    KAWAW H, 1993, J APPL PHYS, V73, P10
53876    KOTECKI DE, 1997, INTEGR FERROELECTR, V16, P2
53877    STREIFFER SK, 1996, MATER RES SOC SYMP P, V415, P219
53878    SWARTZ SL, 1992, CONDENSED MATTER NEW, V1, P4
53879    TAHAN DM, 1996, J AM CERAM SOC, V79, P1593
53880    UHLMANN DR, 1991, J NONCRYST SOLIDS, V1194, P131
53881    VENDIK OG, 1993, FERROELECTRICS, V144, P3
53882    YI G, 1993, AM CERM SOC B, V70, P1173
53883 NR 14
53884 TC 3
53885 SN 1369-8001
53886 J9 MATER SCI SEMICOND PROCESS
53887 JI Mater. Sci. Semicond. Process
53888 PD DEC
53889 PY 2001
53890 VL 4
53891 IS 6
53892 BP 673
53893 EP 678
53894 PG 6
53895 SC Engineering, Electrical & Electronic; Materials Science,
53896    Multidisciplinary; Physics, Applied; Physics, Condensed Matter
53897 GA 542WA
53898 UT ISI:000175066200041
53899 ER
53900 
53901 PT J
53902 AU Chen, HY
53903    Guo, XB
53904    Meng, ZY
53905 TI Processing and properties of PMMN-PZT quaternary piezoelectric ceramics
53906    for ultrasonic motors
53907 SO MATERIALS CHEMISTRY AND PHYSICS
53908 DT Article
53909 DE PMMN-PZT quaternary system; piezoelectric ceramics; mechanical quality
53910    factor; ultrasonic motors
53911 ID VIBRATION LEVEL; SYSTEM
53912 AB Piezoelectric Pb(Mg(1/)3Nb(1/3))O-3-Pb(Mn1/3Nb2/3)O-3-PbZrO3-PbTiO3
53913    (PMMN-PZT) quaternary ceramics with various contents of
53914    Pb(Mn1/3Nb2/3)O-3 from 4 to 8 mol% were prepared. The conventional
53915    single-stage and columbite two-stage methods were compared. Columbites
53916    MgNb2O6 and MnNb2O6, and the phase structure of PMMN-PZT were examined
53917    using X-ray diffraction (XRD). The surface morphology was examined by
53918    SEM. Study on the effect of Pb(Mn1/3Nb2/3)O-3 additives on dielectric
53919    and piezoelectric properties indicated that the PMMN-PZT quaternary
53920    system exhibited a high mechanical quality factor and well-situated
53921    piezoelectric properties. The optimized results, of d(33) (307 pC/N),
53922    K-p (0.55) and Q(m) (2379) were obtained at 6 mol% Pb(Mn1/3Nb2/3)O-3.
53923    (C) 2002 Elsevier Science B.V. All rights reserved.
53924 C1 Shanghai Jiao Tong Univ, Inst Composite Mat, Shanghai 200030, Peoples R China.
53925    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
53926 RP Meng, ZY, Shanghai Jiao Tong Univ, Inst Composite Mat, Shanghai 200030,
53927    Peoples R China.
53928 CR CHAE HI, 1994, P 4 INT C PROP APPL, P17
53929    GUO XB, 2001, AM CER SOC 103 ANN M
53930    ISE O, 1999, JPN J APPL PHYS 1, V38, P5531
53931    KIM JS, 1999, JPN J APPL PHYS 1, V38, P1433
53932    LEE DJ, 1998, P IEEE INT C COND BR, P381
53933    OUCHI H, 1968, J AM CERAM SOC, V51, P169
53934    SWARTZ SL, 1983, MAT RES B, V7, P1245
53935    TAKAHASHI S, 1994, J AM CERAM SOC, V77, P2429
53936    TASHIRO S, 1997, JPN J APPL PHYS 1, V36, P3004
53937    UEHA S, 1993, ULTRASONIC MOTORS
53938    WU L, 1991, J MATER SCI, V26, P4439
53939    ZHU XH, 1996, J MATER SCI, V31, P2171
53940 NR 12
53941 TC 7
53942 SN 0254-0584
53943 J9 MATER CHEM PHYS
53944 JI Mater. Chem. Phys.
53945 PD APR 28
53946 PY 2002
53947 VL 75
53948 IS 1-3
53949 SI Sp. Iss. SI
53950 BP 202
53951 EP 206
53952 PG 5
53953 SC Materials Science, Multidisciplinary
53954 GA 539XK
53955 UT ISI:000174897700042
53956 ER
53957 
53958 PT J
53959 AU Ding, YP
53960    Wu, JS
53961    Meng, ZY
53962    Chan, HL
53963    Choy, ZL
53964 TI Oxygen pressure dependence of structural and tunable properties of
53965    PLD-deposited Ba0.5Sr0.5TiO3 thin film on LaAlO3-substrate
53966 SO MATERIALS CHEMISTRY AND PHYSICS
53967 DT Article
53968 DE LaAlO3 substrates; pulse laser deposition; dielectric tunability
53969 ID MICROWAVE PROPERTIES
53970 AB Ba0.5Sr0.5TiO3 thin films were deposited onto (100)-LaAlO3 substrates
53971    under various oxygen pressures from 50 to 300 mTorr by pulse laser
53972    deposition (PLD). X-ray diffraction investigations indicated that all
53973    the films were (001)-epitaxially grown on the substrates; however the
53974    epitaxy quality and lattice parameters of the films were changed
53975    greatly by the different oxygen pressures (Po-2) during deposition.
53976    Lower Po-2 under 150 mTorr made weak epitaxy of films and less
53977    tetragonal distortion (c/a) of the unit cell. With increasing Po-2, the
53978    films became highly epitaxial and also the c/a ratio increased to 1.002
53979    at Po-2 = 300 mTorr. It was noted that the volume of unit cell was very
53980    critical to the epitaxy with LaAlO3 substrates, which acted on the
53981    distortion of the unit cells by lattice mismatch force in succession.
53982    At frequency of 100 MHz, the film deposited at Po-2 = 200 mTorr,
53983    characterized by high single-epitaxy and mild cell distortion, had a
53984    large dielectric tunability of 42% (at similar to80 kV cm(-1) bias) and
53985    small dielectric loss (tg delta) of 0.008 (at 0 kV cm(-1) bias) and
53986    therefor the largest figure of merit (K, tunability/tg delta) of 5250
53987    among all. (C) 2002 Elsevier Science B.V. All rights reserved.
53988 C1 Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Elect Mat Lab, Shanghai 200030, Peoples R China.
53989    Shanghai Univ, Dept Elect & Informat Mat, Shanghai 201800, Peoples R China.
53990    Hong Kong Polytechn Univ, Dept Appl Phys, Hong Kong, Hong Kong, Peoples R China.
53991 RP Ding, YP, Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Elect Mat Lab,
53992    Shanghai 200030, Peoples R China.
53993 CR CARLSON CM, 2000, APPL PHYS LETT, V76, P1920
53994    CHANG WT, 1999, APPL PHYS LETT, V74, P1033
53995    CHEN CL, 1999, APPL PHYS LETT, V75, P412
53996    GEVORGIAN SS, 1994, ELECTRON LETT, V30, P1236
53997    KIM WJ, 2000, APPL PHYS LETT, V76, P1185
53998    PARK BH, 2000, APPL PHYS LETT, V77, P2587
53999    SCHMIZU T, 1997, SOLID STATE COMMUN, V102, P523
54000    VANKEULS FW, 1999, MICROW OPT TECHN LET, V20, P53
54001    VENDIK OG, 1999, J SUPERCOND, V12, P325
54002 NR 9
54003 TC 6
54004 SN 0254-0584
54005 J9 MATER CHEM PHYS
54006 JI Mater. Chem. Phys.
54007 PD APR 28
54008 PY 2002
54009 VL 75
54010 IS 1-3
54011 SI Sp. Iss. SI
54012 BP 220
54013 EP 224
54014 PG 5
54015 SC Materials Science, Multidisciplinary
54016 GA 539XK
54017 UT ISI:000174897700046
54018 ER
54019 
54020 PT J
54021 AU Song, YL
54022    Zhang, C
54023    Chen, GP
54024    Fang, GY
54025    Wang, YX
54026    Xin, XQ
54027 TI Pulse-width-dependent self-focusing-defocusing transformation of the
54028    compound [Et4N](2)[MoS4Cu4(SCN)(4)(2-pic)(4)]
54029 SO JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS
54030 DT Article
54031 DE self-defocusing; self-focusing; excited state refraction
54032 ID NONLINEAR-OPTICAL PROPERTIES; SOLID-STATE SYNTHESIS; CRYSTAL-STRUCTURE;
54033    ABSORPTIVE PROPERTIES; LIMITING PROPERTIES; REFRACTION
54034 AB The pulse-width-dependent self-focusing-defocusing transformation of
54035    the planar heterothiometallic cluster compound
54036    [Et4N](2)[MoS4Cu4(SCN)(4)(2-pic)(4)] in DMF solution is observed at a
54037    wavelength of 532 nm. We also investigate the nonlinear refraction and
54038    absorption behaviours of the cluster compound based on excited state
54039    theory. For picosecond pulses the compound possesses a self-focusing
54040    property, which is attributed to population transitions between singlet
54041    excited states, while for nanosecond pulses it exhibits a
54042    self-defocusing property, which is attributed to the population
54043    relaxing to triplet states. In addition, we found that the singlet
54044    excited state absorption is stronger than triplet excited state
54045    absorption.
54046 C1 Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China.
54047    Nanjing Univ, Dept Chem, State Key Lab Coordinat Chem, Nanjing 210093, Peoples R China.
54048    Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
54049 RP Song, YL, Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R
54050    China.
54051 CR FANG G, 2000, OPT COMMUN, V181, P523
54052    GE P, 1997, J PHYS CHEM B, V101, P27
54053    HOGGARD PE, 1996, CHEM MATER, V8, P2218
54054    HOU HW, 1994, J CHEM SOC DA, P3211
54055    HOU HW, 1995, CHEM MATER, V7, P472
54056    HOU HW, 1996, J CHEM SOC FARADAY T, V92, P2343
54057    HOU HW, 1999, CHEM COMMUN     0407, P647
54058    JI W, 1995, J PHYS CHEM-US, V99, P17297
54059    LOW MKM, 1998, CHEM COMMUN     0221, P505
54060    SAKANE G, 1995, INORG CHEM, V34, P4785
54061    SHEIKBAHAE M, 1990, IEEE J QUANTUM ELECT, V26, P760
54062    SHEIKBAHAE M, 1990, PHYS REV LETT, V65, P96
54063    SHI S, 1994, J PHYS CHEM-US, V98, P3570
54064    SHI S, 1995, CHEM MATER, V7, P1519
54065    SHI S, 1995, J PHYS CHEM-US, V99, P4050
54066    SHI S, 1995, J PHYS CHEM-US, V99, P894
54067    SHI S, 1995, MATER CHEM PHYS, V39, P298
54068    SONG YL, 1999, OPT COMMUN, V168, P131
54069    SONG YL, 2000, OPT COMMUN, V186, P105
54070    SONG YL, 2001, OPT COMMUN, V192, P273
54071    WEI TH, 2000, CHEM PHYS LETT, V318, P53
54072    YARIV A, 1991, OPTICAL ELECT, P48
54073    ZHANG C, 2000, J CHEM SOC DALTON, P1317
54074    ZHANG J, 2000, J UNIV SCI TECHNOL B, V7, P10
54075    ZHANG QF, 1999, CHEM LETT        JUL, P619
54076    ZHENG HG, 1997, J CHEM SOC DALT 0707, P2357
54077 NR 26
54078 TC 0
54079 SN 1464-4258
54080 J9 J OPT A-PURE APPL OPT
54081 JI J. Opt. A-Pure Appl. Opt.
54082 PD MAR
54083 PY 2002
54084 VL 4
54085 IS 2
54086 BP 199
54087 EP 201
54088 PG 3
54089 SC Optics
54090 GA 540BL
54091 UT ISI:000174908300014
54092 ER
54093 
54094 PT J
54095 AU Ma, H
54096    Kamiya, N
54097 TI Distance transformation for the numerical evaluation of near singular
54098    boundary integrals with various kernels in boundary element method
54099 SO ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS
54100 DT Article
54101 DE BEM; near singular boundary integral; integral kernel; order of near
54102    singularity; numerical solution; boundary layer effect
54103 ID PRINCIPAL VALUE INTEGRALS; ELASTICITY; EQUATIONS; FORMULATION
54104 AB The accurate numerical solution of near singular boundary integrals was
54105    an issue of major concern in most of the boundary element analysis next
54106    to the singular boundary integrals. The problem was solved in this
54107    paper by a kind of non-linear transformation, namely, the distance
54108    transformation for the accurate 'valuation of near singular boundary
54109    integrals with various kernels for both the two- and three- dimensional
54110    problems incorporated with the distance functions defined in the local
54111    intrinsic coordinate systems. It is considered that two effects play
54112    the role in the transformation. They are the damping out of the near
54113    singularity and the rational redistribution of integration points. The
54114    actual numerical computation can be performed by standard Gaussian
54115    quadrature formulae and can be easily included in the existing computer
54116    code, along with its insensitivity to the kind of the boundary
54117    elements. Numerical results of potential problem were presented,
54118    showing the effectiveness and the generality of the algorithm, which
54119    makes it possible, for the first time, to observe the behaviors of
54120    various boundary integral values with numerical means, when the source
54121    point is moving across the boundary with fine steps. (C) 2002 Elsevier
54122    Science Ltd. All rights reserved.
54123 C1 Shanghai Univ, Sch Sci, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200436, Peoples R China.
54124    Nagoya Univ, Sch Informat & Sci, Nagoya, Aichi 4648601, Japan.
54125 RP Ma, H, Shanghai Univ, Sch Sci, Shanghai Inst Appl Math & Mech, Dept
54126    Mech, Shanghai 200436, Peoples R China.
54127 CR ALIABADI MH, 1985, INT J NUMER METH ENG, V21, P2221
54128    ALIABADI MH, 2000, INT J NUMER METH ENG, V48, P995
54129    BREBBIA CA, 1984, BOUNDARY ELEMENT TEC
54130    CERROLAZA M, 1989, INT J NUMER METH ENG, V28, P987
54131    CHEN HB, 2001, ENG ANAL BOUND ELEM, V25, P851
54132    CRISTESCU M, 1978, RECENT ADV BOUNDARY, P375
54133    CRUSE TA, 1993, INT J NUMER METH ENG, V36, P237
54134    DIRGANTARA T, 2000, INT J FRACTURE, V105, P27
54135    DOBLARE M, 1997, INT J NUMER METH ENG, V40, P3325
54136    GRANADOS JJ, 2001, ENG ANAL BOUND ELEM, V25, P165
54137    GUIGGIANI M, 1987, INT J NUMER METH ENG, V24, P1711
54138    GUIGGIANI M, 1990, ASME, V57, P906
54139    GUIGGIANI M, 1992, ASME, V59, P604
54140    JOHNSTON PR, 1999, INT J NUMER METH ENG, V45, P1333
54141    KRISHNASAMY G, 1990, J APPL MECH-T ASME, V57, P404
54142    KRISHNASAMY G, 1994, INT J NUMER METH ENG, V37, P107
54143    LIU YJ, 1998, INT J NUMER METH ENG, V41, P541
54144    LIU YJ, 1999, COMPUT MECH, V24, P286
54145    LIU YJ, 2000, ENG ANAL BOUND ELEM, V24, P789
54146    MA H, 1999, ENG ANAL BOUND ELEM, V23, P281
54147    MA H, 2001, ENG ANAL BOUNDARY EL, V25, P843
54148    MUKHERJEE S, 1982, BOUNDARY ELEMENT MET
54149    MUKHERJEE S, 2000, INT J SOLIDS STRUCT, V37, P7633
54150    SLADEK V, 1993, INT J NUMER METH ENG, V36, P1609
54151    TANAKA M, 1991, BOUNDARY ELEMENT MET
54152    TELLES JCF, 1987, INT J NUMER METH ENG, V24, P959
54153    ZHANG D, 1999, COMPUT MECH, V23, P389
54154    ZHANG GH, 1990, P 3 JAP CHIN S BOUND, P73
54155 NR 28
54156 TC 4
54157 SN 0955-7997
54158 J9 ENG ANAL BOUND ELEM
54159 JI Eng. Anal. Bound. Elem.
54160 PD APR
54161 PY 2002
54162 VL 26
54163 IS 4
54164 BP 329
54165 EP 339
54166 PG 11
54167 SC Engineering, Multidisciplinary; Mathematics, Applied
54168 GA 542JT
54169 UT ISI:000175040300004
54170 ER
54171 
54172 PT J
54173 AU Kang, LY
54174    Dang, CY
54175    Cai, MC
54176    Shan, EF
54177 TI Upper bounds for the k-subdomination number of graphs
54178 SO DISCRETE MATHEMATICS
54179 DT Article
54180 DE graph; tree; open and closed neighborhoods; k-subdomination number
54181 ID MAJORITY
54182 AB For a positive integer k, a k-subdominating function of G = (V, E) is a
54183    Function f : V --> (-1,1) such that the sum of the function values,
54184    taken over closed neighborhoods of vertices, is at least one for at
54185    least k vertices of G. The sum of the function values taken over all
54186    vertices is called the aggregate of f and the minimum aggregate among
54187    all k-subdominating functions of G is the k-subdomination number
54188    gamma(ks)(G). In this paper, we solve a conjecture proposed in (Ars.
54189    Combin 43 (1996) 235), which determines a sharp upper bound on
54190    gamma(ks)(G) for trees if k > \V\/2 and give an upper bound on
54191    gamma(ks) for connected graphs. (C) 2002 Elsevier Science B.V. All
54192    rights reserved.
54193 C1 Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China.
54194    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
54195    City Univ, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China.
54196 RP Cai, MC, Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China.
54197 CR BROERE I, 1995, DISCRETE MATH, V138, P125
54198    COCKAYNE EJ, 1996, ARS COMBINATORIA, V43, P235
54199    DUNBAR JE, 1995, GRAPH THEORY COMBINA, V1, P311
54200    HENNING MA, 1998, J GRAPH THEOR, V28, P49
54201 NR 4
54202 TC 2
54203 SN 0012-365X
54204 J9 DISCRETE MATH
54205 JI Discret. Math.
54206 PD MAR 28
54207 PY 2002
54208 VL 247
54209 IS 1-3
54210 BP 229
54211 EP 234
54212 PG 6
54213 SC Mathematics
54214 GA 540CT
54215 UT ISI:000174911400018
54216 ER
54217 
54218 PT J
54219 AU Li, GH
54220    Zhou, SP
54221    Xu, DM
54222 TI Dynamical behaviour and its control in periodically driven semiconductor
54223 SO ACTA PHYSICA SINICA
54224 DT Article
54225 DE bifurcation; chaos; negative differential conductivity
54226 ID CURRENT-DENSITY FILAMENTS; CHAOTIC MOTIONS; FREQUENCY; DEVICE; GAAS
54227 AB A model for n-GaAs based on nonlinear carrier transport theory has been
54228    proposed. Complex bifurcations are studied as the excited field varies.
54229    Numerical simulation shows that the system exhibits periodicity,
54230    quasi-periodicity, and chaos, depending on the frequency and amplitude
54231    of the externally applied field, as expected. We also compute the
54232    quantities characterizing chaotic behaviours. An occasional pulse
54233    driving technique to control chaotic attactor to the desired periodic
54234    trajectory is illustrated.
54235 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
54236    Shanghai Univ, Sch Sci, Shanghai 200436, Peoples R China.
54237 RP Li, GH, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
54238    Peoples R China.
54239 CR AOKI K, 1982, J PHYS SOC JPN, V51, P2373
54240    AOKI K, 1986, PHYS SCRI, V14, P76
54241    AOKI K, 1989, APPL PHYS A, V48, P111
54242    AOKI K, 1989, APPL PHYS A-SOLID, V48, P161
54243    KNAP W, 1988, SOLID STATE ELECTRON, V31, P813
54244    LI GH, 2000, ACTA PHYS SIN-CH ED, V49, P2123
54245    NIEDERNOSTHEIDE FJ, 1996, PHYS REV B, V54, P14012
54246    NIEDERNOSTHEIDE FJ, 1999, PHYS REV B, V59, P7663
54247 NR 8
54248 TC 2
54249 SN 1000-3290
54250 J9 ACTA PHYS SIN-CHINESE ED
54251 JI Acta Phys. Sin.
54252 PD APR
54253 PY 2002
54254 VL 51
54255 IS 4
54256 BP 736
54257 EP 741
54258 PG 6
54259 SC Physics, Multidisciplinary
54260 GA 540WA
54261 UT ISI:000174952500007
54262 ER
54263 
54264 PT J
54265 AU Nho, YC
54266    Kwon, OH
54267    Jie, C
54268 TI Introduction of phosphoric acid group to polypropylene film by
54269    radiation grafting and its blood compatibility
54270 SO RADIATION PHYSICS AND CHEMISTRY
54271 DT Article
54272 DE radiation grafting; grafting; phosphoric acid; blood compatibility
54273 ID HEPARIN-IMMOBILIZED POLYURETHANES; POLYETHYLENE FILM; POLYMERIZATION;
54274    METHACRYLATE; PLASMA
54275 AB 2,3-epoxvpropyl methacrylate (EPMA) was grafted to polypropylene (PP)
54276    film by using a radiation grafting technique. The phosphoric acid group
54277    was introduced to the EPMA-grafted PP films with different grafting
54278    yields. The blood compatibility of the phosphoric acid group-introduced
54279    PP films was evaluated by the determination of platelet adsorption and
54280    thrombus formation. The EPMA grafting extent was found to be dependent
54281    on the absorbed dose, reaction time and temperature. The grafting and
54282    phosphonation reactions were confirmed by Fourier transform infrared
54283    spectroscopy in the attenuated total reflectance mode and electron
54284    spectroscopy for chemical analysis. The amount of thrombus and adherent
54285    platelet on modified PP film was evaluated by an in vitro method and
54286    scanning electron microscope, respectively. The phosphoric acid
54287    group-introduced PP film was found to have good blood compatibility,
54288    which increased with the content of the introduced phosphoric acid
54289    group. (C) 2002 Elsevier Science Ltd. All rights reserved.
54290 C1 Korea Atom Energy Res Inst, Radioisotope Radiat Applicat Team, Taejon 305600, South Korea.
54291    Hanyang Univ, Coll Engn, Dept Ind Chem, Seoul 133791, South Korea.
54292    Shanghai Univ, Dept Chem Engn & Technol, Shanghai 201800, Peoples R China.
54293 RP Nho, YC, Korea Atom Energy Res Inst, Radioisotope Radiat Applicat Team,
54294    POB 105, Taejon 305600, South Korea.
54295 CR BERGSTROM K, 1994, J BIOMAT SCI-POLYM E, V6, P123
54296    BRINKMAN E, 1990, BIOMATERIALS, V11, P200
54297    CHOWDHURY P, 1998, J APPL POLYM SCI, V70, P523
54298    HAN DK, 1989, J BIOMED MATER RES-A, V23, P211
54299    IMAI Y, 1972, J BIOMED MATER RES, V6, P165
54300    KANG IK, 1996, BIOMATERIALS, V17, P841
54301    KWON OH, 1999, J APPL POLYM SCI, V71, P631
54302    LEE YM, 1995, POLYMER, V36, P81
54303    NHO YC, 1992, J KOREAN IND ENG CHE, V3, P491
54304    NHO YC, 1992, J POLYM SCI POL CHEM, V30, P1219
54305    NHO YC, 1997, J APPL POLYM SCI, V63, P1101
54306    NHO YC, 1997, MACROMOL SCI PURE AP, V34, P831
54307    OKANO T, 1993, J BIOMED MATER RES, V27, P1519
54308    VULIC I, 1993, J MATER SCI-MATER M, V4, P448
54309    YUI N, 1988, BIOMATERIALS, V9, P225
54310 NR 15
54311 TC 3
54312 SN 0969-806X
54313 J9 RADIAT PHYS CHEM
54314 JI Radiat. Phys. Chem.
54315 PD APR
54316 PY 2002
54317 VL 64
54318 IS 1
54319 BP 67
54320 EP 75
54321 PG 9
54322 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
54323    Science & Technology
54324 GA 539UE
54325 UT ISI:000174889000011
54326 ER
54327 
54328 PT J
54329 AU He, CQ
54330    Wang, CK
54331 TI Allelopathic effect of Acorns tatarinowii upon algae
54332 SO JOURNAL OF ENVIRONMENTAL SCIENCES-CHINA
54333 DT Article
54334 DE Acorns tatarinowii; allelopathy; algae; wetlands
54335 ID SOIL
54336 AB Besides competing with algae for light and mineral nutrients (i.e. N,
54337    P, etc.), the root system of Acorns tatarinowii excretes some chemical
54338    substances, which injure and eliminate alga cells, to inhibit the
54339    growth of the algae. When the algae cells were treated in " A.
54340    tatarinowii water", some of the chlorophyll a were destroyed and the
54341    photosynthetic rate of algae decreased markedly and the ability of alga
54342    cells to deoxidize triphenyltetrazolium chloride (TTC) reduced greatly.
54343    Then alga cells turned from bright red to bluish green under
54344    fluorescence microscope. These showed that the allelopathic effects of
54345    A. tatarinowii on algae were obvious and planting A. tatarireowii can
54346    control some green algae. The experiment on the extractions of the
54347    secretions of the root system showed that the inhibitory effect had a
54348    concentration effect. If the concentration of the root secretion was
54349    below 30 mul/disc, the inhibitory rate was negative; if it was over 45
54350    mul/disc, the inhibitory rate was positive. This proved that the
54351    influence of the root secretion on the same acceptor was a kind of
54352    concentration effect. When the concentration of the root secretion was
54353    low, it promoted the growth of algae; when the concentration reached a
54354    definite threshold value, it restrained the growth of algae. In present
54355    case, the threshold value was between 30 mul/disc and 45 mul/disc.
54356 C1 Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China.
54357    Chinese Acad Sci, Changchun Inst Geog, Changchun 130021, Peoples R China.
54358 RP He, CQ, Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072,
54359    Peoples R China.
54360 CR *AM PUBL HLTH ASS, 1985, ASS PHYT CHLOR NORM, P901
54361    BLUM U, 1988, SOIL BIOL BIOCHEM, V20, P793
54362    DALTON BR, 1983, J CHEM ECOL, V9, P1185
54363    GRIME JP, 1976, J ECOL, V64, P975
54364    HE CQ, 1999, CHINESE J ECOLOGY, V18
54365    INDERJIT DKM, 1995, BOT REV, V61, P32
54366    REDDY KR, 1983, ECON BOT, V37, P237
54367    RICE EL, 1984, ALLELOPATHY, P382
54368    ROBINSON RK, 1972, J ECOL, V60, P219
54369    STEPONKUS PL, 1967, PLANT PHYSIOL, V42, P1423
54370    SUN WH, 1989, ENV SCI J, V9, P188
54371    SUN WH, 1991, PLANT PHYSL COMMUNIC, V27, P433
54372    SUN WH, 1992, PLANT PHYSL COMMUNIC, V28, P81
54373    WYNNE B, 1987, STRUCTURE REPROD, P572
54374    YE JX, 1987, PLANT ECOLOGY GEOBOT, V11, P203
54375    YE JX, 1993, AWAKE 21 CENTURY EAR, P243
54376    YE JX, 1996, PLANT MAGAZINE, V30, P10
54377    ZHANG BC, 1981, ECOLOGY J, V1, P227
54378 NR 18
54379 TC 1
54380 SN 1001-0742
54381 J9 J ENVIRON SCI-CHINA
54382 JI J. Environ. Sci.
54383 PD OCT
54384 PY 2001
54385 VL 13
54386 IS 4
54387 BP 481
54388 EP 484
54389 PG 4
54390 SC Environmental Sciences
54391 GA 537VP
54392 UT ISI:000174780600018
54393 ER
54394 
54395 PT J
54396 AU Li, BG
54397    Hua, TC
54398    Zhang, HD
54399    Wang, YF
54400    Wang, GX
54401 TI Cryopreservation and xenotransplantation studies of microencapsulated
54402    rat pancreatic islets
54403 SO CRYOLETTERS
54404 DT Article
54405 DE cryopreservation; microencapsulation; rat pancreatic islet;
54406    xenotransplantation
54407 AB Islets of Langerhans were isolated from the Sprague Dawley rat pancreas
54408    digested by injected collagenase, and purified by Ficoll density
54409    gradient centrifugation, In order to make smaller and more uniform
54410    micro encapsulated islets, we designed a special high-voltage
54411    electrostatic microcapsule generator. The effects of operational
54412    parameters of the generator on the size and the uniformity of
54413    microcapsules were analyzed, such as the voltage, the plunger speed of
54414    suspension delivery to the needle tip, the distance between needle tip
54415    and solution surface. The optimal parameter combinations for making
54416    microcapsules area 5kV of voltage, 50mm/h of the plunger speed, and
54417    20mm distance. The high-voltage electric system can produce uniform
54418    microcapsules with diameters ranging from 0.3similar to0.5mm, which are
54419    smaller and more uniform than those produced by air-jet system. A
54420    comparison of the cryopreservation effects between microencapsulated
54421    islets and unencapsulated islets showed that the microcapsules can
54422    protect the fragile islets from freezing damage, and increase the
54423    retrieval rate from 68.5% to 92.6%. Xenotransplantation of the
54424    cryopreserved rat islets resulted in the normalization of the metabolic
54425    blood glucose of the diabetic mice for 90 days, whereas the
54426    unencapsulated islets were easily fragmented and lost during the
54427    freezing process. They only reversed hyperglycemia for less than 3-5
54428    days.
54429 C1 Shanghai Univ Sci & Technol, Inst Cryobiol Engn, Shanghai 200093, Peoples R China.
54430    Shanghai First Peoples Hosp, Res Lab Diabetes, Shanghai 200080, Peoples R China.
54431 RP Li, BG, Shanghai Univ Sci & Technol, Inst Cryobiol Engn, 516 Jun Gong
54432    Rd, Shanghai 200093, Peoples R China.
54433 CR BARTH HG, 1984, MODERN METHODS PARTI
54434    CHEN RT, 1988, CRYOBIOLOGY, V25, P548
54435    CHICHEPORTICHE D, 1988, DIABETOLOGIA, V31, P54
54436    HU YF, 1990, CHIN J ORGAN TRANSPL, V11, P50
54437    JEAN PH, 1993, TRANSPLANTATION, V55, P350
54438    JUTTE PM, 1987, CRYOBIOLOGY, V24, P290
54439    LI BG, 2000, J SHANGHAI U SCI TEC, V22, P1
54440    LIM F, 1980, SCIENCE, V210, P908
54441    SOONSHIONG P, 1994, LANCET, V343, P950
54442    SUTTON R, 1986, TRANSPLANTATION, V42, P689
54443    ZHANG HD, 1991, CHIN J ORGAN TRANSPL, V12, P72
54444    ZHOU DB, 1997, TRANSPLANTATION, V64, P1112
54445 NR 12
54446 TC 1
54447 SN 0143-2044
54448 J9 CRYOLETTERS
54449 JI CryoLetters
54450 PD JAN-FEB
54451 PY 2002
54452 VL 23
54453 IS 1
54454 BP 47
54455 EP 54
54456 PG 8
54457 SC Biology; Physiology
54458 GA 538CQ
54459 UT ISI:000174796800007
54460 ER
54461 
54462 PT J
54463 AU Sang, WB
54464    Qian, YB
54465    Min, JH
54466    Li, DM
54467    Wang, LL
54468    Shi, WM
54469    Liu, YF
54470 TI Microstructural and optical properties of ZnS : Cu nanocrystals
54471    prepared by an ion complex transformation method
54472 SO SOLID STATE COMMUNICATIONS
54473 DT Article
54474 DE Cu-doped ZnS; nanostructure; luminescence; nanofabrication
54475 ID PHOTOPHYSICAL PROPERTIES; CHITOSAN FILM; CLUSTERS; ELECTRON; CDS
54476 AB The typical morphologies of Cu-doped ZnS nanocrystals in a polyvinyl
54477    alcohol (PVA) film by an ion complex transformation method observed by
54478    transmission electron microscope show that the particles were rather
54479    evenly distributed throughout the PVA film, and the dimension was
54480    estimated to be about 5.7 nm in diameter. The crystallites of the ZnS
54481    have a finite bulk-like cubic structure identified by using the ED
54482    patterns of the sample. The Cu-doped ZnS UV absorption spectra are
54483    essentially similar to that of the undoped, but the luminescence
54484    properties are quite different from that of the undoped. The green
54485    emission band peaked at about 480 nm. is characteristic of copper doped
54486    ZnS nanocrystals, which could be attributed to a transition from the
54487    conduction band of ZnS to the 't(2)' level of Cu in ZnS band gap. The
54488    blue emission band peaked at about 430 nm is characteristic of the
54489    undoped quantum particles of ZnS for the same size and it might be
54490    caused by the presence of self-activated centers, like zinc vacancies.
54491    (C) 2002 Elsevier Science Ltd. All rights reserved.
54492 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
54493    Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R China.
54494 RP Sang, WB, Shanghai Univ, Sch Mat Sci & Engn, Jiading, Shanghai 201800,
54495    Peoples R China.
54496 CR BHARGAVA RN, 1994, PHYS REV LETT, V72, P416
54497    BRUS LE, 1984, J CHEM PHYS, V80, P4403
54498    COLVIN VL, 1994, NATURE, V370, P354
54499    EMPEDOCLES SA, 1997, SCIENCE, V278, P2114
54500    HUANG JM, 1997, APPL PHYS LETT, V70, P2335
54501    KHOSRAVI AA, 1995, APPL PHYS LETT, V67, P2702
54502    PEKA P, 1994, PHYSICA B, V193, P57
54503    SANG WB, 1996, ADV MATER OPT ELECTR, V6, P197
54504    SANG WB, 1996, J PHYS-CONDENS MAT, V8, L499
54505    SHIONOYA S, 1966, LUMINESCENCE INORGAN, P229
54506    SOOKLAL K, 1996, J PHYS CHEM-US, V100, P4551
54507    WANG MW, 2000, SOLID STATE COMMUN, V115, P493
54508    WANG Y, 1991, J PHYS CHEM-US, V95, P525
54509    XU SJ, 1998, APPL PHYS LETT, V73, P473
54510    YANG P, 2001, CHEM PHYS LETT, V336, P76
54511 NR 15
54512 TC 9
54513 SN 0038-1098
54514 J9 SOLID STATE COMMUN
54515 JI Solid State Commun.
54516 PY 2002
54517 VL 121
54518 IS 9-10
54519 BP 475
54520 EP 478
54521 PG 4
54522 SC Physics, Condensed Matter
54523 GA 537HQ
54524 UT ISI:000174753200005
54525 ER
54526 
54527 PT J
54528 AU Zhang, JF
54529 TI Exotic localized coherent structures of the (2+1)-dimensional
54530    dispersive long-wave equation
54531 SO COMMUNICATIONS IN THEORETICAL PHYSICS
54532 DT Article
54533 DE extended homogeneous balance method; coherent soliton structures;
54534    dispersive long-wave equation; the (2+1)-dimensions
54535 ID NONLINEAR SCHRODINGER-EQUATION; 2 SPACE DIMENSIONS; NOVIKOV-VESELOV
54536    EQUATION; DROMION-LIKE STRUCTURES; KDV-TYPE EQUATION; SOLITONS; PLASMA
54537 AB This article is concerned with the extended homogeneous balance method
54538    for studying the abundant localized solution structures in the
54539    (2+1)-dimensional dispersive long-wave equations U-ty + eta(xx) +
54540    (u(2))(xy)/2 = 0, eta(t) + (ueta + u + u(xy))x = 0. Starting from the
54541    homogeneous balance method, we find that the richness of the localized
54542    coherent structures of the model is caused by the entrance of two
54543    variable-separated arbitrary functions. For some special selections of
54544    the arbitrary functions, it is shown that the localized structures of
54545    the model may be dromions, lumps, breathers, instantons and ring
54546    solitons.
54547 C1 Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
54548    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
54549 RP Zhang, JF, Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004,
54550    Peoples R China.
54551 CR BOITI M, 1986, INVERSE PROBL, V2, P271
54552    BOITI M, 1988, PHYS LETT A, V132, P432
54553    DAS GC, 1997, PHYS PLASMAS, V4, P2095
54554    FOKAS AS, 1990, PHYSICA D, V44, P99
54555    GEDALIN M, 1997, PHYS REV LETT, V78, P448
54556    HAUS HA, 1996, REV MOD PHYS, V68, P423
54557    HIETARINTA J, 1990, PHYS LETT A, V145, P237
54558    HU XB, 1996, J PHYS A-MATH GEN, V29, P4589
54559    LOU S, 1993, PHYS LETT A, V176, P96
54560    LOU SY, 1994, J PHYS A, V27, P3225
54561    LOU SY, 1995, J PHYS A-MATH GEN, V28, P7227
54562    LOU SY, 1995, MATH METHOD APPL SCI, V18, P789
54563    LOU SY, 1996, COMMUN THEOR PHYS, V26, P487
54564    LOU SY, 1996, J PHYS A-MATH GEN, V29, P5989
54565    LOU SY, 2000, COMMUN THEOR PHYS, V33, P7
54566    LOU SY, 2000, PHYS LETT A, V277, P94
54567    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
54568    LOUSTENKO I, 1997, PHYS REV LETT, V78, P3011
54569    PAQUIN G, 1990, PHYSICA D, V46, P122
54570    RADHA R, 1994, J MATH PHYS, V35, P4746
54571    RADHA R, 1995, PHYS LETT A, V197, P7
54572    RADHA R, 1997, CHAOS SOLITON FRACT, V8, P17
54573    RADHA R, 1997, J MATH PHYS, V38, P292
54574    RADHA R, 1997, J PHYS A-MATH GEN, V30, P3229
54575    RADHA R, 1999, CHAOS SOLITON FRACT, V10, P1821
54576    RUAN HY, 1997, J MATH PHYS, V38, P3123
54577    RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P586
54578    TAJIRI M, 1997, PHYS REV E B, V55, P3351
54579    WANG ML, 1995, PHYS LETT A, V199, P169
54580    ZHANG JF, 1999, CHINESE PHYS LETT, V16, P659
54581    ZHANG JF, 1999, COMMUN THEOR PHYS, V33, P577
54582 NR 31
54583 TC 18
54584 SN 0253-6102
54585 J9 COMMUN THEOR PHYS
54586 JI Commun. Theor. Phys.
54587 PD MAR 15
54588 PY 2002
54589 VL 37
54590 IS 3
54591 BP 277
54592 EP 282
54593 PG 6
54594 SC Physics, Multidisciplinary
54595 GA 535XM
54596 UT ISI:000174671700004
54597 ER
54598 
54599 PT J
54600 AU Cheng, XY
54601    Wan, XJ
54602    Wu, QY
54603    Sun, XK
54604 TI Diffusion of hydrogen along the grain boundaries in Ni3Al alloys
54605 SO INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY
54606 DT Article
54607 DE hydrogen diffusivity; N1(3)A1 alloys; ultrahigh vacuum gaseous;
54608    permeation technique
54609 ID ENVIRONMENTAL EMBRITTLEMENT; NICKEL; TRANSPORT
54610 AB The diffusivity of hydrogen in two Nl(3)Al alloys has been measured in
54611    the temperature range 100degreesC to 420degreesC using an ultrahigh
54612    vacuum gaseous permeation technique. The diffusivity data fall into two
54613    segments, in which the hydrogen diffusivity adheres to the Arrhenius
54614    form, respectively. It is suggested that hydrogen transportation takes
54615    place along the grain boundaries at lower temperature and in the
54616    lattice at higher temperature. The intergranular fracture of L1(2)-type
54617    intermetallics induced by hydrogen at relatively low temperature
54618    results from hydrogen transportation along the grain boundaries, not in
54619    the lattice.
54620 C1 Shanghai Univ, Inst Mat Res, Shanghai 200072, Peoples R China.
54621    Chinese Acad Sci, Inst Met Res, State Key Lab RSA, Shenyang 110015, Peoples R China.
54622 CR CHENG XY, 1998, SCRIPTA MATER, V38, P959
54623    FUKUSHIMA H, 1984, ACTA METALL, V32, P851
54624    GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37
54625    HARRIS TM, 1991, METALL TRANS A, V22, P351
54626    HUANG JH, 1996, DIFFUSION METALS ALL
54627    KIRMURA A, 1988, ACTA METALL, V36, P757
54628    LADNA B, 1987, ACTA METALL, V35, P1775
54629    PALUMBO G, 1991, SCRIPTA METALL MATER, V25, P679
54630    TAKAGI C, 1993, DNA LINK, V3, P3
54631    TSURU T, 1982, SCRIPTA METALL, V16, P575
54632    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
54633    XU J, 1993, ACTA METALL MATER, V41, P1455
54634 NR 12
54635 TC 0
54636 SN 0268-1900
54637 J9 INT J MATER PROD TECHNOL
54638 JI Int. J. Mater. Prod. Technol.
54639 PY 2001
54640 SU Suppl. 2
54641 BP 841
54642 EP 846
54643 PG 6
54644 SC Materials Science, Multidisciplinary
54645 GA 534UG
54646 UT ISI:000174604900067
54647 ER
54648 
54649 PT J
54650 AU Li, BF
54651    Liu, J
54652 TI Detail feature recognition and decomposition in solid model
54653 SO COMPUTER-AIDED DESIGN
54654 DT Article
54655 DE detail removal; detail feature decomposition; feature
54656    recognition/feature suppression; analysis automation; CAE
54657 ID ELEMENT
54658 AB A methodology for abstracting features from a 3D solid model based on a
54659    new detail-level metric method is proposed. Filleting the whole
54660    boundary of an object with constant fillet radius has the effect of
54661    low-pass filtering. Taking advantage of the effect, detail-level of
54662    boundary entities can be rated. This paper investigates an approach to
54663    fillet polyhedral model and then develops a simple way to detect
54664    detailed boundary elements. Taking detailed entities as the indicators,
54665    detail features are recognized and extracted. In the detailed entities
54666    detection and decomposition cycle of the corresponding detail features,
54667    detail features are decomposed from the model one by one in terms of
54668    their locality. Detail feature decomposition directly results in
54669    geometric simplification of a 3D object. The method proposed in this
54670    paper can be applied in efficient modeling for CAE from CAD models. (C)
54671    2002 Elsevier Science Ltd. All rights reserved.
54672 C1 Shanghai Univ, Sch Mech Engn, Shanghai 200072, Peoples R China.
54673 RP Li, BF, Shanghai Univ, Sch Mech Engn, 18 Postal Box,149 Yanchang Rd,
54674    Shanghai 200072, Peoples R China.
54675 CR ARBSHAHI S, 1992, FINITE ELEMENT ANAL, V9, P271
54676    ARMSTRONG CG, 1994, COMPUT AIDED DESIGN, V26, P573
54677    CAGAN J, 1987, ENG COMPUT, V2, P199
54678    CHUANG SH, 1990, COMPUT AIDED DESIGN, V22, P377
54679    DONG J, 1997, COMPUT AIDED DESIGN, V29, P263
54680    DONG J, 1997, COMPUT AIDED DESIGN, V29, P427
54681    GAYANKAR P, 1990, COMPUT AIDED DESIGN, V22, P442
54682    GREGORY BL, 1987, ENG COMPUT, V2, P65
54683    INOUE K, 1999, 8 INT MESH ROUNDT SA, P281
54684    JOSHI S, 1988, COMPUT AIDED DESIGN, V20, P58
54685    KIM YS, 1992, COMPUT AIDED DESIGN, V24, P461
54686    KYPRIANOU L, 1980, THESIS U CAMBRIDGE
54687    LEE YG, 1997, ADV ENG SOFTW, V28, P593
54688    LEE YG, 1998, COMPUT AIDED DESIGN, V30, P677
54689    LO KH, 1988, COMPUT AIDED DESIGN, V20, P27
54690    MAYER EA, 1996, CURR OPIN GASTROEN, V12, P3
54691    MOHSEN R, 1998, COMPUT AIDED DESIGN, V28, P905
54692    SHEFFER A, 1997, TRENS UNSTRUCTURED, V220, P57
54693    VANDENBRANDE JH, 1993, IEEE T PATTERN ANAL, V15, P1269
54694 NR 19
54695 TC 4
54696 SN 0010-4485
54697 J9 COMPUT AID DES
54698 JI Comput.-Aided Des.
54699 PD APR 15
54700 PY 2002
54701 VL 34
54702 IS 5
54703 BP 405
54704 EP 414
54705 PG 10
54706 SC Computer Science, Software Engineering
54707 GA 533NV
54708 UT ISI:000174537400006
54709 ER
54710 
54711 PT J
54712 AU Zhu, ZY
54713    Li, GG
54714    Cheng, CJ
54715 TI Quasi-static and dynamical analysis for viscoelastic Timoshenko beam
54716    with fractional derivative constitutive relation
54717 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
54718 DT Article
54719 DE viscoelastic Timoshenko beam; fractional derivative constitutive
54720    relation; weakly singular Volterra integro-differential equation;
54721    dynamical response
54722 ID BEHAVIOR
54723 AB The equations of motion governing the quasi-static and dynamical
54724    behavior of a viscoelastic Timoshenko beam are derived. The
54725    viscoelastic material is assumed to obey a three-dimensional fractional
54726    derivative constitutive relation. ne quasi-static behavior of the
54727    viscoelastic Timoshenko beam under step loading is analyzed and the
54728    analytical solution is obtained. The influence of material parameters
54729    on the deflection is investigated. The dynamical response of the
54730    viscoelastic Timoshenko beam subjected to a periodic excitation is
54731    studied by means of mode shape functions. And the effect of both
54732    transverse shear and rotational inertia on the vibration of the beam is
54733    discussed.
54734 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
54735    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
54736    Shanghai Supercomp Ctr, Shanghai 201203, Peoples R China.
54737    Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
54738 RP Zhu, ZY, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
54739    200072, Peoples R China.
54740 CR AKOZ Y, 1999, INT J NUMER METH ENG, V44, P1909
54741    ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151
54742    BAGLEY RL, 1986, J RHEOL, V30, P133
54743    CHEN LQ, 2000, APPL MATH MECH-ENGL, V21, P995
54744    GEMANT A, 1938, PHILOS MAG, V25, P92
54745    KOELLER RC, 1984, J APPL MECH, V51, P294
54746    LIU YZ, 1998, MECH VIBRATIONS
54747    LUO ZD, 1994, MECH ANISITROPIC MAT
54748    ROSSIKHIN YA, 1997, APPL MECH REV, V50, P15
54749    SAMKO SG, 1993, FRACTIONAL INTEGRALS
54750    SPINELLI RA, 1966, SIAM J NUMER ANAL, V3, P636
54751 NR 11
54752 TC 2
54753 SN 0253-4827
54754 J9 APPL MATH MECH-ENGL ED
54755 JI Appl. Math. Mech.-Engl. Ed.
54756 PD JAN
54757 PY 2002
54758 VL 23
54759 IS 1
54760 BP 1
54761 EP 12
54762 PG 12
54763 SC Mathematics, Applied; Mechanics
54764 GA 534QJ
54765 UT ISI:000174597500001
54766 ER
54767 
54768 PT J
54769 AU Yin, RH
54770    Fang, ZH
54771    Zhang, L
54772    Xu, HB
54773 TI Effect of Cl- on the transition current density of Zn during the
54774    electrodeposition Zn-Co, Zn-Fe alloys
54775 SO ACTA CHIMICA SINICA
54776 DT Article
54777 DE Zn-Co; Zn-Fe alloys; transition current density; anomalous co-deposition
54778 AB For co-deposition of Zn-Co or Zn-Fe alloys in chloride baths it was
54779    found that the transition current density of Zn varied with the
54780    deposition process from normal co-deposition to anomalous
54781    co-deposition. The value of the transition current density increases
54782    with the increasing of Cl- concentration. However, when Cl-
54783    concentration exceeds 4 mol(.)dm(-3), the co-deposition process becomes
54784    normal type and the transition current density of Zn disappears. It can
54785    he attributed to the existence of Cl-, which decreases the evolution
54786    overpotential of Co and Fe metal, especially for Fe metal.
54787 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
54788 RP Yin, RH, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
54789 CR ATSUYOSHI S, 1980, J IRON STEEL I JPN, V66, P771
54790    FUKUSHIMA H, 1983, T JPN I MET, V24, P125
54791    LI HW, 1998, PLAT PROT, V101, P16
54792    MITSUHIRO Y, 1990, J SURF FINISH SOC JP, V41, P312
54793    TU ZM, 1994, PLAT SURF FINISH, V16, P3
54794    YIN RH, 2001, ELECTROCHEMISTRY, V7, P85
54795    YOJI I, 1978, ELECTROCHEM JPN, V46, P202
54796 NR 7
54797 TC 0
54798 SN 0567-7351
54799 J9 ACTA CHIM SIN
54800 JI Acta Chim. Sin.
54801 PD MAR
54802 PY 2002
54803 VL 60
54804 IS 3
54805 BP 404
54806 EP 407
54807 PG 4
54808 SC Chemistry, Multidisciplinary
54809 GA 533UW
54810 UT ISI:000174549600005
54811 ER
54812 
54813 PT J
54814 AU Zhang, WH
54815    Chen, Q
54816    Liu, YL
54817 TI Relationship between H+-ATPase activity and fluidity of tonoplast in
54818    barley roots under NaCl stress
54819 SO ACTA BOTANICA SINICA
54820 DT Article
54821 DE salt stress; H+-ATPase; membrane fluidity; fatty acid composition;
54822    barley
54823 ID SALT STRESS; LIPID-COMPOSITION; TOLERANCE; VESICLES; ACID; ARABIDOPSIS;
54824    TRANSPORT
54825 AB H+-ATPase activity of tonoplast in roots of Hordeum vulgare L. cv.
54826    "Tanyin 2" (salt-tolerant cultivar) increased when the roots were
54827    exposed to 50 - 200 mmol/L NaCl for 2 d, and decreased when NaCl
54828    concentration was increased to 600 mmol/L. In "Kepin 7" (salt-sensitive
54829    cultivar), tonoplast H+-ATPase activity in roots also increased at
54830    lower levels of NaCl (50 - 100 mmol/L), but decreased at higher levels
54831    of NaCl (200 - 600 mmol/L). Tonoplast fluidity in roots of "Tanyin 2"
54832    decreased at 50 - 200 mmol/L NaCl, and increased significantly at 600
54833    mmol/L NaCl. Under salt stress, the change of tonoplast fluidity was
54834    identical with that of the ratio of unsaturated fatty acids to
54835    saturated fatty acids in tonoplast lipid of barley roots. It is
54836    proposed that the increase of tonoplast fluidity due to increased
54837    degree of unsaturation of fatty acids is one of the reasons leading to
54838    the decrease of H+-ATPase activity under higher level of NaCl stress.
54839 C1 Nanjing Agr Univ, Coll Agr, Nanjing 210095, Peoples R China.
54840    Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China.
54841 RP Zhang, WH, Nanjing Agr Univ, Coll Agr, Nanjing 210095, Peoples R China.
54842 CR APSE MP, 1999, SCIENCE, V285, P1256
54843    BALLESTEROS E, 1996, PHYSIOL PLANTARUM, V97, P259
54844    BARKLA BJ, 1996, ANNU REV PLANT PHYS, V47, P159
54845    BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248
54846    BROWN DJ, 1989, PHYSIOL PLANTARUM, V90, P956
54847    DIAO FQ, 1997, ACTA PHYTOPHYSIOL SI, V23, P105
54848    DIETZ KJ, 1996, BBA-BIOMEMBRANES, V1281, P134
54849    GONG HM, 1999, ACTA BOT SIN, V41, P414
54850    HUANG YG, 1996, MEMBRANE LIPID PROTE, P1
54851    LIU YL, 1998, PLANT PHYSL MOL BIOL, P752
54852    LU ZX, 1993, ACTA PHYTOPHYSIOL SI, V19, P325
54853    MANSOUR MMF, 1994, PHYSIOL PLANTARUM, V92, P473
54854    NARASIMHAN ML, 1991, PLANT PHYSIOL, V97, P562
54855    NIU X, 1995, PLANT PHYSIOL, V109, P715
54856    OHNISHI T, 1975, ANAL BIOCHEM, V69, P261
54857    REIDIBOYMTALLEUX L, 1999, PHYSIOL PLANTARUM, V105, P513
54858    SHI HZ, 2000, P NATL ACAD SCI USA, V97, P6896
54859    SU WA, 1983, CHINESE SCI BULL, V28, P373
54860    WU JL, 1998, PHYSIOL PLANTARUM, V102, P307
54861    YANG FY, 1983, CHINESE SCI BULL, V28, P370
54862    ZHANG WH, 1993, ACTA BOT SIN, V35, P435
54863    ZHANG WH, 1998, J PLANT NUTR, V21, P447
54864 NR 22
54865 TC 2
54866 SN 0577-7496
54867 J9 ACTA BOT SIN
54868 JI Acta Bot. Sin.
54869 PD MAR
54870 PY 2002
54871 VL 44
54872 IS 3
54873 BP 292
54874 EP 296
54875 PG 5
54876 SC Biochemistry & Molecular Biology; Plant Sciences
54877 GA 534YM
54878 UT ISI:000174617400007
54879 ER
54880 
54881 PT J
54882 AU Chen, DY
54883 TI k-constraint for the modified Kadomtsev-Petviashvili system
54884 SO JOURNAL OF MATHEMATICAL PHYSICS
54885 DT Article
54886 AB By imposing constraint (L-k)(-)=qpartial derivative(-1)rpartial
54887    derivative on the pseudo-differential operator L-k, the k constrained
54888    modified Kadomtsev-Petviashvili (KP) hierarchy and their corresponding
54889    Lax pair are obtained from the linear problem and its adjoint of the
54890    modified KP system. Especially, the modified KdV system, the GNS system
54891    with derivative coupling, the Burgers system, and a new 3x3 integrable
54892    system are presented as examples. (C) 2002 American Institute of
54893    Physics.
54894 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
54895 RP Chen, DY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
54896 CR CHEN HH, 1979, PHYS SCR, V20, P490
54897    CHENG Y, 1992, J MATH PHYS, V33, P3774
54898    CHENG Y, 1992, J PHYS A, V25, P419
54899    DATE E, 1983, NONLINEAR INTEGRABLE, P39
54900    DICKEY LA, 1991, ADV SERIES MATH PHYS, V12
54901    KAUP DJ, 1978, J MATH PHYS, V19, P798
54902    KONOPELCHENKO BG, 1984, PHYS LETT A, V102, P15
54903    KONOPELCHENKO BG, 1992, NONLINEAR EVOLUTION, P87
54904    OHTA Y, 1988, PROG THEOR PHYS SUPP, V94, P210
54905 NR 9
54906 TC 1
54907 SN 0022-2488
54908 J9 J MATH PHYS-NY
54909 JI J. Math. Phys.
54910 PD APR
54911 PY 2002
54912 VL 43
54913 IS 4
54914 BP 1956
54915 EP 1965
54916 PG 10
54917 SC Physics, Mathematical
54918 GA 532KQ
54919 UT ISI:000174474300013
54920 ER
54921 
54922 PT J
54923 AU Zhou, SF
54924 TI Attractors for second order lattice dynamical systems
54925 SO JOURNAL OF DIFFERENTIAL EQUATIONS
54926 DT Article
54927 ID WAVE-EQUATIONS; GLOBAL ATTRACTOR
54928 AB We consider the existence and the approximation of the global attractor
54929    for second order damped lattice dynamical systems. (C) 2002 Elsevier
54930    Science (USA).
54931 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
54932 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
54933 CR AFRAIMOVICH VS, 1997, PHYSICA D, V103, P442
54934    BATES PW, 1999, ATTRACTORS LATTICE D
54935    FEIREISL E, 1995, J DIFFER EQUATIONS, V116, P431
54936    FEIREISL E, 1997, J DYNAM DIFFERENTIAL, V9, P133
54937    GHIDAGLIA JM, 1987, J MATH PURE APPL, V66, P273
54938    HALE JK, 1988, ASYMPTOTIC BEHAV DIS
54939    KARACHALIOS NI, 1999, J DIFFER EQUATIONS, V157, P183
54940    TEMAM R, 1988, APPL MATH SCI, V68
54941    ZHOU SF, 1999, P AM MATH SOC, V127, P3623
54942 NR 9
54943 TC 8
54944 SN 0022-0396
54945 J9 J DIFFERENTIAL EQUATIONS
54946 JI J. Differ. Equ.
54947 PD MAR 1
54948 PY 2002
54949 VL 179
54950 IS 2
54951 BP 605
54952 EP 624
54953 PG 20
54954 SC Mathematics
54955 GA 530GR
54956 UT ISI:000174350400008
54957 ER
54958 
54959 PT J
54960 AU Liu, WB
54961    Ma, HP
54962    Tang, T
54963 TI On mixed error estimates for elliptic obstacle problems
54964 SO ADVANCES IN COMPUTATIONAL MATHEMATICS
54965 DT Article
54966 DE finite element approximation; elliptic obstacle; sharp a posteriori
54967    error estimates
54968 ID EQUATIONS
54969 AB We establish in this paper sharp error estimates of residual type for
54970    finite element approximation to elliptic obstacle problems. The
54971    estimates are of mixed nature, which are neither of a pure a priori
54972    form nor of a pure a posteriori form but instead they are combined by
54973    an a priori part and an a posteriori part. The key ingredient in our
54974    derivation for the mixed error estimates is the use of a new
54975    interpolator which enables us to eliminate inactive data from the error
54976    estimators. One application of our mixed error estimates is to
54977    construct a posteriori error indicators reliable and efficient up to
54978    higher order terms, and these indicators are useful in mesh-refinements
54979    and adaptive grid generations. In particular, by approximating the a
54980    priori part with some a posteriori quantities we can successfully track
54981    the free boundary for elliptic obstacle problems.
54982 C1 Xiang Tan Univ, Dept Math, Hunan Prov, Peoples R China.
54983    Univ Kent, CBS, Canterbury CT2 7NF, Kent, England.
54984    Univ Kent, Inst Math & Stat, Canterbury CT2 7NF, Kent, England.
54985    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
54986    Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China.
54987 CR AINSWORTH M, 1993, NUMER MATH, V65, P23
54988    AINSWORTH M, 1997, COMPUT METHOD APPL M, V142, P1
54989    BARANGER J, 1991, RAIRO-MATH MODEL NUM, V25, P31
54990    BREZIS H, 1972, J MATH PURE APPL, V51, P1
54991    CHEN ZM, 2000, NUMER MATH, V84, P527
54992    CIARLET PG, 1978, FINITE ELEMENT METHO
54993    DURAN R, 1991, NUMER MATH, V59, P107
54994    DUVAUT G, 1973, INEQUALITIES MECH PH
54995    ELLIOTT CM, 1982, RES NOTES MATH, V59
54996    FRENCH DA, UNPUB POINTWISE POST
54997    FRIEDMAN A, 1982, VARIATIONAL PRINCIPL
54998    GLOWINSKI R, 1972, NUMERICAL ANAL VARIA
54999    KINDERLEHRER D, 1980, INTRO VARIATIONAL IN
55000    KORNHUBER R, 1996, COMPUT MATH APPL, V31, P49
55001    KUFNER A, 1977, FUNCTION SPACES
55002    LI R, 2001, J COMPUT PHYS, V170, P562
55003    LI R, 2001, UNPUB MOVING MESH ME
55004    LIU WB, 2000, J SCI COMPUT, V35, P361
55005    VERFURTH R, 1989, NUMER MATH, V55, P309
55006    VERFURTH R, 1994, MATH COMPUT, V62, P445
55007    ZIENKIEWICZ OC, 1987, INT J NUMER METH ENG, V24, P337
55008 NR 21
55009 TC 2
55010 SN 1019-7168
55011 J9 ADV COMPUT MATH
55012 JI Adv. Comput. Math.
55013 PY 2001
55014 VL 15
55015 IS 1-4
55016 BP 261
55017 EP 283
55018 PG 23
55019 SC Mathematics, Applied
55020 GA 531AJ
55021 UT ISI:000174392100011
55022 ER
55023 
55024 PT J
55025 AU Xue, Y
55026    Dong, LY
55027    Yuan, YW
55028    Dai, SQ
55029 TI Numerical simulation on traffic flow with the consideration of relative
55030    velocity
55031 SO ACTA PHYSICA SINICA
55032 DT Article
55033 DE traffic flow; optimal velocity model; jamming phase; relative velocity
55034 ID AUTOMATON MODEL; CONGESTION; SOLITON
55035 AB The optimal velocity model of traffic is extended by taking into
55036    account the relative velocity. We derive the stability condition and
55037    stimulate the evolution of traffic flow with a small perturbation. We
55038    have found that the relative velocity can stabilize traffic flow and
55039    decrease the number of jamming phases.
55040 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
55041    Guangxi Univ, Dept Phys, Nanning 530004, Peoples R China.
55042 RP Xue, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
55043    Peoples R China.
55044 CR BANDO M, 1995, PHYS REV E, V51, P1035
55045    BIHAM O, 1992, PHYS REV A, V46, P6124
55046    CHANDLER RE, 1958, OPER RES, V6, P165
55047    CHOWDHURY D, 2000, PHYS REP, V329, P199
55048    HELBING D, 2001, TRANSPORT RES B-METH, V35, P183
55049    KOMATSU TS, 1995, PHYS REV E B, V52, P5574
55050    LU XY, 2001, ACTA PHYS SIN-CH ED, V50, P1255
55051    MURAMATSU M, 1999, PHYS REV E, V60, P180
55052    NAGEL K, 1992, J PHYS I, V2, P2221
55053    NEWELL GF, 1961, OPER RES, V9, P209
55054    PIPES LA, 1953, J APPL PHYS, V24, P274
55055    TREIBER M, 2000, PHYS REV E A, V62, P1805
55056    WANG BH, 2000, ACTA PHYS SIN-CH ED, V49, P1926
55057    XUE Y, 2001, ACTA PHYS SIN-CH ED, V50, P445
55058 NR 14
55059 TC 6
55060 SN 1000-3290
55061 J9 ACTA PHYS SIN-CHINESE ED
55062 JI Acta Phys. Sin.
55063 PD MAR
55064 PY 2002
55065 VL 51
55066 IS 3
55067 BP 492
55068 EP 496
55069 PG 5
55070 SC Physics, Multidisciplinary
55071 GA 531DD
55072 UT ISI:000174400000007
55073 ER
55074 
55075 PT J
55076 AU Chen, YY
55077    Wang, Q
55078    Shi, JL
55079    Wei, Q
55080 TI Characteristics of self-trapping of partially coherent beam
55081 SO ACTA PHYSICA SINICA
55082 DT Article
55083 DE spatial soliton; partially coherent beam; coherence radius
55084 ID NONLINEAR MEDIA; SOLITONS; LIGHT
55085 AB Using the mutually coherent function, we study the self-trapping of
55086    circlar partially coherent beam. The initial condition of the beam and
55087    the nonlinearity of the media decide the propagation properties of the
55088    beam. The spatial variation period of the beam is obtained. And we find
55089    that the transverse coherence property of the partially coherent beam
55090    evolves periodically with the distance. Our analysis can also be
55091    etended to the elliptical partially coherent beam.
55092 C1 Shanghai Univ, Dept Phys, Sch Sci, Shanghai 200436, Peoples R China.
55093 RP Chen, YY, Shanghai Univ, Dept Phys, Sch Sci, Shanghai 200436, Peoples R
55094    China.
55095 CR CHRISTODOULIDES DN, 1997, PHYS REV LETT, V78, P646
55096    CHRISTODOULIDES DN, 1998, PHYS REV LETT, V80, P2310
55097    KROLIKOWSKI W, 2000, PHYS REV E, V61, P3122
55098    LIU J, 1998, ACTA PHYS SINICA, V47, P1509
55099    LIU SM, 1992, PHOTOREFRACTIVE NONL
55100    LU KQ, 1999, ACTA PHYS SIN-CH ED, V48, P2070
55101    MANDEL L, 1995, OPTICAL COHERENCE QU, CH4
55102    MITCHELL M, 1996, PHYS REV LETT, V77, P490
55103    MITCHELL M, 1997, NATURE, V387, P880
55104    PERINA J, 1986, COHERENCE LIGHT, CH2
55105    SNYDER AW, 1998, PHYS REV LETT, V80, P1422
55106 NR 11
55107 TC 3
55108 SN 1000-3290
55109 J9 ACTA PHYS SIN-CHINESE ED
55110 JI Acta Phys. Sin.
55111 PD MAR
55112 PY 2002
55113 VL 51
55114 IS 3
55115 BP 559
55116 EP 564
55117 PG 6
55118 SC Physics, Multidisciplinary
55119 GA 531DD
55120 UT ISI:000174400000020
55121 ER
55122 
55123 PT J
55124 AU Zheng, YG
55125    Liu, ZR
55126    Liu, YR
55127 TI Travelling wave solutions for sine-Gordon prototypes
55128 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
55129 DT Article
55130 ID NETWORKS; BREATHERS; EXISTENCE; MAP
55131 AB By using finite difference discretization for the sine-Gordon equation,
55132    we obtain the sine-Gordon prototypes. For these prototypes, the
55133    existence of discrete periodic travelling wave solutions and discrete
55134    solitons are proved by the anti-integrable limit method.
55135 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
55136    Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China.
55137 RP Zheng, YG, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
55138 CR ABEL M, 1998, PHYSICA D, V119, P22
55139    AUBRY S, 1990, PHYSICA D, V43, P199
55140    AUBRY S, 1997, PHYSICA D, V103, P201
55141    BAESENS C, 1997, NONLINEARITY, V10, P931
55142    CROSS MC, 1993, REV MOD PHYS, V65, P851
55143    MACKAY RS, 1994, NONLINEARITY, V7, P1623
55144    MACKAY RS, 1995, PHYSICA D, V82, P243
55145    ZEIDLER E, 1986, NONLINEAR FUNCTIONAL
55146 NR 8
55147 TC 0
55148 SN 1565-1339
55149 J9 INT J NONLINEAR SCI NUMER SIM
55150 JI Int. J. Nonlinear Sci. Numer. Simul.
55151 PY 2001
55152 VL 2
55153 IS 1
55154 BP 73
55155 EP 77
55156 PG 5
55157 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
55158    Mathematical; Mechanics
55159 GA 529EP
55160 UT ISI:000174287300006
55161 ER
55162 
55163 PT J
55164 AU He, JH
55165 TI A remark on Lagrange multiplier method (I)
55166 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
55167 DT Article
55168 DE Lagrange multiplier; paradox; semi-inverse method
55169 AB In this paper, the author point out that the identification of Lagrange
55170    multipliers might lead to Lagrange crisis ( some a constraint can be
55171    eliminated by the method). They must be treated as independent
55172    variables throughout the calculation. If the identified multipliers are
55173    submitted to the Lagrangian, the removed constraints might have to be
55174    further applied, otherwise wrong results might be obtained.
55175 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
55176    Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
55177 RP He, JH, Shanghai Univ, Shanghai 200072, Peoples R China.
55178 CR HE JH, 1997, INT J TURBO JET ENG, V14, P23
55179    HE JH, 1997, J SHANGHAI U, V1, P117
55180    HE JH, 2000, ASME, V67, P326
55181    HE JH, 2000, INT J NONLINEAR SCI, V1, P133
55182    HE JH, 2000, INT J NONLINEAR SCI, V1, P139
55183    HE JH, 2001, INT J ENG SCI, V39, P323
55184    LAGRANGE JL, 1788, MECANIQUE ANAL
55185 NR 7
55186 TC 3
55187 SN 1565-1339
55188 J9 INT J NONLINEAR SCI NUMER SIM
55189 JI Int. J. Nonlinear Sci. Numer. Simul.
55190 PY 2001
55191 VL 2
55192 IS 2
55193 BP 161
55194 EP 164
55195 PG 4
55196 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
55197    Mathematical; Mechanics
55198 GA 529ET
55199 UT ISI:000174287600009
55200 ER
55201 
55202 PT J
55203 AU Qin, ZQ
55204 TI Applied mathematics and mechanics in China
55205 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
55206 DT Article
55207 AB In this paper, the well-known journal APPLIED MATHEMATICS AND MECHANICS
55208    in China is introduced, the authorship of the journal is systematically
55209    studied. The statistic data shows that 30% old authorship keep the
55210    mainstream of the journal, while 70% new authorship reveals the bloom
55211    of development of the field of applied mathematics and mechanics in
55212    China.
55213 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
55214 RP Qin, ZQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
55215    200072, Peoples R China.
55216 CR 1996, APPL MATH MECH
55217    CHIEN WZ, 1983, APPL MATH MECH, V4, P143
55218    HE JH, 2000, APPL MATH MECH-ENGL, V21, P797
55219 NR 3
55220 TC 0
55221 SN 1565-1339
55222 J9 INT J NONLINEAR SCI NUMER SIM
55223 JI Int. J. Nonlinear Sci. Numer. Simul.
55224 PY 2001
55225 VL 2
55226 IS 2
55227 BP 169
55228 EP 171
55229 PG 3
55230 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
55231    Mathematical; Mechanics
55232 GA 529ET
55233 UT ISI:000174287600012
55234 ER
55235 
55236 PT J
55237 AU He, JH
55238 TI Bookkeeping parameter in perturbation methods
55239 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
55240 DT Article
55241 DE perturbation method; nonlinear equation; Thomas-Fermi equation
55242 ID NONLINEAR PROBLEMS
55243 AB In case of no possible small parameter in an equation, we can expand
55244    the solution in a series of an artificial parameter(Nayfeh 1981). The
55245    artificial parameter is a bookkeeping or crutching device and set equal
55246    to unity after the "perturbation solution" is obtained, In order to
55247    avoid the secular terms arising in straightforward expansion, the
55248    coefficients in the equation are also expanded into series of the
55249    artificial parameter. Some examples are given hereby, and the results
55250    show that the obtained approximate solutions are uniformly valid on the
55251    whole solution domain.
55252 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
55253 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
55254    Peoples R China.
55255 CR ANDRIANOV I, 2000, INT J NONLINEAR SCI, V1, P327
55256    BENDER CM, 1989, J MATH PHYS, V30, P1447
55257    HAGEDORN P, 1981, NONLINEAR OSCILLATIO
55258    HE JH, IN PRESS INT J NONLI
55259    HE JH, 1999, COMMUNICATIONS NONLI, V4, P81
55260    HE JH, 1999, INT J NONLINEAR MECH, V34, P699
55261    HE JH, 2000, INT J NONLINEAR MECH, V35, P37
55262    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
55263    HE JH, 2000, J SOUND VIB, V229, P1257
55264    LAURENZI BJ, 1990, J MATH PHYS, V30, P2535
55265    LIU GL, 1997, NAT C 7 MOD MATH MEC, P47
55266    NAYFEH AH, 1985, INTRO PERTURBATION
55267 NR 12
55268 TC 9
55269 SN 1565-1339
55270 J9 INT J NONLINEAR SCI NUMER SIM
55271 JI Int. J. Nonlinear Sci. Numer. Simul.
55272 PY 2001
55273 VL 2
55274 IS 3
55275 BP 257
55276 EP 264
55277 PG 8
55278 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
55279    Mathematical; Mechanics
55280 GA 529EV
55281 UT ISI:000174287800003
55282 ER
55283 
55284 PT J
55285 AU Jiang, JB
55286    Wang, LB
55287    Lu, ZM
55288 TI A new model for turbulent energy dissipation
55289 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
55290 DT Article
55291 DE Turbulent Energy dissipation; Direct Interaction Approximation
55292 ID SHEAR FLOWS; DIFFUSION
55293 AB It is very difficult to model the turbulent energy dissipation epsilon.
55294    The known models in open literature are unsatisfactory and need to be
55295    farther improved. In this paper, using the
55296    Single-Green-Function-Two-ScaleDirect-Interaction approximation, we
55297    obtain a new model, whose coefficients are close to those of
55298    Yoshizawa's and those of the standard k-epsilon model. We also find
55299    that the coefficient for the destruction term is an independent number,
55300    which agrees with Rubinstein's result, The present paper provides a
55301    sound theoretical basis for modeling the turbulent energy dissipation.
55302 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
55303 RP Jiang, JB, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
55304    200072, Peoples R China.
55305 CR HAMBA F, 1997, PHYS FLUIDS, V9, P79
55306    KRAICHNAN R, 1961, HSN3 NEW YORK U I MA, P435
55307    RUBINSTEIN R, 1996, PHYS FLUIDS, V8, P3172
55308    SHIMOMURA Y, 1998, PHYS FLUIDS, V10, P2636
55309    YOSHIZAWA A, 1984, J PHYS SOC JPN, V53, P1264
55310    YOSHIZAWA A, 1984, PHYS FLUIDS, V27, P1337
55311    YOSHIZAWA A, 1988, J FLUID MECH, V195, P541
55312 NR 7
55313 TC 1
55314 SN 1565-1339
55315 J9 INT J NONLINEAR SCI NUMER SIM
55316 JI Int. J. Nonlinear Sci. Numer. Simul.
55317 PY 2001
55318 VL 2
55319 IS 3
55320 BP 277
55321 EP 282
55322 PG 6
55323 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
55324    Mathematical; Mechanics
55325 GA 529EV
55326 UT ISI:000174287800005
55327 ER
55328 
55329 PT J
55330 AU Huang, LJ
55331    Liang, RJ
55332    Zhang, NH
55333 TI An aero-viscoelastic model for nonlinear cylindrical shells in
55334    supersonic flow
55335 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
55336 DT Editorial Material
55337 DE structural function; viscoelasticity; cylindrical shell; supersonic flow
55338 AB Based on the Karman-Donnell's hypotheses of thin shells and the
55339    Boltzmann superposition principles in viscoelasticity, an
55340    aero-viscoelastic model for nonlinear cylindrical shells in supersonic
55341    flow is set up by means of Laplace transform and the so-called
55342    structural function. The aerodynamic load is obtained from the
55343    quasi-steady first-order piston theory.
55344 C1 Shanghai Univ, Dept Mech, Minist Educ, Key Lab Solid Mech, Shanghai 200436, Peoples R China.
55345    Gansu Univ Technol, Dept Basic Sci, Lanzhou 730050, Peoples R China.
55346 RP Zhang, NH, Shanghai Univ, Dept Mech, Minist Educ, Key Lab Solid Mech,
55347    Shanghai 200436, Peoples R China.
55348 CR KHOLODAV DB, 2000, INT J NONLINEAR SCI, V1, P153
55349    MEI C, 1999, APPL MECH REV, V52, P321
55350 NR 2
55351 TC 2
55352 SN 1565-1339
55353 J9 INT J NONLINEAR SCI NUMER SIM
55354 JI Int. J. Nonlinear Sci. Numer. Simul.
55355 PY 2001
55356 VL 2
55357 IS 3
55358 BP 303
55359 EP 304
55360 PG 2
55361 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
55362    Mathematical; Mechanics
55363 GA 529EV
55364 UT ISI:000174287800010
55365 ER
55366 
55367 PT J
55368 AU He, JH
55369 TI Variational theory for linear magneto-electro-elasticity
55370 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
55371 DT Article
55372 DE piezoelectricity; magneto-electro-elastic medium; smart (or
55373    intelligent) material; variational theory; semi-inverse method;
55374    trial-functional
55375 ID SEMI-INVERSE METHOD; MIXED-FLOW TURBOMACHINERY; COMPRESSIBLE S2-FLOW;
55376    FLUID-MECHANICS; HYBRID PROBLEMS; UNKNOWN SHAPE; PRINCIPLES;
55377    AERODYNAMICS; VARIABLES; EMPHASIS
55378 AB To describe the physical behavior of a magneto-electro-elastic medium,
55379    the fundamental equations, including equilibrium equations,
55380    strain-displacement relations, and constitutive relations, and all
55381    boundary conditions are expressed as stationary condition (Euler
55382    equations and natural conditions) of a generalized variational
55383    principle, which is obtained by the semi-inverse method proposed by He.
55384    The principle is deduced from an energy-like trial functional with a
55385    certain unknown function, which can be identified step by step. A
55386    family of various variational principles for the discussed problem is
55387    also obtained for differential applications. Present theory provides a
55388    quite straightforward tool to the search for various variational
55389    principles for physical problems. This paper aims at providing a more
55390    complete theoretical basis for the finite element applications,
55391    meshfree particle methods, and other direct variational methods such as
55392    Ritz's, Trefftz's and Kantorovitch's methods.
55393 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
55394 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
55395    Peoples R China.
55396 CR ALTAY GA, 1996, INT J ENG SCI, V34, P769
55397    BERLINCOURT DA, 1964, PHYS ACOUST        A, V1, P169
55398    CHANDRASEKHARAI.DS, 1988, ACTA MECH, V71, P39
55399    CHIEN WZ, 1983, APPL MATH MECH, V4, P137
55400    HE JH, 1997, INT J TURBO JET ENG, V14, P17
55401    HE JH, 1997, INT J TURBO JET ENG, V14, P23
55402    HE JH, 1997, J SHANGHAI U, V1, P117
55403    HE JH, 1997, SHANGHAI J MECH, V18, P305
55404    HE JH, 1998, INT J TURBO JET ENG, V15, P101
55405    HE JH, 1998, INT J TURBO JET ENG, V15, P95
55406    HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154
55407    HE JH, 1999, INT J TURBO JET ENG, V16, P19
55408    HE JH, 1999, J U SHANGHAI SCI TEC, V21, P127
55409    HE JH, 1999, J U SHANGHAI SCI TEC, V21, P29
55410    HE JH, 1999, J U SHANGHAI SCI TEC, V21, P356
55411    HE JH, 2000, AIRCR ENG AEROSP TEC, V72, P18
55412    HE JH, 2000, APPL MATH MECH-ENGL, V21, P797
55413    HE JH, 2000, ASME, V67, P326
55414    HE JH, 2000, FACTA U SERIES MECH, V12, P1253
55415    HE JH, 2000, INT J ENG SCI, V39, P323
55416    HE JH, 2000, INT J NONLINEAR SCI, V1, P133
55417    HE JH, 2000, MECH RES COMMUN, V27, P445
55418    HE JH, 2001, ACTA MECH, V149, P247
55419    HE JH, 2001, APPL MATH MECH-ENGL, V22, P989
55420    HE JH, 2001, ASME J APPL MECH, V68, P666
55421    HE JH, 2001, INT J NONLINEAR SCI, V2, P161
55422    LIU GL, 1990, 1 INT S EXP COMP AER, P128
55423    LIU GL, 1990, J ENG THERMOPHYSICS, V11, P136
55424    LIU GL, 1995, 6 AS C FLUID MECH MA, P745
55425    LIU GL, 2000, ACTA MECH, V140, P73
55426    LIU GL, 2000, INT J NONLINEAR SCI, V1, P25
55427    MAUGIN GA, 1984, MECH BEHAV ELECTROMA
55428    MAUGIN GA, 1991, CONTINUUM MECH ELECT
55429    PAN E, 2001, ASME, V68, P608
55430    SANTILLI RM, 1978, FDN THEORETICAL MECH, V1
55431    ZHOU SA, 1986, INT J SOLIDS STRUCT, V22, P1411
55432 NR 36
55433 TC 28
55434 SN 1565-1339
55435 J9 INT J NONLINEAR SCI NUMER SIM
55436 JI Int. J. Nonlinear Sci. Numer. Simul.
55437 PY 2001
55438 VL 2
55439 IS 4
55440 BP 309
55441 EP 316
55442 PG 8
55443 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
55444    Mathematical; Mechanics
55445 GA 529EX
55446 UT ISI:000174288000001
55447 ER
55448 
55449 PT J
55450 AU He, JH
55451 TI Modified Lindsted-Poincare methods for some strongly nonlinear
55452    oscillations Part III: Double series expansion
55453 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
55454 DT Article
55455 DE perturbation method; nonlinear equation; Duffing equation;
55456    Lindstedt-Poincare method
55457 AB In this paper, we propose a new perturbation technique for strongly
55458    nonlinear oscillations with two parameters, which need not to be small
55459    in the present study. In this new method, the solution is expanded into
55460    double series of the two parameters. In order to avoid the secular
55461    terms, a constant in the equation is also expressed in a double series
55462    expansion. The present technique can be widely applied to nonlinear
55463    systems with multitude nonlinear terms. The preliminary study shows
55464    that the obtained approximate solutions are uniformly valid on the
55465    whole solution domain, and they are suitable not only for weakly
55466    nonlinear systems, but also for strongly nonlinear systems.
55467 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
55468 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
55469    Peoples R China.
55470 CR AZIZ A, 1984, PERTURBATION METHODS
55471    HAGEDORN P, 1981, NONLINEAR OSCILLATIO
55472    HE JH, 1998, U SHANGHAI SCI TECHN, V20, P325
55473    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
55474    HE JH, 2001, INT J NONLINEAR MECH, V37, P309
55475    HE JH, 2001, INT J NONLINEAR MECH, V37, P315
55476    HE JH, 2001, INT J NONLINEAR SCI, V2, P203
55477    HE JH, 2001, J VIB CONTROL, V7, P631
55478    NAYFEH AH, 1985, INTRO PERTURBATION T
55479 NR 9
55480 TC 25
55481 SN 1565-1339
55482 J9 INT J NONLINEAR SCI NUMER SIM
55483 JI Int. J. Nonlinear Sci. Numer. Simul.
55484 PY 2001
55485 VL 2
55486 IS 4
55487 BP 317
55488 EP 320
55489 PG 4
55490 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
55491    Mathematical; Mechanics
55492 GA 529EX
55493 UT ISI:000174288000002
55494 ER
55495 
55496 PT J
55497 AU Shen, JQ
55498    Riebel, U
55499 TI Extinction by a large spherical particle located in a narrow Gaussian
55500    beam
55501 SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION
55502 DT Article
55503 ID FORWARDSCATTERING CORRECTIONS; AEROSOL MEDIA; SUSPENSIONS;
55504    TRANSMISSION; FLUCTUATIONS; SCATTERING; DILUTE
55505 AB In most extinction measurements, the laser beam is expanded and the
55506    particles are small enough so that the incident beam can be considered
55507    as a plane wave. With regard to particle size analysis by optical
55508    extinction counters or transmission fluctuation spectrometry, however,
55509    we are interested in the opposite situation, i.e. particle diameters
55510    which are larger than the beam diameter. This paper presents
55511    experimental results on the extinction by an absorbent or transparent
55512    spherical particle passing through a Gaussian beam.
55513    The experiments show that the extinction is sensitive to the particle
55514    location, especially when the particle is very near to the beam waist
55515    and the ratio of the beam to the particle diameter is close to or less
55516    than 1.
55517 C1 Brandenburg Tech Univ Cottbus, Lehrstuhl Mech Verfahrenstech, D-03013 Cottbus, Germany.
55518    Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
55519 RP Shen, JQ, Brandenburg Tech Univ Cottbus, Lehrstuhl Mech Verfahrenstech,
55520    D-03013 Cottbus, Germany.
55521 CR BREITENSTEIN M, 1999, PART PART SYST CHAR, V16, P249
55522    BREITENSTEIN M, 2000, THESIS COTTBUS
55523    DEEPAK A, 1978, APPL OPTICS, V17, P2900
55524    DEEPAK A, 1978, APPL OPTICS, V17, P3169
55525    DOPHEIDE D, 1990, 5 INT S APPL LAS TEC, P1
55526    GOUESBET G, 1988, J OPT SOC AM A, V5, P1427
55527    GREGORY J, 1985, J COLLOID INTERF SCI, V105, P357
55528    HODGES JT, 1995, APPL OPTICS, V34, P2120
55529    KRAUTER U, 1995, THESIS KARLRUHE
55530    RIEBEL U, 1991, PART PART SYST CHAR, V8, P95
55531    RIEBEL U, 1993, PART PART SYST CHAR, V10, P201
55532 NR 11
55533 TC 1
55534 SN 0934-0866
55535 J9 PART PART SYST CHARACT
55536 JI Part. Part. Syst. Charact.
55537 PD FEB
55538 PY 2002
55539 VL 18
55540 IS 5-6
55541 BP 254
55542 EP 261
55543 PG 8
55544 SC Engineering, Chemical; Materials Science, Characterization & Testing
55545 GA 526PR
55546 UT ISI:000174139300005
55547 ER
55548 
55549 PT J
55550 AU Gu, CQ
55551    Zhu, GQ
55552 TI Bivariate Lagrange-type vector valued rational interpolants
55553 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
55554 DT Article
55555 DE bivariate vector value; rational interpolation; determinantal formula
55556 AB An axiomatic definition to bivariate vector valued rational
55557    interpolation on distinct plane interpolation points is at first
55558    presented in this paper. A two-variable vector valued rational
55559    interpolation formula is explicitly constructed in the following form:
55560    the determinantal formulas for denominator scalar polynomials and for
55561    numerator vector polynomials, which possess Lagrange-type basic
55562    function expressions. A practical criterion of existence and uniqueness
55563    for interpolation is obtained. In contrast to the underlying method,
55564    the method of bivariate Thiele-type vector valued rational
55565    interpolation is reviewed.
55566 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
55567    Hefei Polytech Univ, Dept Math, Hefei 230009, Peoples R China.
55568 CR BREZINSKI C, 1974, LINEAR ALGEBRA APPL, V8, P77
55569    GRAVESMORRIS PR, 1983, NUMER MATH, V42, P331
55570    GRAVESMORRIS PR, 1986, CONSTR APPROX, V2, P263
55571    GU CQ, 1997, J COMPUT APPL MATH, V8, P71
55572    GU CQ, 1997, J COMPUT APPL MATH, V84, P137
55573    GU CQ, 1997, MATH NUMER SINICA, V19, P19
55574    MCCLEOD JB, 1971, COMPUTING, V7, P17
55575    SIEMASZKO W, 1983, J COMPUT APPL MATH, V9, P137
55576    WYNN P, 1963, ARCH RATION MECH AN, V12, P273
55577    ZHU GQ, 1990, MATH NUM SIN, V12, P293
55578    ZHU GQ, 1993, CHINESE J NUMER MATH, V15, P1
55579 NR 11
55580 TC 0
55581 SN 0254-9409
55582 J9 J COMPUT MATH
55583 JI J. Comput. Math.
55584 PD MAR
55585 PY 2002
55586 VL 20
55587 IS 2
55588 BP 207
55589 EP 216
55590 PG 10
55591 SC Mathematics, Applied; Mathematics
55592 GA 527QN
55593 UT ISI:000174198000009
55594 ER
55595 
55596 PT J
55597 AU Liu, YF
55598    Chen, L
55599    Su, B
55600    Huang, AM
55601    Hua, JD
55602    Sang, WB
55603    Min, JH
55604    Meng, ZY
55605 TI Synthesis and characterization of CdS nanocrystals embedded on solid
55606    electrolyte films
55607 SO JOURNAL OF APPLIED POLYMER SCIENCE
55608 DT Article
55609 DE polyethylene oxide; nanocomposites; metal-polymer complexes; conducting
55610    polymers
55611 ID CLUSTERS
55612 AB In this article nano-sized CdS crystal embedded in a PEO matrix was
55613    successfully prepared by a complex transformation method that is
55614    universal for preparing nanosized compounds containing transition
55615    metals. The size of embedded CdS particles was in the nanoscale from 2
55616    to 10 nm determined by X-ray diffusion. The nanosized CdS displayed the
55617    expected blue shift of the onset absorbance in the UV spectrum. The
55618    amount of blue shift depends upon the dipping time of the PEO-cadmium
55619    complex film in a sodium sulfide solution as well as its concentration.
55620    The most effective means for adjusting the size of CdS nanocrystals is
55621    to change the ratio of the oxygen along with the PEO chain to the
55622    cadmium ion in the complex film. The alkali salt in the film would
55623    contribute to the conductivity of the composite film. (C) 2002 Wiley
55624    Periodicals, Inc.
55625 C1 Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R China.
55626    Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800, Peoples R China.
55627 RP Liu, YF, Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R
55628    China.
55629 CR DEAN JA, 1973, LANGES HDB CHEM
55630    HUANG JM, 1996, POLYM BULL, V36, P337
55631    LI H, 1994, PRACTICAL ANAL XRAY
55632    LIU Y, 1998, POLYM B, P11
55633    LIU YF, 1997, CHIN L LUMIN, V18, P248
55634    MIN J, 2001, 2 NAT S PHYS OPT EL
55635    NAKUTA N, 1985, J PHYS CHEM-US, V89, P48
55636    PENG X, 1999, CHIN J RARE METALS, V23, P321
55637    SANG W, 1990, ADV MATER OPT ELECTR, V6, P197
55638    SANG WB, 1996, J PHYS-CONDENS MAT, V8, L499
55639    WANG Y, 1990, J CHEM PHYS, V92, P6927
55640    WOGGON U, 1997, OPTICAL PROPERTIES S
55641    YANG Y, 1996, APPL PHYS LETT, V69, P377
55642 NR 13
55643 TC 5
55644 SN 0021-8995
55645 J9 J APPL POLYM SCI
55646 JI J. Appl. Polym. Sci.
55647 PD MAY 9
55648 PY 2002
55649 VL 84
55650 IS 6
55651 BP 1263
55652 EP 1268
55653 PG 6
55654 SC Polymer Science
55655 GA 526ZX
55656 UT ISI:000174160500018
55657 ER
55658 
55659 PT J
55660 AU Hu, HP
55661    Mo, YL
55662 TI Method of wavelet threshold denoising based on Bayesian estimation
55663 SO JOURNAL OF INFRARED AND MILLIMETER WAVES
55664 DT Article
55665 DE wavelet transform; Donoho wavelet threshold; Wiener filtering; Bayesian
55666    estimation
55667 ID CROSS-VALIDATION; SHRINKAGE
55668 AB A new image denoising method of wavelet shrinkage threshold based on
55669    Bayesian estimation was proposed. The coefficients of wavelet transform
55670    of image were estimated by minimizing Bayes risk in the proposed
55671    method. The estimation is not only related to the orientation and the
55672    level of the subband, but also to the wavelet coefficients. The
55673    experimental results show that the denoising effect of the proposed
55674    method is better than that of other methods based on wavelet shrinkage.
55675    Although the denoising effect of this method is worse than one of
55676    Wiener filters at low peak-signal-noise ratio, it is better than Wiener
55677    filters at high peak-signal-noise ratio.
55678 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
55679 RP Hu, HP, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
55680    Peoples R China.
55681 CR ABRAMOVICH F, 1998, J ROY STAT SOC B 4, V60, P725
55682    CHANG SG, 2000, IEEE T IMAGE PROCESS, V9, P1532
55683    DONOHO DL, 1994, BIOMETRIKA, V81, P425
55684    DONOHO DL, 1995, J AM STAT ASSOC, V90, P1200
55685    NASON GP, 1996, J ROY STAT SOC B MET, V58, P463
55686    OGDEN RT, 1994, THESIS TEXAS A M U
55687    VIDAKOVIC B, 1998, J AM STAT ASSOC, V93, P173
55688    WEYRICH N, 1998, IEEE T IMAGE PROCESS, V7, P82
55689 NR 8
55690 TC 0
55691 SN 1001-9014
55692 J9 J INFRARED MILIM WAVES
55693 JI J. Infrared Millim. Waves
55694 PD FEB
55695 PY 2002
55696 VL 21
55697 IS 1
55698 BP 74
55699 EP 76
55700 PG 3
55701 SC Optics
55702 GA 526AG
55703 UT ISI:000174105800018
55704 ER
55705 
55706 PT J
55707 AU Wei, JH
55708    Wang, M
55709    Yu, NW
55710 TI Mass transfer characteristics between molten steel and particles in
55711    RH-PTB refining
55712 SO IRONMAKING & STEELMAKING
55713 DT Article
55714 AB The mass transfer characteristics between powder particles and liquid
55715    steel in RH-PTB (powder top blowing) refining have been investigated on
55716    a 5 scale water model of a 90 t RH degasser. Sodium chloride powder of
55717    analytical purity has been used as the flux for blowing, and the mass
55718    transfer coefficient of solute (NaCl) in the liquid has been determined
55719    under the conditions of the RH-PTB process. The influence of the main
55720    technological and structural parameters on the mass transfer rate has
55721    been examined. The results have shown that, under the conditions of the
55722    present work, the mass transfer coefficient in the liquid increases
55723    with increasing lifting gas flowrate, with increasing inner diameter of
55724    the upsnorkel, with increasing circulation rate of the liquid, and with
55725    increasing particle size of powdered flux. On the other hand, mass
55726    transfer in the liquid decreases with an increase in the inner diameter
55727    of the downsnorkel. Its value is in the range (1.36-7.30) x 10(-4) m
55728    s(-1). The following dimensionless relationships, correspondingly, have
55729    been obtained for the mass transfer coefficient in the range:
55730    Sh = 2 + 0.073Re(s)(0.777) Sc-1/3
55731    Sh = 2 + 0.073(epsilon(1s)D(p)(4)/v(t)(3))(0.259) Sc-1/3
55732    When the mass transfer is treated as that between rigid bubbles and
55733    molten steel, it may be characterised by
55734    Sh = 2 + 0.026((ResSc0.339)-Sc-0.48(g(1/3)d(p)/D-p(2/3))(0.072)](1.455).
55735 C1 Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China.
55736    Baoshan Steel Grp Corp, Shanghai 201900, Peoples R China.
55737 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China.
55738 CR ASAI S, 1983, P INT INJ MET SCANIN
55739    BENNETT CO, 1974, MOMENTRUM HEAT MASS, P788
55740    DAVIES JY, 1972, TURBULENCE PHENOMENA, P148
55741    EBIHARA A, 1992, CAMP ISIJ, V5, P1237
55742    ENDOH K, 1989, SADA TETSU TOGISATA, P20
55743    ENDOH K, 1990, NIPP STEEL TECH REP, P45
55744    GEIGER GH, 1973, TRANSPORT PHENOMENA, P115
55745    HALL RJ, 1990, ISS STEELM C P, P69
55746    HATAKEYAMA T, 1989, IRON STEELMAKER, V15, P23
55747    HUGHMARK GA, 1967, IND ENG CHEM PROC DD, V6, P218
55748    KAORU S, 1988, T ISIJ, V28, P297
55749    LAMPPLE CE, 1950, CHEM ENG HDB, P1018
55750    MAYA K, 1992, CAMP ISIJ, V5, P276
55751    MYRAYAMA N, 1990, P 6 INT IR STEEL C N, V3, P151
55752    OKADA Y, 1992, CAMP ISIJ, V5, P1238
55753    OKADA Y, 1994, TETSU TO HAGANE, V80, T9
55754    OKANO H, 1997, ISS STEELM C P
55755    SANO Y, 1974, J CHEM ENG JAPAN, V7, P255
55756    SZEKELY J, 1979, FLUID FLOW PHENOMENA, P261
55757    UEHARAL H, 1992, CAMP ISIJ, V5, P1240
55758    WANG Z, 1979, CHEM ENG DICT, P612
55759    WEAST RC, 1979, HDB CHEM PHYSICS, F58
55760    YAO Y, HDB PHYSICAL CHEM, P407
55761    YU N, 1998, J NE U NATURAL SCI, V19, P118
55762    ZHANG Z, 1988, FUNDAMENTALS POWDER, P52
55763 NR 25
55764 TC 0
55765 SN 0301-9233
55766 J9 IRONMAKING STEELMAKING
55767 JI Ironmak. Steelmak.
55768 PY 2001
55769 VL 28
55770 IS 6
55771 BP 455
55772 EP 464
55773 PG 10
55774 SC Metallurgy & Metallurgical Engineering
55775 GA 526BW
55776 UT ISI:000174109400004
55777 ER
55778 
55779 PT J
55780 AU Shen, DZ
55781    Kang, Q
55782    Zhang, XL
55783    Li, WP
55784    Liu, ZC
55785 TI An electrode-separated piezoelectric sensor as a surface monitoring
55786    technique for anionic surfactant adsorption on quartz surface
55787 SO MIKROCHIMICA ACTA
55788 DT Article
55789 DE surfactant; adsorption; quartz; piezoelectric; surfactant
55790 ID SELF-ASSEMBLED MONOLAYERS; CRYSTAL MICROBALANCE; NEUTRON REFLECTIVITY;
55791    NONIONIC SURFACTANTS; BEHAVIOR; SILICON; INTERFACE; LAYER; GOLD
55792 AB In the configuration of an electrode-separated piezoelectric sensor
55793    (ESPS), the quartz crystal surface is in a direct contact with the
55794    liquid phase. With the pre-adsorption of Ca2+ as the ionic bridge,
55795    anionic surfactant can adsorb on the negatively charged quartz surface
55796    (pH > 2.0). The adsorption process of sodium dodecyl benzene sulfonate
55797    (SDBS) was monitored in real time with the ESPS method. It was shown
55798    that the adsorption of SDBS on quartz surface by Ca2+ inducement was
55799    reversible with respective to the dilution of solution phase. The
55800    adsorption behavior can be analyzed using Langmuir model. The
55801    adsorption and desorption rate constants were estimated to be k(a)=
55802    (108.4 +/- 6.4) mol(-1)Ls(-1) and k(d) = (2.57 +/- 0.32) x 10(-3)
55803    s(-1), respectively. The observed adsorption densities in the ESPS
55804    method were significantly greater than the true ones. The influence on
55805    surface roughness of the quartz disc on adsorption densities should be
55806    corrected by adding a calibration coefficient in the Sauerbrey
55807    equation. The saturation adsorption density is 0.223 mug/cm(2) for SDBS
55808    on quartz surface. Double layer occurs for the adsorption of SDBS on
55809    quartz surface.
55810 C1 Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China.
55811    Shanghai Univ Sci & Technol, Dept Chem Engn, Jinan 250031, Peoples R China.
55812 RP Shen, DZ, Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R
55813    China.
55814 CR BALLANTINE DS, 1997, ACOUSTIC WAVE SENSOR
55815    BUTTRY DA, 1992, CHEM REV, V92, P1355
55816    CARUSO F, 1995, LANGMUIR, V11, P1546
55817    CHERNYSHOVA IV, 2000, LANGMUIR, V16, P8071
55818    DOBIAS B, 1993, COAGULATION FLOCCULA
55819    FRAGNETO G, 1996, J COLLOID INTERF SCI, V178, P531
55820    FRAGNETO G, 1996, LANGMUIR, V12, P477
55821    FUERSTENAU DW, 1956, J PHYS CHEM-US, V60, P981
55822    HARWIGSSON I, 1996, J COLLOID INTERF SCI, V183, P380
55823    KRAUSE C, 1996, LANGMUIR, V12, P6059
55824    MANNE S, 1994, LANGMUIR, V10, P4409
55825    MEADER AL, 1953, J COLL SCI, V8, P170
55826    NAGASHIMA K, 1999, J COLLOID INTERF SCI, V214, P8
55827    NOMURA T, 1991, ANAL CHIM ACTA, V243, P273
55828    OKAHATA Y, 1991, ANAL CHEM, V63, P203
55829    PENFOLD J, 2000, LANGMUIR, V16, P8879
55830    SAUERBREY G, 1959, Z PHYS, V155, P206
55831    SHARMA R, 1995, SURFACTANT ADSORPTIO
55832    SHEN DZ, 1997, J ELECTROANAL CHEM, V428, P105
55833    SHEN DZ, 1998, FRESEN J ANAL CHEM, V361, P424
55834    SHEN DZ, 1998, MICROCHEM J, V60, P1
55835    SHEN DZ, 1998, MIKROCHIM ACTA, V128, P229
55836    TAHANI A, 1999, J COLLOID INTERF SCI, V216, P242
55837    THIBAUT A, 2000, LANGMUIR, V16, P9192
55838    TIBERG F, 1994, LANGMUIR, V10, P2294
55839    YAO SZ, 1997, PIEZOELECTRIC CHEM B
55840    YEZEK L, 2000, J COLLOID INTERF SCI, V225, P227
55841 NR 27
55842 TC 2
55843 SN 0026-3672
55844 J9 MIKROCHIM ACTA
55845 JI Mikrochim. Acta
55846 PY 2002
55847 VL 138
55848 IS 1-2
55849 BP 89
55850 EP 93
55851 PG 5
55852 SC Chemistry, Analytical
55853 GA 523CR
55854 UT ISI:000173934700015
55855 ER
55856 
55857 PT J
55858 AU Chen, DY
55859    Zhang, DJ
55860    Deng, SF
55861 TI The novel multi-soliton solutions of the MKdV-Sine Gordon equations
55862 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
55863 DT Article
55864 DE MKdV-Sine Gordon equation; Hirota method; novel multi-soliton solution
55865 ID COLLISIONS
55866 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
55867 RP Chen, DY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
55868 CR CHEN DY, 2000, NOVEL MULTISOLITON S
55869    CHEN DY, 2001, SOLITON SOLUTIONS WR
55870    GU CH, 1986, LETT MATH PHYS, V11, P31
55871    HIROTA R, 1971, PHYS REV LETT, V27, P1192
55872    HIROTA R, 1972, J PHYS SOC JPN, V33, P1459
55873    HIROTA R, 1973, J MATH PHYS, V14, P805
55874    KONNO K, 1974, J PHYS SOC JPN, V37, P171
55875 NR 7
55876 TC 17
55877 SN 0031-9015
55878 J9 J PHYS SOC JPN
55879 JI J. Phys. Soc. Jpn.
55880 PD FEB
55881 PY 2002
55882 VL 71
55883 IS 2
55884 BP 658
55885 EP 659
55886 PG 2
55887 SC Physics, Multidisciplinary
55888 GA 523ZF
55889 UT ISI:000173986900052
55890 ER
55891 
55892 PT J
55893 AU Bian, JJ
55894    Wang, XW
55895    Zhong, YG
55896    Wang, H
55897 TI Preparation and microwave dielectric properties of
55898    (Pb0.45Ca0.55)(Fe1/2Nb1/2)O-3 ceramics by citrate-gel processing route
55899 SO JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
55900 DT Article
55901 AB A synthetic procedure has been developed for the
55902    (Pb0.45Ca0.55)(Fe1/2Nb1/2)O-3 (PCFN) system in terms of liquid-mixed
55903    citrate precursor. The stability of the citrate gels against phase
55904    separation is investigated as a function of the pH value and the
55905    citrate/metal ratio in the initial solution. The elaboration process is
55906    described in detail. A single-phase PCFN powder with a particle size of
55907    30-50 nm can be synthesized at the low temperature of 850 degreesC
55908    using the citrate-gel processing route, which is 200 degreesC lower
55909    than that for the conventional process. Sintering properties and
55910    microwave dielectric properties of specimens derived from the
55911    citrate-gel process were also studied in this paper. A dense compound
55912    with a bulk density up to 6.20 g cm(-3) could be obtained when the
55913    specimens are sintered at 1000 degreesC/4 h. The dense single-phase
55914    PCFN ceramics were found to have microwave dielectric properties of
55915    epsilon(gamma) = 86.2, Q . f = 3450 GHz and tau(f) = 4 ppm
55916    C-degrees(-1). (C) 2002 Kluwer Academic Publishers.
55917 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
55918 RP Bian, JJ, Shanghai Univ, Dept Inorgan Mat, 20 ChenZhong Rd, Shanghai
55919    201800, Peoples R China.
55920 CR HUANG CL, 2000, MATER LETT, V43, P32
55921    ISHZAKI T, 1994, IEEE T MICROW THEORY, V42, P2017
55922    KAGATA H, 1994, NATL TECHNICAL REPOR, V40, P17
55923    KAKIHANA M, 1996, J SOL-GEL SCI TECHN, V6, P7
55924    KAREN P, 1994, J AM CERAM SOC, V77, P547
55925    KATO J, 1992, JPN J APPL PHYS 1, V31, P3144
55926    KIM HT, 1999, J AM CERAM SOC, V82, P3476
55927    NAKANO M, 1993, JPN J APPL PHYS 1, V32, P4314
55928    ONODA M, 1982, JPN J APPL PHYS, V21
55929    ZHOU BQ, 1980, CHEM REAGENTS, P123
55930 NR 10
55931 TC 1
55932 SN 0957-4522
55933 J9 J MATER SCI-MATER ELECTRON
55934 JI J. Mater. Sci.-Mater. Electron.
55935 PD MAR
55936 PY 2002
55937 VL 13
55938 IS 3
55939 BP 125
55940 EP 129
55941 PG 5
55942 SC Engineering, Electrical & Electronic; Materials Science,
55943    Multidisciplinary; Physics, Condensed Matter
55944 GA 524GG
55945 UT ISI:000174004400002
55946 ER
55947 
55948 PT J
55949 AU Li, CP
55950    Ceh, GR
55951 TI Bifurcation from an equilibrium of the steady state
55952    Kuramoto-Sivashinsky equation in two spatial dimensions
55953 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
55954 DT Article
55955 ID NON-LINEAR ANALYSIS; HYDRODYNAMIC INSTABILITY; LAMINAR FLAMES;
55956    PROPAGATION
55957 AB The paper deals with the steady state bifurcations of the
55958    Kuramoto-Sivashinsky (K-S) equation in two spatial dimensions with zero
55959    mean and periodic boundary value conditions. Applying the perturbation
55960    method, asymptotic expressions of the steady state solution branches
55961    that have bifurcated from the equilibrium are obtained. Furthermore,
55962    stability of the bifurcated solution branches is discussed.
55963 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
55964    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
55965 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
55966 CR AMDJADI F, 1997, J COMPUT PHYS, V131, P181
55967    BENNEY DJ, 1966, J MATH PHYS, V45, P150
55968    CHOW SN, 1982, METHODS BIFURCATION
55969    FOIAS C, 1988, J DIFF EQS, V73, P93
55970    GOLUBITSKY M, 1985, SINGULARITIES GROUPS, V1
55971    GOLUBITSKY M, 1988, SINGULARITIES GROUPS, V2
55972    KURAMOTO Y, 1975, PROG THEOR PHYS, V54, P687
55973    KURAMOTO Y, 1976, PROG THEOR PHYS, V55, P356
55974    KURAMOTO Y, 1978, PROG THEOR PHYS    S, V64, P346
55975    LI CP, 1997, J SHANGHAI U, V1, P95
55976    LI CP, 1998, APPL MATH JCU B, V13, P263
55977    LI CP, 2001, INT J BIFURCAT CHAOS, V11, P2493
55978    MICHELSON DM, 1977, ACTA ASTRONAUT, V4, P1207
55979    NICOLAENKO B, 1985, PHYSICA D, V16, P155
55980    ROST M, 1995, PHYSICA D, V88, P1
55981    SIVASHINSKY GI, 1977, ACTA ASTRONAUT, V4, P1177
55982    SIVASHINSKY GI, 1980, SIAM J APPL MATH, V39, P67
55983    TEMAM R, 1988, INFINITE DIMENSIONAL
55984    YANG ZH, 2000, IN PRESS J COMPUT AP
55985 NR 19
55986 TC 2
55987 SN 0218-1274
55988 J9 INT J BIFURCATION CHAOS
55989 JI Int. J. Bifurcation Chaos
55990 PD JAN
55991 PY 2002
55992 VL 12
55993 IS 1
55994 BP 103
55995 EP 114
55996 PG 12
55997 SC Mathematics, Applied; Multidisciplinary Sciences
55998 GA 522NR
55999 UT ISI:000173903900006
56000 ER
56001 
56002 PT J
56003 AU Xu, X
56004    Cao, ZY
56005 TI Linear and nonlinear aerodynamic theory of interaction between flexible
56006    long structure and wind
56007 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
56008 DT Article
56009 DE nonlinear aerodynamic forces; coupled interaction; flutter derivatives
56010 ID BRIDGES; FLOW
56011 AB In light of the characteristics of the interactions between flexible
56012    structure and wind in three directions, and based on the rational
56013    mechanical section-model of structure, a new aerodynamic force model is
56014    accepted, i.e, the coefficients of three component forces are the
56015    functions of the instantaneous attack angle and rotational speed C-t =
56016    C-t (beta(t), 0). (i = D, L, M). So, a new method to formulate the
56017    linear and nonlinear aerodynamic items of wind and structure
56018    interacting has been put forward in accordance with "strip theory" and
56019    modified "quasi-static theory", and then the linear and nonlinear
56020    coupled theory of super-slender structure for civil engineering
56021    analyzing are converged in one model, For the linear aerodynamic-force
56022    parts, the semi-analytical expressions of the items so-called "flutter
56023    derivatives" corresponding to the one in the classic equations have
56024    been given here, and so have the nonlinear parts. The study of the
56025    stability of nonlinear aerodynamic-coupled torsional vibration of the
56026    old Tacoma bridge shows that the form and results of the nonlinear
56027    control equation in rotational direction are in agreement with that of
56028    V. F. Bohm's.
56029 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
56030    Tongji Univ, Dept Engn Mech & Tech, Shanghai 200092, Peoples R China.
56031 RP Xu, X, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
56032    Peoples R China.
56033 CR BOHM VF, 1967, STAHLBAU, V7, P207
56034    BORRI C, 1995, 9 INT C WIND ENG NEW, P839
56035    BRITO JLV, 1995, J WIND ENG IND AEROD, V57, P81
56036    DAVENPORT AG, 1962, P I CIVIL ENG, V23, P389
56037    DIANA G, 1995, 9 INT C WIND ENG NEW, P938
56038    FALCO M, 1992, J WIND ENG IND AEROD, V41, P1321
56039    LIN YK, 1979, J ENG MECH DIV ASCE, V105, P921
56040    LIN YK, 1980, J STRUCTURAL MECHANI, V8, P1
56041    NOVAK M, 1968, BLWT368 U W ONT
56042    PARKINSON GV, 1961, J APPL MECH, V83, P250
56043    PICCARDO G, 1993, J WIND ENG IND AEROD, V48, P241
56044    SARKAR PP, 1994, J ENG MECH-ASCE, V120, P1718
56045    SCANLAN RH, 1971, J ENGINEERING MECHAN, V97, P1717
56046    SCANLAN RH, 1978, J SOUND VIB, V60, P187
56047    SCANLAN RH, 1978, J SOUND VIB, V60, P201
56048    SCANLAN RH, 1987, J ENG MECH-ASCE, V113, P555
56049    SCANLAN RH, 1997, J WIND ENG IND AEROD, V69, P829
56050    SOLARI G, 1994, GUST EXCITED VIBRATI
56051    STEINMANN DG, 1954, ACIER STEEL STAHL, V19, P495
56052    STROMMEN E, 1995, J WIND ENG IND AEROD, V56, P267
56053    XU X, 1998, P 3 INT C NONL MECH, P396
56054    XU X, 1999, J NONLINEAR DYNAMICS, V6, P228
56055 NR 22
56056 TC 0
56057 SN 0253-4827
56058 J9 APPL MATH MECH-ENGL ED
56059 JI Appl. Math. Mech.-Engl. Ed.
56060 PD DEC
56061 PY 2001
56062 VL 22
56063 IS 12
56064 BP 1446
56065 EP 1457
56066 PG 12
56067 SC Mathematics, Applied; Mechanics
56068 GA 523WW
56069 UT ISI:000173981400012
56070 ER
56071 
56072 PT J
56073 AU Chen, W
56074    Wu, Y
56075    Shen, J
56076 TI Corrosion resistance of 316L stainless steel cladded on plain carbon
56077    steel by powder metallurgy
56078 SO POWDER METALLURGY
56079 DT Article
56080 ID MICROSTRUCTURE
56081 AB A sandwich Structure with 316L stainless steel cladding on plain carbon
56082    steel was prepared by means of powder metallurgy processing. The
56083    corrosion performances of the cladding samples were studied by long
56084    term immersion tests and potentiodynamic anodic polarisation tests in
56085    sulphuric acid and ferric chloride solutions. The 316L surface layer,
56086    greater than or equal to 1.0 mm deep produced by PM cladding improves
56087    corrosion resistance in H2SO4 and FeCl3 solutions, although it is
56088    slightly lower than that of PM 316L bulk material. The PM 316L cladding
56089    surface layers have a similar anodic polarisation behaviour to the PM
56090    316L bulk material in H2SO4 and FeCl3 solutions, but the anodic current
56091    density of the PM bulk sample is much smaller than that of the cladding
56092    samples.
56093 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
56094    Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China.
56095 RP Chen, W, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
56096 CR DEDAMBORENA J, 1989, SURFACE ENG, V5, P235
56097    LABARBERA A, 1991, SURF COAT TECH, V46, P317
56098    LUMSDEN JB, 1982, CORROSION METALS PRO, P130
56099    MATHIESEN T, 1994, P INT POWD MET C EXH, V3, P2089
56100    MCCAFFERTY E, 1986, J ELECTROCHEM SOC, V133, P1090
56101    OTERO E, 1995, MATER CHARACT, V35, P145
56102    PARVATHAVARTHINI N, 1992, MATER SCI TECH SER, V8, P1070
56103 NR 7
56104 TC 1
56105 SN 0032-5899
56106 J9 POWDER MET
56107 JI Powder Metall.
56108 PY 2001
56109 VL 44
56110 IS 4
56111 BP 309
56112 EP 312
56113 PG 4
56114 SC Metallurgy & Metallurgical Engineering
56115 GA 520JV
56116 UT ISI:000173779500024
56117 ER
56118 
56119 PT J
56120 AU Wei, JH
56121    Zhu, DP
56122 TI Mathematical Modeling of the argon-oxygen decarburization refining
56123    process of stainless steel: Part I. Mathematical model of the process
56124 SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND
56125    MATERIALS PROCESSING SCIENCE
56126 DT Article
56127 AB Some available mathematical models for the argon-oxygen decarburization
56128    (AOD) stainless steel-making process have been reviewed. The actual
56129    situations of the AOD process, including the competitive oxidation of
56130    the elements dissolved in the molten steel and the changes in the bath
56131    composition, as well as the nonisothermal nature of the process, have
56132    been analyzed. A new mathematical model for the AOD refining process of
56133    stainless steel has been proposed and developed. The model is based on
56134    the assumption that the blown oxygen oxidizes C, Cr, Si, and Mn in the
56135    steel and Fe as a matrix, but the FeO formed is also an oxidant of C,
56136    Cr, Si, and Mn in the steel. All the possible oxidation-reduction
56137    reactions take place simultaneously and reach a combined equilibrium in
56138    competition at the liquid/bubble interfaces. It is also assumed that at
56139    high carbon levels, the oxidation rates of elements are primarily
56140    related to the supplied oxygen rate, and at low carbon levels, the rate
56141    of decarburization is mainly determined by the mass transfer of carbon
56142    from the molten steel bulk to the reaction interfaces. It is further
56143    assumed that the nonreacting oxygen blown into the bath does not
56144    accumulate in the liquid steel and will escape from the bath into the
56145    exhaust gas. The model performs the rate calculations of the refining
56146    process and the mass and heat balances of the system. Also, the effects
56147    of the operating factors, including adding the slag materials, crop
56148    ends, and scrap, and alloy agents; the nonisothermal conditions; the
56149    changes in the amounts of metal and slag during the refining; and other
56150    factors have all been taken into account.
56151 C1 Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China.
56152    Shanghai Wensi Software Ltd Co, Shanghai, Peoples R China.
56153 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China.
56154 CR ASAI S, 1974, METALL T, V5, P651
56155    BAIRD MHI, 1962, CHEM ENG SCI, V17, P87
56156    BURTSEV VT, 1974, DEOXIDATION POWER CA, P3
56157    CHEN JX, 1984, HDB COMMON USING DAT, P383
56158    CHEN JX, 1984, HDB COMMON USING DAT, CH1
56159    CHIPMAN J, 1964, BASIC OPEN HEARTH ST, P531
56160    DAVIES RM, 1950, P ROY SOC LOND A MAT, V200, P375
56161    DIAZ MC, 1997, ISIJ INT, V37, P1
56162    FINE HA, 1979, HDB MAT ENERGY BALAN, P106
56163    FRUEHAN RJ, 1976, IRONMAK STEELMAK, V3, P153
56164    GORGES H, 1978, P 3 INT IR STEEL C C, P161
56165    GORNERUP M, 1999, IRONMAK STEELMAK, V26, P58
56166    LANKFORD WT, 1985, MAKING SHAPING TREAT, P368
56167    LEWIS DA, 1998, P ANN CONV 1998 AISE
56168    MITCHELL A, 1982, I SM, P37
56169    OHNO T, TETSU TO HAGANE, V63, P2094
56170    RAY WH, 1971, PROCESS OPTIMIZATION, P310
56171    REICHEL J, 1995, IRON STEELMAKER, P41
56172    ROY TD, 1978, IRONMAK STEELMAK, V5, P198
56173    ROY TD, 1978, IRONMAK STEELMAK, V5, P207
56174    SIGWORTH GK, 1974, MET SCI, V8, P298
56175    SZEKELY J, 1974, METALL T, V5, P1573
56176    TOHGE T, 1984, P 4 PROC TECHN C IR, P129
56177    TURKDOGAN ET, 1980, PHYSICAL CHEM HIGH T, P14
56178    TURKDOGAN ET, 1980, PHYSICAL CHEM HIGH T, P359
56179    TURKDOGAN ET, 1980, PHYSICAL CHEM HIGH T, P5
56180    TURKDOGAN ET, 1983, PHYSICOCHEMICAL PROP, P422
56181    WEH CH, 1982, P 3 PROC TECHN C MAR, V3, P232
56182    WEI JH, 1986, CHIN J MET SCI TECHN, V2, P11
56183    WEI JH, 1987, ACTA METALL SIN, V23, B126
56184    WEI JH, 1989, CHIN J MET SCI TECHN, V5, P235
56185    WEI JH, 1999, IRONMAK STEELMAK, V26, P363
56186 NR 32
56187 TC 2
56188 SN 1073-5615
56189 J9 METALL MATER TRANS B
56190 JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci.
56191 PD FEB
56192 PY 2002
56193 VL 33
56194 IS 1
56195 BP 111
56196 EP 119
56197 PG 9
56198 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
56199    Engineering
56200 GA 520HW
56201 UT ISI:000173776500011
56202 ER
56203 
56204 PT J
56205 AU Wei, JH
56206    Zhu, DP
56207 TI Mathematical Modeling of the argon-oxygen decarburization refining
56208    process of stainless steel: Part II. Application of the model to
56209    industrial practice
56210 SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND
56211    MATERIALS PROCESSING SCIENCE
56212 DT Article
56213 AB The mathematical model proposed and presented in Part I of the present
56214    work has been used to deal with and analyze the austenitic stainless
56215    steel making (including ultralow-carbon steel) and has been tested on
56216    data of 32 heats obtained in producing 18Cr9Ni-grade steel in an 18-t
56217    argon-oxygen decarburization (AOD) vessel. The results indicated that
56218    the carbon concentrations and bath temperatures at the endpoints of
56219    blowing periods, calculated by the model, are in excellent agreement
56220    with the determined data, and the Cr content after the
56221    predeoxidization, obtained from the model predictions, also agrees very
56222    well with the observed value. The Gibbs free energies of the oxidation
56223    reactions of elements can be used to characterize fully the competitive
56224    oxidation among the elements during the refining process and to
56225    determine reasonably the corresponding distribution ratios of oxygen.
56226    The critical carbon concentration of decarburization (after which the
56227    decarburization changes to become controlled by the mass transfer of
56228    carbon in molten steel) for the AOD refining process of austenitic
56229    stainless steel in an 18-t AOD vessel is in the range of 0.25 to 0.40
56230    mass pet. The model can provide some very useful information and a
56231    reliable basis for optimization of the technology of the AOD refining
56232    process of stainless steel and control of the process in real time and
56233    online.
56234 C1 Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China.
56235    Shanghai Wensi Software Ltd Co, Shanghai, Peoples R China.
56236 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China.
56237 CR BREUER G, 1968, ARCH EISENHUTTENWES, V39, P553
56238    GORGES H, 1978, P 3 INT IR STEEL C C, P161
56239    KOCH K, 1976, ARCH EISENHUTTENWES, V47, P583
56240    NOMURA H, 1973, T ISIJ, V13, P325
56241    OETERS F, 1994, METALLURGH STEELMAKI, CH8
56242    REICHEL J, 1995, IRON STEELMAKER, P41
56243    WEI JH, 1999, IRONMAK STEELMAK, V26, P363
56244    WEI JH, 2002, METALL MATER TRANS B, V33, P111
56245 NR 8
56246 TC 1
56247 SN 1073-5615
56248 J9 METALL MATER TRANS B
56249 JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci.
56250 PD FEB
56251 PY 2002
56252 VL 33
56253 IS 1
56254 BP 121
56255 EP 127
56256 PG 7
56257 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
56258    Engineering
56259 GA 520HW
56260 UT ISI:000173776500012
56261 ER
56262 
56263 PT J
56264 AU You, JL
56265    Jiang, GC
56266    Hou, HY
56267    Wu, YQ
56268    Chen, H
56269    Xu, KD
56270 TI Temperature-dependent Raman spectra and microstructure of barium
56271    metaborate crystals and its melts
56272 SO CHINESE PHYSICS LETTERS
56273 DT Article
56274 ID BETA-BAB2O4; GENERATION; BORATE
56275 AB We have measured the Raman spectra of beta- and alpha-barium metaborate
56276    in crystal and liquid states from room temperature to 1873 K, with a
56277    semiconductor laser as the laser source, coupled with a time-resolved
56278    detection system to eliminate the dense thermal emission background
56279    when temperature was considerably high. Temperature-dependent Raman
56280    spectra can clearly indicate that the phase transformation from beta-
56281    to alpha-barium metaborate has been completed during 1273 - 1300 K.
56282    Variations of different kinds of microstructure units with temperature
56283    are identified and discussed.
56284 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
56285 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
56286    200072, Peoples R China.
56287 CR CHEN C, 1984, 13 IQEC
56288    CHEN C, 1984, SCI SIN B, V7, P598
56289    CHEN C, 1985, SCI SIN B, V28, P235
56290    EDELSTEIN DC, 1988, APPL PHYS LETT, V52, P2211
56291    EIMERL D, 1987, J APPL PHYS, V62, P1968
56292    HUANG ZQ, 1981, ACTA PHYS SINICA, V30, P559
56293    HUBNER KH, 1969, JB NEUES MONATSH, P335
56294    HUDSON B, 1986, SPECTROSCOPY, V1, P22
56295    IMAI S, 1989, APPL PHYS LETT, V54, P1206
56296    JIANG GC, 2000, SPECTROSC SPECT ANAL, V20, P206
56297    KAMITSOS EI, 1989, PHYS CHEM GLASSES, V30, P19
56298    KATO K, 1986, IEEE J QUANTUM ELECT, V22, P1013
56299    LIEBERTZ J, 1983, Z KRISTALLOGR, V165, P91
56300    MIGHELL AD, 1966, ACTA CRYSTALLOGR, V20, P819
56301    RULMONT A, 1989, SPECTROCHIM ACTA A, V45, P603
56302    TANG DY, 2000, CHIN J STRUCT CHEM, V19, P112
56303    VORONKO YK, 1988, ROST KRIST, V16, P178
56304    VORONKO YK, 1992, NEORGANICHESKIE MAT, V28, P1699
56305    VORONKO YK, 1993, J PHYS CHEM SOLIDS, V54, P1579
56306    WANG YF, 1998, J TIANJIN NORMAL U, V18, P12
56307    WEN Q, 2000, SPECTROSC SPECT ANAL, V20, P694
56308    YOU JL, 2001, CHINESE PHYS LETT, V18, P991
56309    YOU JL, 2001, J NON-CRYST SOLIDS, V282, P125
56310 NR 23
56311 TC 1
56312 SN 0256-307X
56313 J9 CHIN PHYS LETT
56314 JI Chin. Phys. Lett.
56315 PD FEB
56316 PY 2002
56317 VL 19
56318 IS 2
56319 BP 205
56320 EP 207
56321 PG 3
56322 SC Physics, Multidisciplinary
56323 GA 521HK
56324 UT ISI:000173834400020
56325 ER
56326 
56327 PT J
56328 AU Zhang, JC
56329    Liu, LH
56330    Dong, C
56331    Li, JQ
56332    Chen, H
56333    Li, XG
56334    Cheng, GS
56335 TI Positron study of microstructure and phase transition in the Fe-doped
56336    YBa2Cu3-xFexOy system
56337 SO PHYSICAL REVIEW B
56338 DT Article
56339 ID ANNIHILATION; SUPERCONDUCTIVITY; YBA2(CU1-XFEX)3O7-Y; YBA2CU3O7-DELTA;
56340    DENSITY; NI
56341 AB A series of YBa2Cu3-xFexOy (x = 0-0.50) samples has been studied by
56342    means of positron annihilation technology, scan electron microscope and
56343    x-ray diffraction. The oxygen contents of the samples have been
56344    measured using a volumetric method. The positron short-lifetime
56345    component tau(1) decreases abruptly between x = 0.12 and 0.15 where the
56346    compound undergoes an O-T phase transition and the tweed microstructure
56347    disappears. We proposed a simple model to describe the dependency of
56348    tau(1) on oxygen vacancy and twin (and tweed) boundary densities. The
56349    experimental results can be satisfactorily explained using this model.
56350    The positron lifetime tau(1) depends not only on the oxygen vacancy
56351    density, but also on the twin and tweed densities. Therefore, the
56352    positron can be used as a sensitive probe for the O-T phase transition
56353    in this system. In addition, analysis of the experimental results also
56354    gives certain indication for Fe clustering when x greater than or equal
56355    to 0.20.
56356 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
56357    Chinese Acad Sci, Inst Phys, Natl Lab Superconduct, Beijing 100080, Peoples R China.
56358    Henan Normal Univ, Dept Phys, Xinxiang 453002, Peoples R China.
56359 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
56360 CR BALOGH AG, 1988, PHYS REV B, V38, P2883
56361    BRANDT W, 1967, POSITRON ANNIHILATIO, P155
56362    CHAKRABORTY B, 1989, PHYS REV B, V39, P215
56363    DONG C, 1999, J APPL CRYSTALLOGR, V32, P838
56364    GASUMYANTS VE, 1992, SFKHT, V5, P674
56365    HAUTOJARVI P, 1983, POSITRONS SOLID, P255
56366    HIROI Z, 1988, JPN J APPL PHYS, V27, L580
56367    ISHIBASHI S, 1990, J PHYS-CONDENS MAT, V2, P3691
56368    ISLAM MS, 1991, PHYS REV B, V44, P9492
56369    JEAN YC, 1990, PHYS REV LETT, V64, P1593
56370    KATSUYAMA S, 1989, PHYSICA C, V165, P405
56371    NAROZHNYI VN, 1996, PHYS REV B, V53, P5856
56372    PUSKA MJ, 1994, REV MOD PHYS, V66, P841
56373    RISTO Z, 1991, J PHYS CHEM SOLIDS, V52, P1577
56374    SEEGER A, 1973, J PHYS F MET PHYS, V3, P248
56375    SMEDSKJAER LC, 1988, PHYS REV B, V37, P2330
56376    SYDOW JP, 1998, APPL PHYS LETT, V72, P3512
56377    TARASCON JM, 1988, PHYS REV B, V37, P7458
56378    VONSTETTEN EC, 1988, PHYS REV LETT, V60, P2198
56379    WESTERHOLT K, 1989, PHYS REV B, V39, P11680
56380    XU YW, 1989, PHYS REV B, V39, P6667
56381    ZHANG H, 1990, PHYS STATUS SOLIDI A, V121, K207
56382    ZHANG J, 1999, PHYS LETT A, V236, P452
56383    ZHANG JC, 1993, PHYS REV B, V48, P16830
56384 NR 24
56385 TC 10
56386 SN 1098-0121
56387 J9 PHYS REV B
56388 JI Phys. Rev. B
56389 PD FEB 1
56390 PY 2002
56391 VL 65
56392 IS 5
56393 AR 054513
56394 DI ARTN 054513
56395 PG 7
56396 SC Physics, Condensed Matter
56397 GA 518BQ
56398 UT ISI:000173647000086
56399 ER
56400 
56401 PT J
56402 AU Fang, SS
56403    Lin, GW
56404    Zhang, JL
56405    Zhou, ZQ
56406 TI The maximum solid solubility of the transition metals in palladium
56407 SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
56408 DT Article
56409 DE palladium alloys; solid solubility; electronegativity difference;
56410    atomic size parameters; covalent electron
56411 AB The maximum solid solubility limit (C-max) of transition metals
56412    dissolved in palladium can be described as an equation in
56413    semi-empirical theories with parameters such as electronegativity
56414    difference, atomic diameter and covalent electrons. It has been found
56415    that the electronegativity difference and the covalent electron number
56416    mainly affected the C-max of transition metals in palladium. The atomic
56417    size parameter had the smallest effect on the C-max. (C) 2002
56418    International Association for Hydrogen Energy. Published by Elsevier
56419    Science Ltd. All rights reserved.
56420 C1 Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China.
56421 RP Zhou, ZQ, Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072,
56422    Peoples R China.
56423 CR BENNETT LH, 1980, THEORY ALLOY PHASE F, P1
56424    BENNETT LH, 1980, THEORY ALLOY PHASE F, P390
56425    DARKEN LS, 1953, PHYSICAL CHEM METALS, P74
56426    MASSALSKI TB, 1986, BINARY ALLOY PHASE D
56427    MIEDEMA AR, 1980, THEORY ALLOY PHASE F, P344
56428    XIAO JM, 1985, ENERGETICS ALLOYS, P296
56429    ZHOU ZQ, 1997, P 97 MAT S CHIN SPON, P37
56430 NR 7
56431 TC 4
56432 SN 0360-3199
56433 J9 INT J HYDROGEN ENERG
56434 JI Int. J. Hydrog. Energy
56435 PD MAR
56436 PY 2002
56437 VL 27
56438 IS 3
56439 BP 329
56440 EP 332
56441 PG 4
56442 SC Physics, Atomic, Molecular & Chemical; Energy & Fuels; Environmental
56443    Sciences
56444 GA 518PA
56445 UT ISI:000173676000007
56446 ER
56447 
56448 PT J
56449 AU Li, D
56450    Sun, XL
56451    Biswal, MP
56452    Gao, F
56453 TI Convexification, concavification and monotonization in global
56454    optimization
56455 SO ANNALS OF OPERATIONS RESEARCH
56456 DT Article
56457 DE global optimization; monotonic function; convexification;
56458    concavification; monotonization; concave minimization; DC programming
56459 ID NONCONVEX OPTIMIZATION; NONINFERIOR FRONTIER
56460 AB We show in this paper that via certain convexification, concavification
56461    and monotonization schemes a nonconvex optimization problem over a
56462    simplex can be always converted into an equivalent better-structured
56463    nonconvex optimization problem, e.g., a concave optimization problem or
56464    a D.C. programming problem, thus facilitating the search of a global
56465    optimum by using the existing methods in concave minimization and D.C.
56466    programming. We first prove that a monotone optimization problem (with
56467    a monotone objective function and monotone constraints) can be
56468    transformed into a concave minimization problem over a convex set or a
56469    D.C. programming problem via pth. power transformation. We then prove
56470    that a class of nonconvex minimization problems can be always reduced
56471    to a monotone optimization problem, thus a concave minimization problem
56472    or a D.C. programming problem.
56473 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
56474    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
56475    Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India.
56476 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management,
56477    Shatin, Hong Kong, Peoples R China.
56478 CR BARHEN J, 1997, SCIENCE, V276, P1094
56479    CVIJOVIC D, 1995, SCIENCE, V267, P664
56480    GE R, 1990, MATH PROGRAM, V46, P191
56481    HOFFMAN KL, 1981, MATH PROGRAM, V20, P22
56482    HORST R, 1984, EUR J OPER RES, V15, P382
56483    HORST R, 1993, GLOBAL OPTIMIZATION
56484    HORST R, 1996, INTRO GLOBAL OPTIMIZ
56485    KAN AHG, 1989, HDB OPERATIONS RES M, V1, P631
56486    LI D, 1995, J OPTIMIZ THEORY APP, V85, P309
56487    LI D, 1996, J OPTIMIZ THEORY APP, V88, P177
56488    LI D, 1998, J OPTIMIZ THEORY APP, V99, P183
56489    LI D, 2000, J OPTIMIZ THEORY APP, V104, P109
56490    PARDALOS PM, 1987, CONSTRAINED GLOBAL O
56491    RAO SS, 1996, ENG OPTIMIZATION THE
56492    RUBIN GM, 1999, MOL BIOL CELL, V10, P1
56493    TUY H, 1994, HDB GLOBAL OPTIMIZAT, P149
56494    TZAFESTAS SG, 1980, INT J SYST SCI, V11, P455
56495    XU ZK, 1997, J OPTIMIZ THEORY APP, V94, P739
56496 NR 18
56497 TC 5
56498 SN 0254-5330
56499 J9 ANN OPER RES
56500 JI Ann. Oper. Res.
56501 PY 2001
56502 VL 105
56503 BP 213
56504 EP 226
56505 PG 14
56506 SC Operations Research & Management Science
56507 GA 518UH
56508 UT ISI:000173685900012
56509 ER
56510 
56511 PT J
56512 AU Wang, H
56513    Ren, ZM
56514    Deng, K
56515    Xu, KD
56516 TI Effects of a static magnetic field on solidification structure of MnBi
56517    phase in semi-solidified Bi-Mn alloy
56518 SO ACTA METALLURGICA SINICA
56519 DT Article
56520 DE magnetic field; Bi-Mn alloy; MnBi; semi-solidification; alignment;
56521    magnetic property
56522 AB Influences of a static magnetic field (0-1.0 T) on the solidification
56523    structure and magnetic property of the semi-solidified Bi-3%Mn and
56524    Bi-6%Mn alloys have been investigated. In the present of the magnetic
56525    field, the alloys were maintained at semi-solid state for a certain
56526    time and then solidified. It was shown that alignment and preferential
56527    growth of MnBi crystals along the applied field occurred. The alignment
56528    degree of MnBi was increased with the increase of the applied field,
56529    and the mean length of elongated MnBi crystals was increased with the
56530    increase of the applied field and the prolongation of solidification
56531    time. Moreover, the remained magnetic flux intensity along the aligned
56532    direction of Bi-Mn alloys in the case with a magnetic field was found
56533    to be strongly anisotropic and nearly double of that without magnetic
56534    field. A model was proposed to explain the alignment and preferential
56535    growth of ferromagnetic MnBi crystals in a magnetic field in terms of
56536    the magnetic anisotropism and the interaction between the crystals.
56537 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
56538 RP Ren, ZM, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R
56539    China.
56540 CR DECARLO JL, 1984, METALL TRANS A, V15, P2155
56541    FENG D, 1998, PHYSICS METAL, V4, P460
56542    GUO X, 1991, J APPL PHYS 2B, V69, P6067
56543    KATSUKI A, 1996, CHEM LETT, P607
56544    MIKELSON AE, 1981, J CRYST GROWTH, V52, P524
56545    MOFFATT WG, 1984, HDB BINARY PHASE DIA
56546    MORIKAWA H, 1998, MATER T JIM, V39, P814
56547    RANGO PD, 1991, NATURE, V349, P770
56548    SAVITSKY EM, 1981, J CRYST GROWTH, V52, P519
56549    SHETTY MN, 1987, J MATER SCI, V22, P1908
56550    WAN DF, 1987, PHYSICS MAGNETISM, P8
56551    WANG H, 2000, CHIN SCI ABSTR, V6, P240
56552    WANG H, 2001, MATER SCI ENG, V19, P119
56553    WANG H, 2001, MATER SCI ENG, V19, P136
56554    YASUDA H, 2000, 3 INT S EL PROC MAT, P647
56555 NR 15
56556 TC 13
56557 SN 0412-1961
56558 J9 ACTA METALL SIN
56559 JI Acta Metall. Sin.
56560 PD JAN 18
56561 PY 2002
56562 VL 38
56563 IS 1
56564 BP 41
56565 EP 46
56566 PG 6
56567 SC Metallurgy & Metallurgical Engineering
56568 GA 519TZ
56569 UT ISI:000173742700009
56570 ER
56571 
56572 PT J
56573 AU Wang, CG
56574    Bai, YJ
56575 TI Investigation on the surface coating of grinding balls
56576 SO RARE METALS
56577 DT Article
56578 DE coating; ball grinding; plastic deformation
56579 AB The surface coating of grinding balls was investigated experimentally.
56580    The results show that a coating may form on the surface of grinding
56581    balls when Cr or Al powders are subjected to ball grinding. The plastic
56582    deformation of the ball surface plays an important role during the
56583    coating formation, and the strong binding force between the powders and
56584    the balls is a necessary pre-condition. The thickness of coating
56585    increases with the plasticity of the powders and the balls. Annealing
56586    the balls with coating will result in an obvious diffusion of the
56587    elements in the bonding zone of interface.
56588 C1 Shandong Univ, Coll Mat Sci & Engn, Jinan 250061, Peoples R China.
56589    Shanghai Univ Sci & Technol, Dept Mech, Jinan 250031, Peoples R China.
56590 RP Wang, CG, Shandong Univ, Coll Mat Sci & Engn, Jinan 250061, Peoples R
56591    China.
56592 CR BENJAMIN JS, 1977, MET T A, V8, P1301
56593    GREGORY JK, 1985, METALL TRANS A, V16, P777
56594    HASHIMOTO H, 1994, MATER T JIM, V35, P40
56595    HUANG JY, 1994, J MATER SCI LETT, V13, P1201
56596    KOBAYASHI K, 1995, MATER T JIM, V36, P134
56597    QI BS, 1999, ACTA METALL SIN, V12, P607
56598    SUNDARESAN R, 1987, J MET, V39, P22
56599    WHITTENBERGER DL, 1981, METALL T A, V12, P845
56600 NR 8
56601 TC 0
56602 SN 1001-0521
56603 J9 RARE METALS
56604 JI Rare Metals
56605 PY 2001
56606 VL 20
56607 IS 4
56608 BP 259
56609 EP 264
56610 PG 6
56611 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
56612    Engineering
56613 GA 516XM
56614 UT ISI:000173582100012
56615 ER
56616 
56617 PT J
56618 AU Wang, G
56619    Gan, F
56620    Wang, J
56621    Yang, L
56622    Wang, G
56623    Xu, Z
56624 TI Spectroscopic investigations of a novel push-pull azo compound embedded
56625    in rigid polymer
56626 SO JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS
56627 DT Article
56628 DE organic compounds; thin films; optical properties
56629 ID REFRACTIVE-INDEX CHANGE; DOPED LIQUID-CRYSTALS; 2ND-HARMONIC
56630    GENERATION; FILMS; DYE; PHOTOISOMERIZATION; POLARIZATION
56631 AB A new heterocyclic push-pull azo compound-in-poly(methymethacrylate)
56632    (PMMA) film has been made by means of the spin-coating method. The
56633    spectroscopic properties of the films have been investigated with the
56634    steady-state absorption spectra, and steady-state fluorescence and
56635    femtosecond time-resolved fluorescence spectra in the first time, which
56636    is an important characteristic for the application of the film. The
56637    excited singlet (S-1) state lifetimes for trans and cis isomers of the
56638    film at room temperature have been measured. The excited triplet (T-1)
56639    state lifetime of cis isomer of the film has been obtained. The
56640    electronic structure of the film has been explained. The results show
56641    that the aggregate state of the azo molecules greatly influences its
56642    absorption spectra. (C) 2002 Elsevier Science Ltd. All rights reserved.
56643 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200433, Peoples R China.
56644    Acad Sinica, Shanghai Inst Opt & Fine Mech, High Intens Light Opt Lab, Shanghai 201800, Peoples R China.
56645 RP Wang, G, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200433, Peoples R
56646    China.
56647 CR AOKI H, 1996, JPN J APPL PHYS 1, V35, P168
56648    BACH H, 1996, J PHYS CHEM-US, V100, P4135
56649    BING X, 1996, ACTA OPT SINICA, V16, P1023
56650    CHEN AG, 1992, OPT LETT, V17, P441
56651    COUTURE JJA, 1991, APPL OPTICS, V30, P2858
56652    EGAMI C, 1997, APPL PHYS B-LASERS O, V64, P471
56653    FULONG T, 1995, J APPL PHYS, V78, P5884
56654    GUANGBIN W, 1998, P SOC PHOTO-OPT INS, V3562, P51
56655    HEQING Y, 1990, NORMAL U, V2, P45
56656    IKEDA T, 1993, NATURE, V361, P428
56657    JIANG SD, 1994, OPT COMMUN, V106, P173
56658    KIPPELEN B, 1994, OPT LETT, V19, P68
56659    LEE GJ, 1995, APPL OPTICS, V34, P138
56660    LEE M, 1986, J CHEM PHYS, V85, P4341
56661    LEGGE CH, 1992, J PHYS D APPL PHYS, V25, P492
56662    MALKIN S, 1962, J PHYS CHEM-US, V66, P2482
56663    MEERHOLZ K, 1994, NATURE, V371, P497
56664    MOHAJERANI E, 1992, OPT COMMUN, V92, P403
56665    MORTAZAVI MA, 1989, J OPT SOC AM B, V6, P733
56666    PHAM VP, 1995, APPL PHYS A-MATER, V60, P239
56667    SEKKAT Z, 1992, J APPL PHYS, V71, P1543
56668    SHI YQ, 1991, APPL PHYS LETT, V58, P1131
56669    TOMOV IV, 1991, J APPL PHYS, V70, P36
56670    TOMOV IV, 1991, J OPT SOC AM B, V8, P1477
56671    WEISS V, 1993, OPT LETT, V18, P1089
56672    ZHIZHAN X, 1997, SCI CHINA SER A, V27, P460
56673 NR 26
56674 TC 2
56675 SN 0022-3697
56676 J9 J PHYS CHEM SOLIDS
56677 JI J. Phys. Chem. Solids
56678 PD MAR
56679 PY 2002
56680 VL 63
56681 IS 3
56682 BP 501
56683 EP 506
56684 PG 6
56685 SC Chemistry, Multidisciplinary; Physics, Condensed Matter
56686 GA 516DA
56687 UT ISI:000173535500019
56688 ER
56689 
56690 PT J
56691 AU Liu, YZ
56692    Yuan, YC
56693    Chan, ZH
56694 TI On the combustion mechanism and development of the distillers'
56695    grain-fired boiler
56696 SO APPLIED THERMAL ENGINEERING
56697 DT Article
56698 DE the distillers' grain-fired boiler; combustion mechanism; wastes
56699 AB The utilization of wastes for energy purposes can solve the problems of
56700    energy shortage and environmental protection simultaneously. On the
56701    basis of the studies on the combustion mechanism of the distillers'
56702    grains, a kind of the distillers' grain-fired boiler is designed and
56703    its design features are described in this paper. The operation of this
56704    boiler shows that its performance has achieved the desired results of
56705    energy-saving, environmental protection and comprehensive utilization
56706    of ash. Besides, the distillers' grain-fired boiler is also suitable
56707    for other biomass fuels. (C) 2002 Elsevier Science Ltd. All rights
56708    reserved.
56709 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
56710 RP Liu, YZ, Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093,
56711    Peoples R China.
56712 CR BHATTACHARYA SC, 1987, ENERGY RES, V11, P429
56713    CHENG GY, 1998, J COMBUSTION SCI TEC, V4, P193
56714    LI P, 2000, IND BOILERS, V1, P31
56715    LIU H, 1995, ENERGY SAVING TECHNO, V3, P10
56716    LIU YQ, 1999, IND BOILERS, P2
56717    ZHAI XM, 2000, IND BOILERS, V2, P9
56718    ZHANG JJ, 1999, ACTA PHYS-CHIM SIN, V15, P15
56719 NR 7
56720 TC 0
56721 SN 1359-4311
56722 J9 APPL THERM ENG
56723 JI Appl. Therm. Eng.
56724 PD FEB
56725 PY 2002
56726 VL 22
56727 IS 3
56728 BP 349
56729 EP 353
56730 PG 5
56731 SC Engineering, Mechanical; Energy & Fuels; Mechanics; Thermodynamics
56732 GA 517XP
56733 UT ISI:000173636000009
56734 ER
56735 
56736 PT J
56737 AU Chen, LQ
56738 TI Chaos in perturbed planar non-Hamiltonian integrable systems with
56739    slowly-varying angle parameters
56740 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
56741 DT Article
56742 DE Melnikov method; perturbed integrable system; transversely homoclinic;
56743    chaos
56744 AB The Melnikov method was extended to perturbed planar non-Hamiltonian
56745    integrable systems with slowly-varying angle parameters. Based on the
56746    analysis of the geometric structure of unperturbed systems, the
56747    condition of transversely homoclinic intersection was established. The
56748    generalized Melnikov function of the perturbed system was presented by
56749    applying the theorem on the differentiability of ordinary differential
56750    equation solutions with respect to parameters. Chaos may occur in the
56751    system if the generalized Melnikov function has simple zeros.
56752 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
56753 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
56754    Shanghai 200072, Peoples R China.
56755 CR CHEN LQ, 1991, NATURE J, V14, P619
56756    CHEN LQ, 1996, J SHANGHAI JIAOTONG, V30, P28
56757    HALE J, 1980, ORDINARY DIFFERENTIA
56758    HOLMES PJ, 1980, SIAM J APPL MATH, V38, P65
56759    HOLMES PJ, 1980, SIAM J APPL MATH, V40, P167
56760    JIANG JF, 1987, MATH APPL SINICA, V10, P504
56761    LIU ZR, 1987, MODERN MATH MECH, P269
56762    WIGGINS S, 1988, GLOBAL BIFURCATIONS
56763    WIGGINS S, 1994, NORMALLY HYPERBOLIC
56764 NR 9
56765 TC 0
56766 SN 0253-4827
56767 J9 APPL MATH MECH-ENGL ED
56768 JI Appl. Math. Mech.-Engl. Ed.
56769 PD NOV
56770 PY 2001
56771 VL 22
56772 IS 11
56773 BP 1301
56774 EP 1305
56775 PG 5
56776 SC Mathematics, Applied; Mechanics
56777 GA 516EB
56778 UT ISI:000173538000009
56779 ER
56780 
56781 PT J
56782 AU Guo, BY
56783    He, SN
56784    Ma, HP
56785 TI Chebyshev spectral-finite element method for two-dimensional unsteady
56786    Navier-Stokes equation
56787 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
56788 DT Article
56789 DE Navier-Stokes equation; Chebyshev spectral-finite element method
56790 AB A mixed Chebyshev spectral-finite element method is proposed for
56791    solving two-dimensional unsteady Navier-Stokes equation. The
56792    generalized stability and convergence axe proved. The numerical results
56793    show the advantages of this method.
56794 C1 Shanghai Normal Univ, Sch Math Sci, Shanghai 200234, Peoples R China.
56795    Aircraft Coll China, Dept Foundamentary Sci, Tianjin 300300, Peoples R China.
56796    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
56797 CR CANUTO C, 1984, NUMER MATH, V44, P201
56798    CANUTO C, 1984, SPECTRAL METHODS PAR, P55
56799    CANUTO C, 1988, SPECTRAL METHOD FLUI
56800    CIARLET PG, 1978, FINITE ELEMENT METHO
56801    GUO BY, 1988, DIFFERENCE METHODS P
56802    GUO BY, 1989, J COMPUT PHYS, V84, P259
56803    GUO BY, 1993, SIAM J NUMER ANAL, V30, P1066
56804    GUO BY, 1995, SIAM J NUMER ANAL, V33, P1169
56805    GUO BY, 1996, APPL MATH JCU B, V11, P377
56806    GUO BY, 1998, SPECTRAL METHODS THE
56807    LIONS JL, 1968, PROBLEMES LIMITES NO, V1
56808 NR 11
56809 TC 0
56810 SN 0254-9409
56811 J9 J COMPUT MATH
56812 JI J. Comput. Math.
56813 PD JAN
56814 PY 2002
56815 VL 20
56816 IS 1
56817 BP 65
56818 EP 78
56819 PG 14
56820 SC Mathematics, Applied; Mathematics
56821 GA 515EZ
56822 UT ISI:000173483600006
56823 ER
56824 
56825 PT J
56826 AU Xu, H
56827    Shao, J
56828 TI Molecular dynamics simulation of fast Li+ conduction in fluoroborate
56829    glasses
56830 SO ACTA PHYSICO-CHIMICA SINICA
56831 DT Article
56832 DE molecular dynamics simulation; fluoroborate glass; fast ion conductor;
56833    conductivity; non-crystal material
56834 AB The conductivities in Fluoroborate glasses were calculated by molecular
56835    dynamics simulation method at near and higher than glass transition
56836    temperatures. There are seven simulated systems which coverd almost all
56837    glass formation area in Li2O-LiF-B2O3 system. The limited
56838    conductivities and their change with temperature, activition energy of
56839    MD simulation are well in agreement with experimental data.
56840    Some early researches showed that in fast conducting solid electrolytes
56841    one of their typical characteristics is that only one kind of carrier
56842    ion migrates. It was shown that in our simulation the contribution to
56843    electrical conductivity from F ion must be taken into account. Using
56844    activation energy data, the relative conductivites among those
56845    simulated systems and experimental systems can be explained perfectly.
56846 C1 Changshu Coll, Dept Chem, Changshu 215500, Peoples R China.
56847    Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
56848 RP Xu, H, Changshu Coll, Dept Chem, Changshu 215500, Peoples R China.
56849 CR ANDO H, 1994, ACCOUNTS CHEM RES, V27, P265
56850    ANGELL CA, 1989, REV SOLID STATE SCI, V3, P465
56851    ANGELL CA, 1994, NUOVO CIMENTO D, V16, P993
56852    BUSING WR, 1972, J CHEM PHYS, V57, P3008
56853    MARCH NH, 1985, AMORPHOUS SOLID LIQU
56854    SHAO J, 1990, ACTA PHYS SINICA, V39, P245
56855    SHAO J, 1993, ACTA METALLURGICA SI, V29, B11
56856    SMEDLEY SI, 1987, MAT RES B, V15, P421
56857    VIDEA M, 1999, J PHYS CHEM B, V103, P4185
56858    WOODCOCK LV, 1976, J CHEM PHYS, V65, P1565
56859    XU H, 1999, ACTA METALLURGICA SI, V35, P1065
56860    XU H, 2000, ACTA PHYS-CHIM SIN, V16, P512
56861 NR 12
56862 TC 3
56863 SN 1000-6818
56864 J9 ACTA PHYS-CHIM SIN
56865 JI Acta Phys.-Chim. Sin.
56866 PD JAN
56867 PY 2002
56868 VL 18
56869 IS 1
56870 BP 10
56871 EP 13
56872 PG 4
56873 SC Chemistry, Physical
56874 GA 513FU
56875 UT ISI:000173367900003
56876 ER
56877 
56878 PT J
56879 AU Jiang, WZ
56880    Qiu, XJ
56881    Zhu, ZY
56882    He, ZJ
56883 TI Gluonic contributions in a four-fermion interaction model
56884 SO PHYSICAL REVIEW C
56885 DT Article
56886 ID JONA-LASINIO MODEL; ADDITIONAL 4-FERMION INTERACTION; CHIRAL-SYMMETRY
56887    BREAKING; GAUGED NJL MODEL; QUARK CONDENSATE; THERMODYNAMICS; SYSTEM
56888 AB The gap equation for the fermion in nuclear medium is obtained in a
56889    two-flavor gauged Nambu-Jona-Lasino (NJL) model using the
56890    Schwinger-Dyson (SD) equations. The gap equation is solved with a
56891    quenched truncation. Compared to the four-fermion interaction, the
56892    one-gluon-exchange interaction accounts for considerable contributions
56893    (about 15-50%) to dynamically generated fermion mass. With
56894    incorporation of gluonic contributions into a scheme where there is
56895    only four-fermion interaction, the four-fermion coupling constant is
56896    made density dependent. Impacts of the density-dependent four-fermion
56897    (DDFF) coupling constants on quantities,, such as the fermion mass and
56898    the chiral order parameter as well as masses of mesons (sigma, pi), are
56899    estimated, The DDFF coupling constants lead to less density dependence
56900    of hadron masses and the larger critical density of chiral symmetry
56901    restoration than those from the pure four-fermion interaction, The
56902    calculated quantities are somehow dependent on the confinement scale
56903    Lambda(QCD). However, the range of Lambda(QCD) in the present
56904    parametrization can be determined by the saturation property of the
56905    gluonic contribution in the medium and it turns out quite small.
56906 C1 Natl Lab Heavy Ion Accelerator, Ctr Theoret Nucl Phys, Lanzhou 730000, Peoples R China.
56907    Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
56908    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
56909 RP Jiang, WZ, Natl Lab Heavy Ion Accelerator, Ctr Theoret Nucl Phys,
56910    Lanzhou 730000, Peoples R China.
56911 CR ALKOFER R, 1996, PHYS REP, V265, P139
56912    APPELQUIST T, 1988, P 12 J HOPK WORKSH C
56913    BARDEEN WA, 1989, NUCL PHYS B, V323, P493
56914    BARDEEN WA, 1990, PHYS REV D, V41, P1647
56915    BERNARD V, 1987, PHYS REV D, V36, P818
56916    BERNARD V, 1988, NUCL PHYS A, V489, P647
56917    BIJNENS J, 1991, PHYS LETT B, V273, P483
56918    BIJNENS J, 1996, PHYS REP, V265, P369
56919    CHRISTOV CV, 1990, NUCL PHYS A, V510, P689
56920    CUGNON J, 1996, NUCL PHYS A, V598, P515
56921    ELIZALDE E, 1994, PHYS REV D, V49, P5551
56922    GEYER B, 1996, PHYS REV D, V53, P7321
56923    HARADA M, 1994, PROG THEOR PHYS, V92, P1161
56924    HATSUDA T, 1994, PHYS REP, V247, P221
56925    HENLEY EM, 1990, NUCL PHYS A, V513, P667
56926    HIGASHIJIMA K, 1984, PHYS REV D, V29, P1228
56927    HINCHLIFFE I, 1996, PHYS REV D, V54, P77
56928    KING SF, 1990, PHYS LETT B, V241, P249
56929    KONDO K, 1989, PHYS REV D, V39, P2430
56930    KONDO K, 1993, MOD PHYS LETT A, V8, P2859
56931    KONDO KI, 1991, MOD PHYS LETT A, V6, P3385
56932    LEUNG CN, 1986, NUCL PHYS B, V273, P649
56933    LI GQ, 1994, PHYS LETT B, V338, P118
56934    MARCIANO WJ, 1984, PHYS REV D, V29, P580
56935    MIRANSKY VA, 1989, MOD PHYS LETT A, V4, P129
56936    MIRANSKY VA, 1989, MOD PHYS LETT A, V4, P1409
56937    MIRANSKY VA, 1989, PHYS LETT B, V221, P177
56938    NAMBU Y, 1961, PHYS REV, V122, P345
56939    REINDERS LJ, 1985, PHYS REP, V127, P1
56940    ZHUANG P, 1994, NUCL PHYS A, V576, P525
56941 NR 30
56942 TC 0
56943 SN 0556-2813
56944 J9 PHYS REV C
56945 JI Phys. Rev. C
56946 PD JAN
56947 PY 2002
56948 VL 65
56949 IS 1
56950 AR 015210
56951 DI ARTN 015210
56952 PG 9
56953 SC Physics, Nuclear
56954 GA 512EK
56955 UT ISI:000173308000052
56956 ER
56957 
56958 PT J
56959 AU Ling, LW
56960    Wu, WB
56961    Jiang, DL
56962    Tan, SH
56963    Huang, ZR
56964 TI Dispersion and rheology of SiC whisker in mullite slurry
56965 SO JOURNAL OF INORGANIC MATERIALS
56966 DT Article
56967 DE mullite; SiC whisker; dispersant; sedimentational volumn
56968 ID MECHANICAL-PROPERTIES; COMPOSITES
56969 AB The character of dispersion of SiC whiskers in mullite slurry was
56970    studied. The relationship between pH value or/and dispersant and
56971    dispersion of SiC whisker was discussed via the sedimentation
56972    experiment and rheology test. The results show that the rheological
56973    properties of the mullite slurry are affected by the addition of the
56974    whisker. Well dispersed slurry can be obtained with pH value and
56975    dispersant content as 11wt% and 5wt%, respectively. The dispersion
56976    techniques in the study can improve the character of dispersion of SiC
56977    whisker in mullite slurry, increasing the structure uniformity of the
56978    slurry.
56979 C1 Shanghai Univ, Coll Mat, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
56980    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
56981 RP Ling, LW, Shanghai Univ, Coll Mat, Dept Inorgan Mat, Shanghai 201800,
56982    Peoples R China.
56983 CR ARMOR JN, 1988, J AM CERAM SOC, V71, P938
56984    BECHER PF, 1988, J AM CERAM SOC, V71, P148
56985    HIRATA Y, 1990, J CERAM SOC JPN, V98, P951
56986    HIRATA Y, 1990, J MATER RES, V5, P640
56987    HIRATA Y, 1991, J AM CERAM SOC, V74, P2438
56988    HOMENY J, 1987, AM CERAM SOC BULL, V66, P333
56989    LIO S, 1989, J AM CERAM SOC, V72, P1880
56990    RUH R, 1988, J AM CERAM SOC, V71, P503
56991    SAMANTA SC, 1985, CERAM ENG SCI P, V6, P663
56992    USHIFUSA N, 1991, J AM CERAM SOC, V74, P2443
56993    WEI GC, 1987, AM CERAM SOC B, V66, P3339
56994 NR 11
56995 TC 0
56996 SN 1000-324X
56997 J9 J INORG MATER
56998 JI J. Inorg. Mater.
56999 PD NOV
57000 PY 2001
57001 VL 16
57002 IS 6
57003 BP 1084
57004 EP 1088
57005 PG 5
57006 SC Materials Science, Ceramics
57007 GA 512HY
57008 UT ISI:000173320000009
57009 ER
57010 
57011 PT J
57012 AU Pu, DG
57013    Tian, WW
57014 TI Globally convergent inexact generalized Newton's methods for nonsmooth
57015    equations
57016 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
57017 DT Article
57018 DE nonsmooth equations; inexact generalized Newton's method; global
57019    convergence; superlinear convergence rate
57020 AB In this paper, motivated by the Martinez and Qi methods (J. Comput.
57021    Appl. Math. 60 (1995) 127), we propose one type of globally convergent
57022    inexact generalized Newton's methods to solve nonsmooth equations in
57023    which the functions are nondifferentiable, but arc Lipschitz
57024    continuous. The methods make the norm of the functions decreasing.
57025    These methods are implementable and globally convergent. We also prove
57026    that the algorithms have superlinear convergence rates under some mild
57027    conditions. (C) 2002 Published by Elsevier Science B.V.
57028 C1 Tongji Univ, Dept Math, Tongji, Peoples R China.
57029    Shanghai Univ, Dept Math, Shanghai 200041, Peoples R China.
57030 RP Pu, DG, Tongji Univ, Dept Math, Tongji, Peoples R China.
57031 CR CLARKE FH, 1990, OPTIMIZATION NONSMOO
57032    DEMBO RS, 1982, SIAM J NUMER ANAL, V19, P400
57033    DEMBO RS, 1983, MATH PROGRAM, V26, P190
57034    EISENSTAT SC, 1994, SIAM J OPTIMIZ, V4, P393
57035    FISCHER A, 1992, OPTIMIZATION, V24, P269
57036    GOWDA MS, 1998, ALGORIC THEOREMS NON
57037    GOWDA MS, 1998, CHARACTERIZATIONS P
57038    MARTINEZ JM, 1995, J COMPUT APPL MATH, V60, P127
57039    PANG JS, 1995, J OPTIMIZ THEORY APP, V85, P633
57040    PU DG, 1998, J COMPUT APPL MATH, V93, P107
57041    QI L, 1993, MATH PROGRAM, V58, P353
57042    QI L, 1996, 965 AMR U NEW S WAL
57043    QI LQ, 1993, MATH OPER RES, V18, P227
57044 NR 13
57045 TC 0
57046 SN 0377-0427
57047 J9 J COMPUT APPL MATH
57048 JI J. Comput. Appl. Math.
57049 PD JAN 1
57050 PY 2002
57051 VL 138
57052 IS 1
57053 BP 37
57054 EP 49
57055 PG 13
57056 SC Mathematics, Applied
57057 GA 511EV
57058 UT ISI:000173252400003
57059 ER
57060 
57061 PT J
57062 AU Wei, Q
57063    Wang, Q
57064    Shi, JL
57065    Chen, YY
57066 TI Nonlinear interaction between solitons and radiation
57067 SO ACTA PHYSICA SINICA
57068 DT Article
57069 DE dressing method; soliton-like wave; soliton; radiation
57070 ID FIBERS
57071 AB In this paper, the explicit formula of Jost function pairs in the case
57072    of pure radiation is derived by using the dressing method and, the
57073    analysis of the interaction between solitons and radiation is made. It
57074    is found that in the course of transmission, the optical pulse, whose
57075    amplitude decays according to the law of the negative square root of
57076    power index along the propagating direction, ultimately evolves into
57077    the form of soliton-like wave in the absence of radiation. It is
57078    revealed that the factor gamma plays an important role in the spectrum
57079    properties for the output of the optical pulse. The dynamical behaviour
57080    of the evolution of soliton-like waves during the interaction of
57081    solitons and radiation is also analyzed.
57082 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
57083 RP Wei, Q, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
57084 CR ALONSO LM, 1985, PHYS REV D, V32, P1459
57085    GORDON JP, 1983, OPT LETT, V8, P596
57086    KUZNETSOV EA, 1995, PHYSICA D, V87, P201
57087    MANAKOV SV, 1973, ZH EKSP TEOR FIZ, V65, P1392
57088    MOLLENAUER LF, 1985, OPT LETT, V10, P229
57089    MOLLENAUER LF, 1993, ELECTRON LETT, V29, P910
57090    SATSUMA J, 1974, PROGR THEOR PHYS   S, V55, P284
57091    SEGUR H, 1976, J MATH PHYS, V17, P714
57092    ZAKHAROV VE, 1971, ZH EKSP TEOR FIZ, V61, P118
57093    ZAKHAROV VE, 1974, SOV PHYS JETP, V38, P693
57094    ZAKHAROV VE, 1978, ZH EKSP TEOR FIZ, V74, P1953
57095    ZAKHAROV VE, 1980, THEORY SOLITONS
57096 NR 12
57097 TC 2
57098 SN 1000-3290
57099 J9 ACTA PHYS SIN-CHINESE ED
57100 JI Acta Phys. Sin.
57101 PD JAN
57102 PY 2002
57103 VL 51
57104 IS 1
57105 BP 99
57106 EP 103
57107 PG 5
57108 SC Physics, Multidisciplinary
57109 GA 512CZ
57110 UT ISI:000173304700017
57111 ER
57112 
57113 PT J
57114 AU Zhang, JC
57115    Chen, ZP
57116    Li, PL
57117    Cao, SX
57118 TI Positron annihilation in oxygen-deficient YBa2Cu3O7-delta cuprate at 77
57119    K and 300 K
57120 SO MODERN PHYSICS LETTERS B
57121 DT Article
57122 ID SUPERCONDUCTIVITY; TEMPERATURE; LIFETIME; ELECTRON; IMPURITIES;
57123    BEHAVIOR; VACANCY; DENSITY
57124 AB The YBa2Cu3O7-delta cuprate with oxygen-deficiency (delta = 0.06
57125    similar to 0.68) has been systematically studied by positron lifetime
57126    experiment at 77 K and 300 K. It is found that there exists an evident
57127    dependence of positron lifetime parameters on oxygen-deficiency 6 and
57128    an abrupt change near the orthorhombic-tetragonal phase transition. The
57129    local electron density n(e) and vacancy concentration C-v are evaluated
57130    as a function of oxygen deficiency delta. The effect of the mechanism
57131    of charge transfer on local electronic structure is given in detail.
57132    The results show the existence of a weak localization of electrons in
57133    the tetragonal phase. The positron annihilation mechanism and its
57134    relation to superconductivity are also discussed.
57135 C1 CCAST, World Lab, Beijing 100080, Peoples R China.
57136    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
57137    Zhengzhou Inst Light Ind, Dept Phys, Zhengzhou 450002, Peoples R China.
57138 RP Zhang, JC, CCAST, World Lab, POB 8730, Beijing 100080, Peoples R China.
57139 CR BANERJEE T, 2000, SOLID STATE COMMUN, V114, P655
57140    BARBIELLINI B, 1991, PHYS REV B, V43, P7810
57141    BERGERSEN B, 1969, SOLID STATE COMMUN, V7, P1203
57142    BHARATHI A, 1989, J PHYS-CONDENS MAT, V1, P1467
57143    BOBROFF J, 1999, PHYS REV LETT, V83, P4381
57144    BRANDT W, 1971, PHYS LETT          A, V35, P109
57145    CHAKRABORTY B, 1989, PHYS REV B, V39, P215
57146    DE UY, 2000, PHYS REV B, V62, P14519
57147    GINSBERG DM, 1990, PHYSICAL PROPERTIES, P314
57148    GUPTA RP, 1977, PHYS REV LETT, V39, P1212
57149    HAUTOJARRI P, 1979, POSITRON SOLIDS
57150    JEAN YC, 1988, PHYS REV LETT, V60, P1069
57151    JEAN YC, 1990, PHYS REV LETT, V64, P1593
57152    JORGENSEN JD, 1987, PHYS REV B, V36, P5731
57153    JORGENSEN JD, 1991, PHYS TODAY, V44, P34
57154    KWOK WK, 1988, PHYS REV B, V37, P106
57155    TARASCON JM, 1988, PHYS REV B, V37, P7458
57156    VEHANEN A, 1982, PHYS REV B, V25, P762
57157    ZHANG J, 1994, MOD PHYS LETT B, V8, P1577
57158    ZHANG J, 1999, PHYS LETT A, V26, P452
57159    ZHANG JC, 1993, PHYS REV B, V48, P16830
57160    ZHANG QR, 1993, CHIN SCI A, V23, P409
57161 NR 22
57162 TC 0
57163 SN 0217-9849
57164 J9 MOD PHYS LETT B
57165 JI Mod. Phys. Lett. B
57166 PD NOV 10
57167 PY 2001
57168 VL 15
57169 IS 26
57170 BP 1181
57171 EP 1189
57172 PG 9
57173 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
57174 GA 507ZK
57175 UT ISI:000173061400002
57176 ER
57177 
57178 PT J
57179 AU Gao, Y
57180 TI Newton methods for solving nonsmooth equations via a new subdifferential
57181 SO MATHEMATICAL METHODS OF OPERATIONS RESEARCH
57182 DT Article
57183 DE nonsmooth equations; nonsmooth optimization; Newton methods;
57184    inexact-Newton methods; semismoothness; composite functions
57185 AB A new subdifferential for a locally Lipschitzian function is proposed.
57186    Based on this subdifferential, Newton methods and inexact-Newton
57187    methods for solving the system of nonsmooth equations and for solving
57188    the system of equations of smooth compositions of nonsmooth functions,
57189    are developed. The Q-superlinear convergence of Newton methods and the
57190    Q-linear convergence of inexact-Newton methods are shown. The present
57191    Newton methods and inexact-Newton methods could be viewed as the
57192    extensions of previous ones with same convergent results.
57193 C1 Shanghai Univ Sci & Technol, Sch Management, Shanghai 200093, Peoples R China.
57194 RP Gao, Y, Shanghai Univ Sci & Technol, Sch Management, Jungong Rd,
57195    Shanghai 200093, Peoples R China.
57196 CR CHEN WJ, 1996, SCI CHINA SER A, V39, P528
57197    CHEN X, 1997, COMPUTING, V58, P281
57198    CLARKE FH, 1983, OPTIMIZATION NONSMOO
57199    DEMYANOV VF, 1996, QUASIDIFFERENTIABILI
57200    HIRIARTURRUTY JB, 1993, CONVEX ANAL MINIMIZA
57201    MENG F, 1998, J DALIAN U TECHNOLOG, V38, P621
57202    MIFFLIN R, 1977, SIAM J CONTROL OPTIM, V15, P957
57203    ORTEGA JM, 1970, ITERATIVE SOLUTION N
57204    POTRA FA, 1998, NUMER MATH, V80, P305
57205    QI L, 1993, MATH PROGRAM, V58, P353
57206    QI LQ, 1993, MATH OPER RES, V18, P227
57207    SUN DF, 1997, SIAM J OPTIMIZ, V7, P463
57208 NR 12
57209 TC 1
57210 SN 1432-2994
57211 J9 MATH METHODS OPER RES
57212 JI Math. Method Oper. Res.
57213 PD DEC
57214 PY 2001
57215 VL 54
57216 IS 2
57217 BP 239
57218 EP 257
57219 PG 19
57220 SC Mathematics, Applied; Operations Research & Management Science
57221 GA 510DV
57222 UT ISI:000173194200004
57223 ER
57224 
57225 PT J
57226 AU Xu, SB
57227    Zhu, YD
57228    Xing, H
57229    Zhou, BN
57230    Yu, ZX
57231 TI Corrosion resistance of the intermetallic compound, NiAl,in a molten
57232    carbonate fuel cell environment
57233 SO JOURNAL OF POWER SOURCES
57234 DT Article
57235 DE corrosion resistance; molten carbonate; intermetallic compound NiAl
57236 ID SURFACE CHARACTERIZATION METHODS; BIPOLAR PLATE MATERIALS; WET-SEAL
57237    AREA; BEHAVIOR; ALLOYS; NICKEL; OXIDATION; REDUCTION; CHROMIUM; IRON
57238 AB The corrosion resistance of intermetallic NiAl, superalloy GH217 and an
57239    18-8 stainless steel in molten carbonates at 923 K was determined by
57240    weight loss and electrochemical measurements. Morphology and structure
57241    of the corrosion products were characterized using a combination of
57242    electron probe and X-ray diffraction (XRD). The corrosion resistance of
57243    NiAl is the best among the materials investigated. NiAl produces more
57244    protective corrosion products and forms more complete oxide films on
57245    the surface than GH217 or 18-8 stainless steel. (C) 2002 Elsevier
57246    Science B.V. All rights reserved.
57247 C1 Univ New Brunswick, Dept Chem Engn, Fredericton, NB E3B 5A3, Canada.
57248    Shanghai Univ, Dept Mat Sci & Engn, Shanghai, Peoples R China.
57249 RP Xu, SB, Univ New Brunswick, Dept Chem Engn, Fredericton, NB E3B 5A3,
57250    Canada.
57251 CR APPLEBY AJ, 1989, FUEL CELL HDB
57252    BIEDENKOPF P, 1998, ELECTROCHIM ACTA, V44, P683
57253    BRUMM MW, 1992, CORROS SCI, V33, P1677
57254    BRUMM MW, 1994, CORROS SCI, V36, P37
57255    DONADO RA, 1984, J ELECTROCHEM SOC, V131, P2535
57256    FUJIMOTO N, 1998, J POWER SOURCES, V71, P231
57257    HSU HS, 1986, J ELECTROCHEM SOC, V133, P2077
57258    HWANG ER, 1998, J POWER SOURCES, V76, P48
57259    INGRAM MD, 1965, ELECTROCHIM ACTA, V10, P783
57260    JANZ GJ, 1964, ELECTROCHIM ACTA, V9, P1269
57261    KAWABATA Y, 2000, J POWER SOURCES, V86, P324
57262    NISHINA T, 1990, P ELECTROCHEM SOC, V90, P438
57263    NISHINA T, 1992, P INT FUEL CELL C NE, P189
57264    RYBICKI GC, 1989, OXID MET, V32, P431
57265    SAUTHOFF G, 1990, Z METALLKD, V81, P855
57266    SHORES PA, P 3 S MOLT CARB FUEL, P214
57267    TOMCZYK P, 1993, J ELECTROANAL CHEM, V353, P177
57268    UCHIDA I, 1986, J ELECTROANAL CH INF, V206, P229
57269    VOSEN JPT, P 3 INT S CELL TECHN, P278
57270    VOSSEN JPT, 1994, J ELECTROCHEM SOC, V141, P3040
57271    VOSSEN JPT, 1996, J ELECTROCHEM SOC, V143, P58
57272    VOSSEN JPT, 1996, J ELECTROCHEM SOC, V143, P66
57273    XIE G, 1990, J POWER SOURCES, V32, P135
57274    XING H, 2000, J SHANGHAI U, V6, P199
57275    YUH CY, 1987, CORROSION, V87, P176
57276    YUH CY, 1988, AICHE J, V34, P1949
57277    ZHU BH, 1999, CORROS SCI, V41, P1497
57278    ZHU BH, 1999, CORROS SCI, V41, P1515
57279 NR 28
57280 TC 3
57281 SN 0378-7753
57282 J9 J POWER SOURCES
57283 JI J. Power Sources
57284 PD JAN 1
57285 PY 2002
57286 VL 103
57287 IS 2
57288 BP 230
57289 EP 236
57290 PG 7
57291 SC Electrochemistry; Energy & Fuels
57292 GA 509TX
57293 UT ISI:000173166700008
57294 ER
57295 
57296 PT J
57297 AU Li, ZN
57298    Feng, ZZ
57299 TI Counterexamples against some families of chromatically unique graphs
57300 SO DISCRETE MATHEMATICS
57301 DT Article
57302 DE graphs; chromatically unique graphs; chromatic polynomials
57303 AB In this note, we show that there are some counterexamples against two
57304    families of chromatically unique graphs H-5(j,k, l) and H-6(p, q) given
57305    by Koh and Teo ([1],[2]). (C) 2002 Elsevier Science B.V. All rights
57306    reserved.
57307 C1 Shanghai Univ, Dept Appl Math, Shanghai 200041, Peoples R China.
57308 RP Li, ZN, Shanghai Univ, Dept Appl Math, 80 Shanxi Beilu, Shanghai
57309    200041, Peoples R China.
57310 CR KOH KM, 1990, GRAPH COMBINATOR, V6, P259
57311    KOH KM, 1994, DISCRETE MATH, V127, P243
57312    ZU LN, 1997, DISCRETE MATH, V172, P193
57313 NR 3
57314 TC 0
57315 SN 0012-365X
57316 J9 DISCRETE MATH
57317 JI Discret. Math.
57318 PD JAN 28
57319 PY 2002
57320 VL 243
57321 IS 1-3
57322 BP 257
57323 EP 258
57324 PG 2
57325 SC Mathematics
57326 GA 507ZL
57327 UT ISI:000173061500023
57328 ER
57329 
57330 PT J
57331 AU Wan, JTK
57332    Gu, GQ
57333    Yu, KW
57334 TI Nonlinear ER effects in an ac applied field
57335 SO COMPUTER PHYSICS COMMUNICATIONS
57336 DT Article
57337 DE electrorheology; dipole approximation; nonlinear polarization;
57338    multipolar polarizability; multiple images method
57339 ID INTERPARTICLE FORCE; HYPERSPHERICAL INCLUSIONS; ELECTRORHEOLOGICAL
57340    FLUIDS; DIELECTRIC FUNCTION; COMPOSITES; O(C(2))
57341 AB The electric field used in most electrorheological (FR) experiments is
57342    usually quite high, and nonlinear ER effects have been theoretically
57343    predicted and experimentally measured recently.
57344    A direct method of measuring the nonlinear ER effects is to examine the
57345    frequency dependence of the same effects. For a sinusoidal applied
57346    field, we calculate the ac response which generally includes higher
57347    harmonics.
57348    In is work, we develop a multiple image formula, and calculate the
57349    total dipole moments of a pair of dielectric spheres, mbedded in a
57350    nonlinear host. The higher harmonics due to the nonlinearity are
57351    calculated systematically. (C) 2001 Elsevier Science B.V. All rights
57352    reserved.
57353 C1 Chinese Univ Hong Kong, Dept Phys, Sha Tin, Hong Kong, Peoples R China.
57354    Shanghai Univ Sci & Technol, Sch Comp Engn, Shanghai 200093, Peoples R China.
57355 RP Wan, JTK, Chinese Univ Hong Kong, Dept Phys, Sha Tin, Hong Kong,
57356    Peoples R China.
57357 CR CHOY TC, 1998, P ROY SOC LOND A MAT, V454, P1973
57358    CHOY TC, 1998, P ROY SOC LOND A MAT, V454, P1993
57359    FELICI N, 1994, ELECTRORHEOLOGICAL F, P139
57360    GAO L, 2000, PHYS REV E B, V61, P6011
57361    GU GQ, 1992, PHYS REV B, V46, P4502
57362    GU GQ, 2000, PHYSICA B, V279, P62
57363    KLINGENBERG DJ, 1998, MRS BULL, V23, P30
57364    LEVY O, 1995, PHYS REV E, V52, P3184
57365    POLADIAN L, 1991, PHYS REV B, V44, P2092
57366    WAN JTK, 2000, INT J MOD PHYS B, V14, P603
57367    WAN JTK, 2000, PHYS REV E B, V62, P6846
57368    WAN JTK, 2000, PHYSICA B, V279, P75
57369    WAN JTK, 2001, PHYS REV E 1, V63
57370    WAN JTK, 2001, TECHN P 2001 INT C C, P165
57371    WAN WMV, 1996, PHYS REV B, V54, P3946
57372    YU KW, 1993, PHYS REV B, V47, P14150
57373    YU KW, 1996, PHYS LETT A, V210, P115
57374    YU KW, 2000, COMPUT PHYS COMMUN, V129, P177
57375    YU KW, 2000, PHYSICA B, V279, P78
57376 NR 19
57377 TC 1
57378 SN 0010-4655
57379 J9 COMPUT PHYS COMMUN
57380 JI Comput. Phys. Commun.
57381 PD DEC 15
57382 PY 2001
57383 VL 142
57384 IS 1-3
57385 BP 457
57386 EP 463
57387 PG 7
57388 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
57389 GA 508QD
57390 UT ISI:000173099200089
57391 ER
57392 
57393 PT J
57394 AU Wang, Y
57395    Zhang, C
57396    Song, Y
57397    Yang, K
57398    Fang, G
57399    Xin, X
57400 TI Nonlinear refraction and absorption in heterothiometallic planar
57401    clusters
57402 SO APPLIED PHYSICS B-LASERS AND OPTICS
57403 DT Article
57404 ID OPTICAL LIMITING PROPERTIES; CRYSTAL-STRUCTURE
57405 AB The nonlinear absorption and refraction of the clusters
57406    [MoS4Cu4Br2(py)(6)] and [Et4N](2)[MoS4Cu4(SCN)(4) (2-pic)(4)] have been
57407    investigated using the z-scan technique with a ns laser at 532 nm
57408    wavelength. They have the same planar 'open' structures and the same
57409    skeleton metal atoms; the only difference is that the former has
57410    halogen ligands while the latter possesses pseudo-halogen groups - SCN
57411    - as ligands. Alteration of nonlinear refractive index and enhancement
57412    of nonlinear absorption were found in these two clusters. A steady
57413    state model of excited state nonlinear refraction was proposed to
57414    explain this phenomenon.
57415 C1 Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China.
57416    Nanjing Univ, Dept Chem, State Key Lab Coordinat Chem, Nanjing 210093, Peoples R China.
57417    Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
57418 RP Wang, Y, Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China.
57419 CR CHEN ZR, 1995, J PHYS CHEM-US, V99, P8717
57420    FANG G, 2000, OPT COMMUN, V181, P523
57421    FANG GY, 2000, OPT COMMUN, V181, P97
57422    GE P, 1997, J PHYS CHEM B, V101, P27
57423    HEFLIN JR, 1996, OPT SOC A, V9, P179
57424    HOGGARD PE, 1996, CHEM MATER, V8, P2218
57425    HOU HW, 1996, J CHEM SOC FARADAY T, V92, P2343
57426    JI W, 1995, J PHYS CHEM-US, V99, P17297
57427    LI CF, 1994, J OPT SOC AM B, V11, P1356
57428    SALANE G, 1995, INORG CHEM, V34, P4785
57429    SHEIKBAHAE M, 1990, IEEE J QUANTUM ELECT, V26, P760
57430    SHEIKBAHAE M, 1990, PHYS REV LETT, V65, P96
57431    SHI S, 1994, J AM CHEM SOC, V116, P3615
57432    SHI S, 1995, CHEM MATER, V7, P1519
57433    SONG YL, 1999, OPT COMMUN, V168, P131
57434    SONG YL, 2000, OPT COMMUN, V186, P105
57435    TUTT L, 1992, NATURE, V356, P255
57436    ZHANG C, 2001, CHEM COMMUN, V182, P843
57437    ZHENG HG, 1997, J CHEM SOC DALT 0707, P2357
57438 NR 19
57439 TC 0
57440 SN 0946-2171
57441 J9 APPL PHYS B-LASERS OPT
57442 JI Appl. Phys. B-Lasers Opt.
57443 PD JAN
57444 PY 2002
57445 VL 74
57446 IS 1
57447 BP 43
57448 EP 46
57449 PG 4
57450 SC Physics, Applied; Optics
57451 GA 509WC
57452 UT ISI:000173171900007
57453 ER
57454 
57455 PT J
57456 AU Cheng, JL
57457    Li, L
57458    Yu, SJ
57459    Song, Y
57460    Wen, XL
57461 TI Assessing changes in the mechanical condition of rock masses using
57462    P-wave computerized tomography
57463 SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES
57464 DT Article
57465 C1 Shanghai Univ Sci & Technol, Res Inst Special Min, Shandong 271019, Peoples R China.
57466    China Univ Min & Technol, Coll Earth Sci, Xuzhou 221008, Peoples R China.
57467 RP Cheng, JL, Shanghai Univ Sci & Technol, Res Inst Special Min, Shandong
57468    271019, Peoples R China.
57469 CR CHENG JL, 1999, J CHINA COAL SOC, V24, P576
57470    CHENG JL, 2000, ROCKS TEST DETECTION, P91
57471    GUO WJ, 1998, RECENT STUDY PROGRES, P46
57472    NOLET G, 1990, SEISMIC TOMOGRAPHY, P69
57473    WANG YS, 1992, CALCULATION GEOPHYS, V15, P32
57474    YANG WC, 1993, APPL SEISMIC TOMOGRA, P5
57475    YANG WC, 1997, THEORY METHODS GEOPH, P134
57476 NR 7
57477 TC 1
57478 SN 1365-1609
57479 J9 INT J ROCK MECH MINING SCI
57480 JI Int. J. Rock Mech. Min. Sci.
57481 PD OCT
57482 PY 2001
57483 VL 38
57484 IS 7
57485 BP 1065
57486 EP 1070
57487 PG 6
57488 SC Engineering, Geological; Mining & Mineral Processing
57489 GA 506PZ
57490 UT ISI:000172982100012
57491 ER
57492 
57493 PT J
57494 AU Jiang, EX
57495 TI An extension of the roots separation theorem
57496 SO ANNALS OF OPERATIONS RESEARCH
57497 DT Article
57498 DE eigenvalue problem; symmetric tridiagonal matrix; interlace theorem;
57499    divide-and-conquer method
57500 ID TRIDIAGONAL EIGENPROBLEM; DIVIDE
57501 AB Let T-n be an n x n unreduced symmetric tridiagonal matrix with
57502    eigenvalues lambda (1)<<lambda>(2)<... <lambda (n) and W-k, is an (n-1)
57503    x (n-1) submatrix by deleting the kth row and the kth column from T-n,
57504    k = 1, 2,..., n. Let mu (1)less than or equal to mu (2)less than or
57505    equal to...less than or equal to mu (n-1) be the eigenvalues of W-k. It
57506    is proved that if W-k has no multiple eigenvalue, then
57507    lambda (1)<<mu>(1)<<lambda>(2)<<mu>(2)<...<lambda
57508    (n-1)<<mu>(n-1)<<lambda>(n):
57509    otherwise if mu (i) = mu (i+1) is a multiple eigenvalue of W-k, then
57510    the above relationship still holds except that the inequality
57511    mu (i)<<lambda>(i+1)<<mu>(i+1)
57512    is replaced by mu (1)=lambda (i+1)=mu (i+1).
57513 C1 Shanghai Univ, Dept Math, Shanghai, Peoples R China.
57514 RP Jiang, EX, Shanghai Univ, Dept Math, Shanghai, Peoples R China.
57515 CR CUPPEN JJM, 1981, NUMER MATH, V36, P177
57516    DEMMEL JW, 1997, APPL NUMERICAL LINEA
57517    GLADWELL GML, 1986, INVERSE PROBLEMS VIB
57518    GU M, 1995, SIAM J MATRIX ANAL A, V16, P172
57519    HILL RO, 1992, SIAM J MATRIX ANAL A, V13, P239
57520    JIANG EX, 1984, SYMMETRIC MATRIX COM
57521    PAIGE CC, 1971, THESIS U LONDON
57522    RALSTON A, 1968, MATH METHODS DIAGONA
57523    SORENSEN DC, 1991, SIAM J NUMER ANAL, V28, P1752
57524 NR 9
57525 TC 1
57526 SN 0254-5330
57527 J9 ANN OPER RES
57528 JI Ann. Oper. Res.
57529 PY 2001
57530 VL 103
57531 BP 315
57532 EP 327
57533 PG 13
57534 SC Operations Research & Management Science
57535 GA 507TN
57536 UT ISI:000173045500019
57537 ER
57538 
57539 PT J
57540 AU Jiang, XY
57541    Zhang, ZL
57542    Zheng, XY
57543    Wu, YZ
57544    Xu, SH
57545 TI A blue organic emitting diode from anthracene derivative
57546 SO THIN SOLID FILMS
57547 DT Article
57548 DE blue organic emitting diode; anthracene derivative; stability;
57549    distyrylarylene
57550 ID ELECTROLUMINESCENT DEVICE; LAYER; DOPANT
57551 AB A blue, organic, light-emitting diode (OLED) has been made from a new
57552    blue emitting material. The structure of the blue device is indium tin
57553    oxide (ITO)/CuPc/NPB/JBEM:perylene/Alq/MgAg. Here copper phthalocyanine
57554    (CuPc) is used as a buffer layer,
57555    N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) as
57556    the hole transporting layer, 9,10-bis(3'5'-diaryl)phenyl anthracene
57557    (JBEM) as the blue emitting host, perylene as the blue dopant,
57558    Tris(8-guinolinolato) aluminium complex (Alq) as the electron
57559    transporting material, and M-Ag alloy as the cathode. The blue device
57560    has a maximum luminance of 7526 cd/m(2), and the luminance at a
57561    cut-rent density of 20 mA/cm(2) is 408 cd/m(2). It has a maximum
57562    efficiency of 1.45 lm/W., Commission Internationale de l'Eclairage
57563    (CIE) co-ordinates x = 0.14, y = 0.21, and a half-life of 1035 h at
57564    initial luminance of 100 cd/m(2). It shows a better stability than the
57565    blue device from distyrylarylene derivatives as the blue emitting host,
57566    and also perylene as the dopant with the same structure. (C) 2001
57567    Elsevier Science B.V. All rights reserved.
57568 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
57569 RP Jiang, XY, Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R
57570    China.
57571 CR BURROWS PE, 1997, IEEE T ELECTRON DEV, V44, P1188
57572    BURROWS PE, 2000, APPL PHYS LETT, V76, P2493
57573    CHEN CH, 1998, COORDIN CHEM REV, V171, P161
57574    CHOONG VE, 1999, APPL PHYS LETT, V75, P172
57575    ERA M, 1991, CHEM PHYS LETT, V178, P488
57576    GAO ZQ, 1999, APPL PHYS LETT, V74, P865
57577    HAMADA Y, 1992, JPN J APPL PHYS PT 1, V31, P1812
57578    HAMADA Y, 1997, IEEE T ELECTRON DEV, V44, P1208
57579    HAMADA Y, 1999, APPL PHYS LETT, V75, P1682
57580    HOSOKAWA C, 1995, APPL PHYS LETT, V67, P3853
57581    JIANG XZ, 2000, APPL PHYS LETT, V76, P1813
57582    KIDO J, 1995, SCIENCE, V267, P1332
57583    MI BX, 1999, APPL PHYS LETT, V75, P4055
57584    SAKAKIBARA Y, 1999, APPL PHYS LETT, V74, P2587
57585    SHEN ZL, 1997, SCIENCE, V276, P2009
57586    SHI JM, 1997, APPL PHYS LETT, V70, P1665
57587    SHI JM, 1999, 5972247, US
57588    STRUKELJ M, 1996, J AM CHEM SOC, V118, P1213
57589    TANG CW, 1987, APPL PHYS LETT, V51, P913
57590    TAO XT, 1999, APPL PHYS LETT, V75, P1655
57591    YOSHIDA M, 1996, JPN J APPL PHYS 2, V35, L397
57592    YU WL, 1999, APPL PHYS LETT, V75, P3270
57593 NR 22
57594 TC 8
57595 SN 0040-6090
57596 J9 THIN SOLID FILMS
57597 JI Thin Solid Films
57598 PD DEC 17
57599 PY 2001
57600 VL 401
57601 IS 1-2
57602 BP 251
57603 EP 254
57604 PG 4
57605 SC Materials Science, Multidisciplinary; Physics, Applied; Physics,
57606    Condensed Matter
57607 GA 505EW
57608 UT ISI:000172900200036
57609 ER
57610 
57611 PT J
57612 AU Guo, BY
57613    Ma, HP
57614    Tadmor, E
57615 TI Spectral vanishing viscosity method for nonlinear conservation laws
57616 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
57617 DT Article
57618 DE spectral method; vanishing viscosity; conservation law
57619 ID APPROXIMATIONS; CONVERGENCE; EDGES
57620 AB We propose a new spectral viscosity (SV) scheme for the accurate
57621    solution of nonlinear conservation laws. It is proved that the SV
57622    solution converges to the unique entropy solution under appropriate
57623    reasonable conditions. The proposed SV scheme is implemented directly
57624    on high modes of the computed solution. This should be compared with
57625    the original nonperiodic SV scheme introduced by Maday, Ould Kaber, and
57626    Tadmor in [SIAM J. Numer. Anal., 30 (1993), 321-342], where SV is
57627    activated on the derivative of the SV solution. The new proposed SV
57628    method could be viewed as a correction of the former, and it offers an
57629    improvement which is confirmed by our numerical experiments. A
57630    postprocessing method is implemented to greatly enhance the accuracy of
57631    the computed SV solution. The numerical results show the efficiency of
57632    the new method.
57633 C1 Shanghai Normal Univ, Sch Math Sci, Shanghai 200234, Peoples R China.
57634    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
57635    Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA.
57636 RP Guo, BY, Shanghai Normal Univ, Sch Math Sci, Shanghai 200234, Peoples R
57637    China.
57638 CR ABARBANEL S, 1986, NUMERICAL METHODS FL, V2, P129
57639    ANDREASSEN O, 1994, J COMPUT PHYS, V110, P257
57640    BERNARDI C, 1992, APPROXIMATIONS SPECT
57641    CANUTO C, 1988, SPECTRAL METHOD FLUI
57642    CHEN GQ, 1990, MSRI0052791
57643    CHEN GQ, 1993, MATH COMPUT, V61, P629
57644    GELB A, 1999, APPL COMPUT HARMON A, V7, P101
57645    GELB A, 2000, APPL NUMER MATH, V33, P3
57646    GELB A, 2000, SIAM J NUMER ANAL, V38, P1389
57647    GOTTLIEB D, 1977, NUMERICAL ANAL SPECT
57648    GOTTLIEB D, 1985, PROGR SCI COMPUTING, V6, P357
57649    GOTTLIEB D, 1987, SIAM J NUMER ANAL, V24, P241
57650    GOTTLIEB D, 1992, J COMPUT APPL MATH, V43, P81
57651    GOTTLIEB D, 1997, SIAM REV, V39, P644
57652    GUO BY, 1998, SPECTRAL METHODS THE
57653    JOSEPH KT, 1999, ARCH RATION MECH AN, V147, P47
57654    KABER SMO, 1996, J COMPUT PHYS, V128, P165
57655    KARAMANOS GS, 2000, J COMPUT PHYS, V163, P22
57656    LAX PD, 1972, CBMS NSF REGIONAL C, V11
57657    LIE I, 1996, P 3 INT C SPECTR HIG, P121
57658    MA HP, 1998, SIAM J NUMER ANAL, V35, P869
57659    MA HP, 1998, SIAM J NUMER ANAL, V35, P893
57660    MADAY Y, 1989, SIAM J NUMER ANAL, V26, P854
57661    MADAY Y, 1993, SIAM J NUMER ANAL, V30, P321
57662    MAJDA A, 1978, MATH COMPUT, V30, P1041
57663    SCHOCHET S, 1990, SIAM J NUMER ANAL, V27, P1142
57664    SHU CW, 1995, J SCI COMPUT, V10, P357
57665    SMOLLER J, 1983, SHOCK WAVES REACTION
57666    TADMOR E, 1989, SIAM J NUMER ANAL, V26, P30
57667    TADMOR E, 1990, COMPUT METHOD APPL M, V80, P197
57668    TADMOR E, 1991, SIAM J NUMER ANAL, V28, P891
57669    TADMOR E, 1993, MATH COMPUT, V60, P245
57670    TADMOR E, 1993, NUMERICAL METHODS FL, V4, P69
57671    TARTAR L, 1979, RES NOTES MATH, V39, P136
57672 NR 34
57673 TC 5
57674 SN 0036-1429
57675 J9 SIAM J NUMER ANAL
57676 JI SIAM J. Numer. Anal.
57677 PD DEC 4
57678 PY 2001
57679 VL 39
57680 IS 4
57681 BP 1254
57682 EP 1268
57683 PG 15
57684 SC Mathematics, Applied
57685 GA 505RB
57686 UT ISI:000172928400008
57687 ER
57688 
57689 PT J
57690 AU Ma, HP
57691    Sun, WW
57692 TI Optimal error estimates of the Legendre-Petrov-Galerkin method for the
57693    Korteweg-de Vries equation
57694 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
57695 DT Article
57696 DE Legendre-Petrov-Galerkin; pseudospectral; Korteweg-de Vries equation
57697 ID PSEUDOSPECTRAL METHOD; DEVRIES EQUATION; DIRECT SOLVERS; POLYNOMIALS;
57698    STABILITY; 3RD-ORDER; 2ND-ORDER
57699 AB In this paper, the Legendre-Petrov-Galerkin method for the Korteweg de
57700    Vries equation with nonperiodic boundary conditions is analyzed. The
57701    nonlinear term is computed with the Legendre spectral method and some
57702    pseudospectral methods, respectively. Optimal error estimates in
57703    L-2-norm are obtained for both semidiscrete and fully discrete schemes.
57704    The method is also applicable to some (2m + 1)th-order differential
57705    equations.
57706 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
57707    City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China.
57708    City Univ Hong Kong, Ctr Math Sci, Half Year Programme Numer Anal, Kowloon, Hong Kong, Peoples R China.
57709 RP Ma, HP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
57710 CR ABE K, 1980, J COMPUT PHYS, V34, P202
57711    BERNARDI C, 1992, J COMPUT APPL MATH, V43, P53
57712    BERNARDI C, 1997, HDBK NUM AN 2, V5, P209
57713    BRESSAN N, 1990, COMPUT METHODS APPL, V80, P443
57714    CANUTO C, 1988, SPECTRAL METHODS FLU
57715    CAREY GF, 1991, COMPUT METHOD APPL M, V93, P1
57716    CHAN TF, 1985, SIAM J NUMER ANAL, V22, P441
57717    COUTSIAS EA, 1996, P 3 INT C SPECTR HIG, P21
57718    DJIDJELI K, 1995, J COMPUT APPL MATH, V58, P307
57719    FORNBERG B, 1978, PHILOS T ROY SOC A, V289, P373
57720    FORNBERG B, 1999, J COMPUT PHYS, V155, P456
57721    HUANG WZ, 1992, SIAM J NUMER ANAL, V29, P1626
57722    KUO PY, 1985, ACTA MATH SINICA, V28, P1
57723    LEVY D, 1998, SIAM REV, V40, P40
57724    LI J, 2000, NUMER METH PART D E, V16, P513
57725    MA HP, 1986, J COMPUT PHYS, V65, P120
57726    MA HP, 2000, SIAM J NUMER ANAL, V38, P1425
57727    MA HP, 2001, ADV SCI COMPUTING, P116
57728    MADAY Y, 1988, RAIRO MODEL MATH ANA, V22, P499
57729    MERRYFIELD WJ, 1993, J COMPUT PHYS, V105, P182
57730    PAVONI D, 1988, CALCOLO, V25, P311
57731    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
57732    SHEN J, 1995, SIAM J SCI COMPUT, V16, P74
57733    SZEGO G, 1975, ORTHOGONAL POLYNOMIA
57734 NR 24
57735 TC 4
57736 SN 0036-1429
57737 J9 SIAM J NUMER ANAL
57738 JI SIAM J. Numer. Anal.
57739 PD DEC 4
57740 PY 2001
57741 VL 39
57742 IS 4
57743 BP 1380
57744 EP 1394
57745 PG 15
57746 SC Mathematics, Applied
57747 GA 505RB
57748 UT ISI:000172928400014
57749 ER
57750 
57751 PT J
57752 AU Yang, XC
57753    Bao, BR
57754    Cao, WG
57755    Sun, GX
57756    Li, Z
57757 TI Extraction of uranium(VI) with N,N '-dilauroylpiperazine in carbon
57758    tetrachloride
57759 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
57760 DT Article
57761 AB A novel extractant, N,N'-dilauroylpiperazine (DLPEZ), was synthesized
57762    for the first time. The extraction of uranium(VI) with the novel
57763    extractant in carbon tetrachloride from aqueous nitric acid media has
57764    been studied. The dependence of extraction distribution ratio on the
57765    concentration of aqueous nitric acid, extractant salting-out agent and
57766    temperature was investigated and the enthalpy of the extraction was
57767    determined.
57768 C1 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
57769    Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
57770    Jinan Univ, Dept Chem, Jinan 250022, Peoples R China.
57771 RP Yang, XC, Chinese Acad Sci, Shanghai Inst Nucl Res, POB 800-204,
57772    Shanghai 201800, Peoples R China.
57773 CR CARBORNNEL MC, 1988, SOLV EXTR ION EXCH, V5, P151
57774    MUSIKAS C, 1987, SOLVENT EXTR ION EXC, V5, P151
57775    NAKAMURA T, 1995, SOLVENT EXTR ION EXC, V13, P253
57776    SHEN CH, 1993, J NUCL RADIOCHEM, V15, P243
57777    SIDDALL TH, 1963, J INORG NUCL CHEM, V25, P883
57778    SUN GX, 1998, THESIS CHINESE ACAD, P16
57779    WANG YS, 1997, THESIS CHINESE ACAD, P43
57780    WANG YS, 1997, THESIS CHINESE ACAD, P71
57781 NR 8
57782 TC 2
57783 SN 0236-5731
57784 J9 J RADIOANAL NUCL CHEM
57785 JI J. Radioanal. Nucl. Chem.
57786 PD DEC
57787 PY 2001
57788 VL 250
57789 IS 3
57790 BP 559
57791 EP 561
57792 PG 3
57793 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
57794    & Technology
57795 GA 504DV
57796 UT ISI:000172842800024
57797 ER
57798 
57799 PT J
57800 AU Yang, XC
57801    Bao, BR
57802    Zhou, F
57803    Cao, WG
57804    Li, YL
57805 TI Thermodynamics of the extraction of U(VI) by N,N'-didecanoylpiperazine
57806 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
57807 DT Article
57808 AB A novel extractant, N, N'-didecanoylpiperazine (DDPEZ), was synthesized
57809    for the first time. The extraction of U(VI) by DDPEZ from aqueous
57810    nitric acid media in carbon tetrachloride has been studied. The
57811    dependence of extraction distribution ratio on concentration of aqueous
57812    nitric acid. extractant salting-out agent and temperature was
57813    investigated and the enthalpy of the extraction was calculated.
57814 C1 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
57815    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
57816    Shandong Comm Communist Party China, Jinan 250001, Peoples R China.
57817 RP Yang, XC, Chinese Acad Sci, Shanghai Inst Nucl Res, POB 800-204,
57818    Shanghai 201800, Peoples R China.
57819 CR CHARBORNNEL MC, 1988, SOLVENT EXTR ION EXC, V5, P151
57820    CURTIS NF, 1965, INORG CHEM, V4, P804
57821    MUSIKAS C, 1987, SOLVENT EXTR ION EXC, V5, P151
57822    NAKAMURA T, 1995, SOLVENT EXTR ION EXC, V13, P253
57823    SHEN CH, 1993, J NUCL RADIOCHEM, V15, P243
57824    SIDDALL TH, 1963, J INORG NUCL CHEM, V25, P883
57825    WANG YS, 1997, THESIS CHINESE ACAD, P43
57826    WANG YS, 1997, THESIS CHINESE ACAD, P71
57827 NR 8
57828 TC 1
57829 SN 0236-5731
57830 J9 J RADIOANAL NUCL CHEM
57831 JI J. Radioanal. Nucl. Chem.
57832 PD DEC
57833 PY 2001
57834 VL 250
57835 IS 3
57836 BP 573
57837 EP 575
57838 PG 3
57839 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
57840    & Technology
57841 GA 504DV
57842 UT ISI:000172842800029
57843 ER
57844 
57845 PT J
57846 AU Xiang, Q
57847    Bao, BR
57848    Li, Z
57849    Han, JT
57850    Shao, H
57851 TI The extraction of U(VI) with N-octanoyl-2-methylpiperidine in toluene
57852 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
57853 DT Article
57854 AB A new extractant. N-octanoyl-2-methylpiperidine (OMPPD) has been
57855    synthesized. The extraction of U(VI) with N-octanoyl-2-methylpiperidine
57856    (OMPPD) in nitric acid has been studied. The dependence of the
57857    partition reaction of U(VT) on the concentrations of nitric acid,
57858    extractant. salting-out agent LiNO3, and temperature has been studied.
57859    In the light of the results, the extraction mechanism is discussed. The
57860    synergistic extracted complexes may be presented as
57861    UO2(NO3)(2)(OMPPD)(2). The related thermodynamic functions were
57862    calculated.
57863 C1 Shanghai Univ, Dept Chem, Shanghai, Peoples R China.
57864    Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai, Peoples R China.
57865 RP Xiang, Q, Shanghai Univ, Dept Chem, Shanghai, Peoples R China.
57866 CR DONG LY, 1982, ANAL CHEM URANIUM, P158
57867    HAN JT, 1998, NUCL SCI TECHNOL, V10, P54
57868    HAN JT, 1999, J RADIOANAL NUCL CH, V241, P679
57869    SHAO H, 2000, J RADIOANAL NUCL CHE, V243, P831
57870    SIDDALL TH, 1960, J PHYS CHEM-US, V64, P1863
57871 NR 5
57872 TC 0
57873 SN 0236-5731
57874 J9 J RADIOANAL NUCL CHEM
57875 JI J. Radioanal. Nucl. Chem.
57876 PD DEC
57877 PY 2001
57878 VL 250
57879 IS 3
57880 BP 577
57881 EP 579
57882 PG 3
57883 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
57884    & Technology
57885 GA 504DV
57886 UT ISI:000172842800030
57887 ER
57888 
57889 PT J
57890 AU Guo, BY
57891    Shen, J
57892    Wang, ZQ
57893 TI Chebyshev rational spectral and pseudospectral methods on a
57894    semi-infinite interval
57895 SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
57896 DT Article
57897 DE Chebyshev rational polynomials; rational approximation; spectral
57898    method; pseudospectral method; semi-infinite interval
57899 ID DIFFERENTIAL-EQUATIONS; GALERKIN METHOD; APPROXIMATIONS
57900 AB A weighted orthogonal system on the half-line based on the Chebyshev
57901    rational functions is introduced. Basic results on Chebyshev rational
57902    approximations of several orthogonal projections and interpolations are
57903    established. To illustrate the potential of the Chebyshev rational
57904    spectral method, a model problem is considered both theoretically and
57905    numerically: error estimates for the Chebyshev rational spectral and
57906    pseudospectral methods are established; preliminary numerical results
57907    agree well with the theoretical estimates and demonstrate the
57908    effectiveness of this approach. Copyright (C) 2001 John Wiley & Sons,
57909    Ltd.
57910 C1 Penn State Univ, Dept Math, University Pk, PA 16802 USA.
57911    Shanghai Normal Univ, Sch Math Sci, Shanghai 200234, Peoples R China.
57912    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
57913 RP Shen, J, Penn State Univ, Dept Math, University Pk, PA 16802 USA.
57914 CR ADAMS RA, 1975, SOBLOV SPACES
57915    BERNARDI C, 1997, HDB NUMERICAL ANAL 2, V5
57916    BOYD JP, 1987, J COMPUT PHYS, V69, P112
57917    BOYD JP, 1987, J COMPUT PHYS, V70, P63
57918    BURNETT DS, 1994, J ACOUST SOC AM, V96, P2798
57919    CANUTO C, 1987, SPECTRAL METHODS FLU
57920    CHRISTOV CI, 1982, SIAM J APPL MATH, V42, P1337
57921    DEMKOWICZ L, 1998, NUMER MATH, V79, P11
57922    FUNARO D, 1990, APPL NUMER MATH, V6, P447
57923    GOTTLIEB D, 1977, NUMERICAL ANAL SPECT
57924    GUO BY, 1998, J MATH ANAL APPL, V226, P180
57925    GUO BY, 2000, J MATH ANAL APPL, V243, P373
57926    GUO BY, 2000, J SCI COMPUT, V15, P117
57927    GUO BY, 2000, NUMER MATH, V86, P635
57928    KARNIADAKIS GE, 1999, SPECTRAL HP ELEMENT
57929    LEIS R, 1996, INITIAL BOUNDARY VAL
57930    MADAY Y, 1985, RECH AEROSPATIALE, V6, P13
57931    MADAY Y, 1989, STATE ART SURVEYS CO, P71
57932    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
57933    SHEN J, 1996, HOUSTON J MATH, P233
57934 NR 20
57935 TC 8
57936 SN 0029-5981
57937 J9 INT J NUMER METHOD ENG
57938 JI Int. J. Numer. Methods Eng.
57939 PD JAN 10
57940 PY 2002
57941 VL 53
57942 IS 1
57943 BP 65
57944 EP 84
57945 PG 20
57946 SC Engineering, Multidisciplinary; Mathematics, Applied
57947 GA 504KV
57948 UT ISI:000172856600005
57949 ER
57950 
57951 PT J
57952 AU Shang, HJ
57953    Lu, YC
57954    Xu, XM
57955    Chen, Q
57956 TI The 'hybrid' technique for risk analysis of some diseases
57957 SO CHINESE ANNALS OF MATHEMATICS SERIES B
57958 DT Article
57959 DE illness fuzzy set; statistics; fuzzy comprehensive evaluation;
57960    information distribution; optimization
57961 AB Based on the data obtained from a survey recently made in Shanghai,
57962    this paper presents the hybrid technique for risk analysis and
57963    evaluation of some diseases.
57964    After determination of main risk factors of these diseases by analysis
57965    of variance, the authors introduce a new concept 'Illness Fuzzy Set'
57966    and use fuzzy comprehensive evaluation to evaluate the risk of
57967    suffering from a disease for residents. Optimal technique is used to
57968    determine the weights w(i) in fuzzy comprehensive evaluation, and a new
57969    method 'Improved Information Distribution' is also introduced for the
57970    treatment of small sample problem.
57971    It is shown that the results obtained by using the hybrid technique are
57972    better than by using single fuzzy technique or single statistical
57973    method.
57974 C1 Fudan Univ, Dept Math, Shanghai 200433, Peoples R China.
57975    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
57976    Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
57977 CR CHEN JJG, 1997, FUZZY SET SYST, V88, P1
57978    CUMMINS JD, 1997, N AM ACTUARIAL J, V1, P21
57979    HUANG CF, 1995, TECHNOLOGY FUZZY INF
57980    ZHANG SW, 1991, FUZZY MATH ITS APPL
57981 NR 4
57982 TC 0
57983 SN 0252-9599
57984 J9 CHIN ANN MATH SER B
57985 JI Chin. Ann. Math. Ser. B
57986 PD OCT
57987 PY 2001
57988 VL 22
57989 IS 4
57990 BP 475
57991 EP 484
57992 PG 10
57993 SC Mathematics
57994 GA 505AF
57995 UT ISI:000172888000005
57996 ER
57997 
57998 PT J
57999 AU Shi, LY
58000    Li, CZ
58001    Chen, AP
58002    Zhu, YH
58003    Fang, DY
58004 TI Morphological structure of nanometer TiO2-Al2O3 composite powders
58005    synthesized in high temperature gas phase reactor
58006 SO CHEMICAL ENGINEERING JOURNAL
58007 DT Article
58008 DE composite powder; nanometer powder; gas phase reaction
58009 ID ALUMINUM TITANATE FORMATION; SOLID-STATE REACTION; TIO2 POWDERS;
58010    RESEARCH NEEDS; PARTICLES; AL2O3
58011 AB In this research, nanometer TiO2-Al2O3 Composite powders were
58012    synthesized by the gas-phase oxidation of TiCl4 and AlCl3 in a high
58013    temperature tubular aerosol flow reactor. The measurement of EDS, XPS,
58014    XRD and TEM were used to characterize the chemical composition, crystal
58015    structure, and size of the particles. The crystal structure of titania
58016    and alumina in composite particles was affected by the AlO3 and TiCl4
58017    feed ratio. Aluminum titanate was formed when residence time was 1.73
58018    s, reaction temperature was 1400 degreesC, and AlCl3 and TiCl4 feed
58019    ratio was 2.80. The effect of processing parameters on the particle
58020    size and distribution of composite particles was studied. As the
58021    preheating temperature of oxygen increased, average particle size of
58022    the composite particles became smaller and size distribution more
58023    uniform. Enhancement of flow rate of cooling gas injected into reactor
58024    tail was benefit controlling the particle size. The composite particle
58025    size increased, respectively, with increasing reaction temperature and
58026    residence time. (C) 2001 Elsevier Science B.V. All rights reserved.
58027 C1 Shanghai Univ, Dept Chem, Shanghai 200072, Peoples R China.
58028    E China Univ Sci & Technol, Shanghai 200237, Peoples R China.
58029 RP Shi, LY, Shanghai Univ, Dept Chem, Shanghai 200072, Peoples R China.
58030 CR AKHTAR MK, 1994, J MATER RES, V9, P1241
58031    BOWEN HK, 1980, MATER SCI ENG, V44, P1
58032    FEGLEY B, 1984, J AM CERAM SOC, V67, C113
58033    FREUDENBERG B, 1987, J AM CERAM SOC, V70, P33
58034    FREUDENBERG B, 1988, J AM CERAM SOC, V71, P22
58035    HUNG CH, 1992, J MATER RES, V7, P1870
58036    JANG HD, 1995, AEROSOL SCI TECH, V23, P553
58037    KRUIS FE, 1998, J AEROSOL SCI, V29, P511
58038    KUSTERS KA, 1995, POWDER TECHNOL, V82, P79
58039    LANGE FF, 1989, J AM CERAM SOC, V72, P3
58040    LI CZ, 1997, THIN SOLID FILMS, V310, P238
58041    LIU SH, 1988, XRAY PHOTOELECTRON S, V305, P313
58042    OKUMURA H, 1986, J AM CERAM SOC, V69, C22
58043    PRATSINIS SE, 1996, POWDER TECHNOL, V88, P267
58044    SHI LY, 1998, MAT REV, V12, P23
58045    SHI LY, 1999, J ECUST, V25, P151
58046    SHI LY, 1999, J INORG MATER, V14, P717
58047    STAMATAKIS P, 1991, AEROSOL SCI TECH, V14, P316
58048    SUYAMA Y, 1985, J AM CERAM SOC, V68, C154
58049    THOMAS HAJ, 1989, BRIT CERAM TRANS J, V88, P144
58050    THOMAS HAJ, 1989, BRIT CERAM TRANS J, V88, P184
58051    VEMURY S, 1995, J AM CERAM SOC, V78, P2984
58052    WOJGNIER T, 1988, J NONCRYSTALLINE SOL, V100, P325
58053    YANG GX, 1996, NANOSTRUCT MATER, V7, P675
58054    YU JG, 1991, CHEM B, V10, P25
58055 NR 25
58056 TC 0
58057 SN 1385-8947
58058 J9 CHEM ENG J
58059 JI Chem. Eng. J.
58060 PD DEC 15
58061 PY 2001
58062 VL 84
58063 IS 3
58064 BP 405
58065 EP 411
58066 PG 7
58067 SC Engineering, Chemical
58068 GA 505LW
58069 UT ISI:000172915100024
58070 ER
58071 
58072 PT J
58073 AU Li, Q
58074    Zhou, BX
58075 TI A study of microstructure of alloy 690
58076 SO ACTA METALLURGICA SINICA
58077 DT Article
58078 DE alloy 690; heat treatment; microstructure; carbide
58079 AB The microstructures of alloy 690 after solid solution treatment
58080    followed by aging treatments at different temperatures (600-800
58081    degreesC) for various times (0.5-200 h) have been investigated by means
58082    of transmission electron microscopy (TEM). The results are as follows:
58083    the carbides precipitated on the grain boundaries have been identified
58084    as M23C6; the carbides nucleate preferentially at the positions where
58085    grain boundary dislocations tangled and easily precipitate in high
58086    angle grain boundaries nearly parallel to the (100) plane of grain on
58087    one side. The carbides always exhibit a cube-on-cube orientation
58088    relationship with matrix of one side, and don't precipitate on twinning
58089    plane but easily precipitate on the non-coherent boundaries of twin end
58090    where carbides grow fast along < 110 > direction and appear as
58091    needlelike. By controlling the growth of carbides and the content of
58092    chromium in depleted zone by special heat treatments, the corrosion
58093    resistance of alloy 690 can be optimized.
58094 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
58095 RP Li, Q, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
58096 CR ANGELIU TM, 1990, METALL TRANS A, V21, P2097
58097    DIETZ W, 1994, MAT SCI TECHNOLOGY B, V10, P101
58098    KAI JJ, 1989, METALL TRANS A, V20, P2057
58099    QIU SY, 1995, NUCL POWER ENG, V16, P340
58100 NR 4
58101 TC 0
58102 SN 0412-1961
58103 J9 ACTA METALL SIN
58104 JI Acta Metall. Sin.
58105 PD JAN 18
58106 PY 2001
58107 VL 37
58108 IS 1
58109 BP 8
58110 EP 12
58111 PG 5
58112 SC Metallurgy & Metallurgical Engineering
58113 GA 502WQ
58114 UT ISI:000172766100002
58115 ER
58116 
58117 PT J
58118 AU Lu, XG
58119    Ding, WZ
58120    Li, FS
58121    Li, LF
58122    Zhou, GZ
58123 TI Study of electronic conductivity of molten slags with Wagner
58124    polarization technique
58125 SO ACTA METALLURGICA SINICA
58126 DT Article
58127 DE Wagner polarization technique; smelt slag; electronic conductivity
58128 AB Wagner polarization technique has been used to measure the electronic
58129    conductivity of CaO-SiO2-Al2O3-FeOx slag system in this paper. The
58130    experimental results show that electronic conductivities of the slags
58131    consist of free electron conductivity and electron hole conductivity.
58132    The two conductivities are related to the content of Fe3+ and Fe2+
58133    respectively. As experimental temperature increased, the free electron
58134    conductivity decreases, and the electron hole conductivity increases
58135    while Fe3+ changes to Fe2+. It is found that there is always a maximum
58136    electronic conductivity value at some ratio of Fe3+ content to the
58137    total iron content for different slag systems at a special temperature.
58138    Under the present experimental condition, the electronic conductivity
58139    is in the range of 10(-4)-10(-2) S(.)cm(-1).
58140 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
58141    Univ Sci & Technol Beijing, Lab Solid Electrolytes & Met Testing Tech, Beijing 100083, Peoples R China.
58142 RP Lu, XG, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072,
58143    Peoples R China.
58144 CR DANCY EA, 1966, T TMS AIME, V236, P1642
58145    DICKSON WR, 1962, T METALL SOC AIME, V224, P505
58146    DUKELOW DA, 1960, T AIME, V218, P1386
58147    ENGELL HJ, 1968, BER BUNSEN PHYS CHEM, V72, P5
58148    FONTANA A, 1984, ELECT CONDUCTIVITY F, P59
58149    HAARBERG GM, 1993, METALL TRANS B, V24, P729
58150    INOUYE H, 1953, T FARADAY SOC, V49, P796
58151    KATO M, 1969, T IRON STEEL I JPN, V9, P39
58152    KRISHAMUETHY GG, 1993, IRONMAK STEELMAK, V20, P191
58153    KROGER FA, 1974, CHEM IMPERFECT CRYST, V3, P149
58154    LU XG, 1999, J UNIV SCI TECHNOL B, V6, P27
58155    PAL U, 1985, METALL TRANS B, V16, P77
58156    PASTUKHOV EA, 1966, ELEKTROCHEM, V2, P209
58157    SIMNAD MT, 1953, J CHEM PHYS, V21, P933
58158    SIMNAD MT, 1954, T AIME, V200, P1386
58159    SPEELMAN JL, 1989, METALL T B, V20, P31
58160    WAGNER C, 1957, P INT COMM ELECTROCH, V7, P361
58161 NR 17
58162 TC 2
58163 SN 0412-1961
58164 J9 ACTA METALL SIN
58165 JI Acta Metall. Sin.
58166 PD FEB 18
58167 PY 2001
58168 VL 37
58169 IS 2
58170 BP 184
58171 EP 188
58172 PG 5
58173 SC Metallurgy & Metallurgical Engineering
58174 GA 502WT
58175 UT ISI:000172766300015
58176 ER
58177 
58178 PT J
58179 AU Xu, KD
58180    Jiang, GC
58181    Hong, X
58182    Zheng, SB
58183    Xu, JL
58184 TI Discussion on new process making clean-steel from scrap
58185 SO ACTA METALLURGICA SINICA
58186 DT Article
58187 DE steel making process; clean steel; scrap
58188 AB The enrichment of harmful impurities during the recycle of scrap limits
58189    the effective use of scrap source in clean steel production. Attempts
58190    so far to separate residual elements one by one from steel bath seems
58191    expensive, low efficient and difficult for industrial application. This
58192    paper put forward consequently the "slagging-reduction process", in
58193    which melting FeO will be obtained with oxidizing method as pure raw
58194    material for following hydrogen-based reduction procedure. This will be
58195    a way to use low-class mixed scrap in production of special steel,
58196    whose total content of residual elements is strictly restrained.
58197    Moreover, the enrichment and concentration of impurities like Cu can
58198    make their extraction and recycle easier and cheaper.
58199 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
58200 RP Xu, KD, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072,
58201    Peoples R China.
58202 CR FEINMAN J, 1999, IRON STEEL ENG, V76, P75
58203    HONG X, 1992, SIMULATION OPTIMIERU, P168
58204    SUGIURA S, 1988, T ISIJ, V28, P325
58205    WEI SK, 1980, THERMODYNAMICS METAL, P56
58206    XU KD, 2000, CHIN ENG SCI, V2, P1
58207    ZHANG HJ, 1996, DISCUSS REFORM EAF S, P212
58208    ZHAO BJ, 1994, COLLECTED WORKS INFL, P1
58209    ZHAO BJ, 1994, COLLECTED WORKS INFL, P7
58210 NR 8
58211 TC 1
58212 SN 0412-1961
58213 J9 ACTA METALL SIN
58214 JI Acta Metall. Sin.
58215 PD APR 18
58216 PY 2001
58217 VL 37
58218 IS 4
58219 BP 395
58220 EP 399
58221 PG 5
58222 SC Metallurgy & Metallurgical Engineering
58223 GA 502WW
58224 UT ISI:000172766600013
58225 ER
58226 
58227 PT J
58228 AU Feng, PX
58229    James, B
58230    Liu, MH
58231    Lee, S
58232    Chen, YH
58233 TI A pinhole transmission grating spectrograph used in the
58234    characterization of the spatial distribution plasma x-ray spectrum
58235 SO PLASMA SOURCES SCIENCE & TECHNOLOGY
58236 DT Article
58237 ID FOCUS
58238 AB A pinhole transmission grating spectrograph has been used for measuring
58239    the soft x-ray spectrum front a laser-irradiated solid target plasma
58240    and gas-filled plasma focus. This spectrograph can be used together
58241    with a soft x-ray streak camera or a soft x-ray CCD detector for
58242    time-resolved studies. The spectrograph has provided a spatially
58243    resolved spectrum with a wavelength range of 0.3-50 nm. It is a cheap,
58244    compact and easily adjusted and has been used for both laser-produced
58245    plasma and plasma focus. Preliminary experimental results have been
58246    obtained for the plasma x-ray spectrum and the spatial structure both
58247    from the laser-produced plasma and the plasma focus.
58248 C1 Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
58249    Nanyang Technol Univ, Sch Sci, Singapore 259756, Singapore.
58250    Shanghai Univ Sci & Technol, Inst Dynam, Shanghai 200345, Peoples R China.
58251 RP Feng, PX, Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
58252 CR BRUNER ME, 1988, P SOC PHOTO-OPT INS, V982, P299
58253    BRYUNETKIN BA, 1992, LASER PART BEAMS, V10, P849
58254    BURKHALTER PG, 1992, REV SCI INSTRUM, V63, P5053
58255    FEDER R, 1984, J MICROSCOPY, V135, P347
58256    FENG X, 1992, P 10 VUV INT C PAR 9
58257    FENG X, 1994, J LASER B, V3, P414
58258    FENG XP, 1989, J FIZ MALAYSIA, V10, P49
58259    GUENTHER R, 1990, MODERN OPTICS, P87
58260    HIRANO K, 1994, J PHYS SOC JPN, V63, P3657
58261    KATO Y, 1986, APPL PHYS LETT, V48, P686
58262    KATO Y, 1992, JPN J APPL PHYS PT 1, V31, P3695
58263    LEE S, 1983, AUST J PHYS, V36, P891
58264    LEE S, 1996, RES REPORT NIE SSC P
58265    LEE S, 1997, P SOC PHOTO-OPT INS, V3183, P112
58266    MICHELIS CD, 1981, NUCL FUSION, V21, P677
58267    MOO SP, 1991, IEEE T PLASMA SCI, V19, P515
58268    MOO SP, 1993, J RADIOL PROTECT, V13, P207
58269    PEALMAN JS, 1981, J VAC SCI TECHNOL, V19, P1190
58270    PORTER JL, 1992, PHYS REV LETT, V68, P796
58271    ROTHWEILER D, 1993, I PHYS C SER, V130, P47
58272    SCHNOPPER HW, 1977, APPL OPTICS, V16, P1088
58273    TAKAHAMA Y, 1994, REV SCI INSTRUM, V65, P2505
58274    WANG XF, 1991, J APPL PHYS, V69, P2015
58275 NR 23
58276 TC 0
58277 SN 0963-0252
58278 J9 PLASMA SOURCES SCI TECHNOL
58279 JI Plasma Sources Sci. Technol.
58280 PD NOV
58281 PY 2001
58282 VL 10
58283 IS 4
58284 BP 589
58285 EP 594
58286 PG 6
58287 SC Physics, Fluids & Plasmas
58288 GA 503BM
58289 UT ISI:000172777300007
58290 ER
58291 
58292 PT J
58293 AU Zhou, SF
58294 TI Attractors for second-order lattice dynamical systems with damping
58295 SO JOURNAL OF MATHEMATICAL PHYSICS
58296 DT Article
58297 AB We consider the existence and the approximation of the global attractor
58298    for second-order damped lattice dynamical systems. (C) 2002 American
58299    Institute of Physics.
58300 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
58301 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
58302 CR CHATE H, 1997, PHYSICA D, V103, P1
58303    CHOW SN, 1998, J DIFFER EQUATIONS, V149, P248
58304    GHIDAGLIA JM, 1991, SIAM J MATH ANAL, V22, P861
58305    HALE JK, 1988, ASYMPTOTIC BEHAV DIS
58306    JIANG MH, 1999, J STAT PHYS, V95, P791
58307    SHEN WX, 1996, SIAM J APPL MATH, V56, P1379
58308    TEMAM R, 1988, APPL MATH SCI, V68
58309    WANG Z, 1997, MATH APPL, V10, P97
58310    YU J, 1998, PHYS LETT A, V240, P60
58311    ZHOU SF, 1999, J MATH ANAL APPL, V233, P102
58312 NR 10
58313 TC 0
58314 SN 0022-2488
58315 J9 J MATH PHYS-NY
58316 JI J. Math. Phys.
58317 PD JAN
58318 PY 2002
58319 VL 43
58320 IS 1
58321 BP 452
58322 EP 465
58323 PG 14
58324 SC Physics, Mathematical
58325 GA 503GF
58326 UT ISI:000172790200028
58327 ER
58328 
58329 PT J
58330 AU Wan, JTK
58331    Yu, KW
58332    Gu, GQ
58333 TI Relaxation of surface charge on rotating dielectric spheres:
58334    Implications on dynamic electrorheological effects
58335 SO PHYSICAL REVIEW E
58336 DT Article
58337 ID SUSPENSIONS; SIMULATION; SHEAR; FLUIDS; FIELD
58338 AB We have examined the effect of an oscillatory rotation of a polarized
58339    dielectric particle, The rotational motion leads to a redistribution of
58340    the polarization charge on the surface of the particle. We show that
58341    the time-averaged steady-state dipole moment is along the field
58342    direction, but its magnitude is reduced by a factor that depends on the
58343    angular velocity of rotation. As a result, the rotational motion of the
58344    particle reduces the electrorheological effect. We further assume that
58345    the relaxation of the polarized charge is arised from a finite
58346    conductivity of the particle or host medium. We calculate the
58347    relaxation time based on the Maxwell-Wagner theory, suitably
58348    generalized to include the rotational motion. Analytic expressions for
58349    the reduction factor and the relaxation time are given and their
58350    dependence on the angular velocity of rotation will be discussed.
58351 C1 Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China.
58352    Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 200093, Peoples R China.
58353 RP Wan, JTK, Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples
58354    R China.
58355 CR HALSEY TC, 1990, J STAT PHYS, V61, P1257
58356    HALSEY TC, 1992, SCIENCE, V258, P761
58357    JONES TK, 2000, PHYS REV E, V62, P6846
58358    KLINGENBERG DJ, 1989, J CHEM PHYS, V91, P7888
58359    KLINGENBERG DJ, 1990, LANGMUIR, V6, P15
58360    KLINGENBERG DJ, 1991, J CHEM PHYS, V94, P6160
58361    KLINGENBERG DJ, 1998, MRS BULL, V23, P30
58362    LADD AJC, 1988, J CHEM PHYS, V88, P5051
58363    LOBRY L, 1999, J ELECTROSTAT, V47, P61
58364    MAZUR P, 1974, PHYSICA, V76, P235
58365    PHULE PP, 1998, MRS BULL, V23, P19
58366    RUSSEL WB, 1989, COLLOIDAL DISPERSION
58367    TAO R, 1991, PHYS REV LETT, V67, P398
58368    WANG ZW, 1996, INT J MOD PHYS B, V10, P1153
58369    WANG ZW, 1997, J PHYS D APPL PHYS, V30, P1265
58370 NR 15
58371 TC 4
58372 SN 1063-651X
58373 J9 PHYS REV E
58374 JI Phys. Rev. E
58375 PD DEC
58376 PY 2001
58377 VL 6406
58378 IS 6
58379 PN Part 1
58380 AR 061501
58381 DI ARTN 061501
58382 PG 4
58383 SC Physics, Fluids & Plasmas; Physics, Mathematical
58384 GA 502CN
58385 UT ISI:000172726300027
58386 ER
58387 
58388 PT J
58389 AU Zhang, NH
58390    Cheng, CJ
58391 TI A time domain method for quasi-static analysis of viscoelastic thin
58392    plates
58393 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
58394 DT Article
58395 DE viscoelastic thin plate; von Karman's hypothesis; Galerkin method;
58396    quasistatic response; direct method; integro-differential equation
58397 AB Based on the Boltzmann's superposition principles of linear
58398    viscoelastic materials and the von Karman's hypotheses of thin plates
58399    with large deflections, a mathematical model for quasi-static problems
58400    of viscoelastic thin plates was given. By the Galerkin method in
58401    spatial domain, the original integro-partial-differential system could
58402    be transformed into an integral system. The latter further was reduced
58403    to a differential system by using the new method for temporal domain
58404    presented in this paper. Numerical results show that compared with the
58405    ordinary finite difference method, the new method in this paper is
58406    simpler to operate and has some advantages, such as, no storage and
58407    quicker computational speed etc.
58408 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
58409    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
58410 RP Zhang, NH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
58411    200072, Peoples R China.
58412 CR CHENG CJ, 1998, ACTA MECH SINICA, V30, P690
58413    CHENG CJ, 1998, INT J SOLIDS STRUCT, V35, P4491
58414    JANOVSKY V, 1995, J COMPUT APPL MATH, V63, P91
58415    SHENG YP, 1994, ADV MECH, V24, P265
58416    YANG TQ, 1993, THEORY VISCOELASTICI
58417    ZHANG NH, 1998, COMPUT METHODS APPL, V165, P3074
58418 NR 6
58419 TC 0
58420 SN 0253-4827
58421 J9 APPL MATH MECH-ENGL ED
58422 JI Appl. Math. Mech.-Engl. Ed.
58423 PD OCT
58424 PY 2001
58425 VL 22
58426 IS 10
58427 BP 1109
58428 EP 1117
58429 PG 9
58430 SC Mathematics, Applied; Mechanics
58431 GA 500YV
58432 UT ISI:000172657000001
58433 ER
58434 
58435 PT J
58436 AU Fu, JL
58437    Chen, LQ
58438    Luo, SK
58439    Chen, XW
58440    Wang, XM
58441 TI Study on dynamics of relativistic Birkhoff systems
58442 SO ACTA PHYSICA SINICA
58443 DT Article
58444 DE relativity; Birkhoff system; noether symmetry; Lie symmetry; algebraic
58445    structure; Poisson integral
58446 ID CONSERVED QUANTITIES; ROTATIONAL SYSTEMS; LIE SYMMETRIES
58447 AB The Birkhoffian, the Birkhoff's functions, the Pfaff action, the
58448    Pfaff-Birkhoff principle and the Birkhoff equations of relativistic
58449    Birkhoff systems are given. The Birkhoff representation of relativistic
58450    dynamical systems is studied. Then the theory of Noether symmetries and
58451    Lie symmetries of the relativistic Birkhoff systems is obtained by the
58452    invariance of relativistic Pfaff action and relativistic Birkhoff
58453    equations under infinitesimal transformations. Finally the algebraic
58454    structure and Poisson integrals for the relativistic Birkhoff systems
58455    are studied.
58456 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
58457    Shangqiu Teachers Coll, Inst Math Mech & Math Phys, Shangqiu 476000, Peoples R China.
58458 RP Fu, JL, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
58459    Peoples R China.
58460 CR ARNOLD VI, 1978, MATH METOD CLASSICAL
58461    BIRKHOFF GD, 1927, AMS COLL PUBLICATION
58462    FANG JH, 2000, ACTA PHYS SIN-CH ED, V49, P1028
58463    FU JL, 1999, APPL MATH MECH-ENGL, V20, P1266
58464    FU JL, 1999, JIANGXI SCI, V17, P137
58465    FU JL, 2000, ACTA PHYS SIN-CH ED, V49, P1023
58466    FU JL, 2000, APPL MATH MECH-ENGL, V21, P549
58467    FU JL, 2000, J SHANGQIU TEACHERS, V16, P10
58468    FU JL, 2000, J YUNNAN U, V22, P194
58469    FU JL, 2000, JIANGXI SCI, V18, P68
58470    GUO ZH, 1987, MODERN MATH MECH
58471    LI JB, 1994, THEORY GEN HAMILTON
58472    LUO SK, 1987, TEACHING MAT COMMUNI, P31
58473    LUO SK, 1988, J XINJIAN U, V5, P50
58474    LUO SK, 1990, P ICDVC, P645
58475    LUO SK, 1991, SHANGHAI J MECH, V12, P67
58476    LUO SK, 1992, ACTA MATH SCI, V12, P27
58477    LUO SK, 1992, COLL PHYS, V11, P14
58478    LUO SK, 1996, APPL MATH MECH, V17, P683
58479    LUO SK, 1996, J BEIJING I TECHNOL, V16, P154
58480    LUO SK, 1998, APPL MATH MECH-ENGL, V19, P45
58481    LUO SK, 2001, ACTA PHYS SINICA, V50, P384
58482    LUO SK, 2001, CHINESE PHYS, V10, P271
58483    MEI FX, 1985, FDN MECH NONHOLONOMI
58484    MEI FX, 1992, DYNAMICS BIRKHOFF SY, P33
58485    MEI FX, 1993, CHINESE SCI BULL, V38, P311
58486    MEI FX, 1993, SCI CHINA SER A, V23, P709
58487    MEI FX, 1994, CHAPLYGIN NONHOLONOM, P60
58488    MEI FX, 1995, CHINESE SCI BULL, V40, P1947
58489    MEI FX, 1996, DYNAMICS BIRKHOFF SY
58490    MEI FX, 1996, MECH PRACT, V18, P1
58491    MEI FX, 1999, APPL LIE GROUP ALGEB, P39
58492    SANTILLI RM, 1983, FDN THEORETICAL MECH, V2
58493    SANTILLI RM, 1987, FDN THEORETICAL MECH, V1
58494    SHI RC, 1994, MECH RES COMMUN, V21, P269
58495    XU ZD, 1994, 30 YEARS NONHOLONOMI, P169
58496    YONG ZS, 1995, ADV QUANTUM MECH, P34
58497    ZHANG YL, 1999, ACTA MECH SOLIDA SIN, V20, P356
58498 NR 38
58499 TC 14
58500 SN 1000-3290
58501 J9 ACTA PHYS SIN-CHINESE ED
58502 JI Acta Phys. Sin.
58503 PD DEC
58504 PY 2001
58505 VL 50
58506 IS 12
58507 BP 2289
58508 EP 2295
58509 PG 7
58510 SC Physics, Multidisciplinary
58511 GA 501HL
58512 UT ISI:000172679200003
58513 ER
58514 
58515 PT J
58516 AU Wu, YQ
58517    Hou, HY
58518    Chen, H
58519    You, JL
58520    Jiang, GC
58521 TI Coordination and bond properties of Al and Si ions in system of
58522    Al2O3-SiO2 melts
58523 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
58524 DT Article
58525 DE Al2O3-SiO2 melts; coordination and bond properties; molecular dynamics
58526    simulation
58527 ID CALCIUM ALUMINOSILICATE GLASSES; NUCLEAR MAGNETIC-RESONANCE;
58528    MOLECULAR-DYNAMICS; COMPUTER-SIMULATION; SIO2-AL2O3 GLASSES; SI-29;
58529    SPECTROSCOPY; LIQUIDS; AL-27; NMR
58530 AB The coordination and bond properties of aluminium and silicon ions were
58531    discussed by means of molecular dynamics simulation. By combining KA
58532    and MATSUMIYA potentials, the results of simulations agree better with
58533    the experiments. Trend of coordination and bond properties changing
58534    along with the increasing content Al2O3 from 0 to 100 % (mole fraction)
58535    was obtained. Average bond lengths of Si-O in these simulations are
58536    within the range of 1.60 similar to1.63 Angstrom and become smaller
58537    from 1.63 Angstrom in sample 0 to 1.60 Angstrom in sample 9 along with
58538    increasing content of Al2O3. Average bond lengths of Al-O are within
58539    the range from 1.77 Angstrom in sample 1 to 1.86 Angstrom in sample 10.
58540    By analyzing the relation of CN(T) and CNSi(T) with Si/(Si+Al), it is
58541    found that Al mainly locates on the tetrahedral sites which neighbor
58542    the Si tetrahedra but avoid the Al tetrahedra while alumina content is
58543    low. Whereas when Si/ (Si+Al)<0.5, Al-octahedral units appeared and
58544    became predominant gradually. Meanwhile, Al avoidance principle can
58545    only be maintained at low alumina content. With increasing alumina,
58546    this principle would be broken gradually.
58547 C1 Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai 200072, Peoples R China.
58548 CR AKSAY IA, 1979, J AM CERAM SOC, V62, P332
58549    ATHANASOPOULOS DC, 1992, SURF SCI, V273, P129
58550    DANIEL I, 1995, PHYS CHEM MINER, V22, P74
58551    ENGELHARDT G, 1985, PHYS CHEM GLASSES, V26, P157
58552    HANADA T, 1982, COMMU AM CERAM SOC, V6, C84
58553    HATALOVA B, 1992, J NON-CRYST SOLIDS, V146, P218
58554    HIMMEL B, 1991, J NON-CRYST SOLIDS, V136, P27
58555    HUFF NT, 1999, J NON-CRYST SOLIDS, V253, P133
58556    KIEFFER J, 1989, J CHEM PHYS, V90, P4982
58557    LOEWENSTEIN W, 1954, AM MINERAL, V39, P92
58558    MATSUMIYA T, 1993, ISIJ INT, V33, P210
58559    MCMILLAN P, 1982, GEOCHIM COSMOCHIM AC, V46, P2021
58560    MERZBACHER CI, 1990, J NON-CRYST SOLIDS, V124, P194
58561    MIURA Y, 2000, PHYS CHEM GLASSES, V41, P24
58562    MORIKAWA H, 1982, J AM CERAM SOC, V65, P78
58563    MYSEN BO, 1990, AM MINERAL, V75, P120
58564    NOFZ M, 1989, PHYS CHEM GLASSES, V30, P46
58565    NOFZ M, 1990, PHYS CHEM GLASSES, V31, P57
58566    OESTRIKE R, 1987, GEOCHIM COSMOCHIM AC, V51, P2199
58567    POE BT, 1992, CHEM GEOL, V96, P333
58568    SCAMEHORN CA, 1991, GEOCHIM COSMOCHIM AC, V55, P721
58569    STEIN DJ, 1995, AM MINERAL, V80, P417
58570 NR 22
58571 TC 6
58572 SN 1003-6326
58573 J9 TRANS NONFERROUS METAL SOC CH
58574 JI Trans. Nonferrous Met. Soc. China
58575 PD DEC
58576 PY 2001
58577 VL 11
58578 IS 6
58579 BP 965
58580 EP 971
58581 PG 7
58582 SC Metallurgy & Metallurgical Engineering
58583 GA 499CW
58584 UT ISI:000172554300037
58585 ER
58586 
58587 PT J
58588 AU Li, L
58589    Van Der Biest, O
58590    Wang, PL
58591    Vleugels, J
58592    Chen, WW
58593    Huang, SG
58594 TI Estimation of the phase diagram for the ZrO2-Y2O3-CeO2 system
58595 SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
58596 DT Article
58597 DE CeO2; phase equilibria; thermodynamic calculation; Y2O3; ZrO2
58598 ID ZRO2-CEO2 SYSTEM; ZIRCONIA; EQUILIBRIA; OPTIMIZATION
58599 AB Comprehensive descriptions of the thermodynamic properties and
58600    experimental information in three oxide Systems ZrO2-Y2O3, ZrO2-CeO2
58601    and Y2O3-CeO2 are given and thermodynamic models for the calculation of
58602    these systems are discussed. The phase diagrams of the quasi-ternary
58603    ZrO2-Y2O3-CeO2 system in the zirconia-rich corner are estimated at
58604    different temperatures with a substitutional model and Muggianu's
58605    extrapolation. The equilibrium phase diagram calculation is extended to
58606    low temperatures, as well as the Gibbs free energy of the tetragonal,
58607    monoclinic and cubic phases of zirconia doped with yttria and ceria.
58608    (C) 2001 Elsevier Science Ltd. All rights reserved.
58609 C1 Katholieke Univ Leuven, Dept Met & Mat, B-3001 Louvain, Belgium.
58610    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
58611    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
58612 RP Van Der Biest, O, Katholieke Univ Leuven, Dept Met & Mat, B-3001
58613    Louvain, Belgium.
58614 CR DU Y, 1991, J AM CERAM SOC, V74, P1569
58615    DU Y, 1994, SCRIPTA METALL MATER, V31, P327
58616    DURAN P, 1990, J MATER SCI, V25, P5001
58617    DUWEZ P, 1950, J AM CERAM SOC, V33, P274
58618    DUWEZ P, 1951, J ELECTROCHEM SOC, V98, P356
58619    ESQUIVIAS L, 1996, J ALLOY COMPD, V239, P71
58620    GUILLERMET AF, 1981, METALL T B, V12, P745
58621    HANNINK RHJ, 2000, J AM CERAM SOC, V83, P461
58622    HILLERT M, 1975, METALL T B, V6, P37
58623    HUANG SG, 2000, J SHANGHAI U, V6, P189
58624    JANG BH, 1996, MATER T JIM, V37, P1284
58625    JORDAN AS, 1979, CALCULATION PHASE DI
58626    KAUFMAN L, 1978, CALPHAD, V2, P35
58627    KONDOH J, 1998, J ELECTROCHEM SOC, V145, P1550
58628    LELAIT L, 1991, SCRIPTA METALL MATER, V25, P1815
58629    LI L, UNPUB CALPHAD
58630    LI L, 1996, J MATER SCI TECHNOL, V12, P159
58631    LI L, 1997, PHYS CHEM GLASSES, V38, P323
58632    LI L, 1999, J MATER SCI TECHNOL, V15, P439
58633    LI L, 1999, PHYS CHEM GLASSES, V40, P126
58634    LONGO V, 1973, J AM CERAM SOC DISCU, V56, P600
58635    LONGO V, 1981, J MATER SCI, V16, P839
58636    LONGO V, 1984, CERAMICA, V37, P18
58637    LUKAS HL, 1977, CALPHAD, V1, P225
58638    NOGUCHI T, 1970, B CHEM SOC JPN, V43, P2614
58639    ONDIK HM, 1998, PHASE DIAGRAMS ZIRCO, P114
58640    PASCUAL C, 1983, J AM CERAM SOC, V66, P23
58641    PICONI C, 1999, BIOMATERIALS, V20, P1
58642    RAMESH PD, 1996, J MATER SYNTH PROC, V4, P163
58643    RAY SP, 1977, MATER RES B, V12, P549
58644    ROUANET A, 1971, REV INT HAUTES TEMP, V8, P161
58645    ROUANET MA, 1968, COMP REND HEBD SEA C, V267, P1581
58646    RUH R, 1984, J AM CERAM SOC, V67, P190
58647    SRIVASTAVA KK, 1974, BRIT CERAM TRANS J, V73, P85
58648    STUBICAN VS, 1978, J AM CERAM SOC, V61, P17
58649    TANI E, 1982, YOGVO KYOKAI SHI, V90, P195
58650    TANI E, 1983, J AM CERAM SOC, V66, P506
58651    YASHIMA M, 1994, J AM CERAM SOC, V77, P1869
58652    YU ZY, 1996, MATER T JIM, V37, P1281
58653 NR 39
58654 TC 8
58655 SN 0955-2219
58656 J9 J EUR CERAM SOC
58657 JI J. European Ceram. Soc.
58658 PD DEC
58659 PY 2001
58660 VL 21
58661 IS 16
58662 BP 2903
58663 EP 2910
58664 PG 8
58665 SC Materials Science, Ceramics
58666 GA 499XD
58667 UT ISI:000172595200014
58668 ER
58669 
58670 PT J
58671 AU Fan, YM
58672    Ju, JH
58673    Zhang, WL
58674    Xia, YB
58675    Wang, ZM
58676    Fang, ZJ
58677    Wang, LJ
58678 TI A new passivation method for porous silicon
58679 SO SOLID STATE COMMUNICATIONS
58680 DT Article
58681 DE porous silicon; passivation; diamond-like film
58682 AB In this paper, we show the enhancement and stabilization of the
58683    luminescence when depositing diamond-like carbon (DLC) thin films on
58684    top of porous silicon (PS) layers. DLC thin films reduce the influence
58685    of different ambients to PS, which can cause the desorption of hydrogen
58686    molecules from the Si-H-x bonds leaving dangling bonds which operate as
58687    non-radiative recombination traps. So DLC thin films can lead to a more
58688    stable luminescence from PS layers. At the same time, hydrogenated
58689    carbon nitride films can further enhance the photoluminescence
58690    efficiency of PS because more dangling bonds are passivated by
58691    nitridation. (C) 2001 Published by Elsevier Science Ltd.
58692 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
58693 RP Fan, YM, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
58694    China.
58695 CR GLASS JA, 1995, SURF SCI, V338, P125
58696    GRERREROLEMUS R, 1999, SOLID STATE ELECT, V43, P1165
58697    HERINO R, 1993, J LUMIN, V57, P111
58698    SHIH S, 1992, APPL PHYS LETT, V61, P943
58699    TISCHLER MA, 1992, APPL PHYS LETT, V60, P639
58700    XIONG ZH, 2001, THIN SOLID FILMS, V388, P271
58701 NR 6
58702 TC 7
58703 SN 0038-1098
58704 J9 SOLID STATE COMMUN
58705 JI Solid State Commun.
58706 PY 2001
58707 VL 120
58708 IS 11
58709 BP 435
58710 EP 437
58711 PG 3
58712 SC Physics, Condensed Matter
58713 GA 497DL
58714 UT ISI:000172437400004
58715 ER
58716 
58717 PT J
58718 AU Cao, MY
58719    Wang, X
58720    Yu, DY
58721 TI Reliable recognition of ultrasonic echo-signal under high-noise
58722    background using digital signal processing
58723 SO PROGRESS IN NATURAL SCIENCE
58724 DT Article
58725 DE digital signal processing; recognition; ultrasound
58726 AB In practice. it is very important to recognize the ultrasonic
58727    echo-signal under high-noise background. In this paper, the Fourier
58728    spectrum and composition of ultrasonic ranging signals under high-noise
58729    background have been analyzed firstly, then the recognition of
58730    ultrasonic echo-signal has been realized using three methods: frequency
58731    filter, auto-correlation and the effective combination of the former
58732    two methods. The mathematical models are established and the results
58733    are given both theoretically and experimentally.
58734 C1 Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China.
58735    CME, State Key Lab Optoelect Informat Sci & Technol, Tianjin 300072, Peoples R China.
58736    Shanghai Univ Sci & Technol, Informat & Elect Engn Sch, Jinan 250031, Peoples R China.
58737 RP Cao, MY, Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin
58738    300072, Peoples R China.
58739 CR *MATH WORKS INC, 1995, STUD ED MATLAB
58740    OPPENHEIM AV, 1975, DIGITAL SIGNAL PROCE
58741    SOPHOCLES J, 1996, INTRO SIGNAL PROCESS
58742 NR 3
58743 TC 0
58744 SN 1002-0071
58745 J9 PROG NAT SCI
58746 JI Prog. Nat. Sci.
58747 PD MAY
58748 PY 2001
58749 VL 11
58750 SU Suppl. S
58751 BP S102
58752 EP S105
58753 PG 4
58754 SC Multidisciplinary Sciences
58755 GA 496WM
58756 UT ISI:000172420100024
58757 ER
58758 
58759 PT J
58760 AU He, JH
58761 TI Modified Lindstedt-Poincare methods for some strongly non-linear
58762    oscillations Part I: expansion of a constant
58763 SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS
58764 DT Article
58765 DE perturbation method; non-linear equations; duffing equation;
58766    Lindstedt-Poincare method
58767 ID PERTURBATION TECHNIQUE
58768 AB In this paper, a modified Lindstedt-Poincare method is proposed. In
58769    this technique. a constant. rather than the non-linear frequency, is
58770    expanded in powers of the expanding parameter to avoid the occurrence
58771    of secular terms in the perturbation series solution. Some examples are
58772    given here to illustrate its effectiveness and convenience. The results
58773    show that the obtained approximate solutions are uniformly valid on the
58774    whole solution domain, and they are suitable not only for weakly
58775    non-linear systems, but also for strongly non-linear systems. (C) 2001
58776    Elsevier Science Ltd. All rights reserved.
58777 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
58778 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
58779    Shanghai 200072, Peoples R China.
58780 CR ACTON JR, 1985, SOLVING EQUATIONS PH
58781    CHEUNG YK, 1991, INT J NONLINEAR MECH, V26, P367
58782    DAI SQ, 1990, SCI CHIN SER A, V2, P153
58783    HAGEDORN P, 1981, NONLINEAR OSCILLATIO
58784    HE JH, 1998, COMPUT METHOD APPL M, V167, P57
58785    HE JH, 1998, COMPUT METHOD APPL M, V167, P69
58786    HE JH, 1999, COMMUN NONL SCI NUM, V4, P78
58787    HE JH, 1999, COMMUN NONLINEAR SCI, V4, P103
58788    HE JH, 1999, COMMUNICATIONS NONLI, V4, P81
58789    HE JH, 1999, COMPUT METHOD APPL M, V178, P257
58790    HE JH, 1999, INT J NONLINEAR MECH, V34, P699
58791    HE JH, 2000, INT J NONLINEAR MECH, V35, P37
58792    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
58793    HE JH, 2000, J SOUND VIB, V229, P1257
58794    MICKENS RE, 1981, INTRO NONLINEAR OSCI
58795    NAYFEH AH, 1979, NONLINEAR OSCILLATIO
58796    NAYFEH AH, 1985, PROBLEMS PERTURBATIO
58797 NR 17
58798 TC 25
58799 SN 0020-7462
58800 J9 INT J NON-LINEAR MECH
58801 JI Int. J. Non-Linear Mech.
58802 PD MAR
58803 PY 2002
58804 VL 37
58805 IS 2
58806 BP 309
58807 EP 314
58808 PG 6
58809 SC Mechanics
58810 GA 497WA
58811 UT ISI:000172477400012
58812 ER
58813 
58814 PT J
58815 AU He, JH
58816 TI Modified Lindstedt-Poincare methods for some strongly non-linear
58817    oscillations Part II: a new transformation
58818 SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS
58819 DT Article
58820 DE perturbation method; non-linear equation; Duffing equation; van der Pol
58821    equation; Lindstedt-Poincare method
58822 AB In this paper, a modified Lindstedt-Poincare method is proposed. In
58823    this technique, we introduce a new transformation of the independent
58824    variable. This transformation will also allow us to avoid the
58825    occurrence of secular terms in the perturbation series solution, Some
58826    examples are given here to illustrate its effectiveness and
58827    convenience. The results show that the obtained approximate solutions
58828    are uniformly valid on the whole solution domain, and they are suitable
58829    not only for weakly non-linear systems. but also for strongly
58830    non-linear systems. (C) 2001 Elsevier Science Ltd. All rights reserved.
58831 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
58832 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
58833    Shanghai 200072, Peoples R China.
58834 CR ANDERSEN CM, 1982, SIAM J APPL MATH, V42, P678
58835    DAI SQ, 1990, ACTA MECH SINICA, V6, P111
58836    DAI SQ, 1990, SCI CHINA SER A, V33, P153
58837    DAI SQ, 1991, APPL MATH MECH, V12, P255
58838    HAGEDORN P, 1981, NONLINEAR OSCILLATIO
58839    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
58840    HE JH, 2002, INT J NONLINEAR MECH, V37, P309
58841    NAYFEH AH, 1979, NONLINEAR OSCILLATIO
58842 NR 8
58843 TC 25
58844 SN 0020-7462
58845 J9 INT J NON-LINEAR MECH
58846 JI Int. J. Non-Linear Mech.
58847 PD MAR
58848 PY 2002
58849 VL 37
58850 IS 2
58851 BP 315
58852 EP 320
58853 PG 6
58854 SC Mechanics
58855 GA 497WA
58856 UT ISI:000172477400013
58857 ER
58858 
58859 PT J
58860 AU Ye, Q
58861    Cao, WG
58862    Gao, JS
58863 TI Recent advances in the syntheses and applications of thiolester
58864    derivatives
58865 SO CHINESE JOURNAL OF ORGANIC CHEMISTRY
58866 DT Article
58867 DE thiolester; synthesis; application
58868 ID PALLADIUM-CATALYZED THIOCARBONYLATION; CARBON-MONOXIDE;
58869    ALPHA,BETA-UNSATURATED THIOESTERS; REGIOSELECTIVE THIOCARBONYLATION;
58870    TRIFLUOROMETHYLATED ACIDS; CONVENIENT SYNTHESIS; CONJUGATE ADDITIONS;
58871    TELLUROL ESTERS; THIOLS; ALCOHOLS
58872 AB Recent advances in the syntheses and applications of thiolester are
58873    reviewed in this paper. 65 References are cited here.
58874 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
58875 RP Ye, Q, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
58876 CR ADAM W, 1992, TETRAHEDRON LETT, V33, P469
58877    ADAMCZYK M, 1996, TETRAHEDRON LETT, V37, P4305
58878    ANBAZHAGAN M, 1997, J CHEM SOC PERK 0607, P1623
58879    ANBAZHAGAN M, 1998, TETRAHEDRON LETT, V39, P3609
58880    AYERS JT, 1999, SYNTHETIC COMMUN, V29, P351
58881    BARRETT AGM, 1995, J CHEM SOC PERK 0421, P1009
58882    BATEY RA, 1999, TETRAHEDRON LETT, V40, P2669
58883    BILLARD T, 1999, J ORG CHEM, V64, P3813
58884    BILLARD T, 2000, TETRAHEDRON LETT, V41, P3069
58885    BRAGA AL, 1998, TETRAHEDRON LETT, V39, P3395
58886    BYEON CH, 2000, SYNLETT          JAN, P119
58887    CHATTERJEE P, 1994, J CHEM SOC P1, P2403
58888    CLIVE DLJ, 1999, CHEM COMMUN, P2251
58889    CRUDDEN CM, 1995, J ORG CHEM, V60, P5579
58890    DANHEISER RL, 1996, ORG SYNTH, V73, P61
58891    DIETER RK, 1997, J ORG CHEM, V62, P3798
58892    FUKUYAMA T, 1990, J AM CHEM SOC, V112, P7050
58893    GAO JS, 1999, J SHANGHAI U NATURL, V5, P491
58894    GONG P, 1998, CHIN J MED CHEM, V8, P139
58895    HAMILTON GS, 1999, 5990131, US
58896    HAN YL, 1999, J ORG CHEM, V64, P1972
58897    HARRIS WT, 1998, SYNTHETIC COMMUN, V28, P1117
58898    INOUE T, 1994, J ORG CHEM, V59, P5824
58899    JACKSON RFW, 1993, CHEM COMMUN, V11, P889
58900    JACKSON RFW, 1994, TETRAHEDRON LETT, V35, P7433
58901    JOUIN P, 1988, TETRAHEDRON LETT, V29, P2661
58902    KHAN JA, 1999, J AGR FOOD CHEM, V47, P3269
58903    KHUMTAVEEPORN K, 1994, J ORG CHEM, V59, P1414
58904    KISHIMOTO N, 1999, J ORG CHEM, V64, P5988
58905    KOBAYASHI K, 1995, ANAL SCI, V11, P1029
58906    KOBAYASHI S, 1994, J AM CHEM SOC, V116, P9805
58907    KOBAYASHI S, 1996, TETRAHEDRON LETT, V37, P2809
58908    KOBAYASHI S, 1996, TETRAHEDRON, V52, P7277
58909    KOPPENHOEFER B, 1997, SYNTHESIS-STUTTG MAY, P515
58910    KUNIYASU H, 1993, TETRAHEDRON LETT, V34, P2491
58911    LIU HJ, 1992, CANJ CHEM, V70, P128
58912    MANABE K, 1999, TETRAHEDRON LETT, V40, P3773
58913    MATSUNAGA PT, 1994, ANGEW CHEM INT EDIT, V33, P1748
58914    MUKAIYAMA T, 1990, CHEM LETT, P1019
58915    MUKAIYAMA T, 1999, CHEM LETT        NOV, P1157
58916    NAKATANI S, 1993, TETRAHEDRON, V49, P2011
58917    PAK TH, 1993, J ORG CHEM, V58, P2313
58918    PESTI JA, 1999, SYNTHETIC COMMUN, V29, P3811
58919    PONDE DE, 1998, J ORG CHEM, V63, P1058
58920    RAHIM A, 1999, SYNLETT, V7, P1029
58921    RAHIM MA, 1998, TETRAHEDRON LETT, V39, P2153
58922    ROBERTO D, 1989, J AM CHEM SOC, V111, P7539
58923    RULEV AY, 1999, J CHEM SOC PERK 0607, P1567
58924    SABITHA G, 1999, SYNTHETIC COMMUN, V29, P2311
58925    SILVEIRA CC, 1999, ORGANOMETALLICS, V18, P5183
58926    SKARIA S, 2000, POLYMER, V41, P2737
58927    STAVROPOULOS P, 1990, J AM CHEM SOC, V112, P5385
58928    SUCHETA K, 1994, TETRAHEDRON LETT, V35, P4415
58929    TOKUYAMA H, 1998, TETRAHEDRON LETT, V39, P3189
58930    VLATTAS I, 1997, TETRAHEDRON LETT, V38, P7321
58931    VOSS J, 1991, COMPREHENSIVE ORGANI, V6, P435
58932    WANG ZM, 1992, CURRENT STRUCTURED D, P1936
58933    WEBER N, 1999, J AM OIL CHEM SOC, V76, P1297
58934    XIAO WJ, 1997, J ORG CHEM, V62, P3422
58935    XIAO WJ, 1998, J ORG CHEM, V63, P2609
58936    XIAO WJ, 1998, J ORG CHEM, V63, P7939
58937    XIAO WJ, 1999, J ORG CHEM, V64, P2080
58938    YOSHIMATSU M, 1995, J ORG CHEM, V60, P4798
58939    ZHENG TC, 1999, TETRAHEDRON LETT, V40, P603
58940 NR 64
58941 TC 1
58942 SN 0253-2786
58943 J9 CHINESE J ORG CHEM
58944 JI Chin. J. Org. Chem.
58945 PD OCT
58946 PY 2001
58947 VL 21
58948 IS 10
58949 BP 697
58950 EP 707
58951 PG 11
58952 SC Chemistry, Organic
58953 GA 497UQ
58954 UT ISI:000172474200001
58955 ER
58956 
58957 PT J
58958 AU Shen, Y
58959    Zhang, JC
58960    Gu, F
58961    Chen, JM
58962    Huang, HH
58963 TI Photoconductivity study of doping in C-60-toluene derivative
58964 SO MATERIALS CHEMISTRY AND PHYSICS
58965 DT Article
58966 DE C-60; C-60-toluene derivative; fluorescence; photoconductivity; doping
58967 ID C-60; PHTHALOCYANINE
58968 AB The influence of the dopant iodine (I-2) on fluorescence spectra,
58969    UV-VIS spectra and photoconductivity of the C-60-toluene derivative is
58970    studied. The results show that the photoconductivity of the derivative
58971    doped with I-2 has increased by one order of magnitude. The
58972    fluorescence and UV-VIS analyses indicate that a charge-transfer
58973    complex (CTC) Of C-60-toluene and I-2 may be formed. (C) 2001 Published
58974    by Elsevier Science B.V.
58975 C1 Shanghai Univ Sci & Technol, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
58976 RP Shen, Y, Shanghai Univ Sci & Technol, Dept Inorgan Mat, Shanghai
58977    201800, Peoples R China.
58978 CR ALLEMAND PM, 1991, SCIENCE, V253, P301
58979    CHANGCHUN W, 1994, CHEM J CHINESE U, V15, P1559
58980    CHEN HZ, 1993, J PHOTOCH PHOTOBIO A, V70, P179
58981    CHEN Y, 1996, J POLYM SCI POL PHYS, V34, P631
58982    DAYIN L, 1993, J CHEM SOC CHEM COMM, P603
58983    KROTO HW, 1985, NATURE, V318, P162
58984    SHEN Y, 1999, ACTA CHIM SINICA, V57, P1034
58985    SMILOWITZ L, 1993, PHYS REV B, V47, P13853
58986    TANG BZ, 1998, MACROMOLECULES, V31, P103
58987    WANG Y, 1992, NATURE, V356, P585
58988    WANG Y, 1993, J AM CHEM SOC, V115, P3844
58989    XU ZD, 1995, J MATER SCI LETT, V14, P1030
58990    YONEHARA H, 1996, THIN SOLID FILMS, V278, P108
58991    YOSHINO K, 1993, SOLID STATE COMMUN, V85, P85
58992 NR 14
58993 TC 2
58994 SN 0254-0584
58995 J9 MATER CHEM PHYS
58996 JI Mater. Chem. Phys.
58997 PD DEC 1
58998 PY 2001
58999 VL 72
59000 IS 3
59001 BP 405
59002 EP 407
59003 PG 3
59004 SC Materials Science, Multidisciplinary
59005 GA 494YF
59006 UT ISI:000172312900017
59007 ER
59008 
59009 PT J
59010 AU Fang, YH
59011    Hu, A
59012    Ouyang, SX
59013    Oh, JJ
59014 TI The effect of calcination on the microwave dielectric properties of
59015    Ba(Mg1/3Ta2/3)O-3
59016 SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
59017 DT Article
59018 DE dielectric properties; calcination; microwave processing
59019 ID CERAMICS
59020 AB In this study, the role of calcination, its effect upon microstructural
59021    development and the correlation with dielectric losses at microwave
59022    frequencies were investigated. Ceramics with the composition
59023    Ba(Mg1.3Ta2/3)O-3 (BMT) were prepared by a conventional mixed-oxide
59024    route using controlled calcination. Commercial processing often uses
59025    sintering and calcination conditions to modify the dielectric
59026    properties of ceramics. However, the mechanism by which the calcination
59027    conditions influence the dielectric losses is not clear. The BMT
59028    powders were calcinated at 1000-1300 degreesC for 4-10 h in air or
59029    flowing oxygen. Resonator samples were then sintered at 1600-1650
59030    degreesC for 3 It. Scanning electron microscopy and X-ray diffraction
59031    were used to examine the phase composition and the microstructure of
59032    the sintered bodies. The microwave dielectric properties were measured
59033    at 10 GHz. We found a significant influence of the calcination
59034    conditions on the quality factor (Qf) -value. The influences of the
59035    phase composition on dielectric losses appear to dominate those of the
59036    microstructure. A significant effect was also found for specimens
59037    calcinated in different atmospheres. By controlling the calcination and
59038    sintering a pure BMT ceramic with a dielectric constant of 24.5, a Qf
59039    -value of 120,000 GHz and an r tau (f) of 6 ppm/degreesC was obtained.
59040    (C) 2001 Elsevier Science Ltd. All rights reserved.
59041 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
59042    Chinese Bldg Mat Acad, Beijing, Peoples R China.
59043    Korea Inst Sci & Technol, Seoul 130650, South Korea.
59044 RP Fang, YH, Shanghai Univ, Dept Inorgan Mat, 20 Chengzhong Rd, Shanghai
59045    201800, Peoples R China.
59046 CR CHEN XM, 1994, J MATER SCI-MATER EL, V5, P244
59047    DAVIES PK, 1997, J AM CERAM SOC, V80, P1727
59048    FREER R, 1993, SILICATES IND, V9, P191
59049    HU A, UNPUB FORMATION BAMG
59050    KAWASHIMA S, 1983, J AM CERAM SOC, V66, P421
59051    KINGERY WD, 1976, INTRO CERAMICS, P448
59052    MATSUMOTO K, 1986, P 6 IEEE INT S APPL, P118
59053    NOMURA S, 1982, JPN J APPL PHYS, V21, P624
59054    SUGIYAMA M, 1990, CERAM T, V15, P153
59055    TSUYOSHI KK, 1983, J AM CERAM SOC, V69, C82
59056    WAKINO K, 1990, BRIT CERAM TRANS J, V89, P39
59057    YOUN HJ, 1996, JPN J APPL PHYS 1, V35, P3947
59058 NR 12
59059 TC 9
59060 SN 0955-2219
59061 J9 J EUR CERAM SOC
59062 JI J. European Ceram. Soc.
59063 PY 2001
59064 VL 21
59065 IS 15
59066 BP 2745
59067 EP 2750
59068 PG 6
59069 SC Materials Science, Ceramics
59070 GA 494ZU
59071 UT ISI:000172316400030
59072 ER
59073 
59074 PT J
59075 AU Wu, NH
59076    Bao, BR
59077    Yoshii, F
59078    Makuuchi, K
59079 TI Irradiation of crosslinked, poly(vinyl alcohol) blended hydrogel for
59080    wound dressing
59081 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
59082 DT Article
59083 ID GELS
59084 AB In order to obtain a more ideal hydrogel wound dressing, crosslinked
59085    hydrogel films blended with polyvinyl alcohol (PVA), polyvinyl
59086    pyrrolidone, kappa-carrageenan (KC), and powder silk were prepared by
59087    electron beam, and their physiochemical properties were investigated as
59088    a combination of function factors. The experimental results showed that
59089    the gel fraction of the hydrogel films depended mainly on irradiation
59090    dose and the monomer concentration of the polymers, the properties of
59091    hydrogel could be greatly extended or improved by blending
59092    homopolymers. The rate of gel formation of the hydro.-el was raised,
59093    and the water evaporation from hydrogel could be retarded after mixing
59094    with KC, while the tensile strength of hydrogel films were obviously
59095    increased after mixing with silk. Toxicity and healing effect of
59096    PVA/PVP/KC/silk blended hydrogel films as wound dressings were
59097    evaluated. The irradiated blended hydrogel showed satisfactory
59098    properties for wound dressing, the hydrogel did not induce any acute
59099    general toxic effects, and it is effective for fast healing of wound.
59100 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
59101    Japan Atom Energy Res Inst, Takasaki Radiat Chem Res Estab, Takasaki, Gumma, Japan.
59102 RP Wu, NH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
59103    Peoples R China.
59104 CR DAVIES JWL, 1983, BURNS, V10, P94
59105    GULDALIAN J, 1973, J TRAUMA, V13, P32
59106    HYON SH, 1989, KOBUNSHI RONBUNSHU, V46, P673
59107    KABRA BG, 1992, POLYMER, V33, P990
59108    MORRIS ER, 1980, J MOL BIOL, V138, P149
59109    NISHITANI K, 1983, PLANT CELL PHYSL, V24, P345
59110    PEPPAS NA, 1992, J CONTROL RELEASE, V18, P95
59111    QUEEN D, 1986, BURNS, V12, P161
59112    ROSIAK JM, 1991, ACS SYM SER, V475, P271
59113    WATASE M, 1983, POLYM COMMUN, V24, P52
59114    WU MH, 1996, RADIAT PHYS CHEM, V48, P525
59115    WU MH, 2000, NUCL SCI TECHN, V11, P72
59116    YOSHII F, 1995, RADIAT PHYS CHEM, V46, P169
59117 NR 13
59118 TC 1
59119 SN 0236-5731
59120 J9 J RADIOANAL NUCL CHEM
59121 JI J. Radioanal. Nucl. Chem.
59122 PD NOV
59123 PY 2001
59124 VL 250
59125 IS 2
59126 BP 391
59127 EP 395
59128 PG 5
59129 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
59130    & Technology
59131 GA 494FJ
59132 UT ISI:000172270800030
59133 ER
59134 
59135 PT J
59136 AU Xu, F
59137    Wang, Z
59138    Xu, SY
59139    Sun, DW
59140 TI Cryostability of frozen concentrated orange juices produced by
59141    enzymatic process
59142 SO JOURNAL OF FOOD ENGINEERING
59143 DT Article
59144 DE browning; concentrated orange juice; cryostability; glass transition
59145    temperature; storage; turbidity; viscosity
59146 ID GLASS-TRANSITION; STABILITY; WATER
59147 AB The cryostability of frozen concentrated orange juices (FCOJ) produced
59148    by an enzymatic process (enzymatic juice) and a squeezing process
59149    (squeezed juice) was investigated. The results showed that after
59150    thawing the enzymatic juice was superior in colour stability and cloud
59151    stability to the squeezed juice. The influence of glass transition
59152    temperature and viscosity of juices on the cryostability was examined
59153    and the data showed that some physico-chemical changes/reactions in
59154    juices during storage were controlled by diffusion. The composition of
59155    carbohydrates in juices was determined by high performance liquid
59156    chromatography (HPLC). Results obtained showed that the dominant
59157    solutes (low molecular weight compounds) of FCOJ governed the glass
59158    transition temperature of juices while the smaller fractions (high
59159    molecular weight carbohydrates) of the total solids of FCOJ had
59160    significant effects on the viscosity of FCOJ. (C) 2001 Elsevier Science
59161    Ltd. All rights reserved.
59162 C1 Natl Univ Ireland Univ Coll Dublin, Dept Agr & Food Engn, FRCFT, Dublin 2, Ireland.
59163    Shanghai Univ Sci & Technol, Inst Food Sci & Engn, Shanghai 200093, Peoples R China.
59164    Wuxi Univ Light Ind, Sch Food Sci & Engn, Wuxi 214036, Jiangsu, Peoples R China.
59165 RP Sun, DW, Natl Univ Ireland Univ Coll Dublin, Dept Agr & Food Engn,
59166    FRCFT, Earlsfort Terrace, Dublin 2, Ireland.
59167 CR BOUTRON P, 1993, CRYOBIOLOGY, V30, P86
59168    CAMERON RG, 1997, J FOOD SCI, V62, P242
59169    DELCASTILLO MD, 1998, J AGR FOOD CHEM, V46, P277
59170    DUBOIS M, 1956, ANAL CHEM, V28, P3
59171    DUXBURY DD, 1993, FOOD PROCESSING  MAY, P65
59172    FAIGH JG, 1995, FOOD TECHNOLOGY, P79
59173    FENNEMA OR, 1996, FOOD CHEM
59174    GOFF HD, 1993, J DAIRY SCI, V76, P1268
59175    HANDWERK RL, 1988, J AGR FOOD CHEM, V36, P231
59176    LEA AGH, 1991, ACS S SERIES
59177    LEVINE H, 1990, THERMAL ANAL FOODS
59178    MATTHEW RF, 1994, FROZEN CONCENTRATED
59179    MEYDAV S, 1977, J AGR FOOD CHEM, V25, P602
59180    MOURI T, 1981, 4299849, US
59181    NAIM M, 1997, J AGR FOOD CHEM, V45, P1861
59182    ROOS YH, 1994, J AGR FOOD CHEM, V42, P893
59183    SLADE L, 1991, CRIT REV FOOD SCI, V30, P115
59184 NR 17
59185 TC 1
59186 SN 0260-8774
59187 J9 J FOOD ENG
59188 JI J. Food Eng.
59189 PD DEC
59190 PY 2001
59191 VL 50
59192 IS 4
59193 BP 217
59194 EP 222
59195 PG 6
59196 SC Engineering, Chemical; Food Science & Technology
59197 GA 494ZQ
59198 UT ISI:000172316100004
59199 ER
59200 
59201 PT J
59202 AU He, JH
59203 TI A universal variational formulation for two dimensional fluid mechanics
59204 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
59205 DT Article
59206 DE fluid mechanics; variational theory
59207 ID SEMI-INVERSE METHOD; UNKNOWN SHAPE; FLOW; TURBOMACHINERY; PRINCIPLES
59208 AB A universal variational formulation for two dimensional fluid mechanics
59209    is obtained. which is subject to the so-called parameter-constrained
59210    equations (the relationship between parameters in two governing
59211    equations). By eliminating the constraints the generalized variational
59212    principle (GVPs) can be readily derived from the formulation The
59213    formulation can be applied to any conditions in case the governing
59214    equations can be converted into conservative forms. Some illustrative
59215    examples are given to testify the effectiveness and simplicity of the
59216    method.
59217 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
59218 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
59219    Peoples R China.
59220 CR BRETHERTON FP, 1970, J FLUID MECH       1, V44, P19
59221    CHIEN WZ, 1983, APPL MATH MECH, V4, P143
59222    CHIEN WZ, 1984, APPL MATH MECH, V5, P1281
59223    CHIEN WZ, 1985, GEN VARIATIONAL PRIN
59224    HE JH, 1997, INT J TURBO JET ENG, V14, P23
59225    HE JH, 1997, MODERN MECH ADV SCI, P603
59226    HE JH, 1997, SHANGHAI J MECH, V18, P305
59227    HE JH, 1997, TESIS SHANGHAI U SHA
59228    HE JH, 1998, INT J TURBO JET ENG, V15, P95
59229    HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154
59230    HE JH, 1999, J U SHANGHAI SCI TEC, V21, P127
59231    HE JH, 1999, J U SHANGHAI SCI TEC, V21, P29
59232    HE JH, 1999, J U SHANGHAI SCI TEC, V21, P356
59233    HE JH, 2000, AIRCR ENG AEROSP TEC, V72, P18
59234    HE JH, 2000, ASME, V67, P326
59235    HE JH, 2000, GEN VARIATIONAL PRIN
59236    HE JH, 2000, INT J ENG SCI, V39, P323
59237    HE JH, 2000, INT J NONLINEAR SCI, V1, P133
59238    HE JH, 2000, INT J NONLINEAR SCI, V1, P139
59239    HERIVEL JW, 1955, P CAMBRIDGE PHIL SOC, V51, P344
59240    LIN CC, 1963, P INT SCH PHYS COURS, P93
59241    LIU GL, 1981, P 2 AS C FLUID MECH, P698
59242    LIU GL, 1989, SHANGHAI J MECH, V10, P73
59243    LIU GL, 1990, J ENG THERMOPHYSICS, V11, P136
59244    SALMON R, 1988, ANNU REV FLUID MECH, V20, P225
59245 NR 25
59246 TC 1
59247 SN 0253-4827
59248 J9 APPL MATH MECH-ENGL ED
59249 JI Appl. Math. Mech.-Engl. Ed.
59250 PD SEP
59251 PY 2001
59252 VL 22
59253 IS 9
59254 BP 989
59255 EP 996
59256 PG 8
59257 SC Mathematics, Applied; Mechanics
59258 GA 495AB
59259 UT ISI:000172317100001
59260 ER
59261 
59262 PT J
59263 AU Gu, CQ
59264    Li, CJ
59265 TI Computation formulas of generalized inverse Pade approximants using for
59266    solution of integral equations
59267 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
59268 DT Article
59269 DE Pade approximant; determinantal formula; existence; integral equation
59270 AB For the generalized inverse function-valued Pade approximants, its
59271    intact computation formulas are given. The explicit determinantal
59272    formulas for the denominator scalar polynomials and the numerator
59273    function-valued polynomials are first established. A useful existence
59274    condition is given by means of determinant form.
59275 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
59276    Tongji Univ, Dept Math, Shanghai 200331, Peoples R China.
59277 RP Gu, CQ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
59278 CR BAKER GA, 1978, NUMERICAL TREATMENT
59279    CHISHOLM JSR, 1963, J MATH PHYS, V4, P1506
59280    GRAVESMORRIS PR, 1986, CONSTR APPROX, V2, P263
59281    GRAVESMORRIS PR, 1990, J COMPUT APPL MATH, V32, P117
59282    GU CQ, 1997, NUMER SINICA, V19, P19
59283    GU CQ, 1999, LINEAR ALGEBRA APPL, V295, P7
59284    SLOAN I, 1976, MATH COMPUT, V30, P758
59285 NR 7
59286 TC 1
59287 SN 0253-4827
59288 J9 APPL MATH MECH-ENGL ED
59289 JI Appl. Math. Mech.-Engl. Ed.
59290 PD SEP
59291 PY 2001
59292 VL 22
59293 IS 9
59294 BP 1057
59295 EP 1063
59296 PG 7
59297 SC Mathematics, Applied; Mechanics
59298 GA 495AB
59299 UT ISI:000172317100009
59300 ER
59301 
59302 PT J
59303 AU Wang, ZY
59304    Liao, HY
59305    Zhou, SP
59306 TI Studies of the dc biased Josephson junction coupled to a resonant tank
59307 SO ACTA PHYSICA SINICA
59308 DT Article
59309 DE Josephson junction; chaos; attractor; basin of attraction; Poincare
59310    map; Lyapunov exponents
59311 ID CONTROLLING CHAOS
59312 AB We have investigated the dynamics of a Josphson junction circuit, which
59313    consists of a dc biased Josephson junction coupled to a resonant tank.
59314    Numerical simulations indicate that period-3 and chaotic states coexist
59315    when this system is driven by a proper external dc current. The
59316    detailed structures of the attractors and the basins of attraction are
59317    given to specify the features of these states. This provides one with
59318    valuable information to avoid chaos in Josephson junction devices.
59319 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
59320 RP Wang, ZY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
59321 CR ABRAHAM E, 1999, IEEE T APPL SUPERC 3, V9, P4166
59322    ATKIN IL, 1997, IEEE T APPL SUPERC 3, V7, P2894
59323    BENJACOB E, 1981, APPL PHYS LETT, V38, P822
59324    HUBERMAN BA, 1980, APPL PHYS LETT, V37, P750
59325    JENSEN HD, 1990, PHYSICA B, V165, P1661
59326    KAUTZ RL, 1981, J APPL PHYS, V52, P6241
59327    MACDONALD AH, 1983, PHYS REV B, V27, P201
59328    NERENBERG MAH, 1987, PHYS REV B, V36, P8333
59329    PEDERSEN NF, 1988, STIMULATED EFFECTS J, P227
59330    YANG TH, 1999, PHYS REV E A, V59, P5393
59331 NR 10
59332 TC 4
59333 SN 1000-3290
59334 J9 ACTA PHYS SIN-CHINESE ED
59335 JI Acta Phys. Sin.
59336 PD OCT
59337 PY 2001
59338 VL 50
59339 IS 10
59340 BP 1996
59341 EP 2000
59342 PG 5
59343 SC Physics, Multidisciplinary
59344 GA 493ZA
59345 UT ISI:000172252300030
59346 ER
59347 
59348 PT J
59349 AU Zhuang, YL
59350    Yuan, YG
59351    Zhang, RL
59352 TI The progress of photoisomerizable intellectual biological switches
59353 SO PROGRESS IN CHEMISTRY
59354 DT Article
59355 DE photoisomerization; biological switches; biosensors
59356 ID BACTERIORHODOPSIN PHOTOSYNTHESIS; ALPHA-CHYMOTRYPSIN; PROTEIN
59357    CATALYSIS; GLUCOSE-OXIDASE; ENZYME-ACTIVITY; ION-TRANSPORT; LIGHT;
59358    PHOTOREGULATION; MECHANISM; IMMOBILIZATION
59359 AB The novel concept of the biological intellectual switch is introduced.
59360    The mechanism and characteristics on the photoisomerization of
59361    biological switch materials are described. The progress and the
59362    development in this field are discussed, such as the applications of
59363    reversibly photoisomerized biomaterials in optical memory,
59364    electrochemical control, biosensors,etc. The future prospect for the
59365    intellectual biological switches is presented.
59366 C1 Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072, Peoples R China.
59367 RP Zhuang, YL, Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072,
59368    Peoples R China.
59369 CR 1998, SAVING TECHNOLOGY DI, P3
59370    ADAMS SR, 1989, J AM CHEM SOC, V111, P7957
59371    AIZAWA M, 1977, ARCH BIOCHEM BIOPHYS, V182, P305
59372    AMIT B, 1974, J ORG CHEM, V39, P192
59373    BERTELSON RC, 1971, PHOTOCHROMISM, P45
59374    BINKLEY RW, 1984, SYNTHETIC ORGANIC PH, P375
59375    BIRGE RR, 1990, BIOCHIM BIOPHYS ACTA, V1016, P293
59376    BOUASLAURENT H, 1992, APPL PHOTOCHROMIC PO, V56, P1
59377    CIARDELLI F, 1984, BIOPOLYMERS, V23, P1423
59378    DIMITRI AP, 1989, SCIENCE, V245, P843
59379    ELLISDAVIES GCR, 1988, J ORG CHEM, V53, P1966
59380    ELSAYED MA, 1997, PURE APPL CHEM, V69, P749
59381    ELSTOV AV, 1990, ORGANIC PHOTOCHROMIS
59382    FEHER G, 1989, NATURE, V339, P111
59383    FENG G, 1998, SCIENCE, V887, P279
59384    GIGORIEFF N, 1996, J MOL BIOL, V259, P393
59385    GILAT SL, 1993, J CHEM SOC CHEM COMM, P1439
59386    GILAT SL, 1995, CHEM-EUR J, V1, P275
59387    GOVINDJEE R, 1990, BIOPHYS J, V58, P597
59388    GURNEY AM, 1987, PHYSIOL REV, V67, P583
59389    HASEBE Y, 1988, J PHYS ORG CHEM, V1, P309
59390    HAUPTS U, 1997, BIOCHEMISTRY-US, V36, P2
59391    HEINZ D, 1990, PHOTOCHROMISM MOL SY
59392    HIDEKI K, 1998, J PHYS CHEM-US, V102, P7899
59393    HOUBEN JL, 1983, INT J BIOL MACROMOL, V5, P94
59394    HUCK NPM, 1995, J CHEM SOC CHEM COMM, P1095
59395    KAPLAN JH, 1980, NATURE, V288, P587
59396    KAWAI SH, 1995, CHEM-EUR J, V1, P285
59397    KIMURA Y, 1997, NATURE, V389, P206
59398    KYOICHI S, 1998, J APPL PHYS, V83, P2894
59399    LANYI JK, 1993, BIOCHIM BIOPHYS ACTA, V241, P1183
59400    LANYI JK, 1997, J BIOL CHEM, V272, P31209
59401    LESTER HA, 1982, ANNU REV BIOPHYS BIO, V11, P151
59402    LEUCKE H, 1998, SCIENCE, V280, P1934
59403    LING LJ, 1989, ACTA BIOPHYS SINCA, V5, P293
59404    LIONDAGAN M, 1995, ANGEW CHEM INT EDIT, V34, P1604
59405    LIU ZF, 1990, NATURE, V347, P658
59406    MALCOLM RB, 1990, BIOPOLYMERS, V9, P1121
59407    MATHIES RA, 1991, ANNU REV BIOPHYS BIO, V20, P491
59408    MCAVDLE CB, 1992, APPL PHOTOCHROMIC PO, P1
59409    MONTI S, 1977, J AM CHEM SOC, V99, P3808
59410    NARGEOT J, 1983, P NATL ACAD SCI-BIOL, V80, P2395
59411    NERBONNE JM, 1984, NATURE, V310, P74
59412    NORBERT H, 1990, BIOPHYSICAL SOC, V58, P83
59413    OTTOLENGHI M, 1967, J CHEM PHYS, V46, P4613
59414    PEBAYPEYROULA E, 1997, SCIENCE, V277, P1676
59415    PIERONI O, 1980, J AM CHEM SOC, V102, P5913
59416    PIERONI O, 1992, J PHOTOCH PHOTOBIO B, V12, P125
59417    PILLAI VNR, 1990, SYNTHESIS, V1
59418    PORTER NA, 1990, PHOTOCHEM PHOTOBIOL, V51, P37
59419    RENTZEPIS PM, 1968, CHEM PHYS LETT, V2, P117
59420    ROHR M, 1992, J PHYS CHEM-US, V96, P6055
59421    ROTHSCHILD KJ, 1992, J BIOENERG BIOMEMBR, V24, P147
59422    SALTIEL J, 1992, APPL PHOTOCHROMIC PO, V64, P1
59423    SONG L, 1993, SCIENCE, V261, P891
59424    SONG L, 1996, J PHYS CHEM-US, V100, P10479
59425    SPUDICH JL, 1996, CURR OPIN CELL BIOL, V8, P452
59426    STRYER L, 1986, ANNU REV NEUROSCI, V9, P87
59427    STRYER L, 1988, BIOCHEMISTRY-US, P1028
59428    STRYER L, 1988, BIOCHEMISTRY-US, P25
59429    TOMLINSON WJ, 1984, APPL OPTICS, V23, P3990
59430    TURNER AD, 1988, J AM CHEM SOC, V110, P244
59431    VEDA T, 1994, J CHEM SOC, V225, P334
59432    WALKER JW, 1987, NATURE, V327, P249
59433    WESTMARK PR, 1993, J AM CHEM SOC, V115, P3416
59434    WHITTALL J, 1992, APPL PHOTOCHROMIC PO, V46, P1
59435    WILLNER I, 1991, J AM CHEM SOC, V113, P3321
59436    WILLNER I, 1991, J AM CHEM SOC, V113, P4013
59437    WILLNER I, 1993, BIOORGANIC PHOTOCHEM
59438    WILLNER I, 1993, J AM CHEM SOC, V115, P8690
59439    WILLNER I, 1993, REACT POLYM, V21, P177
59440    WILLNER I, 1996, ANGEW CHEM INT EDIT, V35, P367
59441    WILLNER I, 1996, J AM CHEM SOC, V118, P5310
59442    WILLNER I, 1998, J PHYS ORG CHEM, V11, P546
59443 NR 74
59444 TC 0
59445 SN 1005-281X
59446 J9 PROG CHEM
59447 JI Prog. Chem.
59448 PD JUL
59449 PY 2001
59450 VL 13
59451 IS 4
59452 BP 276
59453 EP 282
59454 PG 7
59455 SC Chemistry, Multidisciplinary
59456 GA 492DD
59457 UT ISI:000172152400006
59458 ER
59459 
59460 PT J
59461 AU Lu, HQ
59462    Shen, LM
59463    Sun, NJ
59464    Ji, GF
59465 TI Bianchi type-I, -VII0 and -V cosmological models of Weyssenhoff fluid
59466    with magnetic moment
59467 SO NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS
59468    RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS
59469 DT Article
59470 ID EARLY UNIVERSE; INFLATION; SPIN; FIELD
59471 AB We derive the system of field equations for a Weyssenhof fluid
59472    including magnetic interaction among the spinning particles prevailing
59473    in spatially homogeneous, but. anisotropic cosmological models of
59474    Bianchi types I, VII0 and V based on the Einstein-Cartan theory. We
59475    have analyzed the field equations in three different equations of
59476    states specified by p = 1/3 rho, p = rho and p = 0. We have obtained.
59477    singular and non-singular solutions for Bianchi modes of types I and
59478    VII0 under the state p = rho but have found that. the non-singular
59479    solutions are unphysical. During the radiation epoch (p = 1/3 rho) and
59480    the matter epoch (p = 0), the analytical solutions found are
59481    non-singular for all the stated three Bianchi models; provided that the
59482    combined energy arising from matter spin and magnetic interaction among
59483    particles overcomes the anisotropy energy in the Universe. We have
59484    deduced that the minimum particle numbers for the radiation and matter
59485    epochs are, respectively, 10(88) and 10(108), leading to the conclusion
59486    that we must. consider the existence of neutrinos and other creation of
59487    particles and anti-particles under torsion and strong gravitational
59488    field in the early Universe.
59489 C1 Shanghai Univ, Dept Phys, Shanghai 200041, Peoples R China.
59490 RP Lu, HQ, Shanghai Univ, Dept Phys, Shanghai 200041, Peoples R China.
59491 CR BARROW JD, 1977, MON NOT R ASTRON SOC, V178, P625
59492    CARTON E, 1985, MANIFOLD AFFINE CONN
59493    DAVIDSON S, 1996, PHYS LETT B, V380, P253
59494    DEMIANSKI M, 1987, PHYS REV D, V35, P1181
59495    DERITIS SP, 1986, P 7 IT C GEN REL GRA
59496    DESABBATA V, 1980, LETT NUOVO CIMENTO, V27, P133
59497    DESABBATA V, 1990, NUOVO CIMENTO B, V105, P603
59498    DESABBATA V, 1994, SPIN TORSION GRAVITA
59499    HEHL FW, 1976, REV MOD PHYS, V48, P393
59500    ISHAM CJ, 1971, PHYS REV           D, V3, P867
59501    ISHAM CJ, 1973, NATURE-PHYS SCI, V244, P82
59502    KERIMOV BK, 1992, PHYS LETT B, V274, P477
59503    KOPCZYNSKI W, 1973, PHYS LETT A, V43, P63
59504    LU HQ, 1995, CLASSICAL QUANT GRAV, V12, P2755
59505    MARTINEZGONZALE.E, 1986, PHYS LETT B, V167, P37
59506    OBUKHOV YN, 1987, CLASSICAL QUANT GRAV, V4, P1633
59507    RAYCHAUDHURI AK, 1975, PHYS REV D, V12, P952
59508    RYAN MP, 1975, HOMOGENEOUS RELATIVI
59509    SOFFEL M, 1979, PHYS LETT A, V70, P167
59510    TSOUBELIS D, 1979, PHYS REV D, V20, P3004
59511    TSOUBELIS D, 1981, PHYS REV D, V23, P823
59512    TURNER MS, 1988, PHYS REV D, V37, P2743
59513    ZELDOVICH YB, 1970, JETP LETT, V12, P307
59514 NR 23
59515 TC 0
59516 SN 0369-3554
59517 J9 NUOVO CIMENTO B-GEN PHYS R
59518 JI Nouvo Cimento Soc. Ital. Fis. B-Gen. Phys. Relativ. Astron. Math. Phys.
59519    Methods
59520 PD JUL
59521 PY 2001
59522 VL 116
59523 IS 7
59524 BP 829
59525 EP 844
59526 PG 16
59527 SC Physics, Multidisciplinary
59528 GA 491ZX
59529 UT ISI:000172141800007
59530 ER
59531 
59532 PT J
59533 AU Zhang, ZL
59534    Jiang, XY
59535    Zhu, WQ
59536    Zhang, BX
59537    Xu, SH
59538 TI A white organic light emitting diode with improved stability
59539 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
59540 DT Article
59541 ID ELECTROLUMINESCENT DEVICES; LAYERS
59542 AB A white organic light emitting diode (OLED) has been constructed by
59543    employing a new blue material and a red dye directly doped in the blue
59544    emitting layer. For comparison, another white cell with a blocking
59545    layer has also been made. The configurations of the devices are
59546    ITO/CuPc/NPB/JBEM(P):DCJT/Alq/MgAg (device 1) and
59547    ITO/CuPc/NPB/TPBi:DCJT/Alq/MgAg (device 2) where copper phthalocyanine
59548    (CuPc) is the buffer layer,
59549    N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'biphenyl-4-4'-diamine (NPB) is
59550    the hole transporting layer, 9, 10-bis(3'5'-diaryl)phenyl anthracene
59551    doped with perylene (JBEM(P)) is the new blue emitting material,
59552    N,arylbenzimidazoles (TPBi) is the hole blocking layer,
59553    tris(8-quinolinolato)aluminium complex (Alq) is the electron
59554    transporting layer, and DCJT is a red dye. A stable and current
59555    independent white OLED has been obtained in device 1, which has a
59556    maximum luminance of 14 850 cd m(-2), an efficiency of 2.88 Lm W-1,
59557    Commission Internationale de l'Eclairage coordinates of x = 0.32, y =
59558    0.38 between 4-200 mA cm(-2), and a half lifetime of 2860 h at the
59559    starting luminance of 100 cd m(-2). Device 1 has a stability more than
59560    50 times better than that of device 2.
59561 C1 Shanghai Univ Sci & Technol, Dept Mat Sci, Shanghai 201800, Peoples R China.
59562 RP Zhang, ZL, Shanghai Univ Sci & Technol, Dept Mat Sci, Shanghai 201800,
59563    Peoples R China.
59564 CR ADACHI C, 1995, APPL PHYS LETT, V66, P2679
59565    CHEN CH, 1997, MACROMOL S, V125, P1
59566    DESHPANDE RS, 1999, APPL PHYS LETT, V75, P888
59567    FORREST SR, 1997, SYNTHETIC MET, V91, P9
59568    GAO ZQ, 1999, APPL PHYS LETT, V74, P865
59569    GRANSTROM M, 1996, APPL PHYS LETT, V68, P147
59570    HAMADAY Y, 1993, JPN J APPL PHYS, V32, L917
59571    JIANG XY, 2000, J PHYS D APPL PHYS, V33, P473
59572    JORDAN RH, 1996, APPL PHYS LETT, V68, P1192
59573    KIDO J, 1994, APPL PHYS LETT, V64, P815
59574    LIU SY, 2000, THIN SOLID FILMS, V363, P294
59575    SHI JM, 1999, 5972247, US
59576    STRUKELJ M, 1996, J AM CHEM SOC, V118, P1213
59577    TOKITO S, 1995, J APPL PHYS, V77, P1985
59578 NR 14
59579 TC 9
59580 SN 0022-3727
59581 J9 J PHYS-D-APPL PHYS
59582 JI J. Phys. D-Appl. Phys.
59583 PD OCT 21
59584 PY 2001
59585 VL 34
59586 IS 20
59587 BP 3083
59588 EP 3087
59589 PG 5
59590 SC Physics, Applied
59591 GA 493DU
59592 UT ISI:000172207400014
59593 ER
59594 
59595 PT J
59596 AU Zhao, JX
59597    Li, Y
59598 TI Analysis of millimeter wave power density received by cell monolayers
59599    inside culture dishes
59600 SO INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES
59601 DT Article
59602 DE millimeter wave; power density; culture dish; cell monolayer; FDTD
59603    method
59604 AB One sort of experiment concerning biological effects of millimeter
59605    waves (MMWs) at the cellular level is performed using a culture dish
59606    containing a cell monolayer with MMW irradiated from the underneath.
59607    For culture dishes with diameters much larger than the wavelength.
59608    analysis is carried out with respect to the relationship between the
59609    portion of the incident MMW power density (PD) received by the cell
59610    monolayer and influencing factors such as the culture dish bottom
59611    thickness. MMW wavelength. and the electromagnetic properties of the
59612    dish and culture solution. Another analysis is conducted by the FDTD
59613    method to reveal the effect of culture dish configuration on MMW PD
59614    received by the cell monolayer in a typical culture dish with a
59615    diameter not much longer than the wavelength. With the illustrated
59616    results. the conclusion is reached that rigorous analysis. precise
59617    measurement and accurate calculation of MMW PD should accompany such
59618    experiments. and large-diameter culture dishes are more preferred in
59619    experiments to small-caliber dishes.
59620 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
59621 RP Zhao, JX, Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R
59622    China.
59623 CR ANDREI G, 1998, BIOELECTROMAGNETICS, V19, P393
59624    CHEN HY, 1994, IEEE T MICROW THEO 1, V42, P2249
59625    DAVID K, 1983, FIELD WAVE ELECTROMA
59626    MUR G, 1981, IEEE T ELECTROMAGN C, V23, P377
59627 NR 4
59628 TC 3
59629 SN 0195-9271
59630 J9 INT J INFRAR MILLIM WAVE
59631 JI Int. J. Infrared Millimeter Waves
59632 PD NOV
59633 PY 2001
59634 VL 22
59635 IS 11
59636 BP 1577
59637 EP 1586
59638 PG 10
59639 SC Engineering, Electrical & Electronic; Physics, Applied; Optics
59640 GA 492RP
59641 UT ISI:000172181600003
59642 ER
59643 
59644 PT J
59645 AU Iso, M
59646    Chen, BX
59647    Eguchi, M
59648    Kudo, T
59649    Shrestha, S
59650 TI Production of biodiesel fuel from triglycerides and alcohol using
59651    immobilized lipase
59652 SO JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC
59653 DT Article
59654 DE enzyme biocatalysis; lipase; transesterification; Immobilized enzyme;
59655    biodiesel fuel
59656 ID SUNFLOWER OIL
59657 AB Transesterification reaction was performed using triglycerides and
59658    short-chain alcohol by immobilized lipase in non-aqueous conditions.
59659    The long-chain fatty acid ester, which is the product of this reaction,
59660    can be used as a diesel fuel that does not produce sulfur oxide and
59661    minimize the soot particulate. Immobilized Pseudomonas fluorescens
59662    lipase showed the highest activity in this reaction. Immobilization of
59663    lipase was carried out using porous kaolinite particle as a carrier.
59664    When methanol and ethanol were used as alcohol, organic solvent like
59665    1,4-dioxane was required. The reaction could be performed in absence of
59666    solvent when 1-propanol and 1-butanol were used as short-chain alcohol.
59667    The activity of immobilized lipase was highly increased in comparison
59668    with free lipase because its activity sites became more effective.
59669    Immobilized enzyme could be repeatedly used without troublesome method
59670    of separation and the decrease in its activity was not largely
59671    observed. (C) 2001 Elsevier Science B.V. All rights reserved.
59672 C1 Tokyo Univ Agr & Technol, Dept Chem Engn, Tokyo 1848588, Japan.
59673    Shanghai Univ Sci & Technol, Coll Opt & Electron Informat Engn, Shanghai 200093, Peoples R China.
59674 RP Iso, M, Tokyo Univ Agr & Technol, Dept Chem Engn, 2-24-16 Nakamachi,
59675    Tokyo 1848588, Japan.
59676 CR LINKO YY, 1994, J AM OIL CHEM SOC, V71, P1411
59677    LINKO YY, 1998, J BIOTECHNOL, V66, P41
59678    MITTELBACH M, 1990, J AM OIL CHEM SOC, V67, P168
59679    NELSON LA, 1996, J AM OIL CHEM SOC, V73, P1191
59680    OHIRA H, 1998, P 31 C SOC CHEM ENG, P217
59681    SELMI B, 1998, J AM OIL CHEM SOC, V75, P691
59682    SHIMADA Y, 1999, J AM OIL CHEM SOC, V76, P789
59683    TANAKA K, 1997, P 62 C SOC CHEM ENG, P82
59684    WATANABE Y, 2000, J AM OIL CHEM SOC, V77, P355
59685 NR 9
59686 TC 23
59687 SN 1381-1177
59688 J9 J MOL CATAL B-ENZYM
59689 JI J. Mol. Catal. B-Enzym.
59690 PD NOV 20
59691 PY 2001
59692 VL 16
59693 IS 1
59694 BP 53
59695 EP 58
59696 PG 6
59697 SC Chemistry, Physical; Biochemistry & Molecular Biology
59698 GA 489XQ
59699 UT ISI:000172018400007
59700 ER
59701 
59702 PT J
59703 AU Zhu, LH
59704    Ma, XM
59705    Zhao, L
59706 TI Study on phase transformation of Fe-Ni powders during mechanical
59707    alloying
59708 SO JOURNAL OF MATERIALS SCIENCE
59709 DT Article
59710 ID X-RAY-DIFFRACTION; MARTENSITIC-TRANSFORMATION; MAGNETIC-PROPERTIES;
59711    PARTICLES; ENERGY
59712 AB Fe-Ni ultra-fine particles were prepared by mechanical alloying and
59713    phase transformation during mechanical alloying was studied. Results
59714    show that phase transformation tendency is different during mechanical
59715    alloying of Fe-Ni powders with different nickel content. For Fe-30Ni
59716    powder, martensite is the only product obtained with the increase of
59717    milling time, while for Fe-35Ni powder, a part of martensite has been
59718    transformed into austenite when milling time is prolonged to above 40
59719    h. It indicates that the nickel content plays an important role in the
59720    phase transformation tendency during mechanical alloying of Fe-Ni
59721    powders. (C) 2001 Kluwer Academic Publishers.
59722 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
59723 RP Zhu, LH, Shanghai Univ, Dept Mat Sci & Engn, Yanchang Rd, Shanghai
59724    200072, Peoples R China.
59725 CR ASAKA K, 1999, MAT SCI ENG A-STRUCT, V275, P262
59726    BALDOKHIN YV, 1999, J MAGN MAGN MATER, V203, P313
59727    CHEN Y, 1997, MAT SCI ENG A-STRUCT, V226, P38
59728    DONG XL, 1999, J MATER RES, V14, P398
59729    FECHT HJ, 1994, SCI TECHNOLOGY NANOS, P125
59730    JARTYCH E, 2000, J MAGN MAGN MATER, V208, P221
59731    JIANG HG, 1999, J MATER RES, V14, P549
59732    KAJIWARA S, 1991, PHILOS MAG A, V63, P625
59733    KUHRT C, 1993, J APPL PHYS 2B, V73, P6588
59734    KUSUNOKI M, 1996, ULTRAFINE PARTICLES, P98
59735    LI XG, 1997, J MAGN MAGN MATER, V170, P339
59736    PEKALA M, 1999, NANOSTRUCT MATER, V11, P789
59737    RAWERS J, 1995, SCRIPTA METALL MATER, V32, P1319
59738    RAWERS JC, 1996, MAT SCI ENG A-STRUCT, V220, P162
59739    TADAKI T, 1996, MAT SCI ENG A-STRUCT, V217, P235
59740    ZHOU YH, 1990, MAT SCI ENG A-STRUCT, V124, P241
59741    ZHOU YH, 1991, MAT SCI ENG A-STRUCT, V133, P775
59742 NR 17
59743 TC 4
59744 SN 0022-2461
59745 J9 J MATER SCI
59746 JI J. Mater. Sci.
59747 PD DEC
59748 PY 2001
59749 VL 36
59750 IS 23
59751 BP 5571
59752 EP 5574
59753 PG 4
59754 SC Materials Science, Multidisciplinary
59755 GA 489VD
59756 UT ISI:000172012400007
59757 ER
59758 
59759 PT J
59760 AU Li, CP
59761    Chen, GR
59762 TI Bifurcation analysis of the Kuramoto-Sivashinsky equation in one
59763    spatial dimension
59764 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
59765 DT Article
59766 AB In this Letter, we study the bifurcation of the Kuramoto-Sivashinsky
59767    (K-S) equation in one-spatial dimension with three kinds of boundary
59768    value conditions. Using the Liapunov-Schmidt reduction technique, the
59769    original equation is first reduced to one or two bifurcation equations,
59770    so that bifurcation analysis of the original equation can be
59771    transformed to that of the reduced-order systems, and can therefore be
59772    carried out in detail.
59773 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
59774    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
59775 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
59776 CR CHOW SN, 1982, METHODS BIFURCATION
59777    FOIAS C, 1988, J DIFF EQS, V73, P93
59778    GOLUBITSKY M, 1985, SINGULARITIES GROUPS, V1
59779    KUKAVICA I, 1992, J MATH ANAL APPL, V166, P601
59780    KURAMOTO Y, 1978, PROG THEOR PHYS    S, V64, P346
59781    LI CP, 2000, APPL MATH MECH-ENGL, V21, P265
59782    LI CP, 2000, MATH APPL, V13, P46
59783    LI CP, 2001, INT J BIFURCAT CHAOS, V11, P1295
59784    LI CP, 2001, MATH APPL, V14, P22
59785    NICOLAENKO B, 1985, PHYSICA D, V16, P155
59786    SIVASHINSKY GI, 1977, ACTA ASTRONAUT, V4, P1177
59787    SIVASHINSKY GI, 1980, SIAM J APPL MATH, V39, P67
59788    TEMAM R, 1988, INFINITE DIMENSIONAL
59789    YANG ZH, 2000, IN PRESS J COMPUT AP
59790 NR 14
59791 TC 3
59792 SN 0218-1274
59793 J9 INT J BIFURCATION CHAOS
59794 JI Int. J. Bifurcation Chaos
59795 PD SEP
59796 PY 2001
59797 VL 11
59798 IS 9
59799 BP 2493
59800 EP 2499
59801 PG 7
59802 SC Mathematics, Applied; Multidisciplinary Sciences
59803 GA 489MV
59804 UT ISI:000171996000012
59805 ER
59806 
59807 PT J
59808 AU Wang, XC
59809    Qiu, XJ
59810    Zheng, LP
59811 TI Influence of relative phase on the enhanced ionization behaviour of
59812    linear multiatomic molecular ions in two-color laser fields
59813 SO ACTA PHYSICA SINICA
59814 DT Article
59815 DE two-color laser fields; relative phase; enhanced ionization
59816 ID INTENSE; H-2+; DISSOCIATION; H-2(+)
59817 AB The enhanced ionization(EI) behaviour of linear multiatomic molecular
59818    ions is studied in two-color(fundamental radiation: 780 nm, the second
59819    harmonic-390 nm) laser fields by the numerical solution of the
59820    time-dependent Schrodinger equation with the symmetrical splitting of
59821    the short-time exponential propagator. The influence of the relative
59822    phase between the two-color laser fields on the ionization probability
59823    is given. The numerical results demonstrate that the influence of the
59824    relative phase on the ionization probability is the strongest in the
59825    range of the inter-nuclear distance where the EI occurs. The influence
59826    can be explained in terms of the field-induced over-the-barrier
59827    ionization model.
59828 C1 Shanghai Univ, Sch Sci, Shanghai 200436, Peoples R China.
59829 RP Wang, XC, Shanghai Univ, Sch Sci, Shanghai 200436, Peoples R China.
59830 CR BANDRACK AD, 1994, MOL LASER FIELDS, P156
59831    FEIT MD, 1982, J COMPUT PHYS, V47, P412
59832    GIBSON GN, 1997, PHYS REV LETT, V79, P2022
59833    GIUSTISUZOR A, 1990, PHYS REV LETT, V64, P515
59834    HEATHER RW, 1991, COMPUT PHYS COMMUN, V63, P446
59835    HEATHER RW, 1991, PHYS REV A, V44, P7560
59836    HU SX, 1998, SCI CHINA SER A, V41, P198
59837    JAVANAINEN J, 1988, PHYS REV A, V38, P3430
59838    LEI AL, 1999, CHINESE PHYS LETT, V16, P264
59839    SEIDEMAN T, 1995, PHYS REV LETT, V75, P2819
59840    ZUO T, 1995, PHYS REV A, V52, R2511
59841    ZUO T, 1996, PHYS REV A, V54, P3254
59842 NR 12
59843 TC 0
59844 SN 1000-3290
59845 J9 ACTA PHYS SIN-CHINESE ED
59846 JI Acta Phys. Sin.
59847 PD NOV
59848 PY 2001
59849 VL 50
59850 IS 11
59851 BP 2155
59852 EP 2158
59853 PG 4
59854 SC Physics, Multidisciplinary
59855 GA 489QZ
59856 UT ISI:000172004100022
59857 ER
59858 
59859 PT J
59860 AU Bian, JJ
59861    Zhong, YG
59862    Wang, H
59863 TI Effect of PMW addition on the microwave dielectric properties of PCFNS
59864    dielectric ceramic
59865 SO JOURNAL OF MATERIALS SCIENCE LETTERS
59866 DT Article
59867 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
59868 RP Bian, JJ, Shanghai Univ, Dept Inorgan Mat, 20 ChenZhong Rd, Shanghai
59869    201800, Peoples R China.
59870 CR HUANG CL, 2000, MATER LETT, V43, P32
59871    ISHZAKI T, 1994, IEEE T MICROW THEORY, V42, P2017
59872    KAGATA H, 1994, NATL TECHNICAL REPOR, V40, P17
59873    KIM HT, 1999, J AM CERAM SOC, V82, P3476
59874    KUCHEIKO S, 1997, J AM CERAM SOC, V80, P2937
59875 NR 5
59876 TC 1
59877 SN 0261-8028
59878 J9 J MATER SCI LETT
59879 JI J. Mater. Sci. Lett.
59880 PY 2001
59881 VL 20
59882 IS 19
59883 BP 1767
59884 EP 1768
59885 PG 2
59886 SC Materials Science, Multidisciplinary
59887 GA 488GD
59888 UT ISI:000171927100005
59889 ER
59890 
59891 PT J
59892 AU Hassan, AKA
59893    Xu, DM
59894    Niu, MD
59895    Zhang, YJ
59896 TI An improved technique for measuring electromagnetic properties of
59897    curved surfaces coating materials with open-ended coaxial line probe
59898 SO CHINESE JOURNAL OF ELECTRONICS
59899 DT Article
59900 DE coating materials testing; open-ended coaxial probe; complex
59901    permittivity and permeability; finite-difference time-domain (FDTD)
59902 AB An improved open-ended coaxial probe technique for measuring
59903    electromagnetic properties of coating materials with curved surfaces
59904    (both convex and concave) is studied. FDTD modeling indicates that the
59905    reflection coefficient of the loaded probe is more sensitive to concave
59906    surface samples than to those with convex surface. In order to satisfy
59907    concave surface materials testing, we proposed a technique to improve
59908    the measurement accuracy by modifying the standard coaxial probe. A
59909    ring patch is added at the end of extended inner conductor throughout
59910    the air gap between the probe and the material under test. The
59911    performance of the proposed technique is examined. The derived epsilon*
59912    and mu* of several microwave absorbing materials coated on prototype
59913    boxes by using the new probe are relatively in agreement with the
59914    published data.
59915 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
59916 RP Hassan, AKA, Shanghai Univ, Sch Commun & Informat Engn, Shanghai
59917    200072, Peoples R China.
59918 CR ATHEY TW, 1982, IEEE T MICROW THEORY, V30, P82
59919    BAKERJARVIS J, 1994, IEEE T INSTRUM MEAS, V43, P711
59920    BRINGHURST S, 1997, IEEE T MICROW THEO 1, V45, P2073
59921    LAUGHE PD, 1993, IEEE T INSTRUM MEAS, V42, P879
59922    LI CL, 1995, IEEE T INSTRUM MEAS, V44, P19
59923    MUR G, 1981, IEEE T ELECTROMAGN C, V23, P377
59924    NIU M, 1999, IEEE T INSTRUM MEAS, V47, P476
59925    TOFLOVE A, 1980, IEEE T ELECTROMAGNET, V22, P191
59926    WANG S, 1998, KIEEE T MICROWAVE TH, V45, P2145
59927    XU DM, 1987, IEEE T MICROW THEORY, V35, P1424
59928    YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302
59929    ZHANG Z, 1995, J MICROWAVES CHINA, V11, P171
59930 NR 12
59931 TC 0
59932 SN 1022-4653
59933 J9 CHINESE J ELECTRON
59934 JI Chin. J. Electron.
59935 PD OCT
59936 PY 2001
59937 VL 10
59938 IS 4
59939 BP 539
59940 EP 543
59941 PG 5
59942 SC Engineering, Electrical & Electronic
59943 GA 487WR
59944 UT ISI:000171902500027
59945 ER
59946 
59947 PT J
59948 AU Leng, GS
59949    Zhang, LS
59950 TI Extreme properties of quermassintegrals of convex bodies
59951 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
59952 DT Article
59953 DE convex body; quermassintegral; mixed volume
59954 ID DUAL MIXED VOLUMES; BUSEMANN-PETTY PROBLEM; INTERSECTION BODIES;
59955    INEQUALITY
59956 AB In this paper, we establish two theorems for the quermassintegrals of
59957    convex bodies, which are the generalizations of the well-known
59958    Aleksandrov's projection theorem and Loomis-Whitney's inequality,
59959    respectively. Applying these two theorems, we obtain a number of
59960    inequalities for the volumes of projections of convex bodies. Besides,
59961    we introduce the concept of the perturbation element of a convex body,
59962    and prove an extreme property of it.
59963 C1 Hunan Normal Univ, Dept Math, Changsha 410006, Peoples R China.
59964    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
59965 RP Leng, GS, Hunan Normal Univ, Dept Math, Changsha 410006, Peoples R
59966    China.
59967 CR BALL K, 1991, J LOND MATH SOC, V44, P351
59968    BALL K, 1991, T AM MATH SOC, V327, P891
59969    BOURGAIN J, 1988, LECT NOTES MATH, V1317, P250
59970    BRASCAMP HJ, 1976, ADV MATH, V20, P151
59971    BURAGO YD, 1988, GEOMETRIC INEQUALITI
59972    CHAKERIAN GD, 1997, T AM MATH SOC, V349, P1811
59973    GARDNER RJ, 1994, ANN MATH, V140, P435
59974    GARDNER RJ, 1994, T AM MATH SOC, V342, P435
59975    GOODEY P, 1997, B LOND MATH SOC 1, V29, P82
59976    GRINBERG EL, 1991, MATH ANN, V291, P75
59977    KAWASHIMA T, 1991, GEOM DEDICATA, V38, P73
59978    LEICHTWEISS K, 1980, KONVEXE MENGEN
59979    LUTWAK E, 1985, T AM MATH SOC, V287, P92
59980    LUTWAK E, 1988, ADV MATH, V71, P232
59981    LUTWAK E, 1990, P LOND MATH SOC, V60, P365
59982    PETTY CM, 1967, P COLL CONV COP 1965, P234
59983    REN DL, 1988, INTRO INTEGRAL GEOME
59984    SCHNEIDER R, 1967, MATH Z, V101, P71
59985    SCHNEIDER R, 1983, ZONOIDS RELATED TOPI, P296
59986    SCHNEIDER R, 1993, CONVEX BODIES BRUNNM
59987    SCHNEIDER R, 1998, DETERMINATION CONVEX, V33, P155
59988    THOMPSON AC, 1996, MINKOWSKI GEOMETRY
59989    YANG L, 1986, ACTA MATH SINICA, V6, P802
59990    ZHANG GY, 1994, T AM MATH SOC, V345, P777
59991    ZHANG GY, 1999, T AM MATH SOC, V351, P985
59992    ZHENG JZ, 1981, ACTA MATH SINICA, V4, P481
59993 NR 26
59994 TC 2
59995 SN 1006-9283
59996 J9 SCI CHINA SER A
59997 JI Sci. China Ser. A-Math. Phys. Astron.
59998 PD JUL
59999 PY 2001
60000 VL 44
60001 IS 7
60002 BP 837
60003 EP 845
60004 PG 9
60005 SC Mathematics, Applied; Mathematics
60006 GA 487CR
60007 UT ISI:000171856500004
60008 ER
60009 
60010 PT J
60011 AU Tao, DH
60012    Zhang, JH
60013 TI Several difficult problems in lubrication
60014 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
60015 DT Article
60016 DE lubrication; ZDTP; chlorowax; green compressor oil; lubrication of
60017    cystoscope and catheter
60018 AB Whether in industry or in our human life, we will encounter many
60019    lubrication problems. A good lubricant not only should have good
60020    performance, but also should meet the needs of the specific conditions.
60021    Here we give some examples about the difficult problems in lubrication
60022    and their solutions. These examples are: (i) hydrolysis and emulsion of
60023    ZDTP; (ii) corrosion of chlorowax; (iii) coexistence of green
60024    compressor oil and cryogen (R-134A); (iv) lubrication of cystoscope and
60025    catheter. On the same time, some achievements in lubrication field
60026    provided by Lubrication Chemistry Laboratory of Shanghai University
60027    will be introduced in this paper.
60028 C1 Shanghai Univ, Lubricat Chem Lab, Shanghai 200072, Peoples R China.
60029 RP Tao, DH, Shanghai Univ, Lubricat Chem Lab, Shanghai 200072, Peoples R
60030    China.
60031 CR 871010011, CN
60032    SAKURAI T, 1979, ADDITIVE PETROLEUM P
60033    TAO D, 1996, LUBRI SCI, V8, P397
60034    TAO DH, 1994, LUBR ENG, V50, P385
60035    TAO DH, 2000, CHIN SCI ABSTR, V6, P106
60036 NR 5
60037 TC 0
60038 SN 1006-9283
60039 J9 SCI CHINA SER A
60040 JI Sci. China Ser. A-Math. Phys. Astron.
60041 PD AUG
60042 PY 2001
60043 VL 44
60044 SU Suppl. S
60045 BP 46
60046 EP 48
60047 PG 3
60048 SC Mathematics, Applied; Mathematics
60049 GA 485ZH
60050 UT ISI:000171793000008
60051 ER
60052 
60053 PT J
60054 AU Chen, XY
60055    Shen, XJ
60056    Lu, JT
60057 TI Tribological problems of surface IC processed MEMS
60058 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
60059 DT Article
60060 DE MEMS; surface micromachining; tribology; silicon
60061 ID FRICTION; DEVICES
60062 AB Successful microactuators of simple mechanics on silicon chip are a
60063    prerequisite for monolithic microrobotic systems. Recent development in
60064    microelectromechanical systems (MEMS) has led to the success in
60065    building new types of microactuators. Based on the design of
60066    microgrippers and linear microvibromotor, which were fabricated using
60067    surface micromachining, the analysis of contact pairs and opposite
60068    movement forming of moving elements is given in this paper. The source
60069    and mechanism of tribology of MEMS are discussed. Associated with the
60070    developing history of macro-machine, several research methods and
60071    possible existing problems about the tribology of surface IC processed
60072    MEMS are pointed out.
60073 C1 Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China.
60074 RP Chen, XY, Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072,
60075    Peoples R China.
60076 CR CHO YH, 1994, J MICROELECTROMECH S, V3, P81
60077    DANEMAN MJ, 1996, J MICROELECTROMECH S, V5, P159
60078    HOWE RT, 1988, J VAC SCI TECHNOL B, V6, P1809
60079    KIANG MH, 1998, J MICROELECTROMECH S, V7, P27
60080    LIM MG, 1990, P IEEE MICR EL MECH, P82
60081    LU JT, 1997, 4 FRENCH SIN WORKSH, P109
60082    MILLER SL, 1997, P SOC PHOTO-OPT INS, V3224, P24
60083    SENFT DC, 1997, P SOC PHOTO-OPT INS, V3224, P31
60084    TANG WC, 1997, P 34 DES AUT C AN CA, P670
60085 NR 9
60086 TC 0
60087 SN 1006-9283
60088 J9 SCI CHINA SER A
60089 JI Sci. China Ser. A-Math. Phys. Astron.
60090 PD AUG
60091 PY 2001
60092 VL 44
60093 SU Suppl. S
60094 BP 443
60095 EP 448
60096 PG 6
60097 SC Mathematics, Applied; Mathematics
60098 GA 485ZH
60099 UT ISI:000171793000071
60100 ER
60101 
60102 PT J
60103 AU Deng, SF
60104    Chen, DY
60105 TI The novel multisoliton solutions of KP equations
60106 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
60107 DT Article
60108 DE KP equation; Hirota method; novel-multisoliton solution
60109 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
60110 RP Deng, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
60111 CR ABLOWITZ MJ, 1981, SOLITONS INVERSE SCA
60112    CHEN DY, 2000, NOVEL MULTISOLITON S
60113    HIROTA R, 1971, PHYS REV LETT, V27, P1192
60114    HIROTA R, 1980, TOP CURR PHYS, V17, P157
60115    SATSUMA J, 1976, J PHYS SOC JPN, V40, P286
60116 NR 5
60117 TC 12
60118 SN 0031-9015
60119 J9 J PHYS SOC JPN
60120 JI J. Phys. Soc. Jpn.
60121 PD OCT
60122 PY 2001
60123 VL 70
60124 IS 10
60125 BP 3174
60126 EP 3175
60127 PG 2
60128 SC Physics, Multidisciplinary
60129 GA 484RZ
60130 UT ISI:000171704500064
60131 ER
60132 
60133 PT J
60134 AU Song, LP
60135    Zhu, SZ
60136 TI Regioselective synthesis of fluorinated pyrazole derivatives from
60137    trifluoromethyl-1,3-diketone
60138 SO JOURNAL OF FLUORINE CHEMISTRY
60139 DT Article
60140 DE trifluoromethyl-1,3-diketone; per(poly)fluorophenylhydrazine;
60141    regioselective; fluorinated pyrazole derivatives
60142 AB 1,1,1-Trifluoropentane-2,4-dione (1a) and
60143    1-(thien-2-yl)-4,4,4-trifluorobutane-1,3-dione (1b) reacted readily
60144    with per(poly)fluorophenylhydrazines ArfNHNH2 (Ar-f: C6F5, HC6F4,
60145    CIC6F4) to give N-per(poly)fluorophenyl-5-methyl(or
60146    thien-2-yl)-3-trifluoromethylpyrazoles 3 and 3-methyl (or
60147    thien-2-yl)-5-hydroxy-5-trifluoromethyl-4,5-dihydropyrazoles 4,
60148    respectively. Treatment of 4 with P2O5 yielded the dehydrated product
60149    N-per(poly)fluorophenyl-3-methyl(or
60150    thien-2-yl)-5-trifluoromethyl-pyrazole in good yield. (C) 2001 Elsevier
60151    Science B.V. All rights reserved.
60152 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Organofluorine Chem, Shanghai 200032, Peoples R China.
60153    Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
60154 RP Zhu, SZ, Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Organofluorine
60155    Chem, 354 Fenglin Lu Rd, Shanghai 200032, Peoples R China.
60156 CR BANK RE, 1994, ORGANOFLUORINE CHEM
60157    HUDLICKY M, 1992, CHEM ORGANIC FLUORIN
60158    LEE LF, 1990, J HETEROCYCLIC CHEM, V27, P243
60159    LOUPY A, 1995, J FLUORINE CHEM, V75, P215
60160    REID JC, 1950, J AM CHEM SOC, V72, P2948
60161    SINGH SP, 1997, J FLUORINE CHEM, V83, P73
60162    SINGH SP, 1999, J FLUORINE CHEM, V94, P199
60163    SONG LP, 2001, J FLUORINE CHEM, V107, P107
60164    WELCH JT, 1987, TETRAHEDRON, V43, P3123
60165    YAMAGUCHI Y, 1998, J HETEROCYCLIC CHEM, V35, P805
60166 NR 10
60167 TC 12
60168 SN 0022-1139
60169 J9 J FLUORINE CHEM
60170 JI J. Fluor. Chem.
60171 PD OCT 28
60172 PY 2001
60173 VL 111
60174 IS 2
60175 SI Sp. Iss. SI
60176 BP 201
60177 EP 205
60178 PG 5
60179 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
60180 GA 485NF
60181 UT ISI:000171759900014
60182 ER
60183 
60184 PT J
60185 AU Mo, YW
60186    Okawa, Y
60187    Tajima, M
60188    Nakai, T
60189    Yoshiike, N
60190    Natukawa, K
60191 TI Micro-machined gas sensor array based on metal film micro-heater
60192 SO SENSORS AND ACTUATORS B-CHEMICAL
60193 DT Article
60194 DE gas detectors; sensors; arrays; micro-electromechanical devices
60195 AB An integrated gas sensor array is promising to overcome the poor
60196    selectivity and drift encountered by individual gas sensor.
60197    Micromachined gas sensor array was fabricated using the post-process
60198    micro-machining technology of silicon integrated circuit (IC). The size
60199    of a 2 x 4 array is 2 mm x 4 mm, and the active area of each cell is 50
60200    [im x 50 tm. The electric properties, thermal characteristics. and the
60201    response to standard gases of the sensor array were investigated. The
60202    micro-heater can be driven to 400 degreesC with about 9 mW applied
60203    power, and thermal response time constant of a micro-heater is about 10
60204    ms. The techniques of oxygen radical assisted EB evaporation was
60205    utilized to prepare SnO2. sensitive films that show high sensitivity
60206    and good selectivity to C2H5OH. (C) 2001 Elsevier Science B.V. All
60207    rights reserved.
60208 C1 Shanghai Univ, Shanghai 201800, Peoples R China.
60209    Technol Res Inst Osaka Prefecture, Izumi, Osaka 5941157, Japan.
60210    Kubota Co Ltd, Amagasaki, Hyogo 6618567, Japan.
60211    Hochiki Co Ltd, Machida, Tokyo 1948577, Japan.
60212    Matsushita Elect Ind Co Ltd, Moriguchi, Osaka 5700005, Japan.
60213 RP Mo, YW, Shanghai Univ, Shanghai 201800, Peoples R China.
60214 CR CAVICCHI RE, 1995, APPL PHYS LETT, V66, P812
60215    CAVICCHI RE, 1995, SENSOR ACTUAT B-CHEM, V24, P478
60216    CHUNG W, 1998, T IEE JPN E, V118, P147
60217    GAEDNER JW, 1991, SENSOR ACTUAT B-CHEM, V4, P109
60218    GUIDI V, 1998, SENSOR ACTUAT B-CHEM, V49, P88
60219    LYLE RP, 1997, MICROSTRUCT MICROFAB, V3, P188
60220    PERSAUD K, 1982, NATURE, V299, P352
60221    ROSSI C, 1997, SENSOR ACTUAT A-PHYS, V63, P183
60222    SHENG LY, 1998, SENSOR ACTUAT B-CHEM, V49, P81
60223    SHURMER HV, 1990, SENSOR ACTUAT B-CHEM, V1, P256
60224    SUEHLE JS, 1993, IEEE ELECTR DEVICE L, V14, P118
60225    ZARCOMB S, 1984, SENSOR ACTUATOR, V6, P225
60226 NR 12
60227 TC 9
60228 SN 0925-4005
60229 J9 SENSOR ACTUATOR B-CHEM
60230 JI Sens. Actuator B-Chem.
60231 PD OCT 15
60232 PY 2001
60233 VL 79
60234 IS 2-3
60235 BP 175
60236 EP 181
60237 PG 7
60238 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
60239 GA 484FM
60240 UT ISI:000171679600014
60241 ER
60242 
60243 PT J
60244 AU Li, D
60245    Sun, XL
60246 TI Convexification and existence of a saddle point in a pth-power
60247    reformulation for nonconvex constrained optimization
60248 SO NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
60249 DT Article
60250 DE nonconvex constrained optimization; Lagrangian duality; saddle point;
60251    p-th power reformulation
60252 AB It is well-known that saddle point criteria is a sufficient optimality
60253    condition for constrained optimization problems. Convexity is a basic
60254    requirement for the development of duality theory and saddle point
60255    optimality. In this paper we show that, under some mild conditions, the
60256    local convexity of Lagrangian function and hence the existence of a
60257    local saddle point pair can be ensured in an equivalent p-th power
60258    reformulation for a general class of nonconvex constrained optimization
60259    problems. We further investigate the conditions under which a global
60260    saddle point pair can be guaranteed to exist. These results expand
60261    considerably the class of optimization problems where a saddle point
60262    pair exists, thus enlarging the family of nonconvex problems to which
60263    the dual-search methods can be applied.
60264 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
60265    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
60266 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management,
60267    Shatin, Hong Kong, Peoples R China.
60268 CR BERTSEKAS DP, 1982, CONSTRAINED OPTIMIZA
60269    KARLIN S, 1959, MATH METHODS THEORY, V1
60270    LI D, 1995, J OPTIMIZ THEORY APP, V85, P309
60271    LI D, 2000, J OPTIMIZ THEORY APP, V104, P109
60272    LUENBERGER DG, 1984, LINEAR NONLINEAR PRO
60273    MINOUX M, 1986, MATH PROGRAMMING THE
60274    NGUYEN VH, 1979, J OPTIMIZATION THEOR, V27, P495
60275    ROCKAFELLAR RT, 1970, CONVEX ANAL
60276    ROCKAFELLAR RT, 1971, P C PROBAB, P73
60277    TSENG P, 1993, MATH PROGRAM, V60, P1
60278    XU ZK, 1997, J OPTIMIZ THEORY APP, V94, P739
60279 NR 11
60280 TC 1
60281 SN 0362-546X
60282 J9 NONLINEAR ANAL-THEOR METH APP
60283 JI Nonlinear Anal.-Theory Methods Appl.
60284 PD AUG
60285 PY 2001
60286 VL 47
60287 IS 8
60288 PN Part 8 Sp. Iss. SI
60289 BP 5611
60290 EP 5622
60291 PG 12
60292 SC Mathematics, Applied; Mathematics
60293 GA 482UN
60294 UT ISI:000171595800050
60295 ER
60296 
60297 PT J
60298 AU Wang, ZH
60299    Peng, GD
60300    Ankiewicz, A
60301    Chu, PL
60302 TI A new recursion method for fiber grating analysis
60303 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
60304 DT Article
60305 DE gratings; optical fibers; optical-fiber devices; coupled-mode theory
60306 ID WAVE-GUIDE GRATINGS; PERIODIC STRUCTURES
60307 AB A new recursion method for the analysis of fiber gratings has been
60308    derived. Bragg-matched and detuned uniform gratings and nonuniform
60309    gratings have been analyzed by using this method. The results have been
60310    compared with that by using the coupled-mode theory g the coupled and
60311    other methods. (C) 2001 John Wiley & Sons, Inc.
60312 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
60313    Univ New S Wales, Opt Commun Grp, Sch Elect Engn, Sydney, NSW 2052, Australia.
60314    Australian Natl Univ, Res Sch Phys Sci & Engn, Ctr Opt Sci, Canberra, ACT 0200, Australia.
60315 RP Wang, ZH, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
60316    Peoples R China.
60317 CR ERDOGAN T, 1997, J LIGHTWAVE TECHNOL, V15, P1277
60318    HILL KO, 1997, J LIGHTWAVE TECHNOL, V15, P1263
60319    KOGELNIK H, 1976, BELL SYST TECH J, V55, P109
60320    WANG X, 1993, OPT LETT, V18, P805
60321    WELLERBROPHY LA, 1985, J OPT SOC AM A, V2, P863
60322    WINICK KA, 1992, APPL OPTICS, V31, P757
60323    YAMADA M, 1987, APPL OPTICS, V26, P3474
60324    YARIV A, 1977, IEEE J QUANTUM ELECT, V13, P233
60325 NR 8
60326 TC 0
60327 SN 0895-2477
60328 J9 MICROWAVE OPT TECHNOL LETT
60329 JI Microw. Opt. Technol. Lett.
60330 PD NOV 20
60331 PY 2001
60332 VL 31
60333 IS 4
60334 BP 308
60335 EP 313
60336 PG 6
60337 SC Engineering, Electrical & Electronic; Optics
60338 GA 483YF
60339 UT ISI:000171662900020
60340 ER
60341 
60342 PT J
60343 AU Li, Z
60344    Bao, BR
60345    Wu, MH
60346 TI The influence of diluent on the extraction behavior of uranium with
60347    N-octanoylpyrrolidine
60348 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
60349 DT Article
60350 AB Extraction of uranium(VT) from nitric acid solutions with
60351    N-octanoylpyrrolidine (OPOD) in a series of diluents has been studied.
60352    The dependence of the extraction distribution ratios on the
60353    concentrations of aqueous nitric acid, extractant, salting-out agent
60354    and the temperature was investigated. The experimental results showed
60355    that the extracting capacity of OPOD in different diluents increases in
60356    the order: chloroform, carbon tetrachloride, 1,2-dichloroethane,
60357    n-dodecane, n-octane, cyclohexane, toluene and benzene. This can not be
60358    explained only on the theory of polarity of the diluents. The
60359    interaction between extractant and the extracted complex and diluent is
60360    discussed.
60361 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
60362 RP Li, Z, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
60363    Peoples R China.
60364 CR HAN JT, 1999, THESIS SHANGHAI I NU
60365    HENGLI M, 1964, NUCL SCI TECHN, V6, P728
60366    KOMASAWA I, 1984, J CHEM ENG JPN, V17, P410
60367    LI Z, 2000, NUCL SCI TECHN, V4, P205
60368    LU JF, 1993, SEPARATION CHEM, P47
60369    MUSIKAS C, 1988, SEPAR SCI TECHNOL, V23, P1211
60370 NR 6
60371 TC 1
60372 SN 0236-5731
60373 J9 J RADIOANAL NUCL CHEM
60374 JI J. Radioanal. Nucl. Chem.
60375 PD OCT
60376 PY 2001
60377 VL 250
60378 IS 1
60379 BP 195
60380 EP 197
60381 PG 3
60382 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
60383    & Technology
60384 GA 482LC
60385 UT ISI:000171576800031
60386 ER
60387 
60388 PT J
60389 AU Gerhard, M
60390    Buelau, S
60391    Oleastro, M
60392    Karttunen, R
60393    Boren, T
60394    Olfat, F
60395    Zheng, Q
60396    Prinz, C
60397 TI Correlation of the Helicobacter pylori virulence and adherence factors
60398    vacA, cagA and babA with ulcer disease in four different European
60399    countries
60400 SO GUT
60401 DT Meeting Abstract
60402 C1 Tech Univ Munich, Dept Med 2, D-8000 Munich, Germany.
60403    Inst Nacl Saude Dr Ricado Jorge, Lisbon, Portugal.
60404    Dept Oral Biol, Umea, Sweden.
60405    Swedish Inst Infect Dis Control, Stockholm, Sweden.
60406    Shanghai Univ, Shanghai, Peoples R China.
60407 NR 0
60408 TC 0
60409 SN 0017-5749
60410 J9 GUT
60411 JI Gut
60412 PD SEP
60413 PY 2001
60414 VL 49
60415 SU Suppl. 2
60416 BP A15
60417 EP A15
60418 PG 1
60419 SC Gastroenterology & Hepatology
60420 GA 476NB
60421 UT ISI:000171232500053
60422 ER
60423 
60424 PT J
60425 AU Chen, YL
60426    Ding, WY
60427    Cao, WG
60428    Lu, C
60429 TI Study on the reaction of electron-deficient cyclopropane derivatives
60430    with amines
60431 SO CHINESE JOURNAL OF CHEMISTRY
60432 DT Article
60433 DE gamma-butyrolactam; inner ammonium salt; high stereoselective synthesis
60434 ID EFFICIENT SYNTHESIS; OXIDATION
60435 AB Reaction of electron deficient cyclopropane derivatives
60436    cis-1-methoxycarbonyl-2-aryl-6, 6-dimethyl-5, 7-dioxa-spiro-[
60437    2,5]-4,8-octadiones (1a-d) (X = CH3, H, Cl, NO2) with anilines (2a-e)
60438    (Y = p-CH3, H, p-Br, p-NO2, o-CH3) at room temperature gives
60439    N-aryl-trans, trans-alpha -carboxyl-beta -methoxycarbonyl-gamma
60440    -aryl-gamma -butyrolactams (3a-p) in high yields with high
60441    stereoselectivity. For example, la (X = CH3) reacts with ammonia 4 or
60442    benzyl amine 5 at room temperature to give inner ammonium salt 6 or 7
60443    in the yield of 83% or 97% respectively. The reaction mechanisms for
60444    formation of the products are proposed.
60445 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R China.
60446    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
60447 RP Chen, YL, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R
60448    China.
60449 CR BARRY BS, 1999, TETRAHEDRON LETT, V40, P3339
60450    DEXTER CS, 1999, J ORG CHEM, V64, P7579
60451    DING WY, 1996, CHEM RES CHINESE U, V12, P50
60452    JOLLY RS, 1988, J AM CHEM SOC, V110, P7536
60453    MADER M, 1988, TETRAHEDRON LETT, V29, P3049
60454    MARFAT A, 1987, TETRAHEDRON LETT, V28, P4027
60455    MORI M, 1978, J ORG CHEM, V43, P1684
60456    MORIARTY RM, 1988, TETRAHEDRON LETT, V29, P6913
60457    PADWA A, 1983, TETRAHEDRON LETT, V24, P4303
60458    WANG ZM, 1993, CURRENT STRUCTURED D, P890
60459 NR 10
60460 TC 2
60461 SN 1001-604X
60462 J9 CHINESE J CHEM
60463 JI Chin. J. Chem.
60464 PD SEP
60465 PY 2001
60466 VL 19
60467 IS 9
60468 BP 901
60469 EP 906
60470 PG 6
60471 SC Chemistry, Multidisciplinary
60472 GA 480RJ
60473 UT ISI:000171475700016
60474 ER
60475 
60476 PT J
60477 AU Wan, YB
60478    Chu, JH
60479    Yu, TY
60480    Yu, BK
60481    Pan, SK
60482 TI Growth and characterisation of ferroelectric potassium lithium niobate
60483    crystals
60484 SO MATERIALS SCIENCE AND TECHNOLOGY
60485 DT Article
60486 ID SINGLE-CRYSTALS
60487 AB Potassium lithium niobate crystals have been grown by the resistance
60488    heating Czochralski technique. The optical transmission spectrum of the
60489    crystal has been determined. The results showed that the spectrum
60490    properties of potassium lithium niobate crystals grown from a melt with
60491    a higher Li2O content are better than that of crystals grown from the
60492    melt with a lower Li2O content. The crystals grown by this method have
60493    good quality and second harmonic generation properties. Frequency
60494    doubling results of a quasi cw-Ti: sapphire laser using crystal samples
60495    showed that potassium lithium niobate can be used to double the
60496    frequency of near infrared quasi cw-lasers in the 890-960 nm wavelength
60497    range.
60498 C1 Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China.
60499    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
60500    Chinese Acad Sci, Shanghai Inst Opt & Precis Mech, Shanghai 201800, Peoples R China.
60501 RP Wan, YB, Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared
60502    Phys, Shanghai 200083, Peoples R China.
60503 CR CHENG WD, 1996, CHEM PHYS LETT, V261, P66
60504    CLARK R, 1973, J PHYSIQUE, V22, P143
60505    REID JJE, 1993, APPL PHYS LETT, V62, P19
60506    SONG YT, 1998, J CRYST GROWTH, V194, P379
60507    VANUITERT LG, 1967, APPL PHYS LETT, V11, P161
60508    WAN YB, 1998, J SYNTH CRYST, V27, P36
60509    WAN YB, 1999, CHIN J LASER, V26, P837
60510    XIA HR, 1997, CRYST RES TECHNOL, V32, P311
60511    XIA HR, 1997, PHYS REV B, V55, P14892
60512 NR 9
60513 TC 0
60514 SN 0267-0836
60515 J9 MATER SCI TECHNOL
60516 JI Mater. Sci. Technol.
60517 PD SEP
60518 PY 2001
60519 VL 17
60520 IS 9
60521 BP 1166
60522 EP 1168
60523 PG 3
60524 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
60525    Engineering
60526 GA 478GM
60527 UT ISI:000171337400023
60528 ER
60529 
60530 PT J
60531 AU Li, L
60532    Huang, SG
60533    Xu, LP
60534    Van Der Biest, O
60535    Vleugels, J
60536 TI Prediction of the isothermal sections in the ZrO2-YO1.5-CeO2 system
60537 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
60538 DT Article
60539 ID PHASE-DIAGRAM; ZRO2-CEO2 SYSTEM; ZIRCONIA; EQUILIBRIA; ZRO2-Y2O3
60540 AB The experimental work on the ZrO2-YO1.5-CeO2 system, its limiting
60541    quasi-binaries and previous thermodynamic assessments are reviewed and
60542    evaluated. Isothermal sections of ZrO2-YO1.5-CeO2 system in the
60543    temperature region between 1450 and 1800 C are estimated according to
60544    the substitutional model using the Bonnier equation. The CSS + YSS
60545    two-phase region of the calculated isothermal section at 1700 degreesC
60546    was found to be in good agreement with the experimentally obtained
60547    ternary diagram of Longo and Podda. The phase composition in the
60548    ZrO2-rich corner however disagreed significantly.
60549 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
60550    Katholieke Univ Leuven, Dept Mat & Met, B-3001 Heverlee, Belgium.
60551 RP Li, L, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R
60552    China.
60553 CR CHEVALIER J, 1999, J AM CERAM SOC, V82, P2150
60554    DU Y, 1991, J AM CERAM SOC, V74, P1569
60555    DU Y, 1991, J AM CERAM SOC, V74, P2107
60556    DUH JG, 1992, J MATER SCI, V27, P6197
60557    DURAN P, 1990, J MATER SCI, V25, P5001
60558    ESQUIVIAS L, 1996, J ALLOY COMPD, V239, P71
60559    GUILLERMET AF, 1981, METALL T B, V12, P747
60560    HAO YU, 1999, THESIS CENTRAL S U T
60561    HILLERT M, 1975, METALL T B, V6, P37
60562    HINATSU Y, 1986, MATER RES BULL, V21, P1343
60563    HUANG SG, 2000, J SHANGHAI U, V6, P189
60564    JANG BH, 1996, MATER T JIM, V37, P1284
60565    KAUFMAN L, 1978, CALPHAD, V2, P35
60566    KHAN N, 1989, BR CERAM P, V42, P133
60567    KONDOH J, 1998, J ELECTROCHEM SOC, V145, P1550
60568    LELAIT L, 1991, SCRIPTA METALL MATER, V25, P1815
60569    LI L, IN PRESS CALPHAD
60570    LI L, 1996, J MATER SCI TECHNOL, V12, P59
60571    LI L, 1997, PHYS CHEM GLASSES, V38, P323
60572    LI L, 1999, J MATER SCI TECHNOL, V15, P439
60573    LI L, 1999, PHYS CHEM GLASSES, V40, P126
60574    LONGO V, 1973, J AM CERAM SOC DISCU, V56, P600
60575    LONGO V, 1981, J MATER SCI, V16, P839
60576    LONGO V, 1984, CERAMICA, V37, P18
60577    LUKAS HL, 1977, CALPHAD, V1, P225
60578    NAKAMURA K, 1975, YOGYO-KYOKAI-SHI, V83, P570
60579    NEGAS T, 1976, 12 RAR EARTH RES C V, P32
60580    NOGUCHI T, 1970, B CHEM SOC JPN, V43, P2614
60581    ONDIK HM, 1998, PHASE DIAGRAMS ZIRCO, P100
60582    ONDIK HM, 1998, PHASE DIAGRAMS ZIRCO, P114
60583    ONDIK HM, 1998, PHASE DIAGRAMS ZIRCO, P123
60584    PICONI C, 1999, BIOMATERIALS, V20, P1
60585    RAMESH PD, 1996, J MATER SYNTH PROC, V4, P163
60586    ROUANET MA, 1968, COMP REND HEBD SEA C, V267, P1581
60587    SATO T, 1986, INT J HIGH TECH CERA, V2, P167
60588    SRIVASTAVA KK, 1974, BRIT CERAM TRANS J, V73, P85
60589    STUBICAN VS, 1978, J AM CERAM SOC, V61, P17
60590    STUBICAN VS, 1988, ADV CERAM, V24, P71
60591    TANI E, 1982, YOGVO KYOKAI SHI, V90, P195
60592    TANI E, 1983, J AM CERAM SOC, V66, P506
60593    XU ZY, 1996, MATER T JIM, V37, P1281
60594    YASHIMA M, 1994, J AM CERAM SOC, V77, P1869
60595 NR 42
60596 TC 3
60597 SN 1005-0302
60598 J9 J MATER SCI TECHNOL
60599 JI J. Mater. Sci. Technol.
60600 PD SEP
60601 PY 2001
60602 VL 17
60603 IS 5
60604 BP 529
60605 EP 534
60606 PG 6
60607 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
60608    Engineering
60609 GA 478AR
60610 UT ISI:000171321200010
60611 ER
60612 
60613 PT J
60614 AU Chen, YL
60615    Ding, WY
60616    Cao, WG
60617    Lu, C
60618 TI The stereoselective synthesis of
60619    N-aryl-trans,trans-alpha-carboxyl-beta-methoxycarbonyl-gamma-aryl-gamma-
60620    butyrolactams
60621 SO SYNTHETIC COMMUNICATIONS
60622 DT Article
60623 DE gamma-butyrolactam; high stereoselective synthesis
60624 ID EFFICIENT SYNTHESIS; OXIDATION
60625 AB Cis-1-methoxycarbonyl-2-aryl-6,6-dimethyl-5,7-dioxa-
60626    spiro[2,5]-4,8-octadiones (1) in dimethyl ethylene glycol at room
60627    temperature react with anilines (2) to give N-aryl-trans, trans-alpha
60628    -carboxyl-beta -methoxycarbonyl-gamma -aryl-gamma -butyrolactams (3) in
60629    good to excellent yields and high stereoselectivity.
60630 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
60631 RP Chen, YL, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
60632 CR DING WY, 1996, CHEM RES CHINESE U, V12, P50
60633    JOLLY RS, 1988, J AM CHEM SOC, V110, P7536
60634    MADER M, 1988, TETRAHEDRON LETT, V29, P3049
60635    MARFAT A, 1987, TETRAHEDRON LETT, V28, P4027
60636    MORIARTY RM, 1988, TETRAHEDRON LETT, V29, P6913
60637    WANG ZM, 1993, CURRENT STRUCTURED D
60638 NR 6
60639 TC 2
60640 SN 0039-7911
60641 J9 SYN COMMUN
60642 JI Synth. Commun.
60643 PY 2001
60644 VL 31
60645 IS 20
60646 BP 3107
60647 EP 3112
60648 PG 6
60649 SC Chemistry, Organic
60650 GA 476TU
60651 UT ISI:000171245500008
60652 ER
60653 
60654 PT J
60655 AU Huang, H
60656    Ding, PX
60657    Lu, XH
60658 TI Nonlinear unified equations for water waves propagating over uneven
60659    bottoms in the nearshore region
60660 SO PROGRESS IN NATURAL SCIENCE
60661 DT Article
60662 DE unified equations; Hamiltonian variational principle for water waves;
60663    extended mild-slope equation; higher order Boussinesq-type equations
60664 ID EVOLUTION; MODEL
60665 AB Considering the continuous characteristics for water waves propagating
60666    over complex topography in the nearshore region, the unified nonlinear
60667    equations, based on the hypothesis for a typical uneven bottom, are
60668    presented by employing the Hamiltonian variational principle for water
60669    waves. It is verified that the equations include the following special
60670    cases: the extension of Airy's nonlinear shallow-water equations, the
60671    generalized mild-slope equation, the dispersion relation for the
60672    second-order Stokes waves and the higher order Boussinesq-type
60673    equations.
60674 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
60675    E China Normal Univ, State Key Lab Estuarine & Coastal Res, Shanghai 200062, Peoples R China.
60676    Shanghai Univ, Div Grad Studies, Shanghai 200072, Peoples R China.
60677 RP Huang, H, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
60678    200072, Peoples R China.
60679 CR BERKHOFF JCW, 1972, P 13 INT C COAST ENG, P471
60680    DEMIRBILEK Z, 1999, DEV OFFSHORE ENG, P1
60681    DINGMANS MW, 1997, WATER WAVE PROPAGATI, P263
60682    HUANG H, 2000, PROGR NATURAL SCI, V10, P24
60683    KARAMBAS TV, 1999, J COASTAL RES, V15, P128
60684    KIRBY JT, 1986, J FLUID MECH, V162, P171
60685    LIU PLF, 1989, WAVE MOTION, V11, P41
60686    LIU PLF, 1995, ADV COAST OCEAN ENG, V1, P125
60687    MADSEN PA, 1998, PHILOS T ROY SOC A, V356, P1
60688    RADDER AC, 1985, WAVE MOTION, V7, P473
60689    WITTING JM, 1984, J COMPUT PHYS, V56, P203
60690 NR 11
60691 TC 0
60692 SN 1002-0071
60693 J9 PROG NAT SCI
60694 JI Prog. Nat. Sci.
60695 PD OCT
60696 PY 2001
60697 VL 11
60698 IS 10
60699 BP 746
60700 EP 753
60701 PG 8
60702 SC Multidisciplinary Sciences
60703 GA 475ZT
60704 UT ISI:000171200500004
60705 ER
60706 
60707 PT J
60708 AU Ji, PY
60709 TI Photon acceleration based on plasma
60710 SO PHYSICAL REVIEW E
60711 DT Article
60712 ID LASER WAKEFIELD ACCELERATION; IONIZATION FRONTS; PULSES; OPTICS; WAVES
60713 AB A formalism is presented to examine the interaction of laser field with
60714    plasma wave in which the interaction is described as some geometric
60715    metric (optical metric) and then a laser beam is treated as a packet of
60716    photons moving along null geodesics with respect to that metric. Photon
60717    motion equations are derived and solved analytically in both the
60718    one-dimensional and the three-dimensional cases. The expressions for
60719    the frequency shifts of laser pulses are presented and it is found that
60720    the frequency shifting results from the plasma density gradient.
60721    Three-dimensional solution shows that a laser beam diffraction occurs
60722    in the presence of a radial variation of the plasma density. It is
60723    argued that the focusing mechanism originated from the plasma wave can
60724    curb laser diffracting, so that photons can be trapped in the plasma
60725    wave and accelerated continuously.
60726 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
60727 RP Ji, PY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
60728 CR AMIRANOFF F, 1998, PHYS REV LETT, V81, P995
60729    BINGHAM R, 1997, PHYS REV LETT, V78, P247
60730    DIAS JM, 1997, PHYS REV LETT, V78, P4773
60731    DIAS JM, 1998, PHYS REV ST ACCEL BE, V103, P1301
60732    ESAREY E, 1990, PHYS REV A, V42, P3526
60733    ESAREY E, 1991, PHYS REV A, V44, P3908
60734    ESAREY E, 1996, IEEE T PLASMA SCI, V24, P252
60735    GORDON W, 1923, ANN PHYS-BERLIN, V72, P421
60736    GUO H, 1995, J OPT SOC AM A, V12, P600
60737    LEONHARDT U, 1999, PHYS REV A, V60, P4301
60738    MENDONCA JT, 1994, PHYS REV E, V49, P3520
60739    MISNER CW, 1973, GRAVITATION, P582
60740    MODENA A, 1995, NATURE, V377, P606
60741    SCHROEDER CB, 1999, PHYS REV LETT, V82, P1177
60742    SHEN WD, 1998, ACTA PHYS SIN-OV ED, V7, P1
60743    SILVA LOE, 1996, IEEE T PLASMA SCI, V24, P316
60744    SILVA LOE, 1998, PHYS REV E B, V57, P3423
60745    SPRANGLE P, 1988, APPL PHYS LETT, V53, P2146
60746    TAJIMA T, 1979, PHYS REV LETT, V43, P267
60747    WEINBERG S, 1972, GRAVITATION COSMOLOG
60748    WILKS SC, 1989, PHYS REV LETT, V62, P2600
60749    ZHU S, 1997, ACTA OPT SINICA, V17, P1677
60750    ZHU ST, 1995, INT J THEOR PHYS, V34, P169
60751    ZHU ST, 1997, SCI CHINA SER A, V40, P755
60752 NR 24
60753 TC 3
60754 SN 1063-651X
60755 J9 PHYS REV E
60756 JI Phys. Rev. E
60757 PD SEP
60758 PY 2001
60759 VL 6403
60760 IS 3
60761 PN Part 2
60762 AR 036501
60763 DI ARTN 036501
60764 PG 6
60765 SC Physics, Fluids & Plasmas; Physics, Mathematical
60766 GA 474ZD
60767 UT ISI:000171136400081
60768 ER
60769 
60770 PT J
60771 AU Sun, XL
60772    McKinnon, KIM
60773    Li, D
60774 TI A convexification method for a class of global optimization problems
60775    with applications to reliability optimization
60776 SO JOURNAL OF GLOBAL OPTIMIZATION
60777 DT Article
60778 DE global optimization; monotone optimization; convexification method;
60779    concave minimization; reliability optimization
60780 ID NONCONVEX OPTIMIZATION; ALGORITHM; MINIMIZATION
60781 AB A convexification method is proposed for solving a class of global
60782    optimization problems with certain monotone properties. It is shown
60783    that this class of problems can be transformed into equivalent concave
60784    minimization problems using the proposed convexification schemes. An
60785    outer approximation method can then be used to find the global solution
60786    of the transformed problem. Applications to mixed-integer nonlinear
60787    programming problems arising in reliability optimization of complex
60788    systems are discussed and satisfactory numerical results are presented.
60789 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
60790    Univ Edinburgh, Dept Math & Stat, Edinburgh EH9 3JZ, Midlothian, Scotland.
60791    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
60792 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management,
60793    Shatin, Hong Kong, Peoples R China.
60794 CR BARHEN J, 1997, SCIENCE, V276, P1094
60795    BENSON HP, 1996, NAV RES LOG, V43, P765
60796    CVIJOVIC D, 1995, SCIENCE, V267, P664
60797    GE R, 1990, MATH PROGRAM, V46, P191
60798    HOFFMAN KL, 1981, MATH PROGRAM, V20, P22
60799    HORST R, 1990, NAV RES LOG, V37, P433
60800    HORST R, 1993, GLOBAL OPTIMIZATION
60801    KAN AHGR, 1987, MATH PROGRAM, V39, P27
60802    KAN AHGR, 1987, MATH PROGRAM, V39, P57
60803    LEVY AV, 1985, SIAM J SCI STAT COMP, V6, P15
60804    LI D, 1995, J OPTIMIZ THEORY APP, V85, P309
60805    LI D, 1996, J OPTIMIZ THEORY APP, V88, P177
60806    LI D, 2000, J OPTIMIZ THEORY APP, V104, P109
60807    LI D, 2001, IN PRESS ANN OPERATI
60808    MISRA KB, 1991, IEEE T RELIAB, V40, P81
60809    PARDALOS PM, 1987, CONSTRAINED GLOBAL O
60810    TILLMAN FA, 1980, OPTIMIZATION SYSTEM
60811    TZAFESTAS SG, 1980, INT J SYST SCI, V11, P455
60812 NR 18
60813 TC 11
60814 SN 0925-5001
60815 J9 J GLOBAL OPTIM
60816 JI J. Glob. Optim.
60817 PD OCT
60818 PY 2001
60819 VL 21
60820 IS 2
60821 BP 185
60822 EP 199
60823 PG 15
60824 SC Mathematics, Applied; Operations Research & Management Science
60825 GA 477PM
60826 UT ISI:000171293500004
60827 ER
60828 
60829 PT J
60830 AU Ma, H
60831    Kamiya, N
60832 TI A general algorithm for accurate computation of field variables and its
60833    derivatives near the boundary in BEM
60834 SO ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS
60835 DT Article
60836 DE BEM; boundary layer effect; singularity; modified Gauss-Tschebyscheff
60837    quadrature; field variable; numerical computation
60838 AB A general algorithm was proposed in the paper for the accurate
60839    computation of the field variables and its derivatives at domain points
60840    near the boundary in attempt to solve the so-called boundary layer
60841    effect in the boundary element method. The algorithm is based on the
60842    parameter, including modified Gauss-Tschebyscheff quadrature formula
60843    with the aid of the approximate distance function introduced, where the
60844    parameter is defined as the ratio of the minimum distance of the domain
60845    point to the boundary and the length of the boundary element. The
60846    algorithm is not only numerically stable because the singular part of
60847    the integrand serves as the weight function in the modified
60848    Gauss-Tschebyscheff quadrature formula but also independent of the kind
60849    of boundary elements. The method can be extended to the
60850    three-dimensional case with little modifications.
60851    Numerical examples of the potential problem and the elastic problem of
60852    plane strain were given by using the cubic and the quadratic boundary
60853    elements, respectively, showing the feasibility and the effectiveness
60854    of the proposed algorithm. (C) 2001 Elsevier Science Ltd. All rights
60855    reserved.
60856 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Sch Sci, Dept Mech, Shanghai 200436, Peoples R China.
60857    Nagoya Univ, Sch Informat & Sci, Nagoya, Aichi 4648601, Japan.
60858 RP Ma, H, Shanghai Univ, Shanghai Inst Appl Math & Mech, Sch Sci, Dept
60859    Mech, Shanghai 200436, Peoples R China.
60860 CR ALIABADI MH, 1985, INT J NUMER METH ENG, V21, P2221
60861    BREBBIA CA, 1984, BOUNDARY ELEMENT TEC
60862    CRISTESCU M, 1978, RECENT ADV BOUNDARY, P375
60863    CRUSE TA, 1993, INT J NUMER METH ENG, V36, P237
60864    GUIGGIANI M, 1990, J APPL MECH, V57, P906
60865    MA H, 1999, ENG ANAL BOUND ELEM, V23, P281
60866    PARTRIDGE PW, 1992, DUAL RECIPROCITY BOU
60867    TANAKA M, 1991, BOUNDARY ELEMENT MET
60868    WANG D, 1992, J MECH STRENGTH, V14, P23
60869    ZHANG GH, 1990, P 3 JAP CHIN S BOUND, P73
60870 NR 10
60871 TC 0
60872 SN 0955-7997
60873 J9 ENG ANAL BOUND ELEM
60874 JI Eng. Anal. Bound. Elem.
60875 PD DEC
60876 PY 2001
60877 VL 25
60878 IS 10
60879 BP 833
60880 EP 841
60881 PG 9
60882 SC Engineering, Multidisciplinary; Mathematics, Applied
60883 GA 476ZW
60884 UT ISI:000171259500001
60885 ER
60886 
60887 PT J
60888 AU Zhang, WG
60889    Chang, QS
60890    Jiang, BG
60891 TI Explicit exact solitary-wave solutions for compound KdV-type and
60892    compound KdV-Burgers-type equations with nonlinear terms of any order
60893 SO CHAOS SOLITONS & FRACTALS
60894 DT Article
60895 AB In this paper, we consider compound KdV-type and KdV-Burgers-type
60896    equations with nonlinear terms of any order. The explicit exact
60897    solitary-wave solutions for the equations are obtained by means of
60898    proper transformation, which degrades the order of nonlinear terms, and
60899    an undetermined coefficient method. A solitary-wave solution with
60900    negative velocity for the generalized KdV-Burgers equation u(t) +
60901    u(p)u(x) - alphau(xx) + u(xxx) = 0 is found. (C) 2001 Elsevier Science
60902    Ltd. All rights reserved.
60903 C1 Shanghai Univ Sci & Technol, Dept Basic Sci, Shanghai 200093, Peoples R China.
60904    Chinese Acad Sci, Inst Appl Math, Beijing 100080, Peoples R China.
60905    Changsha Railway Univ, Dept Math & Mech, Changsha 410075, Peoples R China.
60906 RP Zhang, WG, Shanghai Univ Sci & Technol, Dept Basic Sci, Shanghai
60907    200093, Peoples R China.
60908 CR BONA JL, 1985, P ROY SOC EDINB A, V101, P207
60909    COFFEY MW, 1990, SIAM J APPL MATH, V50, P1580
60910    DEY B, 1986, J PHYS A, V19, L9
60911    PEGO RL, 1992, PHILOS T ROY SOC A, V340, P47
60912    PEGO RL, 1993, PHYSICA D, V67, P45
60913    WADATI M, 1975, J PHYS SOC JPN, V38, P673
60914    WANG ML, 1996, PHYS LETT A, V213, P279
60915    ZHANG WG, 1996, ACTA MATH SCI, V16, P241
60916 NR 8
60917 TC 25
60918 SN 0960-0779
60919 J9 CHAOS SOLITON FRACTAL
60920 JI Chaos Solitons Fractals
60921 PD FEB
60922 PY 2002
60923 VL 13
60924 IS 2
60925 BP 311
60926 EP 319
60927 PG 9
60928 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
60929 GA 477HA
60930 UT ISI:000171276600013
60931 ER
60932 
60933 PT J
60934 AU Huang, H
60935    Ding, PX
60936    Lu, XH
60937 TI Extended mild-slope equation
60938 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
60939 DT Article
60940 DE mild-slope equation; slowly varying three-dimensional currents; rapidly
60941    varying topography; Hamiltonian formalism for surface waves
60942 ID VARYING TOPOGRAPHY; WAVES
60943 AB The Hamiltonian formalism for surface waves and the mild-slope
60944    approximation were empolyed in handling the case of slowly varying
60945    three-dimensional currents and an uneven bottom, thus leading to an
60946    extended mild-slope equation. The bottom topography consists of two
60947    components: the slowly varying component whose horizontal length scale
60948    is longer than the surface wave length, and the fast varying component
60949    with the amplitude being smaller than that of the surface wave. ne
60950    frequency of the fast varying depth component is, however, comparable
60951    to that of the surface waves. The extended mild-slope equation is more
60952    widely applicable and contains as special cases famous mild-slope
60953    equations below: the classical mild-slope equation of Berkhoff, Kirby's
60954    mild-slope equation with current, and Dingemans's mild-slope equation
60955    for rippled bed. The extended shallow water equations for ambient
60956    currents and rapidly varying topography are also obtained.
60957 C1 E China Normal Univ, State Key Lab Estuarine & Coastal Res, Shanghai 200062, Peoples R China.
60958    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
60959 RP Huang, H, E China Normal Univ, State Key Lab Estuarine & Coastal Res,
60960    Shanghai 200062, Peoples R China.
60961 CR BERKHOFF JCW, 1972, 13TH P INT C COAST E, P471
60962    BROER LJF, 1974, APPL SCI RES, V30, P430
60963    CHAMBERLAIN PG, 1995, J FLUID MECH, V291, P393
60964    CHANDRASEKERA CN, 1997, J WATERW PORT C-ASCE, V123, P280
60965    DINGEMANS MW, 1997, WATER WAVE PROPAGATI
60966    KIRBY JT, 1984, J GEOPHYS RES-OCEANS, V89, P745
60967    KIRBY JT, 1986, J FLUID MECH, V162, P171
60968    KIRBY JT, 1997, GRAVITY WAVES WATER, P55
60969    LEE CH, 1998, COAST ENG, V34, P243
60970    LIU PLF, 1990, SEA OCEAN ENG SCI, V9, P27
60971    MILES JW, 1977, J FLUID MECH, V83, P153
60972    THOMAS GP, 1997, GRAVITY WAVES WATER, P255
60973    YOON SB, 1989, J FLUID MECH, V205, P397
60974    ZAKHAROV VE, 1968, J APPL MECH TECH PHY, V2, P190
60975 NR 14
60976 TC 0
60977 SN 0253-4827
60978 J9 APPL MATH MECH-ENGL ED
60979 JI Appl. Math. Mech.-Engl. Ed.
60980 PD JUN
60981 PY 2001
60982 VL 22
60983 IS 6
60984 BP 724
60985 EP 729
60986 PG 6
60987 SC Mathematics, Applied; Mechanics
60988 GA 476CF
60989 UT ISI:000171208100014
60990 ER
60991 
60992 PT J
60993 AU Huang, H
60994    Zhou, XR
60995 TI On the resonant generation of weakly nonlinear Stokes waves in regions
60996    with fast varying topography and free surface current
60997 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
60998 DT Article
60999 DE nonlinear resonance; weakly nonlinear Stokes waves; a free surface
61000    current; rippled beds; dynamical system
61001 AB The effect of nonlinearity on the free surface wave resonated by an
61002    incident flow over rippled beds, which consist of fast varying
61003    topography superimposed on an otherwise slowly varying mean depth, is
61004    studied using a WKBJ-type perturbation approach. Synchronous,
61005    superharmonic and in particular subharmonic resonance were selectively
61006    excited over the fast varying topography with corresponding
61007    wavelengths. For a steady current the dynamical system is autonomous
61008    and the possible nonlinear steady states and their stability were
61009    investigated. When the current has a small oscillatory component the
61010    dynamical system becomes non-autonomous, chaos is now possible.
61011 C1 Tianjin Univ, Sch Civil Engn, Tianjin 300072, Peoples R China.
61012    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
61013 RP Huang, H, Tianjin Univ, Sch Civil Engn, Tianjin 300072, Peoples R China.
61014 CR BEGI S, 1994, COAST ENG, V23, P1
61015    DAVIES AG, 1984, J FLUID MECH, V144, P419
61016    GUCKENHEIMER J, 1983, NONLINEAR OSCILLATIO
61017    HEATHERSHAW AD, 1982, NATURE, V296, P343
61018    KENNEDY JF, 1963, J FLUID MECH, V16, P521
61019    NACIRI M, 1992, J FLUID MECH, V235, P415
61020    SAMMARCO P, 1994, J FLUID MECH, V279, P377
61021 NR 7
61022 TC 0
61023 SN 0253-4827
61024 J9 APPL MATH MECH-ENGL ED
61025 JI Appl. Math. Mech.-Engl. Ed.
61026 PD JUN
61027 PY 2001
61028 VL 22
61029 IS 6
61030 BP 730
61031 EP 740
61032 PG 11
61033 SC Mathematics, Applied; Mechanics
61034 GA 476CF
61035 UT ISI:000171208100015
61036 ER
61037 
61038 PT J
61039 AU Li, GH
61040    Zhou, SP
61041    Xu, DM
61042 TI Research on dynamics in modulation-doped GaAs/AlxGa1-xAs
61043    heterostructures
61044 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
61045 DT Article
61046 DE chaos; heterostructure; negative differential conductivity
61047 ID CURRENT-DENSITY FILAMENTS; SEMICONDUCTOR-DEVICE; DOMAIN FORMATION;
61048    CHAOTIC MOTIONS; OSCILLATOR
61049 AB We discuss the dynamics of the forced modulation-doped AlxGa1-xAs
61050    heterostructure device governed by the coupled differential equations,
61051    which is operative in the state far from thermodynamic equilibrium.
61052    Biased with an appropriate do field, the system exhibits two states:
61053    spontaneous current oscillation and fixed points. Under an ac driving
61054    force imposed on a do bias, the dynamical system shows the expected
61055    characteristics of frequency locking, quasiperiodicity, and chaos,
61056    which are sensitive to the amplitude and frequency, of the external
61057    applied microwave field. In particular, the basins of attraction of
61058    both an ordinary attractor and a chaotic attractor are presented. (C)
61059    2001 John Wiley & Sons, Inc.
61060 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
61061    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
61062 RP Li, GH, Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R
61063    China.
61064 CR AOKI K, 1982, J PHYS SOC JPN, V51, P2373
61065    AOKI K, 1989, SOLID STATE ELECTRON, V32, P1149
61066    DOTTING R, 1992, CHAOTIC DYNAMICS THE
61067    DOTTLING R, 1994, SOLID STATE ELECTRON, V37, P685
61068    LURYI S, 1991, PHYS REV LETT, V67, P2351
61069    NIEDERNOSTHEIDE FJ, 1996, PHYS REV B, V54, P14012
61070    NIEDERNOSTHEIDE FJ, 1999, PHYS REV B, V59, P7663
61071    SCHOLL E, 1991, APPL PHYS LETT, V58, P1277
61072    ZHANG YH, 1996, APPL PHYS LETT, V69, P1116
61073 NR 9
61074 TC 0
61075 SN 0895-2477
61076 J9 MICROWAVE OPT TECHNOL LETT
61077 JI Microw. Opt. Technol. Lett.
61078 PD OCT 20
61079 PY 2001
61080 VL 31
61081 IS 2
61082 BP 93
61083 EP 95
61084 PG 3
61085 SC Engineering, Electrical & Electronic; Optics
61086 GA 473HK
61087 UT ISI:000171034600006
61088 ER
61089 
61090 PT J
61091 AU Ren, ZM
61092    Dong, HF
61093    Deng, K
61094    Jiang, GC
61095 TI Influence of high frequency electromagnetic field on the initial
61096    solidification during electromagnetic continuous casting
61097 SO ISIJ INTERNATIONAL
61098 DT Article
61099 DE electromagnetic force; continuous casting; alternative electromagnetic
61100    field; initial solidification; electromagnetic continuous casting; heat
61101    transfer; numerical simulation
61102 AB The initial solidification during electromagnetic continuous casting of
61103    metal has been investigated experimentally and numerically. The
61104    temperature profile in the metal was measured and the starting point of
61105    the initial solidification was detected. It was found that the magnetic
61106    field influenced the temperature profile greatly, and lowered the
61107    starting position of the initial solidification profoundly. Further,
61108    the induction heat in the metal was calculated according to the
61109    measured magnetic flux in the mold. The heat induced in the wall was
61110    converted from the temperature detected in the mold wall. In order to
61111    understand the influence of the magnetic field on the behavior of the
61112    interfacial heat exchange between the metal and the mold wall, a
61113    special experiment was carried out to measure the heat exchange
61114    coefficient on the interface.
61115    Based on above measurement, a numerical model was built to describe the
61116    heat transfer and solidification of the metal. The influence of the
61117    magnetic field on the solidification was figured out. The role of the
61118    three main effects of the magnetic field, that is, inducing heat in the
61119    metal, inducing heat in the mold wall, and decreasing-the heat transfer
61120    rate on the interface between the metal and mold wall, was analyzed. It
61121    was shown that, the induced heat in the mold wall and the effect of
61122    decreasing the heat transfer on the interface between the mold and the
61123    metal may played a more important role in influencing the
61124    solidification.
61125 C1 Shanghai Univ, Dept Mat, Shanghai 200072, Peoples R China.
61126 RP Ren, ZM, Shanghai Univ, Dept Mat, Shanghai 200072, Peoples R China.
61127 CR MORISHITA M, 1992, MAGNETOHYDRODYNAMICS, P267
61128    NAKATA M, 1992, PROCESS METALLURGY, P203
61129    SIMPSON PG, 1960, INDUCTION HEATING OI, P11
61130    TANAKA T, 1994, P INT S EL PROC MAT, P248
61131    TINGJU L, 1996, TETSU TO HAGANE, V82, P197
61132    TOH T, 1994, P INT S EL PROC MAT, P254
61133    VIVES C, 1989, METALL TRANS B, V20, P623
61134 NR 7
61135 TC 5
61136 SN 0915-1559
61137 J9 ISIJ INT
61138 JI ISIJ Int.
61139 PY 2001
61140 VL 41
61141 IS 9
61142 BP 981
61143 EP 985
61144 PG 5
61145 SC Metallurgy & Metallurgical Engineering
61146 GA 473ZY
61147 UT ISI:000171080900006
61148 ER
61149 
61150 PT J
61151 AU Chen, LQ
61152    Liu, ZR
61153 TI Control of a hyperchaotic discrete system
61154 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
61155 DT Article
61156 DE controlling chaos; hyperchaotic map; Liapunov direct method;
61157    stabilization; tracking
61158 AB The Control of a hyperchaotic discrete system is investigated, A
61159    time-varying feedback control law is established on the base of local
61160    linearization. The Liapunov direct method is applied to estimate the
61161    neighborhood in which the control law can be effectively used.
61162    Numerical examples are presented to demonstrate the applications of the
61163    control law to solve the problem of stabilizing unstable periodic
61164    orbits and the problem of tracking an arbitrarily given periodic orbit.
61165 C1 Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
61166    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
61167 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
61168 CR CHEN LQ, 1998, J SHANGHAI JIAOTONG, V32, P108
61169    HU HY, 1996, ADV MECH, V26, P453
61170    JACKSON EA, 1991, PHYSICA D, V50, P341
61171    LIU ZR, 1996, STRANGE ATTRACTORS 2
61172    LIU ZR, 1999, ACTA MECH SINICA, V15, P366
61173    OTT E, 1990, PHYS REV LETT, V64, P1196
61174    YANG L, 2000, PHYS REV LETT, V84, P67
61175 NR 7
61176 TC 1
61177 SN 0253-4827
61178 J9 APPL MATH MECH-ENGL ED
61179 JI Appl. Math. Mech.-Engl. Ed.
61180 PD JUL
61181 PY 2001
61182 VL 22
61183 IS 7
61184 BP 741
61185 EP 746
61186 PG 6
61187 SC Mathematics, Applied; Mechanics
61188 GA 475BC
61189 UT ISI:000171140900001
61190 ER
61191 
61192 PT J
61193 AU Xiong, Y
61194    Shi, DH
61195 TI Affine transformation in random iterated function systems
61196 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
61197 DT Article
61198 DE fractal; random iterated function system; affine transformation
61199 AB Random iterated function systems (IFSs) is discussed, which is one of
61200    the methods for fractal drawing. A certain figure can be reconstructed
61201    by a random IFS. One approach is presented to determine a new random
61202    IFS, that the figure reconstructed by the new random IFS is the image
61203    of the origin figure reconstructed by old IFS under a given affine
61204    transformation. Two particular examples are used to show this approach.
61205 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
61206 RP Xiong, Y, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
61207 CR BARNSLEY MF, 1988, FRACTALS EVERYWHERE
61208    LASOTA A, 1994, CHAOS FRACTALS NOISE
61209    LIN YP, 1999, DYN CONTIN DISCRET I, V5, P53
61210    SU BQ, 1990, COURSE APPL GEOMETRY
61211 NR 4
61212 TC 0
61213 SN 0253-4827
61214 J9 APPL MATH MECH-ENGL ED
61215 JI Appl. Math. Mech.-Engl. Ed.
61216 PD JUL
61217 PY 2001
61218 VL 22
61219 IS 7
61220 BP 820
61221 EP 826
61222 PG 7
61223 SC Mathematics, Applied; Mechanics
61224 GA 475BC
61225 UT ISI:000171140900011
61226 ER
61227 
61228 PT J
61229 AU Xiao, XS
61230    Dong, YD
61231    Qiao, XY
61232    Mo, ZS
61233    Wang, XH
61234    Wang, Q
61235    Xu, H
61236 TI Studies on the morphology transition of micro-crystal growth in polymer
61237    films in high vacuum and strong electrostatic field
61238 SO ACTA POLYMERICA SINICA
61239 DT Article
61240 DE electrostatic field; polymer film micro-crystals; morphology
61241 AB The morphology of films of isotactic polypropylene poly
61242    (3-dodecylthiophene) and iPP/P3DDT blend formed in electrostatic fields
61243    has been investigated by using scanning electron microscope. The
61244    experiment results show that the micro-crystal morphology of polymer
61245    films was strongly dependent on electrostatic fields. It was found that
61246    the effect of the electrostatic field led to the formation of dendrite
61247    crystals aligned in the field direction, and some branches of P3DDT
61248    ruptured. However, the micro-crystals in these films grew into
61249    spherulites without electrostatic field,and have no crystal orientation.
61250 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
61251    Chinese Acad Sci, Changchun Inst Appl Chem, Polymer Phys Lab, Changchun 130022, Peoples R China.
61252 RP Xiao, XS, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
61253 CR SERPICO JM, 1991, MACROMOLECULES, V24, P6879
61254    VENUGOPAL G, 1990, POLYM PREPR, V31, P377
61255    XIAO XS, 2000, CHINESE J SCI INSTRU, V21, P75
61256 NR 3
61257 TC 1
61258 SN 1000-3304
61259 J9 ACTA POLYM SIN
61260 JI Acta Polym. Sin.
61261 PD APR
61262 PY 2001
61263 IS 2
61264 BP 261
61265 EP 264
61266 PG 4
61267 SC Polymer Science
61268 GA 473LA
61269 UT ISI:000171044400028
61270 ER
61271 
61272 PT J
61273 AU Li, D
61274    Sun, XL
61275 TI Existence of a saddle point in nonconvex constrained optimization
61276 SO JOURNAL OF GLOBAL OPTIMIZATION
61277 DT Article
61278 DE nonconvex constrained optimization; saddle point; dual method; p-th
61279    power formulation; global solution
61280 AB The existence of a saddle point in nonconvex constrained optimization
61281    problems is considered in this paper. We show that, under some mild
61282    conditions, the existence of a saddle point can be ensured in an
61283    equivalent p-th power formulation for a general class of nonconvex
61284    constrained optimization problems. This result expands considerably the
61285    class of optimization problems where a saddle point exists and thus
61286    enlarges the family of nonconvex problems that can be solved by
61287    dual-search methods.
61288 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
61289    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
61290 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management,
61291    Shatin, Hong Kong, Peoples R China.
61292 CR KARLIN S, 1959, MATH METHODS THEORY, V1
61293    LI D, 1995, J OPTIMIZ THEORY APP, V85, P309
61294    LI D, 1997, NONLINEAR ANAL-THEOR, V30, P4339
61295    LUENBERGER DG, 1984, LINEAR NONLINEAR PRO
61296    MINOUX M, 1986, MATH PROGRAMMING THE
61297    XU ZK, 1997, J OPTIMIZ THEORY APP, V94, P739
61298 NR 6
61299 TC 1
61300 SN 0925-5001
61301 J9 J GLOBAL OPTIM
61302 JI J. Glob. Optim.
61303 PD SEP
61304 PY 2001
61305 VL 21
61306 IS 1
61307 BP 39
61308 EP 50
61309 PG 12
61310 SC Mathematics, Applied; Operations Research & Management Science
61311 GA 471YJ
61312 UT ISI:000170956000004
61313 ER
61314 
61315 PT J
61316 AU Yang, GH
61317    Feng, SX
61318    Ni, GJ
61319    Duan, YS
61320 TI Relations of two transversal submanifolds and global manifold
61321 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
61322 DT Article
61323 ID GAUGE FIELD-THEORY; TOPOLOGICAL QUANTIZATION; DISCLINATION CONTINUUM;
61324    LINEAR DEFECTS; BIFURCATION; DISLOCATION; STRINGS; BRANES; ORIGIN
61325 AB In Riemann geometry, the relations of two transversal submanifolds and
61326    global manifold are discussed without any concrete models. By replacing
61327    the normal vector of a submanifold with the tangent vector of another
61328    submanifold, the metric tensors, Christoffel symbols and curvature
61329    tensors of the three manifolds are connected at the intersection points
61330    of the two submanifolds. When the inner product of the two tangent
61331    vectors of submanifolds vanishes, some corollaries of these relations
61332    give the most important second fundamental form and Gauss-Codazzi
61333    equation in the conventional submanifold theory. As a special case, the
61334    global manifold which is Euclidean is considered. It is pointed out
61335    that, in order to obtain the nonzero energy-momentum tensor of matter
61336    field in a submanifold, there must be the contributions of the above
61337    inner product and the other submanifold. Generally speaking, a
61338    submanifold is closely related to the matter fields of the other
61339    submanifold and the two submanifolds affect each other through the
61340    above inner product.
61341 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
61342    Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
61343    Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China.
61344 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
61345 CR CHU CS, 1998, PHYS LETT B, V428, P59
61346    DUAN YS, HEPTH9809011
61347    DUAN YS, HEPTH9810111
61348    DUAN YS, 1998, CHINESE PHYS LETT, V15, P781
61349    DUAN YS, 1998, IN PRESS COMMUN THEO
61350    DUAN YS, 1999, CHINESE PHYS LETT, V16, P157
61351    DUAN YS, 1999, INT J THEOR PHYS, V38, P563
61352    EISENHART L, 1964, RIEMANNIAN GEOMETRY
61353    ERLICH J, 1998, PHYS REV D, V58
61354    FERRARA S, 1998, PHYS LETT B, V431, P42
61355    HAWKING SW, 1998, PHYS REV D, V58
61356    HYUN SJ, 1998, PHYS REV D, V57, P4856
61357    KISHIMOTO I, 1998, PHYS LETT B, V432, P305
61358    YANG GH, 1998, INT J MOD PHYS B, V12, P2599
61359    YANG GH, 1998, INT J THEOR PHYS, V37, P2371
61360    YANG GH, 1998, MOD PHYS LETT A, V13, P2123
61361    YANG GH, 1998, MOD PHYS LETT A, V13, P745
61362    YANG GH, 1999, INT J ENG SCI, V37, P1037
61363 NR 18
61364 TC 0
61365 SN 0217-751X
61366 J9 INT J MOD PHYS A
61367 JI Int. J. Mod. Phys. A
61368 PD AUG 20
61369 PY 2001
61370 VL 16
61371 IS 21
61372 BP 3535
61373 EP 3551
61374 PG 17
61375 SC Physics, Nuclear; Physics, Particles & Fields
61376 GA 472UZ
61377 UT ISI:000171004500002
61378 ER
61379 
61380 PT J
61381 AU Wu, MY
61382    Zhu, J
61383    Wan, XJ
61384 TI The effect of B addition on charge distribution in Co3Ti
61385 SO INTERMETALLICS
61386 DT Article
61387 DE intermetallics; miscellaneous; brittleness and ductility; bonding;
61388    crystallography; electron microscopy; transmission
61389 ID BEAM ELECTRON-DIFFRACTION; ENVIRONMENTAL EMBRITTLEMENT; DENSITY
61390    DISTRIBUTION; BORON; NI3AL; DUCTILITY; HYDROGEN; PATTERNS
61391 AB In this paper. the chemistries at grain boundaries in Co3Ti
61392    intermetallics with and without boron doping were examined. The charge
61393    density distributions of the two kinds of alloys were obtained by their
61394    experimentally determined structure factors. The differences between
61395    them were analyzed and compared with the effect of boron on charge
61396    density distribution in Ni3Al. It is found that B has quite different
61397    effects on the charge distribution, and segregation behavior as well as
61398    mechanical properties in Co3Ti and Ni3Al. It is concluded that boron
61399    has no effect on suppressing the environmental embrittlement in Co3Ti
61400    because of the weakened Co-B-Co bonding. (C) 2001 Elsevier Science Ltd.
61401    All rights reserved.
61402 C1 Tsing Hua Univ, Sch Mat Sci & Engn, Electron Microscopy Lab, Beijing 100084, Peoples R China.
61403    Cent Iron & Steel Res Inst, Beijing 100081, Peoples R China.
61404    Shanghai Univ, Shanghai 200072, Peoples R China.
61405 RP Zhu, J, Tsing Hua Univ, Sch Mat Sci & Engn, Electron Microscopy Lab,
61406    Beijing 100084, Peoples R China.
61407 CR AOKI K, 1979, J JPN I MET, V43, P1190
61408    BAKER I, 1988, PHILOS MAG B, V57, P379
61409    CHENG XY, 1997, SCRIPTA MATER, V37, P1065
61410    GEORGE EP, 1989, SCRIPTA METALL, V23, P979
61411    GEORGE EP, 1995, MATER RES SOC S P, V364, P1131
61412    HOLMESTAD R, 1995, PHILOS MAG A, V72, P579
61413    HOLMESTAD R, 1998, PHILOS MAG A, V77, P1231
61414    LIU CT, 1985, ACTA METALL, V33, P213
61415    LIU Y, 1989, ACTA METALL, V37, P507
61416    LU G, 1996, ACTA MATER, V44, P4019
61417    MIAO Y, 1995, J MATER RES, V10, P1913
61418    SAUNDERS M, 1995, ULTRAMICROSCOPY, V60, P311
61419    SHINOHARA T, 1996, J MATER RES, V8, P1285
61420    SIELOFF DD, 1989, P MAT RES SOC S PITT, P155
61421    SUZUKI T, 1996, MATER T JIM, V37, P1
61422    TAKASUGI T, 1986, ACTA METALL, V34, P607
61423    TAKASUGI T, 1989, ACTA METALL, V37, P507
61424    TAKASUGI T, 1990, J MATER SCI, V25, P4226
61425    TAKASUGI T, 1993, SCRIPTA METALL MATER, V29, P1587
61426    TAUB AI, 1989, METALL TRANS A, V20, P2025
61427    VAINSHTEIN BK, 1990, SOVREMENNAYA KRISTAL, V2
61428    WU MY, 1999, ACTA CRYSTALLOGR A, V56, P189
61429    WU MY, 2000, J APPL CRYSTALLOGR 4, V33, P1119
61430    ZHU J, 1997, ACTA MATER, V45, P1989
61431    ZUO JM, 1991, ULTRAMICROSCOPY, V35, P185
61432 NR 25
61433 TC 1
61434 SN 0966-9795
61435 J9 INTERMETALLICS
61436 JI Intermetallics
61437 PD AUG
61438 PY 2001
61439 VL 9
61440 IS 8
61441 BP 705
61442 EP 709
61443 PG 5
61444 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
61445    Metallurgical Engineering
61446 GA 472VV
61447 UT ISI:000171006400007
61448 ER
61449 
61450 PT J
61451 AU Sun, XL
61452    Li, D
61453 TI On the relationship between the integer and continuous solutions of
61454    convex programs
61455 SO OPERATIONS RESEARCH LETTERS
61456 DT Article
61457 DE nonlinear integer program; convex program; quadratic program; proximity
61458    analysis
61459 ID OPTIMIZATION; BRANCH
61460 AB A bound is obtained in this note for the distance between the integer
61461    and real solutions to convex quadratic programs. This bound is a
61462    function of the condition number of the Hessian matrix. We further
61463    extend this proximity result to convex programs and mixed-integer
61464    convex programs. We also show that this bound is achievable in certain
61465    situations and the distance between the integer and continuous
61466    minimizers may tend to infinity. (C) 2001 Elsevier Science B.V. All
61467    rights reserved.
61468 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
61469    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
61470 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management,
61471    Shatin, Hong Kong, Peoples R China.
61472 CR BALDICK R, 1995, LINEAR ALGEBRA APPL, V226, P389
61473    BLAIR CE, 1979, DISCRETE MATH, V25, P7
61474    COOK W, 1986, MATH PROGRAM, V34, P251
61475    GRANOT F, 1990, MATH PROGRAM, V47, P259
61476    GUPTA OK, 1985, MANAGE SCI, V31, P1533
61477    HOCHBAUM DS, 1990, J ASSOC COMPUT MACH, V37, P843
61478    KORNER F, 1983, COMPUTING, V30, P253
61479    SCHRIJVER A, 1986, THEORY LINEAR INTEGE
61480    THOAI NV, 1998, COMPUT OPTIM APPL, V10, P149
61481    WERMAN M, 1991, MATH PROGRAM, V51, P133
61482 NR 10
61483 TC 0
61484 SN 0167-6377
61485 J9 OPER RES LETT
61486 JI Oper. Res. Lett.
61487 PD SEP
61488 PY 2001
61489 VL 29
61490 IS 2
61491 BP 87
61492 EP 92
61493 PG 6
61494 SC Operations Research & Management Science
61495 GA 470DG
61496 UT ISI:000170854700005
61497 ER
61498 
61499 PT J
61500 AU Gao, Y
61501 TI Calculating an element of B-differential for a vector-valued maximum
61502    function
61503 SO NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION
61504 DT Article
61505 DE nonsmooth equations; nonsmooth optimization; B-differential; Clarke
61506    generalized Jacobian; maximum function
61507 ID NONSMOOTH EQUATIONS
61508 AB In this paper, we propose a method of calculating an element of
61509    B-differential, also an element of Clarke generalized Jacobian, for a
61510    vector-valued maximum function. This calculation is required in many
61511    existing numerical methods for the solution of nonsmooth equations and
61512    for the nonsmooth optimization. The generalization of our method to a
61513    vector-valued smooth composition of maximum functions is also
61514    discussed. Particularly, we propose a method of obtaining the set of
61515    B-differential for a vector-valued maximum of affine functions.
61516 C1 Shanghai Univ Sci & Technol, Sch Management, Shanghai 200031, Peoples R China.
61517 CR CHANEY RW, 1990, NONLINEAR ANAL-THEOR, V15, P649
61518    CHEN WJ, 1996, SCI CHINA SER A, V39, P528
61519    CHEN X, 1997, COMPUTING, V58, P281
61520    CLARKE FH, 1983, OPTIMIZATION NONSMOO
61521    DEMYANOV VF, 1996, QUASIDIFFERENTIABILI
61522    GAO Y, 1994, ARCH CONTROL SCI, V3, P181
61523    HIRIARTURRUTY JB, 1993, CONVEX ANAL MINIMIZA
61524    LEMARECHAL C, 1994, ALGORITHMS CONTINUOU, P357
61525    MAKELA MM, 1992, NONSMOOTH OPTIMIZATI
61526    PANG JS, 1996, MATH OPER RES, V21, P401
61527    QI L, 1993, MATH PROGRAM, V58, P353
61528    QI LQ, 1993, MATH OPER RES, V18, P227
61529 NR 12
61530 TC 0
61531 SN 0163-0563
61532 J9 NUMER FUNC ANAL OPTIMIZ
61533 JI Numer. Funct. Anal. Optim.
61534 PY 2001
61535 VL 22
61536 IS 5-6
61537 BP 561
61538 EP 575
61539 PG 15
61540 SC Mathematics, Applied
61541 GA 470RV
61542 UT ISI:000170885700006
61543 ER
61544 
61545 PT J
61546 AU Yu, XJ
61547    Wang, QP
61548    Lu, LJ
61549    Pan, HB
61550    Xu, FQ
61551    Xu, PS
61552 TI Optimization of a variable-angle spherical grating monochromator
61553 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION
61554    A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
61555 DT Article
61556 DE beamline design; grating monochromator; VUV; soft X-ray
61557 ID SYNCHROTRON-RADIATION
61558 AB A beamline covering photon energy of 10-300eV is now under construction
61559    in National Synchrotron Radiation Laboratory. The monochromator,
61560    optimized for maximum flux and medium resolution, has two working
61561    modes. One is to vary the grating including angle during wavelength
61562    scanning by rotating a plane mirror in the monochromator. At this case,
61563    the entrance and exit slit are both fixed during the wavelength
61564    scanning. The other is to translate exit slit while the grating
61565    including angle is fixed. The monochromator is provided for
61566    angle-resolved spectroscopic and angle-integrated spectroscopic
61567    experiments with medium resolving power (E/DeltaE > 1 0 0 0). (C) 2001
61568    Elsevier Science B.V. All rights reserved.
61569 C1 Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China.
61570    Shanghai Univ, Dept Precis Machinery, Shanghai 201800, Peoples R China.
61571 RP Yu, XJ, Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei
61572    230029, Anhui, Peoples R China.
61573 CR CHEN CT, 1987, NUCL INSTRUM METH A, V256, P595
61574    LU LJ, 1996, APPL OPTICS, V35, P3627
61575    MELPIGNANO P, 1995, REV SCI INSTRUM 2, V66, P2125
61576    PADMORE HA, 1989, REV SCI INSTRUM 2A, V60, P1608
61577    PEATMAN WB, 1995, REV SCI INSTRUM, V66, P2801
61578    PIMPALE AV, 1991, APPL OPTICS, V30, P1591
61579 NR 6
61580 TC 1
61581 SN 0168-9002
61582 J9 NUCL INSTRUM METH PHYS RES A
61583 JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
61584    Equip.
61585 PD JUL 21
61586 PY 2001
61587 VL 467
61588 PN Part 1
61589 BP 597
61590 EP 600
61591 PG 4
61592 SC Physics, Particles & Fields; Instruments & Instrumentation; Nuclear
61593    Science & Technology; Spectroscopy
61594 GA 470YR
61595 UT ISI:000170900500143
61596 ER
61597 
61598 PT J
61599 AU Wu, MH
61600    Chen, J
61601    Bao, B
61602 TI The effect of monomer molecular weight of acrylate on radiation
61603    grafting of polyethylene
61604 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
61605 DT Article
61606 ID SURFACES
61607 AB A series of condensed ethylene glycol acrylate monomers with different
61608    molecular weight was grafted to polyethylene films by means of
61609    preirradiation. The effect of the molecular weight of monomer and
61610    co-solvent system on the grafting reaction and the properties of the
61611    grafted sample were studied. The experimental results showed that the
61612    initial rate of grafting reaction decreased and the molar degrees of
61613    grafting linearly decreased with the increment of molecular weight of
61614    the monomer. The grafting degree was increased with the swelling degree
61615    of the grafted film. The biocompatibility and blood compatibility of
61616    the grafted PE films were evaluated by the determination of
61617    hydrophilicity and anti-thrombus.
61618 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
61619 RP Wu, MH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
61620    Peoples R China.
61621 CR ANDRADE JD, 1987, T AM SOC ART INT ORG, V33, P75
61622    DUNKIRK SG, 1991, J BIOMATER APPL, V6, P131
61623    HADDADIASL V, 1995, RADIAT PHYS CHEM, V45, P191
61624    HAYASHI K, 1983, SEITAI ZEIRYO, V1, P59
61625    HOFFMAN AS, 1982, ADV CHEM SER, V199, P3
61626    HOFFMAN AS, 1988, J APPL POLYM SCI APP, V42, P251
61627    IMAI Y, 1972, J BIOMED MATER RES, V6, P165
61628    JEONG BJ, 1996, J COLLOID INTERF SCI, V178, P757
61629    KRONICK PL, 1983, SYNTHETIC BIOMEDICAL, P132
61630    RATNER BD, 1981, BIOCOMPATIBILITY CLI, P145
61631    WU MH, 1996, RADIAT PHYS CHEM, V48, P525
61632    YEH YS, 1988, J BIOMED MATER RES, V22, P795
61633 NR 12
61634 TC 0
61635 SN 0236-5731
61636 J9 J RADIOANAL NUCL CHEM
61637 JI J. Radioanal. Nucl. Chem.
61638 PD SEP
61639 PY 2001
61640 VL 249
61641 IS 3
61642 BP 639
61643 EP 642
61644 PG 4
61645 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
61646    & Technology
61647 GA 469WY
61648 UT ISI:000170840100021
61649 ER
61650 
61651 PT J
61652 AU Ding, YP
61653    Wu, JS
61654    Meng, ZY
61655 TI Abnormalities in the ferroelectric behavior of Ba0.7Sr0.3TiO3 thin
61656    films caused by fluctuations in Ba/Sr ratios in micro-regions
61657 SO JOURNAL OF MATERIALS SCIENCE LETTERS
61658 DT Article
61659 C1 Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China.
61660    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
61661 RP Ding, YP, Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030,
61662    Peoples R China.
61663 CR DING YP, 2000, J MATER SCI LETT, V19, P163
61664    DING YP, 2000, MAT RES B, V35
61665    KNANSS LA, 1996, APPL PHYS LETT, V69, P25
61666    ONEILL D, 1998, J MATER SCI-MATER EL, V9, P199
61667    QU BD, 1998, APPL PHYS LETT, V72, P1394
61668 NR 5
61669 TC 0
61670 SN 0261-8028
61671 J9 J MATER SCI LETT
61672 JI J. Mater. Sci. Lett.
61673 PY 2001
61674 VL 20
61675 IS 16
61676 BP 1469
61677 EP 1471
61678 PG 3
61679 SC Materials Science, Multidisciplinary
61680 GA 469KZ
61681 UT ISI:000170815000002
61682 ER
61683 
61684 PT J
61685 AU Zhu, WM
61686    Li, CE
61687    Guo, CJ
61688    Yan, LH
61689 TI Influence of phase composition on the piezoelectric properties of
61690    PMN-PT ceramic
61691 SO JOURNAL OF INORGANIC MATERIALS
61692 DT Article
61693 DE chemical composition; phase composition; MPB; piezoelectric properties
61694 ID LEAD MAGNESIUM NIOBATE; BOUNDARY; TITANATE; SYSTEM
61695 AB The influence of chemical and phase composition on the piezoelectric
61696    properties of PMN-PT ceramics with chemical compositions near the
61697    morphotropic phase boundary(MPB) sintered at different temperatures was
61698    investigated. It showed that a phase conversion from rhombohedral to
61699    tetragonal phase took place when the sintering temperature of PMN-PT
61700    ceramic with a definite chemical composition increased. Meanwhile, the
61701    piezoelectric properties of PMN-PT ceramics were significantly enhanced
61702    when the amount of rhombohedral phase approached to that of tetragonal
61703    phase in ceramics. At the same time, it was discovered that the
61704    chemical composition corresponding to optimal piezoelectric properties
61705    varied with the change of sintering temperature. Based on above
61706    results, the authors found that the piezoelectric properties of PMN-PT
61707    near the MPB are not only related to the chemical composition but also
61708    significantly impacted by the phase composition in ceramics. With the
61709    change of sintering temperature, the MPB of PMN-PT ceramic system
61710    shifts slightly.
61711 C1 Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
61712    Shanghai Univ, Sch Mat Sci, Shanghai 201800, Peoples R China.
61713 RP Zhu, WM, Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050,
61714    Peoples R China.
61715 CR ARIGUR P, 1975, J PHYS D, V8, P1856
61716    BAREWALD HG, 1957, PHYS REV, V105, P480
61717    CAO WW, 1992, JPN J APPL PHYS PT 1, V31, P1399
61718    CARL K, 1971, PHYS STATUS SOLIDI A, V8, P87
61719    CHOI SW, 1989, FERROELECTRICS, V100, P29
61720    FANG F, 1997, J CHINESE CERAMIC SO, V25, P688
61721    GUPTA SM, 1998, J APPL PHYS, V83, P407
61722    HILTON AD, 1989, FERROELECTRICS, V93, P379
61723    HO JC, 1993, J MATER SCI, V28, P4497
61724    ISUPOV VA, 1968, TELA FIS TVERD, V10, P1244
61725    ISUPOV VA, 1983, FERROELECTRICS, V46, P217
61726    JAFFE B, 1971, PIEZOELECTRIC CERAMI
61727    KELLY J, 1997, J AM CERAM SOC, V80, P957
61728    KIM N, 1989, FERROELECTRICS, V93, P341
61729    PARK SE, 1997, J APPL PHYS, V82, P1840
61730    SWARTZ SL, 1982, MATER RES BULL, V17, P1245
61731    XIA F, 1998, J CHINESE CERAMIC SO, V26, P114
61732 NR 17
61733 TC 0
61734 SN 1000-324X
61735 J9 J INORG MATER
61736 JI J. Inorg. Mater.
61737 PD JUL
61738 PY 2001
61739 VL 16
61740 IS 4
61741 BP 641
61742 EP 648
61743 PG 8
61744 SC Materials Science, Ceramics
61745 GA 469NZ
61746 UT ISI:000170822900011
61747 ER
61748 
61749 PT J
61750 AU Xiao, XS
61751    Qiao, XY
61752    Mo, ZS
61753    Dong, YD
61754    Wang, Q
61755    Wang, XH
61756    Xu, H
61757 TI The effect of electrostatic field on the micro-crystal morphology of
61758    polymer films
61759 SO EUROPEAN POLYMER JOURNAL
61760 DT Article
61761 DE electrostatic field; isotactic polypropylene; poly(3-dodecylthiophene);
61762    crystallite size; morphology
61763 AB The micro-crystal morphology of the films of isotactic polypropylene
61764    (iPP), poly(3-dodecylthiophene) (P3DDT) and iPP/P3DDT blend grown in
61765    different electrostatic environments has been investigated by using
61766    scanning electron microscope. The experimental results show that the
61767    micro-crystal morphology of polymer films was strongly dependent on
61768    electrostatic field. It was found that the micro-crystal morphology of
61769    the films of iPP, P3DDT and iPP/P3DDT blend grown in the electrostatic
61770    field was in the form of dendrite crystals, in which main stems were
61771    aligned in the field direction, and some branches of P3DDT were
61772    ruptured. However, the micro-crystals of the films of iPP, P3DDT and
61773    iPP/P3DDT blend have no crystal orientation in the absence of
61774    electrostatic field. (C) 2001 Elsevier Science Ltd. All rights reserved.
61775 C1 Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China.
61776    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
61777 RP Mo, ZS, Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab
61778    Polymer Phys & Chem, Changchun 130022, Peoples R China.
61779 CR BRISKMAN V, AIAA960257
61780    FURUKAWA T, 1989, PHASE TRANSIT, V18, P143
61781    JACBS EW, 1984, APPL PHYS LETT, V44, P44
61782    KAWAI H, 1969, JPN J APPL PHYS, V8, P975
61783    SERPICO JM, 1991, MACROMOLECULES, V24, P6879
61784    VENUGOPAL G, 1990, POLYM PREPR, V31, P377
61785    XIAO X, 1999, J SHANGHAI U, V5, P66
61786    XIAO X, 2000, CHINESE J SCI INSTRU, V21, P23
61787 NR 8
61788 TC 0
61789 SN 0014-3057
61790 J9 EUR POLYM J
61791 JI Eur. Polym. J.
61792 PD NOV
61793 PY 2001
61794 VL 37
61795 IS 11
61796 BP 2339
61797 EP 2343
61798 PG 5
61799 SC Polymer Science
61800 GA 470QQ
61801 UT ISI:000170883000023
61802 ER
61803 
61804 PT J
61805 AU Sheng, YJ
61806    Ru, HY
61807    Min, ZK
61808 TI R(C-6, K-5)=21 and R(C-7, K-5)=25
61809 SO EUROPEAN JOURNAL OF COMBINATORICS
61810 DT Article
61811 ID NUMBERS; GRAPHS
61812 AB The Ramsey number R(C-n, K-m) is the smallest integer p such that any
61813    graph G on p vertices either contains a cycle C-n with length n or
61814    contains an independent set with order m. In this paper we prove that
61815    R(C-n, K-5) = 4(n - 1) + 1 (n = 6, 7). (C) 2001 Academic Press.
61816 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
61817 RP Sheng, YJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
61818 CR BOLLOBAS B, IN PRESS CONJECTURE
61819    CHVATAL V, 1972, PAC J MATH, V41, P335
61820    CLANCY M, 1977, J GRAPH THEOR, V1, P89
61821    FAUDREE RJ, 1974, DISCRETE MATH, V8, P313
61822    HENDRY GRT, 1989, J GRAPH THEOR, V13, P245
61823    JAYAWARDENE CJ, SOEM RAMSEY NUMBERS
61824    RADZISZOWSKI SP, 2000, ELECT J COMB, V1, P1
61825    ROSTA V, 1973, J COMB THEORY B, V15, P94
61826    SCHELP RH, 1978, LECT NOTES MATH, V642, P500
61827    YANG WY, 1999, APPL MATH MECH-ENGL, V20, P205
61828 NR 10
61829 TC 0
61830 SN 0195-6698
61831 J9 EUR J COMBINATORIC
61832 JI Eur. J. Comb.
61833 PD MAY
61834 PY 2001
61835 VL 22
61836 IS 4
61837 BP 561
61838 EP 567
61839 PG 7
61840 SC Mathematics
61841 GA 470GA
61842 UT ISI:000170861200014
61843 ER
61844 
61845 PT J
61846 AU Yang, GH
61847 TI Topological structure of entropy of (3+1)-dimensional spherically
61848    symmetric black holes
61849 SO MODERN PHYSICS LETTERS A
61850 DT Article
61851 ID EXTREME STATE; AREA
61852 AB Using the relationship between the entropy arid the Euler
61853    characteristic, an entropy density is introduced to describe the inner
61854    topological structure of the entropy of (3 + 1)-dimensional spherically
61855    symmetric black holes. It is pointed out that the density of entropy is
61856    determined by the singularities of the timelike Killing vector field of
61857    spacetime, and these singularities carry the topological numbers, Hopf
61858    indices and Brouwer degrees, naturally, which are topological
61859    invariants. Taking account of the physical meaning in statistics, the
61860    entropy of black holes is given by the Hopf indices merely, which will
61861    lead to the increasing principle of entropy of black holes.
61862 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
61863 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
61864 CR BARDEEN JM, 1973, COMMUN MATH PHYS, V31, P161
61865    BEKENSTEIN JD, 1973, PHYS REV D, V7, P2333
61866    CHERN SS, 1944, ANN MATH, V45, P747
61867    CHERN SS, 1945, ANN MATH, V46, P674
61868    CHERN SS, 1959, LECT NOTES
61869    CHRISTODOULOU D, 1971, PHYS REV D, V4, P3552
61870    DUAN YS, 1993, J MATH PHYS, V34, P1149
61871    DUAN YS, 1997, HELV PHYS ACTA, V70, P565
61872    DUAN YS, 1998, NUCL PHYS B, V514, P705
61873    GELFAND IM, 1958, GEN FUNCTION
61874    GHOSH A, 1997, PHYS REV LETT, V78, P1858
61875    GIBBONS GW, 1977, PHYS REV D, V15, P2752
61876    GIBBONS GW, 1995, PHYS REV D, V51, P2839
61877    HAWKING SW, 1975, COMMUN MATH PHYS, V43, P199
61878    HAWKING SW, 1995, PHYS REV D, V51, P4302
61879    HAWKING SW, 1996, CLASSICAL QUANT GRAV, V13, P1487
61880    LIBERATI S, 1997, PHYS REV D, V56, P6458
61881    MALDACENA JM, 1996, PHYS REV LETT, V77, P428
61882    ZASLAVSKII OB, 1996, PHYS REV LETT, V76, P2211
61883    ZASLAVSKII OB, 1997, PHYS REV D, V56, P2188
61884 NR 20
61885 TC 1
61886 SN 0217-7323
61887 J9 MOD PHYS LETT A
61888 JI Mod. Phys. Lett. A
61889 PD JUL 20
61890 PY 2001
61891 VL 16
61892 IS 22
61893 BP 1457
61894 EP 1464
61895 PG 8
61896 SC Physics, Mathematical; Physics, Nuclear; Physics, Particles & Fields
61897 GA 467MR
61898 UT ISI:000170708800007
61899 ER
61900 
61901 PT J
61902 AU Zhang, ZQ
61903    Mo, YL
61904 TI Coding of image objects based on wavelet transform using lifting scheme
61905 SO JOURNAL OF INFRARED AND MILLIMETER WAVES
61906 DT Article
61907 DE MPEG-4; transform coding of arbitrarily shaped image objects; wavelet
61908    transforms using lifting scheme
61909 ID SHAPE-ADAPTIVE DCT; VIDEO
61910 AB Wavelet lifting scheme was applied to the transform coding of
61911    arbitrarily shaped image objects. There are two approaches: one needs
61912    the extrapolation of the image object and the other is a shape-adopted
61913    algorithm by modifying the lifting scheme. The experiment result shows
61914    that the image compression performance of the two approaches is better
61915    than Katata's approach which uses the classical wavelet transform.
61916 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
61917 RP Zhang, ZQ, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
61918    Peoples R China.
61919 CR DAUBECHIES I, 1998, J FOURIER ANAL APPL, V4, P247
61920    KATATA H, 1997, IEEE T CIRC SYST VID, V7, P234
61921    KAUFF P, 1997, IEEE T CIRC SYST VID, V7, P181
61922    KAUFF P, 1998, IEEE T CIRC SYST VID, V8, P237
61923    LEE SH, 1999, IEEE T CIRC SYST VID, V9, P44
61924    LEWIS AS, 1992, IEEE T IMAGE PROCESS, V1, P244
61925    SIKORA T, 1995, IEEE T CIRC SYST VID, V5, P59
61926    SIKORA T, 1997, IEEE T CIRC SYST VID, V7, P19
61927    SWELDENS W, 1994, LIFTING SCHEME CUSTO, P1
61928 NR 9
61929 TC 0
61930 SN 1001-9014
61931 J9 J INFRARED MILIM WAVES
61932 JI J. Infrared Millim. Waves
61933 PD AUG
61934 PY 2001
61935 VL 20
61936 IS 4
61937 BP 296
61938 EP 300
61939 PG 5
61940 SC Optics
61941 GA 467GL
61942 UT ISI:000170694000014
61943 ER
61944 
61945 PT J
61946 AU Zhang, ZC
61947    Huang, BB
61948    Yu, YQ
61949    Cui, DL
61950 TI Electrical properties and Raman spectra of undoped and Al-doped ZnO
61951    thin films by metalorganic vapor phase epitaxy
61952 SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
61953    TECHNOLOGY
61954 DT Article
61955 DE ZnO; resistivity; carrier concentration; hall mobility; Raman spectra
61956 ID DEPOSITION; GROWTH
61957 AB Undoped and Al-doped ZnO thin films have been deposited on Si
61958    substrates using metalorganic vapor phase epitaxy at atmospheric
61959    pressure. The as-deposited ZnO films showed good crystalline character
61960    and exhibited (002) orientation with the c axis perpendicular to the
61961    substrate surface. The carrier concentration of ZnO films was found to
61962    be dependent upon the doping of Al, and varied in the range from 10(19)
61963    to 10(20) cm(-3). The resistivity of ZnO films was in the order of
61964    magnitude of 10(-3) Omega cm. The Hall mobility decreased with the
61965    doping of Al and was in the range 5-53 cm(2) (V(.)s)(-1). Raman spectra
61966    indicated the observed A(1)(LO) and E-2(high) bands shifted towards the
61967    low-frequency side. (C) 2001 Elsevier Science B.V. All rights reserved.
61968 C1 Shanghai Univ, Chinese Acad Sci, Dept Elect Informat Mat, Shanghai 201800, Peoples R China.
61969    Shandong Univ, Inst Crystal Mat, Jinan 250100, Peoples R China.
61970 RP Zhang, ZC, Shanghai Univ, Chinese Acad Sci, Dept Elect Informat Mat,
61971    865 Changning Rd, Shanghai 201800, Peoples R China.
61972 CR BAGNALL DM, 1997, APPL PHYS LETT, V70, P2230
61973    DAMEN TC, 1966, PHYS REV, V142, P570
61974    MINEGISHI K, 1997, JPN J APPL PHYS 2, V36, L1453
61975    SOULETIE P, 1988, J CRYST GROWTH, V86, P248
61976    TONG YZ, 1996, J INFARED MILLIM WAV, V15, P6
61977    WRIGHT PJ, 1984, J CRYST GROWTH, V66, P26
61978 NR 6
61979 TC 12
61980 SN 0921-5107
61981 J9 MATER SCI ENG B-SOLID STATE M
61982 JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
61983 PD SEP 25
61984 PY 2001
61985 VL 86
61986 IS 2
61987 BP 109
61988 EP 112
61989 PG 4
61990 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
61991 GA 465HR
61992 UT ISI:000170584000002
61993 ER
61994 
61995 PT J
61996 AU Zhang, ZC
61997    Huang, BB
61998    Cui, DL
61999 TI Growth of AlxGa1-xP on GaAs substrate by metalorganic vapor phase
62000    epitaxy
62001 SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
62002    TECHNOLOGY
62003 DT Article
62004 DE AlGaP; metalorganic vapor phase epitaxy; back-scattering spectrometry;
62005    Raman spectroscopy
62006 ID MOLECULAR-BEAM EPITAXY; RAMAN-SCATTERING; GAP; PRESSURE; INP
62007 AB The crystalline perfection of the AlxGa1-xP film grown on GaAs
62008    substrate by atmospheric pressure metalorganic vapor phase epitaxy has
62009    been studied using double-crystal X-ray diffraction and back-scattering
62010    spectrometry, and the behavior for the optical phonons of the AlxGa1-xP
62011    epilayer investigated by the Raman scattering technique. In addition,
62012    the reflection spectra in the visible-light spectra region from
62013    multilayer structures constructed by AlxGa1-xP/GaP pairs have been
62014    measured. The measurement of the full-width at half-maximum of the
62015    X-ray diffraction peak of the AlxGa1-xP epilayer showed that the
62016    crystalline perfection of the AlxGa1-xP film was improved by growing a
62017    GaP buffer layer and using a misoriented GaAs substrate. Corresponding
62018    to the temperature range 750-820 degreesC, the higher crystalline
62019    perfection was obtained at the lower growth temperature. The value of
62020    the minimum yield of back-scattering spectrometry of Al0.24Ga0.76P/GaAs
62021    (3.4 x 10(-2)) revealed that the epilayer was not perfect and contained
62022    both elastic strain and misfit dislocations. A two-mode Raman
62023    characteristic of Al0.21Ga0.79P/GaAs was clearly seen with two LO
62024    modes, AIP-like LO and GaP-like LO located at 460 and 392 cm(-1),
62025    respectively. For the (Al0.2Ga0.79P)10/(GaP)(10) structure, a
62026    reflectivity above 60% was realized. (C) 2001 Elsevier Science B.V. All
62027    rights reserved.
62028 C1 Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800, Peoples R China.
62029    Shandong Univ, Inst Crystal Mat, Jinan 250100, Peoples R China.
62030 RP Zhang, ZC, Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800,
62031    Peoples R China.
62032 CR *I SEM CHIN AC SCI, 1984, TEST AN SEM, P135
62033    ADOMI K, 1992, J CRYST GROWTH, V124, P570
62034    BAILLARGEON JN, 1990, APPL PHYS LETT, V56, P2201
62035    BHAT R, 1992, J CRYST GROWTH, V124, P311
62036    CHU WK, 1978, BACKSCATTERING SPECT, P233
62037    ESTRERA JP, 1992, APPL PHYS LETT, V61, P1927
62038    FRANK FC, 1949, P ROY SOC LOND A MAT, V198, P216
62039    ILLEGEMS M, 1970, PHYS REV B, V1, P1576
62040    LAO PD, 1989, J APPL PHYS, V65, P1676
62041    LIU J, 1992, J CRYST GROWTH, V124, P415
62042    LUCOVSKY G, 1975, PHYS REV B, V12, P4135
62043    LUCOVSKY G, 1976, PHYS REV B, V14, P2503
62044    MENG G, 1984, CHEM VAPOR EPITAXY N, P147
62045    MOWBRAY DJ, 1987, SEMICOND SCI TECH, V2, P822
62046    VANDEVEN J, 1986, J CRYST GROWTH, V76, P352
62047    WAKAHARA A, 1992, J CRYST GROWTH, V124, P118
62048    WEINSTEIN BA, 1975, PHYS REV           B, V12, P1172
62049    ZHANG ZC, 2000, MAT SCI ENG B-SOLID, V77, P24
62050 NR 18
62051 TC 1
62052 SN 0921-5107
62053 J9 MATER SCI ENG B-SOLID STATE M
62054 JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
62055 PD SEP 25
62056 PY 2001
62057 VL 86
62058 IS 2
62059 BP 147
62060 EP 151
62061 PG 5
62062 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
62063 GA 465HR
62064 UT ISI:000170584000009
62065 ER
62066 
62067 PT J
62068 AU Cheng, CJ
62069    Fan, XJ
62070 TI Nonlinear mathematical theory of perforated viscoelastic thin plates
62071    with its applications
62072 SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
62073 DT Article
62074 DE perforated viscoelastic plate; nonlinear mathematical model; nonlinear
62075    stability; Lyapunov exponent spectrum; chaos; periodic motion; limit
62076    cycle; effect of parameter
62077 ID ANNULAR PLATES; SHEARING; STATES
62078 AB In this paper, the nonlinear mathematical theory of perforated
62079    viscoelastic thin plates, by the Karman's hypotheses of plates with
62080    large deflection and the Boltzmann's constitutive law of linear
62081    viscoelastic materials, is established. One could see that the
62082    governing equations, boundary conditions and constraining conditions
62083    generally are of nonlinear integro-differential operator types and that
62084    they further generalize the mathematical theory for perforated elastic
62085    thin plates and could be also reduced to the existing mathematical
62086    theory of viscoelastic thin plates without holes. As an application,
62087    the nonlinear dynamical stability of a viscoelastic annular plate is
62088    analyzed and the effect of parameters on the stability is considered by
62089    using Galerkin averaging method and numerical methods in nonlinear
62090    dynamics. Some helpful conclusions are obtained. Specially, a new
62091    method calculating the Lyapunov exponent spectrum of dynamical systems
62092    excited periodically is suggested. By using this method, the
62093    computation time can be greatly reduced. (C) 2001 Elsevier Science Ltd.
62094    All rights reserved.
62095 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
62096    Xian Jiaotong Univ, Sch Civil Engn & Mech, Xian 710049, Peoples R China.
62097 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
62098    Shanghai 200072, Peoples R China.
62099 CR CEDERBAUM G, 1991, INT J SOLIDS STRUCT, V28, P317
62100    CEDERBAUM G, 1994, INT J MECH SCI, V36, P149
62101    CHENG CJ, 1986, SCI SINICA SER A, V29, P956
62102    CHENG CJ, 1989, J ENG MATH, V23, P29
62103    CHENG CJ, 1991, BUCKLING BUFOCATION
62104    CHENG CJ, 1991, COMPUT METHOD APPL M, V92, P157
62105    CHENG CJ, 1991, COMPUT METHOD APPL M, V92, P173
62106    CHENG CJ, 1996, APPL MATH MECH, V17, P109
62107    CHENG CJ, 1998, ACTA MECH SINICA, V30, P690
62108    CHENG CJ, 1998, INT J SOLIDS STRUCT, V35, P4491
62109    CHRISTENSEN RM, 1982, THEORY VISCOELASTICI
62110    DROZDOV AD, 1994, STABILITY VISCOELAST
62111    PARKER TS, 1989, PRACTICAL NUMERICAL
62112    TOUATI D, 1995, ACTA MECH, V113, P215
62113    ZHANG NH, 1998, COMPUT METHOD APPL M, V165, P307
62114    ZHU ZY, 1986, ACTA MECH SINICA, V2, P278
62115 NR 16
62116 TC 2
62117 SN 0020-7683
62118 J9 INT J SOLIDS STRUCT
62119 JI Int. J. Solids Struct.
62120 PD SEP
62121 PY 2001
62122 VL 38
62123 IS 36-37
62124 BP 6627
62125 EP 6641
62126 PG 15
62127 SC Mechanics
62128 GA 464GK
62129 UT ISI:000170524700013
62130 ER
62131 
62132 PT J
62133 AU He, JH
62134 TI Comments and author's reply on "Derivation and transformation of
62135    variational principles with emphasis on inverse and hybrid problems in
62136    fluid mechanics: a systematic approach"
62137 SO ACTA MECHANICA
62138 DT Letter
62139 ID FLOW
62140 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
62141 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
62142    Shanghai 200072, Peoples R China.
62143 CR HE JH, 1997, INT J TURBO JET ENG, V14, P23
62144    HE JH, 2000, AIRCR ENG AEROSP TEC, V72, P18
62145    LIU GL, 1999, ACTA MECH SINICA, V31, P165
62146    LIU GL, 1999, INT J TURBO JET ENG, V16, P141
62147    LIU GL, 2000, ACTA MECH, V140, P73
62148 NR 5
62149 TC 3
62150 SN 0001-5970
62151 J9 ACTA MECH
62152 JI Acta Mech.
62153 PY 2001
62154 VL 149
62155 IS 1-4
62156 BP 247
62157 EP 249
62158 PG 3
62159 SC Mechanics
62160 GA 465UE
62161 UT ISI:000170607700018
62162 ER
62163 
62164 PT J
62165 AU Liu, GL
62166 TI Comments and author's reply on "Derivation and transformation of
62167    variational principles with emphasis on inverse and hybrid problems in
62168    fluid mechanics: a systematic approach" - Reply
62169 SO ACTA MECHANICA
62170 DT Letter
62171 C1 Shanghai Univ, Inst Mech, Shanghai 200072, Peoples R China.
62172 RP Liu, GL, Shanghai Univ, Inst Mech, 149 Yan Chang Rd, Shanghai 200072,
62173    Peoples R China.
62174 CR FINLAYSON BA, 1972, METHOD WEIGHTED RESI, P312
62175    HE JH, COMMENTS LIUS SYSTEM
62176    LIU GL, 1990, CHINESE J ENG THERMO, V11, P136
62177    LIU GL, 2000, ACTA MECH, V140, P73
62178    ZIENKIEWICZ OC, 1989, FINITE ELEMENT METHO, V1, P248
62179 NR 5
62180 TC 0
62181 SN 0001-5970
62182 J9 ACTA MECH
62183 JI Acta Mech.
62184 PY 2001
62185 VL 149
62186 IS 1-4
62187 BP 249
62188 EP 250
62189 PG 2
62190 SC Mechanics
62191 GA 465UE
62192 UT ISI:000170607700019
62193 ER
62194 
62195 PT J
62196 AU Wan, XJ
62197    Chen, YX
62198    Cheng, XY
62199 TI Environmental embrittlement of intermetallics
62200 SO PROGRESS IN NATURAL SCIENCE
62201 DT Review
62202 DE intermetallics; environmental embrittlement; alloying element; hydrogen
62203    diffusivity; surface reaction
62204 ID ROOM-TEMPERATURE; CO3TI ALLOYS; POLYCRYSTALLINE NI3AL;
62205    MECHANICAL-PROPERTIES; WATER-VAPOR; BORON; FRACTURE
62206 AB The effect of alloying elements on the environmental embrittlement of
62207    L1(2) type intermetallics is summarized. The results show that the
62208    ductilizing effect of boron doping in Ni3Al is mainly to suppress the
62209    moisture-induced environmental embrittlement. The mechanism of this
62210    suppression effect is proved to lie in the fact that it severely
62211    reduces the hydrogen diffusivity along the grain boundaries. However,
62212    the boron doping in Co3Ti alloys does not have the same effect of
62213    suppressing the environmental embrittlement. The different behavior of
62214    boron doping in Ni3Al and Co3Ti may be attributed to its different
62215    segregation behavior on the grain boundaries. Boron in Co3Ti does not
62216    segregate on the grain boundaries and cannot effectively reduce the
62217    hydrogen diffusivity along the grain boundaries. The moisture-induced
62218    environmental embrittlement of Co3Ti alloy can be completely suppressed
62219    by the addition of Fe. As proved by Auger, this suppression effect is
62220    due to its obvious reduction of the surface kinetic reaction with water
62221    vapor.
62222 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
62223 RP Wan, XJ, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
62224 CR CHEN YX, 1998, J MATER SCI LETT, V17, P1627
62225    CHEN YX, 2000, INTERMETALLICS, V8, P585
62226    CHENG XY, 1997, SCRIPTA MATER, V37, P1065
62227    CHENG XY, 1998, SCRIPTA MATER, V38, P959
62228    GEORGE EP, 1992, SCRIPTA METALL MATER, V27, P365
62229    GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37
62230    GEORGE EP, 1995, MAT SCI ENG A-STRUCT, V192, P277
62231    KIMURA A, 1994, MATER T JIM, V35, P879
62232    LIU CT, 1985, ACTA METALL, V33, P213
62233    LIU CT, 1992, SCRIPTA METALL MATER, V27, P25
62234    LIU Y, 1989, J MATER SCI, V24, P4458
62235    TAKASUGI T, 1986, ACTA METALL, V34, P607
62236    TAKASUGI T, 1990, J MATER SCI, V25, P4239
62237    TAKASUGI T, 1993, SCRIPTA METALL MATER, V29, P1587
62238    WAN X, 1994, J MATER SCI TECHNOL, V10, P39
62239    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
62240    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P479
62241    WAN XJ, 1994, SCRIPTA METALL MATER, V31, P677
62242    WAN XJ, 1995, ACTA METALL SINICA, V8, P299
62243    WAN XJ, 1998, ACTA METALLURGICA SI, V34, P141
62244    WAN XJ, 1999, ACTA METALLURGICA S, V35, P44
62245    WU MY, 1999, 5 IUMRS INT C ADV MA, V64, P187
62246    ZHU JH, 1993, SCRIPTA METALL MATER, V29, P429
62247 NR 23
62248 TC 0
62249 SN 1002-0071
62250 J9 PROG NAT SCI
62251 JI Prog. Nat. Sci.
62252 PD AUG
62253 PY 2001
62254 VL 11
62255 IS 8
62256 BP 561
62257 EP 568
62258 PG 8
62259 SC Multidisciplinary Sciences
62260 GA 462TN
62261 UT ISI:000170436000001
62262 ER
62263 
62264 PT J
62265 AU Yin, LW
62266    Li, MS
62267    Hao, ZY
62268    Zhang, JF
62269 TI Inclusions related to catalyst and medium for transmitting pressure in
62270    diamond single crystals grown at high temperature and high pressure
62271    from the Fe-C system
62272 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
62273 DT Article
62274 ID NITROGEN
62275 AB Inclusion entrapment in a crystal is one of the most important
62276    characteristics for the crystal growth technique from solution. Diamond
62277    single crystals grown from the Fe-C system at high temperature-high
62278    pressure usually contain inclusions related to the molten catalyst and
62279    the medium (pyrophyllite) for transmitting pressure. During the growth
62280    of the diamond, the inclusions are trapped by the growth front or are
62281    formed through reaction between the contaminants trapped in the
62282    diamond. In the present article, the inclusions related to the catalyst
62283    and pyrophyllite were systemically examined by transmission electron
62284    microscopy. The chemical composition and crystal structure of the
62285    inclusions were, for the first time, determined by selected area
62286    electron diffraction pattern combined with energy dispersive x-ray
62287    spectrometry. It was shown that the inclusions are mainly composed of
62288    orthorhombic Fe3C, orthorhombic FeSi2, hexagonal SiO2 and face-centred
62289    cubic SiC.
62290 C1 Shandong Univ, Coll Mat Sci & Engn, Jinan 250061, Peoples R China.
62291    Jilin Univ, Natl Key Lab Superhard Mat, Changchun 130012, Peoples R China.
62292    Shanghai Univ Sci & Technol, Occupat Coll, Jinan 271021, Peoples R China.
62293 RP Yin, LW, Shandong Univ, Coll Mat Sci & Engn, 73 Jing Shi Rd, Jinan
62294    250061, Peoples R China.
62295 CR ANTHONY TR, 1999, DIAM RELAT MATER, V8, P78
62296    BUNDY FP, 1955, NATURE, V176, P51
62297    DAVIS G, 1992, PHYS REV B, V46, P157
62298    GOSS J, 1995, MATER SCI FORUM, V196, P67
62299    HAO ZY, 1994, J CRYST GROWTH, V135, P370
62300    HUGGINS CM, 1961, NATURE, V120, P829
62301    KIFLAWI I, 1997, DIAM RELAT MATER, V6, P1643
62302    MAINWOOD A, 1994, PHYS REV B, V49, P7934
62303    MICHAU D, 1999, DIAM RELAT MATER, V140, P441
62304    NAZARE MH, 1995, MATER SCI FORUM, V196, P73
62305    NEWTON ME, 1991, J PHYS-CONDENS MAT, V3, P3591
62306    SHIMOMURA S, 1997, DIAM RELAT MATER, V6, P1680
62307    SINGH BP, 1990, J MATER SCI, V25, P1487
62308    ZHANG SD, 1986, J CRYST GROWTH, V79, P542
62309 NR 14
62310 TC 1
62311 SN 0022-3727
62312 J9 J PHYS-D-APPL PHYS
62313 JI J. Phys. D-Appl. Phys.
62314 PD JUN 21
62315 PY 2001
62316 VL 34
62317 IS 12
62318 BP L57
62319 EP L60
62320 PG 4
62321 SC Physics, Applied
62322 GA 462MR
62323 UT ISI:000170424300001
62324 ER
62325 
62326 PT J
62327 AU Wang, XG
62328    Ding, WZ
62329    Tang, K
62330    Jiang, GC
62331    Xu, KD
62332 TI Experimental thermodynamic research on equilibrium between silicon
62333    alloy and SiO2-CaO-Al2O3 melt
62334 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
62335 DT Article
62336 DE silicon; oxidation refining; thermodynamic equilibrium
62337 AB The equilibria of Al and Ca between silicon alloy and the SO2-Al2O3-CaO
62338    ternary slags were investigated using graphite crucible at 1550
62339    degreesC. With increasing Al2O3 and CaO content in the slags, the Al
62340    and Ca content increase respectively. The variation of the impurities
62341    are also affected by the silica content in slag which provides the
62342    oxidant during the oxidation refining process. The distributions of the
62343    impurities Al and Ca in silicon were given in terms of isoconcentration
62344    curves for Al and Ca in the ternary slags of SiO2-Al2O3-CaO. The
62345    present experimental work provided available data to analyze the action
62346    of Al and Ca during oxidation refining process for silicon alloy.
62347 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
62348 CR CHU TL, 1983, J ELECTROCHEM SOC, V30, P455
62349    HOLTA H, 1995, INFACON 7 TRONDH NOR, P463
62350    HUNT LP, 1976, 12 IEEE PHOT SPEC C, P125
62351    HUNT LP, 1976, SOL ENERGY, P200
62352    JUNEJA JM, 1986, HYDROMETALLURGY, V16, P69
62353    KAY DAR, 1960, T FARADAY SOC, V56, P1372
62354    MARGARIA T, 1996, SILICON REFINING EXP, P21
62355    OHTA H, 1996, METALL MATER TRANS B, V27, P943
62356    OTTEM L, 1993, STF34F93112 SINTEF
62357    REIN RH, 1965, T METALL SOC AIME, V233, P415
62358    SCHEI A, 1998, PRODUCTION HIGH SILI, P13
62359    SCHEI A, 1998, PRODUCTION HIGH SILI, P265
62360    VOOS W, 1961, 2972521, US
62361    WEISS T, 1994, METALL MATER TRANS B, V25, P497
62362    WU XX, 1999, CHINESE J NONFERROUS, V9, P627
62363 NR 15
62364 TC 0
62365 SN 1003-6326
62366 J9 TRANS NONFERROUS METAL SOC CH
62367 JI Trans. Nonferrous Met. Soc. China
62368 PD AUG
62369 PY 2001
62370 VL 11
62371 IS 4
62372 BP 535
62373 EP 539
62374 PG 5
62375 SC Metallurgy & Metallurgical Engineering
62376 GA 461PX
62377 UT ISI:000170373600016
62378 ER
62379 
62380 PT J
62381 AU Li, CF
62382    Wang, Q
62383 TI Duration of tunneling photons in a frustrated-total-internal-reflection
62384    structure
62385 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS
62386 DT Article
62387 ID SUPERLUMINAL GROUP VELOCITIES; DELAY TIMES; QUANTUM; TRAVERSAL;
62388    MECHANICS; MEDIA
62389 AB A new definition for tunneling time of photons in a
62390    frustrated-total-internal-reflection structure is introduced under the
62391    assumption that the tunneling speed of photons is the energy-transfer
62392    speed of light in the tunneling region. This definition eliminates the
62393    problem of superluminality, and the suggested tunneling speed defines
62394    an orbit equation that gives a lateral shift of tunneling photons. (C)
62395    2001 Optical Society of America.
62396 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
62397    CCAST, World Lab, Beijing 100080, Peoples R China.
62398 RP Li, CF, Shanghai Univ, Dept Phys, 99 Shangda Rd,Baoshan, Shanghai
62399    200436, Peoples R China.
62400 CR 1994, PHYS REV A, V49, P3283
62401    BALCOU P, 1997, PHYS REV LETT, V78, P851
62402    BOHM D, 1951, QUANTUM THEORY, P240
62403    BOHM D, 1952, PHYS REV, V85, P166
62404    BOHM D, 1987, PHYS REP, V144, P321
62405    BUTTIKER M, 1982, PHYS REV LETT, V49, P1739
62406    CARNIGLIA CK, 1971, J OPT SOC AM, V61, P1035
62407    CARNIGLIA CK, 1971, J OPT SOC AM, V61, P1423
62408    CHIAO RY, 1997, PROG OPTICS, V37, P345
62409    CONDON EU, 1931, REV MOD PHYS, V3, P43
62410    DEUTCH JM, 1993, ANN PHYS-NEW YORK, V228, P184
62411    DIENER G, 1996, PHYS LETT A, V223, P327
62412    DIENER G, 1997, PHYS LETT A, V235, P118
62413    HARTMAN TE, 1962, J APPL PHYS, V33, P3427
62414    HASS K, 1994, PHYS LETT A, V185, P9
62415    HAUGE EH, 1989, REV MOD PHYS, V61, P917
62416    JAPHA Y, 1996, PHYS REV A, V53, P586
62417    LEAVENS CR, 1998, PHYS REV A, V58, P840
62418    LEE B, 1997, J OPT SOC AM B, V14, P777
62419    MACCOLL LA, 1932, PHYS REV, V40, P621
62420    MCKINNON WR, 1995, PHYS REV A, V51, P2748
62421    NIMTZ G, 1997, PROG QUANT ELECTRON, V21, P81
62422    SMITH FT, 1960, PHYS REV, V118, P349
62423    STEINBERG AM, 1994, PHYS REV A, V49, P3283
62424 NR 24
62425 TC 2
62426 SN 0740-3224
62427 J9 J OPT SOC AM B-OPT PHYSICS
62428 JI J. Opt. Soc. Am. B-Opt. Phys.
62429 PD AUG
62430 PY 2001
62431 VL 18
62432 IS 8
62433 BP 1174
62434 EP 1179
62435 PG 6
62436 SC Optics
62437 GA 459YZ
62438 UT ISI:000170280200018
62439 ER
62440 
62441 PT J
62442 AU Luo, X
62443    Roetzel, W
62444 TI The single-blow transient testing technique for plate-fin heat
62445    exchangers
62446 SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
62447 DT Article
62448 DE heat exchangers; measurement techniques; transient
62449 ID NUMERICAL INVERSION; LAPLACE TRANSFORMS; TEMPERATURE
62450 AB A new model of the single-blow problem is proposed, considering the
62451    lateral heat conduction resistance along the fins. the axial heat
62452    conduction along the separating plates and the axial thermal dispersion
62453    in the fluid. For plate-fin heat exchangers made up of stainless steel,
62454    the effect of the lateral heat conduction resistance along the fins can
62455    usually not be neglected. This effect is taken into account by solving
62456    the temperature dynamics in the fluid, separating plates and fins
62457    simultaneously. The axial dispersion model is used to take flow
62458    maldistribution in plate-fin heat exchangers into account. The effect
62459    of the axial heat conduction in separating plates is also considered.
62460    The governing equation system is solved by means of Laplace transform
62461    and numerical inverse transform algorithms. The investigation confirms:
62462    for plate-fin heat exchangers of aluminium the effect of the lateral
62463    heat conduction resistance of fins can usually be neglected because of
62464    their high fin efficiency. However, the assumption of uniform porous
62465    medium is not valid if the plate-fin heat exchangers are made up of
62466    stainless steel. In such a case the heat conduction resistance of fins
62467    has significant influence on the outlet fluid temperature variation.
62468    (C) 2001 Elsevier Science Ltd. All rights reserved.
62469 C1 Univ Fed Armed Forces, Inst Thermodynam, D-22039 Hamburg, Germany.
62470    Shanghai Univ Sci & Technol, Inst Thermal Engn & Air Conditioning, Shanghai 2000093, Peoples R China.
62471 RP Luo, X, Univ Fed Armed Forces, Inst Thermodynam, D-22039 Hamburg,
62472    Germany.
62473 CR 1979, HDB MATH, P537
62474    ANZELIUS A, 1926, Z ANGEW MATH MECH, V6, P291
62475    CAI ZH, 1984, INT J HEAT MASS TRAN, V27, P971
62476    CRESWICK FA, 1957, IND MATH, V8, P61
62477    CRUMP KS, 1976, J ASSOC COMPUT MACH, V23, P89
62478    DANCKWERTS PV, 1953, CHEM ENG SCI, V2, P1
62479    FURNAS CC, 1932, US BUREAU MINES B, V361
62480    HAUSEN H, 1929, Z ANGEW MATH MECH, V9, P173
62481    HEGGS PJ, 1988, EXP THERM FLUID SCI, V1, P243
62482    HOWARD CP, 1964, 64GTP11 ASME
62483    ICHIKAWA S, 1972, KYOTO U MEMORIES 1, V34, P53
62484    JACQUOT RG, 1983, IEEE CIRCUITS SYSTEM, V5, P4
62485    KAYS WM, 1984, COMPACT HEAT EXCHANG
62486    LIANG CY, 1975, J HEAT TRANSFER, V97, P16
62487    LUO X, 1987, HEAT TRANSFER SCI TE, P218
62488    LUO X, 1990, J SHANGHAI I MECH EN, V12, P40
62489    LUO X, 1998, FORTSCHRITT BERICHTE, V19
62490    LUO X, 1999, SCI COMPUTING CHEM E, V2, P167
62491    LUO X, 2000, HEAT TRANSFER SCI TE, P691
62492    LUO X, 2000, INT J HEAT MASS TRAN, V44, P121
62493    MULLISEN RS, 1986, J HEAT TRANS-T ASME, V108, P370
62494    NUSSELT W, 1927, Z VER DTSCH ING 1, V71, P85
62495    ROETZEL W, 1994, INT J HEAT MASS TRAN, V37, P325
62496    ROETZEL W, 1996, NEW DEV HEAT EXCHANG, P547
62497    ROETZEL W, 1998, REV GEN THERM, V37, P277
62498    ROETZEL W, 1999, DYNAMIC BEHAV HEAT E
62499    ROETZEL W, 2000, P 3 EUR THERM SCI C, P1149
62500    SCHUMANN TEW, 1929, J FRANKL INST, V208, P405
62501    STEHFEST H, 1970, COMMUN ACM, V13, P47
62502    ZHANG H, 1999, PROGR ENG HEAT TRANS, P607
62503    ZHOU CW, 1988, P NAT C HEAT MASS TR
62504    ZHOU K, 1998, P INT C HEAT EXCH SU, P645
62505 NR 32
62506 TC 3
62507 SN 0017-9310
62508 J9 INT J HEAT MASS TRANSFER
62509 JI Int. J. Heat Mass Transf.
62510 PD OCT
62511 PY 2001
62512 VL 44
62513 IS 19
62514 BP 3745
62515 EP 3753
62516 PG 9
62517 SC Engineering, Mechanical; Mechanics; Thermodynamics
62518 GA 460AG
62519 UT ISI:000170283200006
62520 ER
62521 
62522 PT J
62523 AU Yang, GH
62524 TI Inner structure of entropy of Reissner-Nordstrom black holes
62525 SO GENERAL RELATIVITY AND GRAVITATION
62526 DT Article
62527 DE Black holes; entropy
62528 ID SPACE-TIME DEFECTS; BONNET-CHERN DENSITY; GAUGE FIELD-THEORY;
62529    DISCLINATION CONTINUUM; TOPOLOGICAL-STRUCTURE; EARLY UNIVERSE; EXTREME
62530    STATE; BIFURCATION; ORIGIN; QUANTIZATION
62531 AB Using the relationship between the entropy and the Euler
62532    characteristic, and the usual decomposition of spin connection, an
62533    entropy density is introduced to describe the inner structure of the
62534    entropy of RN black holes. It is pointed out that the entropy of RN
62535    black holes is determined by the singularities of the timelike Killing
62536    vector field of RN spacetime, and that these singularities carry the
62537    topological numbers, Hopf indices and Brouwer degrees, naturally, which
62538    are topological invariants. Taking account of the physical meaning of
62539    entropy in statistics, the entropy and its density of RN black holes
62540    are modified and they are given by the Hopf indices merely.
62541 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
62542 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
62543 CR BARDEEN JM, 1973, COMMUN MATH PHYS, V31, P161
62544    BEKENSTEIN JD, 1973, PHYS REV D, V7, P2333
62545    CHERN SS, 1944, ANN MATH, V45, P747
62546    CHERN SS, 1945, ANN MATH, V46, P674
62547    CHERN SS, 1959, LECT NOTES
62548    CHRISTODOULOU D, 1971, PHYS REV D, V4, P3552
62549    DUAN YS, 1993, J MATH PHYS, V34, P1149
62550    DUAN YS, 1995, HELV PHYS ACTA, V68, P513
62551    DUAN YS, 1997, GEN RELAT GRAVIT, V29, P715
62552    DUAN YS, 1997, HELV PHYS ACTA, V70, P565
62553    GELFAND IM, 1958, GEN FUNCTION
62554    GHOSH A, 1997, PHYS REV LETT, V78, P1858
62555    GIBBONS GW, 1977, PHYS REV D, V15, P2752
62556    GIBBONS GW, 1995, PHYS REV D, V51, P2839
62557    HAWKING SW, 1975, COMMUN MATH PHYS, V43, P199
62558    HAWKING SW, 1995, PHYS REV D, V51, P4302
62559    HAWKING SW, 1996, CLASSICAL QUANT GRAV, V13, P1487
62560    LIBERATI S, 1997, PHYS REV D, V56, P6458
62561    MALDACENA JM, 1996, PHYS REV LETT, V77, P428
62562    TEITELBOIM C, 1995, PHYS REV D, V51, P4315
62563    WANG B, 1998, PHYS LETT B, V432, P69
62564    WANG B, 1998, PHYS REV D, V57, P5284
62565    YANG GH, 1998, INT J MOD PHYS B, V12, P2599
62566    YANG GH, 1998, INT J THEOR PHYS, V37, P2371
62567    YANG GH, 1998, INT J THEOR PHYS, V37, P2953
62568    YANG GH, 1998, MOD PHYS LETT A, V13, P2123
62569    YANG GH, 1998, MOD PHYS LETT A, V13, P745
62570    YANG GH, 1999, INT J ENG SCI, V37, P1037
62571    ZASLAVSKII OB, 1996, PHYS REV LETT, V76, P2211
62572    ZASLAVSKII OB, 1997, PHYS REV D, V56, P2188
62573 NR 30
62574 TC 2
62575 SN 0001-7701
62576 J9 GEN RELATIV GRAVIT
62577 JI Gen. Relativ. Gravit.
62578 PD JUN
62579 PY 2001
62580 VL 33
62581 IS 6
62582 BP 1027
62583 EP 1040
62584 PG 14
62585 SC Physics, Multidisciplinary
62586 GA 461UX
62587 UT ISI:000170382800005
62588 ER
62589 
62590 PT S
62591 AU Wang, XP
62592    Chen, XJ
62593    Zhu, LJ
62594    Wang, W
62595 TI Machine tool spindles and active magnetic bearings
62596 SO ADVANCES IN ABRASIVE PROCESSES
62597 SE KEY ENGINEERING MATERIALS
62598 DT Article
62599 DE AMB; machine tool spindle; industrial application
62600 AB Active magnetic bearing (AMB) is a suspension component that makes use
62601    of magnetic force to support the body (such as the rotor) without
62602    contact and it has many advantages such as high stability and no wear.
62603    There are many successful applications on machine tools around the
62604    world instead of the ball bearings or oil film bearings. The excellence
62605    of the AMB shows it is ones of the best units of suspension for the
62606    rotating shaft in the future. Here, the technique and some
62607    characteristics of the bearings applied in machine tool spindle are
62608    introduced briefly. The research and the application actuality of AMB
62609    in China are stated. Some experiment results of the AMB achieved by the
62610    Research Institute of Bearings (RIB), Shanghai University are
62611    presented. Maybe this would push the technique to be widely accepted.
62612    by industry in China.
62613 C1 Shanghai Univ, Res Inst Bearings, Shanghai 200072, Peoples R China.
62614    Shanghai Univ Engn Sci, Coll Elect & Elect Eng, Shanghai, Peoples R China.
62615 RP Wang, XP, Shanghai Univ, Res Inst Bearings, Shanghai 200072, Peoples R
62616    China.
62617 CR BRUNET M, 1994, P 4 INT S MAGN BEAR, P519
62618    HARADA S, 1992, P 3 INT S MAGN BEAR, P421
62619    LIU YS, 2000, CHINESE J MECH ENG, V36, P5
62620    MEKHICHE M, 2000, P 7 INT S MAGN BEAR, P123
62621    SIEGWART R, 1990, P 2 INT S MAGN BEAR, P197
62622    WANG XP, 1994, THESIS XIAN JIAOTONG
62623    WANG XP, 2000, P 7 INT S MAGN BEAR, P39
62624 NR 7
62625 TC 0
62626 SN 1013-9826
62627 J9 KEY ENG MAT
62628 PY 2001
62629 VL 202-2
62630 BP 465
62631 EP 468
62632 PG 4
62633 GA BS53W
62634 UT ISI:000170264200091
62635 ER
62636 
62637 PT J
62638 AU Li, GH
62639    Zhou, SP
62640    Xu, DM
62641 TI Research on the dynamical behaviors of GaAs/AlGaAs heterostructures
62642 SO ACTA PHYSICA SINICA
62643 DT Article
62644 DE negative differential conductivity; heterostructure; bifurcation; chaos
62645 ID CURRENT-DENSITY FILAMENTS; DRIVEN GUNN-DIODES; SEMICONDUCTOR-DEVICE;
62646    QUASI-PERIODICITY; CHAOTIC MOTIONS; MODE-LOCKING; OSCILLATOR
62647 AB We develop the physical model based on the real space charge transfer
62648    mechanism and derive the dynamic equations of GaAs/AlGaAs
62649    heterostructures. Complex bifurcations are studied in detail for the
62650    forced and unforced cases. It is shown that both periodic attractors
62651    and fixed points attractors can coexist under a right de bias. The
62652    hysteresis phenomena are also investigated in theory. For the forced
62653    GaAs/AlGaAs, numerical simulation shows that the occurance of
62654    frequency-locking, quasiperiodicity, and chaos depends on the frequency
62655    and amplitude of the externally applied microwave field, as expected.
62656 C1 Shanghai Univ, Coll Commun & Informat Engn, Shanghai 200072, Peoples R China.
62657    Shanghai Univ, Coll Sci, Shanghai 201800, Peoples R China.
62658 RP Li, GH, Shanghai Univ, Coll Commun & Informat Engn, Shanghai 200072,
62659    Peoples R China.
62660 CR AOKI K, 1982, J PHYS SOC JPN, V51, P2373
62661    AOKI K, 1989, SOLID STATE ELECTRON, V32, P1149
62662    GLAZIER JA, 1988, IEEE T CIRCUITS SYST, V35, P790
62663    HEINZ G, 1993, PHYS REV B, V48, P12603
62664    HELD GA, 1986, PHYS REV LETT, V56, P1183
62665    JIANG ZF, 1991, APPL PHYS A-SOLID, V52, P10
62666    LU YL, 2000, ACTA PHYS SIN-CH ED, V49, P1394
62667    MOSEKILDE E, 1990, PHYS REV B, V41, P2298
62668    MOSEKILDE E, 1993, PHYSICA D, V66, P143
62669    NIEDERNOSTHEIDE FJ, 1996, PHYS REV B, V54, P14012
62670    NIEDERNOSTHEIDE FJ, 1999, PHYS REV B, V59, P7663
62671    SCHOLL E, 1991, APPL PHYS LETT, V58, P1277
62672 NR 12
62673 TC 0
62674 SN 1000-3290
62675 J9 ACTA PHYS SIN-CHINESE ED
62676 JI Acta Phys. Sin.
62677 PD AUG
62678 PY 2001
62679 VL 50
62680 IS 8
62681 BP 1567
62682 EP 1573
62683 PG 7
62684 SC Physics, Multidisciplinary
62685 GA 460XD
62686 UT ISI:000170333200031
62687 ER
62688 
62689 PT J
62690 AU Sheng, PX
62691 TI Chaotic phenomena of superconductivity
62692 SO ACTA PHYSICA SINICA
62693 DT Article
62694 DE superconductors; G-L equations; infinite-dimensional dynamic system;
62695    chaotic phenomena
62696 ID GINZBURG-LANDAU EQUATIONS
62697 AB One-dimensional steady state and evolutionary Ginzburg-Landau equations
62698    for superconductivity is disussed. Instability of constant steady state
62699    solutions and the existence of limit sets of infinite-dimensional
62700    dynamic system are proved. Using the author's definition of chaos for
62701    finite-and infinite-dimensional dynamic systems, we conclude that
62702    superconductors governed by GL equations possess chaotic phenomena.
62703    Therefore strange phenomena may occur in conducting. The theoretical
62704    results indicate that it is advisable to improve the design of
62705    experiments or try to find new structures of superconductors in future
62706    research to suppress the chaotic behavior.
62707 C1 Shanghai Univ, Coll Nat Sci, Dept Math, Shanghai 200436, Peoples R China.
62708 RP Sheng, PX, Shanghai Univ, Coll Nat Sci, Dept Math, Shanghai 200436,
62709    Peoples R China.
62710 CR AFTALION A, 1999, PHYSICA D, V132, P214
62711    AFTALION A, 2000, SIAM J APPL MATH, V60, P1157
62712    GINZBURG VL, 1950, ZH EKSP TEOR FIZ, V20, P1064
62713    GUO BL, 1995, NONLINEAR EVOLUTIONA
62714    HASTINGS SP, 1999, SIAM J MATH ANAL, V30, P1
62715    LIU YP, 2000, PHYSICS, V29, P444
62716    SHA CW, 2000, COMMUN HIGH TECHNOLO, V10, P91
62717    SHENG PX, 1994, COMMUN APPL COMPUT M, V8, P34
62718    SHENG PX, 1997, J SHANGHAI U, V1, P91
62719    SHENG PX, 1997, P MOD MATH MECH, V7, P408
62720    SHENG PX, 2000, J SHANGQIU TEACHERS, V16, P96
62721    SHENG PX, 2000, P MOD MATH MECH, V8, P115
62722    WEN HM, 2000, COMMUN HIGH TECHNOLO, V10, P105
62723    YU WH, 2000, ANN MATH, V21, P1
62724 NR 14
62725 TC 0
62726 SN 1000-3290
62727 J9 ACTA PHYS SIN-CHINESE ED
62728 JI Acta Phys. Sin.
62729 PD AUG
62730 PY 2001
62731 VL 50
62732 IS 8
62733 BP 1596
62734 EP 1599
62735 PG 4
62736 SC Physics, Multidisciplinary
62737 GA 460XD
62738 UT ISI:000170333200036
62739 ER
62740 
62741 PT J
62742 AU Liu, WQ
62743    Zhou, BX
62744    Li, Q
62745 TI Corrosion resistance of Zr-1Nb alloy in lithium hydroxide aqueous
62746    solution
62747 SO RARE METALS
62748 DT Article
62749 DE Zr-1Nb alloys; beta-niobium; corrosion resistance
62750 ID OXIDATION; ZR; NB
62751 AB The corrosion resistance of Zr-1Nb alloy was compared with that of
62752    Zr-Sn-Nb-Fe and Zr-4 alloys, and the effect of hydrochemistry on the
62753    corrosion resistance of Zr-1Nb alloy was discussed. Experimental
62754    results show that niobium oxide is partly soluble in LiOH aqueous
62755    solution. Therefore, when Zr-1Nb alloy is corroded in LiOH aqueous
62756    solution, a soluble niobate produced by the reaction between the
62757    corrosion products of beta -Nb particles and LiOH results in the
62758    formation of pores in the zirconium oxide films and causes the
62759    degradation of the corrosion resistance of Zr-1Nb alloy tested in LiOH
62760    aqueous solution.
62761 C1 Shanghai Univ, Mat Inst, Shanghai 200072, Peoples R China.
62762 RP Liu, WQ, Shanghai Univ, Mat Inst, Shanghai 200072, Peoples R China.
62763 CR ANADA H, 1996, ASTM STP, V1295, P35
62764    COMSTOCK RJ, 1996, ASTM STP, V1295, P710
62765    COX B, 1996, ASTM STP, V1295, P114
62766    LIN YP, 2000, J NUCL MATER, V277, P11
62767    LUO Y, 1998, INORGANIC CHEM SERIE, V8, P354
62768    NIKULINA AV, 1996, ASTM STP, V1295, P785
62769    PECHEUR D, 2000, J NUCL MATER, V278, P195
62770    PERKINS RA, 1991, ASTM STP, V1132, P595
62771    RAMASUBRAMANIAN N, 1994, AM SOC TEST MATER, V1245, P378
62772    SHEBALDOV PV, 2000, AM SOC TEST MATER, V1354, P545
62773 NR 10
62774 TC 0
62775 SN 1001-0521
62776 J9 RARE METALS
62777 JI Rare Metals
62778 PD JUN
62779 PY 2001
62780 VL 20
62781 IS 2
62782 BP 78
62783 EP 80
62784 PG 3
62785 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
62786    Engineering
62787 GA 458MJ
62788 UT ISI:000170197900003
62789 ER
62790 
62791 PT J
62792 AU Zhang, QY
62793    Wu, GM
62794    Zhou, B
62795    Shen, J
62796    Wang, J
62797    Wu, ZG
62798    Ji, XH
62799 TI Electrochromic properties of sol-gel deposited V2O5 and TiO2-V2O5
62800    binary thin films
62801 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
62802 DT Article
62803 ID VANADIUM-OXIDE
62804 AB Transparent mixed phase (1 - x)V2O5 -xTiO(2) (x=0,0.1,0.2,0.3,0.4) thin
62805    films were prepared on indium tin oxide (ITO) coated glass via sol-gel
62806    process. The films were characterized by cyclic voltammetry, optical
62807    spectroscopy, scanning electron microscopy, IR and X-ray
62808    diffractometer. Electrochemical lithium insertion/extraction showed
62809    that the porous structure of sol-gel (1 - x)V2O5-xTiO(2) thin films
62810    exhibited good recharge ability of Li+/e(-) insertion/extraction
62811    process. For a 220 nm thick (1 - x)V2O5-xTiO(2) film with 90% V2O5, the
62812    capacity of charge exchange reached 9 mC/cm(2). In both Li+
62813    intercalated and free states, the films were highly transparent to
62814    visible light. Such films have potential applications in counter
62815    electrodes for electrochromic smart windows and other electrochemical
62816    devices.
62817 C1 Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800, Peoples R China.
62818 RP Zhang, QY, Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800,
62819    Peoples R China.
62820 CR CHAIN EE, 1987, J VAC SCI TECHNOL A, V5, P1836
62821    COGAN SF, 1989, J APPL PHYS, V66, P1333
62822    GOLDNER RB, 1988, SOLID STATE IONICS, V28, P1715
62823    JULIEN C, 1999, MAT SCI ENG B-SOLID, V65, P170
62824    KOBAYASHI S, 1987, JPN J APPL PHYS, V26, L1274
62825    OREL ZC, 1999, SOLID STATE IONICS, V116, P105
62826    OZER N, 1999, THIN SOLID FILMS, V338, P201
62827    RAUH RD, 1988, SOLID STATE IONICS, V28, P1707
62828    SHIMIZU Y, 1990, JPN J APPL PHYS, V29, L1708
62829    SURCA A, 1999, J ELECTROCHEM SOC, V146, P232
62830    SZORENYI T, 1980, J NONCRYST SOLIDS, V35, P1245
62831    WRUCK D, 1989, THIN SOLID FILMS, V182, P79
62832 NR 12
62833 TC 1
62834 SN 1005-0302
62835 J9 J MATER SCI TECHNOL
62836 JI J. Mater. Sci. Technol.
62837 PD JUL
62838 PY 2001
62839 VL 17
62840 IS 4
62841 BP 417
62842 EP 420
62843 PG 4
62844 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
62845    Engineering
62846 GA 458JJ
62847 UT ISI:000170191000006
62848 ER
62849 
62850 PT J
62851 AU Wang, XG
62852    Ding, WZ
62853    Jiang, GC
62854    Xu, KD
62855 TI Experimental research on oxidation refining of ferrosilicon
62856 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
62857 DT Article
62858 DE FeSi75; oxidation refining; thermodynamics; equilibrium
62859 AB The equilibrium between ferrosilicon and SiO2-Al2O3-CaO ternary slag
62860    have been experimentally investigated using graphite crucible at 1 550
62861    degreesC. The Al and Ca contents in ferrosilicon were given in terms of
62862    isoconcentration curves in equilibrium with the ternary slag of
62863    SiO2-Al2O3-CaO. The present experimental work provides available data
62864    to analyze the behavior of Al and Ca during oxidation refining process
62865    for silicon alloy.
62866 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
62867 RP Wang, XG, Shanghai Univ, Shanghai 200072, Peoples R China.
62868 CR DING W, 1996, FERROALLOYS, P1
62869    HOLTA H, 1995, INFACON, V7, P164
62870    KAY DAR, 1960, T FARADAY SOC, V56, P1372
62871    OHTA H, 1996, METALL MATER TRANS B, V27, P943
62872    REIN RH, 1965, T METALL SOC AIME, V233, P415
62873    ROINE A, 1992, HSC CHEM
62874    SCHEI A, 1998, PRODUCTION HIGH SILI
62875    TUSET J, 1985, PRINCIPLES SILICON R
62876    ZHOU JH, 1991, PRODUCTION TECHNOLOG
62877 NR 9
62878 TC 3
62879 SN 1006-706X
62880 J9 J IRON STEEL RES INT
62881 JI J. Iron Steel Res. Int.
62882 PD MAY
62883 PY 2001
62884 VL 8
62885 IS 1
62886 BP 6
62887 EP 10
62888 PG 5
62889 SC Metallurgy & Metallurgical Engineering
62890 GA 459PK
62891 UT ISI:000170259700002
62892 ER
62893 
62894 PT J
62895 AU He, JH
62896 TI Hamilton principle and generalized variational principles of linear
62897    thermopiezoelectricity
62898 SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME
62899 DT Article
62900 AB Via the semi-inverse method. a family of various variational principles
62901    is established for thermopiezoelectricity, including a Hamilton
62902    principle and a minimum complementary energy principle.
62903 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
62904 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
62905    Peoples R China.
62906 CR CHANDRASEKHARAI.DS, 1988, ACTA MECH, V71, P39
62907    HE JH, 1999, J U SHANGHAI SCI TEC, V21, P356
62908    HE JH, 2000, ASME, V67, P326
62909    HE JH, 2000, INT J NONLINEAR SCI, V1, P133
62910    LIU GL, 1999, ACTA MECH SINICA, V31, P165
62911 NR 5
62912 TC 14
62913 SN 0021-8936
62914 J9 J APPL MECH
62915 JI J. Appl. Mech.-Trans. ASME
62916 PD JUL
62917 PY 2001
62918 VL 68
62919 IS 4
62920 BP 666
62921 EP 667
62922 PG 2
62923 SC Mechanics
62924 GA 459NV
62925 UT ISI:000170257900022
62926 ER
62927 
62928 PT J
62929 AU Liu, ZH
62930    Wang, L
62931    Pan, LZ
62932 TI Stability of beams on bi-moduli elastic foundation
62933 SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME
62934 DT Article
62935 AB This paper adopts the newly structured delta function and displacement
62936    function. Using two adjacent transition points as two interval
62937    terminals while beams buckle makes the interval [x(i-1),x(i)].
62938    According to the Winkler's beam buckling theory on elastic foundation,
62939    we present the energy solutions of beams and then the exact solutions
62940    of buckling load of simple supported beams on bi-moduli elastic
62941    foundation.
62942 C1 Shandong Univ, Dept Civil Engn, Jinan 250061, Peoples R China.
62943    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200000, Peoples R China.
62944 RP Liu, ZH, Shandong Univ, Dept Civil Engn, Jinan 250061, Peoples R China.
62945 CR ADIN MA, 1985, COMPUT METHOD APPL M, V49, P319
62946    SELVADURAI APS, 1979, ELASTIC ANAL SOIL FD
62947    TSAI N, 1967, J ENG MECH DIV P ASC, V93, P1
62948 NR 3
62949 TC 0
62950 SN 0021-8936
62951 J9 J APPL MECH
62952 JI J. Appl. Mech.-Trans. ASME
62953 PD JUL
62954 PY 2001
62955 VL 68
62956 IS 4
62957 BP 668
62958 EP 670
62959 PG 3
62960 SC Mechanics
62961 GA 459NV
62962 UT ISI:000170257900023
62963 ER
62964 
62965 PT J
62966 AU Wang, S
62967    Ren, Z
62968    Cao, W
62969    Tong, W
62970 TI The Knoevenagel condensation of aromatic aldehydes with malononitrile
62971    or ethyl cyanoacetate in the presence of CTMAB in water
62972 SO SYNTHETIC COMMUNICATIONS
62973 DT Article
62974 ID DIELS-ALDER REACTIONS; CHEMISTRY
62975 AB A new route of Knoevenagel condensation of aldehydes with malononitrile
62976    or ethyl cyanoacetate in the presence of CTMAB in water is described.
62977    CTMAB is the most effective catalyst to increase yield among CTMAB,
62978    BTEAC and TBAI.
62979 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
62980 RP Ren, Z, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
62981 CR ANDRE L, 1992, TETRAHEDRON LETT, V33, P8071
62982    BRANDES E, 1989, J ORG CHEM, V54, P515
62983    BRESLOW R, 1983, TETRAHEDRON LETT, V24, P1901
62984    CABELLO JA, 1984, J ORG CHEM, V49, P5195
62985    CORSON BB, 1928, J AM CHEM SOC 3, V50, P2825
62986    DAI GY, 1995, YING YONG HUA XUE, V12, P103
62987    GRIECO PA, 1983, J ORG CHEM, V48, P3137
62988    GRIECO PA, 1989, J ORG CHEM, V54, P5849
62989    HEINOSUKE Y, 1966, B CHEM SOC JPN, V39, P1754
62990    HIDEKI Y, 1999, TETRAHEDRON LETT, V40, P519
62991    KEI M, 1999, TETRAHEDRON LETT, V40, P3773
62992    LI CJ, 1993, CHEM REV, V93, P2023
62993    QI Z, 1991, YING YONG HUA XUE, V8, P17
62994    RIDEOUT DC, 1980, J AM CHEM SOC, V102, P7816
62995    STURZ HG, 1949, J AM CHEM SOC, V71, P2949
62996    TROST BM, 1991, COMPREHENSIVE ORGANI, V2, P341
62997 NR 16
62998 TC 13
62999 SN 0039-7911
63000 J9 SYN COMMUN
63001 JI Synth. Commun.
63002 PY 2001
63003 VL 31
63004 IS 5
63005 BP 673
63006 EP 677
63007 PG 5
63008 SC Chemistry, Organic
63009 GA 455TY
63010 UT ISI:000170044900006
63011 ER
63012 
63013 PT J
63014 AU Ni, GJ
63015    Yang, GH
63016    Fu, RT
63017    Wang, HB
63018 TI Running coupling constants of fermions with masses in quantum
63019    electrodynamics and quantum chromodynamics
63020 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
63021 DT Article
63022 ID DIFFERENTIAL RENORMALIZATION; FIELD-THEORIES; GAUGE-THEORY;
63023    HIGGS-BOSON; REGULARIZATION; BOUNDS
63024 AB Based on a simple but effective regularization-renormalisation method
63025    (RRM), the running coupling constants (RCC) of fermions with masses in
63026    quantum electrodynamics (QED) and quantum chromodynamics (QCD) are
63027    calculated by renormalization group equation (RGE). Starting at Q = 0
63028    (Q being the momentum transfer), the RCC in QED increases with the
63029    increase of Q whereas the RCCs for different flavors of quarks with
63030    masses in QCD are different and they increase with the decrease of Q to
63031    reach a maximum at low Q for each flavor of quark and then decreases to
63032    zero at Q --> O. Thus a constraint on the mass of light quarks, the
63033    hadronization energy scale of quark-antiquark pairs are derived.
63034 C1 Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
63035    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
63036    Univ Michigan, Randall Lab, Ann Arbor, MI 48109 USA.
63037 RP Ni, GJ, Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
63038 CR AITCHISON I, 1982, GAUGE THEORIES PARTI, P284
63039    BJORKEN JD, 1964, RELATIVISTIC QUANTUM
63040    BURKHARDT H, 1995, PHYS LETT B, V356, P398
63041    COLLINS J, 1984, RENORMALIZATION
63042    DUNNE G, 1992, PHYS LETT B, V293, P367
63043    DUTCH M, 1991, PHYS LETT B, V258, P457
63044    DVOEGLAZOV V, 1999, PHOTO OLD PROBLEMS L, P248
63045    EPSTEIN H, 1973, ANN I H POINCARE-AN, V19, P211
63046    FENG SS, 1999, INT J MOD PHYS A, V14, P4259
63047    FIELD RD, 1989, APPL PERTURBATIVE QC
63048    FREEDMAN DZ, 1992, NUCL PHYS B, V371, P353
63049    GAO DN, 1997, PHYS REV D, V56, P4115
63050    GIRONE M, 1996, PHYS REV LETT, V76, P3061
63051    GLIMM J, 1985, COLLECTED PAPERS, V2
63052    GROOM DE, 1996, PHYS REV D, V54, P37
63053    GROOM DE, 1996, PHYS REV D, V54, P44
63054    GROOM DE, 1996, PHYS REV D, V54, P547
63055    GROOM DE, 2000, EUR PHYS J C, V15, P40
63056    GROOM DE, 2000, EUR PHYS J C, V15, P49
63057    GROOM DE, 2000, EUR PHYS J C, V15, P672
63058    GROSS DJ, 1974, PHYS REV D, V10, P3235
63059    HAAGENSEN PE, 1992, PHYS LETT B, V283, P293
63060    ITZYKSON C, 1980, QUANTUM FIELD THEORY
63061    LEE TD, 1981, PARTICLE PHYSICS INT
63062    LOU SY, 1989, PHYS REV D, V40, P3040
63063    NI GJ, HEPTH9708155
63064    NI GJ, 1988, PHYS LETT B, V200, P161
63065    NI GJ, 1998, ACTA PHYS SIN-OV ED, V7, P401
63066    NI GJ, 1998, FRONTIERS QUANTUM FI, P169
63067    NI GJ, 1998, J FUDAN U NATURAL SC, V37, P304
63068    NI GJ, 1998, PHYSICS PARITY SYMME, P436
63069    NI GJ, 1998, SEICNE, V50, P36
63070    NI GJ, 2000, ADV QUANTUM MECH, V24, P400
63071    PESKIN ME, 1995, INTRO QUANTUM FIELD
63072    RAMOND P, 1981, FIELD THEORY MODERN
63073    SAKURAI JJ, 1967, ADV QUANTUM MECH
63074    SCHARF G, 1989, FINITE ELECTRODYNAMI
63075    SCHMELLING M, HEPEX9701002
63076    SMIRNOV VA, 1994, NUCL PHYS B, V427, P325
63077    WEINBERG S, 1955, QUANTUM THEORY FIELD, V1
63078    WEINBERG S, 1955, QUANTUM THEORY FIELD, V2
63079    YANG JF, 1994, THESIS FUDAN U
63080    YANG JF, 1995, ACTA PHYS SIN-OV ED, V4, P88
63081    YANG JF, 1997, HEPTH9708104
63082 NR 44
63083 TC 0
63084 SN 0217-751X
63085 J9 INT J MOD PHYS A
63086 JI Int. J. Mod. Phys. A
63087 PD JUN 30
63088 PY 2001
63089 VL 16
63090 IS 16
63091 BP 2873
63092 EP 2894
63093 PG 22
63094 SC Physics, Nuclear; Physics, Particles & Fields
63095 GA 455YL
63096 UT ISI:000170055300007
63097 ER
63098 
63099 PT J
63100 AU Ma, HL
63101    Li, MS
63102    Yang, FJ
63103 TI Changes of the nuclear charge distribution of Nd from optical isotope
63104    shifts
63105 SO CHINESE PHYSICS LETTERS
63106 DT Article
63107 ID HYPERFINE-STRUCTURE MEASUREMENTS; RADII; SPECTROSCOPY
63108 AB The isotope shifts and hyperfine structures of seven optical
63109    transitions for all seven stable isotopes of Nd II were measured by
63110    using collinear fast-ion-beam laser spectroscopy. The nuclear parameter
63111    lambda was obtained from the measured optical isotope shifts for all
63112    seven stable isotopes with improved accuracy. The lambda values were
63113    analysed by using the Fermi distribution for the nuclear charge
63114    density. The values of delta <r(2)>, delta <r(4)> and delta <r(6)> were
63115    determined.
63116 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
63117    Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China.
63118    Fudan Univ, Inst Modern Phys, Shanghai 200433, Peoples R China.
63119 RP Ma, HL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
63120 CR AHMAD SA, 1988, NUCL PHYS A, V483, P244
63121    AUFMUTH P, 1987, ATOM DATA NUCL DATA, V37, P455
63122    AUFMUTH P, 1992, Z PHYS D ATOM MOL CL, V23, P19
63123    BLUNDELL SA, 1985, Z PHYS A ATOMS NUCL, V321, P31
63124    CHEN MH, 1999, J PHYS SOC JPN, V68, P2934
63125    GERSTENKON S, 1978, ATLAS SPECTRA ABSORP
63126    HELIG K, 1974, ATOM DATA NUCL DATA, V14, P613
63127    KING WH, 1984, ISOTOPE SHIFTS ATOMI, CH6
63128    KOPFERMANN H, 1958, NUCL MOMENTS PURE AP
63129    LEE PL, 1973, PHYS REV C, V8, P819
63130    LI MS, 2000, PHYS SCRIPTA, V61, P449
63131    MA HL, 1998, CHINESE PHYS LETT, V15, P178
63132    RAMAN S, 1987, ATOM DATA NUCL DATA, V36, P1
63133    SELTZER EC, 1969, PHYS REV, V188, P1916
63134 NR 14
63135 TC 2
63136 SN 0256-307X
63137 J9 CHIN PHYS LETT
63138 JI Chin. Phys. Lett.
63139 PD JUL
63140 PY 2001
63141 VL 18
63142 IS 7
63143 BP 903
63144 EP 905
63145 PG 3
63146 SC Physics, Multidisciplinary
63147 GA 455YW
63148 UT ISI:000170056200019
63149 ER
63150 
63151 PT J
63152 AU Wei, EB
63153    Gu, GQ
63154 TI An effective medium approximation of nonlinear composites with
63155    spherical particle
63156 SO CHINESE PHYSICS LETTERS
63157 DT Article
63158 ID EFFECTIVE CONDUCTIVITY; FIELD
63159 AB We have proposed a nonlinear effective medium approximation (EMA)
63160    method to estimate the bulk effective conductivities of weakly
63161    nonlinear composite media, which obey a current-field relation of the
63162    form J = sigmaE + x \E\(2) E. As an example in three dimensions, we
63163    apply the EMA method to deal with a spherical inclusion in a host and
63164    derive the approximate analytic formulae of nonlinear effective
63165    response, which are suitable for the larger volume fraction of
63166    spherical inclusion. From our results, we can exactly obtain the
63167    generalized Landau formulae in the dilute limit.
63168 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
63169 RP Wei, EB, Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093,
63170    Peoples R China.
63171 CR BLUMENFELD R, 1991, PHYS REV B, V44, P7378
63172    BRUGGEMAN DAG, 1935, ANN PHYS-BERLIN, V24, P636
63173    DANIEL J, 1998, MAT RES SOC B    AUG, P30
63174    GARNETT JCM, 1906, PHILOS T R SOC LOND, V205, P237
63175    GU GQ, 1992, PHYS REV B, V46, P4502
63176    GU GQ, 1995, J APPL PHYS, V78, P1737
63177    GU GQ, 2000, J U SHANGHAI SCI TEC, V22, P95
63178    LEE HC, 1995, J PHYS-CONDENS MAT, V7, P8785
63179    STROUD D, 1988, PHYS REV B, V37, P8719
63180    YU KW, 1993, PHYS REV B, V47, P1782
63181    YU KW, 1996, PHYS LETT A, V210, P115
63182    ZENG XC, 1988, PHYS REV B, V38, P10970
63183    ZENG XC, 1989, PHYSICA A, V157, P192
63184 NR 13
63185 TC 3
63186 SN 0256-307X
63187 J9 CHIN PHYS LETT
63188 JI Chin. Phys. Lett.
63189 PD JUL
63190 PY 2001
63191 VL 18
63192 IS 7
63193 BP 960
63194 EP 962
63195 PG 3
63196 SC Physics, Multidisciplinary
63197 GA 455YW
63198 UT ISI:000170056200039
63199 ER
63200 
63201 PT J
63202 AU You, JL
63203    Jiang, GC
63204    Yang, SH
63205    Ma, JC
63206    Xu, KD
63207 TI Temperature dependence of the Raman spectra and phase transition of
63208    zirconia
63209 SO CHINESE PHYSICS LETTERS
63210 DT Article
63211 AB A newly constructed high-temperature Raman spectrometer was used to
63212    study the temperature-dependence Raman spectra (up to 2023 K) and
63213    transformation of zirconia crystal. High-temperature Raman scattering
63214    is a useful tool in characterizing the different structures of zirconia
63215    and offers the possibility of identifying the phase transformation. It
63216    shows that monoclinic zirconia transforms to tetragonal phase at about
63217    1440 K during the process of increasing temperature, but shows a lower
63218    transformation temperature from tetragonal to monoclinic phase at about
63219    1323 K while the temperature decreases.
63220 C1 Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai 200072, Peoples R China.
63221 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai
63222    200072, Peoples R China.
63223 CR CLARKE DR, 1982, J AM CERAM SOC, V65, P284
63224    GARVIE RC, 1988, PHYSICA B, V150, P203
63225    GU JQ, 1995, SPECTROSCOPY SPECTRA, V15, P45
63226    ISHIGAME M, 1977, J AM CERAM SOC, V60, P367
63227    KOUROUKLIS GA, 1991, J AM CERAM SOC, V74, P520
63228    KULCINSKI GL, 1968, J AM CERAM SOC, V51, P582
63229    MYSEN BO, 1982, AM MINERAL, V67, P686
63230    PERRY CH, 1985, J AM CERAM SOC, V68, P184
63231    TEUFER G, 1962, ACTA CRYSTALLOGR, V15, P1187
63232    YASHIMA M, 1997, APPL SPECTROSC, V51, P1224
63233    YOU JL, 1998, J CHINESE RARE EARTH, V16, P505
63234    YOU JL, 2001, CHINESE PHYS LETT, V18, P408
63235 NR 12
63236 TC 7
63237 SN 0256-307X
63238 J9 CHIN PHYS LETT
63239 JI Chin. Phys. Lett.
63240 PD JUL
63241 PY 2001
63242 VL 18
63243 IS 7
63244 BP 991
63245 EP 993
63246 PG 3
63247 SC Physics, Multidisciplinary
63248 GA 455YW
63249 UT ISI:000170056200049
63250 ER
63251 
63252 PT J
63253 AU Cao, WG
63254    Ding, WY
63255    Wang, LY
63256    Song, LP
63257    Zhang, QY
63258 TI Convenient synthesis of 4-perfluoroalkyl-6-(2-naphthyl)-2-pyranones
63259 SO JOURNAL OF FLUORINE CHEMISTRY
63260 DT Article
63261 DE phosphoranes; fluorinated ylides;
63262    4-perfluoroalkyl-6-(2-naphthoyl)-6-pyranones
63263 ID METHYL
63264 AB In the presence of K2CO3, reaction of
63265    (2-naphthoyl)methyltriphenylphosphonium bromide (1) with methyl
63266    2-perfluoroalkynoates (2) in CH2Cl2 at room temperature gave methyl
63267    4-(2-
63268    naphthoyl)-2-triphenylphosphoranylidene-3-perfluoroalkyl-3-butenoates
63269    (3) as major products and methyl
63270    4-(2-naphthoyl)-4-triphenylphosphoranylidene-3-perfluoroalkyl-2-butenoat
63271    es r4) as minor products in excellent yields.
63272    4-Perfluoroalkyl-6-(2-naphthyl)-2-pyranones (5) were obtained in high
63273    yield by hydrolysis of the methylene phosphoranes (3) in hot aqueous
63274    methanol in a sealed tube. The structures of compounds 3, 4, and 5 were
63275    confirmed by IR, MS, H-1, F-19 and C-13 NMR, and microanalyses.
63276    Reaction mechanisms are proposed to account for the formation of
63277    products 3, 4, and 5. (C) 2001 Elsevier Science B.V. All rights
63278    reserved.
63279 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
63280 RP Cao, WG, Shanghai Univ, Dept Chem, 99 Shang Da Rd, Shanghai 200436,
63281    Peoples R China.
63282 CR BANKS RE, 1979, ORGANOFLUORINE CHEM
63283    CAO WG, 1998, J FLUORINE CHEM, V91, P99
63284    CAO WG, 1999, ACTA CHIM SINICA, V57, P1270
63285    CAO WG, 1999, J FLUORINE CHEM, V95, P135
63286    DING WY, 1986, ACTA CHIM SINICA, V44, P255
63287    HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47
63288    MANN J, 1987, CHEM SOC REV, V16, P381
63289    TAO WT, 1983, CHINESE J ORG CHEM, V3, P129
63290    WELCH JT, 1987, TETRAHEDRON, V43, P3123
63291 NR 9
63292 TC 2
63293 SN 0022-1139
63294 J9 J FLUORINE CHEM
63295 JI J. Fluor. Chem.
63296 PD JUL
63297 PY 2001
63298 VL 109
63299 IS 2
63300 BP 201
63301 EP 204
63302 PG 4
63303 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
63304 GA 454CD
63305 UT ISI:000169954100015
63306 ER
63307 
63308 PT J
63309 AU Wei, JH
63310    Xiang, SH
63311    Fan, YY
63312    Yu, NW
63313    Ma, JC
63314    Yang, SL
63315 TI Basic equations and calculation procedure for analysis of gas flow
63316    properties in tuyere under the influence of heat source
63317 SO STEEL RESEARCH
63318 DT Article
63319 ID DESIGN; LANCES
63320 AB Based on fundamentals of the dynamics and thermodynamics of
63321    compressible fluid flow as well as heat transfer, the basic equations
63322    and formulae for characterizing and calculating the gas flow properties
63323    in tubular and annular type tuyeres (constant cross-sectional area
63324    lances) under the influence of a heat source are derived. The
63325    calculation procedures of the properties at different discharge states
63326    through a tuyere are given. For the case of an annular-tube type tuyere
63327    used for an AOD (argon-oxygen decarburization) vessel of 18 t capacity,
63328    the distributions of the inner wall temperatures of the tuyere and the
63329    gas stagnation temperatures along its length have been more reasonably
63330    determined. The friction coefficients of its main tuyere and subtuyere
63331    to the gas flows during injection refining have been fixed by
63332    comparison of the pressure-flowrate (P-Q) experimentally measured in
63333    relationship to the results of trial calculations.
63334 C1 Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
63335 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
63336 CR BENNETT O, 1974, MOMENTUM HEAT MASS T
63337    BIRD RB, 1960, TRANSPORT PHENOMENA
63338    CARLSSON G, 1986, SCAND J METALL, V15, P298
63339    DEISSLER RG, 1950, 2138 NACA
63340    FARMER D, 1989, STEELM C P ISS US, V72, P487
63341    GEIGER GH, 1973, TRANSPORT PHENOMENA
63342    HODGE AL, 1977, IRONMAK STEELMAK, V4, P81
63343    ISHIDA J, 1978, P 3 INT IR STEEL C C, P150
63344    KAYE J, 1951, GEN DISC HEAT TRANSM
63345    KORIA SC, 1989, IRONMAK STEELMAK, V16, P21
63346    KORIA SC, 1989, ISIJ INT, V29, P650
63347    LEACH JCC, 1978, IRONMAK STEELMAK, V5, P107
63348    MOODY LF, 1944, T AM SOC MECH ENG, V66, P671
63349    SHAPIRO AH, 1953, DYNAMICS THERMODYNAM, V1, P219
63350    SHAPIRO AH, 1953, DYNAMICS THERMODYNAM, V2, P1131
63351    SHARMA SK, 1986, STEELM C P ISS US, V69, P653
63352    YUN L, 1990, P 4 NAT S STEELM CS, P83
63353 NR 17
63354 TC 4
63355 SN 0177-4832
63356 J9 STEEL RES
63357 JI Steel Res.
63358 PD MAY-JUN
63359 PY 2001
63360 VL 72
63361 IS 5-6
63362 BP 161
63363 EP 167
63364 PG 7
63365 SC Metallurgy & Metallurgical Engineering
63366 GA 450VV
63367 UT ISI:000169766300001
63368 ER
63369 
63370 PT J
63371 AU Wei, JH
63372    Xiang, SH
63373    Fan, YY
63374    Yu, NW
63375    Ma, JC
63376    Yang, SL
63377 TI Calculation results and analysis of gas flow properties in tuyere under
63378    the influence of heat source
63379 SO STEEL RESEARCH
63380 DT Article
63381 AB The flow properties of the gases in an annular-tube type tuyere used
63382    for an 18 t AOD vessel were analyzed using the equations and
63383    calculation formulas presented in Part I of this work. The influence of
63384    the heating and friction effects, the gas supply pressure, and the gas
63385    type and composition, on the properties were examined. The results
63386    showed that the properties in a tuyere are significantly changed due to
63387    the presence of a heat source. This has a similar effectiveness as
63388    increasing the friction action and obviously reduces the gas flowrate
63389    at the tuyere outlet. When designing a tuyere used in a practical
63390    process of metallurgy and calculating the flow properties of gas in the
63391    tuyere, the heating effect from the high temperature melt and
63392    refractory lining should be taken into account. The gas supply pressure
63393    has a decisive effect on the properties. The type and composition of
63394    the blowing gas will also influence the properties. For a given tuyere
63395    and blowing system, appropriate blowing pressures for different gases,
63396    particularly for subtuyere gases, should be used according to the
63397    technological requirements of the different refining periods.
63398 C1 Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
63399 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
63400 CR WEI JH, 1999, IRONMAK STEELMAK, V26, P363
63401    WEI JH, 2000, IRONMAK STEELMAK, V27, P294
63402    WEI JH, 2001, STEEL RES, V72, P161
63403 NR 3
63404 TC 3
63405 SN 0177-4832
63406 J9 STEEL RES
63407 JI Steel Res.
63408 PD MAY-JUN
63409 PY 2001
63410 VL 72
63411 IS 5-6
63412 BP 168
63413 EP 172
63414 PG 5
63415 SC Metallurgy & Metallurgical Engineering
63416 GA 450VV
63417 UT ISI:000169766300002
63418 ER
63419 
63420 PT J
63421 AU Yu, XL
63422    You, JL
63423    Wang, Y
63424    Cheng, ZX
63425    Yu, BK
63426    Zhang, SJ
63427    Sun, DL
63428    Jiang, GC
63429 TI Microprobe of structure of crystal/liquid interface boundary layers
63430 SO SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES
63431 DT Article
63432 DE boundary layer; molecular structure; microprobe; KDP; DKDP
63433 ID AQUEOUS-SOLUTIONS; GROWTH
63434 AB The molecular structures and its evolutive regularities within the
63435    boundary layers in the crystal growth of KDP and DKDP have been studied
63436    in real time by using holography and Raman microprobe. The experiments
63437    show that the molecular structure of mother solution within the
63438    boundary layers is distinctly different from that of the solutions
63439    alone. In this paper, the effects of cations within the boundary layers
63440    on the structure of solution are considered. Within the characteristic
63441    boundary layers, the effects of cations cause the changes in O-P-O bond
63442    angle, electronic density redistribution of the phosphate groups, and
63443    significant changes in the bond intensity, thus leading to the breaking
63444    of partial hydrogen bonds of the phosphate associations, the
63445    readjustment of geometry of anionic phosphate groups and desolvation,
63446    and the forming of the smectic ordering structure of the
63447    anions-cations. Finally, the crystallization unit of anion-cation
63448    should be formed at the proximate interface.
63449 C1 Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China.
63450    Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
63451 RP Yu, XL, Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples
63452    R China.
63453 CR ADAMS WA, 1979, J CHEM PHYS, V70, P2074
63454    CERRETA MK, 1987, J CRYST GROWTH, V84, P577
63455    CHAPMAN AC, 1964, SPECTROCHIM ACTA, V20, P937
63456    CHAPMAN AC, 1965, SPECTROCHIM ACTA, V21, P633
63457    CHERNOV AA, 1993, PROG CRYST GROWTH CH, V26, P121
63458    DEVRIES SA, 1998, PHYS REV LETT, V80, P2229
63459    LIEBMANN P, 1982, J AM CHEM SOC, V104, P691
63460    PRESTON CM, 1979, J PHYS CHEM-US, V83, P814
63461    YU XL, 1990, J CRYST GROWTH, V106, P690
63462    YU XL, 1994, CRYST RES TECHNOL, V29, P229
63463    YU XL, 2000, 98110030, ZL
63464 NR 11
63465 TC 4
63466 SN 1006-9321
63467 J9 SCI CHINA SER E
63468 JI Sci. China Ser. E-Technol. Sci.
63469 PD JUN
63470 PY 2001
63471 VL 44
63472 IS 3
63473 BP 265
63474 EP 273
63475 PG 9
63476 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary
63477 GA 450RJ
63478 UT ISI:000169756600006
63479 ER
63480 
63481 PT J
63482 AU Li, CP
63483    Chen, GR
63484 TI Bifurcations of one-dimensional reaction-diffusion equations
63485 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
63486 DT Article
63487 AB Bifurcations of a class of one-dimensional reaction-diffusion equations
63488    of the form u " + muu - u(k) = 0, where mu is a parameter, 2 less than
63489    or equal to k is an element of Z(+), with boundary value condition u(0)
63490    = u(pi) = 0, are investigated. Using the singularity theory based on
63491    the Liapunov-Schmidt reduction, some characterization results are
63492    obtained.
63493 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
63494    Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA.
63495 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
63496 CR BEBERNES J, 1989, MATH PROBLEMS COMBUS
63497    CHOW SN, 1982, METHODS BIFURCATION
63498    FIFE PC, 1979, LECT NOTES BIOMATHEM, V28
63499    GOLUBITSKY M, 1985, SINGULARITIES GROUPS, V1
63500    IPSEN M, 1997, INT J BIFURCAT CHAOS, V7, P1539
63501    LI CP, 2000, APPL MATH MECH-ENGL, V21, P265
63502    ZHABOTINSKY AM, 1991, CHAOS, V1, P379
63503 NR 7
63504 TC 1
63505 SN 0218-1274
63506 J9 INT J BIFURCATION CHAOS
63507 JI Int. J. Bifurcation Chaos
63508 PD MAY
63509 PY 2001
63510 VL 11
63511 IS 5
63512 BP 1295
63513 EP 1306
63514 PG 12
63515 SC Mathematics, Applied; Multidisciplinary Sciences
63516 GA 452HY
63517 UT ISI:000169853300005
63518 ER
63519 
63520 PT J
63521 AU Xia, SJ
63522    Xu, CX
63523    Tang, XD
63524    Wang, WZ
63525    Du, DL
63526 TI Apoptosis and hormonal milieu in ductal system of normal prostate and
63527    benign prostatic hyperplasia
63528 SO ASIAN JOURNAL OF ANDROLOGY
63529 DT Article
63530 DE prostate; ductal system; hormonal milieu; androgen; estrogen; apoptosis
63531 ID CELL-DEATH; ANDROGEN; EPITHELIUM; ESTROGEN; STROMA
63532 AB Aim: To study the apoptotic rate (AR) and the androgen and estrogen
63533    milieu in the proximal and distal ductal systems of prostate, in order
63534    to help exploring the effects of these factors on prostatic growth and
63535    the pathogenesis of benign prostatic hypertrophy (BPH). Methods: The
63536    proximal and distal ends of the ductal system were incised from 20
63537    normal prostate as well as the hypertrophic prostate tissue from 20
63538    patients with BPH. The AR was determined by the DNA end-labeling method
63539    and dihydrotestosterone (DHT) and estrodiol (E-2), by radioimmunoassay.
63540    Results: There was no significant difference in DHT and E-2 density
63541    between the proximal and distal ends of the ductal systems in normal
63542    prostate. E-2 appeared to be higher in BPH than in normal prostatic
63543    tissues, but the difference was statistically insignificant. In normal
63544    prostatic tissue, the AR was significantly higher in the distal than in
63545    the proximal ends of the ductal system (P < 0.05), while the AR of the
63546    proximal ends was significantly higher (P < 0.01) than that in the BPH
63547    tissue. No significant correlation was noted between the DHT and E-2
63548    density and the AR both in the normal prostate and BPH tissues.
63549    Conclusion: The paper is the first time describing a difference in AR
63550    in different regions of the ductal system of normal prostate, while the
63551    hormonal milieu is similar, indicating a functional inhomogeneity of
63552    these regions. A low AR in the proximal duct, where BPH originates, and
63553    an even lower AR in the BPH tissue, sug gesting the participation of
63554    apoptosis in the BPH pathogenesis.
63555 C1 Shanghai Univ, Peoples Hosp 1, Dept Urol, Shanghai 200080, Peoples R China.
63556    Shandong Provincial Hosp, Dept Urol, Jinan 250021, Peoples R China.
63557    Shandong Provincial Hosp, Dept Pathol, Jinan 250021, Peoples R China.
63558 RP Xia, SJ, Shanghai Univ, Peoples Hosp 1, Dept Urol, 85 Wu Jin Rd,
63559    Shanghai 200080, Peoples R China.
63560 CR COLLINS AT, 1994, J ENDOCRINOL, V143, P269
63561    FARNSWORTH WE, 1996, PROSTATE, V28, P17
63562    GAVRIELI Y, 1992, J CELL BIOL, V119, P493
63563    ISAACS JT, 1984, PROSTATE, V5, P545
63564    ISAACS JT, 1994, SEMIN CANCER BIOL, V5, P391
63565    JUNIEWICZ PE, 1994, J UROLOGY, V152, P996
63566    KRIEG M, 1983, J STEROID BIOCHEM, V19, P155
63567    KRIEG M, 1993, J CLIN ENDOCR METAB, V77, P375
63568    KYPRIANOU N, 1996, HUM PATHOL, V27, P668
63569    LEE C, 1981, J ANDROL, V2, P293
63570    LEE C, 1990, BIOL REPROD, V43, P1079
63571    LEE C, 1997, PROSTATE, V31, P131
63572    MCNEAL JE, 1975, DHEW PUBLICATION, P1
63573    MCNEAL JE, 1988, AM J SURG PATHOL, V12, P619
63574    MCNEIL JE, 1983, MONOGR UROL, V4, P3
63575 NR 15
63576 TC 3
63577 SN 1008-682X
63578 J9 ASIAN J ANDROL
63579 JI Asian J. Androl.
63580 PD JUN
63581 PY 2001
63582 VL 3
63583 IS 2
63584 BP 131
63585 EP 134
63586 PG 4
63587 SC Andrology; Respiratory System; Urology & Nephrology
63588 GA 451KK
63589 UT ISI:000169801100009
63590 ER
63591 
63592 PT J
63593 AU Dai, SQ
63594 TI Poincare-Lighthill-Kuo method and symbolic computation
63595 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
63596 DT Article
63597 DE PLK method; perturbation methods; symbolic computation; intermediate
63598    expression swell; semi-inverse algorithm
63599 AB This paper elucidates the effectiveness of combining the
63600    Poincare-Lighthill-Kuo method (PLK method, for short) and symbolic
63601    computation. Firstly, the idea and history of the PLK method are
63602    briefly introduced. Then, the difficulty of intermediate expression
63603    swell, often encountered in symbolic computation, is outlined. For
63604    overcoming the difficulty, a semi-inverse algorithm was proposed by the
63605    author, with which the lengthy ports of intermediate expressions are
63606    first frozen in the form of symbols till the Fnal stage of seeking
63607    perturbation solutions. Tn discuss the applications of the above
63608    algorithm, the related work of the author and his research group on
63609    nonlinear oscillations and waves is concisely reviewed. The
63610    computer-extended perturbation solution of the Duffing equation shows
63611    that the asymptotic solution obtained with the PLK method possesses the
63612    convergence radius of 1 and thus the range of validity of the solution
63613    is considerably enlarged. The studies on internal solitary waves in
63614    stratified fluid and on the head-on collision between two solitary
63615    waves in a hyperelastic rod indicate that by means of the presented
63616    methods, very complicated manipulation, unconceivable in hand
63617    calculation, can be conducted and thus result in higher-order evolution
63618    equations and asymptotic solutions. The examples illustrate that the
63619    algorithm helps to realize the symbolic computation on
63620    micro-commputers. Finally, it is concluded that,vith the aid of
63621    symbolic computation, the vitality of the PLK method is greatly.
63622    Strengthened and at least for the solutions to conservative systems of
63623    oscillations and waves, it is a powerful tool.
63624 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
63625 RP Dai, SQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
63626    200072, Peoples R China.
63627 CR BELTZER AIB, 1990, APPL MECH REV, V403, P119
63628    CALMET J, 1988, COMPUTER ALGEBRA SYM
63629    CHENG YL, 1997, J SHANGHAI U, V1, P130
63630    CHENG YL, 1998, P 3 INT C HYDR
63631    CHENG YL, 1998, THESIS SHANGHAI U
63632    DAI HH, 2000, WAVE MOTION, V32, P93
63633    DAI SQ, 1981, SINGULAR PETURBATION, P33
63634    DAI SQ, 1982, ADV MECH, V12, P2
63635    DAI SQ, 1982, APPL MATH MECHANICS, V3, P777
63636    DAI SQ, 1983, ACTA MECH SINICA, V15, P623
63637    DAI SQ, 1984, APPL MATH MECH, V5, P1469
63638    DAI SQ, 1984, SIENTIA SINICA, V27, P507
63639    DAI SQ, 1987, KEXUE TONGBAO, V32, P589
63640    DAI SQ, 1990, ACTA MECH SINICA, V6, P111
63641    DAI SQ, 1991, APPL MATH MECH, V12, P255
63642    DAI SQ, 1991, SCI SINICA A, V34, P843
63643    DAI SQ, 1992, J HYDRODYN A, V7, P1
63644    DAI SQ, 1992, NONLINEAR PROBLEMS E
63645    DAI SQ, 1995, J NATURE, V17, P177
63646    DAI SQ, 1995, MODERN MATH MECH
63647    DAI SQ, 1997, APPL MATH MECH-ENGL, V18, P113
63648    HECK A, 1993, INTRO MAPLE
63649    KUO YH, 1953, J MATH PHYS, V32, P83
63650    KUO YH, 1956, J AERONAUT SCI, V23, P125
63651    LIGHTHILL MJ, 1949, PHIL MAG           7, V40, P1179
63652    LIU YL, 1987, APPL MATH MECH, V8, P497
63653    POINCARE H, 1967, TTF450 NASA
63654    RAND HR, 1987, ARMBRUSTER D PERTURB
63655    TANG L, 1993, APPL MATH MECH, P400
63656    TIAN M, 1995, MODERN MATH MECH
63657    TSIEN HS, 1956, ADV APPL MECH, V4, P281
63658    WANG MQ, 1994, J SHANGHAI U TECHNOL, V15, P384
63659    WANG MQ, 1995, APPL MATH MECH, V16, P429
63660    ZANG HM, 1993, J SHANGHAI U TECHNOL, V14, P189
63661    ZANG HM, 1993, THESIS SHANGHAI U TE
63662    ZANG HM, 1994, P 1 INT C HYDR BEIJ
63663    ZHANG SG, 1986, J COMM APPL MATH COM, V1, P61
63664    ZHANG SG, 1986, J SHANGHAI U TECHNOL, V7, P375
63665    ZHU Y, 1989, APPL MATH MECH, V10, P213
63666    ZHU Y, 1991, ACTA MECH SINICA, V7, P300
63667    ZHU Y, 1992, APPL MATH MECH, V13, P407
63668 NR 41
63669 TC 0
63670 SN 0253-4827
63671 J9 APPL MATH MECH-ENGL ED
63672 JI Appl. Math. Mech.-Engl. Ed.
63673 PD MAR
63674 PY 2001
63675 VL 22
63676 IS 3
63677 BP 261
63678 EP 269
63679 PG 9
63680 SC Mathematics, Applied; Mechanics
63681 GA 450BW
63682 UT ISI:000169722500001
63683 ER
63684 
63685 PT J
63686 AU Jiang, FR
63687 TI On the asymptotic solutions of boundary value problems for a class of
63688    systems of nonlinear differential equations (I)
63689 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
63690 DT Article
63691 DE system of nonlinear differential equations; boundary value problems;
63692    asymptotic solution
63693 AB A new method is applied to study the asymptotic behavior of solutions
63694    of boundary value problems for a class of systems of nonlinear
63695    differential equations
63696    u" = nu, epsilon nu" + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon
63697    much less than 1).
63698    The asymptotic expansions of solutions are constructed, the remainders
63699    are estimated. The former works are improved and generalized.
63700 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
63701 RP Jiang, FR, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
63702    200072, Peoples R China.
63703 CR DORR FW, 1970, J MATH ANAL APPL, V29, P273
63704    DORR FW, 1973, SIAM REV, V15, P43
63705    HARRIS WA, 1991, J DIFFER EQUATIONS, V92, P125
63706    HOWES FA, 1989, NONLINEAR ANAL, V13, P1013
63707    JIANG FR, 1981, APPL MATH MECH, V2, P505
63708    JIANG FR, 1987, SCI SINICA, V30, P588
63709 NR 6
63710 TC 1
63711 SN 0253-4827
63712 J9 APPL MATH MECH-ENGL ED
63713 JI Appl. Math. Mech.-Engl. Ed.
63714 PD MAR
63715 PY 2001
63716 VL 22
63717 IS 3
63718 BP 282
63719 EP 293
63720 PG 12
63721 SC Mathematics, Applied; Mechanics
63722 GA 450BW
63723 UT ISI:000169722500003
63724 ER
63725 
63726 PT J
63727 AU Li, GG
63728    Zhu, ZY
63729    Cheng, CJ
63730 TI Dynamical stability of viscoelastic column with fractional derivative
63731    constitutive relation
63732 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
63733 DT Article
63734 DE viscoelastic column; fractional derivative constitutive relation;
63735    averaging method; weakly singular Volterra integro-differential
63736    equation; dynamical stability
63737 ID CALCULUS
63738 AB The dynamic stability of simple supported viscoelastic column,
63739    subjected to a periodic axial force, is investigated. The viscoelastic
63740    material was assumed to obey the fractional derivative constitutive
63741    relation. The governing equation of motion was derived as a weakly
63742    singular Volterra integro-partial-differential equation, and it was
63743    simplified into weakly singular Volterra integro-ordinary-differential
63744    equation by the Galerkin method. In terms of the averaging method, the
63745    dynamical stability was analyzed. A new numerical method is proposed to
63746    avoid storing all history data. Numerical examples are presented and
63747    the numerical results agree with the analytical ones.
63748 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
63749    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
63750    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
63751 RP Li, GG, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
63752    Peoples R China.
63753 CR BAGLEY RL, 1983, AIAA J, V21, P741
63754    BAGLEY RL, 1983, J RHEOL, V27, P201
63755    CEDERBAUM G, 1992, J APPL MECH-T ASME, V59, P16
63756    CHENG CJ, 1998, ACTA MECH SINICA, V30, P690
63757    DROZDOV AD, 1997, ACTA MECH, V124, P155
63758    ENELUND M, 1999, INT J SOLID STRUT, V36, P1417
63759    HUANG WH, 1997, ADV MECH, V27, P5
63760    LIU YZ, 1998, MECH VIBRATIONS
63761    ROSSIKHIN YA, 1997, APPL MECH REV, V50, P15
63762    SAMKO SG, 1993, FRACTIONAL INTEGRALS
63763 NR 10
63764 TC 4
63765 SN 0253-4827
63766 J9 APPL MATH MECH-ENGL ED
63767 JI Appl. Math. Mech.-Engl. Ed.
63768 PD MAR
63769 PY 2001
63770 VL 22
63771 IS 3
63772 BP 294
63773 EP 303
63774 PG 10
63775 SC Mathematics, Applied; Mechanics
63776 GA 450BW
63777 UT ISI:000169722500004
63778 ER
63779 
63780 PT J
63781 AU Jiang, JB
63782    Lu, ZM
63783    Liu, XM
63784    Liu, YL
63785 TI Models for the counter-gradient-transport phenomena
63786 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
63787 DT Article
63788 DE turbulence; counter-gradient-transport; TSDIA
63789 ID TURBULENT SHEAR FLOWS; PASSIVE SCALARS; DIFFUSION
63790 AB The counter gradient transport phenomena on momentum, energy and
63791    passive scalar in turbulent flows were studied by use of the single
63792    response friction for TSDIA. As a result, models that can describe
63793    qualitatively the phenomena are obtained. Then the results are
63794    simplified by use of the internal range theory, and the results for
63795    lower degrees agree with results of predecessor. Finally the counter
63796    gradient-transport phenomena in channel flow and circular wake flow are
63797    analyzed.
63798 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
63799 RP Jiang, JB, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
63800    200072, Peoples R China.
63801 CR ESKINAZEI S, 1988, PHYS FLUIDS, V12, P1988
63802    HAMBA F, 1987, J PHYS SOC JPN, V56, P79
63803    HANJALIC K, 1972, J FLUID MECH, V51, P301
63804    KRAICHNAN RH, 1959, J FLUID MECH, V5, P497
63805    LESLIE DC, 1972, DEV THEORY TURBULENC
63806    SHIMOMURA Y, 1998, PHYS FLUIDS, V10, P2636
63807    SREENIVASAN KR, 1982, TURBULENT SHEAR FLOW, V3, P96
63808    VEERAVALLI S, 1990, J FLUID MECH, V216, P35
63809    YOSHIZAWA A, 1984, PHYS FLUIDS, V27, P1337
63810    YOSHIZAWA A, 1988, J FLUID MECH, V195, P541
63811 NR 10
63812 TC 0
63813 SN 0253-4827
63814 J9 APPL MATH MECH-ENGL ED
63815 JI Appl. Math. Mech.-Engl. Ed.
63816 PD MAR
63817 PY 2001
63818 VL 22
63819 IS 3
63820 BP 312
63821 EP 319
63822 PG 8
63823 SC Mathematics, Applied; Mechanics
63824 GA 450BW
63825 UT ISI:000169722500006
63826 ER
63827 
63828 PT J
63829 AU Jiang, FR
63830    Jin, QN
63831 TI Asymptotic solutions of boundary value problems for third-order
63832    ordinary differential equations with turning points
63833 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
63834 DT Article
63835 DE boundary value problems; ordinary differential equations; turning
63836    points; asymptotic solutions
63837 ID PROBLEMS EXHIBITING RESONANCE
63838 AB Boundary value problem; for third-order ordinary differential equations
63839    with turning points are studied as follows :
63840    epsilon gamma ' " + f(x ; epsilon) gamma " + g(x ; epsilon) gamma '
63841    +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1),
63842    where f(x ; 0) has several multiple zero points in ( - n, b). the
63843    necessary conditions for exhibiting resonance is given, and the
63844    uniformly valid asymptotic solutions and the estimations of remainder
63845    terms are obtained.
63846 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
63847    Nanjing Univ, Dept Math, Nanjing 210000, Peoples R China.
63848 RP Jiang, FR, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
63849    200072, Peoples R China.
63850 CR ACKERBERG RC, 1970, STUD APPL MATH, V49, P277
63851    JIANG FR, 1989, APPL MATH MECH, V10, P289
63852    JIANG FR, 1994, COMPUTATIONAL FLUID, V2, P471
63853    MATKOWSKY BJ, 1975, SIAM REV, V17, P82
63854    NAGUMO M, 1937, P PHYS-MATH SOC JPN, V19, P861
63855    ZHAO WL, 1984, J JILIN U, P10
63856 NR 6
63857 TC 0
63858 SN 0253-4827
63859 J9 APPL MATH MECH-ENGL ED
63860 JI Appl. Math. Mech.-Engl. Ed.
63861 PD APR
63862 PY 2001
63863 VL 22
63864 IS 4
63865 BP 394
63866 EP 403
63867 PG 10
63868 SC Mathematics, Applied; Mechanics
63869 GA 450WP
63870 UT ISI:000169768100003
63871 ER
63872 
63873 PT J
63874 AU Wei, EB
63875    Tian, JW
63876    Gu, GQ
63877 TI A new inverse method and application to ocean data
63878 SO SCIENCE IN CHINA SERIES D-EARTH SCIENCES
63879 DT Article
63880 DE reconstructed phase space; conditional probability density;
63881    normalization
63882 ID STRANGE ATTRACTORS; VECTOR-FIELDS; TIME-SERIES; RECONSTRUCTION; SYSTEMS
63883 AB A new method is proposed to inverse normalization data of hidden
63884    variables in a dynamical system by embedding a time series in
63885    multidimensional spaces and applying a normalization analysis to the
63886    conditional probability density of points in the reconstructed phase
63887    spaces, The method is robust in the application to Lorenz system and
63888    4-dimensional Rossler system by testing quantitatively and
63889    qualitatively the correlation coefficient between inverse data and
63890    original data in time domain and in frequency domain, respectively. By
63891    applying the method to analyzing the South China Sea data, the
63892    normalization data of wind speed is extracted from the sea surface
63893    temperature time series.
63894 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
63895    Ocean Univ Qingdao, Phys Oceanog Lab, Qingdao 266003, Peoples R China.
63896 RP Gu, GQ, Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093,
63897    Peoples R China.
63898 CR BREEDEN JL, 1990, PHYS REV A, V42, P5817
63899    ECKMANN JP, 1985, REV MOD PHYS, V57, P617
63900    FRASER AM, 1986, PHYS REV A, V33, P1134
63901    GOUESBET G, 1991, PHYS REV A, V43, P5321
63902    GOUESBET G, 1991, PHYS REV A, V44, P6264
63903    GOUESBET G, 1992, PHYS REV A, V46, P1784
63904    GRASSBERGER P, 1983, PHYSICA D, V9, P189
63905    GRASSBERGER P, 1984, PHYSICA D, V13, P34
63906    JUDD K, 1998, PHYSICA D, V120, P273
63907    MANUCA R, 1996, PHYSICA D, V93, P78
63908    ORTEGA GJ, 1995, PHYS LETT A, V209, P351
63909    PACKARD NH, 1980, PHYS REV LETT, V45, P712
63910    ROSSLER OE, 1979, PHYS LETT A, V71, P155
63911    SCELLER LL, 1996, PHYS LETT A, V211, P211
63912    TAKENS F, 1981, LECT NOTES MATH, V898, P366
63913 NR 15
63914 TC 0
63915 SN 1006-9313
63916 J9 SCI CHINA SER D
63917 JI Sci. China Ser. D-Earth Sci.
63918 PD JUN
63919 PY 2001
63920 VL 44
63921 IS 6
63922 BP 490
63923 EP 497
63924 PG 8
63925 SC Geosciences, Multidisciplinary
63926 GA 448FZ
63927 UT ISI:000169617400002
63928 ER
63929 
63930 PT J
63931 AU Cul, JH
63932    Zhong, SS
63933    Yu, C
63934 TI Accurate modeling of shorted microstrip patch antennas using the
63935    locally conformal FDTD method
63936 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
63937 DT Article
63938 DE microstrip antennas; conformal FDTD method; shorted microstrip patch
63939    antennas
63940 ID DIFFERENCE TIME-DOMAIN
63941 AB An accurate analysis of shorted microstrip patch antennas is presented
63942    based on the use of the locally conformal finite-difference time-domain
63943    (CFDTD) method. This approach enables the positions and dimensions of
63944    the probe and the shorting pin to be chosen independently. The
63945    calculated result is compared with the measured result, and good
63946    agreement is observed. (C) 2001 John Wiley & Sons, Inc.
63947 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
63948 RP Cul, JH, Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R
63949    China.
63950 CR DEY S, 1998, MICROW OPT TECHN LET, V17, P349
63951    WATERHOUSE R, 1995, ELECTRON LETT, V31, P604
63952    WATERHOUSE RB, 1997, IEEE AP S INT S, P1852
63953    WATERHOUSE RB, 1998, IEEE T ANTENN PROPAG, V46, P1629
63954    YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302
63955    YEE KS, 1992, IEEE T ANTENN PROPAG, V40, P1068
63956    YEE KS, 1994, IEEE T ANTENN PROPAG, V42, P1450
63957    YEE KS, 1997, IEEE T ANTENN PROPAG, V45, P354
63958 NR 8
63959 TC 0
63960 SN 0895-2477
63961 J9 MICROWAVE OPT TECHNOL LETT
63962 JI Microw. Opt. Technol. Lett.
63963 PD AUG 5
63964 PY 2001
63965 VL 30
63966 IS 3
63967 BP 216
63968 EP 218
63969 PG 3
63970 SC Engineering, Electrical & Electronic; Optics
63971 GA 448LB
63972 UT ISI:000169627400022
63973 ER
63974 
63975 PT J
63976 AU He, JH
63977 TI Iteration perturbation method for strongly nonlinear oscillations
63978 SO JOURNAL OF VIBRATION AND CONTROL
63979 DT Article
63980 DE perturbation method; nonlinear oscillation; iteration method
63981 ID PARAMETERS
63982 AB In this paper, the author proposes a new perturbation technique
63983    coupling with iteration method, yielding a powerful mathematical tool
63984    for an analytical solution of nonlinear equations. The obtained results
63985    are valid not only for weakly nonlinear problems but also for strongly
63986    nonlinear ones. Furthermore, the approximate solutions are valid for
63987    the whole solution domain, and even the first-step iteration leads to
63988    high accuracy. Some examples are given to illustrate its effectiveness.
63989 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
63990 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
63991    Peoples R China.
63992 CR ACTON JR, 1985, SOLVING EQUATIONS PH
63993    ANDRIANOV I, 2000, INT J NONLINEAR SCI, V1, P327
63994    HE JH, 1999, COMMUN NONL SCI NUM, V4, P109
63995    HE JH, 1999, COMMUN NONL SCI NUM, V4, P78
63996    HE JH, 1999, COMMUNICATIONS NONLI, V4, P81
63997    HE JH, 1999, COMPUT METHOD APPL M, V178, P257
63998    HE JH, 1999, MECCANICA, V34, P287
63999    HE JH, 1999, MECH PRACTICE, V21, P17
64000    HE JH, 2000, INT J NONLINEAR MECH, V35, P37
64001    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
64002    HE JH, 2000, J SOUND VIB, V229, P1257
64003    HE JH, 2000, MECCANICA, V35, P299
64004    HOWARTH L, 1938, PROC R SOC LON SER-A, V164, P547
64005    LIAO SJ, 1995, INT J NONLINEAR MECH, V30, P371
64006    LIAO SJ, 1999, J FLUID MECH, V385, P101
64007    NAYFEH AH, 1981, INTRO PERTURBATION T
64008    NAYFEH AH, 1985, PROBLEMS PERTURBATIO
64009 NR 17
64010 TC 8
64011 SN 1077-5463
64012 J9 J VIB CONTROL
64013 JI J. Vib. Control
64014 PD JUL
64015 PY 2001
64016 VL 7
64017 IS 5
64018 BP 631
64019 EP 642
64020 PG 12
64021 SC Engineering, Mechanical; Acoustics; Mechanics
64022 GA 447NP
64023 UT ISI:000169579600001
64024 ER
64025 
64026 PT J
64027 AU Ma, HL
64028    Yang, FJ
64029 TI Measurement of hyperfine coupling constants of the excited states
64030    4f(7)(S-8(7/2)0)6p(3/2)(7/2,3/2) in Eu-151,153(+)
64031 SO CHINESE PHYSICS
64032 DT Article
64033 DE fast-ion-beam laser spectroscopy; hyperfine structure; magnetic dipole
64034    and electronic quadrupole coupling constants
64035 ID BEAM LASER SPECTROSCOPY; FINE
64036 AB Hyperfine structure spectra of singly ionized europium have been
64037    measured by collinear fast-ion-beam laser spectroscopy. All the
64038    spectral lines were resolved and the magnetic dipole and electric
64039    quadrupole coupling constants of the metastable and excited levels were
64040    determined.
64041 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
64042    Fudan Univ, Inst Modern Phys, Shanghai 200433, Peoples R China.
64043 RP Ma, HL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
64044 CR ANDRA HJ, 1975, ATOMIC PHYSICS, V4, P365
64045    ANDRA HJ, 1979, PROGR ATOMIC SPECT B
64046    BELLAHMANSOUR N, 1989, PHYS REV A, V39, P5762
64047    BENGTSON A, 1980, PHYS LETT A, V76, P45
64048    GINIBRE A, 1989, PHYS SCR, V39, P694
64049    HOHLE C, 1982, Z PHYS A, V304, P279
64050    IIMURA H, 1994, PHYS REV C, V50, P661
64051    KUWAMOTO T, 1996, J PHYS SOC JPN, V65, P3180
64052    MA HL, 1999, J PHYS B-AT MOL OPT, V32, P1345
64053    SEN A, 1986, PHYS REV A, V36, P233
64054 NR 10
64055 TC 2
64056 SN 1009-1963
64057 J9 CHIN PHYS
64058 JI Chin. Phys.
64059 PD JUN
64060 PY 2001
64061 VL 10
64062 IS 6
64063 BP 512
64064 EP 515
64065 PG 4
64066 SC Physics, Multidisciplinary
64067 GA 449RR
64068 UT ISI:000169701400010
64069 ER
64070 
64071 PT J
64072 AU Zhou, SP
64073 TI Ginzburg-Landau theory and vortex lattice of high-temperature
64074    superconductors
64075 SO CHINESE PHYSICS
64076 DT Article
64077 DE Ginzburg-Landau theory; vortex lattice; high-temperature superconductor
64078 ID II SUPERCONDUCTORS; PAIRING SYMMETRY; YBA2CU3O7-DELTA; STATE; MODEL; PB
64079 AB The thermodynamics of the vortex lattice of high-temperature
64080    superconductors has been studied by solving the generalised
64081    Ginzburg-Landau equations derived microscopically. Our numerical
64082    simulation indicates that the structure of the vortex lattice is
64083    oblique at the temperature far away from the transition temperature T-C
64084    where the mixed s-d(x2-y2) state is expected to have the lowest energy.
64085    Whereas, very close to T-c, the d(x2-y2) wave is slightly lower
64086    energetically, and a triangular vortex lattice recovers. The
64087    coexistence and the coupling between the s and d waves would account
64088    for the unusual dynamic behaviours such as the upward curvature of the
64089    upper critical field curve H-C2(T), as observed in de magnetization
64090    measurements on single-crystal YBa2Cu3O7 samples.
64091 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
64092 RP Zhou, SP, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
64093 CR ABRIKOSOV AA, 1957, ZH EKSP TEOR FIZ, V32, P1442
64094    ABRIKOSOV AA, 1957, ZH EKSP TEOR FIZ, V5, P1174
64095    ANDERSON PW, 1987, SCIENCE, V235, P1196
64096    CHAKRAVARTY S, 1993, SCIENCE, V261, P337
64097    DORIA MM, 1989, PHYS REV B, V39, P9573
64098    DU Q, 1993, SIAM J APPL MATH, V53, P689
64099    GORKOV LP, 1960, SOV PHYS JETP, V9, P1364
64100    GUO BY, 1988, NUMER METH PART D E, P43
64101    JOYNT R, 1990, PHYS REV B, V41, P4271
64102    KEIMER B, 1994, J APPL PHYS 2, V76, P6778
64103    KLEINER R, 1996, PHYS REV LETT, V76, P2161
64104    KOUZNETSOV KA, 1997, PHYS REV LETT, V79, P3050
64105    LEE PA, 1987, PHYS REV LETT, V58, P2891
64106    LIECHTENSTEIN AI, 1995, PHYS REV LETT, V74, P2303
64107    MILLIS AJ, 1994, PHYS REV B, V49, P15408
64108    MONTHOUX P, 1994, PHYS REV B, V49, P4261
64109    PALSTRA TTM, 1988, PHYS REV LETT, V61, P1662
64110    REN Y, 1995, PHYS REV LETT, V74, P3680
64111    RUGGIERO S, 1982, PHYS REV B, V26, P4897
64112    SOININEN PI, 1994, PHYS REV B, V50, P13883
64113    TINKHAM M, 1964, GROUP THEORY QUANTUM
64114    TSUEI CC, 1994, PHYS REV LETT, V73, P593
64115    VOLOVIK GE, 1993, JETP LETT, V58, P469
64116    WELP U, 1989, PHYS REV LETT, V62, P1908
64117    WOLLMAN DA, 1993, PHYS REV LETT, V71, P2134
64118    ZHANG FC, 1988, PHYS REV B, V37, P3759
64119    ZHANG SC, 1997, SCIENCE, V275, P1089
64120    ZHOU SP, 1999, ACTA PHYS SIN-CH ED, V48, P342
64121 NR 28
64122 TC 13
64123 SN 1009-1963
64124 J9 CHIN PHYS
64125 JI Chin. Phys.
64126 PD JUN
64127 PY 2001
64128 VL 10
64129 IS 6
64130 BP 541
64131 EP 549
64132 PG 9
64133 SC Physics, Multidisciplinary
64134 GA 449RR
64135 UT ISI:000169701400015
64136 ER
64137 
64138 PT J
64139 AU Chen, XY
64140    Cheng, CJ
64141 TI Reconstruction of relaxation modulus for viscoelastic medium with
64142    complete data
64143 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
64144 DT Article
64145 DE viscoelastic medium; reconstruction of the relaxation modulus;
64146    scattering and propagation operators; wave impedance mismatch; volterra
64147    integral equation
64148 ID INVERSE SCATTERING
64149 AB The inverse scattering problem for viscoelastic medium with wave
64150    impedance mismatch at the rear boundary is studied in this paper. The
64151    propagation operators of the viscoelastic medium are defined first and
64152    the integro-differential equations of these operators are derived via
64153    the invariant imbedding technique. For the inverse scattering problem,
64154    a new inversion procedure to reconstruct the relaxation modulus of the
64155    viscoelastic medium is developed, which utilizes a complete set of
64156    data, namely the one-side reflection data for one round trip through
64157    the viscoelastic slab. These data are complete in the sense that they
64158    can be extended to arbitrary time t in the inversion procedure. This
64159    inverse method is implemented numerically on several problems at the
64160    end of the paper. The more general case of a medium consisting of a
64161    stack of homogeneous viscoelastic medium layers is also considered. (C)
64162    2001 Elsevier Science B.V. All rights reserved.
64163 C1 SOA, Inst Oceanog 1, Key Lab Marine Sci & Numer Modeling, Qingdao 266061, Peoples R China.
64164    Shanghai Univ, Dept Mech, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China.
64165 RP Chen, XY, SOA, Inst Oceanog 1, Key Lab Marine Sci & Numer Modeling,
64166    Qingdao 266061, Peoples R China.
64167 CR AMMICHT E, 1987, J ACOUST SOC AM, V81, P827
64168    BEEZLEY RS, 1985, J MATH PHYS, V26, P317
64169    BUI DD, 1995, INVERSE PROBL, V11, P835
64170    CHRISTENSON RM, 1982, THEORY VISCOELASTICI
64171    CORONES JP, 1988, INVERSE PROBL, V4, P643
64172    KARLSSON A, 1987, INVERSE PROBL, V3, P691
64173    KRESS R, 1989, LINEAR INTEGRAL EQUA
64174    REDHEFFER R, 1962, J MATH PHYS, V41, P1
64175 NR 8
64176 TC 0
64177 SN 0377-0427
64178 J9 J COMPUT APPL MATH
64179 JI J. Comput. Appl. Math.
64180 PD JUN 1
64181 PY 2001
64182 VL 131
64183 IS 1-2
64184 BP 445
64185 EP 456
64186 PG 12
64187 SC Mathematics, Applied
64188 GA 444QK
64189 UT ISI:000169410900025
64190 ER
64191 
64192 PT J
64193 AU Zhou, GH
64194    Liu, L
64195    Xiu, XL
64196    Jian, HM
64197    Wang, LZ
64198    Sun, BZ
64199    Tong, BS
64200 TI Productivity and carcass characteristics of pure and crossbred Chinese
64201    Yellow Cattle
64202 SO MEAT SCIENCE
64203 DT Article
64204 DE productivity; carcass characteristics; Chinese Yellow Cattle; meat
64205    performance
64206 AB The carcass characteristics of 334 Chinese Yellow Cattle, and their
64207    Simmental and Limousin crosses, were investigated in abattoirs in Hebei
64208    and Sandong provinces of China. The overall slaughter age was 4.8
64209    +/-2.2 years at a mean liveweight of 527.28 +/- 77.0 kg. Mean ages and
64210    liveweights for Yellow Cattle and its crosses were, respectively, 5.29
64211    +/-2.03 and 2.85 +/-1.71 years and 519.43 +/- 78.7 and 563.13 +/- 56.8
64212    kg. Carcass weights varied considerably and, consequently, so did
64213    subcutaneous fat depths and dressing percentages. Overall, mean carcass
64214    weights, subcutaneous fat depths and, dressing percentages and
64215    eyemuscle areas were 283.9 +/- 64.1 kg, 14.0 +/-8.0 mm, 54.0 +/-4.0%,
64216    and 62.7 +/- 13.3 cm(2), respectively; Compared with pure Yellow
64217    Cattle, the crosses were slaughtered at younger age, and had larger
64218    live and carcass weights, higher dressing percentages, less
64219    subcutaneous fat depth and bigger eyemuscle areas. It is concluded that
64220    crossbreeding can significantly improve Yellow Cattle' meat
64221    productivity, however feeding systems need to be improved and an
64222    appropriate grading system developed to improve beef production and
64223    quality in China. (C) 2001 Elsevier Science Ltd. All rights reserved.
64224 C1 Nanjing Agr Univ, Coll Food Sci & Technol, Meat Res Lab, Nanjing 210095, Peoples R China.
64225    Shanghai Univ, Coll Agr, Dept Food Engn, Shanghai 200041, Peoples R China.
64226    Beijing Acad Agr Sci, Inst Anim Husb, Beijing, Peoples R China.
64227 RP Zhou, GH, Nanjing Agr Univ, Coll Food Sci & Technol, Meat Res Lab,
64228    Nanjing 210095, Peoples R China.
64229 CR LIU L, 1998, J YELLOW CATTLE, V24, P32
64230    MAY SG, 1992, J ANIM SCI, V70, P2431
64231    TATUM D, 1997, BEEF FACTS
64232    ZHANG CG, 1999, CATTLE BEEF IND CHIN, P1
64233    ZHOU GH, 1998, ANN RECIPROCAL MEAT, V51, P92
64234 NR 5
64235 TC 1
64236 SN 0309-1740
64237 J9 MEAT SCI
64238 JI Meat Sci.
64239 PD AUG
64240 PY 2001
64241 VL 58
64242 IS 4
64243 BP 359
64244 EP 362
64245 PG 4
64246 SC Food Science & Technology
64247 GA 443VZ
64248 UT ISI:000169364000004
64249 ER
64250 
64251 PT J
64252 AU Cong, YH
64253    Zhu, ZY
64254 TI A homotopy method of switching solution branches at the pitchfork
64255    bifurcation point
64256 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
64257 DT Article
64258 DE homotopy method; switching solution branches; pitchfork point
64259 AB By introducing proper parameters in the original nonlinear system, a
64260    continuation method for switching solution branches at a pitchfork
64261    point is proposed and their theories have been established in this
64262    paper. It is sufficient to implement this method that a standard
64263    continuation procedure is only used. Some numerical examples are given
64264    to illustrate the effectiveness of this method.
64265 C1 Shandong Teachers Univ, Coll Math Sci, Shanghai 200234, Peoples R China.
64266    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
64267    Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China.
64268 CR ALLGOWER EL, 1981, LECT NOTES MATH, V878
64269    CHOW SN, 1982, METHOD BIFURCATION T
64270    GOLUBITSKY M, 1984, SINGULARITIES GROUP, V1
64271    KELLER HB, 1977, P APPL BIFURCATION T, P359
64272    RHEINBOLDT WC, 1978, SIAM J NUMER ANAL, V15, P321
64273 NR 5
64274 TC 0
64275 SN 0254-9409
64276 J9 J COMPUT MATH
64277 JI J. Comput. Math.
64278 PD MAY
64279 PY 2001
64280 VL 19
64281 IS 3
64282 BP 299
64283 EP 308
64284 PG 10
64285 SC Mathematics, Applied; Mathematics
64286 GA 443YR
64287 UT ISI:000169371600008
64288 ER
64289 
64290 PT J
64291 AU Li, YM
64292    Xing, SM
64293    Zhai, QJ
64294 TI Numerical simulation of semisolid continuous casting process
64295 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
64296 DT Article
64297 DE semisolid continuous casting; numerical simulation; mathematical model
64298 ID RHEOLOGICAL BEHAVIOR
64299 AB A general mathematical model and boundary condition applicable to
64300    momentum and heat transfer in the semisolid continuous casting(SCC)
64301    process was established. Using the model, the numerical simulation of
64302    the momentum and heat transfer of molten metal was carried out in the
64303    SCC system. The obtained results fit well with the measured ones.
64304    Moreover, using the numerical simulating software, the effect of
64305    various factors on breakout and breakage was explored. The obtained
64306    results show that heat flow density of copper mold and the withdrawal
64307    beginning time are two major influencing factors. The larger the heat
64308    flow density of copper mold, or the shorter the withdrawal beginning
64309    time, the more stable the semisolid continuous casting process.
64310 C1 Hebei Univ Sci & Technol, Sch Mat Sci & Engn, Shijiazhuang 050054, Peoples R China.
64311    Tsing Hua Univ, Dept Mech Engn, Beijing 100084, Peoples R China.
64312    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200027, Peoples R China.
64313 CR CHEN HQ, 1990, NUMERICAL SIMULATION
64314    CHEN SS, 1978, SEMISOLID CASTING
64315    MATSUMIYA T, 1981, METALL T B, V12, P17
64316    PATANKAR SV, 1982, NUMERICAL METHOD HEA
64317    SPENCER DB, 1972, METALL T, V3, P1925
64318    TAHA MA, 1988, J MATER SCI, V23, P1385
64319    TAHA MA, 1998, MAT SCI, V23, P1379
64320    WEI PY, 1996, CHINESE J NONFERROUS, V4, P98
64321    XING SM, 1996, STUDY SEMISOLID CONT, P51
64322    XING SM, 2000, CHINESE J NONFERROUS, V10, P800
64323    XING SM, 2000, SPECIAL CASTING NONF, P16
64324 NR 11
64325 TC 1
64326 SN 1003-6326
64327 J9 TRANS NONFERROUS METAL SOC CH
64328 JI Trans. Nonferrous Met. Soc. China
64329 PD JUN
64330 PY 2001
64331 VL 11
64332 IS 3
64333 BP 378
64334 EP 381
64335 PG 4
64336 SC Metallurgy & Metallurgical Engineering
64337 GA 440RK
64338 UT ISI:000169187900015
64339 ER
64340 
64341 PT J
64342 AU Yang, GH
64343    Jiang, Y
64344    Duan, YS
64345 TI Topological quantization of k-dimensional topological defects and
64346    motion equations
64347 SO CHINESE PHYSICS LETTERS
64348 DT Article
64349 ID SPACE-TIME DEFECTS; GAUGE FIELD-THEORY; DISCLINATION CONTINUUM;
64350    COORDINATE CONDITION; LINEAR DEFECTS; TENSOR CURRENT; P-BRANES;
64351    BIFURCATION; STRINGS; DISLOCATION
64352 AB Using the phi -mapping method and kth-order topological tenser current
64353    theory, we present a unified theory of describing k-dimensional
64354    topological defects and obtain their topological quantization and
64355    motion equations. It is shown that the inner structure of the
64356    topological tenser current is just the dynamic form of the topological
64357    defects, which are generated from the zeros of the m-component order
64358    parameter vector held. In this dynamic form, the topological defects
64359    are topologically quantized naturally and the topological quantum
64360    numbers are determined by the Hopf indices and the Brouwer degrees. As
64361    the generalization of Nielsen's Lagrangian and Nambu's action for
64362    strings, the action and the motion equations of the topological defects
64363    are also derived.
64364 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
64365    Chinese Acad Sci, Inst Theoret Phys, Beijing 100080, Peoples R China.
64366    Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China.
64367 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
64368 CR CARROLL SM, 1998, PHYS REV D, V57, P5189
64369    CHEN G, 2000, CHINESE PHYS LETT, V17, P82
64370    DAI J, 1989, MOD PHYS LETT A, V4, P2073
64371    DIAMANTINI MC, 1996, PHYS LETT B, V388, P273
64372    DUAN YS, 1992, GEN RELAT GRAVIT, V24, P1033
64373    DUAN YS, 1997, HELV PHYS ACTA, V70, P565
64374    DUAN YS, 1998, CHINESE PHYS LETT, V15, P781
64375    DUAN YS, 1999, CHINESE PHYS LETT, V16, P157
64376    DUAN YS, 2000, J MATH PHYS, V41, P4379
64377    DUFF MJ, 1991, PHYS LETT B, V273, P409
64378    DUFFY LC, 1991, EPIDEMIOLOGY, V2, P141
64379    HOROWITZ GT, 1991, NUCL PHYS B, V360, P197
64380    JIANG Y, 2000, J MATH PHYS, V41, P2616
64381    LALAK Z, HEPPH9702405
64382    LI S, HEPTH0001007
64383    NAMBU Y, 1970, UNPUB LECT COPENHAGE
64384    NIELSEN HB, 1973, NUCL PHYS B, V57, P367
64385    POLYAKOV A, 1986, NUCL PHYS B, V268, P406
64386    SCHOUTEN JA, 1965, TENSOR ANAL PHYSICIT, P415
64387    TAO BX, 1999, CHINESE PHYS LETT, V16, P701
64388    TOWNSEND PK, 1988, PHYS LETT B, V202, P53
64389    TOWNSEND PK, 1995, PHYS LETT B, V350, P184
64390    TUROK N, ASTROPH9612242
64391    VILENKIN A, 1994, COSMIC STRINGS OTHER
64392    YANG GH, 1998, INT J MOD PHYS B, V12, P2599
64393    YANG GH, 1998, INT J THEOR PHYS, V37, P2371
64394    YANG GH, 1998, INT J THEOR PHYS, V37, P2953
64395    YANG GH, 1998, MOD PHYS LETT A, V13, P745
64396    YANG GH, 1999, INT J ENG SCI, V37, P1037
64397 NR 29
64398 TC 6
64399 SN 0256-307X
64400 J9 CHIN PHYS LETT
64401 JI Chin. Phys. Lett.
64402 PD MAY
64403 PY 2001
64404 VL 18
64405 IS 5
64406 BP 631
64407 EP 633
64408 PG 3
64409 SC Physics, Multidisciplinary
64410 GA 440GX
64411 UT ISI:000169168500003
64412 ER
64413 
64414 PT J
64415 AU Gu, GD
64416 TI Some conditions for existence and stability of relaxed incomplete LU
64417    factorizations
64418 SO APPLIED NUMERICAL MATHEMATICS
64419 DT Article
64420 DE linear systems; preconditioners; incomplete factorizations; relaxation
64421    parameter
64422 ID LINEAR-SYSTEMS; MATRICES
64423 AB We present a condition for the existence of the relaxed incomplete LU
64424    factorization (RILU) (Axelsson and Lindskog, 1986), and based on the
64425    analytical results of Elman (1986, 1989), we show the conditions for
64426    the stability of the computations involving the triangular factors in
64427    the RILU preconditioning operation during the preconditioned iterative
64428    process, These conditions are related to the relaxation parameter omega
64429    and the focus is mainly on RILU(L,w). Our analysis consists of an
64430    analytical and numerical study of a class of pentadiagonal matrices.
64431    The numerical experiments show that these conditions play an important
64432    role in obtaining an efficient RILU preconditioner, and show that the
64433    relaxation parameter w could also play an important role in obtaining
64434    an efficient RILU preconditioner. (C) 2001 IMACS. Published by Elsevier
64435    Science B.V. All rights reserved.
64436 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
64437 RP Gu, GD, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
64438 CR AXELSSON O, 1984, FINITE ELEMENT SOLUT
64439    AXELSSON O, 1986, NUMER MATH, V48, P479
64440    AXELSSON O, 1994, NUMER LINEAR ALGEBR, V1, P155
64441    BRUASET AM, 1990, MATH COMPUT, V54, P701
64442    CHOW E, 1997, J COMPUT APPL MATH, V86, P387
64443    ELMAN HC, 1986, MATH COMPUT, V47, P191
64444    ELMAN HC, 1989, BIT, V29, P890
64445    GU GD, 1987, SOLUTION NONSYMMETRI
64446    GU GD, 1999, LINEAR ALGEBRA APPL, V299, P1
64447    GUSTAFSSON I, 1978, BIT, V18, P142
64448    GUSTAFSSON I, 1983, PRECONDITIONING METH, P265
64449    GUSTAFSSON I, 1996, BIT, V36, P86
64450    MANTEUFFEL TA, 1980, MATH COMPUT, V34, P473
64451    MEIJERINK JA, 1977, MATH COMPUT, V31, P148
64452    MEIJERINK JA, 1981, J COMPUT PHYS, V44, P134
64453    SAAD Y, 1996, ITERATIVE METHODS SP
64454    VANDERVORST HA, 1981, J COMPUT PHYS, V44, P1
64455    WITTUM G, 1989, SIAM J SCI STAT COMP, V10, P699
64456 NR 18
64457 TC 0
64458 SN 0168-9274
64459 J9 APPL NUMER MATH
64460 JI Appl. Numer. Math.
64461 PD JUL
64462 PY 2001
64463 VL 38
64464 IS 1-2
64465 BP 105
64466 EP 121
64467 PG 17
64468 SC Mathematics, Applied
64469 GA 442FB
64470 UT ISI:000169273600006
64471 ER
64472 
64473 PT J
64474 AU Wang, NN
64475 TI A theoretical and experimental study to measure the concentration and
64476    particle size distribution in two-phase flows
64477 SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION
64478 DT Article
64479 AB Based on light scattering theory, an optical method is presented for
64480    measuring the concentration and particle size distribution of the
64481    dispersed phase in two-phase flows. A prototype was also constructed.
64482    Comprehensive computer simulation and numerical calculations were
64483    carried out to calibrate the correctness of this method. An
64484    experimental study was also performed in gas-solid and gas-liquid
64485    two-phase flows. The results of the measurements are given and
64486    discussed in detail.
64487 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
64488 RP Wang, NN, Shanghai Univ Sci & Technol, 516 Jun Gong Rd, Shanghai
64489    200093, Peoples R China.
64490 CR BARTH HG, 1984, MODERN METHODS PARTI
64491    BAYVEL LP, 1981, ELECTROMAGNETIC SCAT
64492    KERKER M, 1969, SCATTERING LIGHT OTH
64493    MILLER BV, 1988, CRC CRIT R ANAL CHEM, V20, P75
64494    VANDEHULST HC, 1957, LIGHT SCATTERING SMA
64495    WANG NN, 1995, P 1 INT S 2 PHAS FLO, P695
64496    WANG NN, 1995, P INT S MEAS TECHN M, P127
64497    WANG NN, 2000, OPTICAL PARTICLE SIZ
64498    YU SM, 1999, THESIS U SHANGHAI SC
64499 NR 9
64500 TC 3
64501 SN 0934-0866
64502 J9 PART PART SYST CHARACT
64503 JI Part. Part. Syst. Charact.
64504 PD MAY
64505 PY 2001
64506 VL 18
64507 IS 1
64508 BP 26
64509 EP 32
64510 PG 7
64511 SC Engineering, Chemical; Materials Science, Characterization & Testing
64512 GA 439EZ
64513 UT ISI:000169099000004
64514 ER
64515 
64516 PT J
64517 AU Wang, XZ
64518    Lu, HB
64519    Wang, XF
64520    Yu, DY
64521    Qian, F
64522    Fang, ZJ
64523 TI Effect of wavelength-modulating parameters on intensity fluctuations of
64524    the light source in a photothermal-modulating laser-diode interferometer
64525 SO JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS
64526 DT Article
64527 DE interferometer; photothermal effect; laser diode; optical testing
64528 AB In the laser diode interferometer with a photothermal wavelength
64529    modulation which is used for optical fine measurement, intensity
64530    fluctuations of the light source cause measurement errors though the
64531    fluctuations decrease greatly as compared with the injection current
64532    modulation of wavelength. In this paper, we investigated the effect of
64533    photothermal-modulation parameters of wavelength on the intensity
64534    fluctuations of the light source. Choosing appropriate
64535    photothermal-modulation parameters, we measured microdisplacements of
64536    objects with a high measurement accuracy.
64537 C1 Acad Sinica, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
64538    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
64539 RP Wang, XZ, Acad Sinica, Shanghai Inst Opt & Fine Mech, POB 800-211,
64540    Shanghai 201800, Peoples R China.
64541 CR CASEY HC, 1978, HETEROSTRUCTURE LA A
64542    KAKUMA S, 1994, OPT ENG, V33, P2992
64543    KLIMCAK CM, 1988, J OPT SOC AM B, V5, P211
64544    SASAKI O, 1990, OPT ENG, V29, P1511
64545    WANG XF, 1999, OPT LASER TECHNOL, V31, P559
64546 NR 5
64547 TC 2
64548 SN 1464-4258
64549 J9 J OPT A-PURE APPL OPT
64550 JI J. Opt. A-Pure Appl. Opt.
64551 PD MAY
64552 PY 2001
64553 VL 3
64554 IS 3
64555 BP 222
64556 EP 224
64557 PG 3
64558 SC Optics
64559 GA 438UU
64560 UT ISI:000169073300016
64561 ER
64562 
64563 PT J
64564 AU Shang, XC
64565    Cheng, CJ
64566 TI Exact solution for cavitated bifurcation for compressible hyperelastic
64567    materials
64568 SO INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE
64569 DT Article
64570 DE cavitation; hyperelastic materials; bifurcation; exact solution
64571 ID NONLINEARLY ELASTIC SPHERES; SOLIDS; GROWTH; ELASTODYNAMICS;
64572    ELASTOSTATICS; EQUILIBRIA; EXAMPLE; FINITE
64573 AB In this paper, a new exact analytic solution for spherical cavitated
64574    bifurcation is presented for a class of compressible hyperelastic
64575    materials. The strain energy density of the materials is assumed to be
64576    a linear function of three strain invariants, which may be regarded as
64577    a first-order approximation to the general strain energy density near
64578    the reference configuration, and also may satisfy certain constitutive
64579    inequalities of hyperelastic materials. An explicit formula for the
64580    critical stretch for the cavity nucleation and a simple bifurcation
64581    solution for the deformed cavity radius which describes the cavity
64582    growth are obtained. The potential energy associated with the cavitated
64583    deformation is examined. It is always lower than that associated with
64584    the homogeneous deformation, thus the state of cavitated deformation is
64585    relatively stable. On the basis of the presented analytic solutions for
64586    the stretches and stresses, the catastrophic transition of deformation
64587    and the jumping of stresses for the cavitation are discussed in detail.
64588    The boundary layers of the displacements, the strain energy
64589    distribution and stresses near the formed cavity wall are observed.
64590    These investigations illustrate that cavitation reflects a local
64591    behaviour of materials. (C) 2001 Elsevier Science Ltd. All rights
64592    reserved.
64593 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
64594    Univ Sci & Technol Beijing, Dept Math & Mech, Beijing 100083, Peoples R China.
64595    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
64596 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
64597    200072, Peoples R China.
64598 CR ABEYARATNE R, 1991, Q J MECH APPL MATH, V44, P429
64599    ANTMAN SS, 1983, ARCH RATION MECH AN, V83, P1
64600    ANTMAN SS, 1987, J ELASTICITY, V18, P131
64601    BADEA L, 1996, MECH RES COMMUN, V23, P461
64602    BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
64603    BIWA S, 1994, J APPL MECH-T ASME, V61, P395
64604    BIWA S, 1995, INT J NONLINEAR MECH, V30, P899
64605    CHOUWANG MS, 1989, INT J ENG SCI, V27, P967
64606    CIARLET PG, 1988, MATH ELASTICITY, V1
64607    ERINGEN AC, 1962, NONLINEAR THEORY CON
64608    ERTAN N, 1988, ASCE J ENG MECHANICS, V114, P1231
64609    GENT AN, 1958, P ROY SOC LOND A MAT, V249, P195
64610    HAUGHON DM, 1990, INT J ENG SCI, V28, P162
64611    HORGAN CO, 1986, J ELASTICITY, V16, P189
64612    HORGAN CO, 1989, P ROY IRISH ACAD A, V89, P185
64613    HORGAN CO, 1992, INT J SOLIDS STRUCT, V29, P279
64614    HORGAN CO, 1995, APPL MECH REV, V48, P471
64615    HORGAN CO, 1995, J APPL MATH PHYS, V46, S107
64616    HOU HS, 1992, J MECH PHYS SOLIDS, V40, P571
64617    HOU HS, 1993, J APPL MECH-T ASME, V60, P1
64618    LEI HC, 1996, J ENG MATH, V30, P693
64619    MERNARD F, 1992, Q APPL MATH, V50, P201
64620    MURPHY JG, 1997, INT J SOLIDS STRUCT, V34, P3859
64621    PERICAKSPECTOR KA, 1988, ARCH RATION MECH AN, V101, P293
64622    PODIOGUIDUGLI P, 1986, J ELASTICITY, V16, P75
64623    POLIGNONE DA, 1993, INT J SOLIDS STRUCT, V30, P3381
64624    POLIGNONE DA, 1993, J ELASTICITY, V33, P27
64625    SHANG XC, 1996, ACTA MECH SINICA, V28, P751
64626    SIVALOGANATHAN J, 1986, ARCH RATION MECH AN, V96, P97
64627    SIVALOGANATHAN J, 1986, MATH PROC CAMBRIDGE, V99, P589
64628    STUART CA, 1985, ANN I H POINCARE-AN, V2, P33
64629    TIANHU H, 1990, INT J FRACTURE, V43, R51
64630    TIMOSHENKO S, 1956, THEORY ELASTICITY
64631    TRUESDELL C, 1965, ENCY PHYSICS, V3
64632 NR 34
64633 TC 15
64634 SN 0020-7225
64635 J9 INT J ENG SCI
64636 JI Int. J. Eng. Sci.
64637 PD JUL
64638 PY 2001
64639 VL 39
64640 IS 10
64641 BP 1101
64642 EP 1117
64643 PG 17
64644 SC Engineering, Multidisciplinary
64645 GA 438NR
64646 UT ISI:000169060400002
64647 ER
64648 
64649 PT J
64650 AU Dong, CH
64651 TI Higher-order fluctuations and their squeezing of angular momentum in
64652    atomic coherent states
64653 SO ACTA PHYSICA SINICA
64654 DT Article
64655 DE atomic coherent state; Bloch state; SU(2)squeezing
64656 ID QUANTUM-OPTICS
64657 AB The second-,fourth-and sixth-order fluctuations have been discussed by
64658    making use of SU(2)Lie algebra. On the basis of higher-order
64659    uncertainty relation,the definition of higher-order squeezing for the
64660    fluctuations of angular momentum has been put forward. In
64661    particular,the second-,fourth-and sixth-order squeezing in atomic
64662    coherent states are investigated. These methods and definition can be
64663    used for studying much higher-order squeezing. The higher-order
64664    squeezing can be generalized to the fluctuations of atomic variances
64665    thereby.
64666 C1 Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China.
64667 RP Dong, CH, Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China.
64668 CR ARECCHI FT, 1972, PHYS REV           A, V6, P2211
64669    DONG CH, 1996, ACTA OPT SINICA, V16, P1543
64670    DONG CH, 1996, ACTA PHYS SINICA, V46, P946
64671    HILLERY M, 1987, PHYS REV A, V36, P3796
64672    HONG CK, 1985, PHYS REV A, V32, P974
64673    NASREEN T, 1992, PHYS REV A, V46, P4161
64674    TU HT, 1993, J MOD OPTIC, V40, P57
64675    WILSONGORDON AD, 1991, PHYS REV A, V44, P7647
64676    WODKIEWICZ K, 1985, J OPT SOC AM B, V2, P458
64677 NR 9
64678 TC 2
64679 SN 1000-3290
64680 J9 ACTA PHYS SIN-CHINESE ED
64681 JI Acta Phys. Sin.
64682 PD JUN
64683 PY 2001
64684 VL 50
64685 IS 6
64686 BP 1058
64687 EP 1063
64688 PG 6
64689 SC Physics, Multidisciplinary
64690 GA 438CT
64691 UT ISI:000169036700012
64692 ER
64693 
64694 PT J
64695 AU Wu, Z
64696    Wang, Q
64697 TI Propagation properties of magnetic surface waves on the interface
64698    between two nonlinear antiferromagnets
64699 SO ACTA PHYSICA SINICA
64700 DT Article
64701 DE antiferromagnetic crystals; nonlinear surface waves
64702 ID MICROWAVE-ENVELOPE SOLITONS; IRON-GARNET FILMS; SPATIAL SOLITONS;
64703    FERROMAGNETIC-FILMS; COLLISION; BEAMS
64704 AB The nonlinear behavior of surface waves on the interface between two
64705    uni-axis antiferromagnets is studied. The theoretical analysis and the
64706    numerical simulation show that there exist two thresholds: frequency
64707    threshold and power threshold. All the incident waves satisfying the
64708    two thresholds can steadily propagate in this new guiding structure. It
64709    is indicated that the peak field will jump from one antiferromagnet
64710    into another when the power increases. It;is also revealed that the
64711    magnetic field amplitude on the interface is not power-dependent but
64712    frequency-dependent.
64713 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
64714 RP Wu, Z, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
64715 CR AITCHISON JS, 1991, J OPT SOC AM B, V8, P1290
64716    ALMEIDA NS, 1987, PHYS REV B, V36, P2015
64717    BOARDMAN AD, 1990, PHYS REV B, V41, P717
64718    BOARDMAN AD, 1993, PHYS REV B, V48, P13602
64719    BORDMAN AD, 1994, IEEE T MAGN, V30, P14
64720    BOYLE JW, 1996, PHYS REV B, V53, P12173
64721    CHEN M, 1994, PHYS REV B, V49, P12773
64722    CHIAO RY, 1964, PHYS REV LETT, V13, P479
64723    DEGASPERIS P, 1988, J APPL PHYS, V63, P4136
64724    HAUS HA, 1996, REV MOD PHYS, V68, P423
64725    JUN S, 1997, J MAGN MAGN MATER, V167, P223
64726    KELLEY PL, 1965, PHYS REV LETT, V15, P1005
64727    LEDERER F, 1983, APPL PHYS B-PHOTO, V31, P69
64728    MA JG, 1995, IEEE T MICROW THEORY, V43, P790
64729    MANEUF S, 1988, OPT COMMUN, V65, P193
64730    MOLLENAUER LF, 1998, IEEE J QUANTUM ELECT, V34, P2089
64731    NEWELL AC, 1991, NONLINEAR OPTICS, P129
64732    REYNAUD F, 1992, NONLINEAR GUIDED WAV
64733    SEGEV M, 1998, PHYS TODAY 1, V51, P42
64734    SHI TT, 1990, OPT LETT, V15, P1123
64735    SNYDER AW, 1994, PHYS REV LETT, V72, P1012
64736    TSANKOV MA, 1994, J APPL PHYS, V76, P4274
64737    WANG Q, 1998, J APPL PHYS, V83, P382
64738    WANG Q, 1999, SCI CHINA SER A, V42, P310
64739    WANG Q, 2000, J APPL PHYS, V87, P1998
64740    WANG YF, 1998, J APPL PHYS, V84, P6233
64741    ZHANG HY, 1998, J APPL PHYS, V84, P3776
64742 NR 27
64743 TC 1
64744 SN 1000-3290
64745 J9 ACTA PHYS SIN-CHINESE ED
64746 JI Acta Phys. Sin.
64747 PD JUN
64748 PY 2001
64749 VL 50
64750 IS 6
64751 BP 1178
64752 EP 1184
64753 PG 7
64754 SC Physics, Multidisciplinary
64755 GA 438CT
64756 UT ISI:000169036700033
64757 ER
64758 
64759 PT J
64760 AU Peng, YZ
64761    Fan, TY
64762    Jiang, FR
64763    Zhang, WG
64764    Sun, YF
64765 TI Perturbative method for solving elastic problems of one-dimensional
64766    hexagonal quasicrystals
64767 SO JOURNAL OF PHYSICS-CONDENSED MATTER
64768 DT Article
64769 ID ICOSAHEDRAL QUASI-CRYSTALS; STRAIGHT DISLOCATIONS; SYMMETRY;
64770    EXPRESSIONS; ALLOYS; ORDER; POINT; CRACK
64771 AB A new perturbation technique for solving elastic three-dimensional
64772    problems of quasicrystals is supplied. The key idea of this technique
64773    is to simplify the equations by introducing a parameter which does not
64774    exist in the original equations, and then look for the perturbation
64775    solution for the problems of interest. To illustrate the utility of our
64776    method and for comparison, we consider the crack problem for
64777    one-dimensional hexagonal quasicrystals with point groups 6mm,
64778    62(h)2(h), 6(m)2(h) and 6/m(h)mm, whose exact solution has been
64779    obtained by the first two authors of this paper. Only up to the order
64780    zero approximation, we get the exact expression for the stress
64781    intensity factor, which is the most important physical quantity in
64782    fracture theory. Moreover, the same procedure can be used to deal with
64783    the elastic problems for two- and three-dimensional quasicrystals. A
64784    simple review of the method is finally given.
64785 C1 Beijing Inst Technol, Res Ctr Mat Sci, Beijing 100080, Peoples R China.
64786    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
64787    Shanghai Univ Sci & Technol, Dept Basic Sci, Shanghai 200093, Peoples R China.
64788    Tsing Hua Univ, Dept Automat, Beijing 100084, Peoples R China.
64789 RP Peng, YZ, Beijing Inst Technol, Res Ctr Mat Sci, POB 327, Beijing
64790    100080, Peoples R China.
64791 CR BAK P, 1985, PHYS REV LETT, V54, P1517
64792    BENDER CM, 1978, ADV MATH METHODS SCI, CH8
64793    BUSBRIDGE IW, 1938, P LOND MATH SOC, V44, P114
64794    DAI MX, 1993, PHIL MAG LETT, V67, P67
64795    DE P, 1987, PHYS REV B, V35, P8609
64796    DE P, 1987, PHYS REV B, V36, P9304
64797    DING DH, 1993, PHYS REV B, V48, P7003
64798    DING DH, 1995, J PHYS-CONDENS MAT, V7, P5423
64799    DING DH, 1995, PHIL MAG LETT, V72, P353
64800    EBERT P, 1996, PHYS REV LETT, V77, P3827
64801    FAN TY, 1999, MATH THEORY ELASTICI
64802    FENG YC, 1989, J PHYS-CONDENS MAT, V1, P3695
64803    HE LX, 1988, PHYS REV LETT, V61, P1116
64804    ISHIMASA T, 1985, PHYS REV LETT, V55, P511
64805    LEVINE D, 1985, PHYS REV LETT, V54, P1520
64806    LI XF, 1999, PHILOS MAG A, V79, P1943
64807    MERLIN R, 1985, PHYS REV LETT, V55, P1768
64808    PENG YZ, 2000, CHINESE PHYS, V9, P764
64809    PENG YZ, 2000, J PHYS-CONDENS MAT, V12, P9381
64810    QIN YL, 1997, J PHYS-CONDENS MAT, V9, P859
64811    SHECHTMAN D, 1984, PHYS REV LETT, V53, P1951
64812    SOCOLAR JES, 1986, PHYS REV B, V34, P3345
64813    TITCHMARSH EC, 1937, INTRO THEORY FOURIER, P337
64814    WANG N, 1987, PHYS REV LETT, V59, P1010
64815    WANG R, 1994, ACTA CRYSTALLOGR A, V50, P366
64816    WANG RH, 1997, J PHYS-CONDENS MAT, V9, P2411
64817    YANG WG, 1995, PHYS LETT A, V200, P177
64818    YANG WG, 1998, PHILOS MAG A, V77, P1481
64819 NR 28
64820 TC 0
64821 SN 0953-8984
64822 J9 J PHYS-CONDENS MATTER
64823 JI J. Phys.-Condes. Matter
64824 PD MAY 7
64825 PY 2001
64826 VL 13
64827 IS 18
64828 BP 4123
64829 EP 4128
64830 PG 6
64831 SC Physics, Condensed Matter
64832 GA 435YY
64833 UT ISI:000168910800022
64834 ER
64835 
64836 PT J
64837 AU Wei, EB
64838    Gu, GQ
64839 TI The effective AC response of nonlinear composites
64840 SO COMMUNICATIONS IN THEORETICAL PHYSICS
64841 DT Article
64842 DE nonlinear composite; effective nonlinear susceptibility
64843 ID EFFECTIVE CONDUCTIVITIES; DIELECTRIC-CONSTANT; MEDIA; ABSORPTION;
64844    GENERATION; SPHERES
64845 AB A perturbative approach is used to study the AC response of nonlinear
64846    composite media, which obey a current-field relation of the form J =
64847    sigmaE + chi \E \ E-2 with components having nonlinear response at
64848    finite frequencies. For a sinusoidal applied field, we extend the local
64849    potential in terms of sinusoidal components at fundamental frequency
64850    and high-order harmonic frequencies to treat the nonlinear composites.
64851    For nonlinear composite media with a low concentrations of spherical
64852    inclusions, we give the formulae of the nonlinear effective AC
64853    susceptibility chi (*)(3 omega) at the third harmonic frequency.
64854 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
64855 RP Wei, EB, Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093,
64856    Peoples R China.
64857 CR BERGMAN DJ, 1979, J PHYS C SOLID STATE, V12, P4947
64858    BLUMENFELD R, 1989, PHYS REV B, V40, P1987
64859    CHEN G, 1994, COMMUN THEOR PHYS, V22, P265
64860    GERARDY JM, 1980, PHYS REV B, V22, P4950
64861    GU GQ, 1988, PHYS REV B, V37, P8612
64862    GU GQ, 1992, PHYS REV B, V46, P4502
64863    GU GQ, 1995, J APPL PHYS, V78, P1737
64864    GU GQ, 2000, PHYSICA B, V279, P62
64865    HUI PM, 1998, J APPL PHYS, V84, P3451
64866    KLINGENBERG DJ, 1998, MRS BULL, V23, P30
64867    LEVY O, 1995, PHYS REV E, V52, P3184
64868    LU SY, 1994, J APPL PHYS, V76, P2641
64869    MCPHYEDRAN RC, 1987, P ROY SOC LOND A MAT, V395, P45
64870    POLADIAN L, 1991, PHYS REV B, V44, P2092
64871    SUEN WM, 1979, J PHYS D, V12, P1325
64872    YU KW, 1992, PHYS LETT A, V168, P313
64873    YU KW, 1993, PHYS REV B, V47, P14150
64874    ZENG XC, 1989, PHYSICA A, V157, P192
64875 NR 18
64876 TC 6
64877 SN 0253-6102
64878 J9 COMMUN THEOR PHYS
64879 JI Commun. Theor. Phys.
64880 PD APR 15
64881 PY 2001
64882 VL 35
64883 IS 4
64884 BP 501
64885 EP 504
64886 PG 4
64887 SC Physics, Multidisciplinary
64888 GA 436MM
64889 UT ISI:000168939700024
64890 ER
64891 
64892 PT J
64893 AU Lu, ZM
64894    Liu, YL
64895    Jiang, JB
64896 TI Experimental study on turbulent features in the negative transport
64897    region of asymmetric plane channel flow
64898 SO ACTA MECHANICA SINICA
64899 DT Article
64900 DE negative transport; asymmetric channel flow turbulent characteristics
64901 AB Turbulent features of streamwise and vertical components of velocity in
64902    the negative transport region of asymmetric plane channel flow have
64903    been studied experimentally in details. Experiments show that turbulent
64904    fluctuations in negative transport region are suppressed, and their
64905    probability distributions are far from Gaussian. Besides, the skewness
64906    factors attain their negative maxima at the position of the maximum
64907    mean velocity, whereas the flatness factors attain their positive
64908    maxima at the same position.
64909 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
64910 RP Lu, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
64911    Peoples R China.
64912 CR CIOFALO M, 1992, INT J NUMER METH FL, V15, P453
64913    ESKINAZI S, 1956, J AERONAUT SCI, V23, P23
64914    ESKINAZI S, 1969, PHYS FLUIDS, V12, P1988
64915    HANJALIC K, 1972, J FLUID MECH, V51, P301
64916    JIANG JB, 2000, ADV MECH, V30, P425
64917    LAUNDER BE, 1975, J FLUID MECHANICS 3, V68, P537
64918 NR 6
64919 TC 2
64920 SN 0567-7718
64921 J9 ACTA MECH SINICA
64922 JI Acta Mech. Sin.
64923 PD MAY
64924 PY 2001
64925 VL 17
64926 IS 2
64927 BP 125
64928 EP 132
64929 PG 8
64930 SC Engineering, Mechanical; Mechanics
64931 GA 437HR
64932 UT ISI:000168986700003
64933 ER
64934 
64935 PT J
64936 AU Zhang, Y
64937    Ji, YF
64938    Zhao, DQ
64939    Zhuang, YX
64940    Wang, RJ
64941    Pan, MX
64942    Dong, YD
64943    Wang, WH
64944 TI Glass forming ability and properties of Zr/Nb-based bulk metallic
64945    glasses
64946 SO SCRIPTA MATERIALIA
64947 DT Article
64948 DE metallic glasses; casting; acoustic measurements
64949 ID MECHANICAL-PROPERTIES; ALLOYS; CRYSTALLIZATION
64950 C1 Chinese Acad Sci, Inst Phys, Ctr Condensed Matter Phys, Beijing 100080, Peoples R China.
64951    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
64952    Chinese Acad Sci, Natl Micrograv Lab, Beijing 100080, Peoples R China.
64953 RP Zhang, Y, Chinese Acad Sci, Inst Phys, Ctr Condensed Matter Phys, POB
64954    603, Beijing 100080, Peoples R China.
64955 CR CONNER RD, 1998, ACTA MATER, V46, P6089
64956    ECKERT J, 1999, MATER SCI FORUM, V312, P3
64957    FAN C, 1999, MATER T JIM, V40, P42
64958    GREER AL, 1993, NATURE, V366, P303
64959    INOUE A, 1995, MATER T JIM, V36, P866
64960    LI Y, 1997, SCRIPTA MATER, V36, P783
64961    LIU W, 1999, PHYS REV B, V59, P11755
64962    LU ZP, 2000, J NON-CRYST SOLIDS, V270, P103
64963    PEKER A, 1993, APPL PHYS LETT, V63, P2341
64964    TURNBULL D, 1969, CONTEMP PHYS, V10, P473
64965    WANG WH, 1998, PHYS REV B, V57, P8211
64966    WANG WH, 1999, APPL PHYS LETT, V74, P1803
64967    WANG WH, 2000, ACTA METALL SINICA, V36, P329
64968    ZHANG Y, 1999, ACTA PHOTONICA SINIC, V28, P35
64969 NR 14
64970 TC 4
64971 SN 1359-6462
64972 J9 SCRIPTA MATER
64973 JI Scr. Mater.
64974 PD APR 17
64975 PY 2001
64976 VL 44
64977 IS 7
64978 BP 1107
64979 EP 1112
64980 PG 6
64981 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
64982    Engineering
64983 GA 433DE
64984 UT ISI:000168739400017
64985 ER
64986 
64987 PT J
64988 AU Lu, HQ
64989    Harko, T
64990    Mak, MK
64991 TI Cosmic no-hair conjecture in Einstein-Cartan theory
64992 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS D
64993 DT Article
64994 ID HOMOGENEOUS COSMOLOGICAL MODELS; POWER-LAW INFLATION; R2 COSMOLOGY;
64995    SPACETIME; SPIN
64996 AB We prove the cosmic no-hair conjecture in the Einstein-Cartan theory by
64997    taking into account the effects due to the spin of matter. If the
64998    ordinary matter forming the cosmological fluid satisfies the dominant
64999    and strong energy conditions and the anisotropy energy sigma (2) is
65000    larger than the spin energy S-2 (i.e. sigma (2) - S-2 greater than or
65001    equal to 0), then all initially expanding Bianchi cosmologies-except
65002    type IX- evolve toward the de Sitter spacetime on a Hubble expansion
65003    time root3/Lambda. The behavior of the Bianchi type IX Universe is
65004    similar, provided that the cosmological constant is larger than the
65005    half of the largest scalar spatial curvature R-(3)(max).
65006 C1 Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
65007    Shanghai Univ, Dept Phys, Shanghai, Peoples R China.
65008    Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
65009 RP Lu, HQ, Univ Hong Kong, Dept Phys, Pokfulam, Hong Kong, Hong Kong,
65010    Peoples R China.
65011 CR ABBOTT LF, 1984, NUCL PHYS B, V244, P541
65012    AMSTERDAMSKI P, 1985, PHYS REV D, V31, P3037
65013    BARROW JD, 1977, MON NOT R ASTRON SOC, V178, P625
65014    BICAK J, 1992, ABSTR C GEN REL CORD, V13, P12
65015    CHAMBERS CM, 1994, PHYS REV LETT, V73, P617
65016    COTSAKIS S, 1993, PHYS LETT B, V319, P69
65017    COTSAKIS S, 1998, CLASSICAL QUANT GRAV, V15, P2795
65018    DEMIANSKI M, 1987, PHYS REV D, V35, P1181
65019    FUTAMASE T, 1984, PHYS REV D, V29, P2783
65020    GIBBONS GW, 1977, PHYS REV D, V15, P2738
65021    GUTH AH, 1981, PHYS REV D, V23, P347
65022    HEHL FW, 1976, REV MOD PHYS, V48, P393
65023    JENSEN LG, 1986, PHYS REV D, V34, P831
65024    KASPER U, GRQC9410030
65025    KITADA Y, 1992, PHYS REV D, V45, P1416
65026    KLUSKE S, GRQC9503021
65027    KONG KH, 1998, ASTROPHYS SPACE SCI, V260, P521
65028    LINDE AD, 1982, PHYS LETT B, V108, P389
65029    LINDE AD, 1983, PHYS LETT B, V129, P177
65030    LINDE AD, 1984, REP PROG PHYS, V47, P925
65031    LU HQ, 1995, CLASSICAL QUANT GRAV, V12, P2755
65032    LU HQ, 1996, 21 CENT CHIN ASTR C, P473
65033    LUCCHIN F, 1985, PHYS REV D, V32, P1316
65034    MAEDA K, 1988, PHYS REV D, V37, P858
65035    MAEDA K, 1992, ABSTR C GEN REL CORD, V13, P296
65036    MARTINEZGONZALE.E, 1986, PHYS LETT B, V167, P37
65037    MIJIC MB, 1986, PHYS REV D, V34, P2934
65038    MONDAINI R, 1993, INT J MOD PHYS D, V2, P47
65039    MOSS IG, 1986, PHYS LETT B, V178, P15
65040    OBUKHOV YN, 1987, CLASSICAL QUANT GRAV, V4, P1633
65041    ROTHMAN T, 1985, PHYS LETT B, V159, P256
65042    ROTHMAN T, 1986, PHYS LETT B, V180, P19
65043    STAROBINSKY AA, 1980, PHYS LETT B, V91, P99
65044    STEIGMAN G, 1983, PHYS LETT B, V128, P129
65045    TORII T, 1999, PHYS REV D, V59
65046    TURNER MS, 1986, PHYS REV LETT, V57, P2237
65047    WALD RM, 1983, PHYS REV D, V28, P2118
65048    YOKOYAMA J, 1990, PHYS REV D, V41, P1047
65049    ZARDECKI A, 1985, PHYS REV D, V31, P718
65050 NR 39
65051 TC 3
65052 SN 0218-2718
65053 J9 INT J MOD PHYS D
65054 JI Int. J. Mod. Phys. D
65055 PD JUN
65056 PY 2001
65057 VL 10
65058 IS 3
65059 BP 315
65060 EP 324
65061 PG 10
65062 SC Astronomy & Astrophysics
65063 GA 433XQ
65064 UT ISI:000168786300006
65065 ER
65066 
65067 PT J
65068 AU Gu, GQ
65069    Hui, PM
65070 TI Interaction between particles and particle chains in electrorheological
65071    fluids
65072 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
65073 DT Article
65074 ID SUSPENSIONS; CONDUCTIVITY; SIMULATION; SPHERES
65075 AB The electric potential in a granular system consisting of spherical
65076    inclusions in the presence of an external applied electric field is
65077    studied in detail within the framework of the Rayleigh identity. The
65078    effects of induced charges on the inclusions are taken into account
65079    explicitly. The method, in principle, includes the effects of all
65080    multipoles. The method is applied to study the interaction between two
65081    inclusions. The standard form of interaction between inclusions widely
65082    used in studying ER fluids is recovered as an approximation of our
65083    general approach. We then apply the method to a chain of inclusions.
65084    Analytic expressions for the electrostatic energy per inclusion and the
65085    electric field are obtained for the case in which the chain is parallel
65086    to the applied field. Our result reduces to the form used in the
65087    literature when appropriate approximation is taken. The method is
65088    further extended to study the interaction between chains of inclusions.
65089    An approximate expression is obtained for the force between two chains
65090    of inclusions. Our approach provides a rigorous framework for
65091    determining the interaction between inclusions and chains of inclusions
65092    to arbitrary accuracy.
65093 C1 Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 201800, Peoples R China.
65094    Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China.
65095 RP Gu, GQ, Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 201800,
65096    Peoples R China.
65097 CR GERARDY JM, 1982, PHYS REV B, V25, P4204
65098    GU GQ, UNPUB
65099    GU GQ, 1998, PHYS REV B, V58, P3057
65100    HALSEY TC, 1990, J STAT PHYS, V61, P1257
65101    JACKSON JD, 1975, CLASSICL ELECTRODYNA
65102    KLINGENBERG DJ, 1989, J CHEM PHYS, V91, P7888
65103    KLINGENBERG DJ, 1991, J CHEM PHYS, V94, P6160
65104    KLINGENBERG DJ, 1998, MRS BULL, V23, P30
65105    MCPHEDRAN RC, 1978, P ROY SOC LOND A MAT, V359, P45
65106    PHULE PP, 1998, MRS BULL, V23, P19
65107    RAYLEIGH, 1892, PHILOS MAG, V34, P481
65108    TAO R, 1991, PHYS REV LETT, V67, P398
65109 NR 12
65110 TC 2
65111 SN 0217-9792
65112 J9 INT J MOD PHYS B
65113 JI Int. J. Mod. Phys. B
65114 PD MAR 20
65115 PY 2001
65116 VL 15
65117 IS 6-7
65118 SI Sp. Iss. SI
65119 BP 1033
65120 EP 1041
65121 PG 9
65122 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
65123 GA 434TQ
65124 UT ISI:000168832300058
65125 ER
65126 
65127 PT J
65128 AU Xiang, ZH
65129    Jiang, L
65130    Kang, ZM
65131 TI Transient expression of somatostatin mRNA in developing ganglion cell
65132    layers of rat retina
65133 SO DEVELOPMENTAL BRAIN RESEARCH
65134 DT Article
65135 DE somatostatin; ganglion cell; retina; development; in situ
65136    hybridization; immunocytochemistry
65137 ID INSITU HYBRIDIZATION; CAT RETINA; IMMUNOREACTIVE CELLS; VISUAL-SYSTEM;
65138    MESSENGER-RNA; RABBIT RETINA; NEURONS; DEATH; DIFFERENTIATION; PEPTIDE
65139 AB Somatostatin (SOM) mRNA in developing ganglion cell layer (GCL)
65140    detected by in situ hybridization histochemistry anti SOM peptide in
65141    developing optic chiasma and optic tract detected by
65142    immunocytochemistry were monitored to explore whether ganglion cells
65143    expressing SOM project to the visual center. Most of these cells in the
65144    developing GCL expressed SOM transiently from embryonic day 13 (E13) to
65145    E21. The cells expressing SOM mRNA initially followed a
65146    central-to-peripheral pattern of development. The cells expressing SOM
65147    mRNA in the retinas of fetuses became detectable at E13. From E14 to
65148    E17 the number of cells expressing SOM mRNA increased rapidly. At E17
65149    most of the cells in the developing GCL expressed SOM mRNA. From E18 to
65150    postnatal days the positive cells became sparse except at the postnatal
65151    day 0 (PND0) the positive cells decreased dramatically in comparison
65152    with that at the E21. At PND15, the positive cells only can be found in
65153    the inner neuroblastic layer and in the ganglion cell layer. At PND20
65154    the distribution pattern and the number of the positive cells were
65155    essentially the same as that in adult rat. SOM immunoreactivity was
65156    detectable at E16 in the developing optic chiasma and optic tract; the
65157    majority of the fibers in these area were SOM positive. From E16 to E18
65158    the density of the immunostaining increased rapidly, whereas from E19
65159    to E21 the density decreased. At PND0 no positive fibers were seen. The
65160    transient presence of SOM in most of the ganglion cells in the
65161    developing ganglion cell layer has prompted us to study the rc,le of
65162    SOM in generation and differentiation of the retinal ganglion cells,
65163    and formation of the retina-visual center projections. (C) 2001
65164    Elsevier Science B.V. All rights reserved.
65165 C1 Second Military Med Univ, Dept Histol & Embryol, Shanghai 200433, Peoples R China.
65166    Shanghai Univ Sci & Technol, Elect Engn Coll, Shanghai 200433, Peoples R China.
65167 RP Xiang, ZH, Second Military Med Univ, Dept Histol & Embryol, Shanghai
65168    200433, Peoples R China.
65169 CR BODENANT C, 1991, NEUROSCIENCE, V41, P595
65170    ELLIS JP, 1983, P SOC EXP BIOL MED, V172, P463
65171    ENGELMANN R, 1996, EUR J NEUROSCI, V8, P220
65172    FAWCETT JW, 1984, P NATL ACAD SCI USA, V81, P5589
65173    FERRIERO DM, 1987, BRAIN RES, V431, P207
65174    FERRIERO DM, 1990, DEV BRAIN RES, V57, P15
65175    FINLEY JCW, 1978, AM J ANAT, V153, P483
65176    FONTANESI G, 1997, DEV BRAIN RES, V103, P119
65177    GOODMAN RH, 1982, J BIOL CHEM, V257, P1156
65178    HOEFLER H, 1986, HISTOCHEM J, V18, P597
65179    HOFLER H, 1987, ACTA HISTOCHEM S, V34, P101
65180    HUTSLER JJ, 1995, J COMP NEUROL, V361, P152
65181    INAGAKI S, 1989, MOL BRAIN RES, V6, P289
65182    ISHIMOTO I, 1982, J HIRN FORSCHUNG, V23, P127
65183    JU G, 1987, CELL TISSUE RES, V247, P417
65184    KATZ DM, 1992, J NEUROBIOL, V23, P855
65185    KIRSCH B, 1979, CELL TISSUE RES, V204, P127
65186    KIYAMA H, 1990, NEUROSCIENCE, V38, P223
65187    KUNGEL M, 1997, DEV BRAIN RES, V101, P107
65188    LARSEN JNB, 1990, VISUAL NEUROSCI, V5, P441
65189    LUGO N, 1997, CELL BIOL INT, V21, P447
65190    MCCABE KL, 1999, DEVELOPMENT, V126, P5713
65191    MITROFANIS J, 1989, NEUROSCI LETT, V104, P209
65192    REESE BE, 1992, NEUROSCIENCE, V46, P419
65193    RICKMAN DW, 1996, J COMP NEUROL, V365, P491
65194    SAGAR SM, 1987, J COMP NEUROL, V266, P291
65195    SCHWARTZ JP, 1998, PERSPECT DEV NEUROBI, V5, P427
65196    SENGELAUB DR, 1982, J COMP NEUROL, V204, P311
65197    TRAINA G, 1994, VISUAL NEUROSCI, V11, P165
65198    WHITE CA, 1991, J COMP NEUROL, V304, P1
65199    WHITE CA, 1992, J COMP NEUROL, V317, P129
65200    XIANG Z, 1997, CHIN J ANAT, V20, P21
65201    XIANG ZH, 1998, BRAIN RES, V813, P390
65202    YOUNG RW, 1984, J COMP NEUROL, V229, P362
65203 NR 34
65204 TC 8
65205 SN 0165-3806
65206 J9 DEVELOP BRAIN RES
65207 JI Dev. Brain Res.
65208 PD MAY 31
65209 PY 2001
65210 VL 128
65211 IS 1
65212 BP 25
65213 EP 33
65214 PG 9
65215 SC Developmental Biology; Neurosciences
65216 GA 434ET
65217 UT ISI:000168802700004
65218 ER
65219 
65220 PT J
65221 AU Liu, YR
65222    Liu, ZR
65223    Zheng, YA
65224 TI Attractors of nonautonomous Schrodinger equations
65225 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
65226 DT Article
65227 DE nonautonomous Schrodinger equations; uniform attractor; Hausdorff
65228    dimension
65229 AB The long-time behaviour of a two-dimensional nonautonomous nonlinear
65230    Schrodinger equation is considered. The existence! of uniform attractor
65231    is proved and the upper bound of the uniform attractor's Housdorff
65232    dimension is given.
65233 C1 Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China.
65234    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
65235    Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China.
65236 RP Liu, YR, Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China.
65237 CR BABIN AV, 1992, ATTRACTORS EVOLUTION
65238    CHEPYZHOV VV, 1994, J MATH PURE APPL, V73, P279
65239    GUO BL, 1995, NONLINEAR EVOLUTION
65240    HALE JK, 1987, MATH SURVEYS MONOGRA, V25
65241    MIRANVILLE A, 1997, NONLINEARITY, V10, P1047
65242    PAZY A, 1983, APPL MATH SCI, V40
65243    TEMAM R, 1988, APPL MATH SCI, V68
65244 NR 7
65245 TC 0
65246 SN 0253-4827
65247 J9 APPL MATH MECH-ENGL ED
65248 JI Appl. Math. Mech.-Engl. Ed.
65249 PD FEB
65250 PY 2001
65251 VL 22
65252 IS 2
65253 BP 180
65254 EP 189
65255 PG 10
65256 SC Mathematics, Applied; Mechanics
65257 GA 435GF
65258 UT ISI:000168868500007
65259 ER
65260 
65261 PT J
65262 AU Zhou, J
65263    Pun, EYB
65264    Chung, PS
65265    Zhang, XH
65266 TI Z-scan measurement of a novel amorphous molecular material
65267 SO OPTICS COMMUNICATIONS
65268 DT Article
65269 DE polymer; Z-scan; nonlinear optics; saturation absorption
65270 ID OPTICAL NONLINEARITIES; WAVE-GUIDE
65271 AB The nonlinear optical refractive and absorption of the novel amorphous
65272    molecular material. 5.5 ' -bis(dimesitylboryl)-2,2 ' -bithiophene have
65273    been investigated by using the Z-scan technique with a
65274    nanosecond-pulsed Nd:YAG laser at its second harmonic (532 nm)
65275    radiation. The nonlinear transmission characteristics exhibit saturable
65276    absorption at 532 nm and are explained by using the three-level
65277    saturable model. The saturation intensity, the real and imaginary parts
65278    of the nonlinear refraction index along with their sign were
65279    determined. These results indicate that BMB-2T is promising material
65280    for photonic applications. (C) 2001 Published by Elsevier Science B.V.
65281 C1 Shanghai Univ Sci & Technol, Inst Engn Phys, Shandong 271019, Peoples R China.
65282    City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China.
65283    Chinese Acad Sci, Inst Photography Chem, Beijing 100101, Peoples R China.
65284 RP Zhou, J, Shanghai Univ Sci & Technol, Inst Engn Phys, Shandong 271019,
65285    Peoples R China.
65286 CR BRANGER C, 1996, J MATER CHEM, V6, P555
65287    BREDAS JL, 1994, CHEM REV, V94, P243
65288    DEMENICIS L, 1997, J OPT SOC AM B, V14, P609
65289    GANG Y, 1998, ADV MATER, V11, P1431
65290    GUBLER U, 1998, APPL PHYS LETT, V73, P2396
65291    KAJZAR F, 1987, NONLINEAR OPTICAL PR, V2, P51
65292    KUZYK M, 1996, ORGANIC THIN FILMS W, P759
65293    MA H, 1995, APPL PHYS LETT, V66, P1581
65294    MA SJ, 1998, OPT COMMUN, V149, P8
65295    MOHAN RK, 1997, OPT COMMUN, V144, P322
65296    NODA T, 1999, ADV MATER, V11, P283
65297    NORMAN P, 1999, J CHEM PHYS, V111, P7758
65298    OLIVEIRA LC, 1996, JPN J APPL PHYS 1, V35, P2649
65299    PETROV DV, 1994, APPL PHYS LETT, V65, P1067
65300    PRASAD PN, 1991, INTRO NONLINEAR OPTI
65301    SAMOC M, 1998, J OPT SOC AM B, V15, P817
65302    SHEIKBAHAE M, 1990, IEEE J QUANTUM ELECT, V26, P760
65303    WANG J, 1994, J OPT SOC AM B, V11, P1009
65304    WANG WS, 1999, IEEE PHOTONIC TECH L, V11, P51
65305    XIA T, 1994, OPT LETT, V19, P317
65306    YANG L, 1992, OPT LETT, V17, P323
65307    ZHOU J, 1997, OPT LETT, V22, P1482
65308 NR 22
65309 TC 5
65310 SN 0030-4018
65311 J9 OPT COMMUN
65312 JI Opt. Commun.
65313 PD MAY 8
65314 PY 2001
65315 VL 191
65316 IS 3-6
65317 BP 427
65318 EP 433
65319 PG 7
65320 SC Optics
65321 GA 431FV
65322 UT ISI:000168621900034
65323 ER
65324 
65325 PT J
65326 AU Yu, LM
65327    Wang, Q
65328 TI Analysis of the existence of magnetostatic solitons in ferromagnetic
65329    films under the influence of carriers
65330 SO ACTA PHYSICA SINICA
65331 DT Article
65332 DE magnetostatic solitons; carriers; ferromagnetic film; magnetostatic
65333    surface wave
65334 ID MICROWAVE-ENVELOPE SOLITONS; IRON-GARNET FILMS
65335 AB Under the influence of semiconductor carriers, within certain
65336    frequencies, along the direction of propagation perpendicular to the
65337    external magnetic field, magnetostatic surface wave can develop into
65338    magnetostatic solitons, with the group velocity and phase velocity
65339    being opposite to each other, and the magnitude of the velocity changes
65340    with the carriers density.
65341 C1 Shanghai Univ, Coll Pure Sci, Dept Phys, Shanghai 200436, Peoples R China.
65342 RP Yu, LM, Shanghai Univ, Coll Pure Sci, Dept Phys, Shanghai 200436,
65343    Peoples R China.
65344 CR AWAI I, 1976, JPN J APPL PHYS, V15, P1297
65345    BOARDMAN AD, 1993, PHYS REV B, V48, P13602
65346    BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
65347    CHEN M, 1994, PHYS REV B, V49, P12773
65348    LIGHTHILL MJ, 1965, J I MATH APPL, V1, P269
65349    TSANKOV MA, 1994, J APPL PHYS, V76, P4274
65350 NR 6
65351 TC 0
65352 SN 1000-3290
65353 J9 ACTA PHYS SIN-CHINESE ED
65354 JI Acta Phys. Sin.
65355 PD MAY
65356 PY 2001
65357 VL 50
65358 IS 5
65359 BP 958
65360 EP 963
65361 PG 6
65362 SC Physics, Multidisciplinary
65363 GA 430VF
65364 UT ISI:000168595600031
65365 ER
65366 
65367 PT J
65368 AU Hua, ZZ
65369    Xu, HY
65370    Zhou, GY
65371    Liu, JF
65372    Huang, HM
65373    Ding, WX
65374 TI Analyses of thermal stress and fracture during cryopreservation of
65375    blood vessel
65376 SO SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES
65377 DT Article
65378 DE blood vessel; thermal stress; fracture; cryopreservation
65379 ID ARTERIES
65380 AB The occurrence of fractures in the vessel wall has been a major problem
65381    for human blood vessel cryopreservation. The large volumetric expansion
65382    of water during crystallization produces great inner stresses. To solve
65383    these complicated heat transfer and thermal stress problems, a model
65384    and an analytic method are presented in this paper, with which
65385    transient temperature field, the transient stress field inside the
65386    blood vessels during freezing can be calculated and analyzed, and the
65387    probable cracks or fractures can be predicted. The analytic results of
65388    sheep thoracic artery are consistent with the experimental observations
65389    of fractures.
65390 C1 Shanghai Univ Sci & Technol, Inst Cryobiol & Food Sci, Shanghai 200093, Peoples R China.
65391    Shanghai Second Med Univ, Shanghai 200092, Peoples R China.
65392 RP Hua, ZZ, Shanghai Univ Sci & Technol, Inst Cryobiol & Food Sci,
65393    Shanghai 200093, Peoples R China.
65394 CR BATESON EAJ, 1994, CRYOLETT, V15, P15
65395    CALDWELL J, 1998, NUMER HEAT TR B-FUND, V33, P99
65396    HU HY, 2000, J CRYOGENICS, P22
65397    HUA TC, 1994, CRYOBIOMEDICAL TECHN, P20
65398    PEGG DE, 1997, CRYOBIOLOGY, V34, P183
65399    RABIN Y, 1996, CRYOBIOLOGY, V33, P276
65400    SHI X, 1998, T ASAE, V41, P1407
65401    SHI X, 1999, T ASME, V120, P720
65402    TIMOSHENKO S, 1970, THEORY ELASTICITY, P443
65403    ZHANG J, 2000, J ENG THERMOPHYSICS, V21, P350
65404    ZHAO MJ, 1995, THESIS SHANGHAI 2 ME
65405 NR 11
65406 TC 4
65407 SN 1006-9321
65408 J9 SCI CHINA SER E
65409 JI Sci. China Ser. E-Technol. Sci.
65410 PD APR
65411 PY 2001
65412 VL 44
65413 IS 2
65414 BP 158
65415 EP 163
65416 PG 6
65417 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary
65418 GA 429HF
65419 UT ISI:000168509900006
65420 ER
65421 
65422 PT J
65423 AU Liu, WQ
65424    Li, Q
65425    Zhou, BX
65426 TI Discussion on corrosion transition mechanism of zircaloy
65427 SO RARE METAL MATERIALS AND ENGINEERING
65428 DT Review
65429 DE zircaloy; corrosion; transition; phase transformation
65430 ID RESISTANCE
65431 AB Several hypotheses on the corrosion transition phenomenon of zircaloy
65432    are presented. Among those, the phase transformation mechanism suggests
65433    that the oxide growth rate of zircaloy is mainly controlled by the
65434    transformation from t-ZrO2 to m-ZrO2 near the oxide/metal interface,
65435    and the t-m transfomation is enhanced due to stress relaxation in 400
65436    degreesC, 10.3 MPa superheated steam or triggered by the interaction of
65437    OH- with oxygen vacanices in 300 degreesC aqueous lithium hydroxide
65438    solution. More attention is paid to this hypothesis and the mechanism
65439    is discussed in this papier. Lastly, authors' view is put forwards: the
65440    break of the barrier leger of oxide-film, which may be caused by the
65441    compressive stress reaching a definite value or the degradation of its
65442    mechanical properties because of the lithium coming into the oxide
65443    film, will bring about the corrosion acceleration and transition
65444    phenomenon.
65445 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
65446 RP Liu, WQ, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
65447 CR ANADA H, 1996, ZIRCONIUM NUCL IND, P35
65448    BEIE HJ, 1994, ZIRCONIUM NUCL IND, P615
65449    GARZAROLLI F, 1991, ZIRC NUCL IND 9 INT, P395
65450    GODLESWSKI J, 1991, ZIRC NUCL IND 9 INT, P416
65451    GODLEWSKI J, 1994, ZIRCONIUM NUCL IND, P663
65452    KIDO T, 2000, ZIRCONIUM NUCL IND, P773
65453    KIM YS, 1999, J NUCL MATER, V270, P165
65454    LI ZK, 1999, RARE METAL MAT ENG, V28, P101
65455    LI ZK, 1999, RARE METAL MAT ENG, V28, P380
65456    PECHEUR D, 1996, ZIRCONIUM NUCL IND, P94
65457    PECHEUR D, 2000, ZIRCONIUM NUCL IND, P793
65458    SAARIO T, 1993, REZ, P4
65459    ZHOU BX, 1991, HIGH TEMP CORR PROT, P121
65460    ZHOU BX, 2000, NUCL POWER ENG, V21, P439
65461 NR 14
65462 TC 5
65463 SN 1002-185X
65464 J9 RARE METAL MAT ENG
65465 JI Rare Metal Mat. Eng.
65466 PD APR
65467 PY 2001
65468 VL 30
65469 IS 2
65470 BP 81
65471 EP 84
65472 PG 4
65473 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
65474    Engineering
65475 GA 430DC
65476 UT ISI:000168557400001
65477 ER
65478 
65479 PT J
65480 AU Liu, TY
65481    Zhang, QR
65482    Mi, XW
65483    Feng, XQ
65484 TI A new absorption band and the decomposition of the 350 nm absorption
65485    band of PbWO4
65486 SO PHYSICA STATUS SOLIDI A-APPLIED RESEARCH
65487 DT Article
65488 ID SINGLE-CRYSTALS
65489 AB Single crystal PbWO4 has been grown by the improved Bridgman method.
65490    The absorption spectra in polarized light of the sample with the
65491    crystal c-axis parallel to its surface have been measured. The
65492    absorption spectra of the as-grown crystal show a 350 nm weak band with
65493    dichroism in polarized light. Subtracting the polarized light
65494    absorption spectrum with the electric vector E parallel to the c-axis
65495    by that one with E perpendicular to the c-axis, the polarized light
65496    difference spectrum is obtained. The polarized light difference
65497    spectrum indicates that the 350 nm band has two peaks and can be
65498    decomposed into two bands peaking at 330 and 360 nm, respectively. In
65499    order to determine the detailed structure of the 350 nm band, annealing
65500    experiments in air condition of the as grown crystal at different
65501    temperatures were performed. Difference spectra of the annealed crystal
65502    have been obtained by subtracting the absorption spectra of the crystal
65503    annealed at different annealing temperatures by that one of the
65504    as-grown crystal. The absorption spectra features also indicate that
65505    the 350 nm absorption band is composed of two bands peaking at 330 and
65506    360 nm, respectively. The annealing properties of the 330 nm and the
65507    350 nm band are obviously different. We come to the conclusion that the
65508    350 nm band is a composed band and can be decomposed into two bands
65509    peaking at 360 and 330 nm, respectively. The two bands are suggested to
65510    belong to different color centers.
65511 C1 Shanghai Univ Sci & Technol, Dept Basic Sci, Shanghai 200093, Peoples R China.
65512    Chinese Acad Sci, Shanghai Inst Ceram, Lab Funct Inorgan Mat, Shanghai 200050, Peoples R China.
65513 RP Liu, TY, Shanghai Univ Sci & Technol, Dept Basic Sci, 516 Jun Gong Rd,
65514    Shanghai 200093, Peoples R China.
65515 CR AAMIO PA, 1993, NUCL INCTRUM METHO A, V336, P98
65516    ANNENKOV AN, 1996, PHYS STATUS SOLIDI A, V156, P493
65517    KOBAYASHI M, 1993, NUCL INSTRUM METH A, V333, P429
65518    KORZHIK MV, 1996, P INT C IN SCINT THE, P241
65519    NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311
65520    NIKL M, 1996, PHYS STATUS SOLIDI B, V196, K7
65521    NIKL M, 1997, J APPL PHYS, V82, P5758
65522    NIKL M, 1997, MATER SCI FORUM, V239, P271
65523    VANLOO W, 1975, PHYS STATUS SOLIDI A, V28, P227
65524    XIQI F, 1997, J INORGANIC MAT, V12, P449
65525 NR 10
65526 TC 10
65527 SN 0031-8965
65528 J9 PHYS STATUS SOLIDI A-APPL RES
65529 JI Phys. Status Solidi A-Appl. Res.
65530 PD APR 16
65531 PY 2001
65532 VL 184
65533 IS 2
65534 BP 341
65535 EP 348
65536 PG 8
65537 SC Physics, Condensed Matter
65538 GA 430DW
65539 UT ISI:000168559200011
65540 ER
65541 
65542 PT J
65543 AU Gu, LW
65544    Weng, XC
65545 TI Antioxidant activity and components of Salvia plebeia R.Br. - a Chinese
65546    herb
65547 SO FOOD CHEMISTRY
65548 DT Article
65549 DE Salvia plebeia R.Br.; herb; antioxidants; royleanonic acid; hispidulin;
65550    eupatorin
65551 AB The antioxidant properties of the extracts from Salvia plebeia R.Br.
65552    which was screened out of over 700 species of Chinese herbs, were
65553    tested in lard at 110 degreesC using the Oxidative Stability
65554    Instrument. The ethyl acetate extract of the herb was re-extracted by
65555    solvents (with increasing polarity) into petroleum ether-, diethyl
65556    ether-, acetone-and-ethanol-soluble fractions. The fractions obtained
65557    were then separated according to their acidic properties. From the most
65558    active sub-fractions, namely the acidic sub-fraction of the petroleum
65559    ether-soluble fraction and the weakly acidic sub-fraction of the
65560    diethyl ether-soluble fraction, three antioxidant components were
65561    isolated and identified as royleanonic acid, hispidulin and eupatorin.
65562    The royleanonic acid was a novel compound and eupatorin was isolated
65563    for the first time from the herb. Though royleanonic acid and
65564    hispidulin prolonged the induction period significantly, their
65565    antioxidant activities were much weaker than the crude extracts,
65566    implying that synergistic effects might be responsible for the high
65567    activity of the crude extracts. (C) 2001 Elsevier Science Ltd. All
65568    rights reserved.
65569 C1 Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China.
65570 RP Weng, XC, Shanghai Univ, Sch Life Sci, Shangda Rd 99, Shanghai 200436,
65571    Peoples R China.
65572 CR *AOCS, 1994, 12B92 AOCS CD
65573    *JIANGS NEW MED CO, 1993, DICT CHIN TRAD
65574    ADAMS JH, 1976, PLANTA MED, V31, P86
65575    ANGELO AJ, 1996, CRIT REV FOOD SCI NU, V36, P175
65576    CHONG PZ, 1987, APPL MASS SPECTRUM N
65577    DAS NP, 1990, J AM OIL CHEM SOC, V67, P253
65578    DZIEDZIC SZ, 1983, FOOD CHEM, V11, P161
65579    GORDON MH, 1995, J AGR FOOD CHEM, V43, P1784
65580    GU LW, 1997, CHINA OILS FATS, V22, P37
65581    GU LW, 2000, THESIS WUXI U LIGHT
65582    HERNANDEZ M, 1988, PHYTOCHEMISTRY, V27, P3297
65583    HOPIA AI, 1996, J AGR FOOD CHEM, V44, P2030
65584    HUANG L, 1988, UV SPECTRUM ORGANIC
65585    KARTNIG T, 1977, PLANTA MED, V32, P347
65586    KIM SY, 1994, J AM OIL CHEM SOC, V71, P633
65587    MARKHAM KR, 1982, TECHNIQUE FLAVONOID
65588    MICHAVILA A, 1988, PHYTOCHEMISTRY, V25, P268
65589    SAUCIER CT, 1999, J AGR FOOD CHEM, V47, P4491
65590    SU JD, 1986, AGR BIOL CHEM TOKYO, V50, P199
65591    SU JD, 1987, AGR BIOL CHEM TOKYO, V51, P2801
65592    SUKH D, 1986, CRC HDB TERPENOIDS D
65593    WENG XC, 1998, J CHINESE CEREAL OIL, V13, P46
65594    WENKERT E, 1965, J ORG CHEM, V30, P2931
65595    ZHANG HY, 1998, J AM OIL CHEM SOC, V75, P1705
65596    ZHANG KQ, 1990, J AGR FOOD CHEM, V38, P1194
65597 NR 25
65598 TC 13
65599 SN 0308-8146
65600 J9 FOOD CHEM
65601 JI Food Chem.
65602 PD MAY
65603 PY 2001
65604 VL 73
65605 IS 3
65606 BP 299
65607 EP 305
65608 PG 7
65609 SC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics
65610 GA 428TA
65611 UT ISI:000168475700006
65612 ER
65613 
65614 PT J
65615 AU Cheng, CJ
65616    Zhang, NH
65617 TI Dynamical behavior of viscoelastic cylindrical shells under axial
65618    pressures
65619 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
65620 DT Article
65621 DE Karman-Donnell theory; viscoelastic cylindrical shell; chaos;
65622    hyperchaos; strange attractor; limit cycle
65623 ID THIN PLATES
65624 AB The hypotheses of the Karman-Donnell theory of thin shells with large
65625    deflections and the Boltzmann laws for isotropic linear, viscoelastic
65626    materials, the constitutive equations of shallow shells are first
65627    derived. Then the governing equations for the deflection and stress
65628    function are formulated by using the procedure similar to establishing
65629    the Karman equations of elastic thin plates. Introducing proper
65630    assumptions, an approximate theory for viscoelastic cylindrical shells
65631    under axial pressures can be obtained. Finally, the dynamical behavior
65632    is studied in detail by using several numerical methods. Dynamical
65633    properties, such ns, hyperchaos, chaos, strange attractor, limit cycle
65634    etc., are discovered.
65635 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
65636 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
65637    Shanghai 200072, Peoples R China.
65638 CR BROTSKAYA VY, 1995, MECH SOLIDS, V30, P139
65639    CHENG CJ, 1991, BUCKLING BIFURCATION
65640    CHENG CJ, 1998, ACTA MECH SINICA, V30, P690
65641    CHENG CJ, 1998, INT J SOLIDS STRUCT, V35, P4491
65642    DING R, 1997, THESIS LANZHOU U LAN
65643    DROZDOV A, 1993, MECH RES COMMUN, V20, P481
65644    KUBICEK M, 1983, COMPUTATIONAL METHOD
65645    MINAKOVA NI, 1978, MECH SOLIDS, V13, P134
65646    POTAPOV VD, 1978, J APPL MECH TECH PHY, V18, P586
65647    SHIMADA I, 1979, PROG THEOR PHYS, V61, P1605
65648    XU ZL, 1988, THEORY ELASTICITY
65649    ZHANG NH, 1998, COMPUT METHOD APPL M, V165, P307
65650 NR 12
65651 TC 12
65652 SN 0253-4827
65653 J9 APPL MATH MECH-ENGL ED
65654 JI Appl. Math. Mech.-Engl. Ed.
65655 PD JAN
65656 PY 2001
65657 VL 22
65658 IS 1
65659 BP 1
65660 EP 9
65661 PG 9
65662 SC Mathematics, Applied; Mechanics
65663 GA 428VQ
65664 UT ISI:000168482700001
65665 ER
65666 
65667 PT J
65668 AU Zheng, LP
65669    Wang, SJ
65670    Liao, YS
65671    Feng, ZJ
65672 TI CO2 gas pools in Jiyang sag, China
65673 SO APPLIED GEOCHEMISTRY
65674 DT Article
65675 ID MID-ATLANTIC RIDGE; NATURAL GASES; ISOTOPIC COMPOSITION; VOLATILE
65676    FLUXES; SUBDUCTION-ZONE; CARBON ISOTOPES; HELIUM; MANTLE; SYSTEMATICS;
65677    VOLCANO
65678 AB The CO2 gas pools of Jiyang sag are located along the Gaoqing-Pingnan
65679    fault within a region of alkaline basalts. The concentration of CO2 in
65680    the gas pools is in the range of 68.85-96.99%. All of the geochemical
65681    tracers for the CO2 gas pools support the suggestion that CO2 was
65682    mainly derived from mantle degassing. The delta C-13 values of CO2 in
65683    the gas pools are in the range of -5.67-3.41%, which are higher than
65684    those of organogenic CO2, and near to those of abiogenic CO2. Their
65685    He-3/He-4 ratios are 2.80-4.47x10(6), i.e. the R/Ra ratios are
65686    2.00-3.19, showing that the Jiyang sag had undergone strong mantle
65687    degassing. CO2/He-3 ratios are 0.59-0.89x10(9), which are identical to
65688    those for N-MORB, indicating that CO2 in these CO2 gas pools was mainly
65689    derived from the mantle. Accompanying the intrusion of mantle-derived
65690    magma, the mantle-derived CO2 migrated upwards along deep faults and
65691    was trapped in advantageous structures forming gas pools. (C) 2001
65692    Elsevier Science Ltd. All rights reserved.
65693 C1 Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China.
65694    Chinese Acad Sci, Inst Geochem, State Key Lab Environm Geochem, Guiyang 550002, Peoples R China.
65695    Shengli Oil Co, Res Inst Geol Sci, Dongying, Peoples R China.
65696    Nanjing Univ, Dept Earth Sci, Nanjing 210008, Peoples R China.
65697 RP Zheng, LP, Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072,
65698    Peoples R China.
65699 CR *IGSSB, 1987, TANCH LUJ FAULTS
65700    CHU X, 1995, CHINESE SCI BULL, P62
65701    DAI J, 1995, INORGANIC GASES FORM
65702    DAI JX, 1993, THESIS CHICAGO
65703    EXLEY RA, 1986, EARTH PLANET SC LETT, V78, P189
65704    FROST DJ, 1997, GEOCHIM COSMOCHIM AC, V61, P1565
65705    GERLACH TM, 1990, GEOCHIM COSMOCHIM AC, V54, P2051
65706    HENNECKE EW, 1975, EARTH PLANET SC LETT, V27, P346
65707    HOEFS J, 1979, STABLE ISOTOPE GEOCH
65708    HUNT JM, 1979, PETROLEUM GEOCHEMIST, P162
65709    JAMBON A, 1987, CHEM GEOL, V62, P177
65710    JAVOY M, 1986, CHEM GEOL, V57, P41
65711    JAVOY M, 1991, EARTH PLANET SC LETT, V107, P598
65712    JINXING D, 1998, MINERAL MAG A, V62, P716
65713    LI D, 1982, PETROLEUM EXPLORATIO, V2, P1
65714    LUPTON JE, 1983, ANNU REV EARTH PL SC, V11, P371
65715    MA X, 1987, LITHOSPHERIC DYNAMIC
65716    MAMYRIN BA, 1984, HELIUM ISOTOPES NATU
65717    MARTY B, 1987, EARTH PLANET SC LETT, V83, P16
65718    MARTY B, 1989, CHEM GEOL, V76, P25
65719    MARTY B, 1998, CHEM GEOL, V145, P233
65720    MATTEY DP, 1990, CONTRIB MINERAL PETR, V104, P492
65721    NAGAO K, 1981, EARTH PLANET SC LETT, V53, P175
65722    NISHIO Y, 1998, EARTH PLANET SC LETT, V154, P127
65723    ONIONS RK, 1988, EARTH PLANET SC LETT, V90, P331
65724    PANKINA RG, 1978, INT GEOL REV, V21, P535
65725    PINEAU F, 1976, EARTH PLANET SC LETT, V29, P413
65726    PINEAU F, 1983, EARTH PLANET SC LETT, V62, P239
65727    PINEAU F, 1990, GEOCHIM COSMOCHIM AC, V54, P217
65728    POREDA RJ, 1988, CHEM GEOL, V71, P199
65729    SANO Y, 1994, APPL GEOCHEM, V9, P371
65730    SHEN W, 1998, J NANJING U NATURAL, V34, P308
65731    SHENG X, 1995, GEOCHIM COSMOCHIM AC, V59, P4675
65732    SHERWOODLOLLAR B, 1994, GEOCHIM COSMOCHIM AC, V58, P5279
65733    TAYLOR BE, 1986, REV MINERAL, V16, P185
65734    TRULL T, 1993, EARTH PLANET SC LETT, V118, P43
65735    WAKITA H, 1983, NATURE, V305, P792
65736    XIANBIN W, 1998, MINERAL MAG A, V62, P1665
65737    XU Y, 1990, EXPT PETROLEUM GEOLO, V12, P316
65738    ZHANG YX, 1993, EARTH PLANET SC LETT, V117, P331
65739    ZHENG L, 1996, CHINESE SCI BULL, V41, P624
65740    ZHOU XH, 1986, TERRA COGNITA, V6, P244
65741 NR 42
65742 TC 2
65743 SN 0883-2927
65744 J9 APPL GEOCHEM
65745 JI Appl. Geochem.
65746 PD JUL
65747 PY 2001
65748 VL 16
65749 IS 9-10
65750 BP 1033
65751 EP 1039
65752 PG 7
65753 SC Geochemistry & Geophysics
65754 GA 429AA
65755 UT ISI:000168492800003
65756 ER
65757 
65758 PT J
65759 AU Wang, YD
65760 TI Theorems about the existence of solutions to problems with nonlocal
65761    initial value
65762 SO ACTA MATHEMATICA SINICA-ENGLISH SERIES
65763 DT Article
65764 DE nonlocal problem; nonlinear boundary condition; parabolic equation;
65765    solution; existence; generalized Poincare e operator
65766 ID PARABOLIC EQUATIONS; BOUNDARY-CONDITIONS; CAUCHY-PROBLEM
65767 AB Recently much work has been devoted to nonlocal problems. However, very
65768    little has been accomplished in the literature For nonlocal initial
65769    problems with nonlinear boundary conditions. It is the purpose of this
65770    paper to prove the existence results for solutions to a semilinear
65771    parabolic PDE with linear homogeneous boundary conditions. and to
65772    of-her ones with nonlinear boundary conditions, provided the ordered
65773    upper and lower solutions are given. Semigroup, fractional order
65774    function spaces and generalized Poincare operators play an important
65775    role in proving the existence of solutions.
65776 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
65777 RP Wang, YD, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
65778 CR AMANN H, 1978, NONLINEAR ANAL COLLE, P1
65779    AMANN H, 1988, J DIFFER EQUATIONS, V72, P201
65780    BYSZEWSKI L, 1991, J MATH ANAL APPL, V162, P494
65781    CHABROWSKI J, 1984, NAGOYA MATH J, V93, P109
65782    DENG K, 1993, J MATH ANAL APPL, V179, P630
65783    GRISVARD P, 1969, ANN SCI ECOLE NORM S, V2, P311
65784    KEREFOV AA, 1979, DIFF URAVN, V15, P74
65785    LIN YP, 1996, NONLINEAR ANAL-THEOR, V26, P1023
65786    PAO CV, 1995, J MATH ANAL APPL, V195, P702
65787    PAZY A, 1983, SEMIGROUPS LINEAR OP
65788    SEELEY R, 1972, STUD MATH, V44, P47
65789    VABISHCHEVICH PN, 1981, DIFF URAVN, V17, P1193
65790    XIANG X, 1995, ACTA MATH SIN, V11, P439
65791 NR 13
65792 TC 0
65793 SN 1000-9574
65794 J9 ACTA MATH SIN-ENGLISH SERIES
65795 JI Acta. Math. Sin.-English Ser.
65796 PD APR
65797 PY 2001
65798 VL 17
65799 IS 2
65800 BP 197
65801 EP 206
65802 PG 10
65803 SC Mathematics, Applied; Mathematics
65804 GA 428QR
65805 UT ISI:000168472800002
65806 ER
65807 
65808 PT J
65809 AU Jin, H
65810    McLean, D
65811 TI Design of a state feedback controller to achieve minimum eigenvalue
65812    differential sensitivity
65813 SO TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL
65814 DT Article
65815 DE eigenstructure assignment; eigenvalues; robustness; sensitivity
65816 ID EIGENSTRUCTURE ASSIGNMENT
65817 AB This paper introduces a new design method using eigenstructure
65818    assignment. The differential sensitivity of the eigenvalues of the
65819    system is minimized. The method involves minimizing the least-squared
65820    error between the achievable and the desired eigenspace to achieve mode
65821    decoupling. A global measure of eigenvalue sensitivity for all desired
65822    eigenvalues that make the closed-loop system insensitive to
65823    perturbations or parameter Variations is included in the method. The
65824    technique requires the use of a gradient-based algorithm. The method is
65825    illustrated by an example, which is intended to show a more flexible
65826    approach to eigenstructure assignment.
65827 C1 Univ Southampton, Dept Aeronaut & Astronaut, Sch Engn Sci, Southampton SO17 1BJ, Hants, England.
65828    Shanghai Univ, Shanghai 200041, Peoples R China.
65829 RP McLean, D, Univ Southampton, Dept Aeronaut & Astronaut, Sch Engn Sci,
65830    Southampton SO17 1BJ, Hants, England.
65831 CR ANDRY AN, 1983, IEEE T AERO ELEC SYS, V19, P711
65832    APKARIAN PR, 1989, J GUID CONTROL DYNAM, V12, P162
65833    BRYSON A, 1975, APPL OPTIMAL CONTROL
65834    BURROWS SP, 1992, J GUID CONTROL DYNAM, V15, P779
65835    CUNNINGHAM TB, 1980, P IEEE C DEC CONTR A
65836    DAVIDSON JB, 1994, 109130 NASA
65837    LAM J, 1997, P I MECH ENG 1, V211, P631
65838    MIYAZAWA Y, 1992, J GUID CONTROL DYNAM, V15, P785
65839    PATEL Y, 1993, J GUID CONTROL DYNAM, V16, P118
65840    PATTON RJ, 1993, P AIAA GUID NAV CONT, P924
65841    SMITH PR, 1990, AIAA GUID NAV CONTR
65842    WHITE BA, 1997, P I MECH ENG I-J SYS, V211, P35
65843    YU WL, 1991, J GUID CONTROL DYNAM, V14, P621
65844 NR 13
65845 TC 0
65846 SN 0142-3312
65847 J9 TRANS INST MEASURE CONTROL
65848 JI Trans. Inst. Meas. Control
65849 PY 2001
65850 VL 23
65851 IS 2
65852 BP 127
65853 EP 138
65854 PG 12
65855 SC Automation & Control Systems; Instruments & Instrumentation
65856 GA 426EA
65857 UT ISI:000168335800004
65858 ER
65859 
65860 PT J
65861 AU Lin, QS
65862    Feng, XQ
65863    Man, ZY
65864    Zhang, YX
65865    Yin, ZW
65866    Zhang, QR
65867 TI Origin of the radiation-induced 420 nm color center absorption band in
65868    PbWO4 crystals
65869 SO SOLID STATE COMMUNICATIONS
65870 DT Article
65871 DE color center; optical properties; light absorption
65872 ID LEAD TUNGSTATE CRYSTALS; SINGLE-CRYSTALS; DAMAGE
65873 AB Polarized absorption spectra experiments were carried out to
65874    investigate the structural symmetries of color centers of PbWO4
65875    crystals. It was found that the intensity of the electrical vector E
65876    perpendicular to c of the radiation-induced 320 nm absorption band
65877    equals that of the E parallel to c, indicating the non-dichroic
65878    character of the band. Based on the analysis of the energy band
65879    structure and the crystal structure of PbWO4, the origin of the
65880    radiation-induced 320 nm absorption band was ascribed to the V-F(0)
65881    di-hole center. (C) 2001 Published by Elsevier Science Ltd.
65882 C1 Chinese Acad Sci, Lab Funct Inorgan Mat, Shanghai 200050, Peoples R China.
65883    Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
65884 RP Feng, XQ, Chinese Acad Sci, Lab Funct Inorgan Mat, Shanghai 200050,
65885    Peoples R China.
65886 CR ANNENKOV A, 1998, PHYS STATUS SOLIDI A, V170, P47
65887    AUFFRAY E, 1996, SCINT 95, P282
65888    BACCARO S, 1999, IEEE T NUCL SCI 1, V46, P292
65889    BARISHEVSKI VG, 1992, NUCL INSTRUM METH A, V322, P231
65890    BIEDERBICK R, 1975, PHYS STATUS SOLIDI B, V69, P55
65891    HAN BG, 1999, J APPL PHYS, V86, P3571
65892    LAGUTA VV, 1998, J PHYS-CONDENS MAT, V10, P7293
65893    LAGUTA VV, 2000, PHYS REV B, V62, P10109
65894    LECOQ P, 1995, NUCL INSTRUM METH A, V365, P291
65895    LIN QS, 2000, PHYS STATUS SOLIDI A, V181, R1
65896    NESSITEDALDI F, 1998, NUCL INSTRUM METH A, V408, P266
65897    NIKL M, 1996, PHYS STATUS SOLIDI B, V196, K7
65898    NIKL M, 1997, J APPL PHYS, V82, P5758
65899    NIKL M, 1997, MATER SCI FORUM, V239, P271
65900    WILLIAMS RT, 2000, SCINT 99, P118
65901    ZHANG Y, 1998, PHYS REV B, V57, P12738
65902 NR 16
65903 TC 19
65904 SN 0038-1098
65905 J9 SOLID STATE COMMUN
65906 JI Solid State Commun.
65907 PY 2001
65908 VL 118
65909 IS 5
65910 BP 221
65911 EP 223
65912 PG 3
65913 SC Physics, Condensed Matter
65914 GA 425XV
65915 UT ISI:000168317700001
65916 ER
65917 
65918 PT J
65919 AU Wan, YB
65920    Li, J
65921    Chu, JH
65922    Bo, LX
65923    Yu, TY
65924    Yu, BK
65925 TI The study of frequency-doubling properties of ferroelectric potassium
65926    lithium niobate
65927 SO JOURNAL OF INFRARED AND MILLIMETER WAVES
65928 DT Article
65929 DE potassium lithium niobate; frequency-doubling; phase-matching
65930 ID K3LI2-XNB5+XO15+2X
65931 AB The frequency-doubling properties of potassium lithium niobate crystals
65932    grown from melts with different content of Li2O were studied by using
65933    quasi cw-Ti:sapphire laser. The results showed that potassium lithium
65934    niobate crystal does not have nonlinear optical performance unless the
65935    Li content in the crystal reached a certain amount. The higher the
65936    content of Li in the crystal the better the frequency-doubling
65937    performance. The results of frequency-doubling experiment of the
65938    potassium:lithium niobate crystal grown from the melt with Li2O 26mol%
65939    showed that the crystal can double the cw-Ti:sapphire laser with the
65940    wavelength of 820 similar to 960nm so as to obtain the output of
65941    blue-green beam. The crystal showed good second harmonic generation
65942    properties.
65943 C1 Chinese Acad Sci, Shanghai Inst Tech, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China.
65944    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
65945 RP Wan, YB, Chinese Acad Sci, Shanghai Inst Tech, Natl Lab Infrared Phys,
65946    Shanghai 200083, Peoples R China.
65947 CR CHENG WD, 1996, CHEM PHYS LETT, V261, P66
65948    IMAI K, 1997, J CRYST GROWTH, V177, P79
65949    OWERKERK M, 1991, 409339, EP
65950    REID JJE, 1993, APPL PHYS LETT, V62, P19
65951    SONG YT, 1998, J CRYST GROWTH, V194, P379
65952    WAN YB, 1998, J SYNTH CRYST, V27, P34
65953    WAN YB, 1999, ACTA OPT SINICA, V19, P863
65954    WAN YB, 1999, CHIN J LASER, V26, P837
65955    WAN YB, 1999, J SYNTH CRYST, V28, P149
65956 NR 9
65957 TC 0
65958 SN 1001-9014
65959 J9 J INFRARED MILIM WAVES
65960 JI J. Infrared Millim. Waves
65961 PD APR
65962 PY 2001
65963 VL 20
65964 IS 2
65965 BP 147
65966 EP 150
65967 PG 4
65968 SC Optics
65969 GA 425DB
65970 UT ISI:000168272100016
65971 ER
65972 
65973 PT J
65974 AU Ma, HP
65975    Guo, BY
65976 TI Composite Legendre-Laguerre pseudospectral approximation in unbounded
65977    domains
65978 SO IMA JOURNAL OF NUMERICAL ANALYSIS
65979 DT Article
65980 DE composite Legendre-Laguerre; pseudospectral method; half-line
65981 ID PARTIAL-DIFFERENTIAL EQUATIONS; NONLINEAR CONSERVATION-LAWS; HERMITE
65982    SPECTRAL METHOD; GALERKIN METHOD; POLYNOMIALS; INTERVAL
65983 AB A composite Legendre-Laguerre pseudospectral approximation in unbounded
65984    domains is developed. Some approximation results are obtained. As an
65985    application, a composite pseudospectral scheme is proposed for the
65986    Burgers equation on the half-line. The stability and convergence of the
65987    scheme are proved. By choosing appropriate base functions, the
65988    resulting system of this method has a sparse structure and can be
65989    solved in parallel. Numerical results are given to show the efficiency
65990    of this new method.
65991 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
65992 RP Ma, HP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
65993 CR ADAMS RA, 1975, SOBOLEV SPACES
65994    BERNARDI C, 1992, J COMPUT APPL MATH, V43, P53
65995    BERNARDI C, 1997, HDBK NUM AN 2, V5, P209
65996    BOYD JP, 1987, J COMPUT PHYS, V69, P112
65997    CANUTO C, 1988, SPECTRAL METHODS FLU
65998    DAVIS PJ, 1984, METHODS NUMERICAL IN
65999    FUNARO D, 1990, MATH COMPUT, V57, P597
66000    FUNARO D, 1991, ORTHOGONAL POLYNOMIA, P263
66001    GELB A, 2000, APPL NUMER MATH, V33, P3
66002    GUO BY, 1999, MATH COMPUT, V68, P1067
66003    GUO BY, 2000, NUMER MATH, V86, P635
66004    GUO BY, 2001, IN PRESS J COMPUT MA
66005    MADAY Y, 1985, RECH AEROSPATIALE, P353
66006    MADAY Y, 1993, SIAM J NUMER ANAL, V30, P321
66007    MASTROIANNI G, 1997, IMA J NUMER ANAL, V17, P621
66008    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
66009    SZEGO G, 1975, ORTHOGONAL POLYNOMIA
66010    TADMOR E, 1989, SIAM J NUMER ANAL, V26, P30
66011    TANG T, 1993, SIAM J SCI COMPUT, V14, P594
66012    XU CL, 2001, IN PRESS J COMPUT MA
66013 NR 20
66014 TC 0
66015 SN 0272-4979
66016 J9 IMA J NUMER ANAL
66017 JI IMA J. Numer. Anal.
66018 PD APR
66019 PY 2001
66020 VL 21
66021 IS 2
66022 BP 587
66023 EP 602
66024 PG 16
66025 SC Mathematics, Applied
66026 GA 424ZK
66027 UT ISI:000168263700007
66028 ER
66029 
66030 PT J
66031 AU You, JL
66032    Jiang, GC
66033    Xu, KD
66034 TI High temperature Raman spectra of sodium disilicate crystal, glass and
66035    its liquid
66036 SO JOURNAL OF NON-CRYSTALLINE SOLIDS
66037 DT Article
66038 ID ALKALI-SILICATE-GLASSES; SPECTROSCOPY; MELTS; PRESSURE; NMR
66039 AB Raman spectra of Na2Si2O5 in solid and liquid states from room
66040    temperature to 1773 K were measured to observe phase transition and
66041    analyze the temperature-dependent variations of the structure units,
66042    five kinds of SiO4 tetrahedrons, which are defined as Q(4), Q(3), Q(2),
66043    Q(1) and Q(0) species corresponding to the number of bridging oxygen
66044    binding to each Si. A pulsed copper vapor laser was used as laser
66045    source coupled with time resolved detection system to eliminate the
66046    dense thermal emission background while temperature was >1273 K.
66047    Temperature-dependent Raman spectra can clearly indicate melting point
66048    of a crystal around 1143 K. Gaussian deconvolutions of complex
66049    stretching vibrational bands of crystal and amorphous states (glass and
66050    liquid) were described. Raman sensitivity factors were introduced to
66051    calculate the mole fractions of the different SiO4 tetrahedrons. There
66052    is a decrease of Q(3) species and an increase of Q(4) and Q(2) species
66053    with increasing temperature. And after melting, the ratio of the
66054    components remain unchanged. Q(3) species decomposes again after about
66055    1573 K. More Q(n) species would form with increasing temperature.
66056    Although the Q(n) distribution of the glass is similar to that of the
66057    liquid of melting temperature, T-m similar to 1143 K, the liquid
66058    structure has a greater disorder than that of the glass. (C) 2001
66059    Published by Elsevier Science B.V.
66060 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
66061 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
66062    200072, Peoples R China.
66063 CR DOMINE F, 1983, J NON-CRYST SOLIDS, V55, P125
66064    DORFELD WG, 1988, PHYS CHEM GLASSES, V29, P179
66065    DOWEIDAR H, 1996, J NON-CRYST SOLIDS, V194, P155
66066    FURUKAWA T, 1981, J CHEM PHYS, V75, P3226
66067    GASKELL PH, 1967, PHYS CHEM GLASSES, V8, P69
66068    GILLET P, 1996, PHYS CHEM MINER, V23, P263
66069    GUOCHANG J, 1993, ISIJ INT, V33, P20
66070    GURMAN SJ, 1990, J NON-CRYST SOLIDS, V125, P151
66071    HANDKE M, 1993, VIB SPECTROSC, V5, P75
66072    HASS M, 1970, J PHYS CHEM SOLIDS, V31, P415
66073    JINGLIN Y, IN PRESS
66074    JINGLIN Y, 1998, J CHIN RARE EARTH SC, V16, P505
66075    JINGLIN Y, 1999, CHIN J LIGHT SCATTER, V11, P378
66076    JINGLIN Y, 1999, OPT INSTR, V21, P21
66077    KASHIO S, 1980, T IRON STEEL I JPN, V20, P251
66078    KUANGDI X, 1999, SCI CHINA SER E, V22, P77
66079    LIEBAU F, 1985, STRUCTURAL CHEM SILI
66080    LONG DA, 1977, RAMAN SPECTROSCOPY, CH4
66081    MAEKAWA H, 1991, J NON-CRYST SOLIDS, V127, P53
66082    MAEKAWA H, 1992, P 4 INT C MOLT SLAGS, P35
66083    MARKIN EP, 1960, OPT SPECTROSC, V9, P309
66084    MATSON DW, 1983, J NON-CRYST SOLIDS, V58, P323
66085    MCMILLAN P, 1984, AM MINERAL, V69, P622
66086    MYSEN BO, 1982, AM MINERAL, V67, P686
66087    MYSEN BO, 1990, J GEOPHYS RES-SOLID, V95, P15733
66088    MYSEN BO, 1992, CHEM GEOL, V96, P321
66089    PEICANG X, 1996, RAMAN SPECTROSCOPY G, CH7
66090    SEIFERT FA, 1981, GEOCHIM COSMOCHIM AC, V45, P1879
66091    SHARMA SK, 1978, CARNEGIE I WASHINGTO, V77, P649
66092    SHIPING H, 2000, CHINESE PHYS LETT, V17, P279
66093    SMITH W, 1995, J NONCRYST SOLIDS, V192, P267
66094    STEBBINS JF, 1988, J NONCRYST SOLIDS, V106, P359
66095    STEBBINS JF, 1995, J NONCRYST SOLIDS, V192, P298
66096    SWAMY V, 1997, J AM CERAM SOC, V80, P2237
66097    URNES S, 1967, PHYS CHEM GLASSES, V8, P125
66098    VORONKO YK, 1991, GROWTH CRYSTALS, V16, P199
66099    ZHANG P, 1996, J NON-CRYST SOLIDS, V204, P294
66100 NR 37
66101 TC 15
66102 SN 0022-3093
66103 J9 J NON-CRYST SOLIDS
66104 JI J. Non-Cryst. Solids
66105 PD APR
66106 PY 2001
66107 VL 282
66108 IS 1
66109 BP 125
66110 EP 131
66111 PG 7
66112 SC Materials Science, Ceramics; Materials Science, Multidisciplinary
66113 GA 423XE
66114 UT ISI:000168202400015
66115 ER
66116 
66117 PT J
66118 AU Jin, Z
66119 TI Boundedness and convergence of solutions of a second-order nonlinear
66120    differential system
66121 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
66122 DT Article
66123 ID RETARDED LIENARD EQUATION; X+F(1)(X)X+F(2)(X)X(2)+G(X)=0; BEHAVIOR
66124 AB Consider the second-order nonlinear differential system
66125    (x) over dot = 1/a(x)[h(y) - F(x)],
66126    (y) over dot = -a(x)[g(x) - e(t)],
66127    where a is a positive and continuous function on R - (-infinity,
66128    +infinity); II, F, and g are continuous functions on R; and e(t) is a
66129    continuous function on I = [0, +infinity) We obtain sufficient and
66130    necessary conditions for ail solutions to be bounded and to converge to
66131    zero. Our results can be applied to the well-known equation
66132    (x) double over dot + f(1)(x)(x) over dot + f(2)(x)(x) over dot(2) +
66133    g(x) - e(t),
66134    which substantially extends and improves important results in the
66135    literature. (C) 2001 Academic Press.
66136 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
66137    Hebei Univ Technol, Dept Math Appl, Tianjin 300130, Peoples R China.
66138 RP Jin, Z, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
66139 CR ANTOSIEWICZ HA, 1955, J LOND MATH SOC, V30, P64
66140    BURTON TA, 1970, ANN MAT PUR APPL, V85, P277
66141    BUSHAW DW, 1958, DIFFERENTIAL EQUATIO
66142    FREEDMAN HI, 1990, NONLINEAR ANAL-THEOR, V15, P333
66143    GRAEF JR, 1972, J DIFFER EQUATIONS, V12, P34
66144    GUIDORIZZI HL, 1993, J MATH ANAL APPL, V176, P11
66145    HUANG LH, 1995, MATH JPN, V2, P283
66146    JIAN JF, 1997, NONLINEAR ANAL, V5, P855
66147    JIANG JF, 1995, J MATH ANAL APPL, V194, P597
66148    LASALLE JP, 1961, STABILITY LIAPUNOVS
66149    LASALLE JP, 1976, NONLINEAR ANAL, V1, P83
66150    LI HQ, 1988, ACTA MATH SINICA, V31, P209
66151    PAN ZG, 1992, J SYS SCI MATH SCI, V12, P376
66152    QIAN CX, 1992, B LOND MATH SOC, V24, P281
66153    QIAN CX, 1994, NONLINEAR ANAL, V7, P823
66154    SUGIE J, 1987, NONLINEAR ANAL-THEOR, V11, P1391
66155    VILLARI G, 1987, J DIFFER EQUATIONS, V67, P267
66156    YOSHIZAWA T, 1963, CONTRIB DIFFERENTIAL, V1, P371
66157    ZHANG B, 1992, P AM MATH SOC, V115, P779
66158    ZHANG B, 1993, NONLINEAR ANAL-THEOR, V20, P303
66159    ZHANG B, 1996, J MATH ANAL APPL, V200, P453
66160    ZHOU J, 1996, NONLINEAR ANAL, V12, P1463
66161 NR 22
66162 TC 1
66163 SN 0022-247X
66164 J9 J MATH ANAL APPL
66165 JI J. Math. Anal. Appl.
66166 PD APR 15
66167 PY 2001
66168 VL 256
66169 IS 2
66170 BP 360
66171 EP 374
66172 PG 15
66173 SC Mathematics, Applied; Mathematics
66174 GA 422ET
66175 UT ISI:000168106100002
66176 ER
66177 
66178 PT J
66179 AU Ji, PY
66180    Bao, JS
66181 TI Photon acceleration driven by an intense laser pulse
66182 SO CHINESE PHYSICS
66183 DT Article
66184 DE photon acceleration; frequency upshifting; plasma wave; optical metric
66185 ID WAKEFIELD ACCELERATION; PLASMA
66186 AB Interaction of a laser field with a plasma wave is studied by metric
66187    optics. Analysis shows that the frequency upshifting of the laser pulse
66188    results from the plasma density gradient. A laser beam can be thought
66189    of as a packet of photons moving in a plasma and thus the laser
66190    frequency upshifting is equivalent to photon acceleration. Examination
66191    of the three-dimensional motion equations shows that a laser beam
66192    diffraction occurs in the presence of a radial variation of the plasma
66193    density. It is argued that the focusing mechanism originating from the
66194    plasma wave can curb laser diffraction so that photons may be trapped
66195    in the plasma wave and accelerated continuously.
66196 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
66197 RP Ji, PY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
66198 CR AMIRANOFF F, 1998, PHYS REV LETT, V81, P995
66199    BINGHAM R, 1997, PHYS REV LETT, V78, P247
66200    GORDON W, 1923, ANN PHYS-BERLIN, V72, P421
66201    GUO H, 1995, J OPT SOC AM A, V12, P600
66202    MENDONCA JT, 1994, PHYS REV E, V49, P3520
66203    MISNER CW, GRAVITATION, P582
66204    SCHROEDER CB, 1999, PHYS REV LETT, V82, P1177
66205    SHEN WD, 1998, ACTA PHYS SIN-OV ED, V7, P1
66206    SPRANGLE P, 1988, APPL PHYS LETT, V53, P2146
66207    TAJIMA T, 1979, PHYS REV LETT, V43, P267
66208    WILKS SC, 1989, PHYS REV LETT, V62, P2600
66209    ZHU S, 1997, ACTA OPT SINICA, V17, P1677
66210    ZHU ST, 1995, INT J THEOR PHYS, V34, P169
66211    ZHU ST, 1997, SCI CHINA SER A, V40, P755
66212 NR 14
66213 TC 5
66214 SN 1009-1963
66215 J9 CHIN PHYS
66216 JI Chin. Phys.
66217 PD APR
66218 PY 2001
66219 VL 10
66220 IS 4
66221 BP 314
66222 EP 319
66223 PG 6
66224 SC Physics, Multidisciplinary
66225 GA 423KP
66226 UT ISI:000168175700010
66227 ER
66228 
66229 PT J
66230 AU Chen, LQ
66231 TI An open-plus-closed-loop control for discrete chaos and hyperchaos
66232 SO PHYSICS LETTERS A
66233 DT Article
66234 ID MULTIPLE-ATTRACTOR SYSTEMS; COMPLEX DYNAMIC-SYSTEMS; MIGRATION
66235    CONTROLS; OPCL CONTROL; ENTRAINMENT
66236 AB An open-plus-closed-loop control law is presented for chaotic maps.
66237    Some entrainment capabilities for the logistic map, the Henon map and a
66238    hyperchaotic map are respectively analyzed. Numerical examples of
66239    controlling chaos are given to demonstrate the application of the
66240    method. The robustness to the model error is proved. (C) 2001 Elsevier
66241    Science B.V. All rights reserved.
66242 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200030, Peoples R China.
66243 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
66244    200030, Peoples R China.
66245 CR CHEN G, 1997, CHAOS ORDER
66246    CHEN LQ, 1998, PHYS LETT A, V245, P87
66247    HUBLER A, 1989, NATURWISSENSCHAFTEN, V76, P67
66248    JACKSON EA, 1990, PHYS LETT A, V151, P478
66249    JACKSON EA, 1990, PHYSICA D, V44, P407
66250    JACKSON EA, 1991, PHYSICA D, V50, P341
66251    JACKSON EA, 1992, PHYSICA D, V54, P253
66252    JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1255
66253    JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1767
66254    JACKSON EA, 1995, PHYSICA D, V85, P1
66255    JACKSON EA, 1997, CHAOS, V7, P550
66256    KAPITANIAK T, 1996, CONTROLLING CHAOS TH
66257    LASALLE JP, 1976, STABILITY DYNAMICAL
66258    LIU ZR, 1999, ACTA MECH SINICA, V15, P366
66259    OTT E, 1994, COPING CHAOS
66260    WEIGEL R, 1998, INT J BIFURCAT CHAOS, V8, P173
66261 NR 16
66262 TC 7
66263 SN 0375-9601
66264 J9 PHYS LETT A
66265 JI Phys. Lett. A
66266 PD APR 2
66267 PY 2001
66268 VL 281
66269 IS 5-6
66270 BP 327
66271 EP 333
66272 PG 7
66273 SC Physics, Multidisciplinary
66274 GA 420YK
66275 UT ISI:000168032700009
66276 ER
66277 
66278 PT J
66279 AU Li, CF
66280    Wang, Q
66281 TI A traversal time for tunneling particles through a potential barrier
66282 SO PHYSICA B
66283 DT Article
66284 DE traversal time; superluminality; tunneling; energy speed
66285 ID QUANTUM-THEORY; LARMOR CLOCK; TRANSMISSION; DISTRIBUTIONS;
66286    PROBABILITIES; SCATTERING; MECHANISM; DELAY
66287 AB A new kind of traversal time for tunneling particles through a
66288    potential barrier that has no problem of superluminality is introduced.
66289    Its physical significance is investigated. Several limits are
66290    considered, which are physically meaningful. Comparisons with dwell
66291    time and phase time are also made. (C) 2001 Elsevier Science B.V. All
66292    rights reserved.
66293 C1 CCAST, World Lab, Beijing 100080, Peoples R China.
66294    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
66295 RP Li, CF, CCAST, World Lab, POB 8730, Beijing 100080, Peoples R China.
66296 CR BOHM D, 1951, QUANTUM THEORY, P240
66297    BOHM D, 1952, PHYS REV, V85, P166
66298    BOHM D, 1987, PHYS REP, V144, P321
66299    BRILLOUIN L, 1960, WAVE PROPAGATION GRO
66300    BROUARD S, 1994, PHYS REV A, V49, P4312
66301    BUTTIKER M, 1982, PHYS REV LETT, V49, P1739
66302    BUTTIKER M, 1983, PHYS REV B, V27, P6178
66303    CHIAO RY, 1997, PROG OPTICS, V37, P345
66304    CONDON EU, 1931, REV MOD PHYS, V3, P43
66305    DEUTCH JM, 1993, ANN PHYS-NEW YORK, V228, P184
66306    DIENER G, 1996, PHYS LETT A, V223, P327
66307    HARTMAN TE, 1962, J APPL PHYS, V33, P3427
66308    HASS K, 1994, PHYS LETT A, V185, P9
66309    HAUGE EH, 1989, REV MOD PHYS, V61, P917
66310    JAPHA Y, 1996, PHYS REV A, V53, P586
66311    JAUCH JM, 1967, HELV PHYS A, V40, P217
66312    KRENZLIN HM, 1996, PHYS REV A, V53, P3749
66313    LEAVENS CR, 1993, PHYS LETT A, V178, P27
66314    LEAVENS CR, 1995, PHYS LETT A, V197, P88
66315    LI CF, 1996, ANN PHYS-NEW YORK, V252, P329
66316    LI CF, 1997, PHYSICA B, V240, P98
66317    MACCOLL LA, 1932, PHYS REV, V40, P621
66318    MCKINNON WR, 1995, PHYS REV A, V51, P2748
66319    MUGA JG, 1992, J PHYS CONDENS MATT, V4, L579
66320    MUGA JG, 1992, PHYS LETT A, V167, P24
66321    SMITH FT, 1960, PHYS REV, V118, P349
66322    SOKOLOVSKI D, 1990, PHYS REV A, V42, P6512
66323    STEINBERG AM, 1995, PHYS REV A, V52, P32
66324    STEINBERG AM, 1995, PHYS REV LETT, V74, P2405
66325 NR 29
66326 TC 1
66327 SN 0921-4526
66328 J9 PHYSICA B
66329 JI Physica B
66330 PD MAR
66331 PY 2001
66332 VL 296
66333 IS 4
66334 BP 356
66335 EP 360
66336 PG 5
66337 SC Physics, Condensed Matter
66338 GA 420MC
66339 UT ISI:000168007900010
66340 ER
66341 
66342 PT J
66343 AU Xu, KX
66344 TI Decoupling of vortex-antivortex pairs: a possible explanation for
66345    nonequilibrium microwave response of YBa2Cu3O7-delta granular films
66346 SO PHYSICA C
66347 DT Article
66348 DE granular films; vortex excitation; nonbolometric photoresponse
66349 ID KOSTERLITZ-THOULESS TRANSITION; JOSEPHSON-JUNCTION ARRAYS; O
66350    THIN-FILMS; RADIATION
66351 AB A two-dimensional Josephson-junction array has been employed as a model
66352    system for YBa2Cu3O7-delta (YBCO) granular films. Based on this model,
66353    the dissociation process of the vortex-antivortex pairs is discussed in
66354    terms of applied current activation, and the unbinding vortices
66355    distribution n(T, I) is calculated as a function of temperature and
66356    applied current. When I/I-c << 1 is satisfied, the value of the n(T, I)
66357    could only be observed within the temperature region of (2/3)T-KT < T <
66358    T-KT, this behavior is analogous to that of photoresponse dissipation
66359    measured from the granular YBCO films. This similitude implies that the
66360    unbinding process of the vortex pairs might be responsible for the
66361    nonequilibrium photoresponse dissipation in granular superconducting
66362    films. (C) 2001 Elsevier Science B.V. All rights reserved.
66363 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
66364 RP Xu, KX, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
66365 CR BEASLEY MR, 1979, PHYS REV LETT, V42, P1165
66366    BOONE BG, 1991, J APPL PHYS, V69, P2676
66367    CHANG K, 1991, J APPL PHYS, V69, P7316
66368    CULBERTSON JC, 1991, PHYS REV B, V44, P9609
66369    DAVIS LC, 1990, PHYS REV B, V42, P99
66370    ENOMOTO Y, 1986, J APPL PHYS, V59, P3807
66371    FIORY AT, 1988, PHYS REV LETT, V61, P1419
66372    HERTER ST, 1998, PHYS REV B, V57, P1154
66373    LOBB CJ, 1983, PHYS REV B, V27, P150
66374    MARTIN S, 1989, PHYS REV LETT, V62, P677
66375    PHILLIPS JR, 1993, PHYS REV B, V47, P5219
66376    PHONG LN, 1993, J APPL PHYS, V74, P7414
66377    RZCHOWSKI MS, 1990, PHYS REV B, V42, P2041
66378    STROM U, 1990, PHYS REV B, V42, P4059
66379    TINKHAM M, 1995, INTRO SUPERCONDUCTIV
66380    XU KX, 1999, ACTA PHYS SIN-CH ED, V48, P1152
66381    XU KX, 1999, PHYSICA C, V321, P258
66382    YING QY, 1990, PHYS REV B, V42, P2242
66383 NR 18
66384 TC 0
66385 SN 0921-4534
66386 J9 PHYSICA C
66387 JI Physica C
66388 PD APR 1
66389 PY 2001
66390 VL 351
66391 IS 3
66392 BP 274
66393 EP 280
66394 PG 7
66395 SC Physics, Applied
66396 GA 418NA
66397 UT ISI:000167897200008
66398 ER
66399 
66400 PT J
66401 AU He, JH
66402 TI A modified perturbation technique depending upon an artificial parameter
66403 SO MECCANICA
66404 DT Article
66405 DE perturbation method; nonlinear equation; Duffing equation; van der Pol
66406    equation; artificial parameter
66407 AB In this paper, a modified perturbation method is proposed to search for
66408    analytical solutions of nonlinear oscillators without possible small
66409    parameters. An artificial perturbation equation is carefully
66410    constructed by embedding an artificial parameter, which is used as
66411    expanding parameter. It reveals that various traditional perturbation
66412    techniques can be powerfully applied in this theory. Some examples,
66413    such as the Duffing equation and the van der Pol equation, are given
66414    here to illustrate its effectiveness and convenience. The results show
66415    that the obtained approximate solutions are uniformly valid on the
66416    whole solution domain, and they are suitable not only for weak
66417    nonlinear systems, but also for strongly nonlinear systems. In applying
66418    the new method, some special techniques have been emphasized for
66419    different problems.
66420 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
66421 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang
66422    Rd,POB 189, Shanghai 200072, Peoples R China.
66423 CR CHEUNG YK, 1991, INT J NONLINEAR MECH, V26, P367
66424    HE JH, 1998, COMPUT METHOD APPL M, V167, P57
66425    HE JH, 1998, COMPUT METHOD APPL M, V167, P69
66426    HE JH, 1999, COMMUN NONL SCI NUM, V4, P109
66427    HE JH, 1999, COMMUN NONL SCI NUM, V4, P78
66428    HE JH, 1999, COMMUNICATIONS NONLI, V4, P81
66429    HE JH, 1999, COMPUT METHOD APPL M, V178, P257
66430    HE JH, 1999, INT J NONLINEAR MECH, V34, P699
66431    HE JH, 1999, MECCANICA, V34, P287
66432    HE JH, 2000, INT J NONLINEAR MECH, V35, P37
66433    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
66434    LIU GL, 1997, NAT C 7 MOD MATH MEC, P47
66435    NAYFEH AH, 1979, NONLINEAR OSCILLATIO
66436    NAYFEH AH, 1985, PROBLEMS PERTURBATIO
66437 NR 14
66438 TC 5
66439 SN 0025-6455
66440 J9 MECCANICA
66441 JI Meccanica
66442 PY 2000
66443 VL 35
66444 IS 4
66445 BP 299
66446 EP 311
66447 PG 13
66448 SC Mechanics
66449 GA 419FL
66450 UT ISI:000167938600001
66451 ER
66452 
66453 PT J
66454 AU Bian, JJ
66455    Zhu, XW
66456    Jiang, WZ
66457    Sun, ZH
66458    Wang, H
66459 TI Microwave characteristics of (Pb,Ca) (Fe,Nb,Zr)O-3 dielectric ceramics
66460 SO JOURNAL OF MATERIALS SCIENCE LETTERS
66461 DT Article
66462 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
66463 RP Bian, JJ, Shanghai Univ, Dept Inorgan Mat, 20 ChengZhong Rd, Shanghai
66464    201800, Peoples R China.
66465 CR KATO J, 1992, JPN J APPL PHYS 1, V31, P3144
66466    KUCHEIKO S, 1997, J AM CERAM SOC, V80, P2937
66467    NAKANO M, 1993, JPN J APPL PHYS 1, V32, P4314
66468    TAKAHASHI H, 1996, JPN J APPL PHYS 1, V35, P5069
66469    WAKINO K, 1989, FERROELECTRICS, V91, P68
66470    WERSING W, 1991, ELECT CERAMICS
66471    YOON KH, 1996, JPN J APPL PHYS 1, V35, P5145
66472 NR 7
66473 TC 3
66474 SN 0261-8028
66475 J9 J MATER SCI LETT
66476 JI J. Mater. Sci. Lett.
66477 PD FEB
66478 PY 2001
66479 VL 20
66480 IS 4
66481 BP 353
66482 EP 354
66483 PG 2
66484 SC Materials Science, Multidisciplinary
66485 GA 417WZ
66486 UT ISI:000167859600018
66487 ER
66488 
66489 PT J
66490 AU Chu, QL
66491    Song, LP
66492    Jin, GF
66493    Zhu, SZ
66494 TI Study of the reactions of fluorinated alpha,beta-unsaturated carbonyl
66495    compounds with nitrogen and sulfur dinucleophiles
66496 SO JOURNAL OF FLUORINE CHEMISTRY
66497 DT Article
66498 DE fluorinated alpha,beta-unsaturated carbonyl compounds; fluorinated
66499    heterocycles; dinucleophiles; nucleophilic reactions; thiazine
66500 ID KETONES
66501 AB The fluorinated alpha,beta -unsaturated ketone
66502    1,1,1-trifluoro-4-ethoxy-3-butene-2-one reacted with dinucleophiles
66503    such as 2-aminothiophenol and 2-amino-ethanethiol to give
66504    trifluoroacetyl substituted 4H-1,4-benzothiazine, or 4H-1,4-thiazine,
66505    while the reaction of 5-trifluoroacetyl-3,4-dihydro-2H-pyran or
66506    4-trifluoroacetyl-2,3-dihydro-furan with 2-amino-phenthiol gave
66507    3-(2,2,3-2H-benzothiazolyl)-2-(trifluoromethyl)-tetrahydrofuran-2-ol or
66508    3-(2-2,3-2H-benzothiazolyl)-2-(trifluoromethyl)-
66509    tetrahydro-2H-pyran-2-ol, respectively. (C) 2001 Elsevier Science B.V.
66510    All rights reserved.
66511 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Shanghai 200032, Peoples R China.
66512    Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
66513 RP Zhu, SZ, Chinese Acad Sci, Shanghai Inst Organ Chem, 345 Fenglin Rd,
66514    Shanghai 200032, Peoples R China.
66515 CR BUDESINSKY BW, 1971, J INORG NUCL CHEM, V33, P3795
66516    CHU QL, 2000, SYNTHETIC COMMUN, V30, P677
66517    FILLER R, 1979, ORGANOFLUORINE CHEM
66518    FILLER R, 1982, BIOMEDICINAL ASPECTS
66519    FILLER R, 1993, ORGANOFLUORINE COMPO
66520    GERUS II, 1994, J FLUORINE CHEM, V69, P195
66521    GORBUNOVA MG, 1993, J FLUORINE CHEM, V65, P25
66522    LISO G, 1981, J HETEROCYCLIC CHEM, V18, P279
66523    MARTINS MAP, 1999, J HETEROCYCLIC CHEM, V36, P837
66524    MIYANO S, 1975, J CHEM SOC CHEM COMM, P760
66525    WELCH JT, 1987, TETRAHEDRON, V43, P3123
66526    YOSHIOKA H, 1984, J SYN ORG CHEM JPN, V42, P809
66527    ZHU SZ, 1999, MONATSH CHEM, V130, P671
66528 NR 13
66529 TC 7
66530 SN 0022-1139
66531 J9 J FLUORINE CHEM
66532 JI J. Fluor. Chem.
66533 PD MAR
66534 PY 2001
66535 VL 108
66536 IS 1
66537 BP 51
66538 EP 56
66539 PG 6
66540 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
66541 GA 416UB
66542 UT ISI:000167797600007
66543 ER
66544 
66545 PT J
66546 AU You, JL
66547    Jiang, GC
66548    Xu, KD
66549 TI Temperature dependence of the Raman spectra of Na2Si2O5
66550 SO CHINESE PHYSICS LETTERS
66551 DT Article
66552 ID SPECTROSCOPY; MELT
66553 AB The microstructures of Na2Si2O5 from room temperature up to 1773 K are
66554    studied by high-temperature Raman spectroscopy. Deconvolutions of
66555    complex Raman spectra of crystal and amorphous states (glass and melt)
66556    are described. The results show that the temperature-dependent Raman
66557    spectra clearly indicate phase transition. The relative abundance of
66558    various kinds of SiO4 tetrahedrons (each Si binding to different
66559    numbers of bridging oxygens) can be qualitatively and quantitatively
66560    resolved as to be varied obviously with different temperatures. This
66561    shows that high-temperature Raman spectroscopy provides a useful tool
66562    for microstructure research under high temperature and helps to explain
66563    the properties of silicate glasses and melts.
66564 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
66565 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
66566    200072, Peoples R China.
66567 CR DOMINE F, 1983, J NON-CRYST SOLIDS, V55, P125
66568    HANDKE M, 1993, VIB SPECTROSC, V5, P75
66569    HUANG SP, 2000, CHINESE PHYS LETT, V17, P279
66570    JIANG GC, 1993, ISIJ INT, V33, P20
66571    LONG DA, 1977, RAMAN SPECTROSCOPY, CH4
66572    MYSEN BO, 1990, J GEOPHYS RES-SOLID, V95, P15733
66573    SMITH W, 1995, J NONCRYST SOLIDS, V192, P267
66574    XU KD, 1999, SCI CHINA, V22, P77
66575    XU PC, 1996, RAMAN SPECTROSCOPY G, CH7
66576    YOU JL, 1998, J CHINESE RARE EARTH, V16, P505
66577    YOU JL, 1999, OPTICAL INSTRUMENT, V21, P21
66578    YOU JL, 2000, IN PRESS J SHANGHAI
66579 NR 12
66580 TC 2
66581 SN 0256-307X
66582 J9 CHIN PHYS LETT
66583 JI Chin. Phys. Lett.
66584 PD MAR
66585 PY 2001
66586 VL 18
66587 IS 3
66588 BP 408
66589 EP 410
66590 PG 3
66591 SC Physics, Multidisciplinary
66592 GA 417RM
66593 UT ISI:000167848000033
66594 ER
66595 
66596 PT J
66597 AU Cheng, JR
66598    Meng, ZY
66599 TI Thickness-dependent microstructures and electrical properties of PZT
66600    films derived from sol-gel process
66601 SO THIN SOLID FILMS
66602 DT Article
66603 DE PZT films; sol-gel; thickness-dependent properties
66604 ID THIN-FILMS; ORIENTATION
66605 AB Crack free Pb(ZrxTi1-x)O-3 (x = 0.45) films with various thicknesses
66606    were prepared by a sol-gel multiple coating process on Pt-coated
66607    Si(100) substrates. Rapid thermal annealing (RTA) methods were used to
66608    crystallize the amorphous PZT films. Field emission scanning electron
66609    microscopy (FESEM) and X-ray diffraction (XRD) techniques were utilized
66610    to study the thickness dependent morphology and phase content. The
66611    relationship between the thickness and electrical properties of PZT
66612    films was investigated. The dielectric constants of PZT films increased
66613    with increasing film thickness. It was observed that the PZT films
66614    revealed spontaneous piezoelectric responses without poling process,
66615    which decreased with increasing film thickness. By poling the film with
66616    26 V/mum, the piezoelectric responses of the thin PZT films was not
66617    obviously improved. However, the piezoelectric constant of thick PZT
66618    films increased obviously after poling. The phenomenon of
66619    thickness-dependent spontaneous polarization of PZT films was utilized
66620    to interpret the thickness dependent piezoelectric properties. The I-V
66621    characteristics and the dielectric breakdown strength of PZT films have
66622    also been examined and discussed. (C) 2001 Elsevier Science B.V. All
66623    rights reserved.
66624 C1 Shanghai Jiao Tong Univ, Sch Mat Sci, Shanghai 200030, Peoples R China.
66625    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China.
66626 RP Cheng, JR, Shanghai Jiao Tong Univ, Sch Mat Sci, Shanghai 200030,
66627    Peoples R China.
66628 CR AMANUMA K, 1993, JPN J APPL PHYS 1, V32, P4150
66629    BUDD KD, 1985, BR CERAM P, V36, P107
66630    CHENG JR, 1999, ADV SCI TECH, V25, P61
66631    KHOLKIN AL, 1998, INTEGR FERROELECTR, V22, P525
66632    KIM CJ, 1998, THIN SOLID FILMS, V312, P130
66633    LEFKI K, 1994, J APPL PHYS, V76, P1764
66634    LIU DDH, 1997, INTEGR FERROELECTR, V18, P263
66635    MIYAZAWA K, 1998, J AM CERAM SOC, V81, P2333
66636    PHILLIPS NJ, 1991, J MATER CHEM, V1, P893
66637    QU X, 1986, THIN FILM PHYSICS CH, P124
66638    SCOTT JF, 1989, SCIENCE, V246, P1400
66639    SWARTZ SL, 1992, MATER RES SOC S P, V243, P533
66640    TANI T, 1993, MATER RES SOC S P, V310, P296
66641    WILLEMS GJ, 1997, INTEGR FERROELECTR, V15, P19
66642    YAMASHITA K, 1980, JPN J APPL PHYS, V19, P867
66643    YI G, 1988, J APPL PHYS, V64, P2713
66644 NR 16
66645 TC 16
66646 SN 0040-6090
66647 J9 THIN SOLID FILMS
66648 JI Thin Solid Films
66649 PD APR 2
66650 PY 2001
66651 VL 385
66652 IS 1-2
66653 BP 5
66654 EP 10
66655 PG 6
66656 SC Materials Science, Multidisciplinary; Physics, Applied; Physics,
66657    Condensed Matter
66658 GA 414KW
66659 UT ISI:000167666600002
66660 ER
66661 
66662 PT J
66663 AU Cheng, XY
66664    Wan, XJ
66665    Wu, QY
66666    Sun, XK
66667 TI Diffusion of hydrogen along the grain boundaries in Ni3Al alloys
66668 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
66669 DT Article
66670 ID ENVIRONMENTAL EMBRITTLEMENT; NICKEL; TRANSPORT; SEGREGATION
66671 AB The diffusivity of hydrogen in two Ni3Al alloys (No.1 and No.2) has
66672    been measured in the temperature range of 100 degreesC to 420 degreesC
66673    using an ultrahigh vacuum gaseous permeation technique. The diffusivity
66674    data fall into two segments, in which the hydrogen diffusivity adheres
66675    to the Arrhenius form, respectively. From the hydrogen diffusivity, it
66676    is conjectured that the hydrogen diffusivity reflects the hydrogen
66677    transportation along the grain boundaries at lower temperature and the
66678    hydrogen transportation in the lattice at higher temperature. The
66679    intergranular fracture of Lit-type intermetallics induced by hydrogen
66680    at relative low temperature results from hydrogen transportation along
66681    the grain boundaries and not in the lattice.
66682 C1 Shanghai Univ, Mat Res Inst, Shanghai 200072, Peoples R China.
66683    Chinese Acad Sci, Met Res Inst, State Key Lab RSA, Shenyang 110015, Peoples R China.
66684 RP Cheng, XY, Shanghai Univ, Mat Res Inst, Shanghai 200072, Peoples R
66685    China.
66686 CR CHENG XY, UNPUB
66687    CHENG XY, 1998, SCRIPTA MATER, V38, P959
66688    FUKUSHIMA H, 1984, ACTA METALL, V32, P851
66689    GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37
66690    HARRIS TM, 1991, METALL TRANS A, V22, P351
66691    HUANG JH, 1996, DIFFUSION METALS ALL
66692    KIRMURA A, 1988, ACTA METALL, V36, P757
66693    LADNA B, 1987, ACTA METALL, V35, P1775
66694    PALUMBO G, 1991, SCRIPTA METALL MATER, V25, P679
66695    TAKASUGI T, 1993, SCRIPTA METALL MATER, V29, P1587
66696    TSURU T, 1982, SCRIPTA METALL, V16, P575
66697    WAN X, 1994, J MATER SCI TECHNOL, V10, P39
66698    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
66699    XU J, 1993, ACTA METALL MATER, V41, P1455
66700 NR 14
66701 TC 0
66702 SN 1005-0302
66703 J9 J MATER SCI TECHNOL
66704 JI J. Mater. Sci. Technol.
66705 PD MAR
66706 PY 2001
66707 VL 17
66708 IS 2
66709 BP 207
66710 EP 210
66711 PG 4
66712 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
66713    Engineering
66714 GA 415KL
66715 UT ISI:000167720500003
66716 ER
66717 
66718 PT J
66719 AU Guo, GY
66720    Chen, YL
66721 TI High-quality zirconia powder resulting from the attempted separation of
66722    acetic acid from acrylic acid with zirconium oxychloride
66723 SO JOURNAL OF MATERIALS CHEMISTRY
66724 DT Article
66725 ID TEMPERATURE; PRECURSOR; ALKOXIDE
66726 AB Both acetic and acrylic acids are low molecular weight carboxylic acids
66727    with very similar physical and chemical properties. As a result it is
66728    difficult to separate these two acids by the now commercially
66729    significant separation techniques such as distillation, solvent
66730    extraction, adsorption, ion exchange, calcium salt precipitation, and
66731    membrane processes. We propose a metal-organic precipitation process
66732    using zirconium oxychloride to separate acetic acid from acrylic acid
66733    in the effluent of an acrylic acid plant. The process developed is
66734    based on the selective precipitation of acrylic acid, at suitable pH
66735    values, by the addition of zirconium oxychloride to the effluent. The
66736    resulting precipitate is a precursor that can yield a pure, ultrafine,
66737    and partially-stabilized zirconia powder which has been characterised
66738    using thermal analysis, infrared spectroscopy, and X-ray diffraction.
66739    Environmental, technological and cost advantages will make the present
66740    process feasible for the manufacture of advanced zirconia-based
66741    ceramics.
66742 C1 Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Shanghai 200030, Peoples R China.
66743    Shanghai Univ, Coll Chem & Chem Engn, Shanghai 200072, Peoples R China.
66744 RP Guo, GY, Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Shanghai 200030,
66745    Peoples R China.
66746 CR ALCOCK NW, 1976, J CHEM SOC DA, P2243
66747    CHEN YL, 1997, CERAM INT, V23, P267
66748    DJURADO E, 1998, J SOLID STATE CHEM, V141, P191
66749    GU GY, 1992, J AM CERAM SOC, V75, P1294
66750    GUO GY, 1991, J MATER SCI, V26, P3511
66751    GUO GY, 2000, GREEN CHEM, V2, G42
66752    HAYASHI H, 1998, J SOL-GEL SCI TECHN, V12, P87
66753    HU MZC, 1999, J AM CERAM SOC, V82, P2313
66754    JANA S, 1997, J SOL-GEL SCI TECHN, V9, P227
66755    KOMISSAROVA LN, 1966, RUSS J INORG CHEMN, V11, P2035
66756    MCDEVITT NT, 1964, SPECTROCHIM ACTA, V20, P799
66757    MEHROTRA RC, 1983, METAL CARBOXYLATES, P238
66758    MICHELI AL, 1989, CERAM INT, V15, P131
66759    PAUL RC, 1976, AUST J CHEM, V29, P1605
66760    PROZOROVSKAYA ZN, 1968, RUSS J INORG CHEM, V13, P965
66761    SOREK Y, 1997, CHEM MATER, V9, P670
66762    TOSAN JL, 1994, J NON-CRYST SOLIDS, V168, P23
66763    TSUKADA T, 1999, J AM CERAM SOC, V82, P1169
66764    UCHIKOSHI T, 1998, J MATER RES, V13, P840
66765    VEYTIZOU C, 2000, J MATER CHEM, V10, P365
66766    YOKOTA O, 1999, J AM CERAM SOC, V82, P1333
66767 NR 21
66768 TC 1
66769 SN 0959-9428
66770 J9 J MATER CHEM
66771 JI J. Mater. Chem.
66772 PY 2001
66773 VL 11
66774 IS 4
66775 BP 1283
66776 EP 1287
66777 PG 5
66778 SC Chemistry, Physical; Materials Science, Multidisciplinary
66779 GA 415NR
66780 UT ISI:000167728100050
66781 ER
66782 
66783 PT J
66784 AU Wan, YB
66785    Chu, JH
66786    Guo, SL
66787    Bo, LX
66788    Yu, TY
66789    Yu, BK
66790 TI A ferroelectric frequency-doubling material-potassium lithium niobate
66791 SO INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES
66792 DT Article
66793 DE crystal growth; ferroelectrics; optical transmission spectrum; domain
66794    structure; Second Harmonic Generation
66795 ID SINGLE-CRYSTALS; GROWTH
66796 AB The potassium lithium niobate crystals have been grown up. The shapes
66797    of solid-melt interfaces which maintaining the steady growth of the
66798    potassium lithium niobate crystals have been described. The optical
66799    transmission spectrum of the crystal has been surveyed. The perfected
66800    crystals showed good Second Harmonic Generation properties.
66801 C1 Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China.
66802    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
66803 RP Wan, YB, Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared
66804    Phys, Shanghai 200083, Peoples R China.
66805 CR CLARK R, 1973, J PHYSIQUE, V22, P143
66806    REID JJE, 1993, APPL PHYS LETT, V62, P19
66807    SONG YT, 1998, J CRYST GROWTH, V194, P379
66808    VANUITERT LG, 1967, APPL PHYS LETT, V11, P161
66809    WAN YB, 1998, J SYNTH CRYST, V27, P36
66810    WAN YB, 1999, CHIN J LASER, V26, P837
66811    XIA HR, 1997, CRYST RES TECHNOL, V32, P311
66812 NR 7
66813 TC 0
66814 SN 0195-9271
66815 J9 INT J INFRAR MILLIM WAVE
66816 JI Int. J. Infrared Millimeter Waves
66817 PD JAN
66818 PY 2001
66819 VL 22
66820 IS 1
66821 BP 197
66822 EP 205
66823 PG 9
66824 SC Engineering, Electrical & Electronic; Physics, Applied; Optics
66825 GA 414FL
66826 UT ISI:000167655300017
66827 ER
66828 
66829 PT J
66830 AU Pan, SK
66831    Yuan, QX
66832    Xu, J
66833    Yu, TY
66834    Yu, BK
66835    Wan, YB
66836 TI Crack-free K3Li2-xNb5+2xO15+2x crystals grown by the resistance-heated
66837    Czochralski technique
66838 SO JOURNAL OF CRYSTAL GROWTH
66839 DT Article
66840 DE Czochralski method; growth from melt; single crystal growth; lithium
66841    compound; niobate; potassium compounds; ferroelectric materials;
66842    nonlinear optic materials; harmonic generators; nonlinear optical
66843 ID POTASSIUM
66844 AB We report that crack-free K3Li2-chiNb5+2 chiO15+2 chi crystals (KLN)
66845    have been grown by the resistance-heated Czochralski technique. The
66846    influence of melt composition and growth parameters on crystal growth
66847    and crystal cracks are described. Blue light (445-476nm) has been
66848    obtained by frequency doubling of the light wave (890-952nm) generated
66849    from a Ti:sapphire laser. (C) 2001 Published by Elsevier Science B.V.
66850 C1 Acad Sinica, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
66851    Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
66852    Acad Sinica, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China.
66853 RP Pan, SK, Acad Sinica, Shanghai Inst Opt & Fine Mech, POB 800211,
66854    Shanghai 201800, Peoples R China.
66855 CR FERRIOL M, 1997, J CRYST GROWTH, V173, P226
66856    OUWERKER M, 1991, ADV MATER, V3, P339
66857    SCOTT BA, 1970, MATER RES B, V5, P47
66858    VANUITERT LG, 1967, APPL PHYS LETT, V11, P161
66859    WAN YB, 1997, J SYNTH CRYST, V2, P36
66860    WAN YB, 1999, J CHIN LASERS, V8, P15
66861    YOON DH, 1994, J CRYST GROWTH, V144, P207
66862 NR 7
66863 TC 2
66864 SN 0022-0248
66865 J9 J CRYST GROWTH
66866 JI J. Cryst. Growth
66867 PD MAR
66868 PY 2001
66869 VL 223
66870 IS 3
66871 BP 389
66872 EP 393
66873 PG 5
66874 SC Crystallography
66875 GA 411FL
66876 UT ISI:000167487400011
66877 ER
66878 
66879 PT J
66880 AU Ma, JY
66881    Qiu, XJ
66882 TI Interaction between an electronic system and multiphotons in a strong
66883    laser field
66884 SO ACTA PHYSICA SINICA
66885 DT Article
66886 DE strong laser field; multiphoton; nonlinear optics
66887 ID PARTIALLY STRIPPED PLASMAS; COHERENT CONTROL; PULSES; PROPAGATION;
66888    PHOTODISSOCIATION; STABILITY; DYNAMICS
66889 AB Under the framework of nonlinear quantum field theory,we show the total
66890    Hamiltonian operator H-tot for the interaction between an electron
66891    field and a photon field,and study the contribution of the nonlinear
66892    term A(2) in the strong laser field. In this paper,we describe
66893    electrons with the Schrodinger quantum wave field of Fermi-Dirac
66894    statistics. By applying "self-consistent mean field","effective mass"
66895    approximation and the displaced harmonic oscillator coherent theory,we
66896    derive the Lee-Low-Pines expression f(b(+)) of electron wave-photon
66897    field operator function. Then using the differential formula of partial
66898    derivativef(b+)/partial derivativeb+ we derive some relevant
66899    calculating formulas, including detailed expressions of electron energy
66900    El and abt wave field parameter beta (w). Furthermore,we also derive
66901    self-energy E-k=0 and renormalized mass m** of electrons according to
66902    these expressions.
66903 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
66904 RP Ma, JY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
66905 CR BARTY CPJ, 1996, LASER FOCUS WORLD, V32, P93
66906    BORGHESI M, 1998, PHYS REV E, V57, P4899
66907    CHARRON E, 1995, J CHEM PHYS, V103, P7359
66908    CHARRON E, 1995, PHYS REV LETT, V75, P2815
66909    CLARK TR, 1997, PHYS REV LETT, V78, P2773
66910    GIUSTISUZOR A, 1995, J PHYS B-AT MOL OPT, V28, P309
66911    GUO DS, 1992, PHYS REV A, V45, P6622
66912    HAKEN H, 1976, QUANTUM FIELD THEORY
66913    KRUSHELNICK K, 1997, PHYS REV LETT, V78, P4047
66914    LANGE HR, 1998, OPT LETT, V23, P120
66915    MENG SX, 1999, PROGR PHYSICS, V19, P236
66916    MILCHBERG HM, 1996, PHYS PLASMAS 2, V3, P2149
66917    MOUROU GA, 1998, PHYS TODAY, V51, P22
66918    SPRANGLE P, 1997, PHYS REV E B, V56, P5894
66919    SPRANGLE P, 1997, PHYS REV LETT, V79, P1046
66920    SPRANGLE P, 1999, PHYS REV LETT, V82, P1173
66921 NR 16
66922 TC 0
66923 SN 1000-3290
66924 J9 ACTA PHYS SIN-CHINESE ED
66925 JI Acta Phys. Sin.
66926 PD MAR
66927 PY 2001
66928 VL 50
66929 IS 3
66930 BP 416
66931 EP 421
66932 PG 6
66933 SC Physics, Multidisciplinary
66934 GA 412UJ
66935 UT ISI:000167572500010
66936 ER
66937 
66938 PT J
66939 AU Xue, Y
66940    Dong, LY
66941    Dai, SQ
66942 TI An improved one-dimensional cellular automaton model of traffic flow
66943    and the effect of deceleration probability
66944 SO ACTA PHYSICA SINICA
66945 DT Article
66946 DE traffic flow; cellular automaton; probability of deceleration; jam phase
66947 AB Based upon the single-lane traffic cellular automaton (CA) model
66948    introduced by Negel and Schreckenberg, an improved single-lane traffic
66949    CA model has been proposed by the consideration of the relative motion
66950    of vehicles and the relation of deceleration probability with the
66951    density. Numerical simulations have been carried out. The results show
66952    the complicated evolution process of traffic flow. The flow of vehicles
66953    can be controlled by the definition of the relation between
66954    deceleration probability and the exponet v of density P-noise similar
66955    to rho (v) Different values of v have different effect on the critical
66956    point from free phase to jam phase. The simulation agrees with the
66957    measurement as v is about 0.75. With the increase of vehicles and the
66958    evolution process of traffic flow,the free and jam phases will become
66959    unsteady and appear alternatively, similiar to the propagation of wave.
66960 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
66961    Guangxi Univ, Dept Phys, Nanning 530003, Peoples R China.
66962 RP Xue, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
66963    Peoples R China.
66964 CR BIHAM O, 1992, PHYS REV A, V46, P6124
66965    ISHIBASHI Y, 1994, J PHYS SOC JPN, V63, P2882
66966    NAGEL K, 1992, J PHYS I, V2, P2221
66967    NAGEL K, 1997, TRANSIMS TRAFFIC FLO
66968    SCHREKENBERG M, 1995, PHYS REV E A, V51, P2939
66969    TOROK J, 1996, PHYSICA A, V231, P515
66970    WAGNER P, 1996, TRAFFIC GRANULAR FLO, P193
66971    WANG BH, 1996, J PHYS A-MATH GEN, V29, L31
66972    WANG BH, 1998, ACTA PHYS SINICA, V47, P906
66973    WOLFRAM S, 1986, THEORY APPL CELLULAR
66974 NR 10
66975 TC 21
66976 SN 1000-3290
66977 J9 ACTA PHYS SIN-CHINESE ED
66978 JI Acta Phys. Sin.
66979 PD MAR
66980 PY 2001
66981 VL 50
66982 IS 3
66983 BP 445
66984 EP 449
66985 PG 5
66986 SC Physics, Multidisciplinary
66987 GA 412UJ
66988 UT ISI:000167572500015
66989 ER
66990 
66991 PT J
66992 AU Ma, HL
66993    Tang, JY
66994 TI Measurement of isotope shifts among Nd-142-146,148,150(+) by using
66995    collinear fast-ion-beam laser spectroscopy
66996 SO ACTA PHYSICA SINICA
66997 DT Article
66998 DE isotope shifts; fast-ion-beam laser spectroscopy
66999 ID ND-II
67000 AB In atomic spectroscopy, the subject of isotope shifts is one of the few
67001    problems that links atomic and nuclear physics. The isotope shifts
67002    among all the seven stable isotopes in Nd II were measured by means of
67003    collinear fast-ion-beam laser spectroscopy. Compared with the data that
67004    have been published,our experimental accuracy is improved by one order
67005    of magnitude and some of the results are obtained for the first time,
67006    as far as we know.
67007 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
67008    Fudan Univ, Inst Modern Phys, Shanghai 200433, Peoples R China.
67009 RP Ma, HL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
67010 CR AHMAD SA, 1983, SPECTROCHIM ACTA B, V36, P943
67011    BLAISE J, 1984, PHYS SCR, V29, P119
67012    GERSTENKON S, 1978, ATLAS SPECTRA ABSORP
67013    KING WK, 1984, ISOTOPE SHIFTS ATOMI, CH6
67014    MA HL, 1997, J PHYS B-AT MOL OPT, V30, P3355
67015    MA HL, 1998, ACTA PHYS SIN-OV ED, V7, P572
67016    MA HL, 1999, CHINESE PHYS LETT, V6, P411
67017    WAKASUGI M, 1990, J PHYS SOC JPN, V59, P2700
67018 NR 8
67019 TC 0
67020 SN 1000-3290
67021 J9 ACTA PHYS SIN-CHINESE ED
67022 JI Acta Phys. Sin.
67023 PD MAR
67024 PY 2001
67025 VL 50
67026 IS 3
67027 BP 453
67028 EP 456
67029 PG 4
67030 SC Physics, Multidisciplinary
67031 GA 412UJ
67032 UT ISI:000167572500017
67033 ER
67034 
67035 PT J
67036 AU Li, SM
67037    Wang, Q
67038    Wu, Z
67039    Wei, Q
67040 TI Slow Bragg solitons in a periodic structure with Kerr nonlinearity
67041 SO ACTA PHYSICA SINICA
67042 DT Article
67043 DE solitary wave; slow Bragg solitons; gap solitons; coupled-mode theory
67044 ID GAP SOLITONS; OPTICAL-RESPONSE; BISTABILITY; SUPERLATTICES
67045 AB On the basis of coupled-mode theory we find a class of solitary
67046    solutions for the electromagnetic wave propagating in an infinite
67047    one-dimensional periodic structure with an intensity-dependent
67048    refractive index. We show that the amplitude of the solitary wave is
67049    dependent of the incident frequency and the pulse width. In the Bragg
67050    resonance limit, the solitary wave can he Simplified to a soliton-like
67051    solution which was named as "gap soliton" or "slow Bragg soliton".
67052 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
67053 RP Li, SM, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
67054 CR CHEN W, 1987, PHYS REV B, V36, P6269
67055    CHEN W, 1987, PHYS REV LETT, V58, P160
67056    CHRISTODOULIDES DN, 1989, PHYS REV LETT, V62, P1746
67057    DESTERKE CM, 1989, J OPT SOC AM B, V6, P1722
67058    DRAGOMAN M, 1993, APPL PHYS LETT, V62, P110
67059    FENG J, 1993, OPT LETT, V18, P1302
67060    FENG JH, 1993, IEEE J QUANTUM ELECT, V29, P590
67061    HERBERT CJ, 1993, OPT LETT, V18, P1783
67062    KUO CP, 1988, OPT LETT, V13, P1032
67063    MILLS DL, 1987, PHYS REV B, V36, P947
67064    WINFUL HG, 1979, APPL PHYS LETT, V35, P379
67065    WINFUL HG, 1985, APPL PHYS LETT, V46, P527
67066 NR 12
67067 TC 4
67068 SN 1000-3290
67069 J9 ACTA PHYS SIN-CHINESE ED
67070 JI Acta Phys. Sin.
67071 PD MAR
67072 PY 2001
67073 VL 50
67074 IS 3
67075 BP 489
67076 EP 495
67077 PG 7
67078 SC Physics, Multidisciplinary
67079 GA 412UJ
67080 UT ISI:000167572500024
67081 ER
67082 
67083 PT J
67084 AU Gan, JY
67085    Chau, KT
67086    Wang, Y
67087    Chan, CC
67088    Jiang, JZ
67089 TI Design and analysis of a new permanent magnet brushless DC machine
67090 SO IEEE TRANSACTIONS ON MAGNETICS
67091 DT Article
67092 DE flux regulation; permanent magnet brushless dc machine; square wave;
67093    time-stepping finite element method
67094 AB A new permanent magnet (PM) brushless de machine with a unique feature
67095    of flux regulation is proposed in this paper. The originality is that
67096    the air-gap flux of the machine is generated by both the PM excitation
67097    and the specially controlled stator current under the same PM pole, The
67098    machine possesses advantageous characteristics of both the PM brushless
67099    de machine and the de series machine, The rotor configuration and
67100    principle of operation are so novel that the magnetic field
67101    distribution and performances of the machine are analyzed by use of a
67102    time-stepping finite element method. The theoretical calculation is
67103    also verified by experimental measurement.
67104 C1 Univ Hong Kong, Dept Elect Engn & Elect, Hong Kong, Hong Kong, Peoples R China.
67105    Shanghai Univ, Sch Automat, Shanghai 200072, Peoples R China.
67106 RP Gan, JY, Univ Hong Kong, Dept Elect Engn & Elect, Hong Kong, Hong Kong,
67107    Peoples R China.
67108 CR CHAN CC, 1996, IEEE T IND ELECTRON, V43, P331
67109    CHAN CC, 1998, IEEE T, V4, P16
67110    CHAN CC, 1999, P INT EL VEH S, P1
67111    LAW JD, 1994, IEEE T IND APPL, V30, P1185
67112    MAYER R, 1986, P INT C EL MACH, P1138
67113 NR 5
67114 TC 2
67115 SN 0018-9464
67116 J9 IEEE TRANS MAGN
67117 JI IEEE Trans. Magn.
67118 PD SEP
67119 PY 2000
67120 VL 36
67121 IS 5
67122 PN Part 1
67123 BP 3353
67124 EP 3356
67125 PG 4
67126 SC Engineering, Electrical & Electronic; Physics, Applied
67127 GA 409EN
67128 UT ISI:000167371700380
67129 ER
67130 
67131 PT J
67132 AU Gan, JY
67133    Chau, KT
67134    Chan, CC
67135    Jiang, JZ
67136 TI A new surface-inset, permanent-magnet, brushless DC motor drive for
67137    electric vehicles
67138 SO IEEE TRANSACTIONS ON MAGNETICS
67139 DT Article
67140 DE brushless dc motors; electric vehicles; motor drives; permanent magnet
67141    motors
67142 ID OPERATING LIMITS; DESIGN; PERFORMANCE; MACHINES
67143 AB A new five-phase, surface-inset, permanent-magnet (PM), brushless de
67144    motor drive is proposed in this paper The motor drive has advantages of
67145    both the PM brushless de motor drive and the de series motor drive, The
67146    originlity is that the air-gap flux of the motor is generated by both
67147    the PM excitation and the specially controlled stator currents (two
67148    particular phases) under the same PM pole. The motor configuration and
67149    principle of operation are so unusual that the magnetic field
67150    distribution and steady-state performance are analyzed by the
67151    finite-element method (FEM), Experimental results for a prototype
67152    verify that the proposed motor drive is promising for modern electric
67153    vehicle applications.
67154 C1 Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China.
67155    Shanghai Univ, Sch Automat, Shanghai 200072, Peoples R China.
67156 RP Gan, JY, Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong,
67157    Peoples R China.
67158 CR CHAN CC, 1993, P IEEE, V81, P1202
67159    CHAN CC, 1994, IEEE T IND APPL, V30, P1258
67160    CHAN CC, 1995, IEEE T POWER ELECTR, V10, P539
67161    JAHNS TM, 1987, IEEE T IND APPL, V23, P681
67162    LAW JD, 1994, IEEE T IND APPL, V30, P1185
67163    MAYER R, 1988, P INT C EL MACH, P1138
67164    MORIMOTO S, 1990, IEEE T IND APPL, V26, P866
67165    SCHIFERL RF, 1990, IEEE T IND APPL, V26, P115
67166    SEBASTIAN T, 1987, IEEE T IND APPL, V23, P327
67167    SEBSTIAN T, 1986, IEEE T MAGN, V22, P1069
67168    SOONG WL, 1994, IEE P-ELECT POW APPL, V141, P331
67169    WEH H, 1984, IEEE T MAGN, V20, P1756
67170    WEH H, 1985, P EUR POW EL C EPE B, P1147
67171    XU LY, 1995, IEEE T IND APPL, V31, P373
67172    ZHU ZQ, 1994, IEEE T MAGN, V30, P98
67173 NR 15
67174 TC 6
67175 SN 0018-9464
67176 J9 IEEE TRANS MAGN
67177 JI IEEE Trans. Magn.
67178 PD SEP
67179 PY 2000
67180 VL 36
67181 IS 5
67182 PN Part 2
67183 BP 3810
67184 EP 3818
67185 PG 9
67186 SC Engineering, Electrical & Electronic; Physics, Applied
67187 GA 409EQ
67188 UT ISI:000167371900009
67189 ER
67190 
67191 PT J
67192 AU Ren, ZJ
67193    Cao, WG
67194    Tong, WQ
67195    Xi, JJ
67196 TI Novel synthesis of unsymmetrical azines from semicarbazones and
67197    aldehydes
67198 SO SYNTHETIC COMMUNICATIONS
67199 DT Article
67200 AB A new synthesis of unsymmetrical azines utilizing semicarbazones and
67201    aldehyde is described.
67202 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
67203 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
67204 CR BARLUENGA J, 1982, SYNTHESIS-STUTTGART, P966
67205    GEORGIA MA, 1987, ORGANOMETALLICS, V6, P421
67206    KOZIARA A, 1986, SYNTHESIS-STUTTGART, P298
67207    TENNANT G, 1979, COMPREHENSIVE ORGANI, V2, P455
67208    UGRIUMOV PG, 1959, ZH OBSHCH KHIM, V29, P4091
67209 NR 5
67210 TC 1
67211 SN 0039-7911
67212 J9 SYN COMMUN
67213 JI Synth. Commun.
67214 PY 2001
67215 VL 31
67216 IS 1
67217 BP 125
67218 EP 129
67219 PG 5
67220 SC Chemistry, Organic
67221 GA 409LC
67222 UT ISI:000167384300017
67223 ER
67224 
67225 PT J
67226 AU Jin, H
67227    Wang, Q
67228    Li, ZY
67229 TI Biocatalytic resolution of para-nitrostyrene oxide by resting cells of
67230    different Aspergillus niger strains
67231 SO CHINESE JOURNAL OF CHEMISTRY
67232 DT Article
67233 DE epoxide hydrolase; kinetic resolution; chiral epoxide; chiral vicinal
67234    diol
67235 ID MICROBIOLOGICAL TRANSFORMATIONS; EPOXIDE HYDROLASES
67236 AB Biocatalytic resolution of racemic para-nitrostyrene oxide was
67237    accomplished by employing the epoxide hydrolases from the whole cells
67238    of several Aspergillus niger (A. niger) strains. In the eases
67239    investigated, excellent selectivity was achieved with such strains as
67240    A. niger 5450, A. niger 5320.
67241 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Bioorgan & Nat Prod Chem, Shanghai 200032, Peoples R China.
67242    Shanghai Univ, Dept Biotechnol, Shanghai 200072, Peoples R China.
67243 RP Li, ZY, Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab
67244    Bioorgan & Nat Prod Chem, 345 Lingling Lu, Shanghai 200032, Peoples R
67245    China.
67246 CR ARAND M, 1994, FEBS LETT, V338, P251
67247    ARAND M, 1996, J BIOL CHEM, V271, P4223
67248    ARCHELAS A, 1997, ANNU REV MICROBIOL, V51, P491
67249    CHEN XJ, 1993, J ORG CHEM, V58, P5528
67250    FABER K, 1996, ACTA CHEM SCAND, V50, P249
67251    JACOBSEN EN, 1997, TETRAHEDRON LETT, V38, P773
67252    JOHNSON RA, 1993, CATALYTIC ASYMMETRIC, P103
67253    KATSUKI T, 1995, J SYN ORG CHEM JPN, V53, P940
67254    KOLB HC, 1994, CHEM REV, V94, P2483
67255    LARROW JF, 1996, J AM CHEM SOC, V50, P249
67256    MOREAU P, 1997, TETRAHEDRON, V53, P9707
67257    MORISSEAU C, 1997, ENZYME MICROB TECH, V20, P446
67258    MORISSEAU C, 1998, BIOTECHNOL TECH, V12, P805
67259    MOUSSOU P, 1996, J ORG CHEM, V61, P7402
67260    PEDRAGOSAMOREAU S, 1997, TETRAHEDRON, V53, P9707
67261    WEIJERS CAGM, 1997, TETRAHEDRON-ASYMMETR, V8, P639
67262 NR 16
67263 TC 0
67264 SN 1001-604X
67265 J9 CHINESE J CHEM
67266 JI Chin. J. Chem.
67267 PD MAR
67268 PY 2001
67269 VL 19
67270 IS 3
67271 BP 272
67272 EP 275
67273 PG 4
67274 SC Chemistry, Multidisciplinary
67275 GA 408AP
67276 UT ISI:000167304600011
67277 ER
67278 
67279 PT J
67280 AU Xu, K
67281    Zhou, S
67282    Bao, JS
67283 TI Nonequilibrium photoresponse of YBa2Cu3O7-x granular films to 8 mm
67284    microwave radiation
67285 SO JOURNAL OF APPLIED PHYSICS
67286 DT Article
67287 ID KOSTERLITZ-THOULESS TRANSITION; O THIN-FILMS; ANTIVORTEX PAIR
67288    DISSOCIATION; SUPERCONDUCTING WEAK LINKS; JOSEPHSON-JUNCTION ARRAYS;
67289    OPTICAL-RESPONSE; RESISTIVE TRANSITION; TEMPORAL RELAXATION;
67290    FLUCTUATIONS; CRYSTALS
67291 AB Nonequilibrium photoresponse behavior has been investigated for
67292    YBa2Cu3O7-x (YBCO) granular films to 8 mm microwave radiation under
67293    various bias currents and magnetic fields. The measurements reveal that
67294    the nonequilibrium photoresponse mode occurs only in the tail region of
67295    the resistance transition curve R(T) from the normal to the
67296    superconducting state, where transportation behavior of the granular
67297    superconducting film is found to be characterized by the
67298    Kosterlitz-Thouless (KT) phase transition model. Based on the KT model,
67299    the photoresponse mechanism has been interpreted in terms of the
67300    depinning process of the unbinding vortices, which are generated from
67301    the decoupling process of the vortex-antivortex pairs by current, and
67302    are held at the intrinsic pinning sites of the granular high-T-c
67303    superconducting films at low temperature. Under the co-action of the
67304    bias current and the incident microwave photons, these unbinding
67305    vortices will be driven out of the pinning center, creating viscous
67306    motion in the Josephson junction array system. An analytical result of
67307    the unbinding vortices density n(T,I) induced by applied current has
67308    been worked out based on the model of two-dimensional Josephson
67309    junction arrays that is employed as a model system for the YBCO
67310    granular films. The distribution of the n(T,I) is found to be analogous
67311    to that of the photoresponse measured in the temperature region of
67312    2/3T(KT)<T <T-KT. Additionally, the measurements reveal that the
67313    magnitude of the photoresponse is linearly increased with an increase
67314    of the incident microwave power. These results imply that the
67315    nonequilibrium photoresponse induced by microwave irradiation may be
67316    intrinsically related to the decoupling process of the
67317    vortex-antivortex pairs, as well as to the depinning dynamics of the
67318    unbinding vortices in the granular high-T-c superconducting films. (C)
67319    2001 American Institute of Physics.
67320 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
67321 RP Xu, K, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
67322 CR ABRAHAM DW, 1982, PHYS REV B, V26, P5268
67323    AMBEGAOKAR V, 1963, PHYS REV LETT, V10, P486
67324    BEASLEY MR, 1979, PHYS REV LETT, V42, P1165
67325    BHATTACHARYA S, 1994, J APPL PHYS, V76, P5829
67326    BLUZER N, 1991, PHYS REV B, V44, P10222
67327    BLUZER N, 1992, J APPL PHYS, V71, P1336
67328    BLUZER N, 1993, IEEE T APPL SUPERCON, V3, P2869
67329    BOONE BG, 1991, J APPL PHYS, V69, P2676
67330    CHANG K, 1991, J APPL PHYS, V69, P7316
67331    CHEN CD, 1994, PHYSICA B 1, V194, P989
67332    CHERN JD, 1993, IEEE T APPL SUPERCON, V3, P2128
67333    CHO S, 1999, J APPL PHYS, V84, P5657
67334    CULBERTSON JC, 1991, PHYS REV B, V44, P9609
67335    DAVIS LC, 1990, PHYS REV B, V42, P99
67336    DEMSAR J, 1997, J SUPERCOND, V10, P455
67337    EPSTEIN K, 1981, PHYS REV LETT, V47, P534
67338    FARDMANESH M, 1995, J APPL PHYS, V77, P4568
67339    FENKEL A, 1993, PHYS REV B, V48, P9717
67340    FIORY AT, 1988, PHYS REV LETT, V61, P1419
67341    FRENKEL A, 1990, J APPL PHYS, V67, P3054
67342    GOLTSMAN GN, 1994, J SUPERCOND, V7, P751
67343    HARRIS DC, 1991, PHYS REV LETT, V67, P3606
67344    HEBARD AF, 1980, PHYS REV LETT, V44, P291
67345    HEGMANN FA, 1993, PHYS REV B, V48, P16023
67346    HEGMANN FA, 1995, APPL PHYS LETT, V67, P285
67347    HERTER ST, 1998, PHYS REV B, V57, P1154
67348    HU Q, 1989, APPL PHYS LETT, V55, P2444
67349    HUBER WM, 1996, APPL PHYS LETT, V68, P3338
67350    KADOWAKI K, 1994, SUPERCOND SCI TECH, V7, P519
67351    KAILA MM, 1998, J SUPERCOND, V11, P463
67352    LOBB CJ, 1983, PHYS REV B, V27, P150
67353    MARTIN S, 1989, PHYS REV LETT, V62, P677
67354    PHONG LN, 1993, J APPL PHYS, V74, P7414
67355    RESNICK DJ, 1981, PHYS REV LETT, V47, P1542
67356    RZCHOWSKI MS, 1990, PHYS REV B, V42, P2041
67357    STROM U, 1990, PHYS REV B, V42, P4059
67358    TINKHAM M, 1995, INTRO SUPERCONDUCTIV, CH6
67359    WU PH, 1987, JPN J APPL PHYS, V26, L1579
67360    XU KX, 1999, ACTA PHYS SIN-CH ED, V48, P1152
67361    YEH NC, 1989, PHYS REV B, V39, P9708
67362    YESHURUN Y, 1988, PHYS REV LETT, V60, P2202
67363    YING QY, 1990, PHYS REV B, V42, P2242
67364    YUZHELEVSKI Y, 1999, PHYS REV B, V60, P9726
67365    ZELDOV E, 1989, PHYS REV B, V39, P9712
67366 NR 44
67367 TC 2
67368 SN 0021-8979
67369 J9 J APPL PHYS
67370 JI J. Appl. Phys.
67371 PD MAR 15
67372 PY 2001
67373 VL 89
67374 IS 6
67375 BP 3352
67376 EP 3361
67377 PG 10
67378 SC Physics, Applied
67379 GA 406ZZ
67380 UT ISI:000167248100043
67381 ER
67382 
67383 PT J
67384 AU He, JH
67385 TI Generalized Hellinger-Reissner principle
67386 SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME
67387 DT Article
67388 ID PARAMETRIZED VARIATIONAL-PRINCIPLES; MECHANICS
67389 AB By the semi-inverse method of establishing variational principles, the
67390    Hellinger-Reissner principle can be obtained straightforwardly from
67391    energy trial-functionals without using Lagrange multipliers, and a
67392    family of generalized Hellinger-Reissner principles with an arbitrary
67393    constant are also obtained, some of which are unknown to us at the
67394    present time. The present theory provides a straightforward tool to
67395    search for various variational principles directly from governing
67396    equations and boundary conditions.
67397 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
67398 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
67399    Shanghai 200072, Peoples R China.
67400 CR CHIEN WZ, 1983, APPL MATH MECH, V4, P137
67401    CHIEN WZ, 1984, ADV APPL MECH, V24, P93
67402    FELIPPA CA, 1989, COMMUN APPL NUMER M, V5, P79
67403    FELIPPA CA, 1994, COMPUT METHOD APPL M, V113, P109
67404    FELIPPA CA, 1996, COMPUT MECH, V18, P159
67405    GOLDSTEIN H, 1981, CLASSICAL MECH
67406    HE JH, 1997, INT J TURBO JET ENG, V14, P23
67407    HE JH, 1997, J ENG THERMOPHYSICS, V18, P440
67408    HE JH, 1997, J SHANGHAI U, V1
67409    HE JH, 1997, J SHANGHAI U, V1, P36
67410    HE JH, 1997, MODERN MECH ADV SCI, P1417
67411    HE JH, 1997, MODERN MECH ADV SCI, P603
67412    LIU GL, 1990, P 1 INT S AER INT FL, P128
67413    WASHIZU K, 1982, VARIATIONAL METHODS
67414 NR 14
67415 TC 3
67416 SN 0021-8936
67417 J9 J APPL MECH
67418 JI J. Appl. Mech.-Trans. ASME
67419 PD JUN
67420 PY 2000
67421 VL 67
67422 IS 2
67423 BP 326
67424 EP 331
67425 PG 6
67426 SC Mechanics
67427 GA 404PK
67428 UT ISI:000167109400013
67429 ER
67430 
67431 PT J
67432 AU Chen, DD
67433    Shi, WH
67434 TI On the formal solution of initial value problem of Navier-Stokes
67435    equation
67436 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
67437 DT Article
67438 DE Navier-Stokes equation; formal solution; stratification; equation
67439    secondaire
67440 AB A necessary and sufficient conditions of the existence of formal
67441    solution to the initial value problem of Navier-Stokes equation an R-3
67442    x R are presented. A computation case is also given.
67443 C1 Shanghai Univ, Dept Math, Shanghai 200041, Peoples R China.
67444 RP Chen, DD, Shanghai Univ, Dept Math, Shanghai 200041, Peoples R China.
67445 CR LANDAU J, 1971, MECHANIQUE FLUIDES
67446    SHI WH, 1994, APPL MATH MECH, V15, P1125
67447    SHIH WH, 1992, SOLUTIONS ANAL QUELQ
67448 NR 3
67449 TC 0
67450 SN 0253-4827
67451 J9 APPL MATH MECH-ENGL ED
67452 JI Appl. Math. Mech.-Engl. Ed.
67453 PD DEC
67454 PY 2000
67455 VL 21
67456 IS 12
67457 BP 1432
67458 EP 1439
67459 PG 8
67460 SC Mathematics, Applied; Mechanics
67461 GA 406LG
67462 UT ISI:000167217200011
67463 ER
67464 
67465 PT J
67466 AU He, YH
67467    Shi, WH
67468 TI The C-k instability of Navier-Stokes equation appending polynomials of
67469    unknown functions
67470 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
67471 DT Article
67472 DE Navier-Stokes equation; unstable equation; strate transversale
67473 AB Applying the theory of stratification, the solution space structure
67474    about a class of deformed Navier-Stokes equation is determined. It is
67475    proved that such kind of equation has no C-k( k greater than or equal
67476    to2) stable solution by the fact that the strate transversale is a null
67477    set.
67478 C1 Shanghai Univ, Dept Math, Shanghai 210800, Peoples R China.
67479 RP He, YH, Shanghai Univ, Dept Math, Shanghai 210800, Peoples R China.
67480 CR CHEN DD, 1996, APPL MATH MECH, V17, P541
67481    LANDAU L, 1971, MECHANIQUE FLUIDES
67482    RIDE H, 1971, MATH GEOPHYSICAL SCI
67483    SHIH W, 1987, CR ACAD SCI I-MATH, V304, P103
67484    SHIH WH, 1995, SOLUTIONS ANAL QUELQ
67485    SHIH WH, 1998, ICNM 3 INT C NONL ME, P848
67486    SHIH WS, 1986, DIAGRAMMES, P1
67487    TANG YM, 1997, MODERN MATH MECH MMM, P445
67488    TROTMANN D, 1997, SINGULARITIES MAPS A
67489 NR 9
67490 TC 0
67491 SN 0253-4827
67492 J9 APPL MATH MECH-ENGL ED
67493 JI Appl. Math. Mech.-Engl. Ed.
67494 PD DEC
67495 PY 2000
67496 VL 21
67497 IS 12
67498 BP 1440
67499 EP 1449
67500 PG 10
67501 SC Mathematics, Applied; Mechanics
67502 GA 406LG
67503 UT ISI:000167217200012
67504 ER
67505 
67506 PT J
67507 AU Cheng, XY
67508    Wan, XJ
67509 TI The influence of atomic ordering on the hydrogen embrittlement of
67510    (Co,Fe)(3)V polycrystal
67511 SO SCRIPTA MATERIALIA
67512 DT Article
67513 DE scanning electron microscopy (SEM); intermetallics; hydrogen
67514    embrittlement; order-disorder phenomena
67515 ID ENVIRONMENTAL EMBRITTLEMENT; MECHANICAL-PROPERTIES; DUCTILITY;
67516    FRACTURE; ALLOYS; NI3FE; NI3AL
67517 C1 Shanghai Univ, Mat Res Inst, Shanghai 200072, Peoples R China.
67518 RP Cheng, XY, Shanghai Univ, Mat Res Inst, Shanghai 200072, Peoples R
67519    China.
67520 CR CAMUS GM, 1989, ACTA METALL, V37, P1497
67521    COHRON JW, 1996, INTERMETALLICS, V4, P497
67522    GEORGE EP, 1993, SCRIPTA METALL MATER, V28, P857
67523    KURUVILLA AK, 1982, 3RD P INT C HYDR MET, V2, P629
67524    KURUVILLA AK, 1985, MATER RES SOC S P, V39, P229
67525    LIU CT, 1979, METALL T A, V10, P1515
67526    LIU CT, 1989, SCRIPTA METALL, V23, P875
67527    LIU CT, 1990, SCRIPTA METALL MATER, V24, P385
67528    MARCUS P, 1985, HYDROGEN DEGRADATION, P36
67529    TAKASUGI T, 1986, ACTA METALL, V34, P607
67530    TAKASUGI T, 1991, J MATER SCI, V26, P1173
67531    TAKASUGI T, 1991, J MATER SCI, V26, P3032
67532    TAKASUGI T, 1992, J MATER RES, V7, P2739
67533    TAKASUGI T, 1994, INTERMETALLICS, V2, P225
67534    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
67535    WANG S, 1999, ACTA METALL SINICA, V35, P1262
67536    XIAOJING W, 1994, J MATER SCI TECHNOL, V10, P39
67537 NR 17
67538 TC 5
67539 SN 1359-6462
67540 J9 SCRIPTA MATER
67541 JI Scr. Mater.
67542 PD FEB 2
67543 PY 2001
67544 VL 44
67545 IS 2
67546 BP 325
67547 EP 329
67548 PG 5
67549 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
67550    Engineering
67551 GA 403JF
67552 UT ISI:000167038200022
67553 ER
67554 
67555 PT J
67556 AU Jiang, GC
67557    Guo, SQ
67558    Zhang, XB
67559    Zhuang, YQ
67560    Xu, KD
67561 TI Investigation on dephosphorization of stainless steel
67562 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
67563 DT Article
67564 AB The principle of the dephosphorization for stainless steels differs
67565    from that of other low alloy steels, which should not only decrease
67566    phosphorous content efficiently but also keep the concentration of Cr
67567    almost lossless. In these cases, two techniques can be selected. The
67568    strategy for oxidational dephosphorization is illustrated in terms of
67569    "the selective oxidation among elements [Cr], EP] and [C]. So there are
67570    two critical W-[C] values. If the real W-[C] locates between these two
67571    critical values, the dephosphorization process will be optimized. The
67572    optimized region deduced theoretically coincides with the reported
67573    range very well. The experiment of reductional dephosphorization was
67574    carried out in a sealed reactor. The dephosphorization degree reached
67575    55.4%-78.0% when the original phosphorous content was 0.04%-0.05%. The
67576    processing parameters and the way to avoid pollution were suggested. So
67577    this process seems to be possibly adopted in industrial scale.
67578 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
67579 RP Jiang, GC, Shanghai Univ, Shanghai 200072, Peoples R China.
67580 CR KITAMURA K, 1984, T ISIJ, V24, P631
67581    KOROS PJ, 1986, IRON STEEL MAKER, V13, P21
67582    ZHANG X, 1997, CALPHAD, V21, P301
67583    ZHANG XB, 1997, CALPHAD, V21, P311
67584 NR 4
67585 TC 0
67586 SN 1006-706X
67587 J9 J IRON STEEL RES INT
67588 JI J. Iron Steel Res. Int.
67589 PD NOV
67590 PY 2000
67591 VL 7
67592 IS 2
67593 BP 50
67594 EP 54
67595 PG 5
67596 SC Metallurgy & Metallurgical Engineering
67597 GA 403DY
67598 UT ISI:000167028400010
67599 ER
67600 
67601 PT J
67602 AU Tao, H
67603    Ma, HW
67604 TI Experimental research of the synthesizing of 13X molecular sieves from
67605    potash feldspar ores
67606 SO JOURNAL OF INORGANIC MATERIALS
67607 DT Article
67608 DE potash feldspar; 13X molecular sieves; synthesis
67609 AB 13X molecular sieve was synthesized from potash feldspar ores by baking
67610    and hydrothermal synthesizing procedures. The optimal technological
67611    parameters were determined by means of quadrature experiment. The
67612    properties of the synthesis powder such as XRD, crystal constants, SEM,
67613    DTA, chemical composition, SiO2/Al2O3 are similar to those of the ideal
67614    13X moleclar sieve. And its absorbability comes up to the state
67615    standards of chemical industry of China.
67616 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
67617    China Univ Geosci, Beijing 100083, Peoples R China.
67618 RP Tao, H, Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
67619 NR 0
67620 TC 1
67621 SN 1000-324X
67622 J9 J INORG MATER
67623 JI J. Inorg. Mater.
67624 PD JAN
67625 PY 2001
67626 VL 16
67627 IS 1
67628 BP 63
67629 EP 68
67630 PG 6
67631 SC Materials Science, Ceramics
67632 GA 401UV
67633 UT ISI:000166947400010
67634 ER
67635 
67636 PT J
67637 AU Ye, Z
67638    Zhou, Z
67639 TI The bending of composite shallow revolutional shells
67640 SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL
67641    OF AEROSPACE ENGINEERING
67642 DT Article
67643 DE composite revolutional shell; composite spherical shell; non-orthogonal
67644    series method (NOSM)
67645 ID LAMINATED CYLINDRICAL PLATES
67646 AB This paper deals with the bending problem of composite revolutional
67647    shells under the action of distributed loading using a new approach,
67648    the non-orthogonal series method, i.e. NOSM. The formulation is based
67649    on the thin shell theory of small strains. The basic equations are
67650    developed and can be expressed in matrix form for composite
67651    revolutional shells. In general, because of the anisotropic
67652    characteristics, there will be a coupling effect in the boundary
67653    conditions, even including the axisymmetrical bending case. The
67654    non-orthogonal function series adopted showed very significant coupling
67655    effects in such anisotropic and orthotropic revolutional shells.
67656    Finally, a composite shallow spherical shell was investigated and the
67657    results show that the coupling effect at the boundary conditions makes
67658    the maximum displacement smaller than in the case of no coupling.
67659 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
67660 RP Ye, Z, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yan Chang Rd,
67661    Shanghai 200072, Peoples R China.
67662 CR CHEN LW, 1987, COMPOS STRUCT, V8, P189
67663    LOU KA, 1991, J COMPOS MATER, V25, P162
67664    REKTORYS K, 1975, VARIATIONAL METHODS
67665    SOLDATOS KP, 1984, INT J ENG SCI, V21, P217
67666    TIMOSHENKO S, 1959, THEORY PLATES SHELLS
67667    VOLMIR AC, 1963, FLEXIBLE PLATES SHEL
67668    WHITNEY JM, 1984, AIAA J, V22, P1641
67669    YE ZM, 1995, COMPUT STRUCT, V55, P325
67670 NR 8
67671 TC 0
67672 SN 0954-4100
67673 J9 PROC INST MECH ENG PT G-J A E
67674 JI Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng.
67675 PY 2000
67676 VL 214
67677 IS G6
67678 BP 369
67679 EP 376
67680 PG 8
67681 SC Engineering, Aerospace; Engineering, Mechanical
67682 GA 400QP
67683 UT ISI:000166883300004
67684 ER
67685 
67686 PT J
67687 AU Yang, YZ
67688    Zhu, YL
67689    Li, QS
67690    Ma, XM
67691    Dong, YD
67692    Wang, GM
67693    Wei, SQ
67694 TI Mechanical alloying, fine structure and thermal decomposition of
67695    nanocrystalline FCC-Fe60Cu40
67696 SO PHYSICA B
67697 DT Article
67698 DE mechanical alloying; nanocrystalline solid solution; Mossbauer effect;
67699    thermal decomposition; EXAFS
67700 ID FEXCU100-X SOLID-SOLUTIONS; FE-CU ALLOYS; MAGNETIC-PROPERTIES;
67701    STABILITY; BEHAVIOR; POWDERS; SYSTEM
67702 AB The solid dissolution of Fe atoms into Cu matrix induced by mechanical
67703    alloying and subsequent thermal decomposition of Fe atoms from the
67704    solid solution in composition of Fe60Cu40 have been studied by X-ray
67705    diffraction (XRD), Mossbauer spectroscopy and the extended X-ray
67706    absorption fine structure (EXAFS) technique. The disappearance of
67707    elemental Fe and Cu XRD peaks and the presence of FCC structural XRD
67708    peaks illustrate the formation of FCC-Fe60Cu40 solid solution.
67709    Meanwhile, the new sextet spectrum with a broadening hyperfine magnetic
67710    field distribution also demonstrates that the alloying is on an atomic
67711    level and there exist complex coordination environments in the solid
67712    solution. EXAFS results Further prove the reality of atomic alloying
67713    from the clear observation of Fe atoms taking on FCC coordination in
67714    the solid solution. Additionally, a large reduction in the first shell
67715    coordination number for a center iron atom but not for a center Cu atom
67716    indicates the composition non-uniformity, which suggests that Fe atoms
67717    enrich the surface while Cu atoms enrich the core of a FCC nanocrystal.
67718    The variation of Mossbauer spectra against the annealing temperatures
67719    during thermal decomposition indicates that the Fe atoms at the surface
67720    readily nucleate and cluster into alpha -Fe at a temperature slightly
67721    below 250 degreesC, whereas the Fe atoms in the core of nano-sized
67722    crystals first cluster into gamma -Fe cohering to the FCC matrix at a
67723    temperature about 350 degreesC and then transform to alpha -Fe for
67724    further annealing at a higher temperature or for a longer time. (C)
67725    2001 Elsevier Science B.V. All rights reserved.
67726 C1 Guangdong Univ Technol, Dept Mat Sci & Engn, Guangzhou 510090, Peoples R China.
67727    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
67728    Univ Sci & Technol China, Ctr Struct Anal, Anhua 230026, Peoples R China.
67729 RP Yang, YZ, Guangdong Univ Technol, Dept Mat Sci & Engn, Guangzhou
67730    510090, Peoples R China.
67731 CR CHIEN CL, 1986, PHYS REV B, V33, P3247
67732    CRESPO P, 1993, PHYS REV B, V48, P7134
67733    CRESPO P, 1994, J APPL PHYS 2, V76, P6322
67734    CRESPO P, 1994, PHYS REV B, V49, P13227
67735    DICICCO A, 1994, PHYS REV B, V50, P12386
67736    DRBOHLAV O, 1995, ACTA METALL MATER, V43, P1799
67737    ECKERT J, 1993, J APPL PHYS, V73, P131
67738    ECKERT J, 1993, J APPL PHYS, V73, P2794
67739    FECHT HJ, 1990, METALL TRANS A, V21, P2333
67740    HARRIS VG, 1996, PHYS REV B, V54, P6929
67741    HUANG JY, 1997, ACTA MATER, V45, P113
67742    JIANG JZ, 1993, APPL PHYS LETT, V63, P1056
67743    JIANG JZ, 1993, APPL PHYS LETT, V63, P2768
67744    MA E, 1993, J APPL PHYS, V74, P955
67745    MACRI PP, 1994, J APPL PHYS, V76, P4061
67746    MASSALSKI TB, 1986, BINARY PHASE DIAGRAM, P916
67747    NIESSEN AK, 1983, CALPHAD, V7, P51
67748    SCHILLING PJ, 1996, APPL PHYS LETT, V68, P767
67749    SUMIYAMA K, 1985, ACTA METALL MATER, V33, P1785
67750    UENISHI K, 1992, Z METALLKD, V83, P132
67751    YANG YZ, 1992, ACTA METALL SINICA, V28, P399
67752    YANG YZ, 1994, J MATER SCI TECHNOL, V10, P135
67753    YAVARI AR, 1992, PHYS REV LETT, V68, P2235
67754 NR 23
67755 TC 4
67756 SN 0921-4526
67757 J9 PHYSICA B
67758 JI Physica B
67759 PD JAN
67760 PY 2001
67761 VL 293
67762 IS 3-4
67763 BP 249
67764 EP 259
67765 PG 11
67766 SC Physics, Condensed Matter
67767 GA 401LV
67768 UT ISI:000166929800006
67769 ER
67770 
67771 PT J
67772 AU Tan, WH
67773 TI Damped Jaynes-Cummings model including spontaneous emission
67774 SO CHINESE PHYSICS LETTERS
67775 DT Article
67776 ID COLLAPSE; REVIVAL; STATES; CAVITY; FIELD
67777 AB As a continuation of the previous paper 'Collapse and revival in the
67778    damped Jaynes-Cummings model' [Chin. Phys. Lett. 16 (1999) 895], at
67779    present the problem is solved under the condition that the atomic
67780    spontaneous emission is included. In the case of no damping, c = 0,
67781    gamma (1) not equal 0, gamma (2) not equal 0, the half atomic inversion
67782    operator (sigma (z)) possesses an analytic solution, whereas in the
67783    general case c not equal 0, the problem is reduced to the numerical
67784    evaluation of first-order nonlinear differential equations. The final
67785    results show that with the increase of gamma (1) and gamma (2), the
67786    kinetic quantities converge rapidly to stationary solutions.
67787 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
67788 RP Tan, WH, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
67789 CR BARNETT SM, 1986, PHYS REV A, V33, P2444
67790    BUCK B, 1981, PHYS LETT, V81, A132
67791    EBERLY JH, 1980, PHYS REV LETT, V44, P1323
67792    GERRY CC, 1996, PHYS REV A, V53, P2857
67793    HAKEN H, 1970, ENCYCL PHYS, V25, P41
67794    JAYNES ET, 1963, P IEEE, V51, P89
67795    KUKLINSKI JR, 1988, PHYS REV A, V37, P3175
67796    RAIMOND JM, 1982, PHYS REV LETT, V49, P117
67797    SHAO B, 1997, CHINESE PHYS LETT, V14, P905
67798    ZHENG SB, 1997, CHINESE PHYS LETT, V14, P273
67799 NR 10
67800 TC 1
67801 SN 0256-307X
67802 J9 CHIN PHYS LETT
67803 JI Chin. Phys. Lett.
67804 PD FEB
67805 PY 2001
67806 VL 18
67807 IS 2
67808 BP 220
67809 EP 222
67810 PG 3
67811 SC Physics, Multidisciplinary
67812 GA 402FX
67813 UT ISI:000166976300022
67814 ER
67815 
67816 PT J
67817 AU Shen, HC
67818    Wang, XG
67819 TI Multiple hypotheses testing method for distributed multisensor systems
67820 SO JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
67821 DT Article
67822 DE hypothesis testing; decision making; uncertainty; multisensor fusion
67823 ID FUSION STRATEGIES; TARGET DETECTION; DECISION FUSION; ARCHITECTURES;
67824    ENVIRONMENTS
67825 AB In this paper, we propose a two-layer sensor fusion scheme for multiple
67826    hypotheses multisensor systems. To reflect reality in decision making,
67827    uncertain decision regions are introduced in the hypotheses testing
67828    process. The entire decision space is partitioned into distinct regions
67829    of "correct", "uncertain" and "incorrect" regions. The first layer of
67830    decision is made by each sensor indepedently based on a set of optimal
67831    decision rules. The fusion process is performed by treating the fusion
67832    center as an additional "virtual" sensor to the system. This "virtual"
67833    sensor makes decision based on the decisions reached by the set of
67834    sensors in the system. The optimal decision rules are derived by
67835    minimizing the Bayes risk function. As a consequence, the performance
67836    of the system as well as individual sensors can be quantified by the
67837    probabilities of correct, incorrect and uncertain decisions. Numerical
67838    examples of three hypotheses, two and four sensor systems are presented
67839    to illustrate the proposed scheme.
67840 C1 Hong Kong Univ Sci & Technol, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China.
67841    Shanghai Univ, Coll Mech Engn & Automat, Shanghai 200072, Peoples R China.
67842 RP Shen, HC, Hong Kong Univ Sci & Technol, Dept Comp Sci, Clear Water Bay,
67843    Kowloon, Hong Kong, Peoples R China.
67844 CR DASARATHY BV, 1994, DECISION FUSION
67845    DASARATHY BV, 1997, OPT ENG, V36, P632
67846    DASARATHY BV, 1997, P IEEE, V85, P24
67847    DASARATHY BV, 1997, P SOC PHOTO-OPT INS, V3067, P14
67848    DASARATHY BV, 1997, P SOC PHOTO-OPT INS, V3067, P26
67849    HALL D, 1997, P IEEE, V85, P1
67850    HALL DL, 1992, MATH TECHNIQUES MULT
67851    HOBALLAH IY, 1989, IEEE T INFORM THEORY, V35, P995
67852    LEE CC, 1989, IEEE T AERO ELEC SYS, V25, P536
67853    LUO RC, 1995, MULTISENSOR INTEGRAT
67854    SADJADI FA, 1986, IEEE T AERO ELEC SYS, V22, P134
67855    SAMARASOORIYA VNS, 1997, P IEEE, V85, P54
67856    TENNEY RR, 1981, IEEE T AERO ELEC SYS, V17, P501
67857    THOMOPOLOUS SCA, 1990, INT J ROBOTICS, V17, P337
67858    THOMOPOULOS SCA, 1987, IEEE T AERO ELEC SYS, V23, P644
67859    THOMOPOULOS SCA, 1990, SPIE, V1383, P623
67860    THOMOPOULOS SCA, 1996, P SOC PHOTO-OPT INS, V2905, P127
67861    TSITSIKLIS JN, 1985, IEEE T AUTOMAT CONTR, V30, P440
67862    VARSHNEY PK, 1996, DISTRIBUTED DETECTIO
67863    WANG XG, 1996, P IEEE SICE RSJ INT, P166
67864    WANG XG, 1998, P IEEE INT C ROB AUT, P3407
67865    WANG XG, 1999, P IEEE INT C INT ROB, P1008
67866    WANG XG, 1999, P IEEE INT C ROB AUT, P2090
67867 NR 23
67868 TC 0
67869 SN 0921-0296
67870 J9 J INTELL ROBOT SYST
67871 JI J. Intell. Robot. Syst.
67872 PD FEB
67873 PY 2001
67874 VL 30
67875 IS 2
67876 BP 119
67877 EP 141
67878 PG 23
67879 SC Computer Science, Artificial Intelligence; Robotics
67880 GA 398TY
67881 UT ISI:000166773600001
67882 ER
67883 
67884 PT J
67885 AU Li, CF
67886    Wang, Q
67887 TI Tunneling time of particles through a potential barrier
67888 SO CHINESE PHYSICS LETTERS
67889 DT Article
67890 ID TRAVERSAL TIME; DISTRIBUTIONS
67891 AB A new tunneling time is proposed by introducing the transfer speed of
67892    energy carried by tunneling particles. This speed is similar to the
67893    energy transfer speed in electromagnetism, and with the tunneling time,
67894    the well-known superluminality may be avoided. The low energy limit,
67895    the critical limit, and the opaque limit are considered, which are
67896    physically meaningful. Comparisons with dwell time and Buttiker and
67897    landauer's semiclassical time are also made.
67898 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
67899    CCAST, World Lab, Beijing 100080, Peoples R China.
67900 RP Li, CF, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
67901 CR BAZ AI, 1967, SOV J NUCL PHYS, V5, P161
67902    BOHM D, 1952, PHYS REV, V85, P166
67903    BOLUN D, 1951, QUANTUM THEORY, P240
67904    BOLUN D, 1987, PHYS REP, V144, P321
67905    BRILLOUIN L, 1960, WAVE PROPAGATION GRO, P98
67906    BUTTIKER M, 1982, PHYS REV LETT, V49, P1739
67907    BUTTIKER M, 1983, PHYS REV B, V27, P6178
67908    CARNIGLIA CK, 1971, J OPT SOC AM, V61, P1035
67909    CHIAO RY, 1997, PROG OPTICS, V37, P345
67910    CONDON EU, 1931, REV MOD PHYS, V3, P43
67911    DEUTCH JM, 1993, ANN PHYS-NEW YORK, V228, P184
67912    DIENER G, 1996, PHYS LETT A, V223, P327
67913    HARTMAN TE, 1962, J APPL PHYS, V33, P3427
67914    HASS K, 1994, PHYS LETT A, V185, P9
67915    HAUGE EH, 1989, REV MOD PHYS, V61, P917
67916    JAPHA Y, 1996, PHYS REV A, V53, P586
67917    JAUCH JM, 1967, HELV PHYS A, V40, P217
67918    KRENZLIN HM, 1996, PHYS REV A, V53, P3749
67919    LEAVENS CR, 1993, PHYS LETT A, V178, P27
67920    MACCOLL LA, 1932, PHYS REV, V40, P621
67921    MCKINNON WR, 1995, PHYS REV A, V51, P2748
67922    RYBACHENKO VF, 1967, SOV J NUCL PHYS, V5, P635
67923    SMITH FT, 1960, PHYS REV, V118, P349
67924    WIGNER EP, 1955, PHYS REV, V98, P145
67925    ZHU S, 1986, AM J PHYS, V54, P601
67926 NR 25
67927 TC 2
67928 SN 0256-307X
67929 J9 CHIN PHYS LETT
67930 JI Chin. Phys. Lett.
67931 PY 2000
67932 VL 17
67933 IS 12
67934 BP 902
67935 EP 904
67936 PG 3
67937 SC Physics, Multidisciplinary
67938 GA 400QB
67939 UT ISI:000166882100016
67940 ER
67941 
67942 PT J
67943 AU Jinhua, W
67944    Yoshii, F
67945    Makuuchi, K
67946 TI Radiation vulcanization of ethylene-propylene rubber with
67947    polyfunctional monomers
67948 SO RADIATION PHYSICS AND CHEMISTRY
67949 DT Article
67950 DE ethylene-propylene rubber; polyfunctional monomer; radiation
67951    vulcanization
67952 AB This paper reports on the sensitizing efficiency of several
67953    polyfunctional monomers to radiation vulcanization of
67954    ethylene-propylene rubber. And the results show that triethyleneglycol
67955    dimethacrylate (TEGDMA) gave the best results. TEGDMA not only lowers
67956    the vulcanization dose (D-v), but also increases the tensile strength
67957    greatly. The content of TEGDMA does not affect the D-v of TEGDMA-EPM,
67958    but affects the tensile strength at the D-v. At best content (0.04
67959    mol/100 g EPM), the tensile strength is increased from 6.0 to 12 MPa,
67960    and the elongation is 790% at the D-v. (C) 2001 Elsevier Science Ltd.
67961    All rights reserved.
67962 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
67963    Japan Atom Energy Res Inst, Takasaki Radiat Chem Res Estab, Takasaki, Gumma 37012, Japan.
67964 RP Jinhua, W, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
67965    Peoples R China.
67966 CR AOSHIMA M, 1991, CELL POLYM, V10, P359
67967    ODIAN G, 1964, J POLYM SCI A, V2, P2835
67968    ODIAN G, 1968, J POLYM SCI C, V16, P3619
67969    SPENADEL L, 1979, RADIAT PHYS CHEM, V14, P683
67970    XIE SZ, 1989, HDB RUBBER IND, V1, P254
67971    XU Y, 1994, J RAD RES RAD P, V12, P155
67972    XU Y, 1995, J MACROMOL SCI PURE, V32, P1801
67973    YOSHII F, 1993, J RAD STERILIZATION, V1, P171
67974 NR 8
67975 TC 0
67976 SN 0969-806X
67977 J9 RADIAT PHYS CHEM
67978 JI Radiat. Phys. Chem.
67979 PD JAN
67980 PY 2001
67981 VL 60
67982 IS 1-2
67983 BP 139
67984 EP 142
67985 PG 4
67986 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
67987    Science & Technology
67988 GA 396ZP
67989 UT ISI:000166668500022
67990 ER
67991 
67992 PT J
67993 AU Song, LP
67994    Chu, QL
67995    Zhu, SZ
67996 TI Synthesis of fluorinated pyrazole derivatives from beta-alkoxyvinyl
67997    trifluoroketones
67998 SO JOURNAL OF FLUORINE CHEMISTRY
67999 DT Article
68000 DE beta-alkoxyvinyl trifluoromethylketone pentafluorophenylhydrazine
68001    per(poly)fluoroacectyl-hydrazine; fluorinated pyrazole; derivatives
68002 AB 1.1.1-Trifluoro-4-ethoxy-3-butane-2-one, 3-trifluoroacetyl-3,
68003    4-dihydro-2H-pyran or furan reacted readily with
68004    pentafluorophenylhydrazine or per(poly)fluoroacectylhydrazine
68005    RtCO-NHNH2 (R-1: BrCF2, C3F7) to give
68006    N-substituted-5-hydroxy-5-trifluoromrthyl I heterocycles
68007    Y-N-N=CH-CH(R)C(OH)CF3 (Y: H, Ar-f - or RtCO), which were dehydrated by
68008    treatment with P2O5 or SOCl2 to form N-substituted 5-trifluoromethyl
68009    pyrazoles Y-N-N=CH-C(R)=C CF3 (Y: H, Ar-f - or RtCO) in good yields.
68010    [GRAPHICS]
68011    (C) 2001 Elsevier Science B.V. All rights reserved.
68012 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Shanghai 200032, Peoples R China.
68013    Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
68014 RP Zhu, SZ, Chinese Acad Sci, Shanghai Inst Organ Chem, 354 Fenglin Rd,
68015    Shanghai 200032, Peoples R China.
68016 CR ATHERTON JH, 1968, J CHEM SOC C, P1507
68017    BANK RE, 1994, ORGANOFLUORINE CHEM
68018    BRAIBANTE MEF, 1993, J HETEROCYCLIC CHEM, V30, P1159
68019    GERUS II, 1991, KHIM GETEROTSIKL+, P502
68020    GERUS II, 1994, J FLUORINE CHEM, V69, P195
68021    HOJO M, 1976, CHEM LETT, P499
68022    HUDLICKY M, 1992, CHEM ORGANIC FLUORIN
68023    SINGH SP, 1999, J FLUORINE CHEM, V94, P199
68024    SOUFYANE M, 1993, TETRAHEDRON LETT, V34, P7737
68025    WELCH JT, 1987, TETRAHEDRON, V43, P3123
68026    YOSHIOKA H, 1984, J SYN ORG CHEM JPN, V42, P809
68027    ZHU SZ, 1999, MONATSH CHEM, V130, P671
68028 NR 12
68029 TC 18
68030 SN 0022-1139
68031 J9 J FLUORINE CHEM
68032 JI J. Fluor. Chem.
68033 PD JAN
68034 PY 2001
68035 VL 107
68036 IS 1
68037 BP 107
68038 EP 112
68039 PG 6
68040 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
68041 GA 397CR
68042 UT ISI:000166676200017
68043 ER
68044 
68045 PT J
68046 AU Yong, KL
68047    Lu, JG
68048 TI Common and diverse characteristics of three-dimensional fluorescence
68049    spectra of crude oils
68050 SO SPECTROSCOPY LETTERS
68051 DT Article
68052 DE three-dimensional fluorescence spectra; crude oil; fingerprint
68053 ID SYNCHRONOUS EXCITATION
68054 AB According to the contour maps of the three-dimensional fluorescence
68055    spectra of non-quenching crude oil samples, we have found the common
68056    and diverse fluorescence characteristics of various crude oils. The
68057    common fluorescence characteristic is that the main peaks of various
68058    crude oils are located in around the position of excitation/emission
68059    wavelength pair 228nm/340nm. The diversity of fluorescence
68060    characteristics can be represented with several indexes alpha, K, F and
68061    R, and these indexes provide measurable parameters for division of
68062    fluorescence fingerprints of crude oils. The fluorescence fingerprints
68063    of crude oils can be divided into three models named O, B and Q that
68064    are corresponding to condensate oil, light oil, and heavy oil
68065    respectively.
68066 C1 Shanghai Univ Sci & Technol, Sch Life Sci, Shanghai 201800, Peoples R China.
68067    Shanghai Univ Sci & Technol, Coll Sci, Shanghai 201800, Peoples R China.
68068 RP Yong, KL, Shanghai Univ Sci & Technol, Sch Life Sci, Shanghai 201800,
68069    Peoples R China.
68070 CR BENTZ AP, 1976, ANAL CHEM, V48, A455
68071    DESIDERI PG, 1986, J CHROMATOGR, V235, P165
68072    JOHN P, 1976, ANAL CHEM, V48, P520
68073    KARYAKIN AV, 1995, J ANAL CHEM+, V50, P1078
68074    KENNICUTT MC, 1983, MAR POLL B, V14, P342
68075    LU JC, 1998, FENXI SHIYANSHI, V17, P28
68076    MASON RP, 1988, OIL CHEM POLL, V4, P57
68077    RALSTON CY, 1996, APPL SPECTROSC, V50, P1563
68078    VONDERDICK H, 1986, ORG GEOCHEM, V10, P633
68079    XIAO X, 1991, PROG NAT SCI, V1, P240
68080 NR 10
68081 TC 0
68082 SN 0038-7010
68083 J9 SPECTROSC LETT
68084 JI Spectr. Lett.
68085 PY 2000
68086 VL 33
68087 IS 6
68088 BP 963
68089 EP 970
68090 PG 8
68091 SC Spectroscopy
68092 GA 394CQ
68093 UT ISI:000166506800015
68094 ER
68095 
68096 PT J
68097 AU Guo, BY
68098    Ma, HP
68099 TI Composite Legendre-Laguerre approximation in unbounded domains
68100 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
68101 DT Article
68102 DE composite spectral approximation; unbounded domains; exterior problems
68103 ID EQUATIONS
68104 AB Composite Legendre-Laguerre approximation in unbounded domains is
68105    developed. Some approximation results are obtained. As an example, a
68106    composite spectral scheme is provided for the Burgers equation on the
68107    half line. The stability and convergence of proposed scheme are proved
68108    strictly. Two-dimensional exterior problems are discussed.
68109 C1 Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China.
68110    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
68111 CR ADAMS RA, 1975, SOBOLEV SPACES
68112    BERNARDI C, 1992, APPROXIMATIONS SPECT
68113    BOYD JP, 1987, J COMPUT PHYS, V69, P112
68114    COULAUD O, 1990, COMPUT METHOD APPL M, V80, P451
68115    FUNARO D, 1990, MATH COMPUT, V57, P597
68116    FUNARO D, 1991, ORTHOGONAL POLYNOMIA, P263
68117    GUO BY, IN PRESS NUMER MATH
68118    GUO BY, 1999, MATH COMPUT, V68, P1067
68119    MADAY Y, 1985, RECH AEROSPATIALE, P353
68120    MASTROIANNI G, 1997, IMA J NUMER ANAL, V17, P621
68121    QUARTERONI A, 1990, SIAM J SCI STAT COMP, V11, P1029
68122 NR 11
68123 TC 0
68124 SN 0254-9409
68125 J9 J COMPUT MATH
68126 JI J. Comput. Math.
68127 PD JAN
68128 PY 2001
68129 VL 19
68130 IS 1
68131 BP 101
68132 EP 112
68133 PG 12
68134 SC Mathematics, Applied; Mathematics
68135 GA 393TQ
68136 UT ISI:000166486100011
68137 ER
68138 
68139 PT J
68140 AU Deng, BQ
68141    Wu, WQ
68142    Xi, ST
68143 TI A near-wall two-equation heat transfer model for wall turbulent flows
68144 SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
68145 DT Article
68146 DE two-equation model; turbulent flow; heat transfer
68147 ID PREDICTING FLUID-FLOW; FIELD CALCULATIONS; REATTACHING FLOWS;
68148    2-EQUATION MODEL
68149 AB A proposed near-wall (t(2)) over bar-epsilon (t) two-equation model for
68150    turbulent heat transport reproduces the correct near-wall behavior of
68151    temperature under various wall thermal boundary conditions. In this
68152    model, a mixing timescale is introduced to model the production term of
68153    epsilon (t) equation, and a more convenient boundary condition for
68154    epsilon (t) under the uniform wall heat flux is suggested. The present
68155    model is tasted through application to turbulent heat transfer for
68156    channel flow. Predicted results are compared with direct numerical
68157    simulation (DNS) data. The near-wall (t(2)) over bar-epsilon (t)
68158    two-equation model predicts reasonably well the distributions of the
68159    time-mean temperature. normal turbulent heat flux, temperature
68160    variance, dissipation rate and their near-wall budgets. (C) 2001
68161    Elsevier Science Ltd. All rights reserved.
68162 C1 Shanghai Univ Sci & Technol, Dept Power Engn, Shanghai 200093, Peoples R China.
68163    Shanghai Jiao Tong Univ, Sch Power & Energy Engn, Shanghai 200030, Peoples R China.
68164 RP Deng, BQ, Shanghai Univ Sci & Technol, Dept Power Engn, Shanghai
68165    200093, Peoples R China.
68166 CR ABE K, 1994, INT J HEAT MASS TRAN, V37, P139
68167    ABE K, 1995, INT J HEAT MASS TRAN, V38, P1467
68168    ELGOBASHI SE, 1983, PHYS FLUIDS, V26, P2415
68169    JONES WP, 1973, INT J HEAT MASS TRAN, V16, P1119
68170    JONES WP, 1988, PHYS FLUIDS, V31, P3589
68171    KASAGI N, 1992, J HEAT TRANS-T ASME, V114, P598
68172    KIM J, 1989, TURBULENT SHEAR FLOW, V6, P85
68173    LAM CKG, 1981, J FLUIDS ENG, V103, P456
68174    LAUNDER BE, 1976, TURBULENCE, P232
68175    LAUNDER BE, 1988, J HEAT TRANS-T ASME, V110, P1112
68176    NAGANO Y, 1988, J HEAT TRANSFER, V110, P583
68177    NEWMAN GR, 1981, J FLUID MECH, V111, P217
68178    PARK TS, 1996, INT J HEAT MASS TRAN, V39, P3465
68179    PATANKAR SV, 1980, NUMERICAL HEAT TRANS
68180    SHIKAZONO N, 1993, P 9 S TURB SHEAR FLO
68181    SOMMER TP, 1992, INT J HEAT MASS TRAN, V35, P3375
68182    TORRI S, 1996, NUMER HEAT TRANSFER, V29, P417
68183    YOUSSEF MS, 1992, INT J HEAT MASS TRAN, V35, P3095
68184 NR 18
68185 TC 2
68186 SN 0017-9310
68187 J9 INT J HEAT MASS TRANSFER
68188 JI Int. J. Heat Mass Transf.
68189 PD FEB
68190 PY 2001
68191 VL 44
68192 IS 4
68193 BP 691
68194 EP 698
68195 PG 8
68196 SC Engineering, Mechanical; Mechanics; Thermodynamics
68197 GA 394NL
68198 UT ISI:000166530100001
68199 ER
68200 
68201 PT J
68202 AU Ying, TL
68203    Gao, MJ
68204    Zhang, XL
68205 TI Highly selective technique-molecular imprinting
68206 SO CHINESE JOURNAL OF ANALYTICAL CHEMISTRY
68207 DT Article
68208 DE molecular imprinting; molecular imprinted polymer; review
68209 ID AMINO-ACID DERIVATIVES; ANALOG-BUILT POLYMERS; MACROPOROUS POLYMERS;
68210    RACEMIC-RESOLUTION; RECOGNITION SITES; FREE SUGARS; SENSOR; MIMICS;
68211    DEPENDENCE; MEMBRANES
68212 AB Some aspects of molecular imprinting including models of self-assemble
68213    and preorganized approach. The selection of the imprint molecules,
68214    functional monomer, the condition of polymerization are summarized. The
68215    application, character and prospect of molecular imprinting are also
68216    discussed.
68217 C1 Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China.
68218 RP Ying, TL, Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072,
68219    Peoples R China.
68220 CR ANDERSSON LI, 1988, TETRAHEDRON LETT, V29, P5437
68221    ANDERSSON LI, 1990, J CHROMATOGR, V513, P167
68222    ANDERSSON LI, 1990, J CHROMATOGR, V516, P313
68223    CRAM DJ, 1988, ANGEW CHEM INT EDIT, V27, P1009
68224    DABULIS K, 1992, BIOTECHNOL BIOENG, V39, P176
68225    DICKERT FL, 1999, TRAC-TREND ANAL CHEM, V18, P192
68226    DUNKIN IR, 1993, POLYMER, V34, P77
68227    EKBERG B, 1989, TRENDS BIOTECHNOL, V7, P92
68228    FISCHER L, 1991, J AM CHEM SOC, V113, P9358
68229    HAUPT K, 1998, ANAL CHEM, V70, P628
68230    KENNETH JS, 1993, J AM CHEM SOC, V115, P3368
68231    KRIZ D, 1995, ANAL CHIM ACTA, V300, P71
68232    KRIZ D, 1997, ANAL CHEM, V69, P345
68233    LELE BS, 1999, REACT FUNCT POLYM, V39, P37
68234    LINDSEY JS, 1991, NEW J CHEM, V15, P153
68235    LIU Q, 1999, CHINESE J ANAL CHEM, V27, P1341
68236    MATSUI J, 1998, ANAL COMMUN, V35, P225
68237    MENG ZH, 1997, CHINESE J ANAL CHEM, V25, P349
68238    MENG ZH, 1998, CHINESE J ANAL CHEM, V26, P1251
68239    MOSBACH K, 1996, BIO-TECHNOL, V14, P163
68240    NICHOLLS IA, 1995, J CHROMATOGR A, V691, P349
68241    NILSSON K, 1994, J CHROMATOGR A, V680, P57
68242    OSHANNESSY DJ, 1989, ANAL BIOCHEM, V177, P144
68243    PAULING L, 1940, J AM CHEM SOC, V62, P2443
68244    PAULING L, 1942, J EXP MED, V76, P211
68245    RAMSTROM O, 1993, J ORG CHEM, V58, P7562
68246    RAMSTROM O, 1994, ANAL CHEM, V66, P2636
68247    RAMSTROM O, 1998, ANAL COMMUN, V35, P9
68248    RICHARD JA, 1998, ANALYST, V123, P1611
68249    SELLERGREN B, 1985, J CHROMATOGR, V347, P1
68250    SELLERGREN B, 1994, ANAL CHEM, V66, P1578
68251    SERGEYEVA TA, 1999, ANALYST, V124, P331
68252    SREENIVASAN K, 1997, TALANTA, V44, P1137
68253    TURKEWITSCH P, 1998, ANAL CHEM, V70, P2025
68254    VLATAKIS G, 1993, NATURE, V361, P645
68255    WANG JF, 1999, ACTA CHIM SINICA, V57, P1147
68256    WANG WQ, 1999, J CLIMATE 2, V12, P1423
68257    WU M, 1997, CHEM SENSORS, V17, P292
68258    WULFF G, 1991, J ORG CHEM, V56, P395
68259    WULFF G, 1991, MAKROMOL CHEM, V192, P1329
68260    WULFF G, 1995, ANGEW CHEM INT EDIT, V34, P1812
68261    WULLF G, 1990, J LIQ CHROMATOGR, V13, P2987
68262    YOSHIKAWA M, 1996, CHEM LETT, P611
68263 NR 43
68264 TC 0
68265 SN 0253-3820
68266 J9 CHINESE J ANAL CHEM
68267 JI Chin. J. Anal. Chem.
68268 PD JAN 20
68269 PY 2001
68270 VL 29
68271 IS 1
68272 BP 99
68273 EP 102
68274 PG 4
68275 SC Chemistry, Analytical
68276 GA 395MK
68277 UT ISI:000166584000026
68278 ER
68279 
68280 PT J
68281 AU Cui, JH
68282    Zhong, SS
68283    Yu, C
68284 TI FDTD analysis of a compact microstrip antenna with a C-shaped slot
68285 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
68286 DT Article
68287 DE microstrip antennas; FDTD; small antennas
68288 AB A novel small microstrip patch antenna with a C-shaped slot is
68289    presented in this paper: The size of the antenna is only 33% of a
68290    conventional microstrip patch antenna, and is much easier for
68291    fabrication than shorted patch antennas. The antenna is theoretically
68292    investigated using the finite-difference time-domain (FDTD) method and
68293    its return loss and radiation properties are presented. For purposes of
68294    comparison, method-of-moment (MoM) results are also presented, and good
68295    agreement is achieved. Such an antenna may be useful for applications
68296    where reduced antenna size and simplicity are major concerns. (C) 2001
68297    John Wiley & Sons, Inc.
68298 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
68299 RP Cui, JH, Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R
68300    China.
68301 CR BERENGER JP, 1996, J COMPUT PHYS, V127, P363
68302    BERENGER JP, 1997, IEEE T ANTENN PROPAG, V45, P466
68303    LO TK, 1997, ELECTRON LETT, V33, P9
68304    WATERHOUSE R, 1995, ELECTRON LETT, V31, P604
68305    WATERHOUSE RB, 1997, IEEE AP S INT S, P1852
68306    WATERHOUSE RB, 1998, IEEE T ANTENN PROPAG, V46, P1629
68307    WONG KL, 1997, ELECTRON LETT, V33, P433
68308    YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302
68309 NR 8
68310 TC 0
68311 SN 0895-2477
68312 J9 MICROWAVE OPT TECHNOL LETT
68313 JI Microw. Opt. Technol. Lett.
68314 PD FEB 5
68315 PY 2001
68316 VL 28
68317 IS 3
68318 BP 170
68319 EP 172
68320 PG 3
68321 SC Engineering, Electrical & Electronic; Optics
68322 GA 391KC
68323 UT ISI:000166354300006
68324 ER
68325 
68326 PT J
68327 AU Xing, SM
68328    Zhai, QJ
68329    Hu, HQ
68330 TI Effect of process factors on microstructure of semisolid continuous
68331    casting billets
68332 SO JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
68333 DT Article
68334 DE semisolid metal; continuous casting; process factors; microstructure
68335 AB Semisolid continuous casting (SSCC) is a new technology to produce
68336    billets for semisolid metal forming (SSMF). The effect of process
68337    factors, such as pouring temperature, stirring rate, preheating
68338    temperature and thermal conductivity of stirring chamber, on the
68339    microstructure of SSCC billets was studied by means of the factorial
68340    experimental method. The results show that the microstructure of SSCC
68341    billets can be controlled by the above-mentioned four process factors.
68342    In order to obtain fine and rounded granular grains in an SSCC billet,
68343    the pouring temperature, preheating temperature and stirring rate
68344    should be kept in a moderate range, and the thermal conductivity of
68345    stirring chamber should be high. The regression equations with the
68346    process factors connecting the microstructure was also set up based on
68347    experimental data.
68348 C1 Tsing Hua Univ, Dept Mech Engn, Beijing 100084, Peoples R China.
68349    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
68350    Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China.
68351 RP Xing, SM, Tsing Hua Univ, Dept Mech Engn, Beijing 100084, Peoples R
68352    China.
68353 CR BLAZEK K, 1995, 5379828, US
68354    FLEMINGS MC, 1975, 3902544, US
68355    HIRT G, 1994, J MATER PROCESS TECH, V45, P359
68356    JABRANE S, 1992, P C PROC SEM ALL COM, P223
68357    WAGNER RS, 1996, T METALL SOC AIME, V236, P554
68358 NR 5
68359 TC 0
68360 SN 1005-8850
68361 J9 J UNIV SCI TECHNOL BEIJING
68362 JI J. Univ. Sci. Technol. Beijing
68363 PD DEC
68364 PY 2000
68365 VL 7
68366 IS 4
68367 BP 242
68368 EP 245
68369 PG 4
68370 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
68371    Engineering; Mining & Mineral Processing
68372 GA 390YA
68373 UT ISI:000166326300002
68374 ER
68375 
68376 PT J
68377 AU Wei, JH
68378    Xiang, SH
68379    Fan, YY
68380    Yu, NW
68381    Ma, JC
68382    Yang, SL
68383 TI Design and calculation of gas property parameters for constant area
68384    lance under conditions of friction flow with heating
68385 SO IRONMAKING & STEELMAKING
68386 DT Article
68387 AB Formulae for calculating the outlet property parameters of gas heating
68388    and friction streams in tubular and annular type lances with constant
68389    area (tuyeres) are given, and have been applied to the case of an
68390    annular type used for an AOD (argon-oxygen decarburisation) vessel of
68391    18 t capacity. The distributions of both the inner wall temperatures of
68392    the tuyere and the gas stagnation temperatures along its length have
68393    been more reasonably fixed. The friction factors for the gas flows
68394    through the main and subtuyeres during blowing refining have been
68395    determined by comparison of the practically measured P-Q relationships
68396    with the results from trial calculations. The outlet parameters of the
68397    gas streams for the central tube (main tuyere) and annular slit pipe
68398    (subtuyere) of the tuyere have been calculated. The influences of the
68399    gas supply pressure, the length and diameter of the tuyere, and the
68400    type and composition of the gases, as well as the heating effect, on
68401    the gas outlet parameters have been considered. The results obtained
68402    may be expected to offer useful information and a reliable basis for
68403    tuyere design and determination, control, and optimisation of the gas
68404    blowing parameters and technology, as well as for the investigation of
68405    hydraulic modelling of the blowing processes. I&S/1440.
68406 C1 Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China.
68407 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China.
68408 CR CARLSSON G, 1986, SCAND J METALL, V15, P298
68409    DEISSLER RG, 1950, 2138 NACA
68410    FARMER L, 1989, ISS STEELMAKING C P, V72, P487
68411    ISHIDA J, 1978, P 3 INT IR STEEL C C, P150
68412    KAYE J, 1951, GEN DISC HEAT TRANSM
68413    KEENAN JH, 1946, J APPL MECH, V13, A91
68414    KORIA SC, 1989, IRONMAK STEELMAK, V16, P21
68415    KORIA SC, 1989, ISIJ INT, V29, P650
68416    LEACH JCC, 1978, IRONMAK STEELMAK, V5, P107
68417    MOODY LF, 1944, T AM SOC MECH ENG, V66, P671
68418    SHAPIRO AH, 1953, DYNAMICS THERMODYNAM, V1, P219
68419    SHAPIRO AH, 1953, DYNAMICS THERMODYNAM, V2, P1131
68420    SHARMA SK, 1986, I SS STEELMAKING C P, V69, P653
68421    WEI JH, IN PRESS METALL MAT
68422 NR 14
68423 TC 4
68424 SN 0301-9233
68425 J9 IRONMAKING STEELMAKING
68426 JI Ironmak. Steelmak.
68427 PY 2000
68428 VL 27
68429 IS 4
68430 BP 294
68431 EP 301
68432 PG 8
68433 SC Metallurgy & Metallurgical Engineering
68434 GA 392RA
68435 UT ISI:000166424400004
68436 ER
68437 
68438 PT J
68439 AU He, JH
68440 TI Coupled variational principles of piezoelectricity
68441 SO INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE
68442 DT Article
68443 DE piezoelectricity; elasticity; variational theory; the semi-inverse
68444    method; trial-functional
68445 ID SEMI-INVERSE METHOD; FLOW
68446 AB A family of generalized variational principles of piezoelectricity carl
68447    be obtained straightforwardly from the field equations and boundary
68448    conditions via the semi-inverse method of establishing variational
68449    principles proposed by He without using Lagrange multipliers. The
68450    present theory provides a quite straightforward tool to search for
68451    various variational principles for physical problems. This paper aims
68452    at providing a more complete theoretical basis for the finite element
68453    applications and other direct variational methods such as Ritz's,
68454    Trefftz's and Kantorovitch's methods. (C) 2001 Elsevier Science Ltd.
68455    All rights reserved.
68456 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
68457 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
68458    Shanghai 200072, Peoples R China.
68459 CR CHIEN WZ, 1983, APPL MATH MECH, V4, P137
68460    FELIPPA CA, 1989, COMMUN APPL NUMER M, V5, P79
68461    HE JH, IN PRESS ASME J APPL
68462    HE JH, 1997, INT J TURBO JET ENG, V14, P17
68463    HE JH, 1997, INT J TURBO JET ENG, V14, P23
68464    HE JH, 1997, J SHANGHAI U, V1, P117
68465    HE JH, 1997, SHANGHAI J MECH, V18, P305
68466    HE JH, 1998, APPL MATH MODEL, V22, P395
68467    HE JH, 1998, INT J TURBO JET ENG, V15, P101
68468    HE JH, 1998, INT J TURBO JET ENG, V15, P95
68469    LIU GL, 1990, 1 INT S EXP COMP AER, P128
68470    LIU GL, 1998, J SHANGHAI U, V4, P591
68471    MAUGIN GA, 1984, MECH BEHAV ELECTROMA
68472    MAUGIN GA, 1991, CONTINUUM MECH ELECT
68473    SANTILLI RM, 1978, FDN THEORETICAL MECH, V1
68474    SANTILLI RM, 1983, FDN THEORETICAL MECH, V2
68475    TONTI E, 1968, VARIATIONAL PRINCIPL
68476    WASHIZU K, 1982, VARIATIONAL METHODS
68477    ZHOU SA, 1986, INT J SOLIDS STRUCT, V22, P1411
68478 NR 19
68479 TC 8
68480 SN 0020-7225
68481 J9 INT J ENG SCI
68482 JI Int. J. Eng. Sci.
68483 PD FEB
68484 PY 2001
68485 VL 39
68486 IS 3
68487 BP 323
68488 EP 341
68489 PG 19
68490 SC Engineering, Multidisciplinary
68491 GA 391MU
68492 UT ISI:000166360400005
68493 ER
68494 
68495 PT J
68496 AU Ru, HY
68497    Sheng, YJ
68498 TI New upper and lower bounds for Ramsey numbers
68499 SO EUROPEAN JOURNAL OF COMBINATORICS
68500 DT Article
68501 AB The Ramsey number R(G(1), G(2)) is the smallest integer p such that for
68502    any graph G on p vertices either G contains G(1) or (G) over bar
68503    contains G(2), where (G) over bar denotes the complement of G. Let R(m,
68504    a) = R(K-m, K-n). Some new upper and lower bound formulas are obtained
68505    for R(G(1), G(2)) and R(m, n). (C) 2001 Academic Press.
68506 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
68507 RP Ru, HY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
68508 CR BONDY JA, 1976, GRAPH THEORY APPL
68509    RU HY, 1998, EUR J COMBIN, V19, P391
68510    RU HY, 1998, JCMCC, V28, P347
68511 NR 3
68512 TC 0
68513 SN 0195-6698
68514 J9 EUR J COMBINATORIC
68515 JI Eur. J. Comb.
68516 PD JAN
68517 PY 2001
68518 VL 22
68519 IS 1
68520 BP 101
68521 EP 105
68522 PG 5
68523 SC Mathematics
68524 GA 392NF
68525 UT ISI:000166417000012
68526 ER
68527 
68528 PT J
68529 AU Huang, H
68530    Zhou, XR
68531    Ding, PX
68532 TI A note on the third-order evolution equation of Liu and Dingemans -
68533    Discussion
68534 SO WAVE MOTION
68535 DT Editorial Material
68536 AB Three kinds of errors involving the expressions of concepts, the
68537    algebraic operations, and the typographical in the derivation of the
68538    third-order evolution equation of Liu and Dingmans are pointed out to
68539    make the detailed corrected equations available. (C) 2001 Elsevier
68540    Science B.V. All rights reserved.
68541 C1 Tianjin Univ, Dept Hydraul Engn, Sch Construct Engn, Tianjin 300072, Peoples R China.
68542    E China Normal Univ, State Key Lab Estuarine & Coastal Res, Shanghai 200062, Peoples R China.
68543 RP Huang, H, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang
68544    Rd, Shanghai 200072, Peoples R China.
68545 CR LIU PLF, 1989, WAVE MOTION, V11, P41
68546 NR 1
68547 TC 1
68548 SN 0165-2125
68549 J9 WAVE MOTION
68550 JI Wave Motion
68551 PD FEB
68552 PY 2001
68553 VL 33
68554 IS 2
68555 BP 209
68556 EP 210
68557 PG 2
68558 SC Physics, Multidisciplinary; Acoustics; Mechanics
68559 GA 391BP
68560 UT ISI:000166334500005
68561 ER
68562 
68563 PT J
68564 AU Ma, HP
68565    Sun, WW
68566 TI A Legendre-Petrov-Galerkin and Chebyshev collocation method for
68567    third-order differential equations
68568 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
68569 DT Article
68570 DE third-order differential equation; Korteweg-de Vries equation;
68571    Legendre-Petrov-Galerkin and Chebyshev collocation
68572 ID KORTEWEG-DEVRIES EQUATION; PSEUDOSPECTRAL METHOD; WAVE EQUATIONS;
68573    DIRECT SOLVERS; POLYNOMIALS; ALGORITHM; 3RD-ORDER; OPERATORS; 2ND-ORDER
68574 AB A Legendre Petrov Galerkin ( LPG) method for the third-order
68575    differential equation is developed. By choosing appropriate base
68576    functions, the method can be implemented efficiently. Also, this new
68577    approach enables us to derive an optimal rate of convergence in
68578    L-2-norm. The method is applied to some nonlinear problems such as the
68579    Korteweg de Vries ( KdV) equation with the Chebyshev collocation
68580    treatment for the nonlinear term. It is a Legendre Petrov Galerkin and
68581    Chebyshev collocation ( LPG-CC) method. Numerical experiments are given
68582    to con rm the theoretical result.
68583 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
68584    City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China.
68585 RP Ma, HP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
68586 CR ALPERT BK, 1991, SIAM J SCI STAT COMP, V12, P158
68587    ASCHER UM, 1995, SIAM J NUMER ANAL, V32, P797
68588    BERNARDI C, 1997, HDBK NUM AN 2, V5, P209
68589    BRESSAN N, 1990, COMPUT METHODS APPL, V80, P443
68590    CANUTO C, 1988, SPECTRAL METHODS FLU
68591    CAREY GF, 1991, COMPUT METHOD APPL M, V93, P1
68592    CHAN TF, 1985, SIAM J NUMER ANAL, V22, P441
68593    COUTSIAS EA, 1996, P 3 INT C SPECTR HIG, P21
68594    DJIDJELI K, 1995, J COMPUT APPL MATH, V58, P307
68595    DJIDJELI K, 1998, COMMUN NUMER METH EN, V14, P977
68596    DON WS, 1994, SIAM J NUMER ANAL, V31, P1519
68597    FORNBERG B, 1978, PHILOS T ROY SOC A, V289, P373
68598    FORNBERG B, 1999, J COMPUT PHYS, V155, P456
68599    GUO BY, 1998, SPECTRAL METHODS THE
68600    HESTHAVEN JS, 1998, SIAM J NUMER ANAL, V35, P1571
68601    HUANG WZ, 1992, SIAM J NUMER ANAL, V29, P1626
68602    KREISS H, 1978, LECT NOTES U MONTREA
68603    LI J, IN PRESS NUMER METHO
68604    MA HP, 1986, J COMPUT PHYS, V65, P120
68605    MADAY Y, 1988, RAIRO MODEL MATH ANA, V22, P499
68606    MERRYFIELD WJ, 1993, J COMPUT PHYS, V105, P182
68607    PAVONI D, 1988, CALCOLO, V25, P311
68608    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
68609    SHEN J, 1995, SIAM J SCI COMPUT, V16, P74
68610 NR 24
68611 TC 6
68612 SN 0036-1429
68613 J9 SIAM J NUMER ANAL
68614 JI SIAM J. Numer. Anal.
68615 PD DEC 14
68616 PY 2000
68617 VL 38
68618 IS 5
68619 BP 1425
68620 EP 1438
68621 PG 14
68622 SC Mathematics, Applied
68623 GA 389AG
68624 UT ISI:000166214900002
68625 ER
68626 
68627 PT J
68628 AU Sun, XL
68629    Li, D
68630 TI Asymptotic strong duality for bounded integer programming: A
68631    logarithmic-exponential dual formulation
68632 SO MATHEMATICS OF OPERATIONS RESEARCH
68633 DT Article
68634 DE integer programming; nonlinear integer programming; duality theory;
68635    logarithmic-exponential dual formulation; strong duality; primal
68636    feasibility
68637 ID NONCONVEX OPTIMIZATION PROBLEMS; GAP
68638 AB A logarithmic-exponential dual formulation is proposed in this paper
68639    for bounded integer programming problems. This new dual formulation
68640    possesses an asymptotic strong duality property and guarantees the
68641    identification of an optimal solution of the primal problem. These
68642    prominent features are achieved by exploring a novel nonlinear
68643    Lagrangian function, deriving an asymptotic zero duality gap,
68644    investigating the unimodality of the associated dual function and
68645    ensuring the primal feasibility of optimal solutions in the dual
68646    formulation. One other feature of the logarithmic-exponential dual
68647    formulation is that no actual dual search is needed when parameters are
68648    set above certain threshold-values.
68649 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
68650    Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Sha Tin, Hong Kong, Peoples R China.
68651 RP Sun, XL, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
68652 CR BERTSEKAS DP, 1982, CONSTRAINED OPTIMIZA
68653    BLAIR CE, 1982, MATH PROGRAM, V23, P237
68654    CHAVATAL V, 1973, DISCRETE MATH J, V4, P305
68655    FISHER ML, 1981, MANAGE SCI, V27, P1
68656    FLOUDAS CA, 1996, STATE ART GLOBAL OPT
68657    GEOFFRION AM, 1974, MATHEMATICAL PROGRAM, V2, P82
68658    GILL PE, 1981, PRACTICAL OPTIMIZATI
68659    GOH CJ, 1997, APPL MATH LETT, V10, P9
68660    GOH CJ, 2000, IN PRESS THEORY APPL
68661    GONDRAN M, 1970, RIRO, V5, P108
68662    GUIGNARD M, 1993, MATH PROGRAM, V33, P262
68663    GUPTA OK, 1985, MANAGE SCI, V31, P1533
68664    HESTENES MR, 1969, J OPTIMIZATION THEOR, V4, P303
68665    KAN AHG, 1989, HDB OPERATIONS RES M, V1
68666    LI D, 1995, J OPTIMIZ THEORY APP, V85, P309
68667    LI D, 1999, OPER RES LETT, V25, P89
68668    LI D, 2000, IN PRESS ANN OPER RE
68669    LI D, 2000, IN PRESS J GLOBAL OP
68670    LI XS, 1991, COMPUTATIONAL STRUCT, V8, P85
68671    LI XS, 1991, SCI CHINA SER A, V34, P1283
68672    LLEWELLYN DC, 1993, DISCRETE APPL MATH, V45, P262
68673    MICHELON P, 1991, MATH PROGRAM, V52, P303
68674    MICHELON P, 1993, DISCRETE APPL MATH, V42, P257
68675    MISRA KB, 1991, IEEE T RELIAB, V40, P81
68676    POWELL MJD, 1969, OPTIMIZATION, P283
68677    ROCKAFELLAR RT, 1973, J OPTIMIZATION THEOR, V12, P555
68678    SUN XL, 1999, J OPTIMIZ THEORY APP, V102, P385
68679    TANG HW, 1994, CHINESE SCI BULL, V39, P682
68680    TZAFESTAS SG, 1980, INT J SYST SCI, V11, P455
68681    WILLIAMS HP, 1996, J OPTIMIZ THEORY APP, V90, P257
68682    WOLSEY LA, 1981, MATH PROGRAM, V20, P173
68683    XU ZK, 1997, J OPTIMIZ THEORY APP, V94, P739
68684    YANG XQ, 2000, IN PRESS LOCAL GLOBA
68685 NR 33
68686 TC 5
68687 SN 0364-765X
68688 J9 MATH OPER RES
68689 JI Math. Oper. Res.
68690 PD NOV
68691 PY 2000
68692 VL 25
68693 IS 4
68694 BP 625
68695 EP 644
68696 PG 20
68697 SC Mathematics, Applied; Operations Research & Management Science
68698 GA 388YN
68699 UT ISI:000166210800006
68700 ER
68701 
68702 PT J
68703 AU Gu, CQ
68704 TI Generalized inverse matrix Pade approximation on the basis of scalar
68705    products
68706 SO LINEAR ALGEBRA AND ITS APPLICATIONS
68707 DT Article
68708 DE scalar product of matrices; generalized inverse; matrix Pade
68709    approximation; algebraic properties; determinantal formula; Thiele-type
68710    continued fraction; epsilon-algorithm
68711 ID RATIONAL INTERPOLANTS; ALGORITHM
68712 AB A new type of generalized matrix inverse is used to define the
68713    generalized inverse matrix Pade approximants (GMPA), GMPA is introduced
68714    on the basis of scalar product of matrices, with the form of matrix
68715    numerator and scalar denominator. It is different from the existing
68716    matrix Pade approximants in that it does not need multiplication of
68717    matrices in the construction process. Some algebraic properties are
68718    discussed. The representations of GMPA are provided with the following
68719    three forms: (i) the explicit determinantal formulas for the
68720    denominator scalar polynomials and the numerator matrix polynomials;
68721    (ii) E-algorithm expression; (iii) Thiele-type continued fraction
68722    expression. The equivalence relations above three representations are
68723    proposed. (C) 2001 Elsevier Science Inc. All rights reserved.
68724 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
68725 RP Gu, CQ, Shanghai Univ, Dept Math, 99 Qi Xiang Rd, Shanghai 200436,
68726    Peoples R China.
68727 CR ANTOULAS AC, 1986, IEEE T AUTOMAT CONTR, V31, P1121
68728    ANTOULAS AC, 1988, LINEAR ALGEBRA APPL, V108, P157
68729    BAKER GA, 1981, PADE APPROXIMANTS 1
68730    BAKER GA, 1981, PADE APPROXIMANTS 2
68731    BECKERMANN B, 1994, SIAM J MATRIX ANAL A, V15, P804
68732    BOSE NK, 1980, IEEE T CIRCUITS SYST, V27, P322
68733    BULTHEEL A, 1980, MATH COMPUT, V35, P875
68734    BULTHEEL A, 1986, J COMPUT APPL MATH, V14, P401
68735    BULTHEEL A, 1990, CONTINUED FRACTIONS, P11
68736    CABAY S, 1993, SIAM J MATRIX ANAL A, V14, P735
68737    CHUANQING G, 1995, MATH NUMER SINICA, V17, P73
68738    CHUANQING G, 1996, J MATH RES EXPOSITIO, V16, P301
68739    CHUANQING G, 1997, J COMPUT APPL MATH, V80, P71
68740    CHUANQING G, 1997, J COMPUT APPL MATH, V84, P137
68741    CHUANQING G, 1997, NUMER SINICA, V19, P19
68742    CHUANQING G, 1998, J NUMER METH COMPUT, V19, P283
68743    CHUANQING G, 1999, LINEAR ALGEBRA APPL, V295, P7
68744    DRAUX A, 1984, AN9145 U SCI TECHN L
68745    GRAGG WB, 1972, SIAM REV, V14, P1
68746    GRAVESMORRIS PR, 1983, NUMER MATH, V42, P331
68747    GRAVESMORRIS PR, 1984, IMA J NUMER ANAL, V4, P209
68748    GRAVESMORRIS PR, 1986, CONSTR APPROX, V2, P263
68749    GRAVESMORRIS PR, 1994, J COMPUT APPL MATH, V51, P205
68750    GRAVESMORRIS PR, 1996, J COMPUT APPL MATH, V66, P255
68751    GUOLIANG X, 1990, LINEAR ALGEBRA APPL, V107, P67
68752    KLABAHN G, 1989, SIAM J CIMPUT, V4, P639
68753    PESTANOGABINO C, 1998, J COMPUT APPL MATH, V94, P23
68754    STARKAND Y, 1979, J COMPUT APPL MATH, V5, P63
68755 NR 28
68756 TC 4
68757 SN 0024-3795
68758 J9 LINEAR ALGEBRA APPL
68759 JI Linear Alg. Appl.
68760 PD JAN 1
68761 PY 2001
68762 VL 322
68763 IS 1-3
68764 BP 141
68765 EP 167
68766 PG 27
68767 SC Mathematics, Applied
68768 GA 387QX
68769 UT ISI:000166134200009
68770 ER
68771 
68772 PT J
68773 AU Ju, JH
68774    Xia, YB
68775    Zhang, WL
68776    Wang, LJ
68777    Tang, DY
68778 TI Infrared optical properties of amorphous hydrogenated carbon nitride
68779    film
68780 SO JOURNAL OF NON-CRYSTALLINE SOLIDS
68781 DT Letter
68782 ID THIN-FILMS
68783 AB The microstructure and optical properties of nitrogen-doped
68784    hydrogenated carbon DLC:N films deposited by the rf plasma-enhanced
68785    chemical vapor deposition (PECVD) method were studied by atomic force
68786    microscopy (AFM), Raman, Fourier-transform infrared (FTIR) and infrared
68787    ellipsometric (IRE) spectrometry. The absorption intensities of the
68788    peaks CNH (1600 cm(-1)), CN (2200 cm(-1)) and NH (3250 cm(-1)) in the
68789    IR spectra increase with the N-2/CH4 flux ratio. Raman spectra show
68790    that the shape of the D and G bands of DLC:N film varies slightly with
68791    the increase of N content, which means that the main structures of
68792    N-doped films are still diamond-like carbon (DLC).