Warning, /office/kbibtex-testset/isi/tougao.isi is written in an unsupported language. File is not indexed.

0001 FN ISI Export Format
0002 VR 1.0
0003 PT J
0004 AU Li, KY
0005    Yam, LH
0006 TI An optimization design method for large scale structures
0007 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
0008 DT Article
0009 ID STRESS CONSTRAINTS; PLATE STRUCTURES; APPROXIMATION
0010 AB In this paper, based on the mechanical property of structures, a
0011    unified approximate formula with high precision suitable to several
0012    structural response functions and various types of finite elements is
0013    introduced first and then an algorithm for solving the nonlinear
0014    program is presented. This algorithm is not only effective for solving
0015    the program constructed by this unified approximate formula, but also
0016    easy to change the objective function and to solve the structural
0017    optimization problem with dual or multiple objective functions. (C)
0018    1998 Elsevier Science S.A. All rights reserved.
0019 C1 Hong Kong Polytech Univ, Dept Engn Mech, Hong Kong, Peoples R China.
0020    Shanghai Univ, Dept Mech, Shanghai, Peoples R China.
0021 RP Yam, LH, Hong Kong Polytech Univ, Dept Engn Mech, Hong Kong, Peoples R
0022    China.
0023 CR ARORA JS, 1975, J STRUCT DIV ASCE, V101, P2063
0024    BERKE L, 1974, AGARD LS, V70, P1
0025    CANFIELD RA, 1990, AIAA J, V28, P1116
0026    FLEURY C, 1983, COMPUT METHODS APPL, V37, P249
0027    LI KY, 1980, P 1 NAT C COMP MECH, P146
0028    LI KY, 1991, COMPT STRUCT MECH AP, V2, P178
0029    PRASAD B, 1979, J STRUCT DIV ASCE, V105, P2376
0030    SCHMIT LA, 1960, P 2 ASCE C EL COMP P, P105
0031    SCHMIT LA, 1976, NASA CR, P2552
0032    STARNES JH, 1979, J AIRCRAFT, V16, P564
0033    STORAASLI OO, 1974, AIAA J, V12, P231
0034    VANDERPLAATS GN, 1989, AIAA J, V27, P352
0035    VANDERPLAATS GN, 1993, STRUCT OPTIMIZATION, V6, P1
0036    VENKAYYA VB, 1971, J COMPUT STRUCT, V1, P239
0037    ZHOU M, 1993, AIAA J, V31, P2169
0038 NR 15
0039 TC 1
0040 SN 0045-7825
0041 J9 COMPUT METHOD APPL MECH ENG
0042 JI Comput. Meth. Appl. Mech. Eng.
0043 PD NOV 2
0044 PY 1998
0045 VL 165
0046 IS 1-4
0047 BP 273
0048 EP 289
0049 PG 17
0050 SC Computer Science, Interdisciplinary Applications; Engineering,
0051    Mechanical; Mechanics
0052 GA 147XW
0053 UT ISI:000077523700014
0054 ER
0055 
0056 PT J
0057 AU Zhang, NH
0058    Cheng, CJ
0059 TI Non-linear mathematical model of viscoelastic thin plates with its
0060    applications
0061 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
0062 DT Article
0063 ID SOLIDS
0064 AB In this paper, the nonlinear mathematical model of viscoelastic thin
0065    prates, by the Karman's hypotheses of a large deflection plate and the
0066    Boltzmann's law of anisotropic viscoelastic materials, is established
0067    by means of the Laplace transformation and its inverse as well as
0068    so-called structural functions introduced in this paper. In the case of
0069    isotropic viscoelastic materials with Poisson's ratio nu = const, the
0070    quasi-static problems of a simply-supported rectangular plate are
0071    investigated by using the Galerkin method for the spatial domain and
0072    two finite difference schemes for the temporal domain. It could be seen
0073    that the numerical method in this paper is Very simple and has some
0074    advantages, such as, smaller storage and quicker computational speed.
0075    (C) 1998 Elsevier Science S.A. All rights reserved.
0076 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
0077 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
0078    Shanghai 200072, Peoples R China.
0079 CR ARGYRIS J, 1991, COMPUT METHOD APPL M, V88, P135
0080    CHEN Q, 1990, COMPUT STRUCT MECH A, V7, P27
0081    CHEN WH, 1993, COMPUT METHOD APPL M, V109, P315
0082    CHENG CJ, 1991, BUCKLING BIFURCATION
0083    CHRISTENSEN RM, 1982, THEORY VISCOELASTICI
0084    DUAN Q, 1995, J APPL MECH, V62, P407
0085    GAUL L, 1994, EUR J MECH A-SOLID, V13, P43
0086    LEITMAN JM, 1973, HDB PHYSIK, V6, P10
0087    LETALLEC P, 1993, COMPUT METHOD APPL M, V109, P233
0088    SCHANZ M, 1993, APPL MECH REV, V46, P41
0089    TIMOSHENKO S, 1959, THEORY PLATES SHELLS
0090    YANG TQ, 1990, THEORY VISCOELASTICI
0091 NR 12
0092 TC 3
0093 SN 0045-7825
0094 J9 COMPUT METHOD APPL MECH ENG
0095 JI Comput. Meth. Appl. Mech. Eng.
0096 PD NOV 2
0097 PY 1998
0098 VL 165
0099 IS 1-4
0100 BP 307
0101 EP 319
0102 PG 13
0103 SC Computer Science, Interdisciplinary Applications; Engineering,
0104    Mechanical; Mechanics
0105 GA 147XW
0106 UT ISI:000077523700016
0107 ER
0108 
0109 PT J
0110 AU Yang, YZ
0111    Zhu, YL
0112    Li, QS
0113    Ma, XM
0114    Dong, YD
0115    Chuang, YZ
0116 TI A Mossbauer study on the mechanically alloyed Cu-Sn alloys
0117 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
0118 DT Article
0119 ID SYSTEM
0120 AB Nanocrystalline epsilon and eta electron compounds and supersaturated
0121    solid solution of the Cu-Sn system have been prepared by mechanical
0122    alloying of elemental Cu and Sn powders. The atomic alloying and
0123    microstructure of the resultant alloys have been investigated by XRD,
0124    DSC and Sn-119 Mossbauer spectroscopy. A little amount of SnO2 was
0125    detected by Mossbauer spectroscopy, although no trace of diffraction
0126    peaks occurred in the XRD pattern. Thus the spectra for all the milled
0127    samples should be fitted using two quadrupole-splitting doublets: one
0128    corresponding to SnO2, the other corresponding to the resultant alloys.
0129    The composition dependence of the hyperfine parameters has been
0130    extensively discussed and explained well with respect to oxidation,
0131    surface effect resulting from grain refinement, coordination
0132    environment asymmetry and distortion caused or/and induced by
0133    mechanical alloying.
0134 C1 Guangdong Univ Technol, Dept Mat Sci & Engn, Guangzhou 510090, Peoples R China.
0135    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
0136    Chinese Acad Sci, Inst Met Res, Shenyang 110015, Peoples R China.
0137 RP Yang, YZ, Guangdong Univ Technol, Dept Mat Sci & Engn, Guangzhou
0138    510090, Peoples R China.
0139 CR CAER GL, 1992, J MATER RES, V7, P1387
0140    CORTIE MB, 1991, METALL TRANS A, V22, P11
0141    GENTE C, 1993, PHYS REV B, V48, P13244
0142    KOCH CC, 1991, MAT SCI TECHNOLOGY, V15, P193
0143    MASSALSKI TB, 1987, BINARY ALLOY PHASE D, P965
0144    STEVENS JG, 1981, ISOMER SHIFT REFEREN
0145    YANG YZ, 1994, CHINESE SCI BULL, V39, P1956
0146    YANG YZ, 1994, J MATER SCI TECHNOL, V10, P135
0147    ZHANG DY, 1991, ACTA PHYS SINICA, V40, P844
0148 NR 9
0149 TC 1
0150 SN 1005-0302
0151 J9 J MATER SCI TECHNOL
0152 JI J. Mater. Sci. Technol.
0153 PD NOV
0154 PY 1998
0155 VL 14
0156 IS 6
0157 BP 551
0158 EP 554
0159 PG 4
0160 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
0161    Engineering
0162 GA 142QN
0163 UT ISI:000077212000013
0164 ER
0165 
0166 PT J
0167 AU Ni, JS
0168    Wan, XJ
0169    Chen, WJ
0170    Wang, S
0171 TI Effect of mineral oil on the mechanical properties and fractographs of
0172    Fe-3(Al,Cr,Zr) intermetallic alloy
0173 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
0174 DT Article
0175 ID FE3AL-BASED ALLOYS; FRACTURE; FE3AL
0176 AB The effect of mineral oil on the mechanical properties and fractographs
0177    of Fe-3(Al,Cr,Zr) intermetallic alloy has been investigated. The
0178    results show that the tensile ductility of the Fe-3(Al,Cr,Zr) alloy
0179    tested in oil is comparable with the results obtained in oxygen and is
0180    insensitive to strain rate. The fracture mode of the Fe-3(Al,Cr,Zr)
0181    alloy, treated at 700 degrees C/1.5 h and tested in oil, is cleavage
0182    and with dimples in some areas.
0183 C1 Shanghai Univ, Inst Met & Mat Sci, Shanghai 200072, Peoples R China.
0184 RP Ni, JS, Shanghai Univ, Inst Met & Mat Sci, Shanghai 200072, Peoples R
0185    China.
0186 CR LIU CT, 1990, SCRIPTA METALL MATER, V24, P385
0187    MCKAMEY CG, 1991, J MATER RES, V6, P1779
0188    MORET M, 1994, SCRIPTA METALL MATER, V31, P1135
0189    NI JS, 1994, J SHANGHAI U TECHNOL, V15, P457
0190    QIAO L, 1996, METALL MATER TRANS A, V27, P3949
0191    ZHU JH, 1995, SCRIPTA METALL MATER, V32, P1399
0192 NR 6
0193 TC 0
0194 SN 1005-0302
0195 J9 J MATER SCI TECHNOL
0196 JI J. Mater. Sci. Technol.
0197 PD NOV
0198 PY 1998
0199 VL 14
0200 IS 6
0201 BP 564
0202 EP 566
0203 PG 3
0204 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
0205    Engineering
0206 GA 142QN
0207 UT ISI:000077212000016
0208 ER
0209 
0210 PT J
0211 AU Wang, NN
0212    Wei, JM
0213    Cai, XS
0214    Zhang, ZW
0215    Zheng, G
0216    Yu, XH
0217 TI Optical measurement of wet steam in turbines
0218 SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE
0219    ASME
0220 DT Article
0221 AB The wetness fraction of steam causes dangerous erosion of turbine
0222    blades and other components, and decreases efficiency of stages. The
0223    instrumentation of wet steam has, therefore, attracted growing interest
0224    from the point of safety and economical operation of power stations.
0225    Based on the light scattering technique, a method is presented that is
0226    capable of measuring the wetness fraction of steam, the mean water
0227    droplet diameter as well as their full size distribution. An optical
0228    probe has been constructed that can be used in the turbines in
0229    operation. Its main characteristic and features are discussed in this
0230    paper. Experimental results in a 200 MW condensing steam turbine are
0231    also given.
0232 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
0233 RP Wang, NN, Shanghai Univ Sci & Technol, Coll Power Engn, 516 Jun Gong
0234    Rd, Shanghai 200093, Peoples R China.
0235 CR ACCORNERO A, 1987, AEROTHERMODYNAMIC LO, P185
0236    BARBACCI P, 1991, P INT C MULT FLOW TS, P132
0237    CAI XS, 1991, THESIS U SHANGHAI SC
0238    CAI XS, 1994, P 3 INT S MULT FLOW, P432
0239    KASPRZYK S, 1964, BRENNSTUFF WARME KRA, V16, P350
0240    KLEITZ A, 1991, P EUR C TURB LOND, P176
0241    MOORE MJ, 1987, AEROTHERMODYNAMIC LO
0242    RENNER M, 1994, P 12 S MEAS TECHN TR, P171
0243    ROEGENER H, 1960, BWK, V12, P220
0244    WALTER PT, 1985, JOINT ASME AEEE POW
0245    WANG NN, 1982, THESIS U STUTTGART G
0246    WANG NN, 1994, PART PART SYST CHAR, V11, P309
0247    WILLIAMS GH, 1978, P I MECH ENG, V190
0248 NR 13
0249 TC 0
0250 SN 0742-4795
0251 J9 J ENG GAS TURB POWER-T ASME
0252 JI J. Eng. Gas. Turbines Power-Trans. ASME
0253 PD OCT
0254 PY 1998
0255 VL 120
0256 IS 4
0257 BP 867
0258 EP 871
0259 PG 5
0260 SC Engineering, Mechanical
0261 GA 142EH
0262 UT ISI:000077186600026
0263 ER
0264 
0265 PT J
0266 AU Wang, ZJ
0267    Ying, TL
0268    Wu, XX
0269    Qi, DY
0270 TI Study on a horseradish peroxidase biosensor based on N-methylene
0271    phenazine as a mediator
0272 SO ACTA BIOCHIMICA ET BIOPHYSICA SINICA
0273 DT Article
0274 DE biosensor; N-methyl phenazine; horseradish peroxidase; hydrogen peroxide
0275 ID AMPEROMETRIC ENZYME ELECTRODES; GLUCOSE-OXIDASE; GRAPHITE
0276 AB Horseradish peroxidase biosensors highly sensitive to hydrogen peroxide
0277    were constructed with N-methyl phenazine as mediator and
0278    coimmobilization of N-methyl phenazine, bovine serum albumin and
0279    glutaraldehyde. The sensor possesses perfect stability and high
0280    sensitivity, and its linear range is from 1 x 10(-6) to 5 x 10(-4)
0281    mol/L with the response time of less than 10 s.
0282 C1 Shanghai Fisheries Univ, Coll Food, Shanghai 200090, Peoples R China.
0283    Shanghai Univ, Shanghai 200072, Peoples R China.
0284 CR ALBERY WJ, 1985, J ELECTROANAL CH INF, V194, P211
0285    ALBERY WJ, 1985, J ELECTROANAL CH INF, V194, P223
0286    ALBERY WJ, 1987, J ELECTROANAL CH INF, V218, P127
0287    BIFULCO L, 1994, ANAL LETT, V27, P1443
0288    KATAKIS I, 1994, J AM CHEM SOC, V116, P3617
0289    KULYS J, 1990, BIOELECTROCH BIOENER, V24, P305
0290    MULCHANDANI A, 1995, ANAL CHEM, V67, P94
0291    PISHKO MV, 1990, ANGEW CHEM INT EDIT, V29, P82
0292    RUZGAS T, 1995, J ELECTROANAL CHEM, V391, P41
0293    SCOTT DL, 1992, J ELECTROANAL CHEM, V341, P307
0294    TATSUMA T, 1992, ANAL CHEM, V64, P1183
0295    TORSTENSSON A, 1981, J ELECTROANAL CHEM, V148, P130
0296 NR 12
0297 TC 0
0298 SN 0582-9879
0299 J9 ACTA BIOCHIM BIOPHYS SINICA
0300 JI Acta Biochim. Biophys. Sin.
0301 PD NOV
0302 PY 1998
0303 VL 30
0304 IS 6
0305 BP 641
0306 EP 643
0307 PG 3
0308 SC Biochemistry & Molecular Biology; Biophysics
0309 GA 141UW
0310 UT ISI:000077163500022
0311 ER
0312 
0313 PT J
0314 AU Wong, PL
0315    Huang, P
0316    Wang, W
0317    Zhang, Z
0318 TI Effect of geometry change of rough point contact due to lubricated
0319    sliding wear on lubrication
0320 SO TRIBOLOGY LETTERS
0321 DT Article
0322 DE wear; roughness; micro-EHL
0323 ID THERMAL-ELASTOHYDRODYNAMIC LUBRICATION; RUNNING-IN; TRACTION; SURFACES;
0324    MODEL; STEEL
0325 AB The geometry change of a single asperity due to lubricated wear was
0326    studied by an experimental simulation with a ball-on-disc set up. The
0327    wear leads to the formation of a tilted section at the tip of the ball,
0328    which is proved to be due to the presence of oil during the process.
0329    The effect of the geometry change of rough surface contacts due to wear
0330    was examined by a micro-EHL analysis. A non-Newtonian visco-plastic
0331    fluid model which includes the effect of a limiting sheer strength was
0332    used.
0333 C1 City Univ Hong Kong, Mfg Engn & Engn Management Dept, Hong Kong, Hong Kong.
0334    S China Univ Technol, Dept Engn Mech, Guangzhou, Peoples R China.
0335    Shanghai Univ, Bearing Res Ctr, Shanghai, Peoples R China.
0336 RP Wong, PL, City Univ Hong Kong, Mfg Engn & Engn Management Dept, Hong
0337    Kong, Hong Kong.
0338 CR CARSLAW HS, 1959, CONDUCTION HEAT SOLI
0339    CHANG L, 1992, T ASME, V114, P186
0340    DOWSON D, 1977, ELASTO HYDRODYNAMIC
0341    HSIAO HS, 1992, T ASME, V114, P540
0342    HSIAO HS, 1994, J TRIBOL-T ASME, V116, P559
0343    HU YZ, 1991, J TRIBOL-T ASME, V113, P499
0344    HUANG P, 1994, ACTA TRIBOLOGICA, V2, P23
0345    KWEH CC, 1998, T ASME, V110, P421
0346    PATCHING MJ, 1996, TRIBOL T, V39, P595
0347    PATIR N, 1978, T ASME, V100, P12
0348    PAWLUS P, 1997, WEAR, V209, P69
0349    ROELANDS CJA, 1966, THESIS TU DELFT DELF
0350    SUZUKI M, 1987, J TRIBOL-T ASME, V109, P587
0351    WANG FX, 1991, J TRIBOL-T ASME, V113, P755
0352 NR 14
0353 TC 3
0354 SN 1023-8883
0355 J9 TRIBOL LETT
0356 JI Tribol. Lett.
0357 PY 1998
0358 VL 5
0359 IS 4
0360 BP 265
0361 EP 274
0362 PG 10
0363 SC Engineering, Chemical; Engineering, Mechanical
0364 GA 138ZF
0365 UT ISI:000077002400003
0366 ER
0367 
0368 PT J
0369 AU Xu, KY
0370    Cheng, CJ
0371 TI The subharmonic bifurcation of a viscoelastic circular cylindrical shell
0372 SO NONLINEAR DYNAMICS
0373 DT Article
0374 DE viscoelasticity; circular cylindrical shell; resonance; subharmonic
0375    bifurcation
0376 AB In this paper the nonlinear dynamic behavior of a viscoelastic circular
0377    cylindrical shell under a harmonic excitation applied at both ends is
0378    studied. The modified Flugge partial differential equations of motion
0379    are reduced to a system of finite degrees of freedom using the Galerkin
0380    method. The equations are solved by the Liapunov-Schmidt reduction
0381    procedure. In order to study 1/2 and 1/4 subharmonic parametric
0382    resonance of the shell, the transition sets in parameter plane and
0383    bifurcation diagrams are plotted for a number of situations. Results
0384    indicate that, for certain static loads, the shell may display jumps
0385    due to the presence of dynamic periodic load with small amplitude.
0386    Additionally, different physical situations are identified in which
0387    periodic oscillating phenomena can be observed, and where 1/4
0388    subharmonic parametric resonance is simpler than the 1/2-one.
0389 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
0390 RP Xu, KY, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
0391    Shanghai 200072, Peoples R China.
0392 CR BELIAEV NM, 1924, ENG CONSTRUCTIONS ST, P149
0393    BOLOTIN VV, 1964, DYNAMIC STABILITY EL
0394    CHOW SN, 1982, METHODS BIFURCATION
0395    EVENSEN HA, 1967, AIAA J, V5, P969
0396    GOLUBISKY M, 1985, SINGULARITIES GROUPS, V1
0397    GURGOZE M, 1985, J SOUND VIB, V102, P415
0398    HUANG NC, 1972, INT J SOLIDS STRUCT, V8, P315
0399    HUANG NC, 1982, STABILITY MECH CONTI, P215
0400    IWATSUBO T, 1972, J SOUND VIBRATION, V23, P245
0401    KOUNADIS AN, 1977, J STRUCTURAL MECHANI, V5, P383
0402    SIMITSES GJ, 1987, APPL MECH REV, V40, P1403
0403    XU KY, 1995, MMM, V6, P247
0404    XU KY, 1996, THESIS SHANGHAI U
0405    YAMAKI N, 1984, ELASTIC STABILITY CI
0406    YAO JC, 1963, AIAA J, V1, P1391
0407    YAO JC, 1965, J APPL MECH, V32, P109
0408    ZHU YY, 1996, ACTA MECH SOLIDA SIN, V17, P257
0409 NR 17
0410 TC 0
0411 SN 0924-090X
0412 J9 NONLINEAR DYNAMICS
0413 JI Nonlinear Dyn.
0414 PD OCT
0415 PY 1998
0416 VL 17
0417 IS 2
0418 BP 159
0419 EP 171
0420 PG 13
0421 SC Engineering, Mechanical; Mechanics
0422 GA 138AX
0423 UT ISI:000076950200004
0424 ER
0425 
0426 PT J
0427 AU Wang, YF
0428    Wang, Q
0429    Bao, JS
0430 TI Nonlinear TE surface waves on an antiferromagnetic crystal
0431 SO JOURNAL OF APPLIED PHYSICS
0432 DT Article
0433 AB A study of nonlinear magnetodynamic waves in antiferromagnetic
0434    materials is presented. Attention is restricted to an exact theory of
0435    electromagnetic waves along the single interface between a linear
0436    dielectric material and an antiferromagnetic crystal. The nonlinear
0437    motion equation for the TE waves is converted to the Bernoulli
0438    differential equation and its exact solution is found in a form of
0439    inverse function, and the exact dispersion relation is obtained. The
0440    necessary condition for the existence of the nonlinear TE surface wave
0441    is mu(x)(L) > 0. The dispersion equation and the frequency regime are
0442    analyzed. The theoretical results show that the peak position of the
0443    magnetic field is not a function of the effective index and is located
0444    steadily at the surface of the crystal, and in some cases one guided
0445    power corresponds to two different effective refraction indexes showing
0446    the bistable property of the waves. (C) 1998 American Institute of
0447    Physics. [S0021-8979(98)01823-4].
0448 C1 Shanghai Maritime Univ, Dept Elect Engn, Shanghai 200135, Peoples R China.
0449    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
0450 RP Wang, YF, Shanghai Maritime Univ, Dept Elect Engn, Shanghai 200135,
0451    Peoples R China.
0452 CR ALMEIDA NS, 1987, PHYS REV B, V36, P2015
0453    BOARDMAN AD, 1986, IEEE J QUANTUM ELECT, V22, P319
0454    BOARDMAN AD, 1990, PHYS REV B, V41, P717
0455    BOARDMAN AD, 1993, PHYS REV B, V48, P13602
0456    LAX B, 1962, MICROWAVE FERRIMAGNE, CH6
0457    MIHALACHE D, 1987, OPT LETT, V12, P187
0458    VUKOVICH S, 1990, SOV PHYS JETP, V71, P964
0459 NR 7
0460 TC 4
0461 SN 0021-8979
0462 J9 J APPL PHYS
0463 JI J. Appl. Phys.
0464 PD DEC 1
0465 PY 1998
0466 VL 84
0467 IS 11
0468 BP 6233
0469 EP 6238
0470 PG 6
0471 SC Physics, Applied
0472 GA 137RN
0473 UT ISI:000076930100060
0474 ER
0475 
0476 PT J
0477 AU Gan, JP
0478    Xu, DM
0479 TI Technique for optically tuning dielectric resonators
0480 SO ELECTRONICS LETTERS
0481 DT Article
0482 AB A novel technique is presented for optically tuning dielectric
0483    resonators at microwave frequencies. The resonator is tuned by coupling
0484    it to two sections of microstrip tuning line which are connected by a
0485    photoconductor patch. The resonant frequency of the dielectric
0486    resonator is changed when the photoconductor is illuminated. With 200
0487    mW optical power, an 86 MHz tuning range has been achieved, which is
0488    the best result ever reported.
0489 C1 Shanghai Univ, Coll Commun, Shanghai 201800, Peoples R China.
0490 RP Gan, JP, Shanghai Univ, Coll Commun, 20 Chengzhong Rd, Shanghai 201800,
0491    Peoples R China.
0492 CR BUER KV, 1995, IEEE T MICROW THEORY, V43, P36
0493    GU ML, 1997, MICR C CHIN, P101
0494    HERCZFELD PR, 1985, RCA REV, V46, P528
0495    KAJFEZ D, 1986, DIELECTRIC RESONATOR
0496    RAMO S, 1984, FIELDS WAVES COMMUNI
0497    SHEN Y, 1993, IEEE T MICROW THEORY, V41, P1005
0498    XU DM, 1990, APMC 90
0499 NR 7
0500 TC 0
0501 SN 0013-5194
0502 J9 ELECTRON LETT
0503 JI Electron. Lett.
0504 PD OCT 29
0505 PY 1998
0506 VL 34
0507 IS 22
0508 BP 2137
0509 EP 2138
0510 PG 2
0511 SC Engineering, Electrical & Electronic
0512 GA 138NL
0513 UT ISI:000076978600045
0514 ER
0515 
0516 PT J
0517 AU Feng, SS
0518    Wang, B
0519    Qiu, XJ
0520 TI Bosonization to order 1/m by duality in three dimensions
0521 SO MODERN PHYSICS LETTERS A
0522 DT Article
0523 ID WAVE FUNCTIONALS; FIELD-THEORIES
0524 AB The recently discovered bosonization via duality transform can be used
0525    in arbitrary space-time dimensions. It is stressed that because of the
0526    gauge invariance of the resulting bosonic model for D greater than or
0527    equal to 3, the generating functional is not well-defined. This
0528    weakness can be eliminated by decomposing the bosonic field into
0529    transverse and longitudinal parts and only the transverse part is
0530    relevant. In this way the massive Thirring model in (2 + 1) dimensions
0531    is bosonized. It is found that the current-current coupling bosonizes
0532    into a Maxwell term.
0533 C1 CCAST, World Lab, Beijing 100080, Peoples R China.
0534    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
0535    Shanghai Normal Univ, Ctr String Theory, Shanghai 200234, Peoples R China.
0536 RP Qiu, XJ, CCAST, World Lab, POB 8730, Beijing 100080, Peoples R China.
0537 EM xjqiu@fudan.ac.cn
0538 CR ABDALLA E, 1991, NONPERTURBATIVE METH
0539    BANERJEE R, 1996, NUCL PHYS B, V465, P157
0540    BURGESS CP, 1994, NUCL PHYS B, V421, P373
0541    BURGESS CP, 1994, PHYS LETT B, V329, P457
0542    BURGESS CP, 1994, PHYS LETT B, V336, P18
0543    CASTRONETO AH, 1994, PHYS REV B, V49, P10877
0544    DESER S, 1988, PHYS REV LETT, V61, P1541
0545    FENG SS, 1995, INT J THEOR PHYS, V34, P1827
0546    FRADKIN E, 1991, FIELD THEORIES CONDE
0547    FRADKIN E, 1993, NUCL PHYS B, V389, P587
0548    FRADKIN E, 1993, NUCL PHYS B, V392, P667
0549    FRADKIN E, 1994, PHYS LETT B, V338, P253
0550    FROHLICH J, 1997, PHYS REV B, V55, P6788
0551    ITOH T, HEPTH9411201
0552    LEGUILLOU JC, 1997, NPB PREPRINT
0553    LOPEZ A, 1992, PHYS REV LETT, V69, P2126
0554    SCHAPOSNIK FA, 1995, PHYS LETT B, V356, P39
0555    TSVELIK AM, 1995, QUANTUM FIELD THEORY
0556 NR 18
0557 TC 1
0558 SN 0217-7323
0559 J9 MOD PHYS LETT A
0560 JI Mod. Phys. Lett. A
0561 PD SEP 21
0562 PY 1998
0563 VL 13
0564 IS 29
0565 BP 2393
0566 EP 2398
0567 PG 6
0568 SC Physics, Mathematical; Physics, Nuclear; Physics, Particles & Fields
0569 GA 133FZ
0570 UT ISI:000076677300009
0571 ER
0572 
0573 PT J
0574 AU Ye, ZM
0575    Lu, JM
0576 TI Iterative analytical solution of nonlinear analysis of shallow
0577    spherical shell with computer algebra systems - MapleV
0578 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
0579 DT Article
0580 ID SOFTWARE
0581 AB This paper is concerned with the application of Computer algebra
0582    System-MapleV to the nonlinear analysis of shallow spherical shells. In
0583    the present paper, the nonlinear equations of the shell to the
0584    nonlinear problem could be solved by using CASes method. Detailed
0585    high-order iterative solution expressions and analytical results for
0586    the third iteration are given in CASes forms. The numerical results
0587    show that the solutions of this paper contain other cases where the
0588    solutions were the second iteration. The effects of various inner
0589    radius parameters have been investigated in detail. The results of the
0590    third iterative expressions are obtained firstly. It has been shown
0591    that the adoption of CASes method would be useful in nonlinear
0592    problems. (C) 1998 Elsevier Science S.A. All rights reserved.
0593 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
0594 RP Ye, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yan Chang
0595    Rd, Shanghai 200072, Peoples R China.
0596 CR *MAPLE, 1992, SYMB COMP GROUP
0597    FOSTER KR, 1989, SCIENCE, V243, P679
0598    HANSEN P, 1991, MATH PROGRAM, V52, P227
0599    IOAKIMIDIS NI, 1991, ENG FRACT MECH, V38, P95
0600    IOAKIMIDIS NI, 1992, COMPUT METHOD APPL M, V94, P229
0601    IOAKIMIDIS NI, 1993, COMPUT STRUCT, V47, P233
0602    IOAKIMIDIS NI, 1993, INT J COMPUT MATH, V49, P75
0603    IOAKIMIDIS NI, 1994, COMPUT STRUCT, V53, P63
0604    YE Z, 1997, MECH PRACTICE, V19, P1
0605    YE ZM, 1990, J APPL MECH-T ASME, V57, P1026
0606    YE ZM, 1993, MECH RES COMMUN, V20, P83
0607    YE ZM, 1995, COMPUT STRUCT, V55, P325
0608    YE ZM, 1997, J SOUND VIB, V202, P303
0609 NR 13
0610 TC 1
0611 SN 0045-7825
0612 J9 COMPUT METHOD APPL MECH ENG
0613 JI Comput. Meth. Appl. Mech. Eng.
0614 PD SEP 21
0615 PY 1998
0616 VL 163
0617 IS 1-4
0618 BP 383
0619 EP 394
0620 PG 12
0621 SC Computer Science, Interdisciplinary Applications; Engineering,
0622    Mechanical; Mechanics
0623 GA 134JR
0624 UT ISI:000076740200025
0625 ER
0626 
0627 PT S
0628 AU Cao, Q
0629    Hua, TC
0630 TI Effects on rapid cooling of small samples in quenching
0631 SO BIOTRANSPORT: HEAT AND MASS TRANSFER IN LIVING SYSTEMS
0632 SE ANNALS OF THE NEW YORK ACADEMY OF SCIENCES
0633 DT Article
0634 ID CURVES; RATES
0635 AB Rapid cooling of small samples is necessary both to cryofixation for
0636    electron microscopy and to vitrification for cryopreservation, Several
0637    effects on the cooling rates of small samples quenched into liquid
0638    nitrogen were studied, including the diameter of samples, the
0639    subcooling of liquid nitrogen, the quenching speed, and the quenching
0640    distance, The heat flux is up to 1.4 X 10(6) W/m(2); the cooling rate
0641    is also up to 8200 K/s at the CRF point of boiling curves for sphere of
0642    diameter 0.287 mm quenching into subcooled liquid nitrogen, It is also
0643    found that if the time of sample moving inside the liquid nitrogen is
0644    not longer than the time required for forming stable vapor in the
0645    liquid, the quenching boiling heat transfer is not influenced by the
0646    quenching speed, Several equations for calculating heat flux of samples
0647    are also presented.
0648 C1 Shanghai Univ Sci & Technol, Inst Refrigerat & Cryogen Engn, Shanghai 200093, Peoples R China.
0649 RP Cao, Q, Shanghai Marine Equipment Res Inst, Shanghai 200031, Peoples R
0650    China.
0651 CR BALD WB, 1987, QUANTITATIVE CRYOFIX
0652    CAO Q, 1998, P ICCR 98 HANGZH CHI, P117
0653    DED JS, 1972, AICHE J, V18, P337
0654    ELKASSABGI Y, 1988, ASME, V110, P479
0655    FAHY GM, 1988, LOW TEMPERATURE BIOT, P113
0656    HAN RH, 1995, CRYOLETT, V16, P157
0657    HENDRICKS RC, 1969, TND5124 NASA
0658    RYAN KP, 1985, J MICROSC-OXFORD, V140, P47
0659    RYAN KP, 1987, J MICROSC-OXFORD, V145, P89
0660    TAJIMA M, 1990, JSME, V33, P340
0661    WESTWATER JW, 1986, IND ENG CHEM FUND, V25, P685
0662    YU GX, 1991, THESIS SHANGHAI I ME
0663    ZUBER N, 1958, T AM SOC MECH ENG, V80, P711
0664    ZUBER N, 1961, P 2 INT HEAT TRANSF, P27
0665    ZUBER N, 1963, ASME NEW YORK, V27, P230
0666 NR 15
0667 TC 0
0668 SN 0077-8923
0669 J9 ANN N Y ACAD SCI
0670 JI Ann.NY Acad.Sci.
0671 PY 1998
0672 VL 858
0673 BP 262
0674 EP 269
0675 PG 8
0676 GA BL74B
0677 UT ISI:000076515800026
0678 ER
0679 
0680 PT S
0681 AU Zhao, H
0682    Hua, TC
0683    Zhou, YZ
0684    Wang, QF
0685    Yang, Y
0686    Bao, LL
0687 TI Cryopreservation and transplantation of dog trachea
0688 SO BIOTRANSPORT: HEAT AND MASS TRANSFER IN LIVING SYSTEMS
0689 SE ANNALS OF THE NEW YORK ACADEMY OF SCIENCES
0690 DT Article
0691 ID CANINE
0692 AB In order to meet the need of trachea transplantation for clinical
0693    application, it is important to research the methods of
0694    cryopreservation and transplantation of trachea. By the thermal
0695    analyses and thermal control techniques, combined with electron
0696    microscopy, the effects of cooling and warming rates with different
0697    concentrations of cryoprotective agents were studied. Also the
0698    transplantation technique was studied, eighty five percent ( 17/20) of
0699    the dogs were survival after the transplantation with cryopreserved
0700    tracheas.
0701 C1 Shanghai Chest Hosp, Dept Gen Thorac Surg, Shanghai 200030, Peoples R China.
0702    Shanghai Univ Sci & Technol, Cryobiol Engn Lab, Shanghai 200093, Peoples R China.
0703 RP Zhao, H, Shanghai Chest Hosp, Dept Gen Thorac Surg, Shanghai 200030,
0704    Peoples R China.
0705 CR BATESON EAJ, 1994, CRYOLETT, V15, P15
0706    CHEN RT, 1988, CRYOBIOLOGY, V25, P549
0707    DESCHAMPS C, 1989, ANN THORAC SURG, V47, P208
0708    HUA TC, 1991, J BIOMEDICAL ENG, V10, P118
0709    HUA TC, 1994, CRYOBIOMEDICAL TECHN
0710    LETANG E, 1990, ANN THROAC SURG, V49, P951
0711    YOKOMISE H, 1994, J THORAC CARDIOV SUR, V107, P1391
0712 NR 7
0713 TC 0
0714 SN 0077-8923
0715 J9 ANN N Y ACAD SCI
0716 JI Ann.NY Acad.Sci.
0717 PY 1998
0718 VL 858
0719 BP 270
0720 EP 275
0721 PG 6
0722 GA BL74B
0723 UT ISI:000076515800027
0724 ER
0725 
0726 PT J
0727 AU Zhu, XH
0728    Xu, J
0729    Meng, ZY
0730 TI Ionic interdiffusion of functionally gradient piezoelectric materials
0731    in PNN/PZT system
0732 SO JOURNAL OF INORGANIC MATERIALS
0733 DT Article
0734 DE ionic interdiffusion; compositional distribution; piezoelectric
0735    materials; PNN/PZT system; functionally gradient materials
0736 ID ACTUATOR
0737 AB The ionic interdiffusions for Nb5+, Ni2+, Zr4+ and Ti4+ ions in the
0738    PNN/PZT functionally gradient piezoelectric materials were investigated
0739    as a function of diffusion temperature and time respectively. The ionic
0740    compositional distribution profiles were examined by electron probe
0741    microbeam analysis (EPMA), from which the thickness of the
0742    interdiffusion layers were determined. Based on a diffusion model of
0743    the overlapped diffusion solute from thin slub, the numerical
0744    simulation of the ionic concentration distributions for Nb5+, Ni2+,
0745    Zr4+ and Ti4+ ions was carried out by computer, which was in agreement
0746    with the EPMA experimental result. The ionic diffusivities and apparent
0747    activation energies were estimated, and discussed.
0748 C1 Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.
0749    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
0750 RP Zhu, XH, Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing
0751    210093, Peoples R China.
0752 CR CHAWIA KK, 1995, CERAMIC MATRIX COMPO
0753    SHEWMON PG, 1963, DIFFUSION SOLIDS, CH1
0754    TAKAHASHI H, 1990, JSME INT J A-SOLID M, V33, P281
0755    ZHU XH, 1995, J MATER SCI LETT, V14, P516
0756    ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169
0757 NR 5
0758 TC 0
0759 SN 1000-324X
0760 J9 J INORG MATER
0761 JI J. Inorg. Mater.
0762 PD APR
0763 PY 1998
0764 VL 13
0765 IS 2
0766 BP 181
0767 EP 188
0768 PG 8
0769 SC Materials Science, Ceramics
0770 GA 127AA
0771 UT ISI:000076326500010
0772 ER
0773 
0774 PT J
0775 AU Jin, Y
0776    Jin, L
0777    Jiang, XY
0778    Zhang, ZL
0779    Xu, SC
0780 TI Two various element doped ZnS cluster
0781 SO JOURNAL OF INORGANIC MATERIALS
0782 DT Article
0783 DE cluster; dope; quantum size effect; time decay
0784 AB Manganese-doped zinc sulfide and copper-doped zinc sulfide were
0785    prepared by a chemical precipitation method. The structures and sizes
0786    of these clusters were detected by X-ray diffraction. Photoluminescence
0787    measurements demonstrate some changes in optical property due to
0788    quantum size effect, such as excitation blue shift with size decreasing
0789    and faster decay time. The mechanisms of various luminescent centers in
0790    zinc sulfide cluster were discussed.
0791 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
0792 RP Jin, Y, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
0793    China.
0794 CR BHARGAVA RN, 1994, J LUMIN, V60, P275
0795    BHARGAVA RN, 1994, PHYS REV LETT, V72, P416
0796    BRUS L, 1986, J PHYS CHEM-US, V90, P2555
0797    KHOSRAVI AA, 1995, APPL PHYS LETT, V67, P2702
0798 NR 4
0799 TC 0
0800 SN 1000-324X
0801 J9 J INORG MATER
0802 JI J. Inorg. Mater.
0803 PD APR
0804 PY 1998
0805 VL 13
0806 IS 2
0807 BP 225
0808 EP 228
0809 PG 4
0810 SC Materials Science, Ceramics
0811 GA 127AA
0812 UT ISI:000076326500017
0813 ER
0814 
0815 PT J
0816 AU Li, J
0817    Guo, BY
0818    Cao, WM
0819 TI Fourier-Chebyshev pseudospectral method for three-dimensional vorticity
0820    equation
0821 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
0822 DT Article
0823 DE pseudospectral method; vorticity equation; error estimates
0824 ID FINITE-ELEMENT; FLOW
0825 AB In this paper, a Fourier-Chebyshev pseudospectral scheme with mixed
0826    filtering is proposed for three-dimensional vorticity equation. The
0827    generalized stability and convergence are proved. The numerical results
0828    show the advantages of this method.
0829 C1 Chinese Acad Sci, ICMSEC, State Key Lab Sci & Engn Comp, Beijing 100080, Peoples R China.
0830    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
0831 CR CANUTO C, 1984, NUMER MATH, V44, P201
0832    CANUTO C, 1988, SPECTRAL METHODS FLU
0833    GUO BY, UNPUB GEN BOCHNER SU
0834    GUO BY, 1988, DIFFERENCE METHODS P
0835    GUO BY, 1989, J COMPUT PHYS, V84, P259
0836    GUO BY, 1990, COMPUTATIONAL TECHNI, P253
0837    GUO BY, 1991, SIAM J NUMER ANAL, V28, P113
0838    GUO BY, 1992, J COMPUT PHYS, V101, P207
0839    GUO BY, 1993, NUMER MATH, V66, P329
0840    GUO BY, 1995, ACTA MATH APPL SINIC, V11, P94
0841    KUO PY, 1983, J COMPUT MATH, V1, P353
0842    LIONS JL, 1969, QUELQUES METHODES RE
0843    MA HP, 1986, J COMPUT PHYS, V65, P120
0844    MA HP, 1988, J COMPUT MATH, V6, P48
0845    MACARAEG MG, 1982, J COMPUT PHYS, V62, P297
0846    MURDOK JW, 860434 AIAA
0847    VANDEVEN H, 1987, F56 CNRS CTR MATH AP
0848    WOODWARD P, 1984, J COMPUT PHYS, V54, P115
0849 NR 18
0850 TC 0
0851 SN 0254-9409
0852 J9 J COMPUT MATH
0853 JI J. Comput. Math.
0854 PD SEP
0855 PY 1998
0856 VL 16
0857 IS 5
0858 BP 417
0859 EP 436
0860 PG 20
0861 SC Mathematics, Applied; Mathematics
0862 GA 126AX
0863 UT ISI:000076271500004
0864 ER
0865 
0866 PT J
0867 AU Lu, MG
0868    Cai, YC
0869 TI Chen's theorem in short intervals
0870 SO CHINESE SCIENCE BULLETIN
0871 DT Letter
0872 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
0873    Shandong Normal Univ, Dept Math, Jinan 250014, Peoples R China.
0874 RP Lu, MG, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
0875 CR CHEN JR, 1966, KEXUE TONGBAO, V17, P385
0876    CHEN JR, 1973, SCI SINICA, V16, P157
0877    CHEN JR, 1978, SCI SINICA, V21, P421
0878    SALERNO S, 1993, NOTE MAT, V13, P309
0879    WU J, 1993, Q J MATH, V44, P109
0880    WU J, 1994, J LOND MATH SOC, V49, P61
0881 NR 6
0882 TC 0
0883 SN 1001-6538
0884 J9 CHIN SCI BULL
0885 JI Chin. Sci. Bull.
0886 PD AUG
0887 PY 1998
0888 VL 43
0889 IS 16
0890 BP 1401
0891 EP 1403
0892 PG 3
0893 SC Multidisciplinary Sciences
0894 GA 126CQ
0895 UT ISI:000076275700020
0896 ER
0897 
0898 PT J
0899 AU Jiang, WZ
0900    Qiu, XJ
0901 TI Medium effects on dynamical properties of the fermion and mesons in the
0902    gauged Nambu-Jona-Lasinio model
0903 SO CHINESE PHYSICS LETTERS
0904 DT Article
0905 ID ADDITIONAL 4-FERMION INTERACTION; THERMODYNAMICS
0906 AB The gap equation for the fermion in the gauged Nambu-Jona-Lasinio (NJL)
0907    model is derived in nuclear medium with flavors N-f = 2. Based on the
0908    gap equation, the fermion mass in nuclear medium is obtained and used
0909    to determine the properties of the scalar and pseudoscalar mesons. In
0910    contrast to the NJL model, the gluonic part has the one-fourth
0911    contribution to the fermion mass. The critical density with the chiral
0912    symmetry restored is about 6 rho(0).
0913 C1 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
0914    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
0915 RP Jiang, WZ, Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800,
0916    Peoples R China.
0917 CR APPELQUIST T, 1988, P 12 J HOPK WORKSH C, P197
0918    BERNARD V, 1987, PHYS REV D, V36, P818
0919    BERNARD V, 1988, NUCL PHYS A, V489, P647
0920    CHRISTOV CV, 1990, NUCL PHYS A, V510, P689
0921    CUGNON J, 1996, NUCL PHYS A, V598, P515
0922    HENLEY EM, 1990, NUCL PHYS A, V513, P667
0923    JIANG WZ, UNPUB COVARIANT GAP
0924    KONDO K, 1993, MOD PHYS LETT A, V8, P2859
0925    KONDO K, 1993, PROG THEOR PHYS, V89, P1249
0926    KONDO KI, 1991, MOD PHYS LETT A, V6, P3385
0927    LEUNG CN, 1986, NUCL PHYS B, V273, P649
0928    MIRANSKY VA, 1989, MOD PHYS LETT A, V4, P129
0929    MIRANSKY VA, 1989, MOD PHYS LETT A, V4, P1409
0930    NAMBU Y, 1961, PHYS REV, V122, P345
0931    ZHUANG P, 1994, NUCL PHYS A, V576, P525
0932 NR 15
0933 TC 0
0934 SN 0256-307X
0935 J9 CHIN PHYS LETT
0936 JI Chin. Phys. Lett.
0937 PY 1998
0938 VL 15
0939 IS 9
0940 BP 639
0941 EP 641
0942 PG 3
0943 SC Physics, Multidisciplinary
0944 GA 126XR
0945 UT ISI:000076320700006
0946 ER
0947 
0948 PT J
0949 AU Gao, SC
0950    Zhong, SS
0951 TI Dual-polarized microstrip antenna array with high isolation fed by
0952    coplanar network
0953 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
0954 DT Article
0955 DE dual polarization; microstrip antenna array; coplanar network
0956 AB Serial corner feeding of a square patch with two ports is proposed to
0957    realize dual-polarized operation. A novel coplanar feedline network is
0958    also presented for the array. A method of analysis is developed. The
0959    measured isolation is less than -40 dB at 6.07 GHz. The array has a
0960    small size and is easy to be combined further to form a larger coplanar
0961    array (C) 1998 John Wiley & Sons, Inc.
0962 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
0963 RP Gao, SC, Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R
0964    China.
0965 CR DANIEL JP, 1985, P ISAP 85, P121
0966    DUTOLT LJ, 1987, IEEE ANTENNAS PROPAG, V2, P810
0967    GUPT KC, 1987, IEEE AP S INT S ANT, V2, P786
0968    GUPTA KC, 1981, COMPUTER AIDED DESIG
0969    JAMES JR, 1981, MICROSTRIP ANTENNA T, P166
0970    LO YT, 1988, ANTENNA HDB THEORY
0971 NR 6
0972 TC 14
0973 SN 0895-2477
0974 J9 MICROWAVE OPT TECHNOL LETT
0975 JI Microw. Opt. Technol. Lett.
0976 PD OCT 20
0977 PY 1998
0978 VL 19
0979 IS 3
0980 BP 214
0981 EP 216
0982 PG 3
0983 SC Engineering, Electrical & Electronic; Optics
0984 GA 124EG
0985 UT ISI:000076168000012
0986 ER
0987 
0988 PT J
0989 AU Guo, BY
0990 TI Gegenbauer approximation and its applications to differential equations
0991    on the whole line
0992 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
0993 DT Article
0994 DE Gegenbauer approximations; differential equations on the whole line;
0995    convergences
0996 ID DOMAINS
0997 AB A Gegenbauer approximation is discussed. Several imbedding inequalities
0998    and inverse inequalities are obtained. some approximation results are
0999    given. By variable transformation, differential equations on the whole
1000    lint: are changed to certain equations on a finite interval. Gegenbauer
1001    polynomials are used for their numerical solutions. The stabilities and
1002    convergences of proposed schemes are proved. The main idea and
1003    techniques used in this paper are also applicable to other
1004    multiple-dimensional problems in unbounded domains. (C) 1998 Academic
1005    Press.
1006 C1 Shanghai Univ, Dept Math, Shanghai, Peoples R China.
1007    Pohang Univ Sci & Technol, Dept Math, Pohang, South Korea.
1008 RP Guo, BY, Shanghai Univ, Dept Math, Shanghai, Peoples R China.
1009 CR ADAMS RA, 1975, SOBOLEV SPACES
1010    ASKEY R, 1975, REGIONAL C SERIES AP, V21
1011    BERGH J, 1976, INTERPOLATION SPACES
1012    BOYD JP, 1987, J COMPUT PHYS, V69, P112
1013    CANUTO C, 1982, MATH COMPUT, V38, P67
1014    CHRISTOV CI, 1982, SIAM J APPL MATH, V42, P1337
1015    COULAUD O, 1990, COMPUT METHOD APPL M, V80, P451
1016    COURANT R, 1928, MATH ANN, V100, P32
1017    FUNARO D, 1990, MATH COMPUT, V57, P597
1018    FUNARO D, 1991, ORTHOGONAL POLYNOMIA, P263
1019    GOTTLIEB D, 1995, MATH COMPUT, V64, P1081
1020    GUO BY, IN PRESS MATH COMP
1021    GUO BY, 1965, TR SUST
1022    GUO BY, 1994, CONT MATH, V163, P33
1023    IRANZO V, 1992, COMPUT METHOD APPL M, V98, P105
1024    MADAY Y, 1985, RECH AEROSPATIALE, P353
1025    MAVRIPLIS C, 1989, J COMPUT PHYS, V80, P480
1026    RICHTMEYER RD, 1967, FINITE DIFFERENCE ME
1027    STETTER HJ, 1966, NUMERICAL SOLUTIONS, P111
1028    TIMAN AF, 1963, THEORY APPROXIMATION
1029 NR 20
1030 TC 14
1031 SN 0022-247X
1032 J9 J MATH ANAL APPL
1033 JI J. Math. Anal. Appl.
1034 PD OCT 1
1035 PY 1998
1036 VL 226
1037 IS 1
1038 BP 180
1039 EP 206
1040 PG 27
1041 SC Mathematics, Applied; Mathematics
1042 GA 123CQ
1043 UT ISI:000076108600013
1044 ER
1045 
1046 PT J
1047 AU Xu, YR
1048    Hou, DH
1049    Wang, DY
1050    Xu, WP
1051 TI Hot deformation and modeling of flow stress for a Ti-containing HSLA
1052    steel
1053 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
1054 DT Article
1055 ID STRIP; PREDICTION
1056 AB Single-stage and double-stage interrupted hot compression tests for
1057    simulating hot rolling have been carried out for a Ti-containing HSLA
1058    steel (10Ti). Physical simulation of hot rolling was in progress
1059    utilizing a Thermecmastor-Z simulator in 850 similar to 1150 degrees C
1060    and strain rate of 0.1 similar to 60 s(-1) A model for residual strain
1061    ratio lambda was designed, and a model of flow stress considering
1062    residual strain has been obtained.
1063    sigma = 8.176(epsilon + Delta epsilon(i)) .(epsilon) over
1064    dot(5.69x10-5T)..exp(3634/T)
1065    Delta epsilon(i) = lambda(i)[epsilon(0(i-1))+
1066    lambda((i-1))(epsilon(0(i-2)))+ lambda((i-2))(epsilon(0(i-3)))+ ...]
1067    The hot deformation behaviour at various strain rates has been studied.
1068 C1 Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
1069 RP Xu, YR, Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai
1070    201800, Peoples R China.
1071 CR BEYNON JH, 1992, ISIJ INT, V32, P259
1072    DEARDO AJ, 1988, THERMEC882029
1073    DEARDO AJ, 1995, MICROALLOYING 95, P15
1074    FABREGUE P, 1994, ADV HOT DEFORMATION, P75
1075    HODGSON PD, 1993, MODELLING METAL ROLL
1076    KWON O, 1992, ISIJ INT, V32, P350
1077    LAASRAOUI A, 1991, ISIJ INT, V31, P95
1078    SAMUEL FH, 1989, ISIJ INT, V29, P878
1079    SAMUEL FH, 1990, ISIJ INT, V30, P216
1080    SELLARS CM, 1990, MATER SCI TECH SER, V6, P1072
1081    TAMURE I, 1988, THERMOMECHANICAL PRO
1082    XU YR, 1991, CHIN J MET SCI TECHN, V7, P317
1083    XU YR, 1993, P 4 INT C TECHN PLAS
1084 NR 13
1085 TC 0
1086 SN 1005-0302
1087 J9 J MATER SCI TECHNOL
1088 JI J. Mater. Sci. Technol.
1089 PD SEP
1090 PY 1998
1091 VL 14
1092 IS 5
1093 BP 419
1094 EP 424
1095 PG 6
1096 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
1097    Engineering
1098 GA 125AB
1099 UT ISI:000076214300009
1100 ER
1101 
1102 PT J
1103 AU Feng, SS
1104    Qiu, XJ
1105    Zhu, ZY
1106 TI Energy spectrum of excitations in the Proca-Chern-Simons system
1107 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
1108 DT Article
1109 ID FRACTIONAL SPIN; QUANTUM-MECHANICS; FIELD-THEORY; QUANTIZATION;
1110    STATISTICS
1111 AB We quantize the Proca-Chern-Simons system via the path-integral
1112    approach and diagonalize the Hamiltonian by canonical transformations.
1113    We find that the mass spectrum of the system is equivalent to a system
1114    of two free scalar fields; the statistical partition function, which
1115    does not exhibit any exotic properties, is also evaluated from the
1116    diagonalized Hamiltonian.
1117 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
1118    Shandong Teachers Univ, Ctr String Theory, Shanghai 200234, Peoples R China.
1119    Acad Sinica, Inst Nucl Res, Shanghai 201800, Peoples R China.
1120 RP Feng, SS, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
1121 CR BAILIN D, 1986, INTRO GAUGE FIELD TH
1122    BANERJEE R, 1994, PHYS REV D, V49, P5431
1123    BAXTER C, 1995, PHYS REV LETT, V74, P514
1124    BERNARD CW, 1974, PHYS REV D, V9, P3312
1125    BOWICK MJ, 1986, NUCL PHYS B, V271, P417
1126    DESER S, 1982, ANN PHYS-NEW YORK, V140, P372
1127    DIRAC PAM, 1964, LECT QUANTUM DYNAMIC
1128    DUNNE GV, 1990, PHYS REV D, V41, P661
1129    FENG SS, 1995, INT J THEOR PHYS, V34, P1827
1130    FORTE S, 1992, REV MOD PHYS, V64, P193
1131    GITMAN DM, 1990, QUANTIZATION FIELDS
1132    NIEMI AJ, 1994, PHYS LETT B, V336, P381
1133    SEMENOFF GW, 1988, PHYS REV LETT, V61, P517
1134 NR 13
1135 TC 0
1136 SN 0020-7748
1137 J9 INT J THEOR PHYS
1138 JI Int. J. Theor. Phys.
1139 PD AUG
1140 PY 1998
1141 VL 37
1142 IS 8
1143 BP 2105
1144 EP 2113
1145 PG 9
1146 SC Physics, Multidisciplinary
1147 GA 123ZX
1148 UT ISI:000076156800003
1149 ER
1150 
1151 PT J
1152 AU Deng, K
1153    Shen, M
1154    Ren, ZM
1155 TI Lateral stability of alternative horizontal levitation electromagnetic
1156    continuous casting of aluminium sheet
1157 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
1158 DT Article
1159 DE stability; horizontal continuous casting; electromagnetic casting;
1160    aluminium sheet
1161 AB The lateral stability of alternative horizontal levitation
1162    electromagnetic continuous casting process of aluminium sheet was
1163    analyzed by correlating the lateral electromagnetic force on the
1164    aluminium sheet to the lateral position disturbance of the sheet which
1165    was set between the side blocks. The results show that when a small
1166    disturbance occurs to the lateral position of the sheet, the unbalanced
1167    lateral force caused by disturbance will make it greater. Therefore,
1168    the lateral position of the sheet is an unstable balanced position,
1169    which explains the observation of instability in experiment. Based on
1170    the analyses, an explanation for the formation of rod after the
1171    appearance of the instability in the casting process of aluminium sheet
1172    was given.
1173 C1 Shanghai Univ, Coll Mat Sci & Engn, Shanghai 200072, Peoples R China.
1174    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
1175 CR ASAI S, 1989, TETSU TO HAGANE, V75, P32
1176    REN ZM, 1991, J DALIAN U TECH, V31, P419
1177    REN ZM, 1992, J DALIAN U TECH, V32, P121
1178    REN ZM, 1993, CHINESE J NONFERROUS, V3, P93
1179    REN ZM, 1994, CHINESE J NONFERROUS, V4, P78
1180    REN ZM, 1994, J DALIAN U TECH, V34, P556
1181    REN ZM, 1996, ACTA METALL SINICA, V36, P462
1182    REN ZM, 1996, CHINESE J NONFERROUS, V6, P108
1183    SAKANE J, 1988, METALL T B, V19, P397
1184    ZHU SJ, 1996, T NONFERR METAL SOC, V6, P42
1185 NR 10
1186 TC 0
1187 SN 1003-6326
1188 J9 TRANS NONFERROUS METAL SOC CH
1189 JI Trans. Nonferrous Met. Soc. China
1190 PD SEP
1191 PY 1998
1192 VL 8
1193 IS 3
1194 BP 441
1195 EP 444
1196 PG 4
1197 SC Metallurgy & Metallurgical Engineering
1198 GA 121TW
1199 UT ISI:000076030900016
1200 ER
1201 
1202 PT J
1203 AU Wang, W
1204    Wong, PL
1205    Luo, JB
1206    Zhang, Z
1207 TI A new optical technique for roughness measurement on moving surface
1208 SO TRIBOLOGY INTERNATIONAL
1209 DT Article
1210 DE surface roughness; speckle; scattering
1211 ID REAL-TIME MEASUREMENT
1212 AB A new optical technique which allows the roughness of moving surfaces
1213    to be determined was developed. The new technique which is called the
1214    dark/bright ratio (DBR) method utilizes the combined effects of speckle
1215    and scattering phenomena. The roughness of surfaces is inferred from
1216    the dimensions of the recorded dark or bright area in the speckle
1217    pattern. Although it is a relative method, it has great potential to be
1218    used for in-process measurement and automation owing to the simplicity
1219    of both its principle and required optical set-up. The new technique
1220    has also been proved to have large measuring range and with high
1221    precision, The principle of this technique and the set-up of the
1222    measuring system are described. Experimental results for both static
1223    and dynamic conditions, which were compared to those obtained using the
1224    traditional stylus technique, were found to be in good agreement. The
1225    reliability of the new technique in obtaining roughness data of
1226    surfaces under various speed conditions (from 0 to 0.017 m/s) was
1227    validated. (C) 1998 Elsevier Science Ltd. All rights reserved.
1228 C1 City Univ Hong Kong, Dept Mfg Engn & Engn Management, Kowloon, Hong Kong.
1229    Tsing Hua Univ, Natl Tribol Lab, Beijing 100084, Peoples R China.
1230    Shanghai Univ, Bearing Res Ctr, Shanghai, Peoples R China.
1231 RP Wang, W, City Univ Hong Kong, Dept Mfg Engn & Engn Management, Tat Chee
1232    Ave, Kowloon, Hong Kong.
1233 CR BECKMANN P, 1987, SCATTERING ELECTROMA
1234    BENNETT JM, 1985, OPT ENG, V24, P380
1235    BROADMAN R, 1986, P 3 INT C METR PROP, P1
1236    CLARKE GM, 1979, WEAR, V57, P107
1237    HUANG P, 1994, J TRIBO, V14, P175
1238    LEGER D, 1976, J OPT SOC AM, V66, P1210
1239    LIANG X, 1989, WEAR, V132, P221
1240    LUO JB, 1996, WEAR, V194, P107
1241    MITSUI K, 1986, PRECIS ENG, V8, P212
1242    PERSSON U, 1992, OPT LASER ENG, V17, P61
1243    PERSSON U, 1993, WEAR, V160, P221
1244    SIROHI RS, 1993, SPECKLE METROLOGY, P380
1245 NR 12
1246 TC 3
1247 SN 0301-679X
1248 J9 TRIBOL INT
1249 JI Tribol. Int.
1250 PD MAY
1251 PY 1998
1252 VL 31
1253 IS 5
1254 BP 281
1255 EP 287
1256 PG 7
1257 SC Engineering, Mechanical
1258 GA 120XE
1259 UT ISI:000075982100008
1260 ER
1261 
1262 PT J
1263 AU Tu, DW
1264 TI Range image acquisition for machine vision
1265 SO OPTICAL ENGINEERING
1266 DT Article
1267 DE range finding; laser scanning; target acquisition; machine vision
1268 AB An optical 3-D imaging system for autonomous vehicle and mobile robot
1269    navigation is presented. The system is based on a phase comparison
1270    range finder using a 30-mW laser diode modulated at a 5-MHz frequency,
1271    and a scanning mechanism, consisting of a nodding mirror and an
1272    eight-faced polygon and providing 30 X 30-deg total view with only
1273    0.5-deg instantaneous fields of view for the receiver optics. A
1274    Si-avalanche photodiode (APD) optoelectric detector and low-noise
1275    preamplifier can detect very low levels of returned energy. With an
1276    integrated MC4044 circuit for phase comparison, pixel range information
1277    can be represented by gray level on the high-resolution video monitor.
1278    A 3-D range image is obtained in the experiment, and a range accuracy
1279    of 0.08 m at 10 m outdoors in sunlight is achieved. (C) 1998 Society of
1280    Photo-Optical Instrumentation Engineers.
1281 C1 Shanghai Univ, Sch Mech Engn, Shanghai 200072, Peoples R China.
1282 RP Tu, DW, Shanghai Univ, Sch Mech Engn, 149 Yanchang Rd, Shanghai 200072,
1283    Peoples R China.
1284 CR CAMERON ES, 1989, P SOC PHOTO-OPT INS, V1103, P190
1285    DAVIS WC, 1985, NSFECS85003 NTIS CUR
1286    MORING I, 1989, OPT ENG, V28, P897
1287    SAMPSON RE, 1987, IEEE COMPUT, V20, P23
1288    VEATCH PA, 1990, COMPUT VISION GRAPH, V50, P50
1289    WESOLOWICZ KG, 1987, P SOC PHOTO-OPT INS, V783, P152
1290    ZUK DM, 1983, 3 DIMENSIONAL VISION
1291 NR 7
1292 TC 1
1293 SN 0091-3286
1294 J9 OPT ENG
1295 JI Opt. Eng.
1296 PD SEP
1297 PY 1998
1298 VL 37
1299 IS 9
1300 BP 2531
1301 EP 2535
1302 PG 5
1303 SC Optics
1304 GA 120BV
1305 UT ISI:000075935400014
1306 ER
1307 
1308 PT J
1309 AU Shen, M
1310    Deng, K
1311    Ren, ZM
1312 TI Stability of alternative horizontal levitation electromagnetic
1313    continuous casting of aluminum sheet
1314 SO ISIJ INTERNATIONAL
1315 DT Article
1316 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
1317    Shanghai Univ, Coll Mat Sci, Shanghai 200072, Peoples R China.
1318 RP Shen, M, Shanghai Univ, Shanghai Inst Appl Math & Mech, Box 189,149 Yan
1319    Chang Rd, Shanghai 200072, Peoples R China.
1320 EM shenw@online.sh.cn
1321 CR ASAI S, 1989, TETSU TO HAGANE, V75, P32
1322    OHNO A, 1986, J MET, V38, P14
1323    REN Z, 1994, J SYNCHROTRON RADIAT, V1, P78
1324    REN ZM, 1991, J DALIAN U TECH, V31, P419
1325    REN ZM, 1992, J DALIAN U TECH, V32, P121
1326    REN ZM, 1993, T NONFERR METAL SOC, V3, P93
1327    REN ZM, 1994, J DALIAN U TECH, V34, P556
1328    REN ZM, 1996, ACTA METALL SINICA, V36, P462
1329    REN ZM, 1996, T NONFEROUS MET SOC, V6, P108
1330    SAKANE J, 1988, METALL T B, V19, P397
1331    ZHU SJ, 1996, T NONFERR METAL SOC, V6, P42
1332 NR 11
1333 TC 0
1334 SN 0915-1559
1335 J9 ISIJ INT
1336 JI ISIJ Int.
1337 PY 1998
1338 VL 38
1339 IS 9
1340 BP 1035
1341 EP 1037
1342 PG 3
1343 SC Metallurgy & Metallurgical Engineering
1344 GA 120PQ
1345 UT ISI:000075965100018
1346 ER
1347 
1348 PT J
1349 AU Ho, SL
1350    Fu, WN
1351    Wong, HC
1352 TI Estimation of stray losses of skewed rotor induction motors using
1353    coupled 2-D and 3-D time stepping finite element methods
1354 SO IEEE TRANSACTIONS ON MAGNETICS
1355 DT Article
1356 DE induction machines; losses; finite element methods
1357 ID MACHINES; MODEL
1358 AB A precise estimation of stray losses in skewed rotor induction motors
1359    is an important and yet very challenging topic for machine designers,
1360    Methods for evaluating the stray losses in skewed rotor induction
1361    motors by coupling a 2-D multi-slice time stepping finite element model
1362    into a 3-D time stepping finite element method are presented in this
1363    paper, The model tan take into account the inter-bar currents which are
1364    ignored if a 2-D finite element model only is used, New formulas, which
1365    are based on the actual changes in the magnetic flux densities and can
1366    be easily coupled into a time stepping finite element method for
1367    estimating the iron losses, are also described.
1368 C1 Hong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong.
1369    Shanghai Univ, Sch Automat, Shanghai 200041, Peoples R China.
1370    Hong Kong Polytech Univ, Ind Ctr, Hong Kong, Hong Kong.
1371 RP Ho, SL, Hong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong.
1372 CR ALGER PL, 1970, INDUCTION MACH
1373    ARKKIO A, 1992, P ICEM MANCH, P317
1374    HO SL, 1995, C P, V412, P93
1375    HO SL, 1997, 1997 IEEE INT EL MAC
1376    HO SL, 1997, IEEE T MAGN, V33, P2265
1377    JIMOH AA, 1985, IEEE T PAS, V104, P1506
1378    JIMOH AA, 1985, IEEE T POWER AP SYST, V104, P1500
1379    PIRIOU F, 1990, IEEE T MAGN, V26, P1096
1380    SALON SJ, 1984, IEEE T MAGN, V20, P1992
1381 NR 9
1382 TC 14
1383 SN 0018-9464
1384 J9 IEEE TRANS MAGN
1385 JI IEEE Trans. Magn.
1386 PD SEP
1387 PY 1998
1388 VL 34
1389 IS 5
1390 PN Part 1
1391 BP 3102
1392 EP 3105
1393 PG 4
1394 SC Engineering, Electrical & Electronic; Physics, Applied
1395 GA 120MM
1396 UT ISI:000075960200173
1397 ER
1398 
1399 PT J
1400 AU Zhou, HY
1401    Gu, SW
1402    Shi, YM
1403 TI Effects of strong coupling magnetopolaron in quantum dot
1404 SO MODERN PHYSICS LETTERS B
1405 DT Article
1406 ID OPTICAL POLARON; MAGNETIC-FIELD; STATE
1407 AB With the use of variational method of Pekar type, we have calculated
1408    both the ground state energy and the excited state energy of strong
1409    coupling magnetopolaron in disk-shape quantum dot. The dependence of
1410    cyclotron resonance frequency of magnetopolaron on the magnetic field
1411    and the confinement strength of quantum dot and quantum well is
1412    depicted. The limiting case of bulk type and strict two-dimensional
1413    type is discussed.
1414 C1 Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China.
1415    Shanghai Jiao Tong Univ, Dept Appl Phys, Shanghai 200030, Peoples R China.
1416    Shanghai Jiao Tong Univ, Inst Condensed Matter Phys, Shanghai 200030, Peoples R China.
1417 RP Zhou, HY, Shanghai Univ, Dept Phys, 149 Yanchang Rd, Shanghai 200072,
1418    Peoples R China.
1419 CR CHATTERJEE A, 1990, PHYS REV B, V41, P1668
1420    DAVYDOV AS, 1976, QUANTUM MECH
1421    DEMEL T, 1990, PHYS REV LETT, V64, P788
1422    DEVREESE JT, 1972, POLARONS IONIC CRYST
1423    FROHLICH H, 1954, ADV PHYS, V3, P325
1424    HUYBRECHTS WJ, 1977, J PHYS C SOLID STATE, V10, P3761
1425    KUPER CG, 1963, POLARONS EXCITONS
1426    LARSEN DM, 1987, PHYS REV B, V35, P4435
1427    LEE TD, 1953, PHYS REV, V90, P297
1428    LEPINE Y, 1984, PHYS STATUS SOLIDI B, V122, P151
1429    LORKE A, 1990, PHYS REV LETT, V64, P2559
1430    MASALE M, 1993, PHYS REV B, V48, P11128
1431    PAN JS, 1985, PHYS STATUS SOLIDI B, V128, P287
1432    PEETERS FM, 1987, PHYS REV B, V36, P4442
1433    PEKAR SI, 1954, UNTERSUCHUNGEN ELEKT
1434    PETERS FM, 1982, PHYS REV B, V25, P7281
1435    PETERS FM, 1982, PHYS REV B, V25, P7302
1436    SIKORSKI C, 1989, PHYS REV LETT, V62, P2164
1437    TOKUDA N, 1987, J PHYS C SOLID STATE, V20, P3021
1438    YILDIRIM T, 1991, J PHYS-CONDENS MAT, V3, P1271
1439    ZHU KD, 1993, PHYS REV B, V47, P12941
1440    ZHU KD, 1994, PHYS LETT A, V190, P337
1441    ZHU KD, 1994, SOLID STATE COMMUN, V92, P353
1442 NR 23
1443 TC 1
1444 SN 0217-9849
1445 J9 MOD PHYS LETT B
1446 JI Mod. Phys. Lett. B
1447 PD JUL 20
1448 PY 1998
1449 VL 12
1450 IS 17
1451 BP 693
1452 EP 701
1453 PG 9
1454 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
1455 GA 117WN
1456 UT ISI:000075805800005
1457 ER
1458 
1459 PT J
1460 AU Ji, PY
1461    Zhu, ST
1462    Shen, WD
1463 TI Gravitational perturbation induced by an intense laser pulse
1464 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
1465 DT Article
1466 AB The energy-level shifts of the hydrogen spectrum in curved spacetime
1467    induced by intense short laser pulses are studied. With present
1468    high-power laser pulses the magnitude of the energy-level shifts of
1469    highly excited hydrogen atom should be detectable.
1470 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
1471    Acad Sinica, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
1472 RP Ji, PY, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
1473 CR MANASSE FK, 1963, J MATH PHYS, V4, P785
1474    PARKER L, 1980, PHYS REV D, V22, P1922
1475    PARKER L, 1982, PHYS REV D, V25, P3180
1476    SCULLY MO, 1979, PHYSICAL REV D, V19, P3582
1477 NR 4
1478 TC 1
1479 SN 0020-7748
1480 J9 INT J THEOR PHYS
1481 JI Int. J. Theor. Phys.
1482 PD JUN
1483 PY 1998
1484 VL 37
1485 IS 6
1486 BP 1779
1487 EP 1791
1488 PG 13
1489 SC Physics, Multidisciplinary
1490 GA 117RB
1491 UT ISI:000075794600010
1492 ER
1493 
1494 PT J
1495 AU Feng, SH
1496    Qiu, XJ
1497 TI A renormalization group study of the Ising model on a triangular
1498    lattice with long-range interactions
1499 SO COMMUNICATIONS IN THEORETICAL PHYSICS
1500 DT Article
1501 DE renormalization group; Ising model; long-range interaction
1502 ID HEISENBERG
1503 AB The critical exponents of the triangular lattice Ising model with
1504    long-range interactions r(-s) are calculated by the real space
1505    renormalization group. Using the simplest Kadanoff blocks and the
1506    lowest approximation of cumulant expansion, it is shown that there
1507    exists a finite critical temperature when 4(1 - ln 2/ln 3) < s < 4.
1508 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
1509    Acad Sinica, Inst Nucl Res, Shanghai 201800, Peoples R China.
1510 RP Feng, SH, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
1511 CR CANNAS SA, 1995, PHYS REV B, V52, P3034
1512    HALDANE FDM, 1988, PHYS REV LETT, V60, P635
1513    NAKANO H, 1995, PHYS REV B, V52, P6606
1514 NR 3
1515 TC 1
1516 SN 0253-6102
1517 J9 COMMUN THEOR PHYS
1518 JI Commun. Theor. Phys.
1519 PD JUL 30
1520 PY 1998
1521 VL 30
1522 IS 1
1523 BP 129
1524 EP 132
1525 PG 4
1526 SC Physics, Multidisciplinary
1527 GA 118DU
1528 UT ISI:000075823800023
1529 ER
1530 
1531 PT J
1532 AU Jiang, XY
1533    Jin, Y
1534    Zhang, ZL
1535    Xu, SH
1536 TI Mn-doped nanometer-size ZnS clusters in chitosan film matrix prepared
1537    by ion-coordination reaction
1538 SO JOURNAL OF CRYSTAL GROWTH
1539 DT Article
1540 DE Mn-doped ZnS nanocluster; chitosan film; ion-coordination reaction;
1541    quantum size effect; emission efficiency
1542 ID QUANTUM CONFINEMENT; MICROCRYSTALLITES
1543 AB A novel method, the so called ion-coordination reaction, was introduced
1544    to prepare nanometer-sized Mn-doped ZnS clusters stuck to a chitosan
1545    medium. A possible growth mechanism of the Mn-doped ZnS clusters in a
1546    chitosan film has been proposed. The X-ray diffraction showed that the
1547    ZnS clusters have a cubic structure like bulk crystals and the cluster
1548    sizes were estimated from the diffraction linewidth to be 2-4 nm based
1549    on Scherre's equation. The emission of Mn ion was observed through
1550    band-to-band excitation of ZnS. The excitation spectrum showed a large
1551    blue shift relative to that of ZnS bulk material. The effect of Zn ion
1552    concentration on the luminescence intensity reveals that the emission
1553    efficiency of Mn ion increases with the decrease of the ZnS cluster
1554    size. (C) 1998 Elsevier Science B.V. All rights reserved.
1555 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
1556 RP Jiang, XY, Shanghai Univ, Dept Mat Sci, Jiading Campus, Shanghai
1557    201800, Peoples R China.
1558 CR BHARGAVA RN, 1994, PHYS REV LETT, V72, P416
1559    BORRELLI NF, 1987, J APPL PHYS, V61, P5399
1560    STUCKY GD, 1990, SCIENCE, V247, P669
1561    WANG Y, 1987, OPT COMMUN, V61, P233
1562    WANG Y, 1991, J PHYS CHEM-US, V95, P525
1563    YOFFE AD, 1993, ADV PHYS, V42, P173
1564 NR 6
1565 TC 0
1566 SN 0022-0248
1567 J9 J CRYST GROWTH
1568 JI J. Cryst. Growth
1569 PD AUG
1570 PY 1998
1571 VL 191
1572 IS 4
1573 BP 692
1574 EP 696
1575 PG 5
1576 SC Crystallography
1577 GA 115WE
1578 UT ISI:000075688600015
1579 ER
1580 
1581 PT J
1582 AU He, JH
1583 TI A family of variational principles for compressible rotational
1584    blade-to-blade flow using semi-inverse method
1585 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
1586 DT Article
1587 AB By means of semi-inverse method of establishing generalized variational
1588    principles, a family of variational principles for compressible
1589    rotational blade-to-blade now has been rederived in detail. The present
1590    variational theory provides a straightforward way to arrive at various
1591    variational principles. This paper aims at providing a more complete
1592    theoretical basis for finite element applications.
1593 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
1594 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
1595    Peoples R China.
1596 CR HE JH, 1996, J SHANGHAI U, V2, P129
1597    HE JH, 1997, 40 ANN M CHIN MECH, P71417
1598    HE JH, 1997, INT J TURBO JET ENG, V14, P23
1599    HE JH, 1997, J ENG THERMOPHYSICS, V18, P440
1600    HE JH, 1997, J SHANGHAI U, V3, P99
1601    LIU GL, 1979, ACTA MECH SINICA, V11, P303
1602    LIU GL, 1980, SCI SINICA, V23, P1339
1603    LIU GL, 1982, P INT C FEM SHANGH C, P520
1604    LIU GL, 1992, FLOW MODELING TURBUL, P243
1605    LIU GL, 1993, INT J TURBO JET ENGI, V10, P273
1606    LIU GL, 1995, INT GAS TURB C YOK J
1607    LIU GL, 1995, P 6 AS C FLUID MECH
1608 NR 12
1609 TC 8
1610 SN 0334-0082
1611 J9 INT J TURBO JET ENGINES
1612 JI Int. J. Turbo. Jet-Engines
1613 PY 1998
1614 VL 15
1615 IS 2
1616 BP 95
1617 EP 100
1618 PG 6
1619 SC Engineering, Aerospace
1620 GA 116GJ
1621 UT ISI:000075715700003
1622 ER
1623 
1624 PT J
1625 AU He, JH
1626 TI Generalized variational principle for compressible S2-flow in
1627    mixed-flow turbomachinery using semi-inverse method
1628 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
1629 DT Article
1630 AB Using semi-inverse method of establishing generalized variational
1631    principle, a family of variational principles for compressible S-2-flow
1632    in mixed-flow turbomachinery has been rederived in detail The present
1633    theory provides a convenient way to arrive at a variational functional
1634    and a more complete theoretical basis for finite element applications.
1635 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
1636 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
1637    Peoples R China.
1638 CR CAI RQ, 1988, INT J HEAT FLUID FL, V9, P302
1639    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
1640    HE JH, 1996, THESIS SHANGHAI U
1641    HE JH, 1997, INT J TURBO JET ENG, V14, P23
1642    HE JH, 1997, J ENG THERMOPHYSICS, V18, P440
1643    HE JH, 1997, J SHANGHAI U, V1, P117
1644    LIU GL, 1990, P 1 INT S AER INT FL, P128
1645    LIU GL, 1995, INT J TURBO JET ENG, V12, P213
1646 NR 8
1647 TC 8
1648 SN 0334-0082
1649 J9 INT J TURBO JET ENGINES
1650 JI Int. J. Turbo. Jet-Engines
1651 PY 1998
1652 VL 15
1653 IS 2
1654 BP 101
1655 EP 107
1656 PG 7
1657 SC Engineering, Aerospace
1658 GA 116GJ
1659 UT ISI:000075715700004
1660 ER
1661 
1662 PT J
1663 AU Chen, LQ
1664    Liu, YZ
1665 TI A modified open-plus-closed-loop approach to control chaos in nonlinear
1666    oscillations
1667 SO PHYSICS LETTERS A
1668 DT Article
1669 ID COMPLEX DYNAMIC-SYSTEMS; MIGRATION CONTROLS; ATTRACTORS
1670 AB We present a modified form of open-plus-closed-loop control for chaotic
1671    oscillations described by a non-autonomous second-order ordinary
1672    differential equation. The Duffing-Helmholtz oscillator is treated as a
1673    numerical example to demonstrate the effectiveness and robustness of
1674    the method. (C) 1998 Elsevier Science B.V.
1675 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
1676    Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China.
1677 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
1678    200072, Peoples R China.
1679 CR CHEN G, 1997, CHAOS ORDER
1680    CHEN LQ, 1991, A MECH SOLI SINI, V4, P381
1681    JACKSON EA, 1990, PHYS LETT A, V151, P478
1682    JACKSON EA, 1991, PHYS REV A, V44, P4839
1683    JACKSON EA, 1991, PHYSICA D, V50, P341
1684    JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1255
1685    JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1767
1686    JACKSON EA, 1995, PHYSICA D, V85, P1
1687    KAPITANIAK T, 1996, CHONTROLLING CHAOS T
1688 NR 9
1689 TC 7
1690 SN 0375-9601
1691 J9 PHYS LETT A
1692 JI Phys. Lett. A
1693 PD AUG 10
1694 PY 1998
1695 VL 245
1696 IS 1-2
1697 BP 87
1698 EP 90
1699 PG 4
1700 SC Physics, Multidisciplinary
1701 GA 112PG
1702 UT ISI:000075502600016
1703 ER
1704 
1705 PT J
1706 AU Zhang, XB
1707    Jiang, GC
1708    Ding, WZ
1709    Xu, KD
1710 TI Evaluation of component activities in C-Mn-Fe-Si with model SELF-SReM4
1711 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
1712 DT Article
1713 DE sub-regular solution model; component activity; C-Mn-Si-Fe alloy
1714 AB A sub-regular solution model SELF-SReM4 used to evaluate activities of
1715    thr components in a homogeneous region of a quaternary system has been
1716    developed in Shanghai Enhanced Lab of Ferrometallurgy. This paper
1717    introduces the application cf SELF-SReM4 in evaluating activities of
1718    the components in C-Mn-Fe-Si system without SiC precipitation.
1719 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
1720 RP Zhang, XB, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
1721    200072, Peoples R China.
1722 CR CHIPMAN J, 1952, T AM SOC MET, V44, P1215
1723    CHIPMAN J, 1963, T METALL SOC AIME, V227, P473
1724    DRESLER W, 1990, T ISS, V3, P95
1725    GEE R, 1978, SCAND J METALL, V7, P38
1726    HULTGREN R, 1973, SELECTED VALUES THER, P487
1727    JIANG GC, 1992, ACTA METALLURGICA SI, V5, P476
1728    KATSNELSON A, 1993, ISIJ INT, V33, P1045
1729    SCHURMANN E, 1969, GIESSEREI FORSCH, V21, P29
1730    TANAKA A, 1979, T JIM, V20, P516
1731    TUSET J, 1970, 340358 SINTEF
1732    ZHANG XB, 1996, THESIS SHANGHAI U
1733 NR 11
1734 TC 1
1735 SN 1006-706X
1736 J9 J IRON STEEL RES INT
1737 JI J. Iron Steel Res. Int.
1738 PD APR
1739 PY 1998
1740 VL 5
1741 IS 1
1742 BP 28
1743 EP 33
1744 PG 6
1745 SC Metallurgy & Metallurgical Engineering
1746 GA 113NL
1747 UT ISI:000075558100006
1748 ER
1749 
1750 PT J
1751 AU Cao, WG
1752    Ding, WY
1753    Huang, TH
1754    Huang, H
1755    Wei, CH
1756 TI Convenient syntheses of 4-perfluoroalkyl-6-(alpha-thienyl)-2-pyranones
1757    and methyl 4-(alpha-thienacyl)-3-perfluoroalkyl-3-butenoates
1758 SO JOURNAL OF FLUORINE CHEMISTRY
1759 DT Article
1760 DE methyl 2-perfluoroalkynoates;
1761    4-perfluoroalkyl-6-(alpha-thienyl)-2-pyranones; methyl
1762    4-(alpha-thienacyl)-3-perfluoroalkyl-3-butenoates
1763 ID ELEMENTO-ORGANIC COMPOUNDS; STEREOSELECTIVE SYNTHESIS; 6TH GROUPS;
1764    ARSORANE; 2-PERFLUOROALKYNOATES; PHOSPHONIUM; CHEMISTRY; 5TH
1765 AB In the presence of K2CO3, reaction of (alpha-thienacyl) methyltriphenyl
1766    phosphonium bromide (1) with methyl 2-perfluoroalkynoates (2) in CH2Cl2
1767    at room temperature gave methyl
1768    4-(alpha-thienacyl)-2-triphenylphosphoranylidene-3-perfluoroalkyl-3-bute
1769    noates (3) in excellent yields.
1770    4-Perfluoroalkyl-6-(alpha-thienyl)-6-pyranones (4) and methyl
1771    4-(alpha-thienacyl)-3-perfluoroalkyl-3-butenoates (5) were obtained in
1772    high yield by hydrolysis of these methylene phosphoranes (3) with hot
1773    aqueous methanol. The butenoates (5) were isolated chromatographically
1774    as mixtures of Z and E isomers, the ratios of which were estimated by
1775    H-1 NMR. Reaction mechanisms are proposed to account for the formation
1776    of products 3, 4 and 5. (C) 1998 Elsevier Science S.A. All rights
1777    reserved.
1778 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
1779 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
1780 CR BANKS RE, 1979, ORGANOFLUORINE CHEM
1781    DING WY, 1986, ACTA CHIM SINICA, V44, P255
1782    DING WY, 1986, ACTA CHIM SINICA, V44, P62
1783    DING WY, 1987, ACTA CHIM SINICA, V45, P47
1784    DING WY, 1987, CHINESE J ORG CHEM, P435
1785    DING WY, 1991, ACTA CHIM SINICA, V49, P284
1786    DING WY, 1991, J CHEM SOC PERK  JUN, P1369
1787    DING WY, 1992, CHEM RES CHINESE U, V8, P224
1788    HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47
1789    MANN J, 1987, CHEM SOC REV, V16, P381
1790    TAO WT, 1983, CHINESE J ORG CHEM, P129
1791    WELCH JT, 1987, TETRAHEDRON, V43, P3123
1792 NR 12
1793 TC 4
1794 SN 0022-1139
1795 J9 J FLUORINE CHEM
1796 JI J. Fluor. Chem.
1797 PD AUG 10
1798 PY 1998
1799 VL 91
1800 IS 1
1801 BP 99
1802 EP 101
1803 PG 3
1804 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
1805 GA 112MA
1806 UT ISI:000075497400020
1807 ER
1808 
1809 PT J
1810 AU Ma, JH
1811    Chen, YS
1812    Liu, ZR
1813 TI Threshold value for diagnosis of chaotic nature of the data obtained in
1814    nonlinear dynamic analysis
1815 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
1816 DT Article
1817 DE chaotic timeseries; surrogate-data; threshold value; random timeseries
1818 ID CORRELATION DIMENSION; TIME-SERIES; NOISE
1819 AB In this paper surrogate data method of phase-randomized is proposed to
1820    identify the random or chaotic nature of the data obtained in dynamic
1821    analysis: The calculating results validate the phase-randomized method
1822    to be useful as it can increase the extent of accuracy of the results.
1823    And the calculating results show that threshold values of the random
1824    timeseries and nonlinear chaotic timeseries have marked difference.
1825 C1 SE Univ, Inst Syst Engn, Nanjing 210018, Peoples R China.
1826    Tianjin Univ, Dept Mech, Tianjin 300072, Peoples R China.
1827    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
1828 RP Ma, JH, SE Univ, Inst Syst Engn, Nanjing 210018, Peoples R China.
1829 CR ABARBANEL HDI, 1991, INT J MOD PHYS B, V5, P1347
1830    CABRERA JL, 1995, PHYS LETT A, V197, P19
1831    CASDAGLI M, 1992, J ROY STAT SOC B MET, V54, P303
1832    GRASSBERGER P, 1988, PHYS LETT A, V128, P369
1833    KENNEL MB, 1992, PHYS REV A, V46, P3111
1834    KOSTELICH EJ, 1992, PHYSICA D, V58, P138
1835    PRICHARD D, 1993, GEOPHYS RES LETT, V20, P2817
1836    PRICHARD D, 1994, PHYS LETT A, V191, P245
1837    PRICHARD D, 1994, PHYS REV LETT, V191, P230
1838    RAPP PE, 1993, PHYS REV E, V47, P2289
1839    RAPP PE, 1994, PHYS LETT A, V192, P27
1840    ROMBOUTS SAR, 1995, PHYS LETT A, V202, P352
1841    SCHIFF SJ, 1992, PHYS REV LETT A, V67, P378
1842    TAKALO J, 1993, GEOPHYS RES LETT, V20, P1527
1843    THEILER J, 1986, PHYS REV A, V34, P2427
1844    THEILER J, 1991, PHYS LETT A, V155, P480
1845    THEILER J, 1992, PHYSICA D, V58, P77
1846 NR 17
1847 TC 5
1848 SN 0253-4827
1849 J9 APPL MATH MECH-ENGL ED
1850 JI Appl. Math. Mech.-Engl. Ed.
1851 PD JUN
1852 PY 1998
1853 VL 19
1854 IS 6
1855 BP 513
1856 EP 520
1857 PG 8
1858 SC Mathematics, Applied; Mechanics
1859 GA 113CA
1860 UT ISI:000075530700002
1861 ER
1862 
1863 PT J
1864 AU Xu, DH
1865    Jin, C
1866    Li, MZ
1867 TI On the stability estimation of analytic continuation for potential field
1868 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
1869 DT Article
1870 DE Cauchy problems for Laplace equations; analytic continuation of
1871    potential field; ill-posed problems; stability estimation
1872 AB This paper discusses the stability of solutions to a class of Cauchy
1873    problems for Laplace equations under two kinds of nonclassical
1874    circumstances. By means of conformal mapping and Tikhonov, Luan Wengui
1875    and Yamamoto's methods for solving ill-posed problems respectively, the
1876    stability estimations of weighted Holder type and logarithmic type,
1877    have been obtained accordingly.
1878 C1 E China Geol Inst, Fuzhou 344000, Peoples R China.
1879    Fudan Univ, Dept Math, Shanghai 200433, Peoples R China.
1880    Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China.
1881 RP Xu, DH, E China Geol Inst, POB 267, Fuzhou 344000, Peoples R China.
1882 CR CHENG J, 1996, J NINGXIA U, V17, P74
1883    HETIAN R, 1982, FOURIER ANAL, P108
1884    LI MZ, 1990, THEORY BOUNDARY VALU, P228
1885    LUAN WG, 1985, SCI CHINA SER A, V9, P824
1886    LUAN WG, 1989, INVERSE PROBLEMS GEO, P32
1887    NIRENBERG L, 1957, COMMUN PUR APPL MATH, V10, P89
1888    TIKHONOV AN, 1977, SOLUTIONS ILL POSED, P27
1889    YAMAMOTO M, 1993, MATH COMPUT MODEL, V18, P79
1890 NR 8
1891 TC 0
1892 SN 0253-4827
1893 J9 APPL MATH MECH-ENGL ED
1894 JI Appl. Math. Mech.-Engl. Ed.
1895 PD JUN
1896 PY 1998
1897 VL 19
1898 IS 6
1899 BP 563
1900 EP 572
1901 PG 10
1902 SC Mathematics, Applied; Mechanics
1903 GA 113CA
1904 UT ISI:000075530700008
1905 ER
1906 
1907 PT J
1908 AU Gu, GQ
1909    Yu, KW
1910    Hui, PM
1911 TI First-principles approach to conductivity of a nonlinear composite
1912 SO PHYSICAL REVIEW B
1913 DT Article
1914 ID DIELECTRIC-CONSTANT; MEDIA; SPHERES; APPROXIMATION; LATTICE; FIELD
1915 AB The Rayleigh method is extended to study the effective response in
1916    weakly nonlinear composites within a perturbative approach. The
1917    Rayleigh identity is used to obtain a set of equations for zeroth-order
1918    and higher-order potentials, with the latter resulted from the presence
1919    of nonlinearity in the problem. The formalism is applied to study the
1920    effective response in an array of cylinders embedded in a host. Results
1921    are compared with those obtained by other approximations previously
1922    proposed in the literature. Results from the present approach show that
1923    while the previous approach of applying the Rayleigh identity to
1924    determine the zeroth-order potential and neglecting the induced fields
1925    due to the higher-order potentials is valid for a wide range of
1926    nonlinear composites, the effects of induced fields due to the
1927    higher-order potentials are important in composites with high
1928    concentrations of inclusions, and in systems with a low value for the
1929    ratio of the Linear conductivities and a high value of the ratio of the
1930    third-order nonlinear conductivities. The present approach, thus,
1931    provides a general formalism for treating nonlinear composites and
1932    establishes the range of validity of previous approximations.
1933 C1 Chinese Ctr Adv Sci & Technol, World Lab, Beijing 100080, Peoples R China.
1934    Shanghai Univ Sci & Technol, Coll Syst Sci & Syst Engn, Shanghai 201800, Peoples R China.
1935    Chinese Univ Hong Kong, Dept Phys, Shatin, New Territories, Hong Kong.
1936 RP Gu, GQ, Chinese Ctr Adv Sci & Technol, World Lab, POB 8730, Beijing
1937    100080, Peoples R China.
1938 CR BERGMAN DJ, 1979, J PHYS C SOLID STATE, V12, P4947
1939    BLUMENFELD R, 1989, PHYS REV B, V40, P1987
1940    BLUMENFELD R, 1991, PHYS REV B, V44, P7378
1941    CHEN G, 1994, COMMUN THEOR PHYS, V22, P265
1942    FULLER KA, 1991, APPL OPTICS, V30, P4716
1943    GERARDY JM, 1980, PHYS REV B, V22, P4950
1944    GU GQ, 1988, J APPL PHYS, V64, P2968
1945    GU GQ, 1988, PHYS REV B, V37, P8612
1946    GU GQ, 1992, PHYS REV B, V46, P4502
1947    GU GQ, 1995, J APPL PHYS, V78, P1737
1948    GU GQ, 1997, COMMUN THEOR PHYS, V27, P395
1949    LU SY, 1994, J APPL PHYS, V76, P2641
1950    MCPHEDRAN RC, 1978, P ROY SOC LOND A MAT, V359, P45
1951    NEMATNASSER S, 1981, Q APPL MATH, V39, P43
1952    RAYLEIGH JW, 1892, PHILOS MAG, V34, P481
1953    STROUD D, 1988, PHYS REV B, V37, P8719
1954    STROUD D, 1989, J OPT SOC AM B, V6, P778
1955    SUEN WM, 1979, J PHYS D, V12, P1325
1956    YU KW, 1992, PHYS LETT A, V168, P313
1957    YU KW, 1993, PHYS REV B, V47, P14150
1958    ZENG XC, 1988, PHYS REV B, V38, P10970
1959    ZENG XC, 1989, PHYSICA A, V157, P192
1960 NR 22
1961 TC 2
1962 SN 0163-1829
1963 J9 PHYS REV B
1964 JI Phys. Rev. B
1965 PD AUG 1
1966 PY 1998
1967 VL 58
1968 IS 6
1969 BP 3057
1970 EP 3062
1971 PG 6
1972 SC Physics, Condensed Matter
1973 GA 110BN
1974 UT ISI:000075359500027
1975 ER
1976 
1977 PT J
1978 AU Zhuang, J
1979    Tan, WH
1980 TI Cooperative frequency locking and spatiotemporal chaos in a
1981    photorefractive oscillator
1982 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS
1983 DT Article
1984 ID UNIDIRECTIONAL RING OSCILLATOR; 2-WAVE MIXING EXPERIMENTS; BI12SIO20
1985    CRYSTALS; DYNAMICS; LASERS; GAIN
1986 AB The spatiotemporal dynamics of a unidirectional ring oscillator with
1987    photorefractive gain are studied numerically. Some interesting
1988    spatiotemporal phenomena observed in the experiments were obtained even
1989    though intermodal gratings were neglected in the weak-field limit;
1990    These phenomena include cooperative frequency locking, spatiotemporal
1991    periodic behavior, and spatiotemporal chaos. Moreover, our results show
1992    that the spatiotemporal chaos that appears in the photorefractive
1993    oscillator can be induced by intermittence. (C) 1998 Optical Society of
1994    America [S0740-3224(98)01008-X] OCIS codes: 190.5330, 190.4420,
1995    130.4970.
1996 C1 Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
1997    Shanghai Univ, Acad Sinica, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
1998 RP Zhuang, J, Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
1999 CR ANDERSON DZ, 1987, J OPT SOC AM B, V4, P164
2000    ARECCHI FT, 1990, PHYS REV LETT, V65, P2531
2001    ARECCHI FT, 1991, PHYS REV LETT, V67, P3794
2002    DALESSANDRO G, 1992, PHYS REV A, V46, P2791
2003    HENNEQUIN D, 1994, J OPT SOC AM B, V11, P676
2004    HUIGNARD JP, 1981, OPT COMMUN, V38, P249
2005    JOST BM, 1995, PHYS REV A, V51, P1539
2006    JUN ZA, 1996, PHYS REV A, V54, P5201
2007    KLISCHE W, 1989, PHYS REV A, V39, P919
2008    LUGIATO LA, 1988, J OPT SOC AM B, V5, P879
2009    LUGIATO LA, 1988, OPT COMMUN, V68, P63
2010    MALOS J, 1996, PHYS REV A, V53, P3559
2011    MARRAKCHI A, 1981, APPL PHYS, V24, P131
2012    STALIUNAS K, 1995, PHYS REV A, V51, P4140
2013 NR 14
2014 TC 2
2015 SN 0740-3224
2016 J9 J OPT SOC AM B-OPT PHYSICS
2017 JI J. Opt. Soc. Am. B-Opt. Phys.
2018 PD AUG
2019 PY 1998
2020 VL 15
2021 IS 8
2022 BP 2249
2023 EP 2254
2024 PG 6
2025 SC Optics
2026 GA 108LP
2027 UT ISI:000075268100008
2028 ER
2029 
2030 PT J
2031 AU Chen, DY
2032 TI The potential constraints of the complex (1+2)-dimensional soliton
2033    systems and related Hamiltonian equations
2034 SO JOURNAL OF MATHEMATICAL PHYSICS
2035 DT Article
2036 AB Potential complete constraints (symmetric and nonsymmetric) of the
2037    complex KP and MKP systems are derived by using the general theory for
2038    a nonlinear equation to be a Hamiltonian system. All the complex
2039    Hamiltonian equations corresponding to this kind of constraint are
2040    obtained, which contain the famous nonlinear Schrodinger equations and
2041    several new Hamiltonian equations. In addition, the classical
2042    Kaup-Newell system and the Heisenberg system are also led by a new
2043    reduction approach from the MKP system. (C) 1998 American Institute of
2044    Physics.
2045 C1 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
2046 RP Chen, DY, Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800,
2047    Peoples R China.
2048 CR CHEN DY, 1984, ACTA MATH SINICA, V27, P624
2049    CHEN DY, 1994, J MATH PHYS, V35, P4725
2050    CHENG Y, 1991, PHYS LETT A, V157, P22
2051    CHENG Y, 1992, J MATH PHYS, V33, P3774
2052    CHENG Y, 1992, J PHYS A, V25, P419
2053    FUCHSSTEINER B, 1981, PHYSICA D, V4, P47
2054    KAUP DJ, 1978, J MATH PHYS, V19, P798
2055    KONOPELCHENKO B, 1991, PHYS LETT A, V157, P17
2056    LI YS, 1982, ACTA MATH SINICA, V25, P464
2057    ZHU M, 1993, POTENTIAL CONSTRAINT
2058 NR 10
2059 TC 0
2060 SN 0022-2488
2061 J9 J MATH PHYS-NY
2062 JI J. Math. Phys.
2063 PD JUN
2064 PY 1998
2065 VL 39
2066 IS 6
2067 BP 3246
2068 EP 3259
2069 PG 14
2070 SC Physics, Mathematical
2071 GA 108KC
2072 UT ISI:000075264200018
2073 ER
2074 
2075 PT J
2076 AU Cheng, CJ
2077    Zhang, NH
2078 TI Variational principles on static-dynamic analysis of viscoelastic thin
2079    plates with applications
2080 SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
2081 DT Article
2082 ID PERTURBED MOTION
2083 AB In this paper, according to the integral-type constitutive relation of
2084    linear viscoelastic materials, the initial-boundary-value problem on
2085    the static-dynamic analysis of viscoelastic thin plates is established
2086    by introducing a "structural function". The corresponding variational
2087    principles are presented by means of convolution bilinear forms. As
2088    applications, we consider the quasi-static responses of a
2089    simply-supported square plate with three different load histories in
2090    which the classical Ritz method on the spatial response and the
2091    interpolation technique of Legendre polynomials on the temporal
2092    response are used. The obtained results are compared with the
2093    analytical solutions given in this paper. One can see that the
2094    approximate solutions agree well with the analytical solutions. (C)
2095    1998 Elsevier Science Ltd. All rights reserved.
2096 C1 Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
2097 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
2098    200072, Peoples R China.
2099 CR CHIEN WZ, 1982, VARIATIONAL METHODS
2100    CHRISTENSEN RM, 1982, THEORY VISCOELASTICI
2101    DAI TM, 1995, P MMM, V6, P28
2102    DALLASTA A, 1993, INT J SOLIDS STRUCT, V30, P325
2103    DALLASTA A, 1994, INT J SOLIDS STRUCT, V31, P247
2104    GURTIN ME, 1963, ARCH RATIONAL MECH A, V3, P179
2105    HOFF NJ, 1958, P 3 US NAT C APPL ME
2106    LEITMAN JM, 1973, HDB PHYSIK, V6, P10
2107    LUO E, 1990, ACTA MECH SINICA, V22, P484
2108    REDDY JN, 1976, INT J SOLIDS STRUCT, V12, P227
2109 NR 10
2110 TC 8
2111 SN 0020-7683
2112 J9 INT J SOLIDS STRUCT
2113 JI Int. J. Solids Struct.
2114 PD NOV
2115 PY 1998
2116 VL 35
2117 IS 33
2118 BP 4491
2119 EP 4505
2120 PG 15
2121 SC Mechanics
2122 GA 108RE
2123 UT ISI:000075278600010
2124 ER
2125 
2126 PT J
2127 AU Ragone, E
2128    Strazzullo, P
2129    Siani, A
2130    Iacone, R
2131    Russo, L
2132    Sacchi, A
2133    Cipriano, P
2134    Mancini, M
2135    Zhao, GS
2136    Yuan, XY
2137    Li, DY
2138    Gong, LS
2139 TI Ethnic differences in red blood cell sodium/lithium countertransport
2140    and metabolic correlates of hypertension - An international
2141    collaborative study
2142 SO AMERICAN JOURNAL OF HYPERTENSION
2143 DT Article
2144 DE erythrocyte Na/Li countertransport; hypertension; metabolic
2145    abnormalities; insulin resistance; Chinese population; electrolyte
2146    excretion
2147 ID SODIUM-LITHIUM COUNTERTRANSPORT; INSULIN-RESISTANCE; FAT DISTRIBUTION;
2148    BODY-MASS; PRESSURE; UTAH; POPULATION; TRANSPORT; DISEASE; CHINA
2149 AB Arterial hypertension is frequently associated with metabolic
2150    abnormalities. An abnormal activity of the erythrocyte sodium/lithium
2151    countertransport (Na/Li CT), an ion transport system under strong
2152    genetic control, is also found in people with hypertension and
2153    concomitant metabolic abnormalities. However, little information exists
2154    with regard to these clinical associations in different racial groups.
2155    The aim of this international collaborative study was to investigate
2156    Na/Li CT and the metabolic correlates of hypertension in two comparable
2157    samples of normotensive and hypertensive populations in the cities of
2158    Naples, Italy, and Shanghai, China, using identical, carefully
2159    standardized techniques. flood pressure, anthropometric and metabolic
2160    variables, Na/Li CT, and 24-h urinary Na and K excretion were measured
2161    in untreated essential hypertensive (HPT) and normotensive (NT)
2162    individuals selected by age (35-60 years), body mass index (BMI; < 30
2163    kg/m(2)), and blood pressure (BP; HPT, DBP greater than or equal to 95
2164    mm Hg; NT, DBP < 90 mm Hg). The analysis of variance with adjustment
2165    for age was used to compare the groups. In the Neapolitan population,
2166    hypertensive individuals had higher serum triglyceride (P <.05) and
2167    uric acid levels (P <.001) than the normotensive group and also had a
2168    reduced glucose tolerance (P <.01) and an enhanced insulin response to
2169    the oral glucose tolerance test (OGTT) (P <.05). No such differences
2170    were seen between normotensive and hypertensive Chinese participants.
2171    The Neapolitan population (both NT and HPT) had a higher BMI (P <.01)
2172    than their Chinese peers. In the comparison of hypertensive patients in
2173    Shanghai and in Naples, the Neapolitans were heavier (P <.001), had a
2174    lower HDL/total cholesterol ratio (P <.01), an elevated fasting blood
2175    glucose (P <.05), and also a higher glucose (P <.001) and insulin
2176    response (P <.001) to OGTT. By contrast, they showed a significantly
2177    lower urinary Na/K ratio (P <.001). Na/Li CT was significantly
2178    increased in HPT both in Naples (286 +/- 24 v 224 +/- 13 mu mol/L RBC x
2179    h; P <.05, M +/- SE) and in Shanghai (388 +/- 45 v 265 +/- 30 mu mol/L
2180    RBC x h; P <.05). Furthermore, Na/Li CT was significantly and inversely
2181    associated with HDL cholesterol both in the Neapolitan (P <.01) and in
2182    the Chinese (P <.05) population, whereas it was directly correlated
2183    with serum triglyceride (P <.001) and serum uric acid (P =.001) only in
2184    the Neapolitan population. These results indicate that essential
2185    hypertension is associated with a higher prevalence of obesity,
2186    impaired glucose tolerance, and hyperinsulinemia in Naples than in
2187    Shanghai; and Na/Li CT is linked to both high blood pressure and
2188    metabolic abnormalities in the Italian sample, whereas it is an
2189    isolated marker of hypertension in the Chinese sample. Am J Hypertens
2190    1998;11:935-941 (C) 1998 American Journal of Hypertension, Ltd.
2191 C1 Univ Naples Federico II, Dept Clin & Expt Med, Sch Med, I-80131 Naples, Italy.
2192    Natl Res Council, Epidemiol & Prevent Unit, Inst Food Sci & Technol, Avellino, Italy.
2193    Shanghai Univ, Inst Hypertens, Dept Internal Med, Shanghai, Peoples R China.
2194 RP Strazzullo, P, Univ Naples Federico II, Dept Clin & Expt Med, Sch Med,
2195    Via S Pansini 5, I-80131 Naples, Italy.
2196 EM strazzul@unina.it
2197 CR *WORK GROUP MAN PA, 1991, ANN INTERN MED, V114, P224
2198    BUNKER CH, 1993, J HYPERTENS, V5, P7
2199    CANESSA M, 1980, NEW ENGL J MED, V302, P772
2200    CANESSA M, 1984, HYPERTENSION, V6, P334
2201    DADONE MM, 1984, AM J MED GENET, V17, P565
2202    DORIA A, 1991, AM J PHYSIOL, V261, P684
2203    DOUGLAS JG, 1993, AM J KIDNEY DIS, V21, P46
2204    ELLIOTT P, 1988, BRIT MED J, V297, P319
2205    FOLSOM AR, 1994, J CLIN EPIDEMIOL, V47, P173
2206    HAFFNER SM, 1992, DIABETES, V41, P715
2207    HASSTEDT SJ, 1988, AM J HUM GENET, V43, P14
2208    HUNT SC, 1986, HYPERTENSION, V8, P30
2209    HUNT SC, 1990, CARDIOVASC DRUG THER, V4, P357
2210    IBSEN KK, 1982, HYPERTENSION, V4, P703
2211    KAPLAN NM, 1989, ARCH INTERN MED, V149, P1514
2212    LAW MR, 1991, BRIT MED J, V302, P811
2213    LAW YT, 1992, CLIN EXP HYPERTENS A, V14, P489
2214    PAGANO E, 1997, LIFE SCI, V26, P2389
2215    RAGONE E, 1993, J HYPERTENS, V11, S256
2216    REAVEN GM, 1989, AM J MED, V87, S2
2217    REAVEN GM, 1991, AM HEART J, V121, P1283
2218    SEMPLICINI A, 1997, NUTR METAB CARDIOVAS, V7, P81
2219    SIANI A, 1994, HIGH BLOOD PRESS, V3, P7
2220    SIANI A, 1996, NUTR METAB CARDIOVAS, V6, P245
2221    STAMLER R, 1978, JAMA-J AM MED ASSOC, V240, P1607
2222    STRAZZULLO P, 1993, J HYPERTENS, V11, P815
2223    TREVISAN M, 1984, AM J EPIDEMIOL, V120, P537
2224    TREVISAN M, 1992, LIFE SCI, V51, P687
2225    WEDER AB, 1993, NUTR METAB CARDIOVAS, V3, P38
2226    WEIR MR, 1993, AM J KIDNEY DIS, V21, P58
2227    WILLIAMS RR, 1988, JAMA-J AM MED ASSOC, V259, P3579
2228    WU XG, 1996, J HYPERTENS, V14, P1267
2229 NR 32
2230 TC 6
2231 SN 0895-7061
2232 J9 AMER J HYPERTENS
2233 JI Am. J. Hypertens.
2234 PD AUG
2235 PY 1998
2236 VL 11
2237 IS 8
2238 PN Part 1
2239 BP 935
2240 EP 941
2241 PG 7
2242 SC Peripheral Vascular Disease
2243 GA 108CH
2244 UT ISI:000075248100005
2245 ER
2246 
2247 PT J
2248 AU Mo, Y
2249    Xia, Y
2250    Wu, W
2251 TI A nucleation mechanism for diamond film deposited on alumina substrates
2252    by microwave plasma CVD
2253 SO JOURNAL OF CRYSTAL GROWTH
2254 DT Article
2255 DE diamond; microwave plasma; chemical vapor deposition; aluminium oxide
2256 AB Diamond films were deposited on alumina substrates by a microwave
2257    plasma chemical vapor deposition (MPCVD) method. It is shown that by
2258    using appropriate pre-treatments, such as polishing the substrate
2259    surface carefully and by in situ pre-deposition of a carbon layer on
2260    the alumina substrate surface, one can significantly enhance the
2261    nucleation of diamond. The mechanism of the process has been considered
2262    using a droplet model with a quasi-equilibrium approximation. (C) 1998
2263    Elsevier Science B.V. All rights reserved.
2264 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
2265 RP Mo, Y, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
2266    China.
2267 CR BARNES PN, 1993, APPL PHYS LETT, V62, P37
2268    HSU JY, 1989, J AM CERAM SOC, V72, P1861
2269    MO Y, 1995, ICEM ICSA95 XIAN
2270    MO YW, 1997, ACTA PHYS SINICA, V46, P618
2271    NAZERI A, 1993, AM CERAM SOC B, V75, P59
2272    NEMANICH RJ, 1991, ANNU REV MATER SCI, V21, P535
2273    SOMMER M, 1990, J MATER RES, V5, P2433
2274    XIA YB, 1996, CHINESE PHYS LETT, V13, P557
2275    YARBROUGH WA, 1992, J AM CERAM SOC, V75, P3179
2276 NR 9
2277 TC 8
2278 SN 0022-0248
2279 J9 J CRYST GROWTH
2280 JI J. Cryst. Growth
2281 PD JUL
2282 PY 1998
2283 VL 191
2284 IS 3
2285 BP 459
2286 EP 465
2287 PG 7
2288 SC Crystallography
2289 GA 104TY
2290 UT ISI:000075032500021
2291 ER
2292 
2293 PT J
2294 AU He, JH
2295 TI A variational theory for one-dimensional unsteady compressible flow -
2296    an image plane approach
2297 SO APPLIED MATHEMATICAL MODELLING
2298 DT Article
2299 DE 1-dimensional unsteady flow; variational principle; semi-inverse
2300    method; trial-functional
2301 AB Via a semi-inverse method of establishing generalized variational
2302    principles, two families of variational principles and generalized
2303    variational principles for one-dimensional unsteady compressible flow
2304    in an imagine plane tau-Psi (defined by tau = t, Psi - path-function)
2305    have been deduced. The calculation domain in the image plane has the
2306    regular form of rectangle, which gives much advantage of utilizing
2307    variational-based FEM or other direct variational methods such as
2308    Kantrovich-FEM method to solve the problem. (C) 1998 Elsevier Science
2309    Inc. All rights reserved.
2310 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
2311 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
2312    Shanghai 200072, Peoples R China.
2313 CR CHIEN WZ, 1983, APPL MATH MECH, V4, P137
2314    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
2315    HE JH, 1996, 4 C CHIN IND APPL MA
2316    HE JH, 1996, J SHANGHAI U, V2, P129
2317    HE JH, 1996, J SHANGHAI U, V2, P584
2318    HE JH, 1997, INT J TURBO JET ENG, V14, P23
2319    HE JH, 1997, J ENG THERMOPHYSICS, V18, P440
2320    LIU GL, 1995, P 6 AS C FLUID MECH
2321    SHAPIRO AH, 1953, DYNAMICS THERMODYNAM
2322 NR 9
2323 TC 7
2324 SN 0307-904X
2325 J9 APPL MATH MODEL
2326 JI Appl. Math. Model.
2327 PD JUN
2328 PY 1998
2329 VL 22
2330 IS 6
2331 BP 395
2332 EP 403
2333 PG 9
2334 SC Mathematics, Applied; Mechanics; Operations Research & Management
2335    Science
2336 GA 106JW
2337 UT ISI:000075127000002
2338 ER
2339 
2340 PT J
2341 AU Du, J
2342    Rui, HB
2343 TI Based algebras and standard bases for quasi-hereditary algebras
2344 SO TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
2345 DT Article
2346 ID SCHUR ALGEBRA; IRREDUCIBLE REPRESENTATIONS; CANONICAL BASES; QUANTUM
2347    GL(N)
2348 AB Quasi-hereditary algebras can be viewed as a Lie theory approach to the
2349    theory of finite dimensional algebras. Motivated by the existence of
2350    certain nice bases for representations of semisimple Lie algebras and
2351    algebraic groups, we will construct in this paper nice bases for
2352    (split) quasi-hereditary algebras and characterize them using these
2353    bases. We first introduce the notion of a standardly based algebra,
2354    which is a generalized version of a cellular algebra introduced by
2355    Graham and Lehrer, and discuss their representation theory. The main
2356    result is that an algebra over a commutative local noetherian ring with
2357    finite rank is split quasi-hereditary if and only if it is standardly
2358    full-based. As an application, we will give an elementary proof of the
2359    fact that split symmetric algebras are not quasi-hereditary unless they
2360    are semisimple. Finally, some relations between standardly based
2361    algebras and cellular algebras are also discussed.
2362 C1 Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia.
2363    Shanghai Univ Sci & Technol, Dept Math, Shanghai 200093, Peoples R China.
2364 RP Du, J, Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia.
2365 EM jied@maths.unsw.edu.au
2366    hbruik@online.sh.cn
2367 CR BARBASCH D, 1982, MATH ANN, V259, P153
2368    BEILINSON AA, 1990, DUKE MATH J, V61, P655
2369    BERGE C, 1971, PRINCIPLES COMBINATO
2370    CLINE E, 1988, J REINE ANGEW MATH, V391, P85
2371    CLINE E, 1989, CONT MATH, V82, P7
2372    CLINE E, 1990, J ALGEBRA, V131, P126
2373    DIPPER R, 1986, P LOND MATH SOC, V52, P20
2374    DIPPER R, 1989, P LOND MATH SOC, V59, P23
2375    DIPPER R, 1991, T AM MATH SOC, V327, P251
2376    DLAB V, 1989, ILLINOIS J MATH, V33, P280
2377    DLAB V, 1992, LONDON MATH SOC LECT, V168, P200
2378    DU J, NEW PROOF CANONICAL
2379    DU J, 1992, B LOND MATH SOC 4, V24, P325
2380    DU J, 1992, CONT MATH, V139, P121
2381    DU J, 1992, MANUSCRIPTA MATH, V75, P411
2382    DU J, 1994, J REINE ANGEW MATH, V455, P141
2383    DU J, 1994, P S PURE MATH 2, V56, P135
2384    DU J, 1995, J LOND MATH SOC, V51, P461
2385    GRAHAM JJ, 1996, INVENT MATH, V123, P1
2386    GREEN JA, 1980, LECT NOTES MATH, V830
2387    GREEN JA, 1990, J ALGEBRA, V131, P265
2388    GREEN JA, 1993, J PURE APPL ALGEBRA, V88, P89
2389    GREEN R, 1994, THESIS
2390    KAZHDAN D, 1979, INVENT MATH, V53, P155
2391    KONIG S, 1997, INVENT MATH, V127, P481
2392    LUSZTIG G, 1993, INTRO QUANTUM GROUPS
2393    PARSHALL B, 1991, MEMOIRS AM MATH SOC, V89
2394    SCOTT LL, 1987, P S PURE MATH 2, V47, P271
2395 NR 28
2396 TC 7
2397 SN 0002-9947
2398 J9 TRANS AMER MATH SOC
2399 JI Trans. Am. Math. Soc.
2400 PD AUG
2401 PY 1998
2402 VL 350
2403 IS 8
2404 BP 3207
2405 EP 3235
2406 PG 29
2407 SC Mathematics
2408 GA 103WZ
2409 UT ISI:000074982000012
2410 ER
2411 
2412 PT J
2413 AU Huang, DB
2414    Zhao, XH
2415    Liu, ZR
2416 TI Divergence-free vector-field and reduction
2417 SO PHYSICS LETTERS A
2418 DT Article
2419 AB By the Lie symmetry group, the reduction for divergence-free
2420    vector-fields (DFVs) is studied, and the following results are found. A
2421    n-dimensional DFV can be locally reduced to a (n - 1)-dimensional DFV
2422    if it admits a one-parameter symmetry group that is spatial and
2423    divergenceless. More generally, a n-dimensional DFV admitting a
2424    r-parameter, spatial, divergenceless Abelian (commutable) symmetry
2425    group can be locally reduced to a (n - r)-dimensional DFV. (C) 1998
2426    Elsevier Science B.V.
2427 C1 Chinese Acad Sci, LNM, Inst Mech, Shanghai 201800, Peoples R China.
2428    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
2429    Yunnan Univ, Dept Math, Kunming 650091, Peoples R China.
2430 RP Huang, DB, Chinese Acad Sci, LNM, Inst Mech, Shanghai 201800, Peoples R
2431    China.
2432 CR GASCON FG, 1996, PHYS LETT A, V225, P269
2433    HUANG DB, 1997, IN PRESS SCI SIN A
2434    JANAKI MS, 1987, J PHYS A, V20, P3679
2435    LORENZ EN, 1987, J ATMOS SCI, V44, P2940
2436    MEZIC I, 1994, J NONLINEAR SCI, V4, P157
2437    OLVER PJ, 1986, APPL LIE GROUP DIFFE
2438    QUISPEL GRW, 1995, PHYS LETT A, V206, P26
2439    XIA ZH, 1992, ERGOD THEOR DYN SYST, V12, P621
2440 NR 8
2441 TC 2
2442 SN 0375-9601
2443 J9 PHYS LETT A
2444 JI Phys. Lett. A
2445 PD JUL 27
2446 PY 1998
2447 VL 244
2448 IS 5
2449 BP 377
2450 EP 382
2451 PG 6
2452 SC Physics, Multidisciplinary
2453 GA 104XC
2454 UT ISI:000075040600010
2455 ER
2456 
2457 PT J
2458 AU Wang, NN
2459    Shen, JQ
2460 TI A study of the influence of misalignment on measuring results for laser
2461    particle analyzers
2462 SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION
2463 DT Article
2464 AB Light scattering-based laser particle analyzers have found wide use in
2465    powder technology and many-particle systems. It is very important that
2466    the photodetector of the analyzer is in good alignment with the
2467    incident laser beam, otherwise errors will occur. In this paper, the
2468    influences of misalignment on the final results of measurements are
2469    discussed.
2470 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
2471 RP Wang, NN, Shanghai Univ Sci & Technol, 516 Jun Gong Rd, Shanghai
2472    200093, Peoples R China.
2473 CR ALLEN T, 1990, PARTICLE SIZE MEASUR
2474    BARTH GB, 1995, ANAL CHEM, V67, R257
2475    HIRLEMAN ED, 1984, ASTM STP, V848, P35
2476    VANDEHULST HC, 1957, LIGHT SCATTERING SMA
2477 NR 4
2478 TC 2
2479 SN 0934-0866
2480 J9 PART PART SYST CHARACT
2481 JI Part. Part. Syst. Charact.
2482 PD JUN
2483 PY 1998
2484 VL 15
2485 IS 3
2486 BP 122
2487 EP 126
2488 PG 5
2489 SC Engineering, Chemical; Materials Science, Characterization & Testing
2490 GA 103NH
2491 UT ISI:000075162100003
2492 ER
2493 
2494 PT J
2495 AU Feng, SS
2496 TI Some exact results of Hubbard model at finite temperature
2497 SO MODERN PHYSICS LETTERS B
2498 DT Article
2499 ID LONG-RANGE ORDER; STRONGLY CORRELATED ELECTRONS; GROUND-STATE;
2500    SUPERCONDUCTIVITY; THEOREMS
2501 AB Two theorems of the Hubbard model at finite temperature are proven
2502    employing the fluctuation-dissipation theorem and particle-hole
2503    transform. The main conclusion states that for the prototype Kubbard
2504    model, the expectation value of (S) over tilde(2) - (S) over
2505    tilde(z)(2) will be of order N-Lambda at any temperature except those
2506    critical.
2507 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
2508    CCAST, World Lab, Beijing 100080, Peoples R China.
2509 RP Feng, SS, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
2510 CR DEBOER J, 1995, PHYS REV LETT, V74, P789
2511    ESSLER FHL, 1992, PHYS REV LETT, V68, P2960
2512    ESSLER FHL, 1993, PHYS REV LETT, V70, P73
2513    JONES W, 1973, THEORETICAL SOLID ST, V1, CH4
2514    LIEB EH, 1989, PHYS REV LETT, V62, P1201
2515    NIEH HT, 1995, PHYS REV B, V51, P3760
2516    SEWELL GL, 1990, J STAT PHYS, V61, P415
2517    SHEN SQ, 1993, PHYS REV LETT, V71, P4238
2518    SHEN SQ, 1994, PHYS REV LETT, V72, P1280
2519    SINGH RRP, 1991, PHYS REV LETT, V66, P3203
2520    TIAN GS, 1992, PHYS REV B, V45, P3145
2521    YANG CN, 1962, REV MOD PHYS, V34, P694
2522    YANG CN, 1990, MOD PHYS LETT B, V4, P759
2523 NR 13
2524 TC 3
2525 SN 0217-9849
2526 J9 MOD PHYS LETT B
2527 JI Mod. Phys. Lett. B
2528 PD JUN 30
2529 PY 1998
2530 VL 12
2531 IS 14-15
2532 BP 555
2533 EP 559
2534 PG 5
2535 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
2536 GA 105QZ
2537 UT ISI:000075086300001
2538 ER
2539 
2540 PT J
2541 AU Wu, MH
2542    Bao, BR
2543    Zhou, RM
2544    Zhu, JL
2545    Hu, LX
2546 TI The regeneration of polluted activated carbon by radiation techniques
2547 SO RADIATION PHYSICS AND CHEMISTRY
2548 DT Article
2549 DE regeneration; radiation; activated carbon
2550 AB In this paper, the regeneration of used activated carbon from
2551    monosodium glutamate factory was experimented using radiation and
2552    acid-alkali chemical cleaning method. Results showed that the activated
2553    carbon saturated with pollutants can be wash away easily by flushing
2554    with chemical solution prior irradiation. DSC was used to monitor the
2555    change of carbon adsorption (C) 1998 Elsevier Science Ltd. All rights
2556    reserved.
2557 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
2558    Acad Sinica, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
2559 RP Wu, MH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
2560    Peoples R China.
2561 CR BLULELY JP, 1965, CARBON, V3, P269
2562    CASE FN, 1973, 2179129, FR
2563    HERNANDEZ LA, 1976, ENVIRON SCI TECHNOL, V10, P454
2564    HOSONO M, 1993, APPL RADIAT ISOTOPES, V44, P1199
2565    KLEI HE, 1975, IEC RES REV, V14, P471
2566    KUZUYUKI C, 1981, AICHE J, V27, P20
2567    SHUBIN VN, 1980, ZH FIG KHIM, V54, P2557
2568    STRANGE JF, 1976, CARBON, V14, P345
2569    SUZUKI M, 1978, CHEM ENG SCI, V33, P271
2570 NR 9
2571 TC 2
2572 J9 RADIAT PHYS CHEM
2573 JI Radiat. Phys. Chem.
2574 PD OCT
2575 PY 1998
2576 VL 53
2577 IS 4
2578 BP 431
2579 EP 435
2580 PG 5
2581 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
2582    Science & Technology
2583 GA 100TY
2584 UT ISI:000074832500012
2585 ER
2586 
2587 PT J
2588 AU Gu, GQ
2589    Yu, KW
2590 TI Homotopy continuation approach to electrostatic boundary-value problems
2591    of nonlinear media
2592 SO COMMUNICATIONS IN THEORETICAL PHYSICS
2593 DT Article
2594 DE nonlinear media; homotopy continuation method; electrostatic
2595    boundary-value problem
2596 ID EFFECTIVE CONDUCTIVITY; DECOUPLING APPROXIMATION; COMPOSITE MEDIA;
2597    BEHAVIOR
2598 AB The homotopy continuation method is employed to solve electrostatic
2599    boundary-value problems of nonlinear media. The difficulty associated
2600    with matching the inherently nonlinear boundary conditions on the
2601    interface is overcome by the mode expansion method, by which the
2602    nonlinear partial differential equations of the original problem are
2603    transformed into an infinite set of nonlinear ordinary differential
2604    equations. In this regard, the homotopy method has to be modified to
2605    handle the nonlinear boundary conditions. As an illustration, we study
2606    two cases: (a) nonlinear inclusion in linear host and (b) linear
2607    inclusion in nonlinear host, both in two dimensions. The homotopy
2608    method is validated by comparing the results with the exact solution of
2609    case (a) and the results derived by perturbation method in case (b).
2610 C1 Shanghai Univ Sci & Technol, Coll Syst Sci & Syst Engn, Shanghai 200093, Peoples R China.
2611    Chinese Univ Hong Kong, Dept Phys, Shatin, New Territories, Hong Kong.
2612 RP Gu, GQ, Shanghai Univ Sci & Technol, Coll Syst Sci & Syst Engn,
2613    Shanghai 200093, Peoples R China.
2614 CR BARDHAN KK, 1994, SPRINGER LECT NOTES, V437, P1
2615    BERGMAN DJ, 1992, SOLID STATE PHYS, V46, P147
2616    BERGMAN DJ, 1994, PHYSICA A, V207, P1
2617    BLUMENFELD R, 1991, PHYS REV B, V44, P7378
2618    FLYTZANIS C, 1992, PROG OPTICS, V29, P2539
2619    GU GQ, 1992, PHYS REV B, V46, P4502
2620    GU GQ, 1995, J APPL PHYS, V78, P1737
2621    HAUS JW, 1989, PHYS REV A, V40, P5729
2622    LEE HC, 1995, PHYS LETT A, V197, P341
2623    LEE HC, 1995, PHYS REV B, V52, P4217
2624    LI K, 1993, NUMER ALG, V4, P167
2625    LIAO SJ, 1992, INT J NUMER METH FL, V15, P595
2626    LIAO SJ, 1992, J APPL MECH-T ASME, V59, P970
2627    LUI SH, 1995, NUMER ALGORITHMS, V10, P363
2628    PONTECASTANEDA P, 1991, J MECH PHYS SOLIDS, V39, P45
2629    STROUD D, 1988, PHYS REV B, V37, P8719
2630    STROUD D, 1989, J OPT SOC AM B, V6, P778
2631    YU KW, 1993, PHYS REV B, V47, P14150
2632    YU KW, 1993, PHYS REV B, V47, P1782
2633    YU KW, 1993, PHYS REV B, V47, P7568
2634    YU KW, 1994, PHYS LETT A, V193, P311
2635    YU KW, 1994, PHYS REV B, V50, P13327
2636    YU KW, 1996, PHYS LETT A, V210, P115
2637    ZENG XC, 1988, PHYS REV B, V38, P10970
2638 NR 24
2639 TC 1
2640 SN 0253-6102
2641 J9 COMMUN THEOR PHYS
2642 JI Commun. Theor. Phys.
2643 PD JUN 15
2644 PY 1998
2645 VL 29
2646 IS 4
2647 BP 523
2648 EP 530
2649 PG 8
2650 SC Physics, Multidisciplinary
2651 GA 100WG
2652 UT ISI:000074837900008
2653 ER
2654 
2655 PT J
2656 AU Zhang, QL
2657    Qiu, XJ
2658 TI A chiral breaking field theory for giant multipole states of nuclei
2659 SO COMMUNICATIONS IN THEORETICAL PHYSICS
2660 DT Article
2661 DE giant multipole states of nuclei; chiral breaking field theory
2662 ID THOMAS-FERMI APPROXIMATION; QUADRUPOLE STATES; MATTER; MONOPOLE
2663 AB The isoscalar giant monopole and quadrupole states of finite nuclei are
2664    studied in a relativistic chiral breaking held theory by making use of
2665    local Lorentz-boost and scaling method. The nuclear surface effect and
2666    the density distribution are treated in the relativistic Thomas-Fermi
2667    approximation. The excitation energies of the giant resonances are
2668    self-consistently calculated. The numerical results for the excitation
2669    energies are in agreement with experimental data for all nuclei.
2670 C1 Ningxia Univ, Dept Phys, Yinchuan 750021, Peoples R China.
2671    Acad Sinica, Inst Nucl Res, Shanghai 201800, Peoples R China.
2672    Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
2673 RP Zhang, QL, Ningxia Univ, Dept Phys, Yinchuan 750021, Peoples R China.
2674 CR BOGUTA J, 1977, NUCL PHYS A, V292, P413
2675    BOGUTA J, 1983, PHYS LETT B, V120, P34
2676    CLARK BC, 1983, PHYS REV LETT, V51, P1803
2677    HOROWITZ CJ, 1987, NUCL PHYS A, V464, P613
2678    NISHIZAKI S, 1987, NUCL PHYS A, V462, P687
2679    RING P, 1980, NUCL MANY BODY PROBL, P528
2680    SEROT BD, 1986, ADV NUCL PHYS, V16
2681    SERR FE, 1978, PHYS LETT B, V79, P10
2682    SUZUKI T, 1980, PROG THEOR PHYS, V64, P1627
2683    WALECKA JD, 1974, ANN PHYS-NEW YORK, V83, P491
2684    ZHANG QL, 1992, HIGH ENERG PHYS NUCL, V16, P615
2685    ZHU CY, 1990, HIGH ENERG PHYS NUCL, V14, P76
2686    ZHU CY, 1991, COMMUN THEOR PHYS, V15, P27
2687    ZHU CY, 1991, J PHYS G, V17, L11
2688 NR 14
2689 TC 0
2690 SN 0253-6102
2691 J9 COMMUN THEOR PHYS
2692 JI Commun. Theor. Phys.
2693 PD JUN 15
2694 PY 1998
2695 VL 29
2696 IS 4
2697 BP 563
2698 EP 570
2699 PG 8
2700 SC Physics, Multidisciplinary
2701 GA 100WG
2702 UT ISI:000074837900016
2703 ER
2704 
2705 PT J
2706 AU Liu, ZG
2707    Tang, CJ
2708    Zhao, WM
2709    Zhang, ZL
2710    Jiang, XY
2711    Xu, SH
2712    Nazare, MH
2713 TI Effects of microcavities on the spontaneous emission of organic
2714    light-emitting diodes with ZnO : Al as the anode
2715 SO JOURNAL OF PHYSICS-CONDENSED MATTER
2716 DT Article
2717 ID ELECTROLUMINESCENT DIODES; PLANAR MICROCAVITY; DEVICES; SEMICONDUCTORS;
2718    VINYLENE); PHYSICS
2719 AB Organic light-emitting diodes (LED) with a microcavity structure and an
2720    aluminium-doped zinc oxide ZnO:Al (AZO) anode have been fabricated.
2721    Effects of microcavities on the spontaneous emission of the organic
2722    LED, such as spectral narrowing, intensity enhancement and angle
2723    dependence of the emission, have been observed. Different emission
2724    colours have been obtained by changing the thickness of the AZO layer
2725    and that of a TiO2 filler layer. The wavelengths of the cavity modes
2726    can be explained on the basis of the calculated total optical thickness
2727    of the individual cavities.
2728 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
2729    Univ Aveiro, Dept Phys, P-3810 Aveiro, Portugal.
2730 RP Liu, ZG, Univ Aveiro, Dept Phys, P-3810 Aveiro, Portugal.
2731 CR BECKER H, 1997, J APPL PHYS, V81, P2825
2732    CHANG KY, 1998, APPL PHYS LETT, V72, P335
2733    CIMROVA V, 1996, APPL PHYS LETT, V69, P608
2734    CIMROVA V, 1996, J APPL PHYS, V79, P3299
2735    DODABALAPUR A, 1994, APPL PHYS LETT, V65, P2308
2736    DODABALAPUR A, 1994, ELECTRON LETT, V30, P1000
2737    DODABALAPUR A, 1996, J APPL PHYS, V80, P6954
2738    DUTRA SM, 1996, PHYS REV A, V53, P3587
2739    EBINA K, 1995, APPL PHYS LETT, V66, P2783
2740    FISHER TA, 1995, APPL PHYS LETT, V67, P1355
2741    HUNT NEJ, 1992, APPL PHYS LETT, V61, P2287
2742    JORDAN RH, 1996, APPL PHYS LETT, V69, P1997
2743    LEMMER U, 1995, APPL PHYS LETT, V66, P1301
2744    LEMMER U, 1996, APPL PHYS LETT, V68, P3007
2745    LIDZEY DG, 1997, APPL PHYS LETT, V71, P744
2746    LIU ZG, 1996, J PHYS-CONDENS MAT, V8, P3221
2747    MINAMI T, 1985, JPN J APPL PHYS, V24, L605
2748    RIGNEAULT H, 1996, PHYS REV A, V54, P2356
2749    TAKADA N, 1993, APPL PHYS LETT, V63, P2032
2750    TANG CW, 1995, EL SOC FALL M PRINC, P1215
2751    TESSLER N, 1996, NATURE, V382, P695
2752    TESSLER N, 1997, APPL PHYS LETT, V70, P566
2753    TSUTSUI T, 1994, APPL PHYS LETT, V65, P1868
2754    YAMAMOTO Y, 1993, PHYS TODAY, V46, P66
2755    YOKOYAMA H, 1992, SCIENCE, V256, P66
2756    ZHANG B, 1996, SOLID STATE COMMUN, V97, P445
2757 NR 26
2758 TC 5
2759 SN 0953-8984
2760 J9 J PHYS-CONDENS MATTER
2761 JI J. Phys.-Condes. Matter
2762 PD JUL 6
2763 PY 1998
2764 VL 10
2765 IS 26
2766 BP 6019
2767 EP 6025
2768 PG 7
2769 SC Physics, Condensed Matter
2770 GA ZZ898
2771 UT ISI:000074780600025
2772 ER
2773 
2774 PT J
2775 AU Chen, J
2776    Nho, YC
2777    Park, JS
2778 TI Grafting polymerization of acrylic acid onto preirradiated
2779    polypropylene fabric
2780 SO RADIATION PHYSICS AND CHEMISTRY
2781 DT Article
2782 ID CATIONIC SALTS; POLYETHYLENE; STYRENE
2783 AB Acrylic acid (AAc) was grafted onto polypropylene (PP) fabric by a
2784    preirradiation method using a Co-60 gamma ray. The effect of absorbed
2785    dose, AAc concentration, reaction temperature, reaction time, storage
2786    time, as well as the effect of ferrous ion and sulfuric acid on the
2787    degree of grafting were determined. It has been shown that the
2788    synergistic effect of sulfuric acid with the ferrous sulfate can not
2789    only increase the grafting yield, but also decrease the apparent
2790    activation energy for the grafting. It leads to the possibility of
2791    getting a particular grafting yield at a lower absorbed dose. In this
2792    experiment, It has also been shown that the grafting activity of
2793    preirradiated PP fabric in AAc aqueous solution could be well kept at
2794    room temperature for a long period.
2795 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
2796    Korea Atom Energy Res Inst, Radiat Proc Project, Taejon 305600, South Korea.
2797 RP Chen, J, Shanghai Univ, Shanghai Appl Radiat Inst, Jiading Campus,
2798    Shanghai 201800, Peoples R China.
2799 CR CHAPIRO A, 1962, RAD CHEM POLYM SYSTE, P690
2800    DUNN TS, 1979, RADIAT PHYS CHEM, V14, P625
2801    GARGAN K, 1990, RADIAT PHYS CHEM, V36, P757
2802    GARNETT JL, 1980, J MACROMOL SCI CHEM, V14, P87
2803    ISHIGAKI I, 1982, J APPL POLYM SCI, V27, P1043
2804    NHO YC, 1992, J POLYM SCI POL CHEM, V30, P1219
2805    NHO YC, 1993, J POLYM SCI POL CHEM, V31, P1621
2806    NHO YC, 1995, 5 INT C RAD CUR DEC, P389
2807    ONELL T, 1972, J POLYM SCI POL CHEM, V10, P569
2808 NR 9
2809 TC 14
2810 J9 RADIAT PHYS CHEM
2811 JI Radiat. Phys. Chem.
2812 PD JUN
2813 PY 1998
2814 VL 52
2815 IS 1-6
2816 BP 201
2817 EP 206
2818 PG 6
2819 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
2820    Science & Technology
2821 GA ZX723
2822 UT ISI:000074548000041
2823 ER
2824 
2825 PT J
2826 AU Chen, GS
2827    Wang, Q
2828 TI Mode coupling in single-mode helical fibres under perturbations
2829 SO OPTICAL AND QUANTUM ELECTRONICS
2830 DT Article
2831 ID OPTICAL FIBERS
2832 AB The mode coupling in a helical fibre with a circular cross-section
2833    undergoing perturbations is investigated in the Serret-Frenet frame.
2834    The coupled-mode equations have been derived and are compared with the
2835    conventional ones. Applying the coupled-mode equations to a helical
2836    fibre with an elliptical core deformation, we obtained, for the first
2837    time, a rigorous analysis of the transmission characteristics of the
2838    fibre. The numerical examples show that the mode ellipticity and
2839    elliptical birefringence increase as the core ellipticity increases and
2840    also vary as the pitch or the core offset change.
2841 C1 Zhongshan Univ, Dept Elect, Guangzhou 510275, Guangdong Prov, Peoples R China.
2842    Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
2843 RP Chen, GS, Zhongshan Univ, Dept Elect, Guangzhou 510275, Guangdong Prov,
2844    Peoples R China.
2845 CR BIRCH RD, 1987, ELECTRON LETT, V23, P50
2846    CHEN GS, UNPUB OPT QUANTUM EL
2847    FANG XS, 1985, IEEE T MICROW THEORY, V33, P1150
2848    LEWIN L, 1977, ELECTROMAGNETIC WAVE
2849    PAPP A, 1977, APPL OPTICS, V16, P1315
2850    QIAN JR, 1988, IEE PROC-J, V135, P178
2851    SAKAI JI, 1981, IEEE J QUANTUM ELECT, V17, P1041
2852    TANG CH, 1970, I ELECT ELECTRON ENG, V18, P69
2853 NR 8
2854 TC 0
2855 SN 0306-8919
2856 J9 OPT QUANT ELECTRON
2857 JI Opt. Quantum Electron.
2858 PD MAR
2859 PY 1998
2860 VL 30
2861 IS 3
2862 BP 209
2863 EP 216
2864 PG 8
2865 SC Engineering, Electrical & Electronic; Optics
2866 GA ZY605
2867 UT ISI:000074640400008
2868 ER
2869 
2870 PT J
2871 AU Wang, HX
2872    Dai, YL
2873 TI Population-size-dependent branching processes in Markovian random
2874    environments
2875 SO CHINESE SCIENCE BULLETIN
2876 DT Article
2877 DE Markov chains in random environments; stochastic population models;
2878    branching processes
2879 ID PROBABILITIES; CHAINS
2880 AB A branching model \Z(n)\(n greater than or equal to 0) is considered
2881    where the offspring distribution of the population's evolution is not
2882    only dependent on the population size, but also controlled by a
2883    Markovian environmental process {xi(n)}(n greater than or equal to 0).
2884    For this model, asymptotic behaviour is studied such as
2885    [GRAPHICS]
2886    Z(n) and
2887    [GRAPHICS]
2888    Z(n)/m(n) in the case that the mean m(k,0) of the offspring
2889    distribution converges to m > 1 as the population size k grows to
2890    infinity. In the case that {xi(n)}(n greater than or equal to 0) is an
2891    irreducible positive recurrent Markov chain, certain extinction (i. e.
2892    P(Z(n) = 0 for some n) = 1) and noncertain extinction (i. e. P(Z(n) = 0
2893    for some n) < l) are studied.
2894 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
2895    Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China.
2896 RP Wang, HX, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
2897 CR ATHREYA KB, 1971, ANN MATH STAT, V42, P1499
2898    COGBURN R, 1984, Z WAHRSCHEINLICHKEIT, V66, P109
2899    KLEBANER FC, 1983, J APPL PROBAB, V20, P242
2900    KLEBANER FC, 1984, ADV APPL PROBAB, V16, P30
2901    OREY S, 1991, ANN PROBAB, V19, P907
2902    VIAUD DPL, 1994, J APPL PROBAB, V31, P22
2903 NR 6
2904 TC 1
2905 SN 1001-6538
2906 J9 CHIN SCI BULL
2907 JI Chin. Sci. Bull.
2908 PD APR
2909 PY 1998
2910 VL 43
2911 IS 8
2912 BP 635
2913 EP 638
2914 PG 4
2915 SC Multidisciplinary Sciences
2916 GA ZX142
2917 UT ISI:000074483600005
2918 ER
2919 
2920 PT J
2921 AU Huang, DB
2922    Zhao, XH
2923    Liu, ZR
2924 TI Reduction of the vector fields preserving n-form and the study of their
2925    interrelated problems
2926 SO CHINESE SCIENCE BULLETIN
2927 DT Letter
2928 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
2929    Yunnan Univ, Dept Math, Kunming 650091, Peoples R China.
2930 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
2931 CR CHENG CQ, 1990, CELESTIAL MECH, V47, P275
2932    MARSDEN J, 1974, REP MATH PHYS, V5, P121
2933    MEZIC I, 1994, J NONLINEAR SCI, V4, P157
2934    QUISPEL GRW, 1995, PHYS LETT A, V206, P26
2935    XIA ZH, 1992, ERGOD THEOR DYN SYST, V12, P621
2936 NR 5
2937 TC 0
2938 SN 1001-6538
2939 J9 CHIN SCI BULL
2940 JI Chin. Sci. Bull.
2941 PD MAY
2942 PY 1998
2943 VL 43
2944 IS 9
2945 BP 788
2946 EP 789
2947 PG 2
2948 SC Multidisciplinary Sciences
2949 GA ZX144
2950 UT ISI:000074483800023
2951 ER
2952 
2953 PT J
2954 AU Liu, GL
2955 TI Variational principles for 1-D unsteady compressible flow in a
2956    deforming tube of variable cross section
2957 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
2958 DT Article
2959 AB The 1-D unsteady compressible, homentropic, inviscid now in a flexible
2960    tube of varying cross-sectional area A(x,t) is formulated by two
2961    variational principle (VP) families in terms of the potential-and
2962    path-functions respectively. In addition, a novel approach to dealing
2963    with the initial/final conditions is suggested in order to be able to
2964    incorporate physical initial conditions into the VP and to exclude
2965    final conditions from the VP so as to ensure the properly-posedness of
2966    the hyperbolic problem under study. Thus, a sound theoretical basis for
2967    the finite element analysis of unsteady now is founded.
2968 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
2969    Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
2970 RP Liu, GL, Shanghai Univ, Shanghai 200072, Peoples R China.
2971 CR BENSON RS, 1982, THERMODYNAMICS GAS D, V1
2972    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
2973    LIU GL, 1990, P 1 INT S AER INT FL, P128
2974    LIU GL, 1993, P 2 INT C FLUID MECH, P359
2975    RAO SS, 1982, FINITE ELEMENT METHO
2976    SHAPIRO AH, 1953, DYNAMICS THERMODYNAM, V2, CH23
2977 NR 6
2978 TC 3
2979 SN 0334-0082
2980 J9 INT J TURBO JET ENGINES
2981 JI Int. J. Turbo. Jet-Engines
2982 PY 1998
2983 VL 15
2984 IS 1
2985 BP 1
2986 EP 5
2987 PG 5
2988 SC Engineering, Aerospace
2989 GA ZT828
2990 UT ISI:000074131800001
2991 ER
2992 
2993 PT J
2994 AU Guo, BQ
2995    Cao, WM
2996 TI Domain decomposition method for the h-p version finite element method
2997 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
2998 DT Article
2999 ID ELLIPTIC PROBLEMS; 3 DIMENSIONS; ITERATIVE METHODS; 2 DIMENSIONS;
3000    PRECONDITIONER
3001 AB Domain decomposition method for the h-p version of the finite element
3002    method in two and three dimensions are discussed. Using the framework
3003    of additive Schwarz method, various iterative methods are described,
3004    with their condition numbers estimated. Further, to reduce the cost for
3005    solving the sub-problems on element interfaces, different inexact
3006    interface solvers are proposed. The effects on the overall condition
3007    number, as well as their efficient implementation, are analyzed. (C)
3008    1998 Elsevier Science S.A.
3009 C1 Univ Manitoba, Dept Appl Math, Winnipeg, MB R3T 2N2, Canada.
3010    Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
3011 RP Guo, BQ, Univ Manitoba, Dept Appl Math, Winnipeg, MB R3T 2N2, Canada.
3012 CR AINSWORTH M, 1996, SIAM J NUMER ANAL, V33, P1358
3013    BABUSKA I, 1988, SIAM J NUMER ANAL, V25, P837
3014    BABUSKA I, 1989, INT J NUMER METH ENG, V28, P1891
3015    BABUSKA I, 1991, SIAM J NUMER ANAL, V28, P624
3016    BJORSTAD PE, 1986, SIAM J NUMER ANAL, V23, P1097
3017    BRAMBLE J, 1986, MATH COMPUT, V175, P103
3018    BRAMBLE JH, 1989, MATH COMPUT, V53, P1
3019    CANUTO C, 1987, SPECTRAL METHODS FLU
3020    CAO WM, IN PRESS SIAM J SCI
3021    CASARIN M, 1995, 704 NEW YORK U COUR
3022    CIARLET PG, 1978, FINITE ELEMENT METHO
3023    DON WS, 1994, SIAM J NUMER ANAL, V31, P1519
3024    DRUJA M, 1990, P 3 INT S DOM DEC ME
3025    DRYJA M, 1987, 339 NEW YORK U COUR
3026    DRYJA M, 1989, ITERATIVE METHODS LA, P273
3027    DRYJA M, 1994, SIAM J NUMER ANAL, V31, P1662
3028    GUO B, 1986, COMPUT MECH, V1, P203
3029    GUO B, 1986, COMPUT MECH, V1, P21
3030    GUO BQ, IN PRESS SIAM J SCI
3031    GUO BQ, 1996, NUMER MATH, V75, P59
3032    GUO BQ, 1997, P ROY SOC EDINB A 1, V127, P77
3033    GUO BQ, 1997, P ROY SOC EDINB A 3, V127, P517
3034    LIONS JL, 1972, NONHOMOGENEOUS BOUND, V1
3035    LIONS PL, 1988, P 1 INT S DOM DEC ME
3036    MANDEL J, 1990, COMPUT METHOD APPL M, V80, P117
3037    MANDEL J, 1990, INT J NUMER METH ENG, V29, P1095
3038    ODEN JT, 1994, 9411 TICAM
3039    ODEN JT, 1994, CONT MATH, V180, P295
3040    PAVARINO LF, 1994, IN PRESS COMPUTERS M
3041    PAVARINO LF, 1996, SIAM J NUMER ANAL, V33, P1303
3042    SZABO B, 1990, FINITE ELEMETN ANAL
3043    WDLUND OB, 1988, P 1 INT S DOM DEC ME
3044    WIDLUND OB, 1989, P 2 INT S DOM DEC ME
3045    XU JC, 1992, SIAM REV, V34, P581
3046 NR 34
3047 TC 3
3048 SN 0045-7825
3049 J9 COMPUT METHOD APPL MECH ENG
3050 JI Comput. Meth. Appl. Mech. Eng.
3051 PD MAY 11
3052 PY 1998
3053 VL 157
3054 IS 3-4
3055 BP 425
3056 EP 440
3057 PG 16
3058 SC Computer Science, Interdisciplinary Applications; Engineering,
3059    Mechanical; Mechanics
3060 GA ZT934
3061 UT ISI:000074142800018
3062 ER
3063 
3064 PT J
3065 AU Bai, ZZ
3066    Wang, DR
3067    Evans, DJ
3068 TI A class of asynchronous matrix multi-splitting multi-parameter
3069    relaxation iterations
3070 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
3071 DT Article
3072 DE system of linear equations; asynchronous iteration; matrix
3073    multisplitting; relaxation; convergence
3074 ID MULTISPLITTING RELAXED ITERATIONS; PARALLEL; CONVERGENCE; ALGORITHM;
3075    EQUATIONS; MODELS
3076 AB A class of asynchronous matrix multi-splitting multi-parameter
3077    relaxation methods, including the asynchronous matrix multisplitting
3078    SAOR, SSOR and SGS methods as well. as the known asynchronous matrix
3079    multisplitting AOR, SOR and GS methods, etc., is proposed for solving
3080    the large sparse systems of linear equations by making use of the
3081    principle of sufficiently using the delayed information. These new
3082    methods can greatly execute the parallel computational efficiency of
3083    the MIMD-systems, and are shown to be convergent when the coefficient
3084    matrices are H-matrices. Moreover, necessary and sufficient conditions
3085    ensuring the convergence of these methods are concluded for the case
3086    that the coefficient matrices are L-matrices.
3087 C1 Chinese Acad Sci, ICMSEC, Beijing 100080, Peoples R China.
3088    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
3089    Loughborough Univ Technol, Dept Comp Studies, Loughborough LE11 3TU, Leics, England.
3090 CR BAI ZZ, 1993, CHINESE J ENG MATH, V10, P107
3091    BAI ZZ, 1993, J NATU SCI HEILONGJI, V10, P1
3092    BAI ZZ, 1993, NUMER MATH J CHINESE, V2, P87
3093    BAI ZZ, 1993, THESIS SHANGHAI U SC
3094    BAI ZZ, 1994, APPL MATH JCU B, V9, P189
3095    BAI ZZ, 1994, CHINESE J ENG MATH, V11, P99
3096    BAI ZZ, 1994, J UEST CHINA, V23, P207
3097    BAI ZZ, 1994, NUMER MATH J CHINESE, V16, P107
3098    BAI ZZ, 1995, APPL MATH JCU A, V10, P133
3099    BAI ZZ, 1995, COMMUN NUMER METH EN, V11, P363
3100    BAI ZZ, 1995, INT J COMPUT MATH, V55, P223
3101    BAI ZZ, 1995, J COMPUT MATH, V13, P369
3102    BAI ZZ, 1995, J FUDAN U, V34, P139
3103    BAI ZZ, 1995, J SHANGHAI TEACHERS, V24, P13
3104    BAI ZZ, 1995, NUMER MATH J CHINESE, V17, P127
3105    BAI ZZ, 1995, PARALLEL COMPUT, V21, P565
3106    BRU R, 1988, LINEAR ALGEBRA APPL, V103, P175
3107    EVANS DJ, 1991, PARALLEL COMPUT, V17, P165
3108    EVANS DJ, 1992, INT J COMPUT MATH, V43, P173
3109    FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141
3110    NEUMANN M, 1987, LINEAR ALGEBRA APPL, V88, P559
3111    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
3112    VARGA RS, 1961, MATRIX ITERATIVE ANA
3113    WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473
3114    WANG DR, 1994, INT J COMPUT MATH, V54, P57
3115    WANG DR, 1994, P 92 SHANGH INT NUME
3116    WANG DR, 1994, PARALLEL ALGORITHMS, V2, P173
3117    WANG DR, 1994, PARALLEL ALGORITHMS, V2, P209
3118    WHITE RE, 1989, SIAM J MATRIX ANAL A, V10, P481
3119 NR 29
3120 TC 3
3121 SN 0254-9409
3122 J9 J COMPUT MATH
3123 JI J. Comput. Math.
3124 PD MAY
3125 PY 1998
3126 VL 16
3127 IS 3
3128 BP 221
3129 EP 238
3130 PG 18
3131 SC Mathematics, Applied; Mathematics
3132 GA ZQ797
3133 UT ISI:000073904000004
3134 ER
3135 
3136 PT J
3137 AU Wang, J
3138    Fiebig, M
3139 TI Absolute measurements of the thermal diffusivity of aqueous solutions
3140    of sodium chloride
3141 SO INTERNATIONAL JOURNAL OF THERMOPHYSICS
3142 DT Article
3143 DE aqueous solution; diffraction; laser-induced thermal grating; sodium
3144    chloride; thermal conductivity; thermal diffusivity
3145 ID GRATING TECHNIQUE; CONDUCTIVITY; LIQUIDS; PRESSURES; NACL
3146 AB The laser-induced thermal grating technique was used to determine the
3147    thermal diffusivity of aqueous solutions of sodium chloride. In
3148    comparison with conventional measurement methods, this noninvasive
3149    optical technique has the advantage that no sensors need to be inserted
3150    in the sample. Therefore, this technique is especially suitable for the
3151    measurement of electrically conducting and corrosive liquids. The
3152    aqueous solutions studied have weight fractions of 5, 10, 15, and 20%
3153    sodium chloride. Measurement results for the thermal diffusivity are
3154    presented for aqueous solutions of sodium chloride in the temperature
3155    range 293 to 373 K at atmospheric pressure.
3156 C1 Ruhr Univ Bochum, Inst Thermo & Fluiddynam, D-44780 Bochum, Germany.
3157    Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
3158 RP Fiebig, M, Ruhr Univ Bochum, Inst Thermo & Fluiddynam, D-44780 Bochum,
3159    Germany.
3160 CR 1991, VDI WARMEATLAS
3161    ABDULAGATOV IM, 1994, INT J THERMOPHYS, V15, P401
3162    ASSAEL MJ, 1991, EXPT THERMODYNAMICS, V3, P184
3163    BLANKE W, 1989, THERMOPHYSIKALISCHE, P112
3164    DAVIS PS, 1971, J CHEM PHYS, V55, P4776
3165    ELDAROV VS, 1986, ZH FIZ KHIM, V60, P603
3166    GANIEV Y, 1990, P 11 INT C PROP WAT, P132
3167    KAPUSTINSKII AF, 1955, ZH FIZ KHIM, V29, P2222
3168    MAGOMEDOV UB, 1989, GEOTHERMICS, P103
3169    NAGASAKA Y, 1983, BER BUNSEN PHYS CHEM, V87, P859
3170    NAGASAKA Y, 1984, P 10 INT C PROP STEA, V2, P203
3171    NAGASAKA Y, 1988, REV SCI INSTRUM, V59, P1156
3172    PERRY RH, 1984, PERRYS CHEM ENG HDB
3173    PRESS WH, 1992, NUMERICAL RECIPES FO, P678
3174    RAMIRES MLV, 1994, J CHEM ENG DATA, V39, P186
3175    RIEDEL L, 1951, CHEM ING TECHNIK, V3, P59
3176    URBACH W, 1978, MOL CRYST LIQ CRYST, V46, P209
3177    VARGAFTIK NB, 1956, TEPLOENERGETIKA, V7, P11
3178    WANG J, 1995, INT J THERMOPHYS, V16, P1353
3179    WANG J, 1995, MESSUNG TEMPERATURLE, P48
3180    WANG J, 1996, EXP THERM FLUID SCI, V13, P38
3181    WANG J, 1996, INT J THERMOPHYS, V17, P1229
3182    WANG J, 1996, INT J THERMOPHYS, V17, P329
3183    WU G, 1988, INT J HEAT MASS TRAN, V31, P1471
3184    WU G, 1993, FLUID PHASE EQUILIBR, V88, P239
3185    YUSUFOVA VD, 1975, INZH FIZ ZH, V29, P600
3186 NR 26
3187 TC 2
3188 SN 0195-928X
3189 J9 INT J THERMOPHYS
3190 JI Int. J. Thermophys.
3191 PD JAN
3192 PY 1998
3193 VL 19
3194 IS 1
3195 BP 15
3196 EP 25
3197 PG 11
3198 SC Chemistry, Physical; Physics, Applied; Mechanics; Thermodynamics
3199 GA ZN249
3200 UT ISI:000073627000003
3201 ER
3202 
3203 PT J
3204 AU Liu, RH
3205    Tan, WH
3206 TI Nonlinear control of chaos
3207 SO CHINESE PHYSICS LETTERS
3208 DT Article
3209 ID SYSTEMS
3210 AB The nonlinear and the exact control of chaos is deduced. Using these
3211    methods we achieve a simultaneous and instantaneous control of the
3212    scheduled unstable 2(k)p points for the logistic and the Henon map. The
3213    derivatives needed in the nonlinear method have been evaluated
3214    experimentally from the time series x(n), without the preknowledge of
3215    the function f(x). The difficulty confronted in the optimum control may
3216    be overcome by introducing the nonlinear control.
3217 C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
3218    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
3219 RP Liu, RH, Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai
3220    201800, Peoples R China.
3221 CR HUBERMAN BA, 1990, IEEE T CIRCUITS SYST, V37, P547
3222    HUNT ER, 1991, PHYS REV LETT, V67, P1953
3223    JACKSON EA, 1990, PHYS LETT A, V151, P478
3224    LIMA R, 1990, PHYS REV A, V41, P726
3225    OTT E, 1990, PHYS REV LETT, V64, P1196
3226    PYRAGAS K, 1992, PHYS LETT A, V170, P423
3227    TONG PQ, 1995, ACTA PHYS SINICA, V44, P169
3228    WANSUN NI, 1994, CHINESE PHYS LETT, V11, P325
3229 NR 8
3230 TC 4
3231 SN 0256-307X
3232 J9 CHIN PHYS LETT
3233 JI Chin. Phys. Lett.
3234 PY 1998
3235 VL 15
3236 IS 4
3237 BP 249
3238 EP 251
3239 PG 3
3240 SC Physics, Multidisciplinary
3241 GA ZN653
3242 UT ISI:000073668200006
3243 ER
3244 
3245 PT J
3246 AU Cheng, XY
3247    Wan, XJ
3248 TI Hydrogen diffusivity in a Fe3Al-based alloy
3249 SO SCRIPTA MATERIALIA
3250 DT Article
3251 ID ROOM-TEMPERATURE DUCTILITY; UNIDIRECTIONAL SOLIDIFICATION;
3252    ENVIRONMENTAL EMBRITTLEMENT; NI3AL; CO3TI; BORON
3253 C1 Shanghai Univ, Inst Met & Mat Sci, Shanghai 200072, Peoples R China.
3254 RP Cheng, XY, Shanghai Univ, Inst Met & Mat Sci, Shanghai 200072, Peoples
3255    R China.
3256 CR CASTAGNA A, 1992, SCRIPTA METALL, V26, P273
3257    GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37
3258    HIRANO T, 1991, SCRIPTA METALL MATER, V25, P1747
3259    LIU CT, 1989, SCRIPTA METALL, V23, P875
3260    LIU CT, 1990, SCRIPTA METALL MATER, V24, P385
3261    MCKAMEY CG, 1993, SCRIPTA METALL MATER, V28, P1173
3262    NI JS, 1994, J SHANGHAI U TECHNOL, V15, P81
3263    NISHIMURA C, 1993, SCRIPTA METALL MATER, V29, P1205
3264    SANDERS PG, 1991, SCRIPTA METALL MATER, V25, P2365
3265    TAKASUGI T, 1986, ACTA METALL, V34, P607
3266    TAKASUGI T, 1993, SCRIPTA METALL MATER, V29, P1587
3267    WAN X, 1994, J MATER SCI TECHNOL, V10, P39
3268    WAN XJ, 1995, ACTA METALL SINICA B, V31, B183
3269    ZHANG DZ, 1993, SCRIPTA METALL MATER, V29, P901
3270    ZHU JH, 1994, ACTA METALL SINICA, V30, A139
3271    ZHU JH, 1994, J SHANGHAI U TECHNOL, V15, P81
3272 NR 16
3273 TC 4
3274 SN 1359-6462
3275 J9 SCRIPTA MATER
3276 JI Scr. Mater.
3277 PD APR 14
3278 PY 1998
3279 VL 38
3280 IS 10
3281 BP 1505
3282 EP 1509
3283 PG 5
3284 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
3285    Engineering
3286 GA ZM587
3287 UT ISI:000073555100005
3288 ER
3289 
3290 PT J
3291 AU Feng, F
3292    Ping, XY
3293    Zhou, ZQ
3294    Geng, MM
3295    Han, JW
3296    Northwood, DO
3297 TI The relationship between equilibrium potential during discharge and
3298    hydrogen concentration in a metal hydride electrode
3299 SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
3300 DT Article
3301 ID BATTERY; ALLOYS; POWDER; MODEL
3302 AB Based on the static equilibrium of electrochemical reaction kinetics,
3303    i.e, the same static reaction current density of forward and backward
3304    reactions, a relationship has been established between the equilibrium
3305    potential during discharge (E-e) and hydrogen concentration (C-H) in a
3306    hydride alloy (Mm(0.4)Ml(0.6)Ni(3.8)Co(0.5)Al(0.3)Mn(0.4)) at an
3307    equilibrium discharge condition. The theoretical results are in an
3308    agreement with the experimental electrochemical data in the two-phase
3309    (alpha-beta) region of the hydrogen-absorbing alloy. The enthalpy
3310    (Delta H) and entropy (Delta S), which is a function of hydrogen
3311    concentration in the electrode alloy, were obtained by fitting the
3312    curve of the equilibrium potential vs hydrogen concentration. (C) 1998
3313    International Association for Hydrogen Energy.
3314 C1 Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China.
3315    Univ Windsor, Dept Mech & Mat Engn, Windsor, ON N9B 3P4, Canada.
3316 RP Northwood, DO, Ryerson Polytech Univ, Fac Engn & Appl Sci, 350 Victoria
3317    St, Toronto, ON M5B 2K3, Canada.
3318 CR BJURSTROM H, 1987, J LESS-COMMON MET, V130, P365
3319    DRIESSEN A, 1985, Z PHYS CHEM NEUE FOL, V143, P145
3320    FUJITANI S, 1993, Z PHYS CHEM, V179, P27
3321    GENG MM, 1996, INT J HYDROGEN ENERG, V21, P887
3322    JARMAN RH, 1982, J ELECTROCHEM SOC, V129, P2276
3323    LEE SG, 1996, INT J HYDROGEN ENERG, V21, P733
3324    NOTTEN PHL, 1991, J ELECTROCHEM SOC, V138, P1877
3325    PONS M, 1994, Z PHYS CHEM, V183, P213
3326    RATNAKUMAR BV, 1996, J ELECTROCHEM SOC, V143, P2578
3327    SAKAI T, 1990, J ELECTROCHEM SOC, V137, P795
3328    SAKAI T, 1991, J LESS-COMMON MET, V1175, P172
3329    SUZUKI K, 1993, J ALLOY COMPD, V192, P173
3330    WILLEMS JJG, 1984, PHILIPS J RES S1, V39, P1
3331    YANG QM, 1994, J ELECTROCHEM SOC, V141, P2108
3332    YAYAMA H, 1985, TECHNOLOGY REPORT KY, V58, P139
3333    YE Z, 1995, J ELECTROCHEM SOC, V142, P4045
3334 NR 16
3335 TC 5
3336 SN 0360-3199
3337 J9 INT J HYDROGEN ENERG
3338 JI Int. J. Hydrog. Energy
3339 PD JUL
3340 PY 1998
3341 VL 23
3342 IS 7
3343 BP 599
3344 EP 602
3345 PG 4
3346 SC Physics, Atomic, Molecular & Chemical; Energy & Fuels; Environmental
3347    Sciences
3348 GA ZN252
3349 UT ISI:000073627300010
3350 ER
3351 
3352 PT J
3353 AU Ru, HY
3354    Min, ZK
3355 TI New upper bounds for Ramsey numbers
3356 SO EUROPEAN JOURNAL OF COMBINATORICS
3357 DT Article
3358 AB Ramsey number R(G(1),G(2)) is the smallest integer p such that for any
3359    graph G on p vertices either G contains G(1) or (G) over bar contains
3360    G(2), where (G) over bar denotes the complement of G. Let R(m, n) =
3361    R(K-m, K-n). Some new upper bound formulas are obtained for
3362    R(G(1),G(2)) and R(m, n), and we derive some new upper bounds for
3363    Ramsey numbers here. (C) 1998 Academic Press Limited.
3364 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
3365    Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China.
3366 CR BONDY JA, 1976, GRAPH THEORY APPL
3367    RADZISZOWSKI SP, 1996, ELECT J COMBIN, V1, P1
3368    RU HY, 1997, JCMCC
3369    WALKER K, 1968, J COMB THEORY, V5, P238
3370 NR 4
3371 TC 1
3372 SN 0195-6698
3373 J9 EUR J COMBINATORIC
3374 JI Eur. J. Comb.
3375 PD APR
3376 PY 1998
3377 VL 19
3378 IS 3
3379 BP 391
3380 EP 394
3381 PG 4
3382 SC Mathematics
3383 GA ZM774
3384 UT ISI:000073574500012
3385 ER
3386 
3387 PT J
3388 AU Guan, HW
3389    Ip, HHS
3390    Zhang, YC
3391 TI Java-based approaches for accessing databases on the Internet and a
3392    JDBC-ODBC implementation
3393 SO COMPUTING & CONTROL ENGINEERING JOURNAL
3394 DT Article
3395 AB An important area of Java development is to create Java-based software
3396    or tools with the capability of accessing databases over the Internet.
3397    In this article JDBC and its various properties are explored. Several
3398    Java-based technical approaches for accessing databases on the Internet
3399    are proposed and investigated in detail. A design and implementation of
3400    the Java software for accessing databases on the Internet is proposed
3401    and described, where the design scheme of an interactive applet by
3402    using Java JDBC programming is proposed and investigated, the main JDBC
3403    classes used in the Java program and the relationship between them are
3404    discussed, the implementation of the software is provided, and some
3405    instances for running the Java program are given. This Java software
3406    provides an interactive and user-friendly interface on the browser
3407    which supports Java JDK 1.1 or later and the software has the
3408    capability for the connection, SQL access, retrieval and display of a
3409    database on the Internet.
3410 C1 Shanghai Univ, Dept Comp Engn, Shanghai 200072, Peoples R China.
3411    IPSI, GMD, Darmstadt, Germany.
3412    City Univ Hong Kong, Dept Comp Sci, Hong Kong, Hong Kong.
3413    Univ So Queensland, Dept Math & Comp, Toowoomba, Qld 4350, Australia.
3414 RP Guan, HW, Shanghai Univ, Dept Comp Engn, Shanghai 200072, Peoples R
3415    China.
3416 CR GOSLING J, 1996, JAVA LANGUAGE SPECIF
3417    HELLER P, 1997, JAVA 1 1 DEV HDB
3418    JENNINGS R, 1997, VISUAL BASIC PROGRAM, V7, P22
3419    JEPSON B, 1997, JAVA DATABASE PROGRA
3420    LINDHOLM T, 1997, JAVA VIRTUAL MACHINE
3421    URQUHART K, 1997, IEEE MICRO, V17, P11
3422 NR 6
3423 TC 1
3424 SN 0956-3385
3425 J9 COMPUTING CONTROL ENGINEER J
3426 JI Comput. Control Eng. J.
3427 PD APR
3428 PY 1998
3429 VL 9
3430 IS 2
3431 BP 71
3432 EP 78
3433 PG 8
3434 SC Automation & Control Systems
3435 GA ZM371
3436 UT ISI:000073531800005
3437 ER
3438 
3439 PT J
3440 AU Ma, HP
3441 TI Chebyshev-Legendre spectral viscosity method for nonlinear conservation
3442    laws
3443 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
3444 DT Article
3445 DE conservation laws; Chebyshev-Legendre method; spectral viscosity;
3446    convergence
3447 ID RECOVERING EXPONENTIAL ACCURACY; PIECEWISE ANALYTIC-FUNCTION; GIBBS
3448    PHENOMENON; PARTIAL SUM; CONVERGENCE; APPROXIMATIONS
3449 AB In this paper, a Chebyshev-Legendre spectral viscosity (CLSV) method is
3450    developed for nonlinear conservation laws with initial and boundary
3451    conditions. The boundary conditions are dealt with by a penalty method.
3452    The viscosity is put only on the high modes, so accuracy may be
3453    recovered by postprocessing the CLSV approximation. It is proved that
3454    the bounded solution of the CLSV method converges to the exact scalar
3455    entropy solution by compensated compactness arguments. Also, a new
3456    spectral viscosity method using the Chebyshev differential operator D =
3457    root 1-x(2) partial derivative(x) is introduced, which is a little
3458    weaker than the usual one while guaranteeing the convergence of the
3459    bounded solution of the Chebyshev Galerkin, Chebyshev collocation, or
3460    Legendre Galerkin approximation to nonlinear conservation laws. This
3461    kind of viscosity is ready to be generalized to a super viscosity
3462    version.
3463 C1 Brown Univ, Div Appl Math, Providence, RI 02912 USA.
3464    Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
3465 RP Ma, HP, Brown Univ, Div Appl Math, Providence, RI 02912 USA.
3466 CR ABARBANEL S, 1986, NUMERICAL METHODS FL, V2, P129
3467    ALPERT BK, 1991, SIAM J SCI STAT COMP, V12, P158
3468    BENNETT C, 1988, INTERPOLATION OPERAT
3469    BERNARDI C, 1992, J COMPUT APPL MATH, V43, P53
3470    CAI W, 1992, SIAM J NUMER ANAL, V29, P905
3471    CANUTO C, 1988, SPECTRAL METHODS FLU
3472    DON WS, 1994, SIAM J NUMER ANAL, V31, P1519
3473    FUNARO D, 1988, MATH COMPUT, V51, P599
3474    FUNARO D, 1991, MATH COMPUT, V57, P585
3475    GOTTLIEB D, 1977, SIAM CBMS, V26
3476    GOTTLIEB D, 1985, PROGR SUPERCOMPUTING, P357
3477    GOTTLIEB D, 1992, J COMPUT APPL MATH, V43, P81
3478    GOTTLIEB D, 1995, MATH COMPUT, V64, P1081
3479    GOTTLIEB D, 1995, NUMER MATH, V71, P511
3480    GOTTLIEB D, 1996, SIAM J NUMER ANAL, V33, P280
3481    KABER SMO, 1991, THESIS U P M CURIE P
3482    MA HP, 1988, J COMPUT MATH, V6, P48
3483    MADAY Y, 1989, SIAM J NUMER ANAL, V26, P854
3484    MADAY Y, 1991, THESIS U P M CURIE P
3485    MADAY Y, 1993, SIAM J NUMER ANAL, V30, P321
3486    MITRINOVIC DS, 1991, INEQUALITIES INVOLVI
3487    MUCKENHOUPT B, 1969, P AM MATH SOC, V23, P306
3488    MUCKENHOUPT B, 1970, T AM MATH SOC, V147, P433
3489    REYNA LG, 1988, J SCI COMPUT, V3, P1
3490    TADMOR E, 1989, SIAM J NUMER ANAL, V26, P30
3491    TADMOR E, 1990, COMPUT METHOD APPL M, V80, P197
3492    TADMOR E, 1993, NUMERICAL METHODS FL, V4, P69
3493    TARTAR L, 1975, RES NOTES MATH 39, V4, P136
3494 NR 28
3495 TC 10
3496 SN 0036-1429
3497 J9 SIAM J NUMER ANAL
3498 JI SIAM J. Numer. Anal.
3499 PD JUN
3500 PY 1998
3501 VL 35
3502 IS 3
3503 BP 869
3504 EP 892
3505 PG 24
3506 SC Mathematics, Applied
3507 GA ZL417
3508 UT ISI:000073430800001
3509 ER
3510 
3511 PT J
3512 AU Ma, HP
3513 TI Chebyshev-Legendre super spectral viscosity method for nonlinear
3514    conservation laws
3515 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
3516 DT Article
3517 DE conservation laws; Chebyshev-Legendre method; super spectral viscosity;
3518    convergence
3519 ID RECOVERING EXPONENTIAL ACCURACY; PIECEWISE ANALYTIC-FUNCTION; GIBBS
3520    PHENOMENON; PARTIAL SUM; APPROXIMATIONS; CONVERGENCE
3521 AB In this paper, a super spectral viscosity method using the Chebyshev
3522    differential operator of high order D-s = (root 1-x(2) partial
3523    derivative(x))(s) is developed for nonlinear conservation laws. The
3524    boundary conditions are treated by a penalty method. Compared with the
3525    second-order spectral viscosity method, the super one is much weaker
3526    while still guaranteeing the convergence of the bounded solution of the
3527    Chebyshev-Galerkin, Chebyshev collocation, or Legendre-Galerkin
3528    approximations to nonlinear conservation laws, which is proved by
3529    compensated compactness arguments.
3530 C1 Brown Univ, Div Appl Math, Providence, RI 02912 USA.
3531    Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
3532 RP Ma, HP, Brown Univ, Div Appl Math, Providence, RI 02912 USA.
3533 CR ABARBANEL S, 1986, NUMERICAL METHODS FL, V2, P129
3534    CANUTO C, 1988, SPCTRAL METHODS FLUI
3535    CHEN GQ, 1993, MATH COMPUT, V61, P629
3536    DON WS, 1994, J COMPUT PHYS, V110, P103
3537    DON WS, 1994, SIAM J NUMER ANAL, V31, P1519
3538    FUNARO D, 1988, MATH COMPUT, V51, P599
3539    FUNARO D, 1991, MATH COMPUT, V57, P585
3540    GOTTLIEB D, COMMUNICATION
3541    GOTTLIEB D, 1985, PROGR SUPERCOMPUTING, P357
3542    GOTTLIEB D, 1992, J COMPUT APPL MATH, V43, P81
3543    GOTTLIEB D, 1995, MATH COMPUT, V64, P1081
3544    GOTTLIEB D, 1995, NUMER MATH, V71, P511
3545    GOTTLIEB D, 1996, SIAM J NUMER ANAL, V33, P280
3546    KWONG MK, 1991, LECT NOTES PURE APPL, V129, P91
3547    MA HP, 1998, SIAM J NUMER ANAL, V35, P901
3548    MADAY Y, 1989, SIAM J NUMER ANAL, V26, P854
3549    MADAY Y, 1993, SIAM J NUMER ANAL, V30, P321
3550    SHU CW, 1995, J SCI COMPUT, V10, P357
3551    TADMOR E, 1989, SIAM J NUMER ANAL, V26, P30
3552    TADMOR E, 1990, COMPUT METHOD APPL M, V80, P197
3553    TADMOR E, 1993, NUMERICAL METHODS FL, V4, P69
3554    TARTAR L, 1979, RES NOTES MATH, V39, P136
3555 NR 22
3556 TC 15
3557 SN 0036-1429
3558 J9 SIAM J NUMER ANAL
3559 JI SIAM J. Numer. Anal.
3560 PD JUN
3561 PY 1998
3562 VL 35
3563 IS 3
3564 BP 893
3565 EP 908
3566 PG 16
3567 SC Mathematics, Applied
3568 GA ZL417
3569 UT ISI:000073430800002
3570 ER
3571 
3572 PT J
3573 AU Chen, RD
3574    Ding, AH
3575    Bao, PY
3576    Guo, ZG
3577    Luo, HZ
3578    Sun, SF
3579    Han, R
3580    Xu, SP
3581 TI Chemoprevention of cancer of uterine cervix: A study on chemoprevention
3582    of Retinamide II from cervical precancerous lesions
3583 SO JOURNAL OF CELLULAR BIOCHEMISTRY
3584 DT Article
3585 DE chemoprevention; precancerous lesions; uterine cervix Retinamide II
3586    (RII)
3587 AB Dysplasia of the uterine cervix is a recognized precancerous condition.
3588    Because of the observed ability of retinoids to suppress various cell
3589    lines in vitro, a number of clinical studies have examined tie effect
3590    these agents have on cervical dysplasia, with the object of developing
3591    a means of chemoprevention of cervical malignancies in women at risk.
3592    Three cervical cancer chemoprevention trials with Retinamide II (RII)
3593    have been conducted at the Cancer Institute, Chinese Academy of Medical
3594    Sciences, Beijing, China.
3595    A pilot study used RII to intervene in cases of precancerous cervical
3596    dysplasia. Twenty-seven women with mild, moderate, or servere cervical
3597    dysplasia, pathologically confirmed, were treated by RII suppositories,
3598    10 mg QD, given intravaginally for 6 months teach course lasting 3
3599    months). The results indicated that after the second course, the
3600    overall response rate was 96.29% and the complete response rate was
3601    88.89%. In general, side effects were mild. A little cervical and
3602    vaginal irritation was well tolerated. in the second double-blind
3603    study, patients with precancerous cervical lesions were randomized into
3604    two groups, one treated with RII suppository intravaginally and the
3605    other with a placebo, once daily for 50 days in two courses.
3606    Precancerous lesions in 68.76% of patients in the treatment arm
3607    disappeared, with an overall effective rate of 74.29% after two courses
3608    of treatment with RII. its curative effect was approximately that of
3609    laser beam radiation and electrocautery (P > 0.05), and differed
3610    significantly (P < 0.01) from that of traditional antiinflammatories.
3611    RII can be a major measure in prevention and treatment of cervical
3612    cancer in high-incidence areas in China. in the third trial, we are
3613    conducting a randomized double-blind study placebo controlled, in a
3614    high-incidence area of cervical cancer (Xiang-Yuan county, Shang Xi
3615    Province, China). At present, the patients are being followed up and
3616    the study will be completed after 2 years. (C) 1998 Wiley-Liss, inc.
3617 C1 Chinese Acad Med Sci, Inst Canc, Beijing 100021, Peoples R China.
3618    Shanghai Univ, Med Ctr, Shanghai Obstect Gynecol Hosp, Shanghai, Peoples R China.
3619    Hebei Med Coll, Affiliated Hosp 4, Shijiazhuang Shi, Peoples R China.
3620    Chinese Acad Med Sci, Inst Mat Med, Beijing 100050, Peoples R China.
3621 RP Chen, RD, Chinese Acad Med Sci, Inst Canc, Beijing 100021, Peoples R
3622    China.
3623 CR CAI H, 1981, ACTA PHARM SINCA, V16, P648
3624    CHEN R, 1987, CHINESE J ONCOL, V9, P348
3625    CHEN R, 1993, CHINESE J ONCOL, V15, P272
3626    CHU EW, 1965, CANCER RES, V25, P884
3627    ROBERTS AB, 1979, FED PROC, V38, P2524
3628    STAFL A, 1976, OBSTET GYNECOL, V48, P123
3629    WANG R, 1983, CHINESE J ONCOL, V15, P243
3630    XU S, 1981, ACTA PHARM SINCA, V16, P686
3631 NR 8
3632 TC 0
3633 SN 0730-2312
3634 J9 J CELL BIOCHEM
3635 JI J. Cell. Biochem.
3636 PY 1997
3637 SU Suppl. 28-29
3638 BP 140
3639 EP 143
3640 PG 4
3641 SC Biochemistry & Molecular Biology; Cell Biology
3642 GA ZL634
3643 UT ISI:000073454800016
3644 ER
3645 
3646 PT J
3647 AU Ding, R
3648    Zhu, ZY
3649    Cheng, CJ
3650 TI Boundary element method for solving dynamical response of viscoelastic
3651    thin plate (II) - Theoretical analysis
3652 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
3653 DT Article
3654 DE dynamic response; viscoelasticity; approximate boundary element method;
3655    error estimation
3656 AB In this paper, the necessary theoretical analysis for the approximation
3657    boundary element method to solve dynamical response of viscoelastic
3658    thin plate presented in [1] is discussed. The theorem of existence and
3659    uniqueness of the approximate solution and the error estimation are
3660    also obtained. Based on these conclusions, the principle for choosing
3661    the mesh size and the number of truncated terms in the fundamental
3662    solution are given. It is shown that the theoretical analysis in this
3663    paper are consistent with the numerical results in [1].
3664 C1 SW Jiaotong Univ, Mech Postdoctoral Stn, Chengdu 610031, Peoples R China.
3665    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
3666 RP Ding, R, SW Jiaotong Univ, Mech Postdoctoral Stn, Chengdu 610031,
3667    Peoples R China.
3668 CR BELLMAN R, 1966, NUMERICAL INVERSION, P624
3669    DING FY, 1995, J LANZHOU U, V31, P30
3670    DING R, 1997, APPL MATH MECH-ENGL, V18, P229
3671    RUOTSALAINEN K, 1988, NUMER MATH, V53, P229
3672    ZHU JL, 1987, BOUNDARY ELEMENT ANA
3673 NR 5
3674 TC 2
3675 SN 0253-4827
3676 J9 APPL MATH MECH-ENGL ED
3677 JI Appl. Math. Mech.-Engl. Ed.
3678 PD FEB
3679 PY 1998
3680 VL 19
3681 IS 2
3682 BP 101
3683 EP 110
3684 PG 10
3685 SC Mathematics, Applied; Mechanics
3686 GA ZL516
3687 UT ISI:000073441400001
3688 ER
3689 
3690 PT J
3691 AU Li, HH
3692    Yan, SH
3693    Qi, DY
3694    Liu, HY
3695 TI Biosensors and clinic application based on immobilization of enzymes
3696    with beta-cyclodextrin.
3697 SO PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS
3698 DT Article
3699 DE biosensor; Eastman-AQ polymer; N-methyl phenazine methosulphate;
3700    horseradish peroxidase; glucose; lactose; beta-cyclodextrin
3701 ID HORSERADISH-PEROXIDASE; ELECTRODE
3702 AB Biosensor highly sensitive to hydrogen peroxide has constructed by
3703    immobilizing horseradish peroxidase in Eastman-AQ-N-methyl phenazine
3704    methosulphate modified electrode via cross-linking. Cyclic voltammetry
3705    and chronamperometry were employed to demonstrate the effective
3706    electron transfer between immobilized horseradish peroxidase and a
3707    glassy carbon electrode via N-methyl phenazine methosulphate in
3708    Eastman-AQ polymer film. Because of high efficiency of
3709    bioelectrocatalytic reduction of hydrogen peroxide via N-methyl
3710    phenazine methosulphate, the hydrogen peroxide sensor was combined with
3711    glucose oxidase and beta-galactosidase for bienzyme and trienzyme-based
3712    biosensor for determination of low glucose and lactose. The biosensors
3713    for hydrogen peroxide, glucose and lactose possessed a wide variety of
3714    advantages including long stability, rapid response times, wide dynamic
3715    range, high sensitivity and selectivity. Comparison of glucose
3716    biosensor with colorimetric method with glucose oxidase and peroxidase
3717    for the determination of serum glucose from diabetic patients indicates
3718    that the results display a good consistency.
3719 C1 Weimei Cooperat Zhejiang, Clin Dept, Hangzhou 310015, Peoples R China.
3720    Shanghai Univ, Dept Chem & Chem Engn, Shanghai 200072, Peoples R China.
3721 CR BERGMEYER HU, 1984, METHOD ENZYMAT AN, V1, P178
3722    BOURDILLON C, 1993, J AM CHEM SOC, V115, P12264
3723    GARGUILO MG, 1993, ANAL CHEM, V65, P523
3724    LIU H, 1995, ANAL P, V32, P437
3725    LIU YC, 1996, ELECTROCHIM ACTA, V41, P77
3726    REEKE M, 1995, ANALC HEM, V67, P303
3727    RUZGAS T, 1995, J ELECTROANAL CHEM, V391, P41
3728 NR 7
3729 TC 2
3730 SN 1000-3282
3731 J9 PROG BIOCHEM BIOPHYS
3732 JI Prog. Biochem. Biophys.
3733 PD APR
3734 PY 1998
3735 VL 25
3736 IS 2
3737 BP 162
3738 EP 166
3739 PG 5
3740 SC Biochemistry & Molecular Biology; Biophysics
3741 GA ZK264
3742 UT ISI:000073301800018
3743 ER
3744 
3745 PT J
3746 AU Lu, HQ
3747    Fung, PCW
3748 TI Contribution of vacuum field to angular deviation of light path and
3749    radar echo delay
3750 SO ASTROPHYSICS AND SPACE SCIENCE
3751 DT Article
3752 ID GRAVITATIONAL LENS; Q0957+561
3753 AB The discovery of 'twin quasistellar objects' arose interests among
3754    astronomers and astrophysicists to study gravitational lensing
3755    problems. The deviation of light from its straight line path is caused
3756    by two sources according to the general theory of relativity: (i) the
3757    presence of massive objects, i.e. the presence of gravitational field
3758    and (ii) the presence of a 'vacuum field' which arises because there is
3759    a non-zero cosmological vacuum energy.
3760    Recently, the research on the relationship between cosmological
3761    constant and gravitational lensing process is rather active (see
3762    reference [1, 2, 3]. According to the Kottler space time metric, we
3763    have deduced an explicit representation of the angular deviation of
3764    light path. The deviation term is found to be simply -4GM/r(min)c(2)
3765    (Lambda/6r(min)(2)), where nd is the mass of the 'astronomical lens',
3766    r(min) is the distance between the point of nearest approach and the
3767    centre of M, other symbols have their usual meaning. The presence of
3768    this term may be meaningful to the study of cosmological constant using
3769    the concept of gravitational lensing; however more sophisticated
3770    analysis awaits.
3771    Consider a signal radar to be sent from one planet to another. We have
3772    found that the radar echo delay contributed by the existence of the
3773    cosmological constant Lambda is expressible as 2
3774    Lambda/9c(r(A)(3)+r(B)(3)) [1-r(min)(2)/2r(A)(2)+r(min)(2)/2r(B)(2)].
3775 C1 Shanghai Univ, Dept Phys, Shanghai 200041, Peoples R China.
3776    Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China.
3777 RP Lu, HQ, Shanghai Univ, Dept Phys, Shanghai 200041, Peoples R China.
3778 CR EPSTEIN R, 1980, PHYS REV D, V22, P2947
3779    FAN JH, 1992, ASTROPHYS SPACE SCI, V197, P269
3780    FAN LZ, 1981, FUNDAMENTAL CONCEPT, P55
3781    FOMALONT EB, 1976, PHYS REV LETT, V36, P1475
3782    FORT B, 1997, ASTRON ASTROPHYS, V321, P353
3783    IBANEZ J, 1983, ASTRON ASTROPHYS, V124, P175
3784    IM MS, 1997, ASTROPHYS J 1, V475, P457
3785    KOCHANEK CS, 1996, ASTROPHYS J 1, V466, P638
3786    KOLB EW, 1990, EARLY UNIVERSE, P308
3787    KOTTLER F, 1922, ENCY MATH WISS A, V22, P231
3788    LIEBES S, 1964, PHYS REV B, V133, P835
3789    SCHNEIDER P, 1987, MITT ASTRON GES, V70, P219
3790    SHAPIRO II, 1971, ASTRON J, V76, P588
3791    WALSH D, 1979, NATURE, V279, P381
3792    YOUNG P, 1981, ASTROPHYS J, V244, P756
3793    YOUNG P, 1981, ASTROPHYS J, V249, P415
3794 NR 16
3795 TC 1
3796 SN 0004-640X
3797 J9 ASTROPHYS SPACE SCI
3798 JI Astrophys. Space Sci.
3799 PY 1997
3800 VL 253
3801 IS 2
3802 BP 291
3803 EP 299
3804 PG 9
3805 SC Astronomy & Astrophysics
3806 GA ZK077
3807 UT ISI:000073282600013
3808 ER
3809 
3810 PT J
3811 AU Pu, DG
3812    Tian, WW
3813 TI A class of Broyden algorithms with revised search directions
3814 SO ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH
3815 DT Article
3816 DE variable metric algorithms; line search; convergence; convergence rate
3817 AB In this paper we discuss the convergence of the Broyden algorithms with
3818    revised search direction. We prove that the algorithms are globally
3819    convergent for continuously differentiable functions and the rate of
3820    convergence of the algorithms is one-step superlinear and n-step
3821    second-order for uniformly convex objective functions.
3822 C1 City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong.
3823    Shanghai Univ, Dept Math, Jiading, Peoples R China.
3824 CR BYRD RH, 1987, SIAM J NUMER ANAL, V24, P1171
3825    FLETCHER R, 1987, PRACTICAL METHODS OP, V1
3826    OREN SS, 1974, MANAGE SCI, V20, P845
3827    POWELL MJD, 1971, J I MATHS APPLICS, V7, P21
3828    POWELL MJD, 1976, SIAM AMS P, V6
3829    POWELL MJD, 1987, MATH PROGRAM, V38, P29
3830    PU D, 1989, ACTA MATH APPL SINIC, V13, P118
3831    PU D, 1989, CHINESE J OPERATIONS, V8, P53
3832    PU D, 1990, J ANN OPERATIONS RES, V24, P175
3833    PU D, 1992, ASIA PACIFIC J OPERA, V9, P207
3834    PU D, 1994, J COMPUTATIONAL MATH, V8, P366
3835    PU D, 1995, APPL MATH J CHINESE, V10, P313
3836    TIAN W, 1993, COMMUNICATION APPL M, V7, P50
3837 NR 13
3838 TC 3
3839 SN 0217-5959
3840 J9 ASIA PAC J OPER RES
3841 JI Asia Pac. J. Oper. Res.
3842 PD NOV
3843 PY 1997
3844 VL 14
3845 IS 2
3846 BP 93
3847 EP 109
3848 PG 17
3849 SC Operations Research & Management Science
3850 GA ZK325
3851 UT ISI:000073307800006
3852 ER
3853 
3854 PT J
3855 AU Liu, RH
3856    Tan, WH
3857    Xu, WC
3858    Zhang, JF
3859 TI A quantum mode theory of the micromaser
3860 SO CHINESE SCIENCE BULLETIN
3861 DT Article
3862 DE quantum mode; threshold condition
3863 ID LASERS
3864 AB Failure of the steady solution of the master equation was analysed. It
3865    was found that the state of sustained oscillation exists only when the
3866    ratio of photon decay rate gamma to injection late tau is satisfied.
3867    Based on this understanding, a quantum mode micromaser theory was
3868    developed. The threshold nu(th) and photon distribution for pi and 2 pi
3869    mode were calculated. The instability of quantum mode was analyzed as
3870    well.
3871 C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
3872    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
3873 RP Liu, RH, Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai
3874    201800, Peoples R China.
3875 CR BENKERT C, 1993, PHYS REV A, V47, P1564
3876    DAVIDOVICH L, 1992, PHYS REV A, V46, P1630
3877    FILIPOWICZ P, 1986, J OPT SOC AM B, V3, P906
3878    FILIPOWICZ P, 1986, PHYS REV A, V34, P3077
3879    GOLUBEV YM, 1984, ZH EKSP TEOR FIZ, V60, P234
3880    GUERRA ES, 1991, PHYS REV A, V44, P7785
3881    HAAK F, 1989, PHYS REV A, V40, P712
3882    TAN WH, 1994, PHYS LETT A, V190, P13
3883    TAN WH, 1995, OPT COMMUN, V115, P303
3884 NR 9
3885 TC 1
3886 SN 1001-6538
3887 J9 CHIN SCI BULL
3888 JI Chin. Sci. Bull.
3889 PD MAR
3890 PY 1998
3891 VL 43
3892 IS 5
3893 BP 425
3894 EP 430
3895 PG 6
3896 SC Multidisciplinary Sciences
3897 GA ZJ371
3898 UT ISI:000073207900018
3899 ER
3900 
3901 PT J
3902 AU Guo, XM
3903 TI The existence of solution to the finite elastodynamics with mixed
3904    boundary conditions
3905 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
3906 DT Article
3907 DE finite deformation; nonlinear constitutive; elastodynamics; existence
3908    of solution
3909 ID INITIAL-VALUE PROBLEM; INCOMPRESSIBLE BODIES
3910 AB In this paper the existence of solution to finite elastodynamics
3911    constrainted by mixed boundary conditions is derived when the
3912    hyperpotential and its gradient (for Green's strain) satisfy adequate
3913    conditions.
3914 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
3915 RP Guo, XM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
3916    200072, Peoples R China.
3917 CR ADAM RA, 1975, SOBOLEV SPACES
3918    BERGER MS, 1977, NONLINEARITY FUNCTIO
3919    CHEN C, 1982, J REINE ANGEW MATH, V337, P77
3920    DAFERMOS CM, 1985, ARCH RATION MECH AN, V87, P267
3921    EBIN DG, 1986, ARCH RATION MECH AN, V94, P15
3922    EBIN DG, 1992, ARCH RATION MECH AN, V120, P61
3923    GURTIN ME, 1981, INTRO CONTINUM MECH
3924    HUGHES TJR, 1977, ARCH RATIONAL MECH A, V63, P273
3925    HUGHES TJR, 1983, MATH FDN ELASTICITY
3926    KATO T, 1976, HYPERBOLICITY, P125
3927    LIONS JL, 1969, QUELQUES METHODES RE
3928 NR 11
3929 TC 0
3930 SN 0253-4827
3931 J9 APPL MATH MECH-ENGL ED
3932 JI Appl. Math. Mech.-Engl. Ed.
3933 PD JAN
3934 PY 1998
3935 VL 19
3936 IS 1
3937 BP 27
3938 EP 35
3939 PG 9
3940 SC Mathematics, Applied; Mechanics
3941 GA ZH202
3942 UT ISI:000073083100005
3943 ER
3944 
3945 PT J
3946 AU Ye, ZM
3947 TI The damage process zone characteristics at crack tip in concrete
3948 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
3949 DT Article
3950 DE concrete; crack tip; damage zone; nonlinear softening model
3951 AB This paper presents a comprehensive derivation of fracture process zone
3952    size which closely parallels similar work in fracture of metals and
3953    anisotropic solid, but is adapted to conrete. Some nonlinear mechanics
3954    models of concrete materials will be discussed by using uniaxial stress
3955    assumptions. For uniaxial stress assumption, energy model and fracture
3956    model will be presented for nonlinear softening models. Finally, we
3957    make a comparison with those models.
3958 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
3959 RP Ye, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
3960    Peoples R China.
3961 CR AYARI ML, 1988, THESIS U COLORADO
3962    BAZANT ZP, 1984, J ENG MECH-ASCE, V110, P518
3963    BAZANT ZP, 1985, POLI ANNIVERSARY VOL, P3335
3964    BAZANT ZP, 1986, APPL MECH REV, V39, P674
3965    HILLERBORG A, 1976, CEMENT CONCRETE RES, V6, P773
3966    LIEBOWITZ H, 1986, FRACTURE ADV TREATIS, V2
3967    SHAH SP, 1985, J ENG MECH-ASCE, V111, P275
3968    SWARTZ SE, 1982, P INT C FRACT MECH C
3969    YE ZM, 1995, INT J FRACTURE, V74, R3
3970 NR 9
3971 TC 0
3972 SN 0253-4827
3973 J9 APPL MATH MECH-ENGL ED
3974 JI Appl. Math. Mech.-Engl. Ed.
3975 PD JAN
3976 PY 1998
3977 VL 19
3978 IS 1
3979 BP 37
3980 EP 43
3981 PG 7
3982 SC Mathematics, Applied; Mechanics
3983 GA ZH202
3984 UT ISI:000073083100006
3985 ER
3986 
3987 PT J
3988 AU Chen, YX
3989    Wan, XJ
3990 TI Hydrogen effects on the mechanical properties of Ti-24Al-11Nb-3V-1Mo
3991    alloy
3992 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
3993 DT Article
3994 ID TITANIUM ALUMINIDE ALLOY; HYDRIDES; TI3AL
3995 AB The effects of hydrogen on the mechanical properties at room
3996    temperature of a Ti3Al based alloy Ti-24Al-11Nb-3V-1Mo have been
3997    investigated. The results show a parabolic rate relationship between
3998    the average hydrogen concentration of the alloy at constant temperature
3999    and charging time. The mechanical properties (ultimate bending strength
4000    and deflection) decrease with increasing hydrogen content in the alloy.
4001    The fractographic feature indicates that the decrease of the mechanical
4002    properties is due to the crack nucleation and propagation at the
4003    hydride Ti3AlH.
4004 C1 Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
4005 RP Chen, YX, Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
4006 CR CHU WY, 1992, ACTA METALL MATER, V40, P455
4007    CHU WY, 1992, METALL TRANS A, V23, P1299
4008    FLEISCHER RL, 1989, ANNU REV MATER SCI, V19, P231
4009    GAO M, 1990, SCRIPTA METALL MATER, V24, P2135
4010    MANOR E, 1989, SCRIPTA METALL, V23, P313
4011    RUDMAN PS, 1978, J LESS-COMMON MET, V58, P231
4012    SCHWARTZ DS, 1991, ACTA METALL MATER, V39, P2799
4013    SHIH DS, 1989, SCRIPTA METALL, V23, P973
4014    SUBRAHMANYAM J, 1988, J MATER SCI, V23, P1906
4015 NR 9
4016 TC 3
4017 SN 1005-0302
4018 J9 J MATER SCI TECHNOL
4019 JI J. Mater. Sci. Technol.
4020 PD MAR
4021 PY 1998
4022 VL 14
4023 IS 2
4024 BP 176
4025 EP 178
4026 PG 3
4027 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
4028    Engineering
4029 GA ZG171
4030 UT ISI:000072974000017
4031 ER
4032 
4033 PT J
4034 AU Guo, BY
4035    He, LP
4036 TI The fully discrete Legendre spectral approximation of two-dimensional
4037    unsteady incompressible fluid flow in stream function form
4038 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
4039 DT Article
4040 DE incompressible fluid flow in stream function form; fully discrete
4041    Legendre spectral scheme; convergence; numerical results
4042 ID EQUATIONS
4043 AB The initial-boundary value problem of two-dimensional incompressible
4044    fluid flow in stream function form is considered. A fully discrete
4045    Legendre spectral scheme is proposed. By a series of a priori
4046    estimations and a compactness argument, it is proved that the numerical
4047    solution converges to the weak solution of the original problem. If the
4048    genuine solution is suitably smooth, then this approach provides higher
4049    accuracy. The numerical results show the advantages of this method. The
4050    techniques used in this paper are also applicable to other related
4051    problems with derivatives of high order in space.
4052 C1 City Univ Hong Kong, Dept Math, Kowloon, Hong Kong.
4053    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
4054 RP Guo, BY, City Univ Hong Kong, Dept Math, Kowloon, Hong Kong.
4055 EM maguo@cityu.edu.hk
4056 CR ADAMS RA, 1975, SOBOLEV SPACE
4057    BERNARDI C, 1992, MATH COMPUT, V59, P63
4058    CANTO C, 1982, MATH COMPUT, V38, P67
4059    CANUTO C, 1988, SPECTRAL METHODS FLU
4060    CHORIN AJ, 1967, J COMPUT PHYS, V2, P12
4061    GIRAULT V, 1979, LECT NOTES MATH, V794
4062    GOTTLIEB D, 1977, CBMS NSF REGIONAL C, V26
4063    GRESHO PM, 1987, INT J NUMER METH FL, V7, P1111
4064    GUO BY, 1988, FINITE DIFFERENT MET
4065    GUO BY, 1997, J MATH ANAL APPL, V20, P1
4066    KUO PY, 1977, SCI SINICA, V20, P287
4067    LIONS JL, 1968, PROBLEMES AUX LIMITE, V1
4068    LIONS JL, 1969, QUELQUES METHODES RE
4069    LIONS JL, 1970, NUMERICAL SOLUTION F, P11
4070    ODEN JT, 1974, FINITE ELEMENT METHO
4071    ROACH PJ, 1976, COMPUTATIONAL FLUID
4072    SHEN J, 1992, ADV COMPUTER METHODS, V7, P658
4073    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
4074    TEMAM R, 1977, NAVIER STOKES EQUATI
4075 NR 19
4076 TC 5
4077 SN 0036-1429
4078 J9 SIAM J NUMER ANAL
4079 JI SIAM J. Numer. Anal.
4080 PD FEB
4081 PY 1998
4082 VL 35
4083 IS 1
4084 BP 146
4085 EP 176
4086 PG 31
4087 SC Mathematics, Applied
4088 GA ZC436
4089 UT ISI:000072578000008
4090 ER
4091 
4092 PT J
4093 AU Guo, BQ
4094    Cao, WM
4095 TI An additive Schwarz method for the h-p version of the finite element
4096    method in three dimensions
4097 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
4098 DT Article
4099 DE additive Schwarz method; the h-p version; condition number; iterative
4100    and parallel solver
4101 ID 3 DIMENSIONS; ELLIPTIC PROBLEMS; DOMAIN DECOMPOSITION; 2 DIMENSIONS;
4102    APPROXIMATION; PRECONDITIONER; POLYNOMIALS; SPACES
4103 AB In this paper, we study the additive Schwarz method for the h-p version
4104    of the finite element method in three dimensions. The main idea is to
4105    treat separately the h-version (linear) components and the p-version
4106    (high-order) components by a vertex-based method. It can also be viewed
4107    as a three-level method with the level being the linear finite element
4108    approximation on the coarse mesh, the linear finite element
4109    approximation on the fine mesh, and the high-order finite element
4110    approximation on the fine mesh, respectively. The resulting algorithm
4111    can be implemented in parallel on the subdomain level for the h-version
4112    components and on the element level for the p-version components. The
4113    condition number is of order
4114    [GRAPHICS]
4115    where H-i stands for the diameter of the subdomain Omega(i), h(i) is
4116    the diameter of the elements in Omega(i), and p(i) is the maximum of
4117    the polynomial degrees used in Omega(i).
4118 C1 Univ Manitoba, Dept Appl Math, Winnipeg, MB R3T 2N2, Canada.
4119    Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
4120 RP Guo, BQ, Univ Manitoba, Dept Appl Math, Winnipeg, MB R3T 2N2, Canada.
4121 CR AINSWORTH M, 1996, SIAM J NUMER ANAL, V33, P1358
4122    BABUSKA I, 1991, SIAM J NUMER ANAL, V28, P624
4123    BABUSKA I, 1996, COMPUT METHOD APPL M, V133, P319
4124    BABUSKA I, 1996, IN PRESS H P VERSION
4125    BRAMBLE JH, 1989, MATH COMPUT, V53, P1
4126    BRAMBLE JH, 1991, MATH COMPUT, V56, P463
4127    CAI XC, 1993, NONESTED COARSE SPAC
4128    CANUTO C, 1982, MATH COMPUT, V38, P67
4129    CASARIN MA, 1995, 705 NEW YORK U COUR
4130    CHAN TF, 1994, 948 CAM UCLA DEP MAT
4131    CIARLET PG, 1978, FINITE ELEMENT METHO
4132    CLEMENT P, 1975, RAIRO ANAL NUMER, V9, P77
4133    DRYJA M, 1988, P 1 INT S DOM DEC ME
4134    DRYJA M, 1994, SIAM J NUMER ANAL, V31, P1662
4135    DRYJA M, 1995, COMMUN PUR APPL MATH, V48, P121
4136    DRYJA M, 1996, NUMER MATH, V72, P313
4137    GUO B, 1996, HOUSTON J MATH, P487
4138    GUO B, 1997, IN PRESS REGULARIT 3
4139    GUO BQ, 1994, BOUNDARY VALUE PROBL, P101
4140    GUO BQ, 1996, NUMER MATH, V75, P59
4141    GUO BQ, 1997, P ROY SOC EDINB A 1, V127, P77
4142    GUO BQ, 1997, SIAM J SCI COMPUT, V18, P1267
4143    LIONS JL, 1972, NONHOMOGENEOUS BOUND, V1
4144    MADAY Y, 1989, CR ACAD SCI I-MATH, V309, P463
4145    MANDEL J, 1990, INT J NUMER METH ENG, V29, P1095
4146    ODEN JT, 1994, CONT MATH, V180, P295
4147    PAVARINO LF, 1994, 663 NEW YORK U DEP C
4148    PAVARINO LF, 1996, SIAM J NUMER ANAL, V33, P1303
4149    SZABO B, 1990, FINITE ELEMENT ANAL
4150    WIDLUND OB, 1988, P 1 S DOM DEC METH P
4151    WIDLUND OB, 1995, COMMUNICATION
4152 NR 31
4153 TC 15
4154 SN 0036-1429
4155 J9 SIAM J NUMER ANAL
4156 JI SIAM J. Numer. Anal.
4157 PD APR
4158 PY 1998
4159 VL 35
4160 IS 2
4161 BP 632
4162 EP 654
4163 PG 23
4164 SC Mathematics, Applied
4165 GA ZC449
4166 UT ISI:000072580500013
4167 ER
4168 
4169 PT J
4170 AU Cao, WM
4171    He, GQ
4172 TI Rigorous analysis of an implicit spectral method for KdV equation
4173 SO ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING
4174 DT Article
4175 DE KdV equation; spectral method; implicit scheme; existence; convergence;
4176    iteration method
4177 ID WAVE
4178 AB A Fourier spectral method in combination with the standard midpoint
4179    Euler temporal discretization for the KdV equation is considered. The
4180    global existence and convergence of the numerical solution are
4181    investigated rigorously. An iteration method for solving the nonlinear
4182    algebraic systems at each time level is also proposed, with its
4183    compression factor strictly estimated.
4184 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
4185 RP He, GQ, Shanghai Univ, Dept Math, Jiading Campus, Shanghai 201800,
4186    Peoples R China.
4187 CR ADAMS RA, 1975, SOBOLEV SPACES
4188    BENYU G, 1978, CHINESE SCI BULL, V23, P592
4189    BENYU G, 1985, ACTA MATH SINICA, V28, P1
4190    FORNBERG B, 1978, PHILOS T ROY SOC A, V289, P373
4191    FRUTOS JD, 1992, J COMPUT PHYS, V103, P160
4192    HE GQ, 1990, COMM APPL MATH COMP, V4, P51
4193    HE GQ, 1993, COMM APPL MATH COMPU, V7, P41
4194    HE GQ, 1993, J SHANGHAI U SCI TEC, V16, P111
4195    JEEFREY A, 1972, SIAM REV, V14, P582
4196    QUARTERONI A, 1984, JAPAN J APPL MATH, V1, P173
4197    TAHA TR, 1984, J COMPUT PHYS, V55, P231
4198    WINEBERG SB, 1991, J COMPUT PHYS, V97, P311
4199    ZABUSKY NJ, 1965, PHYS REV LETT, V15, P240
4200 NR 13
4201 TC 0
4202 SN 0377-9211
4203 J9 ARAB J SCI ENG
4204 JI Arab. J. Sci. Eng.
4205 PD DEC
4206 PY 1997
4207 VL 22
4208 IS 2C
4209 BP 159
4210 EP 167
4211 PG 9
4212 SC Multidisciplinary Sciences
4213 GA ZC497
4214 UT ISI:000072586000014
4215 ER
4216 
4217 PT J
4218 AU Zhang, JC
4219    Zhang, YH
4220    Yang, YF
4221    Sen, Y
4222    Wu, WH
4223 TI Modification of surface properties of PbSe by ion implantation
4224 SO RADIATION PHYSICS AND CHEMISTRY
4225 DT Article
4226 ID PBTE
4227 AB P-type PbSe was implanted by phosphorous ion (P+) with incident energy
4228    of E-0 = 200 keV and doses of D-s = 1 x 10(14), 5 x 10(14) x 10(15)
4229    ions cm(-2), respectively. R-p, Delta R-p and the depth of the junction
4230    which was formed on the surface of the implanted (Pi) PbSe were
4231    measured and compared with theoretical calculation by means of
4232    modification of LSS theory. The electrical parameters of the pn
4233    junctions in PbSe were also discussed. PbSe photodiode implanted by P+
4234    ion with performance was: ideal factor of the diode m = 2.31, diffusion
4235    length L = 51.4 mu m, diffusion coefficient D = 26.52 cm(2) s(-1),
4236    non-equilibrium minority carrier lifetime tau = 9.96 x 10(-7) s. (C)
4237    1998 Elsevier Science Ltd. All rights reserved.
4238 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
4239 RP Zhang, JC, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R
4240    China.
4241 CR BAN Y, 1970, J APPL PHYS, V41, P2817
4242    CARTER G, 1976, ION IMPLANTATION SEM, P42
4243    COLLOT P, 1994, SEMICONDUCTOR SCI TE, V9, P1135
4244    DALVEN R, 1969, INFRARED PHYS, V9, P141
4245    DONNELLY JP, 1973, PHYSICS 4 6 COMPOUND, P47
4246    GIBBONS JN, 1973, PROJECTED RANGE STAT, P78
4247    IGAKI K, 1963, J PHYSICS SOC JAPAN, V18, P143
4248    KOMAROV FF, 1991, VACUUM TECHNIQUE TEC, V1, P28
4249    LINDHARD J, 1963, MAT FYS MEDD K DAN V, V33, P14
4250    MARCHETTI S, 1993, INFRARED PHYS, V34, P137
4251    NORR MK, 1962, J ELECTROCHEM SOC, V109, P433
4252    SHI Z, 1995, APPL PHYS LETT, V66, P2537
4253    STOBER D, 1992, J CRYST GROWTH, V121, P656
4254    WANG DN, 1980, ACTA PHYS SINICA, V29, P14
4255    WANG HT, 1992, TECHNICAL PRINCIPLES, CH3
4256    ZHANG JC, 1989, P ICSICT 89, P53
4257    ZLOMANOV VP, 1974, J CRYST GROWTH, V26, P261
4258 NR 17
4259 TC 0
4260 J9 RADIAT PHYS CHEM
4261 JI Radiat. Phys. Chem.
4262 PD FEB
4263 PY 1998
4264 VL 51
4265 IS 2
4266 BP 129
4267 EP 133
4268 PG 5
4269 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
4270    Science & Technology
4271 GA ZB067
4272 UT ISI:000072431700003
4273 ER
4274 
4275 PT J
4276 AU Min-Ning, J
4277 TI Phase retardation measurement of single-mode optical fibers
4278 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
4279 DT Article
4280 DE optical fibers; single-mode fibers; phase retardation measurements
4281 AB Two new methods for measuring the phase retardation R of a "nominal"
4282    single-mode optical fiber are demonstrated. One of them is based on the
4283    polarization magnitude measure; the other is based on the polarization
4284    direction measure. Their effectiveness is confirmed by experiments. (C)
4285    1998 John Wiley & Sons, Inc.
4286 C1 Shanghai Univ Sci & Technol, Inst Fiber Opt, Shanghai 201800, Peoples R China.
4287 RP Min-Ning, J, Shanghai Univ Sci & Technol, Inst Fiber Opt, Shanghai
4288    201800, Peoples R China.
4289 CR JONES RC, 1941, J OPT SOC AM, V31, P488
4290    JONES RC, 1948, J OPT SOC AM, V38, P671
4291    KAPRON FP, 1972, IEEE J QUANTUM ELECT, V8
4292 NR 3
4293 TC 1
4294 SN 0895-2477
4295 J9 MICROWAVE OPT TECHNOL LETT
4296 JI Microw. Opt. Technol. Lett.
4297 PD APR 5
4298 PY 1998
4299 VL 17
4300 IS 5
4301 BP 303
4302 EP 306
4303 PG 4
4304 SC Engineering, Electrical & Electronic; Optics
4305 GA ZB601
4306 UT ISI:000072488900008
4307 ER
4308 
4309 PT J
4310 AU Wang, ZH
4311 TI Free-space mode approximation for radiation modes of a slab waveguide
4312    and its application
4313 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
4314 DT Article
4315 DE slab waveguide; radiation modes
4316 ID WAVE-GUIDES; BRANCHES
4317 AB The symmetric slab waveguide as an example, we show that radiation
4318    modes of a weakly guiding planar optical waveguide can be approximated
4319    by the free-space modes; their field expressions and normalization
4320    constants are simple and physically understandable, and can be obtained
4321    directly without any calculation. By applying this approximation, the
4322    far-field and radiation loss calculations caused by random wall
4323    imperfections have been greatly simplified. (C) 1998 John Wiley & Sons,
4324    Inc.
4325 C1 Shanghai Univ Sci & Technol, Wave Sci Lab, Shanghai 201800, Peoples R China.
4326 RP Wang, ZH, Shanghai Univ Sci & Technol, Wave Sci Lab, Shanghai 201800,
4327    Peoples R China.
4328 CR BENECH P, 1992, OPT COMMUN, V88, P96
4329    CHU FS, 1991, OPT LETT, V16, P309
4330    LACEY JPR, 1990, IEE PROC-J, V137, P282
4331    LEE SL, 1994, J LIGHTWAVE TECHNOL, V12, P2073
4332    MARCUSE D, 1974, THEORY DIELECTIC OPT
4333    MARCUSE D, 1982, LIGHT TRANSMISSION O
4334    MARCUSE D, 1990, IEEE J QUANTUM ELECT, V26, P675
4335    ROZZI TE, 1978, IEEE T MICROW THEORY, V26, P738
4336    SNYDER AW, 1983, OPTICAL WAVEGUIDE TH
4337    YAP D, 1984, APPL OPTICS, V23, P2991
4338 NR 10
4339 TC 0
4340 SN 0895-2477
4341 J9 MICROWAVE OPT TECHNOL LETT
4342 JI Microw. Opt. Technol. Lett.
4343 PD APR 5
4344 PY 1998
4345 VL 17
4346 IS 5
4347 BP 313
4348 EP 315
4349 PG 3
4350 SC Engineering, Electrical & Electronic; Optics
4351 GA ZB601
4352 UT ISI:000072488900011
4353 ER
4354 
4355 PT J
4356 AU Bing, ZX
4357    Chang, JG
4358    Kai, T
4359    Lun, XJ
4360    Zhong, DW
4361    Di, XK
4362 TI A sub-regular solution model used to predict the component activities
4363    of quaternary systems
4364 SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY
4365 DT Article
4366 AB A sub-regular solution model used to predict the component activities
4367    in a homogeneous region of a quaternary system was developed in
4368    Shanghai Enhanced Lab of Ferrometallurgy. It was designated as
4369    SELF-SReM4. The component activities were described with the
4370    polynomials of the content variables, in which a group of A(jkl)
4371    parameters involves. It was evaluated along with the reliable boundary
4372    conditions. The deduction of the model and the procedure of the
4373    evaluation of A(jkl), parameters were introduced in detail in this
4374    paper.
4375 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
4376 RP Bing, ZX, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
4377    200072, Peoples R China.
4378 CR CHANG JG, 1992, ACTA METALLURGICAL B, V5, P476
4379    CHANG WZ, 1986, CHINESE SCI A, V8, P862
4380    CHOU KC, 1994, CALPHAD, V23
4381    DARKEN LS, 1950, J AM CHEM SOC, V72, P2909
4382    PELTON AD, 1969, CAN J CHEM, V47, P2283
4383 NR 5
4384 TC 0
4385 SN 0364-5916
4386 J9 CALPHAD-COMPUT COUP PHASE DIA
4387 JI Calphad-Comput. Coupling Ph. Diagrams Thermochem.
4388 PD SEP
4389 PY 1997
4390 VL 21
4391 IS 3
4392 BP 301
4393 EP 309
4394 PG 9
4395 SC Chemistry, Physical; Thermodynamics
4396 GA ZA668
4397 UT ISI:000072389100003
4398 ER
4399 
4400 PT J
4401 AU Bing, ZX
4402    Chang, JG
4403    Di, XK
4404 TI Prediction of component activities of quaternary systems using the
4405    sub-regular solution model
4406 SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY
4407 DT Article
4408 ID MELTS
4409 AB A sub-regular solution model used to predict the component activities
4410    in a homogeneous region of a quaternary system was developed in
4411    Shanghai Enhanced Lab of Ferrometallurgy. It was designated as
4412    SELF-SReM4. The previous paper elucidated the model and the evaluating
4413    procedures of A(jkl) parameters(1). In this paper, SELF-SReM4 is used
4414    to predict the component activities for the systems of C-Mn-Fe-Si,
4415    C-Cr-Fe-Ni, C-Cr-Fe-P and MnO-SiO2-Al2O3-CaO.
4416 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
4417 RP Bing, ZX, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
4418    200072, Peoples R China.
4419 CR ABRAHAM KP, 1960, J IRON STEEL I, V196, P82
4420    BAYYA S, 1993, ISIJ INT, P17
4421    BING ZX, IN PRESS
4422    CHANG JG, 1992, ACTA METALLURGICAL B, V5, P476
4423    CHIPMAN J, 1952, T AM SOC MET, V44, P1215
4424    CHIPMAN J, 1980, T JIK, V21, P27
4425    DARKEN LS, 1967, T METALL SOC AIME, V239, P90
4426    DRESLER W, 1990, I SM, P95
4427    FROHBERG MG, 1968, ARCH EISENHUTTENWES, V39, P587
4428    GEE R, 1978, SCAND J METALL, V7, P38
4429    GILBY SW, 1969, T METALL SOC AIME, V245, P1749
4430    HADRYS HG, 1970, METALL T, V1, P1867
4431    HEALY GW, 1987, I SM, P51
4432    HULTGREN R, 1973, SELECTED VALUES THER, P487
4433    KATSNELSON A, 1993, ISIJ INT, V33, P1045
4434    KATSNELSON AM, 1993, STEEL RES, V64, P197
4435    KUBASCHEWSKI O, 1979, METALLURGICAL THERMO
4436    MEHTA SR, 1965, J IRON STEEL I, V203, P524
4437    REIN RH, 1965, J CHIPMAN, P415
4438    RISBUD SH, 1977, J AM CERAM SOC, V60, P418
4439    SCHURMANN E, 1969, GIESSEREI FORSCH, V21, P29
4440    SHARMA RA, 1961, J IRON ST I, V198, P386
4441    SHARMA RA, 1965, T AIME, P1586
4442    TANAKA A, 1979, T JIM, V20, P516
4443    TURKGOGAN ET, 1956, JISI, P69
4444    TUSET JK, 1970, 340358 SINTEF
4445    WARREN GF, 1974, INFACON, V1, P175
4446    YAMADA A, 1990, TETSU TO HAGANE, V76, P2137
4447    ZHONG DW, 1993, THESIS TRONDHEIM U N
4448 NR 29
4449 TC 0
4450 SN 0364-5916
4451 J9 CALPHAD-COMPUT COUP PHASE DIA
4452 JI Calphad-Comput. Coupling Ph. Diagrams Thermochem.
4453 PD SEP
4454 PY 1997
4455 VL 21
4456 IS 3
4457 BP 311
4458 EP 320
4459 PG 10
4460 SC Chemistry, Physical; Thermodynamics
4461 GA ZA668
4462 UT ISI:000072389100004
4463 ER
4464 
4465 PT J
4466 AU Li, L
4467    Hsu, TY
4468 TI Gibbs free energy evaluation of the fcc(gamma) and hcp(epsilon) phases
4469    in Fe-Mn-Si alloys
4470 SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY
4471 DT Article
4472 ID SHAPE MEMORY ALLOYS; TRANSFORMATION; SYSTEM
4473 AB The Gibbs free energy as a function of temperature of the fcc(gamma)
4474    and hcp(epsilon) phases in the Fe-Mn-Si system is evaluated by the
4475    application of the general model for predicting thermodynamic
4476    properties for ternary systems from binary ones, suggested by Chou and
4477    by the utilization of the available data from binary Fe-Mn, Fe-Si and
4478    Mn-Si systems and the SGTE DATA given by Dinsdale. The calculated
4479    result seems reasonable as compared with the experimental data.
4480 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
4481    Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China.
4482 RP Li, L, Shanghai Univ, Shanghai 200072, Peoples R China.
4483 CR *SHANGH I MECH ENG, 1984, APPL FORTR PROGR, P29
4484    ANSARA I, 1979, INT METAL REV, V1, P20
4485    CHOU KC, 1995, CALPHAD, V19, P315
4486    DINSDALE AT, 1991, CALPHAD, V15, P317
4487    DONNER P, 1989, MARTENSITIC TRANSFOR, P267
4488    FORSBERG A, 1993, J PHASE EQUILIB, V14, P354
4489    GHOSH G, 1989, MRS INT M ADV MAT MA, P9
4490    HILLERT M, 1978, CALPHAD, V2, P227
4491    HILLERT M, 1980, CALPHAD, V4, P1
4492    HUANG WM, 1989, CALPHAD, V13, P243
4493    INDEN G, 1976, PROJ M CALPHAD 5 JUN
4494    LACAZE J, 1991, METALL TRANS A, V22, P2211
4495    MURAKAMI M, 1987, P INT C MARTENS TRAN, P985
4496    OTSUKA H, 1990, ISIJ INT, V30, P674
4497    SADE M, 1990, J MATER SCI LETT, V9, P112
4498    SATO A, 1982, ACTA METALL, V30, P1177
4499    TIBALLS JE, 1991, 8902215MNSI SI NORW
4500 NR 17
4501 TC 12
4502 SN 0364-5916
4503 J9 CALPHAD-COMPUT COUP PHASE DIA
4504 JI Calphad-Comput. Coupling Ph. Diagrams Thermochem.
4505 PD SEP
4506 PY 1997
4507 VL 21
4508 IS 3
4509 BP 443
4510 EP 448
4511 PG 6
4512 SC Chemistry, Physical; Thermodynamics
4513 GA ZA668
4514 UT ISI:000072389100016
4515 ER
4516 
4517 PT J
4518 AU Yang, X
4519    Cheng, CJ
4520 TI Some identity relations between plane problems for visco- and elasticity
4521 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
4522 DT Article
4523 DE viscoelasticity; plane problem; Airy stress function; identity
4524    relation; integral constitutive relation
4525 AB In this paper, the boundary value problems of plane problems with a
4526    simply- or multiply-connected domain for isotropic linear
4527    visco-elasticity are first established by terms of Airy stress function
4528    F(chi(a) t). Secondly, some identity relations between displacements
4529    and stresses for plane problems of visco- and elasticity are discussed
4530    in detail and some meaningful conclusions are obtained. As an example,
4531    the deformation response for viscoelastic plate with a small circular
4532    hole at the center is analyzed under a uniaxial uniform extension.
4533 C1 Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
4534    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
4535 RP Yang, X, Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
4536 CR CHEN CJ, 1995, THEORY ELASTICITY
4537    CHRISTENSEN RM, 1982, THEORY VISCOELASTICI
4538    HUANG KZ, 1986, ANAL TENSOR
4539    MILLER MK, 1966, SIAM J NUMER ANAL, V3, P624
4540    YANG TQ, 1984, ASME 1984 PVP C
4541    YANG TQ, 1990, THEORY VISCOELASTICI
4542 NR 6
4543 TC 0
4544 SN 0253-4827
4545 J9 APPL MATH MECH-ENGL ED
4546 JI Appl. Math. Mech.-Engl. Ed.
4547 PD DEC
4548 PY 1997
4549 VL 18
4550 IS 12
4551 BP 1159
4552 EP 1167
4553 PG 9
4554 SC Mathematics, Applied; Mechanics
4555 GA ZB193
4556 UT ISI:000072445700004
4557 ER
4558 
4559 PT J
4560 AU Cheng, XY
4561    Wan, XJ
4562    Guo, JT
4563    Liu, CT
4564 TI Effect of Zr and B on environmental embrittlement in Ni(3)AI alloys
4565 SO SCRIPTA MATERIALIA
4566 DT Article
4567 ID POLYCRYSTALLINE NI3AL; BORON; SEGREGATION
4568 C1 Shanghai Univ, Inst Mat Res, Shanghai, Peoples R China.
4569    Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA.
4570    Acad Sinica, Inst Met Res, Shenyang, Peoples R China.
4571 RP Cheng, XY, Shanghai Univ, Inst Mat Res, Shanghai, Peoples R China.
4572 CR AOKI K, 1979, NIPPON KINZOKU GAKKA, V43, P1190
4573    CHOUDHURY A, 1992, ACTA METALL MATER, V40, P57
4574    CHUANG TH, 1991, MAT SCI ENG A-STRUCT, V141, P169
4575    GEORGE EP, 1992, SCRIPTA METALL MATER, V27, P365
4576    GEORGE EP, 1995, MATER RES SOC S P, V364, P1131
4577    GEORGE EP, 1996, ACTA MATER, V44, P1757
4578    GU YF, 1994, THESIS SHANGHAI JIAO
4579    LIU CT, 1985, ACTA METALL, V33, P213
4580    LIU CT, 1992, NATO ASI SER, V213, P321
4581    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
4582    WAN XJ, 1994, SCRIPTA METALL MATER, V31, P677
4583    XIAOJING W, 1995, ACTA METALL SINICA, V8, P299
4584    ZHEN Z, 1992, ACTA METALL SINICA, V28, A202
4585 NR 13
4586 TC 10
4587 SN 1359-6462
4588 J9 SCRIPTA MATER
4589 JI Scr. Mater.
4590 PD FEB 13
4591 PY 1998
4592 VL 38
4593 IS 6
4594 BP 959
4595 EP 964
4596 PG 6
4597 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
4598    Engineering
4599 GA ZA001
4600 UT ISI:000072317800015
4601 ER
4602 
4603 PT J
4604 AU Wei, MM
4605    Zhuang, L
4606 TI Preparation of SrTiO3-based ceramic material for boundary layer
4607    capacitor by vacuum sintering method
4608 SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY
4609 DT Article
4610 ID POLYCRYSTALLINE
4611 AB Applying the vacuum sintering method instead of the sintering in
4612    reducing atmosphere (N-2+H-2) to achieve semiconduction for ceramic
4613    material of SrTiO3 with donor Nb2O5 has been researched preliminarily.
4614    The vacuum sintering method can produce n-type semiconductor, strontium
4615    titanate based ceramics, which is fired at 1350 degrees C for 3 h under
4616    a vacuum condition of 5 Pa, with resistivity about 2 Omega.cm. The
4617    process under vacuum condition allows promotion of the sintering as
4618    well as grain growth when compared with the process in atmosphere
4619    condition. The vacuum sintering can lower the sintering temperature by
4620    about 100 degrees C, and raise the density of ceramics and the apparent
4621    permittivity of GBLC of SrTiO3-based ceramics. The above mentioned
4622    advantages are the key factors of improving the properties of GBLC.
4623 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
4624    Shanghai Univ, Sch Technol Phys, Shanghai 201800, Peoples R China.
4625 RP Wei, MM, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
4626    China.
4627 CR BURN I, 1982, J MATER SCI, V17, P3510
4628    SHIRASAKI S, 1980, J CHEM PHYS, V73, P4640
4629    WEI MM, 1992, FERROELECTRICS, V133, P301
4630    ZHONG JP, 1987, J INORG MATER, V2, P22
4631 NR 4
4632 TC 0
4633 SN 0374-4884
4634 J9 J KOREAN PHYS SOC
4635 JI J. Korean Phys. Soc.
4636 PD FEB
4637 PY 1998
4638 VL 32
4639 PN Part 3 Suppl. S
4640 BP S1180
4641 EP S1182
4642 PG 3
4643 SC Physics, Multidisciplinary
4644 GA YZ022
4645 UT ISI:000072212300093
4646 ER
4647 
4648 PT J
4649 AU Cheng, DH
4650    Xu, WY
4651    Hua, LQ
4652    Zhang, ZY
4653    Wan, XJ
4654 TI Electrochemical preparation & mechanical properties of amorphous
4655    nickel-SiC composites
4656 SO PLATING AND SURFACE FINISHING
4657 DT Article
4658 ID ALLOYS
4659 AB In this study, an attempt was made to incorporate SiC particles into an
4660    amorphous nickel-phosphorus alloy matrix by electrodeposition. The bath
4661    composition and operating conditions of electrodeposited Ni-P-SiC
4662    composite coatings were studied and the structure and mechanical
4663    properties of the deposits were determined.
4664 C1 Shanghai Univ, Dept Chem Engn, Shanghai 200072, Peoples R China.
4665    Shanghai Univ, Met Res Ctr, Shanghai 200072, Peoples R China.
4666 RP Cheng, DH, Shanghai Univ, Dept Chem Engn, 149 Yanchang Rd, Shanghai
4667    200072, Peoples R China.
4668 CR CARGILL GS, 1970, J APPL PHYS, V41, P12
4669    GROUSE M, 1980, MET FINISH, V78, P31
4670    MUKHERJEE D, 1989, B ELECTROCHEM, V5, P656
4671    RAJAGOPAL C, 1984, MET FINISH, V82, P59
4672 NR 4
4673 TC 7
4674 SN 0360-3164
4675 J9 PLAT SURF FINISH
4676 JI Plat. Surf. Finish.
4677 PD FEB
4678 PY 1998
4679 VL 85
4680 IS 2
4681 BP 61
4682 EP 64
4683 PG 4
4684 SC Materials Science, Coatings & Films; Metallurgy & Metallurgical
4685    Engineering
4686 GA YY160
4687 UT ISI:000072119300021
4688 ER
4689 
4690 PT J
4691 AU Liu, GL
4692 TI Variable-domain variational finite element method: A general approach
4693    to free/moving boundary problems in heat and fluid flow
4694 SO NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
4695 DT Article
4696 DE finite element method; variational principle; free & moving boundary
4697    problems; fluid dynamics; heat transfer
4698 ID INCOMPRESSIBLE ROTOR FLOW; HYBRID PROBLEMS; POTENTIAL FLOW; PRINCIPLES;
4699    SHOCKS
4700 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
4701 RP Liu, GL, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
4702    200072, Peoples R China.
4703 CR 1990, AGARDCP463
4704    CRANK J, 1984, FREE MOVING BOUNDARY
4705    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
4706    GUO JH, 1993, P 1 INT C AER BEIJ, P75
4707    LIU GI, 1986, J ENG GAS TURB POWER, V108, P254
4708    LIU GL, 1987, NUM METHODS THERMAL, V5, P284
4709    LIU GL, 1990, P 1 INT S AER INT FL, P128
4710    LIU GL, 1992, ACTA MECH, V95, P117
4711    LIU GL, 1993, INT J TURBO JET ENGI, V10, P273
4712    LIU GL, 1993, P 2 INT S AER INT FL, V2, P355
4713    LIU GL, 1993, P 2 INT S AER INT FL, V2, P361
4714    LIU GL, 1995, ACTA MECH, V108, P207
4715    LIU GL, 1995, INVERSE PROBL ENG, V2, P1
4716    LIU GL, 1996, 2 INT C HYDR DEC 16
4717    YAN S, 1994, INT J TURBO JET ENG, V11, P71
4718 NR 15
4719 TC 5
4720 SN 0362-546X
4721 J9 NONLINEAR ANAL-THEOR METH APP
4722 JI Nonlinear Anal.-Theory Methods Appl.
4723 PD DEC
4724 PY 1997
4725 VL 30
4726 IS 8
4727 BP 5229
4728 EP 5239
4729 PG 11
4730 SC Mathematics, Applied; Mathematics
4731 GA YX561
4732 UT ISI:000072052900064
4733 ER
4734 
4735 PT J
4736 AU Xueming, MA
4737    Gang, JI
4738    Ling, Z
4739    Yuanda, D
4740 TI Structure and properties of bulk nano-structured WC-CO alloy by
4741    mechanical alloying
4742 SO JOURNAL OF ALLOYS AND COMPOUNDS
4743 DT Article
4744 DE nanocrystalline; WC-Co; mechanical alloying
4745 AB Mixtures of elemental powders of nominal composition WC-6wt% Co and
4746    WC-6wt% Co-1wt% VC were prepared using 99.5% purity tungsten, graphite,
4747    cobalt and vanadium powders with particle sizes smaller than 75 mu m.
4748    Mechanical alloying (MA) was performed in a QM-1 planetary ball mill.
4749    The structural evolution and the crystallite size changes of the
4750    powders during MA were monitored by X-ray diffraction. The results show
4751    that cemented carbides of WC-Co powder with crystalline sizes of about
4752    10 nm were directly synthesized from elemental powders by mechanical
4753    alloying. Cold compacting was carried our at a pressure of 800 MPa
4754    using a manual uniaxial press with carbide insert dies. The hardness
4755    and sintered density of sintered samples were measured. The effects of
4756    small VC additions on the grain size, density and hardness of sintered
4757    samples were also investigated. (C) 1998 Elsevier Science S.A.
4758 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
4759 RP Xueming, MA, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072,
4760    Peoples R China.
4761 CR GLEITER H, 1984, Z METALLKD, V75, P263
4762    SHINGU PH, 1988, T JIM S, V29, P3
4763    XUEMING MA, 1996, J ALLOY COMPD, V245, L30
4764    YUANZHENG Y, 1992, CHINESE PHYS LETT, V5, P266
4765    YUANZHENG Y, 1994, CHINESE SCI BULL, V17, P1626
4766 NR 5
4767 TC 5
4768 SN 0925-8388
4769 J9 J ALLOYS COMPOUNDS
4770 JI J. Alloy. Compd.
4771 PD JAN 9
4772 PY 1998
4773 VL 264
4774 IS 1-2
4775 BP 267
4776 EP 270
4777 PG 4
4778 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
4779    Metallurgical Engineering
4780 GA YX365
4781 UT ISI:000072032900050
4782 ER
4783 
4784 PT J
4785 AU Zhao, XH
4786    Chen, WF
4787 TI Effective elastic moduli of concrete with interface layer
4788 SO COMPUTERS & STRUCTURES
4789 DT Article
4790 DE concrete; effective elastic moduli; engineering mechanics; interface
4791    layer; microstructure; stress analysis
4792 ID CEMENT PASTE; COMPOSITES; MORTAR
4793 AB In this paper, the effective elastic moduli E* and mu* of concrete are
4794    obtained from the analytical solution of a two-dimensional
4795    microstructural model, and the relationships between E*, mu* and the
4796    elastic moduli of each constituent of concrete are studied. Engineering
4797    formulas of the effective elastic :moduli on the basis of engineering
4798    mechanics are also derived and their advantages and limitations are
4799    assessed. The variation of E* and mu* values with the basic elastic
4800    moduli E-1, E-2 and E-3 of sand (or aggregate), interface and cement
4801    paste is given. It is found that the E* and mu* values are affected
4802    significantly by the interface layer. The results provide a deeper
4803    understanding of the influences of each constituent of the
4804    microstructure on the overall behavior of concrete, and an analytical
4805    relationship between the nonlinear behavior of concrete and the
4806    properties of its constituent. They are also helpful for developing new
4807    high-strength concrete materials with an improved strength and
4808    stiffness. (C) 1997 Elsevier Science Ltd.
4809 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
4810    Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA.
4811 RP Zhao, XH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
4812    200072, Peoples R China.
4813 CR BENVENISTE Y, 1989, MECH MATER, V7, P305
4814    CHEN WF, 1994, CONCRETE PLASTICITY, P146
4815    CHRISTENSEN RM, 1979, J MECH PHYS SOLIDS, V27, P315
4816    CLYNE TW, 1993, INTRO METAL MATRIX C
4817    COHEN MD, 1994, CEMENT CONCRETE RES, V24, P95
4818    COHEN MD, 1995, MATER RES SOC S P, V370, P407
4819    DASGUPTA A, 1992, MECH MATER, V14, P67
4820    HASHIN Z, 1962, J APPL MECH, V29, P144
4821    HASHIN Z, 1964, J APPL MECH        E, V31, P223
4822    JONES RM, 1975, MECH COMPOSITE MAT
4823    LUO HA, 1989, MECH MATER, V8, P77
4824    SIBONI G, 1991, MECH MATER, V11, P107
4825    WANG ZM, 1991, MECH STRUCTURAL MECH, P67
4826    WINSLOW DN, 1994, CEMENT CONCRETE RES, V24
4827    ZHAO XH, 1996, CESTR962 PURD U
4828    ZHAO XH, 1996, INT J NUMER ANAL MET, V20, P215
4829    ZHAO XH, 1996, INT J NUMER ANAL MET, V20, P275
4830 NR 17
4831 TC 3
4832 SN 0045-7949
4833 J9 COMPUT STRUCT
4834 JI Comput. Struct.
4835 PD JAN
4836 PY 1998
4837 VL 66
4838 IS 2-3
4839 BP 275
4840 EP 288
4841 PG 14
4842 SC Computer Science, Interdisciplinary Applications; Engineering, Civil
4843 GA YX439
4844 UT ISI:000072040100012
4845 ER
4846 
4847 PT J
4848 AU Liu, HY
4849    Li, HH
4850    Ying, TL
4851    Sun, K
4852    Qin, YQ
4853    Qi, DY
4854 TI Amperometric biosensor sensitive to glucose and lactose based on
4855    co-immobilization of ferrocene, glucose oxidase, beta-galactosidase and
4856    mutarotase in beta-cyclodextrin polymer
4857 SO ANALYTICA CHIMICA ACTA
4858 DT Article
4859 DE biosensor; glucose oxidase; beta-galactosidase; mutarotase; glucose;
4860    lactose; ferrocene; beta-cyclodextrin
4861 ID ENZYME ELECTRODE; INCLUSION; MILK; SENSOR
4862 AB An amperometric biosensor sensitive to glucose and lactose has been
4863    developed by immobilizing glucose oxidase (GOD), beta-galactosidase,
4864    mutarotase and ferrocene in beta-cyclodextrin polymer. The ferrocene is
4865    included in the cavities of the beta-cyclodextrin polymer through a
4866    host-guest chemical reaction whereas glucose oxidase,
4867    beta-galactosidase and mutarotase are cross-linked with the
4868    beta-cyclodextrin polymer. Cyclic voltammetry and amperometric
4869    measurement have been employed for the first time to show the efficacy
4870    of electron transfer between immobilized glucose oxidase and a glassy
4871    carbon electrode via ferrocene included in the cavities of
4872    beta-cyclodextrin polymer. Performance and characteristics of the
4873    biosensor were evaluated with respect to response time, detection
4874    limit, selectivity, and dependence on applied potential, temperature
4875    and pH as well as operating and storage stability. The stability of the
4876    enzyme membrane was greatly enhanced by cross-linking of the enzymes
4877    with beta-cyclodextrin polymer because of the water absorbability of
4878    the beta-cyclodextrin polymer. (C) 1998 Elsevier Science B.V.
4879 C1 Shanghai Univ, Dept Chem & Chem Engn, Shanghai 200072, Peoples R China.
4880    Weimei Cooperat Hangzhou, Clin Dept, Hangzhou 310016, Zhejiang Prov, Peoples R China.
4881 RP Liu, HY, Shanghai Univ, Dept Chem & Chem Engn, Shanghai 200072, Peoples
4882    R China.
4883 CR *INT DAIR FED, 1974, 28A INT DAIR FED
4884    CHENG FS, 1977, ANALYST, V102, P124
4885    DUBOIS M, 1956, ANAL CHEM, V28, P350
4886    GRIMBLEBY FH, 1956, J DAIRY RES, V23, P229
4887    HAMID JA, 1989, ANALYST, V114, P1587
4888    HARADA A, 1984, J CHEM SOC CHEM COMM, P645
4889    HARADA A, 1984, J INCLUSION PHENOM, V2, P791
4890    HARRIS WM, 1986, ANALYST, V111, P37
4891    JAGER A, 1994, ANALYST, V119, P1251
4892    KARASZ AB, 1971, J ASSOC OFF ANA CHEM, V54, P1436
4893    KORADECKI D, 1991, J INCLUS PHENOM MOL, V10, P79
4894    KUTNER W, 1992, J INCLUS PHENOM MOL, V13, P257
4895    LI S, 1992, CHEM REV, V92, P1457
4896    LIU HY, 1995, ANAL CHIM ACTA, V300, P65
4897    LIU HY, 1997, ANAL CHIM ACTA, V344, P187
4898    LUNDBACK H, 1985, ANAL LETT PT B, V18, P871
4899    MATSUMOTO K, 1985, AGR BIOL CHEM TOKYO, V49, P2131
4900    PFEIFFER D, 1990, J CHEM TECHNOL BIOT, V49, P255
4901    PILLOTON R, 1987, ANAL LETT, V20, P1803
4902    SAENGER W, 1980, ANGEW CHEM INT EDIT, V19, P344
4903    TAKAHASHI K, 1994, J INCLUS PHENOM MOL, V17, P1
4904    WALLENFELS K, 1972, ENZYMES, V7, P617
4905    WATANABE E, 1991, BIOTECHNOL BIOENG, V38, P99
4906    XU YH, 1990, ENZYME MICROB TECH, V12, P104
4907    YANG MT, 1981, J CHROMATOGR, V209, P316
4908 NR 25
4909 TC 30
4910 SN 0003-2670
4911 J9 ANAL CHIM ACTA
4912 JI Anal. Chim. Acta
4913 PD JAN 30
4914 PY 1998
4915 VL 358
4916 IS 2
4917 BP 137
4918 EP 144
4919 PG 8
4920 SC Chemistry, Analytical
4921 GA YX680
4922 UT ISI:000072065700005
4923 ER
4924 
4925 PT J
4926 AU Zhang, C
4927    Qiu, ZG
4928 TI Effects of surface texture on hydrodynamic lubrication of dynamically
4929    loaded journal bearings
4930 SO TRIBOLOGY TRANSACTIONS
4931 DT Article
4932 DE hydrodynamic lubrication; journal bearing; surface roughness
4933 AB The effects of two-sided purely longitudinal, transverse and isotropic
4934    surface roughness on the hydrodynamic lubrication of dynamically loaded
4935    finite journal bearings are analyzed using Christensen's stochastic
4936    model of hydrodynamic lubrication of rough surfaces and considering
4937    running-in effect on roughness height distributions. A detailed study
4938    of the above system in terms of the nominal minimum film thickness and
4939    the maximum film pressure demonstrates that the effects of roughness
4940    are closely tied to the roughness texture and structure, features of
4941    nominal geometry, and operating factors.
4942 C1 Shanghai Univ, Res Inst Bearings, Shanghai 200072, Peoples R China.
4943    Fudan Univ, Dept Appl Mech, Shanghai 200433, Peoples R China.
4944 RP Zhang, C, Northwestern Univ, Evanston, IL 60201 USA.
4945 CR BOEDO S, 1995, P INT TRIB C YOK, P1061
4946    CHRISTENSEN H, 1969, P I MECH ENGRS     1, V184, P1013
4947    ELROD HG, 1973, ASME, V93, P324
4948    PATIR N, 1978, T ASME, V100, P12
4949    PRAKASH J, 1984, ASME, V106, P324
4950    RHOW SK, 1974, ASME, V94, P554
4951    TONDER K, 1977, WEAR, V44, P329
4952    ZHANG C, 1995, CHINESE INTERNAL COM, V16, P69
4953    ZHANG C, 1995, P INT TRIB C YOK, P1005
4954 NR 9
4955 TC 3
4956 SN 1040-2004
4957 J9 TRIBOL TRANS
4958 JI Tribol. Trans.
4959 PD JAN
4960 PY 1998
4961 VL 41
4962 IS 1
4963 BP 43
4964 EP 48
4965 PG 6
4966 SC Engineering, Mechanical
4967 GA YW245
4968 UT ISI:000071913000006
4969 ER
4970 
4971 PT J
4972 AU Wang, DR
4973    Zhao, FG
4974 TI The globalization of Durand-Kerner algorithm
4975 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
4976 DT Article
4977 DE Durand-Kerner algorithm; continuous homotopy; path tracing; global
4978    convergence; point estimation
4979 ID EIGENVALUE PROBLEMS; POLYNOMIAL SYSTEMS; HOMOTOPY; EQUATIONS; ZEROS
4980 AB Making use of the theory of continuous homotopy and the relation
4981    between symmetric polynomial and polynomial in one variable the authors
4982    devoted this article to constructing a regularly homotopic curve with
4983    probability one. Discrete tracing along this homotopic curve leads to a
4984    class of Durand-Kerner algorithm with step parameters. The convergence
4985    of this class of algorithms is given, which solves the conjecture about
4986    the global property of Durand-Kerner algorithm. The problem for
4987    steplength selection is thoroughly discussed. Finally, sufficient
4988    numerical examples are used to verify our theory.
4989 C1 Shanghai Univ, Shanghai 201800, Peoples R China.
4990    Fudan Univ, Shanghai 200433, Peoples R China.
4991 RP Wang, DR, Shanghai Univ, Shanghai 201800, Peoples R China.
4992 CR ALEFELD G, 1974, SIAM J NUMER ANAL, V11, P237
4993    ALLGOWER EL, 1990, NUMERICAL CONTINUATI
4994    CHOW SN, 1978, MATH COMPUT, V32, P887
4995    DEREN W, 1987, COMPUTING, V38, P75
4996    DEREN W, 1989, COMPUTING, V43, P187
4997    DEREN W, 1993, JCAM, V60, P253
4998    DURAND E, 1960, SOLUTIONS NAMERIQUES, V1
4999    GARCIA CB, 1979, MATH PROGRAM, V16, P159
5000    KERNER IO, 1966, NUMER MATH, V8, P290
5001    LI TY, 1987, LINEAR ALGEBRA APPL, V91, P65
5002    LI TY, 1987, SIAM J NUMER ANAL, V24, P435
5003    LI TY, 1989, SIAM J NUMER ANAL, V26, P1241
5004    LI TY, 1992, SIAM J NUMER ANAL, V29, P229
5005    MO ZJ, 1987, ALGEBRA, V1
5006    SCHWARTZ ST, 1969, NONLINEAR FUNCTIONAL
5007    SENLIN X, 1989, SYSTEM ALGEBRAIC EQU
5008    SMALE S, 1986, MERGING DISCIPLINES, P185
5009    ZHAO FG, 1993, MATH NUMERICA SINICA, V2, P196
5010    ZHENG SM, 1982, CHINESE SCI BULL, V9, P515
5011 NR 19
5012 TC 0
5013 SN 0253-4827
5014 J9 APPL MATH MECH-ENGL ED
5015 JI Appl. Math. Mech.-Engl. Ed.
5016 PD NOV
5017 PY 1997
5018 VL 18
5019 IS 11
5020 BP 1045
5021 EP 1057
5022 PG 13
5023 SC Mathematics, Applied; Mechanics
5024 GA YW736
5025 UT ISI:000071967700003
5026 ER
5027 
5028 PT J
5029 AU Guo, BY
5030    Wang, YM
5031 TI An almost monotone approximation for a nonlinear two-point boundary
5032    value problem
5033 SO ADVANCES IN COMPUTATIONAL MATHEMATICS
5034 DT Article
5035 DE nonlinear two-point problem; almost monotone approximation; nonlinear
5036    Jacobi and Gauss-Seidel iterations
5037 ID PETROV-GALERKIN
5038 AB Almost monotone approximation is proposed for nonlinear two-points
5039    problem. A general framework is given for studying the existence and
5040    uniqueness of numerical solutions. A discrete approximation with high
5041    accuracy is constructed. Nonlinear Jacobi iteration and Gauss-Seidel
5042    iteration are introduced to save work. The continuous approximation is
5043    also considered. The numerical results show the advantages of such an
5044    approach.
5045 C1 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
5046    Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
5047 CR BABUSKA I, 1966, NUMERICAL PROCESSES
5048    BABUSKA I, 1983, SIAM J NUMER ANAL, V20, P510
5049    BERMAN A, 1979, NONNEGATIVE MATRICES
5050    BOGLAEV IP, 1988, P ROY IRISH ACAD A, V88, P153
5051    CHANG KW, 1984, APPL MATH SCI, V56
5052    COLLATZ L, 1960, NUMERICAL TREATMENT
5053    COLLATZ L, 1964, FUNKTIONALANALYSIS N
5054    GUO BY, 1986, NUMER MATH, V49, P511
5055    GUO BY, 1988, DIFFERENCE METHODS P
5056    GUO BY, 1991, NUMER METH PART D E, P23
5057    GUO BY, 1992, J APPL SCI, V10, P1
5058    GUO BY, 1992, MATH COMPUT, V58, P531
5059    HOWES FA, 1978, MEMOIRS AM MATH SOC, V203
5060    LADDE GS, 1985, MONOTONE ITERATIVE T
5061    NUMEROV BV, 1924, MON NOT R ASTRON SOC, V84, P592
5062    RABINOWITZ PH, 1970, LECT NOTES MATH, V648, P97
5063    ROSE ME, 1964, MATH COMPUT, V18, P179
5064    VARGA RS, 1962, MATRIX ITERATIVE ANA
5065 NR 18
5066 TC 5
5067 SN 1019-7168
5068 J9 ADV COMPUT MATH
5069 JI Adv. Comput. Math.
5070 PY 1998
5071 VL 8
5072 IS 1-2
5073 BP 65
5074 EP 96
5075 PG 32
5076 SC Mathematics, Applied
5077 GA YW687
5078 UT ISI:000071962500005
5079 ER
5080 
5081 PT J
5082 AU Zhang, ZL
5083    Jiang, XY
5084    Xu, SH
5085    Nagatomo, T
5086    Omoto, O
5087 TI Stability enhancement of organic electroluminescent diode through
5088    buffer layer or rubrene doping in hole-transporting layer
5089 SO SYNTHETIC METALS
5090 DT Article
5091 DE buffer layers; organic electroluminescent diodes; rubrene
5092 AB The stability of organic electroluminescent devices is significantly
5093    improved by inserting a buffer layer between ITO and the
5094    hole-transporting layer or by doping rubrene in the hole layer, The
5095    durabilities of the improved devices increase by a factor of about 10.
5096    The reasons for the improvements are discussed based on tunnelling
5097    theory and the energy-level diagram of the device, (C) 1997 Elsevier
5098    Science S.A.
5099 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
5100    Shibaura Inst Technol, Tokyo 108, Japan.
5101 RP Zhang, ZL, Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R
5102    China.
5103 CR ADACHI C, 1995, APPL PHYS LETT, V66, P2679
5104    SANO T, P IN ORG EL EL 96 BE, P249
5105    SHIROTA Y, 1994, APPL PHYS LETT, V65, P807
5106 NR 3
5107 TC 26
5108 SN 0379-6779
5109 J9 SYNTHET METAL
5110 JI Synth. Met.
5111 PD DEC
5112 PY 1997
5113 VL 91
5114 IS 1-3
5115 BP 131
5116 EP 132
5117 PG 2
5118 SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
5119    Polymer Science
5120 GA YU803
5121 UT ISI:000071756200032
5122 ER
5123 
5124 PT J
5125 AU Zhang, BW
5126    Zhao, W
5127    Cao, Y
5128    Wang, XS
5129    Zhang, ZL
5130    Jiang, XY
5131    Xu, SH
5132 TI Photoluminescence and electroluminescence of squarylium cyanine dyes
5133 SO SYNTHETIC METALS
5134 DT Article
5135 DE organic devices; photoluminescence; electroluminescence; squarylium
5136    cyanine-doped 8-hydroxyquinoline aluminium; energy transfer mechanism
5137 ID FILMS
5138 AB A series of squarylium cyanine dyes (Sq1, Sq2 and Sq3) were synthesized
5139    to explore their applications in organic electroluminescence devices
5140    (ELDs) with the aim of achieving highly efficient red emission. The
5141    absorption and fluorescence spectra of squarylium cyanine dyes (Sqs) in
5142    organic solvents, as well as their interaction with S-hydroxyquinoline
5143    aluminum (Alq) in solution and in film, were investigated to help
5144    understand the EL mechanism. The basic device structure consists of a
5145    hole-transport layer (HTL) of
5146    N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD)
5147    and an emission layer (EML) of Sq-doped Alq. By the doping method, the
5148    EL color can be readily tuned from green (EL of Alq) to red (EL of Sq)
5149    upon varying application of voltage. The EL mechanism is suggested to
5150    be associated with the energy transfer from the excited Alq to the
5151    dopant Sq. (C) 1997 Elsevier Science S.A.
5152 C1 Acad Sinica, Inst Photog Chem, Photochem Lab, Beijing 100101, Peoples R China.
5153    Shanghai Univ Sci & Technol, Dept Mat Sci, Shanghai 201800, Peoples R China.
5154 RP Zhang, BW, Acad Sinica, Inst Photog Chem, Photochem Lab, Beijing
5155    100101, Peoples R China.
5156 CR ABKOWITZ M, 1986, PHILOS MAG B, V53, P193
5157    BORSENBERGER PM, 1978, J APPL PHYS, V49, P273
5158    DALEEP SD, 1961, J ORG CHEM, V26, P3527
5159    EMMELIUS M, 1989, ANGEW CHEM INT EDIT, V28, P1445
5160    GALE DJ, 1974, J SOC DYERS COLOUR, V90, P97
5161    GRIFFITHS J, 1976, COLOR CONSTITUTION O
5162    HENG LS, 1995, J SICHUAN U, V32, P566
5163    HUGO I, 1968, J ORG CHEM, V33, P4283
5164    JOHNSON GE, 1995, PURE APPL CHEM, V67, P175
5165    LAW KY, 1993, CHEM REV, V93, P449
5166    LI CP, 1995, J POLYM RES, V2, P133
5167    MILON WB, 1956, J AM CHEM SOC, V78, P5854
5168    PIECHOWSKI A, 1984, J PHYS CHEM-US, V88, P933
5169    SANO T, 1995, 5432014, US
5170    SPRENGER HE, 1967, ANGEW CHEM INT EDIT, V6, P553
5171    TANG CW, 1987, APPL PHYS LETT, V51, P913
5172    TANG CW, 1989, J APPL PHYS, V65, P3610
5173    TANG CW, 1995, 5409783, US
5174 NR 18
5175 TC 8
5176 SN 0379-6779
5177 J9 SYNTHET METAL
5178 JI Synth. Met.
5179 PD DEC
5180 PY 1997
5181 VL 91
5182 IS 1-3
5183 BP 237
5184 EP 241
5185 PG 5
5186 SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
5187    Polymer Science
5188 GA YU803
5189 UT ISI:000071756200057
5190 ER
5191 
5192 PT J
5193 AU Li, L
5194    Tang, Z
5195    Sun, W
5196    Wang, P
5197 TI Calculation of phase diagrams of Al2O3-SiO2-R2O3 systems
5198 SO PHYSICS AND CHEMISTRY OF GLASSES
5199 DT Article
5200 ID GLASSES
5201 AB Binary oxide diagrams of Al2O3-SiO2, SiO2-R2O3, Al2O3-R2O3 (R=Nd, Sm)
5202    were thermodynamically assessed. The obtained Gibbs free energies of
5203    components and stoichiometric phases and solution parameters were used
5204    for the estimation of liquidus surface and isothermal sections of
5205    Al2O3-SiO2-Nd2O3 and Al2O3-SiO2-Sm2O3 systems. The eutectics in
5206    Al2O3-SiO2-Nd2O3 ternary phase diagram were also calculated in this
5207    work.
5208 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200027, Peoples R China.
5209    Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
5210 RP Li, L, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200027, Peoples R
5211    China.
5212 CR ARAMAKI S, 1962, J AM CERAM SOC, V45, P229
5213    BONDAR A, 1966, B ACAD SCI USSR CH, P195
5214    COUTURES JP, 1985, J AM CERAM SOC, V68, P105
5215    ERBE EM, 1990, J AM CERAM SOC, V73, P2708
5216    ERIKSSON G, 1993, METALL TRANS B, V24, P807
5217    KAUFMAN L, 1978, CALPHAD, V2, P35
5218    KOHLI JT, 1991, PHYS CHEM GLASSES, V32, P67
5219    LUKAS HL, 1977, CALPHAD, V1, P225
5220    LUO W, 1990, PHYSICAL CHEM, P316
5221    PELTON AD, 1986, METALL TRANS B, V17, P805
5222    SUN G, 1991, J CHIN RARE EARTH EL, V9, P118
5223    TOROPOV NA, 1960, T 7 INT CER C LOND, P440
5224    TOROPOV NA, 1961, B ACAD SCI USSR CH, P1279
5225    WU P, 1992, J ALLOY COMPD, V179, P259
5226 NR 14
5227 TC 8
5228 SN 0031-9090
5229 J9 PHYS CHEM GLASSES
5230 JI Phys. Chem. Glasses
5231 PD DEC
5232 PY 1997
5233 VL 38
5234 IS 6
5235 BP 323
5236 EP 326
5237 PG 4
5238 SC Chemistry, Physical; Materials Science, Ceramics
5239 GA YV402
5240 UT ISI:000071819400008
5241 ER
5242 
5243 PT J
5244 AU Zhang, ZL
5245    Jiang, XY
5246    Xu, SH
5247    Nagatomo, T
5248    Omoto, O
5249 TI The effect of rubrene as a dopant on the efficiency and stability of
5250    organic thin film electroluminescent devices
5251 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
5252 DT Article
5253 ID LIGHT-EMITTING-DIODES
5254 AB Rubrene was doped into the hole transport layer of an organic thin film
5255    electroluminescent (OTFEL) device with a double-layered structure. It
5256    was found that the dopant has a profound influence on the EL
5257    characteristics - it changed the region of light emission, increased
5258    the luminescence efficiency by more than 50% and improved the device
5259    stability tenfold. The reasons for these effects are discussed based on
5260    injection theory and the energy level diagram of the device.
5261 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
5262    Shibaura Inst Technol, Minato Ku, Tokyo 108, Japan.
5263 RP Zhang, ZL, Shanghai Univ, Dept Mat Sci, Jiading Campus, Shanghai
5264    201800, Peoples R China.
5265 CR ADACHI C, 1995, APPL PHYS LETT, V66, P2679
5266    BROWN AR, 1992, APPL PHYS LETT, V61, P2793
5267    PARKER ID, 1994, APPL PHYS LETT, V65, P1272
5268    SANO T, 1996, INORGANIC ORGANIC EL, P249
5269    SHIROTA Y, 1994, APPL PHYS LETT, V65, P807
5270    TANG CW, 1987, APPL PHYS LETT, V51, P913
5271    YANG Y, 1994, APPL PHYS LETT, V64, P1245
5272    ZHANG ZL, 1996, CHINESE PHYS LETT, V4, P301
5273 NR 8
5274 TC 11
5275 SN 0022-3727
5276 J9 J PHYS-D-APPL PHYS
5277 JI J. Phys. D-Appl. Phys.
5278 PD JAN 7
5279 PY 1998
5280 VL 31
5281 IS 1
5282 BP 32
5283 EP 35
5284 PG 4
5285 SC Physics, Applied
5286 GA YV414
5287 UT ISI:000071820600005
5288 ER
5289 
5290 PT J
5291 AU Wen, HQ
5292    Mao, XM
5293    Xu, KD
5294 TI High strength conductor by directional solidification
5295 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
5296 DT Article
5297 AB The directional solidification of Cu-0.8 wt pet Cr alloy was
5298    investigated for high-strength conductors. An in-situ composite
5299    material in which the matrix is in cellular morphology and the
5300    well-distributed eutectics around the cells is formed in the
5301    directional solidification process. In such microstructure, the
5302    cellular matrix is as conductor and the coated-around eutectics as
5303    reinforcement. The formation mechanism of this microstructure is
5304    discussed from the interfacial instability. As a result, the tensile
5305    strength of the material along the solidification direction is two
5306    times more than that of the conventionally cast one, while the
5307    electrical conductivity is reduced a little by comparison with the pure
5308    Cu.
5309 C1 Shanghai Univ, Inst Mat Sci & Technol, Shanghai 200072, Peoples R China.
5310 RP Mao, XM, Shanghai Univ, Inst Mat Sci & Technol, Shanghai 200072,
5311    Peoples R China.
5312 CR ANDERSON KR, 1995, METALL MATER TRANS A, V9, P1197
5313    HANQI HU, 1991, SOLIDIFICATION FUNDA
5314    HARDWICH DA, 1993, METALL T A, V1, P27
5315    KURZ W, 1981, ACTA METALL, V29, P11
5316    TILLER WA, 1953, ACTA METALL, V1, P428
5317    VERHOEVEN JD, 1990, J MAT ENG, V2, P27
5318    WANG YW, 1995, FUNCTIONAL MAT, V3, P220
5319    ZHAO ZD, 1993, HDB CU ITS ALLOYS MA, P3
5320 NR 8
5321 TC 0
5322 SN 1005-0302
5323 J9 J MATER SCI TECHNOL
5324 JI J. Mater. Sci. Technol.
5325 PD JAN
5326 PY 1998
5327 VL 14
5328 IS 1
5329 BP 89
5330 EP 91
5331 PG 3
5332 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
5333    Engineering
5334 GA YV447
5335 UT ISI:000071825100022
5336 ER
5337 
5338 PT J
5339 AU Zhu, XH
5340    Xu, J
5341    Meng, ZY
5342 TI Interdiffusion reaction in the PZT/PNN functionally gradient
5343    piezoelectric ceramic materials
5344 SO JOURNAL OF MATERIALS SCIENCE
5345 DT Article
5346 ID ACTUATOR
5347 AB The interfacial diffusion reaction between lead zirconate titanate
5348    (PZT) and lead nickel niobate (PbNi1/3Nb2/3O3:PNN) phases in the
5349    PZT/PNN functionally gradient piezoelectric ceramics were investigated
5350    as a function of the diffusion temperature and time, respectively. The
5351    ionic composition distribution profiles in the interdiffusion region
5352    were examined by electron probe microbeam analysis (EPMA). Based on a
5353    diffusion model of the overlapped diffusion solution from thin slab,
5354    the numerical simulation for the ionic composition distribution was
5355    carried out by computer, which was in agreement with the EPMA result.
5356    The diffusion coefficients for the Ni2+, Nb5+, Ti4+ and Zr4+ ions were
5357    determined, which were 33.8, 22.6, 10.8 and 9.9 x 10(-12) m(2) s(-1),
5358    respectively. The apparent activation energies for these ions were
5359    94.4, 171.7, 257.5 and 325.8 kJ mol(-1), respectively. The differences
5360    in the ionic diffusion coefficients and apparent activation energies
5361    were discussed from the viewpoint of the crystal chemistry. (C) 1998
5362    Chapman & Hall.
5363 C1 Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China.
5364    Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.
5365    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
5366 RP Zhu, XH, Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China.
5367 CR CHAWLA KK, 1995, CERAMIC MATRIX COMPO
5368    ZHU XH, 1995, J MATER SCI LETT, V14, P516
5369    ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169
5370    ZHU XH, 1995, THESIS XIAN JIAOTONG
5371 NR 4
5372 TC 13
5373 SN 0022-2461
5374 J9 J MATER SCI
5375 JI J. Mater. Sci.
5376 PD FEB 15
5377 PY 1998
5378 VL 33
5379 IS 4
5380 BP 1023
5381 EP 1030
5382 PG 8
5383 SC Materials Science, Multidisciplinary
5384 GA YU268
5385 UT ISI:000071699300022
5386 ER
5387 
5388 PT J
5389 AU Huang, SR
5390    Luo, J
5391    Leonardi, F
5392    Lipo, TA
5393 TI A general approach to sizing and power density equations for comparison
5394    of electrical machines
5395 SO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS
5396 DT Article
5397 DE ferrites; magnets; motors; power density; sizing equation
5398 AB Whenever an electrical machine is meant to be fed lug a power
5399    converter, the design should be approached as a system optimization,
5400    more than a simple machine sizing. A great variety of electrical
5401    machines is available to accomplish this goal, and the task of
5402    comparing the different options tan be very difficult, A general
5403    purpose sizing equation, easily adjustable for every topology, that
5404    could take into account different waveforms and machine
5405    characteristics, would be a very desirable tool, In this paper, a
5406    general approach is presented to develop and to discuss such an
5407    equation. Sample applications of the sizing and power density equations
5408    are utilized to compare the induction machine and the doubly salient
5409    permanent magnet (DSPM) machine.
5410 C1 Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA.
5411 RP Huang, SR, Shanghai Univ, Coll Automat, Shanghai 200072, Peoples R
5412    China.
5413 CR CHEN SQ, 1982, ELECT MACHINE DESIGN
5414    HONSINGER VB, 1987, IEEE T ENERGY CONVER, V2, P116
5415    HUANG S, 1997, 1997 IEEE POW ENG SO
5416    LEONARDI F, 1996, IEEE IAS ANN M M SAN
5417    LEVI E, 1984, POLYPHASE MOTORS DIR
5418    LI Y, 1995, C DES MAN MOD IND DM
5419    LIPO TA, 1984, IEEE T IND APPL, V20, P834
5420    LIPO TA, 1995, P IPEC 95, P1
5421    LIPO TA, 1996, INTRO AC MACHINE DES
5422    SCHUISKY W, 1957, INDUKTIONSMASCHIMEN
5423 NR 10
5424 TC 5
5425 SN 0093-9994
5426 J9 IEEE TRANS IND APPL
5427 JI IEEE Trans. Ind. Appl.
5428 PD JAN-FEB
5429 PY 1998
5430 VL 34
5431 IS 1
5432 BP 92
5433 EP 97
5434 PG 6
5435 SC Engineering, Electrical & Electronic; Engineering, Multidisciplinary
5436 GA YU517
5437 UT ISI:000071725800012
5438 ER
5439 
5440 PT J
5441 AU Zhang, GL
5442    Yu, FH
5443    Weng, HM
5444    Zhang, HH
5445 TI Annealing behavior of Fe-57 implanted in ZrO2(Y)
5446 SO HYPERFINE INTERACTIONS
5447 DT Article
5448 AB Using conversion electron Mossbauer spectroscopy(CEMS) and slow
5449    positron beam, the chemical states of the implanted Fe-57 (100keV,3 x
5450    10(16) ions/cm(2)) in ZrO2 containing 3 mol% Y2O3 (ZY(3)) and its
5451    thermodynamic behavior during annealing process with the temperature
5452    from 200 to 500 degrees C were studied. After annealing at 400 degrees
5453    C the complex of Fe3+-V has been mostly dissolved, and the prior phase
5454    to alpha-Fe and alpha-Fe nano-crystalline cluster were present in the
5455    sample. Meanwhile the mixed conducting of oxygen-ions and electrons in
5456    the ZY(3) containing Fe sample appeared.
5457 C1 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
5458    Univ Sci & Technol China, Hefei 230026, Peoples R China.
5459    Shanghai Univ Sci & Technol, Coll Mat Sci, Shanghai 201800, Peoples R China.
5460 RP Zhang, GL, Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800,
5461    Peoples R China.
5462 CR BURGGRAAF AJ, 1988, PHYS RES B, V32, P32
5463    MAREST G, 1990, HYPERFINE INTERACT, V56, P1605
5464    SAWICKI JA, 1988, NUCL INSTRUM METH B, V32, P79
5465    WELLER M, 1986, J AM CERAM SOC, V69, P573
5466    ZHANG G, 1986, PHYS LETT A, V119, P251
5467 NR 5
5468 TC 0
5469 SN 0304-3843
5470 J9 HYPERFINE INTERACTIONS
5471 JI Hyperfine Interact.
5472 PY 1998
5473 VL 112
5474 IS 1-4
5475 BP 197
5476 EP 200
5477 PG 4
5478 SC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter;
5479    Physics, Nuclear
5480 GA YV034
5481 UT ISI:000071783000042
5482 ER
5483 
5484 PT J
5485 AU Zhao, XH
5486    Chen, WF
5487 TI Solutions of multilayer inclusion problems under uniform field
5488 SO JOURNAL OF ENGINEERING MECHANICS-ASCE
5489 DT Article
5490 ID STRESS-FIELDS; COMPOSITES
5491 AB In this paper, a general solution of an n-layer inclusion problem in a
5492    limited region is obtained for the first time. The solutions of
5493    three-layer inclusion problems in a limited region under uniform strain
5494    field and under uniform stress field are given also. These solutions
5495    with undetermined constants are all expressed in closed form. The
5496    validity of these solutions is verified by numerical examples of
5497    several special cases. These solutions will enable us to study various
5498    stress distributions and elastic behavior of concrete materials in
5499    microscale.
5500 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
5501    Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA.
5502 RP Zhao, XH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
5503    200072, Peoples R China.
5504 CR BENVENISTE Y, 1989, MECH MATER, V7, P305
5505    CHEN T, 1990, MECH MATER, V9, P17
5506    CHRISTENSEN RM, 1979, J MECH PHYS SOLIDS, V27, P315
5507    DASGUPTA A, 1992, MECH MATER, V14, P67
5508    GOODIER JN, 1933, J APPL MECH, V1, P39
5509    LING CB, 1966, APPL SCI RES THE HAG, V18, P32
5510    SIBONI G, 1991, MECH MATER, V11, P107
5511    TIMOSHENKO S, 1951, THEORY ELASTICITY
5512    ZHAO XH, 1990, APPL MATH MECH, V11, P207
5513    ZHAO XH, 1996, INT J NUMER ANAL MET, V20, P275
5514 NR 10
5515 TC 3
5516 SN 0733-9399
5517 J9 J ENG MECH-ASCE
5518 JI J. Eng. Mech.-ASCE
5519 PD FEB
5520 PY 1998
5521 VL 124
5522 IS 2
5523 BP 209
5524 EP 216
5525 PG 8
5526 SC Engineering, Mechanical
5527 GA YT178
5528 UT ISI:000071573300012
5529 ER
5530 
5531 PT J
5532 AU Ma, XG
5533    Chen, ZH
5534 TI Heat recovery from the starting vessel of a once-through boiler system
5535 SO APPLIED THERMAL ENGINEERING
5536 DT Article
5537 DE heat recovery; deaerator; boiler; start-up system
5538 AB An increasing number of coal-and oil-fired boilers are employed in
5539    covering the week-day load and are shut down at weekends. This paper
5540    describes an attempt to calculate the amount of heat recovery in a
5541    once-through boiler system during its start-up. A mathematical model
5542    has been firstly developed, and an experimental study is carried out to
5543    check the model. The 300 MW once-through boiler system is taken as an
5544    example. Both theoretical analysis and an experimental study show that
5545    the capacity for heat recovery in the deaerator tank largely depends on
5546    the working pressure of the deaerator tank and the starting vessel. The
5547    volume of the deaerator tank, especially the volume of water, has a
5548    large effect on the heat recovery capacity. (C) 1997 Published by
5549    Elsevier Science Ltd.
5550 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
5551 RP Ma, XG, Shanghai Univ Sci & Technol, Coll Power Engn, 516 Jun Gong Rd,
5552    Shanghai 200093, Peoples R China.
5553 CR HIRSCH C, 1988, NUMERICAL COMPUTATIO
5554    HUANG CM, 1982, HYDRODYNAMICS HEAT T
5555    RAY A, 1976, J DYNAMIC SYSTEM MEA, V9, P332
5556    XU HZ, 1996, POWER STATION AUXILI, V1, P1
5557    ZHANG CY, 1976, DYNAMIC RESPONSE MAT
5558 NR 5
5559 TC 0
5560 SN 1359-4311
5561 J9 APPL THERM ENG
5562 JI Appl. Therm. Eng.
5563 PD MAR-APR
5564 PY 1998
5565 VL 18
5566 IS 3-4
5567 BP 179
5568 EP 186
5569 PG 8
5570 SC Engineering, Mechanical; Energy & Fuels; Mechanics; Thermodynamics
5571 GA YR474
5572 UT ISI:000071498900011
5573 ER
5574 
5575 PT J
5576 AU Huang, DB
5577    Zhao, XH
5578    Dai, HH
5579 TI Invariant tori and chaotic streamlines in the ABC flow
5580 SO PHYSICS LETTERS A
5581 DT Article
5582 DE ABC flow; action-angle-angle; invariant tori; Melnikov method; chaos
5583 AB We study the dynamical system associated with fluid particle motions of
5584    the Arnold-Beltrami-Childress (ABC) flow, defined by (x) over dot = A
5585    sin z + C cos y, (y) over dot = B sin x + A cos z, (z) over dot = C sin
5586    y + B cos x, where A, B, C are real parameters and \C\ much less than
5587    1. First, we reduce this system to action-angle-angle coordinates.
5588    Then, by using the new-KAM-like theorems for perturbations of a
5589    three-dimensional, volume-preserving map, we obtain the conditions of
5590    existence of invariant tori in the ABC flow. In addition, by using a
5591    high-dimensional generalization of the Melnikov method, we obtain the
5592    analytical criterion for the existence of chaotic streamlines in the
5593    ABC flow. (C) 1998 Published by Elsevier Science B.V.
5594 C1 Yunnan Univ, Dept Math, Kunming 650091, Peoples R China.
5595    City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong.
5596 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
5597 CR ARNOLD VI, 1965, CR HEBD ACAD SCI, V261, P17
5598    ARNOLD VI, 1978, MATH METHODS CLASSIC
5599    CHENG CQ, 1990, CELESTIAL MECH, V47, P275
5600    DOMBRE T, 1986, J FLUID MECH, V167, P353
5601    GALLOWAY D, 1987, J FLUID MECH, V180, P557
5602    GUCHENHEIMER J, 1983, NONLINEAR OSCILLATIO
5603    HENON M, 1966, CR HEBD ACAD SCI, V262, P312
5604    MEIZE J, 1994, J NONLINEAR SCI, V4, P157
5605    WIGGINS S, 1988, GLOBAL BIFURCATIONS
5606    WIGGINS S, 1990, INTRO APPL NONLINEAR
5607    YOCCOZ JC, 1992, ASTERISQUE, V206, P311
5608    ZHAO XH, 1993, SIAM J APPL MATH, V53, P71
5609 NR 12
5610 TC 4
5611 SN 0375-9601
5612 J9 PHYS LETT A
5613 JI Phys. Lett. A
5614 PD JAN 5
5615 PY 1998
5616 VL 237
5617 IS 3
5618 BP 136
5619 EP 140
5620 PG 5
5621 SC Physics, Multidisciplinary
5622 GA YQ830
5623 UT ISI:000071427400006
5624 ER
5625 
5626 PT J
5627 AU Liu, GL
5628    He, JH
5629 TI New research and concepts in turbo-jet engine design
5630 SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY
5631 DT Article
5632 DE aerospace engineering; design; engines; 3D
5633 AB Presents a brief overview of some new concepts and research results
5634    concerning aerodynamic computation and design of jet-propulsion engines
5635    with emphasis on turbomachinery (TM) developed in China, without any
5636    attempt to be exhaustive.
5637 C1 Shanghai Univ, Inst Mech, Shanghai, Peoples R China.
5638 RP Liu, GL, Shanghai Univ, Inst Mech, Shanghai, Peoples R China.
5639 CR DEICH ME, 1963, THERMAL ENERGETICS
5640    EPPLER R, 1980, TM80210 NASA, P82
5641    GAO JH, 1997, THESIS SHANGHAI U
5642    LI XD, 1996, AIAA J, V34, P1097
5643    LIU GL, 1993, P I MECH ENG A-J POW, V207, P23
5644    LIU GL, 1995, INT J TURBO JET ENG, V12, P109
5645    LIU GL, 1996, 19 INT C THEOR APPL
5646    LIU GL, 1996, ACTA AERODYNAMICA SI, V14, P1
5647    LIU GL, 1996, INT J TURBO JET ENG, V13, P1
5648    LIU GL, 1998, IN PRESS INT S INV P
5649    MIAO RT, 1991, J AEROSPACE POWER, V6, P13
5650    OHTSUKA M, 1974, 74GT2 ASME
5651    SELIG MS, 1992, AIAA J, V30, P1162
5652    WANG ZQ, 1981, 5 INT S AIR BREATH E
5653    WANG ZQ, 1994, J ENG THERMOPHYSICS, V15, P147
5654    ZHANG ZC, 1996, J ENG THERMOPHYSICS, V17, P180
5655 NR 16
5656 TC 2
5657 SN 0002-2667
5658 J9 AIRCRAFT ENG AEROSP TECHNOL
5659 JI Aircr. Eng. Aerosp. Technol.
5660 PY 1997
5661 VL 69
5662 IS 6
5663 BP 527
5664 EP +
5665 PG 8
5666 SC Engineering, Aerospace
5667 GA YQ732
5668 UT ISI:000071417700003
5669 ER
5670 
5671 PT J
5672 AU Chen, LQ
5673    Liu, YZ
5674 TI Parametric open-plus-closed-loop control of chaos in continuous
5675    dynamical systems
5676 SO ACTA MECHANICA SOLIDA SINICA
5677 DT Article
5678 DE continuous dynamical system; chaos; parametric open-plus-closed-loop
5679    control; the Lorenz model
5680 ID MIGRATION CONTROLS; ENTRAINMENT
5681 AB This paper presents a parametric open-plus-closed-loop control approach
5682    to controlling chaos in continuous dynamical systems. As an example,
5683    chaos in the Lorenz model is controlled to demonstrate its application.
5684    Finally. the relations between the parametric open-plus-closed-loop
5685    control and the former control methods, such as the
5686    open-plus-closed-loop control and the parametric entrainment control.
5687    are discussed.
5688 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
5689    Shanghai Jiao Tong Univ, Dept Mech Engn, Shanghai 200030, Peoples R China.
5690 CR CHEN LQ, IN PRESS APPL MATH M
5691    CHEN LQ, 1996, PHYS, V25, P278
5692    HU HY, 1996, ADV MECH, V26, P453
5693    HUBLER A, 1989, NATURWISSENSCHAFTEN, V76, P67
5694    JACKSON EA, 1990, PHYS LETT A, V151, P478
5695    JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1255
5696    JACKSON EA, 1995, PHYSICA D, V85, P1
5697    METTIN R, 1995, PHYS REV E A, V51, P4065
5698 NR 8
5699 TC 2
5700 SN 0894-9166
5701 J9 ACTA MECH SOLIDA SINICA
5702 JI Acta Mech. Solida Sin.
5703 PD DEC
5704 PY 1997
5705 VL 10
5706 IS 4
5707 BP 316
5708 EP 321
5709 PG 6
5710 SC Materials Science, Multidisciplinary; Mechanics
5711 GA YR176
5712 UT ISI:000071468000004
5713 ER
5714 
5715 PT J
5716 AU Wang, Q
5717    Awai, I
5718 TI Frequency characteristics of the magnetic spatial solitons on the
5719    surface of an antiferromagnet
5720 SO JOURNAL OF APPLIED PHYSICS
5721 DT Article
5722 ID CROSS-PHASE MODULATION; WAVE-GUIDES; FERROMAGNETIC-FILMS; ENVELOPE
5723    SOLITONS; OPTICAL SOLITONS; SPIN-WAVES; PROPAGATION
5724 AB The frequency characteristics of magnetic spatial solitons on the
5725    surface of two-sublattice uniaxial antiferromagnetic crystal have been
5726    studied. The distinguishing feature of the solitons is the existence of
5727    the frequency passband(s) and stopband(s) that can be switched into
5728    each other by varying the power. This is because the nonlinear
5729    permeability is not only power dependent but also frequency dependent
5730    in infrared frequency region. The passband width may increase sharply
5731    with the power when the dielectric constant of the antiferromagnetic
5732    crystal is smaller than that of the nonmagnetic substrate. The passband
5733    may vary as much as 100 GHz below the infrared resonance frequency of
5734    the system. (C) 1998 American Institute of Physics.
5735 C1 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
5736    Yamaguchi Univ, Dept Elect & Elect Engn, Ube, Yamaguchi 755, Japan.
5737 RP Wang, Q, Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800,
5738    Peoples R China.
5739 CR AITCHISON JS, 1991, J OPT SOC AM B, V8, P1290
5740    AITCHISON JS, 1992, ELECTRON LETT, V28, P1879
5741    AKHMANOV SA, 1968, SOV PHYS USP, V10, P609
5742    ALMEIDA NS, 1987, PHYS REV B, V36, P2015
5743    BARTHELEMY A, 1985, OPT COMMUN, V55, P201
5744    BEEMAN DE, 1966, J APPL PHYS, V37, P1136
5745    BOARDMAN AD, 1988, PHYS REV B, V38, P1144
5746    BOARDMAN AD, 1989, PHYS REV A, V39, P2481
5747    BOARDMAN AD, 1990, PHYS REV B, V41, P717
5748    BOARDMAN AD, 1993, PHYS REV B, V48, P13602
5749    BOARDMAN AD, 1993, RADIO SCI, V28, P891
5750    BOARDMAN AD, 1994, IEEE T MAGN, V30, P1
5751    BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
5752    CAMLEY RE, 1987, SURF SCI REP, V7, P103
5753    CARNLEY RE, 1980, PHYS REV LETT, V45, P283
5754    COSTA BV, 1993, PHYS REV B, V47, P5059
5755    DEGASPERIS P, 1988, J APPL PHYS, V63, P4136
5756    DELAFUENTE R, 1992, IEEE J QUANTUM ELECT, V28, P547
5757    DELAFUENTE R, 1992, OPT COMMUN, V88, P419
5758    FETISOV YK, 1983, SOV PHYS-SOLID STATE, V25, P1634
5759    GATZ S, 1991, J OPT SOC AM B, V8, P2296
5760    GORDON NI, 1965, SOV PHYS JETP, V21, P576
5761    GULYAEV YV, 1986, SOV PHYS-SOLID STATE, V28, P1553
5762    KADIGROBOV MI, 1965, SOV PHYS JETP, V21, P576
5763    KALINIKOS BA, 1990, IEEE T MAGN, V26, P1477
5764    KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712
5765    LIU SL, 1995, PHYS REV A, V51, R38
5766    MOLONEY JV, 1992, NATO ASI SER E, V214, P341
5767    MOLONEY JV, 1992, OPT QUANTUM ELECT, V24, S1269
5768    QI W, 1995, J APPL PHYS, V77, P1
5769    QI W, 1995, SCI CHINA SER A, V24, P1108
5770    STAMPS RL, 1984, J APPL PHYS, V56, P3497
5771    TEMIRYAZEV AG, 1987, SOV PHYS-SOLID STATE, V29, P179
5772    VUKOVICH S, 1990, SOV PHYS JETP, V71, P964
5773    ZHANG HK, 1990, J APPL PHYS 2B, V67, P5498
5774 NR 35
5775 TC 6
5776 SN 0021-8979
5777 J9 J APPL PHYS
5778 JI J. Appl. Phys.
5779 PD JAN 1
5780 PY 1998
5781 VL 83
5782 IS 1
5783 BP 382
5784 EP 387
5785 PG 6
5786 SC Physics, Applied
5787 GA YP836
5788 UT ISI:000071320400055
5789 ER
5790 
5791 PT J
5792 AU Zhao, XH
5793    Chen, WF
5794 TI The effective elastic moduli of concrete and composite materials
5795 SO COMPOSITES PART B-ENGINEERING
5796 DT Article
5797 DE effective elastic modulus; concrete; composite materials; micromechanics
5798 ID CEMENT PASTE; MORTAR
5799 AB In this paper, the analytical expressions of the effective elastic
5800    moduli E* for concrete or other composite materials under a uniform
5801    stress field, a uniform strain field and a uniform field at infinity
5802    are obtained based on elastic theory. The new expressions provide a
5803    better estimate of E* than the existing engineering formulas, and the
5804    differences between them are compared numerically. It is found that the
5805    effective elastic modulus E* depends not only on the geometrical and
5806    physical parameters of microstructure, but also on stress state. The
5807    value of E* is found to vary within a narrow region. (C) 1997 Elsevier
5808    Science Ltd. All rights reserved.
5809 C1 Purdue Univ, Sch Civil Engn, Dept Struct Engn, W Lafayette, IN 47907 USA.
5810    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
5811 RP Chen, WF, Purdue Univ, Sch Civil Engn, Dept Struct Engn, W Lafayette,
5812    IN 47907 USA.
5813 CR BENVENISTE Y, 1989, MECH MATER, V7, P305
5814    CHEN WF, 1994, CONCRETE PLASTICITY
5815    CHRISTENSEN RM, 1979, J MECH PHYS SOLIDS, V27, P315
5816    COHEN MD, 1994, CEMENT CONCRETE RES, V24, P95
5817    COHEN MD, 1995, MATER RES SOC S P, V370, P407
5818    HASHIN Z, 1962, ASME J APPL MECH, V29, P144
5819    HASHIN Z, 1964, J APPL MECH        E, V31, P223
5820    HASHIN Z, 1983, ASME, V50, P481
5821    HERVE E, 1993, INT J ENG SCI, V31, P1
5822    HILL R, 1963, J MECH PHYS SOLIDS, V11, P357
5823    JONES RM, 1975, MECH COMPOSITE MAT
5824    LUO HA, 1989, MECH MATER, V8, P77
5825    SIBONI G, 1991, MECH MATER, V11, P107
5826    TORQUATO S, 1991, APPL MECH REV, V44, P37
5827    WISLOW DN, 1994, CEMENT CONCRETE RES, V24
5828    ZHAO XH, 1996, INT J NUMER ANAL MET, V20, P215
5829    ZHAO XH, 1996, INT J NUMER ANAL MET, V20, P275
5830    ZHAO XH, 1997, IN PRESS COMPUTERS S, V64
5831    ZHAO XH, 1998, IN PRESS J ENG MECH, V124
5832 NR 19
5833 TC 2
5834 SN 1359-8368
5835 J9 COMPOS PART B-ENG
5836 JI Compos. Pt. B-Eng.
5837 PY 1998
5838 VL 29
5839 IS 1
5840 BP 31
5841 EP 40
5842 PG 10
5843 SC Engineering, Multidisciplinary; Materials Science, Composites
5844 GA YP479
5845 UT ISI:000071280900005
5846 ER
5847 
5848 PT J
5849 AU Chien, WZ
5850 TI The first order approximation of non-Kirchhoff-Love theory for elastic
5851    circular plate with fixed boundary under uniform surface loading (I)
5852 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
5853 DT Article
5854 DE elastic circular plate; Kirchhoff-Love assumption; generalized
5855    variational principle
5856 AB Based on the approximation theory adopting non-Kirchhoff-love
5857    assumption for three dimensional elastic plates with arbitrary
5858    shapes([1], [2]), the author derives a functional of generalized
5859    variation for three dimensional elastic circular plates, thereby
5860    obtains a set of differential equations and the relate boundary
5861    conditions to establish a first order approximation theory for elastic
5862    circular plate with fixed boundary and under uniform loading on one of
5863    its surface. The analytical solution of this problem will present in
5864    another paper.
5865 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
5866 RP Chien, WZ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
5867    200072, Peoples R China.
5868 CR CHIEN WZ, 1984, ADV APPL MECH, V24, P93
5869    CHIEN WZ, 1995, APPL MATH MECH, V16, P203
5870    CHIEN WZ, 1995, APPL MATH MECH, V16, P405
5871    CHIESA P, 1987, MEDIOEVO RINASCIMENT, V1, P1
5872 NR 4
5873 TC 3
5874 SN 0253-4827
5875 J9 APPL MATH MECH-ENGL ED
5876 JI Appl. Math. Mech.-Engl. Ed.
5877 PD JAN
5878 PY 1997
5879 VL 18
5880 IS 1
5881 BP 1
5882 EP 18
5883 PG 18
5884 SC Mathematics, Applied; Mechanics
5885 GA YP169
5886 UT ISI:000071249500001
5887 ER
5888 
5889 PT J
5890 AU Wu, JC
5891    Pan, LZ
5892 TI Nonlinear theory of multilayer sandwich shells and its application (I)
5893    - General theory
5894 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
5895 DT Article
5896 DE multilayer sandwich shells; nonlinear theory
5897 AB In this paper, a nonlinear theory is given for multilayer sandwich
5898    shells undergoing small strains and moderate rotations. Then a
5899    simplified theory for the shells undergoing moderate or moderate/small
5900    rotations are obtained.
5901 C1 Tongji Univ, Dept Engn Mech, Shanghai 200092, Peoples R China.
5902    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
5903 RP Wu, JC, Tongji Univ, Dept Engn Mech, Shanghai 200092, Peoples R China.
5904 CR ABDULHADI F, 1971, 71VIBR48 ASME
5905    AZAR JJ, 1968, AIAA J, V6, P2166
5906    AZAR JJ, 1970, AIAA J, V8, P157
5907    CHIEN WZ, 1944, Q APPL MATH, V2, P120
5908    JOHN F, 1965, COMMUN PUR APPL MATH, V18, P235
5909    KOITER WT, 1980, MECHANICS TODAY, V5, P139
5910    LIAW BD, 1967, AIAA J, V5, P301
5911    LIAW BD, 1969, AERONAUTICAL Q, V20, P61
5912    LIU RH, NONLINEAR THEORY SAN
5913    PIETRASZKIEWICZ W, 1985, INT J NONLINEAR MECH, V19, P115
5914    RAJAGOPAL SV, 1978, AIAA J, V25, P130
5915    WONG JP, 1968, DEV MECH, V4, P289
5916 NR 12
5917 TC 2
5918 SN 0253-4827
5919 J9 APPL MATH MECH-ENGL ED
5920 JI Appl. Math. Mech.-Engl. Ed.
5921 PD JAN
5922 PY 1997
5923 VL 18
5924 IS 1
5925 BP 19
5926 EP 27
5927 PG 9
5928 SC Mathematics, Applied; Mechanics
5929 GA YP169
5930 UT ISI:000071249500002
5931 ER
5932 
5933 PT J
5934 AU Zhu, Y
5935 TI Strongly oblique interactions between internal solitary waves with the
5936    same mode
5937 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
5938 DT Article
5939 DE solitary waves; strong interaction; stratified fluids; 3D problem
5940 AB In this paper, by using the Lagrangian coordinates, the strongly
5941    oblique interactions between solitary waves with the same mode in a
5942    stratified fluid ape discussed, which includes the shallow fluid case
5943    and deep fluid case. It is found that the interactions are described by
5944    the KP equation for the shallow fluid case, the two-dimensional
5945    intermediate long wave equation (2D-ILW equation) for the deep fluid
5946    case and the two-dimensional BO equation (2D-BO equation) for the
5947    infinite deep fluid case.
5948 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
5949 RP Zhu, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
5950    Peoples R China.
5951 CR ABLOWITZ MJ, 1980, STUD APPL MATH, V62, P249
5952    ABLOWITZ MJ, 1981, SOLITONS INVERSE SCA
5953    GRIMSHAW R, 1994, STUD APPL MATH, V92, P249
5954    MILES JW, 1977, J FLUID MECH, V79, P157
5955    MILES JW, 1977, J FLUID MECH, V79, P171
5956    ZABUSKY NJ, 1965, PHYS REV LETT, V15, P240
5957 NR 6
5958 TC 0
5959 SN 0253-4827
5960 J9 APPL MATH MECH-ENGL ED
5961 JI Appl. Math. Mech.-Engl. Ed.
5962 PD OCT
5963 PY 1997
5964 VL 18
5965 IS 10
5966 BP 957
5967 EP 962
5968 PG 6
5969 SC Mathematics, Applied; Mechanics
5970 GA YP725
5971 UT ISI:000071308200005
5972 ER
5973 
5974 PT J
5975 AU Wu, YJ
5976 TI Remarks on nonlinear Galerkin method for Kuramoto-Sivashinsky equation
5977 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
5978 DT Article
5979 DE nonlinear Galerkin method; Kuramoto-Sivashinsky equation; infinite
5980    dimensional dynamical systems
5981 ID APPROXIMATE INERTIAL MANIFOLDS; NAVIER-STOKES EQUATIONS
5982 AB This paper is concentrated on a nonlinear Galerkin method with s(m)
5983    small-scale components for Kuramoto-Sivashinsky equation, in which
5984    convergence results and the analysis of error estimates are given. The
5985    conclusion shows that this choice of modes is efficient for the method
5986    modified.
5987 C1 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
5988    Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China.
5989 RP Wu, YJ, Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800,
5990    Peoples R China.
5991 CR FOIAS C, 1983, PHYSICA D, V9, P157
5992    FOIAS C, 1988, RAIRO MODEL MATH ANA, V22, P93
5993    LIONS JL, 1969, QUELQUES METHODES RE
5994    MARION M, 1989, SIAM J NUMER ANAL, V26, P1139
5995    NICOLAENKO B, 1985, PHYSICA D, V16, P155
5996    SHEN J, 1990, APPL ANAL, V38, P201
5997    TEMAM R, 1983, CBMS NSF REGIONAL C
5998    TEMAM R, 1984, NAVIER STOKES EQUATI
5999    TEMAM R, 1988, APPL MATH SCI, V68
6000    TEMAM R, 1988, CR ACAD SCI II-MEC P, V306, P399
6001    TEMAM R, 1989, LECT NOTES PHYSICS
6002    TEMAM R, 1989, RAIRO-MATH MODEL NUM, V23, P541
6003    WU YJ, IN PRESS J COMPUT MA
6004    WU YJ, 1994, ADV MECH, V24, P145
6005    YANG ZH, 1997, J SHANGHAI U, V1, P20
6006 NR 15
6007 TC 0
6008 SN 0253-4827
6009 J9 APPL MATH MECH-ENGL ED
6010 JI Appl. Math. Mech.-Engl. Ed.
6011 PD OCT
6012 PY 1997
6013 VL 18
6014 IS 10
6015 BP 1005
6016 EP 1013
6017 PG 9
6018 SC Mathematics, Applied; Mechanics
6019 GA YP725
6020 UT ISI:000071308200011
6021 ER
6022 
6023 PT J
6024 AU Chien, WZ
6025 TI The first-order approximation of non-Kirchhoff-Love theory for elastic
6026    circular plate with fixed boundary under uniform surface loading (II)
6027 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6028 DT Article
6029 DE elasticity; circular plate; Kirchhoff-Love assumptions; generalized
6030    variational principle
6031 AB Based upon the differential equations and their related boundary
6032    conditions given in !he previous paper([I]), this paper finds the
6033    analytical solution of non-Kirchhoff-love theory for elastic circular
6034    plate with fixed boundary conditions under uniform surface loading.
6035    Hailer er, for. the sake of saving computational work, the first order
6036    approximation theory can be further simplified in more rational bases.
6037 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6038 RP Chien, WZ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
6039    200072, Peoples R China.
6040 CR CHIEN WZ, 1997, APPL MATH MECH-ENGL, V18, P1
6041    KIRCHHOFF G, 1850, J REINE ANGEW MATH, V40, P51
6042    LOVE AEN, 1937, TREATISE MATH THEORY
6043    MCPHERSON AE, 1943, 744 NACA
6044 NR 4
6045 TC 1
6046 SN 0253-4827
6047 J9 APPL MATH MECH-ENGL ED
6048 JI Appl. Math. Mech.-Engl. Ed.
6049 PD FEB
6050 PY 1997
6051 VL 18
6052 IS 2
6053 BP 103
6054 EP 112
6055 PG 10
6056 SC Mathematics, Applied; Mechanics
6057 GA YP170
6058 UT ISI:000071249600001
6059 ER
6060 
6061 PT J
6062 AU Dai, SQ
6063    Zang, HM
6064 TI A semi-inverse algorithm in application of computer algebra
6065 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6066 DT Article
6067 DE computer algebra; symbolic computation; intermediate expression swell;
6068    perturbation method; nonlinear analysis
6069 AB For the purpose of overcoming the difficulty of the so-called
6070    "intermediate expression swell" in applying computer algebra, a
6071    semi-inverse algorithm is proposed. The or del of seeking solutions for
6072    various problems is partly inverted, i. e., the intermediate
6073    expressions appearing in computation are "frozen" in the symbolic form
6074    at first, and "unfrozen" till the formal expressions of final solutions
6075    are found out. In this rca!, the overflow due to the shortage of saving
6076    space is avoided. The applications of the algorithm in the problems on
6077    nonlinear oscillation, dynamical optimization and interfacial solitary
6078    waves are described, which show the effectiveness of the semi-inverse
6079    algorithm.
6080 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6081 RP Dai, SQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
6082    200072, Peoples R China.
6083 CR BELTZER AI, 1990, APPL MECH REV, V43, P119
6084    CALMET J, 1988, COMPUTER ALGEBRA SYM, P245
6085    DAI SQ, 1981, SINGULAR PETURBATION, P33
6086    DAI SQ, 1982, APPL MATH MECHANICS, V3, P777
6087    RAND HR, 1987, PERTURBATION METHODS
6088    VANDYKE M, 1984, ANNU REV FLUID MECH, V16, P287
6089    WANG MQ, 1995, APPL MATH MECH ENGLI, V16, P421
6090    ZANG HM, 1991, J SHANGHAI U TECHNOL, V12, P283
6091    ZANG HM, 1993, J SHANGHAI U TECHNOL, V14, P189
6092    ZANG HM, 1993, THESIS SHANGHAI U TE
6093    ZANG HM, 1994, P INT C HYDR, P691
6094 NR 11
6095 TC 2
6096 SN 0253-4827
6097 J9 APPL MATH MECH-ENGL ED
6098 JI Appl. Math. Mech.-Engl. Ed.
6099 PD FEB
6100 PY 1997
6101 VL 18
6102 IS 2
6103 BP 113
6104 EP 119
6105 PG 7
6106 SC Mathematics, Applied; Mechanics
6107 GA YP170
6108 UT ISI:000071249600002
6109 ER
6110 
6111 PT J
6112 AU Wu, JC
6113    Pan, LZ
6114 TI Nonlinear theory of multilayer sandwich shells and its application (II)
6115    - Fundamental equations for orthotropic shallow shells
6116 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6117 DT Article
6118 DE multilayer sandwich shallow shells; orthotropic; fundamental equation
6119 AB This paper-applied the simplified theory for multilayer sandwich shells
6120    undergoing moderate/small rotations in Ref.[1] to shallow shells. The
6121    equilibrium equations and boundary conditions of large deflection of
6122    orthotropic and the special case, isotropic shells, are presented.
6123 C1 Tongji Univ, Inst Engn Mech, Shanghai 200092, Peoples R China.
6124    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6125 RP Wu, JC, Tongji Univ, Inst Engn Mech, Shanghai 200092, Peoples R China.
6126 CR *I MECH AC SIN, 1977, STAB VIBR SANDW PLAT
6127    CHENG ZQ, 1994, APPL MATH MECH, V15, P605
6128    CHIEN WZ, 1944, Q APPL MATH, V2, P120
6129    WU JC, 1997, APPL MATH MECH-ENGL, V18, P19
6130 NR 4
6131 TC 1
6132 SN 0253-4827
6133 J9 APPL MATH MECH-ENGL ED
6134 JI Appl. Math. Mech.-Engl. Ed.
6135 PD FEB
6136 PY 1997
6137 VL 18
6138 IS 2
6139 BP 129
6140 EP 139
6141 PG 11
6142 SC Mathematics, Applied; Mechanics
6143 GA YP170
6144 UT ISI:000071249600004
6145 ER
6146 
6147 PT J
6148 AU Feng, SW
6149    Zang, GC
6150 TI The study of sabot-discarding mechanism of gas-propelled APDS
6151 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6152 DT Article
6153 DE gas-propelled APDS; gas-filling; gas-ejecting; sabot-discarding motion
6154 AB With the advantages of simpler structure, smaller disturbance and no
6155    self-hurt while discarding sabot, the gas-propelled amor-piercing
6156    projectile with discarding sabot (APDS) owns its promissing prospect.
6157    This paper has studied the gas-filling and ejecting characteristics
6158    between the gas chamber iir saber and the environment. A dynamical
6159    model describing the sabot-discarding process I?as been established The
6160    authors have also given the starling condition and the parting
6161    criterion of the parting motion during the sabot-discarding. The mellon
6162    of fire gas-propelled APDS has been carefully calculated. Finally, the
6163    effect of the gashole area has been analyzed not only on the pressure
6164    in the gas chamber near the barrel exit, but also on the
6165    sabot-discarding time and distance away from the barrel.
6166 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6167    Nanjing Univ Sci & Technol, Ballist Res Lab China, Nanjing 210094, Peoples R China.
6168 RP Feng, SW, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
6169    200072, Peoples R China.
6170 CR *E CHIN I TECHN 10, 1978, INN BALL
6171    FENG SW, 1995, THESIS NANJING U SCI
6172    ZANG GC, 1989, AERODYNAMICS PROJECT
6173    ZUCROW MJ, 1976, GAS DYNAMICS
6174 NR 4
6175 TC 0
6176 SN 0253-4827
6177 J9 APPL MATH MECH-ENGL ED
6178 JI Appl. Math. Mech.-Engl. Ed.
6179 PD FEB
6180 PY 1997
6181 VL 18
6182 IS 2
6183 BP 151
6184 EP 156
6185 PG 6
6186 SC Mathematics, Applied; Mechanics
6187 GA YP170
6188 UT ISI:000071249600006
6189 ER
6190 
6191 PT J
6192 AU Ding, R
6193    Zhu, ZY
6194    Cheng, CJ
6195 TI Boundary element method for solving dynamical response of viscoelastic
6196    thin plate (I)
6197 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6198 DT Article
6199 DE dynamic response; viscoelasticity; BEM
6200 AB In this paper, a boundary element method for solving dynamical response
6201    of viscoelastic thin plate is given. In Laplace domain, we propose two
6202    methods to approximate the fundamental solution and develop the
6203    corresponding boundary element method. Then using the improved
6204    Bellman's numerical inversion of the Laplace transform, the solution of
6205    the original problem is obtained. The numerical results show that this
6206    method has higher accuracy and faster convergence.
6207 C1 Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
6208    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6209 RP Ding, R, Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
6210 CR BELLMAN R, 1966, NUMERICAL INVERSION
6211    BREBBIA CA, 1984, BOUNDARY ELEMENT TEC
6212    DURBIN F, 1974, COMPUT J, V17, P371
6213    GU P, 1990, COMPUTATIONAL STRUCT, V7, P65
6214    MILLER MK, 1966, SIAM J NUMER ANAL, V3, P624
6215    SUN B, 1990, COMPUTATIONAL STRUCT, V7, P19
6216    SUN B, 1990, SHANGHAI MECH, V11, P1
6217    YANG T, 1990, ACTA MECH SINICA, V22, P217
6218 NR 8
6219 TC 2
6220 SN 0253-4827
6221 J9 APPL MATH MECH-ENGL ED
6222 JI Appl. Math. Mech.-Engl. Ed.
6223 PD MAR
6224 PY 1997
6225 VL 18
6226 IS 3
6227 BP 229
6228 EP 235
6229 PG 7
6230 SC Mathematics, Applied; Mechanics
6231 GA YP171
6232 UT ISI:000071249700003
6233 ER
6234 
6235 PT J
6236 AU Guo, XM
6237 TI The existence of solutions in nonlinear elastodynamics
6238 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6239 DT Article
6240 DE nonlinear; constitutive law; elastodynamics; existence
6241 AB Under the small deformation assumption this paper shows the existence
6242    of solution for the system of elastic dynamics with the general
6243    nonlinear constitutive laws, and the existence of classical solution
6244    can be found under weaker conditions.
6245 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6246 RP Guo, XM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
6247    200072, Peoples R China.
6248 CR DUVAUT G, 1976, INEQUALITIES MECH PH
6249    GUO YZ, 1987, MORDEN MATH MECH, P143
6250    GURTIN ME, 1972, HDB PHYSIK A, V6
6251    LENE F, 1974, J MECANIQUE, V13, P499
6252    MOREAU JJ, 1974, LECT NOTES EC MATH S, V102, P141
6253    NAYROLES B, 1974, DAULITY CONVEXITY SO
6254    PANAGITOPOLUOS PD, 1985, INEQUALITY PROBLEMS
6255    VALENT T, 1988, BOUNDARY VALUE PROBL
6256 NR 8
6257 TC 0
6258 SN 0253-4827
6259 J9 APPL MATH MECH-ENGL ED
6260 JI Appl. Math. Mech.-Engl. Ed.
6261 PD MAR
6262 PY 1997
6263 VL 18
6264 IS 3
6265 BP 243
6266 EP 249
6267 PG 7
6268 SC Mathematics, Applied; Mechanics
6269 GA YP171
6270 UT ISI:000071249700005
6271 ER
6272 
6273 PT J
6274 AU Shi, WH
6275    Chen, DD
6276    Tang, YM
6277 TI On the exact solution to certain non-linear partial differential
6278    equations
6279 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6280 DT Article
6281 DE Janet number; bad system of equations; good system of equation
6282 AB This paper, based on the theory of stratifications, gives a brand-new
6283    classification of partial differential equations.
6284 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
6285 RP Shi, WH, Shanghai Univ, Shanghai 200072, Peoples R China.
6286 CR HADAMARD J, 1964, THEORIE EQUATIONS DE
6287    SHIH JE, IN PRESS UN PROBLEME
6288    SHIH WH, 1986, UNE METHODE ELEMENTA
6289    SHIH WH, 1987, CR HEBD ACAD SCI, V364, P535
6290    SHIH WH, 1992, SOLUTIONS ANAL QUELQ
6291    SHIH WY, IN PRESS STRATIFICAT
6292    SIH JA, 1994, THESIS
6293    THOM R, 1986, C HONN MME SCHW
6294 NR 8
6295 TC 0
6296 SN 0253-4827
6297 J9 APPL MATH MECH-ENGL ED
6298 JI Appl. Math. Mech.-Engl. Ed.
6299 PD MAR
6300 PY 1997
6301 VL 18
6302 IS 3
6303 BP 259
6304 EP 265
6305 PG 7
6306 SC Mathematics, Applied; Mechanics
6307 GA YP171
6308 UT ISI:000071249700007
6309 ER
6310 
6311 PT J
6312 AU Lu, ZM
6313    Liu, YL
6314 TI A calculation method for fully developed flows in curved rectangular
6315    tubes
6316 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6317 DT Article
6318 DE curved tube; Galerkin method; Dean number
6319 ID BIFURCATION
6320 AB In this paper, A method, consisted of perturbation method, Garlerkin
6321    method and finite-difference method, is designed to calculate fully
6322    developed flows in curved tubes of rectangular cross-section. It costs
6323    less computation than that of direct solving N-S equations, and
6324    prevents from building high-order difference equations and extra
6325    dealing with the boundary conditions. Numerical results in the
6326    situation of small curvature and low Dean number is in accordance with
6327    former's numerical and experimental results in quality, and it shows
6328    the feasibility of this paper's method.
6329 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6330 RP Lu, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
6331    Peoples R China.
6332 CR BARA B, 1992, J FLUID MECH, V244, P339
6333    BERGER SA, 1983, ANNU REV FLUID MECH, V15, P461
6334    DEAN WR, 1927, PHILOS MAG, V4, P208
6335    DEAN WR, 1928, PHILOS MAG, V5, P673
6336    DEAN WR, 1959, MATHEMATIKA, V6, P77
6337    DEVRIEND HJ, 1981, J FLUID MECH, V107, P423
6338    GHIA KN, 1977, T ASME           DEC, P640
6339    LIU YL, 1995, P 6 C MOD MATH MECHS
6340    SAAD Y, 1986, SIAM J SCI STAT COMP, V7, P856
6341    SELMI M, 1994, J FLUID MECH, V262, P353
6342    THANGAM S, 1990, J FLUID MECH, V217, P421
6343    WINTERS KH, 1987, J FLUID MECH, V180, P343
6344 NR 12
6345 TC 0
6346 SN 0253-4827
6347 J9 APPL MATH MECH-ENGL ED
6348 JI Appl. Math. Mech.-Engl. Ed.
6349 PD APR
6350 PY 1997
6351 VL 18
6352 IS 4
6353 BP 315
6354 EP 320
6355 PG 6
6356 SC Mathematics, Applied; Mechanics
6357 GA YP172
6358 UT ISI:000071249800001
6359 ER
6360 
6361 PT J
6362 AU Wu, JC
6363    Pan, LZ
6364 TI Nonlinear theory of multilayer sandwich shells and its application
6365    (III) - Large deflection and postbuckling of shallow shells
6366 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6367 DT Article
6368 DE multilayer sandwich shallow shells; nonlinear; deflection; postbuckling
6369 ID VIBRATION
6370 AB In this paper, exact solutions of large deflection of multilayer
6371    sandwich shallow shells under transverse forces and different boundary
6372    conditions are presented. Exactly results of postbuckling of multilayer
6373    sandwich plates, shallow cylindrical shells and nonlinear deflection of
6374    general shallow shells such as spherical shells under inplane edge
6375    forces are also obtained by the same procedure.
6376 C1 Tongji Univ, Inst Engn Mech, Shanghai 200092, Peoples R China.
6377    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6378 RP Wu, JC, Tongji Univ, Inst Engn Mech, Shanghai 200092, Peoples R China.
6379 CR CHENG ZQ, 1994, APPL MATH MECH, V15, P605
6380    CHIA CY, 1980, NONLINEAR ANAL PLATE
6381    CHIA CY, 1987, INT J SOLIDS STRUCT, V23, P1123
6382    LIU RH, 1993, APPL MATH MECH, V14, P217
6383    RAJAGOPAL SV, 1987, AIAA J, V25, P130
6384    WU JC, 1997, APPL MATH MECH-ENGL, V18, P129
6385 NR 6
6386 TC 0
6387 SN 0253-4827
6388 J9 APPL MATH MECH-ENGL ED
6389 JI Appl. Math. Mech.-Engl. Ed.
6390 PD APR
6391 PY 1997
6392 VL 18
6393 IS 4
6394 BP 321
6395 EP 329
6396 PG 9
6397 SC Mathematics, Applied; Mechanics
6398 GA YP172
6399 UT ISI:000071249800002
6400 ER
6401 
6402 PT J
6403 AU Chien, WZ
6404    Sheng, SZ
6405 TI The first-order approximation of non-Kirchhoff-Love theory for elastic
6406    circular plate with fixed boundary under uniform surface loading (III)
6407    - Numerical results
6408 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6409 DT Article
6410 DE elasticity; circular plate; non-Kirchhoff-Love theory; global
6411    interpolation method
6412 AB Based upon the differential equations and their related boundary
6413    conditions given in the previous papers([1,2]), using a global
6414    interpolation method, this paper presents a numerical solution to the
6415    axisymmetric bending problem of non-Kirchhoff-Love theory for circular
6416    plate with fired boundary under uniform surface loading. AN the
6417    numerical results obtained in this paper are compared with that of
6418    Kirchhoff-Love classical theory([3]) and E. Resisner's modified
6419    theory([4]).
6420 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6421 RP Chien, WZ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
6422    200072, Peoples R China.
6423 CR CAO ZY, 1983, DYNAMIC THEORY THICK
6424    CHIEN WZ, 1980, MECH ELASTICITY
6425    CHIEN WZ, 1997, APPL MATH MECH-ENGL, V18, P1
6426    CHIEN WZ, 1997, APPL MATH MECH-ENGL, V18, P103
6427    MCPHERSON AE, 1942, NORMAL PRESSURE TEST, P744
6428    REISSNER E, 1945, J APPL MECH, V12, P69
6429 NR 6
6430 TC 0
6431 SN 0253-4827
6432 J9 APPL MATH MECH-ENGL ED
6433 JI Appl. Math. Mech.-Engl. Ed.
6434 PD MAY
6435 PY 1997
6436 VL 18
6437 IS 5
6438 BP 411
6439 EP 419
6440 PG 9
6441 SC Mathematics, Applied; Mechanics
6442 GA YP173
6443 UT ISI:000071249900001
6444 ER
6445 
6446 PT J
6447 AU Zhu, Y
6448 TI Resonant flow of a fluid past a concave topography
6449 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6450 DT Article
6451 DE nonlinear waves; fKdV equation; surface tension
6452 ID GENERATION
6453 AB In this paper, the resonant generation of nonlinear capillary-gravity
6454    waves in a fluid system with the effect of surface tension and the
6455    concave topography is examined by using a perturbation method and
6456    numerical method.
6457 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6458 RP Zhu, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
6459    Peoples R China.
6460 CR FORNBERG B, 1978, PHILOS T ROY SOC A, V289, P373
6461    GRIMSHAW R, 1992, C P NONLINEAR DISPER, P1
6462    WU TYT, 1987, J FLUID MECH, V184, P75
6463    ZHU Y, 1995, PHYS FLUIDS, V7, P2294
6464 NR 4
6465 TC 1
6466 SN 0253-4827
6467 J9 APPL MATH MECH-ENGL ED
6468 JI Appl. Math. Mech.-Engl. Ed.
6469 PD MAY
6470 PY 1997
6471 VL 18
6472 IS 5
6473 BP 479
6474 EP 482
6475 PG 4
6476 SC Mathematics, Applied; Mechanics
6477 GA YP173
6478 UT ISI:000071249900007
6479 ER
6480 
6481 PT J
6482 AU Cheng, CJ
6483    Shang, XC
6484 TI The growth of the void in a hyperelastic rectangular plate under a
6485    uniaxial extension
6486 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6487 DT Article
6488 DE hyperelastic rectangular plate; finite deformation; growth of void;
6489    variational principle
6490 ID CAVITATION
6491 AB In the present paper, the finite deformation and stress analysis for a
6492    hyperelastic rectangular plate with a center void under a uniaxial
6493    extension is studied. In order to consider the effect of the existence
6494    of the void on the deformation and stress of the plate, the problem is
6495    reduced to the deformation and stress analysis for a hyperelastic
6496    annular plate and its approximate solution is obtained from the minimum
6497    potential energy principle. The growth of the cavitation is also
6498    numerically computed and analysed.
6499 C1 Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
6500    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6501 RP Cheng, CJ, Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
6502 CR BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
6503    HAUGHTON DM, 1990, INT J ENG SCI, V28, P163
6504    HORGAN CO, 1986, J ELASTICITY, V16, P189
6505    HORGAN CO, 1989, J APPL MECH, V56, P302
6506    HOU HS, 1993, J APPL MECH-T ASME, V60, P1
6507    ODEN TT, 1972, FINITE ELEMENTS NONL
6508    PODIOGUIDUGLI P, 1986, J ELASTICITY, V16, P75
6509    POLIGNONE DA, 1993, EFFECT MAT ANISOTROP, V3, P3381
6510    SHIELD RT, 1983, ASME J APPL MECH
6511 NR 9
6512 TC 1
6513 SN 0253-4827
6514 J9 APPL MATH MECH-ENGL ED
6515 JI Appl. Math. Mech.-Engl. Ed.
6516 PD JUL
6517 PY 1997
6518 VL 18
6519 IS 7
6520 BP 615
6521 EP 621
6522 PG 7
6523 SC Mathematics, Applied; Mechanics
6524 GA YP175
6525 UT ISI:000071250100001
6526 ER
6527 
6528 PT J
6529 AU Cheng, CJ
6530    Yang, X
6531 TI Nonlinear stability analysis of a clamped rod carrying electric current
6532 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
6533 DT Article
6534 DE magnetoelasticity; bifurcation; limit point; numerical method; straight
6535    rod carrying electric current
6536 ID BIFURCATION-THEORY; MAGNETIC FORCES; SUBJECT; STATES; FIELD; WIRE
6537 AB This paper is devoted to the analysis of the nonlinear stability of a
6538    clamped rod carrying electric current in the magnetic field which is
6539    produced by the current flowing in a pair of infinitely long parallel
6540    rigid wires. The natural state of the rod is in the plane of the wires
6541    and is equidistant from them. Firstly under the assumption of spatial
6542    deformation, the governing equations of the problem are derived, and
6543    the linearized problem and critical currents are discussed. Secondly,
6544    it is proved that the buckled states of the rod are always in planes.
6545    Finally, the global responses of the bifurcation problem of the rod are
6546    computed numerically and the distributions of the deflections, axial
6547    forces and bending moments are obtained. The results show that the
6548    buckled states of the rod and the wires. Furthermore, it is found that
6549    there exists a limit point on the branch solution of the supercritical
6550    buckled state. This is distinctively different from the buckled state
6551    of the elastic compressive rods.
6552 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
6553    Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
6554 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
6555    200072, Peoples R China.
6556 CR ANTMAN SS, 1976, ARCH RATION MECH AN, V61, P307
6557    BUJANO E, 1985, ARCH RATIONAL MECH A, V89, P307
6558    HEALEY TJ, 1990, J ELASTICITY, V24, P211
6559    SEIDMAN T, 1988, ARCH RATION MECH AN, V102, P307
6560    WOLFE P, 1983, T AM MATH SOC, V278, P377
6561    WOLFE P, 1988, Q J MECH APPL MATH, V41, P265
6562    WOLFE P, 1990, INT J NONLINEAR MECH, V25, P597
6563    WOLFE P, 1990, J ELASTICITY, V23, P201
6564    WOODSON HH, 1968, ELECTROMECHANICAL DY
6565    ZHU ZY, 1989, NUMERICAL METHOD BIF
6566 NR 10
6567 TC 0
6568 SN 0253-4827
6569 J9 APPL MATH MECH-ENGL ED
6570 JI Appl. Math. Mech.-Engl. Ed.
6571 PD SEP
6572 PY 1997
6573 VL 18
6574 IS 9
6575 BP 825
6576 EP 834
6577 PG 10
6578 SC Mathematics, Applied; Mechanics
6579 GA YP177
6580 UT ISI:000071250300002
6581 ER
6582 
6583 PT J
6584 AU Shen, WD
6585    Mao, LY
6586    Gao, W
6587    Zhu, ST
6588 TI Light tracks in the anisotropic optical fiber with two types of
6589    parabolic refractive indices
6590 SO ACTA PHYSICA SINICA-OVERSEAS EDITION
6591 DT Article
6592 ID STRONG-LASER PLASMA; RIEMANNIAN GEOMETRY
6593 AB The light tracks in an anisotropic optical fiber are studied by the
6594    optical metric model. The ordinary and extraordinary light tracks are
6595    determined by solving the null geodesic equation. In the paraxial
6596    approximation the birefringence of the fiber is analyzed. The focusing
6597    and defocusing characteristics of alight beam are described via the
6598    geodesic deviation equation.
6599 C1 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
6600 RP Shen, WD, Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800,
6601    Peoples R China.
6602 CR ERDELYI A, 1995, HIGHER TRANSCENDENTA, V2
6603    GORDON W, 1923, ANN PHYS-BERLIN, V72, P421
6604    GUO QZ, 1995, ACTA PHYS SINICA, V44, P210
6605    GUO QZ, 1995, ACTA PHYS SINICA, V44, P396
6606    MISNER C, 1973, GRAVITATION, P1108
6607    MISNER CW, 1973, GRAVITATION, P219
6608    SHEN W, 1996, CHIN J LASERS B, V5, P516
6609    SHEN WD, 1995, INT J THEOR PHYS, V34, P2085
6610    SHEN WD, 1995, INT J THEOR PHYS, V34, P2095
6611    ZHU ST, 1993, ACTA PHYS SINICA, V42, P1471
6612    ZHU ST, 1993, ACTA PHYS SINICA, V42, P1483
6613    ZHU ST, 1995, INT J THEOR PHYS, V34, P169
6614 NR 12
6615 TC 10
6616 SN 1004-423X
6617 J9 ACTA PHYS SIN-OVERSEAS ED
6618 JI Acta Phys. Sin.-Overseas Ed.
6619 PD JAN
6620 PY 1998
6621 VL 7
6622 IS 1
6623 BP 1
6624 EP 11
6625 PG 11
6626 SC Physics, Multidisciplinary
6627 GA YP854
6628 UT ISI:000071322500001
6629 ER
6630 
6631 PT J
6632 AU Wang, Q
6633    Li, CF
6634    Bao, JS
6635    Awai, I
6636    Boardman, AD
6637 TI Nonlinear magnetization and frequency conversion of magnetostatic waves
6638    in a ferromagnetic slab
6639 SO ACTA PHYSICA SINICA-OVERSEAS EDITION
6640 DT Article
6641 ID ENVELOPE SOLITONS; SURFACE-WAVES; GARNET-FILMS
6642 AB The possibilities of the generation of second-order dc and
6643    second-harmonic magnetic fields excited by the magnetostatic surface
6644    wave (MSSW) and backward volume wave (MSBVW) in ferromagnetic films
6645    have been analyzed and discussed through the calculations of source
6646    terms in the equations satisfying the magnetostatic potentials. The
6647    results show that the nonlinear magnetization responses of the film to
6648    the MSSW can generate neither de nor the second-harmonic magnetic
6649    fields. And the responses to the MSBVW will not induce the de field,
6650    but can excite second-harmonics under some conditions. The general
6651    expressions of third-order nonlinear magnetization are also derived and
6652    discussed.
6653 C1 Shanghai Univ Sci & Technol, Sch Sci, Dept Phys, Shanghai 201800, Peoples R China.
6654 RP Wang, Q, Shanghai Univ Sci & Technol, Sch Sci, Dept Phys, Shanghai
6655    201800, Peoples R China.
6656 CR AGRAWAL GP, 1989, NONLINEAR FIBER OPTI
6657    BOARDMAN AD, 1988, PHYS REV B, V38, P11444
6658    BOARDMAN AD, 1990, NONLINEAR WAVES SOLI
6659    BOARDMAN AD, 1994, IEEE T MAGN, V30, P1
6660    BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
6661    DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308
6662    DEGASPERIS P, 1987, PHYS REV LETT, V59, P481
6663    DEGASPERIS P, 1988, J APPL PHYS, V63, P4136
6664    GUREVICH AG, 1963, FERRITE MICROWAVE FR, P135
6665    GUSEV BN, 1986, SOV PHYS-SOLID STATE, V28, P1669
6666    KALINIKOS BA, 1988, ZH EKSP TEOR FIZ, V67, P303
6667    KALINIKOS BA, 1990, PHYS REV B B, V42, P8658
6668    KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712
6669    MENDNIKOV AM, 1981, SOV PHYS-SOLID STATE, V23, P136
6670    QI W, 1994, J INFRARED MILLIMETE, V13, P131
6671    SUHL H, 1957, J PHYS CHEM SOLIDS, V1, P109
6672    TEMIRYAZEV AG, 1987, SOV PHYS-SOLID STATE, V29, P179
6673    YARIV A, 1989, QUANTUM ELECT
6674 NR 18
6675 TC 0
6676 SN 1004-423X
6677 J9 ACTA PHYS SIN-OVERSEAS ED
6678 JI Acta Phys. Sin.-Overseas Ed.
6679 PD JAN
6680 PY 1998
6681 VL 7
6682 IS 1
6683 BP 47
6684 EP 60
6685 PG 14
6686 SC Physics, Multidisciplinary
6687 GA YP854
6688 UT ISI:000071322500006
6689 ER
6690 
6691 PT J
6692 AU Wang, Q
6693    Li, CF
6694    Bao, JS
6695    Awai, I
6696    Boardman, AD
6697 TI Frequency conversion of magnetostatic waves through nonlinear
6698    magnetization
6699 SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES &
6700    REVIEW PAPERS
6701 DT Article
6702 DE magnetostatic wave; nonlinear magnetization; frequency conversion;
6703    ferromagnet; second harmonics
6704 ID ENVELOPE SOLITONS; SURFACE-WAVES; GARNET-FILMS
6705 AB The possibilities of the generation of the second-order de and
6706    second-harmonic magnetic fields excited by the magnetostatic surface
6707    wave (MSSW) and backward volume wave (MSBVW) in ferromagnetic films
6708    have been analyzed and discussed through the calculations of the source
6709    terms in the equations satisfying the magnetostatic potentials. The
6710    results show that the nonlinear magnetization responses of the film to
6711    the MSSW can generate neither de nor the second-harmonic magnetic
6712    fields, and the responses to the MSBVW will not induce the de held, but
6713    could excite second-harmonics in the conditions of phase-matching and
6714    H-0/M-0 less than or equal to cos(2) (theta/3). The general expressions
6715    of the third-order nonlinear magnetization induced by electromagnetic
6716    waves are also derived, and the contributions of the second-order
6717    magnetization are analyzed.
6718 C1 Shanghai Univ Sci & Technol, Sch Sci, Dept Phys, Shanghai 201800, Peoples R China.
6719    Yamaguchi Univ, Fac Engn, Ube, Yamaguchi 755, Japan.
6720    Univ Salford, Dept Phys, Salford M5 4WT, Lancs, England.
6721 RP Wang, Q, Shanghai Univ Sci & Technol, Sch Sci, Dept Phys, Shanghai
6722    201800, Peoples R China.
6723 CR AGRAWAL GP, 1989, NONLINEAR FIBER OPTI
6724    BLOEBERGEN N, 1965, NONLINEAR OPTICS
6725    BOARDMAN AD, 1988, PHYS REV B, V38, P1144
6726    BOARDMAN AD, 1990, NONLINEAR WAVES SOLI
6727    BOARDMAN AD, 1991, ACTA PHYS SINICA, V40, P1703
6728    BOARDMAN AD, 1994, IEEE T MAGN, V30, P1
6729    BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
6730    DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308
6731    DEGASPERIS P, 1987, PHYS REV LETT, V59, P481
6732    DEGASPERIS P, 1988, J APPL PHYS, V63, P4136
6733    GUREVICH AG, 1963, FERRITE MICROWAVE FR, P135
6734    GUSEV BN, 1986, SOV PHYS-SOLID STATE, V28, P1669
6735    KALINIKOS BA, 1988, ZH EKSP TEOR FIZ, V67, P303
6736    KALINIKOS BA, 1990, PHYS REV B B, V42, P8658
6737    KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712
6738    MENDNIKOV AM, 1981, SOV PHYS-SOLID STATE, V23, P136
6739    QI W, 1993, ACTA PHYS SINICA, V42, P2005
6740    QI W, 1994, J INFRARED MILLIMETE, V13, P131
6741    SHEN YR, 1984, PRINCIPLES NONLINEAR
6742    SUHL H, 1957, J PHYS CHEM SOLIDS, V1, P109
6743    TEMIRYAZEV AG, 1987, SOV PHYS-SOLID STATE, V29, P179
6744    YARIV A, 1989, QUANTUM ELECT
6745 NR 22
6746 TC 1
6747 SN 0021-4922
6748 J9 JPN J APPL PHYS PT 1
6749 JI Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap.
6750 PD NOV
6751 PY 1997
6752 VL 36
6753 IS 11
6754 BP 7064
6755 EP 7072
6756 PG 9
6757 SC Physics, Applied
6758 GA YN475
6759 UT ISI:000071172300093
6760 ER
6761 
6762 PT J
6763 AU Wang, YS
6764    Bao, BR
6765    Cao, WC
6766 TI N,N,N ',N '-tetrabutylsuccinylamide as a new extractant in n-dodecane
6767    for extraction of uranium(VI) and thorium(IV) ions
6768 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
6769 DT Letter
6770 ID SOLVENT-EXTRACTION; N,N,N,N-TETRABUTYLSUCCINYLAMIDE
6771 AB N,N,N',N'-tetrabutylsuccinylamide (TBSA) was synthesized, characterised
6772    and used for the extradion of U(VI) and Th(IV) from nitric acid
6773    solutions into n-dodecane. Extraction distribution coefficients of
6774    U(VI) and Th(IV) as a function of aqueous nitric acid concentration
6775    extractant concentration and temperature have been measured and found
6776    that n-dodecane as diluent was superior to 50% 1,2,4-trimethyl benzene
6777    (TMB) and 50% kerosene (OK) system for extraction of U(VI) and Th(IV).
6778    The compositions of extracted species, equilibrium constants and
6779    enthalpies of extraction reactions have also been calculated. The
6780    formation of the 1 : 2 : 1 complex of uranyl(II) ion or the 1 : 4 : 1
6781    complex of thorium(IV) ion, nitrate ion and TBSA and extracted species
6782    was further confirmed by the IR spectra of saturated extract of U(VI)
6783    and Th(IV).
6784 C1 Chinese Acad Sci, Inst Nucl Res, Shanghai 201800, Peoples R China.
6785    Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
6786    Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
6787 RP Wang, YS, Chinese Acad Sci, Inst Nucl Res, POB 800 204, Shanghai
6788    201800, Peoples R China.
6789 CR MUSIKAS C, 1988, SEPAR SCI TECHNOL, V23, P1211
6790    NAIR GM, 1993, SOL EXTR ION EXCH, V11, P813
6791    SIDDALL TH, 1963, J INORG NUCL CHEM, V26, P883
6792    STANLEY RS, 1968, ORGANIC FUNCTIONAL G, V1, P277
6793    TIAN QZ, 1993, P ISEC 93, V1, P404
6794    WANG YS, 1996, J RADIOAN NUCL CH LE, V212, P101
6795    WANG YS, 1996, J RADIOAN NUCL CH LE, V213, P199
6796    WANG YS, 1996, J RADIOAN NUCL CH LE, V214, P67
6797    YIN YJ, 1985, HDB COLLEGE CHEM, P302
6798 NR 9
6799 TC 5
6800 SN 0236-5731
6801 J9 J RADIOANAL NUCL CHEM
6802 JI J. Radioanal. Nucl. Chem.
6803 PD AUG
6804 PY 1997
6805 VL 222
6806 IS 1-2
6807 BP 279
6808 EP 281
6809 PG 3
6810 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
6811    & Technology
6812 GA YL699
6813 UT ISI:000070983600051
6814 ER
6815 
6816 PT J
6817 AU Wang, ZH
6818 TI Orthogonal condition between two types of radiation modes for
6819    multilayer dielectric waveguides
6820 SO OPTICS COMMUNICATIONS
6821 DT Article
6822 ID WAVE-GUIDES
6823 AB A simplified orthogonal condition between two types of radiation modes
6824    for multilayer structures is presented by using their plane wave
6825    expressions, which is dependent on the ratios of amplitudes or relative
6826    phases of the fields at the outermost interfaces only, regardless of
6827    the number of layers and without detailed knowledge of field
6828    distribution inside this structure. It is a universal orthogonal
6829    condition, all the previously presented orthogonal conditions are
6830    special cases of this condition. (C) 1997 Elsevier Science B.V.
6831 RP Wang, ZH, SHANGHAI UNIV,WAVE SCI LAB,SHANGHAI 201800,PEOPLES R CHINA.
6832 CR BENECH P, 1992, OPT COMMUN, V88, P96
6833    DING H, 1995, IEEE J QUANTUM ELECT, V31, P411
6834    KOGELNIK H, 1998, GUIDED WAVE OPTOELEC, P7
6835    LEE SL, 1994, J LIGHTWAVE TECHNOL, V12, P2073
6836    MARCUSE D, 1982, LIGHT TRANSMISSION, P313
6837    MARCUSE D, 1990, IEEE J QUANTUM ELECT, V26, P675
6838    MARCUSE D, 1991, THEORY DIELECTRIC OP
6839    SNYDER AW, 1983, OPTICAL WAVEGUIDE TH
6840 NR 8
6841 TC 0
6842 SN 0030-4018
6843 J9 OPT COMMUN
6844 JI Opt. Commun.
6845 PD DEC 15
6846 PY 1997
6847 VL 144
6848 IS 4-6
6849 BP 187
6850 EP 191
6851 PG 5
6852 SC Optics
6853 GA YH847
6854 UT ISI:A1997YH84700007
6855 ER
6856 
6857 PT J
6858 AU Wang, SJ
6859    Hu, LL
6860    Xu, DM
6861 TI Open resonator technique for measuring multilayer dielectrics
6862 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
6863 DT Article
6864 DE open resonator; complex permittivity; multilayer dielectrics; Q-factor;
6865    length-varying method
6866 ID PERMITTIVITY
6867 AB In the present work, the open resonator technique is extended to
6868    measure multilayer dielectrics. The difficulties that limit the open
6869    resonator in measuring easy warped thin films can be overcome by
6870    flattening a heavy sample to eliminate air gaps. Applying the simply
6871    equipped length-varying method, measurements on several thin films were
6872    carried out, and encouraging results were achieved. (C) 1997 John Wiley
6873    & Sons, Inc.
6874 RP Wang, SJ, SHANGHAI UNIV SCI & TECHNOL,SCH COMMUN & INFORMAT
6875    ENGN,SHANGHAI 201800,PEOPLES R CHINA.
6876 CR *NAT STAND BUR PR, 1988, 953488 GB NAT STAND
6877    AFSAR MN, 1990, IEEE T MICROW THEORY, V38, P1845
6878    CHAN WFP, 1987, IEEE T MICROW THEORY, V35, P1429
6879    COOK RJ, 1976, ELECTRON LETT, V12, P1
6880    CULLEN AL, 1971, P ROY SOC LOND A MAT, V325, P493
6881    HIRVONEN TM, 1996, IEEE T INSTRUM MEAS, V45, P780
6882    JONES RG, 1976, P I ELECTR ENG, V123, P285
6883    LYNCH AC, 1982, P ROY SOC LOND A MAT, V380, P73
6884    VONHIPPEL AR, 1954, DIELECTRIC MATERIALS
6885    XU D, 1989, J ELECT MEAS INSTRUM, V3
6886    YU PK, 1982, P ROY SOC LOND A MAT, V380, P49
6887 NR 11
6888 TC 3
6889 SN 0895-2477
6890 J9 MICROWAVE OPT TECHNOL LETT
6891 JI Microw. Opt. Technol. Lett.
6892 PD DEC 20
6893 PY 1997
6894 VL 16
6895 IS 6
6896 BP 368
6897 EP 371
6898 PG 4
6899 SC Engineering, Electrical & Electronic; Optics
6900 GA YH635
6901 UT ISI:A1997YH63500012
6902 ER
6903 
6904 PT J
6905 AU Liu, GL
6906 TI Variational formulation of 3-D unsteady transonic flow past oscillating
6907    rotor bladings .1. Potential flow
6908 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
6909 DT Article
6910 ID SHOCKS
6911 AB A family of variational principles (VP) and generalized VP have been
6912    derived for fully 3-D unsteady transonic potential flow past
6913    periodically oscillating rotating bladings with an interblade phase
6914    angle, accounting also for the distributed mass suction/blowing along
6915    the blade/annular walls and converting the matching conditions across
6916    all unknown oscillating discontinuities (such as shocks and free
6917    trailing vortex sheets) into natural ones. In addition, taking
6918    advantage of the periodicity of blade oscillation, it has succeeded in
6919    transforming the original initial-boundary-value problem into a pure
6920    boundary-value problem to facilitate finite element (FE) computations.
6921    This work provides a sound theoretical basis for FE analysis of
6922    unsteady flow and also constitutes an important ingredient of the
6923    coupled aeroelasticity theory of blade vibration /13,14/.
6924 C1 SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA.
6925 RP Liu, GL, SHANGHAI UNIV,SHANGHAI 200072,PEOPLES R CHINA.
6926 CR DOWELL EH, 1988, APPL MECH REV, V41, P299
6927    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
6928    HAFEZ MM, 1979, AIAA J, V17, P838
6929    LIU GL, 1987, 871426 AIAA
6930    LIU GL, 1989, P 5 INT S UNST AER A, P76
6931    LIU GL, 1989, SCI CHINA SER A, V32, P707
6932    LIU GL, 1990, P 1 INT S AER INT FL, P128
6933    LIU GL, 1992, ACTA MECH, V95, P117
6934    LIU GL, 1992, P 4 CHIN NAT AER C S, P358
6935    LIU GL, 1993, P 2 INT C FLUID MECH, P438
6936    LIU GL, 1993, P 2 INT S AER INT FL, P361
6937    LIU GL, 1996, 19 INT C THEOR APPL
6938    POLING DR, 1986, AIAA J, V24, P193
6939    TRAUPEL W, 1977, THERMISCHE TURBOMASC, V1, P3
6940    XU JZ, 1980, CHINESE J MECH ENG, V16, P66
6941 NR 15
6942 TC 2
6943 SN 0334-0082
6944 J9 INT J TURBO JET ENGINES
6945 JI Int. J. Turbo. Jet-Engines
6946 PY 1997
6947 VL 14
6948 IS 2
6949 BP 71
6950 EP 77
6951 PG 7
6952 SC Engineering, Aerospace
6953 GA YH439
6954 UT ISI:A1997YH43900002
6955 ER
6956 
6957 PT J
6958 AU Zhao, H
6959    Fu, RT
6960    Sun, X
6961    Zhang, ZL
6962 TI Off-diagonal interactions, bond density correlation, and their effects
6963    on the excitons in conjugated polymers
6964 SO PHYSICAL REVIEW B
6965 DT Article
6966 ID CHARGE COULOMB REPULSION; PEIERLS-HUBBARD MODELS; N-ELECTRONS SYSTEM;
6967    BAND-GAP; OPTICAL-SPECTRA; ONE DIMENSION; GROUND-STATE; POLYACETYLENE;
6968    SUPERCONDUCTIVITY; ALTERNATION
6969 AB The effects of electron-electron interactions with both diagonal and
6970    off-diagonal parts on the excitons in conjugated polymers are studied,
6971    and it is found that the bond-charge interaction W and the bond-site
6972    interaction X affect the excitons oppositely: the former suppresses the
6973    excitation energy of excitons whereas the latter increases it except
6974    for the 2A(g) state. We find that the screening (originating from the
6975    bond density correlation effect of pi electrons), which controls the
6976    bond correlation, is a reason that the binding energy of the exciton is
6977    reduced. Our calculation shows that the off-diagonal interactions
6978    affect the singlet exciton with small binding energy even at normal
6979    screening, but for large exciton energy, such effects are negligible.
6980 C1 FUDAN UNIV,DEPT PHYS,SHANGHAI 200433,PEOPLES R CHINA.
6981    ACAD SINICA,SHANGHAI INST TECH PHYS,SHANGHAI 200083,PEOPLES R CHINA.
6982    SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SCI,SHANGHAI 201800,PEOPLES R CHINA.
6983 RP Zhao, H, FUDAN UNIV,TD LEE PHYS LAB,SHANGHAI 200433,PEOPLES R CHINA.
6984 CR ABE S, 1992, PHYS REV B, V45, P8264
6985    ABE S, 1992, PHYS REV B, V45, P9432
6986    BAERISWYL D, 1985, PHYS REV B, V31, P6633
6987    BEDNORZ JG, 1986, Z PHYS B CON MAT, V64, P189
6988    CAMPBELL DK, 1988, PHYS REV B B, V38, P12043
6989    CAMPBELL DK, 1990, PHYS REV B, V42, P475
6990    CAMPBELL IH, 1996, PHYS REV LETT, V76, P1900
6991    CHNO K, 1964, THEOR CHIM ACTA, V2, P219
6992    DACOSTA PG, 1993, PHYS REV B, V48, P1993
6993    EMERY VJ, 1976, PHYS REV B, V14, P2898
6994    GRANT PM, 1979, SOLID STATE COMMUN, V29, P225
6995    HAYASHI H, 1985, PHYS REV B, V32, P5295
6996    HIRSCH JE, 1983, PHYS REV LETT, V51, P296
6997    HIRSCH JE, 1989, PHYS LETT A, V134, P451
6998    HIRSCH JE, 1989, PHYS LETT A, V138, P83
6999    HIRSCH JE, 1989, PHYS REV B, V39, P11515
7000    HIRSCH JE, 1989, PHYS REV B, V40, P2354
7001    HORSCH P, 1981, PHYS REV B, V24, P7351
7002    HUBBARD J, 1963, P ROY SOC LOND A MAT, V276, P238
7003    HUBBARD J, 1978, PHYS REV B, V17, P494
7004    KIVELSON S, 1987, PHYS REV LETT, V58, P1899
7005    LENG JM, 1994, PHYS REV LETT, V72, P156
7006    LOF RW, 1992, PHYS REV LETT, V68, P3924
7007    MARTIN RL, 1993, PHYS REV B, V48, P4845
7008    MAZUMDAR S, 1989, SOLID STATE COMMUN, V66, P427
7009    MEINDERS MBJ, 1995, PHYS REV B, V52, P2484
7010    NASU K, 1983, J PHYS SOC JPN, V52, P3865
7011    NASU K, 1983, J PHYS SOC JPN, V53, P302
7012    NASU K, 1984, J PHYS SOC JPN, V53, P427
7013    PAINELLI A, 1988, SOLID STATE COMMUN, V66, P273
7014    PAINELLI A, 1989, PHYS REV B, V39, P2830
7015    PARISER R, 1953, J CHEM PHYS, V21, P767
7016    PARR RG, 1950, J CHEM PHYS, V18, P1561
7017    PARR RG, 1952, J CHEM PHYS, V20, P1499
7018    POPLE JA, 1955, P PHYS SOC         A, V68, P81
7019    RNOX RS, 1963, SOLID STATE PHYSIC S, V5
7020    SCHUTEN K, 1975, J CHEM PHYS, V64, P4422
7021    SONDHI SL, 1995, PHYS REV B, V51, P5943
7022    STRACK R, 1993, PHYS REV LETT, V70, P2637
7023    SU WP, 1979, PHYS REV LETT, V42, P1698
7024    SUN X, 1991, PHYS REV B, V44, P11042
7025    WU C, 1987, PHYS REV LETT, V59, P831
7026    WU CQ, 1993, PHYS REV B, V47, P4204
7027    ZAANEN J, 1990, J SOLID STATE CHEM, V88, P8
7028 NR 44
7029 TC 3
7030 SN 0163-1829
7031 J9 PHYS REV B
7032 JI Phys. Rev. B
7033 PD NOV 15
7034 PY 1997
7035 VL 56
7036 IS 19
7037 BP 12268
7038 EP 12276
7039 PG 9
7040 SC Physics, Condensed Matter
7041 GA YH165
7042 UT ISI:A1997YH16500048
7043 ER
7044 
7045 PT J
7046 AU Feng, SS
7047    Qiu, XJ
7048 TI Energy-momentum and angular-momentum in ISO(1,2) Chern-Simons gravity
7049 SO PHYSICS LETTERS B
7050 DT Article
7051 DE enegy-momentum; angular-momentum; ISO(1,2) Chern-Simons
7052 ID 2+1 DIMENSIONAL GRAVITY; GRAVITATIONAL ANYONS; SPIN
7053 AB Using local SO(1,2) transform and general displacement transform, We
7054    obtain generally covariant conservation laws of angular -momentum and
7055    energy-momentum for ISO(1,2) Chern-Simons gravity. The currents have
7056    also superpotentials and are therefore identically conserved. The
7057    structure of the superpotentials are simpler than those in the
7058    conventional SO(1,2) topologically massive gravity (TMG). The
7059    reasonableness of the definitions may be supported by the correct
7060    energy momentum and angular-momentum for Cho-Lee's exact solution. (C)
7061    1997 Elsevier Science B.V.
7062 C1 SHANGHAI TEACHERS UNIV,CTR STRING THEORY,SHANGHAI 200234,PEOPLES R CHINA.
7063 RP Feng, SS, SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
7064 CR BAK D, 1994, PHYS REV D, V49, P5173
7065    CHO JH, 1995, PHYS LETT B, V351, P111
7066    DESER S, 1982, ANN PHYS-NEW YORK, V140, P372
7067    DESER S, 1984, ANN PHYS-NEW YORK, V152, P220
7068    DESER S, 1990, NUCL PHYS B, V344, P747
7069    DESER S, 1990, PHYS REV LETT, V64, P611
7070    DUAN YS, 1963, ACTA PHYS SINICA, V19, P589
7071    DUAN YS, 1988, GEN RELAT GRAVIT, V20, P5
7072    FENG SS, GEN COVARIANT CONSER
7073    FENG SS, 1995, GEN RELAT GRAVIT, V27, P887
7074    FENG SS, 1996, NUCL PHYS B, V468, P163
7075    WITTEN E, 1988, NUCL PHYS B, V311, P46
7076    WITTEN E, 1989, NUCL PHYS B, V323, P113
7077 NR 13
7078 TC 2
7079 SN 0370-2693
7080 J9 PHYS LETT B
7081 JI Phys. Lett. B
7082 PD OCT 16
7083 PY 1997
7084 VL 411
7085 IS 3-4
7086 BP 256
7087 EP 260
7088 PG 5
7089 SC Physics, Multidisciplinary
7090 GA YG529
7091 UT ISI:A1997YG52900004
7092 ER
7093 
7094 PT J
7095 AU Feng, W
7096    Hoa, SV
7097    Huang, Q
7098 TI Classification of stress modes in assumed stress fields of hybrid
7099    finite elements
7100 SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
7101 DT Article
7102 DE finite element; stress modes; classification
7103 ID INVARIANT; 20-NODE
7104 AB A classification method is presented to classify stress modes in
7105    assumed stress fields of hybrid finite element based on the eigenvalue
7106    examination and the concept of natural deformation modes. It is assumed
7107    that there only exist m (=n - r) natural deformation modes in a hybrid
7108    finite element which has n degrees of freedom and r rigid-body modes.
7109    For a hybrid element, stress modes in various assumed stress fields
7110    proposed by different researchers can be classified into m stress mode
7111    groups corresponding to m natural deformation modes and a zero-energy
7112    stress mode group corresponding to rigid-body modes by the m natural
7113    deformation modes. It is proved that if the flexibility matrix CHI is a
7114    diagonal matrix, the classification of stress modes is unique. Each
7115    stress mode group, except the zero-energy stress mode group, contains
7116    many stress modes that are interchangeable in an assumed stress field
7117    and do not cause any kinematic deformation modes in the element. A
7118    necessary and sufficient condition for avoiding kinematic deformation
7119    modes in a hybrid element is also presented. By means of the m
7120    classified stress mode groups and the necessary and sufficient
7121    condition, assumed stress fields with the minimum number of stress
7122    modes can be constructed and the resulting elements are free from
7123    kinematic deformation modes. Moreover, an assumed stress field cap be
7124    constructed according to the problem to be solved. As examples, 2-D,
7125    4-node plane element and 3-D, 8-node solid element are discussed. (C)
7126    1997 John Wiley & Sons, Ltd.
7127 C1 CONCORDIA UNIV,DEPT MECH ENGN,MONTREAL,PQ H3G 1M8,CANADA.
7128    SHANGHAI UNIV,SHANGHAI,PEOPLES R CHINA.
7129 CR AHMAD S, 1974, FINITE ELEMENT METHO, P85
7130    BABUSKA I, 1977, COMPUT METHODS APPL, V11, P175
7131    BREZZI F, 1974, RAIRO, V8, P129
7132    CHEN WJ, 1992, INT J NUMER METH ENG, V35, P1871
7133    DEVEUBAKE BMF, 1965, P C MATR METH STRUCT
7134    FENG W, 1996, INT J NUMER METH ENG, V39, P3625
7135    HAN J, 1990, P 2 INT C COMP AID D, P189
7136    HAN JH, 1993, INT J NUMER METH ENG, V36, P3903
7137    HAO SV, 1995, COMPUTER AIDED DESIG
7138    HENSHELL RD, 1972, P BRUN U C I MATH IT
7139    HUANG Q, 1989, THESIS CONCORDIA U M
7140    PIAN THH, 1964, AIAA J, V2, P1333
7141    PIAN THH, 1969, INT J NUMER METH ENG, V1, P3
7142    PIAN THH, 1983, INT J NUMER METH ENG, V19, P1741
7143    PIAN THH, 1986, INT J NUMER METH ENG, V22, P173
7144    PIAN THH, 1987, FINITE ELEMENT HDB
7145    PIAN THH, 1988, INT J NUMER METH ENG, V26, P2331
7146    PIAN THH, 1995, FINITE ELEM ANAL DES, V21, P5
7147    PUNCH EF, 1984, COMPUT METHOD APPL M, V47, P331
7148    RUBINSTEIN R, 1983, COMPUT METHOD APPL M, V38, P63
7149    SZE KY, 1990, FINITE ELEM ANAL DES, V7, P61
7150    SZE KY, 1994, INT J NUMER METH ENG, V37, P2235
7151    WU CC, 1995, FINITE ELEM ANAL DES, V21, P111
7152 NR 23
7153 TC 7
7154 SN 0029-5981
7155 J9 INT J NUMER METHOD ENG
7156 JI Int. J. Numer. Methods Eng.
7157 PD DEC 15
7158 PY 1997
7159 VL 40
7160 IS 23
7161 BP 4313
7162 EP 4339
7163 PG 27
7164 SC Engineering, Multidisciplinary; Mathematics, Applied
7165 GA YG117
7166 UT ISI:A1997YG11700002
7167 ER
7168 
7169 PT J
7170 AU Chen, ZL
7171    Lu, Q
7172    Tang, GC
7173 TI Single machine scheduling with discretely controllable processing times
7174 SO OPERATIONS RESEARCH LETTERS
7175 DT Article
7176 DE single machine scheduling; discretely controllable processing times;
7177    NP-hardness; dynamic programming
7178 ID EARLINESS; COMMON; JOBS; DATE; COST
7179 AB In the field of machine scheduling problems with controllable
7180    processing times, it is often assumed that the possible processing time
7181    of a job can be continuously controlled, i.e. it can be any number in a
7182    given interval. In this paper, we introduce a discrete model in which
7183    job processing times are discretely controllable, i.e. the possible
7184    processing time of a job can only be controlled to be some specified
7185    lengths. Under this discrete model, we consider a class of single
7186    machine problems with the objective of minimizing the sum of the total
7187    processing cost and the cost measured by a standard criterion. We
7188    investigate most common criteria, e.g. makespan, maximum tardiness,
7189    total completion time, weighted number of tardy jobs, and total
7190    earliness-tardiness penalty. The computational complexity of each
7191    problem is analyzed, and pseudo-polynomial dynamic programming
7192    algorithms are proposed for hard problems. (C) 1997 Elsevier Science
7193    B.V.
7194 C1 NATL UNIV SINGAPORE,DEPT DECIS SCI,SINGAPORE 0511,SINGAPORE.
7195    SHANGHAI UNIV,DEPT MANAGEMENT,SHANGHAI 200041,PEOPLES R CHINA.
7196 RP Chen, ZL, PRINCETON UNIV,DEPT CIVIL ENGN & OPERAT RES,PRINCETON,NJ
7197    08544.
7198 CR AHUJA RK, 1993, NETWORKS FLOWS THEOR
7199    ALIDAEE B, 1993, EUR J OPER RES, V70, P335
7200    BAKER KR, 1990, OPER RES, V38, P22
7201    CHENG TCE, SCHEDULING MINIMIZE
7202    CHENG TCE, 1996, IIE TRANS, V28, P177
7203    CHENG TCE, 1996, OPER RES LETT, V19, P237
7204    DANIELS RL, 1994, OPER RES, V42, P504
7205    GAREY MR, 1978, COMPUTERS INTRACTABI
7206    GRAHAM RL, 1979, ANN DISCRETE MATH, V5, P287
7207    HALL NG, 1991, OPER RES, V39, P847
7208    KARP RM, 1972, REDUCIBILITY COMBINA
7209    MOORE JM, 1968, MANAGE SCI, V15, P334
7210    NOWICKI E, 1990, DISCRETE APPLIED MAT, V25, P271
7211    PANWALKAR SS, 1982, OPER RES, V30, P391
7212    PANWALKAR SS, 1992, EUR J OPER RES, V59, P298
7213    TRICK MA, 1994, OPER RES, V42, P234
7214    VANWASSENHOVE LN, 1982, EUR J OPER RES, V11, P48
7215    VICKSON RG, 1980, AIIE T, V12, P258
7216    VICKSON RG, 1980, OPS RES, V28, P1155
7217    ZDRZALKA S, 1991, OPER RES LETT, V10, P519
7218 NR 20
7219 TC 15
7220 SN 0167-6377
7221 J9 OPER RES LETT
7222 JI Oper. Res. Lett.
7223 PD SEP
7224 PY 1997
7225 VL 21
7226 IS 2
7227 BP 69
7228 EP 76
7229 PG 8
7230 SC Operations Research & Management Science
7231 GA YE472
7232 UT ISI:A1997YE47200003
7233 ER
7234 
7235 PT J
7236 AU Gu, CQ
7237 TI Multivariate generalized inverse vector-valued rational interpolants
7238 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
7239 DT Article
7240 DE generalized inverse for vectors; bivariate rational interpolants;
7241    characterisation
7242 AB Bivariate rational interpolating functions of the type introduced in
7243    [9, 1] are shown to have a natural extension to the case of rational
7244    interpolation of vector-valued quantities using the formalism of
7245    Graves-Morris [2]. In this paper, the convergence of Stieltjes-type
7246    branched vector-valued continued fractions for two-variable functions
7247    are constructed by using the Samelson inverse. Based on them, a kind of
7248    bivariate vector-valued rational interpolating function is defined on
7249    plane grids. Sufficient conditions for existence, characterisation and
7250    uniqueness for the interpolating functions are proved. The results in
7251    the paper are illustrated with some examples.
7252 C1 SHANGHAI UNIV,DEPT MATH,SHANGHAI 200072,PEOPLES R CHINA.
7253 CR CUTY AM, 1985, COMPUTING, V34, P41
7254    GRAVESMORRIS PR, 1983, NUMER MATH, V42, P331
7255    GRAVESMORRIS PR, 1983, PADE APPROXIMATION I, P144
7256    GRAVESMORRIS PR, 1984, IMA J NUMER ANAL, V4, P209
7257    GU CQ, 1993, NUMER MATH J CHINESE, V15, P99
7258    GU CQ, 1994, NUMER MATH J CHINESE, V16, P293
7259    GU CQ, 1995, MATH NUMER SINICA, V17, P73
7260    GU CQ, 1995, P INT C NUM APPR
7261    MURPHY JA, 1978, J COMPUT APPL MATH, V4, P181
7262    WYNN P, 1963, ARCH RATION MECH AN, V12, P273
7263    ZHU GQ, 1990, CHINESE J NUMER MATH, V12, P66
7264 NR 11
7265 TC 4
7266 SN 0377-0427
7267 J9 J COMPUT APPL MATH
7268 JI J. Comput. Appl. Math.
7269 PD OCT 28
7270 PY 1997
7271 VL 84
7272 IS 2
7273 BP 137
7274 EP 146
7275 PG 10
7276 SC Mathematics, Applied
7277 GA YD221
7278 UT ISI:A1997YD22100001
7279 ER
7280 
7281 PT J
7282 AU Sang, WB
7283    Durose, K
7284    Brinkman, AW
7285    Woods, J
7286 TI In situ mass spectroscopic investigation of the pyrolysis mechanism of
7287    (C3H7)(2)Te and (CH3)(2)Cd during MOCVD
7288 SO ACTA CHIMICA SINICA
7289 DT Article
7290 ID GROWTH; CDTE
7291 AB Pyrolysis properties of metallo - organic precursors, di -
7292    isopropyltelluride (DIPTe) and dimethylcadmium (DMCd), in a MOCVD
7293    reactor have been investigated by in - situ mass spectroscopy. In
7294    particular, possible gas phase reactions as well as pyrolysis mechanism
7295    are analysed. Interaction between the two precursors and its influence
7296    on pyrolysis temperature are explored under the CdTe, CdTe growth
7297    conditions.
7298 C1 UNIV DURHAM,DEPT PHYS,APPL PHYS GRP,DURHAM DH1 3LE,ENGLAND.
7299 RP Sang, WB, SHANGHAI UNIV,DEPT INORGAN MAT,JIADING CAMPUS,SHANGHAI
7300    201800,PEOPLES R CHINA.
7301 CR CZERNIAK MR, 1984, J CRYST GROWTH, V68, P128
7302    DAVIES JI, 1986, J CRYST GROWTH, V79, P363
7303    FUJII S, 1988, J CRYST GROWTH, V93, P750
7304    GAILS JE, 1991, MATER RES SOC S P, V204, P155
7305    HOKE WE, 1985, APPL PHYS LETT, V46, P398
7306    JAXKSON DA, 1988, J CRYST GROWTH, V87, P205
7307    KIRSS RU, 1991, ORGANOMETALLICS, V10, P3589
7308    KONDRATEV VN, 1970, RATE CONSTANTS GAS P
7309    LAURIE CM, 1957, T FARADAY SOC, V53, P1431
7310    LOVERGINE N, 1991, CHEMTRONICS, V5, P11
7311    MCALLISTER T, 1989, J CRYST GROWTH, V96, P552
7312    MULLIN JB, 1981, J CRYST GROWTH, V55, P92
7313    NISHIO M, 1990, JPN J APPL PHYS, V29, P145
7314    OGAWA H, 1988, J APPL PHYS, V64, P6750
7315    SANG WB, 1991, CHEMTRONICS, V5, P179
7316    TROTMANDICKENSO.AF, 1973, COMPREHENSIVE INORGA, P991
7317 NR 16
7318 TC 0
7319 SN 0567-7351
7320 J9 ACTA CHIM SIN
7321 JI Acta Chim. Sin.
7322 PY 1997
7323 VL 55
7324 IS 6
7325 BP 578
7326 EP 584
7327 PG 7
7328 SC Chemistry, Multidisciplinary
7329 GA YD106
7330 UT ISI:A1997YD10600009
7331 ER
7332 
7333 PT J
7334 AU Wong, PL
7335    Xu, H
7336    Zhang, Z
7337 TI Performance evaluation of high pressure sleeve seal
7338 SO WEAR
7339 DT Article
7340 DE high pressure; sleeve seal; elastohydrodynamics
7341 AB Sealing problems for reciprocating pumps or intensifiers operating at
7342    high pressures (above 100 MPa) may be solved by adopting a closely
7343    fitting externally pressurized sleeve. This paper presents an
7344    elastohydrodynamic (EHD) analysis for such high pressure sleeve type
7345    seals and examines the effects of structural and operational parameters
7346    on their high pressure performance characteristics. The effects of
7347    pressure on the viscosity and density of the working fluid are also
7348    considered in the analysis. The numerical results clearly indicate that
7349    the sealing efficiency of high pressure sleeve seals can be enhanced
7350    with elastic deformation of both the sleeve and the plunger. The effect
7351    of working pressure on the stiffness of the sleeve seal and the induced
7352    frictional force are also presented. The study of the effect of
7353    eccentricity on the radial stiffness shows that it leads to a large
7354    radial force and the plunger is pressed on the sleeve surface, hereby
7355    termed 'hydraulic locking'. This phenomenon results in an increase in
7356    frictional forces which is one of the key factors for the limited
7357    working life of the seal. (C) 1997 Elsevier Science S.A.
7358 C1 SHANGHAI UNIV,BEARING RES INST,SHANGHAI,PEOPLES R CHINA.
7359 RP Wong, PL, CITY UNIV HONG KONG,DEPT MFG ENGN,KOWLOON,HONG KONG.
7360 CR HARRIS HD, 1972, ASME, V94, P335
7361    JOHANNESSON HL, 1983, 198313 TULEA
7362    KAMAL MM, 1968, ASME, V90, P412
7363    VENKATARAMAN B, 1996, ASME, V118, P509
7364    WANG NM, 1970, ASME, V92, P310
7365    XU H, 1991, THESIS ACAD MACH SCI
7366    XU H, 1995, 22 LEEDS LYON S TRIB
7367    YOUNG WC, 1989, ROARKS FORMULAE STRE
7368 NR 8
7369 TC 1
7370 SN 0043-1648
7371 J9 WEAR
7372 JI Wear
7373 PD SEP
7374 PY 1997
7375 VL 210
7376 IS 1-2
7377 BP 104
7378 EP 111
7379 PG 8
7380 SC Engineering, Mechanical; Materials Science, Multidisciplinary
7381 GA YC793
7382 UT ISI:A1997YC79300014
7383 ER
7384 
7385 PT J
7386 AU Guo, BQ
7387    Cao, WM
7388 TI An iterative and parallel solver based on domain decomposition for the
7389    h-p version of the finite element method
7390 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
7391 DT Article
7392 DE iterative and parallel solver; preconditioning; the h-p version of the
7393    finite element method
7394 ID ELLIPTIC PROBLEMS; 2 DIMENSIONS; PRECONDITIONER
7395 AB In this paper, we propose a new interative and parallel solver, based
7396    on domain decomposition, for the h-p version of the finite element
7397    method in two dimensions. It improves our previous work in two aspects:
7398    (1) A subdomain may contain several super-elements of the coarse mesh,
7399    thus can be of arbitrary shape and size. This makes the solver more
7400    efficient and more flexible in computational practice. (2) The
7401    p-version components (i.e., the high order side and internal modes) in
7402    every element are treated separately, which results in better
7403    parallelism.
7404 C1 UNIV MANITOBA,DEPT APPL MATH,WINNIPEG,MB R3T 2N2,CANADA.
7405    SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
7406 CR AINSWORTH M, 1996, SIAM J NUMER ANAL, V33, P1358
7407    BABUSKA I, 1988, SIAM J MATH ANAL, V19, P257
7408    BABUSKA I, 1988, SIAM J NUMER ANAL, V25, P837
7409    BABUSKA I, 1989, INT J NUMER METH ENG, V28, P1891
7410    BABUSKA I, 1991, SIAM J NUMER ANAL, V28, P624
7411    BJORSTAD PE, 1986, SIAM J NUMER ANAL, V23, P1097
7412    BRAMBLE J, 1986, J MATH COMPUT, V175, P103
7413    BRAMBLE JH, 1989, MATH COMPUT, V53, P1
7414    CIARLET PG, 1978, FINITE ELEMENT METHO
7415    DRYJA M, 1989, ITERATIVE METHODS LA, P273
7416    DRYJA M, 1990, P 3 INT S DOM DEC ME
7417    DRYJA M, 1994, SIAM J SCI COMPUT, V15, P604
7418    GUO B, 1986, COMPUT MECH, V1, P203
7419    GUO B, 1986, COMPUT MECH, V1, P21
7420    GUO BQ, IN PRESS SIAM J SCI
7421    GUO BQ, 1996, NUMER MATH, V75, P59
7422    MANDEL J, 1990, COMPUT METHOD APPL M, V80, P117
7423    MANDEL J, 1993, SOLVING LARGE SCALE, P65
7424    ODEN JT, 1994, 9411 TICAM
7425    ODEN JT, 1994, CONT MATH, V180, P295
7426    PAVARINO LF, 1994, IN PRESS COMPUT MATH
7427    PAVARINO LF, 1996, SIAM J NUMER ANAL, V33, P1303
7428    SZABO B, 1990, FINITE ELEMENT ANAL
7429    WIDLUND OB, 1988, P 1 INT S DOM DEC ME
7430    XU JC, 1992, SIAM REV, V34, P581
7431    ZIENKIEWICZ OC, 1989, FINITE ELEMENT METHO, V1
7432 NR 26
7433 TC 6
7434 SN 0377-0427
7435 J9 J COMPUT APPL MATH
7436 JI J. Comput. Appl. Math.
7437 PD SEP 30
7438 PY 1997
7439 VL 83
7440 IS 1
7441 BP 71
7442 EP 85
7443 PG 15
7444 SC Mathematics, Applied
7445 GA YA600
7446 UT ISI:A1997YA60000005
7447 ER
7448 
7449 PT J
7450 AU Li, CF
7451 TI Globalism of commutation relation and mechanism of momentum transfer in
7452    the Aharonov-Bohm effect
7453 SO PHYSICA B
7454 DT Article
7455 DE globalism of a commutation relation; Aharonov-Bohm effect; momentum
7456    transfer
7457 ID WAVE
7458 AB After examining the domain of an operator that has classical analog,
7459    which is shown to be the whole spatial space, the concept of globalism
7460    of a commutation relation is introduced through analyzing the
7461    quantization of the kinetic angular momentum in the Aharonov-Bohm
7462    effect. Its applications are also given to explain in an elegant and
7463    precise way, the mechanism of momentum transfer in the Aharonov-Bohm
7464    scattering and to study the probability distribution of the momentum
7465    for a particle in a one-dimensional infinitely deep square potential
7466    well.
7467 RP Li, CF, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,20 CHENGZHONG RD,SHANGHAI
7468    201800,PEOPLES R CHINA.
7469 CR AFANASEV GN, 1990, SOV J PART NUCL, V21, P74
7470    AHARONOV Y, 1959, PHYS REV, V115, P485
7471    CHAMBERS RG, 1960, PHYS REV LETT, V5, P3
7472    DIRAC PAM, 1958, PRINCIPLES QUANTUM M, P140
7473    ERIZ CP, 1973, PAULI LECT PHYSICS, V5, P24
7474    JACKIW R, 1983, PHYS REV LETT, V50, P555
7475    KRETZSCHMAR M, 1965, Z PHYS, V185, P97
7476    LANDAU LD, 1977, QUANTUM MECH NONRELA, P65
7477    LI CF, 1995, PHYSICA B, V212, P436
7478    LI CF, 1996, ANN PHYS-NEW YORK, V252, P329
7479    LI CF, 1996, PHYSICA B, V226, P406
7480    LI CF, 1997, PHYSICA B, V229, P354
7481    PESHKIN M, 1981, PHYS REP, V80, P375
7482    ROY SM, 1984, NUOVO CIMENTO A, V79, P391
7483    SAKURAI JJ, 1985, MODERN QUANTUM MECH, P55
7484    TONOMURA A, 1986, PHYS REV LETT, V56, P792
7485 NR 16
7486 TC 1
7487 SN 0921-4526
7488 J9 PHYSICA B
7489 JI Physica B
7490 PD SEP
7491 PY 1997
7492 VL 240
7493 IS 1-2
7494 BP 98
7495 EP 103
7496 PG 6
7497 SC Physics, Condensed Matter
7498 GA XZ736
7499 UT ISI:A1997XZ73600015
7500 ER
7501 
7502 PT J
7503 AU Shen, WD
7504    Zhang, JF
7505    Wang, ST
7506    Zhu, ST
7507 TI Fermat's principle, the general eikonal equation, and space geometry in
7508    a static anisotropic medium
7509 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND
7510    VISION
7511 DT Article
7512 DE anisotropic medium; Fermat's principle; Riemannian manifold; optical
7513    metric; general eikonal equation; geodesic equation
7514 ID TRANSMISSION SCALAR THEORY; STRONG-LASER PLASMA; RIEMANNIAN GEOMETRY;
7515    OPTICS
7516 AB Fermat's principle and the optical metric are generalized to the case
7517    of an anisotropic medium. The metric tensor of a three-dimensional
7518    Riemannian manifold is related to the dielectric tensor of the medium.
7519    The general eikonal equation in a static anisotropic medium is derived.
7520    The expressions for the curvature tensor and the curvature scalar that
7521    characterize the geometrical structure of a three-dimensional manifold
7522    are given. For an isotropic medium the derived expressions for the
7523    curvature tensor and curvature scalar reduce to the previous results.
7524    (C) 1997 Optical Society of America.
7525 C1 SHANGHAI INST EDUC,DEPT PHYS,SHANGHAI 200031,PEOPLES R CHINA.
7526    ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI 201800,PEOPLES R CHINA.
7527 RP Shen, WD, SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
7528 CR BORN M, 1980, PRINCIPLES OPTICS, P122
7529    BORN M, 1980, PRINCIPLES OPTICS, P666
7530    CARINENA JF, 1996, FORTSCHR PHYS, V44, P181
7531    CARINENA JF, 1996, J PHYS A-MATH GEN, V29, P1695
7532    CARMELI M, 1982, CLASSICAL FIELDS GEN, P67
7533    GUO H, 1995, J OPT SOC AM A, V12, P600
7534    GUO H, 1995, J OPT SOC AM A, V12, P607
7535    GUO QZ, 1995, ACTA PHYS SINICA, V44, P210
7536    GUO QZ, 1995, ACTA PHYS SINICA, V44, P396
7537    MISNER CW, 1973, GRAVITATION, P293
7538    RIVERA AL, 1995, J OPT SOC AM A, V12, P1380
7539    SHEN W, 1996, CHIN J LASERS B, V5, P516
7540    SHEN WD, 1995, INT J THEOR PHYS, V34, P2085
7541    SHEN WD, 1995, INT J THEOR PHYS, V34, P2095
7542    ZHU S, 1993, WORLD OPT C SHANGH C
7543    ZHU ST, 1987, J OPT SOC AM B, V4, P739
7544    ZHU ST, 1988, P TOP M LAS MAT LAS, P190
7545    ZHU ST, 1989, ACTA PHYS SINICA, V38, P1167
7546    ZHU ST, 1989, ACTA PHYS SINICA, V38, P559
7547    ZHU ST, 1993, ACTA PHYS SINICA, V42, P1471
7548    ZHU ST, 1995, INT J THEOR PHYS, V34, P169
7549 NR 21
7550 TC 0
7551 SN 0740-3232
7552 J9 J OPT SOC AM A-OPT IMAGE SCI
7553 JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis.
7554 PD OCT
7555 PY 1997
7556 VL 14
7557 IS 10
7558 BP 2850
7559 EP 2854
7560 PG 5
7561 SC Optics
7562 GA XY742
7563 UT ISI:A1997XY74200029
7564 ER
7565 
7566 PT J
7567 AU Mo, YW
7568    Xia, YB
7569    Huang, XQ
7570    Wang, H
7571 TI Dielectric properties of diamond film alumina composites
7572 SO THIN SOLID FILMS
7573 DT Article
7574 DE diamond; aluminium oxide; dielectric properties; chemical vapour
7575    deposition (CVD)
7576 AB Diamond films were deposited on alumina substrates both by microwave
7577    plasma chemical vapor deposition and hot filament chemical vapor
7578    deposition techniques. The qualities of deposited films were
7579    characterized by X-ray diffraction and Raman scattering spectrometry.
7580    The dielectric properties of the diamond film/alumina composites were
7581    measured, and were compared with the results also calculated by the
7582    model of series capacitors. (C) 1997 Elsevier Science S.A.
7583 RP Mo, YW, SHANGHAI UNIV,SCH MAT SCI & ENGN,SHANGHAI 201800,PEOPLES R
7584    CHINA.
7585 CR CHU MY, 1992, J MATER RES, V7, P3010
7586    HSU JY, 1989, J AM CERAM SOC, V72, P1861
7587    JOHNSON WB, 1993, J MATER RES, V8, P1169
7588    MO YW, 1995, ICEM ICSA 95 XIAN
7589    MO YW, 1997, IN PRESS ACTA PHYS S, V46
7590    NAZERI A, 1993, AM CERAM SOC B, V75, P59
7591    NEMANICH RJ, 1991, ANNU REV MATER SCI, V21, P535
7592    YARBROUGH WA, 1992, J AM CERAM SOC, V75, P3179
7593    YIBEN XIA, 1996, CHINESE PHYS LETT, V13, P557
7594 NR 9
7595 TC 9
7596 SN 0040-6090
7597 J9 THIN SOLID FILMS
7598 JI Thin Solid Films
7599 PD AUG 15
7600 PY 1997
7601 VL 305
7602 IS 1-2
7603 BP 266
7604 EP 269
7605 PG 4
7606 SC Materials Science, Multidisciplinary; Physics, Applied; Physics,
7607    Condensed Matter
7608 GA XX864
7609 UT ISI:A1997XX86400035
7610 ER
7611 
7612 PT J
7613 AU Xu, WP
7614    Gu, M
7615    Zheng, LR
7616    Xin, HP
7617    Cao, ZC
7618    Okuyama, M
7619    Lin, CG
7620 TI Pulsed laser deposition of PZT/BaRuO3 bi-layered films on silicon
7621    substrate
7622 SO FERROELECTRICS
7623 DT Article
7624 ID CAPACITORS; FATIGUE
7625 AB Bi-layered thin films of PZT(70/30) on BaRuO3 have been prepared on
7626    silicon substrate by AF excimer laser deposition(PLD). BaRuO3 thin film
7627    crystallized into perovskite-like structure with (110) orientation and
7628    became highly conductive after atmospheric thermal annealing at 700
7629    degrees C for 30 minutes. It was found the subsequent PLD-deposited PZT
7630    film can be efficiently transformed to its perovskite structure by
7631    rapid thermal processing(RTP) at 700 degrees C for 100sec.
7632 C1 SHANGHAI UNIV,DEPT MAT SCI,SHANGHAI 201800,PEOPLES R CHINA.
7633    OSAKA UNIV,FAC ENGN SCI,DEPT ELECT ENGN,OSAKA 560,JAPAN.
7634 RP Xu, WP, CHINESE ACAD SCI,SHANGHAI INST MET,STATE KEY LAB FUNCT MAT
7635    INFORMAT,SHANGHAI 200050,PEOPLES R CHINA.
7636 CR ALSHAREEF HN, 1994, J MATER RES, V9, P2968
7637    DAT R, 1994, APPL PHYS LETT, V64, P2673
7638    EOM CB, 1992, SCIENCE, V258, P1766
7639    RAMESH R, 1992, APPL PHYS LETT, V61, P1537
7640    RANDALL JJ, 1959, J AM CHEM SOC, V81, P2629
7641    TAKIKAVA O, 1986, IEEE P EL COMP C IEE, P214
7642    XU WP, IN PRESS PHYS STAT A
7643    XU WP, UNPUB MAT LETT
7644 NR 8
7645 TC 2
7646 SN 0015-0193
7647 J9 FERROELECTRICS
7648 JI Ferroelectrics
7649 PY 1997
7650 VL 195
7651 IS 1-4
7652 BP 199
7653 EP 202
7654 PG 4
7655 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
7656 GA XX634
7657 UT ISI:A1997XX63400048
7658 ER
7659 
7660 PT J
7661 AU Yu, JD
7662    Sasaki, S
7663    Sugiura, H
7664    Huang, TK
7665    Inaguma, Y
7666    Itoh, M
7667 TI Compressibility and pressure dependence of charge transfer and T-c in
7668    pristine and iodine-intercalated single crystals of
7669    Bi2.2Sr1.8CaCu2O8+delta
7670 SO PHYSICA C
7671 DT Article
7672 DE electrical resistivity; Hall concentration; high pressure effect
7673 ID SUPERCONDUCTING TRANSITION-TEMPERATURE; HALL-COEFFICIENT; EPITAXIAL
7674    INTERCALATION; RESISTIVITY TENSOR
7675 AB Compressibility measurements for Bi2.2Sr1.8CaCu2O8+delta
7676    (Bi-2.2:1.8:1:2) and IBi2.2Sr1.8CaCu2O8+delta (IBi-2.2:1.8:1:2) single
7677    crystals were carried out in a diamond-anvil pressure cell up to 9 GPa.
7678    The values of bulk modulus are 68.56 and 48.21 Gpa for Bi-2.2:1.8:1:2
7679    and for IBi-2.2:1.8:1:2 single crystals, respectively. Hall
7680    coefficients and resistivities for oxygen annealed Bi-2.2:1.8:1:2 and
7681    I0.7Bi-2.2:1.8:1:2 single crystals were measured under high pressure up
7682    to 1.5 GPa. The value of dR(H)/dP for the oxygen annealed crystal is
7683    -0.06 x 10(-3) cm(3) C-1 GPa(-1), which is one third of the as-grown
7684    crystal. The decrease of dR(H)/dP after oxygen annealing is considered
7685    to be due to the increase of homogeneity of oxygen during high
7686    temperature annealing, The dR(H)/dP of I0.7Bi-2.2:1.8:1:2 is -0.39 x
7687    10(-3) cm(3) C-1 GPa(-1), which is nearly the same as that of
7688    IBi-2.2:1.8:1:2. That the negative dR(H)/dP of intercalated crystals is
7689    nearly twice as large as that of pristine crystals is concerned with
7690    the deposition of the iodine molecular state under pressure. The T-c of
7691    oxygen-annealed Bi-2.2:1.8:1:2 increases with increasing pressure at a
7692    parabolic curve below 1.5 Cpa. By using the Gupta model, we simulated
7693    T-c(P) up to 6 GPa, and found that the maximum value of T-c(P) is 88 K
7694    at P = 4.1 GPa. This is in good agreement with the experimental result
7695    measured by Klotz et al. [Physica C 209 (1993) 499]. The T-c of the
7696    I0.7Bi-2.2:1.8:1:2 crystal increased linearly at a rate of dT(c)/dP =
7697    3.5 K/GPa. This is the opposite of the behaviour of IBi-2.2:1.8:1:2
7698    which decreased linearly at a rate of dT(c)/dP = -3.6 K/GPa, although
7699    both intercalated crystals are overdoped compounds. (C) 1997 Elsevier
7700    Science B.V.
7701 C1 TOKYO INST TECHNOL,MAT & STRUCT LAB,MIDORI KU,YOKOHAMA,KANAGAWA 226,JAPAN.
7702    YOKOHAMA CITY UNIV,GRAD SCH INTEGRATED SCI,KANAZAWA KU,YOKOHAMA,KANAGAWA 236,JAPAN.
7703    SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
7704 CR ALMASAN CC, 1992, PHYS REV LETT, V69, P680
7705    CRUSELLAS MA, 1991, PHYSICA C, V180, P313
7706    FAULQUES E, 1992, SOLID STATE COMMUN, V82, P531
7707    FUJIWARA A, 1992, PHYSICA C, V203, P411
7708    GROEN WA, 1990, PHYSICA C, V165, P55
7709    GUPTA RP, 1995, PHYS REV B, V51, P11760
7710    HUANG TK, 1993, PHYS REV B, V48, P7712
7711    HUANG TK, 1994, PHYS REV B, V49, P9885
7712    HUANG TK, 1996, PHYSICA C, V271, P103
7713    HYBERTSEN MS, 1988, PHYS REV LETT, V60, P1661
7714    KLOTZ S, 1993, PHYSICA C, V209, P499
7715    KOSUGE M, 1992, PHYS REV B, V45, P10713
7716    MARTIN S, 1988, PHYS REV LETT, V60, P2194
7717    MURAYAMA C, 1991, PHYSICA C 2, V185, P1293
7718    MURAYAMA C, 1991, PHYSICA C, V183, P277
7719    MURNAGHAN FD, 1951, FINITE DEFORMATION E
7720    NEUMEIER JJ, 1993, PHYS REV B, V47, P8385
7721    OLSEN JS, 1991, PHYS SCR, V44, P211
7722    POOKE D, 1992, PHYSICA C, V198, P349
7723    TAJIMA Y, 1989, PHYSICA C, V158, P237
7724    THOMPSON JD, 1984, REV SCI INSTRUM, V55, P231
7725    WIJNGAARDEN RJ, 1989, STUDIES HIGH TEMPERA, V2, P29
7726    XIANG XD, 1990, NATURE, V348, P145
7727    XIANG XD, 1991, PHYS REV B B, V43, P11496
7728    XIANG XD, 1991, SCIENCE, V254, P1487
7729    XIANG XD, 1992, PHYS REV LETT, V68, P530
7730 NR 26
7731 TC 4
7732 SN 0921-4534
7733 J9 PHYSICA C
7734 JI Physica C
7735 PD JUL 21
7736 PY 1997
7737 VL 281
7738 IS 1
7739 BP 45
7740 EP 54
7741 PG 10
7742 SC Physics, Applied
7743 GA XX217
7744 UT ISI:A1997XX21700006
7745 ER
7746 
7747 PT J
7748 AU Cheng, XY
7749    Wan, XJ
7750    Chen, YX
7751 TI Environmental embrittlement and hydrogen diffusion in Co3Ti alloys
7752 SO SCRIPTA MATERIALIA
7753 DT Article
7754 ID MECHANICAL-PROPERTIES; NI3AL; BORON; INTERMETALLICS; NI3(SI,TI);
7755    DUCTILITY
7756 RP Cheng, XY, SHANGHAI UNIV,SHANGHAI 200072,PEOPLES R CHINA.
7757 CR GEORGE EP, 1993, SCRIPTA METALL MATER, V28, P857
7758    GEORGE EP, 1993, STRUCTURAL INTERMETA, P431
7759    GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37
7760    GEORGE EP, 1995, MATER RES SOC S P, V364, P1131
7761    LIU CT, 1985, ACTA METALL, V33, P213
7762    LIU CT, 1992, NATO ASI SER, V213, P321
7763    LIU CT, 1992, SCRIPTA METALL MATER, V27, P25
7764    TAKASUGI T, 1986, ACTA METALL, V34, P607
7765    TAKASUGI T, 1988, MATERIALS FORUM, V12, P8
7766    TAKASUGI T, 1990, J MATER SCI, V25, P4239
7767    TAKASUGI T, 1991, J MATER SCI, V26, P1173
7768    TAKASUGI T, 1991, MATER RES SOC S P, V213, P403
7769    TAKASUGI T, 1993, SCRIPTA METALL MATER, V29, P1587
7770    WAN X, 1994, J MATER SCI TECHNOL, V10, P39
7771    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
7772    WAN XJ, 1994, SCRIPTA METALL MATER, V31, P677
7773    WAN XJ, 1995, ACTA METALL SINICA, V8, P299
7774 NR 17
7775 TC 4
7776 SN 1359-6462
7777 J9 SCRIPTA MATER
7778 JI Scr. Mater.
7779 PD OCT 1
7780 PY 1997
7781 VL 37
7782 IS 7
7783 BP 1065
7784 EP 1069
7785 PG 5
7786 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
7787    Engineering
7788 GA XW414
7789 UT ISI:A1997XW41400025
7790 ER
7791 
7792 PT J
7793 AU Zhang, RJ
7794    Dai, SG
7795    Mu, PA
7796 TI A spherical capacitive probe for measuring the thickness of coatings on
7797    metals
7798 SO MEASUREMENT SCIENCE & TECHNOLOGY
7799 DT Article
7800 AB This paper proposes a new method of using the spherical capacitive
7801    probe instead of the common planar probe to increase the accuracy in
7802    measuring the thickness of non-conducting coatings on metals. The
7803    measuring conversion model of the spherical capacitive probe and Its
7804    electric circuit are discussed and effective methods for overcoming the
7805    unfavourable influence caused by the spherical capacitive probe are
7806    introduced as well.
7807 RP Zhang, RJ, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 200093,PEOPLES R CHINA.
7808 CR *ISO, 1982, 2178 ISO
7809    *ISO, 1982, 2360 ISO
7810 NR 2
7811 TC 1
7812 SN 0957-0233
7813 J9 MEAS SCI TECHNOL
7814 JI Meas. Sci. Technol.
7815 PD SEP
7816 PY 1997
7817 VL 8
7818 IS 9
7819 BP 1028
7820 EP 1033
7821 PG 6
7822 SC Engineering, Multidisciplinary; Instruments & Instrumentation
7823 GA XW071
7824 UT ISI:A1997XW07100011
7825 ER
7826 
7827 PT J
7828 AU Tu, LH
7829 TI Asymptotic Hodge theory in several variables: The flat case
7830 SO CHINESE ANNALS OF MATHEMATICS SERIES B
7831 DT Article
7832 DE canonical extension; Gauss-Manin connection; monodromy transformation
7833 AB In the flat case, the answer to the problem posed by Steenbrink and
7834    Zucker is given.
7835 RP Tu, LH, SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
7836 CR CLEMENS CH, 1977, DUKE MATH J, V44, P215
7837    DELIGNE P, 1970, LECT NOTES MAT, V163
7838    DELIGNE P, 1971, PUBL MATH IHES, V40, P5
7839    DELIGNE P, 1974, PUBL MATH IHES, V44, P5
7840    SCHMID W, 1973, INVENT MATH, V22, P211
7841    STEENBRINK J, 1976, INVENT MATH, V31, P229
7842    STEENBRINK J, 1985, INVENT MATH, V80, P489
7843    TU LH, 1990, J SYS SCI MATH SCI, V10, P277
7844    TU LH, 1991, CHIN ANN MATH A, V12, P766
7845    ZUCKER S, 1984, ANN MATH STUD, V106, P121
7846    ZUCKER S, 1985, INVENT MATH, V80, P543
7847 NR 11
7848 TC 0
7849 SN 0252-9599
7850 J9 CHIN ANN MATH SER B
7851 JI Chin. Ann. Math. Ser. B
7852 PD JUL
7853 PY 1997
7854 VL 18
7855 IS 3
7856 BP 277
7857 EP 282
7858 PG 6
7859 SC Mathematics
7860 GA XV663
7861 UT ISI:A1997XV66300002
7862 ER
7863 
7864 PT J
7865 AU Huang, HC
7866 TI Practical circular-polarization-maintaining optical fiber
7867 SO APPLIED OPTICS
7868 DT Article
7869 ID PROPOSALS; FIELD
7870 AB The author describes a new idea for making
7871    circular-polarization-maintaining optical fiber with an existing
7872    fabrication technique. The method simply requires one to spin at a
7873    constant rate a special preform consisting of only one off-axis
7874    stress-applying element in addition to the on-axis core. Measurements
7875    taken with such a fiber specimen verify the existence of circular
7876    eigenmodes, the ease of joining or splicing two fiber segments, the
7877    tolerance to macrobending with a small radius, etc. Good agreement
7878    exists between the experimental data and the theoretical analysis.
7879    Prospective applications are discussed. (C) 1997 Optical Society of
7880    America.
7881 RP Huang, HC, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
7882 CR BARLOW AJ, 1981, ELECTRON LETT, V17, P388
7883    BIRCH RD, 1987, ELECTRON LETT, V23, P50
7884    CASTELLI R, 1989, OPT QUANT ELECTRON, V21, P35
7885    DANDLIKER R, 1992, OPTICAL WAVE SCI TEC, V2, P39
7886    FANG XS, 1985, IEEE T MICROW THEORY, V33, P1150
7887    FUJII Y, 1986, IEE PROC-J, V133, P249
7888    GAUTHIER F, 1981, P INT C FIB ROT SENS, P196
7889    HUANG HC, IN PRESS MICROWAVE A
7890    HUANG HC, 1960, SCI SINICA, V9, P142
7891    HUANG HC, 1990, 4943132, US
7892    HUANG HC, 1992, 5096312, US
7893    HUANG HC, 1995, 5452394, US
7894    HUANG HC, 1995, MICROW OPT TECHN LET, V9, P37
7895    HUANG HC, 1997, APPL OPTICS, V36, P4241
7896    HUSSEY CD, 1986, ELECTRON LETT, V22, P129
7897    JEUNHOMME L, 1980, ELECTRON LETT, V16, P921
7898    MACHIDA S, 1982, T IECE JPN E, V65, P642
7899    MAYSTRE F, 1989, OPT LETT, V14, P587
7900    RAMASWAMY V, 1978, APPL OPTICS, V17, P3014
7901    ROGERS AJ, 1995, J LIGHTWAVE TECHNOL, V13, P1371
7902    SAKAI JI, 1981, OPT LETT, V6, P496
7903    SOMEDA CG, 1985, 41584, IT
7904    SOMEDA CG, 1986, 41638, IT
7905    SOMEDA CG, 1991, OPT QUANT ELECTRON, V23, P713
7906    ULRICH R, 1979, APPL OPTICS, V18, P2241
7907    VARNHAM MP, 1985, P IOOC ECOC VEN, P135
7908    VARNHAM MP, 1986, M OPT FIB COMM, P68
7909 NR 27
7910 TC 2
7911 SN 0003-6935
7912 J9 APPL OPT
7913 JI Appl. Optics
7914 PD SEP 20
7915 PY 1997
7916 VL 36
7917 IS 27
7918 BP 6968
7919 EP 6975
7920 PG 8
7921 SC Optics
7922 GA XV502
7923 UT ISI:A1997XV50200036
7924 ER
7925 
7926 PT J
7927 AU Feng, SS
7928    Zong, HS
7929    Wang, ZX
7930    Qiu, XJ
7931 TI Induced electronic interactions in Chern-Simons systems
7932 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
7933 DT Article
7934 ID GAUGE NONINVARIANCE; 3 DIMENSIONS; FIELD-THEORY; QUANTIZATION
7935 AB The induced electronic interactions in (I + 2)-dimensional vector
7936    Chem-Simons systems are studied by means of path-integral quantization.
7937    We consider four cases: relativistic, and nonrelativistic fermion
7938    Maxwell-Chern-Simons models, and relativistic and nonrelativistic
7939    fermion Chern-Simons models. It is shown that the Chern-Simons term may
7940    induce exotic electronic interactions which can be local or nonlocal
7941    and small Chern-Simons coupling may have a considerable effect in some
7942    cases.
7943 C1 ACAD SINICA,INST THEORET PHYS,BEIJING 100080,PEOPLES R CHINA.
7944    ACAD SINICA,INST NUCL PHYS,SHANGHAI 201800,PEOPLES R CHINA.
7945    SHANGHAI TEACHERS UNIV,CTR STRING THEORY,SHANGHAI 200234,PEOPLES R CHINA.
7946 RP Feng, SS, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
7947    R CHINA.
7948 CR ANDRES K, 1975, PHYS REV LETT, V35, P1779
7949    BARASHENKOV IV, 1994, PHYS REV LETT, V72, P1575
7950    DESER S, 1982, ANN PHYS-NEW YORK, V140, P372
7951    FENG D, 1992, NEW PERSPECTIVES CON
7952    FENG SS, 1995, INT J THEOR PHYS, V34, P1827
7953    FENG SS, 1997, INT J THEORETICAL PH, V36, P41
7954    FRADKIN E, 1991, FIELD THEORIES CONDE
7955    GITMANN DM, 1990, QUANTIZATION FIELDS
7956    HAGEN CR, 1985, PHYS REV D, V31, P2135
7957    HAGEN CR, 1985, PHYS REV D, V31, P848
7958    JACKIW R, 1990, PHYS REV LETT, V64, P2969
7959    JONES W, 1973, THEORETICAL SOLID ST
7960    KIM YW, 1995, PHYS REV D, V51, P2943
7961    LOPEZ A, 1991, PHYS REV B, V44, P5246
7962    NI GJ, 1995, LEVINSON THEOREM ANO
7963    POLYAKOV AM, 1988, MOD PHYS LETT A, V3, P325
7964    REDLICH AN, 1984, PHYS REV D, V29, P2366
7965    REDLICH AN, 1984, PHYS REV LETT, V52, P18
7966    SEMENOFF GW, 1988, PHYS REV LETT, V61, P517
7967    YANG CN, 1989, PHYS REV LETT, V63, P2144
7968    YANG JF, 1995, PHYS LETT B, V343, P249
7969 NR 21
7970 TC 1
7971 SN 0020-7748
7972 J9 INT J THEOR PHYS
7973 JI Int. J. Theor. Phys.
7974 PD AUG
7975 PY 1997
7976 VL 36
7977 IS 8
7978 BP 1717
7979 EP 1731
7980 PG 15
7981 SC Physics, Multidisciplinary
7982 GA XU738
7983 UT ISI:A1997XU73800003
7984 ER
7985 
7986 PT J
7987 AU Zhang, LX
7988    Wu, YS
7989    Yang, LX
7990    Fang, MX
7991    Fan, CZ
7992 TI Relationship between bronze alloy composition and corrosion
7993 SO CHINESE SCIENCE BULLETIN
7994 DT Letter
7995 RP Zhang, LX, SHANGHAI UNIV SCI & TECHNOL,JINAN 250061,PEOPLES R CHINA.
7996 CR FAN CZ, 1992, CHINESE J CHE PHYS, V6, P479
7997    FAN CZ, 1993, SCI CHINA SER B, V36, P659
7998    WANG CS, 1995, J U SCI TECH CHINA, V25, P448
7999    WU LM, 1986, CULTURAL RELICS, V11, P76
8000    WU YS, 1992, ACTA PHYS SINICA, V1, P79
8001 NR 5
8002 TC 0
8003 SN 1001-6538
8004 J9 CHIN SCI BULL
8005 JI Chin. Sci. Bull.
8006 PD SEP
8007 PY 1997
8008 VL 42
8009 IS 17
8010 BP 1494
8011 EP 1496
8012 PG 3
8013 SC Multidisciplinary Sciences
8014 GA XU001
8015 UT ISI:A1997XU00100025
8016 ER
8017 
8018 PT J
8019 AU Bi, PZ
8020    Shi, YM
8021 TI A revised approach of the two phase model for quark-gluon deconfinement
8022    phase transition
8023 SO ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS
8024 DT Article
8025 ID HARD-CORE RADIUS; FINITE TEMPERATURE; BAG CONSTANT; THERMODYNAMICS;
8026    DENSITY; CHROMODYNAMICS; PHENOMENOLOGY; RESTORATION; CHARMONIUM;
8027    SPECTRUM
8028 AB The two phase model for the quark-gluon deconfinement phase transition
8029    is modified based on the temperature and density related properties of
8030    the hadron. The revised approach is consistent with the single body
8031    description. Its consequences on the pressure and energy density of the
8032    hadron gas is investigated, and the critical value of temperature and
8033    chemical potential of the phase transition from the hadron gas to a
8034    non-interacting quark matter are calculated. Our results agree with the
8035    recent lattice gauge calculations.
8036 C1 FUDAN UNIV,DEPT PHYS 2,SHANGHAI 200433,PEOPLES R CHINA.
8037    CCAST,WORLD LAB,BEIJING 100080,PEOPLES R CHINA.
8038    SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA.
8039 RP Bi, PZ, FUDAN UNIV,TD LEE PHYS LAB,SHANGHAI 200433,PEOPLES R CHINA.
8040 CR BERNARD C, HEPLAT950993 MILK CO
8041    BI PZ, 1988, J PHYS G, V14, P681
8042    BI PZ, 1989, J PHYS G, V15, P1653
8043    BI PZ, 1991, QUARK GLUON STRUCTUR
8044    BI PZ, 1992, Z PHYS C, V54, P543
8045    BROWN GE, SUNYNTG966
8046    BROWN GE, 1991, NUCL PHYS A, V535, P701
8047    BROWN GE, 1991, PHYS REV LETT, V66, P2720
8048    CLEYMANS J, 1986, Z PHYS C PART FIELDS, V33, P151
8049    CLEYMANS J, 1987, Z PHYS C, V37, P51
8050    CLEYMANS J, 1993, Z PHYS C, V57, P135
8051    DEFORCRAND P, 1985, PHYS LETT B, V160, P137
8052    HARRINGTON BJ, 1974, PHYS REV LETT, V33, P324
8053    HASHIMOTO T, 1986, PHYS REV LETT, V57, P2123
8054    HASHIMOTO T, 1988, Z PHYS C, V38, P251
8055    HATSUDA T, 1992, NUCL PHYS A, V544, C27
8056    KAPUSTA JI, 1981, PHYS REV D, V23, P2444
8057    KOCH V, 1993, NUCL PHYS A, V560, P345
8058    KOGUT JB, 1991, PHYS LETT B, V263, P101
8059    KOUNO H, 1982, Z PHYS C, V42, P209
8060    LI SX, 1991, INT J MOD PHYS A, V6, P501
8061    LINDE AD, 1979, REPORTS PROGR PHYSIC, V42, P25
8062    PISARSKI R, 1982, PHYS LETT B, V110, P155
8063    PISARSKI RD, 1982, PHYS REV D, V26, P3735
8064    PISARSKI RD, 1984, PHYS REV D, V29, P338
8065    REINHARDT H, 1986, PHYS LETT B, V173, P473
8066    RISCHKE DH, 1991, Z PHYS C, V51, P584
8067    SHURYAK EV, 1980, PHYS REP           C, V61, P71
8068    TAKAGI F, 1986, PHYS REV D, V34, P1646
8069    TAKAGI F, 1987, PHYS REV D, V35, P2226
8070    UDDIN S, 1992, Z PHYS C PART FIELDS, V53, P319
8071    VOGT R, 1988, PHYS LETT B, V206, P333
8072 NR 32
8073 TC 2
8074 SN 0170-9739
8075 J9 Z PHYS C-PAR FIELD
8076 JI Z. Phys. C-Part. Fields
8077 PD AUG
8078 PY 1997
8079 VL 75
8080 IS 4
8081 BP 735
8082 EP 738
8083 PG 4
8084 SC Physics, Particles & Fields
8085 GA XT297
8086 UT ISI:A1997XT29700017
8087 ER
8088 
8089 PT J
8090 AU Zhu, XH
8091    Xu, J
8092    Meng, ZY
8093 TI Dielectric and piezoelectric properties of
8094    Pb(Ni1/3Nb2/3)O-3-PbTiO3-PbZrO3 ceramics modified with bismuth and zinc
8095    substitutions
8096 SO JOURNAL OF MATERIALS SCIENCE
8097 DT Article
8098 ID ACTUATOR
8099 AB The dielectric and piezoelectric properties of the
8100    (Pb0.985Bi0.01)(Ni1/4Zn1/12Nb2/3)(x)(ZrsigmaTi1-sigma)(1-x)O-3
8101    piezoelectric ceramic system (0.2 less than or equal to x less than or
8102    equal to 0.7, 0.1 less than or equal to sigma less than or equal to
8103    0.9) were systematically investigated. The results showed that, after
8104    poling, the dielectric constant, epsilon(33)(T), increased for the
8105    tetragonal compositions but decreased for the rhombohedral
8106    compositions. Furthermore, high values of epsilon(33)(T) and
8107    piezoelectric modulus, d(31) were found for the compositions along the
8108    extension of the morphotropic phase boundary. The highest values of the
8109    planar electromechanical coupling factor, K-p, and the piezoelectric
8110    modulus, d(31), were found to be 0.70 and -274 x 10(-12) C N-1,
8111    respectively. The Curie temperature, remanent polarization, coercive
8112    field and the lattice constants of the a and c axes in relation to the
8113    Pb(Ni1/3Nb2/3)O-3 content and the Zr/Zr + Ti ratio were also determined.
8114 C1 NANJING UNIV,NATL LAB SOLID STATE MICROSTRUCT,NANJING 210093,PEOPLES R CHINA.
8115    SHANGHAI UNIV SCI & TECHNOL,SCH MAT SCI & ENGN,SHANGHAI 201800,PEOPLES R CHINA.
8116 RP Zhu, XH, NANJING UNIV,DEPT PHYS,NANJING 210093,PEOPLES R CHINA.
8117 CR ADACHI M, 1987, JPN J APPL PHYS, V29, P68
8118    GERSON R, 1960, J APPL PHYS, V31, P188
8119    HAUN MJ, 1989, FERROELECTRICS, V99, P13
8120    JAFFE B, 1971, PIEZOELECTRIC CERAMI
8121    JONTS L, 1994, SMART MATER STRUCT, V3, P147
8122    KITAMURA T, 1981, JPN J APPL PHYS, V20, P97
8123    KULCSAR F, 1959, J AM CERAM SOC, V42, P343
8124    MOON JH, 1993, J MATER RES, V8, P3184
8125    OUCHI H, 1965, J AM CERAM SOC, V48, P630
8126    OUCHI H, 1968, J AM CERAM SOC, V51, P169
8127    ROBBINS WP, 1991, IEEE T ULTRASON FERR, V38, P454
8128    TAKAHASHI M, 1970, JPN J APPL PHYS, V9, P1236
8129    ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169
8130    ZHU XH, 1996, J MATER SCI, V31, P2171
8131 NR 14
8132 TC 8
8133 SN 0022-2461
8134 J9 J MATER SCI
8135 JI J. Mater. Sci.
8136 PD AUG 15
8137 PY 1997
8138 VL 32
8139 IS 16
8140 BP 4275
8141 EP 4282
8142 PG 8
8143 SC Materials Science, Multidisciplinary
8144 GA XT184
8145 UT ISI:A1997XT18400014
8146 ER
8147 
8148 PT J
8149 AU Guo, BQ
8150    Cao, WM
8151 TI Additive Schwarz methods for the h-p version of the finite element
8152    method in two dimensions
8153 SO SIAM JOURNAL ON SCIENTIFIC COMPUTING
8154 DT Article
8155 DE additive Schwarz method; the h-p version; condition number; iterative
8156    and parallel solver
8157 ID ITERATIVE METHODS; ELLIPTIC PROBLEMS; DECOMPOSITION
8158 AB Two additive Schwarz methods (ASMs) are proposed for the h-p version of
8159    the finite element method for two-dimensional elliptic problems in
8160    polygonal domains. One is based on generous overlapping of the
8161    h-version components (i.e., the linear nodal modes) and nonoverlapping
8162    of the p-version components (i.e., the high-order side modes and
8163    internal modes). Another is based on nonoverlapping for both the
8164    h-version and the p-version components. Their implementations are in
8165    parallel on the subdomain level for the h-version components and on the
8166    element level for the p-version components. The condition number for
8167    the first method is of order O(1 + ln p)(2), and for the second one is
8168    max(i)(1 + ln(H(i)p(i)/h(i)))(2), where H-i is the diameter of the
8169    subdomain Omega(i), h(i) is the characteristic diameter of the elements
8170    in Omega(i), p(i) is the maximum polynomial degree used in Omega(i),
8171    and p = max(i)p(i) .
8172 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
8173 RP Guo, BQ, UNIV MANITOBA,DEPT APPL MATH,WINNIPEG,MB R3T 2N2,CANADA.
8174 CR AINSWORTH M, 1996, SIAM J NUMER ANAL, V33, P1358
8175    BABUSKA I, 1988, SIAM J MATH ANAL, V19, P257
8176    BABUSKA I, 1988, SIAM J NUMER ANAL, V25, P837
8177    BABUSKA I, 1989, INT J NUMER METH ENG, V28, P1891
8178    BABUSKA I, 1991, SIAM J NUMER ANAL, V28, P624
8179    BJORSTAD PE, 1986, SIAM J NUMER ANAL, V23, P1097
8180    BRAMBLE JH, 1986, MATH COMPUT, V47, P103
8181    CIARLET PG, 1978, FINITE ELEMENT METHO
8182    CLEMENT P, 1975, RAIRO ANAL NUMER R, V2, P77
8183    DRYJA M, 1987, 339 NEW YORK U COUR
8184    DRYJA M, 1989, ITERATIVE METHODS LA, P273
8185    DRYJA M, 1990, P 3 INT S DOM DEC ME
8186    DRYJA M, 1994, CONT MATH, V157, P53
8187    GRISVARD P, 1985, ELLIPTIC PROBLEMS NO
8188    GUO B, 1986, COMPUT MECH, V1, P203
8189    GUO B, 1986, COMPUT MECH, V1, P21
8190    GUO BQ, 1996, NUMER MATH, V75, P59
8191    GUO BQ, 1997, IN PRESS J COMPUT AP
8192    LIONS PL, 1988, P 1 INT S DOM DEC ME
8193    MANDEL J, 1990, COMPUT METHOD APPL M, V80, P117
8194    MANDEL J, 1990, INT J NUMER METH ENG, V29, P1095
8195    ODEN JT, 1994, 9411 U TEX AUST TICA
8196    PAVARINO LF, 1992, THESIS NEW YORK U NE
8197    WIDLUDN OB, 1988, P 1 INT S DOM DEC ME
8198    WILUND OB, 1989, P 2 INT S DOM DEC ME
8199    XU JC, 1992, SIAM REV, V34, P581
8200 NR 26
8201 TC 6
8202 SN 1064-8275
8203 J9 SIAM J SCI COMPUT
8204 JI SIAM J. Sci. Comput.
8205 PD SEP
8206 PY 1997
8207 VL 18
8208 IS 5
8209 BP 1267
8210 EP 1288
8211 PG 22
8212 SC Mathematics, Applied
8213 GA XT113
8214 UT ISI:A1997XT11300003
8215 ER
8216 
8217 PT J
8218 AU Xin, HP
8219    Lin, CL
8220    Wang, JX
8221    Zou, SC
8222    Shi, XH
8223    Lin, ZX
8224    Zhou, ZY
8225    Liu, ZG
8226 TI Experimental studies of N+ implantation into CVD diamond thin films
8227 SO SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES
8228 DT Article
8229 DE N+ implantation into diamond films; Raman spectroscopy; ultraviolet
8230    photoluminescence spectroscopy (UV-PL); electrically inactive
8231    deep-level impurity; C N covalent bond; carbon nitride; x-ray
8232    photoelectron spectroscopy (XPS)
8233 ID ION
8234 AB The effects of N+ implantation under various conditions on CVD diamond
8235    films were analyzed with Raman spectroscopy, four-point probe method,
8236    X-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS),
8237    ultraviolet photoluminescence spectroscopy (UV-PL), Fourier
8238    transformation infrared absorption spectroscopy (FTIR) and X-ray
8239    photoelectron spectroscopy (XPS). The results show that the N+
8240    implantation doping without any graphitization has been successfully
8241    realized when 100 keV N+ ions at a dosage of 2 x 10(16) cm(-2) were
8242    implanted into diamond films at 550 degrees C. UV-PL spectra indicate
8243    that the implanted N+ ions formed an electrically inactive deep-level
8244    impurity in diamond films. So the sheet resistance of the sample after
8245    N+ implantation changed little. Carbon nitride containing C=N covalent
8246    bond has been successfully synthesized by 100 keV, 1.2 x 10(18) N/cm(2)
8247    N+ implantation into diamond films. Most of the implanted N+ ions
8248    formed C=N covalent bonds with C atoms. The others were free state
8249    nitrogen, which existed in the excessive nitrogen layers. C(1s) XPS
8250    studies show the existence of three different C(1s) bonding states,
8251    corresponding to graphite, i-carbon and the carbon of C=N covalent
8252    bonding state, respectively, which agrees well with the Raman results.
8253 C1 CHINESE ACAD SCI,SHANGHAI INST TECH PHYS,NATL LAB INFRARED PHYS,SHANGHAI 200083,PEOPLES R CHINA.
8254    CHINESE ACAD SCI,SHANGHAI INST MET,ION BEAM LAB,SHANGHAI 200050,PEOPLES R CHINA.
8255    SHANGHAI UNIV,DEPT MAT SCI,SHANGHAI 201800,PEOPLES R CHINA.
8256 RP Xin, HP, CHINESE ACAD SCI,SHANGHAI INST MET,NATL LAB FUNCT MAT
8257    INFORMAT,SHANGHAI 200050,PEOPLES R CHINA.
8258 CR ANSELL RO, 1979, J ELECTROANAL CHEM, V98, P79
8259    BROWER KL, 1982, PHYS REV B, V26, P6040
8260    CHU WK, 1978, BACKSCATTERING SPECT
8261    HARTNETT TM, 1988, THESIS PENNSYLVANIA
8262    LIN CG, 1990, SCI CHINA, P976
8263    MITCHELL JB, 1975, J APPL PHYS, V46, P332
8264    MITCHELL JB, 1975, J APPL PHYS, V46, P335
8265    SATO S, 1991, NUCL INSTRUM METH B, V59, P1391
8266    SCHER H, 1970, J CHEM PHYS, V53, P3759
8267    XIN HP, 1995, APPL PHYS LETT, V66, P3290
8268    XIN HP, 1995, CHINESE PHYSICS, V24, P147
8269    XIN HP, 1996, SCI CHINA SER E, V26, P210
8270    ZHANG XK, 1992, VACUUM, V43, P1047
8271    ZHU W, 1990, THESIS SOLID STATE S
8272 NR 14
8273 TC 0
8274 SN 1006-9321
8275 J9 SCI CHINA SER E
8276 JI Sci. China Ser. E-Technol. Sci.
8277 PD AUG
8278 PY 1997
8279 VL 40
8280 IS 4
8281 BP 361
8282 EP 368
8283 PG 8
8284 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary
8285 GA XR161
8286 UT ISI:A1997XR16100004
8287 ER
8288 
8289 PT J
8290 AU Zhu, XH
8291    Li, Q
8292    Ming, NB
8293    Meng, ZY
8294 TI Origin of optical nonlinearity for PbO, TiO2, K2O, and SiO2 optical
8295    glasses
8296 SO APPLIED PHYSICS LETTERS
8297 DT Article
8298 ID SINGLE-BEAM
8299 AB The nonlinear optical properties for the PbO, TiO2, K2O, and SiO2
8300    system have been measured by the Z-scan method. The magnitude and sign
8301    of the nonlinear refractive index n(2) were determined, as was the
8302    negative sign, which indicated a self-defocusing optical nonlinearity.
8303    Two optical absorption bands at 540 and 660 nm, respectively, are
8304    observed in the optical absorption spectra. The sources of the
8305    absorption bands are attributed to the 3 d-shell electronic transitions
8306    of Ti3+ ions from the ground state to the excited states. The origin of
8307    the negative nonlinear refractive index was the contribution of
8308    resonant electronic transition processes, which can cancel the positive
8309    nonresonant refractive index that mainly resulted from the
8310    hyperpolarizabilities of the Pb-O and Ti-O pairs. (C) 1997 American
8311    Institute of Physics.
8312 C1 NANJING UNIV,CTR ADV STUDIES SCI & TECHNOL MICROSTRUCT,NANJING 210093,PEOPLES R CHINA.
8313    CCAST,WORLD LAB,BEIJING 100080,PEOPLES R CHINA.
8314    SHANGHAI UNIV,SCH MAT SCI & ENGN,SHANGHAI 201800,PEOPLES R CHINA.
8315 RP Zhu, XH, NANJING UNIV,NATL LAB SOLID STATE MICROSTRUCT,DEPT
8316    PHYS,NANJING 210093,PEOPLES R CHINA.
8317 CR BORRELLI NF, 1991, OPTICAL PROPERTIES G, P87
8318    BORRELLI NF, 1995, J NON-CRYST SOLIDS, V185, P109
8319    FRIBERG SR, 1987, IEEE J QUANTUM ELECT, V23, P2089
8320    GAN F, 1991, OPTICAL SPECTRAL PRO, P203
8321    KAMIYA K, 1985, J MATER SCI, V20, P906
8322    MIYAJI F, 1992, APPL PHYS LETT, V60, P2060
8323    NASU H, 1987, OPT ENG, V26, P102
8324    NASU H, 1995, J NON-CRYST SOLIDS, V182, P321
8325    SHEIKBAHAE M, 1989, OPT LETT, V14, P955
8326    SHEIKBAHAE M, 1990, IEEE J QUANTUM ELECT, V26, P760
8327    SHEN YR, 1984, PRINCIPLES NONLINEAR
8328    ZHU XH, 1994, J APPL PHYS, V75, P3756
8329 NR 12
8330 TC 17
8331 SN 0003-6951
8332 J9 APPL PHYS LETT
8333 JI Appl. Phys. Lett.
8334 PD AUG 18
8335 PY 1997
8336 VL 71
8337 IS 7
8338 BP 867
8339 EP 869
8340 PG 3
8341 SC Physics, Applied
8342 GA XR278
8343 UT ISI:A1997XR27800003
8344 ER
8345 
8346 PT J
8347 AU He, JH
8348 TI A generalized variational principle for 3-D unsteady transonic
8349    rotational flow in rotor using Clebsch variables
8350 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
8351 DT Article
8352 AB Via semi-inverse method /1,2/, a generalized variational principle with
8353    only 6 independent variables for 3-D unsteady compressible rotational
8354    transonic rotor-flow with shocks has been successfully formulated,
8355    which has been unknown till the present time, and the matching
8356    conditions across all unknown oscillating discontinuities (such as
8357    shocks, free surface and free trailing vortex sheets) have been deduced
8358    via variable-domain variable principle. This theory aims at rendering a
8359    general, rigorous theoretical basis for the finite element method and
8360    other direct variational methods.
8361 RP He, JH, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI
8362    200072,PEOPLES R CHINA.
8363 CR CHAN STK, 1977, FE APPL UNSTEADY TRA
8364    ECER A, 1983, AIAA J, V21, P343
8365    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
8366    HE JH, IN PRESS INT J TURBO
8367    HE JH, 1996, 4 C CHIN IND APPL MA
8368    LIU GL, 1989, SCI CHINA, V32, P271
8369    LIU GL, 1991, 3 INT C INV DES OPT, P337
8370    LIU GL, 1991, J ENG THERMOPHYSICS, V12, P280
8371    LIU GL, 1993, ACTA MECH, V99, P219
8372    MCCROSKEY WJ, 1977, J FLUIDS ENG, V99, P8
8373    SELIGER RL, 1968, P ROY SOC LOND A MAT, V305, P1
8374    SERRIN J, 1959, HDB PHYSIK, V8
8375 NR 12
8376 TC 11
8377 SN 0334-0082
8378 J9 INT J TURBO JET ENGINES
8379 JI Int. J. Turbo. Jet-Engines
8380 PY 1997
8381 VL 14
8382 IS 1
8383 BP 17
8384 EP 21
8385 PG 5
8386 SC Engineering, Aerospace
8387 GA XR112
8388 UT ISI:A1997XR11200002
8389 ER
8390 
8391 PT J
8392 AU He, JH
8393 TI Semi-inverse method of establishing generalized variational principles
8394    for fluid mechanics with emphasis on turbomachinery aerodynamics
8395 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
8396 DT Article
8397 DE blade-to-blade flow in turbomachinery; variational principle in fluid
8398    mechanics; semi-inverse method; trial-functional
8399 AB The semi-inverse method suggested by the author is one of the best and
8400    most convenient ways to deduce generalized variational principles with
8401    multi-variables from 1) partial differential equations (PDE) and
8402    boundary conditions (BC), or 2) known variational principles with
8403    single variable or double variables, or 3) a suitable energy
8404    trial-functional, without any crisis variational phenomenon.
8405    As a result two families of generalized variational principles for
8406    irrotational compressible blade-to-blade flow have been deduced without
8407    using the Lagrange multiplier method. The method will have a great
8408    effect not only in fluid mechanics, but also in elasticity theorems.
8409 RP He, JH, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI
8410    200072,PEOPLES R CHINA.
8411 CR CHIEN WZ, 1983, APPL MATH MECH, V4, P137
8412    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
8413    HE JH, 1996, 4 C CHIN IND APPL MA
8414    LIU GL, 1990, P 1 INT S AER INT FL, P128
8415    LIU GL, 1993, INT J TURBO JET ENGI, V10, P273
8416    LIU GL, 1995, P 6 AS C FLUID MECH
8417 NR 6
8418 TC 48
8419 SN 0334-0082
8420 J9 INT J TURBO JET ENGINES
8421 JI Int. J. Turbo. Jet-Engines
8422 PY 1997
8423 VL 14
8424 IS 1
8425 BP 23
8426 EP 28
8427 PG 6
8428 SC Engineering, Aerospace
8429 GA XR112
8430 UT ISI:A1997XR11200003
8431 ER
8432 
8433 PT J
8434 AU Wang, YS
8435    Sun, GX
8436    Xie, DF
8437    Bao, BR
8438    Cao, WG
8439 TI Extraction of uranium(VI) and thorium(IV) ions from nitric acid
8440    solutions by N,N,N',N'-tetrabutyladipicamide
8441 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY-LETTERS
8442 DT Article
8443 AB A new symmetrical diamide, the straight-chain alkyl substituted neutral
8444    tetrabutyladipicamide (TBAA) has been synthesized, characterized and
8445    used for the extraction of U(V) and Th(IV) from nitric acid solutions
8446    in a diluent composed of 50% 1,2,4-trimethylbenzene (TMB) and 50%
8447    kerosene (OK). Extraction distribution coefficients of U(VI) and Th(IV)
8448    as a function of aqueous nitric acid concentration, extractant
8449    concentration and temperature have been studied. Back-extraction of
8450    U(VI) and Th(IV) from organic phases by dilute nitric acid has been
8451    undertaken. From the data, the compositions of extracted species,
8452    equilibrium constants and enthalpies of extraction reactions have also
8453    been calculated.
8454 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
8455 RP Wang, YS, CHINESE ACAD SCI,INST NUCL RES,POB 800-204,SHANGHAI
8456    201800,PEOPLES R CHINA.
8457 CR BAO BR, 1992, J RADIOAN NUCL CH AR, V162, P391
8458    CUILLERDIER C, 1991, SEPAR SCI TECHNOL, V26, P1229
8459    MUSIKAS C, 1988, SEPAR SCI TECHNOL, V23, P1211
8460    NAIR GM, 1993, SOL EXTR ION EXCH, V11, P813
8461    SEHN CH, 1996, J RADIOANAL NUCL CHE, V212, P187
8462    SIDDAL TE, 1996, J INORG NUCL CHEM, V26, P883
8463    YIN YJ, 1985, HDB COLLEGE CHEM, P302
8464 NR 7
8465 TC 24
8466 SN 0236-5731
8467 J9 J RADIOANAL NUCL CHEM LETT
8468 JI J. Radioanal. Nucl. Chem.-Lett.
8469 PD SEP 2
8470 PY 1996
8471 VL 214
8472 IS 1
8473 BP 67
8474 EP 76
8475 PG 10
8476 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
8477    & Technology
8478 GA XQ095
8479 UT ISI:A1996XQ09500007
8480 ER
8481 
8482 PT J
8483 AU Yu, BC
8484    Chen, Y
8485    Cai, RF
8486    Huang, ZE
8487    Xiao, YW
8488 TI Synthesis and structural characterization of a novel and starlike
8489    C-60(PMS)(x)(CH3)(x) copolymer
8490 SO EUROPEAN POLYMER JOURNAL
8491 DT Article
8492 ID MAGNETIC-RESONANCE; OPTICAL-PROPERTIES; C-60; FULLERENES; SPECTROSCOPY;
8493    POLYSTYRENE; POLYMERS; STYRENE; CARBON; FORM
8494 AB A novel starlike C-60(PMS)(x)(CH3)(x) (x=1-3) copolymer was prepared by
8495    reaction of a living poly(alpha-methylstyrene) (PMS) carbanion with
8496    C-60, followed by a capping reaction with methyl iodine. The
8497    characterization techniques used are UV-vis, FT-IR, GPC, DSC, TGA, ESR,
8498    C-13 NMR, SEM, XRD, cyclic voltammetry (CV) and fluorescence
8499    spectroscopy. This starlike polymer has a visibly earthy yellow cast
8500    when compared with the unfunctionalized parent polymer (PMS), and is
8501    highly soluble in some common organic solvents.
8502    Poly(alpha-methylstyrene) is essentially transparent at wavelengths
8503    longer than 280 nm, and its main absorption band is at 250 (vs) nm.
8504    Covalent attachment of the multiple PMS arms to the C-60 core results
8505    in the bathochromic shift of the above band and the appearance of a new
8506    absorption band at 328 nm (pi-->pi*). This new band is one of the
8507    characteristic absorptions for organofullerenes. The thermal stability
8508    and oxidation/reduction activation of pure PMS are enhanced apparently
8509    by C-60 chemical modifiction. It is also found that in this copolymer
8510    there are mainly two kinds of paramagnetic species, whereas no ESR
8511    signal in pure poly(a-methylstyrene) is detected, and this indicates
8512    the non-existence of unpaired electron or free radical. (C) 1997
8513    Elsevier Science Ltd.
8514 C1 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
8515    SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
8516 CR BABU GN, 1984, J POLYM SCI POL CHEM, V22, P213
8517    BALCH AL, 1992, J AM CHEM SOC, V114, P5455
8518    BERGER PA, 1992, MACROMOLECULES, V25, P7227
8519    BUNKER CE, 1995, MACROMOLECULES, V28, P3744
8520    CAO T, 1995, MACROMOLECULES, V28, P3741
8521    CHEN Y, IN PRESS EUR POLYM J
8522    CHEN Y, 1996, J POLYM SCI POL PHYS, V34, P631
8523    CHEN Y, 1996, SOLID STATE COMMUN, V97, P239
8524    CHILKOTI A, 1991, APPL SPECTROSC, V45, P209
8525    DAVID C, 1974, EUR POLYM J, V10, P1181
8526    DIEDERICH F, 1996, SCIENCE, V271, P317
8527    ELGERT KF, 1975, POLYMER, V16, P465
8528    FUJIMOTO T, 1965, J POLYM SCI A, V3, P2259
8529    GALLAGHER PK, 1992, J THERM ANAL, V38, P2247
8530    GECKELER KE, 1993, J AM CHEM SOC, V115, P3850
8531    GECKELER KE, 1994, TRENDS POLYM SCI, V2, P355
8532    GILMAN H, 1964, J ORGANOMET CHEM, V2, P447
8533    GUILLET JE, 1985, POLYM PHOTOPHYSICS P
8534    HADDON RC, 1986, CHEM PHYS LETT, V125, P459
8535    HARADA K, 1981, J APPL POLYM SCI, V26, P3395
8536    HARE JP, 1991, CHEM PHYS LETT, V177, P394
8537    HAWKER CJ, 1994, J CHEM SOC CHEM COMM, P925
8538    HAWKER CJ, 1994, MACROMOLECULES, V27, P4836
8539    HIRSCH A, 1992, ANGEW CHEM INT EDIT, V31, P766
8540    HIRSCH A, 1993, ADV MATER, V5, P859
8541    INOUE Y, 1972, MAKROMOL CHEM, V156, P207
8542    ISAACS L, 1993, HELV CHIM ACTA, V76, P1231
8543    KIMURA A, 1970, J POLYM SCI       A2, V8, P643
8544    KRATSCHMER W, 1990, NATURE, V347, P354
8545    KUST EG, 1993, J AM CHEM SOC, V115, P3850
8546    KUWASHIMA SY, 1994, TETRAHEDRON LETT, V35, P4371
8547    LOY DA, 1992, J AM CHEM SOC, V114, P3977
8548    MCCORMICK HW, 1957, J POLYM SCI, V25, P488
8549    MIZOGUCHI K, 1993, J PHYS CHEM SOLIDS, V54, P1693
8550    MUTO S, 1989, J APPL PHYS, V66, P3912
8551    NEPPEL A, 1984, SPECTROCHIM ACTA A, V40, P1095
8552    OKAMURA S, 1958, J POLYM SCI, V33, P491
8553    PATIL AO, 1993, POLYM BULL, V30, P187
8554    SAMULSKI ET, 1992, CHEM MATER, V4, P1153
8555    STEVENS MP, 1975, POLYM CHEM INTRO, P63
8556    SUN YP, 1991, J INORG ORGANOMET P, V1, P3
8557    SUN YP, 1993, J AM CHEM SOC, V115, P6376
8558    TAYLOR R, 1990, J CHEM SOC CHEM COMM, P1423
8559    VOLLMERT B, 1957, POLYM CHEM, P175
8560    WEBBER SE, 1986, ENCY POLYM SCI ENG, V6, P83
8561    WEIS C, 1995, MACROMOLECULES, V28, P403
8562    WORSFOLD DJ, 1957, J POLYM SCI, V26, P299
8563    WUDL F, 1992, ACCOUNTS CHEM RES, V25, P157
8564    WYMAN DP, 1968, MAKROMOL CHEM, V115, P64
8565 NR 49
8566 TC 11
8567 SN 0014-3057
8568 J9 EUR POLYM J
8569 JI Eur. Polym. J.
8570 PD JUL
8571 PY 1997
8572 VL 33
8573 IS 7
8574 BP 1049
8575 EP 1056
8576 PG 8
8577 SC Polymer Science
8578 GA XM230
8579 UT ISI:A1997XM23000010
8580 ER
8581 
8582 PT J
8583 AU Wang, BH
8584    Yuan, GX
8585 TI Compression of ECG data by vector quantization
8586 SO IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE
8587 DT Article
8588 RP Wang, BH, SHANGHAI UNIV,DEPT BIOMED ENGN,SHANGHAI 201800,PEOPLES R
8589    CHINA.
8590 CR BERGER T, 1971, RATE DISTORTION THEO
8591    FOSTER J, 1985, IEEE T INFORM THEORY, V31
8592    GRAY RM, 1984, IEEE ASSP MAG    APR, P4
8593    HAMILTON PS, 1991, IEEE T BIOMED ENG, V38
8594    LINDE Y, 1986, IEEE T COMMUN, V28, P1105
8595    MAMMEN CP, 1990, IEEE T BIOMED ENG, V37
8596    SATEH MS, 1990, IEEE T BIOMED ENG, V37
8597    SHANNON CE, 1948, BELL SYST TECH J, V27, P379
8598    SHANNON CE, 1948, BELL SYST TECH J, V27, P623
8599 NR 9
8600 TC 4
8601 SN 0739-5175
8602 J9 IEEE ENG MED BIOL MAG
8603 JI IEEE Eng. Med. Biol. Mag.
8604 PD JUL-AUG
8605 PY 1997
8606 VL 16
8607 IS 4
8608 BP 23
8609 EP 26
8610 PG 4
8611 SC Engineering, Biomedical; Medical Informatics
8612 GA XL193
8613 UT ISI:A1997XL19300009
8614 ER
8615 
8616 PT J
8617 AU Gao, FL
8618 TI A new way of predicting cement strength - Fuzzy logic
8619 SO CEMENT AND CONCRETE RESEARCH
8620 DT Article
8621 AB This paper is to analyse the fuzzy logic method of predicting cement
8622    strength and to calculate some samples with fuzzy models. In order to
8623    compare, samples of them are calculated with regression method. All of
8624    results are shown in both root mean square error and scattered map. (C)
8625    1997 Elsevier Science Ltd.
8626 RP Gao, FL, SHANGHAI UNIV,FUZZY ENGN RES INST,149 YAN CHANG RD,SHANGHAI
8627    200072,PEOPLES R CHINA.
8628 CR GAO FL, P 5 IFSA WORLD C, P1163
8629    GAO FL, P 6 IFSA WORLD C 95, P113
8630    GAO FL, P 7 CFSM C 94 TAI YA, P468
8631    GAO FL, 1994, J SHANGHAI U TECHNOL, P28
8632    GAO FL, 1994, J SHANGHAI U TECHNOL, P517
8633    GAO FL, 1996, CHINA BUILDING MAT S, P24
8634    ZADEH LA, 1965, INFORM CONTR, V8, P338
8635 NR 7
8636 TC 1
8637 SN 0008-8846
8638 J9 CEM CONCR RES
8639 JI Cem. Concr. Res.
8640 PD JUN
8641 PY 1997
8642 VL 27
8643 IS 6
8644 BP 883
8645 EP 888
8646 PG 6
8647 SC Materials Science, Multidisciplinary; Construction & Building Technology
8648 GA XK977
8649 UT ISI:A1997XK97700011
8650 ER
8651 
8652 PT J
8653 AU Ying, TL
8654    Wang, ZJ
8655    Liu, HY
8656    Sun, K
8657    Deng, JQ
8658 TI Hydrogen peroxide biosensor based on methylene blue incorporated into
8659    nafion membrane as electron transfer mediator
8660 SO PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS
8661 DT Article
8662 DE biosensor; methylene blue; nafion; horseradish peroxidase; hydrogen
8663    peroxide
8664 AB A new amperometic biosensor for hydrogen peroxide based on methylene
8665    blue incorporated into Nafion membrane as electron transfer mediator
8666    was fabricated. It was found that methylene blue incorporated into
8667    Nafion membrane by ion-exchanging could effectively transfer electrons
8668    between horseradish peroxidase and glassy carbon electrode.
8669    Bio-electrocatalytic reduction of hydrogen peroxide al the biosensor
8670    was evaluated with respect to solution pH, temperature, operating
8671    potential and influences of ascorbic acid etc. The biosensor response
8672    exhibited fine selectivity, high sensitivity and a linear dependence on
8673    the analytic concentration range 5 x 10(-7) similar to 2 x 10(-4)
8674    mol/L. Response time less than 30 s.
8675 C1 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
8676    FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
8677 CR BIFULCO L, 1994, ANAL LETT, V27, P1443
8678    DENG Q, 1994, J ELECTROANAL CHEM, V377, P191
8679    FREW JE, 1986, J ELECTROANAL CH INF, V201, P1
8680    GUADALUPE AR, 1991, ELECTROCHIM ACTA, V36, P881
8681    HURRELL HC, 1988, ANAL CHEM, V60, P254
8682    KUWABATA S, 1989, J ELECTROANAL CH INF, V261, P363
8683    LIU KE, 1989, ANAL CHEM, V61, P2599
8684    SWAMIDOSS A, 1994, CHEM SOC FARADAY T, V90, P1241
8685 NR 8
8686 TC 4
8687 SN 1000-3282
8688 J9 PROG BIOCHEM BIOPHYS
8689 JI Prog. Biochem. Biophys.
8690 PY 1997
8691 VL 24
8692 IS 3
8693 BP 254
8694 EP 258
8695 PG 5
8696 SC Biochemistry & Molecular Biology; Biophysics
8697 GA XK091
8698 UT ISI:A1997XK09100015
8699 ER
8700 
8701 PT J
8702 AU Li, W
8703    Shi, DH
8704    Chao, XL
8705 TI Reliability analysis of M/G/1 queueing systems with server breakdowns
8706    and vacations
8707 SO JOURNAL OF APPLIED PROBABILITY
8708 DT Article
8709 DE server breakdowns and repairs; queues with vacations; reliability
8710 ID BERNOULLI SCHEDULES
8711 AB This note introduces reliability issues to the analysis of queueing
8712    systems, We consider an M/G/1 queue with Bernoulli vacations and sen;er
8713    breakdowns. The server uptimes are assumed to be exponential, and the
8714    server repair times are arbitrarily distributed. Using a supplementary
8715    variable method we obtain a transient solution for both queueing and
8716    reliability measures of interest. These results provide insight into
8717    the effect of server breakdowns and repairs on system performance.
8718 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
8719    NEW JERSEY INST TECHNOL,DEPT IND & MFG ENGN,NEWARK,NJ 07102.
8720 RP Li, W, CHINESE ACAD SCI,INST APPL MATH,BEIJING 100080,PEOPLES R CHINA.
8721 CR COX DR, 1955, P CAMB PHILOS SOC, V51, P433
8722    DOSHI BT, 1990, STOCHASTIC ANAL COMP
8723    HSU GH, 1988, STOCHASTIC SERVICE S
8724    KEILSON J, 1960, ANN MATH STAT, V31, P104
8725    KEILSON J, 1986, J APPL PROBAB, V23, P790
8726    SERVI LD, 1986, IEEE J SEL AREA COMM, V4, P813
8727    SHI DH, 1985, ACTA MATH APPL SINIC, V8, P101
8728    SHI DH, 1990, CHINESE J OPERAT RES, V2, P38
8729    TAKACS L, 1962, INTRO THEORY QUEUES
8730 NR 9
8731 TC 7
8732 SN 0021-9002
8733 J9 J APPL PROBAB
8734 JI J. Appl. Probab.
8735 PD JUN
8736 PY 1997
8737 VL 34
8738 IS 2
8739 BP 546
8740 EP 555
8741 PG 10
8742 SC Statistics & Probability
8743 GA XK077
8744 UT ISI:A1997XK07700023
8745 ER
8746 
8747 PT J
8748 AU Wang, DW
8749    Qian, GZ
8750    Zhang, ML
8751    Farkas, LG
8752 TI Differences in horizontal, neoclassical facial canons in Chinese (Han)
8753    and North American Caucasian populations
8754 SO AESTHETIC PLASTIC SURGERY
8755 DT Article
8756 DE anthropometry; horizontal neoclassical facial canons; canon,
8757    variations; Chinese (Han) population; North American Caucasians
8758 AB To better our ability to analyze the facial disproportions of patients
8759    of Chinese ancestry, we compared the validity of four neoclassical
8760    canons of facial proportion in Chinese and North American Caucasians
8761    populations. We tested the frequency of four horizontal facial canons
8762    and their eight variations in 206 healthy adults (105 males and 101
8763    females, 18-25 years old) belonging to the predominant ethnic group
8764    (Han: 400 million) of the Chinese population, and compared them to
8765    those of 103 healthy young North American Caucasian adults. The nose
8766    width corresponded to one-quarter of the face width (the nasofacial
8767    canon) significantly more frequently in Chinese participants (51.5%)
8768    than in Caucasian adults (36.9%). The nose was narrower than
8769    one-quarter of the face width in 38.8% of North American Caucasians and
8770    in 21.8% of Chinese; this difference was also statistically
8771    significant. In defiance of the naso-oral canon, the mouths of Chinese
8772    people were significantly more often narrower than 1.5 times the nose
8773    width (71.8%), while in North American Caucasian ethnics the mouth was
8774    significantly more frequently wider (60.2%).
8775 RP Wang, DW, SHANGHAI UNIV,CHANGHAI HOSP,DEPT PLAST & RECONSTRUCT SURG,174
8776    CHANG HAI RD,SHANGHAI,PEOPLES R CHINA.
8777 CR BERGMULLER JG, 1723, ANTHROPOMETRIA
8778    BROADBENT TR, 1957, PLAST RECONSTR SURG, V20, P1
8779    CONVERSE JM, 1977, RECONSTRUCTIVE PLAST, V1, P24
8780    DAVINCI L, 1898, 1 MANOSCRITTI L DAVI
8781    DURER A, 1557, QUATRE LIVES A DURER
8782    ELSHOLTZ JS, 1663, ANTHROPOMETRIA SIVE
8783    FARKAS LG, 1981, ANTHROPOMETRY HEAD F
8784    FARKAS LG, 1985, PLAST RECONSTR SURG, V75, P328
8785    FARKAS LG, 1987, ANTHROPOMETRIC FACIA
8786    FARKAS LG, 1987, CLIN PLAST SURG, V14, P599
8787    FARKAS LG, 1994, ANTHROPOMETRY HEAD F
8788    GONZALEZULLOA M, 1975, CIRURGIA PLASTICA IB, V1, P13
8789    HAJNIS K, 1994, ANTHROPOMETRY HEAD F, P201
8790    HUGHES DR, 1967, MAN, V2, P119
8791    ROGERS BO, 1974, CLIN PLAST SURG, V1, P439
8792    SEGHERS MJ, 1964, PLAST RECONSTR SURG, V34, P382
8793    SHAO XG, 1985, HDB ANTHROPOMETRY
8794    TESSIER P, 1987, ANTHROPOMETRIC FACIA, R9
8795 NR 18
8796 TC 6
8797 SN 0364-216X
8798 J9 AESTHET PLAST SURG
8799 JI Aesthet. Plast. Surg.
8800 PD JUL-AUG
8801 PY 1997
8802 VL 21
8803 IS 4
8804 BP 265
8805 EP 269
8806 PG 5
8807 SC Surgery
8808 GA XK111
8809 UT ISI:A1997XK11100011
8810 ER
8811 
8812 PT J
8813 AU Ye, ZM
8814 TI A new finite element formulation for planar elastic deformation
8815 SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
8816 DT Article
8817 DE finite element model; planar elastic deformation; 3-D solution
8818 AB For the stress analysis of planar deformable bodies, we usually refer
8819    to either plane stress or plane strain hypothesis. Three-dimensional
8820    analysis is required when neither hypothesis is applicable, e.g. bodies
8821    with finite thickness. In this paper, we derive an 'exact' solution for
8822    the plane stress problem based on a less restrictive hypothesis than
8823    sigma(z) = 0. By requiring the out-plane stress sigma(z) to be a
8824    harmonic function, the three-dimensional solution is obtained. In
8825    addition, we present a two-dimensional finite element for planar
8826    analysis of problems where the thickness of the body 2h is comparable
8827    to other characteristic dimensions. This element is presented as a
8828    substitute for classical plane stress and plane strain finite elements.
8829    The typical plane stress and plane strain state are recovered in the
8830    case where h --> 0 and the case h --> infinity, respectively. As an
8831    example for the application of such formulation, the behaviour of a
8832    concrete gravity dam is investigated. It is shown that this structure,
8833    typically analysed by using plane strain hypothesis, has its out-plane
8834    stress underestimated. (C) 1997 by John Wiley & Sons, Ltd.
8835 RP Ye, ZM, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,149 YAN CHANG
8836    RD,SHANGHAI 200072,PEOPLES R CHINA.
8837 CR BROEK D, 1982, ELEMENTARY ENG FRACT
8838    FUNG YC, 1965, FDN SOLID MECH
8839    LOVE AEH, 1927, TREATISE MATH THEORY
8840    PAL N, 1976, J STRUCT DIV P ASCE, V102
8841    TIMOSHENKO SP, 1954, THEORY ELASTICITY
8842    YE ZM, 1987, MECH PRACTICE, V8, P26
8843    ZHOU S, 1988, ENG FRACT MECH, V29, P41
8844 NR 7
8845 TC 5
8846 SN 0029-5981
8847 J9 INT J NUMER METHOD ENG
8848 JI Int. J. Numer. Methods Eng.
8849 PD JUL 30
8850 PY 1997
8851 VL 40
8852 IS 14
8853 BP 2579
8854 EP 2591
8855 PG 13
8856 SC Engineering, Multidisciplinary; Mathematics, Applied
8857 GA XJ723
8858 UT ISI:A1997XJ72300002
8859 ER
8860 
8861 PT J
8862 AU Cao, WG
8863    Ding, WY
8864    Ding, WL
8865    Huang, H
8866 TI A facile synthesis of dimethyl 4-(alpha-furyl)- and
8867    4-(alpha-thienyl)-6-perfluoroalkylisophthalates via acyclic precursors
8868 SO JOURNAL OF FLUORINE CHEMISTRY
8869 DT Article
8870 DE phosphoranes; acyclic precursors; intramolecular Wittig reaction;
8871    dimethyl 4-(alpha-furyl)-perfluoroalkylisophthalates;
8872    4-(alpha-thienyl)-6-perfluoroalkylisophthalates
8873 AB In the presence of K2CO3, reaction of methyl propynoate 2 with
8874    (alpha-furoyl)methyltriphenylphosphorium bromide la or
8875    (alpha-thienacyl)methyltriphenylphosphonium bromide Ib gave methyl
8876    4-(alpha-furoyl)-2-(triphenylphosphoranylidene)but-3-enoate 4a or
8877    methyl 4-(alpha-thienacyl)-2-(triphenylphosphoranylidene)but-3-enoate
8878    4b as the major product. Phosphorane 4a or 4b could react further with
8879    methyl perfluoroalkynoates 5a-b to afford dimethyl
8880    2-(alpha-furoyl-1-perfluoroalkylvinyl)-4-(triphenylphosphoranylidene)pen
8881    t-2-enedioates 7a-b or dimethyl
8882    2-(alpha-thienacyl-1-perfluoroalkylvinyl)-4-(triphenylphosphoranylidene)
8883    pent-2-enedioates 7c-d, respectively. Dimethyl
8884    4-(alpha-furyl)-6-perfluoroalkylisophthalates 8a-b or dimethyl
8885    4-(alpha-thienyl) -6-perfluoroalkylisophthalates 8c-d were prepared in
8886    high yields via intramolecular Wittig reaction of phosphoranes 7a-d
8887    under heating in a sealed tube in xylenes. The structures of these
8888    compounds were confirmed by IR spectroscopy, mass spectrometry, H-1,
8889    F-19 and C-13 NMR spectra, and elemental analyses. Reaction mechanisms
8890    of the formation of compounds 4, 6, 7 and 8 were also proposed. (C)
8891    Elsevier Science S.A.
8892 RP Cao, WG, SHANGHAI UNIV,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
8893 CR BANKS RE, 1979, ORGANOFLUORINE CHEM
8894    CAO WG, 1997, J FLUORINE CHEM, V81, P153
8895    DING WY, 1987, TETRAHEDRON LETT, V28, P81
8896    DING WY, 1992, SYNTHESIS-STUTTGART, P635
8897    DING WY, 1993, CHINESE J CHEM, V11, P81
8898    DING WY, 1993, J CHEM SOC P1, P855
8899    DING WY, 1995, CHINESE J CHEM, V13, P468
8900    HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47
8901    JAMES DS, 1962, J ORG CHEM, V27, P3346
8902    TAO WT, 1983, YOUJI HUAXUE, P129
8903    WELCH JT, 1987, TETRAHEDRON, V43, P3123
8904 NR 11
8905 TC 4
8906 SN 0022-1139
8907 J9 J FLUORINE CHEM
8908 JI J. Fluor. Chem.
8909 PD JUN
8910 PY 1997
8911 VL 83
8912 IS 1
8913 BP 21
8914 EP 26
8915 PG 6
8916 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
8917 GA XJ678
8918 UT ISI:A1997XJ67800004
8919 ER
8920 
8921 PT J
8922 AU Dong, YD
8923    Ma, XM
8924    Yang, YZ
8925    Liu, FX
8926    Wang, GM
8927 TI Mechanically driven alloying and structural evolution of
8928    nanocrystalline Fe60Cu40 powder
8929 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
8930 DT Article
8931 ID SYSTEM; AMORPHIZATION
8932 AB Highly supersaturated nanocrystalline fee Fe60Cu40 alloy has been
8933    prepared by mechanical alloying of elemental powders. The phase
8934    transformation is monitored by X-ray diffraction (XRD), Mossbauer
8935    spectroscopy and extended X-ray absorption fine structure (EXAFS). The
8936    powder obtained after milling is of single fee structure with grain
8937    size of nanometer order. The Mossbauer spectra of the milled powder can
8938    be fitted by two subspectra whose hyperfine magnetic fields are 16 MA/m
8939    and 20 MA/m while that of pure Fe disappeared. EXAFS results show that
8940    the radial structure function (RSF) of Fe K-edge changed drastically
8941    and finally became similar to that of reference Cu K-edge, while that
8942    of Cu K-edge nearly keeps unchanged in the process of milling.
8943    These,imply that bcc Fe really transforms to fee structure and alloying
8944    between Fe and Cu occurs truly on an atomic scale. EXAFS results
8945    indicate that iron atoms tend to segregate at the boundaries and Cu
8946    atoms are rich in the fee lattice. Annealing experiments show that the
8947    Fe atoms at the interfaces are easy to cluster to alpha-Fe at a lower
8948    temperature, whereas the iron atoms in the lattice will form gamma-Fe
8949    first at temperature above 350 degrees C, and then transform to bcc Fe.
8950 C1 S CHINA UNIV TECHNOL,DEPT MECH ENGN 2,GUANGZHOU 510641,PEOPLES R CHINA.
8951    UNIV SCI & TECHNOL CHINA,LAB STRUCT ANAL,HEFEI 230026,PEOPLES R CHINA.
8952 RP Dong, YD, SHANGHAI UNIV,SCH MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R
8953    CHINA.
8954 CR ECKERT J, 1988, APPL PHYS LETT, V55, P117
8955    FUKUNAGA T, 1990, J NON-CRYST SOLIDS, V117, P700
8956    FUKUNAGA T, 1991, MAT SCI ENG A-STRUCT, V134, P863
8957    GAFFET E, 1991, MAT SCI ENG A-STRUCT, V134, P1380
8958    JIMAN PS, 1983, ANN REV MAT SCI, V13, P279
8959    JOHNSON WL, 1986, PROG MATER SCI, V30, P81
8960    KOCH CC, 1983, APPL PHYS LETT, V43, P1017
8961    SCHULTZ L, 1988, MATER SCI ENG, V97, P15
8962    SHINGU PH, 1990, SOLID STATE POWDER P, P21
8963    WILLIAMSON GK, 1953, ACTA METALL, V1, P23
8964    YANG YZ, 1992, ACTA METALL SINICA, V28, A399
8965 NR 11
8966 TC 0
8967 SN 1005-0302
8968 J9 J MATER SCI TECHNOL
8969 JI J. Mater. Sci. Technol.
8970 PD JUL
8971 PY 1997
8972 VL 13
8973 IS 4
8974 BP 354
8975 EP 358
8976 PG 5
8977 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
8978    Engineering
8979 GA XJ724
8980 UT ISI:A1997XJ72400032
8981 ER
8982 
8983 PT J
8984 AU Li, YZ
8985    Yan, MS
8986    Fang, RS
8987 TI Two-area power system costing by the cumulant method using available
8988    capacity distribution
8989 SO ELECTRIC POWER SYSTEMS RESEARCH
8990 DT Article
8991 DE two-area power system; stochastic production simulation; equivalent
8992    available capacity; cumulant method
8993 AB This paper extends the cumulant method using available capacity
8994    distribution to evaluate the production costs of two-area power
8995    systems, in which the random characters of generating available
8996    capacity and the transmission capacity limit have been considered
8997    accurately. By means of the independence of both systems equivalent
8998    available capacity based on a chronological load curve, the
8999    single-variant cumulant and single-variant Gram-Charlier Series A
9000    approximation are adequate for the two-area production simulation. The
9001    method gives a new approach to stochastic production simulation for a
9002    two-area power system, and is easily extended to three-areas or
9003    multi-areas. Sample studies show favourable accuracy and efficiency
9004    results. (C) 1997 Elsevier Science S.A.
9005 RP Li, YZ, SHANGHAI UNIV,POB 9,SHANGHAI 200072,PEOPLES R CHINA.
9006 CR AHSAN Q, 1983, IEEE T POWER APPAR S, V102, P2155
9007    AHSAN Q, 1985, IEEE T POWER AP SYST, V104, P2140
9008    BALERIAUX H, 1967, REVU E, V5, P3
9009    BOOTH RR, 1972, IEEE T PAS, V91, P62
9010    HYEDT GT, 1980, IEEE T PAS 99, V5, P1916
9011    NOYES LR, 1983, IEEE T PAS, V2, P433
9012    RAU NS, 1980, IEEE T POWER APPARAT, V99, P1908
9013    SAGER MA, 1972, IEEE T PAS, V91, P2114
9014    STREMD JP, 1980, IEEE T PAS 99, V5, P1947
9015    YEN MS, 1992, 3 BIENN IND EL POW A, P11
9016    ZAHAVI J, 1977, IEEE T POWER APPAR S, V96, P285
9017 NR 11
9018 TC 1
9019 SN 0378-7796
9020 J9 ELEC POWER SYST RES
9021 JI Electr. Power Syst. Res.
9022 PD JUL
9023 PY 1997
9024 VL 42
9025 IS 1
9026 BP 55
9027 EP 61
9028 PG 7
9029 SC Engineering, Electrical & Electronic
9030 GA XJ526
9031 UT ISI:A1997XJ52600011
9032 ER
9033 
9034 PT J
9035 AU Yen, MS
9036    Zhang, SH
9037 TI An efficient method for pumped-storage planning and evaluation
9038 SO ELECTRIC POWER SYSTEMS RESEARCH
9039 DT Article
9040 DE pumped-storage plants; evaluation; production costing; optimization;
9041    planning
9042 AB An efficient method for systematic planning and evaluation of
9043    pumped-storage plants is developed, in which a detailed operation
9044    simulation using an hourly chronological probabilistic production
9045    costing model is introduced so that the time dependency of storage
9046    operation policies through the charging and discharging processes is
9047    reflected. The optimum capacity of pumped-storage plants is chosen to
9048    minimize the overall system cost. In addition, peaking constraints are
9049    incorporated both in the thermal unit planning model and in the daily
9050    operation simulation model. So it is well-suited to the planning and
9051    evaluation of peaking plants. In this paper, a detailed description of
9052    the algorithm is provided and a real application to the East China
9053    Electric Power System is discussed. (C) 1997 Elsevier Science S.A.
9054 RP Yen, MS, SHANGHAI UNIV,AUTOMAT SCH,POB 9,SHANGHAI 200072,PEOPLES R
9055    CHINA.
9056 CR EA1411 EPRI, V1
9057    *E CHIN EL POW ADM, 1990, ECEPA REP
9058    FINGER S, 1975, 75009WP MITEL
9059    LEE BY, 1987, IEEE T POWER SYST, V2, P486
9060    PARK YM, 1985, IEEE T POWER APPARAT, V104, P390
9061    YEN MS, 1992, P 3 BIENN S IND EL P, P1
9062    YEN MS, 1992, P 3 BIENN S IND EL P, P11
9063    YEN MS, 1993, IEE CONF PUBL, P578
9064 NR 8
9065 TC 1
9066 SN 0378-7796
9067 J9 ELEC POWER SYST RES
9068 JI Electr. Power Syst. Res.
9069 PD JUL
9070 PY 1997
9071 VL 42
9072 IS 1
9073 BP 63
9074 EP 70
9075 PG 8
9076 SC Engineering, Electrical & Electronic
9077 GA XJ526
9078 UT ISI:A1997XJ52600012
9079 ER
9080 
9081 PT J
9082 AU Feng, SX
9083    Duan, YS
9084 TI About the energy of the universe - Reply
9085 SO CHINESE PHYSICS LETTERS
9086 DT Editorial Material
9087 C1 LANZHOU UNIV,INST THEORET PHYS,LANZHOU 730000,PEOPLES R CHINA.
9088 RP Feng, SX, SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
9089 CR DUAN YS, 1963, ACTA PHYS SINICA, V19, P589
9090    DUAN YS, 1996, COMMUN THEOR PHYS, V25, P99
9091    EINSTEIN A, 1955, MEANING RELATIVITY 4, P90
9092    FENG SX, 1996, CHINESE PHYS LETT, V13, P409
9093 NR 4
9094 TC 0
9095 SN 0256-307X
9096 J9 CHIN PHYS LETT
9097 JI Chin. Phys. Lett.
9098 PY 1997
9099 VL 14
9100 IS 5
9101 BP 400
9102 EP 400
9103 PG 1
9104 SC Physics, Multidisciplinary
9105 GA XH742
9106 UT ISI:A1997XH74200022
9107 ER
9108 
9109 PT J
9110 AU Ma, XM
9111    Ling, Z
9112    Gang, J
9113    Dong, YD
9114 TI Preparation and structure of bulk nanostructured WC-Co alloy by high
9115    energy ball-milling
9116 SO JOURNAL OF MATERIALS SCIENCE LETTERS
9117 DT Article
9118 RP Ma, XM, SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R
9119    CHINA.
9120 CR GLEITER H, 1984, Z METALLKD, V75, P263
9121    MA XM, IN PRESS J ALLOYS CO
9122    PETZOLDT F, 1987, MATER LETT, V5, P280
9123    SHINGU PH, 1988, T JIM S, V29, P3
9124    YANG YZ, 1992, CHINESE PHYS LETT, V5, P266
9125    YANG YZ, 1994, CHINESE SCI BULL, V17, P1626
9126 NR 6
9127 TC 3
9128 SN 0261-8028
9129 J9 J MATER SCI LETT
9130 JI J. Mater. Sci. Lett.
9131 PD JUN 15
9132 PY 1997
9133 VL 16
9134 IS 12
9135 BP 968
9136 EP 970
9137 PG 3
9138 SC Materials Science, Multidisciplinary
9139 GA XG479
9140 UT ISI:A1997XG47900002
9141 ER
9142 
9143 PT J
9144 AU Yang, YZ
9145    Zhu, YL
9146    Li, QS
9147    Ma, XM
9148    Dong, YD
9149    Wang, GM
9150    Wei, SQ
9151    Liu, FX
9152    Chuang, YZ
9153 TI Local structure of mechanically alloyed nanocrystalline BCC Fe80Cu20
9154    solid solution
9155 SO PHYSICA B
9156 DT Article
9157 DE mechanical alloying; nanocrystalline solid solutions; fine structure;
9158    EXAFS
9159 ID FE-CU SYSTEM; THERMAL-STABILITY; DECOMPOSITION; IRON
9160 AB The fine structure of mechanically alloyed BCC Fe80Cu20 solid solution
9161    has been studied by X-ray diffraction (XRD), Mossbauer spectroscopy and
9162    the extended X-ray absorption fine structure (EXAFS) technique. The
9163    appearance of Mossbauer spectrum with a broad hyperfine magnetic field
9164    distribution demonstrates that the alloying is at an atomic level and
9165    complex forms of coordination exist in the solution. EXAFS results
9166    further prove the atomic alloying from the clear observation of Cu
9167    atoms taking on BCC coordination in the solution. Furthermore, a
9168    reduction in the nearest-neighbor coordination number of a center Cu
9169    atom but not for a center Fe atom due to surface effect and structure
9170    defects indicates the composition nonuniformity that Cu atoms are rich
9171    at interface and Fe atoms are slightly rich in the core of a BCC
9172    nanocrystal.
9173 C1 SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R CHINA.
9174    UNIV SCI & TECHNOL CHINA,CTR STRUCT ANAL,HEFEI 230026,PEOPLES R CHINA.
9175    ACAD SINICA,INST MET RES,SHENYANG 110015,PEOPLES R CHINA.
9176 RP Yang, YZ, GUANGDONG UNIV TECHNOL,DEPT MAT SCI & ENGN,GUANGZHOU
9177    510090,PEOPLES R CHINA.
9178 CR DICICCO A, 1994, PHYS REV B, V50, P12386
9179    DRBOHLAV O, 1995, ACTA METALL MATER, V43, P1799
9180    ECKERT J, 1993, J APPL PHYS, V73, P131
9181    ECKERT J, 1993, J APPL PHYS, V73, P2794
9182    HUANG JY, 1994, NANOSTRUCT MATER, V4, P1
9183    JIANG JZ, 1993, APPL PHYS LETT, V63, P1056
9184    JIANG JZ, 1993, APPL PHYS LETT, V63, P2768
9185    LIU FX, 1993, CHINESE SCI BULL, V38, P1565
9186    MA E, 1993, J APPL PHYS, V74, P955
9187    SCHILLING PJ, 1996, APPL PHYS LETT, V68, P767
9188    SUMIYAMA K, 1985, T JPN I MET, V26, P217
9189    UENISHI K, 1992, Z METALLKD, V83, P132
9190    YANG YZ, 1992, ACTA METALL SINICA, V28, A399
9191    YANG YZ, 1994, ACTA PHYS SIN-OV ED, V3, P567
9192    YANG YZ, 1994, J MATER SCI TECHNOL, V10, P135
9193    YAVARI AR, 1992, PHYS REV LETT, V68, P2235
9194 NR 16
9195 TC 2
9196 SN 0921-4526
9197 J9 PHYSICA B
9198 JI Physica B
9199 PD MAY
9200 PY 1997
9201 VL 233
9202 IS 2-3
9203 BP 119
9204 EP 124
9205 PG 6
9206 SC Physics, Condensed Matter
9207 GA XG331
9208 UT ISI:A1997XG33100004
9209 ER
9210 
9211 PT J
9212 AU Lu, MG
9213    Yu, G
9214 TI On a problem of sums of mixed powers .2.
9215 SO CHINESE ANNALS OF MATHEMATICS SERIES B
9216 DT Article
9217 DE mixed power; Warings problem and variants; asymptotic formulae
9218 ID WARING PROBLEM
9219 AB Let R-b,R-c(n) denote the number of representations of n as the sum of
9220    one square, four cubes, one b-th power and one c-th power of natural
9221    numbers. It is shown that if b = 4, 4 less than or equal to c less than
9222    or equal to 35, or b = 5,5 less than or equal to c less than or equal
9223    to 13, or b = 6,6 less than or equal to c less than or equal to 9, or b
9224    = c = 7, then R-b,R-c(n) much greater than n(5/6+1/b+1/c) for all
9225    sufficiently large n.
9226 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
9227    UNIV GEORGIA,DEPT MATH,ATHENS,GA 30602.
9228 CR BRUDERN J, 1987, J LOND MATH SOC, V35, P233
9229    BRUDERN J, 1988, MATH P CAMBRIDGE PHI, V103, P27
9230    HOOLEY C, 1981, RECENT PROGR ANAL NU, V1, P127
9231    LU MG, 1991, ACTA ARITH, V58, P89
9232    LU MG, 1991, SCI CHINA SER A, V34, P385
9233    SELBERG A, 1954, J INDIAN MATH SOC, V18, P83
9234    VAUGHAN RC, 1984, TOPICS CLASSICAL NUM, V34, P1585
9235    VAUGHAN RC, 1986, J REINE ANGEW MATH, V365, P122
9236    VAUGHAN RC, 1989, ACTA MATH-DJURSHOLM, V162, P1
9237    WOOLEY TD, 1992, ANN MATH, V135, P131
9238 NR 10
9239 TC 0
9240 SN 0252-9599
9241 J9 CHIN ANN MATH SER B
9242 JI Chin. Ann. Math. Ser. B
9243 PD APR
9244 PY 1997
9245 VL 18
9246 IS 2
9247 BP 243
9248 EP 248
9249 PG 6
9250 SC Mathematics
9251 GA XG384
9252 UT ISI:A1997XG38400011
9253 ER
9254 
9255 PT J
9256 AU Ding, WZ
9257    Olsen, SE
9258 TI Reactions between multicomponent slags and Mn-Fe-Si-C alloys:
9259    Equilibrium and stoichiometry
9260 SO SCANDINAVIAN JOURNAL OF METALLURGY
9261 DT Article
9262 DE manganese ferroalloys; equilibrium relations; reaction stoichiometry;
9263    equilibrium diagrams
9264 AB Background/aims: The purpose was to establish equilibrium and
9265    stoichiometric relations associated with production of manganese
9266    ferroalloys, and to determine experimentally equilibrium distribution
9267    between multicomponent slags and Mn-Fe-Si-C-sat alloys.
9268    Methods: Measurements were carried out in a resistance furnace in an
9269    argon and carbon monoxide atmosphere in the temperature range 1350
9270    degrees C to 1500 degrees C. Graphite crucibles were used. Only a small
9271    amount of slag was charged to expose both metal and slag to the gas
9272    phase. In this way, complete equilibrium was established relatively
9273    fast. Metal samples were analyzed by wet chemical methods and slag
9274    samples by electron microprobe analysis.
9275    Results and conclusions: A thermodynamic analysis has been made and a
9276    graphical method is developed for simultaneous description of
9277    equilibrium and stoichiometric relations in slag diagrams. The results
9278    of equilibrium measurements are compared with previous results, and the
9279    effect of adding MgO to the slag and Fe to the metal is especially
9280    discussed.
9281 C1 NORWEGIAN UNIV SCI & TECHNOL,DEPT MET,N-7034 TRONDHEIM,NORWAY.
9282 RP Ding, WZ, SHANGHAI UNIV,DEPT MET,SHANGHAI 200072,PEOPLES R CHINA.
9283 CR *NAT BUR STAND, 1985, JANAF THERM TABL
9284    BARCZA NA, 1981, CAN METAL Q, V20, P285
9285    BARIN I, 1989, THERMOCHEMICAL DATA
9286    BLOISE R, 1990, P INT S FERR NON FER, P75
9287    CHIPMAN J, 1963, T METALL SOC AIME, V227, P473
9288    DING WZ, 1993, THESIS NORWEGIAN I T
9289    DING WZ, 1996, METALL MATER TRANS B, V27, P5
9290    ELYUTIN VP, 1961, PRODUCTION FERROALLO
9291    GZIELO A, 1986, NEUE HUTTE, P100
9292    KOR GJW, 1979, METAL T B, V10, P367
9293    LEE YE, 1980, CAN METALL Q, V19, P315
9294    OLSEN SE, 1995, P 7 INT FERR C, P591
9295    RANKIN WJ, 1978, 1959 NIM
9296    RISS M, 1967, PRODUCTION FERROALLO
9297    TANAKA A, 1980, TETSU TO HAGANE, V66, P1474
9298    TURKDOGAN ET, 1958, T I MIN METALL, V67, P573
9299    TUSET JK, 1970, 340358 SINTEF
9300    TUSET JK, 1970, 340420 SINTEF
9301 NR 18
9302 TC 3
9303 SN 0371-0459
9304 J9 SCAND J METALL
9305 JI Scand. J. Metall.
9306 PD DEC
9307 PY 1996
9308 VL 25
9309 IS 6
9310 BP 232
9311 EP 243
9312 PG 12
9313 SC Metallurgy & Metallurgical Engineering
9314 GA XG283
9315 UT ISI:A1996XG28300001
9316 ER
9317 
9318 PT J
9319 AU Zhu, ST
9320    Shen, WD
9321 TI Light trajectory in geometrical optics and metric optics
9322 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
9323 DT Article
9324 DE light trajectory; geometrical optics; metric optics; Fermat's
9325    principle; null geodesic
9326 ID STRONG-LASER PLASMA; RIEMANNIAN GEOMETRY
9327 AB The light trajectory in an inhomogeneous medium is studied by the
9328    variation of Lagrangians L and L which correspond to Fermat's principle
9329    in the geometrical optics and the null geodesic in the metric optics,
9330    respectively. The relation between the metric coefficients of the
9331    three-dimensional space and of the four-dimensional space-time is
9332    established. The physical meaning of the equivalence and difference of
9333    both the descriptions is revealed. It is shown that Fermat's principle
9334    is a direct result of the null geodesic.
9335 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
9336 RP Zhu, ST, CHINESE ACAD SCI,SHANGHAI INST OPT & FINE MECH,SHANGHAI
9337    201800,PEOPLES R CHINA.
9338 CR BORN M, 1975, PRINCIPLES OPTICS
9339    GORDON W, 1923, ANN PHYS-BERLIN, V72, P421
9340    GUO QZ, 1995, ACTA PHYS SINICA, V44, P210
9341    GUO QZ, 1995, ACTA PHYS SINICA, V44, P396
9342    SHEN WD, 1995, INT J THEOR PHYS, V34, P2085
9343    SHEN WD, 1995, INT J THEOR PHYS, V34, P2095
9344    ZHU ST, 1987, J OPT SOC AM B, V4, P739
9345    ZHU ST, 1988, P TOP M LAS MAT LAS, P190
9346    ZHU ST, 1989, ACTA PHYS SINICA, V38, P1167
9347    ZHU ST, 1989, ACTA PHYS SINICA, V38, P559
9348    ZHU ST, 1993, ACTA PHYS SINICA, V42, P1438
9349    ZHU ST, 1993, ACTA PHYS SINICA, V42, P1471
9350    ZHU ST, 1995, INT J THEOR PHYS, V34, P169
9351 NR 13
9352 TC 2
9353 SN 1006-9283
9354 J9 SCI CHINA SER A
9355 JI Sci. China Ser. A-Math. Phys. Astron.
9356 PD JUL
9357 PY 1997
9358 VL 40
9359 IS 7
9360 BP 755
9361 EP 760
9362 PG 6
9363 SC Mathematics, Applied; Mathematics
9364 GA XG055
9365 UT ISI:A1997XG05500011
9366 ER
9367 
9368 PT J
9369 AU Liu, HY
9370    Ying, TL
9371    Sun, K
9372    Li, HH
9373    Qi, DY
9374 TI Reagentless amperometric biosensors highly sensitive to hydrogen
9375    peroxide, glucose and lactose based on N-methyl phenazine methosulfate
9376    incorporated in a Nafion film as an electron transfer mediator between
9377    horseradish peroxidase and an electrode
9378 SO ANALYTICA CHIMICA ACTA
9379 DT Article
9380 DE biosensors; nafion; N-methyl phenazine methosulfate; horseradish
9381    peroxidase; hydrogen peroxide; glucose oxidase; beta-galactosidase;
9382    glucose; lactose
9383 ID CYTOCHROME-C PEROXIDASE; SILK FIBROIN MEMBRANE; ENZYME ELECTRODES;
9384    ELECTROCHEMICAL-BEHAVIOR; GRAPHITE-ELECTRODES; PYROLYTIC-GRAPHITE;
9385    SHUTTLE; SENSOR; FERROCENE; TETRATHIAFULVALENE
9386 AB Reagentless biosensors highly sensitive to hydrogen peroxide, glucose
9387    and lactose have been developed by immobilizing horseradish peroxidase
9388    (HRP), glucose oxidase (GOD) and beta-galactosidase (GAL) on
9389    Nafion-N-methyl phenazine methosulfate modified electrode. The cationic
9390    exchange of a perfluorosulfonic acid cation-exchange polymer (Nafion)
9391    film coated on a glassy carbon electrode was used to provide high local
9392    concentrations of the N-methyl phenazine ion in the Nafion film via a
9393    process of ion exchange from the solution. The incorporated N-methyl
9394    phenazine ions displayed an electrochemical behavior different from
9395    that in aqueous solution. Cyclic voltammetry and chronamperometry were
9396    employed to demonstrate the suitability of electron transfer between
9397    immobilized HRP and a glassy carbon electrode via N-methyl phenazine
9398    methosulfate (NMP) in a Nafion film. A hydrogen peroxide biosensor,
9399    prepared by immobilization of HRP alone, provided a detection limit of
9400    75 nM. Comparison of the NMP-mediated biosensor to the mediatorless
9401    biosensor indicated that the high sensitivity of the biosensor to
9402    hydrogen peroxide arose from the high efficiency of bioelectrocatalytic
9403    reduction of hydrogen peroxide via NMP incorporated in the Nafion film.
9404    Coimmobilization of HRP and GOD was employed to establish the
9405    feasibility of highly effective bienzyme-based biosensors for low
9406    glucose concentrations. Addition of GAL to the glucose biosensor
9407    provided a sensitive response to lactose, which illustrated the
9408    suitability of trienzyme-based biosensors. Performance and
9409    characteristics of the biosensors were evaluated with respect to
9410    response time, detection limit, selectivity, and dependence on applied
9411    potential, thickness of the Nafion film, temperature and pH as well as
9412    operating and storage stability.
9413 C1 WEIMEI COOPERAT HANGZHOU,CLIN DEPT,HANGZHOU 310000,PEOPLES R CHINA.
9414 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R
9415    CHINA.
9416 CR 1991, SIGMA CHEM CATALOGUE, P771
9417    ANDRIEUX CP, 1990, J ELECTROANAL CH INF, V296, P117
9418    ARMSTRONG FA, 1993, ANALYST, V118, P973
9419    AUDEBERT P, 1989, J CHEM SOC CHEM COMM, P939
9420    BIFULCO L, 1994, ANAL LETT, V27, P1443
9421    CASS AEG, 1984, ANAL CHEM, V56, P667
9422    FURBEE JW, 1993, ANAL CHEM, V65, P1654
9423    GARCIA O, 1990, J ELECTROANAL CH INF, V279, P79
9424    GIERKE TD, 1982, PERFLUORINATED IONOM, V180
9425    GORTON L, 1991, ANAL CHIM ACTA, V249, P43
9426    GORTON L, 1992, ANALYST, V117, P1235
9427    HAMID JA, 1989, ANALYST, V114, P1587
9428    HO WO, 1993, J ELECTROANAL CHEM, V351, P185
9429    JENSEN MH, 1994, J ELECTROANAL CHEM, V377, P131
9430    KAMIN RA, 1980, ANAL CHEM, V52, P1198
9431    KATAKIS I, 1994, J AM CHEM SOC, V116, P3617
9432    KULYS J, 1990, BIOELECTROCH BIOENER, V24, P305
9433    LIU H, 1995, ANAL P, V32, P375
9434    LIU HY, 1995, ANAL CHIM ACTA, V300, P65
9435    LIU HY, 1995, ELECTROCHIM ACTA, V40, P1845
9436    LIU HY, 1996, ANAL CHIM ACTA, V329, P97
9437    LIU HY, 1996, TALANTA, V43, P111
9438    LIU YC, 1995, ANAL CHIM ACTA, V316, P65
9439    LIU YC, 1996, ELECTROCHIM ACTA, V41, P77
9440    MULCHANDANI A, 1995, ANAL CHEM, V67, P94
9441    PFEIFFER D, 1990, J CHEM TECHNOL BIOT, V49, P255
9442    PISHKO MV, 1990, ANGEW CHEM INT EDIT, V29, P82
9443    POPESCU IC, 1995, BIOSENS BIOELECTRON, V10, P443
9444    QIAN JH, 1995, J ELECTROANAL CHEM, V397, P157
9445    RANDIN JP, 1982, J ELECTROCHEM SOC, V129, P1215
9446    RAZUMAS V, 1992, BIOELECTROCH BIOENER, V28, P159
9447    RUZGAS T, 1995, J ELECTROANAL CHEM, V391, P41
9448    RYSWYK HV, 1989, J ELECTROANAL CHEM, V265, P317
9449    SANCHEZ PD, 1990, ELECTROANAL, V2, P303
9450    SCOTT DL, 1992, J ELECTROANAL CHEM, V341, P307
9451    TATSUMA T, 1992, ANAL CHEM, V64, P1183
9452    TATSUMA T, 1995, ANAL CHEM, V67, P283
9453    VREEKE M, 1995, ANAL CHEM, V67, P303
9454    WILDES PD, 1978, J AM CHEM SOC, V100, P6568
9455 NR 39
9456 TC 21
9457 SN 0003-2670
9458 J9 ANAL CHIM ACTA
9459 JI Anal. Chim. Acta
9460 PD JUN 10
9461 PY 1997
9462 VL 344
9463 IS 3
9464 BP 187
9465 EP 199
9466 PG 13
9467 SC Chemistry, Analytical
9468 GA XF798
9469 UT ISI:A1997XF79800005
9470 ER
9471 
9472 PT J
9473 AU Huang, HC
9474 TI Fiber-optic analogs of bulk-optic wave plates
9475 SO APPLIED OPTICS
9476 DT Article
9477 AB The author's discovery of an unusual fiber element that is simply a
9478    variably spun birefringent fiber with a spin rate that varies from fast
9479    to zero or vice versa is revealed. The novel fiber element can be
9480    readily made by the existing fabrication technique, with fairly loose
9481    tolerances of the structural parameters. Analytic theory predicts that
9482    such a nonuniform fiber element can function as a bulk-optic
9483    quarter-wave plate, but with the advantage of being inherently wide
9484    band. Experimental evidence confirms the theoretical prediction. With
9485    such a fiber-optic analog of a quarter-wave plate as a building block,
9486    wide-band half-wave plates and full wave plates can likewise be made in
9487    the form of variably spun birefringent fibers. (C) 1997 Optical Society
9488    of America.
9489 RP Huang, HC, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
9490 CR BARLOW AJ, 1981, APPL OPTICS, V20, P2962
9491    COOK JS, 1955, BELL SYST TECH J, V34, P807
9492    FOX AG, 1955, BELL SYST TECH J, V34, P823
9493    HUANG HC, IN PRESS MICROWAVE A
9494    HUANG HC, 1960, SCI SINICA, V9, P142
9495    HUANG HC, 1961, ACTA MATH SINICA, V11, P238
9496    HUANG HC, 1990, 4943132, US
9497    HUANG HC, 1992, 5096312, US
9498    HUANG HC, 1995, 5452394, US
9499    KAPRON FP, 1972, IEEE J QUANTUM ELECT, V8, P222
9500    KELLER HB, 1962, J SOC IND APPL MATH, V10, P246
9501    LEFEVRE HC, 1983, 4389090, US
9502    LOUISELL WH, 1955, BELL SYST TECH J, V34, P853
9503    MATSUMOTO T, 1989, 4793678, US
9504    MCINTYRE P, 1978, J OPT SOC AM, V68, P149
9505    SHAW HJ, 1989, 4801189, US
9506 NR 16
9507 TC 3
9508 SN 0003-6935
9509 J9 APPL OPT
9510 JI Appl. Optics
9511 PD JUN 20
9512 PY 1997
9513 VL 36
9514 IS 18
9515 BP 4241
9516 EP 4258
9517 PG 18
9518 SC Optics
9519 GA XE301
9520 UT ISI:A1997XE30100030
9521 ER
9522 
9523 PT J
9524 AU Jian, GC
9525    Zhu, YR
9526    Guo, SQ
9527    Xu, JL
9528    Wang, YQ
9529    Pan, LY
9530    Yu, DW
9531 TI The existence of intragranular ferrite plates and nucleating inclusions
9532    in the heat affected zone of X-60 pipe steel
9533 SO JOURNAL OF MATERIALS SCIENCE
9534 DT Article
9535 AB In order to improve the heat affected zone (HAZ) toughness of X-60 pipe
9536    steel, we have applied intragranular ferrite plate (IFP) technology.
9537    The characteristic of IFP is the appearance of fine ferrite plates
9538    inside the original austenite grains. By means of suitable Re, Zr and
9539    Ti additions at high initial oxygen potentials, and good control of the
9540    peak temperature and the cooling rate during welding simulation, one
9541    can obtain IFP contents over 50 vol% with a resultant increase in the
9542    toughness from 55-160 J. It was found that the inclusions that were
9543    most effective in nucleating the IFP were deformable complex silicates
9544    which either entrap Re, Zr and Ti oxides or contain these elements. The
9545    greater the number of the evenly distributed and effectively nucleating
9546    inclusions, the greater the IFP content, and the finer the
9547    microstructure of the HAZ, and the greater the relevant toughness.
9548    Generally, these silicates behave as fine spheres along a line. The
9549    present authors show that these fine spheres result from the remelting
9550    of the shuttle-like silicates due to heating in the process of welding
9551    simulation. These silicates contain a high sulfur capacity and thus MnS
9552    deposits are often observed on the periphery of the silicates. The IFP
9553    was shown to be directly rooted in the Mn depletion zone which is
9554    located beside the MnS deposits.
9555 C1 BAO SHAN IRON & STEEL CORP,BAOSHAN,PEOPLES R CHINA.
9556 RP Jian, GC, SHANGHAI UNIV,SHANGHAI ENHANCED LAB FERROMET,SHANGHAI,PEOPLES
9557    R CHINA.
9558 CR *IR STEEL I JAP, 1990, P 6 INT IR STEEL C N, V1, P591
9559    GRAY JM, 1985, P HSLA STEELS MET AP, P557
9560    JIANG GC, 1996, CLEAN STEELS SECONDA
9561    LEE JL, 1995, ISIJ INT, V35, P1027
9562    TOMITA Y, 1994, ISIJ INT, V34, P829
9563 NR 5
9564 TC 2
9565 SN 0022-2461
9566 J9 J MATER SCI
9567 JI J. Mater. Sci.
9568 PD JUN 1
9569 PY 1997
9570 VL 32
9571 IS 11
9572 BP 2985
9573 EP 2989
9574 PG 5
9575 SC Materials Science, Multidisciplinary
9576 GA XD827
9577 UT ISI:A1997XD82700022
9578 ER
9579 
9580 PT J
9581 AU Zhang, ZL
9582    Jiang, XY
9583    Xu, SH
9584    Nagatomo, T
9585    Omoto, O
9586 TI Improving stability of organic electroluminescent diode by inserting
9587    copper phthalocyanine between the anode and hole transport layer
9588 SO CHINESE PHYSICS LETTERS
9589 DT Article
9590 AB Copper phthalocyanine(CuPc) thin film layer was inserted between the
9591    anode indium tin oxide and the hole transport layer TPD of an organic
9592    thin film electroluminescent device with a. double-layered structure.
9593    It is found that the CuPc layer greatly improves the device stability.
9594    The durability of the device with CuPc layer increases about 8 times.
9595    The fact that at a constant current density the driving voltage remains
9596    unchanged with operation time for the device with CuPc layer means that
9597    the barriers of the carriers injection are stable due to the inserted
9598    CuPc layer.
9599 C1 SHIBAURA INST TECHNOL,MINATO KU,TOKYO 108,JAPAN.
9600 RP Zhang, ZL, SHANGHAI UNIV,DEPT MAT SCI,JIADING CAMPUS,SHANGHAI
9601    201800,PEOPLES R CHINA.
9602 CR ADACHI C, 1995, APPL PHYS LETT, V66, P2679
9603    HAMADA Y, 1995, JPN J APPL PHYS, V34, P824
9604    SHIROTA Y, 1994, APPL PHYS LETT, V65, P807
9605    TANG CW, 1987, APPL PHYS LETT, V51, P913
9606 NR 4
9607 TC 2
9608 SN 0256-307X
9609 J9 CHIN PHYS LETT
9610 JI Chin. Phys. Lett.
9611 PY 1997
9612 VL 14
9613 IS 4
9614 BP 302
9615 EP 305
9616 PG 4
9617 SC Physics, Multidisciplinary
9618 GA XE116
9619 UT ISI:A1997XE11600018
9620 ER
9621 
9622 PT J
9623 AU Feng, SS
9624    Huang, CG
9625 TI Can Dirac observability apply to gravitational systems?
9626 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
9627 DT Article
9628 ID GRAVITY
9629 AB The problem of what is observable in general relativity is
9630    investigated. With the help of Landau's observable space interval. the
9631    observational frames for individual observers are established. Within
9632    the Ashtekar formulation of general relativity, we argue from the
9633    nonvanishing Poisson brackets of the Yang-Mills fi-ld and the
9634    constraints that Dirac observability does not apply to gravitational
9635    systems.
9636 C1 ACAD SINICA,INST HIGH ENERGY PHYS,BEIJING 100039,PEOPLES R CHINA.
9637    SHANDONG TEACHERS UNIV,CTR STRING THEORY,SHANGHAI 200234,PEOPLES R CHINA.
9638 RP Feng, SS, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
9639    R CHINA.
9640 CR ASHTEKAR A, 1989, PHYS REV D, V40, P2572
9641    DIRAC PAM, 1964, LECTURES QUANTUM MEC
9642    DUAN YS, 1988, GENERAL RELATIVITY G, V20
9643    DUAN YS, 1996, COMMUN THEOR PHYS, V25, P99
9644    EINSTEIN A, 1979, MEANING RELATIVITY
9645    FENG SS, 1995, GEN RELAT GRAVIT, V27, P887
9646    FENG SS, 1996, INT J THEOR PHYS, V35, P267
9647    FENG SS, 1996, NUCL PHYS B, V468, P163
9648    GITMAN DM, 1990, QUANTIZATION FIELDS
9649    HAWKING SW, 1988, BRIEF HIST TIME BIG
9650    KUCHAR K, 1991, CONCEPTUAL PROBLEMS
9651    LANDAU LD, 1951, CLASSICAL THEORY FIE
9652    ROVELLI C, 1991, CLASSICAL QUANT GRAV, V8, P297
9653    STACHEL J, 1986, GENERAL RELATIVITY G
9654    WALD RM, 1984, GENERAL RELATIVITY
9655 NR 15
9656 TC 7
9657 SN 0020-7748
9658 J9 INT J THEOR PHYS
9659 JI Int. J. Theor. Phys.
9660 PD MAY
9661 PY 1997
9662 VL 36
9663 IS 5
9664 BP 1179
9665 EP 1187
9666 PG 9
9667 SC Physics, Multidisciplinary
9668 GA XE078
9669 UT ISI:A1997XE07800009
9670 ER
9671 
9672 PT J
9673 AU Gu, CQ
9674 TI Bivariate Thiele-type matrix-valued rational interpolants
9675 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
9676 DT Article
9677 DE matrix-valued rational interpolants; branched continued fractions;
9678    generalized inverse
9679 AB A new method for the construction of bivariate matrix-valued rational
9680    interpolants on a rectangular grid is introduced in this paper. The
9681    rational interpolants are of the continued fraction form, with scalar
9682    denominator. In this respect the approach is essentially different from
9683    that of Bose and Basu (1980) where a rational matrix-valued approximant
9684    with matrix-valued numerator and denominator is used for the
9685    approximation of a bivariate matrix power series. The matrix quotients
9686    are based on the generalized inverse for a matrix introduced by Gu
9687    Chuanqing and Chen Zhibing (1995) which is found to be effective in
9688    continued fraction interpolation. A sufficient condition of existence
9689    is obtained. Some important conclusions such as characterisation and
9690    uniqueness are proven respectfully. The inner connection between two
9691    type interpolating functions is investigated. Some examples are given
9692    so as to illustrate the results in the paper.
9693 C1 SHANGHAI UNIV,DEPT MATH,SHANGHAI 200072,PEOPLES R CHINA.
9694 CR BOSE NK, 1978, P C DEC CONTR IEEE C
9695    BOSE NK, 1980, IEEE T AUTOMAT CONTR, V25, P509
9696    BULTHEEL A, 1986, J COMPUT APPL MATH, V14, P401
9697    COORE CJ, 1977, INT J ELECTRON, V43, P449
9698    GRAVESMORRIS PR, 1983, NUMER MATH, V42, P331
9699    GU CQ, 1993, NUMER MATH J CHINESE, V15, P99
9700    GU CQ, 1995, MATH NUMER SINICA, V17, P73
9701    GU CQ, 1996, J MATH RES EXPOSITIO, P301
9702    SHIEH LS, 1975, IEEE T CIRCUITS SYST, V22, P721
9703    SIEMASZKO W, 1978, J COMPUT APPL MATH, V4, P181
9704    SIEMASZKO W, 1983, J COMPUT APPL MATH, V9, P137
9705    ZHU GQ, 1990, CHINESE J NUMER MATH, V12, P66
9706 NR 12
9707 TC 5
9708 SN 0377-0427
9709 J9 J COMPUT APPL MATH
9710 JI J. Comput. Appl. Math.
9711 PD APR 14
9712 PY 1997
9713 VL 80
9714 IS 1
9715 BP 71
9716 EP 82
9717 PG 12
9718 SC Mathematics, Applied
9719 GA XC667
9720 UT ISI:A1997XC66700005
9721 ER
9722 
9723 PT J
9724 AU Duan, YS
9725    Feng, SS
9726 TI General covariant conservative angular momentum for topologically
9727    massive gravity
9728 SO COMMUNICATIONS IN THEORETICAL PHYSICS
9729 DT Article
9730 ID GRAVITATIONAL ANYONS
9731 AB We obtain the general covariant conservation law of angular momentum
9732    for gravitational anyons by means of global rather than local SO(1,2)
9733    transforms. Two examples show that our conservation law is reasonable.
9734    The general covariance suggests that this definition of angular
9735    momentum is better than the usual Aux-integral definition.
9736 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
9737 RP Duan, YS, LANZHOU UNIV,INST THEORET PHYS,LANZHOU 730000,PEOPLES R CHINA.
9738 CR BAK D, 1994, PHYS REV D, V49, P5173
9739    CLEMENT G, 1992, CLASSICAL QUANT GRAV, V9, P2615
9740    CLEMENT G, 1992, CLASSICAL QUANT GRAV, V9, P2635
9741    DESER S, 1982, ANN PHYS-NEW YORK, V140, P372
9742    DESER S, 1984, ANN PHYS-NEW YORK, V152, P220
9743    DESER S, 1990, NUCL PHYS B, V344, P747
9744    DESER S, 1990, PHYS REV LETT, V64, P611
9745    DESER S, 1992, CLASSICAL QUANT GRAV, V9, P61
9746    DUAN YS, 1996, COMMUN THEOR PHYS, V25, P99
9747    FENG SS, 1994, THESIS LANZHOU U
9748    FENG SS, 1996, INT J THEOR PHYS, V35, P327
9749    FRADKIN E, 1991, FIELD THEORIES CONDE
9750 NR 12
9751 TC 0
9752 SN 0253-6102
9753 J9 COMMUN THEOR PHYS
9754 JI Commun. Theor. Phys.
9755 PD APR 30
9756 PY 1997
9757 VL 27
9758 IS 3
9759 BP 343
9760 EP 348
9761 PG 6
9762 SC Physics, Multidisciplinary
9763 GA XC049
9764 UT ISI:A1997XC04900014
9765 ER
9766 
9767 PT J
9768 AU Wang, BH
9769    Hui, PM
9770    Gu, GQ
9771 TI Dynamical evolution of highway traffic flow: From microscopic to
9772    macroscopic
9773 SO CHINESE PHYSICS LETTERS
9774 DT Article
9775 ID MODEL
9776 AB In this paper, a derivation of the macroscopic mean field theory of the
9777    cellular automaton (CA) model of highway traffic flow starting from the
9778    microscopic dynamical point of view is presented. Starting from an
9779    equation describing the time evolution of the Boolean state variable at
9780    each site of the basic CA model, and using a two-site approximation for
9781    the multi-site correlation functions, a dynamical mapping between the
9782    macroscopic average speeds v(t + 1) and v(t) at different time can be
9783    derived. Mean field results consistent with the simulation data are
9784    obtained by considering the attractors of the mapping and their
9785    corresponding basins.
9786 C1 UNIV SCI & TECHNOL CHINA,CTR NONLINEAR SCI,HEFEI 230026,PEOPLES R CHINA.
9787    CHINESE UNIV HONG KONG,DEPT PHYS,SHATIN,NT,HONG KONG.
9788    SHANGHAI UNIV SCI & TECHNOL,DEPT SYST ENGN,SHANGHAI 200093,PEOPLES R CHINA.
9789 RP Wang, BH, UNIV SCI & TECHNOL CHINA,DEPT MODERN PHYS,HEFEI
9790    230026,PEOPLES R CHINA.
9791 CR CHUNG KH, 1994, J PHYS SOC JPN, V63, P4338
9792    NAGATANI T, 1995, J PHYS SOC JPN, V64, P1421
9793    NAGEL K, 1992, J PHYS I, V2, P2221
9794    SCHREKENBERG M, 1995, PHYS REV E A, V51, P2939
9795    WANG BH, 1996, J PHYS A-MATH GEN, V29, L31
9796    WANG BH, 1996, J PHYS SOC JPN, V65, P2345
9797    WOLFRAM S, 1986, THEORY APPL CELLULAR
9798 NR 7
9799 TC 8
9800 SN 0256-307X
9801 J9 CHIN PHYS LETT
9802 JI Chin. Phys. Lett.
9803 PY 1997
9804 VL 14
9805 IS 3
9806 BP 202
9807 EP 205
9808 PG 4
9809 SC Physics, Multidisciplinary
9810 GA XA764
9811 UT ISI:A1997XA76400012
9812 ER
9813 
9814 PT J
9815 AU Bai, ZZ
9816    Wang, DR
9817 TI A class of new hybrid algebraic multilevel preconditioning methods
9818 SO LINEAR ALGEBRA AND ITS APPLICATIONS
9819 DT Article
9820 AB A class of new hybrid algebraic multilevel. preconditioning methods is
9821    presented for solving the large sparse systems of linear equations with
9822    symmetric positive definite coefficient matrices resulting from the
9823    discretization of many second-order elliptic boundary-value problems by
9824    the finite-element method. The new preconditioners are shown to be of
9825    optimal orders of complexities for two-dimensional and
9826    three-dimensional problem domains, and their relative condition numbers
9827    are estimated to be bounded uniformly, independent of the numbers of
9828    both the levels and the nodes. (C) Elsevier Science Inc., 1997.
9829 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
9830 RP Bai, ZZ, CHINESE ACAD SCI,INST COMPUTAT MATH & SCI ENGN COMP,POB
9831    2719,BEIJING 100080,PEOPLES R CHINA.
9832 CR AXELSSON O, 1983, MATH COMPUT, V40, P219
9833    AXELSSON O, 1989, NUMER MATH, V56, P157
9834    AXELSSON O, 1990, SIAM J NUMER ANAL, V27, P1569
9835    AXELSSON O, 1991, DOMAIN DECOMPOSITION, P163
9836    BAI ZZ, 1993, THESIS SHANGHAI U SC
9837    BAI ZZ, 1996, APPL NUMER MATH, V19, P389
9838    CAO ZH, 1993, INT J COMPUT MATH, V47, P77
9839    CAO ZH, 1993, NUMER MATH J CHINESE, V1, P25
9840    VASSILEVSKI PS, 198909 U WYOM I SCI
9841    VASSILEVSKI PS, 1992, MATH COMPUT, V58, P489
9842    WANG DR, 1997, LINEAR ALGEBRA APPL, V250, P317
9843    YSERENTANT H, 1986, NUMER MATH, V49, P379
9844 NR 12
9845 TC 2
9846 SN 0024-3795
9847 J9 LINEAR ALGEBRA APPL
9848 JI Linear Alg. Appl.
9849 PD JUL 15
9850 PY 1997
9851 VL 260
9852 BP 223
9853 EP 255
9854 PG 33
9855 SC Mathematics, Applied
9856 GA XA857
9857 UT ISI:A1997XA85700011
9858 ER
9859 
9860 PT J
9861 AU Cao, WG
9862    Ding, WY
9863    Yi, T
9864    Zhu, ZM
9865 TI A simple approach to the synthesis of ethyl
9866    2-ethoxy-4-methoxy-6-perfluoroalkylbenzoates via acyclic precursors
9867 SO JOURNAL OF FLUORINE CHEMISTRY
9868 DT Article
9869 DE synthesis; phosphoranes; acyclic precursors; intramolecular Wittig
9870    reaction; ethyl 2-ethoxy-4-methoxy-6-perfluoroalkylbenzoates
9871 ID FACILE SYNTHESIS
9872 AB The acyclic precursors, methyl
9873    3-perfluoroalkyl-4-carboethoxy-5-ethoxy-6-(triphenylphosphoranylidene)he
9874    xa-2,4-dienoates 3a-c were obtained through the addition reaction of
9875    ethyl 3-ethoxy-4-(triphenylphosphoranylidene)but-2-enoate 1 with
9876    equally molar of methyl 2-perfluoroalkynoates 2a-c. Ethyl
9877    2-ethoxy-4-methoxy-6-perfluoroalkylbenzoates 4a-c were synthesized with
9878    high yields via an intramolecular elimination of Ph3PO of 3a-c by
9879    heating in anhydrous benzene in a sealed tube. The structures of these
9880    compounds were confirmed by IR, MS, H-1, C-13 and F-19 NMR spectra, and
9881    elemental analyses. The reaction mechanisms were also proposed.
9882 RP Cao, WG, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
9883    R CHINA.
9884 CR BANKS RE, 1979, ORGANOFLUORINE CHEM
9885    COFFEY S, RODDS CHEM CARBON CO, P403
9886    DING WY, 1987, TETRAHEDRON LETT, V28, P81
9887    DING WY, 1992, SYNTHESIS-STUTTGART, P635
9888    DING WY, 1993, CHINESE J CHEM, V11, P81
9889    DING WY, 1993, J CHEM SOC P1, P855
9890    DING WY, 1995, CHINESE J CHEM, V13, P468
9891    HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47
9892    KOCHHAR KS, 1984, J ORG CHEM, V49, P3222
9893    MCCLINTON MA, 1992, TETRAHEDRON, V48, P6555
9894    TENDIL J, 1977, B SOC CHIM FR, P565
9895    WELCH JT, 1987, TETRAHEDRON, V43, P3123
9896 NR 12
9897 TC 6
9898 SN 0022-1139
9899 J9 J FLUORINE CHEM
9900 JI J. Fluor. Chem.
9901 PD MAR
9902 PY 1997
9903 VL 81
9904 IS 2
9905 BP 153
9906 EP 155
9907 PG 3
9908 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
9909 GA XA484
9910 UT ISI:A1997XA48400009
9911 ER
9912 
9913 PT J
9914 AU Ye, ZM
9915 TI The non-linear vibration and dynamic instability of thin shallow shells
9916 SO JOURNAL OF SOUND AND VIBRATION
9917 DT Article
9918 ID RECTANGULAR-PLATES; NONLINEAR VIBRATION; SPHERICAL-SHELL; CIRCULAR
9919    PLATES
9920 AB In this paper, the non-linear vibration and dynamic instability of thin
9921    shallow spherical and conical shells subjected to periodic transverse
9922    and in-plane loads are investigated. The Marguerre type dynamic
9923    equations used for the analysis of shallow shells, when treated by the
9924    Galerkin method, will result in a system of total differential
9925    equations in the time functions, known as Duffing and Mathieu
9926    equations, from which the various kinds of non-linear vibration and
9927    dynamic instability are determined by using numerical methods.
9928    Numerical results are presented for axisymmetric vibrations and dynamic
9929    instabilities of shallow spherical and conical shells with (a) clamped
9930    and (b) supported edge conditions. As numerical examples, non-linear
9931    vibration frequencies and instability regions for shells are
9932    determined. The effects of static load as well as static snap-through
9933    buckling on the instability are also investigated. (C) 1997 Academic
9934    Press Limited.
9935 RP Ye, ZM, SHANGHAI UNIV,DEPT CIVIL ENGN,149 YAN CHANG RD,SHANGHAI
9936    200072,PEOPLES R CHINA.
9937 CR BHUSHAN B, 1991, COMPOS STRUCT, V18, P263
9938    CHIA CY, 1985, J SOUND VIB, V101, P539
9939    CHIA CY, 1992, COMPUT STRUCT, V44, P797
9940    DENISOV VN, 1985, MECH SOLIDS, V20, P142
9941    DUMIR PC, 1986, J SOUND VIB, V107, P253
9942    EVANSEN DA, 1967, TND4090 NASA
9943    GONCALVES PB, 1988, J SOUND VIBRATION, V127, P133
9944    HUI D, 1985, INT J MECH SCI, V27, P397
9945    JAIN RK, 1987, AIAA J, V25, P630
9946    LEISSA AW, 1961, J AEROSP SCI, V29, P1381
9947    MAHRENHOLTZ O, 1987, APPL MATH MECH, V67, P218
9948    MEI C, 1985, AIAA J, V23, P1104
9949    NATH Y, 1985, INT J NUMER METH ENG, V21, P565
9950    NATH Y, 1987, J SOUND VIBRATION, V112, P53
9951    SANDERS JL, 1959, TRR24 NASA
9952    TSAI CT, 1989, INT J NONLINEAR MECH, V24, P127
9953    WANG XX, 1991, COMPUT METHOD APPL M, V86, P73
9954    YASUDA K, 1984, B JSME, V27, P2233
9955    YE ZM, 1984, ACTA MECH SINICA, V16, P634
9956    YE ZM, 1988, APPL MATH MECH, V9, P153
9957    YE ZM, 1993, MECH RES COMMUN, V20, P83
9958 NR 21
9959 TC 11
9960 SN 0022-460X
9961 J9 J SOUND VIB
9962 JI J. Sound Vibr.
9963 PD MAY 8
9964 PY 1997
9965 VL 202
9966 IS 3
9967 BP 303
9968 EP 311
9969 PG 9
9970 SC Engineering, Mechanical; Acoustics; Mechanics
9971 GA WY075
9972 UT ISI:A1997WY07500001
9973 ER
9974 
9975 PT J
9976 AU Liu, GL
9977    Wang, HG
9978 TI A new pseudo-potential model for rotational turbo-flow .1. Variational
9979    formulation and finite element solution for transonic blade-to-blade
9980    flow
9981 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
9982 DT Article
9983 ID PRINCIPLES; SHOCKS; ROTOR
9984 AB A new general function - the pseudo-potential function - is introduced
9985    via the term-condensing method /13/, being a simple and consistent
9986    generalization of the potential function to general rotational
9987    turbo-now. It retains almost all advantages of the potential function,
9988    while removing its restriction to now potentiality (namely homentropy
9989    and homrothalpy). The general formulation of rotational now along S-1-
9990    and S-2-stream sheets in turbomachines is derived, and methods of
9991    solution are given with special attention to transonic and supersonic
9992    flows, providing a new physically self-consistent and computationally
9993    simple now model and allowing for the vorticity generated just behind
9994    shocks. Then, a family of variational principles for S-1-flow is
9995    established and based thereupon finite element solutions to some
9996    transonic now examples are obtained, which agree fairly well with the
9997    Euler's equation solutions and the measurements. This model can be
9998    further generalized to fully 3-D now, especially transonic turbo-now.
9999 C1 E CHINA UNIV TECHNOL,POWER ENGN DEPT,SHANGHAI 200093,PEOPLES R CHINA.
10000 RP Liu, GL, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI
10001    200072,PEOPLES R CHINA.
10002 CR AKAY HU, 1984, FINITE ELEMENTS FLUI, V5, P173
10003    BAKER TJ, 1983, COMPUTATION TRANSONI
10004    BOSMAN C, 1974, 3746 ARC RM
10005    CAI RQ, 1988, INT J HEAT FLUID FL, V9, P302
10006    DECONINCK H, 1981, ASME, V103, P665
10007    HAFEZ M, 1988, INT J NUMER METH FL, V8, P31
10008    HAFEZ MM, 1983, AIAA J, V21, P327
10009    HIRSCH C, 1990, NUMERICAL COMPUTATIO, V2
10010    KLOPFER GH, 1984, AIAA J, V22, P770
10011    LIU GL, 1980, FUNDAMENTALS AERODYN
10012    LIU GL, 1980, SCI SINICA, V23, P1339
10013    LIU GL, 1982, CHINESE J ENG THERMO, V3, P138
10014    LIU GL, 1982, P INT C FEM SHANGH C, P520
10015    LIU GL, 1983, 2ND P AS C FLUID MEC, P698
10016    LIU GL, 1989, NUMERICAL METHODS LA, V6, P1289
10017    LIU GL, 1990, EXPT COMPUTATIONAL A, P128
10018    LIU GL, 1992, ACTA MECH, V95, P117
10019    LIU GL, 1993, ACTA MECH, V97, P229
10020    NI RH, 1982, AIAA J, V20, P1565
10021    SARATHY KP, 1982, T ASME, V104, P394
10022    WU CH, 1952, 2604 NACA TN
10023    XU HY, 1990, P 1 INT S AER DYN IN, P121
10024    XU JZ, 1980, CHINESE J MECH ENG, V16, P3
10025 NR 23
10026 TC 1
10027 SN 0334-0082
10028 J9 INT J TURBO JET ENGINES
10029 JI Int. J. Turbo. Jet-Engines
10030 PY 1996
10031 VL 13
10032 IS 4
10033 BP 263
10034 EP 275
10035 PG 13
10036 SC Engineering, Aerospace
10037 GA WW120
10038 UT ISI:A1996WW12000003
10039 ER
10040 
10041 PT J
10042 AU Li, X
10043    Guo, BY
10044 TI A Legendre pseudospectral method for solving nonlinear Klein-Gordon
10045    equation
10046 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
10047 DT Article
10048 ID SOBOLEV SPACES
10049 AB A Legendre pseudospectral scheme is proposed for solving
10050    initial-boundary value problem of nonlinear Klein-Gordon equation. The
10051    numerical solution keeps the discrete conservation. Its stability and
10052    convergence are investigated. Numerical results are also presented,
10053    which show the high accuracy. The technique in the theoretical analysis
10054    provides a framework for Legendre pseudospectral approximation of
10055    nonlinear multi-dimensional problems.
10056 C1 CHINESE UNIV HONG KONG,HONG KONG,HONG KONG.
10057    SHANGHAI UNIV,SHANGHAI,PEOPLES R CHINA.
10058 CR BERNARDI C, 1992, J COMPUT APPL MATH, V43, P53
10059    CANUTO C, 1982, MATH COMPUT, V38, P67
10060    CANUTO C, 1988, SPECTRAL METHODS FLU
10061    CAO WM, 1993, J COMPUT PHYS, V108, P296
10062    GUO BY, 1982, NUMERICAL MATH, V4, P46
10063    GUO BY, 1982, SCI SINICA A, V25, P702
10064    GUO BY, 1983, J APPL SCI, V1, P25
10065    GUO BY, 1988, DIFFERENCE METHODS P
10066    GUO BY, 1993, NUMERICAL MATH, V2, P38
10067    GUO BY, 1996, J COMP PHYS APPL MAT, V15, P19
10068    HARDY GH, 1952, INEQUALITES
10069    LIONS JL, 1969, QUELQUES METHODES RE
10070    MA HP, 1987, J COMPUT MATH, V4, P337
10071    NEVAI P, 1979, MEN AM MATH SOC, V213
10072    RICHTMYER RD, 1967, FINITE DIFFERENCE ME
10073    STRAUSS W, 1978, J COMP PHYSIOL, V28, P271
10074    SZABADOS J, 1992, J COMPUT APPL MATH, V43, P3
10075 NR 17
10076 TC 2
10077 SN 0254-9409
10078 J9 J COMPUT MATH
10079 JI J. Comput. Math.
10080 PD APR
10081 PY 1997
10082 VL 15
10083 IS 2
10084 BP 105
10085 EP 126
10086 PG 22
10087 SC Mathematics, Applied; Mathematics
10088 GA WV929
10089 UT ISI:A1997WV92900002
10090 ER
10091 
10092 PT J
10093 AU Chen, H
10094    Shi, YM
10095    Yu, JZ
10096    Zhu, JL
10097    Kawazoe, Y
10098 TI Phonon-associated conductance through a quantum point contact
10099 SO PHYSICAL REVIEW B
10100 DT Article
10101 ID DOUBLE-BARRIER; BALLISTIC RESISTANCE; TRANSPORT; MODEL
10102 AB By using an independent-boson model we: study the electronic
10103    conductance through a quantum point contact in the presence of the
10104    electron-phonon interaction. We find that the phonon energy plays a
10105    crucial role in the quantum behavior of the conductance.
10106 C1 FUDAN UNIV,DEPT PHYS,SHANGHAI 200433,PEOPLES R CHINA.
10107    SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA.
10108 RP Chen, H, TOHOKU UNIV,INST MAT RES,SENDAI,MIYAGI 98077,JAPAN.
10109 CR AVISHAI Y, 1989, PHYS REV B, V40, P12535
10110    BLICK RH, 1995, APPL PHYS LETT, V67, P3924
10111    CAI W, 1989, PHYS REV LETT, V63, P418
10112    CAI W, 1990, PHYS REV LETT, V65, P104
10113    CHEN H, 1993, PHYS REV B, V48, P8790
10114    DREXLER H, 1995, APPL PHYS LETT, V67, P2616
10115    GELFAND BY, 1989, PHYS REV LETT, V62, P1683
10116    GOLDMAN VJ, 1987, PHYS REV B, V36, P7635
10117    GUIMARAES PSS, 1993, PHYS REV LETT, V70, P3792
10118    GUREVICH VL, 1995, PHYS REV B, V51, P5219
10119    KEAY BJ, 1995, PHYS REV LETT, V75, P4098
10120    KOUWENHOVEN LP, 1994, PHYS REV LETT, V73, P3443
10121    MAHAN GD, 1981, MANY PARTICLE PHYSIC, P269
10122    RICCO B, 1984, PHYS REV B, V29, P1970
10123    STAFFORD CA, 1996, PHYS REV LETT, V76, P1916
10124    VANWEES BJ, 1988, PHYS REV LETT, V60, P848
10125    WHARAM DA, 1988, J PHYS C SOLID STATE, V21, L209
10126    WHARAM DA, 1988, J PHYS C SOLID STATE, V21, L887
10127    WROBEL J, 1995, EUROPHYS LETT, V29, P481
10128 NR 19
10129 TC 2
10130 SN 0163-1829
10131 J9 PHYS REV B
10132 JI Phys. Rev. B
10133 PD APR 15
10134 PY 1997
10135 VL 55
10136 IS 15
10137 BP 9935
10138 EP 9940
10139 PG 6
10140 SC Physics, Condensed Matter
10141 GA WV251
10142 UT ISI:A1997WV25100120
10143 ER
10144 
10145 PT J
10146 AU Liu, HY
10147    Deng, HH
10148    Sun, K
10149    Qi, DY
10150    Deng, JQ
10151    Liu, YC
10152    Yu, TY
10153 TI Structure and properties of porous composite membranes of regenerated
10154    silk fibroin and poly(vinyl alcohol) and biosensing of glucose via
10155    Meldola blue dispersed in polyester ionomer as an electron transfer
10156    mediator
10157 SO FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY
10158 DT Article
10159 ID ENZYME ELECTRODES; SENSOR; OXIDASE; IMMOBILIZATION; TETRATHIAFULVALENE;
10160    FERROCENE; SHUTTLE; NAFION
10161 AB Porous composite membranes of regenerated silk fibroin and poly(vinyl
10162    alcohol) were prepared by adding polyethyleneglycol to the composite
10163    solution to reduce the mass-transfer resistance to the diffusion of
10164    substrate material transport; their surfaces were visualized with
10165    scanning electron microscopy. An amperometric glucose biosensor
10166    employing Meldola blue dispersed in polyester ionomer as electron
10167    transfer mediator was prepared to test the feasibility and workability
10168    of the composite membrane as immobilization matrix for glucose oxidase.
10169    The cationic exchange property of the polyester ionomer was employed to
10170    provide high local concentrations of Meldola blue (MB(+)) in the
10171    polymer film via ion exchange. Performance and characteristics of the
10172    glucose biosensor were evaluated with respect to response time,
10173    detection limit, applied potential, thickness of polyester ionomer
10174    membrane, pH and temperature. The glucose biosensor possesses a variety
10175    of advantages including easy maintenance of enzyme, simplicity of
10176    construction, fast response time and high stability.
10177 C1 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
10178    FUDAN UNIV,DEPT MACROMOL SCI,SHANGHAI 200433,PEOPLES R CHINA.
10179 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R
10180    CHINA.
10181 CR BADIA A, 1993, J AM CHEM SOC, V115, P7053
10182    BARKER SA, 1989, BIOSENSORS FUNDAMENT, P85
10183    BARTLETT PN, 1987, BIOSENSORS, V3, P359
10184    CLARK LC, 1962, ANN NY ACAD SCI, V102, P29
10185    CSOREGI E, 1995, ANAL CHEM, V67, P1240
10186    DEMURA M, 1989, BIOTECHNOL BIOENG, V33, P598
10187    DEMURA M, 1989, J BIOTECHNOL, V10, P113
10188    FORTIER G, 1990, ANAL LETT, V23, P1607
10189    GRUNDIG B, 1989, ANAL CHIM ACTA, V222, P75
10190    HARKNESS JK, 1993, J ELECTROANAL CHEM, V357, P261
10191    JIANG L, 1995, J CHEM SOC CHEM 0621, P1293
10192    KUWABATA S, 1994, ANAL CHEM, V66, P2757
10193    LIU H, 1997, IN PRESS FRESENIUS J, V357
10194    LIU HY, 1995, ANAL CHIM ACTA, V300, P65
10195    LIU HY, 1996, BIOSENS BIOELECTRON, V11, P103
10196    LIU Y, 1985, ANAL CHEM, V316, P65
10197    LIU YC, 1995, J CHEM TECHNOL BIOT, V64, P269
10198    MALITESTA C, 1990, ANAL CHEM, V62, P2735
10199    PANDEY PC, 1988, J CHEM SOC F1, V84, P2259
10200    PANDEY PC, 1995, BIOSENS BIOELECTRON, V10, P669
10201    PAZUR JH, 1965, ARCH BIOCHEM BIOPHYS, V111, P351
10202    QIAN JH, 1996, FRESEN J ANAL CHEM, V354, P173
10203    TRANMINH C, 1985, ION SEL ELECTRODE R, V7, P41
10204    WANG J, 1989, ANAL CHEM, V61, P1397
10205    WILSON GS, 1992, ANAL CHEM, V64, A381
10206    ZHAO SS, 1993, ANAL CHIM ACTA, V282, P319
10207 NR 26
10208 TC 4
10209 SN 0937-0633
10210 J9 FRESENIUS J ANAL CHEM
10211 JI Fresenius J. Anal. Chem.
10212 PD APR
10213 PY 1997
10214 VL 357
10215 IS 7
10216 BP 812
10217 EP 816
10218 PG 5
10219 SC Chemistry, Analytical
10220 GA WT961
10221 UT ISI:A1997WT96100006
10222 ER
10223 
10224 PT J
10225 AU Li, CF
10226 TI Gauge transformation and A-B effect
10227 SO PHYSICA B
10228 DT Article
10229 DE gauge transformation; Aharonov-Bohm effect; momentum transfer
10230 ID AHARONOV-BOHM INTERFERENCE; MULTIPLY CONNECTED SPACES;
10231    ANGULAR-MOMENTUM; MAGNETIC-FLUX; QUANTUM-MECHANICS; PATH-INTEGRALS;
10232    STATISTICS; ROTATIONS
10233 AB The aim of this paper is to show that the vector potential in the
10234    so-called Aharonov-Bohm (A-B) effect is not a gauge transformation of
10235    the vacuum, even when alpha = integer(not equal 0) (where alpha =
10236    Phi/Phi(0) represents the magnetic flux in the long cylindrical
10237    solenoid and Phi(0) = h/e). To this end, it is discussed that the wave
10238    function of the electron and the gauge function in a gauge
10239    transformation are required to be single-valued so that the Schrodinger
10240    wave mechanics and the Maxwell electromagnetic theory are
10241    well-formulated. It is also discussed that the gauge transformation of
10242    wave functions and the representation change of operators of Kobe's
10243    meaning are the same thing.
10244 RP Li, CF, SHANGHAI UNIV,DEPT PHYS,20 CHENGZHONG RD,SHANGHAI
10245    201800,PEOPLES R CHINA.
10246 CR AFANASEV GN, 1990, SOV J PART NUCL, V21, P74
10247    AHARONOV Y, 1959, PHYS REV, V115, P485
10248    AHARONOV Y, 1961, PHYS REV, V123, P1511
10249    AHARONOV Y, 1967, PHYS REV, V158, P1237
10250    AHARONOV Y, 1984, P INT S FDN QUANT ME, P10
10251    AHARONOV Y, 1984, PHYS REV D, V29, P2396
10252    BAWIN M, 1983, J PHYS A, V16, P2173
10253    BAWIN M, 1985, J PHYS A-MATH GEN, V18, P2123
10254    BIEDENHARN LC, 1981, ANGULAR MOMENTUM QUA, P319
10255    BLATT JM, 1952, THEORETICAL NUCL PHY, P783
10256    BOCCHIERI P, 1978, NUOVO CIMENTO      A, V47, P475
10257    BOHM D, 1951, QUANTUM THEORY, P389
10258    BOHM D, 1979, NUOVO CIMENTO A, V52, P295
10259    GRIFFITHS DJ, 1981, INTRO ELECTRODYNAMIC, P283
10260    GUPTA BD, 1978, MATH PHYSICS, P127
10261    HORVATHY PA, 1985, PHYS REV A, V31, P1151
10262    JACKIW R, 1983, PHYS REV LETT, V50, P555
10263    KLEIN AG, 1976, PHYS REV LETT, V37, P238
10264    KOBE DH, 1982, PHYS REV LETT, V49, P1592
10265    KRETZSCHMAR M, 1965, Z PHYS, V185, P73
10266    KRETZSCHMAR M, 1965, Z PHYS, V185, P97
10267    LANDAU LD, 1975, CLASSICAL THEORY FIE, P49
10268    LI CF, IN PRESS ANN PHYS
10269    LI CF, IN PRESS PHYSICA B
10270    LI CF, 1995, PHYSICA B, V212, P436
10271    LIANG JQ, 1988, PHYS REV LETT, V60, P836
10272    LIANG JQ, 1988, PHYSICA B C, V151, P239
10273    MERZBACHER E, 1962, AM J PHYSIOL, V30, P237
10274    NIETO MM, 1984, PHYS REV A, V29, P3413
10275    PANDRES D, 1962, J MATH PHYS, V3, P305
10276    PAULI W, 1939, HELV PHYS ACTA, V12, P147
10277    PESHKIN M, 1961, ANN PHYS-NEW YORK, V12, P426
10278    PESHKIN M, 1989, LECT NOTES PHYSICS, V340
10279    RAUCH H, 1978, Z PHYSIK           B, V29, P281
10280    ROY SM, 1984, NUOVO CIMENTO A, V79, P391
10281    RUIJSENAARS SNM, 1983, ANN PHYS-NEW YORK, V146, P1
10282    SAKURAI JJ, 1985, MODERN QUANTUM MECH, P101
10283    SAKURAI JJ, 1985, MODERN QUANTUM MECHD, P162
10284    TASSIE LJ, 1961, ANN PHYS-NEW YORK, V16, P177
10285    WERNER SA, 1975, PHYS REV LETT, V35, P1053
10286    WILCZEK F, 1982, PHYS REV LETT, V48, P1144
10287    WILCZEK F, 1982, PHYS REV LETT, V49, P957
10288    WU TT, 1975, PHYS REV D, V12, P3845
10289    WU YS, 1984, PHYS REV LETT, V53, P111
10290    ZEILINGER A, 1979, LETT NUOVO CIMENTO, V25, P333
10291 NR 45
10292 TC 1
10293 SN 0921-4526
10294 J9 PHYSICA B
10295 JI Physica B
10296 PD MAR
10297 PY 1997
10298 VL 229
10299 IS 3-4
10300 BP 354
10301 EP 360
10302 PG 7
10303 SC Physics, Condensed Matter
10304 GA WT606
10305 UT ISI:A1997WT60600020
10306 ER
10307 
10308 PT J
10309 AU Zhu, Y
10310 TI Interactions of atmospheric solitary waves of different modes
10311 SO ACTA MECHANICA SINICA
10312 DT Article
10313 DE atmospheric solitary waves; BO equation; perturbation methods
10314 AB The interactions of atmospheric solitary waves with different modes are
10315    investigated by a perturbation method. The model considered in this
10316    paper consists of a lower layer with exponential density profile and an
10317    infinitely deep upper layer with constant density. The analysis show
10318    that the waves obey the Benjamin-Ono equation before and after
10319    interaction, and the main effect of the interaction is the phase shifts
10320    for each wave.
10321 RP Zhu, Y, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,149 YANCHANG
10322    RD,SHANGHAI 200072,PEOPLES R CHINA.
10323 CR BENJAMIN TB, 1967, J FLUID MECH, V29, P249
10324    CHRISTIE DR, 1981, NATURE, V293, P46
10325    DAVIS RE, 1967, J FLUID MECH, V29, P593
10326    GEAR J, 1984, STUD APPL MATH, V70, P233
10327    GRIMSHAW R, 1994, STUD APPL MATH, V92, P249
10328    MILES JW, 1977, J FLUID MECH, V79, P157
10329    MILES JW, 1980, ANNU REV FLUID MECH, V12, P11
10330    ONO H, 1975, J PHYS SOC JPN, V39, P1082
10331    SMITH RK, 1988, EARTH-SCI REV, V25, P267
10332    SU CH, 1980, J FLUID MECH, V98, P509
10333    ZHU Y, 1996, ATMOSPHERIC SCI, V20, P751
10334 NR 11
10335 TC 0
10336 SN 0567-7718
10337 J9 ACTA MECH SINICA
10338 JI Acta Mech. Sin.
10339 PD FEB
10340 PY 1997
10341 VL 13
10342 IS 1
10343 BP 10
10344 EP 16
10345 PG 7
10346 SC Engineering, Mechanical; Mechanics
10347 GA WT856
10348 UT ISI:A1997WT85600002
10349 ER
10350 
10351 PT J
10352 AU Wu, MH
10353    Zhou, RM
10354    Ma, ZT
10355    Bao, BR
10356    Lei, JQ
10357 TI Preparation of acrylate IPN copolymer latexes by radiation emulsion
10358    polymerization
10359 SO RADIATION PHYSICS AND CHEMISTRY
10360 DT Article
10361 ID SHELL
10362 AB Radiation-induced and chemical initiation are compared in the
10363    initiation of acrylate emulsion copolymer latexes. The particle
10364    diameter, distribution and microstructure are influenced by emulsifier
10365    concentration, radiation dose and temperature. The results show that
10366    the emulsion particle diameter of radiation polymerization is smaller
10367    and better distributed in comparison to using chemical polymerization.
10368    In addition, interlude polymer net (IPN) core-shell copolymer latexes
10369    are observed by transimission electron microscope (TEM). The bounding
10370    face of core-shell acrylate copolymer latexes of radiation
10371    polymerization is clearer. The morphology of acrylate IPN copolymer
10372    latexes is further investigated. (C) 1997 Elsevier Science Ltd.
10373 C1 ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI 201800,PEOPLES R CHINA.
10374 RP Wu, MH, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,JIADING
10375    CAMPUS,SHANGHAI 201800,PEOPLES R CHINA.
10376 CR BALITER B, 1987, J POLYM SCI A, V25, P135
10377    HOIGNE H, 1972, J POLYM SCI A, V10, P581
10378    LEE DI, 1983, J POLYM SCI POL CHEM, V21, P147
10379    MCCARTY W, 1984, HUS US, V444, P923
10380    PIRMA I, 1976, ACS SYM SER, V24, P306
10381    SAKOTA K, 1976, J APPL POLYM SCI, V20, P1735
10382    SPERLING LH, 1973, J APPL POLYM SCI, V17, P2443
10383    WU MH, 1993, RADIAT PHYS CHEM, V42, P171
10384 NR 8
10385 TC 0
10386 J9 RADIAT PHYS CHEM
10387 JI Radiat. Phys. Chem.
10388 PD MAR
10389 PY 1997
10390 VL 49
10391 IS 3
10392 BP 371
10393 EP 375
10394 PG 5
10395 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
10396    Science & Technology
10397 GA WM139
10398 UT ISI:A1997WM13900010
10399 ER
10400 
10401 PT J
10402 AU Chen, YL
10403    Guo, GY
10404 TI Preparation and characterization of yttria-stabilized zirconia powders
10405    by solvent extraction process
10406 SO CERAMICS INTERNATIONAL
10407 DT Article
10408 ID ZRO2; DENSIFICATION
10409 AB This study demonstrates that zirconium and yttrium can quantitatively
10410    be coextracted with di-(2-ethylhexyl) phosphoric acid or
10411    2-ethylhexyl-phosphonic acid mono-2-ethylhexylester from commercial
10412    grade of starting materials under suitable conditions, End that both
10413    zirconium and yttrium can be stripped completely with oxalic acid from
10414    the extractants under some specific conditions. The resulting oxalates,
10415    after careful washing with absolute ethanol, may be calcined to both
10416    ultrafine and pure yttria-stabilized zirconia powders, while the
10417    stripped extractants can be recycled to extract zirconium and yttrium.
10418    The present process, therefore, is a more economical technique than the
10419    metal alkoxide process - one of the most popular chemical processing
10420    routes for the preparation of advanced ceramic powder, yet it is a very
10421    efficient technique for controlling the purity, particle size, and
10422    crystalline phase composition of the powders. (C) 1997 Elsevier Science
10423    Limited and Techna S.r.l.
10424 C1 SHANGHAI JIAO TONG UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200030,PEOPLES R CHINA.
10425 RP Chen, YL, SHANGHAI UNIV,COL CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R
10426    CHINA.
10427 CR BOURELL DL, 1993, J AM CERAM SOC, V76, P705
10428    DESCEMOND M, 1993, J MATER SCI, V28, P3754
10429    DOYLE FM, 1992, HYDROMETALLURGY, V29, P527
10430    FEGLEY B, 1985, AM CERAM SOC BULL, V64, P1115
10431    FOSTER CM, 1993, J MATER RES, V8, P1977
10432    GHONELM NM, 1986, CFI-CERAM FORUM INT, V3, P96
10433    GONGYI G, 1988, PRODUCTION PROCESSIN, P627
10434    GONGYI G, 1991, J MATER SCI, V26, P3511
10435    GONGYI G, 1992, J AM CERAM SOC, V75, P1294
10436    HABERKO K, 1979, CERAMURGIA INT, V5, P148
10437    ISHIZAWA H, 1986, AM CERAM SOC BULL, V65, P1399
10438    RHODES WH, 1989, AM CERAM SOC BULL, V68, P1804
10439 NR 12
10440 TC 1
10441 SN 0272-8842
10442 J9 CERAM INT
10443 JI Ceram. Int.
10444 PY 1997
10445 VL 23
10446 IS 3
10447 BP 267
10448 EP 272
10449 PG 6
10450 SC Materials Science, Ceramics
10451 GA WM133
10452 UT ISI:A1997WM13300013
10453 ER
10454 
10455 PT J
10456 AU Lin, D
10457    Fuchs, EF
10458    Doyle, M
10459 TI Computer-aided testing of electrical apparatus supplying nonlinear loads
10460 SO IEEE TRANSACTIONS ON POWER SYSTEMS
10461 DT Article
10462 DE computer-aided testing; electrical machines; transformers; electrical
10463    apparatus; nonlinear loads; derating
10464 AB A computer-aided testing program for electrical apparatus (CATEA) is
10465    designed to test the performance of single and polyphase electrical
10466    devices. It has been applied to measure the losses of single- and
10467    three-phase ac and dc electrical machines, single- and three-phase
10468    transformers with linear and nonlinear loads. On-line measurements of
10469    iron-core and copper losses of single- and three-phase transformers
10470    with rectifier load are presented and compared with the results of the
10471    open- and short-circuit tests.
10472 C1 TU ELECT,FT WORTH,TX 76101.
10473    SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
10474 RP Lin, D, UNIV COLORADO,BOULDER,CO 80309.
10475 CR FUCHS EF, 1994, IEEE IND APPLIC SOC, P128
10476 NR 1
10477 TC 5
10478 SN 0885-8950
10479 J9 IEEE TRANS POWER SYST
10480 JI IEEE Trans. Power Syst.
10481 PD FEB
10482 PY 1997
10483 VL 12
10484 IS 1
10485 BP 11
10486 EP 21
10487 PG 11
10488 SC Engineering, Electrical & Electronic
10489 GA WK945
10490 UT ISI:A1997WK94500004
10491 ER
10492 
10493 PT J
10494 AU Zhou, HY
10495    Deng, ZY
10496 TI Electronic and hydrogenic impurity states in a corner under an applied
10497    electric field
10498 SO JOURNAL OF PHYSICS-CONDENSED MATTER
10499 DT Article
10500 ID QUANTUM-WELL WIRES; 2 ORTHOGONAL SURFACES; DEPENDENCE; VICINITY;
10501    SPECTRA; GROWTH; ENERGY
10502 AB With the use of a variational method to solve the effective-mass
10503    equation, we have studied the electronic and hydrogenic impurity states
10504    in a corner under an applied electric field. The electron energy levels
10505    and the impurity binding energies are calculated. Our results show
10506    that, with the increasing strength of the electric field, the electron
10507    energy levels increase, and the impurity binding energy in the ground
10508    state increases at first, to a peak value, then decreases to a value
10509    which is determined by the impurity position in the corner. The
10510    dependence of the impurity binding energy on the applied electric field
10511    and impurity position is discussed in detail.
10512 C1 CHINESE ACAD SCI,SHANGHAI INST CERAM,SHANGHAI 200050,PEOPLES R CHINA.
10513    CHINA CTR ADV SCI & TECHNOL,WORLD LAB,BEIJING 100080,PEOPLES R CHINA.
10514    SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA.
10515 CR BASTARD G, 1981, PHYS REV B, V24, P4714
10516    BASTARD G, 1983, PHYS REV B, V28, P3241
10517    BRANIS SV, 1993, PHYS REV B, V47, P1316
10518    BROWN JW, 1986, J APPL PHYS, V59, P1179
10519    BRUM JA, 1985, SOLID STATE COMMUN, V54, P179
10520    BRYANT GW, 1984, PHYS REV B, V29, P6632
10521    BRYANT GW, 1985, PHYS REV B, V31, P7812
10522    CAO HT, 1995, PHYSICA B, V205, P273
10523    CHEN H, 1991, PHYS REV B, V44, P6220
10524    DENG ZY, 1994, J PHYS-CONDENS MAT, V6, P9729
10525    FUJIWARA K, 1989, PHYS REV B, V40, P9698
10526    GEROHONI D, 1990, PHYS REV LETT, V65, P1631
10527    KHOO GS, 1993, J PHYS-CONDENS MAT, V5, P6507
10528    LANDAU LD, 1977, QUANTUM MECHANICS
10529    LEE WW, 1989, PHYS REV B, V40, P3352
10530    LEE WW, 1989, PHYS REV B, V40, P9920
10531    NAMBA H, 1993, PHYS REV LETT, V71, P4027
10532    TANAKA M, 1988, JPN J APPL PHYS 2, V27, L2025
10533    TANAKA M, 1989, APPL PHYS LETT, V54, P1326
10534    TSUCHIYA M, 1989, PHYS REV LETT, V62, P466
10535    WEBER G, 1988, PHYS REV B, V38, P2179
10536    WEISBUCH C, 1980, J VAC SCI TECHNOL, V17, P1128
10537 NR 22
10538 TC 8
10539 SN 0953-8984
10540 J9 J PHYS-CONDENS MATTER
10541 JI J. Phys.-Condes. Matter
10542 PD FEB 10
10543 PY 1997
10544 VL 9
10545 IS 6
10546 BP 1241
10547 EP 1248
10548 PG 8
10549 SC Physics, Condensed Matter
10550 GA WK618
10551 UT ISI:A1997WK61800010
10552 ER
10553 
10554 PT J
10555 AU Yang, T
10556    Yang, LB
10557 TI Application of fuzzy cellular neural networks to Euclidean Distance
10558    Transformation
10559 SO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND
10560    APPLICATIONS
10561 DT Article
10562 DE distance transformation; Euclidean distance; fuzzy cellular neural
10563    network; image processing; mathematical morphology
10564 AB A new structure of fuzzy cellular neural network (FCNN) is proposed in
10565    this brief. In this FCNN, the relationship between fuzzy templates and
10566    input or/and output is defined by addition but not multiplication.
10567    Unlike the FCNN we proposed before [I], which can only implement
10568    morphological operators with flat structuring elements, this FCNN can
10569    implement morphological operators with all the types of structuring
10570    elements. This: FCNN is used to implement Euclidean Distance Transform.
10571    Simulation results are given.
10572 C1 UNIV E ZHOU,E ZHOU 436000,HUBEI,PEOPLES R CHINA.
10573 RP Yang, T, SHANGHAI UNIV SCI & TECHNOL,DEPT AUTOMAT CONTROL ENGN,SHANGHAI
10574    200072,PEOPLES R CHINA.
10575 CR CHUA LO, 1988, IEEE T CIRCUITS SYST, V35, P1257
10576    HARALICK RM, 1987, IEEE T PATTERN ANAL, V9, P532
10577    HEIJMANS HJA, 1994, MORPHOLOGICAL IMAGE
10578    MARAGOS PA, 1986, IEEE T ACOUST SPEECH, V34, P1228
10579    ROSKA T, 1993, IEEE T CIRCUITS-II, V40, P163
10580    SERRA J, 1982, IMAGE ANAL MATH MORP
10581    SERRA J, 1988, IMAGE ANAL MATH MORP, V2
10582    SHIH FY, 1992, IEEE T IMAGE PROCESS, V1, P197
10583    YANG T, 1996, IEEE T CIRCUITS-I, V43, P880
10584    YANG T, 1996, P 4 IEEE INT WORKSH, P181
10585 NR 10
10586 TC 5
10587 SN 1057-7122
10588 J9 IEEE TRANS CIRCUIT SYST-I
10589 JI IEEE Trans. Circuits Syst. I-Fundam. Theor. Appl.
10590 PD MAR
10591 PY 1997
10592 VL 44
10593 IS 3
10594 BP 242
10595 EP 246
10596 PG 5
10597 SC Engineering, Electrical & Electronic
10598 GA WK578
10599 UT ISI:A1997WK57800006
10600 ER
10601 
10602 PT J
10603 AU Liu, HY
10604    Zhang, ZN
10605    Fan, YB
10606    Dai, M
10607    Zhang, XL
10608    Wei, JJ
10609    Qiu, ZN
10610    Li, HB
10611    Wu, XX
10612    Deng, JQ
10613    Qi, DY
10614 TI Reagentless amperometric biosensor highly sensitive to hydrogen
10615    peroxide based on the incorporation of Meldola Blue, fumed silica and
10616    horseradish peroxidase into carbon paste
10617 SO FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY
10618 DT Article
10619 ID ELECTROCATALYTIC OXIDATION; ENZYME ELECTRODES; LACTATE OXIDASE;
10620    SENSORS; DEHYDROGENASE; PROTEINS; GRAPHITE; NADH
10621 AB A reagentless amperometric sensor highly sensitive to H2O2 has been
10622    prepared by incorporating fumed silica, horseradish peroxidase (HRP)
10623    and Meldola Blue into carbon paste. The efficient mediating ability to
10624    shift electrons between HRP and the carbon paste electrode via Meldola
10625    Blue was investigated by cyclic voltammetric and amperometric
10626    measurements. Reproducibility, response time, detection limit,
10627    selectivity and effects of applied potential, temperature and pH on the
10628    response of the sensor are reported. The high sensitivity of the sensor
10629    with a detection limit of 0.1 mu mol/l arose from the high efficiency
10630    of the bioelectrocatalytic reduction of hydrogen peroxide via HRP and
10631    Meldola Blue. The dependence of the Michaelis-Menten constant on the
10632    applied potential and the mediator concentration has been investigated
10633    and the results are presented.
10634 C1 SUZHOU INST CITY CONSTRUCT & ENVIRONM PROTECT,DEPT ENVIRONM PROTECT,SUZHOU 300111,JIANSU,PEOPLES R CHINA.
10635    FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
10636 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R
10637    CHINA.
10638 CR BIFULCO L, 1994, ANAL LETT, V27, P1443
10639    BONAKDAR M, 1989, J ELECTROANAL CH INF, V266, P47
10640    FORZANI ES, 1995, J ELECTROANAL CHEM, V382, P33
10641    FREW JE, 1986, J ELECTROANAL CH INF, V201, P1
10642    GARGUILO MG, 1993, ANAL CHEM, V65, P523
10643    GUO LH, 1991, ADV INORG CHEM RAD, V36, P341
10644    HURDIS EC, 1954, ANAL CHEM, V26, P320
10645    KAMIN RA, 1980, ANAL CHEM, V52, P1198
10646    KORELL U, 1994, ANAL CHEM, V66, P510
10647    KULYS J, 1990, BIOELECTROCH BIOENER, V24, P305
10648    KULYS J, 1992, ANAL LETT, V25, P1011
10649    KULYS J, 1993, ANAL CHIM ACTA, V274, P53
10650    KULYS J, 1994, ANAL CHIM ACTA, V288, P193
10651    KULYS J, 1994, J ELECTROANAL CHEM, V372, P49
10652    LIU HY, 1995, ANAL PROC, V32, P475
10653    LIU YC, 1996, ELECTROCHIM ACTA, V41, P77
10654    MULCHANDANI A, 1995, ANAL CHEM, V67, P94
10655    NAGY G, 1995, ANAL CHIM ACTA, V305, P65
10656    PERSSON B, 1990, J ELECTROANAL CH INF, V287, P61
10657    PERSSON B, 1990, J ELECTROANAL CH INF, V292, P115
10658    SANCHEZ PD, 1990, ELECTROANAL, V2, P303
10659    SCOTT DL, 1992, J ELECTROANAL CHEM, V341, P307
10660    SPRULES SD, 1995, ANAL CHIM ACTA, V304, P17
10661    WANG J, 1991, ANAL CHEM, V63, P2993
10662    WANG J, 1993, ANAL CHIM ACTA, V284, P385
10663    WOLLENBERGER U, 1991, BIOELECTROCH BIOENER, V26, P287
10664 NR 26
10665 TC 14
10666 SN 0937-0633
10667 J9 FRESENIUS J ANAL CHEM
10668 JI Fresenius J. Anal. Chem.
10669 PD FEB
10670 PY 1997
10671 VL 357
10672 IS 3
10673 BP 297
10674 EP 301
10675 PG 5
10676 SC Chemistry, Analytical
10677 GA WJ843
10678 UT ISI:A1997WJ84300010
10679 ER
10680 
10681 PT J
10682 AU Liu, HY
10683    Qian, JH
10684    Liu, YC
10685    Yu, TY
10686    Deng, JG
10687    Qi, DY
10688 TI Amperometric methylene blue-mediated sensor highly sensitive to
10689    hydrogen peroxide based on a composite membrane of regenerated silk
10690    fibroin and poly-vinyl alcohol as immobilization matrix for horseradish
10691    peroxidase
10692 SO FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY
10693 DT Article
10694 ID ENZYME ELECTRODES; BIOELECTROCATALYTIC REDUCTION; CARBON; SYSTEM;
10695    ASSAY; ACID
10696 AB Horseradish peroxidase (HRP) was effectively entrapped in a novel
10697    composite membrane of poly-vinyl alcohol and regenerated silk fibroin,
10698    and IR was employed to provide a useful insight into the structure of
10699    the composite membrane. A methylene blue-mediated sensor highly
10700    sensitive to hydrogen peroxide was constructed, which was based on the
10701    immobilization of HRP in the composite membrane. Cyclic voltammetry and
10702    amperometric measurement were utilized to demonstrate the feasibility
10703    of electron communication between immobilized HRP and a glassy carbon
10704    electrode in the bioelectrocatalytic reduction of hydrogen peroxide via
10705    methylene blue. Performance and characteristics of the sensor were
10706    evaluated with regard to response time, detection limit, selectivity,
10707    and dependence on temperature and pH as well as operating and storage
10708    stability. The sensor possesses a variety of characteristics including
10709    high sensitivity, rapid response time and a low detection limit of 0.1
10710    mu mol/L.
10711 C1 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
10712    FUDAN UNIV,DEPT MACROMOL SCI,SHANGHAI 200433,PEOPLES R CHINA.
10713 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R
10714    CHINA.
10715 CR AIZAWA M, 1984, ANAL LETT PT B, V17, P555
10716    BENNETTO HP, 1987, INT ANAL, V8, P22
10717    BIFULCO L, 1994, ANAL LETT, V27, P1443
10718    CLARK LC, 1979, METHOD ENZYMOL, V56, P448
10719    FREW JE, 1983, ANAL CHIM ACTA, V155, P139
10720    FREW JE, 1986, J ELECTROANAL CH INF, V201, P1
10721    GARGUILO MG, 1993, ANAL CHEM, V65, P523
10722    HO WO, 1993, J ELECTROANAL CHEM, V351, P185
10723    HURDIS EC, 1954, ANAL CHEM, V26, P320
10724    IANNIELLO RM, 1981, ANAL CHEM, V53, P2090
10725    JONSSON G, 1989, ELECTROANAL, V1, P465
10726    KAMIN RA, 1980, ANAL CHEM, V52, P1198
10727    LIU HY, 1995, ANAL PROC, V32, P475
10728    MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801
10729    OHARA TJ, 1993, ELECTROANAL, V5, P823
10730    OLSSON B, 1988, ANAL CHIM ACTA, V206, P49
10731    QIAN JH, 1995, J ELECTROANAL CHEM, V397, P157
10732    SANCHEZ PD, 1990, ELECTROANAL, V2, P303
10733    SANCHEZ PD, 1991, ELECTROANAL, V3, P281
10734    TATSUMA T, 1991, ANAL CHIM ACTA, V242, P85
10735    WANG J, 1991, ANAL CHEM, V63, P2993
10736    WANG J, 1992, ANAL CHEM, V64, P1285
10737    WELINDER KG, 1979, EUR J BIOCHEM, V96, P483
10738    WOLLENBERGER U, 1990, ANAL LETT, V23, P1795
10739    WOLLENBERGER U, 1991, BIOELECTROCH BIOENER, V26, P287
10740    YAMADA H, 1974, ARCH BIOCHEM BIOPHYS, V165, P728
10741    YAROPOLOV AI, 1979, DOKL AKAD NAUK SSSR, V249, P1399
10742    ZHANG Z, 1996, IN PRESS ANAL CHEM
10743 NR 28
10744 TC 5
10745 SN 0937-0633
10746 J9 FRESENIUS J ANAL CHEM
10747 JI Fresenius J. Anal. Chem.
10748 PD FEB
10749 PY 1997
10750 VL 357
10751 IS 3
10752 BP 302
10753 EP 307
10754 PG 6
10755 SC Chemistry, Analytical
10756 GA WJ843
10757 UT ISI:A1997WJ84300011
10758 ER
10759 
10760 PT J
10761 AU Wang, ZH
10762 TI Analysis of graded-index optical fibers by expansion of the fields in
10763    terms of partial-waveguide modes
10764 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
10765 DT Article
10766 DE optical fibers; mode-field and propagation constant; partial-waveguide
10767    mode; coupled-mode theory
10768 AB According to the core-cladding interface of an ideal waveguide, a
10769    step-index fiber, the transverse plane has been divided into two
10770    regions. Mode fields and propagation constants of the graded-index
10771    optical fibers have been calculated by the use of
10772    partial-waveguide-mode expansion and coupled-mode theory.
10773 RP Wang, ZH, SHANGHAI UNIV,WAVE SCI LAB,SHANGHAI 201800,PEOPLES R CHINA.
10774 CR CLARRICOATS PJB, 1970, ELECTRON LETT, V6, P694
10775    GLOGE D, 1971, APPL OPTICS, V10, P2252
10776    HENRY CH, 1989, J LIGHTWAVE TECHNOL, V7, P308
10777    OKOSHI T, 1982, OPTICAL FIBERS
10778    SNYDER AW, 1983, OPTICAL WAVEGUIDE TH
10779    WANG ZH, 1996, MICROW OPT TECHN LET, V12, P90
10780 NR 6
10781 TC 1
10782 SN 0895-2477
10783 J9 MICROWAVE OPT TECHNOL LETT
10784 JI Microw. Opt. Technol. Lett.
10785 PD MAR
10786 PY 1997
10787 VL 14
10788 IS 4
10789 BP 236
10790 EP 239
10791 PG 4
10792 SC Engineering, Electrical & Electronic; Optics
10793 GA WH757
10794 UT ISI:A1997WH75700013
10795 ER
10796 
10797 PT J
10798 AU Luo, WL
10799    Liu, HY
10800    Deng, HH
10801    Sun, K
10802    Zhao, CH
10803    Qi, DY
10804    Deng, JQ
10805 TI Biosensing of hydrogen peroxide at carbon paste electrode incorporating
10806    N-methyl phenazine methosulphate, fumed-silica and horseradish
10807    peroxidase
10808 SO ANALYTICAL LETTERS
10809 DT Article
10810 DE biosensor; N-methyl phenazine methosulphate; horseradish peroxidase;
10811    hydrogen peroxide; fumed silica; carbon paste electrode
10812 ID CYTOCHROME-C PEROXIDASE; SPECTROPHOTOMETRIC DETERMINATION;
10813    PYROLYTIC-GRAPHITE; ACTIVATED CARBON; SENSORS; DEHYDROGENASE; POLYMER;
10814    GLUCOSE; ENZYMES
10815 AB Biosensing of hydrogen peroxide was made at a carbon paste electrode
10816    incorporating fumed silica, horseradish peroxidase and N-methyl
10817    phenazine methosulphate. Cyclic voltammetric and amperometric
10818    measurements were used for the first time to demonstrate the
10819    suitability of electron communication between horseradish peroxidase
10820    and a carbon paste electrode via N-methyl phenazine methosulphate, an
10821    electron transfer mediator. Performance and characteristics of the
10822    biosensor were evaluated with respect to response time, detection
10823    limit, applied potential and concentration of the mediator. Effect of
10824    applied potential and amount of the mediator in carbon paste on the
10825    Michaelis-Menten constant of the biosensor was investigated. The
10826    biosensor possessed a variety of characteristics including long
10827    stability and rapid response and high sensitivity to hydrogen peroxide,
10828    with a detection limit of 0.08 mu M.
10829 C1 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
10830    FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
10831 CR AIZAWA M, 1984, ANAL LETT PT B, V17, P555
10832    AKIMOTO K, 1990, ANAL BIOCHEM, V189, P182
10833    BIFULCO L, 1994, ANAL LETT, V27, P1443
10834    BONAKDAR M, 1989, J ELECTROANAL CH INF, V266, P47
10835    CHICHARRO M, 1994, ANAL LETT, V27, P1809
10836    CLAPP PA, 1989, ANAL CHIM ACTA, V218, P331
10837    CSOREGI E, 1994, ANAL CHEM, V66, P3604
10838    FREW JE, 1986, J ELECTROANAL CH INF, V201, P1
10839    GARGUILO MG, 1993, ANAL CHEM, V65, P523
10840    GORTON L, 1986, J MOL CATAL, V38, P157
10841    GORTON L, 1991, ANAL CHIM ACTA, V249, P43
10842    GUO LH, 1991, ADV INORG CHEM RAD, V36, P341
10843    HO WO, 1993, J ELECTROANAL CHEM, V351, P185
10844    HURDIS EC, 1954, ANAL CHEM, V26, P320
10845    IANNIELLO RM, 1981, ANAL CHEM, V53, P448
10846    JOHANSSON G, 1989, ELECTROANAL, V1, P465
10847    KAMIN RA, 1980, ANAL CHEM, V52, P1198
10848    KOK GM, 1978, ENVIRON SCI TECHNOL, V12, P1073
10849    KORELL U, 1994, ANAL CHEM, V66, P510
10850    KULYS J, 1990, BIOELECTROCH BIOENER, V24, P305
10851    KULYS J, 1993, ANAL CHIM ACTA, V274, P53
10852    KUWANA T, 1964, ANAL CHEM, V36, P241
10853    LIU H, 1995, ANAL P, V32, P375
10854    LIU YC, 1996, ELECTROCHIM ACTA, V41, P77
10855    MOTTA N, 1994, ANAL CHEM, V66, P566
10856    OHARA TJ, 1993, ELECTROANAL, V5, P823
10857    RUZGAS T, 1995, J ELECTROANAL CHEM, V391, P41
10858    SCOTT DL, 1992, J ELECTROANAL CHEM, V341, P307
10859    SCOTT DL, 1994, ANAL CHEM, V66, P1217
10860    SELLERS RM, 1980, ANALYST, V105, P950
10861    SHU HC, 1995, BIOTECHNOL BIOENG, V46, P270
10862    WANG J, 1991, ANAL CHEM, V63, P2993
10863    WANG J, 1993, ANAL CHIM ACTA, V284, P385
10864    WIJESURIYA DC, 1993, BIOSENS BIOELECTRON, V8, P155
10865    WOLLENBERGER U, 1990, ANAL LETT, V23, P1795
10866    YAROPOLOV AI, 1979, DOKL AKAD NAUK SSSR, V249, P1399
10867    ZHANG ZE, 1996, ANAL CHEM, V68, P1632
10868 NR 37
10869 TC 7
10870 SN 0003-2719
10871 J9 ANAL LETT
10872 JI Anal. Lett.
10873 PY 1997
10874 VL 30
10875 IS 2
10876 BP 205
10877 EP 220
10878 PG 16
10879 SC Chemistry, Analytical
10880 GA WH284
10881 UT ISI:A1997WH28400001
10882 ER
10883 
10884 PT J
10885 AU Bai, ZZ
10886    Wang, DR
10887 TI The monotone convergence of the two-stage iterative method for solving
10888    large sparse systems of linear equations
10889 SO APPLIED MATHEMATICS LETTERS
10890 DT Article
10891 DE linear system of equations; two-stage iterative method; Monotone
10892    convergence; Monotone convergence rate
10893 AB This paper sets up the monotone convergence theory for the two-stage
10894    iterative method proposed by Frommer and Szyld in [1], and investigates
10895    the influence of the splitting matrices and the inner iteration number
10896    sequence on the monotone convergence rate of this method.
10897 C1 SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
10898 RP Bai, ZZ, CHINESE ACAD SCI,INST COMPUTAT MAT & SCI ENGN COMP,STATE KEY
10899    LAB SCI ENGN COMP,POB 2719,BEIJING 100080,PEOPLES R CHINA.
10900 CR FROMMER A, 1992, NUMER MATH, V63, P345
10901    GOLUB GH, 1988, NUMER MATH, V53, P571
10902    LANZKRON PJ, 1991, NUMER MATH, V58, P685
10903    NICHOLS NK, 1973, SIAM J NUMER ANAL, V10, P460
10904    WACHSPRESS EL, 1966, ITERATIVE SOLUTION E
10905 NR 5
10906 TC 8
10907 SN 0893-9659
10908 J9 APPL MATH LETT
10909 JI Appl. Math. Lett.
10910 PD JAN
10911 PY 1997
10912 VL 10
10913 IS 1
10914 BP 113
10915 EP 117
10916 PG 5
10917 SC Mathematics, Applied
10918 GA WH071
10919 UT ISI:A1997WH07100021
10920 ER
10921 
10922 PT J
10923 AU Cheng, CJ
10924    Shang, XC
10925 TI Mode jumping of simply supported rectangular plates on non-linear
10926    elastic foundation
10927 SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS
10928 DT Article
10929 DE non-linear stability; non-linear elastic foundation; secondary
10930    bifurcation; mode jumping; stability of bifurcation solution
10931 AB In this paper, we study the non-linear stability of simply supported
10932    rectangular plates on a non-linear elastic foundation and use the
10933    theory of singularities to analyse the effect of the coefficients of
10934    the foundation on the stability behaviour. The results point out that
10935    the instability behaviour of the rectangular plate near a double
10936    eigenvalue is very complex due to the interaction between the
10937    foundation and plate. And the stability behaviour of the plate not only
10938    depends on the elastic coefficients of the foundation but also the
10939    modes of the plate when it losses its stability. From 45 bifurcation
10940    diagrams given in the paper, one can see that the rectangular plate not
10941    only occurs the secondary bifurcation but also has very complex
10942    super-critical behaviour like mode jumping. In these figures, we still
10943    discover the new manners of mode transition. Finally, we discuss all
10944    possible bifurcation behaviours of rectangular plates. Copyright (C)
10945    1996 Elsevier Science Ltd.
10946 C1 SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA.
10947 RP Cheng, CJ, LANZHOU UNIV,DEPT MECH,LANZHOU 730000,PEOPLES R CHINA.
10948 CR BAUER L, 1965, SIAM J APPL MATH, V13, P603
10949    BAUER L, 1975, SIAM REV, V17, P101
10950    CHENG CJ, 1992, LIXUE YU SHIJIAN, V14, P12
10951    CHOW SN, 1982, GRUHDLEHREN, V251
10952    HOLDER EJ, 1984, SIAM J MATH ANAL, V15, P446
10953    MAOSKANT R, 1992, INT J SOLIDS STRUCT, V29, P1209
10954    MATHOWSKY BJ, 1973, INT J NONLINEAR MECH, V9, P84
10955    POSTON T, 1978, CATASTROPHE THEORY I
10956    SCHAEFFER D, 1979, COMMUN MATH PHYS, V69, P209
10957    STEIN M, 1959, R40 NASA
10958    STROEBEL GJ, 1973, J ELASTICITY, V3, P185
10959    SUCHY H, 1985, Z ANGEW MATH MECH, V65, P71
10960    SUPPLE WJ, 1970, INT J SOLIDS STRUCT, V6, P1234
10961    UEMURA M, 1977, INT J NONLINEAR MECH, V12, P355
10962 NR 14
10963 TC 1
10964 SN 0020-7462
10965 J9 INT J NON-LINEAR MECH
10966 JI Int. J. Non-Linear Mech.
10967 PD JAN
10968 PY 1997
10969 VL 32
10970 IS 1
10971 BP 161
10972 EP 172
10973 PG 12
10974 SC Mechanics
10975 GA WG519
10976 UT ISI:A1997WG51900013
10977 ER
10978 
10979 PT J
10980 AU Sang, WB
10981    Durose, K
10982    Brinkman, AW
10983    Tanner, BK
10984 TI Growth and characterization of magnetic metal Mn film by MOCVD
10985 SO MATERIALS CHEMISTRY AND PHYSICS
10986 DT Article
10987 DE metal organic chemical vapour deposition; Mn film growth; growth
10988    kinetics
10989 ID MOVPE
10990 AB Metal manganese films have successfully been grown on (100) and (111)
10991    GaAs substrates by metal organic chemical vapour deposition using
10992    tricarbonyl (methylcyclopentadienyl) manganese (TCMn) as the Mn source
10993    material. The onset of diffusion limited growth occurs at a temperature
10994    of similar to 470 degrees C. Above this transition temperature, the
10995    growth is relatively independent of the temperature and limited only by
10996    the rate at which the precursor is able to diffuse to the substrate. At
10997    the low temperatures, the growth rate is limited by the pyrolysis
10998    behaviour of the TCMn and is thermally activated with an activation
10999    energy of similar to 220 kJ mol(-1). This compares with the activation
11000    energy obtained for the decomposition of the TCMn of 236 kJ mol(-1).
11001    The growth characteristic of Mn films has also shown that no growth
11002    took place below the temperature of 410 degrees C and the morphology of
11003    the layers grown at the higher temperature of 470 degrees C was
11004    considerably better than that of the layers grown at lower
11005    temperatures. Ex-situ reflection high-energy electron diffraction
11006    (RHEED) showed the films to be polycrystalline Mn, with good surface
11007    morphology. Surface roughness was measured to be similar to 4 nm and
11008    was probably limited by oxidation, when exposed to air.
11009 C1 UNIV DURHAM,DEPT PHYS,DURHAM DH1 3LE,ENGLAND.
11010 RP Sang, WB, SHANGHAI UNIV,JIADING CAMPUS,SHANGHAI 201800,PEOPLES R CHINA.
11011 CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472
11012    DUB M, 1966, ORGANOMETALLIC COMPO, V1, P1445
11013    HAILS JE, 1986, J CRYST GROWTH, V79, P940
11014    MOTOMURA Y, 1988, SUPERLATTICE MICROST, V4, P479
11015    SANG WB, 1991, J CRYST GROWTH, V113, P1
11016 NR 5
11017 TC 0
11018 SN 0254-0584
11019 J9 MATER CHEM PHYS
11020 JI Mater. Chem. Phys.
11021 PD JAN
11022 PY 1997
11023 VL 47
11024 IS 1
11025 BP 75
11026 EP 77
11027 PG 3
11028 SC Materials Science, Multidisciplinary
11029 GA WG642
11030 UT ISI:A1997WG64200013
11031 ER
11032 
11033 PT J
11034 AU Yao, DM
11035    Li, CF
11036 TI Field and intensity expectation values of quantum solitons in optical
11037    fibers
11038 SO ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER
11039 DT Article
11040 ID FLUCTUATIONS; APPROXIMATION; PROPAGATION
11041 AB Expectation values of the field and intensity operators are evaluated
11042    for quantum solitons in the normalized fundamental soliton states with
11043    a Gaussian momentum superposition and a Poisson distribution for photon
11044    numbers. The associate quantum diffusion effects are discussed and the
11045    conditions which lead to the classical limit are identified. A
11046    numerical estimate is given using experimental data.
11047 C1 UNIV SCI & TECHNOL CHINA,CTR FUNDAMENTAL PHYS,HEFEI 230026,ANHUI,PEOPLES R CHINA.
11048    SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
11049 RP Yao, DM, CHINA CTR ADV SCI & TECHNOL,WORLD LAB,POB 8730,BEIJING
11050    100080,PEOPLES R CHINA.
11051 CR BELINSKII AV, 1991, JETP LETT, V53, P74
11052    BELINSKII AV, 1992, SOV J QUANTUM ELECTR, V22, P828
11053    CARTER SJ, 1987, PHYS REV LETT, V58, P1841
11054    DESURVIRE E, 1994, PHYS TODAY, V62, P20
11055    DRUMMOND PD, 1993, NATURE, V365, P307
11056    GLASS AM, 1993, PHYS TODAY, V61, P34
11057    GORDON JP, 1986, OPT LETT, V11, P665
11058    HASEGAWA A, 1990, OPTICAL SOLUTIONS FI
11059    KARTNER FX, 1996, PHYS REV A, V53, P454
11060    KUZNETSOV DY, 1991, JETP LETT, V54, P568
11061    KUZNETZOV DY, 1992, QUANTUM OPT, V4, P221
11062    LAI Y, 1989, PHYS REV A, V40, P854
11063    LAI YC, 1993, J OPT SOC AM B, V10, P475
11064    MOLLENAUER LF, 1980, PHYS REV LETT, V45, P1095
11065    NOHL CR, 1976, ANN PHYS-NEW YORK, V96, P234
11066    ROSENBLUH M, 1991, PHYS REV LETT, V66, P153
11067    WADACHI M, 1984, J PHYS SOC JPN, V53, P1933
11068    WADATI M, 1985, SPRINGER SERIES SYNE, V30, P68
11069    WRIGHT EM, 1991, PHYS REV A, V43, P3836
11070    YAO DM, 1995, PHYS REV A, V52, P1574
11071    YAO DM, 1995, PHYS REV A, V52, P4871
11072 NR 21
11073 TC 0
11074 SN 0722-3277
11075 J9 Z PHYS B-CONDENS MATTER
11076 JI Z. Phys. B-Condens. Mat.
11077 PD FEB
11078 PY 1997
11079 VL 102
11080 IS 2
11081 BP 239
11082 EP 243
11083 PG 5
11084 SC Physics, Condensed Matter
11085 GA WF434
11086 UT ISI:A1997WF43400012
11087 ER
11088 
11089 PT J
11090 AU Sang, WB
11091    Zhou, SQ
11092    Wu, WH
11093 TI Investigation of equilibrium partial pressures over (Hg1-xCdx)(y)Te-1-y
11094    (y<0.5) melts
11095 SO JOURNAL OF CRYSTAL GROWTH
11096 DT Article
11097 ID TRAVELING HEATER METHOD; CRYSTAL-GROWTH; LPE GROWTH; TE; HG1-XCDXTE
11098 AB A double optical path system was designed for the optical absorbance
11099    measurement. The equilibrium partial pressures of Hg and Te-2 over the
11100    (Hg1-xCdx)(y)Te-1-y (y < 0.5) melts with x = 0.13-0.55 and y =
11101    0.21-0.41 between 500 and 750 degrees C were determined by this method.
11102    The experimental results were reproducible and the errors were
11103    estimated as about 5%. The data achieved show that p(Hg) increases with
11104    the rise of y when T and x remain unchanged, and decreases slightly
11105    with the increase of x when T and y are kept constant. The cause of
11106    these phenomena is discussed.
11107 RP Sang, WB, SHANGHAI UNIV SCI & TECHNOL,JIADING CAMPUS,SHANGHAI
11108    201800,PEOPLES R CHINA.
11109 CR ASTLES MG, 1992, J CRYST GROWTH, V117, P213
11110    BERNARDI S, 1988, J CRYST GROWTH, V87, P365
11111    BREBRICK RF, 1965, J PHYS CHEM SOLIDS, V26, P989
11112    DENOBEL D, 1959, PHILIPS RES REP, V14, P361
11113    GILLE P, 1991, J CRYST GROWTH, V114, P77
11114    GOLDFINGER P, 1963, T FARADAY SOC, V59, P2851
11115    HARMAN TC, 1980, J ELECTRON MATER, V9, P945
11116    HUA SC, 1985, J ELECTROCHEM SOC, V132, P942
11117    MOCHIZUKI K, 1990, J CRYST GROWTH, V99, P722
11118    PELLICIARI B, 1988, J CRYST GROWTH, V86, P146
11119    PELLICIARI B, 1994, PROG CRYST GROWTH CH, V29, P1
11120    SCHMIT JL, 1968, INFRARED PHYS, V8, P247
11121    SCHWARTZ JP, 1981, J ELECTROCHEM SOC, V128, P438
11122    SHUQUAN Z, 1989, J APPL SCI, V7, P271
11123    STEININGER J, 1976, J ELECTRON MATER, V5, P299
11124    UEDA R, 1972, J CRYST GROWTH, V13, P668
11125 NR 16
11126 TC 0
11127 SN 0022-0248
11128 J9 J CRYST GROWTH
11129 JI J. Cryst. Growth
11130 PD JAN
11131 PY 1997
11132 VL 171
11133 IS 1-2
11134 BP 45
11135 EP 49
11136 PG 5
11137 SC Crystallography
11138 GA WE271
11139 UT ISI:A1997WE27100007
11140 ER
11141 
11142 PT J
11143 AU Guo, BY
11144    He, LP
11145    Mao, DK
11146 TI On the two-dimensional Navier-Stokes equations in stream function form
11147 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
11148 DT Article
11149 AB In this paper the initial-boundary value problem of the Navier-Stokes
11150    equations in stream function form is considered. A trilinear form is
11151    introduced to deal with the nonlinear term. A weak formulation of this
11152    problem is provided. The existence of a weak solution is proved by an
11153    auxiliary semi-discrete Faedo-Galerkin scheme and a compactness
11154    argument. The uniqueness and regularity of the solution are discussed.
11155    Finally the convergence of the numerical solution and the converge rate
11156    with a certain choice of basis in the Faedo-Galerkin method are given.
11157    (C) 1997 Academic Press
11158 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
11159 RP Guo, BY, CITY UNIV HONG KONG,DEPT MATH,KOWLOON,HONG KONG.
11160 CR ADAMS RA, 1975, SOBOLEV SPACES
11161    BERNARDI C, 1992, MATH COMPUT, V59, P63
11162    CANUTO C, 1988, SPECTRAL METHODS FLU
11163    GOTTLIEB D, 1977, CBMS REGIONAL C SERI, V26
11164    GUO B, 1985, SCI SINICA SER A, V28, P1139
11165    GUO BY, 1988, FINITE DIFFERENCE ME
11166    LIONS JL, 1969, QUELQUES METHODES RE
11167    ODEN JT, 1974, FINITE ELEMENTS MATH
11168    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
11169    TEMANS R, 1977, NAVIER STOKES EQUATI
11170 NR 10
11171 TC 3
11172 SN 0022-247X
11173 J9 J MATH ANAL APPL
11174 JI J. Math. Anal. Appl.
11175 PD JAN 1
11176 PY 1997
11177 VL 205
11178 IS 1
11179 BP 1
11180 EP 31
11181 PG 31
11182 SC Mathematics, Applied; Mathematics
11183 GA WD284
11184 UT ISI:A1997WD28400001
11185 ER
11186 
11187 PT J
11188 AU Feng, SS
11189    Zhu, ZY
11190 TI Path integral quantization and the ground-state wave functional for
11191    multiplier scalar-vector field systems
11192 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
11193 DT Article
11194 AB With the help of path-integral quantization and Fradkin's approach, we
11195    obtain a new representation in the Schrodinger picture of the
11196    multiplier scalar-vector fields and the ground-state functional. We
11197    show that the model is equivalent to free scalar fields with the same
11198    mass.
11199 C1 ACAD SINICA,INST NUCL RES,SHANGHAI 201800,PEOPLES R CHINA.
11200 RP Feng, SS, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
11201    R CHINA.
11202 CR DIRAC PAM, 1964, LECTURES QUANTUM MEC
11203    FENG SS, 1995, INT J THEOR PHYS, V34, P1827
11204    FRADKIN E, 1993, NUCL PHYS B, V389, P587
11205    FRADKIN E, 1993, NUCL PHYS B, V392, P667
11206    LI ZP, 1991, J PHYS A-MATH GEN, V24, P4261
11207    LOPEZ A, 1992, PHYS REV LETT, V69, P2126
11208 NR 6
11209 TC 1
11210 SN 0020-7748
11211 J9 INT J THEOR PHYS
11212 JI Int. J. Theor. Phys.
11213 PD JAN
11214 PY 1997
11215 VL 36
11216 IS 1
11217 BP 41
11218 EP 46
11219 PG 6
11220 SC Physics, Multidisciplinary
11221 GA WD241
11222 UT ISI:A1997WD24100005
11223 ER
11224 
11225 PT J
11226 AU Bai, ZZ
11227    Sun, JC
11228    Wang, DR
11229 TI A unified framework for the construction of various matrix
11230    multisplitting iterative methods for large sparse system of linear
11231    equations
11232 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
11233 DT Article
11234 DE system of linear equations; parallel iteration; matrix multisplitting;
11235    relaxation method; convergence theory
11236 ID PARALLEL SOLUTION; CONVERGENCE; SPLITTINGS; ALGORITHM; 2-STAGE
11237 AB A unified framework for the construction of various synchronous and
11238    asynchronous parallel matrix multisplitting iterative methods, suitable
11239    to the SIMD and MIMD multiprocessor systems, respectively, is
11240    presented, and its convergence theory is established under rather weak
11241    conditions. These afford general method models and systematical
11242    convergence criterions for studying the parallel iterations in the
11243    sense of matrix multisplitting. In addition, how the known parallel
11244    matrix multisplitting iterative methods can be classified into this new
11245    framework, and what novel ones can be generated by it are shown in
11246    detail.
11247 C1 CHINESE ACAD SCI,INST SOFTWARE,BEIJING 100080,PEOPLES R CHINA.
11248    SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
11249 RP Bai, ZZ, CHINESE ACAD SCI,INST COMPUTAT MATH & SCI ENGN COMP,STATE KEY
11250    LAB SCI ENGN COMP,BEIJING 100080,PEOPLES R CHINA.
11251 CR BAI ZZ, IN PRESS COMP MULTIS
11252    BAI ZZ, IN PRESS J COMP MATH
11253    BAI ZZ, 1993, CHINESE J ENG MATH, V10, P107
11254    BAI ZZ, 1993, J NATU SCI HEILONGJI, V10, P1
11255    BAI ZZ, 1993, NUMER MATH J CHINESE, V2, P87
11256    BAI ZZ, 1993, THESIS SHANGHAI U SC
11257    BAI ZZ, 1994, CHINESE J ENG MATH, V11, P99
11258    BAI ZZ, 1994, NUMER MATH J CHINESE, V16, P107
11259    BAI ZZ, 1995, APPL MATH JCU A, V10, P133
11260    BAI ZZ, 1995, COMMUN NUMER METH EN, V11, P363
11261    BAI ZZ, 1995, J FUDAN U, V34, P139
11262    BAI ZZ, 1995, PARALLEL COMPUT, V21, P565
11263    BRU R, 1988, LINEAR ALGEBRA APPL, V103, P175
11264    BRU R, 1990, APPL MATH LETT, V3, P65
11265    CHAZAN D, 1969, LINEAR ALGEBRA APPL, V2, P199
11266    EVANS DJ, 1991, PARALLEL COMPUT, V17, P165
11267    EVANS DJ, 1992, INT J COMPUT MATH, V43, P173
11268    FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141
11269    FROMMER A, 1992, NUMER MATH, V63, P345
11270    HADJIDIMOS A, 1978, MATH COMPUT, V32, P149
11271    NEUMANN M, 1987, LINEAR ALGEBRA APPL, V88, P559
11272    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
11273    SZYLD DB, 1992, SIAM J MATRIX ANAL A, V13, P671
11274    VARGA RS, 1961, MATRIX ITERATIVE ANA
11275    WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473
11276    WANG DR, 1994, P 92 SHANGH INT NUM
11277    WANG DR, 1994, PARALLEL ALGORITHMS, V2, P173
11278    WHITE RE, 1989, SIAM J MATRIX ANAL A, V10, P481
11279 NR 28
11280 TC 15
11281 SN 0898-1221
11282 J9 COMPUT MATH APPL
11283 JI Comput. Math. Appl.
11284 PD DEC
11285 PY 1996
11286 VL 32
11287 IS 12
11288 BP 51
11289 EP 76
11290 PG 26
11291 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
11292 GA WC720
11293 UT ISI:A1996WC72000005
11294 ER
11295 
11296 PT J
11297 AU Sang, WB
11298    Wu, WH
11299 TI Thermodynamic investigation of equilibrium partial pressures over
11300    Hg1-xCdxTe melts
11301 SO ACTA CHIMICA SINICA
11302 DT Article
11303 AB Equilibrium partial pressures over Hg1-xCdxTe(MCT) melts have been
11304    considered as important thermodynamic parameters in high quality MCT
11305    crystal growth, However, these parameters reported until present in
11306    literatures are highly different from each other, which has become an
11307    obstacle to furthering studies on the crystal growth of MCT. This work
11308    determined systematically Hg and Te partial pressures over the MCT
11309    melts in the range of x = 0 similar to 0.4, based on the principles of
11310    the optical absorption, Cd partial pressure is calculated from our
11311    experimental results and known thermodynamic data. Relationship between
11312    P-Hg and composition re is discussed, Comparison has been made between
11313    our results and other author's data. The cause of difference is pursued.
11314 RP Sang, WB, SHANGHAI UNIV SCI & TECHNOL,DEPT INORGAN MAT,SHANGHAI
11315    201800,PEOPLES R CHINA.
11316 CR BREBRICK RF, 1965, J PHYS CHEM SOLIDS, V26, P989
11317    DENOBEL D, 1959, PHILIPS RES REP, V14, P361
11318    GOLDFINGER P, 1963, T FARADAY SOC, V59, P2851
11319    HARMAN TC, 1967, PHYSICS CHEM 2 6 COM, P725
11320    HULTGREN R, 1963, SELECTED VALUES THER, P592
11321    SCHMIT JL, 1968, INFRARED PHYS, V8, P247
11322    SCHWARTZ JP, 1981, J ELECTROCHEM SOC, V128, P438
11323    STEININGER J, 1970, J APPL PHYS, V41, P2713
11324    STEININGER J, 1976, J ELECTRON MATER, V5, P299
11325    SUGAWARA S, 1971, B JAP SOC MECH ENG, V118, P2014
11326 NR 10
11327 TC 0
11328 SN 0567-7351
11329 J9 ACTA CHIM SIN
11330 JI Acta Chim. Sin.
11331 PY 1996
11332 VL 54
11333 IS 12
11334 BP 1151
11335 EP 1158
11336 PG 8
11337 SC Chemistry, Multidisciplinary
11338 GA WC584
11339 UT ISI:A1996WC58400002
11340 ER
11341 
11342 PT J
11343 AU Zhu, SJ
11344    Ren, ZM
11345    Deng, K
11346    Jiang, GC
11347 TI Numerical simulation of alternative horizontal levitation
11348    electromagnetic continuous casting
11349 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
11350 DT Article
11351 DE horizontal electromagnetic continuous casting; electromagnetic
11352    levitation; numerical simulation
11353 AB Electromagnetic problem of horizontal electromagnetic continuous
11354    casting (HEMC) had been studied. The influence of structure of
11355    apparatus and power frequency on maximum electromagnetic levitation
11356    pressure had been analyzed. The results show that, in order to get
11357    large electromagnetic levitation pressure at high frequency, the screen
11358    must be wide but can be thin, and the width of the sheet should be
11359    closed to the distance of the flanges.
11360 C1 SHANGHAI UNIV,SHANGHAI ENHANCED LAB FERROMET,SHANGHAI 200072,PEOPLES R CHINA.
11361 CR ASAI S, 1989, TETSU TO HAGANE, V75, P32
11362    REN ZM, 1991, J DALIAN U TECH, V31, P419
11363    REN ZM, 1993, CHINESE J NONFERROUS, V3, P93
11364    REN ZM, 1994, CHINESE J NONFERROUS, V4, P78
11365    REN ZM, 1994, J DALIAN U TECH, V34, P556
11366    REN ZM, 1996, CHINESE J NONFERROUS, V6, P108
11367    SAKANE J, 1988, METALL T B, V9, P397
11368    ZHU SJ, 1995, T SHANGHAI U, V1, P68
11369 NR 8
11370 TC 2
11371 SN 1003-6326
11372 J9 TRANS NONFERROUS METAL SOC CH
11373 JI Trans. Nonferrous Met. Soc. China
11374 PD DEC
11375 PY 1996
11376 VL 6
11377 IS 4
11378 BP 42
11379 EP 46
11380 PG 5
11381 SC Metallurgy & Metallurgical Engineering
11382 GA WC539
11383 UT ISI:A1996WC53900010
11384 ER
11385 
11386 PT J
11387 AU Huang, YX
11388    Senos, AMR
11389    Rocha, J
11390    Baptista, JL
11391 TI Gel formation in mullite precursors obtained via
11392    tetraethylorthosilicate (TEOS) pre-hydrolysis
11393 SO JOURNAL OF MATERIALS SCIENCE
11394 DT Article
11395 ID ALUMINOSILICATE GELS; SPINEL PHASE; XEROGELS
11396 AB Tetraethylorthosilicate (TEOS) and aluminium chloride were taken as
11397    sources of SiO2 and Al2O3 to prepare precursors of mullite by
11398    pre-hydrolysis of TEOS under refluxing conditions. Gelation was carried
11399    out at different pH values and the effect of the pH of gelation on the
11400    subsequent temperature-induced phase transformations was characterized
11401    by differential thermal analysis, powder X-ray diffraction and Si-29
11402    and Al-27 solid-state nuclear magnetic resonance spectroscopy. A
11403    pH-dependent exothermic peak was observed at similar to 980 degrees C.
11404    Strong acidic conditions (pH = 1.5) were found to be beneficial for
11405    improving the mixing scale of the Al-Si components, leading to a
11406    mullitization temperature of similar to 1200 degrees C and a sharp 980
11407    degrees C exothermic peak. In strong basic conditions (pH = 11.5), no
11408    evident similar to 980 degrees C exothermic peak was detected, and the
11409    mullitization temperature was as high as 1350 degrees C, probably due
11410    to heterogeneity in the mixing scale of the Al-Si components in the
11411    precursor system. A gel formation process has been proposed.
11412 C1 INESC,DEPT ENGN CERAM & VIDRO,P-3800 AVEIRO,PORTUGAL.
11413    UNIV AVEIRO,DEPT QUIM,P-3800 AVEIRO,PORTUGAL.
11414    SHANGHAI UNIV,FAC MAT SCI & ENGN,SHANGHAI,PEOPLES R CHINA.
11415 CR CHAKRABORTY AK, 1978, J AM CERAM SOC, V61, P170
11416    CHAKRAVORTY AK, 1994, J MATER SCI, V29, P1558
11417    HULING JC, 1991, J AM CERAM SOC, V74, P2374
11418    HYATT MJ, 1990, J MATER SCI, V25, P2815
11419    LI DX, 1991, J AM CERAM SOC, V74, P2382
11420    LIPPMAA E, 1980, J AM CHEM SOC, V102, P4889
11421    OKADA K, 1986, J AM CERAM SOC, V69, P652
11422    OKADA K, 1986, J AM CERAM SOC, V69, C251
11423    ROCHA J, 1990, PHYS CHEM MINER, V17, P17
11424    SACKS MD, 1990, CERAMIC T, V6, P167
11425    SCHNEIDER H, 1992, J MATER SCI, V27, P805
11426    SCHNEIDER H, 1994, J EUR CERAM SOC, V13, P441
11427    SUNDARESAN S, 1991, J AM CERAM SOC, V74, P2388
11428    YAMANE M, 1984, J NON-CRYST SOLIDS, V63, P13
11429    YANG H, 1989, J CHINESE CERAM SOC, V17, P204
11430 NR 15
11431 TC 5
11432 SN 0022-2461
11433 J9 J MATER SCI
11434 JI J. Mater. Sci.
11435 PD JAN 1
11436 PY 1997
11437 VL 32
11438 IS 1
11439 BP 105
11440 EP 110
11441 PG 6
11442 SC Materials Science, Multidisciplinary
11443 GA WC325
11444 UT ISI:A1997WC32500013
11445 ER
11446 
11447 PT J
11448 AU Bi, PZ
11449    Shi, YM
11450 TI The P-T spectra of pion from resonance decays
11451 SO NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND
11452    FIELDS
11453 DT Article
11454 ID HEAVY-ION COLLISIONS; NUCLEAR COLLISIONS; FINITE TEMPERATURE; CHARMONIUM
11455 AB The PT spectra of pion from resonance decay are studied. It is found
11456    that the reduction of effective mass increases the emission of low P-T
11457    pions. The approach to explain the enhancement of low-P-T pion observed
11458    by the NA35 Collaboration in 200 GeV S+S collisions with the
11459    contribution from the resonance decays can be improved by the mass
11460    reduction.
11461 C1 FUDAN UNIV,DEPT PHYS 2,SHANGHAI 200433,PEOPLES R CHINA.
11462    SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA.
11463 RP Bi, PZ, FUDAN UNIV,TD LEE PHYS LAB,SHANGHAI 200433,PEOPLES R CHINA.
11464 CR BARZ HW, 1991, PHYS LETT B, V254, P332
11465    BROWN GE, SUBYNTC9013
11466    HARRINGTON BJ, 1974, PHYS REV LETT, V33, P324
11467    HASHIMOTO T, 1986, PHYS REV LETT, V57, P2123
11468    HASHIMOTO T, 1988, Z PHYS C, V38, P251
11469    KICG P, 1986, PHYS REP, V142, P167
11470    KUSENEZOV D, 1989, PHYS REV C, V40, P2075
11471    KUSENEZOV D, 1991, PHYS REV C, V44, P902
11472    LI CQ, NUCLTH9504025
11473    PINZHEN B, 1988, J PHYS G, V14, P681
11474    PINZHEN B, 1989, J PHYS G NUCL PARTIC, V15, P1653
11475    PISARSKI RD, 1982, PHYS REV D, V26, P3735
11476    PISARSKI RD, 1985, PHYS LETT B, V160, P137
11477    SOLLFRANK J, 1990, PHYS LETT B, V252, P256
11478    SOLLFRANK J, 1991, Z PHYS C PART FIELDS, V52, P593
11479    STROBELE H, 1988, Z PHYS C, V38, P89
11480    VOGT R, 1988, PHYS LETT B, V206, P333
11481 NR 17
11482 TC 0
11483 SN 0369-3546
11484 J9 NUOVO CIMENTO A-NUCL PART F
11485 JI Nuovo Cimento Soc. Ital. Fis. A-Nucl. Part. Fields
11486 PD NOV
11487 PY 1996
11488 VL 109
11489 IS 11
11490 BP 1601
11491 EP 1604
11492 PG 4
11493 SC Physics, Particles & Fields
11494 GA WC189
11495 UT ISI:A1996WC18900008
11496 ER
11497 
11498 PT J
11499 AU Shao, HQ
11500    Gao, XH
11501    Cao, ZC
11502 TI Effect of annealing on phase structure and degradation of a zinc oxide
11503    varistor with Si-additive
11504 SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
11505 DT Article
11506 ID ANTIMONY OXIDE; ZNO; CERAMICS; MICROSTRUCTURE; BI2O3
11507 AB The effect of annealing of phase structure and degradation of the
11508    current-voltage characteristics for a ZnO varistor with Si-additive has
11509    been investigated. By means of X-ray diffraction, analytical electron
11510    microscopy and thermal analysis, it is found that a phase transition
11511    from delta-Bi2O3 (with dissolved Si), to Bi24Si2O40 (bismuth silicate)
11512    took place in the ZnO varistor after annealing at 470 degrees C. This
11513    transition is associated with a volume contraction, no notable thermal
11514    effect, a high transition rate and reversibility. It is calculated by
11515    crystallography that the volume contraction of the phase transition is
11516    6.02%. The transition of the Bi-rich phase results in decreased levels
11517    of degradation and improved stability of the ZnO varistor. (C) 1996
11518    Elsevier Science Limited.
11519 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SCI & ENGN,SHANGHAI 201800,PEOPLES R CHINA.
11520 CR ASOKAN T, 1990, J MATER SCI, V25, P2447
11521    EDU K, 1980, J APPL PHYS, V51, P2678
11522    HAYASHI M, 1982, J APPL PHYS, V53, P5754
11523    IGN A, 1976, JPN J APPL PHYS, V15, P1161
11524    INADA M, 1978, JPN J APPL PHYS, V17, P1
11525    INADA M, 1980, JPN J APPL PHYS, V19, P409
11526    KIM J, 1989, J AM CERAM SOC, V72, P1390
11527    KIM J, 1989, J MATER SCI, V24, P213
11528    MEDERNACH JW, 1978, J AM CERAM SOC, V61, P494
11529    OLSSON E, 1989, J APPL PHYS, V66, P3666
11530    OLSSON E, 1989, J APPL PHYS, V66, P4317
11531    TAKEMURA T, 1986, JPN J APPL PHYS PT 1, V25, P293
11532    TAKEMURA T, 1986, JPN J APPL PHYS PT 1, V25, P295
11533    TAKEMURA T, 1987, J AM CERAM SOC, V70, P237
11534    WONG J, 1975, J APPL PHYS, V46, P1653
11535 NR 15
11536 TC 2
11537 SN 0955-2219
11538 J9 J EUR CERAM SOC
11539 JI J. European Ceram. Soc.
11540 PY 1997
11541 VL 17
11542 IS 1
11543 BP 55
11544 EP 59
11545 PG 5
11546 SC Materials Science, Ceramics
11547 GA WB693
11548 UT ISI:A1997WB69300008
11549 ER
11550 
11551 PT J
11552 AU Xueming, MA
11553    Gang, JI
11554 TI Nanostructured WC-Co alloy prepared by mechanical alloying
11555 SO JOURNAL OF ALLOYS AND COMPOUNDS
11556 DT Letter
11557 DE nanocrystalline alloys; mechanical alloying; WC-Co cemented carbide
11558    powder
11559 AB Nanocrystalline cemented carbide powder of WC-Co was directly
11560    synthesized by mechanical alloying. The structure evolution of the
11561    powders was monitored by X-ray diffration, scanning electron microscope
11562    and thermal analysis. Results show that the formation of the compounds
11563    is controlled by an inter-diffusion reaction between elements. Powders
11564    of WC-Co milled for 100 h were compacted and sintered to a cylinder
11565    with the size circle divide 6 mmx8 mm. The hardness and sintered
11566    density were measured.
11567 RP Xueming, MA, SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES
11568    R CHINA.
11569 CR GLEITER H, 1984, Z METALLKD, V75, P263
11570    PETZOLDT F, 1987, MATER LETT, V5, P280
11571    SHINGU PH, 1988, T JIM S, V29, P3
11572    YANG YZ, 1992, CHINESE PHYS LETT, V5, P266
11573    YANG YZ, 1994, CHINESE SCI BULL, V17, P1626
11574 NR 5
11575 TC 8
11576 SN 0925-8388
11577 J9 J ALLOYS COMPOUNDS
11578 JI J. Alloy. Compd.
11579 PD NOV 15
11580 PY 1996
11581 VL 245
11582 BP L30
11583 EP L32
11584 PG 3
11585 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
11586    Metallurgical Engineering
11587 GA WB358
11588 UT ISI:A1996WB35800009
11589 ER
11590 
11591 PT J
11592 AU Xie, FQ
11593    Zhang, J
11594    Mao, XM
11595    Li, DL
11596    Fu, HZ
11597 TI Rapid directional solidification excited from bulk supercooled melt
11598 SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
11599 DT Article
11600 DE supercooling; directional solidification; rapid solidification;
11601    excitation
11602 AB With the organic combination of melt supercooling and directional
11603    solidification techniques, a new concept of rapid directional
11604    solidification excited from superceded melt has been advanced. in this
11605    paper, the experimental method of this new technique is reviewed. The
11606    difference between the new and the conventional directional
11607    solidification processing is illustrated diagramatically. The latest
11608    experimental results are given for Cu-Ni alloy, which indicate the
11609    attractive prospects of the new technique.
11610 C1 SHANGHAI UNIV,INST MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R CHINA.
11611 RP Xie, FQ, NORTHWESTERN POLYTECH UNIV,STATE KEY LAB SOLIDIFICAT PROC,XIAN
11612    710072,PEOPLES R CHINA.
11613 CR BAYUZICK RJ, 1991, METALL T A, V22, P2713
11614    BEINGBO W, 1990, ACTA METAL SINICA, V5, B343
11615    DELI L, 1993, P 1 NAT C PHASE TRAN
11616    HERLACH DM, 1988, MATER SCI ENG, V98, P339
11617    LUX B, 1981, METALL, V95, P1235
11618    MEYER E, 1989, J NON-CRYST SOLIDS, V107, P163
11619    SCHLEIP R, 1990, APPL PHYS LETT, V62, P2707
11620    SHAM PR, 1989, MAT SCI LETT, V8, P201
11621    WU XY, 1994, THESIS NW POLYTECHNI
11622 NR 9
11623 TC 3
11624 SN 0924-0136
11625 J9 J MATER PROCESS TECHNOL
11626 JI J. Mater. Process. Technol.
11627 PD JAN
11628 PY 1997
11629 VL 63
11630 IS 1-3
11631 BP 776
11632 EP 778
11633 PG 3
11634 SC Engineering, Industrial; Engineering, Manufacturing; Materials Science,
11635    Multidisciplinary
11636 GA WA730
11637 UT ISI:A1997WA73000133
11638 ER
11639 
11640 PT J
11641 AU Zhu, Y
11642 TI Interactions of internal solitary waves in deep stratified fluids -
11643    Weak interactions
11644 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
11645 DT Article
11646 DE internal solitary waves; weak interactions; deep stratified fluids
11647 AB The weak interactions of internal solitary waves in deep stratified
11648    fluids are investigated in terns of Lagrangian coordinates, which
11649    include the head-on and overtaking collisions of solitary waves with
11650    different modes, and the head-on collision of waves with the same mode.
11651    The analysis shows that each wave is governed by the intermediately
11652    long wave (ILW) equation for finitely deep fluids and the Benjamin-Ono
11653    (BO) equation for infinitely deep fluids. The main effect of the
11654    interaction is the phase shifts of each wave.
11655 RP Zhu, Y, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI
11656    200072,PEOPLES R CHINA.
11657 CR GEAR JA, 1984, STUD APPL MATH, V70, P235
11658    GRIMSHAW R, 1986, ENCY FLUID MECH, V2, P1
11659    MILES JW, 1977, J FLUID MECH, V79, P157
11660    MILES JW, 1980, ANNU REV FLUID MECH, V12, P11
11661    MIRIE RM, 1982, J FLUID MECH, V147, P475
11662    SU CH, 1980, J FLUID MECH, V98, P509
11663    ZHU Y, IN PRESS ATMOSPHERIC
11664    ZHU Y, 1992, APPL MATH MECH, V13, P407
11665 NR 8
11666 TC 0
11667 SN 1006-9283
11668 J9 SCI CHINA SER A
11669 JI Sci. China Ser. A-Math. Phys. Astron.
11670 PD JUL
11671 PY 1996
11672 VL 39
11673 IS 7
11674 BP 728
11675 EP 737
11676 PG 10
11677 SC Mathematics, Applied; Mathematics
11678 GA WA869
11679 UT ISI:A1996WA86900006
11680 ER
11681 
11682 PT J
11683 AU Ding, YY
11684    Chen, YL
11685    Zhang, Y
11686    Yao, Y
11687 TI A highly stereoselective synthesis of
11688    2-carbomethoxy-3-aryl-4-carboethoxy-5-methyl-cis-2,3-dihydrofurans
11689 SO CHEMICAL RESEARCH IN CHINESE UNIVERSITIES
11690 DT Article
11691 DE arsorane; stereoselective synthesis; 2,3-dihydrofuran
11692 AB Carbomethoxymethylenetriphenylarsorane reacts with ethyl
11693    2-acetyl-3-arylacrylates to afford
11694    2-carbomethoxy-3-aryl-4-carboethoxy-5-methyl-2,3-dihydrofuran via
11695    Michael addition in high to excellent yields with high
11696    stereoselectivity.
11697 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
11698 CR BRUCKNER C, 1988, J ORG CHEM, V53, P2440
11699    DANION BR, 1968, B SOC CHIM FR, V6, P2526
11700    HUANG YZ, 1978, ACTA CHIM SINICA, V36, P215
11701    KOO G, 1993, J HETEROCYCLIC CHEM, V30, P1213
11702    MCDONALD FE, 1993, J ORG CHEM, V58, P6952
11703    SUGIMURA H, 1994, J ORG CHEM, V59, P7653
11704 NR 6
11705 TC 2
11706 SN 1005-9040
11707 J9 CHEM RES CHINESE UNIV
11708 JI Chem. Res. Chin. Univ.
11709 PD NOV
11710 PY 1996
11711 VL 12
11712 IS 4
11713 BP 354
11714 EP 359
11715 PG 6
11716 SC Chemistry, Multidisciplinary
11717 GA VZ675
11718 UT ISI:A1996VZ67500007
11719 ER
11720 
11721 PT J
11722 AU Wan, DC
11723    Liu, YZ
11724    Miao, GP
11725 TI The interactions between wave-currents and offshore structures with
11726    consideration of fluid viscosity
11727 SO ACTA MECHANICA SINICA
11728 DT Article
11729 DE interactions among waves; viscous currents and bodies; depth-averaged
11730    Reynolds equations; depth-averaged kappa epsilon turbulence model
11731 ID OPEN-CHANNEL FLOW; WATER
11732 AB Study of the how held around the large scale offshore structures under
11733    the action of waves and viscous currents is of primary importance for
11734    the scouring estimation and protection in the vicinity of the
11735    structures. But very little has been known in its mechanism when the
11736    viscous effects is taken into consideration. As a part of the efforts
11737    to tackle the problem, a numerical model is presented for the
11738    simulation of the how held around a fixed vertical truncated circular
11739    cylinder subjected to waves and viscous currents based on the
11740    depth-averaged Reynolds equations and depth-averaged k-epsilon
11741    turbulence model. Finite difference method with a suitable iteration
11742    defect correct method and an artificial open boundary condition are
11743    adopted in the numerical process. Numerical results presented relate to
11744    the interactions of a pure incident viscous current with Reynolds
11745    number Re = 10(5), a pure incident regular sinusoidal wave, and the
11746    coexisting of viscous current and wave with a circular cylinder,
11747    respectively. Flow fields associated with the hydrodynamic coefficients
11748    of the fixed cylinder, as well as corresponding free surface profiles
11749    and wave amplitudes, are discussed. The present method is found to be
11750    relatively straightforward, computationally effective and numerically
11751    stable for treating the problem of interactions among waves, viscous
11752    currents and bodies.
11753 C1 SHANGHAI JIAO TONG UNIV, DEPT NAVAL ARCHITECTURE & OCEAN ENGN, SHANGHAI 200030, PEOPLES R CHINA.
11754 RP Wan, DC, SHANGHAI UNIV, SHANGHAI INST APPL MATH & MECH, SHANGHAI
11755    200072, PEOPLES R CHINA.
11756 CR BORTHWICK AGL, 1993, INT J NUMER METH FL, V17, P417
11757    CHENG J, 1992, THESIS SHANGHAI JIAO, P1
11758    FISCHER HB, 1973, ANNU REV FLUID MECH, V5, P59
11759    GIVOLI D, 1991, J COMPUT PHYS, V94, P1
11760    HINZE JO, 1975, TURBULENCE, P78
11761    KAWAMURA T, 1984, 840340 AIAA, P1
11762    LAUFER J, 1951, 1053 NACA, P312
11763    LAUNDER BE, 1974, COMPUTER METHODS APP, V3, P269
11764    MCGUIRK JJ, 1978, J FLUID MECH, V86, P761
11765    MEI CC, 1978, ANNU REV FLUID MECH, V10, P393
11766    RASTOGI AK, 1978, J HYDRAULICS DIVISIO, V104, P397
11767    SARPKAYA T, 1981, MECH WAVE FORCES OFF, P54
11768    SPALDING DB, 1975, HTS754 IMP COLL DEPT, P890
11769    STETTER HJ, 1978, NUMER MATH, V29, P234
11770    THOMPSON JF, 1984, AIAA J, V22, P1505
11771    WAN DC, 1993, J SHANGHAI JIAOTONG, V27, P9
11772    WAN DC, 1994, INT S WAVES PHYSICAL, V2, P951
11773    WAN DC, 1995, J HYDRODYNAMICS B, V7, P105
11774    WAN DC, 1995, P 5 INT OFFSH POL EN, V3, P182
11775    YOON SB, 1989, J FLUID MECH, V205, P397
11776    ZHAO R, 1988, 5 C BEH OFFSH STRUCT, P623
11777 NR 21
11778 TC 0
11779 SN 0567-7718
11780 J9 ACTA MECH SINICA
11781 JI Acta Mech. Sin.
11782 PD NOV
11783 PY 1996
11784 VL 12
11785 IS 4
11786 BP 307
11787 EP 322
11788 PG 16
11789 SC Engineering, Mechanical; Mechanics
11790 GA VZ544
11791 UT ISI:A1996VZ54400003
11792 ER
11793 
11794 PT J
11795 AU Liu, HY
11796    Ying, TL
11797    Sun, K
11798    Qi, DY
11799 TI A reagentless biosensor highly sensitive to hydrogen peroxide based on
11800    new methylene blue N dispersed in Nafion(R) gel as the electron shuttle
11801 SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY
11802 DT Article
11803 DE biosensor; horseradish peroxidase; Nafion(R); new methylene blue N;
11804    hydrogen peroxide
11805 ID CYTOCHROME-C PEROXIDASE; SILK FIBROIN MEMBRANE; HORSERADISH-PEROXIDASE;
11806    ENZYME ELECTRODES; CARBON; GRAPHITE; SENSOR; OXIDATION
11807 AB A reagentless biosensor highly sensitive to hydrogen peroxide was
11808    constructed by immobilizing horseradish peroxidase on Nafion(R)-new
11809    methylene blue N modified electrode. Cyclic voltammetry and
11810    chronamperometry were for the first time employed to demonstrate the
11811    feasibility of electron transfer between immobilized horseradish
11812    peroxidase and a glassy carbon electrode via new methylene blue N
11813    incorporated in Nafion(R) gel. Performance and characteristics of the
11814    sensor were evaluated with respect to response time, detection limit,
11815    selectivity, and dependence on applied potential, thickness of
11816    Nafion(R) membrane, ionic strength, temperature and pH as well as
11817    operating and storage stability. High sensitivity of the sensor with a
11818    detection limit of 0.5 mu M was due to high efficiency of the electron
11819    communication between immobilized horseradish peroxidase and the
11820    electrode via new methylene blue N.
11821 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R
11822    CHINA.
11823 CR BIFULCO L, 1994, ANAL LETT, V27, P1443
11824    CLARK LC, 1979, METHOD ENZYMOL, V56, P448
11825    COOPER JM, 1991, J ELECTROANAL CH INF, V312, P155
11826    CSOREGI E, 1994, ANAL CHEM, V66, P3604
11827    DENG Q, 1994, J ELECTROANAL CHEM, V377, P191
11828    FREW JE, 1986, J ELECTROANAL CH INF, V201, P1
11829    GORTON L, 1992, ANALYST, V117, P1235
11830    HO WO, 1993, J ELECTROANAL CHEM, V351, P185
11831    HURDIS EC, 1954, ANAL CHEM, V26, P320
11832    IANNIELLO RM, 1981, ANAL CHEM, V53, P2090
11833    KAMIN RA, 1980, ANAL CHEM, V52, P1198
11834    LIU H, IN PRESS J ANAL CHEM
11835    LIU H, 1995, ANAL P, V32, P375
11836    LIU HY, 1996, TALANTA, V43, P111
11837    LIU YC, 1995, ANAL CHIM ACTA, V316, P65
11838    LIU YC, 1996, ELECTROCHIM ACTA, V41, P77
11839    MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801
11840    MULCHANDANI A, 1995, ANAL CHEM, V67, P94
11841    POPESCU IC, 1995, BIOSENS BIOELECTRON, V10, P443
11842    QIAN JH, 1995, J ELECTROANAL CHEM, V397, P157
11843    RUZGAS T, 1995, J ELECTROANAL CHEM, V391, P41
11844    SANCHEZ PD, 1990, ELECTROANAL, V2, P303
11845    SCHUBERT F, 1991, ANAL CHIM ACTA, V245, P133
11846    SCOTT DL, 1992, J ELECTROANAL CHEM, V341, P307
11847    TATSUMA T, 1992, ANAL CHEM, V64, P1183
11848    TATSUMA T, 1995, ANAL CHEM, V67, P283
11849    VREEKE M, 1995, ANAL CHEM, V67, P303
11850    WANG J, 1992, ANAL CHEM, V64, P1285
11851    WELINDER KG, 1979, EUR J BIOCHEM, V96, P483
11852    WOLLENBERGER U, 1991, BIOELECTROCH BIOENER, V26, P287
11853    YAMADA H, 1974, ARCH BIOCHEM BIOPHYS, V165, P728
11854    YANG L, 1995, ANAL CHEM, V67, P1325
11855    ZHANG ZE, 1996, ANAL CHEM, V68, P1632
11856    ZHAO JG, 1992, J ELECTROANAL CHEM, V327, P109
11857 NR 34
11858 TC 11
11859 SN 0022-0728
11860 J9 J ELECTROANAL CHEM
11861 JI J. Electroanal. Chem.
11862 PD NOV 7
11863 PY 1996
11864 VL 417
11865 IS 1-2
11866 BP 59
11867 EP 64
11868 PG 6
11869 SC Chemistry, Analytical; Electrochemistry
11870 GA VZ349
11871 UT ISI:A1996VZ34900009
11872 ER
11873 
11874 PT J
11875 AU Gu, M
11876    Xu, WP
11877    Zheng, LR
11878    Lin, CL
11879    Cao, ZC
11880 TI Multiple conduction behavior of BaRuO3 thin film prepared by pulsed
11881    laser ablation deposition
11882 SO THIN SOLID FILMS
11883 DT Article
11884 DE ruthenium; oxides; laser ablation; conductivity
11885 AB In this paper, thin films of BaRuO3 prepared on a Si substrate by the
11886    pulsed laser ablation deposition method under oxygen ambient have been
11887    studied by means of X-ray diffraction, emission spectroscopy,
11888    Rutherford backscattering spectroscopy, RT Hall measurement and
11889    resistivity measurement. It is interesting to find that BaRuO3 thin
11890    films, having a different thermal history examined in the same
11891    temperature range, show different conduction types including
11892    metallicity, semiconduction and semiconductor-metal transition. The
11893    explanation about the findings are given using a suggested modified
11894    energy band diagram. It is believed that the versatile electrical
11895    behavior is helpful for the use in electrical contact materials.
11896 C1 CHINESE ACAD SCI,SHANGHAI INST MET,STATE KEY LAB MAT INFORMAT,SHANGHAI 200050,PEOPLES R CHINA.
11897 RP Gu, M, SHANGHAI UNIV SCI & TECHNOL,DEPT INORGAN MAT,JIADING
11898    CAMPUS,SHANGHAI 201800,PEOPLES R CHINA.
11899 CR COX PA, 1992, TRANSITION METAL OXI, P237
11900    DONOHUE PC, 1965, INORG CHEM, V4, P306
11901    EOM CB, 1993, APPL PHYS LETT, V63, P2570
11902    NEWNHAM RE, 1975, STRUCTURE PROPERTY R
11903    RICE CE, 1977, ACTA CRYSTALLOGR B, V33, P1342
11904    TAKIKAVA O, 1986, IEEE P EL COMP C IEE, P214
11905    VANLOAN PR, 1972, CERAM B, V51, P231
11906 NR 7
11907 TC 2
11908 SN 0040-6090
11909 J9 THIN SOLID FILMS
11910 JI Thin Solid Films
11911 PD NOV 15
11912 PY 1996
11913 VL 288
11914 IS 1-2
11915 BP 95
11916 EP 98
11917 PG 4
11918 SC Materials Science, Multidisciplinary; Physics, Applied; Physics,
11919    Condensed Matter
11920 GA VZ205
11921 UT ISI:A1996VZ20500018
11922 ER
11923 
11924 PT J
11925 AU Wang, ZX
11926    Luo, WY
11927    Wang, CS
11928    Wang, WM
11929 TI Modelling of the angular distribution of sputtered particles from
11930    roughened elemental and alloy targets
11931 SO VACUUM
11932 DT Article
11933 ID SCANNING TUNNELING MICROSCOPY; MULTICOMPONENT MATERIALS; GRAPHITE
11934    SURFACE; ION-BOMBARDMENT; IMPACTS
11935 AB A solid surface subjected to energetic ion bombardment generally
11936    develops characteristic structures, which may change the total and
11937    partial sputtering yields significantly. The change is caused by
11938    several competing effects, for instance, change of the effective
11939    projectile incidence angle, recapture of obliquely ejected particles
11940    (shadowing effect), and element local-enrichment in different
11941    micro-regions on the alloy surface. In this article, we have developed
11942    a new theoretical method to take account of all the above effects. This
11943    method and its application to the analysis of experimental results for
11944    elemental (Cd) and alloy system (Al-x-Sn-100-x) targets is described in
11945    detail. Copyright (C) 1996 Elsevier Science Ltd
11946 C1 SHANGHAI UNIV,SHANGHAI APPL RADIAT INST,SHANGHAI 201800,PEOPLES R CHINA.
11947    CCAST,WORLD LAB,BEIJING 100080,PEOPLES R CHINA.
11948 RP Wang, ZX, ACAD SINICA,INST NUCL RES,POB 800204,SHANGHAI 201800,PEOPLES
11949    R CHINA.
11950 CR ANDERSEN HH, 1985, NUCL INSTRUM METH B, V6, P459
11951    ANDERSEN HH, 1988, NUCL INSTRUM METH B, V33, P466
11952    BETZ G, 1983, TOP APPL PHYS, V52, P11
11953    CARTER G, 1983, TOPICS APPL PHYSICS, V52
11954    DEVILLENEUVE CH, 1990, VACUUM, V41, P1686
11955    DODONOV AI, 1988, RADIAT EFF, V107, P15
11956    EMMOTH B, 1980, S SPUTT PERCHT VIENN
11957    FETZ H, 1942, Z PHYS, V119, P590
11958    HUCKS P, 1978, J NUCL MATER, V76, P736
11959    JISHENG P, 1992, NUCL INSTRUM METH B, V67, P514
11960    KELLY R, 1984, ION BOMBARDMENT MODI, V1
11961    LINDHARD J, 1963, KGL DANSKE VIDENSKAB, V33, P10
11962    LITTMARK U, 1978, J MATER SCI, V13, P2577
11963    OECHSNER H, 1975, APPL PHYS, V8, P185
11964    PORTE L, 1989, NUCL INSTRUM METH B, V44, P116
11965    SIGMUND P, 1969, PHYS REV, V184, P383
11966    SIGMUND P, 1982, NUCL INSTRUM METHODS, V194, P541
11967    SIGMUND P, 1982, TOP APPL PHYS, V47, P9
11968    VOSSEN JL, 1974, J VAC SCI TECHNOL, V11, P875
11969    WILSON IH, 1989, J VAC SCI TECHNOL A, V7, P2840
11970    ZHENXIA W, 1993, NUCL INSTRUM METH B, V74, P380
11971    ZHENXIA W, 1993, PHYS LETT A, V177, P275
11972 NR 22
11973 TC 0
11974 SN 0042-207X
11975 J9 VACUUM
11976 JI Vacuum
11977 PD DEC
11978 PY 1996
11979 VL 47
11980 IS 12
11981 BP 1465
11982 EP 1472
11983 PG 8
11984 SC Materials Science, Multidisciplinary; Physics, Applied
11985 GA VY916
11986 UT ISI:A1996VY91600010
11987 ER
11988 
11989 PT J
11990 AU Li, CF
11991 TI Pauli criterion and the vector Aharonov-Bohm effect
11992 SO ANNALS OF PHYSICS
11993 DT Article
11994 ID MAGNETIC-FLUX QUANTIZATION; ELECTROMAGNETIC POTENTIALS;
11995    QUANTUM-MECHANICS; ANGULAR-MOMENTUM
11996 AB After discussing the commutation relations of the kinetic angular
11997    momentum of the electron in the vector Aharonov-Bohm effect, the author
11998    shows that the Pauli criterion for admissibility of the wave function
11999    is inapplicable. The point is that the kinetic angular momentum does
12000    not satisfy the fundamental commutation relations of the angular
12001    momentum. The inapplicability of the Pauli criterion reflects the
12002    breakdown of the symmetry of the electron's motion around the solenoid.
12003    (C) 1996 Academic Press, Inc.
12004 RP Li, CF, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,20 CHENGZHONG RD,SHANGHAI
12005    201800,PEOPLES R CHINA.
12006 CR AFANASEV GN, 1990, SOV J PART NUCL, V21, P74
12007    AHARONOV Y, 1959, PHYS REV, V115, P485
12008    CABRERA B, 1989, PHYS REV LETT, V62, P2040
12009    DIRAC PAM, 1958, PRINCIPLES QUANTUM M, P140
12010    HENNEBERGER WC, 1981, J MATH PHYS, V22, P116
12011    JACKIW R, 1983, PHYS REV LETT, V50, P555
12012    KAWAMOTO H, 1994, PHYS LETT A, V190, P9
12013    KRETZSCHMAR M, 1965, Z PHYS, V185, P97
12014    LIANG JQ, 1988, PHYS REV LETT, V60, P836
12015    MAGNI C, 1995, J MATH PHYS, V36, P177
12016    PAULI W, 1939, HELV PHYS ACTA, V12, P147
12017    PAULI W, 1980, GEN PRINCIPLES QUANT, P47
12018    PESHKIN M, 1981, PHYS REP, V80, P375
12019    ROY SM, 1984, NUOVO CIMENTO A, V79, P391
12020    RUBIO H, 1991, NUOVO CIMENTO B, V106, P407
12021    SPAVIERI G, 1994, NUOVO CIMENTO B, V109, P675
12022 NR 16
12023 TC 3
12024 SN 0003-4916
12025 J9 ANN PHYS N Y
12026 JI Ann. Phys.
12027 PD DEC 15
12028 PY 1996
12029 VL 252
12030 IS 2
12031 BP 329
12032 EP 335
12033 PG 7
12034 SC Physics, Multidisciplinary
12035 GA VY568
12036 UT ISI:A1996VY56800004
12037 ER
12038 
12039 PT J
12040 AU Wang, DR
12041    Bai, ZZ
12042 TI Parallel multilevel iterative methods
12043 SO LINEAR ALGEBRA AND ITS APPLICATIONS
12044 DT Article
12045 ID PRECONDITIONING METHODS
12046 AB For large-scale system of linear equations with symmetric positive
12047    definite block coefficient matrix resulting from the discretization of
12048    a self-adjoint elliptic boundary-value problem, by making use of
12049    blocked multilevel iteration we construct preconditioning matrices for
12050    the coefficient matrix and set up a class of parallel multilevel
12051    iterative methods for solving such system. Theoretical analysis shows
12052    that besides lending themselves to strongly parallel computation these
12053    new methods have convergence rates independent of both the sizes and
12054    the level numbers of the grids, and their computational work loads are
12055    also bounded by linear functions about the step sizes of the finest
12056    grids. (C) Elsevier Science Inc., 1997
12057 C1 CHINESE ACAD SCI,INST COMPUTAT MATH & SCI ENGN COMP,BEIJING 100080,PEOPLES R CHINA.
12058 RP Wang, DR, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
12059 CR AXELSSON O, 1984, FINITE ELEMENT SOLUT
12060    AXELSSON O, 1989, BIT, V29, P769
12061    AXELSSON O, 1989, NUMER MATH, V56, P157
12062    AXELSSON O, 1990, SIAM J NUMER ANAL, V27, P1569
12063    BAI ZZ, 1993, THESIS SHANGHAI U SC
12064    BANK RE, 1988, NUMER MATH, V52, P427
12065    BERTSEKAS DP, 1989, PARALLEL DISTRIBUTED
12066    CIARLET PG, 1978, FINITE ELEMENT METHO
12067    HACKBUSCH W, 1985, MULTIGRID METHODS
12068    YSERENTANT H, 1986, NUMER MATH, V49, P379
12069 NR 10
12070 TC 3
12071 SN 0024-3795
12072 J9 LINEAR ALGEBRA APPL
12073 JI Linear Alg. Appl.
12074 PD JAN 1
12075 PY 1997
12076 VL 250
12077 BP 317
12078 EP 347
12079 PG 31
12080 SC Mathematics, Applied
12081 GA VX450
12082 UT ISI:A1997VX45000018
12083 ER
12084 
12085 PT J
12086 AU Liu, HY
12087    Zhang, ZN
12088    Zhang, XL
12089    Qi, DY
12090    Liu, YC
12091    Yu, TY
12092    Deng, JQ
12093 TI A phenazine methosulphate-mediated sensor sensitive to lactate based on
12094    entrapment of lactate oxidase and horseradish peroxidase in composite
12095    membrane of poly(vinyl alcohol) and regenerated silk fibroin
12096 SO ELECTROCHIMICA ACTA
12097 DT Article
12098 DE sensor; phenazine methosulphate; L-lactate; lactate oxidase;
12099    horseradish peroxidase; poly(vinyl alcohol); regenerated silk fibroin
12100 ID CARBON-PASTE ELECTRODES; LACTIC-ACID; SYSTEMS
12101 AB An amperometric phenazine methosulphate-mediated sensor sensitive to
12102    lactate was fabricated, which was based on immobilization of lactate
12103    oxidase and horseradish peroxidase in a novel composite membrane of
12104    poly(vinyl alcohol) and regenerated silk fibroin. The water
12105    absorbability and mechanical properties of the composite membrane were
12106    investigated. Horseradish peroxidase (HRP) was employed in the
12107    catalytic reduction of hydrogen peroxide, formed by the lactate oxidase
12108    reaction, to amplify the amperometric response of the lactate sensor.
12109    In this bienzyme configuration, phenazine methosulphate was used as an
12110    electron transfer mediator between immobilized HRP and a glassy carbon
12111    electrode. Effects of pH, temperature, applied potential and
12112    concentration of phenazine methosulphate on the steady-state
12113    bioelectrocatalytic oxidation of lactate at the sensor were evaluated.
12114    Dependence of Michaelis-Menten constant K-m(app) on the concentration
12115    of phenazine methosulphate and applied potential was also investigated.
12116    The response of the sensor to lactate reached 95% steady-state current
12117    within 20 s. Copyright (C) 1996 Elsevier Science Ltd
12118 C1 SUZHOU INST CITY CONSTRUCT & ENVIRONM PROTECT,DEPT ENVIRONM PROTECT,SUZHOU 300111,JIANSU PROVINCE,PEOPLES R CHINA.
12119    FUDAN UNIV,DEPT MACROMOL SCI,SHANGHAI 200433,PEOPLES R CHINA.
12120    FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
12121 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R
12122    CHINA.
12123 CR *SIGM CHEM CO, 1991, CAT, P771
12124    DURLIAT H, 1979, ANAL CHIM ACTA, V106, P131
12125    HU YB, 1993, ANAL CHIM ACTA, V281, P503
12126    HUCK H, 1984, ANALYST, V109, P147
12127    KAMIN RA, 1980, ANAL CHEM, V52, P1198
12128    KATAKIS I, 1992, ANAL CHEM, V64, P1008
12129    KULYS J, 1992, ANAL LETT, V25, P1011
12130    LIU HY, 1995, ELECTROCHIM ACTA, V40, P1845
12131    LIU YC, 1996, ELECTROCHIM ACTA, V41, P77
12132    MAKOVOS EB, 1985, BIOTECHNOL BIOENG, V27, P167
12133    MASCINI M, 1984, ANAL CHIM ACTA, V157, P45
12134    MITZUTANI F, 1984, CHEM LETT, V2, P199
12135    MITZUTANI F, 1985, ANAL CHIM ACTA, V177, P153
12136    NEWMAN JD, 1992, ANAL CHIM ACTA, V262, P13
12137    SCHUBERT F, 1985, ANAL CHIM ACTA, V169, P391
12138    SPRULES SD, 1995, ANAL CHIM ACTA, V304, P17
12139    WANG DL, 1993, ANAL CHEM, V65, P1069
12140    WANG J, 1995, ANAL CHIM ACTA, V304, P41
12141    YAO T, 1979, ANAL CHIM ACTA, V110, P203
12142 NR 19
12143 TC 2
12144 SN 0013-4686
12145 J9 ELECTROCHIM ACTA
12146 JI Electrochim. Acta
12147 PY 1997
12148 VL 42
12149 IS 3
12150 BP 349
12151 EP 355
12152 PG 7
12153 SC Electrochemistry
12154 GA VW704
12155 UT ISI:A1997VW70400001
12156 ER
12157 
12158 PT J
12159 AU Guo, BY
12160    Ma, HP
12161    Hou, JY
12162 TI Chebyshev pseudospectral-hybrid finite element method for
12163    two-dimensional vorticity equation
12164 SO RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION
12165    MATHEMATIQUE ET ANALYSE NUMERIQUE
12166 DT Article
12167 DE two-dimensional vorticity equation; Chebyshev pseudospectral-finite
12168    element approximation
12169 ID NAVIER-STOKES EQUATIONS; SPECTRAL APPROXIMATIONS
12170 AB Chebyshev pseudospectral-hybrid finite element schemes are proposed for
12171    two-dimensional vorticity equation. Some approximation results in
12172    non-isotropic Sobolev spaces are presented. The generalized stability
12173    and the convergence are proved. The hybrid finite element approximation
12174    provides the optimal convergence rate. The numerical results show the
12175    advantages of the approach. The technique in this paper is also
12176    applicable to other nonlinear problems in computational fluid dynamics.
12177 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
12178 RP Guo, BY, CITY UNIV HONG KONG,KOWLOON,HONG KONG.
12179 CR BERNARDI C, 1989, SIAM J NUMER ANAL, V26, P769
12180    CANUTO C, 1982, NUMER MATH, V39, P205
12181    CANUTO C, 1984, NUMER MATH, V44, P201
12182    CANUTO C, 1984, SPECTRAL METHODS PAR, P55
12183    CANUTO C, 1988, SPECTRAL METHODS FLU
12184    CIARLET PG, 1978, FINITE ELEMENT METHO
12185    GUO BY, UNPUB CHEBYSHEV SPEC
12186    GUO BY, 1983, J COMPUT MATH, V1, P353
12187    GUO BY, 1987, SCI SINICA SER A, V30, P696
12188    GUO BY, 1988, DIFFERENCE METHODS P
12189    GUO BY, 1988, J COMPUT MATH, V6, P238
12190    GUO BY, 1991, SIAM J NUMER ANAL, V28, P113
12191    GUO BY, 1992, J COMPUT PHYS, V101, P207
12192    GUO BY, 1992, J COMPUT PHYS, V101, P375
12193    GUO BY, 1993, NUMER MATH, V66, P329
12194    INGHAM DB, 1985, P ROY SOC LOND A MAT, V402, P109
12195    LIONS JL, 1969, QUELQUES METHODES RE
12196    MA HP, 1987, IMA J NUMER ANAL, V7, P47
12197    MA HP, 1988, J COMPUT MATH, V6, P48
12198    MADAY Y, 1981, NUMER MATH, V37, P321
12199    MURDOCK JW, 1977, AIAA J, V15, P1167
12200    ODEN JT, 1974, FINITE ELEMENTS MATH
12201    RAVIART PA, 1979, COURS ECOLE ETE ANAL
12202    ROACHE PJ, 1976, COMPUTATIONAL FLUID
12203 NR 24
12204 TC 1
12205 SN 0764-583X
12206 J9 RAIRO-MATH MODEL NUMER ANAL
12207 JI Rairo-Math. Model. Numer. Anal.-Model. Math. Anal. Numer.
12208 PD DEC
12209 PY 1996
12210 VL 30
12211 IS 7
12212 BP 873
12213 EP 905
12214 PG 33
12215 SC Mathematics, Applied
12216 GA VX586
12217 UT ISI:A1996VX58600004
12218 ER
12219 
12220 PT J
12221 AU Sakatsume, O
12222    Tsutsui, H
12223    Wang, YF
12224    Gao, H
12225    Tang, XR
12226    Yamauchi, T
12227    Murata, T
12228    Itakura, K
12229    Yokoyama, KK
12230 TI Binding of THZif-1, a MAZ-like zinc finger protein to the
12231    nuclease-hypersensitive element in the promoter region of the c-MYC
12232    protooncogene
12233 SO JOURNAL OF BIOLOGICAL CHEMISTRY
12234 DT Article
12235 ID TRIPLE-HELIX FORMATION; IN-VITRO; EMBRYONIC LETHALITY;
12236    BURKITT-LYMPHOMA; TRANSCRIPTIONAL INITIATION; FORMING OLIGONUCLEOTIDES;
12237    TARGETED DISRUPTION; MODULATE EXPRESSION; REGULATORY ELEMENTS;
12238    CHROMATIN STRUCTURE
12239 AB A detailed analysis is reported of the binding of the zinc finger
12240    protein THZif-1 to the nuclease hypersensitive element (NHE) in the
12241    promoter region of the c-MYC gene using the electrophoretic mobility
12242    shift assay and a series of mutants of a fusion protein composed of
12243    glutathione S-transferase and THZif-1. The THZif-1 protein bound
12244    specifically to the single-stranded (ss) pyrimidine-rich DNA of the NHE
12245    (ss c-myc NHE-C) with an apparent dissociation constant (K-d(app)) of
12246    0.077 mu M. By contrast, no binding to the single-stranded purine rich
12247    DNA of the NHE (ss c-myc NHE-me(5)C) was detected. Moreover, the
12248    binding affinity of THZif-1 protein was S-fold higher for the
12249    single-stranded 5-methyl-2'-deoxycytidine derivative of NHE (ss c-myc
12250    NHE-me(5)C) than for the unmethylated NHE, in the case of the binding
12251    of THZif-1 to methylated double-stranded (ds) NHE (ds c-myc
12252    NHE-me(5)CG), no significant binding to the DNA was observed. The
12253    decrease in binding: to DNA of THZif-1 was significant in the case of
12254    mutated ds c-myc NHE, in which more than two sites of deoxycytidine
12255    residues were methylated, However, the binding affinity of THZif-1
12256    protein for methylated and for unmethylated triple-helical DNA of the
12257    NHE was almost identical, Moreover, the domain of the THZif-1 protein
12258    that made the major contribution to binding to ss c-myc NHE-C or ss
12259    c-myc NHE-me(5)C corresponded to the amino-terminal second zinc finger
12260    motif. Taken together, the results indicate that the THZif-1 protein
12261    exhibits preferential DNA-binding activity with ss c-myc NHE-C, ds
12262    c-myc NHE-CG, and ts c-myc NHE but not with ss c-myc NHE-G and ds c-myc
12263    NRE-me(5)CG in vitro.
12264 C1 INST PHYS & CHEM RES,TSUKUBA LIFE SCI CTR,TSUKUBA,IBARAKI 305,JAPAN.
12265    SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
12266    W CHINA UNIV MED SCI,DEPT MED GENET,SHENYANG,PEOPLES R CHINA.
12267    CITY HOPE NATL MED CTR,BECKMAN RES INST,DEPT MOL GENET,DUARTE,CA 91010.
12268 CR ARCINAS M, 1994, ONCOGENE, V9, P2699
12269    ASSELIN C, 1989, ONCOGENE, V4, P549
12270    BATTEY J, 1983, CELL, V34, P779
12271    BEAL PA, 1991, SCIENCE, V251, P1360
12272    BENTLEY DL, 1986, MOL CELL BIOL, V6, P3481
12273    BENTLEY DL, 1986, NATURE, V321, P702
12274    BLACKWOOD EM, 1992, CURR OPIN GENE DEV, V2, P227
12275    BOLES TC, 1987, BIOCHEMISTRY-US, V26, P367
12276    BOSSONE SA, 1992, P NATL ACAD SCI USA, V89, P7452
12277    CHARRON J, 1992, GENE DEV, V6, P2248
12278    CHRISTMAN JK, 1995, P NATL ACAD SCI USA, V92, P7347
12279    CHUNG J, 1986, P NATL ACAD SCI USA, V83, P7918
12280    COLE MD, 1986, ANNU REV GENET, V20, P361
12281    CONREY AJ, 1988, CELL, V55, P887
12282    COONEY M, 1988, SCIENCE, V241, P456
12283    DAVIS AC, 1993, GENE DEV, V7, P671
12284    DAVIS TL, 1989, P NATL ACAD SCI USA, V86, P9682
12285    DESJARDINS E, 1993, MOL CELL BIOL, V13, P5710
12286    DURLAND RH, 1991, BIOCHEMISTRY-US, V30, P9246
12287    DYSON PJ, 1985, EMBO J, V4, P2885
12288    EBBINGHAUS SW, 1993, J CLIN INVEST, V92, P2433
12289    EHRLICH M, 1981, SCIENCE, V212, P1350
12290    EICK D, 1989, EMBO J, V8, P1965
12291    EVAN GI, 1992, CELL, V69, P119
12292    FANG GW, 1993, CELL, V74, P875
12293    FILIPPOVA GN, 1996, MOL CELL BIOL, V16, P2802
12294    FIRULLI AB, 1994, ARCH BIOCHEM BIOPHYS, V310, P236
12295    GLASER RL, 1990, J MOL BIOL, V211, P751
12296    GORMAN CM, 1982, MOL CELL BIOL, V2, P1044
12297    GRIGORIEV M, 1992, J BIOL CHEM, V267, P3389
12298    HALL DJ, 1990, ONCOGENE, V5, P47
12299    HAY N, 1987, GENE DEV, V1, P659
12300    HELM CW, 1993, GYNECOL ONCOL, V49, P339
12301    KAWASAKI H, 1996, ARTIF ORGANS, V20, P836
12302    KENNEDY GC, 1992, P NATL ACAD SCI USA, V89, P11498
12303    KIMURA A, 1986, CELL, V44, P261
12304    KINNIBURGH AJ, 1989, NUCLEIC ACIDS RES, V17, P771
12305    KITABAYASHI I, 1992, EMBO J, V11, P167
12306    KITABAYASHI I, 1995, EMBO J, V14, P3496
12307    KLENOVA EM, 1993, MOL CELL BIOL, V13, P7612
12308    KOHWI Y, 1988, P NATL ACAD SCI USA, V85, P3781
12309    KOLLURI R, 1992, NUCLEIC ACIDS RES, V20, P111
12310    LI E, 1992, CELL, V69, P915
12311    LIPP M, 1987, MOL CELL BIOL, V7, P1393
12312    LUCKOW B, 1987, NUCLEIC ACIDS RES, V15, P5490
12313    MAHER LJ, 1989, SCIENCE, V245, P725
12314    MARCU KB, 1992, ANNU REV BIOCHEM, V61, P809
12315    MAYFIELD C, 1994, BIOCHEMISTRY-US, V33, P3358
12316    MAYFIELD C, 1994, J BIOL CHEM, V269, P18232
12317    MICHELOTTI EF, 1995, J BIOL CHEM, V270, P9494
12318    MICHELOTTI EF, 1996, MOL CELL BIOL, V16, P2350
12319    MICHELOTTI GA, 1996, MOL CELL BIOL, V16, P2656
12320    MOBERG KH, 1992, ONCOGENE, V7, P411
12321    MOSER HE, 1987, SCIENCE, V238, P645
12322    ORSON FM, 1991, NUCLEIC ACIDS RES, V19, P3435
12323    POSTEL EH, 1989, MOL CELL BIOL, V9, P5123
12324    POSTEL EH, 1991, P NATL ACAD SCI USA, V88, P8227
12325    POSTEL EH, 1993, SCIENCE, V261, P478
12326    POVSIC TJ, 1989, J AM CHEM SOC, V111, P3059
12327    PYRC JJ, 1992, BIOCHEMISTRY-US, V31, P4102
12328    RAJAGOPAL P, 1989, NATURE, V339, P637
12329    SAWAI S, 1993, DEVELOPMENT, V117, P1445
12330    SCHMID P, 1989, SCIENCE, V243, P226
12331    SIEBENLIST U, 1984, CELL, V37, P381
12332    SIEBENLIST U, 1988, MOL CELL BIOL, V8, P867
12333    SPENCER CA, 1991, ADV CANCER RES, V56, P1
12334    STANTON BR, 1992, GENE DEV, V6, P2235
12335    TAKIMOTO M, 1993, J BIOL CHEM, V268, P18249
12336    TOMONAGA T, 1995, J BIOL CHEM, V270, P4875
12337    TOMONAGA T, 1996, P NATL ACAD SCI USA, V93, P5830
12338    TOTH M, 1990, J MOL BIOL, V214, P673
12339    WELLS RD, 1988, FASEB J, V2, P2939
12340    XODO LE, 1991, NUCLEIC ACIDS RES, V19, P5625
12341    YOKOYAMA K, 1987, P NATL ACAD SCI USA, V84, P7363
12342    YOKOYAMA K, 1990, PROSPECT ANTISENSE N, P35
12343    YOKOYAMA K, 1991, ANTISENSE RNA DNA, P335
12344 NR 76
12345 TC 17
12346 SN 0021-9258
12347 J9 J BIOL CHEM
12348 JI J. Biol. Chem.
12349 PD DEC 6
12350 PY 1996
12351 VL 271
12352 IS 49
12353 BP 31322
12354 EP 31333
12355 PG 12
12356 SC Biochemistry & Molecular Biology
12357 GA VW686
12358 UT ISI:A1996VW68600050
12359 ER
12360 
12361 PT J
12362 AU Guo, BQ
12363    Cao, WM
12364 TI A preconditioner for the h-p version of the finite element method in
12365    two dimensions
12366 SO NUMERISCHE MATHEMATIK
12367 DT Article
12368 ID ITERATIVE METHODS; DECOMPOSITION
12369 AB A preconditioner, based on a two-level mesh and a two-level
12370    orthogonalization, is proposed for the h-p version of the finite
12371    element method for two dimensional elliptic problems in polygonal
12372    domains. Its implementation is in parallel on the subdomain level for
12373    the linear or bilinear (nodal) modes, and in parallel on the element
12374    level for the high order (side and internal) modes. The condition
12375    number of the preconditioned linear system is of order
12376    [GRAPHICS]
12377    where H-i is the diameter of the i-th subdomain, h(i) and p(i) are the
12378    diameter of elements and the maximum polynomial degree used in the
12379    subdomain. This result reduces to well-known results for the h-version
12380    (i.e. p(i) = 1) and the p-version (i.e. h(i) = H-i) as the special
12381    cases of the h-p version.
12382 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
12383 RP Guo, BQ, UNIV MANITOBA,DEPT APPL MATH,WINNIPEG,MB R3T 2N2,CANADA.
12384 CR AINSWORTH M, 1993, MATH COMPUT SCI TECH, V16
12385    BABUSKA I, 1988, SIAM J MATH ANAL, V19, P257
12386    BABUSKA I, 1988, SIAM J NUMER ANAL, V25, P837
12387    BABUSKA I, 1989, J COMPUT APPL MATH, V27, P157
12388    BABUSKA I, 1991, SIAM J NUMER ANAL, V28, P624
12389    BJORSTAD PE, 1986, SIAM J NUMER ANAL, V23, P1097
12390    BRAMBLE J, 1986, MATH COMPUT, V175, P103
12391    BRAMBLE JH, 1991, MATH COMPUT, V56, P463
12392    CIARLET PG, 1978, FINITE ELEMENT METHO
12393    DRYJA M, 1989, ITERATIVE METHODS LA, P273
12394    DRYJA M, 1990, P 3 INT S DOM DEC ME
12395    GRISVARD P, 1985, ELLIPTIC PROBLEMS NO
12396    GUO B, 1986, COMPUT MECH, V1, P203
12397    GUO B, 1986, COMPUT MECH, V1, P21
12398    MANDEL J, 1990, COMPUT METHOD APPL M, V80, P117
12399    MANDEL J, 1990, INT J NUMER METH ENG, V29, P1095
12400    ODEN JT, 1994, 9411 TICAM
12401    WIDLUND OB, 1988, P 1 INT S DOM DEC ME
12402    XU JC, 1992, SIAM REV, V34, P581
12403 NR 19
12404 TC 15
12405 SN 0029-599X
12406 J9 NUMER MATH
12407 JI Numer. Math.
12408 PD NOV
12409 PY 1996
12410 VL 75
12411 IS 1
12412 BP 59
12413 EP 77
12414 PG 19
12415 SC Mathematics, Applied
12416 GA VW511
12417 UT ISI:A1996VW51100004
12418 ER
12419 
12420 PT J
12421 AU Wei, GP
12422    Wu, WB
12423    Kita, T
12424    Nakayama, H
12425    Nishino, T
12426    Ma, W
12427    Okamoto, H
12428    Okuyama, M
12429    Hamakawa, Y
12430 TI Hydrogenated amorphous silicon crystalline silicon double
12431    heterojunction X-ray sensor
12432 SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES &
12433    REVIEW PAPERS
12434 DT Article
12435 DE amorphous silicon (a-Si); X-ray; sensor; heterojunction
12436 AB With full utilization of the low-temperature process of hydrogenated
12437    amorphous silicon (a-Si) thin-him deposition and long carrier lifetime
12438    of high-purity crystalline silicon (c-Si), we have developed a new type
12439    of a-Si/c-Si double heterojunction X-ray sensor. The sensor has the
12440    structure of Au/p a-SiC/n NTD c-Si/n a-SilAl. High-purity NTD (neutron
12441    transmutation doping) crystalline silicon wafers were used as
12442    substrates. The high-purity NTD crystalline silicon has a long carrier
12443    lifetime (about 400 mu s), and the low deposition temperature of a-Si
12444    has no adverse effects on the carrier lifetime. Therefore, high
12445    photogenerated carrier collection efficiency and high sensitivity can
12446    be obtained. The characteristics of this kind of X-ray sensor have been
12447    examined. The linearity of the relationship between output current and
12448    X-ray intensity was good, and the sensitivity was high.
12449 C1 KOBE UNIV,INST NAT SCI,NADA KU,KOBE 657,JAPAN.
12450    OSAKA UNIV,FAC ENGN SCI,DEPT ELECT ENGN,TOYONAKA,OSAKA 560,JAPAN.
12451 RP Wei, GP, SHANGHAI UNIV SCI & TECHNOL,INST MAT SCI & ENGN,SHANGHAI
12452    201800,PEOPLES R CHINA.
12453 CR HALLER EE, 1981, HDB SEMICONDUCTORS, V4, P799
12454    JACOB G, 1972, NUCL INSTRUM METHODS, V101, P51
12455    KIM C, 1982, NUCL INSTRUM METHODS, V193, P69
12456    SAKAI E, 1973, OYO BUTURI, V42, P97
12457    SHIRAISHI F, 1982, OYO BUTURI, V51, P299
12458    WEI GP, IN PRESS
12459    WEI GP, 1985, JPN J APPL PHYS PT 1, V24, P1105
12460    WEI GP, 1986, OYO BUTURI, V55, P824
12461 NR 8
12462 TC 0
12463 SN 0021-4922
12464 J9 JPN J APPL PHYS PT 1
12465 JI Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap.
12466 PD OCT
12467 PY 1996
12468 VL 35
12469 IS 10
12470 BP 5342
12471 EP 5345
12472 PG 4
12473 SC Physics, Applied
12474 GA VU822
12475 UT ISI:A1996VU82200022
12476 ER
12477 
12478 PT J
12479 AU Huang, TK
12480    Yu, LM
12481    Zhang, YB
12482    Itoh, M
12483    Yu, JD
12484    Inaguma, Y
12485    Nakamura, T
12486 TI Hall coefficient and resistivity measurements for oxygen-annealed
12487    Bi2.2Sr1.8CaCu2O8+y single crystals under pressure
12488 SO PHYSICA C
12489 DT Article
12490 DE electrical resistivity; Hall effect; high pressure effect
12491 ID SUPERCONDUCTING TRANSITION-TEMPERATURE; HIGH-TC SUPERCONDUCTORS;
12492    HYDROSTATIC-PRESSURE; EPITAXIAL INTERCALATION; IODINE INTERCALATION;
12493    CHARGE-TRANSFER; DEPENDENCE; BI2SR2CACU2O8+DELTA; OXIDE; BI
12494 AB Hall coefficients and resistivities have been measured on
12495    oxygen-annealed Bi2.2Sr1.8CaCu2O8+y single crystals under hydrostatic
12496    pressure up to 1.6 GPa and the results are compared with those on
12497    as-grown and iodine-intercalated ones. Under pressure, the Hall
12498    coefficient of the oxygen-annealed crystal decreases and the pressure
12499    derivative of the Hall coefficient is - 0.12 x 10(-3)
12500    cm(3)C(-1)GPa(-1). The variation of T-c, contrary to the
12501    iodine-intercalated crystal, shows a linear increase at the rate of
12502    dT(c)/dP = 2.3 K GPa(-1), whereas the Hall coefficient at ambient
12503    pressure is 2.15 x 10(-3) cm(3)C(-1), very close to the value of the
12504    iodine-intercalated one. The positive behavior of dT(c)/dP is an
12505    indication that the hole concentration in the CuO2 layers is located at
12506    the underdoped region and holes derived from extra oxygen are probable
12507    in other layers, e.g., Bi2O2 layers. The resistivities along the c-axis
12508    direction are semiconductor-like, indicating the holes from extra
12509    oxygen are two-dimensional.
12510 C1 TOKYO INST TECHNOL,ENGN MAT RES LAB,MIDORI KU,YOKOHAMA,KANAGAWA 227,JAPAN.
12511    UTSUNOMIYA UNIV,FAC ENGN,DEPT APPL CHEM,UTSUNOMIYA,TOCHIGI 321,JAPAN.
12512 RP Huang, TK, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI
12513    201800,PEOPLES R CHINA.
12514 CR ALLGEIER C, 1989, PHYSICA C, V162, P741
12515    ALLGEIER C, 1990, PHYSICA C, V168, P499
12516    BERKLEY DD, 1993, PHYS REV B, V47, P5524
12517    ERSKINE D, 1987, J MATER RES, V2, P783
12518    FUJIWARA A, 1992, PHYSICA C, V203, P411
12519    GROEN WA, 1989, PHYSICA C, V159, P417
12520    HUANG T, 1993, ADV SUPERCONDUCTIVIT, V6, P359
12521    HUANG T, 1993, REP RES LAB ENG MAT, V18, P83
12522    HUANG TK, 1993, PHYS REV B, V48, P7712
12523    HUANG TK, 1994, PHYS REV B, V49, P9885
12524    HYBERTSEN MS, 1988, PHYS REV LETT, V60, P1661
12525    KATO M, 1994, PHYSICA C, V226, P243
12526    KENDZIORA C, 1993, PHYS REV B, V48, P3531
12527    KLOTZ S, 1991, PHYSICA C, V172, P423
12528    KLOTZ S, 1993, PHYSICA C, V209, P499
12529    KOSUGE M, 1992, PHYS REV B, V45, P10713
12530    KUBIAK R, 1990, PHYSICA C, V166, P532
12531    LI TW, 1994, PHYSICA C, V224, P110
12532    MA J, 1994, PHYSICA C, V227, P371
12533    MORI N, 1990, J PHYS SOC JPN, V59, P3839
12534    MURAYAMA C, 1991, PHYSICA C, V183, P277
12535    NEUMEIER JJ, 1993, PHYS REV B, V47, P8385
12536    PRESLAND MR, 1991, PHYSICA C, V176, P95
12537    SCHILLING JS, 1992, PHYSICAL PROPERTIES, V3, P59
12538    SCHOLTZ JJ, 1992, PHYS REV B, V45, P3077
12539    SIEBURGER R, 1991, PHYSICA C, V181, P335
12540    THOMPSON JD, 1984, REV SCI INSTRUM, V55, P231
12541    VANEENIGE EN, 1992, EUROPHYS LETT, V20, P41
12542    WHEATLEY JM, 1988, NATURE, V333, P121
12543    WIJNGAARDEN RJ, 1991, FRONTIERS HIGH PRESS, P339
12544    XIANG XD, 1990, NATURE, V348, P145
12545    XIANG XD, 1991, PHYS REV B B, V43, P11496
12546    XIANG XD, 1992, PHYS REV LETT, V68, P530
12547    YAMAMOTO A, 1990, PHYS REV B A, V42, P4228
12548 NR 34
12549 TC 8
12550 SN 0921-4534
12551 J9 PHYSICA C
12552 JI Physica C
12553 PD NOV 1
12554 PY 1996
12555 VL 271
12556 IS 1-2
12557 BP 103
12558 EP 110
12559 PG 8
12560 SC Physics, Applied
12561 GA VU642
12562 UT ISI:A1996VU64200013
12563 ER
12564 
12565 PT J
12566 AU Tan, WH
12567    Li, QN
12568 TI On the general and resonant solutions of atoms reflected by an
12569    evanescent laser wave
12570 SO CHINESE PHYSICS LETTERS
12571 DT Article
12572 AB Usually the reflection of two level atoms by a detuning evanescent
12573    laser wave was studied in past few years.(1-3) In previous paper we
12574    have presented an exact solution for this model based on the matrix
12575    Laplace transformation technique, and proceeded the numerical
12576    calculations for a given set of parameters.(4) However in the special
12577    case of resonance interaction considered in this paper, the solution
12578    for Schrodinger wave equation and reflectivity calculation can be
12579    greatly simplified; besides, the resonant solution provides a check to
12580    the numerical data based on the general solution of the previous paper.
12581 RP Tan, WH, SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA.
12582 CR BALYKIN VI, 1988, PHYS REV LETT, V60, P2137
12583    COOK RJ, 1982, OPT COMMUN, V43, P250
12584    DEUTSCHMANN R, 1993, PHYS REV A, V47, P2169
12585    TAN WH, 1995, ACTA SINICA QUANTUM, V1, P55
12586 NR 4
12587 TC 0
12588 SN 0256-307X
12589 J9 CHIN PHYS LETT
12590 JI Chin. Phys. Lett.
12591 PY 1996
12592 VL 13
12593 IS 8
12594 BP 587
12595 EP 589
12596 PG 3
12597 SC Physics, Multidisciplinary
12598 GA VT945
12599 UT ISI:A1996VT94500008
12600 ER
12601 
12602 PT J
12603 AU Chen, DY
12604    Zhang, DJ
12605 TI Lie algebraic structures of (1+1)-dimensional Lax integrable systems
12606 SO JOURNAL OF MATHEMATICAL PHYSICS
12607 DT Article
12608 AB An approach of constructing isospectral flows K-l, nonisospectral flows
12609    sigma(k) and their implicit representations of a general Lax integrable
12610    system is proposed. By introducing product function matrices, it is
12611    shown that the two sets of flows and of related symmetries both
12612    constitute infinite-dimensional Lie algebras with respect to the
12613    commutator [.,.] given in this paper. Algebraic properties for some
12614    well-known integrable systems such as the AKNS system, the generalized
12615    Harry Dym system, and the n-wave interaction system are obtained as
12616    particular examples. (C) 1996 American Institute of Physics.
12617 RP Chen, DY, SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
12618 CR ANTONOWICZ M, 1989, COMMUN MATH PHYS, V124, P456
12619    BOWMAN S, 1987, MATH PROC CAMBRIDGE, V102, P173
12620    CHEN DG, 1991, J PHYS A-MATH GEN, V24, P377
12621    CHEN DY, 1993, ACTA MATH APPL SINIC, V13, P324
12622    CHEN DY, 1994, ACTA MATH APPL SINIC, V17, P300
12623    CHENG Y, 1990, CHINESE SCI BULL, V35, P1631
12624    FOKAS AS, 1982, J MATH PHYS, V23, P1066
12625    LI YS, 1991, CHINESE SCI BULL, V36, P496
12626    MA WX, 1992, J MATH PHYS, V33, P2464
12627 NR 9
12628 TC 6
12629 SN 0022-2488
12630 J9 J MATH PHYS-NY
12631 JI J. Math. Phys.
12632 PD NOV
12633 PY 1996
12634 VL 37
12635 IS 11
12636 BP 5524
12637 EP 5538
12638 PG 15
12639 SC Physics, Mathematical
12640 GA VQ507
12641 UT ISI:A1996VQ50700021
12642 ER
12643 
12644 PT J
12645 AU Pu, HT
12646    Ding, ZL
12647    Ma, Z
12648 TI Preparation, characterization, and properties of EVA preirradiation
12649    grafted NIPAAm
12650 SO JOURNAL OF APPLIED POLYMER SCIENCE
12651 DT Article
12652 ID GELS; POLYMER; HYDROGEL; MEMBRANE; COLLAPSE; RELEASE
12653 AB An ethyl-vinyl acetate copolymer (EVA) preirradiation-grafted with
12654    N-isopropylacrylamide (NIPAAm) was prepared. Various methods which can
12655    be used to control the grafting reaction are described. DSC and TMA
12656    were employed to characterize the surface thermosensitivity of the
12657    graft copolymer. It is indicated that the surface of EVA grafted with
12658    NIPAAm shows thermosensitivity similar to a partially crosslinked
12659    poly-NIPAAm (PNIPAAm) gel. The response to the change of temperature
12660    through the lower critical solution temperature (LCST) of the graft was
12661    swifter than that of the PNIPAAm gel. SEM revealed a micropore
12662    structure in the surface layer of the sample. DSC was also used to
12663    analyze the water state in the surface layer of the sample. (C) 1996
12664    John Wiley & Sons, Inc.
12665 C1 UNIV WASHINGTON,CTR BIOENGN,SEATTLE,WA 98195.
12666    SHANGHAI UNIV,INST CHEM & CHEM ENGN,SHANGHAI 201800,PEOPLES R CHINA.
12667 RP Pu, HT, TONGJI UNIV,DEPT MAT SCI,SHANGHAI 200092,PEOPLES R CHINA.
12668 CR ALHAIQUE F, 1981, J PHARM, V33, P413
12669    BEA YH, 1987, MAKROMOL CHEM-RAPID, V8, P481
12670    CHAPIRO A, 1962, RAD CHEM POLYM SYSTE, CH12
12671    DONG LC, 1986, J CONTROL RELEASE, V4, P223
12672    DONG LC, 1991, J CONTROL RELEASE, V15, P141
12673    DUSEK K, 1968, J POLYM SCI       A2, V6, P1209
12674    EISENBERG SR, 1984, J MEMBRANE SCI, V19, P173
12675    FRELTAS RFS, 1987, SEPAR SCI TECHNOL, V22, P911
12676    HIROTSU S, 1987, J CHEM PHYS, V87, P1392
12677    HIROTSU S, 1989, J PHYS SOC JPN, V58, P1508
12678    HOFFMAN AS, 1986, J CONTROL RELEASE, V4, P213
12679    ILAVASK M, 1985, POLYMER, V26, P26
12680    ISHIHARA K, 1984, J APPL POLYM SCI, V29, P211
12681    KUNGWATCHAKUN D, 1988, MAKROMOL CHEM-RAPID, V9, P243
12682    MATSUO ES, 1988, J CHEM PHYS, V89, P1696
12683    MUKAE K, 1990, POLYM J, V22, P206
12684    OKANO T, 1990, J CONTROL RELEASE, V11, P255
12685    TANAKA T, 1978, PHYS REV LETT, V40, P820
12686    TANAKA T, 1980, PHYS REV LETT, V45, P1637
12687    TANAKA T, 1982, SCIENCE, V218, P467
12688    ULBRICH K, 1979, J POLYM SCI POLYM S, V66, P209
12689    YOSHIDA M, 1989, EUR POLYM J, V25, P1197
12690 NR 22
12691 TC 5
12692 SN 0021-8995
12693 J9 J APPL POLYM SCI
12694 JI J. Appl. Polym. Sci.
12695 PD DEC 5
12696 PY 1996
12697 VL 62
12698 IS 10
12699 BP 1529
12700 EP 1535
12701 PG 7
12702 SC Polymer Science
12703 GA VQ475
12704 UT ISI:A1996VQ47500005
12705 ER
12706 
12707 PT J
12708 AU Wu, YX
12709    Liu, HY
12710    Qi, DY
12711    Liu, YC
12712    Qian, JH
12713    Liu, SH
12714    Yu, TY
12715    Deng, JQ
12716 TI Methylene green-mediated sensor highly sensitive to hydrogen peroxide
12717    based on entrapment of horseradish peroxidase in composite membrane of
12718    regenerated silk fibroin and poly(vinyl alcohol)
12719 SO CHINESE JOURNAL OF CHEMISTRY
12720 DT Article
12721 DE sensor; poly(vinyl alcohol); regenerated silk fibroin; methylene green;
12722    horseradish peroxidase; hydrogen peroxide
12723 ID BIOELECTROCATALYTIC REDUCTION; ELECTRODE; CARBON; SYSTEM; ASSAY
12724 AB A novel composite membrane of poly(vinyl alcohol) and regenerated silk
12725    fibroin was employed to immobilize horseradish peroxidase (HRP) and IR
12726    was used to give a useful insight into the structure of the composite
12727    membrane before and after ethanol treatment. A methylene green-mediated
12728    sensor sensitive to hydrogen peroxide was fabricated, based on the
12729    composite membrane as immobilization matrix for HRP. Cyclic voltammetry
12730    and amperometric measurement were for the first time utilized to
12731    demonstrate the suitability of methylene green as an electron transfer
12732    mediator between immobilized HRP and a glassy carbon electrode in
12733    bioelectrocatalytic reduction of hydrogen peroxide. Performance and
12734    characteristics of the sensor were evaluated in respect to response
12735    time, detection limit, applied potential and concentration of the
12736    mediator. The sensor possesses a variety of characteristics including
12737    good sensitivity, rapid response time and low detection of limit of 0.1
12738    mu mol/L.
12739 C1 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
12740    FUDAN UNIV,DEPT MACROMOL SCI & CHEM,SHANGHAI 200433,PEOPLES R CHINA.
12741 CR DUNFORD HB, 1991, PEROXIDASES CHEM BIO, V2, P1
12742    GARGUILO MG, 1993, ANAL CHEM, V65, P523
12743    HO WO, 1993, J ELECTROANAL CHEM, V351, P185
12744    JONSSON G, 1989, ELECTROANAL, V1, P465
12745    KAMIN RA, 1980, ANAL CHEM, V52, P1198
12746    LIU HY, 1995, ANAL PROC, V32, P475
12747    MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801
12748    MINOURA N, 1990, POLYMER, V31, P430
12749    OHARA TJ, 1993, ELECTROANAL, V5, P823
12750    OLSSON B, 1988, ANAL CHIM ACTA, V206, P49
12751    SANCHEZ PD, 1990, ELECTROANAL, V2, P303
12752    SANCHEZ PD, 1991, ELECTROANAL, V3, P281
12753    TATSUMA T, 1991, ANAL CHIM ACTA, V242, P85
12754    WANG J, 1991, ANAL CHEM, V63, P2993
12755    WOLLENBERGER U, 1990, ANAL LETT, V23, P1795
12756    YAROPOLOV AI, 1979, DOKL AKAD NAUK SSSR, V249, P1399
12757 NR 16
12758 TC 0
12759 SN 1001-604X
12760 J9 CHINESE J CHEM
12761 JI Chin. J. Chem.
12762 PY 1996
12763 VL 14
12764 IS 4
12765 BP 359
12766 EP 366
12767 PG 8
12768 SC Chemistry, Multidisciplinary
12769 GA VQ561
12770 UT ISI:A1996VQ56100012
12771 ER
12772 
12773 PT J
12774 AU Bi, PZ
12775    Shi, YM
12776 TI The Psi' in the relativistic heavy ion collision
12777 SO ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS
12778 DT Article
12779 ID HADRONIC TRANSITIONS; TEMPERATURE; STATES; SYSTEM; DECAY; MASS
12780 AB We have investigated the temperature influence on the hadronic decay
12781    width Psi'. Contrary to the divergence of the decay width of rho-meson,
12782    pi-meson at critical temperature as suggested in some papers, we find
12783    that the decay width of Psi' decreases with increasing temperature.
12784    Thus the leptonic decay can be used to measure the number of produced
12785    Psi' at finite temperature just as at zero temperature.
12786 C1 FUDAN UNIV,DEPT PHYS 2,SHANGHAI 200433,PEOPLES R CHINA.
12787    CHINA CTR ADV SCI & TECHNOL,WORLD LAB,BEIJING 100080,PEOPLES R CHINA.
12788    SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA.
12789 RP Bi, PZ, FUDAN UNIV,TD LEE PHYS LAB,SHANGHAI 200433,PEOPLES R CHINA.
12790 CR BHANOT G, 1979, NUCL PHYS B, V156, P391
12791    BI P, 1988, J PHYS G, V15, P1653
12792    BI PZ, 1991, PHYS LETT B, V262, P485
12793    BI PZ, 1992, MOD PHYS LETT A, V7, P3161
12794    BI PZ, 1992, Z PHYS C PART FIELDS, V54, P453
12795    CRAIGIE NS, 1978, PHYS REP, V49, P1
12796    DOMINGUEZ CA, 1993, Z PHYS C PART FIELDS, V59, P63
12797    HASHIMOTO T, 1986, PHYS REV LETT, V57, P2123
12798    HASHIMOTO T, 1988, PHYS REV D, V37, P3331
12799    HIOKI S, 1991, PHYS LETT B, V261, P5
12800    KOCH P, 1986, PHYS REP, V142, P262
12801    KUANG YP, 1981, PHYS REV D, V24, P2874
12802    LIU DS, 1987, Z PHYS C PART FIELDS, V37, P119
12803    MATSUI T, 1986, PHYS LETT B, V178, P416
12804    VARELA J, 1991, NUCL PHYS A, V525, P275
12805    VOLOSHIN M, 1980, PHYS REV LETT, V45, P688
12806    YAN TM, 1980, PHYS REV D, V22, P1652
12807 NR 17
12808 TC 1
12809 SN 0170-9739
12810 J9 Z PHYS C-PAR FIELD
12811 JI Z. Phys. C-Part. Fields
12812 PD OCT
12813 PY 1996
12814 VL 72
12815 IS 3
12816 BP 497
12817 EP 499
12818 PG 3
12819 SC Physics, Particles & Fields
12820 GA VQ431
12821 UT ISI:A1996VQ43100014
12822 ER
12823 
12824 PT J
12825 AU Bai, ZZ
12826    Wang, DR
12827 TI A class of parallel nonlinear multisplitting relaxation methods for the
12828    large sparse nonlinear complementarity problems
12829 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
12830 DT Article
12831 DE nonlinear complementarity problem; nonlinear multisplitting; relaxation
12832    method; local convergence; parallel computation
12833 ID NEWTON METHODS; EQUATIONS
12834 AB By making use of the nonlinear multisplitting and the nonlinear
12835    relaxation techniques, we present, in this paper, a class of parallel
12836    nonlinear multisplitting successive overrelaxation methods for solving
12837    the large sparse nonlinear complementarity problems on the modern
12838    high-speed multiprocessors. These new methods particularly include the
12839    so-called nonlinear multisplitting SOR Newton method, the nonlinear
12840    multisplitting SOR-chord method, and the nonlinear multisplitting
12841    SOR-Steffensen method. Under suitable conditions, we establish the
12842    local convergence theories of the new methods, and investigate their
12843    asymptotic convergence rates. A lot of numerical results show that our
12844    new methods are feasible and efficient for parallel solving the
12845    nonlinear complementarity problems.
12846 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
12847 RP Bai, ZZ, CHINESE ACAD SCI,STATE KEY LAB SCI ENGN COMP,INST COMPUTAT
12848    MATH & SCI ENGN COMP,POB 2719,BEIJING 100080,PEOPLES R CHINA.
12849 CR BAI ZZ, 1995, J FUDAN U NATURAL SC, V34, P683
12850    BAI ZZ, 1996, COMPUT MATH APPL, V31, P17
12851    BAI ZZ, 1996, COMPUT MATH APPL, V32, P41
12852    BAI ZZ, 1996, J FUDAN U NATURAL SC, V35
12853    DELEONE R, 1988, MATH PROGRAM, V42, P347
12854    FROMMER A, 1989, NUMER MATH, V56, P269
12855    HARKER PT, 1990, MATH PROGRAM, V48, P339
12856    IP CM, 1992, MATH PROGRAM, V56, P71
12857    MANGASARIAN OL, 1976, SIAM J APPL MATH, V31, P89
12858    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
12859    ORTEGA JM, 1970, ITERATIVE SOLUTION N
12860    PANG JS, 1982, MATH PROGRAM, V24, P284
12861    PANG JS, 1988, MATH PROGRAM, V42, P407
12862    VARGA RS, 1962, MATRIX ITERATIVE ANA
12863    WANG DR, 1995, APPL MATH JCU B, V10, P251
12864 NR 15
12865 TC 3
12866 SN 0898-1221
12867 J9 COMPUT MATH APPL
12868 JI Comput. Math. Appl.
12869 PD OCT
12870 PY 1996
12871 VL 32
12872 IS 8
12873 BP 79
12874 EP 95
12875 PG 17
12876 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
12877 GA VM923
12878 UT ISI:A1996VM92300008
12879 ER
12880 
12881 PT J
12882 AU Shen, WH
12883    VanBrunt, V
12884    Xu, XW
12885    Hsu, HW
12886 TI Dynamic analysis of gas stripping during ethanol fermentation in CSTR
12887 SO CHINESE JOURNAL OF CHEMICAL ENGINEERING
12888 DT Article
12889 DE gas stripping; bifurcation; stability; product-substrate inhibition
12890 ID INHIBITION; REACTOR; BEHAVIOR
12891 AB The dynamic behavior of gas stripping during ethanol fermentation
12892    (GSEF) in a CSTR for a combined product-substrate inhibition case has
12893    been investigated in terms of bifurcation and regional stability
12894    theory. The region of optimal operating steady states and the effect of
12895    initial concentration on the attraction region have been established.
12896    The analytical results can be used to predict and promote the GSEF
12897    system moving towards an optimal operating steady state.
12898 C1 UNIV S CAROLINA,DEPT CHEM ENGN,COLUMBIA,SC 29208.
12899    UNIV TENNESSEE,DEPT CHEM ENGN,KNOXVILLE,TN 37996.
12900 RP Shen, WH, SHANGHAI UNIV,COLL CHEM & CHEM ENGN,JIADING CAMPUS,SHANGHAI
12901    201800,PEOPLES R CHINA.
12902 CR AGRAWAL P, 1982, CHEM ENG SCI, V37, P453
12903    CYSEWSKI GR, 1977, BIOTECHNOL BIOENG, V19, P1125
12904    DALE MC, 1985, BIOTECHNOL BIOENG, V27, P932
12905    GHOSE TK, 1979, BIOTECHNOL BIOENG, V21, P1387
12906    HAZWINKEL M, 1985, BIFURCATION ANAL, P13
12907    HONDA H, 1986, J CHEM ENG JPN, V19, P268
12908    LENBURY Y, 1987, APPL MICROBIOL BIOT, V25, P532
12909    LIU HS, 1990, CHEM ENG SCI, V45, P1289
12910    LIU HS, 1991, CHEM ENG SCI, V46, P2551
12911    LUEDEKING R, 1959, J BIOCHEM MICROBIOL, V1, P393
12912    LUONG JHT, 1985, BIOTECHNOL BIOENG, V27, P280
12913    MARGARITIS A, 1978, BIOTECHNOL BIOENG, V20, P727
12914    POORE BA, 1973, ARCH RATION MECH AN, V52, P358
12915    RION WL, 1990, COMPUT CHEM ENG, V14, P889
12916    SEVELY Y, 1980, 5 IFAC TRIEN C KYOT
12917    THIBAULT J, 1987, BIOTECHNOL BIOENG, V29, P74
12918    UPPAL A, 1976, CHEM ENG SCI, V31, P205
12919 NR 17
12920 TC 1
12921 SN 1004-9541
12922 J9 CHINESE J CHEM ENG
12923 JI Chin. J. Chem. Eng.
12924 PD SEP
12925 PY 1996
12926 VL 4
12927 IS 3
12928 BP 236
12929 EP 245
12930 PG 10
12931 SC Engineering, Chemical
12932 GA VM719
12933 UT ISI:A1996VM71900006
12934 ER
12935 
12936 PT J
12937 AU Shi, DH
12938    Liu, LM
12939 TI Availability analysis of a two-unit series system with a priority
12940    shut-off rule
12941 SO NAVAL RESEARCH LOGISTICS
12942 DT Article
12943 AB This study shows that the steady-state availability of a two-unit
12944    series system, which operates under a one-direction shut-off rule with
12945    a preemptive repair priority for unit 1, depends only on the
12946    first-order system parameters. First we obtain both transient and
12947    steady-state system availability and failure frequency when the
12948    lifetime of Unit 1 is Erlang and the other distributions are general.
12949    When the lifetime of Unit 1 is general, the system process has no
12950    regenerative point. Using supplementary variables, we establish a
12951    vector Markov process and hence transfer the problem to the solution of
12952    a system of integrodifferential equations. We can then obtain explicit
12953    formulas for the steady-state system availability and failure
12954    frequency, respectively. In concluding this article we make some
12955    conjectures on series systems and point out future research
12956    opportunities. (C) 1996 John Wiley & Sons, Inc.
12957 RP Shi, DH, SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
12958 CR BARLOW RE, 1979, ASYMPTOTIC MEASURES
12959    BARLOW RE, 1981, STATISTICAL THEORY R
12960    BARLOW RE, 1985, THEORY RELIABILITY S, P67
12961    CAO J, 1987, RELIABILITY THEORY A, P1
12962    KHALIL ZS, 1985, IEEE T RELIAB, V34, P181
12963    KLEINROCK L, 1976, QUEUEING SYSTEMS
12964    SHI DH, 1985, ACTA AUTOMATICA SINI, V1, P71
12965    SHI DH, 1985, ACTA MATH APPL SINIC, V1, P101
12966    SHI DH, 1993, ACTA MATH APPL SINTC, V1, P88
12967 NR 9
12968 TC 6
12969 SN 0894-069X
12970 J9 NAV RES LOG
12971 JI Nav. Res. Logist.
12972 PD OCT
12973 PY 1996
12974 VL 43
12975 IS 7
12976 BP 1009
12977 EP 1024
12978 PG 16
12979 SC Operations Research & Management Science
12980 GA VK759
12981 UT ISI:A1996VK75900005
12982 ER
12983 
12984 PT J
12985 AU Li, CF
12986 TI A note on the boundary condition in the Aharonov-Bohm scattering for
12987    alpha=integer
12988 SO PHYSICA B
12989 DT Article
12990 AB The boundary condition under which the Aharonov-Bohm scattering
12991    solution was obtained is examined. It is shown that when alpha =
12992    integer (where alpha = Phi/Phi(0) represents the magnetic flux in the
12993    long cylindrical solenoid, and Phi(0) = h/e), scattering does not
12994    happen only if the electron enters the region where the magnetic field
12995    exists. This result is not only in contrast with Aharonov and Bohm's
12996    result that there will be no scattering if the electron does not enter
12997    the field, but is also rather surprising, because it means that the
12998    electron passing through the magnetic field does not experience any
12999    effect.
13000 RP Li, CF, SHANGHAI UNIV,DEPT PHYS,20 CHENGZHONG RD,SHANGHAI
13001    201800,PEOPLES R CHINA.
13002 CR AHARONOV Y, 1959, PHYS REV, V115, P485
13003    CHAMBERS RG, 1960, PHYS REV LETT, V5, P3
13004    PAGE L, 1930, PHYS REV, V36, P444
13005    TONOMURA A, 1986, PHYS REV LETT, V56, P792
13006 NR 4
13007 TC 2
13008 SN 0921-4526
13009 J9 PHYSICA B
13010 JI Physica B
13011 PD AUG
13012 PY 1996
13013 VL 226
13014 IS 4
13015 BP 406
13016 EP 408
13017 PG 3
13018 SC Physics, Condensed Matter
13019 GA VJ660
13020 UT ISI:A1996VJ66000020
13021 ER
13022 
13023 PT J
13024 AU Wu, MH
13025    Jie, C
13026    Ding, ZL
13027    Ma, ZT
13028 TI Preparation of a new thermo-sensitive material by preirradiation
13029    grafting
13030 SO RADIATION PHYSICS AND CHEMISTRY
13031 DT Article
13032 ID GELS
13033 AB In this paper, a new thermo-sensitive material that NIPAAm was grafted
13034    onto EVA by preirradiation grafting was obtained, and the effects of
13035    reaction condition on grafting reaction were discussed. The
13036    experimental results showed that the swelling of the grafted EVA was
13037    reversible and the lower critical solution temperature (LCST) of the
13038    surface was 32 degrees C. Compared with the poly-NIPAAm gel, the
13039    grafted EVA with high mechanical strength behaves with similar
13040    thermo-sensitivity and the more swift response to the change of
13041    temperature. When acrylic or acrylamide was added to NIPAAm, the LCST
13042    of the grafted surface shifts higher with the increase of the grafted
13043    component hydrophilicity. Copyright (C) 1996 Elsevier Science Ltd
13044 RP Wu, MH, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI
13045    201800,PEOPLES R CHINA.
13046 CR BAE YH, 1987, MAKROMOL CHEM-RAPID, V8, P481
13047    DONG LC, 1986, J CONTROL RELEASE, V4, P223
13048    FREITAS RFS, 1987, SEPAR SCI TECHNOL, V22, P911
13049    HIROTSU S, 1987, J CHEM PHYS, V87, P1392
13050    HOFFMAN AS, 1986, AM CHEM SOC M NEW YO
13051    HOFFMAN AS, 1986, J CONTROL RELEASE, V4, P213
13052    MATSUO ES, 1988, J CHEM PHYS, V89, P1695
13053    MUKAE K, 1990, POLYM J, V22, P206
13054    TANAKA T, 1978, PHYS REV LETT, V40, P820
13055    ULBRICK K, 1979, J POLYM SCI PS, V66, P206
13056 NR 10
13057 TC 7
13058 J9 RADIAT PHYS CHEM
13059 JI Radiat. Phys. Chem.
13060 PD OCT
13061 PY 1996
13062 VL 48
13063 IS 4
13064 BP 525
13065 EP 527
13066 PG 3
13067 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
13068    Science & Technology
13069 GA VJ820
13070 UT ISI:A1996VJ82000019
13071 ER
13072 
13073 PT J
13074 AU Yan, H
13075    Wang, Q
13076    Awai, I
13077 TI Resonant frequency shift in a MSSW-SER with excitation power
13078 SO ELECTRONICS LETTERS
13079 DT Article
13080 DE magnetostatic surface waves; magnetostatic wave devices
13081 AB Owing to the nonlinear effect of LPE-YIG film and the energy
13082    confinement effect in the resonator, the resonant frequency of a
13083    MSSW-SER shifts appreciably with exciting power increase. Using this
13084    principle, an experimental method is proposed to investigate the
13085    nonlinear MSSW dispersion without large excitation power. The MSSW
13086    nonlinear prpoagation theory is verified by experimental results.
13087 C1 SHANGHAI UNIV,SCH SCI,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
13088 RP Yan, H, YAMAGUCHI UNIV,DEPT ELECT & ELECT ENGN,TOKIWADAI
13089    2557,UBE,YAMAGUCHI 755,JAPAN.
13090 CR BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
13091    CHANG KW, 1985, CIRC SYST SIGNAL PR, V4, P201
13092 NR 2
13093 TC 2
13094 SN 0013-5194
13095 J9 ELECTRON LETT
13096 JI Electron. Lett.
13097 PD SEP 12
13098 PY 1996
13099 VL 32
13100 IS 19
13101 BP 1787
13102 EP 1789
13103 PG 3
13104 SC Engineering, Electrical & Electronic
13105 GA VJ628
13106 UT ISI:A1996VJ62800032
13107 ER
13108 
13109 PT J
13110 AU Kostreva, MM
13111    Zheng, Q
13112    Zhuang, DM
13113 TI Upper robust mappings and vector minimization: An integral approach
13114 SO EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
13115 DT Article
13116 DE programming nonlinear; programming multiple criteria
13117 ID OPTIMIZATION PROBLEMS
13118 AB A study of upper robust mapping from a topological space to R(n) and
13119    development of optimality conditions for vector minimization of upper
13120    robust mappings are presented in the framework of integral based
13121    optimization theory. Under some general assumptions, optimality
13122    conditions are established for several well developed scalarization
13123    techniques such as weighting, E-constraint and reference point. These
13124    optimality conditions are applied to design integral algorithms for
13125    finding the set of efficient solutions of a vector optimization
13126    problem. A numerical example is presented to illustrate the
13127    effectiveness of the algorithm.
13128 C1 SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
13129    MT ST VINCENT UNIV,DEPT MATH & COMP STUDIES,HALIFAX,NS B3M 2J6,CANADA.
13130 RP Kostreva, MM, CLEMSON UNIV,DEPT MATH SCI,CLEMSON,SC 29634.
13131 CR BORWEIN JM, 1993, T AM MATH SOC, V338, P105
13132    CHANKONG V, 1983, MULTIOBJECTIVE DECIS
13133    CHEW SH, 1988, LECTURE NOTES EC MAT, V298
13134    HAIMES YY, 1971, IEEE T SYST MAN CYB, V1, P296
13135    JAHN J, 1984, MATH PROGRAM, V29, P203
13136    JAHN J, 1986, MATH VECTOR OPTIMIZA
13137    JAHN J, 1988, OPERATIONS RES P 198, P576
13138    JAHN J, 1992, J OPTIMIZ THEORY APP, V74, P87
13139    JAHN J, 1992, LECTURE NOTES EC MAT, V378
13140    KURATOWSKI K, 1966, TOPOLOGY, V1
13141    ROCKAFELLAR RT, 1970, CONVEX ANAL
13142    SHI SZ, 1994, J MATH ANAL APPL, V183, P706
13143    SHI SZ, 1995, T AM MATH SOC, V347, P4943
13144    WIERZBICKI AP, 1982, MATH MODELLING, V3, P391
13145    WIERZBICKI AP, 1986, OR SPEKTRUM, V8, P73
13146    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205
13147    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317
13148    ZHENG Q, 1992, THESIS CLEMSON U
13149 NR 18
13150 TC 0
13151 SN 0377-2217
13152 J9 EUR J OPER RES
13153 JI Eur. J. Oper. Res.
13154 PD SEP 20
13155 PY 1996
13156 VL 93
13157 IS 3
13158 BP 565
13159 EP 581
13160 PG 17
13161 SC Operations Research & Management Science
13162 GA VJ553
13163 UT ISI:A1996VJ55300009
13164 ER
13165 
13166 PT J
13167 AU Sang, WB
13168    Qian, YB
13169    Guan, XD
13170    Wu, WH
13171    Liu, YF
13172    Zhang, KJ
13173    Wang, J
13174    Hua, JD
13175 TI Synthesis and characterisation of nanometre-sized CdS clusters in
13176    chitosan film
13177 SO ADVANCED MATERIALS FOR OPTICS AND ELECTRONICS
13178 DT Article
13179 DE CdS; nanometer-sized clusters; chitosan; complexes
13180 ID QUANTUM CONFINEMENT
13181 AB A novel process using chitosan containing ligand groups as a medium for
13182    forming CdS clusters in chitosan films by an ion co-ordinate method has
13183    been investigated. The CdS clusters in the chitosan have been
13184    identified by X-ray diffraction and by their infrared, ultraviolet and
13185    visible absorption spectra and shown to possess high stability with a
13186    specific structure. Notable quantum size effects have been shown
13187    through their absorption spectra. By changing the reaction conditions,
13188    the wavelength edge of the absorption can be blue-shifted from 470 to
13189    375 nm.
13190 C1 SHANGHAI UNIV,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
13191 RP Sang, WB, SHANGHAI UNIV,DEPT INORGAN MAT,JIADING CAMPUS,SHANGHAI
13192    201800,PEOPLES R CHINA.
13193 CR BORRELLI NF, 1987, J APPL PHYS, V61, P5399
13194    DEAN JA, 1985, LANGES HDB CHEM, CH5
13195    KLUG HP, 1974, XRAY DIFFRACTION PRO, P635
13196    MAHLER W, 1988, INORG CHEM, V27, P435
13197    PILENI MP, 1992, CHEM MATER, V4, P345
13198    ROSSETTI R, 1984, J CHEM PHYS, V80, P4464
13199    STUCKY GD, 1990, SCIENCE, V247, P669
13200    TAYLOR A, 1961, XRAY METALLOGRAPHY
13201    WANG Y, 1987, OPT COMMUN, V61, P223
13202    WANG Y, 1990, J CHEM PHYS, V92, P6977
13203    WANG Y, 1991, J PHYS CHEM-US, V95, P525
13204 NR 11
13205 TC 1
13206 SN 1057-9257
13207 J9 ADV MATER OPT ELECTRON
13208 JI Adv. Mater. Opt. Electron.
13209 PD JUL-AUG
13210 PY 1996
13211 VL 6
13212 IS 4
13213 BP 197
13214 EP 202
13215 PG 6
13216 SC Chemistry, Applied; Chemistry, Multidisciplinary; Engineering,
13217    Electrical & Electronic; Materials Science, Multidisciplinary; Optics
13218 GA VH708
13219 UT ISI:A1996VH70800006
13220 ER
13221 
13222 PT J
13223 AU Liu, LM
13224    Shi, DH
13225 TI Busy period in GI(X)/G/infinity
13226 SO JOURNAL OF APPLIED PROBABILITY
13227 DT Article
13228 DE busy period; busy cycle; idle period; vector Markov process method;
13229    renewal method
13230 ID QUEUE
13231 AB Busy period problems in infinite server queues are studied
13232    systematically, starting from the batch service time. General relations
13233    are given for the lengths of the busy cycle, busy period and idle
13234    period, and for the number of customers served in a busy period. These
13235    relations show that the idle period is the most difficult while the
13236    busy cycle is the simplest of the four random variables. Renewal
13237    arguments are used to derive explicit results for both general and
13238    special cases.
13239 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
13240 RP Liu, LM, HONG KONG UNIV SCI & TECHNOL,DEPT IND ENGN,CLEAR WATER
13241    BAY,KOWLOON,HONG KONG.
13242 CR BROWN M, 1969, J APPL PROBAB, V6, P604
13243    BROWNE S, 1993, J APPL PROBAB, V30, P589
13244    CHAUDHRY ML, 1992, QUEUEING SYST, V10, P105
13245    DVURECENSKIJ A, 1984, J APPL PROBAB, V21, P207
13246    HOLMAN DF, 1982, SANKHYA A, V44, P294
13247    KEILSON J, 1994, J APPL PROBAB, V31, P157
13248    LIU L, 1990, J APPL PROBAB, V27, P671
13249    LIU L, 1993, QUEUEING SYSTEMS, V14, P313
13250    SHANBHAG DN, 1966, J APPL PROBAB, V3, P274
13251    SHI DH, 1990, ANN OPERAT RES, V24, P185
13252    STADJE W, 1985, J APPL PROBAB, V22, P694
13253    TAKACS L, 1962, INTRO THEORY QUEUES
13254 NR 12
13255 TC 1
13256 SN 0021-9002
13257 J9 J APPL PROBAB
13258 JI J. Appl. Probab.
13259 PD SEP
13260 PY 1996
13261 VL 33
13262 IS 3
13263 BP 815
13264 EP 829
13265 PG 15
13266 SC Statistics & Probability
13267 GA VH253
13268 UT ISI:A1996VH25300020
13269 ER
13270 
13271 PT J
13272 AU Liu, JR
13273    Wang, YZ
13274 TI Velocity-selective population and quantum collapse-revival phenomena of
13275    the atomic motion for a motion-quantized Raman-coupled Jaynes-Cummings
13276    model
13277 SO PHYSICAL REVIEW A
13278 DT Article
13279 ID NONDEMOLITION MEASUREMENTS; RABI OSCILLATIONS; PHOTON STATISTICS;
13280    SQUEEZED STATES; BEAM DEFLECTION; SUPER-RADIANCE; CAVITY FIELDS;
13281    2-LEVEL ATOM; MASER; DYNAMICS
13282 AB An extension of the standard Raman-coupled Jaynes-Cummings model has
13283    been made to include atomic external effects dire to quantization of
13284    atomic motion. The collapse-and-revival phenomena in population
13285    inversion and in atomic motion, the velocity-selective population and
13286    their relation for a motion-quantized atom are given on the basis of a
13287    fundamental constant characterizing the interaction strength between
13288    the field modes and the atomic internal and external states. This study
13289    reveals how the initial statistics of atomic momentum affect the atomic
13290    internal dynamics and how those of the fields affect the atomic
13291    external dynamics through the atomic internal states. An exact
13292    expression for the time evolution of the density operator has been
13293    given for two fields and the center-of-mass motion initially in
13294    coherent states and in an arbitrary superposition of atomic momentum
13295    eigenstates. The statistics of atomic external and internal quantities
13296    such as the radiation force and the atomic momentum are given.
13297 RP Liu, JR, SHANGHAI UNIV SCI & TECHNOL,JOINT LAB QUANTUM OPT,SHANGHAI
13298    201800,PEOPLES R CHINA.
13299 CR AGARWAL GS, 1984, PHYS REV LETT, V53, P1732
13300    AGARWAL GS, 1985, J OPT SOC AM B, V2, P480
13301    AGARWAL GS, 1991, PHYS REV LETT, V67, P3665
13302    ARVINDA PK, 1988, PHYSICA C, V150, P427
13303    BRUNE M, 1987, PHYS REV LETT, V59, P1899
13304    BUZEK V, 1992, PHYS REV A, V45, P8190
13305    CARDIMONA DA, 1991, PHYS REV A, V43, P3710
13306    CIRAC JI, 1993, PHYS REV LETT, V70, P556
13307    CUMMINGS FW, 1965, PHYS REV, V140, A1051
13308    EBERLY JH, 1977, J OPT SOC AM, V67, P1257
13309    EBERLY JH, 1980, J PHYS B ATOM MOL PH, V13, P217
13310    EBERLY JH, 1980, PHYS REV LETT, V44, P1383
13311    ENGLERT BG, 1991, EUROPHYS LETT, V14, P25
13312    FOX RF, 1986, PHYS REV A, V34, P482
13313    GENTILE TR, 1989, PHYS REV A, V40, P5103
13314    GERRY CC, 1990, PHYS REV A, V42, P6805
13315    HAROCHE S, 1984, NEW TRENDS ATOMIC PH
13316    HAROCHE S, 1991, EUROPHYS LETT, V14, P19
13317    HERKOMMER AM, 1992, PHYS REV LETT, V69, P3298
13318    HOLLAND MJ, 1991, PHYS REV LETT, V67, P1716
13319    ITANO WM, 1982, PHYS REV A, V25, P35
13320    JAYNES ET, 1963, P IEEE, V51, P89
13321    KALUZNY Y, 1983, PHYS REV LETT, V51, P1175
13322    KLEPPNER D, 1981, PHYS REV LETT, V47, P233
13323    KNIGHT PL, 1982, PHYS LETT A, V90, P342
13324    KNIGHT PL, 1986, PHYS SCRI T, V12, P51
13325    KUKLINSKI JR, 1988, PHYS REV A, V37, P317
13326    LOWELL S, 1991, PHYS REV LETT, V66, P527
13327    MAHRAN MH, 1992, PHYS REV A, V45, P5113
13328    MESCHEDE D, 1985, PHYS REV LETT, V54, P551
13329    MEYSTRE P, 1975, NUOVO CIMENTO B, V25, P21
13330    MEYSTRE P, 1982, PHYS LETT A, V89, P390
13331    MILBURN GJ, 1984, OPT ACTA, V31, P671
13332    MILONNI PW, 1983, PHYS REV LETT, V50, P966
13333    MOLER K, 1992, PHYS REV A, V45, P342
13334    NAROZHNY NB, 1981, PHYS REV A, V23, P236
13335    PURI RR, 1987, PHYS REV A, V35, P3433
13336    PURI RR, 1992, PHYS REV A, V45, P5073
13337    RAIMOND JM, 1982, PHYS REV LETT, V49, P117
13338    RAIMOND JM, 1982, PHYS REV LETT, V49, P1924
13339    REMPE G, 1987, PHYS REV LETT, V51, P550
13340    REMPE G, 1987, PHYS REV LETT, V58, P353
13341    RITI C, 1982, OPT COMMUN, V44, P105
13342    SANCHEZMONDRAGO.JJ, 1983, PHYS REV LETT, V51, P550
13343    SCHOENDORFF L, 1990, PHYS REV A, V41, P5147
13344    SHORE BW, 1993, J MOD OPTIC, V40, P1195
13345    SHORT R, 1983, PHYS REV LETT, V51, P384
13346    SLEATOR T, 1993, PHYS REV A, V48, P3286
13347    STOREY P, 1992, PHYS REV LETT, V68, P472
13348    WALLS DF, 1970, Z PHYS, V237, P224
13349    YOO HI, 1981, J PHYS A, V14, P1383
13350    YOO HI, 1985, PHYS REP, V118, P239
13351    YURKE B, 1986, PHYS REV LETT, V57, P13
13352    YURKE B, 1990, PHYS REV A, V42, P1703
13353 NR 54
13354 TC 5
13355 SN 1050-2947
13356 J9 PHYS REV A
13357 JI Phys. Rev. A
13358 PD SEP
13359 PY 1996
13360 VL 54
13361 IS 3
13362 BP 2444
13363 EP 2450
13364 PG 7
13365 SC Physics, Atomic, Molecular & Chemical; Optics
13366 GA VH090
13367 UT ISI:A1996VH09000086
13368 ER
13369 
13370 PT J
13371 AU Liu, HY
13372    Zhang, XL
13373    Zhang, ZN
13374    Qi, DY
13375    Fan, YB
13376    Liu, YC
13377    Liu, SH
13378    Yu, TY
13379    Deng, JQ
13380 TI Characterization of composite membrane of poly(vinyl alcohol) and
13381    regenerated silk fibroin for immobilization of horseradish peroxidase
13382    and an amperometric neckelocene-mediated sensor sensitive to hydrogen
13383    peroxide
13384 SO JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY
13385 DT Article
13386 DE sensor; poly(vinyl alcohol); regenerated silk fibroin; nickelocene;
13387    horseradish peroxidase; hydrogen peroxide
13388 ID DIRECT ELECTRON-TRANSFER; ENZYME ELECTRODES; POTENTIAL APPLICATION;
13389    ORGANIC PEROXIDES; ACTIVATED CARBON; BIOSENSORS; POLYMER; OXIDASE
13390 AB Horseradish peroxidase (HRP) was effectively entrapped in a novel
13391    composite membrane of poly(vinyl alcohol) and regenerated silk fibroin.
13392    IR spectroscopy was employed to characterize the structure of the
13393    composite membrane and scanning electron microscopy was used to
13394    visualize the morphology of the composite membrane. HRP was utilized to
13395    amplify the amperometric response of the sensor by catalyzing reduction
13396    of hydrogen peroxide via nickelocene, an electron transfer mediator
13397    between immobilized HRP and a glassy carbon electrode. The influence of
13398    various experimental parameters such as pH, temperature and applied
13399    potential were explored for optimum analytical performance. The sensor
13400    possessed a variety of characteristics including good sensitivity,
13401    rapid response time and a low detection of limit of 0.1 mu mol dm(-3),
13402    which arose from the efficiency of electron transfer between
13403    immobilized HRP and the electrode via nickelocene.
13404 C1 SUZHOU INST CITY CONSTRUCT & ENVIRONM PROTECT,DEPT ENVIRONM PROTECT,SUZHOU 300111,JIANSU,PEOPLES R CHINA.
13405    FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
13406 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R
13407    CHINA.
13408 CR ADEYOJU O, 1995, ANAL CHIM ACTA, V305, P57
13409    ASAKURA T, 1989, BIOTECHNOL BIOENG, V33, P598
13410    BIFULCO L, 1994, ANAL LETT, V27, P1443
13411    CSOREGI E, 1994, ANAL CHEM, V66, P3604
13412    DEMURA M, 1992, BIOMATERIALS, V13, P276
13413    DENG Q, 1994, J ELECTROANAL CHEM, V377, P191
13414    DORDICK JS, 1992, TRENDS BIOTECHNOL, V10, P287
13415    DUNFORD HB, 1991, PEROXIDASES CHEM BIO, V2, P1
13416    FREW JE, 1986, J ELECTROANAL CH INF, V201, P1
13417    GARGUILO MG, 1993, ANAL CHEM, V65, P523
13418    GORTON L, 1992, ANALYST, V117, P1235
13419    HO WO, 1993, J ELECTROANAL CHEM, V351, P185
13420    HO WO, 1995, BIOSENS BIOELECTRON, V10, P683
13421    LIU YC, 1995, J CHEM TECHNOL BIOT, V64, P269
13422    LIU YC, 1996, ELECTROCHIM ACTA, V41, P77
13423    MULCHANDANI A, 1995, ANAL CHEM, V67, P94
13424    OLIVER JM, 1984, METHOD ENZYMOL, V108, P336
13425    POPESCU IC, 1995, BIOSENS BIOELECTRON, V10, P443
13426    RENZ M, 1984, NUCLEIC ACIDS RES, V12, P3435
13427    RUZGAS T, 1995, J ELECTROANAL CHEM, V391, P41
13428    SMITH AT, 1992, BIOCHEM SOC T, V20, P340
13429    TAKAHASHI K, 1984, BIOCHEM BIOPH RES CO, V121, P261
13430    TATSUMA T, 1992, ANAL CHEM, V64, P1183
13431    TATSUMA T, 1995, ANAL CHEM, V67, P283
13432    TSUKADA M, 1994, J POLYM SCI POL PHYS, V32, P1407
13433    VREEKE M, 1995, ANAL CHEM, V67, P303
13434    WANG J, 1991, ANAL CHIM ACTA, V254, P81
13435    WOLLENBERGER U, 1991, BIOELECTROCH BIOENER, V26, P287
13436    YANG L, 1995, ANAL CHEM, V67, P1326
13437    ZHAO JG, 1992, J ELECTROANAL CHEM, V327, P109
13438 NR 30
13439 TC 2
13440 SN 0268-2575
13441 J9 J CHEM TECHNOL BIOTECHNOL
13442 JI J. Chem. Technol. Biotechnol.
13443 PD SEP
13444 PY 1996
13445 VL 67
13446 IS 1
13447 BP 77
13448 EP 83
13449 PG 7
13450 SC Chemistry, Multidisciplinary; Engineering, Chemical; Biotechnology &
13451    Applied Microbiology
13452 GA VF658
13453 UT ISI:A1996VF65800010
13454 ER
13455 
13456 PT J
13457 AU Zhu, MY
13458    Zhang, HY
13459    Zhu, YL
13460    Jin, HM
13461    Jin, HJ
13462    Xu, GQ
13463 TI Study on the easy direction of magnetization of Sm0.88Dy0.12Fe2 alloy
13464 SO JOURNAL OF RARE EARTHS
13465 DT Article
13466 DE Sm0.88Dy0.12Fe2 alloy; easy direction of magnetization;
13467    magnetostriction; Mossbauer-effect
13468 AB By Mossbauer-effect, the changes of easy direction of magnetization for
13469    Sm0.88Dy0.12. Fe-2 alloy have been studied in this paper. It was found
13470    that as temperature increases, the easy direction of magnetization
13471    changes gradually from [110] to [111] axis in the temperature range of
13472    153 to 213 K. Two easy directions of magnetization [110] and [111]
13473    coexist and do not change suddenly from [110] to [111] at the same
13474    temperature.
13475 C1 SHANGHAI UNIV,DEPT MAT ENGN,SHANGHAI 200072,PEOPLES R CHINA.
13476    SHANGHAI IRON & STEEL RES INST,SHANGHAI 200940,PEOPLES R CHINA.
13477 CR ANNAPOORNI S, 1990, J APPL PHYS, V67, P424
13478    ATZMONY U, 1973, P 10 RAR EARTH C, V1, P605
13479    CLARK AE, 1980, FERROMAGNETIC MAT
13480    VANDIEPEN AM, 1973, PHYS REV B, V8, P1125
13481 NR 4
13482 TC 0
13483 SN 1002-0721
13484 J9 J RARE EARTH
13485 JI J. Rare Earths
13486 PD SEP
13487 PY 1996
13488 VL 14
13489 IS 3
13490 BP 185
13491 EP 188
13492 PG 4
13493 SC Chemistry, Applied
13494 GA VF262
13495 UT ISI:A1996VF26200005
13496 ER
13497 
13498 PT J
13499 AU Sang, WB
13500    Qian, YB
13501    Shi, WM
13502    Wang, DM
13503    Min, JH
13504    Wu, WH
13505    Liu, YF
13506    Hua, JD
13507    Fang, J
13508    Yue, YF
13509 TI A primary study on the synthesis and characterization of ZnS clusters
13510    in chitosan film
13511 SO JOURNAL OF PHYSICS-CONDENSED MATTER
13512 DT Letter
13513 ID QUANTUM CONFINEMENT
13514 AB A novel process using chitosan containing ligand groups as a medium for
13515    forming ZnS clusters by an ion-coordination method is investigated for
13516    the first time. The ZnS clusters in the chitosan film have been
13517    identified by x-ray diffraction, ultraviolet-visible absorption and
13518    photoluminescence spectra. The ZnS cluster size was estimated to be
13519    about 2-6 nm, depending on the processing conditions. Blue luminescence
13520    for the undoped ZnS clusters was observed and its mechanism is briefly
13521    discussed.
13522 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
13523    CHINESE ACAD SCI,SHANGHAI INST CERAM,SHANGHAI 200050,PEOPLES R CHINA.
13524 RP Sang, WB, SHANGHAI UNIV SCI & TECHNOL,DEPT INORGAN MAT,SHANGHAI
13525    201800,PEOPLES R CHINA.
13526 CR BORRELLI NF, 1987, J APPL PHYS, V61, P5399
13527    GARLICK GFJ, 1966, P INT C LUMINESCENCE, P56
13528    KLUG HP, 1974, XRAY DIFFRACTION PRO, P635
13529    MAHLER W, 1988, INORG CHEM, V27, P435
13530    PILENI MP, 1992, CHEM MATER, V4, P345
13531    ROSSETTI R, 1984, J CHEM PHYS, V80, P4464
13532    STUCKY GD, 1990, SCIENCE, V247, P669
13533    TAYLOR A, 1961, XRAY METALLOGRAPHY
13534    WANG Y, 1987, OPT COMMUN, V61, P233
13535    WANG Y, 1990, J CHEM PHYS, V92, P6977
13536    WANG Y, 1991, J PHYS CHEM-US, V95, P525
13537 NR 11
13538 TC 4
13539 SN 0953-8984
13540 J9 J PHYS-CONDENS MATTER
13541 JI J. Phys.-Condes. Matter
13542 PD SEP 2
13543 PY 1996
13544 VL 8
13545 IS 36
13546 BP L499
13547 EP L504
13548 PG 6
13549 SC Physics, Condensed Matter
13550 GA VF317
13551 UT ISI:A1996VF31700001
13552 ER
13553 
13554 PT J
13555 AU Wang, ZC
13556    Wang, SF
13557    Shen, SH
13558    Zou, SC
13559    Zhang, ZM
13560 TI Intrinsic periodicity associated with quantum-well states in a magnetic
13561    sandwich
13562 SO JOURNAL OF PHYSICS-CONDENSED MATTER
13563 DT Article
13564 ID OSCILLATORY INTERLAYER EXCHANGE; NONMAGNETIC METALLIC LAYER; GIANT
13565    MAGNETORESISTANCE; TRANSPORT-PROPERTIES; THIN-FILMS; FE LAYERS;
13566    MULTILAYERS; SUPERLATTICES; MECHANISM; TRILAYERS
13567 AB zFrom a simplified quantum-well model for a magnetic sandwich, it can
13568    be shown that in the variation of the number of occupied levels with
13569    the spacer layers, there exists an intrinsic periodicity, which leads
13570    the Fermi level to oscillate periodically. The intrinsic periodicity
13571    does not depend on the magnetic alignment but only on the quantum-well
13572    states themselves. The oscillation period can be approximately given by
13573    T = (1/beta) (3) root pi mu(parallel to)/(3n(0) mu(perpendicular to)),
13574    where mu(parallel to) and mu(perpendicular to) are the effective masses
13575    of the electron in the lateral and perpendicular directions
13576    respectively, beta is the distance between the two neighbouring atomic
13577    layers, and n(0) is the electron density in the spacer layers. This
13578    makes one speculate that the long periodicity of the oscillatory
13579    coupling could be a result of the intrinsic periodicity, if mu(parallel
13580    to)/mu(perpendicular to) >> 1 and a small s-electron density are
13581    assumed. On the other hand, from the calculated energy bands for a thin
13582    film, it is found that the electronic structure is highly anisotropic,
13583    which is in agreement with this assumption. Therefore, it can be
13584    confirmed that the intrinsic periodicity plays an important role in the
13585    oscillatory coupling. An inverse photoemission experiment on Cu(100)
13586    films over Co can be explained quite well using this physical picture.
13587 C1 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA.
13588 RP Wang, ZC, CHINESE ACAD SCI,SHANGHAI INST MET,STATE KEY LAB FUNCT MAT
13589    INFORMAT,865 CHANGNING RD,SHANGHAI 200050,PEOPLES R CHINA.
13590 CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472
13591    BARNAS J, 1992, J MAGN MAGN MATER, V111, L215
13592    BENNETT WR, 1990, PHYS REV LETT, V65, P3169
13593    BRUBAKER ME, 1991, APPL PHYS LETT, V58, P2307
13594    BRUNO P, 1991, PHYS REV LETT, V67, P1602
13595    BRUNO P, 1992, J MAGN MAGN MATER, V116, L13
13596    BRUNO P, 1993, J MAGN MAGN MATER, V121, P248
13597    CAMLEY RE, 1989, PHYS REV LETT, V63, P664
13598    CARBONE C, 1987, PHYS REV B, V36, P2433
13599    CARBONE C, 1993, PHYS REV LETT, V71, P2805
13600    CELINSKI Z, 1991, J MAGN MAGN MATER, V99, L25
13601    DOSE V, 1983, PROG SURF SCI, V13, P225
13602    EDWARDS DM, 1990, S C E MRS SPRING M S
13603    EDWARDS DM, 1991, J MAGN MAGN MATER, V93, P85
13604    EDWARDS DM, 1991, J PHYS-CONDENS MAT, V3, P4941
13605    EDWARDS DM, 1991, PHYS REV LETT, V67, P493
13606    EHRLICH AC, 1993, J APPL PHYS, V73, P5536
13607    EHRLICH AC, 1993, PHYS REV LETT, V71, P2300
13608    EUCEDA A, 1983, PHYS REV B, V27, P659
13609    GARCIA N, 1991, J MAGN MAGN MATER, V99, L12
13610    GARRISON K, 1993, PHYS REV LETT, V71, P2801
13611    GRUNBERG P, 1986, PHYS REV LETT, V57, P2442
13612    HEINRICH B, 1990, PHYS REV LETT, V64, P673
13613    HIMPSEL FJ, 1991, PHYS REV B, V44, P5966
13614    JIN QY, 1994, PHYS REV LETT, V72, P5
13615    JONES BA, 1993, PHYS REV LETT, V71, P4253
13616    KRAKAUER H, 1979, PHYS REV B, V19, P1706
13617    LACROIX C, 1991, J MAGN MAGN MATER, V93, P413
13618    LEVY PM, 1990, J APPL PHYS 2B, V67, P5914
13619    LEVY PM, 1990, PHYS REV LETT, V65, P1643
13620    MANKEY J, 1993, PHYS REV B, V47, P1540
13621    MATHON J, 1991, J MAGN MAGN MATER, V100, P527
13622    MATHON J, 1992, J PHYS-CONDENS MAT, V4, P9873
13623    NEDOREZOV SS, 1967, SOV PHYS JETP, V24, P578
13624    ORTEGA JE, 1992, PHYS REV LETT, V69, P844
13625    PARKIN SSP, 1990, PHYS REV LETT, V64, P2304
13626    PARKIN SSP, 1991, PHYS REV LETT, V66, P2152
13627    PARKIN SSP, 1991, PHYS REV LETT, V67, P3598
13628    PESCIA D, 1990, Z PHYS B, V78, P475
13629    PETROFF F, 1991, PHYS REV B, V44, P5355
13630    QIU ZQ, 1992, PHYS REV, V46, P5810
13631    RUDERMAN MA, 1954, PHYS REV, V96, P99
13632    SEGALL B, 1962, PHYS REV, V125, P109
13633    SOHN KS, 1976, PHYS REV B, V13, P1515
13634    STILES MD, 1990, PHYS REV B, V64, P2304
13635    STILES MD, 1993, PHYS REV B, V48, P7238
13636    TRIVEDI N, 1988, PHYS REV B, V38, P12298
13637    VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P3870
13638    WALKER TG, 1993, PHYS REV, V48
13639    WANG SF, 1995, PHYS REV B, V51, P15156
13640    WANG Y, 1990, PHYS REV LETT, V65, P2732
13641    WANG Y, 1991, J MAGN MAGN MATER, V93, P359
13642    WANG ZC, 1994, PHYS LETT A, V193, P480
13643    YAFET Y, 1987, PHYS REV B, V36, P3948
13644    ZHANG S, 1992, PHYS REV B, V45, P8689
13645 NR 55
13646 TC 1
13647 SN 0953-8984
13648 J9 J PHYS-CONDENS MATTER
13649 JI J. Phys.-Condes. Matter
13650 PD AUG 26
13651 PY 1996
13652 VL 8
13653 IS 35
13654 BP 6381
13655 EP 6391
13656 PG 11
13657 SC Physics, Condensed Matter
13658 GA VE807
13659 UT ISI:A1996VE80700007
13660 ER
13661 
13662 PT J
13663 AU Chen, WJ
13664    Wan, XJ
13665    Jin, C
13666 TI Environmental effects on the room temperature ductility of a TiAl based
13667    alloy
13668 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
13669 DT Article
13670 ID EMBRITTLEMENT
13671 AB The effects of different environments and strain rates on the room
13672    temperature ductility of a TiAl based alloy with the composition
13673    Ti-46Al-2Cr-0.2Si-0.1Nd have been investigated in this paper. The
13674    results show that the TiAl based alloy is susceptible to environmental
13675    embrittlement at room temperature. The tensile ductility of the TiAl
13676    based alloy in different test environments decreases in the sequence of
13677    oxygen > air > hydrogen > argon saturated with water vapor. The
13678    ductility is also sensitive to strain rate. It increases with
13679    increasing strain rate when tested in hydrogen gas. Both H2O and H-2
13680    cause environmental embrittlement, with the former being a more potent
13681    embrittler.
13682 C1 SHANGHAI UNIV,INST MET & MAT SCI,SHANGHAI 200072,PEOPLES R CHINA.
13683 CR CHAN KS, 1992, METALL T A, V23, P1663
13684    CHRISTODOULOU L, 1990, HYDROGEN EFFECTS MAT, P515
13685    GEORGE EP, 1994, HIGH TEMPERATURE ORD, V6, P1131
13686    KANE RD, 1991, ENV EFFECTS ADV MAT, P35
13687    KIM YW, 1990, HIGH TEMPERATURE ALU, P465
13688    LIU CT, 1989, SCRIPTA METALL, V23, P875
13689    LIU CT, 1990, HIGH TEMPERATURE ALU, P133
13690    LIU CT, 1990, SCRIPTA METALL MATER, V24, P1583
13691    LIU CT, 1990, SCRIPTA METALL MATER, V24, P385
13692    LIU CT, 1992, SCRIPTA METALL MATER, V27, P599
13693    MASAHASHI N, 1988, METALL T, V19, P535
13694    TAKASUGI T, 1986, ACTA METALL, V34, P607
13695    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
13696    YAMAGUCHI M, 1990, PROG MATER SCI, V34, P1
13697 NR 14
13698 TC 0
13699 SN 1005-0302
13700 J9 J MATER SCI TECHNOL
13701 JI J. Mater. Sci. Technol.
13702 PD OCT
13703 PY 1996
13704 VL 12
13705 IS 5
13706 BP 373
13707 EP 376
13708 PG 4
13709 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
13710    Engineering
13711 GA VE553
13712 UT ISI:A1996VE55300011
13713 ER
13714 
13715 PT J
13716 AU Fang, JH
13717    Lu, WC
13718    Ding, YM
13719    Yan, LC
13720 TI Self-organization neural tree applied to structure-activity
13721    relationship of 3-methylfentanyl derivatives
13722 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
13723 DT Article
13724 DE 3-methylfentanyl derivatives; structure-activity relationship;
13725    artificial neural network; self-organization neural tree
13726 AB In this paper, the non-linear relationship between the characteristic
13727    parameters and analgesic activities of a series of 3-methylfentanyl
13728    derivatives was calculated by self-organization neural tree model, The
13729    results show that the performance of the self-organization neural tree
13730    is quite good and the successful classification rare is high,
13731    Therefore, we can expect that this model might be used as an effective
13732    assistant technique for the investigation of structure-activity
13733    relationship of drugs.
13734 C1 CHINESE ACAD SCI,SHANGHAI INST MET,SHANGHAI,PEOPLES R CHINA.
13735 RP Fang, JH, SHANGHAI UNIV,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
13736 CR HANSCH C, 1962, NATURE, V194, P178
13737    HANSCH C, 1973, J MED CHEM, V16, P1207
13738    HANSCH C, 1977, J MED CHEM, V20, P304
13739    HOFFMANN R, 1963, J CHEM PHYS, V39, P1397
13740    LI T, 1993, NEUROCOMPUTING, V5, P231
13741    LU WC, 1993, J MOL SCI, V9, P123
13742    ZHU YC, 1981, ACTA PHARMACOL SINIC, V16, P97
13743    ZHU YC, 1983, ACTA PHARMACEUTICA S, V18, P591
13744    ZHU YC, 1985, ACTA PHARMACOL SINIC, V20, P267
13745 NR 9
13746 TC 0
13747 SN 0251-0790
13748 J9 CHEM J CHINESE UNIV-CHINESE
13749 JI Chem. J. Chin. Univ.-Chin.
13750 PD AUG
13751 PY 1996
13752 VL 17
13753 IS 8
13754 BP 1280
13755 EP 1284
13756 PG 5
13757 SC Chemistry, Multidisciplinary
13758 GA VE173
13759 UT ISI:A1996VE17300032
13760 ER
13761 
13762 PT J
13763 AU Gu, XR
13764    Zhu, YZ
13765 TI Optimal heapsort algorithm
13766 SO THEORETICAL COMPUTER SCIENCE
13767 DT Article
13768 AB A new heapsort algorithm is given in this paper. Its practical value is
13769    that the efficiency of it is two times as high as that of the original
13770    algorithm in Horowitz and Sahni (1978). Also, its theoretical
13771    significance lies in the order and the main term coefficient of the
13772    complexity has optimal performance.
13773 RP Gu, XR, SHANGHAI UNIV SCI & TECHNOL,DEPT COMP SCI,SHANGHAI
13774    201800,PEOPLES R CHINA.
13775 CR AHO AV, 1975, DESIGN ANAL COMPUTER
13776    HOROWITZ E, 1978, FUNDAMENTALS COMPUTE
13777    KNUTH DE, 1973, ART COMPUTER PROGRAM, V3
13778    WEGENER I, 1992, SIMPLE MODIFICATION
13779    XUNRANG G, 1990, COMPUT J, V33, P281
13780    XUNRANG G, 1994, THEORET COMPUT SCI, V134, P559
13781 NR 6
13782 TC 2
13783 SN 0304-3975
13784 J9 THEOR COMPUT SCI
13785 JI Theor. Comput. Sci.
13786 PD AUG 30
13787 PY 1996
13788 VL 163
13789 IS 1-2
13790 BP 239
13791 EP 243
13792 PG 5
13793 SC Computer Science, Theory & Methods
13794 GA VE225
13795 UT ISI:A1996VE22500010
13796 ER
13797 
13798 PT J
13799 AU Liu, GL
13800 TI Generalized Euler's turbomachine equation and free vortex sheet
13801    conditions in separated/cavitated turbo-flows
13802 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
13803 DT Article
13804 ID INCOMPRESSIBLE ROTOR FLOW; 3-D TRANSONIC FLOW; VARIATIONAL-PRINCIPLES;
13805    VARIABLE-DOMAIN; HYBRID PROBLEMS; SHOCKS
13806 AB In the present paper four fundamental problems in turbomachinery
13807    aerodynamic theory are studied in depth: (1) It is shown that the
13808    well-known Euler's equation for turbomachine power is valid only for
13809    shrouded impellers. Then, a generalization of it to unshrouded
13810    impellers is carried out. (2) An equation relating the free trailing
13811    vortex distribution along the blade span to that of the swirl moment
13812    rV(theta) is derived, yielding a condition for the vanishing of free
13813    trailing vortex sheets. (3) The free surface conditions in separated
13814    now are shown to be entirely different from those in cavitated flow.
13815    (4) Generalized Kutta conditions for 3-D rotor bladings in separated
13816    and cavitated flows are also derived. All these results are of
13817    fundamental value in both analytical and numerical handlings of fully
13818    3-D rotor-flows.
13819 RP Liu, GL, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI
13820    200072,PEOPLES R CHINA.
13821 CR DRING RP, 1971, J ENG POWER, V93, P4
13822    HAWTHORNE WR, 1964, AERODYNAMICS TURBINE
13823    HIRSCH C, 1974, 74GT72 ASME
13824    HORLOCK JH, 1974, AGARDOGRAPH, V185
13825    KIRILLOV II, 1972, THEORY TURBOMACHINES
13826    LASKARIS TE, 1978, AIAA J, V16, P717
13827    LIU GI, 1986, J ENG GAS TURB POWER, V108, P254
13828    LIU GL, 1980, FUNDAMENTALS AERODYN
13829    LIU GL, 1992, ACTA MECH, V95, P117
13830    LIU GL, 1992, P 3 E CHIN C FLUID M, P156
13831    LIU GL, 1993, ACTA MECH, V97, P229
13832    SPALDING DB, 1958, ENG THERMODYNAMICS
13833    STODOLA A, 1945, STEAM GAS TURBINES
13834    TRAPEL W, 1966, THERMISCHE TURBOMASC, V1
13835    VAVRA MH, 1960, AEROTHERMODYNAMICS F
13836    WISLICENUS GF, 1965, FLUID MECH TURBOMACH, V1
13837    WU CH, 1965, CHINESE J MECH ENG, V13, P43
13838    YAN S, 1994, INT J TURBO JET ENG, V11, P71
13839    YAN S, 1996, IN PRESS INT J TURBO
13840 NR 19
13841 TC 9
13842 SN 0334-0082
13843 J9 INT J TURBO JET ENGINES
13844 JI Int. J. Turbo. Jet-Engines
13845 PY 1996
13846 VL 13
13847 IS 1
13848 BP 1
13849 EP 11
13850 PG 11
13851 SC Engineering, Aerospace
13852 GA VE151
13853 UT ISI:A1996VE15100001
13854 ER
13855 
13856 PT J
13857 AU Yan, S
13858    Liu, GL
13859 TI Variable-domain finite element method based on variational principles
13860    for solving hybrid problems of fully 3-D compressible rotor flow
13861 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
13862 DT Article
13863 AB Based on a unified variable-domain variational theory (Liu, 1988), a
13864    new finite element method (FEM) with self-adjusting nodes for
13865    determining the unknown boundaries (shape of the blade and of the
13866    annulus walls) in hybrid problems is presented. Two hybrid problem
13867    types H(A)xD and [H-C+D]xD are tested numerically by this FEM and the
13868    geometry of the rotor bladings thus obtained coincides with the
13869    original one quite well. Thus, a new numerical method with great
13870    generality and versatility for practical 3-D blading design and/or
13871    modification is provided.
13872 C1 SHANGHAI UNIV,SHANGHAI 200072,PEOPLES R CHINA.
13873 RP Yan, S, E CHINA UNIV TECHNOL,SHANGHAI 200093,PEOPLES R CHINA.
13874 CR CHUNG TJ, 1989, FINITE ELEMENT ANAL
13875    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
13876    LIU GI, 1986, J ENG GAS TURB POWER, V108, P254
13877    LIU GL, 1980, SCI SINICA, V23, P1339
13878    LIU GL, 1988, COMPUTATIONAL FLUID, P473
13879    LIU GL, 1993, INT J TURBO JET ENGI, V10, P273
13880    LIU GL, 1994, INT J TURBO JET ENG, V11, P53
13881    LIU GL, 1995, 95GT171 ASME
13882    LIU GL, 1995, ACTA MECH, V108, P207
13883    MARCHUK GI, 1982, METHODS NUMERICAL MA, CH4
13884    PENG HW, 1975, KEXUE TONGBAO, V20, P416
13885    SIEVERDING CH, 1984, J ENG GAS TURB POWER, V106, P437
13886    WU CH, 1952, 2604 NACA TN
13887    YAN S, 1989, VARIATIONAL FINITE E
13888    YAN S, 1990, EXP COMPUT AEROTHERM, P457
13889    YAN S, 1994, INT J TURBO JET ENG, V11, P71
13890 NR 16
13891 TC 0
13892 SN 0334-0082
13893 J9 INT J TURBO JET ENGINES
13894 JI Int. J. Turbo. Jet-Engines
13895 PY 1996
13896 VL 13
13897 IS 1
13898 BP 13
13899 EP 23
13900 PG 11
13901 SC Engineering, Aerospace
13902 GA VE151
13903 UT ISI:A1996VE15100002
13904 ER
13905 
13906 PT J
13907 AU Xia, YB
13908    Mo, YW
13909    Wang, Y
13910    Huang, XQ
13911    Chen, DM
13912    Wang, H
13913 TI Nucleation mechanism of polycrystalline diamond film deposited on
13914    ceramic alumina by microwave plasma chemical vapor deposition
13915 SO CHINESE PHYSICS LETTERS
13916 DT Article
13917 ID PHASE
13918 AB Polycrystalline diamond films have been deposited on ceramic alumina
13919    substrates by microwave plasma chemical vapor deposition method,
13920    Variation of the emission spectra in the microwave plasma with the
13921    microwave power and the vapor pressure in the reaction chamber is
13922    studied, respectively. Relationships between the hydrogen atomic
13923    spectra and the average energy of the electrons in the plasma, as well
13924    as the mechanism of diamond film deposition on ceramic alumina are
13925    discussed.
13926 RP Xia, YB, SHANGHAI UNIV SCI & TECHNOL,COLL MAT SCI & ENGN,SHANGHAI
13927    201800,PEOPLES R CHINA.
13928 CR BAKEFI G, 1976, PRINCIPLES LASER PLA, P592
13929    BARNES PN, 1993, APPL PHYS LETT, V62, P37
13930    CHEN Y, 1993, THIN FILMS SCI TECH, V6, P277
13931    DAWSON PH, 1969, ADV ELECT ELECTR PHY, V27, P60
13932    FRENKLACH M, 1991, PHYS REV B, V43, P1520
13933    SHECHTMAN D, 1993, J MATER RES, V8, P473
13934    SPEAR KE, 1989, J AM CERAM SOC, V72, P171
13935    YARBROUGH WA, 1992, J AM CERAM SOC, V75, P3179
13936 NR 8
13937 TC 1
13938 SN 0256-307X
13939 J9 CHIN PHYS LETT
13940 JI Chin. Phys. Lett.
13941 PY 1996
13942 VL 13
13943 IS 7
13944 BP 557
13945 EP 560
13946 PG 4
13947 SC Physics, Multidisciplinary
13948 GA VE315
13949 UT ISI:A1996VE31500021
13950 ER
13951 
13952 PT J
13953 AU Wu, XY
13954    Zhou, SP
13955    Xu, DM
13956 TI The photoinduced carrier distribution in a semiconductor waveguide and
13957    the FDTD analysis for millimeter-wave propagation
13958 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
13959 DT Article
13960 DE photoinduced carrier; semiconductor waveguide; FDTD analysis
13961 ID OPTICAL CONTROL; GUIDES
13962 AB Exact solutions for millimeter-wave propagation in an optically
13963    controlled rectangular semiconductor waveguide were presented. This was
13964    implemented by strictly solving the continuity equation that the
13965    photoinduced carriers hold and by finite-difference-time-domain (FDTD)
13966    modeling for the wave propagation in the waveguide. The laser intensity
13967    dependence of the millimeter-wave signal's amplitude and phase shift
13968    was obtained. Excellent agreement between numerical results and
13969    experiments was found. (C) 1996 John Wiley & Sons, Inc.
13970 RP Wu, XY, SHANGHAI UNIV,SHANGHAI 201800,PEOPLES R CHINA.
13971 CR LEE CH, 1980, IEEE QUANTUM ELECTRO, V16, P277
13972    LEE CH, 1984, PICOSECOND OPTOELECT
13973    LUEBBERS RJ, 1991, IEEE T ANTENN PROPAG, V39, P29
13974    PLATTE W, 1989, IEEE T MICROW THEORY, V37, P139
13975    SEEDS AJ, 1990, IEEE T MICROW THEORY, V38, P577
13976    SHEN Y, 1993, IEEE T MICROW THEORY, V41, P1005
13977    TSUTSUMI M, 1991, IEE PROC-H, V138, P527
13978 NR 7
13979 TC 0
13980 SN 0895-2477
13981 J9 MICROWAVE OPT TECHNOL LETT
13982 JI Microw. Opt. Technol. Lett.
13983 PD SEP
13984 PY 1996
13985 VL 13
13986 IS 1
13987 BP 35
13988 EP 38
13989 PG 4
13990 SC Engineering, Electrical & Electronic; Optics
13991 GA VC405
13992 UT ISI:A1996VC40500012
13993 ER
13994 
13995 PT J
13996 AU Yang, ZH
13997    Ye, RS
13998 TI Symmetry-breaking and bifurcation study on the laminar flows through
13999    curved pipes with a circular cross section
14000 SO JOURNAL OF COMPUTATIONAL PHYSICS
14001 DT Article
14002 ID TUBE; POINTS
14003 AB The Dean problem of steady viscous flow through a coiled circular pipe
14004    is studied numerically. We compute the structure of the symmetric
14005    families of the flows that exist as the crucial parameter D varies,
14006    which is in accordance with those stated in Yang and Keller (Appl.
14007    Numer. Math. 2, 257, 1986), Furthermore, we find a asymmetric flow
14008    emanating from the symmetry-breaking bifurcation point, which they
14009    could not find since they restricted the numerical study on the flows
14010    symmetric about the x-axis. (C) 1996 Academic Press, Inc.
14011 C1 SHANTOU UNIV,INST MATH,GUANGDONG 515063,PEOPLES R CHINA.
14012 RP Yang, ZH, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES
14013    R CHINA.
14014 CR BREZZI F, 1981, NUMER MATH, V38, P1
14015    COLLINS WM, 1975, Q J MECH APPL MATH, V28, P133
14016    DASKOPOULOS P, 1989, J FLUID MECH, V203, P125
14017    DEAN WR, 1927, PHILOS MAG, V4, P208
14018    DEAN WR, 1928, PHILOS MAG, V5, P673
14019    DENNIS SCR, 1980, J FLUID MECH, V99, P449
14020    DENNIS SCR, 1982, Q J MECH APPL MATH, V35, P305
14021    KELLER HB, 1977, APPL BIFURCATION THE, P359
14022    MOORE G, 1980, SIAM J NUMER ANAL, V17, P567
14023    VANDYKE M, 1978, J FLUID MECH, V86, P129
14024    WERNER B, 1984, SIAM J NUMER ANAL, V21, P388
14025    WINTERS KH, 1987, J FLUID MECH, V180, P343
14026    YANG ZH, 1986, APPL NUMER MATH, V2, P257
14027 NR 13
14028 TC 2
14029 SN 0021-9991
14030 J9 J COMPUT PHYS
14031 JI J. Comput. Phys.
14032 PD AUG
14033 PY 1996
14034 VL 127
14035 IS 1
14036 BP 73
14037 EP 87
14038 PG 15
14039 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
14040 GA VB430
14041 UT ISI:A1996VB43000007
14042 ER
14043 
14044 PT J
14045 AU Liu, HY
14046    Zhang, XL
14047    Wei, JJ
14048    Wu, XX
14049    Qi, DY
14050    Liu, YC
14051    Dai, M
14052    Yu, TY
14053    Deng, JQ
14054 TI An amperometric Meldola Blue-mediated sensor high sensitive to hydrogen
14055    peroxide based on immobilization of horseradish peroxidase in a
14056    composite membrane of regenerated silk fibroin and poly(vinyl alcohol)
14057 SO ANALYTICA CHIMICA ACTA
14058 DT Article
14059 DE sensors; poly(vinyl alcohol); regenerated silk fibroin; Meldola Blue;
14060    horseradish peroxidase; hydrogen peroxide
14061 ID ENZYME ELECTRODES; BIOELECTROCATALYTIC REDUCTION; CARBON; ASSAY
14062 AB A new composite membrane of poly(vinyl alcohol) (PVA) and regenerated
14063    silk fibroin (RSF) was successfully employed to immobilize horseradish
14064    peroxidase (HRP) and infrared (IR) was used to get insight in the
14065    structure of the composite membrane. An amperometric HRP-based sensor
14066    highly sensitive to hydrogen peroxide was fabricated, which was based
14067    on Meldola Blue as a mediator to facilitate efficient electron transfer
14068    between immobilized HRP and a glassy carbon electrode. Performance and
14069    characteristics of the sensor were evaluated with respect to response
14070    time, detection limit, selectivity, operating and storage stability,
14071    and dependence on temperature, pH, applied potential and mediator
14072    concentration. The sensor displayed high sensitivity to hydrogen
14073    peroxide with low detection of limit of 0.1 mu M.
14074 C1 FUDAN UNIV,DEPT MACROMOLEC SCI,SHANGHAI 200433,PEOPLES R CHINA.
14075    FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
14076 RP Liu, HY, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R
14077    CHINA.
14078 CR 1991, SIGMA CATALOG, V771
14079    BIFULCO L, 1994, ANAL LETT, V27, P1443
14080    FREW JE, 1986, J ELECTROANAL CH INF, V201, P1
14081    GARGUILO MG, 1993, ANAL CHEM, V65, P523
14082    HO WO, 1993, J ELECTROANAL CHEM, V351, P185
14083    HURDIS EC, 1954, ANAL CHEM, V26, P320
14084    JONSSON G, 1989, ELECTROANAL, V1, P465
14085    KAMIN RA, 1980, ANAL CHEM, V52, P1198
14086    KORELL U, 1994, ANAL CHEM, V66, P510
14087    KULYS JJ, 1980, FEBS LETT, V114, P7
14088    LIU HY, 1995, ANAL PROC, V32, P475
14089    LIU YC, 1996, ELECTROCHIM ACTA, V41, P77
14090    MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801
14091    OHARA TJ, 1993, ELECTROANAL, V5, P823
14092    QIAN JH, 1995, J ELECTROANAL CHEM, V397, P157
14093    SANCHEZ PD, 1990, ELECTROANAL, V2, P303
14094    SANCHEZ PD, 1991, ELECTROANAL, V3, P281
14095    TATSUMA T, 1989, ANAL CHEM, V61, P2352
14096    TATSUMA T, 1992, ANAL CHEM, V64, P1183
14097    WANG J, 1991, ANAL CHEM, V63, P2993
14098    WELINDER KG, 1979, EUR J BIOCHEM, V96, P483
14099    WOLLENBERGER U, 1990, ANAL LETT, V23, P1795
14100    WOLLENBERGER U, 1991, BIOELECTROCH BIOENER, V26, P287
14101    YAMADA H, 1974, ARCH BIOCHEM BIOPHYS, V165, P728
14102    YAROPOLOV AI, 1979, DOKL AKAD NAUK SSSR, V249, P1399
14103 NR 25
14104 TC 16
14105 SN 0003-2670
14106 J9 ANAL CHIM ACTA
14107 JI Anal. Chim. Acta
14108 PD AUG 9
14109 PY 1996
14110 VL 329
14111 IS 1-2
14112 BP 97
14113 EP 103
14114 PG 7
14115 SC Chemistry, Analytical
14116 GA VB446
14117 UT ISI:A1996VB44600012
14118 ER
14119 
14120 PT J
14121 AU Hsu, TY
14122    Li, L
14123    Jiang, BH
14124 TI Thermodynamic calculation of the equilibrium temperature between the
14125    tetragonal and monoclinic phases in CeO2-ZrO2
14126 SO MATERIALS TRANSACTIONS JIM
14127 DT Article
14128 DE thermodynamics; martensitic transformation; CeO2-ZrO2
14129 ID MARTENSITIC-TRANSFORMATION; ZIRCONIA MICROCRYSTALS; APPLIED STRESS;
14130    DRIVING FORCE; AL ALLOYS; FE-C; MS; SYSTEM
14131 AB Gibbs free energies of tetragonal and monoclinic phases at various
14132    temperatures are calculated for 8, 10 and 12 mol% CeO2-ZrO2 by
14133    referring to the revised CeO2-ZrO2 phase diagram given by Tani ct al.
14134    and utilizing the Lukas program. The equilibrium temperatures T-0,
14135    between t and m phases are obtained as 999, 838 and 697 K for 8, 10 and
14136    12 mol% CeO2-ZrO2, respectively, being much lower than the T-0 of ZrO2.
14137 C1 SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R CHINA.
14138 RP Hsu, TY, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI,SHANGHAI 200030,PEOPLES R
14139    CHINA.
14140 CR DU Y, 1991, J AM CERAM SOC, V74, P1569
14141    GARVIE RC, 1965, J PHYS CHEM-US, V69, P1238
14142    GARVIE RC, 1978, J PHYS CHEM-US, V82, P218
14143    GARVIE RC, 1985, J MATER SCI, V20, P1193
14144    GARVIE RC, 1985, J MATER SCI, V20, P3479
14145    GARVIE RC, 1986, J MATER SCI, V21, P1253
14146    HANNINK RHJ, 1981, ADV CERAM, V3, P116
14147    HSU TY, 1983, J MATER SCI, V18, P3206
14148    HSU TY, 1984, ACTA METALL, V32, P343
14149    HSU TY, 1985, J MATER SCI, V20, P23
14150    HSU TY, 1989, ACTA METALL, V37, P3091
14151    HSU TY, 1994, CHINESE J MATER RES, V8, P50
14152    HSU TY, 1995, CHINESE J MATER RES, V9, P338
14153    KAUFMAN L, 1978, CALPHAD, V2, P35
14154    LUKAS HL, 1977, CALPHAD, V1, P225
14155    TANI E, 1983, J AM CERAM SOC, V66, P506
14156    TU JB, 1994, J MATER SCI, V29, P1662
14157    ZHOU XW, 1991, ACTA METALL MATER, V39, P1041
14158    ZHOU XW, 1991, ACTA METALL MATER, V39, P1045
14159 NR 19
14160 TC 3
14161 SN 0916-1821
14162 J9 MATER TRANS JIM
14163 JI Mater. Trans. JIM
14164 PD JUN
14165 PY 1996
14166 VL 37
14167 IS 6
14168 BP 1281
14169 EP 1283
14170 PG 3
14171 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
14172    Engineering
14173 GA VB574
14174 UT ISI:A1996VB57400002
14175 ER
14176 
14177 PT J
14178 AU Jiang, BH
14179    Li, L
14180    Hsu, TY
14181 TI Thermodynamic calculation of the M(s) temperature in 8 mol% CeO2-ZrO2
14182 SO MATERIALS TRANSACTIONS JIM
14183 DT Article
14184 DE thermodynamics; martensitic transformation; CeO2-ZrO2
14185 ID ZIRCONIA MICROCRYSTALS; PHASE-TRANSFORMATION; APPLIED STRESS; ZRO2
14186 AB The M(s) temperature in 8 mol% CeO2-ZrO2 with a mean grain size of 1.38
14187    mu m is calculated by using the calculated results of the Gibbs
14188    energies of both tetragonal and monoclinic phases in our previous
14189    paper((1)), The required parameters for M(s) calculation are obtained
14190    by experimental measurements or through estimation from some available
14191    data. The calculated M(s) temperature is in good agreement with the
14192    experimental one and the difference of them is less than 5 degrees,
14193    showing that the approach given in this article is suitable for the
14194    prediction of M(s) in zirconia ceramics.
14195 C1 SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R CHINA.
14196 RP Jiang, BH, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI,SHANGHAI 200030,PEOPLES
14197    R CHINA.
14198 CR BANSAL GK, 1972, ACTA METALL, V20, P1281
14199    EVANS AG, 1981, ACTA METALL, V79, P447
14200    GARVIE RC, 1965, J PHYS CHEM-US, V69, P1238
14201    GARVIE RC, 1978, J PHYS CHEM-US, V82, P218
14202    GARVIE RC, 1980, CERAM INT, V6, P19
14203    GARVIE RC, 1985, J MATER SCI, V20, P1193
14204    GARVIE RC, 1985, J MATER SCI, V20, P3479
14205    GARVIE RC, 1986, J MATER SCI, V21, P1253
14206    HANNINK RHJ, 1981, ADV CERAM, V3, P116
14207    HOMES H, 1972, J PHYS CHEM-US, V76, P1497
14208    HSU TY, 1996, MATER T JIM, V37, P1281
14209    HUGO GR, 1990, MATER SCI FORUM, V56, P357
14210    LEE RR, 1988, J AM CERAM SOC, V71, P694
14211    SAMSONOV GV, 1982, OXIDE HDB, P183
14212 NR 14
14213 TC 2
14214 SN 0916-1821
14215 J9 MATER TRANS JIM
14216 JI Mater. Trans. JIM
14217 PD JUN
14218 PY 1996
14219 VL 37
14220 IS 6
14221 BP 1284
14222 EP 1286
14223 PG 3
14224 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
14225    Engineering
14226 GA VB574
14227 UT ISI:A1996VB57400003
14228 ER
14229 
14230 PT J
14231 AU Guo, GY
14232    Chen, YL
14233 TI Thermal analysis and infrared measurements of a lead-barium-aluminum
14234    phosphate glass
14235 SO JOURNAL OF NON-CRYSTALLINE SOLIDS
14236 DT Letter
14237 ID VIBRATIONS
14238 AB Thermal properties of a recently-developed lead-barium-aluminum
14239    phosphate glass were examined by means of differential thermal analysis
14240    (DTA) and thermal mechanical analysis (TMA). DTA curve shows that the
14241    melting of the crystalline phases (devitrified phases) appears at 891
14242    +/- 3 degrees C. The glass transition temperature, softening
14243    temperature and thermal expansion coefficient obtained from TMA are 528
14244    +/- 3 degrees C, 565 +/- 3 degrees C and (11.7 +/- 0.4) x
14245    10(-6)/degrees C (30 degrees C < T < 520 degrees C), respectively.
14246    Infrared spectra were measured on samples of the glass to investigate
14247    the structure of the glass. The infrared spectrum of the glass has an
14248    absorption band due to water in the near-infrared region, the absence
14249    of a characteristic P=O absorption band at around 1280 cm(-1) in the
14250    mid-infrared region, and three well-resolved absorption bands at 403
14251    +/- 10, 124 +/- 7, 115 +/- 5 cm(-1) in the far-infrared region.
14252 C1 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
14253 RP Guo, GY, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI & ENGN,SHANGHAI
14254    200030,PEOPLES R CHINA.
14255 CR CHAKRABORTY S, 1989, J MATER SCI LETT, V8, P1358
14256    CORBRIDGE DEC, 1954, J CHEM SOC, P493
14257    EXARHOS GJ, 1972, SOLID STATE COMMUN, V11, P755
14258    EXARHOS GJ, 1974, J CHEM PHYS, V60, P4145
14259    GUO GY, 1993, J NON-CRYST SOLIDS, V162, P164
14260    GUO GY, 1993, MATER CHEM PHYS, V35, P49
14261    GUO GY, 1995, J AM CERAM SOC, V78, P501
14262    HIGAZY AA, 1985, J MATER SCI, V20, P2345
14263    LAPP JC, 1992, AM CERAM SOC B, V71, P1545
14264    MORIKAWA H, 1981, J NONCRYST SOLIDS, V44, P107
14265    NELSON BN, 1979, J CHEM PHYS, V71, P2739
14266    OUCHETTO M, 1991, PHYS CHEM GLASSES, V32, P22
14267    SALES BC, 1987, J AM CERAM SOC, V70, P615
14268 NR 13
14269 TC 6
14270 SN 0022-3093
14271 J9 J NON-CRYST SOLIDS
14272 JI J. Non-Cryst. Solids
14273 PD JUN
14274 PY 1996
14275 VL 201
14276 IS 3
14277 BP 262
14278 EP 266
14279 PG 5
14280 SC Materials Science, Ceramics; Materials Science, Multidisciplinary
14281 GA VA912
14282 UT ISI:A1996VA91200010
14283 ER
14284 
14285 PT J
14286 AU Jiang, WZ
14287    Zhu, ZY
14288    Qiu, XJ
14289 TI Relativistic density-dependent Hartree approach for nuclear matter in
14290    the chiral-symmetry-breaking model
14291 SO CHINESE PHYSICS LETTERS
14292 DT Article
14293 AB A relativistic density-dependent Hartree approach in the
14294    chiral-symmetry-breaking field model has been developed for nuclear
14295    matter. The coupling constants of the relativistic Hartree-Lagrangian
14296    are made density dependence and obtained from the relativistic
14297    Brueckner-Bethe-Goldstone results of nuclear matter. The calculated
14298    saturation nuclear density, binding-energy and compressibility for
14299    nuclear matter are close to the empirical ones.
14300 C1 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
14301 RP Jiang, WZ, CHINESE ACAD SCI,SHANGHAI INST NUCL RES,SHANGHAI
14302    201800,PEOPLES R CHINA.
14303 CR BOGUTA J, 1977, NUCL PHYS A, V292, P413
14304    BROCKMANN R, 1992, PHYS REV LETT, V68, P3408
14305    GELLMANN M, 1960, NUOVO CIMENTO, V16, P705
14306    JIANG WH, IN PRESS COMMUN THEO
14307    SEROT BD, 1986, ADV NUCLEAR PHYSICS, V16, CH1
14308    ZHANG XO, IN PRESS CHIN J NUCL
14309 NR 6
14310 TC 0
14311 SN 0256-307X
14312 J9 CHIN PHYS LETT
14313 JI Chin. Phys. Lett.
14314 PY 1996
14315 VL 13
14316 IS 6
14317 BP 416
14318 EP 419
14319 PG 4
14320 SC Physics, Multidisciplinary
14321 GA VA453
14322 UT ISI:A1996VA45300005
14323 ER
14324 
14325 PT J
14326 AU Bi, PZ
14327    Shi, YM
14328 TI The temperature influence on the Q(2)(Q)over-bar(2) system
14329 SO NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND
14330    FIELDS
14331 DT Article
14332 ID ANNIHILATIONS; STATES; REST
14333 AB The Q(2) (Q) over bar(2) system at finite temperature is investigated
14334    based on the ellipsoidal bag model. It is found that the binding energy
14335    decreases with increasing temperature.
14336 C1 FUDAN UNIV,DEPT PHYS 2,SHANGHAI 200433,PEOPLES R CHINA.
14337    SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA.
14338 RP Bi, PZ, FUDAN UNIV,TD LEE PHYS LAB,SHANGHAI 200433,PEOPLES R CHINA.
14339 CR ADER JP, 1982, PHYS REV D, V25, P2370
14340    BI PZ, 1988, J PHYS G, V14, P681
14341    BI PZ, 1991, PHYS LETT B, V262, P485
14342    BI PZ, 1991, Z PHYS C PART FIELDS, V52, P105
14343    BI PZ, 1992, Z PHYS C PART FIELDS, V54, P453
14344    BRIDGES D, 1986, PHYS REV LETT, V56, P211
14345    BRIDGES D, 1986, PHYS REV LETT, V56, P215
14346    HELLER L, 1985, PHYS REV D, V32, P755
14347    LIU KF, 1987, PHYS REV LETT, V58, P2288
14348 NR 9
14349 TC 0
14350 SN 0369-3546
14351 J9 NUOVO CIMENTO A-NUCL PART F
14352 JI Nuovo Cimento Soc. Ital. Fis. A-Nucl. Part. Fields
14353 PD MAY
14354 PY 1996
14355 VL 109
14356 IS 5
14357 BP 593
14358 EP 596
14359 PG 4
14360 SC Physics, Particles & Fields
14361 GA UZ797
14362 UT ISI:A1996UZ79700009
14363 ER
14364 
14365 PT J
14366 AU Hu, YT
14367    Zhao, XH
14368 TI Collinear periodic cracks in an anisotropic medium
14369 SO INTERNATIONAL JOURNAL OF FRACTURE
14370 DT Article
14371 ID ELASTIC-MATERIALS; LINE FORCES; DISLOCATIONS
14372 AB The problem of collinear periodic cracks in an anisotropic medium is
14373    examined in this paper. By means of Stroh formalism and the conformal
14374    mapping method, we obtain general periodic solutions for collinear
14375    cracks. The corresponding stress intensity factors, crack opening
14376    displacements and strain energy release rate are found.
14377 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA.
14378 RP Hu, YT, HUAZHONG UNIV SCI & TECHNOL,DEPT MECH,WUHAN 430074,PEOPLES R
14379    CHINA.
14380 CR ASARO RJ, 1973, PHYS STATUS SOLIDI B, V60, P261
14381    BARNETT DM, 1973, J PHYS F MET PHYS, V3, P1083
14382    BARNETT DM, 1974, J PHYS F MET PHYS, V4, P1618
14383    CHADWICK P, 1977, ADV APPL MECH, V17, P303
14384    HOWLAND RCJ, 1935, P ROY SOC LOND A MAT, V148, P471
14385    HWU C, 1989, Q J MECH APPL MATH, V42, P553
14386    HWU CB, 1991, INT J FRACTURE, V52, P239
14387    JIANKE L, 1986, PERIODIC PROBLEMS PL
14388    KARIHALOO BL, 1979, ENG FRACT MECH, V12, P49
14389    KOITER WT, 1959, ING ARCH, V28, P168
14390    LI QQ, 1989, J APPL MECH, V56, P556
14391    MUSKHELISHVILI NI, 1953, SOME BASIC PROBLEMS
14392    STROH AN, 1958, PHILOS MAG, V3, P625
14393    STROH AN, 1962, J MATH PHYS, V41, P77
14394    SUO ZG, 1990, P ROY SOC LOND A MAT, V427, P331
14395    TING TCT, 1982, INT J SOLIDS STRUCT, V18, P139
14396    TING TCT, 1988, PHYS STATUS SOLIDI B, V146, P81
14397 NR 17
14398 TC 3
14399 SN 0376-9429
14400 J9 INT J FRACTURE
14401 JI Int. J. Fract.
14402 PY 1996
14403 VL 76
14404 IS 3
14405 BP 207
14406 EP 219
14407 PG 13
14408 SC Mechanics
14409 GA UZ448
14410 UT ISI:A1996UZ44800002
14411 ER
14412 
14413 PT J
14414 AU Qiao, ZC
14415    Dai, SQ
14416 TI Limit cycle analysis of a class of strongly nonlinear oscillation
14417    equations
14418 SO NONLINEAR DYNAMICS
14419 DT Article
14420 DE strongly nonlinear oscillation; limit cycle; asymptotic analysis;
14421    modified KBM method
14422 ID NON-LINEAR OSCILLATOR; BIFURCATIONS
14423 AB The limit cycle of a class of strongly nonlinear oscillation equations
14424    of the form u double over dot + g(u) = epsilon f(u, u over dot) is
14425    investigated by means of a modified version of the KBM method, where
14426    epsilon is a positive small parameter. The advantage of our method is
14427    its straightforwardness and effectiveness, which is suitable for the
14428    above equation, where g(u) need not be restricted to an odd function of
14429    u, provided that the reduced equation, corresponding to epsilon = 0,
14430    has a periodic solution. A specific example is presented to demonstrate
14431    the validity and accuracy of our method by comparing our results with
14432    numerical ones, which are in good agreement with each other even for
14433    relatively large epsilon.
14434 RP Qiao, ZC, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI
14435    200072,PEOPLES R CHINA.
14436 CR BURTON TD, 1982, INT J NONLINEAR MECH, V17, P7
14437    BYRD PF, 1971, HDB ELLIPTIC INTEGRA
14438    CHEN SH, 1991, INT J NONLINEAR MECH, V26, P125
14439    DAI SQ, 1985, APPL MATH MECH, V6, P409
14440    HOLMES P, 1980, INT J NONLINEAR MECH, V15, P449
14441    KNOBLOCH E, 1981, J FLUID MECH, V108, P2911
14442    MARGALLO JG, 1987, J SOUND VIBRATION, V116, P591
14443    MARGALLO JG, 1988, J SOUND VIBRATION, V125, P13
14444    MARGALLO JG, 1990, INT J NONLINEAR MECH, V25, P663
14445    MOREMEDI GM, 1993, INT J NONLINEAR MECH, V28, P237
14446    NAYFEH AH, 1973, PERTURBATION METHODS
14447    NAYFEH AH, 1981, INTRO PERTURBATION T
14448    SHEN JQ, 1988, ACTA MATH SINICA, V31, P215
14449 NR 13
14450 TC 1
14451 SN 0924-090X
14452 J9 NONLINEAR DYNAMICS
14453 JI Nonlinear Dyn.
14454 PD JUL
14455 PY 1996
14456 VL 10
14457 IS 3
14458 BP 221
14459 EP 233
14460 PG 13
14461 SC Engineering, Mechanical; Mechanics
14462 GA UZ339
14463 UT ISI:A1996UZ33900002
14464 ER
14465 
14466 PT J
14467 AU Grabb, ML
14468    Wang, SZ
14469    Birdsall, TG
14470 TI Deterministic three-dimensional analysis of long-range sound
14471    propagation through internal-wave fields
14472 SO IEEE JOURNAL OF OCEANIC ENGINEERING
14473 DT Article
14474 AB A Munk profile and a set of propagating internal-wave modes are used to
14475    construct a three-dimensional time-varying ocean sound-speed model.
14476    Three-dimensional ray tracing is employed to simulate long-range sound
14477    propagation of a broad-band acoustic signal. Methods are developed to
14478    convert three-dimensional ray-tracing results to acoustic time-domain
14479    amplitude and phase measurements. The ocean sound-speed model is
14480    defined deterministically, and the model acoustic receptions are
14481    analyzed deterministically. A single internal-wave mode that is
14482    ''spatially synchronized'' to an arrival can coherently focus and
14483    defocus the acoustic energy. These internal waves ran cause an
14484    arrival's amplitude fluctuation to mimic Rayleigh fading; however, the
14485    time-domain phase is stable, in contradiction to the classical Rayleigh
14486    fading environment where the received phase is uniformly distributed.
14487    for example, the received power attributed to an early arrival
14488    propagated over a 750-km range can fluctuate over 40 dB, while the
14489    time-domain phase remains within a quarter of a 75-Hz cycle, The
14490    characteristics of the time-domain phase are important for establishing
14491    coherent integration times at the receiver.
14492 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT ELECTR & TELECOMMUN ENGN,SHANGHAI 200072,PEOPLES R CHINA.
14493 RP Grabb, ML, UNIV MICHIGAN,DEPT ELECT & COMP SCI,ANN ARBOR,MI 48109.
14494 CR BOLD GEJ, 1986, 112 AC SOC AM M F FF, S63
14495    BOLD GEJ, 1986, J ACOUST SOC AM, P656
14496    CERVENY V, 1987, SEISMIC TOMOGRAPHY
14497    COLOSI JA, 1994, J ACOUST SOC AM, V96, P452
14498    CORNUELLE BD, 1992, J GEOPHYS RES, V11, P680
14499    ECKART C, 1961, HYDRODYNAMICS OCEANS
14500    FLATTE SM, 1979, SOUND PROPAGATION FL
14501    FLATTE SM, 1983, P IEEE, V71, P1267
14502    FLATTE SM, 1987, J ACOUST SOC AM, V82, P967
14503    FLATTE SM, 1988, J ACOUST SOC AM, V84, P1414
14504    FLATTE SM, 1992, INT M WAV PROP RAND
14505    GARRETT C, 1975, J GEOPHYS RES, V80, P291
14506    GRABB ML, 1996, THESIS U MICHIGAN AN
14507    MUNK WH, 1974, J ACOUST SOC AM, V55, P220
14508    PHILLIPS OM, 1977, DYNAMICS UPPER OCEAN
14509    TAPPERT FD, UNPUB J ACOUST SOC A
14510    TECHAU P, UNPUB
14511 NR 17
14512 TC 1
14513 SN 0364-9059
14514 J9 IEEE J OCEANIC ENG
14515 JI IEEE J. Ocean. Eng.
14516 PD JUL
14517 PY 1996
14518 VL 21
14519 IS 3
14520 BP 260
14521 EP 272
14522 PG 13
14523 SC Engineering, Civil; Engineering, Electrical & Electronic; Engineering,
14524    Ocean; Oceanography
14525 GA UY891
14526 UT ISI:A1996UY89100003
14527 ER
14528 
14529 PT J
14530 AU Deng, K
14531    Zhou, YM
14532    Ren, ZM
14533    Zhu, SJ
14534    Wei, JH
14535    Jiang, GC
14536 TI Electromagnetic model of levitation melting with cold crucible
14537 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
14538 DT Article
14539 DE cold crucible; electromagnetic induction; levitation melting
14540 AB The electromagnetic problems of levitation melting with cold crucible
14541    were studied. A quasi-three dimensional model of electromagnetic field
14542    in this levitation melting process and the modified coupled current
14543    method were presented. The influences of crucible structure and power
14544    frequency on the electromagnetic field in this process were analyzed.
14545 C1 SHANGHAI UNIV,SHANGHAI ENHANCED LAB FERROMET,SHANGHAI 200072,PEOPLES R CHINA.
14546 CR CISZEK TF, 1985, J ELECTROCHEM SOC, V132, P963
14547    DENG K, 1994, T SHANGHAI U TECHN, V15, P87
14548    TANAKA T, 1991, ISIJ INT, V31, P1416
14549    TANAKA T, 1991, ISIJ INT, V31, P350
14550    TARAPORE ED, 1976, METALL T B B, V7, P343
14551    TOH T, 1990, P 6 INT IRON STEEL C, P239
14552 NR 6
14553 TC 3
14554 SN 1003-6326
14555 J9 TRANS NONFERROUS METAL SOC CH
14556 JI Trans. Nonferrous Met. Soc. China
14557 PD JUN
14558 PY 1996
14559 VL 6
14560 IS 2
14561 BP 12
14562 EP 17
14563 PG 6
14564 SC Metallurgy & Metallurgical Engineering
14565 GA UY040
14566 UT ISI:A1996UY04000003
14567 ER
14568 
14569 PT J
14570 AU Fang, ZH
14571    Zhang, J
14572    Wang, Y
14573 TI The HAL-3 airborne navigation radar
14574 SO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS
14575 DT Letter
14576 AB This correspondence describes the HAL-3 navigation radar which was
14577    designed specially for civil airplanes. The main technical functions of
14578    the radar have been extensively tested on Boeing 707 and Y-7A airplanes
14579    to the military standard on aeronautic airborne facilities. The rest
14580    results [1] are qualified by the Chinese Appraisal Committee of
14581    Aeronautics Facilities. The technical specifications of the radar are
14582    similar to those of the RDR-1F radar manufactured in tie U.S. with
14583    several added, operational functions. The radar includes 7 units:
14584    antenna, transceiver, servo unit, control box, two display units and
14585    power supply. Operational principles and functions of each unit ore
14586    described briefly. The current research project for interfacing the
14587    radar to a fibre-optic gyroscope is in process and some initial
14588    experimental results are described.
14589 RP Fang, ZH, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI INST ELECTR
14590    PHYS,SHANGHAI 201800,PEOPLES R CHINA.
14591 CR *CHIN APPR COMM AE, 1985, QUAL REP HAL 3 RAD
14592    DEFANG Z, 1990, TECHNICAL MANUAL HAL
14593    JI Y, 1995, THESIS SHANGHAI U
14594 NR 3
14595 TC 0
14596 SN 0018-9251
14597 J9 IEEE TRANS AEROSP ELECTRON SY
14598 JI IEEE Trans. Aerosp. Electron. Syst.
14599 PD JUL
14600 PY 1996
14601 VL 32
14602 IS 3
14603 BP 1208
14604 EP 1211
14605 PG 4
14606 SC Engineering, Aerospace; Engineering, Electrical & Electronic;
14607    Telecommunications
14608 GA UX978
14609 UT ISI:A1996UX97800038
14610 ER
14611 
14612 PT J
14613 AU Zhang, LS
14614    Sun, XL
14615 TI An algorithm for minimizing a class of locally Lipschitz functions
14616 SO JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
14617 DT Article
14618 DE nondifferentiable optimization; locally Lipschitz functions;
14619    generalized gradients; global convergence methods
14620 ID OPTIMIZATION
14621 AB In this paper, we present an algorithm for minimizing a class of
14622    locally Lipschitz functions. The method generalizes the E-smeared
14623    method to a class of functions whose Clarke generalized gradients are
14624    singleton at almost all differentiable points. We analyze the global
14625    convergence of the method and report some numerical results.
14626 RP Zhang, LS, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI
14627    201800,PEOPLES R CHINA.
14628 CR BIHAIN A, 1984, J OPTIMIZ THEORY APP, V44, P545
14629    CLARKE FH, 1983, OPTIMIZATION NONSMOO
14630    KIWIEL KC, 1985, LECTURE NOTES MATH, V1133
14631    LEMARECHAL C, 1975, MATH PROGRAMMING STU, V3, P95
14632    MIFFLIN R, 1977, MATH OPER RES, V2, P191
14633    POLAK E, 1983, SIAM J CONTROL OPTIM, V21, P179
14634    POLAK E, 1985, SIAM J CONTROL OPTIM, V23, P477
14635    SHOR NZ, 1985, MINIMIZATION METHODS
14636    WOLFE P, 1975, MATHEMATICAL PROGRAM, V3, P145
14637    ZHANG LS, 1988, ACTA MATH APPL SINIC, V4, P200
14638    ZOWE J, 1985, COMPUTATIONAL MATH P, P323
14639 NR 11
14640 TC 0
14641 SN 0022-3239
14642 J9 J OPTIMIZ THEOR APPL
14643 JI J. Optim. Theory Appl.
14644 PD JUL
14645 PY 1996
14646 VL 90
14647 IS 1
14648 BP 203
14649 EP 212
14650 PG 10
14651 SC Mathematics, Applied; Operations Research & Management Science
14652 GA UX337
14653 UT ISI:A1996UX33700011
14654 ER
14655 
14656 PT J
14657 AU Zhang, F
14658    Cao, ZC
14659 TI Study on the electrical properties of single grain boundaries in BaTiO3
14660    ceramics
14661 SO JOURNAL OF APPLIED PHYSICS
14662 DT Article
14663 AB In the article, the electrical properties of single grains and single
14664    grain boundaries in donor doped BaTiO3 ceramics have been investigated.
14665    The results show that the grains have no positive temperature
14666    coefficient of resistance effect (PTCR effect) if the influence of
14667    electrode was neglected. The results also show that different grain
14668    boundaries have various PTCR effect. The characteristics of
14669    current-voltage do not follow the Heywang model and accord with our
14670    modified model. The maximum barrier heights of single grain boundaries
14671    are also deduced experimentally. (C) 1996 American Institute of Physics.
14672 C1 SHANGHAI UNIV,SHANGHAI 201800,PEOPLES R CHINA.
14673 RP Zhang, F, CHINESE ACAD SCI,SHANGHAI INST MET,ION BEAM LAB,SHANGHAI
14674    200050,PEOPLES R CHINA.
14675 CR GOODMAN G, 1963, J AM CERAM SOC, V46, P48
14676    HEYWANG W, 1961, SOLID STATE ELECTRON, V3, P51
14677    HEYWANG W, 1964, J AM CERAM SOC, V47, P484
14678    NEMOTO H, 1980, J AM CERAM SOC, V63, P398
14679    OMISSON E, 1989, J APPL PHYS, V6, P3666
14680    RHODERICK EH, 1978, METAL SEMICONDUCTOR
14681    TAO M, 1987, J APPL PHYS, V61, P1562
14682    ZHANG F, IN PRESS J APPL PHYS
14683 NR 8
14684 TC 0
14685 SN 0021-8979
14686 J9 J APPL PHYS
14687 JI J. Appl. Phys.
14688 PD JUL 15
14689 PY 1996
14690 VL 80
14691 IS 2
14692 BP 1033
14693 EP 1036
14694 PG 4
14695 SC Physics, Applied
14696 GA UX156
14697 UT ISI:A1996UX15600061
14698 ER
14699 
14700 PT J
14701 AU Xu, KX
14702    Zhou, SP
14703    Bao, JS
14704    Xu, WW
14705    Wang, HB
14706 TI Optical detector using granular YBa2Cu3O7-delta weak link-type junctions
14707 SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY
14708 DT Article
14709 ID THIN-FILMS
14710 AB Experimental photoresponse study of granular YBa2Cu3O7-x (YBCO) weak
14711    link is reported, The Josephson critical current I-c is suppressed with
14712    light illumination of the junction, produced mainly from optical
14713    generation of quasiparticles. At lower temperature (T = 64.5 K), the
14714    hysteresis in I-V characteristic of the weak link appears, which may be
14715    found useful for optical detection purpose. This was supported from
14716    preliminary experiments.
14717 C1 NANJING UNIV,NANJING 210093,PEOPLES R CHINA.
14718 RP Xu, KX, SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
14719 CR BAO J, 1995, J SHANGHAI U NATURAL, V1, P48
14720    BARONE A, 1982, PHYSICS APPL JOSEPHS, P322
14721    BHATTACHARYA S, 1993, APPL PHYS LETT, V63, P2279
14722    BLUZER N, 1991, PHYS REV B, V44, P10222
14723    BLUZER N, 1993, IEEE T APPL SUPERCON, V3, P2869
14724    CARSLAW HS, 1986, CONDUCTION HEAT SOLI, P75
14725    ENOMOTO Y, 1986, J APPL PHYS, V59, P3807
14726    FENKEL A, 1993, PHYS REV B, V48, P9717
14727    FRENKEL A, 1990, J APPL PHYS, V67, P3054
14728    GHIS A, 1993, IEEE T APPL SUPERCON, V3, P2136
14729    TESTARDI LR, 1971, PHYS REV           B, V4, P2189
14730    XU KX, 1995, J INFRARED MILLIM WA, V14, P341
14731 NR 12
14732 TC 0
14733 SN 1051-8223
14734 J9 IEEE TRANS APPL SUPERCONDUCT
14735 JI IEEE Trans. Appl. Supercond.
14736 PD JUN
14737 PY 1996
14738 VL 6
14739 IS 2
14740 BP 87
14741 EP 89
14742 PG 3
14743 SC Engineering, Electrical & Electronic; Physics, Applied
14744 GA UW838
14745 UT ISI:A1996UW83800006
14746 ER
14747 
14748 PT J
14749 AU Wang, DR
14750    Bai, ZZ
14751    Evans, DJ
14752 TI On the monotone convergence of multisplitting method for a class of
14753    systems of weakly nonlinear equations
14754 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
14755 DT Article
14756 DE system of weakly nonlinear equations; matrix multisplitting; monotone
14757    convergence; convergence rate
14758 ID REGULAR SPLITTINGS
14759 AB In this paper, we set up a parallel matrix multisplitting iterative
14760    method for a class of system of weakly nonlinear equations, Au = G(u),
14761    A is an element of L(R(n)), G:R(n) --> R(n), which is generally
14762    resulted from the discretization of many classical differential
14763    equations. For the new method, the two-sided approximation property is
14764    deliberately shown, and the comparison theorems between the convergence
14765    rates of different multisplittings as well as multisplitting and single
14766    splittings of the coefficient matrix A is an element of L(R(n)) are
14767    given in detail in the sense of monotonicity. Therefore, the monotone
14768    convergence theory about this method is thoroghly established. Finally,
14769    we apply the built conclusions to several special but very important
14770    and practical multisplittings to confirm the correctness and
14771    effectiveness of our theory.
14772 C1 FUDAN UNIV,INST MATH,SHANGHAI 200433,PEOPLES R CHINA.
14773    LOUGHBOROUGH UNIV TECHNOL,PARALLEL ALGORITHMS RES CTR,LOUGHBOROUGH LE11 3TU,LEICS,ENGLAND.
14774 RP Wang, DR, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES
14775    R CHINA.
14776 CR ALEFELD G, 1985, NUMER MATH, V46, P213
14777    ELSNER L, 1989, NUMER MATH, V56, P283
14778    NEUMANN M, 1987, LINEAR ALGEBRA APPL, V88, P559
14779    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
14780    ORTEGA JM, 1970, ITERATIVE SOLUTION N
14781    VARGA RS, 1961, MATRIX ITERATIVE ANA
14782 NR 6
14783 TC 8
14784 SN 0020-7160
14785 J9 INT J COMPUT MATH
14786 JI Int. J. Comput. Math.
14787 PY 1996
14788 VL 60
14789 IS 3-4
14790 BP 229
14791 EP 242
14792 PG 14
14793 SC Mathematics, Applied
14794 GA UW399
14795 UT ISI:A1996UW39900006
14796 ER
14797 
14798 PT J
14799 AU Xu, KX
14800    Zhou, SP
14801    Bao, JS
14802 TI Optically tuned superconductive-dielectric resonators with
14803    whispering-gallery modes
14804 SO JOURNAL OF SUPERCONDUCTIVITY
14805 DT Article
14806 DE optical effect; superconductive-dielectric resonator;
14807    whispering-gallery mode; modified partial region method
14808 AB An analytical method is presented for calculating the resonant
14809    frequency and Q-factor of a superconducting dielectric disk resonator
14810    operating in millimeter-wave regime with whispering-gallery mode.
14811    Resonant frequency shift due to the optical generation of
14812    quasi-particles in superconducting film is investigated as a function
14813    of photon flux. An optically tunable resonant frequency of about 500
14814    MHz is estimated, and good agreement is found between numerical results
14815    and experimental ones.
14816 RP Xu, KX, SHANGHAI UNIV,DEPT PHYS,JIA DING,SHANGHAI 201800,PEOPLES R
14817    CHINA.
14818 CR ARNAUD JA, 1976, BEAM FIBER OPTICS
14819    FRENKEL A, 1990, J APPL PHYS, V67, P3054
14820    FRENKEL A, 1993, PHYS REV B, V48, P9717
14821    HERCZFELD PR, 1984, P 14 EUR MICR C  SEP, P268
14822    INVENOV EN, 1992, IEEE MTT, V41, P632
14823    JONSE SK, 1988, ELECTRON LETT, V23, P807
14824    KAJFEZ D, 1988, DIELECTRIC RESONATOR
14825    LEE CH, 1980, IEEE QUANTUM ELECTRO, V16, P277
14826    LEE CH, 1990, IEEE T MICROW THEORY, V38, P596
14827    LONDON F, 1935, PROC R SOC LON SER-A, V149, P71
14828    MEI KK, 1991, IEEE T MICROW THEORY, V39, P1545
14829    NEIKIRK P, 1990, IEEE MTT, V38, P586
14830    OWEN CS, 1972, PHYS REV LETT, V28, P1559
14831    PARKER WH, 1972, PHYS REV LETT, V29, P925
14832    SECMNOV AD, 1993, APPL PHYS LETT, V63, P681
14833    SEEDS AJ, 1990, IEEE T MICROW THEORY, V38, P577
14834    TESTARDI LR, 1971, PHYS REV           B, V4, P2189
14835    TOBAR M, 1991, IEEE MTT, V39, P2073
14836    TSINDLEKHT M, 1994, APPL PHYS LETT, V65, P2875
14837    XU KX, 1995, J INFRARED MILLIM WA, V14, P341
14838    ZHOU SP, 1991, J SUPERCOND, V4, P227
14839    ZHOU SP, 1992, J APPL PHYS, V71, P2789
14840 NR 22
14841 TC 0
14842 SN 0896-1107
14843 J9 J SUPERCOND
14844 JI J. Supercond.
14845 PD APR
14846 PY 1996
14847 VL 9
14848 IS 2
14849 BP 193
14850 EP 199
14851 PG 7
14852 SC Physics, Applied; Physics, Condensed Matter
14853 GA UV423
14854 UT ISI:A1996UV42300008
14855 ER
14856 
14857 PT J
14858 AU Lin, D
14859    Batan, T
14860    Fuchs, EF
14861    Grady, WM
14862 TI Harmonic losses of single-phase induction motors under nonsinusoidal
14863    voltages
14864 SO IEEE TRANSACTIONS ON ENERGY CONVERSION
14865 DT Article
14866 DE time harmonics; single-phase induction machines
14867 AB Parameters of a capacitor-start, capacitor-run single-phase induction
14868    motor with closed or semi-closed rotor slots are measured and a model
14869    for the investigation of the performance of the machine in the
14870    frequency domain under the influence of harmonic voltages is presented,
14871    An algorithm taking into account the nonlinear rotor leakage inductance
14872    is established, This algorithm is applied to estimate the current in
14873    the time domain, and the harmonic losses at rated-load operation
14874    without and with run capacitors are calculated, Computational results
14875    are compared with those from experimentation and the differences
14876    between both are discussed.
14877 C1 UNIV TEXAS,AUSTIN,TX 78712.
14878    SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
14879 RP Lin, D, UNIV COLORADO,BOULDER,CO 80309.
14880 CR DUFFEY CK, 1989, IEEE T IND APPL, V25
14881    FUCHS EF, 1994 IEEE IAS ANN M
14882    FUCHS EF, 1987, OPTIMIZATION INDUCTI, V2
14883    HU Z, 1989, ANAL CALCULATION ELE
14884    HUANG Y, 1986, SMALL MEDIUM ELECT M
14885    VANDERMERWE C, IEEE PES 1994 SUMM M
14886 NR 6
14887 TC 4
14888 SN 0885-8969
14889 J9 IEEE TRANS ENERGY CONVERS
14890 JI IEEE Trans. Energy Convers.
14891 PD JUN
14892 PY 1996
14893 VL 11
14894 IS 2
14895 BP 273
14896 EP 279
14897 PG 7
14898 SC Engineering, Electrical & Electronic; Energy & Fuels
14899 GA UU449
14900 UT ISI:A1996UU44900001
14901 ER
14902 
14903 PT J
14904 AU Liu, YC
14905    Qian, JH
14906    Liu, HY
14907    Zhang, XL
14908    Deng, JQ
14909    Yu, TY
14910 TI Blend membrane of regenerated silk fibroin, poly(vinyl alcohol), and
14911    peroxidase and its application to a ferrocene-mediating hydrogen
14912    peroxide sensor
14913 SO JOURNAL OF APPLIED POLYMER SCIENCE
14914 DT Article
14915 ID HORSERADISH-PEROXIDASE; IMMOBILIZATION; BEADS; ENZYME
14916 AB Before or after the blend membrane of regenerated silk fibroin (RSF),
14917    poly(vinyl alcohol) (PVA), and peroxidase is treated with ethanol, RSF,
14918    PVA, and peroxidase maintain their own structures. The conformational
14919    transition of RSF in the blend membrane is accomplished from the silk I
14920    structure to the silk II structure by ethanol treatment, which is used
14921    to immobilize peroxidase. A ferrocene-mediating sensor for H2O2 is
14922    made, which is based on the immobilization of peroxidase in the blend
14923    membrane of RSF and PVA. Performance and characteristics of the sensor
14924    were evaluated with respect to response time, detection limit,
14925    selectivity, and dependencies on temperature and pH as well as on
14926    operating and storage stability. (C) 1996 John Wiley & Sons, Inc.
14927 C1 FUDAN UNIV,DEPT MACROMOLEC SCI,SHANGHAI 200433,PEOPLES R CHINA.
14928    SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
14929    FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
14930 CR AMPON K, 1992, J CHEM TECHNOL BIOT, V55, P185
14931    BAHADUR A, 1985, MAKROMOL CHEM, V186, P1387
14932    BARTLETT PN, 1993, J ELECTROANAL CHEM, V362, P1
14933    BOYER RF, 1991, BIOTECHNOL EDUC, V2, P17
14934    CHIBATA I, 1987, BIOTECHNOLOGY A, V7, P653
14935    DALVIE SK, 1992, BIOTECHNOL BIOENG, V40, P1173
14936    DINELLI D, 1976, METHOD ENZYMOL, V44, P227
14937    DRIOLI E, 1986, NATO ASI SER C, P667
14938    HAYASHI T, 1991, J APPL POLYM SCI, V42, P85
14939    HAYASHI T, 1992, J APPL POLYM SCI, V44, P143
14940    HAYASHI T, 1993, MAKROMOL CHEM-M SYMP, V70, P137
14941    HURDIS EC, 1954, ANAL CHEM, V26, P320
14942    KARUBE I, 1987, BIOTECHNOLOGY A, V7, P685
14943    LINKO P, 1984, CRC CRIT R BIOTECH, V1, P289
14944    LIU F, 1993, BIOTECHNOL APPL BIOC, V18, P57
14945    LIU H, IN PRESS BIOELECTROC
14946    LIU Y, IN PRESS ELECTROCHIM
14947    MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801
14948    OHKI A, 1994, CHEM LETT, V6, P1065
14949    SCHUHMANN W, 1992, BIOELECTROANAL S, V2, P113
14950    TARHAN L, 1991, J FS EGE U A, V14, P11
14951    WANG J, 1994, ANAL CHEM, V66, P1988
14952    WELINDER KG, 1979, EUR J BIOCHEM, V96, P483
14953    YAMADA H, 1974, ARCH BIOCHEM BIOPHYS, V165, P728
14954    YU T, IN PRESS J APPL POLY
14955 NR 25
14956 TC 2
14957 SN 0021-8995
14958 J9 J APPL POLYM SCI
14959 JI J. Appl. Polym. Sci.
14960 PD JUL 25
14961 PY 1996
14962 VL 61
14963 IS 4
14964 BP 641
14965 EP 647
14966 PG 7
14967 SC Polymer Science
14968 GA UU473
14969 UT ISI:A1996UU47300007
14970 ER
14971 
14972 PT J
14973 AU Bradbury, I
14974    Kirkby, R
14975    Guanbao, S
14976 TI Development and environment: The case of rural industrialization and
14977    small-town growth in China
14978 SO AMBIO
14979 DT Article
14980 AB Rural industrialization and small-town growth are prominent and
14981    distinctive features oi China's phenomenal economic growth since the
14982    Open Door Policy was introduced;around 1980. Such developments are most
14983    advanced in the coastal provinces, but are steadily diffusing
14984    westwards. Major concerns of these developments are their impact on
14985    China's food production capability and a general degradation of the
14986    rural environment. The trend of progressive land loss since the 1950s
14987    has been accentuated, the pollution burden in rural areas has risen,
14988    and workers have been attracted away from agriculture by the greater
14989    rewards oi industrial work with a consequent lowering of land
14990    maintenance and husbandry standards. Resource constraints and the
14991    administrative system limit the likely effectiveness oi environmental
14992    protection by coercion. Incentives, through the lax system, are
14993    suggested as a possible approach to limiting the environmental impacts
14994    of rural industrialization, but must be complemented by strenuous
14995    measures to enhance environmental awareness.
14996 C1 UNIV LIVERPOOL,DEPT CIV DESIGN,LIVERPOOL L69 3BX,MERSEYSIDE,ENGLAND.
14997    SHANGHAI UNIV,DEPT SOCIOL,SHANGHAI 200434,PEOPLES R CHINA.
14998 RP Bradbury, I, UNIV LIVERPOOL,DEPT GEOG,POB 147,LIVERPOOL L69
14999    3BX,MERSEYSIDE,ENGLAND.
15000 CR *CHIN AC SOC SCI, 1994, POL CHOIC CHIN EC DE
15001    *NATL ENV PROT AG, 1994, ZHONGG HUANJ BAOH XI
15002    *STAT PLANN COMM, 1994, CHIN AG 21 PAP CHIN
15003    BYRD W, 1990, CHINAS RURAL IND STR
15004    EDMONDS RL, 1994, PATTERNS CHINAS LOST
15005    GLAESER B, 1990, GEOGRAPHY CONT CHINA, P249
15006    KIRKBY R, 1994, CHINA NEXT DECADES, P128
15007    LIU Q, 1995, P BAND S SMALL CIT
15008    LUK S, 1993, MEGAPROJECT CASE STU
15009    MA R, 1992, URBANIZING CHINA, P119
15010    SMIL V, 1984, BAD EARTH
15011    SMIL V, 1993, CHINAS ENV CRISIS
15012    STONE B, 1988, CHINA Q, V116, P767
15013 NR 13
15014 TC 7
15015 SN 0044-7447
15016 J9 AMBIO
15017 JI Ambio
15018 PD MAY
15019 PY 1996
15020 VL 25
15021 IS 3
15022 BP 204
15023 EP 209
15024 PG 6
15025 SC Engineering, Environmental; Environmental Sciences
15026 GA UQ531
15027 UT ISI:A1996UQ53100011
15028 ER
15029 
15030 PT J
15031 AU Bi, PZ
15032    Shi, YM
15033 TI The influence of mass reduction on pion momentum spectra from
15034    relativistic collisions
15035 SO PHYSICS LETTERS B
15036 DT Article
15037 ID HEAVY-ION COLLISIONS; FINITE TEMPERATURE; NUCLEAR COLLISIONS; MODEL;
15038    DECONFINEMENT; CHARMONIUM; TRANSITION; DENSITY; MESONS
15039 AB The influence of mass reduction on the momentum spectra is
15040    investigated. We find that the enhancement of the low P-T pion observed
15041    by the NA35 Collabration in 200 GeV S+S collisions can be understood as
15042    a consequence of pion mass reduction.
15043 C1 FUDAN UNIV,DEPT PHYS 2,SHANGHAI 200433,PEOPLES R CHINA.
15044    SHANGHAI UNIV,DEPT PHYS,SHANGHAI 200072,PEOPLES R CHINA.
15045    CHINA CTR ADV SCI & TECHNOL,WORLD LAB,BEIJING 100080,PEOPLES R CHINA.
15046 RP Bi, PZ, FUDAN UNIV,TD LEE PHYS LAB,SHANGHAI 200433,PEOPLES R CHINA.
15047 CR ATWATER TW, 1987, PHYS LETT B, V199, P30
15048    BARZ HW, 1991, PHYS LETT B, V254, P332
15049    BERTSCH G, 1989, PHYS REV C, V40, P1830
15050    BROWN GE, SUNYNTC9013
15051    BROWN GE, 1991, NUCL PHYS A, V535, P701
15052    COLLAB NA, 1988, Z PHYS C, V38, P89
15053    DEFORCRAND P, 1985, PHYS LETT B, V160, P137
15054    HARRINGTON BJ, 1974, PHYS REV LETT, V33, P324
15055    HASHIMOTO T, 1986, PHYS REV LETT, V57, P2123
15056    HASHIMOTO T, 1988, Z PHYS C, V38, P251
15057    KOCH P, 1986, PHYS REP, V142, P167
15058    KOCH V, 1993, NUCL PHYS A, V560, P345
15059    KUSENEZOV D, 1989, PHYS REV C, V40, P2075
15060    KUSENEZOV D, 1991, PHYS REV C, V44, P902
15061    LEE KS, 1989, Z PHYS C PART FIELDS, V43, P425
15062    PINZHEN B, 1988, J PHYS G, V14, P681
15063    PINZHEN B, 1989, J PHYS G NUCL PARTIC, V15, P1653
15064    PISARSKI RD, 1982, PHYS REV D, V26, P3735
15065    SOLLFRANK J, 1990, PHYS LETT B, V252, P256
15066    SOLLFRANK J, 1991, Z PHYS C PART FIELDS, V52, P593
15067    TAKAGI F, 1986, PHYS REV D, V34, P1646
15068    VOGT R, 1988, PHYS LETT B, V206, P333
15069    WENIG S, 1990, THESIS I KERNPHYS FR
15070 NR 23
15071 TC 2
15072 SN 0370-2693
15073 J9 PHYS LETT B
15074 JI Phys. Lett. B
15075 PD MAY 16
15076 PY 1996
15077 VL 375
15078 IS 1-4
15079 BP 355
15080 EP 357
15081 PG 3
15082 SC Physics, Multidisciplinary
15083 GA UP263
15084 UT ISI:A1996UP26300053
15085 ER
15086 
15087 PT J
15088 AU Zhang, ZL
15089    Jiang, XY
15090    Xu, SH
15091    Nagatomo, T
15092    Omoto, O
15093 TI Threshold lowering and by intensity and efficiency enhancement by
15094    dopants in polymer emitting diodes
15095 SO CHINESE PHYSICS LETTERS
15096 DT Article
15097 ID ELECTROLUMINESCENT
15098 AB A new method to increase the luminance and quantum efficiency of
15099    polymer light emitting diodes with a lower threshold voltage has been
15100    reported. The threshold voltage, luminance and quantum efficiency have
15101    been significantly improved by doping certain dopants with a lower
15102    highest occupied molecular orbital (HOMO) level into the hole
15103    transporting layer. A high performance device has been achieved by
15104    addition of the perylene and triphenylamine as a dopant into
15105    poly(N-vinylcarbazole). The luminance and quantum efficiency increase
15106    by 2-3 times in comparison with the undoped device, reaching 10000
15107    cd/m(2) in luminance and 0.58% in quantum efficiency. While threshold
15108    voltage is reduced to one half value. The energy diagram has been
15109    obtained by measuring the HOMO levels and band gap values. Based on
15110    this, the carriers injection and balance between electrons and holes as
15111    well as the action of dopant are discussed.
15112 C1 SHIBAURA INST TECHNOL, MINATO KU, TOKYO 108, JAPAN.
15113 RP Zhang, ZL, SHANGHAI UNIV SCI & TECHNOL, DEPT MAT SCI, JIADING CAMPUS,
15114    SHANGHAI 201800, PEOPLES R CHINA.
15115 CR BROWN AR, 1992, APPL PHYS LETT, V61, P2793
15116    PARKER ID, 1994, APPL PHYS LETT, V65, P1272
15117    TANG CW, 1987, APPL PHYS LETT, V51, P913
15118    YANG Y, 1994, APPL PHYS LETT, V64, P1245
15119    ZHANG ZL, 1994, CHINESE J LUMINESCEN, V15, P363
15120 NR 5
15121 TC 0
15122 SN 0256-307X
15123 J9 CHIN PHYS LETT
15124 JI Chin. Phys. Lett.
15125 PY 1996
15126 VL 13
15127 IS 4
15128 BP 301
15129 EP 304
15130 PG 4
15131 SC Physics, Multidisciplinary
15132 GA UM282
15133 UT ISI:A1996UM28200016
15134 ER
15135 
15136 PT J
15137 AU Li, L
15138    Delaey, L
15139    Wollants, P
15140    Biest, VD
15141 TI Thermodynamic calculation of segregation in multicomponent steels
15142 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
15143 DT Article
15144 ID REGULAR SOLUTION MODEL; PHASES
15145 AB The thermodynamic equation for segregation in multicomponent steels is
15146    extended from that in ternary system and the segregation amounts of Cr,
15147    C and P in the intergranular phase in a Cr-steel are estimated.
15148 C1 KATHOLIEKE UNIV LEUVEN,DEPT MTM,B-3001 HEVERLEE,BELGIUM.
15149 RP Li, L, SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 2000072,PEOPLES R
15150    CHINA.
15151 CR CHANDRASEKARAN L, 1987, CALPHAD, V11, P163
15152    DEFAY R, 1966, SURFACE TENSION ADSO
15153    GUTTMANN M, 1979, INTERFACIAL SEGREGAT
15154    GUTTMANN M, 1982, MET T A, V13, P1693
15155    HERTZMAN S, 1987, METALL TRANS A, V18, P1767
15156    HILLERT M, 1970, ACTA CHEM SCAND, V24, P3618
15157    LI L, 1993, J CHIM PHYS, V90, P305
15158    LI L, 1994, CALPHAD, V18, P89
15159    SUNDMAN B, 1981, J PHYS CHEM SOLIDS, V42, P297
15160 NR 9
15161 TC 0
15162 SN 1005-0302
15163 J9 J MATER SCI TECHNOL
15164 JI J. Mater. Sci. Technol.
15165 PY 1996
15166 VL 12
15167 IS 3
15168 BP 238
15169 EP 240
15170 PG 3
15171 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
15172    Engineering
15173 GA UL673
15174 UT ISI:A1996UL67300017
15175 ER
15176 
15177 PT J
15178 AU Wang, ZH
15179 TI Application of the coupled mode theory to eigenvalue problems of
15180    graded-index optical fibers
15181 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
15182 DT Article
15183 DE coupled mode theory; eigenvalue and eigenmode; optical fibers
15184 AB The propagation constant and the modal field distribution for guided
15185    modes of an arbitrary graded-index optical fiber have been calculated
15186    with the use of the coupled mode theory. The infinitely extended
15187    parabolic profile fiber is taken as an ideal waveguide, and an
15188    arbitrary radially inhomogenous optical fiber can be viewed as a
15189    perturbation. Its modal field can be expanded in terms of complete set
15190    of ideal waveguide modes. Eigenvalues and modal fields are then
15191    obtained from coupled mode equations that have been transformed into a
15192    set of linear equations. Numerical results have been presented and
15193    compared with exact values. (C) 1996 John Wiley & Sons, Inc.
15194 RP Wang, ZH, SHANGHAI UNIV SCI & TECHNOL,WAVE SCI LAB,SHANGHAI
15195    201800,PEOPLES R CHINA.
15196 CR ABRAMOWITZ M, 1964, HDB MATH FUNCTIONS
15197    ADAMS MJ, 1981, INTRO OPTICAL WAVEGU
15198    GLOGE D, 1971, APPL OPTICS, V10, P2252
15199    KOGELNIK H, 1975, INTEGRATED OPTICS, CH2
15200    MARCUSE D, 1974, THEORY DIELECTRIC OP
15201    MILLER SE, 1954, BELL SYST TECH J, V33, P661
15202    OKOSHI T, 1982, OPTICAL FIBERS
15203    SHEN YR, 1984, PRINCIPLES NONLINEAR, CH6
15204    SNYDER AW, 1983, OPTICAL WAVEGUIDE TH
15205    YAMADA R, 1977, J OPT SOC AM, V67, P96
15206    YARIV A, 1973, IEEE J QUANTUM ELECT, V9, P919
15207 NR 11
15208 TC 1
15209 SN 0895-2477
15210 J9 MICROWAVE OPT TECHNOL LETT
15211 JI Microw. Opt. Technol. Lett.
15212 PD JUN 5
15213 PY 1996
15214 VL 12
15215 IS 2
15216 BP 90
15217 EP 93
15218 PG 4
15219 SC Engineering, Electrical & Electronic; Optics
15220 GA UL075
15221 UT ISI:A1996UL07500011
15222 ER
15223 
15224 PT J
15225 AU Wang, W
15226    Wong, PL
15227    Zhang, Z
15228 TI Partial EHL analysis of rib-roller end contact in tapered roller
15229    bearings
15230 SO TRIBOLOGY INTERNATIONAL
15231 DT Article
15232 DE tapered roller bearing; partial elastohydrodynamic lubrication; surface
15233    roughness
15234 ID TORQUE
15235 AB A partial EHL analysis was performed for the tapered rib/spherical
15236    roller end contact in tapered roller bearings. The average Reynolds
15237    equation, the elasticity equation and the pressure-viscosity relation
15238    were solved simultaneously. The effects of the surface roughness as
15239    well as the peculiar geometrical and kinematics parameters of the
15240    rib-roller end contact on the friction torque and film thickness were
15241    investigated. The optimal ratios of radius of curvature of roller end
15242    to rib face were deduced, which confirm the previous finding with the
15243    theory of smooth surfaces. The significant range of surface roughness,
15244    and the optimal surface roughness for the roller big end were obtained.
15245    It was found that asperity contacts extend into the outlet zone. The
15246    results are significant for the design of rib faces and roller ends.
15247    The theoretical treatment is validated by its good correlation with the
15248    existing experimental data for smooth surface contact. Copyright (C)
15249    1996 Elsevier Science Ltd
15250 C1 CITY UNIV HONG KONG,DEPT MFG ENGN,KOWLOON,HONG KONG.
15251 RP Wang, W, SHANGHAI UNIV,DEPT ENGN MECH,POB 224,149 YAN CHANG RD,SHANGHAI
15252    200072,PEOPLES R CHINA.
15253 CR AIHARA S, 1987, J TRIBOL-T ASME, V109, P471
15254    DALMAZ G, 1980, P 7 LEEDS LYON S TRI, V7, P175
15255    ELROD HG, 1979, ASME, V101, P8
15256    GADALLAH N, 1984, J TRIBOL-T ASME, V106, P265
15257    GREENWOOD JA, 1970, P I MECH ENG, V185, P625
15258    JAMISON WE, 1976, ASLE T, V20, P79
15259    JIANG XF, 1994, ASME STLE ANN C HAW
15260    KLECKNER RJ, 1982, ASME T, V104, P99
15261    KORRENN H, 1967, FORTSCHR BER, V1, P11
15262    PATIR N, 1978, ASME, V100, P12
15263    ROELANDS CJA, 1966, CORRELATIONAL ASPECT
15264    TRIPP JH, 1983, ASME, V105, P458
15265    ZHANG Z, 1988, STLE T, V31, P461
15266    ZHOU RS, 1991, J TRIBOL-T ASME, V113, P590
15267    ZHU D, 1988, ASME, V110, P32
15268 NR 15
15269 TC 1
15270 SN 0301-679X
15271 J9 TRIBOL INT
15272 JI Tribol. Int.
15273 PD JUN
15274 PY 1996
15275 VL 29
15276 IS 4
15277 BP 313
15278 EP 321
15279 PG 9
15280 SC Engineering, Mechanical
15281 GA UJ716
15282 UT ISI:A1996UJ71600007
15283 ER
15284 
15285 PT J
15286 AU Huang, HC
15287 TI Elliptically birefringent optical fiber transmission characteristics
15288 SO FIBER AND INTEGRATED OPTICS
15289 DT Article
15290 DE birefringence; Faraday effect; optical fiber; optical sensors;
15291    polarization optics
15292 AB This paper presents a rigorous analysis of spun hi-bi (highly
15293    birefringent) fibers, loosely categorized as elliptically bi fibers,
15294    via the initial value problem approach. Two kinds of transmission
15295    problem are treated. In the single-eigenmode transmission regime, it is
15296    found that the major technological difficulty inherent to spun hi-bi
15297    fibers concerns excitation of the eigenmode, which strictly requires
15298    that the launched light be exactly oriented in conformity with one or
15299    the other local principal axes of the fiber and, meanwhile, that the
15300    ellipticity of the launched light be exactly equal to the
15301    eigen-ellipticity of the same fiber. In the second kind of problem that
15302    involves the interaction of two eigenmodes, a basic result is derived
15303    to show that an arbitrary polarization mode of excitation will
15304    reproduce itself in integer multiples of the local beat length. Such a
15305    kind of transmission regime is relieved of the excitation difficulty
15306    but, because of being severely length-sensitive, is inherently
15307    impractical from the application viewpoint.
15308 RP Huang, HC, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
15309 CR BORN M, 1964, PRINCIPLES OPTICS, P36
15310    HUANG HC, 1960, SCI SINICA, V9, P142
15311    HUANG HC, 1983, OPTICAL WAVEGUIDE SC, P57
15312    LI L, 1986, ELECTRON LETT, V22, P1142
15313 NR 4
15314 TC 1
15315 SN 0146-8030
15316 J9 FIBER INTEGRATED OPT
15317 JI Fiber Integr. Opt.
15318 PY 1996
15319 VL 15
15320 IS 2
15321 BP 71
15322 EP 80
15323 PG 10
15324 SC Optics
15325 GA UJ548
15326 UT ISI:A1996UJ54800001
15327 ER
15328 
15329 PT J
15330 AU Zhu, XH
15331    Meng, ZY
15332 TI The influence of the morphotropic phase boundary on the dielectric and
15333    piezoelectric properties of the PNN-PZ-PT ternary system
15334 SO JOURNAL OF MATERIALS SCIENCE
15335 DT Article
15336 AB The influence of the morphotropic phase boundary (MPB) on the
15337    dielectric and piezoelectric properties of PbNi1/3Nb2/3-PbZrO3-PbTiO3
15338    (PNN-PZ-PT) ternary system were systematically investigated. The
15339    results showed that the piezoelectric constant d(31) and plane coupling
15340    factor k(p) reached a maximum in the vicinity of morphotropic phase
15341    boundary. The highest value of the piezoelectric constant d(31) was 260
15342    x 10(-12) C/N. The Curie temperature T-c decreased rapidly with
15343    increasing content of PNN. The lattice parameters a increased and c
15344    decreased with increasing PNN content and the Zr/Zr + Ti ratio as a
15345    result of the crystal structural transformation from tetragonal to
15346    rhombohedral phases.
15347 C1 SHANGHAI UNIV,SCH MAT SCI & ENGN,SHANGHAI 201800,PEOPLES R CHINA.
15348 RP Zhu, XH, XIAN JIAOTONG UNIV,SCH ELECT & INFORMAT ENGN,XIAN
15349    710049,PEOPLES R CHINA.
15350 CR 1961, P IRE, V49, P1161
15351    BUYANOVA EA, 1965, IZV AN SSSR FIZ, V29, P1877
15352    KITAMURA T, 1981, JPN J APPL PHYS, V20, P97
15353    KO JS, 1992, P 8 IEEE S APPL FERR, P395
15354    KUDO T, 1970, J AM CERAM SOC, V53, P326
15355    MOON JH, 1993, J AM CERAM SOC, V76, P549
15356    UCHINO K, 1986, PIEZOELECTRIC ELECTR
15357    WANG TB, 1986, J INORGANIC MAT, V2, P143
15358 NR 8
15359 TC 12
15360 SN 0022-2461
15361 J9 J MATER SCI
15362 JI J. Mater. Sci.
15363 PD APR 15
15364 PY 1996
15365 VL 31
15366 IS 8
15367 BP 2171
15368 EP 2175
15369 PG 5
15370 SC Materials Science, Multidisciplinary
15371 GA UJ408
15372 UT ISI:A1996UJ40800028
15373 ER
15374 
15375 PT J
15376 AU Liu, ZG
15377    Zhao, WM
15378    Ji, RB
15379    Zhang, ZL
15380    Jiang, XY
15381    Xue, MZ
15382    Fang, B
15383 TI Organic thin film electroluminescent devices with ZnO:Al as the anode
15384 SO JOURNAL OF PHYSICS-CONDENSED MATTER
15385 DT Article
15386 ID DIODES; POLY(3-ALKYLTHIOPHENE)
15387 AB Some organic thin film electroluminescent (EL) devices with
15388    aluminium-doped zinc oxide as the hole-injecting electrode have now
15389    been manufactured. Their EL spectra and J-V and B-V characteristics
15390    have been studied in detail. The work function and ionization potential
15391    of the materials composing the devices have been measured and their
15392    energy models given. The EL performance properties have been explained
15393    well.
15394 C1 E CHINA UNIV CHEM TECHNOL,ELECTRICALLY CONDUCTING POLYMER LAB,SHANGHAI 200237,PEOPLES R CHINA.
15395 RP Liu, ZG, SHANGHAI UNIV SCI & TECHNOL,SCH MAT,SHANGHAI 201800,PEOPLES R
15396    CHINA.
15397 CR ADACHI C, 1988, JPN J APPL PHYS, V27, L269
15398    ADACHI C, 1990, APPL PHYS LETT, V57, P531
15399    AMINAKA E, 1994, JPN J APPL PHYS PT 1, V33, P1061
15400    FOWLER RH, 1928, P R SOC LOND A-CONTA, V119, P173
15401    FUKUDA M, 1989, JPN J APPL PHYS, V28, L1433
15402    HOSOKAWA C, 1992, APPL PHYS LETT, V61, P2503
15403    KAO KC, 1981, ELECT TRANSPORT SOLI
15404    KEDO J, 1993, APPL PHYS LETT, V63, P2627
15405    LIU ZG, 1993, CHIN J LUMIN, V14, P185
15406    OHMORI Y, 1991, JPN J APPL PHYS, V30, P1938
15407    OHMORI Y, 1992, JPN J APPL PHYS 2, V31, L568
15408    ONODA M, 1992, JPN J APPL PHYS, V31, P1107
15409    TANG CW, 1987, APPL PHYS LETT, V51, P913
15410    TANG CW, 1989, J APPL PHYS, V65, P3610
15411    ZHANG C, 1993, J APPL PHYS, V73, P5177
15412    ZHANG ZL, 1994, CHINESE J LUMINESCEN, V15, P363
15413    ZHAO WM, 1995, THIN FILM SCI TECHNO, V8, P153
15414 NR 17
15415 TC 3
15416 SN 0953-8984
15417 J9 J PHYS-CONDENS MATTER
15418 JI J. Phys.-Condes. Matter
15419 PD APR 29
15420 PY 1996
15421 VL 8
15422 IS 18
15423 BP 3221
15424 EP 3228
15425 PG 8
15426 SC Physics, Condensed Matter
15427 GA UJ327
15428 UT ISI:A1996UJ32700014
15429 ER
15430 
15431 PT J
15432 AU Qian, JH
15433    Liu, YC
15434    Liu, HY
15435    Yu, TY
15436    Deng, JQ
15437 TI An amperometric new methylene blue N-mediating sensor for hydrogen
15438    peroxide based on regenerated silk fibroin as an immobilization matrix
15439    for peroxidase
15440 SO ANALYTICAL BIOCHEMISTRY
15441 DT Article
15442 ID ENZYME ELECTRODE
15443 AB A simple and effective procedure was described for the immobilization
15444    of peroxidase in regenerated silk. fibroin membrane prepared from waste
15445    silk. The membranes of regenerated silk fibroin with or without
15446    peroxidase, before or after the ethanol treatment, were characterized
15447    by ir spectra. An amperometric H2O2 sensor, based on the immobilized
15448    peroxidase in regenerated silk fibroin membrane, in the use of new
15449    methylene blue N as an electron transfer mediator, was fabricated. The
15450    characteristics of the sensor with respect to linearity, response time,
15451    effect of pH and temperature, stability, and reproducibility were
15452    investigated. Dependences of Michaelis-Menten constant K-M(app) on the
15453    concentration of the mediator, and the applied potential were also
15454    studied and the results were presented. The sensor was highly sensitive
15455    to H2O2 with a detection limit of 1.0 x 10(-7) M and with response time
15456    of less than 40 s. (C) 1996 Academic Press, Inc.
15457 C1 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
15458    FUDAN UNIV,DEPT MACROMOLEC SCI,SHANGHAI 200433,PEOPLES R CHINA.
15459    SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
15460 CR ALBERY J, 1975, ELECTRODE KINETICS
15461    BIFULCO L, 1994, ANAL LETT, V27, P1443
15462    DEMURA M, 1989, J BIOTECHNOL, V10, P113
15463    DENG Q, 1994, J ELECTROANAL CHEM, V377, P191
15464    DURLIAT H, 1989, BIOELECTROCH BIOENER, V22, P197
15465    FREW JE, 1986, J ELECTROANAL CH INF, V201, P1
15466    HOOGVLIET JC, 1991, BIOSENS BIOELECTRON, V6, P413
15467    HURDIS EC, 1954, ANAL CHEM, V26, P320
15468    ITO Y, 1981, J ASSOC OFF ANA CHEM, V64, P1448
15469    KAMIN RA, 1980, ANAL CHEM, V52, P1198
15470    LIU Y, 1995, ANAL CHEM, V67, P1326
15471    LIU YC, 1995, J CHEM TECHNOL BIOT, V64, P269
15472    MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801
15473    MATSUBARA C, 1985, ANAL CHEM, V57, P1107
15474    OLSSON B, 1982, ANAL CHIM ACTA, V136, P113
15475    POPESCU IC, 1995, BIOSENS BIOELECTRON, V10, P443
15476    QIAN JH, 1995, J ELECTROANAL CHEM, V397, P157
15477    SCHUBERT F, 1991, ANAL CHIM ACTA, V245, P133
15478    SHCELLER FW, 1989, BIOSENSORS
15479    TATSUMA T, 1989, ANAL CHEM, V61, P2352
15480    WANG J, 1989, ELECTROANAL, V1, P43
15481    ZHOU XJ, 1995, ANAL CHIM ACTA, V304, P147
15482 NR 22
15483 TC 13
15484 SN 0003-2697
15485 J9 ANAL BIOCHEM
15486 JI Anal. Biochem.
15487 PD MAY 1
15488 PY 1996
15489 VL 236
15490 IS 2
15491 BP 208
15492 EP 214
15493 PG 7
15494 SC Chemistry, Analytical; Biochemical Research Methods; Biochemistry &
15495    Molecular Biology
15496 GA UJ495
15497 UT ISI:A1996UJ49500003
15498 ER
15499 
15500 PT J
15501 AU Lu, WC
15502    Yan, LC
15503    Liu, HL
15504    Chen, NY
15505 TI Expert system RECORES for classification and prediction of
15506    resistivities of rare earth complex oxides
15507 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
15508 DT Article
15509 DE rare earth complex brides; pattern recognition; expert system
15510 AB The relationship between the resistivities of rare earth complex oxides
15511    and their characteristic parameters was studied by chemical bond
15512    parameter-pattern recognition method, An expert system, RECORES, for
15513    the classification and prediction of resistivities of the compounds has
15514    been built on the basis of the classification diagrams and rules found
15515    by the principal; component analysis and Fisher method, The expert
15516    system posesses the basic properties of common expert system as well as
15517    the pattern recognition package used as a visual and effective tool to
15518    save, represent and acquire the knowledges.
15519 C1 ACAD SINICA,SHANGHAI INST MET,SHANGHAI 200050,PEOPLES R CHINA.
15520 RP Lu, WC, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R
15521    CHINA.
15522 CR CHEN N, 1988, ANAL CHIM ACTA, V210, P175
15523    LIU HL, 1992, CHINESE SCI BULL, V2, P113
15524    LIU ZX, 1981, ACTA METALLURGICA SI, V17, P652
15525    LU WC, 1994, CHEM J CHINESE U, V15, P882
15526 NR 4
15527 TC 0
15528 SN 0251-0790
15529 J9 CHEM J CHINESE UNIV-CHINESE
15530 JI Chem. J. Chin. Univ.-Chin.
15531 PD APR
15532 PY 1996
15533 VL 17
15534 IS 4
15535 BP 505
15536 EP 508
15537 PG 4
15538 SC Chemistry, Multidisciplinary
15539 GA UH847
15540 UT ISI:A1996UH84700002
15541 ER
15542 
15543 PT J
15544 AU Cai, YD
15545    Tang, Y
15546    Lu, WC
15547    Yan, LC
15548 TI Learning association by self-organization neural tree applied to the
15549    estimation of formation condition for amorphous phase of trinal
15550    fluorides
15551 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
15552 DT Article
15553 DE fluoride; condition for amorphous formation; artificial neural network;
15554    learning association by self-organization neural tree (LASSONT)
15555 AB In this paper, Learning Association by Self-organization neural
15556    tree(LASSONT) was applied to the estimation of the formation condition
15557    for amorphous phase of trinal fluorides by using the chemical bond
15558    parameters, and the intelligential expert systems for computer
15559    estimation was established, The classification results show that the
15560    performance of the neural tree is good, and therefore LASSONT might be
15561    referred as an effective assistant technique for the investigation of
15562    formation condition of amorphous phase of trinal fluorides.
15563 C1 CHINESE ACAD SCI,SHANGHAI RES CTR BIOTECHNOL,SHANGHAI 200233,PEOPLES R CHINA.
15564    SHANGHAI UNIV,DEPT CHEM,SHANGHAI,PEOPLES R CHINA.
15565 CR FRANK IE, 1982, ANAL CHEM, V54, P232
15566    LI T, 1993, NEUROCOMPUTING, P5
15567    LUO MQ, 1991, 3 NAT C COMP CHEM HA, P102
15568 NR 3
15569 TC 0
15570 SN 0251-0790
15571 J9 CHEM J CHINESE UNIV-CHINESE
15572 JI Chem. J. Chin. Univ.-Chin.
15573 PD APR
15574 PY 1996
15575 VL 17
15576 IS 4
15577 BP 531
15578 EP 534
15579 PG 4
15580 SC Chemistry, Multidisciplinary
15581 GA UH847
15582 UT ISI:A1996UH84700009
15583 ER
15584 
15585 PT J
15586 AU Ding, WY
15587    Han, ZH
15588    Chen, YL
15589    Zou, YJ
15590    Liu, X
15591 TI Stereoselective synthesis of cis-1,2-cyclopropane derivatives
15592 SO CHEMICAL RESEARCH IN CHINESE UNIVERSITIES
15593 DT Article
15594 DE cyclopropanation; stereoselective synthesis; arsenic ylide
15595 AB Carbomethoxymethylenetriphenylarsorane 1, or its arsonium bromide in
15596    the presence of K2CO3, reacts with 2, 2-dialkyl-1,
15597    3-dioxa-5-substituted-benzal-4, 6-dione 2 to give
15598    cis-1-methoxycarbonyl-2-aryl-6, 6-dialky-5, 7-dioxa-spiro-[2, 5]-4,
15599    8-octanadione 3 with a moderate to good yield.
15600 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
15601 CR DAVIDSON D, 1948, J AM CHEM SOC, V70, P3426
15602    NICOLAOU KC, 1981, J CHEM SOC CHEM COMM, P1195
15603    SCHUSTER P, 1964, MH CHEM, V95, P53
15604    SHEN YC, 1981, ACTA CHIM SINICA, V39, P243
15605    TROST BM, 1991, COMPREHENSIVE ORGANI, V4, P951
15606 NR 5
15607 TC 12
15608 SN 1005-9040
15609 J9 CHEM RES CHINESE UNIV
15610 JI Chem. Res. Chin. Univ.
15611 PD FEB
15612 PY 1996
15613 VL 12
15614 IS 1
15615 BP 50
15616 EP 55
15617 PG 6
15618 SC Chemistry, Multidisciplinary
15619 GA UH840
15620 UT ISI:A1996UH84000009
15621 ER
15622 
15623 PT J
15624 AU Wang, SZ
15625 TI Finite-difference time-domain approach to underwater acoustic
15626    scattering problems
15627 SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
15628 DT Article
15629 ID ABSORBING BOUNDARY-CONDITIONS; RADIATION; EQUATIONS
15630 AB The finite-difference time-domain (FDTD) recurrence expressions are
15631    formulated, and the numerical algorithm developed for underwater
15632    acoustic scattering applications, based upon the basic motion equation
15633    and the equation of continuity. The boundary condition implementation
15634    for both soft and rigid surfaces, and the absorbing boundary conditions
15635    on the truncating surface are described. The algorithm simulates the
15636    sound wave propagation in the time domain. As the time-stepping
15637    proceeds,boundary conditions are satisfied naturally. The method is
15638    particularly suited for scattering from complex objects. Near-field
15639    distributions of waves scattered from cylinders with ideal boundary
15640    conditions, insonified by a plane incident wave, are first computed.
15641    Far-field directional patterns are then derived using a Fourier
15642    transform method. The method is then applied to some other objects,
15643    including a square cylinder with an arbitrary aspect angle, and wedges
15644    with either ideally soft or ideally rigid surfaces. A good agreement
15645    between the FDTD and the theoretical results is demonstrated, showing
15646    the potential of the method in the studies of underwater scattering
15647    problems. (C) 1996 Acoustical Society of America.
15648 RP Wang, SZ, SHANGHAI UNIV,SHANGHAI 200072,PEOPLES R CHINA.
15649 CR BOBBER RJ, 1970, UNDERWATER ELECTROAC, P193
15650    CHANG WF, 1989, B SEISMOL SOC AM, V79, P211
15651    CLARK JA, 1992, IEEE 6 SP WORKSH STA, P338
15652    DOUGHERTY M, 1987, J ACOUST SOC AM, V82, P239
15653    FANG J, 1988, P 1988 IEEE AP S INT, P472
15654    FRICKE JR, 1993, J ACOUST SOC AM, V93, P1784
15655    JULL EV, 1981, APERTURE ANTENNAS DI, P38
15656    KELLY KR, 1974, P ROY IR AC C NUM AN, P57
15657    LUEBBERS RJ, 1992, IEEE T ANTENN PROPAG, V40, P1403
15658    MALONEY JG, 1993, IEEE T ANTENN PROPAG, V41, P668
15659    MORSE PM, 1983, VIBRATION SOUND, P347
15660    MUR G, 1981, IEEE T ELECTROMAGN C, V23, P377
15661    RAILTON CJ, 1992, ELECTRON LETT, V628, P1891
15662    ROACHE PJ, 1972, COMPUTATIONAL FLUID
15663    SCHINZINGER R, 1991, CONFORMAL MAPPING ME, P339
15664    STEPHEN RA, 1988, REV GEOPHYS, V26, P445
15665    TAFLOVE A, 1975, IEEE T MICROW THEORY, V23, P623
15666    TAFLOVE A, 1989, P IEEE, V77, P682
15667    TIRKAS PA, 1993, IEEE T ELECTROMAGN C, V35, P192
15668    WANG S, UNPUB EFFICIENT ABSO
15669    WANG S, 1984, CHIN J ACOUST, V3, P121
15670    WANG S, 1985, ACTA ACUST, V10, P247
15671    YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302
15672 NR 23
15673 TC 7
15674 SN 0001-4966
15675 J9 J ACOUST SOC AMER
15676 JI J. Acoust. Soc. Am.
15677 PD APR
15678 PY 1996
15679 VL 99
15680 IS 4
15681 PN Part 1
15682 BP 1924
15683 EP 1931
15684 PG 8
15685 SC Acoustics
15686 GA UF398
15687 UT ISI:A1996UF39800014
15688 ER
15689 
15690 PT J
15691 AU Zhang, XL
15692    Liu, HY
15693    Wu, XX
15694    Qi, DY
15695    Zhang, ZY
15696    Dai, M
15697    Deng, JQ
15698    Feng, F
15699 TI Amperometric tetrathiafulvalene-mediated sensor sensitive to reduced
15700    nicotinamide adenine dinucleotide based on co-immobilized lactate
15701    oxidase and lactate dehydrogenase
15702 SO ANALYTICAL COMMUNICATIONS
15703 DT Article
15704 ID CHEMICALLY MODIFIED ELECTRODES; ELECTROCATALYTIC OXIDATION; ENZYME
15705    ELECTRODE; CARBON ELECTRODES; NADH; ADSORPTION; COENZYMES; ACID; SALT
15706 AB An amperometric tetrathiafulvalene (TTF) mediated reduced nicotinamide
15707    adenine dinucleotide (NADH) sensor has been fabricated by
15708    co-immobilizing lactate oxidase and lactate dehydrogenase on an
15709    Eastman-AQ-TTF-modified electrode. The sensor provides low detection
15710    limits of 0.01 mmol l(-1) NADH and 1.0 mu mol l(-1) L-lactate and
15711    pyruvate by means of amplification of the bioelectrocatalytic oxidation
15712    current by the recycling of L-lactate and pyruvate, The response of the
15713    sensor to NADH under N-2 saturation reaches a 95% steady-state current
15714    within 2 min with a linear response at concentrations of 0.05-2.5 mmol
15715    l(-1), The dependence of the apparent Michaelis-Menten constant on
15716    applied potential was studied.
15717 C1 SUZHOU INST CITY CONSTRUCT & ENVIRONM PROTECT,DEPT ENVIRONM PROTECT,SUZHOU 300111,JIANSU,PEOPLES R CHINA.
15718    FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
15719    SHANGHAI UNIV,INST HYDROGEN STORAGE MAT,SHANGHAI 200072,PEOPLES R CHINA.
15720 RP Zhang, XL, SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES
15721    R CHINA.
15722 CR ALBERY WJ, 1987, J ELECTROANAL CH INF, V218, P127
15723    BARD AJ, 1990, ANAL CHEM, V62, P2658
15724    CENAS NK, 1981, J ELECTROANAL CHEM, V128, P103
15725    DEMPSEY E, 1992, BIOSENS BIOELECTRON, V7, P323
15726    ESSAADI K, 1994, J ELECTROANAL CHEM, V367, P275
15727    GABBAY EJ, 1976, BIOCHEMISTRY-US, V15, P2062
15728    GENTILOMI G, 1991, ANAL CHIM ACTA, V255, P387
15729    GORTON L, 1984, J ELECTROANAL CH INF, V161, P103
15730    GORTON L, 1986, J CHEM SOC FARAD T 1, V82, P1245
15731    GORTON L, 1991, ANAL CHIM ACTA, V250, P203
15732    HAJIZADEH K, 1991, ANAL LETT, V24, P1453
15733    HALE PD, 1993, ANAL LETT, V26, P1073
15734    HIN BFYY, 1987, ANAL CHEM, V59, P2111
15735    JAEGFELDT H, 1980, J ELECTROANAL CHEM, V110, P295
15736    KAMACHE M, 1982, J AM CHEM SOC, V104, P4520
15737    KATZ E, 1994, J ELECTROANAL CHEM, V373, P189
15738    KUO KN, 1979, ANAL CHEM, V51, P745
15739    MCNEIL CJ, 1989, ANAL CHEM, V61, P25
15740    MOIROUX J, 1978, ANAL CHEM, V50, P1056
15741    MURTHY ASN, 1994, BIOELECTROCH BIOENER, V33, P71
15742    ONSAKA T, 1993, J CHEM SOC CHEM COMM, P222
15743    RIVERA N, 1994, BIOELECTROCH BIOENER, V34, P169
15744    RYAN MD, 1994, ANAL CHEM, V66, R360
15745    SCOTT DA, 1992, ANAL CHIM ACTA, V256, P47
15746    SIM KW, 1993, ANAL CHIM ACTA, V273, P165
15747    SPRULES SD, 1994, ANALYST, V119, P253
15748    SYMONS RH, 1989, J VIROL METHODS, V23, P299
15749    UEDA C, 1982, ANAL CHEM, V54, P850
15750    XU FQ, 1994, J ELECTROANAL CHEM, V368, P221
15751    YAMADA H, 1994, BIOELECTROCH BIOENER, V33, P91
15752 NR 30
15753 TC 4
15754 SN 1359-7337
15755 J9 ANAL COMMUN
15756 JI Anal. Commun.
15757 PD MAR
15758 PY 1996
15759 VL 33
15760 IS 3
15761 BP 111
15762 EP 114
15763 PG 4
15764 SC Chemistry, Analytical
15765 GA UE375
15766 UT ISI:A1996UE37500008
15767 ER
15768 
15769 PT J
15770 AU Li, L
15771    Xu, ZY
15772    Hsu, TY
15773    Ao, Q
15774 TI Optimization of the phase diagram of CeO2-ZrO2 system
15775 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
15776 DT Article
15777 AB Revised phase diagram of the CeO2-ZrO2 system is optimized and the
15778    lattice stability parameters of CeO2 of various phases as well as
15779    solution parameters of phases (liquid, cubic, tetragonal and
15780    monoclinic) are simultaneously obtained by using the Kaufman and
15781    Nesor's model for describing the ceramic solutions and the Lukas
15782    program.
15783 C1 SHANGHAI JIAO TONG UNIV,DEPT MAT SCI,SHANGHAI 200030,PEOPLES R CHINA.
15784    SHANDONG POLYTECH UNIV,DEPT MAT ENGN,JINAN 250014,PEOPLES R CHINA.
15785 RP Li, L, SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R
15786    CHINA.
15787 CR DU Y, 1991, J AM CERAM SOC, V74, P1569
15788    DUWEZ P, 1950, J AM CERAM SOC, V33, P274
15789    GARVIE RC, 1965, J PHYS CHEM-US, V69, P1238
15790    KAUFMAN L, 1987, CALPHAD, V2, P35
15791    LANGE FF, 1981, 12 ROCHW INT, P19
15792    LIN L, 1995, J MATER SCI TECHNOL, V11, P276
15793    LONGO V, 1971, CERAMURGIA INT, V1, P4
15794    LUKAS HL, 1977, CALPHAD, V1, P225
15795    NEGAS T, 1976, 12TH P RAR EARTH RES, P605
15796    ROITTI S, 1972, CERAMURGIA INT, V2, P97
15797    STUBICAN VS, 1981, ADV CERAM, V3, P25
15798    TANI E, 1982, YOGVO KYOKAI SHI, V90, P195
15799    TANI E, 1983, J AM CERAM SOC, V66, P506
15800 NR 13
15801 TC 11
15802 SN 1005-0302
15803 J9 J MATER SCI TECHNOL
15804 JI J. Mater. Sci. Technol.
15805 PY 1996
15806 VL 12
15807 IS 2
15808 BP 159
15809 EP 160
15810 PG 2
15811 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
15812    Engineering
15813 GA UD933
15814 UT ISI:A1996UD93300015
15815 ER
15816 
15817 PT J
15818 AU Guo, BY
15819    Li, X
15820    Vazquez, L
15821 TI A Legendre spectral method for solving the nonlinear Klein-Gordon
15822    education
15823 SO COMPUTATIONAL AND APPLIED MATHEMATICS
15824 DT Article
15825 DE Legendre spectral scheme; Klein-Gordon equation
15826 ID EQUATION
15827 AB A Legendre spectral scheme is proposed for solving the initial boundary
15828    value problem of the nonlinear Klein-Gordon equation. The numerical
15829    solution keeps the conservation. Its stability and convergence are
15830    investigated. Numerical results show the advantages of such
15831    approximation.
15832 C1 CITY UNIV HONG KONG,DEPT MATH,KOWLOON,HONG KONG.
15833    SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
15834    UNIV COMPLUTENSE MADRID,FAC CIENCIAS FIS,DEPT FIS TEOR,E-28040 MADRID,SPAIN.
15835 CR CANUTO C, 1988, SPECTRAL METHODS FLU
15836    CAO WM, 1993, J COMPUT PHYS, V108, P296
15837    GOU BY, 1982, NUMERICAL MATH, V4, P46
15838    GOU BY, 1982, SCI SINICA A, V25, P702
15839    GOU BY, 1983, J APPL SCI, V1, P25
15840    GOU BY, 1988, DIFFERENCE METHODS P
15841    GOU BY, 1993, NUMERICAL MATH, V2, P38
15842    LIONS JL, 1969, QUELQUES METHODES RE
15843    RICHTMYER RD, 1967, FINITE DIFFERENCE ME
15844    STRAUSS W, 1978, J COMP PHYSIOL, V28, P271
15845 NR 10
15846 TC 1
15847 SN 0101-8205
15848 J9 COMPUT APPL MATH
15849 JI Comput. Appl. Math.
15850 PY 1996
15851 VL 15
15852 IS 1
15853 BP 19
15854 EP 36
15855 PG 18
15856 SC Mathematics, Applied
15857 GA UD917
15858 UT ISI:A1996UD91700002
15859 ER
15860 
15861 PT J
15862 AU Lin, L
15863    Delaey, L
15864    VanDerBiest, O
15865    Wollants, P
15866 TI Calculation of isothermal sections of three ternary Ti-Zr-X systems
15867 SO SCRIPTA MATERIALIA
15868 DT Article
15869 C1 KATHOLIEKE UNIV LEUVEN,DEPT MET & MAT ENGN,B-3001 HEVERLEE,BELGIUM.
15870 RP Lin, L, SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R
15871    CHINA.
15872 CR ABRIATA JP, 1982, B ALLOY PHASE DIAGR, V3, P34
15873    ABRIATA JP, 1982, B ALLOY PHASE DIAGRA, V3, P29
15874    AUFFREDIC JP, 1982, J LESS-COMMON MET, V84, P49
15875    BALAKRISHNA SS, 1990, T INDIAN I METALS, V33, P155
15876    BOYER HE, 1973, METALS HDB, V8, P310
15877    BROWN ARG, 1966, MEM SCI REV METALL, V63, P575
15878    BUDBERG PB, 1967, IAN SSSR NEORG MATER, V3, P656
15879    CHAN YA, 1966, AFMLTR652 USAF 2, P5
15880    CHATTERJI D, 1971, MET T, V2, P1271
15881    DOMAGALA RF, 1966, J LESS-COMMON MET, V11, P70
15882    FAN MY, 1982, OPTIMUM TECHNIQUE, P159
15883    FARRAR PA, 1966, T AIME, V236, P1061
15884    FLEWITT PEJ, 1972, J APPL CRYSTALLOGR, V5, P423
15885    GUILLERMET AF, 1991, Z METALLKD, V82, P478
15886    HAYES ET, 1957, USBMU345 US AT EN CO
15887    HAYES ET, 1957, USBMV345
15888    IMGRAM AG, 1961, 59595 WADC BATT MEM
15889    IMGRAM AG, 1962, J LESS-COMMON MET, V4, P217
15890    KAUFMAN L, 1970, COMPUTER CALCULATION
15891    LIN L, 1994, CALPHAD, V18, P89
15892    MAYKUTH DJ, 1953, T AIME, V197, P231
15893    MURRAY JL, COMMUNICATION
15894    MURRAY JL, 1981, B ALLOY PHASE DIAGRA, V2, P181
15895    MURRAY JL, 1981, B ALLOY PHASE DIAGRA, V2, P55
15896    MURRAY JL, 1981, BAPD, V2, P197
15897    MURRAY JL, 1981, BAPD, V2, P62
15898    MURRAY JL, 1987, PHASE DIAGRAMS BINAR, P340
15899    NELDER JA, 1965, COMPUT J, V7, P308
15900    RAUB CJ, 1965, PHYS REV A, V137, P142
15901    RUDY E, 1969, AFMLTR652 USAF 5
15902    VANEFFENTEREE P, 1972, CEAR4330 CTR ET NUCL
15903 NR 31
15904 TC 0
15905 SN 1359-6462
15906 J9 SCRIPTA MATER
15907 JI Scr. Mater.
15908 PD MAY 1
15909 PY 1996
15910 VL 34
15911 IS 9
15912 BP 1411
15913 EP 1416
15914 PG 6
15915 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
15916    Engineering
15917 GA UD557
15918 UT ISI:A1996UD55700012
15919 ER
15920 
15921 PT J
15922 AU Bai, ZZ
15923    Wang, DR
15924 TI Improved comparison theorem for the nonlinear multisplitting relaxation
15925    method
15926 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
15927 DT Article
15928 DE nonlinear multisplitting; relaxation method; monotone convergence;
15929    convergence rate
15930 ID PARALLEL; ALGORITHM
15931 AB A new comparison theorem is given for the nonlinear multisplitting
15932    relaxation method [1], and an important modification is proposed for
15933    it, too.
15934 C1 SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
15935 RP Bai, ZZ, CHINESE ACAD SCI,INST COMPUTAT MATH & SCI ENGN COMP,POB
15936    2719,BEIJING 100080,PEOPLES R CHINA.
15937 CR BAI ZZ, 1993, THESIS SHANGHAI U SC
15938    BAI ZZ, 1994, CHINESE J ENG MATH, V11, P99
15939    BAI ZZ, 1996, COMPUT MATH APPL, V31, P21
15940    FROMMER A, 1989, NUMER MATH, V56, P269
15941    MORE JJ, 1972, SIAM J NUMER ANAL, V9, P357
15942    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
15943    ORTEGA JM, 1970, ITERATIVE SOLUTION N
15944    RHEINBOLDT WC, 1970, J MATH ANAL APPL, V32, P274
15945    WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473
15946    WANG DR, 1994, CHINESE ANN MATH B, V15, P335
15947    WANG DR, 1994, P 92 SHANGH INT NUM, P125
15948    WHITE RE, 1986, SIAM J ALGEBRA DISCR, V7, P137
15949    WHITE RE, 1986, SIAM J NUMER ANAL, V23, P639
15950 NR 13
15951 TC 1
15952 SN 0898-1221
15953 J9 COMPUT MATH APPL
15954 JI Comput. Math. Appl.
15955 PD APR
15956 PY 1996
15957 VL 31
15958 IS 8
15959 BP 23
15960 EP 30
15961 PG 8
15962 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
15963 GA UD547
15964 UT ISI:A1996UD54700003
15965 ER
15966 
15967 PT J
15968 AU Lin, SP
15969    Zhou, ZW
15970 TI The hydrodynamic stability of pendent drop under a liquid column
15971 SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME
15972 DT Article
15973 AB The hydrodynamic stability of a liquid column resting on a gas in a
15974    vertical tube with its upper end closed is analyzed. The maximum height
15975    above which the interface is unstable is given as a function of the
15976    Bond number and the density ratio. The instability is shown to be
15977    monotonic, i.e., nonoscillatory.
15978 C1 SHANGHAI UNIV SCI & TECHNOL,INST APPL MATH & MECH,SHANGHAI,PEOPLES R CHINA.
15979 RP Lin, SP, CLARKSON UNIV,DEPT MECH & AERONAUT ENGN,POTSDAM,NY 13699.
15980 CR DUSSAN V, 1975, ARCH RATION MECH AN, V57, P363
15981    HUH C, 1969, THESIS U MINNESOTA
15982    JOSEPH DD, 1976, STABILITY FLUID MOTI
15983    LIN SP, 1990, J FLUID MECH, V218, P641
15984    PITTS E, 1973, J FLUID MECH, V59, P753
15985    PITTS E, 1974, J FLUID MECH, V63, P487
15986 NR 6
15987 TC 0
15988 SN 0021-8936
15989 J9 J APPL MECH
15990 JI J. Appl. Mech.-Trans. ASME
15991 PD MAR
15992 PY 1996
15993 VL 63
15994 IS 1
15995 BP 106
15996 EP 109
15997 PG 4
15998 SC Mechanics
15999 GA UC815
16000 UT ISI:A1996UC81500015
16001 ER
16002 
16003 PT J
16004 AU Wang, HZ
16005 TI Incidence-radiation condition of an artificial boundary
16006 SO COMPUTERS & STRUCTURES
16007 DT Article
16008 ID FINITE
16009 AB In this paper, the incidence-radiation composite boundary is presented
16010    for simulating the radiation condition on load incidence boundary. The
16011    theoretical foundations of the composite boundary are region-wise
16012    virtual work equations of wave motion in the finite and infinite
16013    domain. By studying the virtual work equations of changed domain and
16014    original domain, the correct boundary condition of wave motion problems
16015    concerning infinite domain is obtained. This revises the mistake caused
16016    by the current generally used method. Numerical results also show that
16017    the presented incidence-radiation composite boundary is very effective.
16018 RP Wang, HZ, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI
16019    200072,PEOPLES R CHINA.
16020 CR CHEW WC, 1990, WAVES FIELDS INHOMOG
16021    CHIEN W, 1989, ACTA MECH SINICA, V21, P300
16022    LIAO ZP, 1984, SCI SINICA SER A, V27, P1063
16023    LYSMER J, 1969, J ENG MECH DIV ASCE, V95, P859
16024    MEDINA F, 1983, INT J NUMER METH ENG, V19, P1209
16025    SUN J, 1993, SELECTED PAPERS TONG, P71
16026    WHITE W, 1977, J ENG MECH DIV ASCE, V103, P949
16027    WOLF JP, 1981, DYNAMIC SOIL STRUCTU
16028    ZIENKIEWICZ OC, 1991, FINITE ELEMENT METHO, V2
16029 NR 9
16030 TC 0
16031 SN 0045-7949
16032 J9 COMPUT STRUCT
16033 JI Comput. Struct.
16034 PD MAY 17
16035 PY 1996
16036 VL 59
16037 IS 4
16038 BP 743
16039 EP 749
16040 PG 7
16041 SC Computer Science, Interdisciplinary Applications; Engineering, Civil
16042 GA UC192
16043 UT ISI:A1996UC19200014
16044 ER
16045 
16046 PT J
16047 AU Xiao, YW
16048    Zhang, ZW
16049 TI Investigation on the potentiostatic polymerization of low concentration
16050    aniline
16051 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
16052 DT Article
16053 DE potentiostatic method; electrochemical polymerization; low
16054    concentration aniline
16055 AB In this paper, the electrochemical polymerization of low concentration
16056    aniline was studied by potentiostatic method. The equation of polymeric
16057    current simultaneously controlled by diffusion and electrode reaction
16058    was derived and verified successfully, Some electrochemical parameters
16059    of polymeric reaction, such as alpha(boolean AND), k(s)' and D-R, were
16060    determined.
16061 C1 NANJING UNIV, DEPT CHEM, NANJING 210093, PEOPLES R CHINA.
16062 RP Xiao, YW, SHANGHAI UNIV SCI & TECHNOL, DEPT CHEM, SHANGHAI 201800,
16063    PEOPLES R CHINA.
16064 CR BREITENHACH M, 1971, ELECTROANAL CHEM ELE, V29, P29
16065    DIAZ AF, 1980, J ELECTROANAL CHEM, V111, P111
16066    DUNSCH L, 1975, J ELECTROANAL CHEM, V61, P61
16067    MOHILNER DM, 1962, J AM CHEM SOC, V84, P3618
16068    XIAO YW, IN PRESS ACTA CHIM S
16069    YIN B, IN PRESS ACTA CHIMIC
16070    YIN B, 1995, ACTA CHIM SINICA, V53, P73
16071 NR 7
16072 TC 0
16073 SN 0251-0790
16074 J9 CHEM J CHINESE UNIV-CHINESE
16075 JI Chem. J. Chin. Univ.-Chin.
16076 PD DEC
16077 PY 1995
16078 VL 16
16079 IS 12
16080 BP 1852
16081 EP 1855
16082 PG 4
16083 SC Chemistry, Multidisciplinary
16084 GA UC194
16085 UT ISI:A1995UC19400007
16086 ER
16087 
16088 PT J
16089 AU Zhao, PS
16090    Yun, S
16091    Hu, ZM
16092    Qi, DY
16093 TI Quantitative analysis of a mixture with reversible electrode processes
16094    by cyclic voltammetry and linear sweep voltammetry
16095 SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY
16096 DT Article
16097 DE digital simulation; quantitative analysis; reversible electrode
16098    processes; cyclic voltammetry; linear sweep voltammetry
16099 ID RESOLUTION ENHANCEMENT
16100 AB The theories of the linear sweep voltammetry (LSV) and cyclic
16101    voltammetry (CV), including branch cyclic voltammetry (BACV), of a
16102    mixture containing two components whose electrode processes are
16103    reversible and independent are described. The digital simulation method
16104    is used to simulate the theoretical linear sweep and cyclic
16105    voltammograms at spherical electrodes. A mixture of Pb2+ and Cd2+ at
16106    hanging mercury drop electrodes is used to test the theories. Both
16107    theory and experiment show that, in the presence of a species which is
16108    reduced at more positive potentials, it is difficult to determine the
16109    concentration of another species; considerable error could be caused in
16110    LSV, but CV based on the reverse branch of a cyclic voltammogram and
16111    BACV show less error. The allowed concentration of the more positively
16112    reduced species with a 10% relative error in CV and BACV is about four
16113    to twenty times more than that in LSV. However, in the presence of a
16114    species that is reduced at more negative potentials, LSV shows far less
16115    error than BACV and CV. The theoretical and experimental results are
16116    consistent.
16117 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
16118 CR BARD AJ, 1980, ELECTROCHEMICAL METH, P232
16119    BOND AM, 1980, MODERN POLAROGRAPHIC, P207
16120    ENGBLOM SO, 1990, J ELECTROANAL CH INF, V296, P371
16121    FELDBERG SW, 1969, ELECTROANALYTICAL CH, V3, P199
16122    KISSINGER PT, 1983, J CHEM EDUC, V60, P702
16123    MABBOTT GA, 1983, J CHEM EDUC, V60, P697
16124    MYLAND JC, 1983, J ELECTROANAL CH INF, V153, P43
16125    MYLAND JC, 1986, J ELECTROANAL CH INF, V206, P1
16126    NICHOLSON RS, 1964, ANAL CHEM, V36, P706
16127    OLDHAM KB, 1983, ANAL CHEM, V55, P1992
16128    OSTERYOUNG J, 1986, ANAL CHEM S SER, V25, P3
16129    OSTERYOUNG J, 1986, ELECTROANAL CHEM, V14, P209
16130    PALYS M, 1991, TALANTA, V38, P723
16131    PIZETA I, 1990, J ELECTROANAL CH INF, V296, P395
16132    POLCYN DS, 1966, ANAL CHEM, V38, P370
16133    ROONEY RC, 1963, J POLAROGRAPH SOC, V9, P45
16134    TOKUDA K, 1983, J ELECTROANAL CH INF, V159, P23
16135    ZHAO P, 1987, ACTA CHIM SINICA, V45, P1163
16136 NR 18
16137 TC 0
16138 SN 0022-0728
16139 J9 J ELECTROANAL CHEM
16140 JI J. Electroanal. Chem.
16141 PD FEB 7
16142 PY 1996
16143 VL 402
16144 IS 1-2
16145 BP 11
16146 EP 17
16147 PG 7
16148 SC Chemistry, Analytical; Electrochemistry
16149 GA UC280
16150 UT ISI:A1996UC28000002
16151 ER
16152 
16153 PT J
16154 AU Chian, JF
16155 TI Ceramic glass from flying-ash
16156 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
16157 DT Meeting Abstract
16158 C1 SUNY COLL ONEONTA,DEPT CHEM,ONEONTA,NY 13820.
16159    SHANGHAI UNIV,SHANGHAI,PEOPLES R CHINA.
16160 NR 0
16161 TC 0
16162 SN 0065-7727
16163 J9 ABSTR PAP AMER CHEM SOC
16164 JI Abstr. Pap. Am. Chem. Soc.
16165 PD MAR 24
16166 PY 1996
16167 VL 211
16168 PN Part 1
16169 BP 631
16170 EP INOR
16171 PG 1
16172 SC Chemistry, Multidisciplinary
16173 GA UA482
16174 UT ISI:A1996UA48203648
16175 ER
16176 
16177 PT J
16178 AU Zhao, XH
16179    Chen, WF
16180 TI The influence of interface layer on microstructural stresses in mortar
16181 SO INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN
16182    GEOMECHANICS
16183 DT Article
16184 DE concrete; interface layer; microstructure; mortar; stress
16185 AB In this paper, the influence of geometrical and physical parameters
16186    (size of the sand particle, thickness of the interface layer and ratios
16187    of the modulus of elasticity) on stress distributions in a mortar is
16188    studied. It is found that a weak or soft interface layer in the mortar
16189    will greatly reduce the strength of the concrete; if the modulus of the
16190    interface layer approaches to that of the cement paste and the modulus
16191    of the sand particle (or aggregate) is 4-10 times as large as that of
16192    the cement paste, the concrete will possess a much higher strength and
16193    thus has a better property.
16194 C1 PURDUE UNIV,SCH CIVIL ENGN,W LAFAYETTE,IN 47907.
16195 RP Zhao, XH, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI,PEOPLES
16196    R CHINA.
16197 CR BENVENISTE Y, 1989, MECH MATER, V7, P305
16198    CHEN WF, 1994, 146 ASME AMR
16199    CHRISTENSEN RM, 1979, J MECH PHYS SOLIDS, V27, P315
16200    COHEN MD, 1994, CEMENT CONCRETE RES, V24, P95
16201    YAMAGUCHI E, 1991, J ENG MECH-ASCE, V117, P653
16202    ZHAO XH, 1994, CESTR9423 PURD U SCH
16203 NR 6
16204 TC 2
16205 SN 0363-9061
16206 J9 INT J NUMER ANAL METH GEOMECH
16207 JI Int. J. Numer. Anal. Methods Geomech.
16208 PD MAR
16209 PY 1996
16210 VL 20
16211 IS 3
16212 BP 215
16213 EP 228
16214 PG 14
16215 SC Engineering, Geological; Materials Science, Multidisciplinary; Mechanics
16216 GA UA784
16217 UT ISI:A1996UA78400005
16218 ER
16219 
16220 PT J
16221 AU Zhang, F
16222    Cao, ZC
16223 TI Modified model in positive temperature coefficient of resistance BaTiO3
16224    ceramics
16225 SO JOURNAL OF APPLIED PHYSICS
16226 DT Article
16227 AB Current-voltage and resistivity-voltage measurements have been made on
16228    donor-doped BaTiO3 ceramics in order to investigate the nature of the
16229    current transport processes. It is found that the characteristics of
16230    the current-voltage do not follow the Heywang model [Solid-State
16231    Electron. 3, 51 (1961)]. Hence, the classical Heywang model is modified
16232    and the thermionic emission model with smoothly changed barrier
16233    resulted from image force is suggested. The modified theory coincides
16234    better with the experimental observation. The dependence between
16235    current density and voltage is J=J(0) exp[-(phi(0)-beta V-1/2)/kT]. The
16236    relationship between resistivity and voltage (voltage effect) is
16237    rho=(2kT/dJ(0) beta)V-1/2 exp[(phi(0)-beta V-1/2)/kT]. From the
16238    modified model, the maximum barrier height of BaTiO3 ceramics can be
16239    deduced experimentally as well. (C) 1996 American Institute of Physics.
16240 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SCI & ENGN,SHANGHAI 201800,PEOPLES R CHINA.
16241 RP Zhang, F, CHINESE ACAD SCI,SHANGHAI INST MET,ION BEAM LAB,SHANGHAI
16242    200050,PEOPLES R CHINA.
16243 CR HAAYMAN PW, 1995, 925350, GE
16244    HEYWANG W, 1961, SOLID STATE ELECTRON, V3, P51
16245    HEYWANG W, 1964, J AM CERAM SOC, V47, P484
16246    JONKER GH, 1964, SOLID STATE ELECTRON, V7, P895
16247    NEMOTO H, 1980, J AM CERAM SOC, V63, P398
16248    SIMMONS JG, 1964, J APPL PHYS, V35, P2472
16249    SMYTHE WR, 1950, STATIC DYNAMIC ELECT
16250 NR 7
16251 TC 3
16252 SN 0021-8979
16253 J9 J APPL PHYS
16254 JI J. Appl. Phys.
16255 PD MAR 1
16256 PY 1996
16257 VL 79
16258 IS 5
16259 BP 2487
16260 EP 2490
16261 PG 4
16262 SC Physics, Applied
16263 GA TY119
16264 UT ISI:A1996TY11900046
16265 ER
16266 
16267 PT J
16268 AU Ye, ZM
16269 TI Plastic zone characteristics of crack tip in anisotropic solids
16270 SO INTERNATIONAL JOURNAL OF FRACTURE
16271 DT Article
16272 RP Ye, ZM, SHANGHAI UNIV,DEPT CIVIL ENGN,149 YAN CHANG RD,SHANGHAI
16273    200072,PEOPLES R CHINA.
16274 CR ERDOGAN F, 1963, J BASIC ENG, V85, P519
16275    LIEBOWITZ H, 1968, FRACTURE ADV TREATIS, V2
16276    SIH GC, 1974, INT J FRACTURE MECH, V10, P305
16277    WU EM, 1968, COMP MAT WORKSH, P20
16278    ZHIMING Y, 1994, ENG FRACT MECH, V49, P797
16279 NR 5
16280 TC 0
16281 SN 0376-9429
16282 J9 INT J FRACTURE
16283 JI Int. J. Fract.
16284 PY 1996
16285 VL 74
16286 IS 1
16287 BP R3
16288 EP R10
16289 PG 8
16290 SC Mechanics
16291 GA TX339
16292 UT ISI:A1996TX33900008
16293 ER
16294 
16295 PT J
16296 AU Ding, WZ
16297    Olsen, SE
16298 TI Reaction equilibria in the production of manganese ferroalloys
16299 SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND
16300    MATERIALS PROCESSING SCIENCE
16301 DT Article
16302 AB A laboratory investigation has been carried out to determine slag/metal
16303    and slag/metal/gas equilibria relevant to production of manganese
16304    ferroalloys. The metal phase was normally composed of Mn-Si-C-sat
16305    alloys, but in some experiments, the alloys contained up to 15 wt pet
16306    Fe. Different slag systems were used: MnO-SiO2, MnO-SiO2-CaO,
16307    MnO-SiO2-Al2O3, and quaternary MnO-SiO2-CaO-Al2O3 with fixed CaO/Al2O3
16308    weight ratios of 1.5 and 3. The experiments were normally made in CO
16309    gas atmosphere at temperatures ranging from 1450 degrees C to 1600
16310    degrees C. The results give comprehensive information about equilibrium
16311    relations. Partial and complete equilibria are illustrated in
16312    equilibrium diagrams. Partial equilibrium is a situation in which
16313    equilibrium is established with respect to certain variables but not to
16314    others, in this case, between slag and metal but not with the gas
16315    phase. The effect of temperature was found to be of minor importance
16316    for the partial slag/metal equilibrium, whereas the complete
16317    slag/metal/gas equilibrium is considerably influenced by both
16318    temperature and CO pressure. As expected, increasing temperature and
16319    decreasing CO pressure will reduce the equilibrium MnO content of
16320    slags. The influence of alumina addition to the slag phase and of iron
16321    to the metal phase is also discussed.
16322 C1 UNIV TRONDHEIM,NORWEGIAN INST TECHNOL,DEPT MET,N-7034 TRONDHEIM,NORWAY.
16323 RP Ding, WZ, SHANGHAI UNIV SCI & TECHNOL,DEPT MET,SHANGHAI 200072,PEOPLES
16324    R CHINA.
16325 CR ABRAHAM KP, 1960, J IRON STEEL I, V196, P82
16326    AHMAD N, 1978, METALL T A, V9, P1857
16327    ASHIN AK, 1977, IZV AKAD NAUK SSSR M, P232
16328    BALATIN GI, 1974, UKR KHIM ZH, V40, P542
16329    CENGIZLER H, 1992, P 6 INT FERR C 1992, P167
16330    CHIPMAN J, 1952, T AM SOC MET, V44, P1215
16331    DARKEN RS, 1953, PHYSICAL CHEM METALS, P144
16332    DING W, 1993, THESIS NORWEGIAN I T
16333    ESIN OA, 1954, RUSS ZH APPL CHEM, V27, P1252
16334    FUJISAWA T, 1977, TETSU TO HAGANE, V63, P1494
16335    GEE R, 1976, SCAND J METALL, V5, P57
16336    GEE R, 1978, SCAND J METALL, V7, P38
16337    GELDENHUIS JMA, 1992, P 6 INT FERR C 1992, P105
16338    GLASSER FP, 1962, J AM CERAM SOC, V45, P242
16339    GZIELO A, 1986, NEUE HUTTE, P100
16340    KOR GJW, 1979, METAL T B, V10, P367
16341    KORBER F, 1936, MITT KAIS WILH I EIS, V18, P109
16342    LEE YE, 1980, CAN METALL Q, V19, P315
16343    MEHTA SR, 1965, J IRON STEEL I, V203, P524
16344    MUAN A, 1965, PHASE EQUILIBRIA OXI
16345    NI RM, 1990, STEEL RES, V61, P113
16346    PETRUSHEVSKII MS, 1959, J PRIKLADNOI KHEMI, V32, P86
16347    PETRUSHEVSKII MS, 1973, RUSS J PHYS CHEM, V47, P158
16348    RANKIN WJ, 1978, 1959 NIM
16349    RAO BKD, 1981, METALL T B, V12, P469
16350    RAO BKDP, 1981, METALL TRANS B, V12, P311
16351    REIN RH, 1963, T METALL SOC AIME, V227, P1193
16352    RESER MK, PHASE DIAGRAMS CERAM, P630
16353    SHARMA RA, 1965, T METALL SOC AIME, V233, P1586
16354    SKIREDJ O, 1963, T TMS AIME, V227, P536
16355    STAPLETON JM, 1961, J MET, V13, P45
16356    TANAKA A, 1977, J JPN I MET, V41, P601
16357    TANAKA A, 1980, MURORAN KOGYO DAIGAK, V10, P19
16358    TANAKA A, 1980, TETSU TO HAGANE, V66, P1474
16359    TURKDOGAN ET, 1956, J IRON STEEL I, V182, P274
16360    TURKDOGAN ET, 1957, T I MIN METALL, V67, P573
16361    TUSET JK, 1970, 340358 SINTEF
16362    TUSET JK, 1970, 340420 SINTEF
16363    VORONOV VA, 1982, RUSS METALL+, P22
16364    WARREN GF, 1975, P 1 INT FERR C 1974, P175
16365    YAKOSHEVITCH NF, 1969, IZV VUZ CHERN METALL, P48
16366    ZAITSEV AI, 1989, RASPLAVY, V3, P9
16367 NR 42
16368 TC 10
16369 SN 1073-5623
16370 J9 METALL MATER TRANS B
16371 JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci.
16372 PD FEB
16373 PY 1996
16374 VL 27
16375 IS 1
16376 BP 5
16377 EP 17
16378 PG 13
16379 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
16380    Engineering
16381 GA TW621
16382 UT ISI:A1996TW62100001
16383 ER
16384 
16385 PT J
16386 AU Ye, RS
16387    Yang, ZH
16388 TI Double S-breaking cubic turning points and their computation
16389 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
16390 DT Article
16391 AB In the paper we are concerned with double S-breaking cubic turning
16392    points of two-parameter nonlinear problems in the presence of
16393    Z(2)-symmetry. Three extended systems are proposed to determine double
16394    S-breaking cubic turning points. We show that there exist two kinds of
16395    singular point path passing through double S-breaking cubic turning
16396    point, One is the simple quadratic turning point path, the other is the
16397    pitchfork bifurcation point path.
16398 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
16399 CR ALLGOWER EL, 1984, ISNM70, P15
16400    GOLUBITSKY M, 1985, SINGULARITIES GROUPS, V2
16401    MA YN, 1990, J COMPUT MATH, V8, P261
16402    SPENCE A, 1982, IMA J NUMER ANAL, V2, P413
16403    WERNER B, 1984, ISNM70, P562
16404    WERNER B, 1984, SIAM J NUMER ANAL, V21, P388
16405    WU W, 1993, NUMERICAL MATH J CHI, V2, P101
16406    YANG ZH, 1991, J COMPUT MATH, V9, P149
16407 NR 8
16408 TC 0
16409 SN 0254-9409
16410 J9 J COMPUT MATH
16411 JI J. Comput. Math.
16412 PD JAN
16413 PY 1996
16414 VL 14
16415 IS 1
16416 BP 8
16417 EP 22
16418 PG 15
16419 SC Mathematics, Applied; Mathematics
16420 GA TU315
16421 UT ISI:A1996TU31500002
16422 ER
16423 
16424 PT J
16425 AU Ding, WY
16426    Cao, WG
16427    Yao, Y
16428    Zhu, ZM
16429 TI Synthesis of dimethyl
16430    3-perfluoroalkyl-4-(3-oxo-2-triphenylphosphoranylidenbutanylidene)-pent-
16431    2-enedioate and its cyclization
16432 SO CHINESE JOURNAL OF CHEMISTRY
16433 DT Article
16434 DE phosphorane; polysubstituted arene; intramolecular cyclization
16435 ID ACYCLIC PRECURSORS; FACILE SYNTHESIS; METHYL
16436 AB The title compounds 5a-5c were prepared via the reaction of methyl
16437    2-perfluoroalkynoates (4) with methyl
16438    5-oxo-4-(triphenylphosphoranylidene)hex-2-enoate (3), which was
16439    obtained from the reaction of methyl propynate (2) with
16440    acetylmethylenetriphenylphosphorane (1) at -5-0 degrees C.
16441    Intramolecular elimination of Ph(3)PO took place when compound 5 was
16442    heated in aqueous methanol at 115-120 degrees C in sealed tube,
16443    yielding dimethyl 2-trifluoromethyl-4-methylisophthalate (6a) from 5a
16444    and methyl 5-acetyl-4-hydroxy-2-heptafluoropropanylbenzoate (6b) from
16445    5b, respectively. The structures of compounds 5, 6a and 6b were
16446    confirmed by IR, MS, H-1 NMR, F-19 NMR and C-13 NMR spectroscopy and
16447    elemental analyses. Rection mechanisms for the formation of compounds
16448    5, 6a and 6b were proposed.
16449 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
16450 CR BANKS RE, 1979, ORGANOFLUORINE CHEM
16451    DING WY, 1986, ACTA CHIM SINICA, V44, P62
16452    DING WY, 1987, TETRAHEDRON LETT, V28, P81
16453    DING WY, 1992, SYNTHESIS-STUTTGART, P635
16454    DING WY, 1993, CHINESE J CHEM, V11, P81
16455    DING WY, 1993, J CHEM SOC P1, P855
16456    HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47
16457    JUNG ME, 1988, J AM CHEM SOC, V110, P3965
16458    MANN J, 1987, CHEM SOC REV, V16, P381
16459    MCCLINTON MA, 1992, TETRAHEDRON, V48, P6555
16460    RAMIREZ F, 1957, J ORG CHEM, V22, P41
16461    WELCH JT, 1987, TETRAHEDRON, V43, P3123
16462    WOLF V, 1953, CHEM BER, V86, P735
16463 NR 13
16464 TC 6
16465 SN 1001-604X
16466 J9 CHINESE J CHEM
16467 JI Chin. J. Chem.
16468 PD SEP
16469 PY 1995
16470 VL 13
16471 IS 5
16472 BP 468
16473 EP 474
16474 PG 7
16475 SC Chemistry, Multidisciplinary
16476 GA TU139
16477 UT ISI:A1995TU13900014
16478 ER
16479 
16480 PT J
16481 AU Jiang, XF
16482    Wong, PL
16483    Zhang, ZM
16484 TI Thermal non-Newtonian EHL analysis of rib-roller end contact in tapered
16485    roller bearings
16486 SO JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME
16487 DT Article
16488 ID LUBRICATION
16489 AB An EHL approach to the rib-roller end contact in tapered roller
16490    bearings has been achieved by taking into account the non-Newtonian
16491    behavior of lubricants and thermal effects and with full consideration
16492    of the peculiar geometrical and kinematic conditions. Two kinds of
16493    geometrical configurations of rib and roller end were investigated
16494    tapered rib/spherical roller end and spherical rib/spherical roller
16495    end. Optimal ratios of curvature radius of roller end to rib face were
16496    deduced. The film thickness, friction torque, lubricant temperature,
16497    and surface temperature at various speeds and loads were calculated.
16498 C1 CITY UNIV HONG KONG,DEPT MFG ENGN,KOWLOON,HONG KONG.
16499    SHANGHAI UNIV,DEPT ENGN MECH,SHANGHAI 200072,PEOPLES R CHINA.
16500 CR ARAMAKI H, 1992, J TRIBOL-T ASME, V114, P311
16501    BAIR S, 1979, ASME, V101, P258
16502    CARSLAW HS, 1959, CONDUCTION HEAT SOLI
16503    CHITTENDEN RJ, 1985, P ROY SOC LOND A MAT, V397, P245
16504    DALMAZ G, 1980, 7TH P LEEDS LY S TRI, V7, P175
16505    DOWSON D, 1977, ELASTOHYDRODYNAMIC L
16506    GADALLAH N, 1984, J TRIBOL-T ASME, V106, P265
16507    HAMROCK BJ, 1981, BALL BEARING LUBRICA
16508    JAMISON WE, 1977, ASLE T, V20, P79
16509    JIANG XF, 1993, P INT S TRIBOLOGY 93, P147
16510    JOHNSON KL, 1977, P ROY SOC LOND A MAT, V356, P215
16511    KORRENN H, 1970, FORTSCHR BER, V1, P11
16512    ROELANDS CJA, 1966, CORRELATIONAL ASPECT
16513    WANG SH, 1987, J TRIBOL-T ASME, V109, P666
16514    ZHANG Z, 1988, STLE T, V31, P461
16515    ZHOU RS, 1991, J TRIBOL-T ASME, V113, P590
16516 NR 16
16517 TC 2
16518 SN 0742-4787
16519 J9 J TRIBOL-TRANS ASME
16520 JI J. Tribol.-Trans. ASME
16521 PD OCT
16522 PY 1995
16523 VL 117
16524 IS 4
16525 BP 646
16526 EP 654
16527 PG 9
16528 SC Engineering, Mechanical
16529 GA TT886
16530 UT ISI:A1995TT88600016
16531 ER
16532 
16533 PT J
16534 AU Du, B
16535    Yang, KZ
16536    Zhong, SS
16537 TI Theoretical analysis of a parabolic torus reflector antenna with
16538    multibeam
16539 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
16540 DT Article
16541 DE multibeam antenna; single offset antenna; parabolic torus reflector
16542    antenna
16543 AB The parametric equations and the formulas of unit normal vector and
16544    surface element for a parabolic torus reflector antenna are derived and
16545    the mechanism of producing multibeam is proposed. Based on physical
16546    optics, the radiation pattern formulas for the antenna are given, with
16547    which the effects of geometric parameters on the antenna are studied.
16548    The good agreement between the calculated patterns and the measured
16549    ones shows that the theory is helpful for designing parabolic torus
16550    antennas.
16551 C1 MINIST ELECTR IND,INST 54,SHIJIAZHUANG 050081,PEOPLES R CHINA.
16552 RP Du, B, SHANGHAI UNIV SCI & TECHNOL,DEPT ELECTR ENGN,SHANGHAI
16553    201800,PEOPLES R CHINA.
16554 CR HDB MATH, P307
16555    1979, HDB MATH, V415, P416
16556    BOSWELL AGP, 1978, MARCONI REV, V41, P237
16557    HYDE G, 1974, COMSAT TECH REV, V4, P231
16558    LUDWING AC, 1973, IEEE T ANTENN PROPAG, V2, P116
16559 NR 5
16560 TC 1
16561 SN 1001-6511
16562 J9 SCI CHINA SER A
16563 JI Sci. China Ser. A-Math. Phys. Astron.
16564 PD DEC
16565 PY 1995
16566 VL 38
16567 IS 12
16568 BP 1520
16569 EP 1531
16570 PG 12
16571 SC Mathematics, Applied; Mathematics
16572 GA TQ966
16573 UT ISI:A1995TQ96600012
16574 ER
16575 
16576 PT J
16577 AU Wang, ZX
16578    Pan, JS
16579    Luo, WY
16580    Li, XN
16581    Wang, CS
16582 TI Preferential sputtering from Ni-Pd alloy in the phase transition region
16583 SO JOURNAL OF MATERIALS SCIENCE LETTERS
16584 DT Article
16585 ID PARTICLES
16586 C1 ACAD SINICA,INST NUCL RES,SHANGHAI 201800,PEOPLES R CHINA.
16587    SHANGHAI UNIV,SHANGHAI APPL RADIAT INST,SHANGHAI 201800,PEOPLES R CHINA.
16588 RP Wang, ZX, CCAST,WORLD LAB,POB 8730,BEIJING 100080,PEOPLES R CHINA.
16589 CR BETZ G, 1983, SPUTTERING PARTICLE, V2, P11
16590    KELLY R, 1985, SURF INTERFACE ANAL, V7, P1
16591    KIRSCHNER J, 1985, NUCL INSTRUM METH B, V7, P742
16592    SHAKIROV R, 1992, NUCL INSTRUM METH B, V67, P540
16593    SIGMUND P, 1969, PHYS REV, V184, P383
16594    SIGMUND P, 1982, NUCL INSTRUM METHODS, V194, P541
16595    SLUSSER GJ, 1979, SURF SCI, V84, P211
16596    WANG ZX, 1993, NUCL INSTRUM METH B, V74, P380
16597    YURASOVA VE, 1983, VACUUM, V33, P565
16598    YURASOVA VE, 1986, VACUUM, V36, P630
16599 NR 10
16600 TC 0
16601 SN 0261-8028
16602 J9 J MATER SCI LETT
16603 JI J. Mater. Sci. Lett.
16604 PD JAN 15
16605 PY 1996
16606 VL 15
16607 IS 2
16608 BP 149
16609 EP 150
16610 PG 2
16611 SC Materials Science, Multidisciplinary
16612 GA TQ664
16613 UT ISI:A1996TQ66400017
16614 ER
16615 
16616 PT J
16617 AU Ma, GB
16618    Tan, WH
16619 TI Field enhancement due to anomalous skin effect inside a target
16620 SO PHYSICS OF PLASMAS
16621 DT Article
16622 ID HIGH-DENSITY PLASMA; LASER-PULSES; ABSORPTION
16623 AB A new method based on Fourier transformation to study the skin effects
16624    is presented. Using this method, the field amplitude in plasma is
16625    represented in terms of electric conductivity, and the normal and
16626    anomalous skin effects are described through one formula by omitting
16627    the plasma dispersion or not. The results are in agreement with other
16628    publications [e.g., J. P. Matte and K. Aguenaou, Phys. Rev. A 45, 2558
16629    (1992)] for equivalent parameters. But for deeper positions inside a
16630    target, which have not been studied by others, it is found that the
16631    field amplitude is considerably enhanced due to an anomalous skin
16632    effect, even for constant collision frequency. In addition, the skin
16633    absorptions and some calculations on an anomalous skin effect for
16634    different collision frequencies are also presented. (C) 1996 American
16635    Institute of Physics.
16636 C1 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
16637 RP Ma, GB, ACAD SINICA,SHANGHAI INST OPT & FINE MECH,POB 800211,SHANGHAI
16638    201800,PEOPLES R CHINA.
16639 CR BLEVIN HA, 1970, PHYS FLUIDS, V10, P1259
16640    BLEVIN HA, 1973, PHYS FLUIDS, V13, P82
16641    BRUNEL F, 1988, PHYS FLUIDS, V31, P2714
16642    BULANOV SV, 1994, PHYS PLASMAS, V1, P745
16643    DENAVIT J, 1992, PHYS REV LETT, V69, P3052
16644    FEDOSEJEVS R, 1990, APPL PHYS B-PHOTO, V50, P79
16645    FEDOSEJEVS R, 1990, PHYS REV LETT, V64, P1250
16646    FRIED BD, 1961, PLASMA DISPERSION FU
16647    GAMALIY EG, 1990, PHYS REV A, V42, P929
16648    GAUTSCHI W, 1964, APPLIED MATH SERIES, V55, P295
16649    GIBBON P, 1992, PHYS REV LETT, V68, P1535
16650    ICHIMARU S, 1973, BASIC PRINCIPLES PLA, CH3
16651    JACKSON JD, 1962, CLASSICAL ELECTRODYN, P220
16652    KIEFFER JC, 1989, PHYS REV LETT, V62, P760
16653    KIEFFER JC, 1991, PHYS FLUIDS B-PLASMA, V3, P167
16654    MATTE JP, 1992, PHYS REV A, V45, P2558
16655    MURNANE MM, 1989, PHYS REV LETT, V62, P155
16656    NG A, 1994, PHYS REV LETT, V72, P3351
16657    ROZMUS W, 1990, PHYS REV A, V42, P7401
16658    SAUERBREY R, 1994, PHYS PLASMAS, V1, P1635
16659    WEIBEL ES, 1967, PHYS FLUIDS, V10, P741
16660    WILKS SC, 1992, PHYS REV LETT, V69, P1383
16661    ZIGLER A, 1991, APPL PHYS LETT, V59, P534
16662    ZIMAN JM, 1969, PRINCIPLES THEORY SO, P241
16663    ZIMAN JM, 1981, PHYS MET, V1, P102
16664 NR 25
16665 TC 2
16666 SN 1070-664X
16667 J9 PHYS PLASMAS
16668 JI Phys. Plasmas
16669 PD JAN
16670 PY 1996
16671 VL 3
16672 IS 1
16673 BP 349
16674 EP 353
16675 PG 5
16676 SC Physics, Fluids & Plasmas
16677 GA TP807
16678 UT ISI:A1996TP80700040
16679 ER
16680 
16681 PT J
16682 AU Bai, ZZ
16683    Wang, DR
16684    Evans, DJ
16685 TI Models of asynchronous parallel nonlinear multisplitting relaxed
16686    iterations
16687 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
16688 DT Article
16689 ID ALGORITHM; CONVERGENCE
16690 AB In the sense of the nonlinear multisplitting and based on the principle
16691    of sufficiently using the delayed information, we propose models of
16692    asynchronous parallel accelerated overrelaxation iteration methods for
16693    solving large scale system of nonlinear equations. Under proper
16694    conditions, we set up the local convergence theories of these new
16695    method models.
16696 C1 CHINESE ACAD SCI,INST COMPUTAT MATH & SCI ENGN COMP,BEIJING,PEOPLES R CHINA.
16697    SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
16698    LOUGHBOROUGH UNIV TECHNOL,PARALLEL ALGORITHMS RES CTR,LOUGHBOROUGH LE11 3TU,LEICS,ENGLAND.
16699 CR BAI ZZ, 1995, PARALLEL COMPUT, V21, P565
16700    BERTSEKAS DP, 1989, PARALLEL DISTRIBUTED
16701    BRU R, 1988, LINEAR ALGEBRA APPL, V103, P175
16702    EVANS DJ, 1991, PARALLEL COMPUT, V17, P165
16703    FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141
16704    FROMMER A, 1989, NUMER MATH, V56, P269
16705    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
16706    ORTEGA JM, 1970, ITERATIVE SOLUTION N
16707    VARGA RS, 1961, MATRIX ITERATIVE ANA
16708    WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473
16709    WANG DR, 1994, CHINESE ANN MATH B, V15, P335
16710    WANG DR, 1994, PARALLEL ALGORITHMS, V2, P173
16711    WANG DR, 1994, PARALLEL ALGORITHMS, V2, P209
16712    WANG DR, 1995, IN PRESS APPL MATH J
16713    WHITE RE, 1986, SIAM J ALGEBRA DISCR, V7, P137
16714    WHITE RE, 1986, SIAM J NUMER ANAL, V23, P639
16715 NR 16
16716 TC 3
16717 SN 0254-9409
16718 J9 J COMPUT MATH
16719 JI J. Comput. Math.
16720 PD OCT
16721 PY 1995
16722 VL 13
16723 IS 4
16724 BP 369
16725 EP 386
16726 PG 18
16727 SC Mathematics, Applied; Mathematics
16728 GA TP800
16729 UT ISI:A1995TP80000009
16730 ER
16731 
16732 PT J
16733 AU Shi, SZ
16734    Zheng, QA
16735    Zhuang, DM
16736 TI Discontinuous robust mappings are approximatable
16737 SO TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
16738 DT Article
16739 DE robust sets; robust mappings; approximatable mappings; integral global
16740    optimization
16741 AB The concepts of robustness of sets and and functions were introduced to
16742    form the foundation of the theory of integral global optimization. A
16743    set A of a topological space X is said to be robust iff cl A = cl int
16744    A. A mapping f: X --> Y is said to be robust iff for each open set U-Y
16745    of Y, f(-1)(U-Y) is robust. We prove that if X is a Baire space and Y
16746    satisfies the second axiom of countability, then a mapping f: X --> Y
16747    is robust iff it is approximatable in the sense that the set of points
16748    of continuity of f is dense in X and that for any other point x is an
16749    element of X, (x, f(x)) is the limit of {(x(alpha), f(x(alpha)))},
16750    where for all alpha, x(alpha) is a continuous point of f. This result
16751    justifies the notion of robustness.
16752 C1 SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
16753    MT ST VINCENT UNIV,DEPT MATH & COMP STUDIES,HALIFAX,NS B3M 2J6,CANADA.
16754 RP Shi, SZ, NANKAI INST MATH,DIV THEORET PHYS,TIANJIN 300071,PEOPLES R
16755    CHINA.
16756 CR BATUCHTIN LV, 1984, OPTIMIZATION DISCONT
16757    CHEW SH, 1988, LECTURE NOTES EC MAT, V298
16758    CHOQUET G, 1969, LECTURES ANAL, V1
16759    CHOQUET G, 1969, OUTILS TOPOLOGIQUES
16760    MAYUROVA IV, 1984, USSR COMP MATH MATH, V24, P121
16761    OXTOBY JC, 1980, MEASURE CATEGORY
16762    SEMANDENI Z, 1971, BANACH SPACES CONTIN
16763    SHI SZ, 1994, J MATH ANAL APPL, V183, P706
16764    ZANG I, 1981, MATH OPER RES, V6, P140
16765    ZHENG Q, IN PRESS GLOBAL MINI
16766    ZHENG Q, 1978, ACTA MATH APPL SINIC, V1, P161
16767    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205
16768    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317
16769    ZHENG Q, 1991, COMPUT MATH APPL, V21, P17
16770    ZHENG Q, 1991, RECENT ADV GLOBAL OP
16771    ZHENG Q, 1993, COMPUT MATH APPL, V25, P79
16772 NR 16
16773 TC 4
16774 SN 0002-9947
16775 J9 TRANS AMER MATH SOC
16776 JI Trans. Am. Math. Soc.
16777 PD DEC
16778 PY 1995
16779 VL 347
16780 IS 12
16781 BP 4943
16782 EP 4957
16783 PG 15
16784 SC Mathematics
16785 GA TM686
16786 UT ISI:A1995TM68600016
16787 ER
16788 
16789 PT J
16790 AU Liu, GL
16791 TI A unified variable-domain variational theory of hybrid problems for
16792    compressible S-2-flow in mixed-flow turbomachinery
16793 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
16794 DT Article
16795 ID PRINCIPLES; ROTOR
16796 AB Using the functional variation with variable domain, two families of
16797    variational principles (VPs) for the hybrid problem types H-A and H-B
16798    of S-2-flow in mixed-flow turbomachinery are established. The new
16799    theory provides both rational ways for best contouring the hub/casing
16800    walls to meet various practical design requirements and a theoretical
16801    basis for introducing the finite element method (FEM) into
16802    computational aerodynamics of turbomachinery
16803 C1 SHANGHAI INST APPL MATHS & MECH,SHANGHAI 200072,PEOPLES R CHINA.
16804 RP Liu, GL, SHANGHAI UNIV,SHANGHAI 200072,PEOPLES R CHINA.
16805 CR BOSMAN C, 1974, ARC RM3746
16806    CAI RQ, 1983, ACTA AERODYNAMICA SI, V1, P25
16807    CAI RQ, 1988, INT J HEAT FLUID FL, V9, P302
16808    COURANT R, 1953, METHODS MATH PHYSICS, V1
16809    DORMAN TE, 1968, ASME, V90
16810    LIU GI, 1986, J ENG GAS TURB POWER, V108, P254
16811    LIU GL, 1978, VARIATIONAL PRINCIPL
16812    LIU GL, 1979, ACTA MECH SINICA, V11, P303
16813    LIU GL, 1980, SCI SINICA, V23, P1339
16814    LIU GL, 1981, CHINESE J ENG THERMO, V2, P335
16815    LIU GL, 1981, THERMOPHYSICS
16816    LIU GL, 1982, AUG P INT C FEM SHAN, P520
16817    LIU GL, 1986, 6TH P INT S FEM FLOW, P125
16818    LIU GL, 1986, 6TH P INT S FEM FLOW, P137
16819    LIU GL, 1987, AIAA871426 PAP
16820    LIU GL, 1990, 1 INT S EXP COMP AER, P128
16821    LIU GL, 1993, ACTA MECH, V97, P229
16822    LIU GL, 1993, ACTA MECHANICA 1, V95, P117
16823    LIU GL, 1993, INT J TURBO JET ENGI, V10, P273
16824    LIU RX, 1981, SEISMOL GEOL, V3, P1
16825    MARSH H, 1968, ARC RM3509
16826    MCNALLY WD, 1985, J FLUID ENG-T ASME, V107, P6
16827    OATES GC, 1976, ASME, V98, P1
16828    PENG HW, 1975, KEXUE TONGBAO, V20, P416
16829    WU CH, 1952, NACA TN2604
16830    WU CH, 1965, CHINESE J MECH ENG, V13, P43
16831    YAN S, 1990, 1ST P INT S EXP COMP, P457
16832 NR 27
16833 TC 1
16834 SN 0334-0082
16835 J9 INT J TURBO JET ENGINES
16836 JI Int. J. Turbo. Jet-Engines
16837 PY 1995
16838 VL 12
16839 IS 3
16840 BP 213
16841 EP 222
16842 PG 10
16843 SC Engineering, Aerospace
16844 GA TN109
16845 UT ISI:A1995TN10900005
16846 ER
16847 
16848 PT J
16849 AU Liu, GL
16850 TI Optimization of axial-flow pump cascade solidity subject to cavitation
16851    and separation-free constraints
16852 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
16853 DT Article
16854 AB The solidity optimization of 2-D axial-flow pump cascades is formulated
16855    as a nonlinear programming problem that minimizes the profile losses
16856    subject to separation/cavitation-free constraints. Both constraints are
16857    expressed in terms of the Lieblen's equivalent diffusion ratio D-eq.
16858    Analytical solutions are obtained in the form of formulae convenient
16859    for design. The method is further extended to 3-D pump stages.
16860 C1 SHANGHAI INST APPL MATHS & MECH,SHANGHAI 200072,PEOPLES R CHINA.
16861 RP Liu, GL, SHANGHAI UNIV,SHANGHAI 200072,PEOPLES R CHINA.
16862 CR BEVERIDGE GSG, 1970, OPTIMIZATION THEORY
16863    BRUCE EP, 1974, NASA SP304, P795
16864    CONRAD A, 1965, MTZ
16865    LIEBLEIN S, 1959, ASME, V81, P387
16866    LIEBLEIN S, 1965, NASA SP, V36, CH6
16867    LIU GL, 1983, 6TH P INT S AIR BREA, P313
16868    LIU GL, 1987, NUMERICAL METHODS LA, V5, P1739
16869    LIU GL, 1993, INT J TURBO JET ENGI, V10, P127
16870    OKIISHI TH, 1975, INT J MECH SCI, V17, P633
16871    REKLAITIS GV, 1983, ENG OPTIMIZATION MET
16872 NR 10
16873 TC 0
16874 SN 0334-0082
16875 J9 INT J TURBO JET ENGINES
16876 JI Int. J. Turbo. Jet-Engines
16877 PY 1995
16878 VL 12
16879 IS 3
16880 BP 231
16881 EP 236
16882 PG 6
16883 SC Engineering, Aerospace
16884 GA TN109
16885 UT ISI:A1995TN10900007
16886 ER
16887 
16888 PT J
16889 AU Tu, DW
16890 TI In-process sensor for surface profile measurement applying a
16891    common-mode rejection technique
16892 SO OPTICS AND LASER TECHNOLOGY
16893 DT Article
16894 DE interferometers; profilometers; noise suppression; common-mode rejection
16895 AB An optical non-contact profilometer is presented for super-smooth
16896    surfaces, which applies a so-called common-mode rejection technique.
16897    Environmental disturbances and laser amplitude noise, which commonly
16898    exist in similar instruments, are overcome in this system. The overall
16899    simplicity of the optics and electronics, the low cost of the
16900    components and the ease of alignment make this a convenient system to
16901    implement.
16902 RP Tu, DW, SHANGHAI UNIV SCI & TECHNOL,SCH MECH AUTOMAT,POB 27,SHANGHAI
16903    200072,PEOPLES R CHINA.
16904 CR DAUDRIDGE A, 1981, APPL OPTICS, V20, P2337
16905    DOWNS MJ, 1985, PRECIS ENG, V7, P211
16906    HUANG CC, 1984, OPT ENG, V23, P356
16907    MITSUI K, 1986, PRECIS ENG, V8, P212
16908    PANTZER D, 1986, APPL OPTICS, V25, P4168
16909 NR 5
16910 TC 0
16911 SN 0030-3992
16912 J9 OPT LASER TECHNOL
16913 JI Opt. Laser Technol.
16914 PD DEC
16915 PY 1995
16916 VL 27
16917 IS 6
16918 BP 351
16919 EP 353
16920 PG 3
16921 SC Optics
16922 GA TN089
16923 UT ISI:A1995TN08900012
16924 ER
16925 
16926 PT J
16927 AU Zhu, JL
16928    Chadderton, LT
16929    Fink, D
16930    Cruz, SA
16931    Ghosh, S
16932    Zhu, DZ
16933 TI Electronic stopping and etched particle tracks in polymers .2. Boron
16934    and lithium tracks
16935 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
16936    INTERACTIONS WITH MATERIALS AND ATOMS
16937 DT Article
16938 ID DETECTORS; CR-39; IONS
16939 AB This work is the second one in a series of papers on the correlation of
16940    etched particle tracks with the projectiles' electronic energy
16941    transfer. The plastic detector CR39 was bombarded with boron and
16942    lithium ions at different energies, and subsequently etched. The
16943    relation between the diameter of etched tracks and the projectile
16944    energy was studied in detail. Maximum diameters were found after boron
16945    irradiation at 2.1 MeV, and after lithium irradiation at about 1.1 MeV.
16946    These values closely coincide with those ion energies at which they
16947    deposit their maximum electronic energy in the target surface area. The
16948    observations also point at a linear relationship between the maximum
16949    electronic stopping power and the atomic number of the projectile ions.
16950 C1 AUSTRALIAN NATL UNIV,RES SCH PHYS SCI,CANBERRA,ACT 2601,AUSTRALIA.
16951    SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI 201800,PEOPLES R CHINA.
16952    HAHN MEITNER INST BERLIN GMBH,DEPT FD,D-14109 BERLIN,GERMANY.
16953    UNIV AUTONOMA METROPOLITANA IZTAPALAPA,DEPT FIS,MEXICO CITY 09340,DF,MEXICO.
16954    NE HILL UNIV,DEPT CHEM,SHILLONG 793003,MEGHALAYA,INDIA.
16955    ACAD SINICA,JOINT OPEN LAB ANALYT NUCL TECH,SHANGHAI BRANCH,SHANGHAI 201800,PEOPLES R CHINA.
16956 RP Zhu, JL, CSIRO,DIV APPL PHYS,GPO 4,CANBERRA,ACT 2601,AUSTRALIA.
16957 CR ALNAJJAR SAR, 1984, NUCL TRACKS RAD MEAS, V8, P45
16958    BERNARDI L, 1991, NUCL INSTRUM METH B, V53, P61
16959    BIERSACK JP, 1980, NUCL INSTRUM METHODS, V174, P257
16960    CHADDERTON LT, 1994, NUCL INSTRUM METH B, V91, P168
16961    CROSS WG, 1986, NUCL TRACKS RAD MEAS, V12, P533
16962    FINK D, 1992, NUCL INSTRUM METH B, V65, P432
16963    FLEISCHER RL, 1975, NUCLEAR TRACKS SOLID
16964    JONSSON G, 1992, NUCL INSTRUM METH B, V63, P399
16965    ZIEGLER JF, 1985, STOPPING RANGES IONS, V1
16966 NR 9
16967 TC 0
16968 SN 0168-583X
16969 J9 NUCL INSTRUM METH PHYS RES B
16970 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
16971 PD NOV
16972 PY 1995
16973 VL 105
16974 IS 1-4
16975 BP 208
16976 EP 211
16977 PG 4
16978 SC Physics, Atomic, Molecular & Chemical; Physics, Nuclear; Instruments &
16979    Instrumentation; Nuclear Science & Technology
16980 GA TM152
16981 UT ISI:A1995TM15200043
16982 ER
16983 
16984 PT J
16985 AU Xu, QJ
16986    Deng, XN
16987 TI Oscillating behaviour on electrodeposited CuInSe2 thin-films during
16988    H2O2 cathodic reduction
16989 SO ACTA CHIMICA SINICA
16990 DT Article
16991 ID IRON-SULFIDE ELECTRODES; SUSTAINED OSCILLATIONS; CATALYTIC REDUCTION;
16992    HYDROGEN-PEROXIDE
16993 AB CuInSe2 thin films prepared by electrodeposition method can produce
16994    periodically electrochemistry oscillation phenomenna during H2O2
16995    cathodic reduction. The dynamic current-voltage curve from -1.80V to
16996    0.00V((vsSCE)) appears a pronounced current wave. When the potential is
16997    set in the oscillating potential region, the cell response may be
16998    accounted for, in the equivalent circuit representation, by the
16999    presence of negative resistances and inductances with A.C. methods. The
17000    negative resistances and inductances may indicate an autocatalytio
17001    reaction with an adsorbed intermediate.
17002 C1 SHANGHAI UNIV,ELECTROCHEM RES CTR,SHANGHAI 201800,PEOPLES R CHINA.
17003 RP Xu, QJ, SHANGHAI INST ELECT POWER,ELECTROCHEM RES CTR,SHANGHAI
17004    200090,PEOPLES R CHINA.
17005 CR ARMSTRONG RD, 1972, J ELECTROANAL CHEM, V39, P81
17006    CATTARIN S, 1988, BER BUNSEN PHYS CHEM, V92, P1345
17007    CATTARIN S, 1990, J ELECTROCHEM SOC, V137, P3475
17008    SCHUMANN D, 1968, J ELECTROANAL CHEM, V17, P451
17009    TRIBUTSCH H, 1975, BER BUNSEN PHYS CHEM, V79, P570
17010    TRIBUTSCH H, 1975, BER BUNSEN PHYS CHEM, V79, P580
17011    WOJTOWICZ J, 1973, MOD ASPECT ELECTROC, P47
17012 NR 7
17013 TC 0
17014 SN 0567-7351
17015 J9 ACTA CHIM SIN
17016 JI Acta Chim. Sin.
17017 PY 1995
17018 VL 53
17019 IS 11
17020 BP 1076
17021 EP 1081
17022 PG 6
17023 SC Chemistry, Multidisciplinary
17024 GA TL445
17025 UT ISI:A1995TL44500007
17026 ER
17027 
17028 PT J
17029 AU Wang, CS
17030    Luo, WY
17031    Gu, JQ
17032    Tabata, T
17033    Ito, R
17034 TI A comparison of calculated and measured absorbed doses of electron beams
17035 SO RADIATION PHYSICS AND CHEMISTRY
17036 DT Article
17037 ID DOSIMETERS; ALGORITHM
17038 AB A semiempirical code to compute the absorbed dose in a single- to
17039    five-layer slab absorbers irradiated by electron beams has been
17040    developed. The doses estimated by the code have been compared with the
17041    experimental results obtained with a pyrolitic-graphite calorimeter for
17042    the electron beams of 1.5 and 1.75-MeV energy, and these have shown
17043    agreement within about 3%.
17044 C1 UNIV OSAKA PREFECTURE,ADV SCI & TECHNOL RES INST,SAKAI,OSAKA 593,JAPAN.
17045    SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI 201800,PEOPLES R CHINA.
17046    SHANGHAI INST METROL TECHNOL,SHANGHAI 200233,PEOPLES R CHINA.
17047 CR 1992, EDMULT 311 MICRO ELE
17048    GARTH JC, 1986, T AM NUCL SOC, V52, P377
17049    HUMPHREYS JC, 1990, RADIAT PHYS CHEM, V35, P744
17050    ITO R, 1987, RCOPTR8 RAD CTR OS P
17051    KOBETICH EJ, 1968, PHYS REV, V170, P391
17052    KOBETICH EJ, 1969, NUCL INSTRUM METHODS, V71, P269
17053    MCLAUGHLIN WL, 1989, DOSIMETRY RAD PROCES
17054    MILLER A, 1985, NUCL INSTRUM METH B, V10, P994
17055    MILLER A, 1990, RADIAT PHYS CHEM, V35, P774
17056    TABATA T, 1974, NUCL SCI ENG, V53, P226
17057    TABATA T, 1981, JPN J APPL PHYS, V20, P249
17058    TABATA T, 1989, RADIAT PHYS CHEM, V33, P411
17059    TABATA T, 1990, RADIAT PHYS CHEM, V35, P821
17060    TABATA T, 1993, NOV RADT AS 93 C P T, P574
17061    TANAKA R, 1971, 32ND PREPR AUT M JAP, P231
17062    ZHANG LM, 1993, RADIAT PHYS CHEM, V42, P765
17063 NR 16
17064 TC 3
17065 J9 RADIAT PHYS CHEM
17066 JI Radiat. Phys. Chem.
17067 PD FEB
17068 PY 1996
17069 VL 47
17070 IS 2
17071 BP 167
17072 EP 170
17073 PG 4
17074 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
17075    Science & Technology
17076 GA TK581
17077 UT ISI:A1996TK58100001
17078 ER
17079 
17080 PT J
17081 AU YANG, T
17082 TI RECOVERY OF DIGITAL SIGNALS FROM CHAOTIC SWITCHING
17083 SO INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS
17084 DT Letter
17085 ID CHUA CIRCUIT
17086 RP YANG, T, SHANGHAI UNIV SCI & TECHNOL,DEPT AUTOMAT ENGN,CAMPUS BOX
17087    14,SHANGHAI 200072,PEOPLES R CHINA.
17088 CR CHUA LO, 1992, AEU-ARCH ELEKTRON UB, V46, P250
17089    CRUZ JM, 1993, IEEE T CIRCUITS-II, V40, P614
17090    CUOMO KM, 1993, 1993 P IEEE ASSP C M, P137
17091    CUOMO KM, 1993, IEEE T CIRCUITS-II, V40, P626
17092    KOCAREV L, 1992, INT J BIFURCAT CHAOS, V2, P709
17093    PARLITZ U, 1992, INT J BIFURCAT CHAOS, V2, P973
17094    YANG T, 1994, INT J CIRC THEOR APP, V22, P399
17095 NR 7
17096 TC 41
17097 SN 0098-9886
17098 J9 INT J CIRCUIT THEOR APPL
17099 JI Int. J. Circuit Theory Appl.
17100 PD NOV-DEC
17101 PY 1995
17102 VL 23
17103 IS 6
17104 BP 611
17105 EP 615
17106 PG 5
17107 SC Engineering, Electrical & Electronic
17108 GA TJ622
17109 UT ISI:A1995TJ62200006
17110 ER
17111 
17112 PT J
17113 AU GUO, BY
17114    CAO, WM
17115 TI A SPECTRAL METHOD FOR THE FLUID-FLOW WITH LOW MACH NUMBER ON THE
17116    SPHERICAL SURFACE
17117 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
17118 DT Article
17119 DE FLUID FLOW WITH LOW MACH NUMBER; SPHERICAL SURFACE; SPECTRAL METHOD
17120 AB A spectral scheme is proposed for the fluid flow with low Mach number
17121    on the spherical surface. The stability and the convergence are proved.
17122    some skills in this paper can be extended to tackle problems defined on
17123    manifolds.
17124 RP GUO, BY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
17125 CR CANUTO C, 1987, SPECTRAL METHODS FLU
17126    COURANT R, 1953, METHODS MATH PHYSICS, V1
17127    GOTTLIEB D, 1977, NUMERICAL ANAL SPECT
17128    GUO BY, 1994, J COMPUT MATH, V12, P173
17129    GUO BY, 1995, MATH COMPUT, V64, P1067
17130    HALTINER GJ, 1980, NUMERICAL PREDICTION
17131    JARUND M, 1985, LECTURE NOTES APPLIE, V22, P1
17132    LIONS JL, 1972, NONHOMOGENEOUS BOUND, V1
17133    ROACHE PJ, 1976, COMPUTATIONAL FLUID
17134    WILLIAMSON DL, 1992, J COMPUT PHYS, V102, P211
17135    ZEN QC, 1979, PHYSICAL MATH BASIS, V1
17136 NR 11
17137 TC 0
17138 SN 0036-1429
17139 J9 SIAM J NUMER ANAL
17140 JI SIAM J. Numer. Anal.
17141 PD DEC
17142 PY 1995
17143 VL 32
17144 IS 6
17145 BP 1764
17146 EP 1777
17147 PG 14
17148 SC Mathematics, Applied
17149 GA TH076
17150 UT ISI:A1995TH07600004
17151 ER
17152 
17153 PT J
17154 AU ZHU, Y
17155 TI GENERATION OF SOLITARY WAVES IN A 3-LAYER FLUID SYSTEM
17156 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY & TECHNOLOGICAL
17157    SCIENCES
17158 DT Article
17159 DE SOLITARY WAVES; STRATIFIED FLUID; KDV EQUATION
17160 ID GRAVITATIONAL COLLAPSE; STRATIFIED FLUID; INTERNAL WAVES
17161 AB Based on the generalized Boussinesq equations for the three-layer fluid
17162    system, the KdV equations for the interfaces are obtained by using a
17163    perturbation method and the effect of fluid depth on the generation of
17164    solitary waves is discussed. By classifying the waves into fast-,
17165    medium- and slow-modes, it is found that the results on the slow-mode
17166    waves is qualitatively consistent with the experimental ones, and there
17167    may exist concave solitary waves on free surface, which is yet to be
17168    verified by experiments.
17169 RP ZHU, Y, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI
17170    200072,PEOPLES R CHINA.
17171 CR ABLOWITZ MJ, 1981, SOLITONS INVERSE SCA
17172    AMEN R, 1980, J FLUID MECH, V96, P65
17173    GILREATH HE, 1985, AIAA J, V23, P693
17174    KAKUTANI T, 1978, J PHYS SOC JPN, V45, P674
17175    MAXWORTHY T, 1980, J FLUID MECH, V96, P47
17176    WHITHAM GB, 1974, LINEAR NONLINEAR WAV
17177    ZHU Y, IN PRESS J HYDRODYNA
17178 NR 7
17179 TC 0
17180 SN 1001-6511
17181 J9 SCI CHINA SER A
17182 JI Sci. China Ser. A-Math. Phys. Astron. Technol. Sci.
17183 PD OCT
17184 PY 1995
17185 VL 38
17186 IS 10
17187 BP 1239
17188 EP 1245
17189 PG 7
17190 SC Mathematics, Applied; Mathematics
17191 GA TH029
17192 UT ISI:A1995TH02900008
17193 ER
17194 
17195 PT J
17196 AU XU, WP
17197    ZHENG, LR
17198    XIN, HP
17199    LIN, CL
17200    GU, M
17201    CAO, ZC
17202    OKUYAMA, M
17203 TI BARUO3 THIN-FILMS PREPARED BY PULSED-LASER DEPOSITION
17204 SO MATERIALS LETTERS
17205 DT Article
17206 ID FERROELECTRIC MEMORIES
17207 AB High electrical conductive BaRuO3 thin films with (110) perovskite
17208    orientation have been successfully fabricated on Si(100) substrates by
17209    pulsed ArF excimer laser deposition and post-annealing. The resistivity
17210    of the films at room temperature is in the range of 10(-2)-10(-3) Ohm
17211    cm. Auger electron spectroscopy (AES) measurement shows that the
17212    compositions uniformly distributed throughout the film. Rutherford
17213    backscattering spectroscopy (RES) analysis indicates that the chemical
17214    stoichiometric ratio is well consistent with the ideal one as in BaRuO3.
17215 C1 SHANGHAI UNIV,FAC MAT,JIADING 201800,PEOPLES R CHINA.
17216    OSAKA UNIV,FAC ENGN SCI,DEPT ELECT ENGN,TOYONAKA,OSAKA 560,JAPAN.
17217 RP XU, WP, CHINESE ACAD SCI,SHANGHAI INST MET,STATE KEY LAB FUNCT MAT
17218    INFORMAT,SHANGHAI 200050,PEOPLES R CHINA.
17219 CR BENSCH W, 1990, SOLID STATE IONICS, V43, P171
17220    CHEUNG JT, 1993, APPL PHYS LETT, V62, P2045
17221    DONOHUE PC, 1965, INORG CHEM, V4, P306
17222    EOM CB, 1992, SCIENCE, V258, P1766
17223    KIM TW, 1994, APPL PHYS LETT, V64, P2676
17224    LARSEN PK, 1992, FERROELECTRICS, V128, P265
17225    SCOTT JF, 1989, SCIENCE, V246, P1400
17226    TAKIKAWA O, 1986, 36TH IEEE P EL COMP, P214
17227    VANLOAN PR, 1992, CERAM B, V51, P231
17228    VIJAY DP, 1993, J ELECTROCHEM SOC, V140, P2640
17229    XU W, 1995, IN PRESS PHYS STAT A
17230    YOON YS, 1993, J APPL PHYS, V73, P1547
17231 NR 12
17232 TC 5
17233 SN 0167-577X
17234 J9 MATER LETT
17235 JI Mater. Lett.
17236 PD NOV
17237 PY 1995
17238 VL 25
17239 IS 3-4
17240 BP 175
17241 EP 178
17242 PG 4
17243 SC Materials Science, Multidisciplinary; Physics, Applied
17244 GA TG742
17245 UT ISI:A1995TG74200021
17246 ER
17247 
17248 PT J
17249 AU WANG, ZH
17250 TI SPLICE LOSS ANALYSIS OF 2 NONIDENTICAL SINGLE-MODE SLAB WAVE-GUIDES
17251    WITH SIMULTANEOUS TILT AND OFFSET MISALIGNMENTS
17252 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
17253 DT Article
17254 DE PLANAR OPTICAL WAVE-GUIDES; SPLICE LOSS
17255 AB By using the Gaussian approximation of the fundamental mode of a
17256    symmetric slab waveguide, the splice losses due to simultaneous tilt,
17257    offset, and waveguide-parameter mismatch of single-mode slab waveguides
17258    have been calculated Very simple formulas have been derived, and
17259    numerical examples have been given. (C) 1995 John Wiiey & Sons, Inc.
17260 RP WANG, ZH, SHANGHAI UNIV,WAVE SCI LAB,SHANGHAI 201800,PEOPLES R CHINA.
17261 NR 0
17262 TC 0
17263 SN 0895-2477
17264 J9 MICROWAVE OPT TECHNOL LETT
17265 JI Microw. Opt. Technol. Lett.
17266 PD DEC 5
17267 PY 1995
17268 VL 10
17269 IS 5
17270 BP 291
17271 EP 294
17272 PG 4
17273 SC Engineering, Electrical & Electronic; Optics
17274 GA TE780
17275 UT ISI:A1995TE78000009
17276 ER
17277 
17278 PT J
17279 AU LIU, HY
17280    QIAN, JH
17281    LIU, YC
17282    YU, TY
17283    DENG, JQ
17284 TI NICKELOCENE-MEDIATING SENSOR FOR HYDROGEN-PEROXIDE BASED ON
17285    BIOELECTROCATALYTIC REDUCTION OF HYDROGEN-PEROXIDE
17286 SO ANALYTICAL PROCEEDINGS
17287 DT Article
17288 ID HORSERADISH-PEROXIDASE; MODIFIED ELECTRODES; CARBON
17289 AB An amperometric H2O2 sensor using nickelocene as the electron transfer
17290    agent between immobilized horseradish peroxide and a glassy carbon
17291    electrode was fabricated. The sensor was highly sensitive to H2O2 with
17292    a detection limit of 5.0 X 10(-7) mol l(-1) H2O2 and a response time of
17293    less than 20 s. The effect of applied potential and temperature on the
17294    Michaelis-Menten constant was calculated and the influence of various
17295    experimental parameters such as pH, temperature and applied potential
17296    were explored for optimum analytical performance.
17297 C1 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
17298    FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
17299    FUDAN UNIV,DEPT MACROMOLEC SCI,SHANGHAI 200433,PEOPLES R CHINA.
17300 CR 1991, SIGMA CHEM CATALOGUE, P771
17301    BIFULCO L, 1994, ANAL LETT, V27, P1443
17302    BOGDANOVSKAYA VA, 1988, BIOELECTROCH BIOENER, V19, P581
17303    CHEN L, 1991, ANAL LETT, V24, P1
17304    DANNER DJ, 1973, ARCH BIOCHEM BIOPHYS, V156, P759
17305    DUNFORD HB, 1982, ADV INORG BIOCHEM, V4, P41
17306    DUNFORD HB, 1987, COORD CHEM, V19, P187
17307    DURLIAT H, 1989, BIOELECTROCH BIOENER, V22, P197
17308    FREW JE, 1986, J ELECTROANAL CH INF, V201, P1
17309    GORTIER G, 1990, ANAL LETT, V23, P1607
17310    HO WO, 1993, J ELECTROANAL CHEM, V351, P185
17311    HURDIS EC, 1954, ANAL CHEM, V26, P320
17312    JONSSONPETTERSS.G, 1991, ELECTROANAL, V3, P741
17313    LIU H, IN PRESS TALANTA
17314    LIU Y, IN PRESS J ELECTROAN
17315    MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801
17316    OYYAMA N, 1985, ANAL CHEM, V57, P1526
17317    TATSUMA T, 1991, ANAL CHEM, V63, P1580
17318    ZHAO JG, 1992, J ELECTROANAL CHEM, V327, P109
17319 NR 19
17320 TC 9
17321 SN 0144-557X
17322 J9 ANALYT PROC
17323 JI Anal. Proc.
17324 PD NOV
17325 PY 1995
17326 VL 32
17327 IS 11
17328 BP 475
17329 EP 477
17330 PG 3
17331 SC Chemistry, Analytical
17332 GA TE648
17333 UT ISI:A1995TE64800006
17334 ER
17335 
17336 PT J
17337 AU CHEN, GS
17338    WANG, Q
17339 TI LOCAL-FIELDS IN SINGLE-MODE HELICAL FIBERS
17340 SO OPTICAL AND QUANTUM ELECTRONICS
17341 DT Article
17342 ID OPTICAL FIBERS; BIREFRINGENCE; POLARIZATION
17343 AB The scalar local-field wave equations in helical fibres are derived
17344    and, with the aid of a special mathematical treatment, solved
17345    approximately in a local coordinate system - the Serret-Frenet frame
17346    from the Maxwell's equations. Two basic results are obtained: (1) The
17347    local modes in a single-mode helical fibre are circularly polarized.
17348    (2) The difference of the propagation constants between the two
17349    fundamental modes is 2 tau, where tau is the torsion. They agree well
17350    with the known experimental measurements.
17351 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
17352 RP CHEN, GS, ZHONGSHAN UNIV,DEPT ELECTR,CANTON,PEOPLES R CHINA.
17353 CR BIRCH RD, 1987, ELECTRON LETT, V23, P50
17354    COLLIN RE, 1991, FIELD THEORY GUIDED, P637
17355    FANG XS, 1985, IEEE T MICROWAVE THE, V33, P150
17356    FUJII Y, 1986, IEE PROC-J, V133, P249
17357    LALOV IJ, 1992, INT J OPTOELECTRON, V7, P479
17358    LEWIN L, 1977, ELECTROMAGNETIC WAVE, P16
17359    LOVE JD, 1987, ELECTRON LETT, V23, P1109
17360    PAPP A, 1977, APPL OPTICS, V16, P1315
17361    PHILLIPS RS, 1950, Q APPL MATH, V8, P229
17362    PIERCE JR, 1950, BELL SYST TECH J, V29, P189
17363    PIERCE JR, 1950, BELL SYST TECH J, V29, P390
17364    PIERCE JR, 1950, BELL SYST TECH J, V29, P608
17365    QIAN J, 1986, ELECTRON LETT, V22, P515
17366    QIAN JR, 1988, IEE PROC-J, V135, P178
17367    ROSS JN, 1984, OPT QUANT ELECTRON, V16, P455
17368    SOLLFREY W, 1951, J APPL PHYS, V22, P905
17369    TANG CH, 1970, I ELECT ELECTRON ENG, V18, P69
17370    ULRICH R, 1979, APPL OPTICS, V10, P2241
17371    VARNHAM MP, 1986, P OFC ATLANTA, P68
17372 NR 19
17373 TC 3
17374 SN 0306-8919
17375 J9 OPT QUANT ELECTRON
17376 JI Opt. Quantum Electron.
17377 PD NOV
17378 PY 1995
17379 VL 27
17380 IS 11
17381 BP 1069
17382 EP 1074
17383 PG 6
17384 SC Engineering, Electrical & Electronic; Optics
17385 GA TD876
17386 UT ISI:A1995TD87600004
17387 ER
17388 
17389 PT J
17390 AU SHEN, WD
17391    ZHU, ST
17392 TI WAVE-FUNCTION OF A FREE-ELECTRON IN A LASER-PLASMA VIA RIEMANNIAN
17393    GEOMETRY
17394 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
17395 DT Article
17396 AB The wave function of a free electron in a laser plasma described via
17397    Riemannian geometry is derived by solving the Dirac equation in the
17398    associated curved spacetime. If the laser field vanishes, the wave
17399    function naturally reduces to the case in flat space-time.
17400 C1 ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI 201800,PEOPLES R CHINA.
17401 RP SHEN, WD, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
17402    R CHINA.
17403 CR SCHIFF LI, 1968, QUANTUM MECHANICS
17404    SHEN W, 1988, PHYSICAL REV A, V37, P4387
17405    ZHU ST, 1995, IN PRESS INT J THEOR
17406 NR 3
17407 TC 4
17408 SN 0020-7748
17409 J9 INT J THEOR PHYS
17410 JI Int. J. Theor. Phys.
17411 PD OCT
17412 PY 1995
17413 VL 34
17414 IS 10
17415 BP 2085
17416 EP 2094
17417 PG 10
17418 SC Physics, Multidisciplinary
17419 GA TA672
17420 UT ISI:A1995TA67200009
17421 ER
17422 
17423 PT J
17424 AU SHEN, WD
17425    ZHU, ST
17426    GUO, QZ
17427 TI CLASSICAL DESCRIPTION OF THE RADIATION OF A CHARGED-PARTICLE IN A
17428    STRONG-LASER PLASMA
17429 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
17430 DT Article
17431 AB The behavior of a charged particle in it strong-laser plasma is
17432    discussed by solving the generally covariant equation of motion for a
17433    charged particle. The classical description for the radiation of a
17434    charged particle in a strong-laser plasma is given, and the intensity
17435    and the radiation power are derived in detail.
17436 C1 ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI 201800,PEOPLES R CHINA.
17437 RP SHEN, WD, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
17438    R CHINA.
17439 CR JACKSON JD, 1976, CLASSICAL ELECTRODYN
17440    SARACHIK ES, 1970, PHYS REV D, V1, P2738
17441    WEINBERG S, 1972, GRAVITATION COSMOLOG
17442    ZHU ST, 1995, IN PRESS INT J THEOR
17443 NR 4
17444 TC 4
17445 SN 0020-7748
17446 J9 INT J THEOR PHYS
17447 JI Int. J. Theor. Phys.
17448 PD OCT
17449 PY 1995
17450 VL 34
17451 IS 10
17452 BP 2095
17453 EP 2104
17454 PG 10
17455 SC Physics, Multidisciplinary
17456 GA TA672
17457 UT ISI:A1995TA67200010
17458 ER
17459 
17460 PT J
17461 AU FENG, SS
17462    QIU, XJ
17463 TI PATH-INTEGRAL QUANTIZATION AND THE GROUND-STATE FUNCTIONAL FOR
17464    MAXWELL-CHERN-SIMONS SYSTEM
17465 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
17466 DT Article
17467 ID WAVE
17468 AB The Maxwell-Chern-Simons system as a constrained system is quantized in
17469    the path integral formulation. Using the functional partition function
17470    and the method proposed by Fradkin, we obtain the correct absolute
17471    value squared of the ground state.
17472 C1 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
17473 RP FENG, SS, ACAD SINICA,INST NUCL RES,SHANGHAI 201800,PEOPLES R CHINA.
17474 CR DESER S, 1982, ANN PHYS-NEW YORK, V140, P372
17475    FRADKIN E, 1993, NUCL PHYS B, V362, P667
17476    FRADKIN E, 1993, NUCL PHYS B, V389, P587
17477    GITMAN DM, 1990, QUANTIZATION FIELDS
17478    LI ZP, 1993, CLASSICAL QUANTUM CO
17479    LOPEZ A, 1992, PHYS REV LETT, V69, P2126
17480 NR 6
17481 TC 5
17482 SN 0020-7748
17483 J9 INT J THEOR PHYS
17484 JI Int. J. Theor. Phys.
17485 PD SEP
17486 PY 1995
17487 VL 34
17488 IS 9
17489 BP 1827
17490 EP 1833
17491 PG 7
17492 SC Physics, Multidisciplinary
17493 GA RX153
17494 UT ISI:A1995RX15300001
17495 ER
17496 
17497 PT J
17498 AU WANG, DR
17499    ZHAO, FG
17500 TI THE THEORY OF SMALES POINT ESTIMATION AND ITS APPLICATIONS
17501 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
17502 DT Article
17503 DE POINT ESTIMATION; NEWTON METHOD; DURAND-KERNER METHOD
17504 AB The main result of this paper is that we exact Smale's point estimation
17505    theory, i.e., without assuming gamma(k) = parallel to P'(z)(-1)
17506    P-(k)(z)/k! parallel to (k greater than or equal to 2) being bounded by
17507    gamma, the point estimation convergence theorem of the Newton method is
17508    set up by making use of the majorizing method. The proof of the theorem
17509    is simple and precise, while the required point estimation conditions
17510    are weaker than all those of known point estimation convergence
17511    theorems.
17512    Another result of this paper is an application of the above new theory
17513    to the Durand-Kerner method. We compare the point estimation conditions
17514    for the Durand-Kerner method with other known point estimation
17515    conditions. Numerical results show that our results have evident
17516    advantages.
17517 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
17518 CR KERNER IO, 1966, NUMER MATH, V8, P290
17519    SMALE S, 1986, INT C MATH BERK CAL, P1
17520    SMALE S, 1986, INT C MATH BERK CAL, P1
17521    SMALE S, 1989, P C HONOR G YOUNG LA, P1
17522    WANG X, 1989, SCI SINICA A, P905
17523    ZHAO F, 1993, MATH NUMER SINICA, V15, P196
17524 NR 6
17525 TC 15
17526 SN 0377-0427
17527 J9 J COMPUT APPL MATH
17528 JI J. Comput. Appl. Math.
17529 PD JUN 20
17530 PY 1995
17531 VL 60
17532 IS 1-2
17533 BP 253
17534 EP 269
17535 PG 17
17536 SC Mathematics, Applied
17537 GA RV875
17538 UT ISI:A1995RV87500017
17539 ER
17540 
17541 PT J
17542 AU LIU, GQ
17543    YUAN, B
17544    ZHANG, NG
17545    GONG, XY
17546 TI CALCULATION OF THE MAGNETIC-SUSCEPTIBILITY AND THE VERDET CONSTANT IN
17547    NEODYMIUM TRIFLUORIDE
17548 SO JOURNAL OF APPLIED PHYSICS
17549 DT Article
17550 ID OPTICAL-ABSORPTION
17551 AB This paper first considers the effects of multielectron interaction,
17552    L-S interaction and the weak crystal-field on the 4f(3) ground state of
17553    Nd3+ ion in the paramagnetic medium NdF3; then, further takes account
17554    of the splitting of the crystal-field ground levels caused by both the
17555    effective superexchange field H upsilon and the applied field H-e, and
17556    calculates quantitatively the temperature dependence of the magnetic
17557    susceptibility chi in NdF3. For the splitting of 4f(2)5d excited state
17558    of Nd3+ ion in NdF3, the paper investigates the effect of the strong
17559    crystal-held on the 5d electrons. Using the model of three-level
17560    transition, the specific Faraday rotation theta(F), the Verdet constant
17561    V, and their temperature dependence, which originate from the
17562    electronic transitions between the electron configurations 4f(3) and
17563    4f(2)5d, are calculated quantitatively, The theoretical calculations
17564    show that the superexchange interaction between Nd3+ ions has an
17565    important effect on the magneto-optical properties in NdF3, and both
17566    V-1 and chi(-1) are linearly dependent on T in the temperature range 70
17567    K < T < 300 K. The theory is in good agreement with the experimental
17568    results. (C) 1995 American Institute of Physics.
17569 C1 JIAO TONG UNIV,DEPT APPL PHYS,SHANGHAI 200030,PEOPLES R CHINA.
17570    SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
17571 RP LIU, GQ, CHINA CTR ADV SCI & TECHNOL,WORLD LAB,POB 8730,BEIJING
17572    100080,PEOPLES R CHINA.
17573 CR ASANO S, 1979, J PHYS C SOLID STATE, V12, P4081
17574    BENNETT HS, 1965, PHYS REV, V137, A448
17575    CARNALL WT, 1977, ENERGY LEVEL STRUCTU
17576    CARO P, 1981, J CHEM PHYS, V74, P2698
17577    CROSSLEY WA, 1969, PHYS REV, V181, P896
17578    DAVIS JA, 1984, APPL OPTICS, V23, P633
17579    FREISER MJ, 1968, IEEE T MAGN, V4, P152
17580    GOLDSCHMILT ZB, HDB PHYSICS CHEM RAR, V1
17581    JUDD BR, 1966, PHYS REV, V141, P1
17582    JUDD BR, 1966, PHYS REV, V141, P91
17583    LEYCURAS C, 1984, J APPL PHYS, V55, P2161
17584    LIU GQ, 1990, PHYS REV B, V41, P749
17585    LIU GQ, 1993, PHYS REV B, V48, P16091
17586    LIU GQ, 1994, J PHYS-CONDENS MAT, V6, P453
17587    NIELSON CW, 1963, SPECTROSCOPIC COEFFI
17588    OFTEDAL I, 1931, Z PHYS CHEM B-CHEM E, V13, P190
17589    RACAH G, 1942, PHYS REV, V61, P186
17590    RACAH G, 1942, PHYS REV, V62, P438
17591    RACAH G, 1943, PHYS REV, V63, P367
17592    RACAH G, 1949, PHYS REV, V76, P1352
17593    ROTENBERG M, 1963, 3J 6J SYMBOLS
17594    SHEN YR, 1964, PHYS REV, V133, A511
17595    STAROSTIN NV, 1976, CRYSTAL SPECTROSCOPY, P216
17596    SUITS JC, 1972, IEEE T MAGN, V8, P95
17597    VANVLECK JH, 1934, PHYS REV, V46, P17
17598    WYBOURNE BG, 1965, SPECTROSCOPIC PROPER
17599    YANASE A, 1970, PROG THEOR PHYS S, V46, P338
17600    YANASE A, 1977, J PHYS SOC JPN, V42, P1680
17601    YOU Y, 1992, PHYS REV B, V46, P11636
17602 NR 29
17603 TC 5
17604 SN 0021-8979
17605 J9 J APPL PHYS
17606 JI J. Appl. Phys.
17607 PD SEP 15
17608 PY 1995
17609 VL 78
17610 IS 6
17611 BP 4054
17612 EP 4059
17613 PG 6
17614 SC Physics, Applied
17615 GA RU953
17616 UT ISI:A1995RU95300074
17617 ER
17618 
17619 PT J
17620 AU LI, L
17621    AO, Q
17622    VANDERBIEST, O
17623    WOLLANTS, P
17624    DELAEY, L
17625 TI CALCULATION OF THE QUASI-TERNARY SYSTEMS - SI3N4-Y2O3-SIO2,
17626    Y2O3-SIO2-BEO AND Y2O3-AL2O3-BEO
17627 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
17628 DT Article
17629 AB Based on the thermodynamic model of Kaufman for the calculation of
17630    quasibinary and quasiternary system, numerical method for the
17631    calculation of stable equilibrium is developed and thermodynamic data
17632    of undefined phases are discussed in this work for several ceramic
17633    systems. The calculated isothermal sections in Si3N4-Y2O3-SiO2 system
17634    meet well with other previous calculated phase diagrams and
17635    experimental results. The diagrams in Y2O3-SiO2-BeO and Y2O3-Al2O3-BeO
17636    systems are calculated for the approach of prediction.
17637 C1 SHANDONG POLYTECH UNIV,DEPT MAT ENGN,JINAN 250014,PEOPLES R CHINA.
17638    KATHOLIEKE UNIV LEUVEN,DEPT MTM,B-3001 LOUVAIN,BELGIUM.
17639 RP LI, L, SHANGHAI UNIV,DEPT MAT SCI & ENGN,SHANGHAI 200072,PEOPLES R
17640    CHINA.
17641 CR COHEN AM, 1973, NUMERICAL ANAL, P270
17642    DORNER P, 1979, CALPHAD, P241
17643    KAUFMAN L, 1978, CALPHAD, P35
17644    KAUFMAN L, 1979, CALCULATION PHASE DI, P46
17645    KAUFMAN L, 1979, CALPHAD, P27
17646    KAUFMAN L, 1979, CALPHAD, P275
17647    KAUFMAN L, 1981, CALPHAD, P163
17648    LEVIN EM, 1964, PHASE DIAGRAMS CERAM, V1, P99
17649    LI L, 1994, CALPHAD, V18, P89
17650    ROTH RS, 1983, PHASE DIAGRAMS CERAM, V5, P308
17651    ROTH RS, 1983, PHASE DIAGRAMS CERAM, V5, P309
17652    SINGHAL SC, 1976, CERAMURGIA INT, V2, P123
17653    TORRE JP, 1977, NITROGEN CERAMICS, P63
17654 NR 13
17655 TC 0
17656 SN 1005-0302
17657 J9 J MATER SCI TECHNOL
17658 JI J. Mater. Sci. Technol.
17659 PY 1995
17660 VL 11
17661 IS 4
17662 BP 276
17663 EP 280
17664 PG 5
17665 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
17666    Engineering
17667 GA RT533
17668 UT ISI:A1995RT53300005
17669 ER
17670 
17671 PT J
17672 AU REN, JS
17673    ZHANG, GS
17674    WANG, ZS
17675    ZHAO, JW
17676 TI SPUTTERING RATES OF ALLOYS IN GLOW-DISCHARGE
17677 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
17678 DT Article
17679 AB The sputtering rates of alloys were investigated under constant Ar
17680    pressure and voltage supplied. The alloys studied in this work range
17681    from binary intermetallic alloys to ternary and quaternary alloys. It
17682    is revealed that the sputtering rates of alloy targets under steady
17683    states are
17684    q = 1/Sigma C-i/q(i)(0)
17685    where q is the sputtering rates of alloys, C-i the weight percentage of
17686    i-th component in the alloy, and q(i)(0) the sputtering rate of pure
17687    metal of i-th component.
17688 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 200072,PEOPLES R CHINA.
17689 RP REN, JS, CHINESE ACAD SCI,INST MET RES,SHENYANG 110015,PEOPLES R CHINA.
17690 CR BOUMANS PWJ, 1972, ANAL CHEM, V44, P1219
17691    DUENCHENG F, 1988, JAAS, V3, P873
17692    GREENE JE, 1978, J APPL PHYS, V49, P417
17693    PONSCORBEAU J, 1985, SURF INTERFACE ANAL, V7, P169
17694    REN JS, 1983, ANAL CHEM, V11, P586
17695    REN JS, 1992, ACTA METALL SIN B, V5, P462
17696    ZHAO JW, 1992, THESIS SHANGHAI IND
17697 NR 7
17698 TC 0
17699 SN 1005-0302
17700 J9 J MATER SCI TECHNOL
17701 JI J. Mater. Sci. Technol.
17702 PY 1995
17703 VL 11
17704 IS 4
17705 BP 295
17706 EP 298
17707 PG 4
17708 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
17709    Engineering
17710 GA RT533
17711 UT ISI:A1995RT53300009
17712 ER
17713 
17714 PT J
17715 AU HU, XL
17716 TI LANGUAGE AND LEARNING - EDUCATING LINGUISTICALLY DIVERSE STUDENTS -
17717    MCLEOD,B
17718 SO BRITISH JOURNAL OF EDUCATIONAL STUDIES
17719 DT Book Review
17720 RP HU, XL, SHANGHAI UNIV,SHANGHAI,PEOPLES R CHINA.
17721 CR MCLEOD B, 1994, LANGUAGE LEARNING ED
17722 NR 1
17723 TC 0
17724 SN 0007-1005
17725 J9 BRIT J EDUC STUD
17726 JI Br. J. Educ. Stud.
17727 PD SEP
17728 PY 1995
17729 VL 43
17730 IS 3
17731 BP 358
17732 EP 360
17733 PG 3
17734 SC Education & Educational Research
17735 GA RU011
17736 UT ISI:A1995RU01100023
17737 ER
17738 
17739 PT J
17740 AU ZHU, Y
17741 TI RESONANT GENERATION OF NONLINEAR CAPILLARY-GRAVITY WAVES
17742 SO PHYSICS OF FLUIDS
17743 DT Note
17744 ID FLOW; TOPOGRAPHY; SOLITONS
17745 AB The model considered in this paper consists of an incompressibie,
17746    inviscid fluid flow over bottom topography with the surface tension
17747    acting on it. A forced KdV equation with negative dispersion for
17748    capillary-gravity waves is derived with the inclusion of the effect of
17749    surface tension (for the case of Bond number being larger than 1/3)
17750    when the flow is near resonant. The most important result is that a
17751    typical solution of the present forced KdV equation consists of a train
17752    of concave solitary-like waves which propagate downward, a convex near
17753    the topography and a train of upstream dispersive waves. (C) 1995
17754    American Institute of Physics.
17755 RP ZHU, Y, SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI
17756    200072,PEOPLES R CHINA.
17757 CR AKYLAS TR, 1984, J FLUID MECH, V141, P455
17758    COLE SL, 1985, WAVE MOTION, V7, P579
17759    FORNBERG B, 1978, PHILOS T R SOC LON A, V289, P337
17760    GRIMSHAW R, 1992, NONLINEAR DISPERSIVE, P1
17761    GRIMSHAW RHJ, 1986, J FLUID MECH, V169, P429
17762    MEI CC, 1986, J FLUID MECH, V162, P53
17763    MELVILLE WK, 1987, J FLUID MECH, V178, P31
17764    MILES JW, 1986, J FLUID MECH, V62, P489
17765    WU DM, 1980, 14TH P S NAV HYDR WA, P103
17766    WU TYT, 1987, J FLUID MECH, V184, P75
17767 NR 10
17768 TC 2
17769 SN 1070-6631
17770 J9 PHYS FLUIDS
17771 JI Phys. Fluids
17772 PD SEP
17773 PY 1995
17774 VL 7
17775 IS 9
17776 BP 2294
17777 EP 2296
17778 PG 3
17779 SC Physics, Fluids & Plasmas; Mechanics
17780 GA RR501
17781 UT ISI:A1995RR50100025
17782 ER
17783 
17784 PT J
17785 AU ZOU, GP
17786 TI THE MIXED-STATE HAMILTONIAN DYNAMIC ELEMENT AND A SEMI-ANALYTICAL
17787    SOLUTION FOR THE ANALYSIS OF THICK LAMINATED COMPOSITE PLATES
17788 SO ACTA MECHANICA SOLIDA SINICA
17789 DT Article
17790 DE HAMILTON CANONICAL EQUATION; LAMINATED COMPOSITE PLATE
17791 ID TRANSIENT
17792 AB Through introducing the Laplace transformation in the time direction,
17793    the mixed state Hamilton canonical equation and a semi-analytical
17794    solution are presented for analyzing the dynamic response of laminated
17795    composite plates. This method accounts for the separation of variables,
17796    the finite element discretization can be employed in the plane of
17797    laminar, and the exact solution in the thickness direction is derived
17798    by the state space control method. To apply the transfer matrix method,
17799    the relational expression at the top and bottom surface is established.
17800    So the general solution in transformation space is deduced by the spot
17801    method. By the application of inversion of Laplace transformation, the
17802    transient displacements and stresses can be derived.
17803 C1 SHANGHAI UNIV,SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA.
17804    DALIAN UNIV TECHNOL,ENGN MECH RES INST,DALIAN 116024,PEOPLES R CHINA.
17805 CR KANT T, 1988, COMPOS STRUCT, V9, P319
17806    KHDEIR AA, 1989, COMPOS SCI TECHNOL, V34, P205
17807    PAGANO NJ, 1970, J COMPOS MATER, V4, P20
17808    PAPOULIS A, 1982, APPL MATH MODEL, V6, P238
17809    REDDY JN, 1983, INT J NUMER METH ENG, V19, P237
17810    ROCK TA, 1976, COMPUT STRUCT, V6, P37
17811    TANG LM, 1992, COMPUT STRUCT MECH A, V9, P347
17812    ZOU GP, 1994, ACTA MATERIAL COMPOS, V11, P95
17813 NR 8
17814 TC 1
17815 SN 0894-9166
17816 J9 ACTA MECH SOLIDA SINICA
17817 JI Acta Mech. Solida Sin.
17818 PD JUN
17819 PY 1995
17820 VL 8
17821 IS 2
17822 BP 154
17823 EP 162
17824 PG 9
17825 SC Materials Science, Multidisciplinary; Mechanics
17826 GA RR435
17827 UT ISI:A1995RR43500005
17828 ER
17829 
17830 PT J
17831 AU LIU, YF
17832    ZHANG, KJ
17833    HE, XL
17834    HUA, JD
17835 TI DETERMINATION OF STABILITY CONSTANT OF POLYVINYLPYRIDINE-CU(II) COMPLEX
17836    BY VISIBLE SPECTROSCOPY
17837 SO JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS
17838 DT Article
17839 DE POLYMER METAL COMPLEX; STABILITY CONSTANT; VISIBLE SPECTROSCOPY
17840 AB This paper suggests a broadly applicable method for the determination
17841    of the stability constant and formation function of metal-polymer
17842    complexes in which only the visible spectrum of metal ion is used. The
17843    basic principle has been proved through an experiment on the polyvinyl
17844    pyridine-Cu(II) complex system.
17845 RP LIU, YF, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
17846    R CHINA.
17847 CR BJERRUM J, 1941, METAL AMINE FORMATIO
17848    BRUEHLMAN RC, 1948, J AM CHEM SOC, V70, P1401
17849    FUOSS RM, 1950, IND ENG CHEM, V42, P1603
17850    GREGOR HP, 1955, J PHYS CHEM-US, V59, P34
17851    HISHIKAWA H, 1975, J PHYS CHEM-US, V79, P2072
17852    ISE N, 1979, KANKYO KAGAKU TOKUBE, V1, P5
17853    KHANLAROV TG, 1992, ZH ANAL KHIM, V47, P1817
17854    MAS F, 1993, ANAL CHIM ACTA, V273, P297
17855    SKURLATOV YI, 1982, VYSOKOMOL SOEDIN A+, V24, P1874
17856 NR 9
17857 TC 4
17858 SN 0022-2348
17859 J9 J MACROMOL SCI-PHYS
17860 JI J. Macromol. Sci-Phys.
17861 PY 1995
17862 VL B34
17863 IS 3
17864 BP 311
17865 EP 324
17866 PG 14
17867 SC Polymer Science
17868 GA RQ884
17869 UT ISI:A1995RQ88400011
17870 ER
17871 
17872 PT J
17873 AU MA, GB
17874    TAN, WH
17875 TI CALCULATION OF SOFT-X-RAY LASER IN AN EXPANDING HE-LIKE MG PLASMA
17876    PUMPED BY A SHORT LASER-PULSE
17877 SO OPTICS COMMUNICATIONS
17878 DT Note
17879 ID AMPLIFICATION
17880 AB Using the analytical solution of hydrodynamic equations, energy level
17881    populations of the plasma dominated by He-Like Mg ions are obtained by
17882    solving the rate equations numerically for a short pulsed pumping
17883    laser. Variations of gain coefficient for the lasing transition
17884    1s3d-1s4f of MgXI (lambda = 154 Angstrom) versus time and space are
17885    calculated. Also, the influence of pumping laser pulse duration on gain
17886    coefficient is discussed.
17887 C1 SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
17888 RP MA, GB, ACAD SINICA,SHANGHAI INST OPT & FINE MECH,NATL LAB HIGH POWER
17889    LASER & PHYS,POB 800211,SHANGHAI 201800,PEOPLES R CHINA.
17890 CR BURNETT NH, 1989, J OPT SOC AM B, V6, P1195
17891    CARILLON A, 1992, PHYS REV LETT, V68, P2971
17892    CHARATIS G, 1992, J OPT SOC AM B, V9, P1278
17893    COWAN RD, 1968, J OPT SOC AM, V58, P808
17894    COWAN RD, 1968, J OPT SOC AM, V58, P924
17895    DASILVA LB, 1992, SCIENCE, V258, P269
17896    EDER DC, 1992, PHYS REP A, V45, P6741
17897    FARNSWORTH AV, 1980, PHYS FLUIDS, V23, P1496
17898    JAEGLE P, 1987, J OPT SOC AM B, V4, P563
17899    KOCH JA, 1992, PHYS REV LETT, V68, P3291
17900    LANDSHOFF RK, 1976, PHYS REV A, V13, P1619
17901    LEE TN, 1987, PHYS REV LETT, V59, P1185
17902    LIN Z, 1988, OPT COMMUN, V65, P445
17903    LOCHTEHOLTGREVE.W, 1968, PLASMA DIAGNOSTICS
17904    LONDON RA, 1989, APPL OPTICS, V28, P3397
17905    LUTHERDAVIES B, 1992, SOV J QUANTUM ELECTR, V422, P289
17906    MA GB, 1991, ACTA OPT SINICA, V11, P1057
17907    MACGOWAN BJ, 1992, PHYS FLUIDS B-PLASMA, V4, P2326
17908    MATTHEWS DL, 1985, PHYS REV LETT, V54, P110
17909    MCWRITER RWP, 1965, PLASMA DIAGNOSTIC TE
17910    STEYER M, 1990, APPL PHYS B-PHOTO, V50, P265
17911    SUCKEWER S, 1985, PHYS REV LETT, V55, P1753
17912    TALLENTS GJ, 1991, XRAY LASERS 1990
17913    TAN W, 1988, J APPL PHYS, V64, P6182
17914    VALEO EJ, 1993, PHYS REV E, V47, P1321
17915    ZHANG J, 1994, PHYS REV A, V49, P4024
17916 NR 26
17917 TC 2
17918 SN 0030-4018
17919 J9 OPT COMMUN
17920 JI Opt. Commun.
17921 PD AUG 15
17922 PY 1995
17923 VL 119
17924 IS 1-2
17925 BP 125
17926 EP 131
17927 PG 7
17928 SC Optics
17929 GA RP774
17930 UT ISI:A1995RP77400023
17931 ER
17932 
17933 PT J
17934 AU HU, ZM
17935    ZHANG, WQ
17936    ZHAO, PS
17937    QI, DY
17938 TI STUDY OF CATION TRANSFER ACROSS THE WATER/NITROBENZENE INTERFACE
17939    FACILITATED BY A SYNTHETIC NEUTRAL DICARBOXAMIDE
17940 SO ELECTROANALYSIS
17941 DT Article
17942 DE WATER/NITROBENZENE INTERFACE; IONOPHORE; ION TRANSFER; CYCLIC
17943    VOLTAMMETRY
17944 ID WATER-NITROBENZENE INTERFACE; IMMISCIBLE ELECTROLYTE-SOLUTIONS; LIQUID
17945    MEMBRANE ELECTRODES; ION TRANSFER; METAL-CATIONS; LITHIUM; ALKALI;
17946    VOLTAMMETRY; IONOPHORES; POTASSIUM
17947 AB The transfer of proton, alkali, and alkaline earth metal ions across
17948    the water/nitrobenzene interface, facilitated by a synthetic neutral
17949    dicarboxamide ionophore in the nitrobenzene phase was investigated
17950    using cyclic voltammetry. The ionophore-facilitated transfer of Li+
17951    Ca2+, and Ba2+ ions showed cathodic current peaks, and the transfer of
17952    H+ ions apparently resulted in peaks of both anodic and cathodic
17953    currents within the potential window. The transfer process of these
17954    ions was found to be controlled by the diffusion of the ionophore in
17955    the nitrobenzene. The formation of a 1:1 complex for H+ and of 1:2
17956    (cation to ionophore) complexes for Li+, Ca2+, and Ba2+ ions was
17957    inferred, through peak separation or the dependence of the cathodic
17958    peak potential on the logarithm of the ionophore concentration, to be
17959    involved in the transfer process. The equilibrium constants K-Li,K-M
17960    for the exchange reaction of the ion M(Z+) with the Li-(+)ionophore
17961    complex at the water/nitrobenzene interface were evaluated and
17962    correlated with the potentiometric selectivity coefficients K-Li,M(Pot).
17963 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
17964 CR AMMANN D, 1986, ION SELECTIVE MICROE, P55
17965    BARUZZI AM, 1990, J ELECTROANAL CH INF, V279, P19
17966    FAN R, 1988, J ELECTROANAL CHEM, V256, P207
17967    FAN RX, 1992, J ELECTROANAL CHEM, V324, P107
17968    HOFMANOVA A, 1982, J ELECTROANAL CH INF, V135, P257
17969    HOMOLKA D, 1981, J ELECTROANAL CHEM, V125, P243
17970    HOMOLKA D, 1982, J ELECTROANAL CHEM, V138, P29
17971    KAKUTANI T, 1986, B CHEM SOC JPN, V59, P781
17972    KETAZAWA S, 1985, ANALYST, V110, P295
17973    KORYTA J, 1983, ION SEL ELECTRODE R, V5, P131
17974    KORYTA J, 1983, ION SELECTIVE ELECTR, P39
17975    MEIER PC, 1980, MED BIOL APPLICATION, P13
17976    METZGER E, 1984, CHIMIA, V38, P440
17977    METZGER E, 1986, ANAL CHEM, V58, P132
17978    METZGER E, 1986, HELV CHIM ACTA, V69, P1821
17979    MORF WE, 1983, ION SELECTIVE ELECTR, V1, P39
17980    PARHAM H, 1991, J ELECTROANAL CH INF, V314, P71
17981    SAMEC Z, 1982, J ELECTROANAL CHEM, V135, P265
17982    SAMEC Z, 1990, ANAL CHEM, V62, P1010
17983    SHAO Y, 1991, J ELECTROANAL CHEM, V318, P101
17984    SUN ZH, 1989, ELECTROANAL, V1, P441
17985    SUN ZS, 1990, ANAL CHIM ACTA, V228, P241
17986    TAN SN, 1992, J ELECTROANAL CHEM, V332, P101
17987    VANYSEK P, 1983, J ELECTROANAL CH INF, V148, P117
17988    WANG E, 1986, J ELECTROANAL CHEM, V214, P465
17989    WANG EK, 1990, ELECTROCHIM ACTA, V35, P1965
17990    WANG EK, 1993, ELECTROANAL, V5, P149
17991    XIA XH, 1992, J ELECTROANAL CHEM, V324, P59
17992    XIE RY, 1986, ANAL CHEM, V58, P1806
17993 NR 29
17994 TC 2
17995 SN 1040-0397
17996 J9 ELECTROANAL
17997 JI Electroanalysis
17998 PD JUL
17999 PY 1995
18000 VL 7
18001 IS 7
18002 BP 681
18003 EP 686
18004 PG 6
18005 SC Chemistry, Analytical
18006 GA RN553
18007 UT ISI:A1995RN55300015
18008 ER
18009 
18010 PT J
18011 AU ZHANG, JK
18012    HUANG, JZ
18013    YANG, JZ
18014 TI RESEARCH INTO THE SYNTHETIC CALCULATION OF THE PLACE-AND-POSE ERROR
18015    (SCPPE) OF THE PARTS IN A MACHINE
18016 SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
18017 DT Article
18018 AB During machine design and manufacturing, the analyses and calculations
18019    of the structural or assembling accuracy are very important for
18020    ensuring the quality of the mechanical product. However, the structural
18021    or assembling accuracy is the result of synthesizing the place-and-pose
18022    error of the parts required to be assembled. Due to every part in the
18023    machine being a Three-Dimensional (3-D) Space Substance, in this paper
18024    the place-and-pose error of every part is described in a 3-D coordinate
18025    system. Further, it is shown how the SCPPE of the parts concerned in a
18026    machine can be researched, analyzed and calculated by vector and matrix
18027    operations. Finally, the satisfactory results obtained are illustrated.
18028 RP ZHANG, JK, SHANGHAI UNIV SCI & TECHNOL,DEPT ENGN MECH,149 YAN CHANG
18029    RD,SHANGHAI 200072,PEOPLES R CHINA.
18030 CR CHAKRABORTY J, 1975, MECHANISM MACHINE TH, V10, P155
18031    SHAHEEN A, 1988, IEEE J ROBOTICS AUTO, V14
18032    SHARFI OMA, 1983, MECH MACH THEORY, V18, P123
18033    WILLIAM KV, 1988, IEEE J ROBOTICS AUTO, V14
18034 NR 4
18035 TC 0
18036 SN 0924-0136
18037 J9 J MATER PROCESS TECHNOL
18038 JI J. Mater. Process. Technol.
18039 PD MAY
18040 PY 1995
18041 VL 52
18042 IS 1
18043 BP 151
18044 EP 173
18045 PG 23
18046 SC Engineering, Industrial; Engineering, Manufacturing; Materials Science,
18047    Multidisciplinary
18048 GA RM653
18049 UT ISI:A1995RM65300016
18050 ER
18051 
18052 PT J
18053 AU GUO, BY
18054    LI, J
18055 TI FOURIER-CHEBYSHEV PSEUDOSPECTRAL METHODS FOR THE 2-DIMENSIONAL
18056    NAVIER-STOKES EQUATIONS
18057 SO RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION
18058    MATHEMATIQUE ET ANALYSE NUMERIQUE
18059 DT Article
18060 DE NAVIER-STOKES EQUATIONS; FOURIER-CHEBYSHEV PSEUDOSPECTRAL
18061    APPROXIMATION; SUBJECT CLASSIFICATION; AMS(MOS), 65N30; 76D99
18062 ID SPECTRAL METHOD; APPROXIMATION
18063 AB Fourier-Chebyshev pseudospectral approximation for the two-dimensional
18064    unsteady Naviel-Stokes equations is analyzed. The generalized stability
18065    and convergence are proved strictly The numerical results are presented.
18066 RP GUO, BY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
18067 CR CANUTO C, 1982, MATH COMPUT, V38, P67
18068    CANUTO C, 1984, SPECTRAL METHODS PAR, P55
18069    CANUTO C, 1988, SPECTRAL METHODS FLU
18070    CAO WM, 1992, APPL MATH J CHINESE, V7, P350
18071    GOTTLIEB D, 1977, NUMERICAL ANAL SPECT
18072    GUO B, 1985, SCI SINICA SER A, V28, P1139
18073    GUO BY, 1988, ACTA MATH APPL SINIC, V4, P55
18074    GUO BY, 1988, DIFFERENCE METHODS P
18075    GUO BY, 1992, J COMPUT PHYS, V101, P207
18076    GUO BY, 1994, NUMER MATH, V66, P329
18077    KUO PY, 1983, J COMPUT MATH, V1, P353
18078    MA HP, 1988, J COMPUT MATH, V6, P48
18079    MADAY Y, 1981, NUMER MATH, V37, P321
18080    MADAY Y, 1982, SIAM J NUMER ANAL, V19, P761
18081    MADAY Y, 1987, RAIRO-MATH MODEL NUM, V21, P93
18082    ROACHE PJ, 1976, COMPUTATIONAL FLUID
18083 NR 16
18084 TC 3
18085 SN 0764-583X
18086 J9 RAIRO-MATH MODEL NUMER ANAL
18087 JI Rairo-Math. Model. Numer. Anal.-Model. Math. Anal. Numer.
18088 PD MAY
18089 PY 1995
18090 VL 29
18091 IS 3
18092 BP 303
18093 EP 337
18094 PG 35
18095 SC Mathematics, Applied
18096 GA RJ578
18097 UT ISI:A1995RJ57800002
18098 ER
18099 
18100 PT J
18101 AU GUO, BY
18102 TI A SPECTRAL METHOD FOR THE VORTICITY EQUATION ON THE SURFACE
18103 SO MATHEMATICS OF COMPUTATION
18104 DT Article
18105 DE VORTICITY EQUATION; SPHERICAL SURFACE; SPECTRAL METHOD; APPROXIMATION
18106    THEORY
18107 AB A spectral scheme is proposed for the vorticity equation defined on the
18108    spherical surface. Generalized stability and convergence are proved.
18109    The approximation results in this paper are also useful for other
18110    nonlinear problems.
18111 RP GUO, BY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
18112 CR BRAMBLE JH, 1985, APPL NUMER MATH, V1, P493
18113    CANUTO C, 1988, SPECTRAL METHODS FLU
18114    CURANT R, 1953, METHODS MATH PHYSICS, V1
18115    GOTTLIEB D, 1977, REGIONAL C SERIES AP, V26
18116    GUO B, 1985, SCI SINICA SER A, V28, P1139
18117    GUO BY, 1987, CALCOLO, V24, P263
18118    GUO BY, 1988, DIFFERENCE METHOD PA
18119    GUO BY, 1992, J COMPUT PHYS, V101, P207
18120    HALTINER GJ, 1971, NUMERICAL PREDICTION
18121    HALTINER GJ, 1980, NUMERICAL PREDICTION
18122    JARRAUD M, 1985, LECTURES APPLIED MAT, V22, P1
18123    KREISS HO, 1979, SIAM J NUMER ANAL, V16, P421
18124    KUO PY, 1983, J COMPUT MATH, V1, P353
18125    LIONS JL, 1969, QUELQUES METHODES RE
18126    LIONS JL, 1972, NONHOMOGENEOUS BOUND, V1
18127    MADAY Y, 1982, SIAM J NUMER ANAL, V19, P761
18128    PASCIAK J, 1982, SIAM J NUMER ANAL, V19, P142
18129    RICHTMYER RD, 1967, DIFFERENCE METHODS I
18130    ZEN QG, 1979, PHYSICAL MATH BASIS, V1
18131 NR 19
18132 TC 2
18133 SN 0025-5718
18134 J9 MATH COMPUT
18135 JI Math. Comput.
18136 PD JUL
18137 PY 1995
18138 VL 64
18139 IS 211
18140 BP 1067
18141 EP 1079
18142 PG 13
18143 SC Mathematics, Applied
18144 GA RJ128
18145 UT ISI:A1995RJ12800008
18146 ER
18147 
18148 PT J
18149 AU WANG, ZX
18150    LI, XN
18151    WANG, CS
18152 TI LOCALIZED COMPOSITIONAL DEPTH PROFILES IN NEAR-SURFACE OF CU-50 WT
18153    PERCENT AG ALLOY
18154 SO JOURNAL OF MATERIALS SCIENCE LETTERS
18155 DT Article
18156 ID SEGREGATION
18157 C1 ACAD SINICA,SHANGHAI INST NUCL RES,SHANGHAI 201800,PEOPLES R CHINA.
18158    SHANGHAI UNIV,SHANGHAI APPL RADIAT INST,SHANGHAI 201800,PEOPLES R CHINA.
18159 RP WANG, ZX, CCAST,WORLD LAB,POB 8730,BEIJING 100080,PEOPLES R CHINA.
18160 CR ANDERSEN HH, 1983, NUCL INSTRUM METHODS, V209, P487
18161    ANDERSON GS, 1969, J APPL PHYS, V40, P2884
18162    BETZ G, 1980, SURF SCI, V92, P283
18163    BRIZZOLARA RA, 1987, NUCL INSTRUM METH B, V26, P528
18164    HOFF HA, 1988, SURF SCI, V204, P233
18165    KELLY R, 1989, NUCL INSTRUM METH B, V39, P43
18166    WANG ZX, 1992, J MATER SCI LETT, V11, P719
18167    WANG ZX, 1993, NUCL INSTRUM METH B, V74, P380
18168    WANG ZX, 1994, J MATER SCI LETT, V13, P427
18169 NR 9
18170 TC 1
18171 SN 0261-8028
18172 J9 J MATER SCI LETT
18173 JI J. Mater. Sci. Lett.
18174 PD JUN 15
18175 PY 1995
18176 VL 14
18177 IS 12
18178 BP 892
18179 EP 894
18180 PG 3
18181 SC Materials Science, Multidisciplinary
18182 GA RG754
18183 UT ISI:A1995RG75400018
18184 ER
18185 
18186 PT J
18187 AU JIANG, XY
18188    ZHANG, ZL
18189    XU, SH
18190 TI MULTI-DIFFUSED REFLECTION SPECTROSCOPY OF RARE-EARTHS DOPED LAOCL
18191    POWDER SAMPLES AND THE CALCULATION OF QUANTUM EFFICIENCY
18192 SO JOURNAL OF RARE EARTHS
18193 DT Article
18194 DE POWDERED MATERIAL; MULTI-DIFFUSED REFLECTION; DIFFUSED REFLECTION
18195    ABSORPTION SPECTRUM; QUANTUM EFFICIENCY
18196 AB The excitation and emission spectra, the relaxation time of principal
18197    spectral lines and multi-diffused reflection spectra in LaOCl : Er,
18198    LaOCl : Ho powder samples were measured. The diffused absorption
18199    spectrum was derived from the multi-diffused reflection spectrum.
18200    According to Judd-Ofelt theory, the intensity parameters, radiative
18201    transition probabilities and quantum efficiencies of luminescence
18202    emission were calculated. Then comparison with erbium and holmium doped
18203    floride glass and other matrices were made.
18204 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MAT,SHANGHAI 201800,PEOPLES R CHINA.
18205 CR CAMALL WJ, 1968, J CHEM PHYS, V49, P4412
18206    CAMALL WT, 1968, J CHEM PHYS, V49, P4424
18207    HEBET T, 1990, APPL PHYS LETT, V67, P1727
18208    JIANG XY, 1990, CHINESE J LUMIN, V11, P79
18209    JIANG XY, 1993, ACTA PHYS SINICA, V2, P333
18210    JIANG XY, 1993, CHINESE J LUMIN, V14, P307
18211    QI CH, 1985, LUMINESCENCE DISPLAY, V6, P18
18212    WU S, 1986, CHINESE J LUMINESCEN, V7, P252
18213    ZHANG ZL, 1989, 2ND P INT S RAR EART, P353
18214    ZHANG ZL, 1991, ACTA OPT SINICA, V11, P312
18215 NR 10
18216 TC 0
18217 SN 1002-0721
18218 J9 J RARE EARTH
18219 JI J. Rare Earths
18220 PD JUN
18221 PY 1995
18222 VL 13
18223 IS 2
18224 BP 94
18225 EP 98
18226 PG 5
18227 SC Chemistry, Applied
18228 GA RG278
18229 UT ISI:A1995RG27800004
18230 ER
18231 
18232 PT J
18233 AU WANG, JR
18234    WEI, GL
18235 TI KINETICS OF THE TRANSFORMATION PROCESS OF PBSO4 TO PBO2 IN A LEAD
18236    ANODIC FILM
18237 SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY
18238 DT Article
18239 DE FILM GROWTH; LEAD-ACID BATTERY; POTENTIOSTATIC OXIDATION; PBSO4; PBO2
18240 ID SULFURIC-ACID; ACTIVE MASS; OXIDATION; SULFATE
18241 AB The kinetics of the nucleation and growth of PbO2 during the
18242    potentiostatic oxidation of PbSO4 in a lead anodic film was studied
18243    using linear sweep voltammetry, potential-step and ac impedance tracing
18244    methods. The film investigated is the partially reduced anodic PbO2
18245    film formed by. polarizing a lead electrode in 4.5 M H2SO4 solution
18246    first at 1.3 V vs. Hg\HgSO4 for 20 min and then at 0.9 V for 5 min. The
18247    nucleation and growth process begins some time after the potential step
18248    and is completed within 60 s. The pre- and post-nucleation and growth
18249    processes correspond to the growth of the anodic film formed by the
18250    oxidation of the lead substrate. The mathematical equations
18251    representing the current-time and capacitance-time transients are
18252    derived laking the background oxidation current into account. The
18253    experimental results are well fitted by these equations. The process
18254    obeys the laws of two-dimensional instantaneous nucleation and growth.
18255 C1 SHANGHAI UNIV,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
18256 CR CARR JP, 1970, J ELECTROANAL CHEM, V27, P201
18257    DAWSON JL, 1975, POWER SOURCES, V5, P70
18258    FLEISCHMANN M, 1955, T FARADAY SOC, V51, P71
18259    HAMEENOJA E, 1984, J APPL ELECTROCHEM, V14, P449
18260    HAMPSON NA, 1980, J ELECTROANAL CHEM, V107, P177
18261    LAITINEN T, 1989, ELECTROCHIM ACTA, V134, P3
18262    MONAHOV B, 1993, J APPL ELECTROCHEM, V23, P1244
18263    PAVLOV D, 1989, J ELECTROCHEM SOC, V136, P3189
18264    PAVLOV D, 1990, J POWER SOURCES, V30, P77
18265    PAVLOV D, 1992, J ELECTROCHEM SOC, V139, P3075
18266    TAKEHARA Z, 1990, J POWER SOURCES, V30, P55
18267    VALERIOTE EML, 1975, POWER SOURCES, V5, P55
18268    VALERIOTE EML, 1977, J ELECTROCHEM SOC, V124, P370
18269    WEI C, 1989, ACTA CHIM SINICA, V47, P569
18270 NR 14
18271 TC 4
18272 SN 0022-0728
18273 J9 J ELECTROANAL CHEM
18274 JI J. Electroanal. Chem.
18275 PD JUN 15
18276 PY 1995
18277 VL 390
18278 IS 1-2
18279 BP 29
18280 EP 33
18281 PG 5
18282 SC Chemistry, Analytical; Electrochemistry
18283 GA RG024
18284 UT ISI:A1995RG02400004
18285 ER
18286 
18287 PT J
18288 AU LIU, GL
18289 TI THE GENERALIZED UNTWIST PROBLEM OF ROTATING BLADES - A COUPLED
18290    AEROELASTIC FORMULATION
18291 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
18292 DT Article
18293 ID 3-D TRANSONIC FLOW; VARIATIONAL-PRINCIPLES; TURBO-ROTOR; SHOCKS
18294 AB The untwist of rotating blades in turbomachines treated so far in the
18295    literature simply as a pure elasticity problem is generalized and
18296    formulated rigorously as a problem of aeroelasticity by variational
18297    principles (VPs) and generalized VP (GVP). It takes into account not
18298    only the centrifugal force, but also the aeroelastic interaction
18299    between blades and the flow as well as the elastic distortion of the
18300    cross section shape of blades, assuming the material to be linearly
18301    elastic but anisotropic. Thus, a new rigorous theoretical basis for the
18302    finite element analysis of blade untwist in turbomachine design is
18303    provided.
18304 C1 SHANGHAI UNIV,SHANGHAI,PEOPLES R CHINA.
18305 RP LIU, GL, SHANGHAI INST APPL MATH & MECH,SHANGHAI,PEOPLES R CHINA.
18306 CR BIEZENO CB, 1953, TECHNISCHE DYNAMIK, V1
18307    CHIEN WZ, 1980, CALCULUS VARIATIONS
18308    DOWELL EH, 1978, MODERN COURSE AEROEL
18309    FUNG YC, 1965, F SOLID MECHANICS
18310    LIU GL, 1981, ACTA MECH SINICA, V13, P421
18311    LIU GL, 1988, COMPUTATIONAL FLUID, P473
18312    LIU GL, 1990, 1 INT S EXP COMP AER, P128
18313    LIU GL, 1992, ACTA MECH, V95, P117
18314    LIU GL, 1993, 1993 P INT C FLUID M, P359
18315    LIU GL, 1993, ACTA MECH, V97, P229
18316    LIU GL, 1993, MEMORIAL TRIBUTE VOL
18317    OHTSUKA M, 1974, ASME74GT2 PAP
18318    TRAUPEL W, 1977, THERMISCHE TURBOMASC, V1
18319    TRAUPEL W, 1982, THERMISCHE TURBOMASC, V2
18320    WASHIZU K, 1982, VARIATIONAL METHODS
18321    WU CH, 1952, NACA TN2604
18322 NR 16
18323 TC 4
18324 SN 0334-0082
18325 J9 INT J TURBO JET ENGINES
18326 JI Int. J. Turbo. Jet-Engines
18327 PY 1995
18328 VL 12
18329 IS 2
18330 BP 109
18331 EP 117
18332 PG 9
18333 SC Engineering, Aerospace
18334 GA RE849
18335 UT ISI:A1995RE84900003
18336 ER
18337 
18338 PT J
18339 AU FINK, D
18340    HU, HW
18341    KLETT, R
18342    MULLER, M
18343    ZHU, J
18344    LI, CL
18345    SUN, YM
18346    MA, F
18347    WANG, LH
18348 TI CONDUCTIVITY OF AGED NONOVERLAPPING AND OVERLAPPING TRACKS IN
18349    ION-IRRADIATED POLYIMIDE
18350 SO RADIATION MEASUREMENTS
18351 DT Article
18352 DE CONDUCTIVITY; NUCLEAR TRACKS; POLYIMIDE; ELECTRONIC ENERGY TRANSFER;
18353    TRACK RADIUS
18354 AB Non-overlapping as well as overlapping tracks of energtic ions have
18355    been introduced into polyimide foils. After aging their conductivity
18356    was measured. This - to our knowledge - first systematic study shows
18357    that conductivity does not only result from multiple track overlapping,
18358    but can be found already in single ion tracks. This conductivity is
18359    shown to be primarily a consequence of electronic energy transfer. The
18360    conductivity of single ion tracks is higher than that of typical
18361    insulators, but still orders of magnitude lower than that of typical
18362    semiconductors. The conductivity is independent of the applied electric
18363    field strength until at excessive voltages the electric current
18364    increases nonlinearly up to complete breakthrough. The total
18365    conductivity of an irradiated polyimide foil increases proportionally
18366    with ion fluence for large ion track spacings, and approaches
18367    saturation when the electronically active track regimes begin to
18368    overlap. Above some thousand times track overlapping however, new
18369    chemical and structural changes in the irradiated material lead to
18370    another strong increase in conductivity.
18371 C1 CHINESE INST ATOM ENERGY,BEIJING,PEOPLES R CHINA.
18372    SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI 201800,PEOPLES R CHINA.
18373    ACAD SINICA,INST MODERN PHYS,LANZHOU,PEOPLES R CHINA.
18374    GESELL SCHWERIONENFORSCH MBH,D-64291 DARMSTADT,GERMANY.
18375 RP FINK, D, HAHN MEITNER INST BERLIN GMBH,GLIENICKER STR 100,D-14109
18376    BERLIN,GERMANY.
18377 CR CARDOSO J, 1994, IN PRESS COMMUNICATI
18378    FINK D, 1990, NUCL INSTRUM METH B, V46, P342
18379    FINK D, 1990, NUCL INSTRUM METH B, V46, P342
18380    FINK D, 1994, RAD EFF DEF SOLIDS, V25, P27
18381    FINK D, 1994, UNPUB RAD EFF DE SOL
18382 NR 5
18383 TC 3
18384 SN 1350-4487
18385 J9 RADIAT MEAS
18386 JI Radiat. Meas.
18387 PY 1995
18388 VL 25
18389 IS 1-4
18390 BP 51
18391 EP 54
18392 PG 4
18393 SC Nuclear Science & Technology
18394 GA RE480
18395 UT ISI:A1995RE48000011
18396 ER
18397 
18398 PT J
18399 AU ZHOU, SP
18400 TI NOVEL METHODOLOGY TO INVESTIGATE SUPERCONDUCTING DIELECTRIC RESONATORS
18401 SO JOURNAL OF SUPERCONDUCTIVITY
18402 DT Article
18403 DE YBA2CU3O7-DELTA (DELTA-APPROXIMATE-TO-0) RESONATOR; NEGATIVE DIELECTRIC
18404    CONSTANT; CONFORMAL TRANSFORMATION
18405 AB An analytical method is presented for investigating the resonant
18406    behavior of a c-axis oriented YBa2Cu2O7-delta (delta approximate to 0)
18407    thin film on a resonator composed of LaAlO3 (001). The concept of the
18408    negative dielectric medium for a superconductor is introduced within
18409    the framework of the two-fluid model, which permits us to treat a
18410    superconductor as any other penetrable materials so that only its
18411    electromagnetics are concerned. A conformal transformation is further
18412    suggested to map the original open boundary-value problem to a closed
18413    one. This not only makes the original problem readily solvable by using
18414    the variational technique, but is also a powerful tool for analyzing
18415    some kinds of problems such as the propagation characteristics of the
18416    superconducting microstripe and coplanar waveguide structures.
18417 RP ZHOU, SP, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
18418    R CHINA.
18419 CR ALLENDER D, 1973, PHYS REV B, V7, P1020
18420    BAO JS, 1992, CHIN J LOW TEMP PHYS, V14, P383
18421    BARDEEN J, 1957, PHYS REV, V108, P1175
18422    GOULD SH, 1986, VARIATIONAL METHOD E
18423    KLOPMAN BBG, 1993, IEEE T MICROW THEORY, V41, P781
18424    MATTIS DC, 1958, PHYS REV, V111, P412
18425    RIBBER JC, 1991, IEEE T MAGN, V27, P2533
18426    SCHLUTER M, 1989, PHYSICA C, V162, P583
18427    TURENEAURE JP, 1967, THESIS STANFORD U
18428    VANDUZER T, 1990, 2ND WORKSH HIGH TEMP
18429    ZHOU SP, 1993, J APPL PHYS, V71, P2789
18430 NR 11
18431 TC 0
18432 SN 0896-1107
18433 J9 J SUPERCOND
18434 JI J. Supercond.
18435 PD APR
18436 PY 1995
18437 VL 8
18438 IS 2
18439 BP 211
18440 EP 219
18441 PG 9
18442 SC Physics, Applied; Physics, Condensed Matter
18443 GA RD121
18444 UT ISI:A1995RD12100003
18445 ER
18446 
18447 PT J
18448 AU ZHOU, SP
18449    COURT, GR
18450 TI MAGNETIC-BEHAVIOR AND VORTEX LATTICE TRANSITION IN YBA2CU3O7-DELTA
18451 SO JOURNAL OF SUPERCONDUCTIVITY
18452 DT Article
18453 DE SUSCEPTIBILITY; MIXED STATE; PINNING; STRUCTURE VORTEX LATTICE
18454    TRANSITION
18455 ID HIGH-TC SUPERCONDUCTORS; MULTILAYERS; MODEL
18456 AB Magnetic susceptibility measurements on YBa2Cu3O7-delta rod materials
18457    by an ac balanced bridge technique are made in fields of up to 50 mT
18458    and over the temperature range from 4.2 K to just below T-c. A large
18459    H-c2 accompanied by characteristic form of hysteresis has been shown. A
18460    modified critical state model of Anderson [Phys. Rev. Lett. 9, 309
18461    (1962)] is adapted to fit the curves in the region where hysteresis is
18462    dominant because of flux trapping. A conceptual model of structure
18463    vortex lattice transition due to the intrinsic pinning of the layering
18464    configuration is suggested, which can provide an explanation of the
18465    magnetic behaviour of oxide superconductors.
18466 C1 UNIV LIVERPOOL,DEPT PHYS,LIVERPOOL L69 3BX,MERSEYSIDE,ENGLAND.
18467 RP ZHOU, SP, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI,PEOPLES R
18468    CHINA.
18469 CR ANDERSON PW, 1962, PHYS REV LETT, V9, P309
18470    ANDERSON PW, 1964, REV MOD PHYS, V36, P39
18471    ARATS J, 1990, EUROPHYS LETT, V12, P447
18472    BAK P, 1988, PHYS REV A, V38, P364
18473    BEAN CP, 1962, PHYS REV LETT, V8, P250
18474    CHADWICK J, 1989, SOLID STATE COMMUN, V69, P19
18475    CHAKRAVARTY S, 1989, PHYS REV LETT, V60, P1057
18476    CLEM JR, 1991, PHYS REV B, V43, P7837
18477    DOLAN GJ, 1989, PHYS REV LETT, V62, P8276
18478    DREW HD, 1993, PHYS REV B, V47, P586
18479    HAGEN CW, 1989, PHYS REV LETT, V62, P2857
18480    KES PH, 1988, PHYSICA C, V153, P1121
18481    KES PH, 1989, PHYSICA C, V153, P1121
18482    KES PH, 1991, PHYSICA C, V185, P2071
18483    KIM YB, 1962, PHYS REV LETT, V9, P306
18484    KRRAI K, 1992, PHYS REV LETT, V69, P355
18485    KUMAR GR, 1989, PHYS REV B, V39, P4704
18486    KUWASAWA Y, 1990, PHYSICA C, V165, P173
18487    LARKIN AI, 1979, J LOW TEMP PHYS, V34, P409
18488    LARKIN AI, 1989, SOLID STATE COMMUN, V70, P291
18489    MAJ W, 1992, SUPERCOND SCI TECH, V5, P483
18490    ROSSAT J, 1989, SEP P INT FOR PHYS H
18491    SUN JZ, 1989, PHYS REV LETT, V63, P4861
18492    TACHIKI M, 1989, SOLID STATE COMMUN, V70, P361
18493    TAKAHASHI S, 1986, PHYS REV B, V33, P4620
18494 NR 25
18495 TC 0
18496 SN 0896-1107
18497 J9 J SUPERCOND
18498 JI J. Supercond.
18499 PD FEB
18500 PY 1995
18501 VL 8
18502 IS 1
18503 BP 79
18504 EP 85
18505 PG 7
18506 SC Physics, Applied; Physics, Condensed Matter
18507 GA RD078
18508 UT ISI:A1995RD07800014
18509 ER
18510 
18511 PT J
18512 AU LI, J
18513    GUO, BY
18514 TI FOURIER-LEGENDRE SPECTRAL METHOD FOR THE UNSTEADY NAVIER-STOKES
18515    EQUATIONS
18516 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
18517 DT Article
18518 ID FINITE-ELEMENT; APPROXIMATION
18519 AB Fourier-Legendre spectral approximation for the unsteady Navier-Stokes
18520    equations is analyzed. The generalized stability and convergence are
18521    proved respectively.
18522 C1 ACAD SINICA,CTR COMP,BEIJING 100080,PEOPLES R CHINA.
18523    SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
18524 CR BERNARDI C, 1987, NUMER MATH, V51, P655
18525    CANTO C, 1982, MATH COMPUT, V38, P67
18526    CANUTO C, 1984, NUMER MATH, V44, P201
18527    GIRAULT V, 1986, FINITE ELEMENT APPRO
18528    GUO BY, 1985, SCI SINICA, V28, P1138
18529    GUO BY, 1988, DIFFERENCE METHODS P
18530    GUO BY, 1992, J COMPUT PHYS, V101, P375
18531    HUANG W, 1992, NE MATH J, V8, P157
18532    LIONS JL, 1970, 2 SIAM AMS P, V2, P11
18533    MADAY Y, 1981, NUMER MATH, V37, P321
18534    MADAY Y, 1982, SIAM J NUMER ANAL, V19, P761
18535 NR 11
18536 TC 1
18537 SN 0254-9409
18538 J9 J COMPUT MATH
18539 JI J. Comput. Math.
18540 PD APR
18541 PY 1995
18542 VL 13
18543 IS 2
18544 BP 144
18545 EP 155
18546 PG 12
18547 SC Mathematics, Applied; Mathematics
18548 GA RB379
18549 UT ISI:A1995RB37900005
18550 ER
18551 
18552 PT J
18553 AU WANG, Q
18554    SHI, JL
18555    BAO, JS
18556 TI THEORY OF NONLINEAR MAGNETOSTATIC SURFACE-WAVE IN A PERIODICALLY
18557    CORRUGATED FERROMAGNETIC SLAB
18558 SO JOURNAL OF APPLIED PHYSICS
18559 DT Article
18560 ID YTTRIUM-IRON-GARNET; ENVELOPE SOLITONS; SPIN-WAVES; FILMS; PROPAGATION
18561 RP WANG, Q, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
18562    R CHINA.
18563 CR ANISIMOV AN, 1976, SOV PHYS-SOLID STATE, V18, P20
18564    BOARDMAN AD, 1988, PHYS REV B, V38, P11444
18565    BOARDMAN AD, 1990, NONLINEAR WAVES SOLI, P235
18566    BOARDMAN AD, 1994, IEEE T MAGN, V30, P1
18567    BRILLOUIN L, 1953, WAVE PROPAGATION PER
18568    DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308
18569    DEAGUIAR FM, 1986, PHYS REV LETT, V56, P1070
18570    DEGASPERIS P, 1987, PHYS REV LETT, V59, P481
18571    DEGASPERIS P, 1988, J APPL PHYS, V63, P3335
18572    ELACHI C, 1975, IEEE T MAGN, V11, P36
18573    GULYAEV YV, 1980, SOV PHYS-SOLID STATE, V22, P1651
18574    GULYAEV YV, 1986, SOV PHYS-SOLID STATE, V28, P1553
18575    JEFFRIES CD, 1988, J APPL PHYS, V64, P5382
18576    KALINIKOS BA, 1983, JETP LETT, V38, P413
18577    KALINIKOS BA, 1988, ZH EKSP TEOR FIZ, V67, P303
18578    KALINIKOS BA, 1990, PHYS REV B B, V42, P8658
18579    KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712
18580    KOGELNIK H, 1972, J APPL PHYS, V43, P2327
18581    MCKINSTRY KD, 1985, J APPL PHYS, V58, P925
18582    MEDNIKOV AM, 1981, SOV PHYS-SOLID STATE, V23, P136
18583    PATTON CE, 1969, J APPL PHYS, V40, P2837
18584    PENG ST, 1975, IEEE T MICROW THEORY, V23, P123
18585    POLZIKOVA NI, 1984, SOV PHYS-SOLID STATE, V26, P2113
18586    QI W, 1994, SCI CHINA SER A, V24, P160
18587    SYKES CG, 1976, APPL PHYS LETT, V29, P388
18588    TSUTSUMI M, 1977, IEEE T MICROWAVE THE, V25, P224
18589    VENDIK OG, 1977, SOV PHYS-SOLID STATE, V19, P222
18590    WANG Q, 1993, ACTA PHYSIC SINICA, V42, P2005
18591    WEISS MT, 1959, J APPL PHYS, V30, P2014
18592    ZVEZDIN AK, 1983, ZH EKSP TEOR FIZ, V57, P350
18593 NR 30
18594 TC 8
18595 SN 0021-8979
18596 J9 J APPL PHYS
18597 JI J. Appl. Phys.
18598 PD JUN 1
18599 PY 1995
18600 VL 77
18601 IS 11
18602 BP 5831
18603 EP 5837
18604 PG 7
18605 SC Physics, Applied
18606 GA QZ282
18607 UT ISI:A1995QZ28200047
18608 ER
18609 
18610 PT J
18611 AU WEI, GL
18612    CHEN, XL
18613    ZHOU, WF
18614 TI OXIDATION PROCESSES OF LEAD SULFATE IN THE ANODIC FILMS ON PURE AND
18615    ANTIMONIAL LEAD
18616 SO ACTA CHIMICA SINICA
18617 DT Article
18618 ID SULFURIC-ACID; SULFATE
18619 AB The oxidation processes of lead sulphate in the anodic films on lead
18620    and Pb-5wt% Sb alloy, which were formed by the reduction at 0.9 V (vs.
18621    Hg / Hg2SO4, the same reference electrode below) for 5 min of the
18622    anodic films grown in a 4.5 mol . dm(-3) H2SO4 solution (30 degrees C)
18623    at 1.3 V for 20 min, have been studied using potential. step and a.c.
18624    impedance methods respectively. The experimental results show that the
18625    lead sulphate, which is formed by reducing lead dioxide, can be
18626    reoxidized to lead dioxide within 1 min at 1.4 V. This is due to the
18627    fact that this kind of lead sulphate is at the surface layers of the
18628    lead sulphate grains in the anodic film, The oxidation process of lead
18629    sulphate in the inner part of the grain, which is formed directly by
18630    anodizing lead, is much slower. The antimony in the lead alloy inhibits
18631    significantly the nucleation and growth of lead dioxide crystals,
18632 C1 FUDAN UNIV,DEPT CHEM,SHANGHAI 200433,PEOPLES R CHINA.
18633 RP WEI, GL, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
18634    R CHINA.
18635 CR DAWSON JL, 1979, ELECTROCHEMISTRY LEA, P309
18636    ELLIS SR, 1986, J APPL ELECTROCHEM, V16, P159
18637    FLEISCHMANN M, 1963, ADV ELECTROCHEMISTRY, V3, P123
18638    HAN J, 1994, J ELECTROANAL CHEM, V368, P43
18639    LAITINEN T, 1991, ELECTROCHIM ACTA, V36, P605
18640    RAND DAJ, 1988, J POWER SOURCES, V23, P269
18641    TAKEHARA Z, 1990, J POWER SOURCES, V30, P55
18642    VALERIOTE EML, 1977, J ELECTROCHEM SOC, V124, P370
18643 NR 8
18644 TC 1
18645 SN 0567-7351
18646 J9 ACTA CHIM SIN
18647 JI Acta Chim. Sin.
18648 PY 1995
18649 VL 53
18650 IS 4
18651 BP 313
18652 EP 317
18653 PG 5
18654 SC Chemistry, Multidisciplinary
18655 GA QY409
18656 UT ISI:A1995QY40900001
18657 ER
18658 
18659 PT J
18660 AU JIN, C
18661    WANG, JG
18662    CHEN, WJ
18663 TI IN-SITU OBSERVATION OF FRACTURE PROCESS OF A TIAL ALLOY WITH FULLY
18664    LAMELLAR MICROSTRUCTURE
18665 SO SCRIPTA METALLURGICA ET MATERIALIA
18666 DT Article
18667 ID GAMMA-TITANIUM ALUMINIDE; INTERMETALLICS; TOUGHNESS
18668 RP JIN, C, SHANGHAI UNIV,INST MET & MAT,YANCHANG RD 149,SHANGHAI
18669    200072,PEOPLES R CHINA.
18670 CR CAO HC, 1989, ACTA METALL, V37, P2969
18671    CHAN KS, 1991, METALL TRANS A, V22, P2021
18672    CHAN KS, 1992, JOM-J MIN MET MAT S, V44, P30
18673    CHAN KS, 1992, METALL T A, V23, P1663
18674    DEVE HE, 1990, ACTA METALL MATER, V38, P1491
18675    DEVE HE, 1991, ACTA METALL MATER, V39, P2275
18676    DEVE HE, 1992, ACTA METALL MATER, V40, P1259
18677    JIN C, IN PRESS
18678    JIN C, UNPUB
18679    KIM YW, 1989, JOM-J MIN MET MAT S, V41, P24
18680    KIM YW, 1991, JOM, V43, P40
18681    LONDON B, 1991, MICROSTRUCTURE PROPE, P285
18682 NR 12
18683 TC 0
18684 SN 0956-716X
18685 J9 SCR METALL MATER
18686 JI Scr. Metall. Materialia
18687 PD MAY 15
18688 PY 1995
18689 VL 32
18690 IS 10
18691 BP 1579
18692 EP 1584
18693 PG 6
18694 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
18695    Engineering
18696 GA QX018
18697 UT ISI:A1995QX01800011
18698 ER
18699 
18700 PT J
18701 AU GUAN, HW
18702 TI TECHNICAL APPROACHES TO REAL-TIME CONTROL-BASED ON TRANSPUTERS
18703 SO COMPUTING & CONTROL ENGINEERING JOURNAL
18704 DT Article
18705 AB An important application of modern microcomputer systems is in the area
18706    of real-time control. The transputer is a novel RISC microcomputer that
18707    provides a few of the facilities which may be obtained in a general
18708    microcomputer. The various kinds of real-time control methods based on
18709    transputers are investigated in this article. Some practical real-time
18710    control techniques are proposed according to the properties of the
18711    transputer and the capability of Occam programming. The outlines of
18712    Occam code for the various real-time control applications are given.
18713 RP GUAN, HW, SHANGHAI UNIV,DEPT COMP SCI & ENGN,SHANGHAI,PEOPLES R CHINA.
18714 CR 1987, REFERENCE MANUAL TRA
18715    1987, TUTORIAL INTRO OCCAM
18716    1989, TRANSPUTER APPLICATI
18717    1989, TRANSPUTER DATABOOK
18718    1991, TRANSPURTER DEV IQ S
18719    GUAN HW, 1993, CHINESE J COMPUTERS, V16, P488
18720    GUAN HW, 1993, DEC P INT C MOD SIM
18721    GUAN HW, 1993, SEP P IEEE INT C NET
18722 NR 8
18723 TC 1
18724 SN 0956-3385
18725 J9 COMPUTING CONTROL ENGINEER J
18726 JI Comput. Control Eng. J.
18727 PD APR
18728 PY 1995
18729 VL 6
18730 IS 2
18731 BP 75
18732 EP 78
18733 PG 4
18734 SC Automation & Control Systems
18735 GA QX091
18736 UT ISI:A1995QX09100008
18737 ER
18738 
18739 PT J
18740 AU SHE, JW
18741    LI, MY
18742    HUAN, LJ
18743    YU, YZ
18744 TI DYNAMIC CHARACTERISTICS OF PROSTHETIC HEART-VALVES
18745 SO MEDICAL ENGINEERING & PHYSICS
18746 DT Article
18747 DE PROSTHETIC HEART VALVE; PRESSURE DROP; FLOW RATE; DYNAMIC
18748    CHARACTERISTIC; CIRCULATION; POWER LOSS
18749 ID BJORK-SHILEY; INVITRO; HYPERTENSION; MODEL
18750 AB The relation between flow rate (Q) and transvalvular pressure-drop (DP)
18751    is of fundamental importance for a prosthetic heart value tested in
18752    steady flow conditions. The Q-DP Plot can thus be called the static
18753    characteristic of the valve. While in pulsatile flow, with time (t) as
18754    a parameter, the instantaneous Q(t)-DP(t) relation can also be
18755    obtained. The Q-DP relation forms a phase graph on an X-Y plane during
18756    a whole cardiac cycle, and can be regarded as the dynamic
18757    characteristic, which to our knowledge has never been systematically
18758    explored before. With in vitro experiment the Q(t)-DP(t) relations are
18759    presented for five different aortic valves. Properly modelling the
18760    characteristics of heart valves is a key link in modelling the
18761    interaction between the ventricle and arterial system. Treatments for
18762    valves, such as diode analogue and orifice area assumption governed by
18763    the Gorlin formula, are found unsatisfactory. A simple one-dimensional
18764    flow equation is used to futher examine the Q-DP graph, and both the
18765    dynamic resistance characteristic and the dynamic flow characteristic
18766    can be obtained. It is found that the dynamic characteristic differs
18767    from the static one not only in the inertance effect but also in the
18768    transient process, which can be quite energy-consuming and therefore
18769    important. Geometric relations of these phase graphs with the
18770    transvalvular power loss are discussed. The method of dynamic
18771    characteristics provides a new way to evaluate the performance of a
18772    tested valve.
18773 C1 SHANGHAI MED UNIV,DEPT ANAT,SHANGHAI,PEOPLES R CHINA.
18774    SHANGHAI MED UNIV,DEPT BIOMED ENGN,SHANGHAI,PEOPLES R CHINA.
18775    SHANGHAI UNIV SCI & TECHNOL,DEPT MECH ENGN,SHANGHAI,PEOPLES R CHINA.
18776 CR 1986, REPLACEMENT HEART VA
18777    AVANZOLINI G, 1989, IEEE T BIO-MED ENG, V36, P462
18778    BARBARO V, 1992, J MED ENG TECHNOL, V16, P10
18779    BURKHOFF D, 1988, AM J PHYSIOL, V255, H742
18780    COCHRANE T, 1991, J BIOMED ENG, V13, P335
18781    COHN JN, 1992, J HYPERTENS, V10, S61
18782    GROSS JM, 1991, ASAIO T, V37, P7357
18783    HAGGAG YAM, 1989, J BIOMED ENG, V12, P63
18784    HENZE A, 1974, J THORACIC CARDIOVAS, V4, P167
18785    JANSEN J, 1992, J MED ENG TECHNOL, V16, P27
18786    KNOTT E, 1988, J THORAC CARDIOV SUR, V96, P952
18787    LEVENSON J, 1992, EUR HEART J, V13, P48
18788    LIVNAT A, 1981, AM J PHYSIOL, V240, R370
18789    MILLMAN J, 1965, PULSE DIGITAL SWITCH
18790    OLIN C, 1971, J THORACIC CARDIOVAS, V5, P1
18791    RUEL H, 1987, ENG MED, V16, P67
18792    SABBAH HN, 1984, J BIOMECH ENG-T ASME, V106, P66
18793    SHE JW, 1990, J BIOMED ENG, V12, P375
18794    SUGA H, 1971, IEEE T BIOMED ENG, V18, P47
18795    SWANSON WM, 1984, MED INSTRUM, V18, P318
18796    TSITLIK JE, 1992, ANN BIOMED ENG, V20, P595
18797    WALKER DK, 1984, J THORACIC CARDIOVAS, V88, P673
18798    WENDT MO, 1991, J BIOMED ENG, V13, P126
18799    WILLSHAW P, 1986, J BIOMED ENG, V8, P43
18800    YAGANATHAN AP, 1979, J BIOMECH, V12, P153
18801 NR 25
18802 TC 2
18803 SN 1350-4533
18804 J9 MED ENG PHYS
18805 JI Med. Eng. Phys.
18806 PD JUN
18807 PY 1995
18808 VL 17
18809 IS 4
18810 BP 273
18811 EP 281
18812 PG 9
18813 SC Engineering, Biomedical
18814 GA QW624
18815 UT ISI:A1995QW62400005
18816 ER
18817 
18818 PT J
18819 AU DEREN, W
18820    BAI, ZZ
18821    EVANS, DJ
18822 TI ASYNCHRONOUS MULTISPLITTING RELAXED ITERATIONS FOR WEAKLY
18823    NONLINEAR-SYSTEMS
18824 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
18825 DT Article
18826 DE SYSTEM OF WEAKLY NONLINEAR EQUATIONS; MATRIX MULTISPLITTING;
18827    ASYNCHRONOUS PARALLEL ITERATION; RELAXATION; GLOBAL CONVERGENCE
18828 ID PARALLEL ALGORITHM; CONVERGENCE
18829 AB In this paper, we propose a class of asynchronous parallel
18830    multisplitting accelerated overrelaxation methods for solving the
18831    system of weakly nonlinear equations A phi(x) + B psi(x) = G(x) with
18832    A,B is an element of L(R(n)), phi, psi:R(n) --> R(n) being diagonal
18833    mappings and G:R(n) --> R(n) a general mapping, which is constantly
18834    resulted from the discretization of many classical differential
18835    equations. Under suitable conditions of both the coefficient matrices
18836    and the nonlinear mappings, as well as reasonable constraints of the
18837    multiple splittings and the relaxation parameters, the global
18838    convergence theories of these new methods are set up thoroughly.
18839 C1 FUDAN UNIV,INST MATH,SHANGHAI 200433,PEOPLES R CHINA.
18840    LOUGHBOROUGH UNIV TECHNOL,DEPT COMP STUDIES,LOUGHBOROUGH LE11 3TU,LEICS,ENGLAND.
18841 RP DEREN, W, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES
18842    R CHINA.
18843 CR BAI ZZ, 1993, IN PRESS MODELS ASYN
18844    BAI ZZ, 1994, IN PRESS APPL MATH B
18845    BERTSEKAS DP, 1989, NUMERICAL METHODS
18846    BRU R, 1989, LINEAR ALGEBRA APPL, V103, P175
18847    EVANS DJ, 1991, PARALLEL COMPUT, V17, P165
18848    FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141
18849    MEMON RA, 1994, J SHANGHAI U SCI TEC
18850    NEUMANN M, 1987, LINEAR ALGEBRA APPL, V88, P559
18851    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
18852    ORTEGA JM, 1970, ITERATIVE SOLUTION N
18853    VARGA RS, 1961, MATRIX ITERATIVE ANA
18854    WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473
18855    WANG D, 1991, NUMER MATH SINICA, V13, P297
18856    WANG D, 1993, IN PRESS MONOTONE CO
18857    WANG D, 1993, IN PRESS MULTISPLITT
18858    WANG DR, 1994, PARALLEL ALGORITHMS, V2, P173
18859    WHITE RE, 1986, SIAM J ALGEBRA DISCR, V7, P137
18860    WHITE RE, 1986, SIAM J NUMER ANAL, V23, P639
18861 NR 18
18862 TC 1
18863 SN 0020-7160
18864 J9 INT J COMPUT MATH
18865 JI Int. J. Comput. Math.
18866 PY 1994
18867 VL 54
18868 IS 1-2
18869 BP 57
18870 EP 76
18871 PG 20
18872 SC Mathematics, Applied
18873 GA QV102
18874 UT ISI:A1994QV10200006
18875 ER
18876 
18877 PT J
18878 AU BAI, ZZ
18879    WANG, DR
18880    EVANS, DJ
18881 TI MODELS OF ASYNCHRONOUS PARALLEL MATRIX MULTISPLITTING RELAXED ITERATIONS
18882 SO PARALLEL COMPUTING
18883 DT Article
18884 DE SYSTEM OF LINEAR EQUATIONS; ASYNCHRONOUS PARALLEL ITERATION; MATRIX
18885    MULTISPLITTING; RELAXATION; CONVERGENCE
18886 ID CONVERGENCE
18887 AB By making use of the principle of sufficiently using the delayed
18888    information, we propose two models of asynchronous parallel matrix
18889    multisplitting accelerated overrelaxation iterative methods for solving
18890    systems of linear equations, which have the merits of convenient
18891    computations, flexible and free communications, and can cover all the
18892    known synchronous as well as asynchronous parallel matrix
18893    multisplitting relaxation methods and their special cases. When the
18894    coefficient matrix is an H-matrix, we prove the convergence and
18895    estimate the convergence rates of these models in a detailed manner.
18896 C1 LOUGHBOROUGH UNIV TECHNOL,DEPT COMP STUDIES,LOUGHBOROUGH LE11 3TU,LEICS,ENGLAND.
18897    FUDAN UNIV,INST MATH,SHANGHAI 200433,PEOPLES R CHINA.
18898    SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
18899 CR BAUDET GM, 1978, J ASSOC COMPUT MACH, V25, P226
18900    BERTSEKAS DP, 1978, PARALLEL DISTRIBUTED
18901    BRU R, 1989, LINEAR ALGEBRA APPL, V103, P175
18902    CHAZAN D, 1969, LINEAR ALGEBRA APPL, V2, P199
18903    DEREN W, 1991, LINEAR ALGEBRA APPL, V154, P473
18904    DEREN W, 1993, PARALLEL ALGORITHMS, V1
18905    ELTARAZI MN, 1982, NUMER MATH, V39, P325
18906    EVANS DJ, 1991, PARALLEL COMPUT, V17, P165
18907    FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141
18908    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
18909    VARGA RS, 1961, MATRIX ITERATIVE ANA
18910    YANGFENG S, 1991, J FUDAN U NATURAL SC, V4, P444
18911    YOUNG DM, 1971, ITERATIVE SOLUTION L
18912 NR 13
18913 TC 15
18914 SN 0167-8191
18915 J9 PARALLEL COMPUT
18916 JI Parallel Comput.
18917 PD APR
18918 PY 1995
18919 VL 21
18920 IS 4
18921 BP 565
18922 EP 582
18923 PG 18
18924 SC Computer Science, Theory & Methods
18925 GA QU875
18926 UT ISI:A1995QU87500003
18927 ER
18928 
18929 PT J
18930 AU ZHU, JH
18931    HUANG, SB
18932    WAN, XJ
18933 TI SURFACE-REACTION OF FE3AL WITH WATER-VAPOR AND OXYGEN
18934 SO SCRIPTA METALLURGICA ET MATERIALIA
18935 DT Article
18936 ID ENVIRONMENTAL EMBRITTLEMENT; CRACK-GROWTH; FRACTURE
18937 C1 SHANGHAI UNIV SCI & TECHNOL,INST MET & MAT SCI,SHANGHAI 200072,PEOPLES R CHINA.
18938 CR GAO SJ, 1984, MATER SCI ENG, V62, P65
18939    GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37
18940    LIU CT, 1989, SCRIPTA METALL, V23, P875
18941    LIU CT, 1990, HIGH TEMPERATURE ALU, P133
18942    LIU CT, 1990, SCRIPTA METALL MATER, V24, P385
18943    LIU CT, 1991, INT J IRON STEEL OCT
18944    LIU CT, 1992, ORDERED INTERMETALLI, P321
18945    LIU CT, 1992, SCRIPTA METALL MATER, V27, P599
18946    SHEA M, 1992, MAT RES SOC P, V213, P609
18947    SIMMONS GW, 1978, METALL T A, V9, P1147
18948    WAN X, 1994, J MATER SCI TECHNOL, V10, P39
18949    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
18950    WEI RP, 1980, MET T              A, V11, P151
18951 NR 13
18952 TC 9
18953 SN 0956-716X
18954 J9 SCR METALL MATER
18955 JI Scr. Metall. Materialia
18956 PD MAY 1
18957 PY 1995
18958 VL 32
18959 IS 9
18960 BP 1399
18961 EP 1404
18962 PG 6
18963 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
18964    Engineering
18965 GA QU727
18966 UT ISI:A1995QU72700018
18967 ER
18968 
18969 PT J
18970 AU HUANG, HC
18971    HE, YC
18972 TI POLARIZATION BEHAVIOR OF SPUN FIBER VERSUS CONVENTIONAL FIBER UNDER
18973    STRONG SLIGHT TWISTING
18974 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
18975 DT Article
18976 DE FIBER OPTICS; POLARIZATION OPTICS; OPTOELECTRONICS; PHOTONICS;
18977    SPECIALIZED FIBER
18978 AB In this article, the authors attempt to treat both strong twisting and
18979    slight twisting of fiber via a consistent asymptotic approach to the
18980    coupled-mode theory. In strong twisting, an admirably simple and useful
18981    asymptotic equation is derived in the form R(2) tau = const., which
18982    relates the minimum required twist rate tau with the minimum allowable
18983    radius of curvature R. In slight twisting, an oscillatory pattern of
18984    the polarization behavior clearly reveals the advantageous feature of a
18985    twist-spun fiber, which is made by a prior spinning of the fiber before
18986    a twisting. (C) 1995 John Wiley & Sons, Inc.
18987 RP HUANG, HC, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
18988 NR 0
18989 TC 1
18990 SN 0895-2477
18991 J9 MICROWAVE OPT TECHNOL LETT
18992 JI Microw. Opt. Technol. Lett.
18993 PD MAY
18994 PY 1995
18995 VL 9
18996 IS 1
18997 BP 37
18998 EP 41
18999 PG 5
19000 SC Engineering, Electrical & Electronic; Optics
19001 GA QT782
19002 UT ISI:A1995QT78200013
19003 ER
19004 
19005 PT J
19006 AU DING, S
19007    KHAN, RD
19008    ZHANG, JL
19009    SHEN, WD
19010 TI QUANTUM HARMONIC-OSCILLATOR WITH TIME-DEPENDENT MASS AND FREQUENCY
19011 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
19012 DT Article
19013 ID FABRY-PEROT CAVITY; FIELD FLUCTUATIONS; COHERENT STATES; VARIABLE MASS;
19014    2-LEVEL ATOMS; INVARIANTS; HAMILTONIANS; RESONANCE; RESERVOIR
19015 AB The quantum harmonic oscillator with time-dependent mass and frequency
19016    is analyzed by using the canonical transformation method. The varying
19017    mass and frequency of the system are reduced to constant mass and
19018    frequency, and the corresponding eigenvalues and eigenvectors are
19019    derived. The exact time-dependent coherent state of the harmonic
19020    oscillator is constructed and shown to be equivalent to the squeezed
19021    state. Damped harmonic oscillators with different frictions and forced
19022    time-dependent harmonic oscillators are also discussed.
19023 RP DING, S, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
19024    R CHINA.
19025 CR ABDALLA MS, 1986, PHYS REV A, V34, P4598
19026    BASEIA B, 1992, PHYS REV A, V45, P5308
19027    COLEGRAVE RK, 1981, J PHYS A-MATH GEN, V14, P2269
19028    COLEGRAVE RK, 1981, OPT ACTA, V28, P495
19029    COLEGRAVE RK, 1982, J PHYS A, V15, P1549
19030    COLEGRAVE RK, 1983, OPT ACTA, V30, P849
19031    COLEGRAVE RK, 1983, OPT ACTA, V30, P861
19032    DANTAS CMA, 1992, PHYS REV A, V45, P1320
19033    GUNTHER NJ, 1977, J MATH PHYS, V18, P572
19034    HARTLEY JG, 1982, PHYS REV A, V25, P2388
19035    HARTLEY JG, 1982, PHYS REV D, V25, P382
19036    JANNUSSIS A, 1988, NUOVO CIMENTO B, V102, P33
19037    JANNUSSIS AD, 1988, PHYS LETT A, V129, P2631
19038    LEACH PGL, 1977, J MATH PHYS, V18, P1608
19039    LEACH PGL, 1977, J MATH PHYS, V18, P1902
19040    LEACH PGL, 1978, J MATH PHYS, V19, P446
19041    LEACH PGL, 1983, J PHYS A-MATH GEN, V16, P3261
19042    LEWIS HR, 1969, J MATH PHYS, V10, P1458
19043    LO CF, 1990, NUOVO CIMENTO B, V105, P497
19044    LO CF, 1992, PHYS REV A, V45, P5262
19045    PEDROSA IA, 1987, J MATH PHYS, V28, P2662
19046    PEDROSA IA, 1987, PHYS REV D, V36, P1279
19047    YUAN HP, 1976, PHYSICAL REV A, V131, P2226
19048 NR 23
19049 TC 0
19050 SN 0020-7748
19051 J9 INT J THEOR PHYS
19052 JI Int. J. Theor. Phys.
19053 PD MAR
19054 PY 1995
19055 VL 34
19056 IS 3
19057 BP 355
19058 EP 368
19059 PG 14
19060 SC Physics, Multidisciplinary
19061 GA QR832
19062 UT ISI:A1995QR83200004
19063 ER
19064 
19065 PT J
19066 AU ZHU, ST
19067    GUO, QZ
19068    SHEN, WD
19069    WANG, ST
19070 TI RIEMANNIAN GEOMETRY OF STRONG-LASER PLASMA
19071 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
19072 DT Article
19073 AB The optical metric for a strong-laser plasma is derived. The affine
19074    connection and curvature related to the optical metric are given and
19075    their spatial distributions are studied numerically.
19076 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
19077    CHINESE ACAD SCI,SHANGHAI INST EDUC,DEPT PHYS,SHANGHAI 200031,PEOPLES R CHINA.
19078 RP ZHU, ST, ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI
19079    201800,PEOPLES R CHINA.
19080 CR GORDON W, 1923, ANN PHYS-BERLIN, V72, P421
19081    SHEN W, 1988, PHYSICAL REV A, V37, P4387
19082    WEINBERG S, 1972, GRAVITATION COSMOLOG
19083    ZHU ST, 1987, J OPT SOC AM B, V4, P739
19084    ZHU ST, 1988, SATELLITE M IQFC 88
19085    ZHU ST, 1989, ACTA PHYS SINICA, V38, P1167
19086    ZHU ST, 1989, ACTA PHYSICA SINIA, V38, P560
19087    ZHU ST, 1991, CNOC 91
19088    ZHU ST, 1992, INT LASER C BEIJING
19089 NR 9
19090 TC 6
19091 SN 0020-7748
19092 J9 INT J THEOR PHYS
19093 JI Int. J. Theor. Phys.
19094 PD FEB
19095 PY 1995
19096 VL 34
19097 IS 2
19098 BP 169
19099 EP 177
19100 PG 9
19101 SC Physics, Multidisciplinary
19102 GA QR441
19103 UT ISI:A1995QR44100002
19104 ER
19105 
19106 PT J
19107 AU CHEN, CH
19108 TI A FORMULA FOR DETERMINING LIMIT NONINTERFERENCE CURVATURE IN PURE
19109    ROLLING CONJUGATION GEARS BY USING GEOMETRO-KINEMATICAL CONCEPTS
19110 SO JOURNAL OF MECHANICAL DESIGN
19111 DT Article
19112 AB Pure rolling conjugation gears are very useful in the cases where
19113    lubrication is difficult to implement, such as in cryogenic and/or
19114    vacuum environments, and at slow operating speeds.  The main problem
19115    confronted in the design of the pure rolling conjugation gears is to
19116    determine the limit noninterference curvature of one gear when the
19117    curvature of the conjugate gear is prescribed.  The way of solving this
19118    problem becomes very complicated when using the conventional concepts
19119    from the classical differential geometry.  However, when using the
19120    geometro-kinematical concepts from the theory of conjugate surfaces,
19121    this problem can be solved explicitly and simply.  In this paper, these
19122    concepts are introduced, and a closed-form formula for determining the
19123    limit noninterference curvature is derived.  A numerical example is
19124    cited.
19125 RP CHEN, CH, SHANGHAI UNIV SCI & TECHNOL,LANE 200,HOUSE 23,ROOM
19126    401,SHANGHAI 200063,PEOPLES R CHINA.
19127 NR 0
19128 TC 5
19129 SN 1050-0472
19130 J9 J MECH DESIGN
19131 JI J. Mech. Des.
19132 PD MAR
19133 PY 1995
19134 VL 117
19135 IS 1
19136 BP 180
19137 EP 184
19138 PG 5
19139 SC Engineering, Mechanical
19140 GA QR245
19141 UT ISI:A1995QR24500027
19142 ER
19143 
19144 PT J
19145 AU ZHANG, JL
19146    JIAN, XY
19147    XU, SH
19148    SAITO, S
19149    NAGAMOTO, T
19150 TI BRIGHT BLUE EMISSION FROM A NEW SPECIES OF POLYMER DIODE
19151 SO CHINESE PHYSICS LETTERS
19152 DT Article
19153 ID LIGHT-EMITTING-DIODES; ELECTROLUMINESCENT
19154 AB Blue emitting electroluminescent diode using PVCz doped with perylene
19155    and BBOT as electron transport has been constructed. The emission
19156    spectrum is a mixture of spectra of BBOT and perylene. A luminance of
19157    as high as 680 cd/m(2) with lumen efficiency more then 0.028 lm/W ham
19158    been obtained.
19159 C1 SHIBAURA INST TECHNOL,MINATO KU,TOKYO 108,JAPAN.
19160 RP ZHANG, JL, SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SCI,SHANGHAI
19161    201800,PEOPLES R CHINA.
19162 CR BROWN AR, 1992, APPL PHYS LETT, V61, P2793
19163    BURROUGHES JH, 1990, NATURE, V347, P539
19164    KIGO J, 1993, APPL PHYS LETT, V63, P2627
19165    TANG CW, 1987, APPL PHYS LETT, V51, P913
19166    TANG CW, 1989, J APPL PHYS, V65, P3610
19167    ZHANG ZL, IN PRESS J LUMINESCE
19168 NR 6
19169 TC 1
19170 SN 0256-307X
19171 J9 CHIN PHYS LETT
19172 JI Chin. Phys. Lett.
19173 PY 1995
19174 VL 12
19175 IS 1
19176 BP 54
19177 EP 57
19178 PG 4
19179 SC Physics, Multidisciplinary
19180 GA QL804
19181 UT ISI:A1995QL80400015
19182 ER
19183 
19184 PT J
19185 AU TAN, WH
19186 TI THE GENERAL PROCESS IN LASERS
19187 SO OPTICS COMMUNICATIONS
19188 DT Note
19189 ID PUMP
19190 AB Generalizing the results of previous papers, a model of general process
19191    in lasers is described. It is shown that a three-level laser system can
19192    generate nonclassical light with sub-Poissonian distribution, where as
19193    the four-level system generates light essentially Poisson distributed
19194    at threshold.
19195 C1 ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI 201800,PEOPLES R CHINA.
19196 RP TAN, WH, SHANGHAI UNIV,DEPT PHYS,JOINT LAB QUANTUM OPT,POB
19197    800-211,SHANGHAI 201800,PEOPLES R CHINA.
19198 CR GOLUBEV YM, 1984, ZH EKSP TEOR FIZ, V60, P234
19199    HAAKE F, 1989, PHYS REV A, V40, P7121
19200    MARTE MAM, 1989, PHYS REV A, V40, P5774
19201    RITSCH H, 1991, PHYS REV A, V44, P3361
19202    SARGENT M, 1974, LASER PHYSICS, P297
19203    SCULLY MO, 1967, PHYS REV, V159, P208
19204    TAN WH, 1994, PHYS LETT A, V190, P13
19205    WIESMAN HM, 1992, PHYS REV A, V46, P2853
19206    YAMAMOTO Y, 1989, PHYS REV A, V40, P7121
19207    YAMAMOTO Y, 1990, PHYS REV A, V41, P2808
19208 NR 10
19209 TC 3
19210 SN 0030-4018
19211 J9 OPT COMMUN
19212 JI Opt. Commun.
19213 PD MAR 15
19214 PY 1995
19215 VL 115
19216 IS 3-4
19217 BP 303
19218 EP 307
19219 PG 5
19220 SC Optics
19221 GA QL915
19222 UT ISI:A1995QL91500014
19223 ER
19224 
19225 PT J
19226 AU GU, HY
19227 TI STUDIES ON OPTIMUM CONDITION-MONITOR CYCLE TIME POLICIES WITH GENERAL
19228    REPAIR RESULT
19229 SO RELIABILITY ENGINEERING & SYSTEM SAFETY
19230 DT Article
19231 AB In this paper we consider that an equipment life is subjected to a
19232    general distribution and its condition-monitor cycle time is T. No
19233    sooner is the failure monitored than the equipment is repaired. After
19234    being repaired, the equipment does not function as a new, but as one
19235    which has been used for a period of time. Let Y indicate such a period
19236    of time, standing as a random variable. Hence, assuming the same repair
19237    conditions at each repair, we get a Y distribution after each repair.
19238    Using the following method, E(X) = E(y)(E(x)(X \ Y)), we can obtain a
19239    mean condition-monitor cycle time and mean repair cost between two
19240    adjacent maintenance intervals. Finally, considering an objective
19241    function with bound condition, and using Lagrange's method of
19242    multipliers, we obtain an optimum condition-monitor cycle time T-*,
19243    where the minimum total repairing cost is achieved.
19244 RP GU, HY, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,BOX 30,149 YANCHANG
19245    RD,SHANGHAI 200072,PEOPLES R CHINA.
19246 CR GERTSBAKH IB, 1977, MODELS PREVENTIVE MA
19247    GU HY, 1993, RELIAB ENG SYST SAFE, V41, P197
19248    NAKAFAWA T, 1977, THESIS KYOTO U JAPAN
19249    NAKAGAWA T, 1976, Z OPNS RES, V20, P171
19250 NR 4
19251 TC 0
19252 SN 0951-8320
19253 J9 RELIAB ENG SYST SAFETY
19254 JI Reliab. Eng. Syst. Saf.
19255 PY 1994
19256 VL 46
19257 IS 3
19258 BP 245
19259 EP 252
19260 PG 8
19261 SC Engineering, Industrial; Operations Research & Management Science
19262 GA QK577
19263 UT ISI:A1994QK57700006
19264 ER
19265 
19266 PT J
19267 AU YAN, Q
19268    HOFFMAN, AS
19269 TI SYNTHESIS OF MACROPOROUS HYDROGELS WITH RAPID SWELLING AND DESWELLING
19270    PROPERTIES FOR DELIVERY OF MACROMOLECULES
19271 SO POLYMER
19272 DT Note
19273 DE MACROPOROUS HYDROGEL; SWELLING KINETICS; PORE SIZE
19274 AB Thermally reversible macroporous poly(N-isopropylacrylamide)
19275    (polyNIPAAm) hydrogel has been synthesized in aqueous solution at a
19276    temperature above the lower critical solution temperature (LCST). Rapid
19277    swelling and deswelling kinetics of this macroporous hydrogel are
19278    characterized. Pore size measurement by a solute exclusion technique
19279    reveals that this macroporous hydrogel has a larger pore size
19280    distribution than the hydrogel synthesized at a temperature below the
19281    LCST. This kind of thermally reversible macroporous hydrogel will be
19282    very useful in delivery of macromolecules.
19283 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
19284    UNIV WASHINGTON,CTR BIOENGN,SEATTLE,WA 98105.
19285 CR DONG LC, 1990, P INT S CONTROL REL, V17, P325
19286    PARKER L, 1988, LEARN MOTIV, V19, P1
19287    SATO S, 1974, INT J PHARM, V22, P229
19288 NR 3
19289 TC 49
19290 SN 0032-3861
19291 J9 POLYMER
19292 JI Polymer
19293 PD FEB
19294 PY 1995
19295 VL 36
19296 IS 4
19297 BP 887
19298 EP 889
19299 PG 3
19300 SC Polymer Science
19301 GA QK671
19302 UT ISI:A1995QK67100029
19303 ER
19304 
19305 PT J
19306 AU WANG, XW
19307    ZHU, XH
19308 TI NUMERICAL-SIMULATION OF DEEP-DRAWING PROCESS
19309 SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
19310 DT Article
19311 AB In this pager, both rigid-plastic FEM simulation and experimental
19312    methods are used to systematically analyze axisymmetric deep-drawing
19313    process, summarize material flow law in deep-drawing process. The
19314    relation between punch force and drawing depth is measured with
19315    transducer and other equipment. Contrasting to the experimental result,
19316    it shows that this method is successfully applied to simulate
19317    deep-drawing process. The method of dealing with boundary conditions
19318    raised in this paper precisely simulate the material warping in the
19319    center and the cavity in the flange, and investigate the influence of
19320    friction and other parameters on the limit depth of deep-drawing.
19321    Although the program shown in this paper deals merely with the
19322    axisymmetric deep-drawing deformation, it could be applied to upsetting
19323    and forging process either.
19324 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MAT ENGN,SHANGHAI 200335,PEOPLES R CHINA.
19325 RP WANG, XW, SHANGHAI JIAO TONG UNIV,DEPT MAT ENGN,1954 HUA SHAN
19326    RD,SHANGHAI 200030,PEOPLES R CHINA.
19327 CR BIANCHI JH, 1987, INT J MECH SCI, V29, P61
19328    CHEN CC, 1979, T ASME, V101, P23
19329    KANETAKE N, 1987, ADV TECHNOLOGY PLAST, P493
19330    LEE CH, 1973, J ENG IND-T ASME, V95, P865
19331    OH SI, 1979, T ASME B, V101, P36
19332    TEKKAYA AE, 1985, SIMULATION METAL FOR, P50
19333    ZICNKIWICZ OC, 1984, NUMERICAL ANAL FORMI
19334 NR 7
19335 TC 0
19336 SN 0924-0136
19337 J9 J MATER PROCESS TECHNOL
19338 JI J. Mater. Process. Technol.
19339 PD JAN 15
19340 PY 1995
19341 VL 48
19342 IS 1-4
19343 BP 123
19344 EP 127
19345 PG 5
19346 SC Engineering, Industrial; Engineering, Manufacturing; Materials Science,
19347    Multidisciplinary
19348 GA QJ335
19349 UT ISI:A1995QJ33500016
19350 ER
19351 
19352 PT J
19353 AU TAN, WH
19354    MA, GB
19355    ZHUANG, J
19356    LIU, RH
19357 TI INFLUENCE OF DETUNING ON THE BUTTERFLY EFFECT OF LASER OSCILLATION
19358 SO ACTA PHYSICA SINICA-OVERSEAS EDITION
19359 DT Article
19360 AB In this paper the butterfly effects of single mode laser oscillation
19361    are studied.  It is shown that the detuning between laser oscillation
19362    and atomic transition frequency leads to a decrease in second
19363    threshold, which makes the demonstration of chaos theory in experiment
19364    easy.
19365 RP TAN, WH, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
19366    R CHINA.
19367 NR 0
19368 TC 1
19369 SN 1004-423X
19370 J9 ACTA PHYS SIN-OVERSEAS ED
19371 JI Acta Phys. Sin.-Overseas Ed.
19372 PD DEC
19373 PY 1994
19374 VL 3
19375 IS 12
19376 BP 884
19377 EP 890
19378 PG 7
19379 SC Physics, Multidisciplinary
19380 GA QH441
19381 UT ISI:A1994QH44100002
19382 ER
19383 
19384 PT J
19385 AU WANG, Q
19386    WEN, GJ
19387    CAI, YS
19388 TI THEORY OF OPTICAL-WAVE COUPLING IN THE PRESENCE OF MAGNETOSTATIC
19389    SURFACE-WAVES
19390 SO ACTA PHYSICA SINICA-OVERSEAS EDITION
19391 DT Article
19392 AB The general expression of magneto-optical permittivity tensor including
19393    the Faraday and Cotton-Mouton effects is derived and the coupled wave
19394    equations for the optical modes propagating in an arbitrary direction
19395    with respect to the magnetostatic surface wave are obtained.  The
19396    optical multimode coupled wave equations will reduce to the bi-mode
19397    ones in the phase-matching conditions.  The behaviors of four types of
19398    important optical bi-mode coupling are discussed and some new results
19399    are obtained.  In the limits of alpha = 0 and pi/2, all results
19400    obtained reduce to those reported in the literature.
19401 RP WANG, Q, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
19402    R CHINA.
19403 NR 0
19404 TC 0
19405 SN 1004-423X
19406 J9 ACTA PHYS SIN-OVERSEAS ED
19407 JI Acta Phys. Sin.-Overseas Ed.
19408 PD NOV
19409 PY 1994
19410 VL 3
19411 IS 11
19412 BP 849
19413 EP 860
19414 PG 12
19415 SC Physics, Multidisciplinary
19416 GA QH440
19417 UT ISI:A1994QH44000008
19418 ER
19419 
19420 PT J
19421 AU GUO, GY
19422    CHEN, YL
19423 TI FORMATION AND PROPERTIES OF A LEAD-BARIUM-ALUMINUM PHOSPHATE-GLASS
19424 SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
19425 DT Note
19426 AB A lead-barium-aluminum phosphate glass has been prepared by a wet
19427    chemical process. The phosphate glass exhibits high transmission in the
19428    visible region of the spectrum and into the mid-infrared and can
19429    strongly absorb in the ultraviolet at wavelengths of less than 344 nm.
19430    In addition, the glass has a relatively high index of refraction and a
19431    good chemical durability, Therefore, the phosphate glass can be used
19432    for general-purpose optical applications.
19433 C1 SHANGHAI UNIV,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
19434 RP GUO, GY, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI & ENGN,SHANGHAI
19435    200030,PEOPLES R CHINA.
19436 CR BROW RK, 1993, J AM CERAM SOC, V76, P913
19437    BUNKER BC, 1984, J NON-CRYST SOLIDS, V64, P291
19438    GUO GY, 1993, J NON-CRYST SOLIDS, V162, P164
19439    GUO GY, 1993, MATER CHEM PHYS, V35, P409
19440    HE Y, 1992, GLASS TECHNOL, V33, P214
19441    PENG YB, 1991, GLASS TECHNOL, V32, P166
19442    PENG YB, 1991, GLASS TECHNOL, V32, P200
19443    SALES BC, 1987, J AM CERAM SOC, V70, P615
19444    VOLF MB, 1984, CHEM APPROACH GLASS, P277
19445 NR 9
19446 TC 5
19447 SN 0002-7820
19448 J9 J AMER CERAM SOC
19449 JI J. Am. Ceram. Soc.
19450 PD FEB
19451 PY 1995
19452 VL 78
19453 IS 2
19454 BP 501
19455 EP 503
19456 PG 3
19457 SC Materials Science, Ceramics
19458 GA QG272
19459 UT ISI:A1995QG27200036
19460 ER
19461 
19462 PT J
19463 AU WEI, GL
19464    WANG, JR
19465 TI KINETICS OF THE FORMATION PROCESS OF PBO2 ON LEAD ANTIMONY ELECTRODES
19466 SO JOURNAL OF POWER SOURCES
19467 DT Article
19468 DE ELECTRODES; LEAD; ANTIMONY; FORMATION PROCESS
19469 ID ACID; OXIDATION
19470 AB The kinetics of the formation process of PbO2 on Pb-1wt.%Sb and
19471    Pb-7wt.%Sb electrodes, together with the influence of antimony on this
19472    process, are studied with potential-step and a.c. impedance methods.
19473    Relationships between the current density and time, and between the
19474    capacitance and time, are investigated. The oxidation current of the
19475    lead substrate is considered. Results show that the formation process
19476    of PbO2 on lead-antimony electrodes follows a two-dimensional
19477    instantaneous nucleation/growth process. Antimony enhances the
19478    formation of PbO2 nuclei, but inhibits their growth.
19479 RP WEI, GL, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
19480    R CHINA.
19481 CR DAWSON JL, 1979, POWER SOURCES, V7, P1
19482    HAMEENOJA E, 1984, J APPL ELECTROCHEM, V14, P449
19483    HAMPSON NA, 1980, J ELECTROANAL CHEM, V107, P177
19484    LAITINEN T, 1989, ELECTROCHIM ACTA, V134, P3
19485    LAITINEN T, 1991, ELECTROCHIM ACTA, V36, P605
19486    PAVLOV D, 1993, J POWER SOURCES, V42, P345
19487    RITCHIE EJ, 1970, J ELECTROCHEM SOC, V117, P299
19488    THIRSK HR, 1972, GUIDE STUDY ELECTROD, P116
19489    VALERIOTE EML, 1977, J ELECTROCHEM SOC, V124, P370
19490    WEI C, 1989, ACTA CHIM SINICA, V47, P569
19491 NR 10
19492 TC 3
19493 SN 0378-7753
19494 J9 J POWER SOURCES
19495 JI J. Power Sources
19496 PD DEC
19497 PY 1994
19498 VL 52
19499 IS 2
19500 BP 193
19501 EP 196
19502 PG 4
19503 SC Electrochemistry; Energy & Fuels
19504 GA QD431
19505 UT ISI:A1994QD43100005
19506 ER
19507 
19508 PT J
19509 AU LI, B
19510    MA, XM
19511    LIU, L
19512    QI, ZH
19513    DONG, YD
19514 TI INVESTIGATION OF AMORPHIZATION OF NB-SI ALLOYS BY MECHANICAL ALLOYING
19515 SO CHINESE PHYSICS LETTERS
19516 DT Article
19517 ID AMORPHOUS-ALLOYS; ZR ALLOYS; POWDERS; NI
19518 AB Amorphous Nb62.5 Si37.5 and Nb75Si25 alloys were produced from mixtures
19519    of elemental Nb and Si powders by mechanical alloying (MA).  The
19520    structural changes of mechanically alloyed powders were monitored by
19521    x-ray diffraction.  It was found that NbSi2 intermetallic compound was
19522    formed in the initial stage of MA of Nb62.5 Si37.5 or Nb75Si25 powders.
19523     With continued milling, the mixtures of intermetallic NbSi2 and
19524    elemental Nb transformed into amorphous Nb-Si alloys (Nb62.5 Si37.5 or
19525    Nb75Si25).  The slow interdiffusion of Nb and Si and the slower
19526    diffusion of silicon atoms to niobium matrix than that of niobium atoms
19527    to silicon matrix were suggested to be responsible for the formation of
19528    intermetallic NbSi2.  The amorphization of 3NbSi2 + 7Nb mixtures (or
19529    NbSi2 + 5Nb mixtures) is believed to be controlled by material
19530    transfer, which moves composition of line intermetallic NbSi2, off
19531    stoichiometry, and causes the matrix of elemental Nb deformed.
19532 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MET & MAT,SHANGHAI 200072,PEOPLES R CHINA.
19533 RP LI, B, ACAD SINICA,INST SOLID STATE PHYS,HEFEI 230031,PEOPLES R CHINA.
19534 CR CALKA A, 1991, APPL PHYS LETT, V58, P119
19535    HELLSTERN E, 1986, APPL PHYS LETT, V48, P124
19536    HIKATA A, 1987, APPL PHYS LETT, V50, P478
19537    KOCH CC, 1983, APPL PHYS LETT, V43, P1017
19538    LEE PY, 1987, APPL PHYS LETT, V50, P1578
19539    LI B, UNPUB APPL PHYS LETT
19540    LI B, 1993, J ALLOY COMPD, V202, P161
19541    MIEDEMA AR, 1980, PHYSICA B, V100, P1
19542    OMURO K, 1992, APPL PHYS LETT, V60, P1433
19543    POUNDER NM, 1991, J PHYS-CONDENS MAT, V3, P2069
19544    SCHWARZ RB, 1985, J NON-CRYST SOLIDS, V76, P281
19545    SCHWARZ RB, 1986, APPL PHYS LETT, V49, P146
19546    WANG WK, 1988, Z PHYS B, V69, P481
19547 NR 13
19548 TC 1
19549 SN 0256-307X
19550 J9 CHIN PHYS LETT
19551 JI Chin. Phys. Lett.
19552 PY 1994
19553 VL 11
19554 IS 11
19555 BP 681
19556 EP 684
19557 PG 4
19558 SC Physics, Multidisciplinary
19559 GA QD297
19560 UT ISI:A1994QD29700007
19561 ER
19562 
19563 PT J
19564 AU YU, JD
19565    ITOH, M
19566    HUANG, T
19567    INAGUMA, Y
19568    NAKAMURA, T
19569 TI ELECTRONIC TRANSPORT PROPERTY OF LA2CUO4+DELTA
19570    (0-LESS-THAN-DELTA-LESS-THAN-0.35) SINGLE-CRYSTAL BELOW 320-K
19571 SO PHYSICA C
19572 DT Article
19573 ID PHASE-SEPARATION
19574 AB The excess oxygen contents of La2CuO4+delta single crystals grown by
19575    the TSFZ method were changed in the range 0.000 less than or equal to
19576    delta less than or equal to 0.035 by the heat treatments under high and
19577    low oxygen pressures. Measurements of the electrical resistivity under
19578    hydrostatic pressure up to 11 kbar, magnetic susceptibility, and
19579    thermoelectric power were carried out below 320 K for the samples with
19580    different excess oxygen contents. The results of all measurements
19581    indicated that, except for superconducting transition temperature,
19582    there are three characteristic temperatures below 320 K, i.e., aroud
19583    295 K, around 265 K, around 195 K.
19584 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
19585 RP YU, JD, TOKYO INST TECHNOL,ENGN MAT RES LAB,MIDORI KU,4259
19586    NAGATSUTA,YOKOHAMA,KANAGAWA 227,JAPAN.
19587 CR BEDNORZ JG, 1986, Z PHYS B CON MAT, V64, P189
19588    CHAILLOUT C, 1990, PHYSICA C, V170, P87
19589    HUNDLEY MF, 1990, PHYS REV B, V41, P4062
19590    HUNDLEY MF, 1991, PHYSICA C, V172, P455
19591    ITOH M, 1994, SOLID STATE COMMUN, V90, P787
19592    JORGENSEN JD, 1988, PHYS REV B, V38, P11337
19593    RADAELLI PG, 1994, PHYS REV B, V49, P6239
19594    VAKNIN D, 1994, PHYS REV B, V49, P9057
19595 NR 8
19596 TC 1
19597 SN 0921-4534
19598 J9 PHYSICA C
19599 JI Physica C
19600 PD DEC
19601 PY 1994
19602 VL 235
19603 PN Part 2
19604 BP 1323
19605 EP 1324
19606 PG 2
19607 SC Physics, Applied
19608 GA QC694
19609 UT ISI:A1994QC69400301
19610 ER
19611 
19612 PT J
19613 AU LIU, GL
19614 TI RESEARCH ON INVERSE, HYBRID AND OPTIMIZATION PROBLEMS IN ENGINEERING
19615    SCIENCES WITH EMPHASIS ON TURBOMACHINE AERODYNAMICS - A REVIEW OF
19616    CHINESE ADVANCES
19617 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
19618 DT Article
19619 AB A brief review of advances in the inverse design and optimization
19620    theory in the following engineering fields in China is presented:  I)
19621    turbomachine aerodynamic inverse design:  including mainly:  (i) two
19622    original approaches - image-space approach and variational approach,
19623    (ii) improved mean-streamline (stream surface) method, (iii)
19624    optimization theory based on optimal control; II) other engineering
19625    fields:  inverse problem of heat conduction, free-surface flow,
19626    variational cogeneration of optimal grid and flow field, optimal
19627    meshing theory of gears, etc.
19628 C1 SHANGHAI INST APP MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA.
19629 RP LIU, GL, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 200072,PEOPLES R CHINA.
19630 CR CAI R, 1984, ASME, V106, P300
19631    CAI R, 1987, ASME87GT147 PAP
19632    CAI RQ, 1983, INT J HEAT FLUID FL, V9, P302
19633    CHEN KM, NUMERICAL METHOD C 2, P1355
19634    CHEN NI, 1986, INT J NUMER METH ENG, V22, P456
19635    CHEN NI, 1987, ASME87GT29 PAP
19636    CHEN XI, 1986, ASME86GT159 PAP
19637    CHEN Z, 1982, CHINESE J ENG THERMO, V3, P353
19638    GE M, 1987, CHINESE J ENG THERMO, V8, P243
19639    GE M, 1987, CHINESE J ENG THERMO, V8, P31
19640    GE M, 1988, ASME88GT PAP
19641    GU CG, 1986, ASME86FT182 PAP
19642    GU CG, 1987, 2ND P CHIN JAP JOINT, P416
19643    HAFEZ MM, 1983, AIAA J, V21, P327
19644    HUA YN, 1983, 6TH P INT S AIR BREA, P487
19645    JIANG HX, 1983 P TOK INT GAS T
19646    LING ZU, 1985, CHINESE J ENG THERMO, V6, P245
19647    LIU GL, 1964, UNIVERSAL COMPUTER M
19648    LIU GL, 1980, ACTA MECHANICA SIN, V12, P337
19649    LIU GL, 1980, FUNDAMENTALS AERODYN
19650    LIU GL, 1980, J SHANGAI I MECH ENG, V2, P25
19651    LIU GL, 1981, CHINESE J ENG THERMO, V23, P335
19652    LIU GL, 1981, J SHANGHAI I MECHANI, V3, P1
19653    LIU GL, 1982, ACTA MECHANICA SIN, V14, P122
19654    LIU GL, 1982, CHINESE J ENG THERMO, V3, P138
19655    LIU GL, 1983, 6TH P INT S AIR BREA, P313
19656    LIU GL, 1984, CHINESE J ENG THERMO, V5, P27
19657    LIU GL, 1985, ACTA AERODYN SINICA, V3, P24
19658    LIU GL, 1985, OPTIMAL TYPE FLOW PA
19659    LIU GL, 1986, 6TH P INT S FEM FLOW, P137
19660    LIU GL, 1986, 6TH P INT S FEM FLOW, P39
19661    LIU GL, 1987, 1987 TOKY INT GAS TU, V2, P259
19662    LIU GL, 1987, NUM METHODS THERMAL, V5, P284
19663    LIU GL, 1987, NUMERICAL METHODS LA, V5, P1739
19664    LIU GL, 1987, TURBULENCE MEASUREME, P323
19665    LIU GL, 1988, 3RD P INT S REF FLOW, P283
19666    LIU GL, 1989, NUM METHODS THERMAL, V6, P1712
19667    LIU GL, 1989, NUMERICAL METHODS C, V6, P1343
19668    LIU GL, 1989, NUMERICAL METHODS LA, V6, P1289
19669    LIU GL, 1990, 4TH P INT S REF FLOW, P175
19670    LIU GL, 1990, CHINESE J ENG THERMO, V11, P136
19671    LIU GL, 1991, ASME91GT169 PAP
19672    LIU GL, 1991, ASME91GT3085 PAP
19673    LIU GL, 1993, 2ND P INT S AER INT, P361
19674    LIU GL, 1993, ACTA MECH, V99, P219
19675    LU WC, 1987, 2ND P CHIN JAP JOINT, P481
19676    QIN R, ASME J TURBOMACHINER, V110, P545
19677    SHEN MY, 1983, ACTA MECH SINICA, V15, P1
19678    SUN XY, 1988, ASME88GT113 PAP
19679    TAO C, 1990, 3RD P JAP CHIN JOINT
19680    THOMAS KM, 1974, ASME74GT82 PAP
19681    WANG XJ, 1983, THESIS NE U TECHNOLO
19682    WANG ZM, 1985, ASME85GT6 PAP
19683    WANG ZM, 1988, ASME, V110, P181
19684    WANG ZM, 1989, 9TH INTL S AIR BREAT
19685    WANG ZM, 1990, 1ST P ISAIF BEIJ, P482
19686    WANG ZM, 1991, ASME91GT76 PAP
19687    WILKINSON DH, 1970, ARC RM3704
19688    WU BR, 1984, ADV MECHANICS, V14, P161
19689    WU CH, 1952, JAS, V19, P3
19690    WU CH, 1952, NACA TN2604
19691    WU CH, 1976, 3RD P ISABE MUN, P233
19692    WU GC, 1987, 87TOKYOIGTC19 PAP
19693    XU HY, 1990, ACTA AERODYNAMICS SI, V8, P103
19694    XUE MI, 1975, OPTIMUM AERODYNAMICS
19695    YAN S, 1ST INT S BEIJ, P457
19696    YAO FS, 1979, CHINESE J MECH ENG
19697    YAO Z, 1982, THESIS SHANGHAI I ME
19698    YAO Z, 1984, COMPUTL TURBOMACHINE, P237
19699    ZHAO SL, 1989, ASME89GT73 PAP
19700    ZHAO XL, 1985, ASME, V107, P293
19701    ZHOU XH, 1985, CHEM J ENGN THERMOPH, V6, P331
19702    ZOU ZX, 1980, CHINESE J ENG THERMO, V1, P341
19703 NR 73
19704 TC 3
19705 SN 0334-0082
19706 J9 INT J TURBO JET ENGINES
19707 JI Int. J. Turbo. Jet-Engines
19708 PY 1994
19709 VL 11
19710 IS 1
19711 BP 53
19712 EP 70
19713 PG 18
19714 SC Engineering, Aerospace
19715 GA QC854
19716 UT ISI:A1994QC85400005
19717 ER
19718 
19719 PT J
19720 AU YAN, S
19721    LIU, GL
19722 TI VARIATIONAL VARIABLE-DOMAIN FINITE-ELEMENT METHOD FOR HYBRID PROBLEMS
19723    OF 3-DIMENSIONAL INCOMPRESSIBLE ROTOR FLOW
19724 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
19725 DT Article
19726 AB Based on the variational theory developed by Liu (1986), a new finite
19727    element method (FEM) with self-adapting nodes is suggested in this
19728    paper for determining the unknown shape of the boundaries in hybrid
19729    problems of three-dimensional incompressible rotor flow.  The
19730    computational results of two different kinds of hybrid problems show
19731    that the rotor geometry obtained from the calculation coincides with
19732    the original one quite well.  A new numerical method for cascade design
19733    and modification is thus provided and recommended for practical use. 
19734    It can be extended to compressible flow (Liu, 1988).
19735 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
19736    SHANGHAI INST APPL MATH & MECH,SHANGHAI,PEOPLES R CHINA.
19737 RP YAN, S, SHANGHAI INST MECH & ELECT ENGN,SHANGHAI 200093,PEOPLES R CHINA.
19738 CR BORGES JE, 1989, ASME89GT136 PAP
19739    BORGES JE, 1989, ASME89GT137 PAP
19740    CHUNG TJ, 1978, FINITE ELEMENT ANAL
19741    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
19742    GHALY WS, 1990, INT J NUMER METH FL, V10, P179
19743    HAWTHORNE WR, 1987, P ICIDES 2 DULIKRAVI, P207
19744    LIU GL, 1986, ASME, V108, P254
19745    LIU GL, 1988, COMPUTATIONAL FLUID, P473
19746    MARCHUK GI, 1982, METHODS NUMERICAL MA
19747    MIZUKI S, 1975, ASME75GT14 PAP
19748    MIZUKI S, 1979, PERFORMANCE PREDICTI, P13
19749    STANITZ JD, 1988, APPLIED MECHANICS RE, V41, P217
19750    YAN S, 1989, VARIATIONAL FINITE E
19751    YAN S, 1990, 1ST P INT S EXP COMP, P457
19752 NR 14
19753 TC 3
19754 SN 0334-0082
19755 J9 INT J TURBO JET ENGINES
19756 JI Int. J. Turbo. Jet-Engines
19757 PY 1994
19758 VL 11
19759 IS 1
19760 BP 71
19761 EP 82
19762 PG 12
19763 SC Engineering, Aerospace
19764 GA QC854
19765 UT ISI:A1994QC85400006
19766 ER
19767 
19768 PT J
19769 AU WANG, ZX
19770    PAN, JS
19771    ZHANG, JP
19772    TAO, ZL
19773    DU, GT
19774    WANG, CH
19775    LI, XN
19776    XIE, YF
19777    LUO, WY
19778    ZHOU, SX
19779 TI TOPOGRAPHY AND ANGULAR-DISTRIBUTION OF SPUTTERED ATOMS OF SILVER TARGET
19780    BOMBARDED BY SIN- (N=1,2) IONS
19781 SO JOURNAL OF MATERIALS SCIENCE LETTERS
19782 DT Article
19783 ID MOLECULAR-DYNAMICS SIMULATION; FILMS
19784 C1 SHANGHAI UNIV SCI & TECHNOL,INST APPL RADIAT,SHANGHAI 201800,PEOPLES R CHINA.
19785 RP WANG, ZX, ACAD SINICA,INST NUCL RES,POB 800204,SHANGHAI 201800,PEOPLES
19786    R CHINA.
19787 CR ANDERSEN HH, 1975, J APPL PHYS, V46, P2416
19788    JOHAR SS, 1979, SURF SCI, V90, P319
19789    OASTA DJ, 1988, PHYS REV LETT, V61, P1392
19790    ROOSENDAAL HE, 1982, NUCL INSTRUM METHODS, V194, P579
19791    SHAPIRO MH, 1990, NUCL INSTRUM METH B, V48, P557
19792    SHAPIRO MH, 1991, NUCL INSTRUM METH B, V62, P35
19793    SZYMONSKI M, 1978, J PHYS             D, V11, P751
19794    THOMPSON DA, 1977, RADIAT EFF, V32, P135
19795    THOMPSON DA, 1979, APPL PHYS LETT, V34, P342
19796    WANG ZX, 1993, NUCL INSTRUM METH B, V74, P380
19797 NR 10
19798 TC 0
19799 SN 0261-8028
19800 J9 J MATER SCI LETT
19801 JI J. Mater. Sci. Lett.
19802 PD JAN 1
19803 PY 1995
19804 VL 14
19805 IS 1
19806 BP 33
19807 EP 34
19808 PG 2
19809 SC Materials Science, Multidisciplinary
19810 GA QB226
19811 UT ISI:A1995QB22600013
19812 ER
19813 
19814 PT J
19815 AU WEI, GP
19816    ZHENG, YM
19817    HUANG, ZJ
19818    LI, Y
19819    FENG, JW
19820    MO, YW
19821 TI POROUS SILICON AND ITS APPLICATION TEST FOR PHOTOVOLTAIC DEVICES
19822 SO SOLAR ENERGY MATERIALS AND SOLAR CELLS
19823 DT Article
19824 AB Porous silicon was prepared by anodization of a p/p(+) epitaxial c-Si
19825    wafer. Its structure was examined by electron microscopy, Raman
19826    spectroscopy, and infrared spectroscopy. The results of the examination
19827    show that the porous Si consists of many nano-scale pores and
19828    crystalline slices, and that there is a thin molecular film containing
19829    Si-H, Si-O and SI-H-2 bonds at the surface of the slices. Some solar
19830    cells were fabricated from the porous Si wafers, and about 7%
19831    efficiency was obtained.
19832 RP WEI, GP, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
19833 CR BRANDT MS, 1992, SOLID STATE COMMUN, V81, P307
19834    CANHAM LT, 1990, APPL PHYS LETT, V57, P1046
19835    KOSHIDA N, 1992, JPN J APPL PHYS, V60, P1
19836    LEHMANN V, 1991, APPL PHYS LETT, V58, P856
19837    NAKAGAWA K, 1992, JPN J APPL PHYS, V31, L515
19838    NISHIDA A, 1992, JPN J APPL PHYS, V31, P1219
19839 NR 6
19840 TC 6
19841 SN 0927-0248
19842 J9 SOLAR ENERG MATER SOLAR CELLS
19843 JI Sol. Energy Mater. Sol. Cells
19844 PD SEP
19845 PY 1994
19846 VL 35
19847 IS 1-4
19848 BP 319
19849 EP 324
19850 PG 6
19851 SC Materials Science, Multidisciplinary; Energy & Fuels
19852 GA PX516
19853 UT ISI:A1994PX51600042
19854 ER
19855 
19856 PT J
19857 AU GUO, BY
19858    XIONG, YS
19859 TI FOURIER PSEUDOSPECTRAL-FINITE DIFFERENCE METHOD FOR 2-DIMENSIONAL
19860    VORTICITY EQUATION
19861 SO CHINESE ANNALS OF MATHEMATICS SERIES B
19862 DT Article
19863 DE VORTICITY EQUATION; FOURIER PSEUDOSPECTRAL-FINITE DIFFERENCE METHOD;
19864    GENERALIZED STABILITY; CONVERGENCE
19865 ID BAROCLINIC PRIMITIVE EQUATION; NAVIER-STOKES EQUATIONS; RESTRAIN
19866    OPERATOR; ERROR ESTIMATION; SPECTRAL METHOD; ELEMENT METHOD; FLOW;
19867    APPROXIMATION
19868 AB A Fourier pseudospectral-finite difference scheme is proposed for
19869    solving two-dimensional vorticity equations.  The generalized stability
19870    and the convergence are proved.  The numerical results are given.
19871 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
19872 CR CANUTO C, 1982, MATH COMPUT, V38, P67
19873    CANUTO C, 1984, NUMER MATH, V44, P201
19874    CANUTO C, 1988, SPECTRAL METHODS FLU
19875    GOTTLIEB D, 1977, NUMERICAL ANAL SPECT
19876    GUO B, 1985, SCI SINICA SER A, V28, P1139
19877    GUO B, 1988, J COMPUT PHYS, V74, P110
19878    GUO BY, 1974, ACTA MATH SINICA, V17, P242
19879    GUO BY, 1987, SCI SINICA SER A, V30, P696
19880    GUO BY, 1988, J COMPUT MATH, V6, P238
19881    GUO BY, 1989, J COMPUT PHYS, V84, P259
19882    GUO BY, 1991, SIAM J NUMER ANAL, V28, P113
19883    GUO BY, 1992, J COMPUT PHYS, V101, P207
19884    GUO BY, 1992, J COMPUT PHYS, V101, P375
19885    GUO BY, 1992, SCI CHINA SER A, V35, P1
19886    INGHAM DB, 1978, J APPL MATH PHYS, V29, P871
19887    INGHAM DB, 1984, J COMPUT PHYS, V53, P90
19888    KREISS HO, 1979, SIAM J NUMER ANAL, V16, P421
19889    KUO PY, 1981, COMMUNICATION    MAR
19890    KUO PY, 1983, J COMPUT MATH, V1, P353
19891    KUO PY, 1985, ACTA MATH SINICA, V28, P1
19892    LIONS JL, 1969, QUELQUES METHODES RE
19893    MA HP, 1986, J COMPUT PHYS, V65, P120
19894    MA HP, 1987, IMA J NUMER ANAL, V7, P47
19895    MACARAEG MG, 1986, J COMPUT PHYS, V62, P297
19896    MOIN P, 1982, J FLUID MECH, V118, P341
19897    MURDOCK JW, 1977, AIAA J, V15, P1167
19898    VANDEVEN H, 1987, FAMILY SPECTRAL FILT
19899    WOODWARD P, 1984, J COMPUT PHYS, V54, P115
19900 NR 28
19901 TC 0
19902 SN 0252-9599
19903 J9 CHIN ANN MATH SER B
19904 JI Chin. Ann. Math. Ser. B
19905 PD OCT
19906 PY 1994
19907 VL 15
19908 IS 4
19909 BP 469
19910 EP 488
19911 PG 20
19912 SC Mathematics
19913 GA PX887
19914 UT ISI:A1994PX88700008
19915 ER
19916 
19917 PT J
19918 AU WANG, SZ
19919    GRABB, ML
19920    BIRDSALL, TG
19921 TI DESIGN OF PERIODIC SIGNALS USING FM SWEEPS AND AMPLITUDE-MODULATION FOR
19922    OCEAN ACOUSTIC TRAVEL-TIME MEASUREMENTS
19923 SO IEEE JOURNAL OF OCEANIC ENGINEERING
19924 DT Article
19925 ID TOMOGRAPHY
19926 AB A design procedure for an amplitude-modulated and nonlinear
19927    frequency-modulated (AM-NLFM) signal is introduced. The designed signal
19928    can drive a given transducer to its peak power to produce a sound
19929    pressure waveform into the water with a desired power spectrum and
19930    maximum possible energy. The signal can be formed either in the time
19931    domain or in the frequency domain. The frequency domain approach gives
19932    an output power spectrum precisely identical to a preferred shape.
19933    Therefore, the sidelobe levels after matched filtering are not raised
19934    by unwanted spectral magnitude ripples which exist when a time domain
19935    method is adopted. The absence of spectral ripples is desirable for
19936    applications requiring long range transmission and good multipath
19937    discrimination capability. An acceptable tradeoff between time
19938    resolution and sidelobe levels is achieved by properly choosing the
19939    desired power spectral shape. As the time resolution is usually the
19940    most critical specification for precision travel-time measurements, it
19941    is shown that by sacrificing some of the transducer's output power
19942    capability, a waveform with a considerably wider band, width can be
19943    transmitted, resulting in a significantly enhanced time resolution. A
19944    quasi-steady-stale (QSS) approximation is used in the signal design,
19945    leading to a manageable and intuitive design procedure.
19946 C1 UNIV MICHIGAN,DEPT ELECT ENGN & COMP SCI,ANN ARBOR,MI 48109.
19947 RP WANG, SZ, SHANGHAI UNIV SCI & TECHNOL,DEPT ELECTR & TELECOMMUN
19948    ENGN,SHANGHAI 200072,PEOPLES R CHINA.
19949 CR BAGGEROER A, 1992, PHYSICS TODAY    SEP, P22
19950    BATTEN HW, 1952, 3 U MICH DEPT EL ENG
19951    BEHRINGER D, 1982, NATURE, V299, P121
19952    BIRDSALL TG, 1976, IEEE T EDUC, V19, P168
19953    BIRDSALL TG, 1986, J ACOUST SOC AM, V79, P91
19954    BUTLER MBN, 1980, P IEE F, V127, P118
19955    DUDA TF, 1993, IEEE J OCEANIC ENG, V18, P87
19956    JOHNSTON A, 1983, RADIO ELECTRON ENG, V53, P138
19957    JOHNSTON JA, 1986, IEE PROC-F, V133, P163
19958    JUDD GW, 1973, P IEEE ULTR S MONT, P478
19959    MUNK W, 1993, SCIENCES, V33, P21
19960    NATHANSON FE, 1991, RADAR DESIGN PRINCIP, P624
19961    SPIESBERGER JL, 1991, J GEOPHYS RES-OCEANS, V96, P4869
19962    WORCESTER PF, 1991, REV GEOPHYS S, P557
19963 NR 14
19964 TC 0
19965 SN 0364-9059
19966 J9 IEEE J OCEANIC ENG
19967 JI IEEE J. Ocean. Eng.
19968 PD OCT
19969 PY 1994
19970 VL 19
19971 IS 4
19972 BP 611
19973 EP 618
19974 PG 8
19975 SC Engineering, Civil; Engineering, Electrical & Electronic; Engineering,
19976    Ocean; Oceanography
19977 GA PX325
19978 UT ISI:A1994PX32500014
19979 ER
19980 
19981 PT J
19982 AU MAK, AFT
19983    HUANG, LD
19984    WANG, QQ
19985 TI A BIPHASIC POROELASTIC ANALYSIS OF THE PLOW DEPENDENT SUBCUTANEOUS
19986    TISSUE PRESSURE AND COMPACTION DUE TO EPIDERMAL LOADINGS - ISSUES IN
19987    PRESSURE SORE
19988 SO JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME
19989 DT Article
19990 ID ARTICULAR-CARTILAGE; FLUID TRANSPORT; INDENTATION; COMPRESSION; MODEL;
19991    SKIN; FLOW
19992 AB A layer of skin and subcutaneous tissue on a bony substratum was
19993    modeled as a homogeneous layer of biphasic poroelastic material with
19994    uniform thickness. The epidermal surface and the bony interface were
19995    taken to be impervious. The soft tissue on the bony interface was
19996    assumed either fully adhered or completely free to slide on the bone.
19997    The cases for surface pressure loadings and displacement controlled
19998    indentations were simulated The resultant biomechanical responses of
19999    the layer, including the transient tissue hydrostatic pressure and the
20000    tissue compaction, were presented. A new hypothesis is offered to
20001    interpret the threshold pressure-time curve for pressure sores in term
20002    of the time required for a particular area in the tissue layer to reach
20003    tr critical compaction for a given level of applied pressure.
20004 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PRECIS MECH ENGN,SHANGHAI 201800,PEOPLES R CHINA.
20005 RP MAK, AFT, HONG KONG POLYTECH,CTR REHABIL ENGN,HONG KONG,HONG KONG.
20006 CR BADER DL, 1988, CLIN PHYS PHYSL MEAS, V9, P33
20007    BADER DL, 1990, PRESSURE SORES CLIN
20008    BENNETT L, 1979, ARCH PHYS MED REHAB, V60, P309
20009    BIOT MA, 1941, J APPL PHYS, V12, P155
20010    BOWEN RM, 1976, CONTINUUM PHYSICS, V3
20011    CHOW WW, 1978, J BIOMECH ENG, V100, P79
20012    CRENSHAW RP, 1989, J REHABIL RES DEV, V26, P63
20013    DANIEL RK, 1981, ARCH PHYS MED REHAB, V62, P492
20014    DRUMMOND DS, 1982, J BONE JOINT SURG AM, V64, P1034
20015    FERGUSONPELL MW, 1992, P RESNA INT 92, P219
20016    HAYES WC, 1972, J BIOMECH, V5, P541
20017    HIVDBERY E, 1960, ACTA PARMACAL KOBENH, V16, P245
20018    IRANI KD, 1985, MED REHABILITATION
20019    KENYON DE, 1979, B MATH BIOL, V41, P79
20020    KOSIAK M, 1959, ARCH PHYS MED REHAB, V40, P62
20021    KROUSKOP TA, 1983, MED HYPOTHESES, V11, P255
20022    LANIR Y, 1987, HDB BIOENGINEERING
20023    LANIR Y, 1990, J BIOMECH ENG-T ASME, V112, P63
20024    LIVESLEY B, 1990, PRESSURE SORES CLIN, P27
20025    MAK AF, 1986, J BIOMECH ENG-T ASME, V108, P123
20026    MAK AF, 1987, J BIOMECH, V20, P703
20027    MCNAMEE J, 1960, Q J MECH APPL MATH, V13, P98
20028    MICHEL CC, 1990, PRESSURE SORES CLIN, P153
20029    MONTAGNA W, 1962, STRUCTURE FUNCTION S
20030    MOW VC, 1977, J BIOMECH, V10, P31
20031    MOW VC, 1980, J BIOMECH ENG, V102, P73
20032    MOW VC, 1984, J BIOMECH, V17, P377
20033    MOW VC, 1986, FRONTIERS BIOMECHANI
20034    OOMENS CWJ, 1982, J BIOMECH, V20, P877
20035    OOMENS CWJ, 1987, J BIOMECH, V20, P923
20036    PAPIR YS, 1985, BIOCHIM BIOPHYS ACTA, V399, P170
20037    PETERSON MJ, 1982, PHYS THER, V62, P990
20038    POULOS HG, 1974, ELASTIC SOLUTIONS SO
20039    REDDY NP, 1981, J BIOMECH, V14, P879
20040    REDDY NP, 1982, J BIOMECH, V15, P493
20041    REDDY NP, 1986, TISSUE NUTRITION VIA, P215
20042    REDDY NP, 1990, PRESSURE SORES CLIN, P203
20043    REGER SI, 1990, PRESSURE SORES CLIN, P177
20044    RESWICK JB, 1976, BEDSORE BIOMECHANICS, P301
20045    SACKS AH, 1985, J REHAB RES DEV, P1
20046    SACKS AH, 1989, J REHABIL RES DEV, V26, P27
20047    SALZETEIN RA, 1987, J BIOMECH, V20, P681
20048    SANGEORZAN BJ, 1989, J ORTHOPAED RES, V7, P425
20049    SCALES JT, 1990, PRESSURE SORES CLIN, P15
20050    SCHOCK RB, 1982, ADV BIOENG, P88
20051    SIMON BR, 1985, J BIOMECH ENG-T ASME, V107, P327
20052    SNASHALL PD, 1971, CLIN SCI, V41, P35
20053    SPILKER RL, 1990, J BIOMECH ENG-T ASME, V112, P138
20054    STEEGE JW, 1987, 10TH RESNA ANN C, P814
20055    TABER LA, 1992, 1991 ADV BIOENGINEER, P623
20056    TODD BA, 1992, P RESNA INT 92, P222
20057    TORZILLI PA, 1976, J BIOMECH, V9, P587
20058 NR 52
20059 TC 13
20060 SN 0148-0731
20061 J9 J BIOMECH ENG
20062 JI J. Biomech. Eng.-Trans. ASME
20063 PD NOV
20064 PY 1994
20065 VL 116
20066 IS 4
20067 BP 421
20068 EP 429
20069 PG 9
20070 SC Engineering, Biomedical; Biophysics
20071 GA PW301
20072 UT ISI:A1994PW30100007
20073 ER
20074 
20075 PT J
20076 AU SKIDMORE, MJ
20077 TI ETHICS AND PUBLIC-SERVICE
20078 SO ANNALS OF THE AMERICAN ACADEMY OF POLITICAL AND SOCIAL SCIENCE
20079 DT Article
20080 AB There is widespread concern for ethics in government, and news reports
20081    justify that concern.  The public's emphasis, fueled by both accurate
20082    and inaccurate reporting, appears to center upon the conduct of elected
20083    officials.  Some of that reporting is significant, and some is trivial.
20084     Professional literature tends to concentrate upon the bureaucracy. 
20085    This article traces the history in general of ethical thought regarding
20086    public service in America and sketches attempts to require adherence to
20087    ethical standards.  It concludes that-with notable exceptions and
20088    despite considerable insightful work from ethicists - the strongest
20089    reactions have often come in response to relatively trivial infractions
20090    and that prescriptions tend to be entirely negative.  Such negative
20091    approaches are unlikely to result in significant improvement of ethics
20092    in public service, whether judged by standards of personal conduct or
20093    the even more important standard of institutional performance and
20094    integrity.
20095 C1 UNIV MISSOURI,COLUMBIA,MO 65201.
20096    SHANGHAI UNIV,SHANGHAI,PEOPLES R CHINA.
20097 CR BOHR JA, 1991, PUBLIC ADMIN REV, V51, P283
20098    BOWMAN JE, 1991, ETHICAL FRONTIERS PU, P2
20099    COOPER TL, 1982, RESPONSIBLE ADM, P8
20100    DEGEORGE RT, 1982, BUSINESS ETHICS
20101    DENHARDT K, 1991, ETHICAL FRONTEIRS PU, P100
20102    DENHARDT KG, 1988, ETHICS PUBLIC SERVIC, P5
20103    DVORIN EP, 1972, AMORAL HUMANE BUREAU, P1
20104    FINER H, 1994, PUBLIC ADM REV, V1
20105    FRIEDRICH CJ, 1940, PUBLIC POLICY
20106    GABRIS GT, 1991, ETHICAL FRONTIERS PU, P217
20107    GAWTHROP LC, 1984, PUBLIC SECTOR MANAGE, P142
20108    GOLEMBIEWSKI RT, 1962, PUBLIC ADM REV, V22
20109    GOLEMBIEWSKI RT, 1965, MEN MANAGEMENT MORAL
20110    HARMON MM, 1971, NEW PUBLIC MINNOWBRO, P172
20111    JENNINGS B, 1991, ETHICAL FRONTIERS PU, P67
20112    LEYS WAR, 1944, ETHICS SOCIAL POLICY
20113    LUKE IS, 1991, ETHICAL FRONTIERS PU, P160
20114    MERGET AE, 1989, GOVERNING, V3, P90
20115    NORTON DL, 1988, PAPERS ETHICS ADM, P47
20116    PUGH DL, 1991, ETHICAL FRONTIERS PU, P10
20117    ROHR JA, 1978, ETHICS BUREAUCRATS
20118    ROHR JA, 1989, ETHICS BUREAUCRATS
20119    SCOTT WG, 1988, PAPERS ETHICS ADM, P29
20120    THOMPSON DF, 1987, POLITICAL ETHICS PUB
20121    VENTRISS C, 1991, ETHICAL FRONTIERS PU, P114
20122    WALDO D, 1948, ADM STATE STUDY POLI, P18
20123    WALL B, 1991, ETHICAL FRONTIERS PU, P136
20124    WILSON W, 1987, POLITICAL SCI Q, V2
20125    WRIGHT ND, 1988, PAPERS ETHICS ADM, P15
20126 NR 29
20127 TC 1
20128 SN 0002-7162
20129 J9 ANN AMER ACAD POLIT SOC SCI
20130 JI Ann. Am. Acad. Polit. Soc. Sci.
20131 PD JAN
20132 PY 1995
20133 VL 537
20134 BP 25
20135 EP 36
20136 PG 12
20137 SC Social Sciences, Interdisciplinary; Political Science
20138 GA PX926
20139 UT ISI:A1995PX92600004
20140 ER
20141 
20142 PT J
20143 AU LIU, GL
20144 TI A UNIFIED VARIATIONAL THEORY OF HYBRID PROBLEMS FOR FULLY 3-D TRANSONIC
20145    ROTOR-FLOW WITH SHOCKS .1. POTENTIAL FLOW
20146 SO ACTA MECHANICA
20147 DT Article
20148 ID TURBO-ROTOR; PRINCIPLES
20149 AB Based on [3], the unified variable-domain variational theory of hybrid
20150    problems for rotor-flow [1], [2], [16], [24] is extended to fully 3-D
20151    transonic rotor-flows with shocks, unifying and generalizing the direct
20152    and inverse problems. Three variational principle (VP) families
20153    together with a general form of generalized VPs have been established,
20154    taking distributed suction and/or blowing along blade- and annular
20155    walls into account. All unknown boundaries are successfully handled via
20156    functional variations with variable domain, converting almost all
20157    boundary and interface conditions, including the Rankine-Hugoniot shock
20158    relations, into natural ones. This theory provides a series of novel
20159    ways for blade design and a theoretical basis for finite element
20160    applications and also constitutes an important part of the optimal
20161    design theory of rotor-bladings [6]. Numerical solutions by finite
20162    elements in [22]-[24] show good agreement with experimental results.
20163 C1 SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA.
20164 RP LIU, GL, SHANGHAI UNIV,149 YAN CHANG RD,SHANGHAI 200072,PEOPLES R CHINA.
20165 CR ECER A, 1983, AIAA J, V21, P343
20166    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
20167    LIU GI, 1986, J ENG GAS TURB POWER, V108, P254
20168    LIU GL, 1979, ACTA MECH SINICA, V11, P303
20169    LIU GL, 1980, LECTURE NOTES SHANGH
20170    LIU GL, 1980, SCI SINICA, V23, P1339
20171    LIU GL, 1981, CHINESE J ENG THERMO, V2, P335
20172    LIU GL, 1982, 1982 P INT C FEM SHA, P520
20173    LIU GL, 1983, 6TH P INT S AIR BREA, P313
20174    LIU GL, 1985, ACTA AERODYN SINICA, V3, P24
20175    LIU GL, 1986, 6TH P INT S FEM FLOW, P137
20176    LIU GL, 1987, NUM METHODS THERMAL, V5, P284
20177    LIU GL, 1987, TURBULENCE MEASUREME, P323
20178    LIU GL, 1988, COMPUTATIONAL FLUID, P473
20179    LIU GL, 1990, 1 INT S EXP COMP AER, P128
20180    LIU GL, 1992, ACTA MECH, V95, P117
20181    LIU GL, 1993, 2ND INT S EXP COMP A, P355
20182    LIU GL, 1993, ACTA MECH, V97, P229
20183    LIU GL, 1993, INT J TURBO JET ENGI, V10, P273
20184    MCNALLY WD, 1985, J FLUID ENG-T ASME, V107, P6
20185    MEAUZE G, 1982, ASME, V104, P650
20186    PENG HW, 1975, KEXUE TONGBAO, V20, P416
20187    SERRIN J, 1959, HDB PHYSIK, V7
20188    THOMPKINS WT, 1982, ASME, V104, P282
20189    WU CH, 1952, NACA TN2604
20190    YAN S, 1990, EXP COMP AEROTHERMOD, P449
20191    YAN S, 1991, 1991 P YOK INT GAS T, P35
20192    YAO Z, 1984, IMECHE PAPER, V69, P237
20193 NR 28
20194 TC 3
20195 SN 0001-5970
20196 J9 ACTA MECH
20197 JI Acta Mech.
20198 PY 1995
20199 VL 108
20200 IS 1-4
20201 BP 207
20202 EP 217
20203 PG 11
20204 SC Mechanics
20205 GA PW711
20206 UT ISI:A1995PW71100016
20207 ER
20208 
20209 PT J
20210 AU RODGERS, GJ
20211    HASSAN, MK
20212 TI FRAGMENTATION OF PARTICLES WITH MORE THAN ONE DEGREE-OF-FREEDOM
20213 SO PHYSICAL REVIEW E
20214 DT Article
20215 ID KINETICS; DEGRADATION
20216 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SYLHET,BANGLADESH.
20217 RP RODGERS, GJ, BRUNEL UNIV,DEPT PHYS,UXBRIDGE UB8 3PH,MIDDX,ENGLAND.
20218 CR AMEMIYA A, 1962, J PHYS SOC JPN, V17, P1245
20219    AMEMIYA A, 1962, J PHYS SOC JPN, V17, P1694
20220    BAK TA, 1959, ACTA CHEM SCAND, V13, P1997
20221    BALLAUFF M, 1981, MACROMOLECULES, V14, P654
20222    BASEDOW AM, 1978, MACROMOLECULES, V11, P774
20223    CHARLESBY A, 1954, P ROY SOC LOND A MAT, V224, P120
20224    DEMJANENKO M, 1980, MACROMOLECULES, V13, P571
20225    ERNST MH, 1993, J PHYS A-MATH GEN, V26, P6085
20226    FAMILY F, 1986, PHYS REV LETT, V57, P727
20227    FILIPPOV AF, 1961, THEORY PROBABILITY I, V6, P275
20228    GILVARRY JJ, 1961, J APPL PHYS, V32, P391
20229    MCGRADY ED, 1987, PHYS REV LETT, V58, P892
20230    MEYER R, 1966, BR J APPL PHYS, V17, P409
20231    SHINNAR R, 1961, J FLUID MECH, V10, P259
20232    VICSEK T, 1984, PHYS REV LETT, V52, P1669
20233    ZIFF RM, 1985, J PHYS A-MATH GEN, V18, P3027
20234    ZIFF RM, 1986, MACROMOLECULES, V19, P2513
20235    ZIFF RM, 1991, J PHYS A-MATH GEN, V24, P2821
20236 NR 18
20237 TC 10
20238 SN 1063-651X
20239 J9 PHYS REV E
20240 JI Phys. Rev. E
20241 PD NOV
20242 PY 1994
20243 VL 50
20244 IS 5
20245 BP 3458
20246 EP 3463
20247 PG 6
20248 SC Physics, Fluids & Plasmas; Physics, Mathematical
20249 GA PV863
20250 UT ISI:A1994PV86300033
20251 ER
20252 
20253 PT J
20254 AU WANG, ZX
20255    PAN, JS
20256    ZHANG, JP
20257    WANG, CS
20258    LUO, WY
20259    LI, XN
20260    ZHOU, SX
20261    ZHANG, HM
20262    ZHAO, L
20263 TI SURFACE-TOPOGRAPHY EFFECT ON PREFERENTIAL SPUTTERING FROM CU76NI15SN9
20264    ALLOY
20265 SO JOURNAL OF MATERIALS SCIENCE LETTERS
20266 DT Article
20267 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI INST APPL RADIAT,SHANGHAI 201800,PEOPLES R CHINA.
20268    HANGZHOU UNIV,CENT LAB,HANGZHOU 310028,PEOPLES R CHINA.
20269 RP WANG, ZX, ACAD SINICA,SHANGHAI INST NUCL RES,POB 800-204,SHANGHAI
20270    201800,PEOPLES R CHINA.
20271 CR BETZ G, 1980, NUCL INSTRUM METHODS, V170, P347
20272    BETZ G, 1981, SURF SCI, V104, L185
20273    MATTIEU HJ, 1979, APPL SURF SCI, V3, P348
20274    WITTMAACK K, 1980, NUCL INSTRUM METHODS, V170, P331
20275    ZHENXIA W, 1992, J MATER SCI LETT, V11, P719
20276    ZHENXIA W, 1993, NUCL INSTRUM METH B, V74, P380
20277 NR 6
20278 TC 0
20279 SN 0261-8028
20280 J9 J MATER SCI LETT
20281 JI J. Mater. Sci. Lett.
20282 PD DEC 1
20283 PY 1994
20284 VL 13
20285 IS 23
20286 BP 1667
20287 EP 1669
20288 PG 3
20289 SC Materials Science, Multidisciplinary
20290 GA PX084
20291 UT ISI:A1994PX08400004
20292 ER
20293 
20294 PT J
20295 AU KLINGENBERG, C
20296    MAO, DK
20297 TI THE TOTAL VARIATION DECREASING PROPERTY OF A CONSERVATIVE FRONT
20298    TRACKING TECHNIQUE
20299 SO MATHEMATICAL AND COMPUTER MODELLING
20300 DT Article
20301 DE CONSERVATION LAWS; CONSERVATIVE NUMERICAL SCHEME; TOTAL VARIATION
20302    DECREASING
20303 ID FINITE-DIFFERENCE METHODS; HIGH-RESOLUTION SCHEMES; LAWS;
20304    DISCONTINUITIES
20305 AB In [1-4], one of the authors developed a conservative front tracking
20306    technique. In this paper, we study the effect of the technique on the
20307    total variation of the numerical solution when the underlying scheme is
20308    total variation decreasing (TVD). We prove that the first order
20309    technique will retain the TVD property for the overall scheme.
20310    Numerical examples are presented to support the conclusion even for
20311    higher order front tracking techniques.
20312 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
20313 RP KLINGENBERG, C, UNIV HEIDELBERG,DEPT APPL MATH,NEUENHEIMER FELD
20314    294,D-69120 HEIDELBERG,GERMANY.
20315 CR CRANDALL MG, 1980, MATH COMPUT, V34, P1
20316    HARTEN A, 1983, J COMPUT PHYS, V49, P357
20317    MAO D, IN PRESS J COMPUT PH
20318    MAO D, UNPUB CONSERVATIVE F
20319    MAO DK, 1991, J COMPUT PHYS, V92, P422
20320    MAO DK, 1992, J COMPUT PHYS, V103, P359
20321    OSHER S, 1984, SIAM J NUMER ANAL, V21, P955
20322    SHU CW, 1987, MATH COMPUT, V49, P105
20323 NR 8
20324 TC 2
20325 SN 0895-7177
20326 J9 MATH COMPUT MODELLING
20327 JI Math. Comput. Model.
20328 PD NOV-DEC
20329 PY 1994
20330 VL 20
20331 IS 10-11
20332 BP 89
20333 EP 99
20334 PG 11
20335 SC Computer Science, Interdisciplinary Applications; Computer Science,
20336    Software Engineering; Mathematics, Applied
20337 GA PV700
20338 UT ISI:A1994PV70000007
20339 ER
20340 
20341 PT J
20342 AU WEI, GL
20343    WANG, JR
20344 TI ELECTROCHEMICAL-BEHAVIOR OF LEAD ELECTRODE IN SULFURIC-ACID-SOLUTION
20345    CONTAINING CITRIC-ACID
20346 SO JOURNAL OF POWER SOURCES
20347 DT Article
20348 DE LEAD ELECTRODES; SULFURIC ACID; CITRIC ACID
20349 ID PBO2/PBSO4 ELECTRODE; POSITIVE PLATES; PBO2 ELECTRODE; ANTIMONY; SWEEP;
20350    H3PO4; TIN
20351 AB The electrochemical behaviour of a lead electrode as the positive
20352    electrode (in PbO2 form) and the negative electrode of a lead/acid
20353    battery in sulfuric acid solution containing different concentrations
20354    of citric acid has been studied by cyclic voltammetry.  For the
20355    behaviour of lead as a positive electrode, a new layer of PbO2 is
20356    formed in the presence of citric acid.  It is difficult for this layer
20357    to be reduced and, therefore, the conductivity between the positive
20358    grid and the positive active material will be greater than that in pure
20359    sulfuric acid solution.  The peak currents attributed to the formation
20360    and reduction of PbO2, and to the evolution of oxygen, increase with
20361    the concentration of citric acid.  The limits of the effects are
20362    reached at about 2 g/l citric acid in 4.5 M H2SO4.  For the behaviour
20363    of lead as a negative electrode, the peak currents attributed to the
20364    oxidation of lead to PbSO4 and to the evolution of hydrogen gas also
20365    increase with the concentration of citric acid.  In 4.5 M H2SO4, the
20366    limits of these effects are reached at a citric acid concentration of 2
20367    and 3 g/l, respectively.  The observed behaviour is caused by the
20368    adsorption of citric acid on the PbO2, lead and PbSO4 surfaces.
20369 RP WEI, GL, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
20370    R CHINA.
20371 CR BULLOCK KR, 1977, J ELECTROCHEM SOC, V124, P1478
20372    CULPIN B, 1992, J POWER SOURCES, V38, P63
20373    DORING H, 1992, J POWER SOURCES, V38, P261
20374    HULLMEINE U, 1990, J POWER SOURCES, V30, P99
20375    LAITINEN HA, 1975, ANAL CHEM, V47, P135
20376    LAITINEN T, 1991, ELECTROCHIM ACTA, V36, P605
20377    MAHATO BK, 1980, J ELECTROCHEM SOC, V127, P1679
20378    MAHATO BK, 1983, J ELECTROCHEM SOC, V130, P2139
20379    MOHAMMADI AT, 1992, J POWER SOURCES, V40, P323
20380    PAVLOV D, 1990, J POWER SOURCES, V30, P117
20381    SATO Y, 1992, J POWER SOURCES, V39, P43
20382    SHARPE TF, 1975, J ELECTROCHEM SOC, V122, P845
20383    STERNBERG S, 1987, ELECTROCHIM ACTA, V32, P349
20384    VOSS E, 1990, J POWER SOURCES, V30, P33
20385 NR 14
20386 TC 4
20387 SN 0378-7753
20388 J9 J POWER SOURCES
20389 JI J. Power Sources
20390 PD NOV
20391 PY 1994
20392 VL 52
20393 IS 1
20394 BP 25
20395 EP 29
20396 PG 5
20397 SC Electrochemistry; Energy & Fuels
20398 GA PV022
20399 UT ISI:A1994PV02200003
20400 ER
20401 
20402 PT J
20403 AU WEI, GL
20404    WANG, JR
20405 TI ELECTROCHEMICAL-BEHAVIOR OF SNSO4 IN SULFURIC-ACID-SOLUTION
20406 SO JOURNAL OF POWER SOURCES
20407 DT Article
20408 DE SULFURIC ACID; TIN SULFATE; LEAD ACID BATTERIES
20409 ID ANODIC BEHAVIOR; TIN; LEAD; ELECTRODE
20410 AB The effect of SnSO4 on the deep-discharge capacity of lead/acid
20411    batteries is investigated when it is added to the sulfuric acid
20412    electrolyte.  The electrochemical behaviour of Sn2+ ions in sulfuric
20413    acid is studied by using chemical-analysis and cyclic-voltammetry
20414    methods.  In the battery system, Sn2+ ions will be reduced to tin on
20415    the negative plates or will be oxidized to tin(IV) species on the
20416    positive plates.  Tin metal formed on the negative plates will improve
20417    the charge/discharge properties.  Tin(IV) species formed on the
20418    positive plates may be incorporated as SnO2 in the positive active
20419    material (PAM) as well as in the anodic film that is produced at the
20420    grid/active-material interface.  The effect of SnO2 on the properties
20421    of the PAM are explained in terms of the gel-crystal model.  The SnO2
20422    is stable during the discharge process.  The compound increases the
20423    electronic conductivity of the gel zones, thereby, enhances the
20424    capacity of the PAM.  The SnO2 species may also act as nuclei for the
20425    formation of beta-PbO2 in the crystal zones.  The corrosion of positive
20426    grids is inhibited by the presence of SnO2.  By virtue of these
20427    effects, the addition of SnSO4 is beneficial to the operation of
20428    lead/acid batteries.
20429 RP WEI, GL, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
20430    R CHINA.
20431 CR BAGSHAW N, 1988, POWER SOURCES 12, P113
20432    BURBANK J, 1971, ADV ELECTROCHEMISTRY, V8, P109
20433    CULPIN B, 1992, J POWER SOURCES, V38, P63
20434    DORING H, 1990, J POWER SOURCES, V30, P41
20435    GALUS Z, 1975, ENCY ELECTROCHEMISTR, V4, P229
20436    GALUS Z, 1975, ENCY ELECTROCHEMISTR, V4, P233
20437    ISHIKAWA Y, 1987, 8751161, JA
20438    LAITINEN T, 1992, ELECTROCHIM ACTA, V37, P1797
20439    NELSON RF, 1991, J POWER SOURCES, V33, P165
20440    PAVLOV D, 1984, POWER SOURCES ELECTR, P237
20441    PAVLOV D, 1992, J ELECTROCHEM SOC, V139, P3075
20442    SALMI K, 1992, J POWER SOURCES, V40, P217
20443    SUGIKARA M, 1979, 7960424, JA
20444    TERADA M, 1988, 202862, JA
20445    TOKUNAGA A, 1979, 79495386, JA
20446    VOSS E, 1990, J POWER SOURCES, V30, P33
20447    WILL FG, 1982, 4324848, US
20448    WILL FG, 1982, 4326017, US
20449 NR 18
20450 TC 5
20451 SN 0378-7753
20452 J9 J POWER SOURCES
20453 JI J. Power Sources
20454 PD NOV
20455 PY 1994
20456 VL 52
20457 IS 1
20458 BP 81
20459 EP 85
20460 PG 5
20461 SC Electrochemistry; Energy & Fuels
20462 GA PV022
20463 UT ISI:A1994PV02200011
20464 ER
20465 
20466 PT J
20467 AU GU, XR
20468    ZHU, YZ
20469 TI ASYMPTOTIC OPTIMAL HEAPSORT ALGORITHM
20470 SO THEORETICAL COMPUTER SCIENCE
20471 DT Note
20472 AB Heapsort algorithm HEAPSORT runs in a higher efficiency way. It has
20473    been improved to reduce the constant factor of the complexity. An
20474    asymptotic optimal heapsort algorithm is given in this paper. When the
20475    efficiency becomes the lowest, the constant factor of its complexity
20476    will not be more than 4/3.
20477 RP GU, XR, SHANGHAI UNIV SCI & TECHNOL,DEPT COMP SCI,SHANGHAI
20478    201800,PEOPLES R CHINA.
20479 CR AHO AV, 1975, DESIGN ANAL COMPUTER
20480    BAASE S, 1978, COMPUTER ALGORITHMS
20481    GU X, 1990, COMPUT J, V33, P281
20482    HOROWITZ E, 1978, FUNDAMENTALS COMPUTE
20483    WEGENER I, 1992, SIMPLE MODIFICATION
20484 NR 5
20485 TC 0
20486 SN 0304-3975
20487 J9 THEOR COMPUT SCI
20488 JI Theor. Comput. Sci.
20489 PD NOV 21
20490 PY 1994
20491 VL 134
20492 IS 2
20493 BP 559
20494 EP 565
20495 PG 7
20496 SC Computer Science, Theory & Methods
20497 GA PR819
20498 UT ISI:A1994PR81900016
20499 ER
20500 
20501 PT J
20502 AU GUO, BY
20503    XIONG, YS
20504 TI FOURIER PSEUDOSPECTRAL-FINITE DIFFERENCE METHOD FOR INCOMPRESSIBLE-FLOW
20505 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
20506 DT Article
20507 ID NAVIER-STOKES EQUATIONS; VORTICITY EQUATIONS; ELEMENT METHOD;
20508    APPROXIMATION
20509 AB A Fourier pseudospectral-finite difference scheme is proposed for
20510    unsteady Navier-Stokes equation.  It is showed that the numerical
20511    solution keeps semi-discrete conservation.  The strict error estimation
20512    is established.  The numerical results are presented.
20513 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
20514 CR CANUTO C, 1982, MATH COMPUT, V38, P67
20515    CANUTO C, 1984, NUMER MATH, V44, P201
20516    CANUTO C, 1988, SPECTRAL METHOD FLUI
20517    CHORIN AJ, 1967, J COMPUT PHYS, V2, P12
20518    GOTTLIEB D, 1977, NUMERICAL ANAL SPECT
20519    GUO BY, 1981, SCI SINICA A, V24, P297
20520    GUO BY, 1987, SCI SINICA A, V30, P6963
20521    GUO BY, 1989, J COMPUT PHYS, V84, P259
20522    GUO BY, 1991, J COMPUT MATH, V9, P57
20523    GUO BY, 1991, MATH NUMER SINICA, V13, P331
20524    GUO BY, 1991, SCI SINICA A, V35, P1
20525    GUO BY, 1991, SIAM J NUMER ANAL, V28, P113
20526    GUO BY, 1992, J COMPUT PHYS, V101, P207
20527    GUO BY, 1992, J COMPUT PHYS, V101, P375
20528    GUO BY, 1992, P BAIL, V6, P34
20529    GUO BY, 1993, SIAM J NUMER ANAL, V30, P1066
20530    INGHAM DB, 1985, P ROY SOC LOND A MAT, V402, P109
20531    KUO PY, 1983, J COMPUT MATH, V1, P353
20532    LIONS JL, 1970, 2 SIAM AMS P, P11
20533    MA HP, 1986, J COMPUT PHYS, V65, P120
20534    MACARAEG MG, 1982, J COMPUT PHYS, V62, P297
20535    MOIN P, 1982, J FLUID MECH, V118, P341
20536    MULHOLLAND LS, 1991, J COMPUT PHYS, V96, P369
20537    MURDOCK JW, AIAA860434
20538    ROACHE PJ, 1976, COMPUTATIONAL FLUID
20539    VANDEVEN H, 1987, CNRS F56 CTR MATH AP
20540    WOODWARD P, 1984, J COMPUT PHYS, V54, P115
20541 NR 27
20542 TC 1
20543 SN 0254-9409
20544 J9 J COMPUT MATH
20545 JI J. Comput. Math.
20546 PD OCT
20547 PY 1994
20548 VL 12
20549 IS 4
20550 BP 312
20551 EP 329
20552 PG 18
20553 SC Mathematics, Applied; Mathematics
20554 GA PR581
20555 UT ISI:A1994PR58100003
20556 ER
20557 
20558 PT J
20559 AU PU, DG
20560    TIAN, WW
20561 TI A CLASS OF MODIFIED BROYDEN ALGORITHMS
20562 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
20563 DT Article
20564 ID QUASI-NEWTON METHODS
20565 AB In this paper we dicuss the convergence of the modified Broyden
20566    algorithms.  We prove that the algorithms are globally convergent for
20567    the continuous differentiable function and the rate of convergence of
20568    the algorithms is one-step superlinear and n-step second-order for the
20569    uniformly convex objective function.  From the discussion of this
20570    paper, we may get some convergence properties of the Broyden algorithms.
20571 C1 SHANGHAI INST RAILWAY TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
20572    SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
20573 CR BYRD RH, 1987, SIAM J NUMER ANAL, V24, P1171
20574    BYRD RH, 1989, SIAM J NUMER ANAL, V26, P727
20575    CONN NI, 1991, MATH PROG, V52, P177
20576    FLETCHER R, 1987, PRACTICAL METHODS OP
20577    HUANG HY, 1970, J OPTIM THEORY APPL, V5, P405
20578    POWELL MJD, 1971, J I MATHS APPLICS, V7, P21
20579    POWELL MJD, 1972, NUMERICAL METHODS NO, P1
20580    POWELL MJD, 1976, 6 SIAM AMS P, P53
20581    PU D, 1987, J SHANGHAI I RAILWAY, V8, P19
20582    PU D, 1989, J OPER RES CHINA, V8, P53
20583    PU D, 1989, L ACTA MATHEMATICAE, V13, P118
20584    PU D, 1990, J ANN OPERATIONS RES, V24, P175
20585    PU D, 1990, J OPER RES CHINA, V9, P49
20586    PU D, 1992, ASIA PACIFIC J OPERA, V9, P207
20587    PU D, 1993, J OPER RES CHINA, V22, P2
20588    TIAN W, 1992, J APPL MATH COMP MAT, V6, P42
20589    TIAN W, 1993, J APPL MATH COMP MAT, V7, P50
20590    WU F, 1991 P C APOR SOC BE, P35
20591    WU F, 1981, J ACTA MATH SINICA C, V24, P921
20592    YUAN YX, 1991, IMA J NUMER ANAL, V11, P325
20593 NR 20
20594 TC 2
20595 SN 0254-9409
20596 J9 J COMPUT MATH
20597 JI J. Comput. Math.
20598 PD OCT
20599 PY 1994
20600 VL 12
20601 IS 4
20602 BP 366
20603 EP 379
20604 PG 14
20605 SC Mathematics, Applied; Mathematics
20606 GA PR581
20607 UT ISI:A1994PR58100008
20608 ER
20609 
20610 PT J
20611 AU YANG, T
20612 TI BLIND SIGNAL SEPARATION USING CELLULAR NEURAL NETWORKS
20613 SO INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS
20614 DT Article
20615 AB In this paper a two-layer cellular neural network (CNN) is used to
20616    separate blind signals. The topological structures of the CNN and the
20617    inner parameters are presented. The first CNN layer functions as an
20618    adaptive filter which converges asymptotically to an equilibrium point
20619    in the mean. A stochastic stability model is used to find conditions
20620    under which cells in the first layer converge. Conditions leading to
20621    correct equilibrium solutions are also presented using this model. The
20622    second CNN layer functions as a signal separator. Simulations show that
20623    the CNN blind signal separator has strong robustness and works even
20624    better than the theory predicts.
20625 RP YANG, T, SHANGHAI UNIV SCI & TECHNOL,DEPT AUTOMAT CONTROL ENGN,POB
20626    14,SHANGHAI 200072,PEOPLES R CHINA.
20627 CR CARDOSO J, 1989, P IEEE ICASSP, V4, P2109
20628    CHUA LO, 1988, IEEE T CIRCUITS SYST, V35, P1257
20629    CHUA LO, 1988, IEEE T CIRCUITS SYST, V35, P1273
20630    CHUA LO, 1992, P CNNA 92, P1
20631    COMON P, 1991, SIGNAL PROCESS, V24, P11
20632    JUTTEN C, 1991, SIGNAL PROCESS, V24, P1
20633    SOROUCHYARI E, 1991, SIGNAL PROCESS, V24, P21
20634    TONG L, 1991, IEEE T CIRCUITS SYST, V38, P499
20635 NR 8
20636 TC 2
20637 SN 0098-9886
20638 J9 INT J CIRCUIT THEOR APPL
20639 JI Int. J. Circuit Theory Appl.
20640 PD SEP-OCT
20641 PY 1994
20642 VL 22
20643 IS 5
20644 BP 399
20645 EP 408
20646 PG 10
20647 SC Engineering, Electrical & Electronic
20648 GA PN991
20649 UT ISI:A1994PN99100006
20650 ER
20651 
20652 PT J
20653 AU XU, HP
20654    LEI, TJ
20655 TI A RINGLESS HIGH-PRESSURE MOVING SEAL UP TO 1200 MPA
20656 SO TRIBOLOGY TRANSACTIONS
20657 DT Article
20658 DE HIGH PRESSURE; MOVING SEAL; RINGLESS SEAL
20659 AB A ringless high pressure moving seal has been developed which can reach
20660    pressures as high as 1200 MPa.  A unique feature of the seal is the
20661    elastic action of its plunger.  This action results in full oil film
20662    operation that enhances volumetric efficiency while reducing leakage. 
20663    Analysis and results of the pressure examination are presented.  It is
20664    shown that the seal operates with high volumetric efficiency, very low
20665    friction and no wear.
20666 C1 ACAD MACHINE SCI,BEIJING 100044,PEOPLES R CHINA.
20667 RP XU, HP, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 200072,PEOPLES R CHINA.
20668 CR BRIDGMAN PW, 1953, PHYSICS HIGH PRESSUR
20669    XU H, 1991, 911084401, CH
20670    XU H, 1991, THESIS ACADEMY MACHI
20671    XU H, 1994, CHINESE J MECH ENG, V7, P2
20672 NR 4
20673 TC 1
20674 SN 0569-8197
20675 J9 TRIBOL TRANS
20676 JI Tribol. Trans.
20677 PD OCT
20678 PY 1994
20679 VL 37
20680 IS 4
20681 BP 767
20682 EP 770
20683 PG 4
20684 SC Engineering, Mechanical
20685 GA PN115
20686 UT ISI:A1994PN11500013
20687 ER
20688 
20689 PT J
20690 AU ZHU, ST
20691    SHEN, WD
20692 TI GLOBALLY REGULAR MODEL OF THE ELECTRON IN GENERAL-RELATIVITY
20693 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
20694 DT Article
20695 AB Necessary conditions on a reasonable description of a physical object
20696    are suggested.  The globally regular solutions of Petrov type D of the
20697    Einstein - Maxwell field equations and their generation solutions are
20698    derived for a charged perfect fluid sphere.  A globally regular model
20699    of a stationary electron is established in the framework of general
20700    relativity.  The quantitative relations between the inertial and the
20701    electromagnetic mass of an electron and between the electron mass and
20702    radius are explained.
20703 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
20704 RP ZHU, ST, ACAD SINICA,SHANGHAI INST OPT & FINE MECH,POB 800-211,SHANGHAI
20705    201800,PEOPLES R CHINA.
20706 CR FUKUDA H, 1949, PROG THEOR PHYS, V4, P121
20707    GAUTREAU R, 1985, PHYS REV D, V31, P1860
20708    HAWKING SW, 1973, LARGE SCALE STRUCTUR
20709    HORWITZ G, 1971, NUOVO CIMENTO B, V3, P245
20710    ISRAEL W, 1970, PHYS REV           D, V2, P641
20711    JACKSON JD, 1975, CLASSICAL ELECTRODYN
20712    KATZ J, 1971, NUOVO CIMENTO B, V5, P59
20713    KRAMER D, 1980, EXACT SOLUTIONS EINS, P164
20714    PAULI W, 1958, THEORY RELATIVITY
20715    SHEN WD, 1985, GEN RELAT GRAVIT, V17, P739
20716    TIWARI RN, 1985, PHYSICAL REV D, V30, P489
20717 NR 11
20718 TC 0
20719 SN 0020-7748
20720 J9 INT J THEOR PHYS
20721 JI Int. J. Theor. Phys.
20722 PD AUG
20723 PY 1994
20724 VL 33
20725 IS 8
20726 BP 1687
20727 EP 1697
20728 PG 11
20729 SC Physics, Multidisciplinary
20730 GA PL431
20731 UT ISI:A1994PL43100009
20732 ER
20733 
20734 PT J
20735 AU SUN, Z
20736    ZHENG, Z
20737    XU, N
20738    SUN, Y
20739    JI, R
20740    ZHAO, W
20741 TI DIAMOND FILM DEPOSITED ON A SILICA SUBSTRATE WITH A ZNOAL INTERMEDIATE
20742    LAYER BY HOT-FILAMENT CHEMICAL-VAPOR-DEPOSITION
20743 SO JOURNAL OF APPLIED PHYSICS
20744 DT Note
20745 ID THIN-FILMS; OPTICAL-PROPERTIES; LOW-PRESSURE
20746 AB Diamond films were deposited on ZnO:Al thin-film silica substrates by
20747    hot-filament chemical vapor deposition.  Ultrasonic irradiation in a
20748    diamond suspension enhanced the diamond nucleation density on a
20749    ZnO:Al-silica substrate.  The nucleation density and the growth rate of
20750    diamond film deposited on ZnO:Al thin film is higher than on the
20751    silica.  The cracks on a ZnO:Al-silica substrate occurred during the
20752    diamond deposition process.  It is proposed that the cracks were caused
20753    by the stress in ZnO:Al film and diamond film, and the peak frequency
20754    shift of the Raman line of diamond indicates the presence of
20755    compressive stress in the diamond film.
20756 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SCI,SHANGHAI,PEOPLES R CHINA.
20757 RP SUN, Z, E CHINA NORMAL UNIV,DEPT PHYS,SHANGHAI 200062,PEOPLES R CHINA.
20758 CR ANGUS JC, 1988, SCIENCE, V241, P913
20759    BONNOT AM, 1990, PHYS REV B, V41, P6040
20760    CELII FG, 1992, NAV RES REV, V44, P23
20761    DEVERIES RC, 1987, ANNU REV MATER SCI, V17, P161
20762    JIN ZC, 1987, APPL PHYS LETT, V51, P149
20763    JIN ZC, 1988, J APPL PHYS 1, V64, P5117
20764    LEE YH, 1990, APPL PHYS LETT, V57, P1916
20765    RAVI KV, 1993, MAT SCI ENG B-SOLID, V19, P203
20766    SHPAK MT, 1985, PHYS CHEM MECH SURF, V3, P1412
20767    SOOD DK, 1992, SURF COAT TECH, V51, P307
20768    TANIGUCHI Y, 1989, JPN J APPL PHYS, V28, L1848
20769    VANDEPOL FCM, 1990, AM CERAM SOC BULL, V69, P1959
20770    WINDISCHMANN H, 1991, J APPL PHYS, V69, P2231
20771    YARBROUGH WA, 1990, SCIENCE, V247, P688
20772    YOSHIKAWA M, 1989, APPL PHYS LETT, V55, P2608
20773 NR 15
20774 TC 1
20775 SN 0021-8979
20776 J9 J APPL PHYS
20777 JI J. Appl. Phys.
20778 PD OCT 1
20779 PY 1994
20780 VL 76
20781 IS 7
20782 BP 4446
20783 EP 4447
20784 PG 2
20785 SC Physics, Applied
20786 GA PK458
20787 UT ISI:A1994PK45800078
20788 ER
20789 
20790 PT J
20791 AU CHEN, CH
20792    CHEN, HJ
20793 TI DOF OF EQUIVALENT CONJUGATE MOTION BETWEEN 2 BODIES IN A MECHANICAL
20794    SYSTEM
20795 SO MECHANISM AND MACHINE THEORY
20796 DT Article
20797 AB In modern mechanical systems, especially in robotics and bio-mechanics,
20798    there are needs to investigate higher pairs in more details, and to
20799    compute the d.o.f. of the relative motion between two bodies, rather
20800    than the d.o.f. of the whole system.  In this paper, conjugate pairs
20801    are investigated with the aid of the theory of conjugate surfaces. 
20802    This investigation provides a geometrical insight of the d.o.f. of a
20803    joint.  The conjugation chain and the corresponding algorithm are
20804    introduced.  They provide an instrumental tool for computing the d.o.f.
20805    of the equivalent conjugate motion between two bodies in a mechanical
20806    system.  The existence of the redundant and the complementary d.o.f. is
20807    briefly explained.
20808 RP CHEN, CH, SHANGHAI UNIV SCI & TECHNOL,LANE 200,HOUSE 23,ROOM
20809    401,SHANGHAI 20063,PEOPLES R CHINA.
20810 CR BAGCI C, 1971, T ASME, V93, P140
20811    BAUSCH JJ, 1990, P MANUFACTURING INT, V1, P225
20812    CHEN CH, 1985, FUNDAMENTALS THEORY, P107
20813    LIU T, 1992, ASME, V47, P653
20814    REULEAUX F, 1963, KINEMATICS MACHINERY
20815    WARNAAR DB, 1992, ASME DE, V47, P143
20816 NR 6
20817 TC 6
20818 SN 0094-114X
20819 J9 MECH MACH THEOR
20820 JI Mech. Mach. Theory
20821 PD NOV
20822 PY 1994
20823 VL 29
20824 IS 8
20825 BP 1143
20826 EP 1150
20827 PG 8
20828 SC Engineering, Mechanical
20829 GA PJ582
20830 UT ISI:A1994PJ58200005
20831 ER
20832 
20833 PT J
20834 AU ZHONG, SS
20835    LIU, G
20836    QASIM, G
20837 TI CLOSED-FORM EXPRESSIONS FOR RESONANT-FREQUENCY OF RECTANGULAR PATCH
20838    ANTENNAS WITH MULTIDIELECTRIC LAYERS
20839 SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
20840 DT Note
20841 ID MICROSTRIP ANTENNAS; DIELECTRIC LAYER; ACCURATE MODEL; LINES
20842 AB The conformal mapping approach combined with a generalized transmission
20843    line model has been developed to predict the resonant frequency of
20844    rectangular patch antennas with multidielectric layers. A set of closed
20845    form expressions is derived, which is suitable for direct application
20846    in CAD programs. Numerical results are presented to validate this
20847    method.
20848 C1 NWFP UNIV ENGN & TECHNOL,PESHAWAR,PAKISTAN.
20849 RP ZHONG, SS, SHANGHAI UNIV SCI & TECHNOL,DEPT RADIO & ELECTR,SHANGHAI
20850    201800,PEOPLES R CHINA.
20851 CR BAHL IJ, 1982, IEEE T ANTENN PROPAG, V30, P314
20852    BENALLA A, 1990, IEE PROC-H, V137, P377
20853    KIRSCHNING M, 1981, ELECTRON LETT, V17, P123
20854    KIRSCHNING M, 1982, ELECTRON LETT, V18, P272
20855    NELSON RM, 1990, IEEE T ANTENN PROPAG, V38, P978
20856    PRIBETICH J, 1988, ELECTRON LETT, V24, P1464
20857    QQASIM G, 1991, J SHANGHAI U SCI TEC, V14, P77
20858    RAMAHI OM, 1992, MICROW OPT TECHN LET, V5, P254
20859    SVACINA J, 1992, IEEE T MICROW THEORY, V40, P769
20860    VERMA AK, 1991, IEICE T COMMUN, V74, P1270
20861    WHEELER HA, 1964, IEEE T MICROW THEORY, V12, P280
20862 NR 11
20863 TC 6
20864 SN 0018-926X
20865 J9 IEEE TRANS ANTENNAS PROPAGAT
20866 JI IEEE Trans. Antennas Propag.
20867 PD SEP
20868 PY 1994
20869 VL 42
20870 IS 9
20871 BP 1360
20872 EP 1363
20873 PG 4
20874 SC Engineering, Electrical & Electronic; Telecommunications
20875 GA PH084
20876 UT ISI:A1994PH08400024
20877 ER
20878 
20879 PT J
20880 AU WANG, DR
20881    BAI, ZZ
20882 TI ON MONOTONE CONVERGENCE OF NONLINEAR MULTISPLITTING RELAXATION METHODS
20883 SO CHINESE ANNALS OF MATHEMATICS SERIES B
20884 DT Article
20885 DE NONLINEAR SYSTEM OF EQUATIONS; NONLINEAR MULTISPLITTING; MONOTONICITY;
20886    GLOBAL CONVERGENCE
20887 ID PARALLEL; ALGORITHM
20888 AB A class of parallel nonlinear multisplitting AOR methods is et up by
20889    directly multisplitting the nonlinear mapping F : D subset-of R(n) -->
20890    R(n) for solving the nonlinear system of equations F(x) = 0.  The
20891    different choices of the relaxation parameters can yield all the known
20892    and a lot of new relaxation methods as well as a lot of new relaxation
20893    parallel nonlinear multisplitting methods. The two-sided approximation
20894    properties and the influences on convergence from the relaxation
20895    parameters about the new methods are shown, and the sufficient
20896    conditions guaranteeing the methods to converge globally are discussed.
20897    Finally, a lot of numerical results show that the methods are feasible
20898    and efficient.
20899 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
20900    EUDAN UNIV,INST MATH,SHANGHAI 200433,PEOPLES R CHINA.
20901 CR FROMMER A, 1989, NUMER MATH, V56, P269
20902    MORE J, 1970, SIAM J NUMER ANAL, V9, P357
20903    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
20904    RHEINBOLDT WC, 1970, ITERATIVE SOLUTION N
20905    RHEINBOLDT WC, 1970, J MATH ANAL APPL, V32, P274
20906    WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473
20907    WHITE RE, 1986, SIAM J ALGEBRA DISCR, V7, P137
20908    WHITE RE, 1986, SIAM J NUMER ANAL, V23, P639
20909 NR 8
20910 TC 5
20911 SN 0252-9599
20912 J9 CHIN ANN MATH SER B
20913 JI Chin. Ann. Math. Ser. B
20914 PD JUL
20915 PY 1994
20916 VL 15
20917 IS 3
20918 BP 335
20919 EP 348
20920 PG 14
20921 SC Mathematics
20922 GA PG700
20923 UT ISI:A1994PG70000009
20924 ER
20925 
20926 PT J
20927 AU LI, YZ
20928    DAVID, AK
20929 TI WHEELING RATES OF REACTIVE POWER-FLOW UNDER MARGINAL COST PRICING
20930 SO IEEE TRANSACTIONS ON POWER SYSTEMS
20931 DT Article
20932 DE WHEELING; POWER WHEELING; WHEELING RATES; MARGINAL COST PRICING;
20933    ECONOMIC DISPATCH
20934 AB Wheeling is the transmission of electrical power and reactive power
20935    from a seller to a buyer through a transmission network owned by a
20936    third party.  The wheeling rate is an area of intense research at
20937    present in view of increased deregulation.  This paper uses a wheeling
20938    rate based on marginal cost pricing and implemented using a
20939    modification of the OPF.  A case study based on the IEEE 30-bus system
20940    illustrates the magnitudes and ranges that wheeling rates might have in
20941    different circumstances.  Special attention is paid to reactive
20942    wheeling, which cannot be analyzed with a DC model used by previous
20943    authors.  The ratio of wheeling rates between real and reactive flow
20944    shows the importance of the latter.  The paper also discusses the
20945    significance of this for the trade-off between paying for reactive
20946    wheel or investing in compensating plant.
20947 C1 HONG KONG POLYTECH,KOWLOON,HONG KONG.
20948 RP LI, YZ, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
20949 CR BAUGHMAN ML, 1991, IEEE T POWER SYST, V6, P23
20950    CARAMANIS MC, 1986, IEEE T POWER SYST, V1, P63
20951    CARAMANIS MC, 1989, IEEE T POWER SYST, V4, P594
20952    LI YZ, IN PRESS P IEE C
20953    LI YZ, 1992, WIN IEEE P M
20954    MERRILL HM, 1989, IEEE T POWER SYST, V4, P1445
20955    MUKERJI R, 1992, IEEE T POWER SYST, V7, P201
20956    SCHWEPPE FC, 1988, SPOT PRICING ELECTRI
20957 NR 8
20958 TC 16
20959 SN 0885-8950
20960 J9 IEEE TRANS POWER SYST
20961 JI IEEE Trans. Power Syst.
20962 PD AUG
20963 PY 1994
20964 VL 9
20965 IS 3
20966 BP 1263
20967 EP 1269
20968 PG 7
20969 SC Engineering, Electrical & Electronic
20970 GA PF168
20971 UT ISI:A1994PF16800014
20972 ER
20973 
20974 PT J
20975 AU CHEN, DY
20976    ZHU, NS
20977    ZHU, M
20978 TI THE POTENTIAL CONSTRAINTS OF THE KP SYSTEM AND THE CORRESPONDING
20979    HAMILTONIAN EQUATIONS
20980 SO JOURNAL OF MATHEMATICAL PHYSICS
20981 DT Article
20982 AB In this paper all the potential constraints (wither without first-order
20983    partial derivatives) of the KP system, from which the associated linear
20984    problem can be restricted into a (1+1)-dimensional Hamiltonian
20985    equation, are obtained by using the sufficient and necessary condition
20986    for a nonlinear equation to be a Hamiltonian system. Some well-known
20987    integrable systems, such as (1+1)-dimensional AKNS system, generalized
20988    NS system, and several new Hamiltonian equations, are deduced as
20989    particular examples.
20990 RP CHEN, DY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
20991 CR ADLER M, 1979, INVENT MATH, V50, P219
20992    CEWEN C, 1987, HENAN SCI, V5, P2
20993    CHEN HH, 1979, PHYS SCR, V20, P490
20994    DENGYUNA C, 1992, SYMMETRIC CONSTRAINT
20995    FLASCHKA H, 1983, 1981 P RIMS S NONL I, P219
20996    FUCHSSTEINER B, 1981, PHYSICA D, V4, P47
20997    KONOPELCHENKO B, 1991, PHYS LETT A, V157, P17
20998    YI C, 1991, PHYS LETT A, V157, P22
20999    YI C, 1992, J PHYS A, V25, P419
21000    YUNBO Z, 1989, J MATH PHYS, V30, P1679
21001 NR 10
21002 TC 1
21003 SN 0022-2488
21004 J9 J MATH PHYS-NY
21005 JI J. Math. Phys.
21006 PD SEP
21007 PY 1994
21008 VL 35
21009 IS 9
21010 BP 4725
21011 EP 4738
21012 PG 14
21013 SC Physics, Mathematical
21014 GA PF137
21015 UT ISI:A1994PF13700022
21016 ER
21017 
21018 PT J
21019 AU CHEN, WR
21020    ZHANG, B
21021    CHEN, WJ
21022    WANG, J
21023    WAN, X
21024 TI TEMPERATURE-DEPENDENCE OF THE MECHANICAL-PROPERTIES OF A TI-AL-CR ALLOY
21025 SO SCRIPTA METALLURGICA ET MATERIALIA
21026 DT Article
21027 ID ELEVATED-TEMPERATURES; DEFORMATION; FRACTURE
21028 RP CHEN, WR, SHANGHAI UNIV SCI & TECHNOL,INST MAT SCI,149 YANCHANG
21029    RD,SHANGHAI 200072,PEOPLES R CHINA.
21030 CR CHEN WR, UNPUB
21031    CHEN WR, 1994, SCRIPTA METALL, V30, P83
21032    HUANG SC, 1988, SCRIPTA METALL, V22, P1885
21033    HUANG SC, 1991, METALL T A, V22, P427
21034    KIM YW, 1989, JOM-J MIN MET MAT S, V41, P24
21035    KIM YW, 1990, HIGH TEMPERATURE ALU, P465
21036    KIM YW, 1991, JOM, V43, P40
21037    KIMURA M, 1992, MAT SCI ENG A-STRUCT, V152, P54
21038    LIPSITT HA, 1975, METALL T A, V6, P1991
21039    LIPSITT HA, 1980, METALLURG T A, V11, P1369
21040    LIPSITT HA, 1985, MATER RES SOC S P, V39, P351
21041    WUNDERLICH W, 1990, Z METALLKD, V81, P802
21042    ZHENG Y, 1992, SCRIPTA METALL MATER, V26, P219
21043 NR 13
21044 TC 1
21045 SN 0956-716X
21046 J9 SCR METALL MATER
21047 JI Scr. Metall. Materialia
21048 PD NOV 15
21049 PY 1994
21050 VL 31
21051 IS 10
21052 BP 1297
21053 EP 1300
21054 PG 4
21055 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
21056    Engineering
21057 GA PE217
21058 UT ISI:A1994PE21700003
21059 ER
21060 
21061 PT J
21062 AU LU, DY
21063    LIANG, G
21064    ZHANG, MJ
21065    XU, B
21066 TI SERUM CONTENTS OF SIALIC ACIDS IN MICE BEARING DIFFERENT TUMORS
21067 SO CHINESE SCIENCE BULLETIN
21068 DT Article
21069 DE SIALIC ACIDS; HPLC; ANTINEOPLASTIC DRUGS; NEOPLASM METASTASES;
21070    CARCINOGENESIS
21071 RP LU, DY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
21072 NR 0
21073 TC 0
21074 SN 1001-6538
21075 J9 CHIN SCI BULL
21076 JI Chin. Sci. Bull.
21077 PD JUL
21078 PY 1994
21079 VL 39
21080 IS 14
21081 BP 1220
21082 EP 1233
21083 PG 14
21084 SC Multidisciplinary Sciences
21085 GA PD156
21086 UT ISI:A1994PD15600017
21087 ER
21088 
21089 PT J
21090 AU DUNHAM, CB
21091    ZHU, CZ
21092 TI COMPUTATION OF THE MODIFIED STRONG UNIQUENESS CONSTANTS
21093 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
21094 DT Article
21095 DE COMPUTATION; MINIMAX APPROXIMATION; MODIFIED STRONG UNIQUENESS
21096    CONSTANT; NEARNESS OF COEFFICIENTS (PARAMETERS); HAAR CONDITION
21097 AB Paralleling the classical strong uniqueness, in this paper we consider
21098    the modified strong uniqueness which measures the distance between the
21099    best approximation and the achieved approximation in the parameter norm
21100    instead of uniform (function) norm in which the classical strong
21101    uniqueness measures the distance.  We introduce a quantity called
21102    modified strong uniqueness constant which can be used to bound the
21103    distance mentioned above (if we can bound the difference between the
21104    minimal approximation error norm and the achieved approximation error
21105    norm), and deduce a computation formula for it for both linear and
21106    nonlinear uniform approximations. Cline's arguments for the classical
21107    strong uniqueness constant are used, but we make some modifications due
21108    to the turning of our attention from uniform (function) norm to
21109    parameter norm. Implementation of the computation, and examples for
21110    computing both classical and modified strong uniqueness constants are
21111    given. We also introduce a quantity which is analogous to Lipschitz
21112    constant.
21113 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
21114 RP DUNHAM, CB, UNIV WESTERN ONTARIO,DEPT COMP SCI,LONDON N6A
21115    5B7,ONTARIO,CANADA.
21116 CR CLINE AK, 1973, J APPROXIMATION THEO, V8, P160
21117    CROMME L, 1978, NUMER MATH, V29, P179
21118    DUNHAM C, 1980, J COMPUT APPL MATH, V6, P241
21119    DUNHAM C, 1986, C NUMERANTIUM, V51, P123
21120    DUNHAM C, 1988, 204 U W ONT DEP COMP
21121    DUNHAM C, 1989, APPROX THEORY APPL, V5, P43
21122    DUNHAM C, 1992, 312 U W ONT DEP COMP
21123    DUNHAM C, 1993, 377 U W ONT DEP COMP
21124    JITTORNTRUM K, 1980, NUMER MATH, V34, P439
21125    RICE JR, 1964, APPROXIMATION FUNCTI, V1
21126    SMITH, 1979, THESIS U CALIFORNIA
21127 NR 11
21128 TC 1
21129 SN 0020-7160
21130 J9 INT J COMPUT MATH
21131 JI Int. J. Comput. Math.
21132 PY 1994
21133 VL 52
21134 IS 1-2
21135 BP 83
21136 EP 97
21137 PG 15
21138 SC Mathematics, Applied
21139 GA PA314
21140 UT ISI:A1994PA31400008
21141 ER
21142 
21143 PT J
21144 AU LIU, HL
21145    CHEN, NY
21146    LU, WC
21147    ZHU, XW
21148 TI MULTITARGET CLASSIFICATION PATTERN-RECOGNITION APPLIED TO
21149    COMPUTER-AIDED MATERIALS DESIGN
21150 SO ANALYTICAL LETTERS
21151 DT Article
21152 DE CLASSIFICATION PATTERN RECOGNITION; PRINCIPAL COMPONENT ANALYSIS;
21153    INVERSE MAPPING; OPTIMIZATION; MATERIALS DESIGN
21154 AB A multi-target classification pattern recognition method based on the
21155    principal component analysis (PCA) has been proposed for computer-aided
21156    materials design considering the multiple specialties of materials. The
21157    designed sample with probable optimal specialties is determined in such
21158    way that its representing point should be at the optimal region in the
21159    PC sub-space, where most optimal samples can be discriminated from
21160    nonoptimal samples by means of features. The experimental parameters of
21161    the sample represented by this point can be obtained using a non-linear
21162    inverse mapping method from the PC sub-space to the original space.
21163    Based on the information provided using the method, several samples of
21164    V-PTC materials with optimal multiple specialties are synthesized.
21165 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R CHINA.
21166 RP LIU, HL, CHINESE ACAD SCI,SHANGHAI INST MET,SHANGHAI 200050,PEOPLES R
21167    CHINA.
21168 CR CHEN N, 1988, ANAL CHIM ACTA, V210, P175
21169    CHEN NY, 1990, 1990 INT S P MECH PR, P777
21170    CHEN Y, 1990, ABIT, V4, P29
21171    HAYMANN PW, 1955, 929350, GE
21172    KAZUSHIRO H, 1985, 5329234, JA
21173    KOWALSKI BR, 1982, CLASSIFICATION PATTE, P673
21174    LIU HL, 1991, CHINESE SCI BULL, V36, P991
21175    LIU HL, 1993, PATT RECOG ARTI, V6, P399
21176    SAMMON JW, 1969, IEEE T COMPUT, V18, P401
21177    VARMUZA K, 1980, PATTERN RECOGNITION
21178 NR 10
21179 TC 7
21180 SN 0003-2719
21181 J9 ANAL LETT
21182 JI Anal. Lett.
21183 PY 1994
21184 VL 27
21185 IS 11
21186 BP 2195
21187 EP 2203
21188 PG 9
21189 SC Chemistry, Analytical
21190 GA NY067
21191 UT ISI:A1994NY06700014
21192 ER
21193 
21194 PT J
21195 AU TAN, WH
21196 TI THE EXACT SOLUTION TO THE REGULAR PUMP MODEL OF PHOTON NOISE-REDUCTION
21197    IN LASERS
21198 SO PHYSICS LETTERS A
21199 DT Article
21200 ID FEEDBACK
21201 AB An exact solution to the regular pump model of photon reduction in
21202    lasers is presented.
21203 RP TAN, WH, SHANGHAI UNIV SCI TECHNOL,ACAD SINICA,SHANGHAI INST OPT & FINE
21204    MECH,JOINT LAB QUANTUM OPT,SHANGHAI 201800,PEOPLES R CHINA.
21205 CR GOLUBEV YM, 1984, ZH EKSP TEOR FIZ, V60, P234
21206    HAAK F, 1989, PHYS REV A, V40, P712
21207    HAUS HA, 1986, PHYS REV A, V34, P270
21208    MACHIDA S, 1986, OPT COMMUN, V57, P290
21209    SARGENT M, 1974, LASER PHYSICS, P297
21210 NR 5
21211 TC 7
21212 SN 0375-9601
21213 J9 PHYS LETT A
21214 JI Phys. Lett. A
21215 PD JUL 11
21216 PY 1994
21217 VL 190
21218 IS 1
21219 BP 13
21220 EP 16
21221 PG 4
21222 SC Physics, Multidisciplinary
21223 GA NX957
21224 UT ISI:A1994NX95700004
21225 ER
21226 
21227 PT J
21228 AU MA, RD
21229    ZHANG, QL
21230    DING, WY
21231    ZHANG, QR
21232    XU, MJ
21233 TI STRUCTURE OF PEROXIDE FORMED DURING PREIRRADIATION OF STYRENE AND ITS
21234    INITIATING REACTIVITY
21235 SO ACTA CHIMICA SINICA
21236 DT Article
21237 AB Preirradiation of styrene under total dosage 5 x 10(4) Gy of gamma-ray
21238    radiation and different dose rate 2.9 Gy/s, 0.7 Gy/s, 0.5Gy/s and 0.3
21239    Gy/s were investigated. The peroxides formed during Preirradiation were
21240    separated by silica gel column chromatography in three components, 1,2
21241    and 3 respectively. The distribution of components was different with
21242    the different dose rate. The peroxide isolated only the single
21243    component 2 when dose rate was 0.3 Gy/s. Their structures were studied
21244    by IR, H-1 NM R and MS. It was found the component 2 possesses strong
21245    initiating reactivity with the structure of alternating peroxide,
21246    initiates smoother polymerization than BPO under lower temperature and
21247    shorter time. It also initiates copolymerization with other monomer.
21248 RP MA, RD, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R
21249    CHINA.
21250 CR MUKUNDAN T, 1989, J POLYM SCI C, V2, P455
21251 NR 1
21252 TC 0
21253 SN 0567-7351
21254 J9 ACTA CHIM SIN
21255 JI Acta Chim. Sin.
21256 PY 1994
21257 VL 52
21258 IS 6
21259 BP 603
21260 EP 608
21261 PG 6
21262 SC Chemistry, Multidisciplinary
21263 GA NX086
21264 UT ISI:A1994NX08600014
21265 ER
21266 
21267 PT J
21268 AU FANG, ZH
21269    ZHANG, MX
21270    SHEN, CH
21271    WANG, Y
21272 TI THE HAL-3 RADAR TEST SET
21273 SO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS
21274 DT Article
21275 AB This paper presents the HAL-3 radar test set (called the set in the
21276    following) used to measure the technical specifications of the HAL-3
21277    airborne radar and to maintain it based on tested results. Some new
21278    techniques are employed in the set, including sinusoidal pulsewidth
21279    modulation (SPWM) in the power supply, digital gyro simulator and
21280    automatic test module (ATM) with STD industrial control microprocessor
21281    series. The specially designed software implements man-machine
21282    interaction with menu in chinese, selects parameters and operation
21283    mode, and controls testing procedures. These techniques may be
21284    extensively applied to other automatic test instruments.
21285 RP FANG, ZH, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI INST ELECTRON
21286    PHYS,SHANGHAI 201800,PEOPLES R CHINA.
21287 CR ZHENHE F, 1992, 1992 AMSE MSC 92 C P, P69
21288 NR 1
21289 TC 0
21290 SN 0018-9251
21291 J9 IEEE TRANS AEROSP ELECTRON SY
21292 JI IEEE Trans. Aerosp. Electron. Syst.
21293 PD JUL
21294 PY 1994
21295 VL 30
21296 IS 3
21297 BP 919
21298 EP 924
21299 PG 6
21300 SC Engineering, Aerospace; Engineering, Electrical & Electronic;
21301    Telecommunications
21302 GA NV887
21303 UT ISI:A1994NV88700025
21304 ER
21305 
21306 PT J
21307 AU SHENG, ZL
21308    WOLFE, MA
21309 TI AN INTERVAL ALGORITHM FOR NONDIFFERENTIABLE GLOBAL OPTIMIZATION
21310 SO APPLIED MATHEMATICS AND COMPUTATION
21311 DT Article
21312 AB An interval algorithm for constrained nondifferentiable global
21313    optimization in which an exact penalty function is used is described,
21314    and the determination of the penalty function parameter is discussed.
21315    Numerical results are presented.
21316 C1 UNIV ST ANDREWS,SCH MATH & COMP SCI,ST ANDREWS KY15 9SS,FIFE,SCOTLAND.
21317 RP SHENG, ZL, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R
21318    CHINA.
21319 CR ALEFELD G, 1983, INTRO INTERVAL COMPU
21320    BRACKEN J, 1968, SELECTED APPLICATION
21321    GOULD FJ, 1972, NONLINEAR TOLERANCE
21322    HESTENES MR, 1975, OPTIMIZATION THEORY
21323    MOORE RE, 1979, SIAM STUDIES, V2
21324    NEUMAIER A, 1988, PERSPECTIVES COMPUTI, V9
21325    NEUMAIER A, 1990, ENCY MATH ITS APPLIC
21326    RATSCHEK H, 1988, E HORWOOD SERIES MAT
21327    SHEN ZH, 1990, APPL MATH COMPUT, V39, P89
21328    WOLFE MA, 1994, J COMPUT APPL MATH, V50, P1
21329 NR 10
21330 TC 2
21331 SN 0096-3003
21332 J9 APPL MATH COMPUT
21333 JI Appl. Math. Comput.
21334 PD JUL
21335 PY 1994
21336 VL 63
21337 IS 2-3
21338 BP 101
21339 EP 122
21340 PG 22
21341 SC Mathematics, Applied
21342 GA NV827
21343 UT ISI:A1994NV82700001
21344 ER
21345 
21346 PT J
21347 AU RASHID, A
21348    WEIMING, C
21349    BENYU, G
21350 TI 3 LEVEL FOURIER SPECTRAL APPROXIMATIONS FOR FLUID-FLOW WITH LOW MACH
21351    NUMBER
21352 SO APPLIED MATHEMATICS AND COMPUTATION
21353 DT Article
21354 ID TIME
21355 AB Fourier spectral approximation, combined with a second-order time
21356    differencing technique for fluid flow with low Mach number is
21357    considered in this paper. Its generalized stability and convergence are
21358    strictly proven.
21359 RP RASHID, A, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
21360 CR BENYU G, 1986, CHINESE SCI BULL, V31, P1081
21361    CANUTO C, 1987, SPECTRAL FLUID DYNAM
21362    MA HP, 1986, J COMPUT PHYS, V65, P120
21363    PENYU K, 1990, NUMER MATH J CHINESE, V2, P64
21364    RASHID A, 1992, FOURIER PSEUDOSPECTR
21365    ROACHE PJ, 1976, COMPUTATIONAL FLUID
21366    TALEZER H, 1989, SIAM J NUMER ANAL, V26, P1
21367    ZAKARIA A, 1985, THESIS U NICE
21368    ZLATEV Z, 1984, J COMPUT PHYS, V55, P278
21369 NR 9
21370 TC 0
21371 SN 0096-3003
21372 J9 APPL MATH COMPUT
21373 JI Appl. Math. Comput.
21374 PD JUL
21375 PY 1994
21376 VL 63
21377 IS 2-3
21378 BP 131
21379 EP 149
21380 PG 19
21381 SC Mathematics, Applied
21382 GA NV827
21383 UT ISI:A1994NV82700003
21384 ER
21385 
21386 PT J
21387 AU BOARDMAN, AD
21388    NIKITOV, SA
21389    WANG, Q
21390 TI THEORY OF BISTABLE MAGNETOSTATIC SURFACE-WAVES
21391 SO IEEE TRANSACTIONS ON MAGNETICS
21392 DT Article
21393 ID OPTICAL BISTABILITY; BEHAVIOR
21394 AB A comprehensive theory of nonlinear magnetostatic wave propagation in a
21395    corrugated ferromagnetic film is presented. The applied magnetic field
21396    is in the plane of the film, and is perpendicular to the propagation
21397    direction. A portion of the film has its upper boundary periodically
21398    corrugated, and an analysis close to the Bragg condition is carried
21399    out. Typical bistable loops of output power against input power are
21400    obtained. Multistability is predicted for input powers, in the range
21401    50-150 mW/mm. The threshold power is rather sensitive to the modulation
21402    of the upper surface, i.e., to the amplitude of the geometric
21403    variations on the periodic surface. Small amplitudes suppress the
21404    multistability and this critical region is investigated quantitatively.
21405    It is concluded that the multistable effects should be readily
21406    observable.
21407 C1 RUSSIAN ACAD SCI,INST RADIOENGN & ELECTR,MOSCOW,RUSSIA.
21408    SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
21409 RP BOARDMAN, AD, UNIV SALFORD,DEPT PURE & APPL PHYS,SALFORD M5
21410    4WT,LANCS,ENGLAND.
21411 CR ADAM JD, 1977, IEEE T MAG, V13, P1246
21412    ALMEIDA NS, 1987, PHYS REV B, V36, P2015
21413    AN NB, 1989, PHYS LETT A, V136, P71
21414    BASHAROV AM, 1988, ZH EKSP TEOR FIZ, V67, P1741
21415    BAZHENOV VY, 1990, P SPIE INT SOC OPT E, V1280, P289
21416    BOARDMAN AD, 1990, NATO ASI SER B-PHYS, V247, P239
21417    BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
21418    BRILLOUIN L, 1953, WAVE PROPAGATION PER
21419    ELACHI C, 1975, IEEE T MAGN, V11, P36
21420    EMPSTEN A, 1990, IEEE J QUANTUM ELECT, V26, P1089
21421    ESIPOV SE, 1988, SOV PHYS JETP, V67, P1363
21422    FELBER FS, 1976, APPL PHYS LETT, V28, P731
21423    GIBBS HM, 1985, OPTICAL BISTABILITY
21424    GULYAEV YV, 1980, SOV PHYS-SOLID STATE, V22, P1651
21425    GULYAEV YV, 1981, SOV PHYS-SOLID STATE, V23, P2138
21426    GULYAEV YV, 1981, SOV PHYS-SOLID STATE, V23, P724
21427    KAWARSCHIK R, 1982, OPT ACT, V29, P455
21428    KOGELNIK H, 1972, J APPL PHYS, V43, P2327
21429    KUZNETSOV AV, 1988, SOV PHYS SEMICOND+, V22, P1143
21430    LEUNG KM, 1989, PHYS REV B, V39, P3590
21431    OKUDA M, 1977, JPN J APPL PHYS, V16, P769
21432    PENG ST, 1975, IEEE T MICROW THEORY, V23, P123
21433    SUNG CC, 1984, J OPT SOC AM B, V1, P476
21434    TSUTSUMI M, 1975, IEEE T MICROWAVE THE, V58, P16
21435    TSUTSUMI M, 1975, J I ELECTRON COMMU B, V58, P16
21436    TSUTSUMI M, 1977, IEEE T MICROWAVE THE, V25, P224
21437    VUKOVICH S, 1990, SOV PHYS JETP, V71, P964
21438    WINFUL HG, 1979, APPL PHYS LETT, V35, P379
21439 NR 28
21440 TC 20
21441 SN 0018-9464
21442 J9 IEEE TRANS MAGN
21443 JI IEEE Trans. Magn.
21444 PD JAN
21445 PY 1994
21446 VL 30
21447 IS 1
21448 BP 1
21449 EP 13
21450 PG 13
21451 SC Engineering, Electrical & Electronic; Physics, Applied
21452 GA NC483
21453 UT ISI:A1994NC48300001
21454 ER
21455 
21456 PT J
21457 AU BOARDMAN, AD
21458    WANG, Q
21459    NIKITOV, SA
21460    SHEN, J
21461    CHEN, W
21462    MILLS, D
21463    BAO, JS
21464 TI NONLINEAR MAGNETOSTATIC SURFACE-WAVES IN FERROMAGNETIC-FILMS
21465 SO IEEE TRANSACTIONS ON MAGNETICS
21466 DT Article
21467 ID ENVELOPE SOLITONS
21468 AB A comprehensive perturbation theory is presented, that enables the
21469    nonlinear wavenumber shift of magnetostatic surface waves (MSSW) on a
21470    thin ferromagnetic film to be calculated from first principles. The
21471    MSSW propagate, in this case, perpendicularly or obliquely to the
21472    applied magnetic field and their group-velocity dispersion is positive.
21473    Detailed calculations show that the nonlinear coefficient is also
21474    positive so that bright envelope solitons are forbidden. Nevertheless,
21475    nonlinear pulse shaping is possible so the use of the nonlinear
21476    Schrodinger equation is discussed in detail, together with the role of
21477    damping.
21478 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
21479    RUSSIAN ACAD SCI,INST RADIOENGN & ELECTR,MOSCOW,RUSSIA.
21480    UNIV CALIF IRVINE,DEPT PHYS,IRVINE,CA 92717.
21481    ROCKWELL INT CORP,CTR SCI,THOUSAND OAKS,CA 91360.
21482 RP BOARDMAN, AD, UNIV SALFORD,DEPT PURE & APPL PHYS,SALFORD M5
21483    4WT,LANCS,ENGLAND.
21484 CR BLOW KJ, 1985, OPT COMMUN, V52, P367
21485    BOARDMAN AD, 1988, PHYS REV B, V38, P1144
21486    BOARDMAN AD, 1991, NATO ASI SER B-PHYS, V247, P235
21487    DEGASPERIS P, 1987, PHYS REV LETT, V59, P481
21488    DEGASPERIS P, 1988, J APPL PHYS, V63, P4136
21489    GUREVICH AG, 1963, FERRITE MICROWAVE FR, P135
21490    KALINIKOS BA, 1988, ZH EKSP TEOR FIZ, V67, P303
21491    KALINIKOS BA, 1990, IEEE T MAGN, V26, P1477
21492    KALINIKOS BA, 1990, PHYS REV B B, V42, P8658
21493    SCHILZ W, 1973, PHILIPS RES REP, V28, P50
21494    SCOTT AC, 1973, P IEEE, V61, P1443
21495    SODHA MS, 1981, MICROWAVE PROPAGATIO
21496    ZVEZDIN AK, 1983, ZH EKSP TEOR FIZ, V57, P350
21497 NR 13
21498 TC 37
21499 SN 0018-9464
21500 J9 IEEE TRANS MAGN
21501 JI IEEE Trans. Magn.
21502 PD JAN
21503 PY 1994
21504 VL 30
21505 IS 1
21506 BP 14
21507 EP 22
21508 PG 9
21509 SC Engineering, Electrical & Electronic; Physics, Applied
21510 GA NC483
21511 UT ISI:A1994NC48300002
21512 ER
21513 
21514 PT J
21515 AU WAN, XJ
21516    ZHU, JH
21517    JING, KL
21518    LIU, CT
21519 TI HYDROGEN DIFFUSIVITY IN BORON-DOPED POLYCRYSTALLINE NI3AL
21520 SO SCRIPTA METALLURGICA ET MATERIALIA
21521 DT Article
21522 ID ENVIRONMENTAL EMBRITTLEMENT; DUCTILITY
21523 C1 OAK RIDGE NATL LAB,DIV MET & CERAM,OAK RIDGE,TN 37831.
21524 RP WAN, XJ, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 200072,PEOPLES R CHINA.
21525 CR AOKI K, 1979, NIPPON KINZOKU GAKKA, V43, P1190
21526    CHOUDHURY A, 1987, ORNLTM10508 OAK RIDG
21527    DEVANATHAN MAV, 1962, P ROY SOC LOND A MAT, V270, P90
21528    GEORGE EP, 1992, SCRIPTA METALL MATER, V27, P365
21529    GEORGE EP, 1993, SCRIPTA METALL MATER, V28, P857
21530    GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37
21531    GEROGE EP, 1993, STRUCTURAL INTERMETA, P431
21532    HANADA S, 1985, J MATER SCI, V21, P203
21533    LIU CT, 1985, ACTA METALL, V33, P213
21534    LIU CT, 1992, NATO ASI SER, V213, P321
21535    LIU CT, 1992, SCRIPTA METALL MATER, V27, P25
21536    LIU CT, 1993, MATER RES SOC S P, V288, P3
21537    MASAHASHI N, 1988, ACTA METALL, V36, P1823
21538    TAKASUGI T, 1991, MATER RES SOC S P, V213, P403
21539    TAUB AI, 1984, METALL TRANS A, V15, P399
21540    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
21541    YAO J, 1993, METALL TRANS A, V24, P105
21542    ZHU JH, 1993, SCRIPTA METALL MATER, V29, P429
21543 NR 18
21544 TC 29
21545 SN 0956-716X
21546 J9 SCR METALL MATER
21547 JI Scr. Metall. Materialia
21548 PD SEP 15
21549 PY 1994
21550 VL 31
21551 IS 6
21552 BP 677
21553 EP 681
21554 PG 5
21555 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
21556    Engineering
21557 GA NW207
21558 UT ISI:A1994NW20700006
21559 ER
21560 
21561 PT J
21562 AU GRIMSHAW, R
21563    ZHU, Y
21564 TI OBLIQUE INTERACTIONS BETWEEN INTERNAL SOLITARY WAVES
21565 SO STUDIES IN APPLIED MATHEMATICS
21566 DT Article
21567 ID ATMOSPHERE
21568 AB In this paper, we study the oblique interaction of weakly, nonlinear,
21569    long internal gravity waves in both shallow and deep fluids. The
21570    interaction is classified as weak when DELTA1,2 much greater than alpha
21571    where DELTA1 = \c(m)/c(n) - cos delta\, DELTA2 = \c(n)/c(m) - cos
21572    delta\, c(m,n) are the linear, long wave speeds for waves with mode
21573    numbers m, n, delta is the angle between the respective propagation
21574    directions, and alpha measures the wave amplitude. In this case, each
21575    wave is governed by its own Kortweg-de Vries (KdV) equation' for a
21576    shallow fluid, or intermediate long-wave (ILW) equation for a deep
21577    fluid, and the main effect of the interaction is an 0(alpha) phase
21578    shift. A strong interaction (I) occurs when DELTA1,2 are 0(alpha), and
21579    this case is governed by two coupled Kadomtsev-Petviashvili (KP)
21580    equations for a shallow fluid, or two coupled, two-dimensional ILW
21581    equations for deep fluids. A strong interaction (II) occurs when DELTA1
21582    is 0(alpha), and DELTA2 much greater than a (or vice versa), and in
21583    this case, each wave is governed by its own KdV equation for a shallow
21584    fluid, or ILW equation for a deep fluid. The main effect of the
21585    interaction is that the phase shift associated with DELTA1 leads to a
21586    local distortion of the wave speed of the mode n. When the interacting
21587    waves belong to the same mode (i.e., m = n) the general results
21588    simplify and we show that for a weak interaction (\1 - cos delta\ much
21589    greater than alpha) the phase shift for obliquely interacting waves
21590    always negative (positive) for (1/2 + cos delta) > 0(< 0), while the
21591    interaction term always has the same polarity as the interacting waves.
21592 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
21593 RP GRIMSHAW, R, MONASH UNIV,DEPT MATH,CLAYTON,VIC 3168,AUSTRALIA.
21594 CR ABLOWITZ MJ, 1981, SOLITONS INVERSE SCA
21595    APEL JR, 1980, ANN REV EARTH PLANET, V8, P303
21596    BENNEY DJ, 1966, J MATH PHYS, V45, P52
21597    CHRISTIE DR, 1978, J ATMOS SCI, V35, P805
21598    DAI SQ, 1984, APPL MATH MECH, V5, P1469
21599    ECKART C, 1961, PHYS FLUIDS, V4, P791
21600    FARMER DM, 1978, J PHYS OCEANOGR, V8, P63
21601    GEAR JA, 1984, STUD APPL MATH, V70, P235
21602    GEAR JA, 1985, STUD APPL MATH, V72, P95
21603    GRIMSHAW R, 1983, 1982 P IUTAM S TALL, P431
21604    GRIMSHAW RHJ, 1986, ENCY FLUID MECHANICS, P3
21605    LIU AK, 1980, STUD APPL MATH, V63, P25
21606    MILES JW, 1977, J FLUID MECH, V79, P157
21607    MILES JW, 1977, J FLUID MECH, V79, P170
21608    SMITH RK, 1988, EARTH-SCI REV, V25, P267
21609 NR 15
21610 TC 12
21611 SN 0022-2526
21612 J9 STUD APPL MATH
21613 JI Stud. Appl. Math.
21614 PD JUL
21615 PY 1994
21616 VL 92
21617 IS 3
21618 BP 249
21619 EP 270
21620 PG 22
21621 SC Mathematics, Applied
21622 GA NV263
21623 UT ISI:A1994NV26300004
21624 ER
21625 
21626 PT J
21627 AU CHADDERTON, LT
21628    ZHU, JL
21629    CRUZ, SA
21630    FINK, D
21631    GHOSH, S
21632 TI ELECTRONIC STOPPING AND ETCHED PARTICLE TRACKS IN POLYMERS
21633 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
21634    INTERACTIONS WITH MATERIALS AND ATOMS
21635 DT Article
21636 ID IMPLANTATION; DAMAGE
21637 AB The existence of a maximum in the electronic stopping power when an
21638    energetic ion reaches some depth in a solid target is well known.
21639    Experiments are described in which lithium ions - in the energy range
21640    0.6 to 3 MeV - were used to bombard the common polymer and particle
21641    dosimeter CR-39, so that the position of the stopping power peak
21642    relative to the polymer surface could be systematically varied.
21643    Differences in etched surface track diameters measured by optical
21644    microscopy and corresponding to differences in energy approximately 0.2
21645    MeV could be readily distinguished. Maximum etched track diameters
21646    clearly coincided with the intersection of maximum electronic energy
21647    losses with the CR-39 surface. Implications of this to more general
21648    stopping are discussed, including a linear relationship between the
21649    maximum electronic stopping power at a surface and the atomic number of
21650    the projectile ion.
21651 C1 SHANGHAI UNIV SCI & TECHNOL, INST APPL RADIAT, SHANGHAI, PEOPLES R CHINA.
21652    UNIV AUTONOMA METROPOLITANA IZTAPALAPA, DEPT FIS, MEXICO CITY 09340, DF, MEXICO.
21653    HAHN MEITNER INST BERLIN GMBH, DEP P-3, D-14109 BERLIN, GERMANY.
21654    NE HILL UNIV, DEPT CHEM, SHILLONG, INDIA.
21655    AUSTRALIAN NATL UNIV, RES SCH PHYS SCI, INST ADV STUDIES, CANBERRA, ACT 2601, AUSTRALIA.
21656 RP CHADDERTON, LT, AUSTRALIAN NATL UNIV, CSIRO, DIV APPL PHYS, GPO BOX 4,
21657    CANBERRA, ACT 2601, AUSTRALIA.
21658 CR BERNARDI L, 1991, NUCL INSTRUM METH B, V53, P61
21659    BIERSACK JP, 1982, Z PHYS A, V305, P95
21660    DAVENAS J, 1989, NUCL INSTRUM METH B, V39, P796
21661    FINK D, 1992, NUCL INSTRUM METH B, V65, P432
21662    GIBBONS JF, 1972, P IEEE, V60, P1062
21663 NR 5
21664 TC 4
21665 SN 0168-583X
21666 J9 NUCL INSTRUM METH PHYS RES B
21667 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
21668 PD JUN
21669 PY 1994
21670 VL 91
21671 IS 1-4
21672 BP 168
21673 EP 171
21674 PG 4
21675 SC Physics, Atomic, Molecular & Chemical; Physics, Nuclear; Instruments &
21676    Instrumentation; Nuclear Science & Technology
21677 GA NR935
21678 UT ISI:A1994NR93500027
21679 ER
21680 
21681 PT J
21682 AU LIU, ZM
21683    ZHU, JL
21684    GUO, YP
21685    YU, ZW
21686    QIAN, PP
21687    MA, ZT
21688 TI CHEMICAL EFFECTS OF ION-IMPLANTATION IN POLYANILINE
21689 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
21690    INTERACTIONS WITH MATERIALS AND ATOMS
21691 DT Article
21692 AB The chemical changes of polyaniline resulted from implantation of H, B,
21693    P, F, BF2, or Ar ions have been studied. From ESCA studies it is
21694    concluded that the number of nitrogen atoms in polyaniline decreases
21695    with increasing ion dose, while the number of oxygen atoms in the ion
21696    implanted layer of polyaniline increases. ESR (electron spin resonance)
21697    spectra show that the radical concentration in polyaniline increases
21698    with the ion dose. From FTIR analysis, two different kinds of chemical
21699    changes in the irradiated polyaniline are found, one from implanting H,
21700    F, or BF2 ions and the other from implanting B, P, or Ar ions.
21701 RP LIU, ZM, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI
21702    201800,PEOPLES R CHINA.
21703 CR DESURVILLE R, 1968, ELECTROCHIM ACTA, V13, P1451
21704    KITANI A, 1988, J POLYM SCI A, V88, P2385
21705    SILVERSTEIN RM, 1974, SPECTROMETRIC IDENTI
21706    WANG LX, 1990, APPL CHEM, V75, P1
21707    WANG ZM, 1982, APPLIED INFRARED SPE
21708    ZHU JL, 1994, NUCL INSTRUM METH B, V91, P469
21709 NR 6
21710 TC 2
21711 SN 0168-583X
21712 J9 NUCL INSTRUM METH PHYS RES B
21713 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
21714 PD JUN
21715 PY 1994
21716 VL 91
21717 IS 1-4
21718 BP 465
21719 EP 468
21720 PG 4
21721 SC Physics, Atomic, Molecular & Chemical; Physics, Nuclear; Instruments &
21722    Instrumentation; Nuclear Science & Technology
21723 GA NR935
21724 UT ISI:A1994NR93500088
21725 ER
21726 
21727 PT J
21728 AU ZHU, JL
21729    LIU, ZM
21730    YU, ZW
21731    GUO, YP
21732    MA, ZT
21733    BENG, RZ
21734 TI EFFECTS OF ION-IMPLANTATION ON THE ELECTRICAL-CONDUCTIVITY OF
21735    POLYANILINE
21736 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
21737    INTERACTIONS WITH MATERIALS AND ATOMS
21738 DT Article
21739 AB Polyaniline with a marked environmental stability was bombarded by
21740    beams of hydrogen, boron, fluorine, phosphorus and argon ions. All
21741    irradiated surfaces displayed substantial changes in physical
21742    properties (e.g. electrical conductivity, colour, etc.). The highest
21743    measured conductivity was approximately 100 S/cm and the irradiated
21744    samples have now been shown to be environmentally stable. The
21745    conductivity of the irradiated zone depended upon the deposited
21746    electronic energy density and also upon the chemical structure and
21747    composition. The radicals appeared prior to nitrogen release when the
21748    electronic energy deposition density was at the lower threshold in the
21749    irradiated layer. The radical concentration, nitrogen release and
21750    carbon richness contributed to the conductivity. Shrinkage and colour
21751    changes accompanied by nitrogen release and remnant nitrogen reduction
21752    or oxidation and also a higher conductivity value were observed.
21753 C1 SHANGHAI DEVICES FACTORY 5,SHANGHAI 20041,PEOPLES R CHINA.
21754 RP ZHU, JL, SHANGHAI UNIV SCI & TECHNOL,INST APPL RADIAT,SHANGHAI
21755    201800,PEOPLES R CHINA.
21756 CR CHADDERTON LT, 1994, NUCL INSTRUM METH B, V91, P71
21757    FINK D, 1992, COMMUNICATION
21758    FRIEND R, 1992, PHYS WORLD       NOV, P42
21759    LIU ZM, 1994, NUCL INSTRUM METH B, V91, P465
21760    RUDY FH, 1988, J MATER RES, V3, P1253
21761    VANKKATESSAN T, 1983, POLYM SCI ENG, V23, P931
21762 NR 6
21763 TC 13
21764 SN 0168-583X
21765 J9 NUCL INSTRUM METH PHYS RES B
21766 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
21767 PD JUN
21768 PY 1994
21769 VL 91
21770 IS 1-4
21771 BP 469
21772 EP 472
21773 PG 4
21774 SC Physics, Atomic, Molecular & Chemical; Physics, Nuclear; Instruments &
21775    Instrumentation; Nuclear Science & Technology
21776 GA NR935
21777 UT ISI:A1994NR93500089
21778 ER
21779 
21780 PT J
21781 AU GUO, BY
21782    ZHENG, JD
21783 TI A SPECTRAL APPROXIMATION OF THE BAROTROPIC VORTICITY EQUATION
21784 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
21785 DT Article
21786 ID BAROCLINIC PRIMITIVE EQUATION; DIFFERENCE METHOD; ERROR ESTIMATION
21787 AB A spectral scheme is considered for solving the barotropic vorticity
21788    equation. The error estimates are proved strictly. The technique used
21789    in this paper is also useful for other nonlinear problems defined on a
21790    spherical surface.
21791 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
21792    SHANGHAI INST COMP TECHNOL,SHANGHAI,PEOPLES R CHINA.
21793 CR ARAKAWA A, 1966, J COMPUT PHYS, V1, P119
21794    CANUTO C, 1988, SPECTRAL METHODS FLU
21795    COURANT R, 1953, METHODS MATH PHYSICS, V1
21796    GUO BY, 1974, ACTA MATH SINICA, V17, P242
21797    GUO BY, 1983, J COMPUT MATH, V1, P353
21798    GUO BY, 1987, SCI SINICA SER A, V30, P696
21799    GUO BY, 1988, DIFFERENCE METHOD PA
21800    GUO BY, 1989, J COMPUT PHYS, V84, P259
21801    GUO BY, 1992, SCI CHINA SER A, V35, P1
21802    HALTINER GJ, 1971, NUMERICAL WEATHER PR
21803    HALTINER GJ, 1980, NUMERICAL PREDICTION
21804    JARRAUD M, 1985, LECTURES APPLIED MAT, V22, P1
21805    LIONS JL, 1972, NONHOMOGENEOUS BOUND, V1
21806    ZEN QC, 1979, PHYSICAL MATH BASIS, V1
21807 NR 14
21808 TC 1
21809 SN 0254-9409
21810 J9 J COMPUT MATH
21811 JI J. Comput. Math.
21812 PD APR
21813 PY 1994
21814 VL 12
21815 IS 2
21816 BP 173
21817 EP 184
21818 PG 12
21819 SC Mathematics, Applied; Mathematics
21820 GA NT096
21821 UT ISI:A1994NT09600009
21822 ER
21823 
21824 PT J
21825 AU SHI, SZ
21826    ZHENG, Q
21827    ZHUANG, DM
21828 TI SET-VALUED ROBUST MAPPINGS AND APPROXIMATABLE MAPPINGS
21829 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
21830 DT Article
21831 ID MAPS
21832 AB The concepts of robustness of sets and mappings were proposed for the
21833    theory of integral global optimization. This paper discusses the
21834    robustness of a set-valued mapping, associating with the stability
21835    problem. We extend the equivalence between the robustness and the
21836    approximatability to the case of a set-valued mapping. We deal also
21837    with ''bi-robustness'' and ''in-robustness.''   (C) 1994 Academic
21838    Press, Inc.
21839 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
21840    MT ST VINCENT UNIV,DEPT MATH & COMP STUDIES,HALIFAX B3M 2J6,NS,CANADA.
21841 RP SHI, SZ, NANKAI INST MATH,TIANJIN 300071,PEOPLES R CHINA.
21842 CR AUBIN JP, 1988, ANN I H POINCARE-AN, V5, P519
21843    AUBIN JP, 1990, SET VALUED ANAL
21844    BORWEIN JM, 1988, J MATH ANAL APPL, V134, P441
21845    CHEW SH, 1988, LECTURE NOTES ECONOM, V298
21846    CHOQUET G, 1969, LECTURES ANAL, V1
21847    CHOQUET G, 1969, OUTILS TOPOLOGIQUES
21848    FRANKOWSKA H, CONICAL INVERSE MAPP
21849    FRANKOWSKA H, 1987, J MATH ANAL APPL, V127, P172
21850    FRANKOWSKA H, 1990, ANN I H POINCARE-AN, V7, P183
21851    OXTOBY JC, 1957, ANN MATH STUD, V39, P159
21852    PREISS D, 1990, ISRAEL J MATH, V72, P257
21853    SHI SZ, IN PRESS DISCONTINUO
21854    SHI SZ, 1981, C R ACAD SCI I, V293, P27
21855    ZHENG Q, IN PRESS GLOBAL MINI
21856    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205
21857    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317
21858    ZHENG Q, 1991, COMPUT MATH APPL, V21, P17
21859    ZHENG Q, 1991, RECENT ADV GLOBAL OP, P298
21860    ZHENG Q, 1992, 2ND P INT C FIX POIN, P346
21861 NR 19
21862 TC 5
21863 SN 0022-247X
21864 J9 J MATH ANAL APPL
21865 JI J. Math. Anal. Appl.
21866 PD MAY 1
21867 PY 1994
21868 VL 183
21869 IS 3
21870 BP 706
21871 EP 726
21872 PG 21
21873 SC Mathematics, Applied; Mathematics
21874 GA NN729
21875 UT ISI:A1994NN72900022
21876 ER
21877 
21878 PT J
21879 AU LUO, ZF
21880    XU, ZZ
21881    QIU, XJ
21882 TI ENERGY-DEPENDENT POTENTIAL AND HYPERFINE MASS SPLITTING OF QUARKONIUM
21883 SO COMMUNICATIONS IN THEORETICAL PHYSICS
21884 DT Article
21885 AB For scalar and vector interactions, the relativistic two-body Dirac
21886    equation is reduced in the nonrelativistic approximation by expanding
21887    in powers of E-1 to obtain energy-dependent effective potential. The
21888    spin-spin part of the resulting potential is applied to analyze the
21889    hyperfine mass splitting of quarkonium. It is found that the formula
21890    established with such a potential improves the description of hyperfine
21891    mass splittings for most ground state and excited state mesons of
21892    isospin nonzero and isospin zero.
21893 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA.
21894 RP LUO, ZF, ACAD SINICA,SHANGHAI INST OPT & FINE MECH,POB 800-211,SHANGHAI
21895    201800,PEOPLES R CHINA.
21896 CR 1988, PHYS LETT B, V204, P1
21897    1990, PHYS LETT B, V239, P1
21898    BARKER WA, 1955, PHYS REV, V99, P317
21899    BREIT G, 1958, PHYS REV, V111, P652
21900    BUCHMULLER W, 1981, PHYS REV D, V24, P3003
21901    CHAKRABARTY S, 1990, J PHYS G NUCL PARTIC, V16, P185
21902    FELDMAN G, 1973, PHYS REV A, V8, P1149
21903    FRANK M, 1985, PHYS LETT B, V159, P174
21904    FRANK M, 1987, Z PHYS C PART FIELDS, V34, P39
21905    GRATER HW, 1981, PHYS LETT B, V100, P166
21906    GREEN AES, 1967, NUCL PHYS B, V2, P267
21907    GROMES D, 1977, NUCL PHYS B, V131, P80
21908    IGI K, 1985, PHYS REV D, V32, P232
21909    JACOBS S, 1987, PHYS REV D, V35, P2448
21910    LICHTENBERG DB, 1987, PHYS LETT, V193, P95
21911    SATO S, 1990, NUOVO CIMENTO A, V103, P471
21912    SONG XT, 1989, PHYS REV D, V40, P3655
21913 NR 17
21914 TC 0
21915 SN 0253-6102
21916 J9 COMMUN THEOR PHYS
21917 JI Commun. Theor. Phys.
21918 PD MAR 15
21919 PY 1994
21920 VL 21
21921 IS 2
21922 BP 217
21923 EP 222
21924 PG 6
21925 SC Physics, Multidisciplinary
21926 GA NM498
21927 UT ISI:A1994NM49800015
21928 ER
21929 
21930 PT J
21931 AU DING, ZL
21932    YOSHIDA, M
21933    ASANO, M
21934    MA, ZT
21935    OMICHI, H
21936    KATAKAI, R
21937 TI THERMORESPONSIVE BEHAVIOR OF A METHACRYLOYL-DL-ALANINE METHYL-ESTER
21938    POLYMER GEL PREPARED BY RADIATION-INDUCED POLYMERIZATION
21939 SO RADIATION PHYSICS AND CHEMISTRY
21940 DT Article
21941 ID FUNCTIONAL CAPSULE MEMBRANES; PHASE-TRANSITION; THERMOSENSITIVE
21942    HYDROGEL; PERMEABILITY CONTROL; TEMPERATURE;
21943    POLY(N-ISOPROPYLACRYLAMIDE); PERMEATION; NETWORKS; COLLAPSE; RELEASE
21944 AB Loosely cross-linked poly(methacryloyl-DL-alanine methyl ester,
21945    MA-DL-AlaOMe) gels, which were prepared by radiation-induced
21946    polymerization, exhibited a reversible low-temperature swelling and
21947    high-temperature deswelling when cycled in water at different
21948    temperatures at 24-h intervals, in the range of 0 and 40-degrees-C. The
21949    thermo-response strongly depended upon irradiation condition.
21950    Increasing the irradiation dose resulted in a formation of lower
21951    molecular weight polymer owing to the scission of polymer chain, in
21952    which it gave a high swelling ability at low temperature, in contrast
21953    to a sluggish shrinkage at high temperature. On the other hand, no
21954    irradiation temperature affects the thermo-response of the gel. An
21955    important characteristic of the MA-DL-AlaOMe polymer gel is the
21956    formation of the membrane barrier at the surface with the rise in
21957    temperature, but it disappears in reswelling, to be termed
21958    ''surface-controlling on-off switch system''. Brilliant blue FCF (BB)
21959    as a model compound was incorporated into the gel to evaluate the
21960    capability as a thermo-responsive carrier for application in drug
21961    delivery systems, and it was found that the reversibly
21962    surface-controlling on-off switch function responsible to temperature
21963    changes plays an important role in a pulsatile release of BB from the
21964    gel in vitro.
21965 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,JIA DING,SHANGHAI,PEOPLES R CHINA.
21966    JAPAN ATOM ENERGY RES INST,TAKASAKI RADIAT CHEM RES ESTAB,DEPT MAT DEV,TAKASAKI,GUNMA 37012,JAPAN.
21967    GUNMA UNIV,FAC ENGN,DEPT CHEM,KIRYU,GUNMA 376,JAPAN.
21968 CR DONG LC, 1986, J CONTROL RELEASE, V4, P223
21969    FREITAS RFS, 1987, CHEM ENG SCI, V42, P97
21970    FUJISHIGE S, 1989, J PHYS CHEM-US, V93, P331
21971    HESKINS M, 1968, J MACROMOL SCI CHEM, V2, P1441
21972    HIROSE Y, 1987, MACROMOLECULES, V20, P1342
21973    HIROTSU S, 1987, J PHYS SOC JPN, V56, P233
21974    HOFFMAN AS, 1986, J CONTROL RELEASE, V4, P213
21975    ILAVSKY M, 1985, POLYMER, V26, P1514
21976    ISHIHARA K, 1985, J POLYM SCI POL CHEM, V23, P2841
21977    ITO R, 1990, INT J PHARM, V61, P109
21978    KUNGWATCHAKUN D, 1988, MAKROMOL CHEM-RAPID, V9, P243
21979    MUKAE K, 1990, POLYM J, V22, P206
21980    MUKAE K, 1990, POLYM J, V22, P250
21981    OHMINE I, 1982, J CHEM PHYS, V77, P5725
21982    OKAHATA Y, 1983, J AM CHEM SOC, V105, P4855
21983    OKAHATA Y, 1986, MACROMOLECULES, V19, P493
21984    OKANO T, 1990, J CONTROL RELEASE, V11, P255
21985    OSADA Y, 1985, CHEM LETT, P1285
21986    PALASIS M, 1992, J CONTROL RELEASE, V18, P1
21987    SAEKI S, 1976, POLYMER, V17, P685
21988    SATOH K, 1989, CHEM PHARM BULL, V37, P1642
21989    SCHILD HG, 1991, MACROMOLECULES, V24, P948
21990    TANAKA T, 1978, PHYS REV LETT, V40, P820
21991    TANAKA T, 1982, SCIENCE, V218, P467
21992    WINNIK FM, 1990, MACROMOLECULES, V23, P2414
21993    YOSHIDA M, 1989, EUR POLYM J, V25, P1197
21994    YOSHIDA M, 1991, DRUG DESIGN DELIVERY, V7, P159
21995    YOSHIDA M, 1991, EUR POLYM J, V27, P997
21996    YOSHIDA M, 1991, RADIAT PHYS CHEM, V38, P7
21997    YOSHIDA M, 1992, EUR POLYM J, V28, P1141
21998    YOSHIDA M, 1993, POLYM J, V25, P215
21999 NR 31
22000 TC 11
22001 SN 0146-5724
22002 J9 RADIAT PHYS CHEM
22003 JI Radiat. Phys. Chem.
22004 PD SEP
22005 PY 1994
22006 VL 44
22007 IS 3
22008 BP 263
22009 EP 272
22010 PG 10
22011 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
22012    Science & Technology
22013 GA NL474
22014 UT ISI:A1994NL47400004
22015 ER
22016 
22017 PT J
22018 AU LI, YZ
22019    DAVID, AK
22020 TI OPTIMAL MULTIAREA WHEELING
22021 SO IEEE TRANSACTIONS ON POWER SYSTEMS
22022 DT Article
22023 DE WHEELING; POWER TRANSMISSION ECONOMICS; POWER SYSTEM ECONOMICS;
22024    OPTIMIZATION METHODS; NONLINEAR PROGRAMMING
22025 ID MARGINAL-COST; RATES
22026 AB An important consideration in wheeling is where a transaction involves
22027    several parties, that is, multi-area wheeling. Power from seller to
22028    buyer flows through several intermediate utilities. Each utility
22029    represents an individual control area, engaged in part of a more
22030    complex wheeling transaction. Individual wheeling rates then have to be
22031    computed for each area. The question of how much energy should be
22032    transported through each path and what wheeling price should be payed
22033    is then an issue of importance. This is formulated as a nonlinear
22034    optimisation program with linear constraints and solved by a gradient
22035    projection method. The availability of FACTS capability to implement
22036    the optimal wheeling strategy once determined, is assumed in this paper.
22037 C1 HONG KONG POLYTECH,KOWLOON,HONG KONG.
22038 RP LI, YZ, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
22039 CR CARAMANIS MC, 1986, IEEE T POWER SYST, V1, P63
22040    CARAMANIS MC, 1989, IEEE T POWER SYST, V4, P594
22041    MERRILL HM, 1989, IEEE T POWER SYST, V4, P1445
22042    POWELL MJD, 1987, LECTURES NOTES MATH, V630
22043    SCHWEPPE FC, 1988, SPOT PRICING ELECTRI
22044    TALUKDAR SN, 1982, IEEE T PAS, V101, P415
22045    WOLFE P, 1967, NONLINEAR PROGRAMMIN, P120
22046 NR 7
22047 TC 8
22048 SN 0885-8950
22049 J9 IEEE TRANS POWER SYST
22050 JI IEEE Trans. Power Syst.
22051 PD FEB
22052 PY 1994
22053 VL 9
22054 IS 1
22055 BP 288
22056 EP 294
22057 PG 7
22058 SC Engineering, Electrical & Electronic
22059 GA NL152
22060 UT ISI:A1994NL15200095
22061 ER
22062 
22063 PT J
22064 AU JIANG, XY
22065    ZHANG, ZL
22066    ZHAO, WM
22067    LUI, ZG
22068    XU, SH
22069 TI A QUANTITATIVE-EVALUATION OF THE EXCITATION MECHANISM OF TM3+ IN A ZNS
22070    THIN-FILM
22071 SO JOURNAL OF PHYSICS-CONDENSED MATTER
22072 DT Article
22073 ID IMPACT EXCITATION; ELECTROLUMINESCENCE; TRANSPORT
22074 AB The impact excitation rates, and consequently the emission intensities,
22075    of various energy states of Tm3+ in ZnS thin-film electroluminescence
22076    (TFEL) have been quantitatively evaluated by calculating the radiative
22077    transition rates and the impact cross section, together with a Baraff
22078    distribution function of hot-electron energy The results show that the
22079    direct impact excitation rate of the 1G4 state of Tm3+ is very small,
22080    while that of the F-3(4) state is fairly large, resulting in a weak
22081    blue light intensity relative to the IR light in TFEL. Different
22082    theories of the electron distribution function are compared and
22083    discussed.
22084 RP JIANG, XY, SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SCI,SHANGHAI
22085    201800,PEOPLES R CHINA.
22086 CR ALLEN JW, 1986, J PHYS C SOLID STATE, V19, L369
22087    BARAFF GA, 1962, PHYS REV, V128, P2507
22088    BARAFF GA, 1964, PHYS REV, V133, A26
22089    BHATTACHARYYA K, 1993, J APPL PHYS, V73, P3390
22090    BRENNAN K, 1988, J APPL PHYS, V64, P4024
22091    BRINGUIER E, 1991, J APPL PHYS, V70, P4505
22092    BRINGUIER E, 1992, ELECTROLUMINESCENCE, P379
22093    FITTING HJ, 1990, PHYS STATUS SOLIDI A, V121, P305
22094    HUANG SH, 1983, LUMIN DISPLAY, V4, P23
22095    KOBAYASHI H, 1985, PHYS STATUS SOLIDI A, V88, P713
22096    KRUPKA DC, 1972, J APPL PHYS, V43, P476
22097    MA L, 1985, LUMIN DISPLAY DEVICE, V6, P192
22098    MACH R, 1984, PHYS STATUS SOLIDI A, V81, P609
22099    MACH R, 1990, J CRYST GROWTH, V101, P967
22100    OKAMOTO K, 1986, APPL PHYS LETT, V49, P1596
22101    ONO YA, 1993, SID F 1
22102    PAPPALARDO R, 1976, J LUMIN, V14, P159
22103    RIDLEY BK, 1983, J PHYS C SOLID STATE, V16, P3373
22104    SHOCKLEY W, 1961, SOLID STATE ELECTRON, V2, P35
22105    TANAKA S, 1992, J CRYST GROWTH, V117, P997
22106    WOLFF PA, 1954, PHYS REV, V95, P1415
22107    YU JQ, SPRINGER P PHYSICS, V38, P24
22108 NR 22
22109 TC 3
22110 SN 0953-8984
22111 J9 J PHYS-CONDENS MATTER
22112 JI J. Phys.-Condes. Matter
22113 PD APR 25
22114 PY 1994
22115 VL 6
22116 IS 17
22117 BP 3279
22118 EP 3290
22119 PG 12
22120 SC Physics, Condensed Matter
22121 GA NH957
22122 UT ISI:A1994NH95700018
22123 ER
22124 
22125 PT J
22126 AU TAO, DH
22127    LU, SP
22128    LI, ZY
22129    SHI, YP
22130 TI THE LUBRICATION EFFECT OF THE GLYCOLIPID-TYPE BIONIC SYNOVIAL-FLUID ON
22131    A BONE JOINT
22132 SO LUBRICATION ENGINEERING
22133 DT Article
22134 DE BIONIC SYNOVIAL FLUID; BONE JOINT; LUBRICATION EFFECT; FRICTION
22135    COEFFICIENT
22136 AB A new concept is proposed, using a glycolipid bionic lubricant to
22137    improve the behavior of pathologically-changed bone joints, such that
22138    an artificial joint might not be required.
22139    The experiments were made on a simulated bone joint test machine. The
22140    results showed that the lubrication behavior was excellent when an
22141    ethyl sophorosolipid aqueous solution of 50% concentration was used.
22142    The friction coefficient was only 13 to 20 percent, compared with dry
22143    friction under heavy load.
22144 C1 SHANGHAI INST ORGAN CHEM,SHANGHAI 200020,PEOPLES R CHINA.
22145 RP TAO, DH, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 200072,PEOPLES R CHINA.
22146 CR COOKE A, 1974, THESIS LEEDS U LEEDS
22147    DAVIES DV, 1967, P I MECH ENG, V181, P25
22148    DAVIES WH, 1987, ARTHRITIS RHEUM, V21, P754
22149    DUMBIETON JH, 1981, TRIBOLOGY NATURAL AR
22150    MANSOUR JM, 1977, ASME JUL TECH F, V99, P163
22151    OGSTON AG, 1950, BIOCHEM J, V46, P364
22152    OGSTON AG, 1951, BIOCHEM J, V49, P585
22153 NR 7
22154 TC 0
22155 SN 0024-7154
22156 J9 LUBRIC ENG
22157 JI Lubric. Eng.
22158 PD MAY
22159 PY 1994
22160 VL 50
22161 IS 5
22162 BP 386
22163 EP 389
22164 PG 4
22165 SC Engineering, Mechanical
22166 GA NJ065
22167 UT ISI:A1994NJ06500005
22168 ER
22169 
22170 PT J
22171 AU WANG, DR
22172    HUANG, ZJ
22173 TI ON THE CONVERGENCE OF THE BRENT METHOD
22174 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
22175 DT Article
22176 ID INEXACT NEWTON METHODS
22177 AB In this paper, we establish the semi-local convergence theorem of the
22178    rent method with regional estimation. By an in-depth investigation in
22179    to the algorithm structure of the method, we convert the Brent method
22180    into an approximate Newton method with a special error term. Bsaed on
22181    such equivalent variation, under a similar condition of the
22182    Newton-Kantorovich theorem of the Newton method, we establish a
22183    semi-local convergence theorem of the Brent method. This theorem
22184    provides a sufficient theoretical basis for initial choices of the
22185    Brent method.
22186 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
22187    FUDAN UNIV,DEPT STAT & OPERAT RES,SHANGHAI,PEOPLES R CHINA.
22188 CR BRENT RP, 1973, SIAM J NUMER ANAL, V10, P327
22189    BROWN KM, 1969, SIAM J NUMER ANAL, V6, P560
22190    DEMBO RS, 1982, SIAM J NUMER ANAL, V19, P400
22191    DENNIS JE, 1971, MATH COMPUT, V25, P559
22192    DENNIS JE, 1983, NUMERICAL METHODS UN
22193    GAY DM, 1975, BROWN METHOD SOME GE, P75
22194    KANTOROVICH LV, 1948, DOKL AKAD NAUK SSSR, V59, P1237
22195    MIEL GJ, 1979, NUMER MATH, V33, P391
22196    MORE JJ, 1979, ACM T MATH SOFTWARE, V5, P64
22197    MORET I, 1986, COMPUTING, V37, P185
22198    ORTEGA JM, 1970, ITERATIVE SOLUTION N
22199    YPMA TJ, 1984, SIAM J NUMER ANAL, V21, P583
22200 NR 12
22201 TC 2
22202 SN 0254-9409
22203 J9 J COMPUT MATH
22204 JI J. Comput. Math.
22205 PD JAN
22206 PY 1994
22207 VL 12
22208 IS 1
22209 BP 1
22210 EP 20
22211 PG 20
22212 SC Mathematics, Applied; Mathematics
22213 GA ND010
22214 UT ISI:A1994ND01000001
22215 ER
22216 
22217 PT J
22218 AU DONG, Y
22219    LIU, L
22220 TI MECHANICALLY DRIVEN AMORPHIZATION IN THE TA-CU SYSTEM
22221 SO ZEITSCHRIFT FUR METALLKUNDE
22222 DT Article
22223 ID METALS; ALLOYS
22224 AB Amorphizing transformation by ball milling was studied in a system
22225    without miscibility of the elements, Ta-Cu, with nominal compositions
22226    of Ta50Cu50 to Ta90Cu10. X-ray diffractometry, scanning and
22227    transmission electron microscopy were employed to monitor the
22228    structural evolution of the samples. The results show that a single
22229    phase of amorphous product was obtained for all the given samples after
22230    100 h of milling. Differential thermal analysis shows that both the
22231    temperature and the activation energy for crystallization increase with
22232    the Ta content, implying that the Ta-rich alloys exhibit a better
22233    thermal stability. The atomic structure of the Ta-Cu amorphous alloys
22234    was studied by radial distribution function analysis. The region of
22235    short-range ordering (SRO) increases with Cu content, which means that
22236    SRO became stronger in those alloys with a higher Cu content. The
22237    nearest-neighbor coordination number was estimated to be 12 to 13 for
22238    all the alloys, which indicates that the amorphous materials formed by
22239    mechanical alloying are also of topologically dense packing structure.
22240 C1 ACAD SINICA,INST SOLID STATE PHYS,HEFEI 230031,PEOPLES R CHINA.
22241 RP DONG, Y, SHANGHAI UNIV SCI & TECHNOL,DEPT MET & MAT,SHANGHAI
22242    200072,PEOPLES R CHINA.
22243 CR BENJAMIN JS, 1970, METALL T, V1, P2943
22244    DEBOER FR, 1988, COHESION METALS
22245    FECHT HJ, 1990, METALL TRANS A, V21, P2333
22246    GESSINGER GH, 1984, POWDER METALLURGY SU, P273
22247    JOHNSON WL, 1988, PROG MATER SCI, V30, P87
22248    KOCH CC, 1983, APPL PHYS LETT, V43, P1017
22249    KOCH CC, 1989, ANNU REV MATER SCI, V19, P121
22250    SCHULTZ L, 1987, J APPL PHYS, V61, P3183
22251    SCHWARZ RB, 1986, APPL PHYS LETT, V49, P146
22252    SCHWARZ RB, 1988, J LESS-COMMON MET, V140, P171
22253 NR 10
22254 TC 2
22255 SN 0044-3093
22256 J9 Z METALLK
22257 JI Z. Metallk.
22258 PD FEB
22259 PY 1994
22260 VL 85
22261 IS 2
22262 BP 140
22263 EP 142
22264 PG 3
22265 SC Metallurgy & Metallurgical Engineering
22266 GA NA295
22267 UT ISI:A1994NA29500013
22268 ER
22269 
22270 PT J
22271 AU ZHOU, ZQ
22272    ZHANG, JL
22273    GE, JS
22274    FENG, F
22275    DAI, ZM
22276 TI MATHEMATICAL-MODELING OF THE PCT CURVE OF HYDROGEN STORAGE ALLOYS
22277 SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
22278 DT Article
22279 AB The PCT curve presents the thermodynamic characteristics of hydrogen
22280    storage alloys, which consist of hydrogen storage capacity, the
22281    temperature, and the equilibrium presure in hydriding and dehydriding,
22282    the mathematical modeling of which is important for the application of
22283    hydrogen storage alloys in various techniques. Mathematical modeling of
22284    the PCT curve of hydrogen storage alloys was studied. It has been shown
22285    that the calculated PCT curves are in good agreement with the
22286    experimental curves, and a lot of physical parameters, which are very
22287    useful, can be estimated from the modeling.
22288 RP ZHOU, ZQ, SHANGHAI UNIV SCI & TECHNOL,149 YANCHANG RD,SHANGHAI,PEOPLES
22289    R CHINA.
22290 CR JORDY C, 1991, J LESS-COMMON MET, V172, P1236
22291    SAKAI T, 1990, J LESS-COMMON MET, V159, P127
22292    WILLEMS JJG, 1984, PHILIPS J RES S1, V39
22293    ZHOU ZQ, P S HYDROGEN STORAGE, P139
22294 NR 4
22295 TC 7
22296 SN 0360-3199
22297 J9 INT J HYDROGEN ENERG
22298 JI Int. J. Hydrog. Energy
22299 PD MAR
22300 PY 1994
22301 VL 19
22302 IS 3
22303 BP 269
22304 EP 273
22305 PG 5
22306 SC Physics, Atomic, Molecular & Chemical; Energy & Fuels; Environmental
22307    Sciences
22308 GA MZ473
22309 UT ISI:A1994MZ47300014
22310 ER
22311 
22312 PT J
22313 AU XU, BM
22314    YIN, ZW
22315    WANG, H
22316 TI MICROSTRUCTURE DEVELOPMENT OF THE SINGLE-STEP, LOW-TEMPERATURE SINTERED
22317    SRTIO3 GBBL CAPACITOR MATERIALS
22318 SO FERROELECTRICS LETTERS SECTION
22319 DT Article
22320 ID POLYCRYSTALLINE
22321 AB The microstructure development of the single-step, low-temperature
22322    sintered SrTiO3 GBBL capacitor materials is studied according to the
22323    microstructure analysis, mass transfer and defect chemical reactions
22324    during sintering process. The sintering mechanism is the reactive
22325    liquid phase sintering with the participation of solid state diffusion
22326    caused by the volatilization of oxygen. Insulating grain boundaries are
22327    formed by the grain boundary segregation of Li2O, which is caused by
22328    the donor enhanced volatilization of oxygen. Grains are
22329    semiconductorized during grain growth process which incorporates the
22330    donor dopant into SrTiO3 lattice.
22331 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
22332 RP XU, BM, CHINESE ACAD SCI,SHANGHAI INST CERAM,SHANGHAI 200050,PEOPLES R
22333    CHINA.
22334 CR BURN I, 1982, J MATER SCI, V17, P3510
22335    GOODMAN G, 1981, ADV CERAM, V1, P215
22336    SHIRASAKI S, 1980, J CHEM PHYS, V73, P4640
22337    XU BM, 1991, J CHIN CERAM SOC, V19, P354
22338    XU BM, 1992, J CHIN CERAM SOC, V20, P16
22339    YAN MF, 1983, ADV CERAM, V7, P226
22340 NR 6
22341 TC 1
22342 SN 0731-5171
22343 J9 FERROELECTRICS LETT SECT
22344 JI Ferroelectr. Lett. Sect.
22345 PY 1993
22346 VL 16
22347 IS 5-6
22348 BP 157
22349 EP 165
22350 PG 9
22351 SC Physics, Condensed Matter
22352 GA MY696
22353 UT ISI:A1993MY69600003
22354 ER
22355 
22356 PT J
22357 AU CAO, ZC
22358    WU, RJ
22359    SONG, RS
22360 TI INEFFECTIVE GRAIN-BOUNDARIES AND BREAKDOWN THRESHOLD OF ZINC-OXIDE
22361    VARISTORS
22362 SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
22363    TECHNOLOGY
22364 DT Article
22365 ID ZNO VARISTORS
22366 AB In order to evaluate the breakdown threshold of ZnO varistor ceramic,
22367    the geometry-independent average breakdown voltage per grain boundary,
22368    or V-gb was examined. The discrepancy between the average breakdown
22369    voltage per grain in ZnO varistor ceramic and the breakdown voltage of
22370    a single grain boundary in this material is interesting and worth study
22371    for practical purposes. The contradiction is imputed to the existence
22372    of ineffective grain boundaries in this material. The ineffective grain
22373    boundary is demonstrated by elaborately designed experiments.
22374    Observation also shows that the presence of ineffective grain
22375    boundaries is related to deficiency of oxygen in the grain boundary
22376    region. Using computer-aided simulation, the influence of ineffective
22377    grain boundaries on the breakdown threshold of the component is
22378    discussed.
22379 RP CAO, ZC, SHANGHAI UNIV SCI & TECHNOL,DEPT MAT SIC & ENGN,SHANGHAI
22380    201800,PEOPLES R CHINA.
22381 CR ALLES AB, 1991, J APPL PHYS, V70, P6883
22382    CAO ZC, 1990, J EUR CERAM SOC, V6, P85
22383    EDA K, 1984, J APPL PHYS, V56, P2948
22384    EMTAGE PR, 1979, J APPL PHYS, V50, P6833
22385    FUJITSU S, 1988, J CERAM SOC JPN, V96, P119
22386    GUPTA TK, 1990, J AM CERAM SOC, V73, P1817
22387    LEVINSON LM, 1988, B AM CERAM SOC, V65, P639
22388    OLSSON E, 1989, J APPL PHYS, V66, P3666
22389    SONDER E, 1983, J APPL PHYS, V54
22390    SONDER E, 1985, J APPL PHYS, V58, P4420
22391    SONG RS, 1992, 1992 P INT C EL COMP, P31
22392    TRONTELJ M, 1983, ADDITIVES INTERFACES, P107
22393 NR 12
22394 TC 8
22395 SN 0921-5107
22396 J9 MATER SCI ENG B-SOLID STATE M
22397 JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
22398 PD JAN
22399 PY 1994
22400 VL 22
22401 IS 2-3
22402 BP 261
22403 EP 266
22404 PG 6
22405 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
22406 GA MR122
22407 UT ISI:A1994MR12200023
22408 ER
22409 
22410 PT J
22411 AU KHAN, RD
22412    ZHANG, JL
22413    SHENG, D
22414    WENDA, S
22415 TI EVOLUTION OF A VELOCITY-DEPENDENT QUANTUM FORCED ANHARMONIC-OSCILLATOR
22416 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
22417 DT Article
22418 AB The exact solution to a velocity-dependent quantum forced anharmonic
22419    oscillator is derived by using integral operators and an iteration
22420    method. The study is carried out in operational form by use of the
22421    creation and annihilation operators of the oscillator. The time
22422    development of the displacement and momentum operators of the
22423    anharmonic oscillator is given. These operators are presented as a
22424    Laplace transform and a subsequent inverse Laplace transform of
22425    suitable functionals.
22426 RP KHAN, RD, SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI 201800,PEOPLES
22427    R CHINA.
22428 CR CARUSOTTO S, 1988, PHYS REV A, V38, P3249
22429    LOUISELL WH, 1973, QUANTUM STATISTICAL, P137
22430    SAAVEDRA FA, 1990, PHYSICAL REV A, V42, P5073
22431    ZHANG JL, 1992, IN PRESS SPIE, V1726
22432 NR 4
22433 TC 0
22434 SN 0020-7748
22435 J9 INT J THEOR PHYS
22436 JI Int. J. Theor. Phys.
22437 PD NOV
22438 PY 1993
22439 VL 32
22440 IS 11
22441 BP 2023
22442 EP 2029
22443 PG 7
22444 SC Physics, Multidisciplinary
22445 GA MQ896
22446 UT ISI:A1993MQ89600004
22447 ER
22448 
22449 PT J
22450 AU ZHANG, B
22451    WANG, JG
22452    WAN, XJ
22453    CHEN, WJ
22454 TI A STUDY ON THE BETA AND OMEGA PHASES IN A TI-AL-CR ALLOY
22455 SO SCRIPTA METALLURGICA ET MATERIALIA
22456 DT Article
22457 ID MICROSTRUCTURE EVOLUTION; BASE ALLOYS
22458 AB The beta phase obtained in the Ti-42Al-3Cr alloy has an ordered B.C.C.
22459    structure with a0=0.3197nm, which is rich in chromium. The omega phase
22460    precipitated from the beta phase in this alloy has an ordered hexagonal
22461    structure with a0=0.452nm and c0=0.577nm. The orientation relationship
22462    between the omega phase and the parent beta phase yields the usual
22463    orientation relationship: [111]c\\[0001]h and {110}c\\{1120}h.
22464 RP ZHANG, B, SHANGHAI UNIV SCI & TECHNOL,INST MAT SCI,149 YANCHANG
22465    RD,SHANGHAI 200072,PEOPLES R CHINA.
22466 CR BENDERSKY LA, 1990, ACTA METALL MATER, V38, P931
22467    CHEN WJ, IN PRESS
22468    CUI YY, 1993, ACTA METALLURGICA A, V29, P61
22469    HUANG SC, 1991, METALL TRANS A, V22, P2619
22470    JONES SA, 1988, SCRIPTA METALL, V22, P1235
22471    KIMURA M, 1992, MAT SCI ENG A-STRUCT, V152, P54
22472    LIPSITT HA, 1985, MATER RES SOC S P, V39, P351
22473    MURRAY JL, 1981, B ALLOY PHASE DIA, V2, P174
22474    PEREPEZKO JH, 1991, ISIJ INT, V31, P1080
22475    SASTRY SML, 1977, METALL T A, V8, P299
22476    VALENCIA JJ, 1987, SCRIPTA METALL, V21, P1341
22477    WILLIAMS JC, 1978, PRECIPITATION PROCES, P191
22478    ZHENG Y, 1992, SCRIPTA METALL MATER, V26, P219
22479 NR 13
22480 TC 7
22481 SN 0956-716X
22482 J9 SCR METALL MATER
22483 JI Scr. Metall. Materialia
22484 PD FEB 15
22485 PY 1994
22486 VL 30
22487 IS 4
22488 BP 399
22489 EP 404
22490 PG 6
22491 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
22492    Engineering
22493 GA MN519
22494 UT ISI:A1994MN51900003
22495 ER
22496 
22497 PT J
22498 AU CHEN, WJ
22499    WANG, JG
22500    ZHANG, B
22501    WAN, XJ
22502 TI MECHANICAL-PROPERTIES OF A TI-AL-CR ALLOY
22503 SO SCRIPTA METALLURGICA ET MATERIALIA
22504 DT Article
22505 RP CHEN, WJ, SHANGHAI UNIV SCI & TECHNOL,INST MAT SCI,149 YANCHANG
22506    RD,SHANGHAI 200072,PEOPLES R CHINA.
22507 CR COURT SA, 1989, MATER RES SOC S P, V133, P675
22508    HAYES FH, TERNARY ALLOYS, V4, P430
22509    KIM YW, 1990, HIGH TEMPERATURE ALU, P465
22510    KIMURA M, 1992, MAT SCI ENG A-STRUCT, V152, P54
22511    LIPSITT HA, 1985, MATER RES SOC S P, V39, P351
22512    MURALEEDHARAN K, 1989, METALL TRANS A, V20, P1139
22513    ROWE RG, 1990, HIGH TEMPERATURE ALU, P375
22514    TSUJIMOTO T, 1992, MATER T JIM, V33, P989
22515    ZHANG B, UNPUB
22516    ZHENG Y, 1992, SCRIPTA METALL MATER, V26, P219
22517 NR 10
22518 TC 1
22519 SN 0956-716X
22520 J9 SCR METALL MATER
22521 JI Scr. Metall. Materialia
22522 PD JAN 1
22523 PY 1994
22524 VL 30
22525 IS 1
22526 BP 83
22527 EP 87
22528 PG 5
22529 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
22530    Engineering
22531 GA ME906
22532 UT ISI:A1994ME90600016
22533 ER
22534 
22535 PT J
22536 AU GUO, BY
22537    LI, J
22538 TI FOURIER-CHEBYSHEV PSEUDOSPECTRAL METHOD FOR 2-DIMENSIONAL VORTICITY
22539    EQUATION
22540 SO NUMERISCHE MATHEMATIK
22541 DT Article
22542 ID NAVIER-STOKES EQUATIONS; FINITE-ELEMENT; FLOW
22543 AB A Fourier-Chebyshev pseudospectral scheme is proposed for
22544    two-dimensional unsteady vorticity equation. The generalized stability
22545    and convergence are proved strictly. The numerical results are
22546    presented.
22547 RP GUO, BY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
22548 CR CANUTO C, 1984, NUMER MATH, V44, P201
22549    CANUTO C, 1988, SPECTRAL METHODS FLU
22550    GUO BY, 1988, DIFFERENCE METHODS P
22551    GUO BY, 1989, J COMPUT PHYS, V84, P259
22552    GUO BY, 1992, J COMPUT PHYS, V101, P207
22553    GUO BY, 1992, J COMPUT PHYS, V101, P375
22554    INGHAM DB, 1985, P ROY SOC LOND A MAT, V402, P109
22555    KUO PY, 1983, J COMPUT MATH, V1, P353
22556    MA HP, 1986, J COMPUT PHYS, V65, P120
22557    MA HP, 1988, J COMPUT MATH, V6, P48
22558    MACARAEG MG, 1982, J COMPUT PHYS, V62, P297
22559    MOIN P, 1982, J FLUID MECH, V118, P341
22560    MURDOK JW, 1986, AIAA860434
22561    VANDEVEN H, 1987, FAMILY SPECTRAL FILT
22562    WOODWARD P, 1984, J COMPUT PHYS, V54, P115
22563 NR 15
22564 TC 3
22565 SN 0029-599X
22566 J9 NUMER MATH
22567 JI Numer. Math.
22568 PD DEC
22569 PY 1993
22570 VL 66
22571 IS 3
22572 BP 329
22573 EP 346
22574 PG 18
22575 SC Mathematics, Applied
22576 GA ML599
22577 UT ISI:A1993ML59900004
22578 ER
22579 
22580 PT J
22581 AU LI, B
22582    LIU, L
22583    MA, XM
22584    DONG, YD
22585 TI AMORPHIZATION IN THE NB-SI SYSTEM BY MECHANICAL ALLOYING
22586 SO JOURNAL OF ALLOYS AND COMPOUNDS
22587 DT Article
22588 ID NI; POWDERS
22589 AB Amorphous Nb50Si50 alloy was produced from crystalline elemental
22590    powders by high-energy ball milling; the amorphization mechanisms of
22591    Nb50Si50 powders are discussed.
22592 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MET & MAT,SHANGHAI 200072,PEOPLES R CHINA.
22593 RP LI, B, ACAD SINICA,INST SOLID STATE PHYS,POB 1129,HEFEI 230031,PEOPLES
22594    R CHINA.
22595 CR BRANDES EA, 1983, SMITHELLS METALS REF
22596    CALKA A, 1991, APPL PHYS LETT, V58, P119
22597    KOCH CC, 1983, APPL PHYS LETT, V43, P1017
22598    KOCH CC, 1989, ANNU REV MATER SCI, V19, P121
22599    LEE PY, 1987, APPL PHYS LETT, V50, P1578
22600    MIEDEMA AR, 1980, PHYSICA B, V100, P1
22601    OMURO K, 1992, APPL PHYS LETT, V60, P1433
22602    SCHWARZ RB, 1985, J NON-CRYST SOLIDS, V76, P281
22603 NR 8
22604 TC 6
22605 SN 0925-8388
22606 J9 J ALLOYS COMPOUNDS
22607 JI J. Alloy. Compd.
22608 PD DEC 10
22609 PY 1993
22610 VL 202
22611 BP 161
22612 EP 163
22613 PG 3
22614 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
22615    Metallurgical Engineering
22616 GA MK678
22617 UT ISI:A1993MK67800036
22618 ER
22619 
22620 PT J
22621 AU SHAO, J
22622 TI STRUCTURAL-CHANGE OF SIO2 GLASS UNDER HIGH-PRESSURE - A
22623    MOLECULAR-DYNAMICS STUDY
22624 SO CHINESE PHYSICS LETTERS
22625 DT Article
22626 ID INDUCED COORDINATION CHANGES; X-RAY-DIFFRACTION; QUARTZ
22627 AB Pressure-induced structural transition in SiO2 glass at 300 K has been
22628    investigated by molecular dynamics simulation. The compression of SiO2
22629    glass appears to be accommodated by three processes occuring in our
22630    calculation. Below 10 GPa, the Si-O, O-O and Si-Si bond distances
22631    decrease with compression. Also in this pressure region the O-Si-O
22632    angle is always peaked at about 109-degrees. Above 10 GPa, the Si-O
22633    bond distance increase quickly with compression and the O-Si-O angle
22634    deviates from 109-degrees. At about 46 GPa, the structural information
22635    shows that the coordination number of Si becomes six. Then, the
22636    structural behavior of SiO2 glass becomes normal with further
22637    compression.
22638 RP SHAO, J, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
22639    R CHINA.
22640 CR DURBEN DJ, 1990, PHYS REV B, V43, P2355
22641    GIBBS GV, 1982, AM MINERAL, V67, P421
22642    GRIMSDITCH M, 1984, PHYS REV LETT, V52, P2379
22643    HAZEN RM, 1989, SOLID STATE COMMUN, V72, P507
22644    HEMLEY RJ, 1986, PHYS REV LETT, V57, P747
22645    ITIE JP, 1989, PHYS REV LETT, V63, P398
22646    LEVIEN L, 1980, AM MINERAL, V65, P920
22647    MEADE C, 1992, PHYS REV LETT, V69, P1387
22648    TSUJI K, 1989, REV SCI INSTRUM, V60, P2425
22649    WEIDNER DJ, 1982, J GEOPHYS RES, V87, P4740
22650    WILLIAMS Q, 1988, SCIENCE, V239, P902
22651    WOODCOCK LV, 1976, J CHEM PHYS, V65, P1565
22652 NR 12
22653 TC 4
22654 SN 0256-307X
22655 J9 CHIN PHYS LETT
22656 JI Chin. Phys. Lett.
22657 PY 1993
22658 VL 10
22659 IS 11
22660 BP 669
22661 EP 672
22662 PG 4
22663 SC Physics, Multidisciplinary
22664 GA MK170
22665 UT ISI:A1993MK17000009
22666 ER
22667 
22668 PT J
22669 AU REN, XH
22670    YU, XJ
22671 TI CHARACTERIZATION OF NUCLEOLAR ORGANIZER REGIONS OF 12 SPECIES OF
22672    CHINESE CYPRINID FISHES
22673 SO CARYOLOGIA
22674 DT Article
22675 ID CHROMOSOMES; PISCES
22676 AB Silver staining technique was used to study the chromosomal NORs of 12
22677    species of Chinese cyprinids. The NOR number varies from 2 to 7. Only a
22678    single pair of NOR-bearing chromosomes was detected in 5 species
22679    respectively. The remaining species each possess two or more pairs of
22680    NOR-bearing homologues. NORs may be located at submetacentric,
22681    subtelocentric or metacentric chromosomes. NOR heteromorphism was
22682    common. Finally, it is suggested, in the discussion, that further
22683    studies should be made on the overall Cyprinidae.
22684 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT BIOTECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
22685 RP REN, XH, WUHAN UNIV,DEPT BIOL,WUSHAN 430072,PEOPLES R CHINA.
22686 CR AMEMIYA CT, 1990, HEREDITAS, V112, P231
22687    FORESTI F, 1981, CYTOGENET CELL GENET, V31, P137
22688    GALETTI PM, 1984, CARYOLOGIA, V37, P401
22689    GOODPASTURE C, 1975, CHROMOSOMA, V53, P37
22690    HOWELL WM, 1980, EXPERIENTIA, V36, P1014
22691    HOWELL WM, 1982, CELL NUCLEUS, V11, P89
22692    HSU TC, 1975, CHROMOSOMA, V53, P25
22693    MAYR B, 1987, GENETICA, V75, P199
22694    OBERDORFF T, 1990, CARYOLOGIA, V43, P9
22695    PHILLIPS RB, 1989, COPEIA, P47
22696    REN X, 1991, CHIN J GENET, V18, P219
22697    REN X, 1991, CYTOLOGIA, V56, P673
22698    TAKAI A, 1984, P JPN ACAD B-PHYS, V60, P410
22699    THODE G, 1985, CYTOBIOS, V43, P73
22700    WU XW, 1977, CYPRINIDAE FISHES CH, P229
22701    YU XJ, 1989, CHROMOSOMES FRESHWAT, P1
22702 NR 16
22703 TC 0
22704 SN 0008-7114
22705 J9 CARYOLOGIA
22706 JI Caryologia
22707 PD APR-SEP
22708 PY 1993
22709 VL 46
22710 IS 2-3
22711 BP 201
22712 EP 207
22713 PG 7
22714 SC Genetics & Heredity
22715 GA MH884
22716 UT ISI:A1993MH88400011
22717 ER
22718 
22719 PT J
22720 AU GU, Y
22721    WANG, YG
22722    FU, SZ
22723    WU, J
22724    YU, SY
22725    WAN, BG
22726    ZHOU, GL
22727    WANG, X
22728    HAN, GJ
22729    ZENG, YX
22730    MA, MX
22731 TI HUGONIOT MEASUREMENTS ON COPPER TO 0.8 TPA BY LASER-DRIVEN SHOCK-WAVES
22732 SO LASER AND PARTICLE BEAMS
22733 DT Article
22734 AB An experiment on Al-Cu impedance-match targets, carried out at the
22735    Shenguang high-power laser facility, is described. The shock adiabat of
22736    Cu in the pressure region 0.4-0.8 TPa, measured experimentally, is
22737    close to the extrapolated results of the data at lower pressure
22738    obtained with a high-explosive loading facility and also is in with the
22739    data at high pressure measured in the underground nuclear test
22740    environment.
22741 C1 SHANGHAI UNIV,COLL ENGN,SHANGHAI,PEOPLES R CHINA.
22742 RP GU, Y, CHINA ACAD ENGN PHYS,SHANGHAI LASER LAB,SHANGHAI,PEOPLES R CHINA.
22743 CR DE XM, 1986, APPL OPTICS, V25, P377
22744    ELIEZER S, 1986, INTRO EQUATIONS STAT
22745    ELIEZER S, 1990, J APPL PHYS, V68, P356
22746    FORTOV VE, 1991, E FERMI SUMMER SCH 1
22747    GU Y, 1986, P INT S INTENSE DYNA, P131
22748    GU Y, 1988, ACTA PHYS SINICA, V37, P1690
22749    MCQUEEN RG, 1970, HIGH VELOCITY IMPACT, P530
22750    NELLIS WJ, 1988, PHYS REV LETT, V60, P1414
22751    XU XS, 1986, INTRO APPLIED THEORY, P521
22752 NR 9
22753 TC 0
22754 SN 0263-0346
22755 J9 LASER PART BEAM
22756 JI Laser Part. Beams
22757 PY 1993
22758 VL 11
22759 IS 3
22760 BP 611
22761 EP 616
22762 PG 6
22763 SC Physics, Applied
22764 GA MF947
22765 UT ISI:A1993MF94700019
22766 ER
22767 
22768 PT J
22769 AU LU, WC
22770    YAN, LC
22771    LIU, HL
22772    HUANG, SP
22773    CHEN, NY
22774    LI, JL
22775    XU, YM
22776 TI STUDIES ON STRUCTURE-ACTIVITY RELATIONSHIP OF THE ETHOFENPROX ANALOGOUS
22777    OF PESTICIDE BY PATTERN-RECOGNITION METHOD
22778 SO CHINESE SCIENCE BULLETIN
22779 DT Article
22780 DE PATTERN RECOGNITION; ETHOFENPROX ANALOGOUS; HAMMETT CONSTANT; MOLAR
22781    REFLECTIVITY; HYDROPHOBIC PARAMETER
22782 RP LU, WC, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES R
22783    CHINA.
22784 NR 0
22785 TC 1
22786 SN 1001-6538
22787 J9 CHIN SCI BULL
22788 JI Chin. Sci. Bull.
22789 PD SEP
22790 PY 1993
22791 VL 38
22792 IS 18
22793 BP 1534
22794 EP 1537
22795 PG 4
22796 SC Multidisciplinary Sciences
22797 GA ME840
22798 UT ISI:A1993ME84000009
22799 ER
22800 
22801 PT J
22802 AU CAO, WM
22803    GUO, BY
22804 TI FOURIER COLLOCATION METHOD FOR SOLVING NONLINEAR KLEIN-GORDON EQUATION
22805 SO JOURNAL OF COMPUTATIONAL PHYSICS
22806 DT Article
22807 RP CAO, WM, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
22808 CR ADAMS RA, 1975, SOBOLEV SPACES
22809    CANUTO C, 1982, MATH COMPUT, V38, P67
22810    GUO B, IN PRESS J APPL MATH
22811    GUO B, 1988, DIFFERENCE METHODS P
22812    HARDY GH, 1952, INEQUALITIES
22813    KUO P, 1983, J APPL SCI, V1, P25
22814    LIONS JL, 1969, QUELQUES METHODES RE
22815    QUARTERONI A, 1984, JAPAN J APPL MATH, V1, P173
22816    STRAUSS W, 1978, J COMP PHYSIOL, V28, P271
22817    WHITHAM GB, 1974, LINEAR NONLINEAR WAV
22818 NR 10
22819 TC 4
22820 SN 0021-9991
22821 J9 J COMPUT PHYS
22822 JI J. Comput. Phys.
22823 PD OCT
22824 PY 1993
22825 VL 108
22826 IS 2
22827 BP 296
22828 EP 305
22829 PG 10
22830 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
22831 GA MC593
22832 UT ISI:A1993MC59300009
22833 ER
22834 
22835 PT J
22836 AU GU, HY
22837    HE, YH
22838 TI THE CLOSENESS FOR (NBU) AND (NWU)
22839 SO MICROELECTRONICS AND RELIABILITY
22840 DT Note
22841 AB In this note an n mutually independent unit coherent system is
22842    considered. Using the minimal path method, it is proved that if every
22843    unit lifetime distribution belongs to {NBU} (which is a class of new
22844    better than used), the system lifetime distribution belongs to {NBU}
22845    also. Finally, by using an example, it is proposed that {NWU} (which is
22846    a class of new worse than used) is not closed.
22847 RP GU, HY, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,149 YANCHANG RD,SHANGHAI
22848    200072,PEOPLES R CHINA.
22849 CR BARLOW RE, 1981, STATISTICAL THEORY R, P158
22850    KLEFSJO B, 1982, NAVAL RES LOGIST Q, V29, P331
22851    KLEFSJO B, 1985, IEEE T RELIAB, V33
22852 NR 3
22853 TC 0
22854 SN 0026-2714
22855 J9 MICROELECTRON REL
22856 JI Microelectron. Reliab.
22857 PD OCT
22858 PY 1993
22859 VL 33
22860 IS 13
22861 BP 2053
22862 EP 2054
22863 PG 2
22864 SC Engineering, Electrical & Electronic
22865 GA LZ803
22866 UT ISI:A1993LZ80300014
22867 ER
22868 
22869 PT J
22870 AU DENG, XN
22871    FAN, QB
22872    YIN, JH
22873    LIANG, PH
22874    ZHANG, WQ
22875 TI THE EFFECT OF LONG-CHAIN COUMARIN FILMS ON THE ELECTRON-TRANSFER AT THE
22876    LIQUID-JUNCTION ON N-SI/NI
22877 SO ACTA CHIMICA SINICA
22878 DT Article
22879 AB The modification of stearic acid-coumarin LB films on the performance
22880    of n-Si/Ni electrode has been studied in this paper The deposition of
22881    the LB film was Z-type. There was a blue shift of absorption peak (from
22882    343 nm to 325 nm) after the film had been prepared on a glass plate.
22883    Under the illumination of 60 m W degrees cm-2 bromine-tungstem lamp
22884    light, the energy conversion efficiency of n-Si/Ni/3LB/Fe(CN)63-/4-/Pt
22885    cell has been increased by 100% and the stability has been apparently
22886    enhanced. The AC impedance measurement has shown that the charge
22887    transfer resistance of n-Si/Ni/3LB electrode decreased greatly under
22888    the irradiation. The research results indicates that the modification
22889    of stearic acid-coumarin LB films on the photoelectron transfer process
22890    on n-Si/Ni electrode is good.
22891 C1 ACAD SINICA,SHANGHAI INST OPT MECH,SHANGHAI 201800,PEOPLES R CHINA.
22892 RP DENG, XN, SHANGHAI UNIV SCI & TECHNOL,ELECTROCHEM RES CTR,SHANGHAI
22893    201800,PEOPLES R CHINA.
22894 CR CHANDRASEKARAN K, 1987, ELECTROCHIM ACTA, V32, P1392
22895    FURUNO T, 1988, THIN SOLID FILMS, V160, P145
22896    HIGUCHI Y, 1986, CHEM LETT, V12, P1651
22897    HOLDCROFT S, 1988, J ELECTROCHEM SOC, V135, P3106
22898    HOME AT, 1987, J ELECTROCHEM SOC, V134, P7
22899    KAKIMOTO M, 1986, CHEM LETT, V2, P173
22900    KAKIMOTO M, 1986, CHEM LETT, V6, P823
22901    KUHN H, 1985, P INT S FUTURE ELECT, P1
22902 NR 8
22903 TC 0
22904 SN 0567-7351
22905 J9 ACTA CHIM SIN
22906 JI Acta Chim. Sin.
22907 PY 1993
22908 VL 51
22909 IS 8
22910 BP 743
22911 EP 747
22912 PG 5
22913 SC Chemistry, Multidisciplinary
22914 GA LX882
22915 UT ISI:A1993LX88200003
22916 ER
22917 
22918 PT J
22919 AU GU, HY
22920 TI STUDIES ON OPTIMUM PREVENTIVE MAINTENANCE POLICIES FOR GENERAL REPAIR
22921    RESULT
22922 SO RELIABILITY ENGINEERING & SYSTEM SAFETY
22923 DT Note
22924 AB In this paper we consider that a unit is repaired preventively after it
22925    has operated for time T. After repair, the unit is not as good as a new
22926    one, but is equivalent to one which has been used for a period of time.
22927    If we let Y indicate such a period of time, then Y is a random variable
22928    related to the time for which the unit has already operated     .
22929    Hence, under the same repair condition as above, we obtain the unit's
22930    renovation degree distribution Of Y after the unit is repaired
22931    preventively at time kT (k = 2, 3, . . . ). Further, using the method
22932    of leading variables, we obtain the mean number of times the unit has
22933    broken down from time (k - 1)T to time kT (k = 1, 2, . . . ). Finally,
22934    considering an objective function with a bound condition and using the
22935    Lagrange multipliers method, we obtain an optimal preventive
22936    maintenance time T, for which the minimum total repair cost is achieved.
22937 RP GU, HY, SHANGHAI UNIV SCI & TECHNOL,ROOM 402 6 LANE 840,TIAN SHAN
22938    RD,SHANGHAI 200051,PEOPLES R CHINA.
22939 CR GERTSBAKH IB, 1977, MODELS PREVENTIVE MA
22940    NAKAGAWA T, 1976, Z OPNS RES, V20, P171
22941    NAKAGAWA T, 1977, THESIS KYOTO U
22942 NR 3
22943 TC 4
22944 SN 0951-8320
22945 J9 RELIAB ENG SYST SAFETY
22946 JI Reliab. Eng. Syst. Saf.
22947 PY 1993
22948 VL 41
22949 IS 2
22950 BP 197
22951 EP 201
22952 PG 5
22953 SC Engineering, Industrial; Operations Research & Management Science
22954 GA LX684
22955 UT ISI:A1993LX68400011
22956 ER
22957 
22958 PT J
22959 AU GUO, GY
22960    CHEN, YL
22961 TI PREPARATION AND THERMAL-PROPERTIES OF A LEAD INDIUM ALUMINUM
22962    PHOSPHATE-GLASS
22963 SO JOURNAL OF NON-CRYSTALLINE SOLIDS
22964 DT Article
22965 AB A wet chemical process has been developed for the preparation of a
22966    lead-indium phosphate compound, and the effect of incorporation of
22967    aluminum into the compound on the thermal properties of the resulting
22968    glass is reported. High field Al-27 NMR in combination with a magic
22969    angle spinning technique was used to investigate the aluminum
22970    coordination in the lead-indium-aluminum phosphate glass. The
22971    transition, crystallization and softening temperatures and thermal
22972    expansion coefficient of the glass were determined by means of DTA, TMA
22973    and dilatometric measurements.
22974 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
22975 RP GUO, GY, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI & ENGN,SHANGHAI
22976    200030,PEOPLES R CHINA.
22977 CR GUO GY, 1993, J MATER SCI LETT, V12, P265
22978    MULLER D, 1983, PHYS CHEM GLASSES, V24, P37
22979    PENG YB, 1991, GLASS TECHNOL, V32, P166
22980    SALES BC, 1987, J AM CERAM SOC, V70, P615
22981    SCALES BC, 1986, J NONCRYSTALLINE SOL, V79, P83
22982 NR 5
22983 TC 8
22984 SN 0022-3093
22985 J9 J NON-CRYST SOLIDS
22986 JI J. Non-Cryst. Solids
22987 PD SEP
22988 PY 1993
22989 VL 162
22990 IS 1-2
22991 BP 164
22992 EP 168
22993 PG 5
22994 SC Materials Science, Ceramics; Materials Science, Multidisciplinary
22995 GA LX484
22996 UT ISI:A1993LX48400017
22997 ER
22998 
22999 PT J
23000 AU LI, YZ
23001    DAVID, AK
23002 TI PRICING REACTIVE POWER CONVEYANCE
23003 SO IEE PROCEEDINGS-C GENERATION TRANSMISSION AND DISTRIBUTION
23004 DT Article
23005 DE FINANCIAL MANAGEMENT; POWER SYSTEM ECONOMICS; POWER SYSTEM OPERATION
23006 ID WHEELING RATES; MARGINAL-COST
23007 AB The transmission of electrical power and reactive power from a seller
23008    to a buyer through a transmission network obviously has cost
23009    implications. The costs incurred are of interest to transmission system
23010    owners in view of the increased interest in deregulation in recent
23011    years. The paper provides a theory of an ideal conveyance rate based on
23012    marginal cost pricing theory. An analysis is made of the marginal cost
23013    of reactive transportation using a modification of the optimal power
23014    flow algorithm, followed by a case study illustrating the magnitudes
23015    and ranges that reactive transportation rates may take on under
23016    different circumstances. The ratio of marginal prices between real and
23017    reactive power conveyance shows that the costs of reactive power
23018    transport is of as much interest because of its impact on real power
23019    transport as in itself.
23020 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT AUTOMAT,SHANGHAI,PEOPLES R CHINA.
23021 RP LI, YZ, HONG KONG POLYTECH,DEPT ELECT ENGN,KOWLOON,HONG KONG.
23022 CR BAUGHMAN ML, 1991, IEEE T POWER SYST, V6, P23
23023    CARAMANIS MC, 1986, IEEE T POWER SYST, V1, P63
23024    CARAMANIS MC, 1989, IEEE T POWER SYST, V4, P594
23025    MERRILL HM, 1989, IEEE T POWER SYST, V4, P1445
23026    POWELL MJD, 1987, LECTURE NOTES MATH, V630
23027    SCHWEPPE FC, 1988, SPOT PRICING ELECTRI
23028    TALUKDAR SN, 1982, IEEE T PAS, V101, P415
23029 NR 7
23030 TC 6
23031 SN 0143-7046
23032 J9 IEE PROC-C GEN TRANSM DISTRIB
23033 PD MAY
23034 PY 1993
23035 VL 140
23036 IS 3
23037 BP 174
23038 EP 180
23039 PG 7
23040 SC Engineering, Electrical & Electronic
23041 GA LW324
23042 UT ISI:A1993LW32400003
23043 ER
23044 
23045 PT J
23046 AU GUO, BY
23047    MA, HP
23048 TI COMBINED FINITE-ELEMENT AND PSEUDOSPECTRAL METHOD FOR THE 2-DIMENSIONAL
23049    EVOLUTIONARY NAVIER-STOKES EQUATIONS
23050 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
23051 DT Article
23052 DE NAVIER-STOKES EQUATION; COMBINED FINITE ELEMENT AND PSEUDOSPECTRAL
23053    APPROXIMATION; INF-SUP CONDITION AND ERROR ESTIMATION
23054 ID RESTRAIN OPERATOR; APPROXIMATION
23055 AB A combined finite element and pseudospectral scheme is proposed for
23056    solving the two-dimensional evolutionary Navier-Stokes equations. The
23057    artificial compressibility and filtering techniques are used. It is
23058    also shown that the inf-sup condition holds naturally for this combined
23059    method.  The generalized stability and optimal convergence rate in
23060    L2-norm are proved. Some numerical results are presented.
23061 RP GUO, BY, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
23062 CR BERINGEN S, 1984, J FLUID MECH, V148, P413
23063    CANUTO C, 1982, NUMER MATH, V39, P205
23064    CANUTO C, 1983, SIAM J NUMER ANAL, V20, P873
23065    CANUTO C, 1984, NUMER MATH, V44, P201
23066    CAO W, 1991, J COMPUT MATH, V9, P278
23067    CHORIN AJ, 1967, J COMPUT PHYS, V2, P12
23068    CIARLET PG, 1978, FINITE ELEMENT METHO
23069    GIRAULT V, 1979, LECTURE NOTES MATH, V794
23070    GUO B, 1985, SCI SINICA SER A, V28, P1139
23071    GUO B, 1988, DIFFERENCE METHODS P
23072    GUO B, 1988, J COMPUT PHYS, V74, P110
23073    GUO B, 1991, ACTA MATH APPL SINIC, V7, P257
23074    GUO BY, 1987, SCI SINICA A, V30, P697
23075    GUO BY, 1988, J COMPUT MATH, V6, P238
23076    GUO BY, 1991, SIAM J NUMER ANAL, V28, P113
23077    HALD O, 1981, J COMPUT PHYS, V40, P305
23078    INGHAM DB, 1984, J COMPUT PHYS, V53, P90
23079    INGHAM DB, 1985, P ROY SOC LOND A MAT, V402, P109
23080    KREISS HO, 1979, SIAM J NUMER ANAL, V16, P421
23081    KUO PY, 1983, J COMPUT MATH, V1, P353
23082    LIONS JL, 1972, NONHOMOGENEOUS BOUND
23083    MA H, 1992, MATH ANN B, V13, P96
23084    MA HP, 1986, J COMPUT PHYS, V65, P120
23085    MADAY Y, 1982, SIAM J NUMER ANAL, V19, P761
23086    MILINAZZO FA, 1985, J FLUID MECH, V160, P281
23087    MULHOLLAND LS, 1991, J COMPUT PHYS, V96, P369
23088    MURDOCK JW, 1977, AIAA J, V15, P1167
23089    MURDOCK JW, 1986, AIAA J
23090    ROACHE PJ, 1976, COMPUTATIONAL FLUID
23091    TEMAM R, 1977, NAVIER STOKES EQUATI
23092 NR 30
23093 TC 4
23094 SN 0036-1429
23095 J9 SIAM J NUMER ANAL
23096 JI SIAM J. Numer. Anal.
23097 PD AUG
23098 PY 1993
23099 VL 30
23100 IS 4
23101 BP 1066
23102 EP 1083
23103 PG 18
23104 SC Mathematics, Applied
23105 GA LR663
23106 UT ISI:A1993LR66300008
23107 ER
23108 
23109 PT J
23110 AU CHENG, WM
23111    CHEN, MY
23112 TI TRANSFORMATION AND CONNECTION OF SUBAPERTURES IN THE MULTIAPERTURE
23113    OVERLAP-SCANNING TECHNIQUE FOR LARGE OPTICS TESTS
23114 SO OPTICAL ENGINEERING
23115 DT Article
23116 DE OVERLAP SCANNING; SUBAPERTURE CONNECTION; LARGE OPTICS TESTING
23117 AB The multiaperture overlap-scanning technique (MAOST) is a new method
23118    for large optics testing. We describe the mathematical model and the
23119    performance procedure of the transformation and connection of
23120    subapertures for MAOST. Computer simulation results show that the
23121    theoretical accuracy of a pair of two-subaperture connections tested
23122    with MAOST could be reached up to lambda/600. The experimental test
23123    with a magnification ratio of 1.7 in a four-aperture overlap-scanning
23124    configuration is conducted and its result is analyzed in detail.
23125 RP CHENG, WM, SHANGHAI UNIV SCI & TECHNOL,APPL OPT & METROL LAB,SOUTH
23126    GATE,JIADING 201800,PEOPLES R CHINA.
23127 CR BRUNING JH, 1978, OPTICAL SHOP TESTING, P425
23128    CHEN MY, 1991, P SOC PHOTO-OPT INS, V1553, P626
23129    JENSEN SC, 1984, APPL OPTICS, V23, P740
23130    KIM CJ, 1982, THESIS U ARIZONA
23131    THUNEN JG, 1982, P SOC PHOTO-OPT INS, V351, P19
23132    WILLIAMS RA, 1987, J OPT SOC AM A, V4, P1855
23133 NR 6
23134 TC 4
23135 SN 0091-3286
23136 J9 OPT ENG
23137 JI Opt. Eng.
23138 PD AUG
23139 PY 1993
23140 VL 32
23141 IS 8
23142 BP 1947
23143 EP 1950
23144 PG 4
23145 SC Optics
23146 GA LR112
23147 UT ISI:A1993LR11200037
23148 ER
23149 
23150 PT J
23151 AU LIU, GL
23152 TI THE RADIAL EQUILIBRIUM PROBLEM OF FLOW IN WAVE MACHINERY
23153 SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL
23154    OF POWER AND ENERGY
23155 DT Article
23156 AB The present paper deals with the radial equilibrium problem of gas flow
23157    at the inlet and outlet of a wave rotor theoretically, presenting a
23158    method of solution. The salient feature of this method is that, in
23159    contrast to turbomachinery, the outlet flow parameters are related to
23160    those at inlet by the state characteristic (compatibility) equations of
23161    unsteady rotor flow. The numerical example has shown that the radial
23162    equilibrium effect plays a very important role in the design and
23163    performance of wave machinery and hence it is suggested that a complete
23164    gas dynamic design procedure of a wave machine should include two
23165    parts: (a) solution of the one-dimensional unsteady relative flow in
23166    rotor at the mean radius; (b) solution of the radial equilibrium
23167    problem of gas flow at the rotor inlet and outlet.
23168 RP LIU, GL, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
23169 NR 0
23170 TC 1
23171 SN 0957-6509
23172 J9 PROC INST MECH ENG A-J POWER
23173 JI Proc. Inst. Mech. Eng. Part A-J. Power Energy
23174 PY 1993
23175 VL 207
23176 IS A1
23177 BP 23
23178 EP 30
23179 PG 8
23180 SC Engineering, Mechanical
23181 GA LQ983
23182 UT ISI:A1993LQ98300003
23183 ER
23184 
23185 PT J
23186 AU LI, W
23187    SHI, DH
23188 TI RELIABILITY-ANALYSIS OF A 2-UNIT PARALLEL SYSTEM WITH PREEMPTIVE
23189    PRIORITY RULE
23190 SO MICROELECTRONICS AND RELIABILITY
23191 DT Article
23192 AB This paper deals with a two-dissimilar-unit parallel redundant system
23193    in which unit 1 has preemptive priority in being repaired. Under the
23194    assumptions that the life time of unit 1 is an mth Erlang distribution,
23195    the life time of unit 2 and the repaired time of unit i(i = 1, 2) are
23196    all general continuous distributions, we obtain almost all of the
23197    interesting reliability indices of the system. Finally, we give the
23198    upper and lower limits of a special case which has not been discussed
23199    elsewhere.
23200 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
23201 RP LI, W, CHINESE ACAD SCI,INST APPL MATH,BEIJING 100080,PEOPLES R CHINA.
23202 CR CHENG K, 1978, ACTA MATH APPL SINIC, V4, P341
23203    LINTON DG, 1976, MICROELECTRON RELIAB, V15, P39
23204    NAKAGAWA T, 1975, MICROELECTRON RELIAB, V14, P457
23205    SHI DH, 1985, ACTA MATH APPL SINIC, V8, P101
23206    SHI DH, 1985, ACTA MATH APPL SINIC, V8, P159
23207 NR 5
23208 TC 6
23209 SN 0026-2714
23210 J9 MICROELECTRON REL
23211 JI Microelectron. Reliab.
23212 PD AUG
23213 PY 1993
23214 VL 33
23215 IS 10
23216 BP 1447
23217 EP 1453
23218 PG 7
23219 SC Engineering, Electrical & Electronic
23220 GA LQ167
23221 UT ISI:A1993LQ16700002
23222 ER
23223 
23224 PT J
23225 AU JIN, C
23226    CHEN, WJ
23227    JING, KL
23228    WAN, XJ
23229 TI THE INFLUENCE OF CR ON OXIDATION BEHAVIOR OF TIAL AT 1173K
23230 SO SCRIPTA METALLURGICA ET MATERIALIA
23231 DT Article
23232 RP JIN, C, SHANGHAI UNIV SCI & TECHNOL,INST MET & MAT SCI,YANCHANG RD
23233    149,SHANGHAI 200072,PEOPLES R CHINA.
23234 CR HUANG SC, 1991, METALL TRANS A, V22, P2619
23235    JIN C, UNPUB
23236    PERKINS RA, 1987, SCRIPTA METALL MATER, V21, P1505
23237    PU Z, IN PRESS SCRIPTA MET
23238    TANIGUCHI S, 1991, MATER T JIM, V32, P151
23239    WELSCH G, 1988, OXIDATION HIGH TEMPE, P207
23240 NR 6
23241 TC 2
23242 SN 0956-716X
23243 J9 SCR METALL MATER
23244 JI Scr. Metall. Materialia
23245 PD SEP 15
23246 PY 1993
23247 VL 29
23248 IS 6
23249 BP 747
23250 EP 751
23251 PG 5
23252 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
23253    Engineering
23254 GA LP598
23255 UT ISI:A1993LP59800006
23256 ER
23257 
23258 PT J
23259 AU GUO, GY
23260    CHEN, YL
23261 TI OPTICAL-PROPERTIES AND CHEMICAL DURABILITY OF LEAD INDIUM ALUMINUM
23262    PHOSPHATE-GLASS
23263 SO MATERIALS CHEMISTRY AND PHYSICS
23264 DT Article
23265 ID THERMAL-EXPANSION
23266 AB The optical properties and chemical durability of lead-indium-aluminum
23267    phosphate glass prepared by a wet-chemical process have been
23268    investigated. Ultraviolet-visible and infrared spectra were recorded
23269    for the glass. The refraction index of the glass was measured as a
23270    function of wavelength in the visible region of the spectrum. The
23271    long-term chemical durability of the glass in acidic and basic aqueous
23272    solutions was examined at a high temperature. The results are compared
23273    with recent data for other phosphate glasses, and indicate that
23274    lead-indium-aluminum phosphate glass has a promising combination of
23275    good optical properties and chemical durability.
23276 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
23277 RP GUO, GY, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI & ENGN,SHANGHAI
23278    200030,PEOPLES R CHINA.
23279 CR BUNKER BC, 1984, J NON-CRYST SOLIDS, V64, P291
23280    BUNKER BC, 1987, J AM CERAM SOC, V70, P425
23281    GUO GY, IN PRESS 1993 AM CER
23282    MINAMI T, 1977, J AM CERAM SOC, V60, P232
23283    MULLER D, 1983, PHYS CHEM GLASSES, V24, P37
23284    PENG YB, 1991, GLASS TECHNOL, V32, P166
23285    PENG YB, 1991, GLASS TECHNOL, V32, P200
23286    RAY NH, 1979, BRIT POLYM J, V11, P63
23287    SALES BC, 1986, J NON-CRYST SOLIDS, V79, P83
23288    SALES BC, 1987, J AM CERAM SOC, V70, P615
23289 NR 10
23290 TC 4
23291 SN 0254-0584
23292 J9 MATER CHEM PHYS
23293 JI Mater. Chem. Phys.
23294 PD AUG
23295 PY 1993
23296 VL 35
23297 IS 1
23298 BP 49
23299 EP 52
23300 PG 4
23301 SC Materials Science, Multidisciplinary
23302 GA LP402
23303 UT ISI:A1993LP40200009
23304 ER
23305 
23306 PT J
23307 AU BAI, ZZ
23308    WANG, DR
23309 TI ON THE CONVERGENCE OF THE FACTORIZATION UPDATE ALGORITHM
23310 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
23311 DT Article
23312 AB In this paper, we make a Kantorovich-type analysis for the sparse
23313    Johnson and Austria's algorithm given in [2], which is called
23314    factorization update algorithm. When the mapping is linear, it is shown
23315    that a modification of that algorithm leads to global and Q-superlinear
23316    convergence. Finally, we point out the modification is also of local
23317    and Q-superlinear convergence for nonlinear systems of equations and
23318    give its corresponding Kantorovich-type convergence result.
23319 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
23320 CR DENNIS JE, 1971, MATH COMPUT, V25, P559
23321    JOHNSON GW, 1983, SIAM J NUMER ANAL, V20, P315
23322    LAM B, 1978, MATH COMPUT, V32, P447
23323    MARWIL E, 1979, SIAM J NUMER ANAL, V16, P558
23324    WANG DR, 1989, IN PRESS CLASS FACTO
23325    WANG DR, 1991, COMMUN APPL MATH COM, V5, P50
23326 NR 6
23327 TC 1
23328 SN 0254-9409
23329 J9 J COMPUT MATH
23330 JI J. Comput. Math.
23331 PD JUL
23332 PY 1993
23333 VL 11
23334 IS 3
23335 BP 236
23336 EP 249
23337 PG 14
23338 SC Mathematics, Applied; Mathematics
23339 GA LN497
23340 UT ISI:A1993LN49700006
23341 ER
23342 
23343 PT J
23344 AU LIU, GL
23345 TI A VARIABLE-DOMAIN VARIATIONAL THEORY USING CLEBSCH VARIABLES FOR HYBRID
23346    PROBLEMS OF 2-D TRANSONIC ROTATIONAL FLOW
23347 SO ACTA MECHANICA
23348 DT Note
23349 AB By means of functional variations with variable domain the variational
23350    principles of [7], [8] are extended to inverse and hybrid flow problems.
23351 C1 SHANGHAI INST APPL MATH & MECH,SHANGHAI,PEOPLES R CHINA.
23352 RP LIU, GL, SHANGHAI UNIV SCI & TECHNOL,149 YAN CHANG RD,SHANGHAI
23353    200072,PEOPLES R CHINA.
23354 CR ECER A, 1983, AIAA J, V21, P343
23355    LIU GI, 1986, J ENG GAS TURB POWER, V108, P254
23356    LIU GL, 1980, SCI SINICA, V23, P1339
23357    LIU GL, 1981, J ENG THERMOPHYS, V2, P335
23358    LIU GL, 1985, ACTA AERODYN SINICA, V3, P24
23359    LIU GL, 1986, 6TH P INT S FEM FLOW, P137
23360    LIU GL, 1991, ASME91GT169 PAP
23361    MEAUZE G, 1982, ASME, V104, P650
23362    SELIGER RL, 1968, P ROY SOC LOND A MAT, V305, P1
23363    YAO Z, 1984, IMECHE PUBLICATION, P237
23364 NR 10
23365 TC 3
23366 SN 0001-5970
23367 J9 ACTA MECH
23368 JI Acta Mech.
23369 PY 1993
23370 VL 99
23371 IS 1-4
23372 BP 219
23373 EP 223
23374 PG 5
23375 SC Mechanics
23376 GA LK575
23377 UT ISI:A1993LK57500017
23378 ER
23379 
23380 PT J
23381 AU HE, ZM
23382    SHEN, BG
23383    JIN, JH
23384    XIONG, CS
23385 TI MAGNETIC-PROPERTIES AND MAGNETOSTRICTION AT ROOM-TEMPERATURE OF THE
23386    AMORPHOUS RARE EARTH-FE ALLOYS (RBFECOCU) (R = ND, SM)
23387 SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
23388 DT Article
23389 AB The following three systems of the amorphous alloy specimens have been
23390    prepared and measured: NdxB20-x (Fe78Co1.7Cu0.3)(x = 0, 1, 2, 3, 4, 5),
23391    SmxB20-x (Fe78CO17Cu0.3)(x = 0, 1, 3), Fe79.7-xCox (Cu0.3B17Sm3)(x = 0,
23392    1.7, 3.7, 5.7, 7.7). The results show that the specific magnetizing
23393    moment sigma(s) varies with temperature T, and that the anisotropy
23394    constant K(u) and saturation magnetostriction constant lambda(s) vary
23395    with composition x at room temperature. It is shown that small amounts
23396    of rare earth elements alloyed into Fe-based amorphous alloys can
23397    increase K(u), lambda(s) and the crystallization temperature T(cr) of
23398    the amorphous alloys. It stands to reason that the local magnetic
23399    anisotropy and the exchange interaction are both effected. Although
23400    sigma(s) and T(c) may decrease as the small amount of R elements is
23401    alloyed, they can be compensated with an increase in the composition of
23402    Co.
23403 C1 ACAD SINICA,INST PHYS,MAGNETISM LAB,BEIJING 100080,PEOPLES R CHINA.
23404    UNIV SCI & TECHNOL CHINA,DEPT PHYS,HEFEI 230026,PEOPLES R CHINA.
23405 RP HE, ZM, SHANGHAI UNIV SCI & TECHNOL,PHYS TEACHING & RES OFF,BOX
23406    146,SHANGHAI 200072,PEOPLES R CHINA.
23407 CR DAI DS, 1987, FERROMAGNETISM, P135
23408    GROSSINGER R, 1990, J MAGN MAGN MATER, V86, P219
23409    HE ZM, 1989, ACTA METALLURGICA SI, V25, B329
23410    KHAN Y, 1990, J MAGN MAGN MATER, V86, L143
23411 NR 4
23412 TC 0
23413 SN 0304-8853
23414 J9 J MAGN MAGN MATER
23415 JI J. Magn. Magn. Mater.
23416 PD JUN
23417 PY 1993
23418 VL 124
23419 IS 1-2
23420 BP 47
23421 EP 50
23422 PG 4
23423 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
23424 GA LK585
23425 UT ISI:A1993LK58500008
23426 ER
23427 
23428 PT J
23429 AU CHEN, J
23430    YANG, YQ
23431    QIAN, PB
23432    MA, ZT
23433    WU, WB
23434    SUNG, PZ
23435    WANG, XG
23436    LI, JH
23437 TI DRUG CARRYING HYDROGEL BASE WOUND DRESSING
23438 SO RADIATION PHYSICS AND CHEMISTRY
23439 DT Article
23440 DE HYDROGEL; WOUND DRESSING; DRUG RELEASE; RADIATION CROSS-LINKING
23441 AB A special drug carrying hydrogel base wound dressing by radiation
23442    preparation is developed for hospital uses. The dressing possesses high
23443    water absorption property. Radiation preparation is carried out using a
23444    Van de Graaff Accelerator as an electron radiation source. The effect
23445    of absorbed dose and amount of crosslinking agent on the gel fraction
23446    and swelling ratio of the hydrogel were determined respectively. As a
23447    bio-medical material, standard tests were made. Results showed
23448    properties conforming with requirements for clinical applications.
23449    Results obtained from clinical tests were good.
23450 C1 NAVY HOSP 411,SHANGHAI 200081,PEOPLES R CHINA.
23451 RP CHEN, J, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI
23452    201800,PEOPLES R CHINA.
23453 CR PEPPAS NA, 1986, HYDROGELS MED PHARM, V3, P180
23454    RUCINSKA A, 1988, 4TH C RAD PROC IND, P218
23455 NR 2
23456 TC 4
23457 SN 0146-5724
23458 J9 RADIAT PHYS CHEM
23459 JI Radiat. Phys. Chem.
23460 PD OCT-DEC
23461 PY 1993
23462 VL 42
23463 IS 4-6
23464 BP 915
23465 EP 918
23466 PG 4
23467 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
23468    Science & Technology
23469 GA LK325
23470 UT ISI:A1993LK32500075
23471 ER
23472 
23473 PT J
23474 AU LIU, ZM
23475    MA, ZT
23476 TI RADIATION GRAFTING KINETICS OF HEMA/DGDA ONTO SILASTIC IN DIFFERENT
23477    ATMOSPHERES
23478 SO RADIATION PHYSICS AND CHEMISTRY
23479 DT Article
23480 DE RADIATION GRAFTING; GRAFTING KINETICS; GRAFTING ATMOSPHERES; GRAFTING
23481    DISTRIBUTION
23482 AB The radiation grafting kinetics of HEMA, as well as that of the mixture
23483    monomers of HEMA and DGDA have been researched. The effects of
23484    radiation dose, dose rate, and temperature on grafting are
23485    systematically researched in different atmospheres. It has been found
23486    that grafting is different in different atmospheres. The findings show
23487    that the depth distribution of HEMA/DGDA monomer units in grafting
23488    layer is nonuniform. At first, HEMA grafting is superior, in the later
23489    stage of grafting, however, DGDA grafting is increased. The temperature
23490    effect on grafting is great at the beginning, it is less in the later
23491    stage of grafting.
23492 RP LIU, ZM, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT INST,SHANGHAI
23493    201800,PEOPLES R CHINA.
23494 CR CHAPIRO A, 1962, RAD CHEM POLYM SYSTE
23495    COHN D, 1984, J APPL POLYM SCI, V29, P2645
23496    HOFFMAN AS, 1982, IND APPL RADIOISOTOP, P279
23497    MA ZT, 1986, J SHANGHAI U SCI TEC, P1
23498    YASUDA H, 1964, J POLYM SCI A2, P5093
23499 NR 5
23500 TC 0
23501 SN 0146-5724
23502 J9 RADIAT PHYS CHEM
23503 JI Radiat. Phys. Chem.
23504 PD OCT-DEC
23505 PY 1993
23506 VL 42
23507 IS 4-6
23508 BP 939
23509 EP 942
23510 PG 4
23511 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
23512    Science & Technology
23513 GA LK325
23514 UT ISI:A1993LK32500081
23515 ER
23516 
23517 PT J
23518 AU ZHOU, RM
23519    MA, ZT
23520    KAETUS, I
23521    KUMAKURA, M
23522 TI IMMOBILIZATION OF TRICHORDEMA REESEI BY RADIATION POLYMERIZATION
23523 SO RADIATION PHYSICS AND CHEMISTRY
23524 DT Article
23525 DE RADIATION POLYMERIZATION; IMMOBILIZATION; FERMENTATION; CELL
23526 AB Immobilization of trichordema Reesei(QM9414) was prepared by radiation
23527    polymerization. It was found that the activity of fixed cells increased
23528    with inseasing surface area of the carrier and was affected by the
23529    concentration of monomer tetraethylenglycol dimethacrylate (4G) and the
23530    shape of the substrate composition and structure of cotton textile
23531    fabics.
23532 C1 JAPAN ATOM ENERGY RES INST,TAKASAKI RADIAT CHEM INST,TAKASAKI,GUNMA 37012,JAPAN.
23533 RP ZHOU, RM, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT
23534    INST,SHANGHAI 201800,PEOPLES R CHINA.
23535 CR ARCURI EJ, 1982, BIOTECHNOL BIOENG, V24, P595
23536    MA ZT, 1986, IND MICROBIOLOGY, V16, P21
23537    ZHOU RM, 1987, IND MICROBIOLOGY, V17, P5
23538 NR 3
23539 TC 1
23540 SN 0146-5724
23541 J9 RADIAT PHYS CHEM
23542 JI Radiat. Phys. Chem.
23543 PD OCT-DEC
23544 PY 1993
23545 VL 42
23546 IS 4-6
23547 BP 943
23548 EP 945
23549 PG 3
23550 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
23551    Science & Technology
23552 GA LK325
23553 UT ISI:A1993LK32500082
23554 ER
23555 
23556 PT J
23557 AU WU, WB
23558    SUNG, PZ
23559    WANG, XG
23560    LI, JH
23561    CHEN, J
23562    YANG, YQ
23563    SHEN, YH
23564    MA, ZT
23565 TI SLOW-RELEASE OF WOUND-HEALING DRUG FROM HYDROGEL WOUND DRESSING
23566    PREPARED BY RADIATION CROSS-LINKING METHOD
23567 SO RADIATION PHYSICS AND CHEMISTRY
23568 DT Article
23569 DE WOUND DRESSING; DRUG RELEASE; HYDROGEL; RADIATION CROSS-LINKING
23570 AB The hydrogel wound dressing was prepared by radiation crosslinking. It
23571    was used of on patients in the Navy 411 Hospital and some other
23572    hospitals.From sixty case studies of the clinical effects, the results
23573    showed that: 1. drug releasing slowly relieves       the pain
23574    effectively for prolonged period of application; 2. The dressing can
23575    reduce the oozing liquid from the wound and make the wound heal faster
23576    ;3.The number of the dressing change is greatly reduced. All the data
23577    indicates that the dressing is superior to the conventional kinds.
23578 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
23579 RP WU, WB, NAVY HOSP 411,SHANGHAI 200081,PEOPLES R CHINA.
23580 CR QUEEN D, 1987, BURNS, V13, P218
23581 NR 1
23582 TC 1
23583 SN 0146-5724
23584 J9 RADIAT PHYS CHEM
23585 JI Radiat. Phys. Chem.
23586 PD OCT-DEC
23587 PY 1993
23588 VL 42
23589 IS 4-6
23590 BP 947
23591 EP 948
23592 PG 2
23593 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
23594    Science & Technology
23595 GA LK325
23596 UT ISI:A1993LK32500083
23597 ER
23598 
23599 PT J
23600 AU DING, ZL
23601    YOSHIDA
23602    MA, ZT
23603    KUMAKURA, M
23604 TI A STUDY ON THE DESWELLING BEHAVIOR OF A THERMORESPONSIVE HYDROGEL
23605    PREPARED BY RADIATION POLYMERIZATION
23606 SO RADIATION PHYSICS AND CHEMISTRY
23607 DT Article
23608 DE THERMORESPONSIVE HYDROGEL; RADIATION POLYMERIZATION; SWELLING
23609 AB A new kind of thermo-responsive hydrogel, poly(methacryloyl-DL-alanie
23610    methyl ester), was synthesized by means of radiation polymerization.
23611    The swelling and deswelling were reversible.The deswelling kinetics
23612    changes with the variation of temperature. It was found that a rigid
23613    membrane was formed during deswlling at 40-degrees-C . In the case of
23614    deswelling at 20-degrees-C , no skin was found. The hydrogel deswelled
23615    uniformly.
23616 C1 JAPAN ATOM ENERGY RES INST,TAKASAKI RADIAT CHEM RES INST,TAKASAKI,GUNMA 37012,JAPAN.
23617 RP DING, ZL, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI APPL RADIAT
23618    INST,SHANGHAI 201800,PEOPLES R CHINA.
23619 CR DONG LC, 1986, J CONTROL RELEASE, V4, P223
23620    FREITAS RFS, 1987, CHEM ENG SCI, V42, P97
23621    OKANO T, 1990, J CONTROL RELEASE, V11, P255
23622 NR 3
23623 TC 2
23624 SN 0146-5724
23625 J9 RADIAT PHYS CHEM
23626 JI Radiat. Phys. Chem.
23627 PD OCT-DEC
23628 PY 1993
23629 VL 42
23630 IS 4-6
23631 BP 959
23632 EP 962
23633 PG 4
23634 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
23635    Science & Technology
23636 GA LK325
23637 UT ISI:A1993LK32500086
23638 ER
23639 
23640 PT J
23641 AU WU, MH
23642    SHEN, WP
23643    MA, ZT
23644 TI SYNTHESIS OF POLYACRYLATE CORE-SHELL STRUCTURE LATEX BY RADIATION
23645    TECHNIQUES
23646 SO RADIATION PHYSICS AND CHEMISTRY
23647 DT Article
23648 DE CORE-SHELL STRUCTURE; POLYACRYLATE; EMULSION POLYMERIZATION
23649 AB A series of poly(butyl acrylate-co-methyl methacrylate)/poly (ethyl
23650    acrylate-co-acrylic acid) interpenetrating polymer network (IPN) was
23651    synthesized in latex form by emulsion polymerization. The multiphase
23652    morphology of the latex particles was studied after two-stage
23653    polymerization by using transimission electron microscope (TEM), the
23654    result indicated that the morphology of the particles comprises
23655    gradient shell structure, cellular structure and core-shell structure.
23656    The change of morphology might stem from emulsion polymerization by
23657    radiation initiation or chemical initiation and the weight composition
23658    of poly(EA-co-MMA) seed latex which formed the core. By radiation
23659    techniques, we successfully synthesized poly( BA-co-MMA)/poly(EA-co-AA)
23660    latex of core-shell structure having (42-8)/(46-4) weight compositions.
23661    The PA core-shell structure latex applied to textile as a water
23662    proofing coating showed higher water-pressure and easier handling than
23663    that with PA homogeneous phase structure latex.
23664 RP WU, MH, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI RADIAT APPLICAT
23665    INST,SHANGHAI 201800,PEOPLES R CHINA.
23666 CR 1983, PROGR ORGANIC COATIN, V11, P205
23667    MCCARTY WHU, 1984, 44492324, US
23668    PIRMA I, 1976, ACS SYM SER, V24, P306
23669    SPERLING LH, 1972, INT J POLYM MATER, V1, P331
23670    SPERLING LH, 1973, J APPL POLYM SCI, V17, P2443
23671    WANDERHOFF TW, 1984, J POLYM CHEM, V22
23672 NR 6
23673 TC 1
23674 SN 0146-5724
23675 J9 RADIAT PHYS CHEM
23676 JI Radiat. Phys. Chem.
23677 PD JUL-SEP
23678 PY 1993
23679 VL 42
23680 IS 1-3
23681 BP 171
23682 EP 174
23683 PG 4
23684 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
23685    Science & Technology
23686 GA LK323
23687 UT ISI:A1993LK32300038
23688 ER
23689 
23690 PT J
23691 AU DENG, XN
23692    YIN, JH
23693    FAN, QB
23694    SHEN, ZD
23695    LIANG, PH
23696    ZHANG, WQ
23697 TI THE MODIFICATION OF NI, PB AND LB FILMS ON THE BEHAVIOR OF N-SI
23698    PHOTOELECTRODE
23699 SO ACTA CHIMICA SINICA
23700 DT Article
23701 ID SILICON PHOTOELECTRODES
23702 AB The effects of metal (Ni or Pb) and Langmuir-Blodgett films on the PEC
23703    behavior of n-Si have been studied. It is observed that Ni and Pb can
23704    improve the energy conversion efficiency and the stability of n-Si. The
23705    modification of LB films prepared with eight different organic
23706    compounds on n-Si/Ni have been determined and discussed, its efficiency
23707    has been doubled by the best one (long-chain coumarin LB film). The
23708    photoelectrochemical properties of Si/LB/Al electrode having the MIS
23709    structure has also been researched. It is discovered that it exhibits
23710    good photoelectric effect.
23711 C1 ACAD SINICA,SHANGHAI INST OPT & FINE MECH,SHANGHAI 201800,PEOPLES R CHINA.
23712 RP DENG, XN, SHANGHAI UNIV SCI & TECHNOL,ELECTROCHEM RES CTR,SHANGHAI
23713    201800,PEOPLES R CHINA.
23714 CR BAKER S, 1983, THIN SOLID FILMS, V99, P53
23715    BATEY J, 1983, THIN SOLID FILMS, V99, P283
23716    BOLTS JM, 1979, J AM CHEM SOC, V101, P1378
23717    FURUNO T, 1988, THIN SOLID FILMS, V160, P145
23718    HIGUCHI Y, 1986, CHEM LETT, V12, P1651
23719    HOME AT, 1987, J ELECTROCHEM SOC, V134, P72
23720    LI G, 1990, Z NATURFORSCH, V45, P695
23721    NAKATO Y, 1987, BER BUNSEN PHYS CHEM, V91, P405
23722    TSUBOMURA H, 1987, NEW J CHEM, V11, P167
23723 NR 9
23724 TC 0
23725 SN 0567-7351
23726 J9 ACTA CHIM SIN
23727 JI Acta Chim. Sin.
23728 PY 1993
23729 VL 51
23730 IS 5
23731 BP 432
23732 EP 437
23733 PG 6
23734 SC Chemistry, Multidisciplinary
23735 GA LJ879
23736 UT ISI:A1993LJ87900003
23737 ER
23738 
23739 PT J
23740 AU HUANG, HC
23741 TI FIBEROPTICS IN CHINA - INTRODUCTION
23742 SO FIBER AND INTEGRATED OPTICS
23743 DT Editorial Material
23744 RP HUANG, HC, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
23745 NR 0
23746 TC 0
23747 SN 0146-8030
23748 J9 FIBER INTEGRATED OPT
23749 JI Fiber Integr. Opt.
23750 PY 1993
23751 VL 12
23752 IS 1
23753 BP 1
23754 EP 1
23755 PG 1
23756 SC Optics
23757 GA LJ499
23758 UT ISI:A1993LJ49900001
23759 ER
23760 
23761 PT J
23762 AU HUANG, HC
23763 TI PASSIVE POLARIZATION-CONTROLLED ALL-FIBER GYROSCOPE AND OTHER
23764    INTERFEROMETRIC ARCHITECTURES
23765 SO FIBER AND INTEGRATED OPTICS
23766 DT Article
23767 AB A novel all-fiber gyroscope architecture is disclosed making use of the
23768    author's U. S. -patented Passive Polarization Control (PPC) invention
23769    to stabilize the polarization state of the counter-propagating beams in
23770    the rotating Sagnac fiber loop. The PPC is simply a piece of variably
23771    spun birefringent optical fiber capable of transforming a circularly
23772    polarized light into a linearly polarized light that automatically
23773    aligns itself along a principal axis of the fiber. The all-fiber
23774    gyroscope architecture uses two cascaded directional couplers operating
23775    on circular SOP, thus providing an ''SOP matching '' with the
23776    PPC-terminated fiber loop. The predicted PPC performance has been
23777    confirmed experimentally in a laboratory.
23778 RP HUANG, HC, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
23779 CR CULSHAW B, 1991, PROGR ELECTROMAGNETI
23780    HUNGCHIA H, 1960, SCIENTIA SINICA, V9, P142
23781    HUNGCHIA H, 1961, ACTA MATH SINICA, V11, P238
23782    HUNGCHIA H, 1981, RADIO SCI, V16, P494
23783    HUNGCHIA H, 1984, COUPLED MODE THEORY
23784    HUNGCHIA H, 1990, 10422442, CH
23785    HUNGCHIA H, 1990, 4943132, US
23786    HUNGCHIA H, 1991, 91107430, CH, APPL
23787    HUNGCHIA H, 1991, COUPLED MODES NONIDE, P81
23788    HUNGCHIA H, 1991, PROGR ELECTROMAGNETI
23789    HUNGCHIA H, 1992, 5096312, US
23790    HUNGCHIA H, 1992, 92108559, CH, APPL
23791    KELLER HB, 1962, J SOC IND APPL MATH, V10, P246
23792 NR 13
23793 TC 3
23794 SN 0146-8030
23795 J9 FIBER INTEGRATED OPT
23796 JI Fiber Integr. Opt.
23797 PY 1993
23798 VL 12
23799 IS 1
23800 BP 21
23801 EP 29
23802 PG 9
23803 SC Optics
23804 GA LJ499
23805 UT ISI:A1993LJ49900004
23806 ER
23807 
23808 PT J
23809 AU ZHU, JH
23810    WAN, XJ
23811    WU, Y
23812 TI EFFECT OF BORON DOPING ON ENVIRONMENTAL EMBRITTLEMENT OF NI3(AL,MN)
23813 SO SCRIPTA METALLURGICA ET MATERIALIA
23814 DT Article
23815 ID INTERGRANULAR HYDROGEN EMBRITTLEMENT; MECHANICAL-PROPERTIES;
23816    GRAIN-BOUNDARIES; NI3AL; DUCTILITY; ALLOYS; FEAL; CO3TI; BERYLLIUM;
23817    COMPOUND
23818 RP ZHU, JH, SHANGHAI UNIV SCI & TECHNOL,INST MET & MAT SCI,SHANGHAI
23819    200072,PEOPLES R CHINA.
23820 CR GAYDOSH DJ, 1990, SCRIPTA METALL MATER, V24, P1281
23821    GEORGE EP, 1992, SCRIPTA METALL MATER, V27, P365
23822    HORTON JA, 1984, HIGH TEMPERATURE ALL, P309
23823    HORTON JA, 1987, ACTA METALL, V35, P133
23824    LIU CT, 1985, ACTA METALL, V33, P213
23825    LIU CT, 1989, SCRIPTA METALL, V23, P875
23826    LIU CT, 1990, SCRIPTA METALL MATER, V24, P1285
23827    LIU CT, 1990, SCRIPTA METALL MATER, V24, P385
23828    LIU CT, 1991, ISIJ INT, V31, P1192
23829    LIU CT, 1991, SCRIPTA METALL MATER, V25, P1933
23830    LIU CT, 1992, SCRIPTA METALL MATER, V27, P25
23831    LIU CT, 1992, SCRIPTA METALL MATER, V27, P599
23832    LYNTH R, 1991, SCRIPTA METALL, V25, P2147
23833    MASAHASHI N, 1988, ACTA METALL, V36, P1823
23834    MASAHASHI N, 1988, METALL T A, V19, P345
23835    MASAHASHI N, 1988, METALL T A, V19, P353
23836    MCKAMEY CG, 1990, SCRIPTA METALL MATER, V24, P2119
23837    NISHIMURA C, 1991, SCRIPTA METALL MATER, V25, P791
23838    NISHIMURA C, 1992, ACTA METALL MATER, V40, P723
23839    SIKKA VK, 1991, SAMPE QUART, V22, P2
23840    TAKASUGI T, 1985, SCRIPTA METALL, V19, P903
23841    TAKASUGI T, 1986, ACTA METALL, V34, P607
23842    TAKASUGI T, 1986, SCRIPTA METALL, V20, P1317
23843    TAKASUGI T, 1990, J MATER SCI, V25, P4239
23844    TAKASUGI T, 1991, ACTA METALL MATER, V39, P2157
23845    TAKASUGI T, 1991, J MATER SCI, V26, P1179
23846    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
23847    WHITE CL, 1984, SCRIPTA METALL, V18, P1417
23848 NR 28
23849 TC 10
23850 SN 0956-716X
23851 J9 SCR METALL MATER
23852 JI Scr. Metall. Materialia
23853 PD AUG 1
23854 PY 1993
23855 VL 29
23856 IS 3
23857 BP 429
23858 EP 432
23859 PG 4
23860 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
23861    Engineering
23862 GA LJ115
23863 UT ISI:A1993LJ11500026
23864 ER
23865 
23866 PT J
23867 AU WANG, E
23868    YU, ZM
23869    XU, CM
23870    QI, DY
23871 TI BARIUM ION TRANSFER ACROSS THE WATER NITROBENZENE INTERFACE FACILITATED
23872    BY AN IONOPHORE N,N,N',N'-TETRACYCLOHEXYL-3-OXAPENTANEDIAMIDE (ETH129)
23873 SO ANALYTICAL SCIENCES
23874 DT Note
23875 ID MECHANISM; TRANSPORT
23876 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
23877 RP WANG, E, CHINESE ACAD SCI,CHANGCHUN INST APPL CHEM,ELECTROANALYT CHEM
23878    LAB,CHANGCHUN 130022,PEOPLES R CHINA.
23879 CR HOMOLKA D, 1982, J ELECTROANAL CHEM, V138, P29
23880    KAKIUCHI T, 1991, J ELECTROANAL CH INF, V300, P431
23881    KAKUTANI T, 1986, B CHEM SOC JPN, V59, P781
23882    KORYTA J, 1979, ELECTROCHIM ACTA, V24, P293
23883    KORYTA J, 1983, ION SEL ELECTRODE R, V5, P131
23884    PRETSCH E, 1980, HELV, V63, P191
23885    QI DY, 1992, ACTA CHIM SINICA, V50, P479
23886    VANYSEK P, 1984, J ELECTROANAL CH INF, V163, P1
23887    WANG E, 1987, J CHEM SOC F1, V83, P2993
23888    YOSHIDA Z, 1984, J ELECTROANAL CH INF, V179, P31
23889 NR 10
23890 TC 1
23891 SN 0910-6340
23892 J9 ANAL SCI
23893 JI Anal. Sci.
23894 PD JUN
23895 PY 1993
23896 VL 9
23897 IS 3
23898 BP 405
23899 EP 408
23900 PG 4
23901 SC Chemistry, Analytical
23902 GA LG425
23903 UT ISI:A1993LG42500014
23904 ER
23905 
23906 PT J
23907 AU YANG, ZJ
23908    YAO, KY
23909 TI EFFECTS OF SEVERAL KINDS OF ANISOTROPY ON THE COERCIVITY BEHAVIORS OF
23910    IRON-OXIDES
23911 SO JOURNAL OF APPLIED PHYSICS
23912 DT Article
23913 AB Coercivity behaviors of iron oxides during phase changes between Fe3O4
23914    and gamma-Fe2O3 for granular powders and continuous thin films, which
23915    can be interpreted in a unified framework by an intermediate product
23916    hypothesis, are investigated. There exists a critical value c(cr) of
23917    Fe3O4 concentration for different samples. The intermediate product
23918    Fe3-zO4 in oxidation and reduction processes is a mixture of two phases
23919    when Fe3O4 concentration c is smaller than C(cr); but it may exist in
23920    the form of a homogeneous solid solution (single-phase)
23921    (Fe3O4)1-x(gamma-Fe2O3)x when c is larger than c(cr). The difference in
23922    lattice constants will produce a tensive stress (sigma>0) on
23923    gamma-Fe2O3 and compressive stress (sigma<0) on Fe3O4 at interfaces.
23924    Superposition of a positive stress anisotropy on the easy axes [111] of
23925    magnetocrystalline anisotropy for Fe3O4 and on the easy axes [110] for
23926    gamma-Fe2O3 will cause an increase in the coercivity H(c) for spherical
23927    particle and thin film samples. The coercivity behavior of our acicular
23928    particle sample is contrary to that of thin film and spherical particle
23929    samples. Also, the switching field distribution curve showed a peak
23930    near c=0.4. There always exist some two-phase intermediate compounds in
23931    Fe3-zO4 due to the incomplete reaction of single domain particles. The
23932    decrease in coercivity of acicular particles is affected by the shape
23933    anisotropy related to changes in effective particle sizes.
23934 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT PHYS,SHANGHAI,PEOPLES R CHINA.
23935 RP YANG, ZJ, ARIZONA STATE UNIV,DEPT PHYS,TEMPE,AZ 85287.
23936 CR BATE G, 1980, FERROMAGNETIC MATERI, V2, P381
23937    BEAN CP, 1959, J APPL PHYS, V30, P1205
23938    BICKFORD LR, 1956, P I ELECTR ENG S5, V104, P238
23939    BORRELLI NF, 1972, IEEE MAGNET, V8, P648
23940    CHIKAZUMI S, 1964, PHYSICS MAGNETISM
23941    COLOMBO U, 1967, MATER SCI ENG, V2, P125
23942    EAGLE DF, 1967, J APPL PHYS, V38, P995
23943    GUSTARD B, 1969, IEEE T MAGN, V5, P326
23944    HANDERS PJ, 1962, J APPL PHYS, V33, P216
23945    IMAOKA Y, 1968, J ELECTRON SOC JPN, V36, P15
23946    IMAOKA Y, 1971, P INT C FERRITES, P467
23947    KOJIMA H, 1980, IEEE T MAGN, V16, P11
23948    NEEL L, 1947, CR HEBD ACAD SCI, V224, P488
23949    NEEL L, 1955, ADV PHYS, V4, P191
23950    SHTRIKMAN S, 1959, J PHYS RADIUM, V20, P286
23951    STONER EC, 1948, PHILOS T ROY SOC A, V240, P599
23952    TAKEI H, 1966, J PHYS SOC JPN, V21, P1255
23953    WATT LAK, 1960, J APPL PHYS, V31, S71
23954    WOHLFARTH EP, 1964, J APPL PHYS, V35, P783
23955 NR 19
23956 TC 2
23957 SN 0021-8979
23958 J9 J APPL PHYS
23959 JI J. Appl. Phys.
23960 PD MAY 15
23961 PY 1993
23962 VL 73
23963 IS 10
23964 PN Part 2B
23965 BP 6665
23966 EP 6667
23967 PG 3
23968 SC Physics, Applied
23969 GA LD865
23970 UT ISI:A1993LD86500196
23971 ER
23972 
23973 PT J
23974 AU CHEN, ZX
23975    YU, GB
23976 TI LONG-TIME BEHAVIORS OF THE SPATIALLY UNIFORM DISCRETE NAGUMO MODEL
23977 SO MATHEMATICAL METHODS IN THE APPLIED SCIENCES
23978 DT Article
23979 AB In this paper a spatially uniform discrete Nagumo model is considered.
23980    The relation between the number and positions of period-2 solutions,
23981    and the parameter and initial values are discovered. The long-time
23982    behaviours of the solutions are discussed for different parameters and
23983    initial values.
23984 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA.
23985 RP CHEN, ZX, SHANGHAI JIAO TONG UNIV,DEPT APPL MATH,SHANGHAI
23986    200030,PEOPLES R CHINA.
23987 CR BRITTON NF, 1986, REACTION DIFFUSION E
23988    BURATTI RJ, 1968, P IEEE, V56, P1392
23989    CHEN ZX, 1992, IMA J APPL MATH, V48, P107
23990    DEVANCY RL, 1986, INTRO CHAOTIC DYNAMI
23991    DEVANEY RL, 1989, CHAOS FRACTALS MATH
23992    GUO B, 1989, APPL ANAL, V33, P215
23993    JONES DS, 1983, DIFFERENTIAL EQUATIO
23994    NAGUMO J, 1962, P IRE, V50, P2061
23995    NAGUMO J, 1965, IREE T CIRCUIT THEOR, V12, P400
23996    PICKARD WF, 1966, J THEOR BIOL, V11, P30
23997    SCOTT AC, 1963, P IEEE, V51, P240
23998    SLEEMAN BD, 1988, SIAM J SCI STAT COMP, V9, P543
23999    SMIONOV VI, 1952, KUS VYESHEI MATEMATI, V1
24000    SMOLLER J, 1983, SHOCK WAVES REACTION
24001    WEINBERGER HF, 1982, SIAM J MATH ANAL, V13, P353
24002 NR 15
24003 TC 0
24004 SN 0170-4214
24005 J9 MATH METH APPL SCI
24006 JI Math. Meth. Appl. Sci.
24007 PD MAY
24008 PY 1993
24009 VL 16
24010 IS 5
24011 BP 305
24012 EP 325
24013 PG 21
24014 SC Mathematics, Applied
24015 GA LD445
24016 UT ISI:A1993LD44500001
24017 ER
24018 
24019 PT J
24020 AU HUA, JD
24021    LIU, YF
24022    ZHANG, KJ
24023    JIANG, SR
24024 TI THE COMPATIBILITY OF A POLYMERIC CATALYST SUBSTRATE SOLVENT AND
24025    REACTION-RATE .3.
24026 SO JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS
24027 DT Article
24028 AB In the presence of solvent, the catalytic rate in a polymeric metal
24029    complex catalyst (2)-substrate (1)-solvent (0) system is related to the
24030    solubility parameters (delta(i)) of the three components. According to
24031    thermodynamic and kinetic theories, an approximate relationship between
24032    the reaction rate and solubility parameters has been deduced as follows:
24033    [GRAPHICS] where phi2 is volume fraction of polymeric catalyst and V1
24034    is mole volume of substrate. For a given polymeric catalyst and a given
24035    substrate, the effect of different solvents on the rate could be
24036    simplified as r = A/1 + D . exp(-B (delta0 - delta2)2) where A, B, and
24037    D are constants. From this formula it can be seen that the rate is a
24038    function of solubility parameter of solvent in the form of the
24039    reciprocal of a normal distribution. This result has been supported by
24040    experiment.
24041 RP HUA, JD, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
24042    R CHINA.
24043 CR HANSEN CM, 1967, J PAINT TECHNOL, V39, P104
24044    HANSEN CM, 1967, J PAINT TECHNOL, V39, P511
24045    HANSEN CM, 1969, IND ENG CHEM PROD RD, V2, P8
24046    HUA J, 1989, J APPL POLYM SCI, V38, P1211
24047    HUA J, 1989, J MACROMOL SCI PHY B, V28, P455
24048 NR 5
24049 TC 2
24050 SN 0022-2348
24051 J9 J MACROMOL SCI-PHYS
24052 JI J. Macromol. Sci.-Phys.
24053 PY 1993
24054 VL B32
24055 IS 2
24056 BP 183
24057 EP 204
24058 PG 22
24059 SC Polymer Science
24060 GA LB533
24061 UT ISI:A1993LB53300004
24062 ER
24063 
24064 PT J
24065 AU WANG, X
24066    WANG, ZH
24067    HUANG, ZM
24068 TI PROPAGATION CONSTANT OF A PLANAR DIELECTRIC WAVE-GUIDE WITH ARBITRARY
24069    REFRACTIVE-INDEX VARIATION
24070 SO OPTICS LETTERS
24071 DT Article
24072 ID OPTICAL WAVE-GUIDE; MATRIX
24073 AB The calculation of a propagation constant is an interesting problem in
24074    the study of planar waveguides. We present a new method for solving the
24075    problem of a planar dielectric waveguide with arbitrary
24076    refractive-index variation for either TE or TM modes, and this method
24077    is simpler than other methods. Taking a parabolic refractive-index
24078    profile as an example, we show that high accuracy can be attained with
24079    this new method, provided that the waveguide is divided into layers of
24080    proper number and thickness.
24081 RP WANG, X, SHANGHAI UNIV SCI & TECHNOL,WAVE SCI LAB,SHANGHAI
24082    201800,PEOPLES R CHINA.
24083 CR CHILWELL J, 1984, J OPT SOC AM A, V1, P742
24084    HUANG HC, 1981, ELECTRON LETT, V17, P202
24085    POLKY JN, 1974, J OPT SOC AM, V64, P274
24086    TAMIR T, 1979, INTEGRATED OPTICS, CH2
24087    WALPITA LM, 1985, J OPT SOC AM A, V2, P595
24088    WANG ZH, 1989, J OPT SOC AM A, V6, P142
24089 NR 6
24090 TC 1
24091 SN 0146-9592
24092 J9 OPTICS LETTERS
24093 JI Opt. Lett.
24094 PD MAY 15
24095 PY 1993
24096 VL 18
24097 IS 10
24098 BP 805
24099 EP 807
24100 PG 3
24101 SC Optics
24102 GA LA947
24103 UT ISI:A1993LA94700017
24104 ER
24105 
24106 PT J
24107 AU LIU, RH
24108    ZOU, RP
24109 TI NONLINEAR BENDING OF A CORRUGATED ANNULAR PLATE WITH A PLANE BOUNDARY
24110    REGION AND A NON-DEFORMABLE RIGID-BODY AT THE CENTER UNDER COMPOUND LOAD
24111 SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS
24112 DT Article
24113 ID LARGE DEFLECTION; CIRCULAR PLATE
24114 AB In this paper, based on the non-linear bending theories of isotropic
24115    and anisotropic annular plates, the non-linear bending of a corrupted
24116    annular plate with a plane boundary region and a non-deformable rigid
24117    body at the center has been investigated under the combined action of
24118    uniform pressure and a single concentrated load at the center. For two
24119    kinds of outer edges, namely, rigidly and loosely clamped edges,
24120    analytical solutions of the plate have been obtained by the modified
24121    iteration method.
24122 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA.
24123 RP LIU, RH, JINAN UNIV,CANTON 510632,PEOPLES R CHINA.
24124 CR AKASAKA T, 1955, J JAP SOC AERONAUT E, V3, P279
24125    ANDRYEVA LE, 1962, ELASTIC ELEMENTS INS
24126    ANDRYEWA LE, 1955, ENG COLLECTION SBORN, V21, P128
24127    BURMISTROV EV, 1960, ENG COLLECTION, V27, P185
24128    CHEN SL, 1980, APPL MATH MECH, V1, P261
24129    FEODOSEV VI, 1945, PRIKL MAT MEKH, V9, P389
24130    FEODOSEV VI, 1949, ELASTIC ELEMENTS PRE
24131    HARINGX JA, 1956, APPL SCI RES A, V16, P45
24132    HARINGX JA, 1957, T ASME, V79, P55
24133    LIU RH, 1965, B SCI, V3, P253
24134    LIU RH, 1978, ACTA MECH SINICA, V1, P47
24135    LIU RH, 1979, J CHINA U SCI TECHNO, V9, P75
24136    LIU RH, 1984, INT J NONLINEAR MECH, V19, P409
24137    LIU RH, 1984, SCI SINICA SER A, V27, P640
24138    LIU RH, 1984, SOLID MECH ARCH, V9, P383
24139    LIU RH, 1985, SCI SINICA SER A, V28, P959
24140    LIU RH, 1987, ADV APPL MATH MECH C, V1, P138
24141    LIU RH, 1988, APPL MATH MECH, V9, P711
24142    LIU RH, 1989, INT J NONLINEAR MECH, V24, P165
24143    PANOV DY, 1941, PRIKL MAT MEKH, V5, P308
24144    YEH KY, 1965, B SCI, V2, P142
24145    YEH KY, 1965, B SCI, V2, P145
24146 NR 22
24147 TC 2
24148 SN 0020-7462
24149 J9 INT J NON-LINEAR MECH
24150 JI Int. J. Non-Linear Mech.
24151 PD MAY
24152 PY 1993
24153 VL 28
24154 IS 3
24155 BP 353
24156 EP 364
24157 PG 12
24158 SC Mechanics
24159 GA KZ772
24160 UT ISI:A1993KZ77200007
24161 ER
24162 
24163 PT J
24164 AU DAVID, AK
24165    LI, YZ
24166 TI EFFECT OF INTER-TEMPORAL FACTORS ON THE REAL-TIME PRICING OF ELECTRICITY
24167 SO IEEE TRANSACTIONS ON POWER SYSTEMS
24168 DT Article
24169 DE REAL TIME PRICING; POWER ECONOMICS; POWER GENERATION DISPATCH; LOAD
24170    MANAGEMENT; ENERGY MANAGEMENT
24171 AB Dynamic tariffs such as spot pricing are meaningful as indirect load
24172    management tools only if customers are sensitive to inter-temporal
24173    price variations. However, little attention has been paid so far to
24174    understanding the mechanisms of cross-time price elasticity of demand,
24175    inter-temporal definitions of customer utility, and the interaction of
24176    these two effects with the supply side factors of least cost system
24177    operation and dispatch. The importance of these interactions is
24178    enhanced in circumstances where competition between suppliers is
24179    envisaged or when it is desired to use a common spot price for several
24180    disparate customers. This paper develops conceptual and theoretical
24181    models for this purpose, describes computerized solution algorithms and
24182    provides simulation examples.
24183 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
24184 RP DAVID, AK, HONG KONG POLYTECH,KOWLOON,HONG KONG.
24185 CR DAVID AK, IN PRESS INT J ELECT
24186    DAVID AK, 1988, IEE P-GENER TRANSM D, V135, P378
24187    DAVID AK, 1989, IEEE T POWER SYST, V4, P904
24188    DAVID AK, 1991, NOV P IEE C ADV POW
24189    SCHWEPPE FC, 1988, SPOT PRICING ELECTRI
24190 NR 5
24191 TC 4
24192 SN 0885-8950
24193 J9 IEEE TRANS POWER SYST
24194 JI IEEE Trans. Power Syst.
24195 PD FEB
24196 PY 1993
24197 VL 8
24198 IS 1
24199 BP 44
24200 EP 52
24201 PG 9
24202 SC Engineering, Electrical & Electronic
24203 GA KZ377
24204 UT ISI:A1993KZ37700007
24205 ER
24206 
24207 PT J
24208 AU HE, GQ
24209    CHEN, YM
24210 TI AN INVERSE PROBLEM FOR THE BURGERS-EQUATION
24211 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
24212 DT Article
24213 AB In this paper the Generalized Pulse-Spectrum Technique (GPST) is
24214    extended to solve an inverse problem for the Burgers equation. We prove
24215    that the GPST is equivalent in some sense to the Newton-Kautorovich
24216    iteration method. A feasible numerical implementation is presented in
24217    the paper and some examples are excuted. The numerical results show
24218    that this procedure works quite well.
24219 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
24220    SUNY STONY BROOK,DEPT APPL MATH & STAT,STONY BROOK,NY 11794.
24221 CR BURGERS JM, 1948, ADV APPL MECH, V1, P171
24222    BURGERS JM, 1974, NONLINEAR DIFFUSION
24223    CHEN YM, 1983, J COMPUT PHYS, V50, P193
24224    CHEN YM, 1983, SEP US CHIN WORKSH A
24225    LIONS JL, 1972, NONHOMOGENEOUS BOUND
24226    LIU XY, 1987, SIAM J SCI STAT COMP, V8, P436
24227    TEMAM R, 1982, J DIFFER EQUATIONS, V43, P73
24228    TEMAM R, 1984, NAVIER STOKES EQUATI
24229    TIKHONOV AN, 1977, SOLUTIONS ILL POSED
24230    WHITHAM GB, 1974, LINEAR NONLINEAR WAV
24231 NR 10
24232 TC 0
24233 SN 0254-9409
24234 J9 J COMPUT MATH
24235 JI J. Comput. Math.
24236 PD APR
24237 PY 1993
24238 VL 11
24239 IS 2
24240 BP 103
24241 EP 112
24242 PG 10
24243 SC Mathematics, Applied; Mathematics
24244 GA KZ192
24245 UT ISI:A1993KZ19200002
24246 ER
24247 
24248 PT J
24249 AU LIN, CS
24250    YAQOOB, MT
24251 TI AN EFFICIENT FORMULATION TO FIND THE SCATTERING FIELD OF A CONDUCTING
24252    CYLINDER COATED WITH LOSSY MAGNETIC MATERIAL
24253 SO JOURNAL OF APPLIED PHYSICS
24254 DT Article
24255 AB A new formulation for the scattered field from a two dimensional
24256    conducting cylinder coated with a lossy magnetic material is presented
24257    for transverse electric polarization of the incident field. A
24258    conduction current on the conducting surface and a magnetic
24259    polarization current in the coating material is supposed to be induced
24260    when an electromagnetic field is incident over the cylinder. The
24261    scattered field is supposed to be originated in these induced currents.
24262    Two H-field integral equations are developed, which are then solved by
24263    the Method of Moments to find these currents. Scattering cross section
24264    for circular configuration is calculated and compared with exact
24265    solution. Good agreement of results is achieved. The advantage of the
24266    formulation is that it solves the scattered field without the
24267    computation of complex argument Hankel functions. Second, by
24268    considering the polarization of the magnetic coating, the effects of
24269    surface wave excitation are automatically included in the solution.
24270 C1 GOVT COLL,DEPT PHYS,BHAKKAR,PAKISTAN.
24271 RP LIN, CS, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
24272 CR ANTAR YMM, 1989, IEEE T ANTENN PROPAG, V37, P564
24273    ARVAS E, 1989, IEEE T ANTENN PROPAG, V37, P546
24274    HARRINGTON RF, 1968, FIELD COMPUTATION MO
24275    HELSTROM CW, 1963, SCATTERING CYLINDER, P133
24276    JIN JM, 1988, IEEE T ANTENN PROPAG, V36, P50
24277    LIN CS, 1992, J APPL PHYS, V72, P788
24278 NR 6
24279 TC 0
24280 SN 0021-8979
24281 J9 J APPL PHYS
24282 JI J. Appl. Phys.
24283 PD APR 15
24284 PY 1993
24285 VL 73
24286 IS 8
24287 BP 4038
24288 EP 4041
24289 PG 4
24290 SC Physics, Applied
24291 GA KY567
24292 UT ISI:A1993KY56700068
24293 ER
24294 
24295 PT J
24296 AU DING, WY
24297    CAO, WG
24298    XU, ZR
24299    YAO, Y
24300    SHI, ZJ
24301    HAN, ZH
24302 TI SIMPLE SYNTHESIS OF DIMETHYL 4-METHYL-6-PERFLUOROALKYLISOPHTHALATES AND
24303    DIMETHYL 5-PERFLUOROALKYLBIPHENYL-2,4-DICARBOXYLATES VIA ACYCLIC
24304    PRECURSORS
24305 SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 1
24306 DT Article
24307 AB Reaction of methyl propynoate 2 with
24308    acetylmethylenetriphenylphosphorane 1 a or
24309    benzoylmethylenetriphenylphosphorane 1b at 90-degrees-C gives methyl
24310    5-oxo-2-(triphenylphosphoranylidene)hex-3-enoate 4a or methyl
24311    4-benzoyl-2-(triphenylphosphoranylidene)but-3-enoate 4b as the main
24312    product, respectively. Phosphoranes 4a or 4b can further react with
24313    methyl perfluoroalkynoates 5a and 5b to afford dimethyl
24314    2-(3-oxo-1-perfluoroalkylbut-1-enyl)-4-(triphenylphosphoranylidene)pent-
24315    2-enedioates 6a and 6b or dimethyl
24316    2-(2-benzoyl-1-perfluoroalkylvinyl)-4-(triphenylphosphoranylidene)pent-2
24317    -enedioates 6c and 6d, respectively. Diemethyl
24318    4-methyl-6-perfluoroalkylisophthalates 7a and 7b or dimethyl
24319    5-perfluoroalkylbiphenyl-2,4-dicarboxylates 7c and 7d were prepared in
24320    high yield via intramolecular Wittig reaction of phosphoranes 6a/6b or
24321    6c/6d in benzene or methanol. The structures of compounds 4a, 6a and 7a
24322    were confirmed by IR, MS and H-1, F-19 and C-13 NMR spectroscopy and
24323    elemental analyses. Reaction mechanisms for the formation of compounds
24324    4, 6 and 7 are proposed.
24325 RP DING, WY, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
24326    R CHINA.
24327 CR DING WY, 1987, TETRAHEDRON LETT, V28, P81
24328    DING WY, 1992, SYNTHESIS-STUTTGART, P635
24329    DING WY, 1993, UNPUB CHIN J CHEM, V11, P67
24330    HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47
24331    JUNG ME, 1988, J AM CHEM SOC, V110, P3965
24332    RAMIREZ F, 1957, J ORG CHEM, V22, P41
24333    WOLF V, 1953, CHEM BER, V86, P735
24334 NR 7
24335 TC 10
24336 SN 0300-922X
24337 J9 J CHEM SOC PERKIN TRANS 1
24338 JI J. Chem. Soc.-Perkin Trans. 1
24339 PD APR 7
24340 PY 1993
24341 IS 7
24342 BP 855
24343 EP 858
24344 PG 4
24345 SC Chemistry, Organic
24346 GA KX923
24347 UT ISI:A1993KX92300020
24348 ER
24349 
24350 PT J
24351 AU HE, GQ
24352 TI A KIND OF A POSTERIORI PARAMETER CHOICES FOR THE ITERATED TIKHONOV
24353    REGULARIZATION METHOD
24354 SO CHINESE SCIENCE BULLETIN
24355 DT Article
24356 DE ILL-POSED PROBLEM; REGULARIZATION METHOD; A POSTERIORI PARAMETER CHOICE
24357 RP HE, GQ, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
24358 NR 0
24359 TC 1
24360 SN 1001-6538
24361 J9 CHIN SCI BULL
24362 JI Chin. Sci. Bull.
24363 PD MAR
24364 PY 1993
24365 VL 38
24366 IS 5
24367 BP 356
24368 EP 360
24369 PG 5
24370 SC Multidisciplinary Sciences
24371 GA KV496
24372 UT ISI:A1993KV49600002
24373 ER
24374 
24375 PT J
24376 AU XIE, XY
24377    EVANS, RJ
24378 TI FREQUENCY-WAVE-NUMBER TRACKING USING HIDDEN MARKOV-MODELS
24379 SO IEEE TRANSACTIONS ON SIGNAL PROCESSING
24380 DT Letter
24381 ID MULTIPLE
24382 AB This correspondence extends earlier work by the authors on multiple
24383    frequency line tracking using hidden Markov models (HMM's) to also
24384    include wavenumber estimation. The main idea is to model the frequency
24385    and wavenumber of each target using HMM and then to track these signals
24386    using a Viterbi algorithm. The input measurements to the Viterbi
24387    algorithm are two-dimensional (2-D) Fourier transforms of the array
24388    output signals. Several supporting simulations show that the approach
24389    works well, although it is computationally expensive.
24390 C1 UNIV MELBOURNE,DEPT ELECT & ELECTR ENGN,PARKVILLE,VIC 3052,AUSTRALIA.
24391 RP XIE, XY, SHANGHAI UNIV SCI & TECHNOL,DEPT COMP SCI,SHANGHAI,PEOPLES R
24392    CHINA.
24393 CR BARSHALOM Y, 1988, TRACKING DATA ASS
24394    DAVENPORT WB, 1987, INTRO THEORY RANDOM
24395    DEGRAAF SR, 1983, IEEE T ACOUST SPEECH, V33, P1368
24396    HALPENY OS, 1975, IEEE T CIRCUITS SYST, V22, P552
24397    HAYKIN S, 1983, NONLINEAR METHODS SP, CH1
24398    JOHNSON DH, 1982, P IEEE, V70, P1018
24399    RABINER LR, 1986, IEEE ASSP MAGAZI JAN, P4
24400    RABINER LR, 1989, P IEEE, V77, P257
24401    SCHMIDT RO, 1986, IEEE T ANTENN PROPAG, V34, P276
24402    STARKEY PG, 1987, GEC-J RES, V5, P193
24403    STREIT RL, 1990, IEEE T ACOUST SPEECH, V38, P586
24404    SWORD CK, 1990, IEEE T AERO ELEC SYS, V26, P367
24405    XIE XY, 1991, IEEE T SIGNAL PROCES, V39, P2659
24406    XIE XY, 1993, IEEE T SIGNAL PROCES, V41, P334
24407 NR 14
24408 TC 2
24409 SN 1053-587X
24410 J9 IEEE TRANS SIGNAL PROCESS
24411 JI IEEE Trans. Signal Process.
24412 PD MAR
24413 PY 1993
24414 VL 41
24415 IS 3
24416 BP 1391
24417 EP 1394
24418 PG 4
24419 SC Engineering, Electrical & Electronic
24420 GA KU545
24421 UT ISI:A1993KU54500029
24422 ER
24423 
24424 PT J
24425 AU TU, RJ
24426    ZHENG, Q
24427 TI INTEGRAL GLOBAL OPTIMIZATION METHOD IN STATISTICAL APPLICATIONS
24428 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
24429 DT Article
24430 ID MAXIMUM-LIKELIHOOD; EM ALGORITHM
24431 AB Many statistical computations need a minimization method which can find
24432    global of a nonconvex, nonsmooth and even discontinuous objective
24433    function. Conventional optimization methods hardly serve that. The
24434    integral optimization method has been developed to satisfy such
24435    requirements. In this paper, we apply this method to several problems
24436    in statistics, such as nonlinear regression, maximum likelihood
24437    estimation for three-pararmeter Weibull distribution, mixture densities
24438    and sampling, and show that the results obtained by a global
24439    minimization method are better than those by a gradient-based one.
24440 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
24441 RP TU, RJ, WICHITA STATE UNIV,DEPT MATH,WICHITA,KS 67208.
24442 CR ARTHANARI TS, 1981, MATH PROGRAMMING STA
24443    CHEW SH, 1988, LECTURE NOTES EC MAT, V298
24444    DEMPSTER AP, 1977, J ROY STAT SOC B MET, V39, P1
24445    MCCORMICK GP, 1983, NONLINEAR PROGRAMMIN
24446    MCCORMICK GP, 1988, EXAMPLE 2 LOCAL MAXI
24447    RATKOWSKY DA, 1983, NONLINEAR REGRESSION
24448    REDNER RA, 1984, SIAM REV, V26, P195
24449    ROCHETTE H, 1974, J AM STAT ASSOC, V69, P246
24450    ZANAKIS SH, 1986, J STATISTICAL COMPUT, V25, P53
24451    ZHENG Q, 1978, ACTAMATH APPLICATAE, V2, P161
24452    ZHENG Q, 1985, ACTA MATH APPL SINIC, V1, P118
24453    ZHENG Q, 1985, ACTA MATH APPLICATAE, V1, P67
24454    ZHENG Q, 1988, LECTURE NOTES EC MAT, V302, P18
24455    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205
24456    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317
24457    ZHENG Q, 1991, COMPUT MATH APPL, V21, P17
24458 NR 16
24459 TC 1
24460 SN 0898-1221
24461 J9 COMPUT MATH APPL
24462 JI Comput. Math. Appl.
24463 PD MAY-JUN
24464 PY 1993
24465 VL 25
24466 IS 10-11
24467 BP 9
24468 EP 17
24469 PG 9
24470 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
24471 GA KU420
24472 UT ISI:A1993KU42000003
24473 ER
24474 
24475 PT J
24476 AU ZHENG, Q
24477 TI DISCONTINUITY AND MEASURABILITY OF ROBUST FUNCTIONS IN THE INTEGRAL
24478    GLOBAL MINIMIZATION
24479 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
24480 DT Article
24481 AB Robustness and measurability of a set and of a function are the
24482    foundation of the integral approach to global minimization. However, a
24483    robust function may be discontinuous and nonmeasurable. In this paper,
24484    we show that the set of points of discontinuity of a robust function
24485    has empty interior and is of the first category. A robust function on
24486    the interval [0,1] is constructed such that the Lebesgue measure of its
24487    set of points of discontinuity approaches 1. We also show that there is
24488    a robust set on [0,1] which is Lebesgue nonmeasurable, and then a
24489    Lebesgue nonmeasurable robust function is constructed.
24490 RP ZHENG, Q, SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R
24491    CHINA.
24492 CR BAIRE R, 1905, LECONS FONCTIONS DIS
24493    BOREL E, 1905, LECONS FONCTIONS VAR
24494    GALPERIN E, IN PRESS INTEGRAL GL
24495    GALPERIN E, 1991, GLOBAL SOLUTIONS OPT
24496    HEWITT E, 1975, REAL ABSTRACT ANAL
24497    KULLER RG, 1969, TOPICS MODERN ANAL
24498    LEBESGUE MH, 1898, B SCI MATH
24499    OXTOBY JC, 1980, MEASURE CATEGORY
24500    ROYDEN HL, 1968, REAL ANAL
24501    ZHENG Q, 1985, NUMERICAL ANAL J CHI, V8, P31
24502    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205
24503    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317
24504    ZHENG Q, 1991, COMPUT MATH APPL, V21, P17
24505 NR 13
24506 TC 3
24507 SN 0898-1221
24508 J9 COMPUT MATH APPL
24509 JI Comput. Math. Appl.
24510 PD MAY-JUN
24511 PY 1993
24512 VL 25
24513 IS 10-11
24514 BP 79
24515 EP 88
24516 PG 10
24517 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
24518 GA KU420
24519 UT ISI:A1993KU42000011
24520 ER
24521 
24522 PT J
24523 AU GALPERIN, EA
24524    ZHENG, Q
24525 TI SOLUTION AND CONTROL OF PDE VIA GLOBAL OPTIMIZATION METHODS
24526 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
24527 DT Article
24528 ID PARTIAL-DIFFERENTIAL EQUATIONS; COMPUTATIONAL FLUID-DYNAMICS; DATA
24529    APPROXIMATION SCHEME; FINITE-ELEMENT METHOD; PARABOLIC EQUATIONS;
24530    MULTIQUADRICS; SYSTEMS
24531 AB Based on the concept of eta-equivalent solutions (not to be confused
24532    with approximations to the exact solution), a new consideration is
24533    given to ill-posed [1,2] and overdetermined PDE problems and to
24534    problems with nonexistent solutions [3]. Then a new method based on
24535    full global optimization techniques is developed for solution and
24536    control of processes described by partial differential equations. The
24537    ideas are illustrated by examples, and a case study is presented in
24538    comparison with the quasi-reversibility method [4].
24539 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
24540 RP GALPERIN, EA, UNIV QUEBEC,DEPT MATH & INFORMAT,CP 8888,SUCC A,MONTREAL
24541    H3C 3P8,QUEBEC,CANADA.
24542 CR BAKER GA, 1980, NONL ANAL THEORY MET, V4, P579
24543    BENISRAEL A, 1974, GENERALIZED INVERSES
24544    CHEW SH, 1988, LECTURE NOTES EC MAT, V298
24545    COPSON ET, 1975, PARTIAL DIFFERENTIAL
24546    COURANT R, 1928, MATH ANN, V100, P32
24547    DOUGLAS J, 1970, SIAM J NUMER ANAL, V7, P575
24548    EPSTEIN B, 1975, PARTIAL DIFFERENTIAL
24549    FARAGO I, 1991, COMPUT MATH APPL, V21, P49
24550    FARAGO I, 1991, COMPUT MATH APPL, V21, P59
24551    GALPERIN EA, 1990, CUBIC ALGORITHM OPTI
24552    GALPERIN EA, 1990, NEW THEORY CONTINUOU
24553    GARABEDIAN PR, 1964, PARTIAL DIFFERENTIAL
24554    GROMOV ML, 1973, MATH USSR IZV, V7, P329
24555    HADAMARD J, 1952, LECTURES CAUCHYS PRO
24556    HARDY RL, 1990, COMPUT MATH APPL, V19, P163
24557    KANSA EJ, 1990, COMPUT MATH APPL, V19, P127
24558    KANSA EJ, 1990, COMPUT MATH APPL, V19, P147
24559    LATTES R, 1967, METHODE QUASIREVERSI
24560    PENROSE R, 1955, P CAMBRIDGE PHILOS S, V51, P406
24561    PENROSE R, 1956, P CAMBRIDGE PHILOS S, V52, P17
24562    SPRING D, 1983, ANN I FOURIER, V33, P121
24563 NR 21
24564 TC 4
24565 SN 0898-1221
24566 J9 COMPUT MATH APPL
24567 JI Comput. Math. Appl.
24568 PD MAY-JUN
24569 PY 1993
24570 VL 25
24571 IS 10-11
24572 BP 103
24573 EP 118
24574 PG 16
24575 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
24576 GA KU420
24577 UT ISI:A1993KU42000013
24578 ER
24579 
24580 PT J
24581 AU GALPERIN, EA
24582    PAN, ZX
24583    ZHENG, Q
24584 TI APPLICATION OF GLOBAL OPTIMIZATION TO IMPLICIT SOLUTION OF
24585    PARTIAL-DIFFERENTIAL EQUATIONS
24586 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
24587 DT Article
24588 ID COMPUTATIONAL FLUID-DYNAMICS; DATA APPROXIMATION SCHEME; MULTIQUADRICS
24589 AB A numerical method of finding implicit eta-solutions of partial
24590    differential equations is presented.
24591 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
24592 RP GALPERIN, EA, UNIV QUEBEC,DEPT MATH & COMP SCI,CP 8888,SUCC A,MONTREAL
24593    H3C 3P8,QUEBEC,CANADA.
24594 CR GALPERIN EA, 1991, GLOBAL SOLUTIONS OPT
24595    HARDY RL, 1990, COMPUT MATH APPL, V19, P163
24596    KANSA EJ, 1990, COMPUT MATH APPL, V19, P127
24597    KANSA EJ, 1990, COMPUT MATH APPL, V19, P147
24598    LEVEQUE RJ, 1982, SIAM J NUMER ANAL, P1091
24599    RICHTMYER RD, 1967, DIFFERENCE METHODS I
24600 NR 6
24601 TC 0
24602 SN 0898-1221
24603 J9 COMPUT MATH APPL
24604 JI Comput. Math. Appl.
24605 PD MAY-JUN
24606 PY 1993
24607 VL 25
24608 IS 10-11
24609 BP 119
24610 EP 124
24611 PG 6
24612 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
24613 GA KU420
24614 UT ISI:A1993KU42000014
24615 ER
24616 
24617 PT J
24618 AU GUO, YP
24619    DENG, XN
24620 TI ELECTRODEPOSITION OF CDTE THIN-FILMS AND THEIR PHOTOELECTROCHEMICAL
24621    BEHAVIOR
24622 SO SOLAR ENERGY MATERIALS AND SOLAR CELLS
24623 DT Article
24624 ID SOLAR-CELLS; CADMIUM; DEPOSITION; TELLURIDE
24625 AB CdTe thin films were electrodeposited on Ni substrates from aqueous
24626    solutions containing CdSO4, TeO2 and H2SO4 with an interchangeable
24627    rotating disk electrode. The variations in the composition of the CdTe
24628    films with cathodic potentials and heat treatment temperatures were
24629    studied by the polarographic method. The deposition and annealing
24630    parameters had been optimized to yield a good photoelectrochemical
24631    performance. After surface modification, the conversion efficiencies
24632    were 0.61% and 5.3% for the cells p-CdTe/SnCl2 (sat.), 0.2M HCl/C and
24633    n-CdTe/1 M Na2S, 1 M S, 1 M NaOH/C, respectively.
24634 RP GUO, YP, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
24635    R CHINA.
24636 CR BHATTACHARYA RN, 1984, J ELECTROCHEM SOC, V131, P2033
24637    DANAHER WJ, 1983, AUST J CHEM, V36, P1011
24638    DARKOWSKI A, 1985, J ELECTROCHEM SOC, V132, P2768
24639    DARKOWSKI A, 1986, TALANTA, V33, P187
24640    FULOP G, 1982, APPL PHYS LETT, V40, P327
24641    GORE RB, 1989, J APPL PHYS, V65, P2693
24642    GORE RB, 1989, SOL ENERG MATER, V18, P159
24643    GUO YP, IN PRESS SOC ENERGY
24644    LICHT S, 1986, J PHYS CHEM-US, V90, P1096
24645    LLABRES J, 1984, J ELECTROCHEM SOC, V131, P464
24646    LOAEZA P, 1990, J MATER SCI LETT, V9, P11
24647    PANICKER MPR, 1978, J ELECTROCHEM SOC, V125, P566
24648    SANYAL GS, 1990, SOL ENERG MATER, V20, P395
24649    SHEN J, 1986, ACTA PHYSICOCHIMICA, V2, P554
24650    TAKAHASHI M, 1985, J APPL PHYS, V58, P4292
24651    UOSAKI K, 1984, ELECTROCHIM ACTA, V29, P279
24652 NR 16
24653 TC 10
24654 SN 0927-0248
24655 J9 SOLAR ENERG MATER SOLAR CELLS
24656 JI Sol. Energy Mater. Sol. Cells
24657 PD MAR
24658 PY 1993
24659 VL 29
24660 IS 2
24661 BP 115
24662 EP 122
24663 PG 8
24664 SC Materials Science, Multidisciplinary; Energy & Fuels
24665 GA KU287
24666 UT ISI:A1993KU28700003
24667 ER
24668 
24669 PT J
24670 AU GUO, YP
24671    DENG, XN
24672 TI EFFECTS OF SURFACE MODIFICATION ON THE PEC PERFORMANCE OF
24673    ELECTROCHEMICALLY DEPOSITED N-CDTE FILMS
24674 SO SOLAR ENERGY MATERIALS AND SOLAR CELLS
24675 DT Article
24676 ID P-TYPE CDTE; THIN-FILMS; CADMIUM TELLURIDE; PHOTOELECTROCHEMICAL CELLS;
24677    INSITU PREPARATION; SOLAR-CELLS; ELECTRODEPOSITION; EFFICIENCY;
24678    ELECTROLYTES; STABILITY
24679 AB Modification of electrodeposited n-CdTe thin films by PbS showed
24680    considerably improvement of the performance and stability of n-CdTe
24681    photoelectrochemical cells. The enhanced parameters of PEC solar cells
24682    after modification are V(oc) = 0.515 V, I(sc) = 13 mA/cm2, FF = 0.385
24683    and eta = 5.2% under 50 mW/cm2 illumination, compared to V(oc) = 0.44
24684    V, I(sc) = 6 mA/cm2, FF = 0.31 and eta = 1.6% observed before
24685    modification. The enhanced parameters are attributed to the greater
24686    band bending induced by excess surface charge, as well as the enhanced
24687    solution kinetics due to a good electrocatalysis of PbS for the
24688    polysulfide redox system.
24689 RP GUO, YP, SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM,SHANGHAI 201800,PEOPLES
24690    R CHINA.
24691 CR BASOL BM, 1984, J APPL PHYS, V55, P601
24692    BHATTACHARYA RN, 1984, J ELECTROCHEM SOC, V131, P2032
24693    BHATTACHARYA RN, 1985, J ELECTROCHEM SOC, V132, P732
24694    BOSE DN, 1984, J ELECTROCHEM SOC, V131, P850
24695    CAHEN D, 1979, J AM CHEM SOC, V101, P3969
24696    DANAHER WJ, 1983, AUST J CHEM, V36, P1011
24697    DARKOWSKI A, 1985, J ELECTROCHEM SOC, V132, P2768
24698    ELLIS AB, 1977, J AM CHEM SOC, V99, P2839
24699    FULOP G, 1982, APPL PHYS LETT, V40, P327
24700    GAUGASH P, 1981, J ELECTROCHEM SOC, V128, P924
24701    GROE RB, 1989, SOL ENERG MATER, V18, P159
24702    GUTIERREZ MT, 1990, SOL ENERG MATER, V20, P387
24703    HELLER A, 1978, J AM CHEM SOC, V100, P684
24704    HODES G, 1980, J ELECTROCHEM SOC, V127, P544
24705    HODES G, 1981, SOL ENERG MATER, V4, P373
24706    LLABRES J, 1984, J ELECTROCHEM SOC, V131, P464
24707    LOAEZA P, 1990, J MATER SCI LETT, V9, P11
24708    MANDAL KC, 1987, J PHYS CHEM-US, V91, P4011
24709    MANDAL KC, 1987, J SOLID STATE CHEM, V71, P559
24710    MULLER N, 1981, APPL PHYS LETT, V39, P283
24711    PANICKER MPR, 1978, J ELECTROCHEM SOC, V125, P566
24712    PARKINSON BA, 1979, J ELECTROCHEM SOC, V126, P954
24713    PENG R, 1984, B MATER ENERGY SYSTE, V2, P25
24714    TAKAHASHI M, 1984, J APPL PHYS, V55, P3879
24715    TAKAHASHI M, 1986, J ELECTROCHEM SOC, V133, P266
24716    TENNE R, 1983, APPL PHYS LETT, V43, P201
24717    TENNE R, 1983, J ELECTROANAL CH INF, V143, P103
24718    UOSAKI K, 1984, ELECTROCHIM ACTA, V29, P279
24719 NR 28
24720 TC 1
24721 SN 0927-0248
24722 J9 SOLAR ENERG MATER SOLAR CELLS
24723 JI Sol. Energy Mater. Sol. Cells
24724 PD MAR
24725 PY 1993
24726 VL 29
24727 IS 2
24728 BP 123
24729 EP 130
24730 PG 8
24731 SC Materials Science, Multidisciplinary; Energy & Fuels
24732 GA KU287
24733 UT ISI:A1993KU28700004
24734 ER
24735 
24736 PT J
24737 AU WANG, EK
24738    YU, ZM
24739    QI, DY
24740    XU, CM
24741 TI ALKALI AND ALKALINE-EARTH METAL-ION TRANSFER ACROSS THE LIQUID-LIQUID
24742    INTERFACE FACILITATED BY IONOPHORE ETH157
24743 SO ELECTROANALYSIS
24744 DT Article
24745 DE LIQUID-LIQUID INTERFACE; ION TRANSFER; IONOPHORE
24746 ID WATER
24747 AB The H+, Li+, Na+, K+, Mg2+, Ca2+ and Ba2+ ion transfer across the
24748    water/nitrobenzene (NB) and water/1,2-dichloroethane (DCE) interfaces,
24749    facilitated by the ionophore ETH157, has been investigated by cyclic
24750    voltammetry (CV). The mechanism of the transfer process has been
24751    discussed, and the diffusion coefficients and the stability constants
24752    of the complexes formed in the nitrobenzene phase have been determined.
24753 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 20072,PEOPLES R CHINA.
24754 RP WANG, EK, CHINESE ACAD SCI,CHANGCHUN INST APPL CHEM,ELECTROANALYT CHEM
24755    LAB,CHANGCHUN 130022,PEOPLES R CHINA.
24756 CR AMMANN D, 1985, NEUROSCI LETT, V57, P267
24757    FUJINAGA T, 1982, BUNSEKI KAGAKU, V31, E301
24758    HOMOLKA D, 1982, J ELECTROANAL CHEM, V138, P29
24759    KIHARA S, 1982, BUNSEKI KAGAKU, V31, E293
24760    KORYTA J, 1983, ION SEL ELECTRODE R, V5, P131
24761    VANYSEK P, 1985, ELECTROCHEMISTRY LIQ
24762 NR 6
24763 TC 6
24764 SN 1040-0397
24765 J9 ELECTROANAL
24766 JI Electroanalysis
24767 PD FEB
24768 PY 1993
24769 VL 5
24770 IS 2
24771 BP 149
24772 EP 154
24773 PG 6
24774 SC Chemistry, Analytical
24775 GA KT389
24776 UT ISI:A1993KT38900008
24777 ER
24778 
24779 PT J
24780 AU GUO, GY
24781    CHEN, YL
24782 TI OPTICAL-PROPERTIES OF A CHEMICALLY DURABLE PHOSPHATE-GLASS
24783 SO JOURNAL OF MATERIALS SCIENCE LETTERS
24784 DT Article
24785 ID THERMAL-EXPANSION
24786 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT CHEM & CHEM ENGN,SHANGHAI 200072,PEOPLES R CHINA.
24787 RP GUO, GY, SHANGHAI JIAO TONG UNIV,DEPT MAT SCI & ENGN,SHANGHAI
24788    200030,PEOPLES R CHINA.
24789 CR BUNKER BC, 1984, J NON-CRYST SOLIDS, V64, P291
24790    BUNKER BC, 1987, J AM CERAM SOC, V70, P425
24791    MINAMI T, 1977, J AM CERAM SOC, V60, P232
24792    MULLER D, 1983, PHYS CHEM GLASSES, V24, P37
24793    PENG YB, 1991, GLASS TECHNOL, V32, P166
24794    PENG YB, 1991, GLASS TECHNOL, V32, P200
24795    RAY NH, 1979, BRIT POLYM J, V11, P63
24796    SALES BC, 1986, J NON-CRYST SOLIDS, V79, P83
24797    SALES BC, 1987, J AM CERAM SOC, V70, P615
24798 NR 9
24799 TC 3
24800 SN 0261-8028
24801 J9 J MATER SCI LETT
24802 JI J. Mater. Sci. Lett.
24803 PD MAR 1
24804 PY 1993
24805 VL 12
24806 IS 5
24807 BP 265
24808 EP 267
24809 PG 3
24810 SC Materials Science, Multidisciplinary
24811 GA KR345
24812 UT ISI:A1993KR34500002
24813 ER
24814 
24815 PT J
24816 AU LIU, GL
24817 TI VARIATIONAL-PRINCIPLES AND GENERALIZED VARIATIONAL-PRINCIPLES FOR FULLY
24818    3-D TRANSONIC FLOW WITH SHOCKS IN A TURBO-ROTOR .2. ROTATIONAL FLOW
24819 SO ACTA MECHANICA
24820 DT Article
24821 AB Two variational principle (VP) families for fully 3-D transonic
24822    potential, Beltrami rotational flows with shocks in a rotor are put
24823    forth in terms of stream functions. By making use of functional
24824    variations with variable domain one succeeded in converting most of the
24825    boundary conditions and matching conditions across unknown
24826    discontinuities (such as shocks and free trailing vortex sheets),
24827    including the generalized Rankine-Hugoniot shock relations, into
24828    natural ones. This paper is intended to provide a rigorous theoretical
24829    foundation for constructing a novel computational method which
24830    incorporating a new finite element with self-adapting embedded
24831    discontinuities (now under development) and the artificial density
24832    concept, could capture all unknown discontinuities automatically and
24833    clearly. The applicability of VPs for rotational flow, in contrast to
24834    those for Beltrami flow, is not limited to transonic flow with moderate
24835    Mach numbers.
24836 C1 SHANGHAI INST APPL MATH & MECH,SHANGHAI 200072,PEOPLES R CHINA.
24837 RP LIU, GL, SHANGHAI UNIV SCI & TECHNOL,149 YAN CHANG RD,SHANGHAI
24838    200072,PEOPLES R CHINA.
24839 CR CAREY GF, 1978, COMPUTER METHODS APP, V13, P129
24840    CHAN SKT, 1975, AIAA7579 PAP
24841    CHEN KM, 1982, CHINESE J ENG THERMO, V3, P145
24842    DECONINCK H, 1981, ASME, V103, P665
24843    GIESE JH, 1951, J MATH PHYS, V30, P31
24844    HAFEZ MM, 1983, AIAA J, V21, P327
24845    KRIMERMAN Y, 1978, J MECH ENG SCI, V20, P149
24846    KUZNETSOV BG, 1959, J NAT TOM U, V144, P117
24847    LASKARIS TE, 1978, AIAA J, V16, P717
24848    LIU GI, 1986, J ENG GAS TURB POWER, V108, P254
24849    LIU GL, 1979, ACTA MECH SINICA, V11, P303
24850    LIU GL, 1980, SCI SINICA, V23, P1339
24851    LIU GL, 1981, ACTA MECH SINICA, V13, P421
24852    LIU GL, 1981, CHINESE J ENG THERMO, V2, P335
24853    LIU GL, 1981, LECTURE NOTES
24854    LIU GL, 1982, P INT C FEM SHANGH C, P520
24855    LIU GL, 1983, 2ND P AS C FLUID MEC, P698
24856    LIU GL, 1983, 6TH P INT S AIR BREA, P313
24857    LIU GL, 1986, 6TH P INT S FEM FLOW, P125
24858    LIU GL, 1987, 1987 P TOK INT GAS T, V2, P256
24859    LIU GL, 1990, CHINESE J ENG THERMO, V2, P480
24860    LIU GL, 1991, ASME91GT169 PAP
24861    LIU GL, 1992, ACTA MECH, V95, P117
24862    LIU RX, 1981, SEISMOL GEOL, V3, P1
24863    NORRIE DH, 1978, FINITE ELEMENTS FLUI, V3, P363
24864    OATES GC, 1976, ASME, V98, P1
24865    QIN R, 1988, J TURBOMACH, V110, P545
24866    SERRIN J, 1959, HDB PHYSIK, V8
24867    WU CH, 1952, NACA TN2604
24868    WU WQ, 1979, CHINESE J MECH ENG, V15
24869    XU JZ, 1980, CHINESE J MECHANICAL, V16, P61
24870 NR 31
24871 TC 7
24872 SN 0001-5970
24873 J9 ACTA MECH
24874 JI Acta Mech.
24875 PY 1993
24876 VL 97
24877 IS 3-4
24878 BP 229
24879 EP 238
24880 PG 10
24881 SC Mechanics
24882 GA KN932
24883 UT ISI:A1993KN93200008
24884 ER
24885 
24886 PT J
24887 AU WEI, CH
24888    XIANG, SH
24889 TI ELECTRICAL-CONDUCTIVITY OF MOLTEN SLAGS OF CAF2+AL2O3 AND
24890    CAF2+AL2O3+CAO SYSTEMS FOR ESR
24891 SO ISIJ INTERNATIONAL
24892 DT Article
24893 DE ELECTROSLAG REMELTING; MOLTEN SLAGS OF CAF2+AL2O3 AND CAF2+AL2O3+CAO
24894    SYSTEMS; ELECTRICAL CONDUCTIVITY; CONSTANT-CURRENT SINGLE PULSE
24895    TECHNIQUE WITH 3 LEAD-ELECTRODES
24896 AB The electrical conductivity of the molten slags of the CaF2 + Al2O3 and
24897    CaF2 + Al2O3 + CaO systems for the practical ESR was determined, using
24898    the constant-current single pulse technique with three lead-electrodes.
24899    All the measurements were carried out under high-purity argon
24900    atmosphere, employing a high-purity molybdenum metal crucible with pure
24901    iron wire electrodes. The effects of FeO, MnO, MgO, Cr2O3, TiO2, SiO2
24902    and other oxide components and temperature on the conductivity of the
24903    slags were examined. The results indicated that in the common
24904    concentration ranges for the ESR practice, the specific conductivity
24905    values of the slags in these two systems are monotonously increasing
24906    with the FeO and MnO contents in the slags following an essentially
24907    similar pattern; the additions of MgO, Cr2O3, and TiO2 change also
24908    evidently the conductivity but in another roughly similar mode and make
24909    it have a maximum value, whilst the influence due to a small amount of
24910    SiO2 (less-than-or-equal-to 1.5 mass%) is relatively not large; the
24911    conduction of CaF2-based multi-component and complicate liquid slags
24912    may be treated as a rate process.
24913 C1 XIAN INST MET & CONSTRUCT ENGN,DEPT MET,XIAN,PEOPLES R CHINA.
24914 RP WEI, CH, SHANGHAI UNIV SCI & TECHNOL,DEPT MET & MAT
24915    ENGN,SHANGHAI,PEOPLES R CHINA.
24916 CR 1972, HDB PROPERTIES LIQUI, P244
24917    ELGAMMAL T, 1978, ARCH EISENHUTTENWES, V49, P235
24918    EVSEEV PP, 1965, IZV VUZ CHERNAYA MET, V8, P74
24919    EVSEEV PP, 1967, AUTOMAT WELD, V20, P12
24920    EVSEEV PP, 1967, IZV VYSSH UCHEBN ZAV, V10, P55
24921    HAJDUK M, 1979, STAHL EISEN, V99, P113
24922    ISOTOMIN SA, 1975, 220275 REP
24923    KOLISNYK VN, 1964, AUTOMAT WELD, V17, P9
24924    KOLISNYK VN, 1965, AUTOMAT WELD, V18, P80
24925    KOVAL AE, 1970, IZV VUZ CHERNAYA MET, V13, P71
24926    KRAUS S, 1973, THESIS BERGAHAD
24927    KUO CK, 1964, ACTA CHIM SINICA, V30, P381
24928    LATASH YL, 1960, AUTOMAT WELD, V13, P14
24929    LOPAEV BE, 1966, AUTOMAT WELD, V19, P31
24930    MANAKOV AI, 1975, IZV VUZ CHERNAYA MET, V18, P14
24931    MILLS KC, 1979, NPL103 REP CHEM
24932    MILLS KS, 1981, INT METALS REV, V1, P21
24933    MITCHELL A, 1971, METALL T, V3, P3361
24934    OGINO K, 1977, TETSU TO HAGANE, V63, P2141
24935    OGINO K, 1978, TETSU TO HAGANE, V64, P225
24936    OGINO K, 1978, TETSU TO HAGANE, V64, P232
24937    POVOLOTSKII DY, 1970, IZV VUZ CHERN MET, V13, P8
24938    WEAST RC, 1979, HDB CHEM PHYSICS
24939    WEI CH, 1984, ACTA METALL SINICA, V20, B261
24940    WEI CH, 1987, ACTA METALL SINICA, V23, B126
24941    WEI CH, 1989, CHIN ENG CHEM METAL, V10, P87
24942    WEI CH, 1989, CHIN J MET SCI TECHN, V5, P235
24943    XIANG SH, 1989, THESIS XIAN I METALL
24944    ZHMOIDIN G, 1970, IZV AKAD NAUK SSSR M, V3, P69
24945 NR 29
24946 TC 0
24947 SN 0915-1559
24948 J9 ISIJ INT
24949 JI ISIJ Int.
24950 PY 1993
24951 VL 33
24952 IS 2
24953 BP 239
24954 EP 244
24955 PG 6
24956 SC Metallurgy & Metallurgical Engineering
24957 GA KM872
24958 UT ISI:A1993KM87200001
24959 ER
24960 
24961 PT J
24962 AU MAO, DK
24963 TI A TREATMENT OF DISCONTINUITIES FOR FINITE-DIFFERENCE METHODS IN THE
24964    2-DIMENSIONAL CASE
24965 SO JOURNAL OF COMPUTATIONAL PHYSICS
24966 DT Article
24967 ID FRONT TRACKING; CONSERVATION-LAWS; ENTROPY CONDITION; SCHEMES; WAVES;
24968    INTERFACES; RESOLUTION
24969 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
24970 RP MAO, DK, UNIV CALIF LOS ANGELES,DEPT MATH,LOS ANGELES,CA 90024.
24971 CR CHANG SH, 1989, NASA TM102384
24972    CHERN IL, 1986, J COMPUT PHYS, V62, P83
24973    GLIMM J, 1981, ADV APPL MATH, V2, P91
24974    GLIMM J, 1985, ADV APPL MATH, V6, P259
24975    GLIMM J, 1985, ADV APPL MATH, V6, P422
24976    GLIMM J, 1986, SIAM J SCI STAT COMP, V7, P280
24977    GLIMM J, 1988, COMMUN PUR APPL MATH, V41, P569
24978    GLIMM J, 1988, SIAM J SCI STAT COMP, V9, P61
24979    GROVE J, 1989, ADV APPL MATH, V10, P201
24980    HARTEN A, 1989, J COMPUT PHYS, V83, P148
24981    HENSHAW WD, 1987, J COMPUT PHYS, V68, P25
24982    LEVEQUE RJ, 1988, NASA TM100075
24983    MAO D, 1985, J COMPUT MATH, V3, P256
24984    MAO D, 1990, UCLA CAM9019 REP
24985    MAO DK, 1991, J COMPUT PHYS, V92, P422
24986    MORETTI G, 1972, PIBAL7237 POLYT I BR
24987    OSHER S, 1984, SIAM J NUMER ANAL, V21, P217
24988    OSHER S, 1984, SIAM J NUMER ANAL, V21, P955
24989    OSHER S, 1986, IMA VOLUMES MATH ITS, V2, P229
24990    RICHTMYER RD, 1967, DIFFERENCE METHODS I
24991    SHU CW, 1987, MATH COMPUT, V49, P105
24992    SWARTZ BK, 1986, APPL NUMER MATH, V2, P385
24993    WAGNER DH, 1983, SIAM J MATH ANAL, V14, P3
24994 NR 23
24995 TC 14
24996 SN 0021-9991
24997 J9 J COMPUT PHYS
24998 JI J. Comput. Phys.
24999 PD FEB
25000 PY 1993
25001 VL 104
25002 IS 2
25003 BP 377
25004 EP 397
25005 PG 21
25006 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
25007 GA KM221
25008 UT ISI:A1993KM22100008
25009 ER
25010 
25011 PT J
25012 AU GUO, BY
25013    HUANG, W
25014 TI THE SPECTRAL-DIFFERENCE METHOD FOR COMPRESSIBLE FLOW
25015 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
25016 DT Article
25017 AB A spectral-difference scheme is proposed for semi-periodic compressible
25018    flow with strict estimation.
25019 C1 SHANGHAI UNIV SCI & TECHNOL,SHANGHAI,PEOPLES R CHINA.
25020 CR GUO BY, 1981, SCI SINICA A, V24, P297
25021    GUO BY, 1987, CALCOLO, V24, P263
25022    GUO BY, 1989, J COMPUT PHYS, V84, P259
25023    INGHAM DB, 1985, P ROY SOC LOND A MAT, V402, P109
25024    MACARAEG MG, 1986, J COMPUT PHYS, V62, P297
25025    MURDOCK JW, 1977, AIAA J, V15, P1167
25026    TANI A, 1976, P JAPAN ACAD, V52, P334
25027 NR 7
25028 TC 0
25029 SN 0254-9409
25030 J9 J COMPUT MATH
25031 JI J. Comput. Math.
25032 PD JAN
25033 PY 1993
25034 VL 11
25035 IS 1
25036 BP 37
25037 EP 49
25038 PG 13
25039 SC Mathematics, Applied; Mathematics
25040 GA KM180
25041 UT ISI:A1993KM18000004
25042 ER
25043 
25044 PT J
25045 AU CHEN, Q
25046    WANG, ZH
25047 TI EXACT DISPERSION-RELATIONS FOR TM WAVES GUIDED BY THIN DIELECTRIC FILMS
25048    BOUNDED BY NONLINEAR MEDIA
25049 SO OPTICS LETTERS
25050 DT Article
25051 AB Exact dispersion relations for TM waves guided by thin dielectric
25052    films, surrounded on one or both sides by media with
25053    intensity-dependent refractive indices, have been derived. Numerical
25054    results for a symmetric structure are in complete agreement with those
25055    obtained by the finite-element method.
25056 RP CHEN, Q, SHANGHAI UNIV SCI & TECHNOL,WAVE SCI LAB,SHANGHAI
25057    201800,PEOPLES R CHINA.
25058 CR AGRANOVICH VM, 1981, JETP LETT+, V32, P512
25059    BERKHOER AL, 1970, ZH EKSP TEOR FIZ, V31, P486
25060    BOARDMAN AD, 1985, IEEE J QUANTUM ELECT, V21, P1701
25061    BOARDMAN AD, 1987, IEE PROC-J, V134, P152
25062    HAYATA K, 1988, IEEE T MICROW THEORY, V36, P1207
25063    MIHALACHE D, 1987, OPT LETT, V12, P187
25064    OGUSU K, 1989, IEEE T MICROW THEORY, V37, P941
25065    SEATON CT, 1985, IEEE J QUANTUM ELECT, V21, P774
25066    SEATON CT, 1985, OPT LETT, V10, P149
25067    STEGEMAN GI, 1986, NONLINEAR OPTICS MAT
25068 NR 10
25069 TC 3
25070 SN 0146-9592
25071 J9 OPTICS LETTERS
25072 JI Opt. Lett.
25073 PD FEB 15
25074 PY 1993
25075 VL 18
25076 IS 4
25077 BP 260
25078 EP 262
25079 PG 3
25080 SC Optics
25081 GA KK808
25082 UT ISI:A1993KK80800002
25083 ER
25084 
25085 PT J
25086 AU ZHANG, LA
25087    QIU, WD
25088 TI DECOMPOSITIONS OF RECOGNIZABLE STRONG MAXIMAL CODES
25089 SO THEORETICAL COMPUTER SCIENCE
25090 DT Article
25091 AB In this paper, we study the decompositions of recognizable strong
25092    maximal codes and obtain the following results: Every recognizable
25093    strong maximal code is a composition of a finite number of
25094    indecomposable (in the sense of strong codes) recognizable strong
25095    maximal codes. In particular, every solvable strong code is a
25096    composition of a finite number of indecomposable (in the sense of
25097    general codes) strong maximal codes and, for the latter, a structure
25098    formula is given.
25099 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT COMP SCI,SHANGHAI 200072,PEOPLES R CHINA.
25100 RP ZHANG, LA, SHANGHAI INST URBAN CONSTRUCT,DEPT BASIC COURSES,SHANGHAI
25101    200092,PEOPLES R CHINA.
25102 CR BERSTEL J, 1985, THEORY CODES
25103    LALLEMENT G, 1979, SEMIGROUPS COMBINATO
25104    SHYR HJ, 1977, SOOCHOW J MATH NAT S, V3, P9
25105    SHYR HJ, 1979, LECTURE NOTES MATH D
25106    ZHANG LX, 1987, SEMIGROUP FORUM, V35, P181
25107 NR 5
25108 TC 1
25109 SN 0304-3975
25110 J9 THEOR COMPUT SCI
25111 JI Theor. Comput. Sci.
25112 PD FEB 1
25113 PY 1993
25114 VL 108
25115 IS 1
25116 BP 173
25117 EP 183
25118 PG 11
25119 SC Computer Science, Theory & Methods
25120 GA KK389
25121 UT ISI:A1993KK38900010
25122 ER
25123 
25124 PT J
25125 AU YE, ZM
25126 TI AN OPTIMIZATION OF NONLINEAR BENDING AND STABILITY OF REVOLUTIONAL
25127    PARABOLIC SHELL WITH VARIABLE THICKNESS
25128 SO MECHANICS RESEARCH COMMUNICATIONS
25129 DT Article
25130 RP YE, ZM, SHANGHAI UNIV SCI & TECHNOL,DEPT CIVIL ENGN,SHANGHAI
25131    200072,PEOPLES R CHINA.
25132 CR BANERJEE B, 1982, J APPL MECH, V49, P268
25133    BANERJEE B, 1983, INT J SOLIDS STRUCT, V19, P202
25134    TIMOSHENKO SP, 1959, THEORY PLATES SHELLS
25135    YE ZM, 1984, ACTA MECH SINICA, V16, P634
25136    YE ZM, 1988, APPL MATH MECH, V9, P153
25137    YE ZM, 1989, ACTA MECH SINICA, V5, P152
25138    YE ZM, 1990, ASME, V57, P1026
25139 NR 7
25140 TC 3
25141 SN 0093-6413
25142 J9 MECH RES COMMUN
25143 JI Mech. Res. Commun.
25144 PD JAN-FEB
25145 PY 1993
25146 VL 20
25147 IS 1
25148 BP 83
25149 EP 88
25150 PG 6
25151 SC Mechanics
25152 GA KH577
25153 UT ISI:A1993KH57700011
25154 ER
25155 
25156 PT J
25157 AU SHEN, YD
25158    CHENG, DJ
25159    TONG, F
25160    SOENEN, R
25161    TAHON, C
25162 TI ON THE COMPLETED DATABASE SEMANTICS FOR NEGATION
25163 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
25164 DT Article
25165 DE NEGATION AS FAILURE; THE COMPLETED DATABASE; CONSISTENCY
25166 AB As a semantics for negation. the completed database appears to be a
25167    little too strong. It makes no sense when it is inconsistent. However,
25168    as has been shown by Shepherdson, the general problem of determining
25169    whether the completed database is consistent is recursively
25170    undecidable. In this paper, we present a necessary and sufficient
25171    condition for the consistency of the completed database and use it to
25172    prove the consistency of the completed database for definite, locally
25173    stratified and R-terminable programs, respectively. We then establish a
25174    weak version of the completed database semantics for negation.
25175    Informally, the semantics says that for any function-free logic program
25176    P the results inferred by applying the SLDNF-refutation procedure via
25177    the ''Latest-first'' computation rule are logical consequences of the
25178    relevant completed database comp(REL(P)), where comp(REL(P)) is always
25179    consistent even if comp(P) is inconsistent.
25180 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT COMP SCI,SHANGHAI 201800,PEOPLES R CHINA.
25181    UNIV VALENCIA,LGIL,CNRS,URIAH 1118,F-59326 VALENCIENNES,FRANCE.
25182 RP SHEN, YD, CHONGQING UNIV,DEPT COMP SCI,CHONGQING 630044,PEOPLES R CHINA.
25183 CR APT KR, 1988, FDN DEDUCTIVE DATABA, P89
25184    CLARK KL, 1978, LOGIC DATA BASES, P293
25185    CLOCKSIN WF, 1984, PROGRAMMING PROLOG
25186    LLOYD JW, 1984, F LOGIC PROGRAMMING
25187    LOVELAND DW, 1978, AUTOMATED THEOREM PR
25188    PRZMUSINSKI TC, 1988, FDN DEDUCTIVE DATABA, P193
25189    SHEPHERDSON JC, 1988, FDN DEDUCTIVE DATABA, P19
25190    VANEMDEN MH, 1976, J ASSOC COMPUT MACH, V23, P733
25191 NR 8
25192 TC 0
25193 SN 1001-6511
25194 J9 SCI CHINA SER A
25195 JI Sci. China Ser. A-Math. Phys. Astron.
25196 PD DEC
25197 PY 1992
25198 VL 35
25199 IS 12
25200 BP 1516
25201 EP 1528
25202 PG 13
25203 SC Mathematics, Applied; Mathematics
25204 GA KJ935
25205 UT ISI:A1992KJ93500011
25206 ER
25207 
25208 PT J
25209 AU JIANG, GC
25210    XU, KD
25211    WEI, SK
25212 TI SOME ADVANCES ON THE THEORETICAL RESEARCH OF SLAG
25213 SO ISIJ INTERNATIONAL
25214 DT Review
25215 DE SLAG MODEL; BASICITY; CELL STRUCTURE
25216 ID OPTICAL BASICITY
25217 AB This pasper is a review and a comment regarding slag models and optical
25218    basicity. It was thought to be better to establish slag model and
25219    basicity concept based on the cell structure of slag.
25220 C1 BEIJING UNIV SCI & ENGN,BEIJING 100083,PEOPLES R CHINA.
25221 RP JIANG, GC, SHANGHAI UNIV SCI & TECHNOL,YANCHANG RD,SHANGHAI
25222    200072,PEOPLES R CHINA.
25223 CR APPEN AA, 1974, GLASS CHEM, P268
25224    BANYA S, 1988, TETSU TO HAGANE, V74, P1701
25225    BOOM R, 1988, 3RD P INT C MOLT SLA, P273
25226    BOTTINGA Y, 1981, THERMODYNAMICS MINER, P207
25227    DUFFY JA, 1976, J NON-CRYST SOLIDS, V21, P373
25228    GAYE H, 1984, 2ND P INT S MET SLAG, P257
25229    HASTIE JW, 1988, 3RD P INT C MOLT SLA, P254
25230    HILLERT M, 1990, METALL TRANS B, V21, P303
25231    HINO M, 1990, 6TH P IISC TOK, V1, P264
25232    HYUN DB, 1988, T ISIJ, V28, P736
25233    HYUN DB, 1990, 6TH P IISC TOK, V1, P177
25234    INGRAM MD, 1988, 3RD P INT C MOLT SLA, P166
25235    JIANG GC, 1989, J SHANGHAI U TECHNOL, V10, P257
25236    JIANG GC, 1990, 6TH P IISC TOK, V1, P240
25237    JIANG GC, 1992, 4TH P INT C MOLT SLA
25238    JIANG GC, 1992, ACTA METALL SIN B, V28, P240
25239    KAPOOR ML, 1971, P INT S MET CHEM APP, P17
25240    KAY DAR, 1988, 3RD P INT C MOLT SLA, P263
25241    LEHMAN J, 1990, 6TH P INT IR STEEL C, V1, P256
25242    MASSON CR, 1971, P S CHEM METALLURGY, P3
25243    MYSEN BO, 1988, STRUCTURE PROPERTIES, P48
25244    NAGABAYASHI R, 1988, 3RD P INT C MOLT SLA, P24
25245    NAKAMURA T, 1986, J JPN I MET, V50, P456
25246    PELTON AD, 1986, METALL TRANS B, V17, P805
25247    PELTON AD, 1988, 3RD P INT C MOLT SLA, P66
25248    QI GJ, 1984, 5TH P NAT C MET PHYS, P227
25249    RICHARSAON RD, 1974, PHYSICOCHEMISTRY MEL, P116
25250    SAINTJOURS C, 1988, 3RD P INT C MOLT SLA, P65
25251    SHARMA RC, 1979, MET T              B, V10, P103
25252    SOMMERVILLE ID, 1986, SEP P TECHN ADV MET
25253    SOSINSKY DJ, 1986, METALL TRANS B, V17, P331
25254    VARSHAL VG, 1972, IZV A N SSSR INORG M, P934
25255    YOKOKAWA T, 1969, T JAPAN I MET, V10, P3
25256    YOKOKAWA T, 1969, T JPN I MET, V10, P81
25257    YOKOKAWA T, 1986, B JIM, V25, P3
25258    ZHANG J, COMMUNICATION
25259    ZHANG J, 1986, P NATIONAL ACADEMIC, P1
25260    ZHANG J, 1990, P WEI SHOUKUN S, P57
25261 NR 38
25262 TC 4
25263 SN 0915-1559
25264 J9 ISIJ INT
25265 JI ISIJ Int.
25266 PY 1993
25267 VL 33
25268 IS 1
25269 BP 20
25270 EP 25
25271 PG 6
25272 SC Metallurgy & Metallurgical Engineering
25273 GA KH294
25274 UT ISI:A1993KH29400004
25275 ER
25276 
25277 PT J
25278 AU XU, KD
25279    JIANG, GC
25280    DING, WZ
25281    GU, LP
25282    GUO, SQ
25283    ZHAO, BX
25284 TI THE KINETICS OF REDUCTION OF MNO IN MOLTEN SLAG WITH CARBON SATURATED
25285    LIQUID-IRON
25286 SO ISIJ INTERNATIONAL
25287 DT Article
25288 DE KINETICS, REDUCTION OF (MNO), CARBON SATURATED IRON; SLAG METAL REACTION
25289 ID OXIDE
25290 AB This investigation devotes to the kinetics of the reduction of (MnO)
25291    with carbon-saturated liquid iron. The experiment condition involves
25292    high content realm of both (%MnO) and %Mn. It was found that the
25293    reduction is limited by the interfacial reaction. By means of a X-TV
25294    dynamic metallurgical phenomena displaying device, the slag-iron
25295    interface was proved to be the essential site for evolving the
25296    reduction product CO. The content variation of surface active agent S
25297    affects obviously on the reduction rate. If no carbon is added in slag,
25298    then a hump emerges on the curve of (%FeO) vs. reaction time. In this
25299    case, the apparent reaction order is 2. If there is a carbon addition
25300    in slag, the process is of apparent first order. Based on the three
25301    step model of reactions in series, the aforementioned phenomena and
25302    regularities were elucidated unitedly.
25303 RP XU, KD, SHANGHAI UNIV SCI & TECHNOL,YANCHANG RD,SHANGHAI 200072,PEOPLES
25304    R CHINA.
25305 CR CHEN JX, 1984, HDB DATA ATLAS STEEL, P412
25306    FANG YY, 1986, SHANGHAI METALS, V3, P47
25307    FUJITA M, 1988, TETSU TO HAGANE, V74, P801
25308    FUWA T, 1987, B JPN I MET, V26, P365
25309    HAN QY, 1983, KINETICS METALLURGIC, P24
25310    PLASHEVSKY AA, 1984, IZV VUZ CHERNAYA MET, V10, P16
25311    POMFRET RJ, 1984, P CENTENARY C CELEBR
25312    POMFRET RJ, 1987, IRONMAK STEELMAK, V5, P191
25313    QY Y, 1980, PRINCIPLE STEELMAKIN, P72
25314    SATO A, 1987, TETSU TO HAGANE, V73, P812
25315    SHINOTAKE A, 1987, TETSU TO HAGANE, V73, S121
25316    SHINOZAKI N, 1984, TETSU TO HAGANE, V70, P73
25317    SUITO H, 1984, TETSU TO HAGANE, V70, P672
25318    TURKDOGAN ET, 1953, J IRON STEEL I, V173, P217
25319    WAGNER C, 1958, PHYSICAL CHEM STEELM, P237
25320 NR 15
25321 TC 5
25322 SN 0915-1559
25323 J9 ISIJ INT
25324 JI ISIJ Int.
25325 PY 1993
25326 VL 33
25327 IS 1
25328 BP 104
25329 EP 108
25330 PG 5
25331 SC Metallurgy & Metallurgical Engineering
25332 GA KH294
25333 UT ISI:A1993KH29400016
25334 ER
25335 
25336 PT J
25337 AU XU, DM
25338    SONG, LP
25339 TI A NEW TYPE OF OPTOELECTRONIC MILLIMETER-WAVE FINLINE SWITCHES
25340 SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES
25341 DT Article
25342 AB A new type of millimeter-wave finline switches constructed on teflon
25343    substrates is proposed, which can be easily fabricated and mounted. The
25344    experimental results are reported, which show less than 2 dB insertion
25345    loss in the region of 26-40 GHz and 23.4 dB on/off ratio have been
25346    reached. Because of its good compatibility with the conventional
25347    finline structures, it will have a wide application field. A very
25348    simple method has been given to analyze its behaviors which has
25349    successfully predicted the experimental results. A nonlinear relation
25350    between the photoconductivity and the light power is given which has
25351    been confirmed by experiment.
25352 RP XU, DM, SHANGHAI UNIV SCI & TECHNOL,SHANGHAI 201800,PEOPLES R CHINA.
25353 CR 1975, HP183 APPL NOT
25354    CHEUNG P, 1990, IEEE T MICROW THEORY, V38, P586
25355    GUPTA KC, 1981, COMPUT AIDED DESIGN, P39
25356    LEE CH, 1990, IEEE T MICROW THEORY, V38, P596
25357    PLATTE W, 1984, ELECTRON LETT, V20, P608
25358    SCHIEBLICH C, 1984, IEEE T MICROW THEORY, V32, P1638
25359    SEEGER K, 1985, SEMICONDUCTOR PHYSIC, P386
25360    UHDE K, 1990, IEEE T MICROW THEORY, V38, P679
25361 NR 8
25362 TC 0
25363 SN 0018-9480
25364 J9 IEEE TRANS MICROWAVE THEORY
25365 JI IEEE Trans. Microw. Theory Tech.
25366 PD DEC
25367 PY 1992
25368 VL 40
25369 IS 12
25370 BP 2392
25371 EP 2396
25372 PG 5
25373 SC Engineering, Electrical & Electronic
25374 GA KH463
25375 UT ISI:A1992KH46300035
25376 ER
25377 
25378 PT J
25379 AU XIE, XY
25380    EVANS, RJ
25381 TI MULTIPLE FREQUENCY LINE TRACKING WITH HIDDEN MARKOV-MODELS - FURTHER
25382    RESULTS
25383 SO IEEE TRANSACTIONS ON SIGNAL PROCESSING
25384 DT Article
25385 AB This paper extends our earlier work on the application of hidden Markov
25386    models (HMM's) to the problem of multiple frequency line tracking using
25387    the concept of a mixed track. Here we introduce an alternative
25388    definition of measurement vector which avoids the use of thresholds and
25389    is shown to yield superior performance to threshold based schemes. We
25390    also present an improved method for separating the mixed track into its
25391    component tracks.
25392 C1 UNIV NEWCASTLE,DEPT ELECT ENGN & COMP SCI,NEWCASTLE,NSW 2308,AUSTRALIA.
25393    UNIV MELBOURNE,DEPT ELECT & ELECTR ENGN,PARKVILLE,VIC 3052,AUSTRALIA.
25394 RP XIE, XY, SHANGHAI UNIV SCI & TECHNOL,DEPT COMP SCI,SHANGHAI
25395    201800,PEOPLES R CHINA.
25396 CR ADAMS G, 1991, EE9125 U NEWC DEP EL
25397    BARNIV Y, 1985, IEEE T AERO ELEC SYS, V21, P144
25398    BARNIV Y, 1987, IEEE T AERO ELEC SYS, V23, P776
25399    BARSHALOM Y, 1988, TRACKING DATA ASS
25400    BLACKMAN SS, 1986, MULTIPLE TARGET TRAC
25401    DAVENPORT WB, 1987, INTRO THEORY RANDOM
25402    FORNEY GD, 1973, P IEEE, V61, P268
25403    RABINER LR, 1986, IEEE ASSP MAGAZI JAN, P4
25404    RABINER R, 1989, P IEEE, V77, P257
25405    SCHMIDT RO, 1986, IEEE T ANTENN PROPAG, V34, P276
25406    STEELE A, 1989, APR P ASSP 89 SIGN P, P17
25407    STREIT RL, 1990, IEEE T ACOUST SPEECH, V38, P586
25408    WHALEN AD, 1971, DETECTION SIGNALS NO
25409    XIANYA X, 1990, EE9007 U NEWC DEP EL
25410    XIANYA X, 1990, EE9032 U NEWC DEP EL
25411    XIE XY, 1991, IEEE T SIGNAL PROCES, V39, P2659
25412 NR 16
25413 TC 5
25414 SN 1053-587X
25415 J9 IEEE TRANS SIGNAL PROCESS
25416 JI IEEE Trans. Signal Process.
25417 PD JAN
25418 PY 1993
25419 VL 41
25420 IS 1
25421 BP 334
25422 EP 343
25423 PG 10
25424 SC Engineering, Electrical & Electronic
25425 GA KG148
25426 UT ISI:A1993KG14800029
25427 ER
25428 
25429 PT J
25430 AU WEI, MM
25431    GU, F
25432    XIE, WY
25433 TI STUDY ON THE PREPARATION OF PZT CERAMIC MATERIAL FOR MEDIUM
25434    HIGH-FREQUENCY SAW DEVICES BY LOW VACUUM ATMOSPHERE SINTERING
25435 SO FERROELECTRICS
25436 DT Article
25437 AB Ternary PZT-PNM* ceramics is prepared by low vacuum atmosphere(5 x
25438    10(-2) bar) sintering technique to improve the microstructure, density,
25439    polished surface smoothness, as well as the piezoelectric properties.
25440    The grain growth has been restrained by doping small amount of CeO2. At
25441    the same time. The density up to 7.97 g/cm3 and grain size less than 2
25442    um have also been obtained. The size of pits on the polished surface is
25443    less than 0.5 um. It is suitable for manufacturing SAW devices in
25444    medium high frequency of 10 to 40 MHz.
25445 RP WEI, MM, SHANGHAI UNIV SCI & TECHNOL,DEPT MAT,JIADING SHANGHAI
25446    201800,PEOPLES R CHINA.
25447 CR LEVIN EM, 1969, PHASE DIAGRAM CERAMI, P39
25448    SHIGERU J, 1981, J APPL PHYS, V52, P4472
25449    TAKAHASHI M, 1974, J JPN SOC POWD METAL, V20, P274
25450 NR 3
25451 TC 1
25452 SN 0015-0193
25453 J9 FERROELECTRICS
25454 PY 1992
25455 VL 133
25456 IS 1-4
25457 BP 301
25458 EP 306
25459 PG 6
25460 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
25461 GA KF791
25462 UT ISI:A1992KF79100052
25463 ER
25464 
25465 PT J
25466 AU MAO, DK
25467 TI A TREATMENT OF DISCONTINUITIES FOR FINITE-DIFFERENCE METHODS
25468 SO JOURNAL OF COMPUTATIONAL PHYSICS
25469 DT Article
25470 ID FRONT-TRACKING; CONSERVATION-LAWS; SCHEMES
25471 C1 SHANGHAI UNIV SCI & TECHNOL,DEPT MATH,SHANGHAI,PEOPLES R CHINA.
25472 RP MAO, DK, UNIV CALIF LOS ANGELES,DEPT MATH,LOS ANGELES,CA 90024.
25473 CR CHARRIER P, 1986, SIAM J NUMER ANAL, V23, P461
25474    CHEN IL, 1986, J COMPUT PHYS, V62, P83
25475    CHORIN A, 1979, MATH INTRO FLUID MEC
25476    GLIMM J, 1985, ADV APPL MATH, V6, P259
25477    HARTEN A, 1989, J COMPUT PHYS, V83, P148
25478    MAO D, 1985, J COMPUT MATH, V3, P256
25479    MO D, 1991, J COMPUT PHYS, V92, P422
25480    MORETTI, 1972, PIBAL7237 POL I BROO
25481    OSHER S, 1986, IMA VOLUMES MATH ITS, V2, P229
25482    SHU CW, 1987, MATH COMPUT, V49, P105
25483    SJOGREEN B, 1991, 3RD P INT C HYP PROB, P848
25484    SWARTZ BK, 1986, APPL NUMER MATH, V2, P385
25485 NR 12
25486 TC 12
25487 SN 0021-9991
25488 J9 J COMPUT PHYS
25489 JI J. Comput. Phys.
25490 PD DEC
25491 PY 1992
25492 VL 103
25493 IS 2
25494 BP 359
25495 EP 369
25496 PG 11
25497 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
25498 GA KD206
25499 UT ISI:A1992KD20600012
25500 ER
25501 
25502 EF
25503 
25504 FN ISI Export Format
25505 VR 1.0
25506 PT J
25507 AU Cao, WG
25508    Ding, WY
25509    Chen, YL
25510    Gao, JS
25511 TI An efficient and highly stereoselective synthesis of
25512    cis-1-acetyl-2-aryl-6,6-dimethyl-5,7-dioxo-spiro-[2,5]-4,8-octadiones
25513    and beta,gamma-trans-beta-acetyl-gamma-aryl-butyrolactones
25514 SO SYNTHETIC COMMUNICATIONS
25515 DT Article
25516 DE stereoselective synthesis; acetylmethyltriphenylarsonium bromide;
25517    2,2-dimethyl-1,3-dioxa-5-substituted-benzylidene-4,6-dione;
25518    cis-1-acetyl-2-aryl-6,6-dimethyl-5,7-dioxo-spiro-[2,5]-4,8-octadiones;
25519    beta,gamma-trans-beta-acetyl-gamma-aryl-gamma-butyrolactones
25520 AB Acetylmethyltriphenylarsonium bromide 6 in the presence of potassium
25521    carbonate and trace water reacted with
25522    2,2-dimethyl-1,3-dioxa-5-substituted-benzylidene-4,6-dione 2 at room
25523    temperature to give cyclopropane derivatives
25524    cis-1-acetyl-2-aryl-6,6-dimethyl-5,7-dioxo-spiro-[2,5]-4,8-octadiones 7
25525    (X=p-CH3, p-Cl, H, p-NO2) or beta,gamma -trans-beta -acetyl-gamma
25526    -aryl-gamma -butyrolactones 8 (X=p-CH3O, p-N(CH3)(2), 3',4'-OCH2O-)
25527    with good yield and high stereoselectivity.
25528 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
25529    Chinese Acad Sci, Shanghai Inst Organ Chem, Organomet Chem Lab, Shanghai 200032, Peoples R China.
25530 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
25531 CR CAO WG, IN PRESS SYNTH COMMU
25532    CHEN YL, 1998, CHEM J CHINESE U, V19, P1614
25533    DING WY, 1965, B NAT SCI U CHEM CE, P540
25534    DING WY, 1996, CHEM RES CHINESE U, V12, P51
25535    HUDLICKY T, 1990, SYNTHETIC COMMUN, V20, P1721
25536    JAIN PT, 1991, DISS ABSTR INT B, P195
25537    SCHUSTER P, 1964, MH CHEM, V95, P53
25538    SHI DQ, 1998, CHINESE J ORG CHEM, V18, P82
25539 NR 8
25540 TC 6
25541 SN 0039-7911
25542 J9 SYN COMMUN
25543 JI Synth. Commun.
25544 PY 2000
25545 VL 30
25546 IS 24
25547 BP 4523
25548 EP 4530
25549 PG 8
25550 SC Chemistry, Organic
25551 GA 381YX
25552 UT ISI:000165792600018
25553 ER
25554 
25555 PT J
25556 AU Cao, WG
25557    Ding, WY
25558    Chen, YL
25559    Gao, JS
25560 TI Study on the reaction of
25561    cis-1-acetyl-2-aryl-6,6-dimethyl-5,7-dioxo-spiro-[2,5]-4,8-octadiones
25562    with methanol
25563 SO SYNTHETIC COMMUNICATIONS
25564 DT Article
25565 DE cis-1-acetyl-2-aryl-6,6-dimethyl-5,7-dioxo-spiro-[2,5]-4,8-octadione;
25566    trans,cis-alpha-carbomethoxy-beta-(alpha'-methoxy-alpha'-aryl)-gamma-met
25567    hoxy-gamma-methyl-gamma-butyrolactones;
25568    cis,cis-alpha-carbomethoxy-beta-(alpha'-methoxy-alpha'-aryl)-gamma-metho
25569    xy-gamma-methyl-gamma-butyrolactones
25570 AB Cis-1-acetyl-2-aryl-6,6-dimethyl-5,7-dioxo-spiro-[2,5]-4,8-octadiones
25571    3a-d (X=p-CH3, p-Cl, H, p-NO2) reacted with anhydrous methanol in a
25572    sealed tube at 80 degreesC to form trans, cis-alpha
25573    -carbomethoxy-beta-(alpha'-methoxy-alpha'-aryl)-gamma -methoxy-gamma
25574    -methyl-gamma -butyrolactones 4a-d and cis,cis-alpha-alpha
25575    -carbomethoxy-beta-(alpha'-methoxy-alpha'-aryl)-gamma -methoxy-gamma
25576    -methyl-gamma -butyrolactones 5a-d in good yield.
25577 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
25578    Chinese Acad Sci, Shanghai Inst Organ Chem, Organomet Chem Lab, Shanghai 200032, Peoples R China.
25579 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
25580 CR CAO WG, IN PRESS CHEM J CHIN
25581    CAO WG, IN PRESS SYNTH COMMU
25582    CHEN YL, 1998, CHEM J CHINESE U, V19, P1614
25583    GAO JS, 1999, J SHANGHAI U NATURL, V5, P491
25584    HUDLICKY T, 1990, SYNTHETIC COMMUN, V20, P1721
25585 NR 5
25586 TC 3
25587 SN 0039-7911
25588 J9 SYN COMMUN
25589 JI Synth. Commun.
25590 PY 2000
25591 VL 30
25592 IS 24
25593 BP 4531
25594 EP 4541
25595 PG 11
25596 SC Chemistry, Organic
25597 GA 381YX
25598 UT ISI:000165792600019
25599 ER
25600 
25601 PT J
25602 AU Zhou, JM
25603    Wang, Q
25604    Wu, Z
25605    Li, CF
25606 TI Frequency properties of nonlinear transverse electric surface waves
25607 SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES &
25608    REVIEW PAPERS
25609 DT Article
25610 DE frequency region; passband; stopband; antiferromagnet; dielectric;
25611    nonlinear TE surface wave
25612 ID MICROWAVE-ENVELOPE SOLITONS; IRON-GARNET FILMS
25613 AB The frequency properties of the nonlinear transverse electric (TE)
25614    waves on the interface between a dielectric and a nonlinear
25615    antiferromagnet are studied. The analyzed expressions of the field
25616    components of TE waves are derived in a large power case. We find that
25617    the peak magnetic field moves into the nonlinear antiferromagnet from
25618    the interface when the power of TE waves increases. Using the explicit
25619    dispersion equation obtained in this article we analyze in detail the
25620    frequency regions of the TE surface waves. The results show the
25621    nonlinear TE surface waves have frequency passband and stopband, which
25622    can be switched into each other by varying the power. Ii is also
25623    revealed that, under certain conditions, the nonlinear TE waves on the
25624    interface are backward surface waves with the group and phase
25625    velocities opposite in direction.
25626 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
25627 RP Zhou, JM, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
25628 CR ALMEIDA NS, 1987, PHYS REV B, V36, P2015
25629    BOARDMAN AD, 1990, PHYS REV B, V41, P717
25630    BOARDMAN AD, 1993, PHYS REV B, V48, P13602
25631    BOARDMAN AD, 1994, IEEE T MAGN, V30, P1
25632    CHEN M, 1994, PHYS REV B, V49, P12773
25633    DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308
25634    MIHALACHE D, 1987, OPT LETT, V12, P187
25635    TSANKOV MA, 1994, J APPL PHYS, V76, P4274
25636    VUKOVIH S, 1990, SOV PHYS JETP, V71, P864
25637    WANG Q, 1995, J APPL PHYS, V77, P5831
25638    WANG Q, 1999, SCI CHINA SER A, V42, P310
25639    WANG YF, 1998, J APPL PHYS, V84, P6233
25640 NR 12
25641 TC 1
25642 SN 0021-4922
25643 J9 JPN J APPL PHYS PT 1
25644 JI Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap.
25645 PD NOV
25646 PY 2000
25647 VL 39
25648 IS 11
25649 BP 6223
25650 EP 6229
25651 PG 7
25652 SC Physics, Applied
25653 GA 382PL
25654 UT ISI:000165831400021
25655 ER
25656 
25657 PT J
25658 AU Chen, LQ
25659    Cheng, CJ
25660 TI Stability and chaotic motion in columns of nonlinear viscoelastic
25661    material
25662 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
25663 DT Article
25664 DE stability; chaos; averaging method; Galerkin method; viscoelastic column
25665 ID DYNAMIC STABILITY; PLATES
25666 AB The dynamical stability of a homogeneous, simple supported column,
25667    subjected to a periodic axial force, is investigated. The viscoelastic
25668    material is assumed to obey the Leaderman nonlinear constitutive
25669    relation. The equation of motion was derived as a nonlinear
25670    integro-partial-differential equation, and was simplified into a
25671    nonlinear integro-differential equation by the Galerkin method. The
25672    averaging method was employed to carry out the stability analysis.
25673    Numerical results are presented to compare with the analytical ones.
25674    Numerical results also indicate that chaotic motion appears.
25675 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
25676    Shanghai Univ, Dept Mech, Shanghai 201800, Peoples R China.
25677 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
25678    200072, Peoples R China.
25679 CR ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151
25680    CEDERBAUM G, 1992, J APPL MECH-T ASME, V59, P16
25681    CHEN LQ, 1999, APPL MATH MECH, V20, P1224
25682    CHENG CJ, 1998, ACTA MECH SINICA, V30, P690
25683    GLUCKNER PG, 1987, ENCY CIV ENG PRAC TE, V23, P577
25684    LEADERMAN H, 1962, T SOC RHEOL, V6, P361
25685    MATYASH VI, 1964, MECH POLY, V2, P293
25686    NAYFEF AH, 1979, NONLINEAR OSCILLATIO
25687    SANDERS JA, 1985, AVERAGING METHODS NO
25688    SMART J, 1972, J MECH PHYS SOLIDS, V20, P313
25689    STEVENS KK, 1966, AIAA J, V12, P2111
25690    SUIRE G, 1994, ARCH APPL MECH-ING, V64, P307
25691    SUIRE G, 1995, INT J MECH SCI, V37, P753
25692    SZYSZKOWSKI W, 1985, INT J SOLIDS STRUCT, V6, P545
25693    TOUATI D, 1994, INT J SOLIDS STRUCT, V31, P2367
25694    TOUATI D, 1995, ACTA MECH, V113, P215
25695    ZHANG NH, 1998, P 3 INT C NONL MECH, P432
25696    ZHU YY, 1998, P 3 INT C NONL MECH, P445
25697 NR 18
25698 TC 0
25699 SN 0253-4827
25700 J9 APPL MATH MECH-ENGL ED
25701 JI Appl. Math. Mech.-Engl. Ed.
25702 PD SEP
25703 PY 2000
25704 VL 21
25705 IS 9
25706 BP 987
25707 EP 994
25708 PG 8
25709 SC Mathematics, Applied; Mechanics
25710 GA 381DZ
25711 UT ISI:000165748200002
25712 ER
25713 
25714 PT J
25715 AU Chen, LQ
25716    Cheng, CJ
25717 TI Dynamical behavior of nonlinear viscoelastic beams
25718 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
25719 DT Article
25720 DE viscoelastic beam; differential equation of motion; Leaderman relation;
25721    Galerkin method
25722 ID CHAOTIC VIBRATIONS
25723 AB The integro-partial-differential equation that governs the dynamical
25724    behavior of homogeneous viscoelastic beams was established. The
25725    material of the beams obeys the Leaderman nonlinear constitutive
25726    relation. rn the case of two simply supported ends, the mathematical
25727    model is simplified into an integro-differential equation after a
25728    2nd-order truncation by the Galerkin method. Then the equation is
25729    further reduced to an ordinary differential equation which is
25730    convenient to carry out numerical experiments. Finally, the dynamical
25731    behavior of Ist-order and 2nd-order truncation are numerically compared.
25732 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
25733    Shanghai Univ, Dept Mech, Shanghai 201800, Peoples R China.
25734 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
25735    200072, Peoples R China.
25736 CR ABHYANKAR NS, 1993, J APPL MECH-T ASME, V60, P167
25737    ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151
25738    CHEN LQ, 1999, NATURAL J, V21, P1
25739    LEADERMAN H, 1962, T SOC RHEOL, V6, P361
25740    MOON FC, 1979, J SOUND VIB, V65, P285
25741    NAYFEF AH, 1979, NONLINEAR OSCILLATIO
25742    POTAPOV VD, 1997, INT J SOLIDS STRUCT, V34, P1367
25743    SMART J, 1972, J MECH PHYS SOLIDS, V20, P313
25744    SUIRE G, 1995, INT J MECH SCI, V37, P753
25745    WOJCIECH S, 1990, ACTA MECH, V85, P43
25746 NR 10
25747 TC 5
25748 SN 0253-4827
25749 J9 APPL MATH MECH-ENGL ED
25750 JI Appl. Math. Mech.-Engl. Ed.
25751 PD SEP
25752 PY 2000
25753 VL 21
25754 IS 9
25755 BP 995
25756 EP 1001
25757 PG 7
25758 SC Mathematics, Applied; Mechanics
25759 GA 381DZ
25760 UT ISI:000165748200003
25761 ER
25762 
25763 PT J
25764 AU Lai, JW
25765    Zhou, SP
25766    Li, GH
25767    Xu, DM
25768 TI A method for computing Lyapunov exponents spectra without
25769    reorthogonalization
25770 SO ACTA PHYSICA SINICA
25771 DT Article
25772 DE chaos; Lyapunov exponents; compound matrix; eigenvalue
25773 ID SYSTEMS
25774 AB We present a method for the computation of Lyapunov exponents without
25775    reorthogonalization. In the low dimension of system( n<5), the
25776    equations needed. in present algorithm is less than those in normal
25777    methods such as QR, SVD etc. This method is applicable to both discrete
25778    systems and continuous systems, and is still valid when the Lyapunov
25779    spectra is degenerate. Numerical analysis to Lorenz dynamical system
25780    indicates that the method converges quickly and steadly for arbitrary
25781    nonzero initial state.
25782 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
25783    Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800, Peoples R China.
25784 RP Lai, JW, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
25785 CR ARGYRIS J, 1994, EXPLORATION CHAOS, CH5
25786    CHOQUETBRUHAT Y, 1977, ANAL MANIFOLDS PHYSI, P258
25787    ECKMANN JP, 1985, REV MOD PHYS, V57, P617
25788    GEIST K, 1990, PROG THEOR PHYS, V83, P875
25789    GREENE JM, 1987, PHYSICA D, V24, P213
25790    HEINXOTTOPEITGE., 1992, CHAOS FRACTALS, CH12
25791    PECORA LM, 1990, PHYS REV LETT, V64, P821
25792    PECORA LM, 1991, PHYS REV A, V44, P2374
25793    RANGARAJAN G, 1998, PHYS REV LETT, V80, P3743
25794    ROSSLER OE, 1979, PHYS LETT A, V71, P155
25795    VONBREMEN HF, 1997, PHYSICA D, V101, P1
25796    WANG DS, 1995, CHAOS FRACTAL APPL, CH2
25797    WILKINSM JH, 1987, ALGEBRAIC EIGENVALUE, CH1
25798    WOLF A, 1985, PHYSICA D, V16, P285
25799    ZHANG XK, 1998, ADV ALGEBRA, P22
25800 NR 15
25801 TC 3
25802 SN 1000-3290
25803 J9 ACTA PHYS SIN-CHINESE ED
25804 JI Acta Phys. Sin.
25805 PD DEC
25806 PY 2000
25807 VL 49
25808 IS 12
25809 BP 2328
25810 EP 2332
25811 PG 5
25812 SC Physics, Multidisciplinary
25813 GA 382WB
25814 UT ISI:000165849400003
25815 ER
25816 
25817 PT J
25818 AU Lai, GJ
25819    Ji, PY
25820 TI Photon acceleration based on laser-plasma
25821 SO ACTA PHYSICA SINICA
25822 DT Article
25823 DE electron density perturbation; optical metric; photon acceleration
25824 AB The one-dimensional electron density perturbation is derived by using
25825    the cold fluid equation, Poisson's equation and the continuity
25826    equation, which is generated by a driving laser pulse propagating
25827    through a tenuous plasma. The upshifting of the frequency of a trailing
25828    pulse induced by density perturbation is studied by using optical
25829    metric. The results show that it is possible that the photon will gain
25830    energy from the wake field when assuming photon number to be conserved,
25831    i. e., the photon will be accelerated.
25832 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
25833 RP Lai, GJ, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
25834 CR GORDON W, 1923, ANN PHYS-BERLIN, V72, P421
25835    JOSHI C, 1984, NATURE, V311, P525
25836    MENDONCA JT, 1994, PHYS REV E, V49, P3520
25837    NAKAJIMA K, 1995, PHYS REV LETT, V74, P4428
25838    TAJIMA T, 1979, PHYS REV LETT, V43, P267
25839    WEINBERG S, 1972, GRAVITATION COSMOLOG
25840    WILKS SC, 1989, PHYS REV LETT, V62, P2600
25841    ZHU ST, 1993, ACTA PHYS SINICA, V42, P1438
25842 NR 8
25843 TC 4
25844 SN 1000-3290
25845 J9 ACTA PHYS SIN-CHINESE ED
25846 JI Acta Phys. Sin.
25847 PD DEC
25848 PY 2000
25849 VL 49
25850 IS 12
25851 BP 2399
25852 EP 2403
25853 PG 5
25854 SC Physics, Multidisciplinary
25855 GA 382WB
25856 UT ISI:000165849400015
25857 ER
25858 
25859 PT J
25860 AU You, JL
25861    Jiang, GC
25862    Xu, KD
25863 TI High temperature Raman spectroscopic study of the structure of sodium
25864    disilicate crystal, glass and its melt
25865 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
25866 DT Article
25867 DE high temperature; Raman spectroscopy; melts; sodium disilicate
25868 AB The structure of Na2Si2O5 from room temperature up to 1 773 K are
25869    studied by high temperature Raman spectroscopy using copper vapor pulse
25870    laser and integral time-resolved detection technique without any
25871    black-body radiation effect on spectral record. Backscattering optical
25872    configuration is coupled with confocal collection of Raman signal of
25873    macro-sample in the high temperature shaft tube furnace. Results show
25874    that temperature-dependent Raman spectra can clearly indicate phase
25875    transition during melting. Relative densities of various kinds of
25876    SiO4(n-4) (n, bridging-oxygen number binding to one tetrahedron former
25877    Si) tetrahedrons can be qualitatively and quantitatively resolved by
25878    Gaussian spectral deconvolution. Obviously high temperature Raman
25879    spectroscopy provides an useful tool for the micro-structure research
25880    of materials under high temperature.
25881 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
25882 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
25883    200072, Peoples R China.
25884 CR DOMINE F, 1983, J NON-CRYST SOLIDS, V55, P125
25885    HANDKE M, 1993, VIB SPECTROSC, V5, P75
25886    SMITH W, 1995, J NONCRYST SOLIDS, V192, P267
25887    XU KD, 1999, SCI CHINA, V22, P77
25888    YOU JL, 1998, J CHINESE RARE EARTH, V16, P505
25889 NR 5
25890 TC 3
25891 SN 1000-0593
25892 J9 SPECTROSC SPECTR ANAL
25893 JI Spectrosc. Spectr. Anal.
25894 PD DEC
25895 PY 2000
25896 VL 20
25897 IS 6
25898 BP 797
25899 EP 799
25900 PG 3
25901 SC Spectroscopy
25902 GA 379NP
25903 UT ISI:000165649400015
25904 ER
25905 
25906 PT J
25907 AU Ben-Yu, G
25908    Cheng-Long, X
25909 TI On two-dimensional unsteady incompressible fluid flow in an infinite
25910    strip
25911 SO MATHEMATICAL METHODS IN THE APPLIED SCIENCES
25912 DT Article
25913 DE incompressible fluid flow; stream function form; infinite strip;
25914    existence; uniqueness and regularity of solution
25915 ID NAVIER-STOKES EQUATIONS; STREAM FUNCTION FORM
25916 AB In this paper, we study two-dimensional incompressible fluid flow in an
25917    infinite strip. The stream function form of Navier-Stokes equation is
25918    considered, which keeps the physical boundary condition and avoids some
25919    difficulties in numerical simulations. The existence and uniqueness of
25920    global solution are proved. Some results on the regularity of solution
25921    are obtained. Copyright (C) 2000 John Wiley & Sons, Ltd.
25922 C1 Shanghai Normal Univ, Sch Math Sci, Shanghai 200234, Peoples R China.
25923    Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
25924 RP Ben-Yu, G, Shanghai Normal Univ, Sch Math Sci, Shanghai 200234, Peoples
25925    R China.
25926 CR BERNARDI C, 1992, MATH COMPUT, V59, P63
25927    CHAZARAIN J, 1982, INTRO THEORY LINEAR
25928    GUO BY, 1997, J MATH ANAL APPL, V205, P1
25929    GUO BY, 1998, SIAM J NUMER ANAL, V35, P146
25930    GUO BY, 1999, MATH COMPUT, V68, P1067
25931    HE LP, 1999, RAIRO MATH MODEL NUM, V33, P113
25932    KWEON JR, 1998, J MATH ANAL APPL, V220, P657
25933    LADYZHENSKAJA OA, 1969, MATH THEORY VISCOUS
25934    LIONS JL, 1969, QUELQUES METHODES RE
25935    MADAY Y, 1985, RECH AEROSPATIALE, P353
25936    TEMAM R, 1977, NAVIERSTOKES EQUATIO
25937 NR 11
25938 TC 0
25939 SN 0170-4214
25940 J9 MATH METH APPL SCI
25941 JI Math. Meth. Appl. Sci.
25942 PD DEC
25943 PY 2000
25944 VL 23
25945 IS 18
25946 BP 1617
25947 EP 1636
25948 PG 20
25949 SC Mathematics, Applied
25950 GA 380WJ
25951 UT ISI:000165726200002
25952 ER
25953 
25954 PT J
25955 AU Bai, YJ
25956    Liu, YX
25957    Sun, DS
25958    Bian, XF
25959    Xiao, LM
25960    Geng, GL
25961 TI Atmospheric oxidation of CuZnAlMnNi shape memory alloy
25962 SO MATERIALS LETTERS
25963 DT Article
25964 DE shape memory alloy (CuZnAlMnNi), oxidation of; microstructure;
25965    transmission electron microscopy
25966 ID CU-ZN-AL; MARTENSITIC-TRANSFORMATION; THERMOELASTICITY; TEMPERATURE;
25967    BEHAVIOR
25968 AB The microstructures of CuZnAlMnNi alloy after ion-polishing and
25969    subsequent exposure for 60 days in the ambient atmosphere were examined
25970    by transmission electron microscopy (TEM). It was found that a large
25971    number of fine oxide grains, with various sizes, appear homogeneously
25972    on the surface of the alloy after being held in atmosphere. The oxides
25973    form along the planes of stacking fault, at the plate boundaries or
25974    around the dislocations, resulting in the decrease of the stacking
25975    faults in the original quenched martensite plates, and even the
25976    complete disappearance in local zones. (C) 2000 Elsevier Science B.V.
25977    All rights reserved.
25978 C1 Shanghai Univ Sci & Technol, Dept Mech, Jinan 250031, Shandong, Peoples R China.
25979    Shandong Univ Technol, Mat Testing Ctr, Jinan 250061, Shandong, Peoples R China.
25980 RP Bai, YJ, Shanghai Univ Sci & Technol, Dept Mech, Jinan 250031,
25981    Shandong, Peoples R China.
25982 CR BAI YJ, 1999, J MATER SCI LETT, V18, P1509
25983    DELAEY L, 1974, J MATER SCI, V9, P1521
25984    GENG GL, 1999, MATER CHARACT, V42, P45
25985    GU NJ, 1996, METALL MATER TRANS A, V27, P3108
25986    LOVEY FC, 1990, PHILOS MAG A, V61, P159
25987    LOVEY FC, 1995, J PHYS IV, V5, C2
25988    LOVEY FC, 1999, PROG MATER SCI, V44, P189
25989    PELEGRINA JL, 1992, ACTA METALL MATER, V40, P3205
25990    PONS J, 1990, ACTA METALL MATER, V38, P2733
25991    PONS J, 1993, ACTA METALL MATER, V41, P2547
25992    STALMANS R, 1992, ACTA METALL MATER, V40, P501
25993    WEI ZG, 1998, J MATER SCI, V33, P3743
25994 NR 12
25995 TC 1
25996 SN 0167-577X
25997 J9 MATER LETT
25998 JI Mater. Lett.
25999 PD DEC
26000 PY 2000
26001 VL 46
26002 IS 6
26003 BP 358
26004 EP 361
26005 PG 4
26006 SC Materials Science, Multidisciplinary; Physics, Applied
26007 GA 380KV
26008 UT ISI:000165701800009
26009 ER
26010 
26011 PT J
26012 AU Luo, X
26013    Roetzel, W
26014    Ludersen, U
26015 TI The single-blow transient testing technique considering longitudinal
26016    core conduction and fluid dispersion
26017 SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
26018 DT Article
26019 DE heat exchangers; measurement techniques; transient
26020 ID NUMERICAL INVERSION; LAPLACE TRANSFORMS; COEFFICIENTS
26021 AB Single-blow transient testing technique has been widely used to measure
26022    the thermal performance of compact heat exchangers. For compact heat
26023    exchangers with short length the effect of longitudinal core conduction
26024    can usually not be neglected. Furthermore, the flow nonuniformity in a
26025    heat exchanger has also a significant influence on its temperature
26026    response. A new conduction/dispersion model for the single-blow
26027    transient testing technique is developed to include the effects of the
26028    longitudinal core conduction and fluid dispersion. Because the axial
26029    dispersion coefficient depends on the flow pattern in the heat
26030    exchanger which is usually unknown, both the heat transfer coefficient
26031    and the axial dispersion coefficient are determined with the whole
26032    curve matching simultaneously. The experiments are conducted in an open
26033    circuit wind tunnel. Comparison is made between the experimental
26034    results and data available in the literature. The software TAIHE
26035    (Transient Analysis In Heat Exchangers) developed by the authors is
26036    applied to the data analysis to evaluate heat transfer coefficients and
26037    axial dispersion coefficients. The results show that the pulse testing
26038    technique developed in the present investigation can easily be carried
26039    out and gives good evaluated results. (C) 2000 Elsevier Science Ltd.
26040    All rights reserved.
26041 C1 Univ Fed Armed Forces Hamburg, Inst Thermodynam, D-22039 Hamburg, Germany.
26042    Shanghai Univ Sci & Technol, Inst Thermal Engn & Air Conditioning, Shanghai 200093, Peoples R China.
26043 RP Luo, X, Univ Fed Armed Forces Hamburg, Inst Thermodynam, D-22039
26044    Hamburg, Germany.
26045 CR 1979, HDB MATH
26046    ANZELIUS A, 1926, Z ANGEW MATH MECH, V6, P291
26047    CAI ZH, 1984, INT J HEAT MASS TRAN, V27, P971
26048    CRUMP KS, 1976, J ASSOC COMPUT MACH, V23, P89
26049    DANCKWERTS PV, 1953, CHEM ENG SCI, V2, P1
26050    FURNAS CC, 1932, US BUREAU MINES B, V361
26051    HAUSEN H, 1929, Z ANGEW MATH MECH, V9, P173
26052    HEGGS PJ, 1988, EXP THERM FLUID SCI, V1, P243
26053    HOWARD CP, 1964, 64GTP11 ASME
26054    ICHIKAWA S, 1972, KYOTO U MEMORIES 1, V34, P53
26055    JACQUOT RG, 1983, IEEE CIRCUITS SYSTEM, V5, P4
26056    KOHLMAYR GF, 1966, INT J HEAT MASS TRAN, V9, P671
26057    KOHLMAYR GF, 1968, INT J HEAT MASS TRAN, V11, P567
26058    KOHLMAYR GF, 1968, J HEAT TRANSFER, V90, P130
26059    LIANG CY, 1975, J HEAT TRANSFER, V97, P16
26060    LOEHRKE RI, 1990, EXP THERM FLUID SCI, V3, P574
26061    LUO X, 1998, FORTSCHRITT BERICHTE, V19
26062    LUO X, 1999, SCI COMPUTING CHEM E, V2, P167
26063    MULLISEN RS, 1986, J HEAT TRANS-T ASME, V108, P370
26064    NUSSELT W, 1927, Z VER DTSCH ING 1, V71, P85
26065    PUCCI PF, 1967, J ENG PWR, V89, P29
26066    ROETZEL W, 1996, NEW DEV HEAT EXCHANG, P547
26067    ROETZEL W, 1997, COMPACT HEAT EXCHANG, P381
26068    ROETZEL W, 1997, REV GEN THERM, V36, P635
26069    ROETZEL W, 1998, REV GEN THERM, V37, P277
26070    ROETZEL W, 1999, DYNAMIC BEHAV HEAT E
26071    SCHUMANN TEW, 1929, J FRANKL INST, V208, P405
26072    STEHFEST H, 1970, COMMUN ACM, V13, P47
26073    ZHOU K, 1998, P INT C HEAT EXCH SU, P645
26074 NR 29
26075 TC 4
26076 SN 0017-9310
26077 J9 INT J HEAT MASS TRANSFER
26078 JI Int. J. Heat Mass Transf.
26079 PD JAN
26080 PY 2001
26081 VL 44
26082 IS 1
26083 BP 121
26084 EP 129
26085 PG 9
26086 SC Engineering, Mechanical; Mechanics; Thermodynamics
26087 GA 380ND
26088 UT ISI:000165707200011
26089 ER
26090 
26091 PT J
26092 AU Deng, K
26093    Ren, ZM
26094    Jiang, GC
26095 TI Theoretical and experimental analyses of continuous casting with
26096    soft-contacted mould - (II) - EMF calculation and experimental analyses
26097 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
26098 DT Article
26099 DE electromagnetic continuous casting (EMC); soft-contacted mould;
26100    electromagnetic field (EMF)
26101 AB Coupling the quasi-3D numerical simulation of the electromagnetic field
26102    and the experiments with some metals, a series of phenomena in the
26103    processes of continuous casting with soft-contacted mould was analyzed.
26104    Some theoretical and experimental models were presented, from which
26105    following results were obtained. 1) The electromagnetic force is
26106    related with electric conductivity of billet as a power function to
26107    0.4. 2) The heat transfer between billet and mould is related with the
26108    contacting pressure, and it is a linear function for tin billet
26109    approximately. 3) The distance between initial solidification point and
26110    meniscus in billet is related with the surface magnetic flux density as
26111    a fourth root function. 4) The temperature gradient in the initial
26112    solidifying shell is reduced, which can decrease the tendency of hot
26113    tearing on the surface of billet, and increase the equiaxed crystal
26114    zone in billet. 5) The stronger the magnetic flux density is, the more
26115    shallow and the thinner the oscillation mark on the surface of billet
26116    is. 6) The depth of oscillation mark on the billet cast by the
26117    soft-contacted mould can be reduced to about 10% in comparison with
26118    that on the billets cast by traditional mould. 7) In non-dimensional
26119    condition, the average depth of the oscillation marks on the billets
26120    cast by the soft-contacted mould decreases with increasing magnetic
26121    flux density on there as a complementary error function.
26122 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
26123 CR AYATA K, 1997, CAMP ISIJ, V10, P828
26124    CHA PR, 1998, ISIJ INT, V38, P403
26125    DENG K, 1996, T NONFERR METAL SOC, V6, P12
26126    DONG HF, 1998, J IRON STEEL, V10, P5
26127    FURUHASHI S, 1998, TETSU TO HAGANE, V84, P625
26128    LI TJ, 1997, ACTA METALLURGICA SI, V33, P524
26129    MORISHITA M, 1991, MAGNETOHYDRODYNAMICS, P267
26130    REN ZM, 1999, ACTA METALL SIN, V35, P851
26131    SIMPSON PG, 1960, INDUCTION HEATING CO
26132    VIVES C, 1989, METALL TRANS B, V20, P623
26133 NR 10
26134 TC 0
26135 SN 1003-6326
26136 J9 TRANS NONFERROUS METAL SOC CH
26137 JI Trans. Nonferrous Met. Soc. China
26138 PD DEC
26139 PY 2000
26140 VL 10
26141 IS 6
26142 BP 726
26143 EP 731
26144 PG 6
26145 SC Metallurgy & Metallurgical Engineering
26146 GA 379EE
26147 UT ISI:000165627300006
26148 ER
26149 
26150 PT J
26151 AU Yoshida, F
26152    Horiike, K
26153    Huang, SP
26154 TI Time-dependent concentration profile of secreted molecules in the
26155    intercellular signaling
26156 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
26157 DT Article
26158 DE diffusion equation; secretion rate; communication distance; cytokine;
26159    hormone; signal transduction
26160 ID CELLS; DIFFUSION; VESICLES
26161 AB The concentration profile of secreted molecules is studied to
26162    understand characteristic properties of the intercellular signaling.
26163    Diffusion equations are solved for the concentration by assuming the
26164    rectangular, triangular and oscillatory lime-dependence of the flux at
26165    the cell surface. The concentration is examined as a function of time
26166    and distance from a secreting cell by varying both the strength of an
26167    enhanced secretion rate and a secretion time. The time-dependence of
26168    the secretion rate is found to be inevitable for the concept of
26169    communication distance and characteristic time. Realistic estimations
26170    of these quantities are given for human cytokines.
26171 C1 Shiga Univ Med Sci, Dept Phys, Otsu, Shiga 5202192, Japan.
26172    Shiga Univ Med Sci, Dept Biochem, Otsu, Shiga 5202192, Japan.
26173    Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
26174 RP Yoshida, F, Shiga Univ Med Sci, Dept Phys, Seta Tsukinowa Cho, Otsu,
26175    Shiga 5202192, Japan.
26176 CR ALBERTS B, 1994, MOL BIOL CELL, CH13
26177    BROCK TG, 1999, J BIOL CHEM, V274, P11660
26178    CARSLAW HS, 1959, CONDUCTION HEAT SOLI
26179    CIOLKOWSKI EL, 1992, J AM CHEM SOC, V114, P2815
26180    CRANK J, 1975, MATH DIFFUSION, CH14
26181    FRANCIS K, 1997, P NATL ACAD SCI USA, V94, P12258
26182    LAUFFENBURGER DA, 1993, RECEPTORS MODELS BIN
26183    NICHOLSON C, 1995, BIOPHYS J, V68, P1699
26184    NISHIKI T, 1997, BIOCHEM BIOPH RES CO, V239, P57
26185    PALSSON BO, 1997, NAT BIOTECHNOL, V15, P3
26186    SAVINELL JM, 1989, BIOPROCESS ENG, V4, P231
26187    WIGHTMAN RM, 1995, BIOPHYS J, V68, P383
26188    YOSHIDA F, 1999, P JPN ACAD B-PHYS, V75, P87
26189 NR 13
26190 TC 6
26191 SN 0031-9015
26192 J9 J PHYS SOC JPN
26193 JI J. Phys. Soc. Jpn.
26194 PD NOV
26195 PY 2000
26196 VL 69
26197 IS 11
26198 BP 3736
26199 EP 3743
26200 PG 8
26201 SC Physics, Multidisciplinary
26202 GA 378DH
26203 UT ISI:000165569400046
26204 ER
26205 
26206 PT J
26207 AU Li, D
26208    Sun, XL
26209 TI Success guarantee of dual search in integer programming: p-th power
26210    Lagrangian method
26211 SO JOURNAL OF GLOBAL OPTIMIZATION
26212 DT Article
26213 DE integer programming; dual search; Lagrangian method
26214 ID GLOBAL OPTIMIZATION METHODS; CONSTRAINTS; BRANCH; GAP
26215 AB Although the Lagrangian method is a powerful dual search approach in
26216    integer programming, it often fails to identify an optimal solution of
26217    the primal problem. The p-th power Lagrangian method developed in this
26218    paper offers a success guarantee for the dual search in generating an
26219    optimal solution of the primal integer programming problem in an
26220    equivalent setting via two key transformations. One other prominent
26221    feature of the p-th power Lagrangian method is that the dual search
26222    only involves a one-dimensional search within [0,1]. Some potential
26223    applications of the method as well as the issue of its implementation
26224    are discussed.
26225 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
26226    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
26227 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management,
26228    Shatin, Hong Kong, Peoples R China.
26229 CR BARHEN J, 1997, SCIENCE, V276, P1094
26230    BELL DE, 1977, OPER RES, V25, P419
26231    COOPER MW, 1981, MANAGE SCI, V27, P353
26232    CVIJOVIC D, 1995, SCIENCE, V267, P664
26233    FISHER ML, 1974, SIAM J APPL MATH, V27, P31
26234    FISHER ML, 1981, MANAGE SCI, V27, P1
26235    FLETCHER R, 1994, MATH PROGRAM, V66, P327
26236    GE R, 1990, MATH PROGRAM, V46, P191
26237    GEOFFRION AM, 1974, MATHEMATICAL PROGRAM, V2, P82
26238    GLOVER F, 1968, OPER RES, V16, P741
26239    GUPTA OK, 1985, MANAGE SCI, V31, P1533
26240    HORST R, 1993, GLOBAL OPTIMIZATION
26241    KAN AHGR, 1987, MATH PROGRAM, V39, P27
26242    KAN AHGR, 1987, MATH PROGRAM, V39, P57
26243    KARWAN MH, 1979, MATH PROGRAM, V17, P320
26244    KARWAN MH, 1980, OPER RES, V28, P1251
26245    KRAAY D, 1991, OPER RES, V39, P82
26246    LI D, 1995, J OPTIMIZ THEORY APP, V85, P309
26247    LI D, 1999, OPER RES LETT, V25, P89
26248    MICHELON P, 1991, MATH PROGRAM, V52, P303
26249    OHTAGAKI H, 1995, MATH COMPUT MODEL, V22, P261
26250    PARKER RG, 1988, DISCRETE OPTIMIZATIO
26251    SHAPIRO JF, 1979, ANN DISCRETE MATH, V5, P113
26252    SKORINKAPOV J, 1987, OPER RES LETT, V6, P269
26253    SUNG CS, 1999, IEEE T RELIAB, V48, P108
26254    TILLMAN FA, 1980, OPTIMIZATION SYSTEM
26255    TZAFESTAS SG, 1980, INT J SYST SCI, V11, P455
26256 NR 27
26257 TC 4
26258 SN 0925-5001
26259 J9 J GLOBAL OPTIM
26260 JI J. Glob. Optim.
26261 PD NOV
26262 PY 2000
26263 VL 18
26264 IS 3
26265 BP 235
26266 EP 254
26267 PG 20
26268 SC Mathematics, Applied; Operations Research & Management Science
26269 GA 379JB
26270 UT ISI:000165638000003
26271 ER
26272 
26273 PT J
26274 AU Wu, MH
26275    Bao, BR
26276    Chen, J
26277 TI Reduction of the thrombogenicity of polyethylene membranes by radiation
26278    grafting
26279 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
26280 DT Article
26281 ID ACRYLIC-ACID; BIOMATERIALS
26282 AB A new anti-thrombosis dialytic membrane with a hydrophilic-hydrophobic
26283    microphase structure was prepared by pre-irradiation grafting of beta
26284    -hydroxyethyl methacrylate (HEMA) and styrene (St) onto polyethylene
26285    (PE) membranes. The effects of reaction conditions on the degree of
26286    grafting were determined, and the properties of the grafted films were
26287    investigated. Compared with PE grafted with hydrophilic monomer, the
26288    antithrombogenicity and permeability of the PE-g-(HEMA-co-St) were 30
26289    and 15 times higher than that of the ungrafted films, respectively, if
26290    the volume ratio (HEMA:St) is about 1:1.
26291 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
26292    Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai, Peoples R China.
26293 RP Wu, MH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
26294    Peoples R China.
26295 CR CHE JT, 1993, RADIAT PHYS CHEM, V42, P85
26296    CHEN J, 1998, NUCL TECH, V21, P498
26297    EUSTACE DJ, 1988, J APPL POLYM SCI, V35, P707
26298    HOFFMAN AS, 1981, RADIAT PHYS CHEM, V18, P323
26299    IMAI Y, 1972, J BIOMED MATER RES, V6, P165
26300    ISHIGAKI I, 1982, J APPL POLYM SCI, V27, P1033
26301    LINARES HA, 1972, J INVEST DERMATOL, V59, P323
26302    MERRILL EW, 1987, HYDROGELS MED PHARM, P31
26303    MULLERSCHULTE D, 1993, RADIAT PHYS CHEM, V42, P891
26304    RATNER BD, 1981, BIOCOMPATIBILITY CLI, P145
26305    RATNER BD, 1996, HYDROGELS BIOMATERIA, P60
26306    WU MH, 1995, J RAD RES RAD PROCES, V13, P145
26307    ZHOU RM, 1993, J RAD RES RAD PROCES, V11, P170
26308 NR 13
26309 TC 2
26310 SN 0236-5731
26311 J9 J RADIOANAL NUCL CHEM
26312 JI J. Radioanal. Nucl. Chem.
26313 PD NOV
26314 PY 2000
26315 VL 246
26316 IS 2
26317 BP 457
26318 EP 461
26319 PG 5
26320 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
26321    & Technology
26322 GA 375EZ
26323 UT ISI:000165387700039
26324 ER
26325 
26326 PT J
26327 AU Shi, LY
26328    Zhang, Y
26329    Fang, DY
26330    Li, CZ
26331    Gu, HC
26332 TI The effect of SnO2 on the photocatalytic activity of aerosol-made TiO2
26333    particles
26334 SO JOURNAL OF MATERIALS SYNTHESIS AND PROCESSING
26335 DT Article
26336 DE composite particles; photodegradation; titanium dioxide
26337 ID DEGRADATION; PHENOL; POWDERS; FILMS
26338 AB Ultrafine titania particles were prepared by gas-phase oxidation of
26339    titanium tetrachloride in a high-temperature tubular aerosol how
26340    reactor. Homogeneous precipitation method was used to deposit SnO2 on
26341    the surface of lab-made TiO2. The composite particles were
26342    characterized by TEM, ICP, XRD, and BET surface area analysis. The
26343    composite particles, pure ultrafine TiO2, commercial TiO2, and pure
26344    SnO2 were employed for photocatalytic degradation of azo dye active red
26345    X-3B in aerated solutions. The result showed that the photoactivity of
26346    the composite particles was higher than that of pure ultrafine TiO2 and
26347    commercial TiO2, and the optimum loading of SnO2 on TiO2 is 15.3%. The
26348    enhanced degradation rate of X-3B using SnO2-TiO2 composite particles
26349    was attributed to increased charge separation in these systems.
26350 C1 Shanghai Univ, Dept Chem, Shanghai 200072, Peoples R China.
26351 RP Shi, LY, Shanghai Univ, Dept Chem, Box 59,149 Yanchang Rd, Shanghai
26352    200072, Peoples R China.
26353 CR BEDJA I, 1994, J PHYS CHEM-US, V98, P4133
26354    CHHABRA V, 1995, LANGMUIR, V11, P3307
26355    FOTOU GP, 1994, CHEM ENG SCI, V49, P4939
26356    FOTOU GP, 1996, CHEM ENG COMMUN, V151, P251
26357    GERISCHER H, 1991, J PHYS CHEM-US, V95, P5261
26358    GOPIDAS KR, 1994, J PHYS CHEM-US, V98, P3822
26359    HIROSHI Y, 1989, J PHYS CHEM-US, V93, P4833
26360    JUDIN VPS, 1993, CHEM BRIT, V29, P503
26361    KRUIS FE, 1998, J AEROSOL SCI, V29, P511
26362    LEGRINI O, 1993, CHEM REV, V93, P671
26363    LOOK JL, 1992, J COLLOID INTERF SCI, V153, P461
26364    SCLAFANI A, 1990, J PHYS CHEM-US, V94, P829
26365    SHI LY, 1998, J ECUST CH, V24, P291
26366    SHI LY, 1998, MAT REV, V12, P23
26367    SHI LY, 1999, J CATAL, V20, P338
26368    SHI LY, 1999, J ECUST, V25, P151
26369    SHI LY, 1999, J INORG MATER, V14, P717
26370    SHI LY, 1999, THESIS
26371    TSAI SJ, 1997, CATAL TODAY, V33, P227
26372    VINODGOPAL K, 1995, ENVIRON SCI TECHNOL, V29, P841
26373    VINODGPAL K, 1998, CHEM MATER, V8, P2180
26374    WEI TY, 1991, IND ENG CHEM RES, V30, P1293
26375 NR 22
26376 TC 3
26377 SN 1064-7562
26378 J9 J MATER SYNTH PROCESS
26379 JI J. Mater. Synth. Process
26380 PD NOV
26381 PY 1999
26382 VL 7
26383 IS 6
26384 BP 357
26385 EP 363
26386 PG 7
26387 SC Materials Science, Multidisciplinary
26388 GA 376NW
26389 UT ISI:000165464500003
26390 ER
26391 
26392 PT J
26393 AU Wan, JTK
26394    Yu, KW
26395    Gu, GQ
26396 TI Dynamic electrorheological effects and interparticle force between a
26397    pair of rotating spheres
26398 SO PHYSICAL REVIEW E
26399 DT Article
26400 ID SUSPENSIONS; SIMULATION; SHEAR; FLUIDS; FIELD
26401 AB We consider a two-particle system in which a particle is held fixed,
26402    and the other one rotates around the axis perpendicular to the line
26403    joining the particles' centers. The rotating particle leads to a
26404    displacement of its polarization charge on the surface. Our results
26405    show that the rotational motion of the particles generally reduces the
26406    force between the particles. The dependence of interparticle force on
26407    the angular velocity of rotation will be discussed.
26408 C1 Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China.
26409    Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 200093, Peoples R China.
26410 RP Wan, JTK, Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples
26411    R China.
26412 CR HALSEY TC, 1990, J STAT PHYS, V61, P1257
26413    HALSEY TC, 1992, SCIENCE, V258, P761
26414    JACKSON JD, 1975, CLASSICAL ELECTRODYN
26415    JONES TK, 1998, THESIS CHINESE U HON
26416    KLINGENBERG DJ, 1989, J CHEM PHYS, V91, P7888
26417    KLINGENBERG DJ, 1990, LANGMUIR, V6, P15
26418    KLINGENBERG DJ, 1991, J CHEM PHYS, V94, P6160
26419    KLINGENBERG DJ, 1998, MRS BULL, V23, P30
26420    LADD AJC, 1988, J CHEM PHYS, V88, P5051
26421    LOBRY L, 1999, J ELECTROSTAT, V47, P61
26422    PHULE PP, 1998, MRS BULL, V23, P19
26423    POLADIAN L, 1991, PHYS REV B, V44, P2092
26424    RUSSEL WB, 1989, COLLOIDAL DISPERSION
26425    TAO R, 1991, PHYS REV LETT, V67, P398
26426    WANG ZW, COMMUNICATION
26427    WANG ZW, 1996, INT J MOD PHYS B, V10, P1153
26428    WANG ZW, 1997, J PHYS D APPL PHYS, V30, P1265
26429    YU KW, 2000, COMPUT PHYS COMMUN, V129, P177
26430    YU KW, 2000, PHYSICA B, V279, P78
26431 NR 19
26432 TC 10
26433 SN 1063-651X
26434 J9 PHYS REV E
26435 JI Phys. Rev. E
26436 PD NOV
26437 PY 2000
26438 VL 62
26439 IS 5
26440 PN Part B
26441 BP 6846
26442 EP 6850
26443 PG 5
26444 SC Physics, Fluids & Plasmas; Physics, Mathematical
26445 GA 374JK
26446 UT ISI:000165341900020
26447 ER
26448 
26449 PT J
26450 AU Zhou, SP
26451 TI The s+id(x2-y2) pairing symmetry in high temperature superconductors
26452 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
26453 DT Article
26454 DE Ginzburg-Landau theory; energy gap; Josephson effect
26455 ID TIME-REVERSAL SYMMETRY; ORDER-PARAMETER; THIN-FILMS; YBA2CU3O7-DELTA;
26456    JUNCTIONS; VORTICES; WAVE; PB
26457 AB The pairing symmetry in high temperature superconductors
26458    YBa2Cu3O7-delta a is studied. In the framework of Ginzburg-Landau
26459    model, the coexistence of s- and d-wave states has been discussed from
26460    the group theory analysis point of view. The s + id(x2-y2) pairing
26461    symmetry argument can provide us a plausible account of the
26462    experimental results of the Josephson tunneling along in
26463    YBa2Cu3O7-delta/YB2Cu3O7-delta junctions and the c-axis tunneling
26464    between YBCO/Pb junctions as well. (C) 2000 Elsevier Science B.V. All
26465    rights reserved.
26466 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
26467 RP Zhou, SP, Shanghai Univ, Dept Phys, 20 Chengzhong Rd, Shanghai 201800,
26468    Peoples R China.
26469 CR BARONE A, 1982, PHYSICS APPL JOSEPHS, CH2
26470    CHAKRAVARTY S, 1993, SCIENCE, V261, P337
26471    CHAUDHARI P, 1994, PHYS REV LETT, V72, P1084
26472    ELLIOTT JP, 1984, SYMMETRY PHYSICS
26473    GORKOV LP, 1959, ZH EKSP TEOR FIZ, V36, P1918
26474    GORKOV LP, 1960, SOV PHYS JETP, V9, P1364
26475    IGUCHI I, 1994, PHYS REV B, V49, P12388
26476    KHOMSKII DI, 1995, PHYS REV LETT, V75, P1384
26477    KOUZNETSOV KA, 1997, PHYS REV LETT, V79, P3050
26478    KRESIN VZ, 1993, PHYS REV B, V48, P9012
26479    LESUEUR J, 1997, PHYS REV B, V55, P3398
26480    LI QP, 1993, PHYS REV B, V48, P437
26481    LIHN HTS, 1996, PHYS REV LETT, V76, P3810
26482    LYONS KB, 1990, PHYS REV LETT, V64, P2949
26483    MILLIS AJ, 1994, PHYS REV B, V49, P15408
26484    ROBERTAZZI RP, 1992, PHYS REV B, V46, P8456
26485    ROHKSAR DS, 1993, PHYS REV LETT, V70, P493
26486    SIGRIST M, 1989, PHYS REV LETT, V63, P1727
26487    SIGRIST M, 1995, PHYS REV LETT, V74, P3249
26488    SIGRIST M, 1996, PHYS REV B, V53, P2835
26489    SPIELMAN S, 1990, PHYS REV LETT, V65, P123
26490    SUN AG, 1994, PHYS REV LETT, V72, P2267
26491    TINKHAM M, 1964, GROUP THEORY QUANTUM
26492    TSUEI CC, 1994, PHYS REV LETT, V73, P593
26493    VOLOVIK GE, 1985, SOV PHYS JETP, V61, P843
26494    WEBER HJ, 1990, SOLID STATE COMMUN, V76, P511
26495    WEI CD, 1992, GREENS FUNCTION METH, CH8
26496    WOLLMAN DA, 1993, PHYS REV LETT, V71, P2134
26497    WU S, 1996, PHYS REV B, V54, P13343
26498    ZHANG FC, 1988, PHYS REV B, V37, P3759
26499 NR 30
26500 TC 3
26501 SN 0921-4534
26502 J9 PHYSICA C
26503 JI Physica C
26504 PD NOV 1
26505 PY 2000
26506 VL 339
26507 IS 4
26508 BP 258
26509 EP 268
26510 PG 11
26511 SC Physics, Applied
26512 GA 372YC
26513 UT ISI:000165260800006
26514 ER
26515 
26516 PT J
26517 AU Zhang, TS
26518    Hing, P
26519    Zhang, RF
26520    Zhang, JC
26521    Li, Y
26522 TI Phase evolution, microstructure, and gas-sensing characteristics of the
26523    Sb2O3-Fe2O3 system prepared by coprecipitation
26524 SO JOURNAL OF MATERIALS RESEARCH
26525 DT Article
26526 ID ALPHA-FE2O3 CERAMICS; FILM; SENSITIVITY; SENSORS; FE2O3; AIR
26527 AB Precursor powders with antimony-to-iron (Sb/Fe) atomic ratios ranging
26528    from 0 to 2.0 were prepared by chemical coprecipitation. The origin of
26529    enhanced gas-sensing behavior at a higher calcining temperature was
26530    investigated, based on phase evolution and microstructure characterized
26531    by means of thermal analysis, x-ray diffraction, Brunauer-Emmett-Teller
26532    surface area measurement, and electron microscopy. Only one
26533    iron-antimony oxide (i.e., FeSbO4) could be obtained under present
26534    experimental conditions. Pure FeSbO4 exhibited a high gas sensitivity,
26535    only when calcining temperature was below 600 degreesC. A rapid
26536    crystallite growth, as well as hard agglomeration, occurred in pure
26537    FeSbO4 powder calcined at 600-1000 degreesC, and thus led to poor
26538    gas-sensing behavior. However, there existed an optimal Sb/Fe ratio
26539    range (i.e., 0.25 to 0.65) in which crystallite growth of both alpha
26540    -Fe2O3 and FeSbO4 could be efficiently depressed up to 800 degreesC.
26541    The samples (with Sb/Fe ratio in the range 0.25-0.65) calcined at
26542    600-800 degreesC displayed a high sensitivity to liquid petroleum gas
26543    due to their large specific surface area and poor crystallinity.
26544 C1 Nanyang Technol Univ, Sch Appl Sci, Div Mat Engn, Singapore 639798, Singapore.
26545    Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
26546    Univ Sci & Technol China, Struct Res Lab, Hefei 230026, Peoples R China.
26547 RP Zhang, TS, Nanyang Technol Univ, Sch Appl Sci, Div Mat Engn, Nanyang
26548    Ave, Singapore 639798, Singapore.
26549 CR ASO I, 1980, J CATAL, V64, P29
26550    BABDO Y, 1965, JPN J APPL PHYS, V4, P240
26551    BADAWY WA, 1988, THIN SOLID FILMS, V158, P277
26552    BERRY FJ, 1987, J SOLID STATE CHEM, V71, P582
26553    BONDIOLI F, 1998, MATER RES BULL, V33, P723
26554    CANTALINI C, 1994, SENSOR ACTUAT B-CHEM, V18, P437
26555    CHUNG WY, 1991, THIN SOLID FILMS, V200, P329
26556    COLOMBO P, 1991, J EUR CERAM SOC, V8, P383
26557    DEBOER FE, 1954, J AM CHEM SOC, V76, P3365
26558    EWISS MAZ, 1998, PHYS CHEM GLASSES, V39, P236
26559    FANG YK, 1989, THIN SOLID FILMS, V169, P51
26560    IPPOMMATSU M, 1989, J ELECTROCHEM SOC, V136, P2123
26561    KIM KH, 1994, J AM CERAM SOC, V77, P915
26562    KIM TH, 1991, J APPL PHYS, V70, P2739
26563    KOHL D, 1989, SENSOR ACTUATOR, V18, P71
26564    MATSUOKA M, 1978, NAT TECH REPORT, V24, P461
26565    NAKATANI Y, 1982, JPN J APPL PHYS, V21, L758
26566    NAKATANI Y, 1983, JPN J APPL PHYS PT 1, V22, P233
26567    NAKATANI Y, 1983, JPN J APPL PHYS PT 1, V22, P912
26568    SARALA G, 1995, SENSOR ACTUAT B-CHEM, V28, P31
26569    SCHIERBAUM KD, 1991, SENSOR ACTUAT B-CHEM, V3, P205
26570    WALCZAK J, 1997, SOLID STATE IONICS 2, V101, P1363
26571    ZHANG TS, 1999, J MATER SCI-MATER EL, V10, P509
26572    ZHANG TS, 2000, J MATER SCI, V35, P1419
26573 NR 24
26574 TC 3
26575 SN 0884-2914
26576 J9 J MATER RES
26577 JI J. Mater. Res.
26578 PD NOV
26579 PY 2000
26580 VL 15
26581 IS 11
26582 BP 2356
26583 EP 2363
26584 PG 8
26585 SC Materials Science, Multidisciplinary
26586 GA 373EL
26587 UT ISI:000165275400016
26588 ER
26589 
26590 PT J
26591 AU Rocha, A
26592    Tong, F
26593    Yan, ZZ
26594 TI A logic filter for tumor detection on mammograms
26595 SO JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
26596 DT Article
26597 DE logic filter; mammogram diagnosis; image processing for mammograms
26598 AB This paper presents a novel approach for detection of suspicious
26599    regions in digitized mammograms. The edges of the suspicious region in
26600    mammogram are enhanced using an improved logic filter. The result of
26601    further image processing gives a gray-level histogram with
26602    distinguished characteristics, which facilitates the segmentation of
26603    the suspicious masses. The experiment results based on 25 digital
26604    sample mammograms, which are definitely diagnosed, are analyzed and
26605    evaluated briefly.
26606 C1 Shanghai Univ, Dept Comp Sci, Shanghai 201800, Peoples R China.
26607    Shanghai Univ, Dept Biomed Engn, Shanghai 201800, Peoples R China.
26608 RP Rocha, A, Shanghai Univ, Dept Comp Sci, Shanghai 201800, Peoples R
26609    China.
26610 CR BASSMANN H, 1995, DIGITAL IMAGE PROCES, P117
26611    BOVIK AC, 1987, IEEE T PATTERN ANAL, V9, P181
26612    HALL EL, 1971, IEEE T COMPUTER, V20
26613    LAI SM, 1989, IEEE T MED IMAGING, V8, P377
26614    LAMARQUE JL, 1981, ATLS BREAST CLIN RAD
26615    ROCHA A, 1999, J SHANGHAI U, V3, P293
26616    TSIRIKOLIAS K, 1991, P INT C DIG SIGN PRO, P285
26617    TSIRIKOLIAS K, 1993, IMAGE PROCESSING THE, P251
26618 NR 8
26619 TC 1
26620 SN 1000-9000
26621 J9 J COMPUT SCI TECHNOL
26622 JI J. Comput. Sci. Technol.
26623 PD NOV
26624 PY 2000
26625 VL 15
26626 IS 6
26627 BP 629
26628 EP 632
26629 PG 4
26630 SC Computer Science, Hardware & Architecture; Computer Science, Software
26631    Engineering
26632 GA 373JC
26633 UT ISI:000165284800015
26634 ER
26635 
26636 PT J
26637 AU Peng, LM
26638    Mao, XM
26639    Wen, HQ
26640 TI Directional solidification properties of the in-situ composite Cu-Cr
26641    alloy
26642 SO RARE METAL MATERIALS AND ENGINEERING
26643 DT Article
26644 DE in-situ composite; primary dendritic spacing; axial length
26645 AB The in-situ. composite cable ingots of the alloy Cu-Cr have been
26646    produced by a directional solidification and continuous casting
26647    process. The directional solidification properties of the alloy Cu-Cr,
26648    such as microstructure, primary dendritic spacing, and axial length of
26649    crystal, are studied. The experimental results show that the planar or
26650    cellular solidification interface is beneficial to forming the in-situ
26651    composite reinforced by fibers. As G(L) = 210 degreesC/cm, and V = 0.6
26652    mm/min, the solidification interface of the alloy Cu-0. 8%Cr is planar.
26653    With the increase of the solidification rate, the primary dendritic
26654    spacing of the alloy Cu-Cr increases at the beginning, and then
26655    decreases while the axial length increases all the time.
26656 C1 Shanghai Univ, Inst Mat Sci & Engn, Shanghai 200072, Peoples R China.
26657    Bao Steel Co, Shanghai 201900, Peoples R China.
26658 RP Peng, LM, Shanghai Univ, Inst Mat Sci & Engn, Shanghai 200072, Peoples
26659    R China.
26660 CR HU HQ, 1991, PRINCIPLE METAL SOLI, P109
26661    PAN Y, 1999, RARE METAL MAT ENG, V28, P85
26662    VERHOEVEN JD, 1990, J MATER ENG, V12, P127
26663    WAN CK, 1993, MAT REV, V2, P23
26664    WEN HQ, 1995, J FUNCTIONAL MAT, V26, P553
26665    WEN HQ, 1998, RARE METALS, V17, P23
26666    WU NP, 1993, ELECT MAT, P24
26667    ZHAO ZD, 1990, HDB COPPER COPPER AL, P3
26668 NR 8
26669 TC 1
26670 SN 1002-185X
26671 J9 RARE METAL MAT ENG
26672 JI Rare Metal Mat. Eng.
26673 PD OCT
26674 PY 2000
26675 VL 29
26676 IS 5
26677 BP 307
26678 EP 310
26679 PG 4
26680 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
26681    Engineering
26682 GA 370QR
26683 UT ISI:000165134200006
26684 ER
26685 
26686 PT J
26687 AU Cheng, JR
26688    Meng, ZY
26689 TI Orientation controlling of PZT thin films derived from sol-gel
26690    techniques
26691 SO JOURNAL OF MATERIALS SCIENCE LETTERS
26692 DT Article
26693 C1 Shanghai Univ, Sch Mat Sci & Technol, Shanghai 201800, Peoples R China.
26694    Shanghai Jiao Tong Univ, Sch Mat Sci, Shanghai 200030, Peoples R China.
26695 RP Meng, ZY, Shanghai Univ, Sch Mat Sci & Technol, Shanghai 201800,
26696    Peoples R China.
26697 CR ADACHI M, 1987, JPN J APPL PHYS PT 1, V26, P550
26698    BROOKS KG, 1994, J MATER RES, V9, P2540
26699    CHEN SY, 1994, J AM CERAM SOC, V77, P2337
26700    CHEN SY, 1997, JPN J APPL PHYS 1, V36, P4451
26701    CHEN SY, 1998, J AM CERAM SOC, V81, P97
26702    CHENG JR, 1999, ADV SCI TECH, V25, P61
26703    CLEE M, 1992, J APPL PHYS, V72, P1566
26704    FOSTER CM, 1995, MATER RES SOC S P, V361, P307
26705    KANG YM, 1997, FERROELECTRICS, V196, P5
26706    KWOK CK, 1993, J MATER RES, V8, P339
26707    LAKEMAN CDE, 1992, CERAMIC T, V25, P413
26708    WILLEMS GJ, 1995, MICROELECTRON ENG, V29, P217
26709    WILLEMS GJ, 1997, INTEGR FERROELECTR, V15, P19
26710    WOOD VE, 1992, J APPL PHYS, V71, P4557
26711 NR 14
26712 TC 6
26713 SN 0261-8028
26714 J9 J MATER SCI LETT
26715 JI J. Mater. Sci. Lett.
26716 PD NOV
26717 PY 2000
26718 VL 19
26719 IS 21
26720 BP 1945
26721 EP 1949
26722 PG 5
26723 SC Materials Science, Multidisciplinary
26724 GA 369WK
26725 UT ISI:000165090600019
26726 ER
26727 
26728 PT J
26729 AU Li, GH
26730    Zhou, SP
26731    Xu, DM
26732    Lai, JW
26733 TI An occasional linear feedback approach to control chaos
26734 SO ACTA PHYSICA SINICA
26735 DT Article
26736 DE occasional linear feedback; chaos; Henon-like mapping; Lyapunov exponent
26737 AB This paper proposes an approach to control chaos based on occasional
26738    linear feedback. This scheme is composed of control and non-control
26739    phases. The different stable periodic orbits are obtained by adjusting
26740    the feedback coefficients and the time duration which the control phase
26741    occupies. We also simulate acousto-optic bistable model and Henon-like
26742    attactor. The results from the numerical simulation show that the
26743    method can switch effectively the system to the desired periodic orbits.
26744 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800, Peoples R China.
26745    Shanghai Univ, Sch Sci, Shanghai 201800, Peoples R China.
26746 RP Li, GH, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800,
26747    Peoples R China.
26748 CR BERNARDO M, 1996, PHYS LETT A, V214, P139
26749    GUEMEZ J, 1993, PHYS LETT A, V181, P29
26750    LIM TK, 1998, PHYS LETT A, V240, P289
26751    LIU ZH, 1997, PHYS LETT A, V232, P55
26752    MATIAS MA, 1994, PHYS REV LETT, V72, P1455
26753    OTT E, 1990, PHYS REV LETT, V64, P1196
26754 NR 6
26755 TC 9
26756 SN 1000-3290
26757 J9 ACTA PHYS SIN-CHINESE ED
26758 JI Acta Phys. Sin.
26759 PD NOV
26760 PY 2000
26761 VL 49
26762 IS 11
26763 BP 2123
26764 EP 2128
26765 PG 6
26766 SC Physics, Multidisciplinary
26767 GA 371XH
26768 UT ISI:000165204200003
26769 ER
26770 
26771 PT J
26772 AU Ju, JH
26773    Xia, YB
26774    Zhang, WL
26775    Wang, LJ
26776    Shi, WM
26777    Huang, ZM
26778    Li, ZF
26779    Zheng, GZ
26780    Tang, DY
26781 TI Effect of nitrogen on the residual stress and adhesion of diamond-like
26782    amorphous carbon nitride films
26783 SO ACTA PHYSICA SINICA
26784 DT Article
26785 DE diamond-like carbon film; microstructure; adhesion properties
26786 ID THIN-FILMS; INDENTATION; ADHERENCE
26787 AB Microstructure and adhesion properties of nitrogen - doped diamond-like
26788    amorphous carbon (DLC) film deposited by r f plasma-enhanced chemical
26789    vapor deposition method is studied by atomic force microscope, Auger
26790    electron spectroscopy (AES) and micro-indentation analysis. Results
26791    show that, with the increase of nitrogen content, particles of tens of
26792    nanometer in size appear in the film. The atomic lateral force
26793    microscope and AES analyses show that these nano particles are
26794    nitrogen-rich amorphous carbon nitride CNx, where x is larger than
26795    0.126. Micro-indentation measurement shows that this DLC/CNx
26796    nano-composite structure reduces the residual stress of the film and
26797    improves the adhesion between DLC film and Si substrate.
26798 C1 Shanghai Univ, Sch Mat & Engn, Shanghai 201800, Peoples R China.
26799    Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China.
26800 RP Ju, JH, Shanghai Univ, Sch Mat & Engn, Shanghai 201800, Peoples R China.
26801 CR ANGUS JC, 1988, J VAC SCI TECHNOL  2, V6, P1778
26802    CHOI W, 1998, J ADHES SCI TECHNOL, V12, P29
26803    FRANCESCHINI DF, 1992, APPL PHYS LETT, V60, P3229
26804    JU JH, IN PRESS J APPL SCI
26805    MARSHALL DB, 1984, J APPL PHYS, V56, P2632
26806    ROSSINGTON C, 1984, J APPL PHYS, V56, P2639
26807    SILVA SRP, 1997, J APPL PHYS, V81, P2626
26808    ZOU JW, 1988, J VAC SCI TECHNOL A, V6, P3103
26809    ZOU JW, 1989, J APPL PHYS, V65, P3914
26810 NR 9
26811 TC 3
26812 SN 1000-3290
26813 J9 ACTA PHYS SIN-CHINESE ED
26814 JI Acta Phys. Sin.
26815 PD NOV
26816 PY 2000
26817 VL 49
26818 IS 11
26819 BP 2310
26820 EP 2314
26821 PG 5
26822 SC Physics, Multidisciplinary
26823 GA 371XH
26824 UT ISI:000165204200038
26825 ER
26826 
26827 PT J
26828 AU Han, JT
26829    Bao, BR
26830    Sun, GX
26831    Yang, Y
26832    Yang, YH
26833    Chen, MQ
26834    Sun, SX
26835 TI Synthesis and structure of dinitrato Di(N-dodecanoylpyrrolidine)
26836    uranyl(II)
26837 SO ACTA CHIMICA SINICA
26838 DT Article
26839 DE N - dodecanoylpyrrolidine; crystal structures; uranyl complex
26840 ID EXTRACTION; URANIUM(VI); TOLUENE
26841 AB The complex UO2(DOPOD)(2)(NO3)(2) has been prepared and characterized
26842    by elemental analysis and IR spectroscopy. The crystal structure of the
26843    complex has been determined by four - circle X - ray diffractometer.
26844    The complex crystal belongs to the orthorhombic system and space group
26845    Pbca, with cell parameters: a=0.9301(5), b=1.7017(2), c=5.1171(11)nm,
26846    V=8.099(5)nm(3), Z = 8, D-c = 1.478g/ cm(3),mu>(*) over bar * (MoK
26847    alpha) = 4.061mm(-1), F(000) = 3632, final R = 0.0655 and R-w = 0.1907
26848    for 3006 observed reflections [I > 2 sigma>(*) over bar * (I)], The
26849    results indicate that uranyl ion is coordinated to six oxygen atoms,
26850    four of them are from two nitrate groups and other two are from
26851    carbonyl groups of organic ligands. The uranium atom in the structure
26852    is hexagonal bipyramid cooperated.
26853 C1 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
26854    Shanghai Univ, Sch Chem & Chem Engn, Shanghai 201800, Peoples R China.
26855    Fudan Univ, Ctr Anal & Measurement, Shanghai 200433, Peoples R China.
26856    Shandong Univ, Dept Chem, Jinan 250100, Peoples R China.
26857 RP Han, JT, Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800,
26858    Peoples R China.
26859 CR HAN JT, 1999, J RADIOANAL NUCL CH, V241, P215
26860    HAN JT, 1999, J RADIOANAL NUCL CH, V241, P679
26861    JIANG D, 1992, ACTA CHIM SINICA, V50, P1091
26862    PANATTONI C, 1969, INORG CHEM, V8, P320
26863    SUN GX, 1998, J RADIOANAL NUCL CH, V232, P245
26864    SUN GX, 1998, RADIOCHIM ACTA, V83, P27
26865    THIOLLET G, 1989, SOLVENT EXTR ION EXC, V7, P813
26866    XU G, 1984, PRINCIPLES EXTRACTIO, P161
26867    ZHOU G, 1989, BASIC STRUCTURAL CHE, P246
26868 NR 9
26869 TC 4
26870 SN 0567-7351
26871 J9 ACTA CHIM SIN
26872 JI Acta Chim. Sin.
26873 PY 2000
26874 VL 58
26875 IS 10
26876 BP 1286
26877 EP 1290
26878 PG 5
26879 SC Chemistry, Multidisciplinary
26880 GA 371YX
26881 UT ISI:000165207800021
26882 ER
26883 
26884 PT J
26885 AU Li, XS
26886    Tanaka, T
26887    Suzuki, Y
26888 TI Preferred orientation and ferroelectric properties of lead zirconate
26889    titanate thin films
26890 SO THIN SOLID FILMS
26891 DT Article
26892 DE PZT thin film; facing target sputtering; ferroelectric properties;
26893    preferred orientation
26894 ID AXIS-ORIENTED PB(ZR; DEPOSITION; GROWTH; RF
26895 AB Highly (111) oriented perovskite PZT thin films have been prepared by
26896    annealing FTS-deposited samples. The effects of the substrate
26897    temperature, sputtering power, annealing temperature and heating rate
26898    for annealing on the crystalline orientation were investigated. The
26899    sample prepared under the optimum condition showed excellent
26900    ferroelectric properties with P-r of 45 muC/cm(2) and P-s of 79
26901    muC/cm(2). (C) 2000 Elsevier Science S.A. All rights reserved.
26902 C1 Technol Res Inst Osaka Prefecture, Super Eye Image Sensor Project, Osaka 5941157, Japan.
26903    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
26904 RP Li, XS, Technol Res Inst Osaka Prefecture, Super Eye Image Sensor
26905    Project, Ayumino 2-7-1, Osaka 5941157, Japan.
26906 CR BAI GR, 1998, APPL PHYS LETT, V72, P1572
26907    CHEN SY, 1994, J AM CERAM SOC, V77, P2337
26908    FUJII S, 1997, JPN J APPL PHYS 1, V36, P6065
26909    FUKAMI T, 1991, JPN J APPL PHYS PT 1, V30, P2155
26910    LEE KB, 1999, APPL PHYS LETT, V74, P1484
26911    MATSUOKA M, 1986, J APPL PHYS, V60, P2096
26912    RANDALL CA, 1998, J AM CERAM SOC, V81, P677
26913    SONG YJ, 1998, APPL PHYS LETT, V72, P2686
26914    TYUNINA M, 1998, J APPL PHYS, V83, P5489
26915    UDAYAKUMAR KR, 1995, J APPL PHYS, V77, P3981
26916    YAMAUCHI S, 1993, JPN J APPL PHYS 1, V32, P4118
26917 NR 11
26918 TC 7
26919 SN 0040-6090
26920 J9 THIN SOLID FILMS
26921 JI Thin Solid Films
26922 PD OCT 31
26923 PY 2000
26924 VL 375
26925 IS 1-2
26926 BP 91
26927 EP 94
26928 PG 4
26929 SC Materials Science, Multidisciplinary; Physics, Applied; Physics,
26930    Condensed Matter
26931 GA 369LU
26932 UT ISI:000165067400022
26933 ER
26934 
26935 PT J
26936 AU Ding, YP
26937    Jin, CY
26938    Meng, ZY
26939 TI The effects and mechanism of chemical additives on the pyrolysis
26940    evolution and microstructure of sol-gel derived Ba1-xSrxTiO3 thin films
26941 SO THIN SOLID FILMS
26942 DT Article
26943 DE BST film; deposition process; crystallization; microstructure
26944 ID BARIUM-TITANATE
26945 AB The dependence of phase evolution on preparation conditions of
26946    precursor sols were investigated by DSC and XRD experiments during the
26947    sol-gel processing for Ba1-xSrxTiO3(BST) thin films. Two kinds of
26948    crystallization paths of perovskite BST were found during the
26949    annealing, which are closely dependent on chelating agent and solution
26950    aging. One path was the decomposition of all oxycarbonate intermediate,
26951    the other was the solid reaction between Ba/Sr carbonates and titanium
26952    oxides. For fresh sol, the addition of acetylacetone (HAcAc) as a
26953    chelating agent reduced the crystallization temperature by similar to
26954    70 degreesC. Moreover, the back scattered scanning electron microscopy
26955    (BS-SEM) revealed that the HAcAc-derived films were homogeneous in
26956    composition in comparison with the heterogeneity of the films prepared
26957    with no chelating agent addition. The Variations mentioned above were
26958    considered originating from different molecule structures of the
26959    precursors. (C) 2000 Elsevier Science S.A. All rights reserved.
26960 C1 Shanghai Univ Sci & Technol, Dept Mat Sci, Shanghai 201800, Peoples R China.
26961    Jiao Tong Univ, Dept Mat Sci, Shanghai 20030, Peoples R China.
26962 RP Meng, ZY, Shanghai Univ Sci & Technol, Dept Mat Sci, Shanghai 201800,
26963    Peoples R China.
26964 CR ALSHAREEF HN, 1997, J ELECTROCERAM, V1, P145
26965    CHANDLER CD, 1993, CHEM REV, V93, P1025
26966    DING Y, 1998, P 9 INT C MOD MAT TE, P615
26967    GRAMMATICO JP, 1997, J MAT SCI LETT ELECT, V3, P82
26968    GUST MC, 1997, J AM CERAM SOC, V80, P2828
26969    HOFFMAN W, 1997, THIN SOLID FILMS, V305, P305
26970    KRUPANIDHI SB, 1997, THIN SOLID FILMS, V305, P144
26971    MOSSET A, 1988, J NONCRYST SOLIDS, V100, P339
26972    SCOTT JF, 1992, P 8 IEEE INT S APPL, P356
26973    SHAIKH AS, 1986, J AM CERAM SOC, V69, P682
26974    TSAY JD, 1998, J MATER SCI, V33, P3721
26975    UEDA T, 1995, INTEGR FERROELECTR, V7, P45
26976 NR 12
26977 TC 10
26978 SN 0040-6090
26979 J9 THIN SOLID FILMS
26980 JI Thin Solid Films
26981 PD OCT 31
26982 PY 2000
26983 VL 375
26984 IS 1-2
26985 BP 196
26986 EP 199
26987 PG 4
26988 SC Materials Science, Multidisciplinary; Physics, Applied; Physics,
26989    Condensed Matter
26990 GA 369LU
26991 UT ISI:000165067400045
26992 ER
26993 
26994 PT J
26995 AU Li, XS
26996    Tanaka, T
26997    Suzuki, Y
26998 TI Characterization of lead zirconate titanate thin films deposited at low
26999    temperature by reactive facing target sputtering
27000 SO THIN SOLID FILMS
27001 DT Article
27002 DE reactive facing target sputtering; lead zirconate titanate thin film;
27003    orientation; ferroelectric property
27004 ID PB(ZR,TI)O-3 FILMS; PB(ZR; RF; GROWTH
27005 AB Lead zirconate titanate thin films have been deposited on platinized
27006    silicon substrate at low temperature by reactive facing target
27007    sputtering. The effects of substrate temperature, total gas pressure,
27008    sputtering ambience, input power and target composition on the phase
27009    composition of PZT thin film were investigated. By controlling the
27010    sputtering conditions, highly (111) oriented perovskite PZT thin films
27011    can be obtained, and the samples show ferroelectric properties. (C)
27012    2000 Elsevier Science S.A. All rights reserved.
27013 C1 Technol Res Inst Osaka Prefecture, Super Eye Image Sensor Project, Osaka 5941157, Japan.
27014    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
27015 RP Li, XS, Technol Res Inst Osaka Prefecture, Super Eye Image Sensor
27016    Project, Ayumino 2-7-1, Osaka 5941157, Japan.
27017 CR CHEN SY, 1994, J AM CERAM SOC, V77, P2332
27018    FUJISAWA A, 1993, JPN J APPL PHYS 1, V32, P4048
27019    HASE T, 1991, JPN J APPL PHYS, V30, P2159
27020    HASE T, 1994, JPN J APPL PHYS 1, V33, P5244
27021    HAYASHI K, 1993, JPN J APPL PHYS 1, V32, P4122
27022    LEE HS, 1998, JPN J APPL PHYS 1, V37, P5630
27023    MATSUOKA M, 1986, J APPL PHYS, V60, P2096
27024    MATSUOKA M, 1988, J APPL PHYS, V63, P2098
27025    NAM HJ, 1998, JPN J APPL PHYS 1, V37, P3462
27026    TOMINAGA K, 1991, JPN J APPL PHYS PT 1, V30, P2574
27027    TRISCONE JM, 1996, J APPL PHYS 1, V79, P4298
27028    YAMAUCHI S, 1993, JPN J APPL PHYS 1, V32, P4118
27029    ZHANG WX, 1995, JPN J APPL PHYS 1, V34, P5120
27030    ZHANG WX, 1996, JPN J APPL PHYS 1, V35, P5084
27031 NR 14
27032 TC 2
27033 SN 0040-6090
27034 J9 THIN SOLID FILMS
27035 JI Thin Solid Films
27036 PD OCT 31
27037 PY 2000
27038 VL 375
27039 IS 1-2
27040 BP 267
27041 EP 270
27042 PG 4
27043 SC Materials Science, Multidisciplinary; Physics, Applied; Physics,
27044    Condensed Matter
27045 GA 369LU
27046 UT ISI:000165067400061
27047 ER
27048 
27049 PT J
27050 AU Wen, Q
27051    You, JL
27052    Huang, SP
27053    Yu, BK
27054    Jiang, GC
27055    Zhou, CD
27056 TI High temperature Raman spectra and micro-structure study of lithium
27057    metaborate and its melt
27058 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
27059 DT Article
27060 DE high temperature Raman spectroscopy; lithium metaborate (LiBO2); melt
27061 AB Lithium metaborate (LiBO2) is studied by high temperature Raman
27062    spectroscopy from room temperature up to 1 673 K,and spectra drawing in
27063    different temperature are got. By analyzing, it focus on the phase
27064    transition,it is that the endless chains of BO3 triangles transform
27065    into rings of (B3O6)(3-) at about 1 123 K,and then the different kind
27066    of phase balance's motion occurs after 1 273 K which implies that both
27067    endless chain and ring have changed to CRN. In the drawing, the
27068    variation of peak's area rate implies the microstructure
27069    information,and shows the process from order to disorder.
27070 C1 Shanghai City Key Lab Ferromet, Shanghai 200072, Peoples R China.
27071    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
27072 RP Wen, Q, Shanghai City Key Lab Ferromet, Shanghai 200072, Peoples R
27073    China.
27074 CR BRONSWIJK JP, 1977, J NONCRYST SOLIDS, V24, P145
27075    CHRYSSIKOS GD, 1990, J NONCRYSTALL SOLIDS, V42, P126
27076    JIANG YJ, 1996, ACTA PHYS SINICA, V45, P885
27077    LIU HS, 1996, SPECTROSC SPECT ANAL, V16, P66
27078    MAREZIO M, 1963, ACTA CRYSTALLOGR, V16, P390
27079    MAREZIO M, 1963, ACTA CRYSTALLOGR, V16, P594
27080    RULMONT A, 1989, SPECTROCHIM ACTA A, V45, P603
27081    SASTRY BSR, 1995, J AM CERAM SOC, V42, P218
27082    YOU JL, 1999, OPTICAL INSTRUMENT, V21, P21
27083    ZACHARIASEN WH, 1964, ACTA CRYSTALLOGR, V17, P749
27084    ZHOU XW, 1997, PROGR LIQUID PHYSI 1, V7, P12
27085 NR 11
27086 TC 2
27087 SN 1000-0593
27088 J9 SPECTROSC SPECTR ANAL
27089 JI Spectrosc. Spectr. Anal.
27090 PD OCT
27091 PY 2000
27092 VL 20
27093 IS 5
27094 BP 694
27095 EP 696
27096 PG 3
27097 SC Spectroscopy
27098 GA 369AR
27099 UT ISI:000090150100036
27100 ER
27101 
27102 PT J
27103 AU Liu, ZY
27104    Lin, L
27105    Shi, CC
27106 TI Nonstationary two-stage multisplitting methods for symmetric positive
27107    definite matrices
27108 SO APPLIED MATHEMATICS LETTERS
27109 DT Article
27110 DE nonstationary two-stage multisplitting; diagonal compensation
27111    reduction; block diagonal conformable
27112 ID LINEAR-SYSTEMS; OVERLAPPING BLOCKS; ITERATIVE METHODS; PARALLEL
27113    SOLUTION; CONVERGENCE; 2-STAGE
27114 AB Nonstationary synchronous two-stage multisplitting methods for the
27115    solution of the symmetric positive definite linear system of equations
27116    are considered. The convergence properties of these methods are
27117    studied. Relaxed variants are also discussed. The main tool for the
27118    construction of the two-stage multisplitting and related theoretical
27119    investigation is the diagonally compensated reduction (cf. [1]). (C)
27120    2000 Elsevier Science Ltd. All rights reserved.
27121 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
27122    Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China.
27123    Fudan Univ, Dept Math, Shanghai 200433, Peoples R China.
27124 RP Liu, ZY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
27125 CR AXELSSON O, 1994, NUMER LINEAR ALGEBR, V1, P155
27126    BERMAN A, 1979, NONNEGATIVE MATRICES
27127    BRU R, 1988, LINEAR ALGEBRA APPL, V103, P175
27128    BRU R, 1990, APPL MATH LETT, V3, P65
27129    BRU R, 1995, ELECTRONIC T NUMERIC, V3, P24
27130    BRU R, 1995, SIAM J MATRIX ANAL A, V16, P1210
27131    CAO ZH, 1998, LINEAR ALGEBRA APPL, V285, P153
27132    CAO ZH, 1998, LINEAR ALGEBRA APPL, V285, P309
27133    CASTEL MJ, 1998, MATH COMPUT, V67, P209
27134    FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141
27135    JONES MT, 1996, NUMER LINEAR ALGEBR, V3, P113
27136    LANZKRON PJ, 1991, NUMER MATH, V58, P685
27137    MIGALLON V, 1997, APPL MATH LETT, V10, P79
27138    NEUMANN M, 1987, LINEAR ALGEBRA APPL, V88, P559
27139    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
27140    ORTEGA JM, 1972, NUMERICAL ANAL 2 COU
27141    SZYLD DB, 1992, SIAM J MATRIX ANAL A, V13, P671
27142    VARGA RS, 1962, MATRIX ITERATIVE ANA
27143 NR 18
27144 TC 5
27145 SN 0893-9659
27146 J9 APPL MATH LETT
27147 JI Appl. Math. Lett.
27148 PD NOV
27149 PY 2000
27150 VL 13
27151 IS 8
27152 BP 49
27153 EP 54
27154 PG 6
27155 SC Mathematics, Applied
27156 GA 369ZM
27157 UT ISI:000165097700009
27158 ER
27159 
27160 PT J
27161 AU Du, B
27162    Yung, EKN
27163    Yang, KZ
27164    Zhong, SS
27165 TI Design of multibeam parabolic torus reflector antennas
27166 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
27167 DT Article
27168 DE parabolic torus reflector antenna; multibeam antenna; offset antenna;
27169    antenna design
27170 AB Design formulas, principles, and procedures for a multibeam parabolic
27171    tones reflector antenna (PTRA) are presented. A six-beam PTRA with 15
27172    degrees geostationary are coverage for satellite communication is
27173    described. Experimental and theoretical radiation patterns are given.
27174    Six identical beams are obtained with low sidelobe and low
27175    cross-polarization lei els. A comparison between the calculated and
27176    measured patterns of the central beam shows good agreement. (C) 2000
27177    John Wiley & Sons, Inc.
27178 C1 City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China.
27179    Commun Telemetry & Telecontrol Res Inst, Shijiazhuang 050081, Hebei, Peoples R China.
27180    Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800, Peoples R China.
27181 RP Du, B, City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong,
27182    Peoples R China.
27183 CR BOSWELL AGP, 1978, MARCONI REV, V41, P237
27184    CHU TS, 1989, IEEE T ANTENN PROPAG, V37, P865
27185    CLARRICOATS PJB, 1984, CORRUGATED HORNS MIC, P141
27186    DU B, 1995, SCI CHINA SER A, V38, P1520
27187    DU B, 1997, CHINESE J ELECTRON, V6, P86
27188    DU B, 1997, P 4 INT S ANT EM THE, P148
27189    HOFERER RA, 1998, IEEE T ANTENN PROPAG, V46, P1449
27190    ZHONG SS, 1998, P IEEE AP S S ATL GA, P848
27191 NR 8
27192 TC 0
27193 SN 0895-2477
27194 J9 MICROWAVE OPT TECHNOL LETT
27195 JI Microw. Opt. Technol. Lett.
27196 PD DEC 5
27197 PY 2000
27198 VL 27
27199 IS 5
27200 BP 343
27201 EP 347
27202 PG 5
27203 SC Engineering, Electrical & Electronic; Optics
27204 GA 367FM
27205 UT ISI:000090051100016
27206 ER
27207 
27208 PT J
27209 AU Li, CF
27210    Wang, Q
27211 TI Negative phase time for particles passing through a potential well
27212 SO PHYSICS LETTERS A
27213 DT Article
27214 DE negative phase time; negative lateral shift; potential well;
27215    quantum-like dependence of phase on potential-well thickness
27216 ID TOTAL-INTERNAL-REFLECTION; TUNNELING TIMES; DELAY
27217 AB It is reported that the phase time of particles passing through a
27218    potential well is negative when the energy of incident particles and
27219    the thickness of potential well satisfy certain conditions. Similar
27220    results are also found in a fully-relativistic optical analog. The
27221    2-dimensional optical case gives rise to a lateral shift of the wave
27222    packet. It is shown that the phase-time associated lateral shift can
27223    also be negative. (C) 2000 Published by Elsevier Science B.V.
27224 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
27225    CCAST, World Lab, Beijing 100080, Peoples R China.
27226 RP Li, CF, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200436,
27227    Peoples R China.
27228 CR BALCOU P, 1997, PHYS REV LETT, V78, P851
27229    BRILLOUIN L, 1960, WAVE PROPAGATION GRO, P121
27230    CARNIGLIA CK, 1971, J OPT SOC AM, V61, P1035
27231    CHIAO RY, 1997, PROG OPTICS, V37, P345
27232    ENDERS A, 1992, J PHYS I, V2, P1693
27233    ENDERS A, 1993, J PHYS I, V3, P1089
27234    GARRETT CGB, 1970, PHYS REV A-GEN PHYS, V1, P305
27235    HARTMAN TE, 1962, J APPL PHYS, V33, P3427
27236    HAUGE EH, 1989, REV MOD PHYS, V61, P917
27237    LEE B, 1997, J OPT SOC AM B, V14, P777
27238    MACCOLL LA, 1932, PHYS REV, V40, P621
27239    MARTIN T, 1992, PHYS REV A, V45, P2611
27240    MERZBACHER E, 1970, QUANTUM MECH, P112
27241    SPIELMANN C, 1994, PHYS REV LETT, V73, P2308
27242    STEINBERG AM, 1993, PHYS REV LETT, V71, P708
27243    STEINBERG AM, 1994, PHYS REV A, V49, P3283
27244    WANG LJ, 2000, NATURE, V406, P277
27245    WIGNER EP, 1955, PHYS REV, V98, P145
27246 NR 18
27247 TC 12
27248 SN 0375-9601
27249 J9 PHYS LETT A
27250 JI Phys. Lett. A
27251 PD OCT 16
27252 PY 2000
27253 VL 275
27254 IS 4
27255 BP 287
27256 EP 291
27257 PG 5
27258 SC Physics, Multidisciplinary
27259 GA 365QL
27260 UT ISI:000089961900009
27261 ER
27262 
27263 PT J
27264 AU Mao, JM
27265    Liu, ZR
27266    Ling, Y
27267 TI Straight-line stabilization
27268 SO PHYSICAL REVIEW E
27269 DT Article
27270 ID CHAOS; SYSTEMS
27271 AB For finite-dimensional maps, an unstable orbit in a neighborhood of an
27272    unstable fixed point can be stabilized by adjusting parameters so that
27273    the orbit goes to the fixed point along the straight line connecting
27274    the orbit (at a given time) and the fixed point [Yang Ling, Liu
27275    Zengrong and Jian-min Mao, Phys. Rev. Lett. 83, 67 (2000)]. This is
27276    called straight-line stabilization. In this paper, we derive the
27277    expression for the region of stabilization, i.e., the region within
27278    which the straight-line stabilization method is valid. For
27279    two-dimensional maps, the parameter adjustments needed by the
27280    stabilization method are explicitly given for nine cases. Stabilization
27281    of unstable flows, with or without introducing a Poincare map, is also
27282    investigated.
27283 C1 Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China.
27284    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
27285 RP Mao, JM, Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong,
27286    Peoples R China.
27287 CR AYNG L, 2000, PHYS REV LETT, V84, P67
27288    GARFINKEL A, 1992, SCIENCE, V257, P1230
27289    HUNT ER, 1991, PHYS REV LETT, V67, P1953
27290    MYNENI K, 1999, PHYS REV LETT, V83, P2175
27291    OSIPOV G, 1998, CHAOS SOLITON FRACT, V9, P307
27292    OSIPOV GV, 1998, PHYS LETT A, V247, P119
27293    OTT E, 1990, PHYS REV LETT, V64, P1196
27294    PETTOV V, 1993, NATURE, V361, P240
27295    ROMEIRAS FJ, 1992, PHYSICA D, V58, P165
27296    ROY R, 1992, PHYS REV LETT, V68, P1259
27297 NR 10
27298 TC 3
27299 SN 1063-651X
27300 J9 PHYS REV E
27301 JI Phys. Rev. E
27302 PD OCT
27303 PY 2000
27304 VL 62
27305 IS 4
27306 PN Part A
27307 BP 4846
27308 EP 4849
27309 PG 4
27310 SC Physics, Fluids & Plasmas; Physics, Mathematical
27311 GA 365XY
27312 UT ISI:000089976800050
27313 ER
27314 
27315 PT J
27316 AU Li, J
27317    Ma, HP
27318    Sun, WW
27319 TI Error analysis for solving the Korteweg-de Vries equation by a Legendre
27320    pseudo-spectral method
27321 SO NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
27322 DT Article
27323 DE Korteweg-de Vries equation; Legendre pseudo-spectral method
27324 ID KORTEWEG-DEVRIES EQUATION; PSEUDOSPECTRAL METHOD; GALERKIN METHOD;
27325    DIRECT SOLVERS; POLYNOMIALS; 3RD-ORDER; 2ND-ORDER
27326 AB A Legendre pseudo-spectral method is proposed for the Korteweg-de Vries
27327    equation with nonperiodic boundary conditions. Appropriate base
27328    functions are chosen to get an efficient algorithm. Error analysis is
27329    given for both semi-discrete and fully discrete schemes. The numerical
27330    results confirm to the theoretical analysis. (C) (2000) John Wiley &
27331    Sons, Inc.
27332 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
27333    Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100080, Peoples R China.
27334    City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China.
27335 RP Ma, HP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
27336 CR BERNARD C, 1997, SPECIAL METHODS HDB, V5, P209
27337    BERNARDI C, 1992, J COMPUT APPL MATH, V43, P53
27338    BRESSAN N, 1990, COMPUT METHODS APPL, V80, P443
27339    CANUTO C, 1988, SPECTRAL METHODS FLU
27340    CAREY GF, 1991, COMPUT METHOD APPL M, V93, P1
27341    CHAN TF, 1985, SIAM J NUMER ANAL, V22, P441
27342    DJIDJELI K, 1995, J COMPUT APPL MATH, V58, P307
27343    GOTTLIEB D, 1977, NUMERICAL ANAL SPECT
27344    GUO BY, 1988, DIFFERENCE MEHTODS P
27345    GUO BY, 1998, SPECTRAL METHODS THE
27346    HUANG WZ, 1992, SIAM J NUMER ANAL, V29, P1626
27347    MA HP, 1986, J COMPUT PHYS, V65, P120
27348    MADAY Y, 1988, MEAN MODEL MATH AN N, V22, P499
27349    MERRYFIELD WJ, 1993, J COMPUT PHYS, V105, P182
27350    MITRINOVIE DS, 1991, INEQUALITIES INVOLVI
27351    PAVONI D, 1988, CALCOLO, V25, P311
27352    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
27353    SHEN J, 1995, SIAM J SCI COMPUT, V16, P74
27354    SZEGO G, 1975, ORTHOGONAL POLYNOMIA
27355 NR 19
27356 TC 4
27357 SN 0749-159X
27358 J9 NUMER METHOD PARTIAL DIFFER E
27359 JI Numer. Meth. Part Differ. Equ.
27360 PD NOV
27361 PY 2000
27362 VL 16
27363 IS 6
27364 BP 513
27365 EP 534
27366 PG 22
27367 SC Mathematics, Applied
27368 GA 364UJ
27369 UT ISI:000089911100002
27370 ER
27371 
27372 PT J
27373 AU Hua, TC
27374    Xu, JJ
27375 TI Quenching boiling in subcooled liquid nitrogen for solidification of
27376    aqueous materials
27377 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
27378    MICROSTRUCTURE AND PROCESSING
27379 DT Article
27380 DE rapid cooling; quenching boiling; subcooled liquid nitrogen;
27381    solidification
27382 ID SPECIMENS
27383 AB Rapid cooling is of great importance in solidification of aqueous
27384    materials, such as in vitrification of biological cells and tissues,
27385    and in quick freezing of food. Quenching of samples into liquid
27386    nitrogen is a typical technique to obtain high cooling rate. This paper
27387    investigates the quenching boiling of small spheres and a circular
27388    plate into saturated and subcooled liquid nitrogen. Effects of the
27389    diameters of spheres, the inclination angles of the plate, and the
27390    subcooling of liquid nitrogen on quenching boiling are investigated
27391    systematically. Boiling characteristics of the small spheres
27392    (representing small samples) and the circular plate (representing large
27393    samples) are very different from each other. The scale effect of small
27394    samples and the inclination effect of large plate on heat transfer
27395    performance are obvious. The subcooling of liquid nitrogen can enhance
27396    the heat fluxes in all cases, especially in the cases of small samples.
27397    (C) 2000 Elsevier Science S.A. All rights reserved.
27398 C1 Shanghai Univ Sci & Technol, Inst Cryogen & Refrigerat, Shanghai 200093, Peoples R China.
27399 RP Hua, TC, Shanghai Univ Sci & Technol, Inst Cryogen & Refrigerat, 516
27400    Jun Gong Rd, Shanghai 200093, Peoples R China.
27401 CR CAO Q, 1998, CRYOGENICS REFRIGERA, P117
27402    COSTELLO MJ, 1978, J MICROSC, V112, P17
27403    ELKASSABGI Y, 1988, ASME, V110, P479
27404    HAN RH, 1995, CRYOLETT, V16, P157
27405    HUA TC, 1998, HEAT TRANSFER 1998, V1, P357
27406    KUTATELADZE SS, 1961, INT J HEAT MASS TRAN, V4, P31
27407    RYAN KP, 1987, J MICROSC-OXFORD, V145, P89
27408    STEPONKUS PL, 1990, NATURE, V345, P170
27409    XU JJ, 1998, CRYOGENICS REFRIGERA, P301
27410    ZUBER N, 1958, T ASME, V83, P351
27411 NR 10
27412 TC 1
27413 SN 0921-5093
27414 J9 MATER SCI ENG A-STRUCT MATER
27415 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
27416 PD NOV 30
27417 PY 2000
27418 VL 292
27419 IS 2
27420 BP 169
27421 EP 172
27422 PG 4
27423 SC Materials Science, Multidisciplinary
27424 GA 364HE
27425 UT ISI:000089886300007
27426 ER
27427 
27428 PT J
27429 AU Xu, SY
27430    Frank, TJ
27431 TI Forecasting the efficiency of test generation algorithms for
27432    combinational circuits
27433 SO JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
27434 DT Article
27435 DE testability; genetic algorithm; forecasting; test generation
27436 AB In this era of VLSI circuits, testability is truly a very crucial
27437    issue. To generate a test set for a given circuit, choice of an
27438    algorithm from a number of existing test generation algorithms to apply
27439    is bound to vary from circuit to circuit. In this paper, the Genetic
27440    Algorithm is used in order to construct an accurate model for some
27441    existing test generation algorithms that are being used everywhere in
27442    the world. Some objective quantitative measures are used as an
27443    effective tool in making such choice. Such measures are so important to
27444    the analysis of algorithms that they become one of the subjects of this
27445    work.
27446 C1 Shanghai Univ, Sch Comp, Shanghai 200072, Peoples R China.
27447 RP Xu, SY, Shanghai Univ, Sch Comp, Shanghai 200072, Peoples R China.
27448 CR *TEX INSTR INC, 1982, BIP DIG INT CIRC D 1
27449    ABRAMOVICI M, 1986, IEEE DES TEST COMPUT, V3, P43
27450    ABRAMOVICI M, 1990, DIGITAL SYSTEMS TEST
27451    BRGLEZ F, 1985, INT TEST S CIRC SYST
27452    CHA CW, 1978, IEEE T COMPUT, V27, P193
27453    FOGEL LJ, 1966, ARTIFICIAL INTELLIGE
27454    FUJIWARA H, 1983, IEEE T COMPUT, V32, P1137
27455    GLOVER F, 1977, DECISION SCI, V8, P156
27456    GOEL P, 1981, IEEE T COMPUT, V30, P215
27457    HOLLAND JH, 1975, ADAPTATION NATURAL A
27458    HU Y, 1997, THESIS SHANGHAI U
27459    JOHNSON BW, 1989, DESIGN ANAL FAULT TO
27460    KIRKLAND T, 1987, P 24 DES AUT C JUN, P502
27461    KOZA JR, 1991, GENETIC PROGRAMMING
27462    MAHFOUD S, 1996, APPL ARTIF INTELL, V10, P543
27463    MICHALEWICZ Z, 1994, GENETIC ALGORITHMS D
27464    MUTH P, 1976, IEEE T COMPUT, V25, P630
27465    ROTH JP, 1966, IBM J RES DEV, V10, P278
27466    ROTH JP, 1967, IEEE T ELECTRON COMP, V16, P567
27467    RUSSELL SJ, 1995, ARTIF INTELL, P619
27468    SCHNEIDER PR, 1967, IBM J RES DEV    JAN, V11, P14
27469    SCHWEFEL HP, 1981, NUMERICAL OPTIMIZATI
27470    WELSTEAD ST, 1994, NEURAL NETWORK FUZZY, P283
27471    XI SY, 1995, P IEEE 4 AS TEST S N, P199
27472    XU SY, 1997, P IEEE 6 AS TEST S N, P126
27473    XU SY, 1999, P IEEE 8 AS TEST S N, P63
27474 NR 26
27475 TC 1
27476 SN 1000-9000
27477 J9 J COMPUT SCI TECHNOL
27478 JI J. Comput. Sci. Technol.
27479 PD JUL
27480 PY 2000
27481 VL 15
27482 IS 4
27483 BP 326
27484 EP 337
27485 PG 12
27486 SC Computer Science, Hardware & Architecture; Computer Science, Software
27487    Engineering
27488 GA 365EZ
27489 UT ISI:000089936800002
27490 ER
27491 
27492 PT J
27493 AU Lin, QS
27494    Feng, XQ
27495    Man, ZY
27496    Shi, ZS
27497    Zhang, QR
27498 TI Formation of the 350 nm intrinsic color center in PbWO4 crystals
27499 SO PHYSICA STATUS SOLIDI A-APPLIED RESEARCH
27500 DT Article
27501 ID SINGLE-CRYSTALS; ORIGIN; DAMAGE; BAND
27502 C1 Chinese Acad Sci, Lab Funct Inorgan Mat, Shanghai 200050, Peoples R China.
27503    Natl Synchrotron Radiat Lab, Hefei 230039, Peoples R China.
27504    Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
27505 RP Feng, XQ, Chinese Acad Sci, Lab Funct Inorgan Mat, Shanghai 200050,
27506    Peoples R China.
27507 CR ANNENKOV A, 1998, PHYS STATUS SOLIDI A, V170, P47
27508    BACCARO S, 1997, J LUMIN, V72, P748
27509    BACCARO S, 1998, P SCINT 98 U STUD SE, P129
27510    BIEDERBICK R, 1975, PHYS STATUS SOLIDI B, V69, P55
27511    HAN BG, 1998, J APPL PHYS, V84, P2831
27512    HAN BG, 1999, J APPL PHYS, V86, P3571
27513    KOBAYASHI M, 1999, NUCL INSTRUM METH A, V434, P412
27514    LIN QS, UNPUB
27515    NESSITEDALDI F, 1998, NUCL INSTRUM METH A, V408, P266
27516    NIKL M, 1996, PHYS STATUS SOLIDI B, V196, K7
27517    NIKL M, 1997, MATER SCI FORUM, V239, P271
27518    VANLOO W, 1975, J SOLID STATE CHEM, V14, P359
27519    WILLIAMS RT, 1999, P SCINT 99 MOSC
27520    ZHANG Y, 1998, PHYS REV B, V57, P12738
27521 NR 14
27522 TC 24
27523 SN 0031-8965
27524 J9 PHYS STATUS SOLIDI A-APPL RES
27525 JI Phys. Status Solidi A-Appl. Res.
27526 PD SEP 16
27527 PY 2000
27528 VL 181
27529 IS 1
27530 BP R1
27531 EP R3
27532 PG 3
27533 SC Physics, Condensed Matter
27534 GA 363GV
27535 UT ISI:000089827900001
27536 ER
27537 
27538 PT J
27539 AU Hassan, AKA
27540    Xu, DM
27541    Maode, N
27542    Zhang, YJ
27543 TI EM-properties measurement of concave-surface coating materials using a
27544    modified open-ended coaxial probe
27545 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
27546 DT Article
27547 DE coating materials testing; open-ended coaxial probe; concave-surface
27548    materials; complex permittivity and permeability; air gap; FDTD
27549 AB In this work, a new aspect of the utilization and development of the
27550    open-ended coaxial probe technique for EM-properties measurement of
27551    coating materials with a concave surface is studied. it is found from
27552    the results of an analysis performed using FDTD modeling that the
27553    reflection coefficient is strongly affected, even for large sample
27554    radii. In order to satisfy concave-surface materials measurement, rte
27555    propose a technique to modify the standard open-ended coaxial probe to
27556    improve measurement accuracy. It is based on adding a ring patch at the
27557    end of the extended length of the inner conductor throughout the air
27558    gap between the probe and the material under test. The proposed
27559    technique is analyzed and verified by experiments. Results of the
27560    measured epsilon* and mu* of the several microwave-absorbing materials
27561    coated on prototype boxes with different radii for shielding are in
27562    relative agreement with the published data. (C) 2000 John Wiley & Sons,
27563    Inc.
27564 C1 Shanghai Univ Sci & Technol, Coll Commun & Informat Engn, Shanghai 201800, Peoples R China.
27565 RP Hassan, AKA, Shanghai Univ Sci & Technol, Coll Commun & Informat Engn,
27566    Shanghai 201800, Peoples R China.
27567 CR BAKERJARVIS J, 1994, IEEE T INSTRUM MEAS, V43, P711
27568    HASSAN AKA, 1999, INT UN RAD SCI C URS
27569    HASSAN AKA, 2000, MICROW OPT TECHN LET, V24, P117
27570    LAUGHE PD, 1993, IEEE T INSTRUM MEAS, V42, P879
27571    LI CL, 1995, IEEE T INSTRUM MEAS, V44, P19
27572    NIU M, 1999, IEEE T INSTRUM MEAS, V47, P476
27573    WANG S, 1998, IEEE T MICROWAVE THE, V45, P2145
27574 NR 7
27575 TC 0
27576 SN 0895-2477
27577 J9 MICROWAVE OPT TECHNOL LETT
27578 JI Microw. Opt. Technol. Lett.
27579 PD NOV 20
27580 PY 2000
27581 VL 27
27582 IS 4
27583 BP 278
27584 EP 281
27585 PG 4
27586 SC Engineering, Electrical & Electronic; Optics
27587 GA 363ZB
27588 UT ISI:000089866600019
27589 ER
27590 
27591 PT J
27592 AU Weng, XC
27593    Wang, W
27594 TI Antioxidant activity of compounds isolated from Salvia plebeia
27595 SO FOOD CHEMISTRY
27596 DT Article
27597 DE Salvia plebeia; natural antioxidant; antioxidant activity; compound
27598 AB Six compounds, hispidulin-glucuronide (1), hispidulin-7-O-D-glucoside
27599    (2), 6-methoxy-luteolin-7-glucoside (3), p-sitosterol (4),
27600    2'-hydroxy-5'-methoxybiochanin A (5) and coniferyl aldehyde (6), were
27601    isolated from Salvia plebeia and identified by UV, IR, Mass, H-1 and
27602    (CNMR)-C-13 spectra. Their antioxidant activities were investigated
27603    individually and compared with butylatedhydroxytoluene (BHT) (8) and
27604    alpha-tocopherol (7) by the oxidative stability instrument (OSI) at 100
27605    degrees C. Compounds 3, 4 and 5 had strong antioxidant activities, but
27606    compounds 1, 2 and 6 had low antioxidant activities at 0.02 and 0.04%
27607    levels. (C) 2000 Elsevier Science Ltd. All rights reserved.
27608 C1 Shanghai Univ, Sch Life Sci, Shanghai 201800, Peoples R China.
27609 RP Weng, XC, Shanghai Univ, Sch Life Sci, 20 Chengzhong Rd, Shanghai
27610    201800, Peoples R China.
27611 CR AUGUSTIN EN, 1989, J NAT PRODUCTS, V52, P320
27612    CHIPAULT JR, 1952, FOOD RES, V17, P45
27613    DUAN S, 1998, FOOD CHEM, V61, P101
27614    GRICE HC, 1986, FOOD CHEM TOXICOL, V24, P1127
27615    GUPTA HC, 1975, J CHEM, V13, P215
27616    JIAN Y, 1987, J PHARM IND, V18, P349
27617    KOSUGE K, 1994, CHEM PHARM BULL, V42, P1669
27618    MARIA CG, 1986, PHYTOCHEMISTRY, V25, P272
27619    PLATTNER RD, 1978, PHYTOCHEMISTRY, V17, P149
27620    RICHARD GP, 1976, PHYTOCHEMISTRY, V15, P1963
27621    SU JD, 1986, AGR BIOL CHEM TOKYO, V50, P199
27622    WENG XC, 1993, J ZHENGZHOU GRAIN CO, P20
27623    WENG XC, 1997, J YANTAI U, V104, P304
27624    WENG XC, 1998, J CHINESE CEREAL OIL, V13, P46
27625    WENG XC, 1998, J CHINESE CEREALS OI, V13, P25
27626    WICHI HP, 1988, FOOD CHEM TOXICOL, V26, P717
27627 NR 16
27628 TC 9
27629 SN 0308-8146
27630 J9 FOOD CHEM
27631 JI Food Chem.
27632 PD DEC
27633 PY 2000
27634 VL 71
27635 IS 4
27636 BP 489
27637 EP 493
27638 PG 5
27639 SC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics
27640 GA 362YT
27641 UT ISI:000089806400011
27642 ER
27643 
27644 PT J
27645 AU He, JH
27646 TI Semi-inverse method and generalized variational principles with
27647    multi-variables in elasticity
27648 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
27649 DT Article
27650 DE variational principle in elasticy; Chien's generalized variational
27651    principles; Hu-Washizu principle; semi-inverse method;
27652    trial-functional; variational crisis
27653 ID MIXED-FLOW TURBOMACHINERY; COMPRESSIBLE S2-FLOW
27654 AB Semi-inverse method, which is an integration and an extension of Hu's
27655    try-and-error method, Chien's veighted residual method and Liu's
27656    systematic method, is proposed to establish generalized variational
27657    principles with multi-variables without arty variational crisis
27658    phenomenon. The method is to construct an energy trial-functional with
27659    an unknown function F, which can be readily identified by making the
27660    trial-functional stationary and using known constraint equations. As a
27661    result generalized variational principles with two kinds of independent
27662    variables (such as well-known Hellinger-Reissner variational principle
27663    and Hu-Washizu principle) and generalized variational principles with
27664    three kinds of independent variables (such as Chien's generalized
27665    variational principles) in elasticity have been deduced without using
27666    Lagrange multiplier method. By semi-inverse method, the author has also
27667    proved that Hu-Washizu principle is actually a variational principle
27668    with only two kinds of independent variables, stress-strain relations
27669    are still its constraints.
27670 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
27671 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
27672    Peoples R China.
27673 CR CHIEN WZ, 1983, APPL MATH MECH, V4, P143
27674    CHIEN WZ, 1984, ADV APPL MECH, V24, P93
27675    CHIEN WZ, 1985, APPL MATH MECH, V6, P25
27676    CHIEN WZ, 1989, SELECTED WORKS WEI Z, P419
27677    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
27678    GU CH, 1990, SOLITON THEORY ITS A
27679    HE JH, 1997, INT J TURBO JET ENG, V14, P23
27680    HE JH, 1997, J ENG THERMOPHYSICS, V18, P440
27681    HE JH, 1998, INT J TURBO JET ENG, V15, P101
27682    HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154
27683    HE JH, 1999, APPL MATH MECH-ENGL, V20, P545
27684    HE JH, 1999, SHANGHAI J MECH, V20, P365
27685    HU HC, 1954, PHYSICS J, V10, P259
27686    HU HC, 1955, SCI SINICA, V4, P33
27687    HU JH, 1992, J U SHANGHAI SCI TEC, V21, P29
27688    HU JH, 1997, SHANGHAI J MECH, V18, P305
27689    LIU GL, 1990, P 1 INT S AER DYN IN, V11, P128
27690    LIU GL, 1995, P 6 AS C FLUID MECH
27691 NR 18
27692 TC 5
27693 SN 0253-4827
27694 J9 APPL MATH MECH-ENGL ED
27695 JI Appl. Math. Mech.-Engl. Ed.
27696 PD JUL
27697 PY 2000
27698 VL 21
27699 IS 7
27700 BP 797
27701 EP 808
27702 PG 12
27703 SC Mathematics, Applied; Mechanics
27704 GA 361NT
27705 UT ISI:000089729700010
27706 ER
27707 
27708 PT J
27709 AU Wang, W
27710    Wong, PL
27711    Zhang, Z
27712 TI Experimental study of the real time change in surface roughness during
27713    running-in for PEHL contacts
27714 SO WEAR
27715 DT Article
27716 DE running-in; surface roughness
27717 ID ASPERITY LEVEL CONFORMITY; PARTIAL-EHL; LUBRICATION
27718 AB An optical system for the implementation of a new real time roughness
27719    measuring technique was incorporated to a two-dish machine. The change
27720    in surface roughness during the running-in stage of partial
27721    elastohydrodynamic lubricated wear tests was measured in a real time
27722    mode. The results were compared with the experimental data, which were
27723    measured, in a conventional manner, at discrete intervals of time by
27724    stopping the wear test. The apparent discrepancies reveal that the wear
27725    is enhanced by the stop/start actions. The effects of different initial
27726    roughness, sliding/rolling ratios and loading on the change in surface
27727    roughness during lubricated running-in tests were also studied with the
27728    current set up. (C) 2000 Published by Elsevier Science S.A.
27729 C1 City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China.
27730    Shanghai Univ, Dept Mech Engn, Shanghai, Peoples R China.
27731 RP Wong, PL, City Univ Hong Kong, Dept Mfg Engn & Engn Management, Tat
27732    Chee Ave, Hong Kong, Hong Kong, Peoples R China.
27733 CR BECKMANN P, 1987, SCATTERING ELECTROMA
27734    BOOSER ER, 1983, HDB LUBRICATION
27735    FOUCHER D, 1977, P 4 LEEDS LYON S TRI, P109
27736    HAMROCK BJ, 1981, BALL BEARING LUBRICA
27737    LUO JB, 1996, WEAR, V194, P107
27738    MITSUI K, 1986, PRECIS ENG, V8, P212
27739    PAWLUS P, 1991, WEAR, V176, P323
27740    PERSSON U, 1993, WEAR, V160, P221
27741    STOUT KJ, 1977, WEAR, V43, P99
27742    THOMAS TR, 1977, P 4 LEEDS LYN S TRIB, P99
27743    TYAGI MR, 1996, WEAR, V197, P89
27744    TYAGI MR, 1996, WEAR, V197, P98
27745    WANG FX, 1991, J TRIBOL-T ASME, V113, P755
27746    WANG W, 1998, TRIBOL INT, V31, P281
27747    WU CG, 1991, WEAR, V147, P323
27748    WU SF, 1991, J TRIBOL-T ASME, V113, P134
27749 NR 16
27750 TC 1
27751 SN 0043-1648
27752 J9 WEAR
27753 JI Wear
27754 PD SEP
27755 PY 2000
27756 VL 244
27757 IS 1-2
27758 BP 140
27759 EP 146
27760 PG 7
27761 SC Engineering, Mechanical; Materials Science, Multidisciplinary
27762 GA 360TH
27763 UT ISI:000089683000016
27764 ER
27765 
27766 PT J
27767 AU Ding, YP
27768    Jin, CY
27769    Meng, ZY
27770 TI Investigation on the amorphous-crystalline transition and
27771    microstructure of sol-gel derived (Ba1-xSrx)TiO3 thin films
27772 SO MATERIALS RESEARCH BULLETIN
27773 DT Article
27774 DE thin films; sol-gel chemistry; phase transitions; microstructure
27775 ID TITANATE
27776 AB (Ba1-xSrx)TiO3 (BST) ferroelectric thin films were fabricated by
27777    sol-gel processing, using Ba(Ac)(2), Sr(Ac)(2), and Ti(OC4H9)(4) as
27778    starting materials. Differential scanning calorimetry (DSC),
27779    backscattering scanning electronic microscopy (BS-SEM), and X-ray
27780    diffraction (XRD) were employed to investigate the effect of chelating
27781    agents on the phase formation characteristics and microstructure of the
27782    BST films. It was found that the chelating agents, acetate acid (HAc)
27783    and acetylacetone (HAcAc), changed the crystallization path from
27784    amorphous to crystalline phase during annealing. BS-SEM revealed that
27785    HAcAc improved the densification and compositional homogeneity in the
27786    microregion of the films. These phenomena were explained by the
27787    modified condensation property of the precursors. (C) 2000 Elsevier
27788    Science Ltd. All rights reserved.
27789 C1 Jiao Tong Univ, Dept Mat Sci, Shanghai 200030, Peoples R China.
27790    Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
27791 RP Meng, ZY, Jiao Tong Univ, Dept Mat Sci, Shanghai 200030, Peoples R
27792    China.
27793 CR ALSHAREEF HN, 1997, J ELECTROCERAM, V1, P145
27794    CHANDLER CD, 1993, CHEM REV, V93, P1025
27795    DING YP, 1999, CHIN J MAT RES, V13, P21
27796    FUJII E, 1992, IEDM, P267
27797    GRAMMATICO JP, 1997, J MAT SCI LETT ELECT, V3, P82
27798    GUST MC, 1997, J AM CERAM SOC, V80, P2828
27799    HOFFMAN W, 1997, THIN SOLID FILMS, V305, P305
27800    KRUPANIDHI SB, 1997, THIN SOLID FILMS, V305, P144
27801    MOSSET A, 1988, J NONCRYST SOLIDS, V100, P339
27802    SCHWARTZ RW, 1997, J MATER RES, V12, P444
27803    SHAIKH AS, 1986, J AM CERAM SOC, V69, P682
27804    UEDA T, 1995, INTEGR FERROELECTR, V7, P45
27805 NR 12
27806 TC 8
27807 SN 0025-5408
27808 J9 MATER RES BULL
27809 JI Mater. Res. Bull.
27810 PD MAY
27811 PY 2000
27812 VL 35
27813 IS 7
27814 BP 1187
27815 EP 1193
27816 PG 7
27817 SC Materials Science, Multidisciplinary
27818 GA 360MA
27819 UT ISI:000089670600021
27820 ER
27821 
27822 PT J
27823 AU Yan, KZ
27824    Tan, WH
27825 TI Bose-Einstein condersation of neutral atoms with attractive interaction
27826    in a harmonic trap
27827 SO ACTA PHYSICA SINICA
27828 DT Article
27829 DE Bose-Einstein condensation; bistability
27830 ID CONDENSATION; GAS
27831 AB In this paper we present the numerical solutions of neutral atoms with
27832    attractive interaction in a harmonic trap. The calculated result shows
27833    the bistability curve of the number of condensate atoms versus the
27834    energy eigenvalues. The maximum number of atoms in and attractive
27835    Bose-Einstein condensate deduced hereby is in agreement with the
27836    experimental on the whole.
27837 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
27838 RP Yan, KZ, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
27839 CR ANDERSON MH, 1995, SCIENCE, V269, P198
27840    BAYM G, 1996, PHYS REV LETT, V76, P6
27841    BRADLEY CC, 1995, PHYS REV LETT, V75, P1687
27842    BRADLEY CC, 1997, PHYS REV LETT, V78, P985
27843    DAVIS KB, 1995, PHYS REV LETT, V75, P3969
27844    DODD RJ, 1996, PHYS REV A, V54, P661
27845    KAGAN Y, 1996, PHYS REV LETT, V76, P2670
27846    NOZIERES P, 1990, THEORY QUANTUM LIQUI, V2
27847    RUPRECHT PA, 1996, PHYS REV A, V54, P4178
27848    SHURYAK EV, 1996, PHYS REV A, V54, P3151
27849    UEDA M, 1998, PHYS REV LETT, V80, P1576
27850    YAN KZ, 1999, ACTA PHYS SIN-CH ED, V48, P1185
27851 NR 12
27852 TC 5
27853 SN 1000-3290
27854 J9 ACTA PHYS SIN-CHINESE ED
27855 JI Acta Phys. Sin.
27856 PD OCT
27857 PY 2000
27858 VL 49
27859 IS 10
27860 BP 1909
27861 EP 1911
27862 PG 3
27863 SC Physics, Multidisciplinary
27864 GA 360NA
27865 UT ISI:000089673000003
27866 ER
27867 
27868 PT J
27869 AU Zheng, LP
27870    Qiu, XJ
27871 TI The influence of the intensity and the frequency on the enhanced
27872    ionization behavior of multiatomic molecular ions in the intense laser
27873    fields
27874 SO ACTA PHYSICA SINICA
27875 DT Article
27876 DE intense laser field; molecular ion; enhanced ionization
27877 ID MULTIPHOTON IONIZATION; ELECTRON; H-2(+); PULSES
27878 AB The enhanced ionization(EI) behavior of multiatomic molecular ions is
27879    studied in intense laser fields by the numerical solution of
27880    time-dependent Schrodinger equation with the symmetrical splitting of
27881    the short-time exponential propagator and fast fourier
27882    transformation(FFT). The influence of the intensity and the frequency
27883    of the laser on EI is given. With the laser frequency increasing, the
27884    criticla value of bond length for EI decreases and the ionization
27885    probability decreases too. The ionization probability increases with
27886    increasing laser intensity. The EI disappeares when the intensity
27887    reaches a certain value.
27888 C1 Shanghai Univ, Sch Sci, Shanghai 201800, Peoples R China.
27889 RP Zheng, LP, Shanghai Univ, Sch Sci, Shanghai 201800, Peoples R China.
27890 CR BAIK MG, 1996, PHYS REV A, V54, P1570
27891    BANDRACK AD, 1994, MOL LASER FIELDS, P156
27892    BANDRAUK AD, 1993, J CHEM PHYS, V99, P1185
27893    EBERLY JH, 1989, PHYS REV LETT, V62, P881
27894    FEIT MD, 1982, J COMPUT PHYS, V47, P412
27895    FRASINSKI LJ, 1992, PHYS REV A, V46, R6789
27896    GIBSON GN, 1997, PHYS REV LETT, V79, P2022
27897    HEATHER RW, 1991, COMPUT PHYS COMMUN, V63, P446
27898    HU SX, 1998, SCI CHINA SER A, V41, P198
27899    JAVANAINEN J, 1988, PHYS REV A, V38, P3430
27900    LEI AL, 1999, CHINESE PHYS LETT, V16, P264
27901    MAINE P, 1988, IEEE J QUANTUM ELECT, V24, P398
27902    SCHMIDT M, 1994, PHYS REV A A, V50, P5037
27903    SEIDEMAN T, 1995, PHYS REV LETT, V75, P2819
27904    ZUO T, 1995, PHYS REV A, V52, R2511
27905 NR 15
27906 TC 0
27907 SN 1000-3290
27908 J9 ACTA PHYS SIN-CHINESE ED
27909 JI Acta Phys. Sin.
27910 PD OCT
27911 PY 2000
27912 VL 49
27913 IS 10
27914 BP 1965
27915 EP 1968
27916 PG 4
27917 SC Physics, Multidisciplinary
27918 GA 360NA
27919 UT ISI:000089673000013
27920 ER
27921 
27922 PT J
27923 AU Jing, C
27924    Jin, XF
27925    Dong, GS
27926    Gong, XY
27927    Yu, LM
27928    Zheng, WM
27929 TI Exchange biasing in molecular-beam-epitaxy-grown Fe/Fe50Mn50 bilayers
27930 SO ACTA PHYSICA SINICA
27931 DT Article
27932 DE MBE; Fe/Fe50Mn50; bilayer; exchange biasing
27933 ID NIFE/COO BILAYERS; DEPENDENCE; ANISOTROPY; LAYER
27934 AB Exchange biasing and coercive field of molecular-beam-epitaxy-grown
27935    Fe/Fe50Mn50 bilayers have been investigated by Surface Magneto-optical
27936    Kerr Effect(SMOKE) and ferromagnetic resonance measurements. The
27937    results indicate that there is no exchange biasing when the thickness
27938    of antiferromagnetic layer is less than 5.5 nm. The exchange biasing
27939    appears when the thickness of antiferromagnetic layer is greater than
27940    5.5 nm,and the maximum value is reached when the thickness is about 7
27941    nm. Exchange biasing and coercive field decrease with further increase
27942    of the thickness of the antiferrmagnetic layer. The ferromagnetic
27943    resonance measurement results show that there exists unidirectional
27944    anisotropy. The above results are discussed in the paper.
27945 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
27946    Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China.
27947    Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China.
27948 RP Jing, C, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
27949 CR AMBROSE T, 1998, J APPL PHYS 2, V83, P6822
27950    AMBROSE T, 1998, J APPL PHYS 2, V83, P7222
27951    DIENY B, 1991, PHYS REV B, V43, P1297
27952    GOKEMEIJER NJ, 1997, PHYS REV LETT, V79, P4270
27953    JUNGBLUT R, 1995, J MAGN MAGN MATER, V148, P300
27954    MAURI D, 1987, J APPL PHYS, V62, P2929
27955    MEIKLEJOHN WH, 1956, PHYS REV, V102, P1413
27956    MEIKLEJOHN WH, 1957, PHYS REV, V105, P904
27957    MEIKLEJOHN WH, 1962, J APPL PHYS, V33, P1328
27958    TSANG C, 1981, J APPL PHYS, V52, P2471
27959    ZHU WR, 1997, VACUUM SCI TECHNOLOG, V17, P243
27960    ZHU XG, 1993, CHINESE J SEMICONDUC, V14, P719
27961 NR 12
27962 TC 0
27963 SN 1000-3290
27964 J9 ACTA PHYS SIN-CHINESE ED
27965 JI Acta Phys. Sin.
27966 PD OCT
27967 PY 2000
27968 VL 49
27969 IS 10
27970 BP 2022
27971 EP 2026
27972 PG 5
27973 SC Physics, Multidisciplinary
27974 GA 360NA
27975 UT ISI:000089673000024
27976 ER
27977 
27978 PT J
27979 AU Cheng, CJ
27980    Fan, XJ
27981 TI A method for calculating the Lyapunov exponent spectrum of a
27982    periodically excited non-autonomous dynamical system.
27983 SO ACTA MECHANICA SOLIDA SINICA
27984 DT Article
27985 DE periodically excited dynamical system; Lyapunov exponent spectrum;
27986    Lyapunov dimension; Duffing equation; van der Pol equation
27987 AB The relation between the Lyapunov exponent spectrum of a periodically
27988    excited non-autonomous dynamical system and the Lyapunov exponent
27989    spectrum of the corresponding autonomous system is given and the
27990    validity of the relation is verified theoretically and computationally.
27991    A direct method for calculating the Lyapunov exponent spectrum of
27992    non-autonomous dynamical systems is suggested in this paper, which
27993    makes it more convenient to calculate the Lyapunov exponent spectrum of
27994    the dynamical system periodically excited. Following the definition of
27995    the Lyapunov dimension D-L((A)) of the autonomous system, the
27996    definition of the Lyapunov dimension D-L of the non-autonomous
27997    dynamical system is also given, and the difference between them is the
27998    integer 1, namely, D-L((A)) - D-L = 1. For a quasi-periodically excited
27999    dynamical system, similar conclusions are formed.
28000 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
28001    Xian Jiao Tong Univ, Sch Civil Engn & Mech, Xian 710049, Peoples R China.
28002 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
28003    Shanghai 200072, Peoples R China.
28004 CR KREUZER E, 1989, NUMERISCHE UNTERSUCH
28005    PARKER TS, 1989, PRACTICAL NUMERICAL
28006    SHIMADA I, 1979, PROG THEOR PHYS, V61, P1605
28007    WOLF A, 1985, PHYSICA D, V16, P285
28008 NR 4
28009 TC 1
28010 SN 0894-9166
28011 J9 ACTA MECH SOLIDA SINICA
28012 JI Acta Mech. Solida Sin.
28013 PD SEP
28014 PY 2000
28015 VL 13
28016 IS 3
28017 BP 254
28018 EP 261
28019 PG 8
28020 SC Materials Science, Multidisciplinary; Mechanics
28021 GA 359EQ
28022 UT ISI:000089598900009
28023 ER
28024 
28025 PT J
28026 AU Xu, KX
28027    Essa, AA
28028    Zhou, SP
28029    Bao, JS
28030 TI Microwave detection using Y-Ba-Cu-O granular film bridge device
28031 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
28032 DT Article
28033 DE granular superconductivity; Josephson effect; microwave detection
28034 ID TRANSPORT; BOLOMETER
28035 AB High-T-c superconducting microwave video detection is investigated
28036    based on the Y-Ba-Cu-O granular film bridge device. By optimizing the
28037    device parameters, a detectivity of about 10(4) V/W is achievable, and
28038    the noise equivalent power at T = 70 K is about 5.2 x 10(-14)
28039    W/Hz(1/2). To identify the response time of the device, the response
28040    voltage is measured with incident radiation chopped at 500 kHz, and a
28041    rise time of less than 3.9 x 10(-8) s is observed. These results
28042    compare favorably with that of high-T-c superconducting bolometers for
28043    millimeter wave bands. On the other hand, the dynamic resistance R-N of
28044    the device is found to increase as the device is illuminated by
28045    incident irradiation. This effect cannot be interpreted in terms of the
28046    Josephson dissipation mechanism, and a discussion about this is
28047    presented. (C) 2000 Elsevier Science B.V. All rights reserved.
28048 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
28049 RP Xu, KX, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
28050 CR BARONE A, 1982, PHYSICS APPL JOSEPHS, CH11
28051    BLUZER N, 1995, J APPL PHYS, V78, P7340
28052    BOONE BG, 1991, J APPL PHYS, V69, P2676
28053    CHERN JD, 1993, IEEE T APPL SUPERCON, V3, P2128
28054    CONSTANTINIAN KY, 1997, I PHYS C SER, V158, P417
28055    CULBERTSON JC, 1991, PHYS REV B, V44, P9609
28056    GRIMES CC, 1968, J APPL PHYS, V39, P3905
28057    KAILA MM, 1997, SUPERCOND SCI TECH, V10, P763
28058    KAILA MM, 1998, J SUPERCOND, V11, P463
28059    KANTER H, 1972, J APPL PHYS, V43, P3714
28060    PHONG LN, 1993, J APPL PHYS, V74, P7414
28061    PIQUE A, 1995, APPL PHYS LETT, V67, P1920
28062    RICHARDS PL, 1989, APPL PHYS LETT, V54, P283
28063    WOLF SA, 1988, 13TH INT C INFR MILL, V1039, P253
28064    XU KX, UNPUB PHYSICA C
28065 NR 15
28066 TC 1
28067 SN 0921-4534
28068 J9 PHYSICA C
28069 JI Physica C
28070 PD SEP 15
28071 PY 2000
28072 VL 339
28073 IS 1
28074 BP 42
28075 EP 48
28076 PG 7
28077 SC Physics, Applied
28078 GA 357ZJ
28079 UT ISI:000089532500006
28080 ER
28081 
28082 PT J
28083 AU Wu, MH
28084    Bao, BR
28085    Chen, J
28086 TI Study on antithrombosis dialytic membrane prepared by preirradiation
28087    grafting
28088 SO JOURNAL OF APPLIED POLYMER SCIENCE
28089 DT Article
28090 DE radiation grafting; antithrombosis; ethylene-vinyl acetate;
28091    beta-hydroxyethyl methacrylate; styrene
28092 ID ACRYLIC-ACID; RADIATION; BIOMATERIALS
28093 AB A new antithrombosis dialytic membrane with a hydrophilic-hydrophobic
28094    microphase structure was prepared by preirradiation grafting of
28095    beta-hydroxyethyl methacrylate (HEMA) and styrene (St) onto
28096    ethylene-vinyl acetate (EVA). The influence of some effects, such as
28097    preirradiation dose, dose rate, grafting reaction temperature, reaction
28098    time, and monomer component, on the degree of grafting was determined,
28099    and the properties of the grafted films were investigated. Compared
28100    with the conventional EVA-grafted hydrophilic monomer, the EVA films
28101    grafted with HEMA and St have superior antithrombogenicity; the
28102    antithrombogenicity and permeability of EVA-g-(HEMA-co-St) were 30 and
28103    20 times higher than those of the ungrafted films, respectively, when
28104    the volume ratio (HEMA versus St) was about 7:3. (C) 2000 John Wiley &
28105    Sons, Inc.
28106 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
28107    Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai, Peoples R China.
28108 RP Wu, MH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
28109    Peoples R China.
28110 CR CHAPIRO A, 1980, RADIAT PHYS CHEM, V15, P423
28111    CHE JT, 1993, RADIAT PHYS CHEM, V42, P85
28112    CHEN J, 1998, NUCL TECH, V21, P498
28113    CRANK J, 1956, MATH DIFFUSION, P291
28114    EUSTACE DJ, 1988, J APPL POLYM SCI, V35, P707
28115    HOFFMAN AS, 1981, RADIAT PHYS CHEM, V18, P323
28116    ISHIGAKI I, 1982, J APPL POLYM SCI, V27, P1033
28117    LINARES HA, 1972, J INVEST DERMATOL, V59, P323
28118    MERRILL EW, 1987, HYDROGELS MED PHARM, P31
28119    MULLERSCHULTE D, 1993, RADIAT PHYS CHEM, V42, P891
28120    RATNER BD, 1981, BIOCOMPATIBILITY CLI, P145
28121    RATNER BD, 1996, HYDROGELS BIOMATERIA, P60
28122    URGUHART J, 1980, OPHTHALMIC DRUG DELI, P105
28123    WU MH, 1995, J RAD RES RAD PROCES, V13, P145
28124    ZHOU RM, 1993, J RAD RES RAD PROCES, V11, P170
28125 NR 15
28126 TC 0
28127 SN 0021-8995
28128 J9 J APPL POLYM SCI
28129 JI J. Appl. Polym. Sci.
28130 PD NOV 14
28131 PY 2000
28132 VL 78
28133 IS 7
28134 BP 1321
28135 EP 1327
28136 PG 7
28137 SC Polymer Science
28138 GA 357ZH
28139 UT ISI:000089532400002
28140 ER
28141 
28142 PT J
28143 AU Ding, WH
28144    Olsen, SE
28145 TI Manganese and silicon distribution between slag and metal in
28146    silicomanganese production
28147 SO ISIJ INTERNATIONAL
28148 DT Article
28149 DE silicon distribution; manganese distribution; silicomanganese;
28150    equilibrium relations; equilibrium diagrams
28151 AB Laboratory measurements have been carried out to investigate the
28152    equilibrium distribution of manganese and silicon between slag and
28153    metal in silicomanganese production. Graphite crucibles have been used
28154    to study equilibrium between Mn-Si-C-sat alloys and
28155    MnQ-SiO2-CaO-Al2O3-MgO slags in CO gas at 1 600 degrees C, 1 650
28156    degrees C and 1 700 degrees C.
28157    The equilibrium content of Si in the metal is mainly controlled by the
28158    temperature, the silica content of the slag and the mass ratio
28159    R=(CaO+MgO)/Al2O3. The silicon content increases with the temperature
28160    and the silica content, and decreases with increasing R-ratio. The
28161    silicon content remains approximately the same when some MgO replaces
28162    CaO in the slag.
28163    The equilibrium content of MnO in silicomanganese slags is primarily
28164    controlled by the temperature and the silica content of the slag.
28165    Addition of Al2O3 to acid slags will result in somewhat lower MnO
28166    contents, and addition to more basic slags has the opposite effect. The
28167    equilibrium content of MnO in the slag is slightly increased when some
28168    CaO is replaced by MgO.
28169 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
28170    Norwegian Univ Sci & Technol, Dept Mat Technol & Electrochem, N-7491 Trondheim, Norway.
28171 RP Ding, WH, Shanghai Univ, Dept Mat Sci & Engn, 149 Yan Shang Rd,
28172    Shanghai 200072, Peoples R China.
28173 CR ABRAHAM KP, 1960, J IRON STEEL I, V196, P82
28174    DING W, 1993, THESIS NORWEGIAN I T
28175    DING WZ, 1996, METALL MATER TRANS B, V27, P5
28176    GZIELO A, 1986, NEUE HUTTE, P100
28177    KOR GJW, 1979, METAL T B, V10, P367
28178    OLSEN SE, 1995, P 7 INT FERR C, P591
28179    OLSEN SE, 1996, STF24 SINTEF
28180    OLSEN SE, 1997, STF24 SINTEF
28181    RANKIN WJ, 1979, T I MIN METALL C, V88, C167
28182    REIN RH, 1963, T METALL SOC AIME, V227, P1193
28183    SWINBOURNE DR, 1995, METALL MATER TRANS B, V26, P59
28184    TANAKA A, 1980, TETSU TO HAGANE, V66, P1474
28185    TUSET JK, 1979, 340420 SINTEF
28186    YOKOKAWA T, 1969, T JPN I MET, V10, P81
28187 NR 14
28188 TC 1
28189 SN 0915-1559
28190 J9 ISIJ INT
28191 JI ISIJ Int.
28192 PY 2000
28193 VL 40
28194 IS 9
28195 BP 850
28196 EP 856
28197 PG 7
28198 SC Metallurgy & Metallurgical Engineering
28199 GA 356TF
28200 UT ISI:000089458400004
28201 ER
28202 
28203 PT J
28204 AU Guo, BY
28205    Xu, CL
28206 TI Hermite pseudospectral method for nonlinear partial differential
28207    equations
28208 SO ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION
28209    MATHEMATIQUE ET ANALYSE NUMERIQUE
28210 DT Article
28211 DE hermite pseudospectral approximation; nonlinear partial differential
28212    equations
28213 AB Hermite polynomial interpolation is investigated. Some approximation
28214    results are obtained. As an example, the Burgers equation on the whole
28215    line is considered. The stability and the convergence of proposed
28216    Hermite pseudospectral scheme are proved strictly. Numerical results
28217    are presented.
28218 C1 Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China.
28219    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
28220 RP Guo, BY, Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R
28221    China.
28222 CR ADAMS RA, 1975, SOBOLEV SPACES
28223    BERNARDI C, 1997, TECHNIQUES SCI COM 2, P209
28224    COULAUD O, 1990, COMPUT METHOD APPL M, V80, P451
28225    COURANT R, 1928, MATH ANN, V100, P32
28226    FUNARO D, 1990, MATH COMPUT, V57, P597
28227    FUNARO D, 1991, ORTHOGONAL POLYNOMIA, P263
28228    GUO BY, 1974, ACTA MATH SINICA, V17, P242
28229    GUO BY, 1994, CONT MATH, V163, P33
28230    GUO BY, 1998, SPECTRAL METHODS THE
28231    GUO BY, 1999, MATH COMPUT, V68, P1067
28232    LEVIN AL, 1992, CONSTR APPROX, V8, P461
28233    LUBINSKY DS, 1994, J APPROX THEORY, V77, P42
28234    MADAY Y, 1985, RECH AEROSPATIALE, V6, P353
28235    RICHITMEYER RD, 1967, FINITE DIFFERENCE ME
28236    STETTER HJ, 1966, NUMERICAL SOLUTIONS, P111
28237    SZEGO G, 1967, ORTHOGONAL POLYNOMIA
28238    TIMAN AF, 1963, THEORY APPROXIMATION
28239 NR 17
28240 TC 6
28241 SN 0764-583X
28242 J9 ESAIM-MATH MODEL NUMER ANAL
28243 JI ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer.
28244 PD JUL-AUG
28245 PY 2000
28246 VL 34
28247 IS 4
28248 BP 859
28249 EP 872
28250 PG 14
28251 SC Mathematics, Applied
28252 GA 357KL
28253 UT ISI:000089499000007
28254 ER
28255 
28256 PT J
28257 AU Cao, WG
28258    Ding, WY
28259    Chen, YL
28260    Qiu, MY
28261 TI An efficient and highly stereoselective synthesis of
28262    beta,gamma-trans-beta-benzoyl-gamma-aryl-gamma-butyrolactones
28263 SO SYNTHETIC COMMUNICATIONS
28264 DT Article
28265 DE benzoylmethyltriphenylarsonium bromide;
28266    2,2-dialkyl-1,3-dioxa-5-substituted-benzylidene-4,6-dione;
28267    beta,gamma-trans-beta-benzoyl-gamma-aryl-gamma-butyrolactone
28268 AB Benzoylmethyltriphenylarsonium bromide 6 in the presence of potassium
28269    carbonate reacted with
28270    2,2-dialkyl-1,3-dioxa-5-substituted-benzylidene-4,6-dione 2 at room
28271    temperature to give
28272    beta,gamma-trans-beta-benzoyl-gamma-aryl-gamma-butyrolactones 7 in good
28273    yield.
28274 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
28275    Acad Sinica, Organomet Chem Lab, Shanghai 200032, Peoples R China.
28276 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
28277 CR CHEN YL, 1998, CHEM J CHINESE U, V19, P1614
28278    DING WY, 1965, B NAT SCI U CHEM CE, P540
28279    HUDLICKY T, 1990, SYNTHETIC COMMUN, V20, P1721
28280    SCHUSTER P, 1964, MH CHEM, V95, P53
28281    SHI DQ, 1998, CHINESE J ORG CHEM, V18, P82
28282 NR 5
28283 TC 4
28284 SN 0039-7911
28285 J9 SYN COMMUN
28286 JI Synth. Commun.
28287 PY 2000
28288 VL 30
28289 IS 20
28290 BP 3793
28291 EP 3799
28292 PG 7
28293 SC Chemistry, Organic
28294 GA 356PA
28295 UT ISI:000089450600019
28296 ER
28297 
28298 PT J
28299 AU Chen, J
28300    Yang, LM
28301    Wu, MH
28302    Xi, Q
28303    He, SM
28304    Li, YW
28305    Nho, YC
28306 TI Preparation of interpenetrating polymer networks by two times grafting
28307    of monomers onto preirradiated polypropylene film
28308 SO RADIATION PHYSICS AND CHEMISTRY
28309 DT Article
28310 DE radiation grafting; electron beam (EB); acrylamide (AAm); acrylic acid
28311    (AAc); polypropylene (PP)
28312 AB An interpenetrating polymer network (IPN) hydrogel was made by the
28313    grafting of acrylamide (AAm) and acrylic acid (AAc) onto preirradiated
28314    polypropylene (PP) film. AAm and AAc were grafted onto preirradiated PP
28315    film by two times grafting reaction. Thermo-sensitive behaviors were
28316    determined. The effect of first and second reactions on the degree of
28317    grafting was studied. Trapped radicals on samples with different
28318    storage conditions and reaction conditions were determined by electron
28319    spin resonance (ESR). (C) 2000 Elsevier Science Ltd. All rights
28320    reserved.
28321 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
28322    Shanghai Second Med Univ, Shanghai Biomat Res & Test Ctr, Shanghai, Peoples R China.
28323    Korea Atom Energy Res Inst, Radiat Applicat Div, Taejon, South Korea.
28324 RP Chen, J, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
28325    Peoples R China.
28326 CR CHAPIRO A, 1962, RAD CHEM POLYM SYSTE, P690
28327    CHEN YG, 1998, MAT SCI ENG B-SOLID, V52, P1
28328    HOFFMAN AS, 1991, MRS BULL, V16, P42
28329    KATANO H, 1991, POLYM J, V23, P1179
28330    NHO YC, 1998, RADIAT PHYS CHEM, V54, P317
28331    PEPPAS NA, 1986, HYDROGELS MED PHARM, P1
28332    PU HT, 1994, J SHANGHAI JIAOTONG, V28, P102
28333    WU MH, 1999, THESIS CHINESE ACAD, P73
28334 NR 8
28335 TC 11
28336 SN 0969-806X
28337 J9 RADIAT PHYS CHEM
28338 JI Radiat. Phys. Chem.
28339 PD SEP
28340 PY 2000
28341 VL 59
28342 IS 3
28343 BP 313
28344 EP 316
28345 PG 4
28346 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
28347    Science & Technology
28348 GA 353UY
28349 UT ISI:000089294900012
28350 ER
28351 
28352 PT J
28353 AU Shi, LY
28354    Li, CZ
28355    Chen, AP
28356    Zhu, YH
28357    Fang, DY
28358 TI Morphology and structure of nanosized TiO2 particles synthesized by
28359    gas-phase reaction
28360 SO MATERIALS CHEMISTRY AND PHYSICS
28361 DT Article
28362 DE rutile; titanium dioxide; nanosized particle; gas-phase reaction
28363 ID TITANIA; DOPANTS; POWDERS
28364 AB Nanosized titania particles are synthesized by the gas-phase oxidation
28365    of titanium tetrachloride in a high temperature tubular aerosol flow
28366    reactor that consists of two preheaters for oxygen and vaporized
28367    titanium tetrachloride, a reaction zone, and a cooling zone for
28368    particles. The effect of process parameters on the morphology and
28369    structure of titania particles is studied. As the preheating
28370    temperature of oxygen increases, the average particle size of titania
28371    decreases and the size distribution becomes more uniform. The addition
28372    of AlCl3 can reduce the particle size, and enhance the rutile weight
28373    fraction. The effect of reaction temperature (T) on the characteristics
28374    of nanosized titania particles is also investigated. The results show
28375    that the particle size increases with increasing temperature, acid a
28376    maximum rutile fraction is attained at 1200 degrees C and AlCl3 and
28377    TiCl4 feed ratio (X-inlet) of 0.09. Pure rutile titania particles is
28378    formed when T=1373 K and X-inlet=0.25. The average grain size of the
28379    particles is 29.0 nm, and the BET specific surface area is 23.4 m(2)
28380    g(-1). (C) 2000 Elsevier Science S.A. All rights reserved.
28381 C1 Shanghai Univ, Dept Chem, Shanghai 200072, Peoples R China.
28382    E China Univ Sci & Technol, Shanghai 200237, Peoples R China.
28383 RP Shi, LY, Shanghai Univ, Dept Chem, Shanghai 200072, Peoples R China.
28384 CR AKHTAR MK, 1991, AICHE J, V37, P1561
28385    AKHTAR MK, 1992, J AM CERAM SOC, V75, P3408
28386    KOBATA A, 1991, AICHE J, V37, P347
28387    MACHENZIE K, 1975, BRIT CERAM TRANS J, V74, P29
28388    MOROOKA S, 1989, INT CHEM ENG, V29, P119
28389    PIERRE AC, 1991, AM CERAM SOC BULL, V70, P1281
28390    SETO T, 1995, AEROSOL SCI TECH, V23, P183
28391    SHANNON RD, 1965, J AM CERAM SOC, V48, P391
28392    SHI LY, 1998, FUNCT MAT, V29, P136
28393    SHI LY, 1998, MAT REV, V12, P23
28394    SHI LY, 1999, J INORG MATER, V14, P717
28395    SPURR RA, 1957, ANAL CHEM, V29, P760
28396    SUYAMA Y, 1985, J AM CERAM SOC, V68, C154
28397    VEMURY S, 1995, J AM CERAM SOC, V78, P2984
28398    XIONG Y, 1991, J AEROSOL SCI, V22, P637
28399    YU JG, 1991, CHEM B, V10, P25
28400    ZHOU M, 1996, COAT IND, V4, P36
28401 NR 17
28402 TC 6
28403 SN 0254-0584
28404 J9 MATER CHEM PHYS
28405 JI Mater. Chem. Phys.
28406 PD SEP 15
28407 PY 2000
28408 VL 66
28409 IS 1
28410 BP 51
28411 EP 57
28412 PG 7
28413 SC Materials Science, Multidisciplinary
28414 GA 354ZG
28415 UT ISI:000089360700008
28416 ER
28417 
28418 PT J
28419 AU Forchielli, ML
28420    Gura, K
28421    Anessi-Pessina, E
28422    Richardson, D
28423    Cai, W
28424    Lo, CW
28425 TI Success rates and cost-effectiveness of antibiotic combinations for
28426    initial treatment of central-venous-line infections during total
28427    parenteral nutrition
28428 SO JOURNAL OF PARENTERAL AND ENTERAL NUTRITION
28429 DT Article
28430 ID INTENSIVE-CARE UNIT; CATHETER INFECTIONS; SEPSIS; MANAGEMENT; RISK;
28431    SEPTICEMIA; BACTEREMIA; CHILDREN; CANCER; FEVER
28432 AB Background: Central-venous-line infections can be successfully treated
28433    with appropriate antibiotics, thus avoiding the need for catheter
28434    removal. Based on our experience, vancomycin, gentamicin, piperacillin,
28435    ceftazidime, and amphotericin, alone or in combination, are usually
28436    administered, pending sensitivity results. This empirical list,
28437    however, has never been verified against actual sensitivity results nor
28438    has it been tested for cost or efficacy. Methods: Medical records of
28439    inpatients on hyperalimentation over 1 year were reviewed. Success
28440    rate, therapy duration, and drug acquisition cost and charge were
28441    assessed for central-venous-line infections. Antibiotics then were
28442    paired and evaluated in terms of charge and efficacy against all
28443    microorganisms as determined by sensitivity results. Results: In 500
28444    inpatients receiving hyperalimentation for 9698 patient-days, 8.4
28445    central-venous-line infections/1000 patient-days occurred.
28446    Staphylococcus non-aureus, Candida species, Enterococcus faecium, and
28447    Staphylococcus aureus predominantly were isolated. Of the infections,
28448    51 (67%) were sensitive to one or more of the initial antibiotics. A
28449    2-week course of antibiotics successfully treated 50 (66%) catheter
28450    infections without line removal. Appropriate initial therapy on average
28451    reduced treatment duration by 8 to 10 days and drug charges by $400 to
28452    $700. Conclusions: Amikacin-vancomycin appears to be the most
28453    cost-effective selection for presumed central-venous-line infections,
28454    pending sensitivity results, followed by valid alternatives. Lower
28455    failure rates are well worth the extra cost in pharmaceutical charges.
28456 C1 Univ Bologna, Dept Pediat, I-41038 Bologna, Italy.
28457    Childrens Hosp, Combined Program Gastroenterol & Nutr, Boston, MA 02115 USA.
28458    Childrens Hosp, Dept Pharm, Boston, MA 02115 USA.
28459    Catholic Univ, Dept Business Adm, Milan, Italy.
28460    Shanghai Univ, Xin Hua Hosp, Dept Pediat Surg, Shanghai 200041, Peoples R China.
28461 RP Forchielli, ML, Univ Bologna, Dept Pediat, 11 V Massarenti, I-41038
28462    Bologna, Italy.
28463 CR 1995, FED REG, V60, P49978
28464    *HOSP INF CONTR PR, 1995, INFECT CONT HOSP EP, V16, P105
28465    ABRAHM JL, 1982, JAMA-J AM MED ASSOC, V248, P2868
28466    BALAGTAS RC, 1971, PEDIATRICS, V48, P359
28467    BATTISTI O, 1981, ARCH DIS CHILD, V56, P775
28468    BENOIT JL, 1995, CLIN INFECT DIS, V21, P1286
28469    COLLIGNON PJ, 1984, MED J AUSTRALIA, V141, P345
28470    DECKER MD, 1988, PEDIATR CLIN N AM, V35, P579
28471    FLEER A, 1983, PEDIATR INFECT DIS J, V2, P426
28472    KING DR, 1985, J PEDIATR SURG, V20, P728
28473    KRAUSS AN, 1972, NY STATE J MED, V72, P1136
28474    LEIBOVICI L, 1992, J INTERN MED, V231, P371
28475    MCKINNON PS, 1997, CLIN INFECT DIS, V24, P57
28476    MULLOY RH, 1991, JPEN-PARENTER ENTER, V15, P460
28477    NELSON DB, 1986, DRESSING CHANGES SPE, V19, P220
28478    PALADINO JA, 1994, PHARMACOECONOMICS, V5, P505
28479    PARTSCH DJ, 1997, ANN PHARMACOTHER, V31, P1137
28480    PESSION A, 1997, CHEMOTHERAPY, V43, P358
28481    PINILLA JC, 1983, CRIT CARE MED, V11, P21
28482    PRESS OW, 1984, MEDICINE, V63, P189
28483    PRINCE A, 1986, PEDIATR INFECT DIS J, V5, P20
28484    REINHARDT GF, 1978, AM J SURG, V49, P401
28485    RICARD P, 1985, CRIT CARE MED, V13, P541
28486    RIIKONEN P, 1993, SCAND J INFECT DIS, V25, P357
28487    RYAN JA, 1974, NEW ENGL J MED, V290, P757
28488    SALZMAN MB, 1995, ADV PEDIAT INFECT DI, V10, P337
28489    SHAPIRO ED, 1982, AM J DIS CHILD, V136, P679
28490    VISCOLI C, 1988, RECENT RESULTS CANC, V108, P71
28491    WEBER TR, 1983, AM J SURG, V145, P202
28492 NR 29
28493 TC 4
28494 SN 0148-6071
28495 J9 J PARENT ENTER NUTR
28496 JI J. Parenter. Enter. Nutr.
28497 PD MAR-APR
28498 PY 2000
28499 VL 24
28500 IS 2
28501 BP 119
28502 EP 125
28503 PG 7
28504 SC Nutrition & Dietetics
28505 GA 355MG
28506 UT ISI:000089389000013
28507 ER
28508 
28509 PT J
28510 AU Guo, SQ
28511    Jiang, GC
28512    Xu, JL
28513    Xu, KD
28514 TI Kinetics of reduction of MnO in molten slag with carbon undersaturated
28515    liquid iron
28516 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
28517 DT Article
28518 DE MnO; kinetics; smelting reduction
28519 ID REGULAR SOLUTION MODEL
28520 AB The reduction of MnO in molten slag with carbon undersaturated iron was
28521    studied. It was found that the process is affected by the carbon
28522    content of molten metal and the temperature. The higher the carbon
28523    content and the temperature, the faster both the reduction and the
28524    emerging of the hump on curve of omega(FeO), the larger the difference
28525    between omega(FeO, max) and omega(FeO, e). The phenomena were explained
28526    with three-step reaction model.
28527 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
28528 RP Guo, SQ, Shanghai Univ, Shanghai 200072, Peoples R China.
28529 CR BANYA S, 1985, TETSU TO HAGANE, V71, P853
28530    BANYA S, 1986, TETSU TO HAGANE, V72, S223
28531    BANYA S, 1987, TETSU TO HAGANE, V73, P476
28532    BANYA S, 1993, ISIJ INT, V33, P2
28533    MARTIN E, 1974, T B I MIN METALL, V83, C193
28534    SHINOZAKI N, 1982, TETSU TO HAGANE, V68, P72
28535    SOMMERVILLE ID, 1982, CAN METALL Q, V21, P145
28536    XU KD, 1990, P 6 NAT C STEELM C B
28537    XU KD, 1993, ISIJ INT, V33, P104
28538 NR 9
28539 TC 4
28540 SN 1006-706X
28541 J9 J IRON STEEL RES INT
28542 JI J. Iron Steel Res. Int.
28543 PD MAY
28544 PY 2000
28545 VL 7
28546 IS 1
28547 BP 1
28548 EP 5
28549 PG 5
28550 SC Metallurgy & Metallurgical Engineering
28551 GA 356DW
28552 UT ISI:000089429900001
28553 ER
28554 
28555 PT J
28556 AU Zhang, XB
28557    Jiang, GC
28558    Xu, KD
28559 TI Evaluation of component activity in molten MnO-SiO2-Al2O3-CaO system
28560    with model SELF-SReM4
28561 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
28562 DT Article
28563 DE sub-regular solution model; component activity; molten slag;
28564    MnO-SiO2-Al2O3-CaO
28565 AB A sub-regular solution model SELF-SReM4 used to evaluate activity of
28566    the components in a homogeneous region of a quaternary system has been
28567    developed in Shanghai Enhanced Laboratory of Ferrometallurgy. The
28568    application of SELF-SReM4 in C-Mn-Fe-Si system without the SIC
28569    formation has been introduced in previous paper. It's application for
28570    molten slag of MnO-SiO2-Al2O3-CaO was introduced in this paper. They
28571    provide a basis for the prediction of the metal-slag equilibrium
28572    conditions.
28573 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
28574 RP Zhang, XB, Shanghai Univ, Shanghai 200072, Peoples R China.
28575 CR ABRAHAM KP, 1960, ISIJ
28576    MEHTA SR, 1965, J IRON STEEL I, V203, P524
28577    REIN RH, 1965, T AIME, P415
28578    RISBUD SH, 1977, J AM CERAM SOC, V60, P418
28579    SHARMA RA, 1961, J IRON ST I, V198, P386
28580    SHARMA RA, 1965, T AIME, P1586
28581    TANG K, 1995, RARE METALS, V14, P137
28582    WARREN GF, 1975, INT C FERR ALL 1974, P175
28583    YA SB, 1991, CHEM PROPERTIES MELT
28584    ZHANG XB, 1998, J IRON STEEL RES INT, V5, P28
28585 NR 10
28586 TC 1
28587 SN 1006-706X
28588 J9 J IRON STEEL RES INT
28589 JI J. Iron Steel Res. Int.
28590 PD MAY
28591 PY 2000
28592 VL 7
28593 IS 1
28594 BP 6
28595 EP 8
28596 PG 3
28597 SC Metallurgy & Metallurgical Engineering
28598 GA 356DW
28599 UT ISI:000089429900002
28600 ER
28601 
28602 PT J
28603 AU Lu, XG
28604    Li, FS
28605    Li, LF
28606    Chou, KC
28607 TI Study on electronic conductivity of CaO-SiO2-Al2O3-FeOx slag system
28608 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
28609 DT Article
28610 DE smelt slag; electron hole; electronic conductivity
28611 AB A study on electronic conductivity of CaO-SiO2-Al2O3-FeOx slag system
28612    with Wagner polarization technique was carried out. The experimental
28613    data show that electronic conductivity is consisted of free electron
28614    conductivity and electron hole conductivity and both are related to the
28615    content of Fe3+ and Fe2+. Free electron conductivity is decreasing and
28616    electron hole conductivity is increasing while Fe3+ changes to Fe2+.
28617    There is a maximum electronic conductivity at some ratio of ferric ions
28618    Fe3+ to total ion content. Under the experimental conditions, the
28619    electronic conductivity is in the range of 10(-4)-10(-2) S/cm.
28620 C1 Univ Sci & Technol Beijing, Beijing 100083, Peoples R China.
28621    Shanghai Univ, Shanghai 200072, Peoples R China.
28622 RP Lu, XG, Univ Sci & Technol Beijing, Beijing 100083, Peoples R China.
28623 CR BOCKRIS JOM, 1952, T FARADAY SOC, V48, P75
28624    DANCY EA, 1966, T TMS AIME, V236, P1642
28625    DICKSON WR, 1962, T METALL SOC AIME, V224, P505
28626    DUKELOW DA, 1960, T AIME, V218, P136
28627    ENGELL HJ, 1968, BER BUNSEN PHYS CHEM, V72, P5
28628    FARUP F, 1924, CHEM IND, V12, P11
28629    FONTANA A, 1984, TMS AIME PAPER SELEC, P53
28630    GOEL RP, 1980, MET T              B, V11, P107
28631    GOTO KS, 1977, T ISIJ, V20, P212
28632    GOTO KS, 1984, P INT S MET SLAG NEW, P839
28633    HAARBERG GM, 1988, BER BUNSEN PHYS CHEM, V92, P139
28634    HAARBERG GM, 1990, J ELECTROCHEM SOC, V137, P2777
28635    HAARBERG GM, 1993, METALL TRANS B, V24, P729
28636    INOUYE H, 1953, T FARADAY SOC, V49, P796
28637    KATO M, 1969, T IRON STEEL I JPN, V9, P39
28638    KRISHNA GGM, 1993, IRONMAK STEELMAK, V20, P198
28639    KROGER FA, 1974, CHEM IMPERFECT CRYST, V3, P149
28640    MARTIN AE, 1942, T AIME, V154, P104
28641    PAL U, 1985, J AM CERAM SOC, V68, P104
28642    PAL U, 1985, METALL TRANS B, V16, P77
28643    PASTUKHOV EA, 1966, ELEKTROCHEM, V2, P209
28644    SANERWALD F, 1925, ZISCH ELEKTROCHEM, V31, P643
28645    SIMNAD MT, 1953, J CHEM PHYS, V21, P933
28646    SIMNAD MT, 1954, T AIME, V200, P1386
28647    SPEELMAN JL, 1989, METALL T B, V20, P31
28648    WAGNER C, 1957, P 7 M INT COMM EL TH, P361
28649    WEJNARTH A, 1934, ELECTROCHEM SOC, V66, P329
28650    WEJNARTH A, 1934, T AM, V63, P177
28651 NR 28
28652 TC 1
28653 SN 1006-706X
28654 J9 J IRON STEEL RES INT
28655 JI J. Iron Steel Res. Int.
28656 PD MAY
28657 PY 2000
28658 VL 7
28659 IS 1
28660 BP 9
28661 EP 13
28662 PG 5
28663 SC Metallurgy & Metallurgical Engineering
28664 GA 356DW
28665 UT ISI:000089429900003
28666 ER
28667 
28668 PT J
28669 AU Yan, KZ
28670    Tan, WH
28671 TI A model for macroscopic quantum tunneling of Bose-Einstein condensate
28672    with attractive interaction
28673 SO CHINESE PHYSICS LETTERS
28674 DT Article
28675 ID NONLINEAR SCHRODINGER-EQUATION; NEUTRAL ATOMS; GAS; EXCITATIONS; TRAP
28676 AB Based on the numerical wave function solutions of neutral atoms with
28677    attractive interaction in a harmonic trap, we propose an exactly
28678    solvable model for macroscopic quantum tunneling of a Bose condensate
28679    with attractive interaction. me calculate the rate of macroscopic
28680    quantum tunneling from a metastable condensate state to the collapse
28681    state and analyze the stability of the attractive Bose-Einstein
28682    condensation.
28683 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
28684 RP Yan, KZ, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
28685 CR ANDERSON MH, 1995, SCIENCE, V269, P198
28686    BRADLEY CC, 1995, PHYS REV LETT, V75, P1687
28687    BRADLEY CC, 1997, PHYS REV LETT, V78, P985
28688    DAVIS KB, 1995, PHYS REV LETT, V75, P3969
28689    DUAN YW, 1999, CHINESE PHYS LETT, V15, P568
28690    HONG T, 1998, CHINESE PHYS LETT, V15, P550
28691    HUANG H, 1999, CHINESE PHYS LETT, V16, P9
28692    KAGAN Y, 1996, PHYS REV LETT, V76, P2670
28693    KAGAN Y, 1998, PHYS REV LETT, V81, P933
28694    KUANG LM, 1998, CHINESE PHYS LETT, V15, P703
28695    RUPRECHT PA, 1995, PHYS REV A, V51, P4704
28696    RUPRECHT PA, 1996, PHYS REV A, V54, P4178
28697    SHURYAK EV, 1996, PHYS REV A, V54, P3151
28698    STOOF HTC, 1997, J STAT PHYS, V87, P1353
28699    UEDA M, 1998, PHYS REV LETT, V80, P1576
28700    YAN KZ, 1999, ACTA PHYS SIN-CH ED, V48, P1185
28701 NR 16
28702 TC 3
28703 SN 0256-307X
28704 J9 CHIN PHYS LETT
28705 JI Chin. Phys. Lett.
28706 PY 2000
28707 VL 17
28708 IS 9
28709 BP 631
28710 EP 633
28711 PG 3
28712 SC Physics, Multidisciplinary
28713 GA 356JT
28714 UT ISI:000089440700003
28715 ER
28716 
28717 PT J
28718 AU Wang, W
28719    Wong, PL
28720 TI Wear volume determination during running-in for PEHL contacts
28721 SO TRIBOLOGY INTERNATIONAL
28722 DT Article
28723 DE running-in; zero-wear; surface roughness
28724 ID SURFACE
28725 AB The relation of wear volume and the change of average surface roughness
28726    under the "zero-wear" condition was derived, with the assumption that
28727    the original profiles of the surface below the wear plane remain
28728    exactly the same as before, i.e. no plastic deformation. The flattening
28729    of asperities on an engineering rough surface was simulated with
28730    numerical techniques. The variation in wear volume and average surface
28731    roughness with the depth of wear was studied. The pattern and the
28732    correlation length of rough surface were checked and found to have no
28733    effect on the relation of wear volume and change of average roughness.
28734    The simulated results show that the variation of wear volume and the
28735    change of average roughness can be described by a second order
28736    polynomial. The model was also validated with experimental results
28737    obtained by using a two-disc wear machine. (C) 2000 Elsevier Science
28738    Ltd. All rights reserved.
28739 C1 City Univ Hong Kong, Dept Mfg Engn & Engn Management, Kowloon, Hong Kong, Peoples R China.
28740    Shanghai Univ, Dept Mech Engn, Shanghai, Peoples R China.
28741 RP Wong, PL, City Univ Hong Kong, Dept Mfg Engn & Engn Management, Tat
28742    Chee Ave, Kowloon, Hong Kong, Peoples R China.
28743 CR LI N, 1990, THESIS TSINGHUA U
28744    PATIR N, 1978, WEAR, V47, P263
28745    PAWLUS P, 1994, WEAR, V176, P247
28746    REDFERN D, 1998, MATLAB 5 HDB
28747    STOUT KJ, 1977, WEAR, V43, P99
28748    THOMAS TR, 1972, WEAR, V22, P83
28749    WANG W, 1998, 24 LEEDS LYON S TRIB, P275
28750    WANG W, 1998, TRIBOL INT, V31, P281
28751    ZHANG B, 1989, WEAR, V129, P37
28752 NR 9
28753 TC 1
28754 SN 0301-679X
28755 J9 TRIBOL INT
28756 JI Tribol. Int.
28757 PD JUL
28758 PY 2000
28759 VL 33
28760 IS 7
28761 BP 501
28762 EP 506
28763 PG 6
28764 SC Engineering, Mechanical
28765 GA 352VC
28766 UT ISI:000089237700008
28767 ER
28768 
28769 PT J
28770 AU Liu, XM
28771    Lu, ZM
28772    Liu, YL
28773 TI Krylov subspace projection method and its application on oil reservoir
28774    simulation
28775 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
28776 DT Article
28777 DE Krylov subspace methods; block PE method; numerical oil reservoir
28778    simulation
28779 ID NONSYMMETRIC LINEAR-SYSTEMS; CONJUGATE-GRADIENT; ITERATIVE METHODS;
28780    BI-CGSTAB; ALGORITHM; GMRES; EQUATIONS; VARIANT; QMR
28781 AB Krylov subspace projection methods are known to be highly efficient for
28782    solving large linear systems. Many different versions arise from
28783    different choices to the left and right subspaces. These methods were
28784    classified into two groups in terms of the different forms of matrix
28785    H-m, the main properties in applications and the new versions of these
28786    two types of methods were briefly reviewed, then one of the most
28787    efficient versions, GMRES method was applied to oil reservoir
28788    simulation. The block Pseudo-Elimination method was used to generate
28789    the preconditioned matrix. Numerical results show much better
28790    performance of this preconditioned techniques and the GMRES method than
28791    that of preconditioned ORTHMIN method, which is now in use in oil
28792    reservoir simulation. Finally, some limitations of Krylov subspace
28793    methods and some potential improvements to this type of methods are
28794    further presented.
28795 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
28796 RP Liu, XM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
28797    200072, Peoples R China.
28798 CR BROWN PN, 1991, SIAM J SCI STAT COMP, V12, P58
28799    CHAN TF, 1994, SIAM J SCI COMPUT, V15, P338
28800    CHEN YM, 1989, FUNDAMENTALS NUMERIC
28801    DESA C, 1992, SIAM J SCI STAT COMP, V13, P30
28802    ERN A, 1994, SIAM J SCI COMPUT, V15, P681
28803    FREUND RW, 1991, NUMER MATH, V60, P315
28804    FREUND RW, 1992, NUMER MATHS, V14, P470
28805    FROMMER A, 1998, SIAM J SCI COMPUT, V19, P15
28806    HU JG, 1991, ITERATIVE METHODS SO
28807    KASENALLY EM, 1995, SIAM J SCI COMPUT, V16, P698
28808    LU ZM, 1993, THESIS FUDAN U SHANG
28809    PAIGE CC, 1975, SIAM J NUMER ANAL, V12, P617
28810    PARLETT BN, 1985, MATH COMPUT, V44, P105
28811    RESSEL KJ, 1998, SIAM J SCI COMPUT, V19, P55
28812    SAAD Y, 1981, MATH COMPUT, V37, P105
28813    SAAD Y, 1985, MATH COMPUT, V44, P417
28814    SAAD Y, 1986, SIAM J SCI COMPUT, V7, P859
28815    SAAD Y, 1993, SIAM J SCI COMPUT, V14, P461
28816    SAUNDERS MA, 1988, SIAM J NUMER ANAL, V25, P927
28817    SONNEVELD P, 1989, SIAM J SCI STAT COMP, V10, P36
28818    TAN LH, 1991, COMPUT STRUCT, V40, P441
28819    VANDERVORST HA, 1992, SIAM J SCI STAT COMP, V13, P631
28820    ZHOU L, 1994, SIAM J SCI COMPUT, V15, P297
28821 NR 23
28822 TC 0
28823 SN 0253-4827
28824 J9 APPL MATH MECH-ENGL ED
28825 JI Appl. Math. Mech.-Engl. Ed.
28826 PD JUN
28827 PY 2000
28828 VL 21
28829 IS 6
28830 BP 607
28831 EP 616
28832 PG 10
28833 SC Mathematics, Applied; Mechanics
28834 GA 353GM
28835 UT ISI:000089266500001
28836 ER
28837 
28838 PT J
28839 AU Li, Q
28840    Zhou, BX
28841 TI TEM sample preparation of melt-spun Nd-Fe-B powders
28842 SO RARE METAL MATERIALS AND ENGINEERING
28843 DT Article
28844 DE Ni-Fe-B permanent magnet; transmission electron microscopy;
28845    microstructure
28846 AB A method of TEM sample preparation for melt-spun Nd-Fe-B powders is
28847    presented. The TEM samples were prepared by mixing the Nd-Fe-B powders
28848    (30% in volume) with pure aluminium powders, followed by blending,
28849    compacting into pellets, rolling into flakes, punching, grinding and
28850    ion-sputter thinning.
28851 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
28852 RP Li, Q, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
28853 CR MISHRA RK, 1991, MAT SCI ENG B-SOLID, V7, P297
28854    MISHRA RK, 1994, J APPL PHYS 2B, V75, P6652
28855    ZHOU BX, 1996, CNIC01111
28856 NR 3
28857 TC 0
28858 SN 1002-185X
28859 J9 RARE METAL MAT ENG
28860 JI Rare Metal Mat. Eng.
28861 PD AUG
28862 PY 2000
28863 VL 29
28864 IS 4
28865 BP 283
28866 EP 284
28867 PG 2
28868 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
28869    Engineering
28870 GA 351YD
28871 UT ISI:000089186900019
28872 ER
28873 
28874 PT J
28875 AU Chen, LQ
28876    Cheng, CJ
28877 TI Dynamical behavior of nonlinear viscoelastic columns based on 2-order
28878    Galerkin truncation
28879 SO MECHANICS RESEARCH COMMUNICATIONS
28880 DT Article
28881 ID CHAOTIC VIBRATIONS; STABILITY ANALYSIS; PLATES; BEAM
28882 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
28883    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
28884 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
28885    200072, Peoples R China.
28886 CR ABHYANKAR NS, 1993, J APPL MECH-T ASME, V60, P167
28887    ABOUDI J, 1990, J SOUND VIB, V139, P459
28888    ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151
28889    CEDERBAUM G, 1992, J APPL MECH-T ASME, V59, P16
28890    CHEN LQ, IN PRESS APPL MATH M
28891    CHENG CJ, 1998, ACTA MECH SINICA, V30, P690
28892    CHENG CJ, 1998, SHANGHAI J MECH, V19, P326
28893    LEADERMAN H, 1962, T SOC RHEOL, V6, P361
28894    MOON FC, 1979, J SOUND VIB, V65, P285
28895    NAYFEH AH, 1979, NONLINEAR OSCILLATIO
28896    SUIRE G, 1994, ARCH APPL MECH-ING, V64, P307
28897    SUIRE G, 1995, INT J MECH SCI, V37, P753
28898    TOUATI D, 1995, ACTA MECH, V113, P215
28899    WOJCIECH S, 1990, ACTA MECH, V85, P43
28900    XU KY, NONLINEAR DYNAMICS
28901    ZHANG NH, IN PRESS ACTA MECH S
28902    ZHANG NH, 1998, P 3 INT C NONL MECH, P432
28903    ZHU YY, 1998, P 3 INT C NONL MECH, P445
28904 NR 18
28905 TC 5
28906 SN 0093-6413
28907 J9 MECH RES COMMUN
28908 JI Mech. Res. Commun.
28909 PD JUL-AUG
28910 PY 2000
28911 VL 27
28912 IS 4
28913 BP 413
28914 EP 419
28915 PG 7
28916 SC Mechanics
28917 GA 352CP
28918 UT ISI:000089197200005
28919 ER
28920 
28921 PT J
28922 AU He, JH
28923 TI A variational approach to electroelastic analysis of piezoelectric
28924    ceramics with surface electrodes
28925 SO MECHANICS RESEARCH COMMUNICATIONS
28926 DT Article
28927 ID SEMI-INVERSE METHOD; FLOW; PRINCIPLES
28928 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
28929 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
28930    Peoples R China.
28931 CR HE JH, IN PRESS ASME
28932    HE JH, 1997, INT J TURBO JET ENG, V14, P17
28933    HE JH, 1997, INT J TURBO JET ENG, V14, P23
28934    HE JH, 1997, J SHANGHAI U, V1, P117
28935    HE JH, 1998, APPL MATH MODEL, V22, P395
28936    HE JH, 1998, COMMUNICATIONS NONLI, V3, P179
28937    HE JH, 1998, INT J TURBO JET ENG, V15, P101
28938    HE JH, 1998, INT J TURBO JET ENG, V15, P95
28939    HE JH, 2000, INT J NONLINEAR SCI, V1, P133
28940    SHINDO Y, 1998, INT J ENG SCI, V36, P1001
28941    ZHOU SA, 1986, INT J SOLIDS STRUCT, V22, P1411
28942 NR 11
28943 TC 16
28944 SN 0093-6413
28945 J9 MECH RES COMMUN
28946 JI Mech. Res. Commun.
28947 PD JUL-AUG
28948 PY 2000
28949 VL 27
28950 IS 4
28951 BP 445
28952 EP 450
28953 PG 6
28954 SC Mechanics
28955 GA 352CP
28956 UT ISI:000089197200009
28957 ER
28958 
28959 PT J
28960 AU He, JH
28961 TI Exact resonances of nonlinear vibration of rotor-bearings system
28962    without small parameter
28963 SO MECHANICS RESEARCH COMMUNICATIONS
28964 DT Article
28965 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
28966 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
28967    Peoples R China.
28968 CR FINLAYSON BA, 1972, METHOD WEIGHTED RESI
28969    HE JH, 1997, COMMUNICATIONS NONLI, V2, P235
28970    HE JH, 1998, COMPUT METHOD APPL M, V167, P57
28971    HE JH, 1998, P INT C VIBR ENG 98, P288
28972    HE JH, 1999, INT J NONLINEAR MECH, V34, P699
28973    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
28974    INOKUTI M, 1978, VARIATIONAL METHOD M, P156
28975    LIU CS, 1998, P INT C VIBR ENG 98, P435
28976    NAYFEH AH, 1981, INTRO PERTURBATION T
28977 NR 9
28978 TC 3
28979 SN 0093-6413
28980 J9 MECH RES COMMUN
28981 JI Mech. Res. Commun.
28982 PD JUL-AUG
28983 PY 2000
28984 VL 27
28985 IS 4
28986 BP 451
28987 EP 456
28988 PG 6
28989 SC Mechanics
28990 GA 352CP
28991 UT ISI:000089197200010
28992 ER
28993 
28994 PT J
28995 AU Zhao, DP
28996    Feng, SS
28997    Yang, GH
28998 TI Mass density of Dp-branes
28999 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
29000 DT Article
29001 AB It is shown that the generally covariant definition of mass equals the
29002    ADM mass for Dp-branes.
29003 C1 Univ Sci & Technol China, Dept Astron & Appl Phys, Hefei 230026, Peoples R China.
29004    Anhui Post & Telecommun Sch, Hefei 230031, Peoples R China.
29005    Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
29006 RP Feng, SS, Univ Sci & Technol China, Dept Astron & Appl Phys, Hefei
29007    230026, Peoples R China.
29008 CR DAURIA R, HEPTH9812160
29009    DUAN YS, 1963, ACTA PHYS SINICA, V19, P589
29010    DUAN YS, 1988, GEN RELAT GRAVIT, V20, P485
29011    FENG SS, HEPTH9902082
29012    FENG SS, HEPTH9902108
29013    PETERSEN JL, HEPTH9902131
29014    STELLE KS, HEPTH9803116
29015 NR 7
29016 TC 0
29017 SN 0020-7748
29018 J9 INT J THEOR PHYS
29019 JI Int. J. Theor. Phys.
29020 PD JUN
29021 PY 2000
29022 VL 39
29023 IS 6
29024 BP 1637
29025 EP 1642
29026 PG 6
29027 SC Physics, Multidisciplinary
29028 GA 351XJ
29029 UT ISI:000089184500017
29030 ER
29031 
29032 PT J
29033 AU Wang, LJ
29034    Jiang, XY
29035    Zhang, ZL
29036    Xu, SH
29037 TI Organic thin film electroluminescent devices using Gaq3 as emitting
29038    layers
29039 SO DISPLAYS
29040 DT Article
29041 DE electroluminescence; Gaq3; Alq3; Znq2; organic materials
29042 ID IMPROVED STABILITY
29043 AB Organic electroluminescent (EL) devices using
29044    tris(8-hydroxyquinoline)-gallium complex (Gaq3) as the emitting layer
29045    were developed. Results indicated that EL devices using Gaq3 as
29046    emitting layers emitted light at a peak wavelength of 540 nm. The
29047    maximum luminance of these devices was obviously higher than that of
29048    devices using Alq3 and Znq2 as emitting layers prepared with the same
29049    structures and under the same conditions as Gaq3. The greatest maximum
29050    luminance of Gaq3 devices was attributed to the higher breakdown
29051    voltage and quantum efficiency than those of the other two devices. (C)
29052    2000 Elsevier Science B.V. All rights reserved.
29053 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
29054 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
29055    China.
29056 CR ADACHI C, 1990, APPL PHYS LETT, V57, P531
29057    HAMADA Y, 1993, JPN J APPL PHYS, V32, P514
29058    LIU ZG, 1997, J SHANGHAI U, V3, P157
29059    SHI JM, 1997, APPL PHYS LETT, V70, P1665
29060    TANG CW, 1987, APPL PHYS LETT, V51, P913
29061    VANSLYKE SA, 1996, APPL PHYS LETT, V69, P2160
29062    WAGNER J, 1982, J MATER SCI, V17, P27
29063    ZHANG ZQ, 1996, ELECTROPHORESIS, V17, P372
29064 NR 8
29065 TC 7
29066 SN 0141-9382
29067 J9 DISPLAYS
29068 JI Displays
29069 PD AUG 1
29070 PY 2000
29071 VL 21
29072 IS 2-3
29073 BP 47
29074 EP 49
29075 PG 3
29076 SC Computer Science, Hardware & Architecture; Engineering, Electrical &
29077    Electronic; Instruments & Instrumentation; Optics
29078 GA 351AT
29079 UT ISI:000089134400002
29080 ER
29081 
29082 PT J
29083 AU Wang, LJ
29084    Xia, YB
29085    Ju, JH
29086    Zhang, WG
29087 TI Electrical properties of chemical vapor deposition diamond films and
29088    electrical response to X-ray
29089 SO DIAMOND AND RELATED MATERIALS
29090 DT Article
29091 DE microwave plasma chemical vapor deposition; electrical properties;
29092    diamond films; optoelectronic properties
29093 ID CVD DIAMOND; DETECTORS
29094 AB In this paper, dark current-voltage (I-V) characteristics,
29095    current-temperature (I-T) characteristics, and photocurrents under
29096    steady-state X-ray excitation of CVD diamond films were investigated.
29097    Results indicated that dark currents and photocurrents by X-ray
29098    irradiation for the [001] textured CVD diamond film were greater than
29099    those for the non-textured one. The differences in dark currents and
29100    resistivities were attributed to a large number of grain boundaries
29101    contained in the non-textured diamond films. From the I-T curves, at
29102    the temperature higher than 500 K, currents clearly followed an
29103    exponential behavior because of the activation energy of E-a = 1.68 eV
29104    which was normally attributed to Si trapped to a vacancy in the diamond
29105    lattice. (C) 2000 Elsevier Science S.A. All rights reserved.
29106 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
29107 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
29108    China.
29109 CR BEHNKE T, 1998, NUCL INSTRUM METH A, V414, P340
29110    FERNANDES AJ, 1999, VACUUM, V52, P215
29111    FOULON F, 1994, IEEE T NUCL SCI, V41, P927
29112    GALLUZZI F, 1998, NUCL INSTRUM METH A, V409, P423
29113    MANFREDOTTI C, 1998, NUCL INSTRUM METH A, V410, P96
29114    POCHET T, 1993, MATER RES SOC S P, V302, P369
29115    WEILHAMMER P, 1998, NUCL INSTRUM METH A, V409, P264
29116 NR 7
29117 TC 7
29118 SN 0925-9635
29119 J9 DIAM RELAT MATER
29120 JI Diam. Relat. Mat.
29121 PD SEP-OCT
29122 PY 2000
29123 VL 9
29124 IS 9-10
29125 BP 1617
29126 EP 1620
29127 PG 4
29128 SC Materials Science, Multidisciplinary
29129 GA 352FD
29130 UT ISI:000089203100011
29131 ER
29132 
29133 PT J
29134 AU Xia, YB
29135    Sekiguchi, T
29136    Zhang, WJ
29137    Jiang, X
29138    Ju, JH
29139    Wang, LJ
29140    Yao, T
29141 TI Surfaces of undoped and boron doped polycrystalline diamond films
29142    influenced by negative DC bias voltage
29143 SO DIAMOND AND RELATED MATERIALS
29144 DT Article
29145 DE diamond; penetrating effects; thin film; cathodoluminescence
29146 ID CHEMICAL-VAPOR-DEPOSITION
29147 AB The hydrogen ion bombardment is performed by applying a negative bias
29148    voltage to the substrate during microwave plasma chemical vapor
29149    deposition process, using only hydrogen as reactant gas. The size of
29150    (001) faces increases after hydrogen ion etching while other grains are
29151    etched off. The surfaces of [001]-oriented films after doping boron are
29152    investigated by scanning electron microscopy (SEM) and
29153    cathodoluminescent (CL) spectra. The absence of the band-A emission in
29154    the CL spectra means a low density of dislocation in the films. It is
29155    the first time that the peak at 741.5 nm and the broad peak at
29156    approximately 575 and 625 nm in the CL spectra were reduced efficiently
29157    after boron doping in (001) polycrystalline diamond films and to
29158    propose that these phenomena should be explained in simple terms with
29159    penetration of the lattice nets of the [001]-oriented faces model. (C)
29160    2000 Elsevier Science S.A. All rights reserved.
29161 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
29162    Tohoku Univ, Inst Mat Res, Sendai, Miyagi 980, Japan.
29163    Fraunhofer Inst Thin Films & Surface Engn, D-38108 Braunschweig, Germany.
29164 RP Xia, YB, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R
29165    China.
29166 CR COLLINS AT, 1990, J MATER RES, V5, P2507
29167    DAVIS JW, 1987, J NUCL MATER, V145, P417
29168    HAYASHI K, 1997, J APPL PHYS, V81, P744
29169    HAYASHI K, 1998, J CRYST GROWTH, V183, P338
29170    ROBINS LH, 1989, PHYS REV B, V39, P13367
29171    WON J, 1996, RECENT PROG DIAMOND, V1, P103
29172    YOKOTA Y, 1990, MAT RES SOC S P PITT, P162
29173    ZHANG WJ, 1997, J APPL PHYS, V82, P1896
29174 NR 8
29175 TC 1
29176 SN 0925-9635
29177 J9 DIAM RELAT MATER
29178 JI Diam. Relat. Mat.
29179 PD SEP-OCT
29180 PY 2000
29181 VL 9
29182 IS 9-10
29183 BP 1636
29184 EP 1639
29185 PG 4
29186 SC Materials Science, Multidisciplinary
29187 GA 352FD
29188 UT ISI:000089203100015
29189 ER
29190 
29191 PT J
29192 AU Zhang, WG
29193    Xia, YB
29194    Shi, WM
29195    Wang, LJ
29196    Fang, ZJ
29197 TI Effect of substrate temperature on the selective deposition of diamond
29198    films
29199 SO DIAMOND AND RELATED MATERIALS
29200 DT Article
29201 DE diamond films; deposition; chemical vapor deposition
29202 ID CHEMICAL-VAPOR-DEPOSITION; BIAS-ENHANCED NUCLEATION; SILICON; GROWTH
29203 AB Selective diamond films on roughened Si(100) substrates with
29204    patternings have been achieved by microwave plasma chemical vapor
29205    deposition (MP-CVD). The films have been characterized by scanning
29206    electron microscopy (SEM) and Raman spectra. The influence of substrate
29207    temperature on the selective deposition of diamond films has been
29208    discussed in detail: the diamond nucleation density on the SiO2 mask
29209    increased with substrate temperature while the effect of the selective
29210    deposition of diamond films deteriorated; the optimized deposition
29211    temperature conditions have been concluded. (C) 2000 Elsevier Science
29212    S.A. All rights reserved.
29213 C1 Shanghai Univ, Sch Mat Sci & Engn, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
29214 RP Zhang, WG, Shanghai Univ, Sch Mat Sci & Engn, Dept Inorgan Mat,
29215    Shanghai 201800, Peoples R China.
29216 CR DAVIDSON JL, 1989, J ELECTRON MATER, V18, P711
29217    IRWIN MD, 1997, APPL PHYS LETT, V71, P716
29218    JIANG X, 1991, PROGR STUDY DIAMOND, P21
29219    JIANG X, 1993, APPL PHYS LETT, V62, P3438
29220    JOFFREAN PO, 1988, INT J REFRACT HARD M, V7, P186
29221    LEE JS, 1997, J APPL PHYS, V81, P486
29222    MA JS, 1989, APPL PHYS LETT, V55, P1071
29223    MO Y, 1997, THESIS CHINESE ACAD, P35
29224    RANKIN J, 1994, J MATER RES, V9, P2164
29225    STONER BR, 1993, J MATER RES, V8, P1334
29226    ZEMANSKY MW, 1981, HEAT THERMODYN, V4, P267
29227 NR 11
29228 TC 1
29229 SN 0925-9635
29230 J9 DIAM RELAT MATER
29231 JI Diam. Relat. Mat.
29232 PD SEP-OCT
29233 PY 2000
29234 VL 9
29235 IS 9-10
29236 BP 1687
29237 EP 1690
29238 PG 4
29239 SC Materials Science, Multidisciplinary
29240 GA 352FD
29241 UT ISI:000089203100026
29242 ER
29243 
29244 PT J
29245 AU Shi, LY
29246    Li, CZ
29247    Fang, DY
29248    Gu, HC
29249    Zhu, YH
29250    Chen, AP
29251 TI Morphology of high temperature vapor-phase synthesized nanophase
29252    TiO2-Al2O3 composite particles
29253 SO CHINESE JOURNAL OF INORGANIC CHEMISTRY
29254 DT Article
29255 DE nanophase particles; vapor-phase reaction; functional ceramic
29256 AB Nanophase TiO2-Al2O3 composite particles synthesized by gas-phase
29257    oxidation of TiCl4 and AlCl3 in an aerosol reactor were characterized
29258    by EDS, XPS, TG-DTA, TEM, XRD and BET surface area analysis. The
29259    results showed that the morphological structure of the composite
29260    particles were influenced by AlCl3 feed ratio and reaction temperature.
29261    When X-inlet = 2.80 and T = 1400 degrees C; the composite particles
29262    were mainly composed of rutile TiO2, alpha-Al2O3, and Al2TiO5, the
29263    average particle size was 25.3 nm and GSD (Geometric tandaed Squace
29264    Deviation) was 1.51. Other processing parameters affecting the particle
29265    size was also analyzed.
29266 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200072, Peoples R China.
29267    E China Univ Sci & Technol, Inst Tech Chem Phys, Shanghai 200237, Peoples R China.
29268    E China Univ Sci & Technol, Dept Chem Engn, Shanghai 200237, Peoples R China.
29269 RP Shi, LY, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200072, Peoples R
29270    China.
29271 CR CHENG HM, 1996, CHEM J CHINESE U, V17, P833
29272    HUNG CH, 1992, J MATER RES, V7, P1870
29273    LI HR, 1987, PRACTICAL COMPLEXING, P227
29274    LIU SH, 1988, XRAY PHOTOELECTRON S, V305, P313
29275    MO SF, 1991, GUSUANYAN TONGBAO, P4
29276    OKUMURA H, 1986, J AM CERAM SOC, V69, C22
29277    SHI LY, 1999, HUAXUE FANYING GONGC, V15, P213
29278    SHI LY, 1999, J INORG MATER, V14, P717
29279    WOIGNIER T, 1988, J NONCRYST SOLIDS, V100, P325
29280 NR 9
29281 TC 0
29282 SN 1001-4861
29283 J9 CHIN J INORG CHEM
29284 JI Chin. J. Inorg. Chem.
29285 PD JUL
29286 PY 2000
29287 VL 16
29288 IS 4
29289 BP 683
29290 EP 687
29291 PG 5
29292 SC Chemistry, Inorganic & Nuclear
29293 GA 351PA
29294 UT ISI:000089166300026
29295 ER
29296 
29297 PT J
29298 AU Tu, DW
29299    Lin, CX
29300 TI Spy quantitative inspection with a machine vision light sectioning
29301    method
29302 SO MEASUREMENT SCIENCE & TECHNOLOGY
29303 DT Article
29304 DE spy inspection; machine vision; light sectioning; non-contact sensor
29305 AB Machine vision light sectioning sensing is developed and expanded to
29306    the range of spy quantitative inspection for hole-like work pieces in
29307    this paper. A light beam from a semiconductor laser diode is converged
29308    into a line-shape by a cylindrical lens. A special compact
29309    reflecting-refracting, prism group is designed to ensure that such a
29310    sectioning light is projected axially onto the inner surface, and to
29311    make the deformed Line be imaged onto a CCD sensitive area. The image
29312    is digitized and captured into a computer by a 512 x 512 pixel card,
29313    and machine vision image processing methods such as thresholding, line
29314    centre detect and the least-squares method are developed for contour
29315    feature extraction and description. Two other important problems in
29316    such an inspection system are how to orientate the deep-going optical
29317    probe and how to bring the projected line into focus. A focusing
29318    criterion based on image position deviation and a four-step orientating
29319    procedure are put forward, and analysed to be feasible respectively.
29320    The experimental results show that the principle is correct and the
29321    techniques are realizable, and a good future for application in
29322    industry is possible.
29323 C1 Shanghai Univ, Sch Mechatron & Automat, Shanghai 200072, Peoples R China.
29324 RP Tu, DW, Shanghai Univ, Sch Mechatron & Automat, POB 17,149 Yanchang Rd,
29325    Shanghai 200072, Peoples R China.
29326 CR MIYOSHI T, 1992, J JAPAN SOC PRECISIO, P98
29327    SCHALKOFF RJ, 1989, DIGITAL IMAGE PROCES
29328    VANDERHEIJDEN F, 1996, IMAGE BASED MEASUREM
29329    ZHANG WW, 1998, MEAS SCI TECHNOL, V9, P1380
29330 NR 4
29331 TC 0
29332 SN 0957-0233
29333 J9 MEAS SCI TECHNOL
29334 JI Meas. Sci. Technol.
29335 PD AUG
29336 PY 2000
29337 VL 11
29338 IS 8
29339 BP 1187
29340 EP 1192
29341 PG 6
29342 SC Engineering, Multidisciplinary; Instruments & Instrumentation
29343 GA 349KU
29344 UT ISI:000089044900015
29345 ER
29346 
29347 PT J
29348 AU Zhang, BX
29349    Zhao, WM
29350    Zhu, WQ
29351    Wang, KS
29352    Jiang, XY
29353 TI Transition of Eu3+ ion in SiO2 aerogel thin film
29354 SO JOURNAL OF INORGANIC MATERIALS
29355 DT Article
29356 DE SiO2 aerogel; doped-nanocrystals; rare-earth luminescent centers;
29357    time-resolved emission spectroscopy
29358 AB The Eu3+ ion doped SiO2 aerogel film was prepared by a sol-gel process,
29359    and the luminescence and transitions of this aerogel film were
29360    investigated. The surface structure of the film was observed by AFM.
29361    Its microstructure was investigated by XRD and IR. Its excitation,
29362    emission, absorption, and time-resolved spectra were measured. The
29363    luminescence properties were discussed. The radiative transition
29364    probabilities of D-5(0) energy levels in Eu3+ ion were calculated by
29365    Judd-Ofelt theory. According to the time-resolved spectra, the
29366    nonradiative transition probabilities and decay properties of D-5(1)
29367    were also studied. The results are not quite different to Eu3+ ion in
29368    silicate glass, but a fine thin film doped with rare earth ions can be
29369    obtained by using a facile and low temperature method, and this film,
29370    having luminescent light glass qualities, can possess potential
29371    applications.
29372 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
29373 RP Zhang, BX, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples
29374    R China.
29375 CR JUDD BR, 1962, PHYS REV, V127, P750
29376    KAMISKI AA, 1981, LASER CRYSTALS, P166
29377    OFELT GS, 1962, J CHEM PHYS, V37, P511
29378    REISFELD R, 1972, J RES NBS          A, V76, P613
29379    WEBER MJ, 1967, OPTICAL PROPERTIES I, P467
29380 NR 5
29381 TC 0
29382 SN 1000-324X
29383 J9 J INORG MATER
29384 JI J. Inorg. Mater.
29385 PD AUG
29386 PY 2000
29387 VL 15
29388 IS 4
29389 BP 727
29390 EP 732
29391 PG 6
29392 SC Materials Science, Ceramics
29393 GA 348MW
29394 UT ISI:000088989400026
29395 ER
29396 
29397 PT J
29398 AU Mao, RH
29399    Guo, CJ
29400 TI Preparation of nanosized anatase titania
29401 SO JOURNAL OF INORGANIC MATERIALS
29402 DT Article
29403 DE titania; nanonmeter; colloid; anatase
29404 ID POWDER
29405 AB Nanosized anatase titania colloid and powders were prepared by
29406    hydrolysis of titanium-tetrabutoxide in basic media and then dehydrated
29407    at 700C in acid media. The powder and colloid were characterized by
29408    XRD, BET, TEM, HREM and TG-DTA. methods. The results show that after
29409    dehydrated in acid media the titania particles in colloid are already
29410    anatase crystallites with good crystal lattices. The average diameter
29411    of the nanosized titania powder after calcination at 220 degrees C is
29412    9nm and surface area is 171m(2)/g.
29413 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
29414 RP Mao, RH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
29415    China.
29416 CR CHEN JY, 1996, J MATER SCI, V31, P3497
29417    DOUGLAS C, 1994, J AM CERAM SOC, V77, P1957
29418    HUANG JH, 1996, J INORG MATER, V11, P51
29419    KEICHI T, 1991, CHEM PHYS LETT, V187, P73
29420    OREGAN B, 1991, NATURE, V353, P737
29421    ZHAO WK, 1998, J INORG MATER, V13, P608
29422 NR 6
29423 TC 1
29424 SN 1000-324X
29425 J9 J INORG MATER
29426 JI J. Inorg. Mater.
29427 PD AUG
29428 PY 2000
29429 VL 15
29430 IS 4
29431 BP 761
29432 EP 764
29433 PG 4
29434 SC Materials Science, Ceramics
29435 GA 348MW
29436 UT ISI:000088989400032
29437 ER
29438 
29439 PT J
29440 AU Zhang, J
29441    Hua, TC
29442    Chen, ET
29443 TI Experimental measurement and theoretical analyses of the
29444    freezing-thawing processes around a probe
29445 SO CRYO-LETTERS
29446 DT Article
29447 DE cryosurgery; cryoprobe; phase-changing problem; heat transfer; enthalpy
29448    method
29449 ID NONIDEAL BIOLOGICAL TISSUES; INVERSE-STEFAN PROBLEM; CRYOGENIC
29450    TEMPERATURES; CRYOSURGERY
29451 AB Both the experimental and the analytical studies of the
29452    freezing/thawing process around a cryosurgical cylinder probes in a
29453    simulative biological tissue are presented in this paper. The enthalpy
29454    method and the finite element scheme are applied to solve the
29455    multidimensional phase change problems in cryosurgery. A very good
29456    agreement is found between the computed solutions and the experimental
29457    results. The influences of different cooling-warming schemes of the
29458    probe on the ice ball development, the temperature variation, the axial
29459    and the radial temperature gradients inside the tissues, and the
29460    requirement of cooling power are analyzed.
29461 C1 Shanghai Univ Sci & Technol, Inst Cryobiol & Food Freezing, Shanghai 200093, Peoples R China.
29462 RP Hua, TC, Shanghai Univ Sci & Technol, Inst Cryobiol & Food Freezing,
29463    516 Jun Gong Rd, Shanghai 200093, Peoples R China.
29464 CR BUDMAN HM, 1991, J BIOMECH ENG-T ASME, V113, P430
29465    DILLER KR, 1992, ADV HEAT TRANSFER, V22, P177
29466    GAGE AA, 1998, CRYOBIOLOGY, V37, P171
29467    GAO DY, 1995, CRYOBIOLOGY, V32, P270
29468    HUA TC, 1994, CRYOBIOMEDICAL TECHN, P325
29469    HUNT CJ, 1994, CRYOBIOLOGY, V31, P506
29470    OZIZIK MN, 1993, HEAT CONDUCTION, P423
29471    RABIN Y, 1995, J HEAT TRANSFER, V117, P425
29472    RABIN Y, 1996, CRYOBIOLOGY, V33, P472
29473    RABIN Y, 1997, J BIOMECH ENG-T ASME, V119, P146
29474    RABIN Y, 1998, J BIOMECH ENG-T ASME, V120, P259
29475    RABIN Y, 1998, J BIOMECH ENG-T ASME, V120, P32
29476    RUBINSKY B, 1980, CRYOBIOLOGY, V17, P66
29477    SHAMSUNDAR N, 1975, J HEAT TRANSFER, V97, P333
29478    YOO J, 1986, INT J NUMER METH ENG, V23, P1785
29479 NR 15
29480 TC 2
29481 SN 0143-2044
29482 J9 CRYO-LETT
29483 JI Cryo-Lett.
29484 PD JUL-AUG
29485 PY 2000
29486 VL 21
29487 IS 4
29488 BP 245
29489 EP 254
29490 PG 10
29491 SC Biology; Physiology
29492 GA 348PK
29493 UT ISI:000088993700006
29494 ER
29495 
29496 PT J
29497 AU Chen, XY
29498    Cheng, CJ
29499 TI Discrete inverse method for viscoelastic medium with complete data
29500 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
29501 DT Article
29502 DE viscoelastic medium; scattering and propagation operator; discrete
29503    inverse method; imbedding equation; reconstruction of the relaxation
29504    modulus; extent of the reflection data; volterra integral equation
29505 ID DISSIPATIVE WAVE-EQUATION; TIME DOMAIN; SCATTERING OPERATORS;
29506    DISPERSIVE MEDIA
29507 AB The discrete inverse scattering problem for viscoelastic medium is
29508    studied in this paper. It is assumed that the relaxation modulus varies
29509    only with time t. The object of this paper is to develop a method to
29510    reconstruct the relaxation modulus with less measurement data than
29511    before. The propagation operators of the viscoelastic medium are
29512    defined first and the imbedding equations governing the behavior of the
29513    propagation operators are derived with the invariant imbedding
29514    techniques. Using the finite difference method, these equations can be
29515    discretized to obtain a system of linear algebraic equations about the
29516    propagation operators and the material modulus. For the inverse
29517    scattering problem, it is assumed that the reflection data obtained
29518    from the scattering experiments are only available on one side of the
29519    medium and for one round trip through the viscoelastic slab. To
29520    reconstruct the unknown relaxation modulus, an inversion procedure is
29521    developed using this set of data that are complete in the sense that
29522    they can be extended to arbitrary rime t and the other scattering and
29523    propagation operators can also be determined by the inversion procedure
29524    described in this paper. The inversion algorithm is implemented
29525    numerically on several examples at the end of the paper. It can be seen
29526    that the obtained curves of the material modulus coincide with the
29527    original relaxation modulus very well. (C) 2000 Elsevier Science S.A.
29528    All rights reserved.
29529 C1 Shanghai Univ, Dept Mech, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China.
29530    Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
29531 RP Cheng, CJ, Shanghai Univ, Dept Mech, Shanghai Inst Math & Mech,
29532    Shanghai 200072, Peoples R China.
29533 CR AMMICHT E, 1987, J ACOUST SOC AM, V81, P827
29534    BEEZLEY RS, 1985, J MATH PHYS, V26, P317
29535    BUI DD, 1995, INVERSE PROBL, V11, P835
29536    CHENG CJ, 2000, J MATH PHYS, V41, P2839
29537    CHRISTENSON RM, 1982, THEORY VISCOELASTICI
29538    CORONES JP, 1983, J ACOUST SOC AM, V74, P1535
29539    FUKS P, 1994, INVERSE PROBL, V10, P555
29540    KRESS R, 1989, LINEAR INTEGRAL EQUA
29541    KRISTENSSON G, 1986, J MATH PHYS, V27, P1667
29542    KRISTENSSON G, 1986, J MATH PHYS, V27, P1683
29543    KRISTENSSON G, 1987, J MATH PHYS, V28, P360
29544 NR 11
29545 TC 1
29546 SN 0045-7825
29547 J9 COMPUT METHOD APPL MECH ENG
29548 JI Comput. Meth. Appl. Mech. Eng.
29549 PY 2000
29550 VL 189
29551 IS 1
29552 BP 77
29553 EP 90
29554 PG 14
29555 SC Computer Science, Interdisciplinary Applications; Engineering,
29556    Mechanical; Mechanics
29557 GA 349DQ
29558 UT ISI:000089028800002
29559 ER
29560 
29561 PT J
29562 AU He, JH
29563 TI Variational iteration method for autonomous ordinary differential
29564    systems
29565 SO APPLIED MATHEMATICS AND COMPUTATION
29566 DT Article
29567 DE nonlinearity; variational technique; autonomous ordinary differential
29568    equations
29569 ID APPROXIMATE
29570 AB In this paper, a new iteration technique is proposed to solve
29571    autonomous ordinary differential systems. In this method, general
29572    Lagrange multipliers are introduced to construct correction functionals
29573    for the systems. The multipliers in the functionals can be identified
29574    by the variational theory. The initial approximations can be freely
29575    chosen with possible unknown constants, which can be determined by
29576    imposing the boundary/initial conditions. Some examples are given. The
29577    results reveal that the method is very effective and convenient. (C)
29578    2000 Elsevier Science Inc. All rights reserved.
29579 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
29580    Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
29581 RP He, JH, Shanghai Univ, Shanghai 200072, Peoples R China.
29582 CR DRIVER RD, 1977, ORDINARY DELAY DIFFE
29583    HE JH, 1996, THESIS SHANGHAI U
29584    HE JH, 1997, COMM NONLINEAR SCI N, V2, P230
29585    HE JH, 1997, COMMUNICATIONS NONLI, V2, P235
29586    HE JH, 1998, COMPUT METHOD APPL M, V167, P57
29587    HE JH, 1998, COMPUT METHOD APPL M, V167, P69
29588    HE JH, 1998, GEN VARIATIONAL PRIN
29589    HE JH, 1998, INT C VIBR ENG 98 DA
29590    HE JH, 1998, MECH PRACTICE, V20, P30
29591    HE JH, 1998, MECH SCI TECHNOL, V17, P221
29592    INOKUTI M, 1978, VARIATIONAL METHOD M, P156
29593    NAYFEH AH, 1985, PROBLEMS PERTURBATIO
29594    SMITH DR, 1985, SINGULAR PERTURBATIO
29595 NR 13
29596 TC 17
29597 SN 0096-3003
29598 J9 APPL MATH COMPUT
29599 JI Appl. Math. Comput.
29600 PD SEP 11
29601 PY 2000
29602 VL 114
29603 IS 2-3
29604 BP 115
29605 EP 123
29606 PG 9
29607 SC Mathematics, Applied
29608 GA 349ZG
29609 UT ISI:000089075100001
29610 ER
29611 
29612 PT J
29613 AU Xu, H
29614    He, KY
29615    Qiu, YQ
29616    Wang, ZJ
29617    Feng, W
29618    Dong, YD
29619    Xiao, XS
29620    Wang, Q
29621 TI Intense milling nanocrystalline Fe73.5Cu1Nb3Si13.5B9: a soft magnetic
29622    material in powdered form
29623 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
29624    MICROSTRUCTURE AND PROCESSING
29625 DT Article
29626 DE intense milling; nanocrystalline; dust core
29627 ID GRAIN-STRUCTURE; FERROMAGNETS
29628 AB The change of structure by intense milling on the nanocrystalline
29629    Fe73.5Cu1Nb3Si13.5B9 alloy was investigated. The magnetic properties of
29630    nanocrystalline Fe73.5Cu1Nb3Si13.5B9 dust cores (core of compacted
29631    powder) were studied. It was found that the nanostructured ribbons
29632    obtained from the crystallization of amorphous state by a proper
29633    annealing treatment could be changed into amorphous powder via short
29634    time milling. By increasing the milling time, the milled powder return
29635    to crystallization. It was also found that the permeability of the
29636    nanocrystalline dust cores had nearly not any changes in the frequency
29637    range from 1 to 100 kHz. The quality factor Q of the nanocrystalline
29638    dust cores increased gradually with increasing frequency. The quality
29639    factor Q of nanocrystalline dust cores became higher at the frequency
29640    over 50 similar to 70 kHz n comparison with that of the permalloy dust
29641    core. Published by Elsevier Science S.A.
29642 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
29643    Northeastern Univ, Shenyang 110006, Peoples R China.
29644    Cent Iron & Steel Res Inst, Beijing 100081, Peoples R China.
29645    Liaoning Sch Light Ind, Shenyang 110036, Peoples R China.
29646 RP Xu, H, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
29647 CR HERZER G, 1989, IEEE T MAGN, V25, P3327
29648    HERZER G, 1990, IEEE T MAGN, V26, P1397
29649    SCHULZ R, 1994, MAT SCI ENG A-STRUCT, V179, P516
29650    YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044
29651    YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6047
29652 NR 5
29653 TC 7
29654 SN 0921-5093
29655 J9 MATER SCI ENG A-STRUCT MATER
29656 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
29657 PD JUN 30
29658 PY 2000
29659 VL 286
29660 IS 1
29661 BP 197
29662 EP 200
29663 PG 4
29664 SC Materials Science, Multidisciplinary
29665 GA 347EP
29666 UT ISI:000088914700036
29667 ER
29668 
29669 PT J
29670 AU Zhu, XH
29671    Xu, J
29672    Meng, ZY
29673    Zhu, JM
29674    Zhou, SH
29675    Li, Q
29676    Liu, ZG
29677    Ming, NB
29678 TI Microdisplacement characteristics and microstructures of functionally
29679    graded piezoelectric ceramic actuator
29680 SO MATERIALS & DESIGN
29681 DT Article
29682 DE composites; sandwich structures; microstructure; bonding diffusion;
29683    powder metallurgy
29684 AB In this work, we report a functionally gradient piezoelectric ceramic
29685    actuator with sandwiched structure prepared by the powder metallurgical
29686    method. The functional gradients of piezoelectric activity and
29687    dielectric activity vary inversely across the thickness of the
29688    actuator. Such functional gradients are obtained by interdiffusion
29689    reaction between a high piezoelectric composition [Pb(Zr,Ti)O-3/PZT]
29690    and a high dielectric composition (PbNi1/3Nb2/3O3/PNN). The bending
29691    displacement at the free end of the PNN/PZT functionally graded
29692    piezoelectric ceramic actuator was approximately 20 mu m when 1.4-kV/mm
29693    electric field was applied. The grain morphology and compositional
29694    distribution across the actuator section and the microstructures of the
29695    sandwiched layer were investigated by scanned electron microscopy
29696    equipped with energy-dispersive spectroscopy, transmission electron
29697    microscopy, and selected area electron diffraction patterns,
29698    respectively. (C) 2000 Elsevier Science Ltd. All rights reserved.
29699 C1 Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.
29700    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
29701    CCAST World Lab, Beijing 100080, Peoples R China.
29702    Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.
29703 CR BERLINCOURT D, 1959, J APPL PHYS, V30, P1804
29704    CHEN J, 1989, J AM CERAM SOC, V72, P593
29705    GERSON R, 1960, J APPL PHYS, V31, P188
29706    HAERTLING GH, 1994, AM CERAM SOC BULL, V73, P93
29707    ROBBINS WP, 1991, IEEE T ULTRASON FERR, V38, P634
29708    SHANNON RD, 1976, ACTA CRYSTALLOGR A, V32, P751
29709    SUGAWARA Y, 1992, J AM CERAM SOC, V75, P996
29710    YAOMAJI A, 1977, J AM CERAM SOC, V60, P97
29711    ZHU XH, 1995, J MATER SCI LETT, V14, P516
29712    ZHU XH, 1998, J MATER SCI, V33, P1023
29713 NR 10
29714 TC 17
29715 SN 0261-3069
29716 J9 MATER DESIGN
29717 JI Mater. Des.
29718 PD DEC
29719 PY 2000
29720 VL 21
29721 IS 6
29722 BP 561
29723 EP 566
29724 PG 6
29725 SC Materials Science, Multidisciplinary
29726 GA 345ZB
29727 UT ISI:000088844400015
29728 ER
29729 
29730 PT J
29731 AU Zhang, ZL
29732    Jiang, XY
29733    Xu, SH
29734 TI A white emitting organic diode with a doped blocking layer
29735 SO CHINESE PHYSICS LETTERS
29736 DT Article
29737 ID ELECTROLUMINESCENT DEVICES; STABILITY
29738 AB A novel white emitting organic diode has been simply realized by
29739    inserting a doped hole-blocking layer between the hole transporting
29740    layer (RTL) and the electron transporting layer (ETL). The structure of
29741    this device is ITO/CuPc/NPB/blocking layer:rubrene/Alq/MgAg. Copper
29742    phthalocyanine(CuPc) was used as a buffer layer,
29743    N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) as
29744    the HTL, and trimer of N-arylbenzimidazoles (TPBi) as the blocking
29745    layers, in which rubrene is doped. Tris(8-quinolinolato)aluminum
29746    complex(Alq) as ETL. Indium tin oxide and MgAg were the anode and
29747    cathode, respectively. The emission spectrum of this device covers a
29748    wide range of visible region and can be sensitively adjusted by the
29749    concentration of rubrene. The white emission with the CIE (Commission
29750    International de I' Eclairage) color coordinates x = 0.31, y = 0.32, a
29751    maximum luminance of 8635 cd/m(2), and the luminous efficiency 1.39
29752    lm/W at the luminance of 100 cd/m(2) were obtained in the device with
29753    1.5% rubrene concentration in TPBi.
29754 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
29755 RP Zhang, ZL, Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R
29756    China.
29757 CR FORREST SR, 1997, SYNTHETIC MET, V91, P9
29758    GAO ZQ, 1999, APPL PHYS LETT, V74, P865
29759    GRANSTROM M, 1996, APPL PHYS LETT, V68, P147
29760    HOSOKAWA C, 1997, SOC INFORMATION DISP, V91, P1037
29761    JORDAN RH, 1996, APPL PHYS LETT, V68, P1192
29762    KIDO J, 1994, APPL PHYS LETT, V64, P815
29763    KIDO J, 1995, SCIENCE, V267, P1332
29764    MIYAGUCHI S, 1998, 9 INT WORKSH IN ORG, P137
29765    SATO Y, 1997, SYNTHETIC MET, V91, P103
29766    TAN HS, 1998, CHINESE PHYS LETT, V15, P137
29767    TANG CW, 1987, APPL PHYS LETT, V51, P913
29768    VANSLYKE SA, 1996, APPL PHYS LETT, V69, P2160
29769    YANG Y, 1997, J APPL PHYS, V81, P3294
29770    ZHANG ZL, 1998, J PHYS D APPL PHYS, V31, P32
29771 NR 14
29772 TC 3
29773 SN 0256-307X
29774 J9 CHIN PHYS LETT
29775 JI Chin. Phys. Lett.
29776 PY 2000
29777 VL 17
29778 IS 7
29779 BP 534
29780 EP 536
29781 PG 3
29782 SC Physics, Multidisciplinary
29783 GA 346VM
29784 UT ISI:000088891800026
29785 ER
29786 
29787 PT J
29788 AU Hu, YY
29789    Li, HB
29790    Sun, L
29791    Shen, YJ
29792    Qiu, ZC
29793 TI Synthesis of 1-amino-2-(2 '-methyl-4 '-methyl propionate)
29794    phenoxy-4-hydroxy anthraquinone
29795 SO CHINESE JOURNAL OF ORGANIC CHEMISTRY
29796 DT Article
29797 DE 2-methyl-4-beta- cyanoethylphenol; 1-amino-2-(2 ' - methyl-4 '-
29798    methylpropionate) phenoxy-4-hydroxy anthraquinone; synthesis
29799 AB 2- Methyl - 4 - beta - cyanoethylphenol was synthesized via Friedel -
29800    Crafts reaction between o - cresol and acrylonitrile. It was condensed
29801    with 1 - amino - 2 - bromo - 4 - hydroxy anthraquinone by the
29802    nucleophilic reaction. The product was hydrolyzed in alkaline medium
29803    and esterified with methanol to afford the title compound. Mass, H-1
29804    NMR, element analyses, Vis spectra and the melting points of the title
29805    compound and the intermediates were measured.
29806 C1 Shanghai Univ, Sch Environm & Architectural Engn, Shanghai 200072, Peoples R China.
29807    E China Univ Sci & Technol, Inst Fine Chem, Shanghai 200237, Peoples R China.
29808    Shanghai Analyt Instrument Gen Factory, Shanghai 200233, Peoples R China.
29809 RP Hu, YY, Shanghai Univ, Sch Environm & Architectural Engn, Shanghai
29810    200072, Peoples R China.
29811 CR CHENG ZS, 1994, JINGXI HUAXUEPIN HUA, P70
29812    JOHNSTON HW, 1957, J ORG CHEM, V22, P1264
29813    RICHTER RH, 1977, 4051166, US
29814    SATO YSK, 1969, 15316, JP
29815    SUN SD, 1992, CHINESE J ORG CHEM, V12, P96
29816    ZHANG ZY, 1995, JINGXI YOUJI HECHENG, P270
29817    ZHOU QK, 1993, SHANGHAI RANLIAO, V105, P5
29818 NR 7
29819 TC 0
29820 SN 0253-2786
29821 J9 CHINESE J ORG CHEM
29822 JI Chin. J. Org. Chem.
29823 PD AUG
29824 PY 2000
29825 VL 20
29826 IS 4
29827 BP 533
29828 EP 536
29829 PG 4
29830 SC Chemistry, Organic
29831 GA 346VC
29832 UT ISI:000088890900015
29833 ER
29834 
29835 PT J
29836 AU Liu, GL
29837 TI A new generation of inverse shape design problem in aerodynamics and
29838    aerothermoelasticity: concepts, theory and methods
29839 SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY
29840 DT Article
29841 DE aerodynamics; inverse problems; finite element method; wings; fluid
29842    mechanics
29843 AB So far the literature on inverse shape design in aerodynamics is still
29844    confined to the single-point (nominal design point) design and to
29845    steady flow. This situation cannot cope with the modern development of
29846    internal and external aerodynamics and aerothermoelasticity, especially
29847    turbomachinery and aircraft flows. Accordingly, in recent years a new
29848    generation of inverse shape design problem has been suggested and
29849    investigated theoretically and computationally, consisting mainly of:
29850    unsteady inverse and hybrid problems; multipoint inverse and hybrid
29851    problems; and inverse problem in aerothermoelasticity. It opens a new
29852    area of research in fluid mechanics and aerothermoelasticity. An
29853    overview of its status and perspective is given herein, emphasizing the
29854    new concepts, theory and methods of solution involved.
29855 C1 Shanghai Univ, Inst Mech, Shanghai, Peoples R China.
29856 RP Liu, GL, Shanghai Univ, Inst Mech, Shanghai, Peoples R China.
29857 CR DULIKRAVICH GS, 1992, J AIRCRAFT, V29, P1020
29858    EPPLER R, 1979, J SHIP RES, V23, P191
29859    EPPLER R, 1979, J SHIP RES, V23, P209
29860    EPPLER R, 1980, TM80210 NASA
29861    EPPLER R, 1985, J SHIP RES, V29, P30
29862    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
29863    JAMESON A, 1990, AGARDCP463, P1
29864    LIGHTHILL MJ, 1945, 2112 ARC R D
29865    LIU GL, IN PRESS ACTA MECH
29866    LIU GL, 1980, SCI SINICA, V23, P1339
29867    LIU GL, 1987, NUMERICAL METHODS LA, V5, P1739
29868    LIU GL, 1995, INT J TURBO JET ENG, V12, P109
29869    LIU GL, 1995, INVERSE PROBL ENG, V2, P1
29870    LIU GL, 1996, ACTA AERODYNAMICA SI, V14, P1
29871    LIU GL, 1997, AIRCR ENG AEROSP TEC, V69, P527
29872    LIU GL, 1997, NONLINEAR ANAL-THEOR, V30, P5229
29873    LIU GL, 1998, HYDRODYNAMICS THEORY, V2, P901
29874    LIU GL, 1998, IN PRESS ACTA MECH
29875    LIU GL, 1998, INVERSE PROBL ENG, P391
29876    LIU GL, 1998, P 3 INT C FLUID MECH, P809
29877    LIU GL, 1998, P 3 INT C NONL MECH, P502
29878    LIU GL, 1999, P 14 INT S AIRBR ENG
29879    LIU GL, 1999, P 4 INT S AER INT FL
29880    LOIU GL, 1999, ACTA MECH SINICA, V31, P165
29881    MANGLER W, 1938, JB DTSCH LUFTFAHRTFO, V1, P46
29882    NAKAZAKI M, 1986, J KANSAI SOC NAVAL A
29883    OHTSUKA M, 1974, 74GT2 ASME
29884    SELIG MS, 1992, AIAA J, V30, P1162
29885    SHEN YT, 1981, J SHIP RES, V25, P191
29886    WEINIG F, 1929, Z ANGEANDTE MATH MEC, V9, P507
29887    YIU KFC, 1994, MATH COMPUT MODEL, V20, P3
29888 NR 31
29889 TC 1
29890 SN 0002-2667
29891 J9 AIRCRAFT ENG AEROSP TECHNOL
29892 JI Aircr. Eng. Aerosp. Technol.
29893 PY 2000
29894 VL 72
29895 IS 4
29896 BP 334
29897 EP 344
29898 PG 11
29899 SC Engineering, Aerospace
29900 GA 346TM
29901 UT ISI:000088887200002
29902 ER
29903 
29904 PT J
29905 AU Wan, DC
29906    Wei, GW
29907 TI Numerical solutions of incompressible Euler and Navier-Stokes equations
29908    by efficient discrete singular convolution method
29909 SO ACTA MECHANICA SINICA
29910 DT Article
29911 DE incompressible flows; periodic boundary; DSC method; fourth-order
29912    Runge-Kutta method
29913 ID SCHEMES
29914 AB An efficient discrete singular convolution (DSC) method is introduced
29915    to the numerical solutions of incompressible Euler and Navier-Stokes
29916    equations with periodic boundary conditions. Two numerical tests of
29917    two-dimensional Navier-Stokes equations with periodic boundary
29918    conditions and Euler equations for doubly periodic shear layer flows
29919    are carried out by using the DSC method for spatial derivatives and
29920    fourth-order Runge-Kutta method for time advancement, respectively. The
29921    computational results show that the DSC method is efficient and robust
29922    for solving tho problems of incompressible flows, and has the potential
29923    of being extended to numerically solve much broader problems in fluid
29924    dynamics.
29925 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
29926    Natl Univ Singapore, Dept Computat Sci, Singapore 119260, Singapore.
29927 RP Wan, DC, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
29928    200072, Peoples R China.
29929 CR BELL JB, 1989, J COMPUT PHYS, V85, P257
29930    BELLMAN R, 1972, J COMPUT PHYS, V10, P40
29931    CANUTO C, 1988, SPECTRAL METHODS FLU
29932    CHEUNG YK, 1976, FINITE STRIP METHODS
29933    CHUI CK, 1992, INTRO WAVELETS
29934    E WN, 1996, J COMPUT PHYS, V126, P122
29935    FORNBERG B, 1996, PRACTICAL GUIDE PSEU
29936    FORSYTHE GE, 1960, FINITE DIFFERENCE ME
29937    HARTEN A, 1983, J COMPUT PHYS, V49, P357
29938    HARTEN A, 1987, SIAM J NUMER ANAL, V24, P279
29939    HIRSH RS, 1975, J COMPUT PHYS, V19, P90
29940    KOREVAAR J, 1968, MATH METHODS, V1
29941    LOU JZ, 1996, J COMPUT PHYS, V125, P225
29942    MA YW, 1999, INT J NUMER METH FL, V30, P509
29943    MEAD JL, 1999, J COMPUT PHYS, V152, P404
29944    ORSZAG SA, 1972, STUD APPL MATH, V51, P253
29945    PATANKAR SV, 1980, NUMERICAL HEAT TRANS
29946    SCHWARTZ L, 1951, THEORE DISTRIBUTIONS
29947    TOLSTYKH A, 1994, SERIES ADV MATH APPL, V21
29948    WALKER JS, 1996, FAST FOURIER TRANSFO
29949    WAN DC, 2000, P 4 INT C HYDR SEPT
29950    WEI GW, 1997, PHYS REV LETT, V79, P775
29951    WEI GW, 1998, CHEM PHYS LETT, V296, P215
29952    WEI GW, 1999, J CHEM PHYS, V110, P8930
29953    WEI GW, 2000, J PHYS B-AT MOL OPT, V33, P343
29954    WEI GW, 2000, PHYSICA D, V137, P247
29955    WEINAN E, 1994, J COMPUT PHYS, V110, P39
29956    ZIENKIEWICZ OC, 1971, FINITE ELEMENT METHO
29957 NR 28
29958 TC 1
29959 SN 0567-7718
29960 J9 ACTA MECH SINICA
29961 JI Acta Mech. Sin.
29962 PD AUG
29963 PY 2000
29964 VL 16
29965 IS 3
29966 BP 223
29967 EP 239
29968 PG 17
29969 SC Engineering, Mechanical; Mechanics
29970 GA 346NK
29971 UT ISI:000088877800003
29972 ER
29973 
29974 PT J
29975 AU Wang, W
29976    Weng, XC
29977    Cheng, DL
29978 TI Antioxidant activities of natural phenolic components from Dalbergia
29979    odorifera T. Chen
29980 SO FOOD CHEMISTRY
29981 DT Article
29982 ID LIPID-PEROXIDATION; RED WINE
29983 AB The antioxidant activities on oil of natural phenolic components
29984    extracted from Dalbergia odorifera T. Chen were investigated. A new
29985    benzophenone 2,4-dihydroxy-5-methoxybenzophenone (1), together with
29986    eight known components, were isolated. The eight components were
29987    identified by chemical and spectroscopic methods as
29988    2',3',7-trihydroxy-4'-methoxyisoflavanone (2), 3'-methoxydaidzein (3),
29989    4',5,7-trihydroxy-3-methoxyflavone (4), vestitol (5), medicarpin (6),
29990    hexanoic acid, 2-propenylester (7), hexadecanoic acid, ethyl ester (8)
29991    and 3,8,-nonadien-2-one (9). Their antioxidant activities were
29992    investigated and compared with butylated hydroxyluene (BHT) and
29993    alpha-tocopherol. The results showed that components 1, 3, 5 and 6 had
29994    antioxidant activity and components 2 and 4 had strong antioxidant
29995    activity at 0.02 and 0.04% levels. When the individual components
29996    (0.02%) were mixed with 0.02% BHT, or 0.02% cr-tocopherol, their
29997    protection factor was increased, but there was no synergistic effect.
29998    When the individual component had 4 ppm added Fe3+, components 1, 2, 3
29999    and 4 had antioxidant activity. Their antioxidant activities were
30000    tested by an oxidative stability instrument (OSI) at 100 degrees C. Six
30001    of the phenolic components showed antioxidant activities. (C) 2000
30002    Elsevier Science Ltd. All rights reserved.
30003 C1 Lanzhou Univ, Dept Chem, Natl Lab Appl Organ Chem, Lanzhou 730000, Gansu, Peoples R China.
30004    Shanghai Univ, Sch Life Sci, Shanghai, Peoples R China.
30005 RP Cheng, DL, Lanzhou Univ, Dept Chem, Natl Lab Appl Organ Chem, Lanzhou
30006    730000, Gansu, Peoples R China.
30007 CR FUHRMAN B, 1995, AM J CLIN NUTR, V61, P549
30008    GRICE HC, 1986, FOOD CHEM TOXICOL, V24, P1127
30009    HELLER SR, 1978, EPA NIH MASS SPECTRA, V1, P336
30010    HELLER SR, 1978, EPA NIH MASS SPECTRA, V1, P547
30011    HELLER SR, 1978, EPA NIH MASS SPECTRA, V3, P2090
30012    HELLER SR, 1978, EPA NIH MASS SPECTRA, V3, P234
30013    KANNER J, 1991, J AGR FOOD CHEM, V39, P1017
30014    KROYER G, 1986, Z ERNAHRUNGSWISS, V25, P63
30015    PRATT DE, 1990, FOOD ANTIOXIDANTS, P171
30016    RUSZNYAK S, 1936, NATURE, V138, P27
30017    SHOJI Y, 1989, CHEM PHARM BULL, V31, P979
30018    TETSU O, 1990, CHEM PHARM BULL, V38, P2750
30019    WENG XC, 1998, J CHINESE CEREAL OIL, V13, P46
30020    WHITEHEAD TP, 1995, CLIN CHEM, V41, P32
30021    WICHI HP, 1988, FOOD CHEM TOXICOL, V26, P717
30022    YUKIHIRO G, 1992, CHEM PHARM BULL, V40, P2452
30023    ZLOCH Z, 1969, INT Z VITAMINFORSCH, V39, P269
30024 NR 17
30025 TC 7
30026 SN 0308-8146
30027 J9 FOOD CHEM
30028 JI Food Chem.
30029 PD OCT
30030 PY 2000
30031 VL 71
30032 IS 1
30033 BP 45
30034 EP 49
30035 PG 5
30036 SC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics
30037 GA 344YW
30038 UT ISI:000088789500004
30039 ER
30040 
30041 PT J
30042 AU Peng, LM
30043    Mao, XM
30044    Xu, KD
30045 TI Simulation and control model for interactions among process parameters
30046    of directional solidification continuous casting
30047 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
30048 DT Article
30049 DE directional solidification; continuous casting; control model
30050 AB On the basis of analyzing the principles, equipment and control needs
30051    of directional solidification continuous casting (DSCC) process, the
30052    building and fulfilling methods of control model of DSCC procedure by
30053    neural network control (NNC) method were proposed and discussed.
30054    Combining the experimental researches, firstly the computer is used to
30055    simulate the effects of those solidification parameters on destination
30056    control variable (S/L interface) and the reactions among those
30057    parameters during DSCC procedure; secondly many training samples can be
30058    obtained. Moreover, after these samples are input into neural network
30059    software (NNs) and trained, the control model can be built.
30060 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
30061 CR CHANG GW, 1999, FOUNDRY, V40, P18
30062    FAN XH, 1996, CHINESE J MAT RES, V10, P364
30063    FAN XH, 1997, CHINESE J NONFERROUS, V7, P134
30064    LI SY, 1996, THEORY FUZZY CONTROL, P85
30065    NI WD, 1996, SEVERAL PROBLEMS MOD, P10
30066    OHNO A, 1989, LIGHT METAL, V39, P735
30067    OHNO A, 1990, ADV MATER, V28, P161
30068    OHNO A, 1991, T JAPAN I METALS, V30, P448
30069    SU YJ, 1996, J HARBIN U SCI TECHN, V1, P60
30070    WANG W, 1997, CONTROL DECISION S, V12, P385
30071    WANG YN, 1996, INTELLIGENT CONTROL, P96
30072    XU ZM, 1997, P 9 CHIN FOUNDR C C, P345
30073    XU ZM, 1998, T NONFERR METAL SOC, V8, P277
30074 NR 13
30075 TC 1
30076 SN 1003-6326
30077 J9 TRANS NONFERROUS METAL SOC CH
30078 JI Trans. Nonferrous Met. Soc. China
30079 PD AUG
30080 PY 2000
30081 VL 10
30082 IS 4
30083 BP 449
30084 EP 452
30085 PG 4
30086 SC Metallurgy & Metallurgical Engineering
30087 GA 343GQ
30088 UT ISI:000088693700006
30089 ER
30090 
30091 PT J
30092 AU Zhang, H
30093    Zou, XW
30094    Wang, ZH
30095    Chen, YX
30096 TI A comparative investigation of oxygen in-diffusion in the orthorhombic
30097    phase of REBCO (RE:: Y, Sm, Nd) by in situ electrical resistance
30098 SO PHYSICA C
30099 DT Article
30100 DE REBCO (RE : Y, Sm, Nd) curprate; in situ electrical resistance; oxygen
30101    in-diffusion
30102 ID TRACER DIFFUSION; SINGLE-CRYSTAL; YBA2CU3O7-DELTA; YBA2CU3O6+X;
30103    SUPERCONDUCTORS
30104 AB The relaxation behavior of the isothermal electrical resistance has
30105    been comparatively investigated in the single orthorhombic phase of
30106    REBCO (RE: Y, Sm, Nd) powder sinters in oxygen uptaking processes. It
30107    can be well described by an oxygen uptaking process controlled by the
30108    lattice diffusion. The relaxation activation energy, i.e., the
30109    diffusion activation energy is 1.2, 1.0 and 0.7 eV for YBa2Cu3Oy,
30110    SmBa2Cu3Oy and Nd1.1Ba1.9Cu3Oy, respectively. It indicates that the
30111    diffusion activation energy of oxygen in REBCO decreases with the
30112    increase of RE ion size. It may be connected with the repulsive energy
30113    between O(1) and O(5). (C) 2000 Elsevier Science B.V. All rights
30114    reserved.
30115 C1 Chinese Acad Sci, Shanghai Inst Met, Shanghai 200050, Peoples R China.
30116    Shanghai Univ, Shanghai 200072, Peoples R China.
30117 RP Zhang, H, Chinese Acad Sci, Shanghai Inst Met, Shanghai 200050, Peoples
30118    R China.
30119 CR CRANK J, 1956, MATH DIFFUSION
30120    ERB A, 1997, APPL SUPERCOND, V158, P1109
30121    HIKUMOTO N, 1997, PHYSICA C, V278, P187
30122    KLAUSER M, 1998, PHYSICA C, V306, P188
30123    LAGRAFF JR, 1993, PHYS REV B, V47, P3380
30124    LAGRAFF JR, 1993, PHYSICA C, V212, P470
30125    LAGRAFF JR, 1993, PHYSICA C, V212, P487
30126    MURAKAMI M, 1994, JPN J APPL PHYS, V33, P715
30127    MURAKAMI M, 1997, PHYSICA C 1, V282, P371
30128    ROTHMAN SJ, 1989, PHYS REV B, V40, P8852
30129    ROTHMAN SJ, 1991, PHYS REV B, V44, P2326
30130    SHAKED H, 1990, PHYS REV B, V41, P4173
30131    TALLON JL, 1992, SCIENCE, V258, P781
30132    TU KN, 1989, PHYS REV B, V39, P304
30133    XIA XM, 1989, PHYS REV B, V40, P4549
30134    YOO SI, 1994, APPL PHYS LETT, V65, P633
30135 NR 16
30136 TC 5
30137 SN 0921-4534
30138 J9 PHYSICA C
30139 JI Physica C
30140 PD JUL
30141 PY 2000
30142 VL 337
30143 IS 1-4
30144 BP 307
30145 EP 311
30146 PG 5
30147 SC Physics, Applied
30148 GA 343DL
30149 UT ISI:000088686400062
30150 ER
30151 
30152 PT J
30153 AU Tan, WH
30154    Yan, KZ
30155    Liu, RH
30156 TI The enhancement of spontaneous and induced transition rates by a
30157    Bose-Einstein condensate
30158 SO JOURNAL OF MODERN OPTICS
30159 DT Article
30160 ID RESONANCE OPTICS; H-DOWN; GAS; ATOMS; LIGHT
30161 AB In this paper, an exactly solved model for the emission by N atoms is
30162    presented, the spontaneous and induced transition rates obtained, are
30163    enhanced by a factor which is proportional to the number of atoms n in
30164    the volume lambda(3)/(2 pi(2)) (lambda is the transition wavelength of
30165    the atom) and dependent on the de-Broglie wavelength lambda(B) in a
30166    more complicated way.
30167 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
30168    Acad Sinica, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
30169 RP Tan, WH, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
30170 CR ANDERSON MH, 1995, SCIENCE, V269, P198
30171    BRADLEY CC, 1995, PHYS REV LETT, V75, P1787
30172    DAVIS KB, 1995, PHYS REV LETT, V75, P3969
30173    GLAUBER RJ, 1959, LECTURES THEORETICAL, V1, P315
30174    HOPE JJ, 1996, PHYS REV A, V54, P3177
30175    HUANG H, 1997, PHYS REV LETT, V79, P2923
30176    JAVANAINEN JH, 1994, PHYS REV LETT, V72, P2375
30177    LEHMBERG RH, 1970, PHYS REV A-GEN PHYS, V2, P883
30178    LEVI BG, 1998, PHYS TODAY      1017
30179    POLITZER HD, 1991, PHYS REV A, V43, P6444
30180    SCHIFF LI, 1968, QUANTUM MECH, P533
30181    SVISTUNOV BV, 1990, ZH EKSP TEOR FIZ, V97, P821
30182    SVISTUNOV BV, 1990, ZH EKSP TEOR FIZ, V98, P129
30183    TAYLOR JR, 1987, SCATTERING THEORY QU
30184    WEISSKOPF V, 1930, Z PHYS, V63, P54
30185    WEISSKOPF VG, 1990, QUANTUM STAT PROPERT, P285
30186    YOU L, 1994, PHYS REV A, V50, R3365
30187    YOU L, 1996, PHYS REV A, V53, P329
30188 NR 18
30189 TC 0
30190 SN 0950-0340
30191 J9 J MOD OPTIC
30192 JI J. Mod. Opt.
30193 PD AUG
30194 PY 2000
30195 VL 47
30196 IS 10
30197 BP 1729
30198 EP 1737
30199 PG 9
30200 SC Optics
30201 GA 341DF
30202 UT ISI:000088575200011
30203 ER
30204 
30205 PT J
30206 AU Sun, JA
30207    Zhu, ZY
30208 TI Upwind local differential quadrature method for solving incompressible
30209    viscous flow
30210 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
30211 DT Article
30212 DE upwind local differential quadrature method; incompressible viscous
30213    flow; navier-stokes equations
30214 ID EQUATIONS
30215 AB The differential quadrature method (DQM) is able to obtain quite
30216    accurate numerical solutions of differential equations with few grid
30217    points and less computational effort. The successful applications of
30218    DQM have been reported to solve various problems of fluid mechanics.
30219    But, owing to the limitation of its quadrature rules, DQM is convenient
30220    only For regular regions and lacks upwind mechanism to characterize the
30221    convection of the fluid flow. In the present paper, a local
30222    differential quadrature method (LDQM) with upwind mechanism is proposed
30223    to solve incompressible viscous fluid flow problems in irregular
30224    regions. As its application, planar contraction flows in irregular
30225    regions is numerically solved and excellent numerical results are
30226    obtained for coarse meshes, (C) 2000 Elsevier Science S.A. All rights
30227    reserved.
30228 C1 Shanghai Univ, Dept Math, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
30229    NW Normal Univ, Dept Phys, Lanzhou 730070, Peoples R China.
30230 RP Sun, JA, Shanghai Univ, Dept Math, Shanghai Inst Appl Math & Mech,
30231    Shanghai 200072, Peoples R China.
30232 CR BELLMAN R, 1971, J MATH ANAL APPL, V34, P235
30233    BELLMAN R, 1972, J COMPUT PHYS, V10, P40
30234    BERT CW, 1996, APPL MECH REV, V49, P1
30235    BOGER DV, 1987, ANNU REV FLUID MECH, V19, P157
30236    CIVAN F, 1983, INT J NUMER METH ENG, V19, P711
30237    JANG SK, 1989, INT J NUMER METH ENG, V28, P561
30238    KINE ME, 1983, J NONNEWTONIAN FLUID, V13, P341
30239    SHU C, 1990, 3RD P INT C ADV NUM, V2, P978
30240    SHU C, 1992, COMPUTING SYSTEMS EN, V3, P271
30241    SHU C, 1992, INT J NUMER METH FL, V15, P791
30242    SHU C, 1993, P 1 PAN PAC C COMP E, P131
30243    STRIZ AG, 1994, INT J NONLINEAR MECH, V29, P665
30244    VIRIYAYUTHAKORN M, 1980, J NONNEWTONIAN FLUID, V6, P245
30245    VRENTAS JS, 1973, APPL SCI RES, V28, P241
30246 NR 14
30247 TC 0
30248 SN 0045-7825
30249 J9 COMPUT METHOD APPL MECH ENG
30250 JI Comput. Meth. Appl. Mech. Eng.
30251 PY 2000
30252 VL 188
30253 IS 1-3
30254 BP 495
30255 EP 504
30256 PG 10
30257 SC Computer Science, Interdisciplinary Applications; Engineering,
30258    Mechanical; Mechanics
30259 GA 342TR
30260 UT ISI:000088661700030
30261 ER
30262 
30263 PT J
30264 AU Wang, YF
30265    Wang, ZH
30266    Bialkowski, ME
30267 TI All-optical logic devices with cascaded nonlinear couplers
30268 SO APPLIED OPTICS
30269 DT Article
30270 ID DIRECTIONAL-COUPLERS
30271 AB The switching behaviors of cascaded nonlinear couplers were
30272    investigated. They have nearly ideal digital-switching characteristics,
30273    and their output power levels can he adjusted by means of varying the
30274    nonlinear coupling coefficient of the final coupler. The two-input
30275    excitation nonlinear cascaded couplers can perform not only switching
30276    operations but also a series of logic operations; The logic operations
30277    depend mainly on the coupling length of the two-input coupler and its
30278    initial inputs. The power corresponding to the rising and falling ridge
30279    of the logic operating waveforms can be shifted effectively by means of
30280    varying the switching power of the reshaper. Allowable ranges of three
30281    important parameters-coupling length of the two-input coupler L-1, bias
30282    optical power P-bia, and phase difference Jr between the signal and
30283    bias beams for six fundamental logic operations-were calculated. Curves
30284    for design considerations and suggestions for the best choice of
30285    parameters for stable and reliable logic operations AND, OR, XOR, NAND,
30286    NOR, and NXOR are also presented individually. (C) 2000 Optical Society
30287    of America OCIS codes: 060.0060, 130.0130, 190.0190, 220.0220, 230.0230.
30288 C1 Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore.
30289    Shanghai Univ, Wave Sci Lab, Shanghai 201800, Peoples R China.
30290 RP Wang, YF, Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore
30291    639798, Singapore.
30292 CR AITCHISON JS, 1995, OPT LETT, V20, P698
30293    CHEN Y, 1990, ELECTRON LETT, V26, P77
30294    CHEN YJ, 1992, IEEE J QUANTUM ELECT, V28, P239
30295    FUKUSHIMA T, 1995, P ILLMC 95, P250
30296    JENSEN SM, 1982, IEEE J QUANTUM ELECT, V18, P1580
30297    KITAYAMA K, 1983, APPL PHYS LETT, V43, P17
30298    PHAM AT, 1990, INT J OPTOELECTRON, V5, P367
30299    PHAM AT, 1991, J OPT SOC AM B, V8, P1914
30300    VILLENEUVE A, 1992, APPL PHYS LETT, V61, P147
30301    WANG YF, 1999, IEEE PHOTONIC TECH L, V11, P72
30302    WANG YF, 1999, J LIGHTWAVE TECHNOL, V17, P292
30303    YANG CC, 1992, IEEE J QUANTUM ELECT, V28, P479
30304 NR 12
30305 TC 1
30306 SN 0003-6935
30307 J9 APPL OPT
30308 JI Appl. Optics
30309 PD AUG 10
30310 PY 2000
30311 VL 39
30312 IS 23
30313 BP 4143
30314 EP 4152
30315 PG 10
30316 SC Optics
30317 GA 342KE
30318 UT ISI:000088643100011
30319 ER
30320 
30321 PT J
30322 AU Chen, MY
30323    Guo, HW
30324    Wei, CL
30325 TI Algorithm immune to tilt phase-shifting error for phase-shifting
30326    interferometers
30327 SO APPLIED OPTICS
30328 DT Article
30329 ID STEPPING ALGORITHM; SURFACES
30330 AB As a phase shifter usually suffers from both translational and
30331    tilt-shift errors during shifting, so every pixel in the same
30332    interferogram will have a different phase-shift value. Thus nonlinear
30333    phase-measurement errors cannot be avoided, but even
30334    translational-shift error has been corrected effectively. However,
30335    based on the fact that the shifted phases of all the pixels in the same
30336    interferogram remain on the phase-shift plane, by defining this plane
30337    one can eliminate a significant number of phase errors. A new algorithm
30338    that is immune to both translational- and tilt-shift errors in a phase
30339    shifter for phase-stepping interferometers is presented. A first-order
30340    Taylor series expansion replaces the nonlinear equations for defining
30341    the phase-shift plane, and iteration of the algorithm guarantees its
30342    accuracy. Results of a computer simulation show that phase-measurement
30343    errors caused by both translation- and tilt-shift error can be
30344    compensated for completely, even when the tilt-shift error is not more
30345    than +/-1%. (C) 2000 Optical Society of America. OCIS codes: 050.5080,
30346    120.3180, 120.5050.
30347 C1 Shanghai Univ, Lab Appl Opt & Metrol, Shanghai 201800, Peoples R China.
30348    Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
30349 RP Chen, MY, Shanghai Univ, Lab Appl Opt & Metrol, Shanghai 201800,
30350    Peoples R China.
30351 CR BRUNING JH, 1974, APPL OPTICS, V13, P2693
30352    CARRE P, 1966, METROLOGIA, V2, P13
30353    CREATH K, 1993, INTERFEROGRAM ANAL, P94
30354    KONG IB, 1995, OPT ENG, V34, P1400
30355    KONG IB, 1995, OPT ENG, V34, P183
30356    MORGAN CJ, 1982, OPT LETT, V7, P368
30357    OKADA K, 1991, OPT COMMUN, V84, P118
30358    WEI CL, 1998, P SOC PHOTO-OPT INS, V3478, P411
30359    WEI CL, 1999, OPT ENG, V38, P1357
30360 NR 9
30361 TC 6
30362 SN 0003-6935
30363 J9 APPL OPT
30364 JI Appl. Optics
30365 PD AUG 1
30366 PY 2000
30367 VL 39
30368 IS 22
30369 BP 3894
30370 EP 3898
30371 PG 5
30372 SC Optics
30373 GA 338MZ
30374 UT ISI:000088425000011
30375 ER
30376 
30377 PT J
30378 AU Xu, JQ
30379    Shun, YA
30380    Pan, QY
30381    Qin, JH
30382 TI Sensing characteristics of double layer film of ZnO
30383 SO SENSORS AND ACTUATORS B-CHEMICAL
30384 DT Article
30385 DE zinc oxide; gas selectivity; gas sensor; double layer film; catalyst
30386    coating
30387 AB Pure ZnO powder was made by chemical precipitation. ZnO-based gas
30388    sensing materials and Al2O3-based catalysts doped with a noble metal
30389    were prepared with impregnation. Gas sensitivity of ZnO single layer
30390    and double layer film gas sensors was measured in static state. It can
30391    be shown from experimental results that the gas sensitivity and
30392    selectivity of ZnO gas sensor can be improved by doping noble metal and
30393    using noble metal catalyst coating, (C) 2000 Elsevier Science B.V. All
30394    rights reserved.
30395 C1 Zhengzhou Inst Light Ind, Dept Chem Engn, Zhengzhou 450002, Peoples R China.
30396    Shanghai Univ, Sch Chem Engn, Shanghai 210072, Peoples R China.
30397 RP Xu, JQ, Zhengzhou Inst Light Ind, Dept Chem Engn, Zhengzhou 450002,
30398    Peoples R China.
30399 CR LOU X, 1991, J SENS T TECHNOL, V3, P1
30400    XU J, 1993, J FUNCT MAT, V24, P30
30401    XU J, 1997, SENS WORLD, V3, P7
30402    XU J, 1998, J FUNCT MAT, V29, P281
30403 NR 4
30404 TC 16
30405 SN 0925-4005
30406 J9 SENSOR ACTUATOR B-CHEM
30407 JI Sens. Actuator B-Chem.
30408 PD JUL 25
30409 PY 2000
30410 VL 66
30411 IS 1-3
30412 BP 161
30413 EP 163
30414 PG 3
30415 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
30416 GA 337TV
30417 UT ISI:000088378500050
30418 ER
30419 
30420 PT J
30421 AU Pan, QY
30422    Xu, JQ
30423    Dong, XW
30424    Zhang, JP
30425 TI Gas-sensitive properties of nanometer-sized SnO2
30426 SO SENSORS AND ACTUATORS B-CHEMICAL
30427 DT Article
30428 DE sol-gel method; nanometer; tin peroxide; doping; reducing gas
30429 AB Nanometer-sized SnO2 particles were prepared by a sol-gel method using
30430    inorganic salt as a precursor material. The investigated results
30431    indicate that well-crystallized nano-sized SnO2 with size around 15 nm
30432    was obtained at annealing temperature 600 degrees C. The activation
30433    energy for the growth of nano-SnO2 was calculated to be 26.55 kJ
30434    mol(-1) when the annealing temperature was higher than 500 degrees C.
30435    The measurements also show that there is a peculiar resistance change
30436    as a function of temperature for nano-SnO2. It has relevance to the
30437    increase of surface adsorbed oxygen. The selective detection for C4H10
30438    and patrol can be increased when ruthenium ion was doped in nano-SnO2
30439    as a catalyst. The gas sensitivity to CO, CH4, H-2, etc., can be
30440    increased when rhodium ion was doped in nano-SnO2 as a catalyst and the
30441    detection to the several reducing gas can be realized ranging in
30442    temperature from 260 degrees C to 400 degrees C. (C) 2000 Elsevier
30443    Science S.A. All rights reserved.
30444 C1 Shanghai Univ, Sch Chem Engn, Shanghai 200072, Peoples R China.
30445    Zhengzhou Inst Light Ind, Dept Chem Engn, Zhengzhou 450002, Peoples R China.
30446 RP Pan, QY, Shanghai Univ, Sch Chem Engn, Shanghai 200072, Peoples R China.
30447 CR CULLITY BD, 1977, ELEMENTS XRAY DIFFRA
30448    RAMAMURTHI SD, 1990, J AM CERAM SOC, V73, P2760
30449    SCOTT MG, AMORPHOUS METALLIC A
30450    ZHOU QF, 1995, J TRANSDUCTION TECHN, V8, P22
30451 NR 4
30452 TC 12
30453 SN 0925-4005
30454 J9 SENSOR ACTUATOR B-CHEM
30455 JI Sens. Actuator B-Chem.
30456 PD JUL 25
30457 PY 2000
30458 VL 66
30459 IS 1-3
30460 BP 237
30461 EP 239
30462 PG 3
30463 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
30464 GA 337TV
30465 UT ISI:000088378500075
30466 ER
30467 
30468 PT J
30469 AU Xu, JQ
30470    Pan, QY
30471    Shun, YA
30472    Tian, ZZ
30473 TI Grain size control and gas sensing properties of ZnO gas sensor
30474 SO SENSORS AND ACTUATORS B-CHEMICAL
30475 DT Article
30476 DE zinc oxide; nanometer material; grain size control; gas sensor;
30477    emulsion synthesis
30478 AB Nanometer ZnO gas sensing material with different particle size were
30479    made by chemical precipitation, emulsion and microemulsion,
30480    respectively. Crystal structure and ceramic microstructure of powders
30481    were determined by XRD and TEM. The mean grain size and lattice
30482    distortion of the materials were calculated with the Cauchy-Cauchy and
30483    Debye-Scherrer methods, respectively. Gas sensitivity of ZnO to H-2,
30484    SF6, C4H10, gasoline, C2H5OH was measured. It Fan be shown from
30485    experimental results that grain size of ZnO gas-sensitive materials can
30486    be controlled by means of different processes or surfactants. The gas
30487    sensitivity of ZnO gas sensor depends upon its grain size. (C) 2000
30488    Elsevier Science S.A. All rights reserved.
30489 C1 Zhengzhou Inst Light Ind, Dept Chem Engn, Zhengzhou 450002, Peoples R China.
30490    Shanghai Univ, Sch Chem Engn, Shanghai 210072, Peoples R China.
30491 RP Xu, JQ, Zhengzhou Inst Light Ind, Dept Chem Engn, Zhengzhou 450002,
30492    Peoples R China.
30493 CR LOU X, 1991, J SENS T TECHNOL, V3, P1
30494    PAN S, 1993, J SENS TRANS TECHNOL, V3, P18
30495    SEIYAMA T, 1962, ANAL CHEM, V34, P1502
30496    XU J, 1993, J FUNCT MAT, V24, P30
30497    XU J, 1998, J INORG CHEM, V14, P355
30498 NR 5
30499 TC 40
30500 SN 0925-4005
30501 J9 SENSOR ACTUATOR B-CHEM
30502 JI Sens. Actuator B-Chem.
30503 PD JUL 25
30504 PY 2000
30505 VL 66
30506 IS 1-3
30507 BP 277
30508 EP 279
30509 PG 3
30510 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
30511 GA 337TV
30512 UT ISI:000088378500086
30513 ER
30514 
30515 PT J
30516 AU Adikary, SU
30517    Meng, ZY
30518    Jin, DR
30519 TI A resistivity gradient piezoelectric FGM actuator
30520 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
30521 DT Article
30522 AB A resistivity gradient actuator based on lead zirconate titanate
30523    ceramics was successfully developed and the bending deflections up to
30524    140 mu m were obtained. The actuator material was a matrix of PZT
30525    ceramic into which smooth gradient of piezoelectric activity was
30526    introduced. The application of an electric field then causes the
30527    actuator to bend due to differential strains induced by the
30528    piezoelectric effect. The resistivity gradient of the actuator was
30529    achieved by doping PZT with suitable donor and acceptor dopants. PZT
30530    powder was modified and synthesized by using two stage powder
30531    fabrication method. The actuator was fabricated by uniaxial pressing
30532    followed by isostatic pressing with two layers of different
30533    resistivities.
30534 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
30535    Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China.
30536 RP Meng, ZY, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
30537    China.
30538 CR HEARTLING GH, 1994, AM CERAM SOC B, V73, P93
30539    HEARTLING GH, 1997, SPIE, V3040, P81
30540    NINO M, 1990, ISIJ INT, V30, P699
30541    ONITSUKA K, 1995, J INTEL MAT SYST STR, V6, P447
30542    ROBBINS WP, 1991, IEEE T ULSR FERR FRE, V68, P634
30543    SUGAWARA Y, 1992, J AM CERAM SOC, V75, P996
30544    TOMIKAWA Y, 1986, FERROELECTRICS, V68, P235
30545    UCHINO K, 1997, PIEZOELECTRIC ACTUAT
30546    WU CCM, 1996, J AM CERAM SOC, V79, P809
30547    ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169
30548    ZHU XH, 1998, J MATER SCI, V33, P1023
30549 NR 11
30550 TC 2
30551 SN 1005-0302
30552 J9 J MATER SCI TECHNOL
30553 JI J. Mater. Sci. Technol.
30554 PD JUL
30555 PY 2000
30556 VL 16
30557 IS 4
30558 BP 383
30559 EP 386
30560 PG 4
30561 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
30562    Engineering
30563 GA 337QA
30564 UT ISI:000088372100007
30565 ER
30566 
30567 PT J
30568 AU Cheng, XY
30569    Wan, XJ
30570    Chen, YX
30571    Yao, MY
30572 TI The effect of Al and Fe on the intergranular embrittlement of Co3Ti
30573    alloys by hydrogen transport from the external surface
30574 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
30575 DT Article
30576 ID ENVIRONMENTAL EMBRITTLEMENT; MECHANICAL-PROPERTIES; ORDERED ALLOYS;
30577    WATER-VAPOR; POLYCRYSTALS; FRACTURE; NI3FE
30578 AB Some observation relating tp the solubility, diffusivity and
30579    intergranular cracking by hydrogen transport from the external surface
30580    in Co3Ti, Co3Ti-Al and Co3Ti-Fe alloys have been carried out. The
30581    results show that the addition of alloying elements Al or Fe to Co3Ti
30582    alloy can increase the critical hydrogen concentration for changing
30583    from transgranular to brittle intergranular fracture, therefore
30584    suppress the moisture induced environmental embrittlement.
30585 C1 Shanghai Univ, Inst Met & Mat Sci, Shanghai 200072, Peoples R China.
30586 RP Cheng, XY, Shanghai Univ, Inst Met & Mat Sci, Shanghai 200072, Peoples
30587    R China.
30588 CR CAMUS GM, 1989, ACTA METALL, V37, P1497
30589    CHEN YX, 1998, J MATER SCI LETT, V17, P1627
30590    CHENG XY, 1997, J IRON STEEL RES S, V9, P270
30591    CHENG XY, 1997, SCRIPTA MATER, V37, P1065
30592    CHU WY, 1981, CORROSION, V37, P514
30593    CHU WY, 1982, CORROSION, V38, P514
30594    CHU WY, 1982, CORROSION, V38, P561
30595    KIMURA A, 1994, MATER T JIM, V35, P879
30596    KIMURA A, 1995, INTERMETALLICS, V3, P115
30597    KURUVILLA AK, 1985, SCRIPTA METALL, V19, P83
30598    LIU CT, 1984, INT MET REV, V29, P168
30599    LIU CT, 1990, SCRIPTA METALL MATER, V24, P1583
30600    LIU Y, 1989, ACTA METALL, V37, P507
30601    LIU Y, 1989, J MATER SCI, V24, P4458
30602    SHUTT RC, 1985, WELD J, V64, P19
30603    TAKASUGI T, 1986, ACTA METALL, V34, P607
30604    TAKASUGI T, 1997, INTERMETALLICS, V5, P443
30605    ZHANG DZ, 1993, SCRIPTA METALL MATER, V29, P901
30606 NR 18
30607 TC 0
30608 SN 1005-0302
30609 J9 J MATER SCI TECHNOL
30610 JI J. Mater. Sci. Technol.
30611 PD JUL
30612 PY 2000
30613 VL 16
30614 IS 4
30615 BP 431
30616 EP 434
30617 PG 4
30618 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
30619    Engineering
30620 GA 337QA
30621 UT ISI:000088372100018
30622 ER
30623 
30624 PT J
30625 AU Wang, LJ
30626    Sang, WB
30627    Shi, WM
30628    Qian, YB
30629    Min, JH
30630    Liu, DH
30631    Xia, YB
30632 TI Electrical properties of contacts on P-type Cd0.8Zn0.2Te crystal
30633    surfaces
30634 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION
30635    A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
30636 DT Article
30637 DE cadmium zinc telluride; electrical contacts; gamma-ray detectors
30638 ID RADIATION DETECTORS; TELLURIDE
30639 AB In this payer effects of surface treatments of p-type Cd0.8Zn0.2Te
30640    devices were studied by Atomic Force Microscopy (AFM), I-V
30641    measurements, and electrical properties as well as different contact
30642    technologies using Au, Al: In and electroless Au. It is shown that
30643    electroless Au film deposited by the chemical method can form a heavily
30644    doped pf layer on a smooth surface, which is nearly ohmic on p-type
30645    material. Electroless Au gives better contact than evaporated Au, Al or
30646    In. A post-annealing treatment of electroless Au film improves the
30647    ohmic quality of contacts and enhances the adhesion between contact
30648    layer and the Cd0.8Zn0.2Te crystal surface. (C) 2000 Elsevier Science
30649    B.V. All rights reserved.
30650 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
30651 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
30652    China.
30653 CR AZOULAY M, 1993, J VAC SCI TECHNOL B, V11, P148
30654    BUTLER JF, 1992, IEEE T NUCL SCI, V39, P605
30655    CHEN KT, 1997, J VAC SCI TECHNOL  1, V15, P850
30656    GEORGE MA, 1995, J APPL PHYS, V77, P3134
30657    LACHISH U, 1998, NUCL INSTRUM METH A, V403, P417
30658    MUSA A, 1983, J APPL PHYS, V54, P3260
30659    NEMIROVSKY Y, 1996, J ELECTRON MATER, V25, P1221
30660    RABINAL MK, 1997, J ELECTRON MATER, V26, P893
30661    SUZUKI K, 1996, J CRYST GROWTH, V159, P388
30662    VERGER L, 1997, J ELECT MAT, V26, P738
30663    YOON H, 1997, J ELECTRON MATER, V26, P529
30664 NR 11
30665 TC 2
30666 SN 0168-9002
30667 J9 NUCL INSTRUM METH PHYS RES A
30668 JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
30669    Equip.
30670 PD JUL 1
30671 PY 2000
30672 VL 448
30673 IS 3
30674 BP 581
30675 EP 585
30676 PG 5
30677 SC Physics, Particles & Fields; Instruments & Instrumentation; Nuclear
30678    Science & Technology; Spectroscopy
30679 GA 336CU
30680 UT ISI:000088285000012
30681 ER
30682 
30683 PT J
30684 AU Xia, SL
30685    Zhao, MJ
30686    Wu, ZY
30687    Li, ZP
30688 TI Detection of Lis1 gene frame shift mutation in human hepatocarcinoma
30689 SO ACTA BIOCHIMICA ET BIOPHYSICA SINICA
30690 DT Article
30691 DE PTT; Lis1 gene; frame shift mutation; GST fusion protein
30692 ID CANCER PATIENTS
30693 AB GST fusion protein expression system combined with protein truncation
30694    test(PTT) protocol was used to detect gene frame shift mutation. The
30695    RT-PCR products of Lis1 genes from hepatocarcinoma samples were
30696    respectively cloned into a GST fusion protein expression vector pGEX-1,
30697    then expressed in E. coli. The results showed a truncated 33 kD fusion
30698    protein in SDS-PAGE, although the full-translated product of Lis1 gene
30699    should be of 71 kD. Sequencing revealed insertion of an A residue,
30700    causing the premature termination of translation, between the 163th and
30701    164th nucleotide of Lis1 gene. This improved PTT assay was proved to be
30702    a fast and effective way in detecting gene frame shift mutation.
30703 C1 Shanghai Univ, Sch Life Sci, Dept Biochem Engn, Shanghai 201800, Peoples R China.
30704    Chinese Acad Sci, Shanghai Inst Biochem, Shanghai 200031, Peoples R China.
30705 CR DANIELA TP, 1998, HUM MOL GENET, V13, P2029
30706    DUNNEN JT, 1999, HUM MUTAT, V14, P95
30707    FARRINGTON SM, 1998, AM J HUM GENET, V63, P749
30708    ORLY R, 1993, NAT GENET, V364, P717
30709    OZCELIK H, 1997, NAT GENET, V16, P17
30710 NR 5
30711 TC 1
30712 SN 0582-9879
30713 J9 ACTA BIOCHIM BIOPHYS SINICA
30714 JI Acta Biochim. Biophys. Sin.
30715 PD JUL
30716 PY 2000
30717 VL 32
30718 IS 4
30719 BP 401
30720 EP 405
30721 PG 5
30722 SC Biochemistry & Molecular Biology; Biophysics
30723 GA 336TQ
30724 UT ISI:000088319400019
30725 ER
30726 
30727 PT J
30728 AU De-Kang, M
30729 TI Toward front tracking based on conservation in two space dimensions
30730 SO SIAM JOURNAL ON SCIENTIFIC COMPUTING
30731 DT Article
30732 DE front tracking; cell-average; recovery of discontinuity curve
30733 ID FINITE-DIFFERENCE METHODS; WAVE-PROPAGATION METHODS; DISCONTINUITIES;
30734    SCHEMES
30735 AB A two-dimensional front tracking method based on conservation for
30736    scalar conservation law and for the Euler system of gas dynamics is
30737    being developed. In the method, discontinuities are tracked by
30738    enforcing the conservation properties of the PDEs. Unlike the
30739    traditional front tracking methods, for which the conservation is only
30740    a property that may or may not be preserved, in this front tracking
30741    method the conservation is the mechanism by which the tracking is
30742    performed. The method is also extended to treat the reflection wall
30743    boundary in the Euler system. As an attempt to treat the interactions
30744    of discontinuities by enforcing the conservation properties without
30745    solving two-dimensional Riemann problems, three special cases of
30746    treatment of discontinuity interactions in scalar conservation law and
30747    in the Euler system of gas dynamics are studied. Finally, numerical
30748    experiments are implemented in both scalar and system cases to show the
30749    efficiency of the method.
30750 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
30751 RP De-Kang, M, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
30752 CR CHERN IL, 1986, J COMPUT PHYS, V62, P83
30753    CHERN IL, 1987, UCRL97200 L LIV NAT
30754    CHORIN AJ, 1993, MATH INTRO FLUID MEC
30755    COLELLA P, 1984, J COMPUT PHYS, V54, P174
30756    DESCHAMBAULT RL, 1983, J FLUID MECH, V131, P27
30757    FORRER H, 1996, 9304 EIDG TH
30758    FORRER H, 1996, 9613 EIDG TH
30759    GLIMM J, 1985, ADV APPL MATH, V6, P259
30760    GLIMM J, 1986, SIAM J SCI STAT COMP, V7, P230
30761    GLIMM J, 1988, COMMUN PUR APPL MATH, V41, P569
30762    GLIMM J, 1988, SIAM J SCI STAT COMP, V9, P61
30763    GLIMM J, 1998, COMPUT MATH APPL, V35, P1
30764    GLIMM J, 1998, SIAM J SCI COMPUT, V19, P703
30765    GROVE J, 1989, ADV APPL MATH, V10, P201
30766    HARTEN A, 1987, J COMPUT PHYS, V71, P231
30767    HARTEN A, 1987, SIAM J NUMER ANAL, V24, P279
30768    HENSHAW WD, 1987, J COMPUT PHYS, V68, P25
30769    KLINGENBERG C, 1994, MATH COMPUT MODEL, V20, P89
30770    LEVEQUE RJ, 1990, 9037 2CASE
30771    LEVEQUE RJ, 1990, NUMERICAL METHODS CO
30772    LEVEQUE RJ, 1995, SIAM J SCI COMPUT, V16, P348
30773    LEVEQUE RJ, 1996, J COMPUT PHYS, V123, P354
30774    MAJDA A, 1984, APPL MATH SCI, V53
30775    MAO D, 1985, J COMPUT MATH, V3, P356
30776    MAO D, 1991, P 3 INT C HYP PROBL
30777    MAO DK, 1991, J COMPUT PHYS, V92, P422
30778    MAO DK, 1992, J COMPUT PHYS, V103, P359
30779    MAO DK, 1993, J COMPUT PHYS, V104, P377
30780    MAO DK, 1995, SIAM J NUMER ANAL, V32, P1677
30781    MAO DK, 1999, SIAM J NUMER ANAL, V36, P529
30782    MORETTI G, 1972, PIBAL7237 POL I BROO
30783    OSHER S, 1986, IMA VOLUMES MATH ITS, V2, P229
30784    SHU CW, 1987, J COMPUT PHYS, V83, P439
30785    SWARTZ BK, 1986, APPL NUMER MATH, V2, P385
30786    VANLEER B, 1977, J COMPUT PHYS, V23, P276
30787    WANGER DH, 1983, SIAM J MATH ANAL, V14, P534
30788    WOODWARD P, 1984, J COMPUT PHYS, V54, P115
30789    ZHU YL, 1980, DIFFERENCE METHODS I
30790 NR 38
30791 TC 0
30792 SN 1064-8275
30793 J9 SIAM J SCI COMPUT
30794 JI SIAM J. Sci. Comput.
30795 PD JUN 23
30796 PY 2000
30797 VL 22
30798 IS 1
30799 BP 113
30800 EP 151
30801 PG 39
30802 SC Mathematics, Applied
30803 GA 334BP
30804 UT ISI:000088165500007
30805 ER
30806 
30807 PT J
30808 AU Wei, JH
30809    Zhu, SJ
30810    Yu, NW
30811 TI Kinetic model of desulphurisation by powder injection and blowing in RH
30812    refining of molten steel
30813 SO IRONMAKING & STEELMAKING
30814 DT Article
30815 ID IRON
30816 AB The desulphurisation by powder injection and blowing in the RH refining
30817    of molten steel and its mechanism have been considered and analysed.
30818    Based on the two-resistance mass transfer theory and the mass balance
30819    of sulphur in the system, a kinetic model for the process has been
30820    developed. The related parameters of the model, including the mass
30821    transfer coefficients and the effective amount of powder in the molten
30822    steel being treated for desulphurisation, have been reasonably
30823    determined. Modelling and predictions of the process of injecting and
30824    blowing the lime based powder flux under assumed operating modes with
30825    the different initial contents of sulphur and amounts of powder
30826    injected and blown in a RH degasser of 300 t capacity have been carried
30827    out using the model, The relevant circulation rate of the liquid steel
30828    and the powder injection and blowing rate were taken to be 100 t
30829    min(-1) and 150 kg min(-1), respectively, The initial contents of
30830    sulphur in the liquid steel to be treated a nd the amounts of powder
30831    injection and blowing were respectively assumed to be 0.007, 0.006,
30832    0.005, 0.004, 0.003, 0.002 wt-% and 10, 8, 6, 5, 4, 3 kg/t steel, The
30833    total treatment time for desulphurisation under each mode was set at 24
30834    min, equivalent to eight circulation cycles of the liquid steel to be
30835    treated. The results indicated that the predictions made by this model
30836    are in good agreement with data from industrial experiments and
30837    practice. By injecting and blowing the lime based powder flux with the
30838    composition of 85 wt-% lime (CaO) + 15 wt-% fluorspar (CaF2) of 3-5
30839    kg/t steel, it is possible to decrease the sulphur content in the
30840    molten steel to an ultralow level below (5-10) x 10(-4) wt-% from
30841    (60-80) x 10(-4) wt-%. The total treatment time needed will be 12-20
30842    min. Intensifying the powder injection and blowing operation and
30843    increasing the circulation rate of the liquid steel may effectively
30844    increase the rate of the process in RH refining. The model may be
30845    expected to offer some useful information and a reliable basis for
30846    determining the reasonable process parameters and help in optimising
30847    the technology of desulphurisation by powder injection and blowing in
30848    the RH refining of molten steel.
30849 C1 Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China.
30850 RP Wei, JH, Univ Iowa, Dept Mech Engn, Iowa City, IA 52242 USA.
30851 CR *ISIJ, 1971, YOUT YOUK NO MON YAS, P70
30852    ENDOH K, 1989, SADA TETSU TOGISATA, P20
30853    ENDOH K, 1990, NIPP STEEL TECH REP, P45
30854    ENGH TA, 1972, SCAND J METALL, V1, P103
30855    FARIAS LR, 1985, METALL TRANS B, V16, P211
30856    GEIGER GH, 1973, TRANSPORT PHENOMENA, P18
30857    GHOSH DN, 1982, IRONMAK STEELMAK, V9, P136
30858    HALE RJ, 1990, ISS STEELM C P, V73, P69
30859    HANDA N, 1977, TETSU TO HAGANE, V63, P163
30860    HATAKEYAMA T, 1989, IRON STEELMAKER, V15, P23
30861    IRONS GA, 1986, P INT C INJ MET SC 1
30862    KAWAI Y, 1975, TETSU TO HAGANE, V61, P29
30863    KAWAI Y, 1984, T IRON STEEL I JPN, V24, P509
30864    KIRHARA T, 1992, CAMP ISIJ, V5, P1239
30865    KOMAI T, 1982, P 7 INT C VAC MET TO, P1383
30866    LEHNER T, 1977, P INT C INJ MET SCAN
30867    MCNALLEN M, 1980, P INT C INJ MET SCAN
30868    MCNALLEN M, 1983, P INT INJ MET SCAN 3
30869    MYRAYAMA N, 1990, P 6 INT IR STEEL C N, V3, P151
30870    OETERS F, 1973, ARCH EISENHUTTENWES, V44, P727
30871    OETERS F, 1983, P INT C INJ MET SC 1
30872    OHGUCHI S, 1984, IRONMAK STEELMAK, V11, P262
30873    OHGUCHI S, 1984, IRONMAK STEELMAK, V11, P274
30874    OKADA Y, 1992, CAMP ISIJ, V5, P1238
30875    OKADA Y, 1994, TETSU TO HAGANE, V80, T9
30876    RANZ WE, 1952, CHEM ENG PROG, V48, P141
30877    ROBERTSON DGC, 1980, P INT C INJ MET SCAN
30878    SZATKOWSHI M, 1991, IRONMAK STEELMAK, V17, P65
30879    TSUJINO R, 1989, ISIJ INT, V29, P589
30880    UEHARAL H, 1992, CAMP ISIJ, V5, P1240
30881    WEI JH, 1997, UNPUB
30882 NR 31
30883 TC 2
30884 SN 0301-9233
30885 J9 IRONMAKING STEELMAKING
30886 JI Ironmak. Steelmak.
30887 PY 2000
30888 VL 27
30889 IS 2
30890 BP 129
30891 EP 137
30892 PG 9
30893 SC Metallurgy & Metallurgical Engineering
30894 GA 332JE
30895 UT ISI:000088069900007
30896 ER
30897 
30898 PT J
30899 AU Xiao, HT
30900    Xu, HY
30901 TI In situ permeability measurements to establish the influence of slice
30902    mining on floor rocks
30903 SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES
30904 DT Article
30905 C1 Shanghai Univ Sci & Technol, Ctr Special Mining, Tainan 271019, Taiwan.
30906    Shanghai Univ Sci & Technol, Dept Civil Engn, Tainan 271019, Taiwan.
30907 RP Xiao, HT, Shanghai Univ Sci & Technol, Ctr Special Mining, Tainan
30908    271019, Taiwan.
30909 CR CAI DB, 1981, HDB MINE GEOLOGY, P10
30910    JING ZG, 1984, J CHINA COAL SOC, V9, P81
30911    PANG YH, 1982, COAL GEOLOGY EXPLORA, V10, P37
30912    SUN GZ, 1988, STRUCTURE MECH ROCKS, P92
30913    TANG MX, 1988, THESIS SHANDONG U SC
30914    XIAO HT, 1989, COAL GEOLOGY EXPLORA, V17, P39
30915 NR 6
30916 TC 2
30917 SN 1365-1609
30918 J9 INT J ROCK MECH MINING SCI
30919 JI Int. J. Rock Mech. Min. Sci.
30920 PD JUL
30921 PY 2000
30922 VL 37
30923 IS 5
30924 BP 855
30925 EP 860
30926 PG 6
30927 SC Engineering, Geological; Mining & Mineral Processing
30928 GA 332XA
30929 UT ISI:000088098600008
30930 ER
30931 
30932 PT J
30933 AU Lin, L
30934    Liu, ZY
30935 TI Algebraic multilevel iterative preconditioning methods for H-matrices
30936 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
30937 DT Article
30938 DE algebraic multilevel; H-compatible splitting; diagonal compensation
30939    reduction; optimal order preconditioners
30940 AB A purely algebraic method is presented to construct preconditioners for
30941    symmetric positive definite H-matrices. The main technique is
30942    H-compatible splitting and diagonal compensation reduction. Associated
30943    with some special matrix polynomials, under certain condition, this
30944    method is optimal with respect to the rate of convergence and
30945    computational complexity. Numerical results that illustrate these
30946    properties are provided.
30947 C1 Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China.
30948    Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
30949    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
30950 RP Lin, L, Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China.
30951 CR AXELSSON O, 1984, LINEAR ALGEBRA APPL, V58, P3
30952    AXELSSON O, 1989, NUMER MATH, V56, P157
30953    AXELSSON O, 1990, 9045 CATH U DEP MATH
30954    AXELSSON O, 1990, SIAM J NUMER ANAL, V27, P1569
30955    AXELSSON O, 1991, J COMPUT APPL MATH, V38, P31
30956    AXELSSON O, 1994, NUMER LINEAR ALGEBR, V1, P155
30957    AXELSSON O, 1994, NUMER LINEAR ALGEBR, V1, P213
30958    KOLOTILINA LY, 1993, SIAM J MATRIX ANAL A, V14, P45
30959    VASSILEVSKI PS, 1997, SIAM REV, V39, P18
30960 NR 9
30961 TC 0
30962 SN 0020-7160
30963 J9 INT J COMPUT MATH
30964 JI Int. J. Comput. Math.
30965 PY 2000
30966 VL 74
30967 IS 1
30968 BP 97
30969 EP 111
30970 PG 15
30971 SC Mathematics, Applied
30972 GA 333LK
30973 UT ISI:000088131600008
30974 ER
30975 
30976 PT J
30977 AU Hong-Yi, L
30978 TI The calculation of global error for initial value problem of ordinary
30979    differential equations
30980 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
30981 DT Article
30982 DE ordinary differential equation; initial value problem; global error;
30983    numerical analysis
30984 AB This paper presents a simple but reliable method to calculate global
30985    error of ordinary differential equations. The results show that the
30986    global error can be calculated very simply and satisfactory. Several
30987    numerical examples are given to verify the method.
30988 C1 Shanghai Univ, Polytech 2, Shanghai 200041, Peoples R China.
30989 RP Hong-Yi, L, Shanghai Univ, Polytech 2, 80 Shan Xi Rd, Shanghai 200041,
30990    Peoples R China.
30991 CR BRUSA L, 1980, INT J NUMER METH ENG, V15, P685
30992    DORMAND JR, 1978, CELESTIAL MECH, V18, P223
30993    GEAR CW, 1971, NUMERICAL INITIAL VA
30994    PLISCHKE M, 1994, EQUILIBRIUM STAT PHY
30995    RICE JR, 1993, NUMERICAL METHODS SO
30996 NR 5
30997 TC 0
30998 SN 0020-7160
30999 J9 INT J COMPUT MATH
31000 JI Int. J. Comput. Math.
31001 PY 2000
31002 VL 74
31003 IS 2
31004 BP 237
31005 EP 245
31006 PG 9
31007 SC Mathematics, Applied
31008 GA 333LL
31009 UT ISI:000088131700009
31010 ER
31011 
31012 PT J
31013 AU Yan, KZ
31014    Tan, WH
31015 TI The growth rate and statistical fluctuation of Bose-Einstein condensate
31016    formation
31017 SO CHINESE PHYSICS
31018 DT Article
31019 DE Bbose-Einstein condensate; atom laser; growth rate
31020 ID QUANTUM KINETIC-THEORY; EQUATION; TRAP
31021 AB Using the generating function method to solve the master equation of
31022    Bose-Einstein condensate and to evaluate the growth rate, statistical
31023    fluctuation of condensate atoms, we find out that there is a plateau in
31024    the growth rate curve and a super-Poisson distribution observed.
31025 C1 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
31026 RP Yan, KZ, Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800,
31027    Peoples R China.
31028 CR GARDINER CW, 1997, PHYS REV LETT, V79, P1793
31029    GARDINER CW, 1998, PHYS REV A, V58, P536
31030    GARDINER CW, 1998, PHYS REV LETT, V81, P5266
31031    MIESNER HJ, 1998, SCIENCE, V279, P1005
31032    TAN WH, 1994, PHYS LETT A, V190, P13
31033    TAN WH, 1995, OPT COMMUN, V115, P203
31034    WANG ZX, 1956, INTRO STAT PHYSICS, P186
31035    YAN KZ, 1999, ACTA PHYS SIN-CH ED, V48, P1185
31036 NR 8
31037 TC 4
31038 SN 1009-1963
31039 J9 CHIN PHYS
31040 JI Chin. Phys.
31041 PD JUL
31042 PY 2000
31043 VL 9
31044 IS 7
31045 BP 485
31046 EP 489
31047 PG 5
31048 SC Physics, Multidisciplinary
31049 GA 333PY
31050 UT ISI:000088139500002
31051 ER
31052 
31053 PT J
31054 AU Li, HY
31055    Lee, HY
31056 TI One-parameter equation of state for gases and gas mixtures
31057 SO CHINESE JOURNAL OF CHEMICAL ENGINEERING
31058 DT Article
31059 DE equation of state; virial equation; gases; fugacity; correlation;
31060    mixture; polar; nonpolar
31061 ID CORRESPONDING-STATES
31062 C1 Shanghai Univ, Shanghai 200041, Peoples R China.
31063 RP Lee, HY, Shanghai Univ, Shanghai 200041, Peoples R China.
31064 CR CHUECH PL, 1967, IND ENG CHEM FUND, V6, P442
31065    KELL GS, 1968, J CHEM PHYS, V48, P3805
31066    KNAPP H, 1982, CHEM DATA SER, V6
31067    LEE BI, 1975, AICHE J, V21, P510
31068    LEE HY, 1992, FLUID PHASE EQUILIBR, V81, P152
31069    LEE HY, 1997, J SHANGHAI 2 POLYTEC, V14, P13
31070    MARTIN JJ, 1979, IND ENG CHEM FUND, V18, P81
31071    PLOCKER U, 1978, IND ENG CHEM PROC DD, V17, P324
31072    PRAUSNITZ JM, 1968, COMPUTER CALCULATION
31073    SMITH SM, 1975, INTRO CHEM ENG THERM
31074    SOAVE G, 1972, CHEM ENG SCI, V27, P1197
31075    VARGAFTIK NB, 1975, TABLES THERMOPHYSICA
31076 NR 12
31077 TC 0
31078 SN 1004-9541
31079 J9 CHINESE J CHEM ENG
31080 JI Chin. J. Chem. Eng.
31081 PD JUN
31082 PY 2000
31083 VL 8
31084 IS 2
31085 BP 163
31086 EP 166
31087 PG 4
31088 SC Engineering, Chemical
31089 GA 332UJ
31090 UT ISI:000088091500014
31091 ER
31092 
31093 PT J
31094 AU Lu, YL
31095    Zhou, SP
31096    Xu, DM
31097 TI Analysis of properties of high-electron-mobility-transistor under
31098    optical illumination
31099 SO ACTA PHYSICA SINICA
31100 DT Article
31101 DE high electron mobility transistor; photovoltage; charge-controlling
31102    model; 2-dimensional electron gas
31103 ID ANALYTIC MODEL; HEMTS
31104 AB We studied the dynamical behaviors of the depletion-mode AlGaAs/GaAs
31105    high-electron-mobility transistor under optical illumination. The
31106    photovoltage effect and the photogenerated carriers contribution to the
31107    space charge concentration were taken into account. The pinch-off
31108    voltage, the sheet concentration of two-dimensional electron gas
31109    (2-DEG) located at the interface of the: heterojunction, the I-V
31110    characteristic curve, and the transconductance were investigated by
31111    using the charge-controlling model. We found that the pinch-off voltage
31112    was lowered and the sheet concentration of 2-DEG was increased because
31113    of the optical illumination, which, in turn, resulted in an increase in
31114    the current gain and the transconductance of the device.
31115 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
31116    Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
31117 RP Lu, YL, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
31118 CR CHANG CS, 1987, IEEE T ELECTRON DEV, V34, P1456
31119    CHANG CS, 1987, SOLID STATE ELECTRON, V30, P485
31120    CHATURVEDI GJ, 1983, INFRARED PHYS, V23, P65
31121    CHEN CY, 1983, APPL PHYS LETT, V42, P1040
31122    DELAGEBEAUDEUF D, 1982, IEEE T ELECTRON DEV, V29, P955
31123    DESALLES AA, 1990, MICROW OPT TECHN LET, V3, P350
31124    DESALLES AA, 1991, IEEE T MICROW THEORY, V39, P2010
31125    GRAFFEUIL J, 1979, ELECTRON LETT, V15, P439
31126    HUEPPER G, 1991, PHYS REV LETT, V66, P2372
31127    MITRA H, 1998, IEEE T ELECTRON DEV, V45, P68
31128    SIMONS RN, 1987, IEEE T MICROW THEORY, V35, P1444
31129    SIMONS RN, 1990, OPTICAL CONTROL MICR, CH4
31130    SINGHAL A, 1990, SOLID STATE ELECTRON, V33, P1214
31131    SZE SM, 1981, PHYSICS SEMICONDUCTO, CH13
31132    YU LS, 1990, PHYSICS SEMICONDUCTO, CH5
31133 NR 15
31134 TC 1
31135 SN 1000-3290
31136 J9 ACTA PHYS SIN-CHINESE ED
31137 JI Acta Phys. Sin.
31138 PD JUL
31139 PY 2000
31140 VL 49
31141 IS 7
31142 BP 1394
31143 EP 1399
31144 PG 6
31145 SC Physics, Multidisciplinary
31146 GA 333HU
31147 UT ISI:000088125500037
31148 ER
31149 
31150 PT J
31151 AU Dai, HH
31152    Dai, SQ
31153    Huo, Y
31154 TI Head-on collision between two solitary waves in a compressible
31155    Mooney-Rivlin elastic rod
31156 SO WAVE MOTION
31157 DT Article
31158 DE solitary waves; hyperelastic rods
31159 AB The interaction between two solitary waves in hyperelastic rods had
31160    been studied in literature by numerical methods, and here we study the
31161    head-on collision between two solitary waves in a circular cylindrical
31162    rod composed of a compressible Mooney-Rivlin material by a perturbation
31163    approach which combines the reductive perturbation method with the
31164    technique of strained coordinates. The third-order asymptotic solution
31165    which describes the evolution process of interaction is derived. It is
31166    found that the head-on collision does have imprints on the colliding
31167    waves with nonuniform phase shifts at O(epsilon(2)), which cause the
31168    tilting of the wave profiles. Our analytical results provide a formula
31169    for the maximum amplitude during the collision and also successfully
31170    explain the phenomenon that the smaller solitary wave has a larger
31171    distortion while the larger solitary wave has a smaller distortion. (C)
31172    2000 Elsevier Science B.V. All rights reserved.
31173 C1 City Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China.
31174    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
31175 RP Dai, HH, City Univ Hong Kong, Dept Math, Tat Chee Ave, Kowloon Tong,
31176    Hong Kong, Peoples R China.
31177 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
31178    CLARKSON PA, 1986, STUD APPL MATH, V75, P95
31179    COHEN H, 1993, ACTA MECH, V100, P223
31180    COLEMAN BD, 1990, ARCH RATION MECH AN, V109, P39
31181    DAI HH, 1998, ACTA MECH, V127, P193
31182    DAI SQ, 1984, SIENTIA SINICA, V27, P507
31183    DAI SQ, 1992, NONLINEAR PROBLEMS E
31184    DAI SQ, 1997, APPL MATH MECH-ENGL, V18, P113
31185    HECK H, 1993, INTRO MAPLE
31186    MEI CC, 1989, APPL DYNAMICS OCEAN
31187    NARIBOLI GA, 1970, J MATH PHYS SCI, V4, P64
31188    NEWELL AC, 1985, SOLITONS MATH PHYSIC
31189    SAMSONOV AM, 1994, NONLINEAR WAVES SOLI, P349
31190    SOERENSEN MP, 1984, J ACOUST SOC AM, V76, P871
31191    SOERENSEN MP, 1987, J ACOUST SOC AM, V81, P1718
31192    SU CH, 1980, J FLUID MECH, V98, P509
31193    WRIGHT T, 1982, P IUTAM S FIN EL
31194 NR 17
31195 TC 2
31196 SN 0165-2125
31197 J9 WAVE MOTION
31198 JI Wave Motion
31199 PD AUG
31200 PY 2000
31201 VL 32
31202 IS 2
31203 BP 93
31204 EP 111
31205 PG 19
31206 SC Physics, Multidisciplinary; Acoustics; Mechanics
31207 GA 329VE
31208 UT ISI:000087928500001
31209 ER
31210 
31211 PT J
31212 AU Sang, WB
31213    Qian, YB
31214    Shi, WM
31215    Wang, LJ
31216    Yang, J
31217    Liu, DH
31218 TI Equilibrium partial pressures and crystal growth of Cd1-xZnxTe
31219 SO JOURNAL OF CRYSTAL GROWTH
31220 DT Article
31221 DE equilibrium partial pressure; CdZnTe crystal growth; gamma detector
31222 ID CD-TE; SYSTEM
31223 AB The partial pressures, p(Cd) and p(Zn), over Cd1-xZnxTe (CZT) and
31224    Cd1-xZnx, melts were estimated based on known thermodynamic data and
31225    the partial pressures, p(Cd) and p(Zn), over Cd0.86Zn0.14 alloy melt at
31226    a temperature of about 980 degrees C could be equilibrium with those
31227    over Cd0.8Zn0.2Te melt at a melting temperature of 1162 degrees C. The
31228    Cd0.8Zn0.2Te crystal growth from the melt under controlled constituent
31229    partial pressures, provided by Cd0.86Zn0.14 alloy instead of only Cd
31230    source was carried out in this work. The best result for the
31231    resistivity, which has reached up to about 10(10) Omega cm, has been
31232    obtained under the equilibrium partial pressures estimated by
31233    thermodynamic relationships. The axial variation in Zn concentration,
31234    which has been obviously improved due to the Zn replenishment from the
31235    reservoir during the whole growth procedure, is within about 4%. EPD on
31236    the average was about 2 x 10(5) and 4 x 10(4)cm(-2) at the middle of
31237    the bulk. IR transmissivity in the range of 2 to 42 mu m is larger than
31238    60%. In addition, the relationship between resistivities and conducting
31239    types of the crystal and different controlled pressures is also
31240    discussed. (C) 2000 Elsevier Science B.V. All rights reserved.
31241 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
31242 RP Sang, WB, Shanghai Univ, Sch Mat Sci & Engn, Jiading Campus,20
31243    Chengzhong Rd,Jiading, Shanghai 201800, Peoples R China.
31244 CR BREBRICK RF, 1995, METALL MATER TRANS A, V26, P2597
31245    BUTLER JF, 1992, IEEE T NUCL SCI, V39, P605
31246    EISEN Y, 1998, J CRYST GROWTH, V184, P1310
31247    GLASS HL, 1998, J CRYST GROWTH, V184, P1035
31248    HULTGREN R, 1963, SELECTED VALUES THER, P637
31249    JORDAN AS, 1970, MET T, V1, P239
31250    NIEMELA A, 1994, IEEE T NUCL SCI, V41, P1054
31251    PETERS K, 1990, CRYST RES TECHNOL, V25, P1107
31252    TANAKA A, 1989, J CRYST GROWTH, V94, P166
31253    TUNG T, 1982, J VAC SCI TECHNOL, V21, P117
31254    VYDYANATH HR, 1993, J ELECTRON MATER, V22, P1067
31255 NR 11
31256 TC 8
31257 SN 0022-0248
31258 J9 J CRYST GROWTH
31259 JI J. Cryst. Growth
31260 PD JUN
31261 PY 2000
31262 VL 214
31263 BP 30
31264 EP 34
31265 PG 5
31266 SC Crystallography
31267 GA 328WC
31268 UT ISI:000087873200009
31269 ER
31270 
31271 PT J
31272 AU Sang, WB
31273    Ju, JH
31274    Shi, WM
31275    Qian, YB
31276    Wang, LJ
31277    Xia, YB
31278    Wu, WH
31279    Fang, JX
31280    Li, YJ
31281    Zhao, J
31282    Gong, HM
31283 TI Comparison of physical passivation of Hg1-xCdxTe
31284 SO JOURNAL OF CRYSTAL GROWTH
31285 DT Article
31286 DE MCT physical passivation; ZnS/MCT interface; DLC/MCT interface
31287 ID HGCDTE; WINDOW
31288 AB The interface properties between well-polished MCT and ZnS layers
31289    deposited by three different physical techniques, and DLC prepared by
31290    RFPCVD, have been investigated by AES, IRTS, etc. ZnS and DLC films can
31291    prevent the outward diffusion of the components in MCT. However, Zn and
31292    S in the ZnS layer tend to diffuse into the MCT, especially, the S
31293    diffuses deeper in the case of EBV, and O is detected especially after
31294    PLD, but C in the DLC layer diffuses only slightly into the MCT. In
31295    particular, the IR transmission of the MCT with deposited DLC is
31296    obviously raised, and higher than that of the MCT with deposited ZnS at
31297    least in the range of 7.1-7.5 mu m. (C) 2000 Elsevier Science B.V. All
31298    rights reserved.
31299 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
31300    Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China.
31301 RP Sang, WB, Shanghai Univ, Sch Mat Sci & Engn, Jiading Campus, Shanghai
31302    201800, Peoples R China.
31303 CR BUBULAC LO, 1995, J ELECTRON MATER, V24, P1175
31304    HARRIS DC, 1995, P SOC PHOTO-OPT INS, V2552, P325
31305    HOLLAND L, 1979, THIN SOLID FILMS, V58, P107
31306    KINCH MA, 1982, J VAC SCI TECHNOL, V21, P215
31307    MCKINLEY JM, 1995, P SOC PHOTO-OPT INS, V2554, P213
31308    MROCZKOWSKI JA, 1983, J APPL PHYS, V54, P2041
31309    NEMIROVSKY Y, 1989, J VAC SCI TECHNOL A, V7, P450
31310 NR 7
31311 TC 3
31312 SN 0022-0248
31313 J9 J CRYST GROWTH
31314 JI J. Cryst. Growth
31315 PD JUN
31316 PY 2000
31317 VL 214
31318 BP 265
31319 EP 268
31320 PG 4
31321 SC Crystallography
31322 GA 328WC
31323 UT ISI:000087873200057
31324 ER
31325 
31326 PT J
31327 AU Xu, KX
31328    Essa, AA
31329    Zhou, SP
31330    Bao, JS
31331 TI Anomalous microwave response of YBa2Cu3O7-delta granular thin films
31332    under magnetic fields
31333 SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY
31334 DT Article
31335 ID KOSTERLITZ-THOULESS TRANSITION; SINGLE-CRYSTALS; SUPERCONDUCTORS;
31336    RADIATION; ARRAYS
31337 AB The microwave response of YBa2Cu3O7-delta (YBCO) granular films has
31338    been studied at a microwave frequency of 30.5 GHz. In absence of a
31339    magnetic field, the dependencies of a normal microwave response on the
31340    bias current was observed at a temperature close to T-c. When a
31341    magnetic field ranging from 5.0 to 33.0 mT is applied, the responses
31342    broaden and shift toward a lower temperature. In the superconducting
31343    state, the responses were found to be highly dependent on the magnetic
31344    field. For a current of 5.0 mA and a magnetic field above 17.0 mT, the
31345    responses increased and did not vanish, even at a very low temperature,
31346    which is believed to be correlative with the anisotropic character of
31347    the structure.
31348 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
31349 RP Xu, KX, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
31350 CR AFANASYEV AS, 1989, IEEE T MAGN, V25, P2571
31351    BOONE BG, 1991, J APPL PHYS, V69, P2676
31352    CHANG K, 1991, J APPL PHYS, V69, P7316
31353    CHERN JD, 1993, IEEE T APPL SUPERCON, V3, P2128
31354    CULERTSON JC, 1991, PHYS REV B, V44, P9609
31355    DAVIS LC, 1990, PHYS REV B, V42, P99
31356    DONIACH S, 1979, PHYS REV LETT, V42, P1169
31357    ENOMOTO Y, 1986, J APPL PHYS, V59, P3808
31358    GAMMEL PL, 1991, PHYS REV LETT, V66, P953
31359    HERBERT ST, 1998, PHYS REV B, V57, P1154
31360    JUNG G, 1989, APPL PHYS LETT, V54, P2355
31361    KOCH RH, 1990, PHYS REV LETT, V64, P2586
31362    LI Q, 1990, PHYS REV LETT, V64, P3086
31363    MARTIN S, 1989, PHYS REV LETT, V62, P677
31364    PHONG LN, 1993, J APPL PHYS, V74, P7414
31365    ROSE K, 1975, APPL SUPERCONDUCTIVI
31366    RZCHOWSKI MS, 1990, PHYS REV B, V42, P2041
31367    TINHAM M, 1995, INTRO SUPERCONDUCTIV
31368    VADLAMANNATI S, 1991, PHYS REV B, V44, P7094
31369    YEH NC, 1989, PHYS REV B, V39, P9708
31370    YING QY, 1990, PHYS REV B, V42, P2242
31371    YOSOHISATO Y, 1990, JPN J APPL PHYS, V29, P1080
31372 NR 22
31373 TC 0
31374 SN 1051-8223
31375 J9 IEEE TRANS APPL SUPERCONDUCT
31376 JI IEEE Trans. Appl. Supercond.
31377 PD JUN
31378 PY 2000
31379 VL 10
31380 IS 2
31381 BP 1606
31382 EP 1611
31383 PG 6
31384 SC Engineering, Electrical & Electronic; Physics, Applied
31385 GA 329UR
31386 UT ISI:000087927300005
31387 ER
31388 
31389 PT J
31390 AU Yang, XX
31391    Zhong, SS
31392 TI Analysis of two dual-polarization square-patch antennas
31393 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
31394 DT Article
31395 DE patch antenna; dual polarization; Green's function approach; input
31396    impedance
31397 ID MICROSTRIP ANTENNAS
31398 AB New analytical expressions for the input and mutual impedance of two
31399    kinds of dual-polarization square-patch antenna double fed ar the
31400    orthogonal edges or corners are obtained using the Green's function
31401    approach based on the planar circuit principle. The frequency
31402    characteristics of the input impedance, VSWR, and isolation are
31403    analyzed and verified by the published data and experiments. The
31404    calculating formulas are very efficient with little computation, and
31405    are suitable for engineering design. (C) 2000 John Wiley & Sons, Inc.
31406 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
31407 RP Yang, XX, Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R
31408    China.
31409 CR ABDALHAMEED RA, 1998, P I ELECTR ENG, V145, P455
31410    BENALLA A, 1986, IEEE T MICROW THEORY, V34, P733
31411    GATSINGER WJ, 1973, IEEE T MICROWAVE THE, V21, P34
31412    HAMMERSTAD EO, 1975, 5 EUR MICR C SEPT, P268
31413    LO YT, 1979, IEEE T ANTENN PROPAG, V27, P137
31414    MUNSON RE, 1974, IEEE T ANTENN PROPAG, V22, P74
31415    OKOSHI T, 1972, IEEE T MICROW THEORY, V20, P245
31416    RICHARDS WF, 1981, IEEE T ANTENN PROPAG, V29, P38
31417 NR 8
31418 TC 3
31419 SN 0895-2477
31420 J9 MICROWAVE OPT TECHNOL LETT
31421 JI Microw. Opt. Technol. Lett.
31422 PD AUG 5
31423 PY 2000
31424 VL 26
31425 IS 3
31426 BP 153
31427 EP 156
31428 PG 4
31429 SC Engineering, Electrical & Electronic; Optics
31430 GA 328KW
31431 UT ISI:000087850900005
31432 ER
31433 
31434 PT J
31435 AU Zhang, SH
31436    Li, YZ
31437 TI Concise method for evaluating the probability distribution of the
31438    marginal cost of power generation
31439 SO IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION
31440 DT Article
31441 ID CONTRACTS; SYSTEM
31442 AB In the developing electricity market, many questions on electricity
31443    pricing and the risk modelling of forward contracts require the
31444    evaluation of the expected value and probability distribution of the
31445    short-run marginal cast of power generation at any given time. A
31446    concise forecasting method is provided, which is consistent with the
31447    definitions of marginal costs and the techniques of probabilistic
31448    production costing. The method embodies clear physical concepts, so
31449    that it can be easily understood theoretically and computationally
31450    realised. A numerical example has been used to test the proposed method.
31451 C1 Shanghai Univ, Dept Automat, Shanghai 200072, Peoples R China.
31452 RP Zhang, SH, Shanghai Univ, Dept Automat, 149 Yanchang Rd, Shanghai
31453    200072, Peoples R China.
31454 CR BILLINTON R, 1993, RELIABILITY EVALUATI
31455    BILLINTON R, 1994, IEEE T POWER SYST, V9, P68
31456    BLOOM JA, 1984, IEEE T POWER AP SYST, V103, P1725
31457    BLOOM JA, 1992, IEEE T POWER SYST, V7, P1370
31458    DAVID AK, 1994, IEE P-GENER TRANSM D, V141, P75
31459    GEDRA TW, 1994, IEEE T POWER SYST, V9, P1766
31460    KIRSCH LD, 1988, IEEE T PWRS, V3, P1133
31461    RAU NS, 1985, IEEE T POWER APPARAT, V104, P3493
31462    SHIH FR, 1998, IEEE T POWER SYST, V13, P731
31463    SUTANTON D, 1989, IEEE T ENERGY CONVER, V4, P559
31464 NR 10
31465 TC 1
31466 SN 1350-2360
31467 J9 IEE PROC-GENER TRANSM DISTRIB
31468 JI IEE Proc.-Gener. Transm. Distrib.
31469 PD MAY
31470 PY 2000
31471 VL 147
31472 IS 3
31473 BP 137
31474 EP 142
31475 PG 6
31476 SC Engineering, Electrical & Electronic
31477 GA 324AL
31478 UT ISI:000087598100001
31479 ER
31480 
31481 PT J
31482 AU Li, HB
31483    Hu, YY
31484    Sun, L
31485    Shen, YJ
31486 TI Synthesis of 1-amino-2-(4 '-methoxycarbonyl ethyl-2
31487    '-methyl)phenoxy-4-hydroxy anthraquinone
31488 SO DYES AND PIGMENTS
31489 DT Article
31490 DE 1-amino-2-(4 '-methoxylcarbonyl ethyl-2 '-methyl)phenoxy-4-hydroxy
31491    anthraquinone; 4-(beta-cyanoethyl)-2-methylphenol; Friedel-Crafts
31492    reaction; hydrolysis of nitrile
31493 AB 4-(beta-Cyanoethyl)-2-methylphenol was synthesized via the
31494    Friedel-Crafts reaction between o-cresol and acrylonitrile and was then
31495    condensed with 1-amino-2-bromo-4-hydroxy anthraquinone. The resulting
31496    product was hydrolyzed in alkaline medium and esterified with methanol
31497    to afford the title compound. Mass spectra, H-1 NMR and visible spectra
31498    of the title compound and the intermediates were measured. (C) 2000
31499    Elsevier:Science Ltd. All rights reserved.
31500 C1 Shanghai Univ, Sch Environm & Architectural Engn, Shanghai 200072, Peoples R China.
31501    E China Univ Sci & Technol, Inst Fine Chem, Shanghai 200237, Peoples R China.
31502 RP Shen, YJ, Shanghai Univ, Sch Environm & Architectural Engn, Shanghai
31503    200072, Peoples R China.
31504 CR 15316, JP
31505    JOHNSON HW, 1975, J ORG CHEM, V22, P1264
31506    LAI DY, 1981, GONGYE HECHENG RANLI, P82
31507    RICHTER RH, 1977, 4051166, US
31508    SUN SD, 1992, CHINESE J ORG CHEM, V12, P96
31509    ZHANG ZY, 1995, JINGXI YOUJI HECHENG, P270
31510    ZHOU QK, 1993, SHANGHAI RANLIAO, V105, P5
31511 NR 7
31512 TC 0
31513 SN 0143-7208
31514 J9 DYE PIGMENT
31515 JI Dyes Pigment.
31516 PD JUN
31517 PY 2000
31518 VL 45
31519 IS 3
31520 BP 185
31521 EP 188
31522 PG 4
31523 SC Chemistry, Applied; Engineering, Chemical; Materials Science, Textiles
31524 GA 328QJ
31525 UT ISI:000087861300002
31526 ER
31527 
31528 PT J
31529 AU Zhu, WP
31530    Guo, P
31531    Huang, Q
31532 TI General solution for U-shaped bellows overall-bending problems
31533 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
31534 DT Article
31535 DE flexible shells; shells of revolution; circular ring shells; bellows;
31536    U-shaped bellows
31537 AB The formulae for stresses and angular displacements of U-shaped bellows
31538    overall bending in a meridian plane under pure bending moments are
31539    presented based on the general solution for slender ring shells
31540    proposed by Zhu Weiping, et al. and the solution for ring plates. The
31541    results evaluated in this paper are compared with those on EJMA
31542    (standards of the expansion joint manufacturers association) and of the
31543    experiment given by Li Tingxilz, et al.
31544 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
31545 RP Zhu, WP, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
31546    200072, Peoples R China.
31547 CR 1993, STANDARDS EXPANSION
31548    AXELRAD EL, 1976, FLEXIBLE SHELLS M
31549    AXELRAD EL, 1987, THEORY FLEXIBLE SHEL
31550    CHIEN WZ, 1979, J TSINGHUA U, V19, P27
31551    CHIEN WZ, 1980, APPL MATH MECH ENGLI, V1, P305
31552    CHIEN WZ, 1981, APPL MATH MECH ENGLI, V2, P103
31553    CHIEN WZ, 1983, APPL MATH MECH, V4, P649
31554    HAMADA M, 1971, B JSME, V14, P401
31555    HUANG Q, 1986, APPL MATH MECH, V7, P573
31556    LI TX, 1994, J S CHINA U TECH, V22, P94
31557    NARASIMHAM SV, 1997, INT J PRES VES PIP, V71, P35
31558    QIAN H, 1982, APPL MATH MECH, V3, P99
31559    SKOCZEN B, 1992, INT J MECH SCI, V34, P901
31560    ZHU WP, 1998, P 2 ICIWS 1998 SING, P477
31561    ZHU WP, 1999, APPL MATH MECH-ENGL, V20, P952
31562 NR 15
31563 TC 4
31564 SN 0253-4827
31565 J9 APPL MATH MECH-ENGL ED
31566 JI Appl. Math. Mech.-Engl. Ed.
31567 PD APR
31568 PY 2000
31569 VL 21
31570 IS 4
31571 BP 371
31572 EP 382
31573 PG 12
31574 SC Mathematics, Applied; Mechanics
31575 GA 328KN
31576 UT ISI:000087850200001
31577 ER
31578 
31579 PT J
31580 AU Deng, K
31581    Ren, ZM
31582    Jiang, GC
31583 TI Theoretical and experimental analysis of continuous casting with
31584    soft-contacted mould
31585 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
31586 DT Article
31587 DE continuous casting; numerical simulation; soft-contacted mould
31588 AB Coupling the quasi-3D numerical simulation of electromagnetic field and
31589    the experiments with some metals such as tin, aluminum, copper and
31590    steel, the electromagnetic characteristics of continuous casting with
31591    soft-contacted mould, especially the influences of power frequency, the
31592    mould structure, and the inductor position, size and current on the
31593    electromagnetic force and pressure on the billet, were analyzed. The
31594    result shows that, in continuous casting with soft-contacted mould, the
31595    electromagnetic pressure on the surface of billet increases with the
31596    rising of the power frequency as a logarithmically parabolic function
31597    and, with that of inductor current as a parabolic function. The design
31598    principle of the soft-contacted mould is that 1) the mould structure
31599    should be 'more segments and thin slits'; 2) the topside of inductor
31600    should be at the same location with the meniscus of molten metal; 3)
31601    the inductor should cover the initial solidifying shell of billet.
31602 C1 Shanghai Univ, Sch Mat, Shanghai 200072, Peoples R China.
31603 CR AYATA K, 1997, CAMP ISIJ, V10, P828
31604    CHA PR, 1998, ISIJ INT, V38, P403
31605    DENG K, 1994, J SHANGHAI U TECH, V15, P87
31606    DENG K, 1996, T NONFERR METAL SOC, V6, P12
31607    DONG HF, 1998, J IRON STEEL, V10, P5
31608    FURUHASHI S, 1998, TETSU TO HAGANE, V84, P625
31609    LAVERS JD, 1989, ISIJ INT, V29, P993
31610    LI TJ, 1997, ACTA METALLURGICA SI, V33, P524
31611    MORISHITA M, 1991, MAGNETOHYDRODYNAMICS, P267
31612    SAKANE J, 1988, METALL T B, V19, P397
31613    VIVES C, 1989, METALL TRANS B, V20, P623
31614    ZHU XY, 1991, STUDY ELECTROMAGNETI
31615 NR 12
31616 TC 1
31617 SN 1003-6326
31618 J9 TRANS NONFERROUS METAL SOC CH
31619 JI Trans. Nonferrous Met. Soc. China
31620 PD JUN
31621 PY 2000
31622 VL 10
31623 IS 3
31624 BP 314
31625 EP 319
31626 PG 6
31627 SC Metallurgy & Metallurgical Engineering
31628 GA 327KX
31629 UT ISI:000087794000006
31630 ER
31631 
31632 PT J
31633 AU Zhu, XH
31634    Zhu, JM
31635    Zhou, SH
31636    Li, Q
31637    Meng, ZY
31638    Liu, ZG
31639    Ming, NB
31640 TI Domain morphology evolution associated with the relaxer-normal
31641    ferroelectric transition in the Bi- and Zn-modified
31642    Pb(Ni1/3Nb2/3)O-3-PbZrO3-PbTiO3 system
31643 SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
31644 DT Article
31645 DE domains; electron microscopy; ferroelectric properties; Pb(Ni,Nb)O-3;
31646    PbTiO3; PbZrO3; perovskites
31647 ID MODIFIED PB(NI1/3NB2/3)O-3-PBTIO3-PBZRO3 CERAMICS; LEAD-MAGNESIUM
31648    NIOBATE; PEROVSKITE FERROELECTRICS; DIELECTRIC-PROPERTIES; BISMUTH;
31649    BEHAVIOR
31650 AB To understand the dielectric behavior from a viewpoint of domain
31651    configuration, the domain morphology evolution in
31652    (Pb0.985Bi0.01)(Ni1/4Zn1/12Nb2/3)(0.2)(Zr1-sigmaTisigma)(0.8)O-3
31653    ceramics (0.30 less than or equal to sigma less than or equal to 0.60)
31654    has been investigated by transmission electron microscopy and high
31655    resolution electron microscopy. The results indicated that the domain
31656    morphology evolved from the normal micron-sized domains to herringbone
31657    domain patterns, and finally to the polar nanodoamains approximately 3
31658    similar to 6 nm in size when the PT content was decreased from 60 to 30
31659    mol%. The normal twin-related 90 degrees macrodomains are closely
31660    correlated with the normal dielectric response of the composition with
31661    higher PT content, whereas the relaxer response of the composition with
31662    lower PT content is directly attributable to nanometer domains that
31663    contain 1:1 short-range ordering on the B-site sub-lattice. A model is
31664    proposed to describe the effect of the PbTiO3 content on the
31665    ferroelectric domain morphology evolution in the system. (C) 2000
31666    Elsevier Science Ltd. All rights reserved.
31667 C1 Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.
31668    Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
31669    CCAST, World Lab, Beijing 100080, Peoples R China.
31670 RP Zhu, XH, Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct,
31671    Nanjing 210093, Peoples R China.
31672 CR AKBAS MA, 1997, J AM CERAM SOC, V80, P2933
31673    CHEN J, 1989, J AM CERAM SOC, V72, P593
31674    CROSS LE, 1987, FERROELECTRICS, V76, P241
31675    HARMER MP, 1989, FERROELECTRICS, V97, P263
31676    HILTON AD, 1990, J MATER SCI, V25, P3461
31677    HU YH, 1986, J AM CERAM SOC, V69, P594
31678    POKOV VA, 1961, SOV PHYS-SOLID STATE, V3, P613
31679    RANDALL C, 1987, FERROELECTRICS, V76, P277
31680    RANDALL CA, 1990, J MATER RES, V5, P829
31681    RANDALL CA, 1990, JPN J APPL PHYS 1, V29, P327
31682    SETTER N, 1980, J APPL PHYS, V51, P4356
31683    SMOLENSKY GA, 1970, J PHYS SOC JAPAN   S, V28, P26
31684    SWARTZ SL, 1984, J AM CERAM SOC, V67, P311
31685    YAO X, 1983, J APPL PHYS, V54, P3399
31686    YOON MS, 1995, J APPL PHYS, V77, P3991
31687    ZHU XH, 1997, J MATER SCI, V32, P4275
31688    ZHU XH, 1998, FERROELECTRICS, V215, P265
31689    ZHU XH, 1999, J MATER SCI, V34, P1533
31690 NR 18
31691 TC 3
31692 SN 0955-2219
31693 J9 J EUR CERAM SOC
31694 JI J. European Ceram. Soc.
31695 PD AUG
31696 PY 2000
31697 VL 20
31698 IS 9
31699 BP 1251
31700 EP 1255
31701 PG 5
31702 SC Materials Science, Ceramics
31703 GA 324PJ
31704 UT ISI:000087630300004
31705 ER
31706 
31707 PT J
31708 AU Liu, YF
31709    Hua, JD
31710    Sang, WB
31711 TI Dielectric properties in ferroelectric optically active polyamides
31712 SO JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS
31713 DT Article
31714 DE dielectric constant; dielectric loss; dielectric properties; optically
31715    active polymers; polyamides
31716 ID LIQUID-CRYSTALLINE POLYACRYLATES; POLARIZATION; COPOLYMERS
31717 AB A relationship between dielectric constant epsilon or dielectric loss
31718    tan delta and structure was studied for optically active polyamides.
31719    The samples of these polyamides exhibited a chiral smectic phase due to
31720    their asymmetric structures and strong hydrogen bonds. The dielectric
31721    parameters were significantly influenced by temperature, but were
31722    hardly affected by frequency in the high-frequency region. The hindered
31723    rotations of the mesogens, which affect the polarization, depended on
31724    the structures and the phase transitions.
31725 C1 Shanghai Univ Sci & Technol, Dept Polymer Mat, Shanghai 201800, Peoples R China.
31726    Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
31727 RP Liu, YF, Shanghai Univ Sci & Technol, Dept Polymer Mat, Shanghai
31728    201800, Peoples R China.
31729 CR BALIZER E, 1991, IEEE PUBLICATION, P193
31730    CHIELLINI E, 1992, ACS SYM SER, V493, P280
31731    FURUKAWA T, 1992, POLYM PREPR JPN, V41, P4562
31732    KOZLOVSKY MV, 1992, CRYST RES TECHNOL, V27, P1141
31733    LEE JW, 1991, J POLYM SCI POL PHYS, V29, P273
31734    LIU Y, 1999, SHANGHAI DAXUE XUEBA, V5, P165
31735    OHTANI M, 1992, POLYM PREPR JPN, V41, P4559
31736    PORTUGALL M, 1982, MAKROMOL CHEM, V183, P2311
31737    SHIBAEV VP, 1984, POLYM BULL, V12, P299
31738    YAMAMOTO M, 1992, 04223440, JP
31739    ZENTEL R, 1985, MACROMOLECULES, V18, P960
31740 NR 11
31741 TC 0
31742 SN 0022-2348
31743 J9 J MACROMOL SCI-PHYS
31744 JI J. Macromol. Sci.-Phys.
31745 PY 2000
31746 VL B39
31747 IS 3
31748 BP 349
31749 EP 358
31750 PG 10
31751 SC Polymer Science
31752 GA 327AQ
31753 UT ISI:000087770400004
31754 ER
31755 
31756 PT J
31757 AU Hua, JD
31758    Liu, YF
31759    Yuan, WJ
31760 TI The compatibility of a polymeric catalyst-substrate-solvent and
31761    reaction rate. IV
31762 SO JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS
31763 DT Article
31764 DE catalyst; compatibility; electrostatic interaction; hydrogenation;
31765    polymer-metal complex
31766 AB This article focuses on charged polymer catalyst systems. Based on
31767    chemical thermodynamics, kinetics, and interface chemistry, a
31768    quantitative relationship between the catalysis rate and the charge
31769    density on the various components in the catalysis system was obtained.
31770    It can be formulated as follows:
31771    r = A alpha phi(2)(1 - phi(2)) exp {lambda sigma(2) exp(gamma root
31772    alpha(1-phi(2)) + beta root alpha(1 - phi(2))[alpha(1 - phi(2)) +
31773    sigma(2)phi(2)]}
31774    This formula indicates that the larger the value of the charge density
31775    of the polymer backbone, the better the compatibility and, in turn, the
31776    faster the catalysis rate. This result is compared to our experiments
31777    and to literature results.
31778 C1 Shanghai Univ Sci & Technol, Dept Polymer Mat, Shanghai 201800, Peoples R China.
31779 RP Liu, YF, Shanghai Univ Sci & Technol, Dept Polymer Mat, Shanghai
31780    201800, Peoples R China.
31781 CR DEBYE P, 1923, PHYSIK, V2, P185
31782    DEBYE P, 1923, PHYSIK, V2, P24
31783    HUA J, 1989, J APPL POLYM SCI, V38, P1211
31784    HUA J, 1989, J MACROMOL SCI PHY B, V28, P455
31785    HUA J, 1993, J MACROMOL SCI PHY B, V32, P183
31786    ISE N, 1968, J AM CHEM SOC, V90, P4242
31787    YIN Y, 1980, CONCISE TXB PHYSICAL, V2, P214
31788 NR 7
31789 TC 0
31790 SN 0022-2348
31791 J9 J MACROMOL SCI-PHYS
31792 JI J. Macromol. Sci.-Phys.
31793 PY 2000
31794 VL B39
31795 IS 3
31796 BP 359
31797 EP 372
31798 PG 14
31799 SC Polymer Science
31800 GA 327AQ
31801 UT ISI:000087770400005
31802 ER
31803 
31804 PT J
31805 AU Xu, H
31806    Shao, J
31807 TI Molecular dynamics simulation of the phase transition of
31808    alpha-berlinite under high pressure
31809 SO ACTA PHYSICO-CHIMICA SINICA
31810 DT Article
31811 DE molecular dynamics simulation; alpha-berlinite; pressure-induced
31812    amorphization
31813 ID GLASS; ALPO4
31814 AB A Molecular dynamics simulation of the behavior of alpha-berlinite
31815    (AIPO(4)) was performed between -20 GPa to 40 GPa at 300 K, With
31816    increasing pressure, the PO4 tetrahedron almost keeps unchanged, while
31817    the AlO4 tetrahedron becomes more and more distorted, but both P and Al
31818    continue to keep four coordinated with oxygen in the pressure region
31819    studied. The lattice constant a is more compressible than c and the
31820    calculated cell edge compressibilities are in good agreement with the
31821    experimental data available in low pressure region, An amorphous solid
31822    is formed at about 20 GPa and this glass, when releasing the pressure
31823    to zero, will transform back to its original crystal structure. The
31824    crystal structure can remain under tension until -15GPa. Further
31825    tension will make the crystal structure collapse.
31826 C1 Changshu Coll, Dept Chem, Changshu 215500, Peoples R China.
31827    Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
31828 RP Xu, H, Changshu Coll, Dept Chem, Changshu 215500, Peoples R China.
31829 CR ANGELL CA, 1994, NUOVO CIMENTO D, V16, P993
31830    KIEFFER J, 1999, J PHYS CHEM B, V103, P4153
31831    KRUGER MB, 1990, SCIENCE, V249, P647
31832    MCNEW J, 1992, VA QUART REV, V68, P1
31833    SCIORTINO F, 1995, PHYS REV E B, V52, P6484
31834    SHAO J, 1990, ACTA PHYS SINICA, V39, P245
31835    SHAO J, 1993, ACTA METALLURGICA SI, V29, B11
31836    SHAO J, 1993, CHINESE PHYS LETT, V10, P669
31837    SOWA H, 1990, Z KRISTALLOGR, V192, P119
31838    TSE JS, 1993, PHYS REV LETT, V70, P174
31839    VANBEEST BWH, 1990, PHYS REV LETT, V64, P1955
31840    XU H, 1999, ACTA METALLURGICA SI, V35, P1065
31841 NR 12
31842 TC 2
31843 SN 1000-6818
31844 J9 ACTA PHYS-CHIM SIN
31845 JI Acta Phys.-Chim. Sin.
31846 PD JUN
31847 PY 2000
31848 VL 16
31849 IS 6
31850 BP 512
31851 EP 516
31852 PG 5
31853 SC Chemistry, Physical
31854 GA 325GJ
31855 UT ISI:000087667600007
31856 ER
31857 
31858 PT J
31859 AU Wu, YJ
31860    Guo, BY
31861 TI Localization and approximation of attractors for the
31862    Kuramoto-Sivashinsky equations
31863 SO ACTA MATHEMATICA SCIENTIA
31864 DT Article
31865 DE Kuramoto-Sivashinsky equations; attractors; approximate inertial
31866    manifolds
31867 AB The aim of this paper is to provide explicitly a sequence of
31868    m-dimensional approximate inertial manifolds M(m,j,)j = 1,2,, for each
31869    positive integer m, for the Kuramoto-Sivashinsky equations. A very thin
31870    neighborhood into which the orbits enter with an exponential speed and
31871    in a finite time is associated with each manifold. The thickness of
31872    these neighborhoods decreases with increasing m for a fixed order j.
31873    Besides, the neighborhoods localize the global attractor and aid in the
31874    approximate computation of large-time solutions of the
31875    Kuramoto-Sivashinsky equations.
31876 C1 Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China.
31877    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
31878 CR FOIAS C, 1988, J DIFFER EQUATIONS, V73, P309
31879    FOIAS C, 1988, RAIRO MODEL MATH ANA, V22, P93
31880    NICOLAENKO B, 1985, PHYSICA D, V16, P155
31881    PROMISLOW K, 1990, PHYSICA D, P232
31882    PROMISLOW K, 1991, J DYNAMICS DIFFERENT, V3, P491
31883    PROMISLOW K, 1991, NONLINEAR ANAL-THEOR, V16, P959
31884    TEMAM R, 1988, APPL MATH SCI SER, V8
31885    TEMAM R, 1989, J FS TOKYO IA, V36, P629
31886    WU YJ, 1994, ADV MECH, V24, P145
31887    WU YJ, 1999, J COMPUT MATH, V17, P243
31888 NR 10
31889 TC 0
31890 SN 0252-9602
31891 J9 ACTA MATH SCI
31892 JI Acta Math. Sci.
31893 PD APR
31894 PY 2000
31895 VL 20
31896 IS 2
31897 BP 145
31898 EP 154
31899 PG 10
31900 SC Mathematics
31901 GA 324JR
31902 UT ISI:000087619000001
31903 ER
31904 
31905 PT J
31906 AU Chen, YX
31907    Yao, MY
31908    Wan, XJ
31909    Xu, WX
31910 TI Effect of Fe on the environmental embrittlement of Co3Ti alloy
31911 SO INTERMETALLICS
31912 DT Article
31913 DE hydrogen embrittlement
31914 ID MECHANICAL-PROPERTIES
31915 AB The mechanical properties of Co3Ti-based alloys were investigated. The
31916    tensile results show that the environment embrittlement of the alloy
31917    was completely suppressed when third element Fe was added to Ll(2)-type
31918    Co3Ti alloy. The AES result shows that the surface reaction of Co3Ti-Fe
31919    alloy with water vapor saturates at exposure of 2x10(-3) Pa s, bur it
31920    does not saturate at 0.1 Pa s exposure for Co3Ti alloy, and that the
31921    extent of the surface reaction of Co3Ti-Fe with water vapor is much
31922    smaller than that of Co3Ti at the same exposure. It illustrates that
31923    the beneficial effect of Fe in Co3Ti on the environmental embrittlement
31924    is attributed to its obvious reduction of the kinetics of the surface
31925    reaction with water vapor. (C) 2000 Elsevier Science Ltd. All rights
31926    reserved.
31927 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
31928    Shanghai Iron & Steel Res Inst, Shanghai 200940, Peoples R China.
31929 RP Chen, YX, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
31930 CR CHEN TK, UNPUB SCRIPTA MAT
31931    GEORGE EP, 1993, SCRIPTA METALL MATER, V28, P857
31932    LIU CT, 1991, SCRIPTA METALL MATER, V25, P1933
31933    LIU Y, 1989, J MATER SCI, V24, P4458
31934    TAKASUGI T, 1986, ACTA METALL, V34, P607
31935    TAKASUGI T, 1990, J MATER SCI, V25, P4239
31936    TAKASUGI T, 1991, J MATER SCI, V26, P1173
31937    WAN X, 1994, J MATER SCI TECHNOL, V10, P39
31938    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
31939    WAN XJ, 1995, ACTA METALL SINICA, V8, P299
31940 NR 10
31941 TC 1
31942 SN 0966-9795
31943 J9 INTERMETALLICS
31944 JI Intermetallics
31945 PD MAY-JUN
31946 PY 2000
31947 VL 8
31948 IS 5-6
31949 BP 585
31950 EP 588
31951 PG 4
31952 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
31953    Metallurgical Engineering
31954 GA 320GQ
31955 UT ISI:000087393800021
31956 ER
31957 
31958 PT J
31959 AU Wei, EB
31960    Gu, GQ
31961 TI Electrostatic potential of strongly nonlinear composites: Homotopy
31962    continuation approach
31963 SO CHINESE PHYSICS
31964 DT Article
31965 ID BOUNDARY-VALUE-PROBLEMS; DECOUPLING APPROXIMATION; MEDIA; CONDUCTIVITY;
31966    2ND-ORDER
31967 AB The homotopy continuation method is used to solve the electrostatic
31968    boundary-value problems of strongly nonlinear composite media, which
31969    obey a current-field relation of J = sigma E + chi\E\E-2. With the mode
31970    expansion, the approximate analytical solutions of electric potential
31971    in host and inclusion regions are obtained by solving a set of
31972    nonlinear ordinary different equations, which are derived from the
31973    original equations with homotopy method. As an example in dimension
31974    two, we apply the method to deal with a nonlinear cylindrical inclusion
31975    embedded in a host. Comparing the approximate analytical solution of
31976    the potential obtained by homotopy method with that of numerical
31977    method, we can obverse that the homotopy method is valid for solving
31978    boundary-value problems of weakly and strongly nonlinear media.
31979 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
31980 RP Wei, EB, Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093,
31981    Peoples R China.
31982 CR BARDHAN KK, 1994, SPRINGER LECT NOTES
31983    BERGMAN DJ, 1989, PHYS REV B, V39, P4598
31984    BERGMAN DJ, 1992, SOLID STATE PHYS, V46, P147
31985    BLUMENFELD R, 1989, PHYS REV B, V40, P1987
31986    CASTANEDA PP, 1992, PHYS REV B, V46, P4387
31987    CHOY TS, 1995, PHYS LETT A, V202, P129
31988    GU GQ, 1992, PHYS REV B, V46, P4502
31989    GU GQ, 1998, COMMUN THEOR PHYS, V29, P523
31990    LIAO SJ, 1992, INT J NUMER METH FL, V15, P595
31991    LIAO SJ, 1992, J APPL MECH-T ASME, V59, P970
31992    LUI SH, 1995, NUMER ALGORITHMS, V10, P363
31993    NI FS, 1995, CHINESE PHYS LETT, V12, P438
31994    STROUD D, 1989, J OPT SOC AM B, V6, P778
31995    YU KW, 1992, PHYS LETT A, V168, P313
31996    YU KW, 1994, PHYS LETT A, V193, P311
31997    YU KW, 1996, PHYS LETT A, V210, P115
31998    ZENG XC, 1989, PHYSICA A, V157, P192
31999    ZHANG W, 1999, PHYS LETT A, V255, P343
32000 NR 18
32001 TC 3
32002 SN 1009-1963
32003 J9 CHIN PHYS
32004 JI Chin. Phys.
32005 PD JUN
32006 PY 2000
32007 VL 9
32008 IS 6
32009 BP 464
32010 EP 468
32011 PG 5
32012 SC Physics, Multidisciplinary
32013 GA 321QW
32014 UT ISI:000087467000012
32015 ER
32016 
32017 PT J
32018 AU Li, CP
32019 TI A Note on bifurcations of u ''+mu(u-u(k)) = 0(4 <= k epsilon Z(+))
32020 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
32021 DT Article
32022 DE Liapunov-Schmidt reduction; singularity theory; bifurcation
32023 AB Bifurcations of one kind of reaction-diffusion equations, u" + mu ( u -
32024    u(k)) = 0(mu is a parameter, 4 less than or equal to k epsilon Z(+)),
32025    with boundary value condition u(0) = u(rr) = 0 are discussed. By means
32026    of singularity theory based on the method of Liapunov-Schmidt
32027    reduction, satisfactory results can be acquired.
32028 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
32029 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
32030 CR CHOW SN, 1982, METHODS BIFURCATION
32031    FIFE PC, 1979, LECT NOTES BIOMATHEM, V28
32032    GOLUBITSKY M, 1985, SINGULARITIES GROUPS, V1
32033    LU QS, 1995, BIFURCATION SINGULAR
32034    TANG Y, 1998, FDN SYMMETRY BIFURCA
32035    YE QX, 1994, INTRO REACTION DIFFU
32036 NR 6
32037 TC 2
32038 SN 0253-4827
32039 J9 APPL MATH MECH-ENGL ED
32040 JI Appl. Math. Mech.-Engl. Ed.
32041 PD MAR
32042 PY 2000
32043 VL 21
32044 IS 3
32045 BP 265
32046 EP 274
32047 PG 10
32048 SC Mathematics, Applied; Mechanics
32049 GA 321QX
32050 UT ISI:000087467100003
32051 ER
32052 
32053 PT J
32054 AU Gu, GQ
32055    Yu, KW
32056 TI A theoretical research to effective viscosity of colloidal dispersions
32057 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
32058 DT Article
32059 DE multiphase flow; colloidal dispersion; suspension; emulsion
32060 ID PERIODIC SUSPENSION; PARTICLES
32061 AB Colloidal dispersions are common in nature with wide industrial
32062    applications. One of the central theoretical problems in the field is
32063    to determine the rheological properties of the colloidal dispersion
32064    from the microstructures of the systems. Because of the difficulties
32065    associated with the boundary-value problems of the many-particle
32066    system, existing theories for colloidal suspensions are limited to low
32067    particle concentrations. In this work, a method of transformation field
32068    is developed by which one can calculate the effective viscosity of an
32069    incompressible viscous fluid containing colloidal particles ( either
32070    solid particles or liquid drops). The predictions of the theory are in
32071    goad agreement with the Einstein's formula for suspensions and the
32072    Taylor's formula for emulsions at low particle concentrations. At
32073    higher particle concentrations, the results of Nunan and Keller are
32074    produced. The method is also applicable to the viscosity of colloidal
32075    systems with non-spherical particles.
32076 C1 Shanghai Univ Sci & Technol, Sch Comp Engn, Shanghai 200092, Peoples R China.
32077    Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
32078 RP Gu, GQ, Shanghai Univ Sci & Technol, Sch Comp Engn, Shanghai 200092,
32079    Peoples R China.
32080 CR BATCHELOR GK, 1972, J FLUID MECH, V56, P401
32081    BATCHELOR GK, 1976, J FLUID MECH, V74, P1
32082    BEDEAUX D, 1977, PHYSICA            A, V88, P88
32083    CHOW TS, 1993, PHYS REV E, V48, P1977
32084    EINSTEIN A, 1906, ANN PHYS-BERLIN, V19, P289
32085    GU GQ, 1988, PHYS REV B, V37, P8612
32086    GU GQ, 1989, SCI CHINA SER A, V32, P1186
32087    MAZUR P, 1982, PHYSICA A, V115, P21
32088    MELLEMA J, 1983, PHYSICA A, V122, P286
32089    NAGATANI T, 1979, J PHYS SOC JPN, V47, P320
32090    NASSER SN, 1981, Q APPL MATH, V39, P43
32091    NUNAN KC, 1984, J FLUID MECH, V142, P269
32092    PETERSON JM, 1963, J CHEM PHYS, V39, P2516
32093    RAYLEIGH, 1892, PHILOS MAG, V34, P481
32094    TAYLOR GI, 1932, P R SOC LOND A-CONTA, V138, P41
32095 NR 15
32096 TC 0
32097 SN 0253-4827
32098 J9 APPL MATH MECH-ENGL ED
32099 JI Appl. Math. Mech.-Engl. Ed.
32100 PD MAR
32101 PY 2000
32102 VL 21
32103 IS 3
32104 BP 275
32105 EP 282
32106 PG 8
32107 SC Mathematics, Applied; Mechanics
32108 GA 321QX
32109 UT ISI:000087467100004
32110 ER
32111 
32112 PT J
32113 AU Zhang, JK
32114    Huang, YH
32115    Huang, GZ
32116    Chen, CG
32117 TI The Monte-Carlo method for solving the dimensional chain positive
32118    problem
32119 SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
32120 DT Article
32121 DE Monte-Carlo simulation; dimensional chain; pseudo-random number
32122 AB In this paper, the Monte-Carlo method for solving the dimensional chain
32123    positive problem is presented and discussed. By using an electronic
32124    computer to calculate the limit size of piston travel of piston parts,
32125    not only are the calculating results of this method proven to be more
32126    precise than those of the probability method, but also the calculating
32127    speed of this method is proven to be faster than that of the
32128    probability method. (C) 2000 Elsevier Science S.A. All rights reserved.
32129 C1 Shanghai Univ, Ctr Mechanoelect Engn, Shanghai 200072, Peoples R China.
32130    Shanghai Sch Mechanoelect Ind, Shanghai 200093, Peoples R China.
32131    Yuchai Machinery Co, Yulin 537005, Guangxi, Peoples R China.
32132 RP Zhang, JK, Shanghai Univ, Ctr Mechanoelect Engn, 149 Yan Chang Rd,
32133    Shanghai 200072, Peoples R China.
32134 CR *DEP MATH MECH ZHO, 1980, THEOR PROB MATH STAT, V1, P148
32135    *DEP MATH MECH ZHO, 1980, THEOR PROB MATH STAT, V2, P343
32136    JIANZHONG Z, 1974, MONTE CARLO METHOD P, P28
32137 NR 3
32138 TC 1
32139 SN 0924-0136
32140 J9 J MATER PROCESS TECHNOL
32141 JI J. Mater. Process. Technol.
32142 PD JUN 15
32143 PY 2000
32144 VL 103
32145 IS 2
32146 BP 189
32147 EP 193
32148 PG 5
32149 SC Engineering, Industrial; Engineering, Manufacturing; Materials Science,
32150    Multidisciplinary
32151 GA 319RB
32152 UT ISI:000087354400002
32153 ER
32154 
32155 PT J
32156 AU Xia, YB
32157    Sekiguchi, T
32158    Zhang, WJ
32159    Jiang, X
32160    Wu, WH
32161    Yao, T
32162 TI Effects of hydrogen ion bombardment and boron doping on (001)
32163    polycrystalline diamond films
32164 SO JOURNAL OF CRYSTAL GROWTH
32165 DT Article
32166 DE diamond; penetrating effects; thin film; cathodoluminescence
32167 ID CHEMICAL-VAPOR-DEPOSITION; GROWTH; SMOOTH
32168 AB Hydrogen ion bombardment was carried out by applying a negative bias
32169    voltage to the substrate during a microwave plasma chemical vapor
32170    deposition process, using only hydrogen as reactant gas. The sine of (0
32171    0 1) faces increases after hydrogen ion etching while other grains are
32172    etched off. The surfaces of [0 0 1] directionally oriented films after
32173    boron doping were investigated by scanning electron microscopy (SEM)
32174    and cathodoluminescent (CL) spectra. The absence of the band-A emission
32175    in the CL spectra indicates a low density of dislocations in the films.
32176    It is the first indication that the peak at 741.5 Nn and the broad peak
32177    at around 575 and 625 nm in the CL spectra are reduced efficiently
32178    after boron doping in (0 0 1) polycrystalline diamond films. We propose
32179    that these phenomena could be explained in simple terms by penetration
32180    or adsorption through the lattice nets of the [0 0 1] directionally
32181    oriented surfaces model. (C) 2000 Elsevier Science B.V. All rights
32182    reserved.
32183 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
32184    Tohoku Univ, Mat Res Inst, Sendai, Miyagi 980, Japan.
32185    Fraunhofer Inst Thin Films & Surface Engn, D-38108 Braunschweig, Germany.
32186 RP Xia, YB, Shanghai Univ, Sch Mat Sci & Engn, Jiading Campus, Shanghai
32187    201800, Peoples R China.
32188 CR COLLINS AT, 1990, J MATER RES, V5, P2507
32189    DAVIS JW, 1987, J NUCL MATER, V145, P417
32190    HAYASHI K, 1997, J APPL PHYS, V81, P744
32191    HAYASHI K, 1998, J CRYST GROWTH, V183, P338
32192    KAWARADA H, 1995, APPL PHYS LETT, V66, P583
32193    ROBINS LH, 1989, PHYS REV B, V39, P13367
32194    WILD C, 1993, DIAM RELAT MATER, V2, P158
32195    WON J, 1996, RECENT PROG DIAMOND, V1, P103
32196    YOKOTA Y, 1990, MAT RES SOC S P PITT, V160, P162
32197    ZHANG WJ, 1997, J APPL PHYS, V82, P1896
32198 NR 10
32199 TC 4
32200 SN 0022-0248
32201 J9 J CRYST GROWTH
32202 JI J. Cryst. Growth
32203 PD JUN
32204 PY 2000
32205 VL 213
32206 IS 3-4
32207 BP 328
32208 EP 333
32209 PG 6
32210 SC Crystallography
32211 GA 320EX
32212 UT ISI:000087389800017
32213 ER
32214 
32215 PT J
32216 AU Li, SR
32217    Cheng, CJ
32218 TI Analysis of thermal post-buckling of heated elastic rods
32219 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
32220 DT Article
32221 DE elastic straight rod; thermal post-buckling; nonlinear mathematical
32222    model; shooting method; numerical solution
32223 AB Based on the nonlinear geometric theory of extensible rods, an exact
32224    mathematical model of thermal post-buckling behavior of uniformly
32225    heated elastic rods with axially immovable ends is developed, in which
32226    the are length s(x) of axial line and the longitudinal displacement
32227    u(x) are taken as the basic unknown functions. This is a two point
32228    boundary value problem of first order ordinary differential equations
32229    with strong nonlinearity. By using shooting method and analytical
32230    continuation, the nonlinear boundary value problems are numerically
32231    solved. The thermal post-buckled states of the rods with transversely
32232    simply supported and clamped ends are obtained respectively and the
32233    corresponding numerical data tables and characteristic curves are also
32234    given.
32235 C1 Gansu Univ Technol, Dept Basic Sci, Lanzhou 730050, Peoples R China.
32236    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
32237    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
32238 RP Li, SR, Gansu Univ Technol, Dept Basic Sci, Lanzhou 730050, Peoples R
32239    China.
32240 CR CHEN CJ, 1991, BUCKLING BIFURCATION, P83
32241    CHENG JK, 1994, MECH PRACTICE, V16, P23
32242    LI SR, 1997, J LANZHOU U, V33, P43
32243    LI SR, 1998, P INT C NONL MECH, P282
32244    NOWISCKI JL, 1978, THEORY THERMAL ELAST, P547
32245    TAUCHERT TR, 1987, INT J NONLINEAR MECH, V22, P511
32246    TIMOSHENKO SP, 1961, THEORY ELASTIC STABI, P76
32247    WANG CY, 1997, INT J NONLINEAR MECH, V32, P1115
32248    WILLIAM HP, 1986, NUMERICAL RECIPES AR, P578
32249 NR 9
32250 TC 8
32251 SN 0253-4827
32252 J9 APPL MATH MECH-ENGL ED
32253 JI Appl. Math. Mech.-Engl. Ed.
32254 PD FEB
32255 PY 2000
32256 VL 21
32257 IS 2
32258 BP 133
32259 EP 140
32260 PG 8
32261 SC Mathematics, Applied; Mechanics
32262 GA 320DT
32263 UT ISI:000087387100002
32264 ER
32265 
32266 PT J
32267 AU Huang, DB
32268    Zhao, XH
32269 TI The vector fields admitting one-parameter spatial symmetry group and
32270    their reduction
32271 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
32272 DT Article
32273 DE vector field; symmtry group; Lie group; reduction; preserving n-form
32274 AB For a n-dimensional vector fields preserving some n-form, the following
32275    conclusion is reached by the method of Lie group. That is, if it admits
32276    an one-parameter, n-form preserving symmetry group, a transformation
32277    independent of the vector field is constructed explicitly, which can
32278    reduce not only dimesion of the vector field by one, but also make the
32279    reduced vector field preserve the corresponding ( n - 1)-form. In
32280    partic ular, while n = 3, an important result can be directly got which
32281    is given by Me,ie and Wiggins in 1994.
32282 C1 Acad Sinica, Inst Mech, LNM, Beijing 100080, Peoples R China.
32283    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
32284    Yunnan Univ, Dept Math, Kunming 650091, Peoples R China.
32285 RP Huang, DB, Acad Sinica, Inst Mech, LNM, Beijing 100080, Peoples R China.
32286 CR GUO ZH, 1995, APPL MATH MECH, V16, P301
32287    LI JB, 1994, THEORY GEN HAMILTONI
32288    MARSDEN J, 1974, REP MATH PHYS, V5, P121
32289    MARSDEN JE, 1994, INTRO MECH SYMMETRY
32290    MEYER KR, 1973, DYNAMICAL SYSTEMS, P259
32291    MEZIC I, 1994, J NONLINEAR SCI, V4, P157
32292    OLVER PJ, 1986, APPL LIE GROUP DIFFE
32293    OTTINO JM, 1989, KINEMATICS MIXING ST
32294    SEN T, 1990, PHYSICA D, V44, P313
32295    SMALE S, 1970, INVENT MATH, V10, P305
32296    ZHANG JY, 1983, SCI SINICA A, V13, P426
32297 NR 11
32298 TC 0
32299 SN 0253-4827
32300 J9 APPL MATH MECH-ENGL ED
32301 JI Appl. Math. Mech.-Engl. Ed.
32302 PD FEB
32303 PY 2000
32304 VL 21
32305 IS 2
32306 BP 173
32307 EP 180
32308 PG 8
32309 SC Mathematics, Applied; Mechanics
32310 GA 320DT
32311 UT ISI:000087387100006
32312 ER
32313 
32314 PT J
32315 AU Li, HF
32316    Wang, XW
32317    Zhang, RG
32318    Yuan, JH
32319    Xie, Y
32320    Xie, H
32321 TI Discovery of new antimetastatic agents: Review of in vitro and in vivo
32322    screening methods
32323 SO METHODS AND FINDINGS IN EXPERIMENTAL AND CLINICAL PHARMACOLOGY
32324 DT Article
32325 ID TUMOR-CELLS; HEPATOCELLULAR-CARCINOMA; METASTATIC CAPACITY;
32326    BASEMENT-MEMBRANE; LUNG METASTASIS; NUDE-MICE; MODEL; INVASION; CANCER;
32327    MATRIX
32328 C1 Chinese Acad Sci, Shanghai Inst Cell Biol, Dept Biotherapy, Shanghai 200031, Peoples R China.
32329    Shanghai Univ, Coll Life Sci, Dept Biochem, Shanghai 200041, Peoples R China.
32330    Hong Kong Univ Sci & Technol, Dept Biol, Hong Kong, Hong Kong, Peoples R China.
32331 RP Wang, XW, Chinese Acad Sci, Shanghai Inst Cell Biol, Dept Biotherapy,
32332    320 Yue Yang Rd, Shanghai 200031, Peoples R China.
32333 CR ALBINI A, 1987, CANCER RES, V47, P3239
32334    BERLIN J, 1997, J CLIN ONCOL, V15, P781
32335    CORBLEY MJ, 1996, INT J CANCER, V66, P753
32336    FAN TPD, 1995, TRENDS PHARMACOL SCI, V16, P57
32337    FOLKMAN J, 1986, CANCER RES, V46, P467
32338    GREENBERG AH, 1989, INVAS METAST, V9, P360
32339    GUAITANI A, 1985, CANCER RES, V45, P2206
32340    HORI K, 1979, GANN, V70, P383
32341    JAMES SE, 1974, CANCER RES, V34, P839
32342    KARRER K, 1967, INT J CANCER, V2, P213
32343    KOPPER L, 1982, J CANCER RES CLIN, V103, P31
32344    KRAMER RH, 1986, CANCER RES, V46, P1980
32345    KURAMITSU Y, 1998, ANTI-CANCER DRUG, V9, P88
32346    LAFRENLERE R, 1996, J NATL CANCER I, V76, P309
32347    LEONE A, 1991, CELL, V65, P25
32348    LI HF, 1998, ONCOL RES, V10, P569
32349    LIU HY, 1998, ACTA PHARMACOL SINIC, V33, P18
32350    MEHTA RR, 1998, BRIT J CANCER, V77, P595
32351    NICOSIA RF, 1990, LAB INVEST, V63, P115
32352    POHL J, 1988, MOL CELL BIOL, V8, P2078
32353    RABBANI SA, 1998, INT J ONCOL, V12, P911
32354    SAIKI I, 1989, BRIT J CANCER, V59, P194
32355    SATO H, 1961, CANC CHEMOTHER REP, V13, P33
32356    SIDRANSKY D, 1994, J NATL CANCER I, V86, P955
32357    STROEKEN PJM, 1998, CANCER RES, V58, P1569
32358    SUN FX, 1996, INT J CANCER, V66, P239
32359    SUN FX, 1996, J CANCER RES CLIN, V122, P397
32360    TAKASHI T, 1980, CANCER RES, V40, P4758
32361    TAKAZAWA H, 1976, GANN, V67, P403
32362    TERRANOVA VP, 1986, J NATL CANCER I, V77, P311
32363    TSUKAGOSHI S, 1970, CANC CHEMOTHER REP, V54, P311
32364    WEXLER H, 1966, J NATL CANCER I, V36, P641
32365    YAMAMOTO H, 1996, INT J CANCER, V65, P519
32366    YU AE, 1997, DRUG AGING, V11, P229
32367 NR 34
32368 TC 0
32369 SN 0379-0355
32370 J9 METH FIND EXP CLIN PHARMACOL
32371 JI Methods Find. Exp. Clin. Pharmacol.
32372 PD MAR
32373 PY 2000
32374 VL 22
32375 IS 2
32376 BP 123
32377 EP 128
32378 PG 6
32379 SC Pharmacology & Pharmacy
32380 GA 315CJ
32381 UT ISI:000087094800009
32382 ER
32383 
32384 PT J
32385 AU Wei, JH
32386    Shen, XY
32387 TI Study on electroslag remelting of Cu-Cr-Zr alloy
32388 SO METALL
32389 DT Article
32390 AB The ESR of Cu-Cr-Zr alloy has been experimentally investigated. The
32391    remelting experiments have been carried out with different slag fluxes
32392    in the CaF2 + NaF, CaF2 + ZrO2 and CaF2 + NaF + ZrO2 systems on an ESR
32393    furnace of 25 kg capacity, using a water-cooled copper mould of 96.5 mm
32394    diameter, with the forged square bar electrodes of 50 x 50 mm(2). The
32395    slag amount was taken to be 1.5 kg. The remelting current and voltage
32396    used were 1600-1800 A and 15-25 V, respectively. The influence of the
32397    slag composition on the stability of the remelting process and the
32398    losses of alloying elements (Zr and Cr) has been considered and
32399    examined. The technologies of hot working and heat treatment of the ES
32400    ingot have been described and discussed. Some physical properties of
32401    the slag in a CaF2 + NaF + ZrO2 system and the remelted Cu-Cr-Zr alloy
32402    have been determined. The results indicated that with the slag flux of
32403    CaF2 + NaF + 10mass% ZrO2 and the other operation parameters employed,
32404    a high quality ingot of Cu-Cr-Zr alloy can be obtained at the
32405    considerably high yields of Zr and Cr by means of ESR. For the remelted
32406    Cu-Cr-Zr alloy with a specified composition of 0.5 mass% Cr and 0.1
32407    mass% Zr, the appropriate electrical conductivity, hardness and
32408    softening temperature are as high as 45-46 S/m, HRB 82-84 and greater
32409    than or equal to 550 degrees C, respectively. The properties of the
32410    Cu-Cr-Zr alloy products are in accordance with and superior to the
32411    requirements and specifications of ISO5182-1991(E).
32412 C1 Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
32413    Shanghai Elect Apparatus Res Inst, Shanghai, Peoples R China.
32414 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
32415 CR 474258, SU
32416    ANZEL I, 1997, METALL, V5, P189
32417    ANZEL, 1997, METALL, V4, P181
32418    HOYLE G, 1983, ELECTROSLAG PROCESSE
32419    KOROUSIC B, 1983, METALL, V37, P1109
32420    KOROUSIC B, 1984, METALL, V38, P319
32421    KOROUSIK B, 1987, METALL, V41, P153
32422    LODINI A, 1980, REV METALLURGIE, V12, P1061
32423    MILLER RR, 1981, PHARMACOTHERAPY, V1, P21
32424    PATON BE, 1981, ELECTROSLAG TECHNOLO
32425 NR 10
32426 TC 1
32427 SN 0026-0746
32428 J9 METALL
32429 JI Metall
32430 PY 2000
32431 VL 54
32432 IS 4
32433 BP 196
32434 EP 200
32435 PG 5
32436 SC Metallurgy & Metallurgical Engineering
32437 GA 314BX
32438 UT ISI:000087035200005
32439 ER
32440 
32441 PT J
32442 AU Huang, SP
32443    You, JP
32444    Jiang, GC
32445    Yoshida, F
32446    Xu, KD
32447 TI A molecular dynamics simulation of CaSiO3 melt under an electric field
32448 SO CHINESE PHYSICS LETTERS
32449 DT Article
32450 AB The results of a molecular dynamics (MD) simulation are presented for
32451    CaSiO3 melt under an electric field. The two-body interaction potential
32452    is adopted in the simulation, with parameters chosen so that the
32453    calculated static structure is consistent with results of high
32454    temperature x-ray experiments. It is found that the MD results for the
32455    heat capacity at constant volume, the self-diffusion coefficient and
32456    the electrical conductivity change greatly when the electric field is
32457    over 500 MV/m. Discussion is given on these results, together with the
32458    frequency-dependent electrical conductivity.
32459 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
32460    Shiga Univ Med Sci, Dept Phys, Shiga 5202192, Japan.
32461 RP Huang, SP, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
32462    200072, Peoples R China.
32463 CR ENDERLY JE, 1985, AMORPHOUS SOLIDS LIQ
32464    HANSEN JP, 1986, THEORY SIMPLE LIQUID
32465    HEMMATI M, 1995, PHYS REV B, V51, P14841
32466    HUANG SP, 1999, J PHYS-CONDENS MAT, V11, P5429
32467    KATO T, 1990, J CHEM PHYS, V92, P5506
32468    KELLER H, 1979, METALL T B, V10, P1356
32469    KELLER H, 1982, METALL T B, V13, P237
32470    MAEDA M, 1997, P 5 INT C MOLT SLAGS, P423
32471    MATSUI M, 1988, PHYS CHEM MINER, V16, P234
32472    PING HS, 1997, J PHYS SOC JPN, V66, P1356
32473    PING HS, 1997, J PHYS SOC JPN, V66, P392
32474    WANG ZW, 1997, CHINESE PHYS LETT, V14, P151
32475    WASEDA Y, 1989, MAT SCI EARTH INTERI
32476    ZHANG YH, 1999, CHINESE PHYS LETT, V16, P253
32477    ZONG XF, 1998, CHINESE PHYS LETT, V15, P767
32478 NR 15
32479 TC 4
32480 SN 0256-307X
32481 J9 CHIN PHYS LETT
32482 JI Chin. Phys. Lett.
32483 PY 2000
32484 VL 17
32485 IS 4
32486 BP 279
32487 EP 281
32488 PG 3
32489 SC Physics, Multidisciplinary
32490 GA 318EP
32491 UT ISI:000087271200017
32492 ER
32493 
32494 PT J
32495 AU Wang, YS
32496    Bao, BR
32497    Tan, XF
32498    Yang, AP
32499 TI Extraction mechanism of uranium(VI) with N,N,N ',N
32500    '-tetrabutylmalonamide
32501 SO CHINESE JOURNAL OF INORGANIC CHEMISTRY
32502 DT Article
32503 DE N,N,N ',N '-tetrabutylmalonamide (TBMA); extraction uranium (VI);
32504    coordination model
32505 AB The extraction mechanism of HNO3 and UO22+ with TBMA in toluene from
32506    the nitric acid medium has been studied. At the experimental condition,
32507    HNO3 and TBMA can form HNO3. TBMA, and the composition of extracted
32508    species is UO2(NO3)(2). 3TBMA. it was testified that the in the
32509    extraction species UO2(NO3)(2). 3TBMA, NO3- did not directly
32510    participate in coordination of uranyl (VI) ion by IR, and the
32511    coordination mode of the complex was also discussed.
32512 C1 Coll Agr, Laiyang 265200, Peoples R China.
32513    Shanghai Univ, Shanghai 201800, Peoples R China.
32514 RP Wang, YS, Coll Agr, Laiyang 265200, Peoples R China.
32515 CR DAVIS W, 1965, J PHYS CHEM-US, V69, P1094
32516    MUSIKAS C, 1988, SEPAR SCI TECHNOL, V23, P1211
32517    NAIR GM, 1993, SOL EXTR ION EXCH, V11, P813
32518    WANG HZ, 1995, WUJI HUAXUE XUEBAO, V11, P120
32519    WANG YS, 1997, THESIS CHINESE ACAD
32520    XU GX, 1984, EXTRACTION CHEM PRIN, P134
32521 NR 6
32522 TC 1
32523 SN 1001-4861
32524 J9 CHIN J INORG CHEM
32525 JI Chin. J. Inorg. Chem.
32526 PD MAY
32527 PY 2000
32528 VL 16
32529 IS 3
32530 BP 416
32531 EP 420
32532 PG 5
32533 SC Chemistry, Inorganic & Nuclear
32534 GA 317VH
32535 UT ISI:000087247300007
32536 ER
32537 
32538 PT J
32539 AU Cao, WG
32540    Ding, WY
32541    Tong, WQ
32542    Liu, X
32543    Qiu, MY
32544 TI Studies on the reaction of 1,2,3-trisubstituted electron-deficient
32545    cyclopropane derivatives with methanol
32546 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
32547 DT Article
32548 DE 1,2,3-trisubstituted cyclopropane; methanolysis; methyl butyrate
32549 ID STEREOSELECTIVE SYNTHESIS
32550 AB In this paper, the reaction of 1,2,3-trisubstituted electron-deficient
32551    cyclopropane derivatives cis-1-benzoyl-2-p-substituted phenyl-6,
32552    6-dimethyl-5, 7-dioxo-spiro-[2, 5]-4,8-octadiones with methanol was
32553    studied. The structures of the reaction products were confirmed as
32554    methyl beta-benzoyl-gamma-methoxy-gamma-p-substituted phenylbutyrates
32555    by means of IR, MS, microanalysis, H-1, C-13 NMR spectroscopies and APT
32556    techniques. The reaction mechanism for the formation of the product was
32557    also proposed.
32558 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
32559    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
32560 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
32561 CR CHEN YL, 1998, CHEM J CHINESE U, V19, P1614
32562    DING WY, 1996, CHEM RES CHINESE U, V12, P50
32563    DING WY, 1999, CHEM J CHINESE U, V20, P64
32564    MONTI SA, 1974, TETRAHEDRON LETT, P3239
32565    MURPHY WS, 1983, J CHEM SOC P1, P817
32566    POKU SK, 1984, CAN J CHEM, V62, P1217
32567    PU JQ, 2000, IN PRESS SYNTHESIS C
32568    SMITH AB, 1978, TETRAHEDRON LETT, P1649
32569 NR 8
32570 TC 1
32571 SN 0251-0790
32572 J9 CHEM J CHINESE UNIV-CHINESE
32573 JI Chem. J. Chin. Univ.-Chin.
32574 PD MAY
32575 PY 2000
32576 VL 21
32577 IS 5
32578 BP 740
32579 EP 742
32580 PG 3
32581 SC Chemistry, Multidisciplinary
32582 GA 316HH
32583 UT ISI:000087161200022
32584 ER
32585 
32586 PT J
32587 AU Liu, ZR
32588    Chen, LQ
32589    Yang, L
32590 TI On properties of hyperchaos: Case study
32591 SO ACTA MECHANICA SINICA
32592 DT Article
32593 DE hyperchaos; strange attractor; unstable periodic point; pattern
32594    formation
32595 ID CHAOS
32596 AB Some properties of hyperchaos are exploited by studying both uncoupled
32597    and coupled CML. In addition to usual properties of chaotic strange
32598    attractors, there are other interesting properties, such as: the number
32599    of unstable periodic points embedded in the strange attractor increases
32600    dramatically increasing and a large number of low-dimensional chaotic
32601    invariant sets are contained in the strange attractor. These properties
32602    may be useful for regarding the edge of chaos as. the origin of
32603    complexity of dynamical systems.
32604 C1 Acad Sinica, Inst Mech, LNM, Beijing 100080, Peoples R China.
32605    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
32606    Shanghai Univ, Dept Mech, Shanghai 201800, Peoples R China.
32607 RP Liu, ZR, Acad Sinica, Inst Mech, LNM, Beijing 100080, Peoples R China.
32608 CR BADII R, 1997, COMPLEXITY HIERARCHI
32609    CHEN LQ, 1998, APPL MATH MECH-ENGL, V19, P67
32610    CHEN LQ, 1998, J SHANGHAI JIAOTONG, V32, P108
32611    KANEKO K, 1989, PHYSICA D, V34, P1
32612    LIU ZG, 1993, SCI CHINA SER A, V23, P702
32613    LIU ZR, 1997, ACTA MECH SCINICA, V29, P103
32614    MAROTTO FR, 1978, J MATH ANAL APPL, V63, P199
32615    MAROTTO FR, 1979, COMMUN MATH PHYS, V68, P187
32616    MAROTTO FR, 1979, J MATH ANAL APPL, V72, P716
32617    OTT E, 1990, PHYS REV LETT, V64, P1196
32618    WALDROP MM, 1992, COMPLEXITY EMERGING
32619    YANG L, 1998, APPL MATH MECH-ENGL, V19, P1
32620 NR 12
32621 TC 6
32622 SN 0567-7718
32623 J9 ACTA MECH SINICA
32624 JI Acta Mech. Sin.
32625 PD NOV
32626 PY 1999
32627 VL 15
32628 IS 4
32629 BP 366
32630 EP 370
32631 PG 5
32632 SC Engineering, Mechanical; Mechanics
32633 GA 317GF
32634 UT ISI:000087217100008
32635 ER
32636 
32637 PT J
32638 AU Li, XS
32639    Yamashita, K
32640    Tanaka, T
32641    Suzuki, Y
32642    Okuyama, M
32643 TI Structural and electrical properties of highly oriented Pb(Zr,Ti)O-3
32644    thin films deposited by facing target sputtering
32645 SO SENSORS AND ACTUATORS A-PHYSICAL
32646 DT Article
32647 DE PZT thin film; facing target sputtering; crystalline orientation;
32648    ferroelectric property
32649 ID ZIRCONATE-TITANATE FILMS; HEAT-TREATMENT; GEL; SUBSTRATE; GROWTH;
32650    PB(ZR; RF
32651 AB The Pb(Zr,Ti)O-3 thin films with single (111) oriented perovskite phase
32652    and excellent electrical properties have been prepared by annealing the
32653    as-deposited samples. The orientation of crystals depends strongly on
32654    both the deposition temperature and annealing temperature. The sample
32655    annealed at 606 degrees C has the best (111) orientation. When the
32656    sample is annealed at lower temperature, the relative content of (111)
32657    oriented perovskite phase decreases quickly with increase of deposition
32658    temperature. The deposition temperature has little effects on the
32659    orientation when the sample is annealed at higher temperature. The
32660    effects of deposition temperature and annealing temperature on the
32661    crystallographic structures and electrical properties of PZT thin films
32662    were investigated in this paper. The sample deposited at 285 degrees C
32663    and annealed at 606 degrees C has the maximum value of polarization,
32664    which displays excellent ferroelectric properties. The typical P-r and
32665    P-s values are 57 and 101 mu C/cm(2), respectively. (C) 2000 Elsevier
32666    Science S.A. All rights reserved.
32667 C1 Shanghai Univ, Shanghai, Peoples R China.
32668    Osaka Univ, Osaka, Japan.
32669    Technol Res Inst Osaka Prefecture, Super Eye Image Sensor Project, Osaka 5941157, Japan.
32670 RP Li, XS, Shanghai Univ, Shanghai, Peoples R China.
32671 CR CHEN SY, 1994, J AM CERAM SOC, V77, P2337
32672    EAKIM B, 1998, J VAC SCI TECHNOL A, V16, P2876
32673    FUKUDA Y, 1997, JPN J APPL PHYS 1, V36, P5793
32674    HIRATA K, 1992, JPN J APPL PHYS 1, V31, P3021
32675    KIM CJ, 1998, THIN SOLID FILMS, V312, P130
32676    MASUDA Y, 1996, JPN J APPL PHYS 1, V35, P5002
32677    MATSUOKA M, 1986, J APPL PHYS, V60, P2096
32678    NAM HJ, 1998, JPN J APPL PHYS 1, V37, P3462
32679    RANDALL CA, 1998, J AM CERAM SOC, V81, P677
32680    REANEY IM, 1994, J AM CERAM SOC, V77, P1209
32681    SONG YJ, 1998, APPL PHYS LETT, V72, P2686
32682    SPIERINGS GACM, 1991, J APPL PHYS, V70, P2290
32683    TUTTLE BA, 1993, J AM CERAM SOC, V76, P1537
32684    UDAYAKUMAR KR, 1995, J APPL PHYS, V77, P3981
32685 NR 14
32686 TC 6
32687 SN 0924-4247
32688 J9 SENSOR ACTUATOR A-PHYS
32689 JI Sens. Actuator A-Phys.
32690 PD MAY 15
32691 PY 2000
32692 VL 82
32693 IS 1-3
32694 BP 265
32695 EP 269
32696 PG 5
32697 SC Engineering, Electrical & Electronic; Instruments & Instrumentation
32698 GA 314PD
32699 UT ISI:000087063700041
32700 ER
32701 
32702 PT J
32703 AU Xu, KX
32704 TI Non-equilibrium radiation response and decoupling of vortex-antivortes
32705    pairs in two-dimensional high-T-c superconductors
32706 SO ACTA PHYSICA SINICA
32707 DT Article
32708 ID KOSTERLITZ-THOULESS TRANSITION; YBA2CU3O7-DELTA THIN-FILMS;
32709    2-DIMENSIONAL SUPERCONDUCTORS; RENORMALIZATION; PHOTORESPONSE
32710 AB On the basis of the two-dimensional (2D) characteristics of the
32711    superconducting transportation as well as Josephson weak link behaviors
32712    in granular YBCO films,a 2D Josephson junction array is propssed as a
32713    model system for this film. Using this simplified model, we have
32714    discussed the decoupling procedure of vortex-antivortex pairs by bias
32715    current,and analytically developed temperature distribution of free
32716    vortices n(T,I) below T-KT. As compared with experimental results,we
32717    find that the temperature dependency of n(T,I) is similar to the
32718    behaviors of microwave response of granular YBCO films near K-T
32719    transition temperature. This similarity implies, to a certain
32720    extent,some intrinsic relationship between vortex-antivortex decoupling
32721    and non-equilibrium radiation response dissipation in the high-T-c
32722    superconducting granular films.
32723 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
32724 RP Xu, KX, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
32725 CR BEASLEY MR, 1979, PHYS REV LETT, V42, P1165
32726    BOONE BG, 1991, J APPL PHYS, V69, P2676
32727    CHEN JD, 1993, IEEE T APPL SUPERCON, V3, P2128
32728    CULBERTSON JC, 1991, PHYS REV B, V44, P9609
32729    DAVIS LC, 1990, PHYS REV B, V42, P99
32730    DEMSAR J, 1997, J SUPERCOND, V10, P455
32731    DONIACH S, 1979, PHYS REV LETT, V42, P1169
32732    FIORY AT, 1988, PHYS REV LETT, V61, P1419
32733    FRENKEL A, 1993, PHYS REV B, V48, P9717
32734    HABIB YM, 1998, PHYS REV B, V57, P13833
32735    HALPERIN BI, 1979, J LOW TEMP PHYS, V36, P599
32736    HEGMANN FA, 1993, PHYS REV B, V48, P16023
32737    HEGMANN FA, 1995, APPL PHYS LETT, V67, P285
32738    HERTER ST, 1998, PHYS REV B, V57, P1154
32739    HUBER WM, 1996, APPL PHYS LETT, V68, P3338
32740    KADIN AM, 1983, PHYS REV B, V27, P6691
32741    KOSTERLITZ JM, 1973, J PHYS C SOLID STATE, V6, P1181
32742    MARTIN S, 1989, PHYS REV LETT, V62, P677
32743    PHONG LN, 1993, J APPL PHYS, V74, P7414
32744    TINKHAM M, 1995, INTRO SUPERCONDUCTIV
32745    VANVECHTEN D, 1997, APPL PHYS LETT, V71, P1415
32746    WU PH, 1987, JPN J APPL PHYS, V26, L1579
32747    XU KX, 1999, ACTA PHYS SIN-CH ED, V48, P1152
32748    YING QY, 1990, PHYS REV B, V42, P2242
32749    ZHANG ZM, 1994, J SUPERCOND, V7, P871
32750 NR 25
32751 TC 1
32752 SN 1000-3290
32753 J9 ACTA PHYS SIN-CHINESE ED
32754 JI Acta Phys. Sin.
32755 PD MAY
32756 PY 2000
32757 VL 49
32758 IS 5
32759 BP 989
32760 EP 996
32761 PG 8
32762 SC Physics, Multidisciplinary
32763 GA 313XV
32764 UT ISI:000087025700032
32765 ER
32766 
32767 PT J
32768 AU Zhong, YB
32769    Ren, ZM
32770    Deng, K
32771    Jiang, GC
32772    Xu, KD
32773 TI Separation of inclusions from liquid metal contained in a
32774    triangle/square pipe by travelling magnetic field
32775 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
32776 DT Article
32777 DE travelling magnetic fields; purification; inclusion
32778 AB By using plug flow and trajectory model, the elimination efficiency of
32779    the inclusions from liquid metals purified by travelling magnetic field
32780    (TMF) in either a triangle or a square pipe was analyzed theoretically.
32781    The ways to improve the elimination efficiency were suggested. The
32782    results using different kinds of pipes were reciprocally compared. It
32783    is determined that by means of TMF to eliminate inclusions the
32784    efficiency is affected by the diameter of the inclusions, in which the
32785    inclusions can be removed most efficiently, is optimized.
32786 C1 Shanghai Univ, Shanghai Key Lab Ferrous Met, Shanghai 200072, Peoples R China.
32787 CR FLEMINGS MC, 1981, SOLIDIFYING PROCESS, P202
32788    JIANG GC, 1996, CLEAN STEEL SECONDAR, P2
32789    JOON P, 1994, TETSU TO HAGANE, V80, P31
32790    LEENOV D, 1954, J CHEM PHYS, V22, P683
32791    SHANGGUAN D, 1992, METALL TRANS A, V23, P669
32792    SHOJI T, 1994, TETSU TO HAGANE, V80, P24
32793    TANLGUCHI S, 1997, PAR P EMP INT C, P199
32794    YOSHIKO T, 1995, TETSU TO HAGANE, V81, P12
32795    ZHAO XD, 1985, VISCOUS HYDROMECHANI, P62
32796    ZHONG YB, 1988, DEV NOWADAYS LEVEL T, P435
32797    ZHONG YB, 1999, CHINESE J NONFERROUS, V9, P482
32798    ZHONG YB, 1999, SHANGHAI NONFERROUS, P5
32799 NR 12
32800 TC 5
32801 SN 1003-6326
32802 J9 TRANS NONFERROUS METAL SOC CH
32803 JI Trans. Nonferrous Met. Soc. China
32804 PD APR
32805 PY 2000
32806 VL 10
32807 IS 2
32808 BP 240
32809 EP 245
32810 PG 6
32811 SC Metallurgy & Metallurgical Engineering
32812 GA 310PC
32813 UT ISI:000086835700024
32814 ER
32815 
32816 PT J
32817 AU Jiang, GC
32818    You, JL
32819    Yu, BK
32820    Haung, SP
32821 TI Developments of high temperature Raman spectroscopic techniques
32822 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
32823 DT Article
32824 DE high temperature; Raman spectroscopy; melt
32825 AB In recent years,researches on electroluminescence (EL) of organic and
32826    polymer thin film materials have been made with an outstanding
32827    progress,and have attracted much interest because of its large-area,
32828    full color, high luminance displays which can be driven with low de
32829    voltage. In this paper, the history of the development on
32830    electroluminescence, the devices and the selection of luminescent
32831    materials and the electroluminescence principle are introduced briefly.
32832 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
32833 RP Jiang, GC, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
32834    200072, Peoples R China.
32835 CR GILLET P, 1996, PHYS CHEM MINER, V23, P263
32836    IGUCHI Y, 1981, CAN METALL Q, V20, P51
32837    IGUCHI Y, 1984, P 2 INT C MOLT SLAGS, P975
32838    IGUCHI Y, 1988, P 3 INT C MOLT SLAGS, P169
32839    KASHIO S, 1980, RAMAN SPECTROSCOPIC, V20, P251
32840    LONG DA, 1977, RAMAN SPECTROSCOPY
32841    RICHET P, 1993, J APPL PHYS, V74, P5451
32842 NR 7
32843 TC 6
32844 SN 1000-0593
32845 J9 SPECTROSC SPECTR ANAL
32846 JI Spectrosc. Spectr. Anal.
32847 PD APR
32848 PY 2000
32849 VL 20
32850 IS 2
32851 BP 206
32852 EP +
32853 PG 5
32854 SC Spectroscopy
32855 GA 312TD
32856 UT ISI:000086958400018
32857 ER
32858 
32859 PT J
32860 AU Wang, XJ
32861    Zhang, ZM
32862    Zhang, GX
32863 TI Improving the performance of spring-supported thrust bearing by
32864    controlling its deformations
32865 SO TRIBOLOGY INTERNATIONAL
32866 DT Article
32867 DE spring supporting form; thermo-elastic deformation; thrust bearing
32868 ID ELASTIC DISTORTION ANALYSIS
32869 AB The performance of the spring-supported thrust bearing is studied with
32870    three-dimensional thermo-elastic hydrodynamic lubrication theory. The
32871    generalized Reynolds equation, the energy equation, the heat conduction
32872    equation, and the thermo-elastic deformation equation are solved
32873    simultaneously using the combination of the finite difference method
32874    and finite element method. Thermo-elastic deformation plays an
32875    important role in the performance of the spring-supported thrust
32876    bearing. Several factors such as spring pattern, pad thickness and
32877    initial pad geometry are analyzed. The results show that the above
32878    factors influence the performance of the bearing significantly.
32879    Suggestions based on the results are put forward to assist design
32880    considerations. (C) 2000 Elsevier Science Ltd. All rights reserved.
32881 C1 Shanghai Univ, Dept Mech Engn, Shanghai 200072, Peoples R China.
32882 RP Wang, XJ, Shanghai Univ, Dept Mech Engn, Shanghai 200072, Peoples R
32883    China.
32884 CR ASHOUR NME, 1991, TRIBOL INT, V24, P299
32885    ETTLES CM, 1991, J TRIBOL-T ASME, V113, P626
32886    LIAO G, 1994, HUBEI ELECT TECHNOL, V1, P74
32887    SINHA AN, 1993, TRIBOL INT, V26, P251
32888    SINHA AN, 1994, STLE TRIBOL T, V37, P802
32889    WANG X, 1998, P ASIATRIB 98, P30
32890 NR 6
32891 TC 3
32892 SN 0301-679X
32893 J9 TRIBOL INT
32894 JI Tribol. Int.
32895 PD DEC
32896 PY 1999
32897 VL 32
32898 IS 12
32899 BP 713
32900 EP 720
32901 PG 8
32902 SC Engineering, Mechanical
32903 GA 310GA
32904 UT ISI:000086817100003
32905 ER
32906 
32907 PT J
32908 AU Wang, GB
32909 TI Synthesis and characterization of novel complexes of a dipeptide Schiff
32910    base ligand containing DL-alanyl-DL-alanine
32911 SO SYNTHESIS AND REACTIVITY IN INORGANIC AND METAL-ORGANIC CHEMISTRY
32912 DT Article
32913 ID L-AMINO-ACIDS; COORDINATION MODES; HISTIDINE; OXOVANADIUM(IV);
32914    STEREOCHEMISTRY; OXYGENATION; COPPER(II); CRYSTAL
32915 AB A new dipeptide Schiff base obtained by the condensation of
32916    DL-alanyl-DL-alanine with o-vanillin was synthesized and characterized
32917    by H-1 NMR spectroscopy. Cu(II), Zn(II), Ni(II) and Co(II) complexes
32918    were obtained with the dipeptide Schiff base. The COO stretching bands
32919    in the IR spectra suggest that carboxylate acts as a monodentate group
32920    when binding with metal. The ligand is coordinated to the central metal
32921    as tetradentate ligand. The bonding sites are the carboxylate oxygen,
32922    imino nitrogen, amide nitrogen and phenolic oxygen.
32923 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 201800, Peoples R China.
32924 RP Wang, GB, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 201800, Peoples R
32925    China.
32926 CR ABDELMAWGOUD AM, 1991, SYN REACT INORG MET, V21, P1061
32927    ANGOSO A, 1992, INORG CHIM ACTA, V195, P45
32928    CASELLA L, 1984, J CHEM SOC DA, P1033
32929    CASELLA L, 1986, INORG CHEM, V25, P1293
32930    CASELLA L, 1988, INORG CHIM ACTA, V144, P89
32931    CAVACO I, 1994, J CHEM SOC DA, P149
32932    CHAKRAVARTY J, 1994, J CHEM SOC DA, P557
32933    DUTTA S, 1995, POLYHEDRON, V14, P1163
32934    FULWOOD R, 1995, J CHEM SOC CHEM COMM, P1443
32935    GEARY WJ, 1971, COORDIN CHEM REV, V7, P81
32936    GON NK, 1993, POLYHEDRON, V12, P925
32937    MARTELL AE, 1989, ACCOUNTS CHEM RES, V22, P115
32938    MARTELL AE, 1990, J CHEM SOC CHEM COMM, P352
32939    MATHEWS II, 1991, INORG CHEM, V30, P81
32940    MONDAL S, 1995, J CHEM SOC DA, P1115
32941    NAKAMOTO K, 1978, INFRA RED RAMAN SPEC
32942    NATH M, 1998, SYN REACT INORG MET, V28, P715
32943    PESSOA JC, 1992, J CHEM SOC DA, P1745
32944    VOGEL AI, 1978, TXB QUANTITATIVE INO
32945    WANG GB, 1994, SYN REACT INORG MET, V28, P843
32946    YUSUFF KKM, 1991, SYN REACT INORG MET, V21, P553
32947 NR 21
32948 TC 3
32949 SN 0094-5714
32950 J9 SYN REACTIV INORG METAL-ORG C
32951 JI Synth. React. Inorganic Met.-Org. Chem.
32952 PY 2000
32953 VL 30
32954 IS 4
32955 BP 601
32956 EP 608
32957 PG 8
32958 SC Chemistry, Inorganic & Nuclear
32959 GA 310HM
32960 UT ISI:000086820500003
32961 ER
32962 
32963 PT J
32964 AU Yao, LX
32965    Chen, RL
32966    Qin, P
32967    Chen, NY
32968    Lu, WC
32969 TI Regularities of formation of ternary alloy phases between
32970    non-transition metals
32971 SO SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES
32972 DT Article
32973 DE non-transition metals; ternary intermetallic compounds; regularities of
32974    formation
32975 AB Using a four-parameter model based on extended Miedema's cellular model
32976    of alloy phases and pattern recognition methods, the regularities of
32977    formation of ternary intermetallic compounds between non-transition
32978    metals have been investigated. The criterion of formation can be
32979    expressed as some empirical functions of phi (electronegativity),
32980    n(ws)(1/3)(valence electron density in Wagner-Seitz cell), R (Pauling's
32981    metallic radius) and Z (number of valence electrons in atom).
32982 C1 Chinese Acad Sci, Shanghai Inst Met, Shanghai 200050, Peoples R China.
32983    Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
32984 RP Yao, LX, Chinese Acad Sci, Shanghai Inst Met, Shanghai 200050, Peoples
32985    R China.
32986 CR CHEN NY, 1976, BOND PARAMETER FUNCT
32987    CHEN NY, 1996, J ALLOY COMPD, V245, P179
32988    CHEN NY, 1999, CHEMOMETR INTELL LAB, V45, P329
32989    MIEDEMA AR, 1973, J LESS-COMMON MET, V32, P117
32990    NESPER R, 1993, J ALLOY COMPD, V197, P109
32991    PAULING L, 1960, NATURE CHEM BOND
32992    TILLARDCHARBONN.M, 1993, MATER RES BULL, V28, P1285
32993    VILLERS P, 1987, PERSONS HDB CRYSTALL, V1
32994 NR 8
32995 TC 3
32996 SN 1006-9321
32997 J9 SCI CHINA SER E
32998 JI Sci. China Ser. E-Technol. Sci.
32999 PD APR
33000 PY 2000
33001 VL 43
33002 IS 2
33003 BP 199
33004 EP 205
33005 PG 7
33006 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary
33007 GA 309AJ
33008 UT ISI:000086744800011
33009 ER
33010 
33011 PT J
33012 AU Zhao, DQ
33013    Wang, WH
33014    Zhuang, YX
33015    Pan, MX
33016    Ji, YF
33017    Ma, XM
33018    Dong, YD
33019 TI Formation and performance of new Zr-Ti-Cu-Ni-Be-Fe bulk amorphous alloy
33020 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
33021 DT Article
33022 DE bulk amorphous alloy; glass forming ability; Zr-Ti-Cu-Ni-Be-Fe alloy;
33023    hardness; susceptibility
33024 ID METALLIC-GLASS; MICROSTRUCTURE
33025 AB The formation of the new Zr-Ti-Cu-Ni-Be-Fe bulk amorphous alloy with
33026    high strength is reported. The effects of the iron atom on the glass
33027    forming ability, hardness, susceptibility and thermal stability of the
33028    amorphous alloy are investigated. The role of the iron in the formation
33029    of the bulk amorphous alloy is discussed.
33030 C1 Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China.
33031    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
33032 RP Zhao, DQ, Chinese Acad Sci, Inst Phys, POB 603, Beijing 100080, Peoples
33033    R China.
33034 CR DAI DS, 1992, FERROMAGNETICS, P28
33035    GREER AL, 1993, NATURE, V366, P303
33036    INOUE A, 1995, MATER T JIM, V36, P866
33037    JOHNSON WL, 1996, MATER SCI FORUM, V35, P225
33038    PEKER A, 1993, APPL PHYS LETT, V63, P2342
33039    WANG R, 1979, NATURE, V278, P700
33040    WANG WH, 1997, APPL PHYS LETT, V71, P1053
33041    WANG WH, 1998, PHYS REV B, V57, P8211
33042 NR 8
33043 TC 0
33044 SN 1006-9283
33045 J9 SCI CHINA SER A
33046 JI Sci. China Ser. A-Math. Phys. Astron.
33047 PD MAR
33048 PY 2000
33049 VL 43
33050 IS 3
33051 BP 307
33052 EP 311
33053 PG 5
33054 SC Mathematics, Applied; Mathematics
33055 GA 309AP
33056 UT ISI:000086745300009
33057 ER
33058 
33059 PT J
33060 AU Xu, YR
33061    Chen, LS
33062    Wang, DY
33063    Jin, L
33064 TI Flow behavior and evolution of microstructure during hot deformation
33065    for a high Mo stainless steel
33066 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
33067 DT Article
33068 ID PRECIPITATION
33069 AB The mechanical behaviors of high Mo austenitic stainless steel
33070    00Cr20Ni18Mo6Cu[N] have been investigated using the methods of hot
33071    compression simulation test on the Thermecmaster-Z simulator. The
33072    dynamic recrystallization kinetic equation was established, Avrami
33073    coefficient n lies in between 0.9 similar to 2 depending on deformation
33074    parameters. A perfect flow stress model considering dynamic
33075    recrystallization was also established. Dynamic recrystallization tends
33076    to complete at 1050 degrees C and high strain rate, but at temperature
33077    below 950 degrees C, it is hard to occur. Double-stage interrupt
33078    compression tests were carried out. Activation energy for static and
33079    metadynamic recrystallization have been obtained respectively
33080    (Q(SRX)=483.7, Q(MDRX)=253.5 kJ/mol). Avrami coefficient of MDRX is
33081    about 0.5, and t(0.5)-kinetics equations of SRX and MDRX have also been
33082    constructed. The evolution of microstructures during interrupt
33083    compression deformation was investigated. Static and metadynamic
33084    recrystallization is essential to improve plasticity, at temperature
33085    above 1000 degrees C increasing interpass time has advantage for static
33086    and metadynamic recrystallization.
33087 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
33088 RP Xu, YR, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
33089    China.
33090 CR DUTTA B, 1987, MATER SCI TECH SER, V3, P197
33091    FABREGUE P, 1994, ADV HOT DEFORMATION, P75
33092    HERTZMEN S, 1996, SCANDINAVIAN J METAL, V24, P140
33093    HODGSON PD, 1994, ADV HOT DEFORMATION, P41
33094    HOLMVIK AA, 1997, THERM 97 INT C THERM, V1, P241
33095    JARGELIUSPETTER.RF, 1996, SCANDINAVIAN J METAL, V24, P188
33096    MILITZER M, 1994, ACTA METALL MATER, V42, P133
33097    ROBERTS W, 1984, DEFORMATION PROCESSI, P109
33098    ROUCOULES C, 1993, 1 INT C MOD MET ROLL, P165
33099    RYAN ND, 1990, MATER FORUM, V14, P283
33100    RYAN ND, 1994, ADV HOT DEFORMATION, P445
33101 NR 11
33102 TC 0
33103 SN 1005-0302
33104 J9 J MATER SCI TECHNOL
33105 JI J. Mater. Sci. Technol.
33106 PD MAY
33107 PY 2000
33108 VL 16
33109 IS 3
33110 BP 341
33111 EP 344
33112 PG 4
33113 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
33114    Engineering
33115 GA 310FW
33116 UT ISI:000086816700018
33117 ER
33118 
33119 PT J
33120 AU Chen, BL
33121    Lu, W
33122    Wang, ZG
33123    Yang, H
33124    Wang, H
33125 TI Characterization for 64x64 InSb photovoltaic infrared detector array
33126 SO JOURNAL OF INFRARED AND MILLIMETER WAVES
33127 DT Article
33128 DE infrared focal plane array; InSb; microprobing; characterization
33129 AB Statistical characterization and uniformity evaluation for 64 X 64 InSb
33130    photovoltaic detector arrays prepared for fabrication of staring
33131    infrared focal plane array by using modified cryomicroprobing technique
33132    were carried out. Typical values of mean detector impedance 42Mh Omega
33133    at 90K and zero bias with nonuniformity 20%, mean responsivity 2.8A/W
33134    for 1000K blackbody with nonuniformity 6.3%, and electrical crosstalk
33135    rate less than 2% were measured. These performances meet the technical
33136    requirements to fabrication of hybrid InSb focal plane arrays.
33137    Localized electrical crosstalk detected on some abnormal chips was
33138    discussed.
33139 C1 Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China.
33140    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
33141 RP Chen, BL, Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083,
33142    Peoples R China.
33143 CR AMINGUAL D, 1996, P SOC PHOTO-OPT INS, V2894, P95
33144    BLUZER N, 1987, OPT ENG, V26, P241
33145    NAVEH O, 1997, P SOC PHOTO-OPT INS, V3061, P692
33146    PARRISH WJ, 1991, P SOC PHOTO-OPT INS, V1512, P68
33147    TREADO PJ, 1994, APPL SPECTROSC, V48, P607
33148 NR 5
33149 TC 0
33150 SN 1001-9014
33151 J9 J INFRARED MILIM WAVES
33152 JI J. Infrared Millim. Waves
33153 PD APR
33154 PY 2000
33155 VL 19
33156 IS 2
33157 BP 89
33158 EP 92
33159 PG 4
33160 SC Optics
33161 GA 310JD
33162 UT ISI:000086822000002
33163 ER
33164 
33165 PT J
33166 AU Wang, ZH
33167    Peng, GD
33168    Chu, PL
33169 TI Improved Rouard's method for fiber and waveguide gratings
33170 SO OPTICS COMMUNICATIONS
33171 DT Article
33172 DE Rouard's method; fiber gratings
33173 ID WAVE-GUIDE GRATINGS; COUPLED-MODE THEORY; PERIODIC STRUCTURES
33174 AB An improvement has been made to Rouard's method for the analysis of
33175    fiber and waveguide gratings. The real reflectivity of each interface
33176    is used instead of an approximate value obtained by coupled-mode
33177    theory. The improved Rouard's method becomes a complete Rouard's method
33178    and an exact method. It is simple and independent on coupled-mode
33179    theory for no calculation of coupling coefficient required. Numerical
33180    examples of uniform and nonuniform gratings have been given. (C) 2000
33181    Published by Elsevier Science B.V. All rights reserved.
33182 C1 Shanghai Univ, Wave Sci Lab, Shanghai 201800, Peoples R China.
33183    Univ New S Wales, Sch Elect Engn, Opt Commun Grp, Sydney, NSW 2052, Australia.
33184 RP Wang, ZH, Shanghai Univ, Wave Sci Lab, Shanghai 201800, Peoples R China.
33185 CR ERDOGAN T, 1997, J LIGHTWAVE TECHNOL, V15, P1277
33186    HILL KO, 1997, J LIGHTWAVE TECHNOL, V15, P1263
33187    KOGELNIK H, 1976, BELL SYST TECH J, V55, P109
33188    WELLERBROPHY LA, 1985, J OPT SOC AM A, V2, P863
33189    WELLERBROPHY LA, 1987, J OPT SOC AM A, V4, P60
33190    WINICK KA, 1992, APPL OPTICS, V31, P757
33191    YAMADA M, 1987, APPL OPTICS, V26, P3474
33192    YARIV A, 1977, IEEE J QUANTUM ELECT, V13, P233
33193    YARIV A, 1993, OPTICAL WAVES CRYSTA, P177
33194    YEH P, 1977, J OPT SOC AM, V67, P423
33195 NR 10
33196 TC 1
33197 SN 0030-4018
33198 J9 OPT COMMUN
33199 JI Opt. Commun.
33200 PD APR 15
33201 PY 2000
33202 VL 177
33203 IS 1-6
33204 BP 245
33205 EP 250
33206 PG 6
33207 SC Optics
33208 GA 306BW
33209 UT ISI:000086577200029
33210 ER
33211 
33212 PT J
33213 AU Jin, CY
33214    Ding, YP
33215    Meng, ZY
33216 TI Studies on the chemical mechanism of BaxSr1-xTiO3 ferroelectric thin
33217    films by sol-gel method
33218 SO JOURNAL OF INORGANIC MATERIALS
33219 DT Article
33220 DE BST thin films; sol-gel method; FTIR; DSC; XRD; AFM
33221 ID KINETICS
33222 AB FTIR analysis combined with DSC, XRD and AFM experiments was used to
33223    study on the chemical mechanism of thermal evolution for BaxSr1-xTiO3
33224    (BST) thin films derived by sol-gel method. Acetylacetone(HAcAc) was
33225    introduced as a chelating agent to reduce a rapid hydrolysis rate of
33226    Ti-alkoxide, to improve its crystallization path, to decrease its
33227    crystallization temperature. And then the densified and crack-free BST
33228    thin films with better crystallization were fabricated.
33229 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
33230    Shanghai Jiao Tong Univ, Dept Mat Sci, Shanghai 200030, Peoples R China.
33231 RP Jin, CY, Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
33232 CR DING YP, UNPUB MAT RES B
33233    DING YP, 1999, ADV SCI TECHNOLOGY, V20, P615
33234    GUST MC, 1997, J AM CERAM SOC, V80, P2828
33235    JANG SI, 1997, J MATER RES, V12, P1327
33236    KAMALASANAN MN, 1996, J MATER SCI, V31, P2741
33237    OHFUJI S, 1997, JPN J APPL PHYS 1, V36, P5854
33238    SENGUPTA LC, 1994, FERROELECTRICS, V153, P359
33239    SHAIKH AS, 1986, J AM CERAM SOC, V69, P682
33240 NR 8
33241 TC 1
33242 SN 1000-324X
33243 J9 J INORG MATER
33244 JI J. Inorg. Mater.
33245 PD APR
33246 PY 2000
33247 VL 15
33248 IS 2
33249 BP 287
33250 EP 292
33251 PG 6
33252 SC Materials Science, Ceramics
33253 GA 307PA
33254 UT ISI:000086660700015
33255 ER
33256 
33257 PT J
33258 AU Feng, WB
33259    Li, KT
33260 TI The existence and uniqueness of weak solution of the flow between two
33261    concentric rotating spheres
33262 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
33263 DT Article
33264 DE Navier-Stokes equations; stream function; Galerkin method
33265 ID SIMULATION
33266 AB The unsteady axisymmetric incompressible flow between two concentric
33267    spheres was discussed in this paper. It is useful to most
33268    astrophysical, geophysical and engineering applications. In order to
33269    get the existence and uniqueness of weak solution of this flow with the
33270    stream-velocity form, firstly, the relations among the nonlinear terms
33271    in this equation is found; then, the existence is proved by an
33272    auxiliary semi-discrete scheme and a compactness argument.
33273 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
33274    Xian Jiao Tong Univ, Sch Sci, Xian 710049, Peoples R China.
33275 RP Feng, WB, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
33276    200072, Peoples R China.
33277 CR GLOWINSKI R, 1984, NUMERICAL METHODS NO
33278    KHLEBUTIN GN, 1968, FLUID DYN, V3, P31
33279    LI KT, 1992, HILBERT SPACE METHOD
33280    MARCUS PS, 1987, J FLUID MECH, V185, P1
33281    MARCUS PS, 1987, J FLUID MECH, V185, P31
33282    TEMAN R, 1984, NAVIERSTOKES EQUATIO
33283    TUCKERMAN LS, 1983, THESIS MIT MASSACHUS
33284 NR 7
33285 TC 0
33286 SN 0253-4827
33287 J9 APPL MATH MECH-ENGL ED
33288 JI Appl. Math. Mech.-Engl. Ed.
33289 PD JAN
33290 PY 2000
33291 VL 21
33292 IS 1
33293 BP 67
33294 EP 72
33295 PG 6
33296 SC Mathematics, Applied; Mechanics
33297 GA 308DJ
33298 UT ISI:000086695000009
33299 ER
33300 
33301 PT J
33302 AU Cheng, CJ
33303    Chen, XY
33304 TI Inverse scattering for inhomogeneous viscoelastic media
33305 SO JOURNAL OF MATHEMATICAL PHYSICS
33306 DT Article
33307 ID DISSIPATIVE WAVE-EQUATION; ELECTROMAGNETIC SCATTERING; TIME DOMAIN
33308 AB In this paper, the inverse scattering problems for the full
33309    inhomogeneous viscoelastic medium are studied via the invariant
33310    imbedding technique. Special attention is paid to the propagation
33311    operators of the viscoelastic medium and the imbedding equations for
33312    these operators are derived. For the inverse scattering problems, it is
33313    shown that the reflection data can be extended from one round trip
33314    through the iscoelastic slab to arbitrary time with the help of the
33315    propagation operators, hence the reconstruction of the relaxation
33316    modulus is sufficient to be considered only in one round trip. It is
33317    also shown that only one-side measurement reflection data are not
33318    sufficient to reconstruct the relaxation modulus and the density of the
33319    medium simultaneously. The corresponding numerical examples are
33320    presented. For the case that the relaxation modulus of the medium is
33321    modeled by two independent functions, an iterative inversion procedure
33322    is proposed to recover the relaxation modulus and the density
33323    simultaneously with the input two-side normally reflection data. (C)
33324    2000 American Institute of Physics. [S0022-2488(00)06705-0].
33325 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
33326    State Ocean Adm, Key Lab Marine Sci & Numer Modelling, Tsingdao 266003, Peoples R China.
33327 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
33328    Shanghai 200072, Peoples R China.
33329 CR AMMICHT E, 1987, J ACOUST SOC AM, V81, P827
33330    BEEZLEY RS, 1985, J MATH PHYS, V26, P317
33331    BUI DD, 1995, INVERSE PROBL, V11, P835
33332    CHRISTENSON RM, 1982, THEORY VISCOELASTICI
33333    CORONES JP, 1988, INVERSE PROBL, V4, P643
33334    KARLSSON A, 1987, INVERSE PROBL, V3, P691
33335    KREIDER KL, 1989, WAVE MOTION, V11, P427
33336    KRESS R, 1989, APPL MATH SCI
33337    KRISTENSSON G, 1986, J MATH PHYS, V27, P1667
33338    KRISTENSSON G, 1986, J MATH PHYS, V27, P1683
33339    ZHU WH, 1990, J ACOUST SOC AM, V877, P2371
33340 NR 11
33341 TC 1
33342 SN 0022-2488
33343 J9 J MATH PHYS-NY
33344 JI J. Math. Phys.
33345 PD MAY
33346 PY 2000
33347 VL 41
33348 IS 5
33349 BP 2839
33350 EP 2850
33351 PG 12
33352 SC Physics, Mathematical
33353 GA 305YD
33354 UT ISI:000086568600022
33355 ER
33356 
33357 PT J
33358 AU Liu, YF
33359    Wang, SZ
33360    Hua, JD
33361 TI Synthesis of complex polymeric flocculant and its application in
33362    purifying water
33363 SO JOURNAL OF APPLIED POLYMER SCIENCE
33364 DT Article
33365 DE polyacrylamide; complex; flocculant
33366 AB A novel flocculant was synthesized, a method consisting of a
33367    poly(acrylamide-co-acrylic acid) complexed with an inorganic coagulant
33368    through the chemical bond between metal ions and carboxyl acid groups
33369    or amide ligands within the polymer. This complex polymeric flocculant
33370    is more readily available for purifying water than any single or
33371    mechanical mixture. The mechanism of flocculating is discussed and a
33372    practical use performed for wastewater from paper mill. (C) 2000 John
33373    Wiley & Sons, Inc.
33374 C1 Shanghai Univ Sci & Technol, Dept Polymer Mat, Shanghai 201800, Peoples R China.
33375 RP Liu, YF, Shanghai Univ Sci & Technol, Dept Polymer Mat, Shanghai
33376    201800, Peoples R China.
33377 CR CAMPANELLA L, 1995, INQUINAMENTO, V37, P66
33378    CHEN F, 1994, 2110458, CA
33379    FAN R, 1995, ZIRAN KEXUE BAN, V23, P71
33380    FUJII N, 1991, MIYAZAKI DAIGAKU NOG, V38, P131
33381    GOLDBLATT ME, 1995, P 68 ANN C EXP WAT E, V3, P451
33382    GOOSSENS IR, 1993, CM MAG, V19, P20
33383    KOETZ J, 1992, 301010, DE
33384    LAMER VK, 1963, REV PURE APPL CHEM, V13, P112
33385 NR 8
33386 TC 4
33387 SN 0021-8995
33388 J9 J APPL POLYM SCI
33389 JI J. Appl. Polym. Sci.
33390 PD JUN 28
33391 PY 2000
33392 VL 76
33393 IS 14
33394 BP 2093
33395 EP 2097
33396 PG 5
33397 SC Polymer Science
33398 GA 306JF
33399 UT ISI:000086593000013
33400 ER
33401 
33402 PT J
33403 AU He, JH
33404 TI A variational model for compressible rotational blade-to-blade flow
33405    using Liu-type potential function
33406 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
33407 DT Article
33408 ID SEMI-INVERSE METHOD; PRINCIPLES
33409 AB The pseudo-potential function proposed by Liu retains almost all
33410    advantages of the potential function, while removing its restriction to
33411    flow potentiality. To apply the finite element applications for
33412    numerical simulation of the compressible rotational blade-to-blade
33413    flow, it is necessary to establish a generalized variational principle.
33414    In this paper a family of variational principles is established by the
33415    trial-and-error method, the Lagrange multiplier method and the
33416    semi-inverse method.
33417 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
33418 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
33419    Peoples R China.
33420 CR HE JH, 1997, INT J TURBO JET ENG, V14, P23
33421    HE JH, 1997, J SHANGHAI U, V1, P117
33422    HE JH, 1998, APPL MATH MODEL, V22, P395
33423    HE JH, 1998, COMMUNICATIONS NONLI, V3, P176
33424    HE JH, 1998, INT J TURBO JET ENG, V15, P101
33425    HE JH, 1998, INT J TURBO JET ENG, V15, P95
33426    HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154
33427    LIU GH, 1997, AIRCRAFT ENG AEROSPA, V6, P527
33428    LIU GL, 1991, J ENG THERMOPHYSICS, V12, P2026
33429    LIU GL, 1996, INT J TURBO JET ENG, V13, P263
33430    SHEN YS, 1998, THESIS SHANGHAI I AP
33431    WANG HG, 1993, THESIS SHANGHAI I ME, P21
33432 NR 12
33433 TC 0
33434 SN 0334-0082
33435 J9 INT J TURBO JET ENGINES
33436 JI Int. J. Turbo. Jet-Engines
33437 PY 2000
33438 VL 17
33439 IS 2
33440 BP 143
33441 EP 152
33442 PG 10
33443 SC Engineering, Aerospace
33444 GA 305YZ
33445 UT ISI:000086570500004
33446 ER
33447 
33448 PT J
33449 AU Wang, J
33450    Fiebig, M
33451 TI Thermal diffusivity of aqueous solutions of magnesium chloride in the
33452    temperature range from 294 to 371 K
33453 SO INTERNATIONAL JOURNAL OF THERMOPHYSICS
33454 DT Article
33455 DE aqueous solution; diffraction; laser-induced thermal grating; magnesium
33456    chloride; thermal conductivity; thermal diffusivity
33457 ID GRATING TECHNIQUE; METHANOL
33458 AB The thermal diffusivity of aqueous solutions of magnesium chloride was
33459    determined in the temperature range 294 to 371 K and at atmospheric
33460    pressure. Using a noninvasive optical technique-laser-induced thermal
33461    grating ( LTG) the measurements were carried out in aqueous solutions
33462    of weight fractions of 5, 10, 15, and 20% magnesium chloride. The
33463    measurement results for the aqueous solutions are presented as a
33464    Function of temperature and weight fraction.
33465 C1 Ruhr Univ Bochum, Inst Thermo & Fluiddynam, D-44780 Bochum, Germany.
33466    Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
33467 RP Fiebig, M, Ruhr Univ Bochum, Inst Thermo & Fluiddynam, D-44780 Bochum,
33468    Germany.
33469 CR 1991, VDI WARMEATLAS
33470    BLANKE W, 1989, THERMOPHYSIKALISCHE, P112
33471    NAGASAKA Y, 1988, REV SCI INSTRUM, V59, P1156
33472    PRESS WH, 1992, NUMERICAL RECIPES FO, P678
33473    WANG J, 1995, HEAT MASS TRANSFER, V31, P83
33474    WANG J, 1995, INT J THERMOPHYS, V16, P1353
33475    WANG J, 1995, MESSUNG TEMPERATURLE, P48
33476    WANG J, 1996, EXP THERM FLUID SCI, V13, P38
33477    WANG J, 1998, INT J THERMOPHYS, V19, P15
33478    WU G, 1993, FLUID PHASE EQUILIBR, V88, P239
33479 NR 10
33480 TC 1
33481 SN 0195-928X
33482 J9 INT J THERMOPHYS
33483 JI Int. J. Thermophys.
33484 PD JAN
33485 PY 2000
33486 VL 21
33487 IS 1
33488 BP 35
33489 EP 44
33490 PG 10
33491 SC Chemistry, Physical; Physics, Applied; Mechanics; Thermodynamics
33492 GA 304VZ
33493 UT ISI:000086506000003
33494 ER
33495 
33496 PT J
33497 AU Guo, GY
33498    Chen, YL
33499 TI Achieving practically zero discharge for an acrylic acid plant by a
33500    metalorganic precipitation process
33501 SO GREEN CHEMISTRY
33502 DT Article
33503 ID ACETIC-ACID; ION-EXCHANGE; SEPARATION; EXTRACTION; PRECURSOR; PH
33504 C1 Jiao Tong Univ, Shanghai 200030, Peoples R China.
33505    Shanghai Univ, Shanghai 200041, Peoples R China.
33506 RP Guo, GY, Jiao Tong Univ, Shanghai 200030, Peoples R China.
33507 CR ANWAR MM, 1998, SOLVENT EXTR ION EXC, V16, P931
33508    CLOETE FLD, 1995, IND ENG CHEM RES, V34, P2464
33509    DELUCAS A, 1999, SEPAR SCI TECHNOL, V34, P525
33510    DOEUFF S, 1987, J NON-CRYST SOLIDS, V89, P206
33511    GUO GY, 1991, J MATER SCI, V26, P3511
33512    GUO GY, 1992, J AM CERAM SOC, V75, P1294
33513    JOSHI VP, 1998, CHEM ENG SCI, V53, P2271
33514    MICHELI AL, 1989, CERAM INT, V15, P131
33515    RAYNAUDLACROZE PO, 1993, IND ENG CHEM RES, V32, P685
33516    REISINGER H, 1995, IND ENG CHEM RES, V34, P845
33517    SCHIERBAUM B, 1999, CHEM ENG TECHNOL, V22, P37
33518    SHENDE RV, 1997, IND ENG CHEM RES, V36, P4809
33519    SOREK Y, 1997, CHEM MATER, V9, P670
33520    TAKATSUJI W, 1997, J CHEM ENG JPN, V30, P396
33521    WODZKI R, 1997, SOLVENT EXTR ION EXC, V15, P1085
33522    YANG ST, 1991, IND ENG CHEM RES, V30, P1335
33523 NR 16
33524 TC 1
33525 SN 1463-9262
33526 J9 GREEN CHEM
33527 JI Green Chem.
33528 PD APR
33529 PY 2000
33530 VL 2
33531 IS 2
33532 BP G42
33533 EP G45
33534 PG 4
33535 SC Chemistry, Multidisciplinary
33536 GA 305DR
33537 UT ISI:000086524600002
33538 ER
33539 
33540 PT J
33541 AU Wang, LJ
33542    Xia, YB
33543    Ju, JH
33544    Fan, YM
33545    Mo, YW
33546    Shi, WM
33547 TI Efficient luminescence from CVD diamond film-coated porous silicon
33548 SO JOURNAL OF PHYSICS-CONDENSED MATTER
33549 DT Letter
33550 AB In this Letter a novel passivation method for porous silicon (PS)
33551    surfaces, i.e., depositing diamond film on a PS surface by microwave
33552    plasma assisted chemical vapour deposition (MPCVD) method, is reported.
33553    The morphologies, structure and PL of CVD diamond film coated PS were
33554    characterized using scanning electron microscopy (SEM), Raman spectrum
33555    and PL spectroscope. Results indicate that efficient luminescence can
33556    be obtained from diamond film-coated porous silicon Also, the CVD
33557    diamond film may efficiently stabilize the PL wavelength and intensity
33558    of PS, and therefore is a promising candidate for passivation of porous
33559    silicon in the future.
33560 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
33561 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
33562    China.
33563 CR CANHAM LT, 1990, APPL PHYS LETT, V57, P1016
33564    GARDELIS S, 1994, J APPL PHYS, V76, P5327
33565    GILDENBLAT GS, 1991, P IEEE, V79, P647
33566    KALISH R, 1997, APPL SURF SCI, V117, P558
33567    MULLER C, 1993, SCI SOC, V57, P111
33568    PROKES SM, 1995, J APPL PHYS, V78, P2671
33569    TISCHLER MA, 1992, APPL PHYS LETT, V60, P639
33570    ZOUBIR NH, 1994, APPL PHYS LETT, V65, P82
33571 NR 8
33572 TC 3
33573 SN 0953-8984
33574 J9 J PHYS-CONDENS MATTER
33575 JI J. Phys.-Condes. Matter
33576 PD APR 3
33577 PY 2000
33578 VL 12
33579 IS 13
33580 BP L257
33581 EP L260
33582 PG 4
33583 SC Physics, Condensed Matter
33584 GA 303HF
33585 UT ISI:000086415900004
33586 ER
33587 
33588 PT J
33589 AU Chen, LQ
33590    Cheng, CJ
33591 TI Controlling chaotic oscillations of viscoelastic plates by the
33592    linearization via output feedback
33593 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
33594 DT Article
33595 DE controlling chaos; linearization via output feedback; viscoelastic
33596    plate; nonlinearity
33597 ID VIBRATIONS
33598 AB Controlling chaotic oscillations of viscoelastic plates are
33599    investigated in this paper. Based an the exact linearization method in
33600    nonlinear system control theory, a nonlinear feedback control law is
33601    presented for a class of non-affine control systems. The mathematical
33602    model describing motion of nonlinear viscoelastic plates is
33603    established, and it is simplified by the Galerkin method. The phase
33604    space portrait and the power spectrum are employed to demonstrate chaos
33605    in the system. The deflection is treated as an output, and is
33606    controlled to given periodic goals.
33607 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
33608    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
33609 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
33610    200072, Peoples R China.
33611 CR ALVAREZGALLEGOS J, 1994, DYNAM CONTROL, V4, P277
33612    ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151
33613    CHEN LQ, 1998, APPL MATH MECH-ENGL, V19, P67
33614    CHEN LQ, 1998, J SHANGHAI JIAOTONG, V32, P108
33615    DING R, 1996, THESIS LANZHOU U, P56
33616    HALL EK, 1993, J GUID CONTROL DYNAM, V16, P470
33617    HU HY, 1996, ADV MECH, V26, P453
33618    ISIDORI A, 1989, NONLINEAR CONTROL SY, P156
33619    LINDNER JF, 1995, REV APPL MECH, V45, P795
33620    SHINBROT T, 1993, NATURE, V363, P411
33621    SUIRE G, 1995, INT J MECH SCI, V37, P753
33622    TOUATI D, 1994, INT J SOLIDS STRUCT, V31, P2367
33623    YU XH, 1997, INT J BIFURCAT CHAOS, V7, P1659
33624    ZHANG SQ, 1997, CAN AGR ENG, V39, P99
33625 NR 14
33626 TC 2
33627 SN 0253-4827
33628 J9 APPL MATH MECH-ENGL ED
33629 JI Appl. Math. Mech.-Engl. Ed.
33630 PD DEC
33631 PY 1999
33632 VL 20
33633 IS 12
33634 BP 1324
33635 EP 1330
33636 PG 7
33637 SC Mathematics, Applied; Mechanics
33638 GA 301UH
33639 UT ISI:000086328300004
33640 ER
33641 
33642 PT J
33643 AU Sun, J
33644    Zhu, ZY
33645 TI A mixture differential quadrature method for solving two-dimensional
33646    imcompressible Navier-Stokes equations
33647 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
33648 DT Article
33649 DE numerical method; differential quadrature method; Navier-Stokes
33650    equations
33651 AB Differential quadrature method (DQM) is able to obtain high;ly accurate
33652    numerical solutions of differential equations just using a few grid
33653    points. Bat using purely differential quadrature: method, goad
33654    numerical solutions of two-dimensional incompressible Navier-Stokes
33655    equations can be obtained only for lour Reynolds number flow and
33656    numerical solutions will not be convergent for high Reynolds number
33657    flow. For this reason, ill this paper a combinative
33658    predicting-correcting numerical scheme for solving hue-dimensional
33659    incompressible Navier-Stokes equations is presented by mixing upwind
33660    difference method into differential quadrature! one, Using this scheme
33661    and pseudo-time-dependent algorithm, numerical solutions of high
33662    Reynolds number flow are obtained with only a few grid points. For
33663    example?, 1:1 and 1:2 driven cavity flows are calculated and good
33664    numerical solutions ape obtained.
33665 C1 NW Normal Univ, Dept Phys, Lanzhou, Peoples R China.
33666    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
33667    Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China.
33668 RP Sun, J, NW Normal Univ, Dept Phys, Lanzhou, Peoples R China.
33669 CR BELLMAN R, 1971, J MATH ANAL APPL, V34, P235
33670    BELLMAN R, 1972, J COMPUT PHYS, V10, P40
33671    BERT CW, 1996, APPL MECH REV, V49, P1
33672    BURGGRAF OR, 1966, J FLUID MECH, V24, P113
33673    CHIA U, 1982, J COMPUT PHYS, V48, P387
33674    CHU C, 1992, COMPUT SYST ENG, V3, P271
33675    KAWAGUTI M, 1961, J PHYS SOC JPN, V16, P2307
33676    PROSNAK WJ, 1991, ACTA MECH, V89, P45
33677    SHU C, 1992, INT J NUMER METH FL, V15, P791
33678    STRIZ AG, 1994, INT J NONLINEAR MECH, V29, P665
33679 NR 10
33680 TC 0
33681 SN 0253-4827
33682 J9 APPL MATH MECH-ENGL ED
33683 JI Appl. Math. Mech.-Engl. Ed.
33684 PD DEC
33685 PY 1999
33686 VL 20
33687 IS 12
33688 BP 1358
33689 EP 1366
33690 PG 9
33691 SC Mathematics, Applied; Mechanics
33692 GA 301UH
33693 UT ISI:000086328300008
33694 ER
33695 
33696 PT J
33697 AU Huang, DB
33698    Liu, ZR
33699    Wang, LL
33700 TI A family of interesting exact solutions of the sine-Gordon equation
33701 SO CHINESE PHYSICS LETTERS
33702 DT Article
33703 ID SOLITON; SYSTEM; CHAOS
33704 AB By using AKNS [Phys. Rev. Lett. 31 (1973) 125] system and introducing
33705    the wave function, a family of interesting exact solutions of the
33706    sine-Gordon equation are constructed. These solutions seem to be some
33707    soliton, kink, and anti-kink ones respectively for the different choice
33708    of the spectrum, whereas due to the interaction between two
33709    traveling-waves they have some properties different from usual soliton,
33710    kink, and anti-kink solutions.
33711 C1 Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R China.
33712    Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
33713 RP Huang, DB, Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R
33714    China.
33715 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V31, P125
33716    BISHOP AR, 1986, PHYSICA D, V23, P1
33717    BISHOP AR, 1990, SIAM J MATH ANAL, V21, P1511
33718    CAUDREY PJ, 1973, PHYS REV LETT, V30, P237
33719    CROSS MC, 1993, REV MOD PHYS, V65, P851
33720    HIROTA R, 1972, J PHYS SOC JPN, V33, P1459
33721    LIU ZR, 1999, CHINESE PHYS LETT, V16, P313
33722    LOMDAHL PS, 1984, PHYS REV A, V29, P350
33723    OVERMAN EA, 1986, PHYSICA D, V19, P1
33724    WADATI M, 1975, PROG THEOR PHYS, V53, P419
33725    YAN JR, 1997, CHINESE PHYS LETT, V14, P671
33726 NR 11
33727 TC 6
33728 SN 0256-307X
33729 J9 CHIN PHYS LETT
33730 JI Chin. Phys. Lett.
33731 PY 2000
33732 VL 17
33733 IS 1
33734 BP 1
33735 EP 3
33736 PG 3
33737 SC Physics, Multidisciplinary
33738 GA 297RA
33739 UT ISI:000086095400001
33740 ER
33741 
33742 PT J
33743 AU Lu, J
33744    Wang, JK
33745 TI Reactive precipitation of procaine benzylpenicillin
33746 SO CHINESE JOURNAL OF CHEMICAL ENGINEERING
33747 DT Article
33748 DE procaine benzylpenicillin; reactive precipitation; secondary processes;
33749    mixing
33750 ID CRYSTALLIZATION
33751 AB The reactive precipitation process of procaine benzylpenicillin is
33752    reviewed, while such secondary processes as ageing, agglomeration,
33753    breakage, and the effects of operation parameters on crystal size are
33754    emphasized. In the reactive precipitation the ageing of particles has a
33755    little effect on the process. while the greater effect, comes from the
33756    agglomeration and breakage of particles, furthermore, the mixing has
33757    also notable influence on the product; size. All of these provide the
33758    bases for further study on reactive precipitation.
33759 C1 Shanghai Univ, Dept Chem Engn, Shanghai 201800, Peoples R China.
33760    Tianjin Univ, Inst Chem Engn, Tianjin 300072, Peoples R China.
33761 RP Lu, J, Shanghai Univ, Dept Chem Engn, Shanghai 201800, Peoples R China.
33762 CR DAVID R, 1991, CHEM ENG SCI, V46, P205
33763    JONES E, 1992, YOUNG CHILDREN, V47, P12
33764    LU J, 1997, THESIS TIANJIN U TIA
33765    MERSMANN A, 1990, J CRYST GROWTH, V102, P841
33766    MULLIN JW, 1993, CRYSTALLIZATION
33767    MYDLARZ J, 1991, POWDER TECHNOL, V65, P187
33768    NIELSEN AE, 1964, KINETICS PRECIPITATI
33769    NORE PH, 1993, CHEM ENG SCI, V48, P3083
33770    RANDOLPH AD, 1988, THEORY PARTICULATE P
33771    TAVARE NS, 1993, CHEM ENG SCI, V48, P475
33772    WANG ST, 1986, HEAT MASS TRANSFER
33773 NR 11
33774 TC 0
33775 SN 1004-9541
33776 J9 CHINESE J CHEM ENG
33777 JI Chin. J. Chem. Eng.
33778 PD MAR
33779 PY 2000
33780 VL 8
33781 IS 1
33782 BP 68
33783 EP 73
33784 PG 6
33785 SC Engineering, Chemical
33786 GA 299JQ
33787 UT ISI:000086195700012
33788 ER
33789 
33790 PT J
33791 AU Harko, T
33792    Lu, HQ
33793    Mak, MK
33794    Cheng, KS
33795 TI Quantum birth of the Universe in the varying speed of light cosmologies
33796 SO EUROPHYSICS LETTERS
33797 DT Article
33798 ID INFLATION
33799 AB In the framework of the varying speed of light theory the
33800    Wheeler-DeWitt equation is considered in the minisuperspace
33801    approximation. The quantum potential is obtained and the tunneling
33802    probability is studied in bath Vilenkin and Hartle-Hawking approaches.
33803 C1 Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
33804    Shanghai Univ, Dept Phys, Shanghai, Peoples R China.
33805 RP Harko, T, Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R
33806    China.
33807 CR ALBRECHT A, 1999, PHYS REV D, V59
33808    ATKATZ D, 1982, PHYS REV D, V25, P2065
33809    AVELINO PP, 1999, PHYS LETT B, V459, P468
33810    BARROW JD, 1998, PHYS LETT B, V443, P104
33811    BARROW JD, 1999, ASTROPH9904116
33812    BARROW JD, 1999, ASTROPH9907354
33813    BARROW JD, 1999, CLASSICAL QUANT GRAV, V16, P1435
33814    BARROW JD, 1999, PHYS LETT B, V447, P246
33815    BARROW JD, 1999, PHYS REV D, V59
33816    BEKENSTEIN JD, 1982, PHYS REV D, V25, P1527
33817    CLAYTON MA, 1999, PHYS LETT B, V460, P263
33818    COULE DH, 1999, GRQC9905056
33819    COULE DH, 1999, MOD PHYS LETT A, V14, P2437
33820    DEWITT BS, 1967, PHYS REV, V160, P1113
33821    GASPERINI M, 1985, PHYS LETT B, V163, P84
33822    HARKO T, 1999, CLASSICAL QUANT GRAV, V16, P2741
33823    HARTLE JB, 1983, PHYS REV D, V28, P3960
33824    HAWKING SW, 1984, NUCL PHYS B, V239, P257
33825    LINDE AD, 1984, LETT NUOVO CIMENTO, V39, P401
33826    MFFAT JW, 1998, ASTROPH9811390
33827    MOFFAT JW, 1993, INT J MOD PHYS D, V2, P351
33828    NORBURY JW, 1998, PHYS LETT B, V433, P263
33829    RATRA B, 1988, PHYS REV D, V37, P3406
33830    VILENKIN A, 1983, PHYS REV D, V27, P2848
33831    VILENKIN A, 1989, PHYS REV D, V39, P1116
33832    VILENKIN A, 1994, PHYS REV D, V50, P2581
33833    WEINBERG S, 1984, PHYS LETT B, V138, P47
33834 NR 27
33835 TC 4
33836 SN 0295-5075
33837 J9 EUROPHYS LETT
33838 JI Europhys. Lett.
33839 PD MAR
33840 PY 2000
33841 VL 49
33842 IS 6
33843 BP 814
33844 EP 820
33845 PG 7
33846 SC Physics, Multidisciplinary
33847 GA 296RD
33848 UT ISI:000086038800019
33849 ER
33850 
33851 PT J
33852 AU Cai, YC
33853    Lu, MG
33854 TI Chen's theorem in short intervals
33855 SO ACTA ARITHMETICA
33856 DT Article
33857 C1 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
33858 RP Cai, YC, Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800,
33859    Peoples R China.
33860 CR CHEN JR, 1966, REPRESENTATION LARGE, V17, P385
33861    CHEN JR, 1973, SCI SINICA, V16, P157
33862    CHEN JR, 1978, SCI SINICA, V21, P477
33863    IWANIEC H, 1981, RECENT PROGR ANAL NU, V2, P203
33864    JIA CH, 1996, ACTA ARITH, V76, P21
33865    PAN CD, 1981, GOLDBACH CONJECTURE
33866    SALERNO S, 1993, NOTE MAT, V13, P309
33867    WU J, 1993, Q J MATH, V44, P109
33868    WU J, 1994, J LOND MATH SOC, V49, P61
33869 NR 9
33870 TC 1
33871 SN 0065-1036
33872 J9 ACTA ARITHMET
33873 JI Acta Arith.
33874 PY 1999
33875 VL 91
33876 IS 4
33877 BP 311
33878 EP 323
33879 PG 13
33880 SC Mathematics
33881 GA 297ZH
33882 UT ISI:000086113800002
33883 ER
33884 
33885 PT J
33886 AU Weng, XC
33887    Xiang, GQ
33888    Jiang, AL
33889    Liu, YP
33890    Wu, LL
33891    Dong, XW
33892    Duan, S
33893 TI Antioxidant properties of components extracted from puccoon
33894    (Lithospermum erythrorhizon Sieb. et Zucc.)
33895 SO FOOD CHEMISTRY
33896 DT Article
33897 DE puccoon (Lithospermum erythrorhizon Sieb. et Zucc.); antioxidant
33898    activity; beta,beta-dimethyl-acrylshikonin; acetylshikonin; shikonin
33899 AB The petroleum ether extract of puccoon has been separated with
33900    thin-layer chromatography (TLC) and three compounds have been isolated.
33901    The structures of the compounds have been identified by spectroscopic
33902    methods as beta,beta-dimethyl-acrylshikonin, acetylshikonin and
33903    shikonin. Their antioxidant properties in lard have been tested with
33904    the oxidative stability instrument (OSI). The raw extracts and pure
33905    compounds all have obvious antioxidant activity, and all have some
33906    synergistic effects with D,L-alpha-tocopherol (Ve) and
33907    butylatedhydroxytoluene (BHT). They all show antioxidant properties in
33908    lard containing Fe3+, and all show synergistic effects with Ve and
33909    citric acid (CA) with different degrees. In the concentration range of
33910    0.01-0.06%, antioxidant activity of Ve and BHT, on OSI at 100 degrees
33911    C, increases with increase of concentration, but much less than
33912    acetylshikonin, shikonin and beta,beta-dimethyl-acrylshikonin. (C) 2000
33913    Elsevier Science Ltd. All rights reserved.
33914 C1 Shanghai Univ, Sch Life Sci, Shanghai, Peoples R China.
33915    Yantai Univ, Lipid Res Lab, Shandong, Peoples R China.
33916    Acad Sinica, Inst Bot, Beijing 100044, Peoples R China.
33917 RP Weng, XC, Shanghai Univ, Sch Life Sci, 20 Chengzhong Rd, Shanghai,
33918    Peoples R China.
33919 CR GAO JH, 1986, ZHONGCAOYAO, V17, P28
33920    GORDON MH, 1992, FOOD CHEM, V44, P119
33921    HUDSON BJF, 1983, FOOD CHEM, V10, P111
33922    LIN ZB, 1980, J BEIJING MED COLLEG, V12, P101
33923    LIU GS, 1981, PHARM B, V16, P270
33924    LIU YP, 1998, J CHINESE CEREALS OI, V13, P34
33925    LU FS, 1983, ACTA BOT SIN, V25, P454
33926    WENG XC, 1991, THESIS READING U UK
33927    WENG XC, 1998, J CHINESE CEREAL OIL, V13, P46
33928    ZHAO I, 1997, MED J CHINA, V8, P115
33929    ZHOU SB, 1996, J HARBIN MED U, V30, P524
33930 NR 11
33931 TC 2
33932 SN 0308-8146
33933 J9 FOOD CHEM
33934 JI Food Chem.
33935 PD MAY
33936 PY 2000
33937 VL 69
33938 IS 2
33939 BP 143
33940 EP 146
33941 PG 4
33942 SC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics
33943 GA 294FR
33944 UT ISI:000085901300005
33945 ER
33946 
33947 PT J
33948 AU Qiu, ZB
33949    Xiao, XS
33950    Mo, ZS
33951    Yu, YN
33952    Wang, XH
33953    Dong, YD
33954 TI Melt crystallization of poly(ether ether ketone ketone) under strong
33955    electric field
33956 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
33957 DT Letter
33958 DE PEEKK; electric field; crystallization; crystal structure
33959 ID DRAWING-INDUCED POLYMORPHISM; CRYSTAL-STRUCTURE; PEEKK; KINETICS
33960 AB In this paper, melt crystallization of poly(ether ether ketone ketone)
33961    (PEEKK) under strong electric field was investigated. In the crystal
33962    structure of PEEKK, the length of c axis was found to he 1.075 nm,
33963    increasing by 7% compared to that of PEEKK crystallized without strong
33964    electric field. The molecule chains might take a more extended
33965    conformation through the opening of the bridge bond angles by
33966    increasing from 124 degrees to 144 degrees under strong electric field
33967    in the crystal structure.
33968 C1 Acad Sinica, Changchun Inst Appl Chem, Polymer Phys Lab, Changchun 130022, Peoples R China.
33969    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
33970 RP Mo, ZS, Acad Sinica, Changchun Inst Appl Chem, Polymer Phys Lab,
33971    Changchun 130022, Peoples R China.
33972 CR LIU TX, 1997, EUR POLYM J, V33, P1405
33973    LIU TX, 1997, EUR POLYM J, V33, P913
33974    LIU TX, 1997, POLYM ENG SCI, V37, P568
33975    LIU TX, 1998, S POL SHANGH
33976    WANG S, 1997, MACROMOL RAPID COMM, V18, P83
33977    WANG SG, 1997, MACROMOL CHEM PHYSIC, V198, P969
33978    ZIMMERMANN HJ, 1991, POLYMER, V32, P3162
33979 NR 7
33980 TC 1
33981 SN 0251-0790
33982 J9 CHEM J CHINESE UNIV-CHINESE
33983 JI Chem. J. Chin. Univ.-Chin.
33984 PD MAR
33985 PY 2000
33986 VL 21
33987 IS 3
33988 BP 491
33989 EP 492
33990 PG 2
33991 SC Chemistry, Multidisciplinary
33992 GA 294KM
33993 UT ISI:000085910500040
33994 ER
33995 
33996 PT J
33997 AU Yu, TY
33998    Yu, BK
33999    Wang, Q
34000    Wan, YB
34001    Pan, SK
34002 TI Potassium lithium niobate crystal and the second harmonic generation in
34003    IT
34004 SO ACTA PHYSICA SINICA
34005 DT Article
34006 ID SINGLE-CRYSTALS
34007 AB The tetragonal tungsten bronze type potassium lithium niobatc single
34008    crystals grown by the resistance heating Czochralski technique are
34009    reported. Frequency doubling of a quasi-continuous tunable Ti:sapphire
34010    laser is realized in the crystal. Tunable second harmonic generation
34011    within the range of 445-476 nm by noncritical phase matching at room
34012    temperature is obtained. The incident power is 144-269 mW and the power
34013    of the second harmonic generation is 0.58-1.73 mW. The conversion
34014    efficiency is about 0.65 percent.
34015 C1 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
34016    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
34017 RP Yu, TY, Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800,
34018    Peoples R China.
34019 CR BONNER WA, 1967, J CRYST GROWTH, V1, P318
34020    FUKUDA T, 1970, J CRYST GROWTH, V6, P293
34021    GE YM, 1996, CHINESE J LASERS A, V23, P969
34022    OUWERKERK M, 1991, ADV MATER, V3, P399
34023    REID JJE, 1993, APPL PHYS LETT, V62, P19
34024    SMITH AW, 1971, J APPL PHYS, V42, P684
34025    XIA HR, 1997, PHYS REV B, V55, P14892
34026    YOON DH, 1994, JPN J APPL PHYS PT 1, V33, P3510
34027    ZHANG GY, 1984, ACTA OPT SINICA, V4, P515
34028 NR 9
34029 TC 3
34030 SN 1000-3290
34031 J9 ACTA PHYS SIN-CHINESE ED
34032 JI Acta Phys. Sin.
34033 PD MAR
34034 PY 2000
34035 VL 49
34036 IS 3
34037 BP 463
34038 EP 467
34039 PG 5
34040 SC Physics, Multidisciplinary
34041 GA 294WD
34042 UT ISI:000085932700016
34043 ER
34044 
34045 PT J
34046 AU Li, D
34047    Sun, XL
34048 TI Local convexification of the Lagrangian function in nonconvex
34049    optimization
34050 SO JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
34051 DT Article
34052 DE nonconvex optimization; Lagrangian function; local convexification;
34053    local duality; p-power formulation
34054 AB It is well-known that a basic requirement for the development of local
34055    duality theory in nonconvex optimization is the local convexity of the
34056    Lagrangian function. This paper shot-vs how to locally convexify the
34057    Lagrangian function and thus expand the class of optimization problems
34058    to which dual methods can be applied. Specifically, we prove that,
34059    under mild assumptions, the Hessian of the Lagrangian in some
34060    transformed equivalent problem formulations becomes positive definite
34061    in a neighborhood of a local optimal point of the original problem.
34062 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
34063    Shanghai Univ, Dept Math, Shanghai, Peoples R China.
34064 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management,
34065    Shatin, Hong Kong, Peoples R China.
34066 CR LI D, 1995, J OPTIMIZ THEORY APP, V85, P309
34067    LI D, 1997, NONLINEAR ANAL-THEOR, V30, P4339
34068    LUENBERGER DG, 1984, LINEAR NONLINEAR PRO
34069    WOLFE P, 1961, Q APPL MATH, V19, P239
34070    XU ZK, 1997, J OPTIMIZ THEORY APP, V94, P739
34071 NR 5
34072 TC 6
34073 SN 0022-3239
34074 J9 J OPTIMIZ THEOR APPL
34075 JI J. Optim. Theory Appl.
34076 PD JAN
34077 PY 2000
34078 VL 104
34079 IS 1
34080 BP 109
34081 EP 120
34082 PG 12
34083 SC Mathematics, Applied; Operations Research & Management Science
34084 GA 291PR
34085 UT ISI:000085745700007
34086 ER
34087 
34088 PT J
34089 AU Zhang, ZL
34090    Jiang, XY
34091    Xu, SH
34092 TI Energy transfer and white emitting organic thin film electroluminescence
34093 SO THIN SOLID FILMS
34094 DT Article
34095 DE energy transfer; white emitting organic thin film electroluminescence;
34096    full-color display
34097 AB Energy transfer between in
34098    N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4-4'-diamine (NPB)
34099    and rubrene was investigated. The device ITO/CuPc/NPB:rubrene/blocking
34100    layer /Alq/MgAg, in which copper phthalocyanine (CuPc) is used as
34101    buffer layer, NPB as the hole transporting layer (HTL), trimer of
34102    N-arylbenzimidazoles (TPBi) [or
34103    2-(4-biphenylyl)-5-(4-tertbutylphenyl)-1,2,3-oxadiazole(PBD) or
34104    1,2,3-triazolederivative(TAZ)] as the blocking layer,
34105    Tris(8-quinolinolato)aluminum complex (Alq) as electron transporting
34106    layers (ETL), can not give white emitting light. White emitting light
34107    can be realized in a new device with the structure
34108    ITO/CuPc/NPB/blocking layer:rubene/Alq/MeAg, in which rubrene is doped
34109    in blocking layer instead of in NPB. The emission spectrum of this
34110    device covers a wide range of visible region and can be adjusted by the
34111    concentration of rubrene. The white emitting devices with CIE
34112    coordinates x = 0.31, y = 0.32, maximum luminance 8635 cd/m(2) and
34113    luminous efficiency 1.39 Lm/w, were obtained with the blocking layer
34114    TPBi doped with 1.5% rubrene. (C) 2000 Elsevier Science S.A. All rights
34115    reserved.
34116 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
34117 RP Zhang, ZL, Shanghai Univ, Dept Mat Sci, Jiading Campus, Shanghai
34118    201800, Peoples R China.
34119 CR FOREST SR, 1997, SYNTHETIC MET, V91, P9
34120    KIDO J, 1995, SCIENCE, V267, P1332
34121    MIYAGUCHI S, 1998, 9 INT WORKSH IN ORG, P137
34122 NR 3
34123 TC 10
34124 SN 0040-6090
34125 J9 THIN SOLID FILMS
34126 JI Thin Solid Films
34127 PD MAR 1
34128 PY 2000
34129 VL 363
34130 IS 1-2
34131 BP 61
34132 EP 63
34133 PG 3
34134 SC Materials Science, Multidisciplinary; Physics, Applied; Physics,
34135    Condensed Matter
34136 GA 290EU
34137 UT ISI:000085664000016
34138 ER
34139 
34140 PT J
34141 AU Li, PL
34142    Deng, CF
34143    Wang, LL
34144    Xu, MJ
34145 TI Calculation of the productive dilepton spectrum (M <= 4GeV/c(2)) in
34146    U-238+U-238 collisions at E-c,E-m approximate to 200GeV/u
34147 SO HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION
34148 DT Article
34149 DE charm; quark flavour dynamics effect; dilepton spectrum
34150 AB In this paper, besides including u, d, s quarks and their anti-quarks
34151    the charm quarks and their anti-quarks (c (c) over bar) were still
34152    included in the calculation of flavour kinetics of quarks. Using
34153    relativistic hydrodynamics model with the effect of quark flavor
34154    kinetics, invariable mass dilepton spectrum of M less than or equal to
34155    4GeV/c(2) has been calculated. The dileptons are emitted from phase
34156    transition process of an expansion quark matter which is created in
34157    collisions of U-238 + U-238 at energy similar to 200GeV/u. The
34158    numerical results have been compared with experimental data of CERN SPS
34159    qualitatively. A preliminary conclusion has been given: quark
34160    fragmentation and effect of flavour kinetics are the causes of
34161    suppression of the peak of J/psi-->mu(+) + mu(-).
34162 C1 Suzhou Railway Normal Coll, Dept Phys, Suzhou 215009, Peoples R China.
34163    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
34164 RP Li, PL, Suzhou Railway Normal Coll, Dept Phys, Suzhou 215009, Peoples R
34165    China.
34166 CR BARZ HW, 1988, NUCL PHYS A, V484, P661
34167    KAJANTIE K, 1983, NUCL PHYS B, V222, P152
34168    KAJANTIE K, 1986, PHYS REV D, V34, P811
34169    KOCH P, 1986, PHYS REP, V142, P167
34170    LI PL, 1997, HIGH ENERG PHYS, V21, P918
34171    MASERA M, 1995, NUCL PHYS A, V590, C93
34172    WU H, 1999, CHINESE GEN COMPUTAT, V16, P94
34173 NR 7
34174 TC 1
34175 SN 0254-3052
34176 J9 HIGH ENERGY PHYS NUCL PHYS-CH
34177 JI High Energy Phys. Nucl. Phys.-Chin. Ed.
34178 PD JUL
34179 PY 1999
34180 VL 23
34181 IS 7
34182 BP 693
34183 EP 700
34184 PG 8
34185 SC Physics, Nuclear; Physics, Particles & Fields
34186 GA 289PB
34187 UT ISI:000085630200013
34188 ER
34189 
34190 PT J
34191 AU Harko, T
34192    Mak, MK
34193    Lu, HQ
34194    Cheng, KS
34195 TI Bianchi-type I and V cosmologies in Einstein-Cartan theory
34196 SO NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS
34197    RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS
34198 DT Article
34199 ID GENERAL-RELATIVITY; UNIVERSES; MATTER; FLUIDS; MODEL; SPIN
34200 AB Within the framework of the Einstein-Cartan theory a
34201    Weyssenhoff-spinning-fluid-filled homogeneous anisotropic Bianchi-type
34202    I and V space-time is studied. The effects of a cosmological constant
34203    upon the dynamics of the early Universe are also considered. In the
34204    presence of torsion the general solution of the gravitational field
34205    equations for a cosmological fluid obeying a linear barotropic equation
34206    of state can be expressed in an exact parametric form. Several classes
34207    of exact analytical solutions for stiff matter and radiation are also
34208    obtained. In the large-time limit the Bianchi-type-V Universe ends in
34209    an isotropic open non-flat inflationary era but due to the effects of
34210    the spin the isotropization period is shortened. For an appropriate
34211    choice of the parameters non-singular behavior occurs and the evolution
34212    of the cosmological fluid near the bounce is considered in detail.
34213 C1 Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
34214    Shanghai Univ, Dept Phys, Shanghai, Peoples R China.
34215 RP Harko, T, Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R
34216    China.
34217 CR ASSAD MJD, 1990, PHYS LETT A, V145, P74
34218    BAHCALL NA, 1995, APJ, V447, L81
34219    BAHCALL NA, 1997, ASTROPHYS J 2, V485, L53
34220    BAKER WM, 1990, CLASSICAL QUANT GRAV, V7, P717
34221    BARROW JD, 1997, PHYS LETT A, V233, P169
34222    BATAKIS NA, 1982, PHYS REV D, V26, P2611
34223    FENNELLY AJ, 1998, PHYS LETT A, V129, P195
34224    FUKUGITA M, 1993, NATURE, V366, P369
34225    GRON O, 1985, PHYS REV D, V32, P2522
34226    GRONWALD F, GRQC9602013
34227    GUTH AH, 1981, PHYS REV D, V23, P347
34228    HARVEY A, 1997, NUOVO CIMENTO B, V112, P1217
34229    HAWKING SW, 1973, LARGE SCALE STRUCTUR
34230    HEHL FW, 1976, REV MOD PHYS, V48, P393
34231    KOCHANEK CS, 1996, ASTROPHYS J 1, V466, P638
34232    KRAMER D, 1980, EXACT SOLUTIONS EINS
34233    LANDAU LD, 1975, CLASSICAL THEORY FIE
34234    LU HQ, 1995, CLASSICAL QUANT GRAV, V12, P2755
34235    OBREGON O, 1993, PHYS REV D, V48, P5642
34236    RATRA B, 1988, PHYS REV D, V37, P3406
34237    RAY JR, 1982, PHYS REV D, V26, P2615
34238    RAY JR, 1982, PHYS REV D, V26, P2619
34239    SARAJEDINI A, 1989, ASTRON J, V98, P1624
34240    SCIAMA JA, 1964, REV MOD PHYS, V36, P463
34241    SHAPIRO SL, 1983, BLACK HOLES WHITE DW
34242 NR 25
34243 TC 0
34244 SN 0369-3554
34245 J9 NUOVO CIMENTO B-GEN PHYS R
34246 JI Nouvo Cimento Soc. Ital. Fis. B-Gen. Phys. Relativ. Astron. Math. Phys.
34247    Methods
34248 PD DEC
34249 PY 1999
34250 VL 114
34251 IS 12
34252 BP 1389
34253 EP 1407
34254 PG 19
34255 SC Physics, Multidisciplinary
34256 GA 285WT
34257 UT ISI:000085411900006
34258 ER
34259 
34260 PT J
34261 AU Wang, Q
34262    Liu, CQ
34263    Li, Y
34264 TI Quasi-tem analysis of a shielded microstrip line of elliptic
34265    cross-section with finite metallization thickness penetrating into the
34266    substrate by the finite difference method
34267 SO INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES
34268 DT Article
34269 DE MSL; monolithic microwave integrated circuits (MMICs); quasi-static
34270    characteristics; metallization thickness; FDM
34271 ID WAVE-GUIDES; TRANSMISSION-LINES; STATIC ANALYSIS; ELEMENT METHOD;
34272    ELECTRODES
34273 AB A shielded microstripline(MSL) of elliptic cross-section with finite
34274    metallization thickness penetrating into the substrate is presented.
34275    The quasi-static characteristics of this kind of MSL are studied with
34276    finit difference method(FDM),The effect of metal cross-section shape
34277    and metal penetrating depth is also studied.
34278 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
34279 RP Wang, Q, Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R
34280    China.
34281 CR CHANG TN, 1990, IEEE T MICROW THEORY, V38, P1130
34282    FENG NN, 1999, MICROW OPT TECHN LET, V21, P60
34283    GENTILI GG, 1994, IEEE T MICROW THEORY, V42, P249
34284    HEINRICH W, 1994, IEEE T MICROWAVE THE, V41, P249
34285    HOFFMANN RK, 1989, HDB MICROWAVE INTEGR, P142
34286    HONG IP, 1999, INT J RF MICROW C E, V9, P49
34287    IVANOV SA, 1984, IEEE T MICROW THEORY, V32, P450
34288    JIN H, 1991, IEEE J QUANTUM ELECT, V27, P2306
34289    JIN H, 1991, IEEE J QUANTUM ELECT, V27, P243
34290    KE JY, 1995, IEE P-MICROW ANTEN P, V142, P357
34291    KOLLIPARA RT, 1992, IEEE MICROW GUIDED W, V2, P100
34292    KUO JT, 1997, IEEE T MICROW THEORY, V45, P274
34293    LERER AM, 1997, INT J MICROWAVE MILL, V7, P483
34294    MATSUHARA M, 1988, IEICE T C, V71, P1398
34295    PANTIC Z, 1986, IEEE T MICROW THEORY, V34, P1096
34296    SCHMUCKLE FJ, 1991, IEEE T MICROW THEORY, V39, P107
34297    SHIH C, 1989, IEEE T MICROW THEORY, V37, P793
34298    TAO YM, 1994, MICROW OPT TECHN LET, V7, P17
34299    WADELL BC, 1991, TRANSMISSION LINE DE
34300 NR 19
34301 TC 0
34302 SN 0195-9271
34303 J9 INT J INFRAR MILLIM WAVE
34304 JI Int. J. Infrared Millimeter Waves
34305 PD JAN
34306 PY 2000
34307 VL 21
34308 IS 1
34309 BP 91
34310 EP 100
34311 PG 10
34312 SC Engineering, Electrical & Electronic; Physics, Applied; Optics
34313 GA 284AN
34314 UT ISI:000085308700011
34315 ER
34316 
34317 PT J
34318 AU Ma, JH
34319    Chen, YS
34320    Liu, ZG
34321 TI The non-linear chaotic model reconstruction for the experimental data
34322    obtained from different dynamic system
34323 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
34324 DT Article
34325 DE non-linear; chaotic timeseries; Lyapunov exponent; chaotic model;
34326    parameter identification
34327 ID TIME-SERIES; ATTRACTORS
34328 AB The non-linear chaotic model reconstruction is the major important
34329    quantitative index for describing accurate experimental data obtained
34330    in dynamic analysis. A lot of work has been done to distinguish chaos
34331    from,randomness, to calculate fractral dimension and Lyapunov exponent,
34332    to reconstruct the state space and to fix the rank of model. In this
34333    paper, a new improved EAR method is presented in modelling and
34334    predicting chaotic timeseries, and a successful approach to fast
34335    estimation algorithms is proposed. Some illustrative experimental data
34336    examples from known chaotic systems are presented, emphasising the
34337    increase in predicting error with time. The calculating results tell us
34338    that the parameter identification method in this paper can effectively
34339    adjust the initial value row ards the global limit value of the single
34340    peak target Junction nearby. Then the model paremeter can immediately
34341    be obtained by using the improved optimization method rapidly, and
34342    non-linens chaotic models can nor provide long period superior
34343    predictions. Applications of this method are listed to real data from
34344    widely different areas.
34345 C1 Tianjin Finance Univ, Dept Econ & Management, Tianjin 300222, Peoples R China.
34346    Tianjin Univ, Dept Mech, Tianjin 300072, Peoples R China.
34347    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
34348 RP Ma, JH, Tianjin Finance Univ, Dept Econ & Management, Tianjin 300222,
34349    Peoples R China.
34350 CR CHEN CH, 1989, APPL TIMESERIES ANAL
34351    DAVIES ME, 1997, PHYSICA D, V101, P195
34352    LIANG YC, 1995, PHYSICA D, V85, P225
34353    MA JH, 1997, NONLINEAR DYNAMIC SY, P5
34354    MA JH, 1998, APPL MATH MECH-ENGL, V19, P513
34355    MESS AI, 1987, PHYS REV A, V36, P340
34356    NERENBERG MAH, 1990, PHYS REV A, V42, P7065
34357    POTAPOV A, 1997, PHYSICA D, V101, P207
34358    PRICHARD D, 1994, PHYS REV LETT, V191, P230
34359    WOLF A, 1985, PHYSICA D, V16, P285
34360    YA W, 1989, APPL TIME SERIES ANA
34361    YANG SZ, 1992, APPL TIMESERIES ANAL
34362    ZHANG QH, 1992, IEE T NEURAL NETWORK, V6, P889
34363 NR 13
34364 TC 2
34365 SN 0253-4827
34366 J9 APPL MATH MECH-ENGL ED
34367 JI Appl. Math. Mech.-Engl. Ed.
34368 PD NOV
34369 PY 1999
34370 VL 20
34371 IS 11
34372 BP 1214
34373 EP 1221
34374 PG 8
34375 SC Mathematics, Applied; Mechanics
34376 GA 285RP
34377 UT ISI:000085402100005
34378 ER
34379 
34380 PT J
34381 AU Chen, XY
34382    Cheng, CJ
34383 TI Inverse problem for the viscoelastic medium with discontinuous wave
34384    impedance
34385 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
34386 DT Article
34387 DE viscoelastic medium; inverse scattering; inversion procedure; Volterra
34388    integral equation; relaxation modulus; one round trip; numerical
34389    examples
34390 ID DISPERSIVE MEDIA; SCATTERING
34391 AB In this paper, the inverse problem for the viscoelastic medium is
34392    investigated in the time domain, in which the wave impedance of the
34393    medium is discontinuous at the rear interface. The differentio-integral
34394    equations governing the behavior of the scattering and propagation
34395    operators are utilized to reconstruct the relaxation modulus of the
34396    viscoelastic medium. A new approach, in which only the one-side
34397    measurement reflection data for one round trip through the viscoelastic
34398    layer, is developed. The numerical examples are given at the end of the
34399    paper. Ir is shown that the curves of the reconstructed moduli coincide
34400    very well with the original relaxation moduli.
34401 C1 Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
34402    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
34403    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
34404 RP Chen, XY, Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
34405 CR AMMICHT E, 1987, J ACOUST SOC AM, V81, P827
34406    BEEZLEY RS, 1985, J MATH PHYS, V26, P317
34407    CHEN XY, 1999, THESIS LANZHOU U LAN
34408    CHRISTENSON RM, 1982, THOERY VISCOELASTICI
34409    FUKS P, 1994, INVERSE PROBL, V10, P555
34410    KRESS R, 1989, LINEAR INTEGRAL EQUA
34411 NR 6
34412 TC 0
34413 SN 0253-4827
34414 J9 APPL MATH MECH-ENGL ED
34415 JI Appl. Math. Mech.-Engl. Ed.
34416 PD NOV
34417 PY 1999
34418 VL 20
34419 IS 11
34420 BP 1222
34421 EP 1229
34422 PG 8
34423 SC Mathematics, Applied; Mechanics
34424 GA 285RP
34425 UT ISI:000085402100006
34426 ER
34427 
34428 PT J
34429 AU Gu, GQ
34430    Hui, PM
34431    Yu, KW
34432 TI A theory of nonlinear AC response in nonlinear composites
34433 SO PHYSICA B
34434 DT Article
34435 DE nonlinear composites; effective nonlinear conductivity; harmonic
34436    generation
34437 ID EFFECTIVE CONDUCTIVITY; GENERATION
34438 AB A perturbative approach, which has previously been applied to study the
34439    effective nonlinear response in random nonlinear composites consisting
34440    of Kerr materials. is extended to treat random composites with
34441    components having nonlinear response at finite frequencies. For a
34442    sinusoidal applied field, the field in the composite generally includes
34443    components with frequencies at the higher harmonics. Using the
34444    potential in the absence of nonlinearity as the unperturbed potential,
34445    nonlinear response can be studied perturbatively. Expression for the
34446    effective nonlinear susceptibility at the third harmonic is derived in
34447    the dilute limit of one of the nonlinear components. (C) 2000 Elsevier
34448    Science B.V. All rights reserved.
34449 C1 Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 201800, Peoples R China.
34450    Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China.
34451 RP Gu, GQ, Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 201800,
34452    Peoples R China.
34453 CR GU GQ, 1992, PHYS REV B, V46, P4502
34454    HUI PM, 1998, J APPL PHYS, V84, P3451
34455    LEVY O, 1995, PHYS REV E, V52, P3184
34456    YU KW, 1993, PHYS REV B, V47, P14150
34457    YU KW, 1993, PHYS REV B, V47, P1782
34458    YU KW, 1997, PHYS REV B, V56, P14195
34459 NR 6
34460 TC 19
34461 SN 0921-4526
34462 J9 PHYSICA B
34463 JI Physica B
34464 PD APR
34465 PY 2000
34466 VL 279
34467 IS 1-3
34468 BP 62
34469 EP 65
34470 PG 4
34471 SC Physics, Condensed Matter
34472 GA 284DD
34473 UT ISI:000085314700018
34474 ER
34475 
34476 PT J
34477 AU He, JH
34478 TI Modified straightforward expansion
34479 SO MECCANICA
34480 DT Article
34481 DE perturbation technique; nonlinear equation; duffing equation; nonlinear
34482    dynamics
34483 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
34484 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang
34485    Rd,POB 189, Shanghai 200072, Peoples R China.
34486 CR BELLMAN R, 1964, PERTURBATION TECHNIQ
34487    CHEUNG YK, 1991, INT J NONLINEAR MECH, V26, P367
34488    HE JH, IN PRESS J SOUND VIB
34489    MICKENS RE, 1996, J SOUND VIB, V193, P747
34490    NAYFEH AH, 1985, PROBLEMS PERTURBATIO
34491 NR 5
34492 TC 6
34493 SN 0025-6455
34494 J9 MECCANICA
34495 JI Meccanica
34496 PD OCT
34497 PY 1999
34498 VL 34
34499 IS 4
34500 BP 287
34501 EP 289
34502 PG 3
34503 SC Mechanics
34504 GA 283XD
34505 UT ISI:000085300600006
34506 ER
34507 
34508 PT J
34509 AU Feng, F
34510    Han, J
34511    Shen, M
34512    Geng, M
34513    Zhou, Z
34514    Northwood, DO
34515 TI Electrochemical properties of a LaNi4.7Al0.3 alloy used for the
34516    negative electrode in nickel/metal hydride batteries
34517 SO JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS
34518 DT Article
34519 DE metal hydride electrodes; electrochemical characteristics; exchange
34520    current density; symmetry factor
34521 ID HYDROGEN STORAGE ALLOYS; EVOLUTION REACTION; METAL; PERFORMANCE;
34522    DISCHARGE; BEHAVIOR
34523 AB The electrochemical properties of an activated LaNi4.7Al0.3 hydride
34524    electrode (MH) were studied using charge/discharge and polarization
34525    tests. The rests were performed at different steady states of
34526    discharging and temperatures. Both the exchange current density (I-0)
34527    and the symmetry-factor (beta) of the MH electrode in a 6M KOH aqueous
34528    solution decrease with increasing hydrogen concentration and increase
34529    with increasing temperature at a given hydrogen concentration. These
34530    intrinsic parameters (I-0 and beta) were then used to evaluate the
34531    characteristics of the nonequilibrium discharge process of the MH
34532    electrode, including the discharge overpotential and activation. From
34533    the exchange current density measurements, the apparent activation
34534    energy (E-a) was found to be in the range 15.5 to 22.5 kJ.(molH)(-1)
34535    for hydrogen concentrations H/M=0.6 to 0.1 in the temperature range
34536    273-318K. It is suggested that the apparent activation energy (E-a) is
34537    a useful intrinsic parameter for evaluating the electrochemical
34538    characteristics of MH electrodes.
34539 C1 Univ Windsor, Dept Mech & Mat Engn, Windsor, ON N9B 3P4, Canada.
34540    Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China.
34541    Ryerson Polytech Univ, Fac Engn & Appl Sci, Toronto, ON M5B 2K3, Canada.
34542 RP Northwood, DO, Univ Windsor, Dept Mech & Mat Engn, Windsor, ON N9B 3P4,
34543    Canada.
34544 CR BARD AJ, 1980, ELECTROCHEMICAL METH, P106
34545    BOCKRIS JO, 1993, MOD ASPECT ELECTROC, V25, P261
34546    FENG F, 1998, INT J HYDROGEN ENERG, V23, P599
34547    GENG MM, 1996, INT J HYDROGEN ENERG, V21, P887
34548    IWAKURA C, 1992, J POWER SOURCES, V38, P335
34549    IWAKURA C, 1993, J ALLOY COMPD, V192, P152
34550    KIBRIA MF, 1996, INT J HYDROGEN ENERG, V21, P179
34551    KRONBERGER H, 1996, INT J HYDROGEN ENERG, V21, P577
34552    KURIYAMA N, 1993, J ALLOY COMPD, V202, P183
34553    LIU BH, 1996, J ALLOY COMPD, V245, P132
34554    MATSUOKA M, 1993, J ALLOY COMPD, V192, P149
34555    NDZEBET E, 1995, INT J HYDROGEN ENERG, V20, P635
34556    POPOV BN, 1996, J APPL ELECTROCHEM, V26, P603
34557    SAKAI T, 1991, J LESS-COMMON MET, V172, P1175
34558    WANG XL, 1990, J LESS-COMMON MET, V159, P83
34559    WILLEMS JJG, 1984, PHILIPS J RES S1, V39, P1
34560    WILLEMS JJG, 1984, PHILIPS J RES S1, V39, P3
34561 NR 17
34562 TC 3
34563 SN 1480-2422
34564 J9 J NEW MATER ELECTROCHEM SYST
34565 JI J. New Mat.Electrochem. Syst.
34566 PD JAN
34567 PY 1999
34568 VL 2
34569 IS 1
34570 BP 45
34571 EP 50
34572 PG 6
34573 SC Materials Science, Multidisciplinary; Electrochemistry
34574 GA 283LB
34575 UT ISI:000085276100007
34576 ER
34577 
34578 PT J
34579 AU Guo, XM
34580 TI On existence and uniqueness of solution of hyperbolic differential
34581    inclusion with discontinuous nonlinearity
34582 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
34583 DT Article
34584 ID EQUATIONS
34585 AB In this paper a hyperbolic differential inclusion with a discontinuous
34586    and nonlinear multi-valued term is studied, and the existence and
34587    uniqueness of its global weak solutions are obtained. We also study the
34588    asymptotic behavior of the solutions under suitable assumptions. (C)
34589    2000 Academic Press.
34590 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
34591 RP Guo, XM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
34592    200072, Peoples R China.
34593 CR BREZIS H, 1971, CONTRIBUTIONS NONLIN, P101
34594    CARL S, 1992, NONLINEAR ANAL-THEOR, V18, P471
34595    CHANG KC, 1981, J MATH ANAL APPL, V80, P102
34596    CLARK MR, 1996, INT J MATH MATH SCI, V19, P151
34597    DUVAUT G, 1972, INEQUATIONS MECH PHY
34598    FERREIRA J, 1996, INT J MATH MATH SCI, V19, P751
34599    HARAUX A, 1981, LECT NOTES MATH, V841
34600    MACIEL AB, 1993, NONLINEAR ANAL-THEOR, V20, P745
34601    NAKAO M, 1978, MATH REP, V11, P117
34602    PANAGIOTOPOULOS PD, 1985, INEQUALITY PROBLEMS
34603    PANAGIOTOPOULOS PD, 1993, HEMIVARIATIONAL INEQ
34604    RAUCH J, 1977, P AM MATH SOC, V64, P277
34605    ZHANG KC, 1987, COURSE FUNCTIONAL AN
34606    ZHOU MQ, 1985, REAL VARIABLES FUNCT
34607 NR 14
34608 TC 2
34609 SN 0022-247X
34610 J9 J MATH ANAL APPL
34611 JI J. Math. Anal. Appl.
34612 PD JAN 15
34613 PY 2000
34614 VL 241
34615 IS 2
34616 BP 198
34617 EP 213
34618 PG 16
34619 SC Mathematics, Applied; Mathematics
34620 GA 282NQ
34621 UT ISI:000085225300004
34622 ER
34623 
34624 PT J
34625 AU Yan, LC
34626    Lu, WC
34627    Ding, YM
34628    Fang, JH
34629    Chen, NY
34630    Cao, GY
34631    Zhu, JX
34632 TI Thermodynamic stability of LiFeO2 in molten carbonate fuel cell
34633 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
34634 DT Letter
34635 AB LiFeO2, as one of candidate cathode materials or additive for molten
34636    carbonate fuel cell, has been found to be thermodynamically unstable in
34637    CO2 atmosphere at 650 degrees C (the condition of molten carbonate fuel
34638    cell) both by computation and experimental confirmation.
34639 C1 Shanghai Univ Sci & Technol, Dept Chem, Shanghai 201800, Peoples R China.
34640    Jiao Tong Univ, Inst Fuel Cell Technol, Shanghai 200030, Peoples R China.
34641 RP Yan, LC, Shanghai Univ Sci & Technol, Dept Chem, Shanghai 201800,
34642    Peoples R China.
34643 CR DEVAN HSH, 1987, J ELECTROCHEM SOC, P2146
34644    JANZ GJ, 1961, J CHEM ENG DATA, P6321
34645    OTA KI, 1987, 2 S MOLT CARB FUEL C, P53
34646    OTA KI, 1992, P 4 JAP CHIN BIL C M, P34
34647    PLOMP L, 1993, P 3 S MOLT CARB FUEL, P171
34648    SHORES D, 1993, P 3 2NT S CARB FUEL, P254
34649    TANIMOTO K, 1998, P FUEL CELL S, P321
34650 NR 7
34651 TC 0
34652 SN 1005-0302
34653 J9 J MATER SCI TECHNOL
34654 JI J. Mater. Sci. Technol.
34655 PD JAN
34656 PY 2000
34657 VL 16
34658 IS 1
34659 BP 71
34660 EP 72
34661 PG 2
34662 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
34663    Engineering
34664 GA 282AN
34665 UT ISI:000085193800015
34666 ER
34667 
34668 PT J
34669 AU Li, CF
34670    Zhao, XG
34671 TI Spatial rotation and time-evolution operator of two-level systems
34672 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
34673 DT Article
34674 ID 2-LEVEL SYSTEMS; DYNAMICS
34675 AB All the six kinds of rotation approach with the same form to the
34676    evolution problem of arbitrarily time-dependent two-level systems are
34677    investigated in this paper. A time-dependent two-level system can be
34678    viewed as a spin-1/2 system in a time-varying magnetic field. It is
34679    shown that for each kind of rotation approach, we can always find a
34680    rotating frame in which the direction of the effective magnetic field
34681    is fixed. This property reduces the problem of finding the
34682    time-evolution operator to the solution of a second-order differential
34683    equation. Applications are made to the J C model in quantum optics and
34684    the Landau-Zener model in resonance physics.
34685 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
34686    CCAST, World Lab, Beijing 100080, Peoples R China.
34687    Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China.
34688    Acad Sinica, Inst Theoret Phys, Beijing 100080, Peoples R China.
34689 RP Li, CF, Shanghai Univ, Dept Phys, 99 Qixiang Rd, Shanghai 200436,
34690    Peoples R China.
34691 CR ALLEN L, 1975, OPTICAL RESONANCE 2
34692    ERDELYI A, 1953, HIGH TRANSCENDENTAL, V2, P192
34693    FERNANDEZ DJ, 1997, PHYS LETT A, V236, P275
34694    HUANG YH, 1989, PHYS REV A, V40, P4171
34695    LANDAU L, 1932, PHYS Z SOWJETUNION, V2, P46
34696    MAJORANA E, 1932, NUOVO CIMENTO, V9, P43
34697    SAKURAI JJ, 1985, MODERN QUANTUM MECH, P171
34698    VITANOV NV, 1996, PHYS REV A, V53, P4288
34699    WAGH AG, 1993, PHYS REV A, V48, R1729
34700    WANG ZX, 1965, INTRO SPECIAL FUNCTI, P359
34701    ZENER C, 1932, P R SOC LOND A-CONTA, V137, P696
34702    ZHAO XG, 1993, PHYS LETT A, V181, P425
34703    ZHAO XG, 1994, PHYS LETT A, V193, P5
34704    ZHOU JY, 1994, PHYS REV A, V50, P1903
34705 NR 14
34706 TC 0
34707 SN 0217-9792
34708 J9 INT J MOD PHYS B
34709 JI Int. J. Mod. Phys. B
34710 PD JAN 10
34711 PY 2000
34712 VL 14
34713 IS 1
34714 BP 101
34715 EP 112
34716 PG 12
34717 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
34718 GA 282JF
34719 UT ISI:000085214200009
34720 ER
34721 
34722 PT J
34723 AU Liu, GL
34724 TI Derivation and transformation of variational principles with emphasis
34725    on inverse and hybrid problems in fluid mechanics: a systematic approach
34726 SO ACTA MECHANICA
34727 DT Article
34728 ID TRANSONIC FLOW; POTENTIAL FLOW; ROTOR; FORMULATION; SHOCKS
34729 AB A systematic approach to the derivation of variational principles (VPs)
34730    from the partial differential equations of fluid mechanics is suggested
34731    herein, consisting essentially of two major lines: (1) establishing a
34732    first VP via reversed deduction followed by extending it successively
34733    to a Family of subgeneralized VPs via a series of transformations. and
34734    (2) vice versa. Full advantage is taken of four powerful means - the
34735    functional variation with variable domain, the natural boundary/initial
34736    condition (BC/IC), the Lagrange multiplier, and the artificial
34737    interface. The occurrence of three kinds of variational crisis is
34738    demonstrated and methods for their removal are suggested. This approach
34739    has been used with great success in establishing VP-families in fluid
34740    mechanics with special attention to inverse and hybrid problems of flow
34741    in a rotating system.
34742 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
34743    Shanghai Inst Appl Maths & Mechs, Shanghai 200072, Peoples R China.
34744 RP Liu, GL, Shanghai Univ, 149 Yan Chang Rd, Shanghai 200072, Peoples R
34745    China.
34746 CR CHIESA P, 1987, MEDIOEVO RINASCIMENT, V1, P1
34747    COURANT R, 1953, METHODS MATH PHYSICS, V1
34748    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
34749    KOMKOV V, 1986, VARIATIONAL PRINCIPL, V1
34750    LIU GL, 1979, ACTA MECH SINICA, V11, P303
34751    LIU GL, 1980, SCI SINICA, V23, P1339
34752    LIU GL, 1987, TURBULENCE MEASUREME, P323
34753    LIU GL, 1990, J ENG THERMOPHYSICS, V11, P136
34754    LIU GL, 1993, ACTA MECH, V97, P229
34755    LIU GL, 1995, ACTA MECH, V108, P207
34756    LIU GL, 1995, INVERSE PROBL ENG, V2, P1
34757    LIU GL, 1995, P 6 AS C FLUID MECH, V1, P745
34758    LIU GL, 1997, INT J TURBO JET ENG, V14, P71
34759    LIU GL, 1997, NONLINEAR ANAL-THEOR, V30, P5229
34760    LIU GL, 1999, P 14 INT S AIR BREAT
34761    LIU GL, 1999, P 4 INT S AER INT FL, V1, P29
34762    REDDY JN, 1986, APPL FUNCTIONAL ANAL
34763    TONTI E, 1984, INT J ENG SCI, V22, P1343
34764 NR 18
34765 TC 7
34766 SN 0001-5970
34767 J9 ACTA MECH
34768 JI Acta Mech.
34769 PY 2000
34770 VL 140
34771 IS 1-2
34772 BP 73
34773 EP 89
34774 PG 17
34775 SC Mechanics
34776 GA 284EL
34777 UT ISI:000085317700007
34778 ER
34779 
34780 PT J
34781 AU Zhu, XH
34782    Zhu, JM
34783    Zhou, SH
34784    Li, Q
34785    Liu, ZG
34786    Ming, NB
34787    Meng, ZY
34788 TI EPMA and TEM investigations on the interdiffusion layer of the PNN/PZT
34789    functionally gradient piezoelectric ceramics
34790 SO JOURNAL OF MATERIALS SCIENCE
34791 DT Article
34792 ID ACTUATOR
34793 AB The compositional profile, distribution of the phases and the ordering
34794    behavior in the interdiffusion layer of the PNN/PZT functionally
34795    gradient piezoelectric ceramics have been investigated by electron
34796    probe microbeam analyses (EPMA) and transmission electron microscopy
34797    (TEM) respectively. The results show that the thickness of the
34798    interdiffusion layers (d) for Ni2+, Nb5+, Ti4+ and Zr4+ ions are
34799    ordered as d(Ni)(2+) > d(Nb)(5+) > d(Ti)(4+) > d(Zr)(4+). It is
34800    demonstrated by TEM observation and selected area electron diffraction
34801    (SAED) patterns that a clear interface between the rhombohedral and
34802    pseudocubic phases exists in the interdiffusion layer. The SAED studies
34803    also reveal the presence of F spots along the [111] direction of the
34804    perovskite cubic unit cell. The origin of this superstructure is
34805    determined. (C) 2000 Kluwer Academic Publishers.
34806 C1 Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.
34807    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
34808 RP Zhu, XH, Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct,
34809    Nanjing 210093, Peoples R China.
34810 CR CHEN J, 1989, J AM CERAM SOC, V72, P593
34811    CHERRADI N, 1994, COMPOS ENG, V4, P883
34812    HARMER MP, 1989, FERROELECTRICS, V97, P263
34813    HILTON AD, 1990, J MATER SCI, V25, P3461
34814    RANDALL CA, 1990, JPN J APPL PHYS 1, V29, P327
34815    SHANNON RD, 1976, ACTA CRYSTALLOGR A, V32, P751
34816    ZHU XH, 1995, J MATER SCI LETT, V14, P516
34817    ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169
34818    ZHU XH, 1998, J MATER SCI, V33, P1023
34819 NR 9
34820 TC 2
34821 SN 0022-2461
34822 J9 J MATER SCI
34823 JI J. Mater. Sci.
34824 PD FEB
34825 PY 2000
34826 VL 35
34827 IS 4
34828 BP 1031
34829 EP 1036
34830 PG 6
34831 SC Materials Science, Multidisciplinary
34832 GA 279HF
34833 UT ISI:000085037800033
34834 ER
34835 
34836 PT J
34837 AU He, JH
34838 TI Inverse problems of determining the unknown shape of oscillating
34839    airfoils in compressible 2D unsteady flow via variational technique
34840 SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY
34841 DT Article
34842 DE flow; finite element method; inverse problems; aircraft; aerodynamics
34843 AB A generalized variational principle of 2D unsteady compressible flow
34844    around oscillating airfoils is established directly from the governing
34845    equations and boundary/initial conditions via the semi-inverse method
34846    proposed by He. In this method, an energy integral with an unknown F is
34847    used as a trial-functional. The identification of the unknown F is
34848    similar to the identification of the Lagrange multiplier. Based on the
34849    variational theory with variable domain, a variational principle for
34850    the inverse problem (given as the time-averaged pressure over the
34851    airfoil contour, while the corresponding airfoil shape is unknown) is
34852    constructed, and all the boundary/initial conditions are converted into
34853    natural ones, leading to well-posedness and the unique solution of the
34854    inverse problems.
34855 C1 Shanghai Univ, Inst Mech, Shanghai, Peoples R China.
34856 RP He, JH, Shanghai Univ, Inst Mech, Shanghai, Peoples R China.
34857 CR HE JH, 1997, INT J TURBO JET ENG, V14, P23
34858    HE JH, 1998, APPL MATH MODEL, V22, P395
34859    HE JH, 1998, COMMUNICATIONS NONLI, V3, P176
34860    HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154
34861    HE JH, 1999, INT J TURBO JET ENG, V16, P19
34862    LIU GL, 1989, SCI CHINA SER A, V32, P707
34863    LIU GL, 1993, ACTA MECH, V99, P219
34864    LIU GL, 1996, ACTA AERODYNAMICA SI, V14, P1
34865    LIU GL, 1998, INT J HEAT FLUID FL, V9, P302
34866    MEAUZE G, 1982, ASME, V104, P650
34867 NR 10
34868 TC 9
34869 SN 0002-2667
34870 J9 AIRCRAFT ENG AEROSP TECHNOL
34871 JI Aircr. Eng. Aerosp. Technol.
34872 PY 2000
34873 VL 72
34874 IS 1
34875 BP 18
34876 EP 24
34877 PG 7
34878 SC Engineering, Aerospace
34879 GA 281PF
34880 UT ISI:000085169300003
34881 ER
34882 
34883 PT J
34884 AU Li, ZT
34885    Wu, PF
34886    Tao, YQ
34887    Mao, DK
34888 TI Calculation of magnetic entropy changes of gadolinium from
34889    magnetization curves
34890 SO ACTA PHYSICA SINICA
34891 DT Article
34892 AB The magnetization curves of gadolinium were measured with a vibrating
34893    sample magnetometer, from which the function M(H, T) was obtained using
34894    two-step least square fitting. Then magnetic entropy changes can be
34895    calculated. These works can provide the perliminary information needed
34896    for the design of magnetic refrigerator.
34897 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
34898    Shanghai Yuelong NonFerrous Met Co Ltd, Shanghai 200949, Peoples R China.
34899 RP Li, ZT, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R
34900    China.
34901 CR BROWN GV, 1976, J APPL PHYS, V47, P3673
34902    CAO LF, 1986, NUMERICAL ANAL, P399
34903    FOLDEAKI M, 1995, J APPL PHYS, V77, P3528
34904    KUHRT C, 1985, PHYS STATUS SOLIDI A, V91, P105
34905    LI ZT, 1995, PROGR CHEM, V7, P140
34906    TISHIN AM, 1990, CRYOGENICS, V30, P127
34907 NR 6
34908 TC 0
34909 SN 1000-3290
34910 J9 ACTA PHYS SIN-CHINESE ED
34911 JI Acta Phys. Sin.
34912 PD DEC
34913 PY 1999
34914 VL 48
34915 IS 12
34916 SU Suppl. S
34917 BP S126
34918 EP S131
34919 PG 6
34920 SC Physics, Multidisciplinary
34921 GA 279XN
34922 UT ISI:000085070500022
34923 ER
34924 
34925 PT J
34926 AU Wang, Q
34927    Wu, Z
34928    Wang, LQ
34929 TI Nonlinear TM waves on interface of gyromagnets
34930 SO ACTA PHYSICA SINICA
34931 DT Article
34932 ID MICROWAVE-ENVELOPE SOLITONS; IRON-GARNET FILMS; FERROMAGNETIC-FILMS;
34933    LIGHT; PROPAGATION; SURFACE
34934 AB The nonlinear behavior of transverse magnetic (TM) waves on the
34935    interface between an antiferromagnet and a ferromagnet is studied. The
34936    theoretical results show that for TM waves there exist frequency
34937    passband(s) and stopband(s) which can be switched into each other by
34938    varying the power. It is indicated that this surface waveguide may
34939    support backward surface waves, which have opposite group velocities to
34940    their phase velocities. The passbands width of forward and backward
34941    surface waves are about 10 GHz.
34942 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
34943 RP Wang, Q, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
34944 CR ACEVES AB, 1989, PHYS REV A, V39, P1809
34945    ACEVES AB, 1990, J OPT SOC AM B, V7, P963
34946    AGRAWAL GP, 1989, NONLINEAR FIBER OPTI
34947    ALMEIDA NS, 1987, PHYS REV B, V36, P2015
34948    BOARDMAN AD, 1990, OPT COMMUN, V74, P347
34949    BOARDMAN AD, 1993, PHYS REV B, V48, P13602
34950    BOARDMAN AD, 1994, IEEE T MAGN, V30, P1
34951    BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
34952    BOARDMAN AD, 1995, J MAGN MAGN MATER, V145, P357
34953    BOYLE JW, 1996, PHYS REV B, V53, P12173
34954    CHEN M, 1994, PHYS REV B, V49, P12773
34955    CHEN ZG, 1996, OPT LETT, V21, P716
34956    HAUS HA, 1993, IEEE SPECTRUM, V30, P48
34957    KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712
34958    MILLS DL, 1974, REPORTS PROGR PHYSIC, V37, P817
34959    QI W, 1995, J APPL PHYS, V77, P5831
34960    QI W, 1997, JPN J APPL PHYS, V36, P22
34961    TRAN HT, 1992, IEEE J QUANTUM ELECT, V28, P488
34962    TSANKOV MA, 1994, J APPL PHYS, V76, P4274
34963    VARATHARAJAH P, 1990, PHYS REV A, V42, P1767
34964    VUKOVICH S, 1991, SOV PHYS JETP, V71, P964
34965    WANG Q, 1998, J APPL PHYS, V83, P382
34966 NR 22
34967 TC 2
34968 SN 1000-3290
34969 J9 ACTA PHYS SIN-CHINESE ED
34970 JI Acta Phys. Sin.
34971 PD FEB
34972 PY 2000
34973 VL 49
34974 IS 2
34975 BP 349
34976 EP 354
34977 PG 6
34978 SC Physics, Multidisciplinary
34979 GA 281BY
34980 UT ISI:000085139300033
34981 ER
34982 
34983 PT J
34984 AU He, JH
34985 TI A new perturbation technique which is also valid for large parameters
34986 SO JOURNAL OF SOUND AND VIBRATION
34987 DT Letter
34988 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
34989 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
34990    Peoples R China.
34991 CR BELLMAN R, 1964, PERTURBATION TECHNIQ
34992    CHEUNG YK, 1991, INT J NONLINEAR MECH, V26, P367
34993    HE JH, 1999, CHINESE J COMPUTATIO, V16, P121
34994    HE JH, 1999, COMPUT METHOD APPL M, V178, P257
34995    HE JH, 1999, INT J NONLINEAR MECH, V34, P699
34996    HE JH, 2000, INT J NONLINEAR MECH, V35, P37
34997    MICKENS RE, 1996, J SOUND VIB, V193, P747
34998 NR 7
34999 TC 15
35000 SN 0022-460X
35001 J9 J SOUND VIB
35002 JI J. Sound Vibr.
35003 PD FEB 3
35004 PY 2000
35005 VL 229
35006 IS 5
35007 BP 1257
35008 EP 1263
35009 PG 7
35010 SC Engineering, Mechanical; Acoustics; Mechanics
35011 GA 279GH
35012 UT ISI:000085035700011
35013 ER
35014 
35015 PT J
35016 AU Wang, Q
35017    Wu, Z
35018    Li, SM
35019    Wang, LQ
35020 TI Nonlinear behavior of magnetic surface waves on the interface between
35021    ferromagnet and antiferromagnet
35022 SO JOURNAL OF APPLIED PHYSICS
35023 DT Article
35024 ID MICROWAVE-ENVELOPE SOLITONS; IRON-GARNET FILMS; LIGHT; PROPAGATION
35025 AB In this article the nonlinear frequency characteristics of the
35026    transverse magnetic surface waves at microwave frequencies on the
35027    interface between a ferromagnet and an antiferromagnet have been
35028    studied. The results show that the magnetic surface waves have
35029    passband(s) and stopband(s), which are interchangeable through the
35030    variation of the wave power. It is shown that the nonlinear surface
35031    waves excited on the interface can be backward surface waves with group
35032    velocities opposite to their phase velocities in direction. The
35033    passband widths of the forward surface waves are about five times
35034    larger than those of the backward surface waves in the situation. (C)
35035    2000 American Institute of Physics. [S0021-8979(00)00604-6].
35036 C1 Shanghai Univ, Coll Sci, Shanghai 201800, Peoples R China.
35037 RP Wang, Q, Shanghai Univ, Coll Sci, Shanghai 201800, Peoples R China.
35038 CR ACEVES AB, 1989, PHYS REV A, V39, P1809
35039    ACEVES AB, 1990, J OPT SOC AM B, V7, P963
35040    AGRAWAL GP, 1989, NONLINEAR FIBER OPTI
35041    ALMEIDA NS, 1987, PHYS REV B, V36, P2015
35042    BOARDMAN AD, 1990, OPT COMMUN, V74, P347
35043    BOARDMAN AD, 1990, PHYS REV B, V41, P717
35044    BOARDMAN AD, 1993, PHYS REV B, V48, P13602
35045    BOARDMAN AD, 1994, IEEE T MAGN, V30, P1
35046    BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
35047    BOYLE JW, 1996, PHYS REV B, V53, P12173
35048    CHEN M, 1994, PHYS REV B, V49, P12773
35049    CHEN ZG, 1996, OPT LETT, V21, P716
35050    HAUS HA, 1993, IEEE SPECTRUM, V30, P48
35051    KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712
35052    MILLS DL, 1974, REPORTS PROGR PHYSIC, V37, P817
35053    TRAN HT, 1992, IEEE J QUANTUM ELECT, V28, P488
35054    TSANKOV MA, 1994, J APPL PHYS, V76, P4274
35055    VARATHARAJAH P, 1990, PHYS REV A, V42, P1767
35056    VUKOVICH S, 1991, SOV PHYS JETP, V71, P964
35057    WANG Q, 1995, J APPL PHYS, V77, P5831
35058    WANG Q, 1997, JPN J APPL PHYS PT 1, V36, P22
35059    WANG Q, 1998, J APPL PHYS, V83, P382
35060 NR 22
35061 TC 1
35062 SN 0021-8979
35063 J9 J APPL PHYS
35064 JI J. Appl. Phys.
35065 PD FEB 15
35066 PY 2000
35067 VL 87
35068 IS 4
35069 BP 1908
35070 EP 1913
35071 PG 6
35072 SC Physics, Applied
35073 GA 278MA
35074 UT ISI:000084992500048
35075 ER
35076 
35077 PT J
35078 AU Wei, JH
35079    Ma, JC
35080    Fan, YY
35081    Yu, NW
35082    Yang, SL
35083    Xiang, SH
35084    Zhu, DP
35085 TI Water modelling study of fluid flow and mixing characteristics in bath
35086    during AOD process
35087 SO IRONMAKING & STEELMAKING
35088 DT Article
35089 ID METAL
35090 AB The fluid flow and mixing characteristics in the bath during the
35091    argon-oxygen decarburisation (AOD) process have been investigated on a
35092    water model of an 18 t AOD vessel blown th rough two annu lar tube type
35093    lances of constant cross-sectional area. The geometric similarity ratio
35094    between the model and its prototype (including the lances) was 1 :3.
35095    Based on theoretical calculations of the parameters of the gas streams
35096    in the lances, the gas blowing rates used for the model were determined
35097    fairly precisely. Thus, sufficiently full kinematic similarity between
35098    the model and its prototype was ensured. The influence of the gas
35099    flowrate and the angle included between the two lances was examined.
35100    The results demonstrated that the liquid in the bath underwent vigorous
35101    circulatory motion du ring blowing, and there was no obvious dead zone
35102    in the bath, resulting in excellent mixing and a short mixing time. The
35103    gas flowrates, particularly that of the main lance, had a key influence
35104    on these characteristics. However, the gas jet of the sublance had a
35105    physical shielding effect on the gas jet of the main lance, and mixing
35106    efficiency could be improved by a suitable increase in the gas blowing
35107    rate of the sublance. The angular separation of the two lances also had
35108    a marked influence on the flow and mixing in the bath. An excessively
35109    large or small separation of the two lances would reduce the stability
35110    of blowing and would also be unfavourable to mixing. The optimum range
35111    of separation is 60-100 degrees under the conditions of the present
35112    work. The relationships between the mixing time and the gas blowing
35113    rate, the stirring energy, the modified Froude numbers for the main
35114    lance and sublance, the lance arrangement, etc. have been obtained.
35115    I&S/1413.
35116 C1 Shanghai Univ, Dept Metall Mat, Shanghai 200072, Peoples R China.
35117 RP Wei, JH, Shanghai Univ, Dept Metall Mat, Shanghai 200072, Peoples R
35118    China.
35119 CR CHO YW, 1986, SCANINJECT 1, V4
35120    FIGUEIRA RM, 1985, METALL T B, V16, P67
35121    GEIGER GH, 1973, TRANSPORT PHENOMENA, P244
35122    GORGES H, 1978, P 3 INT IR STEEL C C, P161
35123    IGUCHI M, 1992, SCANINJECT 1, V6, P113
35124    KOMAROV SV, 1996, P INT C MSMM 96 BEIJ, P113
35125    LEACH JCC, 1978, IRONMAK STEELMAK, V5, P107
35126    NAKANISHI K, 1975, IRONMAK STEELMAK, V2, P193
35127    SANO M, 1983, T IRON STEEL I JPN, V23, P169
35128    SCHWARZ MP, 1991, ISIJ INT, V30, P947
35129    SZEKELY J, 1984, IRON STEEL MAKER, V11, P22
35130    TOKUNAGA H, 1995, ISIJ INT, V35, P21
35131    WEI JH, 1989, CHIN J MET SCI TECHN, V5, P235
35132    WEI JH, 1997, P 7 NAT S COMP HEAT, P264
35133    ZHANG MH, 1995, P 10 NAT ANN C STAIN, P13
35134 NR 15
35135 TC 8
35136 SN 0301-9233
35137 J9 IRONMAKING STEELMAKING
35138 JI Ironmak. Steelmak.
35139 PY 1999
35140 VL 26
35141 IS 5
35142 BP 363
35143 EP 371
35144 PG 9
35145 SC Metallurgy & Metallurgical Engineering
35146 GA 279NG
35147 UT ISI:000085050600009
35148 ER
35149 
35150 PT J
35151 AU Huang, DB
35152    Liu, ZR
35153 TI On the persistence of lower-dimensional invariant hyperbolic tori for
35154    smooth Hamiltonian systems
35155 SO NONLINEARITY
35156 DT Article
35157 ID QUASI-PERIODIC PERTURBATIONS
35158 AB In this paper, sufficiently smooth Hamiltonian systems with
35159    perturbations are considered. By combining a smooth version of the
35160    Kolmogorov-Arnold-Moser theorem and the theory of normally hyperbolic
35161    invariant manifolds, we show that under the conditions of nonresonance
35162    and nondegeneracy, most hyperbolic invariant tori and their stable and
35163    unstable manifolds survive smoothly under sufficiently smooth
35164    autonomous perturbation. This result can be generalized directly to the
35165    case of time-dependent quasi-periodic perturbations. Finally, an
35166    example from geometrical optics is used to illustrate our method.
35167 C1 Acad China, Inst Mech, LNM, Beijing, Peoples R China.
35168    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
35169 RP Huang, DB, Acad China, Inst Mech, LNM, Beijing, Peoples R China.
35170 CR ARNOLD VI, 1963, RUSS MATH SURV, V18, P9
35171    CHENG CQ, 1990, CELESTIAL MECH, V47, P275
35172    DIEZ C, 1991, CELESTIAL MECH, V50, P13
35173    ELIASSON LH, 1988, ANN SC NORM SUPER S, V15, P115
35174    FENICHEL N, 1971, INDIANA U MATH J, V21, P193
35175    GRAFF SM, 1974, J DIFFER EQUATIONS, V15, P1
35176    HOLM DD, 1991, PHYSICA D, V51, P177
35177    JORBA A, 1996, SIAM J MATH ANAL, V27, P1704
35178    JORBA A, 1997, J NONLINEAR SCI, V7, P427
35179    LERMAN L, 1987, SELECTA MATH SOVIETI, V6, P365
35180    MARSDEN JE, 1994, INTRO MECH SYMMETRY
35181    MOSER J, 1966, ANN SCUOLA NORM, V20, P499
35182    POSCHEL J, 1982, COMMUN PUR APPL MATH, V35, P653
35183    POSCHEL J, 1989, MATH Z, V202, P559
35184    RUDNEV M, 1997, J NONLINEAR SCI, V7, P177
35185    SPIVAK M, 1979, DIFFERENTIAL GEOMETR, V1
35186    WIGGINS S, 1994, NORMALLY HYPERBOLIC
35187    XIA ZH, 1992, ERGOD THEOR DYN SYST, V12, P621
35188 NR 18
35189 TC 0
35190 SN 0951-7715
35191 J9 NONLINEARITY
35192 JI Nonlinearity
35193 PD JAN
35194 PY 2000
35195 VL 13
35196 IS 1
35197 BP 189
35198 EP 202
35199 PG 14
35200 SC Mathematics, Applied; Physics, Mathematical
35201 GA 276TW
35202 UT ISI:000084894300010
35203 ER
35204 
35205 PT J
35206 AU Zhong, SS
35207    Yang, XX
35208    Gao, SC
35209    Ahmed, M
35210 TI A low-cost dual-polarized microstrip antenna array
35211 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
35212 DT Article
35213 DE microstrip antenna array; dual polarization; low cost; radiation
35214    patterns; S-parameters
35215 AB A new low-cost dual-polarized microsrip antenna array with a single
35216    layer is proposed. Its element is the parallel corner-fed square patch
35217    with two ports. The design, analysis, and experimental results of a 12
35218    GHz 16-element array on a 0.8 mm thick substrate are presented. Its
35219    measured isolation is 26.5 dB at 12 GHz and higher than 20 dB over 710
35220    MHz. The 2:1 VSWR bandwidth is wider than 840 MHz (7%). The theoretical
35221    results agree well with the experimental results. (C) 2000 John Wiley &
35222    Sons, Inc.
35223 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
35224 RP Zhong, SS, Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R
35225    China.
35226 CR BRACHAT P, 1995, IEEE T ANTENN PROPAG, V43, P738
35227    CRUZ EM, 1991, ELECTRON LETT, V27, P1410
35228    CRYAN MJ, 1996, ELECTRON LETT, V32, P286
35229    DERNERYD AG, 1976, P 6 EUR MICR C, P339
35230    GAO SC, 1998, MICROW OPT TECHN LET, V19, P214
35231    GAO SC, 1999, THESIS SHANGHAI U PR
35232    LINDMARK B, 1998, IEEE AP-S, P328
35233    MURAKAMI Y, 1996, IEE P-MICROW ANTEN P, V143, P119
35234    RICHARDS WF, 1981, IEEE T ANTENN PROPAG, V29, P38
35235    ZHONG SS, 1991, MICROSTRIP ANTENNA T
35236 NR 10
35237 TC 3
35238 SN 0895-2477
35239 J9 MICROWAVE OPT TECHNOL LETT
35240 JI Microw. Opt. Technol. Lett.
35241 PD FEB 5
35242 PY 2000
35243 VL 24
35244 IS 3
35245 BP 176
35246 EP 179
35247 PG 4
35248 SC Engineering, Electrical & Electronic; Optics
35249 GA 275GU
35250 UT ISI:000084813100009
35251 ER
35252 
35253 PT J
35254 AU Gao, F
35255    Xu, YR
35256    Song, BY
35257    Xia, KN
35258 TI Substructural changes during hot deformation of an Fe-26Cr ferritic
35259    stainless steel
35260 SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND
35261    MATERIALS SCIENCE
35262 DT Article
35263 ID HIGH-TEMPERATURE DEFORMATION; DYNAMIC RECRYSTALLIZATION; MICROSTRUCTURE
35264 AB Dynamic softening and substructural changes during hot deformation of a
35265    ferritic Fe-26Cr stainless steel were studied. The flow stress
35266    increased to reach a steady state in all the cases and the steady-state
35267    stress decreased with decreasing Z the Zener-Hollomon parameter. A
35268    constant subgrain size was observed to correspond to the
35269    steady-state:flow and the steady-state subgrain size increased with
35270    decreasing Z. Substructure examinations revealed-that elongated,
35271    pancake-shaped subgrains formed in the early stage of deformation.
35272    Straight sub-boundaries: and equiaxed subgrains developed pi-ogres
35273    sively with strain, leading eventually to a stable substructure at
35274    strains greater than 0.7. During deformation at 1100 degrees C, dynamic
35275    recrystallization occurred by the migration and coalescence of
35276    subboundaries. Dynamic recovery dominated during deformation at 900
35277    degrees C, resulting in the formation of fine equiaxed subgrains, Based
35278    on microstructural;observations, the process of substructural changes
35279    during hot deformation was described by a schematic-diagram.
35280 C1 Dalian Railway Univ, Dalian 116028, Liaoning, Peoples R China.
35281    Shanghai Univ, Shanghai 201800, Peoples R China.
35282    Univ Melbourne, Dept Mech & Mfg Engn, Parkville, Vic 3052, Australia.
35283 RP Gao, F, Dalian Railway Univ, Dalian 116028, Liaoning, Peoples R China.
35284 CR BELYAKOV AN, 1993, PHYS MET METALLOGR, V76, P162
35285    BOURELL DL, 1987, J MAT SHAPING TECH, V5, P53
35286    CIZEK P, 1989, METALL J, V44, P94
35287    CIZEK P, 1997, MAT SCI ENG A-STRUCT, V230, P88
35288    DOHERTY RD, 1997, MAT SCI ENG A-STRUCT, V238, P219
35289    DRURY MR, 1986, ACTA METALL, V34, P2259
35290    GAO F, 1988, ACTA METALL SINICA, V24, B195
35291    GLOVER G, 1973, METALL T, V4, P765
35292    ION SE, 1982, ACTA METALL, V30, P1909
35293    JONAS JJ, 1969, MET REV, V14, P1
35294    KONOPLEVA EV, 1997, MAT SCI ENG A-STRUCT, V234, P826
35295    MAKI T, 1982, 6 INT C STRENGTH MET, P529
35296    MCQUEEN HJ, 1977, METALL TRANS A, V8, P807
35297    ROBERTS W, 1984, DEFORMATION PROCESSI, P109
35298    SAKAI T, 1984, ACTA METALL, V32, P189
35299    SCHMIDT CG, 1982, MET T A, V13, P447
35300 NR 16
35301 TC 9
35302 SN 1073-5623
35303 J9 METALL MATER TRANS A
35304 JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci.
35305 PD JAN
35306 PY 2000
35307 VL 31
35308 IS 1
35309 BP 21
35310 EP 27
35311 PG 7
35312 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
35313    Engineering
35314 GA 274JQ
35315 UT ISI:000084763100003
35316 ER
35317 
35318 PT J
35319 AU Ding, YP
35320    Meng, ZY
35321 TI The ordered micro-domain in Ba1-xSrxTiO3 thin films and its effect on
35322    phase transition
35323 SO JOURNAL OF MATERIALS SCIENCE LETTERS
35324 DT Article
35325 ID FERROELECTRICS
35326 C1 Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China.
35327    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
35328 RP Ding, YP, Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030,
35329    Peoples R China.
35330 CR CROSS LE, 1987, FERROELECTRICS, V76, P241
35331    DING YP, 1998, IN PRESS 9 INT C MOD
35332    GU BL, 1991, J APPL PHYS, V70, P4224
35333    KING G, 1988, J AM CERAM SOC, V71, P454
35334    RANDALL CA, 1990, J MATER RES, V5, P829
35335    SMOLENSKY GA, 1970, J PHYS SOC JAPAN   S, V28, P26
35336 NR 6
35337 TC 3
35338 SN 0261-8028
35339 J9 J MATER SCI LETT
35340 JI J. Mater. Sci. Lett.
35341 PD JAN
35342 PY 2000
35343 VL 19
35344 IS 2
35345 BP 163
35346 EP 165
35347 PG 3
35348 SC Materials Science, Multidisciplinary
35349 GA 276GR
35350 UT ISI:000084868500021
35351 ER
35352 
35353 PT J
35354 AU Lu, JM
35355    Ye, ZM
35356 TI Application of CASs to iterative solution of nonlinear analysis of
35357    shallow conical shell
35358 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
35359 DT Article
35360 ID COMPUTER ALGEBRA SOFTWARE; MATHEMATICA
35361 AB This paper deals with the application of Computer Algebra Systems
35362    (CASs) - Maple V to the nonlinear analysis of shallow conical shells.
35363    It is shown that the nonlinear equations of the shell to the nonlinear
35364    problem could be solved by using the CASs method. Detailed high-order
35365    iterative solution expressions and analytical results or the third
35366    iteration are given in CASs forms. The numerical results show that the
35367    solutions of this paper contain other cases when the solutions were the
35368    second order iteration. The effects of various inner radius parameters
35369    have been investigated in detail. The results of the third iterative
35370    expressions are obtained first. It has been shown that the adoption of
35371    the CASs method would be useful in nonlinear problems. (C) 2000
35372    Published by Elsevier Science S.A. All rights reserved.
35373 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
35374 RP Lu, JM, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yan Chang
35375    Rd, Shanghai 200072, Peoples R China.
35376 CR HANSEN P, 1991, MATH PROGRAM, V52, P227
35377    IOAKIMIDIS NI, 1991, ENG FRACT MECH, V38, P95
35378    IOAKIMIDIS NI, 1992, COMPUT METHOD APPL M, V94, P229
35379    IOAKIMIDIS NI, 1993, COMPUT STRUCT, V47, P233
35380    IOAKIMIDIS NI, 1993, INT J COMPUT MATH, V49, P75
35381    IOAKIMIDIS NI, 1994, COMPUT STRUCT, V53, P63
35382    IOAKIMIDIS NI, 1995, COMPUT STRUCT, V55, P229
35383    KENNETH R, 1989, SCIENCE, V243, P679
35384    YE Z, 1997, MECH PRACTICE, V19, P1
35385    YE ZM, 1990, J APPL MECH-T ASME, V57, P1026
35386    YE ZM, 1993, MECH RES COMMUN, V20, P83
35387    YE ZM, 1995, COMPUT STRUCT, V55, P325
35388    YE ZM, 1997, J SOUND VIB, V202, P303
35389    YE ZM, 1998, COMPUT METHOD APPL M, V163, P383
35390 NR 14
35391 TC 0
35392 SN 0045-7825
35393 J9 COMPUT METHOD APPL MECH ENG
35394 JI Comput. Meth. Appl. Mech. Eng.
35395 PD JAN 7
35396 PY 2000
35397 VL 181
35398 IS 1-3
35399 BP 345
35400 EP 361
35401 PG 17
35402 SC Computer Science, Interdisciplinary Applications; Engineering,
35403    Mechanical; Mechanics
35404 GA 276PX
35405 UT ISI:000084887500014
35406 ER
35407 
35408 PT J
35409 AU Tan, WH
35410    Yan, KZ
35411 TI Collapse and revival in the damped Jaynes-Cummings model
35412 SO CHINESE PHYSICS LETTERS
35413 DT Article
35414 ID STATES; CAVITY; FIELD
35415 AB We present the first results for the analytic solution of the
35416    dissipative Jaynes-Cummings model and its application to the collapse
35417    and revival of atomic inversion. We find that the atomic inversion
35418    oscillates more and more slowly with decreasing Rabi frequency due to
35419    the cavity losses. At the same time, long drawn-out revivals after
35420    collapse are observed.
35421 C1 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
35422 RP Tan, WH, Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800,
35423    Peoples R China.
35424 CR BARNETT SM, 1986, PHYS REV A, V33, P2444
35425    BUCK B, 1981, PHYS LETT A, V81, P132
35426    DUAN LM, 1997, CHINESE PHYS LETT, V14, P488
35427    EBERLY JH, 1980, PHYS REV LETT, V44, P1323
35428    GERRY CC, 1996, PHYS REV A, V53, P2857
35429    HAKEN H, 1970, ENCYCL PHYS, V25, P41
35430    JAYNES ET, 1963, P IEEE, V51, P89
35431    KUKLINSKI JR, 1988, PHYS REV A, V37, P3175
35432    RAIMOND JM, 1982, PHYS REV LETT, V49, P117
35433    SHAO B, 1997, CHINESE PHYS LETT, V14, P905
35434    YANG XX, 1998, CHINESE PHYS LETT, V15, P186
35435    ZHENG SB, 1997, CHINESE PHYS LETT, V14, P273
35436 NR 12
35437 TC 0
35438 SN 0256-307X
35439 J9 CHIN PHYS LETT
35440 JI Chin. Phys. Lett.
35441 PY 1999
35442 VL 16
35443 IS 12
35444 BP 896
35445 EP 898
35446 PG 3
35447 SC Physics, Multidisciplinary
35448 GA 272KQ
35449 UT ISI:000084649500014
35450 ER
35451 
35452 PT J
35453 AU Li, DZ
35454 TI Universal equation of photovoltage and transverse photovoltage effect
35455 SO ACTA PHYSICA SINICA
35456 DT Article
35457 AB We have derived a universal equation of photovoltage using a physics
35458    model of photovoltage effects, which involves a p(+)-n-n(+) structure.
35459    Under specified condition, the equation is simplified to expressions of
35460    junction field photovoltage, Dem ber photovoltage and transverse
35461    photovoltage.
35462    According to the function relation between the transverse photovoltage
35463    and the position of light point derived from the universal equation of
35464    photovoltage we fabricated the position sensitive detector (PSD) with
35465    excellent characteristics of position sensitivity on photocurrents. The
35466    theory is thus proven by the successful fabrication of the PSD.
35467 C1 Shanghai Univ, Sch Sci, Shanghai 201800, Peoples R China.
35468 RP Li, DZ, Shanghai Univ, Sch Sci, Shanghai 201800, Peoples R China.
35469 CR 1988, POSITION SENSITIVE D
35470    LI DZ, 1998, J SHANGHAI U, V4, P284
35471    PANKORE JI, 1971, OPTICAL PROCESS SEMI, P313
35472    QIAO D, 1980, ELECT MAT, P119
35473    SMITH RA, 1978, SEMICONDUCTOR CAMBRI
35474    SZE SM, 1981, PHYSICS SEMICONDUCTO, P74
35475    WOLTRING H, 1985, J IEEE T ELECT DEVIC, P581
35476    ZHANG YY, 1987, PHOTOELECTRONIC, P81
35477 NR 8
35478 TC 0
35479 SN 1000-3290
35480 J9 ACTA PHYS SIN-CHINESE ED
35481 JI Acta Phys. Sin.
35482 PD JAN
35483 PY 2000
35484 VL 49
35485 IS 1
35486 BP 137
35487 EP 141
35488 PG 5
35489 SC Physics, Multidisciplinary
35490 GA 273EC
35491 UT ISI:000084694100029
35492 ER
35493 
35494 PT J
35495 AU Zhang, TS
35496    Hing, P
35497    Li, Y
35498    Zhang, JC
35499 TI Selective detection of ethanol vapor and hydrogen using Cd-doped
35500    SnO2-based sensors
35501 SO SENSORS AND ACTUATORS B-CHEMICAL
35502 DT Article
35503 DE tin dioxide; CdO doping; ethanol sensor; hydrogen sensor
35504 ID GAS SENSORS; WORK FUNCTION; TIN DIOXIDE; THIN-FILMS; SURFACE; SNO2;
35505    SENSITIVITY; CONDUCTANCE; H2S
35506 AB The effect of CdO doping on microstructure, conductance and gas-sensing
35507    properties of SnO2-based sensors has been presented in this study.
35508    Precursor powders with Cd/Sn molar ratios ranging from 0 to 0.5 were
35509    prepared by chemical coprecipitation. X-ray diffraction (XRD) analysis
35510    indicates that the solid-state reaction in the CdO-SnO2 system occurs
35511    and alpha-CdSnO3 with pervoskite structure is formed between 600 and
35512    650 degrees C. CdO doping suppresses SnO2 crystallite growth
35513    effectively which has been confirmed by means of XRD, transmission
35514    electron microscopy (TEM) and BET method. The 10 mol% Cd-doped
35515    SnO2-based sensor shows an excellent ethanol-sensing performance, such
35516    as high sensitivity (275 for 100 ppm C2H5OH), rapid response rate (12 s
35517    for 90% response time) and high selectivity over CO, H-2 and i-C4H10.
35518    On the other hand, this sensor has good H-2-sensing properties in the
35519    absence of ethanol vapor. The sensor operates at 300 degrees C, the
35520    sensitivity to 1000 ppm H-2 is up to 98, but only 16 and 7 for 1000 ppm
35521    CO and i-C4H10, respectively. (C) 1999 Elsevier Science S.A. All rights
35522    reserved.
35523 C1 Nanyang Technol Univ, Sch Appl Sci, Div Mat Engn, Ctr Adv Mat Res, Singapore 639798, Singapore.
35524    Univ Aveiro, UIMC, Dept Ceram & Glass Engn, P-3810 Aveiro, Portugal.
35525    Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
35526 RP Zhang, TS, Nanyang Technol Univ, Sch Appl Sci, Div Mat Engn, Ctr Adv
35527    Mat Res, Nanyang Ave, Singapore 639798, Singapore.
35528 CR CALDARARU M, 1996, SENSOR ACTUAT B-CHEM, V30, P35
35529    CANTALINI C, 1994, SENSOR ACTUAT B-CHEM, V18, P437
35530    COLES GSV, 1991, SENSOR ACTUAT B-CHEM, V5, P7
35531    COX DF, 1988, PHYS REV B, V38, P2072
35532    FANG YK, 1989, THIN SOLID FILMS, V169, P51
35533    GHIOTTI G, 1995, SENSOR ACTUAT B-CHEM, V24, P520
35534    GUTIERREZ FJ, 1992, SENSOR ACTUAT B-CHEM, V8, P231
35535    HARA K, 1994, SENSOR ACTUAT B-CHEM, V20, P181
35536    HYKAWAY N, 1988, SENSOR ACTUATOR, V15, P105
35537    JIANMING L, 1989, P INT C EL COMP MAT, P197
35538    KOHL D, 1989, SENSOR ACTUATOR, V18, P71
35539    LONG LB, 1996, SENSOR ACTUAT B-CHEM, V30, P217
35540    MAEKAWA T, 1991, CHEM LETT, P575
35541    MAEKAWA T, 1992, SENSOR ACTUAT B-CHEM, V9, P63
35542    MARTINELLI G, 1992, SENSOR ACTUAT B-CHEM, V7, P717
35543    MATSUSHIMA S, 1989, CHEM LETT, P845
35544    MCALEER JF, 1987, J CHEM SOC FARAD T 1, V83, P1323
35545    MISHRA VN, 1994, SENSOR ACTUAT B-CHEM, V21, P209
35546    MIZSEI J, 1991, SENSOR ACTUAT B-CHEM, V4, P163
35547    NITTA M, 1979, J ELECTRON MATER, V8, P571
35548    OGAWA H, 1982, J APPL PHYS, V53, P4448
35549    OYABU T, 1986, SENSOR ACTUATOR, V9, P301
35550    PROMSONG L, 1995, SENSOR ACTUAT B-CHEM, V24, P504
35551    SARALA G, 1995, SENSOR ACTUAT B-CHEM, V28, P31
35552    SBERVEGLIERI G, 1991, SENSOR ACTUAT B-CHEM, V5, P253
35553    SBERVEGLIERI G, 1992, SENSOR ACTUAT B-CHEM, V8, P79
35554    SCHIERBAUM KD, 1991, SENSOR ACTUAT B-CHEM, V3, P205
35555    TAKATA M, 1976, J AM CERAM SOC, V59, P4
35556    TALLAL NM, 1974, ELECT CONDUCTIVITY C, P380
35557    YAMAMOTO N, 1981, JPN J APPL PHYS, V20, P721
35558    YAMAZOE N, 1991, SENSOR ACTUAT B-CHEM, V5, P7
35559 NR 31
35560 TC 8
35561 SN 0925-4005
35562 J9 SENSOR ACTUATOR B-CHEM
35563 JI Sens. Actuator B-Chem.
35564 PD NOV 23
35565 PY 1999
35566 VL 60
35567 IS 2-3
35568 BP 208
35569 EP 215
35570 PG 8
35571 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
35572 GA 269UB
35573 UT ISI:000084495000016
35574 ER
35575 
35576 PT J
35577 AU Yang, L
35578    Liu, ZR
35579    Mao, JM
35580 TI Controlling hyperchaos
35581 SO PHYSICAL REVIEW LETTERS
35582 DT Article
35583 ID DIRECT TRAJECTORIES; CONTROLLING CHAOS; SYSTEMS; TARGETS; ORBITS; MAP
35584 AB For a finite-dimensional dynamical system, whose governing equations
35585    may or may not be analytically available, we show how to stabilize an
35586    unstable orbit in a neighborhood of a "fully"unstable fixed point
35587    (i.e., a fixed point at which all eigenvalues of the Jacobian matrix
35588    have modulus greater than unity). Only one of the unstable directions
35589    is to be stabilized via time-dependent adjustments of control
35590    parameters. The parameter adjustments can be optimized.
35591 C1 Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong.
35592    Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R China.
35593    Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China.
35594    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
35595 RP Mao, JM, Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong.
35596 CR AUERBACH D, 1992, PHYS REV LETT, V69, P3479
35597    DITTO WL, 1990, PHYS REV LETT, V65, P3211
35598    KANEKO K, 1989, PHYSICA D, V34, P1
35599    OTT E, 1990, PHYS REV LETT, V64, P1196
35600    PETROV V, 1992, J CHEM PHYS, V96, P7506
35601    PYRAGAS K, 1992, PHYS LETT A, V170, P421
35602    ROMEIRAS FJ, 1992, PHYSICA D, V58, P165
35603    SHINBROT T, 1990, PHYS REV LETT, V65, P3215
35604    SHINBROT T, 1992, PHYS REV A, V45, P4165
35605    SHINBROT T, 1992, PHYS REV LETT, V68, P2863
35606    SINGER J, 1991, PHYS REV LETT, V66, P1123
35607    SO P, 1996, PHYS REV LETT, V76, P4705
35608 NR 12
35609 TC 22
35610 SN 0031-9007
35611 J9 PHYS REV LETT
35612 JI Phys. Rev. Lett.
35613 PD JAN 3
35614 PY 2000
35615 VL 84
35616 IS 1
35617 BP 67
35618 EP 70
35619 PG 4
35620 SC Physics, Multidisciplinary
35621 GA 271HJ
35622 UT ISI:000084587900017
35623 ER
35624 
35625 PT J
35626 AU Gao, F
35627    Xu, Y
35628    Song, B
35629    Xia, K
35630 TI Thermodynamic study of the critical nucleus size for metadynamic
35631    recrystallisation
35632 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
35633    MICROSTRUCTURE AND PROCESSING
35634 DT Article
35635 DE metadynamic recrystallisation; dynamic recrystallisation; nucleation
35636 ID DYNAMIC RECRYSTALLIZATION; HOT-WORKING; RECOVERY
35637 AB On the basis of thermodynamics, it is shown that the critical nucleus
35638    size for metadynamic recrystallisation is smaller than that for dynamic
35639    recrystallisation. It follows that the nucleation rate of metadynamic
35640    recrystallisation is not zero. A Cr25Ti steel was hot deformed and its
35641    recrystallised structures were examined after delayed quench. It was
35642    observed that after the deformation was terminated, both the grain size
35643    and the subgrain size decreased at first, although the grains
35644    eventually coarsened at longer times. This is attributed to the
35645    conversion of potential embryos formed during dynamic recrystallisation
35646    into true nuclei in metadynamic recrystallisation. The results from the
35647    experiment appear to be consistent with the theoretical analysis. (C)
35648    2000 Elsevier Science S.A. All rights reserved.
35649 C1 Univ Melbourne, Dept Mech & Mfg Engn, Parkville, Vic 3052, Australia.
35650    Shanghai Univ, Shanghai 201800, Peoples R China.
35651    Dalian Railway Univ, Dalian, Lianoning, Peoples R China.
35652 RP Xia, K, Univ Melbourne, Dept Mech & Mfg Engn, Parkville, Vic 3052,
35653    Australia.
35654 CR DJAIC RAP, 1973, MET T, V4, P621
35655    GAO F, 1988, ACTA METALL SINICA, V24, B195
35656    GLOVER G, 1972, METALL T, V3, P2271
35657    HODGSON PD, 1998, THERMEC 97, P121
35658    JONAS JJ, 1994, MAT SCI ENG A-STRUCT, V184, P155
35659    PETKOVIC RA, 1979, ACTA METALL, V27, P1633
35660    ROUCOULES C, 1994, METALL MATER TRANS A, V25, P389
35661    ROUCOULES C, 1995, MATER SCI TECH SER, V11, P548
35662    SAKAI T, 1988, ACTA METALL, V36, P1781
35663 NR 9
35664 TC 0
35665 SN 0921-5093
35666 J9 MATER SCI ENG A-STRUCT MATER
35667 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
35668 PD JAN 31
35669 PY 2000
35670 VL 277
35671 IS 1-2
35672 BP 33
35673 EP 37
35674 PG 5
35675 SC Materials Science, Multidisciplinary
35676 GA 271RQ
35677 UT ISI:000084607600005
35678 ER
35679 
35680 PT J
35681 AU Shi, LY
35682    Li, CZ
35683    Gu, HC
35684    Fang, DY
35685 TI Morphology and properties of ultrafine SnO2-TiO2 coupled semiconductor
35686    particles
35687 SO MATERIALS CHEMISTRY AND PHYSICS
35688 DT Article
35689 DE photocatalytic oxidation; ultrafine particle; dyeing wastewater
35690 ID PHOTOCATALYTIC DEGRADATION; FILMS; TIO2
35691 AB In this paper, a new method to synthesize ultrafine SnO2-TiO2 coupled
35692    particles is presented. The coupled particles are synthesized by
35693    homogeneous precipitation and characterized by EDS, XRD, TEM, HREM and
35694    BET surface area analysis. The coupled particles, pure ultrafine TiO2,
35695    commercial TiO2,and pure SnO2 are employed for photocatalytic
35696    degradation of azo dye active red X-3B in aerated solution. The results
35697    show that a very rapid and complete decolorization of the azo dye can
35698    be achieved, and the photoactivity of the coupled particles is higher
35699    than that of pure ultrafine TiO2 and commercial TiO2 particles, and the
35700    optimum loading of SnO2 on TiO2 is 18.4%. The enhanced degradation rate
35701    of X-3B using SnO2-TiO2 coupled photocatalysts is attributed to
35702    increased charge separation in these systems. (C) 2000 Elsevier Science
35703    S.A. All rights reserved.
35704 C1 Shanghai Univ, Coll Chem & Chem Engn, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China.
35705    E China Univ Sci & Technol, Inst Tech Chem & Phys, Shanghai 200237, Peoples R China.
35706    E China Univ Sci & Technol, Dept Chem Engn, Shanghai 200237, Peoples R China.
35707 RP Shi, LY, Shanghai Univ, Coll Chem & Chem Engn, Dept Environm Sci &
35708    Engn, Box 59,149 Yanchang Rd, Shanghai 200072, Peoples R China.
35709 CR BEDJA I, 1994, J PHYS CHEM-US, V98, P4133
35710    CHAO M, 1993, RES ENV SCI, V6, P58
35711    CRAIG ST, 1990, J CATAL, V122, P178
35712    FOTOU GP, 1996, CHEM ENG COMMUN, V251, P151
35713    GERISCHER H, 1991, J PHYS CHEM-US, V95, P5261
35714    GOPIDAS KR, 1994, J PHYS CHEM-US, V98, P3822
35715    HIROSHI Y, 1989, J PHYS CHEM-US, V93, P4833
35716    JUDIN VPS, 1993, CHEM BRIT, V29, P503
35717    LEGRINI O, 1993, CHEM REV, V93, P671
35718    SHI LY, 1998, J ECUST CH, V24, P291
35719    SHI LY, 1999, IN PRESS J CATAL, V20
35720    SPADARO JT, 1994, ENVIRON SCI TECHNOL, V28, P1389
35721    TSAI SJ, 1997, CATAL TODAY, V33, P227
35722    VINODGOPAL K, 1996, CHEM MATER, V8, P2180
35723    WEI TY, 1991, IND ENG CHEM RES, V30, P1293
35724    ZHANG LD, 1994, FUNCTIONAL MAT, P76
35725 NR 16
35726 TC 25
35727 SN 0254-0584
35728 J9 MATER CHEM PHYS
35729 JI Mater. Chem. Phys.
35730 PD JAN 14
35731 PY 2000
35732 VL 62
35733 IS 1
35734 BP 62
35735 EP 67
35736 PG 6
35737 SC Materials Science, Multidisciplinary
35738 GA 269RV
35739 UT ISI:000084492100009
35740 ER
35741 
35742 PT J
35743 AU Zhang, YJ
35744    Ho, SL
35745    Wong, HC
35746    Xie, GD
35747 TI Analytical prediction of armature-reaction field in disc-type permanent
35748    magnet generators
35749 SO IEEE TRANSACTIONS ON ENERGY CONVERSION
35750 DT Article
35751 DE disc-type machine; permanent magnet; armature reaction field;
35752    analytical method
35753 ID MOTORS
35754 AB A two dimensional (2D) analytical method to predict the
35755    armature-reaction field in the slotted opening airgap/magnet region of
35756    a permanent magnet (PM) disc-type generator is presented. The currents
35757    in the slot is modeled by a uniform distributed current sheet along an
35758    are at the slot opening. The analysis takes into account the harmonics
35759    in the armature current waveforms which are calculated from the voltage
35760    equations. The effects of the stator slot openings are being accounted
35761    for by the introduction of a 2D relative permeance function which is
35762    calculated directly from the nonlinear equation described,by conformal
35763    transformation. A more refined permeance distribution can then be
35764    obtained easily.
35765 C1 Hong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong.
35766    Hong Kong Polytech Univ, Ind Ctr, Hong Kong, Hong Kong.
35767    Shanghai Univ, Dept Elect Engn, Shanghai, Peoples R China.
35768 RP Zhang, YJ, Hong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong
35769    Kong.
35770 CR CAMPBELL P, 1975, IEEE T MAGN, V11, P1541
35771    CHALMERS B, 1990, MACHINES ELECTROMAGN
35772    FURLANI EP, 1994, IEEE T MAGN, V30, P3660
35773    GU CL, 1994, IEEE T MAGN, V30, P3668
35774    HO SL, 1994, INT C EL MACH PAR FR, P477
35775    TAKANO H, 1992, IEEE T IND APPL, V28, P350
35776    ZHU ZQ, 1993, IEEE T MAGN, V29, P144
35777 NR 7
35778 TC 1
35779 SN 0885-8969
35780 J9 IEEE TRANS ENERGY CONVERS
35781 JI IEEE Trans. Energy Convers.
35782 PD DEC
35783 PY 1999
35784 VL 14
35785 IS 4
35786 BP 1385
35787 EP 1390
35788 PG 6
35789 SC Engineering, Electrical & Electronic; Energy & Fuels
35790 GA 271HV
35791 UT ISI:000084588900095
35792 ER
35793 
35794 PT J
35795 AU Ji, YF
35796    Ji, G
35797    Xiao, XS
35798    Dong, YD
35799    Ma, XM
35800    Wang, WH
35801    Zhao, DQ
35802 TI Fabrication of bulk glassy Zr41Ti14Ni8Cu12.5Be22.5Fe2 alloy by water
35803    quenching
35804 SO CHINESE SCIENCE BULLETIN
35805 DT Article
35806 DE bulk amorphous alloy; glass forming ability; supercooled liquid region;
35807    eletronegativity
35808 AB A glassy Zr41Ti14Ni8Cu12.5Be22.5Fe2 rod with a diameter of 9 mm was
35809    successfully produced by water quenching. The effects of iron addition
35810    on thermal stability and hardness of Zr41Ti14Ni8Cu12.5Be22.5Fe2 bulk
35811    amorphous alloy were investigated by XR D, DSC and microhardness test;
35812    It is found that the full annealing would enhance the strength of the
35813    alloy significantly. The cause of the increase in hardness was analyzed
35814    and the formation mechanisms of the bulk amorphous alloy are discussed.
35815 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
35816    Chinese Acad Sci, Inst Phys, Beijing 10080, Peoples R China.
35817 RP Ji, YF, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
35818    China.
35819 CR CHENG HC, 1985, CRYSTALLIZATION CHEM, P116
35820    GREER AL, 1993, NATURE, V366, P303
35821    INOUE A, 1995, MATER T JIM, V36, P866
35822    JOHNSON WL, 1996, MATER SCI FORUM, V225, P35
35823    WANG WH, 1997, APPL PHYS LETT, V71, P1053
35824 NR 5
35825 TC 1
35826 SN 1001-6538
35827 J9 CHIN SCI BULL
35828 JI Chin. Sci. Bull.
35829 PD JAN
35830 PY 2000
35831 VL 45
35832 IS 1
35833 BP 23
35834 EP 27
35835 PG 5
35836 SC Multidisciplinary Sciences
35837 GA 270GE
35838 UT ISI:000084526400004
35839 ER
35840 
35841 PT J
35842 AU Wang, CS
35843    Zhu, JL
35844    Luo, WY
35845    Zhou, SX
35846 TI Measurement of fluorine pollutant in plant leaves and soil using
35847    nuclear reaction analysis
35848 SO BIOLOGICAL TRACE ELEMENT RESEARCH
35849 DT Article
35850 DE fluorine pollution; nuclear reaction analysis; environment; plant
35851    leaves; soil
35852 AB In this article, the soil and the leaves of plants, parasol, cotton,
35853    and glossy privet around a fluorine-polluted area were taken as the
35854    samples, and fluorine concentration of the samples were studied using
35855    the nuclear reaction F-19(P,alpha)O-16, and some results were given.
35856 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
35857 RP Wang, CS, Shanghai Univ, Shanghai Appl Radiat Inst, Jiading Campus,
35858    Shanghai 201800, Peoples R China.
35859 CR ALFASSI ZB, 1990, ACTIVATION ANAL
35860    DECONNINCK G, 1983, NUCL INSTRUM METHODS, V218, P165
35861    DIEUMEGARD D, 1980, NUCL INSTRUM METHODS, V168, P93
35862 NR 3
35863 TC 0
35864 SN 0163-4984
35865 J9 BIOL TR ELEM RES
35866 JI Biol. Trace Elem. Res.
35867 PD WIN
35868 PY 1999
35869 VL 71-2
35870 BP 325
35871 EP 329
35872 PG 5
35873 SC Biochemistry & Molecular Biology; Endocrinology & Metabolism
35874 GA 271TT
35875 UT ISI:000084610100036
35876 ER
35877 
35878 PT J
35879 AU You, JL
35880    Wang, ZS
35881    Zhang, GS
35882    Ren, JS
35883    Jiang, GC
35884 TI Study on magnesium ionization in cathodic sputtering glow discharge
35885    plasma
35886 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
35887 DT Article
35888 DE glow discharge; cathodic sputtering atomizer; atomic absorption
35889    spectrometry; ionic absorption spectrometry; ionization degree
35890 ID ATOMIC-ABSORPTION SPECTROMETRY; ATOMIZATION; METALS; ALLOYS; COPPER
35891 AB A method, based on the Doppler broadening-dependent absorption width
35892    and the ionization degree measured by the ratio of relative atomic and
35893    ionic absorbance in cathodic sputtering glow discharge (CSGD) plasma
35894    with aluminum-magnesium alloys as cathodes,is proposed. The
35895    experimental reveals that the plentiful magnesium ions in the plasma
35896    under the conventional discharge conditions,of the atomizer do
35897    influence the analytic working curves. Corrected method is derived and
35898    factors which result in magnesium ionization degree are disscused.
35899 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
35900    Shanghai Univ, Dept Chem & Chem Engn, Shanghai 200072, Peoples R China.
35901    Acad Sinica, Inst Met Res, Shenyang 110015, Peoples R China.
35902 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
35903    200072, Peoples R China.
35904 CR *CRC, HDB CHEM PHYS
35905    BARSHICK CM, 1994, ANAL CHEM, V66, P730
35906    BATAL A, 1981, SPECTROCHIM ACTA B, V36, P993
35907    BRUHN CG, 1978, ANAL CHEM, V50, P16
35908    CHAKRABARTI CL, 1989, SPECTROCHIM ACTA B, V44, P385
35909    GOUGH DS, 1976, ANAL CHEM, V48, P1926
35910    GRIMM W, 1968, SPECTROCHIM ACTA   B, V23, P443
35911    HARVILLE TR, 1993, ANAL CHEM, V65, P3636
35912    HASEGAWA T, 1985, SPECTROCHIM ACTA B, V40, P123
35913    HEADRICK KL, 1994, SPECTROCHIM ACTA B, V49, P975
35914    JIANSHI REN, 1984, SPECTROSC SPECT ANAL, V4, P32
35915    JINGLIN Y, 1993, ANAL LETT, V26, P541
35916    MEHDI T, 1993, SPECTROCHIM ACTA B, V48, P1023
35917    MEI Y, 1993, ANAL CHEM, V65, P3337
35918    MITCHELL ACG, 1961, RESONANCE RAD EXCITE
35919    TONG SL, 1993, SPECTROCHIM ACTA B, V48, P1237
35920    WAGATSUMA K, 1993, SPECTROCHIM ACTA B, V48, P1039
35921    WEISS Z, 1993, SPECTROCHIM ACTA B, V48, P1247
35922    WINCHESTER MR, 1988, APPL SPECTROSC, V42, P941
35923    WINCHESTER MR, 1990, J ANAL ATOM SPECTROM, V5, P9
35924 NR 20
35925 TC 0
35926 SN 1000-0593
35927 J9 SPECTROSC SPECTR ANAL
35928 JI Spectrosc. Spectr. Anal.
35929 PD DEC
35930 PY 1999
35931 VL 19
35932 IS 6
35933 BP 850
35934 EP 853
35935 PG 4
35936 SC Spectroscopy
35937 GA 268RY
35938 UT ISI:000084430400025
35939 ER
35940 
35941 PT J
35942 AU Hassan, AKA
35943    Xu, DM
35944    Zhang, YJ
35945 TI Modeling and analysis of finite-flange open-ended coaxial probe for
35946    planar and convex surface coating material testing by FDTD method
35947 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
35948 DT Article
35949 DE curved surface testing; FDTD; error analysis; EM properties; complex
35950    permittivity and permeability
35951 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800, Peoples R China.
35952 RP Hassan, AKA, Shanghai Univ, Sch Commun & Informat Engn, Shanghai
35953    201800, Peoples R China.
35954 CR BAKERJARVIS J, 1994, IEEE T INSTRUM MEAS, V43, P711
35955    BAKHTIARI S, 1994, IEEE T MICROW THEORY, V42, P2073
35956    BRINGHURST S, 1997, IEEE T MICROWAVE THE, V45
35957    COLPITTS BG, 1996, IEEE T MICROW THEORY, V44, P160
35958    HASSAN AKA, 1999, 26 GEN ASS INT UN RA
35959    LAUGHE PD, 1993, IEEE T INSTRUM MEAS, V42, P879
35960    MUR G, 1981, IEEE T ELECTROMAGN C, V23, P377
35961    NIU M, 1999, IEEE T INSTRUM MEAS, V47, P476
35962    OKONIEWSKI M, 1994, IEEE ANT PROP SOC IN, V2, P1438
35963    TOFLOVE A, 1980, IEEE T ELECTROMAGNET, V22, P191
35964    XU DM, 1987, IEEE T MICROW THEORY, V35, P1424
35965    YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302
35966    ZHANG Z, 1995, J MICROWAVES CHINA, V11, P171
35967 NR 13
35968 TC 1
35969 SN 0895-2477
35970 J9 MICROWAVE OPT TECHNOL LETT
35971 JI Microw. Opt. Technol. Lett.
35972 PD JAN 20
35973 PY 2000
35974 VL 24
35975 IS 2
35976 BP 117
35977 EP 120
35978 PG 4
35979 SC Engineering, Electrical & Electronic; Optics
35980 GA 268YG
35981 UT ISI:000084447000010
35982 ER
35983 
35984 PT J
35985 AU Qing, AY
35986    Li, J
35987    Ren, L
35988    Lee, CK
35989    Zhong, SS
35990 TI Microwave imaging of multiple perfectly conducting cylinders using
35991    real-coded genetic algorithm
35992 SO CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION
35993 DT Article
35994 DE microwave imaging; two-dimensional perfectly conducting objects;
35995    real-coded genetic algorithm; simulated annealing
35996 ID ELECTROMAGNETICS
35997 AB A novel approach for microwave imaging of two-dimensional perfectly
35998    conducting objects in free space using real-coded genetic algorithm is
35999    put forward in this paper. The shape function of each contour is
36000    approximated by triangular series. A set of integral equations with
36001    respect to the coefficients of these series are derived according to
36002    the boundary conditions. The imaging problem is then reformulated into
36003    a restrained optimization one where the variables to be optimized are
36004    the coefficients of the series and the cost function is defined as the
36005    relative error between the measured scattered electric field and the
36006    simulated one. Using real-coded genetic algorithm, the imaging is done
36007    by genetic operating iteratively. The fitness function is obtained by
36008    transforming and scaling the cost function using simulated annealing
36009    method. Tournament selection, proportional model, one-point crossover
36010    and elitist model are used while the mutation is done by adding a
36011    random purtabation item to the gene to be mutated. Numerical examples
36012    show the validity of this method. Compared with other inversion
36013    algorithms, our method is more simple, versatile and robust.
36014 C1 SW Jiaotong Univ, Inst Electromagnet Theory & Microwave Technol, Chengdu 610031, Peoples R China.
36015    Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore.
36016    Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
36017 RP Qing, AY, SW Jiaotong Univ, Inst Electromagnet Theory & Microwave
36018    Technol, POB 63, Chengdu 610031, Peoples R China.
36019 CR CHENG GL, 1996, GENETIC ALGORITHM AP
36020    CHEW WC, 1990, WAVES FIELDS INHOMOG
36021    CHIU CC, 1992, IEEE T ANTENN PROPAG, V40, P933
36022    DAVIS L, 1987, GENETIC ALGORITHM SI
36023    HARRINGTON RF, 1968, FIELD COMPUTATION MO
36024    HAUPT RL, 1995, IEEE ANTENNAS PROPAG, V37, P7
36025    HOLLAND JH, 1975, ADAPTION NATURAL ART
36026    KLEINMAN RE, 1994, RADIO SCI, V29, P1157
36027    MICHIELSSEN E, 1992, IEE PROC-J, V139, P413
36028    MOGHADDAM M, 1992, IEEE T GEOSCI REMOTE, V30, P147
36029    PENG ZQ, 1993, J APPL SCI, V11, P297
36030    QING A, 1997, J ELECTROMAGNET WAVE, V11, P259
36031    QING AY, 1997, THESIS SW JIAOTONG U
36032    QING AY, 1998, CHINESE J GEOPHYS, V41, P117
36033    WEILE DS, 1997, IEEE T ANTENN PROPAG, V45, P343
36034 NR 15
36035 TC 0
36036 SN 0001-5733
36037 J9 CHINESE J GEOPHYS-CHINESE ED
36038 JI Chinese J. Geophys.-Chinese Ed.
36039 PD NOV
36040 PY 1999
36041 VL 42
36042 IS 6
36043 BP 841
36044 EP 848
36045 PG 8
36046 SC Geochemistry & Geophysics
36047 GA 268JY
36048 UT ISI:000084411600015
36049 ER
36050 
36051 PT J
36052 AU Fang, S
36053    Zhou, ZQ
36054    Zhang, JL
36055    Yao, MY
36056    Feng, F
36057    Northwood, DO
36058 TI The application of mathematical models to the calculation of selected
36059    hydrogen storage properties (formation enthalpy and hysteresis) of
36060    AB(2)-type alloys
36061 SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
36062 DT Article
36063 ID LAVES PHASE; ABSORPTION; HYDRIDES
36064 AB Two mathematical models have been applied to AB(2)-type
36065    hydrogen-absorbing alloys. The first model is for the calculation of
36066    hydride formation enthalpy and the second model allows for the
36067    calculation of P-C-T curves. Certain physical parameters (activity
36068    coefficient of hydrogen (gamma), partial molar volume of hydrogen ((V)
36069    over bar(H)), solution heat of hydrogen (Delta H-s), enthalpy (Delta H)
36070    and entropy (Delta S) of formation of a hydride, slope factor (f(s)) of
36071    a plateau and the variation rate (k) of slope factor with respect to
36072    temperature in a plateau region of P-C-T curves) for these
36073    intermetallic compounds and their hydrides are estimated from these
36074    models. From the second model, the relationship between the hysteresis
36075    factor (RT ln P-a/P-d) and temperature, hydrogen concentration and
36076    slope factor of the plateau region for the P-C-T curves has been
36077    obtained. (C) 1999 International Association for Hydrogen Energy.
36078    published by Elsevier Science Ltd. All rights reserved.
36079 C1 Ryerson Polytech Inst, Fac Engn & Appl Sci, Toronto, ON M5B 2K3, Canada.
36080    Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China.
36081    Univ Windsor, Windsor, ON N9B 3P4, Canada.
36082 RP Northwood, DO, Ryerson Polytech Inst, Fac Engn & Appl Sci, 350 Victoria
36083    St, Toronto, ON M5B 2K3, Canada.
36084 CR BOUTEN PCP, 1980, J LESS-COMMON MET, V71, P147
36085    ESAYED A, 1993, THESIS U WINDSOR CAN
36086    FUJII H, 1981, J PHYS CHEM-US, V85, P3112
36087    FUJITANI S, 1993, Z PHYS CHEM, V179, P27
36088    HONG G, 1990, 1043409, CN
36089    LEE HH, 1993, J ALLOY COMPD, V202, P23
36090    LUNDIN CE, 1977, J LESS-COMMON MET, V58, P19
36091    MIEDEMA AR, 1980, THEORY ALLOY PHASE F, P344
36092    QIAN S, 1988, INT J HYDROGEN ENERG, V13, P25
36093    QIAN S, 1989, THESIS U WINDSOR CAN
36094    SHALTIEL D, 1977, J LESS-COMMON MET, V53, P117
36095    SHITIKOV V, 1984, J LESS-COMMON MET, V102, P29
36096    VANMAL HH, 1974, J LESS-COMMON MET, V35, P65
36097    WICKE E, 1984, J LESS-COMMON MET, V101, P17
36098    XIAO J, 1985, ALLOY ENERGY RELATIO
36099    YANG HW, 1995, J ALLOY COMPD, V227, P69
36100    ZHOU Z, 1991, MAT SCI PROGR, V5, P117
36101    ZHOU Z, 1993, NEW ENERGY SYSTEMS C, P79
36102    ZHOU ZQ, 1994, INT J HYDROGEN ENERG, V19, P269
36103 NR 19
36104 TC 8
36105 SN 0360-3199
36106 J9 INT J HYDROGEN ENERG
36107 JI Int. J. Hydrog. Energy
36108 PD FEB
36109 PY 2000
36110 VL 25
36111 IS 2
36112 BP 143
36113 EP 149
36114 PG 7
36115 SC Physics, Atomic, Molecular & Chemical; Energy & Fuels; Environmental
36116    Sciences
36117 GA 266DT
36118 UT ISI:000084285900006
36119 ER
36120 
36121 PT J
36122 AU Ma, Z
36123    Zhou, ZW
36124 TI On the instability in gas atomization
36125 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
36126 DT Article
36127 DE gas atomization; spray forming; instability of interfacial wave
36128 ID LIQUID
36129 AB The instability theory of fluid flow is applied in gas atomization and
36130    the results show that the instability of interfacial wave is the main
36131    cause of gas atomization. The size of the droplets and its change with
36132    parameters are also studied, the results are compatible with the
36133    experiments.
36134 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
36135 RP Ma, Z, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
36136    Peoples R China.
36137 CR BRADLEY D, 1973, J PHYS D, V6, P1724
36138    BRADLEY D, 1973, J PHYS D, V6, P2267
36139    GRANT NJ, 1983, J MET, V35, P20
36140    LAWLEY A, 1981, J MET, V33, P13
36141    LAWLEY A, 1993, ATOMIZATION PRODUCTI
36142    LUBANSKA H, 1970, J MET, V22, P45
36143    MA Z, 1998, ICFM, V3, P514
36144    MA Z, 1999, APPL MATH MECH-ENGL, V20, P825
36145    REITZ RD, 1982, PHYS FLUIDS, V25, P1730
36146    SEE JB, 1978, POWDER TECHNOL, V21, P119
36147    UNAL A, 1987, MATER SCI TECHNOL, V3, P1029
36148    UNAL A, 1988, MAT SCI TECHNOL, V4, P909
36149 NR 12
36150 TC 1
36151 SN 0253-4827
36152 J9 APPL MATH MECH-ENGL ED
36153 JI Appl. Math. Mech.-Engl. Ed.
36154 PD OCT
36155 PY 1999
36156 VL 20
36157 IS 10
36158 BP 1061
36159 EP 1066
36160 PG 6
36161 SC Mathematics, Applied; Mechanics
36162 GA 266DZ
36163 UT ISI:000084286500001
36164 ER
36165 
36166 PT J
36167 AU Zhu, ZY
36168    Cong, YH
36169 TI The influence of imperfections upon the critical load of structures
36170 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
36171 DT Article
36172 DE imperfections; critical load; pitchfork; universal unfolding
36173 AB By means of the theory of universal unfolding, the influence of
36174    multi-imperfections upon the critical load of structure in engineering
36175    is analysed in this paper. For the pitchfork problem, a lower bound of
36176    increments of the critical loads caused by imperfections of the
36177    structures is given. A simple and available numerical method for
36178    computing the lower bound is described.
36179 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Math, Shanghai 200072, Peoples R China.
36180    Shanghai Normal Univ, Coll Math Sci, Shanghai 200234, Peoples R China.
36181 RP Zhu, ZY, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Math,
36182    Shanghai 200072, Peoples R China.
36183 CR ARNOLD VI, 1981, LONDON MATH SOC LECT, V51
36184    CHOW SN, 1975, ARCH RATIONAL MECH A, V59, P159
36185    ELISHAKOFF I, 1988, BUCKLING STRUCTURES, P195
36186    GOLUBITSKY M, 1984, SINGULARITIES GROUPS, V1
36187    HUNT GW, 1977, P ROY SOC LOND A MAT, V357, P193
36188    IKEDA K, 1990, INT J SOLIDS STRUCT, V26, P865
36189    KIRKPATRICK SW, 1988, J ENG MECH DIV, V115, P1025
36190    KOITER WT, 1967, NASA TECH T F, V10, P833
36191    LINDBERG HE, 1988, J ENG MECH-ASCE, V114, P1144
36192    MUROTA K, 1991, SIAM J APPL MATH, V51, P1222
36193    NIWA Y, 1981, P JAPAN SOC CIVIL EN, V307, P99
36194    THOMSON JMT, 1973, GEN THEORY ELASTIC S
36195 NR 12
36196 TC 0
36197 SN 0253-4827
36198 J9 APPL MATH MECH-ENGL ED
36199 JI Appl. Math. Mech.-Engl. Ed.
36200 PD OCT
36201 PY 1999
36202 VL 20
36203 IS 10
36204 BP 1108
36205 EP 1115
36206 PG 8
36207 SC Mathematics, Applied; Mechanics
36208 GA 266DZ
36209 UT ISI:000084286500006
36210 ER
36211 
36212 PT J
36213 AU Zheng, LP
36214 TI Carbon stable isotopic composition of karst soil CO2 in central
36215    Guizhon, China
36216 SO SCIENCE IN CHINA SERIES D-EARTH SCIENCES
36217 DT Article
36218 DE karst area; soil CO2; carbon stable isotope
36219 ID UNSATURATED ZONE; DIOXIDE; RESPIRATION; CLIMATE; PLAINS; C-14
36220 AB The delta(13)C values of soil CO2 are less than that of atmosphere CO2
36221    in the karst area. On the soil-air interface, the delta(13)C vlaues of
36222    soil CO2 decrease with the increase in soil depth; below the soil-air
36223    interface, the delta(13)C values of soil CO2 are invariable. The type
36224    of vegetation on the land surface has an influence on the delta(13)C
36225    values of soil CO2. Due to the activity of soil microbes, the
36226    delta(13)C values of soil CO2 are variable dth seasonal change in
36227    grass. Isotopic tracer indicates that atmosphere CO2 has a great deal
36228    of contribution to soil CO2 at the lower parts of soil profile.
36229 C1 Chinese Acad Sci, Inst Geochem, State Key Lab Environm Geochem, Guiyang 550002, Peoples R China.
36230    Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China.
36231 RP Zheng, LP, Chinese Acad Sci, Inst Geochem, State Key Lab Environm
36232    Geochem, Guiyang 550002, Peoples R China.
36233 CR BIRD MI, 1996, NATURE, V381, P143
36234    BRULSEMA TW, 1996, SOIL SCI SOC AM J, V60, P1787
36235    BUYANOVSKY GA, 1983, SOIL SCI SOC AM J, V47, P1139
36236    CERLING TE, 1984, EARTH PLANET SC LETT, V71, P229
36237    CERLING TE, 1991, GEOCHIM COSMOCHIM AC, V55, P3403
36238    CRAIG H, 1953, GEOCHIM COSMOCHIM AC, V3, P53
36239    DAVIDSON GR, 1995, GEOCHIM COSMOCHIM AC, V59, P2485
36240    DORR H, 1980, RADIOCARBON, V22, P909
36241    FRITZ P, 1985, CHEM GEOL, V58, P89
36242    HINKLE ME, 1994, APPL GEOCHEM, V9, P53
36243    LI B, 1996, CARSOLOGICA SINICA, V15, P41
36244    PANKINA RG, 1978, INT GEOL REV, V21, P535
36245    PINEAU F, 1983, EARTH PLANET SC LETT, V62, P239
36246    RAICH JW, 1992, TELLUS B, V44, P81
36247    RAICH JW, 1995, GLOBAL BIOGEOCHEM CY, V9, P23
36248    REARDON EJ, 1979, J HYDROL, V43, P355
36249    TANS PP, 1990, SCIENCE, V247, P1431
36250    THORSTENSON DC, 1983, RADIOCARBON, V25, P315
36251    WAN GJ, 1995, CARBONATE ROCK ENV, V1
36252    WANG Y, 1994, GEOCHIM COSMOCHIM AC, V58, P393
36253    WILDUNG RE, 1975, SOIL BIOL BIOCHEM, V7, P373
36254    WOOD WW, 1984, WATER RESOUR RES, V20, P1193
36255    XU SY, CARSOLOGICA SINICA, V15, P50
36256    XU SY, 1997, CHINESE SCI BULL, V42, P953
36257    YUAN D, 1993, QUATERNARY SCI, P1
36258    ZHENG L, 1999, DIZHI DIQIU HUAXUE, P113
36259 NR 26
36260 TC 2
36261 SN 1006-9313
36262 J9 SCI CHINA SER D
36263 JI Sci. China Ser. D-Earth Sci.
36264 PD DEC
36265 PY 1999
36266 VL 42
36267 IS 6
36268 BP 588
36269 EP 594
36270 PG 7
36271 SC Geosciences, Multidisciplinary
36272 GA 266DQ
36273 UT ISI:000084285700004
36274 ER
36275 
36276 PT J
36277 AU Zhu, LH
36278    Zhao, QX
36279    Gu, HC
36280    Lu, YS
36281 TI Application of instrumented impact test for studying dynamic fracture
36282    property of 9Cr-1Mo-V-Nb-N steel
36283 SO ENGINEERING FRACTURE MECHANICS
36284 DT Article
36285 DE heat-resistant steel; dynamic fracture toughness; instrumented impact
36286    test; SZW
36287 ID REACTOR PRESSURE-VESSEL; A533 STEEL; TOUGHNESS
36288 AB Dynamic fracture toughness property of 9Cr-1Mo-V-Nb-N heat-resistant
36289    steel was studied over a broad range of temperatures from -196 to 650
36290    degrees C, Results show that reasonable dynamic fracture toughness
36291    values of 9Cr-1Mo-V-Nb-N steel can be obtained from instrumented impact
36292    test of precracked Charpy specimens, according to the assumption that
36293    crack initiation occurs at a load equal to (P-m + P-y)/2. Fractographic
36294    observation shows, close correspondence exists between P-D oscilloscope
36295    traces and fracture morphology, thus P-D traces can be used to analyse
36296    the fracture process of 9Cr-1Mo-V-Nb-N steel. (C) 1999 Published by
36297    Elsevier Science Ltd. All rights reserved.
36298 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
36299    Xian Jiao Tong Univ, Sch Mat Sci & Engn, Xian 710049, Shaanxi Provinc, Peoples R China.
36300 RP Zhu, LH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
36301    China.
36302 CR 1970, 466 ASTM STP
36303    1974, ASTM STP
36304    CHEN BY, 1990, ENG FRACT MECH, V36, P17
36305    CHINA R, 1992, 1130 ASTM STP
36306    HOLT JM, 1990, 1072 ASTM STP
36307    HUANG FH, 1984, TOPICAL C FERRITIC A, P337
36308    JAMES LA, 1985, J PRESS VESS-T ASME, V107, P271
36309    KALTHOFF JF, CONCEPT INPACT RESPO, V8
36310    KALTHOFF JF, 1986, ENG FRACT MECH, V23, P289
36311    KESSLER SL, 1986, 936 ASTM STP
36312    KOBAYASHI T, 1984, ENG FRACT MECH, V19, P49
36313    KOBAYASHI T, 1984, ENG FRACT MECH, V19, P67
36314    KOBAYASHI T, 1986, ENG FRACT MECH, V24, P773
36315    PUTATUNDA SK, 1986, ENG FRACT MECH, V25, P429
36316    SERVER WL, 1978, J TEST EVAL, V6, P29
36317    SREENIVASAN PR, 1996, INT J PRES VES PIP, V69, P149
36318    WADA H, 1996, ENG FRACT MECH, V54, P805
36319 NR 17
36320 TC 1
36321 SN 0013-7944
36322 J9 ENG FRACTURE MECH
36323 JI Eng. Fract. Mech.
36324 PD OCT
36325 PY 1999
36326 VL 64
36327 IS 3
36328 BP 327
36329 EP 336
36330 PG 10
36331 SC Mechanics
36332 GA 264HL
36333 UT ISI:000084174700004
36334 ER
36335 
36336 PT J
36337 AU Li, DZ
36338 TI Spectral transmission and reflection of the doping semiconductor/metal
36339    films systems
36340 SO ACTA PHYSICA SINICA
36341 DT Article
36342 AB The paper presents that the plasma frequency omega(p) of semiconductor
36343    films are regulated by the way of changing its doping concentration,
36344    which lead to high transmission. Zone of the film shift visible
36345    spectral rang V-omega, the semiconductor film is combined with the
36346    metal which thinness induced transmission frequency omega(g) locate in
36347    the edge of ultra violet range to compose the excellent D/M spectral
36348    transmission and reflection film systems. Besides, it is also necessary
36349    to select the most suitable combination of the thickness between the
36350    semiconductor and the metal films for forming the excellent transparent
36351    heat insulation film.
36352 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
36353 RP Li, DZ, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
36354 CR KARLSSON B, 1986, SPIT, V653, P148
36355    THI ES, 1982, THIN SOLID FILMS, V88, P99
36356    UTSUMI K, 1998, THIN SOLID FILMS, V334, P30
36357    VALKONEN E, 1984, SOL ENERGY, V32, P211
36358    ZHAO JQ, 1998, CHINESE J SEMICONDUC, V19, P752
36359 NR 5
36360 TC 0
36361 SN 1000-3290
36362 J9 ACTA PHYS SIN-CHINESE ED
36363 JI Acta Phys. Sin.
36364 PD DEC
36365 PY 1999
36366 VL 48
36367 IS 12
36368 BP 2349
36369 EP 2356
36370 PG 8
36371 SC Physics, Multidisciplinary
36372 GA 262KM
36373 UT ISI:000084066400031
36374 ER
36375 
36376 PT J
36377 AU Shi, ZD
36378 TI Experimental observation of spectral transmittance of highly
36379    birefringent fibre with high spin rate
36380 SO OPTICS COMMUNICATIONS
36381 DT Article
36382 DE spun high-birefringent fibres; spectral transmittance; microbending loss
36383 ID SINGLE-MODE FIBERS; OPTICAL FIBERS; FABRICATION; PROPOSALS
36384 AB Spectral transmittance of spun hi-bi (highly birefringent) fibres with
36385    different spin rates is studied by an experimental method. It is found
36386    that, as the spin rate is raised to a certain high value, the
36387    transmittance of this kind of fibre drops down in a certain long
36388    wavelength band. This phenomenon of the spun type fibres is attributed
36389    essentially to microbending produced in the spinning-drawing processes.
36390    (C) 1999 Published by Elsevier Science B.V. All rights reserved.
36391 C1 Shanghai Univ, Inst Fibre Opt, Shanghai 201800, Peoples R China.
36392 RP Shi, ZD, Shanghai Univ, Inst Fibre Opt, Shanghai 201800, Peoples R
36393    China.
36394 CR BARLOW AJ, 1981, ELECTRON LETT, V17, P725
36395    BARLOW AJ, 1982, ELECTRON LETT, V18, P200
36396    BIRCH RD, 1987, ELECTRON LETT, V23, P50
36397    CASTELLI R, 1989, OPT QUANT ELECTRON, V21, P35
36398    CHEN Y, 1988, J OPT SOC AM, V5, P380
36399    HUANG HC, MICROWAVE APPROACH H, P172
36400    HUANG HC, 1997, APPL OPTICS, V36, P4241
36401    NORMAN SR, 1979, ELECTRON LETT, V15, P309
36402    SOMEDA CG, 1991, OPT QUANT ELECTRON, V23, P713
36403 NR 9
36404 TC 1
36405 SN 0030-4018
36406 J9 OPT COMMUN
36407 JI Opt. Commun.
36408 PD NOV 15
36409 PY 1999
36410 VL 171
36411 IS 1-3
36412 BP 61
36413 EP 64
36414 PG 4
36415 SC Optics
36416 GA 260QE
36417 UT ISI:000083960700009
36418 ER
36419 
36420 PT J
36421 AU Lu, XG
36422    Li, FS
36423    Li, LF
36424    Chou, KC
36425 TI Electrochemical characteristic of decarburization reaction
36426 SO JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
36427 DT Article
36428 DE melt-slag reaction; decarburization; electrochemistry; electronic
36429    conductor
36430 ID FE-C DROPLETS; REDUCTION; SLAGS
36431 AB The electrochemical mechanism of the reaction between Fe-C melts and
36432    CaO-SiO2-Al2O3-FeOx slag systems has been carried out. The experimental
36433    results suggest that the final content of carbon in melt increases as
36434    the partial oxygen pressure of gas decreases no matter whether there is
36435    electronic conductor or not. However, the final content of carbon in
36436    the system with electronic conductor:is much lower than that without
36437    electronic conductor. It can be deduced that the transfer ability of
36438    oxygen in slag is dominated by electrons. When an electronic conductor
36439    exists, an easy pathway for the electrons is provided and the oxygen
36440    transfer rate is accelerated.
36441 C1 Univ Sci & Technol Beijing, Appl Sci Sch, Beijing 100083, Peoples R China.
36442    Shanghai Univ, Mat Sci & Engn Sch, Shanghai 200072, Peoples R China.
36443 RP Lu, XG, Univ Sci & Technol Beijing, Appl Sci Sch, Beijing 100083,
36444    Peoples R China.
36445 CR LU X, 1997, S PHYS CHEM MET BEIJ, P230
36446    LU XG, 1998, J UNIV SCI TECHNOL B, V5, P20
36447    MURTHY GGK, 1993, IRONMAK STEELMAK, V20, P179
36448    MURTHY GGK, 1993, IRONMAK STEELMAK, V20, P191
36449    SASABE M, 1974, METALLURG T, V5, P2225
36450    WEI S, 1980, THERMODYNAMICS METAL
36451 NR 6
36452 TC 2
36453 SN 1005-8850
36454 J9 J UNIV SCI TECHNOL BEIJING
36455 JI J. Univ. Sci. Technol. Beijing
36456 PD MAR
36457 PY 1999
36458 VL 6
36459 IS 1
36460 BP 27
36461 EP 30
36462 PG 4
36463 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
36464    Engineering; Mining & Mineral Processing
36465 GA 262BF
36466 UT ISI:000084045300008
36467 ER
36468 
36469 PT J
36470 AU Fang, SS
36471    Zhou, ZQ
36472    Zhang, JL
36473    Yao, MY
36474    Feng, F
36475    Northwood, DD
36476 TI Two mathematical models for the hydrogen storage properties of AB(2)
36477    type alloys
36478 SO JOURNAL OF ALLOYS AND COMPOUNDS
36479 DT Article
36480 DE mathematical model; hydrogen storage allay; PCT curve
36481 ID LAVES PHASE; ABSORPTION; BATTERIES
36482 AB Two semi-empirical models have been applied to AB(2) hydrogen storage
36483    alloys. One is concerned with the relation between formation enthalpy
36484    in hydriding and the atomic parameters of the alloys. The other is an
36485    expression for the PCT carves, which can be used for estimating some
36486    physical parameters of these compounds and their hydrides, calculating
36487    unknown PC isotherms at given temperatures and finding the relationship
36488    of hysteresis to temperature and hydrogen concentration. (C) 1999
36489    Published by Elsevier Science S.A. All rights reserved.
36490 C1 Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China.
36491    Univ Windsor, Dept Mech & Mat Engn, Windsor, ON N9B 3P4, Canada.
36492 RP Fang, SS, Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072,
36493    Peoples R China.
36494 CR ESAYED A, 1993, THESIS U WINDSOR CAN, P69
36495    FUJII H, 1981, J PHYS CHEM-US, V85, P3112
36496    GAMO T, 1980, 3RD P WORLD HYDR EN, V4, P2127
36497    HONG G, 1990, 1043409, CN
36498    HUOT J, 1995, J ALLOY COMPD, V228, P69
36499    LEE HH, 1993, J ALLOY COMPD, V202, P23
36500    LEE JH, 1995, J ALLOY COMPD, V221, P174
36501    QIAN S, 1988, INT J HYDROGEN ENERG, V13, P25
36502    QIAN S, 1989, THESIS U WINDSOR CAN, P106
36503    SHALTIEL D, 1977, J LESS-COMMON MET, V53, P117
36504    SHITIKOV V, 1984, J LESS-COMMON MET, V102, P29
36505    VANMAL HH, 1974, J LESS-COMMON MET, V35, P65
36506    YANG HW, 1995, J ALLOY COMPD, V227, P69
36507    ZHOU Z, 1991, MAT SCI PROGR, V5, P117
36508    ZHOU Z, 1993, NEW ENERGY SYSTEMS C, P79
36509    ZHOU ZQ, 1994, INT J HYDROGEN ENERG, V19, P269
36510 NR 16
36511 TC 11
36512 SN 0925-8388
36513 J9 J ALLOYS COMPOUNDS
36514 JI J. Alloy. Compd.
36515 PD DEC 20
36516 PY 1999
36517 VL 295
36518 BP 10
36519 EP 13
36520 PG 4
36521 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
36522    Metallurgical Engineering
36523 GA 262KD
36524 UT ISI:000084065500004
36525 ER
36526 
36527 PT J
36528 AU Zhou, ZQ
36529    Lin, GW
36530    Zhang, JL
36531    Ge, JS
36532    Shen, JR
36533 TI Degradation behavior of foamed nickel positive electrodes of Ni-MH
36534    batteries
36535 SO JOURNAL OF ALLOYS AND COMPOUNDS
36536 DT Article
36537 DE foamed nickel electrode; degradation behavior; phase transformation
36538    stress
36539 AB The extrusion mechanism has been demonstrated to be the major cause for
36540    the capacity decay of the positive electrodes during cycling. However,
36541    based on our SEM and EPMA observations on cycled electrodes we found
36542    that some active material on the foamed nickel electrodes came off into
36543    scales especially as the electrodes cycled at IC rate of discharge.
36544    This phenomena is suggested as another important cause for the capacity
36545    decay of positive electrodes and may be explained by the internal
36546    stress induced by the different volume change at the outer layer and
36547    the core due to phase and structure transformation during cycling. (C)
36548    1999 Elsevier Science S.A. All rights reserved.
36549 C1 Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China.
36550 RP Zhou, ZQ, Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072,
36551    Peoples R China.
36552 CR COATES DK, 1996, 13 INT SEM PRIM SEC
36553    WATADA M, 5366831, US
36554    ZHOU ZQ, 1995, NEW TYPE FUNCTIONAL, P367
36555 NR 3
36556 TC 3
36557 SN 0925-8388
36558 J9 J ALLOYS COMPOUNDS
36559 JI J. Alloy. Compd.
36560 PD DEC 20
36561 PY 1999
36562 VL 295
36563 BP 795
36564 EP 798
36565 PG 4
36566 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
36567    Metallurgical Engineering
36568 GA 262KD
36569 UT ISI:000084065500150
36570 ER
36571 
36572 PT J
36573 AU Zhu, XH
36574    Zhu, JM
36575    Zhou, SH
36576    Li, Q
36577    Meng, ZY
36578    Ming, NB
36579 TI SAED and TEM investigations of domain structure in bismuth- and
36580    zinc-modified Pb(Ni1/3Nb2/3)O-3-PbTiO3-PbZrO3 ceramics at morphotropic
36581    phase boundary
36582 SO FERROELECTRICS
36583 DT Article
36584 DE electron diffraction; transmission electron microscopy; domain
36585    structure; ferroelectric materials; PNN-PT-PZ; morphotropic phase
36586    boundary
36587 ID PIEZOELECTRIC PROPERTIES
36588 AB Transmission electron microscopy and electron diffraction
36589    investigations of the ferroelectric domain structures in the Bi- and
36590    Zn-modified Pb(Ni1/3Nb2/3)O-3-PbTiO3-PbZrO3 (PNN-PT-PZ) ceramics at the
36591    morphotropic phase boundary (MPB) revealed the triplet splitting of
36592    electron diffraction spots due to the coexistence of the tetragonal
36593    (T-1 and T-2) and rhombohedral (R) phases at the microscopic
36594    Ferroelectric-domain level. The angular values formed between the
36595    parallel stripes in the herringbone domain pattern can be explained by
36596    a model of spatial domain configuration previously proposed for BaTiO3
36597    ceramics. A succession model of ferroelectric domain structures T-1 RT
36598    2RT(1)...is proposed to explain the coexistence of T and R phases
36599    in:the same ceramic grain at the MPB. The elastically stored energy in
36600    the mixed T-R wall was estimated, and its uniform distribution confirms
36601    this succession model.
36602 C1 Nanjing Univ, Natl Lab Solid State Microstruct, Dept Phys, Nanjing 210093, Peoples R China.
36603    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
36604    CCAST, World Lab, Beijing 100080, Peoples R China.
36605 RP Zhu, XH, Nanjing Univ, Natl Lab Solid State Microstruct, Dept Phys,
36606    Nanjing 210093, Peoples R China.
36607 CR ARIT G, 1980, J APPL PHYS, V51, P4956
36608    BULAEVSKII LN, 1964, FIZ TVERD TELA, V5, P2329
36609    EDINGTON JW, 1974, PRACTICAL ELECT MICR, P80
36610    GOO EKW, 1981, J APPL PHYS, V52, P2940
36611    HANH L, 1978, JPN J APPL PHYS, V17, P637
36612    KITAMURA T, 1981, JPN J APPL PHYS, V20, P97
36613    RANDALL CA, 1987, J MATER SCI, V22, P925
36614    TAKAHASHI S, 1986, SENSOR TECHNOLOGY, V6, P56
36615    UCHINO K, 1990, THESIS XIAN JIAOTONG, V18, P42
36616    UCHNIO K, 1986, PIEZOELECTRIC ELECTR
36617    ZHIRNOV VA, 1959, ZH EKSP TEOR FIZ, V35, P822
36618    ZHU XH, 1996, J MATER SCI, V31, P2171
36619    ZHU XH, 1997, J MATER SCI, V32, P4275
36620 NR 13
36621 TC 4
36622 SN 0015-0193
36623 J9 FERROELECTRICS
36624 JI Ferroelectrics
36625 PY 1998
36626 VL 215
36627 IS 1-4
36628 BP 265
36629 EP 276
36630 PG 12
36631 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
36632 GA 263BC
36633 UT ISI:000084101900024
36634 ER
36635 
36636 PT J
36637 AU Li, PL
36638    Deng, CF
36639    Wang, LL
36640    Xu, MJ
36641 TI J/psi suppression and the effect of quark flavor kinetics
36642 SO CHINESE PHYSICS LETTERS
36643 DT Article
36644 ID GLUON PLASMA; COLLISIONS
36645 AB The dilepton spectrum emitted in the phase transition process of an
36646    expanding quark gluon plasma formed in the collisions of U-238-U-238
36647    and W-184-W-184 at 200 GeV/(cu) is calculated by using the theoretical
36648    framework of relativistic hydrodynamics, including the effect of quark
36649    flavor kinetics, and phenomenological SU (3) string model is used in
36650    the calculation of the quark flavor kinetics. The calculated results
36651    are compared with the experimental data from the Center of European
36652    Research of Nucleon SPS and analysis is carried out. The results show
36653    that the effects of quark fragmentation and flavor kinetics cause a
36654    peak suppression of J/psi --> mu(+) mu(-), while the dilepton spectrum
36655    increases for small invariant mass. The calculated results show that
36656    the phenomena of suppression under the rich-baryon condition is greater
36657    than those under the poor-baryon conditions. Under the same conditions
36658    of collision, the J/psi, peak suppression produced in U-238-U-238
36659    collisions is greater than that in W-184-W-184 collisions.
36660 C1 Suzhou Railway Normal Coll, Dept Phys, Suzhou 215009, Peoples R China.
36661    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
36662 RP Li, PL, Suzhou Railway Normal Coll, Dept Phys, Suzhou 215009, Peoples R
36663    China.
36664 CR BARZ HW, 1988, NUCL PHYS A, V484, P661
36665    CLEYMANS J, 1984, PHYS LETT B, V147, P186
36666    KAJANTIE K, 1983, NUCL PHYS B, V222, P152
36667    KOCH P, 1986, PHYS REP, V142, P167
36668    LI PL, 1999, HIGH ENERG PHYS, V23, P693
36669    MASERA M, 1995, NUCL PHYS A, V590, C93
36670    WANG LL, 1999, J COMPUT PHYS, V16, P94
36671 NR 7
36672 TC 0
36673 SN 0256-307X
36674 J9 CHIN PHYS LETT
36675 JI Chin. Phys. Lett.
36676 PY 1999
36677 VL 16
36678 IS 11
36679 BP 800
36680 EP 802
36681 PG 3
36682 SC Physics, Multidisciplinary
36683 GA 260YA
36684 UT ISI:000083980000008
36685 ER
36686 
36687 PT J
36688 AU Zhu, WP
36689    Huang, Q
36690    Guo, P
36691 TI Complex equations of flexible circular ring shells overall-bending in a
36692    meridian plane and general solution for the slender ring shells
36693 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
36694 DT Article
36695 DE flexible shells; shells of revolution; circular ring shells;
36696    curved-tubes; bellows
36697 AB Complex equations of circular ring shells and slender ring shells
36698    overall-bending in a meridian plane are presented based on E. L.
36699    Axelrad's equations of flexible shells of revolution render
36700    asymmetrical lending. It turns out that the equations are analogous to
36701    Novozhilov's equations of symmetrical ring shells, where general
36702    sollutions have been given by W. Z. Chien. Therefore, by analogy with
36703    Chien's solution, a general solution for equations of the slender ring
36704    shells is put forward, which can be used to salve bellow's
36705    overall-bending problems.
36706 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
36707 RP Zhu, WP, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
36708    200072, Peoples R China.
36709 CR AXELRAD EL, 1976, FLEXIBLE SHELLS
36710    AXELRAD EL, 1987, THEORY FLEXIBLE SHEL
36711    BLAZEJ S, 1992, INT J MECH SCI, V34, P901
36712    CHIEN WZ, 1979, J TSINGHUA U, V19, P27
36713    CHIEN WZ, 1980, APPL MATH MECH ENGLI, V1, P305
36714    CHIEN WZ, 1981, APPL MATH MECH ENGLI, V2, P103
36715    HUANG Q, 1986, APPL MATH MECH, V7, P125
36716    HUANG Q, 1986, APPL MATH MECH, V7, P573
36717    ZHU WP, 1998, P 2 ICIWS 1998 SING, P477
36718 NR 9
36719 TC 6
36720 SN 0253-4827
36721 J9 APPL MATH MECH-ENGL ED
36722 JI Appl. Math. Mech.-Engl. Ed.
36723 PD SEP
36724 PY 1999
36725 VL 20
36726 IS 9
36727 BP 952
36728 EP 959
36729 PG 8
36730 SC Mathematics, Applied; Mechanics
36731 GA 261DA
36732 UT ISI:000083992200002
36733 ER
36734 
36735 PT J
36736 AU Ma, JH
36737    Chen, YS
36738    Liu, ZG
36739 TI The matric algorithm of Lyapunov exponent for the experimental data
36740    obtained in dynamic analysis
36741 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
36742 DT Article
36743 DE nonlinear chaotic timeseries; Lyapunov exponent; matric algorithm
36744 ID TIME-SERIES; SYSTEM
36745 AB The Lyapunov exponent is important quantitative index for describing
36746    chaotic attractors. Since Wolf put up the trajectory algorithm to
36747    Lyapunov exponent in 1985, how to calculate the Lyapunov exponent with
36748    accuracy has become a very important question. Based on the theoretical
36749    algorithm of Zuo Binwu, the matric algorithm of Lyapunov exponent is
36750    given, and the results with the results of Wolf's algorithm are
36751    compared. The calculating results validate that the matric algorithm
36752    has sufficient accuracy, and the relationship between the character of
36753    attractor and the value of Lyapunov exponent is studied in this paper.
36754    The corresponding conclusions are given in this paper.
36755 C1 Tianjin Finance Univ, Dept Econ & Management, Tianjin 300222, Peoples R China.
36756    Tianjin Univ, Dept Mech, Tianjin 300072, Peoples R China.
36757    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
36758 RP Ma, JH, Tianjin Finance Univ, Dept Econ & Management, Tianjin 300222,
36759    Peoples R China.
36760 CR BROWN R, 1991, PHYS REV A, V43, P2787
36761    ELLNER S, 1991, PHYS LETT A, V153, P357
36762    GENCAY R, 1992, PHYSICA D, V59, P142
36763    KANTZ H, 1994, PHYS LETT A, V185, P77
36764    MA JH, 1997, J NONLINEAR DYNAMICS, V4, P25
36765    NERENBERG MAH, 1990, PHYS REV A, V42, P7065
36766    SHUN GW, 1995, PHYS LETT A, V197, P287
36767    WOLF A, 1985, PHYSICA D, V16, P285
36768    YU QH, 1992, PHYS LETT A, V170, P29
36769    ZUO BW, 1995, PHYS D, V85, P485
36770 NR 10
36771 TC 3
36772 SN 0253-4827
36773 J9 APPL MATH MECH-ENGL ED
36774 JI Appl. Math. Mech.-Engl. Ed.
36775 PD SEP
36776 PY 1999
36777 VL 20
36778 IS 9
36779 BP 985
36780 EP 993
36781 PG 9
36782 SC Mathematics, Applied; Mechanics
36783 GA 261DA
36784 UT ISI:000083992200006
36785 ER
36786 
36787 PT J
36788 AU Bai, ZZ
36789    Wang, DR
36790    Evans, DJ
36791 TI On the convergence of asynchronous nested matrix multisplitting methods
36792    for linear systems
36793 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
36794 DT Article
36795 DE solution of linear systems; asynchronous parallel iteration; matrix
36796    multisplitting; relaxation method; convergence
36797 ID ITERATIVE METHODS; PARALLEL SOLUTION; SPLITTINGS; ALGORITHM; 2-STAGE
36798 AB A class of asynchronous nested matrix multisplitting methods for
36799    solving large-scale systems of linear equations are proposed, and their
36800    convergence characterizations are studied in detail when the
36801    coefficient matrices of the linear systems are monotone matrices and
36802    H-matrices, respectively.
36803 C1 Acad Sinica, State Key Lab Sci Engn Comp, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China.
36804    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
36805    Loughborough Univ Technol, Parallel Algorithms Res Ctr, Loughborough LE11 3TU, Leics, England.
36806 CR BRU R, 1988, LINEAR ALGEBRA APPL, V103, P175
36807    ELSNER L, 1989, NUMER MATH, V56, P283
36808    EVANS DJ, 1991, PARALLEL COMPUT, V17, P165
36809    FROMMER A, 1989, LINEAR ALGEBRA APPL, V119, P141
36810    FROMMER A, 1992, NUMER MATH, V63, P345
36811    LANZKRON PJ, 1991, NUMER MATH, V58, P685
36812    NEUMANN M, 1987, LINEAR ALGEBRA APPL, V88, P559
36813    OLEARY DP, 1985, SIAM J ALGEBRA DISCR, V6, P630
36814    ORTEGA JM, 1970, ITERATIVE SOLUTIONS
36815    SZYLD DB, 1992, SIAM J MATRIX ANAL A, V13, P671
36816    VARGA RS, 1962, MATRIX ITERATIVE ANA
36817    WANG D, 1991, LINEAR ALGEBRA APPL, V154, P473
36818    WANG DR, 1994, PARALLEL ALGORITHMS, V2, P173
36819    WANG DR, 1994, PARALLEL ALGORITHMS, V2, P209
36820 NR 14
36821 TC 1
36822 SN 0254-9409
36823 J9 J COMPUT MATH
36824 JI J. Comput. Math.
36825 PD NOV
36826 PY 1999
36827 VL 17
36828 IS 6
36829 BP 575
36830 EP 588
36831 PG 14
36832 SC Mathematics, Applied; Mathematics
36833 GA 259FT
36834 UT ISI:000083884400003
36835 ER
36836 
36837 PT J
36838 AU Lu, DY
36839    Cao, JY
36840    Huang, YP
36841    Gong, L
36842    Chen, XL
36843    Chen, EH
36844    Xu, B
36845 TI Comparison of some antineoplastic drugs on inhibiting thrombin
36846    catalizing fibrinogen clotting in vitro
36847 SO CHINESE MEDICAL JOURNAL
36848 DT Article
36849 DE fibrin; fibrinogen; antineoplastic drugs; neoplasm metastasis
36850 ID TUMOR; COAGULATION
36851 AB Objective To classify the effect of thrombin, the key enzyme which
36852    enables fibrinogen to form fibrin (fibrinogen clotting) on the
36853    formation of metastasis by comparing the inhibition of some
36854    antineoplastic drugs on fibrinogen clotting in vitro.
36855    Methods Time intervals of different drugs to reach a maximum OD (340
36856    nm) data in fibrinogen solution added with thrombin were used in this
36857    work.
36858    Results It was found that L-4-oxalysine (8-40 mu g/ml) and arabinosyl
36859    cytosine (10-50 mu g/ml) could inhibit the effect of thrombin by
36860    extending the fibrinogen clotting time to 100% - 150% (P< 0.001) and
36861    61% -100% (P < 0.001) while the other antimetastatic drugs razoxane,
36862    probimane, adriamycin, harringtonine homoharringtonine and
36863    alpha-anordrin at the treatment concentrations showed no such activity.
36864    The positive rate of drugs to thrombin activity was approximately 25%.
36865    Conclusion It suggests that L-4-oxalysine and arabinosyl cytosine may
36866    even exhibit antimetastatic effect through thrombin-fibrinogen pathway,
36867    and thrombin might operate in tumor metastasis for only limited step
36868    but crutial to fibrin formation in tumor nodules.
36869 C1 Shanghai Univ, Sch Life Sci, Shanghai 201800, Peoples R China.
36870    Chinese Acad Sci, Shanghai Inst Mat Med, Dept Pharmacol, Shanghai 200031, Peoples R China.
36871    Cent Hosp Jing An Dist, Dept Oncol, Shanghai 200040, Peoples R China.
36872 RP Lu, DY, Shanghai Univ, Sch Life Sci, Shanghai 201800, Peoples R China.
36873 CR COSTANTINI V, 1992, CANCER METAST REV, V11, P283
36874    DVORAK HF, 1983, CANCER METAST REV, V2, P41
36875    GUNJI Y, 1988, CANCER RES, V48, P5216
36876    LU DY, 1994, HENAN MED RES, V3, P4
36877    LU DY, 1995, ACTA PHARMACOL SINIC, V16, P187
36878    POGGI A, 1977, CANCER RES, V37, P272
36879    YUE XF, 1982, ACTA PHARMACOL SINIC, V3, P124
36880    YUE XF, 1985, ACTA PHARMACOL SINIC, V6, P198
36881    ZACHARSKI LR, 1981, MALIGNANCY HEMOSTATI, P113
36882 NR 9
36883 TC 1
36884 SN 0366-6999
36885 J9 CHIN MED J
36886 JI Chin. Med. J.
36887 PD NOV
36888 PY 1999
36889 VL 112
36890 IS 11
36891 BP 1052
36892 EP 1053
36893 PG 2
36894 SC Medicine, General & Internal
36895 GA 258WZ
36896 UT ISI:000083863800033
36897 ER
36898 
36899 PT J
36900 AU Lu, HQ
36901    Harko, T
36902    Cheng, KS
36903 TI Quantum cosmology with a nonlinear Born-Infeld type scalar field
36904 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS D
36905 DT Article
36906 DE Born-Infeld type scalar field; quantum cosmology
36907 ID WAVE-FUNCTION; UNIVERSE; STATE
36908 AB A quantum model of gravitation interacting with a Born-Infeld type
36909    nonlinear scalar field phi is considered. The corresponding
36910    Wheeler-DeWitt equation can be solved analytically for both large and
36911    small phi-over-dot. In the extreme limits of small and large
36912    cosmological scale factors the wave function of the Universe can also
36913    be obtained by applying the methods developed by Vilenkin and Hartle
36914    and Hawking. An inflationary Universe is predicted with the largest
36915    possible vacuum energy and the largest interaction between the
36916    particles of the nonlinear scalar field.
36917 C1 Shanghai Univ, Dept Phys, Shanghai, Peoples R China.
36918    Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China.
36919 RP Lu, HQ, Shanghai Univ, Dept Phys, Shanghai, Peoples R China.
36920 CR BOILLAT G, 1998, J MATH PHYS, V40, P1
36921    BORN M, 1934, PROC R SOC LON SER-A, V144, P425
36922    DEOLIVEIRA HP, 1995, J MATH PHYS, V36, P2988
36923    DESER S, 1998, CLASSICAL QUANT GRAV, V15, P135
36924    DEWITT BS, 1967, PHYS REV, V160, P1113
36925    FANG LZ, 1986, INT J MOD PHYS D, V4, P887
36926    FEIGENBAUM JA, 1998, PHYS REV D, V5801, P24023
36927    GRADSHTEYN IS, 1983, TABLE INTEGRALS SERI
36928    GRISHCHUK LP, 1988, PHYS LETT B, V208, P369
36929    GRISHCHUK LP, 1990, PHYS LETT B, V234, P9
36930    HARTLE JB, 1983, PHYS REV D, V28, P2960
36931    HAWKING SW, 1984, NUCL PHYS B, V239, P257
36932    HAWKING SW, 1985, PHYS REV D, V32, P2489
36933    HAWKING SW, 1986, NUCL PHYS B, V264, P185
36934    HEISENBERG W, 1952, Z PHYS, V133, P79
36935    LUKAS A, 1995, PHYS LETT B, V347, P13
36936    LYONS GW, 1992, PHYS REV D, V46, P1546
36937    PALATNIK D, 1998, PHYS LETT B, V432, P287
36938    TSEYTLIN AA, 1986, NUCL PHYS B, V276, P391
36939    VILENKIN A, 1983, PHYS REV D, V27, P2848
36940    VILENKIN A, 1984, PHYS REV D, V30, P509
36941    VILENKIN A, 1985, NUCL PHYS B, V252, P141
36942    VILENKIN A, 1986, PHYS REV D, V33, P3560
36943    VILENKIN A, 1988, PHYS REV D, V37, P888
36944    VILENKIN A, 1994, PHYS REV D, V50, P2581
36945 NR 25
36946 TC 8
36947 SN 0218-2718
36948 J9 INT J MOD PHYS D
36949 JI Int. J. Mod. Phys. D
36950 PD OCT
36951 PY 1999
36952 VL 8
36953 IS 5
36954 BP 625
36955 EP 634
36956 PG 10
36957 SC Astronomy & Astrophysics
36958 GA 256NL
36959 UT ISI:000083731400004
36960 ER
36961 
36962 PT J
36963 AU Cao, WG
36964    Ding, WY
36965    Liu, RD
36966    Huang, TH
36967 TI Chemistry and applications of phosphonium and arsonium ylides - XXVI.
36968    Synthesis of arsonium ylides containing perfluoroalkyl group and study
36969    on their hydrolysis
36970 SO ACTA CHIMICA SINICA
36971 DT Article
36972 DE arsonium ylide; hydrolysis;
36973    4-perfluoroalkyl-6-(alpha-furyl)-2-pyranone; methyl
36974    4-(alpha-furoyl)-3-perfluoroalkyl-3-butenoates
36975 ID ELEMENTO-ORGANIC COMPOUNDS; METHYL 2-PERFLUOROALKYNOATES;
36976    STEREOSELECTIVE SYNTHESIS; 6TH GROUPS; ARSORANE; 5TH
36977 AB In the presence of K2CO3, reaction of (alpha - furoyl)methyl -
36978    arsoniumbromide(1) with methyl 2-perfluoroalkynoates(2) in methylene
36979    chloride at 0 similar to 5 degrees C afforded the adduct - methyl 4 -
36980    (alpha furoyl) - 2 - triphenylarsoranylidene - 3 - perfluoroalkyl - 3 -
36981    butenoates(3) in high yield. Hydrolysis of 3 in V(CH3OH): V(H2O) = 9:1
36982    methanolic solution at room temperature, 70 degrees C and 120 degrees C
36983    in a sealed tube respectively, 4 - perfluoroalkyl - 6 - (alpha - furyl)
36984    - 2 - pyranones(4) and methyl 4 - (alpha - furoyl) 3 - perfluoroalkyl -
36985    3 - butenoates(5) were obtained in excellent yield. Compounds 4 and 5
36986    could be separated by column chromatography. 5 is a mixture of Z - and
36987    E - isomers which couldn't be separated by column chromatography, but
36988    the ratio of Z - and E - isomers could be estimated by H-1 NMR. The
36989    catalytic hydrolysis of compound 3 with silica gel and the mechanisms
36990    for the formation of products are also discussed in this paper.
36991 C1 Shanghai Univ, Sch Chem & Chem Engn, Shanghai 201800, Peoples R China.
36992 RP Cao, WG, Shanghai Univ, Sch Chem & Chem Engn, Shanghai 201800, Peoples
36993    R China.
36994 CR *GIB FDN, 1972, CARB FLUOR COMP CHEM
36995    BANKS RE, 1982, PREPARATION PROPERTI
36996    CAO WG, 1998, J FLUORINE CHEM, V91, P99
36997    CAO WG, 1999, J FLUORINE CHEM, V95, P135
36998    DING WY, 1986, ACTA CHIM SINICA, V44, P255
36999    DING WY, 1986, ACTA CHIM SINICA, V44, P62
37000    DING WY, 1987, ACTA CHIM SINICA, V45, P47
37001    DING WY, 1987, CHINESE J ORG CHEM, P435
37002    DING WY, 1991, ACTA CHIM SINICA, V49, P284
37003    DING WY, 1991, J CHEM SOC PERK  JUN, P1369
37004    DING WY, 1992, CHEM RES CHINESE U, V8, P224
37005    HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47
37006    STOLL A, 1933, HELV CHIM ACTA, V16, P703
37007    TAO WT, 1983, CHINESE J ORG CHEM, P129
37008    XU ML, 1982, YAOXUE XUEBAO, V17, P905
37009 NR 15
37010 TC 2
37011 SN 0567-7351
37012 J9 ACTA CHIM SIN
37013 JI Acta Chim. Sin.
37014 PY 1999
37015 VL 57
37016 IS 11
37017 BP 1270
37018 EP 1276
37019 PG 7
37020 SC Chemistry, Multidisciplinary
37021 GA 257LT
37022 UT ISI:000083783900015
37023 ER
37024 
37025 PT J
37026 AU Chen, H
37027    Shi, YM
37028 TI Antiresonances modulated by magnetic flux in an Aharonov-Bohm ring
37029 SO PHYSICS LETTERS A
37030 DT Article
37031 ID FANO RESONANCES; QUANTUM-WELL; SEMICONDUCTORS; TRANSMISSION; TRANSPORT;
37032    PHASE; HETEROSTRUCTURES; OSCILLATIONS; INTERFERENCE; IMPURITIES
37033 AB With or without an inserted quantum dot or an attached side resonator,
37034    the transmission behavior of an Aharonov-Bohm (AB) ring Is investigated
37035    in the framework of quantum waveguide theory in the complex-energy
37036    plane. The calculated results show that the AB ring possesses
37037    antiresonances in the conductance and several kinds of transmission
37038    poles in the complex-energy plane. Piercing the ring, magnetic flux
37039    causes a series of crossovers among zero-pole pairs. zero-double-pole
37040    pairs, peak-double-pole pairs, and peak-pole pairs. With the inserted
37041    quantum dot or attached side resonator in one of its arms, the ring
37042    produces complicated behaviors in conductance: some of the poles are
37043    split into more than two parts. A kind of deformed Fano resonance is
37044    found in the conductance of the AB ring with the attached resonator.
37045    (C) 1999 Published by Elsevier Science B.V. All rights reserved.
37046 C1 Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
37047    Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China.
37048 RP Chen, H, Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
37049 CR BELITSKY VI, 1997, J PHYS-CONDENS MAT, V9, P5965
37050    BELLANI V, 1996, SOLID STATE COMMUN, V97, P459
37051    BOYKIN TB, 1992, PHYS REV B, V46, P12769
37052    BUTTIKER M, 1984, PHYS REV A, V30, P1982
37053    CERDEIRA F, 1973, PHYS REV B, V8, P4734
37054    CHO SY, 1996, INT J MOD PHYS B, V10, P3569
37055    CHOI T, 1998, INT J MOD PHYS B, V12, P2091
37056    DEO PS, 1998, SOLID STATE COMMUN, V107, P69
37057    FANO U, 1961, PHYS REV, V124, P1866
37058    GLUTSCH S, 1994, PHYS REV B, V50, P17009
37059    KO DYK, 1988, SEMICOND SCI TECH, V3, P791
37060    KUNZE C, 1995, PHYS REV B, V51, P13410
37061    MASCHKE K, 1991, PHYS REV LETT, V67, P2646
37062    MELLITI A, 1998, SOLID STATE COMMUN, V105, P747
37063    RYU CM, 1998, PHYS REV B, V58, P3572
37064    SHAO ZA, 1994, PHYS REV B, V49, P7453
37065    SHI YM, 1999, IN PRESS PHYS REV B
37066    TEKMAN E, 1990, PHYS REV B, V42, P9098
37067    TEKMAN E, 1993, PHYS REV B, V48, P2553
37068    TING DZY, 1993, PHYS REV B, V47, P7281
37069    WEI LF, 1998, CHINESE PHYS LETT, V15, P128
37070    WU CH, 1991, PHYS REV B, V43, P5012
37071    XIA JB, 1992, PHYS REV B, V45, P3593
37072 NR 23
37073 TC 2
37074 SN 0375-9601
37075 J9 PHYS LETT A
37076 JI Phys. Lett. A
37077 PD OCT 25
37078 PY 1999
37079 VL 262
37080 IS 1
37081 BP 76
37082 EP 82
37083 PG 7
37084 SC Physics, Multidisciplinary
37085 GA 251ZY
37086 UT ISI:000083477300012
37087 ER
37088 
37089 PT J
37090 AU Mao, JM
37091    Liu, ZR
37092    Cao, YL
37093 TI Constructing new periodic exact solutions of evolution equations
37094 SO PHYSICAL REVIEW E
37095 DT Article
37096 AB For the nonlinear Schrodinger equation, the Korteweg-de Vries equation,
37097    and the modified Korteweg-de Vries equation, periodic exact solutions
37098    are constructed from their stationary periodic solutions, by means of
37099    the Backlund transformation. These periodic solutions were not written
37100    down explicitly before to our knowledge. Their asymptotic behavior when
37101    t-->-infinity is different from that when t-->infinity. Near t=0, the
37102    spatial-temporal pattern can change abruptly, and rational solitons can
37103    appear randomly in space and time. They correspond to new types of
37104    "homoclinic orbits" due to different asymptotic behaviors in time.
37105    [S1063-651X(99)01310-0].
37106 C1 Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong.
37107    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
37108    Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China.
37109 RP Mao, JM, Hong Kong Univ Sci & Technol, Dept Math, Clearwater Bay,
37110    Kowloon, Hong Kong.
37111 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
37112    AKHMEDIEV NN, 1997, SOLITONS NONLINEAR P
37113    CROSS MC, 1993, REV MOD PHYS, V65, P851
37114    HERMAN W, 1985, WAVE MOTION, V7, P283
37115    HERMAN W, 1989, J PHYS A, V22, P241
37116    HERMAN W, 1990, J PHYS A, V23, P4805
37117    KHATER AH, 1988, COMPUT MATH APPL, V17, P1379
37118    KHATER AH, 1989, ASTROPHYS SPACE SCI, V162, P151
37119    KHATER AH, 1997, CHAOS SOLITON FRACT, V8, P1901
37120    KONNO K, 1975, PROG THEOR PHYS, V53, P1652
37121    LI C, 1997, INVARIANT MANIFOLDS
37122    LI Y, 1996, COMMUN PUR APPL MATH, V49, P1175
37123    LI Y, 1997, J NONLINEAR SCI, V7, P211
37124    MALFLIET W, 1991, J PHYS A-MATH GEN, V24, P5499
37125    MCLAUGHLIN DW, 1996, DYN REPORT, V5, P190
37126    OVLVER PJ, 1986, APPL LIE GROUPS DIFF
37127    ROGERS C, 1982, BUCKLUND TRANSFORMAT
37128    WEISS J, 1983, J MATH PHYS, V24, P522
37129 NR 18
37130 TC 0
37131 SN 1063-651X
37132 J9 PHYS REV E
37133 JI Phys. Rev. E
37134 PD OCT
37135 PY 1999
37136 VL 60
37137 IS 4
37138 PN Part A
37139 BP 3589
37140 EP 3596
37141 PG 8
37142 SC Physics, Fluids & Plasmas; Physics, Mathematical
37143 GA 250XD
37144 UT ISI:000083414800022
37145 ER
37146 
37147 PT J
37148 AU Shi, YM
37149    Chen, H
37150 TI Transport through an Aharonov-Casher ring with a quantum gate
37151 SO PHYSICAL REVIEW B
37152 DT Article
37153 ID BOHM OSCILLATIONS; MESOSCOPIC RINGS; GEOMETRIC PHASE; BERRY PHASE; DOT;
37154    SYSTEMS; EVOLUTION; CURRENTS
37155 AB We study the oscillations of the conductance through an Aharonov-Casher
37156    (AC) ring with a quantum gate by using one-dimensional quantum
37157    waveguide theory. The compact formula of the transmission probability
37158    for the ring-stub system in the presence of the spin-orbit interaction
37159    and magnetic flux is obtained under the condition of weak Zeeman
37160    coupling. The formula shows that the competition between AC and
37161    Aharonov-Bohm phases dominates the transport behavior. The stub as a
37162    phase modulator also controls the oscillations of the conductance in
37163    the ring. The perfect reflection condition is obtained. The numerical
37164    results show that the phase shift between g(up arrow)(alpha) and g(down
37165    arrow)(alpha) increases with the magnetic field and the spin-dependent
37166    conductances have parity relation g(up arrow)(- phi) = g(down
37167    arrow)(phi). [S0163-1 829(99)03639-5].
37168 C1 Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
37169    Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China.
37170    CCAST, World Lab, Beijing 100080, Peoples R China.
37171 RP Shi, YM, Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
37172 CR AHARONOV Y, 1987, PHYS REV LETT, V58, P1593
37173    ARONOV AG, 1993, PHYS REV LETT, V70, P343
37174    BERRY MV, 1984, P ROY SOC LOND A MAT, V392, P45
37175    BRUDER C, 1996, PHYS REV LETT, V76, P114
37176    BUKS E, 1996, PHYS REV LETT, V77, P4664
37177    CHEN H, 1998, INT J MOD PHYS B, V12, P1729
37178    CHOI T, 1997, PHYS REV B, V56, P4825
37179    DEO PS, 1996, MOD PHYS LETT B, V10, P787
37180    GRIFFITH S, 1953, T FARADAY SOC, V49, P345
37181    HACKENBROICH G, 1996, PHYS REV LETT, V76, P110
37182    LOSS D, 1990, PHYS REV LETT, V65, P1655
37183    LOSS D, 1992, PHYS REV B, V45, P13544
37184    MEAD CA, 1992, REV MOD PHYS, V64, P51
37185    QIAN TZ, 1993, PHYS REV LETT, V70, P2311
37186    QIAN TZ, 1997, PHYS REV B, V55, P4605
37187    ROTH LM, 1959, PHYS REV, V114, P90
37188    SHAPERE A, 1989, GEOMETRIC PHASE PHYS
37189    WU J, 1998, PHYS REV LETT, V80, P1952
37190    XIA JB, 1992, PHYS REV B, V45, P3593
37191    YACOBY A, 1995, PHYS REV LETT, V74, P4047
37192    YEYATI AL, 1995, PHYS REV B, V52, P14360
37193    YI YS, 1997, PHYS REV B, V55, P10631
37194    ZHU JX, 1997, Z PHYS B CON MAT, V102, P153
37195 NR 23
37196 TC 2
37197 SN 0163-1829
37198 J9 PHYS REV B
37199 JI Phys. Rev. B
37200 PD OCT 15
37201 PY 1999
37202 VL 60
37203 IS 15
37204 BP 10949
37205 EP 10952
37206 PG 4
37207 SC Physics, Condensed Matter
37208 GA 251CT
37209 UT ISI:000083427600077
37210 ER
37211 
37212 PT J
37213 AU Essa, AA
37214    Xu, KX
37215    Zhou, SP
37216    Bao, JS
37217 TI Non-equilibrium microwave response of YBa2Cu3O7-delta granular thin
37218    films under magnetic fields
37219 SO ACTA PHYSICA SINICA-OVERSEAS EDITION
37220 DT Article
37221 ID SUPERCONDUCTORS; TRANSITION; RADIATION
37222 AB Microwave responses of YBa2Cu3O7-delta (YBCO) granular film have been
37223    studied at the microwave frequency of 30.5 GHz. In the absence of a
37224    magnetic field the dependence of a normal microwave response on the
37225    bias current is observed at a temperature close to T-c. When a magnetic
37226    field ranged from 5.0 mT to 33.0 mT is applied, the responses broaden
37227    and shift toward a lower temperature. In the superconducting state, the
37228    responses were found to be highly dependent on the magnetic field. For
37229    the current equal to 5.0 mA and a magnetic field above 17.0 mT the
37230    response increases and did not vanish even at a very low temperature,
37231    the fact is believed to be correlated to the anisotropic character of
37232    the structure.
37233 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
37234 RP Essa, AA, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
37235 CR AFANASYEV AS, 1989, IEEE T MAGN, V25, P2571
37236    AMBEGAOKAR V, 1978, PHYS REV LETT, V40, P783
37237    BOONE BG, 1991, J APPL PHYS, V69, P2676
37238    CHANG K, 1991, J APPL PHYS, V69, P7316
37239    CHERN JD, 1993, IEEE T APPL SUPERCON, V3, P2128
37240    CULERTSON JC, 1991, PHYS REV B, V44, P9609
37241    ENOMOTO Y, 1986, J APPL PHYS, V59, P3808
37242    JUNG G, 1989, APPL PHYS LETT, V54, P2355
37243    KOSTERLITZ JM, 1973, J PHYS C SOLID STATE, V6, P1181
37244    LI Q, 1990, PHYS REV LETT, V64, P3086
37245    MARTIN S, 1989, PHYS REV LETT, V62, P677
37246    PHONG LN, 1993, J APPL PHYS, V74, P7414
37247    ROSE K, 1975, APPL SUPERCONDUCTIVI
37248    SROM U, 1989, IEEE T MAGN, V25, P1315
37249    VADLAMANNATI S, 1991, PHYS REV B, V44, P7094
37250    YING QY, 1990, PHYS REV B, V42, P2242
37251    YOSHISATO Y, 1990, JPN J APPL PHYS PT 1, V29, P1080
37252 NR 17
37253 TC 0
37254 SN 1004-423X
37255 J9 ACTA PHYS SIN-OVERSEAS ED
37256 JI Acta Phys. Sin.-Overseas Ed.
37257 PD NOV
37258 PY 1999
37259 VL 8
37260 IS 11
37261 BP 860
37262 EP 868
37263 PG 9
37264 SC Physics, Multidisciplinary
37265 GA 251BT
37266 UT ISI:000083425300010
37267 ER
37268 
37269 PT J
37270 AU Tan, WH
37271    Yan, KZ
37272 TI A general approach to the Bose-Einstein condensation of neutral atoms
37273    with repellent interaction
37274 SO ACTA PHYSICA SINICA
37275 DT Article
37276 ID TRAP; GAS
37277 AB In this paper a general approach to the Bose-Einstein condensation of
37278    neutral atoms with repellent interaction is presented. Especially in
37279    the case of free atoms (V=0) with repellent interaction, an exact
37280    solution for the atom's wave function, can be derived, and therefore
37281    the calculation of atom's Bose-Einstein condensation is completed.
37282 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
37283 RP Tan, WH, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
37284 CR ABRAMOWITZ M, 1965, HDB MATH FUNCTIONS F, P567
37285    ANDERSON MH, 1995, SCIENCE, V269, P198
37286    BOGOLIUBOV NN, 1947, J PHYS USSR, V11, P23
37287    BRADLEY CC, 1995, PHYS REV LETT, V75, P1687
37288    CHOU TT, 1996, PHYS REV A, V53, P4257
37289    CHOU TT, 1997, PHYS REV A, V55, P1179
37290    DAVIS KB, 1995, PHYS REV LETT, V75, P3969
37291    EINSTEIN A, 1924, SITZBER PREUSS AKAD, P261
37292    EINSTEIN A, 1925, SITZBER PREUSS AKAD, P3
37293    FETTER AL, 1972, ANN PHYS-NEW YORK, V70, P67
37294    HUANG K, 1957, PHYS REV, V105, P767
37295    LANDAU LD, 1958, QUANTUM MNECH, P55
37296    WANG ZX, 1956, INTRO STAT PHYSICS, P279
37297 NR 13
37298 TC 4
37299 SN 1000-3290
37300 J9 ACTA PHYS SIN-CHINESE ED
37301 JI Acta Phys. Sin.
37302 PD NOV
37303 PY 1999
37304 VL 48
37305 IS 11
37306 BP 1983
37307 EP 1991
37308 PG 9
37309 SC Physics, Multidisciplinary
37310 GA 251CA
37311 UT ISI:000083426000005
37312 ER
37313 
37314 PT J
37315 AU Cai, YC
37316 TI On a diophantine inequality involving prime numbers (III)
37317 SO ACTA MATHEMATICA SINICA-ENGLISH SERIES
37318 DT Article
37319 DE prime; inequality; exponential sum
37320 AB Let 1 < c <,. In the present paper it is proved that there exists a
37321    number N(c) > 0 such that for each real number N > N(c) the inequality
37322    \p(1)(c) + p(2)(c) + p(3)(c) - N\ < N-1/C(11/10 - C) log(c1) N is
37323    solvable in prime numbers p(1),p(2),p(3), where cl is some absolute
37324    positive constant. 1991MR Subject Classification 11M.
37325 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
37326 RP Cai, YC, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
37327 CR CAI YC, IN PRESS DIOPHANTINE
37328    CAI YC, 1996, ACTA MATH SINICA, V39, P733
37329    GRITSENKO SA, 1987, MAT ZAMETKI, V39, P625
37330    HEATHBROWN DR, 1982, CAN J MATH, V34, P1365
37331    JIA CH, 1992, SCI SIN A, V22, P812
37332    KARATSUBA AA, 1983, PRINCIPLES ANAL NUMB
37333    PIATETSKISHAPIR.II, 1952, MAT SBORNIK, V30, P105
37334    TITCHMARSH EC, 1986, THEORY RIEMANN ZETA
37335    TOLEV DI, 1990, THESIS MOSCOW U
37336    TOLEV DI, 1992, ACTA ARITH, V61, P289
37337 NR 10
37338 TC 0
37339 SN 1000-9574
37340 J9 ACTA MATH SIN-ENGLISH SERIES
37341 JI Acta. Math. Sin.-English Ser.
37342 PD JUL
37343 PY 1999
37344 VL 15
37345 IS 3
37346 BP 387
37347 EP 394
37348 PG 8
37349 SC Mathematics, Applied; Mathematics
37350 GA 252NR
37351 UT ISI:000083508000008
37352 ER
37353 
37354 PT J
37355 AU Cao, WG
37356    Ding, WY
37357 TI Simple syntheses of polysubstituted arenes via acyclic precursors
37358 SO PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS
37359 DT Article
37360 DE phosphorane; polysubstituted arene; perfluoroalkynoate; acyclic
37361    precursor
37362 ID FACILE SYNTHESIS
37363 AB Summarizes the syntheses of polysubstituted arenes containing
37364    perfluoroalkyl group(s) via acyclic precursors.
37365 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
37366 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
37367 CR BANKS RE, 1979, ORGANOFLUORINE CHEM
37368    CAO WG, 1997, J FLUORINE CHEM, V81, P153
37369    CAO WG, 1997, J FLUORINE CHEM, V83, P21
37370    DING WY, 1987, TETRAHEDRON LETT, V28, P81
37371    DING WY, 1992, SYNTHESIS-STUTTGART, P635
37372    DING WY, 1993, CHINESE J CHEM, V11, P81
37373    DING WY, 1993, J CHEM SOC P1, P855
37374    DING WY, 1995, CHINESE J CHEM, V13, P468
37375    MANN J, 1987, CHEM SOC REV, V16, P381
37376    MCCLINTON MA, 1992, TETRAHEDRON, V48, P6555
37377    WELCH JT, 1987, TETRAHEDRON, V43, P3123
37378 NR 11
37379 TC 0
37380 SN 1042-6507
37381 J9 PHOSPHOR SULFUR SILICON
37382 JI Phosphorus Sulfur Silicon Relat. Elem.
37383 PY 1999
37384 VL 146
37385 BP 705
37386 EP 708
37387 PG 4
37388 SC Chemistry, Inorganic & Nuclear
37389 GA 249EW
37390 UT ISI:000083320800177
37391 ER
37392 
37393 PT J
37394 AU Ma, Z
37395    Zhou, ZW
37396 TI The energy criterion of minimum equivalent diameter in gas atomization
37397 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
37398 DT Article
37399 DE gas atomization; capillary potential energy; equivalent diameter
37400 ID LIQUID
37401 AB Gas atomization has been studied by using energy method in this paper.
37402    It shows that the capillary potential energy of the atomization
37403    droplets is supplied by the impingement of the gas on the liquid. The
37404    energy criterion of the minimum equivalent diameter of the atomization
37405    droplets is obtained. The result is comparable to the empirical
37406    formulae.
37407 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
37408 RP Ma, Z, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
37409    Peoples R China.
37410 CR BRADLEY D, 1973, J PHYS D, V6, P1724
37411    LAWLEY A, 1981, J MET, V33, P13
37412    LAWLEY A, 1993, ATOMIZATION PRODUCTI
37413    LUBANSKA H, 1970, J MET, V22, P45
37414    MATHUR P, 1991, MAT SCI ENG A-STRUCT, V142, P261
37415    REITZ RD, 1982, PHYS FLUIDS, V25, P1730
37416 NR 6
37417 TC 1
37418 SN 0253-4827
37419 J9 APPL MATH MECH-ENGL ED
37420 JI Appl. Math. Mech.-Engl. Ed.
37421 PD AUG
37422 PY 1999
37423 VL 20
37424 IS 8
37425 BP 825
37426 EP 829
37427 PG 5
37428 SC Mathematics, Applied; Mechanics
37429 GA 248JC
37430 UT ISI:000083270500001
37431 ER
37432 
37433 PT J
37434 AU Tang, YM
37435 TI On the stability of general Navier-Stokes type equation
37436 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
37437 DT Article
37438 DE gradue; l-simple; unstable equation
37439 AB In this paper, by proving that the equations discussed here are
37440    l-simple (l greater than or equal to 1) by stratification theory, the
37441    unstability of the equations is proved. And the un-uniqueness of the
37442    solution of forced dissipative non-linear system equations in
37443    atmospheric dynamics is used as an illustration for the result.
37444 C1 Shanghai Univ, Coll Sci, Shanghai 200072, Peoples R China.
37445 RP Tang, YM, Shanghai Univ, Coll Sci, Shanghai 200072, Peoples R China.
37446 CR CHEN DD, 1996, APPL MATH MECH, V17, P541
37447    CHEN DD, 1996, APPL MATH MECH, V17, P541
37448    CHOU J, 1990, NEW DEV ATMOSPHERIC
37449    CHOU JF, 1990, NEW DEV ATMOSPHERIC
37450    EHRESMANN C, 1953, C TOPOLOGIE GEOMETRI, P97
37451    EHRESMANN C, 1953, C TOPOLOGIE GEOMETRI, P97
37452    HADAMARD J, 1964, THEORIE EQUATIONS DE
37453    MARCHONK G, 1980, METHODE CALCUL NUMER
37454    MARCHONK G, 1980, METHODS CALCUL NUMER
37455    SHI WH, 1996, J SHANGHAI U, V2, P355
37456    SHIH WS, 1992, SOLUTIONS ANAL QUELQ
37457    SHIH WS, 1995, IHES M
37458    SHIH WS, 1995, IHES M, V95
37459    SHIN SA, 1994, SATURATION SATABILIT
37460 NR 14
37461 TC 0
37462 SN 0253-4827
37463 J9 APPL MATH MECH-ENGL ED
37464 JI Appl. Math. Mech.-Engl. Ed.
37465 PD AUG
37466 PY 1999
37467 VL 20
37468 IS 8
37469 BP 888
37470 EP 894
37471 PG 7
37472 SC Mathematics, Applied; Mechanics
37473 GA 248JC
37474 UT ISI:000083270500007
37475 ER
37476 
37477 PT J
37478 AU Li, L
37479    Tang, ZJ
37480    Sun, WY
37481    Wang, PL
37482 TI Phase diagram prediction of the Al2O3-SiO2-La2O3 system
37483 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
37484 DT Article
37485 ID REGULAR SOLUTION MODEL; GLASSES
37486 AB Rare earth oxide systems Al2O3-La2O3 and SiO2-La2O3 were
37487    thermodynamically assessed and optimized with the substitution model.
37488    The obtained model parameters and Gibbs free energy of line compounds
37489    and pure components were applied to the prediction of the liquidus
37490    surface and isothermal sections of Al2O3-SiO2-La2O3 system.
37491 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
37492    Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
37493 RP Li, L, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R
37494    China.
37495 CR ARAMAKI S, 1962, J AM CERAM SOC, V45, P229
37496    BONDAR IA, 1964, IAN SSSR KH, V5, P785
37497    CINIBULK MK, 1992, J AM CERAM SOC, V75, P2037
37498    DU Y, 1992, CALPHAD, V16, P221
37499    ERBE EM, 1990, J AM CERAM SOC, V73, P2708
37500    FRITSCHE ET, 1967, J AM CERAM SOC, V50, P167
37501    HILLERT M, 1970, ACTA CHEM SCAND, V24, P3618
37502    HILLERT M, 1992, CALPHAD, V16, P193
37503    HILLERT M, 1992, CALPHAD, V16, P199
37504    HIROSAKI N, 1988, J AM CERAM SOC, V71, C144
37505    HUANG JG, 1993, B CERAM, V6, P50
37506    HYATT MJ, 1987, J AM CERAM SOC, V70, P283
37507    KAUFMAN L, 1978, CALPHAD, V2, P35
37508    KLUG FJ, 1987, J AM CERAM SOC, V70, P750
37509    KOHLI JT, 1991, PHYS CHEM GLASSES, V32, P67
37510    LI C, 1987, B CERAM, V10, P34
37511    LI L, 1995, P 8 NAT S PHAS DIAGR, P125
37512    LI L, 1997, PHYS CHEM GLASSES, V38, P323
37513    LI L, 1999, PHYS CHEM GLASSES, V40, P126
37514    MIZUNO M, 1974, YOGYO-KYOKAI-SHI, V82, P631
37515    PELTON AD, 1986, METALL TRANS B, V17, P805
37516    ROLIN M, 1965, REV HAUTES TEMP REFR, V2, P182
37517    SUN G, 1991, J CHIN RARE EARTH EL, V9, P128
37518    SUNDMAN B, 1981, J PHYS CHEM SOLIDS, V42, P297
37519    TOROPOV NA, 1961, IAN SSSR KH, V5, P740
37520    TOROPOV NA, 1962, T INT CER C 8 COP, P87
37521    WU P, 1992, J ALLOY COMPD, V179, P259
37522    YAMAGUCHI O, 1985, J AM CERAM SOC, V68, C44
37523 NR 28
37524 TC 2
37525 SN 1005-0302
37526 J9 J MATER SCI TECHNOL
37527 JI J. Mater. Sci. Technol.
37528 PD SEP
37529 PY 1999
37530 VL 15
37531 IS 5
37532 BP 439
37533 EP 443
37534 PG 5
37535 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
37536    Engineering
37537 GA 246WV
37538 UT ISI:000083188600011
37539 ER
37540 
37541 PT J
37542 AU Wang, HX
37543    Fang, DF
37544 TI Asymptotic behaviour of population-size-dependent branching processes
37545    in Markovian random environments
37546 SO JOURNAL OF APPLIED PROBABILITY
37547 DT Article
37548 DE Markov chains in random environments; branching models; extinction
37549    probabilities
37550 AB A population-size-dependent branching process {Z(n)} is considered
37551    where the population's evolution is controlled by a Markovian
37552    environment process {xi(n)}. For this model, let m(k,theta) and
37553    sigma(k,theta)(2) be the mean and the variance respectively of the
37554    offspring distribution when the population size is k and a environment
37555    theta is given. Let B = {omega : Z(n)(omega) = 0 for some n} and q =
37556    P(B). The asymptotic behaviour of lim(n) Z(n) and lim(n)
37557    Z(n)/Pi(i=0)(n-1)m(xi n) is studied in the case where sup(theta)
37558    /m(k,theta) - m(theta)/ --> 0 for some real numbers {m(theta)} such
37559    that inf(theta) m(theta) > 1. When the environmental sequence {xi(n)}
37560    is a irreducible positive recurrent Markov chain (particularly, when
37561    its state space is finite), certain extinction (q = 1) and non-certain
37562    extinction (q < 1) are studied.
37563 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
37564    Yueyang Normal Coll, Dept Math, Yueyang 414000, Peoples R China.
37565 RP Wang, HX, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
37566 CR ATHREYA KB, 1971, ANN MATH STAT, V42, P1499
37567    COGBURN R, 1980, ANN PROBAB, V8, P908
37568    COGBURN R, 1984, Z WAHRSCHEINLICHKEIT, V66, P109
37569    FUJIMAGARI T, 1976, KODAI MATH SEM REP, V27, P11
37570    KLEBANER FC, 1984, ADV APPL PROBAB, V16, P30
37571    KLEBANER FC, 1984, J APPL PROBAB, V21, P40
37572    VIAUD DPL, 1994, J APPL PROBAB, V31, P22
37573    WANG HX, 1999, J APPL PROBAB, V36, P146
37574 NR 8
37575 TC 4
37576 SN 0021-9002
37577 J9 J APPL PROBAB
37578 JI J. Appl. Probab.
37579 PD JUN
37580 PY 1999
37581 VL 36
37582 IS 2
37583 BP 611
37584 EP 619
37585 PG 9
37586 SC Statistics & Probability
37587 GA 248PD
37588 UT ISI:000083283200024
37589 ER
37590 
37591 PT J
37592 AU Liu, GL
37593 TI A general variational theory of multipoint inverse design of 2-D
37594    transonic cascades based on an artificial flow-oscillation model
37595 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
37596 DT Article
37597 AB In order to ensure favorable aerodynamic performance of cascades not
37598    only at the nominal design point but also at other off-design points, a
37599    novel variational theory of multipoint inverse design of 2-D transonic
37600    cascades is developed herein, in which along each of the segments of
37601    the cascade airfoil contour the pressure (or velocity) distribution is
37602    specified at a corresponding angle of attack. For this purpose an
37603    artificial flow-oscillation concept is suggested to simulate the
37604    multipoint design problem of steady flow. As a result, a family of
37605    variational principles (VP) for the multipoint inverse problem is
37606    derived, in which all free boundaries/interfaces such as the unknown
37607    airfoil shape, the shocks and trailing vortex sheets are handled by
37608    means of the powerful variable-domain variation of the functional. This
37609    theory is capable of extending to hybrid problems as well as to fully
37610    3-D and/or rotational flows.
37611 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
37612    Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
37613 RP Liu, GL, Shanghai Univ, Shanghai 200072, Peoples R China.
37614 CR BRESLIN JP, 1994, HYDRODYNAMICS SHIP P, P103
37615    DOWELL EH, 1988, APPL MECH REV, V41, P299
37616    DULIKRAVICH GS, 1992, J AIRCRAFT, V29, P1020
37617    EPPLER R, 1979, J SHIP RES, V23, P209
37618    EPPLER R, 1980, TM80210 NASA
37619    EPPLER R, 1985, J SHIP RES, V29, P30
37620    EPPLER R, 1990, AIRFOIL DESIGN DATA
37621    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
37622    JAMESON A, 1985, COMPUT METHOD APPL M, V51, P467
37623    LIU GL, 1987, 871426 AIAA
37624    LIU GL, 1990, EXPT COMPUTATIONAL A, P128
37625    LIU GL, 1992, ACTA MECH, V95, P117
37626    LIU GL, 1993, P INT C AER OCT BEIJ, P82
37627    LIU GL, 1995, INVERSE PROBL ENG, V2, P1
37628    LIU GL, 1996, ACTA AERODYNAMICA SI, V14, P1
37629    LIU GL, 1998, IN PRESS ACTA MECH
37630    LIU GL, 1998, INVERSE PROBL ENG, P391
37631    LIU GL, 1998, P 3 INT C FLUID MECH, P809
37632    NAKAZAKI M, 1986, J KANSAI SOC NAVAL A
37633    NIXON D, 1989, PROGR ASTRONAUTICS A, V120
37634    POLING DR, 1986, AIAA J, V24, P193
37635    SELIG MS, 1992, AIAA J, V30, P1162
37636    SHEN YT, 1981, J SHIP RES, V25, P191
37637 NR 23
37638 TC 1
37639 SN 0334-0082
37640 J9 INT J TURBO JET ENGINES
37641 JI Int. J. Turbo. Jet-Engines
37642 PY 1999
37643 VL 16
37644 IS 3
37645 BP 141
37646 EP 148
37647 PG 8
37648 SC Engineering, Aerospace
37649 GA 247CZ
37650 UT ISI:000083204200002
37651 ER
37652 
37653 PT J
37654 AU Chen, LS
37655    Zhao, XH
37656    Fu, MF
37657 TI The simple shear oscillation and the restrictions to elastic-plastic
37658    constitutive relations
37659 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
37660 DT Article
37661 DE objective rates; elastic-plastic constitutive relation; simple shear
37662    oscillation
37663 ID FINITE
37664 AB Based on the definitions of hardening, softening and ideal plastic
37665    behavior of elastic-plastic materials in the true stress tensor space,
37666    the phenomena of simple shear oscillation are shown to be relative to
37667    the oscillatory occurrence of hardening and softening behavior of
37668    elastic-plastic materials, namely the oscillation of hardening
37669    behavior, by analyzing a simple model of rigid-plastic materials with
37670    kinematical hardening under simple shear deformation. To make the
37671    models of elastic-plastic materials realistic, must be satisfied the
37672    following conditions: for any constitutive model, its response stresses
37673    to any continuous plastic deformation must be non-oscillatory, and
37674    there is no oscillation of hardening behavior during the plastic
37675    deformation.
37676 C1 Univ Nanchang, Inst Engn Mech, Nanchang 330029, Peoples R China.
37677    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
37678 RP Chen, LS, Univ Nanchang, Inst Engn Mech, Nanchang 330029, Peoples R
37679    China.
37680 CR AGAHTEHRANI A, 1987, J MECH PHYS SOLIDS, V35, P519
37681    CASEY J, 1984, Q J MECH APPL MATH, V37, P231
37682    CASEY J, 1988, ARCH RATION MECH AN, V102, P351
37683    CHEN LS, 1999, APPL MATH MECH-ENGL, V20, P476
37684    DIENES JK, 1979, ACTA MECH, V32, P217
37685    MINFU F, 1995, FINTIE DEFORMATION F, P20
37686    NAGTEGAAL JC, 1982, P WORKSH PLAST MET F, P56
37687    NEMATNASSER S, 1983, J APPL MECH-T ASME, V50, P1114
37688    SZABO L, 1989, INT J SOLIDS STRUCT, V25, P279
37689 NR 9
37690 TC 1
37691 SN 0253-4827
37692 J9 APPL MATH MECH-ENGL ED
37693 JI Appl. Math. Mech.-Engl. Ed.
37694 PD JUN
37695 PY 1999
37696 VL 20
37697 IS 6
37698 BP 593
37699 EP 603
37700 PG 11
37701 SC Mathematics, Applied; Mechanics
37702 GA 248FL
37703 UT ISI:000083264400002
37704 ER
37705 
37706 PT J
37707 AU Wang, GX
37708    Liu, ZR
37709 TI On radii of absorbing sets for Kuramoto-Sivashinsky equation
37710 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
37711 DT Article
37712 DE K-S equation; uniform estimate; absorbing set
37713 AB In this article sharper estimates on the radii of absorbing sets for
37714    the Kuramoto-Sivashinsky equation are given. It is proved that radii of
37715    absorbing sets will decay to Zero as the coefficient of viscosity tends
37716    to a certain critical value, which is more reasonable in the physical
37717    sence compared with classical results.
37718 C1 Peking Univ, Dept Math, Beijing 100871, Peoples R China.
37719    Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
37720 RP Wang, GX, Peking Univ, Dept Math, Beijing 100871, Peoples R China.
37721 CR COLLET P, 1993, COMMUN MATH PHYS, V152, P203
37722    GOODMAN J, 1994, COMMUN PUR APPL MATH, V47, P293
37723    KEVREKIDIS IG, 1990, SIAM J APPL MATH, V50, P760
37724    KURAMOTO Y, 1975, PROG THEOR PHYS, V54, P687
37725    LICOLAENKO B, 1985, PHYSICA D, V16, P155
37726    MICHELSON DM, 1977, ACTA ASTRONAUT, V4, P1206
37727    SIVASHINSKY GI, 1977, ACTA ASTRONAUT, V4, P1177
37728    SIVASHINSKY GI, 1980, PROG THEOR PHYS, V63, P2112
37729    WANG GX, 1996, THESIS SUZHOU U
37730 NR 9
37731 TC 0
37732 SN 0253-4827
37733 J9 APPL MATH MECH-ENGL ED
37734 JI Appl. Math. Mech.-Engl. Ed.
37735 PD JUL
37736 PY 1999
37737 VL 20
37738 IS 7
37739 BP 729
37740 EP 738
37741 PG 10
37742 SC Mathematics, Applied; Mechanics
37743 GA 247WU
37744 UT ISI:000083244600003
37745 ER
37746 
37747 PT J
37748 AU Liu, L
37749    Zhang, TJ
37750    Cui, K
37751    Dong, YD
37752 TI Reduction of copper oxide with graphite by mechanical alloying
37753 SO JOURNAL OF MATERIALS RESEARCH
37754 DT Article
37755 ID MECHANOCHEMICAL REDUCTION; SYSTEM; COMBUSTION
37756 AB The reduction of CuO with different amounts of C (CuO:C = 2:1, 2:1.5,
37757    and 2:2 molar ratios) driven by mechanical alloying was examined by
37758    x-ray diffraction and transmission electron microscopy. It was found
37759    that reduction behaviors are closely related to the carbon content. The
37760    reduction of CuO for the mixture with 1 mol of carbon follows a
37761    two-step process; i.e.. CuO --> Cu --> Cu2O. However, the CuO can be
37762    completely converted to Cu for the mixtures with higher carbon content.
37763    A tentative model in terms of solid-state reactions at the interfaces
37764    is proposed to explain the effect of carbon content. Additionally, the
37765    thermal responses of the premilled mixtures were investigated by
37766    thermogravity and differential thermal analysis followed by x-ray
37767    identification. Contrary to mechanical alloying, reduction of CuO
37768    during thermal treatment follows a transition sequence of CuO -- Cu2O
37769    --> Cu. The preferential formation of Cu2O at the early annealing stage
37770    is probably due to the involvement of gaseous reduction.
37771 C1 Huazhong Univ Sci & Technol, Dept Mat Sci & Engn, State Key Lab Plast Forming Stimulat & Die & Moul, Wuhan 430074, Peoples R China.
37772    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
37773 RP Liu, L, Huazhong Univ Sci & Technol, Dept Mat Sci & Engn, State Key Lab
37774    Plast Forming Stimulat & Die & Moul, Wuhan 430074, Peoples R China.
37775 CR BENJAMIN JS, 1970, METALL T, V1, P2943
37776    BRANDES A, 1983, SMITHELLS METALS REF
37777    CHEN Y, 1997, METALL MATER TRANS A, V28, P115
37778    ECKERT J, 1990, Z METALLKD, V81, P862
37779    FECHT HJ, 1990, J APPL PHYS, V67, P1744
37780    GILMAN PS, 1983, ANNU REV MATER SCI, V13, P279
37781    KOCH CC, 1983, APPL PHYS LETT, V43, P1017
37782    LIU L, 1993, NANOSTRUCT MATER, V2, P463
37783    LIU L, 1995, ACTA METALL MATER, V43, P3755
37784    MAGINI M, 1991, J MATER SCI, V26, P3969
37785    MCCORMICK PG, 1995, MATER T JIM, V36, P161
37786    MORRIS DG, 1991, MAT SCI ENG A-STRUCT, V134, P1481
37787    POLITIS C, 1986, J APPL PHYS, V60, P1147
37788    SCHAFFER GB, 1989, APPL PHYS LETT, V55, P45
37789    SCHAFFER GB, 1990, J MATER SCI LETT, V9, P1014
37790    SCHAFFER GB, 1990, METALL TRANS A, V21, P2789
37791    SCHAFFER GB, 1992, METALL TRANS A, V23, P1285
37792    WEAST RC, 1988, HDB CHEM PHYSICS
37793    XU J, 1996, J APPL PHYS 1, V79, P3935
37794    YANG H, 1993, J SOLID STATE CHEM, V107, P258
37795    YANG H, 1994, J SOLID STATE CHEM, V110, P136
37796    YANG H, 1995, SCRIPTA METALL MATER, V32, P681
37797 NR 22
37798 TC 2
37799 SN 0884-2914
37800 J9 J MATER RES
37801 JI J. Mater. Res.
37802 PD OCT
37803 PY 1999
37804 VL 14
37805 IS 10
37806 BP 4062
37807 EP 4069
37808 PG 8
37809 SC Materials Science, Multidisciplinary
37810 GA 246KV
37811 UT ISI:000083163700034
37812 ER
37813 
37814 PT J
37815 AU Weng, PF
37816 TI Investigation of separated flow around a curved air intake
37817 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
37818 DT Article
37819 AB This paper presents the investigation of two-dimensional separated now
37820    in and around a submerged curved intake by experiment and computation.
37821    Elliptic Navier-Stokes equations are employed which are discreted in
37822    body-fitted coordinate system by the SIMPLE method. The results show
37823    that a now separation near and behind the inlet exists and the duct now
37824    is distorted. Comparison between the calculations and experimental data
37825    is fairly satisfactory.
37826 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
37827 RP Weng, PF, Campus Box 189,149 Yanchang Rd, Shanghai, Peoples R China.
37828 CR AUIEHLA F, 1982, ICAS824811
37829    GUO RW, 1983, AERONAUTICAL Q, V32, P130
37830    HUANG XJ, 1987, INT AVIATION, V7, P19
37831    JENKINS RC, 1991, AIAA J, V29, P401
37832    PATANKAR SV, 1980, NUMERICAL HEAT TRANS
37833    THOMPSON JF, 1985, NUMERICAL GRID GENER
37834    YU SMC, 1993, J I ENG, V33, P15
37835 NR 7
37836 TC 0
37837 SN 0334-0082
37838 J9 INT J TURBO JET ENGINES
37839 JI Int. J. Turbo. Jet-Engines
37840 PY 1999
37841 VL 16
37842 IS 2
37843 BP 71
37844 EP 77
37845 PG 7
37846 SC Engineering, Aerospace
37847 GA 244YB
37848 UT ISI:000083077400002
37849 ER
37850 
37851 PT J
37852 AU Zhang, C
37853    Zhang, HS
37854    Qiu, ZG
37855 TI Fast analysis of crankshaft bearings with a database including shear
37856    thinning and viscoelastic effects
37857 SO TRIBOLOGY TRANSACTIONS
37858 DT Article
37859 DE database; hydrodynamic lubrication; journal bearing; non-Newtonian
37860    lubricants; internal combustion engine
37861 ID JOURNAL BEARINGS
37862 AB Database consists of nondimensional data of load capacity, maximum
37863    pressure and its position, flow and power loss factors obtained by
37864    solving the full 2-D Reynolds equation including the effect of oil feed
37865    features of 360 degrees, 180 degrees grooves and a single oil hole.
37866    Aided by the database, dynamically loaded journal bearings are analyzed
37867    without solving the Reynolds equation. The database is interpolated
37868    linearly. The fluids shear thinning and elasticity are characterized by
37869    the power law and Maxwell models. The solutions given by the present
37870    method are almost identical to the expensive FDM solution, and the CPU
37871    time consumed in the former cases almost can be neglected as compared
37872    to the latter cases.
37873 C1 Shanghai Univ, Res Inst Bearings, Shanghai 200072, Peoples R China.
37874    Fudan Univ, Dept Appl Mech, Shanghai 200433, Peoples R China.
37875 RP Zhang, C, Shanghai Univ, Res Inst Bearings, Shanghai 200072, Peoples R
37876    China.
37877 CR BOOKER JF, 1965, T ASME             D, V87, P537
37878    BOOKER JF, 1969, ASME, V91, P534
37879    BOOKER JF, 1971, ASME, V93, P168
37880    CONWAYJONES JM, 1990, P 17 LEEDS LYON S TR, P33
37881    GOENKA PK, 1984, ASME, V106, P429
37882    GOENKA PK, 1984, J TRIBOL-T ASME, V106, P421
37883    JONES GJ, 1982, P 9 LEEDS LYON S TRI, P83
37884    JONES GJ, 1983, P 9 LEEDS LYON S TRI
37885    PARANJPE RS, 1992, J TRIBOL-T ASME, V114, P736
37886    RASTOGI A, 1990, J RHEOL, V34, P1337
37887    ZHANG C, 1995, CHINESE INTERNAL COM, V16, P69
37888    ZHANG C, 1995, P INT TRIB C, P975
37889    ZHONGGANG F, 1995, LUBR ENG, V5, P12
37890 NR 13
37891 TC 2
37892 SN 1040-2004
37893 J9 TRIBOL TRANS
37894 JI Tribol. Trans.
37895 PD OCT
37896 PY 1999
37897 VL 42
37898 IS 4
37899 BP 922
37900 EP 928
37901 PG 7
37902 SC Engineering, Mechanical
37903 GA 243MN
37904 UT ISI:000083002000033
37905 ER
37906 
37907 PT J
37908 AU Xu, KX
37909    Essa, AA
37910    Bao, JS
37911 TI Non-ohmic dissipation in granular YBCO films with microwave radiation
37912 SO PHYSICA C
37913 DT Article
37914 DE granular superconductivity; microwave absorption; K-T transition
37915 ID YBA2CU3O7-DELTA THIN-FILMS; PHOTORESPONSE; SUPERCONDUCTORS
37916 AB The evidence for nonequilibrium response to microwave radiation (37
37917    GHz) from YBa2Cu3O7-delta (YBCO) granular films is presented in this
37918    paper. The experimental results show that the microwave response always
37919    occurs within the "tail" region in R-T curves. The measurements of the
37920    I-V characteristics suggest that the dissipation below the G-L mean
37921    field transition temperature T-co can be described in terms of the
37922    Kosterlitz-Thouless (K-T) transition model, Based on the measurements
37923    with a weak magnetic field. we propose that the origin of the
37924    nonequilibrium microwave response in granular YBCO films may be related
37925    with the photon-vortex interaction process. (C) 1999 Elsevier Science
37926    B.V. All rights reserved.
37927 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
37928 RP Xu, KX, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
37929 CR BATLOGG BJ, 1997, J SUPERCOND, V10, P583
37930    CULBERTSON JC, 1991, PHYS REV B, V44, P9609
37931    ENOMOTO Y, 1986, J APPL PHYS, V59, P3807
37932    FLORY AT, 1983, PHYS REV B, V28, P5075
37933    FORRESTER MG, 1989, IEEE T MAGN, V25, P1327
37934    GEVSHENZON EM, 1991, IEEE T MAGN, V27, P1321
37935    HEGMANN FA, 1993, PHYS REV B, V48, P16023
37936    HEGMANN FA, 1995, APPL PHYS LETT, V67, P285
37937    HERTER ST, 1998, PHYS REV B, V57, P1154
37938    KADIN AM, 1990, APPL PHYS LETT, V57, P2847
37939    KADIN AM, 1990, J APPL PHYS, V68, P5741
37940    KADIN AM, 1990, PHYS REV LETT, V65, P3193
37941    KADOWAKI K, 1994, SUPERCOND SCI TECH, V7, P519
37942    KOSTERLITZ JM, 1973, J PHYS C SOLID STATE, V6, P1181
37943    STROM U, 1990, PHYS REV B, V42, P4059
37944    VECHTEN DV, 1997, APPL PHYS LETT, V71, P1415
37945    YESHURUN Y, 1987, PHYS REV LETT, V58, P2202
37946    YING QY, 1990, PHYS REV B, V42, P2242
37947 NR 18
37948 TC 1
37949 SN 0921-4534
37950 J9 PHYSICA C
37951 JI Physica C
37952 PD AUG 20
37953 PY 1999
37954 VL 321
37955 IS 3-4
37956 BP 258
37957 EP 262
37958 PG 5
37959 SC Physics, Applied
37960 GA 243NP
37961 UT ISI:000083004400015
37962 ER
37963 
37964 PT J
37965 AU Xu, HP
37966    Wong, PL
37967    Zhang, ZM
37968 TI An EHL analysis of an all-metal viscoelastic high-pressure seal
37969 SO JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME
37970 DT Article
37971 AB An EHL (elasto-hydrodynamic lubrication) analysis of art all-metal
37972    viscoelastic high-pressure seal is presented. The fluid flow is assumed
37973    to be laminar and isothermal, and its inertial effect is neglected.
37974    Deformation of the cylinder and plunger is governed by Lame's formula
37975    for a thick-walled cylinder. The pressure-viscosity and
37976    pressure-density relationships of a working fluid are assumed to
37977    satisfy the Burus and Dowson-Higginson formulas, respectively. The
37978    leakage rate of the seal decreases almost exponentially with an
37979    increase in the working pressure, while its minimum film thickness can
37980    remain at about seventy percent of its nominal value at high working
37981    pressures. The radial stiffness increases significantly with an
37982    increase in the working pressure, i.e., stable operations of the seal
37983    can be expected.
37984 C1 City Univ Hong Kong, Dept Mfg Engn, Kowloon, Hong Kong.
37985    Shanghai Univ, Bearing Res Inst, Shanghai 200072, Peoples R China.
37986 RP Xu, HP, Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104
37987    USA.
37988 CR BRIDGMAN P, 1953, PHYSICS HIGH PRESSUR
37989    HARRIS HD, 1972, ASME, V94, P335
37990    JOHANNESSON HL, 1983, INFLUENCE PLUNGER EC, P13
37991    KAMAL MM, 1968, ASME, V90, P412
37992    ROARK JR, 1975, FORMULAS STRESS STRA, P504
37993    WANG NM, 1970, ASME, V92, P310
37994    WONG PL, 1997, WEAR, V210, P104
37995    XU H, 1991, 1084, CN
37996    XU H, 1991, THESIS ACAD MACHINE
37997    XU H, 1994, CHINESE J MECH ENG, V7, P148
37998    XU H, 1995, P 22 LEEDS LYON S TR
37999    XU HP, 1994, TRIBOL T, V37, P767
38000 NR 12
38001 TC 0
38002 SN 0742-4787
38003 J9 J TRIBOL-TRANS ASME
38004 JI J. Tribol.-Trans. ASME
38005 PD OCT
38006 PY 1999
38007 VL 121
38008 IS 4
38009 BP 916
38010 EP 920
38011 PG 5
38012 SC Engineering, Mechanical
38013 GA 243WY
38014 UT ISI:000083021500040
38015 ER
38016 
38017 PT J
38018 AU Hua, JD
38019    Liu, YF
38020    Hu, J
38021    Wang, QQ
38022    Gong, ZB
38023    Guo, XZ
38024 TI Thermal phase transition of poly(N-propionylethyleneimine) hydrogel
38025 SO JOURNAL OF APPLIED POLYMER SCIENCE
38026 DT Article
38027 DE poly(N-propionylethyleneimine); lower critical solution temperature;
38028    hydrogels; interpenetrating polymer network polymer
38029 ID GELS
38030 AB This article presents the preparation of the hydrogel of
38031    poly(N-propionylethyleneimine) and its interpenetrating polymer network
38032    (IPN) hydrogel containing polyacrylamide by means of gamma-ray
38033    radiation and a study of the phase transition temperature of these
38034    hydrogels. As a result, the hydrogel of the crosslinked
38035    poly(N-propionylethyleneimine) exhibited swelling below and shrinking
38036    above the phase transition temperature (about 61 degrees C), as well as
38037    the lower critical solution temperature (LCST) of the liner
38038    polymer-water system. The experiment also showed that the LCST of the
38039    IPN hydrogel could be adjusted by the incorporation of the second
38040    component polyacrylamide. (C) 1999 John Wiley & Sons, Inc.
38041 C1 Shanghai Univ, Dept Polymer Mat & Engn, Shanghai 201800, Peoples R China.
38042    Shanghai Univ, Dept Mech Engn, Shanghai 201800, Peoples R China.
38043 RP Hua, JD, Shanghai Univ, Dept Polymer Mat & Engn, Shanghai 201800,
38044    Peoples R China.
38045 CR BAE YH, 1989, J CONTROL RELEASE, V9, P271
38046    DONG LC, 1986, J CONTROL RELEASE, V4, P223
38047    DONG LC, 1990, J CONTROL RELEASE, V13, P21
38048    FREITAS RFS, 1987, SEPAR SCI TECHNOL, V22, P911
38049    FRELTAS RFS, 1987, CHEM ENG SCI, V42, P79
38050    HIROKAWA Y, 1984, AIP C P PHYS CHEM PO, V107, P203
38051    HIROKAWA Y, 1984, J CHEM PHYS, V81, P6379
38052    HOFFMAN AS, 1986, J CONTROL RELEASE, V4, P213
38053    KISHI R, 1993, J INTEL MAT SYST STR, V4, P533
38054    OSADA Y, 1975, MAKROMOL CHEM, V176, P2761
38055    PARK TG, 1990, BIOTECHNOL BIOENG, V35, P152
38056    PARK TG, 1990, J BIOMED MATER RES, V24, P21
38057    TANAKA T, 1978, PHYS REV LETT, V40, P820
38058 NR 13
38059 TC 2
38060 SN 0021-8995
38061 J9 J APPL POLYM SCI
38062 JI J. Appl. Polym. Sci.
38063 PD DEC 5
38064 PY 1999
38065 VL 74
38066 IS 10
38067 BP 2457
38068 EP 2461
38069 PG 5
38070 SC Polymer Science
38071 GA 242GH
38072 UT ISI:000082931800014
38073 ER
38074 
38075 PT J
38076 AU Liu, GL
38077    Wu, ZC
38078 TI Variational formulation of inverse shape design problem of heat
38079    conductors in an image plane and finite element solutions
38080 SO INVERSE PROBLEMS IN ENGINEERING
38081 DT Article
38082 DE variational principles; heat conduction; finite element method
38083 AB Using an image plane introduced previously by Liu [4] the original
38084    shape design problem of heat conduction is transformed into the one
38085    with known boundary and a pair of complementary variational principles
38086    (VP) for it with complicated boundary conditions are established in
38087    terms of the heat stream function and the temperature function
38088    respectively. Based upon these VP some finite element solutions to the
38089    shape design problem of heat conduction are presented. Finally, a very
38090    interesting invariance rule of inverse problem solutions with respect
38091    to the temperature-dependent conductivity is identified and numerically
38092    demonstrated.
38093 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
38094    Shanghai Met Coll, Shanghai 200233, Peoples R China.
38095 RP Liu, GL, Shanghai Univ, 149 Yan Chang Rd, Shanghai 200072, Peoples R
38096    China.
38097 CR CARSLAW HS, 1986, CONDUCTION HEAT SOLI
38098    CRANK J, 1984, FREE MOVING BOUNDARY
38099    DULIKRAVICH GS, 1988, APPL MECH REV, V41, P270
38100    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
38101    KOZDOBA LA, 1982, METHODS SOLUTION INV
38102    LIU GL, 1987, NUM METHODS THERMAL, V5, P284
38103    LIU GL, 1989, NUM METHODS THERMAL, V6, P1712
38104    LIU GL, 1990, EXPT COMPUTATIONAL A, P128
38105    LIU GL, 1997, NONLINEAR ANAL-THEOR, V30, P5229
38106    RAMM AG, 1986, INVERSE PROBL, V2, L19
38107    STANITZ JD, 1952, TN2593 NACA
38108 NR 11
38109 TC 0
38110 SN 1068-2767
38111 J9 INVERSE PROBL ENG
38112 JI Inverse Probl. Eng.
38113 PY 1999
38114 VL 7
38115 IS 4
38116 BP 385
38117 EP 408
38118 PG 24
38119 SC Engineering, Multidisciplinary; Mathematics, Applied
38120 GA 242VJ
38121 UT ISI:000082962100004
38122 ER
38123 
38124 PT J
38125 AU Zhang, SH
38126    Li, YZ
38127 TI Pumped-storage capacity discount and its effect on capacity planning
38128 SO ELECTRIC POWER SYSTEMS RESEARCH
38129 DT Article
38130 DE pumped-storage plant; probabilistic operation simulation; capacity
38131    discount; capacity benefits; planning
38132 AB Pumped-storage plants can play important roles in several aspects, its
38133    capacity planning is increasingly of great interest, especially in
38134    China. The subject of this paper is an investigation of effect of
38135    pumped-storage capacity discount on its capacity planning. The
38136    probabilistic formulation and cause analysis of pumped-storage capacity
38137    discount are presented. Case studies for a real power system in China
38138    are also discussed. The insight gained from these studies will be
38139    useful in pumped-storage development planning. (C) 1999 Elsevier
38140    Science S.A. All rights reserved.
38141 C1 Shanghai Univ, Automat Sch, Shanghai 200072, Peoples R China.
38142 RP Zhang, SH, Shanghai Univ, Automat Sch, POB 9,149 Yanchang Rd, Shanghai
38143    200072, Peoples R China.
38144 CR CHEN HH, 1991, P INT C HYDR DENV, P1186
38145    KANDIL MS, 1990, IEE P C, V137, P298
38146    LEE BY, 1987, IEEE T POWER SYST, V2, P486
38147    MALIK AS, 1991, P INT C ADV POW SYST, P379
38148    STASCHUS K, 1990, I ELECT ELECT ENG IE, V5, P531
38149    YEN MS, 1993, P INT C ADV POW SYST, P578
38150    YEN MS, 1997, ELECTR POW SYST RES, V42, P63
38151 NR 7
38152 TC 0
38153 SN 0378-7796
38154 J9 ELEC POWER SYST RES
38155 JI Electr. Power Syst. Res.
38156 PD OCT 1
38157 PY 1999
38158 VL 52
38159 IS 1
38160 BP 43
38161 EP 49
38162 PG 7
38163 SC Engineering, Electrical & Electronic
38164 GA 243QQ
38165 UT ISI:000083009100006
38166 ER
38167 
38168 PT J
38169 AU Liu, GL
38170    Guo, JH
38171 TI A variable-domain variational formulation of inverse problem I-A of 2-D
38172    unsteady transonic flow around oscillating airfoils
38173 SO ACTA MECHANICA
38174 DT Article
38175 AB The present paper carries out, for the first time, a detailed
38176    theoretical investigation on the inverse problem in unsteady
38177    aerodynamics. Special attention is paid to finding proper ways of
38178    problem-posing and mathematical formulation. To demonstrate the basic
38179    idea, only an inverse problem of type I-A of unsteady transonic flow
38180    with shocks around oscillating airfoils is studied herein. II has been
38181    formulated by a family of variational principles (VP) with variable
38182    domain, in which all unknown boundary (airfoil contour) and
38183    discontinuities (shocks and free trailing vortex sheets) are handled
38184    (captured) via the functional variation with variable domain. As a
38185    result, almost all boundary- and interface-conditions have been
38186    converted into natural ones. Thus, a rigorous theoretical basis for
38187    unsteady airfoil design and Finite element (FE) applications is
38188    provided. On the basis of these variational principles developed in
38189    this paper, a method using new self-deforming finite element is
38190    suggested for the numerical realization of the variable-domain
38191    variation of the functional and a numerical example is given. Its
38192    suitability and effectiveness are demonstrated by the numerical results.
38193 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
38194 RP Liu, GL, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang
38195    Rd, Shanghai 200072, Peoples R China.
38196 CR *AGARD FLUID DYN P, 1990, AGARDCP463
38197    CHYU WJ, 1981, AIAA J, V19, P684
38198    DULIKRAVICH GS, 1991, P INT C INV DES CONC
38199    FINLAYSON BA, 1970, METHODS WEIGHTED RES, P336
38200    GUO JH, 1993, P 1 INT C AER BEIJ, P75
38201    HAFEZ MM, 1979, AIAA J, V17, P838
38202    HE H, 1993, P 2 INT C FLUID MECH, P359
38203    LIU G, 1986, ASME, V108, P252
38204    LIU GL, 1987, AIAA871426
38205    LIU GL, 1989, P 5 INT S UNST AER A, P76
38206    LIU GL, 1990, EXPT COMPUTATIONAL A, P128
38207    LIU GL, 1992, ACTA MECH, V95, P117
38208    LIU GL, 1993, P 2 INT C FLUID MECH, P438
38209    LIU GL, 1995, INVERSE PROBL ENG, V2, P1
38210    LIU GL, 1997, NONLINEAR ANAL-THEOR, V30, P5229
38211    LIU GL, 1998, P 3 INT C FLUID MECH, P809
38212    POLING DR, 1986, AIAA J, V24, P193
38213 NR 17
38214 TC 0
38215 SN 0001-5970
38216 J9 ACTA MECH
38217 JI Acta Mech.
38218 PY 1999
38219 VL 137
38220 IS 3-4
38221 BP 195
38222 EP 209
38223 PG 15
38224 SC Mechanics
38225 GA 244DA
38226 UT ISI:000083035500005
38227 ER
38228 
38229 PT J
38230 AU Shen, Y
38231    Zhang, JC
38232    Gu, F
38233    Sao, J
38234    Yan, JK
38235    Wu, WB
38236 TI Preparation and spectroscopic properties of C-60-toluene derivative
38237 SO ACTA CHIMICA SINICA
38238 DT Article
38239 DE C-60; C-60 - toluene derivative; photoluminescence
38240 AB A C-60 - toluene derivative is prepared by reaction of C-60 with
38241    toluene in the presence of a proper catalyst. According to the UV and
38242    H-1 NMR spectra, the structure of the product and the reaction
38243    mechanism are discussed. Comparison of the PL spectrum of the
38244    derivative and C-60; shows that the derivative has increased PL
38245    phenomena at 460nm at room temperature.
38246 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
38247 RP Shen, Y, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R
38248    China.
38249 CR EGUCHI S, 1995, FULLERENES ADDUCTS S
38250    FOWLER PW, 1990, J CHEM SOC FARADAY T, V86, P2073
38251    GANG GU, 1995, PROGR PHYSICS, V15, P319
38252    GUO ZX, 1998, PROG CHEM, V10, P1
38253    HARE JP, 1991, CHEM PHYS LETT, V177, P394
38254    HUANG S, 1993, FUNCTIONAL POLYM, V6, P371
38255    OLAH GA, 1991, J AM CHEM SOC, V113, P9387
38256    TAYLOR R, 1992, J CHEM SOC CHEM 0501, P667
38257 NR 8
38258 TC 2
38259 SN 0567-7351
38260 J9 ACTA CHIM SIN
38261 JI Acta Chim. Sin.
38262 PY 1999
38263 VL 57
38264 IS 9
38265 BP 1034
38266 EP 1037
38267 PG 4
38268 SC Chemistry, Multidisciplinary
38269 GA 243BY
38270 UT ISI:000082978300015
38271 ER
38272 
38273 PT J
38274 AU Zhang, TS
38275    Hing, P
38276    Zhang, JC
38277    Kong, LB
38278 TI Ethanol-sensing characteristics of cadmium ferrite prepared by chemical
38279    coprecipitation
38280 SO MATERIALS CHEMISTRY AND PHYSICS
38281 DT Article
38282 DE cadmium oxide; alpha-Fe2O3; cadmium ferrite; ethanol sensor;
38283    coprecipitation
38284 ID SEMICONDUCTOR GAS SENSORS; ELECTRICAL-PROPERTIES; TIN OXIDE; HUMIDITY
38285    SENSORS; SNO2; CO; SENSITIVITY; SELECTIVITY; CONDUCTANCE; ADDITIVES
38286 AB The microstructure, electrical property and gas-sensing characteristics
38287    of complex compounds in the CdO-Fe2O3 system have been investigated.
38288    Raw powder with Cd/Fe = 1:2 was prepared by chemical coprecipitation
38289    method. The results from thermal gravimetric-differential thermal
38290    analysis and X-ray diffraction measurement indicate that decomposition
38291    of CdCO3 takes place from 350 to 500 degrees C, and the solid reaction
38292    in CdO-Fe2O3 system starts at 570 degrees C; the completion of this
38293    reaction is up to 800 degrees C. Single phase of CdFe2O4 is composed of
38294    spheroidic grains with narrow size distribution between 50 and 150 nm.
38295    Sample calcined at 650 degrees C consists of smaller grains with
38296    different shape and sizes due to the presence of three phases, i.e.,
38297    CdFe2O4, CdO and alpha-Fe2O3. The sensors based on Cd-Fe complex oxides
38298    show a high sensitivity and selectivity to C2H5OH gas over CO, H-2 and
38299    i-C4H10. The sensor made of 650 degrees C sample operates at 380
38300    degrees C, and its sensitivity to 200 ppm C2H5OH gas is up to 90, but
38301    its sensitivity to 1000 ppm H-2, CO or i-C4H10 are only 7.5, 4 and 5,
38302    respectively. (C) 1999 Elsevier Science S.A. All rights reserved.
38303 C1 Nanyang Technol Univ, Sch Appl Sci, Div Mat Sci, Ctr Adv Mat Res, Singapore 639798, Singapore.
38304    Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
38305    Nanyang Technol Univ, Sch Elect & Elect Engn, Ctr Microelect, Singapore 639798, Singapore.
38306 RP Zhang, TS, Nanyang Technol Univ, Sch Appl Sci, Div Mat Sci, Ctr Adv Mat
38307    Res, Nanyang Ave, Singapore 639798, Singapore.
38308 CR ALBANESE G, 1992, J MATER SCI, V27, P6146
38309    BEHR G, 1995, SENSOR ACTUAT B-CHEM, V26, P33
38310    CALDARARU M, 1996, SENSOR ACTUAT B-CHEM, V30, P35
38311    CANTALINI C, 1993, SENSOR ACTUAT B-CHEM, V15, P193
38312    CAROTTA MC, 1998, SENSOR ACTUAT B-CHEM, V48, P270
38313    COLES GSV, 1991, SENSOR ACTUAT B-CHEM, V3, P7
38314    DAWSON DH, 1995, SENSOR ACTUAT B-CHEM, V26, P76
38315    FANG YK, 1989, THIN SOLID FILMS, V169, P51
38316    GIBER J, 1994, SENSOR ACTUAT B-CHEM, V18, P113
38317    GUSMANO G, 1993, BRIT CERAM T, V92, P104
38318    GUSMANO G, 1993, J MATER SCI, V28, P6195
38319    HYKAWAY N, 1988, SENSOR ACTUATOR, V15, P105
38320    JIANMING L, 1989, P INT C EL COMP MAT, P197
38321    KUDO S, 1995, SENSOR ACTUAT B-CHEM, V23, P219
38322    LANTTO V, 1987, SURF SCI, V192, P243
38323    LEE DD, 1987, SENSOR ACTUATOR, V12, P441
38324    MAEKAWA T, 1991, CHEM LETT, P575
38325    MAEKAWA T, 1992, SENSOR ACTUAT B-CHEM, V9, P63
38326    MATSUSHIMA S, 1989, CHEM LETT, P845
38327    MCALEER E, 1971, DISCUSS FARADAY SOC, V52, P239
38328    MCALEER JF, 1987, J CHEM SOC FARAD T 1, V83, P1323
38329    NITTA M, 1979, J ELECTRON MATER, V8, P571
38330    PROMSONG L, 1995, SENSOR ACTUAT B-CHEM, V24, P504
38331    SARALA G, 1995, SENSOR ACTUAT B-CHEM, V28, P31
38332    SAYAGO I, 1995, SENSOR ACTUAT B-CHEM, V26, P19
38333    SCHIERBAUM KD, 1991, SENSOR ACTUAT B-CHEM, V3, P205
38334    TAKATA M, 1976, J AM CERAM SOC, V59, P4
38335    TETERYCZ H, 1998, SENSOR ACTUAT B-CHEM, V47, P100
38336    TOURNIER G, 1995, SENSOR ACTUAT B-CHEM, V26, P24
38337    WOLSKA E, 1992, SOLID STATE IONICS, V51, P231
38338    YAMAMOTO N, 1981, JPN J APPL PHYS, V20, P721
38339    YAMAZOE N, 1986, SENSOR ACTUATOR, V10, P379
38340    YAMAZOE N, 1991, SENSOR ACTUAT B-CHEM, V5, P7
38341    YOKOYAMA M, 1996, J APPL PHYS, V80, P1015
38342 NR 34
38343 TC 2
38344 SN 0254-0584
38345 J9 MATER CHEM PHYS
38346 JI Mater. Chem. Phys.
38347 PD NOV 1
38348 PY 1999
38349 VL 61
38350 IS 3
38351 BP 192
38352 EP 198
38353 PG 7
38354 SC Materials Science, Multidisciplinary
38355 GA 241MQ
38356 UT ISI:000082887500002
38357 ER
38358 
38359 PT J
38360 AU He, JH
38361 TI Homotopy perturbation technique
38362 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
38363 DT Article
38364 DE perturbation techniques; homotopy; nonlinearity
38365 AB The homotopy perturbation technique does not depend upon a small
38366    parameter in the equation. By the homotopy technique in topology, a
38367    homotopy is constructed with an imbedding parameter p epsilon [0, 1],
38368    which is considered as a "smalI parameter". Some examples are given.
38369    The approximations obtained by the proposed method are uniformly valid
38370    not only for small parameters, but also for very large parameters. (C)
38371    1999 Elsevier Science S.A. All rights reserved.
38372 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
38373 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
38374    Peoples R China.
38375 CR HE JH, 1997, COMM NONLINEAR SCI N, V2, P230
38376    HE JH, 1998, INT C VIBR ENG 98 DA
38377    LIAO SJ, 1995, INT J NONLINEAR MECH, V30, P371
38378    LIAO SJ, 1997, ENG ANAL BOUND ELEM, V20, P91
38379    LIN CC, 1974, MATH APPL DETERMINIS
38380    NAYFEH AH, 1981, INTRO PERTURBATION T
38381    WANG YB, 1986, INTRO PERTURBATION T
38382 NR 7
38383 TC 45
38384 SN 0045-7825
38385 J9 COMPUT METHOD APPL MECH ENG
38386 JI Comput. Meth. Appl. Mech. Eng.
38387 PD AUG 3
38388 PY 1999
38389 VL 178
38390 IS 3-4
38391 BP 257
38392 EP 262
38393 PG 6
38394 SC Computer Science, Interdisciplinary Applications; Engineering,
38395    Mechanical; Mechanics
38396 GA 239YN
38397 UT ISI:000082798300004
38398 ER
38399 
38400 PT J
38401 AU Wu, MH
38402    Bao, BR
38403    Chen, J
38404    Xu, YJ
38405    Zhao, SR
38406    Ma, ZT
38407 TI Preparation of thermosensitive hydrogel (PP-g-NIPAAm) with one-off
38408    switching for controlled release of drugs
38409 SO RADIATION PHYSICS AND CHEMISTRY
38410 DT Article
38411 ID INTERPENETRATING POLYMER NETWORKS
38412 AB A novel thermosensitive hydrogel with high mechanical strength was
38413    obtained by grafting N-isopropylacrylamide (NIPAAm) onto polypropylene
38414    using a preirradiation grafting method. The effect of radiation dose,
38415    dose rate, grafting temperature and reaction time on the grafting
38416    degree and properties of swelling-deswelling is discussed. Water
38417    absorption of the grafted polypropylene film could be switched on and
38418    off swiftly by control of temperature. The microstructure of grafted
38419    ultra thin porous PP film was studied with scanning electron
38420    microscope. (C) 1999 Elsevier Science Ltd. All rights reserved.
38421 C1 Acad Sinica, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
38422    Shanghai Univ, Sch Chem & Chem Engn, Shanghai 200041, Peoples R China.
38423 RP Wu, MH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
38424    Peoples R China.
38425 CR DONG LC, 1986, J CONTROL RELEASE, V4, P223
38426    HESKINS M, 1968, J MACROMOL SCI CHEM, V2, P1441
38427    HIROSE Y, 1987, MACROMOLECULES, V20, P1342
38428    HOFFMAN AS, 1986, J CONTROL RELEASE, V4, P213
38429    ILAVSKY M, 1985, POLYMER, V26, P1514
38430    MUKAE K, 1990, POLYM J, V22, P206
38431    MUKAE K, 1990, POLYM J, V22, P250
38432    OKANO T, 1990, J CONTROL RELEASE, V11, P255
38433    PALASIS M, 1992, J CONTROL RELEASE, V18, P1
38434    WU MH, 1996, RADIAT PHYS CHEM, V48, P525
38435 NR 10
38436 TC 5
38437 SN 0969-806X
38438 J9 RADIAT PHYS CHEM
38439 JI Radiat. Phys. Chem.
38440 PD SEP
38441 PY 1999
38442 VL 56
38443 IS 3
38444 BP 341
38445 EP 346
38446 PG 6
38447 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
38448    Science & Technology
38449 GA 239LL
38450 UT ISI:000082769600010
38451 ER
38452 
38453 PT J
38454 AU Yuan, Y
38455    Zhang, Q
38456    Huang, PY
38457    Wang, YF
38458    Zhou, QW
38459    Gan, RB
38460    Li, ZP
38461 TI Functional difference between N domain and C domain of hEGF and
38462    hTGF-alpha
38463 SO ACTA BIOCHIMICA ET BIOPHYSICA SINICA
38464 DT Article
38465 DE hEGF; hTGF-alpha; chimera; structure; function
38466 ID EPIDERMAL GROWTH-FACTOR
38467 AB By exchanging the N domain and C domain of hEGF and hTGF-alpha genes by
38468    PCR, two chimeras E-TGF(EGF(1-32)-TGF-alpha(34-50)) and
38469    T-EGF(TGF-alpha(1-33)-EGF(33-53)) were constructed. The wild and
38470    chimeric molecules were expressed in E. coli under phoA system. The
38471    expressed hEGF, hTGF-alpha and two chimeras were purified. The EGF
38472    receptor competitive binding affinity of the four molecules was hEGF >
38473    hTGF-alpha and E-TGF > T-EGF and the cell proliferation stimulating
38474    activity of them was hTGF-alpha and E-TGF > T-EGF > hEGF. The result
38475    suggests that the N domain of hEGF and hTGF-alpha may play a major role
38476    in receptor binding activity and C domain of them may be responsible
38477    for stimulating cell proliferation.
38478 C1 Chinese Acad Sci, Shanghai Inst Biochem, Shanghai 200031, Peoples R China.
38479    Shanghai Univ Sci & Technol, Sch Sci, Shanghai 201800, Peoples R China.
38480 CR ANZANO MA, 1983, P NATL ACAD SCI USA, V80, P6264
38481    BELL GI, 1986, NUCLEIC ACIDS RES, V14, P8427
38482    GAN RB, 1992, ACTA BIOCH BIOPH SIN, V24, P587
38483    MOSMANN T, 1983, J IMMUNOL METHODS, V65, P55
38484    SAMBROOK J, 1989, MOL CLONING LAB MANU
38485    WINKLER ME, 1989, BIOCHEMISTRY-US, V28, P6373
38486    YUAN Y, 1998, ACTA BIOCH BIOPH SIN, V30, P96
38487 NR 7
38488 TC 1
38489 SN 0582-9879
38490 J9 ACTA BIOCHIM BIOPHYS SINICA
38491 JI Acta Biochim. Biophys. Sin.
38492 PD SEP
38493 PY 1999
38494 VL 31
38495 IS 5
38496 BP 519
38497 EP U2
38498 PG 6
38499 SC Biochemistry & Molecular Biology; Biophysics
38500 GA 237UF
38501 UT ISI:000082673900008
38502 ER
38503 
38504 PT J
38505 AU Wang, ZY
38506    Shen, JQ
38507 TI Stimulated radiation from high-lying state of Li-2 generated with
38508    multiphoton in a wide wavelength region
38509 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
38510 DT Article
38511 DE stimulated radiation; ionization recombination process; two-photon
38512    resonant excitation
38513 ID SODIUM VAPOR; DIFFUSE BAND; DIMER
38514 AB The experimental results of ultraviolet diffuse-band of stimulated
38515    radiation from the high-lying state of Li-2 generated with any pumping
38516    wavelength between 620.0-665.0 nm were reported in this paper. In
38517    Li-2-Li system, the high-lying state of Li-2 was generated by
38518    two-photon excitation, ionization recombination process and collision
38519    energy pooling process, and the ultraviolet diffuse-band radiation was
38520    stimulated. The radiation was due to the transition from one of the
38521    comparable high-lying treble states to the low-lying repelling state a
38522    (3)Sigma(u)(+). The excitation mechanisms involved were discussed in
38523    detail.
38524 C1 Wenzhou Teachers Coll, Dept Phys, Wenzhou 325003, Peoples R China.
38525    Shanghai Univ Sci & Technol, Dept Basic Studies, Shanghai 200093, Peoples R China.
38526    E China Normal Univ, Acad Sinica, Shanghai Inst Opt & Fine Mech, Joint Lab Quantum Opt, Shanghai 200062, Peoples R China.
38527 RP Wang, ZY, Wenzhou Teachers Coll, Dept Phys, Wenzhou 325003, Peoples R
38528    China.
38529 CR BAHNS JT, 1984, APPL PHYS LETT, V44, P826
38530    BAHNS JT, 1989, J CHEM PHYS, V90, P2841
38531    RATCLIFF LB, 1987, J MOL SPECTROSC, V122, P293
38532    SHEN JQ, 1987, APPL PHYS B, V43, P225
38533    SHEN JQ, 1992, OPTICS SINICA, V12, P331
38534    WANG ZG, 1986, OPT COMMUN, V58, P315
38535    WANG ZG, 1986, OPTICS SINICA, V6, P1081
38536    WU CYR, 1983, OPT COMMUN, V48, P28
38537 NR 8
38538 TC 0
38539 SN 1000-0593
38540 J9 SPECTROSC SPECTR ANAL
38541 JI Spectrosc. Spectr. Anal.
38542 PD APR
38543 PY 1999
38544 VL 19
38545 IS 2
38546 BP 145
38547 EP 147
38548 PG 3
38549 SC Spectroscopy
38550 GA 237DG
38551 UT ISI:000082639600006
38552 ER
38553 
38554 PT J
38555 AU Sun, XL
38556    Li, D
38557 TI Value-estimation function method for constrained global optimization
38558 SO JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
38559 DT Article
38560 DE constrained global optimization; nonconvex optimization; smoothing
38561    technique; generalized Newton method; bisection method
38562 AB A novel value-estimation function method for global optimization
38563    problems with inequality constraints is proposed in this paper. The
38564    value-estimation function formulation is an auxiliary unconstrained
38565    optimization problem with a univariate parameter that represents an
38566    estimated optimal value of the objective function of the original
38567    optimization problem. A solution is optimal to the original problem if
38568    and only if it is also optimal to the auxiliary unconstrained
38569    optimization with the parameter set at the optimal objective value of
38570    the original problem, which turns out to be the unique root of a basic
38571    value-estimation function. A logarithmic-exponential value-estimation
38572    function formulation is further developed to acquire computational
38573    tractability and efficiency. The optimal objective value of the
38574    original problem as well as the optimal solution are sought iteratively
38575    by applying either a generalized Newton method or a bisection method to
38576    the logarithmic-exponential value-estimation function formulation. The
38577    convergence properties of the solution algorithms guarantee the
38578    identification of an approximate optimal solution of the original
38579    problem, up to any predetermined degree of accuracy, within a finite
38580    number of iterations.
38581 C1 Shanghai Univ, Dept Math, Shanghai, Peoples R China.
38582    Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, New Territories, Hong Kong.
38583 RP Sun, XL, Shanghai Univ, Dept Math, Shanghai, Peoples R China.
38584 CR AUBIN JP, 1984, APPL NONLINEAR ANAL
38585    BERTSEKAS DP, 1976, AUTOMATICA, V12, P133
38586    BRANCH MA, 1996, MATLAB OPTIMIZATION
38587    CETIN BC, 1993, J OPTIMIZ THEORY APP, V77, P97
38588    CHEN CH, 1995, MATH PROGRAM, V71, P51
38589    CLARKE FH, 1983, OPTIMIZATION NONSMOO
38590    DIXON LCW, 1978, GLOBAL OPTIMIZATION, V2
38591    FIACCO AV, 1990, NONLINEAR PROGRAMMIN
38592    GILL PE, 1981, PRACTICAL OPTIMIZATI
38593    GOH CJ, 1997, APPL MATH LETT, V10, P9
38594    HESTENES MR, 1969, J OPTIMIZATION THEOR, V4, P303
38595    HOCK W, 1981, TEST EXAMPLES NONLIN
38596    HORST R, 1995, INTRO GLOBAL OPTIMIZ
38597    KAN AHG, 1989, HDB OPERATIONS RES M, V1, P631
38598    KAN AHGR, 1987, MATH PROGRAM, V39, P57
38599    LEMARECHAL C, 1975, MATH PROGRAMMING STU, V3, P95
38600    LEVY AV, 1985, SIAM J SCI STAT COMP, V6, P15
38601    LI D, 1995, J OPTIMIZ THEORY APP, V85, P309
38602    LI XS, 1991, COMPUTATIONAL STRUCT, V8, P85
38603    RATSCHEK H, 1988, NEW COMPUTER METHODS
38604    ROCKAFELLAR RT, 1973, J OPTIMIZATION THEOR, V12, P555
38605    TANG HW, 1994, CHINESE SCI BULL, V39, P682
38606 NR 22
38607 TC 6
38608 SN 0022-3239
38609 J9 J OPTIMIZ THEOR APPL
38610 JI J. Optim. Theory Appl.
38611 PD AUG
38612 PY 1999
38613 VL 102
38614 IS 2
38615 BP 385
38616 EP 409
38617 PG 25
38618 SC Mathematics, Applied; Operations Research & Management Science
38619 GA 235GP
38620 UT ISI:000082534200010
38621 ER
38622 
38623 PT J
38624 AU He, JH
38625 TI A coupling method of a homotopy technique and a perturbation technique
38626    for non-linear problems
38627 SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS
38628 DT Article
38629 DE perturbation technique; homotopy; non-linearity
38630 AB In this paper, a coupling method of a homotopy technique and a
38631    perturbation technique is proposed to solve non-linear problems. In
38632    contrast to the traditional perturbation methods, the proposed method
38633    does not require a small parameter in the equation. In this method,
38634    according to the homotopy technique, a homotopy with an imbedding
38635    parameter p is an element of [0, 1] is constructed, and the imbedding
38636    parameter is considered as a "small parameter". So the proposed method
38637    can take full advantage of the traditional perturbation methods. Some
38638    examples are given. The results reveal that the new method is very
38639    effective and simple. (C) 1999 Elsevier Science Ltd. All rights
38640    reserved.
38641 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
38642 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
38643    Shanghai 200072, Peoples R China.
38644 CR HE JH, 1997, COMM NONLINEAR SCI N, V2, P230
38645    HE JH, 1998, INT C VIBR ENG 98 DA
38646    LIAO SJ, 1995, INT J NONLINEAR MECH, V30, P371
38647    LIAO SJ, 1997, ENG ANAL BOUND ELEM, V20, P91
38648    LIU GL, 1997, C 7 MOD MATH MECH SH, P47
38649    NAYFEH AH, 1985, PROBLEMS PERTURBATIO
38650 NR 6
38651 TC 62
38652 SN 0020-7462
38653 J9 INT J NON-LINEAR MECH
38654 JI Int. J. Non-Linear Mech.
38655 PD JAN
38656 PY 2000
38657 VL 35
38658 IS 1
38659 BP 37
38660 EP 43
38661 PG 7
38662 SC Mechanics
38663 GA 235WX
38664 UT ISI:000082567200005
38665 ER
38666 
38667 PT J
38668 AU Gao, S
38669    Li, J
38670 TI FDTD analysis of a sized-reduced, dual-frequency patch antenna -
38671    Abstract
38672 SO JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS
38673 DT Article
38674 AB A new single probe-fed, compact, dual-frequency antenna is studied,
38675    which is a rectangular microstrip patch with a rectangular slot cut in
38676    the center. The FDTD method is developed for full-wave analysis of its
38677    characteristics. A simple and accurate probe feed model is proposed,
38678    together with a simple method of calculating the radiation patterns. It
38679    is shown that through loading of the rectangular slot and proper
38680    location of the feed point, dual-frequency operations can be realized
38681    with an antenna-size reduction of similar to 33% and further reductions
38682    are also possible by tuning the length and width of the slot and the
38683    patch. Electric current distributions on the rectangular patch for both
38684    the slot loaded case and the case without slot are given, together with
38685    the radiation patterns. Theoretical analysis is verified by
38686    experimental results.
38687 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
38688 RP Gao, S, Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R
38689    China.
38690 NR 0
38691 TC 0
38692 SN 0920-5071
38693 J9 J ELECTROMAGNET WAVE APPLICAT
38694 JI J. Electromagn. Waves Appl.
38695 PY 1999
38696 VL 13
38697 IS 8
38698 BP 1031
38699 EP 1032
38700 PG 2
38701 SC Engineering, Electrical & Electronic; Physics, Applied; Physics,
38702    Mathematical
38703 GA 232QK
38704 UT ISI:000082381300003
38705 ER
38706 
38707 PT J
38708 AU Liu, L
38709    Yuan, SL
38710    Dong, YD
38711    Cui, K
38712 TI Effect of carbon content on mechanoreduction of copper oxide
38713 SO CHINESE PHYSICS LETTERS
38714 DT Article
38715 ID MECHANOCHEMICAL REDUCTION; COMBUSTION; GRAPHITE
38716 AB The reduction of CuO with different amount of carbon (CuO:C = 2:1,
38717    2:1.5, and 2:2, in molar ratio) induced by ball milling is examined by
38718    x-ray diffraction and transmission electron microscopy. It is found
38719    that reduction process is closely related to the carbon content. CuO
38720    can be completely converted into Cu if an excessive C is used (i.e., C
38721    = 1.5 or 2.0 mol). However, the reduction of CuO follows a two-step
38722    process, CuO --> Cu --> Cu2O, if the mixture only contains a nominal C
38723    content (i.e., C = 1 mol). A tentative model in terms of solid state
38724    reaction at the interfaces is proposed to explain the effect of carbon
38725    content on the mechanoreduction of CuO.
38726 C1 Huazhong Univ Sci & Technol, State Key Lab Plast Forming Stimulat & Die & Moul, Wuhan 430074, Peoples R China.
38727    Huazhong Univ Sci & Technol, Dept Phys, Wuhan 430074, Peoples R China.
38728    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
38729 RP Liu, L, Huazhong Univ Sci & Technol, State Key Lab Plast Forming
38730    Stimulat & Die & Moul, Wuhan 430074, Peoples R China.
38731 CR BRANDES A, 1983, SMITHELLS METALS REF
38732    MATTEAZZI P, 1991, MAT SCI ENG A-STRUCT, V149, P135
38733    MCCORMICK PG, 1995, MATER T JIM, V36, P161
38734    SCHAFFER GB, 1989, APPL PHYS LETT, V55, P45
38735    SCHAFFER GB, 1990, J MATER SCI LETT, V9, P1014
38736    SCHAFFER GB, 1990, METALL TRANS A, V21, P2789
38737    SCHAFFER GB, 1992, METALL TRANS A, V23, P1285
38738    YANG H, 1993, J SOLID STATE CHEM, V107, P258
38739    YANG H, 1994, J SOLID STATE CHEM, V110, P136
38740    YANG H, 1995, SCRIPTA METALL MATER, V32, P681
38741    YANG H, 1998, METALL MATER TRANS B, V29, P449
38742 NR 11
38743 TC 0
38744 SN 0256-307X
38745 J9 CHIN PHYS LETT
38746 JI Chin. Phys. Lett.
38747 PY 1999
38748 VL 16
38749 IS 8
38750 BP 591
38751 EP 593
38752 PG 3
38753 SC Physics, Multidisciplinary
38754 GA 231CH
38755 UT ISI:000082288500017
38756 ER
38757 
38758 PT J
38759 AU Zhou, SP
38760    Xu, KX
38761    Niu, JH
38762    Qu, H
38763 TI Solutions for the wave functions of mixed pairing symmetry
38764    superconductors
38765 SO ACTA PHYSICA SINICA
38766 DT Article
38767 ID HIGH-TEMPERATURE SUPERCONDUCTORS; UPPER CRITICAL-FIELD; YBA2CU3O7-DELTA
38768 AB We study the pairing symmetry in high-temperature superconductors from
38769    the point of view of group theory analysis in the framework of
38770    Ginzburg-Landau model. By considering an orthorhombic distortion from
38771    C-4v point group because of the correlation of intralayers, the two
38772    apparent transitions needed in earlier work on mixed s and d state have
38773    been removed. The structure of a single vortex is presented by solving
38774    the Ginzburg-Landau wave function equations of the mixed s +/-
38775    id(x2-y2) state. The analysis of the magnetic field dependence of the
38776    transport behaviors including the critical current and the R-T curve
38777    expansion reveals the origin of the so-called "eigen-pinning effect"
38778    and offers a good interpretation of the experimental observations.
38779 C1 Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
38780 RP Zhou, SP, Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800,
38781    Peoples R China.
38782 CR CAI JH, 1982, THEORY GREENS FUNCTI, P336
38783    CHAKRAVARTY S, 1993, SCIENCE, V261, P337
38784    CHAUDHARI P, 1994, PHYS REV LETT, V72, P1084
38785    DORIA MM, 1989, PHYS REV B, V39, P9537
38786    DORIA MM, 1990, PHYS REV B, V41, P6335
38787    ELLIOTT JP, 1984, SYMMETRY PHYSICS, P43
38788    GUO BY, 1988, DIFFERENCE ALGORITHM, P43
38789    IYE Y, 1987, JPN J APPL PHYS PT 2, V26, L1057
38790    JOYNT R, 1990, PHYS REV B, V41, P4271
38791    KHOMSKII DI, 1995, PHYS REV LETT, V75, P1384
38792    KRESIN VZ, 1993, PHYS REV B, V48, P9012
38793    KUPFER H, 1988, CRYOGENICS, V28, P650
38794    LI QP, 1993, PHYS REV B, V48, P437
38795    NIU JH, 1997, THESIS SHANGHAI U
38796    REN Y, 1995, PHYS REV LETT, V74, P3680
38797    ROBERTAZZI RP, 1992, PHYS REV B, V46, P8456
38798    ROHKSAR DS, 1993, PHYS REV LETT, V70, P493
38799    ROSENTHAL PA, 1993, APPL PHYS LETT, V63, P1984
38800    SIGRIST M, 1989, PHYS REV LETT, V63, P1727
38801    SUN AG, 1994, PHYS REV LETT, V72, P2267
38802    TINKHAM M, 1964, GROUP THEORY QUANTUM
38803    TINKHAM M, 1988, PHYS REV LETT, V61, P1658
38804    TSUEI CC, 1994, PHYS REV LETT, V73, P593
38805    WELP U, 1989, PHYS REV LETT, V62, P1908
38806    XU JH, 1996, PHYS REV B, V53, R2991
38807    ZHANG FC, 1988, PHYS REV B, V37, P3759
38808    ZHOU SP, 1998, IN PRESS ACTA PHYSIC, P807
38809 NR 27
38810 TC 3
38811 SN 1000-3290
38812 J9 ACTA PHYS SIN-CHINESE ED
38813 JI Acta Phys. Sin.
38814 PD FEB
38815 PY 1999
38816 VL 48
38817 IS 2
38818 BP 342
38819 EP 351
38820 PG 10
38821 SC Physics, Multidisciplinary
38822 GA 231VU
38823 UT ISI:000082332800022
38824 ER
38825 
38826 PT J
38827 AU Qu, H
38828    Zhou, SP
38829 TI Vortex lattice in a high-T-c superconductor of mixed pairing symmetry
38830 SO ACTA PHYSICA SINICA
38831 DT Article
38832 ID HIGH-TEMPERATURE SUPERCONDUCTORS
38833 AB Starting from a tight binding description, the existence of mixed s-d
38834    wave pairing stare is discussed. Then, within the framework of the
38835    phenomenological G-L theory, the structure of vortex lattice in a
38836    high-T-c superconductor is studied. It is shown that there is a strong
38837    correlation between the structure of a single vortex and the shape of
38838    the vortex lattice. At low temperatures, with the existence of s-wave
38839    component and its coupling to d-wave component, the d-wave order
38840    parameter and the local magnetic field show tetragonal anisotropy, and
38841    the structure of vortex lattice is oblique; however, when the
38842    temperature is close to T-c, it may become triangular.
38843 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
38844 RP Qu, H, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
38845 CR CAI JH, 1982, THEORY GREENS FUNCTI
38846    CHAKRAVARTY S, 1993, SCIENCE, V261, P337
38847    DERAEDT H, 1990, Z PHYS B CON MAT, V79, P327
38848    DORIA MM, 1990, PHYS REV B, V41, P6335
38849    KEIMER B, 1994, J APPL PHYS 2, V76, P6778
38850    KHOMSKII DI, 1995, PHYS REV LETT, V75, P1384
38851    KLEINER WH, 1964, PHYS REV, V133, P1266
38852    KRESIN VZ, 1993, PHYS REV B, V48, P9012
38853    LEGGETT AJ, 1975, REV MOD PHYS, V47, P331
38854    NIU JH, 1997, THESIS SHANGHAI U
38855    PARKALUOTO R, 1990, PHYS SCR T, V33, P227
38856    SCHNEIDER T, 1990, Z PHYS B CON MAT, V81, P3
38857    WANG ZD, 1991, PHYS REV B, V44, P918
38858    ZHANG FC, 1980, PHYS REV B, V37, P3795
38859    ZHOU SP, 1998, ACTA PHYS SINICA, V47, P807
38860 NR 15
38861 TC 1
38862 SN 1000-3290
38863 J9 ACTA PHYS SIN-CHINESE ED
38864 JI Acta Phys. Sin.
38865 PD FEB
38866 PY 1999
38867 VL 48
38868 IS 2
38869 BP 352
38870 EP 362
38871 PG 11
38872 SC Physics, Multidisciplinary
38873 GA 231VU
38874 UT ISI:000082332800023
38875 ER
38876 
38877 PT J
38878 AU Xu, KX
38879    Yu, LM
38880    Essa, AA
38881    Zhou, SP
38882    Bao, JS
38883 TI Nonequilibrium microwave response and Kosterlitz-Thouless transition in
38884    YBCO granular films
38885 SO ACTA PHYSICA SINICA
38886 DT Article
38887 ID YBA2CU3O7-DELTA THIN-FILMS; HIGH-TEMPERATURE SUPERCONDUCTORS;
38888    PHOTORESPONSE
38889 AB The characteristic of microwave radiation (lambda = 8 mm) response of
38890    YBCO granular films was reported. Experimental results show that the
38891    response behavior can be described with nonequilibrium response effect,
38892    instead of thermal effect model. Near below the transition temperature
38893    T-infinity, nonequilibrium microwave response signal decays gradually
38894    and disappears with the sample resistance becoming zero. It was also
38895    found that the response signal is very sensitive to a weak magnetic
38896    field. The sample I-V curve was studied carefully, and the
38897    Kosterlitz-Thouless transition model can be used to describe the
38898    two-dimensional transport characteristic of the YBCO granular films.
38899    Based on the analysis and experimental results, we believe that the
38900    mechanism of nonequilibrium microwave response may be related with the
38901    breaking of the votex-antivotex pair in high T-c superconductor.
38902 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
38903 RP Xu, KX, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
38904 CR BATLOGG BJ, 1997, J SUPERCOND, V10, P583
38905    CULBERTSON JC, 1991, PHYS REV B, V44, P9609
38906    DEMSAR J, 1997, J SUPERCOND, V10, P455
38907    ENOMOTO Y, 1986, J APPL PHYS, V59, P3807
38908    FARDMANESH M, 1995, J APPL PHYS, V77, P4568
38909    FLORY AT, 1983, PHYS REV B, V28, P5075
38910    FRENKEL A, 1993, PHYS REV B, V48, P9717
38911    HEGMANN FA, 1993, PHYS REV B, V48, P16023
38912    HEGMANN FA, 1995, APPL PHYS LETT, V67, P285
38913    HERTER ST, 1998, PHYS REV B, V57, P1154
38914    HUBER WM, 1996, APPL PHYS LETT, V68, P3338
38915    KADOWAKI K, 1994, SUPERCOND SCI TECH, V7, P519
38916    KOSTERLITZ JM, 1973, J PHYS C SOLID STATE, V6, P1181
38917    VANVECHTEN D, 1997, APPL PHYS LETT, V71, P1415
38918    WU PH, 1987, JPN J APPL PHYS, V26, L1579
38919    XIA RM, 1998, CHINESE J LOW TEMPER, V20, P235
38920    YING QY, 1990, PHYS REV B, V42, P2242
38921    ZHANG ZM, 1994, J SUPERCOND, V7, P871
38922 NR 18
38923 TC 3
38924 SN 1000-3290
38925 J9 ACTA PHYS SIN-CHINESE ED
38926 JI Acta Phys. Sin.
38927 PD JUN
38928 PY 1999
38929 VL 48
38930 IS 6
38931 BP 1152
38932 EP 1162
38933 PG 11
38934 SC Physics, Multidisciplinary
38935 GA 231VY
38936 UT ISI:000082333200027
38937 ER
38938 
38939 PT J
38940 AU Yan, KZ
38941    Tan, WH
38942 TI Stationary solutions of the nonlinear Schrodinger equation for neutral
38943    atoms in a harmonic trap
38944 SO ACTA PHYSICA SINICA
38945 DT Article
38946 ID BOSE-EINSTEIN CONDENSATION; GAS
38947 AB We present a general method to solve the stationary nonlinear
38948    Schrodinger equation (NLSE) with an external potential. We apply it to
38949    the stationary states of NLSE for neutral atoms in a harmonic trap. We
38950    discuss the problems of convergence and normalization of NLSE wave
38951    function. The accuracy of calculation is analyzed.
38952 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
38953 RP Yan, KZ, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
38954 CR ANDERSON MH, 1995, SCIENCE, V269, P198
38955    BRADLEY CC, 1995, PHYS REV LETT, V75, P1687
38956    DAVIS KB, 1995, PHYS REV LETT, V75, P3969
38957    EDWARDS M, 1995, PHYS REV A, V51, P1382
38958    HAO BL, 1997, PROGR PHYSICS, V17, P223
38959    RUPRECHT PA, 1995, PHYS REV A, V51, P4704
38960 NR 6
38961 TC 8
38962 SN 1000-3290
38963 J9 ACTA PHYS SIN-CHINESE ED
38964 JI Acta Phys. Sin.
38965 PD JUL
38966 PY 1999
38967 VL 48
38968 IS 7
38969 BP 1185
38970 EP 1191
38971 PG 7
38972 SC Physics, Multidisciplinary
38973 GA 231VZ
38974 UT ISI:000082333300001
38975 ER
38976 
38977 PT J
38978 AU Zhao, MH
38979    Cheng, CJ
38980    Liu, YJ
38981    Liu, GN
38982    Zhang, SS
38983 TI The method of analysis of crack problem in three-dimensional non-local
38984    elasticity
38985 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
38986 DT Article
38987 DE non-local elasticity; fracture mechanics; boundaryintegral equation
38988    method
38989 ID NONLOCAL ELASTICITY; SUBJECT; SHEAR
38990 AB In this paper, the displacement discontinuity fundamental solution
38991    (DDFS) corresponding to the unit concentrated displacement
38992    discontinuity for three dimensional (3D) non-local elasticity under
38993    symmetrical condition is obtained. Based on the displacement
38994    discontinuity boundary integralequation (DDBIE) and boundary-element
38995    method (DDBEM) of local (classical) elasticity, a method of analysis of
38996    crack in 3D non- local elasticity with wide application is proposed
38997    with the DDFS. Through the method, several important problems of
38998    fracture mechanics are analysed.
38999 C1 Zhengzhou Res Inst Mech Engn, Zhengzhou 450052, Peoples R China.
39000    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
39001    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
39002 RP Zhao, MH, Zhengzhou Res Inst Mech Engn, Zhengzhou 450052, Peoples R
39003    China.
39004 CR BREBBIA CA, 1980, BOUNDARY ELEMENT TEC
39005    CHENG PS, 1992, ACTA MECH SINICA, V24, P329
39006    EDELEN DGB, 1976, NONLOCAL FIELD THEOR
39007    ERINGEN AC, 1976, NONLOCAL POLAR FIELD
39008    ERINGEN AC, 1977, INT J ENG SCI, V15, P177
39009    ERINGEN AC, 1977, J MECH PHYS SOLIDS, V25, P339
39010    ERINGEN AC, 1978, INT J FRACTURE, V14, P367
39011    ERINGEN AC, 1979, ENG FRACT MECH, V12, P211
39012    GAO J, 1989, ACTA MECH SOLIDA SIN, V10, P289
39013    GRADSHTEYN IS, 1965, TABLES INTEGRALS SER
39014    ILCEWICZ L, 1981, ENG FRACT MECH, V14, P801
39015    RAMABRAHAM B, 1985, INDIAN J PURE APPL M, V16, P661
39016    RUI W, 1989, SCI B, V34, P412
39017    SNEDDON IN, 1951, FOURIER TRANSFORMS M
39018    YU JL, 1984, ACTA MECH SINICA, V16, P487
39019    ZHAO MH, 1994, ENG ANAL, V13, P333
39020    ZHAO MH, 1999, APPL MATH MECH-ENGL, V20, P143
39021 NR 17
39022 TC 0
39023 SN 0253-4827
39024 J9 APPL MATH MECH-ENGL ED
39025 JI Appl. Math. Mech.-Engl. Ed.
39026 PD MAY
39027 PY 1999
39028 VL 20
39029 IS 5
39030 BP 469
39031 EP 475
39032 PG 7
39033 SC Mathematics, Applied; Mechanics
39034 GA 230NL
39035 UT ISI:000082257200002
39036 ER
39037 
39038 PT J
39039 AU Chen, LS
39040    Zhao, XH
39041 TI A mathematical theory of materials with elastic range and the
39042    definition of back stress tensor
39043 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
39044 DT Article
39045 DE theory of materials with elastic range; elastic-plastic constitutive
39046    relation; back stress
39047 ID FINITE
39048 AB In this pager, the theory of materials with elastic range by Lucchesi
39049    and Podio-Guidugli(1988) has been generalized. It has also shown that
39050    there are some difficulties on the definition of back stress as the
39051    "center" of the yield surface in the Cauchy space. The back stress
39052    tensor is Lagrangian, and must be defined in the Lagrangian stress
39053    space.
39054 C1 Nanchang Univ, Inst Engn Mech, Nanchang 330029, Peoples R China.
39055    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
39056 RP Chen, LS, Nanchang Univ, Inst Engn Mech, Nanchang 330029, Peoples R
39057    China.
39058 CR AGAHTEHRANI A, 1987, J MECH PHYS SOLIDS, V35, P519
39059    CASEY J, 1988, ARCH RATION MECH AN, V102, P351
39060    CASEY J, 1992, INT J ENG SCI, V30, P1257
39061    DAFALIAS YF, 1987, ACTA MECH, V69, P119
39062    DAFALIAS YF, 1988, ACTA MECH, V73, P121
39063    LUCCHESI M, 1988, ARCH RATION MECH AN, V102, P23
39064    NAGHDI PM, 1990, J APPL MATH PHYS ZAM, V4, P315
39065    NEMATNASSER S, 1983, J APPL MECH-T ASME, V50, P1114
39066    NOLL W, 1958, ARCH RATIONAL MECH A, V2, P197
39067    ZHENG QS, 1992, ACTA MECH, V91, P97
39068 NR 10
39069 TC 1
39070 SN 0253-4827
39071 J9 APPL MATH MECH-ENGL ED
39072 JI Appl. Math. Mech.-Engl. Ed.
39073 PD MAY
39074 PY 1999
39075 VL 20
39076 IS 5
39077 BP 476
39078 EP 484
39079 PG 9
39080 SC Mathematics, Applied; Mechanics
39081 GA 230NL
39082 UT ISI:000082257200003
39083 ER
39084 
39085 PT J
39086 AU He, JH
39087 TI Further study of the equivalent theorem of Hellinger-Reissner and
39088    Hu-Washizu variational principles
39089 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
39090 DT Article
39091 DE variational principles in elasticity; Hellinger-Reissner principle;
39092    Hu-Washizu principle; the semi-inverse method; trial-functional
39093 ID SEMI-INVERSE METHOD; FLOW
39094 AB In this paper, it has been proved that the well-known Hu-Washizu
39095    variational principle is a pseudo-generalized variational principle (
39096    pseudo-GVP). The stationary conditions of its functional may satisfy!
39097    all its field equations and boundary conditions if all the variables in
39098    the functional are considered as independent variations, but there
39099    might exist some kinds of constraints. Some new pseudo-GVPs are
39100    established to distinguish them from genuine ones by the so-called
39101    inverse Lagrange multiplier method. The constrained Hu-Washizu
39102    principle, therefore, is proved to be equivalent with the
39103    Hellinger-Reissner principle under the constraints of stress-strain
39104    relations.
39105 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
39106 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
39107    Peoples R China.
39108 CR CHEIN WZ, 1989, SELECTED WORKS CHIEN, P419
39109    CHEN WZ, 1983, APPL MATH MECH, V4, P143
39110    CHIEN WZ, 1983, ACTA MECH SINICA, V4, P313
39111    CHIEN WZ, 1984, ADV APPL MECH, V24, P93
39112    HE JH, 1997, INT J TURBO JET ENG, V14, P17
39113    HE JH, 1997, INT J TURBO JET ENG, V14, P23
39114    HE JH, 1997, J SHANGHAI U, V1, P117
39115    HE JH, 1998, APPL MATH MODEL, V22, P395
39116    HE JH, 1998, INT J TURBO JET ENG, V15, P101
39117    HE JH, 1998, INT J TURBO JET ENG, V15, P95
39118    HE JH, 1999, ASME
39119    HU HC, 1954, ACTA PHYSICA SINICA, V10, P259
39120    HU HC, 1985, ACTA MECH SINICA, V17, P426
39121    LIU GL, 1990, P 1 INT S AER INT FL, P128
39122    WASHIZU K, 1955, 2518 MIT AER STRUCT
39123 NR 15
39124 TC 2
39125 SN 0253-4827
39126 J9 APPL MATH MECH-ENGL ED
39127 JI Appl. Math. Mech.-Engl. Ed.
39128 PD MAY
39129 PY 1999
39130 VL 20
39131 IS 5
39132 BP 545
39133 EP 556
39134 PG 12
39135 SC Mathematics, Applied; Mechanics
39136 GA 230NL
39137 UT ISI:000082257200012
39138 ER
39139 
39140 PT J
39141 AU Gu, CQ
39142 TI Thiele-type and Lagrange-type generalized inverse rational
39143    interpolation for rectangular complex matrices
39144 SO LINEAR ALGEBRA AND ITS APPLICATIONS
39145 DT Article
39146 ID RECURSIVENESS
39147 AB A variety of matrix rational interpolation problems include the partial
39148    realization problem for matrix power series and the minimal rational
39149    interpolation problem for general matrix functions. Different from the
39150    previous work, in this paper we consider a new method of matrix
39151    rational interpolation, with rectangular real or complex interpolated
39152    matrices and distinct real or complex interpolation points. Based on an
39153    axiomatic definition for the generalized inverse matrix rational
39154    interpolants (GMRI), GMRI are constructed in the following two forms:
39155    (i) Thiele-type continued fraction expression; (ii) an explicit
39156    determinantal formula for the denominator scalar polynomials and for
39157    the numerator matrix polynomials, which are of Lagrange-type
39158    expression. As a direct application of GMRI, a matrix rational
39159    extrapolation is introduced. (C) 1999 Elsevier Science Inc. All rights
39160    reserved.
39161 C1 Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China.
39162 RP Gu, CQ, Shanghai Univ, Dept Math, Box 30,149 Yan Chang Rd, Shanghai
39163    200072, Peoples R China.
39164 CR ANDERSON BDO, 1990, LINEAR ALGEBRA APPL, V137, P479
39165    ANTOULAS AC, 1986, IEEE T AUTOMAT CONTR, V31, P1121
39166    ANTOULAS AC, 1988, LINEAR ALGEBRA APPL, V108, P157
39167    ANTOULAS AC, 1990, LINEAR ALGEBRA APPL, V137, P511
39168    BECKERMANN B, 1992, NUMER ALGORITHMS, V3, P45
39169    BECKERMANN B, 1997, J COMPUT APPL MATH, V77, P5
39170    BULTHEEL A, 1986, J COMPUT APPL MATH, V14, P401
39171    DIECI L, 1994, LINEAR ALGEBRA APPL, V202, P25
39172    GRAVESMORRIS PR, 1983, NUMER MATH, V42, P331
39173    GRAVESMORRIS PR, 1986, CONSTR APPROX, V2, P263
39174    GU CQ, 1993, J HEFEI U TECHNOLOGY, V16, P176
39175    GU CQ, 1995, MATH NUMER SINICA, V17, P73
39176    GU CQ, 1996, J MATH RES EXPOSITIO, V16, P301
39177    GU CQ, 1996, NUMER MATH J CHINESE, V18, P135
39178    GU CQ, 1997, J COMPUT APPL MATH, V80, P71
39179    GU CQ, 1997, J COMPUT APPL MATH, V84, P137
39180    GU CQ, 1997, NUMER MATH J CHINESE, V19, P241
39181    GU CQ, 1997, NUMER SINICA, V19, P19
39182    MESSAOUDI A, 1994, LINEAR ALGEBRA APPL, V202, P71
39183    WUYTACK L, 1970, NUMER MATH, V17, P215
39184 NR 20
39185 TC 4
39186 SN 0024-3795
39187 J9 LINEAR ALGEBRA APPL
39188 JI Linear Alg. Appl.
39189 PD JUL 1
39190 PY 1999
39191 VL 295
39192 IS 1-3
39193 BP 7
39194 EP 30
39195 PG 24
39196 SC Mathematics, Applied
39197 GA 228QX
39198 UT ISI:000082148100002
39199 ER
39200 
39201 PT J
39202 AU Wei, JH
39203    Ma, JC
39204    Fan, YY
39205    Yu, NW
39206    Yang, SL
39207    Xiang, SH
39208 TI Back-attack phenomena of gas jets with submerged horizontally blowing
39209    and effects on erasion and wear of refractory lining
39210 SO ISIJ INTERNATIONAL
39211 DT Article
39212 DE back-attack phenomenon; refractory lining erosion and wear;
39213    annular-straight type tuyere; annular-spiral flat type tuyere;
39214    submerged gas blowing; horizontally side blowing; AOD refining;
39215    non-rotating gas jet; rotating gas jet; water modeling
39216 ID INJECTION
39217 AB Taken the refining process in an 18 t AOD vessel for example, the
39218    "back-attack" phenomena of the horizontal rotating and non-rotating gas
39219    jets and their effects on the erosion and wear of the refractory lining
39220    were investigated in a water model. For this refining process, the
39221    two-tuyere (lance with constant cross-sectional area) blowing of gas is
39222    operated using the annular-tube type tuyere. The geometric similarity
39223    ratio of the model unit (including the tuyere) with its prototype was
39224    1/3. The relations of the gas blowing rate, blowing pressure, angular
39225    separation between the two tuyeres, type of tuyere and other operation
39226    parameters with the back-attack action of the gas jet and the
39227    refractory lining erosion and wear were examined under the different
39228    operating modes. The appropriate back-attack frequencies and pressures
39229    were continuously monitored and measured by means of a dynamic
39230    resistance strain-meter of YD-21 type with an anti-water pressure
39231    sensor made specially. A light-beam oscilloscope of SC16A type recorded
39232    simultaneously the back-attack waves. Also, the modeling experiment on
39233    the erosion and wear of the refractory lining was carried out. The
39234    results indicated that the back-attack phenomena of the horizontal
39235    rotating and non-rotating gas jets have respectively the different
39236    features from that in a bottom blowing. On the back-attack phenomena of
39237    these two kinds of jets, the gas streams of the inner tubes
39238    (main-tuyeres) have all a governing bearing, and the annular slit pipe
39239    (sub-tuyere) streams show an evident alleviation and suppression
39240    effect. The circulative motion of the liquid in the bath would be
39241    another important reason to bring about the back-attack phenomenon of a
39242    submerged gas jet. The buoyancy force gives a considerable influence;
39243    it is able not only to increase the back-attack intensity of a
39244    horizontal gas jet, but also to enlarge the locally eroded and worn
39245    zone of the refractory lining. The influence of the tuyere position
39246    (the angle included between the two tuyeres) is not so remarkable in
39247    the conditions of the present work. The rotating motion of a horizontal
39248    gas jet may decrease the frequency and intensity of the back-attack
39249    action and reduce the eroded and worn rate and area of the refractory
39250    lining under a same blowing pressure. The annular-spiral tube type
39251    tuyere with a reasonable structure may be expected to have a good
39252    latent using power and composite effectiveness.
39253 C1 Shanghai Univ, Dept Metall Mat, Shanghai 200072, Peoples R China.
39254 RP Wei, JH, Shanghai Univ, Dept Metall Mat, Shanghai 200072, Peoples R
39255    China.
39256 CR AOKI T, 1982, INJECTION PHENOMENA, A1
39257    AOKI T, 1990, TETSU TO HAGANE, V76, P2004
39258    BLOSTEIN P, 1992, SCANINJECT 1, V6, P129
39259    BRIMACOMBE JK, 1984, METALL TRANS B, V15, P243
39260    CARLSSON G, 1986, SCAND J METALL, V15, P298
39261    CHO YW, 1986, SCANINJECT 1, V4, P4
39262    FARIAS L, 1982, INJECTION PHENOMENA, V1, E1
39263    FARMER L, 1989, P STEELM C AIME ISS, P487
39264    GUSTAFSSON S, 1984, P S INJ MET SEC REF, R15
39265    LI YZ, 1984, P 2 NAT S KIN MET RE, V2, P335
39266    OZAWA Y, 1983, T IRON STEEL I JPN, V23, P764
39267    SAKAGUCHI S, 1977, TETSU TO HAGANE, V63, S534
39268    SHIBASHI M, 1975, TETSU TO HAGANE, V61, S111
39269    SUZUKI K, 1982, T STEEL I JPN, V22, B237
39270    WEI JH, IN PRESS IRON STEELM
39271    WEI JH, IN PRESS IRONMAKING
39272 NR 16
39273 TC 3
39274 SN 0915-1559
39275 J9 ISIJ INT
39276 JI ISIJ Int.
39277 PY 1999
39278 VL 39
39279 IS 8
39280 BP 779
39281 EP 786
39282 PG 8
39283 SC Metallurgy & Metallurgical Engineering
39284 GA 227XU
39285 UT ISI:000082105900005
39286 ER
39287 
39288 PT J
39289 AU Sun, JA
39290    Zhu, ZY
39291 TI Application of differential quadrature method to solve entry flow of
39292    viscoelastic second-order fluid
39293 SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
39294 DT Article
39295 DE viscoelasticity; second-order fluid; entry flow; differential
39296    quadrature method
39297 ID EQUATIONS; CAVITY
39298 AB The entry flow of viscoelastic second-order fluid between two parallel
39299    plates is discussed. The governing equations of vorticity and the
39300    streamfunction are expanded with respect to a small parameter that
39301    characterizes the elasticity of the fluid by means of the standard
39302    perturbation method. By using the differential quadrature method with
39303    only a few grid points, high-accurate numerical solutions are obtained.
39304    The numerical results show a lot of the features of a viscoelastic
39305    second-order fluid. Copyright (C) 1999 John Wiley & Sons, Ltd.
39306 C1 NW Normal Univ, Dept Phys, Lanzhou 730070, Peoples R China.
39307    Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Math, Shanghai 200072, Peoples R China.
39308    Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
39309 RP Sun, JA, NW Normal Univ, Dept Phys, Lanzhou 730070, Peoples R China.
39310 CR BELLMAN R, 1971, J MATH ANAL APPL, V34, P235
39311    BELLMAN R, 1972, J COMPUT PHYS, V10, P40
39312    BEN CW, 1996, APPL MECH REV, V49, P1
39313    CHANG PW, 1979, COMP FLUIDS, V7, P267
39314    DATTA AB, 1976, RHEOL ACTA, V15, P403
39315    FONG CFC, 1984, NONNEWTONIAN FLUID M
39316    MINGLE JO, 1973, INT J NUMER METH ENG, V7, P103
39317    SHU C, 1992, COMPUT SYST ENG, V3, P281
39318    SHU C, 1992, INT J NUMER METH FL, V15, P791
39319    SHU C, 1994, INT COMMUN HEAT MASS, V21, P809
39320    STRIZ AG, 1994, INT J NONLINEAR MECH, V29, P665
39321    TAN KL, 1977, J NONNEWTONIAN FLUID, V3, P25
39322 NR 12
39323 TC 0
39324 SN 0271-2091
39325 J9 INT J NUMER METHOD FLUID
39326 JI Int. J. Numer. Methods Fluids
39327 PD AUG 30
39328 PY 1999
39329 VL 30
39330 IS 8
39331 BP 1109
39332 EP 1117
39333 PG 9
39334 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied;
39335    Physics, Fluids & Plasmas; Mechanics
39336 GA 228BC
39337 UT ISI:000082114800010
39338 ER
39339 
39340 PT J
39341 AU Liu, ZR
39342    Xu, ZY
39343    Debin, H
39344 TI Homoclinic orbit in ODE on GAIM of the sine-Gordon equation
39345 SO PHYSICS LETTERS A
39346 DT Article
39347 DE infinite dimensional dynamical systems; GIAM; homoclinic orbit
39348 AB In this paper, the existence of the homoclinic orbit is proved under
39349    certain parametric conditions, by studying qualitative properties of
39350    ODE on GAIM of the sine-Gordon equation. (C) 1999 Published by Elsevier
39351    Science B.V. All rights reserved.
39352 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
39353    Acad China, Inst Mech, LNM, Beijing, Peoples R China.
39354    Wuxi Light Ind Univ, Math & Phys Inst, Wuxi, Peoples R China.
39355 RP Liu, ZR, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
39356 CR BISHOP AR, 1990, SIAM J MATH ANAL, V21, P1511
39357    HALLER G, 1993, PHYSICA D, V66, P298
39358    KOVOCIC G, 1992, PHYSICA D, V59, P185
39359    LIU Z, 1995, J NONL DYN, V2, P12
39360    LIU ZG, 1995, PHYS LETT A, V204, P343
39361    TEMAM R, 1988, INFINITE DIMENSIONAL
39362    XU Z, 1993, KEXUE TONGBAO, V38, P1750
39363 NR 7
39364 TC 1
39365 SN 0375-9601
39366 J9 PHYS LETT A
39367 JI Phys. Lett. A
39368 PD JUL 26
39369 PY 1999
39370 VL 258
39371 IS 4-6
39372 BP 249
39373 EP 252
39374 PG 4
39375 SC Physics, Multidisciplinary
39376 GA 225NW
39377 UT ISI:000081968500009
39378 ER
39379 
39380 PT J
39381 AU Li, L
39382    Tang, ZJ
39383    Sun, WY
39384    Wang, PL
39385 TI Phase diagram estimation of the Al2O3SiO2-Gd2O3 system
39386 SO PHYSICS AND CHEMISTRY OF GLASSES
39387 DT Article
39388 ID REGULAR SOLUTION MODEL; OXIDE SYSTEMS; PREDICTION; GLASSES
39389 AB Limiting binaries in the Al2O3-SiO2-Gd2O3 system were assessed The
39390    binary diagrams from Toropov, Mizuno, Aramaki and Roy were optimised
39391    with the substitutional model of Kaufman and Nesor; and the approximate
39392    formula for the free energy effusion of rare earth element oxides of Wu
39393    and Pelton. The Gibbs free energies derived for pure solid oxides and
39394    stoichiometric phases were used with solution parameters to estimate
39395    the corresponding binaries, liquidus surface and isothermal sections of
39396    the ternary system at 2140, 2073 and 2023 K respectively Samples
39397    as-fired at known temperatures but with different compositions were
39398    analysed by x-ray diffraction and the results were used in the
39399    calculation of isothermal sections.
39400 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
39401    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
39402 RP Li, L, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R
39403    China.
39404 CR ARAMAKI S, 1962, J AM CERAM SOC, V45, P229
39405    BONDAR IA, 1973, CERAM INT, V13, P99
39406    BUDNIKOV PP, 1965, VS DOKL AKAD NAUK SS, V165, P1077
39407    CINIBULK MK, 1992, J AM CERAM SOC, V75, P2037
39408    DU Y, 1992, CALPHAD, V16, P221
39409    ERBE EM, 1990, J AM CERAM SOC, V73, P2708
39410    FELSCHE J, 1973, STRUCT BOND, V13, P99
39411    HILLERT M, 1970, ACTA CHEM SCAND, V24, P3618
39412    HILLERT M, 1992, CALPHAD, V16, P193
39413    HILLERT M, 1992, CALPHAD, V16, P199
39414    HIROSAKI N, 1988, J AM CERAM SOC, V71, C144
39415    HUANG JG, 1993, B CERAM, V6, P50
39416    HYATT MJ, 1987, J AM CERAM SOC, V70, P283
39417    KAUFMAN L, 1978, CALPHAD, V2, P35
39418    KLUG FJ, 1987, J AM CERAM SOC, V70, P750
39419    KOHLI JT, 1991, PHYS CHEM GLASSES, V32, P67
39420    KOLITSCH U, 1997, J ALLOY COMPD, V257, P104
39421    LI C, 1987, B CERAM, V10, P34
39422    LI L, 1997, PHYS CHEM GLASSES, V38, P323
39423    LUKAS HL, 1977, CALPHAD, V1, P225
39424    MIZUNO M, 1977, YOGYO-KYOKAI-SHI, V85, P543
39425    PELTON AD, 1986, METALL TRANS B, V17, P805
39426    SHEVTHENKO AV, 1985, THERMOCHIM ACTA, V93, P537
39427    SHISHIDO T, 1979, J MATER SCI, V14, P823
39428    SUN G, 1991, J CHIN RARE EARTH EL, V9, P128
39429    SUNDMAN B, 1981, J PHYS CHEM SOLIDS, V42, P297
39430    TOROPOV NA, 1960, T 7 INT CER C LOND, P441
39431    WANG XH, 1990, J AM CERAM SOC, V73, P770
39432    WU P, 1992, J ALLOY COMPD, V179, P259
39433    WU P, 1992, J ALLOY COMPD, V179, P259
39434 NR 30
39435 TC 4
39436 SN 0031-9090
39437 J9 PHYS CHEM GLASSES
39438 JI Phys. Chem. Glasses
39439 PD JUN
39440 PY 1999
39441 VL 40
39442 IS 3
39443 BP 126
39444 EP 129
39445 PG 4
39446 SC Chemistry, Physical; Materials Science, Ceramics
39447 GA 224PY
39448 UT ISI:000081908500003
39449 ER
39450 
39451 PT J
39452 AU Wei, CL
39453    Chen, MY
39454    Wang, ZL
39455 TI General phase-stepping algorithm with automatic calibration of phase
39456    steps
39457 SO OPTICAL ENGINEERING
39458 DT Article
39459 DE phase-stepping algorithm; Lissajous figures; interferometry
39460 ID SHIFTING INTERFEROMETRY; LEAST-SQUARES; SURFACES
39461 AB A new general algorithm for phase-stepping interferometry is presented.
39462    The calculation of the phase distribution is composed of three
39463    least-squares fitting procedures for an analysis of real
39464    interferograms. First, we calculate the initial phase distribution
39465    utilizing Lissajous figures and elliptic least-squares fitting. Second,
39466    we calculate the phase steps through the spatial least-squares fitting.
39467    Finally, we calculate the exact phase distribution through the serial
39468    least-squares fitting. Both insensitivity to phase-step errors and
39469    automatic calibration of phase steps for the new algorithm are
39470    confirmed by experiment. (C) 1999 Society of Photo-Optical
39471    Instrumentation Engineers.
39472 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
39473    Shanghai Univ, Dept Precis Mech Engn, Shanghai 201800, Peoples R China.
39474    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
39475 RP Wei, CL, Shanghai Univ, Dept Commun Engn, Jiading Campus, Shanghai
39476    201800, Peoples R China.
39477 CR BRUNING JH, 1974, APPL OPTICS, V13, P2693
39478    FARRELL CT, 1994, MEAS SCI TECHNOL, V5, P648
39479    HAN GS, 1994, APPL OPTICS, V33, P7321
39480    KIM SW, 1997, OPT ENG, V36, P3101
39481    KONG IB, 1995, OPT ENG, V34, P1400
39482    KONG IB, 1995, OPT ENG, V34, P183
39483    LASSAHN GD, 1994, OPT ENG, V33, P2039
39484    OKADA K, 1991, OPT COMMUN, V84, P118
39485 NR 8
39486 TC 6
39487 SN 0091-3286
39488 J9 OPT ENG
39489 JI Opt. Eng.
39490 PD AUG
39491 PY 1999
39492 VL 38
39493 IS 8
39494 BP 1357
39495 EP 1360
39496 PG 4
39497 SC Optics
39498 GA 224JZ
39499 UT ISI:000081895900012
39500 ER
39501 
39502 PT J
39503 AU Malomed, BA
39504 TI Multichannel switchable system for spatial solitons
39505 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS
39506 DT Article
39507 ID PHOTOREFRACTIVE MEDIA; OPTICAL SOLITONS; WAVE-GUIDE; LASER-BEAMS
39508 AB We consider a model of a nonlinear planar waveguide with a sinusoidal
39509    modulation of the refractive index in the transverse direction, which
39510    gives rise to a system of parallel troughs that may serve as channels
39511    that trap solitary beams (spatial solitons). The model can also be
39512    considered as an asymptotic one describing a dense planar array of
39513    parallel nonlinear optical fibers, with the modulation representing the
39514    corresponding effective Peierls-Nabarro potential. By means of the
39515    variational approximation and by direct simulations we demonstrate that
39516    the one-soliton state trapped in a channel has no existence threshold
39517    and is always stable. In contrast with this a stationary state of two
39518    beams trapped in two adjacent troughs has an existence border, which is
39519    found numerically. Depending on the values of the parameters, the
39520    two-soliton states are found to be dynamically stable over an
39521    indefinitely long or a finite but large distance. We consider the
39522    possibility of switching the beam from a channel where it was trapped
39523    into an adjacent one by a localized spot attracting the beam through
39524    the cross-phase modulation. The spot can be created between the troughs
39525    by a focused laser beam shone transversely to the waveguide. By means
39526    of the perturbation theory and numerical method we demonstrate that the
39527    switching is possible, provided that the spot's strength exceeds a
39528    certain threshold value. (C) 1999 Optical Society of America
39529    [S0740-3224(99)00908-X].
39530 C1 Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel.
39531    Univ New S Wales, Sch Elect Engn, Opt Commun Grp, Sydney, NSW 2052, Australia.
39532    Shanghai Univ, Wave Sci Lab, Shanghai 201800, Peoples R China.
39533 RP Malomed, BA, Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies,
39534    IL-69978 Tel Aviv, Israel.
39535 CR AFANASJEV VV, 1997, OPT LETT, V22, P1388
39536    AITCHISON JS, 1990, OPT LETT, V15, P471
39537    AITCHISON JS, 1991, OPT LETT, V16, P15
39538    BARTHELEMY A, 1985, OPT COMMUN, V55, P201
39539    BURYAK AV, 1995, PHYS LETT A, V197, P407
39540    CHEN ZG, 1996, OPT LETT, V21, P1436
39541    CHRISTODOULIDES DN, 1997, PHYS REV LETT, V78, P646
39542    CLAUSEN CB, 1997, PHYS REV LETT, V78, P4749
39543    CROSIGNANI B, 1993, J OPT SOC AM B, V10, P446
39544    EISENBERG HS, 1998, PHYS REV LETT, V81, P3383
39545    FAN SH, 1998, OPT EXPRESS, V3, P4
39546    HASEGAWA A, 1995, SOLITONS OPTICAL COM
39547    KIVSHAR YS, 1989, REV MOD PHYS, V61, P763
39548    KIVSHAR YS, 1993, PHYS REV E, V48, P3077
39549    KROLIKOWSKI W, 1998, PHYS REV LETT, V80, P3240
39550    LI QY, 1991, OPT LETT, V16, P1083
39551    MANEUF S, 1988, OPT COMMUN, V65, P193
39552    MANEUF S, 1988, OPT COMMUN, V66, P325
39553    REYNAUD F, 1990, EUROPHYS LETT, V12, P401
39554    SHALABY M, 1991, OPT LETT, V16, P1472
39555    SHIPULIN A, 1997, J OPT SOC AM B, V14, P3393
39556    SNYDER AW, 1993, OPT LETT, V18, P482
39557    VAKHITOV MG, 1973, RADIOPHYS QUANTUM EL, V16, P783
39558 NR 23
39559 TC 27
39560 SN 0740-3224
39561 J9 J OPT SOC AM B-OPT PHYSICS
39562 JI J. Opt. Soc. Am. B-Opt. Phys.
39563 PD AUG
39564 PY 1999
39565 VL 16
39566 IS 8
39567 BP 1197
39568 EP 1203
39569 PG 7
39570 SC Optics
39571 GA 223VU
39572 UT ISI:000081862900003
39573 ER
39574 
39575 PT J
39576 AU Huang, SP
39577    Yoshida, F
39578    You, JL
39579    Jiang, GC
39580    Xu, KD
39581 TI Iom motion in SiO2 melt
39582 SO JOURNAL OF PHYSICS-CONDENSED MATTER
39583 DT Article
39584 ID COMPUTER-SIMULATION; MOLECULAR-DYNAMICS; PRESSURE; SILICA; MODEL; GLASS
39585 AB Dynamical properties of ions are studied in SiO2 melt by using the
39586    molecular dynamics method. The diffusion constant, ionic conductivity
39587    and velocity autocorrelation function are calculated at various
39588    pressures and temperatures. It is found that the simulated ionic
39589    conductivities are close to experimental values, and show an increase
39590    with temperature. Diffusion constants become maximum around 10 GPa, in
39591    close relation with a marked shift in the coordination number of the Si
39592    ion. The velocity autocorrelation function and its spectra are
39593    calculated by using the memory function method. These compare well with
39594    the molecular dynamics results. Discussion is given on the pressure
39595    dependence of dynamical quantities.
39596 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
39597    Shiga Univ Med Sci, Dept Phys, Otsu, Shiga 52021, Japan.
39598 RP Huang, SP, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
39599    200072, Peoples R China.
39600 CR ANGELL CA, 1982, SCIENCE, V218, P885
39601    BERNE BJ, 1966, J CHEM PHYS, V45, P1086
39602    DELLAVALLE RG, 1991, J CHEM PHYS, V94, P5056
39603    HANSEN JP, 1986, THEORY SIMPLE LIQUID, CH7
39604    HEMMATI M, 1997, J NON-CRYST SOLIDS, V217, P236
39605    KATO T, 1990, J CHEM PHYS, V92, P5506
39606    KELLER H, 1982, METALL T B, V13, P237
39607    KUBICKI JD, 1988, AM MINERAL, V73, P941
39608    KUSHIRO I, 1983, GEOCHIM COSMOCHIM AC, V47, P1415
39609    PANISH MB, 1959, J PHYS CHEM-US, V63, P1337
39610    PING HS, 1997, J PHYS SOC JPN, V66, P1356
39611    SJOGREN L, 1982, J CHEM PHYS, V77, P3703
39612    STEBBINS GJ, 1989, AM MINERAL, V74, P960
39613    TSUNEYUKI S, 1988, PHYS REV LETT, V61, P869
39614    TSUNEYUKI S, 1989, NATURE, V339, P209
39615    VANKAMPEN NG, 1981, STOCHASTIC PROCESSES, CH3
39616    YOSHIDA F, 1989, PHYS REP, V173, P301
39617 NR 17
39618 TC 2
39619 SN 0953-8984
39620 J9 J PHYS-CONDENS MATTER
39621 JI J. Phys.-Condes. Matter
39622 PD JUL 19
39623 PY 1999
39624 VL 11
39625 IS 28
39626 BP 5429
39627 EP 5436
39628 PG 8
39629 SC Physics, Condensed Matter
39630 GA 222BU
39631 UT ISI:000081764200009
39632 ER
39633 
39634 PT J
39635 AU Gao, SC
39636    Li, J
39637 TI FDTD analysis of serial corner-fed square patch antennas for single-
39638    and dual-polarised applications
39639 SO IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION
39640 DT Article
39641 ID TIME-DOMAIN METHOD; CIRCUITS
39642 AB The finite-difference time-domain (FDTD) method is developed for the
39643    analysis of serial corner-fed square patch antennas. A special
39644    technique to model the slanted metallic boundaries of the patch antenna
39645    has been used in the general FDTD algorithm to avoid the staircase
39646    approximations. The method improves the accuracy of the original FDTD
39647    algorithm without increasing its complexity. Both the one-port and
39648    two-port cases are studied, which are for single- and dual-polarised
39649    applications, respectively, Several antenna elements are manufactured.
39650    An isolation of -25dB is achieved by the two-port antenna, which makes
39651    it suitable for many dual-polarised applications. The numerical
39652    analysis is confirmed by the experimental results and by results
39653    published elsewhere.
39654 C1 Shanghai Univ, Dept Commun Engn, Jiading 201800, Peoples R China.
39655    Fuyang Normal Univ, Dept Comp, Fuyang 236032, Peoples R China.
39656 RP Gao, SC, Shanghai Univ, Dept Commun Engn, Jiading 201800, Peoples R
39657    China.
39658 CR BAHL IJ, 1980, MICROSTRIP ANTENNAS
39659    BERENGER JP, 1994, J COMPUT PHYS, V114, P185
39660    CHEW WC, 1995, WAVES FIELDS INHOMOG, CH4
39661    CRUZ EM, 1991, ELECTRON LETT, V27, P1410
39662    DANIEL JP, 1985, P ISAP 85, P121
39663    JAMES JR, 1989, HDB MICROSTRIP ANTEN
39664    LIANG GC, 1989, IEEE T MICROW THEORY, V37, P1949
39665    LIAO ZP, 1984, SCI SINICA SER A, V27, P1063
39666    MEI KK, 1992, IEEE T ANTENN PROPAG, V40, P1001
39667    MEZZANOTTE P, 1995, IEEE MICROW GUIDED W, V5, P267
39668    MUR G, 1981, IEEE T ELECTROMAGN C, V23, P1073
39669    PIKETMAY M, 1994, IEEE T MICROW THEORY, V42, P1514
39670    POZAR DM, 1982, IEEE T ANTENN PROPAG, V30, P1191
39671    REIMEIX A, 1989, IEEE T ANTENN PROPAG, V37, P1361
39672    SHEEN DM, 1990, IEEE T MICROW THEORY, V38, P849
39673    TAFLOVE A, 1975, IEEE T MICROW THEORY, V23, P623
39674    TAFLOVE A, 1983, IEEE T ELECTROMAGN C, V25, P433
39675    TIRKAS PA, 1992, IEEE T ANTENN PROPAG, V40, P334
39676    TOLAND B, 1993, IEEE MICROW GUIDED W, V3, P423
39677    YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302
39678    ZHANG X, 1988, IEEE T MICROW THEORY, V36, P263
39679    ZHANG XL, 1988, IEEE T MICROW THEORY, V36, P1775
39680 NR 22
39681 TC 11
39682 SN 1350-2417
39683 J9 IEE PROC-MICROWAVE
39684 JI IEE Proc.-Microw. Antennas Propag.
39685 PD JUN
39686 PY 1999
39687 VL 146
39688 IS 3
39689 BP 205
39690 EP 208
39691 PG 4
39692 SC Engineering, Electrical & Electronic; Telecommunications
39693 GA 223GG
39694 UT ISI:000081832100007
39695 ER
39696 
39697 PT J
39698 AU Sun, XL
39699    Li, D
39700 TI Logarithmic-exponential penalty formulation for integer programming
39701 SO APPLIED MATHEMATICS LETTERS
39702 DT Article
39703 DE nonlinear integer programming; logarithmic-exponential penalty
39704    function; inequality constraints; integer programming
39705 AB The purpose of this note is to present a smooth penalty formulation for
39706    integer programming. By adopting the proposed logarithmic-exponential
39707    penalty function, we are able to transform an inequality constrained
39708    integer programming problem into an equivalent unconstrained problem
39709    with a smooth objective function when choosing an appropriate penalty
39710    parameter. We show that this penalty formulation preserves the
39711    convexity for convex integer programming problems. (C) 1999 Elsevier
39712    Science Ltd. All rights reserved.
39713 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
39714    Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, NT, Hong Kong.
39715 RP Sun, XL, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
39716 CR COOPER MW, 1981, MANAGE SCI, V27, P353
39717    GUPTA OK, 1985, MANAGE SCI, V31, P1533
39718    KORNER F, 1988, BIT, V28, P701
39719    SINCLAIR M, 1986, EUR J OPER RES, V27, P50
39720 NR 4
39721 TC 1
39722 SN 0893-9659
39723 J9 APPL MATH LETT
39724 JI Appl. Math. Lett.
39725 PD OCT
39726 PY 1999
39727 VL 12
39728 IS 7
39729 BP 73
39730 EP 77
39731 PG 5
39732 SC Mathematics, Applied
39733 GA 222VV
39734 UT ISI:000081806800012
39735 ER
39736 
39737 PT J
39738 AU Lu, DQ
39739    Dai, SQ
39740    Zhang, BS
39741 TI Hamiltonian formulation of nonlinear water waves in a two-fluid system
39742 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
39743 DT Article
39744 DE two-fluid system; Hamilton's principle; nonlinear water waves; shallow
39745    water assumption; Hamiltonian cononical equations
39746 ID SURFACE-WAVES; PRINCIPLE
39747 AB In this paper, it is dealt with that the Hamilton formulation of
39748    nonlinear water waves in a two-fluid system, which consists of two
39749    layers of constant-density incompressible inviscid fluid with a
39750    horizontal bottom, an interface and a free surface. The velocity
39751    potentials are expanded in power series of the vertical coordinate. By
39752    taking the kinetic thickness of lower fluid-layer and the reduced
39753    kinetic thickness of upper fluid-layer as the generalized
39754    displacements, choosing the velocity potentials at the interface and
39755    free surface as the generalized momenta and using Hamilton's principle,
39756    the Hamiltonian canonical equations for the system are derived with the
39757    Legendre transformation under the shallow water assumption. Hence the
39758    results for single-layer fluid are extended to the case of stratified
39759    fluid.
39760 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
39761 RP Lu, DQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
39762    Peoples R China.
39763 CR BENJAMIN TB, 1982, J FLUID MECH, V125, P137
39764    CRAIG W, 1994, WAVE MOTION, V19, P367
39765    DIA SQ, 1984, J SCI SINICA A, V27, P507
39766    LU DQ, 1997, MODERN MATH MECH MMM, V7, P387
39767    LUKE JC, 1967, J FLUID MECH, V27, P395
39768    MILDER DM, 1977, J FLUID MECH, V83, P159
39769    MILES JW, 1977, J FLUID MECH, V83, P153
39770    WHITHAM GB, 1967, P ROY SOC LOND A MAT, V299, P6
39771    ZAKHAROV VE, 1968, J APPL MECH TECH PHY, V2, P190
39772    ZHANG BS, 1998, ADV MECH, V28, P521
39773 NR 10
39774 TC 1
39775 SN 0253-4827
39776 J9 APPL MATH MECH-ENGL ED
39777 JI Appl. Math. Mech.-Engl. Ed.
39778 PD APR
39779 PY 1999
39780 VL 20
39781 IS 4
39782 BP 343
39783 EP 349
39784 PG 7
39785 SC Mathematics, Applied; Mechanics
39786 GA 222VP
39787 UT ISI:000081806300001
39788 ER
39789 
39790 PT J
39791 AU Gabriel, B
39792    Jiang, FR
39793 TI Application of the modified method of multiple scales to the bending
39794    problems for circular thin plate at very large deflection and the
39795    asymptotics of solutions(II)
39796 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
39797 DT Article
39798 DE large deflection; modified method of multiple scales; asymptotic
39799    behaviors
39800 AB This paper is a continuation of part ( I ), on the asymptotics
39801    behaviors of the series solutions investigated in ( I ). The remainder
39802    terms of the series solutions are estimated by the maximum norm.
39803 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
39804 RP Gabriel, B, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
39805    200072, Peoples R China.
39806 CR BISSANGA G, 1998, APPL MATH MECH, V19, P937
39807    ECKHAUS W, 1979, STUDIES MATH ITS APP, V9, P190
39808 NR 2
39809 TC 0
39810 SN 0253-4827
39811 J9 APPL MATH MECH-ENGL ED
39812 JI Appl. Math. Mech.-Engl. Ed.
39813 PD APR
39814 PY 1999
39815 VL 20
39816 IS 4
39817 BP 373
39818 EP 378
39819 PG 6
39820 SC Mathematics, Applied; Mechanics
39821 GA 222VP
39822 UT ISI:000081806300005
39823 ER
39824 
39825 PT J
39826 AU Jin, XJ
39827    Xu, ZY
39828    Li, L
39829 TI Critical driving force for martensitic transformation fcc(gamma)->
39830    hcp(epsilon) in Fe-Mn-Si shape memory alloys
39831 SO SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES
39832 DT Article
39833 DE critical driving force; martensitic transformation; Fe-Mn-Si alloy
39834 ID SYSTEM; MODEL
39835 AB By the application of Chou's new geometry model and the available data
39836    from binary Fe-Mn, Fe-Si and Mn-Si systems, as well as SGTE DATA for
39837    lattice stability parameters of three elements from Dinsdale, the Gibbs
39838    free energy as a function of temperature of the fcc(gamma) and
39839    hcp(epsilon) phases in the Fe-Mn-Si system is reevaluated. The
39840    relationship between the Neel temperature of the gamma phase and
39841    concentration of constituents in mole fraction, T-N(gamma) = 67x(Fe) +
39842    5402 x(Mn) + x(Fe)x(Mn) [761 + 689(x(Fe) - x(Mn))] - 850x(Si), is
39843    fitted and verified by the experimental results. The critical driving
39844    force for the martensitic transformation fcc(gamma) --> hcp(epsilon),
39845    Delta G(C)(gamma-->epsilon), defined as the free energy difference
39846    between gamma and epsilon phases at M-S of various alloys can also be
39847    obtained with a known M-S. It is found that the driving force varies
39848    with the composition of alloys, e. g. Delta G(C)(gamma-->epsilon) = -
39849    100.99 J/mol in Fe-27.0Mn-6.0Si and Delta G(C)(epsilon)(gamma-->) = -
39850    122.11 J/mol in Fe-26.91Mn-3.37Si. The compositional dependence of
39851    critical driving force accorded with the expression formulated by Hsu
39852    of the critical driving force for fcc(gamma) --> hcp(epsilon)
39853    transformation in alloys with low stacking fault energy (SFE), i. e.
39854    Delta G(C)(gamma-epsilon) = A . gamma + B, where gamma is the stacking
39855    fault energy (SFE) and A and B are constants related to materials.
39856 C1 Shanghai Jiao Tong Univ, Dept Mat Sci, Shanghai 200030, Peoples R China.
39857    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
39858 RP Xu, ZY, Shanghai Jiao Tong Univ, Dept Mat Sci, Shanghai 200030, Peoples
39859    R China.
39860 CR CHOU KC, 1996, CALPHAD, V20, P395
39861    CHOU KC, 1997, METALL MATER TRANS B, V28, P439
39862    DINSDALE AT, 1991, CALPHAD, V15, P317
39863    FORSBERG A, 1993, J PHASE EQUILIB, V14, P354
39864    HILLERT M, 1978, CALPHAD, V2, P227
39865    HSU TY, 1980, ACTA METALL SIN, V16, P430
39866    HSU TY, 1993, SHANGHAI METALS, V15, P1
39867    HUANG WM, 1989, CALPHAD, V13, P243
39868    INDEN G, 1981, PHYSICA B, V103, P82
39869    LACAZE J, 1991, METALL TRANS A, V22, P2211
39870    LI L, 1997, CALPHAD, V21, P443
39871    MURAKAMI M, 1987, P INT C MARTENS TRAN, P985
39872    SATO A, 1986, ACTA METALL, V34, P287
39873 NR 13
39874 TC 8
39875 SN 1006-9321
39876 J9 SCI CHINA SER E
39877 JI Sci. China Ser. E-Technol. Sci.
39878 PD JUN
39879 PY 1999
39880 VL 42
39881 IS 3
39882 BP 266
39883 EP 274
39884 PG 9
39885 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary
39886 GA 221UG
39887 UT ISI:000081744700005
39888 ER
39889 
39890 PT J
39891 AU Lu, MG
39892    Cai, YC
39893 TI Chen's theorem in arithmetical progressions
39894 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
39895 DT Article
39896 DE Chen's Theorem; sieve; mean value theorem
39897 AB Let N be a sufficiently large even integer and
39898    q greater than or equal to 1, (l(i), q) = 1 (i = 1, 2),
39899    l(1) + l(2) = N(mod q).
39900    It is proved that the equation
39901    N = p + P-2, p = l(1) (mod q), P-2 = l(2) (mod q)
39902    has infinitely many solutions for almost all q less than or equal to
39903    N-1/37, where p is a prime and P-2 is an almost prime with at most two
39904    prime factors.
39905 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
39906 RP Lu, MG, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
39907 CR CHEN JR, 1966, KEXUE TONGBAO, V17, P385
39908    CHEN JR, 1973, SCI SINICA, V16, P157
39909    CHEN JR, 1978, SCI SINICA, V21, P421
39910    IWANIEC H, 1981, RECENT PROGR ANAL NU, V2, P203
39911    LIU JY, 1997, ACTA ARITH, V82, P197
39912    LIU MC, LECT NOTES MATH, V247, P227
39913    PAN CD, 1981, GOLDBACH CONJECTURE
39914    RICHERT HE, 1953, J FUR MATH, V191, P179
39915    TAMES RD, 1942, AM J MATH, V64, P539
39916    VANDERCORPUT JG, 1939, ACTA ARITH, V33, P181
39917    VINOGRADOV IM, 1937, DOKL AKAD NAUK SSSR, V15, P291
39918    ZULAUF A, 1952, J REINE ANGEW MATH, V190, P169
39919 NR 12
39920 TC 0
39921 SN 1006-9283
39922 J9 SCI CHINA SER A
39923 JI Sci. China Ser. A-Math. Phys. Astron.
39924 PD JUN
39925 PY 1999
39926 VL 42
39927 IS 6
39928 BP 561
39929 EP 569
39930 PG 9
39931 SC Mathematics, Applied; Mathematics
39932 GA 219WY
39933 UT ISI:000081632100001
39934 ER
39935 
39936 PT J
39937 AU Han, JT
39938    Sun, GX
39939    Fang, JH
39940    Bao, BR
39941 TI Solvent extraction of uranium (VI) by N-octanoylpyrrolidine in toluene
39942 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
39943 DT Letter
39944 AB The extraction of uranium(VI) from nitric acid by N-octanoylpyrrolidine
39945    (OPOD) in toluene has been investigated at varying concentrations of
39946    nitric acid, extractant salting-out agent LiNO3 and at different
39947    temperatures. The mechanism of extraction is discussed in the light of
39948    the obtained results.
39949 C1 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
39950    Shanghai Univ, Sch Chem & Chem Engn, Shanghai 201800, Peoples R China.
39951 RP Han, JT, Chinese Acad Sci, Shanghai Inst Nucl Res, POB 800-204,
39952    Shanghai 201800, Peoples R China.
39953 CR STANLEY RS, 1968, ORGANIC FUNCTIONAL G, V1, P227
39954    SUN GX, 1998, J RADIOANAL NUCL CH, V232, P245
39955    SUN GX, 1998, NUCL SCI TECHNOL, V9, P115
39956    SUN GX, 1998, THESIS CHINESE ACAD, P50
39957    THIOLLET G, 1989, SOLVENT EXTR ION EXC, V7, P813
39958 NR 5
39959 TC 1
39960 SN 0236-5731
39961 J9 J RADIOANAL NUCL CHEM
39962 JI J. Radioanal. Nucl. Chem.
39963 PD JUL
39964 PY 1999
39965 VL 241
39966 IS 1
39967 BP 215
39968 EP 217
39969 PG 3
39970 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
39971    & Technology
39972 GA 219LF
39973 UT ISI:000081608200035
39974 ER
39975 
39976 PT J
39977 AU Hu, A
39978    Fang, YH
39979    Young, JF
39980 TI Humidity dependence of apparent dielectric constant for DSP cement
39981    materials at high frequencies
39982 SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
39983 DT Article
39984 AB The relationship between humidity and dielectric constant for cement
39985    densified with small particles (DSP) has been studied in the relative
39986    humidity range 0%-93% and the frequency range 1 MHz to 1 GHz. The
39987    calculated dielectric constant appears to increase with increasing
39988    humidity as a linear relation at fixed frequency. According to
39989    experimental data and basic principles for dielectrics, two
39990    experimental expressions are suggested for heterogeneous dielectric
39991    materials to describe the observed behavior of the dielectric constant.
39992    The expressions fit the experimental data well in the frequency range
39993    studied. Apparent dielectric constant decreases with increasing
39994    frequency. Polarization of DSP cement is also discussed.
39995 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
39996    Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA.
39997    Univ Illinois, Ctr Cement Composite Mat, Urbana, IL 61801 USA.
39998 RP Hu, A, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R
39999    China.
40000 CR BACHE HH, 1981, P 2 INT C SUP CONCR, P5
40001    BIRCHALL JD, 1981, NATURE, V289, P388
40002    BRUNAUER S, 1972, 3689294, US
40003    BUCHANAN RC, 1986, CERAMIC MAT ELECT, P39
40004    CARTER WJ, 1984, J MATER SCI LETT, V3, P1083
40005    FRANKLIN AD, 1971, PHYSICS ELECT CERA A, P451
40006    GOODMAN G, 1986, CERAMIC MAT ELECT, P84
40007    HAMMOND E, 1955, ENGINEER, V199, P78
40008    HJORTH L, 1983, PHILOS T ROY SOC A, V310, P167
40009    KINGERY WD, 1976, INTRO CERAMICS, P947
40010    LEIGH DW, 1989, ADV CERAM, V26, P255
40011    MOULSON AJ, 1990, ELECTROCERAMIC MAT P, P62
40012    OTTO GP, 1991, IEEE T INSTRUM MEAS, V40, P742
40013    PAYNE DA, 1977, CERAMIC MICROSTRUCTU, P584
40014    PEREZPENA M, 1987, ADV CERAM, V26, P279
40015    RIXOM MR, 1978, CHEM ADMIXTURE CONCR
40016    ROY DM, 1973, J AM CERAM SOC, V56, P549
40017    SWAMY RN, 1979, J MATER SCI, V14, P1521
40018    TAMAS FD, 1982, CEMENT CONCRETE RES, V12, P115
40019    TAYLOR MA, 1974, CEMENT CONCRETE RES, V4, P881
40020    WILKOSZ DE, 1995, J AM CERAM SOC, V78, P1673
40021    WISE S, 1985, MAT RES SOC S P, V42
40022    YOUNG JF, 1967, J APPL CHEM-USSR, V17, P241
40023 NR 23
40024 TC 6
40025 SN 0002-7820
40026 J9 J AMER CERAM SOC
40027 JI J. Am. Ceram. Soc.
40028 PD JUL
40029 PY 1999
40030 VL 82
40031 IS 7
40032 BP 1741
40033 EP 1747
40034 PG 7
40035 SC Materials Science, Ceramics
40036 GA 215ZY
40037 UT ISI:000081416900013
40038 ER
40039 
40040 PT J
40041 AU Liu, ZR
40042    Huang, DB
40043 TI A method to generate new exact solutions from a known stationary
40044    solution
40045 SO CHINESE PHYSICS LETTERS
40046 DT Article
40047 ID EQUATION; FORM
40048 AB By combining the Backlund transformations and the AKNS system[ Study in
40049    Appl. Math. 53 (1974) 249.] which is a linear eigenvalue problem of the
40050    corresponding evolution equation, a method to find new exact solutions
40051    from known stationary solutions for nonlinear integrable equations is
40052    proposed. As an example, Korteweg de Vries (Kd V) equation is used to
40053    illustrate this method, and a class of new exact solutions of KdV
40054    equation is obtained.
40055 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
40056    Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R China.
40057 RP Liu, ZR, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
40058 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
40059    ALBOWITZ MJ, 1974, STUDY APPL PHYS, V53, P249
40060    CHEN XJ, 1998, CHINESE PHYS LETT, V15, P504
40061    CROSS MC, 1993, REV MOD PHYS, V65, P851
40062    HERMAN W, 1990, J PHYS A, V23, P4805
40063    KHATER AH, 1997, CHAOS SOLITON FRACT, V8, P1901
40064    KONNO K, 1975, PROG THEOR PHYS, V53, P1652
40065    LU XQ, 1997, CHINESE PHYS LETT, V14, P561
40066    MALFLIET W, 1993, J PHYS A, V26, L723
40067    OLVER PJ, 1986, APPL LIE GROUPS DIFF
40068    ROGERS C, 1982, BACKLUND TRANSFORMAT
40069    WEISS J, 1983, J MATH PHYS, V24, P522
40070    WU KX, 1998, CHINESE PHYS LETT, V15, P654
40071 NR 13
40072 TC 3
40073 SN 0256-307X
40074 J9 CHIN PHYS LETT
40075 JI Chin. Phys. Lett.
40076 PY 1999
40077 VL 16
40078 IS 5
40079 BP 313
40080 EP 315
40081 PG 3
40082 SC Physics, Multidisciplinary
40083 GA 215CA
40084 UT ISI:000081363300001
40085 ER
40086 
40087 PT J
40088 AU Deng, K
40089    Zhou, YM
40090    Ren, ZM
40091    Gong, T
40092    Jiang, GC
40093 TI Electromagnetic characteristics of levitation melting with cold crucible
40094 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
40095 DT Article
40096 DE cold crucible; electromagnetic induction; levitation melting; numerical
40097    simulation
40098 AB By using the numerical simulation method with quasi-three-dimensions
40099    and the modified coupled current model presented in the previous work,
40100    the influences of the structure of cold crucible, the power frequency
40101    and the electricity property of melting charge on the electromagnetic
40102    field in the levitation melting processes were analyzed. The
40103    fundamentals for the technique design of levitation melting with cold
40104    crucible were presented. It is shown that the levitation melting with
40105    cold crucible is a self-balanced and self-stable process, and the cold
40106    crucible can be segmented 16 similar to 20 sectors for high frequency
40107    electromagnetic field and/or 4 similar to 8 sectors for lower frequency
40108    one. It is also shown that the change of the power frequency has great
40109    influence on the magnetic flux density on the surface of metallic
40110    charge, but for nonmetallic charge, the main influence on the magnetic
40111    flux density is the segmented number of cold crucible.
40112 C1 Shanghai Univ, Coll Mat, Shanghai 200072, Peoples R China.
40113 CR ASAI S, 1990, P 6 INT IR STEEL CON, P370
40114    DENG K, 1994, J SHANGHAI U TECH, V15, P87
40115    DENG K, 1995, CHINESE J NONFERROUS, V5, P409
40116    DENG K, 1996, T NONFERR METAL SOC, V6, P12
40117    GARINIER M, 1990, P 6 INT IR STEEL CON, P226
40118    TANAKA T, 1991, ISIJ INT, V31, P1416
40119    TANAKA T, 1991, ISIJ INT, V31, P350
40120    TOH T, 1990, P 6 INT IRON STEEL C, P239
40121 NR 8
40122 TC 0
40123 SN 1003-6326
40124 J9 TRANS NONFERROUS METAL SOC CH
40125 JI Trans. Nonferrous Met. Soc. China
40126 PD JUN
40127 PY 1999
40128 VL 9
40129 IS 2
40130 BP 387
40131 EP 392
40132 PG 6
40133 SC Metallurgy & Metallurgical Engineering
40134 GA 212JX
40135 UT ISI:000081214500036
40136 ER
40137 
40138 PT J
40139 AU Ding, R
40140    Zhu, ZY
40141    Cheng, CJ
40142 TI Some dynamical properties of a viscoelastic cylindrical shell
40143 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
40144 DT Article
40145 DE viscoelasticity; cylindrical shell; stability
40146 AB In this paper, the dynamic,stability of a viscoelastic circular
40147    cylindrical shell subject to an axial compressive force and a uniformly
40148    distributed radial compressive load is discussed. By using the Laplace
40149    transformation, stability conditions of viscoelastic shell under
40150    constant loads are yielded. By using synthetically the classical
40151    dynamic methods, the various dynamical properties for the dynamical
40152    system de: fined by the viscoelastic shell and the effect of parameters
40153    on the stability of structure are obtained.
40154 C1 SW Jiaotong Univ, Mech Postdoctoral Stn, Chengdu 610031, Peoples R China.
40155    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
40156 RP Ding, R, SW Jiaotong Univ, Mech Postdoctoral Stn, Chengdu 610031,
40157    Peoples R China.
40158 CR DROZDOV A, 1993, MECH RES COMMUN, V20, P481
40159    LADOPOULOS EG, 1991, MECH RES COMMUN, V18, P111
40160    TYLIKOWSKI A, 1989, INT J MED SCI, V31, P591
40161    YANG TQ, 1989, THEORYT VISCOELASTIC
40162 NR 4
40163 TC 0
40164 SN 0253-4827
40165 J9 APPL MATH MECH-ENGL ED
40166 JI Appl. Math. Mech.-Engl. Ed.
40167 PD MAR
40168 PY 1999
40169 VL 20
40170 IS 3
40171 BP 233
40172 EP 240
40173 PG 8
40174 SC Mathematics, Applied; Mechanics
40175 GA 212FB
40176 UT ISI:000081205600001
40177 ER
40178 
40179 PT J
40180 AU Peng, RR
40181    Chen, JM
40182    Peng, K
40183 TI Construction of wavelet bases with vanishing movement
40184 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
40185 DT Article
40186 DE vanishing movement; scaling function; orthogonal mother wavelet
40187 AB A kind of mother wavelet with good properties is constructed for any N
40188    greater than or equal to 2, which is differentiable for N times,
40189    converges to Zero at the order of O( I t I-N)( t --> infinity) and has
40190    N - 2 order of vanishing movement and some property of symmetry
40191    meanwhile. A computation example for N = 4 is also given.
40192 C1 Shanghai Univ, Coll Sci, Shanghai 200072, Peoples R China.
40193    Changzhou Text Ind Coll, Changzhou 213000, Peoples R China.
40194 RP Peng, RR, Shanghai Univ, Coll Sci, Shanghai 200072, Peoples R China.
40195 CR CHUI JT, 1995, INTRO WAVELET
40196    LI SX, 1994, ELEMENTARY WAVELET I
40197    PENG RR, 1994, J SHANGHAI U TECHNOL, V15, P299
40198 NR 3
40199 TC 0
40200 SN 0253-4827
40201 J9 APPL MATH MECH-ENGL ED
40202 JI Appl. Math. Mech.-Engl. Ed.
40203 PD MAR
40204 PY 1999
40205 VL 20
40206 IS 3
40207 BP 247
40208 EP 253
40209 PG 7
40210 SC Mathematics, Applied; Mechanics
40211 GA 212FB
40212 UT ISI:000081205600003
40213 ER
40214 
40215 PT J
40216 AU Zhang, NH
40217    Cheng, CJ
40218 TI A variational principle of perturbed motion on viscoelastic thin plates
40219    with applications
40220 SO ACTA MECHANICA SOLIDA SINICA
40221 DT Article
40222 DE viscoelastic thin plate; perturbed motion; variational principle;
40223    stability
40224 AB In this paper, in the light of the Boltzmann superposition principle in
40225    linear viscoelasticity, a mathematical model of perturbed motion on
40226    viscoelastic thin plates is established. The corresponding variational
40227    principle is obtained in a convolution bilinear form. For application
40228    the problems of free vibration, forced vibration and stability of a
40229    viscoelastic simply-supported rectangular thin plate are considered.
40230    The results show that numerical solutions agree well with analytical
40231    solutions.
40232 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
40233    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
40234 CR CEDERBAUM G, 1992, J APPL MECH-T ASME, V59, P16
40235    CEDERBAUM G, 1992, MECH STRUCT MACH, V20, P37
40236    CHENG CJ, 1998, INT J SOLIDS STRUCT, V35, P4491
40237    CHIEN WZ, 1980, VARIATIONAL METHODS
40238    DALLASTA A, 1994, INT J SOLIDS STRUCT, V31, P247
40239    LEITMAN JM, HDB PHYSIK, V6, P10
40240    LUO E, 1990, ACTA MECH SINICA, V22, P484
40241    ODEN JT, 1983, VARIATIONAL METHODS
40242    REDDY JN, 1976, INT J SOLIDS STRUCT, V16, P227
40243    SHIMADA I, 1979, PROG THEOR PHYS, V61, P1605
40244    WOLF A, 1985, PHYS D, V16, P545
40245 NR 11
40246 TC 2
40247 SN 0894-9166
40248 J9 ACTA MECH SOLIDA SINICA
40249 JI Acta Mech. Solida Sin.
40250 PD JUN
40251 PY 1999
40252 VL 12
40253 IS 2
40254 BP 121
40255 EP 128
40256 PG 8
40257 SC Materials Science, Multidisciplinary; Mechanics
40258 GA 213TR
40259 UT ISI:000081289800004
40260 ER
40261 
40262 PT J
40263 AU Li, Y
40264 TI On the symmetry group and harmonic potentials of a generalized multipole
40265 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
40266 DT Article
40267 AB The relation between the M function for a generalized multipole and the
40268    pure mathematical M function is discussed. The concept of rotation
40269    sense has been replaced by the clearer and more general concept of
40270    screw sense. The influence of the infinitesimal orders of harmonic
40271    potentials on aberrations in connection with the constraints of the
40272    symmetry group of a GM are discussed. A simple, unified and powerful
40273    method to determine the constraint relations among the harmonic
40274    potentials of a generalized multipole or ordinary multipole is given
40275    and rigorously proved.
40276 C1 Shanghai Univ Sci & Technol, Res Sect Appl Phys, Shanghai 200093, Peoples R China.
40277 RP Li, Y, Shanghai Univ Sci & Technol, Res Sect Appl Phys, Shanghai
40278    200093, Peoples R China.
40279 CR ARFKEN G, 1985, MATH METHODS PHYSICI
40280    HAMERMESH M, 1962, GROUP THEORY ITS APP
40281    JOHN F, 1982, PARTIAL DIFFERENTIAL
40282    LANCASTER P, 1985, THEORY MATRICES
40283    LI Y, 1986, OPTIK, V75, P8
40284    LI Y, 1987, OPTIK, V76, P48
40285    LI Y, 1988, ACTA MATH SCI, V8, P131
40286    LI Y, 1988, OPTIK, V80, P39
40287    LI Y, 1992, ACTA PHYS SINICA, V41, P353
40288    LI Y, 1993, ADV ELECTRON EL PHYS, V85, P231
40289    LI Y, 1995, J PHYS D APPL PHYS, V28, P2007
40290    LI Y, 1995, SCI CHINA SER A, V38, P963
40291    LI Y, 1996, J PHYS D APPL PHYS, V29, P1133
40292    SCHOUTEN JA, 1954, RICCI CALCULUS
40293 NR 14
40294 TC 0
40295 SN 0022-3727
40296 J9 J PHYS-D-APPL PHYS
40297 JI J. Phys. D-Appl. Phys.
40298 PD JUN 21
40299 PY 1999
40300 VL 32
40301 IS 12
40302 BP 1336
40303 EP 1345
40304 PG 10
40305 SC Physics, Applied
40306 GA 211GV
40307 UT ISI:000081153300010
40308 ER
40309 
40310 PT J
40311 AU Feng, SS
40312    Wang, ZX
40313    Qiu, XJ
40314 TI SU(2) charges as angular momentum in N=1 self-dual supergravity
40315 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
40316 DT Article
40317 ID GRAVITY; VARIABLES
40318 AB The N = 1 self-dual supergravity has SL(2, C) symmetry. This symmetry
40319    results in SU(2) charges as the angular momentum. As in
40320    nonsupersymmetric self-dual gravity, the currents are also of their
40321    potentials and are therefore identically conserved. The charges are
40322    generally invariant and gauge covariant under local SU(2) transforms
40323    and approach being, rigid at spatial infinity. The Poisson brackets
40324    constitute the su(2) algebra and hence can be interpreted as the
40325    generally covariant conservative angular momentum.
40326 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
40327    CCAST, World Lab, Beijing 100080, Peoples R China.
40328    Acad Sinica, Inst Nucl Res, Shanghai 201800, Peoples R China.
40329    Shanghai Teachers Univ, Ctr String Theory, Shanghai 200234, Peoples R China.
40330 RP Feng, SS, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
40331 CR ASHTEKAR A, 1986, PHYS REV LETT, V57, P2244
40332    DAI YB, 1987, GAUGE THEORY INTERAC
40333    DUAN YS, 1963, ACTA PHYS SINICA, V19, P589
40334    DUAN YS, 1996, COMMUN THEOR PHYS, V25, P99
40335    FENG SS, 1995, GEN RELAT GRAVIT, V27, P887
40336    FENG SS, 1995, GRAV COS, V1, P319
40337    FENG SS, 1996, COMMUN THEOR PHYS, V25, P485
40338    FENG SS, 1996, INT J THEOR PHYS, V35, P267
40339    FENG SS, 1996, NUCL PHYS B, V468, P163
40340    GOROBEY NN, 1990, CLASSICAL QUANT GRAV, V7, P67
40341    JACOBSON T, 1988, CLASSICAL QUANT GRAV, V5, P923
40342    SAMUEL J, 1987, PRAMANA-J PHYS, V28, L429
40343    WEINBERG S, 1995, QUANTUM THEORY FIELD, V1
40344 NR 13
40345 TC 0
40346 SN 0020-7748
40347 J9 INT J THEOR PHYS
40348 JI Int. J. Theor. Phys.
40349 PD MAY
40350 PY 1999
40351 VL 38
40352 IS 5
40353 BP 1415
40354 EP 1422
40355 PG 8
40356 SC Physics, Multidisciplinary
40357 GA 210QH
40358 UT ISI:000081115800003
40359 ER
40360 
40361 PT J
40362 AU Cha, KH
40363    Guo, BY
40364    Kwon, YH
40365 TI Parameter estimation by spectral approximation
40366 SO APPLIED MATHEMATICS AND COMPUTATION
40367 DT Article
40368 DE parameter estimation; spectral approximation; convergence and spectral
40369    accuracy
40370 AB In this paper, Chebyshev and Legendre approximations are proposed for
40371    estimating parameters in differential equations, which are easy to be
40372    performed. The convergence and the spectral accuracy are proved, even
40373    without some conditions as imposed in other papers. The numerical
40374    results show the advantages of this new approach. (C) 1999 Elsevier
40375    Science Inc. All rights reserved. AMS Classification: 34A55; 65L10;
40376    65L99.
40377 C1 Pohang Univ Sci & Technol, Dept Math, Pohang 790784, South Korea.
40378    Shanghai Univ, Dept Math, Shanghai, Peoples R China.
40379 RP Guo, BY, Pohang Univ Sci & Technol, Dept Math, Pohang 790784, South
40380    Korea.
40381 CR ACAR R, 1993, SIAM J CONTROL OPTIM, V31, P1221
40382    BANKS HT, 1989, ESTIMATION TECHNIQUE
40383    BERNARDI C, 1992, APPROXIMATIONS SPECT
40384    CANUTO C, 1982, MATH COMPUT, V38, P67
40385    CANUTO C, 1988, SPECTRAL METHODS FLU
40386    CHO CK, 1999, APPL MATH COMPUT, V100, P265
40387    FRIND EO, 1973, WATER RES R, V9, P1397
40388    GILBARG D, 1983, PARTIAL DIFFERENTIAL
40389    GOTTLIEB D, 1997, NUMERICAL ANAL SPECT
40390    GUO B, UNPUB PARAMETER IDEN
40391    GUO B, 1998, SPECTRAL METHODS THE
40392    NUTBROWN DA, 1975, WATER RESOUR RES, V11, P581
40393    RABINOWITZ PH, 1970, LECT NOTES MATH, V648, P97
40394    RICHTER GR, 1981, MATH COMPUT, V36, P375
40395    RICHTER GR, 1981, SIAM J APPL MATH, V41, P210
40396    VAINIKKO E, 1992, ACTA COMM U TARTUENS, V937, P90
40397    VAINIKKO E, 1993, Z ANAL ANGW, V12, P327
40398    YEH WWG, 1986, WATER RESOUR RES, V22, P95
40399 NR 18
40400 TC 0
40401 SN 0096-3003
40402 J9 APPL MATH COMPUT
40403 JI Appl. Math. Comput.
40404 PD SEP 1
40405 PY 1999
40406 VL 104
40407 IS 1
40408 BP 1
40409 EP 14
40410 PG 14
40411 SC Mathematics, Applied
40412 GA 210ME
40413 UT ISI:000081108600001
40414 ER
40415 
40416 PT J
40417 AU Guo, BY
40418 TI Error estimation of Hermite spectral method for nonlinear partial
40419    differential equations
40420 SO MATHEMATICS OF COMPUTATION
40421 DT Article
40422 DE Hermite approximation; Burgers equation; error estimations
40423 ID DOMAINS
40424 AB Hermite approximation is investigated. Some inverse inequalities,
40425    imbedding inequalities and approximation results are obtained. A
40426    Hermite spectral scheme is constructed for Burgers equation. The
40427    stability and convergence of the proposed scheme are proved strictly.
40428    The techniques used in this paper are also applicable to other
40429    nonlinear problems in unbounded domains.
40430 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
40431 RP Guo, BY, Pohang Univ Sci & Technol, Pohang 790784, South Korea.
40432 CR ADAMS RA, 1975, SOBOLEV SPACES
40433    BLACK K, UNPUB SPECTRAL ELEME
40434    BOYD JP, 1987, J COMPUT PHYS, V69, P112
40435    CHRISTOV CI, 1982, SIAM J APPL MATH, V42, P1337
40436    COULAUD O, 1990, COMPUT METHOD APPL M, V80, P451
40437    COURANT R, 1928, MATH ANN, V100, P32
40438    FUNARO D, 1990, MATH COMPUT, V57, P597
40439    FUNARO D, 1991, ORTHOGONAL POLYNOMIA, P263
40440    GUO BY, 1965, RR SUST
40441    GUO BY, 1974, ACTA MATH SINICA, V17, P242
40442    GUO BY, 1994, CONT MATH, V163, P33
40443    HARDY GH, 1952, INEQUALITIES
40444    IRANZO V, 1992, COMPUT METHOD APPL M, V98, P105
40445    MADAY Y, 1985, RECH AEROSPATIALE, P353
40446    MAVRIPLIS C, 1989, J COMPUT PHYS, V80, P480
40447    NESSEL RJ, APPROXIMATION THEORY, V2, P479
40448    STETTER HJ, 1966, NUMERICAL SOLUTIONS, P111
40449    WEIDEMAN JAC, 1992, NUMER MATH, V61, P409
40450 NR 18
40451 TC 20
40452 SN 0025-5718
40453 J9 MATH COMPUT
40454 JI Math. Comput.
40455 PD JUL
40456 PY 1999
40457 VL 68
40458 IS 227
40459 BP 1067
40460 EP 1078
40461 PG 12
40462 SC Mathematics, Applied
40463 GA 209PV
40464 UT ISI:000081057700010
40465 ER
40466 
40467 PT J
40468 AU Chen, Y
40469    Wang, JX
40470    Yu, BC
40471    Cai, RF
40472    Huang, ZE
40473    Zhang, JM
40474 TI Preparation and structural characterization of star-shaped
40475    C-60-p-methylstyrene copolymers
40476 SO JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS
40477 DT Article
40478 DE fullerenes; polymers; chemical synthesis; infrared spectroscopy; X-ray
40479    diffraction
40480 ID POLYMER-SUBSTITUTED FULLERENES; ELECTROCHEMICAL DETECTION; C-60;
40481    BUCKMINSTERFULLERENE; <60>FULLERENE; CHEMISTRY; STYRENE; C60;
40482    PARAMAGNETISM; FLAGELLENES
40483 AB Highly soluble star-shaped C-60-p-methylstyrene copolymers with
40484    different C-60 contents were prepared in the toluene-tetrahydrofuran
40485    mixed solvents. The average number of grafted polymer chains onto the
40486    [60]fullerene was approximately between 1 and 4. Covalent attachment of
40487    C-60 to the terminal of active n-butyl-terminated poly(p-methylstyrene)
40488    (PPMS) backbone modified greatly the physical and chemical properties
40489    of the parent polymer. Its thermal stability and absorption degree at
40490    longer wavelengths were apparently enhanced. Interestingly, unlike pure
40491    PPMS polymer without paramagnetism, there are two kinds of paramagnetic
40492    species in the copolymer. This paramagnetic phenomenon can be
40493    interpreted most logically as being associated with a full charge
40494    transfer from a PMS unit of grafted chains to the C-60 core. First, if
40495    upon addition of the C-60 core an electron is transferred from the
40496    nearby PMS unit, then both would be in doublet states, which couple to
40497    give a close-lying singlet and triplet. The effect of C-60 chemical
40498    modification on the morphological structure and the X-ray diffraction
40499    structure of the parent polymer are also discussed. (C) 1999 Elsevier
40500    Science Ltd. All rights reserved.
40501 C1 Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China.
40502    Shanghai Univ, Dept Chem & Chem Engn, Shanghai 201800, Peoples R China.
40503 RP Chen, Y, Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China.
40504 CR CAMPS X, 1997, CHEM-EUR J, V3, P561
40505    CHEN Y, 1995, POLYM BULL, V35, P705
40506    CHEN Y, 1996, J APPL POLYM SCI, V61, P2185
40507    CHEN Y, 1996, J POLYM SCI POL CHEM, V34, P3297
40508    CHEN Y, 1996, J POLYM SCI POL PHYS, V34, P631
40509    CHEN Y, 1996, SOLID STATE COMMUN, V97, P239
40510    CHEN Y, 1996, SYNTHETIC COMMUN, V26, P3699
40511    CHEN Y, 1997, EUR POLYM J, V33, P291
40512    CHEN Y, 1997, EUR POLYM J, V33, P823
40513    CHEN Y, 1998, EUR POLYM J, V34, P137
40514    CHEN Y, 1998, EUR POLYM J, V34, P1755
40515    CHEN Y, 1998, EUR POLYM J, V34, P421
40516    CHEN Y, 1998, J POLYM SCI POL PHYS, V36, P2653
40517    DUBOIS D, 1991, J AM CHEM SOC, V113, P4364
40518    DUBOIS D, 1991, J AM CHEM SOC, V113, P7773
40519    EDERLE Y, 1997, MACROMOLECULES, V30, P2546
40520    FAGAN PJ, 1992, CARBON, V30, P1213
40521    FAGAN PJ, 1992, J AM CHEM SOC, V114, P9697
40522    FISHER JE, 1993, J PHYS CHEM SOLIDS, V54, P1725
40523    FUJIMOTO T, 1965, J POLYM SCI A, V3, P2259
40524    GILMAN H, 1964, J ORGANOMET CHEM, V2, P447
40525    GUERRA G, 1991, POLYM COMMUN, V32, P430
40526    HIGASHI H, 1961, MAKROMOL CHEM, V43, P245
40527    HIRSCH A, 1992, ANGEW CHEM INT EDIT, V31, P766
40528    HIRSCH A, 1993, CHEM BER, V126, P1061
40529    ISAACS L, 1993, HELV CHIM ACTA, V76, P1231
40530    JEHOULET C, 1991, J AM CHEM SOC, V113, P5456
40531    JEHOULET C, 1992, J AM CHEM SOC, V114, P4237
40532    KAWAMURA T, 1982, MAKROMOL CHEM, V183, P153
40533    KRATSCHMER W, 1990, NATURE, V347, P354
40534    MARSHALL GL, 1985, EUR POLYM J, V21, P949
40535    MILLIKEN J, 1991, CHEM MATER, V3, P386
40536    OHSAWA Y, 1992, J CHEM SOC CHEM 0515, P781
40537    PRATO M, 1997, J MATER CHEM, V7, P1097
40538    RASINKANGAS M, 1993, J AM CHEM SOC, V115, P4901
40539    SAMULSKI ET, 1992, CHEM MATER, V4, P1153
40540    STEWART C, 1996, CHEM COMMUN, P1383
40541    SUBRAMANIAN R, 1996, J PHYS CHEM-US, V100, P16327
40542    SUN YP, 1996, MACROMOLECULES, V29, P8441
40543    TADOKORO H, 1959, B CHEM SOC JPN, V32, P313
40544    WIGNALL GD, 1995, MACROMOLECULES, V28, P6000
40545 NR 41
40546 TC 2
40547 SN 0022-3697
40548 J9 J PHYS CHEM SOLIDS
40549 JI J. Phys. Chem. Solids
40550 PD JUL
40551 PY 1999
40552 VL 60
40553 IS 7
40554 BP 949
40555 EP 956
40556 PG 8
40557 SC Chemistry, Multidisciplinary; Physics, Condensed Matter
40558 GA 208DZ
40559 UT ISI:000080976100013
40560 ER
40561 
40562 PT J
40563 AU Cao, WG
40564    Ding, WY
40565    Liu, RD
40566    Huang, TH
40567    Cao, J
40568 TI Facile syntheses of 4-perfluoroalkyl-6-(alpha-furyl)-2-pyranones and
40569    methyl 4-(alpha-furoyl)-3-perfluoroalkyl-3-butenoates
40570 SO JOURNAL OF FLUORINE CHEMISTRY
40571 DT Article
40572 DE methyl 2-perfluoroalkynoates;
40573    4-perfluoroalkyl-6-(alpha-furyl)-2-pyranones; methyl
40574    4-(alpha-furoyl)-3-perfluoroalkyl-3-butenoates
40575 ID ELEMENTO-ORGANIC COMPOUNDS; STEREOSELECTIVE SYNTHESIS; 6TH GROUPS;
40576    ARSORANE; 2-PERFLUOROALKYNOATES; PHOSPHONIUM; CHEMISTRY; 5TH
40577 AB In the presence of K2CO3, reaction of
40578    (alpha-furoyl)methyltriphenylphosphonium bromide (1) with methyl
40579    2-perfluoroalkynoates (2) in CH2Cl2 at room temperature gave methyl
40580    4-(alpha-furoyl)-2-triphenylphospknoranylidene-3-perfluoroalkyl-3-buteno
40581    ates (3) in excellent yields.
40582    4-Perfluoroalkyl-6-(alpha-furyl)-6-phyranones (4) and methyl
40583    4-(alpha-furoyl)-3-perfluoroalkyl-3-butenoates (5) were obtained in
40584    high yield by hydrolysis of these phosphoranes (3) with hot aqueous
40585    methanol. The butenoates (5) were isolated chromatographically as
40586    mixtures of Z and E isomers, the ratios of which were estimated by H-1
40587    NMR Reaction mechanisms are proposed to account for the formation of
40588    products 3, 4 and 5. (C) 1999 Elsevier Science S.A. All rights reserved.
40589 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
40590 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
40591 CR BANKS RE, 1979, ORGANOFLUORINE CHEM
40592    CAO WG, 1998, J FLUORINE CHEM, V91, P99
40593    DING WY, 1986, ACTA CHIM SINICA, V44, P255
40594    DING WY, 1986, ACTA CHIM SINICA, V44, P62
40595    DING WY, 1987, ACTA CHIM SINICA, V45, P47
40596    DING WY, 1987, CHINESE J ORG CHEM, P435
40597    DING WY, 1991, ACTA CHIM SINICA, V49, P284
40598    DING WY, 1991, J CHEM SOC PERK  JUN, P1369
40599    DING WY, 1992, CHEM RES CHINESE U, V8, P224
40600    HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47
40601    MANN J, 1987, CHEM SOC REV, V16, P381
40602    TAO WT, 1983, CHINESE J ORG CHEM, P129
40603    WELCH JT, 1987, TETRAHEDRON, V43, P3123
40604 NR 13
40605 TC 3
40606 SN 0022-1139
40607 J9 J FLUORINE CHEM
40608 JI J. Fluor. Chem.
40609 PD JUN 4
40610 PY 1999
40611 VL 95
40612 IS 1-2
40613 BP 135
40614 EP 140
40615 PG 6
40616 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
40617 GA 207JZ
40618 UT ISI:000080934900016
40619 ER
40620 
40621 PT J
40622 AU Xu, J
40623    Zhu, XH
40624    Meng, ZY
40625 TI Effect of the interdiffusion reaction on the compatibility in PZT PNN
40626    functionally gradient piezoelectric materials
40627 SO IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES
40628 DT Article
40629 DE activation energy; diffusivity; distribution profile; FGM;
40630    interdiffusion couple
40631 AB The interfacial diffusion reaction Pb(Ni1/3Nb2/3)O-3 (PNN) and
40632    Pb(Zr,Ti)O-3 (PZT) phases in functionally gradient materials (FGM) has
40633    been investigated as a function of sintering temperature and time,
40634    respectively. The compositional distribution profiles of the
40635    interaction region were examined by electron probe microbeam analysis
40636    (EPMA). According to the diffusion model, the concentration
40637    distribution profiles were simulated by way of numerical approaches.
40638    The diffusivity and activation energy for Ni2+, Nb5+, Ti4+ and Zr4+
40639    ions have been estimated. The results were discussed.
40640 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
40641 RP Xu, J, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
40642    China.
40643 CR CHAWLA KK, 1995, CERAMIC MATRIX COMPO, CH4
40644    JINPIN L, 1989, CHINESE J MAT SCI, V4
40645    SHEWMON PB, 1963, DIFFUSION SOLIDS, CH1
40646    TAKAHASHI H, 1990, JSME INT J 1, V33
40647    XINHUA Z, 1995, J MATER SCI LETT, V14, P516
40648    ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169
40649 NR 6
40650 TC 4
40651 SN 1521-3331
40652 J9 IEEE TRANS COMPON PACKAGING T
40653 JI IEEE Trans. Compon. Packaging Technol.
40654 PD MAR
40655 PY 1999
40656 VL 22
40657 IS 1
40658 BP 11
40659 EP 16
40660 PG 6
40661 SC Engineering, Electrical & Electronic; Engineering, Manufacturing;
40662    Materials Science, Multidisciplinary
40663 GA 209DD
40664 UT ISI:000081031900004
40665 ER
40666 
40667 PT J
40668 AU Kong, KH
40669    Cheung, PCH
40670    Lu, HQ
40671    Cheng, KS
40672 TI Inflation in Bianchi type-IX Einstein-Cartan cosmological model
40673 SO ASTROPHYSICS AND SPACE SCIENCE
40674 DT Article
40675 ID ANISOTROPIC COSMOLOGIES; PRIMORDIAL SHEAR; UNIVERSE; TORSION; SPIN
40676 AB Within the framework of Einstein-Cartan theory with Weyssenhoff fluid,
40677    we investigate an inflation model for an anisotropic Bianchi type-IX
40678    cosmological model. The system of field equations is solved numerically
40679    and an inflation epoch is achieved. The general condition for the
40680    inflation to occur is also discussed. This anisotropic model evolves
40681    quickly towards to an isotropic one.
40682 C1 Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China.
40683    Shanghai Univ, Dept Phys, Shanghai 200041, Peoples R China.
40684    Univ Oxford, Dept Astrophys, Nucl & Astrophys Lab, Oxford OX1 3RH, England.
40685 RP Kong, KH, Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China.
40686 CR BARROW JD, 1981, NATURE, V292, P35
40687    BRANDENBERGER RH, 1985, REV MOD PHYS, V57, P1
40688    CARTAN E, 1985, MANIFOLD AFFINE CONN
40689    DEMIANSKI M, 1984, NATURE, V307, P140
40690    DEMIANSKI M, 1987, PHYS REV D, V35, P1181
40691    GOENNER H, 1984, CLASSICAL QUANT GRAV, V1, P651
40692    GUTH AH, 1981, PHYS REV D, V23, P347
40693    HEHL FW, 1976, REV MOD PHYS, V48, P393
40694    HENRIQUES AB, 1991, PHYS LETT B, V256, P359
40695    JENSEN LG, 1986, PHYS REV D, V34, P931
40696    LINDE AD, 1984, REP PROG PHYS, V47, P925
40697    LU HQ, 1995, CLASSICAL QUANT GRAV, V12, P2755
40698    MARTINEZGONZALE.E, 1986, PHYS LETT B, V167, P37
40699    OBUKHOV YN, 1987, CLASSICAL QUANT GRAV, V4, P1633
40700    ROTHMAN T, 1985, PHYS LETT B, V159, P256
40701    ROTHMAN T, 1986, PHYS LETT B, V180, P19
40702    STEIGMAN G, 1983, PHYS LETT B, V128, P295
40703    TSAMPARLIS M, 1979, PHYS LETT A, V75, P27
40704    TSOUBELIS D, 1979, PHYS REV D, V20, P3004
40705    TURNER MS, 1986, PHYS REV LETT, V57, P2237
40706    WALD RM, 1983, PHYS REV D, V28, P2118
40707    ZARDECKI A, 1985, PHYS REV D, V31, P718
40708 NR 22
40709 TC 1
40710 SN 0004-640X
40711 J9 ASTROPHYS SPACE SCI
40712 JI Astrophys. Space Sci.
40713 PY 1998
40714 VL 260
40715 IS 4
40716 BP 521
40717 EP 529
40718 PG 9
40719 SC Astronomy & Astrophysics
40720 GA 207RG
40721 UT ISI:000080922200008
40722 ER
40723 
40724 PT J
40725 AU Gu, GQ
40726    Yu, KW
40727 TI New method for effective viscosity of colloidal dispersions with
40728    periodic microstructures
40729 SO ACTA MATHEMATICA SCIENTIA
40730 DT Article
40731 DE colloidal dispersion; effective viscosity; suspension; emulsion
40732 ID EFFECTIVE SHEAR VISCOSITY; CONCENTRATED DISPERSIONS; VOLUME FRACTION;
40733    SPHERES; SUSPENSION; LATTICE; FLOW
40734 AB One of the central theoretical problems in the colloid field is to
40735    determine the rheological relation between the macroscopic properties
40736    of colloidal suspensions and the microstructures of the systems. In
40737    this work, the authors develop a method of transformation field by
40738    which one call calculate the effective viscosity of an incompressible:
40739    viscous fluid containing colloidal particles (either solid particles:
40740    or liquid drops) fixed at the points of a periodic lattice. The
40741    effective viscosity of a colloidal dispersion of spherical particles is
40742    calculated. The predictions of the theory are in good agreement with
40743    the Einstein's formula for suspensions and the Taylor's formula for
40744    emulsions at low particle concentrations. At higher particle
40745    concentrations, the theory reproduces the results of Nunan and Keller.
40746    The method is also applicable to the viscosity of colloidal systems
40747    with non-spherical particles.
40748 C1 Shanghai Univ Sci & Technol, Sch Syst Sci & Syst Engn, Shanghai 200093, Peoples R China.
40749    Chinese Univ Hong Kong, Dept Phys, Shatin, New Territories, Hong Kong.
40750 CR BATCHELOR GK, 1972, J FLUID MECH, V56, P401
40751    BATCHELOR GK, 1977, J FLUID MECH, V83, P97
40752    BEDEAUX D, 1977, PHYSICA            A, V88, P88
40753    BEDEAUX D, 1983, PHYSICA A, V121, P345
40754    CHOW TS, 1993, PHYS REV E, V48, P1977
40755    DEKRUIF CG, 1985, J CHEM PHYS, V83, P4717
40756    EINSTEIN A, 1906, ANN PHYS LEIPAIG, V19, P288
40757    EINSTEIN A, 1911, ANN PHYS-BERLIN, V34, P591
40758    ESHELBY JD, 1957, P ROY SOC LOND A MAT, V241, P376
40759    FREED KF, 1982, J CHEM PHYS, V76, P6187
40760    GU GQ, 1988, PHYS REV B, V37, P8612
40761    KANDYRIN LB, 1992, ADV POLYM SCI, V103, P103
40762    KRIEGER IM, 1972, ADV COLLOID INTERFAC, V3, P111
40763    MCPHEDRAN RC, 1978, P ROY SOC LOND A MAT, V359, P45
40764    MELLEMA J, 1983, PHYSICA A, V122, P268
40765    MUTHUKUMAR M, 1982, J CHEM PHYS, V76, P6195
40766    NAGATANI T, 1979, J PHYS SOC JPN, V47, P320
40767    NEMATNASSER S, 1981, Q APPL MATH, V39, P43
40768    NUNAN KC, 1984, J FLUID MECH, V142, P269
40769    PETERSON JM, 1963, J CHEM PHYS, V39, P2516
40770    RAYLEIGH JW, 1892, PHILOS MAG, V34, P481
40771    SUEN WM, 1979, J PHYS D, V12, P1325
40772    TAYLOR GI, 1932, P R SOC LOND A-CONTA, V138, P41
40773    VANDERWERFF JC, 1989, J RHEOL, V33, P421
40774    ZICK AA, 1982, J FLUID MECH, V115, P13
40775 NR 25
40776 TC 0
40777 SN 0252-9602
40778 J9 ACTA MATH SCI
40779 JI Acta Math. Sci.
40780 PY 1999
40781 VL 19
40782 IS 2
40783 BP 148
40784 EP 157
40785 PG 10
40786 SC Mathematics
40787 GA 208NK
40788 UT ISI:000080997800004
40789 ER
40790 
40791 PT J
40792 AU Chen, J
40793    Nho, YC
40794    Kwon, OH
40795    Hoffman, AS
40796 TI Grafting copolymerization of polyethylene glycol methacrylate (PEGMA)
40797    onto preirradiated PP films
40798 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
40799 DT Letter
40800 ID PEO GRADIENT SURFACES; PROTEIN ADSORPTION; PLATELET-ADHESION;
40801    PREVENTION; COATINGS
40802 AB Polyethylene glycol methacrylate (PEGMA) with different polyethylene
40803    oxide units were grafted onto polypropylene (PP) films by a
40804    preirradiation grafting method. The effect of co-solvent system on the
40805    degree of grafting and water contact angle were determined,
40806    respectively. The grafted sample films were verified by Fourier
40807    Transform Infrared (FTIR) spectroscopy in the attenuated total
40808    reflectance mode (ATR). The biocompatibility and blood compatibility of
40809    the grafted PP films were evaluated by the determination of protein
40810    adsorption, platelet adsorption and thrombus.
40811 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
40812    Korea Atom Energy Res Inst, Radiat Applicat Div, Taejon, South Korea.
40813    Univ Washington, Ctr Bioengn, Seattle, WA 98159 USA.
40814 RP Chen, J, Shanghai Univ, Shanghai Appl Radiat Inst, Jiadiang Campus,
40815    Shanghai 201800, Peoples R China.
40816 CR AMIJI M, 1992, BIOMATERIALS, V13, P682
40817    ANDRADE JD, 1987, T AM SOC ART INT ORG, V33, P75
40818    BAIER RE, 1970, T AM SOC ART INT ORG, V16, P50
40819    DUNKIRK SG, 1991, J BIOMATER APPL, V6, P131
40820    HADDADIASL V, 1995, RADIAT PHYS CHEM, V45, P191
40821    HOFFMAN AS, 1982, ADV CHEM SER, V199, P3
40822    HOFFMAN AS, 1988, J APPL POLYM SCI APP, V42, P251
40823    IKADA Y, 1981, RADIAT PHYS CHEM, V18, P1207
40824    IMAI Y, 1972, J BIOMED MATER RES, V6, P165
40825    JEONG BJ, 1996, J COLLOID INTERF SCI, V178, P757
40826    LEE JH, 1989, J BIOMED MATER RES, V23, P351
40827    LEE JH, 1990, BIOMATERIALS, V11, P455
40828    LEE JH, 1997, J BIOMED MATER RES, V34, P105
40829    NIIO YC, 1993, POLYMER, V17, P433
40830    SUN YH, 1986, J BIOACT COMPAT POL, V1, P316
40831    WILSON JE, 1977, J MACROMOL SCI CHEM, V11, P2113
40832 NR 16
40833 TC 0
40834 SN 0236-5731
40835 J9 J RADIOANAL NUCL CHEM
40836 JI J. Radioanal. Nucl. Chem.
40837 PD JUN
40838 PY 1999
40839 VL 240
40840 IS 3
40841 BP 943
40842 EP 948
40843 PG 6
40844 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
40845    & Technology
40846 GA 207HR
40847 UT ISI:000080931900039
40848 ER
40849 
40850 PT J
40851 AU Guo, XM
40852 TI A new uniqueness theorem of the linear thermo-elastic dynamics on
40853    unbounded domains
40854 SO ACTA MECHANICA SINICA
40855 DT Article
40856 DE linear thermo-elasticity; initial boundary value problem; unique
40857 ID ENERGY
40858 AB In the present paper, the uniqueness of the solution to the initial
40859    boundary value problem of the linear thermo-elastic dynamics on
40860    unbounded domains is obtained under less restrictive conditions,
40861    including abandoning the positive semi-definiteness of the elasticity
40862    tensor and boundness of the material tensor and restrictions on the
40863    acoustic tensor and the coupled tensor, and the results in [1] are
40864    refined. The conclusion here is valid for the case on bounded domains
40865    and the linear elastic dynamics on unbounded domains, hence the results
40866    in [2 similar to 4] are refined too. Abandoning the positive
40867    semi-definiteness of elasticity tensor permits that the uniqueness of
40868    the kinetic process is still valid for deformation of the wider
40869    materials, especially for the case that there are phase-transition
40870    during deformation process provided that the constitutive equations are
40871    unchanged in forms.
40872 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
40873 RP Guo, XM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
40874    200072, Peoples R China.
40875 CR BALL JM, 1987, ARCH RATION MECH AN, V100, P13
40876    CARBONARO B, 1984, J ELASTICITY, V14, P163
40877    CARBONARO B, 1987, J ELASTICITY, V17, P85
40878    CHANDRASEKHARAI.DS, 1984, J TECHN PHYS, V25, P345
40879    ERICKSEN JL, 1975, J ELASTICITY, V5, P191
40880    SHERIEF HH, 1980, J THERMAL STRESSES, V3, P223
40881 NR 6
40882 TC 0
40883 SN 0567-7718
40884 J9 ACTA MECH SINICA
40885 JI Acta Mech. Sin.
40886 PD FEB
40887 PY 1999
40888 VL 15
40889 IS 1
40890 BP 59
40891 EP 62
40892 PG 4
40893 SC Engineering, Mechanical; Mechanics
40894 GA 206VX
40895 UT ISI:000080902000008
40896 ER
40897 
40898 PT J
40899 AU Chen, YS
40900    Ma, JH
40901    Liu, ZR
40902 TI The state space reconstruction technology of different kinds of chaotic
40903    data obtained from dynamical system
40904 SO ACTA MECHANICA SINICA
40905 DT Article
40906 DE nonlinear chaotic data; embedding space matrix; eigenvalue and
40907    eigenvector; state space reconstruction
40908 ID TIME-SERIES; INFORMATION; ATTRACTORS
40909 AB Certain deterministic nonlinear systems may show chaotic behavior. We
40910    consider the motion of qualitative information and the practicalities
40911    of extracting a part from chaotic experimental data. Our approach based
40912    on a theorem of Takens draws on the ideas from the generalized theory
40913    of information known as singular system analysis. We illustrate this
40914    technique by numerical data from the chaotic region of the chaotic
40915    experimental data. The method of the singular-value decomposition is
40916    used to calculate the eigenvalues of embedding space matrix. The
40917    corresponding concrete algorithm to calculate eigenvectors and to
40918    obtain the basis of embedding vector space is proposed in this paper.
40919    The projection on the orthogonal basis generated by eigenvectors of
40920    timeseries data and concrete paradigm are also provided here. Meanwhile
40921    the state space reconstruction technology of different kinds of chaotic
40922    data obtained from dynamical system has also been discussed in detail.
40923 C1 Tianjin Univ, Dept Mech, Tianjin 300072, Peoples R China.
40924    SE Univ, Inst Syst Engn, Nanjing 210096, Peoples R China.
40925    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
40926 RP Chen, YS, Tianjin Univ, Dept Mech, Tianjin 300072, Peoples R China.
40927 CR ALDANO AM, 1988, PHYS REV A, V38, P3017
40928    BROOMHEAD DS, 1986, PHYSICA D, V20, P217
40929    CASDAGLI M, 1991, PHYSICA D, V51, P52
40930    FRASER AM, 1986, PHYS REV A, V33, P1134
40931    FRASER AM, 1989, PHYSICA D, V34, P391
40932    GIBSON JF, 1992, PHYSICA D, V57, P1
40933    JUNHAI M, 1997, THESIS TIANJIAN U CH
40934    LIEBERT W, 1988, PHYS LETT, V142, P101
40935    MA JH, 1998, APPL MATH MECH, V19, P481
40936    MA JH, 1998, APPL MATH MECH-ENGL, V19, P1033
40937    MEES AI, 1987, PHYS REV A, V36, P340
40938    PACKARD NH, 1980, PHYS REV LETT, V45, P712
40939    PALUS M, 1993, PHYS LETT A, V175, P203
40940    TAKENS F, 1981, LECT NOTES MATH, V898, P366
40941 NR 14
40942 TC 1
40943 SN 0567-7718
40944 J9 ACTA MECH SINICA
40945 JI Acta Mech. Sin.
40946 PD FEB
40947 PY 1999
40948 VL 15
40949 IS 1
40950 BP 82
40951 EP 92
40952 PG 11
40953 SC Engineering, Mechanical; Mechanics
40954 GA 206VX
40955 UT ISI:000080902000011
40956 ER
40957 
40958 PT J
40959 AU Hua, B
40960    Li, CZ
40961 TI Production and characterization of nanocrystalline SnO2 films on Al2O3
40962    agglomerates by CVD in a fluidized bed
40963 SO MATERIALS CHEMISTRY AND PHYSICS
40964 DT Article
40965 DE chemical vapor deposition; fluidization; ultrafine particle
40966 AB In this paper, nanocrystalline SnO2 films an coated on ultrafine Al2O3
40967    particles by hydrolyzing SnCl4 vapor using fluidization chemical vapor
40968    deposition (FCVD) technology. The morphology and distribution of SnO2
40969    films in Al2O3 agglomerates as well as on ultrafine Al2O3 particles are
40970    determined by means of X-ray diffraction (XRD), EPMA, high resolution
40971    electron microscopy (HREM) etc. The results show that nanocrystalline
40972    SnO2 films are deposited uniformly throughout the whole agglomerate if
40973    Al2O3 agglomerates are fluidized and the films are made up of both
40974    amorphous SnO2 and 6-10 nm crystallites on the surfaces of ultrafine
40975    Al2O3 particles under different coating conditions. FCVD can be
40976    developed into a competitive method for surface modification of
40977    ultrafine particles. (C) 1999 Published by Elsevier Science S.A. All
40978    rights reserved.
40979 C1 Shanghai Univ, Coll Chem & Chem Engn, Shanghai 200072, Peoples R China.
40980    E China Univ Sci & Technol, Inst Tech Chem Phys, Shanghai 200072, Peoples R China.
40981 RP Hua, B, Shanghai Univ, Coll Chem & Chem Engn, POB 233,Yanchang Rd 149,
40982    Shanghai 200072, Peoples R China.
40983 CR GU Y, 1992, J E CHINA U CHEM TEC, V18, P506
40984    HUA B, 1994, J E CHINA U SCI TECH, V20, P290
40985    HUA B, 1994, J E CHINA U SCI TECH, V20, P294
40986    ITON H, 1988, J MATER SCI, V23, P43
40987    MAUDES JS, 1980, THIN SOLID FILMS, V69, P183
40988    MOROOKA S, 1988, J CHEM ENG JPN, V21, P41
40989    NAGANO M, 1984, J CRYST GROWTH, V67, P639
40990    YAO J, 1990, J E CHINA U CHEM TEC, V16, P249
40991 NR 8
40992 TC 6
40993 SN 0254-0584
40994 J9 MATER CHEM PHYS
40995 JI Mater. Chem. Phys.
40996 PD MAY 25
40997 PY 1999
40998 VL 59
40999 IS 2
41000 BP 130
41001 EP 135
41002 PG 6
41003 SC Materials Science, Multidisciplinary
41004 GA 203NV
41005 UT ISI:000080714500006
41006 ER
41007 
41008 PT J
41009 AU Zhang, YH
41010    Huang, SP
41011 TI Molecular dynamics simulation study of MgO crystal
41012 SO CHINESE PHYSICS LETTERS
41013 DT Article
41014 ID THERMODYNAMIC PROPERTIES; MGSIO3 PEROVSKITE
41015 AB Molecular dynamics simulation of MgO crystal at different temperature
41016    and pressure was carried out by suing the shell model of ionic
41017    polarizability. The prediction of thermal expansion is in good
41018    agreement with the experiment. The heat capacity has been calculated
41019    with a semi-classical approximate method. The calculated values are
41020    less than the experimental data because the anharmonic effect and
41021    quantum correlation were not taken into account. The changes of
41022    transverse-optic and longitudinal-optic modes with the compression
41023    ration are also calculated.
41024 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
41025    Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
41026 RP Zhang, YH, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
41027 CR ALLAN NL, 1987, ADV CERAM, V23, P257
41028    ANDERSON OL, 1990, J PHYS CHEM REF DATA, V19, P69
41029    BORN M, 1954, DYNAMICAL THEORY CRY
41030    BUSH TS, 1994, J MATER CHEM, V4, P831
41031    FINCHAM D, 1994, J PHYS-CONDENS MAT, V6, P393
41032    LEWIS GV, 1985, J PHYS C SOLID STATE, V18, P1140
41033    MAO HK, 1979, J GEOPHYS RES, V84, P4533
41034    MATSUI M, 1989, J CHEM PHYS, V91, P489
41035    MITCHELL PJ, 1993, J PHYS-CONDENS MAT, V5, P1031
41036    PING HS, 1997, J PHYS SOC JPN, V66, P1356
41037    WEI Q, 1998, CHINESE PHYS LETT, V15, P834
41038    WINKLER B, 1992, PHYS CHEM MINER, V18, P407
41039    ZHOU LX, 1998, CHINESE PHYS LETT, V15, P444
41040 NR 13
41041 TC 2
41042 SN 0256-307X
41043 J9 CHIN PHYS LETT
41044 JI Chin. Phys. Lett.
41045 PY 1999
41046 VL 16
41047 IS 4
41048 BP 235
41049 EP 237
41050 PG 3
41051 SC Physics, Multidisciplinary
41052 GA 203MT
41053 UT ISI:000080712000001
41054 ER
41055 
41056 PT J
41057 AU Wu, YJ
41058 TI A nonlinear Galerkin method with variable modes for
41059    Kuramoto-Sivashinsky equation
41060 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
41061 DT Article
41062 DE Kuramoto-Sivaskinsky equation; nonlinear Galerkin method;
41063    approximation; convergence
41064 ID GLOBAL DYNAMICAL PROPERTIES
41065 AB This article proposes a kind of nonlinear Galerkin methods with
41066    variable modes for the long-term integration of Kuramoto-Sivashinsky
41067    equation. It consists of finding an appropriate or best number of modes
41068    in the correction of the method. Convergence results and error
41069    estimates are derived for this method. Numerical examples show also the
41070    efficiency and advantage of our method over the usual nonlinear
41071    Galerkin method and the classical Galerkin method.
41072 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
41073    Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China.
41074 CR CANUTO C, 1988, SPECTRAL METHODS FLU
41075    FOIAS C, 1983, PHYSICA D, V9, P157
41076    FOIAS C, 1988, MATH MODELLING NUMER, V22, P93
41077    MARION M, 1989, SIAM J NUMER ANAL, V26, P1139
41078    NICOLAENKO B, 1985, PHYSICA D, V16, P155
41079    NICOLAENKO B, 1989, COMMUN PART DIFF EQ, V14, P245
41080    TEMAM R, 1989, MATH MODEL NUMER ANA, V3, P541
41081    TEMAM R, 1989, P 11 INT C NUM METH
41082    TEMAN R, 1984, NAVIER STOKES EQUATI
41083    TEMAN R, 1988, APPL MATH SCI, V68
41084    WU YJ, 1994, ADV MECH, V2, P145
41085    YANG ZH, 1997, J SHANGHAI U, V1, P20
41086 NR 12
41087 TC 1
41088 SN 0254-9409
41089 J9 J COMPUT MATH
41090 JI J. Comput. Math.
41091 PD MAY
41092 PY 1999
41093 VL 17
41094 IS 3
41095 BP 243
41096 EP 256
41097 PG 14
41098 SC Mathematics, Applied; Mathematics
41099 GA 201MN
41100 UT ISI:000080599400003
41101 ER
41102 
41103 PT J
41104 AU He, GQ
41105    Liu, JX
41106 TI A kind of implicit iterative methods for ill-posed operator equations
41107 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
41108 DT Article
41109 DE ill-posed equation; implicit iterative method; control parameter;
41110    discrepamcy principle; optimal convergence rate
41111 ID TIKHONOV REGULARIZATION; PARAMETER CHOICE; HILBERT SCALES
41112 AB In this paper we propose a kind of implicit iterative methods for
41113    solving ill-posed operator equations and discuss the properties of the
41114    methods in the case that the control parameter is fixed. The
41115    theoretical results show that the new methods have certain important
41116    features and can overcome some disadvantages of Tikhonov-type
41117    regularization and explicit iterative methods. Numerical examples are
41118    also given in the paper, which coincide well with theoretical results.
41119 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
41120 CR BAUMEISTER J, 1987, STABLE SOLUTION INVE
41121    BRAKHAGE H, 1987, INVERSE ILL POSED PR, P165
41122    GROETSCH CW, 1984, THEORY TIKHONOV REGU
41123    GROETSCH CW, 1989, J APPROX THEORY, V58, P184
41124    HAGEMAN LA, 1981, APPL ITERATIVE METHO
41125    HANKE M, 1991, NUMER MATH, V60, P341
41126    HE GQ, 1993, COMM APPL MATH COMPU, V38, P356
41127    HE GQ, 1993, COMM APPL MATH COMPU, V38, P356
41128    HE GQ, 1993, COMM APPL MATH COMPU, V7, P76
41129    KING JT, 1979, NUMER FUNCT ANAL OPT, V1, P499
41130    LANDWEBER L, 1951, AM J MATH, V73, P615
41131    LUAN WG, 1989, INVERSE PROBLEMS GEO
41132    MOROZOV A, 1966, SOV MATH DOKL, V7, P414
41133    NATTERER F, 1984, APPL ANAL, V18, P29
41134    NEMIROVSKIY AS, 1984, ENG CYBERN, V22, P1
41135    NEUBAUER A, 1988, SIAM J NUMER ANAL, V25, P1313
41136    TIKHONOV AN, 1977, SOLUTION ILL POSED P
41137 NR 17
41138 TC 2
41139 SN 0254-9409
41140 J9 J COMPUT MATH
41141 JI J. Comput. Math.
41142 PD MAY
41143 PY 1999
41144 VL 17
41145 IS 3
41146 BP 275
41147 EP 284
41148 PG 10
41149 SC Mathematics, Applied; Mathematics
41150 GA 201MN
41151 UT ISI:000080599400005
41152 ER
41153 
41154 PT J
41155 AU Wang, HX
41156 TI Extinction of population-size-dependent branching processes in random
41157    environments
41158 SO JOURNAL OF APPLIED PROBABILITY
41159 DT Article
41160 DE stochastic population models; Markov chains in random environments;
41161    extinction probabilities
41162 AB We generalize a population-size-dependent branching process to a more
41163    general branching model called the population-size-dependent branching
41164    process in random environments. For the model where {Zn}(n greater than
41165    or equal to 0) is associated with the stationary environment <(xi)over
41166    bar> = {xi(n)}(n greater than or equal to 0), let B = {omega :
41167    Z(n)(omega) = 0 for some n}, and q(<(xi)over bar>) = P(B \ <(xi)over
41168    bar>, Z(0) = 1). The result is that P(q(<(xi)over bar>) = 1) is either
41169    1 or 0, and sufficient conditions for certain extinction (i.e.
41170    P(q(<(xi)over bar>) = 1) = 1) and for non-certain extinction (i.e.
41171    P(q(<(xi)over bar>) < 1) = 1) are obtained for the model.
41172 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
41173 RP Wang, HX, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
41174 CR ATHREYA KB, 1971, ANN MATH STAT, V42, P1499
41175    COGBURN R, 1984, Z WAHRSCHEINLICHKEIT, V66, P109
41176    KLEBANER FC, 1984, ADV APPL PROBAB, V16, P30
41177    SMITH WL, 1969, ANN MATH STAT, V40, P814
41178    VIAUD DPL, 1994, J APPL PROBAB, V31, P22
41179 NR 5
41180 TC 5
41181 SN 0021-9002
41182 J9 J APPL PROBAB
41183 JI J. Appl. Probab.
41184 PD MAR
41185 PY 1999
41186 VL 36
41187 IS 1
41188 BP 146
41189 EP 154
41190 PG 9
41191 SC Statistics & Probability
41192 GA 202WX
41193 UT ISI:000080676100013
41194 ER
41195 
41196 PT J
41197 AU Li, CF
41198    Wang, Q
41199 TI The quantum behavior of an electron in a uniform magnetic field
41200 SO PHYSICA B
41201 DT Article
41202 DE probability current density; uniform magnetic field; symmetric gauge;
41203    classical correspondence
41204 AB The total probability current of an electron in a uniform magnetic
41205    field is calculated in the symmetric gauge. Even though the eigen
41206    motion of the electron in this gauge is similar to the classical orbit
41207    motion, the total probability current is found to be equal to zero when
41208    the canonical angular momentum is less than zero. The reason is that in
41209    this case, the origin of the coordinate system lies outside the
41210    circular orbit of corresponding classical motion, in addition to the
41211    absence of radial component of the probability current density because
41212    of the indeterminacy of the location of the orbit center. (C) 1999
41213    Published by Elsevier Science B.V. All rights reserved.
41214 C1 CCAST, World Lab, Beijing 100080, Peoples R China.
41215    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
41216 RP Li, CF, CCAST, World Lab, POB 8730, Beijing 100080, Peoples R China.
41217 CR ARFKEN G, 1985, MATH METHODS PHYSICI, P726
41218    BALLENTINE LE, 1990, QUANTUM MECH, P216
41219    CAPRI AZ, 1985, NONRELATIVISTIC QUAN, P457
41220    LANDAU LD, 1977, QUANTUM MECHANICS, P456
41221    PAGE L, 1930, PHYS REV, V36, P444
41222    STONE M, 1992, QUANTUM HALL EFFECT
41223 NR 6
41224 TC 3
41225 SN 0921-4526
41226 J9 PHYSICA B
41227 JI Physica B
41228 PD JUL
41229 PY 1999
41230 VL 269
41231 IS 1
41232 BP 22
41233 EP 27
41234 PG 6
41235 SC Physics, Condensed Matter
41236 GA 200KG
41237 UT ISI:000080538400004
41238 ER
41239 
41240 PT J
41241 AU Huang, SR
41242    Luo, J
41243    Leonardi, F
41244    Lipo, TA
41245 TI A comparison of power density for axial flux machines based on general
41246    purpose sizing equations
41247 SO IEEE TRANSACTIONS ON ENERGY CONVERSION
41248 DT Article
41249 ID ELECTRICAL MACHINES; DESIGN
41250 AB Based on the concept of the converter fed machine (CFM), an optimal
41251    machine design can be considered as the best match of the machine
41252    topology, the power electronic converter and the performance
41253    specification. To compare power production potential of axial flux
41254    machines with various topologies, different waveforms of back emf and
41255    current, general purpose sizing and power density equations for such
41256    machines are needed. In this paper, a general approach is presented to
41257    develop and to interpret these equations. Sample applications of the
41258    sizing and power density equations are utilized to compare the axial
41259    flux toroidal permanent magnet (AFTPM) machine and the axial flux
41260    two-stator permanent magnet (AF2SPM) machine.
41261 C1 Shanghai Univ, Coll Automat, Shanghai 200072, Peoples R China.
41262    McCleer Power Inc, Jackson, MI 49203 USA.
41263    Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA.
41264 RP Huang, SR, Shanghai Univ, Coll Automat, 147 Yan Chang Rd, Shanghai
41265    200072, Peoples R China.
41266 CR CAMPBELL P, 1974, P I ELECTR ENG, V121, P1489
41267    CARICCHI F, 1994, IEEE IAS ANN M DENV, P254
41268    CHAN CC, 1987, IEEE T ENERGY CONVER, V2, P294
41269    DOTE Y, 1990, BRUSHLESS SERVOMOTOR
41270    HUANG S, 1996, IEEE IND APPLIC SOC, P836
41271    JENSEN CC, 1992, IEEE T IND APPL, V28, P646
41272    LI Y, 1995, THESIS U WISCONSIN M
41273    LIPO TA, 1984, IEEE T IND APPL, V20, P834
41274    LIPO TA, 1995, IPEC 95 JAP APR 3 7, P1
41275    SPOONER E, 1988, P INT C EL MACH, V3, P81
41276 NR 10
41277 TC 7
41278 SN 0885-8969
41279 J9 IEEE TRANS ENERGY CONVERS
41280 JI IEEE Trans. Energy Convers.
41281 PD JUN
41282 PY 1999
41283 VL 14
41284 IS 2
41285 BP 185
41286 EP 191
41287 PG 7
41288 SC Engineering, Electrical & Electronic; Energy & Fuels
41289 GA 199CP
41290 UT ISI:000080462000010
41291 ER
41292 
41293 PT J
41294 AU Li, QN
41295 TI Coupled-local-mode theory and study of optical properties of a Gaussian
41296    fiber grating
41297 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND
41298    VISION
41299 DT Article
41300 ID BRAGG GRATINGS; PHASE GRATINGS; FILTERS; PERIOD
41301 AB A coupled-local-mode theory is presented for a nonuniform fiber grating
41302    with slowly varying background induced-index change. On this basis the
41303    transmission spectrum of a Gaussian fiber grating is calculated, and
41304    the underlying physical mechanism is studied in detail. (C) 1999
41305    Optical Society of America [S0740-3232(99)02306-6].
41306 C1 Shanghai Univ, Inst Fiber Opt, Shanghai 201800, Peoples R China.
41307 RP Li, QN, Shanghai Univ, Inst Fiber Opt, Shanghai 201800, Peoples R China.
41308 CR BENNION I, 1996, OPT QUANT ELECTRON, V28, P93
41309    BORN M, 1959, PRINCIPLES OPTICS
41310    CAMPBELL RJ, 1994, INT J OPTOELECTRON, V9, P33
41311    ERDOGAN T, 1996, J OPT SOC AM A, V13, P296
41312    ERDOGAN T, 1997, J LIGHTWAVE TECHNOL, V15, P1277
41313    ERDOGAN T, 1997, J OPT SOC AM A, V14, P1760
41314    FONJALLAZ PY, 1997, J LIGHTWAVE TECHNOL, V15, P371
41315    HILL KO, 1978, APPL PHYS LETT, V32, P647
41316    HUANG HC, 1998, MICROWAVE APPROACH H
41317    KASHYAP R, 1994, OPT FIBRE TECHNOL, V1, P17
41318    KASHYAP R, 1997, INT J OPTOELECTRON, V11, P87
41319    LAM DKW, 1981, APPL OPTICS, V20, P440
41320    LANDAU LD, 1980, QUANTUM MECH
41321    MARCUSE D, 1991, THEORY DIELECTRIC OP
41322    MELTZ G, 1989, OPT LETT, V14, P823
41323    MIZRAHI V, 1993, J LIGHTWAVE TECHNOL, V11, P1513
41324    POLADIAN L, 1993, PHYS REV E, V48, P4758
41325    SIPE JE, 1994, J OPT SOC AM A, V11, P1307
41326    SNYDER AW, 1983, OPTICAL WAVEGUIDE TH
41327    VENGSARKAR AM, 1996, J LIGHTWAVE TECHNOL, V14, P58
41328    ZHAO YY, 1997, J LIGHTWAVE TECHNOL, V15, P154
41329 NR 21
41330 TC 0
41331 SN 0740-3232
41332 J9 J OPT SOC AM A-OPT IMAGE SCI
41333 JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis.
41334 PD JUN
41335 PY 1999
41336 VL 16
41337 IS 6
41338 BP 1312
41339 EP 1325
41340 PG 14
41341 SC Optics
41342 GA 198YQ
41343 UT ISI:000080452500011
41344 ER
41345 
41346 PT J
41347 AU He, JH
41348 TI General Bernoulli equation for rotational flow in rotor
41349 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
41350 DT Article
41351 AB In this paper, a general Bernoulli equation is formulated in terms of
41352    three Clebsch-type variables for unsteady compressible rotational flow
41353    in turbomachine aerodynamics.
41354 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
41355 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
41356    Peoples R China.
41357 CR ECER A, 1983, AIAA J, V21, P343
41358    HE JH, 1997, INT J TURBO JET ENG, V14, P17
41359    LIU GL, 1980, FUNDAMENTALS AERODYN
41360    LIU GL, 1991, 3 INT C INV DES OPT, P337
41361 NR 4
41362 TC 1
41363 SN 0334-0082
41364 J9 INT J TURBO JET ENGINES
41365 JI Int. J. Turbo. Jet-Engines
41366 PY 1999
41367 VL 16
41368 IS 1
41369 BP 17
41370 EP 18
41371 PG 2
41372 SC Engineering, Aerospace
41373 GA 196WU
41374 UT ISI:000080331500002
41375 ER
41376 
41377 PT J
41378 AU He, JH
41379 TI Treatment shocks in transonic aerodynamics in the meshless method Part
41380    I: Lagrange multiplier approach
41381 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
41382 DT Article
41383 DE meshless method; variational principle; transonic flow
41384 ID FREE GALERKIN METHODS; FLUID-MECHANICS
41385 AB The meshless method, which is mainly based on moving least-squares
41386    approximation, has features which make it highly attractive for
41387    simulating problems containing discontinuities (such as material
41388    discontinuities, shocks, and inverse problems). By using the meshless
41389    method, the trial and test functions for variational functional are
41390    constructed with moving least-square interpolants. The Rankine-Hogoniot
41391    shock relations are imposed at the variational level by the Lagrange
41392    multipliers. Treatment of the shocks is discussed as well as accurate
41393    treatment of the unknown discontinuities of shocks has been emphasized.
41394 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
41395 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
41396    Peoples R China.
41397 CR BELYTSCHKO T, 1994, INT J NUMER METH ENG, V37, P229
41398    BELYTSCHKO T, 1995, INT J SOLIDS STRUCT, V32, P2547
41399    BELYTSCHKO T, 1996, COMPUT METHOD APPL M, V139, P3
41400    HE JH, 1997, INT J TURBO JET ENG, V14, P17
41401    HE JH, 1997, INT J TURBO JET ENG, V14, P23
41402    HE JH, 1997, J SHANGHAI U, V1, P117
41403    LISZKA TJ, 1996, COMPUT METHOD APPL M, V139, P263
41404    LIU WK, 1995, INT J NUMER METH FL, V21, P901
41405    LIU WK, 1996, ARCH COMPUTATIONAL M, V3, P3
41406    ONATE E, 1996, COMPUT METHOD APPL M, V139, P315
41407 NR 10
41408 TC 10
41409 SN 0334-0082
41410 J9 INT J TURBO JET ENGINES
41411 JI Int. J. Turbo. Jet-Engines
41412 PY 1999
41413 VL 16
41414 IS 1
41415 BP 19
41416 EP 25
41417 PG 7
41418 SC Engineering, Aerospace
41419 GA 196WU
41420 UT ISI:000080331500003
41421 ER
41422 
41423 PT J
41424 AU Shi, DH
41425 TI Revisiting the state transition frequency formula
41426 SO ANNALS OF OPERATIONS RESEARCH
41427 DT Article
41428 DE supplementary variable technique; VMP method; state transition counting
41429    process; transition frequency formula; fluid model
41430 AB In this paper, we give a new proof of the transition frequency formula
41431    for the state transition counting process in a vector Markov process
41432    (VMP). The formula was first presented by the author in the early
41433    eighties. We also derive the absorbing distribution, the renewal
41434    distribution and the entering probability formulas from the formula. As
41435    an application, we use derived results to reduce the analysis of a
41436    fluid model with random disruptions.
41437 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
41438 RP Shi, DH, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
41439 CR CHEN H, 1992, OPER RES, V40, S324
41440    COX DR, 1955, P CAMBRIDGE PHILOS S, V51, P313
41441    NEUTS MF, 1957, J APPL PROBAB, V17, P764
41442    NEUTS MF, 1975, LIBER AMICORUM PROF, P173
41443    PYKE R, 1961, ANN MATH STAT, V32, P1231
41444    SHI DH, 1985, ACTA MATH APPL SINIC, V1, P101
41445    SHI DH, 1990, ANN OPERAT RES, V24, P185
41446    SHI DH, 1996, NAV RES LOG, V43, P1009
41447    WIDDER DV, 1946, LAPLACE TRANSFORM
41448 NR 9
41449 TC 0
41450 SN 0254-5330
41451 J9 ANN OPER RES
41452 JI Ann. Oper. Res.
41453 PY 1999
41454 VL 87
41455 BP 305
41456 EP 317
41457 PG 13
41458 SC Operations Research & Management Science
41459 GA 197DK
41460 UT ISI:000080349200021
41461 ER
41462 
41463 PT J
41464 AU He, JH
41465 TI Hybrid problems of determining unknown shape of bladings in
41466    compressible S2-flow in mixed-flow turbomachinery via variational
41467    technique
41468 SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY
41469 DT Article
41470 DE aerodynamics; blades; inverse problems
41471 AB Using the semi-inverse method proposed by the present author, a family
41472    of variational principle for direct problem of S2-flow in mixed-flow
41473    turbomachinery is obtained; then, applying the functional variation
41474    with variable domain, two families of variational principles are
41475    established for the hybrid problems of determining the unknown shape of
41476    bladings, where pressure or velocity is over-specified. The present
41477    variational models are well posed for redundant data at boundaries. The
41478    theory provides both rational ways for best contouring the hub/casing
41479    walls to meet various practical design requirements and a theoretical
41480    basis for introducing the finite element method into computational
41481    aerodynamics of turbomachinery.
41482 C1 Shanghai Univ, Inst Mech, Shanghai 200041, Peoples R China.
41483 RP He, JH, Shanghai Univ, Inst Mech, Shanghai 200041, Peoples R China.
41484 CR CAI RQ, 1988, INT J HEAT FLUID FL, V9, P302
41485    HE JH, 1997, INT J TURBO JET ENG, V14, P23
41486    HE JH, 1997, J SHANGHAI U, V1, P117
41487    HE JH, 1998, GEN VARIATIONAL PRIN
41488    HE JH, 1998, INT J TURBO JET ENG, V15
41489    LIU GL, 1997, AIRCR ENG AEROSP TEC, V69, P527
41490    LIU X, 1995, MULT SCLER, V1, P2
41491 NR 7
41492 TC 8
41493 SN 0002-2667
41494 J9 AIRCRAFT ENG AEROSP TECHNOL
41495 JI Aircr. Eng. Aerosp. Technol.
41496 PY 1999
41497 VL 71
41498 IS 2
41499 BP 154
41500 EP 159
41501 PG 6
41502 SC Engineering, Aerospace
41503 GA 195JN
41504 UT ISI:000080247200007
41505 ER
41506 
41507 PT J
41508 AU Wang, Q
41509    Wu, Z
41510    Wang, LQ
41511 TI Nonlinear behavior of electromagnetic waves on surface of
41512    antiferromagnet
41513 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
41514 DT Article
41515 DE antiferromagnet; nonlinear wave; surface wave
41516 ID MICROWAVE-ENVELOPE SOLITONS; IRON-GARNET FILMS
41517 AB The properties of the nonlinear TM waves on the interface between a
41518    dielectric and an antiferromagnet are studied. The relationship between
41519    the field components of TM wave is discussed in detail, and the
41520    dispersion characteristics as well as the position of the peak field
41521    are exposed. The theoretical analysis shows that for the nonlinear TM
41522    waves there exist passband(s) and stopband(s) which can be switched
41523    into each other by varying the power. II is revealed that, in the case
41524    of epsilon(1)>epsilon(2), the nonlinear TM waves on the interface are
41525    backward surface waves with the group and phase velocities opposite.
41526 C1 Shanghai Univ, Coll Sci, Shanghai 201800, Peoples R China.
41527 RP Wang, Q, Shanghai Univ, Coll Sci, Shanghai 201800, Peoples R China.
41528 CR ALMEIDA NS, 1987, PHYS REV B, V36, P2015
41529    BOARDMAN AD, 1994, IEEE T MAGN, V30, P1
41530    BOYLE JW, 1996, PHYS REV B, V53, P12173
41531    CHEN M, 1994, PHYS REV B, V49, P12773
41532    DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308
41533    NEWELL AC, 1991, NONLINEAR OPTICS, P120
41534    TSANKOV MA, 1994, J APPL PHYS, V76, P4274
41535    VUKOVICH S, 1990, SOV PHYS JETP, V71, P964
41536    WANG KCP, 1996, INTERFACES, V26, P77
41537    WANG Q, 1994, SCI CHINA SER A, V24, P160
41538    WANG Q, 1995, J APPL PHYS, V77, P5831
41539 NR 11
41540 TC 4
41541 SN 1006-9283
41542 J9 SCI CHINA SER A
41543 JI Sci. China Ser. A-Math. Phys. Astron.
41544 PD MAR
41545 PY 1999
41546 VL 42
41547 IS 3
41548 BP 310
41549 EP 318
41550 PG 9
41551 SC Mathematics, Applied; Mathematics
41552 GA 193FQ
41553 UT ISI:000080125600011
41554 ER
41555 
41556 PT J
41557 AU Zhao, MH
41558    Cheng, CJ
41559    Liu, GN
41560    Shen, YP
41561 TI The analysis of crack problems with non-local elasticity
41562 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
41563 DT Article
41564 DE crack; boundary integral equation (BIM); boundary element method (BEM);
41565    non-local elasticity; fundamental solution
41566 ID NONLOCAL ELASTICITY; DISLOCATION
41567 AB In this pager, the displacement discontinuity fundamental solutions (
41568    DDFS) corresponding to the unit concentrated displacement discontinuity
41569    for plane problems of non-local elasticity are obtained. Based on the
41570    displacement discontinuity boundary integral equation (DDBIE) and
41571    boundary element method (BEM), a method of analysis of crack problems
41572    in non-local elasticity with generalized purpose is proposed. By using
41573    this method, several important problems in fracture mechanics such as
41574    edge crack are studied. The study of edge crack shows that the stress
41575    concentration factor (SCF) near the crack tip is not a constant but
41576    varies with the crack length. With this result the effect of crack
41577    length on the fracture roughness K (I c) is studied. The results
41578    obtained in this paper are in accordance with the published ones.
41579 C1 Zhengzhou Res Inst Mech Engn, Zhengzhou 450052, Peoples R China.
41580    Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
41581    Xian Jiao Tong Univ, Xian 710049, Peoples R China.
41582 RP Zhao, MH, Zhengzhou Res Inst Mech Engn, Zhengzhou 450052, Peoples R
41583    China.
41584 CR 1986, GB639486
41585    CHENG PS, 1992, ACTA MECH SINICA, V24, P329
41586    CROUCH SL, 1976, INT J NUMER METH ENG, V10, P301
41587    ERINGEN AC, 1977, INT J ENG SCI, V15, P177
41588    ERINGEN AC, 1977, J MECH PHYS SOLIDS, V25, P339
41589    ERINGEN AC, 1979, ENG FRACT MECH, V12, P211
41590    ERINGEN AC, 1983, J APPL PHYS, V54, P6811
41591    ERINGEN AC, 1984, J APPL PHYS, V56, P2675
41592    ERINGEN AC, 1992, INT J ENG SCI, V10, P223
41593    GAO J, 1989, ACTA MECH SOLIDA SIN, V10, P289
41594    HU SH, 1991, P 6 NAT C FRACT C HA, P262
41595    ILCEWICZ L, 1981, ENG FRACT MECH, V14, P801
41596    LI QF, 1985, ENG FRACT MECH, V22, P9
41597    RAMABRAHAM B, 1985, INDIAN J PURE APPL M, V16, P661
41598    SHAH RC, 1974, ASTM STP, V560, P29
41599    SIH GC, 1973, MECH FRACTURE M, V1
41600    WANG R, 1989, SCI CHINA, V34, P1056
41601    YU JL, 1984, ACTA MECH SINICA, V16, P485
41602    ZHAO MH, 1994, ENG ANAL, V13, P333
41603    ZHAO MH, 1995, ACTA MECH SOLIDA SIN, V8, P42
41604    ZHAO TS, 1985, J HUAZHONG CENTRAL C, V13, P47
41605    ZHAO YS, 1987, P INT C FRACT FRACT, P206
41606 NR 22
41607 TC 1
41608 SN 0253-4827
41609 J9 APPL MATH MECH-ENGL ED
41610 JI Appl. Math. Mech.-Engl. Ed.
41611 PD FEB
41612 PY 1999
41613 VL 20
41614 IS 2
41615 BP 143
41616 EP 153
41617 PG 11
41618 SC Mathematics, Applied; Mechanics
41619 GA 193CZ
41620 UT ISI:000080119400004
41621 ER
41622 
41623 PT J
41624 AU Zhu, XH
41625    Zhu, JM
41626    Zhou, SH
41627    Li, Q
41628    Meng, ZY
41629    Ming, NB
41630 TI Configurations of ferroelectric domains in bismuth- and zinc-modified
41631    Pb(Ni1/3Nb2/3)O-3-PbTiO3-PbZrO3 ceramics
41632 SO JOURNAL OF MATERIALS SCIENCE
41633 DT Article
41634 ID PIEZOELECTRIC PROPERTIES; ELECTRON-MICROSCOPY; BATIO3; SYSTEM
41635 AB Transmission electron microscopy was used to investigate the domain
41636    structures of the
41637    (Pb0.985Bi0.01)(Ni1/4Zn1/12Nb2/3)(0.2)(ZrsigmaTi1-sigma)(0.8)O-3 (0.30
41638    less than or equal to sigma less than or equal to 0.70) ceramics, which
41639    are located in the ferroelectric tetragonal and rhombohedral phase
41640    regions, and also near the morphotropic phase boundary (MPB). The
41641    results show that the lamellar twinning domains and the delta-fringe
41642    contrast are most frequently observed in the compositions located in
41643    the ferroelectrc tetragonal phase region. In the compositions near the
41644    MPB, a banded domain structure similar to herringbone pattern is
41645    observed, which contains many parallel bands forming 90 degrees or 70
41646    degrees angles whereas they are inconsistent with one another on both
41647    sides of the herringbone domain patterns. The morphology of the
41648    herringbone domain structure observed in the bismuth- and zinc-modified
41649    PNN-PZ-PT ceramics with composition near the MPB can be described by a
41650    space-stacking succession of two crystallographically equivalent plates
41651    whereas made from different twin-related domains, with the same habit
41652    plane parallel to the (0.11)-type plane. In the compositions located in
41653    the rhombohedral phase region, the stripelike domains are observed, and
41654    a local random contrast representing short-range-ordered 'island'-typed
41655    polar clusters or nanodomains is also found, which is attributed to the
41656    existence of the polar microregions with the dispersed nanometer-sized
41657    short-range-ordered domains in the rhombohedral matrix, because the
41658    free energy of the ensemble of the polar microregion is lowered, and
41659    the relative thermodynamic stability is increased with increasing the
41660    content ratio of Zr to Ti. In addition, the wavy character in the
41661    thickness fringe is commonly observed at the fringe of thin foil, which
41662    is due to continuous bending of the thin foil at various equivalent
41663    directions. (C) 1999 Klumer Academic Publishers.
41664 C1 Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.
41665    Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
41666    CCAST, World Lab, Beijing 100080, Peoples R China.
41667 RP Zhu, XH, Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct,
41668    Nanjing 210093, Peoples R China.
41669 CR ARISTOV VV, 1983, PHYS STATUS SOLIDI A, V78, P229
41670    ARLT G, 1980, J APPL PHYS, V51, P4956
41671    BRADT RC, 1969, J AM CERAM SOC, V52, P192
41672    DEDERICHS H, 1986, FERROELECTRICS, V68, P281
41673    GERSON R, 1960, J APPL PHYS, V31, P188
41674    GOO EKW, 1981, J APPL PHYS, V52, P2940
41675    HU YH, 1986, J AM CERAM SOC, V69, P594
41676    JAFFE B, 1971, PIEZOELECTRIC CERAMI
41677    KING G, 1990, J AM CERAM SOC, V73, P1534
41678    MAFFITT KN, 1968, J APPL PHYS, V39, P3878
41679    OUCHI H, 1965, J AM CERAM SOC, V48, P630
41680    PARK BM, 1994, J AM CERAM SOC, V77, P3193
41681    RANDALL CA, 1987, J MATER SCI, V22, P925
41682    YOON MS, 1995, J APPL PHYS, V77, P3991
41683    ZHANG QM, 1988, J APPL PHYS, V64, P6445
41684    ZHU HX, 1996, SENSOR ACTUAT A-PHYS, V48, P169
41685    ZHU XH, 1995, THESIS XIAN JIAOTONG
41686    ZHU XH, 1996, J MATER SCI, V31, P2171
41687    ZHU XH, 1997, J MATER SCI, V32, P4275
41688    ZHU XH, 1998, FERROELECTRICS, V215, P265
41689 NR 20
41690 TC 2
41691 SN 0022-2461
41692 J9 J MATER SCI
41693 JI J. Mater. Sci.
41694 PD APR 1
41695 PY 1999
41696 VL 34
41697 IS 7
41698 BP 1533
41699 EP 1541
41700 PG 9
41701 SC Materials Science, Multidisciplinary
41702 GA 190DJ
41703 UT ISI:000079946500014
41704 ER
41705 
41706 PT J
41707 AU Zhang, LS
41708    Gao, F
41709    Zhu, WX
41710 TI Nonlinear integer programming and global optimization
41711 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
41712 DT Article
41713 DE integer programming; global minimization problem; Branch-Bound algorithm
41714 AB Various approaches have been developed for solving a variety of
41715    continuous global optimization problems. But up to now, less work has
41716    been devoted to solving nonlinear integer programming problems due to
41717    the inherent difficulty. This paper manages to transform the general
41718    nonlinear integer programming problem into an "equivalent" special
41719    continuous global minimization problem. Thus any effective global
41720    optimization algorithm can be used to solve nonlinear integer
41721    programming problems. This result will also promote the research on
41722    global optimization. We present an interval Branch-and-Bound algorithm.
41723    Numerical experiments show that this approach is efficient.
41724 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
41725 CR BENSON HP, 1990, ANN OPER RES, V25, P243
41726    CHICHINADZE VK, 1991, COMP MATH MATH PHYS+, V30, P170
41727    CONLEY W, 1980, COMPUTER OPTIMIZATIO
41728    GAREY MR, 1979, COMPUTER INTRACTABIL
41729    GE R, 1989, APPL MATH COMPUT, V34, P39
41730    GE R, 1990, MATH PROGRAM, V46, P191
41731    KAN AHG, 1988, HDB OPERATIONS RES M, V1
41732    LEVY AV, 1985, SIAM J SCI STAT COMP, V6, P15
41733    NUMHAAUSER GL, 1988, INTEGER COMBINATORIA
41734    RATSCHEK H, 1988, E HORWOOD SERIES MAT
41735    SCHRIJVER A, 1986, THEORY LINEAR INTEGE
41736 NR 11
41737 TC 2
41738 SN 0254-9409
41739 J9 J COMPUT MATH
41740 JI J. Comput. Math.
41741 PD MAR
41742 PY 1999
41743 VL 17
41744 IS 2
41745 BP 179
41746 EP 190
41747 PG 12
41748 SC Mathematics, Applied; Mathematics
41749 GA 190JB
41750 UT ISI:000079958400007
41751 ER
41752 
41753 PT J
41754 AU Ye, ZM
41755 TI Application of Maple V to the nonlinear vibration analysis of circular
41756    plate with variable thickness
41757 SO COMPUTERS & STRUCTURES
41758 DT Article
41759 DE nonlinear vibration; circular plate with variable thickness; computer
41760    algebra systems method
41761 ID NON-LINEAR VIBRATION; RECTANGULAR-PLATES; SHALLOW SHELLS
41762 AB This paper is concerned with the application of Maple V to the
41763    nonlinear vibration problems of circular plates with variable
41764    thickness. In this paper, the nonlinear equations of plates of variable
41765    thickness to the dynamic case can be solved by using the computer
41766    algebra systems method. Details of solution expressions and numerical
41767    results are given in computer algebra systems forms, for two kinds of
41768    boundary conditions, which are the clamped edge and the supported edge.
41769    The numerical results show that the solutions of the paper contain
41770    other cases when the plates are of uniform thickness. The effect of
41771    various thickness parameters has been investigated in detail. In
41772    addition, a Runge-Kutta method is used to solve the free vibration and
41773    the maximum deflection response to a uniformly distributed step load of
41774    plates with variable thickness. It is shown that the adoption of
41775    variable thickness plate would be useful in engineering design. (C)
41776    1999 Elsevier Science Ltd. All rights reserved.
41777 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
41778 RP Ye, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yan Chang
41779    Rd, Shanghai 200072, Peoples R China.
41780 CR BELTZER AI, 1990, APPL MECH REV, V43, P119
41781    BHUSHAN B, 1991, COMPOS STRUCT, V18, P263
41782    BISWAS P, 1984, J INDIAN I SCI, V65, P29
41783    CHANG WP, 1986, INT J NONLINEAR MECH, V21, P375
41784    CHIA CY, 1985, J SOUND VIB, V101, P539
41785    CHU HN, 1956, J APPLIED MECHANICS, V23, P532
41786    DUMIR PC, 1986, J SOUND VIB, V107, P253
41787    GANDHI M, 1988, T ASME, V110, P140
41788    IOAKIMIDIS NI, 1992, COMPUT STRUCT, V43, P181
41789    IOAKIMIDIS NI, 1994, COMPUT STRUCT, V53, P63
41790    ISAKHANOV GV, 1985, PROBL PROCHN, V11, P74
41791    LI D, 1990, APPL MATH MECH, V11, P13
41792    MEI C, 1985, AIAA J, V23, P1104
41793    RAJAGOPAL SV, 1986, J SOUND VIBR, V110, P261
41794    RAJAGOPAL SV, 1987, AIAA J, V25, P130
41795    TIMOSHENKO S, 1959, THEORY PLATES SHELLS
41796    WAH T, 1963, INT J MECH SCI, V5, P425
41797    WANG XX, 1991, COMPUT METHOD APPL M, V86, P73
41798    YAMAKI N, 1961, Z ANGEW MATH MECH, V41, P501
41799    YE ZM, 1995, COMPUT STRUCT, V55, P325
41800    YE ZM, 1997, J SOUND VIB, V202, P303
41801    YE ZM, 1998, COMPUT METH APPL MEC, V163, P384
41802 NR 22
41803 TC 4
41804 SN 0045-7949
41805 J9 COMPUT STRUCT
41806 JI Comput. Struct.
41807 PD JUN
41808 PY 1999
41809 VL 71
41810 IS 5
41811 BP 481
41812 EP 488
41813 PG 8
41814 SC Computer Science, Interdisciplinary Applications; Engineering, Civil
41815 GA 191WD
41816 UT ISI:000080043800001
41817 ER
41818 
41819 PT J
41820 AU Tian, LX
41821    Liu, ZR
41822 TI p dissipative operator
41823 SO COMMUNICATIONS IN MATHEMATICAL PHYSICS
41824 DT Article
41825 ID NONLINEAR SCHRODINGER-EQUATION; ADJOINT HILLS OPERATORS; POTENTIALS
41826 AB In this paper the authors prove that the generalized positive p
41827    selfadjoint (GPpS) operators in Banach space satisfy the generalized
41828    Schwarz inequality, solve the maximal dissipative extension
41829    representation of p dissipative operators in Banach space by using the
41830    inequality and introducing the generalized indefinite inner product
41831    (GIIP) space, and apply the result to a certain type of Schrodinger
41832    operator.
41833 C1 Jiangsu Uni Sci & Technol, Dept Math & Phys, Zhenjiang 212013, Jiangsu, Peoples R China.
41834    Acad Sinica, Inst Mech, LNM, Beijing 100080, Peoples R China.
41835    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
41836 RP Tian, LX, Jiangsu Uni Sci & Technol, Dept Math & Phys, Zhenjiang
41837    212013, Jiangsu, Peoples R China.
41838 CR ANTOINE JP, 1981, ADV MATH, V41, P281
41839    BERKSON E, 1975, T AM MATH SOC, V116, P376
41840    BONGAR L, 1974, ERGEB MATH GRENZGEB, V78
41841    BRANGES LD, 1988, J FUNCT ANAL, V81, P219
41842    CHANG SS, 1997, INT J MATH MATH SCI, V20, P219
41843    CRANDALL MG, 1968, J FUNCT ANAL, V2, P147
41844    FAULKNER GD, 1977, ROCKY MOUNTAIN J MAT, V7, P789
41845    FLEMING RJ, 1976, T AM MATH SOC, V217, P87
41846    GILES JR, 1967, T AM MATH SOC, V129, P436
41847    GODEFROY G, 1991, J FUNCT ANAL, V98, P229
41848    HALMOS PR, 1967, HILBERT SPACE PROBLE
41849    HAYASHI N, 1993, NONLINEAR ANAL-THEOR, V20, P823
41850    HELFFER B, 1988, LECT NOTE MATH, V1336
41851    HERRERO DA, 1991, B LOND MATH SOC, V23, P513
41852    HERRERO DA, 1992, J OPERAT THEOR, V28, P93
41853    KUKSIN SB, 1996, COMMUN MATH PHYS, V178, P265
41854    LANGER H, 1984, LECT NOTES MATH, V948, P1
41855    LUMER G, 1961, PAC J MATH, V11, P679
41856    LUMER G, 1961, T AM MATH SOC, V100, P29
41857    LUMER G, 1962, B AM MATH SOC, V68, P28
41858    NATH B, 1971, MATH J OKAYANA U, V15, P1
41859    OLSEN PA, 1995, COMMUN PART DIFF EQ, V20, P2005
41860    OLUBUMMO A, 1965, J MATH MECH, V14, P929
41861    OSTENHOF MH, 1995, COMMUN PART DIFF EQ, V20, P1241
41862    PETHE PV, 1976, INDIAN J PURE APPL M, V7, P1024
41863    PETHE PV, 1977, INDIAN J PURE APPL M, V8, P898
41864    PHILLIPS RS, 1959, T AM MATH SOC, V90, P193
41865    PHILLIPS RS, 1966, J MATH MECH, V15, P235
41866    PUTTAMADAIAH C, 1986, INDIAN J PURE APPL M, V17, P919
41867    SANSUC JJ, 1996, J DIFFER EQUATIONS, V125, P366
41868    SEN DK, 1982, MATH JAPN, V27, P151
41869    SIMON B, 1996, J FUNCT ANAL, V140, P541
41870    SOFFER A, 1992, J DIFFER EQUATIONS, V98, P376
41871    STAMPEL JG, 1962, P AM MATH SOC, V13, P796
41872    STAMPEL JG, 1969, CAN J MATH, V21, P505
41873    TIAN LX, 1987, J JIANGSU U SCI TECH, V8, P103
41874    TIAN LX, 1988, J JIANGSU U SCI TECH, V9, P96
41875    TIAN LX, 1991, J JIANGSU U SCI TECH, V12, P121
41876    TIAN LX, 1995, ACTA MATH SCI, V15, P455
41877    TIAN LX, 1995, J JIANGSU U SCI TECH, V16, P82
41878    TIAN LX, 1996, APPL MATH MECH, V17, P155
41879    TIAN LX, 1997, APPL MATH MECH-ENGL, V18, P1021
41880    TIAN LX, 1998, P AM MATH SOC, V126, P203
41881    TKACHENKO V, 1996, ANN MATH, V143, P181
41882    TORRANCE E, 1970, P AM MATH SOC, V76, P108
41883    UNNI KR, 1981, TSUKUBA J MATH, V5, P15
41884    WEI GQ, 1987, CHIN ANN MATH B, V88, P70
41885    YAN SZ, 1990, ADV SCI CHINA MATH, V3, P99
41886    YAN Y, 1993, NONLINEAR ANAL-THEOR, V20, P1417
41887    YANG L, 1994, AUDIT NEUROSCI, V1, P1
41888    YOSIDA K, 1965, FUNCTIONAL ANAL
41889 NR 51
41890 TC 1
41891 SN 0010-3616
41892 J9 COMMUN MATH PHYS
41893 JI Commun. Math. Phys.
41894 PD APR
41895 PY 1999
41896 VL 201
41897 IS 3
41898 BP 519
41899 EP 548
41900 PG 30
41901 SC Physics, Mathematical
41902 GA 190WC
41903 UT ISI:000079987400003
41904 ER
41905 
41906 PT J
41907 AU Chen, J
41908    Nho, YC
41909    Kwon, OH
41910    Hoffman, AS
41911 TI Grafting copolymerization of acrylamides onto preirradiated PP films
41912 SO RADIATION PHYSICS AND CHEMISTRY
41913 DT Article
41914 DE radiation grafting; acrylamide; polypropylene; blood-compatibility
41915 AB Acrylamide (AAm), N,N-Dimethylacrylamide (DMAAm) and
41916    N-(3-Dimethylaminopropyl) methacrylamide (DMAPMAAm) were grafted onto
41917    polypropylene (PP) films by preirradiation grafting respectively. The
41918    effect of irradiation dose, solvent systems and reaction time on the
41919    degree of grafting were determined. The grafted sample films were
41920    verified by Fourier Transform Infrared (FTIR) spectroscopy in the
41921    attenuated total reflectance mode (ATR) and the determination of water
41922    contact angle. The blood compatibility of the grafted PP films were
41923    evaluated by the determination of platelet adsorption and thrombus. The
41924    blood compatibility of grafted PP films seems better than that of
41925    original PP films. (C) 1999 Elsevier Science Ltd. All rights reserved.
41926 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
41927    Korea Atom Energy Res Inst, Radiat Applicat Div, Taejon, South Korea.
41928    Univ Washington, Ctr Bioengn, Seattle, WA 98159 USA.
41929 RP Chen, J, Shanghai Univ, Shanghai Appl Radiat Inst, Jiading Campus,
41930    Shanghai 201800, Peoples R China.
41931 CR DUNKIRK SG, 1991, J BIOMATER APPL, V6, P131
41932    HOFFMAN AS, 1988, J APPL POLYM SCI APP, V42, P251
41933    IMAI Y, 1972, J BIOMED MATER RES, V6, P165
41934    ISHIGAKI I, 1982, J APPL POLYM SCI, V27, P1033
41935    JEONG BJ, 1996, J COLLOID INTERF SCI, V178, P757
41936    MATSUDA T, 1990, T AM SOC ART INT ORG, V36, M161
41937    MERRIL EW, 1987, HYDROGELS MED PHARM, V3, P1
41938    NHO YC, 1993, POLYMER, V17, P433
41939    RATNER BD, 1996, HYDROGELS BIOMATERIA, P60
41940    SUN YH, 1986, J BIOACT COMPAT POL, V1, P316
41941 NR 10
41942 TC 8
41943 SN 0969-806X
41944 J9 RADIAT PHYS CHEM
41945 JI Radiat. Phys. Chem.
41946 PD JUN
41947 PY 1999
41948 VL 55
41949 IS 1
41950 BP 87
41951 EP 92
41952 PG 6
41953 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
41954    Science & Technology
41955 GA 187WX
41956 UT ISI:000079812200011
41957 ER
41958 
41959 PT J
41960 AU Fang, ZM
41961 TI Sci-tech translation and its research in China
41962 SO META
41963 DT Article
41964 C1 Shanghai Univ, Shanghai 200041, Peoples R China.
41965 RP Fang, ZM, Shanghai Univ, Shanghai 200041, Peoples R China.
41966 CR FANG MZ, 1993, SELECTED READINGS TR
41967    JIANG CF, 1984, TAC NEWSLETT, V12
41968    JIN D, 1984, TRANSLATION
41969    LU SY, 1990, SHANGHAI J TRANSLATO, V4
41970    LUO XZ, 1984, SELECTED WRITINGS TR
41971    MACKAY R, 1978, ENGLISH SPECIFIC PUR
41972    NEWMARK P, 1988, TEXTBOOK TRANSLATION
41973    NIDA EA, 1989, FOREIGN LANGUAGES, V4
41974    ZHANG RS, 1994, FOREIGN LANGUAGES, V6
41975 NR 9
41976 TC 0
41977 SN 0026-0452
41978 J9 META
41979 JI Meta
41980 PD MAR
41981 PY 1999
41982 VL 44
41983 IS 1
41984 BP 185
41985 EP 197
41986 PG 13
41987 SC Language & Linguistics Theory
41988 GA 190HU
41989 UT ISI:000079957700013
41990 ER
41991 
41992 PT J
41993 AU Chen, DY
41994    Gu, Y
41995 TI Cole-Hopf quotient and exact solutions of the generalized
41996    Fitzhugh-Nagumo equations
41997 SO ACTA MATHEMATICA SCIENTIA
41998 DT Article
41999 DE Cole-Hopf quotient; reaction-diffusion equation; exact solution
42000 ID LINEAR DIFFUSION EQUATION; SYMMETRY REDUCTIONS
42001 AB Several classes of solution (wavefronts, coalescence of two wavefronts,
42002    solutions with Jacobi elliptic function) of the Fitzhugh-Nagumo
42003    equation and the generalized Fitzhugh-Nagumo equation are constructed
42004    by the Cole-Hopf quotient and the elementary transformations, Pome of
42005    which are new solutions. The close relation of the generalized
42006    Fitzhugh-Nagumo equation and Emden equation are also found.
42007 C1 Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China.
42008 CR ARRIGO DJ, 1994, IMA J APPL MATH, V52, P1
42009    BELLMAN R, 1953, STABILITY THEORY DIF
42010    CARIELLO F, 1989, PHYSICA D, V39, P77
42011    CHEN ZX, 1992, IMA J APPL MATH, V48, P107
42012    CONTE R, 1988, PHYS LETT A, V134, P100
42013    GU Y, 1993, ANAL SOLUTION REACTI
42014    KAWAHARA T, 1983, PHYS LETT A, V97, P311
42015    NUCCI MC, 1992, PHYS LETT A, V164, P49
42016 NR 8
42017 TC 2
42018 SN 0252-9602
42019 J9 ACTA MATH SCI
42020 JI Acta Math. Sci.
42021 PY 1999
42022 VL 19
42023 IS 1
42024 BP 7
42025 EP 14
42026 PG 8
42027 SC Mathematics
42028 GA 188NQ
42029 UT ISI:000079854700002
42030 ER
42031 
42032 PT J
42033 AU Mao, DK
42034 TI Entropy satisfaction of a conservative shock-tracking method
42035 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
42036 DT Article
42037 DE shocking tracking; conservation; entropy condition
42038 ID FINITE-DIFFERENCE METHODS; HIGH-RESOLUTION SCHEMES; APPROXIMATIONS;
42039    LAWS; DISCONTINUITIES
42040 AB In this paper we discuss the entropy satisfaction of the conservative
42041    shock-tracking technique developed in [D. K. Mao, J. Comput. Phys., 92
42042    (1991), pp. 422-455], [D. K. Mao, J. Comput. Phys., 103 (1992), pp.
42043    359-369], and [D. K. Mao, SIAM J. Numer. Anal., 32 (1995), pp.
42044    1677-1703] when it is applied to the Godunov scheme. We consider the
42045    scalar case in one-space dimension and assume that both the flux and
42046    entropy functions are strictly convex. We prove that, when the tracked
42047    shocks are strong enough in comparison with the variation of the
42048    numerical solution around them, the numerical solution satisfies the
42049    entropy condition in a certain sense. We also discuss the entropy
42050    situation when the convexity of the flux function is very weak and the
42051    tracked shock neighbors to strong simple waves.
42052 C1 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
42053 RP Mao, DK, Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800,
42054    Peoples R China.
42055 EM dkmao@guomai.sh.cn
42056 CR ATKINSON K, 1988, INTRO NUMERICAL ANAL
42057    CRANDALL MG, 1980, MATH COMPUT, V34, P1
42058    ENGQUIST B, 1981, MATH COMPUT, V36, P321
42059    HARTEN A, 1976, COMMUN PURE APPL MAT, V29, P297
42060    HARTEN A, 1983, J COMPUT PHYS, V49, P357
42061    KLINGENBERG C, 1994, MATH COMPUT MODEL, V20, P89
42062    KRUZKOV SN, 1970, MAT SBORNIK, V81, P228
42063    LEVEQUE RJ, 1990, NUMERICAL METHODS CO
42064    MAJDA A, 1979, COMMUN PUR APPL MATH, V32, P797
42065    MAO DK, 1991, J COMPUT PHYS, V92, P422
42066    MAO DK, 1992, J COMPUT PHYS, V103, P359
42067    MAO DK, 1995, SIAM J NUMER ANAL, V32, P1677
42068    OSHER S, 1984, SIAM J NUMER ANAL, V21, P955
42069    TADMOR E, 1984, MATH COMPUT, V43, P369
42070 NR 14
42071 TC 2
42072 SN 0036-1429
42073 J9 SIAM J NUMER ANAL
42074 JI SIAM J. Numer. Anal.
42075 PD MAR 5
42076 PY 1999
42077 VL 36
42078 IS 2
42079 BP 529
42080 EP 550
42081 PG 22
42082 SC Mathematics, Applied
42083 GA 179UD
42084 UT ISI:000079347000012
42085 ER
42086 
42087 PT J
42088 AU Yang, YZ
42089    Li, QS
42090    Zhu, YL
42091    Ma, XM
42092    Dong, YD
42093 TI Influence of milling conditions on the mechanical alloying of Fe-B
42094    powders
42095 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
42096 DT Article
42097 AB Amorphous and nanostructural Fe-B alloys made by mechanical alloying of
42098    elemental Fe and amorphous B powders have been studied using X-ray
42099    diffraction, differential scanning calorimetry and Mossbauer
42100    spectroscopy. It has been shown that the milling conditions have a
42101    strong effect on the alloying. The single phase amorphous alloy, which
42102    is limited at nominal composition of Fe60B40, has been produced only by
42103    milling in Ar atmosphere and in other composition range the mixture of
42104    nanostructure Fe-like phase and Fe2B compound with a little amorphous
42105    phase are obtained. While by milling in air atmosphere the introduction
42106    of oxygen in air may suppress the formation of amorphous phase, thus
42107    the compounds Fe2B may be synthesized with no trace of amorphous phase.
42108    The crystallization temperatures of amorphous phase in the resultant
42109    products are higher than those of a single amorphous alloy Fe60B40, and
42110    hardly independent of the milling conditions and the composition. In
42111    addition, it is revealed that detectable B content in the final
42112    products is lower than the nominal composition of all the initial
42113    samples, which indicates that some B atoms may be located in the
42114    disordered interfacial regions of the nanostructural alloyed mixtures.
42115 C1 Guangdong Univ Technol, Dept Mat Sci & Engn, Guangzhou 510090, Peoples R China.
42116    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
42117 RP Yang, YZ, Guangdong Univ Technol, Dept Mat Sci & Engn, Guangzhou
42118    510090, Peoples R China.
42119 CR BALOGH J, 1995, J APPL PHYS, V77, P4997
42120    BLUM NA, 1982, J APPL PHYS, V53, P2074
42121    CALKA A, 1991, APPL PHYS LETT, V58, P119
42122    CHIEN CL, 1979, PHYS REV B, V20, P283
42123    CHIEN CL, 1982, PHYS REV B, V25, P5790
42124    CLAVAGUERAMORA MT, 1990, COLL PHYS, V51, P49
42125    HOVING W, 1984, J NONCRYST SOLIDS, V61, P421
42126    JING J, 1990, J NONCRYST SOLIDS, V116, P247
42127    JING J, 1991, J PHYS-CONDENS MAT, V3, P7413
42128    NAKAJIMA T, 1986, J MATER SCI LETT, V5, P60
42129    OKUMURA H, 1992, J MATER SCI, V27, P153
42130    YANG YZ, 1995, CHIN J MAT RES, V9, P33
42131 NR 12
42132 TC 2
42133 SN 1005-0302
42134 J9 J MATER SCI TECHNOL
42135 JI J. Mater. Sci. Technol.
42136 PD MAR
42137 PY 1999
42138 VL 15
42139 IS 2
42140 BP 137
42141 EP 142
42142 PG 6
42143 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
42144    Engineering
42145 GA 183KD
42146 UT ISI:000079552000007
42147 ER
42148 
42149 PT J
42150 AU Rui, HB
42151 TI On endomorphism algebras arising from Hecke algebras
42152 SO JOURNAL OF ALGEBRA
42153 DT Article
42154 ID REPRESENTATIONS
42155 C1 Shanghai Univ Sci & Technol, Dept Math, Shanghai 200093, Peoples R China.
42156 RP Rui, HB, Shanghai Univ Sci & Technol, Dept Math, Shanghai 200093,
42157    Peoples R China.
42158 CR ARIKI S, 1994, ADV MATH, V106, P216
42159    CLINE E, 1988, J REINE ANGEW MATH, V391, P85
42160    DIPPER R, 1986, P LOND MATH SOC, V52, P20
42161    DIPPER R, 1995, P LOND MATH SOC, V70, P505
42162    DIPPER R, 1998, MATH Z, V229, P385
42163    DIPPER R, 1998, P LOND MATH SOC 2, V77, P327
42164    DU J, IN PRESS J ALGEBRA
42165    DU J, IN PRESS T AM MATH S
42166    DU J, 1998, T AM MATH SOC, V350, P3207
42167    GRAHAM JJ, 1996, INVENT MATH, V123, P1
42168    KAZHDAN D, 1979, INVENT MATH, V53, P155
42169    MURPHY GE, 1995, J ALGEBRA, V173, P97
42170    PALLIKAROS C, 1994, J ALGEBRA, V169, P20
42171    RUI HB, 1997, J ALGEBRA, V195, P308
42172    SHI JY, 1996, J ALGEBRA, V179, P607
42173 NR 15
42174 TC 0
42175 SN 0021-8693
42176 J9 J ALGEBRA
42177 JI J. Algebra
42178 PD APR 1
42179 PY 1999
42180 VL 214
42181 IS 1
42182 BP 342
42183 EP 355
42184 PG 14
42185 SC Mathematics
42186 GA 183TE
42187 UT ISI:000079568900019
42188 ER
42189 
42190 PT J
42191 AU He, JH
42192 TI Variational iteration method - a kind of non-linear analytical
42193    technique: Some examples
42194 SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS
42195 DT Article
42196 DE variational iteration method; duffing equation; non-linear equations
42197 AB In this paper, a new kind of analytical technique for a non-linear
42198    problem called the variational iteration method is described and used
42199    to give approximate solutions for some well-known non-linear problems.
42200    In this method, the problems are initially approximated with possible
42201    unknowns. Then a correction functional is constructed by a general
42202    Lagrange multiplier, which can be identified optimally via the
42203    variational theory. Being different from the other non-linear
42204    analytical methods, such as perturbation methods, this method does not
42205    depend on small parameters, such that it can find wide application in
42206    non-linear problems without linearization or small perturbations.
42207    Comparison with Adomian's decomposition method reveals that the
42208    approximate solutions obtained by the proposed method converge to its
42209    exact solution faster than those of Adomian's method. (C) 1999 Elsevier
42210    Science Ltd. All rights reserved.
42211 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
42212 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
42213    Peoples R China.
42214 CR ADOMIAN G, 1988, J MATH ANAL APPL, V135, P501
42215    CHERRUAULT Y, 1989, KYBERNETES, V18, P31
42216    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
42217    HAGEDORN P, 1981, NONLINEAR OSCILLATIO
42218    HE JH, 1988, INT C VIBR ENG 98 DA
42219    HE JH, 1997, COMM NONLINEAR SCI N, V2, P230
42220    HE JH, 1997, COMMUNICATIONS NONLI, V2, P235
42221    HE JH, 1997, INT J TURBO JET ENG, V14, P23
42222    HE JH, 1998, MECH PRACTICE, V20, P30
42223    HE JH, 1998, MECH SCI TECHNOL, V17, P221
42224    INOKUTI M, 1978, VARIATIONAL METHOD M, P156
42225    MICKENS RE, 1981, INTRO NONLINEAR OSCI
42226    NAYFEH AH, 1985, PROBLEMS PERTURBATIO
42227 NR 13
42228 TC 50
42229 SN 0020-7462
42230 J9 INT J NON-LINEAR MECH
42231 JI Int. J. Non-Linear Mech.
42232 PD JUL
42233 PY 1999
42234 VL 34
42235 IS 4
42236 BP 699
42237 EP 708
42238 PG 10
42239 SC Mechanics
42240 GA 182CV
42241 UT ISI:000079481700010
42242 ER
42243 
42244 PT J
42245 AU Tan, WH
42246    Fan, W
42247 TI Stability of multi-atom micromasers
42248 SO ACTA PHYSICA SINICA-OVERSEAS EDITION
42249 DT Article
42250 ID PHOTON NOISE-REDUCTION; PUMPING STATISTICS; LASERS; MASERS; QUANTUM;
42251    MODEL
42252 AB In view of the one-atom micromasers output sensitive to the interaction
42253    parameters, we propose a new multi-atom micromasers defined by passing
42254    multi-atom each time through the cavity regularly. Through analysis and
42255    numerical simulation, great progress has been made in the improvement
42256    of stability of mean photon number and variance of micromasers.
42257 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
42258 RP Tan, WH, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
42259 CR BENKERT C, 1993, PHYS REV A, V47, P1564
42260    BERGOU J, 1989, OPT COMMUN, V72, P82
42261    DAVIDOVICH L, 1992, PHYS REV A, V46, P1630
42262    FILIPOWICZ P, 1986, J OPT SOC AM B, V3, P906
42263    FILIPOWICZ P, 1986, PHYS REV A, V34, P3077
42264    GOLUBEV YM, 1984, ZH EKSP TEOR FIZ, V60, P234
42265    GUERRA ES, 1991, PHYS REV A, V44, P7785
42266    HAAKE F, 1989, PHYS REV A, V40, P7121
42267    KYUNGWON A, 1994, PHYS REV LETT, V73, P3375
42268    LIU RH, 1998, CHINESE SCI BULL, V43, P425
42269    REMPE G, 1990, PHYS REV A, V42, P1650
42270    REMPE G, 1990, PHYS REV LETT, V64, P2783
42271    TAN WH, 1994, PHYS LETT A, V190, P13
42272    TAN WH, 1995, OPT COMMUN, V115, P303
42273    YAMAMOTO Y, 1986, PHYS REV A, V34, P4025
42274    ZHU SY, 1992, PHYS REV A, V45, P499
42275 NR 16
42276 TC 1
42277 SN 1004-423X
42278 J9 ACTA PHYS SIN-OVERSEAS ED
42279 JI Acta Phys. Sin.-Overseas Ed.
42280 PD APR
42281 PY 1999
42282 VL 8
42283 IS 4
42284 BP 275
42285 EP 283
42286 PG 9
42287 SC Physics, Multidisciplinary
42288 GA 184CX
42289 UT ISI:000079592800005
42290 ER
42291 
42292 PT J
42293 AU Li-Ping, H
42294    De-Kang, M
42295    Ben-Yu, G
42296 TI Prediction-correction Legendre spectral scheme for incompressible fluid
42297    flow
42298 SO ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION
42299    MATHEMATIQUE ET ANALYSE NUMERIQUE
42300 DT Article
42301 DE incompressible fluid flow in stream function form;
42302    prediction-correction Legendre spectral scheme with high accuracy;
42303    convergence and numerical experiments
42304 ID NAVIER-STOKES EQUATIONS; POLYNOMIALS
42305 AB The initial-boundary value problem of two-dimensional incompressible
42306    fluid flow in stream function form is considered. A
42307    prediction-correction Legendre spectral scheme is proposed, which is
42308    easy to be performed. The numerical solution possesses the accuracy of
42309    second-order in time and higher order in space. The numerical
42310    experiments show the high accuracy of this approach.
42311 C1 Shanghai Jiao Tong Univ, Dept Math Appl, Shanghai 200030, Peoples R China.
42312    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
42313 RP Li-Ping, H, Shanghai Jiao Tong Univ, Dept Math Appl, Shanghai 200030,
42314    Peoples R China.
42315 CR ADAMS RA, 1975, SOBOLEV SPACE
42316    BERNSTEIN JM, 1992, RESPIRATION, V59, P3
42317    CANUTO C, 1982, MATH COMPUT, V38, P67
42318    CANUTO C, 1988, SPECTRAL METHODS FLU
42319    CHORIN AJ, 1967, J COMPUT PHYS, V2, P12
42320    GIRAULT V, 1979, LECT NOTE MATH, V794
42321    GOTTLIEB D, 1977, CBMS NSF REGINAL C S, V26
42322    GRESHO PM, 1987, INT J NUMER METH FL, V7, P1111
42323    GUO BY, 1988, FINITE DIFFERENCE ME
42324    GUO BY, 1997, J MATH ANAL APPL, V205, P1
42325    GUO BY, 1998, SIAM J NUMER ANAL, V35, P146
42326    HI LP, 19963 RR SHANGH U DE
42327    KUO PY, 1977, SCI SINICA, V20, P287
42328    LIONS JL, 1968, PROBLEMES LIMITES HO, V1
42329    LIONS JL, 1969, QUELQUES METHODES RE
42330    LIONS JL, 1970, SIAM AMS P, V2, P11
42331    ODEN JT, 1974, FINITE ELEMENT METHO
42332    ROACH PJ, 1976, COMPUTATIONAL FLUID
42333    SHEN J, 1992, ADV COMPUTER METHODS, V7, P658
42334    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
42335    TEMAM R, 1977, NAVIERSTOKES EQUATIO
42336 NR 21
42337 TC 0
42338 SN 0764-583X
42339 J9 RAIRO-MATH MODEL NUMER ANAL
42340 JI Rairo-Math. Model. Numer. Anal.-Model. Math. Anal. Numer.
42341 PD JAN-FEB
42342 PY 1999
42343 VL 33
42344 IS 1
42345 BP 113
42346 EP 120
42347 PG 8
42348 SC Mathematics, Applied
42349 GA 179LZ
42350 UT ISI:000079330100007
42351 ER
42352 
42353 PT J
42354 AU Li, CF
42355    Feng, SS
42356 TI Several aspects of the A-B scattering
42357 SO PHYSICA B
42358 DT Article
42359 DE A-B scattering; single-valuedness of incident wave function; divergence
42360    of total cross section
42361 ID AHARONOV-BOHM SCATTERING; WAVE
42362 AB After a brief review of previous works on the A-B scattering, the
42363    authors show that the multi-valued incident wave function used
42364    originally by Aharonov and Bohm is of no physical significance. The
42365    closed expression for the scattering amplitude that is continuous in
42366    the forward direction apart from a delta-function contribution is also
42367    calculated by the method of partial waves. In contrast with Aharonov
42368    and Bohm's result that no scattering occurs when alpha is an integer,
42369    the differential and total scattering cross sections do not vanish when
42370    a equals an odd number (where alpha = Phi/Phi(0) represents the
42371    magnetic Aux in the infinitely long thin solenoid, and Phi(0) = h/e).
42372    This coincides with the result by Sakoda and Omote [J. Math. Phys. 38
42373    (1997) 716]. It is shown that the divergence of the total cross section
42374    is due to the fact that the A-B solenoid exhibits a
42375    partial-wave-dependent effective scattering potential. (C) 1999
42376    Elsevier Science B.V. All rights reserved.
42377 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
42378    CCAST, World Lab, Beijing 100080, Peoples R China.
42379 RP Feng, SS, Shanghai Univ, Dept Phys, 20 Chengzhong Rd, Shanghai 201800,
42380    Peoples R China.
42381 CR AHARONOV Y, 1959, PHYS REV, V115, P485
42382    AHARONOV Y, 1984, PHYS REV D, V29, P2396
42383    ALVAREZ M, 1996, PHYS REV A, V54, P1128
42384    BOZ M, 1996, ANN PHYS-NEW YORK, V246, P347
42385    HAGEN CR, 1990, PHYS REV D, V41, P2015
42386    HENNEBERGER WC, 1980, PHYS REV A, V22, P1383
42387    HENNEBERGER WC, 1981, J MATH PHYS, V22, P116
42388    JACKIW R, 1990, ANN PHYS-NEW YORK, V201, P83
42389    LI CF, 1995, PHYSICA B, V212, P436
42390    LI CF, 1996, PHYSICA B, V226, P406
42391    RUIJSENAARS SNM, 1983, ANN PHYS-NEW YORK, V146, P1
42392    SAKODA S, 1997, J MATH PHYS, V38, P716
42393    SAKURAI JJ, 1985, MODERN QUANTUM MECH, P424
42394    WEINBERG S, 1995, QUANTUM THEORY FIELD, P112
42395    YANG CN, 1983, P INT S FDN QUANT ME, P5
42396 NR 15
42397 TC 0
42398 SN 0921-4526
42399 J9 PHYSICA B
42400 JI Physica B
42401 PD APR 1
42402 PY 1999
42403 VL 262
42404 IS 3-4
42405 BP 210
42406 EP 217
42407 PG 8
42408 SC Physics, Condensed Matter
42409 GA 178DR
42410 UT ISI:000079251500002
42411 ER
42412 
42413 PT J
42414 AU Hou, JY
42415    Guo, BY
42416 TI Chebyshev pseudospectral-finite element method for the
42417    three-dimensional unsteady Navier-Stokes equation
42418 SO APPLIED MATHEMATICS AND COMPUTATION
42419 DT Article
42420 DE three-dimensional Navier-Stokes equation; Chebyshev
42421    pseudospectral-finite element approximation
42422 ID VORTICITY EQUATIONS
42423 AB A mixed Chebyshev pseudospectral-finite element method is developed for
42424    solving the three-dimensional evolutionary Navier-Stokes equation. The
42425    generalized stability and the convergence of the scheme are proved
42426    strictly. The numerical results presented show the advantages of this
42427    mixed method. (C) 1999 Published by Elsevier Science Inc. All rights
42428    reserved.
42429 C1 Shanghai Univ Sci & Technol, Shanghai 201800, Peoples R China.
42430 RP Guo, BY, Shanghai Univ, President Off, Jiading Campus, Shanghai,
42431    Peoples R China.
42432 CR CANUTO C, 1984, NUMER MATH, V44, P201
42433    CANUTO C, 1984, SPECTRAL METHODS PAR, P55
42434    CANUTO C, 1988, SPECTRAL METHOD FLUI
42435    CIARLET PG, 1978, FINITE ELEMENT METHO
42436    COURANT R, 1953, METHODS MATH PHYSICS, V1
42437    GIRAULT V, 1979, LECT NOTES MATH, V794
42438    GRESHO PM, 1987, INT J NUMER METH FL, V7, P1111
42439    GUO BY, IN PRESS ACTA MATH A
42440    GUO BY, 1987, SCI SINICA A, V30, P697
42441    GUO BY, 1988, DIFFERNCE METHODS PA
42442    GUO BY, 1989, J COMPUT PHYS, V84, P259
42443    GUO BY, 1991, SIAM J NUMER ANAL, V28, P113
42444    GUO BY, 1992, BMN M PHI, V32, P530
42445    GUO BY, 1992, J COMPUT PHYS, V101, P207
42446    GUO BY, 1993, SIAM J NUMER ANAL, V30, P1066
42447    GUO BY, 1995, RAIRO-MATH MODEL NUM, V29, P303
42448    GUO BY, 1996, NUMERICAL MATH, V5, P161
42449    GUO BY, 1996, RAIRO-MATH MODEL NUM, V30, P873
42450    GUO BY, 1997, JPN J APPL MATH, V14, P329
42451    MA HP, 1988, J COMPUT MATH, V6, P48
42452    MA HP, 1990, J HYDRODYNAMICS B, V3, P75
42453    MA HP, 1992, CHINESE ANN MATH B, V13, P350
42454    MOIN P, 1982, J FLUID MECH, V118, P341
42455    ODEN JT, 1974, FINITE ELEMENT METHO
42456    RAVIART PA, 1979, COURS ECOLE ETE ANAL
42457    ROACH PJ, 1976, COMPUTATIONAL FLUID
42458    TEMANN R, 1977, NAVIER STOKES EQUATI
42459 NR 27
42460 TC 0
42461 SN 0096-3003
42462 J9 APPL MATH COMPUT
42463 JI Appl. Math. Comput.
42464 PD JUN 15
42465 PY 1999
42466 VL 101
42467 IS 2-3
42468 BP 209
42469 EP 244
42470 PG 36
42471 SC Mathematics, Applied
42472 GA 179EP
42473 UT ISI:000079312900005
42474 ER
42475 
42476 PT J
42477 AU Du, J
42478    Rui, HB
42479 TI Borel type subalgebras of the q-Schur(m) algebra
42480 SO JOURNAL OF ALGEBRA
42481 DT Article
42482 ID SCHUR ALGEBRA; WEYL MODULES; REPRESENTATIONS
42483 C1 Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia.
42484    Shanghai Univ Sci & Technol, Dept Math, Shanghai 200093, Peoples R China.
42485 RP Du, J, Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia.
42486 EM jied@maths.unsw.edu.au
42487    hbruik@online.sh.cn
42488 CR ARIKI S, 1994, ADV MATH, V106, P216
42489    CLINE E, 1988, J REINE ANGEW MATH, V391, P85
42490    CLINE E, 1990, J ALGEBRA, V131, P126
42491    CURTIS C, 1981, METHODS REPRESENTATI, V1
42492    DIPPER R, 1986, P LOND MATH SOC, V52, P20
42493    DIPPER R, 1991, T AM MATH SOC, V327, P251
42494    DIPPER R, 1998, MATH Z, V229, P385
42495    DIPPER R, 1998, P LOND MATH SOC 2, V77, P327
42496    DU J, IN PRESS T AM MATH S
42497    DU J, 1991, J LOND MATH SOC, V44, P420
42498    DU J, 1994, J REINE ANGEW MATH, V455, P141
42499    DU J, 1998, T AM MATH SOC, V350, P3207
42500    GRAHAM JJ, 1996, INVENT MATH, V123, P1
42501    GREEN JA, 1990, J ALGEBRA, V131, P265
42502    GREEN JA, 1993, J PURE APPL ALGEBRA, V88, P89
42503    PARSHALL B, 1991, MEM AM MATH SOC, V89
42504    RINGEL CM, 1991, MATH Z, V208, P209
42505    SANTANA AP, 1993, J ALGEBRA, V161, P480
42506    SCOTT L, 1995, MATH Z, V220, P421
42507 NR 19
42508 TC 1
42509 SN 0021-8693
42510 J9 J ALGEBRA
42511 JI J. Algebra
42512 PD MAR 15
42513 PY 1999
42514 VL 213
42515 IS 2
42516 BP 567
42517 EP 595
42518 PG 29
42519 SC Mathematics
42520 GA 176ZA
42521 UT ISI:000079181300009
42522 ER
42523 
42524 PT J
42525 AU Liu, RH
42526    Tan, WH
42527 TI Resonance fluorescence spectrum by two-level system without the
42528    rotating wave approximation
42529 SO CHINESE PHYSICS LETTERS
42530 DT Article
42531 AB In this paper the theory of resonance fluorescence spectrum by
42532    two-level system is presented without the assumption of rotating wave
42533    approximation. However, in this case, the application of quantum
42534    fluctuation-regression theorem to evaluate the resonance fluorescence
42535    spectrum tak-es a more complicated form. The prominent features of the
42536    spectrum calculated are the double splitting on the central and side
42537    bands and the emergence of harmonics in the asymmetric spectra.
42538 C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
42539    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
42540 RP Liu, RH, Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai
42541    201800, Peoples R China.
42542 CR BOYD RW, 1992, NONLINEAR OPTICS, P224
42543    DOMHELM MA, 1996, AVIATION WEEK SPACE, V145, P22
42544    MOLLOW BR, 1969, PHYS REV, V188, P1969
42545    TAN WH, 1988, OPT COMMUN, V65, P61
42546 NR 4
42547 TC 4
42548 SN 0256-307X
42549 J9 CHIN PHYS LETT
42550 JI Chin. Phys. Lett.
42551 PY 1999
42552 VL 16
42553 IS 1
42554 BP 23
42555 EP 25
42556 PG 3
42557 SC Physics, Multidisciplinary
42558 GA 175YX
42559 UT ISI:000079124600009
42560 ER
42561 
42562 PT J
42563 AU Ding, WY
42564    Tong, WQ
42565    Zhai, YA
42566    Cai, ZR
42567 TI Studies on stereoselective synthetic methods of
42568    2,3,4,5-tetrasubstituted-cis-2,3-dihydrofurans
42569 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
42570 DT Article
42571 DE arsenic ylid; 2,3-dihydrofuran; stereoselective synthesis
42572 AB Three methods for the stereoselective synthesis of
42573    2-carbomethoxy-3-aryl-4-acethyl-5-methyl-cis-dihydrofurans (7a-7g) were
42574    studied. The Ist method is proceeded through the reaction of
42575    carbomethoxy methylene triphenylarsorane (5) with 3-substituted
42576    benzal-2, 4-pentadione (6) in benzene at room temperature for 4 h and
42577    high yield of the products 7a-7g can be obtained. The 2nd method is
42578    started from the reaction of carbomethoxy methyl triphenylarsonium
42579    bromide(4) with K2CO3 in dimethyl ethyleneglycol at room temperature,
42580    the Ylid 5 formed reacted with 6 in situ, excellent yield of 7 can be
42581    obtained and triphenylarsine recovered quantitatively. The 3rd method
42582    is a stepwise one pot reaction, triphenylarsine(2) and methyl
42583    bromoacetate(3) is refluxed in dimethyl ethyleneglycol for 2. 5 h,
42584    after cooling, potassium carbonate and 6 are added in and the reaction
42585    continued at room temperature for 2 d, the overall yield from starting
42586    material triphenylarsine is about 65%. Although the Ist method is a
42587    very simple process for preparing 2,3-dihydrofuran derivatives, its
42588    application is limited due to the unstability of Ylid 5 during its
42589    preparation and storage, so the last two methods seem preferable. The
42590    structures of the products 7a-7g were confirmed by means of IR, H-1
42591    NMR, MS and elementary analysis and their configurations were
42592    established through the coupling constants of the two protons on 2-C
42593    and 3-C atoms in the dihydrofuran ring. These reactions were all highly
42594    stereoselective and only one kind of stereoisomer with cis
42595    configuration was formed. It is noteworthy that these reactions no
42596    similar normal Wittig reaction products were detected.
42597 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
42598 RP Ding, WY, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
42599 CR DING YY, 1996, CHEM RES CHINESE U, V12, P354
42600    DULERE JP, 1994, J CHEM SOC CHEM COMM, P303
42601    HUANG YZ, 1978, ACTA CHIM SINICA, V36, P215
42602    PALLAUD R, 1963, CHIM IND, V89, P283
42603    SUGIMURA H, 1994, J ORG CHEM, V59, P7653
42604 NR 5
42605 TC 4
42606 SN 0251-0790
42607 J9 CHEM J CHINESE UNIV-CHINESE
42608 JI Chem. J. Chin. Univ.-Chin.
42609 PD JAN
42610 PY 1999
42611 VL 20
42612 IS 1
42613 BP 64
42614 EP 67
42615 PG 4
42616 SC Chemistry, Multidisciplinary
42617 GA 174PQ
42618 UT ISI:000079043900016
42619 ER
42620 
42621 PT J
42622 AU Shen, J
42623    Zhou, L
42624    Li, T
42625 TI Effects of surface-applied ceria on the stability of thermally growing
42626    chromia scale of FeCr alloys and 310 steel
42627 SO JOURNAL OF MATERIALS SCIENCE
42628 DT Article
42629 ID OXIDATION
42630 AB The influence of surface-applied ceria on the oxidation behavior of
42631    FeCr alloys and 310 stainless steel at 1000 degrees C and 1100 degrees
42632    C has been studied. The surface-applied ceria were beneficial in
42633    reducing the growth rate of chromia scale, and were particularly
42634    effective in inhibiting the accelerated breakaway oxidation of Fe20Cr
42635    alloy in wet oxygen and spalling and cracking of the scale under cyclic
42636    oxidation. The beneficial effects of the ceria have been attributed to
42637    the improvement in the stability of the thermally growing chromia
42638    scale. (C) 1998 Kluwer Academic Publishers.
42639 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
42640    State Key Lab Corros & Protect, Shenyang 110015, Peoples R China.
42641 RP Shen, J, Shanghai Univ, Inst Mat, 149 Yanchang Rd, Shanghai 200072,
42642    Peoples R China.
42643 CR HOU PY, 1987, J ELECTROCHEM SOC, V134, P1836
42644    HUSSEY RJ, 1989, MAT SCI ENG A-STRU 1, V120, P147
42645    JING H, IN PRESS CHIN J CORR
42646    LANG E, 1989, ROLE REACTIVE ELEMEN
42647    LI M, 1991, ACTA U BEIJING SCI T, V13, P619
42648    NICHOLLS JR, 1989, ROLE ACTIVE ELEMENTS, P195
42649    SHEN J, 1997, OXID MET, V48, P355
42650    SHEN JN, 1992, CORROS SCI PROT TECH, V4, P289
42651 NR 8
42652 TC 1
42653 SN 0022-2461
42654 J9 J MATER SCI
42655 JI J. Mater. Sci.
42656 PD DEC 15
42657 PY 1998
42658 VL 33
42659 IS 24
42660 BP 5815
42661 EP 5819
42662 PG 5
42663 SC Materials Science, Multidisciplinary
42664 GA 170YG
42665 UT ISI:000078834300012
42666 ER
42667 
42668 PT J
42669 AU Zhao, XH
42670    Shi, ZW
42671 TI A divided region variational principle of A,rho Omega method for 3-D
42672    eddy current problems
42673 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
42674 DT Article
42675 DE 3-D eddy current field; divided region variational principle;
42676    A,phi-Omega method; interface continuity conditions
42677 AB In this paper, a divided region variational principle to solve 3-D eddy
42678    current problems was given. It adopts the magnetic vector potential A
42679    and the electric scalar potential phi in the eddy current regions and
42680    the source regions, and the magnetic scalar potential Omega in the
42681    non-conducting regions (air gap). Using variation of the functional,
42682    all governing equations in various regions, the natural boundary
42683    conditions and the interface continuity conditions which satisfy
42684    electromagnetic continuity are obtained.
42685 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
42686 RP Zhao, XH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
42687    200072, Peoples R China.
42688 CR BROWN ML, 1982, IEE P A, V129, P46
42689    CHARI MVK, 1982, IEEE T MAG, V18, P435
42690    CHEN WH, 1984, J I HA ER BIN ELECTR, V7, P1
42691    CHIEN WZ, 1985, GEN VARIATIONAL PRIN
42692    EMSON CRI, 1983, IEEE T MAGN, V19, P2450
42693    SHI ZW, 1998, APPL MATH MECH-ENGL, V19, P1017
42694 NR 6
42695 TC 0
42696 SN 0253-4827
42697 J9 APPL MATH MECH-ENGL ED
42698 JI Appl. Math. Mech.-Engl. Ed.
42699 PD DEC
42700 PY 1998
42701 VL 19
42702 IS 12
42703 BP 1135
42704 EP 1140
42705 PG 6
42706 SC Mathematics, Applied; Mechanics
42707 GA 173MB
42708 UT ISI:000078983400002
42709 ER
42710 
42711 PT J
42712 AU Ju, XC
42713    Ma, ZT
42714 TI Study on the photochemical properties of benzoyl derivatives
42715 SO RADIATION PHYSICS AND CHEMISTRY
42716 DT Article
42717 AB In this paper, the photochemical properties of benzoyl derivatives,
42718    e.g. KIP-100F and ESACURE TZT were studied using the N121 UV Curing
42719    Tester. It was shown that their photochemical reactivity is higher; the
42720    photoactivation of triethanol amine(TEA) upon ESACURE TZT is greater,
42721    upon KIP-100F is unexpected; the sensitization of fluorescein upon
42722    KIP-100F is larger than upon ESACURE TZT/TEA systems; the synergistic
42723    action of them is very effective; (C) 1999 Elsevier Science Ltd. All
42724    rights reserved.
42725 C1 Beijing Univ, Dept Tech Phys, Beijing 100871, Peoples R China.
42726    Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
42727 RP Ju, XC, Beijing Univ, Dept Tech Phys, Beijing 100871, Peoples R China.
42728 CR LAWSON K, 1997, 9M C P NOV 4 7, P7
42729    XUECHENG J, 1995, PAINT COATINGS IND, V2, P36
42730 NR 2
42731 TC 0
42732 SN 0969-806X
42733 J9 RADIAT PHYS CHEM
42734 JI Radiat. Phys. Chem.
42735 PD MAR
42736 PY 1999
42737 VL 54
42738 IS 3
42739 BP 241
42740 EP 243
42741 PG 3
42742 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
42743    Science & Technology
42744 GA 170GC
42745 UT ISI:000078797100005
42746 ER
42747 
42748 PT J
42749 AU Chen, YX
42750    Wan, XJ
42751    Xu, WX
42752 TI Surface reactions of Co3Ti alloys with water vapor
42753 SO JOURNAL OF MATERIALS SCIENCE LETTERS
42754 DT Article
42755 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
42756    Shanghai Iron & Steel Res Inst, Shanghai 200940, Peoples R China.
42757 RP Chen, YX, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
42758 CR CHEN YX, UNPUB SCRIPTA MAT
42759    CHEN YX, 1997, ACTA METALL SINICA E, V10, P363
42760    CHENG XY, 1997, J IRON STEEL RES S, V9, P270
42761    CHIA WJ, 1995, J VAC SCI TECHNOL A, V13, P1687
42762    KIMURA A, 1994, MATER T JIM, V35, P879
42763    LEE KH, 1996, SCRIPTA MATER, V35, P1153
42764    LIU Y, 1989, J MATER SCI, V24, P4458
42765    WAN XJ, 1995, ACTA METALL SINICA, V8, P299
42766    ZHU JH, 1995, SCRIPTA METALL MATER, V32, P1399
42767 NR 9
42768 TC 2
42769 SN 0261-8028
42770 J9 J MATER SCI LETT
42771 JI J. Mater. Sci. Lett.
42772 PD OCT 1
42773 PY 1998
42774 VL 17
42775 IS 19
42776 BP 1627
42777 EP 1629
42778 PG 3
42779 SC Materials Science, Multidisciplinary
42780 GA 170ZQ
42781 UT ISI:000078837700008
42782 ER
42783 
42784 PT J
42785 AU Liu, XT
42786    Li, B
42787    Yu, R
42788    Liu, XH
42789    Lu, HX
42790    Tang, DY
42791    Yu, BK
42792 TI Protective films of diamond for high T-c superconducting detectors
42793 SO INFRARED PHYSICS & TECHNOLOGY
42794 DT Article
42795 ID LASER
42796 AB Deposition of diamond like carbon (DLC) films on YBCO superconducting
42797    detectors is reported. The method is to make a DLC film by C+
42798    implantation and XeCl excimer laser irradiation. The implantation
42799    energy is 20-35 keV and C+ implantation dosages D = 1 x 10(14)-5 x
42800    10(18) ions/cm(2). The parameters of XeCl excimer laser ablation are:
42801    wavelength 308 nm; energy density, 20-50 mJ/cm(2); and width of pulse,
42802    45 ns. The superconductivity of C+-implanted YBCO is also investigated,
42803    while the damage behavior of C+ implantation and the mechanism of
42804    coating DLC are analyzed. (C) 1999 Elsevier Science B.V. All rights
42805    reserved.
42806 C1 Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China.
42807    Shanghai Univ Sci & Technol, Shanghai 201800, Peoples R China.
42808 RP Liu, XT, Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared
42809    Phys, Shanghai 200083, Peoples R China.
42810 CR BRASUNAS JC, 1994, APPL PHYS LETT, V64, P777
42811    CHEN CF, 1994, P 1 WORLD S CHIN SCI, P53
42812    FABAO W, 1994, CHINESE J LOW TEMPER, V16, P185
42813    NARAYAN J, 1991, SCIENCE, V252, P416
42814    SINGH RK, 1989, MAT SCI ENG B-SOLID, V3, P217
42815    ZAIFU W, 1994, ACTA OPTICAL SINICA, V14, P355
42816 NR 6
42817 TC 0
42818 SN 1350-4495
42819 J9 INFRARED PHYS TECHNOL
42820 JI Infrared Phys. Technol.
42821 PD APR
42822 PY 1999
42823 VL 40
42824 IS 2
42825 BP 87
42826 EP 91
42827 PG 5
42828 SC Physics, Applied; Instruments & Instrumentation; Optics
42829 GA 170FK
42830 UT ISI:000078795500005
42831 ER
42832 
42833 PT J
42834 AU Zheng, Q
42835    Zhang, LS
42836 TI Global minimization of constrained problems with discontinuous penalty
42837    functions
42838 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
42839 DT Article
42840 DE integral global minimization; robust sets and functions; discontinuous
42841    penalty functions
42842 ID OPTIMIZATION
42843 AB With the integral approach to global optimization, a class of
42844    discontinuous penalty functions is proposed to solve constrained
42845    minimization problems. Optimality conditions of a penalized
42846    minimization problem are generalized to a discontinuous case; necessary
42847    and sufficient conditions for an exact penalty function are examined; a
42848    nonsequential algorithm is proposed. Numerical examples are given to
42849    illustrate the effectiveness of the algorithm. (C) 1999 Elsevier
42850    Science Ltd. All rights reserved.
42851 C1 Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada.
42852    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
42853 RP Zheng, Q, Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada.
42854 CR BERTSEKAS DP, 1975, MATH PROG, V9, P87
42855    CHEW SH, 1988, LECT NOTES EC MATH S, V298
42856    CONN AR, 1973, SIAM J NUMER ANAL, V10, P760
42857    COURANT R, 1962, CALCULUS VARIATIONS
42858    DICKMAN BH, 1989, J OPTIMIZ THEORY APP, V60, P149
42859    DIPILLO G, 1988, J OPTIMIZATION THEOR, V57, P399
42860    DIPILLO G, 1989, SIAM J CONTROL OPTIM, V27, P1333
42861    EVANS JP, 1973, MATH PROGRAM, V4, P72
42862    FIACCO AV, 1968, NONLINEAR PROGRAMMIN
42863    FLETCHER R, 1973, MATH PROGRAM, V5, P129
42864    HAN SP, 1979, MATH PROGRAM, V17, P140
42865    HIMMELBLAU DM, 1972, APPL NONLINEAR PROGR
42866    LAWLER EL, 1966, OPER RES, V14, P1098
42867    LEE LF, 1977, 77DET163
42868    PIETRYKOWSKI T, 1969, SIAM J NUMER ANAL, V6, P294
42869    ZANGWILL WI, 1967, MANAGE SCI, V13, P344
42870    ZHENG Q, 1980, COMPUTATIONAL MATH, V3, P146
42871    ZHENG Q, 1981, NUMERICAL COMPUTATIO, V2, P257
42872    ZHENG Q, 1985, ACTA MATH APPL SINIC, V1, P118
42873    ZHENG Q, 1985, ACTA MATH APPL SINIC, V1, P66
42874    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205
42875    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317
42876 NR 22
42877 TC 1
42878 SN 0898-1221
42879 J9 COMPUT MATH APPL
42880 JI Comput. Math. Appl.
42881 PD FEB-MAR
42882 PY 1999
42883 VL 37
42884 IS 4-5
42885 BP 41
42886 EP 58
42887 PG 18
42888 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
42889 GA 170FA
42890 UT ISI:000078794600006
42891 ER
42892 
42893 PT J
42894 AU Pan, XC
42895    Zheng, QA
42896 TI Global optimum shape design
42897 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
42898 DT Article
42899 DE mathematical programming; random number generation; testing; choice of
42900    initial values
42901 ID ROBUST MAPPINGS
42902 AB An optimum shape design problem can be formulated as a minimization
42903    problem of a functional subject to certain constraints. Usually, it is
42904    nonlinear and nonconvex. Conventional optimization techniques are
42905    gradient-based, they highly depend on the initial design, and are
42906    difficult to be applied to find a global solution. Integral global
42907    optimization algorithm is proposed to solve optimum shape design
42908    problems. Three design examples are given to illustrate the
42909    effectiveness of the algorithm. (C) 1999 Elsevier Science Ltd. All
42910    rights reserved.
42911 C1 China Text Univ, Shanghai 200051, Peoples R China.
42912    Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada.
42913    Shanghai Univ, Shanghai 201800, Peoples R China.
42914 RP Pan, XC, China Text Univ, Shanghai 200051, Peoples R China.
42915 CR BREBBIA CA, 1980, BOUNDARY ELEMENT TEC
42916    CHEN D, 1989, COMPUTATIONAL STRUCT, V6, P67
42917    CHEW SH, 1988, LECT NOTES EC MATH S, V298
42918    DIPILLO G, 1989, SIAM J CONTROL OPTIM, V27, P1333
42919    FIACCO AV, 1968, NONLINEAR PROGRAMMIN
42920    FLUGGE W, 1952, 2612 NASA TN
42921    SHI SZ, 1994, J MATH ANAL APPL, V183, P706
42922    SHI SZ, 1995, T AM MATH SOC, V347, P4943
42923    YING K, 1987, ENG MECH, V2, P125
42924    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P205
42925    ZHENG Q, 1990, ACTA MATH APPLICATAE, V6, P317
42926    ZHENG Q, 1992, RECENT ADV GLOBAL OP, P298
42927 NR 12
42928 TC 1
42929 SN 0898-1221
42930 J9 COMPUT MATH APPL
42931 JI Comput. Math. Appl.
42932 PD FEB-MAR
42933 PY 1999
42934 VL 37
42935 IS 4-5
42936 BP 151
42937 EP 162
42938 PG 12
42939 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
42940 GA 170FA
42941 UT ISI:000078794600014
42942 ER
42943 
42944 PT J
42945 AU Pan, QY
42946    Xu, JQ
42947    Liu, HM
42948    An, CX
42949    Jia, N
42950 TI Preparation, microstructure and gas sensing properties of nanosized
42951    SnO2 materials made by microemulsions
42952 SO JOURNAL OF INORGANIC MATERIALS
42953 DT Article
42954 DE tin oxides; microemulsion; nanosized materials; gas; sensor; surfactant
42955 AB The application of microemulsion made of anion surfactants in preparing
42956    SnO2 naosized materials was studied, and the influence of different
42957    anion surfactants and assistant surfactants on the mean grain size of
42958    nanosized SnO2 was also researched by XRD and TEM. It can be known from
42959    the experimental results, monodispersed SnO2 nanosized materials with
42960    the mean grain size of about 6nm and average partical size smaller than
42961    20nm can be obtained from the microemulsion composed of AES or K-12
42962    anion surfactant and butanol assistant surfactant and it has high
42963    sensitivity without catalysts and additives.
42964 C1 Shanghai Univ, Sch Chem & Chem Engn, Shanghai 200072, Peoples R China.
42965    Zhengzhou Inst Light Ind, Dept Chem Engn, Zhengzhou 450002, Peoples R China.
42966 RP Pan, QY, Shanghai Univ, Sch Chem & Chem Engn, Shanghai 200072, Peoples
42967    R China.
42968 CR BUTTA N, 1992, SENSOR ACTUAT B-CHEM, V6, P253
42969    NITTA M, 1979, IEEE T ELECTRON DEV, V26, P219
42970    TAMAKI J, 1992, SENSOR ACTUAT B-CHEM, V9, P197
42971    XU C, 1991, SENSOR ACTUAT B-CHEM, V3, P147
42972 NR 4
42973 TC 6
42974 SN 1000-324X
42975 J9 J INORG MATER
42976 JI J. Inorg. Mater.
42977 PD FEB
42978 PY 1999
42979 VL 14
42980 IS 1
42981 BP 83
42982 EP 89
42983 PG 7
42984 SC Materials Science, Ceramics
42985 GA 167PG
42986 UT ISI:000078642000014
42987 ER
42988 
42989 PT J
42990 AU Xu, KD
42991    Jiang, GC
42992    Huang, SP
42993    You, JL
42994 TI A study on the bonding structure of CaO-SiO2 slag by means of molecular
42995    dynamics simulation
42996 SO SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES
42997 DT Article
42998 DE CaO-SiO2 slag; molecular dynamics simulation; vibrational density of
42999    states
43000 ID SILICA; GLASS
43001 AB The investigation results of the bonding structure of CaO-SiO2 slag by
43002    means of molecular dynamics simulation are presented. The
43003    characteristics of partial radial distribution function g(ij)(r) are in
43004    goad agreement with the measurement of X-ray diffraction, and the
43005    variation of Q(n) with different SiO4 tetrahedra following the change
43006    of X-CaO is consistent with the results of Raman spectroscopy. The
43007    partial vibrational density of states Gamma(Si)(omega) shows that two
43008    bands appear in the range of 636-737 cm(-1) and 800-1 200 cm(-1)
43009    respectively which are also consistent with Raman spectroscopy.
43010 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
43011 RP Xu, KD, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072,
43012    Peoples R China.
43013 CR ABRAMO MC, 1992, J CHEM PHYS, V96, P9083
43014    ALLEN MP, 1987, COMPUTER SIMULATION
43015    CHIPMAN J, 1961, PHYSICAL CHEM PROCES
43016    DELLAVALLE RG, 1994, CHEM PHYS, V179, P411
43017    IGUCHI Y, 1981, CAN METALL Q, V20, P51
43018    KIEFFER J, 1989, J CHEM PHYS, V90, P4982
43019    MATSUMIYA T, 1992, 4 INT C MOLT SLAGS F, P115
43020    OKAZAKI S, 1993, J CHEM PHYS, V98, P607
43021    WASEDA Y, 1989, MAT SCI EARTHS INTER, CH1
43022    WOODCOCK LV, 1976, J CHEM PHYS, V65, P1565
43023 NR 10
43024 TC 0
43025 SN 1006-9321
43026 J9 SCI CHINA SER E
43027 JI Sci. China Ser. E-Technol. Sci.
43028 PD FEB
43029 PY 1999
43030 VL 42
43031 IS 1
43032 BP 77
43033 EP 82
43034 PG 6
43035 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary
43036 GA 165LY
43037 UT ISI:000078523700010
43038 ER
43039 
43040 PT J
43041 AU Niu, M
43042    Su, Y
43043    Yan, JK
43044    Fu, CP
43045    Xu, DM
43046 TI An improved open-ended waveguide measurement technique on parameters
43047    epsilon(r) and mu(r) of high-loss materials
43048 SO IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
43049 DT Article
43050 DE electromagnetic parameters; high-loss material; open-ended waveguide;
43051    simultaneous measurement
43052 AB An improved technique of using rectangular waveguide aperture for
43053    simultaneous measurement of the electromagnetic parameters epsilon(r),
43054    mu(r) of materials is developed in this paper, Both multilayer and
43055    single-layer medium sheet samples can be tested, Samples are sandwiched
43056    between a flange of an open-ended waveguide and a shorting plate, The
43057    parameters are obtain by using an optimization technique by fitting the
43058    theoretical values of the reflection coefficients Gamma(epsilon(r),
43059    mu(r)) to the measured values with epsilon(r), mu(r) as the argument.
43060    The related details, such as test theories, waveguide design, sample
43061    preparation, and error analysis are also discussed in this paper. The
43062    experimental results are validated by the measurements performed using
43063    the reflection-transmission method using an automatic network analyzer
43064    and the published data from manufactures. By virtue of its open-ended
43065    waveguide configuration, this technique is well suited for sheet or
43066    coating materials, and it might be applied for industrial
43067    on-the-worksite testing or biomedical analysis.
43068 C1 Shanghai Univ, Shanghai 201800, Peoples R China.
43069    Chinese Univ Hong Kong, Hong Kong, Peoples R China.
43070 RP Niu, M, Shanghai Univ, Shanghai 201800, Peoples R China.
43071 CR 1975, IEE C PUB
43072    ARJALINGAM, 1990, IEEE T MICROWAVE THE, V38
43073    BAKHTIARI S, 1994, IEEE T MICROWAVE THE, V24
43074    CULLEN AL, 1971, P ROY SOC LOND A MAT, V325, P493
43075    DEMING X, 1987, IEEE T MICROW THEORY, V35, P1424
43076    GARDIOL FE, 1985, ADV ELECTRON EL PHYS, V63, P139
43077    HAKKI BW, 1960, IRE T MICROWAVE THEO, V8, P402
43078    KHAN SA, 1992, P INT C MICR COMM NA, P702
43079    LI CL, 1995, IEEE T INSTRUM MEAS, V44, P19
43080    MISRA D, 1990, IEEE T MICROWAVE THE, V38
43081    STUCHLY MA, 1980, IEEE T INSTRUM MEAS, V29, P176
43082    TANABE E, 1976, IEEE T INSTRUM MEAS, V25, P222
43083    WEI YZ, 1991, IEEE T MICROW THEORY, V39, P526
43084    WEIR WB, 1974, P IEEE, V62
43085 NR 14
43086 TC 0
43087 SN 0018-9456
43088 J9 IEEE TRANS INSTRUM MEAS
43089 JI IEEE Trans. Instrum. Meas.
43090 PD APR
43091 PY 1998
43092 VL 47
43093 IS 2
43094 BP 476
43095 EP 481
43096 PG 6
43097 SC Engineering, Electrical & Electronic; Instruments & Instrumentation
43098 GA 166CC
43099 UT ISI:000078557800023
43100 ER
43101 
43102 PT J
43103 AU He, JH
43104 TI Generalized variational principles for 1-D unsteady viscous flow
43105 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
43106 DT Article
43107 ID FLUID
43108 AB In order to solve the I-D unsteady viscous now via the finite element
43109    method, it is necessary to establish a generalized variational
43110    principle. In the present paper, based on the semi-inverse method
43111    proposed by He, two families of variational principles are established
43112    for I-D unsteady compressible, homentropic, viscous now in a flexible
43113    tube of varying cross-sectional area.
43114 C1 Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43115 RP He, JH, Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples
43116    R China.
43117 CR HE JH, 1996, J SHANGHAI U, V2, P129
43118    HE JH, 1996, J SHANGHAI U, V2, P584
43119    HE JH, 1997, GEN VARIATIONAL PRIN, V1, P117
43120    HE JH, 1997, INT J TURBO JET ENG, V14, P23
43121    HE JH, 1997, J SHANGHAI U, V3, P299
43122    HE JH, 1998, ACTA AERODYNAMIC SIN, V16, P352
43123    HE JH, 1998, APPL MATH MODEL, V22, P395
43124    HE JH, 1998, INT J TURBO JET ENG, V15, P101
43125    LIU GL, 1998, INT J TURBO JET ENG, V15, P1
43126    OLSON LG, 1997, J FLUID STRUCT, V11, P207
43127    SHAPIRO AH, 1953, DYNAMICS THERMODYNAM, V2, CH23
43128 NR 11
43129 TC 0
43130 SN 0334-0082
43131 J9 INT J TURBO JET ENGINES
43132 JI Int. J. Turbo. Jet-Engines
43133 PY 1998
43134 VL 15
43135 IS 4
43136 BP 253
43137 EP 258
43138 PG 6
43139 SC Engineering, Aerospace
43140 GA 162YR
43141 UT ISI:000078375500002
43142 ER
43143 
43144 PT J
43145 AU Gao, JH
43146 TI Numerical simulation of the form of the free trailing vortex sheet in
43147    3-D compressible rotor flow
43148 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
43149 DT Article
43150 DE 3-D flow in turbine; trailing vortex sheet; FEM; nonlinear programming
43151 AB This article is based on a unified variable-domain variational theory
43152    and uses the finite element method to solve the unknown boundary
43153    problem of the free trailing vortex sheet which is the natural boundary
43154    condition result in the variational theory. A new nonlinear programming
43155    method is adopted to study the form of the free trailing vortex sheet
43156    and this article proves the method is feasible by numerical simulation
43157    of an example.
43158 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43159 RP Gao, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
43160    200072, Peoples R China.
43161 CR CRANK J, 1984, FREE MOVING BOUNDARY
43162    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
43163    HIMMELBLAU DM, 1972, APPL NONLINEAR PROGR
43164    LIU GL, 1980, SCI SINICA, V23, P1339
43165    RAO SS, 1984, OPTIMIZATION THEORY
43166    SIEVERDING CH, 1984, J ENG GAS TURB POWER, V2, P437
43167    YAN S, 1987, 1 INT C IND APPL MAT
43168    YAN S, 1991, P INT GAS TURB C YOK, V2, P35
43169    ZIENKLEWICZ OC, 1977, FEM
43170 NR 9
43171 TC 0
43172 SN 0334-0082
43173 J9 INT J TURBO JET ENGINES
43174 JI Int. J. Turbo. Jet-Engines
43175 PY 1998
43176 VL 15
43177 IS 4
43178 BP 271
43179 EP 274
43180 PG 4
43181 SC Engineering, Aerospace
43182 GA 162YR
43183 UT ISI:000078375500004
43184 ER
43185 
43186 PT J
43187 AU Chen, YL
43188    Ding, WY
43189 TI A simple approach to highly stereoselective synthesis of
43190    beta,gamma-trans-gamma-butyrolactones
43191 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
43192 DT Article
43193 DE arsenic ylide; stereoselective synthesis; gamma-butyrolactone
43194 AB A simple approach to highly stereoselective synthesis Of
43195    trans-beta-methoxycarbonyl-gamma-aryl-gamma-butyrolactones (5a-5c) is
43196    reported. Methoxycarbonylmethyltriphenylarsonium bromide (1) in
43197    dimethyl ethylene glycol was reacted with
43198    2,2-dimethyl-1,3-dioxa-5-p-methoxybenzal-4, 6-dione(2a) in the presence
43199    of K2CO3 and trace of water at room temperature, to give
43200    trans-beta-methoxycarbonyl-gamma-p-methoxyphenyl- gamma-butyrolactone
43201    (5a) with 64 % yield, whereas 1,2-cis cyclopropane derivatives(3b and
43202    3c) were isolated when started from 2b or 2c, under same conditions.
43203    The gamma-butyrolactones 5b or 5c were obtained with 62% and 57% yields
43204    when compounds 3b or 3c was further heated in acetone-water. The
43205    structures of 5a-5c were established on the basis of IR, H-1 and C-13
43206    NMR, MS and elemental analyses, and their configurations were assigned
43207    via 2D proton NOESY spectrum of compound 5c.
43208 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
43209 RP Chen, YL, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
43210 CR DING WY, 1996, CHEM RES CHINESE U, V12, P50
43211 NR 1
43212 TC 9
43213 SN 0251-0790
43214 J9 CHEM J CHINESE UNIV-CHINESE
43215 JI Chem. J. Chin. Univ.-Chin.
43216 PD OCT
43217 PY 1998
43218 VL 19
43219 IS 10
43220 BP 1614
43221 EP 1616
43222 PG 3
43223 SC Chemistry, Multidisciplinary
43224 GA 160YT
43225 UT ISI:000078261500021
43226 ER
43227 
43228 PT J
43229 AU Liu, LM
43230    Shi, DH
43231 TI An (s,S) model for inventory with exponential lifetimes and renewal
43232    demands
43233 SO NAVAL RESEARCH LOGISTICS
43234 DT Article
43235 AB Inventory control of products with finite lifetimes is important in
43236    many modem business organizations. It has been an important and
43237    difficult research subject. Here, we study the (s, S) continuous review
43238    model for items with an exponential random lifetime and a general
43239    renewal demand process through a Markov process. We derive a
43240    fundamental rate conservation theorem and show that all the other
43241    system performance measures can be obtained easily through the expected
43242    reorder cycle length. This leads to a simple expression for the total
43243    expected long run cost rate function in terms of the expected reorder
43244    cycle length. Subsequently, we derive formulas for computing the
43245    expected cycle lengths for the general renewal demand as well as for a
43246    large class of demands characterized by the phase type interdemand time
43247    distribution. We show analytically when the cost as a function of the
43248    reorder level is monotone, concave, or convex. We also show
43249    analytically that, depending on the behavior of the expected reorder
43250    cycle, the cost as a function of the order-up level is either monotone
43251    increasing or unimodal. These analytical properties enable us to
43252    understand the problem and make the subsequent numerical optimization
43253    much easier. Numerical studies confirm and illustrate some of the
43254    analytical properties. The results also demonstrate the impact of
43255    various parameters on the optimal policy and the cost. (C) 1999 John
43256    Wiley & Sons, Inc.
43257 C1 Hong Kong Univ Sci & Technol, Dept Ind Engn & Engn Management, Hong Kong, Peoples R China.
43258    Shanghai Univ, Dept Math, Shanghai, Peoples R China.
43259 RP Liu, LM, Hong Kong Univ Sci & Technol, Dept Ind Engn & Engn Management,
43260    Hong Kong, Peoples R China.
43261 CR BARLOW RE, 1975, STAT THEORY RELIABIL
43262    BUZACOTT JA, 1993, STOCHASTIC MODELS MA
43263    FRIES B, 1975, OPER RES, V23, P46
43264    GHARE PM, 1963, J IND ENG, V14, P238
43265    GOLDBERG H, 1981, EXTENDING LIMITS REL
43266    KALPAKAM S, 1988, STATISTICS, V19, P389
43267    KALPAKAM S, 1994, OPER RES LETT, V16, P115
43268    KASPI H, 1984, ADV APPL PROBAB, V16, P402
43269    LIU L, 1995, IN PRESS EUR J OPERA
43270    LIU L, 1995, IN PRESS OPERATIONS
43271    LIU LM, 1990, OPER RES LETT, V9, P161
43272    MOORTHY KA, 1992, INT J INF MANAGE SCI, V3, P29
43273    NAHMIAS S, 1975, OPER RES, V23, P735
43274    NAHMIAS S, 1982, OPERATIONS RES SOC A, V30, P680
43275    NANDAKUMAR P, 1993, MANAGE SCI, V39, P1490
43276    NEUTS MF, 1981, MATRIX GEOMETRIC SOL
43277    PIERSKALLA WP, 1972, MANAGE SCI, V18, P603
43278    RAAFAT F, 1991, J OPER RES SOC, V42, P27
43279    ROSS SM, 1983, STOCHASTIC PROCESSES
43280    WEISS HJ, 1980, OPER RES, V28, P365
43281 NR 20
43282 TC 4
43283 SN 0894-069X
43284 J9 NAV RES LOG
43285 JI Nav. Res. Logist.
43286 PD FEB
43287 PY 1999
43288 VL 46
43289 IS 1
43290 BP 39
43291 EP 56
43292 PG 18
43293 SC Operations Research & Management Science
43294 GA 158VX
43295 UT ISI:000078139100003
43296 ER
43297 
43298 PT J
43299 AU Gabriel, B
43300    Jiang, FR
43301 TI Application of the modified method of multiple scales to the bending
43302    problems for circular thin plate at very large deflection and the
43303    asymptotics of solutions (I)
43304 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
43305 DT Article
43306 DE circular plate; large deflection; boundary layer effect; asymptotics;
43307    modified method of multiple scales
43308 AB In this paper, the,modified method of multiple scales is applied to
43309    study the bending problems for circular thin plate with large
43310    deflection under the hinged and simply supported edge conditio,ls. The
43311    series solutions are constructed, the boundary layer effects are
43312    analysed and their asymptotics are proved.
43313 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43314 RP Gabriel, B, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
43315    200072, Peoples R China.
43316 CR CHIEN WZ, 1947, CHINESE J PHYS, V7, P102
43317    CHIEN WZ, 1948, NATIONAL TSING HUA U, V5, P71
43318    CHIEN WZ, 1954, ACTA PHYS SINICA, V10, P209
43319    CHUEN YC, 1980, NONLINEAR ANAL PLATE
43320    QIAO ZC, 1993, APPL MATH MECH, V14, P953
43321    VOLMIL AC, 1956, FLEXIBLE THIN PLATE
43322 NR 6
43323 TC 1
43324 SN 0253-4827
43325 J9 APPL MATH MECH-ENGL ED
43326 JI Appl. Math. Mech.-Engl. Ed.
43327 PD OCT
43328 PY 1998
43329 VL 19
43330 IS 10
43331 BP 937
43332 EP 950
43333 PG 14
43334 SC Mathematics, Applied; Mechanics
43335 GA 158UP
43336 UT ISI:000078135800003
43337 ER
43338 
43339 PT J
43340 AU Shen, M
43341 TI Variational principles in hydrodynamics of a non-Newtonian fluid
43342 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
43343 DT Article
43344 DE non-Newtonian fluid; variational principle; Lagrangian multiplier
43345 AB In this paper, the principle of maximum power losses for the
43346    incompressible viscous fluid proposed by professor Chien Weizang in
43347    reference [1] is further extended to the hydrodynamic problem of the
43348    non-Newtonian fluid with constitutive law expressed as epsilon(y) =
43349    partial derivative tau/partial derivative sigma'(y). The constraint
43350    conditions of variation are eliminated by the method of identified
43351    Lagrangian multiplier and a generalized variational principle is
43352    established.
43353 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43354 RP Shen, M, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
43355    200072, Peoples R China.
43356 CR CHIEN WZ, 1984, APPL MATH MECH, V5, P1281
43357    GROCHET MJ, 1984, NUMERICAL SIMULATION
43358    GUDERLY KG, 1972, SIAN J APPL MATH, V23, P259
43359    HAFEZ M, 1983, AIAA J, V21, P3
43360    LIN CC, 1945, J MATH PHYS, V27, P105
43361    MANWELL AR, 1980, WAVE MOTION, V2, P83
43362    SHEN M, 1995, APPL MATH MECH, V16, P369
43363    SKOBELKIN VI, 1957, SOV PHYS JETP, V4, P68
43364 NR 8
43365 TC 0
43366 SN 0253-4827
43367 J9 APPL MATH MECH-ENGL ED
43368 JI Appl. Math. Mech.-Engl. Ed.
43369 PD OCT
43370 PY 1998
43371 VL 19
43372 IS 10
43373 BP 963
43374 EP 969
43375 PG 7
43376 SC Mathematics, Applied; Mechanics
43377 GA 158UP
43378 UT ISI:000078135800006
43379 ER
43380 
43381 PT J
43382 AU Wang, SJ
43383    Niu, MD
43384    Xu, DM
43385 TI A frequency-varying method for simultaneous measurement of complex
43386    permittivity and permeability with an open-ended coaxial probe
43387 SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES
43388 DT Article
43389 DE frequency-varying method; open-ended coaxial probe; permeability;
43390    permittivity
43391 ID DIELECTRIC-PROPERTIES; MICROWAVE-FREQUENCIES; BIOLOGICAL SUBSTANCES;
43392    LINE SENSOR; CALIBRATION; REFLECTION
43393 AB To measure the complex permittivity and permeability of materials
43394    simultaneously with an open-ended coaxial probe, one needs at least two
43395    independent reflections. Based on the fact that frequency is an
43396    independent variable for the probe's reflection coefficient, a new
43397    concept, namely the frequency-varying method (FVM), which achieves the
43398    independent reflections via changing frequency, has been proposed.
43399    Since the electromagnetic (EM) properties of materials themselves are
43400    functions of frequency, the FVM introduces interpolation techniques
43401    into the process of extracting EM parameters from multiple reflection
43402    coefficients. The successful experimental results on radar-absorbing
43403    coatings show the feasibility and good prospects of the FVM for
43404    characterizing EM properties of materials ill situ, Compared with the
43405    thickness-varying method (TVM), which makes two measurements with two
43406    samples of different thicknesses, the FVM needs only one
43407    frequency-swept reflection measurement, thus simplifying and speeding
43408    up the measurement process, and improving accuracy and repeatability.
43409    Furthermore, the FVM has the ready capability to be extended to
43410    multiple-parameter measurements, and we may also find potential
43411    applications in other fields.
43412 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800, Peoples R China.
43413 RP Wang, SJ, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800,
43414    Peoples R China.
43415 CR CHEN GW, 1994, IEEE T MICROW THEORY, V42, P966
43416    DELANGHE P, 1994, IEEE T INSTRUM MEAS, V43, P810
43417    GRANT JP, 1989, J PHYS E SCI INSTRUM, V22, P757
43418    JARVIS JB, 1994, IEEE T INSTRUM MEAS, V43, P711
43419    JENKINS S, 1992, IEE PROC-H, V139, P179
43420    KRASZEWSKI A, 1983, IEEE T INSTRUM MEAS, V32, P385
43421    LI CL, 1995, IEEE T INSTRUM MEAS, V44, P19
43422    MISRA D, 1990, IEEE T MICROW THEORY, V38, P8
43423    MOSIG JR, 1981, IEEE T INSTRUM MEAS, V30, P46
43424    NIU MD, 1997, IEEE IMTC P, P482
43425    NYSHADHAM A, 1992, IEEE T MICROW THEORY, V40, P305
43426    STUCHLY MA, 1980, IEEE T INSTRUM MEAS, V29, P176
43427    XU DM, 1987, IEEE T MICROW THEORY, V35, P1424
43428 NR 13
43429 TC 1
43430 SN 0018-9480
43431 J9 IEEE TRANS MICROWAVE THEORY
43432 JI IEEE Trans. Microw. Theory Tech.
43433 PD DEC
43434 PY 1998
43435 VL 46
43436 IS 12
43437 PN Part 1
43438 BP 2145
43439 EP 2147
43440 PG 3
43441 SC Engineering, Electrical & Electronic
43442 GA 158CP
43443 UT ISI:000078098700023
43444 ER
43445 
43446 PT J
43447 AU Shi, ZW
43448    Zhao, XH
43449 TI A,phi-Omega method for 3-D eddy current analysis
43450 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
43451 DT Article
43452 DE 3-D eddy current field; A, phi-Omega method; interface continuous
43453    conditions
43454 AB After the field equations and the continuous conditions between the
43455    interfaces for 3-D eddy current problems under various gauges were
43456    discussed, it was pointed out in this paper that using the magnetic
43457    vector potential A, the electric scalar potential phi and Coulomb gauge
43458    del . A = 0 in eddy current regions and using the magnetic scalar
43459    potential Omega in the non-conducting regions are more suitable. All
43460    field equations, the boundary conditions, the interface continuity
43461    conditions and the corresponding variational principle of this method
43462    are also given.
43463 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43464 RP Shi, ZW, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
43465    200072, Peoples R China.
43466 CR 1987, P C COMP EL FIELDS G
43467    1988, IEEE T MAG, V24, P13
43468    BROWN ML, 1982, PIEE, V129, P46
43469    CHARI MVK, 1982, IEEE T MAG, V18, P435
43470    EMSON CRI, 1983, IEEE T MAGN, V19, P2450
43471    EMSON RI, 1988, IEEE T MAG, V24, P86
43472 NR 6
43473 TC 1
43474 SN 0253-4827
43475 J9 APPL MATH MECH-ENGL ED
43476 JI Appl. Math. Mech.-Engl. Ed.
43477 PD NOV
43478 PY 1998
43479 VL 19
43480 IS 11
43481 BP 1017
43482 EP 1023
43483 PG 7
43484 SC Mathematics, Applied; Mechanics
43485 GA 157NN
43486 UT ISI:000078068700001
43487 ER
43488 
43489 PT J
43490 AU Ma, JH
43491    Chen, YS
43492    Liu, ZR
43493 TI The influence of the different distributed phase-randomized on the
43494    experimental data obtained in dynamic analysis
43495 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
43496 DT Article
43497 DE experimental data; surrogate data; critical value; phase-randomized;
43498    random timeseries; chaotic timeseries
43499 ID CORRELATION DIMENSION; NOISE; CHAOS
43500 AB In this paper the influence of the differently distributed
43501    phase-randomized to the data obtained in dynamic analysis for critical
43502    value is studied. The calculation results validate that the sufficient
43503    phase-randomized of the different distributed random numbers are less
43504    influential on the critical value. This offers the theoretical
43505    foundation of the feasibility and practicality of the phase-randomized
43506    method.
43507 C1 Southeast Univ, Inst Syst Engn, Nanjing 210096, Peoples R China.
43508    Tianjin Univ, Dept Mech, Tianjin 300072, Peoples R China.
43509    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
43510 RP Ma, JH, Southeast Univ, Inst Syst Engn, Nanjing 210096, Peoples R China.
43511 CR ABARBANEL HDI, 1991, INT J MOD PHYS B, V5, P1347
43512    CABRERA JL, 1995, PHYS LETT A, V197, P19
43513    CASDAGLI M, 1992, J ROY STAT SOC B MET, V54, P303
43514    GRASSBERGER P, 1988, PHYS LETT A, V128, P369
43515    KENNEL MB, 1992, PHYS REV A, V46, P3111
43516    KOSTELICH EJ, 1992, PHYSICA D, V58, P138
43517    MA JH, 1998, APPL MATH MECH-ENGL, V19, P513
43518    PRICHARD D, 1993, GEOPHYS RES LETT, V20, P2817
43519    PRICHARD D, 1994, PHYS LETT A, V191, P245
43520    PRICHARD D, 1994, PHYS REV LETT, V191, P230
43521    RAPP PE, 1993, PHYS REV E, V47, P2289
43522    RAPP PE, 1994, PHYS LETT A, V192, P27
43523    ROMBOUTS SAR, 1995, PHYS LETT A, V202, P352
43524    SCHIFF SJ, 1992, PHYS REV LETT A, P378
43525    TAKALO J, 1993, GEOPHYS RES LETT, V20, P1527
43526    THEILER J, 1986, PHYS REV A, V34, P2427
43527    THEILER J, 1991, PHYS LETT A, V155, P480
43528 NR 17
43529 TC 3
43530 SN 0253-4827
43531 J9 APPL MATH MECH-ENGL ED
43532 JI Appl. Math. Mech.-Engl. Ed.
43533 PD NOV
43534 PY 1998
43535 VL 19
43536 IS 11
43537 BP 1033
43538 EP 1042
43539 PG 10
43540 SC Mathematics, Applied; Mechanics
43541 GA 157NN
43542 UT ISI:000078068700003
43543 ER
43544 
43545 PT J
43546 AU Lu, DC
43547    Tian, LX
43548    Liu, ZR
43549 TI Wavelet basis analysis in perturbed periodic KdV equation
43550 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
43551 DT Article
43552 DE wavelet basis; approximate inertial manifold; perturbed periodic KdV
43553    equation
43554 AB In the paper by using the spline wavelet basis to construct the
43555    approximate inertial manifold, we study the longtime behavior of
43556    perturbed perodic KdV equation.
43557 C1 Jiangus Univ Sci & Technol, Dept Math & Phys, Zhenjiang 212013, Peoples R China.
43558    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
43559 RP Lu, DC, Jiangus Univ Sci & Technol, Dept Math & Phys, Zhenjiang 212013,
43560    Peoples R China.
43561 CR CHUI CK, 1992, INTRO WAVELET
43562    DEBUSSCHE A, 1992, J DIFFER EQUATIONS, V100, P173
43563    ERCOLANI NM, 1993, J NONLINEAR SCI, V3, P477
43564    GOUBET O, 1992, SIAM J MATH ANAL, V9, P1455
43565    SUN SM, 1994, NONLINEAR ANAL-THEOR, V23, P545
43566    TEMAN R, 1988, APPL MATH SOC, V68
43567    TIAN LX, 1997, APPL MATH MECH-ENGL, V18, P1021
43568    TIAN LX, 1997, WAVELET GALERKIN MET
43569 NR 8
43570 TC 1
43571 SN 0253-4827
43572 J9 APPL MATH MECH-ENGL ED
43573 JI Appl. Math. Mech.-Engl. Ed.
43574 PD NOV
43575 PY 1998
43576 VL 19
43577 IS 11
43578 BP 1053
43579 EP 1058
43580 PG 6
43581 SC Mathematics, Applied; Mechanics
43582 GA 157NN
43583 UT ISI:000078068700005
43584 ER
43585 
43586 PT J
43587 AU Yong, Z
43588 TI Numerical study of a nonlinear integrodifferential equation
43589 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
43590 DT Article
43591 DE integrodifferential equation; spectral method; solitary waves
43592 AB In this paper, by using the pseudo-spectral method of Fornberg and
43593    Whitham, a nonlinear intergrodifferential equations
43594    A(t) + 6AA(x) + 1/2\In epsilon\ integral (+infinity)(-infinity) A(x',
43595    t(.))/{(x' - x)(2) + epsilon(2)}(-1/2) dx' = 0
43596    is investigated numerically. It is found that for small epsilon, the
43597    result is close to that of the KdV equation, whereas the effects of
43598    larger epsilon and the initial condition are significant.
43599 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43600 RP Yong, Z, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
43601    200072, Peoples R China.
43602 CR FORNBERG B, 1978, PHILOS T ROY SOC A, V289, P373
43603    GRIMSHAW R, 1994, CAN APPL MATH Q, V2, P189
43604    LEIBOVICH S, 1970, J FLUID MECH, V42, P803
43605    ZABUSKY NJ, 1965, PHYS REV LETT, V15, P240
43606 NR 4
43607 TC 0
43608 SN 0253-4827
43609 J9 APPL MATH MECH-ENGL ED
43610 JI Appl. Math. Mech.-Engl. Ed.
43611 PD NOV
43612 PY 1998
43613 VL 19
43614 IS 11
43615 BP 1059
43616 EP 1063
43617 PG 5
43618 SC Mathematics, Applied; Mechanics
43619 GA 157NN
43620 UT ISI:000078068700006
43621 ER
43622 
43623 PT J
43624 AU Zhang, BS
43625 TI A comment on the proof of Fermat's last theorem
43626 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
43627 DT Article
43628 DE factorization; cofactor; relative prime; Fermat's last theorem
43629 AB In this paper, some comments on the proof of Fermat's last theorem are
43630    proposed. The main result is that the proof proposed by Wong Chiahe is
43631    only part of proof for Fermat's last theorem. That is to say, the proof
43632    is not all-full proof to Fermat's last theorem.
43633 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43634 RP Zhang, BS, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
43635    200072, Peoples R China.
43636 CR CHEN SS, 1996, MATH DEV, V25, P1
43637    HUA LG, 1959, NUMBER THEORY INTRO, P14
43638    WONG CH, 1996, APPL MATH MECH ENGLI, V17, P1031
43639 NR 3
43640 TC 0
43641 SN 0253-4827
43642 J9 APPL MATH MECH-ENGL ED
43643 JI Appl. Math. Mech.-Engl. Ed.
43644 PD NOV
43645 PY 1998
43646 VL 19
43647 IS 11
43648 BP 1115
43649 EP 1118
43650 PG 4
43651 SC Mathematics, Applied; Mechanics
43652 GA 157NN
43653 UT ISI:000078068700012
43654 ER
43655 
43656 PT J
43657 AU Gu, GQ
43658    Hui, PM
43659    Wang, BH
43660    Dai, SQ
43661 TI Two-dimensional cellular automaton traffic model with randomly
43662    switching traffic lights
43663 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
43664 DT Article
43665 DE cellular automata; traffic model; traffic light; phase transition
43666 ID JAMMING TRANSITION; FLOW PROBLEMS
43667 AB Cellular automation traffic models can include various factors in
43668    traffic systems and the corresponding computational simulations are
43669    rather simple and effective. The Biham-Middleton-Levine model (BML
43670    model) facilitates the simulation of two-dimensional traffic flow
43671    problems via the cellular automaton models. In this paper, the BML
43672    model is improved by removing its limitation of synchronized change of
43673    traffic lights. In the new model, the traffic light at each crossing
43674    could arbitrarily change its starting time and tempo of variation, and
43675    hence the model could more realistically describe the influence of
43676    traffic lights on the performance of traffic systems. Some new effects
43677    appearing in the new model are also elucidated.
43678 C1 Shanghai Univ, Sch Syst Sci & Syst Engn, S&T, Shanghai 200093, Peoples R China.
43679    Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China.
43680    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43681    Chinese Univ Hong Kong, Dept Phys, Shatin, NT, Peoples R China.
43682 RP Gu, GQ, Shanghai Univ, Sch Syst Sci & Syst Engn, S&T, Shanghai 200093,
43683    Peoples R China.
43684 CR BENJAMIN SC, 1996, J PHYS A-MATH GEN, V29, P3119
43685    BIHAM O, 1992, PHYS REV A, V46, P6124
43686    CHUNG KH, 1995, PHYS REV E, V51, P772
43687    CUESTA JA, 1993, PHYS REV E, V48, R4175
43688    GU GQ, 1995, PHYSICA A, V217, P339
43689    GU GQ, 1995, SYST ENG THEOR METH, V14, P12
43690    NAGATANI T, 1993, PHYS REV E, V48, P3290
43691    NAGATANI T, 1994, J PHYS SOC JPN, V63, P1228
43692 NR 8
43693 TC 0
43694 SN 0253-4827
43695 J9 APPL MATH MECH-ENGL ED
43696 JI Appl. Math. Mech.-Engl. Ed.
43697 PD SEP
43698 PY 1998
43699 VL 19
43700 IS 9
43701 BP 807
43702 EP 813
43703 PG 7
43704 SC Mathematics, Applied; Mechanics
43705 GA 157AK
43706 UT ISI:000078036400001
43707 ER
43708 
43709 PT J
43710 AU Qin, KR
43711    Jiang, WY
43712    Li, XX
43713    Liu, ZR
43714 TI On analysis of the steady flow in an irrectangular parallel-plate flow
43715    chamber
43716 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
43717 DT Article
43718 DE irrectangular parallel-plate flow chamber; shear stress; steady flow;
43719    cell's mechanical behaviors
43720 AB The parallel-plate flow chamber (PPFC), of which the height is far
43721    smaller than its own length and width, is one of the main apparatus for
43722    the in vitro study of the mechanical behaviors of cultured cells at the
43723    bottom of PPFC undergoing shear stress. The PPFC of which the upper and
43724    lower plates are rectangular is usually used by research workers, and
43725    the flow field in this kind of PPFC (except for the regions near the
43726    entrance and exit) is uniform([1]), so only the effect the shear stress
43727    with one value has on cultured cells can be observed during each
43728    experiment. A kind of PPFC of which the upper and lower plates are not
43729    rectangular is proposed in this paper. The distributions of the
43730    velocities inside and the shear stresses at the bottom of the chamber
43731    are given by analyzing the flow field of the steady flow in the PPFC.
43732    The results show that the mechanical behaviors of cultured cells
43733    undergoing the shear stresses with various values may be simultaneously
43734    observed by the use of this kind of irrectangular PPFC. The theoretical
43735    and experimental results obtained by Ultrasonic Doppler Technique show
43736    good agreement.
43737 C1 Fudan Univ, Biomech Lab, Shanghai 200433, Peoples R China.
43738    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43739 RP Qin, KR, Fudan Univ, Biomech Lab, Shanghai 200433, Peoples R China.
43740 CR DAVIS RT, 1983, COMPUTATIONAL METHOD
43741    FRANGOS JA, 1988, BIOTECHNOL BIOENG, V32, P1053
43742    HAMMER DA, 1995, P 4 CHIN JAP SING C, P425
43743    JIANG WY, 1996, J APPL BIOMECH, V11, P97
43744    YUNG YC, 1993, BIOMECHANICS KINETIC
43745 NR 5
43746 TC 0
43747 SN 0253-4827
43748 J9 APPL MATH MECH-ENGL ED
43749 JI Appl. Math. Mech.-Engl. Ed.
43750 PD SEP
43751 PY 1998
43752 VL 19
43753 IS 9
43754 BP 851
43755 EP 859
43756 PG 9
43757 SC Mathematics, Applied; Mechanics
43758 GA 157AK
43759 UT ISI:000078036400006
43760 ER
43761 
43762 PT J
43763 AU Nafziger, JAR
43764    Wei, L
43765 TI China's sports law
43766 SO AMERICAN JOURNAL OF COMPARATIVE LAW
43767 DT Article
43768 C1 Willamette Univ, Coll Law, Salem, OR 97301 USA.
43769    Shanghai Univ, Shanghai, Peoples R China.
43770 RP Nafziger, JAR, Willamette Univ, Coll Law, Salem, OR 97301 USA.
43771 CR 1986, BEIJING REV     0203, P32
43772    1994, ASIA WK         1207, P38
43773    1994, CHRIST SCI MONI 0301, P20
43774    1994, MAINICHI DAILY  1205, P1
43775    1994, SPURT Z SPORT RECHT, V1, P6
43776    1994, SPURT Z SPORT RECHT, V1, P73
43777    1994, XINHUA NEWS AGE 1205
43778    1994, XINHUA NEWS AGE 1229
43779    1995, BUS WK          0619, P140
43780    1995, NY TIMES        0728, B8
43781    1995, PEOPLES DAILY   0427, P1
43782    1995, PEOPLES DAILY   1222, P10
43783    1995, PEOPLES DAILY   1227, P5
43784    1995, PEOPLES DAILY   1227, P6
43785    1995, PEOPLES DAILY   1229, P10
43786    1995, SHANGHAI STAR   0901, P1
43787    1995, UPI             0301
43788    1995, ZHONGHUA RENMIN GONG
43789    1996, JAPAN EC NEWSWI 0805
43790    1996, LA TIMES        0212, S1
43791    1997, PEOPLES DAILY   0905, P10
43792    1997, PEOPLES DAILY   1025, P1
43793    1998, PEOPLES DAILY   0115, P2
43794    1998, XINHUA NEWS AGE 0406
43795    *LAW RUL SECT LAW, 1995, YU TIYUF YOUG JIG ZH, P4
43796    BADDELEY, 1997, REV JURIDIQUE EC SPO, P5
43797    BO T, 1993, BEIJING REV     0906, P31
43798    BROWNELL S, 1995, TRAINING BODY CHINA, P39
43799    BUCHBERGER M, 1997, THESIS RUHR U BOCHUM
43800    CHEN XT, 1998, WASH POST       0801, A17
43801    DEMERODE A, 1994, JAPANESE EC NEW 1214
43802    EVANS R, 1993, DENG XIAOPING MAKING, P204
43803    FACHET, 1994, WASH POST       1201, B2
43804    FUMAGALLI, 1995, RIV DIRITTO SPORTIVO, V47, P715
43805    FUNG YL, 1948, SHORT HIST CHINESE P
43806    GABRIEL, 1988, NY TIMS         0424, P30
43807    GABRIEL, 1988, NY TIMS         0424, P33
43808    GOODBODY, 1995, TIMES LONDON    0302
43809    HE ZL, 1995, NEW STRAITS TIM 0107, P48
43810    HERSH, 1996, CHICAGO TRIB    0104, P1
43811    HESS B, 1996, ZZPINT, V1, P371
43812    HLADCZUK J, 1991, SPORTS LAW LEGISLATI, P115
43813    HOBERMAN JM, 1984, SPORTS POLITICAL IDE, P219
43814    HUGHES NC, 1998, FOREIGN AFF      JUL, P67
43815    HUGHES NC, 1998, FOREIGN AFF      JUL, P68
43816    JACQ P, 1993, P 1 INT C SPORTS LAW, P403
43817    JIANG RP, 1994, TIYU FAXUE, P33
43818    KRISTOF ND, 1994, CHINA WAKES, P440
43819    KRISTOF, 1993, INT HERALD TRIB 0729, P17
43820    LAM, 1994, CHINESE BUS REV  NOV, P41
43821    LI P, 1998, PEOPLES DAILY   0321, P1
43822    LI ZH, 1997, PEOPLES DAILY   1128
43823    LIN, 1993, FREE CHINA J    0302, P4
43824    LINDORFF D, 1995, BUS WK          0619, P140
43825    LOU LW, 1993, BEIJING REV     1228, P36
43826    MASTROCOLA, 1995, BC 3 WORLD LJ, V15, P141
43827    MONTVILLE, 1994, SPORTS ILLUS    0919, P40
43828    MUFSON S, 1994, WASH POST       1206, B2
43829    NAFZIGER JAR, 1988, INT SPORTS LAW, P58
43830    NAFZIGER JAR, 1992, AM J INT LAW, V86, P489
43831    NAFZIGER, 1992, AM J INT L, V86, P496
43832    NAFZIGER, 1996, INT COMP LQ, V45, P130
43833    NAFZIGER, 1996, INT COMP LQ, V45, P143
43834    NAN L, 1988, AM J SOCIOL, V93, P793
43835    NAN L, 1988, AM J SOCIOL, V93, P805
43836    PESCANTE, 1997, INT ATHLETIC FDN SUP, P127
43837    QUN W, 1996, PEOPLES DAILY   0105, P10
43838    RIDING, 1993, NY TIMES        0920, B9
43839    RIORDAN J, 1991, SPORTS POLITICS COMM, P5
43840    TYLER, 1993, NY TIMES        0919, A4
43841    WANG JP, 1995, PEOPLES DAILY   0927, P5
43842    WANG SW, 1995, ZHONGHUA RENMIN GONG, P18
43843    WHITTEN, 1994, SWIMMING WORLD J JAN, P34
43844    WILCOX RC, 1994, SPORT GLOBAL VILLAGE, P407
43845    WILL MR, 1988, AUF WEGE EINEM EUROP
43846    YU XG, PEOPLES DAILY   0905, P10
43847    ZOU SC, 1993, BEIJING REV     0920, P22
43848    ZOU SC, 1995, BEIJING REV     0715, P8
43849 NR 78
43850 TC 0
43851 SN 0002-919X
43852 J9 AMER J COMP LAW
43853 JI Am. J. Comp. Law
43854 PD SUM
43855 PY 1998
43856 VL 46
43857 IS 3
43858 BP 453
43859 EP 483
43860 PG 31
43861 SC Law
43862 GA 156UB
43863 UT ISI:000078019500003
43864 ER
43865 
43866 PT J
43867 AU Wan, DC
43868    Wu, GX
43869 TI Numerical simulation of a solitary wave interaction with submerged
43870    multi-bodies
43871 SO ACTA MECHANICA SINICA
43872 DT Article
43873 DE multi-bodies; solitary wave; viscous flows; VOF method
43874 AB The problems of a solitary wave passing over rectangular cylinders have
43875    been analysed. The numerical simulation is based on the full nonlinear
43876    two-dimensional Navier-Stokes equations which are solved by the finite
43877    difference method. The free surface is dealt with by the Volume of
43878    Fluid method (VOF). Results for a solitary wave passing over a single
43879    cylinder are compared with the experimental data of Seabra-Santos,
43880    Penouard and Temperville([2]) and better agreement is obtained than
43881    those obtained from the long wave equation based on the potential flow
43882    theory. Results are also given for two cylinders with different gaps.
43883 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43884    Univ London Univ Coll, Dept Mech Engn, London WC1E 7JE, England.
43885 RP Wan, DC, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
43886    200072, Peoples R China.
43887 CR COOKER MJ, 1990, J FLUID MECH, V215, P1
43888    DJORDJEVIC VD, 1978, J PHYS OCEANOGR, V8, P1016
43889    HIRT CW, 1981, J COMPUT PHYS, V39, P201
43890    MADSEN OS, 1969, J FLUID MECH, V39, P781
43891    NICHOLS BD, 1980, LA8355 LOS AL SCI LA
43892    OHYAMA T, 1992, J CIVIL ENG SOC JAPA, P31
43893    SEABRASANTOS FJ, 1987, J FLUID MECH, V176, P117
43894    WAN DC, 1997, J HYDRODYNAMICS B, V9, P88
43895    WAN DC, 1998, J HYDRODYNAMICS A, V13, P95
43896    WANG YX, 1993, COMMUNICATION CHINES, V3, P553
43897 NR 10
43898 TC 0
43899 SN 0567-7718
43900 J9 ACTA MECH SINICA
43901 JI Acta Mech. Sin.
43902 PD NOV
43903 PY 1998
43904 VL 14
43905 IS 4
43906 BP 297
43907 EP 305
43908 PG 9
43909 SC Engineering, Mechanical; Mechanics
43910 GA 156BQ
43911 UT ISI:000077981900002
43912 ER
43913 
43914 PT J
43915 AU He, JH
43916 TI Approximate analytical solution for seepage flow with fractional
43917    derivatives in porous media
43918 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
43919 DT Article
43920 AB In this paper, a new and more exact model for seepage Row in porous
43921    media with fractional derivatives has been proposed, which has modified
43922    the well-known Darcy law and overcome the continuity assumption of
43923    seepage flow. A new kind of analytical method of nonlinear problem
43924    called the variational iteration method is described and used to give
43925    approximate solutions of the problem. The results show that the
43926    proposed iteration method, requiring no linearization or small
43927    perturbation, is very effective and convenient. (C) 1998 Elsevier
43928    Science S.A. All rights reserved.
43929 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43930 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
43931    Peoples R China.
43932 CR ADOMIAN G, 1988, J MATH ANAL APPL, V135, P510
43933    CAMPOS LMB, 1990, INT J MATH MATH SCI, V13, P481
43934    DELBOSCO D, 1996, J MATH ANAL APPL, V204, P609
43935    DUARTE RT, 1983, P 7 EUR C EARTH ENG
43936    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
43937    HE JH, 1997, COMM NONLINEAR SCI N, V2, P230
43938    HE JH, 1997, COMMUNICATIONS NONLI, V2, P235
43939    HE JH, 1998, MECH PRACTICE, V20, P30
43940    HE JH, 1998, MECH SCI TECHNOL, V17, P221
43941    HUANG AX, 1996, 3 INT S AER INT FLOW, P417
43942    INOKUTI M, 1978, VARIATIONAL METHOD M, P156
43943 NR 11
43944 TC 20
43945 SN 0045-7825
43946 J9 COMPUT METHOD APPL MECH ENG
43947 JI Comput. Meth. Appl. Mech. Eng.
43948 PD DEC 1
43949 PY 1998
43950 VL 167
43951 IS 1-2
43952 BP 57
43953 EP 68
43954 PG 12
43955 SC Computer Science, Interdisciplinary Applications; Engineering,
43956    Mechanical; Mechanics
43957 GA 154KP
43958 UT ISI:000077888300004
43959 ER
43960 
43961 PT J
43962 AU He, JH
43963 TI Approximate solution of nonlinear differential equations with
43964    convolution product nonlinearities
43965 SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
43966 DT Article
43967 AB In this paper, a new iteration method is proposed to solve nonlinear
43968    problems. Special attention is paid to nonlinear differential equations
43969    with convolution product nonlinearities, The results reveal the
43970    approximations obtained by the proposed method are uniformly valid for
43971    both small and large parameters in nonlinear problems. Furthermore, the
43972    first order of approximations are more accurate than perturbation
43973    solutions at high order of approximation. (C) 1998 Elsevier Science
43974    S.A. All rights reserved.
43975 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
43976 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
43977    Peoples R China.
43978 CR ADOMIAN G, 1986, J MATH ANAL APPL, V114, P171
43979    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
43980    HE JH, IN PRESS J SHANGHAI
43981    HE JH, 1997, COMM NONLINEAR SCI N, V2, P230
43982    HE JH, 1998, MECH PRACTICE, V20, P30
43983    INOKUTI M, 1978, VARIATIONAL METHOD M, P156
43984 NR 6
43985 TC 20
43986 SN 0045-7825
43987 J9 COMPUT METHOD APPL MECH ENG
43988 JI Comput. Meth. Appl. Mech. Eng.
43989 PD DEC 1
43990 PY 1998
43991 VL 167
43992 IS 1-2
43993 BP 69
43994 EP 73
43995 PG 5
43996 SC Computer Science, Interdisciplinary Applications; Engineering,
43997    Mechanical; Mechanics
43998 GA 154KP
43999 UT ISI:000077888300005
44000 ER
44001 
44002 PT J
44003 AU Hu, C
44004    Zhao, XH
44005    Ma, XG
44006    Huang, WH
44007 TI Dynamic stress concentrations in Ambartsumian's plate with a cutout
44008 SO ACTA MECHANICA SOLIDA SINICA
44009 DT Article
44010 DE Ambartsumian's plate; cutout; dynamic stress concentration;
44011    perturbation method
44012 AB Based on the motion equations of flexural wave in Ambartsumian' s
44013    plates including the effects of transverse shear deformations, by using
44014    perturbation method of small parameter, the scattering of flexural
44015    waves and dynamic stress concentrations in the plate with a cutout have
44016    been studied. The asypmtotic solution of the dynamic stress problem is
44017    obtained Numerical results for the dynamic stress concentration factor
44018    in Ambartsumian' s plates with a circular cutout are graphically
44019    presented and discussed.
44020 C1 Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
44021    Harbin Inst Technol, Harbin 150001, Peoples R China.
44022 CR AMBARTSUMIAN SA, 1970, THEORY ANISOTROPIC P
44023    HU HC, 1981, VARIATIONAL PRINCIPL
44024    KLYUKIN II, 1964, SOV PHYS ACOUST, V10, P49
44025    LEKHNITSKII SG, 1963, THEORY ANISOTROPIC P
44026    MA XR, 1997, ACTA MECH SINICA, V29, P269
44027    MUSKHELISHVILI NI, 1958, BASIC PROBLEMS MATH
44028    PANC V, 1975, THEORIES ELASTIC PLA
44029    PAO YH, 1962, J APPL MECH, V29, P299
44030    PAO YH, 1983, J APPL MECH-T ASME, V50, P1152
44031    PAO YH, 1993, DIFFRACTION ELASTIC
44032    QIAN EC, 1981, THEORY SINGULAR PERT
44033    SAVIN GN, 1958, STRESS CONCENTRATION
44034 NR 12
44035 TC 0
44036 SN 0894-9166
44037 J9 ACTA MECH SOLIDA SINICA
44038 JI Acta Mech. Solida Sin.
44039 PD DEC
44040 PY 1998
44041 VL 11
44042 IS 4
44043 BP 341
44044 EP 350
44045 PG 10
44046 SC Materials Science, Multidisciplinary; Mechanics
44047 GA 152ZG
44048 UT ISI:000077807700006
44049 ER
44050 
44051 PT J
44052 AU Gao, SC
44053    Zhong, SS
44054 TI Analysis and design of dual-polarized microstrip antenna array
44055 SO INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING
44056 DT Article
44057 DE microstrip antenna; array; dual polarization; isolation
44058 ID MOBILE SATELLITE-COMMUNICATIONS
44059 AB A new dual-polarized microstrip antenna array is presented. Diagonal
44060    feeding of the square patch with two ports is proposed to obtain dual
44061    linear polarization. A novel coplanar feedline network is also
44062    presented for the dual-polarized array. For engineering purposes, a
44063    CAD-oriented method of analysis is developed. The measured results
44064    demonstrate high isolation between the two input ports. The array has
44065    simple structure and is easy to further combine to form larger coplanar
44066    arrays. (C) 1999 John Wiley & Sons, Inc.
44067 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
44068 RP Gao, SC, Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R
44069    China.
44070 CR BRACHAT P, 1995, IEEE T ANTENN PROPAG, V43, P738
44071    CRYAN MJ, 1996, ELECTRON LETT, V32, P286
44072    DUTOLT LJ, 1987, IEEE AP S INT S LOS, P810
44073    GUPTA KC, 1981, COMPUTER AIDED DESIG, CH11
44074    GUPTA KC, 1987, IEEE AP S INT S, P786
44075    GUPTA KC, 1988, MICROSTRIP ANTENNA D, CH3
44076    HALL PS, 1988, IEE P H, V135, P180
44077    JAMES JR, 1981, MICROSTRIP ANTENNA T, P166
44078    JAMES JR, 1989, HDB MICROSTRIP ANTEN, CH3
44079    LO YT, 1988, ANTENNA HDB THEORY A, CH10
44080    MURAKAMI Y, 1996, IEE P-MICROW ANTEN P, V143, P119
44081    NAKANO M, 1992, IEEE T ANTENN PROPAG, V40, P1269
44082 NR 12
44083 TC 9
44084 SN 1096-4290
44085 J9 INT J RF MICROW COMPUT-AID EN
44086 JI Int. J. RF Microw. Comput-Aid. Eng.
44087 PD JAN
44088 PY 1999
44089 VL 9
44090 IS 1
44091 BP 42
44092 EP 48
44093 PG 7
44094 SC Computer Science, Interdisciplinary Applications; Engineering,
44095    Electrical & Electronic
44096 GA 150NB
44097 UT ISI:000077670100005
44098 ER
44099 
44100 PT J
44101 AU Xu, X
44102    He, FB
44103 TI Three dimensional elasticity solution for vibration problem of thick
44104    plate
44105 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
44106 DT Article
44107 DE thick plate; free vibration; forced vibration
44108 AB In this paper, based upon the basic equations of three dimensional
44109    theory of elastodynamics, the governing differential equations of thick
44110    plate have been formulated The dynamic response of stress and
44111    displacement of thick plate subjected to the transversed forced are
44112    obtained. It is shown that the vibrational characters of thick plate
44113    consist of three modes: thickness shear mode, symmetric mode and
44114    anti-symmetric mode. The characteristic equations;of simply supported
44115    thick plate are derived and rile comparison of the free vibration
44116    frequencies based on the classic. theory, middle thickness plate theory
44117    and three dimensional elasticity theory are given.
44118 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
44119 RP Xu, X, Shanghai Univ, Shanghai 200072, Peoples R China.
44120 CR BARNETT S, 1979, MATRIX METHODS ENG S
44121    CAO GX, 1983, VIBRATION THIN ELAST
44122    CAO ZY, 1983, THEORY THICK PLATE D
44123    CHIEN WZ, 1994, J SHANGHAI U TECHNOL, V15, P1
44124    MINDLIN RD, 1951, J APPLIED MECHANICS, V18, P31
44125    WANG FY, 1985, ACTA MECH SOLIDA SIN, V6, P429
44126    ZE DS, 1994, J TONGJI U, V22, P274
44127 NR 7
44128 TC 0
44129 SN 0253-4827
44130 J9 APPL MATH MECH-ENGL ED
44131 JI Appl. Math. Mech.-Engl. Ed.
44132 PD JUL
44133 PY 1998
44134 VL 19
44135 IS 7
44136 BP 615
44137 EP 624
44138 PG 10
44139 SC Mathematics, Applied; Mechanics
44140 GA 149EC
44141 UT ISI:000077591300002
44142 ER
44143 
44144 PT J
44145 AU Wang, ZX
44146    Fan, XL
44147    Zhu, ZY
44148 TI Inertial manifolds for nonautonomous infinite dimensional dynamical
44149    systems
44150 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
44151 DT Article
44152 DE nonautonomous equations; the spectral gap condition; inertial manifold
44153 AB In this paper, the long time behavior of nonautonomous infinite
44154    dimensional dynamical systems is discussed Under the spectral gap
44155    condition, It is proved that there exist inertial manifolds for a class
44156    of nonautonomous evolution equations.
44157 C1 Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
44158    Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China.
44159    Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China.
44160 RP Wang, ZX, Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
44161 CR BERNAL AR, 1990, APPL ANAL, V37, P95
44162    CHEPYZHOV VV, 1994, J MATH PURE APPL, V73, P297
44163    DAFERMOS CM, 1974, MATH SYST THEORY, V8, P142
44164    DEBUSSCHE A, 1994, J MATH PURE APPL, V73, P489
44165    GILL TL, 1992, SIAM J MATH ANAL, V23, P1204
44166    HALE J, 1988, MATH SURVEYS MONOGRA, V25
44167    HARAUX A, 1988, COMMUN PART DIFF EQ, V13, P1383
44168    SELL GR, 1967, T AM MATH SOC, V127, P241
44169    SMILEY MW, 1993, APPL ANAL, V50, P217
44170    SMILEY MW, 1995, J DYNAMICS DIFFERENT, V7, P237
44171    TEMAM R, 1988, INFINITE DIMENSIONAL
44172 NR 11
44173 TC 1
44174 SN 0253-4827
44175 J9 APPL MATH MECH-ENGL ED
44176 JI Appl. Math. Mech.-Engl. Ed.
44177 PD JUL
44178 PY 1998
44179 VL 19
44180 IS 7
44181 BP 695
44182 EP 704
44183 PG 10
44184 SC Mathematics, Applied; Mechanics
44185 GA 149EC
44186 UT ISI:000077591300011
44187 ER
44188 
44189 PT J
44190 AU Lu, ZM
44191    Liu, YL
44192 TI On the mechanism of turbulent coherent structure (III) - A statistical
44193    and dynamical model of coherent structure and its heat transfer
44194    mechanism
44195 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
44196 DT Article
44197 DE coherent structure; statistical and dynamical model; heat transfer
44198 AB Following Tsai & Ma([1]) and Tsai & Liu([2]), a statistical and
44199    dynamical near-wall turbulent coherent structural model with separate
44200    consideration of two different portions: locally generated and
44201    upstream-transported large eddies has been established. With this
44202    model, heat transfer in a fully developed open channel in the absence
44203    of pressure gradient is numerically simulated. Database of fluctuations
44204    of velocity and temperature has also been set. Numerical analysis shows
44205    the existence of high-low temperature streak caused by near-wall
44206    coherent structure and its swing in the lateral direction. Numerical
44207    results are in accordance with the computations and experimental
44208    results of other researchers.
44209 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
44210 RP Lu, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
44211    Peoples R China.
44212 CR BELL DM, 1993, NEAR WALL TURBULENT, P327
44213    BRADSHAW P, 1967, J FLUID MECH, V30, P241
44214    KASAGI N, 1990, NEAR WALL TURBULENCE, P596
44215    LIU YL, 1996, APPL MATH MECH, V17, P197
44216    LOU JS, 1993, APPL MATH MECH, V14, P993
44217    MA Z, 1996, THESIS TIANJIN U
44218    ROBINSON SK, 1991, ANNU REV FLUID MECH, V23, P601
44219    TSAI ST, 1987, APPL MATH MECH, V8, P901
44220    TSAI ST, 1993, THEORY TURBULENCE
44221    TSAI ST, 1995, APPL MATH MECH, V16, P319
44222    XIONG ZM, 1994, THESIS TIANJIN U
44223    ZHOU H, 1994, SCI CHINA SER A, V24, P941
44224 NR 12
44225 TC 1
44226 SN 0253-4827
44227 J9 APPL MATH MECH-ENGL ED
44228 JI Appl. Math. Mech.-Engl. Ed.
44229 PD AUG
44230 PY 1998
44231 VL 19
44232 IS 8
44233 BP 705
44234 EP 711
44235 PG 7
44236 SC Mathematics, Applied; Mechanics
44237 GA 149ED
44238 UT ISI:000077591400001
44239 ER
44240 
44241 PT J
44242 AU Shen, LJ
44243    Pan, LZ
44244    He, FB
44245 TI Study on the generalized Prandtl-Reuss constitutive equation and the
44246    corotational rates of stress tensor
44247 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
44248 DT Article
44249 DE finite elastic-plastic deformations; generalized Prandtl-Reuss
44250    constitutive equations; the corotational rates of stress tensor; simple
44251    shear stress oscillation
44252 ID PLASTICITY
44253 AB In this paper, the generalized Prandtl-Reuss (P-R) constitutive
44254    equations of elastic-plastic material in the presence of finite
44255    deformations through a new approach are studied. It analyzes the
44256    generalized P-R equation based on the material corotational rate and
44257    clarifies the puzzling problem of the simple shear stress oscillation
44258    mentioned in some literature. The paper proposes a modified relative
44259    rotational rate with which to constitute the objective rates of stress
44260    in the generalized P-R equation and concludes that the decomposition of
44261    total deformation rate into elastic and plastic parts is not necessary
44262    in developing the generalized P-R equations. Finally, the stresses of
44263    simple shear deformation are worked out.
44264 C1 Ningbo Univ, Mat Sci & Mech Res Ctr, Ningbo 315211, Peoples R China.
44265    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
44266 RP Shen, LJ, Ningbo Univ, Mat Sci & Mech Res Ctr, Ningbo 315211, Peoples R
44267    China.
44268 CR DAFALIAS YF, 1983, J APPL MECH-T ASME, V50, P561
44269    DIENES JK, 1979, ACTA MECH, V32, P217
44270    DIENES JK, 1986, ACTA MECH, V65, P1
44271    HUTCHINSON JW, 1973, NUMERICAL SOLUTION N, P17
44272    LEE EH, 1969, J APPLIED MECHANICS, V36, P1
44273    LEE EH, 1983, J APPL MECH-T ASME, V50, P554
44274    METZGER DR, 1987, INT J PLASTICITY, V4, P341
44275    NAGETAAL JC, 1982, P WORKSH PLAST MET F, P65
44276    NAGHDI PM, 1990, Z ANGEW MATH PHYS, V41, P315
44277    SOWERBY R, 1984, INT J SOLIDS STRUCT, V20, P1037
44278    TRUESDELL C, 1966, ELEMENTS CONTINUUM M, P39
44279    TVERGAARD V, 1978, INT J MECH SCI, V20, P651
44280    VOYIADJIS GZ, 1992, INT J PLASTICITY, V8, P271
44281 NR 13
44282 TC 0
44283 SN 0253-4827
44284 J9 APPL MATH MECH-ENGL ED
44285 JI Appl. Math. Mech.-Engl. Ed.
44286 PD AUG
44287 PY 1998
44288 VL 19
44289 IS 8
44290 BP 735
44291 EP 743
44292 PG 9
44293 SC Mathematics, Applied; Mechanics
44294 GA 149ED
44295 UT ISI:000077591400005
44296 ER
44297 
44298 PT J
44299 AU Wang, ZX
44300    Fan, XL
44301    Zhu, ZY
44302 TI Convergent families of approximate inertial manifolds for nonautonomous
44303    evolution equations
44304 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
44305 DT Article
44306 DE nonautonomous equation; approximate inertial manifold; spectral gap
44307    condition
44308 AB In this paper, the long time behavior of nonautonomous infinite
44309    dimensional dynamical systems is studied. A family of convergent
44310    approximate inertial manifolds for a class of evolution equations has
44311    been constructed when the spectral gap condition is satisfied.
44312 C1 Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
44313    Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China.
44314    Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China.
44315 RP Wang, ZX, Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
44316 CR BERNAL AR, 1990, APPL ANAL, V37, P95
44317    CHEPYZHOV VV, 1994, J MATH PURE APPL, V73, P297
44318    DAFERMOS CM, 1974, MATH SYST THEORY, V8, P142
44319    DEBUSSCHE A, 1994, J MATH PURE APPL, V73, P489
44320    GILL TL, 1992, SIAM J MATH ANAL, V23, P1204
44321    HALE J, 1988, MATH SURVEYS MONOGRA, V25
44322    HARAUX A, 1988, COMMUN PART DIFF EQ, V13, P1383
44323    SELL GR, 1967, T AM MATH SOC, V127, P241
44324    SMILEY MW, 1993, APPL ANAL, V50, P217
44325    SMILEY MW, 1995, J DYNAMICS DIFFERENT, V7, P237
44326    TEMAM R, 1988, INFINITE DIMENSIONAL
44327    WANG ZX, 1998, APPL MATH MECH-ENGL, V19, P695
44328 NR 12
44329 TC 0
44330 SN 0253-4827
44331 J9 APPL MATH MECH-ENGL ED
44332 JI Appl. Math. Mech.-Engl. Ed.
44333 PD AUG
44334 PY 1998
44335 VL 19
44336 IS 8
44337 BP 765
44338 EP 775
44339 PG 11
44340 SC Mathematics, Applied; Mechanics
44341 GA 149ED
44342 UT ISI:000077591400008
44343 ER
44344 
44345 EF
44346 FN ISI Export Format
44347 VR 1.0
44348 PT J
44349 AU Qiao, H
44350    Kang, LY
44351    Cardei, M
44352    Du, DZ
44353 TI Paired-domination of trees
44354 SO JOURNAL OF GLOBAL OPTIMIZATION
44355 DT Article
44356 AB Let G 5 (V, E) be a graph without isolated vertices. A set S subset of
44357    or equal to V is a paired-dominating set if it dominates V and the
44358    subgraph induced by S, [S], contains a perfect matching. The
44359    paired-domination number gamma(p)(G) is defined to be the minimum
44360    cardinality of a paired-dominating set S in G. In this paper, we
44361    present a linear-time algorithm computing the paired-domination number
44362    for trees and characterize trees with equal domination and
44363    paired-domination numbers.
44364 C1 City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China.
44365    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
44366    Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA.
44367 RP Qiao, H, City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong
44368    Kong, Hong Kong, Peoples R China.
44369 CR COCKAYNE EJ, 2000, J GRAPH THEOR, V34, P277
44370    HATTINGH JH, 2000, J GRAPH THEOR, V34, P142
44371    HAYNES TW, 1998, DOMINATION GRAPHS AD
44372    HAYNES TW, 1998, FUNDAMENTALS DOMINAT
44373    HAYNES TW, 1998, NETWORKS, V32, P199
44374    MYNHARDT CM, 1999, J GRAPH THEOR, V31, P163
44375 NR 6
44376 TC 4
44377 SN 0925-5001
44378 J9 J GLOBAL OPTIM
44379 JI J. Glob. Optim.
44380 PD JAN
44381 PY 2003
44382 VL 25
44383 IS 1
44384 BP 43
44385 EP 54
44386 PG 12
44387 SC Mathematics, Applied; Operations Research & Management Science
44388 GA 620YE
44389 UT ISI:000179561100003
44390 ER
44391 
44392 PT J
44393 AU Zhang, ZC
44394    Guo, JK
44395 TI Evaluation of thermodynamic properties from alloy phase diagram with
44396    miscibility gap using non-random two-liquid equation
44397 SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY
44398 DT Article
44399 AB The non-random two-liquid equation has been applied to evaluate the
44400    thermodynamic properties of the liquid solution at elevated
44401    temperatures in a binary alloy system with a liquid phase miscibility
44402    gap. Only upon making use of the phase equilibrium data at the critical
44403    and monotectic points of the miscibility gap from a T-X phase diagram
44404    and thermochemical data, the parameters needed for the evaluation,
44405    i.e., (g(12) - g(22)), (g(21) - g(11)) and a of the non-random
44406    two-liquid solution approach, can be determined. The evaluation of
44407    thermodynamic properties was carried out numerically for three binary
44408    alloy systems, i.e., Al-Pb, Zn-Pb and Ga-Hg systems. The application of
44409    the non-random two-liquid equation to these three binary alloy systems
44410    shows that the evaluated results are close to the available
44411    experimental measurements. (C) 2002 Published by Elsevier Science Ltd.
44412 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
44413    Shanghai Univ, Sch Sci, Shanghai 201800, Peoples R China.
44414 RP Zhang, ZC, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples
44415    R China.
44416 CR CHOU KC, 1989, CALPHAD, V13, P301
44417    DARKEN LS, 1953, PHYSICAL CHEM METALS
44418    GANNEESCARD M, 1979, THERMOCHIM ACTA, V31, P323
44419    GUMINSKI C, 1993, J PHASE EQUILIB, V14, P719
44420    HULTGREN R, 1973, SELECTED VALUES THER
44421    LIANG YJ, 1993, HDB THERMODYNAMIC DA
44422    PRIGOGINE I, 1957, MOL THEORY SOLUTIONS
44423    RENON H, 1968, AICHE J, V14, P135
44424    WAGNER C, 1962, THERMODYNAMICS ALLOY
44425    ZHANG ZC, 1998, CALPHAD, V22, P313
44426 NR 10
44427 TC 0
44428 SN 0364-5916
44429 J9 CALPHAD-COMPUT COUP PHASE DIA
44430 JI Calphad-Comput. Coupling Ph. Diagrams Thermochem.
44431 PD SEP
44432 PY 2002
44433 VL 26
44434 IS 3
44435 BP 327
44436 EP 340
44437 PG 14
44438 SC Chemistry, Physical; Thermodynamics
44439 GA 620PF
44440 UT ISI:000179541200002
44441 ER
44442 
44443 PT J
44444 AU You, B
44445    Wang, XD
44446    Ji, WS
44447    Yang, WR
44448    Li, Y
44449 TI Resonant frequency and quality factors of a silver-coated dual-mode
44450    dielectric resonator
44451 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
44452 DT Article
44453 DE dual-mode dielectric resonator; FDTD method; resonant frequency; Q
44454    factor; high permittivity dielectric ceramics
44455 ID FILTERS
44456 AB In this paper, resonant frequency and quality factors of a
44457    square-corner-cut dielectric resonator are obtained by using the
44458    finite-difference time-domain (FDTD) method, and the resonant
44459    frequencies of some modes in the resonator are analyzed. Some useful
44460    results are obtained. (C) 2002 Wiley Periodicals, Inc.
44461 C1 Shanghai Univ, Shc Commun & Informat Engn, Shanghai 200072, Peoples R China.
44462    Shanghai Univ, Microelect Res & Dev Ctr, Shanghai 200072, Peoples R China.
44463 RP You, B, Shanghai Univ, Shc Commun & Informat Engn, Shanghai 200072,
44464    Peoples R China.
44465 CR LIANG XP, 1992, IEEE T MICROW THEORY, V40, P2294
44466    NAVARRO A, 1991, IEEE T MICROW THEORY, V39, P2159
44467    SANO K, 2000, IEEE T MICROW THEORY, V48, P2491
44468    WANG C, 1995, IEEE T MICROW THEORY, V43, P1524
44469 NR 4
44470 TC 0
44471 SN 0895-2477
44472 J9 MICROWAVE OPT TECHNOL LETT
44473 JI Microw. Opt. Technol. Lett.
44474 PD DEC 20
44475 PY 2002
44476 VL 35
44477 IS 6
44478 BP 475
44479 EP 477
44480 PG 3
44481 SC Engineering, Electrical & Electronic; Optics
44482 GA 618GE
44483 UT ISI:000179409700016
44484 ER
44485 
44486 PT J
44487 AU Zhang, DJ
44488 TI Conservation laws of the two-dimensional Toda lattice hierarchy
44489 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
44490 DT Article
44491 DE conservation law; two-dimensional Toda lattice hierarchy; generalized
44492    Riccati equation
44493 ID KP HIERARCHY; EQUATIONS; QUANTITIES; SYMMETRIES; REDUCTIONS
44494 AB A novel method of constructing the conservation laws of (1 +
44495    2)-dimensional differential-difference systems is proposed. By
44496    introducing the generalized Riccati equation related to the
44497    pseudo-difference operator, we obtain the infinitely many conserved
44498    densities and the associated fluxes of the two-dimensional Toda lattice
44499    hierarchy. Moreover, this method presents more forms of the
44500    conservation laws than the previous approach.
44501 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
44502 RP Zhang, DJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
44503 CR ABLOWITZ MJ, 1976, J MATH PHYS, V17, P1011
44504    CHENG Y, 1992, J MATH PHYS, V33, P3774
44505    KAJIWARA K, 1990, PHYS LETT A, V146, P115
44506    KAJIWARA K, 1991, J MATH PHYS, V32, P506
44507    KONNO K, 1974, PROG THEO PHYS, V52, P886
44508    KONOPELCHENKO B, 1992, J MATH PHYS, V33, P3676
44509    MATSUKIDAIRA J, 1990, J MATH PHYS, V31, P1426
44510    MATSUNO Y, 1990, J PHYS SOC JPN, V59, P3093
44511    OHTA Y, 1988, PROG THEOR PHYS SUPP, V94, P210
44512    SATO M, 1981, RIMS KOKYUROKU, V439, P30
44513    SATO M, 1983, NONLINEAR PARTIAL DI, P259
44514    SIDORENKO J, 1993, J MATH PHYS, V34, P1429
44515    TSUCHIDA T, 1998, J MATH PHYS, V39, P4785
44516    TSUCHIDA T, 1998, J PHYS SOC JPN, V67, P1175
44517    TSUCHIDA T, 1999, J PHYS A-MATH GEN, V32, P2239
44518    WADATI M, 1975, PROG THEOR PHYS, V53, P419
44519    WADATI M, 1976, PROG THEOR PHYS SUPP, V59, P36
44520    WADATI M, 1977, PROG THEOR PHYS, V57, P808
44521    ZAKHAROV VE, 1972, SOV PHYS JETP, V34, P62
44522    ZHANG DJ, 2002, CHAOS SOLITON FRACT, V14, P573
44523 NR 20
44524 TC 0
44525 SN 0031-9015
44526 J9 J PHYS SOC JPN
44527 JI J. Phys. Soc. Jpn.
44528 PD NOV
44529 PY 2002
44530 VL 71
44531 IS 11
44532 BP 2583
44533 EP 2586
44534 PG 4
44535 SC Physics, Multidisciplinary
44536 GA 618JB
44537 UT ISI:000179414000001
44538 ER
44539 
44540 PT J
44541 AU Zhang, DJ
44542 TI The N-soliton solutions for the modified KdV equation with
44543    self-consistent sources
44544 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
44545 DT Article
44546 DE modified KdV equation with self consistent sources; Hirota's method;
44547    Wronskian technique; uniformity
44548 ID NONLINEAR INTEGRABLE SYSTEMS; VRIES EQUATION; HIERARCHY; KORTEWEG;
44549    SCATTERING
44550 AB The N-soliton solutions for the modified KdV equation with
44551    self-consistent sources are obtained through Hirota's method and
44552    Wronskian technique respectively. Some novel determinantal identities
44553    are presented to treat the nonlinear term in the time evolution and
44554    finish the Wronskian verifications. The uniformity of these two kinds
44555    of N-soliton solutions is proved.
44556 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
44557 RP Zhang, DJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
44558 CR ABLOWITZ MJ, 1981, SOLITON INVERSE SCAT
44559    CHEN DY, 2001, 3 C SOL INT SYST CHI
44560    CLAUDE C, 1991, J MATH PHYS, V32, P3321
44561    DOKTOROV EV, 1983, OPT ACTA, V30, P223
44562    DOKTOROV EV, 1995, PHYS LETT A, V207, P153
44563    FREEMAN NC, 1983, PHYS LETT A, V95, P1
44564    HIROTA R, LECT NOTES MATH, V515
44565    HIROTA R, 1971, PHYS REV LETT, V27, P1192
44566    KAUP DJ, 1987, PHYS REV LETT, V59, P2063
44567    LEON J, 1990, J PHYS A-MATH GEN, V23, P1385
44568    LIN RL, 2001, PHYSICA A, V291, P287
44569    MELNIKOV VK, 1988, PHYS LETT A, V133, P493
44570    MELNIKOV VK, 1989, COMMUN MATH PHYS, V120, P451
44571    MELNIKOV VK, 1989, COMMUN MATH PHYS, V126, P201
44572    MELNIKOV VK, 1990, J MATH PHYS, V31, P1106
44573    MELNIKOV VK, 1992, INVERSE PROBL, V8, P133
44574    NAKAZAWA M, 1991, PHYS REV LETT, V66, P2625
44575    NIMMO JJC, 1983, PHYS LETT A, V95, P4
44576    NIMMO JJC, 1984, J PHYS A-MATH GEN, V17, P1415
44577    SATSUMA J, 1979, J PHYS SOC JPN, V46, P359
44578    SHCHESNOVICH VS, 1996, PHYS LETT A, V213, P23
44579    URASBOEV GU, 2001, THEOR MATH PHYS+, V129, P1341
44580    VLASOV RA, 1991, DOKL AKAD NAUK BSSR, V26, P17
44581    ZENG YB, 1996, ACTA MATH SINICA, V12, P217
44582    ZENG YB, 1998, PHYSICA A, V259, P278
44583    ZENG YB, 1999, PHYSICA A, V262, P405
44584    ZENG YB, 2000, J MATH PHYS, V41, P5453
44585    ZENG YB, 2001, J MATH PHYS, V42, P2113
44586 NR 28
44587 TC 7
44588 SN 0031-9015
44589 J9 J PHYS SOC JPN
44590 JI J. Phys. Soc. Jpn.
44591 PD NOV
44592 PY 2002
44593 VL 71
44594 IS 11
44595 BP 2649
44596 EP 2656
44597 PG 8
44598 SC Physics, Multidisciplinary
44599 GA 618JB
44600 UT ISI:000179414000018
44601 ER
44602 
44603 PT J
44604 AU Fang, ZJ
44605    Xia, YB
44606    Wang, LJ
44607    Zhang, WL
44608    Ma, ZG
44609    Zhang, ML
44610 TI Effective stress reduction in diamond films on alumina by carbon ion
44611    implantation
44612 SO CHINESE PHYSICS LETTERS
44613 DT Article
44614 ID DEPOSITION
44615 AB We show the effective stress reduction in diamond films by implanting
44616    carbon ions into alumina substrates prior to the diamond deposition.
44617    Residual stresses in the films are evaluated by Raman spectroscopy and
44618    a more reliable method for stress determination is presented for the
44619    quantitative measurement of stress evolution. It is found that
44620    compressive stresses in the diamond films can be partly offset by the
44621    compressive stresses in the alumina substrates, which are caused by the
44622    ion pre-implantation. At the same time, the difference between the
44623    offset by the pre-stressed substrates and the total stress reduction
44624    indicates that some other mechanisms are also active.
44625 C1 Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
44626 RP Fang, ZJ, Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai
44627    201800, Peoples R China.
44628 CR AGER JW, 1993, PHYS REV B, V48, P2601
44629    FAN QH, 1999, J MATER SCI, V34, P1353
44630    FAN WD, 1995, SURF COAT TECH, V72, P78
44631    LIU JF, 2001, SEMICOND SCI TECH, V16, P273
44632    VONKAENEL Y, 1997, J APPL PHYS, V81, P1726
44633    XIA Y, 1996, CHINESE PHYS LETT, V13, P459
44634 NR 6
44635 TC 2
44636 SN 0256-307X
44637 J9 CHIN PHYS LETT
44638 JI Chin. Phys. Lett.
44639 PD NOV
44640 PY 2002
44641 VL 19
44642 IS 11
44643 BP 1663
44644 EP 1665
44645 PG 3
44646 SC Physics, Multidisciplinary
44647 GA 618TK
44648 UT ISI:000179433200028
44649 ER
44650 
44651 PT J
44652 AU Xue, Y
44653 TI Analysis of the stability and density waves for traffic flow
44654 SO CHINESE PHYSICS
44655 DT Article
44656 DE car-following model; traffic flow; density wave; relative velocity
44657 ID CONGESTION; SOLITON; STATES
44658 AB In this paper, the optimal velocity model of traffic is extended to
44659    take into account the relative velocity. The stability and density
44660    waves for traffic flow are investigated analytically with the
44661    perturbation method. The stability criterion is derived by the linear
44662    stability analysis. It is shown that the triangular shock wave, soliton
44663    wave and kink wave appear respectively in our model for density waves
44664    in the three regions: stable, metastable and unstable regions. These
44665    correspond to the solutions of the Burgers equation, Korteweg-de Vries
44666    equation and modified Korteweg-de Vries equation. The analytical
44667    results are confirmed to be in good agreement with those of numerical
44668    simulation. All the results indicate that the interaction of a car with
44669    relative velocity can affect the stability of the traffic flow and
44670    raise critical density.
44671 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
44672    Guangxi Univ, Dept Phys, Nanning 530003, Peoples R China.
44673 RP Xue, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
44674    Peoples R China.
44675 CR BANDO M, 1995, PHYS REV E, V51, P1035
44676    BARLOVIC R, 1998, EUR PHYS J B, V5, P793
44677    CHOWDHURY D, 2000, PHYS REP, V329, P199
44678    KERNER BS, 1993, PHYS REV E, V48, P2335
44679    KOMATSU TS, 1995, PHYS REV E B, V52, P5574
44680    KURTZ DA, 1993, PHYS REV E, V52, P218
44681    MURAMATSU M, 1999, PHYS REV E, V60, P180
44682    NAGATANI T, 1999, PHYS REV E A, V60, P6395
44683    TREIBER M, 2000, PHYS REV E A, V62, P1805
44684    XUE Y, 2002, ACTA PHYS SIN-CH ED, V51, P492
44685    XUE Y, 2002, COMMUN THEOR PHYS, V38, P230
44686 NR 11
44687 TC 3
44688 SN 1009-1963
44689 J9 CHIN PHYS
44690 JI Chin. Phys.
44691 PD NOV
44692 PY 2002
44693 VL 11
44694 IS 11
44695 BP 1128
44696 EP 1134
44697 PG 7
44698 SC Physics, Multidisciplinary
44699 GA 618KT
44700 UT ISI:000179417800007
44701 ER
44702 
44703 PT J
44704 AU Liu, LH
44705    Dong, C
44706    Zhang, JC
44707    Chen, H
44708    Chen, L
44709 TI A simple volumetric method for oxygen content determination in high-T-c
44710    doped YBCO compositions
44711 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
44712 DT Article
44713 DE high-T-c superconductors; oxygen content determination
44714 ID IODOMETRIC TITRATION; SUPERCONDUCTOR; NONSTOICHIOMETRY; FE
44715 AB We have developed a simple volumetric method for oxygen content
44716    determination in high-T-c materials. Application of this method in Fe
44717    and Co doped YBa2Cu3Oy systems is presented in this paper. This method
44718    shows several advantages. First, the apparatus is simple and
44719    inexpensive, so it can be widely used. Second, the operational
44720    procedure is simple and time saving. Moreover, the oxygen contents
44721    determined using this method are quite accurate. According to the error
44722    analysis, we found that the experimental accuracy can be improved
44723    further by reducing the original gas volume in the apparatus and
44724    increasing the sample mass. Besides the high-T-c copper oxides, this
44725    method can also be used to determine the oxygen content of other
44726    materials such as the colossal magnetoresistance materials. (C) 2002
44727    Elsevier Science B.V. All rights reserved.
44728 C1 Chinese Acad Sci, Natl Lab Superconduct, Beijing 100080, Peoples R China.
44729    Univ Houston, Dept Chem, Houston, TX 77204 USA.
44730    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
44731 RP Liu, LH, Chinese Acad Sci, Natl Lab Superconduct, POB 603, Beijing
44732    100080, Peoples R China.
44733 CR BARBOUR JC, 1988, PHYS REV B, V38, P7005
44734    CHEN WM, 1996, PHYSICA C, V270, P349
44735    CHEN WM, 1997, PHYSICA C, V276, P132
44736    CONDER K, 1989, MATER RES BULL, V24, P581
44737    DONG C, 1999, J APPL CRYSTALLOGR, V32, P838
44738    FUEKI K, 1990, PHYSICA C, V166, P261
44739    HARRIS DC, 1987, J SOLID STATE CHEM, V69, P182
44740    HUONG PV, 1990, MAT SCI ENG B-SOLID, V5, P255
44741    JAMES AM, 1992, MACMILLANS CHEM PHYS, P108
44742    KARPPINEN M, 1993, J SOLID STATE CHEM, V104, P276
44743    KISHIO K, 1987, JPN J APPL PHYS, V26, P1228
44744    MIN JR, 1995, PHYSICA C, V249, P196
44745    NAZZAL AI, 1988, PHYSICA C, V153, P1367
44746    OBARA H, 1988, JPN J APPL PHYS, V27, L603
44747    TARASCON JM, 1988, PHYS REV B, V37, P7458
44748 NR 15
44749 TC 2
44750 SN 0921-4534
44751 J9 PHYSICA C
44752 JI Physica C
44753 PD DEC 1
44754 PY 2002
44755 VL 383
44756 IS 1-2
44757 BP 17
44758 EP 22
44759 PG 6
44760 SC Physics, Applied
44761 GA 617HF
44762 UT ISI:000179355700003
44763 ER
44764 
44765 PT J
44766 AU Chen, ZP
44767    Cao, SX
44768    Cao, GX
44769    Zhang, JC
44770 TI Dependence of positron lifetime parameters on the preparation
44771    techniques and structural defects for YBCO cuprates
44772 SO MATERIALS LETTERS
44773 DT Article
44774 DE yttrium barium copper oxide (YBa2CU3O7-delta); orthorhombic
44775 ID OXYGEN-DEFICIENT YBA2CU3O7-DELTA; ELECTRON-STRUCTURE; ANNIHILATION
44776 AB Based on possible existence of technique effect and scattered
44777    distribution in positron results, a special investigation was made for
44778    YBa2Cu3O7 (- delta) systems in this paper. The dependence of
44779    preparation techniques and the structural characteristics on the
44780    sintering temperature and time are also given by positron lifetime, XRD
44781    and SEM experiments. The results show that the positron lifetime
44782    parameters and the microstructure show a significant dependence on
44783    sintering temperature and time. It is proved that, in the range of
44784    920-950 degreesC/12-72 h, the positron results have good stability and
44785    reliability in the sintering times and temperature. The distribution
44786    characteristic of defect was evaluated and bad a good stability in the
44787    preparation technique. The present studies provide an important
44788    experimental evidence for the study of Y-123 systems by positron
44789    experiment. (C) 2002 Elsevier Science B.V. All rights reserved.
44790 C1 Zhengzhou Inst Light Ind, Dept Phys, Zhengzhou 450002, Peoples R China.
44791    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
44792 RP Chen, ZP, Zhengzhou Inst Light Ind, Dept Phys, Zhengzhou 450002,
44793    Peoples R China.
44794 CR BERGERSEN B, 1969, SOLID STATE COMMUN, V7, P1203
44795    BRANDT W, 1967, POSITRON ANNIHILATIO
44796    BRANDT W, 1971, PHYS LETT          A, V35, P109
44797    DU YK, 1994, J LOW TEMP PHYS, V16, P7
44798    HAUTOJARI P, 1979, POSITRON SOLIDS
44799    JEAN YC, 1987, PHYS REV B, V36, P3994
44800    JEAN YC, 1988, PHYS REV LETT, V60, P1069
44801    JINCANG Z, 2002, PHYS REV B, V65
44802    KWOK WK, 1988, PHYS REV B, V37, P106
44803    LU X, 1992, PHYS REV B, V45, P7989
44804    RAO CNR, 1987, ACCOUNTS CHEM RES, V20, P228
44805    SALAMA K, 1989, APPL PHYS LETT, V54, P2352
44806    VONSTETTEN EC, 1988, PHYS REV LETT, V60, P2198
44807    ZHANG JC, 1995, PHYS LETT A, V201, P70
44808    ZHANG JC, 1999, PHYS LETT A, V263, P452
44809 NR 15
44810 TC 2
44811 SN 0167-577X
44812 J9 MATER LETT
44813 JI Mater. Lett.
44814 PD DEC
44815 PY 2002
44816 VL 57
44817 IS 2
44818 BP 374
44819 EP 379
44820 PG 6
44821 SC Materials Science, Multidisciplinary; Physics, Applied
44822 GA 616YY
44823 UT ISI:000179332500019
44824 ER
44825 
44826 PT J
44827 AU Ma, H
44828    Kamiya, N
44829 TI A general algorithm for the numerical evaluation of nearly singular
44830    boundary integrals of various orders for two- and three-dimensional
44831    elasticity
44832 SO COMPUTATIONAL MECHANICS
44833 DT Article
44834 DE boundary element method; nearly singular integrals; elasticity;
44835    distance transformation; numerical integration
44836 ID PRINCIPAL VALUE INTEGRALS; ELEMENT METHOD; HYPERSINGULAR INTEGRALS;
44837    EQUATIONS; TRANSFORMATIONS; REGULARIZATION; FORMULATION
44838 AB A general algorithm of the distance transformation type is presented in
44839    this paper for the accurate numerical evaluation of nearly singular
44840    boundary integrals encountered in elasticity, which, next to the
44841    singular ones, has long been an issue of major concern in computational
44842    mechanics with boundary element methods. The distance transformation is
44843    realized by making use of the distance functions, defined in the local
44844    intrinsic coordinate systems, which plays the role of damping-out the
44845    near singularity of integrands resulting from the very small distance
44846    between the source and the integration points. By taking advantage of
44847    the divergence-free property of the integrals with the nearly
44848    hypersingular kernels in the 3D case, a technique of geometric
44849    conversion over the auxiliary cone surfaces of the boundary element is
44850    designed, which is suitable also for the numerical evaluation of the
44851    hypersingular boundary integrals. The effects of the distance
44852    transformations are studied and compared numerically for different
44853    orders in the 2D case and in the different local systems in the 3D case
44854    using quadratic boundary elements. It is shown that the proposed
44855    algorithm works very well, by using standard Gaussian quadrature
44856    formulae, for both the 2D and 3D elastic problems.
44857 C1 Shanghai Univ, Sch Sci, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200436, Peoples R China.
44858    Nagoya Univ, Sch Informat & Sci, Nagoya, Aichi 4648601, Japan.
44859 RP Ma, H, Shanghai Univ, Sch Sci, Shanghai Inst Appl Math & Mech, Dept
44860    Mech, Shanghai 200436, Peoples R China.
44861 CR ALIABADI MH, 1985, INT J NUMER METH ENG, V21, P2221
44862    ALIABADI MH, 2000, INT J NUMER METH ENG, V48, P995
44863    BREBBIA CA, 1984, BOUNDARY ELEMENT TEC
44864    CERROLAZA M, 1989, INT J NUMER METH ENG, V28, P987
44865    CRISTESCU M, 1978, RECENT ADV BOUNDARY, P375
44866    CRUSE TA, 1993, INT J NUMER METH ENG, V36, P237
44867    DIRGANTARA T, 2000, INT J FRACTURE, V105, P27
44868    DOBLARE M, 1997, INT J NUMER METH ENG, V40, P3325
44869    GRANADOS JJ, 2001, ENG ANAL BOUND ELEM, V25, P165
44870    GUIGGIANI M, 1987, INT J NUMER METH ENG, V24, P1711
44871    GUIGGIANI M, 1990, ASME, V57, P906
44872    GUIGGIANI M, 1992, ASME, V59, P604
44873    JOHNSTON PR, 1999, INT J NUMER METH ENG, V45, P1333
44874    KRISHNASAMY G, 1990, J APPL MECH-T ASME, V57, P404
44875    KRISHNASAMY G, 1994, INT J NUMER METH ENG, V37, P107
44876    LIU YJ, 1998, INT J NUMER METH ENG, V41, P541
44877    LIU YJ, 1999, COMPUT MECH, V24, P286
44878    LIU YJ, 2000, ENG ANAL BOUND ELEM, V24, P789
44879    MA H, 1998, JSCE J APPL MECH, V1, P355
44880    MA H, 1999, ENG ANAL BOUND ELEM, V23, P281
44881    MA H, 2001, ENG ANAL BOUNDARY EL, V25, P843
44882    MARTIN PA, 1996, INT J NUMER METH ENG, V39, P687
44883    MUKHERJEE S, 1982, BOUNDARY ELEMENT MET
44884    MUKHERJEE S, 2000, ENG ANAL BOUND ELEM, V24, P767
44885    SLADEK V, 1993, INT J NUMER METH ENG, V36, P1609
44886    TANAKA M, 1991, BOUNDARY ELEMENT MET
44887    TELLES JCF, 1987, INT J NUMER METH ENG, V24, P959
44888    ZHANG D, 1999, COMPUT MECH, V23, P389
44889 NR 28
44890 TC 5
44891 SN 0178-7675
44892 J9 COMPUTATION MECH
44893 JI Comput. Mech.
44894 PD OCT
44895 PY 2002
44896 VL 29
44897 IS 4-5
44898 BP 277
44899 EP 288
44900 PG 12
44901 SC Mathematics, Applied; Mechanics
44902 GA 616YA
44903 UT ISI:000179330100001
44904 ER
44905 
44906 PT J
44907 AU Wen, TQ
44908    Gu, P
44909    Minning, TA
44910    Wu, Q
44911    Liu, M
44912    Chen, FX
44913    Liu, H
44914    Huangi, HH
44915 TI Microarray analysis of neural stem cell differentiation in the striatum
44916    of the fetal rat
44917 SO CELLULAR AND MOLECULAR NEUROBIOLOGY
44918 DT Article
44919 DE microarray; neural stem cells; differentiation; striatum; rats
44920 ID CENTRAL-NERVOUS-SYSTEM; PROGENITOR CELLS; RECEPTOR; MATURATION;
44921    ACTIVATION; FOREBRAIN; PROMOTES; NEURONS; LINE
44922 AB 1. Gene expression profiles in neural stem cell differentiation in
44923    vitro were determined by cDNA microarray analysis.
44924    2. Total RNA was extracted and reverse transcripted into cDNA from
44925    differentiated and undifferentiated neural stem cells. The P-33 labeled
44926    cDNA was hybridized with a cDNA microarray consisting of 14,000 human
44927    genes.
44928    3. The results showed that a total of 1406 genes were differentially
44929    expressed, of which 148 genes exhibited more than twofold differences.
44930    Some genes were obviously activated while others were strongly
44931    repressed. These changes in gene expression suggest that
44932    differentiation is regulated by different genes at different
44933    expressional levels. By biological classification, the differentially
44934    expressed genes were divided into four functional categories: molecular
44935    function, biological process, cellular component, and new functional
44936    genes or ESTs.
44937    4. These findings will be a valuable contribution for gene expression
44938    profiling and elucidation of neural stem cell differentiation
44939    mechanisms.
44940 C1 Shanghai Univ, Sch Life Sci, Lab Neural Mol Biol, Shanghai 200436, Peoples R China.
44941    Univ Georgia, Dept Cellular Biol, Athens, GA 30602 USA.
44942 RP Wen, TQ, Shanghai Univ, Sch Life Sci, Lab Neural Mol Biol, 99 Shangda
44943    Rd, Shanghai 200436, Peoples R China.
44944 CR AMOUREUX MC, 2000, J NEUROSCI, V20, P3631
44945    ARONOW BJ, 2001, PHYSIOL GENOMICS, V6, P105
44946    BENRAISS A, 2001, J NEUROSCI, V21, P6718
44947    BONNI A, 1997, SCIENCE, V278, P477
44948    DIETZ AB, 2000, BIOCHEM BIOPH RES CO, V275, P731
44949    EISEN MB, 1998, P NATL ACAD SCI USA, V95, P14863
44950    ELBITAR F, 2001, CELL TISSUE RES, V304, P361
44951    FERNANDEZLLEBREZ P, 2001, CELL TISSUE RES, V305, P115
44952    FRANCESCANGELI E, 1997, NEUROCHEM RES, V10, P1299
44953    GADIENT RA, 1998, BRAIN RES, V798, P140
44954    GAGE FH, 2000, SCIENCE, V287, P1433
44955    GESCHWIND DH, 2001, NEURON, V29, P325
44956    HUGHES SM, 1988, NATURE, V335, P70
44957    KAPLANSKI C, 2000, CANCER RES, V60, P580
44958    KELLY DL, 2000, MOL REPROD DEV, V56, P113
44959    KOBLAR SA, 1998, P NATL ACAD SCI USA, V95, P3178
44960    LIU SY, 2000, J 3 MIL MED U, V22, P26
44961    MARMUR R, 1998, J NEUROSCI, V18, P9800
44962    MU XQ, 2001, NUCLEIC ACIDS RES, V29, P4983
44963    PINCUS DW, 1998, ANN NEUROL, V43, P576
44964    SALLY T, 2001, NATURE, V414, P112
44965    SATOH M, 2000, NEUROSCI LETT, V284, P143
44966    SHIMAZAKI T, 2001, J NEUROSCI, V21, P7642
44967    STIER H, 1998, DIFFERENTIATION, V64, P55
44968    SUELVES M, 2002, BLOOD, V99, P2835
44969    TAYLOR MV, 2002, CURR BIOL, V12, R224
44970    TROPEPE V, 1999, DEV BIOL, V208, P166
44971    TSOUKATOS DC, 2001, BIOCHEM J 2, V357, P457
44972    VANDERKOOY D, 2000, SCIENCE, V287, P1439
44973 NR 29
44974 TC 5
44975 SN 0272-4340
44976 J9 CELL MOL NEUROBIOL
44977 JI Cell. Mol. Neurobiol.
44978 PD AUG
44979 PY 2002
44980 VL 22
44981 IS 4
44982 BP 407
44983 EP 416
44984 PG 10
44985 SC Cell Biology; Neurosciences
44986 GA 614GF
44987 UT ISI:000179179400003
44988 ER
44989 
44990 PT J
44991 AU Hu, ZM
44992 TI Application of FTIR micro-spectroscopy in the tribology
44993 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
44994 DT Article
44995 DE FTIR micro-spectroscopy; tribology; hydroxyl vegetable oil fatty acid;
44996    polyester; characteristic absorption peak
44997 AB The wave number of characteristic absorption peak v(C-O-C)(as) of the
44998    polyester formed on the frictional process were determined by Fourier
44999    Transform Infrared (FTIR) Micro-spectroscopy, and the wave number
45000    displacement of characteristic absorption peak v(C-O-C)(as) was
45001    analyzed based on the conversion mass of polyester formed. The internal
45002    relations between anti-wear order rule of hydroxyl fatty acids and
45003    vibration absorption peak v(C-O-C)(as) of polyester formed by hydroxyl
45004    fatty acids was deduced according to these results, and the anti-wear
45005    order of hydroxyl fatty acids was reasonably explained, that is 13,
45006    14-di-hydroxydooosanoic acid > 13 (14)-monohydroxydooosanoic acid = 9,
45007    10-dihydroxyoctadecanoic acid > 9,10, 12-trihydroxyoctadecanoic acid >
45008    9(10)-monohydroxyoctadecanoic acid. A net polyester film is formed by
45009    13, 14-dihydroxydocosanoic acid and a linear polyester film is formed
45010    by 9, (10)-monohydroxyoctadecanoic acid and
45011    13(14)-monohydroxydooosanoic acid.
45012 C1 Tsing Hua Univ, State Key Lab Tribol, Dept Precis Instruments & Mechanol, Beijing 100084, Peoples R China.
45013    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
45014 RP Hu, ZM, Tsing Hua Univ, State Key Lab Tribol, Dept Precis Instruments &
45015    Mechanol, Beijing 100084, Peoples R China.
45016 CR HU ZM, 1993, J SHANGHAI U TECHNOL, V14, P364
45017    HU ZM, 1995, LUBRICATION SCI, V7, P285
45018    HU ZM, 2000, LUBRICATING OIL, V15, P38
45019    HU ZM, 2001, LUBRICATION ENG PERI, V4, P36
45020 NR 4
45021 TC 0
45022 SN 1000-0593
45023 J9 SPECTROSC SPECTR ANAL
45024 JI Spectrosc. Spectr. Anal.
45025 PD OCT
45026 PY 2002
45027 VL 22
45028 IS 5
45029 BP 761
45030 EP 763
45031 PG 3
45032 SC Spectroscopy
45033 GA 612WX
45034 UT ISI:000179099400017
45035 ER
45036 
45037 PT J
45038 AU You, JL
45039    Jiang, GC
45040    Wen, Q
45041    Xu, KD
45042 TI Raman spectroscopic study of silicon-oxygen tetrahedrons microstructure
45043    in x CaSiO3 center dot LiBO2 solid solutions
45044 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
45045 DT Article
45046 DE silicates; LiBO2; Raman spectroscopy
45047 ID SPECTRA
45048 AB Raman spectra of xCaSiO(3) . LiBO2 (by weight ratio, x = 0, 0.25, 0.33,
45049    0.50)crystals were measured. The microstructure of different
45050    silicon-oxygen tetrahedrons and their abundant variations with silica
45051    contents were studied. It shows that all the silicon-oxygen
45052    tetrahedrons are isolated by Si-O-b-B bondings. or free SiO44- No
45053    evidence suggests that there exist considerable Si-O-b-Si bondings. The
45054    abundance of Q(2), Q(4) species increases with the increasing silica
45055    content, there exists barely Q(3) species even at high silica content.
45056    And the sum of integrated Raman peaks for all Q(i) species are linearly
45057    correlated with silica concentration in crystal, which offers the
45058    possibility to analysis silica in minerals, slags, glasses and soil
45059    samples directly.
45060 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
45061 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
45062    200072, Peoples R China.
45063 CR BOCK R, 1979, HDB DECOMPOSITION ME
45064    MCMILLAN P, 1984, AM MINERAL, V69, P622
45065    RULMONT A, 1989, SPECTROCHIM ACTA A, V45, P603
45066    WEN Q, 2000, SPECTROSC SPECT ANAL, V20, P694
45067    YOU JL, 1998, J CHINESE RARE EARTH, V16, P505
45068    YOU JL, 2001, CHINESE PHYS LETT, V18, P991
45069    YOU JL, 2001, J NON-CRYST SOLIDS, V282, P125
45070 NR 7
45071 TC 1
45072 SN 1000-0593
45073 J9 SPECTROSC SPECTR ANAL
45074 JI Spectrosc. Spectr. Anal.
45075 PD OCT
45076 PY 2002
45077 VL 22
45078 IS 5
45079 BP 787
45080 EP 789
45081 PG 3
45082 SC Spectroscopy
45083 GA 612WX
45084 UT ISI:000179099400024
45085 ER
45086 
45087 PT J
45088 AU Huang, SG
45089    Li, L
45090    Vleugels, J
45091    Wang, PL
45092    Van der Biest, O
45093 TI Thermodynamic prediction of the nonstoichiometric phase Zr1-zCezO2-x in
45094    the ZrO2-CeO1.5-CeO2 system
45095 SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
45096 DT Article
45097 DE CeO2; ZrO2; defects; mechanical properties; phase equilibria; sintering
45098 ID ZRO2-CEO2 SYSTEM; DIAGRAM; TRANSFORMATION; OPTIMIZATION; TEMPERATURE
45099 AB A thermodynamic estimation of the ZrO2-CeO2 and ZrO2-CeO1.5 systems, as
45100    well as the cubic phase in the CeO1.5-CeO2 system has been developed
45101    and the complex relation between the nonstoichiometry, y, in CezO2-y
45102    and the oxygen partial pressure at different temperatures is evaluated.
45103    The behavior of the nonstoichiometry phase Zr1-zCezO2-x is described
45104    based on the thermodynamic estimation in the ZrO2-CeO2, CeO1.5-CeO2 and
45105    ZrO2-CeO1.5 systems. Additionally, the interdependence among
45106    miscellaneous factors, which can be used to describe the change in
45107    oxidation states of cerium such as the oxygen partial pressure, the
45108    CeO1.5 fraction in CeO1.5-CeO2 in the quasi-ternary system, the
45109    nonstoichiometry y and the difference between the activity of CeO2 and
45110    CeO1.5 are predicted. The calculated results are found to be very
45111    useful to explain the influence of pressureless sintering at different
45112    O-2 partial pressures on the mechanical properties of CeO2-stabilised
45113    ZrO2 ceramics (C) 2002 Published by Elsevier Science Ltd.
45114 C1 Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Heverlee, Belgium.
45115    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
45116    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
45117 RP Van der Biest, O, Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001
45118    Heverlee, Belgium.
45119 CR ANSTIS GR, 1981, J AM CERAM SOC, V64, P533
45120    CAMPSERVEUX J, 1978, J SOLID STATE CHEM, V23, P73
45121    DU Y, 1991, J AM CERAM SOC, V74, P1569
45122    DU Y, 1994, SCRIPTA METALL MATER, V31, P327
45123    DURAN P, 1990, J MATER SCI, V25, P5001
45124    HANNINK RHJ, 2000, J AM CERAM SOC, V83, P461
45125    HEUSSNER KH, 1989, J AM CERAM SOC, V72, P1044
45126    KAUFMAN L, 1978, CALPHAD, V2, P35
45127    LEONOV AI, 1996, IZV AKAD NAUK SSSR I, V2, P1047
45128    LI L, 1996, J MATER SCI TECHNOL, V12, P159
45129    LI L, 2001, J EUR CERAM SOC, V21, P2903
45130    LI L, 2001, J MATER SCI TECHNOL, V17, P529
45131    LIDE DR, 1998, HDB CHEM PHYSICS
45132    LINDEMER TB, 1986, J AM CERAM SOC, V69, P867
45133    LONGO V, 1973, J AM CERAM SOC DISCU, V56, P600
45134    LUKAS HL, 1977, CALPHAD, V1, P225
45135    MUGGIANU YM, 1975, J CHIMIE PHYSIQUE, V72, P83
45136    PANKRATZ LB, 1982, US DEPT INTERIOR BUR, V672
45137    RICKEN M, 1986, SOLID STATE IONICS, V18, P725
45138    ROEBBEN G, 1997, REV SCI INSTRUM, V68, P4511
45139    ROUANET MA, 1968, COMP REND HEBD SEA C, V267, P1581
45140    TANI E, 1983, J AM CERAM SOC, V66, P506
45141    TULLER HL, 1979, J ELECTROCHEM SOC, V126, P209
45142    YASHIMA M, 1994, J AM CERAM SOC, V77, P1869
45143    YOSHIMURA M, 1972, B TOKYO I TECHNOL, V108, P25
45144 NR 25
45145 TC 2
45146 SN 0955-2219
45147 J9 J EUR CERAM SOC
45148 JI J. European Ceram. Soc.
45149 PD JAN
45150 PY 2003
45151 VL 23
45152 IS 1
45153 BP 99
45154 EP 106
45155 PG 8
45156 SC Materials Science, Ceramics
45157 GA 613GV
45158 UT ISI:000179125300013
45159 ER
45160 
45161 PT J
45162 AU Ren, JS
45163    Cheng, CJ
45164 TI Bifurcation of cavitation solutions for incompressible transversely
45165    isotropic hyper-elastic materials
45166 SO JOURNAL OF ENGINEERING MATHEMATICS
45167 DT Article
45168 DE bifurcation; comparison of energy; incompressible hyper-elastic
45169    material; jumping and concentration of stress; transversely isotropic
45170    cylinder
45171 ID VOID NUCLEATION; HYPERELASTIC MATERIALS; GROWTH; INHOMOGENEITY;
45172    EXAMPLE; SPHERES
45173 AB In this paper, the bifurcation problem of void formation and growth in
45174    a solid circular cylinder, composed of an incompressible, transversely
45175    isotropic hyper-elastic material, under a uniform radial tensile
45176    boundary dead load and an axial stretch is examined. At first, the
45177    deformation of the cylinder, containing an undetermined parameter-the
45178    void radius, is given by using the condition of incompressibility of
45179    the material. Then the exact analytic formulas to determine the
45180    critical load and the bifurcation values for the parameter are obtained
45181    by solving the differential equation for the deformation function.
45182    Thus, an analytic solution for bifurcation problems in incompressible
45183    anisotropic hyper-elastic materials is obtained. The solution depends
45184    on the degree of anisotropy of the material. It shows that the
45185    bifurcation may occur locally to the right or to the left, depending on
45186    the degree of anisotropy, and the condition for the bifurcation to the
45187    right or to the left is discussed. The stress distributions subsequent
45188    to the cavitation are given and the jumping and concentration of
45189    stresses are discussed. The stability of solutions is discussed through
45190    comparison of the associated potential energies. The bifurcation to the
45191    left is a 'snap cavitation'. The growth of a pre-existing void in the
45192    cylinder is also observed. The results for a similar problem in three
45193    dimensions were obtained by Polignone and Horgan.
45194 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
45195 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
45196    Shanghai 200072, Peoples R China.
45197 CR ANTMAN SS, 1987, J ELASTICITY, V18, P131
45198    BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
45199    CHOUWANG MSO, 1989, INT J SOLIDS STRUCT, V25, P1239
45200    GENT AN, 1958, P ROY SOC LOND A MAT, V249, P195
45201    HAO TH, 1990, INT J FRACTURE, V43, R51
45202    HORGAN CO, 1986, J ELASTICITY, V16, P189
45203    HORGAN CO, 1989, J APPL MECH, V56, P302
45204    HORGAN CO, 1989, J ELASTICITY, V21, P61
45205    HORGAN CO, 1992, INT J SOLIDS STRUCT, V29, P279
45206    HORGAN CO, 1995, APPL MECH REV, V48, P471
45207    MEYNARD F, 1992, Q APPL MATH, V50, P210
45208    OGDEN RW, 1972, P ROY SOC LOND A MAT, V326, P565
45209    PODIOGUIDUGLI P, 1986, J ELASTICITY, V16, P75
45210    POLIGNONE DA, 1993, INT J SOLIDS STRUCT, V30, P3381
45211    POLIGNONE DA, 1993, J ELASTICITY, V33, P27
45212    SHANG XC, 1996, ACTA MECH SINICA, V28, P751
45213    SHANG XC, 2001, INT J ENG SCI, V39, P1101
45214    SIVALOGANANTHAN J, 1991, Q APPL MATH, V49, P521
45215    SIVALOGANATHAN J, 1986, ARCH RATIONAL MECH A, V96, P96
45216    STUART CA, 1985, ANN I H POINCARE-AN, V2, P33
45217    YEOH OH, 1997, RUBBER CHEM TECHNOL, V70, P175
45218 NR 21
45219 TC 9
45220 SN 0022-0833
45221 J9 J ENG MATH
45222 JI J. Eng. Math.
45223 PD NOV
45224 PY 2002
45225 VL 44
45226 IS 3
45227 BP 245
45228 EP 257
45229 PG 13
45230 SC Engineering, Multidisciplinary; Mathematics, Applied
45231 GA 611BK
45232 UT ISI:000178996400003
45233 ER
45234 
45235 PT J
45236 AU Liu, WH
45237    Wu, HQ
45238    Lei, YQ
45239    Wang, QD
45240 TI Reaction kinetics of amorphous Mg50Ni50 hydride electrode
45241 SO JOURNAL OF ALLOYS AND COMPOUNDS
45242 DT Article
45243 DE amorphous materials; hydride electrode; Mg-based alloy; electrochemical
45244    impedance spectroscopy
45245 ID ALLOYED MG-NI; ELECTROCHEMICAL IMPEDANCE; AC-IMPEDANCE; BEHAVIOR
45246 AB Mg-based alloy is a promising hydride electrode material. In this
45247    study, the kinetics of the electrode reaction of an amorphous Mg50Ni50
45248    hydride electrode is studied by using electrochemical impedance
45249    spectroscopy (EIS) technique. An equivalent circuit for the hydride
45250    electrode reaction is proposed. Results show that the reaction rate of
45251    the hydride electrode is determined by a charge-transfer reaction at
45252    the alloy surface, which is represented by the EIS responses in the
45253    medium frequency region. The serious corrosion of the active material
45254    on the alloy surface is the main reason for the high charge-transfer
45255    resistance of the electrode reaction. (C) 2002 Elsevier Science B.V.
45256    All rights reserved.
45257 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R China.
45258    Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China.
45259    Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R China.
45260 RP Liu, WH, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R
45261    China.
45262 CR CHEN J, 1998, AL 20 P
45263    CHENG SA, 1999, J ALLOY COMPD, V293, P814
45264    KOHNO T, 1998, INT S MET HYDR SYST
45265    KURIYAMA N, 1993, J ALLOY COMPD, V192, P161
45266    KURIYAMA N, 1993, J ALLOY COMPD, V202, P183
45267    LEI YQ, 1994, Z PHYS CHEM, V183, P379
45268    LIU WH, 1996, J POWER SOURCES, V58, P243
45269    LIU WH, 1997, J ALLOY COMPD, V252, P234
45270    VALOEN LO, 1997, J ALLOY COMPD, V253, P656
45271    WAN X, 1999, J ALLOY COMPD, V293, P788
45272    WANG CS, 1998, J ELECTROCHEM SOC, V145, P1801
45273    ZHANG WL, 1995, J ELECTROCHEM SOC, V142, P2935
45274 NR 12
45275 TC 3
45276 SN 0925-8388
45277 J9 J ALLOYS COMPOUNDS
45278 JI J. Alloy. Compd.
45279 PD NOV 18
45280 PY 2002
45281 VL 346
45282 IS 1-2
45283 BP 244
45284 EP 249
45285 PG 6
45286 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
45287    Metallurgical Engineering
45288 GA 614DF
45289 UT ISI:000179172500042
45290 ER
45291 
45292 PT J
45293 AU Ren, ZJ
45294    Cao, WG
45295    Tong, WQ
45296 TI The Knoevenagel condensation reaction of aromatic aldehydes with
45297    malononitrile by grinding in the absence of solvents and catalysts
45298 SO SYNTHETIC COMMUNICATIONS
45299 DT Article
45300 ID SOLID-STATE; MICROWAVE IRRADIATION; ACID
45301 AB An improved Knoevenagel condensation reaction of aldehydes and
45302    malononitrile can be achieved by grinding at room temperature in the
45303    absence of solvents and catalysts. This process is simple, efficient,
45304    economical, and environmentally benign. Compared to reactions carried
45305    out by microwave irradiation, this procedure is completely free from
45306    organic solvents during both the reaction and separation of the product.
45307 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
45308    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
45309 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
45310 CR ABDALLAHELAYOUB.S, 1994, SYNTHESIS-STUTTGART, P258
45311    CABELLO JA, 1984, J ORG CHEM, V49, P5195
45312    CORSON BB, 1928, J AM CHEM SOC 3, V50, P2825
45313    HAGIWARA H, 1996, MOL CRYST LIQ CRYST, V279, P291
45314    IM J, 1997, TETRAHEDRON LETT, V38, P451
45315    JONES G, 1967, ORG REACTIONS, V15, P204
45316    KIM SY, 1997, SYNTHETIC COMMUN, V27, P533
45317    KNOEVENAGEL E, 1894, CHEM BER, V27, P2345
45318    KWON PS, 1997, SYNTHETIC COMMUN, V27, P4091
45319    LEHNERT W, 1974, SYNTHESIS-STUTTGART, P667
45320    LI JP, 2001, SYNTHETIC COMMUN, V31, P781
45321    PRAJAPATI D, 1992, CHEM LETT        OCT, P1945
45322    PRAJAPATI D, 1993, J CHEM SOC P1, P739
45323    RAO PS, 1991, TETRAHEDRON LETT, V32, P5821
45324    SCHIEMENZ GP, 1962, CHEM BER, V95, P485
45325    SCHMEYERS T, 1998, J CHEM SOC P2, P989
45326    STURZ HG, 1949, J AM CHEM SOC, V71, P2949
45327    TANAKA K, 2000, CHEM REV, V100, P1025
45328    TANAKA M, 1998, J CHEM SOC CHEM COMM, P1965
45329    TODA F, 1989, ANGEW CHEM INT EDIT, V28, P320
45330    TODA F, 1989, CHEM EXP, V4, P507
45331    TODA F, 1989, J ORG CHEM, V54, P3007
45332    TODA F, 1990, J CHEM SOC P1, P3207
45333    TODA F, 1998, J CHEM SOC PERK 1107, P3521
45334    TROST BM, 1991, COMPREHENSIVE ORGANI, V2, P341
45335    VILLEMIN D, 1990, SYNTHETIC COMMUN, V20, P3207
45336    VILLEMIN D, 1996, TETRAHEDRON LETT, V37, P1113
45337    XIAO JP, 2001, SYNTHETIC COMMUN, V31, P661
45338 NR 28
45339 TC 16
45340 SN 0039-7911
45341 J9 SYN COMMUN
45342 JI Synth. Commun.
45343 PY 2002
45344 VL 32
45345 IS 22
45346 BP 3475
45347 EP 3479
45348 PG 5
45349 SC Chemistry, Organic
45350 GA 610VA
45351 UT ISI:000178981000014
45352 ER
45353 
45354 PT J
45355 AU Zhang, XP
45356    Wang, SZ
45357 TI Watermarking scheme capable of resisting attacks based on availability
45358    of inserter
45359 SO SIGNAL PROCESSING
45360 DT Article
45361 DE digital watermarking; attack; inserter
45362 AB Attacks based on the presence of watermark inserter are easy to perform
45363    since they make use of similarity between an original watermark and
45364    additionally added ones by using the same inserter and key. In this
45365    paper, a novel watermarking scheme capable of resisting inserter
45366    attacks is proposed. Watermark signals corresponding to the same key
45367    are mutually independent if they are randomly selected using the
45368    described technique. Thus the inserter attack is invalidated.
45369    Performance of the proposed method is studied, and simulation
45370    experiments presented.
45371    (C) 2002 Elsevier Science B.V. All rights reserved.
45372 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
45373 RP Zhang, XP, Shanghai Univ, Sch Commun & Informat Engn, 149 Yanchang Rd,
45374    Shanghai 200072, Peoples R China.
45375 CR COX IJ, 1998, IEEE J SEL AREA COMM, V16, P587
45376    HARTUNG F, 1999, P IEEE, V87, P1079
45377    KALKER T, 1998, P IEEE INT C IM PROC, V1, P425
45378    PETITCOLAS FAP, 1999, P IEEE MULT SYST 99, V1, P574
45379    PETITCOLAS FAP, 1999, P IEEE, V87, P1062
45380 NR 5
45381 TC 1
45382 SN 0165-1684
45383 J9 SIGNAL PROCESS
45384 JI Signal Process.
45385 PD NOV
45386 PY 2002
45387 VL 82
45388 IS 11
45389 BP 1801
45390 EP 1804
45391 PG 4
45392 SC Engineering, Electrical & Electronic
45393 GA 605ZV
45394 UT ISI:000178707700020
45395 ER
45396 
45397 PT J
45398 AU Li, Q
45399    Liu, WQ
45400    Zhou, BX
45401 TI Effect of the deformation and heat treatment on the decomposition of
45402    beta Zr in Zr-Sn-Nb alloys
45403 SO RARE METAL MATERIALS AND ENGINEERING
45404 DT Article
45405 DE zirconium alloy; secondary phase; heat treatment; microstructure
45406 AB The influence of the deformation and heat treatment on the
45407    decomposition of beta-Zr in Zr-Sn-Nb alloys has been studied by means
45408    of transmission electron microscopy (TEM). After fast cooling by
45409    heating the specimens at 750degreesC - 0.5 h, some lumps of beta-Zr are
45410    formed on grain boundaries and bar - like particles of beta-Zr are
45411    formed within grains. After faster cooling by heating the specimens at
45412    1000degreesC - 0.5 h, a sandwich structure between thin layer G-Zr and
45413    lathy grains of alpha-Zr is formed. By aging the specimens at
45414    560degreesC, the decomposition of beta-Zr existing on the grain
45415    boundaries occurs to form particlelike beta-Nb (100 nm - 200 nm) This
45416    does not occur for bar - like beta-Zr existing within the grains.
45417    Deformation can make the beta-Zr more unstable and promotes the
45418    nucleation of fine particles of beta-Nb (10 nm - 60 nm). The bar-like
45419    particles of beta-Zr, which did not decompose only by aging at
45420    560degreesC, can be decomposed by a deformation - plus - aging heat
45421    treatment. In order to obtain a uniform dispersion and finer second
45422    phase particles of beta-Nb in zirconium alloys containing niobium, the
45423    material should not be heated over 610degreesC to avoid reforming lumps
45424    of beta-Zr on grain boundaries during subsequent processing.
45425 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
45426 RP Li, Q, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
45427 CR DAVID R, 1986, BINARY ALLOY PHASE D, P1711
45428    FOSTER JP, 1990, J NUCL MATER, V173, P146
45429    LIU WQ, 2001, RARE METAL MAT ENG, V30, P81
45430    ROGERS BA, 1955, J MET, V7, P1034
45431 NR 4
45432 TC 2
45433 SN 1002-185X
45434 J9 RARE METAL MAT ENG
45435 JI Rare Metal Mat. Eng.
45436 PD OCT
45437 PY 2002
45438 VL 31
45439 IS 5
45440 BP 389
45441 EP 392
45442 PG 4
45443 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
45444    Engineering
45445 GA 611ZZ
45446 UT ISI:000179049700018
45447 ER
45448 
45449 PT J
45450 AU Lei, JX
45451    Kang, YL
45452    Qu, FQ
45453 TI Prediction and determination of both friction coefficient and forming
45454    force on sheet metal deep-drawing
45455 SO JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
45456 DT Article
45457 DE deep-drawing; friction coefficient; forming force; prediction and
45458    determination
45459 ID FRACTURE LIMIT; WRINKLE LIMIT
45460 AB On the basis of the criterion of no-wrinkle, the principle and method
45461    of prediction and determination of both friction coefficient and
45462    forming force on sheet metal deep-drawing are put forward, and proved
45463    it's expedience and practicability. They are suitable for assessment of
45464    lubricant properties. Friction coefficient and forming force are a
45465    function of material parameter, design parameter and process parameter,
45466    especially relative prevent wrinkle blank-holder force. Product of both
45467    friction coefficient and prevent wrinkle blankholder force is only
45468    function of process parameter eta after determining material parameter
45469    and design parameter.
45470 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
45471    Univ Sci & Technol Beijing, Beijing 100083, Peoples R China.
45472    Yantai Univ, Yantai 263005, Peoples R China.
45473 RP Lei, JX, Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
45474 CR KANG YL, 1999, QUALITY CONTROL FORM
45475    LEI JX, 1998, J UNIV SCI TECHNOL B, V5, P237
45476    LEI JX, 1999, CHINESE J MECH ENG, V12, P288
45477    LEI JX, 1999, J IRON STEEL RES, V11, P194
45478    LEI JX, 1999, J PLASTICITY ENG, V6, P638
45479    LEI JX, 1999, J UNIV SCI TECHNOL B, V6, P201
45480    RU Z, 1992, PLASTICITY WORKING T
45481 NR 7
45482 TC 0
45483 SN 1005-8850
45484 J9 J UNIV SCI TECHNOL BEIJING
45485 JI J. Univ. Sci. Technol. Beijing
45486 PD OCT
45487 PY 2002
45488 VL 9
45489 IS 5
45490 BP 360
45491 EP 362
45492 PG 3
45493 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
45494    Engineering; Mining & Mineral Processing
45495 GA 611KA
45496 UT ISI:000179015000010
45497 ER
45498 
45499 PT J
45500 AU Zhang, SQ
45501    Xu, GQ
45502    Li, ZB
45503 TI General explicit solutions of a classical Boussinesq system
45504 SO CHINESE PHYSICS
45505 DT Article
45506 DE explicit solution; soliton; nonlinear equation
45507 ID NONLINEAR-WAVE EQUATIONS; JACOBI ELLIPTIC FUNCTION; EXPANSION METHOD
45508 AB Seeking a travelling wave solution of the classical Boussinesq system
45509    and making an ansatz for the solution, we obtain a nonlinear system of
45510    algebraic equations. We solve the system using an effective algorithm
45511    and then two general explicit solutions are obtained which are of
45512    physical interest.
45513 C1 E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China.
45514    Shanghai Univ, Dept Informat Engn & Adm, Shanghai 200436, Peoples R China.
45515 RP Zhang, SQ, E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples
45516    R China.
45517 CR BAI CL, 2001, CHINESE PHYS, V10, P1091
45518    FAN EG, 1998, ACTA PHYS SINICA, V47, P353
45519    FAN EG, 2000, ACTA PHYS SIN-CH ED, V49, P1409
45520    FENG X, 2000, INT J THEOR PHYS, V39, P207
45521    LI YS, 2000, PHYS LETT A, V275, P60
45522    LI ZB, 2001, ACTA PHYS SIN-CH ED, V50, P2062
45523    LIU SK, 2001, ACTA PHYS SIN-CH ED, V50, P2068
45524    LIU SK, 2001, PHYS LETT A, V289, P69
45525    LOU SY, 1999, ACTA PHYS SIN S, V8, P280
45526    MALFLIET W, 1992, AM J PHYS, V60, P650
45527    WANG ML, 1996, PHYS LETT A, V213, P279
45528    WU TY, 1996, MATH SOLVING PROBLEM, P233
45529    XU GQ, 2002, ACTA PHYS SIN-CH ED, V51, P946
45530    ZHANG JF, 2002, CHINESE PHYS, V11, P425
45531    ZHANG JF, 2002, CHINESE PHYS, V11, P533
45532    ZHANG YF, 2002, CHINESE PHYS, V11, P319
45533    ZHOU ZJ, 2002, UNPUB J MATH PHYS
45534 NR 17
45535 TC 6
45536 SN 1009-1963
45537 J9 CHIN PHYS
45538 JI Chin. Phys.
45539 PD OCT
45540 PY 2002
45541 VL 11
45542 IS 10
45543 BP 993
45544 EP 995
45545 PG 3
45546 SC Physics, Multidisciplinary
45547 GA 609RU
45548 UT ISI:000178919000003
45549 ER
45550 
45551 PT J
45552 AU Li, WW
45553    Sang, WB
45554    Min, JH
45555    Yu, F
45556    Zhang, B
45557    Wang, KS
45558 TI Cd1-xZnxTe crystal growth controlled by Cd/Zn partial pressures
45559 SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY
45560 DT Article
45561 ID CD-TE; SYSTEM
45562 AB We have estimated the partial pressures, P-Cd and P-Zn over Cd1-xZnxTe
45563    (CZT) and Cd1-xZnx melts based on known thermodynamic data. The partial
45564    pressures, P-Cd and P-Zn over the Cd0.81Zn0.19 alloy melt at a
45565    temperature of about 1003 degreesC could be in equilibrium with those
45566    over the Cd0.9Zn0.1Te melt at a melting temperature of 1120 degreesC.
45567    In this work, we have carried out Cd0.9Zn0.1Te crystal growth from the
45568    melt under controlled constituent partial pressures, provided by the
45569    Cd0.81Zn0.19 alloy instead of only the Cd source. The best result for
45570    the resistivity, which has reached up to about 10(10) Omega cm, has
45571    been obtained under the equilibrium partial pressures estimated by
45572    thermodynamic relationships. The axial variation in Zn concentration,
45573    which has been obviously improved due to Zn being replenished from the
45574    reservoir during the whole growth procedure, is within about 4%. The
45575    etch pit densities were, on average, about 2 x 10(5) and 4 x 10(4)
45576    cm(-2) at the middle of the bulk. Infrared transmissivity in the range
45577    of 2-42 mum is larger than 60%. In addition, we also discuss the
45578    relationship between the resistivities and conducting types of the
45579    crystal and the different controlled pressures.
45580 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
45581 RP Li, WW, Shanghai Univ, Sch Mat Sci & Engn, Jiading Campus,20 Chengzhong
45582    Rd, Shanghai 201800, Peoples R China.
45583 CR BREBRICK RF, 1995, METALL MATER TRANS A, V26, P2597
45584    BUTLER JF, 1992, IEEE T NUCL SCI, V39, P605
45585    EISEN Y, 1998, J CRYST GROWTH, V184, P1310
45586    GLASS HL, 1998, J CRYST GROWTH, V184, P1035
45587    HULTGREN R, 1963, SELECTED VALUES THER, P637
45588    JORDAN AS, 1970, MET T, V1, P239
45589    NIEMELA A, 1994, IEEE T NUCL SCI, V41, P1054
45590    PETERS K, 1990, CRYST RES TECHNOL, V25, P1107
45591    TANAKA A, 1989, J CRYST GROWTH, V94, P166
45592    TUNG T, 1982, J VAC SCI TECHNOL, V21, P117
45593    VYDYANATH HR, 1993, J ELECTRON MATER, V22, P1067
45594 NR 11
45595 TC 2
45596 SN 0268-1242
45597 J9 SEMICOND SCI TECHNOL
45598 JI Semicond. Sci. Technol.
45599 PD OCT
45600 PY 2002
45601 VL 17
45602 IS 10
45603 BP L55
45604 EP L58
45605 PG 4
45606 SC Engineering, Electrical & Electronic; Materials Science,
45607    Multidisciplinary; Physics, Condensed Matter
45608 GA 609AJ
45609 UT ISI:000178880200001
45610 ER
45611 
45612 PT J
45613 AU Zhao, YW
45614    Zhang, GX
45615 TI A new integrated design method based on fuzzy matter-element
45616    optimization
45617 SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
45618 DT Article
45619 DE multi-objective optimization; fuzzy matter-element; genetic algorithms;
45620    scheme design
45621 ID GENETIC ALGORITHMS
45622 AB This paper puts forward a new integrated design method based on fuzzy
45623    matter-element optimization. On the based of analyzing the model of
45624    multi-objective fuzzy matter-element (R) over tilde, the paper defines
45625    the matter-element weighting and changes solving a multi-objective
45626    fuzzy optimization into solving a dependent function K(x) of the
45627    single-objective optimization according to the optimization criterion.
45628    The paper particularly describes the realization approach of the GA
45629    process of multi-objective fuzzy matter-element optimization: encode,
45630    produce initial population, confirm fitness function, select operator,
45631    etc. In the process, the adaptive macro genetic algorithms (AMGA) are
45632    applied to enhance the evolution speed. The paper improves the two
45633    genetic operators: cross-over and mutation operator. The modified
45634    adaptive macro genetic algorithms (MAMGA) are put forward
45635    simultaneously, and adopted to solve the optimization problem.
45636    Three optimization methods, namely the fuzzy matter-element
45637    optimization method, the linearity weighted method and the fuzzy
45638    optimization method, are compared using tables and figures, showing
45639    that not only is MAMMA a little better than AMGA, but also it reaches
45640    the extent to which the effective iteration generation is 62.2% of
45641    simple genetic algorithms (SGA). By the calculation of an optimum
45642    example, the improved genetics method of reported in the paper is much
45643    better than the methods in the references of the paper. (C) 2002
45644    Elsevier Science B.V. All rights reserved.
45645 C1 Zhejiang Univ Technol, Coll Mech Engn, Hangzhou 310014, Zhejiang, Peoples R China.
45646    Shanghai Univ, Coll Mech & Elect Engn, Shanghai 200072, Peoples R China.
45647 RP Zhao, YW, Zhejiang Univ Technol, Coll Mech Engn, Hangzhou 310014,
45648    Zhejiang, Peoples R China.
45649 CR BING Z, 1997, FUZZY MATTER ELEMENT
45650    GAO Y, 2000, P 3 WORLD C INT CONT, P646
45651    HUANG YP, 2000, FUZZY SET SYST, V113, P367
45652    SRINIVAS M, 1994, IEEE T SYST MAN CYB, V24, P656
45653    WEN C, 1999, CHINESE SCI BULL, V44, P673
45654    WU QH, 1998, INT J ELEC POWER, V20, P563
45655 NR 6
45656 TC 0
45657 SN 0924-0136
45658 J9 J MATER PROCESS TECHNOL
45659 JI J. Mater. Process. Technol.
45660 PD OCT 11
45661 PY 2002
45662 VL 129
45663 IS 1-3
45664 BP 612
45665 EP 618
45666 PG 7
45667 SC Engineering, Industrial; Engineering, Manufacturing; Materials Science,
45668    Multidisciplinary
45669 GA 607MJ
45670 UT ISI:000178795100128
45671 ER
45672 
45673 PT J
45674 AU Wang, Y
45675    Chau, KT
45676    Gan, JY
45677    Chan, CC
45678    Jiang, JZ
45679 TI Design and analysis of a new multiphase polygonal-winding
45680    permanent-magnet brushless DC machine
45681 SO IEEE TRANSACTIONS ON MAGNETICS
45682 DT Article
45683 DE brushless dc machine; permanent-magnet machine; time-stepping
45684    finite-element method
45685 ID INSET
45686 AB In this paper, a new multiphase polygonal-winding permanent-magnet
45687    brushless dc (PMBDC) machine is proposed and analyzed. The originality
45688    of the proposed machine lies on the multiphase polygonal-winding stator
45689    and the surface-inset permanent-magnet rotor. Because of its unique
45690    structure and operating principle, a circuit-field-torque coupled time
45691    stepping finite-element method is also employed for analysis. The
45692    designed machine prototyped and the analysis. The designed machine is
45693    prototyped and the analysis is verufied by experimentation.
45694 C1 Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China.
45695    Shanghai Univ, Sch Automat, Shanghai 200072, Peoples R China.
45696 RP Wang, Y, Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong,
45697    Peoples R China.
45698 CR CHAN CC, 1996, IEEE T IND ELECTRON, V43, P331
45699    GAN JY, 2000, IEEE T MAGN 2, V36, P3810
45700    XU LY, 1995, IEEE T IND APPL, V31, P373
45701    ZHU ZQ, 1994, IEEE T MAGN, V30, P98
45702 NR 4
45703 TC 0
45704 SN 0018-9464
45705 J9 IEEE TRANS MAGN
45706 JI IEEE Trans. Magn.
45707 PD SEP
45708 PY 2002
45709 VL 38
45710 IS 5
45711 PN Part 1
45712 BP 3258
45713 EP 3260
45714 PG 3
45715 SC Engineering, Electrical & Electronic; Physics, Applied
45716 GA 608VE
45717 UT ISI:000178867200444
45718 ER
45719 
45720 PT J
45721 AU Chen, DY
45722    Xin, HW
45723    Zhang, DJ
45724 TI Lie algebraic structures of some (1+2)-dimensional Lax integrable
45725    systems
45726 SO CHAOS SOLITONS & FRACTALS
45727 DT Article
45728 ID KADOMTSEV-PETVIASHVILI EQUATION; NONLINEAR EVOLUTION-EQUATIONS;
45729    BI-HAMILTONIAN STRUCTURES; RECURSION OPERATORS; SYMMETRIES;
45730    HIERARCHIES; MULTIDIMENSIONS
45731 AB The paper proposes an approach to constructing the symmetries and their
45732    algebraic structures for isospectral and nonisospectral evolution
45733    equations of (1 + 2)-dimensional systems associated with the linear
45734    problem of Sato theory. To do that, we introduce the implicit
45735    representations of the isospectral flows {K-m} and nonisospectral flows
45736    {sigma(n)} in the high dimensional cases. Three examples, the
45737    Kodomstev-Petviashvili system, BKP system and new CKP system, are
45738    considered to demonstrate our method. (C) 2002 Elsevier Science Ltd.
45739    All rights reserved.
45740 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
45741 RP Chen, DY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
45742 CR CAUDREY PJ, 1990, SOLITON THEORY SURVE, P55
45743    CHEN DY, 1990, ACTA MATH APPL SIN, V13, P324
45744    CHEN DY, 1991, CHIN ANN MATH A, V12, P33
45745    CHEN DY, 1996, J MATH PHYS, V37, P5524
45746    CHEN HH, 1982, PHYS LETT A, V91, P381
45747    CHEN HH, 1983, PHYSICA D, V9, P439
45748    CHEN HH, 1987, PHYSICA D, V26, P171
45749    CHENG Y, 1988, J PHYS A, V21, L443
45750    CHENG Y, 1988, PHYS LETT A, V127, P205
45751    CHENG Y, 1989, PHYSICA D, V34, P277
45752    CHENG Y, 1990, NONLINEAR PHYSICS, P12
45753    CHENG Y, 1990, PHYS D, V46, P286
45754    CHENG Y, 1991, J MATH PHYS, V32, P157
45755    FOKAS AS, 1981, PHYS LETT A, V86, P341
45756    FOKAS AS, 1988, COMMUN MATH PHYS, V116, P449
45757    FUCHSSTEINER B, 1983, PROG THEOR PHYS, V70, P1508
45758    KONOPELCHENKO BG, 1984, PHYS LETT A, V102, P15
45759    LI YS, 1986, J PHYS A-MATH GEN, V19, P3713
45760    MA WX, 1992, J MATH PHYS, V33, P2464
45761    OEVEL W, 1982, PHYS LETT A, V88, P323
45762    SANTINI PM, 1988, COMMUN MATH PHYS, V115, P375
45763 NR 21
45764 TC 4
45765 SN 0960-0779
45766 J9 CHAOS SOLITON FRACTAL
45767 JI Chaos Solitons Fractals
45768 PD FEB
45769 PY 2003
45770 VL 15
45771 IS 4
45772 BP 761
45773 EP 770
45774 PG 10
45775 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
45776 GA 609FT
45777 UT ISI:000178893500018
45778 ER
45779 
45780 PT J
45781 AU Song, FQ
45782    Liu, CQ
45783 TI The transient elliptic flow of power-law fluid in fractal porous media
45784 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
45785 DT Article
45786 DE fractal media; vertically fractured well; transient flow; power-law
45787    fluid
45788 AB The steady oil production and pressure distribution formulae of
45789    vertically fractured well for power-law non-Newtonian fluid were
45790    derived on the basis of the elliptic flow model in fractal reservoirs.
45791    The corresponding transient flow in fractal reservoirs was studied by
45792    numerical differentiation method: the influence of fractal index to
45793    transient pressure of vertically fractured well was analyzed. Finally
45794    the approximate analytical solution of transient flow was given by
45795    average mass conservation law. The study shows that using elliptic flow
45796    method to analyze the flow of vertically fractured well is a simple
45797    method.
45798 C1 Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
45799    Acad Sinica, Inst Porous Flow & Fluid Mech, Langfang 065007, Hebei, Peoples R China.
45800 RP Song, FQ, Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072,
45801    Peoples R China.
45802 CR LIU CQ, 1989, WELL TESTING PRODUCT, V10, P22
45803    LIU CQ, 1996, 10 S HYDR CHIN, P439
45804    LIU J, 1996, BIOMED ENVIRON SCI, V9, P12
45805    SONG FQ, 2000, WELL TESTING PRODUCT, V21, P1
45806 NR 4
45807 TC 0
45808 SN 0253-4827
45809 J9 APPL MATH MECH-ENGL ED
45810 JI Appl. Math. Mech.-Engl. Ed.
45811 PD AUG
45812 PY 2002
45813 VL 23
45814 IS 8
45815 BP 875
45816 EP 880
45817 PG 6
45818 SC Mathematics, Applied; Mechanics
45819 GA 608JB
45820 UT ISI:000178841700002
45821 ER
45822 
45823 PT J
45824 AU Ren, JS
45825    Cheng, CJ
45826 TI Cavitated bifurcation for incompressible hyperelastic material
45827 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
45828 DT Article
45829 DE incompressible hyperelastic material; void nucleation and growth;
45830    catastrophe and concentration of stress
45831 ID NONLINEARLY ELASTIC-MATERIALS; VOID NUCLEATION; GROWTH
45832 AB The spherical cavitated bifurcation for a hyperelastic solid sphere
45833    made of the incompressible Valanis-Landel material under boundary
45834    dead-loading is examined. The analytic solution for the bifurcation
45835    problem is obtained. The catastrophe and concentration of stresses are
45836    discussed. The stability of solutions is discussed through the energy
45837    comparison. And the growth of a pre-existing micro-void is also
45838    observed.
45839 C1 Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
45840    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
45841 RP Ren, JS, Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples
45842    R China.
45843 CR BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
45844    CHOUWANG MSO, 1989, INT J SOLIDS STRUCT, V25, P1239
45845    HORGAN CO, 1986, J ELASTICITY, V16, P189
45846    HORGAN CO, 1989, J ELASTICITY, V21, P61
45847    HORGAN CO, 1992, INT J SOLIDS STRUCT, V29, P279
45848    HORGAN CO, 1995, APPL MECH REV, V48, P471
45849    SHANG XC, 1996, ACTA MECH SINICA, V28, P751
45850    SIVALOGANATHAN J, 1986, ARCH RATION MECH AN, V96, P97
45851    VALANIS KC, 1967, J APPL PHYS, V38, P2997
45852 NR 9
45853 TC 11
45854 SN 0253-4827
45855 J9 APPL MATH MECH-ENGL ED
45856 JI Appl. Math. Mech.-Engl. Ed.
45857 PD AUG
45858 PY 2002
45859 VL 23
45860 IS 8
45861 BP 881
45862 EP 888
45863 PG 8
45864 SC Mathematics, Applied; Mechanics
45865 GA 608JB
45866 UT ISI:000178841700003
45867 ER
45868 
45869 PT J
45870 AU Zhu, WP
45871    Huang, Q
45872 TI General solution of the overall bending of flexible circular ring
45873    shells with moderately slender ratio and applications to the bellows
45874    (I) - Governing equation and general solution
45875 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
45876 DT Article
45877 DE theory of flexible shell; circular ring shell; bellows; lateral bending
45878    load; moderately slender ratio; general solution
45879 AB The overall bending of circular ring shells subjected to bending
45880    moments and lateral forces is discussed. The derivation of the
45881    equations was based upon the theory of flexible shells generalized by
45882    E. L. Axelrad and the assumption of the moderately slender ratio less
45883    than 1/3 (i.e., ratio between curvature radius of the meridian and
45884    distance from the meridional curvature center to the axis of
45885    revolution). The present general solution is an analytical one
45886    convergent in the whole domain of the shell and with the necessary
45887    integral constants for the boundary value problems. It can be used to
45888    calculate the stresses and displacements of the related bellows. The
45889    whole work is arranged into four parts: (I) Governing equation and
45890    general solution; (II) Calculation for Omega-shaped bellows; (III)
45891    Calculation for C-shaped bellows; (IV) Calculation for U-shaped
45892    bellows. This paper is the first part.
45893 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
45894 RP Zhu, WP, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
45895    200072, Peoples R China.
45896 CR AXELRAD EL, 1976, FLEXIBLE SHELLS
45897    AXELRAD EL, 1987, THEORY FLEXIBLE SHEL
45898    CHEN SL, 1987, PROGR APPL MECH, P181
45899    CHIEN WZ, 1979, J LANZHOU U SPECIAL, P1
45900    CHIEN WZ, 1979, J TSINGHUA U, V19, P27
45901    CHIEN WZ, 1979, J TSINGHUA U, V19, P84
45902    CHIEN WZ, 1980, APPL MATH MECH ENGLI, V1, P305
45903    CHIEN WZ, 1981, APPL MATH MECH ENGLI, V2, P103
45904    ZHU WP, 1998, THIN WALL STRUCT, P477
45905    ZHU WP, 1999, APPL MATH MECH-ENGL, V20, P952
45906    ZHU WP, 2000, APPL MATH MECH-ENGL, V21, P371
45907    ZHU WP, 2000, CHINESE Q MECH, V21, P311
45908 NR 12
45909 TC 0
45910 SN 0253-4827
45911 J9 APPL MATH MECH-ENGL ED
45912 JI Appl. Math. Mech.-Engl. Ed.
45913 PD AUG
45914 PY 2002
45915 VL 23
45916 IS 8
45917 BP 889
45918 EP 897
45919 PG 9
45920 SC Mathematics, Applied; Mechanics
45921 GA 608JB
45922 UT ISI:000178841700004
45923 ER
45924 
45925 PT J
45926 AU Zhu, WP
45927    Huang, Q
45928 TI General solution of the overall bending of flexible circular ring
45929    shells with moderately slender ratio and applications to the bellows
45930    (II) - Calculation for Omega-shaped bellows
45931 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
45932 DT Article
45933 DE theory of flexible shell; circular ring shell; Omega-shaped bellows;
45934    general solution
45935 AB (II) is one of the applications of (I), in which the angular stiffness,
45936    the lateral stiffness and the corresponding stress distributions of
45937    Omega-shaped bellows were calculated, and the present results were
45938    compared with those of the other theories and experiments. It is shown
45939    that the non-homogeneous solution of ( I) can solve the pure bending
45940    problem of the bellows by itself, and be more effective than by the
45941    theory of slender ring shells; but if a lateral slide of the bellows
45942    support exists the non-homogeneous solution will no longer entirely
45943    satisfy the boundary conditions of the problem, in this case the
45944    homogeneous solution of ( I) should be included, that is to say, the
45945    full solution of can meet all the requirements.
45946 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
45947 RP Zhu, WP, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
45948    200072, Peoples R China.
45949 CR *EJMA INC, 1998, STAND EXP JOINT MAN
45950    CHIEN WZ, 1979, COLLECTED WORKS APPL, P110
45951    CHIEN WZ, 1979, J TSINGHUA U, V19, P27
45952    CHIEN WZ, 1980, APPL MATH MECH ENGLI, V1, P305
45953    CHIEN WZ, 1980, J INSTRUMENTS METERS, V1, P89
45954    DAHL NC, 1953, J APPL MECH, V20, P497
45955    ZHU WP, 1999, APPL MATH MECH-ENGL, V20, P952
45956    ZHU WP, 1999, J SHANGHAI U, V3, P121
45957 NR 8
45958 TC 0
45959 SN 0253-4827
45960 J9 APPL MATH MECH-ENGL ED
45961 JI Appl. Math. Mech.-Engl. Ed.
45962 PD AUG
45963 PY 2002
45964 VL 23
45965 IS 8
45966 BP 898
45967 EP 905
45968 PG 8
45969 SC Mathematics, Applied; Mechanics
45970 GA 608JB
45971 UT ISI:000178841700005
45972 ER
45973 
45974 PT J
45975 AU He, JH
45976 TI Homotopy perturbation method: a new nonlinear analytical technique
45977 SO APPLIED MATHEMATICS AND COMPUTATION
45978 DT Article
45979 DE perturbation methods; homotopy; duffing equation; nonlinearity
45980 ID APPROXIMATE SOLUTION
45981 AB In this paper, a new perturbation method is proposed. In contrast to
45982    the traditional perturbation methods, this technique does not require a
45983    small parameter in an equation. In this method, according to the
45984    homotopy technique, a homotopy with an imbedding parameter p is an
45985    element of [0, 1] is constructed, and the imbedding parameter is
45986    considered as a "small parameter", so the method is called the homotopy
45987    perturbation method, which can take the full advantages of the
45988    traditional perturbation methods and homotopy techniques. To illustrate
45989    its effectiveness and its convenience, a Duffing equation with high
45990    order of nonlinearity is used; the result reveals that its first order
45991    of approximation obtained by the proposed method is valid uniformly
45992    even for very large parameter, and is more accurate than the
45993    perturbation solutions. (C) 2002 Elsevier Science Inc. All rights
45994    reserved.
45995 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
45996 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
45997    Shanghai 200072, Peoples R China.
45998 CR HE JH, 1998, COMPUT METHOD APPL M, V167, P57
45999    HE JH, 1998, COMPUT METHOD APPL M, V167, P69
46000    HE JH, 1999, COMPUT METHOD APPL M, V178, P257
46001    HE JH, 1999, INT J NONLINEAR MECH, V34, P699
46002    HE JH, 2000, INT J NONLINEAR MECH, V35, P37
46003    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
46004    LIAO SJ, 1995, INT J NONLINEAR MECH, V30, P371
46005    LIAO SJ, 1997, ENG ANAL BOUND ELEM, V20, P91
46006    LIU GL, 1997, C 7 MOD MATH MECH SH
46007    NAYFEH AF, 1985, PROBLEMS PERTURBATIO
46008 NR 10
46009 TC 16
46010 SN 0096-3003
46011 J9 APPL MATH COMPUT
46012 JI Appl. Math. Comput.
46013 PD FEB 15
46014 PY 2002
46015 VL 135
46016 IS 1
46017 BP 73
46018 EP 79
46019 PG 7
46020 SC Mathematics, Applied
46021 GA 609DQ
46022 UT ISI:000178888700006
46023 ER
46024 
46025 PT J
46026 AU He, JH
46027 TI A new iteration method for solving algebraic equations
46028 SO APPLIED MATHEMATICS AND COMPUTATION
46029 DT Article
46030 DE nonlinearity; iteration method
46031 ID PERTURBATION TECHNIQUE
46032 AB In this paper, a nonlinear algebraic equation f (x) = 0, by applying
46033    Taylor's theorem, is converted into a coupled iteration system
46034    L(x(n+1)) + g(x(n)) = 0 and g(x(n)) = f (x(n)) - L(x(n)), where L(x) =
46035    Ax(2) + Bx + C.
46036    The formula is of high convergence. Some examples are given. (C) 2002
46037    Elsevier Science Inc. All rights reserved.
46038 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
46039 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, POB 189,149
46040    Yanchang Rd, Shanghai 200072, Peoples R China.
46041 CR HE JH, 1998, COMMUN NONLINEAR SCI, V3
46042    HE JH, 1999, COMPUT METHOD APPL M, V178, P257
46043    HE JH, 2000, INT J NONLINEAR MECH, V35, P37
46044    HE JH, 2000, INT J NONLINEAR SCI, V1, P239
46045    PETKOVIC L, 1997, NONLINEAR ANAL-THEOR, V30, P669
46046 NR 5
46047 TC 3
46048 SN 0096-3003
46049 J9 APPL MATH COMPUT
46050 JI Appl. Math. Comput.
46051 PD FEB 15
46052 PY 2002
46053 VL 135
46054 IS 1
46055 BP 81
46056 EP 84
46057 PG 4
46058 SC Mathematics, Applied
46059 GA 609DQ
46060 UT ISI:000178888700007
46061 ER
46062 
46063 PT J
46064 AU Zhou, SP
46065    Qu, H
46066    Liao, HY
46067 TI Pairing symmetry and vortex lattice of high temperature superconductors
46068 SO ACTA PHYSICA SINICA
46069 DT Article
46070 DE hight T-c; superconduciivity; vortex structure; Ginzburg-Landau theory
46071 ID S-WAVE; THERMAL-CONDUCTIVITY; II SUPERCONDUCTORS; MODEL;
46072    YBA2CU3O7-DELTA; BI2SR2CACU2O8; STATE; ORDER; PB
46073 AB We studied pairing symmetry of YBa2Cu3O7-delta high-temperature.
46074    superconductor using a generic Ginzburg-Landau model. The phase
46075    transition between the mixed s-d(x2-y2) state and d(x2-y2) wave was
46076    shown. The vortex lattice of a YBa2Cu3O7 superconductor is oblique at
46077    the temperature well below the transition temperature T-c, where the
46078    mixed s-d(x2-y2) state is expected to have the lowest energy. Whereas,
46079    very close to T-c, the d(x2-y2) wave is slightly lower in energy, and a
46080    triangular vortex lattice recovers. The coexistence and the coupling
46081    between the s-and d-waves would account for the unusual behaviours such
46082    as the upward curvature of the upper critical field curve H-c2 (T).
46083 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
46084 RP Zhou, SP, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
46085 CR ABRIKOSOV AA, 1957, ZH EKSP TEOR FIZ, V32, P1442
46086    ABRIKOSOV AA, 1957, ZH EKSP TEOR FIZ, V5, P1174
46087    ANDERSON PW, 1987, SCIENCE, V235, P1196
46088    AUBIN H, 1999, PHYS REV LETT, V82, P624
46089    CHAKRAVARTY S, 1993, SCIENCE, V261, P337
46090    DORIA MM, 1989, PHYS REV B, V39, P9573
46091    DU Q, 1993, SIAM J APPL MATH, V53, P689
46092    GORKOV LP, 1960, SOV PHYS JETP, V9, P1364
46093    HEEB R, 1996, PHYS REV B, V54, P9385
46094    JOYNT R, 1990, PHYS REV B, V41, P4271
46095    KEIMER B, 1994, J APPL PHYS 2, V76, P6778
46096    KLEINER R, 1996, PHYS REV LETT, V76, P2161
46097    KOUZNETSOV KA, 1997, PHYS REV LETT, V79, P3050
46098    KRISHANA K, 1997, SCIENCE, V277, P83
46099    LAUGHLIN RB, 1998, PHYS REV LETT, V80, P5188
46100    LEE PA, 1987, PHYS REV LETT, V58, P2891
46101    LI QP, 1993, PHYS REV B, V48, P437
46102    LIECHTENSTEIN AI, 1995, PHYS REV LETT, V74, P2303
46103    MILLIS AJ, 1994, PHYS REV B, V49, P15408
46104    MONTHOUX P, 1994, PHYS REV B, V49, P4261
46105    MONTHOUX P, 1994, PHYS REV LETT, V72, P1874
46106    REN Y, 1995, PHYS REV LETT, V74, P3680
46107    RUGGIERO S, 1982, PHYS REV B, V26, P4897
46108    SOININEN PI, 1994, PHYS REV B, V50, P13883
46109    TINKHAM M, 1964, GROUP THEORY QUANTUM
46110    TSUEI CC, 1994, PHYS REV LETT, V73, P593
46111    VOLOVIK GE, 1993, JETP LETT, V58, P469
46112    WELP U, 1989, PHYS REV LETT, V62, P1908
46113    WOLLMAN DA, 1993, PHYS REV LETT, V71, P2134
46114    ZHANG FC, 1988, PHYS REV B, V37, P3759
46115    ZHANG SC, 1997, SCIENCE, V275, P1089
46116    ZHOU SP, 1999, ACTA PHYS SIN-CH ED, V48, P342
46117    ZHOU SP, 2000, PHYSICA C, V339, P258
46118    ZHOU SP, 2001, CHINESE PHYS, V10, P541
46119 NR 34
46120 TC 0
46121 SN 1000-3290
46122 J9 ACTA PHYS SIN-CHINESE ED
46123 JI Acta Phys. Sin.
46124 PD OCT
46125 PY 2002
46126 VL 51
46127 IS 10
46128 BP 2355
46129 EP 2361
46130 PG 7
46131 SC Physics, Multidisciplinary
46132 GA 609JF
46133 UT ISI:000178899300036
46134 ER
46135 
46136 PT J
46137 AU Zheng, CL
46138    Zhang, JF
46139 TI General solution and fractal localized structures for the
46140    (2+1)-dimensional generalized Ablowitz-Kaup-Newell-Segur system
46141 SO CHINESE PHYSICS LETTERS
46142 DT Article
46143 ID NONLINEAR SCHRODINGER-EQUATION; COHERENT STRUCTURES; SIMILARITY
46144    REDUCTIONS; BOUSSINESQ EQUATION; EVOLUTION-EQUATIONS; DROMION;
46145    SOLITONS; INTEGRABILITY; SCATTERING; PLASMA
46146 AB Using the standard truncated Painleve expansions, we derive a quite
46147    general solution of the (2+1)-dimensional generalized
46148    Ablowitz-Kaup-Newell-Segur system. Except for the usual localized
46149    solutions, such as dromions, lumps, ring soliton solutions, etc, some
46150    special localized excitations with fractal behaviour, i.e. the fractal
46151    dromion and fractal lump excitations, are obtained by some types of
46152    lower-dimensional fractal patterns.
46153 C1 Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
46154    Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China.
46155    Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
46156    Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China.
46157 RP Zheng, CL, Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000,
46158    Peoples R China.
46159 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V30, P1262
46160    BOITI M, 1988, PHYS LETT A, V132, P116
46161    BOITI M, 1988, PHYS LETT A, V132, P432
46162    BOITI M, 1995, CHAOS SOLITON FRACT, V5, P2377
46163    CLARKSON PA, 1989, J MATH PHYS, V30, P2201
46164    DAVEY A, 1974, P ROY SOC LOND A MAT, V338, P17
46165    FOKAS AS, 1989, PHYS REV LETT, V63, P1329
46166    FOKAS AS, 1994, INVERSE PROBL L, V19, P10
46167    GAO YT, 1997, COMPUT MATH APPL, V33, P115
46168    GEDALIN M, 1997, PHYS REV LETT, V78, P448
46169    HEREMAN W, 1991, COMPUT PHYS COMMUN, V65, P143
46170    HIROTA R, 1971, PHYS REV LETT, V27, P1192
46171    KADOMTSEV BB, 1970, SOV PHYS DOKL, V15, P539
46172    KISELEV OM, 2000, J NONLINEAR MATH PHY, V7, P411
46173    KIVSHAR YS, 1989, REV MOD PHYS, V61, P765
46174    KONOPELCHENKO B, 1991, PHYS LETT A, V158, P391
46175    KONOPELCHENKO BG, 1993, J MATH PHYS, V34, P214
46176    LI YS, 1993, J PHYS A-MATH GEN, V26, P7487
46177    LOU SY, 1990, PHYS LETT A, V151, P133
46178    LOU SY, 1996, J PHYS A-MATH GEN, V29, P5989
46179    LOU SY, 1997, COMMUN THEOR PHYS, V41, P28
46180    LOU SY, 1997, J MATH PHYS, V38, P6401
46181    LOU SY, 2001, EUR PHYS J B, V22, P473
46182    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
46183    LOU SY, 2002, CHINESE PHYS LETT, V19, P769
46184    LOUTSENKO I, 1997, PHYS REV LETT, V78, P3011
46185    NISHINARI K, 1993, J PHYS SOC JPN, V62, P2021
46186    NOVIKOV SP, 1986, PHYSICA D, V18, P267
46187    OIKAWA M, 1989, J PHYS SOC JPN, V58, P4416
46188    RADHA R, 1994, J MATH PHYS, V35, P4746
46189    RADHA R, 1997, CHAOS SOLITON FRACT, V8, P17
46190    RUAN HY, 1997, J MATH PHYS, V38, P3123
46191    RUAN HY, 2000, PHYS REV E B, V62, P5738
46192    TAJIRI M, 1997, PHYS REV E B, V55, P3351
46193    TANG XY, 2002, IN PRESS J PHYS A, V35
46194    TIAN B, 1995, MOD PHYS LETT A, V10, P2937
46195    WEISS J, 1983, J MATH PHYS, V24, P522
46196    YOSHIDA N, 1998, J PHYS A-MATH GEN, V31, P3325
46197    ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P705
46198    ZHANG JF, 2002, COMMUN THEOR PHYS, V37
46199 NR 40
46200 TC 58
46201 SN 0256-307X
46202 J9 CHIN PHYS LETT
46203 JI Chin. Phys. Lett.
46204 PD OCT
46205 PY 2002
46206 VL 19
46207 IS 10
46208 BP 1399
46209 EP 1402
46210 PG 4
46211 SC Physics, Multidisciplinary
46212 GA 606VR
46213 UT ISI:000178755700001
46214 ER
46215 
46216 PT J
46217 AU Ni, FS
46218    Gu, GQ
46219    Chen, KM
46220 TI Low-frequency dielectric dispersion of highly concentrated spherical
46221    particles in an electrolyte solution
46222 SO CHINESE PHYSICS LETTERS
46223 DT Article
46224 ID ELECTROCHEMICAL DOUBLE-LAYER; APPROXIMATION; CONDUCTIVITY; ENHANCEMENT;
46225    SUSPENSION
46226 AB We deal with the problem of calculating the effective dielectric
46227    dispersion and electrical conductivity of colloidal dispersions. A
46228    comparison of the theoretical calculation of first principles with the
46229    experimental data of Schwan shows that our technique proposed here is
46230    no longer restricted to dilute solutions and is very effective for
46231    studying the dielectric properties of colloids with highly concentrated
46232    charged spherical particles in an electrolyte solution.
46233 C1 Hohai Univ, Coll Mech & Elect Engn, Nanjing 210024, Peoples R China.
46234    E China Normal Univ, Coll Informat Technol, Shanghai 200062, Peoples R China.
46235    Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
46236 RP Ni, FS, Hohai Univ, Coll Mech & Elect Engn, Nanjing 210024, Peoples R
46237    China.
46238 CR CARRIQUE F, 1993, J COLLOID INTERF SCI, V156, P117
46239    CHEW WC, 1982, J CHEM PHYS, V77, P4683
46240    CHEW WC, 1984, J CHEM PHYS, V80, P4541
46241    DUNSTAN DE, 1992, J COLLOID INTERF SCI, V152, P308
46242    FIXMAN M, 1980, J CHEM PHYS, V72, P5177
46243    GU GQ, 1991, J APPL PHYS, V70, P4476
46244    GU GQ, 1993, J PHYS D APPL PHYS, V26, P1371
46245    KAN R, 1987, J CHEM PHYS, V86, P5748
46246    LARSON RE, 1989, PHYS FLUIDS A-FLUID, V1, P38
46247    NI FS, 1995, CHINESE PHYS LETT, V12, P438
46248    OBRIEN RW, 1981, J COLLOID INTERF SCI, V81, P234
46249    OKONSKI CT, 1960, J PHYS CHEM-US, V64, P605
46250    PETSEV DN, 1992, J COLLOID INTERF SCI, V149, P329
46251    SCHURR JM, 1964, J PHYS CHEM-US, V68, P2407
46252    SCHWAN HP, 1962, J PHYS CHEM-US, V66, P2626
46253    SCHWARZ G, 1962, J PHYS CHEM-US, V66, P2636
46254 NR 16
46255 TC 0
46256 SN 0256-307X
46257 J9 CHIN PHYS LETT
46258 JI Chin. Phys. Lett.
46259 PD OCT
46260 PY 2002
46261 VL 19
46262 IS 10
46263 BP 1550
46264 EP 1552
46265 PG 3
46266 SC Physics, Multidisciplinary
46267 GA 606VR
46268 UT ISI:000178755700046
46269 ER
46270 
46271 PT J
46272 AU Li, ZJ
46273    Chen, YP
46274    Pan, JM
46275    Tang, J
46276 TI The determination of lead in industrial samples by spectrophotometry
46277    with
46278    2-(2-sulfophenylazo)-7-(2,6dibromo-4-methyphenylazo)-1,8-dihydroxynaphth
46279    alene-3,6-disulfonic acid
46280 SO ANALYTICAL LETTERS
46281 DT Article
46282 DE spectrophotometry; determination of lead; industrial samples;
46283    2-(2-Sulfophenylazo)-7-(2,6-dibromo-4-methyphenylazo)-1,8-dihydroxynapht
46284    halene-3,6-disulfonic acid
46285 ID SOIL
46286 AB An excellent method for spectrophotometric determination of trace lead
46287    in industrial samples has been developed. The method is based on the
46288    reaction of lead(II) with new reagent
46289    2-(2-sulfophenylazo)-7-(2,6-dibromo-4-methyphenylazo)-1,8-dihydroxynapht
46290    halene-3,6-disulfonic acid(SDBM). Under optimal conditions, SDBM reacts
46291    with lead(II) to give a 1: 2 blue complex in a phosphoric acid media,
46292    which has an maximum peak at 630 nm; 0-20 mug of lead(II) obeyed Beer's
46293    law in 25 mL solution. The color reaction is instantaneous and the
46294    absorbance stable for 24 h; its the apparent molar absorption
46295    coefficient, Sandell's sensitivity, the limit of detection and the
46296    limit of quantification were found to be 1.07 x 10(5) L mol(-1)cm(-1),
46297    1.94ng cm(-2), 3.12 ng mL(-1) and 10.0 ng mL(-1) respectively. Effect
46298    of foreign ions have been examined in detail. The experiment indicated
46299    that most of metal ions studied can be tolerated in considerable
46300    amounts, especially transition metal ions such as Ag(I), Fe(III),
46301    Co(II), Ni(II), Cu(II), Zn(II), Al(III), Cr(III) and Hg(II). Therefore,
46302    the proposed method is simple, high sensitive and selective, it has
46303    been applied to determine trace lead in real samples with satisfactory
46304    results.
46305 C1 So Yangtze Univ, Coll Chem & Mat Engn, Wuxi 214036, Peoples R China.
46306    Shanghai Univ, Coll Sci, Dept Chem, Shanghai, Peoples R China.
46307    E China Normal Univ, Dept Chem, Shanghai 200062, Peoples R China.
46308 RP Li, ZJ, So Yangtze Univ, Coll Chem & Mat Engn, Wuxi 214036, Peoples R
46309    China.
46310 CR AHMED MJ, 2001, TALANTA, V55, P43
46311    BALE MN, 1995, TALANTA, V42, P1291
46312    HONGO T, 1988, FRESEN Z ANAL CHEM, V331, P647
46313    KISCH PP, 1984, ZH ANAL KHIM, V39, P1052
46314    KISCH PP, 1984, ZH ANAL KHIM, V39, P820
46315    LONG GL, 1980, ANAL CHEM, V52, P2242
46316    LONG GL, 1983, ANAL CHEM, V55, P712
46317    MEDINILLA J, 1986, TALANTA, V33, P329
46318    PAN J, 1981, CHROMOGENIC REAGENTS, P283
46319    PAN JM, 1996, METALLURGICAL ANAL, V16, P1
46320    RALKAIAH GV, 1985, INDIAN J TECHNOL, V23, P157
46321    RAMESH M, 2000, INDIAN J CHEM A, V39, P1337
46322    THAKUR M, 1999, ANALYST, V124, P1331
46323    TRINDER N, 1966, ANALYST, V91, P587
46324    XIAO M, 1988, LIHUA JIANYAN HUAXUE, V24, P130
46325    ZHAO SL, 1996, ENV SCI, V17, P59
46326 NR 16
46327 TC 1
46328 SN 0003-2719
46329 J9 ANAL LETT
46330 JI Anal. Lett.
46331 PY 2002
46332 VL 35
46333 IS 13
46334 BP 2157
46335 EP 2171
46336 PG 15
46337 SC Chemistry, Analytical
46338 GA 607FA
46339 UT ISI:000178780000008
46340 ER
46341 
46342 PT J
46343 AU Ren, JS
46344    Cheng, CJ
46345 TI Cavitated bifurcation for composed compressible hyper-elastic materials
46346 SO ACTA MECHANICA SOLIDA SINICA
46347 DT Article
46348 DE composed compressible hyper-elastic material; void bifurcation;
46349    catastrophe and concentration of stress; energy comparion
46350 ID VOID NUCLEATION
46351 AB The cavitated bifurcation problem in a solid sphere composed of two
46352    compressible hyper-elastic materials is examined. The bifurcation
46353    solution for the composed sphere under a uniform radial tensile
46354    boundary dead-load is obtained. The bifurcation curves and the stress
46355    contributions subsequent to the cavitation are given. The right and
46356    left bifurcation as well as the catastrophe and concentration of
46357    stresses are analyzed. The stability of solutions is discussed through
46358    an energy comparison.
46359 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
46360 RP Ren, JS, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
46361    Shanghai 200072, Peoples R China.
46362 CR HORGAN CO, 1989, J ELASTICITY, V21, P61
46363    HORGAN CO, 1992, INT J SOLIDS STRUCT, V29, P279
46364    HORGAN CO, 1995, APPL MECH REV, V48, P471
46365    SHANG XC, 1996, ACTA MECH SINICA, V28, P751
46366    SHANG XC, 2001, INT J ENG SCI, V39, P1101
46367 NR 5
46368 TC 7
46369 SN 0894-9166
46370 J9 ACTA MECH SOLIDA SINICA
46371 JI Acta Mech. Solida Sin.
46372 PD SEP
46373 PY 2002
46374 VL 15
46375 IS 3
46376 BP 208
46377 EP 213
46378 PG 6
46379 SC Materials Science, Multidisciplinary; Mechanics
46380 GA 606XE
46381 UT ISI:000178759800003
46382 ER
46383 
46384 PT J
46385 AU Mo, YW
46386    Okawa, Y
46387    Nakai, T
46388    Tajima, M
46389    Natukawa, K
46390 TI Preparation of SnO2 films with high sensitivity and selectivity to
46391    C2H5OH by oxygen radical assisted electron beam evaporation for
46392    micro-machined gas sensors
46393 SO THIN SOLID FILMS
46394 DT Article
46395 DE tin oxide; evaporation; sensors; electrical properties and measurements
46396 AB The oxygen radical assisted electron beam (EB) evaporation was employed
46397    to prepare SnO2 films with high sensitivity and selectivity to C2H5OH
46398    for micro-machined gas sensors. The films deposited by this technique
46399    allow a low-temperature and fast annealing process, and therefore has
46400    high compatibility to the standard integrated circuit process. The
46401    maximum sensitivity is higher than 160, more than 20 times larger than
46402    that of films prepared by the conventional EB evaporation, and
46403    comparable to that of radio frequency reactive sputtered films.
46404    Furthermore, the temperature of maximum sensitivity has also decreased
46405    approximately 100 degreesC compared to a conventional EB evaporated
46406    SnO2 film. (C) 2002 Elsevier Science B.V. All rights reserved.
46407 C1 Shanghai Univ, Shanghai 201800, Peoples R China.
46408    Technol Res Inst Osaka Prefecture, Izumi, Osaka 5941157, Japan.
46409    Hochiki Co Ltd, Machida, Tokyo 1948577, Japan.
46410    Kubota Co Ltd, Amagasaki, Hyogo 6618567, Japan.
46411 RP Mo, YW, Shanghai Univ, Shanghai 201800, Peoples R China.
46412 CR CAVICCHI RE, 1995, APPL PHYS LETT, V66, P812
46413    GAEDNER JW, 1991, SENSOR ACTUAT B-CHEM, V4, P109
46414    GUIDI V, 1998, SENSOR ACTUAT B-CHEM, V49, P88
46415    HEILAND G, 1982, SENSOR ACTUATOR, V2, P343
46416    LYLE RP, 1997, MICROSTRUCT MICROFAB, V3, P188
46417    PERSAUD K, 1982, NATURE, V299, P352
46418    ROSSI C, 1997, SENSOR ACTUAT A-PHYS, V63, P183
46419    SHURMER HV, 1990, SENSOR ACTUAT B-CHEM, V1, P256
46420    ZARCOMB S, 1984, SENSOR ACTUATOR, V6, P225
46421 NR 9
46422 TC 5
46423 SN 0040-6090
46424 J9 THIN SOLID FILMS
46425 JI Thin Solid Films
46426 PD SEP 2
46427 PY 2002
46428 VL 416
46429 IS 1-2
46430 BP 248
46431 EP 253
46432 PG 6
46433 SC Materials Science, Multidisciplinary; Physics, Applied; Physics,
46434    Condensed Matter
46435 GA 603VY
46436 UT ISI:000178582700037
46437 ER
46438 
46439 PT J
46440 AU Ren, ZJ
46441    Ding, WY
46442    Cao, WG
46443    Wang, SH
46444    Huang, ZJ
46445 TI Stereoselective synthesis of
46446    cis-1-carbomethoxy-2-aryl-3,3-dicyanocyclopropanes
46447 SO SYNTHETIC COMMUNICATIONS
46448 DT Article
46449 ID DERIVATIVES
46450 AB The route of preparing of
46451    1-carbomethoxy-2-aryl-3,3-dicyanocyclopropanes through the reaction of
46452    arylidenemalononitrile with methoxycarbonylmethyltriphenylarsonium
46453    bromide in the presence of K2CO3 under mild conditions with high yield
46454    and stereo selectivity is described.
46455 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
46456    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
46457 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
46458 CR ATTAHPOKN SK, 1984, CAN J CHEM, V62, P1217
46459    CHEN YL, 1998, CHEM J CHINESE U, V19, P1614
46460    DING WY, 1996, CHEM RES CHINESE U, V12, P50
46461    DING WY, 1999, CHEM J CHINESE U, V20, P64
46462    DING YY, 1996, CHEM RES CHINESE U, V12, P354
46463    FREY HM, 1966, ADV PHYS ORG CHEM, V4, P147
46464    GRIECO PA, 1972, TETRAHEDRON LETT, P3781
46465    JINHWA L, 1995, J AM CHEM SOC, V117, P9919
46466    MURPHY WS, 1983, J CHEM SOC P1, P817
46467    TRISTM BM, 1967, J AM CHEM SOC, V89, P138
46468    VINOD KS, 1997, SYNTHESIS-STUTTGART, P137
46469    WILLIAM B, 2000, TETRAHEDRON LETT, V41, P1491
46470    WONG HNC, 1989, CHEM REV, V89, P165
46471    YAMAMOTE Y, 1975, CHEM COMMUN, P668
46472    ZWANENBURG B, 1997, HOUBENWEYL METHODS A, V17
46473 NR 15
46474 TC 5
46475 SN 0039-7911
46476 J9 SYN COMMUN
46477 JI Synth. Commun.
46478 PY 2002
46479 VL 32
46480 IS 20
46481 BP 3143
46482 EP 3148
46483 PG 6
46484 SC Chemistry, Organic
46485 GA 602UB
46486 UT ISI:000178521900010
46487 ER
46488 
46489 PT J
46490 AU Miao, LY
46491    Wu, JL
46492 TI Edge-coloring critical graphs with high degree
46493 SO DISCRETE MATHEMATICS
46494 DT Article
46495 DE edge coloring; edge chromatic number; critical graph
46496 AB It is proved here that any edge-coloring critical graph of order n and
46497    maximum degree Delta greater than or equal to 8 has the size at least
46498    3(n + Delta - 8). It generalizes a result of Hugh Hind and Yue Zhao.
46499    (C) 2002 Elsevier Science B.V. All rights reserved.
46500 C1 Shanxi Univ, Sch Sci, Shandong 271018, Peoples R China.
46501    Shanghai Univ Sci & Technol, Jinan 250031, Peoples R China.
46502 RP Miao, LY, Shanxi Univ, Sch Sci, Shandong 271018, Peoples R China.
46503 CR FIORINI S, 1977, RES NOTES MATHS, V16
46504    HIND H, 1998, DISCRETE MATH, V190, P107
46505    MELNIKOV LS, 1970, MATH NOTES, V7, P405
46506    VIZING VG, 1968, RUSS MATH SURV, V23, P125
46507    YAN ZD, 2000, GRAPH COMBINATOR, V16, P245
46508    YAP HP, 1981, DISCRETE MATH, V37, P289
46509    YAP HP, 1986, SOME TOPICS GRAPH TH
46510 NR 7
46511 TC 1
46512 SN 0012-365X
46513 J9 DISCRETE MATH
46514 JI Discret. Math.
46515 PD NOV 6
46516 PY 2002
46517 VL 257
46518 IS 1
46519 BP 169
46520 EP 172
46521 PG 4
46522 SC Mathematics
46523 GA 605KV
46524 UT ISI:000178677800013
46525 ER
46526 
46527 PT J
46528 AU Chen, LQ
46529 TI An open plus nonlinear closed loop control of chaotic oscillators
46530 SO CHINESE PHYSICS
46531 DT Article
46532 DE chaos control; entrainment basin; oscillator
46533 ID MULTIPLE-ATTRACTOR SYSTEMS; COMPLEX DYNAMIC-SYSTEMS; MIGRATION
46534    CONTROLS; ADAPTIVE-CONTROL; OPCL CONTROL; ENTRAINMENT
46535 AB An open plus nonlinear closed loop control law is presented for chaotic
46536    oscillations described by a set of non-autonomous second-order ordinary
46537    differential equations. It is proven that the basins of entrainment are
46538    global when the right-hand sides of the equations are given by
46539    arbitrary polynomial functions. The forced Duffing oscillator and the
46540    forced van der Pol oscillator are treated as numerical examples to
46541    demonstrate the applications of the method.
46542 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
46543 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
46544    Shanghai 200072, Peoples R China.
46545 CR CHEN G, 1998, CHAOS ORDER, P2
46546    CHEN LQ, 1998, PHYS LETT A, V245, P87
46547    CHEN LQ, 1998, PHYS LETT A, V262, P350
46548    CHEN LQ, 1999, CHIN J COMP MATH, V16, P127
46549    CHEN LQ, 1999, J APPL SCI, V17, P443
46550    CHEN LQ, 1999, NONLINEAR DYNAM, V20, P309
46551    CHENG LQ, 1997, J SHANGHAI JIAOTONG, V31, P32
46552    GUAN XP, 2001, ACTA PHYS SIN-CH ED, V50, P2108
46553    HUBLER A, 1989, NATURWISSENSCHAFTEN, V76, P67
46554    JACKSON EA, 1990, PHYS LETT A, V151, P478
46555    JACKSON EA, 1991, PHYS REV A, V44, P4839
46556    JACKSON EA, 1991, PHYSICA D, V50, P341
46557    JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1255
46558    JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1767
46559    JACKSON EA, 1995, PHYSICA D, V85, P1
46560    JACKSON EA, 1997, CHAOS, V7, P550
46561    LI GH, 2000, ACTA PHYS SINICA, V49, P2133
46562    LI LX, 2001, CHINESE PHYS, V10, P708
46563    LI Z, 2001, ACTA PHYS SIN-CH ED, V50, P847
46564    LU JH, 2002, CHINESE PHYS, V11, P12
46565    LUO XS, 1999, ACTA PHYS SIN-CH ED, V48, P402
46566    OGATA K, 1998, MODERN CONTROL ENG, P739
46567    OTT E, 1990, PHYS REV LETT, V64, P1196
46568    PARLITZ U, 1987, PHYS REV A, V36, P1428
46569    REN HP, 2002, ACTA PHYS SIN-CH ED, V51, P982
46570    TANG GN, 2000, ACTA PHYS SIN-CH ED, V49, P30
46571    WANG GY, 2001, ACTA PHYS SIN-CH ED, V50, P2307
46572    WANG J, 2000, INT J CON, V72, P911
46573    WANG ZY, 1999, ACTA PHYS SIN-CH ED, V48, P206
46574    YAN SL, 2001, ACTA PHYS SIN-CH ED, V50, P428
46575 NR 30
46576 TC 4
46577 SN 1009-1963
46578 J9 CHIN PHYS
46579 JI Chin. Phys.
46580 PD SEP
46581 PY 2002
46582 VL 11
46583 IS 9
46584 BP 900
46585 EP 904
46586 PG 5
46587 SC Physics, Multidisciplinary
46588 GA 602DR
46589 UT ISI:000178490900009
46590 ER
46591 
46592 PT J
46593 AU Ma, HL
46594 TI Hyperfine structure of singly ionized lanthanum and praseodymium
46595 SO CHINESE PHYSICS
46596 DT Article
46597 DE hyperfine structure; fast-ion-beam laser spectroscopy; magnetic dipole
46598    and electric quadruple coupling constants
46599 ID FINE
46600 AB Hyperfine structure spectra of singly ionized lanthanum and
46601    praseodymium have been measured by collinear fast-ion-beam laser
46602    spectroscopy. All the spectral lines were resolved and the magnetic
46603    dipole and electric quadruple coupling constants of the metastable
46604    levels and excited levels were determined. Our results are in agreement
46605    with the published data within the experimental uncertainty. For
46606    praseodymium ions, the accuracy of the magnetic dipole coupling
46607    constants are improved by one order of magnitude compared with other
46608    published data, and the electric quadruple coupling constants are
46609    reported for the first time.
46610 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
46611 RP Ma, HL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
46612 CR ANDRA HJ, 1975, P 4 INT C AT PHYS AT, V4, P365
46613    ANDRA HJ, 1979, PROGR ATOMIC SPECT B, P6
46614    BELLAHMANSOUR N, 1989, PHYS REV A, V39, P5762
46615    BENGTSON A, 1980, PHYS LETT A, V76, P45
46616    DUFAY M, 1977, P 3 INT C JACKS LAK, P231
46617    GINIBRE A, 1989, PHYS SCR, V39, P694
46618    HOHLE C, 1982, Z PHYS A, V304, P279
46619    HOLT RA, 1977, PHYS REV A, V15, P2293
46620    JOHANSSON S, 1996, ASTROPHYS J 1, V462, P943
46621    KUWAMOTO T, 1996, J PHYS SOC JPN, V65, P3180
46622    MA HL, 2001, CHINESE PHYS, V10, P512
46623    MEIER T, 1977, OPT COMMUN, V20, P397
46624    WING WH, 1976, PHYS REV LETT, V36, P1488
46625 NR 13
46626 TC 2
46627 SN 1009-1963
46628 J9 CHIN PHYS
46629 JI Chin. Phys.
46630 PD SEP
46631 PY 2002
46632 VL 11
46633 IS 9
46634 BP 905
46635 EP 909
46636 PG 5
46637 SC Physics, Multidisciplinary
46638 GA 602DR
46639 UT ISI:000178490900010
46640 ER
46641 
46642 PT J
46643 AU Huang, SG
46644    Li, L
46645    Biest, OVD
46646    Vleugels, J
46647    Wang, PL
46648 TI Study of thermodynamic properties of nonstoichiometric phase <
46649    Zr1-zCezO2-x > with compound energy model
46650 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
46651 DT Article
46652 DE zirconia; ceria; nonstoichiometry; thermodynamic
46653 ID ZRO2-CEO2 SYSTEM; DIAGRAM; TRANSFORMATION
46654 AB Using compound energy model (CEM), the thermodynamic properties of
46655    <CeO2-y> and <Zr1-zCezO2-x> were evaluated. The evaluation was based on
46656    the optimization of ZrO2-CeO2 and ZrO2-CeO1.5 systems, as well as the
46657    miscibility gap in CeO1.5-CeO2 system. Except the cubic fluorite
46658    structure phase assessed with compound energy model, all the other
46659    solution phases were assessed with subsitutional solution model. The
46660    model parameters were evaluated through fitting the selected
46661    experimental data by means of thermodynamic optimization. A set of
46662    parameters with thermodynamics self-consistency was obtained and
46663    satisfactorily described the complex relation between y in <CeO2-y> and
46664    the partial pressure of oxygen at different temperatures, also the
46665    interdependence among miscellaneous factors such as temperature, oxygen
46666    partial pressure, the reduction amount of CeO2 as well as the
46667    nonstoichiometry in cubic phase <Zr1-zCezO2-x>. The calculated results
46668    seem to be reasonable when put into the explanation of pressureless
46669    sintering of CeO2-stabilized ZrO2 powder compacts at a controlled
46670    oxygen partial pressure.
46671 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
46672    Katholieke Univ Leuven, Dept MTM, B-3001 Heverlee, Belgium.
46673    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
46674 RP Li, L, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
46675    China.
46676 CR BARRY TI, 1992, J PHASE EQUILIB, V13, P459
46677    CAMPSERVEUX J, 1978, J SOLID STATE CHEM, V23, P73
46678    DU Y, 1991, J AM CERAM SOC, V74, P1569
46679    DU Y, 1994, SCRIPTA METALL MATER, V31, P327
46680    DURAN P, 1990, J MATER SCI, V25, P5001
46681    GRUNDY AN, 2001, J PHASE EQUILIB, V22, P105
46682    HANNINK RHJ, 2000, J AM CERAM SOC, V83, P461
46683    HEUSSNER KH, 1989, J AM CERAM SOC, V72, P1044
46684    HILLERT M, 2001, J ALLOY COMPD, V320, P161
46685    HUANG WM, 1995, METALL MATER TRANS A, V26, P2293
46686    KAUFMAN L, 1978, CALPHAD, V2, P35
46687    LEONOV AI, 1966, IAN SSSR NEORG MATER, V2, P1047
46688    LIN LI, 1996, J MATER SCI TECHNOL, V12, P159
46689    LIN LI, 2001, J MATER SCI TECHNOL, V17, P529
46690    LINDEMER TB, 1986, J AM CERAM SOC, V69, P867
46691    LONGO V, 1973, J AM CERAM SOC DISCU, V56, P600
46692    PANKRATZ LB, 1982, BUREAU MINES B, V672
46693    SUNDMAN B, 1991, J PHASE EQUILIB, V12, P127
46694    TANI E, 1983, J AM CERAM SOC, V66, P506
46695    YASHIMA M, 1994, J AM CERAM SOC, V77, P1869
46696 NR 20
46697 TC 0
46698 SN 1005-0302
46699 J9 J MATER SCI TECHNOL
46700 JI J. Mater. Sci. Technol.
46701 PD SEP
46702 PY 2002
46703 VL 18
46704 IS 5
46705 BP 422
46706 EP 426
46707 PG 5
46708 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
46709    Engineering
46710 GA 601JZ
46711 UT ISI:000178443700013
46712 ER
46713 
46714 PT J
46715 AU Chen, GR
46716    Yang, L
46717 TI Chaotifying a continuous-time system near a stable limit cycle
46718 SO CHAOS SOLITONS & FRACTALS
46719 DT Article
46720 ID CONTROLLING CHAOS; FEEDBACK
46721 AB This paper studies the chaotification problem of driving a
46722    continuous-time system chaotic near its stable limit cycle. The
46723    controller is designed to ensure the controlled orbit be bounded and,
46724    meanwhile, have positive Lyapunov exponents. A numerical example is
46725    given to illustrate the effectiveness of the proposed chaotification
46726    algorithm. (C) 2002 Elsevier Science Ltd. All rights reserved.
46727 C1 City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China.
46728    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
46729    Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China.
46730 RP Chen, GR, City Univ Hong Kong, Dept Elect Engn, Tat Chee Ave, Kowloon,
46731    Hong Kong, Peoples R China.
46732 CR CHEN G, 1998, CHAOS ORDER METHODOL
46733    CHEN G, 1999, CONTROLLING CHAOS BI
46734    CHEN GR, 1996, INT J BIFURCAT CHAOS, V6, P1341
46735    CHEN GR, 1998, INT J BIFURCAT CHAOS, V8, P1585
46736    FRADKOV AL, 1999, INTRO CONTROL OSCILL
46737    JUDD K, 1997, CONTROL CHAOS MATH M
46738    KAPITANIAK T, 1998, CHAOS ENGINEERS THEO
46739    LAKSHMANAN M, 1996, CHAOS NONLINEAR OSCI
46740    OTT E, 1990, PHYS REV LETT, V64, P1196
46741    SCHIFF SJ, 1994, NATURE, V370, P615
46742    TRIANDAF I, 2000, PHYS REV E A, V62, P3529
46743    VANECEK A, 1996, CONTROL SYSTEMS LINE
46744    WANG XF, 2000, CHAOS, V10, P771
46745    WANG XF, 2000, INT J BIFURCAT CHAOS, V10, P549
46746    YANG L, 2002, INT J BIFURCAT CHAOS, V12, P1121
46747    YANG WM, 1995, PHYS REV E, V51, P102
46748 NR 16
46749 TC 8
46750 SN 0960-0779
46751 J9 CHAOS SOLITON FRACTAL
46752 JI Chaos Solitons Fractals
46753 PD JAN
46754 PY 2003
46755 VL 15
46756 IS 2
46757 BP 245
46758 EP 253
46759 PG 9
46760 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
46761 GA 601WX
46762 UT ISI:000178472700005
46763 ER
46764 
46765 PT J
46766 AU Mo, YW
46767    Tanaka, T
46768    Arita, S
46769    Tsuchitani, A
46770    Inoue, K
46771    Yamashita, K
46772    Suzuki, Y
46773 TI Integrated analog beam former based on bucket brigade device for
46774    micromachined ultrasonic sensor array
46775 SO SENSORS AND ACTUATORS A-PHYSICAL
46776 DT Article
46777 DE ultrasonic sensors; phased array; microelectromechanical devices;
46778    system analysis and design
46779 AB Micromachined ultrasonic sensors are promising in the applications
46780    including medical imaging, non-destructive evaluation (NDE), ranging,
46781    and object detections. Bucket brigade device (BBD) was used as the
46782    analog beam former for piezoelectric micromachined ultrasonic sensor
46783    phased array. The works on the optimization of BBD, including
46784    improvement of the transfer efficiency and dynamic range, and
46785    simplification of system design were discussed in details. The
46786    parasitic insensitive approach was proposed to optimize the properties
46787    of BBD delay line, and measured results indicated that this approach
46788    achieved larger charge transfer efficiency, larger dynamic range, and
46789    higher frequency than the conventional BBD. Furthermore, the BBD
46790    distributed delay-sum architecture was proposed to reduce chip area,
46791    simplify system design, and achieve monolithic integration. The
46792    measured results indicated that BBD distributed delay-sum architecture
46793    showed the beam forming property that is consistent to the theoretical
46794    calculation very well. (C) 2002 Elsevier Science B.V. All rights
46795    reserved.
46796 C1 Shanghai Univ, Shanghai 201800, Peoples R China.
46797    Technol Res Inst Osaka Prefecture, Izumi, Osaka 5941157, Japan.
46798    Osaka Ind Promot Org, Izumi, Osaka 5941157, Japan.
46799    Osaka Univ, Toyonaka, Osaka 5608531, Japan.
46800 RP Mo, YW, Shanghai Univ, Shanghai 201800, Peoples R China.
46801 CR INOUE K, 1995, P 8 INT C SOL STAT S
46802    KUTTRUFF H, 1991, ULTRASONICS FUNDAMEN
46803    MACOVSKI A, 1975, 3918024, US
46804    MASLAK SH, 1979, 4140022, US
46805    MELEN R, 1977, CHAGE COUPLED DEVICE
46806    ODONNEL MO, 1990, P 1990 IEEE ULTR S, P1499
46807    PELLAM JR, 1946, J CHEM PHYS, V14, P608
46808    VONRAMM OT, 1983, IEEE T BIO-MED ENG, V30, P438
46809    YAMASHITA K, 2002, SENSOR ACTUAT A-PHYS, V97, P302
46810 NR 9
46811 TC 2
46812 SN 0924-4247
46813 J9 SENSOR ACTUATOR A-PHYS
46814 JI Sens. Actuator A-Phys.
46815 PD SEP 30
46816 PY 2002
46817 VL 101
46818 IS 1-2
46819 BP 203
46820 EP 211
46821 PG 9
46822 SC Engineering, Electrical & Electronic; Instruments & Instrumentation
46823 GA 599QC
46824 UT ISI:000178345800028
46825 ER
46826 
46827 PT J
46828 AU Yang, L
46829    Liu, ZR
46830    Zheng, Y
46831 TI "Middle" periodic orbit and its application to chaos control
46832 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
46833 DT Article
46834 DE chaos; chaos control; symbolic dynamics
46835 ID SYSTEMS; HYPERCHAOS; TARGETS
46836 AB In this paper, a new method, by which any point in a chaotic attractor
46837    can be guided to any target periodic orbit, is proposed. The "middle"
46838    periodic orbit is used to lead an initial point in a chaotic attractor
46839    to a neighborhood of the target orbit, and then controlling chaos can
46840    be achieved by the improved OGY method. The time needed in the method
46841    using "middle" periodic orbit is less than that of the OGY method, and
46842    is inversely proportional to the square of the topological entropy of
46843    the given map. An example is used to illustrate the results.
46844 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
46845    Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China.
46846    Yangzhou Univ, Dept Math, Jiangsu 225002, Peoples R China.
46847 RP Yang, L, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
46848 CR AUERBACH D, 1992, PHYS REV LETT, V69, P3479
46849    CHEN GR, 1996, INT J BIFURCAT CHAOS, V6, P1341
46850    CHEN GR, 1998, INT J BIFURCAT CHAOS, V8, P1585
46851    DITTO WL, 1990, PHYS REV LETT, V65, P3211
46852    LIU ZR, 1999, ACTA MECH SINICA, V15, P366
46853    OTT E, 1990, PHYS REV LETT, V64, P1196
46854    SHINBROT T, 1990, PHYS REV LETT, V65, P3215
46855    SHINBROT T, 1992, PHYS LETT A, V169, P349
46856    SHINBROT T, 1992, PHYS REV A, V45, P4165
46857    SINGER J, 1991, PHYS REV LETT, V66, P1123
46858    XIE H, 1996, GRAMMATICAL COMPLEXI
46859    XIE HM, 1995, COMPLEX SYST, V9, P73
46860    YANG L, 1998, APPL MATH MECH-ENGL, V19, P1
46861    YANG L, 2000, PHYS REV LETT, V84, P67
46862 NR 14
46863 TC 0
46864 SN 0218-1274
46865 J9 INT J BIFURCATION CHAOS
46866 JI Int. J. Bifurcation Chaos
46867 PD AUG
46868 PY 2002
46869 VL 12
46870 IS 8
46871 BP 1869
46872 EP 1876
46873 PG 8
46874 SC Mathematics, Applied; Multidisciplinary Sciences
46875 GA 599XX
46876 UT ISI:000178361400013
46877 ER
46878 
46879 PT J
46880 AU Chen, WX
46881    Tu, JP
46882    Ma, XC
46883    Xu, ZD
46884    Chen, WL
46885    Wang, JG
46886    Cheng, DH
46887    Xia, JB
46888    Gan, HY
46889    Jin, YX
46890    Tenne, R
46891    Rosenstveig, R
46892 TI Preparation and tribological properties of Ni-P electroless composite
46893    coating containing inorganic fullerene-like WS2 nanomaterials
46894 SO ACTA CHIMICA SINICA
46895 DT Article
46896 DE inorganic fullerene-like (IF); nanomaterials; composite coating;
46897    tribological properties
46898 ID TUNGSTEN DISULFIDE; NANOPARTICLES; MECHANISM; FRICTION; WEAR
46899 AB Ni-P composite coating containing inorganic fullerene-like WS2 nanosize
46900    particles was prepared by electroless codeposition. Its tribological
46901    performances were evaluated by a ring-on-block wear tester. It was
46902    found that the Ni-P-(IF-WS2) composite coating exhibited both higher
46903    wear resistance and lower friction coefficient than Ni-P, Ni-P-(layer
46904    2H-WS2) and Ni-P-graphite electroless coating. The favorable effects of
46905    inorganic fullerene-like nanomaterials on the tribological properties
46906    of the composite coating were discussed.
46907 C1 Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China.
46908    Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R China.
46909    Zhejiang Univ Technol, Coll Mech & Electr Engn, Hangzhou 310032, Peoples R China.
46910    Shanghai Univ, Dept Environ & Chem Engn, Shanghai 200027, Peoples R China.
46911    Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel.
46912 RP Chen, WX, Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China.
46913 CR CHHOWALLA M, 2000, NATURE, V407, P164
46914    FELDMAN Y, 1996, J AM CHEM SOC, V118, P5362
46915    FELDMAN Y, 2000, SOLID STATE SCI, V2, P663
46916    MARGULIS L, 1993, NATURE, V365, P113
46917    RAPOPORT L, 1997, NATURE, V387, P791
46918    RAPOPORT L, 1999, WEAR, V225, P975
46919    RAPOPORT L, 2001, ADV ENG MATER, V3, P71
46920    RAPOPORT L, 2001, NANO LETTERS, V1, P137
46921    RAPOPORT L, 2001, WEAR, V249, P150
46922    TENNE R, 1992, NATURE, V360, P444
46923    ZAK A, 2000, J AM CHEM SOC, V122, P11108
46924 NR 11
46925 TC 2
46926 SN 0567-7351
46927 J9 ACTA CHIM SIN
46928 JI Acta Chim. Sin.
46929 PD SEP
46930 PY 2002
46931 VL 60
46932 IS 9
46933 BP 1722
46934 EP 1726
46935 PG 5
46936 SC Chemistry, Multidisciplinary
46937 GA 598TK
46938 UT ISI:000178292400033
46939 ER
46940 
46941 PT J
46942 AU Liu, LH
46943    Dong, C
46944    Zhang, JC
46945    Li, JQ
46946 TI The microstructure study of Co-doped YBCO system
46947 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
46948 DT Article
46949 DE Co; Fe-doped YBCO; superconductor; structure phase transition; twin;
46950    tweed; oxygen content
46951 ID HIGH-TC SUPERCONDUCTORS; POSITRON-ANNIHILATION; YBA2CU3O7-DELTA;
46952    PARAMETERS; DENSITY; NI; FE
46953 AB A series of YBa2CU3-xCoxOx (x = 0-0.50) samples have been studied by
46954    means of SEM, TEM, XRD and positron annihilation technology. Oxygen
46955    contents of the samples have been measured using a new volumetric
46956    method The microstructure evolution of the Co-doped YBCO is very
46957    similar to that in the Fe-doped YBCO. YBa2Cu3-xCoxOx undergoes a
46958    structure phase transition from orthorhombic to tetragonal between x =
46959    0.12 and 0.15. Twin structure predominates when x is low (x < 0.05).
46960    With the increasing of x, tweed structure appears and its proportion
46961    increases till it becomes dominant. When x > 0 12, the tweed structure
46962    disappears completely. The grain boundary density increases with x and
46963    shows a sudden drop when x > 0.12. Similarly, the positron short
46964    lifetime component tau(1) shows a sudden drop between x = 0.12 and 0.15
46965    Therefore, positron can be used as a sensitive probe for the O-T phase
46966    transition in this system. A possible model is proposed to describe the
46967    relationship between positron short lifetime component tau(1), and the
46968    concentrations of oxygen vacancy and twin (tweed) boundary. The
46969    experimental results can be satisfactorily explained by this model. (C)
46970    2002 Elsevier Science B.V. All rights reserved.
46971 C1 Chinese Acad Sci, Inst Phys, Natl Lab Superconduct, Beijing 100080, Peoples R China.
46972    Henan Normal Univ, Dept Phys, Xinxiang 453002, Peoples R China.
46973    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
46974 RP Liu, LH, Chinese Acad Sci, Inst Phys, Natl Lab Superconduct, POB 603,
46975    Beijing 100080, Peoples R China.
46976 CR BALOGH AG, 1988, PHYS REV B, V38, P2883
46977    BERGERSEN B, 1969, SOLID STATE COMMUN, V7, P1208
46978    BRANDT W, 1967, POSITRON ANNIHILATIO, P155
46979    CHAKRABORTY B, 1989, PHYS REV B, V39, P215
46980    CONNORS DC, 1969, PHYS LETT A, V30, P24
46981    DONG C, 1999, J APPL CRYSTALLOGR, V32, P838
46982    GASUMYANTS VE, 1992, SFKHT, V5, P674
46983    HAUTOJARVI P, 1983, POSITRONS SOLID, P255
46984    HIROI Z, 1988, JPN J APPL PHYS, V27, L580
46985    JEAN YC, 1990, PHYS REV LETT, V64, P1593
46986    NAROZHNYI VN, 1996, PHYS REV B, V53, P5856
46987    RENEVIER H, 1994, PHYSICA C, V220, P143
46988    RISTO Z, 1991, J PHYS CHEM SOLIDS, V52, P1577
46989    SEEGER A, 1973, J PHYS F MET PHYS, V3, P248
46990    SMEDSKJAER LC, 1988, PHYS REV B, V37, P2330
46991    SYDOW JP, 1998, APPL PHYS LETT, V72, P3512
46992    TARASCON JM, 1988, PHYS REV B, V37, P7458
46993    USMAR SG, 1988, PHYS REV B, V38, P5126
46994    VONSTETTEN EC, 1988, PHYS REV LETT, V60, P2198
46995    WESTERHOLT K, 1989, PHYS REV B, V39, P11680
46996    XU YW, 1989, PHYS REV B, V39, P6667
46997    ZHANG J, 1999, PHYS LETT A, V236, P452
46998    ZHANG JC, 1993, PHYS REV B, V48, P16830
46999 NR 23
47000 TC 0
47001 SN 0921-4534
47002 J9 PHYSICA C
47003 JI Physica C
47004 PD SEP 1
47005 PY 2002
47006 VL 377
47007 IS 3
47008 BP 348
47009 EP 356
47010 PG 9
47011 SC Physics, Applied
47012 GA 596NV
47013 UT ISI:000178171700021
47014 ER
47015 
47016 PT J
47017 AU Darrouzet, V
47018    Hilton, M
47019    Pinder, D
47020    Wang, JL
47021    Guerin, J
47022    Bebear, JP
47023 TI Prognostic value of the blink reflex in acoustic neuroma surgery
47024 SO OTOLARYNGOLOGY-HEAD AND NECK SURGERY
47025 DT Article
47026 ID NERVE; TUMORS
47027 AB OBJECTIVE: The study goal was to demonstrate that blink reflex analysis
47028    can predict postoperative facial nerve outcome in cerebellopontine
47029    angle tumor surgery.
47030    STUDY DESIGN, SETTING, AND PATIENTS: In an open and prospective study
47031    conducted at a single tertiary care center over 3 years, 91 subjects
47032    with a vestibular schwannoma filling the internal auditory meatus were
47033    enrolled and operated on via a translabyrinthine approach. The
47034    difference in latency of the early response (DeltaR1) of the blink
47035    reflex between the pathologic side and the healthy side was calculated
47036    in every patient during a complete electrophysiologic examination of
47037    the facial nerve performed on the day before surgery.
47038    MAIN OUTCOME MEASURES. DeltaR1 was compared with the other preoperative
47039    data (tumor volume, facial function), with the perioperative
47040    observations (difficulties with the dissection of the facial nerve),
47041    and especially with the postoperative status after I year. The
47042    statistical, study was conducted using polynomial, regression.
47043    RESULTS: Patients with a negative or zero DeltaR1 have normal facial
47044    function at I year. For those with a positive DeltaR1 the outcome is
47045    not favorable unless the tumor is small. For patients presenting with
47046    an immediate complete facial paralysis, the value of DeltaR1 is also
47047    indicative of facial function outcome.
47048    CONCLUSION. Statistical analysis shows that the blink reflex, through
47049    DeltaR1, has an excellent prognostic value in anticipating the
47050    difficulties with facial nerve dissection and postoperative facial
47051    function after 1 year.
47052 C1 Univ Hosp, Dept Skull Base Surg, Bordeaux, France.
47053    Univ Bristol, Southmead Hosp, Dept Otolaryngol, Bristol, Avon, England.
47054    Univ Bristol, St Michaels Hosp, Dept Otolaryngol, Bristol, Avon, England.
47055    Shanghai Univ, Rui Jin Hosp, Dept Otolaryngol, Shanghai, Peoples R China.
47056 RP Darrouzet, V, Hop Pellegrin, Serv ORL, Pl Amelie Raba Leon, F-33076
47057    Bordeaux, France.
47058 CR BEBEAR J, 1990, LONG TERM RESULTS IN, P497
47059    BENDER LF, 1969, ARCHIVES PHYSICAL ME, V50, P27
47060    DAVERAT F, 1989, VALEUR PRONOSTIQUE E
47061    GIL R, 1980, ACTA NEUROL BELG, V80, P201
47062    HOUSE JW, 1985, OTOLARYNG HEAD NECK, V93, P146
47063    JESEL M, 1978, REV ELECTROENCEPHALO, V8, P302
47064    KARTUSH JM, 1987, OTOLARYNG HEAD NECK, V97, P257
47065    KIMURA J, 1983, ELECTRODIAGNOSIS DIS
47066    LYON LW, 1972, ARCH OTOLARYNGOL, V95, P100
47067    NAGAHIRO S, 1983, NO TO SHINKEI, V35, P1117
47068    NORMAND MM, 1994, MUSCLE NERVE, V17, P1401
47069    NURLU G, 1994, NEUROSURG REV, V17, P253
47070    PAVESI G, 1992, ELECTROMYOGR CLIN NE, V32, P119
47071    PORTMANN M, 1982, PRECIS OTORHINOLARYN, P139
47072    PORTMANN M, 1988, REV LARYNGOL OTOL RH, V109, P437
47073    ROSLER KM, 1994, MUSCLE NERVE, V17, P183
47074    STERKERS J, 1991, CHIRURGIE NEURINOME, P45
47075    STERKERS JM, 1986, ANN OTOLARYNGOL CHIR, V103, P487
47076 NR 18
47077 TC 2
47078 SN 0194-5998
47079 J9 OTOLARYNGOL HEAD NECK SURG
47080 JI Otolaryngol. Head Neck Surg.
47081 PD SEP
47082 PY 2002
47083 VL 127
47084 IS 3
47085 BP 153
47086 EP 157
47087 PG 5
47088 SC Otorhinolaryngology; Surgery
47089 GA 596MQ
47090 UT ISI:000178169000004
47091 ER
47092 
47093 PT J
47094 AU Chen, LQ
47095    Zhang, NH
47096    Zu, JW
47097 TI Bifurcation and chaos of an axially moving viscoelastic string
47098 SO MECHANICS RESEARCH COMMUNICATIONS
47099 DT Article
47100 ID NONLINEAR VIBRATION; DYNAMICAL BEHAVIOR; STABILITY ANALYSIS; BELTS
47101 AB In this paper, bifurcation and chaos of an axially moving viscoelastic
47102    string are investigated. The 1-term and the 2-term Galerkin truncations
47103    are respectively employed to simplify the partial-differential equation
47104    that governs the transverse motions of the string into a set of
47105    ordinary differential equations. The bifurcation diagrams are presented
47106    in the case that the transport speed, the amplitude of the periodic
47107    perturbation, or the dynamic viscosity is respectively varied while
47108    other parameters are fixed. The dynamical behaviors are numerically
47109    identified based on the Poincare maps. Numerical simulations indicate
47110    that periodic, quasi-periodic and chaotic motions occur in the
47111    transverse vibrations of the axially moving viscoelastic string. (C)
47112    2002 Elsevier Science Ltd. All rights reserved.
47113 C1 Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
47114    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
47115    Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada.
47116 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
47117 CR ABRATE S, 1992, MECH MACH THEORY, V27, P645
47118    CHEN LQ, 2000, APPL MATH MECH-ENGL, V21, P995
47119    CHEN LQ, 2000, MECH RES COMMUN, V27, P413
47120    CHEN LQ, 2001, ADV MECH, V31, P535
47121    FUNG RF, 1997, J SOUND VIB, V201, P153
47122    HUANG JS, 1995, INT J MECH SCI, V37, P145
47123    LUO ACJ, 1995, J HYDRODYNAMICS B, V7, P92
47124    LUO ACJ, 1999, J SOUND VIB, V227, P523
47125    MAHALINGAM S, 1957, BRIT J APPL PHYS, V8, P145
47126    MOCHENSTURM EM, 1996, J VIB ACOUST, V116, P346
47127    MOTE CD, 1972, SHOCK VIBRATION DIGE, V4, P2
47128    PAKDEMIRLI M, 1994, J SOUND VIB, V169, P179
47129    PAKDEMIRLI M, 1997, J SOUND VIB, V203, P815
47130    RAVINDRA B, 1998, ARCH APPL MECH, V68, P195
47131    TAGATA G, 1995, J SOUND VIB, V185, P51
47132    THOMPSON JMT, 1994, PHYS REV E, V49, P1019
47133    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
47134    ZHANG L, 1999, J APPL MECH-T ASME, V66, P396
47135    ZHANG L, 1999, J APPL MECH-T ASME, V66, P403
47136 NR 19
47137 TC 9
47138 SN 0093-6413
47139 J9 MECH RES COMMUN
47140 JI Mech. Res. Commun.
47141 PD APR-JUN
47142 PY 2002
47143 VL 29
47144 IS 2-3
47145 BP 81
47146 EP 90
47147 PG 10
47148 SC Mechanics
47149 GA 595VN
47150 UT ISI:000178129400002
47151 ER
47152 
47153 PT J
47154 AU Zhang, DJ
47155    Chen, DY
47156 TI Hamiltonian structure of discrete soliton systems
47157 SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
47158 DT Article
47159 ID DIFFERENTIAL-DIFFERENCE EQUATIONS; INTEGRABLE SYSTEMS;
47160    EVOLUTION-EQUATIONS; HEREDITARY SYMMETRIES; ALGEBRAIC STRUCTURE; TRACE
47161    IDENTITY; AKNS SYSTEM
47162 AB We describe an approach for investigating the Hamiltonian structures of
47163    the lattice isospectral evolution equations associated with a general
47164    discrete spectral problem. By using the so-called implicit
47165    representations of the isospectral flows, we demonstrate the existence
47166    of the recursion operator L, which is a strong and hereditary symmetry
47167    of the flows. It is then proven that every equation in the isospectral
47168    hierarchy possesses the Hamiltonian structure if L has a skew-symmetric
47169    factorization and the first equation (u(1) = K-(0)) in the hierarchy
47170    satisfies some simple condition. We obtain related properties, such as
47171    the implectic-symplectic factorization of L, the Liouville complete
47172    integrability and the multi-Hamiltonian structures of the isospectral
47173    hierarchy. Four examples are given.
47174 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
47175 RP Zhang, DJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
47176 CR ABLOWITZ MJ, 1975, J MATH PHYS, V16, P598
47177    ABLOWITZ MJ, 1976, J MATH PHYS, V17, P1011
47178    ABLOWITZ MJ, 1976, STUD APPL MATH, V55, P213
47179    ABLOWITZ MJ, 1977, STUD APPL MATH, V57, P1
47180    BLASZAK M, 1994, J MATH PHYS, V35, P4661
47181    CHEN DG, 1991, J PHYS A-MATH GEN, V24, P377
47182    CHEN DY, 1996, J MATH PHYS, V37, P5524
47183    FAN E, 2001, J PHYS A-MATH GEN, V34, P513
47184    FOKAS AS, 1982, J MATH PHYS, V23, P1066
47185    FOKAS AS, 1987, STUD APPL MATH, V77, P253
47186    FUCHSSTEINER B, 1979, NONLINEAR ANAL, V3, P849
47187    FUCHSSTEINER B, 1981, PHYSICA D, V4, P47
47188    LI YS, 1986, J PHYS A-MATH GEN, V19, P3713
47189    LI YS, 1990, J PHYS A-MATH GEN, V23, P721
47190    MA WX, 1990, J PHYS A-MATH GEN, V23, P2707
47191    MA WX, 1999, J MATH PHYS, V40, P2400
47192    MAGRI F, 1978, J MATH PHYS, V19, P1156
47193    TODA M, 1989, THEORY NONLINEAR LAT
47194    TU GZ, 1989, J MATH PHYS, V30, P330
47195    TU GZ, 1990, J PHYS A-MATH GEN, V23, P3903
47196    WADATI M, 1976, PROG THEOR PHYS SUPP, V59, P36
47197    WU YT, 1996, J MATH PHYS, V37, P2338
47198    YAN Z, 2001, J MATH PHYS, V42, P330
47199 NR 23
47200 TC 15
47201 SN 0305-4470
47202 J9 J PHYS-A-MATH GEN
47203 JI J. Phys. A-Math. Gen.
47204 PD AUG 23
47205 PY 2002
47206 VL 35
47207 IS 33
47208 BP 7225
47209 EP 7241
47210 PG 17
47211 SC Physics, Mathematical; Physics, Multidisciplinary
47212 GA 594LP
47213 UT ISI:000178051900017
47214 ER
47215 
47216 PT J
47217 AU Cao, WG
47218    Shi, ZJ
47219    Fan, C
47220    Ding, WY
47221 TI Convenient synthesis of methyl
47222    4-carboethoxy-3-perfluoroalkyl-5-methoxyhexa-2,4-dienoates
47223 SO JOURNAL OF FLUORINE CHEMISTRY
47224 DT Article
47225 DE hexadienoates; fluorinated ylides; methyl 3-perfluoroalkyl-2-propiolates
47226 ID ELEMENTO-ORGANIC COMPOUNDS; STEREOSELECTIVE SYNTHESIS; 6TH GROUPS;
47227    ARSORANE; 5TH
47228 AB In the presence of K2CO3, reaction of ethyl 3-methoxy-4-(triphenyl
47229    phosphoranylidene)but-2-enoate (2), which was derived from the bromide
47230    1, with methyl 3-perfluoroalkyl-2-propiolates (3) in CH2Cl2 at room
47231    temperature, gave methyl
47232    4-carboethoxy-3-perfluoroalkyl-5-methoxy-6-(triphenylphosphoranylidene)h
47233    exa-2,4-dienoate (4) as major products in excellent yields. Methyl
47234    4-carboethoxy-3-perfluoroalkyl-5-methoxyhexa-2,4-dienoates (5) were
47235    obtained in high yield by hydrolysis of (4) in hot aqueous methanol in
47236    a sealed tube. The structure identities of compounds 4 and 5 were
47237    confirmed by IR, MS,H-1, (CNMR)-C-13, 2D C-H COSY and microanalyses.
47238    Reaction mechanisms are proposed to account for the formation of
47239    products 4 and 5. (C) 2002 Elsevier Science B.V. All rights reserved.
47240 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
47241 RP Cao, WG, Shanghai Univ, Dept Chem, 99 Shang Da Rd, Shanghai 200436,
47242    Peoples R China.
47243 CR BANKS RE, 1994, ORGANOFLUORINE CHEM
47244    DING WY, 1986, ACTA CHIM SINICA, V44, P62
47245    DING WY, 1987, ACTA CHIM SINICA, V45, P47
47246    DING WY, 1991, J CHEM SOC PERK  JUN, P1369
47247    DING WY, 1992, CHEM RES CHINESE U, V8, P224
47248    FILLER R, 1993, ORGANOFLUORINE COMPO, P386
47249    HUANG YZ, 1979, HUA XUE XUE BAO, V31, P47
47250    KOCHHAR KS, 1984, J ORG CHEM, V49, P3222
47251    LIEBMAN JF, 1988, FLUORINE CONTAINING
47252    SMISSMAN EE, 1964, J ORG CHEM, V29, P3161
47253 NR 10
47254 TC 0
47255 SN 0022-1139
47256 J9 J FLUORINE CHEM
47257 JI J. Fluor. Chem.
47258 PD AUG 28
47259 PY 2002
47260 VL 116
47261 IS 2
47262 BP 117
47263 EP 120
47264 PG 4
47265 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
47266 GA 594RH
47267 UT ISI:000178064200004
47268 ER
47269 
47270 PT J
47271 AU Zheng, YA
47272    Nian, YB
47273    Liu, ZR
47274 TI Impulsive control for the stabilization of discrete chaotic system
47275 SO CHINESE PHYSICS LETTERS
47276 DT Article
47277 ID VARIABLES; SUPPRESSION
47278 AB We first give the theoretical result of the stabilization of general
47279    discrete chaotic systems by using impulsive control. As an example and
47280    an application of the theoretical result, we derive some sufficient
47281    conditions for the stabilization of the double rotor map via impulsive
47282    control. The computer simulation result is given to demonstrate the
47283    method.
47284 C1 Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China.
47285    Jiangsu Univ, Sch Elect & Infromat Engn, Jiangsu 212013, Peoples R China.
47286    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
47287 RP Zheng, YA, Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China.
47288 CR CHEN YX, 1995, CHINESE SCI BULL, V40, P1748
47289    FRODKOV A, 1996, IEEE T CAS I, V43, P907
47290    GREBOGI C, 1987, PHYSICA D, V25, P347
47291    GUTIERREZ JM, 1996, INT J BIFURCAT CHAOS, V6, P1351
47292    MATIAS MA, 1994, PHYS REV LETT, V72, P1455
47293    MATIAS MA, 1996, PHYS REV E, V54, P198
47294    OTT E, 1990, PHYS REV LETT, V64, P1196
47295    ROMEIRAS FJ, 1992, PHYSICA D, V58, P165
47296    TAO Y, 1997, PHYS LETT A, V232, P356
47297    TIAN YC, 1998, PHYSICA D, V117, P1
47298    WU SG, 2001, CHINESE PHYS LETT, V18, P341
47299    XIE WX, 2000, PHYS LETT A, V275, P67
47300    XU HB, 2001, PHYS REV E 2, V64
47301    YANG T, 1997, PHYSICA D, V110, P18
47302    ZASLAVSKY GM, 1978, PHYS LETT A, V69, P145
47303 NR 15
47304 TC 1
47305 SN 0256-307X
47306 J9 CHIN PHYS LETT
47307 JI Chin. Phys. Lett.
47308 PD SEP
47309 PY 2002
47310 VL 19
47311 IS 9
47312 BP 1251
47313 EP 1253
47314 PG 3
47315 SC Physics, Multidisciplinary
47316 GA 595CD
47317 UT ISI:000178088500010
47318 ER
47319 
47320 PT J
47321 AU Liu, YR
47322    Liu, ZR
47323 TI Some dynamical behavior of discrete Nagumo equation
47324 SO CHAOS SOLITONS & FRACTALS
47325 DT Article
47326 ID COUPLED MAP LATTICE; BREATHERS; ANTIINTEGRABILITY; OSCILLATORS;
47327    EXISTENCE; NETWORKS; CHAOS
47328 AB The spatiotemporal dynamics can be effectively studied by continuation
47329    from an anti-integrable limit. By using the anti-integrability method
47330    we consider the dynamical behavior of discrete Nagumo equation, prove
47331    the existence of breather and discuss the spatial disorder of the
47332    stationary solutions in the system. (C) 2002 Elsevier Science Ltd. All
47333    rights reserved.
47334 C1 Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China.
47335    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
47336 RP Liu, YR, Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China.
47337 CR ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
47338    AUBRY S, 1990, PHYSICA D, V43, P199
47339    AUBRY S, 1995, PHYSICA D, V86, P284
47340    AUBRY S, 1997, PHYSICA D, V103, P201
47341    CHOW SN, 1995, SIAM J APPL MATH, V55, P1764
47342    CROSS MC, 1993, REV MOD PHYS, V65, P3
47343    DEIMLING K, 1985, NONLINEAR FUNCTIONAL
47344    GINZBURG SL, 1999, PHYSICA D, V132, P87
47345    KANEKO K, 1993, PHYSICA D, V68, P299
47346    KANEKO K, 1993, THEORY APPL COUPLED
47347    KEENER JP, 1987, SIAM J APPL MATH, V47, P556
47348    MACKAY RS, 1994, NONLINEARITY, V7, P1623
47349    MARIN JL, 1996, NONLINEARITY, V9, P1501
47350    SEPULCHRE JA, 1997, NONLINEARITY, V10, P679
47351    SEPULCHRE JA, 1998, PHYSICA D, V113, P342
47352 NR 15
47353 TC 0
47354 SN 0960-0779
47355 J9 CHAOS SOLITON FRACTAL
47356 JI Chaos Solitons Fractals
47357 PD DEC
47358 PY 2002
47359 VL 14
47360 IS 9
47361 BP 1457
47362 EP 1464
47363 PG 8
47364 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
47365 GA 595WA
47366 UT ISI:000178130500014
47367 ER
47368 
47369 PT J
47370 AU Chen, ZP
47371    Zhang, JC
47372    Cao, GX
47373    Cao, SX
47374 TI Effect of the lanthanide contraction on the superconduction and local
47375    electronic structure of RBa2Cu3O7-delta systemes
47376 SO ACTA PHYSICA SINICA
47377 DT Article
47378 DE ionic radius of rare earth; high-T-c superconductivity; positron
47379    annihilation; local electronic structure
47380 ID EARTH IONIC RADIUS; POSITRON LIFETIME; DEFECTS
47381 AB A series of RBa2 Cu-3 O-7.8 (R = Tm, Dy, Gd, Eu, Nd and Y) samples were
47382    prepared by the standard solid-state-reaction method. The effect of the
47383    ionic radius of rare earth on the local electronic structure, crystal
47384    structures and superconductivity have been studied by means of positron
47385    annihilation technique(PAT) and x-ray diffraction ( XRD) The results
47386    show that the positron lifetime parameters tau(1) and tau(2) increase
47387    with the increase of the ionic radius of rare earth. But the local
47388    electronic density based on the positron lifetime parameters appears to
47389    decrease with the increase of the ionic radius of rare earth. It is
47390    concluded that the local electronic density and crystal structures are
47391    factors affecting the superconductivity.
47392 C1 Zhengzhou Inst Light Ind, Dept Appl Math & Phys, Zhengzhou 450002, Peoples R China.
47393    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
47394 RP Chen, ZP, Zhengzhou Inst Light Ind, Dept Appl Math & Phys, Zhengzhou
47395    450002, Peoples R China.
47396 CR BRANDT W, 1967, POSITRON ANNIHALATIO
47397    BRANDT W, 1974, APPL PHYS, V5, P1
47398    BUCHNER B, 1990, SOLID STATE COMMUN, V73, P357
47399    CHEN ZP, 2001, ACTA PHYS SIN-CH ED, V50, P550
47400    GOU ZH, 1995, CHINESE J LOW TEMP P, V17, P48
47401    LAVROV AN, 1998, PHYS REV LETT, V81, P5636
47402    LI LJ, 1998, ACTA PHYS SINICA, V47, P844
47403    LIU LH, 2001, ACTA PHYS SINICA, V50, P768
47404    LU X, 1992, PHYS REV B, V45, P7989
47405    NAROZHNYI VN, 1996, PHYS REV B, V53, P5856
47406    POLITY A, 1999, PHYS REV B, V59, P10025
47407    THOMAS J, 1988, SOLID STATE COMMUN, V65, P981
47408    UDAYAN D, 2000, PHYS REV B, V62, P14519
47409    WANG JC, 2000, CHINESE PHYS, V9, P216
47410    XIONG H, 2001, ACTA PHYS SIN-CH ED, V50, P1783
47411    ZHANG JC, 1995, PHYS LETT A, V201, P70
47412    ZHANG JC, 1999, PHYS LETT A, V263, P452
47413    ZHANG LW, 1998, ACTA PHYS SINICA, V47, P1906
47414 NR 18
47415 TC 4
47416 SN 1000-3290
47417 J9 ACTA PHYS SIN-CHINESE ED
47418 JI Acta Phys. Sin.
47419 PD SEP
47420 PY 2002
47421 VL 51
47422 IS 9
47423 BP 2150
47424 EP 2154
47425 PG 5
47426 SC Physics, Multidisciplinary
47427 GA 595LL
47428 UT ISI:000178110800044
47429 ER
47430 
47431 PT J
47432 AU Pike, R
47433    Jiang, SH
47434 TI Ultrahigh-resolution optical imaging of colloidal particles
47435 SO JOURNAL OF PHYSICS-CONDENSED MATTER
47436 DT Article
47437 ID SCANNING MICROSCOPY; SUPERRESOLVING MASKS
47438 AB We continue the theme exploited very effectively by Professor Pusey
47439    over the years of using laser light to measure the size of colloidal
47440    particles. A description of a new measurement technique using a
47441    confocal scanning laser microscope (CSLM) is given in which the
47442    Rayleigh resolution limit of a numerical aperture 1.3 oil-immersion
47443    objective is effectively doubled. The method exploits the 'natural'
47444    bandwidth of an imaging system with a very low number of 'degrees of
47445    freedom' (generalized Shannon number) which is realized in the CSLM by
47446    using the high-aperture objective lens both to illuminate the particles
47447    and to collect the scattered light from them. The available extra
47448    resolution is not visible in the conventional recorded image of the
47449    instrument and the full double-bandwidth 'information' content in the
47450    image plane is extracted in our method by using a specially calculated
47451    optical mask as an instantaneous analogue computer. We have modified a
47452    commercial Bio-Rad 600 confocal microscope to work in this way and
47453    present here the first measurements obtained with it. We compare images
47454    of 100 nm diameter standard PVC fluorescent calibration spheres with
47455    the new and the older modalities. The results confirm the expected
47456    increase in optical resolution.
47457 C1 Univ London Kings Coll, Dept Phys, London WC2R 2LS, England.
47458    Shanghai Univ, Dept Fine Mech Engn, Shanghai, Peoples R China.
47459 RP Pike, R, Univ London Kings Coll, Dept Phys, Strand, London WC2R 2LS,
47460    England.
47461 CR AKDUMAN I, 1998, J OPT SOC AM A, V15, P2275
47462    BERTERO M, 1992, INVERSE PROBL, V8, P1
47463    BERTERO M, 1993, HANDB STAT, V10, P1
47464    BRAND U, 2000, THESIS KINGS COLL LO
47465    CREFFIELD CE, 1995, PHYS REV LETT, V75, P517
47466    DEVILLIERS GD, 1999, INVERSE PROBL, V15, P615
47467    DEVILLIERS GD, 2001, INVERSE PROBL, V17, P1163
47468    GROCHMALICKI J, 1993, J OPT SOC AM A, V10, P1074
47469    IGNATOWSKY VS, 1921, T OPT I PETROGRAD, V1, P1
47470    WILSON T, 1984, THEORY PRACTICE SCAN
47471 NR 10
47472 TC 0
47473 SN 0953-8984
47474 J9 J PHYS-CONDENS MATTER
47475 JI J. Phys.-Condes. Matter
47476 PD AUG 26
47477 PY 2002
47478 VL 14
47479 IS 33
47480 BP 7749
47481 EP 7756
47482 PG 8
47483 SC Physics, Condensed Matter
47484 GA 594PW
47485 UT ISI:000178060400015
47486 ER
47487 
47488 PT J
47489 AU Huang, DB
47490 TI A stable discretization on attractors of the damped and driven
47491    periodically sine-Gordon equation
47492 SO DYNAMIC SYSTEMS AND APPLICATIONS
47493 DT Article
47494 AB In this paper, the rationality of numerical schemes for continuous
47495    systems is studied from viewpoint of dynamics by investigating the
47496    damped and driven periodically sine-Gordon equation. The existence and
47497    convergence of attractors under its spectral discretization are showed,
47498    and such results throw light on the modal truncation of the sine-Gordon
47499    equation which was used in the previous literature.
47500 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
47501 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
47502 CR BIRNIR B, 1994, COMMUN MATH PHYS, V162, P539
47503    BISHOP AR, 1990, PHYS LETT A, V144, P117
47504    BROOMHEAD DS, 1992, DYNAMICS NUMERICS DY
47505    CALINI A, 1996, PHYSICA D, V89, P227
47506    CHEPYZHOV VV, 1994, J MATH PURE APPL, V73, P291
47507    DETTORI L, 1995, SPECTRAL APPROXIMATI
47508    GHIDAGLIA JM, 1987, J MATH PURE APPL, V66, P273
47509    GILL TL, 1992, SIAM J MATH ANAL, V23, P1204
47510    GRAUER R, 1992, PHYSICA D, V56, P165
47511    HALE JK, 1988, MATH COMPUT, V50, P89
47512    HALE JK, 1994, CONT MATH, V172, P1
47513    HARAUX A, 1988, COMMUN PART DIFF EQ, V13, P1383
47514    RAUGEL G, 1990, CR HEBD ACAD SCI, V310, P85
47515    STUART AM, 1996, DYNAMICAL SYSTEMS NU
47516    TEMAM R, 1988, INFINITE DIMENSIONAL
47517 NR 15
47518 TC 1
47519 SN 1056-2176
47520 J9 DYN SYST APPL
47521 JI Dyn. Syst. Appl.
47522 PD MAR
47523 PY 2002
47524 VL 11
47525 IS 1
47526 BP 127
47527 EP 141
47528 PG 15
47529 SC Mathematics, Applied; Mathematics
47530 GA 592GK
47531 UT ISI:000177928400011
47532 ER
47533 
47534 PT J
47535 AU Ding, YP
47536    Su, QD
47537    Wu, QS
47538 TI Ant Colony Algorithm in Chemistry and its application in first
47539    derivative fluorescent spectra analyzing
47540 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
47541 DT Article
47542 DE Ant Colony Algorithm; derivative fluorescent spectra; phenylalanine;
47543    tyrosine; tryptophan
47544 AB A new method of chemometrics - Ant Colony Algorithm in Chemistry has
47545    been developed. In this paper, the evaluation, function, the parameter
47546    choice and the basic principle have been discussed. The proposed method
47547    has been applied to the analysis for first-derivative fluorescent mixed
47548    spectra of tryptophan, tyrosine and phenylalanine, and the relative
47549    errors are within +/-5%. The new method, has obvious superiority on the
47550    sides of the convergence speed and,calculation precision as compared
47551    with Partial Last Squares(PLS) and Genetic Algorithms(GA).
47552 C1 Univ Sci & Technol China, Dept Chem, Hefei 230026, Peoples R China.
47553    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
47554    Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
47555 RP Ding, YP, Univ Sci & Technol China, Dept Chem, Hefei 230026, Peoples R
47556    China.
47557 CR BONABEAU E, 2000, NATURE, V406, P39
47558    COLORNI A, 1991, P 1 EUR C ART LIF, P134
47559    DING YP, 2001, SPECTROSC SPECT ANAL, V21, P212
47560    DING YP, 2002, CHEMISTRY, V65, P257
47561    GAMBARDELLA LM, 1999, NEW IDEAS OPTIMIZATI, P63
47562    HEUSSE M, 1998, ADV COMPLEX SYST, V1, P237
47563    KRIEGER MJB, 2000, NATURE, V406, P992
47564 NR 7
47565 TC 0
47566 SN 0251-0790
47567 J9 CHEM J CHINESE UNIV-CHINESE
47568 JI Chem. J. Chin. Univ.-Chin.
47569 PD SEP
47570 PY 2002
47571 VL 23
47572 IS 9
47573 BP 1695
47574 EP 1697
47575 PG 3
47576 SC Chemistry, Multidisciplinary
47577 GA 594NL
47578 UT ISI:000178056800016
47579 ER
47580 
47581 PT J
47582 AU Lei, ZS
47583    Ren, ZM
47584    Zhang, BW
47585    Deng, K
47586 TI Model experiment of meniscus temperature fluctuation during continuous
47587    casting mold oscillation
47588 SO ACTA METALLURGICA SINICA
47589 DT Article
47590 DE continuous casting; meniscus; temperature fluctuation; mold oscillation
47591 ID STEEL SLABS
47592 AB The temperature at the meniscus during continuous casting was measured
47593    under mold oscillation by model experiments. It is found that the
47594    temperature of meniscus varied periodically along with mold
47595    oscillation. According to the experiments, the temperature fluctuation
47596    of meniscus decreases with increasing the mold oscillation frequency,
47597    decreasing the mold oscillation amplitude, cooling density, and contact
47598    pressure between mold and solidification shell. It is considered that
47599    the temperature fluctuation of meniscus is a key factor for the surface
47600    defect formation of continuous casting billets. Based on the
47601    phenomenon, the mechanisms of improving surface quality of continuous
47602    casting billets including high frequency and low amplitude mold
47603    oscillation, soft-contact mold electromagnetic continuous casting, hot
47604    top mold and so on were analyzed.
47605 C1 Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai 200072, Peoples R China.
47606 RP Lei, ZS, Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai
47607    200072, Peoples R China.
47608 CR ASAI S, 1989, TETSU TO HAGANE, V75, P32
47609    CAI KK, 1990, CONTINUOUS CASTING S, P284
47610    CHENG CG, 2000, STEELMAKING, V16, P55
47611    DENG K, 1999, ACTA METALL SIN, V35, P1112
47612    LI XK, 1992, IRON STEEL, V27, P20
47613    REN ZM, 1999, ACTA METALL SIN, V35, P851
47614    REN ZM, 2001, ISIJ INT, V41, P981
47615    SAUCEDO IG, 1987, 1987 STEELM C P CHIC, P449
47616    SAUCEDO IG, 1991, 1991 STEELM C P WASH, P79
47617    SUZUKI M, 1991, ISIJ INT, V31, P254
47618    SZEKERES ES, 1996, IRON STEEL ENG, V6, P29
47619    TAKEUCHI E, 1984, METALL TRANS B, V15, P493
47620 NR 12
47621 TC 0
47622 SN 0412-1961
47623 J9 ACTA METALL SIN
47624 JI Acta Metall. Sin.
47625 PD AUG
47626 PY 2002
47627 VL 38
47628 IS 8
47629 BP 877
47630 EP 880
47631 PG 4
47632 SC Metallurgy & Metallurgical Engineering
47633 GA 593DY
47634 UT ISI:000177977000019
47635 ER
47636 
47637 PT J
47638 AU Mo, YW
47639    Okawa, YZ
47640    Inoue, KJ
47641    Natukawa, K
47642 TI Low-voltage and low-power optimization of micro-heater and its on-chip
47643    drive circuitry for gas sensor array
47644 SO SENSORS AND ACTUATORS A-PHYSICAL
47645 DT Article
47646 DE arrays; sensors; microelectromechanical devices; low-voltage and
47647    low-power; CMOS
47648 AB Low-voltage and low-power design is the key issue for the portable
47649    electronics applications and has become the major concern for the
47650    system design. Integrated gas sensor array allows the monolithic
47651    realization of multi-species gas sensing systems. This paper reports
47652    the developments of Si-based micro-machined micro-heater array with
47653    extremely low-power consumption, low-voltage operation, and CMOS
47654    compatibility, and low-voltage and low-power CMOS drive circuitry for
47655    the micro-heaters that can provide large drive current and voltage
47656    swing, and heater temperature is continuously adjustable in the full
47657    temperature range. (C) 2002 Elsevier Science B.V. All rights reserved.
47658 C1 Technol Res Inst Osaka Prefecture, Izumi Shi, Osaka 5941157, Japan.
47659    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
47660 RP Mo, YW, Technol Res Inst Osaka Prefecture, 2-7-1 Ayumi No, Izumi Shi,
47661    Osaka 5941157, Japan.
47662 CR CAVICCHI RE, 1995, APPL PHYS LETT, V66, P812
47663    CAVICCHI RE, 1995, SENSOR ACTUAT B-CHEM, V24, P478
47664    CHUNG W, 1998, T IEE JPN E, V118, P147
47665    FUNG SKH, 1996, SENSOR ACTUAT A-PHYS, V54, P482
47666    GAEDNER JW, 1991, SENSOR ACTUAT B-CHEM, V4, P109
47667    GUIDI V, 1998, SENSOR ACTUAT B-CHEM, V49, P88
47668    LYLE RP, 1997, MICROSTRUCT MICROFAB, V3, P188
47669    NATALE CD, 1995, SENSOR ACTUAT B-CHEM, V24, P808
47670    PERSAUD K, 1982, NATURE, V299, P352
47671    ROSSI C, 1997, SENSOR ACTUAT A-PHYS, V63, P183
47672    SHENG LY, 1998, SENSOR ACTUAT B-CHEM, V49, P81
47673    SHURMER HV, 1990, SENSOR ACTUAT B-CHEM, V1, P256
47674    SUEHLE JS, 1993, IEEE ELECTR DEVICE L, V14, P118
47675    ZARCOMB S, 1984, SENSOR ACTUATOR, V6, P225
47676 NR 14
47677 TC 7
47678 SN 0924-4247
47679 J9 SENSOR ACTUATOR A-PHYS
47680 JI Sens. Actuator A-Phys.
47681 PD AUG 15
47682 PY 2002
47683 VL 100
47684 IS 1
47685 BP 94
47686 EP 101
47687 PG 8
47688 SC Engineering, Electrical & Electronic; Instruments & Instrumentation
47689 GA 590GH
47690 UT ISI:000177809900013
47691 ER
47692 
47693 PT J
47694 AU Gu, JM
47695 TI Identification of 2-acetylpyridine in Xiangjing-8618 rice and in
47696    Yahonkaoluo leaves
47697 SO FOOD CHEMISTRY
47698 DT Article
47699 DE 2-acetylpyridine; scented rice; spice; aroma
47700 ID 2-ACETYL-1-PYRROLINE; ODORANTS
47701 AB 2-Acetylpyridine was established, for the first time, as the
47702    characteristic aroma compound of two plants, Yahonkaoluo leaves (a
47703    spice, Acanthaceae strobilanthus sp.), wild in Mengla county of Yunnan
47704    province of China and Xiangjing-8618 rice (a scented rice, Oryza sativa
47705    L.), cultivated in the south of Jiangsu province of China, by means of
47706    ethylene glycol pre-extraction, porapak Q trapping, GC-MS
47707    identification, sniffing technique after capillary column and
47708    verification by authentic compound. Ethylene glycol, as a
47709    pre-extracting solvent, efficently extracted a micro-basic fraction
47710    containing the "scented rice"-like aroma compound in Yahonkaoluo
47711    leaves. (C) 2002 Published by Elsevier Science Ltd.
47712 C1 Shanghai Univ, Sch Life Sci, Dept Food Sci & Engn, Shanghai 200436, Peoples R China.
47713 RP Gu, JM, Shanghai Univ, Sch Life Sci, Dept Food Sci & Engn, 99 Shangda
47714    Rd, Shanghai 200436, Peoples R China.
47715 CR BUTLER LD, 1976, J CHROMATOGR SCI, V14, P117
47716    BUTTERY RG, 1982, CHEM IND-LONDON, P958
47717    BUTTERY RG, 1983, CHEM IND-LONDON, P478
47718    CERNY C, 1992, Z LEBENSM UNTERS FOR, V194, P322
47719    GU J, 1996, J CHINESE CEREALS OI, V11, P34
47720    GU J, 1999, J SHANGHAI U NATURAL, V5, P154
47721    GUIOCHON G, 1964, ANAL CHEM, V36, P661
47722    HOFMANN T, 1995, J AGR FOOD CHEM, V43, P2195
47723    HOFMANN T, 1998, J AGR FOOD CHEM, V46, P2721
47724    JOHNSON BR, 1971, J AGR FOOD CHEM, V19, P1020
47725    JUNK GA, 1974, J CHROMATOGR, V99, P745
47726    KLINGSBERG E, 1960, CHEM HETEROCYCLIC CO
47727    KOVATS E, 1958, HELV CHIM ACTA, V41, P1915
47728    SAKODYNSKII K, 1974, CHROMATOGRAPHIA, V7, P339
47729    YAJIMA I, 1979, AGR BIOL CHEM TOKYO, V43, P2425
47730 NR 15
47731 TC 0
47732 SN 0308-8146
47733 J9 FOOD CHEM
47734 JI Food Chem.
47735 PD AUG
47736 PY 2002
47737 VL 78
47738 IS 2
47739 BP 163
47740 EP 166
47741 PG 4
47742 SC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics
47743 GA 590EC
47744 UT ISI:000177804500004
47745 ER
47746 
47747 PT J
47748 AU Ye, ZM
47749    Kettle, RJ
47750    Li, LY
47751    Schafer, BW
47752 TI Buckling behavior of cold-formed zed-purlins partially restrained by
47753    steel sheeting
47754 SO THIN-WALLED STRUCTURES
47755 DT Article
47756 DE cold-formed; purlin; steel; thin-walled; restrained; sheeting;
47757    buckling; instability
47758 ID GENERALIZED BEAM THEORY
47759 AB This paper presents a study on the buckling behaviour of
47760    purlin-sheeting systems under wind uplift loading. The restraint
47761    provided by the sheeting to the purlin is modeled by using two springs
47762    representing the translational and rotational restraints. The analysis
47763    is performed using finite strip methods in which the pre-buckling
47764    stress is calculated based on the same model used for the buckling
47765    analysis rather than taken as the 'pure bending' stress. The results
47766    obtained from this study show that, for both local and distortional
47767    buckling, the restraints have significant influence on the critical
47768    loads through their influence on the pre-buckling stress rather than
47769    directly on the buckling modes. While for lateral-torsional buckling,
47770    the influence of the restraints on the critical loads is mainly due to
47771    their influence on the buckling modes rather than the pre-buckling
47772    stress. (C) 2002 Elsevier Science Ltd. All rights reserved.
47773 C1 Aston Univ, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands, England.
47774    Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R China.
47775    Johns Hopkins Univ, Dept Civil Engn, Baltimore, MD 21218 USA.
47776 RP Li, LY, Aston Univ, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands,
47777    England.
47778 CR CHEUNG YK, 1976, FINITE STRIP METHOD
47779    DAVIES JM, 1994, J CONSTR STEEL RES, V31, P187
47780    DAVIES JM, 1994, J CONSTR STEEL RES, V31, P221
47781    DAVIES JM, 2000, J CONSTR STEEL RES, V55, P267
47782    GOTLURU BP, 2000, THIN WALL STRUCT, V37, P127
47783    HANCOCK G, 1997, STEEL CONSTRUCTION, V15, P2
47784    HANCOCK GJ, 1994, DESIGN COLD FORMED S
47785    LEACH P, 1993, STRUCTURAL ENG, V71, P250
47786    MOORE DB, 1988, LOAD TESTS FULL SCAL
47787    RHODES J, 1993, 089 SCI
47788    SCHAFER BW, 1997, THESIS CORNELL U ITH
47789    SCHAFER BW, 2001, ELASTIC BUCKLING ANA
47790    TOMA T, 1994, J CONSTR STEEL RES, V31, P149
47791    TRAHAIR NS, 1993, FLEXURAL TORSIONAL B
47792    WALKER AC, 1975, DESIGN ANAL COLD FOR
47793    YE ZM, IN PRESS COMPUTERS S
47794 NR 16
47795 TC 4
47796 SN 0263-8231
47797 J9 THIN WALL STRUCT
47798 JI Thin-Walled Struct.
47799 PD OCT
47800 PY 2002
47801 VL 40
47802 IS 10
47803 BP 853
47804 EP 864
47805 PG 12
47806 SC Engineering, Civil
47807 GA 588QV
47808 UT ISI:000177712900003
47809 ER
47810 
47811 PT J
47812 AU Chu, BL
47813    Liu, XR
47814    Wang, XJ
47815    Zhang, JH
47816    Jiang, XY
47817 TI Luminescence properties of Pr3+ and energy transfer characteristics of
47818    Pr3+-> Gd3+ in CaSiO3
47819 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
47820 DT Article
47821 DE Pr3+; Gd3+; CaSiO3; luminescence spectrum; concentration quenching;
47822    energy transfer
47823 ID PR-3+
47824 AB The excitation spectrum and the emission spectrum of Pr3+ in CaSiO3
47825    under the room temperature were studied. The emission spectrum was
47826    constituted of three emission bands, corresponding to the emissions of
47827    the lowest 4f5d states to the H-3(4), H-3(6), (1)G(4) of the 4f(2)
47828    states. The emission of the P-3(0) and D-1(2) were not observed.,The
47829    concentration quenching of Pr3+ was due to the radiative and
47830    nonradiative energy transfer. There was energy transfer from Pr3+ to
47831    Gd3+ with the transfer rate of 10% of the Pr3+ emission rate.
47832 C1 Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Lab Excited State Proc, Changchun 130021, Peoples R China.
47833    Shanghai Univ, Dept Malerial Sci, Shanghai 201800, Peoples R China.
47834 RP Chu, BL, Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Lab
47835    Excited State Proc, Changchun 130021, Peoples R China.
47836 CR BLASSE G, 1989, J PHYS CHEM SOLIDS, V50, P583
47837    CARNALL WT, 1971, J CHEM PHYS, V54, P1476
47838    DEVRIES AJ, 1986, MATER RES BULL, V21, P683
47839    LIU XR, 1989, CHINESE J LUMINESCEN, V10, P177
47840    LIU XR, 1989, CHINESE J LUMINESCEN, V10, P6
47841    VANDERVOORT D, 1991, J PHYS CHEM SOLIDS, V52, P1149
47842    VANEIJK CWE, 1996, P SOC PHOTO-OPT INS, V2706, P158
47843 NR 7
47844 TC 1
47845 SN 1000-0593
47846 J9 SPECTROSC SPECTR ANAL
47847 JI Spectrosc. Spectr. Anal.
47848 PD AUG
47849 PY 2002
47850 VL 22
47851 IS 4
47852 BP 542
47853 EP 544
47854 PG 3
47855 SC Spectroscopy
47856 GA 590EE
47857 UT ISI:000177804700004
47858 ER
47859 
47860 PT J
47861 AU Voron'ko, YK
47862    Sobol', AA
47863    Ushakov, SN
47864    Jiang, GC
47865    You, JL
47866 TI Phase transformations and melt structure of calcium metasilicate
47867 SO INORGANIC MATERIALS
47868 DT Article
47869 AB The beta --> alpha phase transition, melting, crystallization, and
47870    vitrification of calcium metasilicate were studied by high-temperature
47871    Raman scattering spectroscopy. The results demonstrate that, in the
47872    course of melting, the [Si3O9] metasilicate rings, which form the
47873    structural basis of the a phase, transform mainly into [SiO3](infinity)
47874    anions. The structural similarity or dissimilarity of the CaO . SiO2
47875    melt to crystalline phases is shown to have a crucial effect on its
47876    crystallization/vitrification behavior.
47877 C1 Russian Acad Sci, Inst Gen Phys, Res Ctr Laser Mat & Technol, Moscow 119991, Russia.
47878    Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
47879 RP Voron'ko, YK, Russian Acad Sci, Inst Gen Phys, Res Ctr Laser Mat &
47880    Technol, Ul Vavilova 38, Moscow 119991, Russia.
47881 CR IGUCHI Y, 1981, CAN METALL Q, V20, P51
47882    LAZAREV AN, 1975, KOLEBATELNYE SPEKTRY, P296
47883    MYSEN BO, 1980, AM MINERAL, V65, P690
47884    SWAMY V, 1997, J AM CERAM SOC, V80, P2237
47885    TOROPOV NA, 1969, DIAGRAMMY SOSTOYANIY, P38
47886    VANWAZER JR, 1962, PHOSPHORUS ITS COMPO
47887    VORONKO YK, 1988, ROST KRIST, V16, P178
47888    VORONKO YK, 1992, IZV AKAD NAUK NEORG, V28, P576
47889    WEN SL, 1981, J CHEM SOC CHEM COMM, P662
47890    YANAMAKA T, 1981, ACTA CRYSTALLOGR B, V37, P1010
47891 NR 10
47892 TC 0
47893 SN 0020-1685
47894 J9 INORG MATER-ENGL TR
47895 JI Inorg. Mater.
47896 PD AUG
47897 PY 2002
47898 VL 38
47899 IS 8
47900 BP 825
47901 EP 830
47902 PG 6
47903 SC Materials Science, Multidisciplinary
47904 GA 591DQ
47905 UT ISI:000177864800010
47906 ER
47907 
47908 PT J
47909 AU Wu, QS
47910    Zheng, NW
47911    Ding, YP
47912    Li, YD
47913 TI Micelle-template inducing synthesis of winding ZnS nanowires
47914 SO INORGANIC CHEMISTRY COMMUNICATIONS
47915 DT Article
47916 DE zinc sulfide; nanowires; template synthesis; reverse micelle
47917 ID BUILDING-BLOCKS; BACO3 NANOWIRES; MICROEMULSIONS; CDS
47918 AB Semiconductor single-crystal ZnS nanowires with diameters 40-80 nm and
47919    lengths up to tens of micron, which can bend and wind, have been
47920    synthesis by the reaction of Zn2+ with S2- in reverse micelle for the
47921    inducing template. The formation mechanism of ZnS nanowires has been
47922    studied. The results indicated that the formation of ZnS nanowires
47923    probably was via the process of the directional aggregation and
47924    orientated growth of the ZnS nanoparticles. (C) 2002 Elsevier Science
47925    B.V. All rights reserved.
47926 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
47927    Univ Sci & Technol China, Dept Chem, Hefei 230026, Peoples R China.
47928    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
47929 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
47930 CR CHAE WS, 2001, CHEM PHYS LETT, V341, P279
47931    CUI Y, 2001, SCIENCE, V291, P851
47932    CUI Y, 2001, SCIENCE, V293, P1289
47933    DUAN XF, 2000, ADV MATER, V12, P298
47934    GE SH, 2001, J APPL PHYS, V90, P509
47935    HUANG MH, 2001, SCIENCE, V292, P1897
47936    HUANG Y, 2001, SCIENCE, V294, P1313
47937    JIANG X, CHEM MAT, V13, P1213
47938    LI Y, 1999, MOL CRYST LIQ CRYS A, V337, P193
47939    LI YD, 2001, J AM CHEM SOC, V123, P9904
47940    QI LM, 1997, J PHYS CHEM B, V101, P3460
47941    WALSH D, 1994, SCIENCE, V264, P1576
47942    WU QS, 2000, CHEM J CHINESE U, V21, P1471
47943    WU QS, 2000, J MEMBRANE SCI, V172, P199
47944    WU QS, 2001, CHEM J CHINESE U, V22, P898
47945    WU YY, 2001, ADV MATER, V13, P1487
47946    ZHENG NW, 2000, CHEM LETT       0605, P638
47947 NR 17
47948 TC 37
47949 SN 1387-7003
47950 J9 INORG CHEM COMMUN
47951 JI Inorg. Chem. Commun.
47952 PD SEP
47953 PY 2002
47954 VL 5
47955 IS 9
47956 BP 671
47957 EP 673
47958 PG 3
47959 SC Chemistry, Inorganic & Nuclear
47960 GA 591CZ
47961 UT ISI:000177863300011
47962 ER
47963 
47964 PT J
47965 AU Xue, Y
47966    Dong, LY
47967    Yuan, YW
47968    Dai, SQ
47969 TI The effect of the relative velocity on traffic flow
47970 SO COMMUNICATIONS IN THEORETICAL PHYSICS
47971 DT Article
47972 DE optimal velocity model; relative velocity; jamming transition; traffic
47973    flow
47974 ID SOLITON; CONGESTION; JAMS
47975 AB The optimal velocity model of traffic is extended to take the relative
47976    velocity into account, The traffic behavior is investigated numerically
47977    and analytically with this model. It is shown that the car interaction
47978    with the relative velocity can effect the stability of the traffic flow
47979    and raise critical density. The jamming transition between the freely
47980    moving and jamming phases is investigated with the linear stability
47981    analysis and nonlinear perturbation methods. The traffic jam is
47982    described by the kink solution of the modified Korteweg-de Vries
47983    equation, The theoretical result is in good agreement with the
47984    simulation.
47985 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
47986    Guangxi Univ, Dept Phys, Nanning 530003, Peoples R China.
47987 RP Xue, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
47988    Peoples R China.
47989 CR BANDO M, 1995, PHYS REV E, V51, P1035
47990    CHOWDHURY D, 2000, PHYS REP, V329, P199
47991    GAZIS DC, 1961, OPER RES, V9, P545
47992    KERNER BS, 1993, PHYS REV E, V48, P2335
47993    KOMATSU TS, 1995, PHYS REV E B, V52, P5574
47994    KURTZE DA, 1995, PHYS REV E A, V52, P218
47995    MURAMATSU M, 1999, PHYS REV E, V60, P180
47996    TREIBER M, 2000, PHYS REV E A, V62, P1805
47997 NR 8
47998 TC 3
47999 SN 0253-6102
48000 J9 COMMUN THEOR PHYS
48001 JI Commun. Theor. Phys.
48002 PD AUG 15
48003 PY 2002
48004 VL 38
48005 IS 2
48006 BP 230
48007 EP 234
48008 PG 5
48009 SC Physics, Multidisciplinary
48010 GA 590RN
48011 UT ISI:000177836000023
48012 ER
48013 
48014 PT J
48015 AU Zheng, YG
48016    Liu, ZR
48017    Huang, DB
48018 TI Discrete soliton-like for KdV prototypes
48019 SO CHAOS SOLITONS & FRACTALS
48020 DT Article
48021 ID NETWORKS; BREATHERS; EXISTENCE
48022 AB In this paper we consider space and time discretization of KdV
48023    equation, that is, KdV prototypes by using finite difference
48024    discretization. The existence of discrete soliton-likes for the KdV
48025    prototypes is proved by anti-integrable limit method [S. Aubry, G.
48026    Abramovici, Physica D (1990) 199]. Some of their properties are
48027    discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.
48028 C1 Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China.
48029    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
48030 RP Zheng, YG, Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China.
48031 CR AUBRY S, 1990, PHYSICA D, V43, P199
48032    AUBRY S, 1997, PHYSICA D, V103, P201
48033    BAESENS C, 1997, NONLINEARITY, V10, P931
48034    MACKAY RS, 1994, NONLINEARITY, V7, P1623
48035    MACKAY RS, 1995, PHYSICA D, V82, P243
48036    STERLING D, 1998, PHYS LETT A, V241, P46
48037    ZEIDLER E, 1986, NONLINEAR FUNCTIONAL
48038 NR 7
48039 TC 0
48040 SN 0960-0779
48041 J9 CHAOS SOLITON FRACTAL
48042 JI Chaos Solitons Fractals
48043 PD OCT
48044 PY 2002
48045 VL 14
48046 IS 7
48047 BP 989
48048 EP 994
48049 PG 6
48050 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
48051 GA 589QW
48052 UT ISI:000177772700006
48053 ER
48054 
48055 PT J
48056 AU Xiao, Y
48057    Wang, G
48058    Liu, H
48059    Zhao, H
48060    Zhang, J
48061    Sun, C
48062    Wu, M
48063 TI Treatment of H-acid wastewater by photo-Fenton reagent combined with a
48064    biotreatment process: A study on optimum conditions of pretreatment by
48065    a photo-Fenton process
48066 SO BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY
48067 DT Article
48068 ID DEGRADATION
48069 C1 Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China.
48070    Tsing Hua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China.
48071    Shanghai Univ, Dept Chem, Shanghai 200073, Peoples R China.
48072 RP Xiao, Y, Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023,
48073    Peoples R China.
48074 CR BOX GE, 1978, STAT EXPT INTRO DESI
48075    CHEN RZ, 1997, ENVIRON SCI TECHNOL, V31, P2399
48076    LI J, 1987, DESIGN PROCESS EXPT
48077    LIPCZYNSKAKOCHA.E, 1991, CHEMOSPHERE, V22, P529
48078    OLIVEROS E, 1997, CHEM ENG PROCESS, V36, P397
48079    PIGNATELLO JJ, 1992, ENVIRON SCI TECHNOL, V26, P944
48080    PIGNATELLO JJ, 1995, WATER RES, V29, P1837
48081    WEI FX, 1989, MONITOR ANAL PROCESS
48082    ZHU WP, 1996, ENV SCI, V4, P7
48083 NR 9
48084 TC 2
48085 SN 0007-4861
48086 J9 BULL ENVIRON CONTAM TOXICOL
48087 JI Bull. Environ. Contam. Toxicol.
48088 PD SEP
48089 PY 2002
48090 VL 69
48091 IS 3
48092 BP 430
48093 EP 435
48094 PG 6
48095 SC Environmental Sciences; Toxicology
48096 GA 588LC
48097 UT ISI:000177702100019
48098 ER
48099 
48100 PT J
48101 AU He, JH
48102 TI Generalized variational principles for thermopiezoelectricity
48103 SO ARCHIVE OF APPLIED MECHANICS
48104 DT Article
48105 DE piezoelectricity; elasticity; variational technique; semi-inverse
48106    method; FEM
48107 ID UNKNOWN SHAPE; FLOW; TURBOMACHINERY; AERODYNAMICS
48108 AB Based on the semi-inverse method of establishing variational principles
48109    proposed in [10], a family of variational principles (non Gurtin-type
48110    and not involving convolutions) for thermopiezoelectricity is deduced
48111    directly from the field equations and boundary/initial conditions.
48112    Present theory provides a more complete theoretical basis for the
48113    finite element applications and other direct variational methods such
48114    as Ritz's, Trefftz's and Kantorovitch's methods.
48115 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
48116 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
48117    Shanghai 200072, Peoples R China.
48118 CR ASHIDA F, 1998, J APPL MECH-T ASME, V65, P367
48119    CHANDRASEKHARAI.DS, 1988, ACTA MECH, V71, P39
48120    CHEN TY, 1998, P ROY SOC LOND A MAT, V454, P873
48121    FARES ME, 1999, INT J NONLINEAR MECH, V34, P685
48122    HE JH, 1997, INT J TURBO JET ENG, V14, P23
48123    HE JH, 1998, APPL MATH MODEL, V22, P395
48124    HE JH, 1998, COMMUN NONLINEAR SCI, V3, P215
48125    HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154
48126    HE JH, 1999, APPL MATH MECH-ENGL, V20, P545
48127    HE JH, 1999, INT J TURBO JET ENG, V16, P19
48128    HE JH, 1999, SHANGHAI LIGONG DAXU, V21, P356
48129    HE JH, 2000, AIRCR ENG AEROSP TEC, V72, P18
48130    HE JH, 2000, INT J NONLINEAR SCI, V1, P133
48131    LIU GL, 1988, COMPUTATIONAL FLUID, P473
48132    MAUGIN GA, 1984, MECH BEHAV ELECTROMA
48133    MAUGIN GA, 1988, CONTINUUM MECH ELECT
48134    SANTILLI RM, 1978, FDN THEORETICAL MECH, V1
48135    WASHIZU K, 1982, VARATIONAL METHODS E
48136 NR 18
48137 TC 0
48138 SN 0939-1533
48139 J9 ARCH APPL MECH
48140 JI Arch. Appl. Mech.
48141 PD JUL
48142 PY 2002
48143 VL 72
48144 IS 4-5
48145 BP 248
48146 EP 256
48147 PG 9
48148 SC Mechanics
48149 GA 589AC
48150 UT ISI:000177734400003
48151 ER
48152 
48153 PT J
48154 AU Wan, TQ
48155    Gu, P
48156    Che, FX
48157 TI Discovery of two novel functional genes from differentiation of neural
48158    stem cells in the striatum of the fetal rat
48159 SO NEUROSCIENCE LETTERS
48160 DT Article
48161 DE neural stem cells; striatum; differentiation; differential expression;
48162    differential display polymerase chain reaction; expressed sequence tag
48163 ID CENTRAL-NERVOUS-SYSTEM; MATURATION; FOREBRAIN; RECEPTOR; NEURONS
48164 AB Neural stem cells (NSC) are capable of differentiating into neurons and
48165    glia. However, the molecular mechanisms regulating NSC differentiation
48166    are not well understood. We have used the differential display
48167    polymerase chain reaction to analyze the differentially expressed genes
48168    of NSC from Sprague-Dawley rat striatum. Twelve differentially
48169    expressed sequence tags (ESTs) have been discovered and two of them,
48170    SHD10 and SHD11, were confirmed to be positive by reverse Northern blot
48171    techniques. Sequencing analyses showed that SHD10 shared a 94%
48172    (547/581) homology with mouse EST B1687817, but its biological function
48173    has not been reported. SHD11 shared a 91% (512/562) homology with mouse
48174    EST BG172336. It encodes an open reading frame containing 117 amino
48175    acids. Analysis of protein sequence indicated that it has a 98%
48176    homology with dendritic cell factor (gi18203393). Our research
48177    primarily discovered that these two genes are associated with
48178    differentiation of NSC. How they function in the process of
48179    differentiation needs further study. (C) 2002 Elsevier Science Ireland
48180    Ltd. All rights reserved.
48181 C1 Shanghai Univ, Sch Life Sci, Lab Neural Mol Biol, Shanghai 200436, Peoples R China.
48182 RP Wan, TQ, Shanghai Univ, Sch Life Sci, Lab Neural Mol Biol, 99 Shangda
48183    Rd, Shanghai 200436, Peoples R China.
48184 CR BAIN G, 2000, GENOMICS, V1, P127
48185    BENRAISS A, 2001, J NEUROSCI, V21, P6718
48186    BONNI A, 1997, SCIENCE, V278, P477
48187    DELCERRO M, 2000, INVEST OPHTH VIS SCI, V41, P3142
48188    DIETZ AB, 2000, BIOCHEM BIOPH RES CO, V275, P731
48189    GADIENT RA, 1998, BRAIN RES, V798, P140
48190    GESCHWIND DH, 2001, NEURON, V29, P325
48191    HUGHES SM, 1988, NATURE, V335, P70
48192    KOBLAR SA, 1998, P NATL ACAD SCI USA, V95, P3178
48193    LIU SY, 2000, J 3 MIL MED U, V22, P26
48194    MARMUR R, 1998, J NEUROSCI, V18, P9800
48195    MENG JH, 2000, J 4 MIL MED U, V21, P1026
48196    PINCUS DW, 1998, ANN NEUROL, V43, P576
48197    SATOH M, 2000, NEUROSCI LETT, V284, P143
48198    SEILER MJ, 1998, INVEST OPHTH VIS SCI, V39, P2121
48199    SHIMAZAKI T, 2001, J NEUROSCI, V21, P7642
48200    TEMPLE S, 2001, NATURE, V414, P112
48201    TROPEPE V, 1999, DEV BIOL, V208, P166
48202 NR 18
48203 TC 0
48204 SN 0304-3940
48205 J9 NEUROSCI LETT
48206 JI Neurosci. Lett.
48207 PD AUG 23
48208 PY 2002
48209 VL 329
48210 IS 1
48211 BP 101
48212 EP 105
48213 PG 5
48214 SC Neurosciences
48215 GA 586ZT
48216 UT ISI:000177616600025
48217 ER
48218 
48219 PT J
48220 AU Zhou, SP
48221 TI Oblique vortex lattice implies unconventional pairing symmetry in high
48222    temperature superconductors
48223 SO JOURNAL OF SUPERCONDUCTIVITY
48224 DT Article
48225 DE pairing symmetries; Ginzburg-Landau model; vortex lattice
48226 ID TIME-REVERSAL SYMMETRY; GINZBURG-LANDAU THEORY; D-WAVE SUPERCONDUCTORS;
48227    THERMAL-CONDUCTIVITY; II SUPERCONDUCTORS; YBA2CU3O7; VORTICES; STATE;
48228    MODEL; BI2SR2CACU2O8
48229 AB The symmetry of order parameters of YBa2Cu3O7-delta high temperature
48230    superconductor was studied with the Ginzburg-Landau theory. The vortex
48231    lattice of a YBa2Cu3O7 superconductor is oblique at a temperature well
48232    below the transition temperature T-c, where the mixed s-d(x2-y2) state
48233    is expected to have the lowest energy, whereas very close to T-c, the
48234    d(x2-y2)-wave is slightly lower in energy, and a triangular vortex
48235    lattice recovers. The coexistence and the coupling between the s- and
48236    d-waves would account for the unusual behaviors such as the upward
48237    curvature of the upper critical field curve H-C2(T).
48238 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
48239 RP Zhou, SP, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
48240 CR ABRIKOSOV AA, 1957, ZH EKSP TEOR FIZ, V32, P1442
48241    ABRIKOSOV AA, 1957, ZH EKSP TEOR FIZ, V5, P1174
48242    ANDERSON PW, 1987, SCIENCE, V235, P1196
48243    AUBIN H, 1999, PHYS REV LETT, V82, P624
48244    BERLINSKY AJ, 1995, PHYS REV LETT, V75, P2200
48245    CHAKRAVARTY S, 1993, SCIENCE, V261, P337
48246    DORIA MM, 1989, PHYS REV B, V39, P9573
48247    DU Q, 1993, SIAM J APPL MATH, V53, P689
48248    HEEB R, 1996, PHYS REV B, V54, P9385
48249    JOYNT R, 1990, PHYS REV B, V41, P4271
48250    KEIMER B, 1994, J APPL PHYS 2, V76, P6778
48251    KIRTLEY JR, 1996, PHYS REV LETT, V76, P1336
48252    KLEINER R, 1996, PHYS REV LETT, V76, P2161
48253    KOUZNETSOV KA, 1997, PHYS REV LETT, V79, P3050
48254    KRISHANA K, 1997, SCIENCE, V277, P83
48255    LAUGHLIN RB, 1998, PHYS REV LETT, V80, P5188
48256    LEE PA, 1987, PHYS REV LETT, V58, P2891
48257    LEI B, 2000, PHYS REV B, V62, P8687
48258    LI OP, 1993, PHYS REV B, V48, P437
48259    LIECHTENSTEIN AI, 1995, PHYS REV LETT, V74, P2303
48260    LYONS KB, 1990, PHYS REV LETT, V64, P2949
48261    MILLIS AJ, 1994, PHYS REV B, V49, P15408
48262    MONTHOUX P, 1994, PHYS REV B, V49, P4261
48263    MONTHOUX P, 1994, PHYS REV LETT, V72, P1874
48264    PALSTRA TTM, 1988, PHYS REV LETT, V61, P1662
48265    REN Y, 1995, PHYS REV LETT, V74, P3680
48266    RUGGIERO S, 1982, PHYS REV B, V26, P4897
48267    SOININEN PI, 1994, PHYS REV B, V50, P13883
48268    SPIELMAN S, 1990, PHYS REV LETT, V65, P123
48269    TINKHAM M, 1964, GROUP THEORY QUANTUM
48270    TSUEI CC, 1994, PHYS REV LETT, V72, P1084
48271    TSUEI CC, 1994, PHYS REV LETT, V73, P593
48272    VARMA CM, 2000, PHYS REV B, V61, R3804
48273    VOLOVIK GE, 1993, JETP LETT, V58, P469
48274    WEBER HJ, 1990, SOLID STATE COMMUN, V76, P511
48275    WELP U, 1989, PHYS REV LETT, V62, P1908
48276    WOLLMAN DA, 1993, PHYS REV LETT, V71, P2134
48277    ZHANG FC, 1988, PHYS REV B, V37, P3759
48278    ZHANG SC, 1997, SCIENCE, V275, P1089
48279    ZHOU SP, 2000, PHYSICA C, V339, P258
48280    ZHOU SP, 2001, CHINESE PHYS, V10, P541
48281 NR 41
48282 TC 0
48283 SN 0896-1107
48284 J9 J SUPERCOND
48285 JI J. Supercond.
48286 PD AUG
48287 PY 2002
48288 VL 15
48289 IS 4
48290 BP 307
48291 EP 313
48292 PG 7
48293 SC Physics, Applied; Physics, Condensed Matter
48294 GA 588AL
48295 UT ISI:000177677200012
48296 ER
48297 
48298 PT J
48299 AU Tian, ZX
48300    Tang, LM
48301    Liu, ZX
48302 TI Element functions of discrete operator difference method
48303 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
48304 DT Article
48305 DE discrete operator difference method; element function; reproduce exactly
48306 AB The discrete scheme called discrete operator difference for
48307    differential equations was given. Several difference elements for plate
48308    bending problems and plane problems were given. By investigating these
48309    elements, the ability of the discrete forms expressing to the element
48310    functions was talked about. In discrete operator difference method, the
48311    displacements of the elements can be reproduced exactly in the discrete
48312    forms whether the displacements are conforming or not. According to
48313    this point, discrete operator difference method is a method with good
48314    performance.
48315 C1 Shanghai Univ, Ctr CIMS & Robot, Shanghai 200072, Peoples R China.
48316    Dalian Univ Technol, Dept Engn Mech, Dalian 116024, Peoples R China.
48317    Shanghai Jiao Tong Univ, Dept Engn Mech, Shanghai 200030, Peoples R China.
48318 RP Tian, ZX, Shanghai Univ, Ctr CIMS & Robot, Shanghai 200072, Peoples R
48319    China.
48320 CR CHEN ZY, 1993, NUMERICAL MATH J CHI, V15, P182
48321    LI RH, 1994, GEN DIFFERENCE METHO
48322    TANG LM, 1973, J DALIAN U TECHNOLOG, V13, P27
48323    TANG LM, 1973, J DALIAN U TECHNOLOG, V13, P7
48324    TANG LM, 2001, J DALIAN U TECHNOLOG, V41, P1
48325    TIAN ZX, 2000, CHINESE J COMPUTATIO, V17, P163
48326 NR 6
48327 TC 0
48328 SN 0253-4827
48329 J9 APPL MATH MECH-ENGL ED
48330 JI Appl. Math. Mech.-Engl. Ed.
48331 PD JUN
48332 PY 2002
48333 VL 23
48334 IS 6
48335 BP 619
48336 EP 626
48337 PG 8
48338 SC Mathematics, Applied; Mechanics
48339 GA 586FT
48340 UT ISI:000177574500001
48341 ER
48342 
48343 PT J
48344 AU He, JH
48345 TI A note on delta-perturbation expansion method
48346 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
48347 DT Article
48348 DE perturbation method; artificial parameter; nonlinear equation; homotropy
48349 ID STRONGLY NONLINEAR OSCILLATIONS; LINDSTEDT-POINCARE METHODS
48350 AB The Delta-perturbation expansion method, a kind of new perturbation
48351    technique depending upon an artificial parameter Delta was studied. The
48352    study reveals that the method exits some advantages, but also exits
48353    some limitations. To overcome the limitations, the so-called linearized
48354    perturbation method proposed by HE Ji-huan can be powerfully applied.
48355 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, LNM, Inst Mech, Shanghai 200072, Peoples R China.
48356 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, LNM, Inst Mech,
48357    Shanghai 200072, Peoples R China.
48358 CR ACTON JR, 1985, SOLVING EQUATIONS PH
48359    ANDRIANOV I, 2000, INT J NONLINEAR SCI, V1, P327
48360    AWREJCEWICZ J, 1998, ASYMPTOTIC APPROACHE
48361    BENDER CM, 1989, J MATH PHYS, V30, P1447
48362    HE JH, 1999, COMPUT METHOD APPL M, V178, P257
48363    HE JH, 2000, INT J NONLINEAR MECH, V35, P37
48364    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
48365    HE JH, 2000, J SOUND VIB, V229, P1257
48366    HE JH, 2001, INT J NONLINEAR SCI, V2, P257
48367    HE JH, 2001, INT J NONLINEAR SCI, V2, P317
48368    HE JH, 2001, J VIB CONTROL, V7, P631
48369    HE JH, 2002, INT J NONLINEAR MECH, V37, P309
48370    HE JH, 2002, INT J NONLINEAR MECH, V37, P315
48371 NR 13
48372 TC 3
48373 SN 0253-4827
48374 J9 APPL MATH MECH-ENGL ED
48375 JI Appl. Math. Mech.-Engl. Ed.
48376 PD JUN
48377 PY 2002
48378 VL 23
48379 IS 6
48380 BP 634
48381 EP 638
48382 PG 5
48383 SC Mathematics, Applied; Mechanics
48384 GA 586FT
48385 UT ISI:000177574500003
48386 ER
48387 
48388 PT J
48389 AU Chen, DY
48390    Zhang, DJ
48391    Deng, SF
48392 TI Remarks on some solutions of soliton equations
48393 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
48394 DT Article
48395 DE soliton equation; solutions; Hirota method
48396 ID DE VRIES EQUATION
48397 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
48398 RP Chen, DY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
48399 CR CHEN DY, 2002, J PHYS SOC JPN, V71, P658
48400    CHEN DY, 2002, PREPRINT
48401    DENG SF, 2001, J PHYS SOC JPN, V70, P3174
48402    DENG SF, 2002, PREPRINT
48403    KONNO K, 2002, J PHYS SOC JPN, V71, P2071
48404    KOVALYOV M, 1996, APPL MATH LETT, V9, P89
48405    OLEMEDILLA E, 1987, PHYSICA D, V25, P330
48406    TAKAHASHI M, 1989, J PHYS SOC JPN, V58, P3505
48407    TSURU H, 1984, J PHYS SOC JPN, V53, P2908
48408    WADATI M, 1982, J PHYS SOC JPN, V51, P2029
48409    ZHANG DJ, 2002, PREPRINT
48410 NR 11
48411 TC 6
48412 SN 0031-9015
48413 J9 J PHYS SOC JPN
48414 JI J. Phys. Soc. Jpn.
48415 PD AUG
48416 PY 2002
48417 VL 71
48418 IS 8
48419 BP 2072
48420 EP 2073
48421 PG 2
48422 SC Physics, Multidisciplinary
48423 GA 584NN
48424 UT ISI:000177473900046
48425 ER
48426 
48427 PT J
48428 AU Wang, ZM
48429    Xia, YB
48430    Yang, Y
48431    Fang, ZJ
48432    Wang, LJ
48433    Ju, JH
48434    Fan, YM
48435    Zhang, WL
48436 TI Lower gas pressure enhanced diamond nucleation on alumina by microwave
48437    plasma chemical vapor deposition
48438 SO JOURNAL OF INORGANIC MATERIALS
48439 DT Article
48440 DE diamond film; MPCVD; alumina substrates; gas pressure; nucleation
48441 ID FILMS
48442 AB Under lower gas pressure, the high-density nucleation of diamond films
48443    on alumina was successfully achieved by microwave plasma-enhanced
48444    chemical vapor deposition (MPCVD). It was found that the nucleation
48445    density increased with the decreases of gas pressure. Based on these
48446    results, a kinetic model for diamond nucleation in MPCVD system was
48447    proposed. The critical gas pressure corresponding to the highest
48448    nucleation density was also discussed.
48449 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
48450 RP Wang, ZM, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
48451    China.
48452 CR BACHMANN PK, 1988, DIAMOND DIAMOND LIKE, P99
48453    IIJIMA S, 1990, APPL PHYS LETT, V57, P2646
48454    JIANG X, 2000, DIAM RELAT MATER, V9, P1640
48455    MO Y, 1998, J CRYST GROWTH, V191, P459
48456    WANG JJ, 1996, CHINESE PHYS LETT, V13, P473
48457    YUGO S, 1991, APPL PHYS LETT, V58, P1036
48458 NR 6
48459 TC 1
48460 SN 1000-324X
48461 J9 J INORG MATER
48462 JI J. Inorg. Mater.
48463 PD JUL
48464 PY 2002
48465 VL 17
48466 IS 4
48467 BP 765
48468 EP 770
48469 PG 6
48470 SC Materials Science, Ceramics
48471 GA 581TR
48472 UT ISI:000177309800020
48473 ER
48474 
48475 PT J
48476 AU Xu, H
48477    Ni, JS
48478    Zhu, MY
48479    Zhou, BX
48480    Dong, YD
48481    Xiao, XS
48482 TI Crystallization behavior of melt-spun NdFeB permanent magnets
48483 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
48484 DT Article
48485 DE nanocomposite magnet; crystallization behavior; activation energy
48486 ID ND2FE14B/FE3B MAGNET; FIELD TREATMENT
48487 AB The crystallization behavior of melt-spun Nd8.5Fe78Co5Cu1Nb1B6.5
48488    ribbons was investigated using dynamic differential scanning
48489    calorimetry (DSC) and X-ray diffractometry (XRD). It was found that the
48490    as-spun ribbons crystallize in two steps: at first the Nd3Fe62B14 +
48491    alpha-Fe phases are formed and subsequently Nd3Fe62B14 transformed to
48492    Nd2Fe14B and a-Fe upon heating above 680 US. The effective activation
48493    energy of two crystallization peaks are 332.0 kJ/mol and 470.5 kJ/mol,
48494    respectively. As the wheel speed increases, the magnetic properties of
48495    the magnet change obviously. When the wheel speed is 18 m/s, the best
48496    magnetic properties of the magnet was obtained after the sample was
48497    annealed at 690 degreesC for 8 min: B-x = 0.74T, H-i(c) = 421.7 kA/m,
48498    (BH)(max) = 64.5 kJ/m(3).
48499 C1 Shanghai Univ, Inst Mat Sci & Engn, Shanghai 200072, Peoples R China.
48500 CR CHANG WC, 1998, J APPL PHYS, V83, P2147
48501    COEHOORN R, 1988, J PHYS-PARIS, V49, P669
48502    COEHOORN R, 1989, J MAGN MAGN MATER, V80, P101
48503    GAO YH, 1998, J MAGN MAGN MATER, V186, P97
48504    SCHREFL T, 1994, PHYS REV B, V49, P6100
48505    SKOMSKI R, 1993, IEEE T MAGN, V29, P2860
48506    YANG CJ, 1996, IEEE T MAGN 2, V32, P4428
48507    YANG CJ, 1997, J MAGN MAGN MATER, V166, P243
48508 NR 8
48509 TC 1
48510 SN 1003-6326
48511 J9 TRANS NONFERROUS METAL SOC CH
48512 JI Trans. Nonferrous Met. Soc. China
48513 PD AUG
48514 PY 2002
48515 VL 12
48516 IS 4
48517 BP 720
48518 EP 722
48519 PG 3
48520 SC Metallurgy & Metallurgical Engineering
48521 GA 581WL
48522 UT ISI:000177317200034
48523 ER
48524 
48525 PT J
48526 AU Ni, JS
48527    Xu, H
48528    Zhu, MY
48529    Li, Q
48530    Zhou, BX
48531    Dong, YD
48532 TI Nanocrystalline Nd2Fe14B/alpha-Fe permanent magnet
48533 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
48534 DT Article
48535 DE Nd-Fe-B; permanent magnet; nanocrystalline; grain size
48536 ID NANOCOMPOSITE
48537 AB N8.5Fe75Co5Cu1Zr3Nb1B6.5 bonded magnet was prepared by melt-spinning
48538    (v(s) = 18 m/s) and subsequent heat treatment (670 degreesC, 4 min).
48539    Excellent magnetic properties of the bonded magnet were achieved: B-r =
48540    0.68T, H-i(c) = 620.3 kA/m, (BH)(max) = 74 kJ/m(3). The addition of Cu
48541    and Zr elements shows to be advantageous in improving an intrinsic
48542    coercivity and squareness of hysteresis loop, as well as energy
48543    product. It has a remarkable remanence enhancement and the isctropic
48544    saturation remanence ratio M-r/M-s is 0.83.
48545 C1 Shanghai Univ, Inst Mat Sci & Engn, Shanghai 200072, Peoples R China.
48546 CR CHANG WC, 1996, IEEE T MAGN 2, V32, P4425
48547    COEHOORN R, 1989, J MAGN MAGN MATER, V80, P101
48548    ECKART F, 1991, IEEE T MAGN, V27, P3588
48549    JURCZYK M, 1998, J MAGN MAGN MATER, V185, P66
48550    PANAGIOTOPOULOS I, 1996, J APPL PHYS 2A, V79, P4827
48551    XU H, 2001, NEW MAT SCI ENG 2000, P319
48552    YONEYAMA T, 1990, IEEE T MAGN, V26, P1963
48553    ZHANG MG, 1999, ACTA METALL SIN, V35, P777
48554 NR 8
48555 TC 0
48556 SN 1003-6326
48557 J9 TRANS NONFERROUS METAL SOC CH
48558 JI Trans. Nonferrous Met. Soc. China
48559 PD AUG
48560 PY 2002
48561 VL 12
48562 IS 4
48563 BP 723
48564 EP 725
48565 PG 3
48566 SC Metallurgy & Metallurgical Engineering
48567 GA 581WL
48568 UT ISI:000177317200035
48569 ER
48570 
48571 PT J
48572 AU Cheng, XY
48573    Wan, XJ
48574 TI Effect of atomic ordering on environmental embrittlement of (Co,
48575    Fe)(3)V alloy in gaseous hydrogen
48576 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
48577 DT Article
48578 DE (Co,Fe)(3)V alloy; atomic ordering; environmental embrittlement;
48579    hydrogen gas
48580 ID (CO,FE)(3)V
48581 AB The diffusible hydrogen contents in precharged (Co, Fe)(3)V alloy were
48582    measured. It is found that atomic ordering can not promote hydrogen
48583    penetration in the (Co, Fe)(3)V alloy. The ultimate tensile strength
48584    (UTS) and ductilities in various condition were also investigated. The
48585    results show that the UTS and elongation of disordered alloy are higher
48586    than that of ordered one with fixed diffusible hydrogen content and
48587    (Co, Fe)(3)V alloy with ordered structure is highly susceptible to the
48588    embrittlement in hydrogen gas. The factor which may affect the
48589    susceptibility to the embrittlement of (Co, Fe)(3)V alloy in hydrogen
48590    gas is mainly due to that the atomic ordering may accelerate the
48591    kinetics of the catalytic reaction for the dissociation of molecular
48592    hydrogen into atomic hydrogen. However, it can not be roled out that
48593    atomic ordering intensifies planar slip and restricts cross-slip at the
48594    grain boundaries and enhances the susceptibility of the alloy to
48595    hydrogen embrittlement.
48596 C1 Shanghai Univ, Inst Mat Res, Shanghai 200072, Peoples R China.
48597 CR CAMUS GM, 1989, ACTA METALL, V37, P1497
48598    CHENG XY, 2001, SCRIPTA MATER, V44, P325
48599    CHENG XY, 2002, SCRIPTA MATER, V46, P465
48600    DUS R, 1967, ACTA METALL, V15, P1611
48601    GRIFFITHS M, 1957, CONTACT CATALYSIS
48602    HAMMER B, 1995, SURF SCI, V343, P211
48603    KURUVILLA AK, 1982, 3RD P INT C HYDR MET, V2, P629
48604    LIU CT, 1989, SCRIPTA METALL, V23, P875
48605    MAIER HJ, 1987, ACTA METALL, V35, P875
48606    NISHIMURA C, 1996, SCRIPTA MATER, V35, P1441
48607    NORBERG RE, 1952, PHYS REV, V86, P745
48608    SHUTT RC, 1985, WELD J, V64, P19
48609    TAKASUGI T, 1986, ACTA METALL, V34, P607
48610    TAKASUGI T, 1991, J MATER SCI, V26, P3032
48611    TAKASUGI T, 1992, J MATER RES, V7, P2739
48612    TAKASUGI T, 1994, INTERMETALLICS, V2, P2225
48613    ULMER DG, 1991, ACTA METALL MATER, V39, P1237
48614    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
48615 NR 18
48616 TC 0
48617 SN 1003-6326
48618 J9 TRANS NONFERROUS METAL SOC CH
48619 JI Trans. Nonferrous Met. Soc. China
48620 PD AUG
48621 PY 2002
48622 VL 12
48623 IS 4
48624 BP 785
48625 EP 791
48626 PG 7
48627 SC Metallurgy & Metallurgical Engineering
48628 GA 581WL
48629 UT ISI:000177317200046
48630 ER
48631 
48632 PT J
48633 AU Huang, SG
48634    Li, L
48635    Biest, OVD
48636    Vleugels, J
48637    Wang, PL
48638 TI Thermodynamic assessment of the ZrO2-CeO2 and ZrO2-CeO1.5 binary system
48639 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
48640 DT Article
48641 DE ZrO2-CeO1.5; thermodynamic; phase diagram
48642 ID PHASE-DIAGRAM; TRANSFORMATION; OPTIMIZATION
48643 AB An optimal set of thermodynamic parameters of the ZrO2-CeO1.5 system
48644    has been obtained using phase diagram data by modern CALPHAD
48645    (CALculation of PHAse Diagrams) technique. The liquid and other solid
48646    solution phases were regarded as substitutional solution. The ordered
48647    Zr2Ce2O7 phase was treated as a stoichiometric compound. The ZrO2-CeO2
48648    system has been re-optimized with new reference state. A comparison
48649    between the ZrO2-CeO2 system and ZrO2-CeO1.5 system has been made
48650    through calculation. With the calculation, the experimental information
48651    is well reproduced and a good agreement is obtained.
48652 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
48653    Katholieke Univ Leuven, Dept Mat & Met, B-3001 Heverlee, Belgium.
48654    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
48655 RP Li, L, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R
48656    China.
48657 CR DU Y, 1991, J AM CERAM SOC, V74, P1569
48658    DU Y, 1994, SCRIPTA METALL MATER, V31, P327
48659    DURAN P, 1990, J MATER SCI, V25, P5001
48660    HANNINK RHJ, 2000, J AM CERAM SOC, V83, P461
48661    HEUSSNER KH, 1989, J AM CERAM SOC, V72, P1044
48662    KAUFMAN L, 1978, CALPHAD, V2, P35
48663    LEONOV AI, 1966, IAN SSSR NEORG MATER, V2, P1047
48664    LI L, IN PRESS J EUROPEAN
48665    LI L, 1996, J MATER SCI TECHNOL, V12, P159
48666    LI L, 2001, J MATER SCI TECHNOL, V17, P529
48667    LINDEMER TB, 1986, J AM CERAM SOC, V69, P867
48668    LONGO V, 1973, J AM CERAM SOC DISCU, V56, P600
48669    LUKAS HL, 1977, CALPHAD, V1, P225
48670    PANKRATZ LB, 1982, BUREAU MINES B, V672
48671    ROUANET MA, 1968, COMP REND HEBD SEA C, V267, P1581
48672    TANI E, 1983, J AM CERAM SOC, V66, P506
48673    YASHIMA M, 1994, J AM CERAM SOC, V77, P1869
48674    YOSHIMURA M, 1972, B TOKYO I TECHNOL, V108, P25
48675 NR 18
48676 TC 1
48677 SN 1005-0302
48678 J9 J MATER SCI TECHNOL
48679 JI J. Mater. Sci. Technol.
48680 PD JUL
48681 PY 2002
48682 VL 18
48683 IS 4
48684 BP 325
48685 EP 327
48686 PG 3
48687 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
48688    Engineering
48689 GA 582LD
48690 UT ISI:000177351700011
48691 ER
48692 
48693 PT J
48694 AU Sheng, WC
48695 TI Two-dimensional Riemann problem for scalar conservation laws
48696 SO JOURNAL OF DIFFERENTIAL EQUATIONS
48697 DT Article
48698 AB Using the generalized characteristic analysis method, we study the
48699    two-dimensional Riemann problem for scalar conservation laws, which is
48700    nonconvex along the y direction, and interactions of its elementary
48701    waves, give the classification of initial discontinuities and construct
48702    all Riemann solutions, which Riemann data are two or three pieces of
48703    constants. All kinds of Guckenheimer structure appear in the solutions
48704    and the necessary and sufficient condition of appearance of it is
48705    given. (C) 2002 Elsevier Science (USA).
48706 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
48707 RP Sheng, WC, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
48708 CR CHANG T, 1989, PITMAN MONOGRA SURVE, V41
48709    CHEN GQ, 1996, J DIFFER EQUATIONS, V127, P124
48710    CONWAY E, 1966, COMMUN PUR APPL MATH, V19, P95
48711    GUCKENHEIMER J, 1975, ARCH RATIONAL MECH A, V59, P281
48712    HSIAO L, 1986, STRUCTURE SOLUTION 2
48713    KRUZKOV SN, 1970, MATH USSR SB, V10, P271
48714    LI J, 1999, PITMAN MONOGR SURVEY, V98
48715    LINDQUIST WB, 1986, SIAM J MATH ANAL, V17, P1178
48716    WAGNER D, 1983, SIAM J MATH ANAL, V38, P534
48717    ZHANG P, 1999, J DIFFER EQUATIONS, V152, P409
48718    ZHANG T, 1989, T AM MATH SOC, V312, P589
48719 NR 11
48720 TC 0
48721 SN 0022-0396
48722 J9 J DIFFERENTIAL EQUATIONS
48723 JI J. Differ. Equ.
48724 PD JUL 20
48725 PY 2002
48726 VL 183
48727 IS 1
48728 BP 239
48729 EP 261
48730 PG 23
48731 SC Mathematics
48732 GA 582HH
48733 UT ISI:000177344100010
48734 ER
48735 
48736 PT J
48737 AU Gao, Y
48738    Xia, ZQ
48739    Zhang, LW
48740 TI Kernelled quasidifferential for a quasidifferentiable function in
48741    two-dimensional space
48742 SO JOURNAL OF CONVEX ANALYSIS
48743 DT Article
48744 DE quasidifferential calculus; kernelled quasidifferential; minimal
48745    quasidifferential; nonsmooth analysis
48746 AB For a quasidifferentiable function f defined on R-2, it is proved, in
48747    the sense of Demyanov and Rubinov, that the following assertion
48748    [GRAPHICS]
48749    in this paper, where D f (x) denotes the set of all quasidifferentials
48750    of fat x. It is shown that this way can be viewed as an approach to
48751    determining or choosing a representative of the equivalent class of
48752    quasidifferentials of fat x, in the two-dimensional case.
48753 C1 Shanghai Univ Sci & Technol, Sch Management, Shanghai 200093, Peoples R China.
48754    Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China.
48755 RP Gao, Y, Shanghai Univ Sci & Technol, Sch Management, Shanghai 200093,
48756    Peoples R China.
48757 CR CRZYBOWSKI J, 1994, ARCH MATH, V63, P173
48758    DEMYANOV VF, 1995, CONSTRUCTURE NONSMOO
48759    DENG MR, 1991, CHINESE J OPERATIONS, V10, P65
48760    GAO Y, 1988, J MATH RES EXPOSITIO, V8, P152
48761    PALLASCHKE D, 1991, B POLISH ACAD SCI MA, V39, P1
48762    PALLASCHKE D, 1993, Z OPER RES, V37, P129
48763    PALLASCHKE D, 1994, MATH PROGRAM, V66, P161
48764    SCHOLTES S, 1992, MATHEMATIKA, V39, P267
48765    XIA ZQ, 1987, WP8789 IIASA
48766    XIA ZQ, 1993, DEMONSTRATIO MATH, V26, P159
48767    XIA ZQ, 1993, PUMA, V4, P211
48768 NR 11
48769 TC 2
48770 SN 0944-6532
48771 J9 J CONVEX ANAL
48772 JI J. Convex Anal.
48773 PY 2001
48774 VL 8
48775 IS 2
48776 BP 401
48777 EP 408
48778 PG 8
48779 SC Mathematics
48780 GA 582HX
48781 UT ISI:000177345700006
48782 ER
48783 
48784 PT J
48785 AU Zhang, LW
48786    Xia, ZQ
48787    Gao, Y
48788    Wang, MZ
48789 TI Star-kernels and star-differentials in quasidifferential analysis
48790 SO JOURNAL OF CONVEX ANALYSIS
48791 DT Article
48792 DE quasidifferentiable function; directional derivative;
48793    quasidifferential; kernelled quasidifferential; star-kernel;
48794    star-differential; star-shaped set
48795 AB This paper is devoted to the study of quasidifferential structure.
48796    Three concepts, kernelled quasidifferential, star-kernel and
48797    star-differential, are proposed. Kernelled quasidifferential is used to
48798    describe a special class of quasidifferentiable functions, which covers
48799    convex and concave functions. A sufficiency theorem and a sufficiency
48800    and necessity theorem for a quasi-kernel being a kernelled
48801    quasidifferential are proven. The notion of star-kernel is employed if
48802    the quasi-kernel is not a kernelled quasidifferential. The existence
48803    theorem for a star-kernel of a quasidifferentiable function is
48804    established, which shows that the star-kernel is a pair of star-shaped
48805    sets and the sub-/super-derivative is expressed by the gauge of a
48806    star-shaped set. The notion of star-differential is used to describe
48807    the differential of the class of directionally differentiable functions
48808    which contains the class of quasidifferentiable functions. A
48809    star-differential is also a pair of star-shaped sets and its
48810    operational properties are favourable. A representative of the
48811    star-differential can be easily obtained by decomposing the directional
48812    derivative into the difference of its positive and negative part.
48813 C1 Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China.
48814    Dalian Univ Technol, Dept Appl Math, CORA, Dalian 116024, Peoples R China.
48815    Shanghai Univ Sci & Technol, Sch Management, Shanghai 200093, Peoples R China.
48816 RP Zhang, LW, Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, POB
48817    2719, Beijing 100080, Peoples R China.
48818 CR CRZYBOWSKI J, 1994, ARCH MATH, V63, P173
48819    DEMYANOV VF, 1980, DOKL AKAD NAUK SSSR, V250, P21
48820    DEMYANOV VF, 1986, QUASIDIFFERENTIAL CA
48821    DEMYANOV VF, 1995, CONSTRUCTIVE NONSMOO, V7
48822    DENG MY, 1991, CHINESE J OPERATIONS, V1, P65
48823    GAO Y, 1988, J MATH RES EXPOSITIO, V8, P152
48824    GAO Y, 1997, KERNELLED QUASIDIFFE
48825    GAO Y, 1998, SOOCHOW J MATH, V24, P211
48826    PALLASCHKE D, 1991, B POLISH ACAD SCI MA, V39, P1
48827    PALLASCHKE D, 1993, Z OPER RES, V37, P129
48828    PALLASCHKE D, 1994, MATH PROGRAM, V66, P161
48829    PALLASCHKE D, 1996, J CONVEX ANAL, V3, P83
48830    ROCKAFELLAR RT, 1970, CONVEX ANAL
48831    ROCKAFELLAR RT, 1988, T AM MATH SOC, V307, P75
48832    RUBINOV AM, 1986, MATH PROGRAM STUD, V29, P176
48833    SCHOLTES S, 1992, MATHEMATIKA, V39, P267
48834    XIA ZQ, 1987, WP8766 IIASA
48835 NR 17
48836 TC 2
48837 SN 0944-6532
48838 J9 J CONVEX ANAL
48839 JI J. Convex Anal.
48840 PY 2002
48841 VL 9
48842 IS 1
48843 BP 139
48844 EP 158
48845 PG 20
48846 SC Mathematics
48847 GA 583NH
48848 UT ISI:000177413600007
48849 ER
48850 
48851 PT J
48852 AU Chen, GR
48853    Yang, L
48854    Liu, ZR
48855 TI Anticontrol of chaos for continuous-time systems
48856 SO IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND
48857    COMPUTER SCIENCES
48858 DT Article
48859 DE anticontrol; chaos; impulsive control
48860 ID FEEDBACK
48861 AB This paper studies the anticontrol problem of making a continuous-time
48862    system chaotic by using impulsive control. The controller is designed
48863    to ensure the controlled orbit be bounded and, meanwhile, the
48864    controlled system have positive Lyapunov exponents, which are achieved
48865    near a stable limit cycle of the system, One illustrative example is
48866    given.
48867 C1 City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
48868    Suzhou Univ, Dept Elect Engn, Suzhou, Peoples R China.
48869    Shanghai Univ, Dept Math, Shanghai, Peoples R China.
48870 RP Chen, GR, City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong,
48871    Peoples R China.
48872 CR CHEN G, 1998, CHAOS ORDER METHODOL
48873    CHEN G, 1999, CONTROLLING CHAOS BI
48874    CHEN GR, 1998, INT J BIFURCAT CHAOS, V8, P1585
48875    PARKER TS, 1989, PRACTICAL NUMERICAL
48876    WANG XF, 2000, CHAOS, V10, P771
48877    WANG XF, 2000, INT J BIFURCAT CHAOS, V10, P549
48878    YANG L, 2002, IN PRESS INT J BIFUR, V12
48879 NR 7
48880 TC 3
48881 SN 0916-8508
48882 J9 IEICE TRANS FUND ELEC COM COM
48883 JI IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
48884 PD JUN
48885 PY 2002
48886 VL E85A
48887 IS 6
48888 BP 1333
48889 EP 1335
48890 PG 3
48891 SC Computer Science, Hardware & Architecture; Computer Science,
48892    Information Systems; Engineering, Electrical & Electronic
48893 GA 581YJ
48894 UT ISI:000177322400020
48895 ER
48896 
48897 PT J
48898 AU Lu, TS
48899    Yi, YH
48900    Zhang, ZG
48901    Zhang, ZQ
48902    Hua, N
48903 TI A new 10-hydroxyl anthrone glycoside from Cassia siamea Lam.
48904 SO CHINESE CHEMICAL LETTERS
48905 DT Article
48906 DE Cassia siamea; anthrone;
48907    1,8,10-trihydroxyl-1-O-beta-D-glucopyranosyl-3-methyl-10-C (S) -beta-D;
48908    glucopyranosyl-anthrone-9 1
48909 ID PRODUCTS
48910 AB A new 10-hydroxyl anthrone glycoside, 1, 8, 10 -
48911    trihydroxyl-1-O-beta-D-glucopyranosyl-3-i-nethyl- 10- C (S) - beta - D-
48912    glucopyranosyl-anthrone-9 1 was isolated from the stein of Cassia
48913    siamea Lam. The structure was elucidated by spectral evidences,
48914    especially by 2 D techniques.
48915 C1 Pharm Dept 88th Hosp PLA, Shandong 271000, Peoples R China.
48916    Shanghai Univ, Mil Med 2, Sch Pharm, Ctr Marine Drug Res, Shanghai 200433, Peoples R China.
48917 RP Lu, TS, Pharm Dept 88th Hosp PLA, Shandong 271000, Peoples R China.
48918 CR ERMIAS D, 1996, PHYTOCHEMISTRY, V42, P1683
48919    LU TS, 2001, CHINESE CHEM LETT, V12, P703
48920    MANITTO P, 1993, J CHEM SOC P1, P1577
48921    MANITTO P, 1995, J NAT PRODUCTS, V58, P419
48922    RAUWALD HW, 1992, PLANTA MED, V58, P259
48923 NR 5
48924 TC 0
48925 SN 1001-8417
48926 J9 CHIN CHEM LETT
48927 JI Chin. Chem. Lett.
48928 PD AUG
48929 PY 2002
48930 VL 13
48931 IS 8
48932 BP 731
48933 EP 733
48934 PG 3
48935 SC Chemistry, Multidisciplinary
48936 GA 583CE
48937 UT ISI:000177387300011
48938 ER
48939 
48940 PT J
48941 AU Pu, DG
48942    Tian, WW
48943 TI A class of DFP algorithms with revised search direction
48944 SO NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION
48945 DT Article
48946 DE DFP algorithm; line search; convergence; convergence rate
48947 ID QUASI-NEWTON METHODS; UNCONSTRAINED OPTIMIZATION; BROYDEN FAMILY; BFGS;
48948    CONVERGENCE
48949 AB in this paper, we discuss the convergence of the DFP algorithm with
48950    revised search direction. We prove that the algorithm is globally
48951    convergent for continuously differentiable functions and the rate of
48952    convergence of the algorithm is one-step superlinear and n-step
48953    second-order for uniformly convex objective functions.
48954 C1 Tongji Univ, Shanghai 200092, Peoples R China.
48955    Shanghai Univ, Shanghai 200041, Peoples R China.
48956 CR ALBAALI M, 1993, J OPTIMIZ THEORY APP, V77, P127
48957    ARMAND P, 2000, SIAM J OPTIMIZ, V11, P199
48958    BROYDEN CG, 1965, MATH COMPUT, V19, P577
48959    BYRD RH, 1987, SIAM J NUMER ANAL, V24, P1171
48960    DAVIDON WC, 1959, VARIABLE METRIC ALGO
48961    DAVIDON WC, 1975, MATH PROGRAM, V9, P1
48962    DENNIS JE, 1977, SIAM REV, V19, P46
48963    DIXON LCW, 1972, J OPTIMIZATION THEOR, V10, P34
48964    FLETCHER R, 1963, COMPUT J, V6, P163
48965    FLETCHER R, 1987, UNCONSTRAINED OPTIMI
48966    HU YF, 1994, J OPTIM THEORY APPL, V83, P421
48967    LALEE M, 1993, SIAM J OPTIMIZ, V3, P637
48968    MIFFLIN RB, 1994, MATH PROGRAM, V65, P247
48969    OREN SS, 1972, THESIS STANFORD U
48970    OREN SS, 1974, J OPT THEORY APPL, V37, P137
48971    POWELL MJD, 1971, J I MATHS APPLICS, V7, P21
48972    POWELL MJD, 1976, NONLINEAR PROGRAMMIN, V6
48973    POWELL MJD, 1983, MATH PROGRAMMING STA
48974    POWELL MJD, 1984, LECT NOTES MATH, V1066, P122
48975    POWELL MJD, 1986, MATH PROGRAM, V34, P34
48976    POWELL MJD, 1987, MATH PROGRAM, V38, P29
48977    PU D, 1990, J ACTA MATH APPL SIN, V13, P118
48978    PU D, 1990, J ANN OPERATIONS RES, V24, P175
48979    PU D, 1992, ASIA PACIFIC J OPERA, V9, P207
48980    PU D, 1994, J COMPUTATIONAL MATH, V8, P366
48981    PU D, 1995, J CHINESE U, V10, P313
48982    PU D, 2000, J ACTA MATH APPLICAT, V16, P313
48983    PU D, 2002, J OPTIMIZ THEORY APP, V112, P187
48984    PU DG, 1997, ASIA PAC J OPER RES, V14, P93
48985    QI HD, 2000, SIAM J OPTIMIZ, V11, P113
48986    SIEGEL D, 1993, MATH PROGRAM, V60, P167
48987    SIEGEL D, 1994, MATH PROGRAM, V66, P45
48988    SPEDICATO E, 1976, J OPTIMIZATION THEOR, V20, P315
48989    SPEDICATO E, 1978, MATH PROG, V15, P123
48990    WOLFE P, 1971, SIAM REV, V13, P185
48991    ZHANG Y, 1988, IMA J NUMER ANAL, V8, P487
48992    ZOUTENDIJK G, 1970, INTEGER NONLINEAR PR, P37
48993 NR 37
48994 TC 0
48995 SN 0163-0563
48996 J9 NUMER FUNC ANAL OPTIMIZ
48997 JI Numer. Funct. Anal. Optim.
48998 PD MAY-JUN
48999 PY 2002
49000 VL 23
49001 IS 3-4
49002 BP 383
49003 EP 400
49004 PG 18
49005 SC Mathematics, Applied
49006 GA 580PT
49007 UT ISI:000177243500010
49008 ER
49009 
49010 PT J
49011 AU Bai, YJ
49012    Xu, XG
49013    Liu, YX
49014    Xiao, LM
49015    Geng, GL
49016 TI Structural change due to martensite aging of CuZnAlMnNi shape memory
49017    alloy
49018 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
49019    MICROSTRUCTURE AND PROCESSING
49020 DT Article
49021 DE martensite aging; CuZnAlMnNi shape memory alloy; alpha-phase;
49022    transmission electron microscopy
49023 ID 18R MARTENSITE; AL; TRANSFORMATION; STABILIZATION
49024 AB The microstructures of a CuZnAlMnNi shape memory alloy after one year
49025    aging in martensite phase were investigated by transmission electron
49026    microscopy. It was found that the substructure of stacking faults in
49027    the original martensite plates becomes indistinct, and the amount
49028    decreases. However, the equilibrium face centered cubic (fcc)
49029    alpha-phase can be observed forming at martensite plate boundaries or
49030    inside the plates. The structural variation during aging is responsible
49031    for the degradation of shape memory property and transformation
49032    temperatures when Cu-based SMA actuators are in use. (C) 2002 Elsevier
49033    Science B.V. All rights reserved.
49034 C1 Shanghai Univ Sci & Technol, Dept Mech, Shandong 250031, Peoples R China.
49035    Shandong Univ, Inst Mat Sci & Engn, Shandong 250061, Peoples R China.
49036 RP Bai, YJ, Shanghai Univ Sci & Technol, Dept Mech, Shandong 250031,
49037    Peoples R China.
49038 CR ABUARAB A, 1988, ACTA METALL, V36, P2627
49039    ANDRADE M, 1984, ACTA METALL, V32, P1809
49040    BAI YJ, 2000, MAT SCI ENG A-STRUCT, V284, P25
49041    GOTTHARDT R, 1982, J PHYS S12, V43, P667
49042    KENNON NF, 1982, METALL T A, V13, P551
49043    LOVEY FC, 1984, PHYS STATUS SOLIDI A, V86, P553
49044    SAULE F, 1995, ACTA METALL MATER, V43, P2373
49045    VANHUMBEECK J, 1984, SCRIPTA METALL, V18, P893
49046    WEI ZG, 1997, METALL MATER TRANS A, V28, P955
49047    WU MH, 1989, ACTA METALL, V37, P1821
49048 NR 10
49049 TC 0
49050 SN 0921-5093
49051 J9 MATER SCI ENG A-STRUCT MATER
49052 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
49053 PD SEP 1
49054 PY 2002
49055 VL 334
49056 IS 1-2
49057 BP 49
49058 EP 52
49059 PG 4
49060 SC Materials Science, Multidisciplinary
49061 GA 580LL
49062 UT ISI:000177236000008
49063 ER
49064 
49065 PT J
49066 AU Wei, BC
49067    Wang, WH
49068    Xia, L
49069    Zhang, Z
49070    Zhao, DQ
49071    Pan, MX
49072 TI Glass transition and thermal stability of hard magnetic bulk NdAlFeCo
49073    metallic glass
49074 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
49075    MICROSTRUCTURE AND PROCESSING
49076 DT Article
49077 DE metallic glasses; phase transformations; hard magnetic; glass transition
49078 ID DIFFERENTIAL SCANNING CALORIMETRY; FE-AL ALLOYS; SUPERCOOLED LIQUID;
49079    AMORPHOUS-ALLOYS; CASTING METHOD; ND; PHASES
49080 AB Glass transition and thermal stability of bulk Nd60Al10Fe20Co10
49081    metallic glass were investigated by means of dynamic mechanical thermal
49082    analysis (DMTA), differential scanning calorimetry (DSC), X-ray
49083    diffraction (XRD) and scanning electronic microscopy (SEM). The glass
49084    transition temperature, not revealed by DSC, is alternatively
49085    determined by DMTA via storage modulus E' and loss modulus E"
49086    measurement to be 498 K at a heating rate of 0.167 K s (-1). The
49087    calculated reduced glass transition temperature (T-g/T-m) is 0.63. The
49088    large value of T-g/T-m of this alloy is consistent with its good
49089    glass-forming ability. The crystallization process of the metallic
49090    glass is concluded as follows: amorphous --> amorphous + metastable
49091    FeNdAl phase --> amorphous + primary delta-FeNdAl phase --> primary
49092    delta-phase + eutectic delta-phase + Nd3Al + Nd3Co. The appearance of
49093    hard magnetism in this alloy is ascribed to the presence of amorphous
49094    phase with highly relaxed structure. The hard magnetism disappeared
49095    after the eutectic crystallization of the amorphous phase. (C) 2002
49096    Elsevier Science B.V. All rights reserved.
49097 C1 Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Beijing 100080, Peoples R China.
49098    Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China.
49099    Chinese Acad Sci, Ctr Condensed Matter Phys, Beijing 100080, Peoples R China.
49100    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
49101 RP Wei, BC, Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Beijing
49102    100080, Peoples R China.
49103 CR ANDERSON PM, 1980, MATER SCI ENG, V43, P267
49104    CHEN HS, 1985, J NON-CRYST SOLIDS, V72, P287
49105    DING J, 1999, APPL PHYS LETT, V75, P1763
49106    FAN GJ, 1999, APPL PHYS LETT, V75, P2984
49107    GRIEB B, 1990, IEEE T MAGN, V26, P1367
49108    INOUE A, 1990, MATER T JIM, V31, P425
49109    INOUE A, 1992, MATER T JIM, V33, P937
49110    INOUE A, 1996, MATER T JIM, V37, P636
49111    INOUE A, 1997, APPL PHYS LETT, V71, P58
49112    INOUE A, 1998, METALL MATER TRANS A, V29, P1779
49113    INOUE A, 2000, ACTA MATER, V48, P279
49114    JOHNSON WL, 1996, MATER SCI FORUM, V225, P35
49115    LI Y, 1998, PHIL MAG LETT, V78, P213
49116    NAGAYAMA K, 1990, J PHYS SOC JPN, V59, P2483
49117    NIEH TG, 1999, SCRIPTA MATER, V40, P1021
49118    ORTEGAHERTOGS RJ, 2001, SCRIPTA MATER, V44, P1333
49119    PEKER A, 1993, APPL PHYS LETT, V63, P2342
49120    PIERRE V, 1994, HDB TERNARY ALLOY PH, P3525
49121    RAMBOUSKY R, 1995, MATER SCI FORUM, V179, P761
49122    STADELMAIER HH, 1991, MATER LETT, V10, P303
49123    WANG WH, 1997, APPL PHYS LETT, V71, P1053
49124    WANG XZ, 1999, J ALLOY COMPD, V290, P209
49125    WEI BC, 2001, J APPL PHYS, V89, P3529
49126 NR 23
49127 TC 3
49128 SN 0921-5093
49129 J9 MATER SCI ENG A-STRUCT MATER
49130 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
49131 PD SEP 1
49132 PY 2002
49133 VL 334
49134 IS 1-2
49135 BP 307
49136 EP 311
49137 PG 5
49138 SC Materials Science, Multidisciplinary
49139 GA 580LL
49140 UT ISI:000177236000044
49141 ER
49142 
49143 PT J
49144 AU Zhu, XH
49145    Zhu, JM
49146    Zhou, SH
49147    Li, Q
49148    Liu, ZG
49149    Ming, NB
49150    Meng, ZY
49151    Chan, HLW
49152    Choy, CL
49153 TI Actuators, piezoelectric ceramics and functionally gradient materials
49154 SO FERROELECTRICS
49155 DT Article
49156 DE actuators; piezoelectric ceramics; functional gradient materials
49157 ID FILMS
49158 AB Piezoelectric ceramic actuators and materials play a key role in the
49159    development of advanced precision engineering. The breakthroughs in
49160    this field are closely related to the development of various types of
49161    piezoelectric ceramic actuators and related materials. The likelihood
49162    that the range of applications and demand for actuators will grow
49163    quickly has stimulated intensive researches on piezoelectric ceramics.
49164    Functionally gradient materials (FGMs) are new classes of composites
49165    characterized by compositional and/or microstructural gradation over
49166    macroscopic/microscopic distances. This constitutional gradation can be
49167    tailored to meet specific needs while providing the best utilization of
49168    composite components. Furthermore, FGMs technology is also a novel
49169    interfacial technology to solve the problems associated with the sharp
49170    interface between two dissimilar materials. In recent years significant
49171    advances in the development of FGMs have been achieved. In this paper,
49172    we first briefly review the recent progress of ceramic actuators and
49173    developments of piezoelectric materials, and then focus on summarizing
49174    typical applications of functional gradients in piezoelectric and
49175    ferroelectric materials.
49176 C1 Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.
49177    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
49178    Hong Kong Polytech Univ, Dept Appl Phys, Kowloon, Hong Kong, Peoples R China.
49179    Hong Kong Polytech Univ, Mat Res Ctr, Kowloon, Hong Kong, Peoples R China.
49180 RP Zhu, XH, Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct,
49181    Nanjing 210093, Peoples R China.
49182 CR BANDYOPADHYAY A, 1997, J AM CERAM SOC, V80, P1366
49183    DOGAN A, 1994, FERROELECTRICS, V156, P1
49184    FERNANDEZ JF, 1996, SENSOR ACTUAT A-PHYS, V51, P183
49185    HAERTLING GH, 1994, AM CERAM SOC BULL, V73, P93
49186    KITAMURA T, 1981, JPN J APPL PHYS, V20, P97
49187    MOHAMMED MS, 1998, J APPL PHYS, V84, P3322
49188    SCHUBRING NW, 1992, PHYS REV LETT, V68, P1778
49189    SUGAWARA Y, 1992, J AM CERAM SOC, V75, P996
49190    WEI ZG, 1998, J MATER SCI, V33, P3763
49191    WU CCM, 1996, J AM CERAM SOC, V79, P809
49192    ZHU XH, 1995, J MATER SCI LETT, V14, P516
49193    ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169
49194    ZHU XH, 2001, 13 INT S INT FERR MA
49195 NR 13
49196 TC 0
49197 SN 0015-0193
49198 J9 FERROELECTRICS
49199 JI Ferroelectrics
49200 PY 2001
49201 VL 263
49202 IS 1-4
49203 BP 1367
49204 EP 1376
49205 PG 10
49206 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
49207 GA 580BZ
49208 UT ISI:000177215600011
49209 ER
49210 
49211 PT J
49212 AU Ren, ZJ
49213    Cao, WG
49214    Tong, WQ
49215    Jing, XP
49216 TI Knoevenagel condensation of aldehydes with cyclic active methylene
49217    compounds in water
49218 SO SYNTHETIC COMMUNICATIONS
49219 DT Article
49220 AB A new route of Knoevenagel condensation of aromatic aldehydes with
49221    Meldrum's acid, barbituric acid and dimedone in the presence of
49222    cetyltrimethyl ammonium bromide at room temperature in water is
49223    described.
49224 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
49225 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
49226 CR CONRAD M, 1900, BER DTSCH CHEM GES, V33, P1339
49227    LI CJ, 1993, CHEM REV, V93, P2023
49228    NAGARAJAN K, 1992, INDIAN J CHEM B, V31, P73
49229    SCHUSTER P, 1964, MH CHEM, V95, P53
49230    SHI DQ, 2000, SYNTHETIC COMMUN, V30, P713
49231    TROST RM, 1991, COMPREHENSIVE ORGANI, V2, P369
49232    VVEDENSKII VM, 1969, CHEM HETEROCYCL CMPD, V5, P827
49233    VVEDENSKII VM, 1969, KHIM GETEROTSIKL, P1092
49234    WANG SH, 2001, SYNTHETIC COMMUN, V31, P29
49235 NR 9
49236 TC 7
49237 SN 0039-7911
49238 J9 SYN COMMUN
49239 JI Synth. Commun.
49240 PY 2002
49241 VL 32
49242 IS 13
49243 BP 1947
49244 EP 1952
49245 PG 6
49246 SC Chemistry, Organic
49247 GA 579TZ
49248 UT ISI:000177195100005
49249 ER
49250 
49251 PT J
49252 AU Chen, YL
49253    Ding, WY
49254    Cao, WG
49255    Lu, C
49256 TI Stereoselective synthesis of
49257    trans-beta-methoxycarbonyl-gamma-aryl-gamma-butyrolactones
49258 SO SYNTHETIC COMMUNICATIONS
49259 DT Article
49260 DE arsenic ylide; stepwise synthesis; one-pot synthesis;
49261    gamma-butyrolactone; stereoselective synthesis
49262 AB Stereoselective synthesis of
49263    trans-beta-methoxycarbonyl-gamma-aryl-gamma-butyrolactones (5) by the
49264    reaction of methoxycarbonylmethyl triphenyl arsonium bromide (1) and
49265    2,2-dimethyl-5-substituted-benzal-1,3-dioxa-4,6-dioxa-4,6-dione (2) is
49266    carried out in the presence of potassium carbonate and trace water in
49267    dimethoxyethane. 1,2-Cis-cyclopropane 3 is formed as an intermediate.
49268    The stability of compound 3 in water is related to the property of the
49269    aryl substituent. With strong electron-donating groups [2a-c,
49270    Ar=4-CH3O-C6H4; 3,4-OCH2O-C6H3 or 4-(CH3)(2)N-C6H4] at room temperature
49271    3 is formed in situ and transformed to gamma-butyrolactones 5a-c
49272    immediately, whereas when the aryl substituent is H or a weak
49273    electron-donating or electron-withdrawing group (2d-g, Ar=4-CH3-C6H4;
49274    C6H5; 4-Cl-C6H4 or 4-NO2-C6H4), 3 is stable to water at room
49275    temperature. On further heating in acetone, 3 is transformed to
49276    gamma-butyrolactones 5d-g (stepwise synthesis). One-pot synthesis of
49277    5d-g from the reaction of 1 with 2d-g is also studied.
49278 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
49279    Acad Sinica, Organomet Chem Lab, Shanghai 200032, Peoples R China.
49280 RP Chen, YL, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
49281 CR BARTOLO G, 1997, J CHEM SOC P1, V2, P147
49282    CHEM YL, 1998, J CHIN U, V19, P1614
49283    DING WY, 1996, CHEM RES CHINESE U, V12, P50
49284    UENISHI J, 1997, HETEROCYCLES, V44, P277
49285 NR 4
49286 TC 3
49287 SN 0039-7911
49288 J9 SYN COMMUN
49289 JI Synth. Commun.
49290 PY 2002
49291 VL 32
49292 IS 13
49293 BP 1953
49294 EP 1960
49295 PG 8
49296 SC Chemistry, Organic
49297 GA 579TZ
49298 UT ISI:000177195100006
49299 ER
49300 
49301 PT J
49302 AU Zhou, SF
49303 TI Attractors for lattice systems corresponding to evolution equations
49304 SO NONLINEARITY
49305 DT Article
49306 ID REACTION-DIFFUSION SYSTEMS; DYNAMICAL-SYSTEMS; UNBOUNDED-DOMAINS;
49307    GLOBAL ATTRACTOR; WAVE-EQUATIONS; SPATIAL CHAOS; PROPAGATION;
49308    EXISTENCE; FAILURE
49309 AB We consider the existence of the global attractor and its
49310    finite-dimensional approximation for the lattice dynamical systems
49311    corresponding to the wave equations and reaction diffusion equations.
49312 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
49313 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
49314 CR BELL J, 1984, Q APPL MATH, V42, P1
49315    BELLERI V, 2001, DISCRET CONTIN DYN S, V7, P719
49316    CAHN JW, 1960, ACTA METALL, V8, P554
49317    CHATE H, 1997, PHYSICA D, V103, P1
49318    CHOW SN, 1995, IEEE T CIRCUITS-I, V42, P746
49319    CHOW SN, 1998, J DIFFER EQUATIONS, V149, P248
49320    CHUA LO, 1993, IEEE T CIRCUITS-I, V40, P147
49321    ERNEUX T, 1993, PHYSICA D, V67, P237
49322    FABINY L, 1993, PHYS REV A B, V47, P4287
49323    FEIREISL E, 1996, J DIFFER EQUATIONS, V129, P239
49324    FEIREISL E, 1997, J DYNAM DIFFERENTIAL, V9, P133
49325    FIRTH WJ, 1988, PHYS REV LETT, V61, P329
49326    HALE JK, 1988, ASYMPTOTIC BEHAV DIS
49327    HILLERT M, 1961, ACTA METALL, V9, P525
49328    JIANG MH, 1999, J STAT PHYS, V95, P791
49329    KAPRAL R, 1991, J MATH CHEM, V6, P113
49330    KARACHALIOS NI, 1999, J DIFFER EQUATIONS, V157, P183
49331    KEENER JP, 1987, SIAM J APPL MATH, V47, P556
49332    KEENER JP, 1991, J THEOR BIOL, V148, P49
49333    LAPLANTE JP, 1992, J PHYS CHEM-US, V96, P4931
49334    MERINO S, 1996, J DIFFER EQUATIONS, V132, P87
49335    PECORA LM, 1990, PHYS REV LETT, V64, P821
49336    PEREZMUNUZURI A, 1993, IEEE T CIRCUITS SYST, V40, P872
49337    SHEN WX, 1996, SIAM J APPL MATH, V56, P1379
49338    TEMAM R, 1997, APPL MATH SCI, V68
49339    VONNEUMANN J, 1951, CEREBRAL MECH BEHAV, P9
49340    WANG BX, 1999, PHYSICA D, V128, P41
49341    WEINBERGER HE, 1988, SIAM J MATH ANAL, V19, P1057
49342    WINALOW RL, 1993, PHYSICA D, V64, P281
49343    YU J, 1998, PHYS LETT A, V240, P60
49344 NR 30
49345 TC 2
49346 SN 0951-7715
49347 J9 NONLINEARITY
49348 JI Nonlinearity
49349 PD JUL
49350 PY 2002
49351 VL 15
49352 IS 4
49353 BP 1079
49354 EP 1095
49355 PG 17
49356 SC Mathematics, Applied; Physics, Mathematical
49357 GA 578NE
49358 UT ISI:000177123700007
49359 ER
49360 
49361 PT J
49362 AU Fang, ZJ
49363    Xia, YB
49364    Wang, LJ
49365    Wang, ZM
49366    Zhang, WL
49367    Fan, YM
49368 TI Effect of carbon ion pre-implantation on the stress level of diamond
49369    films formed on alumina substrates
49370 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
49371 DT Article
49372 ID DEPOSITION; NUCLEATION
49373 AB The compressive stress in diamond films formed by hot filament chemical
49374    vapour deposition is reduced by implantation of carbon ions into
49375    alumina substrates before the deposition of diamond films. It is found
49376    that the stress in the diamond films decreases linearly with the
49377    increment of the C+ implantation dose. The reason for the decrease in
49378    the compressive stress is explained in terms of the offset by the
49379    residual compressive stress in the alumina substrates, which is caused
49380    by the ion pre-implantation.
49381 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
49382 RP Fang, ZJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
49383    China.
49384 CR *INT CTR DIFFR DAT, 1988, 10174 JCPDS INT CTR
49385    AGER JW, 1993, PHYS REV B, V48, P2601
49386    FAN QH, 1999, J MATER SCI, V34, P1353
49387    FAN WD, 1995, SURF COAT TECH, V72, P78
49388    ITO T, 1994, JPN J APPL PHYS 1, V33, P5681
49389    MO Y, 1998, J CRYST GROWTH, V191, P459
49390    RALLS KM, 1982, INTRO MAT SCI ENG
49391 NR 7
49392 TC 5
49393 SN 0022-3727
49394 J9 J PHYS-D-APPL PHYS
49395 JI J. Phys. D-Appl. Phys.
49396 PD JUL 7
49397 PY 2002
49398 VL 35
49399 IS 13
49400 BP L57
49401 EP L60
49402 PG 4
49403 SC Physics, Applied
49404 GA 577WL
49405 UT ISI:000177085500001
49406 ER
49407 
49408 PT J
49409 AU Liu, ZG
49410    Chen, GR
49411 TI On the relationship between parametric variation and state feedback in
49412    chaos control
49413 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
49414 DT Article
49415 DE chaos control; feedback control; parametric variation
49416 AB In this Letter, we study the popular parametric variation chaos control
49417    and state-feedback methodologies in chaos control, and point out for
49418    the first time that they are actually equivalent in the sense that
49419    there exist diffeomorphisms that can convert one to the other for most
49420    smooth chaotic systems. Detailed conversions are worked out for typical
49421    discrete chaotic maps (logistic, Henon) and continuous flows (Rosller,
49422    Lorenz) for illustration. This unifies the two seemingly different
49423    approaches from the physics and the engineering communities on chaos
49424    control. This new perspective reveals some new potential applications
49425    such as chaos synchronization and normal form analysis from a unified
49426    mathematical point of view.
49427 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
49428    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
49429 RP Liu, ZG, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
49430 CR CHEN G, 1998, CHAOS ORDER METHODOL
49431    CHEN GR, 2000, INT J BIFURCAT CHAOS, V10, P511
49432    OTT E, 1990, PHYS REV LETT, V64, P1196
49433    PEITGEN HO, 1992, CHAOS FRACTALS NEW F
49434    WIGGINS S, 1990, INTRO APPL NONLINEAR
49435 NR 5
49436 TC 3
49437 SN 0218-1274
49438 J9 INT J BIFURCATION CHAOS
49439 JI Int. J. Bifurcation Chaos
49440 PD JUN
49441 PY 2002
49442 VL 12
49443 IS 6
49444 BP 1411
49445 EP 1415
49446 PG 5
49447 SC Mathematics, Applied; Multidisciplinary Sciences
49448 GA 579KB
49449 UT ISI:000177176200013
49450 ER
49451 
49452 PT J
49453 AU Zhu, WM
49454    Li, CE
49455    Guo, CJ
49456    Yan, HX
49457    He, LX
49458 TI Study of phase conversion in PMN-PT ceramics near the morphotropic
49459    phase boundary
49460 SO FERROELECTRICS
49461 DT Article
49462 DE phase composition; compressive stress; phase conversion
49463 ID TITANATE
49464 AB Phase compositions, grain sizes and domain widths of 0.65PMN-0.35PT
49465    ceramics sintered at various conditions have been investigated. It has
49466    been shown that a phase conversion from rhombohedral to tetragonal took
49467    place when the sintering temperatures were increased. This result is
49468    considered to be attributed to the increase of compressive stress in
49469    the grain, which makes the phase transition from tetragonal to
49470    rhombohedral difficult to occur, due to an expansion of cell volume. As
49471    a result, more tetragonal phases were left unchanged.
49472 C1 Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
49473    Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
49474 RP Zhu, WM, Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050,
49475    Peoples R China.
49476 CR ARIGUR P, 1975, J PHYS D, V8, P1856
49477    ARLT G, 1985, J APPL PHYS, V58, P1619
49478    CHOI SW, 1989, MATER LETT, V8, P253
49479    FERNANDEZ JF, 1998, J EUR CERAM SOC, V18, P1695
49480    FORSBERGH PW, 1954, PHYS REV, V93, P686
49481    HIREMATH BV, 1983, J AM CERAM SOC, V66, P790
49482    KELLY J, 1997, J AM CERAM SOC, V80, P957
49483    SWARTZ SL, 1982, MATER RES BULL, V17, P1245
49484 NR 8
49485 TC 0
49486 SN 0015-0193
49487 J9 FERROELECTRICS
49488 JI Ferroelectrics
49489 PY 2001
49490 VL 251
49491 IS 1-4
49492 BP 45
49493 EP 52
49494 PG 8
49495 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
49496 GA 580BC
49497 UT ISI:000177213400007
49498 ER
49499 
49500 PT J
49501 AU Ding, YP
49502    Wu, JS
49503    Meng, ZY
49504 TI Study on the characterization and formation mechanism of microdomains
49505    in Ba0.7Sr0.3TiO3 thin films by Hrem
49506 SO FERROELECTRICS
49507 DT Article
49508 DE microdomain structure; ferroelectricity; Ba0.7Sr0.3TiO3 thin films
49509 ID BARIUM-TITANATE; PHASE; FERROELECTRICITY; MICROSTRUCTURE; CAPACITORS
49510 AB Microdomain clusters in scope of about 60 nm were observed in
49511    Ba0.7Sr0.3TiO3 thin films by transmission electron microscopy (TEM).
49512    Combined with investigated results by high-resolution electron
49513    microscopy (HREM) and selected area electron diffraction (SAED)
49514    techniques, a reasonable spatial configuration of the microdomains is
49515    proposed, where twin-related microdomain with thickness of several unit
49516    cells are prevailing. The larger c/a value deduced from the doublet
49517    splitting of diffraction spot in SHED pattern confirms that the
49518    microdomains are under highly compressing. This locally compressive
49519    condition is pointed out to be responsible for the formation of small
49520    microdomain uncommitted by critical size and the ferroelectricity of
49521    the thin films.
49522 C1 Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Elect Mat Lab, Shanghai 200030, Peoples R China.
49523    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
49524 RP Ding, YP, Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Elect Mat Lab,
49525    Shanghai 200030, Peoples R China.
49526 CR ARIT G, 1980, J APPL PHYS, V51, P4956
49527    BAUMERT BA, 1998, J MATER RES, V13, P197
49528    BURNS G, 1986, SOLID STATE COMMUN, V58, P567
49529    BURNS G, 1990, FERROELECTRICS, V104, P25
49530    DING YP, 1998, P 1 CHIN INT C HIGH, P489
49531    DING YP, 2000, J MATER SCI LETT, V19, P163
49532    FREY MH, 1993, APPL PHYS LETT, V63, P2753
49533    GUST MC, 1997, J AM CERAM SOC, V80, P2828
49534    ISUPOV VA, 1990, IZV AN SSSR FIZ+, V54, P1131
49535    MARUYAMA T, 1998, APPL PHYS LETT, V73, P3524
49536    QU BD, 1998, APPL PHYS LETT, V72, P1394
49537    SCOTT JF, 1998, FERROELECTRICS REV, V1, P1
49538    TSAI F, 1994, APPL PHYS LETT, V65, P1906
49539    TYBELL T, 1999, APPL PHYS LETT, V75, P856
49540    WASER R, 1998, J KOREAN PHYS SO S 4, V32, S1340
49541    YIN ZW, 1988, FERROELECTRICS, V87, P85
49542 NR 16
49543 TC 0
49544 SN 0015-0193
49545 J9 FERROELECTRICS
49546 JI Ferroelectrics
49547 PY 2001
49548 VL 252
49549 IS 1-4
49550 BP 453
49551 EP 460
49552 PG 8
49553 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
49554 GA 580BD
49555 UT ISI:000177213500028
49556 ER
49557 
49558 PT J
49559 AU Hou, WD
49560    Mo, YL
49561 TI Increasing image resolution in electrical impedance tomography
49562 SO ELECTRONICS LETTERS
49563 DT Article
49564 AB An effective approach to increase the image resolution in static
49565    electrical impedance tomography is proposed, in which the image with
49566    local high resolution is reconstructed by fine meshing only the
49567    impedance abnormal element in the finite element model based on a
49568    genetic algorithm. Experimental results from a laboratory phantom are
49569    presented.
49570 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
49571 RP Hou, WD, Shanghai Univ, Dept Commun Engn, 149 Yanchang Rd, Shanghai
49572    200072, Peoples R China.
49573 CR HOU WD, 2000, J SHANGHAI U, V6, P343
49574    ISAACSON D, 2001, P 11 INT C EL BIOIMP, P387
49575    METHERALL P, 1998, THESIS U SHEFFIELD U
49576    OLMI R, 2000, IEEE T EVOLUT COMPUT, V4, P83
49577 NR 4
49578 TC 0
49579 SN 0013-5194
49580 J9 ELECTRON LETT
49581 JI Electron. Lett.
49582 PD JUL 4
49583 PY 2002
49584 VL 38
49585 IS 14
49586 BP 701
49587 EP 702
49588 PG 2
49589 SC Engineering, Electrical & Electronic
49590 GA 578CZ
49591 UT ISI:000177101000019
49592 ER
49593 
49594 PT J
49595 AU Chien, WZ
49596 TI Second order approximation solution of nonlinear large deflection
49597    problems of Yongjiang Railway Bridge in Ningbo
49598 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
49599 DT Article
49600 DE large deflection; elastic modulus; cantilever beam
49601 AB The solution and computational aspects on nonlinear deflection of
49602    Yongjiang Railway Bridge in Ningbo were investigated. An approximate
49603    iteration algorithm on nonlinear governing equation was presented, and
49604    the obtained results show that, if altitude difference and span of the
49605    riverbanks are taken as 5 meters and 100 meters, respectively, the
49606    maximum gradient in the middle of the bridge exceeds 5%, much larger
49607    than maximum allowance gradient in railway design code. Therefore, a
49608    new solution scheme for decreasing gradient of the bridge is put
49609    forward, that is, the altitude difference between two riverbanks can be
49610    decreased to about 1/10 of the initial magnitude by building roadbeds
49611    with 0.5% gradient and 1 kilometer length at two riverbanks. As a
49612    direct result, the deflection gradient of the railway bridge is much
49613    reduced and the value is between 0.5% similar to 0.6%.
49614 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
49615 RP Chien, WZ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
49616    200072, Peoples R China.
49617 NR 0
49618 TC 1
49619 SN 0253-4827
49620 J9 APPL MATH MECH-ENGL ED
49621 JI Appl. Math. Mech.-Engl. Ed.
49622 PD MAY
49623 PY 2002
49624 VL 23
49625 IS 5
49626 BP 493
49627 EP 506
49628 PG 14
49629 SC Mathematics, Applied; Mechanics
49630 GA 577RJ
49631 UT ISI:000177075200001
49632 ER
49633 
49634 PT J
49635 AU Zhang, JF
49636    Liu, YL
49637 TI Localized coherent structures of the (2+1)-dimensional higher order
49638    Broer-Kaup equations
49639 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
49640 DT Article
49641 DE higher order Broer-Kaup equation; (2+1)-dimension; coherent structure;
49642    homogeneous balance method
49643 ID DROMION-LIKE STRUCTURES; KDV-TYPE EQUATION; WAVE-EQUATIONS;
49644    TRANSFORMATION; SOLITONS
49645 AB By using the extended homogeneous balance method, the localized
49646    coherent structures are studied. A nonlinear transformation was first
49647    established, and then the linearization form was obtained based on the
49648    extended homogeneous balance method for the higher order (2 +
49649    1)-dimensional Broer-Kaup equations. Starting from this linearization
49650    form equation, a variable separation solution with the entrance of some
49651    arbitrary functions and some arbitrary parameters was constructed. The
49652    quite rich localized coherent structures were revealed. This method,
49653    which can be generalized to other (2 + I) -dimensional nonlinear
49654    evolution equation, is simple and powerful.
49655 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
49656 RP Zhang, JF, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
49657    200072, Peoples R China.
49658 CR BOITI M, 1988, PHYS LETT A, V132, P432
49659    FANG EG, 1997, ACTA PHYS SINICA, V46, P1254
49660    FOKAS AS, 1990, PHYS LETT A, V145, P237
49661    HIETARINTA J, 1990, PHYS LETT A, V149, P113
49662    LOU SY, 1995, J PHYS A-MATH GEN, V28, P7227
49663    LOU SY, 1996, COMMUN THEOR PHYS, V26, P487
49664    LOU SY, 1996, J PHYS A-MATH GEN, V29, P5989
49665    LOU SY, 1998, COMMUN THEOR PHYS, V29, P145
49666    LOU SY, 2000, PHYS LETT A, V277, P94
49667    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
49668    RADHA R, 1994, J MATH PHYS, V35, P4746
49669    RADHA R, 1995, PHYS LETT A, V197, P7
49670    RADHA R, 1997, J MATH PHYS, V38, P292
49671    RADHA R, 1997, J PHYS A-MATH GEN, V30, P3229
49672    RADHA R, 1999, CHAOS SOLITON FRACT, V10, P1821
49673    RUAN HY, 1997, J MATH PHYS, V38, P3123
49674    RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P586
49675    WANG ML, 1995, PHYS LETT A, V199, P169
49676    ZHANG JF, 1998, ACTA PHYS SINICA, V47, P1416
49677    ZHANG JF, 1999, ACTA PHYS SIN-OV ED, V8, P326
49678    ZHANG JF, 1999, CHINESE PHYS LETT, V16, P659
49679    ZHANG JF, 2000, COMMUN THEOR PHYS, V33, P577
49680    ZHANG JF, 2001, COMMUNICATION NONLIN, V6, P50
49681 NR 23
49682 TC 1
49683 SN 0253-4827
49684 J9 APPL MATH MECH-ENGL ED
49685 JI Appl. Math. Mech.-Engl. Ed.
49686 PD MAY
49687 PY 2002
49688 VL 23
49689 IS 5
49690 BP 549
49691 EP 556
49692 PG 8
49693 SC Mathematics, Applied; Mechanics
49694 GA 577RJ
49695 UT ISI:000177075200006
49696 ER
49697 
49698 PT J
49699 AU Tian, LX
49700    Xu, G
49701    Liu, ZR
49702 TI The concave or convex peaked and smooth soliton solutions of
49703    Camassa-Holm equation
49704 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
49705 DT Article
49706 DE soliton; peakson; integrable system; traveling wave solution
49707 ID SHALLOW-WATER EQUATION
49708 AB The traveling wave soliton solutions and pair soliton solution to a
49709    class of new completely integrable, shallow water equation,
49710    Camassa-Holm equation are studied. The concept of concave or convex
49711    peaked soliton and smooth soliton were introduced. And the research
49712    shows that the traveling wave solution of that equation possesses
49713    concave and convex peaked soliton and smooth soliton solutions with the
49714    peakson. Simultaneously by applying Backlund transformation the new
49715    pair soliton solutions to this class of equation are given.
49716 C1 Jiangsu Univ Sci & Technol, Dept Math, Zhenjiang 212013, Peoples R China.
49717    Shanghai Univ, Dept Math, Shanghai 200018, Peoples R China.
49718 RP Tian, LX, Jiangsu Univ Sci & Technol, Dept Math, Zhenjiang 212013,
49719    Peoples R China.
49720 CR ALBER MS, 1994, LETT MATH PHYS, V32, P137
49721    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
49722    CLARKSON PA, 1997, MATH COMPUT MODEL, V25, P195
49723    CONSTANTIN A, 1998, COMMUN PUR APPL MATH, V51, P475
49724    CONSTANTIN A, 2000, COMMUN PUR APPL MATH, V53, P603
49725    FISHER M, 1999, PHYS LETT A, V259, P371
49726    TIAN LX, 1998, P AM MATH SOC, V126, P201
49727    TIAN LX, 1999, COMM MATH PHY, V201, P509
49728    TIAN LX, 2000, J MATH PHYS, V41, P5773
49729    XIN ZP, 2000, COMMUN PUR APPL MATH, V53, P1411
49730 NR 10
49731 TC 1
49732 SN 0253-4827
49733 J9 APPL MATH MECH-ENGL ED
49734 JI Appl. Math. Mech.-Engl. Ed.
49735 PD MAY
49736 PY 2002
49737 VL 23
49738 IS 5
49739 BP 557
49740 EP 567
49741 PG 11
49742 SC Mathematics, Applied; Mechanics
49743 GA 577RJ
49744 UT ISI:000177075200007
49745 ER
49746 
49747 PT J
49748 AU Cai, YC
49749 TI Chen's theorem with small primes
49750 SO ACTA MATHEMATICA SINICA-ENGLISH SERIES
49751 DT Article
49752 DE Chen's theorem; sieve; mean value theorem
49753 AB Let N be a sufficiently large even integer. In this paper it is proved
49754    that the equation
49755    N = p + P-2, p less than or equal to N-0.95,
49756    is solvable, where p denotes a prime and P-2 denotes an almost prime
49757    with at most two prime factors.
49758 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
49759 RP Cai, YC, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
49760 CR CHEN JR, 1966, KEXUE TONGBAO, V17, P385
49761    CHEN JR, 1973, SCI SINICA, V16, P157
49762    CHEN JR, 1978, SCI SINICA, V21, P421
49763    CHEN JR, 1978, SCI SINICA, V21, P477
49764    HALBERSTAM H, 1975, ASTERISQUE, V24, P281
49765    IWANIEC H, 1981, RECENT PROGR ANAL NU, V2, P203
49766    LU MG, IN PRESS CHENS THEOR
49767    PAN CD, 1992, GOLDBACH CONJECTURE, P175
49768    WU J, 1993, Q J MATH, V44, P109
49769 NR 9
49770 TC 0
49771 SN 1439-8516
49772 J9 ACTA MATH SIN-ENGLISH SERIES
49773 JI Acta. Math. Sin.-English Ser.
49774 PD JUL
49775 PY 2002
49776 VL 18
49777 IS 3
49778 BP 597
49779 EP 604
49780 PG 8
49781 SC Mathematics, Applied; Mathematics
49782 GA 579MC
49783 UT ISI:000177180900018
49784 ER
49785 
49786 PT J
49787 AU Chen, ZB
49788    Jiao, YH
49789    Xia , SB
49790    Huang, WH
49791    Zhang, ZM
49792 TI An efficient calculation method of nonlinear fluid film forces in
49793    journal bearing
49794 SO TRIBOLOGY TRANSACTIONS
49795 DT Article
49796 DE journal bearing; database; rotor
49797 ID ROTOR; STABILITY
49798 AB An efficient method of fluid film force database is proposed for a
49799    single pad of the journal bearing. By some manipulations on Reynolds
49800    equation, a speed parameter varying within (-1, +1) is introduced to
49801    reflect the relative weights of the bearing journal's rotation and
49802    squeezing effects. Given the bearing aspect ratio and pad angle, the
49803    fluid film force database can be easily established. For a multi-pad
49804    journal bearing, an algorithm is needed to sum the separate fluid
49805    forces generated in every pad. An elliptic beating supporting a rigid
49806    rotor is employed to examine the effectiveness of the suggested method.
49807    The results based on the numerical solution of Reynolds equation is
49808    taken as a yardstick for comparison. It is shown that the database
49809    method provides a way to obtain the bearing fluid forces quickly
49810    without losing accuracy.
49811 C1 Harbin Inst Technol, Dept Engn Mech, Harbin 150001, Peoples R China.
49812    Shanghai Univ, Dept Mech Engn, Shanghai, Peoples R China.
49813 RP Chen, ZB, Harbin Inst Technol, Dept Engn Mech, Harbin 150001, Peoples R
49814    China.
49815 CR CAPONE G, 1990, J TRIBOL-T ASME, V112, P643
49816    CASTELLI V, 1967, J LUBR TECH, V89, P211
49817    DEEPAK JC, 1998, J TRIBOL-T ASME, V120, P605
49818    EHRICH FF, 1991, J VIB ACOUST, V113, P50
49819    KIRK RG, 1976, ASME, V98, P47
49820    LUND JW, 1978, TOPICS FLUID FILM BE, P1
49821    LUND JW, 1987, ASME, V109, P38
49822    PINKUS O, 1961, THEORY HYDRODYNAMIC, P1
49823    QIU ZL, 1996, TRIBOL T, V39, P469
49824    REZVANI MA, 1993, J TRIBOL-T ASME, V115, P544
49825    SUNDARARAJAN P, 1998, J SOUND VIB, V214, P695
49826    TIEU AK, 1995, TRIBOL T, V38, P627
49827    ZHAO JY, 1994, J VIB ACOUST, V116, P357
49828 NR 13
49829 TC 2
49830 SN 1040-2004
49831 J9 TRIBOL TRANS
49832 JI Tribol. Trans.
49833 PD JUL
49834 PY 2002
49835 VL 45
49836 IS 3
49837 BP 324
49838 EP 329
49839 PG 6
49840 SC Engineering, Mechanical
49841 GA 575JE
49842 UT ISI:000176942500007
49843 ER
49844 
49845 PT J
49846 AU Shi, YM
49847    Chen, H
49848 TI Spin-dependent transmission through a mesoscopic ring with a quantum
49849    gate
49850 SO PHYSICS LETTERS A
49851 DT Article
49852 DE spin-dependent transmission; mesoscopic ring; quantum gate
49853 ID AHARONOV-BOHM OSCILLATIONS; WAVE-GUIDE THEORY; DOT; PHASE
49854 AB We investigate the spin-dependent transmission through an Aharonov-Bohm
49855    ring with a quantum gate that is tuned by an uniform external magnetic
49856    field. The formula of spin-dependent transmission coefficient at zero
49857    temperature is obtained as a function of the flux, the magnetic field
49858    and Fermi energy in term of quantum waveguide theory. We found that for
49859    some special Fermi energies, spin-state electrons are driven into a
49860    perfect transmissive state or reflective state, which is not affected
49861    by the flux, when Zeeman energy of electron moving in the stub
49862    coincides with a level of the isolated stub. As Zeeman energy crosses
49863    the level of the stub, Aharonov-Bohm oscillations of spin-state
49864    conductance have no abrupt change of phase by pi and are in phase. The
49865    effect of the magnetic field on transmission behavior of spin-state
49866    electrons are examined. (C) 2002 Elsevier Science B.V. All rights
49867    reserved.
49868 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
49869    Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
49870 RP Shi, YM, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
49871 CR BRUDER C, 1996, PHYS REV LETT, V76, P114
49872    CHEN H, 1998, INT J MOD PHYS B, V12, P1729
49873    DEO PS, 1996, MOD PHYS LETT B, V10, P787
49874    HACKENBROICH G, 1996, PHYS REV LETT, V76, P110
49875    RYU CM, 1996, MOD PHYS LETT B, V10, P401
49876    SCHUSTER R, 1997, NATURE, V385, P417
49877    SHI YM, 1999, J SHANGHAI UNIV, V3, P339
49878    SHI YM, 1999, PHYS RVE B, V60, P1949
49879    TANIGUCHI T, 1999, PHYS REV B, V60, P13841
49880    WU J, 1998, PHYS REV LETT, V80, P1952
49881    WU J, 1999, PHYS LETT A, V262, P245
49882    XIA JB, 1992, PHYS REV B, V45, P3593
49883    YACOBY A, 1995, PHYS REV LETT, V74, P4047
49884    YACOBY A, 1996, PHYS REV B, V53, P9583
49885    YEYATI L, 1995, PHYS REV B, V52
49886    YI YS, 1999, PHYS REV B, V55, P10637
49887 NR 16
49888 TC 0
49889 SN 0375-9601
49890 J9 PHYS LETT A
49891 JI Phys. Lett. A
49892 PD JUL 8
49893 PY 2002
49894 VL 299
49895 IS 4
49896 BP 401
49897 EP 406
49898 PG 6
49899 SC Physics, Multidisciplinary
49900 GA 576WR
49901 UT ISI:000177030600014
49902 ER
49903 
49904 PT J
49905 AU Gu, ZT
49906    Liang, PH
49907    Zhang, WQ
49908 TI Measurement of glass surface layers and their influence on thin-film
49909    optical properties
49910 SO OPTICAL ENGINEERING
49911 DT Article
49912 DE glass surface layer; optical parameter; p-polarized light reflectance;
49913    cleaning treatment
49914 ID ELLIPSOMETRY
49915 AB A new and simple method is proposed to analyze the profiles of glass
49916    surface layers based on their reflectance for p-polarized light. By
49917    measuring the angle spectrum gamma(theta(i)) (gamma equivalent to
49918    I-a/I-b), where I-a and I-b are the intensities of reflection from the
49919    front and the back surface of the glass, and fitting the results with
49920    theoretical relations, the refractive index n(s) and extinction
49921    coefficient k(s) of plane glass surfaces can easily be obtained.
49922    Experimentally, glass samples subjected to different cleaning
49923    treatments have been analyzed. The results show that n(s) and k(s) of
49924    the glass surface increase exponentially with the depth into the
49925    surface layers, and an etched glass sample has a smaller extinction
49926    coefficient on its surface. This is confirmed by
49927    atomic-force-microscope observation and by laser-damage testing. In
49928    addition, the influence of the glass surface layers on the properties
49929    of films coated on one side or both sides of the glass substrate is
49930    analyzed. Dip-coated polymethyltriethoxysilane. (PMTES) films and
49931    spin-coated PMMA films have been measured. It is found that the optical
49932    parameters of PMTES films and azo-doped PMMA films are in agreement
49933    with the experimental results only if the glass surface layers are
49934    considered. (C) 2002 Society of Photo-Optical Instrumentation Engineers.
49935 C1 Shanghai Univ Sci & Technol, Dept Basic Sci, Shanghai 200093, Peoples R China.
49936    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
49937 RP Gu, ZT, Shanghai Univ Sci & Technol, Dept Basic Sci, POB 249,516 Jun
49938    Gong Rd, Shanghai 200093, Peoples R China.
49939 CR AFANASEVA AG, 1990, OPT SPECTROSC, V69, P679
49940    ALVAREZHERRERO A, 2001, APPL OPTICS, V40, P527
49941    BORN M, 1964, PRINCIPLES OPTICS
49942    COUILLARD JG, 1997, J NON-CRYST SOLIDS, V222, P429
49943    GUENTHER KH, 1981, THIN SOLID FILMS, V77, P239
49944    JELLISON GE, 1991, APPL OPTICS, V30, P4310
49945    LIU XL, 1997, APPL OPTICS, V36, P3788
49946    PENZKOFER A, 1998, OPT COMMUN, V158, P221
49947    RADLEIN E, 1997, J NON-CRYST SOLIDS, V222, P69
49948    ROCHE P, 1996, APPL OPTICS, V35, P5059
49949    SCHICHT H, 1997, J NON-CRYST SOLIDS, V218, P210
49950    YOKOTA H, 1969, SURF SCI, V16, P265
49951    ZHANG ZM, 1999, APPL OPTICS, V38, P205
49952 NR 13
49953 TC 0
49954 SN 0091-3286
49955 J9 OPT ENG
49956 JI Opt. Eng.
49957 PD JUL
49958 PY 2002
49959 VL 41
49960 IS 7
49961 BP 1738
49962 EP 1746
49963 PG 9
49964 SC Optics
49965 GA 576TR
49966 UT ISI:000177021900040
49967 ER
49968 
49969 PT J
49970 AU He, JH
49971 TI Smoothed particle technique for treatment shocks in transonic
49972    aerodynamics
49973 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
49974 DT Article
49975 DE meshfree particle method; SPH technique; transonic flow
49976 ID MESHLESS
49977 AB The smoothed particle computing technique has features which make the
49978    technique highly attractive for simulating aerodynamics involving
49979    unknown discontinuities (such as shock and free trailing vortex
49980    sheets). However, full exploitation of the method's potential has been
49981    hampered by the inherent deficiency on the boundaries and the unknown
49982    discontinuities. To remedy the shortcoming, this paper proposes some
49983    heuristic approaches to capturing automatically the unknown
49984    discontinuities. To impose the boundary conditions, a variational-like
49985    approach is suggested so that boundary conditions can be satisfied
49986    optimally.
49987 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
49988 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
49989    Peoples R China.
49990 CR BELYTSCHKO T, 1996, COMPUT METHOD APPL M, V139, P3
49991    CHEN JK, 1999, INT J NUMER METH ENG, V46, P231
49992    CORDES LW, 1996, COMPUT METHOD APPL M, V139, P75
49993    HE JH, 1999, INT J TURBO JET ENG, V16, P19
49994    HE JH, 2000, INT J NONLINEAR SCI, V1, P139
49995    LIU WK, 1996, ARCH COMPUTATIONAL M, V3, P3
49996    LUCKY LB, 1977, ASTRON J, V82, P1013
49997    ONATE E, 1996, COMPUT METHOD APPL M, V139, P315
49998    RANDLES PW, 1996, COMPUT METHOD APPL M, V139, P375
49999    WAGNER GJ, IN PRESS INT J NUMER
50000 NR 10
50001 TC 1
50002 SN 0334-0082
50003 J9 INT J TURBO JET ENGINES
50004 JI Int. J. Turbo. Jet-Engines
50005 PY 2001
50006 VL 18
50007 IS 4
50008 BP 243
50009 EP 249
50010 PG 7
50011 SC Engineering, Aerospace
50012 GA 576LC
50013 UT ISI:000177005400002
50014 ER
50015 
50016 PT J
50017 AU He, JH
50018 TI A variational principle for magnetohydrodynamics with high Hartmann
50019    number flow
50020 SO INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE
50021 DT Article
50022 DE MHD; variational principle; semi-inverse method; Lagrange multiplier
50023 ID SEMI-INVERSE METHOD; AERODYNAMICS; ELASTICITY
50024 AB By the semi-inverse method proposed by He, a variational principle is
50025    established for three-dimensional MHD equations with high Hartmann
50026    number. In order to incorporate the no-slip condition and far distance
50027    boundary condition as natural boundary conditions, a special technique
50028    is proposed in this paper. Lagrange crisis are also illustrated. (C)
50029    2002 Published by Elsevier Science Ltd.
50030 C1 Shanghai Donghua Univ, Coll Basic Sci, Dept Math, Shanghai 200051, Peoples R China.
50031 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, POB 189,149
50032    Yanchang Rd, Shanghai 200072, Peoples R China.
50033 CR BARRETT KE, 2001, INT J ENG SCI, V39, P1577
50034    CHANG ID, 1963, ZAMP, V14, P134
50035    CHIEN WZ, 1983, APPL MATH MECH, V4, P137
50036    FELIPPA CA, 1989, COMMUN APPL NUMER M, V5, P79
50037    HE JH, 1997, INT J TURBO JET ENG, V14, P23
50038    HE JH, 1997, J SHANGHAI U, V1, P117
50039    HE JH, 1997, SHANGHAI J MECH, V18, P305
50040    HE JH, 1999, INT J TURBO JET ENG, V16, P19
50041    HE JH, 1999, J U SHANGHAI SCI TEC, V21, P127
50042    HE JH, 1999, J U SHANGHAI SCI TEC, V21, P29
50043    HE JH, 2000, AIRCR ENG AEROSP TEC, V72, P18
50044    HE JH, 2000, APPL MATH MECH-ENGL, V21, P797
50045    HE JH, 2000, ASME, V67, P326
50046    HE JH, 2000, INT J ENG SCI, V39, P323
50047    HE JH, 2000, INT J NONLINEAR SCI, V1, P139
50048    HE JH, 2001, INT J NONLINEAR SCI, V2, P161
50049    HUNT JCR, 1967, J FLUID MECH, V28, P241
50050    LIU GL, 2000, INT J NONLINEAR SCI, V1, P25
50051    NOOR AK, 1984, UNIFICATION FINITE E, P275
50052 NR 19
50053 TC 3
50054 SN 0020-7225
50055 J9 INT J ENG SCI
50056 JI Int. J. Eng. Sci.
50057 PD JUL
50058 PY 2002
50059 VL 40
50060 IS 12
50061 BP 1403
50062 EP 1410
50063 PG 8
50064 SC Engineering, Multidisciplinary
50065 GA 575RD
50066 UT ISI:000176960900008
50067 ER
50068 
50069 PT J
50070 AU Zhang, JF
50071 TI Backlund transformation and variable separation solutions for the
50072    generalized Nozhnik-Novikov-Veselov equation
50073 SO CHINESE PHYSICS
50074 DT Article
50075 DE extended homogeneous balance method; (2+1) dimensions; GNNV equation;
50076    localized coherent structures
50077 ID COHERENT STRUCTURES; KDV EQUATION
50078 AB Using the extended homogeneous balance method, the Backlund
50079    transformation for a (2+1)-dimensional integrable model, the
50080    generalized Nizhnik-Novikov-Veselov (GNNV) equation, is first obtained.
50081    Also, making use of the Backlund transformation, the GNNV equation is
50082    changed into three equations: linear, bilinear and trilinear form
50083    equations. Starting from these three equations, a rather general
50084    variable separation solution of the model is constructed. The abundant
50085    localized coherent structures of the model can be induced by the
50086    entrance of two variable-separated arbitrary functions.
50087 C1 Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
50088    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
50089 RP Zhang, JF, Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004,
50090    Peoples R China.
50091 CR BOITI M, 1986, INVERSE PROBL, V2, P271
50092    CAO CW, 1990, SCI CHINA SER A, V33, P528
50093    CHEN LL, 1999, ACTA PHYS SIN-CH ED, V48, P2149
50094    CHENG Y, 1991, PHYS LETT A, V157, P22
50095    FAN EG, 1998, ACTA PHYS SINICA, V47, P353
50096    HU XB, 1991, J PHYS A, V24, P1331
50097    HU XB, 1991, J PHYS A-MATH GEN, V24, P1979
50098    KONOPELCHENKO BG, 1991, PHYS LETT A, V175, P17
50099    LOU SY, 1996, J PHYS A, V29, P420
50100    LOU SY, 1997, ACTA PHYS SINICA, V46, P561
50101    LOU SY, 1999, J MATH PHYS, V40, P6491
50102    LOU SY, 2000, CHINESE PHYS LETT, V17, P781
50103    LOU SY, 2000, PHYS LETT A, V277, P94
50104    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
50105    NIZHNIK LP, 1980, SOV PHYS DOKL, V25, P706
50106    NOVIKOV SP, 1986, PHYSICA D, V18, P267
50107    OHTA Y, 1992, J PHYS SOC JPN, V61, P3928
50108    RADHA R, 1994, J MATH PHYS, V35, P4746
50109    RUAN HY, 1999, ACTA PHYS SINICA, V5, P241
50110    RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P586
50111    TAGAMI Y, 1989, PHYS LETT A, V141, P116
50112    WANG MI, 1995, PHYS LETT A, V199, P279
50113    WANG ML, 1995, PHYS LETT A, V199, P169
50114    ZHANG JF, 1998, ACTA PHYS SINICA, V47, P1416
50115    ZHANG JF, 1999, CHINESE PHYS LETT, V16, P659
50116 NR 25
50117 TC 28
50118 SN 1009-1963
50119 J9 CHIN PHYS
50120 JI Chin. Phys.
50121 PD JUL
50122 PY 2002
50123 VL 11
50124 IS 7
50125 BP 651
50126 EP 655
50127 PG 5
50128 SC Physics, Multidisciplinary
50129 GA 576GM
50130 UT ISI:000176995100001
50131 ER
50132 
50133 PT J
50134 AU Zheng, G
50135    Zhang, M
50136    Li, H
50137    Chance, B
50138    Glickson, JD
50139 TI Synthesis and biological evaluation of near infrared fluorescence
50140    probes (NIRFS) for tumors overexpressing LDL receptors
50141 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
50142 DT Meeting Abstract
50143 C1 Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA.
50144    Shanghai Univ, Dept Chem, Shanghai, Peoples R China.
50145    Univ Penn, Dept Biochem & Biophys, Philadelphia, PA 19104 USA.
50146 NR 0
50147 TC 0
50148 SN 0065-7727
50149 J9 ABSTR PAP AMER CHEM SOC
50150 JI Abstr. Pap. Am. Chem. Soc.
50151 PD APR 7
50152 PY 2002
50153 VL 223
50154 PN Part 2
50155 BP B135
50156 EP B135
50157 PG 1
50158 SC Chemistry, Multidisciplinary
50159 GA 564CE
50160 UT ISI:000176296800735
50161 ER
50162 
50163 PT J
50164 AU Li, TY
50165    Wang, SJ
50166    Zheng, LP
50167 TI Comparative study on CO2 sources in soil developed on carbonate rock
50168    and non-carbonate rock in Central Guizhou
50169 SO SCIENCE IN CHINA SERIES D-EARTH SCIENCES
50170 DT Article
50171 DE carbonate rock; non-carbonate rock; soil CO2; sources
50172 ID STABLE ISOTOPIC COMPOSITION; DIOXIDE; AREAS; CHINA
50173 AB In this paper, by using concentration and carbon stable isotope the CO2
50174    sources of soil profiles developed on limestone, dolostone and
50175    claystone basements in Central Guizhou, China are comparatively
50176    studied. The results show that CO2 concentration of soil profiles
50177    developed on different basements is different, having the following
50178    sequence: limestone>dolostone>claystone. Below the soil depth of 20 cm
50179    from the surface the delta(13)C value of CO2 in soil profile developed
50180    on limestone ranges from -12.811parts per thousand - -13.492parts per
50181    thousand(PDB), that in soil profile developed on dolostone varys from
50182    -13.212parts per thousand - -14.271parts per thousand(PDB) and that in
50183    soil profile developed on claystone is about -20.234parts per thousand
50184    - -21.485parts per thousand(PDB). Taking the carbon isotope of soil
50185    organic matter and carbonate rock as two isotopic endmembers, the
50186    proportion of soil CO2 generated by dissolution of carbonate rock is
50187    calculated, about 21%-25% for soil profile developed on limestone
50188    basement, 19%-21% for soil profile developed on dolostone basement.
50189    There is almost no influx of CO2 generated by the dissolution of
50190    carbonate rock in soil profile developed on claystone basement.
50191 C1 Chinese Acad Sci, Inst Geochem, State Key Lab Environm Geochem, Guiyang 550002, Peoples R China.
50192    Grad Sch Chinese Acad Sci, Beijing 100039, Peoples R China.
50193    Shanghai Univ, Dept Environm Engn, Shanghai 200072, Peoples R China.
50194 RP Wang, SJ, Chinese Acad Sci, Inst Geochem, State Key Lab Environm
50195    Geochem, Guiyang 550002, Peoples R China.
50196 CR BUYANOVSKY GA, 1983, SOIL SCI SOC AM J, V47, P1139
50197    CERLING TE, 1984, EARTH PLANET SC LETT, V71, P229
50198    CHIODINI G, 1998, APPL GEOCHEM, V13, P543
50199    CRAIG H, 1953, GEOCHIM COSMOCHIM AC, V3, P53
50200    DAVIDSON GR, 1995, GEOCHIM COSMOCHIM AC, V59, P2485
50201    HE SH, 1997, CARSOLOGICA SINICA, V16, P319
50202    HOEFS J, 1997, STABLE ISOTOPE GEOCH, P153
50203    HSIEH JCC, 1999, GEOCHIM COSMOCHIM AC, V63, P767
50204    JAMES WR, 1995, GLOBAL BIOGEOCHEMICA, V9, P23
50205    JUAN CC, 1998, CHEM GEOL, V149, P251
50206    LIU ZH, 1998, HYDROGEOLOGY ENG GEO, V4, P42
50207    LIU ZH, 2000, SCI CHINA SER D, V43, P569
50208    MARRISON GM, 1991, CHEM GEOL, V86, P97
50209    PAN GX, 1999, CARSOLOGICA SINICA, V18, P287
50210    PARKER LW, 1983, SOIL BIOL BIOCHEM, V15, P303
50211    PIAO HC, 2000, BIOL FERT SOILS, V31, P422
50212    SOLOMON DK, 1987, WATER RESOUR RES, V23, P2257
50213    SONG WZ, 1996, ENV SCI, V17, P85
50214    TANG C, 1999, CARSOLOGICA SINICA, V18, P213
50215    WALTER CO, 1997, GLOBAL BIOGEOCHEMICA, V11, P163
50216    WANG Y, 1994, GEOCHIM COSMOCHIM AC, V58, P393
50217    WENG JT, 1995, ADV EARTH SCI, V10, P154
50218    WITKAMP M, 1969, ECOLOGY, V50, P922
50219    YUAN DX, 1993, QUATERNARY SCI, V1, P1
50220    ZHENG LP, 1999, CHINESE SCI B S2, V44, P93
50221    ZHENG LP, 1999, SCI CHINA SER D, V42, P588
50222 NR 26
50223 TC 1
50224 SN 1006-9313
50225 J9 SCI CHINA SER D
50226 JI Sci. China Ser. D-Earth Sci.
50227 PD AUG
50228 PY 2002
50229 VL 45
50230 IS 8
50231 BP 673
50232 EP 679
50233 PG 7
50234 SC Geosciences, Multidisciplinary
50235 GA 573VD
50236 UT ISI:000176851600001
50237 ER
50238 
50239 PT J
50240 AU Li, CF
50241 TI Comment on "Photonic tunneling time in frustrated total internal
50242    reflection"
50243 SO PHYSICAL REVIEW A
50244 DT Editorial Material
50245 ID NEGATIVE PHASE TIME; ANALOGY; DELAY
50246 AB This is a comment on Stahlhofen's paper [Phys. Rev. A 62, 012112
50247    (2000)]. It is shown by stationary-phase theory that the Goos-Hanchen
50248    shift in frustrated total internal reflection (FTIR) is not independent
50249    of the group delay (or phase time in the literature). The group delay
50250    involves the contribution of Goos-Hanchen shift and is always larger
50251    than zero in FTIR. It is also shown that the group delay in the
50252    two-dimensional (2D) optical FTIR can be written in the same form as
50253    that of the group delay in the 1D quantum tunneling in the sense that
50254    the group delay is the derivative of the total phase shift with respect
50255    to the angular frequency.
50256 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
50257 RP Li, CF, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
50258 CR BUTTIKER M, 1983, PHYS REV B, V27, P6178
50259    LI CF, 2000, PHYS LETT A, V275, P287
50260    MARTIN T, 1992, PHYS REV A, V45, P2611
50261    STAHLHOFEN AA, 2000, PHYS REV A, V62
50262    STEINBERG AM, 1994, PHYS REV A, V49, P3283
50263    VETTER RM, 2001, PHYS REV E 2, V63
50264    WANG LJ, 2000, NATURE, V406, P277
50265 NR 7
50266 TC 4
50267 SN 1050-2947
50268 J9 PHYS REV A
50269 JI Phys. Rev. A
50270 PD JUN
50271 PY 2002
50272 VL 65
50273 IS 6
50274 AR 066101
50275 DI ARTN 066101
50276 PG 3
50277 SC Physics, Atomic, Molecular & Chemical; Optics
50278 GA 572FT
50279 UT ISI:000176763600135
50280 ER
50281 
50282 PT J
50283 AU Xu, T
50284    Li, L
50285    Wang, PL
50286    Van Der Biest, O
50287    Vlengels, J
50288 TI Progress on calculation of phase diagram of ZrO2-containing oxides
50289    systems
50290 SO JOURNAL OF INORGANIC MATERIALS
50291 DT Article
50292 DE phase diagram; calculation of phase diagram; zirconia
50293 ID REGULAR SOLUTION MODEL; COMPOUND-ENERGY MODEL; THERMODYNAMIC
50294    PROPERTIES; OPTIMIZATION
50295 AB Zirconia is a kind of important ceramics materials. Because of its
50296    superior mechanical and electrical properties, zirconia, has been
50297    widely applied as both structural ceramics and functional ceramics.
50298    Based on a brief introduction on the progress and principle of
50299    calculation of phase diagram, the corresponding work on
50300    zirconia-containing systems in recent years was reviewed, and the
50301    results in some important systems were also summarized in detail. It
50302    was expected that the information of zirconia-containing phase diagrams
50303    based on the CALPHAD method would significantly promote the
50304    compositional design of zirconia ceramics.
50305 C1 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
50306    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
50307    Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Louvain, Belgium.
50308 RP Xu, T, Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High
50309    Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
50310 CR ANDERSSON JO, 1986, ACTA METALL, V34, P437
50311    BLANDER M, 1987, GEOCHIM COSMOCHIM AC, V51, P85
50312    BONNIER E, 1960, CR HEBD ACAD SCI, V250, P527
50313    CHOU KC, 1987, CALPHAD, V11, P293
50314    COLINET C, 1967, D E S U GRENOBLE FRA
50315    DEGTYAREV SA, 1988, CALPHAD, V12, P73
50316    DU Y, 1991, J AM CERAM SOC, V74, P1569
50317    DU Y, 1991, J AM CERAM SOC, V74, P2107
50318    HILLERT M, 1969, PHASE TRANSFORMATION, CH5
50319    HILLERT M, 1970, ACTA CHEM SCAND, V24, P3618
50320    HILLERT M, 1980, CALPHAD, V4, P1
50321    HILLERT M, 1985, METALL TRANS A, V16, P261
50322    HILLERT M, 1988, Z METALLKD, V79, P81
50323    HILLERT M, 1998, J PHASE EQUILIB, V19, P206
50324    KAUFMAN L, 1970, COMPUTER CALCULATION
50325    KOHLER F, 1960, MONATSH CHEM, V91, P738
50326    KUBASCHEWSKI O, 1965, J I MET, V93, P329
50327    LI L, 1996, J MATER SCI TECHNOL, V12, P159
50328    LI L, 2001, J EUR CERAM SOC, V21, P2903
50329    MEIJERING JL, 1950, PHILIPS RES REP, V5, P333
50330    MUGGIANU YM, 1975, J CHIMIE PHYSIQUE, V72, P83
50331    ONDIK HM, 1998, PHASE DIAGRAMS ZIRCO
50332    PELTON AD, 1986, METALL TRANS B, V17, P805
50333    PELTON AD, 1988, CALPHAD, V12, P97
50334    SUNDMAN B, 1981, J PHYS CHEM SOLIDS, V42, P297
50335    TOOP GW, 1965, T METALL SOC AIME, V233, P850
50336    VANLAAR JJ, 1908, Z PHYS CHEM-STOCH VE, V63, P216
50337    VANLAAR JJ, 1908, Z PHYS CHEM-STOCH VE, V64, P257
50338    YOKOKAWA H, 1993, SCI TECHNOLOGY ZIRCO, V5, P59
50339 NR 29
50340 TC 0
50341 SN 1000-324X
50342 J9 J INORG MATER
50343 JI J. Inorg. Mater.
50344 PD MAY
50345 PY 2002
50346 VL 17
50347 IS 3
50348 BP 399
50349 EP 406
50350 PG 8
50351 SC Materials Science, Ceramics
50352 GA 574BN
50353 UT ISI:000176868700003
50354 ER
50355 
50356 PT J
50357 AU Chen, XY
50358    Shen, XJ
50359 TI Mechanical model of laterally driven polysilicon microresonant
50360 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
50361 DT Article
50362 DE MEMS; mechanical model; laterally driven micro-resonator; flexural
50363    suspension
50364 AB Surface-polysilicon fabricated comb-drive resonators suspended by
50365    springs are modeled in this paper. Based on the understanding of
50366    symmetry of the microstructures but applied load are not same, the
50367    lateral vibration of the micro-resonators which suspended by four
50368    straight-leg or crab-leg flexure are investigated. It is found that the
50369    simple mechanical models of them are both superfluous systems with
50370    three or five unknown variables. The calculating way of the stress,
50371    lateral displacement, spring coefficient and resonant frequency is
50372    deducted. Compared with the model of steady system, which published
50373    before, the result shows the essential aspect of this problem and
50374    explains why straight-leg flexures are more commonly used in practice.
50375 C1 Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China.
50376 RP Chen, XY, Shanghai Univ, Sch Mechatron Engn & Automat, POB 224,149
50377    Yanchang Rd, Shanghai 200072, Peoples R China.
50378 CR DANEMAN MJ, 1996, J MICROELECTROMECH S, V5, P159
50379    DEB N, 1999, P SOC PHOTO-OPT  1&2, V3680, P58
50380    FEDDER GK, 1995, P 1 INT C SIM DES MI, P175
50381    FEDDER GK, 1997, P TRANSD 97, P1109
50382    HIRANO T, 1992, J MICROELECTROMECH S, V1, P52
50383    PISANO AP, 1989, SENSOR ACTUATOR, V20, P83
50384    PISANO AP, 1990, SENSOR ACTUAT A-PHYS, V21, P1060
50385    TANG WC, 1989, SENSOR ACTUATOR, V20, P25
50386    TANG WC, 1990, SENSOR ACTUAT A-PHYS, V21, P328
50387    TANG WC, 1992, J MICROELECTROMECHAN, V1, P170
50388 NR 10
50389 TC 0
50390 SN 1565-1339
50391 J9 INT J NONLINEAR SCI NUMER SIM
50392 JI Int. J. Nonlinear Sci. Numer. Simul.
50393 PY 2002
50394 VL 3
50395 IS 3-4
50396 SI Sp. Iss. SI
50397 BP 639
50398 EP 642
50399 PG 4
50400 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
50401    Mathematical; Mechanics
50402 GA 574RR
50403 UT ISI:000176903800108
50404 ER
50405 
50406 PT J
50407 AU Lu, ZY
50408    Wang, LH
50409    Yao, DY
50410 TI Study on the modeling of timed-token protocol
50411 SO APPLIED MATHEMATICAL MODELLING
50412 DT Article
50413 DE timed-token protocol (TTP); time-limited service; mathematical modeling
50414 AB The study on the modeling of timed-token protocol (TTP) in metropolitan
50415    area network is presented in this paper. The classification of queueing
50416    models of TTP is given, and the mathematical analysis as well as
50417    numerical emulation for one of the queueing models i.e. L/G/1
50418    [Intermittent, Station priority, TTP, Time-limited service] are
50419    presented. (C) 2002 Elsevier Science Inc. All rights reserved.
50420 C1 Ocean Univ Qingdao, Dept Comp Sci & Technol, Qingdao 266071, Peoples R China.
50421    Yunnan Univ, Informat Engn Coll, Yunnan 650000, Peoples R China.
50422    Shanghai Univ, Coll Comp, Shanghai 200072, Peoples R China.
50423 RP Lu, ZY, Ocean Univ Qingdao, Dept Comp Sci & Technol, Qingdao 266071,
50424    Peoples R China.
50425 CR JAIN R, 1990, P ACM SIGCOMM S COMM, P264
50426    LU ZY, 1994, J ELECT, V16, P148
50427    PANG JWM, 1989, IEEE T COMMUN, V37, P694
50428    RUBIN I, 1992, P IEEE GLOBECOM, P1630
50429    RUBIN I, 1997, COMPUT NETWORKS ISDN, V29, P249
50430    WANG L, 1999, QINGD HONG KONG INT
50431 NR 6
50432 TC 0
50433 SN 0307-904X
50434 J9 APPL MATH MODEL
50435 JI Appl. Math. Model.
50436 PD AUG
50437 PY 2002
50438 VL 26
50439 IS 8
50440 BP 797
50441 EP 805
50442 PG 9
50443 SC Mathematics, Applied; Mechanics; Operations Research & Management
50444    Science
50445 GA 574MU
50446 UT ISI:000176894800002
50447 ER
50448 
50449 PT J
50450 AU Xu, GQ
50451    Li, ZB
50452 TI Extended mixing exponential method and its applications
50453 SO ACTA PHYSICA SINICA
50454 DT Article
50455 DE solitary wave; mixing exponential method; regular long wave equation
50456 ID SOLITARY WAVE SOLUTIONS; EXPLICIT EXACT-SOLUTIONS; TANH-FUNCTION
50457    METHOD; NONLINEAR EVOLUTION; EQUATIONS
50458 AB Mixing exponential method proposed by Hereman for finding the solitary
50459    wave solutions to a nonlinear evolution equation is developed and
50460    perfected. Correspondingly, an extended mixing exponential method is
50461    obtained by expressing the solutions as an infinite series of the real
50462    or complex exponential solutions of the underlying linear equations.
50463    The effectiveness of the extended approach is demonstrated by
50464    application to the well-known regular long wave equation with physical
50465    interest. Not only are steady solitary wave solutions recovered, but
50466    also the diverging and the periodic solutions are obtained.
50467 C1 E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China.
50468    Shanghai Univ, Dept Informat Engn & Adm, Shanghai 200436, Peoples R China.
50469 RP Xu, GQ, E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R
50470    China.
50471 CR FAN EG, 1998, ACTA PHYS SINICA, V47, P353
50472    FAN EG, 2000, PHYS LETT A, V277, P212
50473    HEREMAN W, 1986, J PHYS A-MATH GEN, V19, P607
50474    HEREMAN W, 1990, J PHYS A-MATH GEN, V23, P4805
50475    LI ZB, 1997, ACTA MATH SINICA, V17, P81
50476    LI ZB, 2001, ACTA PHYS SIN-CH ED, V50, P2062
50477    PANIGRAHY E, 1999, PHYS LETT A, V261, P284
50478    PARKES EJ, 1996, COMPUT PHYS COMMUN, V98, P288
50479    XIA TC, 2001, CHINESE PHYS, V10, P694
50480    XU GQ, 2002, ACTA PHYS SIN-CH ED, V51, P946
50481    YAN ZY, 1999, ACTA PHYS SIN-CH ED, V48, P1962
50482    ZHANG GX, 2000, SCI CHINA SER A, V30, P1103
50483    ZHENG Y, 2000, ACTA PHYS SIN-CH ED, V49, P389
50484 NR 13
50485 TC 12
50486 SN 1000-3290
50487 J9 ACTA PHYS SIN-CHINESE ED
50488 JI Acta Phys. Sin.
50489 PD JUL
50490 PY 2002
50491 VL 51
50492 IS 7
50493 BP 1424
50494 EP 1427
50495 PG 4
50496 SC Physics, Multidisciplinary
50497 GA 573VF
50498 UT ISI:000176851800004
50499 ER
50500 
50501 PT J
50502 AU Wu, Z
50503    Wang, Q
50504    Zhou, JM
50505    Li, CF
50506    Shi, JL
50507 TI Nonlinear characteristics of magnetic surface waves with microwave
50508    excitation
50509 SO ACTA PHYSICA SINICA
50510 DT Article
50511 DE antiferromagnet; ferromagnet; nonlinear surface waves
50512 ID IRON-GARNET FILMS; ENVELOPE SOLITONS; FERROMAGNETIC-FILMS; SPATIAL
50513    SOLITONS; TM WAVES; ANTIFERROMAGNETS; PROPAGATION; INTERFACE
50514 AB Properties of transverse-electric surface waves on a plane interface
50515    between a linear ferromagnet and a nonlinear antiferromagnet are
50516    investigated. The dispersion relation and the field distribution are
50517    obtained. The property investigation of the surface waves in this
50518    waveguide shows that there exist passbands and stopbands, which can be
50519    controlled by varying the power in the nonlinear gyromagnetic
50520    waveguide. The results provide ideas to develop devices capable of
50521    working in microwave frequency range.
50522 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
50523 RP Wu, Z, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
50524 CR ALMEIDA NS, 1987, PHYS REV B, V36, P2015
50525    BOARDMAN AD, 1990, OPT COMMUN, V74, P347
50526    BOARDMAN AD, 1990, PHYS REV B, V41, P717
50527    BOARDMAN AD, 1993, PHYS REV B, V48, P13602
50528    BOARDMAN AD, 1994, IEEE T MAGN, V30, P1
50529    BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
50530    BOARDMAN AD, 1995, J MAGN MAGN MATER, V145, P357
50531    BOYLE JW, 1996, PHYS REV B, V53, P12173
50532    CHEN M, 1994, PHYS REV B, V49, P12773
50533    CHEN ZG, 1996, OPT LETT, V21, P716
50534    KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712
50535    NEWELL AC, 1991, NONLINEAR OPTICS, P120
50536    TSANKOV MA, 1994, J APPL PHYS, V76, P4274
50537    VARATHARAJAH P, 1990, PHYS REV A, V42, P1767
50538    VUKOVICH S, 1991, SOV PHYS JETP, V71, P964
50539    WANG Q, 1995, J APPL PHYS, V77, P5831
50540    WANG Q, 1997, JPN J APPL PHYS PT 1, V36, P22
50541    WANG Q, 1998, J APPL PHYS, V83, P382
50542    WANG Q, 2000, ACTA PHYS SIN-CH ED, V49, P349
50543    WANG YF, 1998, J APPL PHYS, V84, P6233
50544    WU Z, 2001, ACTA PHYS SIN-CH ED, V50, P1178
50545 NR 21
50546 TC 2
50547 SN 1000-3290
50548 J9 ACTA PHYS SIN-CHINESE ED
50549 JI Acta Phys. Sin.
50550 PD JUL
50551 PY 2002
50552 VL 51
50553 IS 7
50554 BP 1612
50555 EP 1620
50556 PG 9
50557 SC Physics, Multidisciplinary
50558 GA 573VF
50559 UT ISI:000176851800037
50560 ER
50561 
50562 PT J
50563 AU Yang, L
50564    Liu, ZR
50565    Chen, GR
50566 TI Chaotifying a continuous-time system via impulsive input
50567 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
50568 DT Article
50569 DE chaos; chaotification; impulsive control; Poincare map
50570 ID CHAOS
50571 AB This paper studies the chaotification problem of driving a
50572    continuous-time system to a chaotic state by using an impulsive control
50573    input. The controller is designed to ensure the controlled orbit be
50574    bounded and, meanwhile, have positive Lyapunov exponents. This is
50575    proved to be not only possible but also implementable near a stable
50576    limit cycle of the given system. Two numerical examples are given to
50577    illustrate the effectiveness of the proposed chaotification method.
50578 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
50579    Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China.
50580    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
50581 RP Yang, L, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
50582 CR CHEN G, 1998, CHAOS ORDER METHODOL
50583    CHEN G, 1999, CONTROLLING CHAOS BI
50584    CHEN G, 2002, IN PRESS IEICE T FUN
50585    CHEN GR, 1996, INT J BIFURCAT CHAOS, V6, P1341
50586    CHEN GR, 1998, INT J BIFURCAT CHAOS, V8, P1585
50587    FRADKOV AL, 1999, INTRO CONTROL OSCILL
50588    JUDD K, 1997, CONTORL CHAOS MATH M
50589    KAPITANIAK T, 1998, CHAOS ENG THEORY APP
50590    LAKSHMANAN M, 1996, CHAOS NONLINEAR OSCI
50591    OTT E, 1990, PHYS REV LETT, V64, P1196
50592    PARKER TS, 1989, PRACTICAL NUMERICAL
50593    VANECEK A, 1996, CONTROL SYSTEMS LINE
50594    WANG XF, 2000, CHAOS, V10, P771
50595    WANG XF, 2000, INT J BIFURCAT CHAOS, V10, P549
50596 NR 14
50597 TC 9
50598 SN 0218-1274
50599 J9 INT J BIFURCATION CHAOS
50600 JI Int. J. Bifurcation Chaos
50601 PD MAY
50602 PY 2002
50603 VL 12
50604 IS 5
50605 BP 1121
50606 EP 1128
50607 PG 8
50608 SC Mathematics, Applied; Multidisciplinary Sciences
50609 GA 571JD
50610 UT ISI:000176713500017
50611 ER
50612 
50613 PT J
50614 AU Tang, JG
50615    Ma, HP
50616 TI Single and multi-interval Legendre tau-methods in time for parabolic
50617    equations
50618 SO ADVANCES IN COMPUTATIONAL MATHEMATICS
50619 DT Article
50620 DE interval decomposition; parabolic equation; spectral method in time;
50621    optimal error estimate
50622 ID SPECTRAL-GALERKIN METHOD; HYPERBOLIC-EQUATIONS; ELEMENT METHODS; DIRECT
50623    SOLVERS; 2ND-ORDER; POLYNOMIALS
50624 AB In this paper, we take the parabolic equation with periodic boundary
50625    conditions as a model to present a spectral method with the Fourier
50626    approximation in spatial and single/multi-interval Legendre
50627    Petrov-Galerkin method in time. For the single interval spectral method
50628    in time, we obtain the optimal error estimate in L-2 -norm. For the
50629    multi-interval spectral method in time, the L-2-optimal error estimate
50630    is valid in spatial. Numerical results show the efficiency of the
50631    methods.
50632 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
50633    Lingling Coll, Dept Math, Yongzhou Hunan, Peoples R China.
50634 CR BABUSKA I, 1989, NUMER METH PART D E, V5, P363
50635    BARYOSEPH P, 1995, J COMPUT PHYS, V119, P62
50636    BARYOSEPH PZ, 2000, APPL NUMER MATH, V33, P435
50637    BERNARDI C, 1997, HDBK NUM AN 2, V5, P209
50638    CANUTO C, 1988, SPECTRAL METHODS FLU
50639    COUTSIAS EA, 1996, P 3 INT C SPECTR HIG, P21
50640    GERVASIO P, 1998, NUMER METH PART D E, V14, P115
50641    GLENN I, 1992, J COMPUT PHYS, V102, P88
50642    GUO BY, 1998, SPECTRAL METHODS THE
50643    LI J, 2000, NUMER METH PART D E, V16, P513
50644    LUO Y, 1994, J SCI COMPUT, V9, P123
50645    LUO Y, 1997, J SCI COMPUT, V12, P31
50646    LUO Y, 1997, J SCI COMPUT, V12, P465
50647    MA HP, 2000, SIAM J NUMER ANAL, V38, P1425
50648    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
50649    SHEN J, 1995, SIAM J SCI COMPUT, V16, P74
50650    TALEZER H, 1986, SIAM J NUMER ANAL, V23, P11
50651    TALEZER H, 1989, SIAM J NUMER ANAL, V26, P1
50652    WU SC, 1996, APPL MATH MECH, V17, P357
50653    WU SC, 1997, ACTA MATH APPL SINIC, V13, P314
50654    ZHANG FY, 1998, J COMPUT MATH, V16, P107
50655    ZRAHIA U, 1994, COMPUT METHOD APPL M, V116, P135
50656 NR 22
50657 TC 0
50658 SN 1019-7168
50659 J9 ADV COMPUT MATH
50660 JI Adv. Comput. Math.
50661 PD NOV
50662 PY 2002
50663 VL 17
50664 IS 4
50665 BP 349
50666 EP 367
50667 PG 19
50668 SC Mathematics, Applied
50669 GA 572ZG
50670 UT ISI:000176804400004
50671 ER
50672 
50673 PT J
50674 AU Bian, LJ
50675    Qian, XF
50676    Yin, J
50677    Lu, QH
50678    Liu, L
50679    Zhu, ZK
50680 TI Preparation and properties of rare earth oxide/polyimide hybrids
50681 SO POLYMER TESTING
50682 DT Article
50683 DE hybrid; polyimide; rare earth
50684 ID POLYIMIDE; NANOCLUSTERS; COMPOSITES; FILMS
50685 AB A series of Eu2O3/polyimide hybrids has been successfully prepared via
50686    a solution process. X-ray diffraction and atomic force microscopy were
50687    used to characterize the hybrids. Mechanical tests showed that
50688    introduction of the rare earth can obviously increase the tensile
50689    strength of the polymer. Thermal analysis indicated that the addition
50690    of rare earth can increase the glass transition temperature and thermal
50691    stability of polyimide. The introduction of rare earth also increased
50692    the dimensional stability and refractive index. (C) 2002 Elsevier
50693    Science Ltd. All rights reserved.
50694 C1 Shanghai Jiao Tong Univ, Sch Chem & Chem Technol, Shanghai 200240, Peoples R China.
50695    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
50696 RP Zhu, ZK, Shanghai Jiao Tong Univ, Sch Chem & Chem Technol, Shanghai
50697    200240, Peoples R China.
50698 CR AGAG T, 2001, POLYMER, V42, P3399
50699    BERGMEISTER JJ, 1992, CHEM MATER, V2, P679
50700    EZZELL SA, 1984, MACROMOLECULES, V17, P1627
50701    KIOUL A, 1994, J NON-CRYST SOLIDS, V175, P169
50702    LAN T, 1994, CHEM MATER, V6, P573
50703    NANDI M, 1991, CHEM MATER, V3, P201
50704    PORTA GM, 1989, CHEM MATER, V1, P69
50705    SOUTHWARD RE, 1996, J ADV MATER, V27, P2
50706    THOMPSON DS, 1994, POLYM MAT SCI ENG, V71, P725
50707    TROGER L, 1997, J PHYS CHEM B, V101, P1279
50708    ZHU ZK, 2000, ADV MATER, V12, P1055
50709 NR 11
50710 TC 2
50711 SN 0142-9418
50712 J9 POLYM TEST
50713 JI Polym. Test
50714 PD OCT
50715 PY 2002
50716 VL 21
50717 IS 7
50718 BP 841
50719 EP 845
50720 PG 5
50721 SC Materials Science, Characterization & Testing; Polymer Science
50722 GA 567VA
50723 UT ISI:000176505100016
50724 ER
50725 
50726 PT J
50727 AU Ju, JH
50728    Xia, YB
50729    Sang, WB
50730    Wang, LJ
50731    Wu, WH
50732    Tang, DY
50733 TI Interface analysis of DLC film deposited on Hg1-xCdxTe
50734 SO JOURNAL OF INFRARED AND MILLIMETER WAVES
50735 DT Article
50736 DE diamond like carbon; film; infrared; interfaces
50737 AB A dense and homogeneous nanograins diamond-like carbon (DLC) film was
50738    deposited on the well-polished HgCdTe wafer by radio frequency plasma
50739    chemical vapor deposition at room temperature. The interface of
50740    DLC/HgCdTe was studied by AES and compared with that of ZnS/HgCdTe,
50741    which was prepared by ion sputtering( IS). The result shows that both
50742    DLC film and ZnS film can suppress the dissociation of the weak bonding
50743    HgTe, and prevent Hg escaping from MCT surface to some extent. However,
50744    both Zn and S in ZnS layer tend to diffuse inward MCT, while diffusion
50745    of C from DLC layer into MCT is rather slight. In particular, IR
50746    transmission of MCT deposited with DLC is remarkable raised comparing
50747    to the naked surface and higher than that of MCT deposited with ZnS.
50748 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
50749    Chinese Acad Sci, Natl Lab Infrared Phys, Shanghai, Peoples R China.
50750 RP Ju, JH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
50751    China.
50752 CR ANGUS JC, 1988, SCIENCE, V241, P913
50753    HARRIS DC, 1995, P SOC PHOTO-OPT INS, V2552, P325
50754    HOLLAND L, 1979, THIN SOLID FILMS, V58, P107
50755    HOWLAND R, 1996, PRACTICAL GUIDE SCAN
50756    JU JH, 1992, ACTA ENERGIAE SOLARI, V13, P276
50757    JUNG JW, 1996, THIN SOLID FILMS, V290, P18
50758    MCKINLEY JM, 1995, P SOC PHOTO-OPT INS, V2554, P213
50759    NEMIROVSKY Y, 1990, J VAC SCI TECHNOL A, V8, P1185
50760 NR 8
50761 TC 1
50762 SN 1001-9014
50763 J9 J INFRARED MILIM WAVES
50764 JI J. Infrared Millim. Waves
50765 PD JUN
50766 PY 2002
50767 VL 21
50768 IS 3
50769 BP 238
50770 EP 240
50771 PG 3
50772 SC Optics
50773 GA 570WM
50774 UT ISI:000176682400018
50775 ER
50776 
50777 PT J
50778 AU Jiang, XY
50779    Zhang, ZL
50780    Zhang, BX
50781    Zhu, WQ
50782    Xu, SH
50783 TI Stable and current independent white-emitting organic diode
50784 SO SYNTHETIC METALS
50785 DT Article
50786 DE white OLED; current independence; stability
50787 ID ELECTROLUMINESCENT DEVICES; LAYERS
50788 AB White organic light emitting diodes (OLEDs) with new blue material and
50789    two kinds of structures have been constructed: one with blue and red
50790    emission in a same layer, the other with blue and red emission in
50791    separated layers. The configurations of the devices are
50792    ITO/CuPc/NTPB/JBEM(P):DCJT/Alq/MgAg (Device1) and
50793    ITO/CuPc/NPB/JBEM(P)/Alq:DCJT/Alq/MgAg (Device2). Here, copper
50794    phthalocyanine (CuPc) is the buffer layer;
50795    N,N'-bis(l-naphthyl)-N'-diphenyl-1.1'-biphenyl-4-4'-diamine (NPB) is
50796    the hole transporting layer (HTL); 9,10-bis(3'5'-diaryl)phenyl
50797    anthracene doped with perylene (JBEM(P)) is a new blue emitting
50798    material; tris(8-quinolinolato)aluminum complex (Alq) is the electron
50799    transporting layer (ETL), and DCJT is a red dye. A stable and current
50800    independent white OLED has been obtained in the device with blue and
50801    red emission in the same layer. It shows a maximum luminance of 14 850
50802    cd/m(2), an efficiency of 2.88 Lm/W, Commission Internationale de
50803    l'Eclairage (CIE) co-ordinates x = 0.32, y = 0.38 from 4 to 200
50804    mA/cm(2), and the half lifetime 2860 h at the starting luminance of 100
50805    cd/m(2). It is proved that the device with blue and red in the same
50806    layer has better characteristics than the device with blue and red in
50807    separated layers in luminance, efficiency and stability. (C) 2002
50808    Elsevier Science B.V. All rights reserved.
50809 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
50810 RP Jiang, XY, Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R
50811    China.
50812 CR CHEN CH, 1997, MACROMOL S, V125, P1
50813    DESHPANDE RS, 1999, APPL PHYS LETT, V75, P888
50814    FORREST SR, 1997, SYNTHETIC MET, V91, P9
50815    GRANSTROM M, 1996, APPL PHYS LETT, V68, P147
50816    JIANG XY, 2000, J PHYS D APPL PHYS, V33, P473
50817    JORDAN RH, 1996, APPL PHYS LETT, V68, P1192
50818    KIDO J, 1994, APPL PHYS LETT, V64, P815
50819    LIU SY, 2000, THIN SOLID FILMS, V363, P294
50820    SHI JM, 1999, 5972247, US
50821    STRUKELJ M, 1996, J AM CHEM SOC, V118, P1213
50822    TANG CW, 1987, APPL PHYS LETT, V51, P913
50823    TOKITO S, 1995, J APPL PHYS, V77, P1985
50824 NR 12
50825 TC 10
50826 SN 0379-6779
50827 J9 SYNTHET METAL
50828 JI Synth. Met.
50829 PD JUN 17
50830 PY 2002
50831 VL 129
50832 IS 1
50833 BP 9
50834 EP 13
50835 PG 5
50836 SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
50837    Polymer Science
50838 GA 567DK
50839 UT ISI:000176470000002
50840 ER
50841 
50842 PT J
50843 AU Yang, GH
50844    Zhang, H
50845    Duan, YS
50846 TI Topological aspects of liquid crystals
50847 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
50848 DT Article
50849 DE topological current; wrapping number; disclination point; bifurcation
50850 ID CONDENSED MATTER PHYSICS; SPACE-TIME DEFECTS; BIFURCATION-THEORY; EARLY
50851    UNIVERSE; QUANTIZATION; MEDIA; ORIGIN
50852 AB Using phi-mapping method and topological current theory, the properties
50853    and behaviors of disclination points in three-dimensional liquid
50854    crystals are studied. By introducing the strength density and the
50855    topological current of many disclination points, the total disclination
50856    strength is topologically quantized by the Hopf indices and Brouwer
50857    degrees at the singularities of the general director field when the
50858    Jacobian determinant of the general director field does not vanish.
50859    When the Jacobian determinant vanishes, the origin, annihilation, and
50860    bifurcation of disclination points are detailed in the neighborhoods of
50861    the limit point and bifurcation point, respectively. The branch
50862    solutions at the limit point and the different directions of all branch
50863    curves at the first- and second-order degenerated points are
50864    calculated. It is pointed out that a disclination point with a higher
50865    strength is unstable and will evolve to the lower strength state
50866    through the bifurcation process. An original disclination point can
50867    split into at most four disclination points at one time.
50868 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
50869    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
50870    Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China.
50871 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
50872 CR ANDERSON PW, 1984, BASIC NOTIONS CONDEN
50873    BLAHA S, 1976, PHYS REV LETT, V36, P874
50874    BRAY AJ, 1994, ADV PHYS, V43, P375
50875    DEGENNES PG, 1970, LECT NOTES
50876    DEGENNES PG, 1974, PHYSICS LIQUID CRYST
50877    DUAN YS, 1997, GEN RELAT GRAVIT, V29, P715
50878    DUAN YS, 1997, HELV PHYS ACTA, V70, P565
50879    DUAN YS, 1998, NUCL PHYS B, V514, P705
50880    FINKELSTEIN D, 1966, J MATH PHYS, V7, P1218
50881    FRIEDEL J, 1964, DISLOCATIONS
50882    HOLZ A, 1992, PHYSICA A, V182, P240
50883    JIANG Y, 2000, J MATH PHYS, V41, P2616
50884    KLEMAN M, 1972, LIQUID CRYSTALLINE S
50885    KLEMAN M, 1973, PHILOS MAG, V27, P1057
50886    KLEMAN M, 1977, J PHYSIQUE LETT, V38, L195
50887    KLEMAN M, 1983, POINTS LINES WALLS L
50888    KURIK MV, 1988, SOV PHYS USP, V31, P196
50889    KURIK MV, 1988, USP FIZ NAUK, V154, P381
50890    LUBENSKY TC, 1997, SOLID STATE COMMUN, V102, P187
50891    MERMIN ND, 1979, REV MOD PHYS, V51, P591
50892    NABARRO FRN, 1967, THEORY CRYSTAL DISLO
50893    ROGULA D, 1976, TRENDS APPL PURE MAT
50894    SHANKAR R, 1977, J PHYSIQUE, V38, P1405
50895    TOULOUSE G, 1976, J PHYSIQUE LETT, V37, P149
50896    TREBIN HR, 1982, ADV PHYS, V31, P195
50897    VOLOVIK GE, 1976, SOV PHYS JETP, V48, P561
50898    VOLOVIK GE, 1977, ZH EKSP TEOR FIZ, V45, P1186
50899    VOLOVIK GE, 1977, ZH EKSP TEOR FIZ, V46, P401
50900    YANG GH, 1998, INT J THEOR PHYS, V37, P2371
50901    YANG GH, 1998, MOD PHYS LETT A, V13, P2123
50902    YANG GH, 1999, INT J ENG SCI, V37, P1037
50903 NR 31
50904 TC 0
50905 SN 0020-7748
50906 J9 INT J THEOR PHYS
50907 JI Int. J. Theor. Phys.
50908 PD JUN
50909 PY 2002
50910 VL 41
50911 IS 6
50912 BP 991
50913 EP 1005
50914 PG 15
50915 SC Physics, Multidisciplinary
50916 GA 566FN
50917 UT ISI:000176416400001
50918 ER
50919 
50920 PT J
50921 AU Huang, DB
50922 TI Failure of the Ott-Grebogi-York-type controllers for nonhyperbolic chaos
50923 SO CHINESE PHYSICS LETTERS
50924 DT Article
50925 AB It is considered that nonhyperbolicity affects the achievement of
50926    Ott-Grebogi-York-type (OGY-type) controllers. The result shows that,
50927    without a priori analytical knowledge of the dynamics, it is impossible
50928    to estimate the local dynamics from an experimental time series due to
50929    the singularity of the corresponding least-squares problem which
50930    results from the nonhyperbolicity in the system. Thus, it is necessary
50931    to destroy chaos before obtaining the formation for attempting control
50932    by experimental time series. The result explains a physical
50933    experimental result in the failure of chaos control in a parametrically
50934    excited pendulum model.
50935 C1 Shanghai Univ, Dept Math, Shanghai 200136, Peoples R China.
50936 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 200136, Peoples R China.
50937 CR ECKMANN JP, 1985, REV MOD PHYS, V57, P617
50938    KOSTELICH EJ, 1992, PHYSICA D, V58, P138
50939    LATHROP DP, 1989, PHYS REV A, V40, P4028
50940    OTT E, 1990, PHYS REV LETT, V64, P1196
50941    OTT E, 1993, CHAOS DYNAMICAL SYST
50942    STEWART GW, 1973, INTRO MATRIX COMPUTA
50943    VANDEWATER W, 2000, PHYS REV E A, V62, P6398
50944    XU HB, 2001, CHINESE PHYS LETT, V18, P878
50945    YANG L, 2000, PHYS REV LETT, V84, P67
50946 NR 9
50947 TC 1
50948 SN 0256-307X
50949 J9 CHIN PHYS LETT
50950 JI Chin. Phys. Lett.
50951 PD JUN
50952 PY 2002
50953 VL 19
50954 IS 6
50955 BP 762
50956 EP 764
50957 PG 3
50958 SC Physics, Multidisciplinary
50959 GA 566UV
50960 UT ISI:000176447400006
50961 ER
50962 
50963 PT J
50964 AU Fang, ZJ
50965    Xia, YB
50966    Wang, LJ
50967    Wang, ZM
50968 TI A new quantitative determination of stress by Raman spectroscopy in
50969    diamond grown on alumina
50970 SO JOURNAL OF PHYSICS-CONDENSED MATTER
50971 DT Article
50972 AB Raman spectroscopy is used to study the residual stress in
50973    polycrystalline diamond grown on alumina by chemical vapour deposition.
50974    A new method for stress determination is first presented and used for
50975    the measurement of the stress evolution across the film thickness. The
50976    compressive stress in the very thin film is in good agreement with the
50977    thermal mismatch between diamond and alumina, and the stress declines
50978    with increasing film thickness due to the stress relief during grain
50979    growth. Within thickness up to about 20 mum, the stress values given by
50980    the singlet and doublet Raman modes correspond satisfactorily and the
50981    common assumption of biaxial stress in the plane of the film is
50982    confirmed. With further increasing film thickness, the quantitative
50983    measurement method seems to be inappropriate because of the more
50984    complicated stress state.
50985 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
50986 RP Fang, ZJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
50987    China.
50988 CR AGER JW, 1993, PHYS REV B, V48, P2601
50989    AGER JW, 1995, MATER RES SOC SYMP P, V383, P143
50990    CHAUDHARI P, 1972, J VAC SCI TECHNOL, V9, P520
50991    FIELD JE, 1979, PROPERTIES NATURAL S
50992    GRIMSDITCH MH, 1978, PHYS REV B, V18, P901
50993    MO Y, 1998, J CRYST GROWTH, V191, P459
50994    VONKAENEL Y, 1994, DIAM RELAT MATER, V3, P757
50995 NR 7
50996 TC 4
50997 SN 0953-8984
50998 J9 J PHYS-CONDENS MATTER
50999 JI J. Phys.-Condes. Matter
51000 PD JUN 3
51001 PY 2002
51002 VL 14
51003 IS 21
51004 BP 5271
51005 EP 5276
51006 PG 6
51007 SC Physics, Condensed Matter
51008 GA 565ZP
51009 UT ISI:000176400700004
51010 ER
51011 
51012 PT S
51013 AU Bian, JJ
51014    Zhong, YG
51015    Wang, H
51016 TI Low-temperature-fireable microwave dielectric ceramic
51017    (Pb0.45Ca0.55)[(Fe1/2Nb1/2)(0.9)Sn-0.1]O-3 with addition of CuO-V2O6-LiF
51018 SO HIGH-PERFORMANCE CERAMICS 2001, PROCEEDINGS
51019 SE KEY ENGINEERING MATERIALS
51020 DT Article
51021 DE low-temperature-firing; microwave dielectrics; dielectric properties
51022 AB The sintering behavior, microstructure as well as the microwave
51023    dielectric properties of
51024    (Pb0.45Ca0.55)[(Fe1/2Nb1/2)(0.9)Sn-0.1]O-3(PCFNS) ceramics with the
51025    addition Of CuO-V2O5-LiF(VCL) were investigated. The experimental
51026    results showed that the PCFNS ceramics could be sintered at rather low
51027    temperature (950-1000degreesC) when more than 0.1wt% CuO-V2O5-LiF is
51028    added. Excellent microwave dielectric properties were obtained: Q(.)f =
51029    4000 GHz, epsilon(r) = 85.4,tau(f) = 5 ppm/degreesC, as 0.2wt%
51030    CuO-V2O5-LiF sintering aid was added. The variations of sinterability
51031    and the microwave properties were also discussed based on the
51032    characterization of microstructures.
51033 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
51034 RP Bian, JJ, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R
51035    China.
51036 CR BIAN JJ, IN PRESS J MAT SCI M
51037    BIAN JJ, 2001, J MATER SCI LETT, V20, P1767
51038    HUANG CL, 2000, MATER LETT, V43, P32
51039    ISHZAKI T, 1994, IEEE T MICROW THEORY, V42, P2017
51040    KAGATA H, 1994, NATL TECHNICAL REPOR, V40, P17
51041    KIM HT, 1999, J AM CERAM SOC, V82, P3476
51042    KUCHEIKO S, 1997, J AM CERAM SOC, V80, P2937
51043    ONODA M, 1982, JPN J APPL PHYS, V21, P3731
51044 NR 8
51045 TC 0
51046 SN 1013-9826
51047 J9 KEY ENG MAT
51048 PY 2002
51049 VL 224-2
51050 BP 13
51051 EP 16
51052 PG 4
51053 GA BU56L
51054 UT ISI:000176367400004
51055 ER
51056 
51057 PT S
51058 AU Chen, HY
51059    Guo, XB
51060    Meng, ZY
51061 TI Aging behavior and mechanism of PMMN-PZT quaternary piezoelectric
51062    ceramics
51063 SO HIGH-PERFORMANCE CERAMICS 2001, PROCEEDINGS
51064 SE KEY ENGINEERING MATERIALS
51065 DT Article
51066 DE aging; PMMN-PZT; quaternary piezoelectric ceramics
51067 ID NIOBATE-LEAD TITANATE; RELAXOR FERROELECTRICS
51068 AB Pb(Mg1/3Nb2/3)O-3-Pb(Mn1/3Nb2/3)O-3-PbZrO3-PbTiO3 (PMMN-PZT) quaternary
51069    piezoelectric ceramics in the vicinity of morphotropic phase boundary
51070    (MPB) were fabricated and the piezoelectric properties were
51071    characterized. Aging characteristics of the quaternary systems was
51072    investigated. It was observed that as the Pb(Mg1/3Nb2/3)O-3 (PMN)
51073    content increases, the aging rate decrease. For a certain composition,
51074    the aging rate increases with increasing temperature. It was shown that
51075    the aging observed in these compositions related with logarithmic aging
51076    time is out of line, instead, a stretched exponential time law. The
51077    compositions of rhombohedral phase exhibit a much weaker aging than
51078    that of tetragonal phase. Experimental results also reveal that the
51079    aging rate can be suppressed via post-sintering annealing in oxygen. It
51080    is concluded that the aging mechanism of PMMN-PZT systems is mainly
51081    related to the lattice defects.
51082 C1 Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
51083    Shanghai Jiao Tong Univ, Inst Composite Mat, Shanghai 200030, Peoples R China.
51084 RP Meng, ZY, Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai
51085    201800, Peoples R China.
51086 CR CHEN HY, IN PRESS MAT CHEM PH
51087    COHEN A, 1970, J AM CERAM SOC, V53, P396
51088    CROSS LE, 1987, FERROELECTRICS, V76, P241
51089    IKEGAMI S, 1967, J PHYS SOC JPN, V22, P725
51090    KO JS, 1992, P 8 IEEE S APPL FERR, P395
51091    KUDO T, 1970, J AM CERAM SOC, V53, P326
51092    NOMURA T, 1995, JPN J APPL PHYS 1, V34, P5389
51093    PAN W, 1989, J MATER SCI LETT, V5, P647
51094    SCHULZE WA, 1975, FERROELECTRICS, V9, P203
51095    SCHULZE WA, 1988, FERROELECTRICS, V87, P361
51096    SHROUT TR, 1989, FERROELECTRICS, V93, P361
51097    WARREN WL, 1996, J AM CERAM SOC, V79, P536
51098    ZHANG QM, 1996, J APPL PHYS, V79, P3181
51099    ZHANG QM, 1997, J MATER RES, V12, P1777
51100    ZHOU LQ, 2000, J AM CERAM SOC, V83, P413
51101    ZHU XH, 1996, J MATER SCI, V31, P2175
51102 NR 16
51103 TC 0
51104 SN 1013-9826
51105 J9 KEY ENG MAT
51106 PY 2002
51107 VL 224-2
51108 BP 89
51109 EP 93
51110 PG 5
51111 GA BU56L
51112 UT ISI:000176367400022
51113 ER
51114 
51115 PT S
51116 AU Guo, XB
51117    Chen, HY
51118    Meng, ZY
51119 TI Electro-mechanical properties and their temperature dependence for
51120    PMS-PZ-PT doped with Sr2+
51121 SO HIGH-PERFORMANCE CERAMICS 2001, PROCEEDINGS
51122 SE KEY ENGINEERING MATERIALS
51123 DT Article
51124 DE PMS-PZ-PT; piezoelectric; temperature dependence; Sr2+ doping
51125 ID PIEZOELECTRIC PROPERTIES; RESONANT-FREQUENCY; TI)O-3 CERAMICS;
51126    STABILITY; VICINITY
51127 AB The dielectric and piezoelectric properties of
51128    Pb1-xSr,(Mn1/3Sb2/3)(0.05)Zr0.48Ti0.47O3 + 0.2 wt% CeO2 (PMS-PZ-PT)
51129    were investigated as a function of Sr2+ substituting rate. The
51130    temperature dependence of Electro-mcchanical properties was also
51131    discussed. The lattice parameters determined by XRD patterns indicated
51132    that, with the increasing of Sr2+ substituting rate, the unit cell
51133    shrinked and become more isotropic. A set of optimized piezoelectric
51134    properties, which are better than those of other reports were obtained
51135    in the composition doped with 2mol% Sr2+. The temperature dependence of
51136    resonant frequency was also improved by 2mol% Sr2+. The temperature
51137    coefficient Deltaf/(DeltaT.f(25degreesC)) is 6.62 x 10(-5)/degreesC at
51138    the temperature range of -50-100degreesC. At the temperature range in
51139    which USM was operated practically (20degreesC-80degreesC), K-31 have
51140    high temperature stability (DeltaK(31)/DeltaT=0.014%/degreesC) while Qm
51141    obtained comparatively high value. With increasing of temperature, S11E
51142    decreased at first and then followed by a increasing at higher
51143    temperature region while d(31) increased monotonously.
51144 C1 Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
51145 RP Meng, ZY, Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai
51146    201800, Peoples R China.
51147 CR ALBERTA EF, 2000, FERROELECTRICS, V242, P13
51148    CHEON CI, 1997, J MATER SCI LETT, V16, P2043
51149    CHEON CI, 1999, J MATER SCI-MATER EL, V10, P81
51150    GAO YK, 2001, JPN J APPL PHYS 1, V40, P687
51151    GUO XB, 2002, J CHINESE CERAM SOC, V30, P125
51152    KAMIYA T, 1993, JPN J APPL PHYS 1, V32, P4223
51153    KONDO M, 1999, JPN J APPL PHYS 1, V38, P5539
51154    LEE DL, 1998 IEEE INT C COND, P381
51155    NADOLIISKY MM, 1992, FERROELECTRICS, V129, P141
51156    WANG D, 1998, J APPL PHYS, V83, P5342
51157    YONEDA A, 1990, NIPPON SERAM KYO GAK, V98, P890
51158    YOON SJ, 1998, J AM CERAM SOC, V81, P2473
51159    ZHANG QM, 1994, J APPL PHYS, V75, P454
51160 NR 13
51161 TC 0
51162 SN 1013-9826
51163 J9 KEY ENG MAT
51164 PY 2002
51165 VL 224-2
51166 BP 105
51167 EP 109
51168 PG 5
51169 GA BU56L
51170 UT ISI:000176367400025
51171 ER
51172 
51173 PT J
51174 AU Dong, LY
51175    Xue, Y
51176    Dai, SQ
51177 TI One-dimensional cellular automaton model of traffic flow based on
51178    car-following idea
51179 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
51180 DT Article
51181 DE cellular automaton (CA); traffic model; metastability; hysteresis
51182    phenomenon; car-following model
51183 AB An improved one-dimensional CA ( Cellular Automaton) traffic model was
51184    proposed to describe the highway traffic under the periodic boundary
51185    conditions. This model was based on the idea of the car-following
51186    model, which claims that the motion of a vehicle at one time step
51187    depends on both its headway and the synchronous motion of the front
51188    vehicle, thus including indirectly the influence of its sub-neighboring
51189    vehicle. It? addition, the so-called safety distance was introduced to
51190    consider the deceleration behavior of vehicles and the stochastic
51191    factor was taken into account by introducing the deceleration
51192    probability. Meanwhile, the conditional deceleration in the model gives
51193    a better description of the phenomena observed on highways. It is found
51194    that there exists the metastability and hysteresis effect of traffic
51195    flow in the neighborhood of critical density under different initial
51196    conditions. Since this model gives a reasonable depiction of the motion
51197    of a single vehicle, it is easy to be extended to the case of traffic
51198    flow tinder the control of traffic lights in cities.
51199 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
51200 RP Dong, LY, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
51201    200072, Peoples R China.
51202 CR CHOWDHURY D, 2000, PHYS REP, V329, P199
51203    FUKUI M, 1996, J PHYS SOC JPN, V65, P1868
51204    HELBING D, 1999, PHYS REV E A, V59, R2505
51205    HU YT, 1999, NEW APPROACH CELLULA
51206    KRAUSS S, 1997, PHYS REV E A, V55, P5597
51207    LUBECK S, 1998, PHYS REV E, V57, P1171
51208    NAGEL K, 1992, J PHYS I, V2, P2221
51209    NAGEL K, 1995, PHYS REV E A, V51, P2909
51210    WANG L, 2000, STUDY SELF ORG CRITI
51211    XUE Y, 2001, ACTA PHYS SIN-CH ED, V50, P445
51212 NR 10
51213 TC 4
51214 SN 0253-4827
51215 J9 APPL MATH MECH-ENGL ED
51216 JI Appl. Math. Mech.-Engl. Ed.
51217 PD APR
51218 PY 2002
51219 VL 23
51220 IS 4
51221 BP 363
51222 EP 370
51223 PG 8
51224 SC Mathematics, Applied; Mechanics
51225 GA 565WL
51226 UT ISI:000176392400001
51227 ER
51228 
51229 PT J
51230 AU Wu, MH
51231    Chen, J
51232    Qian, Q
51233    Bao, BR
51234 TI Thermo-responsive interpenetrating polymer networks composed of
51235    AAc/AAm/NMA by radiation grafting
51236 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
51237 DT Article
51238 ID GELS; COLLAPSE
51239 AB Interpenetrating polymer network (IPN) hydrogels were prepared by
51240    grafting of acrylamide (AAm), N-methylol acrylamide (NMA) and acrylic
51241    acid (AAc) onto preirradiated polypropylene (PP) membrane. To obtain
51242    PP-g-AAc/AAm/NMA IPN hydrogels, at first, AAc were grafted onto
51243    preirradiated PP and then AAm were grafted onto the PP-g-AAc membranes.
51244    Finally NMA were grafted onto PP-g-AAc/AAm membranes. In the different
51245    stages of grafting under different reaction conditions, trapped
51246    radicals in the membrane samples were probed by electron spin resonance
51247    (ESR). The temperature response behaviors of the IPN hydrogels were
51248    studied. Reversible behavior and controlled release of drug tests made
51249    reflecting the switching to "on" state at higher temperatures and to
51250    "off" state at lower temperatures were achieved. By increasing the
51251    grafted content of NMA, higher transition temperature of the hydrogel
51252    could be attained.
51253 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
51254 RP Wu, MH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
51255    Peoples R China.
51256 CR BRANNONPEPPAS L, 1989, J CONTROL RELEASE, V8, P267
51257    CHEN J, 2000, RADIAT PHYS CHEM, V59, P313
51258    FENGLIAN B, 1986, MACROMOLECULES, V19, P2248
51259    HOFFMAN AS, 1991, MRS BULL, V16, P42
51260    ILAVSKY M, 1981, POLYMER, V22, P1678
51261    ILAVSKY M, 1982, POLYM B, V7, P107
51262    KATANO H, 1991, J POLYM, V23, P1179
51263    MASAHIRO I, 1986, MACROMOLECULES, V19, P2476
51264    TANAKA T, 1980, PHYS REV LETT, V45, P1636
51265    TANAKA T, 1982, SCIENCE, V218, P467
51266    WU MH, 2000, J RADIOANAL NUCL CH, V246, P457
51267 NR 11
51268 TC 1
51269 SN 0236-5731
51270 J9 J RADIOANAL NUCL CHEM
51271 JI J. Radioanal. Nucl. Chem.
51272 PD JUN
51273 PY 2002
51274 VL 252
51275 IS 3
51276 BP 531
51277 EP 535
51278 PG 5
51279 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
51280    & Technology
51281 GA 562DX
51282 UT ISI:000176183100014
51283 ER
51284 
51285 PT J
51286 AU Zhang, DJ
51287    Chen, DY
51288 TI The conservation laws of some discrete soliton systems
51289 SO CHAOS SOLITONS & FRACTALS
51290 DT Article
51291 ID EQUATIONS; HIERARCHY
51292 AB A systematic approach to constructing an infinite number of
51293    conservation laws for discrete soliton systems is proposed, and three
51294    examples are given. (C) 2002 Elsevier Science Ltd. All rights reserved.
51295 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
51296 RP Zhang, DJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
51297 CR ABLOWITZ MJ, 1975, J MATH PHYS, V16, P598
51298    ABLOWITZ MJ, 1976, J MATH PHYS, V17, P1011
51299    BLASZAK M, 1994, J MATH PHYS, V35, P4661
51300    HIROTA R, 1973, J PHYS SOC JPN, V35, P289
51301    INOUE R, 1997, J PHYS SOC JPN, V66, P1291
51302    KAJIWARA K, 1990, PHYS LETT A, V146, P115
51303    KONNO K, 1974, PROG THEO PHYS, V52, P886
51304    KONOPELCHENKO B, 1992, J MATH PHYS, V33, P3676
51305    MA WX, 1999, J MATH PHYS, V40, P2400
51306    MIURA RM, 1968, J MATH PHYS, V9, P1204
51307    TODA M, 1989, THEORY NONLINEAR LAT
51308    TSUCHIDA T, 1998, J MATH PHYS, V39, P4785
51309    TSUCHIDA T, 1998, J PHYS SOC JPN, V67, P1175
51310    TSUCHIDA T, 1999, J PHYS A-MATH GEN, V32, P2239
51311    WADATI M, 1975, PROG THEOR PHYS, V53, P419
51312    WADATI M, 1976, PROG THEOR PHYS SUPP, V59, P36
51313    WADATI M, 1977, PROG THEOR PHYS, V57, P808
51314    ZAKHAROV VE, 1972, SOV PHYS JETP, V34, P62
51315 NR 18
51316 TC 9
51317 SN 0960-0779
51318 J9 CHAOS SOLITON FRACTAL
51319 JI Chaos Solitons Fractals
51320 PD SEP
51321 PY 2002
51322 VL 14
51323 IS 4
51324 BP 573
51325 EP 579
51326 PG 7
51327 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
51328 GA 562MH
51329 UT ISI:000176200700006
51330 ER
51331 
51332 PT J
51333 AU Sonis, M
51334    Zhou, SF
51335 TI Stability and transverse manifolds of periodic points for coupled maps
51336 SO PHYSICA D-NONLINEAR PHENOMENA
51337 DT Article
51338 DE coupled maps; domain of stability; periodic points; transverse manifold
51339 ID CHAOTIC ELEMENTS; LOGISTIC MAPS; SYNCHRONIZATION; BIFURCATION;
51340    DYNAMICS; NETWORK
51341 AB We consider the domains of stability of periodic points for linear-,
51342    internal- and external-coupled maps. We obtain the approximation
51343    expressions of the transverse manifolds at periodic points, which show
51344    that the transverse manifolds of periodic points are asymptotically
51345    elliptic paraboloids. We point out that the action of maps on the
51346    transverse manifold has the "symmetry" only in two-coupled maps. We
51347    study in detail the hereditary properties of domains of stability of
51348    period-doublmg points for the internal-coupling of an arbitrary
51349    one-dimensional map with the help of its quadratic approximation and
51350    show that these domains follow the universal rules similar to the
51351    Feigenbaum universality rules for one-dimensional maps. (C) 2002
51352    Elsevier Science B.V All rights reserved.
51353 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
51354    Bar Ilan Univ, Dept Geog, IL-52900 Ramat Gan, Israel.
51355 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
51356 CR DENDRINOS DS, 1990, APPL MATH SCI, V86
51357    FEIGENBAUM MJ, 1978, J STAT PHYS, V19, P25
51358    KANEKO K, 1990, PHYSICA D, V41, P137
51359    KAPITANIAK T, 1999, PHYSICA D, V126, P18
51360    KENDALL BE, 1998, THEOR POPUL BIOL, V54, P11
51361    MAISTRENKO Y, 2000, INT J BIFURCAT CHAOS, V10, P179
51362    MAISTRENKO YL, 1998, PHYS REV E A, V57, P2713
51363    MAISTRENKO YL, 1998, PHYS REV LETT, V80, P1638
51364    MAISTRENKO YL, 1999, PHYS LETT A, V262, P355
51365    MAISTRENKO YL, 1999, PHYS REV E, V60, P2817
51366    SHIBATA T, 1998, PHYS REV LETT, V81, P4116
51367    SHIBATA T, 1998, PHYSICA D, V124, P177
51368    SONIS M, 1987, MATH MODELLING, V9, P539
51369 NR 13
51370 TC 1
51371 SN 0167-2789
51372 J9 PHYSICA D
51373 JI Physica D
51374 PD MAY 1
51375 PY 2002
51376 VL 165
51377 IS 1-2
51378 BP 12
51379 EP 25
51380 PG 14
51381 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
51382 GA 560QZ
51383 UT ISI:000176093900002
51384 ER
51385 
51386 PT J
51387 AU Yang, GH
51388    Zhang, H
51389    Duan, YS
51390 TI Topological aspect and bifurcation of disclination lines in
51391    two-dimensional liquid crystals
51392 SO COMMUNICATIONS IN THEORETICAL PHYSICS
51393 DT Article
51394 DE topological current; winding number; director field; disclination line
51395 ID SPACE-TIME DEFECTS; EARLY UNIVERSE; ORDERED MEDIA; QUANTIZATION; ORIGIN
51396 AB Using phi-mapping method and topological current theory, the
51397    topological structure and bifurcation of disclination lines in
51398    two-dimensional liquid crystals are studied. By introducing the
51399    strength density and the topological current of many disclination
51400    lines, the total disclination strength is topologically quantized by
51401    the Hopf indices and Brouwer degrees at the singularities of the
51402    director field when the Jacobian determinant of director field does not
51403    vanish. When the Jacobian determinant vanishes, the origin,
51404    annihilation and bifurcation processes of disclination lines are
51405    studied in the neighborhoods of the limit points and bifurcation
51406    points, respectively. The branch solutions at the limit point and the
51407    different directions of all branch curves at the bifurcation point are
51408    calculated with the conservation law of the topological quantum
51409    numbers. It is pointed out that a disclination line with a higher
51410    strength is unstable and it will evolve to the lower strength state
51411    through the bifurcation process.
51412 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
51413    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
51414    Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China.
51415 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
51416 CR ANDERSON PW, 1984, BASIC NOTIONS CONDEN
51417    BLAHA S, 1976, PHYS REV LETT, V36, P874
51418    BRAY AJ, 1994, ADV PHYS, V43, P375
51419    DEGENNES PG, 1974, PHYSICS LIQUID CRYST
51420    DUAN YS, 1997, GEN RELAT GRAVIT, V29, P715
51421    DUAN YS, 1997, HELV PHYS ACTA, V70, P565
51422    DUAN YS, 1998, NUCL PHYS B, V514, P705
51423    FINKELSTEIN D, 1966, J MATH PHYS, V7, P1218
51424    FRIEDEL J, 1964, DISLOCATIONS
51425    HOLZ A, 1992, PHYSICA A, V182, P240
51426    KLEMAN M, 1977, J PHYSIQUE LETT, V38, L195
51427    KLEMAN M, 1983, POINTS LINES WALLS L
51428    KURIK MV, 1988, SOV PHYS USP, V31, P196
51429    KURIK MV, 1988, USP FIZ NAUK, V154, P381
51430    LI S, HEPTH0001007
51431    LUBENSKY TC, 1997, SOLID STATE COMMUN, V102, P187
51432    MERMIN ND, 1979, REV MOD PHYS, V51, P591
51433    NABARRO FRN, 1967, THEORY CRYSTAL DISLO
51434    ROGULA D, 1976, TRENDS APPL PURE MAT
51435    SHANKAR R, 1977, J PHYSIQUE, V38, P1405
51436    TOULOUSE G, 1976, J PHYS LETT-PARIS, V37, L149
51437    VOLOVIK GE, 1976, JETP LETT, V24, P561
51438    VOLOVIK GE, 1977, ZH EKSP TEOR FIZ, V45, P1186
51439    VOLOVIK GE, 1977, ZH EKSP TEOR FIZ, V46, P401
51440    YANG GH, 1998, INT J THEOR PHYS, V37, P2371
51441    YANG GH, 1998, MOD PHYS LETT A, V13, P2123
51442    YANG GH, 1999, INT J ENG SCI, V37, P1037
51443 NR 27
51444 TC 2
51445 SN 0253-6102
51446 J9 COMMUN THEOR PHYS
51447 JI Commun. Theor. Phys.
51448 PD MAY 15
51449 PY 2002
51450 VL 37
51451 IS 5
51452 BP 513
51453 EP 518
51454 PG 6
51455 SC Physics, Multidisciplinary
51456 GA 558RF
51457 UT ISI:000175979800001
51458 ER
51459 
51460 PT J
51461 AU Guo, GP
51462    Zhang, JF
51463 TI Note on solving solitary wave solution by the hyperbolic function method
51464 SO ACTA PHYSICA SINICA
51465 DT Article
51466 DE hyperbolic function method; solitary wave solution; nonlinear wave
51467    equation
51468 ID EXPANSION METHOD; SHALLOW-WATER; LONG WAVES; EQUATIONS; QUADRATURE;
51469    REDUCTION
51470 AB We give a note on solving the solitary wave solution of the nonlinear
51471    wave equation using the hyperbolic function method. It can be seen that
51472    the hyperbolic function method is a simple and effective method in
51473    studying the solitary wave solution of the nonlinear evolution equation.
51474 C1 Zhejiang Normal Univ, Coll Educ Sci & Technol, Jinhua 321004, Peoples R China.
51475    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
51476 RP Guo, GP, Zhejiang Normal Univ, Coll Educ Sci & Technol, Jinhua 321004,
51477    Peoples R China.
51478 CR ABLOWITZ MJP, 1991, SOLITON NONLINEAR EV, P200
51479    FAN EG, 1998, ACTA PHYS SINICA, V47, P353
51480    FAN EG, 2000, PHYS LETT A, V277, P212
51481    FANG EG, 2000, ACTA PHYS SINICA, V49, P1409
51482    GU CH, 1990, SOLITON THEORY ITS A, P160
51483    HIROTA R, 1973, J MATH PHYS, V14, P810
51484    KUDRYASHOV NA, 1990, PHYS LETT A, V147, P287
51485    LIU SK, 2001, ACTA PHYS SIN-CH ED, V50, P2068
51486    LOU SY, 1998, ACTA PHYS SINICA, V47, P1937
51487    LU KP, 2001, ACTA PHYS SIN-CH ED, V50, P2074
51488    MIURA MR, 1978, BACKUND TRANSFORMATI, P185
51489    OTWINOWSKI M, 1988, PHYS LETT A, V128, P483
51490    SHANG YD, 1998, J NINGXIA U, V19, P110
51491    WANG ML, 1995, PHYS LETT A, V199, P169
51492    YAN CT, 1996, PHYS LETT A, V224, P77
51493    YAN ZY, 1999, ACTA PHYS SIN-CH ED, V48, P1962
51494    YANG L, 2001, PHYS LETT A, V278, P267
51495    ZHANG GX, 2000, CHIN SCI A, V30, P1103
51496    ZHANG JF, 1998, ACTA PHYS SINICA, V47, P1416
51497    ZHANG JF, 2001, ACTA PHYS SIN-CH ED, V50, P1648
51498 NR 20
51499 TC 19
51500 SN 1000-3290
51501 J9 ACTA PHYS SIN-CHINESE ED
51502 JI Acta Phys. Sin.
51503 PD JUN
51504 PY 2002
51505 VL 51
51506 IS 6
51507 BP 1159
51508 EP 1162
51509 PG 4
51510 SC Physics, Multidisciplinary
51511 GA 559XE
51512 UT ISI:000176050800003
51513 ER
51514 
51515 PT J
51516 AU Jiang, GH
51517    Shan, S
51518    Jiang, L
51519    Xu, XS
51520 TI A new rank-size distribution of Zipf's Law and its applications
51521 SO SCIENTOMETRICS
51522 DT Article
51523 AB Developing the probability function to describe rank-size Zipfian
51524    phenomena, i.e., a form like P(R = r)similar toc/r(a) (alpha>0) with a
51525    rank type random variable R, has been an important problem in
51526    scientometrics and informetrics. In this article a new rank-size
51527    distribution of Zipf's law is presented and applied to an actual
51528    distribution of scientific productivities in Chinese universities.
51529 C1 China Natl Inst Educ Res, Beijing 100088, Peoples R China.
51530    Shanghai Univ, Dept Management & Informat Engn, Shanghai, Peoples R China.
51531 RP Jiang, GH, China Natl Inst Educ Res, Beijing 100088, Peoples R China.
51532 CR AUERBACH F, 1913, PETERMANS MITTEILUNG, V59, P74
51533    AYRES LP, 1915, MEASURING SCALE ABIL
51534    CONDON EU, 1928, SCIENCE, V67, P300
51535    GLANZEL W, 1984, Z WAHRSCHEINLICHKEIT, V66, P173
51536    HILL BM, 1974, J AM STAT ASSOC, V69, P1017
51537    KRETSCHMER H, 2000, RES EVLAUATION ITS I, P95
51538    LOTKA AJ, 1925, ELEMENTS MATH BIOL
51539    MANDELBROT B, 1953, COMMUN THEORY, P486
51540    ROUSSEAU R, 2000, RES EVALUATION ITS I, P458
51541    ZIPF GK, 1935, PSYCHOBIOLOGY LANGUA
51542    ZIPF GK, 1949, HUMAN BEHAV PRINCIPL
51543 NR 11
51544 TC 0
51545 SN 0138-9130
51546 J9 SCIENTOMETRICS
51547 JI Scientometrics
51548 PD APR
51549 PY 2002
51550 VL 54
51551 IS 1
51552 BP 119
51553 EP 130
51554 PG 12
51555 SC Computer Science, Interdisciplinary Applications; Information Science &
51556    Library Science
51557 GA 557HJ
51558 UT ISI:000175902800008
51559 ER
51560 
51561 PT J
51562 AU Huang, AM
51563    Liu, YF
51564    Chen, L
51565    Hua, JD
51566 TI Synthesis and property of nanosized palladium catalysts protected by
51567    chitosan/silica
51568 SO JOURNAL OF APPLIED POLYMER SCIENCE
51569 DT Article
51570 DE catalysts; palladium; chitosan; silica; nanotechnology
51571 AB A chitosan (CTN)/silica-supported nanosized palladium catalyst was
51572    obtained from a silica-supported chitosan palladium complex through a
51573    complex transition method. An adsorption model was employed to simplify
51574    the structure of the di-supporter. It was indicated that when the
51575    polymer coil adsorbed on the silica surface with even a monolayer the
51576    catalytic activity would reach an optimum value, and different
51577    situations of the, nanosized palladium particles would cause a
51578    different catalysis. The molar ratio of the chitosan structure unit to
51579    the palladium would affect the metal's size, which therefore influenced
51580    its catalytic activity. The experimental results corresponded with the
51581    inferences. (C) 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85:
51582    989-994,2002.
51583 C1 Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R China.
51584 RP Liu, YF, Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R
51585    China.
51586 CR FELDHEIM DL, 1995, J ELECT CHEM SOC, V142, P32
51587    HIDEFANI NL, 1999, J MOL SCI, V15, P3
51588    HIRAI H, 1998, REACT FUNCT POLYM, V37, P121
51589    RYLANDER PN, 1967, CATALYTIC HYDROGENAT
51590    SANG LY, 1918, POLYM B, V3, P11
51591 NR 5
51592 TC 6
51593 SN 0021-8995
51594 J9 J APPL POLYM SCI
51595 JI J. Appl. Polym. Sci.
51596 PD AUG 1
51597 PY 2002
51598 VL 85
51599 IS 5
51600 BP 989
51601 EP 994
51602 PG 6
51603 SC Polymer Science
51604 GA 558TQ
51605 UT ISI:000175983000010
51606 ER
51607 
51608 PT J
51609 AU Lu, HQ
51610    Shen, LM
51611    Yang, GH
51612    Lai, YY
51613    Cheng, KS
51614 TI Quantum cosmology in CGBD theory
51615 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
51616 DT Article
51617 DE quantum cosmology; Brans-Dicke gravity
51618 ID COMPLEX SCALAR FIELD; GRAVITATIONAL-WAVES; EINSTEIN FRAME; UNIVERSE;
51619    GRAVITY
51620 AB We apply the theory developed in quantum cosmology to a model of
51621    charged generalized Brans-Dicke gravity. This is a quantum model of
51622    gravitation interacting with a charged Brans-Dicke type scalar field
51623    which is considered in the Pauli frame. The Wheeler-DeWitt equation
51624    describing the evolution of the quantum Universe is solved in the
51625    semiclassical approximation by applying the WKB approximation. The wave
51626    function of the Universe is also obtained by applying both the
51627    Vilenkin-like and the Hartle-Hawking-like boundary conditions. We then
51628    make predictions from the wave functions and infer that the Vilenkin's
51629    boundary condition is more reasonable in the Brans-Dicke gravity models
51630    leading a large vacuum energy density at the beginning of the inflation.
51631 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
51632    Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
51633 RP Lu, HQ, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
51634 CR BRACCO C, 1998, GRGC9811090
51635    CHO YM, 1992, PHYS REV LETT, V68, P3133
51636    FARAONI V, 1996, ASTROPHYS LETT COMM, V35, P305
51637    FARAONI V, 1998, ASTRON ASTROPHYS, V332, P1154
51638    FARAONI V, 1998, GRGC9811047
51639    FARAONI V, 1999, INT J THEOR PHYS, V38, P217
51640    HARTLE JB, 1983, PHYS REV D, V28, P2960
51641    HARTLE JB, 1991, QUANTUM COSMOLOGY BA
51642    KAMENSHCHIK AY, 1995, PHYS LETT B, V357, P36
51643    KHALATNIKOV IM, 1992, PHYS LETT A, V169, P308
51644    KHALATNIKOV IM, 1993, PHYS LETT B, V302, P176
51645    KOLB EW, 1990, EARLY UNIVERSE
51646    LU HQ, 1999, INT J MOD PHYS D, V8, P625
51647    LUCA A, 1994, PHYSICAL REV D, V49, P1881
51648    MAGNANO G, 1994, PHYS REV D, V50, P5039
51649    VILENKIN A, 1984, PHYS REV D, V30, P509
51650    VILENKIN A, 1988, PHYS REV D, V37, P888
51651    VILENKIN A, 1989, PHYS REV D, V39, P1116
51652    VILENKIN A, 1998, GRQC9804051
51653    WALD RM, 1984, GEN RELATIVITY
51654 NR 20
51655 TC 1
51656 SN 0020-7748
51657 J9 INT J THEOR PHYS
51658 JI Int. J. Theor. Phys.
51659 PD MAY
51660 PY 2002
51661 VL 41
51662 IS 5
51663 BP 939
51664 EP 951
51665 PG 13
51666 SC Physics, Multidisciplinary
51667 GA 558CK
51668 UT ISI:000175947500011
51669 ER
51670 
51671 PT J
51672 AU Yang, GH
51673 TI Topology in entropy of Schwarzschild black hole
51674 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
51675 DT Article
51676 DE entropy; Euler characteristic; killing vector field
51677 ID EXTREME
51678 AB In the light of phi-mapping method and the relationship between the
51679    entropy and the Euler characteristic, the inner topological structure
51680    of the entropy of Schwarzschild black hole is studied. By introducing
51681    an entropy density, it is shown that the entropy of Schwarzschild black
51682    hole is determined by the singularities of the timelike Killing vector
51683    field of spacetime and these singularities carry the topological
51684    numbers, Hopf indices and Brouwer degrees, naturally. Taking account of
51685    the statistical meaning of entropy in physics, the entropy of
51686    Schwarzschild black hole is merely the sum of the Hopf indices, which
51687    will give the increasing law of entropy of black holes.
51688 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
51689 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
51690 CR CHERN SS, 1944, ANN MATH, V45, P747
51691    CHERN SS, 1945, ANN MATH, V46, P674
51692    CHERN SS, 1959, LECT NOTES U CHICAGO
51693    DUAN YS, 1993, J MATH PHYS, V34, P1149
51694    DUAN YS, 1998, NUCL PHYS B, V514, P705
51695    GELFAND IM, 1958, GEN FUNCTION
51696    GIBBONS GW, 1995, PHYS REV D, V51, P2839
51697    HAWKING SW, 1995, PHYS REV D, V51, P4302
51698    LIBERATI S, 1997, PHYS REV D, V56, P6458
51699    TEITELBOIM C, 1995, PHYS REV D, V51, P4315
51700    WANG B, 1998, PHYS LETT B, V432, P69
51701    WANG B, 1998, PHYS REV D, V57, P5284
51702    YANG GH, 2001, CHINESE PHYS LETT, V18, P631
51703    ZASLAVSKII OB, 1996, PHYS REV LETT, V76, P2211
51704 NR 14
51705 TC 1
51706 SN 0020-7748
51707 J9 INT J THEOR PHYS
51708 JI Int. J. Theor. Phys.
51709 PD MAY
51710 PY 2002
51711 VL 41
51712 IS 5
51713 BP 953
51714 EP 959
51715 PG 7
51716 SC Physics, Multidisciplinary
51717 GA 558CK
51718 UT ISI:000175947500012
51719 ER
51720 
51721 PT J
51722 AU Zhao, WJ
51723    Chen, LQ
51724 TI A numerical algorithm for non-linear parametric vibration analysis of a
51725    viscoelastic moving belt
51726 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
51727 DT Article
51728 DE axially moving belt; transverse parametric vibration; viscoelastic;
51729    implicit Runge-Kutta method; finite difference
51730 ID NONLINEAR VIBRATION; PART I
51731 AB A numerical algorithm for nonlinear partial differential equations is
51732    proposed to analyze the parametric vibrations of viscoelastic moving
51733    belts. The method of finite difference is employed to discrete spatial
51734    variables. The partial differential equation is transformed into a
51735    large system of differential-algebraic equations. Based oil the special
51736    structures in the mathematical model of a viscoelastic belt, the
51737    algorithm is easy to carry out, and it can be efficiently applied to
51738    solve the parametric vibration problems of belts with various kinds of
51739    nonlinear stress-strain relations. As two applications of the
51740    algorithm, the dynamical response of viscoelastic belts, whose
51741    materials are respectively defined by the standard model or the
51742    Maxwell-Kelvin model, are calculated.
51743 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
51744 RP Zhao, WJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
51745    Shanghai 200072, Peoples R China.
51746 CR ABRATE S, 1992, MECH MACH THEORY, V27, P645
51747    BRENAN KE, 1996, NUMERICAL SOLUTION I
51748    CHEN LQ, 2001, ADV MECH, V31, P535
51749    CHRISTENSEN RM, 1982, THEORY VISCOELASTICI
51750    FUNG RF, 1997, J SOUND VIB, V201, P153
51751    MOON J, 1997, J SOUND VIB, V200, P419
51752    PAKDEMIRLI M, 1994, J SOUND VIB, V169, P179
51753    PAKDEMIRLI M, 1997, J SOUND VIB, V203, P815
51754    PALINGREN H, 1986, V BELT HDB
51755    WICKERT JA, 1993, J SOUND VIB, V160, P455
51756    ZHANG L, 1998, J SOUND VIB, V216, P75
51757    ZHANG L, 1999, J APPL MECH-T ASME, V66, P396
51758 NR 12
51759 TC 4
51760 SN 1565-1339
51761 J9 INT J NONLINEAR SCI NUMER SIM
51762 JI Int. J. Nonlinear Sci. Numer. Simul.
51763 PY 2002
51764 VL 3
51765 IS 2
51766 BP 139
51767 EP 144
51768 PG 6
51769 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
51770    Mathematical; Mechanics
51771 GA 557TT
51772 UT ISI:000175924800007
51773 ER
51774 
51775 PT J
51776 AU Li, T
51777    Sheng, WC
51778 TI The general multi-dimensional Riemann problem for hyperbolic systems
51779    with real constant coefficients
51780 SO DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
51781 DT Article
51782 DE general multi-dimensional Riemann problem; hyperbolic system; constant
51783    coefficients; explicit solution
51784 AB In this paper, we give the explicit solution to the general
51785    multi-dimensional Riemann problem for the canonical form of 2 x 2
51786    hyperbolic systems with real constant coefficients.
51787 C1 Fudan Univ, Dept Math, Shanghai 200433, Peoples R China.
51788    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
51789 RP Li, T, Fudan Univ, Dept Math, Shanghai 200433, Peoples R China.
51790 CR GILQUIN H, 1996, RAIRO-MATH MODEL NUM, V30, P527
51791    LAX PD, 1982, B AM MATH SOC, V6, P213
51792    OSHIME Y, 1991, J MATH KYOTO U, V31, P937
51793    OSHIME Y, 1991, J MATH KYOTO U, V31, P983
51794    STRONG G, 1967, J MATH KYOTO U, V6, P397
51795 NR 5
51796 TC 1
51797 SN 1078-0947
51798 J9 DISCRETE CONTIN DYN SYST
51799 JI Discret. Contin. Dyn. Syst.
51800 PD JUL
51801 PY 2002
51802 VL 8
51803 IS 3
51804 BP 737
51805 EP 744
51806 PG 8
51807 SC Mathematics, Applied; Mathematics
51808 GA 557GB
51809 UT ISI:000175899500013
51810 ER
51811 
51812 PT J
51813 AU Xia, N
51814 TI Investigation of the stability of inviscid compressible swirling flows
51815 SO AEROSPACE SCIENCE AND TECHNOLOGY
51816 DT Article
51817 DE flow stability; swirling flow; vortex
51818 AB The stability of an inviscid compressible swirling flow between two
51819    concentric cylinders is analytically investigated. Two stability
51820    criteria are derived for compressible swirling flows under narrow gap
51821    approximation by an analytic method analogous to Ludwieg's method.
51822    Finally, the effect of compressibility is discussed. (C) 2002 Editions
51823    scientifiques et medicales Elsevier SAS. All rights reserved.
51824 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
51825 RP Xia, N, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
51826    Peoples R China.
51827 CR GANS RF, 1975, J FLUID MECH, V68, P403
51828    HOWARD LN, 1962, J FLUID MECH, V14, P463
51829    HOWARD LN, 1973, STUD APPL MATH, V52, P39
51830    LALAS DP, 1975, J FLUID MECH, V69, P65
51831    LEIBOVICH S, 1983, J FLUID MECH, V126, P335
51832    LUDWEIG H, 1964, Z FLUGWISS, V12, P304
51833    LUDWIEG H, 1960, Z FLUGWISS, V8, P135
51834    LUDWIEG H, 1961, Z FLUGWISS WELTRAUM, V9, P350
51835    RAYLEIGH JWS, 1916, P ROY SOC LOND A MAT, V93, P148
51836    WARREN FW, 1975, J FLUID MECH, V68, P413
51837 NR 10
51838 TC 0
51839 SN 1270-9638
51840 J9 AEROSP SCI TECHNOL
51841 JI Aerosp. Sci. Technol.
51842 PD APR
51843 PY 2002
51844 VL 6
51845 IS 2
51846 BP 99
51847 EP 103
51848 PG 5
51849 SC Engineering, Aerospace
51850 GA 558CC
51851 UT ISI:000175946600001
51852 ER
51853 
51854 PT J
51855 AU Leng, GS
51856    Zhou, GB
51857 TI Inverse forms of Hadamard inequality
51858 SO SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS
51859 DT Article
51860 DE parallelotope; inverse forms; canonical volume; inequality
51861 ID MATRICES
51862 AB In this paper we establish the inverse inequalities of the Hadamard
51863    inequality and the Szasz inequality. To prove these results, we give
51864    two sharpenings of the Hadamard inequality and the Szasz inequality.
51865 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
51866    Shanghai Jiao Tong Univ, Dept Appl Math, Shanghai 200030, Peoples R China.
51867 RP Leng, GS, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
51868 CR BECKENBACH EF, 1961, INEQUALITIES
51869    BOOTHBY WM, 1975, INTRO DIFFERENTIABLE
51870    DIXON JD, 1983, SIAM J NUMER ANAL, V20, P812
51871    DIXON JD, 1984, CANAD MATH B, V27, P260
51872    ENGLE GM, 1976, LINEAR MULTILINEAR A, V4, P155
51873    HORN R, 1985, MATRIX ANAL
51874    JOHNSON CR, 1974, J RES NBS, V78, P167
51875    JOHNSON CR, 1985, LINEAR MULTILINEAR A, V18, P23
51876    JOHNSON CR, 1987, CBMS REG C SER MATH, V68
51877    REZNIKOV AG, 1991, LECT NOTES MATH, V1469, P90
51878    REZNIKOV AG, 1995, OPER THEORY ADV APPL, V77, P239
51879    SHIUE JS, 1976, SOOCHOW J MATH NATUR, V2, P57
51880    VELJAN D, 1995, LINEAR ALGEBRA APPL, V219, P79
51881    WOLKOWICZ H, 1980, LINEAR ALGEBRA ITS A, V29, P471
51882    ZHANG XD, 1993, SIAM J MATRIX ANAL A, V14, P705
51883    ZHANG XD, 1997, ACTA MATH APPL SINIC, V20, P269
51884 NR 16
51885 TC 2
51886 SN 0895-4798
51887 J9 SIAM J MATRIX ANAL APPLICAT
51888 JI SIAM J. Matrix Anal. Appl.
51889 PD MAY 10
51890 PY 2002
51891 VL 23
51892 IS 4
51893 BP 990
51894 EP 997
51895 PG 8
51896 SC Mathematics, Applied
51897 GA 555UE
51898 UT ISI:000175811000006
51899 ER
51900 
51901 PT J
51902 AU Cheng, XY
51903    Wan, XJ
51904 TI The effect of ordering on the environmental embrittlement of Ni4Mo alloy
51905 SO SCRIPTA MATERIALIA
51906 DT Article
51907 DE scanning electron microscopy; intermetallics; hydrogen embrittlement;
51908    order-disorder phenomena
51909 ID HYDROGEN EMBRITTLEMENT; (CO,FE)(3)V; NI3FE
51910 AB Hydrogen embrittlement of Ni4Mo alloy in different degree of ordered
51911    conditions was investigated. The results show that the atomic ordering
51912    does not influence the moisture-induced or dynamic hydrogen
51913    charging-induced environmental embrittlement, but has a considerable
51914    effect on the gaseous hydrogen-induced environmental embrittlement. (C)
51915    2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights
51916    reserved.
51917 C1 Shanghai Univ, Mat Res Inst, Shanghai 200072, Peoples R China.
51918 RP Cheng, XY, Shanghai Univ, Mat Res Inst, Box 269,149 Yanchang Rd,
51919    Shanghai 200072, Peoples R China.
51920 CR BROOKS CR, 1984, INT MET REV, V29, P210
51921    CAMUS GM, 1989, ACTA METALL, V37, P1497
51922    CHENG XY, 2001, SCRIPTA MATER, V44, P325
51923    KURUVILLA AK, 1982, 3RD P INT C HYDR MET, V2, P629
51924    LIU CT, 1989, SCRIPTA METALL, V23, P875
51925    LIU CT, 1991, 6 INT S INT COMP STR, P703
51926    NISHIMURA C, 1996, SCRIPTA MATER, V35, P1441
51927    TAKASUGI T, 1986, ACTA METALL, V34, P607
51928    TAKASUGI T, 1992, J MATER RES, V7, P2739
51929    TAKASUGI T, 1994, INTERMETALLICS, V2, P225
51930    TAWANCY HM, 1995, SCRIPTA METALL MATER, V32, P1525
51931    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
51932    WRIGHT JL, 1998, SCRIPTA MATER, V38, P253
51933 NR 13
51934 TC 3
51935 SN 1359-6462
51936 J9 SCRIPTA MATER
51937 JI Scr. Mater.
51938 PD MAR 25
51939 PY 2002
51940 VL 46
51941 IS 6
51942 BP 465
51943 EP 470
51944 PG 6
51945 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
51946    Engineering
51947 GA 555XL
51948 UT ISI:000175818500011
51949 ER
51950 
51951 PT J
51952 AU Fang, GY
51953    Mo, YL
51954    Song, YL
51955    Wang, YX
51956    Li, CF
51957    Song, LC
51958 TI Nonlinear refractive properties of organometallic fullerene-C-60
51959    derivatives
51960 SO OPTICS COMMUNICATIONS
51961 DT Article
51962 DE excited-state nonlinearity; nonlinear refraction; fullerene
51963    derivatives; Z-scan
51964 ID REVERSE SATURABLE ABSORPTION; Z-SCAN; C-60
51965 AB We have studied the nonlinear refractive properties of the
51966    organometalic fullerene-C-60 derivatives fac- and mer- [bis
51967    (1,2-diphenylphosphino) ethane] (tricarbonyl)(eta(2)-fullerene-C-60)
51968    chromium and molybdenum using the Z-scan method. These compounds change
51969    from being self-defocusing to self-focusing as the input light
51970    intensity increases. The experimental results have been interpreted
51971    using rate-equation theory. Critical conditions for the occurrence of
51972    this kind of transition have been elucidated for the steady-state
51973    situation. (C) 2002 Published by Elsevier Science B.V.
51974 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
51975    Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China.
51976    Nankai Univ, Dept Chem, Tianjin 300071, Peoples R China.
51977 RP Fang, GY, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
51978    Peoples R China.
51979 CR BENTIVEGNA F, 1993, APPL PHYS LETT, V62, P1721
51980    FANG GY, 2000, OPT COMMUN, V183, P523
51981    HERMANN JA, 1998, OPT COMMUN, V154, P225
51982    JOSHI MP, 1993, APPL PHYS LETT, V62, P1763
51983    KOST A, 1993, OPT LETT, V18, P334
51984    LI C, 1995, PHYS REV A, V51, P1569
51985    LI CF, 1994, J OPT SOC AM B, V11, P1356
51986    MENGHETTI M, 1997, SYNTHETIC MET, V86, P2353
51987    SHEIKBAHAE M, 1990, IEEE J QUANTUM ELECT, V26, P760
51988    SONG LC, 1998, POLYHEDRON, V17, P469
51989    SONG YL, 1999, APPL PHYS LATT, V74, P334
51990    TUTT L, 1992, NATURE, V356, P255
51991    TUTT LW, 1993, PROG QUANT ELECTRON, V17, P299
51992 NR 13
51993 TC 10
51994 SN 0030-4018
51995 J9 OPT COMMUN
51996 JI Opt. Commun.
51997 PD MAY 1
51998 PY 2002
51999 VL 205
52000 IS 4-6
52001 BP 337
52002 EP 341
52003 PG 5
52004 SC Optics
52005 GA 554KL
52006 UT ISI:000175734500015
52007 ER
52008 
52009 PT J
52010 AU Ma, CQ
52011    Zhang, BX
52012    Liang, Z
52013    Xie, PH
52014    Wang, XS
52015    Zhang, BW
52016    Cao, Y
52017    Jiang, XY
52018    Zhang, ZL
52019 TI A novel n-type red luminescent material for organic light-emitting
52020    diodes
52021 SO JOURNAL OF MATERIALS CHEMISTRY
52022 DT Article
52023 ID ELECTROLUMINESCENT DEVICES; EUROPIUM COMPLEX; EFFICIENT; HOLE;
52024    EMISSION; POLYMERS; INJECTION; DOPANTS; BRIGHT; SERIES
52025 AB A novel red luminescent material
52026    N,N-bis{4-[2-(4-dicyanomethylene-6-methyl-4H-pyran-2-yl)ethylene]phenyl}
52027    aniline (BDCM) with two (4-dicyanomethylene)-4H-pyran electron-acceptor
52028    moieties and a triphenylamine electron-donor moiety for application in
52029    organic light-emitting diodes (OLEDs) was synthesized. The resultant
52030    compound has a sterically well-hindered structure and a high
52031    fluorescence yield. The photoluminescence (PL) of this compound in
52032    solution and solid film and the electroluminescence (EL) have been
52033    studied. Based on its intense sterically hindered structure, the pure
52034    BDCM film prepared shows a bright red PL emission. The three-layered EL
52035    device with the structure ITO/CuPc/DPPhP/BDCM/Mg:Ag has a turn-on
52036    voltage of less than 4 V, which suggests that BDCM has an excellent
52037    electron injection property. A bright luminance of 582 cd m(-2) is
52038    obtained for the device at 19 V.
52039 C1 Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100101, Peoples R China.
52040    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
52041 RP Zhang, BW, Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100101,
52042    Peoples R China.
52043 CR BALDO MA, 1998, NATURE, V395, P151
52044    BELLMANN E, 1999, CHEM MATER, V11, P399
52045    BULOVIC V, 1998, CHEM PHYS LETT, V287, P455
52046    CAMPAIGNE E, 1963, ORG SYNTH, V4, P331
52047    CHEN CH, 1997, MACROMOL S, V125, P1
52048    CHEN CH, 1997, MACROMOL S, V125, P49
52049    CHEN CH, 2000, THIN SOLID FILMS, V363, P327
52050    CUI YT, 1999, MACROMOLECULES, V32, P3824
52051    GREENHAM NC, 1993, NATURE, V365, P628
52052    GU G, 1999, APPL PHYS LETT, V74, P305
52053    HAMMOND PR, 1979, OPT COMMUN, V29, P331
52054    KIDO J, 1990, CHEM LETT, P657
52055    KIDO J, 1991, CHEM LETT, P1267
52056    KIDO J, 1994, APPL PHYS LETT, V65, P2124
52057    KWONG RC, 1999, CHEM MATER, V11, P3709
52058    LI XC, 1999, CHEM MATER, V11, P1568
52059    LOUIE J, 1997, J AM CHEM SOC, V119, P1169
52060    LU JP, 1999, CHEM MATER, V11, P2501
52061    MA CQ, IN PRESS ACTA CHIM S
52062    RIVETT DE, 1979, AUST J CHEM, V32, P1601
52063    ROSENSTEIN RD, 1985, ACTA CRYSTALLOGR C, V41, P967
52064    SANO T, 1995, JPN J APPL PHYS PT 1, V34, P3124
52065    SCHWEIKART KH, 2001, EUR J ORG CHEM   JAN, P293
52066    SHEN ZL, 1997, SCIENCE, V276, P2009
52067    TANG CW, 1989, J APPL PHYS, V65, P3610
52068    TAO XT, 2001, APPL PHYS LETT, V78, P279
52069    TSUTSUI T, 1994, APPL PHYS LETT, V65, P1868
52070    VANSLYKE SA, 1996, APPL PHYS LETT, V69, P2160
52071    WOOD LL, 1958, J AM CHEM SOC, V80, P144
52072    WU F, 2000, THIN SOLID FILMS, V363, P214
52073    WU QG, 2001, CHEM MATER, V13, P71
52074    YANG Y, 1996, J APPL PHYS, V79, P934
52075    ZHANG XH, 2001, CHEM MATER, V13, P1565
52076    ZHANG XJ, 1998, MATER RES SOC SYMP P, V488, P539
52077    ZHANG XJ, 1999, MACROMOLECULES, V32, P7422
52078 NR 35
52079 TC 13
52080 SN 0959-9428
52081 J9 J MATER CHEM
52082 JI J. Mater. Chem.
52083 PY 2002
52084 VL 12
52085 IS 6
52086 BP 1671
52087 EP 1675
52088 PG 5
52089 SC Chemistry, Physical; Materials Science, Multidisciplinary
52090 GA 555AB
52091 UT ISI:000175768600010
52092 ER
52093 
52094 PT J
52095 AU Zhang, JJ
52096    Wang, DR
52097 TI A numerical embedding method for solving the nonlinear complementarity
52098    problem(I) - Theory
52099 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
52100 DT Article
52101 DE B-differentiable equations; nnlinear complementarity problem; nmerical
52102    embedding method
52103 ID NEWTON METHOD; NONSMOOTH EQUATIONS; CONVERGENCE; ALGORITHMS
52104 AB In this paper, we extend the numerical embedding method for solving the
52105    smooth equations to the nonlinear complementarity problem. By using the
52106    nonsmooth theory, we prove the existence and the continuation of the
52107    following path for the corresponding homotopy equations. Therefore the
52108    basic theory of the numerical embedding method for solving the
52109    nonlinear complementarity problem is established. In part II of this
52110    paper, we will further study the implementation of the method and give
52111    some numerical examples.
52112 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
52113 CR HARKER PT, 1990, MATH PROGRAM, V48, P161
52114    HARKER PT, 1990, MATH PROGRAM, V48, P339
52115    IP CM, 1992, MATH PROGRAM, V56, P71
52116    KOJIMA M, 1989, MATH PROGRAM, V43, P107
52117    MANGASARIAN OL, 1976, SIAM J APPL MATH, V31, P89
52118    ORTEGA JM, 1970, ITERATIVE SOLUTION N
52119    PANG JS, 1993, MATH PROGRAM, V60, P295
52120    PANG JS, 1993, SIAM J OPTIMIZ, V3, P443
52121    QI L, 1993, MATH PROGRAM, V58, P353
52122    QI LQ, 1993, MATH OPER RES, V18, P227
52123    RALPH D, 1994, MATH OPER RES, V19, P352
52124    ROBINSON SM, 1987, MATH PROGRAM STUD, V30, P45
52125    ROBINSON SM, 1990, MATH PROGRAM, V48, P221
52126    SHAPIRO A, 1990, J OPTIMIZ THEORY APP, V66, P477
52127    SUBRAMANIAN PK, 1985, 2845 U WISC MATH RES
52128    WATSON LT, 1979, SIAM J CONTROL OPTIM, V17, P36
52129    XIAO BC, 1994, MATH PROGRAM, V65, P151
52130    ZHANG H, 2000, EUR HEART J, V21, P225
52131 NR 18
52132 TC 0
52133 SN 0254-9409
52134 J9 J COMPUT MATH
52135 JI J. Comput. Math.
52136 PD MAY
52137 PY 2002
52138 VL 20
52139 IS 3
52140 BP 257
52141 EP 266
52142 PG 10
52143 SC Mathematics, Applied; Mathematics
52144 GA 555PM
52145 UT ISI:000175802500003
52146 ER
52147 
52148 PT J
52149 AU Luo, X
52150    Li, ML
52151    Roetzel, W
52152 TI A general solution for one-dimensional multistream heat exchangers and
52153    their networks
52154 SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
52155 DT Article
52156 DE heat exchangers; heat recovery; optimization
52157 ID OPTIMIZATION
52158 AB A mathematical model for predicting the steady-state thermal
52159    performance of one-dimensional (cocurrent and countercurrent)
52160    multistream beat exchangers and their networks is developed and is
52161    solved analytically for constant physical properties of streams. By
52162    introducing three matching matrices. the general Solution can be
52163    applied to various types of one-dimensional multistream heat exchangers
52164    such as shell-and-tube heat exchangers. plate heat exchangers and
52165    plate-fin heat exchangers as well as their networks. The general
52166    solution is applied to the calculation and design of multistream heat
52167    exchangers. Examples are given to illustrate the procedures in detail.
52168    Based on this solution the superstructure model is developed for
52169    synthesis of heat exchanger networks, (C) 2002 Elsevier Science Ltd.
52170    All rights reserved.
52171 C1 Univ Fed Armed Forces Hamburg, Inst Thermodynam, D-22039 Hamburg, Germany.
52172    Shanghai Univ Sci & Technol, Inst Thermal Engn, Shanghai 200093, Peoples R China.
52173 RP Roetzel, W, Univ Fed Armed Forces Hamburg, Inst Thermodynam, D-22039
52174    Hamburg, Germany.
52175 CR BRIONES V, 1999, CHEM ENG SCI, V54, P519
52176    CHEN BD, 1998, ENERGY ENV
52177    HASELER LE, 1983, HEAT EXCHANGERS THEO, P495
52178    KAO S, 1961, 61WA255 ASME
52179    LI K, 1992, P INT POW ENG C MAY, P221
52180    LUO X, IN PRESS INT J HEAT
52181    MALINOWSKI L, 1983, INT J HEAT MASS TRAN, V26, P316
52182    ROETZEL W, 2001, P 13 SCH SEM YOUNG S, V2, P401
52183    SETTARI A, 1972, INT J HEAT MASS TRAN, V15, P555
52184    TAYLOR MA, 1987, PLATE FIN HEAT EXCHA
52185    WANG I, 1999, PROGR ENG HEAT TRANS, P597
52186    WOLF J, 1964, INT J HEAT MASS TRAN, V7, P901
52187    YEE TF, 1990, COMPUT CHEM ENG, V14, P1151
52188    ZALESKI T, 1973, INT J HEAT MASS TRAN, V16, P1527
52189    ZALESKI T, 1974, INT J HEAT MASS TRAN, V17, P1116
52190    ZALESKI T, 1984, CHEM ENG SCI, V39, P1251
52191 NR 16
52192 TC 6
52193 SN 0017-9310
52194 J9 INT J HEAT MASS TRANSFER
52195 JI Int. J. Heat Mass Transf.
52196 PD JUN
52197 PY 2002
52198 VL 45
52199 IS 13
52200 BP 2695
52201 EP 2705
52202 PG 11
52203 SC Engineering, Mechanical; Mechanics; Thermodynamics
52204 GA 556JA
52205 UT ISI:000175844600008
52206 ER
52207 
52208 PT J
52209 AU Gu, GD
52210 TI A seed method for solving nonsymmetric linear systems with multiple
52211    right-hand sides
52212 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
52213 DT Article
52214 DE augmented GMRES method; block method; seed method; linear systems;
52215    multiple right-hand sides
52216 ID CONJUGATE-GRADIENT ALGORITHM; GMRES METHOD; BLOCK GMRES
52217 AB We present a seed method for solving large nonsymmetric linear systems
52218    with multiple right-hand sides. The method uses a single augmented
52219    Krylov subspace corresponding to a seed system as a generator of
52220    approximations to the nonseed systems. The residual evaluate of the
52221    method is shown, and a new strategy to form a seed system which could
52222    supply information shareable among the right-hand sides is given.
52223    Numerical experiments indicate that our seed selection strategy is more
52224    efficient than two existing strategies and our method has significant
52225    time saving compared with the block GMRES method and the GMRES method
52226    with a projection process.
52227 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
52228 RP Gu, GD, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
52229 CR CHAN TF, 1997, SIAM J SCI COMPUT, V18, P1698
52230    CHAPMAN A, 1997, NUMER LINEAR ALGEBR, V4, P43
52231    FREUND RW, 1997, LINEAR ALGEBRA APPL, V254, P119
52232    GU GD, IN PRESS APPL MATH C
52233    GU GD, 1997, MATH NUMERICA SINICA, V19, P374
52234    GU GD, 1999, LINEAR ALGEBRA APPL, V299, P1
52235    MORGAN RB, 1991, LINEAR ALGEBRA APPL, V154, P289
52236    MORGAN RB, 1995, SIAM J MATRIX ANAL A, V16, P1154
52237    NIKISHIN AA, 1995, SIAM J MATRIX ANAL A, V16, P1135
52238    OLEARY DP, 1980, LINEAR ALGEBRA APPL, V29, P293
52239    OLEARY DP, 1994, LINEAR ALGEBRA APPL, V212, P153
52240    SAAD Y, 1987, MATH COMPUT, V48, P651
52241    SAAD Y, 1996, ITERATIVE METHODS SP
52242    SAAD Y, 1997, SIAM J MATRIX ANAL A, V18, P435
52243    SIMONCINI V, 1995, SIAM J SCI COMPUT, V16, P917
52244    SIMONCINI V, 1996, J COMPUT APPL MATH, V66, P457
52245    SIMONCINI V, 1996, LINEAR ALGEBRA APPL, V247, P97
52246    SMITH CF, 1987, THESIS U ILLINOIS UR
52247    SMITH CF, 1989, IEEE T ANTENN PROPAG, V37, P1490
52248 NR 19
52249 TC 1
52250 SN 0020-7160
52251 J9 INT J COMPUT MATH
52252 JI Int. J. Comput. Math.
52253 PD MAR
52254 PY 2002
52255 VL 79
52256 IS 3
52257 BP 307
52258 EP 326
52259 PG 20
52260 SC Mathematics, Applied
52261 GA 555XN
52262 UT ISI:000175818700003
52263 ER
52264 
52265 PT J
52266 AU Zheng, YG
52267    Liu, ZR
52268    Zhou, J
52269 TI A new synchronization principle and application to Chua's circuits
52270 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
52271 DT Article
52272 DE synchronization; Liapunov stability; Lipschitz condition
52273 ID CHAOTIC SYSTEMS; FUNDAMENTALS
52274 AB In the paper we propose a new synchronization principle. To guarantee
52275    synchronization between coupled chaotic oscillators, proper coupling
52276    constants are selected by the Liapunov stability theory and Hurwitz
52277    Theorem. As an example and application, we prove the conjecture [Wu &
52278    Chua, 1994] that synchronization between two chaotic Chua's circuits
52279    can be achieved by using the second state as feedback variable for
52280    sufficiently large coupling constant.
52281 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
52282    Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China.
52283 RP Zheng, YG, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
52284 CR CHUA LO, 1993, J CIRCUIT SYST COMP, V3, P93
52285    CHUA LO, 1996, INT J BIFURCAT CHAOS, V6, P189
52286    KOLUMBAN G, 1997, IEEE T CIRCUITS-I, V44, P927
52287    OGORZALEK MJ, 1993, IEEE T CIRCUITS-I, V40, P693
52288    PECORA LM, 1990, PHYS REV LETT, V64, P821
52289    PECORA LM, 1997, CHAOS, V7, P520
52290    RAO RM, 1980, ORDINARY DIFFERENTIA
52291    WANG XF, 1999, INT J BIFURCAT CHAOS, V6, P1169
52292    WU CW, 1994, INT J BIFURCAT CHAOS, V4, P979
52293 NR 9
52294 TC 0
52295 SN 0218-1274
52296 J9 INT J BIFURCATION CHAOS
52297 JI Int. J. Bifurcation Chaos
52298 PD APR
52299 PY 2002
52300 VL 12
52301 IS 4
52302 BP 815
52303 EP 818
52304 PG 4
52305 SC Mathematics, Applied; Multidisciplinary Sciences
52306 GA 554XC
52307 UT ISI:000175761600007
52308 ER
52309 
52310 PT J
52311 AU Cao, WG
52312    Ding, WY
52313    Wang, LY
52314    Song, LP
52315    Zhang, QY
52316 TI Chemistry and applications of phosphonium and arsonium ylides(XXIX) -
52317    Studies on the hydrolysis of arsonium ylides containing perfluoroalkyl
52318    group and synthesis of 2-pyranone derivatives
52319 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
52320 DT Article
52321 DE arsonium ylide; hydrolysis; 2-pyranone derivatives
52322 ID CONVENIENT
52323 AB In the presence of K2CO3, reaction of (2-naphthoyl)methyl arsonium
52324    bromide (1) with methyl 2-perfluoroalkynoates(2) in methylene chloride
52325    at room temperature afforded the adduct - methyl
52326    4-(2-naphthoyl)-2-triphenylarsoranylidene-3-perfluoroalkyl-3-butenoates(
52327    3) as major product and
52328    4-(2-naphthoyl)-4-triphenylarsoranylidene-3-perfluoroalkyl-2-butenoates
52329    (4) as minor product in high yield. Hydrolysis of compound 3 in V
52330    (CH3OH):V(H2O) = 9:1 methanolic solution at 80 degreesC in a sealed
52331    tube, 4-perfluoroalkyl-6-(2-naphthyl)-2-pyranones(5) was obtained in an
52332    excellent yield. The catalytic hydrolysis of compound 3 with silica gel
52333    and the mechanisms for the formation of the products will also be
52334    discussed.
52335 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
52336    Acad Sinica, Shanghai Inst Organ Chem, Lab Organmet Chem, Shanghai Organ Chem Inst, Shanghai 200032, Peoples R China.
52337 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
52338 CR *GIB FDN, 1972, CARB FLOUR COMP CHEM
52339    BANKS RE, 1982, PREPARATION PRINCIPL
52340    CAO WG, 1998, J FLUORINE CHEM, V91, P99
52341    CAO WG, 1999, ACTA CHIM SINICA, V57, P1270
52342    CAO WG, 1999, J FLUORINE CHEM, V95, P135
52343    CAO WG, 2001, J FLUORINE CHEM, V109, P201
52344    DING WY, 1986, ACTA CHIM SINICA, V44, P255
52345    HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47
52346    STOLL A, 1933, HELV CHIM ACTA, V16, P703
52347    TAO WT, 1983, CHINESE J ORG CHEM, V3, P129
52348 NR 10
52349 TC 0
52350 SN 0251-0790
52351 J9 CHEM J CHINESE UNIV-CHINESE
52352 JI Chem. J. Chin. Univ.-Chin.
52353 PD MAY
52354 PY 2002
52355 VL 23
52356 IS 5
52357 BP 839
52358 EP 842
52359 PG 4
52360 SC Chemistry, Multidisciplinary
52361 GA 556CD
52362 UT ISI:000175831000022
52363 ER
52364 
52365 PT J
52366 AU He, JH
52367 TI Linearization and correction method for nonlinear problems
52368 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
52369 DT Article
52370 DE nonlinearity; asymptotic solution; perturbation technique
52371 ID LINDSTEDT-POINCARE METHODS; PERTURBATION TECHNIQUE; EXPANSION
52372 AB A new perturbation-like technique called linearization and correction
52373    method is proposed. Contrary to the traditional perturbation
52374    techniques, the present theory does not assume that the solution is
52375    expressed in the form of a power series of small parameter. To obtain
52376    an asymptotic solution of nonlinear system, the technique first
52377    searched for a solution for the linearized system, then a correction
52378    was added to the linearized solution. So the obtained results are
52379    uniformly valid for both weakly and strongly nonlinear equations.
52380 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
52381 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
52382    Peoples R China.
52383 CR HAGEDORN P, 1981, NONLINEAR OSCILLATIO
52384    HE JH, 1999, COMMUNICATIONS NONLI, V4, P81
52385    HE JH, 1999, COMPUT METHOD APPL M, V178, P257
52386    HE JH, 1999, INT J NONLINEAR MECH, V34, P699
52387    HE JH, 1999, MECCANICA, V34, P287
52388    HE JH, 2000, INT J NONLINEAR MECH, V35, P37
52389    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
52390    HE JH, 2000, J SOUND VIB, V229, P1257
52391    HE JH, 2002, INT J NONLINEAR MECH, V37, P309
52392    HE JH, 2002, INT J NONLINEAR MECH, V37, P315
52393    LIU GL, 1997, C 7 MOD MATH MECH SH, P47
52394    MICKENS RE, 1981, INTRO NONLINEAR OSCI
52395    NAYFEH AH, 1981, INTRO PERTURBATION T
52396 NR 13
52397 TC 0
52398 SN 0253-4827
52399 J9 APPL MATH MECH-ENGL ED
52400 JI Appl. Math. Mech.-Engl. Ed.
52401 PD MAR
52402 PY 2002
52403 VL 23
52404 IS 3
52405 BP 241
52406 EP 248
52407 PG 8
52408 SC Mathematics, Applied; Mechanics
52409 GA 556FJ
52410 UT ISI:000175838500001
52411 ER
52412 
52413 PT J
52414 AU We, JH
52415    Yu, NW
52416 TI Mathematical modelling of decarburisation and degassing during vacuum
52417    circulation refining process of molten steel: mathematical model of the
52418    process
52419 SO STEEL RESEARCH
52420 DT Article
52421 ID ULTRA-LOW-CARBON; RH DEGASSER; DECARBURIZATION RATE; REDUCED PRESSURE;
52422    KINETIC-MODEL
52423 AB Based on the mass and momentum balances in the system, a new
52424    mathematical model for decarburisation and degassing in the vacuum
52425    circulation refining process of molten steel has been proposed and
52426    developed. The refining roles of the three reaction sites, i.e. the
52427    up-snorkel zone, the droplet group and steel bath in the vacuum vessel,
52428    have been considered in the model. It was assumed that the mass
52429    transfer of reactive components in the molten steel is the rate control
52430    step of the refining reactions. And the friction losses and drags of
52431    flows in the snorkels and vacuum vessel were all counted. For the
52432    refining process of molten steel in a 90 t multifunction RH degasser,
52433    the parameters of the model have been discussed and more reasonably
52434    determined.
52435 C1 Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
52436 RP We, JH, Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
52437 CR BAKAKIN AV, 1981, IZV VUZ FERROUS META, P33
52438    CHEN JX, 1984, HDB COMMON USING DAT, P654
52439    DEO B, 1996, STEEL RES, V67, P7
52440    ELLIOTT JF, 1963, THERMOCHEMISTRY STEE, V2
52441    FILLIO GAV, 2001, 84 STEELM C P ISS US, P661
52442    FUJII T, 1970, TETSU TO HAGANE, V56, P1165
52443    GEIGER GH, 1973, TRANSPORT PHENOMENA
52444    HUGHMARK GA, 1967, IND ENG CHEM PROC DD, V6, P218
52445    HUIN D, 2001, 84 STEELM C P ISS US, P601
52446    INOUE A, 1970, T JAPN SOC MECH ENG, V36, P1366
52447    INOUE S, 1992, ISIJ INT, V32, P120
52448    KANG SC, 1999, IRON STEEL S, V34, P352
52449    KATO Y, 1993, ISIJ INT, V33, P1088
52450    KATO Y, 1993, TETSU TO HAGANE, V79, P1248
52451    KATO Y, 1995, KAWASAKI STEEL TECHN, P25
52452    KIRIHARA T, 1994, TETSU TO HAGANE, V80, P705
52453    KISHIMOTO Y, 1993, ISIJ INT, V33, P391
52454    KLEIMT B, 1993, IRONMAK STEELMAK, V20, P390
52455    KLEIMT B, 2000, SCAND J METALL, V29, P194
52456    KORIA SC, 1984, METALL T B, V15, P109
52457    KUWABARA T, 1988, T IRON STEEL I JPN, V28, P305
52458    OETERS F, 1994, METALLURGY STEELMAKI
52459    OU T, 1999, ACTA METALL SIN, V35, P735
52460    QU Y, 1994, FUNDAMENTALS STEELMA, P178
52461    TAKAHASHI M, 1995, ISIJ INT, V35, P1452
52462    TURKDOGAN ET, 1980, PHYSICAL CHEM HIGH T
52463    WATANABE H, 1968, TETSU TO HAGANE, V54, P1327
52464    WEI JH, 2000, IRONMAK STEELMAK, V27, P129
52465    WEI JH, 2000, MAT PROCESSING COMPU, P147
52466    YAMAGUCHI K, 1992, ISIJ INT, V32, P126
52467    YANO M, 1994, STEEL PROC, V77, P117
52468    YAO YB, 1985, HDB PHYSICAL CHEM, P407
52469    YOSHIMURA K, 1982, P 7 INT C VAC MET TO, P1404
52470    YU N, 1998, J NE U NATURAL SCI, V19, P118
52471    YU N, 2000, THESIS SHANGHAI
52472    ZHANG L, 1997, IRON STEEL S, V32, P633
52473    ZHANG L, 2001, 84 STEELM C P, P275
52474    ZHU MY, 2001, ACTA METALL SIN, V37, P91
52475 NR 38
52476 TC 0
52477 SN 0177-4832
52478 J9 STEEL RES
52479 JI Steel Res.
52480 PD APR
52481 PY 2002
52482 VL 73
52483 IS 4
52484 BP 135
52485 EP 142
52486 PG 8
52487 SC Metallurgy & Metallurgical Engineering
52488 GA 551YE
52489 UT ISI:000175590900003
52490 ER
52491 
52492 PT J
52493 AU Wei, JH
52494    Yu, NW
52495 TI Mathematical modelling of decarburisation and degassing during vacuum
52496    circulation refining process of molten steel: application of the model
52497    and results
52498 SO STEEL RESEARCH
52499 DT Article
52500 ID RH
52501 AB The mathematical model for decarburisation and degassing in the vacuum
52502    circulation refining process of molten steel, proposed and presented
52503    earlier, has been applied to the refining process of molten steel in a
52504    multifunction RH degasser of 90 t capacity. The decarburisation and
52505    degassing processes in the degasser under the RH and RH-KTB operating
52506    conditions have been modelled and analysed using this model. It was
52507    demonstrated that for the RH and RH-KTB refining processes, the results
52508    predicted by the model are in good agreement with some plant data. The
52509    mean contributions of the three refining sites in six circulation
52510    cycles to decarburisation are 10.5 - 11.6, 37.4 - 38.0 and 50.5 - 52.1
52511    % of the overall amount of decarburisation, respectively. The KTB
52512    operation can markedly accelerate the decarburisation of molten steel.
52513    Using the top blowing oxygen of 6 min with the flow rate of (600 -
52514    1000) m(3)(STP)/h, the initial carbon mass content of the liquid steel
52515    for the RH refining process may be increased to (550 - 700) . 10(-4)
52516    from 400 . 10(-4) %. And the treatment time needed for reducing the
52517    carbon mass content in the steel to a level of : 20 - 10-4 % may be
52518    shortened over 3 - 4 min. The effectiveness of decarburisation and
52519    degassing cannot be obviously improved by increasing the lifting argon
52520    blow rate to 900 from 600 I(STP)/min under the operating modes examined
52521    in the present work.
52522 C1 Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
52523 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
52524 CR AZUMA K, 1990, CAMP ISIJ, V3, P168
52525    INOUE S, 1990, CAMP ISIJ, V3, P164
52526    KUWABARA T, 1988, T IRON STEEL I JPN, V28, P305
52527    LIU J, 1999, IRON STEEL S10, V34, P527
52528    OU T, 1996, IRON STEEL, V31, P17
52529    TAKAHASHI M, 1995, ISIJ INT, V35, P1452
52530    WATANABE H, 1968, TETSU TO HAGANE, V54, P1327
52531    WEI JH, 2002, STEEL RES, V73, P135
52532    YANO M, 1994, STEEL PROC, V77, P117
52533    YU N, 1998, J NE U NATURAL SCI, V19, P118
52534    YU N, 2000, THESIS SHANGHAI
52535 NR 11
52536 TC 4
52537 SN 0177-4832
52538 J9 STEEL RES
52539 JI Steel Res.
52540 PD APR
52541 PY 2002
52542 VL 73
52543 IS 4
52544 BP 143
52545 EP 148
52546 PG 6
52547 SC Metallurgy & Metallurgical Engineering
52548 GA 551YE
52549 UT ISI:000175590900004
52550 ER
52551 
52552 PT J
52553 AU Zhang, JC
52554    Cao, GX
52555    Chen, ZP
52556    Li, XG
52557    Cao, SX
52558 TI Hole carrier localization and Pr substitution in YBCO systems by
52559    positron experiment
52560 SO MATERIALS LETTERS
52561 DT Article
52562 DE ternary; Y; rare earth barium high-T-c superconductors
52563 ID LIFETIME SPECTROSCOPY; NEUTRON-DIFFRACTION; MOMENTUM DENSITY;
52564    HIGH-TEMPERATURE; SINGLE-CRYSTALS; FERMI-SURFACE; ANNIHILATION;
52565    SUPERCONDUCTIVITY; Y1-XPRXBA2CU3O7-DELTA; DEFECTS
52566 AB Pr-substituted YBCO system has been studied by positron lifetime
52567    experiment in the range from 0.0 to 1.0. The present results show that
52568    the value of short lifetime tau(1) in PrBa2Cu3O7-delta is nearly the
52569    same as in the isostructural YBa2Cu3O7-delta and the defect-related
52570    positron lifetime component tau(2) decreases as a function of
52571    Pr-substitution x. The increase of local electron density n(e),
52572    reflects the electronic intense localization. These experimental
52573    results are interpreted in terms of the localization of hole carriers
52574    in the Cu-O chains on Pr substitution due to disorder in the Ba and Pr
52575    planes by the partly occupation of Ba2+ ion site with Pr3+ ion. These
52576    will destroy the intrinsic conductivity of the Cu-O chains and so
52577    impresses the superconductivity above x=0.6 Pr-substitution
52578    concentration. (C) 2002 Elsevier Science B.V. All rights reserved.
52579 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
52580    Hennan Normal Univ, Dept Phys, Xinxiang 453002, Peoples R China.
52581    Zhengzhou Inst Light Ind, Dept Math & Phys, Zhengzhou 450002, Peoples R China.
52582 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
52583 CR ABDELRAZEK MM, 1999, INT J MOD PHYS B, V13, P3615
52584    BLACKSTEAD HA, 1995, PHYS LETT A, V109
52585    BLACKSTEAD HA, 1995, PHYS REV B, V51, P11830
52586    BOOTHROYD AT, 1997, PHYS REV LETT, V78, P130
52587    CAO G, 1993, PHYSICA B, V186, P1004
52588    CHAKRABORTY B, 1989, PHYS REV B, V39, P215
52589    CHEN CK, 1993, PHYSICA C, V214, P231
52590    FINCHER CR, 1991, PHYS REV LETT, V67, P2902
52591    FINK J, 1990, PHYS REV B, V42, P4823
52592    HAUTOJARVI P, 1977, PHILOS MAG, V35, P973
52593    HOFFMANN L, 1993, PHYS REV LETT, V71, P4047
52594    JEAN YC, 1987, PHYS REV B, V36, P3994
52595    JEAN YC, 1990, PHYS REV LETT, V64, P1593
52596    JUNG K, 1995, J APPL PHYS, V78, P5534
52597    KEBEDE A, 1989, PHYS REV B, V40, P4453
52598    LEVIN GA, 1998, PHYS REV LETT, V80, P841
52599    LIECHTENSTEIN AI, 1995, PHYS REV LETT, V74, P1000
52600    LING CC, 2000, PHYS REV B, V62, P8016
52601    MAHONY J, 1997, PHYS REV B, V55, P9637
52602    MASSIDDA S, 1990, PHYSICA C, V169, P137
52603    NAGEL C, 1999, PHYS REV B, V60, P9212
52604    NEUMEIER JJ, 1990, PHYSICA C, V166, P191
52605    OKAI B, 1988, JPN J APPL PHYS, V27, P41
52606    PANKALUOTO R, 1994, PHYS REV B, V50, P6408
52607    POLITY A, 1998, PHYS REV B, V58, P10363
52608    POLITY A, 1999, PHYS REV B, V59, P10025
52609    REMPEL AA, 2000, PHYS REV B, V61, P5945
52610    ROMANENKO AI, 1996, PHYS LETT A, V223, P132
52611    SANYAL D, 1998, PHYS REV B, V58, P15226
52612    SHUKLA A, 1995, PHYS REV B, V51, P6028
52613    SHUKLA A, 1999, PHYS REV B, V59, P12127
52614    SODERHOLM L, 1987, NATURE, V328, P604
52615    SOMOZA A, 2000, PHYS REV B, V61, P14454
52616    USAGAWA T, 1998, APPL PHYS LETT, V72, P1772
52617    VONSTETTEN EC, 1988, PHYS REV LETT, V60, P2198
52618    WURSCHUM R, 2000, PHYS REV B, V62, P12021
52619    ZHANG JC, 1995, PHYS LETT A, V201, P70
52620    ZOU ZG, 1998, PHYS REV LETT, V80, P1074
52621 NR 38
52622 TC 0
52623 SN 0167-577X
52624 J9 MATER LETT
52625 JI Mater. Lett.
52626 PD JUN
52627 PY 2002
52628 VL 54
52629 IS 4
52630 BP 273
52631 EP 278
52632 PG 6
52633 SC Materials Science, Multidisciplinary; Physics, Applied
52634 GA 553XP
52635 UT ISI:000175702600006
52636 ER
52637 
52638 PT J
52639 AU Yang, GH
52640    Zhang, H
52641    Duan, YS
52642 TI Topological quantization of disclination points in three-dimensional
52643    liquid crystals
52644 SO CHINESE PHYSICS
52645 DT Article
52646 DE topological current; wrapping number; director field; disclination point
52647 ID SPACE-TIME DEFECTS; BIFURCATION-THEORY; EARLY UNIVERSE; ORIGIN; MEDIA
52648 AB Using the phi-mapping method and topological current theory, we study
52649    the inner structure of disclination points in three-dimensional liquid
52650    crystals. By introducing the strength density and the topological
52651    current of many disclination points, it is pointed out that the
52652    disclination points are determined by the singularities of the general
52653    director field and they are topologically quantized by the Hopf indices
52654    and Brouwer degrees.
52655 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
52656    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
52657    Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China.
52658 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
52659 CR ANDERSON PW, 1984, BASIC NOTIONS CONDEN
52660    BLAHA S, 1976, PHYS REV LETT, V36, P874
52661    BRAY AJ, 1994, ADV PHYS, V43, P375
52662    DEGENNES PG, 1970, LECT NOTES
52663    DEGENNES PG, 1974, PHYSICS LIQUID CRYST
52664    DUAN YS, 1997, GEN RELAT GRAVIT, V29, P715
52665    DUAN YS, 1997, HELV PHYS ACTA, V70, P565
52666    DUAN YS, 1998, NUCL PHYS B, V514, P705
52667    FINKELSTEIN D, 1966, J MATH PHYS, V7, P1218
52668    FRIEDEL J, 1964, DISLOCATIONS
52669    HOLZ A, 1992, PHYSICA A, V182, P240
52670    KLEMAN M, 1972, LIQUID CRYSTALLINE S
52671    KLEMAN M, 1973, PHILOS MAG, V27, P1057
52672    KLEMAN M, 1977, J PHYSIQUE LETT, V38, L195
52673    KLEMAN M, 1983, LIQUID CRYSTALS MAGN
52674    KURIK MV, 1988, SOV PHYS USP, V31, P196
52675    KURIK MV, 1988, USP FIZ NAUK, V154, P381
52676    LUBENSKY TC, 1997, SOLID STATE COMMUN, V102, P187
52677    MERMIN ND, 1979, REV MOD PHYS, V51, P591
52678    NABARRO FRN, 1967, THEORY CRYSTAL DISLO
52679    ROGULA D, 1976, TRENDS APPL PURE MAT
52680    SHANKAR R, 1977, J PHYSIQUE, V38, P1405
52681    TOULOUSE G, 1976, J PHYSIQUE LETT, V37, P149
52682    VOLOVIK GE, 1976, JETP LETT, V48, P561
52683    VOLOVIK GE, 1977, ZH EKSP TEOR FIZ, V45, P1186
52684    VOLOVIK GE, 1977, ZH EKSP TEOR FIZ, V46, P401
52685    YANG GH, 1998, INT J THEOR PHYS, V37, P2371
52686    YANG GH, 1998, MOD PHYS LETT A, V13, P2123
52687    YANG GH, 1999, INT J ENG SCI, V37, P1037
52688 NR 29
52689 TC 0
52690 SN 1009-1963
52691 J9 CHIN PHYS
52692 JI Chin. Phys.
52693 PD MAY
52694 PY 2002
52695 VL 11
52696 IS 5
52697 BP 415
52698 EP 418
52699 PG 4
52700 SC Physics, Multidisciplinary
52701 GA 552TD
52702 UT ISI:000175635400001
52703 ER
52704 
52705 PT J
52706 AU Zheng, G
52707    Li, H
52708    Zhang, M
52709    Lund-Katz, S
52710    Chance, B
52711    Glickson, JD
52712 TI Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl
52713    oleate as target-specific photosensitizer
52714 SO BIOCONJUGATE CHEMISTRY
52715 DT Article
52716 ID PHOTODYNAMIC THERAPY; CULTURED-CELLS; IN-VIVO; DELIVERY; DERIVATIVES;
52717    COMPLEXES; DRUGS
52718 AB To target tumors overexpressing low-density lipoprotein receptors
52719    (LDLr), a pyropheophorbide cholesterol oleate conjugate was synthesized
52720    and successfully reconstituted into the low-density lipoprotein (LDL)
52721    lipid core. Laser scanning confocal microscopy studies demonstrated
52722    that this photosensitizer-reconstituted LDL can be internalized via
52723    LDLr by human hepatoblastoma G(2) (HepG(2)) tumor cells.
52724 C1 Univ Penn, Sch Med, Dept Radiol, Philadelphia, PA 19104 USA.
52725    Univ Penn, Sch Med, Dept Biochem & Biophys, Philadelphia, PA 19104 USA.
52726    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
52727    Childrens Hosp Philadelphia, Dept Pediat GI Nutr, Philadelphia, PA 19104 USA.
52728 RP Zheng, G, Univ Penn, Sch Med, Dept Radiol, Chem Bldg,Box 66,231 S 34th
52729    St, Philadelphia, PA 19104 USA.
52730 CR ALLISON BA, 1991, PHOTOCHEM PHOTOBIOL, V54, P709
52731    BROWN MS, 1980, ANN NY ACAD SCI, V348, P48
52732    CANDIDE C, 1986, FEBS LETT, V207, P133
52733    CRAIG IF, 1981, J LIPID RES, V22, P687
52734    DESMIDT PC, 1993, BIOCHEMISTRY-US, V32, P2916
52735    DOUGHERTY TJ, 1998, J NATL CANCER I, V90, P889
52736    FIRESTONE RA, 1994, BIOCONJUGATE CHEM, V5, P105
52737    HENDERSON BW, 1997, CANCER RES, V57, P4000
52738    KRIEGER M, 1979, J BIOL CHEM, V254, P3845
52739    LOWRY OH, 1951, J BIOL CHEM, V193, P265
52740    LUNDBERG B, 1987, CANCER RES, V47, P4105
52741    MOAN J, 1990, J PHOTOCH PHOTOBIO B, V6, P343
52742    MOSLEY ST, 1981, P NATL ACAD SCI USA, V78, P5717
52743    PANDEY RK, 1996, PHOTOCHEM PHOTOBIOL, V64, P194
52744    PANDEY RK, 2000, PORPHYRIN HDB, V6, P157
52745    REDDI E, 1997, J PHOTOCH PHOTOBIO B, V37, P189
52746    SHAW JM, 1987, ANN NY ACAD SCI, V507, P252
52747    STERNBERG ED, 1998, TETRAHEDRON, V54, P4151
52748    VERSLUIS AJ, 1996, BRIT J CANCER, V74, P525
52749 NR 19
52750 TC 10
52751 SN 1043-1802
52752 J9 BIOCONJUGATE CHEMISTRY
52753 JI Bioconjugate Chem.
52754 PD MAY-JUN
52755 PY 2002
52756 VL 13
52757 IS 3
52758 BP 392
52759 EP 396
52760 PG 5
52761 SC Chemistry, Multidisciplinary; Chemistry, Organic; Biochemical Research
52762    Methods; Biochemistry & Molecular Biology
52763 GA 553PN
52764 UT ISI:000175684800002
52765 ER
52766 
52767 PT J
52768 AU He, JH
52769 TI A variational model for a symmetric transonic aerofoil
52770 SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY
52771 DT Article
52772 DE flow; finite element method
52773 ID UNKNOWN SHAPE; TURBOMACHINERY; AERODYNAMICS; FLOW
52774 AB By the semi-inverse method proposed by He, a variational principle is
52775    established for steady flow over a thin, symmetric, non-lifting
52776    aerofoil. The nonlinear, small-disturbance, velocity-potential equation
52777    is obtained by minimizing the obtained functional, and all boundary
52778    conditions are converted into natural boundary conditions, resulting in
52779    much convenience when incorporating the finite element method.
52780 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
52781    Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
52782 RP He, JH, Shanghai Univ, Shanghai 200072, Peoples R China.
52783 CR HE JH, 1997, INT J TURBO JET ENG, V14, P23
52784    HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154
52785    HE JH, 1999, INT J TURBO JET ENG, V16, P19
52786    HE JH, 2000, AIRCR ENG AEROSP TEC, V72, P18
52787    HE JH, 2000, INT J NONLINEAR SCI, V1, P139
52788    LIU GL, 2000, INT J NONLINEAR SCI, V1, P25
52789    MARSH JE, 1980, INT J NUMER METH ENG, V16, P137
52790 NR 7
52791 TC 2
52792 SN 0002-2667
52793 J9 AIRCRAFT ENG AEROSP TECHNOL
52794 JI Aircr. Eng. Aerosp. Technol.
52795 PY 2002
52796 VL 74
52797 IS 1
52798 BP 9
52799 EP 11
52800 PG 3
52801 SC Engineering, Aerospace
52802 GA 554DC
52803 UT ISI:000175717600002
52804 ER
52805 
52806 PT J
52807 AU Ma, CQ
52808    Zhang, LQ
52809    Li, XH
52810    Wang, XS
52811    Zhang, BW
52812    Cao, Y
52813    Wang, DM
52814    Jiang, XY
52815    Zhang, ZL
52816    Zhang, DQ
52817    Qui, Y
52818 TI The luminescent properties of 5-substituted 2-pyrazoline and
52819    application in electroluminescent device
52820 SO ACTA CHIMICA SINICA
52821 DT Article
52822 DE pyrazoline; electroluminescence; thermal stability; hole transport
52823    material; blue electroluminescent material
52824 AB A series of 5-substituted 2-pyrazoline derivatives were synthesized and
52825    their physical properties were measured. The results indicate that the
52826    introduction of bulky groups into the pyrazoline ring increases the
52827    glass transition temperature (T-g) of the compounds and changes the
52828    luminescent mechanism of the compounds. Differential scanning
52829    calorimetry ( DSC) shows that the new pyrazoline derivative,
52830    1,3-diphenyl-5-(9-phenanthrenyl)-2-pyrazoline (TAP7) has high T-g of 96
52831    degreesC. The electroluminescent properties of this compound were
52832    measured. It is demonstrated that TAP7 is a good hole transport
52833    material and blue electroluminescent material with high thermal
52834    stability.
52835 C1 Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100101, Peoples R China.
52836    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
52837    Tsing Hua Univ, Dept Chem, Beijing 100084, Peoples R China.
52838 RP Ma, CQ, Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100101,
52839    Peoples R China.
52840 CR BILOT L, 1962, Z NATURFORSCH      A, V17, P621
52841    BLAIR JT, 1994, J PHOTOCH PHOTOBIO A, V77, P133
52842    CHEN CH, 1997, MACROMOL S, V125, P1
52843    DEAN JA, 1999, LANGES HDB CHEM
52844    DONNALD ER, 1979, AUST J CHEM, V32, P1601
52845    GAO XC, 1999, J MATER CHEM, V9, P1077
52846    MORLEY JO, 1989, J MOL ELECTRON, V5, P117
52847    NAITO K, 1993, J PHYS CHEM-US, V97, P6240
52848    SAHYUN MRV, 1991, P SPIE INT SOC OPT E, V1436, P125
52849    SANO T, 1995, JPN J APPL PHYS PT 1, V34, P3124
52850    WANG Y, 1999, PHOTOGRAPHIC SCI PHO, V1, P73
52851    WU F, 2000, CHEM J CHINESE U, V10, P1581
52852    WU F, 2000, THIN SOLID FILMS, V363, P214
52853    YAN ZL, 1993, J LUMIN, V54, P303
52854    YAN ZL, 1994, THESIS CAS BEIJING
52855    ZHANG LQ, 1999, ACTA PHYS-CHIM SIN, V10, P911
52856 NR 16
52857 TC 7
52858 SN 0567-7351
52859 J9 ACTA CHIM SIN
52860 JI Acta Chim. Sin.
52861 PD MAY
52862 PY 2002
52863 VL 60
52864 IS 5
52865 BP 847
52866 EP 853
52867 PG 7
52868 SC Chemistry, Multidisciplinary
52869 GA 554BD
52870 UT ISI:000175712200016
52871 ER
52872 
52873 PT J
52874 AU Li, Q
52875    Wang, NC
52876    Shi, BC
52877    Zheng, CG
52878 TI Extendible look-up table of twiddle factors and radix-8 based fast
52879    Fourier transform
52880 SO SIGNAL PROCESSING
52881 DT Article
52882 DE fast Fourier transform; twiddle factors; bit-reversed order
52883 ID ALGORITHM
52884 AB An extendible look-up table of the twiddle factors for implementation
52885    of fast Fourier transform (FFT) is introduced in this paper. In fact,
52886    this twiddle factors table is independent of the length of sequence, It
52887    need not be recomputed for shorter sequences. And for longer sequences,
52888    the table can be extended easily. A radix-8 based FFT algorithm for
52889    2(m)-FFT with this table is presented. Experimental comparisons between
52890    our algorithm and FFTW software package have be done. And the results
52891    indicate that our FFT scheme is effective. (C) 2002 Elsevier Science
52892    B.V. All rights reserved.
52893 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
52894 RP Li, Q, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R
52895    China.
52896 CR ALMEIDA LB, 1994, IEEE T SIGNAL PROCES, V42, P3084
52897    CHAN SC, 1992, IEEE T SIGNAL PROCES, V40, P2029
52898    COOLEY JW, 1965, MATH COMPUT, V19, P297
52899    DUHAMEL P, 1984, ELECTRON LETT, V20, P14
52900    DUHAMEL P, 1990, SIGNAL PROCESS, V19, P259
52901    GRIGORYAN AM, 2000, IEEE T SIGNAL PROCES, V48, P172
52902    MA YT, 1999, IEEE T SIGNAL PROCES, V47, P907
52903    RIUS JM, 1995, IEEE T SIGNAL PROCES, V43, P991
52904    SILVIA M, 1999, MOD PHYS C, V10, P781
52905 NR 9
52906 TC 0
52907 SN 0165-1684
52908 J9 SIGNAL PROCESS
52909 JI Signal Process.
52910 PD APR
52911 PY 2002
52912 VL 82
52913 IS 4
52914 BP 643
52915 EP 648
52916 PG 6
52917 SC Engineering, Electrical & Electronic
52918 GA 551NC
52919 UT ISI:000175566900008
52920 ER
52921 
52922 PT J
52923 AU Xu, GQ
52924    Li, ZB
52925 TI Solitary wave solutions of a nonlinear evolution equation using mixed
52926    exponential method
52927 SO ACTA PHYSICA SINICA
52928 DT Article
52929 DE nonlinear differential equations; mixed exponential method; solitary
52930    wave
52931 ID EXPLICIT EXACT-SOLUTIONS
52932 AB Mixed exponential method proposed by Hereman for finding solitary wave
52933    solutions of a nonlinear evolution equation is presented. The method is
52934    developed and perfected according to the theory of mathematical
52935    mechanization, and with this method many solitary wave solutions not
52936    only of a nonlinear evolution equation(s) but also a multi-dimention
52937    equation can be obtained.
52938 C1 E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China.
52939    Shanghai Univ, Dept Informat Engn & Adm, Shanghai 200436, Peoples R China.
52940 RP Xu, GQ, E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R
52941    China.
52942 CR FAN EG, 1998, ACTA PHYS SINICA, V47, P353
52943    FAN EG, 1998, PHYS LETT A, V245, P389
52944    FAN EG, 2000, PHYS LETT A, V277, P212
52945    HEREMAN W, 1986, J PHYS A-MATH GEN, V19, P607
52946    HEREMAN W, 1990, J PHYS A-MATH GEN, V23, P4805
52947    HIROTA R, 1981, PHYS LETT A, V85, P407
52948    LI ZB, 1997, ACTA MATH SINICA, V17, P81
52949    LI ZB, 2001, ACTA PHYS SIN-CH ED, V50, P2062
52950    WANG ML, 1996, PHYS LETT A, V216, P67
52951    YAN ZY, 1999, ACTA PHYS SIN-CH ED, V48, P1962
52952    ZHANG GX, 2000, CHIN SCI A, V30, P1103
52953 NR 11
52954 TC 17
52955 SN 1000-3290
52956 J9 ACTA PHYS SIN-CHINESE ED
52957 JI Acta Phys. Sin.
52958 PD MAY
52959 PY 2002
52960 VL 51
52961 IS 5
52962 BP 946
52963 EP 950
52964 PG 5
52965 SC Physics, Multidisciplinary
52966 GA 550PR
52967 UT ISI:000175511900003
52968 ER
52969 
52970 PT J
52971 AU Gu, ZY
52972    Ji, PY
52973 TI Effects of background plasma density on multi-photon ionization
52974 SO ACTA PHYSICA SINICA
52975 DT Article
52976 DE MPI; plasma
52977 ID MULTIPHOTON IONIZATION; FIELD
52978 AB Multi-photon ionization (MPI) in plasma which is examined in terms of
52979    optical metric and the quantum Volkov state in curved space-time is
52980    derived. The cross section of MPI is derived by virtur of the corrected
52981    Volkov state within the framework of quantum electrodynamics formal
52982    scattering theory. It shows that the plasma medium acts as a
52983    "suppression" on MPI.
52984 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
52985 RP Gu, ZY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
52986 CR GUO DS, 1988, J PHYS A-MATH GEN, V21, P4577
52987    GUO DS, 1989, PHYS REV A, V40, P4997
52988    JI PY, 2001, CHINESE PHYS, V10, P314
52989    KELDYSH LV, 1965, ZH EKSP TEOR FIZ, V20, P1307
52990    LAI GJ, 2000, ACTA PHYS SIN-CH ED, V49, P2399
52991    LEONHARDT U, 1999, PHYS REV A, V60, P4301
52992    REISS HR, 1980, PHYS REV A, V22, P1786
52993    ZHU ST, 1993, ACTA PHYS SINICA, V42, P1438
52994 NR 8
52995 TC 0
52996 SN 1000-3290
52997 J9 ACTA PHYS SIN-CHINESE ED
52998 JI Acta Phys. Sin.
52999 PD MAY
53000 PY 2002
53001 VL 51
53002 IS 5
53003 BP 1022
53004 EP 1025
53005 PG 4
53006 SC Physics, Multidisciplinary
53007 GA 550PR
53008 UT ISI:000175511900017
53009 ER
53010 
53011 PT J
53012 AU Peng, LM
53013    Mao, XM
53014    Xu, KD
53015    Ding, WJ
53016 TI In-situ composite Cu-Cr contact cables with high strength and high
53017    conductivity
53018 SO RARE METALS
53019 DT Article
53020 DE contact cable; in-situ composite; directional solidification continuous
53021    casting process; Cu-Cr alloy
53022 AB In order to develop a new type of contact cable with high strength and
53023    high electrical conductivity, Cu-Cr alloy series were selected as
53024    materials and Cu-Cr alloy castings were produced by means of
53025    directional solidification continuous casting (DSCC) process. The
53026    results show that the fibrillar strengthening phase, beta-Cr, orderly
53027    arranges among the copper matrix phase along the wire direction; and a
53028    microstructure of in-situ composite forms, which retains the basic
53029    property of good conductivity of the copper matrix and meanwhile
53030    obtains the strengthening effect of beta-Cr phase. The production
53031    technology as well as the mechanical property, electrical property, and
53032    synthetic property of the in-situ composite contact cables was
53033    discussed.
53034 C1 Shanghai Jiao Tong Univ, Natl Engn Ctr Light Alloy Netshaping, Shanghai 200030, Peoples R China.
53035    Shanghai Univ, Inst Mat Sci & Engn, Shanghai 200072, Peoples R China.
53036 RP Peng, LM, Shanghai Jiao Tong Univ, Natl Engn Ctr Light Alloy
53037    Netshaping, Shanghai 200030, Peoples R China.
53038 CR CEN X, 1986, WIRE CABLE, V28, P50
53039    KURZ W, 1989, DIRECTIONALLY SOLIDI, P101
53040    LIU LN, 1997, WIRE CABLE, V39, P2
53041    PENG LM, 2000, INTERACTIONS CONTROL, P28
53042    WEN HQ, 1998, RARE METALS, V17, P23
53043    WEN HQ, 1998, STUDY FORMING MECH P, P35
53044    ZHAO ZD, 1993, HDB CU ITS ALLOYS MA, P3
53045 NR 7
53046 TC 1
53047 SN 1001-0521
53048 J9 RARE METALS
53049 JI Rare Metals
53050 PD MAR
53051 PY 2002
53052 VL 21
53053 IS 1
53054 BP 62
53055 EP 66
53056 PG 5
53057 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
53058    Engineering
53059 GA 548AZ
53060 UT ISI:000175366900011
53061 ER
53062 
53063 PT J
53064 AU Xu, KD
53065 TI The 20th century - Ferrometallurgy advanced from skill towards
53066    engineering science
53067 SO RARE METAL MATERIALS AND ENGINEERING
53068 DT Article
53069 DE ferrometallurgy; advancednent of technology; engineering science
53070 ID DIOXINS; SYSTEM
53071 AB In the past century, a considerable development of ferrometallurgy,
53072    including its principle and technology, had been achieved. It was
53073    mainly attributed to the advancement of related theories and the
53074    application of modern industrial technologies, equipments, materials,
53075    analytical techniques and computer/information technology in the
53076    manufacture of steel. Today, the processes of extracting, smelting,
53077    forming and rolling of steel can be completely controlled in accordance
53078    with the requirement of man. Within the prospect in the 21st century
53079    ferrometallurgy will become mature engineering science.
53080 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
53081 RP Xu, KD, Chinese Acad Engn, Postbox 3847, Beijing 100038, Peoples R
53082    China.
53083 CR 1965, CHIPM C C
53084    1981, CHINESE IRONMAKING 3
53085    *NAT SCI FUND SOC, 1997, MET MIN SCI, P30
53086    *SUZHOU IR STEEL G, INT REP INV SULF DIS
53087    AKIYAMA T, 1993, ISIJ INT, V33, P1136
53088    AKIYAMA T, 1998, ISIJ INT, V38, P93
53089    ANELLI E, 1992, ISIJ INT, V32, P440
53090    ARGYROPOULOS SA, 1990, ISIJ INT, V30, P83
53091    ASANUMA M, 2000, ISIJ INT, V40, P240
53092    BAO ZH, 1986, STEEL ROLLING, P1
53093    BIRAT JP, 1999, IRON STEEL S, V34, P416
53094    BRIMACOMBE J, 1986, STEELM C P ISS WASH, P409
53095    BRIMACOME JK, 1976, CANADIAN METALL Q, P38
53096    CHEN JX, 1990, HDB CONTINUOUS CASTI, P4
53097    CHEN YS, 2001, MICROALLOYING TECHNO, V1, P20
53098    DEARDO GA, 1982, THERMOMECHANICAL PRO
53099    DIPPENAAR RJ, 1985, ELECT FURNACE P, P43
53100    DONALDSON JW, 1966, COMPUTER SIMULATION, P780
53101    DRUCKENTHANER H, 2000, REV METALL-PARIS, V97, P481
53102    EKETORP S, 1982, RIST REICHARDT DIAGR
53103    FLEMINGS MC, 1981, SOLIDIFICATION PROCE
53104    FU GR, 1994, IRON STEEL, V29, P26
53105    GAN Y, 2001, MATH PHYSICAL MODELI
53106    GRATACOS P, 1991, P 5 INT ROLL C UK LO, P252
53107    GRAY JM, 2000, P CHIN BRAZ AC C
53108    GUBKIN SE, 1960, PLASTIC DEFORMATION
53109    GUO J, 1995, IRON STEEL, V30, P24
53110    HAN ZC, 2001, ELECTROMAGNETIC META
53111    HARUO K, 1991, J JAPAN SOC TECHNOLO, V32, P441
53112    HORBACH U, 1998, MPT INT, P74
53113    HOU ST, 1995, IRON STEEL, V30, P16
53114    JIANG GC, 1996, CLEAN STEEL SECONDAR
53115    JIANG GL, 1982, IRON STEEL, V4, P13
53116    KASAI E, 2001, ISIJ INT, V41, P86
53117    KASAI E, 2001, ISIJ INT, V41, P93
53118    LAASRAOUI A, 1991, ISIJ INT, V31, P95
53119    LAIT JE, 1974, IRONMAK STEELMAK, V2, P90
53120    LALLY B, 1990, METALL TRANS B, V21, P761
53121    LAROUCHE Y, 1998, LIGHT MET, P1059
53122    LIANG H, 1998, METALL MATER TRANS B, V29, P1345
53123    LIU GX, 1979, PRINCIPLES METALLOGR
53124    LIU MJ, 1995, STEELM C P, V78, P359
53125    LIU XH, 1994, FINITE ELEMENT METHO
53126    MACHIDA S, 1998, CAMP ISIJ, V11, P162
53127    MARUKAWA K, 1989, P 6 GUANX SHANGH EC
53128    MASAMI K, 1990, R D KOBE STEEL ENG R, V40, P23
53129    MATSUDA K, 1990, IRON STEEL I JAPAN, V5, P1
53130    MCPHERSON NA, 1980, IRONMAK STEELMAK, V7, P75
53131    MILZER M, 1999, IRON STEEL, V34, P658
53132    MIZIKAR EA, 1967, T METALLURGICAL SOCI, V239, P1747
53133    OHNO, 1982, T METAL SOLIDIFICATI
53134    PAWELSKI, 1980, P INT STEEL ROLL C J, P27
53135    PU HQ, 1999, IRON STEEL, V34, P5
53136    QIN MS, 1987, IRON STEEL, V22, P1
53137    QU Y, 1980, PRINCIPLE STEELMAKIN, P1
53138    RAND R, 1999, STAHL EISEN, V6, P13
53139    RAUDENSKY M, 1995, STEELM C P, V78, P391
53140    REN ZM, 1999, ACTA METALL SIN, V35, P851
53141    REN ZM, 1999, NATL NATURE SCI FDN
53142    ROBERTS W, 1985, STRENGTH METALS ALLO, V3, P1859
53143    ROWE GW, 1977, PRINCIPLE IND METALW
53144    RUDDLE RW, 1957, SOLIDIFICATION SAND
53145    RUSSWURM D, 1995, MCROALLOYING 95, P377
53146    SAMARASEKERA V, 1982, IRONMAK STEELMAK, V8, P1
53147    SARAFF L, 1972, IRONMAK STEELMAK, P49
53148    SCHENCK H, 1945, PHYSICAL CHEM STEELM
53149    SHI ZB, NONBLAST FURNACE IRO
53150    SZEKERES ES, 1996, IRONMAK STEELMAK, V79, P29
53151    TAMURA I, 1988, THERMOMECHANICAL PRO
53152    TOSHIO S, 1989, HITACHI HYORON, V71, P103
53153    WANG GD, 2000, ARTIFICIAL INTELLIGE
53154    WANG YM, 1995, CONTROLLED ROLLING C
53155    WEI SK, 1980, THERMODYNAMICS METAL
53156    WEN DW, 1999, IRON STEEL, V34, P223
53157    WHITTINGTON KR, 1998, LIGHT MET, P1147
53158    WIKLUND, 1991, P 5 INT ROLL C UK LO, P512
53159    WOLF MM, 1992, STEELM C P ISS, V75, P83
53160    WOLF MM, 1995, P TECH C P NASHV ISI, P99
53161    WOLF MM, 1996, IRON STEELMAKER, V23, P47
53162    XU GJ, 2000, ACTA METALL SIN, V13, P1093
53163    XU JL, 1996, P 4 E CHIN IR C
53164    XU KD, 1985, REFINING STAINLESS S
53165    XU KD, 1998, ACTA METALLURGIC SIN, V34, P467
53166    XU KD, 1999, 125 XIANGSH SCI C P, V125, P31
53167    YE ZP, 1959, DISCUSS BASIC PROBLE
53168    YI SH, 1990, 6 INT IR STEEL C JAP, P379
53169    YONG QL, 1989, MICROALLOYED STEEL P
53170    YU RY, 1989, GENERALITY METALLURG
53171    YUE E, 1990, MATH MODELING HOT RO
53172    ZHANG SR, 1999, IRON STEEL, V34, P43
53173    ZHANG YQ, 2000, IRON STEEL, V35, P43
53174    ZHONG YB, 1999, ACTA METALLURGIC SIN, V35, P503
53175    ZHOU JQ, 1985, P 4 THERM EN THERM T, P10
53176 NR 93
53177 TC 0
53178 SN 1002-185X
53179 J9 RARE METAL MAT ENG
53180 JI Rare Metal Mat. Eng.
53181 PD NOV
53182 PY 2001
53183 VL 30
53184 SU Suppl. S
53185 BP 9
53186 EP 20
53187 PG 12
53188 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
53189    Engineering
53190 GA 548KU
53191 UT ISI:000175387800003
53192 ER
53193 
53194 PT J
53195 AU Yu, QR
53196    Yang, JR
53197    Huang, GS
53198    Chen, XQ
53199    Xia, YB
53200    He, L
53201 TI Ag doping of p-type HgCdTe grown by LPE
53202 SO JOURNAL OF INFRARED AND MILLIMETER WAVES
53203 DT Article
53204 DE HgCdTe; doping; Hall tests; SIMS; electrical properties
53205 ID ELECTRICAL-PROPERTIES; CDXHG1-XTE; IMPURITIES; (HG,CD)TE; ELEMENTS; CDTE
53206 AB SIMS (secondary ion mass spectrum) and variable temperature Hail
53207    measurement were employed to study the doping of Ag and the electrical
53208    properties of Ag-doped HgCdTe films grown by LPE. The results show that
53209    the Ag-doping in HgCdTe by soaking HgCdTe in AgNO3 solution is
53210    effective and the dopant concentration is equal to the Hg vacancy
53211    concentration of undoped HgCdTe film. After Ag doping, the acceptor
53212    energy of p-type HgCdTe has an obvious decrease. It was also found that
53213    the electrical properties of Ag-doped HgCdTe films can keep stable at
53214    room temperature.
53215 C1 Shanghai Univ, Sch Mat, Shanghai 201800, Peoples R China.
53216    Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China.
53217    Chinese Acad Sci, Res Ctr Adv Mat & Devices, Shanghai 200083, Peoples R China.
53218 RP Yu, QR, Shanghai Univ, Sch Mat, Shanghai 201800, Peoples R China.
53219 CR CHEUNG DT, 1985, J VAC SCI TECHNOL A, V3, P128
53220    DESTEFANIS GL, 1988, J CRYST GROWTH, V86, P700
53221    EDWALL DD, 1992, J VAC SCI TECHNOL B, V10, P1423
53222    KENWORTHY I, 1990, SEMICOND SCI TECH, V5, P854
53223    LYUBOMIRSKY I, 1996, J CRYST GROWTH, V159, P1148
53224    SCHAAKE HF, 1985, J VAC SCI TECHNOL A, V3, P143
53225    SCOTT W, 1976, J APPL PHYS, V47, P1408
53226    SHIN SH, 1980, J APPL PHYS, V51, P3772
53227    TANAKA N, 1998, J ELECTRON MATER, V27, P579
53228    TREGILGAS J, 1985, J VAC SCI TECHNOL A, V3, P156
53229    VYDYANATH HR, 1987, J ELECTRON MATER, V16, P13
53230    WILSON RG, 1988, J APPL PHYS, V63, P5121
53231 NR 12
53232 TC 1
53233 SN 1001-9014
53234 J9 J INFRARED MILIM WAVES
53235 JI J. Infrared Millim. Waves
53236 PD APR
53237 PY 2002
53238 VL 21
53239 IS 2
53240 BP 91
53241 EP 94
53242 PG 4
53243 SC Optics
53244 GA 547PY
53245 UT ISI:000175342000003
53246 ER
53247 
53248 PT J
53249 AU Zhou, X
53250    Yan, X
53251    Li, Y
53252 TI 5.8ghz biphase modulator/mixer designed by uniplanar technology
53253 SO JOURNAL OF INFRARED AND MILLIMETER WAVES
53254 DT Article
53255 DE MMIC; uniplanar technology; CPW; biphase modulator/mixer
53256 AB By considering the high flexibility of uniplanar technology to design
53257    complex multifunction subsystems, a design procedure based on a
53258    subsystem repartitioned into elementary blocks and very simple
53259    electrical modeling was proposed and applied to a uniplanar
53260    biphase(0degrees or 180degrees)modulator/mixer, which was intended to
53261    be used as a building block in microwave uncontact impact card of
53262    Intelligent Transportation System(ITS) at 5.8GHz. Theoretical
53263    electromagnetic field calculation methods were combined with
53264    conventional transmission-line and computer-aided design calculations
53265    to analyze and design the critical parts of the subsystems. The
53266    subsystem designed in this paper has the advantages of small size,
53267    compact structure, high performance and low cost.
53268 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
53269 RP Zhou, X, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
53270    Peoples R China.
53271 CR COHN SB, 1969, IEEE T MICROW THEORY, V17, P1091
53272    COHN SB, 1969, IEEE T MICROW THEORY, V17, P768
53273    DIB N, 1991, IEEE T MICROW THEORY, V139, P873
53274    GORUR A, 1996, INT J MICROWAVE MILL, P6297
53275    GRAMMER W, 1993, IEEE T MICROW THEORY, V41, P1653
53276    HETTAK K, 1994, IEEE T MICROW THEORY, V43, P915
53277    HETTAK K, 1996, IEEE T MICROW THEORY, V47, P1831
53278    HILBERG W, 1969, IEEE T           MTT, V17, P259
53279    HIROTA T, 1987, IEEE T MICROW THEORY, V35, P576
53280    HOUDART M, 1976, P 7 EUR MICR C, P49
53281    KATEHI LPB, 1992, P IEEE, V80, P1771
53282    OGAWA H, 1987, IEEE T MICROW THEORY, V35, P1363
53283    PUCEL RA, 1985, MONOLITHIC MICROWAVE, P553
53284    TAMAS V, 1995, MICROWAVE J, P80
53285 NR 14
53286 TC 0
53287 SN 1001-9014
53288 J9 J INFRARED MILIM WAVES
53289 JI J. Infrared Millim. Waves
53290 PD APR
53291 PY 2002
53292 VL 21
53293 IS 2
53294 BP 137
53295 EP 141
53296 PG 5
53297 SC Optics
53298 GA 547PY
53299 UT ISI:000175342000013
53300 ER
53301 
53302 PT J
53303 AU Ma, HL
53304    Lu, FQ
53305 TI Measurement of hyperfine structure coupling constants in the 570.38 nm
53306    line of Nd-143,145(+)
53307 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
53308 DT Article
53309 DE hyperfine structure; fast-ion-beam laser spectroscopy
53310 AB Hyperfine structure in atomic ions is caused by the electromagnetic
53311    interaction between the nucleus and orbital electrons. Information on
53312    the nuclear structure and also on the electronic properties of ions can
53313    be obtained through studying the hyperfine structure. Hyperfine
53314    structure spectrum in the 570.38 nm line of (143), (145) Nd+ was
53315    measured by using collinear fast-ion-beam laser spectroscopy. All the
53316    spectral lines were resolved and the magnetic dipole and electric
53317    quadrupole coupling constants of the corresponding metastable levels
53318    and excited levels were determined.
53319 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
53320    Fudan Univ, Inst Modern Phys, Shanghai 200433, Peoples R China.
53321 RP Ma, HL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
53322 CR BROSTROM L, 1996, PHYS REV A, V53, P109
53323    CHENG KT, 1985, PHYS REV A, V31, P2775
53324    CHILDS WJ, 1984, J OPT SOC AM B, V1, P22
53325    GINIBRE A, 1981, PHYS SCR, V23, P260
53326    GINIBRE A, 1989, PHYS SCR, V39, P694
53327    JOHANSSON S, 1996, ASTROPHYS J 1, V462, P943
53328    LI MS, 2000, PHYS SCRIPTA, V61, P449
53329    MA HL, 1998, CHINESE PHYS LETT, V15, P178
53330 NR 8
53331 TC 1
53332 SN 1000-0593
53333 J9 SPECTROSC SPECTR ANAL
53334 JI Spectrosc. Spectr. Anal.
53335 PD APR
53336 PY 2002
53337 VL 22
53338 IS 2
53339 BP 183
53340 EP 185
53341 PG 3
53342 SC Spectroscopy
53343 GA 546RF
53344 UT ISI:000175286800003
53345 ER
53346 
53347 PT J
53348 AU Ho, SL
53349    Fei, MR
53350    Fu, WN
53351    Wong, HC
53352    Lo, EWC
53353 TI Integrated RBF network based estimation strategy of the output
53354    characteristics of brushless DC motors
53355 SO IEEE TRANSACTIONS ON MAGNETICS
53356 DT Article
53357 DE ANN; brushless dc motor; finite element; non-linear; radial basis
53358    function
53359 AB The circuit-field coupled model is very accurate but it is
53360    computationally inefficient in studying the output performance of
53361    brushless de motors. In order to resolve the problem, an estimation
53362    strategy based on an integrated radial basis function (RBF) network is
53363    proposed in this paper. The strategy introduces new conceptions of the
53364    network group that are being realized by three steps, namely: 1) an
53365    adaptive RBF network is proposed for modeling the center network; 2)
53366    the RBF network group is then used to build the base networks; and 3)
53367    an integrated RBF network based on the base network group is used
53368    subsequently to predict the nontrained output characteristics of the
53369    brushless dc motor.
53370 C1 Hong Kong Polytech Univ, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China.
53371    Shanghai Univ, Dept Automat, Shanghai, Peoples R China.
53372    Hong Kong Polytech Univ, Ind Ctr, Kowloon, Peoples R China.
53373 RP Ho, SL, Hong Kong Polytech Univ, Dept Elect Engn, Kowloon, Hong Kong,
53374    Peoples R China.
53375 CR FEI M, 1999, P IEEE AIM       SEP
53376    FEI M, 1999, P IEEE PEDS      JUL, P1108
53377    HENDERSHOT JR, 1994, DESIGN BRUSHLESS PER
53378    HO SL, 1997, IEEE T MAGN, V33, P2265
53379    HO SL, 2000, P 9 BIENN IEEE C EL
53380    LI HL, 2000, P 9 BIENN IEEE C EL
53381    SALON SJ, 1995, FINITE ELEMENT ANAL
53382    VAS P, 1996, WORKSH AC MOT DRIV T, P55
53383    VAS P, 1998, SENSORLESS VECTOR DI
53384 NR 9
53385 TC 1
53386 SN 0018-9464
53387 J9 IEEE TRANS MAGN
53388 JI IEEE Trans. Magn.
53389 PD MAR
53390 PY 2002
53391 VL 38
53392 IS 2
53393 PN Part 1
53394 BP 1033
53395 EP 1036
53396 PG 4
53397 SC Engineering, Electrical & Electronic; Physics, Applied
53398 GA 543DV
53399 UT ISI:000175086800180
53400 ER
53401 
53402 PT J
53403 AU Wang, Y
53404    Chau, KT
53405    Chan, CC
53406    Jiang, JZ
53407 TI Transient analysis of a new outer-rotor permanent-magnet brushless DC
53408    drive using circuit-field-torque coupled time-stepping finite-element
53409    method
53410 SO IEEE TRANSACTIONS ON MAGNETICS
53411 DT Article
53412 DE brushless dc machines; permanent magnet machines; time-stepping
53413    finite-element method
53414 ID ELECTRIC VEHICLES; MOTOR-DRIVES
53415 AB In this paper, a new outer-rotor permanent magnet (PM) brushless de
53416    drive is designed and analyzed. To enable this drive applicable to
53417    electric vehicles, its transient performances at both normal and
53418    flux-weakening operations are particularly focused. The distinct
53419    feature in design is due to the new motor configuration including the
53420    outer-rotor topology, the multipole magnetic circuit and the full
53421    slot-pitch coil span arrangement. The distinct feature in analysis is
53422    due to the development of the circuit-field-torque coupled
53423    time-stepping finite-element method. The proposed PM brushless dc drive
53424    is prototyped. The analysis results are verified by experimental
53425    measurement.
53426 C1 Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China.
53427    Shanghai Univ, Sch Automat, Shanghai 200072, Peoples R China.
53428 RP Wang, Y, Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong,
53429    Peoples R China.
53430 CR CHAN CC, 1995, IEEE T POWER ELECTR, V10, P539
53431    CHAN CC, 1996, IEEE T IND ELECTRON, V43, P331
53432    CHAN CC, 1997, IEEE T IND ELECTRON, V44, P3
53433    GAN JY, 2000, IEEE T MAGN 1, V36, P3353
53434    PARK SC, 1999, IEEE T MAGN 1, V35, P1302
53435 NR 5
53436 TC 3
53437 SN 0018-9464
53438 J9 IEEE TRANS MAGN
53439 JI IEEE Trans. Magn.
53440 PD MAR
53441 PY 2002
53442 VL 38
53443 IS 2
53444 PN Part 1
53445 BP 1297
53446 EP 1300
53447 PG 4
53448 SC Engineering, Electrical & Electronic; Physics, Applied
53449 GA 543DV
53450 UT ISI:000175086800246
53451 ER
53452 
53453 PT J
53454 AU Qiao, XY
53455    Xiao, XS
53456    Wang, XH
53457    Yang, H
53458    Qiu, ZB
53459    An, LJ
53460    Wang, WK
53461    Mo, ZS
53462 TI External field induced crystallization of poly(3-dodecylthiophene)
53463 SO EUROPEAN POLYMER JOURNAL
53464 DT Article
53465 DE external field; induced crystallization; poly(3-dodecylthiophene)
53466 ID POLY(3-ALKYLTHIOPHENES)
53467 AB In order to investigate the effect of external field on the
53468    crystallization behavior of poly(3-dodecylthiopliene) (P3DDT), the
53469    samples were recrystallized with different electrostatic field
53470    intensity, different pressure and different solidification direction in
53471    temperature gradient field. Measurements of differential scanning
53472    calorimetry and X-ray diffraction were operated to characterize these
53473    samples for analysis. The results suggest that after recrystallization,
53474    whether the external field is added or not, a more compact packing of
53475    molecular chains in P3DDT could be obtained without the change of the
53476    crystal structure model. Moreover, the addition of electrostatic field
53477    has greater effects on the crystallization of rigid main chains than on
53478    that of flexible side chains, Merely great pressure field can effect
53479    the rearrangements of molecular chains greatly. As for the temperature
53480    gradient field induced crystallization, different oriented
53481    solidification direction will lead to different effects on the compact
53482    degree and perfect degree of molecular chains packing, (C) 2002
53483    Elsevier Science Ltd. All rights reserved.
53484 C1 Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China.
53485    Shanghai Univ, Mat Inst, Shanghai 200072, Peoples R China.
53486    Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China.
53487 RP Mo, ZS, Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab
53488    Polymer Phys & Chem, Changchun 130022, Peoples R China.
53489 CR CHEN SA, 1992, MACROMOLECULES, V25, P6081
53490    ELSENBAUMER DLE, 1986, SYNTHETIC MET, V15, P16
53491    HO KS, 1993, SYNTHETIC MET, V55, P384
53492    HSU WP, 1993, MACROMOLECULES, V26, P1318
53493    IWASAKI K, 1994, SYNTHETIC MET, V63, P101
53494    MARDALEN J, 1991, SOLID STATE COMMUN, V77, P337
53495    PROSA TJ, 1992, MACROMOLECULES, V25, P4364
53496    QIAO XY, 1999, CHINESE CHEM LETT, V10, P419
53497    QIAO XY, 2000, CHINESE CHEM LETT, V11, P361
53498    QIAO XY, 2000, SYNTHETIC MET, V113, P1
53499    QIAO XY, 2001, SYNTHETIC MET, V118, P89
53500    SUGIMOTO R, 1986, CHEM EXPRESS, V1, P635
53501    TAMAO K, 1982, TETRAHEDRON, V38, P3347
53502    TASHIRO K, 1991, J POLYM SCI POL PHYS, V29, P1223
53503    WINOKUR MJ, 1989, SYNTHETIC MET, V28, P419
53504    YOSHINO K, 1987, POLYM COMMUN, V28, P30
53505 NR 16
53506 TC 1
53507 SN 0014-3057
53508 J9 EUR POLYM J
53509 JI Eur. Polym. J.
53510 PD JUN
53511 PY 2002
53512 VL 38
53513 IS 6
53514 BP 1183
53515 EP 1190
53516 PG 8
53517 SC Polymer Science
53518 GA 546PP
53519 UT ISI:000175282800017
53520 ER
53521 
53522 PT J
53523 AU Cai, YH
53524 TI A remark on Chen's theorem
53525 SO ACTA ARITHMETICA
53526 DT Article
53527 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
53528 RP Cai, YH, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
53529 CR CHEN JR, 1973, SCI SINICA, V16, P157
53530    CHEN JR, 1973, SCI SINICA, V21, P477
53531    CHEN JR, 1978, SCI SINICA, V21, P421
53532    FOUVRY E, 1986, J REINE ANGEW MATH, V370, P101
53533    FOUVRY E, 1989, DUKE MATH J, V58, P731
53534    HALBERSTAM H, 1974, SIEVE METHODS
53535    HALBERSTAM H, 1975, ASTERISQUE, V24, P281
53536    HARDY GH, 1923, ACTA MATH-DJURSHOLM, V44, P1
53537    IWANIEC H, 1980, ACTA ARITH, V37, P307
53538    LIU HQ, 1990, SCI CHINA SER A, V33, P281
53539    PAN CD, 1992, GOLDBACH CONJECTURE
53540    WU J, 1990, ACTA ARITH, V55, P365
53541 NR 12
53542 TC 1
53543 SN 0065-1036
53544 J9 ACTA ARITHMET
53545 JI Acta Arith.
53546 PY 2002
53547 VL 102
53548 IS 4
53549 BP 339
53550 EP 352
53551 PG 14
53552 SC Mathematics
53553 GA 546YK
53554 UT ISI:000175304400005
53555 ER
53556 
53557 PT J
53558 AU Wang, SL
53559 TI Impact chaos control and stress release - A key for development of
53560    ultra fine vibration milling
53561 SO PROGRESS IN NATURAL SCIENCE
53562 DT Article
53563 DE vibration mills; ultra fine milling; impact chaos control; stress
53564    release
53565 AB Through our previous experimental and analytical studies, it has been
53566    discovered that the key for the development of vibration milling is the
53567    impact chaos control and stress release. The necessities for the chaos
53568    control and stress release are: (i) to strictly eliminate the
53569    sub-harmonics; (ii) to control the super-harmonics to a lower level and
53570    (iii) to load the system compressively with relatively higher period,
53571    in order that the vibration energy can be absorbed by the particles
53572    effectively and sufficiently, A new vibration model for ultra fine
53573    milling is proposed, which has wide applications in preparing ultra
53574    fine particles.
53575 C1 Shanghai Univ Sci & Technol, Dept Power Engn, Shanghai 200093, Peoples R China.
53576 RP Wang, SL, Shanghai Univ Sci & Technol, Dept Power Engn, Shanghai
53577    200093, Peoples R China.
53578 CR GOCK E, 1998, AUFBEREITUNGSTECHNIK, V39, P103
53579    HOEFFL K, 1985, VEB DEUTSCHER VERLAG
53580    JENG JJ, 1992, AUFBERCITUNGSTECHNIK, V33, P361
53581    KANTZ H, 1997, NONLINEAR TIME SERIE
53582    KIESSLING M, 1989, FREIBERGER FORSCH A, V798, P62
53583    KURRER KE, 1988, FREIBERGER FORSCH A, V778, P76
53584    LOEWE J, 1995, AUFBEREITUNGSTECHNIK, V36, P277
53585    LONG YJ, 1998, MODERN ENG DYNAMICS
53586    ROSE HE, 1961, VIBRATION MILL VIBRA
53587    RUMPF H, 1973, AUFBEREIT TECH, V14, P59
53588    WANG SL, 1987, MINING MACHINERY, V14, P24
53589    WANG SL, 1996, P CHIN JAP S PART TS, P336
53590    WANG SL, 1997, CHINESE J MECH ENG, V33, P19
53591    WANG SL, 1997, P MTM BEIJ CHIN MACH, P1144
53592    WANG SL, 1998, J OCEAN U QINGDAO, V28, P457
53593    WANG SL, 1999, IMPACT DYNAMICS VIBR, P465
53594    WANG ZQ, 1995, PLASTIC MICRO MECH
53595 NR 17
53596 TC 1
53597 SN 1002-0071
53598 J9 PROG NAT SCI
53599 JI Prog. Nat. Sci.
53600 PD MAY
53601 PY 2002
53602 VL 12
53603 IS 5
53604 BP 336
53605 EP 341
53606 PG 6
53607 SC Multidisciplinary Sciences
53608 GA 545GX
53609 UT ISI:000175209800003
53610 ER
53611 
53612 PT J
53613 AU Shang, XC
53614    Cheng, CJ
53615 TI Cavitation in Hookean elastic membranes
53616 SO ACTA MECHANICA SOLIDA SINICA
53617 DT Article
53618 DE cavitation; bifurcation; boundary layer; elastic membrane; exact
53619    solution
53620 ID BIFURCATION; GROWTH
53621 AB An exact solution to cavitation is found in tension of a class of
53622    Cauchy elastic membranes. The constitutive relationship of materials is
53623    based on Hookean elastic law and finite logarithmic strain measure. A
53624    variable transformation is used in solving the two-point boundary-value
53625    problem of nonlinear ordinary differential equation. A simple formula
53626    to calculate the critical stretch for cavitation is derived. As the
53627    numerical results, the bifurcation curves describing void nucleation
53628    and suddenly rapidly growth of the cavity are obtained. The boundary
53629    layers of displacements and stresses near the cavity wall are observed.
53630    The catastrophic transition from homogeneous to cavitated deformation
53631    and the jumping of stress distribution are discussed. The result of the
53632    energy comparison shows the cavitated deformation has lower energy than
53633    the homogeneous one, thus the state of cavitated deformation is
53634    relatively stable. All investigations illustrate that cavitation
53635    reflects a local behavior of materials.
53636 C1 Univ Sci & Technol Beijing, Dept Math & Mech, Beijing 100083, Peoples R China.
53637    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
53638    Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
53639 RP Shang, XC, Univ Sci & Technol Beijing, Dept Math & Mech, Beijing
53640    100083, Peoples R China.
53641 CR ASHBY MF, 1989, ACTA METALL, V37, P1857
53642    BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
53643    BIWA S, 1995, INT J NONLINEAR MECH, V30, P899
53644    DURBAN D, 1988, INT J SOLIDS STRUCT, V24, P675
53645    ERTAN N, 1988, ASCE J ENG MECHANICS, V114, P1231
53646    GENT AN, 1958, P ROY SOC LOND A MAT, V249, P195
53647    HAUGHTON DM, 1990, INT J ENG SCI, V28, P163
53648    HORGAN CO, 1986, J ELASTICITY, V16, P189
53649    HORGAN CO, 1992, INT J SOLIDS STRUCT, V29, P279
53650    HORGAN CO, 1995, APPL MECH REV, V48, P471
53651    JIN M, 1999, APPL MECH MATH, V20, P867
53652    SHANG XC, 1996, ACTA MECH SINICA, V28, P755
53653    SHANG XC, 2001, INT J ENG SCI, V39, P1101
53654 NR 13
53655 TC 1
53656 SN 0894-9166
53657 J9 ACTA MECH SOLIDA SINICA
53658 JI Acta Mech. Solida Sin.
53659 PD MAR
53660 PY 2002
53661 VL 15
53662 IS 1
53663 BP 89
53664 EP 94
53665 PG 6
53666 SC Materials Science, Multidisciplinary; Mechanics
53667 GA 544KK
53668 UT ISI:000175156600012
53669 ER
53670 
53671 PT J
53672 AU Chen, WX
53673    Cheng, DH
53674    Liu, SL
53675    Guo, HT
53676 TI Electrocatalytic activity and electrochemical hydrogen storage of Ni-La
53677    alloy prepared by electrodeposition from aqueous electrolyte
53678 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
53679 DT Article
53680 DE Ni-La alloy; electrodeposition; hydrogen evolution reaction; hydrogen
53681    storage
53682 ID WATER ELECTROLYSIS; EVOLUTION REACTION; PERFORMANCES; BATTERIES
53683 AB Ni-La alloy coating was prepared by electrodeposition. The effect of
53684    cathodic current density on the La content of the alloy coatings was
53685    discussed. It is found that the content of La in the alloy increases
53686    with increasing the cathodic current density. The microstructures and
53687    codeposition mechanism of Ni-La alloy coatings were investigated by
53688    means of X-ray diffraction (XRD) and cyclic voltammetry (CV). The
53689    results demonstrate that the Ni-La alloy is FCC and code-posited by the
53690    induced mechanism. The hydrogen evolution reaction (HER) on the
53691    electrodeposited Ni-La alloy electrodes in alkaline solution was
53692    evaluated by Tafel polarization curves. It is found that La-Ni alloy
53693    coating exhibites much higher exchange current density for HER than
53694    pure Ni electrode, and that the exchange current density increases with
53695    increasing the La content of alloys. The good electrocatalytic activity
53696    for HER of this Ni-La ahoy is attributed to the synergism of the
53697    electronic structure of La and Ni. The electrodeposited La-Ni alloys
53698    have a certain electrochemical hydrogen storage capacity of 34 similar
53699    to 143 mAh/g, which increases with increasing the La content of alloys.
53700 C1 Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China.
53701    Shanghai Univ, Coll Environm & Chem Engn, Shanghai 200027, Peoples R China.
53702    Tianjin Univ, Dept Appl Chem, Tianjin 300072, Peoples R China.
53703 CR ANANI A, 1994, J POWER SOURCES, V47, P261
53704    BOCUTTI R, 2000, INT J HYDROGEN ENERG, V25, P1051
53705    CHEN WX, 1998, T NONFERR METAL SOC, V8, P250
53706    CHEN WX, 1999, T NONFERR METAL SOC, V9, P487
53707    EZAKI H, 1993, ELECTROCHIM ACTA, V38, P557
53708    FURUKAWA N, 1994, J POWER SOURCES, V51, P45
53709    GUO ZC, 2000, T NONFERR METAL SOC, V10, P50
53710    HAUNG QAH, 2000, MAT PROTECTION, V33, P51
53711    HU WK, 2000, INT J HYDROGEN ENERG, V25, P111
53712    JAKSIC JM, 2000, ELECTROCHIM ACTA, V45, P4151
53713    JAKSIC MM, 2000, ELECTROCHIM ACTA, V45, P4085
53714    JOVIC VD, 1988, J APPL ELECTROCHEM, V18, P511
53715    MACHIDA K, 1984, B CHEM SOC JPN, V57, P2809
53716    MACHIDA K, 1984, ELECTROCHIM ACTA, V29, P807
53717    METIKOSHUKOVIC M, 2000, ELECTROCHIM ACTA, V45, P4159
53718    TAMURA H, 1983, J LESS-COMMON MET, V89, P567
53719    TANAKA M, 1993, DENKI KAGAKU, V61, P790
53720 NR 17
53721 TC 0
53722 SN 1003-6326
53723 J9 TRANS NONFERROUS METAL SOC CH
53724 JI Trans. Nonferrous Met. Soc. China
53725 PD APR
53726 PY 2002
53727 VL 12
53728 IS 2
53729 BP 269
53730 EP 272
53731 PG 4
53732 SC Metallurgy & Metallurgical Engineering
53733 GA 542BF
53734 UT ISI:000175023100019
53735 ER
53736 
53737 PT J
53738 AU Lu, XG
53739    Ding, WZ
53740    Li, FS
53741    Li, LF
53742    Zhou, GZ
53743 TI Electrochemistry of oxygen ion transport in slag
53744 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
53745 DT Article
53746 DE metal-slag reaction; oxygen ion; electrochemical model
53747 ID FE-C DROPLETS; DECARBURIZATION REACTION; CONDUCTIVITY; REDUCTION; OXIDE
53748 AB A systematic experiment relating to the electrochemistry of oxygen ion
53749    transport in slag has been studied in lab. An equivalent circuit has
53750    been used to describe ion transfer between metal and slag in this paper
53751    and a kinetic model with electrochemical characteristic representing
53752    oxygen ion immigration has been worked out. The different experimental
53753    phenomena ran be explained generally by this model. It can be seen that
53754    the theoretical results are in good agreement with experiments. The
53755    comparison of experimental data with model calculation proved that the
53756    electrochemical model is right.
53757 C1 Shanghai Univ, State Enhance Lab Ferromet, Shanghai 200072, Peoples R China.
53758    Univ Sci & Technol Beijing, Lab Solid Electrolytes & Met Testing Tech, Beijing 100083, Peoples R China.
53759 CR GARE T, 1981, IRONMAK STEELMAK, V8, P169
53760    GOTO KS, 1977, T IRON STEEL I JPN, V17, P212
53761    HASHAM Z, 1995, J ELECTROCHEM SOC, V142, P469
53762    LU XG, 1998, J UNIV SCI TECHNOL B, V5, P20
53763    LU XG, 1999, ENG CHEM METALLURGY, V20, P402
53764    LU XG, 1999, J IRON STEEL RES, V11, P5
53765    LU XG, 1999, J UNIV SCI TECHNOL B, V6, P27
53766    LU XG, 2000, J IRON STEEL RES INT, V7, P9
53767    LU XG, 2001, ACTA METALL SIN, V37, P184
53768    MURTHY GGK, 1993, IRONMAK STEELMAK, V20, P179
53769    MURTHY GGK, 1993, IRONMAK STEELMAK, V20, P191
53770    SASABE M, 1974, METALLURG T, V5, P2225
53771    SPEELMAN JL, 1989, METALL T B, V20, P31
53772    WOOLLEY DE, 1999, METALL MATER TRANS B, V30, P877
53773 NR 14
53774 TC 1
53775 SN 1003-6326
53776 J9 TRANS NONFERROUS METAL SOC CH
53777 JI Trans. Nonferrous Met. Soc. China
53778 PD APR
53779 PY 2002
53780 VL 12
53781 IS 2
53782 BP 326
53783 EP 329
53784 PG 4
53785 SC Metallurgy & Metallurgical Engineering
53786 GA 542BF
53787 UT ISI:000175023100034
53788 ER
53789 
53790 PT J
53791 AU Zhou, HY
53792    Gu, SW
53793    Shi, YM
53794 TI Polar surface-optical phonon modes in a quantum box
53795 SO MODERN PHYSICS LETTERS B
53796 DT Article
53797 ID DOUBLE HETEROSTRUCTURES; INTERFACE PHONONS; ENERGY; SUPERLATTICES;
53798    CONFINEMENT; CRYSTALS; WIRE
53799 AB The polar surface-optical (SO) phonon modes and their dispersion
53800    relations in a quantum box axe derived within the dielectric continuum
53801    approximation. Then, having quantized the vibrational eigenmodes, we
53802    give the electron-SO phonon interaction Hamiltonian in a quantum box.
53803 C1 Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China.
53804    Shanghai Jiao Tong Univ, Dept Appl Phys, Shanghai 200030, Peoples R China.
53805 RP Zhou, HY, Shanghai Univ, Dept Phys, 149 Yanchang Rd, Shanghai 200072,
53806    Peoples R China.
53807 CR DEGANI MH, 1988, SURF SCI, V196, P459
53808    FUCHS R, 1965, PHYS REV           A, V140, P2076
53809    GU SW, 1987, PHYS REV B, V36, P7977
53810    HUANG K, 1988, PHYS REV B, V38, P2183
53811    KITTEL C, 1986, INTRO SOLID STATE PH
53812    KLEIN MC, 1990, PHYS REV B, V42, P11123
53813    KNOPP PA, 1996, SURF SCI, V361, P318
53814    LAMBIN P, 1991, PHYS REV B, V44, P6416
53815    LASSNIG R, 1984, PHYS REV B, V30, P7132
53816    LI WS, 1997, PHYSICA B, V229, P375
53817    LICARI JJ, 1977, PHYS REV B, V15, P2254
53818    MORI N, 1989, PHYS REV B, V40, P6175
53819    SHI JM, 1991, PHYS REV B, V44, P5692
53820    SOOD AK, 1985, PHYS REV LETT, V54, P2115
53821    STROSCIO MA, 1990, PHYS REV B, V42, P1488
53822    TSUCHIYA M, 1989, PHYS REV LETT, V62, P466
53823    ZHOU F, 1988, J LUMIN, V40, P739
53824    ZHU KD, 1992, J PHYS-CONDENS MAT, V4, P1291
53825 NR 18
53826 TC 0
53827 SN 0217-9849
53828 J9 MOD PHYS LETT B
53829 JI Mod. Phys. Lett. B
53830 PD JAN 30
53831 PY 2002
53832 VL 16
53833 IS 1-2
53834 BP 1
53835 EP 9
53836 PG 9
53837 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
53838 GA 542LN
53839 UT ISI:000175045500001
53840 ER
53841 
53842 PT J
53843 AU Wu, WB
53844    Peng, DW
53845    Ding, YP
53846    Meng, ZY
53847 TI Dielectric tunable properties of (Ba1-xSrx)TiO3 thin films on LaAlO3
53848    substrate
53849 SO MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING
53850 DT Article
53851 DE BST; sol-gel; thin film; coplanar capacitor; tunability
53852 ID MICROSTRUCTURE
53853 AB (Ba1-xSrx)TiO3 (1-x = 0.8, 0.7, 0.6 and 0.5) thin films were prepared
53854    on (0 0 1) LaAlO3 substrates by sol-gel method. The films were found to
53855    be crystallized in preferential (0 0 1) orientation after
53856    post-deposition annealing at 750degreesC for 1.5 h and 1100degreesC for
53857    2 h in air, respectively. We investigated the dependence of tunability
53858    and dissipation factor on annealing temperature and different Ba/Sr
53859    ratios. It was found that the tunability increased dramatically and
53860    dissipation factor decreased obviously with increasing annealing
53861    temperature, and Ba0.6Sr0.4TiO3 thin films annealed at 1100degreesC for
53862    2 h have a tunability of 46.9% at 80 kV/cm bias filed and a dissipation
53863    factor of 0.008 at 1 MHz. (C) 2002 Elsevier Science Ltd. All rights
53864    reserved.
53865 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
53866    Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China.
53867 RP Meng, ZY, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
53868    China.
53869 CR ALSHAREEF HN, 1997, J ELECTROCERAM, V1, P145
53870    BABBITT R, 1995, INTEGR FERROELECTR, V8, P65
53871    DEFLAVIIS F, 1997, IEEE T MICROW THEORY, V45, P963
53872    DING Y, 2000, J MATER SCI LETT, V119, P163
53873    DING YP, 2000, MATER RES BULL, V35, P1187
53874    DING YP, 2000, THIN SOLID FILMS, V375, P196
53875    KAWAW H, 1993, J APPL PHYS, V73, P10
53876    KOTECKI DE, 1997, INTEGR FERROELECTR, V16, P2
53877    STREIFFER SK, 1996, MATER RES SOC SYMP P, V415, P219
53878    SWARTZ SL, 1992, CONDENSED MATTER NEW, V1, P4
53879    TAHAN DM, 1996, J AM CERAM SOC, V79, P1593
53880    UHLMANN DR, 1991, J NONCRYST SOLIDS, V1194, P131
53881    VENDIK OG, 1993, FERROELECTRICS, V144, P3
53882    YI G, 1993, AM CERM SOC B, V70, P1173
53883 NR 14
53884 TC 3
53885 SN 1369-8001
53886 J9 MATER SCI SEMICOND PROCESS
53887 JI Mater. Sci. Semicond. Process
53888 PD DEC
53889 PY 2001
53890 VL 4
53891 IS 6
53892 BP 673
53893 EP 678
53894 PG 6
53895 SC Engineering, Electrical & Electronic; Materials Science,
53896    Multidisciplinary; Physics, Applied; Physics, Condensed Matter
53897 GA 542WA
53898 UT ISI:000175066200041
53899 ER
53900 
53901 PT J
53902 AU Chen, HY
53903    Guo, XB
53904    Meng, ZY
53905 TI Processing and properties of PMMN-PZT quaternary piezoelectric ceramics
53906    for ultrasonic motors
53907 SO MATERIALS CHEMISTRY AND PHYSICS
53908 DT Article
53909 DE PMMN-PZT quaternary system; piezoelectric ceramics; mechanical quality
53910    factor; ultrasonic motors
53911 ID VIBRATION LEVEL; SYSTEM
53912 AB Piezoelectric Pb(Mg(1/)3Nb(1/3))O-3-Pb(Mn1/3Nb2/3)O-3-PbZrO3-PbTiO3
53913    (PMMN-PZT) quaternary ceramics with various contents of
53914    Pb(Mn1/3Nb2/3)O-3 from 4 to 8 mol% were prepared. The conventional
53915    single-stage and columbite two-stage methods were compared. Columbites
53916    MgNb2O6 and MnNb2O6, and the phase structure of PMMN-PZT were examined
53917    using X-ray diffraction (XRD). The surface morphology was examined by
53918    SEM. Study on the effect of Pb(Mn1/3Nb2/3)O-3 additives on dielectric
53919    and piezoelectric properties indicated that the PMMN-PZT quaternary
53920    system exhibited a high mechanical quality factor and well-situated
53921    piezoelectric properties. The optimized results, of d(33) (307 pC/N),
53922    K-p (0.55) and Q(m) (2379) were obtained at 6 mol% Pb(Mn1/3Nb2/3)O-3.
53923    (C) 2002 Elsevier Science B.V. All rights reserved.
53924 C1 Shanghai Jiao Tong Univ, Inst Composite Mat, Shanghai 200030, Peoples R China.
53925    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
53926 RP Meng, ZY, Shanghai Jiao Tong Univ, Inst Composite Mat, Shanghai 200030,
53927    Peoples R China.
53928 CR CHAE HI, 1994, P 4 INT C PROP APPL, P17
53929    GUO XB, 2001, AM CER SOC 103 ANN M
53930    ISE O, 1999, JPN J APPL PHYS 1, V38, P5531
53931    KIM JS, 1999, JPN J APPL PHYS 1, V38, P1433
53932    LEE DJ, 1998, P IEEE INT C COND BR, P381
53933    OUCHI H, 1968, J AM CERAM SOC, V51, P169
53934    SWARTZ SL, 1983, MAT RES B, V7, P1245
53935    TAKAHASHI S, 1994, J AM CERAM SOC, V77, P2429
53936    TASHIRO S, 1997, JPN J APPL PHYS 1, V36, P3004
53937    UEHA S, 1993, ULTRASONIC MOTORS
53938    WU L, 1991, J MATER SCI, V26, P4439
53939    ZHU XH, 1996, J MATER SCI, V31, P2171
53940 NR 12
53941 TC 7
53942 SN 0254-0584
53943 J9 MATER CHEM PHYS
53944 JI Mater. Chem. Phys.
53945 PD APR 28
53946 PY 2002
53947 VL 75
53948 IS 1-3
53949 SI Sp. Iss. SI
53950 BP 202
53951 EP 206
53952 PG 5
53953 SC Materials Science, Multidisciplinary
53954 GA 539XK
53955 UT ISI:000174897700042
53956 ER
53957 
53958 PT J
53959 AU Ding, YP
53960    Wu, JS
53961    Meng, ZY
53962    Chan, HL
53963    Choy, ZL
53964 TI Oxygen pressure dependence of structural and tunable properties of
53965    PLD-deposited Ba0.5Sr0.5TiO3 thin film on LaAlO3-substrate
53966 SO MATERIALS CHEMISTRY AND PHYSICS
53967 DT Article
53968 DE LaAlO3 substrates; pulse laser deposition; dielectric tunability
53969 ID MICROWAVE PROPERTIES
53970 AB Ba0.5Sr0.5TiO3 thin films were deposited onto (100)-LaAlO3 substrates
53971    under various oxygen pressures from 50 to 300 mTorr by pulse laser
53972    deposition (PLD). X-ray diffraction investigations indicated that all
53973    the films were (001)-epitaxially grown on the substrates; however the
53974    epitaxy quality and lattice parameters of the films were changed
53975    greatly by the different oxygen pressures (Po-2) during deposition.
53976    Lower Po-2 under 150 mTorr made weak epitaxy of films and less
53977    tetragonal distortion (c/a) of the unit cell. With increasing Po-2, the
53978    films became highly epitaxial and also the c/a ratio increased to 1.002
53979    at Po-2 = 300 mTorr. It was noted that the volume of unit cell was very
53980    critical to the epitaxy with LaAlO3 substrates, which acted on the
53981    distortion of the unit cells by lattice mismatch force in succession.
53982    At frequency of 100 MHz, the film deposited at Po-2 = 200 mTorr,
53983    characterized by high single-epitaxy and mild cell distortion, had a
53984    large dielectric tunability of 42% (at similar to80 kV cm(-1) bias) and
53985    small dielectric loss (tg delta) of 0.008 (at 0 kV cm(-1) bias) and
53986    therefor the largest figure of merit (K, tunability/tg delta) of 5250
53987    among all. (C) 2002 Elsevier Science B.V. All rights reserved.
53988 C1 Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Elect Mat Lab, Shanghai 200030, Peoples R China.
53989    Shanghai Univ, Dept Elect & Informat Mat, Shanghai 201800, Peoples R China.
53990    Hong Kong Polytechn Univ, Dept Appl Phys, Hong Kong, Hong Kong, Peoples R China.
53991 RP Ding, YP, Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Elect Mat Lab,
53992    Shanghai 200030, Peoples R China.
53993 CR CARLSON CM, 2000, APPL PHYS LETT, V76, P1920
53994    CHANG WT, 1999, APPL PHYS LETT, V74, P1033
53995    CHEN CL, 1999, APPL PHYS LETT, V75, P412
53996    GEVORGIAN SS, 1994, ELECTRON LETT, V30, P1236
53997    KIM WJ, 2000, APPL PHYS LETT, V76, P1185
53998    PARK BH, 2000, APPL PHYS LETT, V77, P2587
53999    SCHMIZU T, 1997, SOLID STATE COMMUN, V102, P523
54000    VANKEULS FW, 1999, MICROW OPT TECHN LET, V20, P53
54001    VENDIK OG, 1999, J SUPERCOND, V12, P325
54002 NR 9
54003 TC 6
54004 SN 0254-0584
54005 J9 MATER CHEM PHYS
54006 JI Mater. Chem. Phys.
54007 PD APR 28
54008 PY 2002
54009 VL 75
54010 IS 1-3
54011 SI Sp. Iss. SI
54012 BP 220
54013 EP 224
54014 PG 5
54015 SC Materials Science, Multidisciplinary
54016 GA 539XK
54017 UT ISI:000174897700046
54018 ER
54019 
54020 PT J
54021 AU Song, YL
54022    Zhang, C
54023    Chen, GP
54024    Fang, GY
54025    Wang, YX
54026    Xin, XQ
54027 TI Pulse-width-dependent self-focusing-defocusing transformation of the
54028    compound [Et4N](2)[MoS4Cu4(SCN)(4)(2-pic)(4)]
54029 SO JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS
54030 DT Article
54031 DE self-defocusing; self-focusing; excited state refraction
54032 ID NONLINEAR-OPTICAL PROPERTIES; SOLID-STATE SYNTHESIS; CRYSTAL-STRUCTURE;
54033    ABSORPTIVE PROPERTIES; LIMITING PROPERTIES; REFRACTION
54034 AB The pulse-width-dependent self-focusing-defocusing transformation of
54035    the planar heterothiometallic cluster compound
54036    [Et4N](2)[MoS4Cu4(SCN)(4)(2-pic)(4)] in DMF solution is observed at a
54037    wavelength of 532 nm. We also investigate the nonlinear refraction and
54038    absorption behaviours of the cluster compound based on excited state
54039    theory. For picosecond pulses the compound possesses a self-focusing
54040    property, which is attributed to population transitions between singlet
54041    excited states, while for nanosecond pulses it exhibits a
54042    self-defocusing property, which is attributed to the population
54043    relaxing to triplet states. In addition, we found that the singlet
54044    excited state absorption is stronger than triplet excited state
54045    absorption.
54046 C1 Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China.
54047    Nanjing Univ, Dept Chem, State Key Lab Coordinat Chem, Nanjing 210093, Peoples R China.
54048    Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
54049 RP Song, YL, Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R
54050    China.
54051 CR FANG G, 2000, OPT COMMUN, V181, P523
54052    GE P, 1997, J PHYS CHEM B, V101, P27
54053    HOGGARD PE, 1996, CHEM MATER, V8, P2218
54054    HOU HW, 1994, J CHEM SOC DA, P3211
54055    HOU HW, 1995, CHEM MATER, V7, P472
54056    HOU HW, 1996, J CHEM SOC FARADAY T, V92, P2343
54057    HOU HW, 1999, CHEM COMMUN     0407, P647
54058    JI W, 1995, J PHYS CHEM-US, V99, P17297
54059    LOW MKM, 1998, CHEM COMMUN     0221, P505
54060    SAKANE G, 1995, INORG CHEM, V34, P4785
54061    SHEIKBAHAE M, 1990, IEEE J QUANTUM ELECT, V26, P760
54062    SHEIKBAHAE M, 1990, PHYS REV LETT, V65, P96
54063    SHI S, 1994, J PHYS CHEM-US, V98, P3570
54064    SHI S, 1995, CHEM MATER, V7, P1519
54065    SHI S, 1995, J PHYS CHEM-US, V99, P4050
54066    SHI S, 1995, J PHYS CHEM-US, V99, P894
54067    SHI S, 1995, MATER CHEM PHYS, V39, P298
54068    SONG YL, 1999, OPT COMMUN, V168, P131
54069    SONG YL, 2000, OPT COMMUN, V186, P105
54070    SONG YL, 2001, OPT COMMUN, V192, P273
54071    WEI TH, 2000, CHEM PHYS LETT, V318, P53
54072    YARIV A, 1991, OPTICAL ELECT, P48
54073    ZHANG C, 2000, J CHEM SOC DALTON, P1317
54074    ZHANG J, 2000, J UNIV SCI TECHNOL B, V7, P10
54075    ZHANG QF, 1999, CHEM LETT        JUL, P619
54076    ZHENG HG, 1997, J CHEM SOC DALT 0707, P2357
54077 NR 26
54078 TC 0
54079 SN 1464-4258
54080 J9 J OPT A-PURE APPL OPT
54081 JI J. Opt. A-Pure Appl. Opt.
54082 PD MAR
54083 PY 2002
54084 VL 4
54085 IS 2
54086 BP 199
54087 EP 201
54088 PG 3
54089 SC Optics
54090 GA 540BL
54091 UT ISI:000174908300014
54092 ER
54093 
54094 PT J
54095 AU Ma, H
54096    Kamiya, N
54097 TI Distance transformation for the numerical evaluation of near singular
54098    boundary integrals with various kernels in boundary element method
54099 SO ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS
54100 DT Article
54101 DE BEM; near singular boundary integral; integral kernel; order of near
54102    singularity; numerical solution; boundary layer effect
54103 ID PRINCIPAL VALUE INTEGRALS; ELASTICITY; EQUATIONS; FORMULATION
54104 AB The accurate numerical solution of near singular boundary integrals was
54105    an issue of major concern in most of the boundary element analysis next
54106    to the singular boundary integrals. The problem was solved in this
54107    paper by a kind of non-linear transformation, namely, the distance
54108    transformation for the accurate 'valuation of near singular boundary
54109    integrals with various kernels for both the two- and three- dimensional
54110    problems incorporated with the distance functions defined in the local
54111    intrinsic coordinate systems. It is considered that two effects play
54112    the role in the transformation. They are the damping out of the near
54113    singularity and the rational redistribution of integration points. The
54114    actual numerical computation can be performed by standard Gaussian
54115    quadrature formulae and can be easily included in the existing computer
54116    code, along with its insensitivity to the kind of the boundary
54117    elements. Numerical results of potential problem were presented,
54118    showing the effectiveness and the generality of the algorithm, which
54119    makes it possible, for the first time, to observe the behaviors of
54120    various boundary integral values with numerical means, when the source
54121    point is moving across the boundary with fine steps. (C) 2002 Elsevier
54122    Science Ltd. All rights reserved.
54123 C1 Shanghai Univ, Sch Sci, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200436, Peoples R China.
54124    Nagoya Univ, Sch Informat & Sci, Nagoya, Aichi 4648601, Japan.
54125 RP Ma, H, Shanghai Univ, Sch Sci, Shanghai Inst Appl Math & Mech, Dept
54126    Mech, Shanghai 200436, Peoples R China.
54127 CR ALIABADI MH, 1985, INT J NUMER METH ENG, V21, P2221
54128    ALIABADI MH, 2000, INT J NUMER METH ENG, V48, P995
54129    BREBBIA CA, 1984, BOUNDARY ELEMENT TEC
54130    CERROLAZA M, 1989, INT J NUMER METH ENG, V28, P987
54131    CHEN HB, 2001, ENG ANAL BOUND ELEM, V25, P851
54132    CRISTESCU M, 1978, RECENT ADV BOUNDARY, P375
54133    CRUSE TA, 1993, INT J NUMER METH ENG, V36, P237
54134    DIRGANTARA T, 2000, INT J FRACTURE, V105, P27
54135    DOBLARE M, 1997, INT J NUMER METH ENG, V40, P3325
54136    GRANADOS JJ, 2001, ENG ANAL BOUND ELEM, V25, P165
54137    GUIGGIANI M, 1987, INT J NUMER METH ENG, V24, P1711
54138    GUIGGIANI M, 1990, ASME, V57, P906
54139    GUIGGIANI M, 1992, ASME, V59, P604
54140    JOHNSTON PR, 1999, INT J NUMER METH ENG, V45, P1333
54141    KRISHNASAMY G, 1990, J APPL MECH-T ASME, V57, P404
54142    KRISHNASAMY G, 1994, INT J NUMER METH ENG, V37, P107
54143    LIU YJ, 1998, INT J NUMER METH ENG, V41, P541
54144    LIU YJ, 1999, COMPUT MECH, V24, P286
54145    LIU YJ, 2000, ENG ANAL BOUND ELEM, V24, P789
54146    MA H, 1999, ENG ANAL BOUND ELEM, V23, P281
54147    MA H, 2001, ENG ANAL BOUNDARY EL, V25, P843
54148    MUKHERJEE S, 1982, BOUNDARY ELEMENT MET
54149    MUKHERJEE S, 2000, INT J SOLIDS STRUCT, V37, P7633
54150    SLADEK V, 1993, INT J NUMER METH ENG, V36, P1609
54151    TANAKA M, 1991, BOUNDARY ELEMENT MET
54152    TELLES JCF, 1987, INT J NUMER METH ENG, V24, P959
54153    ZHANG D, 1999, COMPUT MECH, V23, P389
54154    ZHANG GH, 1990, P 3 JAP CHIN S BOUND, P73
54155 NR 28
54156 TC 4
54157 SN 0955-7997
54158 J9 ENG ANAL BOUND ELEM
54159 JI Eng. Anal. Bound. Elem.
54160 PD APR
54161 PY 2002
54162 VL 26
54163 IS 4
54164 BP 329
54165 EP 339
54166 PG 11
54167 SC Engineering, Multidisciplinary; Mathematics, Applied
54168 GA 542JT
54169 UT ISI:000175040300004
54170 ER
54171 
54172 PT J
54173 AU Kang, LY
54174    Dang, CY
54175    Cai, MC
54176    Shan, EF
54177 TI Upper bounds for the k-subdomination number of graphs
54178 SO DISCRETE MATHEMATICS
54179 DT Article
54180 DE graph; tree; open and closed neighborhoods; k-subdomination number
54181 ID MAJORITY
54182 AB For a positive integer k, a k-subdominating function of G = (V, E) is a
54183    Function f : V --> (-1,1) such that the sum of the function values,
54184    taken over closed neighborhoods of vertices, is at least one for at
54185    least k vertices of G. The sum of the function values taken over all
54186    vertices is called the aggregate of f and the minimum aggregate among
54187    all k-subdominating functions of G is the k-subdomination number
54188    gamma(ks)(G). In this paper, we solve a conjecture proposed in (Ars.
54189    Combin 43 (1996) 235), which determines a sharp upper bound on
54190    gamma(ks)(G) for trees if k > \V\/2 and give an upper bound on
54191    gamma(ks) for connected graphs. (C) 2002 Elsevier Science B.V. All
54192    rights reserved.
54193 C1 Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China.
54194    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
54195    City Univ, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China.
54196 RP Cai, MC, Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China.
54197 CR BROERE I, 1995, DISCRETE MATH, V138, P125
54198    COCKAYNE EJ, 1996, ARS COMBINATORIA, V43, P235
54199    DUNBAR JE, 1995, GRAPH THEORY COMBINA, V1, P311
54200    HENNING MA, 1998, J GRAPH THEOR, V28, P49
54201 NR 4
54202 TC 2
54203 SN 0012-365X
54204 J9 DISCRETE MATH
54205 JI Discret. Math.
54206 PD MAR 28
54207 PY 2002
54208 VL 247
54209 IS 1-3
54210 BP 229
54211 EP 234
54212 PG 6
54213 SC Mathematics
54214 GA 540CT
54215 UT ISI:000174911400018
54216 ER
54217 
54218 PT J
54219 AU Li, GH
54220    Zhou, SP
54221    Xu, DM
54222 TI Dynamical behaviour and its control in periodically driven semiconductor
54223 SO ACTA PHYSICA SINICA
54224 DT Article
54225 DE bifurcation; chaos; negative differential conductivity
54226 ID CURRENT-DENSITY FILAMENTS; CHAOTIC MOTIONS; FREQUENCY; DEVICE; GAAS
54227 AB A model for n-GaAs based on nonlinear carrier transport theory has been
54228    proposed. Complex bifurcations are studied as the excited field varies.
54229    Numerical simulation shows that the system exhibits periodicity,
54230    quasi-periodicity, and chaos, depending on the frequency and amplitude
54231    of the externally applied field, as expected. We also compute the
54232    quantities characterizing chaotic behaviours. An occasional pulse
54233    driving technique to control chaotic attactor to the desired periodic
54234    trajectory is illustrated.
54235 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
54236    Shanghai Univ, Sch Sci, Shanghai 200436, Peoples R China.
54237 RP Li, GH, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
54238    Peoples R China.
54239 CR AOKI K, 1982, J PHYS SOC JPN, V51, P2373
54240    AOKI K, 1986, PHYS SCRI, V14, P76
54241    AOKI K, 1989, APPL PHYS A, V48, P111
54242    AOKI K, 1989, APPL PHYS A-SOLID, V48, P161
54243    KNAP W, 1988, SOLID STATE ELECTRON, V31, P813
54244    LI GH, 2000, ACTA PHYS SIN-CH ED, V49, P2123
54245    NIEDERNOSTHEIDE FJ, 1996, PHYS REV B, V54, P14012
54246    NIEDERNOSTHEIDE FJ, 1999, PHYS REV B, V59, P7663
54247 NR 8
54248 TC 2
54249 SN 1000-3290
54250 J9 ACTA PHYS SIN-CHINESE ED
54251 JI Acta Phys. Sin.
54252 PD APR
54253 PY 2002
54254 VL 51
54255 IS 4
54256 BP 736
54257 EP 741
54258 PG 6
54259 SC Physics, Multidisciplinary
54260 GA 540WA
54261 UT ISI:000174952500007
54262 ER
54263 
54264 PT J
54265 AU Nho, YC
54266    Kwon, OH
54267    Jie, C
54268 TI Introduction of phosphoric acid group to polypropylene film by
54269    radiation grafting and its blood compatibility
54270 SO RADIATION PHYSICS AND CHEMISTRY
54271 DT Article
54272 DE radiation grafting; grafting; phosphoric acid; blood compatibility
54273 ID HEPARIN-IMMOBILIZED POLYURETHANES; POLYETHYLENE FILM; POLYMERIZATION;
54274    METHACRYLATE; PLASMA
54275 AB 2,3-epoxvpropyl methacrylate (EPMA) was grafted to polypropylene (PP)
54276    film by using a radiation grafting technique. The phosphoric acid group
54277    was introduced to the EPMA-grafted PP films with different grafting
54278    yields. The blood compatibility of the phosphoric acid group-introduced
54279    PP films was evaluated by the determination of platelet adsorption and
54280    thrombus formation. The EPMA grafting extent was found to be dependent
54281    on the absorbed dose, reaction time and temperature. The grafting and
54282    phosphonation reactions were confirmed by Fourier transform infrared
54283    spectroscopy in the attenuated total reflectance mode and electron
54284    spectroscopy for chemical analysis. The amount of thrombus and adherent
54285    platelet on modified PP film was evaluated by an in vitro method and
54286    scanning electron microscope, respectively. The phosphoric acid
54287    group-introduced PP film was found to have good blood compatibility,
54288    which increased with the content of the introduced phosphoric acid
54289    group. (C) 2002 Elsevier Science Ltd. All rights reserved.
54290 C1 Korea Atom Energy Res Inst, Radioisotope Radiat Applicat Team, Taejon 305600, South Korea.
54291    Hanyang Univ, Coll Engn, Dept Ind Chem, Seoul 133791, South Korea.
54292    Shanghai Univ, Dept Chem Engn & Technol, Shanghai 201800, Peoples R China.
54293 RP Nho, YC, Korea Atom Energy Res Inst, Radioisotope Radiat Applicat Team,
54294    POB 105, Taejon 305600, South Korea.
54295 CR BERGSTROM K, 1994, J BIOMAT SCI-POLYM E, V6, P123
54296    BRINKMAN E, 1990, BIOMATERIALS, V11, P200
54297    CHOWDHURY P, 1998, J APPL POLYM SCI, V70, P523
54298    HAN DK, 1989, J BIOMED MATER RES-A, V23, P211
54299    IMAI Y, 1972, J BIOMED MATER RES, V6, P165
54300    KANG IK, 1996, BIOMATERIALS, V17, P841
54301    KWON OH, 1999, J APPL POLYM SCI, V71, P631
54302    LEE YM, 1995, POLYMER, V36, P81
54303    NHO YC, 1992, J KOREAN IND ENG CHE, V3, P491
54304    NHO YC, 1992, J POLYM SCI POL CHEM, V30, P1219
54305    NHO YC, 1997, J APPL POLYM SCI, V63, P1101
54306    NHO YC, 1997, MACROMOL SCI PURE AP, V34, P831
54307    OKANO T, 1993, J BIOMED MATER RES, V27, P1519
54308    VULIC I, 1993, J MATER SCI-MATER M, V4, P448
54309    YUI N, 1988, BIOMATERIALS, V9, P225
54310 NR 15
54311 TC 3
54312 SN 0969-806X
54313 J9 RADIAT PHYS CHEM
54314 JI Radiat. Phys. Chem.
54315 PD APR
54316 PY 2002
54317 VL 64
54318 IS 1
54319 BP 67
54320 EP 75
54321 PG 9
54322 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
54323    Science & Technology
54324 GA 539UE
54325 UT ISI:000174889000011
54326 ER
54327 
54328 PT J
54329 AU He, CQ
54330    Wang, CK
54331 TI Allelopathic effect of Acorns tatarinowii upon algae
54332 SO JOURNAL OF ENVIRONMENTAL SCIENCES-CHINA
54333 DT Article
54334 DE Acorns tatarinowii; allelopathy; algae; wetlands
54335 ID SOIL
54336 AB Besides competing with algae for light and mineral nutrients (i.e. N,
54337    P, etc.), the root system of Acorns tatarinowii excretes some chemical
54338    substances, which injure and eliminate alga cells, to inhibit the
54339    growth of the algae. When the algae cells were treated in " A.
54340    tatarinowii water", some of the chlorophyll a were destroyed and the
54341    photosynthetic rate of algae decreased markedly and the ability of alga
54342    cells to deoxidize triphenyltetrazolium chloride (TTC) reduced greatly.
54343    Then alga cells turned from bright red to bluish green under
54344    fluorescence microscope. These showed that the allelopathic effects of
54345    A. tatarinowii on algae were obvious and planting A. tatarireowii can
54346    control some green algae. The experiment on the extractions of the
54347    secretions of the root system showed that the inhibitory effect had a
54348    concentration effect. If the concentration of the root secretion was
54349    below 30 mul/disc, the inhibitory rate was negative; if it was over 45
54350    mul/disc, the inhibitory rate was positive. This proved that the
54351    influence of the root secretion on the same acceptor was a kind of
54352    concentration effect. When the concentration of the root secretion was
54353    low, it promoted the growth of algae; when the concentration reached a
54354    definite threshold value, it restrained the growth of algae. In present
54355    case, the threshold value was between 30 mul/disc and 45 mul/disc.
54356 C1 Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China.
54357    Chinese Acad Sci, Changchun Inst Geog, Changchun 130021, Peoples R China.
54358 RP He, CQ, Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072,
54359    Peoples R China.
54360 CR *AM PUBL HLTH ASS, 1985, ASS PHYT CHLOR NORM, P901
54361    BLUM U, 1988, SOIL BIOL BIOCHEM, V20, P793
54362    DALTON BR, 1983, J CHEM ECOL, V9, P1185
54363    GRIME JP, 1976, J ECOL, V64, P975
54364    HE CQ, 1999, CHINESE J ECOLOGY, V18
54365    INDERJIT DKM, 1995, BOT REV, V61, P32
54366    REDDY KR, 1983, ECON BOT, V37, P237
54367    RICE EL, 1984, ALLELOPATHY, P382
54368    ROBINSON RK, 1972, J ECOL, V60, P219
54369    STEPONKUS PL, 1967, PLANT PHYSIOL, V42, P1423
54370    SUN WH, 1989, ENV SCI J, V9, P188
54371    SUN WH, 1991, PLANT PHYSL COMMUNIC, V27, P433
54372    SUN WH, 1992, PLANT PHYSL COMMUNIC, V28, P81
54373    WYNNE B, 1987, STRUCTURE REPROD, P572
54374    YE JX, 1987, PLANT ECOLOGY GEOBOT, V11, P203
54375    YE JX, 1993, AWAKE 21 CENTURY EAR, P243
54376    YE JX, 1996, PLANT MAGAZINE, V30, P10
54377    ZHANG BC, 1981, ECOLOGY J, V1, P227
54378 NR 18
54379 TC 1
54380 SN 1001-0742
54381 J9 J ENVIRON SCI-CHINA
54382 JI J. Environ. Sci.
54383 PD OCT
54384 PY 2001
54385 VL 13
54386 IS 4
54387 BP 481
54388 EP 484
54389 PG 4
54390 SC Environmental Sciences
54391 GA 537VP
54392 UT ISI:000174780600018
54393 ER
54394 
54395 PT J
54396 AU Li, BG
54397    Hua, TC
54398    Zhang, HD
54399    Wang, YF
54400    Wang, GX
54401 TI Cryopreservation and xenotransplantation studies of microencapsulated
54402    rat pancreatic islets
54403 SO CRYOLETTERS
54404 DT Article
54405 DE cryopreservation; microencapsulation; rat pancreatic islet;
54406    xenotransplantation
54407 AB Islets of Langerhans were isolated from the Sprague Dawley rat pancreas
54408    digested by injected collagenase, and purified by Ficoll density
54409    gradient centrifugation, In order to make smaller and more uniform
54410    micro encapsulated islets, we designed a special high-voltage
54411    electrostatic microcapsule generator. The effects of operational
54412    parameters of the generator on the size and the uniformity of
54413    microcapsules were analyzed, such as the voltage, the plunger speed of
54414    suspension delivery to the needle tip, the distance between needle tip
54415    and solution surface. The optimal parameter combinations for making
54416    microcapsules area 5kV of voltage, 50mm/h of the plunger speed, and
54417    20mm distance. The high-voltage electric system can produce uniform
54418    microcapsules with diameters ranging from 0.3similar to0.5mm, which are
54419    smaller and more uniform than those produced by air-jet system. A
54420    comparison of the cryopreservation effects between microencapsulated
54421    islets and unencapsulated islets showed that the microcapsules can
54422    protect the fragile islets from freezing damage, and increase the
54423    retrieval rate from 68.5% to 92.6%. Xenotransplantation of the
54424    cryopreserved rat islets resulted in the normalization of the metabolic
54425    blood glucose of the diabetic mice for 90 days, whereas the
54426    unencapsulated islets were easily fragmented and lost during the
54427    freezing process. They only reversed hyperglycemia for less than 3-5
54428    days.
54429 C1 Shanghai Univ Sci & Technol, Inst Cryobiol Engn, Shanghai 200093, Peoples R China.
54430    Shanghai First Peoples Hosp, Res Lab Diabetes, Shanghai 200080, Peoples R China.
54431 RP Li, BG, Shanghai Univ Sci & Technol, Inst Cryobiol Engn, 516 Jun Gong
54432    Rd, Shanghai 200093, Peoples R China.
54433 CR BARTH HG, 1984, MODERN METHODS PARTI
54434    CHEN RT, 1988, CRYOBIOLOGY, V25, P548
54435    CHICHEPORTICHE D, 1988, DIABETOLOGIA, V31, P54
54436    HU YF, 1990, CHIN J ORGAN TRANSPL, V11, P50
54437    JEAN PH, 1993, TRANSPLANTATION, V55, P350
54438    JUTTE PM, 1987, CRYOBIOLOGY, V24, P290
54439    LI BG, 2000, J SHANGHAI U SCI TEC, V22, P1
54440    LIM F, 1980, SCIENCE, V210, P908
54441    SOONSHIONG P, 1994, LANCET, V343, P950
54442    SUTTON R, 1986, TRANSPLANTATION, V42, P689
54443    ZHANG HD, 1991, CHIN J ORGAN TRANSPL, V12, P72
54444    ZHOU DB, 1997, TRANSPLANTATION, V64, P1112
54445 NR 12
54446 TC 1
54447 SN 0143-2044
54448 J9 CRYOLETTERS
54449 JI CryoLetters
54450 PD JAN-FEB
54451 PY 2002
54452 VL 23
54453 IS 1
54454 BP 47
54455 EP 54
54456 PG 8
54457 SC Biology; Physiology
54458 GA 538CQ
54459 UT ISI:000174796800007
54460 ER
54461 
54462 PT J
54463 AU Sang, WB
54464    Qian, YB
54465    Min, JH
54466    Li, DM
54467    Wang, LL
54468    Shi, WM
54469    Liu, YF
54470 TI Microstructural and optical properties of ZnS : Cu nanocrystals
54471    prepared by an ion complex transformation method
54472 SO SOLID STATE COMMUNICATIONS
54473 DT Article
54474 DE Cu-doped ZnS; nanostructure; luminescence; nanofabrication
54475 ID PHOTOPHYSICAL PROPERTIES; CHITOSAN FILM; CLUSTERS; ELECTRON; CDS
54476 AB The typical morphologies of Cu-doped ZnS nanocrystals in a polyvinyl
54477    alcohol (PVA) film by an ion complex transformation method observed by
54478    transmission electron microscope show that the particles were rather
54479    evenly distributed throughout the PVA film, and the dimension was
54480    estimated to be about 5.7 nm in diameter. The crystallites of the ZnS
54481    have a finite bulk-like cubic structure identified by using the ED
54482    patterns of the sample. The Cu-doped ZnS UV absorption spectra are
54483    essentially similar to that of the undoped, but the luminescence
54484    properties are quite different from that of the undoped. The green
54485    emission band peaked at about 480 nm. is characteristic of copper doped
54486    ZnS nanocrystals, which could be attributed to a transition from the
54487    conduction band of ZnS to the 't(2)' level of Cu in ZnS band gap. The
54488    blue emission band peaked at about 430 nm is characteristic of the
54489    undoped quantum particles of ZnS for the same size and it might be
54490    caused by the presence of self-activated centers, like zinc vacancies.
54491    (C) 2002 Elsevier Science Ltd. All rights reserved.
54492 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
54493    Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R China.
54494 RP Sang, WB, Shanghai Univ, Sch Mat Sci & Engn, Jiading, Shanghai 201800,
54495    Peoples R China.
54496 CR BHARGAVA RN, 1994, PHYS REV LETT, V72, P416
54497    BRUS LE, 1984, J CHEM PHYS, V80, P4403
54498    COLVIN VL, 1994, NATURE, V370, P354
54499    EMPEDOCLES SA, 1997, SCIENCE, V278, P2114
54500    HUANG JM, 1997, APPL PHYS LETT, V70, P2335
54501    KHOSRAVI AA, 1995, APPL PHYS LETT, V67, P2702
54502    PEKA P, 1994, PHYSICA B, V193, P57
54503    SANG WB, 1996, ADV MATER OPT ELECTR, V6, P197
54504    SANG WB, 1996, J PHYS-CONDENS MAT, V8, L499
54505    SHIONOYA S, 1966, LUMINESCENCE INORGAN, P229
54506    SOOKLAL K, 1996, J PHYS CHEM-US, V100, P4551
54507    WANG MW, 2000, SOLID STATE COMMUN, V115, P493
54508    WANG Y, 1991, J PHYS CHEM-US, V95, P525
54509    XU SJ, 1998, APPL PHYS LETT, V73, P473
54510    YANG P, 2001, CHEM PHYS LETT, V336, P76
54511 NR 15
54512 TC 9
54513 SN 0038-1098
54514 J9 SOLID STATE COMMUN
54515 JI Solid State Commun.
54516 PY 2002
54517 VL 121
54518 IS 9-10
54519 BP 475
54520 EP 478
54521 PG 4
54522 SC Physics, Condensed Matter
54523 GA 537HQ
54524 UT ISI:000174753200005
54525 ER
54526 
54527 PT J
54528 AU Zhang, JF
54529 TI Exotic localized coherent structures of the (2+1)-dimensional
54530    dispersive long-wave equation
54531 SO COMMUNICATIONS IN THEORETICAL PHYSICS
54532 DT Article
54533 DE extended homogeneous balance method; coherent soliton structures;
54534    dispersive long-wave equation; the (2+1)-dimensions
54535 ID NONLINEAR SCHRODINGER-EQUATION; 2 SPACE DIMENSIONS; NOVIKOV-VESELOV
54536    EQUATION; DROMION-LIKE STRUCTURES; KDV-TYPE EQUATION; SOLITONS; PLASMA
54537 AB This article is concerned with the extended homogeneous balance method
54538    for studying the abundant localized solution structures in the
54539    (2+1)-dimensional dispersive long-wave equations U-ty + eta(xx) +
54540    (u(2))(xy)/2 = 0, eta(t) + (ueta + u + u(xy))x = 0. Starting from the
54541    homogeneous balance method, we find that the richness of the localized
54542    coherent structures of the model is caused by the entrance of two
54543    variable-separated arbitrary functions. For some special selections of
54544    the arbitrary functions, it is shown that the localized structures of
54545    the model may be dromions, lumps, breathers, instantons and ring
54546    solitons.
54547 C1 Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
54548    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
54549 RP Zhang, JF, Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004,
54550    Peoples R China.
54551 CR BOITI M, 1986, INVERSE PROBL, V2, P271
54552    BOITI M, 1988, PHYS LETT A, V132, P432
54553    DAS GC, 1997, PHYS PLASMAS, V4, P2095
54554    FOKAS AS, 1990, PHYSICA D, V44, P99
54555    GEDALIN M, 1997, PHYS REV LETT, V78, P448
54556    HAUS HA, 1996, REV MOD PHYS, V68, P423
54557    HIETARINTA J, 1990, PHYS LETT A, V145, P237
54558    HU XB, 1996, J PHYS A-MATH GEN, V29, P4589
54559    LOU S, 1993, PHYS LETT A, V176, P96
54560    LOU SY, 1994, J PHYS A, V27, P3225
54561    LOU SY, 1995, J PHYS A-MATH GEN, V28, P7227
54562    LOU SY, 1995, MATH METHOD APPL SCI, V18, P789
54563    LOU SY, 1996, COMMUN THEOR PHYS, V26, P487
54564    LOU SY, 1996, J PHYS A-MATH GEN, V29, P5989
54565    LOU SY, 2000, COMMUN THEOR PHYS, V33, P7
54566    LOU SY, 2000, PHYS LETT A, V277, P94
54567    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
54568    LOUSTENKO I, 1997, PHYS REV LETT, V78, P3011
54569    PAQUIN G, 1990, PHYSICA D, V46, P122
54570    RADHA R, 1994, J MATH PHYS, V35, P4746
54571    RADHA R, 1995, PHYS LETT A, V197, P7
54572    RADHA R, 1997, CHAOS SOLITON FRACT, V8, P17
54573    RADHA R, 1997, J MATH PHYS, V38, P292
54574    RADHA R, 1997, J PHYS A-MATH GEN, V30, P3229
54575    RADHA R, 1999, CHAOS SOLITON FRACT, V10, P1821
54576    RUAN HY, 1997, J MATH PHYS, V38, P3123
54577    RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P586
54578    TAJIRI M, 1997, PHYS REV E B, V55, P3351
54579    WANG ML, 1995, PHYS LETT A, V199, P169
54580    ZHANG JF, 1999, CHINESE PHYS LETT, V16, P659
54581    ZHANG JF, 1999, COMMUN THEOR PHYS, V33, P577
54582 NR 31
54583 TC 18
54584 SN 0253-6102
54585 J9 COMMUN THEOR PHYS
54586 JI Commun. Theor. Phys.
54587 PD MAR 15
54588 PY 2002
54589 VL 37
54590 IS 3
54591 BP 277
54592 EP 282
54593 PG 6
54594 SC Physics, Multidisciplinary
54595 GA 535XM
54596 UT ISI:000174671700004
54597 ER
54598 
54599 PT J
54600 AU Cheng, XY
54601    Wan, XJ
54602    Wu, QY
54603    Sun, XK
54604 TI Diffusion of hydrogen along the grain boundaries in Ni3Al alloys
54605 SO INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY
54606 DT Article
54607 DE hydrogen diffusivity; N1(3)A1 alloys; ultrahigh vacuum gaseous;
54608    permeation technique
54609 ID ENVIRONMENTAL EMBRITTLEMENT; NICKEL; TRANSPORT
54610 AB The diffusivity of hydrogen in two Nl(3)Al alloys has been measured in
54611    the temperature range 100degreesC to 420degreesC using an ultrahigh
54612    vacuum gaseous permeation technique. The diffusivity data fall into two
54613    segments, in which the hydrogen diffusivity adheres to the Arrhenius
54614    form, respectively. It is suggested that hydrogen transportation takes
54615    place along the grain boundaries at lower temperature and in the
54616    lattice at higher temperature. The intergranular fracture of L1(2)-type
54617    intermetallics induced by hydrogen at relatively low temperature
54618    results from hydrogen transportation along the grain boundaries, not in
54619    the lattice.
54620 C1 Shanghai Univ, Inst Mat Res, Shanghai 200072, Peoples R China.
54621    Chinese Acad Sci, Inst Met Res, State Key Lab RSA, Shenyang 110015, Peoples R China.
54622 CR CHENG XY, 1998, SCRIPTA MATER, V38, P959
54623    FUKUSHIMA H, 1984, ACTA METALL, V32, P851
54624    GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37
54625    HARRIS TM, 1991, METALL TRANS A, V22, P351
54626    HUANG JH, 1996, DIFFUSION METALS ALL
54627    KIRMURA A, 1988, ACTA METALL, V36, P757
54628    LADNA B, 1987, ACTA METALL, V35, P1775
54629    PALUMBO G, 1991, SCRIPTA METALL MATER, V25, P679
54630    TAKAGI C, 1993, DNA LINK, V3, P3
54631    TSURU T, 1982, SCRIPTA METALL, V16, P575
54632    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
54633    XU J, 1993, ACTA METALL MATER, V41, P1455
54634 NR 12
54635 TC 0
54636 SN 0268-1900
54637 J9 INT J MATER PROD TECHNOL
54638 JI Int. J. Mater. Prod. Technol.
54639 PY 2001
54640 SU Suppl. 2
54641 BP 841
54642 EP 846
54643 PG 6
54644 SC Materials Science, Multidisciplinary
54645 GA 534UG
54646 UT ISI:000174604900067
54647 ER
54648 
54649 PT J
54650 AU Li, BF
54651    Liu, J
54652 TI Detail feature recognition and decomposition in solid model
54653 SO COMPUTER-AIDED DESIGN
54654 DT Article
54655 DE detail removal; detail feature decomposition; feature
54656    recognition/feature suppression; analysis automation; CAE
54657 ID ELEMENT
54658 AB A methodology for abstracting features from a 3D solid model based on a
54659    new detail-level metric method is proposed. Filleting the whole
54660    boundary of an object with constant fillet radius has the effect of
54661    low-pass filtering. Taking advantage of the effect, detail-level of
54662    boundary entities can be rated. This paper investigates an approach to
54663    fillet polyhedral model and then develops a simple way to detect
54664    detailed boundary elements. Taking detailed entities as the indicators,
54665    detail features are recognized and extracted. In the detailed entities
54666    detection and decomposition cycle of the corresponding detail features,
54667    detail features are decomposed from the model one by one in terms of
54668    their locality. Detail feature decomposition directly results in
54669    geometric simplification of a 3D object. The method proposed in this
54670    paper can be applied in efficient modeling for CAE from CAD models. (C)
54671    2002 Elsevier Science Ltd. All rights reserved.
54672 C1 Shanghai Univ, Sch Mech Engn, Shanghai 200072, Peoples R China.
54673 RP Li, BF, Shanghai Univ, Sch Mech Engn, 18 Postal Box,149 Yanchang Rd,
54674    Shanghai 200072, Peoples R China.
54675 CR ARBSHAHI S, 1992, FINITE ELEMENT ANAL, V9, P271
54676    ARMSTRONG CG, 1994, COMPUT AIDED DESIGN, V26, P573
54677    CAGAN J, 1987, ENG COMPUT, V2, P199
54678    CHUANG SH, 1990, COMPUT AIDED DESIGN, V22, P377
54679    DONG J, 1997, COMPUT AIDED DESIGN, V29, P263
54680    DONG J, 1997, COMPUT AIDED DESIGN, V29, P427
54681    GAYANKAR P, 1990, COMPUT AIDED DESIGN, V22, P442
54682    GREGORY BL, 1987, ENG COMPUT, V2, P65
54683    INOUE K, 1999, 8 INT MESH ROUNDT SA, P281
54684    JOSHI S, 1988, COMPUT AIDED DESIGN, V20, P58
54685    KIM YS, 1992, COMPUT AIDED DESIGN, V24, P461
54686    KYPRIANOU L, 1980, THESIS U CAMBRIDGE
54687    LEE YG, 1997, ADV ENG SOFTW, V28, P593
54688    LEE YG, 1998, COMPUT AIDED DESIGN, V30, P677
54689    LO KH, 1988, COMPUT AIDED DESIGN, V20, P27
54690    MAYER EA, 1996, CURR OPIN GASTROEN, V12, P3
54691    MOHSEN R, 1998, COMPUT AIDED DESIGN, V28, P905
54692    SHEFFER A, 1997, TRENS UNSTRUCTURED, V220, P57
54693    VANDENBRANDE JH, 1993, IEEE T PATTERN ANAL, V15, P1269
54694 NR 19
54695 TC 4
54696 SN 0010-4485
54697 J9 COMPUT AID DES
54698 JI Comput.-Aided Des.
54699 PD APR 15
54700 PY 2002
54701 VL 34
54702 IS 5
54703 BP 405
54704 EP 414
54705 PG 10
54706 SC Computer Science, Software Engineering
54707 GA 533NV
54708 UT ISI:000174537400006
54709 ER
54710 
54711 PT J
54712 AU Zhu, ZY
54713    Li, GG
54714    Cheng, CJ
54715 TI Quasi-static and dynamical analysis for viscoelastic Timoshenko beam
54716    with fractional derivative constitutive relation
54717 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
54718 DT Article
54719 DE viscoelastic Timoshenko beam; fractional derivative constitutive
54720    relation; weakly singular Volterra integro-differential equation;
54721    dynamical response
54722 ID BEHAVIOR
54723 AB The equations of motion governing the quasi-static and dynamical
54724    behavior of a viscoelastic Timoshenko beam are derived. The
54725    viscoelastic material is assumed to obey a three-dimensional fractional
54726    derivative constitutive relation. ne quasi-static behavior of the
54727    viscoelastic Timoshenko beam under step loading is analyzed and the
54728    analytical solution is obtained. The influence of material parameters
54729    on the deflection is investigated. The dynamical response of the
54730    viscoelastic Timoshenko beam subjected to a periodic excitation is
54731    studied by means of mode shape functions. And the effect of both
54732    transverse shear and rotational inertia on the vibration of the beam is
54733    discussed.
54734 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
54735    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
54736    Shanghai Supercomp Ctr, Shanghai 201203, Peoples R China.
54737    Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
54738 RP Zhu, ZY, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
54739    200072, Peoples R China.
54740 CR AKOZ Y, 1999, INT J NUMER METH ENG, V44, P1909
54741    ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151
54742    BAGLEY RL, 1986, J RHEOL, V30, P133
54743    CHEN LQ, 2000, APPL MATH MECH-ENGL, V21, P995
54744    GEMANT A, 1938, PHILOS MAG, V25, P92
54745    KOELLER RC, 1984, J APPL MECH, V51, P294
54746    LIU YZ, 1998, MECH VIBRATIONS
54747    LUO ZD, 1994, MECH ANISITROPIC MAT
54748    ROSSIKHIN YA, 1997, APPL MECH REV, V50, P15
54749    SAMKO SG, 1993, FRACTIONAL INTEGRALS
54750    SPINELLI RA, 1966, SIAM J NUMER ANAL, V3, P636
54751 NR 11
54752 TC 2
54753 SN 0253-4827
54754 J9 APPL MATH MECH-ENGL ED
54755 JI Appl. Math. Mech.-Engl. Ed.
54756 PD JAN
54757 PY 2002
54758 VL 23
54759 IS 1
54760 BP 1
54761 EP 12
54762 PG 12
54763 SC Mathematics, Applied; Mechanics
54764 GA 534QJ
54765 UT ISI:000174597500001
54766 ER
54767 
54768 PT J
54769 AU Yin, RH
54770    Fang, ZH
54771    Zhang, L
54772    Xu, HB
54773 TI Effect of Cl- on the transition current density of Zn during the
54774    electrodeposition Zn-Co, Zn-Fe alloys
54775 SO ACTA CHIMICA SINICA
54776 DT Article
54777 DE Zn-Co; Zn-Fe alloys; transition current density; anomalous co-deposition
54778 AB For co-deposition of Zn-Co or Zn-Fe alloys in chloride baths it was
54779    found that the transition current density of Zn varied with the
54780    deposition process from normal co-deposition to anomalous
54781    co-deposition. The value of the transition current density increases
54782    with the increasing of Cl- concentration. However, when Cl-
54783    concentration exceeds 4 mol(.)dm(-3), the co-deposition process becomes
54784    normal type and the transition current density of Zn disappears. It can
54785    he attributed to the existence of Cl-, which decreases the evolution
54786    overpotential of Co and Fe metal, especially for Fe metal.
54787 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
54788 RP Yin, RH, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
54789 CR ATSUYOSHI S, 1980, J IRON STEEL I JPN, V66, P771
54790    FUKUSHIMA H, 1983, T JPN I MET, V24, P125
54791    LI HW, 1998, PLAT PROT, V101, P16
54792    MITSUHIRO Y, 1990, J SURF FINISH SOC JP, V41, P312
54793    TU ZM, 1994, PLAT SURF FINISH, V16, P3
54794    YIN RH, 2001, ELECTROCHEMISTRY, V7, P85
54795    YOJI I, 1978, ELECTROCHEM JPN, V46, P202
54796 NR 7
54797 TC 0
54798 SN 0567-7351
54799 J9 ACTA CHIM SIN
54800 JI Acta Chim. Sin.
54801 PD MAR
54802 PY 2002
54803 VL 60
54804 IS 3
54805 BP 404
54806 EP 407
54807 PG 4
54808 SC Chemistry, Multidisciplinary
54809 GA 533UW
54810 UT ISI:000174549600005
54811 ER
54812 
54813 PT J
54814 AU Zhang, WH
54815    Chen, Q
54816    Liu, YL
54817 TI Relationship between H+-ATPase activity and fluidity of tonoplast in
54818    barley roots under NaCl stress
54819 SO ACTA BOTANICA SINICA
54820 DT Article
54821 DE salt stress; H+-ATPase; membrane fluidity; fatty acid composition;
54822    barley
54823 ID SALT STRESS; LIPID-COMPOSITION; TOLERANCE; VESICLES; ACID; ARABIDOPSIS;
54824    TRANSPORT
54825 AB H+-ATPase activity of tonoplast in roots of Hordeum vulgare L. cv.
54826    "Tanyin 2" (salt-tolerant cultivar) increased when the roots were
54827    exposed to 50 - 200 mmol/L NaCl for 2 d, and decreased when NaCl
54828    concentration was increased to 600 mmol/L. In "Kepin 7" (salt-sensitive
54829    cultivar), tonoplast H+-ATPase activity in roots also increased at
54830    lower levels of NaCl (50 - 100 mmol/L), but decreased at higher levels
54831    of NaCl (200 - 600 mmol/L). Tonoplast fluidity in roots of "Tanyin 2"
54832    decreased at 50 - 200 mmol/L NaCl, and increased significantly at 600
54833    mmol/L NaCl. Under salt stress, the change of tonoplast fluidity was
54834    identical with that of the ratio of unsaturated fatty acids to
54835    saturated fatty acids in tonoplast lipid of barley roots. It is
54836    proposed that the increase of tonoplast fluidity due to increased
54837    degree of unsaturation of fatty acids is one of the reasons leading to
54838    the decrease of H+-ATPase activity under higher level of NaCl stress.
54839 C1 Nanjing Agr Univ, Coll Agr, Nanjing 210095, Peoples R China.
54840    Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China.
54841 RP Zhang, WH, Nanjing Agr Univ, Coll Agr, Nanjing 210095, Peoples R China.
54842 CR APSE MP, 1999, SCIENCE, V285, P1256
54843    BALLESTEROS E, 1996, PHYSIOL PLANTARUM, V97, P259
54844    BARKLA BJ, 1996, ANNU REV PLANT PHYS, V47, P159
54845    BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248
54846    BROWN DJ, 1989, PHYSIOL PLANTARUM, V90, P956
54847    DIAO FQ, 1997, ACTA PHYTOPHYSIOL SI, V23, P105
54848    DIETZ KJ, 1996, BBA-BIOMEMBRANES, V1281, P134
54849    GONG HM, 1999, ACTA BOT SIN, V41, P414
54850    HUANG YG, 1996, MEMBRANE LIPID PROTE, P1
54851    LIU YL, 1998, PLANT PHYSL MOL BIOL, P752
54852    LU ZX, 1993, ACTA PHYTOPHYSIOL SI, V19, P325
54853    MANSOUR MMF, 1994, PHYSIOL PLANTARUM, V92, P473
54854    NARASIMHAN ML, 1991, PLANT PHYSIOL, V97, P562
54855    NIU X, 1995, PLANT PHYSIOL, V109, P715
54856    OHNISHI T, 1975, ANAL BIOCHEM, V69, P261
54857    REIDIBOYMTALLEUX L, 1999, PHYSIOL PLANTARUM, V105, P513
54858    SHI HZ, 2000, P NATL ACAD SCI USA, V97, P6896
54859    SU WA, 1983, CHINESE SCI BULL, V28, P373
54860    WU JL, 1998, PHYSIOL PLANTARUM, V102, P307
54861    YANG FY, 1983, CHINESE SCI BULL, V28, P370
54862    ZHANG WH, 1993, ACTA BOT SIN, V35, P435
54863    ZHANG WH, 1998, J PLANT NUTR, V21, P447
54864 NR 22
54865 TC 2
54866 SN 0577-7496
54867 J9 ACTA BOT SIN
54868 JI Acta Bot. Sin.
54869 PD MAR
54870 PY 2002
54871 VL 44
54872 IS 3
54873 BP 292
54874 EP 296
54875 PG 5
54876 SC Biochemistry & Molecular Biology; Plant Sciences
54877 GA 534YM
54878 UT ISI:000174617400007
54879 ER
54880 
54881 PT J
54882 AU Chen, DY
54883 TI k-constraint for the modified Kadomtsev-Petviashvili system
54884 SO JOURNAL OF MATHEMATICAL PHYSICS
54885 DT Article
54886 AB By imposing constraint (L-k)(-)=qpartial derivative(-1)rpartial
54887    derivative on the pseudo-differential operator L-k, the k constrained
54888    modified Kadomtsev-Petviashvili (KP) hierarchy and their corresponding
54889    Lax pair are obtained from the linear problem and its adjoint of the
54890    modified KP system. Especially, the modified KdV system, the GNS system
54891    with derivative coupling, the Burgers system, and a new 3x3 integrable
54892    system are presented as examples. (C) 2002 American Institute of
54893    Physics.
54894 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
54895 RP Chen, DY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
54896 CR CHEN HH, 1979, PHYS SCR, V20, P490
54897    CHENG Y, 1992, J MATH PHYS, V33, P3774
54898    CHENG Y, 1992, J PHYS A, V25, P419
54899    DATE E, 1983, NONLINEAR INTEGRABLE, P39
54900    DICKEY LA, 1991, ADV SERIES MATH PHYS, V12
54901    KAUP DJ, 1978, J MATH PHYS, V19, P798
54902    KONOPELCHENKO BG, 1984, PHYS LETT A, V102, P15
54903    KONOPELCHENKO BG, 1992, NONLINEAR EVOLUTION, P87
54904    OHTA Y, 1988, PROG THEOR PHYS SUPP, V94, P210
54905 NR 9
54906 TC 1
54907 SN 0022-2488
54908 J9 J MATH PHYS-NY
54909 JI J. Math. Phys.
54910 PD APR
54911 PY 2002
54912 VL 43
54913 IS 4
54914 BP 1956
54915 EP 1965
54916 PG 10
54917 SC Physics, Mathematical
54918 GA 532KQ
54919 UT ISI:000174474300013
54920 ER
54921 
54922 PT J
54923 AU Zhou, SF
54924 TI Attractors for second order lattice dynamical systems
54925 SO JOURNAL OF DIFFERENTIAL EQUATIONS
54926 DT Article
54927 ID WAVE-EQUATIONS; GLOBAL ATTRACTOR
54928 AB We consider the existence and the approximation of the global attractor
54929    for second order damped lattice dynamical systems. (C) 2002 Elsevier
54930    Science (USA).
54931 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
54932 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
54933 CR AFRAIMOVICH VS, 1997, PHYSICA D, V103, P442
54934    BATES PW, 1999, ATTRACTORS LATTICE D
54935    FEIREISL E, 1995, J DIFFER EQUATIONS, V116, P431
54936    FEIREISL E, 1997, J DYNAM DIFFERENTIAL, V9, P133
54937    GHIDAGLIA JM, 1987, J MATH PURE APPL, V66, P273
54938    HALE JK, 1988, ASYMPTOTIC BEHAV DIS
54939    KARACHALIOS NI, 1999, J DIFFER EQUATIONS, V157, P183
54940    TEMAM R, 1988, APPL MATH SCI, V68
54941    ZHOU SF, 1999, P AM MATH SOC, V127, P3623
54942 NR 9
54943 TC 8
54944 SN 0022-0396
54945 J9 J DIFFERENTIAL EQUATIONS
54946 JI J. Differ. Equ.
54947 PD MAR 1
54948 PY 2002
54949 VL 179
54950 IS 2
54951 BP 605
54952 EP 624
54953 PG 20
54954 SC Mathematics
54955 GA 530GR
54956 UT ISI:000174350400008
54957 ER
54958 
54959 PT J
54960 AU Liu, WB
54961    Ma, HP
54962    Tang, T
54963 TI On mixed error estimates for elliptic obstacle problems
54964 SO ADVANCES IN COMPUTATIONAL MATHEMATICS
54965 DT Article
54966 DE finite element approximation; elliptic obstacle; sharp a posteriori
54967    error estimates
54968 ID EQUATIONS
54969 AB We establish in this paper sharp error estimates of residual type for
54970    finite element approximation to elliptic obstacle problems. The
54971    estimates are of mixed nature, which are neither of a pure a priori
54972    form nor of a pure a posteriori form but instead they are combined by
54973    an a priori part and an a posteriori part. The key ingredient in our
54974    derivation for the mixed error estimates is the use of a new
54975    interpolator which enables us to eliminate inactive data from the error
54976    estimators. One application of our mixed error estimates is to
54977    construct a posteriori error indicators reliable and efficient up to
54978    higher order terms, and these indicators are useful in mesh-refinements
54979    and adaptive grid generations. In particular, by approximating the a
54980    priori part with some a posteriori quantities we can successfully track
54981    the free boundary for elliptic obstacle problems.
54982 C1 Xiang Tan Univ, Dept Math, Hunan Prov, Peoples R China.
54983    Univ Kent, CBS, Canterbury CT2 7NF, Kent, England.
54984    Univ Kent, Inst Math & Stat, Canterbury CT2 7NF, Kent, England.
54985    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
54986    Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China.
54987 CR AINSWORTH M, 1993, NUMER MATH, V65, P23
54988    AINSWORTH M, 1997, COMPUT METHOD APPL M, V142, P1
54989    BARANGER J, 1991, RAIRO-MATH MODEL NUM, V25, P31
54990    BREZIS H, 1972, J MATH PURE APPL, V51, P1
54991    CHEN ZM, 2000, NUMER MATH, V84, P527
54992    CIARLET PG, 1978, FINITE ELEMENT METHO
54993    DURAN R, 1991, NUMER MATH, V59, P107
54994    DUVAUT G, 1973, INEQUALITIES MECH PH
54995    ELLIOTT CM, 1982, RES NOTES MATH, V59
54996    FRENCH DA, UNPUB POINTWISE POST
54997    FRIEDMAN A, 1982, VARIATIONAL PRINCIPL
54998    GLOWINSKI R, 1972, NUMERICAL ANAL VARIA
54999    KINDERLEHRER D, 1980, INTRO VARIATIONAL IN
55000    KORNHUBER R, 1996, COMPUT MATH APPL, V31, P49
55001    KUFNER A, 1977, FUNCTION SPACES
55002    LI R, 2001, J COMPUT PHYS, V170, P562
55003    LI R, 2001, UNPUB MOVING MESH ME
55004    LIU WB, 2000, J SCI COMPUT, V35, P361
55005    VERFURTH R, 1989, NUMER MATH, V55, P309
55006    VERFURTH R, 1994, MATH COMPUT, V62, P445
55007    ZIENKIEWICZ OC, 1987, INT J NUMER METH ENG, V24, P337
55008 NR 21
55009 TC 2
55010 SN 1019-7168
55011 J9 ADV COMPUT MATH
55012 JI Adv. Comput. Math.
55013 PY 2001
55014 VL 15
55015 IS 1-4
55016 BP 261
55017 EP 283
55018 PG 23
55019 SC Mathematics, Applied
55020 GA 531AJ
55021 UT ISI:000174392100011
55022 ER
55023 
55024 PT J
55025 AU Xue, Y
55026    Dong, LY
55027    Yuan, YW
55028    Dai, SQ
55029 TI Numerical simulation on traffic flow with the consideration of relative
55030    velocity
55031 SO ACTA PHYSICA SINICA
55032 DT Article
55033 DE traffic flow; optimal velocity model; jamming phase; relative velocity
55034 ID AUTOMATON MODEL; CONGESTION; SOLITON
55035 AB The optimal velocity model of traffic is extended by taking into
55036    account the relative velocity. We derive the stability condition and
55037    stimulate the evolution of traffic flow with a small perturbation. We
55038    have found that the relative velocity can stabilize traffic flow and
55039    decrease the number of jamming phases.
55040 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
55041    Guangxi Univ, Dept Phys, Nanning 530004, Peoples R China.
55042 RP Xue, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
55043    Peoples R China.
55044 CR BANDO M, 1995, PHYS REV E, V51, P1035
55045    BIHAM O, 1992, PHYS REV A, V46, P6124
55046    CHANDLER RE, 1958, OPER RES, V6, P165
55047    CHOWDHURY D, 2000, PHYS REP, V329, P199
55048    HELBING D, 2001, TRANSPORT RES B-METH, V35, P183
55049    KOMATSU TS, 1995, PHYS REV E B, V52, P5574
55050    LU XY, 2001, ACTA PHYS SIN-CH ED, V50, P1255
55051    MURAMATSU M, 1999, PHYS REV E, V60, P180
55052    NAGEL K, 1992, J PHYS I, V2, P2221
55053    NEWELL GF, 1961, OPER RES, V9, P209
55054    PIPES LA, 1953, J APPL PHYS, V24, P274
55055    TREIBER M, 2000, PHYS REV E A, V62, P1805
55056    WANG BH, 2000, ACTA PHYS SIN-CH ED, V49, P1926
55057    XUE Y, 2001, ACTA PHYS SIN-CH ED, V50, P445
55058 NR 14
55059 TC 6
55060 SN 1000-3290
55061 J9 ACTA PHYS SIN-CHINESE ED
55062 JI Acta Phys. Sin.
55063 PD MAR
55064 PY 2002
55065 VL 51
55066 IS 3
55067 BP 492
55068 EP 496
55069 PG 5
55070 SC Physics, Multidisciplinary
55071 GA 531DD
55072 UT ISI:000174400000007
55073 ER
55074 
55075 PT J
55076 AU Chen, YY
55077    Wang, Q
55078    Shi, JL
55079    Wei, Q
55080 TI Characteristics of self-trapping of partially coherent beam
55081 SO ACTA PHYSICA SINICA
55082 DT Article
55083 DE spatial soliton; partially coherent beam; coherence radius
55084 ID NONLINEAR MEDIA; SOLITONS; LIGHT
55085 AB Using the mutually coherent function, we study the self-trapping of
55086    circlar partially coherent beam. The initial condition of the beam and
55087    the nonlinearity of the media decide the propagation properties of the
55088    beam. The spatial variation period of the beam is obtained. And we find
55089    that the transverse coherence property of the partially coherent beam
55090    evolves periodically with the distance. Our analysis can also be
55091    etended to the elliptical partially coherent beam.
55092 C1 Shanghai Univ, Dept Phys, Sch Sci, Shanghai 200436, Peoples R China.
55093 RP Chen, YY, Shanghai Univ, Dept Phys, Sch Sci, Shanghai 200436, Peoples R
55094    China.
55095 CR CHRISTODOULIDES DN, 1997, PHYS REV LETT, V78, P646
55096    CHRISTODOULIDES DN, 1998, PHYS REV LETT, V80, P2310
55097    KROLIKOWSKI W, 2000, PHYS REV E, V61, P3122
55098    LIU J, 1998, ACTA PHYS SINICA, V47, P1509
55099    LIU SM, 1992, PHOTOREFRACTIVE NONL
55100    LU KQ, 1999, ACTA PHYS SIN-CH ED, V48, P2070
55101    MANDEL L, 1995, OPTICAL COHERENCE QU, CH4
55102    MITCHELL M, 1996, PHYS REV LETT, V77, P490
55103    MITCHELL M, 1997, NATURE, V387, P880
55104    PERINA J, 1986, COHERENCE LIGHT, CH2
55105    SNYDER AW, 1998, PHYS REV LETT, V80, P1422
55106 NR 11
55107 TC 3
55108 SN 1000-3290
55109 J9 ACTA PHYS SIN-CHINESE ED
55110 JI Acta Phys. Sin.
55111 PD MAR
55112 PY 2002
55113 VL 51
55114 IS 3
55115 BP 559
55116 EP 564
55117 PG 6
55118 SC Physics, Multidisciplinary
55119 GA 531DD
55120 UT ISI:000174400000020
55121 ER
55122 
55123 PT J
55124 AU Zheng, YG
55125    Liu, ZR
55126    Liu, YR
55127 TI Travelling wave solutions for sine-Gordon prototypes
55128 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
55129 DT Article
55130 ID NETWORKS; BREATHERS; EXISTENCE; MAP
55131 AB By using finite difference discretization for the sine-Gordon equation,
55132    we obtain the sine-Gordon prototypes. For these prototypes, the
55133    existence of discrete periodic travelling wave solutions and discrete
55134    solitons are proved by the anti-integrable limit method.
55135 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
55136    Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China.
55137 RP Zheng, YG, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
55138 CR ABEL M, 1998, PHYSICA D, V119, P22
55139    AUBRY S, 1990, PHYSICA D, V43, P199
55140    AUBRY S, 1997, PHYSICA D, V103, P201
55141    BAESENS C, 1997, NONLINEARITY, V10, P931
55142    CROSS MC, 1993, REV MOD PHYS, V65, P851
55143    MACKAY RS, 1994, NONLINEARITY, V7, P1623
55144    MACKAY RS, 1995, PHYSICA D, V82, P243
55145    ZEIDLER E, 1986, NONLINEAR FUNCTIONAL
55146 NR 8
55147 TC 0
55148 SN 1565-1339
55149 J9 INT J NONLINEAR SCI NUMER SIM
55150 JI Int. J. Nonlinear Sci. Numer. Simul.
55151 PY 2001
55152 VL 2
55153 IS 1
55154 BP 73
55155 EP 77
55156 PG 5
55157 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
55158    Mathematical; Mechanics
55159 GA 529EP
55160 UT ISI:000174287300006
55161 ER
55162 
55163 PT J
55164 AU He, JH
55165 TI A remark on Lagrange multiplier method (I)
55166 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
55167 DT Article
55168 DE Lagrange multiplier; paradox; semi-inverse method
55169 AB In this paper, the author point out that the identification of Lagrange
55170    multipliers might lead to Lagrange crisis ( some a constraint can be
55171    eliminated by the method). They must be treated as independent
55172    variables throughout the calculation. If the identified multipliers are
55173    submitted to the Lagrangian, the removed constraints might have to be
55174    further applied, otherwise wrong results might be obtained.
55175 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
55176    Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
55177 RP He, JH, Shanghai Univ, Shanghai 200072, Peoples R China.
55178 CR HE JH, 1997, INT J TURBO JET ENG, V14, P23
55179    HE JH, 1997, J SHANGHAI U, V1, P117
55180    HE JH, 2000, ASME, V67, P326
55181    HE JH, 2000, INT J NONLINEAR SCI, V1, P133
55182    HE JH, 2000, INT J NONLINEAR SCI, V1, P139
55183    HE JH, 2001, INT J ENG SCI, V39, P323
55184    LAGRANGE JL, 1788, MECANIQUE ANAL
55185 NR 7
55186 TC 3
55187 SN 1565-1339
55188 J9 INT J NONLINEAR SCI NUMER SIM
55189 JI Int. J. Nonlinear Sci. Numer. Simul.
55190 PY 2001
55191 VL 2
55192 IS 2
55193 BP 161
55194 EP 164
55195 PG 4
55196 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
55197    Mathematical; Mechanics
55198 GA 529ET
55199 UT ISI:000174287600009
55200 ER
55201 
55202 PT J
55203 AU Qin, ZQ
55204 TI Applied mathematics and mechanics in China
55205 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
55206 DT Article
55207 AB In this paper, the well-known journal APPLIED MATHEMATICS AND MECHANICS
55208    in China is introduced, the authorship of the journal is systematically
55209    studied. The statistic data shows that 30% old authorship keep the
55210    mainstream of the journal, while 70% new authorship reveals the bloom
55211    of development of the field of applied mathematics and mechanics in
55212    China.
55213 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
55214 RP Qin, ZQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
55215    200072, Peoples R China.
55216 CR 1996, APPL MATH MECH
55217    CHIEN WZ, 1983, APPL MATH MECH, V4, P143
55218    HE JH, 2000, APPL MATH MECH-ENGL, V21, P797
55219 NR 3
55220 TC 0
55221 SN 1565-1339
55222 J9 INT J NONLINEAR SCI NUMER SIM
55223 JI Int. J. Nonlinear Sci. Numer. Simul.
55224 PY 2001
55225 VL 2
55226 IS 2
55227 BP 169
55228 EP 171
55229 PG 3
55230 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
55231    Mathematical; Mechanics
55232 GA 529ET
55233 UT ISI:000174287600012
55234 ER
55235 
55236 PT J
55237 AU He, JH
55238 TI Bookkeeping parameter in perturbation methods
55239 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
55240 DT Article
55241 DE perturbation method; nonlinear equation; Thomas-Fermi equation
55242 ID NONLINEAR PROBLEMS
55243 AB In case of no possible small parameter in an equation, we can expand
55244    the solution in a series of an artificial parameter(Nayfeh 1981). The
55245    artificial parameter is a bookkeeping or crutching device and set equal
55246    to unity after the "perturbation solution" is obtained, In order to
55247    avoid the secular terms arising in straightforward expansion, the
55248    coefficients in the equation are also expanded into series of the
55249    artificial parameter. Some examples are given hereby, and the results
55250    show that the obtained approximate solutions are uniformly valid on the
55251    whole solution domain.
55252 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
55253 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
55254    Peoples R China.
55255 CR ANDRIANOV I, 2000, INT J NONLINEAR SCI, V1, P327
55256    BENDER CM, 1989, J MATH PHYS, V30, P1447
55257    HAGEDORN P, 1981, NONLINEAR OSCILLATIO
55258    HE JH, IN PRESS INT J NONLI
55259    HE JH, 1999, COMMUNICATIONS NONLI, V4, P81
55260    HE JH, 1999, INT J NONLINEAR MECH, V34, P699
55261    HE JH, 2000, INT J NONLINEAR MECH, V35, P37
55262    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
55263    HE JH, 2000, J SOUND VIB, V229, P1257
55264    LAURENZI BJ, 1990, J MATH PHYS, V30, P2535
55265    LIU GL, 1997, NAT C 7 MOD MATH MEC, P47
55266    NAYFEH AH, 1985, INTRO PERTURBATION
55267 NR 12
55268 TC 9
55269 SN 1565-1339
55270 J9 INT J NONLINEAR SCI NUMER SIM
55271 JI Int. J. Nonlinear Sci. Numer. Simul.
55272 PY 2001
55273 VL 2
55274 IS 3
55275 BP 257
55276 EP 264
55277 PG 8
55278 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
55279    Mathematical; Mechanics
55280 GA 529EV
55281 UT ISI:000174287800003
55282 ER
55283 
55284 PT J
55285 AU Jiang, JB
55286    Wang, LB
55287    Lu, ZM
55288 TI A new model for turbulent energy dissipation
55289 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
55290 DT Article
55291 DE Turbulent Energy dissipation; Direct Interaction Approximation
55292 ID SHEAR FLOWS; DIFFUSION
55293 AB It is very difficult to model the turbulent energy dissipation epsilon.
55294    The known models in open literature are unsatisfactory and need to be
55295    farther improved. In this paper, using the
55296    Single-Green-Function-Two-ScaleDirect-Interaction approximation, we
55297    obtain a new model, whose coefficients are close to those of
55298    Yoshizawa's and those of the standard k-epsilon model. We also find
55299    that the coefficient for the destruction term is an independent number,
55300    which agrees with Rubinstein's result, The present paper provides a
55301    sound theoretical basis for modeling the turbulent energy dissipation.
55302 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
55303 RP Jiang, JB, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
55304    200072, Peoples R China.
55305 CR HAMBA F, 1997, PHYS FLUIDS, V9, P79
55306    KRAICHNAN R, 1961, HSN3 NEW YORK U I MA, P435
55307    RUBINSTEIN R, 1996, PHYS FLUIDS, V8, P3172
55308    SHIMOMURA Y, 1998, PHYS FLUIDS, V10, P2636
55309    YOSHIZAWA A, 1984, J PHYS SOC JPN, V53, P1264
55310    YOSHIZAWA A, 1984, PHYS FLUIDS, V27, P1337
55311    YOSHIZAWA A, 1988, J FLUID MECH, V195, P541
55312 NR 7
55313 TC 1
55314 SN 1565-1339
55315 J9 INT J NONLINEAR SCI NUMER SIM
55316 JI Int. J. Nonlinear Sci. Numer. Simul.
55317 PY 2001
55318 VL 2
55319 IS 3
55320 BP 277
55321 EP 282
55322 PG 6
55323 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
55324    Mathematical; Mechanics
55325 GA 529EV
55326 UT ISI:000174287800005
55327 ER
55328 
55329 PT J
55330 AU Huang, LJ
55331    Liang, RJ
55332    Zhang, NH
55333 TI An aero-viscoelastic model for nonlinear cylindrical shells in
55334    supersonic flow
55335 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
55336 DT Editorial Material
55337 DE structural function; viscoelasticity; cylindrical shell; supersonic flow
55338 AB Based on the Karman-Donnell's hypotheses of thin shells and the
55339    Boltzmann superposition principles in viscoelasticity, an
55340    aero-viscoelastic model for nonlinear cylindrical shells in supersonic
55341    flow is set up by means of Laplace transform and the so-called
55342    structural function. The aerodynamic load is obtained from the
55343    quasi-steady first-order piston theory.
55344 C1 Shanghai Univ, Dept Mech, Minist Educ, Key Lab Solid Mech, Shanghai 200436, Peoples R China.
55345    Gansu Univ Technol, Dept Basic Sci, Lanzhou 730050, Peoples R China.
55346 RP Zhang, NH, Shanghai Univ, Dept Mech, Minist Educ, Key Lab Solid Mech,
55347    Shanghai 200436, Peoples R China.
55348 CR KHOLODAV DB, 2000, INT J NONLINEAR SCI, V1, P153
55349    MEI C, 1999, APPL MECH REV, V52, P321
55350 NR 2
55351 TC 2
55352 SN 1565-1339
55353 J9 INT J NONLINEAR SCI NUMER SIM
55354 JI Int. J. Nonlinear Sci. Numer. Simul.
55355 PY 2001
55356 VL 2
55357 IS 3
55358 BP 303
55359 EP 304
55360 PG 2
55361 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
55362    Mathematical; Mechanics
55363 GA 529EV
55364 UT ISI:000174287800010
55365 ER
55366 
55367 PT J
55368 AU He, JH
55369 TI Variational theory for linear magneto-electro-elasticity
55370 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
55371 DT Article
55372 DE piezoelectricity; magneto-electro-elastic medium; smart (or
55373    intelligent) material; variational theory; semi-inverse method;
55374    trial-functional
55375 ID SEMI-INVERSE METHOD; MIXED-FLOW TURBOMACHINERY; COMPRESSIBLE S2-FLOW;
55376    FLUID-MECHANICS; HYBRID PROBLEMS; UNKNOWN SHAPE; PRINCIPLES;
55377    AERODYNAMICS; VARIABLES; EMPHASIS
55378 AB To describe the physical behavior of a magneto-electro-elastic medium,
55379    the fundamental equations, including equilibrium equations,
55380    strain-displacement relations, and constitutive relations, and all
55381    boundary conditions are expressed as stationary condition (Euler
55382    equations and natural conditions) of a generalized variational
55383    principle, which is obtained by the semi-inverse method proposed by He.
55384    The principle is deduced from an energy-like trial functional with a
55385    certain unknown function, which can be identified step by step. A
55386    family of various variational principles for the discussed problem is
55387    also obtained for differential applications. Present theory provides a
55388    quite straightforward tool to the search for various variational
55389    principles for physical problems. This paper aims at providing a more
55390    complete theoretical basis for the finite element applications,
55391    meshfree particle methods, and other direct variational methods such as
55392    Ritz's, Trefftz's and Kantorovitch's methods.
55393 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
55394 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
55395    Peoples R China.
55396 CR ALTAY GA, 1996, INT J ENG SCI, V34, P769
55397    BERLINCOURT DA, 1964, PHYS ACOUST        A, V1, P169
55398    CHANDRASEKHARAI.DS, 1988, ACTA MECH, V71, P39
55399    CHIEN WZ, 1983, APPL MATH MECH, V4, P137
55400    HE JH, 1997, INT J TURBO JET ENG, V14, P17
55401    HE JH, 1997, INT J TURBO JET ENG, V14, P23
55402    HE JH, 1997, J SHANGHAI U, V1, P117
55403    HE JH, 1997, SHANGHAI J MECH, V18, P305
55404    HE JH, 1998, INT J TURBO JET ENG, V15, P101
55405    HE JH, 1998, INT J TURBO JET ENG, V15, P95
55406    HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154
55407    HE JH, 1999, INT J TURBO JET ENG, V16, P19
55408    HE JH, 1999, J U SHANGHAI SCI TEC, V21, P127
55409    HE JH, 1999, J U SHANGHAI SCI TEC, V21, P29
55410    HE JH, 1999, J U SHANGHAI SCI TEC, V21, P356
55411    HE JH, 2000, AIRCR ENG AEROSP TEC, V72, P18
55412    HE JH, 2000, APPL MATH MECH-ENGL, V21, P797
55413    HE JH, 2000, ASME, V67, P326
55414    HE JH, 2000, FACTA U SERIES MECH, V12, P1253
55415    HE JH, 2000, INT J ENG SCI, V39, P323
55416    HE JH, 2000, INT J NONLINEAR SCI, V1, P133
55417    HE JH, 2000, MECH RES COMMUN, V27, P445
55418    HE JH, 2001, ACTA MECH, V149, P247
55419    HE JH, 2001, APPL MATH MECH-ENGL, V22, P989
55420    HE JH, 2001, ASME J APPL MECH, V68, P666
55421    HE JH, 2001, INT J NONLINEAR SCI, V2, P161
55422    LIU GL, 1990, 1 INT S EXP COMP AER, P128
55423    LIU GL, 1990, J ENG THERMOPHYSICS, V11, P136
55424    LIU GL, 1995, 6 AS C FLUID MECH MA, P745
55425    LIU GL, 2000, ACTA MECH, V140, P73
55426    LIU GL, 2000, INT J NONLINEAR SCI, V1, P25
55427    MAUGIN GA, 1984, MECH BEHAV ELECTROMA
55428    MAUGIN GA, 1991, CONTINUUM MECH ELECT
55429    PAN E, 2001, ASME, V68, P608
55430    SANTILLI RM, 1978, FDN THEORETICAL MECH, V1
55431    ZHOU SA, 1986, INT J SOLIDS STRUCT, V22, P1411
55432 NR 36
55433 TC 28
55434 SN 1565-1339
55435 J9 INT J NONLINEAR SCI NUMER SIM
55436 JI Int. J. Nonlinear Sci. Numer. Simul.
55437 PY 2001
55438 VL 2
55439 IS 4
55440 BP 309
55441 EP 316
55442 PG 8
55443 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
55444    Mathematical; Mechanics
55445 GA 529EX
55446 UT ISI:000174288000001
55447 ER
55448 
55449 PT J
55450 AU He, JH
55451 TI Modified Lindsted-Poincare methods for some strongly nonlinear
55452    oscillations Part III: Double series expansion
55453 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
55454 DT Article
55455 DE perturbation method; nonlinear equation; Duffing equation;
55456    Lindstedt-Poincare method
55457 AB In this paper, we propose a new perturbation technique for strongly
55458    nonlinear oscillations with two parameters, which need not to be small
55459    in the present study. In this new method, the solution is expanded into
55460    double series of the two parameters. In order to avoid the secular
55461    terms, a constant in the equation is also expressed in a double series
55462    expansion. The present technique can be widely applied to nonlinear
55463    systems with multitude nonlinear terms. The preliminary study shows
55464    that the obtained approximate solutions are uniformly valid on the
55465    whole solution domain, and they are suitable not only for weakly
55466    nonlinear systems, but also for strongly nonlinear systems.
55467 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
55468 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
55469    Peoples R China.
55470 CR AZIZ A, 1984, PERTURBATION METHODS
55471    HAGEDORN P, 1981, NONLINEAR OSCILLATIO
55472    HE JH, 1998, U SHANGHAI SCI TECHN, V20, P325
55473    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
55474    HE JH, 2001, INT J NONLINEAR MECH, V37, P309
55475    HE JH, 2001, INT J NONLINEAR MECH, V37, P315
55476    HE JH, 2001, INT J NONLINEAR SCI, V2, P203
55477    HE JH, 2001, J VIB CONTROL, V7, P631
55478    NAYFEH AH, 1985, INTRO PERTURBATION T
55479 NR 9
55480 TC 25
55481 SN 1565-1339
55482 J9 INT J NONLINEAR SCI NUMER SIM
55483 JI Int. J. Nonlinear Sci. Numer. Simul.
55484 PY 2001
55485 VL 2
55486 IS 4
55487 BP 317
55488 EP 320
55489 PG 4
55490 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
55491    Mathematical; Mechanics
55492 GA 529EX
55493 UT ISI:000174288000002
55494 ER
55495 
55496 PT J
55497 AU Shen, JQ
55498    Riebel, U
55499 TI Extinction by a large spherical particle located in a narrow Gaussian
55500    beam
55501 SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION
55502 DT Article
55503 ID FORWARDSCATTERING CORRECTIONS; AEROSOL MEDIA; SUSPENSIONS;
55504    TRANSMISSION; FLUCTUATIONS; SCATTERING; DILUTE
55505 AB In most extinction measurements, the laser beam is expanded and the
55506    particles are small enough so that the incident beam can be considered
55507    as a plane wave. With regard to particle size analysis by optical
55508    extinction counters or transmission fluctuation spectrometry, however,
55509    we are interested in the opposite situation, i.e. particle diameters
55510    which are larger than the beam diameter. This paper presents
55511    experimental results on the extinction by an absorbent or transparent
55512    spherical particle passing through a Gaussian beam.
55513    The experiments show that the extinction is sensitive to the particle
55514    location, especially when the particle is very near to the beam waist
55515    and the ratio of the beam to the particle diameter is close to or less
55516    than 1.
55517 C1 Brandenburg Tech Univ Cottbus, Lehrstuhl Mech Verfahrenstech, D-03013 Cottbus, Germany.
55518    Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
55519 RP Shen, JQ, Brandenburg Tech Univ Cottbus, Lehrstuhl Mech Verfahrenstech,
55520    D-03013 Cottbus, Germany.
55521 CR BREITENSTEIN M, 1999, PART PART SYST CHAR, V16, P249
55522    BREITENSTEIN M, 2000, THESIS COTTBUS
55523    DEEPAK A, 1978, APPL OPTICS, V17, P2900
55524    DEEPAK A, 1978, APPL OPTICS, V17, P3169
55525    DOPHEIDE D, 1990, 5 INT S APPL LAS TEC, P1
55526    GOUESBET G, 1988, J OPT SOC AM A, V5, P1427
55527    GREGORY J, 1985, J COLLOID INTERF SCI, V105, P357
55528    HODGES JT, 1995, APPL OPTICS, V34, P2120
55529    KRAUTER U, 1995, THESIS KARLRUHE
55530    RIEBEL U, 1991, PART PART SYST CHAR, V8, P95
55531    RIEBEL U, 1993, PART PART SYST CHAR, V10, P201
55532 NR 11
55533 TC 1
55534 SN 0934-0866
55535 J9 PART PART SYST CHARACT
55536 JI Part. Part. Syst. Charact.
55537 PD FEB
55538 PY 2002
55539 VL 18
55540 IS 5-6
55541 BP 254
55542 EP 261
55543 PG 8
55544 SC Engineering, Chemical; Materials Science, Characterization & Testing
55545 GA 526PR
55546 UT ISI:000174139300005
55547 ER
55548 
55549 PT J
55550 AU Gu, CQ
55551    Zhu, GQ
55552 TI Bivariate Lagrange-type vector valued rational interpolants
55553 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
55554 DT Article
55555 DE bivariate vector value; rational interpolation; determinantal formula
55556 AB An axiomatic definition to bivariate vector valued rational
55557    interpolation on distinct plane interpolation points is at first
55558    presented in this paper. A two-variable vector valued rational
55559    interpolation formula is explicitly constructed in the following form:
55560    the determinantal formulas for denominator scalar polynomials and for
55561    numerator vector polynomials, which possess Lagrange-type basic
55562    function expressions. A practical criterion of existence and uniqueness
55563    for interpolation is obtained. In contrast to the underlying method,
55564    the method of bivariate Thiele-type vector valued rational
55565    interpolation is reviewed.
55566 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
55567    Hefei Polytech Univ, Dept Math, Hefei 230009, Peoples R China.
55568 CR BREZINSKI C, 1974, LINEAR ALGEBRA APPL, V8, P77
55569    GRAVESMORRIS PR, 1983, NUMER MATH, V42, P331
55570    GRAVESMORRIS PR, 1986, CONSTR APPROX, V2, P263
55571    GU CQ, 1997, J COMPUT APPL MATH, V8, P71
55572    GU CQ, 1997, J COMPUT APPL MATH, V84, P137
55573    GU CQ, 1997, MATH NUMER SINICA, V19, P19
55574    MCCLEOD JB, 1971, COMPUTING, V7, P17
55575    SIEMASZKO W, 1983, J COMPUT APPL MATH, V9, P137
55576    WYNN P, 1963, ARCH RATION MECH AN, V12, P273
55577    ZHU GQ, 1990, MATH NUM SIN, V12, P293
55578    ZHU GQ, 1993, CHINESE J NUMER MATH, V15, P1
55579 NR 11
55580 TC 0
55581 SN 0254-9409
55582 J9 J COMPUT MATH
55583 JI J. Comput. Math.
55584 PD MAR
55585 PY 2002
55586 VL 20
55587 IS 2
55588 BP 207
55589 EP 216
55590 PG 10
55591 SC Mathematics, Applied; Mathematics
55592 GA 527QN
55593 UT ISI:000174198000009
55594 ER
55595 
55596 PT J
55597 AU Liu, YF
55598    Chen, L
55599    Su, B
55600    Huang, AM
55601    Hua, JD
55602    Sang, WB
55603    Min, JH
55604    Meng, ZY
55605 TI Synthesis and characterization of CdS nanocrystals embedded on solid
55606    electrolyte films
55607 SO JOURNAL OF APPLIED POLYMER SCIENCE
55608 DT Article
55609 DE polyethylene oxide; nanocomposites; metal-polymer complexes; conducting
55610    polymers
55611 ID CLUSTERS
55612 AB In this article nano-sized CdS crystal embedded in a PEO matrix was
55613    successfully prepared by a complex transformation method that is
55614    universal for preparing nanosized compounds containing transition
55615    metals. The size of embedded CdS particles was in the nanoscale from 2
55616    to 10 nm determined by X-ray diffusion. The nanosized CdS displayed the
55617    expected blue shift of the onset absorbance in the UV spectrum. The
55618    amount of blue shift depends upon the dipping time of the PEO-cadmium
55619    complex film in a sodium sulfide solution as well as its concentration.
55620    The most effective means for adjusting the size of CdS nanocrystals is
55621    to change the ratio of the oxygen along with the PEO chain to the
55622    cadmium ion in the complex film. The alkali salt in the film would
55623    contribute to the conductivity of the composite film. (C) 2002 Wiley
55624    Periodicals, Inc.
55625 C1 Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R China.
55626    Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800, Peoples R China.
55627 RP Liu, YF, Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R
55628    China.
55629 CR DEAN JA, 1973, LANGES HDB CHEM
55630    HUANG JM, 1996, POLYM BULL, V36, P337
55631    LI H, 1994, PRACTICAL ANAL XRAY
55632    LIU Y, 1998, POLYM B, P11
55633    LIU YF, 1997, CHIN L LUMIN, V18, P248
55634    MIN J, 2001, 2 NAT S PHYS OPT EL
55635    NAKUTA N, 1985, J PHYS CHEM-US, V89, P48
55636    PENG X, 1999, CHIN J RARE METALS, V23, P321
55637    SANG W, 1990, ADV MATER OPT ELECTR, V6, P197
55638    SANG WB, 1996, J PHYS-CONDENS MAT, V8, L499
55639    WANG Y, 1990, J CHEM PHYS, V92, P6927
55640    WOGGON U, 1997, OPTICAL PROPERTIES S
55641    YANG Y, 1996, APPL PHYS LETT, V69, P377
55642 NR 13
55643 TC 5
55644 SN 0021-8995
55645 J9 J APPL POLYM SCI
55646 JI J. Appl. Polym. Sci.
55647 PD MAY 9
55648 PY 2002
55649 VL 84
55650 IS 6
55651 BP 1263
55652 EP 1268
55653 PG 6
55654 SC Polymer Science
55655 GA 526ZX
55656 UT ISI:000174160500018
55657 ER
55658 
55659 PT J
55660 AU Hu, HP
55661    Mo, YL
55662 TI Method of wavelet threshold denoising based on Bayesian estimation
55663 SO JOURNAL OF INFRARED AND MILLIMETER WAVES
55664 DT Article
55665 DE wavelet transform; Donoho wavelet threshold; Wiener filtering; Bayesian
55666    estimation
55667 ID CROSS-VALIDATION; SHRINKAGE
55668 AB A new image denoising method of wavelet shrinkage threshold based on
55669    Bayesian estimation was proposed. The coefficients of wavelet transform
55670    of image were estimated by minimizing Bayes risk in the proposed
55671    method. The estimation is not only related to the orientation and the
55672    level of the subband, but also to the wavelet coefficients. The
55673    experimental results show that the denoising effect of the proposed
55674    method is better than that of other methods based on wavelet shrinkage.
55675    Although the denoising effect of this method is worse than one of
55676    Wiener filters at low peak-signal-noise ratio, it is better than Wiener
55677    filters at high peak-signal-noise ratio.
55678 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
55679 RP Hu, HP, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
55680    Peoples R China.
55681 CR ABRAMOVICH F, 1998, J ROY STAT SOC B 4, V60, P725
55682    CHANG SG, 2000, IEEE T IMAGE PROCESS, V9, P1532
55683    DONOHO DL, 1994, BIOMETRIKA, V81, P425
55684    DONOHO DL, 1995, J AM STAT ASSOC, V90, P1200
55685    NASON GP, 1996, J ROY STAT SOC B MET, V58, P463
55686    OGDEN RT, 1994, THESIS TEXAS A M U
55687    VIDAKOVIC B, 1998, J AM STAT ASSOC, V93, P173
55688    WEYRICH N, 1998, IEEE T IMAGE PROCESS, V7, P82
55689 NR 8
55690 TC 0
55691 SN 1001-9014
55692 J9 J INFRARED MILIM WAVES
55693 JI J. Infrared Millim. Waves
55694 PD FEB
55695 PY 2002
55696 VL 21
55697 IS 1
55698 BP 74
55699 EP 76
55700 PG 3
55701 SC Optics
55702 GA 526AG
55703 UT ISI:000174105800018
55704 ER
55705 
55706 PT J
55707 AU Wei, JH
55708    Wang, M
55709    Yu, NW
55710 TI Mass transfer characteristics between molten steel and particles in
55711    RH-PTB refining
55712 SO IRONMAKING & STEELMAKING
55713 DT Article
55714 AB The mass transfer characteristics between powder particles and liquid
55715    steel in RH-PTB (powder top blowing) refining have been investigated on
55716    a 5 scale water model of a 90 t RH degasser. Sodium chloride powder of
55717    analytical purity has been used as the flux for blowing, and the mass
55718    transfer coefficient of solute (NaCl) in the liquid has been determined
55719    under the conditions of the RH-PTB process. The influence of the main
55720    technological and structural parameters on the mass transfer rate has
55721    been examined. The results have shown that, under the conditions of the
55722    present work, the mass transfer coefficient in the liquid increases
55723    with increasing lifting gas flowrate, with increasing inner diameter of
55724    the upsnorkel, with increasing circulation rate of the liquid, and with
55725    increasing particle size of powdered flux. On the other hand, mass
55726    transfer in the liquid decreases with an increase in the inner diameter
55727    of the downsnorkel. Its value is in the range (1.36-7.30) x 10(-4) m
55728    s(-1). The following dimensionless relationships, correspondingly, have
55729    been obtained for the mass transfer coefficient in the range:
55730    Sh = 2 + 0.073Re(s)(0.777) Sc-1/3
55731    Sh = 2 + 0.073(epsilon(1s)D(p)(4)/v(t)(3))(0.259) Sc-1/3
55732    When the mass transfer is treated as that between rigid bubbles and
55733    molten steel, it may be characterised by
55734    Sh = 2 + 0.026((ResSc0.339)-Sc-0.48(g(1/3)d(p)/D-p(2/3))(0.072)](1.455).
55735 C1 Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China.
55736    Baoshan Steel Grp Corp, Shanghai 201900, Peoples R China.
55737 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China.
55738 CR ASAI S, 1983, P INT INJ MET SCANIN
55739    BENNETT CO, 1974, MOMENTRUM HEAT MASS, P788
55740    DAVIES JY, 1972, TURBULENCE PHENOMENA, P148
55741    EBIHARA A, 1992, CAMP ISIJ, V5, P1237
55742    ENDOH K, 1989, SADA TETSU TOGISATA, P20
55743    ENDOH K, 1990, NIPP STEEL TECH REP, P45
55744    GEIGER GH, 1973, TRANSPORT PHENOMENA, P115
55745    HALL RJ, 1990, ISS STEELM C P, P69
55746    HATAKEYAMA T, 1989, IRON STEELMAKER, V15, P23
55747    HUGHMARK GA, 1967, IND ENG CHEM PROC DD, V6, P218
55748    KAORU S, 1988, T ISIJ, V28, P297
55749    LAMPPLE CE, 1950, CHEM ENG HDB, P1018
55750    MAYA K, 1992, CAMP ISIJ, V5, P276
55751    MYRAYAMA N, 1990, P 6 INT IR STEEL C N, V3, P151
55752    OKADA Y, 1992, CAMP ISIJ, V5, P1238
55753    OKADA Y, 1994, TETSU TO HAGANE, V80, T9
55754    OKANO H, 1997, ISS STEELM C P
55755    SANO Y, 1974, J CHEM ENG JAPAN, V7, P255
55756    SZEKELY J, 1979, FLUID FLOW PHENOMENA, P261
55757    UEHARAL H, 1992, CAMP ISIJ, V5, P1240
55758    WANG Z, 1979, CHEM ENG DICT, P612
55759    WEAST RC, 1979, HDB CHEM PHYSICS, F58
55760    YAO Y, HDB PHYSICAL CHEM, P407
55761    YU N, 1998, J NE U NATURAL SCI, V19, P118
55762    ZHANG Z, 1988, FUNDAMENTALS POWDER, P52
55763 NR 25
55764 TC 0
55765 SN 0301-9233
55766 J9 IRONMAKING STEELMAKING
55767 JI Ironmak. Steelmak.
55768 PY 2001
55769 VL 28
55770 IS 6
55771 BP 455
55772 EP 464
55773 PG 10
55774 SC Metallurgy & Metallurgical Engineering
55775 GA 526BW
55776 UT ISI:000174109400004
55777 ER
55778 
55779 PT J
55780 AU Shen, DZ
55781    Kang, Q
55782    Zhang, XL
55783    Li, WP
55784    Liu, ZC
55785 TI An electrode-separated piezoelectric sensor as a surface monitoring
55786    technique for anionic surfactant adsorption on quartz surface
55787 SO MIKROCHIMICA ACTA
55788 DT Article
55789 DE surfactant; adsorption; quartz; piezoelectric; surfactant
55790 ID SELF-ASSEMBLED MONOLAYERS; CRYSTAL MICROBALANCE; NEUTRON REFLECTIVITY;
55791    NONIONIC SURFACTANTS; BEHAVIOR; SILICON; INTERFACE; LAYER; GOLD
55792 AB In the configuration of an electrode-separated piezoelectric sensor
55793    (ESPS), the quartz crystal surface is in a direct contact with the
55794    liquid phase. With the pre-adsorption of Ca2+ as the ionic bridge,
55795    anionic surfactant can adsorb on the negatively charged quartz surface
55796    (pH > 2.0). The adsorption process of sodium dodecyl benzene sulfonate
55797    (SDBS) was monitored in real time with the ESPS method. It was shown
55798    that the adsorption of SDBS on quartz surface by Ca2+ inducement was
55799    reversible with respective to the dilution of solution phase. The
55800    adsorption behavior can be analyzed using Langmuir model. The
55801    adsorption and desorption rate constants were estimated to be k(a)=
55802    (108.4 +/- 6.4) mol(-1)Ls(-1) and k(d) = (2.57 +/- 0.32) x 10(-3)
55803    s(-1), respectively. The observed adsorption densities in the ESPS
55804    method were significantly greater than the true ones. The influence on
55805    surface roughness of the quartz disc on adsorption densities should be
55806    corrected by adding a calibration coefficient in the Sauerbrey
55807    equation. The saturation adsorption density is 0.223 mug/cm(2) for SDBS
55808    on quartz surface. Double layer occurs for the adsorption of SDBS on
55809    quartz surface.
55810 C1 Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China.
55811    Shanghai Univ Sci & Technol, Dept Chem Engn, Jinan 250031, Peoples R China.
55812 RP Shen, DZ, Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R
55813    China.
55814 CR BALLANTINE DS, 1997, ACOUSTIC WAVE SENSOR
55815    BUTTRY DA, 1992, CHEM REV, V92, P1355
55816    CARUSO F, 1995, LANGMUIR, V11, P1546
55817    CHERNYSHOVA IV, 2000, LANGMUIR, V16, P8071
55818    DOBIAS B, 1993, COAGULATION FLOCCULA
55819    FRAGNETO G, 1996, J COLLOID INTERF SCI, V178, P531
55820    FRAGNETO G, 1996, LANGMUIR, V12, P477
55821    FUERSTENAU DW, 1956, J PHYS CHEM-US, V60, P981
55822    HARWIGSSON I, 1996, J COLLOID INTERF SCI, V183, P380
55823    KRAUSE C, 1996, LANGMUIR, V12, P6059
55824    MANNE S, 1994, LANGMUIR, V10, P4409
55825    MEADER AL, 1953, J COLL SCI, V8, P170
55826    NAGASHIMA K, 1999, J COLLOID INTERF SCI, V214, P8
55827    NOMURA T, 1991, ANAL CHIM ACTA, V243, P273
55828    OKAHATA Y, 1991, ANAL CHEM, V63, P203
55829    PENFOLD J, 2000, LANGMUIR, V16, P8879
55830    SAUERBREY G, 1959, Z PHYS, V155, P206
55831    SHARMA R, 1995, SURFACTANT ADSORPTIO
55832    SHEN DZ, 1997, J ELECTROANAL CHEM, V428, P105
55833    SHEN DZ, 1998, FRESEN J ANAL CHEM, V361, P424
55834    SHEN DZ, 1998, MICROCHEM J, V60, P1
55835    SHEN DZ, 1998, MIKROCHIM ACTA, V128, P229
55836    TAHANI A, 1999, J COLLOID INTERF SCI, V216, P242
55837    THIBAUT A, 2000, LANGMUIR, V16, P9192
55838    TIBERG F, 1994, LANGMUIR, V10, P2294
55839    YAO SZ, 1997, PIEZOELECTRIC CHEM B
55840    YEZEK L, 2000, J COLLOID INTERF SCI, V225, P227
55841 NR 27
55842 TC 2
55843 SN 0026-3672
55844 J9 MIKROCHIM ACTA
55845 JI Mikrochim. Acta
55846 PY 2002
55847 VL 138
55848 IS 1-2
55849 BP 89
55850 EP 93
55851 PG 5
55852 SC Chemistry, Analytical
55853 GA 523CR
55854 UT ISI:000173934700015
55855 ER
55856 
55857 PT J
55858 AU Chen, DY
55859    Zhang, DJ
55860    Deng, SF
55861 TI The novel multi-soliton solutions of the MKdV-Sine Gordon equations
55862 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
55863 DT Article
55864 DE MKdV-Sine Gordon equation; Hirota method; novel multi-soliton solution
55865 ID COLLISIONS
55866 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
55867 RP Chen, DY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
55868 CR CHEN DY, 2000, NOVEL MULTISOLITON S
55869    CHEN DY, 2001, SOLITON SOLUTIONS WR
55870    GU CH, 1986, LETT MATH PHYS, V11, P31
55871    HIROTA R, 1971, PHYS REV LETT, V27, P1192
55872    HIROTA R, 1972, J PHYS SOC JPN, V33, P1459
55873    HIROTA R, 1973, J MATH PHYS, V14, P805
55874    KONNO K, 1974, J PHYS SOC JPN, V37, P171
55875 NR 7
55876 TC 17
55877 SN 0031-9015
55878 J9 J PHYS SOC JPN
55879 JI J. Phys. Soc. Jpn.
55880 PD FEB
55881 PY 2002
55882 VL 71
55883 IS 2
55884 BP 658
55885 EP 659
55886 PG 2
55887 SC Physics, Multidisciplinary
55888 GA 523ZF
55889 UT ISI:000173986900052
55890 ER
55891 
55892 PT J
55893 AU Bian, JJ
55894    Wang, XW
55895    Zhong, YG
55896    Wang, H
55897 TI Preparation and microwave dielectric properties of
55898    (Pb0.45Ca0.55)(Fe1/2Nb1/2)O-3 ceramics by citrate-gel processing route
55899 SO JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
55900 DT Article
55901 AB A synthetic procedure has been developed for the
55902    (Pb0.45Ca0.55)(Fe1/2Nb1/2)O-3 (PCFN) system in terms of liquid-mixed
55903    citrate precursor. The stability of the citrate gels against phase
55904    separation is investigated as a function of the pH value and the
55905    citrate/metal ratio in the initial solution. The elaboration process is
55906    described in detail. A single-phase PCFN powder with a particle size of
55907    30-50 nm can be synthesized at the low temperature of 850 degreesC
55908    using the citrate-gel processing route, which is 200 degreesC lower
55909    than that for the conventional process. Sintering properties and
55910    microwave dielectric properties of specimens derived from the
55911    citrate-gel process were also studied in this paper. A dense compound
55912    with a bulk density up to 6.20 g cm(-3) could be obtained when the
55913    specimens are sintered at 1000 degreesC/4 h. The dense single-phase
55914    PCFN ceramics were found to have microwave dielectric properties of
55915    epsilon(gamma) = 86.2, Q . f = 3450 GHz and tau(f) = 4 ppm
55916    C-degrees(-1). (C) 2002 Kluwer Academic Publishers.
55917 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
55918 RP Bian, JJ, Shanghai Univ, Dept Inorgan Mat, 20 ChenZhong Rd, Shanghai
55919    201800, Peoples R China.
55920 CR HUANG CL, 2000, MATER LETT, V43, P32
55921    ISHZAKI T, 1994, IEEE T MICROW THEORY, V42, P2017
55922    KAGATA H, 1994, NATL TECHNICAL REPOR, V40, P17
55923    KAKIHANA M, 1996, J SOL-GEL SCI TECHN, V6, P7
55924    KAREN P, 1994, J AM CERAM SOC, V77, P547
55925    KATO J, 1992, JPN J APPL PHYS 1, V31, P3144
55926    KIM HT, 1999, J AM CERAM SOC, V82, P3476
55927    NAKANO M, 1993, JPN J APPL PHYS 1, V32, P4314
55928    ONODA M, 1982, JPN J APPL PHYS, V21
55929    ZHOU BQ, 1980, CHEM REAGENTS, P123
55930 NR 10
55931 TC 1
55932 SN 0957-4522
55933 J9 J MATER SCI-MATER ELECTRON
55934 JI J. Mater. Sci.-Mater. Electron.
55935 PD MAR
55936 PY 2002
55937 VL 13
55938 IS 3
55939 BP 125
55940 EP 129
55941 PG 5
55942 SC Engineering, Electrical & Electronic; Materials Science,
55943    Multidisciplinary; Physics, Condensed Matter
55944 GA 524GG
55945 UT ISI:000174004400002
55946 ER
55947 
55948 PT J
55949 AU Li, CP
55950    Ceh, GR
55951 TI Bifurcation from an equilibrium of the steady state
55952    Kuramoto-Sivashinsky equation in two spatial dimensions
55953 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
55954 DT Article
55955 ID NON-LINEAR ANALYSIS; HYDRODYNAMIC INSTABILITY; LAMINAR FLAMES;
55956    PROPAGATION
55957 AB The paper deals with the steady state bifurcations of the
55958    Kuramoto-Sivashinsky (K-S) equation in two spatial dimensions with zero
55959    mean and periodic boundary value conditions. Applying the perturbation
55960    method, asymptotic expressions of the steady state solution branches
55961    that have bifurcated from the equilibrium are obtained. Furthermore,
55962    stability of the bifurcated solution branches is discussed.
55963 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
55964    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
55965 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
55966 CR AMDJADI F, 1997, J COMPUT PHYS, V131, P181
55967    BENNEY DJ, 1966, J MATH PHYS, V45, P150
55968    CHOW SN, 1982, METHODS BIFURCATION
55969    FOIAS C, 1988, J DIFF EQS, V73, P93
55970    GOLUBITSKY M, 1985, SINGULARITIES GROUPS, V1
55971    GOLUBITSKY M, 1988, SINGULARITIES GROUPS, V2
55972    KURAMOTO Y, 1975, PROG THEOR PHYS, V54, P687
55973    KURAMOTO Y, 1976, PROG THEOR PHYS, V55, P356
55974    KURAMOTO Y, 1978, PROG THEOR PHYS    S, V64, P346
55975    LI CP, 1997, J SHANGHAI U, V1, P95
55976    LI CP, 1998, APPL MATH JCU B, V13, P263
55977    LI CP, 2001, INT J BIFURCAT CHAOS, V11, P2493
55978    MICHELSON DM, 1977, ACTA ASTRONAUT, V4, P1207
55979    NICOLAENKO B, 1985, PHYSICA D, V16, P155
55980    ROST M, 1995, PHYSICA D, V88, P1
55981    SIVASHINSKY GI, 1977, ACTA ASTRONAUT, V4, P1177
55982    SIVASHINSKY GI, 1980, SIAM J APPL MATH, V39, P67
55983    TEMAM R, 1988, INFINITE DIMENSIONAL
55984    YANG ZH, 2000, IN PRESS J COMPUT AP
55985 NR 19
55986 TC 2
55987 SN 0218-1274
55988 J9 INT J BIFURCATION CHAOS
55989 JI Int. J. Bifurcation Chaos
55990 PD JAN
55991 PY 2002
55992 VL 12
55993 IS 1
55994 BP 103
55995 EP 114
55996 PG 12
55997 SC Mathematics, Applied; Multidisciplinary Sciences
55998 GA 522NR
55999 UT ISI:000173903900006
56000 ER
56001 
56002 PT J
56003 AU Xu, X
56004    Cao, ZY
56005 TI Linear and nonlinear aerodynamic theory of interaction between flexible
56006    long structure and wind
56007 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
56008 DT Article
56009 DE nonlinear aerodynamic forces; coupled interaction; flutter derivatives
56010 ID BRIDGES; FLOW
56011 AB In light of the characteristics of the interactions between flexible
56012    structure and wind in three directions, and based on the rational
56013    mechanical section-model of structure, a new aerodynamic force model is
56014    accepted, i.e, the coefficients of three component forces are the
56015    functions of the instantaneous attack angle and rotational speed C-t =
56016    C-t (beta(t), 0). (i = D, L, M). So, a new method to formulate the
56017    linear and nonlinear aerodynamic items of wind and structure
56018    interacting has been put forward in accordance with "strip theory" and
56019    modified "quasi-static theory", and then the linear and nonlinear
56020    coupled theory of super-slender structure for civil engineering
56021    analyzing are converged in one model, For the linear aerodynamic-force
56022    parts, the semi-analytical expressions of the items so-called "flutter
56023    derivatives" corresponding to the one in the classic equations have
56024    been given here, and so have the nonlinear parts. The study of the
56025    stability of nonlinear aerodynamic-coupled torsional vibration of the
56026    old Tacoma bridge shows that the form and results of the nonlinear
56027    control equation in rotational direction are in agreement with that of
56028    V. F. Bohm's.
56029 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
56030    Tongji Univ, Dept Engn Mech & Tech, Shanghai 200092, Peoples R China.
56031 RP Xu, X, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
56032    Peoples R China.
56033 CR BOHM VF, 1967, STAHLBAU, V7, P207
56034    BORRI C, 1995, 9 INT C WIND ENG NEW, P839
56035    BRITO JLV, 1995, J WIND ENG IND AEROD, V57, P81
56036    DAVENPORT AG, 1962, P I CIVIL ENG, V23, P389
56037    DIANA G, 1995, 9 INT C WIND ENG NEW, P938
56038    FALCO M, 1992, J WIND ENG IND AEROD, V41, P1321
56039    LIN YK, 1979, J ENG MECH DIV ASCE, V105, P921
56040    LIN YK, 1980, J STRUCTURAL MECHANI, V8, P1
56041    NOVAK M, 1968, BLWT368 U W ONT
56042    PARKINSON GV, 1961, J APPL MECH, V83, P250
56043    PICCARDO G, 1993, J WIND ENG IND AEROD, V48, P241
56044    SARKAR PP, 1994, J ENG MECH-ASCE, V120, P1718
56045    SCANLAN RH, 1971, J ENGINEERING MECHAN, V97, P1717
56046    SCANLAN RH, 1978, J SOUND VIB, V60, P187
56047    SCANLAN RH, 1978, J SOUND VIB, V60, P201
56048    SCANLAN RH, 1987, J ENG MECH-ASCE, V113, P555
56049    SCANLAN RH, 1997, J WIND ENG IND AEROD, V69, P829
56050    SOLARI G, 1994, GUST EXCITED VIBRATI
56051    STEINMANN DG, 1954, ACIER STEEL STAHL, V19, P495
56052    STROMMEN E, 1995, J WIND ENG IND AEROD, V56, P267
56053    XU X, 1998, P 3 INT C NONL MECH, P396
56054    XU X, 1999, J NONLINEAR DYNAMICS, V6, P228
56055 NR 22
56056 TC 0
56057 SN 0253-4827
56058 J9 APPL MATH MECH-ENGL ED
56059 JI Appl. Math. Mech.-Engl. Ed.
56060 PD DEC
56061 PY 2001
56062 VL 22
56063 IS 12
56064 BP 1446
56065 EP 1457
56066 PG 12
56067 SC Mathematics, Applied; Mechanics
56068 GA 523WW
56069 UT ISI:000173981400012
56070 ER
56071 
56072 PT J
56073 AU Chen, W
56074    Wu, Y
56075    Shen, J
56076 TI Corrosion resistance of 316L stainless steel cladded on plain carbon
56077    steel by powder metallurgy
56078 SO POWDER METALLURGY
56079 DT Article
56080 ID MICROSTRUCTURE
56081 AB A sandwich Structure with 316L stainless steel cladding on plain carbon
56082    steel was prepared by means of powder metallurgy processing. The
56083    corrosion performances of the cladding samples were studied by long
56084    term immersion tests and potentiodynamic anodic polarisation tests in
56085    sulphuric acid and ferric chloride solutions. The 316L surface layer,
56086    greater than or equal to 1.0 mm deep produced by PM cladding improves
56087    corrosion resistance in H2SO4 and FeCl3 solutions, although it is
56088    slightly lower than that of PM 316L bulk material. The PM 316L cladding
56089    surface layers have a similar anodic polarisation behaviour to the PM
56090    316L bulk material in H2SO4 and FeCl3 solutions, but the anodic current
56091    density of the PM bulk sample is much smaller than that of the cladding
56092    samples.
56093 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
56094    Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China.
56095 RP Chen, W, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
56096 CR DEDAMBORENA J, 1989, SURFACE ENG, V5, P235
56097    LABARBERA A, 1991, SURF COAT TECH, V46, P317
56098    LUMSDEN JB, 1982, CORROSION METALS PRO, P130
56099    MATHIESEN T, 1994, P INT POWD MET C EXH, V3, P2089
56100    MCCAFFERTY E, 1986, J ELECTROCHEM SOC, V133, P1090
56101    OTERO E, 1995, MATER CHARACT, V35, P145
56102    PARVATHAVARTHINI N, 1992, MATER SCI TECH SER, V8, P1070
56103 NR 7
56104 TC 1
56105 SN 0032-5899
56106 J9 POWDER MET
56107 JI Powder Metall.
56108 PY 2001
56109 VL 44
56110 IS 4
56111 BP 309
56112 EP 312
56113 PG 4
56114 SC Metallurgy & Metallurgical Engineering
56115 GA 520JV
56116 UT ISI:000173779500024
56117 ER
56118 
56119 PT J
56120 AU Wei, JH
56121    Zhu, DP
56122 TI Mathematical Modeling of the argon-oxygen decarburization refining
56123    process of stainless steel: Part I. Mathematical model of the process
56124 SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND
56125    MATERIALS PROCESSING SCIENCE
56126 DT Article
56127 AB Some available mathematical models for the argon-oxygen decarburization
56128    (AOD) stainless steel-making process have been reviewed. The actual
56129    situations of the AOD process, including the competitive oxidation of
56130    the elements dissolved in the molten steel and the changes in the bath
56131    composition, as well as the nonisothermal nature of the process, have
56132    been analyzed. A new mathematical model for the AOD refining process of
56133    stainless steel has been proposed and developed. The model is based on
56134    the assumption that the blown oxygen oxidizes C, Cr, Si, and Mn in the
56135    steel and Fe as a matrix, but the FeO formed is also an oxidant of C,
56136    Cr, Si, and Mn in the steel. All the possible oxidation-reduction
56137    reactions take place simultaneously and reach a combined equilibrium in
56138    competition at the liquid/bubble interfaces. It is also assumed that at
56139    high carbon levels, the oxidation rates of elements are primarily
56140    related to the supplied oxygen rate, and at low carbon levels, the rate
56141    of decarburization is mainly determined by the mass transfer of carbon
56142    from the molten steel bulk to the reaction interfaces. It is further
56143    assumed that the nonreacting oxygen blown into the bath does not
56144    accumulate in the liquid steel and will escape from the bath into the
56145    exhaust gas. The model performs the rate calculations of the refining
56146    process and the mass and heat balances of the system. Also, the effects
56147    of the operating factors, including adding the slag materials, crop
56148    ends, and scrap, and alloy agents; the nonisothermal conditions; the
56149    changes in the amounts of metal and slag during the refining; and other
56150    factors have all been taken into account.
56151 C1 Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China.
56152    Shanghai Wensi Software Ltd Co, Shanghai, Peoples R China.
56153 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China.
56154 CR ASAI S, 1974, METALL T, V5, P651
56155    BAIRD MHI, 1962, CHEM ENG SCI, V17, P87
56156    BURTSEV VT, 1974, DEOXIDATION POWER CA, P3
56157    CHEN JX, 1984, HDB COMMON USING DAT, P383
56158    CHEN JX, 1984, HDB COMMON USING DAT, CH1
56159    CHIPMAN J, 1964, BASIC OPEN HEARTH ST, P531
56160    DAVIES RM, 1950, P ROY SOC LOND A MAT, V200, P375
56161    DIAZ MC, 1997, ISIJ INT, V37, P1
56162    FINE HA, 1979, HDB MAT ENERGY BALAN, P106
56163    FRUEHAN RJ, 1976, IRONMAK STEELMAK, V3, P153
56164    GORGES H, 1978, P 3 INT IR STEEL C C, P161
56165    GORNERUP M, 1999, IRONMAK STEELMAK, V26, P58
56166    LANKFORD WT, 1985, MAKING SHAPING TREAT, P368
56167    LEWIS DA, 1998, P ANN CONV 1998 AISE
56168    MITCHELL A, 1982, I SM, P37
56169    OHNO T, TETSU TO HAGANE, V63, P2094
56170    RAY WH, 1971, PROCESS OPTIMIZATION, P310
56171    REICHEL J, 1995, IRON STEELMAKER, P41
56172    ROY TD, 1978, IRONMAK STEELMAK, V5, P198
56173    ROY TD, 1978, IRONMAK STEELMAK, V5, P207
56174    SIGWORTH GK, 1974, MET SCI, V8, P298
56175    SZEKELY J, 1974, METALL T, V5, P1573
56176    TOHGE T, 1984, P 4 PROC TECHN C IR, P129
56177    TURKDOGAN ET, 1980, PHYSICAL CHEM HIGH T, P14
56178    TURKDOGAN ET, 1980, PHYSICAL CHEM HIGH T, P359
56179    TURKDOGAN ET, 1980, PHYSICAL CHEM HIGH T, P5
56180    TURKDOGAN ET, 1983, PHYSICOCHEMICAL PROP, P422
56181    WEH CH, 1982, P 3 PROC TECHN C MAR, V3, P232
56182    WEI JH, 1986, CHIN J MET SCI TECHN, V2, P11
56183    WEI JH, 1987, ACTA METALL SIN, V23, B126
56184    WEI JH, 1989, CHIN J MET SCI TECHN, V5, P235
56185    WEI JH, 1999, IRONMAK STEELMAK, V26, P363
56186 NR 32
56187 TC 2
56188 SN 1073-5615
56189 J9 METALL MATER TRANS B
56190 JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci.
56191 PD FEB
56192 PY 2002
56193 VL 33
56194 IS 1
56195 BP 111
56196 EP 119
56197 PG 9
56198 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
56199    Engineering
56200 GA 520HW
56201 UT ISI:000173776500011
56202 ER
56203 
56204 PT J
56205 AU Wei, JH
56206    Zhu, DP
56207 TI Mathematical Modeling of the argon-oxygen decarburization refining
56208    process of stainless steel: Part II. Application of the model to
56209    industrial practice
56210 SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND
56211    MATERIALS PROCESSING SCIENCE
56212 DT Article
56213 AB The mathematical model proposed and presented in Part I of the present
56214    work has been used to deal with and analyze the austenitic stainless
56215    steel making (including ultralow-carbon steel) and has been tested on
56216    data of 32 heats obtained in producing 18Cr9Ni-grade steel in an 18-t
56217    argon-oxygen decarburization (AOD) vessel. The results indicated that
56218    the carbon concentrations and bath temperatures at the endpoints of
56219    blowing periods, calculated by the model, are in excellent agreement
56220    with the determined data, and the Cr content after the
56221    predeoxidization, obtained from the model predictions, also agrees very
56222    well with the observed value. The Gibbs free energies of the oxidation
56223    reactions of elements can be used to characterize fully the competitive
56224    oxidation among the elements during the refining process and to
56225    determine reasonably the corresponding distribution ratios of oxygen.
56226    The critical carbon concentration of decarburization (after which the
56227    decarburization changes to become controlled by the mass transfer of
56228    carbon in molten steel) for the AOD refining process of austenitic
56229    stainless steel in an 18-t AOD vessel is in the range of 0.25 to 0.40
56230    mass pet. The model can provide some very useful information and a
56231    reliable basis for optimization of the technology of the AOD refining
56232    process of stainless steel and control of the process in real time and
56233    online.
56234 C1 Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China.
56235    Shanghai Wensi Software Ltd Co, Shanghai, Peoples R China.
56236 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China.
56237 CR BREUER G, 1968, ARCH EISENHUTTENWES, V39, P553
56238    GORGES H, 1978, P 3 INT IR STEEL C C, P161
56239    KOCH K, 1976, ARCH EISENHUTTENWES, V47, P583
56240    NOMURA H, 1973, T ISIJ, V13, P325
56241    OETERS F, 1994, METALLURGH STEELMAKI, CH8
56242    REICHEL J, 1995, IRON STEELMAKER, P41
56243    WEI JH, 1999, IRONMAK STEELMAK, V26, P363
56244    WEI JH, 2002, METALL MATER TRANS B, V33, P111
56245 NR 8
56246 TC 1
56247 SN 1073-5615
56248 J9 METALL MATER TRANS B
56249 JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci.
56250 PD FEB
56251 PY 2002
56252 VL 33
56253 IS 1
56254 BP 121
56255 EP 127
56256 PG 7
56257 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
56258    Engineering
56259 GA 520HW
56260 UT ISI:000173776500012
56261 ER
56262 
56263 PT J
56264 AU You, JL
56265    Jiang, GC
56266    Hou, HY
56267    Wu, YQ
56268    Chen, H
56269    Xu, KD
56270 TI Temperature-dependent Raman spectra and microstructure of barium
56271    metaborate crystals and its melts
56272 SO CHINESE PHYSICS LETTERS
56273 DT Article
56274 ID BETA-BAB2O4; GENERATION; BORATE
56275 AB We have measured the Raman spectra of beta- and alpha-barium metaborate
56276    in crystal and liquid states from room temperature to 1873 K, with a
56277    semiconductor laser as the laser source, coupled with a time-resolved
56278    detection system to eliminate the dense thermal emission background
56279    when temperature was considerably high. Temperature-dependent Raman
56280    spectra can clearly indicate that the phase transformation from beta-
56281    to alpha-barium metaborate has been completed during 1273 - 1300 K.
56282    Variations of different kinds of microstructure units with temperature
56283    are identified and discussed.
56284 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
56285 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
56286    200072, Peoples R China.
56287 CR CHEN C, 1984, 13 IQEC
56288    CHEN C, 1984, SCI SIN B, V7, P598
56289    CHEN C, 1985, SCI SIN B, V28, P235
56290    EDELSTEIN DC, 1988, APPL PHYS LETT, V52, P2211
56291    EIMERL D, 1987, J APPL PHYS, V62, P1968
56292    HUANG ZQ, 1981, ACTA PHYS SINICA, V30, P559
56293    HUBNER KH, 1969, JB NEUES MONATSH, P335
56294    HUDSON B, 1986, SPECTROSCOPY, V1, P22
56295    IMAI S, 1989, APPL PHYS LETT, V54, P1206
56296    JIANG GC, 2000, SPECTROSC SPECT ANAL, V20, P206
56297    KAMITSOS EI, 1989, PHYS CHEM GLASSES, V30, P19
56298    KATO K, 1986, IEEE J QUANTUM ELECT, V22, P1013
56299    LIEBERTZ J, 1983, Z KRISTALLOGR, V165, P91
56300    MIGHELL AD, 1966, ACTA CRYSTALLOGR, V20, P819
56301    RULMONT A, 1989, SPECTROCHIM ACTA A, V45, P603
56302    TANG DY, 2000, CHIN J STRUCT CHEM, V19, P112
56303    VORONKO YK, 1988, ROST KRIST, V16, P178
56304    VORONKO YK, 1992, NEORGANICHESKIE MAT, V28, P1699
56305    VORONKO YK, 1993, J PHYS CHEM SOLIDS, V54, P1579
56306    WANG YF, 1998, J TIANJIN NORMAL U, V18, P12
56307    WEN Q, 2000, SPECTROSC SPECT ANAL, V20, P694
56308    YOU JL, 2001, CHINESE PHYS LETT, V18, P991
56309    YOU JL, 2001, J NON-CRYST SOLIDS, V282, P125
56310 NR 23
56311 TC 1
56312 SN 0256-307X
56313 J9 CHIN PHYS LETT
56314 JI Chin. Phys. Lett.
56315 PD FEB
56316 PY 2002
56317 VL 19
56318 IS 2
56319 BP 205
56320 EP 207
56321 PG 3
56322 SC Physics, Multidisciplinary
56323 GA 521HK
56324 UT ISI:000173834400020
56325 ER
56326 
56327 PT J
56328 AU Zhang, JC
56329    Liu, LH
56330    Dong, C
56331    Li, JQ
56332    Chen, H
56333    Li, XG
56334    Cheng, GS
56335 TI Positron study of microstructure and phase transition in the Fe-doped
56336    YBa2Cu3-xFexOy system
56337 SO PHYSICAL REVIEW B
56338 DT Article
56339 ID ANNIHILATION; SUPERCONDUCTIVITY; YBA2(CU1-XFEX)3O7-Y; YBA2CU3O7-DELTA;
56340    DENSITY; NI
56341 AB A series of YBa2Cu3-xFexOy (x = 0-0.50) samples has been studied by
56342    means of positron annihilation technology, scan electron microscope and
56343    x-ray diffraction. The oxygen contents of the samples have been
56344    measured using a volumetric method. The positron short-lifetime
56345    component tau(1) decreases abruptly between x = 0.12 and 0.15 where the
56346    compound undergoes an O-T phase transition and the tweed microstructure
56347    disappears. We proposed a simple model to describe the dependency of
56348    tau(1) on oxygen vacancy and twin (and tweed) boundary densities. The
56349    experimental results can be satisfactorily explained using this model.
56350    The positron lifetime tau(1) depends not only on the oxygen vacancy
56351    density, but also on the twin and tweed densities. Therefore, the
56352    positron can be used as a sensitive probe for the O-T phase transition
56353    in this system. In addition, analysis of the experimental results also
56354    gives certain indication for Fe clustering when x greater than or equal
56355    to 0.20.
56356 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
56357    Chinese Acad Sci, Inst Phys, Natl Lab Superconduct, Beijing 100080, Peoples R China.
56358    Henan Normal Univ, Dept Phys, Xinxiang 453002, Peoples R China.
56359 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
56360 CR BALOGH AG, 1988, PHYS REV B, V38, P2883
56361    BRANDT W, 1967, POSITRON ANNIHILATIO, P155
56362    CHAKRABORTY B, 1989, PHYS REV B, V39, P215
56363    DONG C, 1999, J APPL CRYSTALLOGR, V32, P838
56364    GASUMYANTS VE, 1992, SFKHT, V5, P674
56365    HAUTOJARVI P, 1983, POSITRONS SOLID, P255
56366    HIROI Z, 1988, JPN J APPL PHYS, V27, L580
56367    ISHIBASHI S, 1990, J PHYS-CONDENS MAT, V2, P3691
56368    ISLAM MS, 1991, PHYS REV B, V44, P9492
56369    JEAN YC, 1990, PHYS REV LETT, V64, P1593
56370    KATSUYAMA S, 1989, PHYSICA C, V165, P405
56371    NAROZHNYI VN, 1996, PHYS REV B, V53, P5856
56372    PUSKA MJ, 1994, REV MOD PHYS, V66, P841
56373    RISTO Z, 1991, J PHYS CHEM SOLIDS, V52, P1577
56374    SEEGER A, 1973, J PHYS F MET PHYS, V3, P248
56375    SMEDSKJAER LC, 1988, PHYS REV B, V37, P2330
56376    SYDOW JP, 1998, APPL PHYS LETT, V72, P3512
56377    TARASCON JM, 1988, PHYS REV B, V37, P7458
56378    VONSTETTEN EC, 1988, PHYS REV LETT, V60, P2198
56379    WESTERHOLT K, 1989, PHYS REV B, V39, P11680
56380    XU YW, 1989, PHYS REV B, V39, P6667
56381    ZHANG H, 1990, PHYS STATUS SOLIDI A, V121, K207
56382    ZHANG J, 1999, PHYS LETT A, V236, P452
56383    ZHANG JC, 1993, PHYS REV B, V48, P16830
56384 NR 24
56385 TC 10
56386 SN 1098-0121
56387 J9 PHYS REV B
56388 JI Phys. Rev. B
56389 PD FEB 1
56390 PY 2002
56391 VL 65
56392 IS 5
56393 AR 054513
56394 DI ARTN 054513
56395 PG 7
56396 SC Physics, Condensed Matter
56397 GA 518BQ
56398 UT ISI:000173647000086
56399 ER
56400 
56401 PT J
56402 AU Fang, SS
56403    Lin, GW
56404    Zhang, JL
56405    Zhou, ZQ
56406 TI The maximum solid solubility of the transition metals in palladium
56407 SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
56408 DT Article
56409 DE palladium alloys; solid solubility; electronegativity difference;
56410    atomic size parameters; covalent electron
56411 AB The maximum solid solubility limit (C-max) of transition metals
56412    dissolved in palladium can be described as an equation in
56413    semi-empirical theories with parameters such as electronegativity
56414    difference, atomic diameter and covalent electrons. It has been found
56415    that the electronegativity difference and the covalent electron number
56416    mainly affected the C-max of transition metals in palladium. The atomic
56417    size parameter had the smallest effect on the C-max. (C) 2002
56418    International Association for Hydrogen Energy. Published by Elsevier
56419    Science Ltd. All rights reserved.
56420 C1 Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China.
56421 RP Zhou, ZQ, Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072,
56422    Peoples R China.
56423 CR BENNETT LH, 1980, THEORY ALLOY PHASE F, P1
56424    BENNETT LH, 1980, THEORY ALLOY PHASE F, P390
56425    DARKEN LS, 1953, PHYSICAL CHEM METALS, P74
56426    MASSALSKI TB, 1986, BINARY ALLOY PHASE D
56427    MIEDEMA AR, 1980, THEORY ALLOY PHASE F, P344
56428    XIAO JM, 1985, ENERGETICS ALLOYS, P296
56429    ZHOU ZQ, 1997, P 97 MAT S CHIN SPON, P37
56430 NR 7
56431 TC 4
56432 SN 0360-3199
56433 J9 INT J HYDROGEN ENERG
56434 JI Int. J. Hydrog. Energy
56435 PD MAR
56436 PY 2002
56437 VL 27
56438 IS 3
56439 BP 329
56440 EP 332
56441 PG 4
56442 SC Physics, Atomic, Molecular & Chemical; Energy & Fuels; Environmental
56443    Sciences
56444 GA 518PA
56445 UT ISI:000173676000007
56446 ER
56447 
56448 PT J
56449 AU Li, D
56450    Sun, XL
56451    Biswal, MP
56452    Gao, F
56453 TI Convexification, concavification and monotonization in global
56454    optimization
56455 SO ANNALS OF OPERATIONS RESEARCH
56456 DT Article
56457 DE global optimization; monotonic function; convexification;
56458    concavification; monotonization; concave minimization; DC programming
56459 ID NONCONVEX OPTIMIZATION; NONINFERIOR FRONTIER
56460 AB We show in this paper that via certain convexification, concavification
56461    and monotonization schemes a nonconvex optimization problem over a
56462    simplex can be always converted into an equivalent better-structured
56463    nonconvex optimization problem, e.g., a concave optimization problem or
56464    a D.C. programming problem, thus facilitating the search of a global
56465    optimum by using the existing methods in concave minimization and D.C.
56466    programming. We first prove that a monotone optimization problem (with
56467    a monotone objective function and monotone constraints) can be
56468    transformed into a concave minimization problem over a convex set or a
56469    D.C. programming problem via pth. power transformation. We then prove
56470    that a class of nonconvex minimization problems can be always reduced
56471    to a monotone optimization problem, thus a concave minimization problem
56472    or a D.C. programming problem.
56473 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
56474    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
56475    Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India.
56476 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management,
56477    Shatin, Hong Kong, Peoples R China.
56478 CR BARHEN J, 1997, SCIENCE, V276, P1094
56479    CVIJOVIC D, 1995, SCIENCE, V267, P664
56480    GE R, 1990, MATH PROGRAM, V46, P191
56481    HOFFMAN KL, 1981, MATH PROGRAM, V20, P22
56482    HORST R, 1984, EUR J OPER RES, V15, P382
56483    HORST R, 1993, GLOBAL OPTIMIZATION
56484    HORST R, 1996, INTRO GLOBAL OPTIMIZ
56485    KAN AHG, 1989, HDB OPERATIONS RES M, V1, P631
56486    LI D, 1995, J OPTIMIZ THEORY APP, V85, P309
56487    LI D, 1996, J OPTIMIZ THEORY APP, V88, P177
56488    LI D, 1998, J OPTIMIZ THEORY APP, V99, P183
56489    LI D, 2000, J OPTIMIZ THEORY APP, V104, P109
56490    PARDALOS PM, 1987, CONSTRAINED GLOBAL O
56491    RAO SS, 1996, ENG OPTIMIZATION THE
56492    RUBIN GM, 1999, MOL BIOL CELL, V10, P1
56493    TUY H, 1994, HDB GLOBAL OPTIMIZAT, P149
56494    TZAFESTAS SG, 1980, INT J SYST SCI, V11, P455
56495    XU ZK, 1997, J OPTIMIZ THEORY APP, V94, P739
56496 NR 18
56497 TC 5
56498 SN 0254-5330
56499 J9 ANN OPER RES
56500 JI Ann. Oper. Res.
56501 PY 2001
56502 VL 105
56503 BP 213
56504 EP 226
56505 PG 14
56506 SC Operations Research & Management Science
56507 GA 518UH
56508 UT ISI:000173685900012
56509 ER
56510 
56511 PT J
56512 AU Wang, H
56513    Ren, ZM
56514    Deng, K
56515    Xu, KD
56516 TI Effects of a static magnetic field on solidification structure of MnBi
56517    phase in semi-solidified Bi-Mn alloy
56518 SO ACTA METALLURGICA SINICA
56519 DT Article
56520 DE magnetic field; Bi-Mn alloy; MnBi; semi-solidification; alignment;
56521    magnetic property
56522 AB Influences of a static magnetic field (0-1.0 T) on the solidification
56523    structure and magnetic property of the semi-solidified Bi-3%Mn and
56524    Bi-6%Mn alloys have been investigated. In the present of the magnetic
56525    field, the alloys were maintained at semi-solid state for a certain
56526    time and then solidified. It was shown that alignment and preferential
56527    growth of MnBi crystals along the applied field occurred. The alignment
56528    degree of MnBi was increased with the increase of the applied field,
56529    and the mean length of elongated MnBi crystals was increased with the
56530    increase of the applied field and the prolongation of solidification
56531    time. Moreover, the remained magnetic flux intensity along the aligned
56532    direction of Bi-Mn alloys in the case with a magnetic field was found
56533    to be strongly anisotropic and nearly double of that without magnetic
56534    field. A model was proposed to explain the alignment and preferential
56535    growth of ferromagnetic MnBi crystals in a magnetic field in terms of
56536    the magnetic anisotropism and the interaction between the crystals.
56537 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
56538 RP Ren, ZM, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R
56539    China.
56540 CR DECARLO JL, 1984, METALL TRANS A, V15, P2155
56541    FENG D, 1998, PHYSICS METAL, V4, P460
56542    GUO X, 1991, J APPL PHYS 2B, V69, P6067
56543    KATSUKI A, 1996, CHEM LETT, P607
56544    MIKELSON AE, 1981, J CRYST GROWTH, V52, P524
56545    MOFFATT WG, 1984, HDB BINARY PHASE DIA
56546    MORIKAWA H, 1998, MATER T JIM, V39, P814
56547    RANGO PD, 1991, NATURE, V349, P770
56548    SAVITSKY EM, 1981, J CRYST GROWTH, V52, P519
56549    SHETTY MN, 1987, J MATER SCI, V22, P1908
56550    WAN DF, 1987, PHYSICS MAGNETISM, P8
56551    WANG H, 2000, CHIN SCI ABSTR, V6, P240
56552    WANG H, 2001, MATER SCI ENG, V19, P119
56553    WANG H, 2001, MATER SCI ENG, V19, P136
56554    YASUDA H, 2000, 3 INT S EL PROC MAT, P647
56555 NR 15
56556 TC 13
56557 SN 0412-1961
56558 J9 ACTA METALL SIN
56559 JI Acta Metall. Sin.
56560 PD JAN 18
56561 PY 2002
56562 VL 38
56563 IS 1
56564 BP 41
56565 EP 46
56566 PG 6
56567 SC Metallurgy & Metallurgical Engineering
56568 GA 519TZ
56569 UT ISI:000173742700009
56570 ER
56571 
56572 PT J
56573 AU Wang, CG
56574    Bai, YJ
56575 TI Investigation on the surface coating of grinding balls
56576 SO RARE METALS
56577 DT Article
56578 DE coating; ball grinding; plastic deformation
56579 AB The surface coating of grinding balls was investigated experimentally.
56580    The results show that a coating may form on the surface of grinding
56581    balls when Cr or Al powders are subjected to ball grinding. The plastic
56582    deformation of the ball surface plays an important role during the
56583    coating formation, and the strong binding force between the powders and
56584    the balls is a necessary pre-condition. The thickness of coating
56585    increases with the plasticity of the powders and the balls. Annealing
56586    the balls with coating will result in an obvious diffusion of the
56587    elements in the bonding zone of interface.
56588 C1 Shandong Univ, Coll Mat Sci & Engn, Jinan 250061, Peoples R China.
56589    Shanghai Univ Sci & Technol, Dept Mech, Jinan 250031, Peoples R China.
56590 RP Wang, CG, Shandong Univ, Coll Mat Sci & Engn, Jinan 250061, Peoples R
56591    China.
56592 CR BENJAMIN JS, 1977, MET T A, V8, P1301
56593    GREGORY JK, 1985, METALL TRANS A, V16, P777
56594    HASHIMOTO H, 1994, MATER T JIM, V35, P40
56595    HUANG JY, 1994, J MATER SCI LETT, V13, P1201
56596    KOBAYASHI K, 1995, MATER T JIM, V36, P134
56597    QI BS, 1999, ACTA METALL SIN, V12, P607
56598    SUNDARESAN R, 1987, J MET, V39, P22
56599    WHITTENBERGER DL, 1981, METALL T A, V12, P845
56600 NR 8
56601 TC 0
56602 SN 1001-0521
56603 J9 RARE METALS
56604 JI Rare Metals
56605 PY 2001
56606 VL 20
56607 IS 4
56608 BP 259
56609 EP 264
56610 PG 6
56611 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
56612    Engineering
56613 GA 516XM
56614 UT ISI:000173582100012
56615 ER
56616 
56617 PT J
56618 AU Wang, G
56619    Gan, F
56620    Wang, J
56621    Yang, L
56622    Wang, G
56623    Xu, Z
56624 TI Spectroscopic investigations of a novel push-pull azo compound embedded
56625    in rigid polymer
56626 SO JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS
56627 DT Article
56628 DE organic compounds; thin films; optical properties
56629 ID REFRACTIVE-INDEX CHANGE; DOPED LIQUID-CRYSTALS; 2ND-HARMONIC
56630    GENERATION; FILMS; DYE; PHOTOISOMERIZATION; POLARIZATION
56631 AB A new heterocyclic push-pull azo compound-in-poly(methymethacrylate)
56632    (PMMA) film has been made by means of the spin-coating method. The
56633    spectroscopic properties of the films have been investigated with the
56634    steady-state absorption spectra, and steady-state fluorescence and
56635    femtosecond time-resolved fluorescence spectra in the first time, which
56636    is an important characteristic for the application of the film. The
56637    excited singlet (S-1) state lifetimes for trans and cis isomers of the
56638    film at room temperature have been measured. The excited triplet (T-1)
56639    state lifetime of cis isomer of the film has been obtained. The
56640    electronic structure of the film has been explained. The results show
56641    that the aggregate state of the azo molecules greatly influences its
56642    absorption spectra. (C) 2002 Elsevier Science Ltd. All rights reserved.
56643 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200433, Peoples R China.
56644    Acad Sinica, Shanghai Inst Opt & Fine Mech, High Intens Light Opt Lab, Shanghai 201800, Peoples R China.
56645 RP Wang, G, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200433, Peoples R
56646    China.
56647 CR AOKI H, 1996, JPN J APPL PHYS 1, V35, P168
56648    BACH H, 1996, J PHYS CHEM-US, V100, P4135
56649    BING X, 1996, ACTA OPT SINICA, V16, P1023
56650    CHEN AG, 1992, OPT LETT, V17, P441
56651    COUTURE JJA, 1991, APPL OPTICS, V30, P2858
56652    EGAMI C, 1997, APPL PHYS B-LASERS O, V64, P471
56653    FULONG T, 1995, J APPL PHYS, V78, P5884
56654    GUANGBIN W, 1998, P SOC PHOTO-OPT INS, V3562, P51
56655    HEQING Y, 1990, NORMAL U, V2, P45
56656    IKEDA T, 1993, NATURE, V361, P428
56657    JIANG SD, 1994, OPT COMMUN, V106, P173
56658    KIPPELEN B, 1994, OPT LETT, V19, P68
56659    LEE GJ, 1995, APPL OPTICS, V34, P138
56660    LEE M, 1986, J CHEM PHYS, V85, P4341
56661    LEGGE CH, 1992, J PHYS D APPL PHYS, V25, P492
56662    MALKIN S, 1962, J PHYS CHEM-US, V66, P2482
56663    MEERHOLZ K, 1994, NATURE, V371, P497
56664    MOHAJERANI E, 1992, OPT COMMUN, V92, P403
56665    MORTAZAVI MA, 1989, J OPT SOC AM B, V6, P733
56666    PHAM VP, 1995, APPL PHYS A-MATER, V60, P239
56667    SEKKAT Z, 1992, J APPL PHYS, V71, P1543
56668    SHI YQ, 1991, APPL PHYS LETT, V58, P1131
56669    TOMOV IV, 1991, J APPL PHYS, V70, P36
56670    TOMOV IV, 1991, J OPT SOC AM B, V8, P1477
56671    WEISS V, 1993, OPT LETT, V18, P1089
56672    ZHIZHAN X, 1997, SCI CHINA SER A, V27, P460
56673 NR 26
56674 TC 2
56675 SN 0022-3697
56676 J9 J PHYS CHEM SOLIDS
56677 JI J. Phys. Chem. Solids
56678 PD MAR
56679 PY 2002
56680 VL 63
56681 IS 3
56682 BP 501
56683 EP 506
56684 PG 6
56685 SC Chemistry, Multidisciplinary; Physics, Condensed Matter
56686 GA 516DA
56687 UT ISI:000173535500019
56688 ER
56689 
56690 PT J
56691 AU Liu, YZ
56692    Yuan, YC
56693    Chan, ZH
56694 TI On the combustion mechanism and development of the distillers'
56695    grain-fired boiler
56696 SO APPLIED THERMAL ENGINEERING
56697 DT Article
56698 DE the distillers' grain-fired boiler; combustion mechanism; wastes
56699 AB The utilization of wastes for energy purposes can solve the problems of
56700    energy shortage and environmental protection simultaneously. On the
56701    basis of the studies on the combustion mechanism of the distillers'
56702    grains, a kind of the distillers' grain-fired boiler is designed and
56703    its design features are described in this paper. The operation of this
56704    boiler shows that its performance has achieved the desired results of
56705    energy-saving, environmental protection and comprehensive utilization
56706    of ash. Besides, the distillers' grain-fired boiler is also suitable
56707    for other biomass fuels. (C) 2002 Elsevier Science Ltd. All rights
56708    reserved.
56709 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
56710 RP Liu, YZ, Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093,
56711    Peoples R China.
56712 CR BHATTACHARYA SC, 1987, ENERGY RES, V11, P429
56713    CHENG GY, 1998, J COMBUSTION SCI TEC, V4, P193
56714    LI P, 2000, IND BOILERS, V1, P31
56715    LIU H, 1995, ENERGY SAVING TECHNO, V3, P10
56716    LIU YQ, 1999, IND BOILERS, P2
56717    ZHAI XM, 2000, IND BOILERS, V2, P9
56718    ZHANG JJ, 1999, ACTA PHYS-CHIM SIN, V15, P15
56719 NR 7
56720 TC 0
56721 SN 1359-4311
56722 J9 APPL THERM ENG
56723 JI Appl. Therm. Eng.
56724 PD FEB
56725 PY 2002
56726 VL 22
56727 IS 3
56728 BP 349
56729 EP 353
56730 PG 5
56731 SC Engineering, Mechanical; Energy & Fuels; Mechanics; Thermodynamics
56732 GA 517XP
56733 UT ISI:000173636000009
56734 ER
56735 
56736 PT J
56737 AU Chen, LQ
56738 TI Chaos in perturbed planar non-Hamiltonian integrable systems with
56739    slowly-varying angle parameters
56740 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
56741 DT Article
56742 DE Melnikov method; perturbed integrable system; transversely homoclinic;
56743    chaos
56744 AB The Melnikov method was extended to perturbed planar non-Hamiltonian
56745    integrable systems with slowly-varying angle parameters. Based on the
56746    analysis of the geometric structure of unperturbed systems, the
56747    condition of transversely homoclinic intersection was established. The
56748    generalized Melnikov function of the perturbed system was presented by
56749    applying the theorem on the differentiability of ordinary differential
56750    equation solutions with respect to parameters. Chaos may occur in the
56751    system if the generalized Melnikov function has simple zeros.
56752 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
56753 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
56754    Shanghai 200072, Peoples R China.
56755 CR CHEN LQ, 1991, NATURE J, V14, P619
56756    CHEN LQ, 1996, J SHANGHAI JIAOTONG, V30, P28
56757    HALE J, 1980, ORDINARY DIFFERENTIA
56758    HOLMES PJ, 1980, SIAM J APPL MATH, V38, P65
56759    HOLMES PJ, 1980, SIAM J APPL MATH, V40, P167
56760    JIANG JF, 1987, MATH APPL SINICA, V10, P504
56761    LIU ZR, 1987, MODERN MATH MECH, P269
56762    WIGGINS S, 1988, GLOBAL BIFURCATIONS
56763    WIGGINS S, 1994, NORMALLY HYPERBOLIC
56764 NR 9
56765 TC 0
56766 SN 0253-4827
56767 J9 APPL MATH MECH-ENGL ED
56768 JI Appl. Math. Mech.-Engl. Ed.
56769 PD NOV
56770 PY 2001
56771 VL 22
56772 IS 11
56773 BP 1301
56774 EP 1305
56775 PG 5
56776 SC Mathematics, Applied; Mechanics
56777 GA 516EB
56778 UT ISI:000173538000009
56779 ER
56780 
56781 PT J
56782 AU Guo, BY
56783    He, SN
56784    Ma, HP
56785 TI Chebyshev spectral-finite element method for two-dimensional unsteady
56786    Navier-Stokes equation
56787 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
56788 DT Article
56789 DE Navier-Stokes equation; Chebyshev spectral-finite element method
56790 AB A mixed Chebyshev spectral-finite element method is proposed for
56791    solving two-dimensional unsteady Navier-Stokes equation. The
56792    generalized stability and convergence axe proved. The numerical results
56793    show the advantages of this method.
56794 C1 Shanghai Normal Univ, Sch Math Sci, Shanghai 200234, Peoples R China.
56795    Aircraft Coll China, Dept Foundamentary Sci, Tianjin 300300, Peoples R China.
56796    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
56797 CR CANUTO C, 1984, NUMER MATH, V44, P201
56798    CANUTO C, 1984, SPECTRAL METHODS PAR, P55
56799    CANUTO C, 1988, SPECTRAL METHOD FLUI
56800    CIARLET PG, 1978, FINITE ELEMENT METHO
56801    GUO BY, 1988, DIFFERENCE METHODS P
56802    GUO BY, 1989, J COMPUT PHYS, V84, P259
56803    GUO BY, 1993, SIAM J NUMER ANAL, V30, P1066
56804    GUO BY, 1995, SIAM J NUMER ANAL, V33, P1169
56805    GUO BY, 1996, APPL MATH JCU B, V11, P377
56806    GUO BY, 1998, SPECTRAL METHODS THE
56807    LIONS JL, 1968, PROBLEMES LIMITES NO, V1
56808 NR 11
56809 TC 0
56810 SN 0254-9409
56811 J9 J COMPUT MATH
56812 JI J. Comput. Math.
56813 PD JAN
56814 PY 2002
56815 VL 20
56816 IS 1
56817 BP 65
56818 EP 78
56819 PG 14
56820 SC Mathematics, Applied; Mathematics
56821 GA 515EZ
56822 UT ISI:000173483600006
56823 ER
56824 
56825 PT J
56826 AU Xu, H
56827    Shao, J
56828 TI Molecular dynamics simulation of fast Li+ conduction in fluoroborate
56829    glasses
56830 SO ACTA PHYSICO-CHIMICA SINICA
56831 DT Article
56832 DE molecular dynamics simulation; fluoroborate glass; fast ion conductor;
56833    conductivity; non-crystal material
56834 AB The conductivities in Fluoroborate glasses were calculated by molecular
56835    dynamics simulation method at near and higher than glass transition
56836    temperatures. There are seven simulated systems which coverd almost all
56837    glass formation area in Li2O-LiF-B2O3 system. The limited
56838    conductivities and their change with temperature, activition energy of
56839    MD simulation are well in agreement with experimental data.
56840    Some early researches showed that in fast conducting solid electrolytes
56841    one of their typical characteristics is that only one kind of carrier
56842    ion migrates. It was shown that in our simulation the contribution to
56843    electrical conductivity from F ion must be taken into account. Using
56844    activation energy data, the relative conductivites among those
56845    simulated systems and experimental systems can be explained perfectly.
56846 C1 Changshu Coll, Dept Chem, Changshu 215500, Peoples R China.
56847    Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
56848 RP Xu, H, Changshu Coll, Dept Chem, Changshu 215500, Peoples R China.
56849 CR ANDO H, 1994, ACCOUNTS CHEM RES, V27, P265
56850    ANGELL CA, 1989, REV SOLID STATE SCI, V3, P465
56851    ANGELL CA, 1994, NUOVO CIMENTO D, V16, P993
56852    BUSING WR, 1972, J CHEM PHYS, V57, P3008
56853    MARCH NH, 1985, AMORPHOUS SOLID LIQU
56854    SHAO J, 1990, ACTA PHYS SINICA, V39, P245
56855    SHAO J, 1993, ACTA METALLURGICA SI, V29, B11
56856    SMEDLEY SI, 1987, MAT RES B, V15, P421
56857    VIDEA M, 1999, J PHYS CHEM B, V103, P4185
56858    WOODCOCK LV, 1976, J CHEM PHYS, V65, P1565
56859    XU H, 1999, ACTA METALLURGICA SI, V35, P1065
56860    XU H, 2000, ACTA PHYS-CHIM SIN, V16, P512
56861 NR 12
56862 TC 3
56863 SN 1000-6818
56864 J9 ACTA PHYS-CHIM SIN
56865 JI Acta Phys.-Chim. Sin.
56866 PD JAN
56867 PY 2002
56868 VL 18
56869 IS 1
56870 BP 10
56871 EP 13
56872 PG 4
56873 SC Chemistry, Physical
56874 GA 513FU
56875 UT ISI:000173367900003
56876 ER
56877 
56878 PT J
56879 AU Jiang, WZ
56880    Qiu, XJ
56881    Zhu, ZY
56882    He, ZJ
56883 TI Gluonic contributions in a four-fermion interaction model
56884 SO PHYSICAL REVIEW C
56885 DT Article
56886 ID JONA-LASINIO MODEL; ADDITIONAL 4-FERMION INTERACTION; CHIRAL-SYMMETRY
56887    BREAKING; GAUGED NJL MODEL; QUARK CONDENSATE; THERMODYNAMICS; SYSTEM
56888 AB The gap equation for the fermion in nuclear medium is obtained in a
56889    two-flavor gauged Nambu-Jona-Lasino (NJL) model using the
56890    Schwinger-Dyson (SD) equations. The gap equation is solved with a
56891    quenched truncation. Compared to the four-fermion interaction, the
56892    one-gluon-exchange interaction accounts for considerable contributions
56893    (about 15-50%) to dynamically generated fermion mass. With
56894    incorporation of gluonic contributions into a scheme where there is
56895    only four-fermion interaction, the four-fermion coupling constant is
56896    made density dependent. Impacts of the density-dependent four-fermion
56897    (DDFF) coupling constants on quantities,, such as the fermion mass and
56898    the chiral order parameter as well as masses of mesons (sigma, pi), are
56899    estimated, The DDFF coupling constants lead to less density dependence
56900    of hadron masses and the larger critical density of chiral symmetry
56901    restoration than those from the pure four-fermion interaction, The
56902    calculated quantities are somehow dependent on the confinement scale
56903    Lambda(QCD). However, the range of Lambda(QCD) in the present
56904    parametrization can be determined by the saturation property of the
56905    gluonic contribution in the medium and it turns out quite small.
56906 C1 Natl Lab Heavy Ion Accelerator, Ctr Theoret Nucl Phys, Lanzhou 730000, Peoples R China.
56907    Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
56908    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
56909 RP Jiang, WZ, Natl Lab Heavy Ion Accelerator, Ctr Theoret Nucl Phys,
56910    Lanzhou 730000, Peoples R China.
56911 CR ALKOFER R, 1996, PHYS REP, V265, P139
56912    APPELQUIST T, 1988, P 12 J HOPK WORKSH C
56913    BARDEEN WA, 1989, NUCL PHYS B, V323, P493
56914    BARDEEN WA, 1990, PHYS REV D, V41, P1647
56915    BERNARD V, 1987, PHYS REV D, V36, P818
56916    BERNARD V, 1988, NUCL PHYS A, V489, P647
56917    BIJNENS J, 1991, PHYS LETT B, V273, P483
56918    BIJNENS J, 1996, PHYS REP, V265, P369
56919    CHRISTOV CV, 1990, NUCL PHYS A, V510, P689
56920    CUGNON J, 1996, NUCL PHYS A, V598, P515
56921    ELIZALDE E, 1994, PHYS REV D, V49, P5551
56922    GEYER B, 1996, PHYS REV D, V53, P7321
56923    HARADA M, 1994, PROG THEOR PHYS, V92, P1161
56924    HATSUDA T, 1994, PHYS REP, V247, P221
56925    HENLEY EM, 1990, NUCL PHYS A, V513, P667
56926    HIGASHIJIMA K, 1984, PHYS REV D, V29, P1228
56927    HINCHLIFFE I, 1996, PHYS REV D, V54, P77
56928    KING SF, 1990, PHYS LETT B, V241, P249
56929    KONDO K, 1989, PHYS REV D, V39, P2430
56930    KONDO K, 1993, MOD PHYS LETT A, V8, P2859
56931    KONDO KI, 1991, MOD PHYS LETT A, V6, P3385
56932    LEUNG CN, 1986, NUCL PHYS B, V273, P649
56933    LI GQ, 1994, PHYS LETT B, V338, P118
56934    MARCIANO WJ, 1984, PHYS REV D, V29, P580
56935    MIRANSKY VA, 1989, MOD PHYS LETT A, V4, P129
56936    MIRANSKY VA, 1989, MOD PHYS LETT A, V4, P1409
56937    MIRANSKY VA, 1989, PHYS LETT B, V221, P177
56938    NAMBU Y, 1961, PHYS REV, V122, P345
56939    REINDERS LJ, 1985, PHYS REP, V127, P1
56940    ZHUANG P, 1994, NUCL PHYS A, V576, P525
56941 NR 30
56942 TC 0
56943 SN 0556-2813
56944 J9 PHYS REV C
56945 JI Phys. Rev. C
56946 PD JAN
56947 PY 2002
56948 VL 65
56949 IS 1
56950 AR 015210
56951 DI ARTN 015210
56952 PG 9
56953 SC Physics, Nuclear
56954 GA 512EK
56955 UT ISI:000173308000052
56956 ER
56957 
56958 PT J
56959 AU Ling, LW
56960    Wu, WB
56961    Jiang, DL
56962    Tan, SH
56963    Huang, ZR
56964 TI Dispersion and rheology of SiC whisker in mullite slurry
56965 SO JOURNAL OF INORGANIC MATERIALS
56966 DT Article
56967 DE mullite; SiC whisker; dispersant; sedimentational volumn
56968 ID MECHANICAL-PROPERTIES; COMPOSITES
56969 AB The character of dispersion of SiC whiskers in mullite slurry was
56970    studied. The relationship between pH value or/and dispersant and
56971    dispersion of SiC whisker was discussed via the sedimentation
56972    experiment and rheology test. The results show that the rheological
56973    properties of the mullite slurry are affected by the addition of the
56974    whisker. Well dispersed slurry can be obtained with pH value and
56975    dispersant content as 11wt% and 5wt%, respectively. The dispersion
56976    techniques in the study can improve the character of dispersion of SiC
56977    whisker in mullite slurry, increasing the structure uniformity of the
56978    slurry.
56979 C1 Shanghai Univ, Coll Mat, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
56980    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
56981 RP Ling, LW, Shanghai Univ, Coll Mat, Dept Inorgan Mat, Shanghai 201800,
56982    Peoples R China.
56983 CR ARMOR JN, 1988, J AM CERAM SOC, V71, P938
56984    BECHER PF, 1988, J AM CERAM SOC, V71, P148
56985    HIRATA Y, 1990, J CERAM SOC JPN, V98, P951
56986    HIRATA Y, 1990, J MATER RES, V5, P640
56987    HIRATA Y, 1991, J AM CERAM SOC, V74, P2438
56988    HOMENY J, 1987, AM CERAM SOC BULL, V66, P333
56989    LIO S, 1989, J AM CERAM SOC, V72, P1880
56990    RUH R, 1988, J AM CERAM SOC, V71, P503
56991    SAMANTA SC, 1985, CERAM ENG SCI P, V6, P663
56992    USHIFUSA N, 1991, J AM CERAM SOC, V74, P2443
56993    WEI GC, 1987, AM CERAM SOC B, V66, P3339
56994 NR 11
56995 TC 0
56996 SN 1000-324X
56997 J9 J INORG MATER
56998 JI J. Inorg. Mater.
56999 PD NOV
57000 PY 2001
57001 VL 16
57002 IS 6
57003 BP 1084
57004 EP 1088
57005 PG 5
57006 SC Materials Science, Ceramics
57007 GA 512HY
57008 UT ISI:000173320000009
57009 ER
57010 
57011 PT J
57012 AU Pu, DG
57013    Tian, WW
57014 TI Globally convergent inexact generalized Newton's methods for nonsmooth
57015    equations
57016 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
57017 DT Article
57018 DE nonsmooth equations; inexact generalized Newton's method; global
57019    convergence; superlinear convergence rate
57020 AB In this paper, motivated by the Martinez and Qi methods (J. Comput.
57021    Appl. Math. 60 (1995) 127), we propose one type of globally convergent
57022    inexact generalized Newton's methods to solve nonsmooth equations in
57023    which the functions are nondifferentiable, but arc Lipschitz
57024    continuous. The methods make the norm of the functions decreasing.
57025    These methods are implementable and globally convergent. We also prove
57026    that the algorithms have superlinear convergence rates under some mild
57027    conditions. (C) 2002 Published by Elsevier Science B.V.
57028 C1 Tongji Univ, Dept Math, Tongji, Peoples R China.
57029    Shanghai Univ, Dept Math, Shanghai 200041, Peoples R China.
57030 RP Pu, DG, Tongji Univ, Dept Math, Tongji, Peoples R China.
57031 CR CLARKE FH, 1990, OPTIMIZATION NONSMOO
57032    DEMBO RS, 1982, SIAM J NUMER ANAL, V19, P400
57033    DEMBO RS, 1983, MATH PROGRAM, V26, P190
57034    EISENSTAT SC, 1994, SIAM J OPTIMIZ, V4, P393
57035    FISCHER A, 1992, OPTIMIZATION, V24, P269
57036    GOWDA MS, 1998, ALGORIC THEOREMS NON
57037    GOWDA MS, 1998, CHARACTERIZATIONS P
57038    MARTINEZ JM, 1995, J COMPUT APPL MATH, V60, P127
57039    PANG JS, 1995, J OPTIMIZ THEORY APP, V85, P633
57040    PU DG, 1998, J COMPUT APPL MATH, V93, P107
57041    QI L, 1993, MATH PROGRAM, V58, P353
57042    QI L, 1996, 965 AMR U NEW S WAL
57043    QI LQ, 1993, MATH OPER RES, V18, P227
57044 NR 13
57045 TC 0
57046 SN 0377-0427
57047 J9 J COMPUT APPL MATH
57048 JI J. Comput. Appl. Math.
57049 PD JAN 1
57050 PY 2002
57051 VL 138
57052 IS 1
57053 BP 37
57054 EP 49
57055 PG 13
57056 SC Mathematics, Applied
57057 GA 511EV
57058 UT ISI:000173252400003
57059 ER
57060 
57061 PT J
57062 AU Wei, Q
57063    Wang, Q
57064    Shi, JL
57065    Chen, YY
57066 TI Nonlinear interaction between solitons and radiation
57067 SO ACTA PHYSICA SINICA
57068 DT Article
57069 DE dressing method; soliton-like wave; soliton; radiation
57070 ID FIBERS
57071 AB In this paper, the explicit formula of Jost function pairs in the case
57072    of pure radiation is derived by using the dressing method and, the
57073    analysis of the interaction between solitons and radiation is made. It
57074    is found that in the course of transmission, the optical pulse, whose
57075    amplitude decays according to the law of the negative square root of
57076    power index along the propagating direction, ultimately evolves into
57077    the form of soliton-like wave in the absence of radiation. It is
57078    revealed that the factor gamma plays an important role in the spectrum
57079    properties for the output of the optical pulse. The dynamical behaviour
57080    of the evolution of soliton-like waves during the interaction of
57081    solitons and radiation is also analyzed.
57082 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
57083 RP Wei, Q, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
57084 CR ALONSO LM, 1985, PHYS REV D, V32, P1459
57085    GORDON JP, 1983, OPT LETT, V8, P596
57086    KUZNETSOV EA, 1995, PHYSICA D, V87, P201
57087    MANAKOV SV, 1973, ZH EKSP TEOR FIZ, V65, P1392
57088    MOLLENAUER LF, 1985, OPT LETT, V10, P229
57089    MOLLENAUER LF, 1993, ELECTRON LETT, V29, P910
57090    SATSUMA J, 1974, PROGR THEOR PHYS   S, V55, P284
57091    SEGUR H, 1976, J MATH PHYS, V17, P714
57092    ZAKHAROV VE, 1971, ZH EKSP TEOR FIZ, V61, P118
57093    ZAKHAROV VE, 1974, SOV PHYS JETP, V38, P693
57094    ZAKHAROV VE, 1978, ZH EKSP TEOR FIZ, V74, P1953
57095    ZAKHAROV VE, 1980, THEORY SOLITONS
57096 NR 12
57097 TC 2
57098 SN 1000-3290
57099 J9 ACTA PHYS SIN-CHINESE ED
57100 JI Acta Phys. Sin.
57101 PD JAN
57102 PY 2002
57103 VL 51
57104 IS 1
57105 BP 99
57106 EP 103
57107 PG 5
57108 SC Physics, Multidisciplinary
57109 GA 512CZ
57110 UT ISI:000173304700017
57111 ER
57112 
57113 PT J
57114 AU Zhang, JC
57115    Chen, ZP
57116    Li, PL
57117    Cao, SX
57118 TI Positron annihilation in oxygen-deficient YBa2Cu3O7-delta cuprate at 77
57119    K and 300 K
57120 SO MODERN PHYSICS LETTERS B
57121 DT Article
57122 ID SUPERCONDUCTIVITY; TEMPERATURE; LIFETIME; ELECTRON; IMPURITIES;
57123    BEHAVIOR; VACANCY; DENSITY
57124 AB The YBa2Cu3O7-delta cuprate with oxygen-deficiency (delta = 0.06
57125    similar to 0.68) has been systematically studied by positron lifetime
57126    experiment at 77 K and 300 K. It is found that there exists an evident
57127    dependence of positron lifetime parameters on oxygen-deficiency 6 and
57128    an abrupt change near the orthorhombic-tetragonal phase transition. The
57129    local electron density n(e) and vacancy concentration C-v are evaluated
57130    as a function of oxygen deficiency delta. The effect of the mechanism
57131    of charge transfer on local electronic structure is given in detail.
57132    The results show the existence of a weak localization of electrons in
57133    the tetragonal phase. The positron annihilation mechanism and its
57134    relation to superconductivity are also discussed.
57135 C1 CCAST, World Lab, Beijing 100080, Peoples R China.
57136    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
57137    Zhengzhou Inst Light Ind, Dept Phys, Zhengzhou 450002, Peoples R China.
57138 RP Zhang, JC, CCAST, World Lab, POB 8730, Beijing 100080, Peoples R China.
57139 CR BANERJEE T, 2000, SOLID STATE COMMUN, V114, P655
57140    BARBIELLINI B, 1991, PHYS REV B, V43, P7810
57141    BERGERSEN B, 1969, SOLID STATE COMMUN, V7, P1203
57142    BHARATHI A, 1989, J PHYS-CONDENS MAT, V1, P1467
57143    BOBROFF J, 1999, PHYS REV LETT, V83, P4381
57144    BRANDT W, 1971, PHYS LETT          A, V35, P109
57145    CHAKRABORTY B, 1989, PHYS REV B, V39, P215
57146    DE UY, 2000, PHYS REV B, V62, P14519
57147    GINSBERG DM, 1990, PHYSICAL PROPERTIES, P314
57148    GUPTA RP, 1977, PHYS REV LETT, V39, P1212
57149    HAUTOJARRI P, 1979, POSITRON SOLIDS
57150    JEAN YC, 1988, PHYS REV LETT, V60, P1069
57151    JEAN YC, 1990, PHYS REV LETT, V64, P1593
57152    JORGENSEN JD, 1987, PHYS REV B, V36, P5731
57153    JORGENSEN JD, 1991, PHYS TODAY, V44, P34
57154    KWOK WK, 1988, PHYS REV B, V37, P106
57155    TARASCON JM, 1988, PHYS REV B, V37, P7458
57156    VEHANEN A, 1982, PHYS REV B, V25, P762
57157    ZHANG J, 1994, MOD PHYS LETT B, V8, P1577
57158    ZHANG J, 1999, PHYS LETT A, V26, P452
57159    ZHANG JC, 1993, PHYS REV B, V48, P16830
57160    ZHANG QR, 1993, CHIN SCI A, V23, P409
57161 NR 22
57162 TC 0
57163 SN 0217-9849
57164 J9 MOD PHYS LETT B
57165 JI Mod. Phys. Lett. B
57166 PD NOV 10
57167 PY 2001
57168 VL 15
57169 IS 26
57170 BP 1181
57171 EP 1189
57172 PG 9
57173 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
57174 GA 507ZK
57175 UT ISI:000173061400002
57176 ER
57177 
57178 PT J
57179 AU Gao, Y
57180 TI Newton methods for solving nonsmooth equations via a new subdifferential
57181 SO MATHEMATICAL METHODS OF OPERATIONS RESEARCH
57182 DT Article
57183 DE nonsmooth equations; nonsmooth optimization; Newton methods;
57184    inexact-Newton methods; semismoothness; composite functions
57185 AB A new subdifferential for a locally Lipschitzian function is proposed.
57186    Based on this subdifferential, Newton methods and inexact-Newton
57187    methods for solving the system of nonsmooth equations and for solving
57188    the system of equations of smooth compositions of nonsmooth functions,
57189    are developed. The Q-superlinear convergence of Newton methods and the
57190    Q-linear convergence of inexact-Newton methods are shown. The present
57191    Newton methods and inexact-Newton methods could be viewed as the
57192    extensions of previous ones with same convergent results.
57193 C1 Shanghai Univ Sci & Technol, Sch Management, Shanghai 200093, Peoples R China.
57194 RP Gao, Y, Shanghai Univ Sci & Technol, Sch Management, Jungong Rd,
57195    Shanghai 200093, Peoples R China.
57196 CR CHEN WJ, 1996, SCI CHINA SER A, V39, P528
57197    CHEN X, 1997, COMPUTING, V58, P281
57198    CLARKE FH, 1983, OPTIMIZATION NONSMOO
57199    DEMYANOV VF, 1996, QUASIDIFFERENTIABILI
57200    HIRIARTURRUTY JB, 1993, CONVEX ANAL MINIMIZA
57201    MENG F, 1998, J DALIAN U TECHNOLOG, V38, P621
57202    MIFFLIN R, 1977, SIAM J CONTROL OPTIM, V15, P957
57203    ORTEGA JM, 1970, ITERATIVE SOLUTION N
57204    POTRA FA, 1998, NUMER MATH, V80, P305
57205    QI L, 1993, MATH PROGRAM, V58, P353
57206    QI LQ, 1993, MATH OPER RES, V18, P227
57207    SUN DF, 1997, SIAM J OPTIMIZ, V7, P463
57208 NR 12
57209 TC 1
57210 SN 1432-2994
57211 J9 MATH METHODS OPER RES
57212 JI Math. Method Oper. Res.
57213 PD DEC
57214 PY 2001
57215 VL 54
57216 IS 2
57217 BP 239
57218 EP 257
57219 PG 19
57220 SC Mathematics, Applied; Operations Research & Management Science
57221 GA 510DV
57222 UT ISI:000173194200004
57223 ER
57224 
57225 PT J
57226 AU Xu, SB
57227    Zhu, YD
57228    Xing, H
57229    Zhou, BN
57230    Yu, ZX
57231 TI Corrosion resistance of the intermetallic compound, NiAl,in a molten
57232    carbonate fuel cell environment
57233 SO JOURNAL OF POWER SOURCES
57234 DT Article
57235 DE corrosion resistance; molten carbonate; intermetallic compound NiAl
57236 ID SURFACE CHARACTERIZATION METHODS; BIPOLAR PLATE MATERIALS; WET-SEAL
57237    AREA; BEHAVIOR; ALLOYS; NICKEL; OXIDATION; REDUCTION; CHROMIUM; IRON
57238 AB The corrosion resistance of intermetallic NiAl, superalloy GH217 and an
57239    18-8 stainless steel in molten carbonates at 923 K was determined by
57240    weight loss and electrochemical measurements. Morphology and structure
57241    of the corrosion products were characterized using a combination of
57242    electron probe and X-ray diffraction (XRD). The corrosion resistance of
57243    NiAl is the best among the materials investigated. NiAl produces more
57244    protective corrosion products and forms more complete oxide films on
57245    the surface than GH217 or 18-8 stainless steel. (C) 2002 Elsevier
57246    Science B.V. All rights reserved.
57247 C1 Univ New Brunswick, Dept Chem Engn, Fredericton, NB E3B 5A3, Canada.
57248    Shanghai Univ, Dept Mat Sci & Engn, Shanghai, Peoples R China.
57249 RP Xu, SB, Univ New Brunswick, Dept Chem Engn, Fredericton, NB E3B 5A3,
57250    Canada.
57251 CR APPLEBY AJ, 1989, FUEL CELL HDB
57252    BIEDENKOPF P, 1998, ELECTROCHIM ACTA, V44, P683
57253    BRUMM MW, 1992, CORROS SCI, V33, P1677
57254    BRUMM MW, 1994, CORROS SCI, V36, P37
57255    DONADO RA, 1984, J ELECTROCHEM SOC, V131, P2535
57256    FUJIMOTO N, 1998, J POWER SOURCES, V71, P231
57257    HSU HS, 1986, J ELECTROCHEM SOC, V133, P2077
57258    HWANG ER, 1998, J POWER SOURCES, V76, P48
57259    INGRAM MD, 1965, ELECTROCHIM ACTA, V10, P783
57260    JANZ GJ, 1964, ELECTROCHIM ACTA, V9, P1269
57261    KAWABATA Y, 2000, J POWER SOURCES, V86, P324
57262    NISHINA T, 1990, P ELECTROCHEM SOC, V90, P438
57263    NISHINA T, 1992, P INT FUEL CELL C NE, P189
57264    RYBICKI GC, 1989, OXID MET, V32, P431
57265    SAUTHOFF G, 1990, Z METALLKD, V81, P855
57266    SHORES PA, P 3 S MOLT CARB FUEL, P214
57267    TOMCZYK P, 1993, J ELECTROANAL CHEM, V353, P177
57268    UCHIDA I, 1986, J ELECTROANAL CH INF, V206, P229
57269    VOSEN JPT, P 3 INT S CELL TECHN, P278
57270    VOSSEN JPT, 1994, J ELECTROCHEM SOC, V141, P3040
57271    VOSSEN JPT, 1996, J ELECTROCHEM SOC, V143, P58
57272    VOSSEN JPT, 1996, J ELECTROCHEM SOC, V143, P66
57273    XIE G, 1990, J POWER SOURCES, V32, P135
57274    XING H, 2000, J SHANGHAI U, V6, P199
57275    YUH CY, 1987, CORROSION, V87, P176
57276    YUH CY, 1988, AICHE J, V34, P1949
57277    ZHU BH, 1999, CORROS SCI, V41, P1497
57278    ZHU BH, 1999, CORROS SCI, V41, P1515
57279 NR 28
57280 TC 3
57281 SN 0378-7753
57282 J9 J POWER SOURCES
57283 JI J. Power Sources
57284 PD JAN 1
57285 PY 2002
57286 VL 103
57287 IS 2
57288 BP 230
57289 EP 236
57290 PG 7
57291 SC Electrochemistry; Energy & Fuels
57292 GA 509TX
57293 UT ISI:000173166700008
57294 ER
57295 
57296 PT J
57297 AU Li, ZN
57298    Feng, ZZ
57299 TI Counterexamples against some families of chromatically unique graphs
57300 SO DISCRETE MATHEMATICS
57301 DT Article
57302 DE graphs; chromatically unique graphs; chromatic polynomials
57303 AB In this note, we show that there are some counterexamples against two
57304    families of chromatically unique graphs H-5(j,k, l) and H-6(p, q) given
57305    by Koh and Teo ([1],[2]). (C) 2002 Elsevier Science B.V. All rights
57306    reserved.
57307 C1 Shanghai Univ, Dept Appl Math, Shanghai 200041, Peoples R China.
57308 RP Li, ZN, Shanghai Univ, Dept Appl Math, 80 Shanxi Beilu, Shanghai
57309    200041, Peoples R China.
57310 CR KOH KM, 1990, GRAPH COMBINATOR, V6, P259
57311    KOH KM, 1994, DISCRETE MATH, V127, P243
57312    ZU LN, 1997, DISCRETE MATH, V172, P193
57313 NR 3
57314 TC 0
57315 SN 0012-365X
57316 J9 DISCRETE MATH
57317 JI Discret. Math.
57318 PD JAN 28
57319 PY 2002
57320 VL 243
57321 IS 1-3
57322 BP 257
57323 EP 258
57324 PG 2
57325 SC Mathematics
57326 GA 507ZL
57327 UT ISI:000173061500023
57328 ER
57329 
57330 PT J
57331 AU Wan, JTK
57332    Gu, GQ
57333    Yu, KW
57334 TI Nonlinear ER effects in an ac applied field
57335 SO COMPUTER PHYSICS COMMUNICATIONS
57336 DT Article
57337 DE electrorheology; dipole approximation; nonlinear polarization;
57338    multipolar polarizability; multiple images method
57339 ID INTERPARTICLE FORCE; HYPERSPHERICAL INCLUSIONS; ELECTRORHEOLOGICAL
57340    FLUIDS; DIELECTRIC FUNCTION; COMPOSITES; O(C(2))
57341 AB The electric field used in most electrorheological (FR) experiments is
57342    usually quite high, and nonlinear ER effects have been theoretically
57343    predicted and experimentally measured recently.
57344    A direct method of measuring the nonlinear ER effects is to examine the
57345    frequency dependence of the same effects. For a sinusoidal applied
57346    field, we calculate the ac response which generally includes higher
57347    harmonics.
57348    In is work, we develop a multiple image formula, and calculate the
57349    total dipole moments of a pair of dielectric spheres, mbedded in a
57350    nonlinear host. The higher harmonics due to the nonlinearity are
57351    calculated systematically. (C) 2001 Elsevier Science B.V. All rights
57352    reserved.
57353 C1 Chinese Univ Hong Kong, Dept Phys, Sha Tin, Hong Kong, Peoples R China.
57354    Shanghai Univ Sci & Technol, Sch Comp Engn, Shanghai 200093, Peoples R China.
57355 RP Wan, JTK, Chinese Univ Hong Kong, Dept Phys, Sha Tin, Hong Kong,
57356    Peoples R China.
57357 CR CHOY TC, 1998, P ROY SOC LOND A MAT, V454, P1973
57358    CHOY TC, 1998, P ROY SOC LOND A MAT, V454, P1993
57359    FELICI N, 1994, ELECTRORHEOLOGICAL F, P139
57360    GAO L, 2000, PHYS REV E B, V61, P6011
57361    GU GQ, 1992, PHYS REV B, V46, P4502
57362    GU GQ, 2000, PHYSICA B, V279, P62
57363    KLINGENBERG DJ, 1998, MRS BULL, V23, P30
57364    LEVY O, 1995, PHYS REV E, V52, P3184
57365    POLADIAN L, 1991, PHYS REV B, V44, P2092
57366    WAN JTK, 2000, INT J MOD PHYS B, V14, P603
57367    WAN JTK, 2000, PHYS REV E B, V62, P6846
57368    WAN JTK, 2000, PHYSICA B, V279, P75
57369    WAN JTK, 2001, PHYS REV E 1, V63
57370    WAN JTK, 2001, TECHN P 2001 INT C C, P165
57371    WAN WMV, 1996, PHYS REV B, V54, P3946
57372    YU KW, 1993, PHYS REV B, V47, P14150
57373    YU KW, 1996, PHYS LETT A, V210, P115
57374    YU KW, 2000, COMPUT PHYS COMMUN, V129, P177
57375    YU KW, 2000, PHYSICA B, V279, P78
57376 NR 19
57377 TC 1
57378 SN 0010-4655
57379 J9 COMPUT PHYS COMMUN
57380 JI Comput. Phys. Commun.
57381 PD DEC 15
57382 PY 2001
57383 VL 142
57384 IS 1-3
57385 BP 457
57386 EP 463
57387 PG 7
57388 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
57389 GA 508QD
57390 UT ISI:000173099200089
57391 ER
57392 
57393 PT J
57394 AU Wang, Y
57395    Zhang, C
57396    Song, Y
57397    Yang, K
57398    Fang, G
57399    Xin, X
57400 TI Nonlinear refraction and absorption in heterothiometallic planar
57401    clusters
57402 SO APPLIED PHYSICS B-LASERS AND OPTICS
57403 DT Article
57404 ID OPTICAL LIMITING PROPERTIES; CRYSTAL-STRUCTURE
57405 AB The nonlinear absorption and refraction of the clusters
57406    [MoS4Cu4Br2(py)(6)] and [Et4N](2)[MoS4Cu4(SCN)(4) (2-pic)(4)] have been
57407    investigated using the z-scan technique with a ns laser at 532 nm
57408    wavelength. They have the same planar 'open' structures and the same
57409    skeleton metal atoms; the only difference is that the former has
57410    halogen ligands while the latter possesses pseudo-halogen groups - SCN
57411    - as ligands. Alteration of nonlinear refractive index and enhancement
57412    of nonlinear absorption were found in these two clusters. A steady
57413    state model of excited state nonlinear refraction was proposed to
57414    explain this phenomenon.
57415 C1 Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China.
57416    Nanjing Univ, Dept Chem, State Key Lab Coordinat Chem, Nanjing 210093, Peoples R China.
57417    Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
57418 RP Wang, Y, Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China.
57419 CR CHEN ZR, 1995, J PHYS CHEM-US, V99, P8717
57420    FANG G, 2000, OPT COMMUN, V181, P523
57421    FANG GY, 2000, OPT COMMUN, V181, P97
57422    GE P, 1997, J PHYS CHEM B, V101, P27
57423    HEFLIN JR, 1996, OPT SOC A, V9, P179
57424    HOGGARD PE, 1996, CHEM MATER, V8, P2218
57425    HOU HW, 1996, J CHEM SOC FARADAY T, V92, P2343
57426    JI W, 1995, J PHYS CHEM-US, V99, P17297
57427    LI CF, 1994, J OPT SOC AM B, V11, P1356
57428    SALANE G, 1995, INORG CHEM, V34, P4785
57429    SHEIKBAHAE M, 1990, IEEE J QUANTUM ELECT, V26, P760
57430    SHEIKBAHAE M, 1990, PHYS REV LETT, V65, P96
57431    SHI S, 1994, J AM CHEM SOC, V116, P3615
57432    SHI S, 1995, CHEM MATER, V7, P1519
57433    SONG YL, 1999, OPT COMMUN, V168, P131
57434    SONG YL, 2000, OPT COMMUN, V186, P105
57435    TUTT L, 1992, NATURE, V356, P255
57436    ZHANG C, 2001, CHEM COMMUN, V182, P843
57437    ZHENG HG, 1997, J CHEM SOC DALT 0707, P2357
57438 NR 19
57439 TC 0
57440 SN 0946-2171
57441 J9 APPL PHYS B-LASERS OPT
57442 JI Appl. Phys. B-Lasers Opt.
57443 PD JAN
57444 PY 2002
57445 VL 74
57446 IS 1
57447 BP 43
57448 EP 46
57449 PG 4
57450 SC Physics, Applied; Optics
57451 GA 509WC
57452 UT ISI:000173171900007
57453 ER
57454 
57455 PT J
57456 AU Cheng, JL
57457    Li, L
57458    Yu, SJ
57459    Song, Y
57460    Wen, XL
57461 TI Assessing changes in the mechanical condition of rock masses using
57462    P-wave computerized tomography
57463 SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES
57464 DT Article
57465 C1 Shanghai Univ Sci & Technol, Res Inst Special Min, Shandong 271019, Peoples R China.
57466    China Univ Min & Technol, Coll Earth Sci, Xuzhou 221008, Peoples R China.
57467 RP Cheng, JL, Shanghai Univ Sci & Technol, Res Inst Special Min, Shandong
57468    271019, Peoples R China.
57469 CR CHENG JL, 1999, J CHINA COAL SOC, V24, P576
57470    CHENG JL, 2000, ROCKS TEST DETECTION, P91
57471    GUO WJ, 1998, RECENT STUDY PROGRES, P46
57472    NOLET G, 1990, SEISMIC TOMOGRAPHY, P69
57473    WANG YS, 1992, CALCULATION GEOPHYS, V15, P32
57474    YANG WC, 1993, APPL SEISMIC TOMOGRA, P5
57475    YANG WC, 1997, THEORY METHODS GEOPH, P134
57476 NR 7
57477 TC 1
57478 SN 1365-1609
57479 J9 INT J ROCK MECH MINING SCI
57480 JI Int. J. Rock Mech. Min. Sci.
57481 PD OCT
57482 PY 2001
57483 VL 38
57484 IS 7
57485 BP 1065
57486 EP 1070
57487 PG 6
57488 SC Engineering, Geological; Mining & Mineral Processing
57489 GA 506PZ
57490 UT ISI:000172982100012
57491 ER
57492 
57493 PT J
57494 AU Jiang, EX
57495 TI An extension of the roots separation theorem
57496 SO ANNALS OF OPERATIONS RESEARCH
57497 DT Article
57498 DE eigenvalue problem; symmetric tridiagonal matrix; interlace theorem;
57499    divide-and-conquer method
57500 ID TRIDIAGONAL EIGENPROBLEM; DIVIDE
57501 AB Let T-n be an n x n unreduced symmetric tridiagonal matrix with
57502    eigenvalues lambda (1)<<lambda>(2)<... <lambda (n) and W-k, is an (n-1)
57503    x (n-1) submatrix by deleting the kth row and the kth column from T-n,
57504    k = 1, 2,..., n. Let mu (1)less than or equal to mu (2)less than or
57505    equal to...less than or equal to mu (n-1) be the eigenvalues of W-k. It
57506    is proved that if W-k has no multiple eigenvalue, then
57507    lambda (1)<<mu>(1)<<lambda>(2)<<mu>(2)<...<lambda
57508    (n-1)<<mu>(n-1)<<lambda>(n):
57509    otherwise if mu (i) = mu (i+1) is a multiple eigenvalue of W-k, then
57510    the above relationship still holds except that the inequality
57511    mu (i)<<lambda>(i+1)<<mu>(i+1)
57512    is replaced by mu (1)=lambda (i+1)=mu (i+1).
57513 C1 Shanghai Univ, Dept Math, Shanghai, Peoples R China.
57514 RP Jiang, EX, Shanghai Univ, Dept Math, Shanghai, Peoples R China.
57515 CR CUPPEN JJM, 1981, NUMER MATH, V36, P177
57516    DEMMEL JW, 1997, APPL NUMERICAL LINEA
57517    GLADWELL GML, 1986, INVERSE PROBLEMS VIB
57518    GU M, 1995, SIAM J MATRIX ANAL A, V16, P172
57519    HILL RO, 1992, SIAM J MATRIX ANAL A, V13, P239
57520    JIANG EX, 1984, SYMMETRIC MATRIX COM
57521    PAIGE CC, 1971, THESIS U LONDON
57522    RALSTON A, 1968, MATH METHODS DIAGONA
57523    SORENSEN DC, 1991, SIAM J NUMER ANAL, V28, P1752
57524 NR 9
57525 TC 1
57526 SN 0254-5330
57527 J9 ANN OPER RES
57528 JI Ann. Oper. Res.
57529 PY 2001
57530 VL 103
57531 BP 315
57532 EP 327
57533 PG 13
57534 SC Operations Research & Management Science
57535 GA 507TN
57536 UT ISI:000173045500019
57537 ER
57538 
57539 PT J
57540 AU Jiang, XY
57541    Zhang, ZL
57542    Zheng, XY
57543    Wu, YZ
57544    Xu, SH
57545 TI A blue organic emitting diode from anthracene derivative
57546 SO THIN SOLID FILMS
57547 DT Article
57548 DE blue organic emitting diode; anthracene derivative; stability;
57549    distyrylarylene
57550 ID ELECTROLUMINESCENT DEVICE; LAYER; DOPANT
57551 AB A blue, organic, light-emitting diode (OLED) has been made from a new
57552    blue emitting material. The structure of the blue device is indium tin
57553    oxide (ITO)/CuPc/NPB/JBEM:perylene/Alq/MgAg. Here copper phthalocyanine
57554    (CuPc) is used as a buffer layer,
57555    N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) as
57556    the hole transporting layer, 9,10-bis(3'5'-diaryl)phenyl anthracene
57557    (JBEM) as the blue emitting host, perylene as the blue dopant,
57558    Tris(8-guinolinolato) aluminium complex (Alq) as the electron
57559    transporting material, and M-Ag alloy as the cathode. The blue device
57560    has a maximum luminance of 7526 cd/m(2), and the luminance at a
57561    cut-rent density of 20 mA/cm(2) is 408 cd/m(2). It has a maximum
57562    efficiency of 1.45 lm/W., Commission Internationale de l'Eclairage
57563    (CIE) co-ordinates x = 0.14, y = 0.21, and a half-life of 1035 h at
57564    initial luminance of 100 cd/m(2). It shows a better stability than the
57565    blue device from distyrylarylene derivatives as the blue emitting host,
57566    and also perylene as the dopant with the same structure. (C) 2001
57567    Elsevier Science B.V. All rights reserved.
57568 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
57569 RP Jiang, XY, Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R
57570    China.
57571 CR BURROWS PE, 1997, IEEE T ELECTRON DEV, V44, P1188
57572    BURROWS PE, 2000, APPL PHYS LETT, V76, P2493
57573    CHEN CH, 1998, COORDIN CHEM REV, V171, P161
57574    CHOONG VE, 1999, APPL PHYS LETT, V75, P172
57575    ERA M, 1991, CHEM PHYS LETT, V178, P488
57576    GAO ZQ, 1999, APPL PHYS LETT, V74, P865
57577    HAMADA Y, 1992, JPN J APPL PHYS PT 1, V31, P1812
57578    HAMADA Y, 1997, IEEE T ELECTRON DEV, V44, P1208
57579    HAMADA Y, 1999, APPL PHYS LETT, V75, P1682
57580    HOSOKAWA C, 1995, APPL PHYS LETT, V67, P3853
57581    JIANG XZ, 2000, APPL PHYS LETT, V76, P1813
57582    KIDO J, 1995, SCIENCE, V267, P1332
57583    MI BX, 1999, APPL PHYS LETT, V75, P4055
57584    SAKAKIBARA Y, 1999, APPL PHYS LETT, V74, P2587
57585    SHEN ZL, 1997, SCIENCE, V276, P2009
57586    SHI JM, 1997, APPL PHYS LETT, V70, P1665
57587    SHI JM, 1999, 5972247, US
57588    STRUKELJ M, 1996, J AM CHEM SOC, V118, P1213
57589    TANG CW, 1987, APPL PHYS LETT, V51, P913
57590    TAO XT, 1999, APPL PHYS LETT, V75, P1655
57591    YOSHIDA M, 1996, JPN J APPL PHYS 2, V35, L397
57592    YU WL, 1999, APPL PHYS LETT, V75, P3270
57593 NR 22
57594 TC 8
57595 SN 0040-6090
57596 J9 THIN SOLID FILMS
57597 JI Thin Solid Films
57598 PD DEC 17
57599 PY 2001
57600 VL 401
57601 IS 1-2
57602 BP 251
57603 EP 254
57604 PG 4
57605 SC Materials Science, Multidisciplinary; Physics, Applied; Physics,
57606    Condensed Matter
57607 GA 505EW
57608 UT ISI:000172900200036
57609 ER
57610 
57611 PT J
57612 AU Guo, BY
57613    Ma, HP
57614    Tadmor, E
57615 TI Spectral vanishing viscosity method for nonlinear conservation laws
57616 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
57617 DT Article
57618 DE spectral method; vanishing viscosity; conservation law
57619 ID APPROXIMATIONS; CONVERGENCE; EDGES
57620 AB We propose a new spectral viscosity (SV) scheme for the accurate
57621    solution of nonlinear conservation laws. It is proved that the SV
57622    solution converges to the unique entropy solution under appropriate
57623    reasonable conditions. The proposed SV scheme is implemented directly
57624    on high modes of the computed solution. This should be compared with
57625    the original nonperiodic SV scheme introduced by Maday, Ould Kaber, and
57626    Tadmor in [SIAM J. Numer. Anal., 30 (1993), 321-342], where SV is
57627    activated on the derivative of the SV solution. The new proposed SV
57628    method could be viewed as a correction of the former, and it offers an
57629    improvement which is confirmed by our numerical experiments. A
57630    postprocessing method is implemented to greatly enhance the accuracy of
57631    the computed SV solution. The numerical results show the efficiency of
57632    the new method.
57633 C1 Shanghai Normal Univ, Sch Math Sci, Shanghai 200234, Peoples R China.
57634    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
57635    Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA.
57636 RP Guo, BY, Shanghai Normal Univ, Sch Math Sci, Shanghai 200234, Peoples R
57637    China.
57638 CR ABARBANEL S, 1986, NUMERICAL METHODS FL, V2, P129
57639    ANDREASSEN O, 1994, J COMPUT PHYS, V110, P257
57640    BERNARDI C, 1992, APPROXIMATIONS SPECT
57641    CANUTO C, 1988, SPECTRAL METHOD FLUI
57642    CHEN GQ, 1990, MSRI0052791
57643    CHEN GQ, 1993, MATH COMPUT, V61, P629
57644    GELB A, 1999, APPL COMPUT HARMON A, V7, P101
57645    GELB A, 2000, APPL NUMER MATH, V33, P3
57646    GELB A, 2000, SIAM J NUMER ANAL, V38, P1389
57647    GOTTLIEB D, 1977, NUMERICAL ANAL SPECT
57648    GOTTLIEB D, 1985, PROGR SCI COMPUTING, V6, P357
57649    GOTTLIEB D, 1987, SIAM J NUMER ANAL, V24, P241
57650    GOTTLIEB D, 1992, J COMPUT APPL MATH, V43, P81
57651    GOTTLIEB D, 1997, SIAM REV, V39, P644
57652    GUO BY, 1998, SPECTRAL METHODS THE
57653    JOSEPH KT, 1999, ARCH RATION MECH AN, V147, P47
57654    KABER SMO, 1996, J COMPUT PHYS, V128, P165
57655    KARAMANOS GS, 2000, J COMPUT PHYS, V163, P22
57656    LAX PD, 1972, CBMS NSF REGIONAL C, V11
57657    LIE I, 1996, P 3 INT C SPECTR HIG, P121
57658    MA HP, 1998, SIAM J NUMER ANAL, V35, P869
57659    MA HP, 1998, SIAM J NUMER ANAL, V35, P893
57660    MADAY Y, 1989, SIAM J NUMER ANAL, V26, P854
57661    MADAY Y, 1993, SIAM J NUMER ANAL, V30, P321
57662    MAJDA A, 1978, MATH COMPUT, V30, P1041
57663    SCHOCHET S, 1990, SIAM J NUMER ANAL, V27, P1142
57664    SHU CW, 1995, J SCI COMPUT, V10, P357
57665    SMOLLER J, 1983, SHOCK WAVES REACTION
57666    TADMOR E, 1989, SIAM J NUMER ANAL, V26, P30
57667    TADMOR E, 1990, COMPUT METHOD APPL M, V80, P197
57668    TADMOR E, 1991, SIAM J NUMER ANAL, V28, P891
57669    TADMOR E, 1993, MATH COMPUT, V60, P245
57670    TADMOR E, 1993, NUMERICAL METHODS FL, V4, P69
57671    TARTAR L, 1979, RES NOTES MATH, V39, P136
57672 NR 34
57673 TC 5
57674 SN 0036-1429
57675 J9 SIAM J NUMER ANAL
57676 JI SIAM J. Numer. Anal.
57677 PD DEC 4
57678 PY 2001
57679 VL 39
57680 IS 4
57681 BP 1254
57682 EP 1268
57683 PG 15
57684 SC Mathematics, Applied
57685 GA 505RB
57686 UT ISI:000172928400008
57687 ER
57688 
57689 PT J
57690 AU Ma, HP
57691    Sun, WW
57692 TI Optimal error estimates of the Legendre-Petrov-Galerkin method for the
57693    Korteweg-de Vries equation
57694 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
57695 DT Article
57696 DE Legendre-Petrov-Galerkin; pseudospectral; Korteweg-de Vries equation
57697 ID PSEUDOSPECTRAL METHOD; DEVRIES EQUATION; DIRECT SOLVERS; POLYNOMIALS;
57698    STABILITY; 3RD-ORDER; 2ND-ORDER
57699 AB In this paper, the Legendre-Petrov-Galerkin method for the Korteweg de
57700    Vries equation with nonperiodic boundary conditions is analyzed. The
57701    nonlinear term is computed with the Legendre spectral method and some
57702    pseudospectral methods, respectively. Optimal error estimates in
57703    L-2-norm are obtained for both semidiscrete and fully discrete schemes.
57704    The method is also applicable to some (2m + 1)th-order differential
57705    equations.
57706 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
57707    City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China.
57708    City Univ Hong Kong, Ctr Math Sci, Half Year Programme Numer Anal, Kowloon, Hong Kong, Peoples R China.
57709 RP Ma, HP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
57710 CR ABE K, 1980, J COMPUT PHYS, V34, P202
57711    BERNARDI C, 1992, J COMPUT APPL MATH, V43, P53
57712    BERNARDI C, 1997, HDBK NUM AN 2, V5, P209
57713    BRESSAN N, 1990, COMPUT METHODS APPL, V80, P443
57714    CANUTO C, 1988, SPECTRAL METHODS FLU
57715    CAREY GF, 1991, COMPUT METHOD APPL M, V93, P1
57716    CHAN TF, 1985, SIAM J NUMER ANAL, V22, P441
57717    COUTSIAS EA, 1996, P 3 INT C SPECTR HIG, P21
57718    DJIDJELI K, 1995, J COMPUT APPL MATH, V58, P307
57719    FORNBERG B, 1978, PHILOS T ROY SOC A, V289, P373
57720    FORNBERG B, 1999, J COMPUT PHYS, V155, P456
57721    HUANG WZ, 1992, SIAM J NUMER ANAL, V29, P1626
57722    KUO PY, 1985, ACTA MATH SINICA, V28, P1
57723    LEVY D, 1998, SIAM REV, V40, P40
57724    LI J, 2000, NUMER METH PART D E, V16, P513
57725    MA HP, 1986, J COMPUT PHYS, V65, P120
57726    MA HP, 2000, SIAM J NUMER ANAL, V38, P1425
57727    MA HP, 2001, ADV SCI COMPUTING, P116
57728    MADAY Y, 1988, RAIRO MODEL MATH ANA, V22, P499
57729    MERRYFIELD WJ, 1993, J COMPUT PHYS, V105, P182
57730    PAVONI D, 1988, CALCOLO, V25, P311
57731    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
57732    SHEN J, 1995, SIAM J SCI COMPUT, V16, P74
57733    SZEGO G, 1975, ORTHOGONAL POLYNOMIA
57734 NR 24
57735 TC 4
57736 SN 0036-1429
57737 J9 SIAM J NUMER ANAL
57738 JI SIAM J. Numer. Anal.
57739 PD DEC 4
57740 PY 2001
57741 VL 39
57742 IS 4
57743 BP 1380
57744 EP 1394
57745 PG 15
57746 SC Mathematics, Applied
57747 GA 505RB
57748 UT ISI:000172928400014
57749 ER
57750 
57751 PT J
57752 AU Yang, XC
57753    Bao, BR
57754    Cao, WG
57755    Sun, GX
57756    Li, Z
57757 TI Extraction of uranium(VI) with N,N '-dilauroylpiperazine in carbon
57758    tetrachloride
57759 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
57760 DT Article
57761 AB A novel extractant, N,N'-dilauroylpiperazine (DLPEZ), was synthesized
57762    for the first time. The extraction of uranium(VI) with the novel
57763    extractant in carbon tetrachloride from aqueous nitric acid media has
57764    been studied. The dependence of extraction distribution ratio on the
57765    concentration of aqueous nitric acid, extractant salting-out agent and
57766    temperature was investigated and the enthalpy of the extraction was
57767    determined.
57768 C1 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
57769    Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
57770    Jinan Univ, Dept Chem, Jinan 250022, Peoples R China.
57771 RP Yang, XC, Chinese Acad Sci, Shanghai Inst Nucl Res, POB 800-204,
57772    Shanghai 201800, Peoples R China.
57773 CR CARBORNNEL MC, 1988, SOLV EXTR ION EXCH, V5, P151
57774    MUSIKAS C, 1987, SOLVENT EXTR ION EXC, V5, P151
57775    NAKAMURA T, 1995, SOLVENT EXTR ION EXC, V13, P253
57776    SHEN CH, 1993, J NUCL RADIOCHEM, V15, P243
57777    SIDDALL TH, 1963, J INORG NUCL CHEM, V25, P883
57778    SUN GX, 1998, THESIS CHINESE ACAD, P16
57779    WANG YS, 1997, THESIS CHINESE ACAD, P43
57780    WANG YS, 1997, THESIS CHINESE ACAD, P71
57781 NR 8
57782 TC 2
57783 SN 0236-5731
57784 J9 J RADIOANAL NUCL CHEM
57785 JI J. Radioanal. Nucl. Chem.
57786 PD DEC
57787 PY 2001
57788 VL 250
57789 IS 3
57790 BP 559
57791 EP 561
57792 PG 3
57793 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
57794    & Technology
57795 GA 504DV
57796 UT ISI:000172842800024
57797 ER
57798 
57799 PT J
57800 AU Yang, XC
57801    Bao, BR
57802    Zhou, F
57803    Cao, WG
57804    Li, YL
57805 TI Thermodynamics of the extraction of U(VI) by N,N'-didecanoylpiperazine
57806 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
57807 DT Article
57808 AB A novel extractant, N, N'-didecanoylpiperazine (DDPEZ), was synthesized
57809    for the first time. The extraction of U(VI) by DDPEZ from aqueous
57810    nitric acid media in carbon tetrachloride has been studied. The
57811    dependence of extraction distribution ratio on concentration of aqueous
57812    nitric acid. extractant salting-out agent and temperature was
57813    investigated and the enthalpy of the extraction was calculated.
57814 C1 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
57815    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
57816    Shandong Comm Communist Party China, Jinan 250001, Peoples R China.
57817 RP Yang, XC, Chinese Acad Sci, Shanghai Inst Nucl Res, POB 800-204,
57818    Shanghai 201800, Peoples R China.
57819 CR CHARBORNNEL MC, 1988, SOLVENT EXTR ION EXC, V5, P151
57820    CURTIS NF, 1965, INORG CHEM, V4, P804
57821    MUSIKAS C, 1987, SOLVENT EXTR ION EXC, V5, P151
57822    NAKAMURA T, 1995, SOLVENT EXTR ION EXC, V13, P253
57823    SHEN CH, 1993, J NUCL RADIOCHEM, V15, P243
57824    SIDDALL TH, 1963, J INORG NUCL CHEM, V25, P883
57825    WANG YS, 1997, THESIS CHINESE ACAD, P43
57826    WANG YS, 1997, THESIS CHINESE ACAD, P71
57827 NR 8
57828 TC 1
57829 SN 0236-5731
57830 J9 J RADIOANAL NUCL CHEM
57831 JI J. Radioanal. Nucl. Chem.
57832 PD DEC
57833 PY 2001
57834 VL 250
57835 IS 3
57836 BP 573
57837 EP 575
57838 PG 3
57839 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
57840    & Technology
57841 GA 504DV
57842 UT ISI:000172842800029
57843 ER
57844 
57845 PT J
57846 AU Xiang, Q
57847    Bao, BR
57848    Li, Z
57849    Han, JT
57850    Shao, H
57851 TI The extraction of U(VI) with N-octanoyl-2-methylpiperidine in toluene
57852 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
57853 DT Article
57854 AB A new extractant. N-octanoyl-2-methylpiperidine (OMPPD) has been
57855    synthesized. The extraction of U(VI) with N-octanoyl-2-methylpiperidine
57856    (OMPPD) in nitric acid has been studied. The dependence of the
57857    partition reaction of U(VT) on the concentrations of nitric acid,
57858    extractant. salting-out agent LiNO3, and temperature has been studied.
57859    In the light of the results, the extraction mechanism is discussed. The
57860    synergistic extracted complexes may be presented as
57861    UO2(NO3)(2)(OMPPD)(2). The related thermodynamic functions were
57862    calculated.
57863 C1 Shanghai Univ, Dept Chem, Shanghai, Peoples R China.
57864    Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai, Peoples R China.
57865 RP Xiang, Q, Shanghai Univ, Dept Chem, Shanghai, Peoples R China.
57866 CR DONG LY, 1982, ANAL CHEM URANIUM, P158
57867    HAN JT, 1998, NUCL SCI TECHNOL, V10, P54
57868    HAN JT, 1999, J RADIOANAL NUCL CH, V241, P679
57869    SHAO H, 2000, J RADIOANAL NUCL CHE, V243, P831
57870    SIDDALL TH, 1960, J PHYS CHEM-US, V64, P1863
57871 NR 5
57872 TC 0
57873 SN 0236-5731
57874 J9 J RADIOANAL NUCL CHEM
57875 JI J. Radioanal. Nucl. Chem.
57876 PD DEC
57877 PY 2001
57878 VL 250
57879 IS 3
57880 BP 577
57881 EP 579
57882 PG 3
57883 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
57884    & Technology
57885 GA 504DV
57886 UT ISI:000172842800030
57887 ER
57888 
57889 PT J
57890 AU Guo, BY
57891    Shen, J
57892    Wang, ZQ
57893 TI Chebyshev rational spectral and pseudospectral methods on a
57894    semi-infinite interval
57895 SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
57896 DT Article
57897 DE Chebyshev rational polynomials; rational approximation; spectral
57898    method; pseudospectral method; semi-infinite interval
57899 ID DIFFERENTIAL-EQUATIONS; GALERKIN METHOD; APPROXIMATIONS
57900 AB A weighted orthogonal system on the half-line based on the Chebyshev
57901    rational functions is introduced. Basic results on Chebyshev rational
57902    approximations of several orthogonal projections and interpolations are
57903    established. To illustrate the potential of the Chebyshev rational
57904    spectral method, a model problem is considered both theoretically and
57905    numerically: error estimates for the Chebyshev rational spectral and
57906    pseudospectral methods are established; preliminary numerical results
57907    agree well with the theoretical estimates and demonstrate the
57908    effectiveness of this approach. Copyright (C) 2001 John Wiley & Sons,
57909    Ltd.
57910 C1 Penn State Univ, Dept Math, University Pk, PA 16802 USA.
57911    Shanghai Normal Univ, Sch Math Sci, Shanghai 200234, Peoples R China.
57912    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
57913 RP Shen, J, Penn State Univ, Dept Math, University Pk, PA 16802 USA.
57914 CR ADAMS RA, 1975, SOBLOV SPACES
57915    BERNARDI C, 1997, HDB NUMERICAL ANAL 2, V5
57916    BOYD JP, 1987, J COMPUT PHYS, V69, P112
57917    BOYD JP, 1987, J COMPUT PHYS, V70, P63
57918    BURNETT DS, 1994, J ACOUST SOC AM, V96, P2798
57919    CANUTO C, 1987, SPECTRAL METHODS FLU
57920    CHRISTOV CI, 1982, SIAM J APPL MATH, V42, P1337
57921    DEMKOWICZ L, 1998, NUMER MATH, V79, P11
57922    FUNARO D, 1990, APPL NUMER MATH, V6, P447
57923    GOTTLIEB D, 1977, NUMERICAL ANAL SPECT
57924    GUO BY, 1998, J MATH ANAL APPL, V226, P180
57925    GUO BY, 2000, J MATH ANAL APPL, V243, P373
57926    GUO BY, 2000, J SCI COMPUT, V15, P117
57927    GUO BY, 2000, NUMER MATH, V86, P635
57928    KARNIADAKIS GE, 1999, SPECTRAL HP ELEMENT
57929    LEIS R, 1996, INITIAL BOUNDARY VAL
57930    MADAY Y, 1985, RECH AEROSPATIALE, V6, P13
57931    MADAY Y, 1989, STATE ART SURVEYS CO, P71
57932    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
57933    SHEN J, 1996, HOUSTON J MATH, P233
57934 NR 20
57935 TC 8
57936 SN 0029-5981
57937 J9 INT J NUMER METHOD ENG
57938 JI Int. J. Numer. Methods Eng.
57939 PD JAN 10
57940 PY 2002
57941 VL 53
57942 IS 1
57943 BP 65
57944 EP 84
57945 PG 20
57946 SC Engineering, Multidisciplinary; Mathematics, Applied
57947 GA 504KV
57948 UT ISI:000172856600005
57949 ER
57950 
57951 PT J
57952 AU Shang, HJ
57953    Lu, YC
57954    Xu, XM
57955    Chen, Q
57956 TI The 'hybrid' technique for risk analysis of some diseases
57957 SO CHINESE ANNALS OF MATHEMATICS SERIES B
57958 DT Article
57959 DE illness fuzzy set; statistics; fuzzy comprehensive evaluation;
57960    information distribution; optimization
57961 AB Based on the data obtained from a survey recently made in Shanghai,
57962    this paper presents the hybrid technique for risk analysis and
57963    evaluation of some diseases.
57964    After determination of main risk factors of these diseases by analysis
57965    of variance, the authors introduce a new concept 'Illness Fuzzy Set'
57966    and use fuzzy comprehensive evaluation to evaluate the risk of
57967    suffering from a disease for residents. Optimal technique is used to
57968    determine the weights w(i) in fuzzy comprehensive evaluation, and a new
57969    method 'Improved Information Distribution' is also introduced for the
57970    treatment of small sample problem.
57971    It is shown that the results obtained by using the hybrid technique are
57972    better than by using single fuzzy technique or single statistical
57973    method.
57974 C1 Fudan Univ, Dept Math, Shanghai 200433, Peoples R China.
57975    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
57976    Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
57977 CR CHEN JJG, 1997, FUZZY SET SYST, V88, P1
57978    CUMMINS JD, 1997, N AM ACTUARIAL J, V1, P21
57979    HUANG CF, 1995, TECHNOLOGY FUZZY INF
57980    ZHANG SW, 1991, FUZZY MATH ITS APPL
57981 NR 4
57982 TC 0
57983 SN 0252-9599
57984 J9 CHIN ANN MATH SER B
57985 JI Chin. Ann. Math. Ser. B
57986 PD OCT
57987 PY 2001
57988 VL 22
57989 IS 4
57990 BP 475
57991 EP 484
57992 PG 10
57993 SC Mathematics
57994 GA 505AF
57995 UT ISI:000172888000005
57996 ER
57997 
57998 PT J
57999 AU Shi, LY
58000    Li, CZ
58001    Chen, AP
58002    Zhu, YH
58003    Fang, DY
58004 TI Morphological structure of nanometer TiO2-Al2O3 composite powders
58005    synthesized in high temperature gas phase reactor
58006 SO CHEMICAL ENGINEERING JOURNAL
58007 DT Article
58008 DE composite powder; nanometer powder; gas phase reaction
58009 ID ALUMINUM TITANATE FORMATION; SOLID-STATE REACTION; TIO2 POWDERS;
58010    RESEARCH NEEDS; PARTICLES; AL2O3
58011 AB In this research, nanometer TiO2-Al2O3 Composite powders were
58012    synthesized by the gas-phase oxidation of TiCl4 and AlCl3 in a high
58013    temperature tubular aerosol flow reactor. The measurement of EDS, XPS,
58014    XRD and TEM were used to characterize the chemical composition, crystal
58015    structure, and size of the particles. The crystal structure of titania
58016    and alumina in composite particles was affected by the AlO3 and TiCl4
58017    feed ratio. Aluminum titanate was formed when residence time was 1.73
58018    s, reaction temperature was 1400 degreesC, and AlCl3 and TiCl4 feed
58019    ratio was 2.80. The effect of processing parameters on the particle
58020    size and distribution of composite particles was studied. As the
58021    preheating temperature of oxygen increased, average particle size of
58022    the composite particles became smaller and size distribution more
58023    uniform. Enhancement of flow rate of cooling gas injected into reactor
58024    tail was benefit controlling the particle size. The composite particle
58025    size increased, respectively, with increasing reaction temperature and
58026    residence time. (C) 2001 Elsevier Science B.V. All rights reserved.
58027 C1 Shanghai Univ, Dept Chem, Shanghai 200072, Peoples R China.
58028    E China Univ Sci & Technol, Shanghai 200237, Peoples R China.
58029 RP Shi, LY, Shanghai Univ, Dept Chem, Shanghai 200072, Peoples R China.
58030 CR AKHTAR MK, 1994, J MATER RES, V9, P1241
58031    BOWEN HK, 1980, MATER SCI ENG, V44, P1
58032    FEGLEY B, 1984, J AM CERAM SOC, V67, C113
58033    FREUDENBERG B, 1987, J AM CERAM SOC, V70, P33
58034    FREUDENBERG B, 1988, J AM CERAM SOC, V71, P22
58035    HUNG CH, 1992, J MATER RES, V7, P1870
58036    JANG HD, 1995, AEROSOL SCI TECH, V23, P553
58037    KRUIS FE, 1998, J AEROSOL SCI, V29, P511
58038    KUSTERS KA, 1995, POWDER TECHNOL, V82, P79
58039    LANGE FF, 1989, J AM CERAM SOC, V72, P3
58040    LI CZ, 1997, THIN SOLID FILMS, V310, P238
58041    LIU SH, 1988, XRAY PHOTOELECTRON S, V305, P313
58042    OKUMURA H, 1986, J AM CERAM SOC, V69, C22
58043    PRATSINIS SE, 1996, POWDER TECHNOL, V88, P267
58044    SHI LY, 1998, MAT REV, V12, P23
58045    SHI LY, 1999, J ECUST, V25, P151
58046    SHI LY, 1999, J INORG MATER, V14, P717
58047    STAMATAKIS P, 1991, AEROSOL SCI TECH, V14, P316
58048    SUYAMA Y, 1985, J AM CERAM SOC, V68, C154
58049    THOMAS HAJ, 1989, BRIT CERAM TRANS J, V88, P144
58050    THOMAS HAJ, 1989, BRIT CERAM TRANS J, V88, P184
58051    VEMURY S, 1995, J AM CERAM SOC, V78, P2984
58052    WOJGNIER T, 1988, J NONCRYSTALLINE SOL, V100, P325
58053    YANG GX, 1996, NANOSTRUCT MATER, V7, P675
58054    YU JG, 1991, CHEM B, V10, P25
58055 NR 25
58056 TC 0
58057 SN 1385-8947
58058 J9 CHEM ENG J
58059 JI Chem. Eng. J.
58060 PD DEC 15
58061 PY 2001
58062 VL 84
58063 IS 3
58064 BP 405
58065 EP 411
58066 PG 7
58067 SC Engineering, Chemical
58068 GA 505LW
58069 UT ISI:000172915100024
58070 ER
58071 
58072 PT J
58073 AU Li, Q
58074    Zhou, BX
58075 TI A study of microstructure of alloy 690
58076 SO ACTA METALLURGICA SINICA
58077 DT Article
58078 DE alloy 690; heat treatment; microstructure; carbide
58079 AB The microstructures of alloy 690 after solid solution treatment
58080    followed by aging treatments at different temperatures (600-800
58081    degreesC) for various times (0.5-200 h) have been investigated by means
58082    of transmission electron microscopy (TEM). The results are as follows:
58083    the carbides precipitated on the grain boundaries have been identified
58084    as M23C6; the carbides nucleate preferentially at the positions where
58085    grain boundary dislocations tangled and easily precipitate in high
58086    angle grain boundaries nearly parallel to the (100) plane of grain on
58087    one side. The carbides always exhibit a cube-on-cube orientation
58088    relationship with matrix of one side, and don't precipitate on twinning
58089    plane but easily precipitate on the non-coherent boundaries of twin end
58090    where carbides grow fast along < 110 > direction and appear as
58091    needlelike. By controlling the growth of carbides and the content of
58092    chromium in depleted zone by special heat treatments, the corrosion
58093    resistance of alloy 690 can be optimized.
58094 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
58095 RP Li, Q, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
58096 CR ANGELIU TM, 1990, METALL TRANS A, V21, P2097
58097    DIETZ W, 1994, MAT SCI TECHNOLOGY B, V10, P101
58098    KAI JJ, 1989, METALL TRANS A, V20, P2057
58099    QIU SY, 1995, NUCL POWER ENG, V16, P340
58100 NR 4
58101 TC 0
58102 SN 0412-1961
58103 J9 ACTA METALL SIN
58104 JI Acta Metall. Sin.
58105 PD JAN 18
58106 PY 2001
58107 VL 37
58108 IS 1
58109 BP 8
58110 EP 12
58111 PG 5
58112 SC Metallurgy & Metallurgical Engineering
58113 GA 502WQ
58114 UT ISI:000172766100002
58115 ER
58116 
58117 PT J
58118 AU Lu, XG
58119    Ding, WZ
58120    Li, FS
58121    Li, LF
58122    Zhou, GZ
58123 TI Study of electronic conductivity of molten slags with Wagner
58124    polarization technique
58125 SO ACTA METALLURGICA SINICA
58126 DT Article
58127 DE Wagner polarization technique; smelt slag; electronic conductivity
58128 AB Wagner polarization technique has been used to measure the electronic
58129    conductivity of CaO-SiO2-Al2O3-FeOx slag system in this paper. The
58130    experimental results show that electronic conductivities of the slags
58131    consist of free electron conductivity and electron hole conductivity.
58132    The two conductivities are related to the content of Fe3+ and Fe2+
58133    respectively. As experimental temperature increased, the free electron
58134    conductivity decreases, and the electron hole conductivity increases
58135    while Fe3+ changes to Fe2+. It is found that there is always a maximum
58136    electronic conductivity value at some ratio of Fe3+ content to the
58137    total iron content for different slag systems at a special temperature.
58138    Under the present experimental condition, the electronic conductivity
58139    is in the range of 10(-4)-10(-2) S(.)cm(-1).
58140 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
58141    Univ Sci & Technol Beijing, Lab Solid Electrolytes & Met Testing Tech, Beijing 100083, Peoples R China.
58142 RP Lu, XG, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072,
58143    Peoples R China.
58144 CR DANCY EA, 1966, T TMS AIME, V236, P1642
58145    DICKSON WR, 1962, T METALL SOC AIME, V224, P505
58146    DUKELOW DA, 1960, T AIME, V218, P1386
58147    ENGELL HJ, 1968, BER BUNSEN PHYS CHEM, V72, P5
58148    FONTANA A, 1984, ELECT CONDUCTIVITY F, P59
58149    HAARBERG GM, 1993, METALL TRANS B, V24, P729
58150    INOUYE H, 1953, T FARADAY SOC, V49, P796
58151    KATO M, 1969, T IRON STEEL I JPN, V9, P39
58152    KRISHAMUETHY GG, 1993, IRONMAK STEELMAK, V20, P191
58153    KROGER FA, 1974, CHEM IMPERFECT CRYST, V3, P149
58154    LU XG, 1999, J UNIV SCI TECHNOL B, V6, P27
58155    PAL U, 1985, METALL TRANS B, V16, P77
58156    PASTUKHOV EA, 1966, ELEKTROCHEM, V2, P209
58157    SIMNAD MT, 1953, J CHEM PHYS, V21, P933
58158    SIMNAD MT, 1954, T AIME, V200, P1386
58159    SPEELMAN JL, 1989, METALL T B, V20, P31
58160    WAGNER C, 1957, P INT COMM ELECTROCH, V7, P361
58161 NR 17
58162 TC 2
58163 SN 0412-1961
58164 J9 ACTA METALL SIN
58165 JI Acta Metall. Sin.
58166 PD FEB 18
58167 PY 2001
58168 VL 37
58169 IS 2
58170 BP 184
58171 EP 188
58172 PG 5
58173 SC Metallurgy & Metallurgical Engineering
58174 GA 502WT
58175 UT ISI:000172766300015
58176 ER
58177 
58178 PT J
58179 AU Xu, KD
58180    Jiang, GC
58181    Hong, X
58182    Zheng, SB
58183    Xu, JL
58184 TI Discussion on new process making clean-steel from scrap
58185 SO ACTA METALLURGICA SINICA
58186 DT Article
58187 DE steel making process; clean steel; scrap
58188 AB The enrichment of harmful impurities during the recycle of scrap limits
58189    the effective use of scrap source in clean steel production. Attempts
58190    so far to separate residual elements one by one from steel bath seems
58191    expensive, low efficient and difficult for industrial application. This
58192    paper put forward consequently the "slagging-reduction process", in
58193    which melting FeO will be obtained with oxidizing method as pure raw
58194    material for following hydrogen-based reduction procedure. This will be
58195    a way to use low-class mixed scrap in production of special steel,
58196    whose total content of residual elements is strictly restrained.
58197    Moreover, the enrichment and concentration of impurities like Cu can
58198    make their extraction and recycle easier and cheaper.
58199 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
58200 RP Xu, KD, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072,
58201    Peoples R China.
58202 CR FEINMAN J, 1999, IRON STEEL ENG, V76, P75
58203    HONG X, 1992, SIMULATION OPTIMIERU, P168
58204    SUGIURA S, 1988, T ISIJ, V28, P325
58205    WEI SK, 1980, THERMODYNAMICS METAL, P56
58206    XU KD, 2000, CHIN ENG SCI, V2, P1
58207    ZHANG HJ, 1996, DISCUSS REFORM EAF S, P212
58208    ZHAO BJ, 1994, COLLECTED WORKS INFL, P1
58209    ZHAO BJ, 1994, COLLECTED WORKS INFL, P7
58210 NR 8
58211 TC 1
58212 SN 0412-1961
58213 J9 ACTA METALL SIN
58214 JI Acta Metall. Sin.
58215 PD APR 18
58216 PY 2001
58217 VL 37
58218 IS 4
58219 BP 395
58220 EP 399
58221 PG 5
58222 SC Metallurgy & Metallurgical Engineering
58223 GA 502WW
58224 UT ISI:000172766600013
58225 ER
58226 
58227 PT J
58228 AU Feng, PX
58229    James, B
58230    Liu, MH
58231    Lee, S
58232    Chen, YH
58233 TI A pinhole transmission grating spectrograph used in the
58234    characterization of the spatial distribution plasma x-ray spectrum
58235 SO PLASMA SOURCES SCIENCE & TECHNOLOGY
58236 DT Article
58237 ID FOCUS
58238 AB A pinhole transmission grating spectrograph has been used for measuring
58239    the soft x-ray spectrum front a laser-irradiated solid target plasma
58240    and gas-filled plasma focus. This spectrograph can be used together
58241    with a soft x-ray streak camera or a soft x-ray CCD detector for
58242    time-resolved studies. The spectrograph has provided a spatially
58243    resolved spectrum with a wavelength range of 0.3-50 nm. It is a cheap,
58244    compact and easily adjusted and has been used for both laser-produced
58245    plasma and plasma focus. Preliminary experimental results have been
58246    obtained for the plasma x-ray spectrum and the spatial structure both
58247    from the laser-produced plasma and the plasma focus.
58248 C1 Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
58249    Nanyang Technol Univ, Sch Sci, Singapore 259756, Singapore.
58250    Shanghai Univ Sci & Technol, Inst Dynam, Shanghai 200345, Peoples R China.
58251 RP Feng, PX, Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
58252 CR BRUNER ME, 1988, P SOC PHOTO-OPT INS, V982, P299
58253    BRYUNETKIN BA, 1992, LASER PART BEAMS, V10, P849
58254    BURKHALTER PG, 1992, REV SCI INSTRUM, V63, P5053
58255    FEDER R, 1984, J MICROSCOPY, V135, P347
58256    FENG X, 1992, P 10 VUV INT C PAR 9
58257    FENG X, 1994, J LASER B, V3, P414
58258    FENG XP, 1989, J FIZ MALAYSIA, V10, P49
58259    GUENTHER R, 1990, MODERN OPTICS, P87
58260    HIRANO K, 1994, J PHYS SOC JPN, V63, P3657
58261    KATO Y, 1986, APPL PHYS LETT, V48, P686
58262    KATO Y, 1992, JPN J APPL PHYS PT 1, V31, P3695
58263    LEE S, 1983, AUST J PHYS, V36, P891
58264    LEE S, 1996, RES REPORT NIE SSC P
58265    LEE S, 1997, P SOC PHOTO-OPT INS, V3183, P112
58266    MICHELIS CD, 1981, NUCL FUSION, V21, P677
58267    MOO SP, 1991, IEEE T PLASMA SCI, V19, P515
58268    MOO SP, 1993, J RADIOL PROTECT, V13, P207
58269    PEALMAN JS, 1981, J VAC SCI TECHNOL, V19, P1190
58270    PORTER JL, 1992, PHYS REV LETT, V68, P796
58271    ROTHWEILER D, 1993, I PHYS C SER, V130, P47
58272    SCHNOPPER HW, 1977, APPL OPTICS, V16, P1088
58273    TAKAHAMA Y, 1994, REV SCI INSTRUM, V65, P2505
58274    WANG XF, 1991, J APPL PHYS, V69, P2015
58275 NR 23
58276 TC 0
58277 SN 0963-0252
58278 J9 PLASMA SOURCES SCI TECHNOL
58279 JI Plasma Sources Sci. Technol.
58280 PD NOV
58281 PY 2001
58282 VL 10
58283 IS 4
58284 BP 589
58285 EP 594
58286 PG 6
58287 SC Physics, Fluids & Plasmas
58288 GA 503BM
58289 UT ISI:000172777300007
58290 ER
58291 
58292 PT J
58293 AU Zhou, SF
58294 TI Attractors for second-order lattice dynamical systems with damping
58295 SO JOURNAL OF MATHEMATICAL PHYSICS
58296 DT Article
58297 AB We consider the existence and the approximation of the global attractor
58298    for second-order damped lattice dynamical systems. (C) 2002 American
58299    Institute of Physics.
58300 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
58301 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
58302 CR CHATE H, 1997, PHYSICA D, V103, P1
58303    CHOW SN, 1998, J DIFFER EQUATIONS, V149, P248
58304    GHIDAGLIA JM, 1991, SIAM J MATH ANAL, V22, P861
58305    HALE JK, 1988, ASYMPTOTIC BEHAV DIS
58306    JIANG MH, 1999, J STAT PHYS, V95, P791
58307    SHEN WX, 1996, SIAM J APPL MATH, V56, P1379
58308    TEMAM R, 1988, APPL MATH SCI, V68
58309    WANG Z, 1997, MATH APPL, V10, P97
58310    YU J, 1998, PHYS LETT A, V240, P60
58311    ZHOU SF, 1999, J MATH ANAL APPL, V233, P102
58312 NR 10
58313 TC 0
58314 SN 0022-2488
58315 J9 J MATH PHYS-NY
58316 JI J. Math. Phys.
58317 PD JAN
58318 PY 2002
58319 VL 43
58320 IS 1
58321 BP 452
58322 EP 465
58323 PG 14
58324 SC Physics, Mathematical
58325 GA 503GF
58326 UT ISI:000172790200028
58327 ER
58328 
58329 PT J
58330 AU Wan, JTK
58331    Yu, KW
58332    Gu, GQ
58333 TI Relaxation of surface charge on rotating dielectric spheres:
58334    Implications on dynamic electrorheological effects
58335 SO PHYSICAL REVIEW E
58336 DT Article
58337 ID SUSPENSIONS; SIMULATION; SHEAR; FLUIDS; FIELD
58338 AB We have examined the effect of an oscillatory rotation of a polarized
58339    dielectric particle, The rotational motion leads to a redistribution of
58340    the polarization charge on the surface of the particle. We show that
58341    the time-averaged steady-state dipole moment is along the field
58342    direction, but its magnitude is reduced by a factor that depends on the
58343    angular velocity of rotation. As a result, the rotational motion of the
58344    particle reduces the electrorheological effect. We further assume that
58345    the relaxation of the polarized charge is arised from a finite
58346    conductivity of the particle or host medium. We calculate the
58347    relaxation time based on the Maxwell-Wagner theory, suitably
58348    generalized to include the rotational motion. Analytic expressions for
58349    the reduction factor and the relaxation time are given and their
58350    dependence on the angular velocity of rotation will be discussed.
58351 C1 Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China.
58352    Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 200093, Peoples R China.
58353 RP Wan, JTK, Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples
58354    R China.
58355 CR HALSEY TC, 1990, J STAT PHYS, V61, P1257
58356    HALSEY TC, 1992, SCIENCE, V258, P761
58357    JONES TK, 2000, PHYS REV E, V62, P6846
58358    KLINGENBERG DJ, 1989, J CHEM PHYS, V91, P7888
58359    KLINGENBERG DJ, 1990, LANGMUIR, V6, P15
58360    KLINGENBERG DJ, 1991, J CHEM PHYS, V94, P6160
58361    KLINGENBERG DJ, 1998, MRS BULL, V23, P30
58362    LADD AJC, 1988, J CHEM PHYS, V88, P5051
58363    LOBRY L, 1999, J ELECTROSTAT, V47, P61
58364    MAZUR P, 1974, PHYSICA, V76, P235
58365    PHULE PP, 1998, MRS BULL, V23, P19
58366    RUSSEL WB, 1989, COLLOIDAL DISPERSION
58367    TAO R, 1991, PHYS REV LETT, V67, P398
58368    WANG ZW, 1996, INT J MOD PHYS B, V10, P1153
58369    WANG ZW, 1997, J PHYS D APPL PHYS, V30, P1265
58370 NR 15
58371 TC 4
58372 SN 1063-651X
58373 J9 PHYS REV E
58374 JI Phys. Rev. E
58375 PD DEC
58376 PY 2001
58377 VL 6406
58378 IS 6
58379 PN Part 1
58380 AR 061501
58381 DI ARTN 061501
58382 PG 4
58383 SC Physics, Fluids & Plasmas; Physics, Mathematical
58384 GA 502CN
58385 UT ISI:000172726300027
58386 ER
58387 
58388 PT J
58389 AU Zhang, NH
58390    Cheng, CJ
58391 TI A time domain method for quasi-static analysis of viscoelastic thin
58392    plates
58393 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
58394 DT Article
58395 DE viscoelastic thin plate; von Karman's hypothesis; Galerkin method;
58396    quasistatic response; direct method; integro-differential equation
58397 AB Based on the Boltzmann's superposition principles of linear
58398    viscoelastic materials and the von Karman's hypotheses of thin plates
58399    with large deflections, a mathematical model for quasi-static problems
58400    of viscoelastic thin plates was given. By the Galerkin method in
58401    spatial domain, the original integro-partial-differential system could
58402    be transformed into an integral system. The latter further was reduced
58403    to a differential system by using the new method for temporal domain
58404    presented in this paper. Numerical results show that compared with the
58405    ordinary finite difference method, the new method in this paper is
58406    simpler to operate and has some advantages, such as, no storage and
58407    quicker computational speed etc.
58408 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
58409    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
58410 RP Zhang, NH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
58411    200072, Peoples R China.
58412 CR CHENG CJ, 1998, ACTA MECH SINICA, V30, P690
58413    CHENG CJ, 1998, INT J SOLIDS STRUCT, V35, P4491
58414    JANOVSKY V, 1995, J COMPUT APPL MATH, V63, P91
58415    SHENG YP, 1994, ADV MECH, V24, P265
58416    YANG TQ, 1993, THEORY VISCOELASTICI
58417    ZHANG NH, 1998, COMPUT METHODS APPL, V165, P3074
58418 NR 6
58419 TC 0
58420 SN 0253-4827
58421 J9 APPL MATH MECH-ENGL ED
58422 JI Appl. Math. Mech.-Engl. Ed.
58423 PD OCT
58424 PY 2001
58425 VL 22
58426 IS 10
58427 BP 1109
58428 EP 1117
58429 PG 9
58430 SC Mathematics, Applied; Mechanics
58431 GA 500YV
58432 UT ISI:000172657000001
58433 ER
58434 
58435 PT J
58436 AU Fu, JL
58437    Chen, LQ
58438    Luo, SK
58439    Chen, XW
58440    Wang, XM
58441 TI Study on dynamics of relativistic Birkhoff systems
58442 SO ACTA PHYSICA SINICA
58443 DT Article
58444 DE relativity; Birkhoff system; noether symmetry; Lie symmetry; algebraic
58445    structure; Poisson integral
58446 ID CONSERVED QUANTITIES; ROTATIONAL SYSTEMS; LIE SYMMETRIES
58447 AB The Birkhoffian, the Birkhoff's functions, the Pfaff action, the
58448    Pfaff-Birkhoff principle and the Birkhoff equations of relativistic
58449    Birkhoff systems are given. The Birkhoff representation of relativistic
58450    dynamical systems is studied. Then the theory of Noether symmetries and
58451    Lie symmetries of the relativistic Birkhoff systems is obtained by the
58452    invariance of relativistic Pfaff action and relativistic Birkhoff
58453    equations under infinitesimal transformations. Finally the algebraic
58454    structure and Poisson integrals for the relativistic Birkhoff systems
58455    are studied.
58456 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
58457    Shangqiu Teachers Coll, Inst Math Mech & Math Phys, Shangqiu 476000, Peoples R China.
58458 RP Fu, JL, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
58459    Peoples R China.
58460 CR ARNOLD VI, 1978, MATH METOD CLASSICAL
58461    BIRKHOFF GD, 1927, AMS COLL PUBLICATION
58462    FANG JH, 2000, ACTA PHYS SIN-CH ED, V49, P1028
58463    FU JL, 1999, APPL MATH MECH-ENGL, V20, P1266
58464    FU JL, 1999, JIANGXI SCI, V17, P137
58465    FU JL, 2000, ACTA PHYS SIN-CH ED, V49, P1023
58466    FU JL, 2000, APPL MATH MECH-ENGL, V21, P549
58467    FU JL, 2000, J SHANGQIU TEACHERS, V16, P10
58468    FU JL, 2000, J YUNNAN U, V22, P194
58469    FU JL, 2000, JIANGXI SCI, V18, P68
58470    GUO ZH, 1987, MODERN MATH MECH
58471    LI JB, 1994, THEORY GEN HAMILTON
58472    LUO SK, 1987, TEACHING MAT COMMUNI, P31
58473    LUO SK, 1988, J XINJIAN U, V5, P50
58474    LUO SK, 1990, P ICDVC, P645
58475    LUO SK, 1991, SHANGHAI J MECH, V12, P67
58476    LUO SK, 1992, ACTA MATH SCI, V12, P27
58477    LUO SK, 1992, COLL PHYS, V11, P14
58478    LUO SK, 1996, APPL MATH MECH, V17, P683
58479    LUO SK, 1996, J BEIJING I TECHNOL, V16, P154
58480    LUO SK, 1998, APPL MATH MECH-ENGL, V19, P45
58481    LUO SK, 2001, ACTA PHYS SINICA, V50, P384
58482    LUO SK, 2001, CHINESE PHYS, V10, P271
58483    MEI FX, 1985, FDN MECH NONHOLONOMI
58484    MEI FX, 1992, DYNAMICS BIRKHOFF SY, P33
58485    MEI FX, 1993, CHINESE SCI BULL, V38, P311
58486    MEI FX, 1993, SCI CHINA SER A, V23, P709
58487    MEI FX, 1994, CHAPLYGIN NONHOLONOM, P60
58488    MEI FX, 1995, CHINESE SCI BULL, V40, P1947
58489    MEI FX, 1996, DYNAMICS BIRKHOFF SY
58490    MEI FX, 1996, MECH PRACT, V18, P1
58491    MEI FX, 1999, APPL LIE GROUP ALGEB, P39
58492    SANTILLI RM, 1983, FDN THEORETICAL MECH, V2
58493    SANTILLI RM, 1987, FDN THEORETICAL MECH, V1
58494    SHI RC, 1994, MECH RES COMMUN, V21, P269
58495    XU ZD, 1994, 30 YEARS NONHOLONOMI, P169
58496    YONG ZS, 1995, ADV QUANTUM MECH, P34
58497    ZHANG YL, 1999, ACTA MECH SOLIDA SIN, V20, P356
58498 NR 38
58499 TC 14
58500 SN 1000-3290
58501 J9 ACTA PHYS SIN-CHINESE ED
58502 JI Acta Phys. Sin.
58503 PD DEC
58504 PY 2001
58505 VL 50
58506 IS 12
58507 BP 2289
58508 EP 2295
58509 PG 7
58510 SC Physics, Multidisciplinary
58511 GA 501HL
58512 UT ISI:000172679200003
58513 ER
58514 
58515 PT J
58516 AU Wu, YQ
58517    Hou, HY
58518    Chen, H
58519    You, JL
58520    Jiang, GC
58521 TI Coordination and bond properties of Al and Si ions in system of
58522    Al2O3-SiO2 melts
58523 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
58524 DT Article
58525 DE Al2O3-SiO2 melts; coordination and bond properties; molecular dynamics
58526    simulation
58527 ID CALCIUM ALUMINOSILICATE GLASSES; NUCLEAR MAGNETIC-RESONANCE;
58528    MOLECULAR-DYNAMICS; COMPUTER-SIMULATION; SIO2-AL2O3 GLASSES; SI-29;
58529    SPECTROSCOPY; LIQUIDS; AL-27; NMR
58530 AB The coordination and bond properties of aluminium and silicon ions were
58531    discussed by means of molecular dynamics simulation. By combining KA
58532    and MATSUMIYA potentials, the results of simulations agree better with
58533    the experiments. Trend of coordination and bond properties changing
58534    along with the increasing content Al2O3 from 0 to 100 % (mole fraction)
58535    was obtained. Average bond lengths of Si-O in these simulations are
58536    within the range of 1.60 similar to1.63 Angstrom and become smaller
58537    from 1.63 Angstrom in sample 0 to 1.60 Angstrom in sample 9 along with
58538    increasing content of Al2O3. Average bond lengths of Al-O are within
58539    the range from 1.77 Angstrom in sample 1 to 1.86 Angstrom in sample 10.
58540    By analyzing the relation of CN(T) and CNSi(T) with Si/(Si+Al), it is
58541    found that Al mainly locates on the tetrahedral sites which neighbor
58542    the Si tetrahedra but avoid the Al tetrahedra while alumina content is
58543    low. Whereas when Si/ (Si+Al)<0.5, Al-octahedral units appeared and
58544    became predominant gradually. Meanwhile, Al avoidance principle can
58545    only be maintained at low alumina content. With increasing alumina,
58546    this principle would be broken gradually.
58547 C1 Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai 200072, Peoples R China.
58548 CR AKSAY IA, 1979, J AM CERAM SOC, V62, P332
58549    ATHANASOPOULOS DC, 1992, SURF SCI, V273, P129
58550    DANIEL I, 1995, PHYS CHEM MINER, V22, P74
58551    ENGELHARDT G, 1985, PHYS CHEM GLASSES, V26, P157
58552    HANADA T, 1982, COMMU AM CERAM SOC, V6, C84
58553    HATALOVA B, 1992, J NON-CRYST SOLIDS, V146, P218
58554    HIMMEL B, 1991, J NON-CRYST SOLIDS, V136, P27
58555    HUFF NT, 1999, J NON-CRYST SOLIDS, V253, P133
58556    KIEFFER J, 1989, J CHEM PHYS, V90, P4982
58557    LOEWENSTEIN W, 1954, AM MINERAL, V39, P92
58558    MATSUMIYA T, 1993, ISIJ INT, V33, P210
58559    MCMILLAN P, 1982, GEOCHIM COSMOCHIM AC, V46, P2021
58560    MERZBACHER CI, 1990, J NON-CRYST SOLIDS, V124, P194
58561    MIURA Y, 2000, PHYS CHEM GLASSES, V41, P24
58562    MORIKAWA H, 1982, J AM CERAM SOC, V65, P78
58563    MYSEN BO, 1990, AM MINERAL, V75, P120
58564    NOFZ M, 1989, PHYS CHEM GLASSES, V30, P46
58565    NOFZ M, 1990, PHYS CHEM GLASSES, V31, P57
58566    OESTRIKE R, 1987, GEOCHIM COSMOCHIM AC, V51, P2199
58567    POE BT, 1992, CHEM GEOL, V96, P333
58568    SCAMEHORN CA, 1991, GEOCHIM COSMOCHIM AC, V55, P721
58569    STEIN DJ, 1995, AM MINERAL, V80, P417
58570 NR 22
58571 TC 6
58572 SN 1003-6326
58573 J9 TRANS NONFERROUS METAL SOC CH
58574 JI Trans. Nonferrous Met. Soc. China
58575 PD DEC
58576 PY 2001
58577 VL 11
58578 IS 6
58579 BP 965
58580 EP 971
58581 PG 7
58582 SC Metallurgy & Metallurgical Engineering
58583 GA 499CW
58584 UT ISI:000172554300037
58585 ER
58586 
58587 PT J
58588 AU Li, L
58589    Van Der Biest, O
58590    Wang, PL
58591    Vleugels, J
58592    Chen, WW
58593    Huang, SG
58594 TI Estimation of the phase diagram for the ZrO2-Y2O3-CeO2 system
58595 SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
58596 DT Article
58597 DE CeO2; phase equilibria; thermodynamic calculation; Y2O3; ZrO2
58598 ID ZRO2-CEO2 SYSTEM; ZIRCONIA; EQUILIBRIA; OPTIMIZATION
58599 AB Comprehensive descriptions of the thermodynamic properties and
58600    experimental information in three oxide Systems ZrO2-Y2O3, ZrO2-CeO2
58601    and Y2O3-CeO2 are given and thermodynamic models for the calculation of
58602    these systems are discussed. The phase diagrams of the quasi-ternary
58603    ZrO2-Y2O3-CeO2 system in the zirconia-rich corner are estimated at
58604    different temperatures with a substitutional model and Muggianu's
58605    extrapolation. The equilibrium phase diagram calculation is extended to
58606    low temperatures, as well as the Gibbs free energy of the tetragonal,
58607    monoclinic and cubic phases of zirconia doped with yttria and ceria.
58608    (C) 2001 Elsevier Science Ltd. All rights reserved.
58609 C1 Katholieke Univ Leuven, Dept Met & Mat, B-3001 Louvain, Belgium.
58610    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
58611    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
58612 RP Van Der Biest, O, Katholieke Univ Leuven, Dept Met & Mat, B-3001
58613    Louvain, Belgium.
58614 CR DU Y, 1991, J AM CERAM SOC, V74, P1569
58615    DU Y, 1994, SCRIPTA METALL MATER, V31, P327
58616    DURAN P, 1990, J MATER SCI, V25, P5001
58617    DUWEZ P, 1950, J AM CERAM SOC, V33, P274
58618    DUWEZ P, 1951, J ELECTROCHEM SOC, V98, P356
58619    ESQUIVIAS L, 1996, J ALLOY COMPD, V239, P71
58620    GUILLERMET AF, 1981, METALL T B, V12, P745
58621    HANNINK RHJ, 2000, J AM CERAM SOC, V83, P461
58622    HILLERT M, 1975, METALL T B, V6, P37
58623    HUANG SG, 2000, J SHANGHAI U, V6, P189
58624    JANG BH, 1996, MATER T JIM, V37, P1284
58625    JORDAN AS, 1979, CALCULATION PHASE DI
58626    KAUFMAN L, 1978, CALPHAD, V2, P35
58627    KONDOH J, 1998, J ELECTROCHEM SOC, V145, P1550
58628    LELAIT L, 1991, SCRIPTA METALL MATER, V25, P1815
58629    LI L, UNPUB CALPHAD
58630    LI L, 1996, J MATER SCI TECHNOL, V12, P159
58631    LI L, 1997, PHYS CHEM GLASSES, V38, P323
58632    LI L, 1999, J MATER SCI TECHNOL, V15, P439
58633    LI L, 1999, PHYS CHEM GLASSES, V40, P126
58634    LONGO V, 1973, J AM CERAM SOC DISCU, V56, P600
58635    LONGO V, 1981, J MATER SCI, V16, P839
58636    LONGO V, 1984, CERAMICA, V37, P18
58637    LUKAS HL, 1977, CALPHAD, V1, P225
58638    NOGUCHI T, 1970, B CHEM SOC JPN, V43, P2614
58639    ONDIK HM, 1998, PHASE DIAGRAMS ZIRCO, P114
58640    PASCUAL C, 1983, J AM CERAM SOC, V66, P23
58641    PICONI C, 1999, BIOMATERIALS, V20, P1
58642    RAMESH PD, 1996, J MATER SYNTH PROC, V4, P163
58643    RAY SP, 1977, MATER RES B, V12, P549
58644    ROUANET A, 1971, REV INT HAUTES TEMP, V8, P161
58645    ROUANET MA, 1968, COMP REND HEBD SEA C, V267, P1581
58646    RUH R, 1984, J AM CERAM SOC, V67, P190
58647    SRIVASTAVA KK, 1974, BRIT CERAM TRANS J, V73, P85
58648    STUBICAN VS, 1978, J AM CERAM SOC, V61, P17
58649    TANI E, 1982, YOGVO KYOKAI SHI, V90, P195
58650    TANI E, 1983, J AM CERAM SOC, V66, P506
58651    YASHIMA M, 1994, J AM CERAM SOC, V77, P1869
58652    YU ZY, 1996, MATER T JIM, V37, P1281
58653 NR 39
58654 TC 8
58655 SN 0955-2219
58656 J9 J EUR CERAM SOC
58657 JI J. European Ceram. Soc.
58658 PD DEC
58659 PY 2001
58660 VL 21
58661 IS 16
58662 BP 2903
58663 EP 2910
58664 PG 8
58665 SC Materials Science, Ceramics
58666 GA 499XD
58667 UT ISI:000172595200014
58668 ER
58669 
58670 PT J
58671 AU Fan, YM
58672    Ju, JH
58673    Zhang, WL
58674    Xia, YB
58675    Wang, ZM
58676    Fang, ZJ
58677    Wang, LJ
58678 TI A new passivation method for porous silicon
58679 SO SOLID STATE COMMUNICATIONS
58680 DT Article
58681 DE porous silicon; passivation; diamond-like film
58682 AB In this paper, we show the enhancement and stabilization of the
58683    luminescence when depositing diamond-like carbon (DLC) thin films on
58684    top of porous silicon (PS) layers. DLC thin films reduce the influence
58685    of different ambients to PS, which can cause the desorption of hydrogen
58686    molecules from the Si-H-x bonds leaving dangling bonds which operate as
58687    non-radiative recombination traps. So DLC thin films can lead to a more
58688    stable luminescence from PS layers. At the same time, hydrogenated
58689    carbon nitride films can further enhance the photoluminescence
58690    efficiency of PS because more dangling bonds are passivated by
58691    nitridation. (C) 2001 Published by Elsevier Science Ltd.
58692 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
58693 RP Fan, YM, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
58694    China.
58695 CR GLASS JA, 1995, SURF SCI, V338, P125
58696    GRERREROLEMUS R, 1999, SOLID STATE ELECT, V43, P1165
58697    HERINO R, 1993, J LUMIN, V57, P111
58698    SHIH S, 1992, APPL PHYS LETT, V61, P943
58699    TISCHLER MA, 1992, APPL PHYS LETT, V60, P639
58700    XIONG ZH, 2001, THIN SOLID FILMS, V388, P271
58701 NR 6
58702 TC 7
58703 SN 0038-1098
58704 J9 SOLID STATE COMMUN
58705 JI Solid State Commun.
58706 PY 2001
58707 VL 120
58708 IS 11
58709 BP 435
58710 EP 437
58711 PG 3
58712 SC Physics, Condensed Matter
58713 GA 497DL
58714 UT ISI:000172437400004
58715 ER
58716 
58717 PT J
58718 AU Cao, MY
58719    Wang, X
58720    Yu, DY
58721 TI Reliable recognition of ultrasonic echo-signal under high-noise
58722    background using digital signal processing
58723 SO PROGRESS IN NATURAL SCIENCE
58724 DT Article
58725 DE digital signal processing; recognition; ultrasound
58726 AB In practice. it is very important to recognize the ultrasonic
58727    echo-signal under high-noise background. In this paper, the Fourier
58728    spectrum and composition of ultrasonic ranging signals under high-noise
58729    background have been analyzed firstly, then the recognition of
58730    ultrasonic echo-signal has been realized using three methods: frequency
58731    filter, auto-correlation and the effective combination of the former
58732    two methods. The mathematical models are established and the results
58733    are given both theoretically and experimentally.
58734 C1 Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China.
58735    CME, State Key Lab Optoelect Informat Sci & Technol, Tianjin 300072, Peoples R China.
58736    Shanghai Univ Sci & Technol, Informat & Elect Engn Sch, Jinan 250031, Peoples R China.
58737 RP Cao, MY, Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin
58738    300072, Peoples R China.
58739 CR *MATH WORKS INC, 1995, STUD ED MATLAB
58740    OPPENHEIM AV, 1975, DIGITAL SIGNAL PROCE
58741    SOPHOCLES J, 1996, INTRO SIGNAL PROCESS
58742 NR 3
58743 TC 0
58744 SN 1002-0071
58745 J9 PROG NAT SCI
58746 JI Prog. Nat. Sci.
58747 PD MAY
58748 PY 2001
58749 VL 11
58750 SU Suppl. S
58751 BP S102
58752 EP S105
58753 PG 4
58754 SC Multidisciplinary Sciences
58755 GA 496WM
58756 UT ISI:000172420100024
58757 ER
58758 
58759 PT J
58760 AU He, JH
58761 TI Modified Lindstedt-Poincare methods for some strongly non-linear
58762    oscillations Part I: expansion of a constant
58763 SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS
58764 DT Article
58765 DE perturbation method; non-linear equations; duffing equation;
58766    Lindstedt-Poincare method
58767 ID PERTURBATION TECHNIQUE
58768 AB In this paper, a modified Lindstedt-Poincare method is proposed. In
58769    this technique. a constant. rather than the non-linear frequency, is
58770    expanded in powers of the expanding parameter to avoid the occurrence
58771    of secular terms in the perturbation series solution. Some examples are
58772    given here to illustrate its effectiveness and convenience. The results
58773    show that the obtained approximate solutions are uniformly valid on the
58774    whole solution domain, and they are suitable not only for weakly
58775    non-linear systems, but also for strongly non-linear systems. (C) 2001
58776    Elsevier Science Ltd. All rights reserved.
58777 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
58778 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
58779    Shanghai 200072, Peoples R China.
58780 CR ACTON JR, 1985, SOLVING EQUATIONS PH
58781    CHEUNG YK, 1991, INT J NONLINEAR MECH, V26, P367
58782    DAI SQ, 1990, SCI CHIN SER A, V2, P153
58783    HAGEDORN P, 1981, NONLINEAR OSCILLATIO
58784    HE JH, 1998, COMPUT METHOD APPL M, V167, P57
58785    HE JH, 1998, COMPUT METHOD APPL M, V167, P69
58786    HE JH, 1999, COMMUN NONL SCI NUM, V4, P78
58787    HE JH, 1999, COMMUN NONLINEAR SCI, V4, P103
58788    HE JH, 1999, COMMUNICATIONS NONLI, V4, P81
58789    HE JH, 1999, COMPUT METHOD APPL M, V178, P257
58790    HE JH, 1999, INT J NONLINEAR MECH, V34, P699
58791    HE JH, 2000, INT J NONLINEAR MECH, V35, P37
58792    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
58793    HE JH, 2000, J SOUND VIB, V229, P1257
58794    MICKENS RE, 1981, INTRO NONLINEAR OSCI
58795    NAYFEH AH, 1979, NONLINEAR OSCILLATIO
58796    NAYFEH AH, 1985, PROBLEMS PERTURBATIO
58797 NR 17
58798 TC 25
58799 SN 0020-7462
58800 J9 INT J NON-LINEAR MECH
58801 JI Int. J. Non-Linear Mech.
58802 PD MAR
58803 PY 2002
58804 VL 37
58805 IS 2
58806 BP 309
58807 EP 314
58808 PG 6
58809 SC Mechanics
58810 GA 497WA
58811 UT ISI:000172477400012
58812 ER
58813 
58814 PT J
58815 AU He, JH
58816 TI Modified Lindstedt-Poincare methods for some strongly non-linear
58817    oscillations Part II: a new transformation
58818 SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS
58819 DT Article
58820 DE perturbation method; non-linear equation; Duffing equation; van der Pol
58821    equation; Lindstedt-Poincare method
58822 AB In this paper, a modified Lindstedt-Poincare method is proposed. In
58823    this technique, we introduce a new transformation of the independent
58824    variable. This transformation will also allow us to avoid the
58825    occurrence of secular terms in the perturbation series solution, Some
58826    examples are given here to illustrate its effectiveness and
58827    convenience. The results show that the obtained approximate solutions
58828    are uniformly valid on the whole solution domain, and they are suitable
58829    not only for weakly non-linear systems. but also for strongly
58830    non-linear systems. (C) 2001 Elsevier Science Ltd. All rights reserved.
58831 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
58832 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
58833    Shanghai 200072, Peoples R China.
58834 CR ANDERSEN CM, 1982, SIAM J APPL MATH, V42, P678
58835    DAI SQ, 1990, ACTA MECH SINICA, V6, P111
58836    DAI SQ, 1990, SCI CHINA SER A, V33, P153
58837    DAI SQ, 1991, APPL MATH MECH, V12, P255
58838    HAGEDORN P, 1981, NONLINEAR OSCILLATIO
58839    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
58840    HE JH, 2002, INT J NONLINEAR MECH, V37, P309
58841    NAYFEH AH, 1979, NONLINEAR OSCILLATIO
58842 NR 8
58843 TC 25
58844 SN 0020-7462
58845 J9 INT J NON-LINEAR MECH
58846 JI Int. J. Non-Linear Mech.
58847 PD MAR
58848 PY 2002
58849 VL 37
58850 IS 2
58851 BP 315
58852 EP 320
58853 PG 6
58854 SC Mechanics
58855 GA 497WA
58856 UT ISI:000172477400013
58857 ER
58858 
58859 PT J
58860 AU Ye, Q
58861    Cao, WG
58862    Gao, JS
58863 TI Recent advances in the syntheses and applications of thiolester
58864    derivatives
58865 SO CHINESE JOURNAL OF ORGANIC CHEMISTRY
58866 DT Article
58867 DE thiolester; synthesis; application
58868 ID PALLADIUM-CATALYZED THIOCARBONYLATION; CARBON-MONOXIDE;
58869    ALPHA,BETA-UNSATURATED THIOESTERS; REGIOSELECTIVE THIOCARBONYLATION;
58870    TRIFLUOROMETHYLATED ACIDS; CONVENIENT SYNTHESIS; CONJUGATE ADDITIONS;
58871    TELLUROL ESTERS; THIOLS; ALCOHOLS
58872 AB Recent advances in the syntheses and applications of thiolester are
58873    reviewed in this paper. 65 References are cited here.
58874 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
58875 RP Ye, Q, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
58876 CR ADAM W, 1992, TETRAHEDRON LETT, V33, P469
58877    ADAMCZYK M, 1996, TETRAHEDRON LETT, V37, P4305
58878    ANBAZHAGAN M, 1997, J CHEM SOC PERK 0607, P1623
58879    ANBAZHAGAN M, 1998, TETRAHEDRON LETT, V39, P3609
58880    AYERS JT, 1999, SYNTHETIC COMMUN, V29, P351
58881    BARRETT AGM, 1995, J CHEM SOC PERK 0421, P1009
58882    BATEY RA, 1999, TETRAHEDRON LETT, V40, P2669
58883    BILLARD T, 1999, J ORG CHEM, V64, P3813
58884    BILLARD T, 2000, TETRAHEDRON LETT, V41, P3069
58885    BRAGA AL, 1998, TETRAHEDRON LETT, V39, P3395
58886    BYEON CH, 2000, SYNLETT          JAN, P119
58887    CHATTERJEE P, 1994, J CHEM SOC P1, P2403
58888    CLIVE DLJ, 1999, CHEM COMMUN, P2251
58889    CRUDDEN CM, 1995, J ORG CHEM, V60, P5579
58890    DANHEISER RL, 1996, ORG SYNTH, V73, P61
58891    DIETER RK, 1997, J ORG CHEM, V62, P3798
58892    FUKUYAMA T, 1990, J AM CHEM SOC, V112, P7050
58893    GAO JS, 1999, J SHANGHAI U NATURL, V5, P491
58894    GONG P, 1998, CHIN J MED CHEM, V8, P139
58895    HAMILTON GS, 1999, 5990131, US
58896    HAN YL, 1999, J ORG CHEM, V64, P1972
58897    HARRIS WT, 1998, SYNTHETIC COMMUN, V28, P1117
58898    INOUE T, 1994, J ORG CHEM, V59, P5824
58899    JACKSON RFW, 1993, CHEM COMMUN, V11, P889
58900    JACKSON RFW, 1994, TETRAHEDRON LETT, V35, P7433
58901    JOUIN P, 1988, TETRAHEDRON LETT, V29, P2661
58902    KHAN JA, 1999, J AGR FOOD CHEM, V47, P3269
58903    KHUMTAVEEPORN K, 1994, J ORG CHEM, V59, P1414
58904    KISHIMOTO N, 1999, J ORG CHEM, V64, P5988
58905    KOBAYASHI K, 1995, ANAL SCI, V11, P1029
58906    KOBAYASHI S, 1994, J AM CHEM SOC, V116, P9805
58907    KOBAYASHI S, 1996, TETRAHEDRON LETT, V37, P2809
58908    KOBAYASHI S, 1996, TETRAHEDRON, V52, P7277
58909    KOPPENHOEFER B, 1997, SYNTHESIS-STUTTG MAY, P515
58910    KUNIYASU H, 1993, TETRAHEDRON LETT, V34, P2491
58911    LIU HJ, 1992, CANJ CHEM, V70, P128
58912    MANABE K, 1999, TETRAHEDRON LETT, V40, P3773
58913    MATSUNAGA PT, 1994, ANGEW CHEM INT EDIT, V33, P1748
58914    MUKAIYAMA T, 1990, CHEM LETT, P1019
58915    MUKAIYAMA T, 1999, CHEM LETT        NOV, P1157
58916    NAKATANI S, 1993, TETRAHEDRON, V49, P2011
58917    PAK TH, 1993, J ORG CHEM, V58, P2313
58918    PESTI JA, 1999, SYNTHETIC COMMUN, V29, P3811
58919    PONDE DE, 1998, J ORG CHEM, V63, P1058
58920    RAHIM A, 1999, SYNLETT, V7, P1029
58921    RAHIM MA, 1998, TETRAHEDRON LETT, V39, P2153
58922    ROBERTO D, 1989, J AM CHEM SOC, V111, P7539
58923    RULEV AY, 1999, J CHEM SOC PERK 0607, P1567
58924    SABITHA G, 1999, SYNTHETIC COMMUN, V29, P2311
58925    SILVEIRA CC, 1999, ORGANOMETALLICS, V18, P5183
58926    SKARIA S, 2000, POLYMER, V41, P2737
58927    STAVROPOULOS P, 1990, J AM CHEM SOC, V112, P5385
58928    SUCHETA K, 1994, TETRAHEDRON LETT, V35, P4415
58929    TOKUYAMA H, 1998, TETRAHEDRON LETT, V39, P3189
58930    VLATTAS I, 1997, TETRAHEDRON LETT, V38, P7321
58931    VOSS J, 1991, COMPREHENSIVE ORGANI, V6, P435
58932    WANG ZM, 1992, CURRENT STRUCTURED D, P1936
58933    WEBER N, 1999, J AM OIL CHEM SOC, V76, P1297
58934    XIAO WJ, 1997, J ORG CHEM, V62, P3422
58935    XIAO WJ, 1998, J ORG CHEM, V63, P2609
58936    XIAO WJ, 1998, J ORG CHEM, V63, P7939
58937    XIAO WJ, 1999, J ORG CHEM, V64, P2080
58938    YOSHIMATSU M, 1995, J ORG CHEM, V60, P4798
58939    ZHENG TC, 1999, TETRAHEDRON LETT, V40, P603
58940 NR 64
58941 TC 1
58942 SN 0253-2786
58943 J9 CHINESE J ORG CHEM
58944 JI Chin. J. Org. Chem.
58945 PD OCT
58946 PY 2001
58947 VL 21
58948 IS 10
58949 BP 697
58950 EP 707
58951 PG 11
58952 SC Chemistry, Organic
58953 GA 497UQ
58954 UT ISI:000172474200001
58955 ER
58956 
58957 PT J
58958 AU Shen, Y
58959    Zhang, JC
58960    Gu, F
58961    Chen, JM
58962    Huang, HH
58963 TI Photoconductivity study of doping in C-60-toluene derivative
58964 SO MATERIALS CHEMISTRY AND PHYSICS
58965 DT Article
58966 DE C-60; C-60-toluene derivative; fluorescence; photoconductivity; doping
58967 ID C-60; PHTHALOCYANINE
58968 AB The influence of the dopant iodine (I-2) on fluorescence spectra,
58969    UV-VIS spectra and photoconductivity of the C-60-toluene derivative is
58970    studied. The results show that the photoconductivity of the derivative
58971    doped with I-2 has increased by one order of magnitude. The
58972    fluorescence and UV-VIS analyses indicate that a charge-transfer
58973    complex (CTC) Of C-60-toluene and I-2 may be formed. (C) 2001 Published
58974    by Elsevier Science B.V.
58975 C1 Shanghai Univ Sci & Technol, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
58976 RP Shen, Y, Shanghai Univ Sci & Technol, Dept Inorgan Mat, Shanghai
58977    201800, Peoples R China.
58978 CR ALLEMAND PM, 1991, SCIENCE, V253, P301
58979    CHANGCHUN W, 1994, CHEM J CHINESE U, V15, P1559
58980    CHEN HZ, 1993, J PHOTOCH PHOTOBIO A, V70, P179
58981    CHEN Y, 1996, J POLYM SCI POL PHYS, V34, P631
58982    DAYIN L, 1993, J CHEM SOC CHEM COMM, P603
58983    KROTO HW, 1985, NATURE, V318, P162
58984    SHEN Y, 1999, ACTA CHIM SINICA, V57, P1034
58985    SMILOWITZ L, 1993, PHYS REV B, V47, P13853
58986    TANG BZ, 1998, MACROMOLECULES, V31, P103
58987    WANG Y, 1992, NATURE, V356, P585
58988    WANG Y, 1993, J AM CHEM SOC, V115, P3844
58989    XU ZD, 1995, J MATER SCI LETT, V14, P1030
58990    YONEHARA H, 1996, THIN SOLID FILMS, V278, P108
58991    YOSHINO K, 1993, SOLID STATE COMMUN, V85, P85
58992 NR 14
58993 TC 2
58994 SN 0254-0584
58995 J9 MATER CHEM PHYS
58996 JI Mater. Chem. Phys.
58997 PD DEC 1
58998 PY 2001
58999 VL 72
59000 IS 3
59001 BP 405
59002 EP 407
59003 PG 3
59004 SC Materials Science, Multidisciplinary
59005 GA 494YF
59006 UT ISI:000172312900017
59007 ER
59008 
59009 PT J
59010 AU Fang, YH
59011    Hu, A
59012    Ouyang, SX
59013    Oh, JJ
59014 TI The effect of calcination on the microwave dielectric properties of
59015    Ba(Mg1/3Ta2/3)O-3
59016 SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
59017 DT Article
59018 DE dielectric properties; calcination; microwave processing
59019 ID CERAMICS
59020 AB In this study, the role of calcination, its effect upon microstructural
59021    development and the correlation with dielectric losses at microwave
59022    frequencies were investigated. Ceramics with the composition
59023    Ba(Mg1.3Ta2/3)O-3 (BMT) were prepared by a conventional mixed-oxide
59024    route using controlled calcination. Commercial processing often uses
59025    sintering and calcination conditions to modify the dielectric
59026    properties of ceramics. However, the mechanism by which the calcination
59027    conditions influence the dielectric losses is not clear. The BMT
59028    powders were calcinated at 1000-1300 degreesC for 4-10 h in air or
59029    flowing oxygen. Resonator samples were then sintered at 1600-1650
59030    degreesC for 3 It. Scanning electron microscopy and X-ray diffraction
59031    were used to examine the phase composition and the microstructure of
59032    the sintered bodies. The microwave dielectric properties were measured
59033    at 10 GHz. We found a significant influence of the calcination
59034    conditions on the quality factor (Qf) -value. The influences of the
59035    phase composition on dielectric losses appear to dominate those of the
59036    microstructure. A significant effect was also found for specimens
59037    calcinated in different atmospheres. By controlling the calcination and
59038    sintering a pure BMT ceramic with a dielectric constant of 24.5, a Qf
59039    -value of 120,000 GHz and an r tau (f) of 6 ppm/degreesC was obtained.
59040    (C) 2001 Elsevier Science Ltd. All rights reserved.
59041 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
59042    Chinese Bldg Mat Acad, Beijing, Peoples R China.
59043    Korea Inst Sci & Technol, Seoul 130650, South Korea.
59044 RP Fang, YH, Shanghai Univ, Dept Inorgan Mat, 20 Chengzhong Rd, Shanghai
59045    201800, Peoples R China.
59046 CR CHEN XM, 1994, J MATER SCI-MATER EL, V5, P244
59047    DAVIES PK, 1997, J AM CERAM SOC, V80, P1727
59048    FREER R, 1993, SILICATES IND, V9, P191
59049    HU A, UNPUB FORMATION BAMG
59050    KAWASHIMA S, 1983, J AM CERAM SOC, V66, P421
59051    KINGERY WD, 1976, INTRO CERAMICS, P448
59052    MATSUMOTO K, 1986, P 6 IEEE INT S APPL, P118
59053    NOMURA S, 1982, JPN J APPL PHYS, V21, P624
59054    SUGIYAMA M, 1990, CERAM T, V15, P153
59055    TSUYOSHI KK, 1983, J AM CERAM SOC, V69, C82
59056    WAKINO K, 1990, BRIT CERAM TRANS J, V89, P39
59057    YOUN HJ, 1996, JPN J APPL PHYS 1, V35, P3947
59058 NR 12
59059 TC 9
59060 SN 0955-2219
59061 J9 J EUR CERAM SOC
59062 JI J. European Ceram. Soc.
59063 PY 2001
59064 VL 21
59065 IS 15
59066 BP 2745
59067 EP 2750
59068 PG 6
59069 SC Materials Science, Ceramics
59070 GA 494ZU
59071 UT ISI:000172316400030
59072 ER
59073 
59074 PT J
59075 AU Wu, NH
59076    Bao, BR
59077    Yoshii, F
59078    Makuuchi, K
59079 TI Irradiation of crosslinked, poly(vinyl alcohol) blended hydrogel for
59080    wound dressing
59081 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
59082 DT Article
59083 ID GELS
59084 AB In order to obtain a more ideal hydrogel wound dressing, crosslinked
59085    hydrogel films blended with polyvinyl alcohol (PVA), polyvinyl
59086    pyrrolidone, kappa-carrageenan (KC), and powder silk were prepared by
59087    electron beam, and their physiochemical properties were investigated as
59088    a combination of function factors. The experimental results showed that
59089    the gel fraction of the hydrogel films depended mainly on irradiation
59090    dose and the monomer concentration of the polymers, the properties of
59091    hydrogel could be greatly extended or improved by blending
59092    homopolymers. The rate of gel formation of the hydro.-el was raised,
59093    and the water evaporation from hydrogel could be retarded after mixing
59094    with KC, while the tensile strength of hydrogel films were obviously
59095    increased after mixing with silk. Toxicity and healing effect of
59096    PVA/PVP/KC/silk blended hydrogel films as wound dressings were
59097    evaluated. The irradiated blended hydrogel showed satisfactory
59098    properties for wound dressing, the hydrogel did not induce any acute
59099    general toxic effects, and it is effective for fast healing of wound.
59100 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
59101    Japan Atom Energy Res Inst, Takasaki Radiat Chem Res Estab, Takasaki, Gumma, Japan.
59102 RP Wu, NH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
59103    Peoples R China.
59104 CR DAVIES JWL, 1983, BURNS, V10, P94
59105    GULDALIAN J, 1973, J TRAUMA, V13, P32
59106    HYON SH, 1989, KOBUNSHI RONBUNSHU, V46, P673
59107    KABRA BG, 1992, POLYMER, V33, P990
59108    MORRIS ER, 1980, J MOL BIOL, V138, P149
59109    NISHITANI K, 1983, PLANT CELL PHYSL, V24, P345
59110    PEPPAS NA, 1992, J CONTROL RELEASE, V18, P95
59111    QUEEN D, 1986, BURNS, V12, P161
59112    ROSIAK JM, 1991, ACS SYM SER, V475, P271
59113    WATASE M, 1983, POLYM COMMUN, V24, P52
59114    WU MH, 1996, RADIAT PHYS CHEM, V48, P525
59115    WU MH, 2000, NUCL SCI TECHN, V11, P72
59116    YOSHII F, 1995, RADIAT PHYS CHEM, V46, P169
59117 NR 13
59118 TC 1
59119 SN 0236-5731
59120 J9 J RADIOANAL NUCL CHEM
59121 JI J. Radioanal. Nucl. Chem.
59122 PD NOV
59123 PY 2001
59124 VL 250
59125 IS 2
59126 BP 391
59127 EP 395
59128 PG 5
59129 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
59130    & Technology
59131 GA 494FJ
59132 UT ISI:000172270800030
59133 ER
59134 
59135 PT J
59136 AU Xu, F
59137    Wang, Z
59138    Xu, SY
59139    Sun, DW
59140 TI Cryostability of frozen concentrated orange juices produced by
59141    enzymatic process
59142 SO JOURNAL OF FOOD ENGINEERING
59143 DT Article
59144 DE browning; concentrated orange juice; cryostability; glass transition
59145    temperature; storage; turbidity; viscosity
59146 ID GLASS-TRANSITION; STABILITY; WATER
59147 AB The cryostability of frozen concentrated orange juices (FCOJ) produced
59148    by an enzymatic process (enzymatic juice) and a squeezing process
59149    (squeezed juice) was investigated. The results showed that after
59150    thawing the enzymatic juice was superior in colour stability and cloud
59151    stability to the squeezed juice. The influence of glass transition
59152    temperature and viscosity of juices on the cryostability was examined
59153    and the data showed that some physico-chemical changes/reactions in
59154    juices during storage were controlled by diffusion. The composition of
59155    carbohydrates in juices was determined by high performance liquid
59156    chromatography (HPLC). Results obtained showed that the dominant
59157    solutes (low molecular weight compounds) of FCOJ governed the glass
59158    transition temperature of juices while the smaller fractions (high
59159    molecular weight carbohydrates) of the total solids of FCOJ had
59160    significant effects on the viscosity of FCOJ. (C) 2001 Elsevier Science
59161    Ltd. All rights reserved.
59162 C1 Natl Univ Ireland Univ Coll Dublin, Dept Agr & Food Engn, FRCFT, Dublin 2, Ireland.
59163    Shanghai Univ Sci & Technol, Inst Food Sci & Engn, Shanghai 200093, Peoples R China.
59164    Wuxi Univ Light Ind, Sch Food Sci & Engn, Wuxi 214036, Jiangsu, Peoples R China.
59165 RP Sun, DW, Natl Univ Ireland Univ Coll Dublin, Dept Agr & Food Engn,
59166    FRCFT, Earlsfort Terrace, Dublin 2, Ireland.
59167 CR BOUTRON P, 1993, CRYOBIOLOGY, V30, P86
59168    CAMERON RG, 1997, J FOOD SCI, V62, P242
59169    DELCASTILLO MD, 1998, J AGR FOOD CHEM, V46, P277
59170    DUBOIS M, 1956, ANAL CHEM, V28, P3
59171    DUXBURY DD, 1993, FOOD PROCESSING  MAY, P65
59172    FAIGH JG, 1995, FOOD TECHNOLOGY, P79
59173    FENNEMA OR, 1996, FOOD CHEM
59174    GOFF HD, 1993, J DAIRY SCI, V76, P1268
59175    HANDWERK RL, 1988, J AGR FOOD CHEM, V36, P231
59176    LEA AGH, 1991, ACS S SERIES
59177    LEVINE H, 1990, THERMAL ANAL FOODS
59178    MATTHEW RF, 1994, FROZEN CONCENTRATED
59179    MEYDAV S, 1977, J AGR FOOD CHEM, V25, P602
59180    MOURI T, 1981, 4299849, US
59181    NAIM M, 1997, J AGR FOOD CHEM, V45, P1861
59182    ROOS YH, 1994, J AGR FOOD CHEM, V42, P893
59183    SLADE L, 1991, CRIT REV FOOD SCI, V30, P115
59184 NR 17
59185 TC 1
59186 SN 0260-8774
59187 J9 J FOOD ENG
59188 JI J. Food Eng.
59189 PD DEC
59190 PY 2001
59191 VL 50
59192 IS 4
59193 BP 217
59194 EP 222
59195 PG 6
59196 SC Engineering, Chemical; Food Science & Technology
59197 GA 494ZQ
59198 UT ISI:000172316100004
59199 ER
59200 
59201 PT J
59202 AU He, JH
59203 TI A universal variational formulation for two dimensional fluid mechanics
59204 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
59205 DT Article
59206 DE fluid mechanics; variational theory
59207 ID SEMI-INVERSE METHOD; UNKNOWN SHAPE; FLOW; TURBOMACHINERY; PRINCIPLES
59208 AB A universal variational formulation for two dimensional fluid mechanics
59209    is obtained. which is subject to the so-called parameter-constrained
59210    equations (the relationship between parameters in two governing
59211    equations). By eliminating the constraints the generalized variational
59212    principle (GVPs) can be readily derived from the formulation The
59213    formulation can be applied to any conditions in case the governing
59214    equations can be converted into conservative forms. Some illustrative
59215    examples are given to testify the effectiveness and simplicity of the
59216    method.
59217 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
59218 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
59219    Peoples R China.
59220 CR BRETHERTON FP, 1970, J FLUID MECH       1, V44, P19
59221    CHIEN WZ, 1983, APPL MATH MECH, V4, P143
59222    CHIEN WZ, 1984, APPL MATH MECH, V5, P1281
59223    CHIEN WZ, 1985, GEN VARIATIONAL PRIN
59224    HE JH, 1997, INT J TURBO JET ENG, V14, P23
59225    HE JH, 1997, MODERN MECH ADV SCI, P603
59226    HE JH, 1997, SHANGHAI J MECH, V18, P305
59227    HE JH, 1997, TESIS SHANGHAI U SHA
59228    HE JH, 1998, INT J TURBO JET ENG, V15, P95
59229    HE JH, 1999, AIRCR ENG AEROSP TEC, V71, P154
59230    HE JH, 1999, J U SHANGHAI SCI TEC, V21, P127
59231    HE JH, 1999, J U SHANGHAI SCI TEC, V21, P29
59232    HE JH, 1999, J U SHANGHAI SCI TEC, V21, P356
59233    HE JH, 2000, AIRCR ENG AEROSP TEC, V72, P18
59234    HE JH, 2000, ASME, V67, P326
59235    HE JH, 2000, GEN VARIATIONAL PRIN
59236    HE JH, 2000, INT J ENG SCI, V39, P323
59237    HE JH, 2000, INT J NONLINEAR SCI, V1, P133
59238    HE JH, 2000, INT J NONLINEAR SCI, V1, P139
59239    HERIVEL JW, 1955, P CAMBRIDGE PHIL SOC, V51, P344
59240    LIN CC, 1963, P INT SCH PHYS COURS, P93
59241    LIU GL, 1981, P 2 AS C FLUID MECH, P698
59242    LIU GL, 1989, SHANGHAI J MECH, V10, P73
59243    LIU GL, 1990, J ENG THERMOPHYSICS, V11, P136
59244    SALMON R, 1988, ANNU REV FLUID MECH, V20, P225
59245 NR 25
59246 TC 1
59247 SN 0253-4827
59248 J9 APPL MATH MECH-ENGL ED
59249 JI Appl. Math. Mech.-Engl. Ed.
59250 PD SEP
59251 PY 2001
59252 VL 22
59253 IS 9
59254 BP 989
59255 EP 996
59256 PG 8
59257 SC Mathematics, Applied; Mechanics
59258 GA 495AB
59259 UT ISI:000172317100001
59260 ER
59261 
59262 PT J
59263 AU Gu, CQ
59264    Li, CJ
59265 TI Computation formulas of generalized inverse Pade approximants using for
59266    solution of integral equations
59267 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
59268 DT Article
59269 DE Pade approximant; determinantal formula; existence; integral equation
59270 AB For the generalized inverse function-valued Pade approximants, its
59271    intact computation formulas are given. The explicit determinantal
59272    formulas for the denominator scalar polynomials and the numerator
59273    function-valued polynomials are first established. A useful existence
59274    condition is given by means of determinant form.
59275 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
59276    Tongji Univ, Dept Math, Shanghai 200331, Peoples R China.
59277 RP Gu, CQ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
59278 CR BAKER GA, 1978, NUMERICAL TREATMENT
59279    CHISHOLM JSR, 1963, J MATH PHYS, V4, P1506
59280    GRAVESMORRIS PR, 1986, CONSTR APPROX, V2, P263
59281    GRAVESMORRIS PR, 1990, J COMPUT APPL MATH, V32, P117
59282    GU CQ, 1997, NUMER SINICA, V19, P19
59283    GU CQ, 1999, LINEAR ALGEBRA APPL, V295, P7
59284    SLOAN I, 1976, MATH COMPUT, V30, P758
59285 NR 7
59286 TC 1
59287 SN 0253-4827
59288 J9 APPL MATH MECH-ENGL ED
59289 JI Appl. Math. Mech.-Engl. Ed.
59290 PD SEP
59291 PY 2001
59292 VL 22
59293 IS 9
59294 BP 1057
59295 EP 1063
59296 PG 7
59297 SC Mathematics, Applied; Mechanics
59298 GA 495AB
59299 UT ISI:000172317100009
59300 ER
59301 
59302 PT J
59303 AU Wang, ZY
59304    Liao, HY
59305    Zhou, SP
59306 TI Studies of the dc biased Josephson junction coupled to a resonant tank
59307 SO ACTA PHYSICA SINICA
59308 DT Article
59309 DE Josephson junction; chaos; attractor; basin of attraction; Poincare
59310    map; Lyapunov exponents
59311 ID CONTROLLING CHAOS
59312 AB We have investigated the dynamics of a Josphson junction circuit, which
59313    consists of a dc biased Josephson junction coupled to a resonant tank.
59314    Numerical simulations indicate that period-3 and chaotic states coexist
59315    when this system is driven by a proper external dc current. The
59316    detailed structures of the attractors and the basins of attraction are
59317    given to specify the features of these states. This provides one with
59318    valuable information to avoid chaos in Josephson junction devices.
59319 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
59320 RP Wang, ZY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
59321 CR ABRAHAM E, 1999, IEEE T APPL SUPERC 3, V9, P4166
59322    ATKIN IL, 1997, IEEE T APPL SUPERC 3, V7, P2894
59323    BENJACOB E, 1981, APPL PHYS LETT, V38, P822
59324    HUBERMAN BA, 1980, APPL PHYS LETT, V37, P750
59325    JENSEN HD, 1990, PHYSICA B, V165, P1661
59326    KAUTZ RL, 1981, J APPL PHYS, V52, P6241
59327    MACDONALD AH, 1983, PHYS REV B, V27, P201
59328    NERENBERG MAH, 1987, PHYS REV B, V36, P8333
59329    PEDERSEN NF, 1988, STIMULATED EFFECTS J, P227
59330    YANG TH, 1999, PHYS REV E A, V59, P5393
59331 NR 10
59332 TC 4
59333 SN 1000-3290
59334 J9 ACTA PHYS SIN-CHINESE ED
59335 JI Acta Phys. Sin.
59336 PD OCT
59337 PY 2001
59338 VL 50
59339 IS 10
59340 BP 1996
59341 EP 2000
59342 PG 5
59343 SC Physics, Multidisciplinary
59344 GA 493ZA
59345 UT ISI:000172252300030
59346 ER
59347 
59348 PT J
59349 AU Zhuang, YL
59350    Yuan, YG
59351    Zhang, RL
59352 TI The progress of photoisomerizable intellectual biological switches
59353 SO PROGRESS IN CHEMISTRY
59354 DT Article
59355 DE photoisomerization; biological switches; biosensors
59356 ID BACTERIORHODOPSIN PHOTOSYNTHESIS; ALPHA-CHYMOTRYPSIN; PROTEIN
59357    CATALYSIS; GLUCOSE-OXIDASE; ENZYME-ACTIVITY; ION-TRANSPORT; LIGHT;
59358    PHOTOREGULATION; MECHANISM; IMMOBILIZATION
59359 AB The novel concept of the biological intellectual switch is introduced.
59360    The mechanism and characteristics on the photoisomerization of
59361    biological switch materials are described. The progress and the
59362    development in this field are discussed, such as the applications of
59363    reversibly photoisomerized biomaterials in optical memory,
59364    electrochemical control, biosensors,etc. The future prospect for the
59365    intellectual biological switches is presented.
59366 C1 Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072, Peoples R China.
59367 RP Zhuang, YL, Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072,
59368    Peoples R China.
59369 CR 1998, SAVING TECHNOLOGY DI, P3
59370    ADAMS SR, 1989, J AM CHEM SOC, V111, P7957
59371    AIZAWA M, 1977, ARCH BIOCHEM BIOPHYS, V182, P305
59372    AMIT B, 1974, J ORG CHEM, V39, P192
59373    BERTELSON RC, 1971, PHOTOCHROMISM, P45
59374    BINKLEY RW, 1984, SYNTHETIC ORGANIC PH, P375
59375    BIRGE RR, 1990, BIOCHIM BIOPHYS ACTA, V1016, P293
59376    BOUASLAURENT H, 1992, APPL PHOTOCHROMIC PO, V56, P1
59377    CIARDELLI F, 1984, BIOPOLYMERS, V23, P1423
59378    DIMITRI AP, 1989, SCIENCE, V245, P843
59379    ELLISDAVIES GCR, 1988, J ORG CHEM, V53, P1966
59380    ELSAYED MA, 1997, PURE APPL CHEM, V69, P749
59381    ELSTOV AV, 1990, ORGANIC PHOTOCHROMIS
59382    FEHER G, 1989, NATURE, V339, P111
59383    FENG G, 1998, SCIENCE, V887, P279
59384    GIGORIEFF N, 1996, J MOL BIOL, V259, P393
59385    GILAT SL, 1993, J CHEM SOC CHEM COMM, P1439
59386    GILAT SL, 1995, CHEM-EUR J, V1, P275
59387    GOVINDJEE R, 1990, BIOPHYS J, V58, P597
59388    GURNEY AM, 1987, PHYSIOL REV, V67, P583
59389    HASEBE Y, 1988, J PHYS ORG CHEM, V1, P309
59390    HAUPTS U, 1997, BIOCHEMISTRY-US, V36, P2
59391    HEINZ D, 1990, PHOTOCHROMISM MOL SY
59392    HIDEKI K, 1998, J PHYS CHEM-US, V102, P7899
59393    HOUBEN JL, 1983, INT J BIOL MACROMOL, V5, P94
59394    HUCK NPM, 1995, J CHEM SOC CHEM COMM, P1095
59395    KAPLAN JH, 1980, NATURE, V288, P587
59396    KAWAI SH, 1995, CHEM-EUR J, V1, P285
59397    KIMURA Y, 1997, NATURE, V389, P206
59398    KYOICHI S, 1998, J APPL PHYS, V83, P2894
59399    LANYI JK, 1993, BIOCHIM BIOPHYS ACTA, V241, P1183
59400    LANYI JK, 1997, J BIOL CHEM, V272, P31209
59401    LESTER HA, 1982, ANNU REV BIOPHYS BIO, V11, P151
59402    LEUCKE H, 1998, SCIENCE, V280, P1934
59403    LING LJ, 1989, ACTA BIOPHYS SINCA, V5, P293
59404    LIONDAGAN M, 1995, ANGEW CHEM INT EDIT, V34, P1604
59405    LIU ZF, 1990, NATURE, V347, P658
59406    MALCOLM RB, 1990, BIOPOLYMERS, V9, P1121
59407    MATHIES RA, 1991, ANNU REV BIOPHYS BIO, V20, P491
59408    MCAVDLE CB, 1992, APPL PHOTOCHROMIC PO, P1
59409    MONTI S, 1977, J AM CHEM SOC, V99, P3808
59410    NARGEOT J, 1983, P NATL ACAD SCI-BIOL, V80, P2395
59411    NERBONNE JM, 1984, NATURE, V310, P74
59412    NORBERT H, 1990, BIOPHYSICAL SOC, V58, P83
59413    OTTOLENGHI M, 1967, J CHEM PHYS, V46, P4613
59414    PEBAYPEYROULA E, 1997, SCIENCE, V277, P1676
59415    PIERONI O, 1980, J AM CHEM SOC, V102, P5913
59416    PIERONI O, 1992, J PHOTOCH PHOTOBIO B, V12, P125
59417    PILLAI VNR, 1990, SYNTHESIS, V1
59418    PORTER NA, 1990, PHOTOCHEM PHOTOBIOL, V51, P37
59419    RENTZEPIS PM, 1968, CHEM PHYS LETT, V2, P117
59420    ROHR M, 1992, J PHYS CHEM-US, V96, P6055
59421    ROTHSCHILD KJ, 1992, J BIOENERG BIOMEMBR, V24, P147
59422    SALTIEL J, 1992, APPL PHOTOCHROMIC PO, V64, P1
59423    SONG L, 1993, SCIENCE, V261, P891
59424    SONG L, 1996, J PHYS CHEM-US, V100, P10479
59425    SPUDICH JL, 1996, CURR OPIN CELL BIOL, V8, P452
59426    STRYER L, 1986, ANNU REV NEUROSCI, V9, P87
59427    STRYER L, 1988, BIOCHEMISTRY-US, P1028
59428    STRYER L, 1988, BIOCHEMISTRY-US, P25
59429    TOMLINSON WJ, 1984, APPL OPTICS, V23, P3990
59430    TURNER AD, 1988, J AM CHEM SOC, V110, P244
59431    VEDA T, 1994, J CHEM SOC, V225, P334
59432    WALKER JW, 1987, NATURE, V327, P249
59433    WESTMARK PR, 1993, J AM CHEM SOC, V115, P3416
59434    WHITTALL J, 1992, APPL PHOTOCHROMIC PO, V46, P1
59435    WILLNER I, 1991, J AM CHEM SOC, V113, P3321
59436    WILLNER I, 1991, J AM CHEM SOC, V113, P4013
59437    WILLNER I, 1993, BIOORGANIC PHOTOCHEM
59438    WILLNER I, 1993, J AM CHEM SOC, V115, P8690
59439    WILLNER I, 1993, REACT POLYM, V21, P177
59440    WILLNER I, 1996, ANGEW CHEM INT EDIT, V35, P367
59441    WILLNER I, 1996, J AM CHEM SOC, V118, P5310
59442    WILLNER I, 1998, J PHYS ORG CHEM, V11, P546
59443 NR 74
59444 TC 0
59445 SN 1005-281X
59446 J9 PROG CHEM
59447 JI Prog. Chem.
59448 PD JUL
59449 PY 2001
59450 VL 13
59451 IS 4
59452 BP 276
59453 EP 282
59454 PG 7
59455 SC Chemistry, Multidisciplinary
59456 GA 492DD
59457 UT ISI:000172152400006
59458 ER
59459 
59460 PT J
59461 AU Lu, HQ
59462    Shen, LM
59463    Sun, NJ
59464    Ji, GF
59465 TI Bianchi type-I, -VII0 and -V cosmological models of Weyssenhoff fluid
59466    with magnetic moment
59467 SO NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS
59468    RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS
59469 DT Article
59470 ID EARLY UNIVERSE; INFLATION; SPIN; FIELD
59471 AB We derive the system of field equations for a Weyssenhof fluid
59472    including magnetic interaction among the spinning particles prevailing
59473    in spatially homogeneous, but. anisotropic cosmological models of
59474    Bianchi types I, VII0 and V based on the Einstein-Cartan theory. We
59475    have analyzed the field equations in three different equations of
59476    states specified by p = 1/3 rho, p = rho and p = 0. We have obtained.
59477    singular and non-singular solutions for Bianchi modes of types I and
59478    VII0 under the state p = rho but have found that. the non-singular
59479    solutions are unphysical. During the radiation epoch (p = 1/3 rho) and
59480    the matter epoch (p = 0), the analytical solutions found are
59481    non-singular for all the stated three Bianchi models; provided that the
59482    combined energy arising from matter spin and magnetic interaction among
59483    particles overcomes the anisotropy energy in the Universe. We have
59484    deduced that the minimum particle numbers for the radiation and matter
59485    epochs are, respectively, 10(88) and 10(108), leading to the conclusion
59486    that we must. consider the existence of neutrinos and other creation of
59487    particles and anti-particles under torsion and strong gravitational
59488    field in the early Universe.
59489 C1 Shanghai Univ, Dept Phys, Shanghai 200041, Peoples R China.
59490 RP Lu, HQ, Shanghai Univ, Dept Phys, Shanghai 200041, Peoples R China.
59491 CR BARROW JD, 1977, MON NOT R ASTRON SOC, V178, P625
59492    CARTON E, 1985, MANIFOLD AFFINE CONN
59493    DAVIDSON S, 1996, PHYS LETT B, V380, P253
59494    DEMIANSKI M, 1987, PHYS REV D, V35, P1181
59495    DERITIS SP, 1986, P 7 IT C GEN REL GRA
59496    DESABBATA V, 1980, LETT NUOVO CIMENTO, V27, P133
59497    DESABBATA V, 1990, NUOVO CIMENTO B, V105, P603
59498    DESABBATA V, 1994, SPIN TORSION GRAVITA
59499    HEHL FW, 1976, REV MOD PHYS, V48, P393
59500    ISHAM CJ, 1971, PHYS REV           D, V3, P867
59501    ISHAM CJ, 1973, NATURE-PHYS SCI, V244, P82
59502    KERIMOV BK, 1992, PHYS LETT B, V274, P477
59503    KOPCZYNSKI W, 1973, PHYS LETT A, V43, P63
59504    LU HQ, 1995, CLASSICAL QUANT GRAV, V12, P2755
59505    MARTINEZGONZALE.E, 1986, PHYS LETT B, V167, P37
59506    OBUKHOV YN, 1987, CLASSICAL QUANT GRAV, V4, P1633
59507    RAYCHAUDHURI AK, 1975, PHYS REV D, V12, P952
59508    RYAN MP, 1975, HOMOGENEOUS RELATIVI
59509    SOFFEL M, 1979, PHYS LETT A, V70, P167
59510    TSOUBELIS D, 1979, PHYS REV D, V20, P3004
59511    TSOUBELIS D, 1981, PHYS REV D, V23, P823
59512    TURNER MS, 1988, PHYS REV D, V37, P2743
59513    ZELDOVICH YB, 1970, JETP LETT, V12, P307
59514 NR 23
59515 TC 0
59516 SN 0369-3554
59517 J9 NUOVO CIMENTO B-GEN PHYS R
59518 JI Nouvo Cimento Soc. Ital. Fis. B-Gen. Phys. Relativ. Astron. Math. Phys.
59519    Methods
59520 PD JUL
59521 PY 2001
59522 VL 116
59523 IS 7
59524 BP 829
59525 EP 844
59526 PG 16
59527 SC Physics, Multidisciplinary
59528 GA 491ZX
59529 UT ISI:000172141800007
59530 ER
59531 
59532 PT J
59533 AU Zhang, ZL
59534    Jiang, XY
59535    Zhu, WQ
59536    Zhang, BX
59537    Xu, SH
59538 TI A white organic light emitting diode with improved stability
59539 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
59540 DT Article
59541 ID ELECTROLUMINESCENT DEVICES; LAYERS
59542 AB A white organic light emitting diode (OLED) has been constructed by
59543    employing a new blue material and a red dye directly doped in the blue
59544    emitting layer. For comparison, another white cell with a blocking
59545    layer has also been made. The configurations of the devices are
59546    ITO/CuPc/NPB/JBEM(P):DCJT/Alq/MgAg (device 1) and
59547    ITO/CuPc/NPB/TPBi:DCJT/Alq/MgAg (device 2) where copper phthalocyanine
59548    (CuPc) is the buffer layer,
59549    N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'biphenyl-4-4'-diamine (NPB) is
59550    the hole transporting layer, 9, 10-bis(3'5'-diaryl)phenyl anthracene
59551    doped with perylene (JBEM(P)) is the new blue emitting material,
59552    N,arylbenzimidazoles (TPBi) is the hole blocking layer,
59553    tris(8-quinolinolato)aluminium complex (Alq) is the electron
59554    transporting layer, and DCJT is a red dye. A stable and current
59555    independent white OLED has been obtained in device 1, which has a
59556    maximum luminance of 14 850 cd m(-2), an efficiency of 2.88 Lm W-1,
59557    Commission Internationale de l'Eclairage coordinates of x = 0.32, y =
59558    0.38 between 4-200 mA cm(-2), and a half lifetime of 2860 h at the
59559    starting luminance of 100 cd m(-2). Device 1 has a stability more than
59560    50 times better than that of device 2.
59561 C1 Shanghai Univ Sci & Technol, Dept Mat Sci, Shanghai 201800, Peoples R China.
59562 RP Zhang, ZL, Shanghai Univ Sci & Technol, Dept Mat Sci, Shanghai 201800,
59563    Peoples R China.
59564 CR ADACHI C, 1995, APPL PHYS LETT, V66, P2679
59565    CHEN CH, 1997, MACROMOL S, V125, P1
59566    DESHPANDE RS, 1999, APPL PHYS LETT, V75, P888
59567    FORREST SR, 1997, SYNTHETIC MET, V91, P9
59568    GAO ZQ, 1999, APPL PHYS LETT, V74, P865
59569    GRANSTROM M, 1996, APPL PHYS LETT, V68, P147
59570    HAMADAY Y, 1993, JPN J APPL PHYS, V32, L917
59571    JIANG XY, 2000, J PHYS D APPL PHYS, V33, P473
59572    JORDAN RH, 1996, APPL PHYS LETT, V68, P1192
59573    KIDO J, 1994, APPL PHYS LETT, V64, P815
59574    LIU SY, 2000, THIN SOLID FILMS, V363, P294
59575    SHI JM, 1999, 5972247, US
59576    STRUKELJ M, 1996, J AM CHEM SOC, V118, P1213
59577    TOKITO S, 1995, J APPL PHYS, V77, P1985
59578 NR 14
59579 TC 9
59580 SN 0022-3727
59581 J9 J PHYS-D-APPL PHYS
59582 JI J. Phys. D-Appl. Phys.
59583 PD OCT 21
59584 PY 2001
59585 VL 34
59586 IS 20
59587 BP 3083
59588 EP 3087
59589 PG 5
59590 SC Physics, Applied
59591 GA 493DU
59592 UT ISI:000172207400014
59593 ER
59594 
59595 PT J
59596 AU Zhao, JX
59597    Li, Y
59598 TI Analysis of millimeter wave power density received by cell monolayers
59599    inside culture dishes
59600 SO INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES
59601 DT Article
59602 DE millimeter wave; power density; culture dish; cell monolayer; FDTD
59603    method
59604 AB One sort of experiment concerning biological effects of millimeter
59605    waves (MMWs) at the cellular level is performed using a culture dish
59606    containing a cell monolayer with MMW irradiated from the underneath.
59607    For culture dishes with diameters much larger than the wavelength.
59608    analysis is carried out with respect to the relationship between the
59609    portion of the incident MMW power density (PD) received by the cell
59610    monolayer and influencing factors such as the culture dish bottom
59611    thickness. MMW wavelength. and the electromagnetic properties of the
59612    dish and culture solution. Another analysis is conducted by the FDTD
59613    method to reveal the effect of culture dish configuration on MMW PD
59614    received by the cell monolayer in a typical culture dish with a
59615    diameter not much longer than the wavelength. With the illustrated
59616    results. the conclusion is reached that rigorous analysis. precise
59617    measurement and accurate calculation of MMW PD should accompany such
59618    experiments. and large-diameter culture dishes are more preferred in
59619    experiments to small-caliber dishes.
59620 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
59621 RP Zhao, JX, Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R
59622    China.
59623 CR ANDREI G, 1998, BIOELECTROMAGNETICS, V19, P393
59624    CHEN HY, 1994, IEEE T MICROW THEO 1, V42, P2249
59625    DAVID K, 1983, FIELD WAVE ELECTROMA
59626    MUR G, 1981, IEEE T ELECTROMAGN C, V23, P377
59627 NR 4
59628 TC 3
59629 SN 0195-9271
59630 J9 INT J INFRAR MILLIM WAVE
59631 JI Int. J. Infrared Millimeter Waves
59632 PD NOV
59633 PY 2001
59634 VL 22
59635 IS 11
59636 BP 1577
59637 EP 1586
59638 PG 10
59639 SC Engineering, Electrical & Electronic; Physics, Applied; Optics
59640 GA 492RP
59641 UT ISI:000172181600003
59642 ER
59643 
59644 PT J
59645 AU Iso, M
59646    Chen, BX
59647    Eguchi, M
59648    Kudo, T
59649    Shrestha, S
59650 TI Production of biodiesel fuel from triglycerides and alcohol using
59651    immobilized lipase
59652 SO JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC
59653 DT Article
59654 DE enzyme biocatalysis; lipase; transesterification; Immobilized enzyme;
59655    biodiesel fuel
59656 ID SUNFLOWER OIL
59657 AB Transesterification reaction was performed using triglycerides and
59658    short-chain alcohol by immobilized lipase in non-aqueous conditions.
59659    The long-chain fatty acid ester, which is the product of this reaction,
59660    can be used as a diesel fuel that does not produce sulfur oxide and
59661    minimize the soot particulate. Immobilized Pseudomonas fluorescens
59662    lipase showed the highest activity in this reaction. Immobilization of
59663    lipase was carried out using porous kaolinite particle as a carrier.
59664    When methanol and ethanol were used as alcohol, organic solvent like
59665    1,4-dioxane was required. The reaction could be performed in absence of
59666    solvent when 1-propanol and 1-butanol were used as short-chain alcohol.
59667    The activity of immobilized lipase was highly increased in comparison
59668    with free lipase because its activity sites became more effective.
59669    Immobilized enzyme could be repeatedly used without troublesome method
59670    of separation and the decrease in its activity was not largely
59671    observed. (C) 2001 Elsevier Science B.V. All rights reserved.
59672 C1 Tokyo Univ Agr & Technol, Dept Chem Engn, Tokyo 1848588, Japan.
59673    Shanghai Univ Sci & Technol, Coll Opt & Electron Informat Engn, Shanghai 200093, Peoples R China.
59674 RP Iso, M, Tokyo Univ Agr & Technol, Dept Chem Engn, 2-24-16 Nakamachi,
59675    Tokyo 1848588, Japan.
59676 CR LINKO YY, 1994, J AM OIL CHEM SOC, V71, P1411
59677    LINKO YY, 1998, J BIOTECHNOL, V66, P41
59678    MITTELBACH M, 1990, J AM OIL CHEM SOC, V67, P168
59679    NELSON LA, 1996, J AM OIL CHEM SOC, V73, P1191
59680    OHIRA H, 1998, P 31 C SOC CHEM ENG, P217
59681    SELMI B, 1998, J AM OIL CHEM SOC, V75, P691
59682    SHIMADA Y, 1999, J AM OIL CHEM SOC, V76, P789
59683    TANAKA K, 1997, P 62 C SOC CHEM ENG, P82
59684    WATANABE Y, 2000, J AM OIL CHEM SOC, V77, P355
59685 NR 9
59686 TC 23
59687 SN 1381-1177
59688 J9 J MOL CATAL B-ENZYM
59689 JI J. Mol. Catal. B-Enzym.
59690 PD NOV 20
59691 PY 2001
59692 VL 16
59693 IS 1
59694 BP 53
59695 EP 58
59696 PG 6
59697 SC Chemistry, Physical; Biochemistry & Molecular Biology
59698 GA 489XQ
59699 UT ISI:000172018400007
59700 ER
59701 
59702 PT J
59703 AU Zhu, LH
59704    Ma, XM
59705    Zhao, L
59706 TI Study on phase transformation of Fe-Ni powders during mechanical
59707    alloying
59708 SO JOURNAL OF MATERIALS SCIENCE
59709 DT Article
59710 ID X-RAY-DIFFRACTION; MARTENSITIC-TRANSFORMATION; MAGNETIC-PROPERTIES;
59711    PARTICLES; ENERGY
59712 AB Fe-Ni ultra-fine particles were prepared by mechanical alloying and
59713    phase transformation during mechanical alloying was studied. Results
59714    show that phase transformation tendency is different during mechanical
59715    alloying of Fe-Ni powders with different nickel content. For Fe-30Ni
59716    powder, martensite is the only product obtained with the increase of
59717    milling time, while for Fe-35Ni powder, a part of martensite has been
59718    transformed into austenite when milling time is prolonged to above 40
59719    h. It indicates that the nickel content plays an important role in the
59720    phase transformation tendency during mechanical alloying of Fe-Ni
59721    powders. (C) 2001 Kluwer Academic Publishers.
59722 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
59723 RP Zhu, LH, Shanghai Univ, Dept Mat Sci & Engn, Yanchang Rd, Shanghai
59724    200072, Peoples R China.
59725 CR ASAKA K, 1999, MAT SCI ENG A-STRUCT, V275, P262
59726    BALDOKHIN YV, 1999, J MAGN MAGN MATER, V203, P313
59727    CHEN Y, 1997, MAT SCI ENG A-STRUCT, V226, P38
59728    DONG XL, 1999, J MATER RES, V14, P398
59729    FECHT HJ, 1994, SCI TECHNOLOGY NANOS, P125
59730    JARTYCH E, 2000, J MAGN MAGN MATER, V208, P221
59731    JIANG HG, 1999, J MATER RES, V14, P549
59732    KAJIWARA S, 1991, PHILOS MAG A, V63, P625
59733    KUHRT C, 1993, J APPL PHYS 2B, V73, P6588
59734    KUSUNOKI M, 1996, ULTRAFINE PARTICLES, P98
59735    LI XG, 1997, J MAGN MAGN MATER, V170, P339
59736    PEKALA M, 1999, NANOSTRUCT MATER, V11, P789
59737    RAWERS J, 1995, SCRIPTA METALL MATER, V32, P1319
59738    RAWERS JC, 1996, MAT SCI ENG A-STRUCT, V220, P162
59739    TADAKI T, 1996, MAT SCI ENG A-STRUCT, V217, P235
59740    ZHOU YH, 1990, MAT SCI ENG A-STRUCT, V124, P241
59741    ZHOU YH, 1991, MAT SCI ENG A-STRUCT, V133, P775
59742 NR 17
59743 TC 4
59744 SN 0022-2461
59745 J9 J MATER SCI
59746 JI J. Mater. Sci.
59747 PD DEC
59748 PY 2001
59749 VL 36
59750 IS 23
59751 BP 5571
59752 EP 5574
59753 PG 4
59754 SC Materials Science, Multidisciplinary
59755 GA 489VD
59756 UT ISI:000172012400007
59757 ER
59758 
59759 PT J
59760 AU Li, CP
59761    Chen, GR
59762 TI Bifurcation analysis of the Kuramoto-Sivashinsky equation in one
59763    spatial dimension
59764 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
59765 DT Article
59766 AB In this Letter, we study the bifurcation of the Kuramoto-Sivashinsky
59767    (K-S) equation in one-spatial dimension with three kinds of boundary
59768    value conditions. Using the Liapunov-Schmidt reduction technique, the
59769    original equation is first reduced to one or two bifurcation equations,
59770    so that bifurcation analysis of the original equation can be
59771    transformed to that of the reduced-order systems, and can therefore be
59772    carried out in detail.
59773 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
59774    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
59775 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
59776 CR CHOW SN, 1982, METHODS BIFURCATION
59777    FOIAS C, 1988, J DIFF EQS, V73, P93
59778    GOLUBITSKY M, 1985, SINGULARITIES GROUPS, V1
59779    KUKAVICA I, 1992, J MATH ANAL APPL, V166, P601
59780    KURAMOTO Y, 1978, PROG THEOR PHYS    S, V64, P346
59781    LI CP, 2000, APPL MATH MECH-ENGL, V21, P265
59782    LI CP, 2000, MATH APPL, V13, P46
59783    LI CP, 2001, INT J BIFURCAT CHAOS, V11, P1295
59784    LI CP, 2001, MATH APPL, V14, P22
59785    NICOLAENKO B, 1985, PHYSICA D, V16, P155
59786    SIVASHINSKY GI, 1977, ACTA ASTRONAUT, V4, P1177
59787    SIVASHINSKY GI, 1980, SIAM J APPL MATH, V39, P67
59788    TEMAM R, 1988, INFINITE DIMENSIONAL
59789    YANG ZH, 2000, IN PRESS J COMPUT AP
59790 NR 14
59791 TC 3
59792 SN 0218-1274
59793 J9 INT J BIFURCATION CHAOS
59794 JI Int. J. Bifurcation Chaos
59795 PD SEP
59796 PY 2001
59797 VL 11
59798 IS 9
59799 BP 2493
59800 EP 2499
59801 PG 7
59802 SC Mathematics, Applied; Multidisciplinary Sciences
59803 GA 489MV
59804 UT ISI:000171996000012
59805 ER
59806 
59807 PT J
59808 AU Wang, XC
59809    Qiu, XJ
59810    Zheng, LP
59811 TI Influence of relative phase on the enhanced ionization behaviour of
59812    linear multiatomic molecular ions in two-color laser fields
59813 SO ACTA PHYSICA SINICA
59814 DT Article
59815 DE two-color laser fields; relative phase; enhanced ionization
59816 ID INTENSE; H-2+; DISSOCIATION; H-2(+)
59817 AB The enhanced ionization(EI) behaviour of linear multiatomic molecular
59818    ions is studied in two-color(fundamental radiation: 780 nm, the second
59819    harmonic-390 nm) laser fields by the numerical solution of the
59820    time-dependent Schrodinger equation with the symmetrical splitting of
59821    the short-time exponential propagator. The influence of the relative
59822    phase between the two-color laser fields on the ionization probability
59823    is given. The numerical results demonstrate that the influence of the
59824    relative phase on the ionization probability is the strongest in the
59825    range of the inter-nuclear distance where the EI occurs. The influence
59826    can be explained in terms of the field-induced over-the-barrier
59827    ionization model.
59828 C1 Shanghai Univ, Sch Sci, Shanghai 200436, Peoples R China.
59829 RP Wang, XC, Shanghai Univ, Sch Sci, Shanghai 200436, Peoples R China.
59830 CR BANDRACK AD, 1994, MOL LASER FIELDS, P156
59831    FEIT MD, 1982, J COMPUT PHYS, V47, P412
59832    GIBSON GN, 1997, PHYS REV LETT, V79, P2022
59833    GIUSTISUZOR A, 1990, PHYS REV LETT, V64, P515
59834    HEATHER RW, 1991, COMPUT PHYS COMMUN, V63, P446
59835    HEATHER RW, 1991, PHYS REV A, V44, P7560
59836    HU SX, 1998, SCI CHINA SER A, V41, P198
59837    JAVANAINEN J, 1988, PHYS REV A, V38, P3430
59838    LEI AL, 1999, CHINESE PHYS LETT, V16, P264
59839    SEIDEMAN T, 1995, PHYS REV LETT, V75, P2819
59840    ZUO T, 1995, PHYS REV A, V52, R2511
59841    ZUO T, 1996, PHYS REV A, V54, P3254
59842 NR 12
59843 TC 0
59844 SN 1000-3290
59845 J9 ACTA PHYS SIN-CHINESE ED
59846 JI Acta Phys. Sin.
59847 PD NOV
59848 PY 2001
59849 VL 50
59850 IS 11
59851 BP 2155
59852 EP 2158
59853 PG 4
59854 SC Physics, Multidisciplinary
59855 GA 489QZ
59856 UT ISI:000172004100022
59857 ER
59858 
59859 PT J
59860 AU Bian, JJ
59861    Zhong, YG
59862    Wang, H
59863 TI Effect of PMW addition on the microwave dielectric properties of PCFNS
59864    dielectric ceramic
59865 SO JOURNAL OF MATERIALS SCIENCE LETTERS
59866 DT Article
59867 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
59868 RP Bian, JJ, Shanghai Univ, Dept Inorgan Mat, 20 ChenZhong Rd, Shanghai
59869    201800, Peoples R China.
59870 CR HUANG CL, 2000, MATER LETT, V43, P32
59871    ISHZAKI T, 1994, IEEE T MICROW THEORY, V42, P2017
59872    KAGATA H, 1994, NATL TECHNICAL REPOR, V40, P17
59873    KIM HT, 1999, J AM CERAM SOC, V82, P3476
59874    KUCHEIKO S, 1997, J AM CERAM SOC, V80, P2937
59875 NR 5
59876 TC 1
59877 SN 0261-8028
59878 J9 J MATER SCI LETT
59879 JI J. Mater. Sci. Lett.
59880 PY 2001
59881 VL 20
59882 IS 19
59883 BP 1767
59884 EP 1768
59885 PG 2
59886 SC Materials Science, Multidisciplinary
59887 GA 488GD
59888 UT ISI:000171927100005
59889 ER
59890 
59891 PT J
59892 AU Hassan, AKA
59893    Xu, DM
59894    Niu, MD
59895    Zhang, YJ
59896 TI An improved technique for measuring electromagnetic properties of
59897    curved surfaces coating materials with open-ended coaxial line probe
59898 SO CHINESE JOURNAL OF ELECTRONICS
59899 DT Article
59900 DE coating materials testing; open-ended coaxial probe; complex
59901    permittivity and permeability; finite-difference time-domain (FDTD)
59902 AB An improved open-ended coaxial probe technique for measuring
59903    electromagnetic properties of coating materials with curved surfaces
59904    (both convex and concave) is studied. FDTD modeling indicates that the
59905    reflection coefficient of the loaded probe is more sensitive to concave
59906    surface samples than to those with convex surface. In order to satisfy
59907    concave surface materials testing, we proposed a technique to improve
59908    the measurement accuracy by modifying the standard coaxial probe. A
59909    ring patch is added at the end of extended inner conductor throughout
59910    the air gap between the probe and the material under test. The
59911    performance of the proposed technique is examined. The derived epsilon*
59912    and mu* of several microwave absorbing materials coated on prototype
59913    boxes by using the new probe are relatively in agreement with the
59914    published data.
59915 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
59916 RP Hassan, AKA, Shanghai Univ, Sch Commun & Informat Engn, Shanghai
59917    200072, Peoples R China.
59918 CR ATHEY TW, 1982, IEEE T MICROW THEORY, V30, P82
59919    BAKERJARVIS J, 1994, IEEE T INSTRUM MEAS, V43, P711
59920    BRINGHURST S, 1997, IEEE T MICROW THEO 1, V45, P2073
59921    LAUGHE PD, 1993, IEEE T INSTRUM MEAS, V42, P879
59922    LI CL, 1995, IEEE T INSTRUM MEAS, V44, P19
59923    MUR G, 1981, IEEE T ELECTROMAGN C, V23, P377
59924    NIU M, 1999, IEEE T INSTRUM MEAS, V47, P476
59925    TOFLOVE A, 1980, IEEE T ELECTROMAGNET, V22, P191
59926    WANG S, 1998, KIEEE T MICROWAVE TH, V45, P2145
59927    XU DM, 1987, IEEE T MICROW THEORY, V35, P1424
59928    YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302
59929    ZHANG Z, 1995, J MICROWAVES CHINA, V11, P171
59930 NR 12
59931 TC 0
59932 SN 1022-4653
59933 J9 CHINESE J ELECTRON
59934 JI Chin. J. Electron.
59935 PD OCT
59936 PY 2001
59937 VL 10
59938 IS 4
59939 BP 539
59940 EP 543
59941 PG 5
59942 SC Engineering, Electrical & Electronic
59943 GA 487WR
59944 UT ISI:000171902500027
59945 ER
59946 
59947 PT J
59948 AU Leng, GS
59949    Zhang, LS
59950 TI Extreme properties of quermassintegrals of convex bodies
59951 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
59952 DT Article
59953 DE convex body; quermassintegral; mixed volume
59954 ID DUAL MIXED VOLUMES; BUSEMANN-PETTY PROBLEM; INTERSECTION BODIES;
59955    INEQUALITY
59956 AB In this paper, we establish two theorems for the quermassintegrals of
59957    convex bodies, which are the generalizations of the well-known
59958    Aleksandrov's projection theorem and Loomis-Whitney's inequality,
59959    respectively. Applying these two theorems, we obtain a number of
59960    inequalities for the volumes of projections of convex bodies. Besides,
59961    we introduce the concept of the perturbation element of a convex body,
59962    and prove an extreme property of it.
59963 C1 Hunan Normal Univ, Dept Math, Changsha 410006, Peoples R China.
59964    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
59965 RP Leng, GS, Hunan Normal Univ, Dept Math, Changsha 410006, Peoples R
59966    China.
59967 CR BALL K, 1991, J LOND MATH SOC, V44, P351
59968    BALL K, 1991, T AM MATH SOC, V327, P891
59969    BOURGAIN J, 1988, LECT NOTES MATH, V1317, P250
59970    BRASCAMP HJ, 1976, ADV MATH, V20, P151
59971    BURAGO YD, 1988, GEOMETRIC INEQUALITI
59972    CHAKERIAN GD, 1997, T AM MATH SOC, V349, P1811
59973    GARDNER RJ, 1994, ANN MATH, V140, P435
59974    GARDNER RJ, 1994, T AM MATH SOC, V342, P435
59975    GOODEY P, 1997, B LOND MATH SOC 1, V29, P82
59976    GRINBERG EL, 1991, MATH ANN, V291, P75
59977    KAWASHIMA T, 1991, GEOM DEDICATA, V38, P73
59978    LEICHTWEISS K, 1980, KONVEXE MENGEN
59979    LUTWAK E, 1985, T AM MATH SOC, V287, P92
59980    LUTWAK E, 1988, ADV MATH, V71, P232
59981    LUTWAK E, 1990, P LOND MATH SOC, V60, P365
59982    PETTY CM, 1967, P COLL CONV COP 1965, P234
59983    REN DL, 1988, INTRO INTEGRAL GEOME
59984    SCHNEIDER R, 1967, MATH Z, V101, P71
59985    SCHNEIDER R, 1983, ZONOIDS RELATED TOPI, P296
59986    SCHNEIDER R, 1993, CONVEX BODIES BRUNNM
59987    SCHNEIDER R, 1998, DETERMINATION CONVEX, V33, P155
59988    THOMPSON AC, 1996, MINKOWSKI GEOMETRY
59989    YANG L, 1986, ACTA MATH SINICA, V6, P802
59990    ZHANG GY, 1994, T AM MATH SOC, V345, P777
59991    ZHANG GY, 1999, T AM MATH SOC, V351, P985
59992    ZHENG JZ, 1981, ACTA MATH SINICA, V4, P481
59993 NR 26
59994 TC 2
59995 SN 1006-9283
59996 J9 SCI CHINA SER A
59997 JI Sci. China Ser. A-Math. Phys. Astron.
59998 PD JUL
59999 PY 2001
60000 VL 44
60001 IS 7
60002 BP 837
60003 EP 845
60004 PG 9
60005 SC Mathematics, Applied; Mathematics
60006 GA 487CR
60007 UT ISI:000171856500004
60008 ER
60009 
60010 PT J
60011 AU Tao, DH
60012    Zhang, JH
60013 TI Several difficult problems in lubrication
60014 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
60015 DT Article
60016 DE lubrication; ZDTP; chlorowax; green compressor oil; lubrication of
60017    cystoscope and catheter
60018 AB Whether in industry or in our human life, we will encounter many
60019    lubrication problems. A good lubricant not only should have good
60020    performance, but also should meet the needs of the specific conditions.
60021    Here we give some examples about the difficult problems in lubrication
60022    and their solutions. These examples are: (i) hydrolysis and emulsion of
60023    ZDTP; (ii) corrosion of chlorowax; (iii) coexistence of green
60024    compressor oil and cryogen (R-134A); (iv) lubrication of cystoscope and
60025    catheter. On the same time, some achievements in lubrication field
60026    provided by Lubrication Chemistry Laboratory of Shanghai University
60027    will be introduced in this paper.
60028 C1 Shanghai Univ, Lubricat Chem Lab, Shanghai 200072, Peoples R China.
60029 RP Tao, DH, Shanghai Univ, Lubricat Chem Lab, Shanghai 200072, Peoples R
60030    China.
60031 CR 871010011, CN
60032    SAKURAI T, 1979, ADDITIVE PETROLEUM P
60033    TAO D, 1996, LUBRI SCI, V8, P397
60034    TAO DH, 1994, LUBR ENG, V50, P385
60035    TAO DH, 2000, CHIN SCI ABSTR, V6, P106
60036 NR 5
60037 TC 0
60038 SN 1006-9283
60039 J9 SCI CHINA SER A
60040 JI Sci. China Ser. A-Math. Phys. Astron.
60041 PD AUG
60042 PY 2001
60043 VL 44
60044 SU Suppl. S
60045 BP 46
60046 EP 48
60047 PG 3
60048 SC Mathematics, Applied; Mathematics
60049 GA 485ZH
60050 UT ISI:000171793000008
60051 ER
60052 
60053 PT J
60054 AU Chen, XY
60055    Shen, XJ
60056    Lu, JT
60057 TI Tribological problems of surface IC processed MEMS
60058 SO SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
60059 DT Article
60060 DE MEMS; surface micromachining; tribology; silicon
60061 ID FRICTION; DEVICES
60062 AB Successful microactuators of simple mechanics on silicon chip are a
60063    prerequisite for monolithic microrobotic systems. Recent development in
60064    microelectromechanical systems (MEMS) has led to the success in
60065    building new types of microactuators. Based on the design of
60066    microgrippers and linear microvibromotor, which were fabricated using
60067    surface micromachining, the analysis of contact pairs and opposite
60068    movement forming of moving elements is given in this paper. The source
60069    and mechanism of tribology of MEMS are discussed. Associated with the
60070    developing history of macro-machine, several research methods and
60071    possible existing problems about the tribology of surface IC processed
60072    MEMS are pointed out.
60073 C1 Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China.
60074 RP Chen, XY, Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072,
60075    Peoples R China.
60076 CR CHO YH, 1994, J MICROELECTROMECH S, V3, P81
60077    DANEMAN MJ, 1996, J MICROELECTROMECH S, V5, P159
60078    HOWE RT, 1988, J VAC SCI TECHNOL B, V6, P1809
60079    KIANG MH, 1998, J MICROELECTROMECH S, V7, P27
60080    LIM MG, 1990, P IEEE MICR EL MECH, P82
60081    LU JT, 1997, 4 FRENCH SIN WORKSH, P109
60082    MILLER SL, 1997, P SOC PHOTO-OPT INS, V3224, P24
60083    SENFT DC, 1997, P SOC PHOTO-OPT INS, V3224, P31
60084    TANG WC, 1997, P 34 DES AUT C AN CA, P670
60085 NR 9
60086 TC 0
60087 SN 1006-9283
60088 J9 SCI CHINA SER A
60089 JI Sci. China Ser. A-Math. Phys. Astron.
60090 PD AUG
60091 PY 2001
60092 VL 44
60093 SU Suppl. S
60094 BP 443
60095 EP 448
60096 PG 6
60097 SC Mathematics, Applied; Mathematics
60098 GA 485ZH
60099 UT ISI:000171793000071
60100 ER
60101 
60102 PT J
60103 AU Deng, SF
60104    Chen, DY
60105 TI The novel multisoliton solutions of KP equations
60106 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
60107 DT Article
60108 DE KP equation; Hirota method; novel-multisoliton solution
60109 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
60110 RP Deng, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
60111 CR ABLOWITZ MJ, 1981, SOLITONS INVERSE SCA
60112    CHEN DY, 2000, NOVEL MULTISOLITON S
60113    HIROTA R, 1971, PHYS REV LETT, V27, P1192
60114    HIROTA R, 1980, TOP CURR PHYS, V17, P157
60115    SATSUMA J, 1976, J PHYS SOC JPN, V40, P286
60116 NR 5
60117 TC 12
60118 SN 0031-9015
60119 J9 J PHYS SOC JPN
60120 JI J. Phys. Soc. Jpn.
60121 PD OCT
60122 PY 2001
60123 VL 70
60124 IS 10
60125 BP 3174
60126 EP 3175
60127 PG 2
60128 SC Physics, Multidisciplinary
60129 GA 484RZ
60130 UT ISI:000171704500064
60131 ER
60132 
60133 PT J
60134 AU Song, LP
60135    Zhu, SZ
60136 TI Regioselective synthesis of fluorinated pyrazole derivatives from
60137    trifluoromethyl-1,3-diketone
60138 SO JOURNAL OF FLUORINE CHEMISTRY
60139 DT Article
60140 DE trifluoromethyl-1,3-diketone; per(poly)fluorophenylhydrazine;
60141    regioselective; fluorinated pyrazole derivatives
60142 AB 1,1,1-Trifluoropentane-2,4-dione (1a) and
60143    1-(thien-2-yl)-4,4,4-trifluorobutane-1,3-dione (1b) reacted readily
60144    with per(poly)fluorophenylhydrazines ArfNHNH2 (Ar-f: C6F5, HC6F4,
60145    CIC6F4) to give N-per(poly)fluorophenyl-5-methyl(or
60146    thien-2-yl)-3-trifluoromethylpyrazoles 3 and 3-methyl (or
60147    thien-2-yl)-5-hydroxy-5-trifluoromethyl-4,5-dihydropyrazoles 4,
60148    respectively. Treatment of 4 with P2O5 yielded the dehydrated product
60149    N-per(poly)fluorophenyl-3-methyl(or
60150    thien-2-yl)-5-trifluoromethyl-pyrazole in good yield. (C) 2001 Elsevier
60151    Science B.V. All rights reserved.
60152 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Organofluorine Chem, Shanghai 200032, Peoples R China.
60153    Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
60154 RP Zhu, SZ, Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Organofluorine
60155    Chem, 354 Fenglin Lu Rd, Shanghai 200032, Peoples R China.
60156 CR BANK RE, 1994, ORGANOFLUORINE CHEM
60157    HUDLICKY M, 1992, CHEM ORGANIC FLUORIN
60158    LEE LF, 1990, J HETEROCYCLIC CHEM, V27, P243
60159    LOUPY A, 1995, J FLUORINE CHEM, V75, P215
60160    REID JC, 1950, J AM CHEM SOC, V72, P2948
60161    SINGH SP, 1997, J FLUORINE CHEM, V83, P73
60162    SINGH SP, 1999, J FLUORINE CHEM, V94, P199
60163    SONG LP, 2001, J FLUORINE CHEM, V107, P107
60164    WELCH JT, 1987, TETRAHEDRON, V43, P3123
60165    YAMAGUCHI Y, 1998, J HETEROCYCLIC CHEM, V35, P805
60166 NR 10
60167 TC 12
60168 SN 0022-1139
60169 J9 J FLUORINE CHEM
60170 JI J. Fluor. Chem.
60171 PD OCT 28
60172 PY 2001
60173 VL 111
60174 IS 2
60175 SI Sp. Iss. SI
60176 BP 201
60177 EP 205
60178 PG 5
60179 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
60180 GA 485NF
60181 UT ISI:000171759900014
60182 ER
60183 
60184 PT J
60185 AU Mo, YW
60186    Okawa, Y
60187    Tajima, M
60188    Nakai, T
60189    Yoshiike, N
60190    Natukawa, K
60191 TI Micro-machined gas sensor array based on metal film micro-heater
60192 SO SENSORS AND ACTUATORS B-CHEMICAL
60193 DT Article
60194 DE gas detectors; sensors; arrays; micro-electromechanical devices
60195 AB An integrated gas sensor array is promising to overcome the poor
60196    selectivity and drift encountered by individual gas sensor.
60197    Micromachined gas sensor array was fabricated using the post-process
60198    micro-machining technology of silicon integrated circuit (IC). The size
60199    of a 2 x 4 array is 2 mm x 4 mm, and the active area of each cell is 50
60200    [im x 50 tm. The electric properties, thermal characteristics. and the
60201    response to standard gases of the sensor array were investigated. The
60202    micro-heater can be driven to 400 degreesC with about 9 mW applied
60203    power, and thermal response time constant of a micro-heater is about 10
60204    ms. The techniques of oxygen radical assisted EB evaporation was
60205    utilized to prepare SnO2. sensitive films that show high sensitivity
60206    and good selectivity to C2H5OH. (C) 2001 Elsevier Science B.V. All
60207    rights reserved.
60208 C1 Shanghai Univ, Shanghai 201800, Peoples R China.
60209    Technol Res Inst Osaka Prefecture, Izumi, Osaka 5941157, Japan.
60210    Kubota Co Ltd, Amagasaki, Hyogo 6618567, Japan.
60211    Hochiki Co Ltd, Machida, Tokyo 1948577, Japan.
60212    Matsushita Elect Ind Co Ltd, Moriguchi, Osaka 5700005, Japan.
60213 RP Mo, YW, Shanghai Univ, Shanghai 201800, Peoples R China.
60214 CR CAVICCHI RE, 1995, APPL PHYS LETT, V66, P812
60215    CAVICCHI RE, 1995, SENSOR ACTUAT B-CHEM, V24, P478
60216    CHUNG W, 1998, T IEE JPN E, V118, P147
60217    GAEDNER JW, 1991, SENSOR ACTUAT B-CHEM, V4, P109
60218    GUIDI V, 1998, SENSOR ACTUAT B-CHEM, V49, P88
60219    LYLE RP, 1997, MICROSTRUCT MICROFAB, V3, P188
60220    PERSAUD K, 1982, NATURE, V299, P352
60221    ROSSI C, 1997, SENSOR ACTUAT A-PHYS, V63, P183
60222    SHENG LY, 1998, SENSOR ACTUAT B-CHEM, V49, P81
60223    SHURMER HV, 1990, SENSOR ACTUAT B-CHEM, V1, P256
60224    SUEHLE JS, 1993, IEEE ELECTR DEVICE L, V14, P118
60225    ZARCOMB S, 1984, SENSOR ACTUATOR, V6, P225
60226 NR 12
60227 TC 9
60228 SN 0925-4005
60229 J9 SENSOR ACTUATOR B-CHEM
60230 JI Sens. Actuator B-Chem.
60231 PD OCT 15
60232 PY 2001
60233 VL 79
60234 IS 2-3
60235 BP 175
60236 EP 181
60237 PG 7
60238 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
60239 GA 484FM
60240 UT ISI:000171679600014
60241 ER
60242 
60243 PT J
60244 AU Li, D
60245    Sun, XL
60246 TI Convexification and existence of a saddle point in a pth-power
60247    reformulation for nonconvex constrained optimization
60248 SO NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
60249 DT Article
60250 DE nonconvex constrained optimization; Lagrangian duality; saddle point;
60251    p-th power reformulation
60252 AB It is well-known that saddle point criteria is a sufficient optimality
60253    condition for constrained optimization problems. Convexity is a basic
60254    requirement for the development of duality theory and saddle point
60255    optimality. In this paper we show that, under some mild conditions, the
60256    local convexity of Lagrangian function and hence the existence of a
60257    local saddle point pair can be ensured in an equivalent p-th power
60258    reformulation for a general class of nonconvex constrained optimization
60259    problems. We further investigate the conditions under which a global
60260    saddle point pair can be guaranteed to exist. These results expand
60261    considerably the class of optimization problems where a saddle point
60262    pair exists, thus enlarging the family of nonconvex problems to which
60263    the dual-search methods can be applied.
60264 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
60265    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
60266 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management,
60267    Shatin, Hong Kong, Peoples R China.
60268 CR BERTSEKAS DP, 1982, CONSTRAINED OPTIMIZA
60269    KARLIN S, 1959, MATH METHODS THEORY, V1
60270    LI D, 1995, J OPTIMIZ THEORY APP, V85, P309
60271    LI D, 2000, J OPTIMIZ THEORY APP, V104, P109
60272    LUENBERGER DG, 1984, LINEAR NONLINEAR PRO
60273    MINOUX M, 1986, MATH PROGRAMMING THE
60274    NGUYEN VH, 1979, J OPTIMIZATION THEOR, V27, P495
60275    ROCKAFELLAR RT, 1970, CONVEX ANAL
60276    ROCKAFELLAR RT, 1971, P C PROBAB, P73
60277    TSENG P, 1993, MATH PROGRAM, V60, P1
60278    XU ZK, 1997, J OPTIMIZ THEORY APP, V94, P739
60279 NR 11
60280 TC 1
60281 SN 0362-546X
60282 J9 NONLINEAR ANAL-THEOR METH APP
60283 JI Nonlinear Anal.-Theory Methods Appl.
60284 PD AUG
60285 PY 2001
60286 VL 47
60287 IS 8
60288 PN Part 8 Sp. Iss. SI
60289 BP 5611
60290 EP 5622
60291 PG 12
60292 SC Mathematics, Applied; Mathematics
60293 GA 482UN
60294 UT ISI:000171595800050
60295 ER
60296 
60297 PT J
60298 AU Wang, ZH
60299    Peng, GD
60300    Ankiewicz, A
60301    Chu, PL
60302 TI A new recursion method for fiber grating analysis
60303 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
60304 DT Article
60305 DE gratings; optical fibers; optical-fiber devices; coupled-mode theory
60306 ID WAVE-GUIDE GRATINGS; PERIODIC STRUCTURES
60307 AB A new recursion method for the analysis of fiber gratings has been
60308    derived. Bragg-matched and detuned uniform gratings and nonuniform
60309    gratings have been analyzed by using this method. The results have been
60310    compared with that by using the coupled-mode theory g the coupled and
60311    other methods. (C) 2001 John Wiley & Sons, Inc.
60312 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
60313    Univ New S Wales, Opt Commun Grp, Sch Elect Engn, Sydney, NSW 2052, Australia.
60314    Australian Natl Univ, Res Sch Phys Sci & Engn, Ctr Opt Sci, Canberra, ACT 0200, Australia.
60315 RP Wang, ZH, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
60316    Peoples R China.
60317 CR ERDOGAN T, 1997, J LIGHTWAVE TECHNOL, V15, P1277
60318    HILL KO, 1997, J LIGHTWAVE TECHNOL, V15, P1263
60319    KOGELNIK H, 1976, BELL SYST TECH J, V55, P109
60320    WANG X, 1993, OPT LETT, V18, P805
60321    WELLERBROPHY LA, 1985, J OPT SOC AM A, V2, P863
60322    WINICK KA, 1992, APPL OPTICS, V31, P757
60323    YAMADA M, 1987, APPL OPTICS, V26, P3474
60324    YARIV A, 1977, IEEE J QUANTUM ELECT, V13, P233
60325 NR 8
60326 TC 0
60327 SN 0895-2477
60328 J9 MICROWAVE OPT TECHNOL LETT
60329 JI Microw. Opt. Technol. Lett.
60330 PD NOV 20
60331 PY 2001
60332 VL 31
60333 IS 4
60334 BP 308
60335 EP 313
60336 PG 6
60337 SC Engineering, Electrical & Electronic; Optics
60338 GA 483YF
60339 UT ISI:000171662900020
60340 ER
60341 
60342 PT J
60343 AU Li, Z
60344    Bao, BR
60345    Wu, MH
60346 TI The influence of diluent on the extraction behavior of uranium with
60347    N-octanoylpyrrolidine
60348 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
60349 DT Article
60350 AB Extraction of uranium(VT) from nitric acid solutions with
60351    N-octanoylpyrrolidine (OPOD) in a series of diluents has been studied.
60352    The dependence of the extraction distribution ratios on the
60353    concentrations of aqueous nitric acid, extractant, salting-out agent
60354    and the temperature was investigated. The experimental results showed
60355    that the extracting capacity of OPOD in different diluents increases in
60356    the order: chloroform, carbon tetrachloride, 1,2-dichloroethane,
60357    n-dodecane, n-octane, cyclohexane, toluene and benzene. This can not be
60358    explained only on the theory of polarity of the diluents. The
60359    interaction between extractant and the extracted complex and diluent is
60360    discussed.
60361 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
60362 RP Li, Z, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
60363    Peoples R China.
60364 CR HAN JT, 1999, THESIS SHANGHAI I NU
60365    HENGLI M, 1964, NUCL SCI TECHN, V6, P728
60366    KOMASAWA I, 1984, J CHEM ENG JPN, V17, P410
60367    LI Z, 2000, NUCL SCI TECHN, V4, P205
60368    LU JF, 1993, SEPARATION CHEM, P47
60369    MUSIKAS C, 1988, SEPAR SCI TECHNOL, V23, P1211
60370 NR 6
60371 TC 1
60372 SN 0236-5731
60373 J9 J RADIOANAL NUCL CHEM
60374 JI J. Radioanal. Nucl. Chem.
60375 PD OCT
60376 PY 2001
60377 VL 250
60378 IS 1
60379 BP 195
60380 EP 197
60381 PG 3
60382 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
60383    & Technology
60384 GA 482LC
60385 UT ISI:000171576800031
60386 ER
60387 
60388 PT J
60389 AU Gerhard, M
60390    Buelau, S
60391    Oleastro, M
60392    Karttunen, R
60393    Boren, T
60394    Olfat, F
60395    Zheng, Q
60396    Prinz, C
60397 TI Correlation of the Helicobacter pylori virulence and adherence factors
60398    vacA, cagA and babA with ulcer disease in four different European
60399    countries
60400 SO GUT
60401 DT Meeting Abstract
60402 C1 Tech Univ Munich, Dept Med 2, D-8000 Munich, Germany.
60403    Inst Nacl Saude Dr Ricado Jorge, Lisbon, Portugal.
60404    Dept Oral Biol, Umea, Sweden.
60405    Swedish Inst Infect Dis Control, Stockholm, Sweden.
60406    Shanghai Univ, Shanghai, Peoples R China.
60407 NR 0
60408 TC 0
60409 SN 0017-5749
60410 J9 GUT
60411 JI Gut
60412 PD SEP
60413 PY 2001
60414 VL 49
60415 SU Suppl. 2
60416 BP A15
60417 EP A15
60418 PG 1
60419 SC Gastroenterology & Hepatology
60420 GA 476NB
60421 UT ISI:000171232500053
60422 ER
60423 
60424 PT J
60425 AU Chen, YL
60426    Ding, WY
60427    Cao, WG
60428    Lu, C
60429 TI Study on the reaction of electron-deficient cyclopropane derivatives
60430    with amines
60431 SO CHINESE JOURNAL OF CHEMISTRY
60432 DT Article
60433 DE gamma-butyrolactam; inner ammonium salt; high stereoselective synthesis
60434 ID EFFICIENT SYNTHESIS; OXIDATION
60435 AB Reaction of electron deficient cyclopropane derivatives
60436    cis-1-methoxycarbonyl-2-aryl-6, 6-dimethyl-5, 7-dioxa-spiro-[
60437    2,5]-4,8-octadiones (1a-d) (X = CH3, H, Cl, NO2) with anilines (2a-e)
60438    (Y = p-CH3, H, p-Br, p-NO2, o-CH3) at room temperature gives
60439    N-aryl-trans, trans-alpha -carboxyl-beta -methoxycarbonyl-gamma
60440    -aryl-gamma -butyrolactams (3a-p) in high yields with high
60441    stereoselectivity. For example, la (X = CH3) reacts with ammonia 4 or
60442    benzyl amine 5 at room temperature to give inner ammonium salt 6 or 7
60443    in the yield of 83% or 97% respectively. The reaction mechanisms for
60444    formation of the products are proposed.
60445 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R China.
60446    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
60447 RP Chen, YL, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R
60448    China.
60449 CR BARRY BS, 1999, TETRAHEDRON LETT, V40, P3339
60450    DEXTER CS, 1999, J ORG CHEM, V64, P7579
60451    DING WY, 1996, CHEM RES CHINESE U, V12, P50
60452    JOLLY RS, 1988, J AM CHEM SOC, V110, P7536
60453    MADER M, 1988, TETRAHEDRON LETT, V29, P3049
60454    MARFAT A, 1987, TETRAHEDRON LETT, V28, P4027
60455    MORI M, 1978, J ORG CHEM, V43, P1684
60456    MORIARTY RM, 1988, TETRAHEDRON LETT, V29, P6913
60457    PADWA A, 1983, TETRAHEDRON LETT, V24, P4303
60458    WANG ZM, 1993, CURRENT STRUCTURED D, P890
60459 NR 10
60460 TC 2
60461 SN 1001-604X
60462 J9 CHINESE J CHEM
60463 JI Chin. J. Chem.
60464 PD SEP
60465 PY 2001
60466 VL 19
60467 IS 9
60468 BP 901
60469 EP 906
60470 PG 6
60471 SC Chemistry, Multidisciplinary
60472 GA 480RJ
60473 UT ISI:000171475700016
60474 ER
60475 
60476 PT J
60477 AU Wan, YB
60478    Chu, JH
60479    Yu, TY
60480    Yu, BK
60481    Pan, SK
60482 TI Growth and characterisation of ferroelectric potassium lithium niobate
60483    crystals
60484 SO MATERIALS SCIENCE AND TECHNOLOGY
60485 DT Article
60486 ID SINGLE-CRYSTALS
60487 AB Potassium lithium niobate crystals have been grown by the resistance
60488    heating Czochralski technique. The optical transmission spectrum of the
60489    crystal has been determined. The results showed that the spectrum
60490    properties of potassium lithium niobate crystals grown from a melt with
60491    a higher Li2O content are better than that of crystals grown from the
60492    melt with a lower Li2O content. The crystals grown by this method have
60493    good quality and second harmonic generation properties. Frequency
60494    doubling results of a quasi cw-Ti: sapphire laser using crystal samples
60495    showed that potassium lithium niobate can be used to double the
60496    frequency of near infrared quasi cw-lasers in the 890-960 nm wavelength
60497    range.
60498 C1 Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China.
60499    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
60500    Chinese Acad Sci, Shanghai Inst Opt & Precis Mech, Shanghai 201800, Peoples R China.
60501 RP Wan, YB, Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared
60502    Phys, Shanghai 200083, Peoples R China.
60503 CR CHENG WD, 1996, CHEM PHYS LETT, V261, P66
60504    CLARK R, 1973, J PHYSIQUE, V22, P143
60505    REID JJE, 1993, APPL PHYS LETT, V62, P19
60506    SONG YT, 1998, J CRYST GROWTH, V194, P379
60507    VANUITERT LG, 1967, APPL PHYS LETT, V11, P161
60508    WAN YB, 1998, J SYNTH CRYST, V27, P36
60509    WAN YB, 1999, CHIN J LASER, V26, P837
60510    XIA HR, 1997, CRYST RES TECHNOL, V32, P311
60511    XIA HR, 1997, PHYS REV B, V55, P14892
60512 NR 9
60513 TC 0
60514 SN 0267-0836
60515 J9 MATER SCI TECHNOL
60516 JI Mater. Sci. Technol.
60517 PD SEP
60518 PY 2001
60519 VL 17
60520 IS 9
60521 BP 1166
60522 EP 1168
60523 PG 3
60524 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
60525    Engineering
60526 GA 478GM
60527 UT ISI:000171337400023
60528 ER
60529 
60530 PT J
60531 AU Li, L
60532    Huang, SG
60533    Xu, LP
60534    Van Der Biest, O
60535    Vleugels, J
60536 TI Prediction of the isothermal sections in the ZrO2-YO1.5-CeO2 system
60537 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
60538 DT Article
60539 ID PHASE-DIAGRAM; ZRO2-CEO2 SYSTEM; ZIRCONIA; EQUILIBRIA; ZRO2-Y2O3
60540 AB The experimental work on the ZrO2-YO1.5-CeO2 system, its limiting
60541    quasi-binaries and previous thermodynamic assessments are reviewed and
60542    evaluated. Isothermal sections of ZrO2-YO1.5-CeO2 system in the
60543    temperature region between 1450 and 1800 C are estimated according to
60544    the substitutional model using the Bonnier equation. The CSS + YSS
60545    two-phase region of the calculated isothermal section at 1700 degreesC
60546    was found to be in good agreement with the experimentally obtained
60547    ternary diagram of Longo and Podda. The phase composition in the
60548    ZrO2-rich corner however disagreed significantly.
60549 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
60550    Katholieke Univ Leuven, Dept Mat & Met, B-3001 Heverlee, Belgium.
60551 RP Li, L, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R
60552    China.
60553 CR CHEVALIER J, 1999, J AM CERAM SOC, V82, P2150
60554    DU Y, 1991, J AM CERAM SOC, V74, P1569
60555    DU Y, 1991, J AM CERAM SOC, V74, P2107
60556    DUH JG, 1992, J MATER SCI, V27, P6197
60557    DURAN P, 1990, J MATER SCI, V25, P5001
60558    ESQUIVIAS L, 1996, J ALLOY COMPD, V239, P71
60559    GUILLERMET AF, 1981, METALL T B, V12, P747
60560    HAO YU, 1999, THESIS CENTRAL S U T
60561    HILLERT M, 1975, METALL T B, V6, P37
60562    HINATSU Y, 1986, MATER RES BULL, V21, P1343
60563    HUANG SG, 2000, J SHANGHAI U, V6, P189
60564    JANG BH, 1996, MATER T JIM, V37, P1284
60565    KAUFMAN L, 1978, CALPHAD, V2, P35
60566    KHAN N, 1989, BR CERAM P, V42, P133
60567    KONDOH J, 1998, J ELECTROCHEM SOC, V145, P1550
60568    LELAIT L, 1991, SCRIPTA METALL MATER, V25, P1815
60569    LI L, IN PRESS CALPHAD
60570    LI L, 1996, J MATER SCI TECHNOL, V12, P59
60571    LI L, 1997, PHYS CHEM GLASSES, V38, P323
60572    LI L, 1999, J MATER SCI TECHNOL, V15, P439
60573    LI L, 1999, PHYS CHEM GLASSES, V40, P126
60574    LONGO V, 1973, J AM CERAM SOC DISCU, V56, P600
60575    LONGO V, 1981, J MATER SCI, V16, P839
60576    LONGO V, 1984, CERAMICA, V37, P18
60577    LUKAS HL, 1977, CALPHAD, V1, P225
60578    NAKAMURA K, 1975, YOGYO-KYOKAI-SHI, V83, P570
60579    NEGAS T, 1976, 12 RAR EARTH RES C V, P32
60580    NOGUCHI T, 1970, B CHEM SOC JPN, V43, P2614
60581    ONDIK HM, 1998, PHASE DIAGRAMS ZIRCO, P100
60582    ONDIK HM, 1998, PHASE DIAGRAMS ZIRCO, P114
60583    ONDIK HM, 1998, PHASE DIAGRAMS ZIRCO, P123
60584    PICONI C, 1999, BIOMATERIALS, V20, P1
60585    RAMESH PD, 1996, J MATER SYNTH PROC, V4, P163
60586    ROUANET MA, 1968, COMP REND HEBD SEA C, V267, P1581
60587    SATO T, 1986, INT J HIGH TECH CERA, V2, P167
60588    SRIVASTAVA KK, 1974, BRIT CERAM TRANS J, V73, P85
60589    STUBICAN VS, 1978, J AM CERAM SOC, V61, P17
60590    STUBICAN VS, 1988, ADV CERAM, V24, P71
60591    TANI E, 1982, YOGVO KYOKAI SHI, V90, P195
60592    TANI E, 1983, J AM CERAM SOC, V66, P506
60593    XU ZY, 1996, MATER T JIM, V37, P1281
60594    YASHIMA M, 1994, J AM CERAM SOC, V77, P1869
60595 NR 42
60596 TC 3
60597 SN 1005-0302
60598 J9 J MATER SCI TECHNOL
60599 JI J. Mater. Sci. Technol.
60600 PD SEP
60601 PY 2001
60602 VL 17
60603 IS 5
60604 BP 529
60605 EP 534
60606 PG 6
60607 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
60608    Engineering
60609 GA 478AR
60610 UT ISI:000171321200010
60611 ER
60612 
60613 PT J
60614 AU Chen, YL
60615    Ding, WY
60616    Cao, WG
60617    Lu, C
60618 TI The stereoselective synthesis of
60619    N-aryl-trans,trans-alpha-carboxyl-beta-methoxycarbonyl-gamma-aryl-gamma-
60620    butyrolactams
60621 SO SYNTHETIC COMMUNICATIONS
60622 DT Article
60623 DE gamma-butyrolactam; high stereoselective synthesis
60624 ID EFFICIENT SYNTHESIS; OXIDATION
60625 AB Cis-1-methoxycarbonyl-2-aryl-6,6-dimethyl-5,7-dioxa-
60626    spiro[2,5]-4,8-octadiones (1) in dimethyl ethylene glycol at room
60627    temperature react with anilines (2) to give N-aryl-trans, trans-alpha
60628    -carboxyl-beta -methoxycarbonyl-gamma -aryl-gamma -butyrolactams (3) in
60629    good to excellent yields and high stereoselectivity.
60630 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
60631 RP Chen, YL, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
60632 CR DING WY, 1996, CHEM RES CHINESE U, V12, P50
60633    JOLLY RS, 1988, J AM CHEM SOC, V110, P7536
60634    MADER M, 1988, TETRAHEDRON LETT, V29, P3049
60635    MARFAT A, 1987, TETRAHEDRON LETT, V28, P4027
60636    MORIARTY RM, 1988, TETRAHEDRON LETT, V29, P6913
60637    WANG ZM, 1993, CURRENT STRUCTURED D
60638 NR 6
60639 TC 2
60640 SN 0039-7911
60641 J9 SYN COMMUN
60642 JI Synth. Commun.
60643 PY 2001
60644 VL 31
60645 IS 20
60646 BP 3107
60647 EP 3112
60648 PG 6
60649 SC Chemistry, Organic
60650 GA 476TU
60651 UT ISI:000171245500008
60652 ER
60653 
60654 PT J
60655 AU Huang, H
60656    Ding, PX
60657    Lu, XH
60658 TI Nonlinear unified equations for water waves propagating over uneven
60659    bottoms in the nearshore region
60660 SO PROGRESS IN NATURAL SCIENCE
60661 DT Article
60662 DE unified equations; Hamiltonian variational principle for water waves;
60663    extended mild-slope equation; higher order Boussinesq-type equations
60664 ID EVOLUTION; MODEL
60665 AB Considering the continuous characteristics for water waves propagating
60666    over complex topography in the nearshore region, the unified nonlinear
60667    equations, based on the hypothesis for a typical uneven bottom, are
60668    presented by employing the Hamiltonian variational principle for water
60669    waves. It is verified that the equations include the following special
60670    cases: the extension of Airy's nonlinear shallow-water equations, the
60671    generalized mild-slope equation, the dispersion relation for the
60672    second-order Stokes waves and the higher order Boussinesq-type
60673    equations.
60674 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
60675    E China Normal Univ, State Key Lab Estuarine & Coastal Res, Shanghai 200062, Peoples R China.
60676    Shanghai Univ, Div Grad Studies, Shanghai 200072, Peoples R China.
60677 RP Huang, H, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
60678    200072, Peoples R China.
60679 CR BERKHOFF JCW, 1972, P 13 INT C COAST ENG, P471
60680    DEMIRBILEK Z, 1999, DEV OFFSHORE ENG, P1
60681    DINGMANS MW, 1997, WATER WAVE PROPAGATI, P263
60682    HUANG H, 2000, PROGR NATURAL SCI, V10, P24
60683    KARAMBAS TV, 1999, J COASTAL RES, V15, P128
60684    KIRBY JT, 1986, J FLUID MECH, V162, P171
60685    LIU PLF, 1989, WAVE MOTION, V11, P41
60686    LIU PLF, 1995, ADV COAST OCEAN ENG, V1, P125
60687    MADSEN PA, 1998, PHILOS T ROY SOC A, V356, P1
60688    RADDER AC, 1985, WAVE MOTION, V7, P473
60689    WITTING JM, 1984, J COMPUT PHYS, V56, P203
60690 NR 11
60691 TC 0
60692 SN 1002-0071
60693 J9 PROG NAT SCI
60694 JI Prog. Nat. Sci.
60695 PD OCT
60696 PY 2001
60697 VL 11
60698 IS 10
60699 BP 746
60700 EP 753
60701 PG 8
60702 SC Multidisciplinary Sciences
60703 GA 475ZT
60704 UT ISI:000171200500004
60705 ER
60706 
60707 PT J
60708 AU Ji, PY
60709 TI Photon acceleration based on plasma
60710 SO PHYSICAL REVIEW E
60711 DT Article
60712 ID LASER WAKEFIELD ACCELERATION; IONIZATION FRONTS; PULSES; OPTICS; WAVES
60713 AB A formalism is presented to examine the interaction of laser field with
60714    plasma wave in which the interaction is described as some geometric
60715    metric (optical metric) and then a laser beam is treated as a packet of
60716    photons moving along null geodesics with respect to that metric. Photon
60717    motion equations are derived and solved analytically in both the
60718    one-dimensional and the three-dimensional cases. The expressions for
60719    the frequency shifts of laser pulses are presented and it is found that
60720    the frequency shifting results from the plasma density gradient.
60721    Three-dimensional solution shows that a laser beam diffraction occurs
60722    in the presence of a radial variation of the plasma density. It is
60723    argued that the focusing mechanism originated from the plasma wave can
60724    curb laser diffracting, so that photons can be trapped in the plasma
60725    wave and accelerated continuously.
60726 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
60727 RP Ji, PY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
60728 CR AMIRANOFF F, 1998, PHYS REV LETT, V81, P995
60729    BINGHAM R, 1997, PHYS REV LETT, V78, P247
60730    DIAS JM, 1997, PHYS REV LETT, V78, P4773
60731    DIAS JM, 1998, PHYS REV ST ACCEL BE, V103, P1301
60732    ESAREY E, 1990, PHYS REV A, V42, P3526
60733    ESAREY E, 1991, PHYS REV A, V44, P3908
60734    ESAREY E, 1996, IEEE T PLASMA SCI, V24, P252
60735    GORDON W, 1923, ANN PHYS-BERLIN, V72, P421
60736    GUO H, 1995, J OPT SOC AM A, V12, P600
60737    LEONHARDT U, 1999, PHYS REV A, V60, P4301
60738    MENDONCA JT, 1994, PHYS REV E, V49, P3520
60739    MISNER CW, 1973, GRAVITATION, P582
60740    MODENA A, 1995, NATURE, V377, P606
60741    SCHROEDER CB, 1999, PHYS REV LETT, V82, P1177
60742    SHEN WD, 1998, ACTA PHYS SIN-OV ED, V7, P1
60743    SILVA LOE, 1996, IEEE T PLASMA SCI, V24, P316
60744    SILVA LOE, 1998, PHYS REV E B, V57, P3423
60745    SPRANGLE P, 1988, APPL PHYS LETT, V53, P2146
60746    TAJIMA T, 1979, PHYS REV LETT, V43, P267
60747    WEINBERG S, 1972, GRAVITATION COSMOLOG
60748    WILKS SC, 1989, PHYS REV LETT, V62, P2600
60749    ZHU S, 1997, ACTA OPT SINICA, V17, P1677
60750    ZHU ST, 1995, INT J THEOR PHYS, V34, P169
60751    ZHU ST, 1997, SCI CHINA SER A, V40, P755
60752 NR 24
60753 TC 3
60754 SN 1063-651X
60755 J9 PHYS REV E
60756 JI Phys. Rev. E
60757 PD SEP
60758 PY 2001
60759 VL 6403
60760 IS 3
60761 PN Part 2
60762 AR 036501
60763 DI ARTN 036501
60764 PG 6
60765 SC Physics, Fluids & Plasmas; Physics, Mathematical
60766 GA 474ZD
60767 UT ISI:000171136400081
60768 ER
60769 
60770 PT J
60771 AU Sun, XL
60772    McKinnon, KIM
60773    Li, D
60774 TI A convexification method for a class of global optimization problems
60775    with applications to reliability optimization
60776 SO JOURNAL OF GLOBAL OPTIMIZATION
60777 DT Article
60778 DE global optimization; monotone optimization; convexification method;
60779    concave minimization; reliability optimization
60780 ID NONCONVEX OPTIMIZATION; ALGORITHM; MINIMIZATION
60781 AB A convexification method is proposed for solving a class of global
60782    optimization problems with certain monotone properties. It is shown
60783    that this class of problems can be transformed into equivalent concave
60784    minimization problems using the proposed convexification schemes. An
60785    outer approximation method can then be used to find the global solution
60786    of the transformed problem. Applications to mixed-integer nonlinear
60787    programming problems arising in reliability optimization of complex
60788    systems are discussed and satisfactory numerical results are presented.
60789 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
60790    Univ Edinburgh, Dept Math & Stat, Edinburgh EH9 3JZ, Midlothian, Scotland.
60791    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
60792 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management,
60793    Shatin, Hong Kong, Peoples R China.
60794 CR BARHEN J, 1997, SCIENCE, V276, P1094
60795    BENSON HP, 1996, NAV RES LOG, V43, P765
60796    CVIJOVIC D, 1995, SCIENCE, V267, P664
60797    GE R, 1990, MATH PROGRAM, V46, P191
60798    HOFFMAN KL, 1981, MATH PROGRAM, V20, P22
60799    HORST R, 1990, NAV RES LOG, V37, P433
60800    HORST R, 1993, GLOBAL OPTIMIZATION
60801    KAN AHGR, 1987, MATH PROGRAM, V39, P27
60802    KAN AHGR, 1987, MATH PROGRAM, V39, P57
60803    LEVY AV, 1985, SIAM J SCI STAT COMP, V6, P15
60804    LI D, 1995, J OPTIMIZ THEORY APP, V85, P309
60805    LI D, 1996, J OPTIMIZ THEORY APP, V88, P177
60806    LI D, 2000, J OPTIMIZ THEORY APP, V104, P109
60807    LI D, 2001, IN PRESS ANN OPERATI
60808    MISRA KB, 1991, IEEE T RELIAB, V40, P81
60809    PARDALOS PM, 1987, CONSTRAINED GLOBAL O
60810    TILLMAN FA, 1980, OPTIMIZATION SYSTEM
60811    TZAFESTAS SG, 1980, INT J SYST SCI, V11, P455
60812 NR 18
60813 TC 11
60814 SN 0925-5001
60815 J9 J GLOBAL OPTIM
60816 JI J. Glob. Optim.
60817 PD OCT
60818 PY 2001
60819 VL 21
60820 IS 2
60821 BP 185
60822 EP 199
60823 PG 15
60824 SC Mathematics, Applied; Operations Research & Management Science
60825 GA 477PM
60826 UT ISI:000171293500004
60827 ER
60828 
60829 PT J
60830 AU Ma, H
60831    Kamiya, N
60832 TI A general algorithm for accurate computation of field variables and its
60833    derivatives near the boundary in BEM
60834 SO ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS
60835 DT Article
60836 DE BEM; boundary layer effect; singularity; modified Gauss-Tschebyscheff
60837    quadrature; field variable; numerical computation
60838 AB A general algorithm was proposed in the paper for the accurate
60839    computation of the field variables and its derivatives at domain points
60840    near the boundary in attempt to solve the so-called boundary layer
60841    effect in the boundary element method. The algorithm is based on the
60842    parameter, including modified Gauss-Tschebyscheff quadrature formula
60843    with the aid of the approximate distance function introduced, where the
60844    parameter is defined as the ratio of the minimum distance of the domain
60845    point to the boundary and the length of the boundary element. The
60846    algorithm is not only numerically stable because the singular part of
60847    the integrand serves as the weight function in the modified
60848    Gauss-Tschebyscheff quadrature formula but also independent of the kind
60849    of boundary elements. The method can be extended to the
60850    three-dimensional case with little modifications.
60851    Numerical examples of the potential problem and the elastic problem of
60852    plane strain were given by using the cubic and the quadratic boundary
60853    elements, respectively, showing the feasibility and the effectiveness
60854    of the proposed algorithm. (C) 2001 Elsevier Science Ltd. All rights
60855    reserved.
60856 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Sch Sci, Dept Mech, Shanghai 200436, Peoples R China.
60857    Nagoya Univ, Sch Informat & Sci, Nagoya, Aichi 4648601, Japan.
60858 RP Ma, H, Shanghai Univ, Shanghai Inst Appl Math & Mech, Sch Sci, Dept
60859    Mech, Shanghai 200436, Peoples R China.
60860 CR ALIABADI MH, 1985, INT J NUMER METH ENG, V21, P2221
60861    BREBBIA CA, 1984, BOUNDARY ELEMENT TEC
60862    CRISTESCU M, 1978, RECENT ADV BOUNDARY, P375
60863    CRUSE TA, 1993, INT J NUMER METH ENG, V36, P237
60864    GUIGGIANI M, 1990, J APPL MECH, V57, P906
60865    MA H, 1999, ENG ANAL BOUND ELEM, V23, P281
60866    PARTRIDGE PW, 1992, DUAL RECIPROCITY BOU
60867    TANAKA M, 1991, BOUNDARY ELEMENT MET
60868    WANG D, 1992, J MECH STRENGTH, V14, P23
60869    ZHANG GH, 1990, P 3 JAP CHIN S BOUND, P73
60870 NR 10
60871 TC 0
60872 SN 0955-7997
60873 J9 ENG ANAL BOUND ELEM
60874 JI Eng. Anal. Bound. Elem.
60875 PD DEC
60876 PY 2001
60877 VL 25
60878 IS 10
60879 BP 833
60880 EP 841
60881 PG 9
60882 SC Engineering, Multidisciplinary; Mathematics, Applied
60883 GA 476ZW
60884 UT ISI:000171259500001
60885 ER
60886 
60887 PT J
60888 AU Zhang, WG
60889    Chang, QS
60890    Jiang, BG
60891 TI Explicit exact solitary-wave solutions for compound KdV-type and
60892    compound KdV-Burgers-type equations with nonlinear terms of any order
60893 SO CHAOS SOLITONS & FRACTALS
60894 DT Article
60895 AB In this paper, we consider compound KdV-type and KdV-Burgers-type
60896    equations with nonlinear terms of any order. The explicit exact
60897    solitary-wave solutions for the equations are obtained by means of
60898    proper transformation, which degrades the order of nonlinear terms, and
60899    an undetermined coefficient method. A solitary-wave solution with
60900    negative velocity for the generalized KdV-Burgers equation u(t) +
60901    u(p)u(x) - alphau(xx) + u(xxx) = 0 is found. (C) 2001 Elsevier Science
60902    Ltd. All rights reserved.
60903 C1 Shanghai Univ Sci & Technol, Dept Basic Sci, Shanghai 200093, Peoples R China.
60904    Chinese Acad Sci, Inst Appl Math, Beijing 100080, Peoples R China.
60905    Changsha Railway Univ, Dept Math & Mech, Changsha 410075, Peoples R China.
60906 RP Zhang, WG, Shanghai Univ Sci & Technol, Dept Basic Sci, Shanghai
60907    200093, Peoples R China.
60908 CR BONA JL, 1985, P ROY SOC EDINB A, V101, P207
60909    COFFEY MW, 1990, SIAM J APPL MATH, V50, P1580
60910    DEY B, 1986, J PHYS A, V19, L9
60911    PEGO RL, 1992, PHILOS T ROY SOC A, V340, P47
60912    PEGO RL, 1993, PHYSICA D, V67, P45
60913    WADATI M, 1975, J PHYS SOC JPN, V38, P673
60914    WANG ML, 1996, PHYS LETT A, V213, P279
60915    ZHANG WG, 1996, ACTA MATH SCI, V16, P241
60916 NR 8
60917 TC 25
60918 SN 0960-0779
60919 J9 CHAOS SOLITON FRACTAL
60920 JI Chaos Solitons Fractals
60921 PD FEB
60922 PY 2002
60923 VL 13
60924 IS 2
60925 BP 311
60926 EP 319
60927 PG 9
60928 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
60929 GA 477HA
60930 UT ISI:000171276600013
60931 ER
60932 
60933 PT J
60934 AU Huang, H
60935    Ding, PX
60936    Lu, XH
60937 TI Extended mild-slope equation
60938 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
60939 DT Article
60940 DE mild-slope equation; slowly varying three-dimensional currents; rapidly
60941    varying topography; Hamiltonian formalism for surface waves
60942 ID VARYING TOPOGRAPHY; WAVES
60943 AB The Hamiltonian formalism for surface waves and the mild-slope
60944    approximation were empolyed in handling the case of slowly varying
60945    three-dimensional currents and an uneven bottom, thus leading to an
60946    extended mild-slope equation. The bottom topography consists of two
60947    components: the slowly varying component whose horizontal length scale
60948    is longer than the surface wave length, and the fast varying component
60949    with the amplitude being smaller than that of the surface wave. ne
60950    frequency of the fast varying depth component is, however, comparable
60951    to that of the surface waves. The extended mild-slope equation is more
60952    widely applicable and contains as special cases famous mild-slope
60953    equations below: the classical mild-slope equation of Berkhoff, Kirby's
60954    mild-slope equation with current, and Dingemans's mild-slope equation
60955    for rippled bed. The extended shallow water equations for ambient
60956    currents and rapidly varying topography are also obtained.
60957 C1 E China Normal Univ, State Key Lab Estuarine & Coastal Res, Shanghai 200062, Peoples R China.
60958    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
60959 RP Huang, H, E China Normal Univ, State Key Lab Estuarine & Coastal Res,
60960    Shanghai 200062, Peoples R China.
60961 CR BERKHOFF JCW, 1972, 13TH P INT C COAST E, P471
60962    BROER LJF, 1974, APPL SCI RES, V30, P430
60963    CHAMBERLAIN PG, 1995, J FLUID MECH, V291, P393
60964    CHANDRASEKERA CN, 1997, J WATERW PORT C-ASCE, V123, P280
60965    DINGEMANS MW, 1997, WATER WAVE PROPAGATI
60966    KIRBY JT, 1984, J GEOPHYS RES-OCEANS, V89, P745
60967    KIRBY JT, 1986, J FLUID MECH, V162, P171
60968    KIRBY JT, 1997, GRAVITY WAVES WATER, P55
60969    LEE CH, 1998, COAST ENG, V34, P243
60970    LIU PLF, 1990, SEA OCEAN ENG SCI, V9, P27
60971    MILES JW, 1977, J FLUID MECH, V83, P153
60972    THOMAS GP, 1997, GRAVITY WAVES WATER, P255
60973    YOON SB, 1989, J FLUID MECH, V205, P397
60974    ZAKHAROV VE, 1968, J APPL MECH TECH PHY, V2, P190
60975 NR 14
60976 TC 0
60977 SN 0253-4827
60978 J9 APPL MATH MECH-ENGL ED
60979 JI Appl. Math. Mech.-Engl. Ed.
60980 PD JUN
60981 PY 2001
60982 VL 22
60983 IS 6
60984 BP 724
60985 EP 729
60986 PG 6
60987 SC Mathematics, Applied; Mechanics
60988 GA 476CF
60989 UT ISI:000171208100014
60990 ER
60991 
60992 PT J
60993 AU Huang, H
60994    Zhou, XR
60995 TI On the resonant generation of weakly nonlinear Stokes waves in regions
60996    with fast varying topography and free surface current
60997 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
60998 DT Article
60999 DE nonlinear resonance; weakly nonlinear Stokes waves; a free surface
61000    current; rippled beds; dynamical system
61001 AB The effect of nonlinearity on the free surface wave resonated by an
61002    incident flow over rippled beds, which consist of fast varying
61003    topography superimposed on an otherwise slowly varying mean depth, is
61004    studied using a WKBJ-type perturbation approach. Synchronous,
61005    superharmonic and in particular subharmonic resonance were selectively
61006    excited over the fast varying topography with corresponding
61007    wavelengths. For a steady current the dynamical system is autonomous
61008    and the possible nonlinear steady states and their stability were
61009    investigated. When the current has a small oscillatory component the
61010    dynamical system becomes non-autonomous, chaos is now possible.
61011 C1 Tianjin Univ, Sch Civil Engn, Tianjin 300072, Peoples R China.
61012    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
61013 RP Huang, H, Tianjin Univ, Sch Civil Engn, Tianjin 300072, Peoples R China.
61014 CR BEGI S, 1994, COAST ENG, V23, P1
61015    DAVIES AG, 1984, J FLUID MECH, V144, P419
61016    GUCKENHEIMER J, 1983, NONLINEAR OSCILLATIO
61017    HEATHERSHAW AD, 1982, NATURE, V296, P343
61018    KENNEDY JF, 1963, J FLUID MECH, V16, P521
61019    NACIRI M, 1992, J FLUID MECH, V235, P415
61020    SAMMARCO P, 1994, J FLUID MECH, V279, P377
61021 NR 7
61022 TC 0
61023 SN 0253-4827
61024 J9 APPL MATH MECH-ENGL ED
61025 JI Appl. Math. Mech.-Engl. Ed.
61026 PD JUN
61027 PY 2001
61028 VL 22
61029 IS 6
61030 BP 730
61031 EP 740
61032 PG 11
61033 SC Mathematics, Applied; Mechanics
61034 GA 476CF
61035 UT ISI:000171208100015
61036 ER
61037 
61038 PT J
61039 AU Li, GH
61040    Zhou, SP
61041    Xu, DM
61042 TI Research on dynamics in modulation-doped GaAs/AlxGa1-xAs
61043    heterostructures
61044 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
61045 DT Article
61046 DE chaos; heterostructure; negative differential conductivity
61047 ID CURRENT-DENSITY FILAMENTS; SEMICONDUCTOR-DEVICE; DOMAIN FORMATION;
61048    CHAOTIC MOTIONS; OSCILLATOR
61049 AB We discuss the dynamics of the forced modulation-doped AlxGa1-xAs
61050    heterostructure device governed by the coupled differential equations,
61051    which is operative in the state far from thermodynamic equilibrium.
61052    Biased with an appropriate do field, the system exhibits two states:
61053    spontaneous current oscillation and fixed points. Under an ac driving
61054    force imposed on a do bias, the dynamical system shows the expected
61055    characteristics of frequency locking, quasiperiodicity, and chaos,
61056    which are sensitive to the amplitude and frequency, of the external
61057    applied microwave field. In particular, the basins of attraction of
61058    both an ordinary attractor and a chaotic attractor are presented. (C)
61059    2001 John Wiley & Sons, Inc.
61060 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
61061    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
61062 RP Li, GH, Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R
61063    China.
61064 CR AOKI K, 1982, J PHYS SOC JPN, V51, P2373
61065    AOKI K, 1989, SOLID STATE ELECTRON, V32, P1149
61066    DOTTING R, 1992, CHAOTIC DYNAMICS THE
61067    DOTTLING R, 1994, SOLID STATE ELECTRON, V37, P685
61068    LURYI S, 1991, PHYS REV LETT, V67, P2351
61069    NIEDERNOSTHEIDE FJ, 1996, PHYS REV B, V54, P14012
61070    NIEDERNOSTHEIDE FJ, 1999, PHYS REV B, V59, P7663
61071    SCHOLL E, 1991, APPL PHYS LETT, V58, P1277
61072    ZHANG YH, 1996, APPL PHYS LETT, V69, P1116
61073 NR 9
61074 TC 0
61075 SN 0895-2477
61076 J9 MICROWAVE OPT TECHNOL LETT
61077 JI Microw. Opt. Technol. Lett.
61078 PD OCT 20
61079 PY 2001
61080 VL 31
61081 IS 2
61082 BP 93
61083 EP 95
61084 PG 3
61085 SC Engineering, Electrical & Electronic; Optics
61086 GA 473HK
61087 UT ISI:000171034600006
61088 ER
61089 
61090 PT J
61091 AU Ren, ZM
61092    Dong, HF
61093    Deng, K
61094    Jiang, GC
61095 TI Influence of high frequency electromagnetic field on the initial
61096    solidification during electromagnetic continuous casting
61097 SO ISIJ INTERNATIONAL
61098 DT Article
61099 DE electromagnetic force; continuous casting; alternative electromagnetic
61100    field; initial solidification; electromagnetic continuous casting; heat
61101    transfer; numerical simulation
61102 AB The initial solidification during electromagnetic continuous casting of
61103    metal has been investigated experimentally and numerically. The
61104    temperature profile in the metal was measured and the starting point of
61105    the initial solidification was detected. It was found that the magnetic
61106    field influenced the temperature profile greatly, and lowered the
61107    starting position of the initial solidification profoundly. Further,
61108    the induction heat in the metal was calculated according to the
61109    measured magnetic flux in the mold. The heat induced in the wall was
61110    converted from the temperature detected in the mold wall. In order to
61111    understand the influence of the magnetic field on the behavior of the
61112    interfacial heat exchange between the metal and the mold wall, a
61113    special experiment was carried out to measure the heat exchange
61114    coefficient on the interface.
61115    Based on above measurement, a numerical model was built to describe the
61116    heat transfer and solidification of the metal. The influence of the
61117    magnetic field on the solidification was figured out. The role of the
61118    three main effects of the magnetic field, that is, inducing heat in the
61119    metal, inducing heat in the mold wall, and decreasing-the heat transfer
61120    rate on the interface between the metal and mold wall, was analyzed. It
61121    was shown that, the induced heat in the mold wall and the effect of
61122    decreasing the heat transfer on the interface between the mold and the
61123    metal may played a more important role in influencing the
61124    solidification.
61125 C1 Shanghai Univ, Dept Mat, Shanghai 200072, Peoples R China.
61126 RP Ren, ZM, Shanghai Univ, Dept Mat, Shanghai 200072, Peoples R China.
61127 CR MORISHITA M, 1992, MAGNETOHYDRODYNAMICS, P267
61128    NAKATA M, 1992, PROCESS METALLURGY, P203
61129    SIMPSON PG, 1960, INDUCTION HEATING OI, P11
61130    TANAKA T, 1994, P INT S EL PROC MAT, P248
61131    TINGJU L, 1996, TETSU TO HAGANE, V82, P197
61132    TOH T, 1994, P INT S EL PROC MAT, P254
61133    VIVES C, 1989, METALL TRANS B, V20, P623
61134 NR 7
61135 TC 5
61136 SN 0915-1559
61137 J9 ISIJ INT
61138 JI ISIJ Int.
61139 PY 2001
61140 VL 41
61141 IS 9
61142 BP 981
61143 EP 985
61144 PG 5
61145 SC Metallurgy & Metallurgical Engineering
61146 GA 473ZY
61147 UT ISI:000171080900006
61148 ER
61149 
61150 PT J
61151 AU Chen, LQ
61152    Liu, ZR
61153 TI Control of a hyperchaotic discrete system
61154 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
61155 DT Article
61156 DE controlling chaos; hyperchaotic map; Liapunov direct method;
61157    stabilization; tracking
61158 AB The Control of a hyperchaotic discrete system is investigated, A
61159    time-varying feedback control law is established on the base of local
61160    linearization. The Liapunov direct method is applied to estimate the
61161    neighborhood in which the control law can be effectively used.
61162    Numerical examples are presented to demonstrate the applications of the
61163    control law to solve the problem of stabilizing unstable periodic
61164    orbits and the problem of tracking an arbitrarily given periodic orbit.
61165 C1 Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
61166    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
61167 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
61168 CR CHEN LQ, 1998, J SHANGHAI JIAOTONG, V32, P108
61169    HU HY, 1996, ADV MECH, V26, P453
61170    JACKSON EA, 1991, PHYSICA D, V50, P341
61171    LIU ZR, 1996, STRANGE ATTRACTORS 2
61172    LIU ZR, 1999, ACTA MECH SINICA, V15, P366
61173    OTT E, 1990, PHYS REV LETT, V64, P1196
61174    YANG L, 2000, PHYS REV LETT, V84, P67
61175 NR 7
61176 TC 1
61177 SN 0253-4827
61178 J9 APPL MATH MECH-ENGL ED
61179 JI Appl. Math. Mech.-Engl. Ed.
61180 PD JUL
61181 PY 2001
61182 VL 22
61183 IS 7
61184 BP 741
61185 EP 746
61186 PG 6
61187 SC Mathematics, Applied; Mechanics
61188 GA 475BC
61189 UT ISI:000171140900001
61190 ER
61191 
61192 PT J
61193 AU Xiong, Y
61194    Shi, DH
61195 TI Affine transformation in random iterated function systems
61196 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
61197 DT Article
61198 DE fractal; random iterated function system; affine transformation
61199 AB Random iterated function systems (IFSs) is discussed, which is one of
61200    the methods for fractal drawing. A certain figure can be reconstructed
61201    by a random IFS. One approach is presented to determine a new random
61202    IFS, that the figure reconstructed by the new random IFS is the image
61203    of the origin figure reconstructed by old IFS under a given affine
61204    transformation. Two particular examples are used to show this approach.
61205 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
61206 RP Xiong, Y, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
61207 CR BARNSLEY MF, 1988, FRACTALS EVERYWHERE
61208    LASOTA A, 1994, CHAOS FRACTALS NOISE
61209    LIN YP, 1999, DYN CONTIN DISCRET I, V5, P53
61210    SU BQ, 1990, COURSE APPL GEOMETRY
61211 NR 4
61212 TC 0
61213 SN 0253-4827
61214 J9 APPL MATH MECH-ENGL ED
61215 JI Appl. Math. Mech.-Engl. Ed.
61216 PD JUL
61217 PY 2001
61218 VL 22
61219 IS 7
61220 BP 820
61221 EP 826
61222 PG 7
61223 SC Mathematics, Applied; Mechanics
61224 GA 475BC
61225 UT ISI:000171140900011
61226 ER
61227 
61228 PT J
61229 AU Xiao, XS
61230    Dong, YD
61231    Qiao, XY
61232    Mo, ZS
61233    Wang, XH
61234    Wang, Q
61235    Xu, H
61236 TI Studies on the morphology transition of micro-crystal growth in polymer
61237    films in high vacuum and strong electrostatic field
61238 SO ACTA POLYMERICA SINICA
61239 DT Article
61240 DE electrostatic field; polymer film micro-crystals; morphology
61241 AB The morphology of films of isotactic polypropylene poly
61242    (3-dodecylthiophene) and iPP/P3DDT blend formed in electrostatic fields
61243    has been investigated by using scanning electron microscope. The
61244    experiment results show that the micro-crystal morphology of polymer
61245    films was strongly dependent on electrostatic fields. It was found that
61246    the effect of the electrostatic field led to the formation of dendrite
61247    crystals aligned in the field direction, and some branches of P3DDT
61248    ruptured. However, the micro-crystals in these films grew into
61249    spherulites without electrostatic field,and have no crystal orientation.
61250 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
61251    Chinese Acad Sci, Changchun Inst Appl Chem, Polymer Phys Lab, Changchun 130022, Peoples R China.
61252 RP Xiao, XS, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
61253 CR SERPICO JM, 1991, MACROMOLECULES, V24, P6879
61254    VENUGOPAL G, 1990, POLYM PREPR, V31, P377
61255    XIAO XS, 2000, CHINESE J SCI INSTRU, V21, P75
61256 NR 3
61257 TC 1
61258 SN 1000-3304
61259 J9 ACTA POLYM SIN
61260 JI Acta Polym. Sin.
61261 PD APR
61262 PY 2001
61263 IS 2
61264 BP 261
61265 EP 264
61266 PG 4
61267 SC Polymer Science
61268 GA 473LA
61269 UT ISI:000171044400028
61270 ER
61271 
61272 PT J
61273 AU Li, D
61274    Sun, XL
61275 TI Existence of a saddle point in nonconvex constrained optimization
61276 SO JOURNAL OF GLOBAL OPTIMIZATION
61277 DT Article
61278 DE nonconvex constrained optimization; saddle point; dual method; p-th
61279    power formulation; global solution
61280 AB The existence of a saddle point in nonconvex constrained optimization
61281    problems is considered in this paper. We show that, under some mild
61282    conditions, the existence of a saddle point can be ensured in an
61283    equivalent p-th power formulation for a general class of nonconvex
61284    constrained optimization problems. This result expands considerably the
61285    class of optimization problems where a saddle point exists and thus
61286    enlarges the family of nonconvex problems that can be solved by
61287    dual-search methods.
61288 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
61289    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
61290 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management,
61291    Shatin, Hong Kong, Peoples R China.
61292 CR KARLIN S, 1959, MATH METHODS THEORY, V1
61293    LI D, 1995, J OPTIMIZ THEORY APP, V85, P309
61294    LI D, 1997, NONLINEAR ANAL-THEOR, V30, P4339
61295    LUENBERGER DG, 1984, LINEAR NONLINEAR PRO
61296    MINOUX M, 1986, MATH PROGRAMMING THE
61297    XU ZK, 1997, J OPTIMIZ THEORY APP, V94, P739
61298 NR 6
61299 TC 1
61300 SN 0925-5001
61301 J9 J GLOBAL OPTIM
61302 JI J. Glob. Optim.
61303 PD SEP
61304 PY 2001
61305 VL 21
61306 IS 1
61307 BP 39
61308 EP 50
61309 PG 12
61310 SC Mathematics, Applied; Operations Research & Management Science
61311 GA 471YJ
61312 UT ISI:000170956000004
61313 ER
61314 
61315 PT J
61316 AU Yang, GH
61317    Feng, SX
61318    Ni, GJ
61319    Duan, YS
61320 TI Relations of two transversal submanifolds and global manifold
61321 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
61322 DT Article
61323 ID GAUGE FIELD-THEORY; TOPOLOGICAL QUANTIZATION; DISCLINATION CONTINUUM;
61324    LINEAR DEFECTS; BIFURCATION; DISLOCATION; STRINGS; BRANES; ORIGIN
61325 AB In Riemann geometry, the relations of two transversal submanifolds and
61326    global manifold are discussed without any concrete models. By replacing
61327    the normal vector of a submanifold with the tangent vector of another
61328    submanifold, the metric tensors, Christoffel symbols and curvature
61329    tensors of the three manifolds are connected at the intersection points
61330    of the two submanifolds. When the inner product of the two tangent
61331    vectors of submanifolds vanishes, some corollaries of these relations
61332    give the most important second fundamental form and Gauss-Codazzi
61333    equation in the conventional submanifold theory. As a special case, the
61334    global manifold which is Euclidean is considered. It is pointed out
61335    that, in order to obtain the nonzero energy-momentum tensor of matter
61336    field in a submanifold, there must be the contributions of the above
61337    inner product and the other submanifold. Generally speaking, a
61338    submanifold is closely related to the matter fields of the other
61339    submanifold and the two submanifolds affect each other through the
61340    above inner product.
61341 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
61342    Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
61343    Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China.
61344 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
61345 CR CHU CS, 1998, PHYS LETT B, V428, P59
61346    DUAN YS, HEPTH9809011
61347    DUAN YS, HEPTH9810111
61348    DUAN YS, 1998, CHINESE PHYS LETT, V15, P781
61349    DUAN YS, 1998, IN PRESS COMMUN THEO
61350    DUAN YS, 1999, CHINESE PHYS LETT, V16, P157
61351    DUAN YS, 1999, INT J THEOR PHYS, V38, P563
61352    EISENHART L, 1964, RIEMANNIAN GEOMETRY
61353    ERLICH J, 1998, PHYS REV D, V58
61354    FERRARA S, 1998, PHYS LETT B, V431, P42
61355    HAWKING SW, 1998, PHYS REV D, V58
61356    HYUN SJ, 1998, PHYS REV D, V57, P4856
61357    KISHIMOTO I, 1998, PHYS LETT B, V432, P305
61358    YANG GH, 1998, INT J MOD PHYS B, V12, P2599
61359    YANG GH, 1998, INT J THEOR PHYS, V37, P2371
61360    YANG GH, 1998, MOD PHYS LETT A, V13, P2123
61361    YANG GH, 1998, MOD PHYS LETT A, V13, P745
61362    YANG GH, 1999, INT J ENG SCI, V37, P1037
61363 NR 18
61364 TC 0
61365 SN 0217-751X
61366 J9 INT J MOD PHYS A
61367 JI Int. J. Mod. Phys. A
61368 PD AUG 20
61369 PY 2001
61370 VL 16
61371 IS 21
61372 BP 3535
61373 EP 3551
61374 PG 17
61375 SC Physics, Nuclear; Physics, Particles & Fields
61376 GA 472UZ
61377 UT ISI:000171004500002
61378 ER
61379 
61380 PT J
61381 AU Wu, MY
61382    Zhu, J
61383    Wan, XJ
61384 TI The effect of B addition on charge distribution in Co3Ti
61385 SO INTERMETALLICS
61386 DT Article
61387 DE intermetallics; miscellaneous; brittleness and ductility; bonding;
61388    crystallography; electron microscopy; transmission
61389 ID BEAM ELECTRON-DIFFRACTION; ENVIRONMENTAL EMBRITTLEMENT; DENSITY
61390    DISTRIBUTION; BORON; NI3AL; DUCTILITY; HYDROGEN; PATTERNS
61391 AB In this paper. the chemistries at grain boundaries in Co3Ti
61392    intermetallics with and without boron doping were examined. The charge
61393    density distributions of the two kinds of alloys were obtained by their
61394    experimentally determined structure factors. The differences between
61395    them were analyzed and compared with the effect of boron on charge
61396    density distribution in Ni3Al. It is found that B has quite different
61397    effects on the charge distribution, and segregation behavior as well as
61398    mechanical properties in Co3Ti and Ni3Al. It is concluded that boron
61399    has no effect on suppressing the environmental embrittlement in Co3Ti
61400    because of the weakened Co-B-Co bonding. (C) 2001 Elsevier Science Ltd.
61401    All rights reserved.
61402 C1 Tsing Hua Univ, Sch Mat Sci & Engn, Electron Microscopy Lab, Beijing 100084, Peoples R China.
61403    Cent Iron & Steel Res Inst, Beijing 100081, Peoples R China.
61404    Shanghai Univ, Shanghai 200072, Peoples R China.
61405 RP Zhu, J, Tsing Hua Univ, Sch Mat Sci & Engn, Electron Microscopy Lab,
61406    Beijing 100084, Peoples R China.
61407 CR AOKI K, 1979, J JPN I MET, V43, P1190
61408    BAKER I, 1988, PHILOS MAG B, V57, P379
61409    CHENG XY, 1997, SCRIPTA MATER, V37, P1065
61410    GEORGE EP, 1989, SCRIPTA METALL, V23, P979
61411    GEORGE EP, 1995, MATER RES SOC S P, V364, P1131
61412    HOLMESTAD R, 1995, PHILOS MAG A, V72, P579
61413    HOLMESTAD R, 1998, PHILOS MAG A, V77, P1231
61414    LIU CT, 1985, ACTA METALL, V33, P213
61415    LIU Y, 1989, ACTA METALL, V37, P507
61416    LU G, 1996, ACTA MATER, V44, P4019
61417    MIAO Y, 1995, J MATER RES, V10, P1913
61418    SAUNDERS M, 1995, ULTRAMICROSCOPY, V60, P311
61419    SHINOHARA T, 1996, J MATER RES, V8, P1285
61420    SIELOFF DD, 1989, P MAT RES SOC S PITT, P155
61421    SUZUKI T, 1996, MATER T JIM, V37, P1
61422    TAKASUGI T, 1986, ACTA METALL, V34, P607
61423    TAKASUGI T, 1989, ACTA METALL, V37, P507
61424    TAKASUGI T, 1990, J MATER SCI, V25, P4226
61425    TAKASUGI T, 1993, SCRIPTA METALL MATER, V29, P1587
61426    TAUB AI, 1989, METALL TRANS A, V20, P2025
61427    VAINSHTEIN BK, 1990, SOVREMENNAYA KRISTAL, V2
61428    WU MY, 1999, ACTA CRYSTALLOGR A, V56, P189
61429    WU MY, 2000, J APPL CRYSTALLOGR 4, V33, P1119
61430    ZHU J, 1997, ACTA MATER, V45, P1989
61431    ZUO JM, 1991, ULTRAMICROSCOPY, V35, P185
61432 NR 25
61433 TC 1
61434 SN 0966-9795
61435 J9 INTERMETALLICS
61436 JI Intermetallics
61437 PD AUG
61438 PY 2001
61439 VL 9
61440 IS 8
61441 BP 705
61442 EP 709
61443 PG 5
61444 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
61445    Metallurgical Engineering
61446 GA 472VV
61447 UT ISI:000171006400007
61448 ER
61449 
61450 PT J
61451 AU Sun, XL
61452    Li, D
61453 TI On the relationship between the integer and continuous solutions of
61454    convex programs
61455 SO OPERATIONS RESEARCH LETTERS
61456 DT Article
61457 DE nonlinear integer program; convex program; quadratic program; proximity
61458    analysis
61459 ID OPTIMIZATION; BRANCH
61460 AB A bound is obtained in this note for the distance between the integer
61461    and real solutions to convex quadratic programs. This bound is a
61462    function of the condition number of the Hessian matrix. We further
61463    extend this proximity result to convex programs and mixed-integer
61464    convex programs. We also show that this bound is achievable in certain
61465    situations and the distance between the integer and continuous
61466    minimizers may tend to infinity. (C) 2001 Elsevier Science B.V. All
61467    rights reserved.
61468 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
61469    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
61470 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management,
61471    Shatin, Hong Kong, Peoples R China.
61472 CR BALDICK R, 1995, LINEAR ALGEBRA APPL, V226, P389
61473    BLAIR CE, 1979, DISCRETE MATH, V25, P7
61474    COOK W, 1986, MATH PROGRAM, V34, P251
61475    GRANOT F, 1990, MATH PROGRAM, V47, P259
61476    GUPTA OK, 1985, MANAGE SCI, V31, P1533
61477    HOCHBAUM DS, 1990, J ASSOC COMPUT MACH, V37, P843
61478    KORNER F, 1983, COMPUTING, V30, P253
61479    SCHRIJVER A, 1986, THEORY LINEAR INTEGE
61480    THOAI NV, 1998, COMPUT OPTIM APPL, V10, P149
61481    WERMAN M, 1991, MATH PROGRAM, V51, P133
61482 NR 10
61483 TC 0
61484 SN 0167-6377
61485 J9 OPER RES LETT
61486 JI Oper. Res. Lett.
61487 PD SEP
61488 PY 2001
61489 VL 29
61490 IS 2
61491 BP 87
61492 EP 92
61493 PG 6
61494 SC Operations Research & Management Science
61495 GA 470DG
61496 UT ISI:000170854700005
61497 ER
61498 
61499 PT J
61500 AU Gao, Y
61501 TI Calculating an element of B-differential for a vector-valued maximum
61502    function
61503 SO NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION
61504 DT Article
61505 DE nonsmooth equations; nonsmooth optimization; B-differential; Clarke
61506    generalized Jacobian; maximum function
61507 ID NONSMOOTH EQUATIONS
61508 AB In this paper, we propose a method of calculating an element of
61509    B-differential, also an element of Clarke generalized Jacobian, for a
61510    vector-valued maximum function. This calculation is required in many
61511    existing numerical methods for the solution of nonsmooth equations and
61512    for the nonsmooth optimization. The generalization of our method to a
61513    vector-valued smooth composition of maximum functions is also
61514    discussed. Particularly, we propose a method of obtaining the set of
61515    B-differential for a vector-valued maximum of affine functions.
61516 C1 Shanghai Univ Sci & Technol, Sch Management, Shanghai 200031, Peoples R China.
61517 CR CHANEY RW, 1990, NONLINEAR ANAL-THEOR, V15, P649
61518    CHEN WJ, 1996, SCI CHINA SER A, V39, P528
61519    CHEN X, 1997, COMPUTING, V58, P281
61520    CLARKE FH, 1983, OPTIMIZATION NONSMOO
61521    DEMYANOV VF, 1996, QUASIDIFFERENTIABILI
61522    GAO Y, 1994, ARCH CONTROL SCI, V3, P181
61523    HIRIARTURRUTY JB, 1993, CONVEX ANAL MINIMIZA
61524    LEMARECHAL C, 1994, ALGORITHMS CONTINUOU, P357
61525    MAKELA MM, 1992, NONSMOOTH OPTIMIZATI
61526    PANG JS, 1996, MATH OPER RES, V21, P401
61527    QI L, 1993, MATH PROGRAM, V58, P353
61528    QI LQ, 1993, MATH OPER RES, V18, P227
61529 NR 12
61530 TC 0
61531 SN 0163-0563
61532 J9 NUMER FUNC ANAL OPTIMIZ
61533 JI Numer. Funct. Anal. Optim.
61534 PY 2001
61535 VL 22
61536 IS 5-6
61537 BP 561
61538 EP 575
61539 PG 15
61540 SC Mathematics, Applied
61541 GA 470RV
61542 UT ISI:000170885700006
61543 ER
61544 
61545 PT J
61546 AU Yu, XJ
61547    Wang, QP
61548    Lu, LJ
61549    Pan, HB
61550    Xu, FQ
61551    Xu, PS
61552 TI Optimization of a variable-angle spherical grating monochromator
61553 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION
61554    A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
61555 DT Article
61556 DE beamline design; grating monochromator; VUV; soft X-ray
61557 ID SYNCHROTRON-RADIATION
61558 AB A beamline covering photon energy of 10-300eV is now under construction
61559    in National Synchrotron Radiation Laboratory. The monochromator,
61560    optimized for maximum flux and medium resolution, has two working
61561    modes. One is to vary the grating including angle during wavelength
61562    scanning by rotating a plane mirror in the monochromator. At this case,
61563    the entrance and exit slit are both fixed during the wavelength
61564    scanning. The other is to translate exit slit while the grating
61565    including angle is fixed. The monochromator is provided for
61566    angle-resolved spectroscopic and angle-integrated spectroscopic
61567    experiments with medium resolving power (E/DeltaE > 1 0 0 0). (C) 2001
61568    Elsevier Science B.V. All rights reserved.
61569 C1 Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China.
61570    Shanghai Univ, Dept Precis Machinery, Shanghai 201800, Peoples R China.
61571 RP Yu, XJ, Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei
61572    230029, Anhui, Peoples R China.
61573 CR CHEN CT, 1987, NUCL INSTRUM METH A, V256, P595
61574    LU LJ, 1996, APPL OPTICS, V35, P3627
61575    MELPIGNANO P, 1995, REV SCI INSTRUM 2, V66, P2125
61576    PADMORE HA, 1989, REV SCI INSTRUM 2A, V60, P1608
61577    PEATMAN WB, 1995, REV SCI INSTRUM, V66, P2801
61578    PIMPALE AV, 1991, APPL OPTICS, V30, P1591
61579 NR 6
61580 TC 1
61581 SN 0168-9002
61582 J9 NUCL INSTRUM METH PHYS RES A
61583 JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
61584    Equip.
61585 PD JUL 21
61586 PY 2001
61587 VL 467
61588 PN Part 1
61589 BP 597
61590 EP 600
61591 PG 4
61592 SC Physics, Particles & Fields; Instruments & Instrumentation; Nuclear
61593    Science & Technology; Spectroscopy
61594 GA 470YR
61595 UT ISI:000170900500143
61596 ER
61597 
61598 PT J
61599 AU Wu, MH
61600    Chen, J
61601    Bao, B
61602 TI The effect of monomer molecular weight of acrylate on radiation
61603    grafting of polyethylene
61604 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
61605 DT Article
61606 ID SURFACES
61607 AB A series of condensed ethylene glycol acrylate monomers with different
61608    molecular weight was grafted to polyethylene films by means of
61609    preirradiation. The effect of the molecular weight of monomer and
61610    co-solvent system on the grafting reaction and the properties of the
61611    grafted sample were studied. The experimental results showed that the
61612    initial rate of grafting reaction decreased and the molar degrees of
61613    grafting linearly decreased with the increment of molecular weight of
61614    the monomer. The grafting degree was increased with the swelling degree
61615    of the grafted film. The biocompatibility and blood compatibility of
61616    the grafted PE films were evaluated by the determination of
61617    hydrophilicity and anti-thrombus.
61618 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
61619 RP Wu, MH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
61620    Peoples R China.
61621 CR ANDRADE JD, 1987, T AM SOC ART INT ORG, V33, P75
61622    DUNKIRK SG, 1991, J BIOMATER APPL, V6, P131
61623    HADDADIASL V, 1995, RADIAT PHYS CHEM, V45, P191
61624    HAYASHI K, 1983, SEITAI ZEIRYO, V1, P59
61625    HOFFMAN AS, 1982, ADV CHEM SER, V199, P3
61626    HOFFMAN AS, 1988, J APPL POLYM SCI APP, V42, P251
61627    IMAI Y, 1972, J BIOMED MATER RES, V6, P165
61628    JEONG BJ, 1996, J COLLOID INTERF SCI, V178, P757
61629    KRONICK PL, 1983, SYNTHETIC BIOMEDICAL, P132
61630    RATNER BD, 1981, BIOCOMPATIBILITY CLI, P145
61631    WU MH, 1996, RADIAT PHYS CHEM, V48, P525
61632    YEH YS, 1988, J BIOMED MATER RES, V22, P795
61633 NR 12
61634 TC 0
61635 SN 0236-5731
61636 J9 J RADIOANAL NUCL CHEM
61637 JI J. Radioanal. Nucl. Chem.
61638 PD SEP
61639 PY 2001
61640 VL 249
61641 IS 3
61642 BP 639
61643 EP 642
61644 PG 4
61645 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
61646    & Technology
61647 GA 469WY
61648 UT ISI:000170840100021
61649 ER
61650 
61651 PT J
61652 AU Ding, YP
61653    Wu, JS
61654    Meng, ZY
61655 TI Abnormalities in the ferroelectric behavior of Ba0.7Sr0.3TiO3 thin
61656    films caused by fluctuations in Ba/Sr ratios in micro-regions
61657 SO JOURNAL OF MATERIALS SCIENCE LETTERS
61658 DT Article
61659 C1 Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China.
61660    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
61661 RP Ding, YP, Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030,
61662    Peoples R China.
61663 CR DING YP, 2000, J MATER SCI LETT, V19, P163
61664    DING YP, 2000, MAT RES B, V35
61665    KNANSS LA, 1996, APPL PHYS LETT, V69, P25
61666    ONEILL D, 1998, J MATER SCI-MATER EL, V9, P199
61667    QU BD, 1998, APPL PHYS LETT, V72, P1394
61668 NR 5
61669 TC 0
61670 SN 0261-8028
61671 J9 J MATER SCI LETT
61672 JI J. Mater. Sci. Lett.
61673 PY 2001
61674 VL 20
61675 IS 16
61676 BP 1469
61677 EP 1471
61678 PG 3
61679 SC Materials Science, Multidisciplinary
61680 GA 469KZ
61681 UT ISI:000170815000002
61682 ER
61683 
61684 PT J
61685 AU Zhu, WM
61686    Li, CE
61687    Guo, CJ
61688    Yan, LH
61689 TI Influence of phase composition on the piezoelectric properties of
61690    PMN-PT ceramic
61691 SO JOURNAL OF INORGANIC MATERIALS
61692 DT Article
61693 DE chemical composition; phase composition; MPB; piezoelectric properties
61694 ID LEAD MAGNESIUM NIOBATE; BOUNDARY; TITANATE; SYSTEM
61695 AB The influence of chemical and phase composition on the piezoelectric
61696    properties of PMN-PT ceramics with chemical compositions near the
61697    morphotropic phase boundary(MPB) sintered at different temperatures was
61698    investigated. It showed that a phase conversion from rhombohedral to
61699    tetragonal phase took place when the sintering temperature of PMN-PT
61700    ceramic with a definite chemical composition increased. Meanwhile, the
61701    piezoelectric properties of PMN-PT ceramics were significantly enhanced
61702    when the amount of rhombohedral phase approached to that of tetragonal
61703    phase in ceramics. At the same time, it was discovered that the
61704    chemical composition corresponding to optimal piezoelectric properties
61705    varied with the change of sintering temperature. Based on above
61706    results, the authors found that the piezoelectric properties of PMN-PT
61707    near the MPB are not only related to the chemical composition but also
61708    significantly impacted by the phase composition in ceramics. With the
61709    change of sintering temperature, the MPB of PMN-PT ceramic system
61710    shifts slightly.
61711 C1 Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
61712    Shanghai Univ, Sch Mat Sci, Shanghai 201800, Peoples R China.
61713 RP Zhu, WM, Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050,
61714    Peoples R China.
61715 CR ARIGUR P, 1975, J PHYS D, V8, P1856
61716    BAREWALD HG, 1957, PHYS REV, V105, P480
61717    CAO WW, 1992, JPN J APPL PHYS PT 1, V31, P1399
61718    CARL K, 1971, PHYS STATUS SOLIDI A, V8, P87
61719    CHOI SW, 1989, FERROELECTRICS, V100, P29
61720    FANG F, 1997, J CHINESE CERAMIC SO, V25, P688
61721    GUPTA SM, 1998, J APPL PHYS, V83, P407
61722    HILTON AD, 1989, FERROELECTRICS, V93, P379
61723    HO JC, 1993, J MATER SCI, V28, P4497
61724    ISUPOV VA, 1968, TELA FIS TVERD, V10, P1244
61725    ISUPOV VA, 1983, FERROELECTRICS, V46, P217
61726    JAFFE B, 1971, PIEZOELECTRIC CERAMI
61727    KELLY J, 1997, J AM CERAM SOC, V80, P957
61728    KIM N, 1989, FERROELECTRICS, V93, P341
61729    PARK SE, 1997, J APPL PHYS, V82, P1840
61730    SWARTZ SL, 1982, MATER RES BULL, V17, P1245
61731    XIA F, 1998, J CHINESE CERAMIC SO, V26, P114
61732 NR 17
61733 TC 0
61734 SN 1000-324X
61735 J9 J INORG MATER
61736 JI J. Inorg. Mater.
61737 PD JUL
61738 PY 2001
61739 VL 16
61740 IS 4
61741 BP 641
61742 EP 648
61743 PG 8
61744 SC Materials Science, Ceramics
61745 GA 469NZ
61746 UT ISI:000170822900011
61747 ER
61748 
61749 PT J
61750 AU Xiao, XS
61751    Qiao, XY
61752    Mo, ZS
61753    Dong, YD
61754    Wang, Q
61755    Wang, XH
61756    Xu, H
61757 TI The effect of electrostatic field on the micro-crystal morphology of
61758    polymer films
61759 SO EUROPEAN POLYMER JOURNAL
61760 DT Article
61761 DE electrostatic field; isotactic polypropylene; poly(3-dodecylthiophene);
61762    crystallite size; morphology
61763 AB The micro-crystal morphology of the films of isotactic polypropylene
61764    (iPP), poly(3-dodecylthiophene) (P3DDT) and iPP/P3DDT blend grown in
61765    different electrostatic environments has been investigated by using
61766    scanning electron microscope. The experimental results show that the
61767    micro-crystal morphology of polymer films was strongly dependent on
61768    electrostatic field. It was found that the micro-crystal morphology of
61769    the films of iPP, P3DDT and iPP/P3DDT blend grown in the electrostatic
61770    field was in the form of dendrite crystals, in which main stems were
61771    aligned in the field direction, and some branches of P3DDT were
61772    ruptured. However, the micro-crystals of the films of iPP, P3DDT and
61773    iPP/P3DDT blend have no crystal orientation in the absence of
61774    electrostatic field. (C) 2001 Elsevier Science Ltd. All rights reserved.
61775 C1 Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China.
61776    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
61777 RP Mo, ZS, Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab
61778    Polymer Phys & Chem, Changchun 130022, Peoples R China.
61779 CR BRISKMAN V, AIAA960257
61780    FURUKAWA T, 1989, PHASE TRANSIT, V18, P143
61781    JACBS EW, 1984, APPL PHYS LETT, V44, P44
61782    KAWAI H, 1969, JPN J APPL PHYS, V8, P975
61783    SERPICO JM, 1991, MACROMOLECULES, V24, P6879
61784    VENUGOPAL G, 1990, POLYM PREPR, V31, P377
61785    XIAO X, 1999, J SHANGHAI U, V5, P66
61786    XIAO X, 2000, CHINESE J SCI INSTRU, V21, P23
61787 NR 8
61788 TC 0
61789 SN 0014-3057
61790 J9 EUR POLYM J
61791 JI Eur. Polym. J.
61792 PD NOV
61793 PY 2001
61794 VL 37
61795 IS 11
61796 BP 2339
61797 EP 2343
61798 PG 5
61799 SC Polymer Science
61800 GA 470QQ
61801 UT ISI:000170883000023
61802 ER
61803 
61804 PT J
61805 AU Sheng, YJ
61806    Ru, HY
61807    Min, ZK
61808 TI R(C-6, K-5)=21 and R(C-7, K-5)=25
61809 SO EUROPEAN JOURNAL OF COMBINATORICS
61810 DT Article
61811 ID NUMBERS; GRAPHS
61812 AB The Ramsey number R(C-n, K-m) is the smallest integer p such that any
61813    graph G on p vertices either contains a cycle C-n with length n or
61814    contains an independent set with order m. In this paper we prove that
61815    R(C-n, K-5) = 4(n - 1) + 1 (n = 6, 7). (C) 2001 Academic Press.
61816 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
61817 RP Sheng, YJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
61818 CR BOLLOBAS B, IN PRESS CONJECTURE
61819    CHVATAL V, 1972, PAC J MATH, V41, P335
61820    CLANCY M, 1977, J GRAPH THEOR, V1, P89
61821    FAUDREE RJ, 1974, DISCRETE MATH, V8, P313
61822    HENDRY GRT, 1989, J GRAPH THEOR, V13, P245
61823    JAYAWARDENE CJ, SOEM RAMSEY NUMBERS
61824    RADZISZOWSKI SP, 2000, ELECT J COMB, V1, P1
61825    ROSTA V, 1973, J COMB THEORY B, V15, P94
61826    SCHELP RH, 1978, LECT NOTES MATH, V642, P500
61827    YANG WY, 1999, APPL MATH MECH-ENGL, V20, P205
61828 NR 10
61829 TC 0
61830 SN 0195-6698
61831 J9 EUR J COMBINATORIC
61832 JI Eur. J. Comb.
61833 PD MAY
61834 PY 2001
61835 VL 22
61836 IS 4
61837 BP 561
61838 EP 567
61839 PG 7
61840 SC Mathematics
61841 GA 470GA
61842 UT ISI:000170861200014
61843 ER
61844 
61845 PT J
61846 AU Yang, GH
61847 TI Topological structure of entropy of (3+1)-dimensional spherically
61848    symmetric black holes
61849 SO MODERN PHYSICS LETTERS A
61850 DT Article
61851 ID EXTREME STATE; AREA
61852 AB Using the relationship between the entropy arid the Euler
61853    characteristic, an entropy density is introduced to describe the inner
61854    topological structure of the entropy of (3 + 1)-dimensional spherically
61855    symmetric black holes. It is pointed out that the density of entropy is
61856    determined by the singularities of the timelike Killing vector field of
61857    spacetime, and these singularities carry the topological numbers, Hopf
61858    indices and Brouwer degrees, naturally, which are topological
61859    invariants. Taking account of the physical meaning in statistics, the
61860    entropy of black holes is given by the Hopf indices merely, which will
61861    lead to the increasing principle of entropy of black holes.
61862 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
61863 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
61864 CR BARDEEN JM, 1973, COMMUN MATH PHYS, V31, P161
61865    BEKENSTEIN JD, 1973, PHYS REV D, V7, P2333
61866    CHERN SS, 1944, ANN MATH, V45, P747
61867    CHERN SS, 1945, ANN MATH, V46, P674
61868    CHERN SS, 1959, LECT NOTES
61869    CHRISTODOULOU D, 1971, PHYS REV D, V4, P3552
61870    DUAN YS, 1993, J MATH PHYS, V34, P1149
61871    DUAN YS, 1997, HELV PHYS ACTA, V70, P565
61872    DUAN YS, 1998, NUCL PHYS B, V514, P705
61873    GELFAND IM, 1958, GEN FUNCTION
61874    GHOSH A, 1997, PHYS REV LETT, V78, P1858
61875    GIBBONS GW, 1977, PHYS REV D, V15, P2752
61876    GIBBONS GW, 1995, PHYS REV D, V51, P2839
61877    HAWKING SW, 1975, COMMUN MATH PHYS, V43, P199
61878    HAWKING SW, 1995, PHYS REV D, V51, P4302
61879    HAWKING SW, 1996, CLASSICAL QUANT GRAV, V13, P1487
61880    LIBERATI S, 1997, PHYS REV D, V56, P6458
61881    MALDACENA JM, 1996, PHYS REV LETT, V77, P428
61882    ZASLAVSKII OB, 1996, PHYS REV LETT, V76, P2211
61883    ZASLAVSKII OB, 1997, PHYS REV D, V56, P2188
61884 NR 20
61885 TC 1
61886 SN 0217-7323
61887 J9 MOD PHYS LETT A
61888 JI Mod. Phys. Lett. A
61889 PD JUL 20
61890 PY 2001
61891 VL 16
61892 IS 22
61893 BP 1457
61894 EP 1464
61895 PG 8
61896 SC Physics, Mathematical; Physics, Nuclear; Physics, Particles & Fields
61897 GA 467MR
61898 UT ISI:000170708800007
61899 ER
61900 
61901 PT J
61902 AU Zhang, ZQ
61903    Mo, YL
61904 TI Coding of image objects based on wavelet transform using lifting scheme
61905 SO JOURNAL OF INFRARED AND MILLIMETER WAVES
61906 DT Article
61907 DE MPEG-4; transform coding of arbitrarily shaped image objects; wavelet
61908    transforms using lifting scheme
61909 ID SHAPE-ADAPTIVE DCT; VIDEO
61910 AB Wavelet lifting scheme was applied to the transform coding of
61911    arbitrarily shaped image objects. There are two approaches: one needs
61912    the extrapolation of the image object and the other is a shape-adopted
61913    algorithm by modifying the lifting scheme. The experiment result shows
61914    that the image compression performance of the two approaches is better
61915    than Katata's approach which uses the classical wavelet transform.
61916 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
61917 RP Zhang, ZQ, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
61918    Peoples R China.
61919 CR DAUBECHIES I, 1998, J FOURIER ANAL APPL, V4, P247
61920    KATATA H, 1997, IEEE T CIRC SYST VID, V7, P234
61921    KAUFF P, 1997, IEEE T CIRC SYST VID, V7, P181
61922    KAUFF P, 1998, IEEE T CIRC SYST VID, V8, P237
61923    LEE SH, 1999, IEEE T CIRC SYST VID, V9, P44
61924    LEWIS AS, 1992, IEEE T IMAGE PROCESS, V1, P244
61925    SIKORA T, 1995, IEEE T CIRC SYST VID, V5, P59
61926    SIKORA T, 1997, IEEE T CIRC SYST VID, V7, P19
61927    SWELDENS W, 1994, LIFTING SCHEME CUSTO, P1
61928 NR 9
61929 TC 0
61930 SN 1001-9014
61931 J9 J INFRARED MILIM WAVES
61932 JI J. Infrared Millim. Waves
61933 PD AUG
61934 PY 2001
61935 VL 20
61936 IS 4
61937 BP 296
61938 EP 300
61939 PG 5
61940 SC Optics
61941 GA 467GL
61942 UT ISI:000170694000014
61943 ER
61944 
61945 PT J
61946 AU Zhang, ZC
61947    Huang, BB
61948    Yu, YQ
61949    Cui, DL
61950 TI Electrical properties and Raman spectra of undoped and Al-doped ZnO
61951    thin films by metalorganic vapor phase epitaxy
61952 SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
61953    TECHNOLOGY
61954 DT Article
61955 DE ZnO; resistivity; carrier concentration; hall mobility; Raman spectra
61956 ID DEPOSITION; GROWTH
61957 AB Undoped and Al-doped ZnO thin films have been deposited on Si
61958    substrates using metalorganic vapor phase epitaxy at atmospheric
61959    pressure. The as-deposited ZnO films showed good crystalline character
61960    and exhibited (002) orientation with the c axis perpendicular to the
61961    substrate surface. The carrier concentration of ZnO films was found to
61962    be dependent upon the doping of Al, and varied in the range from 10(19)
61963    to 10(20) cm(-3). The resistivity of ZnO films was in the order of
61964    magnitude of 10(-3) Omega cm. The Hall mobility decreased with the
61965    doping of Al and was in the range 5-53 cm(2) (V(.)s)(-1). Raman spectra
61966    indicated the observed A(1)(LO) and E-2(high) bands shifted towards the
61967    low-frequency side. (C) 2001 Elsevier Science B.V. All rights reserved.
61968 C1 Shanghai Univ, Chinese Acad Sci, Dept Elect Informat Mat, Shanghai 201800, Peoples R China.
61969    Shandong Univ, Inst Crystal Mat, Jinan 250100, Peoples R China.
61970 RP Zhang, ZC, Shanghai Univ, Chinese Acad Sci, Dept Elect Informat Mat,
61971    865 Changning Rd, Shanghai 201800, Peoples R China.
61972 CR BAGNALL DM, 1997, APPL PHYS LETT, V70, P2230
61973    DAMEN TC, 1966, PHYS REV, V142, P570
61974    MINEGISHI K, 1997, JPN J APPL PHYS 2, V36, L1453
61975    SOULETIE P, 1988, J CRYST GROWTH, V86, P248
61976    TONG YZ, 1996, J INFARED MILLIM WAV, V15, P6
61977    WRIGHT PJ, 1984, J CRYST GROWTH, V66, P26
61978 NR 6
61979 TC 12
61980 SN 0921-5107
61981 J9 MATER SCI ENG B-SOLID STATE M
61982 JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
61983 PD SEP 25
61984 PY 2001
61985 VL 86
61986 IS 2
61987 BP 109
61988 EP 112
61989 PG 4
61990 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
61991 GA 465HR
61992 UT ISI:000170584000002
61993 ER
61994 
61995 PT J
61996 AU Zhang, ZC
61997    Huang, BB
61998    Cui, DL
61999 TI Growth of AlxGa1-xP on GaAs substrate by metalorganic vapor phase
62000    epitaxy
62001 SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
62002    TECHNOLOGY
62003 DT Article
62004 DE AlGaP; metalorganic vapor phase epitaxy; back-scattering spectrometry;
62005    Raman spectroscopy
62006 ID MOLECULAR-BEAM EPITAXY; RAMAN-SCATTERING; GAP; PRESSURE; INP
62007 AB The crystalline perfection of the AlxGa1-xP film grown on GaAs
62008    substrate by atmospheric pressure metalorganic vapor phase epitaxy has
62009    been studied using double-crystal X-ray diffraction and back-scattering
62010    spectrometry, and the behavior for the optical phonons of the AlxGa1-xP
62011    epilayer investigated by the Raman scattering technique. In addition,
62012    the reflection spectra in the visible-light spectra region from
62013    multilayer structures constructed by AlxGa1-xP/GaP pairs have been
62014    measured. The measurement of the full-width at half-maximum of the
62015    X-ray diffraction peak of the AlxGa1-xP epilayer showed that the
62016    crystalline perfection of the AlxGa1-xP film was improved by growing a
62017    GaP buffer layer and using a misoriented GaAs substrate. Corresponding
62018    to the temperature range 750-820 degreesC, the higher crystalline
62019    perfection was obtained at the lower growth temperature. The value of
62020    the minimum yield of back-scattering spectrometry of Al0.24Ga0.76P/GaAs
62021    (3.4 x 10(-2)) revealed that the epilayer was not perfect and contained
62022    both elastic strain and misfit dislocations. A two-mode Raman
62023    characteristic of Al0.21Ga0.79P/GaAs was clearly seen with two LO
62024    modes, AIP-like LO and GaP-like LO located at 460 and 392 cm(-1),
62025    respectively. For the (Al0.2Ga0.79P)10/(GaP)(10) structure, a
62026    reflectivity above 60% was realized. (C) 2001 Elsevier Science B.V. All
62027    rights reserved.
62028 C1 Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800, Peoples R China.
62029    Shandong Univ, Inst Crystal Mat, Jinan 250100, Peoples R China.
62030 RP Zhang, ZC, Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800,
62031    Peoples R China.
62032 CR *I SEM CHIN AC SCI, 1984, TEST AN SEM, P135
62033    ADOMI K, 1992, J CRYST GROWTH, V124, P570
62034    BAILLARGEON JN, 1990, APPL PHYS LETT, V56, P2201
62035    BHAT R, 1992, J CRYST GROWTH, V124, P311
62036    CHU WK, 1978, BACKSCATTERING SPECT, P233
62037    ESTRERA JP, 1992, APPL PHYS LETT, V61, P1927
62038    FRANK FC, 1949, P ROY SOC LOND A MAT, V198, P216
62039    ILLEGEMS M, 1970, PHYS REV B, V1, P1576
62040    LAO PD, 1989, J APPL PHYS, V65, P1676
62041    LIU J, 1992, J CRYST GROWTH, V124, P415
62042    LUCOVSKY G, 1975, PHYS REV B, V12, P4135
62043    LUCOVSKY G, 1976, PHYS REV B, V14, P2503
62044    MENG G, 1984, CHEM VAPOR EPITAXY N, P147
62045    MOWBRAY DJ, 1987, SEMICOND SCI TECH, V2, P822
62046    VANDEVEN J, 1986, J CRYST GROWTH, V76, P352
62047    WAKAHARA A, 1992, J CRYST GROWTH, V124, P118
62048    WEINSTEIN BA, 1975, PHYS REV           B, V12, P1172
62049    ZHANG ZC, 2000, MAT SCI ENG B-SOLID, V77, P24
62050 NR 18
62051 TC 1
62052 SN 0921-5107
62053 J9 MATER SCI ENG B-SOLID STATE M
62054 JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
62055 PD SEP 25
62056 PY 2001
62057 VL 86
62058 IS 2
62059 BP 147
62060 EP 151
62061 PG 5
62062 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
62063 GA 465HR
62064 UT ISI:000170584000009
62065 ER
62066 
62067 PT J
62068 AU Cheng, CJ
62069    Fan, XJ
62070 TI Nonlinear mathematical theory of perforated viscoelastic thin plates
62071    with its applications
62072 SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
62073 DT Article
62074 DE perforated viscoelastic plate; nonlinear mathematical model; nonlinear
62075    stability; Lyapunov exponent spectrum; chaos; periodic motion; limit
62076    cycle; effect of parameter
62077 ID ANNULAR PLATES; SHEARING; STATES
62078 AB In this paper, the nonlinear mathematical theory of perforated
62079    viscoelastic thin plates, by the Karman's hypotheses of plates with
62080    large deflection and the Boltzmann's constitutive law of linear
62081    viscoelastic materials, is established. One could see that the
62082    governing equations, boundary conditions and constraining conditions
62083    generally are of nonlinear integro-differential operator types and that
62084    they further generalize the mathematical theory for perforated elastic
62085    thin plates and could be also reduced to the existing mathematical
62086    theory of viscoelastic thin plates without holes. As an application,
62087    the nonlinear dynamical stability of a viscoelastic annular plate is
62088    analyzed and the effect of parameters on the stability is considered by
62089    using Galerkin averaging method and numerical methods in nonlinear
62090    dynamics. Some helpful conclusions are obtained. Specially, a new
62091    method calculating the Lyapunov exponent spectrum of dynamical systems
62092    excited periodically is suggested. By using this method, the
62093    computation time can be greatly reduced. (C) 2001 Elsevier Science Ltd.
62094    All rights reserved.
62095 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
62096    Xian Jiaotong Univ, Sch Civil Engn & Mech, Xian 710049, Peoples R China.
62097 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
62098    Shanghai 200072, Peoples R China.
62099 CR CEDERBAUM G, 1991, INT J SOLIDS STRUCT, V28, P317
62100    CEDERBAUM G, 1994, INT J MECH SCI, V36, P149
62101    CHENG CJ, 1986, SCI SINICA SER A, V29, P956
62102    CHENG CJ, 1989, J ENG MATH, V23, P29
62103    CHENG CJ, 1991, BUCKLING BUFOCATION
62104    CHENG CJ, 1991, COMPUT METHOD APPL M, V92, P157
62105    CHENG CJ, 1991, COMPUT METHOD APPL M, V92, P173
62106    CHENG CJ, 1996, APPL MATH MECH, V17, P109
62107    CHENG CJ, 1998, ACTA MECH SINICA, V30, P690
62108    CHENG CJ, 1998, INT J SOLIDS STRUCT, V35, P4491
62109    CHRISTENSEN RM, 1982, THEORY VISCOELASTICI
62110    DROZDOV AD, 1994, STABILITY VISCOELAST
62111    PARKER TS, 1989, PRACTICAL NUMERICAL
62112    TOUATI D, 1995, ACTA MECH, V113, P215
62113    ZHANG NH, 1998, COMPUT METHOD APPL M, V165, P307
62114    ZHU ZY, 1986, ACTA MECH SINICA, V2, P278
62115 NR 16
62116 TC 2
62117 SN 0020-7683
62118 J9 INT J SOLIDS STRUCT
62119 JI Int. J. Solids Struct.
62120 PD SEP
62121 PY 2001
62122 VL 38
62123 IS 36-37
62124 BP 6627
62125 EP 6641
62126 PG 15
62127 SC Mechanics
62128 GA 464GK
62129 UT ISI:000170524700013
62130 ER
62131 
62132 PT J
62133 AU He, JH
62134 TI Comments and author's reply on "Derivation and transformation of
62135    variational principles with emphasis on inverse and hybrid problems in
62136    fluid mechanics: a systematic approach"
62137 SO ACTA MECHANICA
62138 DT Letter
62139 ID FLOW
62140 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
62141 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
62142    Shanghai 200072, Peoples R China.
62143 CR HE JH, 1997, INT J TURBO JET ENG, V14, P23
62144    HE JH, 2000, AIRCR ENG AEROSP TEC, V72, P18
62145    LIU GL, 1999, ACTA MECH SINICA, V31, P165
62146    LIU GL, 1999, INT J TURBO JET ENG, V16, P141
62147    LIU GL, 2000, ACTA MECH, V140, P73
62148 NR 5
62149 TC 3
62150 SN 0001-5970
62151 J9 ACTA MECH
62152 JI Acta Mech.
62153 PY 2001
62154 VL 149
62155 IS 1-4
62156 BP 247
62157 EP 249
62158 PG 3
62159 SC Mechanics
62160 GA 465UE
62161 UT ISI:000170607700018
62162 ER
62163 
62164 PT J
62165 AU Liu, GL
62166 TI Comments and author's reply on "Derivation and transformation of
62167    variational principles with emphasis on inverse and hybrid problems in
62168    fluid mechanics: a systematic approach" - Reply
62169 SO ACTA MECHANICA
62170 DT Letter
62171 C1 Shanghai Univ, Inst Mech, Shanghai 200072, Peoples R China.
62172 RP Liu, GL, Shanghai Univ, Inst Mech, 149 Yan Chang Rd, Shanghai 200072,
62173    Peoples R China.
62174 CR FINLAYSON BA, 1972, METHOD WEIGHTED RESI, P312
62175    HE JH, COMMENTS LIUS SYSTEM
62176    LIU GL, 1990, CHINESE J ENG THERMO, V11, P136
62177    LIU GL, 2000, ACTA MECH, V140, P73
62178    ZIENKIEWICZ OC, 1989, FINITE ELEMENT METHO, V1, P248
62179 NR 5
62180 TC 0
62181 SN 0001-5970
62182 J9 ACTA MECH
62183 JI Acta Mech.
62184 PY 2001
62185 VL 149
62186 IS 1-4
62187 BP 249
62188 EP 250
62189 PG 2
62190 SC Mechanics
62191 GA 465UE
62192 UT ISI:000170607700019
62193 ER
62194 
62195 PT J
62196 AU Wan, XJ
62197    Chen, YX
62198    Cheng, XY
62199 TI Environmental embrittlement of intermetallics
62200 SO PROGRESS IN NATURAL SCIENCE
62201 DT Review
62202 DE intermetallics; environmental embrittlement; alloying element; hydrogen
62203    diffusivity; surface reaction
62204 ID ROOM-TEMPERATURE; CO3TI ALLOYS; POLYCRYSTALLINE NI3AL;
62205    MECHANICAL-PROPERTIES; WATER-VAPOR; BORON; FRACTURE
62206 AB The effect of alloying elements on the environmental embrittlement of
62207    L1(2) type intermetallics is summarized. The results show that the
62208    ductilizing effect of boron doping in Ni3Al is mainly to suppress the
62209    moisture-induced environmental embrittlement. The mechanism of this
62210    suppression effect is proved to lie in the fact that it severely
62211    reduces the hydrogen diffusivity along the grain boundaries. However,
62212    the boron doping in Co3Ti alloys does not have the same effect of
62213    suppressing the environmental embrittlement. The different behavior of
62214    boron doping in Ni3Al and Co3Ti may be attributed to its different
62215    segregation behavior on the grain boundaries. Boron in Co3Ti does not
62216    segregate on the grain boundaries and cannot effectively reduce the
62217    hydrogen diffusivity along the grain boundaries. The moisture-induced
62218    environmental embrittlement of Co3Ti alloy can be completely suppressed
62219    by the addition of Fe. As proved by Auger, this suppression effect is
62220    due to its obvious reduction of the surface kinetic reaction with water
62221    vapor.
62222 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
62223 RP Wan, XJ, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
62224 CR CHEN YX, 1998, J MATER SCI LETT, V17, P1627
62225    CHEN YX, 2000, INTERMETALLICS, V8, P585
62226    CHENG XY, 1997, SCRIPTA MATER, V37, P1065
62227    CHENG XY, 1998, SCRIPTA MATER, V38, P959
62228    GEORGE EP, 1992, SCRIPTA METALL MATER, V27, P365
62229    GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37
62230    GEORGE EP, 1995, MAT SCI ENG A-STRUCT, V192, P277
62231    KIMURA A, 1994, MATER T JIM, V35, P879
62232    LIU CT, 1985, ACTA METALL, V33, P213
62233    LIU CT, 1992, SCRIPTA METALL MATER, V27, P25
62234    LIU Y, 1989, J MATER SCI, V24, P4458
62235    TAKASUGI T, 1986, ACTA METALL, V34, P607
62236    TAKASUGI T, 1990, J MATER SCI, V25, P4239
62237    TAKASUGI T, 1993, SCRIPTA METALL MATER, V29, P1587
62238    WAN X, 1994, J MATER SCI TECHNOL, V10, P39
62239    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
62240    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P479
62241    WAN XJ, 1994, SCRIPTA METALL MATER, V31, P677
62242    WAN XJ, 1995, ACTA METALL SINICA, V8, P299
62243    WAN XJ, 1998, ACTA METALLURGICA SI, V34, P141
62244    WAN XJ, 1999, ACTA METALLURGICA S, V35, P44
62245    WU MY, 1999, 5 IUMRS INT C ADV MA, V64, P187
62246    ZHU JH, 1993, SCRIPTA METALL MATER, V29, P429
62247 NR 23
62248 TC 0
62249 SN 1002-0071
62250 J9 PROG NAT SCI
62251 JI Prog. Nat. Sci.
62252 PD AUG
62253 PY 2001
62254 VL 11
62255 IS 8
62256 BP 561
62257 EP 568
62258 PG 8
62259 SC Multidisciplinary Sciences
62260 GA 462TN
62261 UT ISI:000170436000001
62262 ER
62263 
62264 PT J
62265 AU Yin, LW
62266    Li, MS
62267    Hao, ZY
62268    Zhang, JF
62269 TI Inclusions related to catalyst and medium for transmitting pressure in
62270    diamond single crystals grown at high temperature and high pressure
62271    from the Fe-C system
62272 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
62273 DT Article
62274 ID NITROGEN
62275 AB Inclusion entrapment in a crystal is one of the most important
62276    characteristics for the crystal growth technique from solution. Diamond
62277    single crystals grown from the Fe-C system at high temperature-high
62278    pressure usually contain inclusions related to the molten catalyst and
62279    the medium (pyrophyllite) for transmitting pressure. During the growth
62280    of the diamond, the inclusions are trapped by the growth front or are
62281    formed through reaction between the contaminants trapped in the
62282    diamond. In the present article, the inclusions related to the catalyst
62283    and pyrophyllite were systemically examined by transmission electron
62284    microscopy. The chemical composition and crystal structure of the
62285    inclusions were, for the first time, determined by selected area
62286    electron diffraction pattern combined with energy dispersive x-ray
62287    spectrometry. It was shown that the inclusions are mainly composed of
62288    orthorhombic Fe3C, orthorhombic FeSi2, hexagonal SiO2 and face-centred
62289    cubic SiC.
62290 C1 Shandong Univ, Coll Mat Sci & Engn, Jinan 250061, Peoples R China.
62291    Jilin Univ, Natl Key Lab Superhard Mat, Changchun 130012, Peoples R China.
62292    Shanghai Univ Sci & Technol, Occupat Coll, Jinan 271021, Peoples R China.
62293 RP Yin, LW, Shandong Univ, Coll Mat Sci & Engn, 73 Jing Shi Rd, Jinan
62294    250061, Peoples R China.
62295 CR ANTHONY TR, 1999, DIAM RELAT MATER, V8, P78
62296    BUNDY FP, 1955, NATURE, V176, P51
62297    DAVIS G, 1992, PHYS REV B, V46, P157
62298    GOSS J, 1995, MATER SCI FORUM, V196, P67
62299    HAO ZY, 1994, J CRYST GROWTH, V135, P370
62300    HUGGINS CM, 1961, NATURE, V120, P829
62301    KIFLAWI I, 1997, DIAM RELAT MATER, V6, P1643
62302    MAINWOOD A, 1994, PHYS REV B, V49, P7934
62303    MICHAU D, 1999, DIAM RELAT MATER, V140, P441
62304    NAZARE MH, 1995, MATER SCI FORUM, V196, P73
62305    NEWTON ME, 1991, J PHYS-CONDENS MAT, V3, P3591
62306    SHIMOMURA S, 1997, DIAM RELAT MATER, V6, P1680
62307    SINGH BP, 1990, J MATER SCI, V25, P1487
62308    ZHANG SD, 1986, J CRYST GROWTH, V79, P542
62309 NR 14
62310 TC 1
62311 SN 0022-3727
62312 J9 J PHYS-D-APPL PHYS
62313 JI J. Phys. D-Appl. Phys.
62314 PD JUN 21
62315 PY 2001
62316 VL 34
62317 IS 12
62318 BP L57
62319 EP L60
62320 PG 4
62321 SC Physics, Applied
62322 GA 462MR
62323 UT ISI:000170424300001
62324 ER
62325 
62326 PT J
62327 AU Wang, XG
62328    Ding, WZ
62329    Tang, K
62330    Jiang, GC
62331    Xu, KD
62332 TI Experimental thermodynamic research on equilibrium between silicon
62333    alloy and SiO2-CaO-Al2O3 melt
62334 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
62335 DT Article
62336 DE silicon; oxidation refining; thermodynamic equilibrium
62337 AB The equilibria of Al and Ca between silicon alloy and the SO2-Al2O3-CaO
62338    ternary slags were investigated using graphite crucible at 1550
62339    degreesC. With increasing Al2O3 and CaO content in the slags, the Al
62340    and Ca content increase respectively. The variation of the impurities
62341    are also affected by the silica content in slag which provides the
62342    oxidant during the oxidation refining process. The distributions of the
62343    impurities Al and Ca in silicon were given in terms of isoconcentration
62344    curves for Al and Ca in the ternary slags of SiO2-Al2O3-CaO. The
62345    present experimental work provided available data to analyze the action
62346    of Al and Ca during oxidation refining process for silicon alloy.
62347 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
62348 CR CHU TL, 1983, J ELECTROCHEM SOC, V30, P455
62349    HOLTA H, 1995, INFACON 7 TRONDH NOR, P463
62350    HUNT LP, 1976, 12 IEEE PHOT SPEC C, P125
62351    HUNT LP, 1976, SOL ENERGY, P200
62352    JUNEJA JM, 1986, HYDROMETALLURGY, V16, P69
62353    KAY DAR, 1960, T FARADAY SOC, V56, P1372
62354    MARGARIA T, 1996, SILICON REFINING EXP, P21
62355    OHTA H, 1996, METALL MATER TRANS B, V27, P943
62356    OTTEM L, 1993, STF34F93112 SINTEF
62357    REIN RH, 1965, T METALL SOC AIME, V233, P415
62358    SCHEI A, 1998, PRODUCTION HIGH SILI, P13
62359    SCHEI A, 1998, PRODUCTION HIGH SILI, P265
62360    VOOS W, 1961, 2972521, US
62361    WEISS T, 1994, METALL MATER TRANS B, V25, P497
62362    WU XX, 1999, CHINESE J NONFERROUS, V9, P627
62363 NR 15
62364 TC 0
62365 SN 1003-6326
62366 J9 TRANS NONFERROUS METAL SOC CH
62367 JI Trans. Nonferrous Met. Soc. China
62368 PD AUG
62369 PY 2001
62370 VL 11
62371 IS 4
62372 BP 535
62373 EP 539
62374 PG 5
62375 SC Metallurgy & Metallurgical Engineering
62376 GA 461PX
62377 UT ISI:000170373600016
62378 ER
62379 
62380 PT J
62381 AU Li, CF
62382    Wang, Q
62383 TI Duration of tunneling photons in a frustrated-total-internal-reflection
62384    structure
62385 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS
62386 DT Article
62387 ID SUPERLUMINAL GROUP VELOCITIES; DELAY TIMES; QUANTUM; TRAVERSAL;
62388    MECHANICS; MEDIA
62389 AB A new definition for tunneling time of photons in a
62390    frustrated-total-internal-reflection structure is introduced under the
62391    assumption that the tunneling speed of photons is the energy-transfer
62392    speed of light in the tunneling region. This definition eliminates the
62393    problem of superluminality, and the suggested tunneling speed defines
62394    an orbit equation that gives a lateral shift of tunneling photons. (C)
62395    2001 Optical Society of America.
62396 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
62397    CCAST, World Lab, Beijing 100080, Peoples R China.
62398 RP Li, CF, Shanghai Univ, Dept Phys, 99 Shangda Rd,Baoshan, Shanghai
62399    200436, Peoples R China.
62400 CR 1994, PHYS REV A, V49, P3283
62401    BALCOU P, 1997, PHYS REV LETT, V78, P851
62402    BOHM D, 1951, QUANTUM THEORY, P240
62403    BOHM D, 1952, PHYS REV, V85, P166
62404    BOHM D, 1987, PHYS REP, V144, P321
62405    BUTTIKER M, 1982, PHYS REV LETT, V49, P1739
62406    CARNIGLIA CK, 1971, J OPT SOC AM, V61, P1035
62407    CARNIGLIA CK, 1971, J OPT SOC AM, V61, P1423
62408    CHIAO RY, 1997, PROG OPTICS, V37, P345
62409    CONDON EU, 1931, REV MOD PHYS, V3, P43
62410    DEUTCH JM, 1993, ANN PHYS-NEW YORK, V228, P184
62411    DIENER G, 1996, PHYS LETT A, V223, P327
62412    DIENER G, 1997, PHYS LETT A, V235, P118
62413    HARTMAN TE, 1962, J APPL PHYS, V33, P3427
62414    HASS K, 1994, PHYS LETT A, V185, P9
62415    HAUGE EH, 1989, REV MOD PHYS, V61, P917
62416    JAPHA Y, 1996, PHYS REV A, V53, P586
62417    LEAVENS CR, 1998, PHYS REV A, V58, P840
62418    LEE B, 1997, J OPT SOC AM B, V14, P777
62419    MACCOLL LA, 1932, PHYS REV, V40, P621
62420    MCKINNON WR, 1995, PHYS REV A, V51, P2748
62421    NIMTZ G, 1997, PROG QUANT ELECTRON, V21, P81
62422    SMITH FT, 1960, PHYS REV, V118, P349
62423    STEINBERG AM, 1994, PHYS REV A, V49, P3283
62424 NR 24
62425 TC 2
62426 SN 0740-3224
62427 J9 J OPT SOC AM B-OPT PHYSICS
62428 JI J. Opt. Soc. Am. B-Opt. Phys.
62429 PD AUG
62430 PY 2001
62431 VL 18
62432 IS 8
62433 BP 1174
62434 EP 1179
62435 PG 6
62436 SC Optics
62437 GA 459YZ
62438 UT ISI:000170280200018
62439 ER
62440 
62441 PT J
62442 AU Luo, X
62443    Roetzel, W
62444 TI The single-blow transient testing technique for plate-fin heat
62445    exchangers
62446 SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
62447 DT Article
62448 DE heat exchangers; measurement techniques; transient
62449 ID NUMERICAL INVERSION; LAPLACE TRANSFORMS; TEMPERATURE
62450 AB A new model of the single-blow problem is proposed, considering the
62451    lateral heat conduction resistance along the fins. the axial heat
62452    conduction along the separating plates and the axial thermal dispersion
62453    in the fluid. For plate-fin heat exchangers made up of stainless steel,
62454    the effect of the lateral heat conduction resistance along the fins can
62455    usually not be neglected. This effect is taken into account by solving
62456    the temperature dynamics in the fluid, separating plates and fins
62457    simultaneously. The axial dispersion model is used to take flow
62458    maldistribution in plate-fin heat exchangers into account. The effect
62459    of the axial heat conduction in separating plates is also considered.
62460    The governing equation system is solved by means of Laplace transform
62461    and numerical inverse transform algorithms. The investigation confirms:
62462    for plate-fin heat exchangers of aluminium the effect of the lateral
62463    heat conduction resistance of fins can usually be neglected because of
62464    their high fin efficiency. However, the assumption of uniform porous
62465    medium is not valid if the plate-fin heat exchangers are made up of
62466    stainless steel. In such a case the heat conduction resistance of fins
62467    has significant influence on the outlet fluid temperature variation.
62468    (C) 2001 Elsevier Science Ltd. All rights reserved.
62469 C1 Univ Fed Armed Forces, Inst Thermodynam, D-22039 Hamburg, Germany.
62470    Shanghai Univ Sci & Technol, Inst Thermal Engn & Air Conditioning, Shanghai 2000093, Peoples R China.
62471 RP Luo, X, Univ Fed Armed Forces, Inst Thermodynam, D-22039 Hamburg,
62472    Germany.
62473 CR 1979, HDB MATH, P537
62474    ANZELIUS A, 1926, Z ANGEW MATH MECH, V6, P291
62475    CAI ZH, 1984, INT J HEAT MASS TRAN, V27, P971
62476    CRESWICK FA, 1957, IND MATH, V8, P61
62477    CRUMP KS, 1976, J ASSOC COMPUT MACH, V23, P89
62478    DANCKWERTS PV, 1953, CHEM ENG SCI, V2, P1
62479    FURNAS CC, 1932, US BUREAU MINES B, V361
62480    HAUSEN H, 1929, Z ANGEW MATH MECH, V9, P173
62481    HEGGS PJ, 1988, EXP THERM FLUID SCI, V1, P243
62482    HOWARD CP, 1964, 64GTP11 ASME
62483    ICHIKAWA S, 1972, KYOTO U MEMORIES 1, V34, P53
62484    JACQUOT RG, 1983, IEEE CIRCUITS SYSTEM, V5, P4
62485    KAYS WM, 1984, COMPACT HEAT EXCHANG
62486    LIANG CY, 1975, J HEAT TRANSFER, V97, P16
62487    LUO X, 1987, HEAT TRANSFER SCI TE, P218
62488    LUO X, 1990, J SHANGHAI I MECH EN, V12, P40
62489    LUO X, 1998, FORTSCHRITT BERICHTE, V19
62490    LUO X, 1999, SCI COMPUTING CHEM E, V2, P167
62491    LUO X, 2000, HEAT TRANSFER SCI TE, P691
62492    LUO X, 2000, INT J HEAT MASS TRAN, V44, P121
62493    MULLISEN RS, 1986, J HEAT TRANS-T ASME, V108, P370
62494    NUSSELT W, 1927, Z VER DTSCH ING 1, V71, P85
62495    ROETZEL W, 1994, INT J HEAT MASS TRAN, V37, P325
62496    ROETZEL W, 1996, NEW DEV HEAT EXCHANG, P547
62497    ROETZEL W, 1998, REV GEN THERM, V37, P277
62498    ROETZEL W, 1999, DYNAMIC BEHAV HEAT E
62499    ROETZEL W, 2000, P 3 EUR THERM SCI C, P1149
62500    SCHUMANN TEW, 1929, J FRANKL INST, V208, P405
62501    STEHFEST H, 1970, COMMUN ACM, V13, P47
62502    ZHANG H, 1999, PROGR ENG HEAT TRANS, P607
62503    ZHOU CW, 1988, P NAT C HEAT MASS TR
62504    ZHOU K, 1998, P INT C HEAT EXCH SU, P645
62505 NR 32
62506 TC 3
62507 SN 0017-9310
62508 J9 INT J HEAT MASS TRANSFER
62509 JI Int. J. Heat Mass Transf.
62510 PD OCT
62511 PY 2001
62512 VL 44
62513 IS 19
62514 BP 3745
62515 EP 3753
62516 PG 9
62517 SC Engineering, Mechanical; Mechanics; Thermodynamics
62518 GA 460AG
62519 UT ISI:000170283200006
62520 ER
62521 
62522 PT J
62523 AU Yang, GH
62524 TI Inner structure of entropy of Reissner-Nordstrom black holes
62525 SO GENERAL RELATIVITY AND GRAVITATION
62526 DT Article
62527 DE Black holes; entropy
62528 ID SPACE-TIME DEFECTS; BONNET-CHERN DENSITY; GAUGE FIELD-THEORY;
62529    DISCLINATION CONTINUUM; TOPOLOGICAL-STRUCTURE; EARLY UNIVERSE; EXTREME
62530    STATE; BIFURCATION; ORIGIN; QUANTIZATION
62531 AB Using the relationship between the entropy and the Euler
62532    characteristic, and the usual decomposition of spin connection, an
62533    entropy density is introduced to describe the inner structure of the
62534    entropy of RN black holes. It is pointed out that the entropy of RN
62535    black holes is determined by the singularities of the timelike Killing
62536    vector field of RN spacetime, and that these singularities carry the
62537    topological numbers, Hopf indices and Brouwer degrees, naturally, which
62538    are topological invariants. Taking account of the physical meaning of
62539    entropy in statistics, the entropy and its density of RN black holes
62540    are modified and they are given by the Hopf indices merely.
62541 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
62542 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
62543 CR BARDEEN JM, 1973, COMMUN MATH PHYS, V31, P161
62544    BEKENSTEIN JD, 1973, PHYS REV D, V7, P2333
62545    CHERN SS, 1944, ANN MATH, V45, P747
62546    CHERN SS, 1945, ANN MATH, V46, P674
62547    CHERN SS, 1959, LECT NOTES
62548    CHRISTODOULOU D, 1971, PHYS REV D, V4, P3552
62549    DUAN YS, 1993, J MATH PHYS, V34, P1149
62550    DUAN YS, 1995, HELV PHYS ACTA, V68, P513
62551    DUAN YS, 1997, GEN RELAT GRAVIT, V29, P715
62552    DUAN YS, 1997, HELV PHYS ACTA, V70, P565
62553    GELFAND IM, 1958, GEN FUNCTION
62554    GHOSH A, 1997, PHYS REV LETT, V78, P1858
62555    GIBBONS GW, 1977, PHYS REV D, V15, P2752
62556    GIBBONS GW, 1995, PHYS REV D, V51, P2839
62557    HAWKING SW, 1975, COMMUN MATH PHYS, V43, P199
62558    HAWKING SW, 1995, PHYS REV D, V51, P4302
62559    HAWKING SW, 1996, CLASSICAL QUANT GRAV, V13, P1487
62560    LIBERATI S, 1997, PHYS REV D, V56, P6458
62561    MALDACENA JM, 1996, PHYS REV LETT, V77, P428
62562    TEITELBOIM C, 1995, PHYS REV D, V51, P4315
62563    WANG B, 1998, PHYS LETT B, V432, P69
62564    WANG B, 1998, PHYS REV D, V57, P5284
62565    YANG GH, 1998, INT J MOD PHYS B, V12, P2599
62566    YANG GH, 1998, INT J THEOR PHYS, V37, P2371
62567    YANG GH, 1998, INT J THEOR PHYS, V37, P2953
62568    YANG GH, 1998, MOD PHYS LETT A, V13, P2123
62569    YANG GH, 1998, MOD PHYS LETT A, V13, P745
62570    YANG GH, 1999, INT J ENG SCI, V37, P1037
62571    ZASLAVSKII OB, 1996, PHYS REV LETT, V76, P2211
62572    ZASLAVSKII OB, 1997, PHYS REV D, V56, P2188
62573 NR 30
62574 TC 2
62575 SN 0001-7701
62576 J9 GEN RELATIV GRAVIT
62577 JI Gen. Relativ. Gravit.
62578 PD JUN
62579 PY 2001
62580 VL 33
62581 IS 6
62582 BP 1027
62583 EP 1040
62584 PG 14
62585 SC Physics, Multidisciplinary
62586 GA 461UX
62587 UT ISI:000170382800005
62588 ER
62589 
62590 PT S
62591 AU Wang, XP
62592    Chen, XJ
62593    Zhu, LJ
62594    Wang, W
62595 TI Machine tool spindles and active magnetic bearings
62596 SO ADVANCES IN ABRASIVE PROCESSES
62597 SE KEY ENGINEERING MATERIALS
62598 DT Article
62599 DE AMB; machine tool spindle; industrial application
62600 AB Active magnetic bearing (AMB) is a suspension component that makes use
62601    of magnetic force to support the body (such as the rotor) without
62602    contact and it has many advantages such as high stability and no wear.
62603    There are many successful applications on machine tools around the
62604    world instead of the ball bearings or oil film bearings. The excellence
62605    of the AMB shows it is ones of the best units of suspension for the
62606    rotating shaft in the future. Here, the technique and some
62607    characteristics of the bearings applied in machine tool spindle are
62608    introduced briefly. The research and the application actuality of AMB
62609    in China are stated. Some experiment results of the AMB achieved by the
62610    Research Institute of Bearings (RIB), Shanghai University are
62611    presented. Maybe this would push the technique to be widely accepted.
62612    by industry in China.
62613 C1 Shanghai Univ, Res Inst Bearings, Shanghai 200072, Peoples R China.
62614    Shanghai Univ Engn Sci, Coll Elect & Elect Eng, Shanghai, Peoples R China.
62615 RP Wang, XP, Shanghai Univ, Res Inst Bearings, Shanghai 200072, Peoples R
62616    China.
62617 CR BRUNET M, 1994, P 4 INT S MAGN BEAR, P519
62618    HARADA S, 1992, P 3 INT S MAGN BEAR, P421
62619    LIU YS, 2000, CHINESE J MECH ENG, V36, P5
62620    MEKHICHE M, 2000, P 7 INT S MAGN BEAR, P123
62621    SIEGWART R, 1990, P 2 INT S MAGN BEAR, P197
62622    WANG XP, 1994, THESIS XIAN JIAOTONG
62623    WANG XP, 2000, P 7 INT S MAGN BEAR, P39
62624 NR 7
62625 TC 0
62626 SN 1013-9826
62627 J9 KEY ENG MAT
62628 PY 2001
62629 VL 202-2
62630 BP 465
62631 EP 468
62632 PG 4
62633 GA BS53W
62634 UT ISI:000170264200091
62635 ER
62636 
62637 PT J
62638 AU Li, GH
62639    Zhou, SP
62640    Xu, DM
62641 TI Research on the dynamical behaviors of GaAs/AlGaAs heterostructures
62642 SO ACTA PHYSICA SINICA
62643 DT Article
62644 DE negative differential conductivity; heterostructure; bifurcation; chaos
62645 ID CURRENT-DENSITY FILAMENTS; DRIVEN GUNN-DIODES; SEMICONDUCTOR-DEVICE;
62646    QUASI-PERIODICITY; CHAOTIC MOTIONS; MODE-LOCKING; OSCILLATOR
62647 AB We develop the physical model based on the real space charge transfer
62648    mechanism and derive the dynamic equations of GaAs/AlGaAs
62649    heterostructures. Complex bifurcations are studied in detail for the
62650    forced and unforced cases. It is shown that both periodic attractors
62651    and fixed points attractors can coexist under a right de bias. The
62652    hysteresis phenomena are also investigated in theory. For the forced
62653    GaAs/AlGaAs, numerical simulation shows that the occurance of
62654    frequency-locking, quasiperiodicity, and chaos depends on the frequency
62655    and amplitude of the externally applied microwave field, as expected.
62656 C1 Shanghai Univ, Coll Commun & Informat Engn, Shanghai 200072, Peoples R China.
62657    Shanghai Univ, Coll Sci, Shanghai 201800, Peoples R China.
62658 RP Li, GH, Shanghai Univ, Coll Commun & Informat Engn, Shanghai 200072,
62659    Peoples R China.
62660 CR AOKI K, 1982, J PHYS SOC JPN, V51, P2373
62661    AOKI K, 1989, SOLID STATE ELECTRON, V32, P1149
62662    GLAZIER JA, 1988, IEEE T CIRCUITS SYST, V35, P790
62663    HEINZ G, 1993, PHYS REV B, V48, P12603
62664    HELD GA, 1986, PHYS REV LETT, V56, P1183
62665    JIANG ZF, 1991, APPL PHYS A-SOLID, V52, P10
62666    LU YL, 2000, ACTA PHYS SIN-CH ED, V49, P1394
62667    MOSEKILDE E, 1990, PHYS REV B, V41, P2298
62668    MOSEKILDE E, 1993, PHYSICA D, V66, P143
62669    NIEDERNOSTHEIDE FJ, 1996, PHYS REV B, V54, P14012
62670    NIEDERNOSTHEIDE FJ, 1999, PHYS REV B, V59, P7663
62671    SCHOLL E, 1991, APPL PHYS LETT, V58, P1277
62672 NR 12
62673 TC 0
62674 SN 1000-3290
62675 J9 ACTA PHYS SIN-CHINESE ED
62676 JI Acta Phys. Sin.
62677 PD AUG
62678 PY 2001
62679 VL 50
62680 IS 8
62681 BP 1567
62682 EP 1573
62683 PG 7
62684 SC Physics, Multidisciplinary
62685 GA 460XD
62686 UT ISI:000170333200031
62687 ER
62688 
62689 PT J
62690 AU Sheng, PX
62691 TI Chaotic phenomena of superconductivity
62692 SO ACTA PHYSICA SINICA
62693 DT Article
62694 DE superconductors; G-L equations; infinite-dimensional dynamic system;
62695    chaotic phenomena
62696 ID GINZBURG-LANDAU EQUATIONS
62697 AB One-dimensional steady state and evolutionary Ginzburg-Landau equations
62698    for superconductivity is disussed. Instability of constant steady state
62699    solutions and the existence of limit sets of infinite-dimensional
62700    dynamic system are proved. Using the author's definition of chaos for
62701    finite-and infinite-dimensional dynamic systems, we conclude that
62702    superconductors governed by GL equations possess chaotic phenomena.
62703    Therefore strange phenomena may occur in conducting. The theoretical
62704    results indicate that it is advisable to improve the design of
62705    experiments or try to find new structures of superconductors in future
62706    research to suppress the chaotic behavior.
62707 C1 Shanghai Univ, Coll Nat Sci, Dept Math, Shanghai 200436, Peoples R China.
62708 RP Sheng, PX, Shanghai Univ, Coll Nat Sci, Dept Math, Shanghai 200436,
62709    Peoples R China.
62710 CR AFTALION A, 1999, PHYSICA D, V132, P214
62711    AFTALION A, 2000, SIAM J APPL MATH, V60, P1157
62712    GINZBURG VL, 1950, ZH EKSP TEOR FIZ, V20, P1064
62713    GUO BL, 1995, NONLINEAR EVOLUTIONA
62714    HASTINGS SP, 1999, SIAM J MATH ANAL, V30, P1
62715    LIU YP, 2000, PHYSICS, V29, P444
62716    SHA CW, 2000, COMMUN HIGH TECHNOLO, V10, P91
62717    SHENG PX, 1994, COMMUN APPL COMPUT M, V8, P34
62718    SHENG PX, 1997, J SHANGHAI U, V1, P91
62719    SHENG PX, 1997, P MOD MATH MECH, V7, P408
62720    SHENG PX, 2000, J SHANGQIU TEACHERS, V16, P96
62721    SHENG PX, 2000, P MOD MATH MECH, V8, P115
62722    WEN HM, 2000, COMMUN HIGH TECHNOLO, V10, P105
62723    YU WH, 2000, ANN MATH, V21, P1
62724 NR 14
62725 TC 0
62726 SN 1000-3290
62727 J9 ACTA PHYS SIN-CHINESE ED
62728 JI Acta Phys. Sin.
62729 PD AUG
62730 PY 2001
62731 VL 50
62732 IS 8
62733 BP 1596
62734 EP 1599
62735 PG 4
62736 SC Physics, Multidisciplinary
62737 GA 460XD
62738 UT ISI:000170333200036
62739 ER
62740 
62741 PT J
62742 AU Liu, WQ
62743    Zhou, BX
62744    Li, Q
62745 TI Corrosion resistance of Zr-1Nb alloy in lithium hydroxide aqueous
62746    solution
62747 SO RARE METALS
62748 DT Article
62749 DE Zr-1Nb alloys; beta-niobium; corrosion resistance
62750 ID OXIDATION; ZR; NB
62751 AB The corrosion resistance of Zr-1Nb alloy was compared with that of
62752    Zr-Sn-Nb-Fe and Zr-4 alloys, and the effect of hydrochemistry on the
62753    corrosion resistance of Zr-1Nb alloy was discussed. Experimental
62754    results show that niobium oxide is partly soluble in LiOH aqueous
62755    solution. Therefore, when Zr-1Nb alloy is corroded in LiOH aqueous
62756    solution, a soluble niobate produced by the reaction between the
62757    corrosion products of beta -Nb particles and LiOH results in the
62758    formation of pores in the zirconium oxide films and causes the
62759    degradation of the corrosion resistance of Zr-1Nb alloy tested in LiOH
62760    aqueous solution.
62761 C1 Shanghai Univ, Mat Inst, Shanghai 200072, Peoples R China.
62762 RP Liu, WQ, Shanghai Univ, Mat Inst, Shanghai 200072, Peoples R China.
62763 CR ANADA H, 1996, ASTM STP, V1295, P35
62764    COMSTOCK RJ, 1996, ASTM STP, V1295, P710
62765    COX B, 1996, ASTM STP, V1295, P114
62766    LIN YP, 2000, J NUCL MATER, V277, P11
62767    LUO Y, 1998, INORGANIC CHEM SERIE, V8, P354
62768    NIKULINA AV, 1996, ASTM STP, V1295, P785
62769    PECHEUR D, 2000, J NUCL MATER, V278, P195
62770    PERKINS RA, 1991, ASTM STP, V1132, P595
62771    RAMASUBRAMANIAN N, 1994, AM SOC TEST MATER, V1245, P378
62772    SHEBALDOV PV, 2000, AM SOC TEST MATER, V1354, P545
62773 NR 10
62774 TC 0
62775 SN 1001-0521
62776 J9 RARE METALS
62777 JI Rare Metals
62778 PD JUN
62779 PY 2001
62780 VL 20
62781 IS 2
62782 BP 78
62783 EP 80
62784 PG 3
62785 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
62786    Engineering
62787 GA 458MJ
62788 UT ISI:000170197900003
62789 ER
62790 
62791 PT J
62792 AU Zhang, QY
62793    Wu, GM
62794    Zhou, B
62795    Shen, J
62796    Wang, J
62797    Wu, ZG
62798    Ji, XH
62799 TI Electrochromic properties of sol-gel deposited V2O5 and TiO2-V2O5
62800    binary thin films
62801 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
62802 DT Article
62803 ID VANADIUM-OXIDE
62804 AB Transparent mixed phase (1 - x)V2O5 -xTiO(2) (x=0,0.1,0.2,0.3,0.4) thin
62805    films were prepared on indium tin oxide (ITO) coated glass via sol-gel
62806    process. The films were characterized by cyclic voltammetry, optical
62807    spectroscopy, scanning electron microscopy, IR and X-ray
62808    diffractometer. Electrochemical lithium insertion/extraction showed
62809    that the porous structure of sol-gel (1 - x)V2O5-xTiO(2) thin films
62810    exhibited good recharge ability of Li+/e(-) insertion/extraction
62811    process. For a 220 nm thick (1 - x)V2O5-xTiO(2) film with 90% V2O5, the
62812    capacity of charge exchange reached 9 mC/cm(2). In both Li+
62813    intercalated and free states, the films were highly transparent to
62814    visible light. Such films have potential applications in counter
62815    electrodes for electrochromic smart windows and other electrochemical
62816    devices.
62817 C1 Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800, Peoples R China.
62818 RP Zhang, QY, Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800,
62819    Peoples R China.
62820 CR CHAIN EE, 1987, J VAC SCI TECHNOL A, V5, P1836
62821    COGAN SF, 1989, J APPL PHYS, V66, P1333
62822    GOLDNER RB, 1988, SOLID STATE IONICS, V28, P1715
62823    JULIEN C, 1999, MAT SCI ENG B-SOLID, V65, P170
62824    KOBAYASHI S, 1987, JPN J APPL PHYS, V26, L1274
62825    OREL ZC, 1999, SOLID STATE IONICS, V116, P105
62826    OZER N, 1999, THIN SOLID FILMS, V338, P201
62827    RAUH RD, 1988, SOLID STATE IONICS, V28, P1707
62828    SHIMIZU Y, 1990, JPN J APPL PHYS, V29, L1708
62829    SURCA A, 1999, J ELECTROCHEM SOC, V146, P232
62830    SZORENYI T, 1980, J NONCRYST SOLIDS, V35, P1245
62831    WRUCK D, 1989, THIN SOLID FILMS, V182, P79
62832 NR 12
62833 TC 1
62834 SN 1005-0302
62835 J9 J MATER SCI TECHNOL
62836 JI J. Mater. Sci. Technol.
62837 PD JUL
62838 PY 2001
62839 VL 17
62840 IS 4
62841 BP 417
62842 EP 420
62843 PG 4
62844 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
62845    Engineering
62846 GA 458JJ
62847 UT ISI:000170191000006
62848 ER
62849 
62850 PT J
62851 AU Wang, XG
62852    Ding, WZ
62853    Jiang, GC
62854    Xu, KD
62855 TI Experimental research on oxidation refining of ferrosilicon
62856 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
62857 DT Article
62858 DE FeSi75; oxidation refining; thermodynamics; equilibrium
62859 AB The equilibrium between ferrosilicon and SiO2-Al2O3-CaO ternary slag
62860    have been experimentally investigated using graphite crucible at 1 550
62861    degreesC. The Al and Ca contents in ferrosilicon were given in terms of
62862    isoconcentration curves in equilibrium with the ternary slag of
62863    SiO2-Al2O3-CaO. The present experimental work provides available data
62864    to analyze the behavior of Al and Ca during oxidation refining process
62865    for silicon alloy.
62866 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
62867 RP Wang, XG, Shanghai Univ, Shanghai 200072, Peoples R China.
62868 CR DING W, 1996, FERROALLOYS, P1
62869    HOLTA H, 1995, INFACON, V7, P164
62870    KAY DAR, 1960, T FARADAY SOC, V56, P1372
62871    OHTA H, 1996, METALL MATER TRANS B, V27, P943
62872    REIN RH, 1965, T METALL SOC AIME, V233, P415
62873    ROINE A, 1992, HSC CHEM
62874    SCHEI A, 1998, PRODUCTION HIGH SILI
62875    TUSET J, 1985, PRINCIPLES SILICON R
62876    ZHOU JH, 1991, PRODUCTION TECHNOLOG
62877 NR 9
62878 TC 3
62879 SN 1006-706X
62880 J9 J IRON STEEL RES INT
62881 JI J. Iron Steel Res. Int.
62882 PD MAY
62883 PY 2001
62884 VL 8
62885 IS 1
62886 BP 6
62887 EP 10
62888 PG 5
62889 SC Metallurgy & Metallurgical Engineering
62890 GA 459PK
62891 UT ISI:000170259700002
62892 ER
62893 
62894 PT J
62895 AU He, JH
62896 TI Hamilton principle and generalized variational principles of linear
62897    thermopiezoelectricity
62898 SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME
62899 DT Article
62900 AB Via the semi-inverse method. a family of various variational principles
62901    is established for thermopiezoelectricity, including a Hamilton
62902    principle and a minimum complementary energy principle.
62903 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
62904 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
62905    Peoples R China.
62906 CR CHANDRASEKHARAI.DS, 1988, ACTA MECH, V71, P39
62907    HE JH, 1999, J U SHANGHAI SCI TEC, V21, P356
62908    HE JH, 2000, ASME, V67, P326
62909    HE JH, 2000, INT J NONLINEAR SCI, V1, P133
62910    LIU GL, 1999, ACTA MECH SINICA, V31, P165
62911 NR 5
62912 TC 14
62913 SN 0021-8936
62914 J9 J APPL MECH
62915 JI J. Appl. Mech.-Trans. ASME
62916 PD JUL
62917 PY 2001
62918 VL 68
62919 IS 4
62920 BP 666
62921 EP 667
62922 PG 2
62923 SC Mechanics
62924 GA 459NV
62925 UT ISI:000170257900022
62926 ER
62927 
62928 PT J
62929 AU Liu, ZH
62930    Wang, L
62931    Pan, LZ
62932 TI Stability of beams on bi-moduli elastic foundation
62933 SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME
62934 DT Article
62935 AB This paper adopts the newly structured delta function and displacement
62936    function. Using two adjacent transition points as two interval
62937    terminals while beams buckle makes the interval [x(i-1),x(i)].
62938    According to the Winkler's beam buckling theory on elastic foundation,
62939    we present the energy solutions of beams and then the exact solutions
62940    of buckling load of simple supported beams on bi-moduli elastic
62941    foundation.
62942 C1 Shandong Univ, Dept Civil Engn, Jinan 250061, Peoples R China.
62943    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200000, Peoples R China.
62944 RP Liu, ZH, Shandong Univ, Dept Civil Engn, Jinan 250061, Peoples R China.
62945 CR ADIN MA, 1985, COMPUT METHOD APPL M, V49, P319
62946    SELVADURAI APS, 1979, ELASTIC ANAL SOIL FD
62947    TSAI N, 1967, J ENG MECH DIV P ASC, V93, P1
62948 NR 3
62949 TC 0
62950 SN 0021-8936
62951 J9 J APPL MECH
62952 JI J. Appl. Mech.-Trans. ASME
62953 PD JUL
62954 PY 2001
62955 VL 68
62956 IS 4
62957 BP 668
62958 EP 670
62959 PG 3
62960 SC Mechanics
62961 GA 459NV
62962 UT ISI:000170257900023
62963 ER
62964 
62965 PT J
62966 AU Wang, S
62967    Ren, Z
62968    Cao, W
62969    Tong, W
62970 TI The Knoevenagel condensation of aromatic aldehydes with malononitrile
62971    or ethyl cyanoacetate in the presence of CTMAB in water
62972 SO SYNTHETIC COMMUNICATIONS
62973 DT Article
62974 ID DIELS-ALDER REACTIONS; CHEMISTRY
62975 AB A new route of Knoevenagel condensation of aldehydes with malononitrile
62976    or ethyl cyanoacetate in the presence of CTMAB in water is described.
62977    CTMAB is the most effective catalyst to increase yield among CTMAB,
62978    BTEAC and TBAI.
62979 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
62980 RP Ren, Z, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
62981 CR ANDRE L, 1992, TETRAHEDRON LETT, V33, P8071
62982    BRANDES E, 1989, J ORG CHEM, V54, P515
62983    BRESLOW R, 1983, TETRAHEDRON LETT, V24, P1901
62984    CABELLO JA, 1984, J ORG CHEM, V49, P5195
62985    CORSON BB, 1928, J AM CHEM SOC 3, V50, P2825
62986    DAI GY, 1995, YING YONG HUA XUE, V12, P103
62987    GRIECO PA, 1983, J ORG CHEM, V48, P3137
62988    GRIECO PA, 1989, J ORG CHEM, V54, P5849
62989    HEINOSUKE Y, 1966, B CHEM SOC JPN, V39, P1754
62990    HIDEKI Y, 1999, TETRAHEDRON LETT, V40, P519
62991    KEI M, 1999, TETRAHEDRON LETT, V40, P3773
62992    LI CJ, 1993, CHEM REV, V93, P2023
62993    QI Z, 1991, YING YONG HUA XUE, V8, P17
62994    RIDEOUT DC, 1980, J AM CHEM SOC, V102, P7816
62995    STURZ HG, 1949, J AM CHEM SOC, V71, P2949
62996    TROST BM, 1991, COMPREHENSIVE ORGANI, V2, P341
62997 NR 16
62998 TC 13
62999 SN 0039-7911
63000 J9 SYN COMMUN
63001 JI Synth. Commun.
63002 PY 2001
63003 VL 31
63004 IS 5
63005 BP 673
63006 EP 677
63007 PG 5
63008 SC Chemistry, Organic
63009 GA 455TY
63010 UT ISI:000170044900006
63011 ER
63012 
63013 PT J
63014 AU Ni, GJ
63015    Yang, GH
63016    Fu, RT
63017    Wang, HB
63018 TI Running coupling constants of fermions with masses in quantum
63019    electrodynamics and quantum chromodynamics
63020 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
63021 DT Article
63022 ID DIFFERENTIAL RENORMALIZATION; FIELD-THEORIES; GAUGE-THEORY;
63023    HIGGS-BOSON; REGULARIZATION; BOUNDS
63024 AB Based on a simple but effective regularization-renormalisation method
63025    (RRM), the running coupling constants (RCC) of fermions with masses in
63026    quantum electrodynamics (QED) and quantum chromodynamics (QCD) are
63027    calculated by renormalization group equation (RGE). Starting at Q = 0
63028    (Q being the momentum transfer), the RCC in QED increases with the
63029    increase of Q whereas the RCCs for different flavors of quarks with
63030    masses in QCD are different and they increase with the decrease of Q to
63031    reach a maximum at low Q for each flavor of quark and then decreases to
63032    zero at Q --> O. Thus a constraint on the mass of light quarks, the
63033    hadronization energy scale of quark-antiquark pairs are derived.
63034 C1 Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
63035    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
63036    Univ Michigan, Randall Lab, Ann Arbor, MI 48109 USA.
63037 RP Ni, GJ, Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
63038 CR AITCHISON I, 1982, GAUGE THEORIES PARTI, P284
63039    BJORKEN JD, 1964, RELATIVISTIC QUANTUM
63040    BURKHARDT H, 1995, PHYS LETT B, V356, P398
63041    COLLINS J, 1984, RENORMALIZATION
63042    DUNNE G, 1992, PHYS LETT B, V293, P367
63043    DUTCH M, 1991, PHYS LETT B, V258, P457
63044    DVOEGLAZOV V, 1999, PHOTO OLD PROBLEMS L, P248
63045    EPSTEIN H, 1973, ANN I H POINCARE-AN, V19, P211
63046    FENG SS, 1999, INT J MOD PHYS A, V14, P4259
63047    FIELD RD, 1989, APPL PERTURBATIVE QC
63048    FREEDMAN DZ, 1992, NUCL PHYS B, V371, P353
63049    GAO DN, 1997, PHYS REV D, V56, P4115
63050    GIRONE M, 1996, PHYS REV LETT, V76, P3061
63051    GLIMM J, 1985, COLLECTED PAPERS, V2
63052    GROOM DE, 1996, PHYS REV D, V54, P37
63053    GROOM DE, 1996, PHYS REV D, V54, P44
63054    GROOM DE, 1996, PHYS REV D, V54, P547
63055    GROOM DE, 2000, EUR PHYS J C, V15, P40
63056    GROOM DE, 2000, EUR PHYS J C, V15, P49
63057    GROOM DE, 2000, EUR PHYS J C, V15, P672
63058    GROSS DJ, 1974, PHYS REV D, V10, P3235
63059    HAAGENSEN PE, 1992, PHYS LETT B, V283, P293
63060    ITZYKSON C, 1980, QUANTUM FIELD THEORY
63061    LEE TD, 1981, PARTICLE PHYSICS INT
63062    LOU SY, 1989, PHYS REV D, V40, P3040
63063    NI GJ, HEPTH9708155
63064    NI GJ, 1988, PHYS LETT B, V200, P161
63065    NI GJ, 1998, ACTA PHYS SIN-OV ED, V7, P401
63066    NI GJ, 1998, FRONTIERS QUANTUM FI, P169
63067    NI GJ, 1998, J FUDAN U NATURAL SC, V37, P304
63068    NI GJ, 1998, PHYSICS PARITY SYMME, P436
63069    NI GJ, 1998, SEICNE, V50, P36
63070    NI GJ, 2000, ADV QUANTUM MECH, V24, P400
63071    PESKIN ME, 1995, INTRO QUANTUM FIELD
63072    RAMOND P, 1981, FIELD THEORY MODERN
63073    SAKURAI JJ, 1967, ADV QUANTUM MECH
63074    SCHARF G, 1989, FINITE ELECTRODYNAMI
63075    SCHMELLING M, HEPEX9701002
63076    SMIRNOV VA, 1994, NUCL PHYS B, V427, P325
63077    WEINBERG S, 1955, QUANTUM THEORY FIELD, V1
63078    WEINBERG S, 1955, QUANTUM THEORY FIELD, V2
63079    YANG JF, 1994, THESIS FUDAN U
63080    YANG JF, 1995, ACTA PHYS SIN-OV ED, V4, P88
63081    YANG JF, 1997, HEPTH9708104
63082 NR 44
63083 TC 0
63084 SN 0217-751X
63085 J9 INT J MOD PHYS A
63086 JI Int. J. Mod. Phys. A
63087 PD JUN 30
63088 PY 2001
63089 VL 16
63090 IS 16
63091 BP 2873
63092 EP 2894
63093 PG 22
63094 SC Physics, Nuclear; Physics, Particles & Fields
63095 GA 455YL
63096 UT ISI:000170055300007
63097 ER
63098 
63099 PT J
63100 AU Ma, HL
63101    Li, MS
63102    Yang, FJ
63103 TI Changes of the nuclear charge distribution of Nd from optical isotope
63104    shifts
63105 SO CHINESE PHYSICS LETTERS
63106 DT Article
63107 ID HYPERFINE-STRUCTURE MEASUREMENTS; RADII; SPECTROSCOPY
63108 AB The isotope shifts and hyperfine structures of seven optical
63109    transitions for all seven stable isotopes of Nd II were measured by
63110    using collinear fast-ion-beam laser spectroscopy. The nuclear parameter
63111    lambda was obtained from the measured optical isotope shifts for all
63112    seven stable isotopes with improved accuracy. The lambda values were
63113    analysed by using the Fermi distribution for the nuclear charge
63114    density. The values of delta <r(2)>, delta <r(4)> and delta <r(6)> were
63115    determined.
63116 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
63117    Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China.
63118    Fudan Univ, Inst Modern Phys, Shanghai 200433, Peoples R China.
63119 RP Ma, HL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
63120 CR AHMAD SA, 1988, NUCL PHYS A, V483, P244
63121    AUFMUTH P, 1987, ATOM DATA NUCL DATA, V37, P455
63122    AUFMUTH P, 1992, Z PHYS D ATOM MOL CL, V23, P19
63123    BLUNDELL SA, 1985, Z PHYS A ATOMS NUCL, V321, P31
63124    CHEN MH, 1999, J PHYS SOC JPN, V68, P2934
63125    GERSTENKON S, 1978, ATLAS SPECTRA ABSORP
63126    HELIG K, 1974, ATOM DATA NUCL DATA, V14, P613
63127    KING WH, 1984, ISOTOPE SHIFTS ATOMI, CH6
63128    KOPFERMANN H, 1958, NUCL MOMENTS PURE AP
63129    LEE PL, 1973, PHYS REV C, V8, P819
63130    LI MS, 2000, PHYS SCRIPTA, V61, P449
63131    MA HL, 1998, CHINESE PHYS LETT, V15, P178
63132    RAMAN S, 1987, ATOM DATA NUCL DATA, V36, P1
63133    SELTZER EC, 1969, PHYS REV, V188, P1916
63134 NR 14
63135 TC 2
63136 SN 0256-307X
63137 J9 CHIN PHYS LETT
63138 JI Chin. Phys. Lett.
63139 PD JUL
63140 PY 2001
63141 VL 18
63142 IS 7
63143 BP 903
63144 EP 905
63145 PG 3
63146 SC Physics, Multidisciplinary
63147 GA 455YW
63148 UT ISI:000170056200019
63149 ER
63150 
63151 PT J
63152 AU Wei, EB
63153    Gu, GQ
63154 TI An effective medium approximation of nonlinear composites with
63155    spherical particle
63156 SO CHINESE PHYSICS LETTERS
63157 DT Article
63158 ID EFFECTIVE CONDUCTIVITY; FIELD
63159 AB We have proposed a nonlinear effective medium approximation (EMA)
63160    method to estimate the bulk effective conductivities of weakly
63161    nonlinear composite media, which obey a current-field relation of the
63162    form J = sigmaE + x \E\(2) E. As an example in three dimensions, we
63163    apply the EMA method to deal with a spherical inclusion in a host and
63164    derive the approximate analytic formulae of nonlinear effective
63165    response, which are suitable for the larger volume fraction of
63166    spherical inclusion. From our results, we can exactly obtain the
63167    generalized Landau formulae in the dilute limit.
63168 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
63169 RP Wei, EB, Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093,
63170    Peoples R China.
63171 CR BLUMENFELD R, 1991, PHYS REV B, V44, P7378
63172    BRUGGEMAN DAG, 1935, ANN PHYS-BERLIN, V24, P636
63173    DANIEL J, 1998, MAT RES SOC B    AUG, P30
63174    GARNETT JCM, 1906, PHILOS T R SOC LOND, V205, P237
63175    GU GQ, 1992, PHYS REV B, V46, P4502
63176    GU GQ, 1995, J APPL PHYS, V78, P1737
63177    GU GQ, 2000, J U SHANGHAI SCI TEC, V22, P95
63178    LEE HC, 1995, J PHYS-CONDENS MAT, V7, P8785
63179    STROUD D, 1988, PHYS REV B, V37, P8719
63180    YU KW, 1993, PHYS REV B, V47, P1782
63181    YU KW, 1996, PHYS LETT A, V210, P115
63182    ZENG XC, 1988, PHYS REV B, V38, P10970
63183    ZENG XC, 1989, PHYSICA A, V157, P192
63184 NR 13
63185 TC 3
63186 SN 0256-307X
63187 J9 CHIN PHYS LETT
63188 JI Chin. Phys. Lett.
63189 PD JUL
63190 PY 2001
63191 VL 18
63192 IS 7
63193 BP 960
63194 EP 962
63195 PG 3
63196 SC Physics, Multidisciplinary
63197 GA 455YW
63198 UT ISI:000170056200039
63199 ER
63200 
63201 PT J
63202 AU You, JL
63203    Jiang, GC
63204    Yang, SH
63205    Ma, JC
63206    Xu, KD
63207 TI Temperature dependence of the Raman spectra and phase transition of
63208    zirconia
63209 SO CHINESE PHYSICS LETTERS
63210 DT Article
63211 AB A newly constructed high-temperature Raman spectrometer was used to
63212    study the temperature-dependence Raman spectra (up to 2023 K) and
63213    transformation of zirconia crystal. High-temperature Raman scattering
63214    is a useful tool in characterizing the different structures of zirconia
63215    and offers the possibility of identifying the phase transformation. It
63216    shows that monoclinic zirconia transforms to tetragonal phase at about
63217    1440 K during the process of increasing temperature, but shows a lower
63218    transformation temperature from tetragonal to monoclinic phase at about
63219    1323 K while the temperature decreases.
63220 C1 Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai 200072, Peoples R China.
63221 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai
63222    200072, Peoples R China.
63223 CR CLARKE DR, 1982, J AM CERAM SOC, V65, P284
63224    GARVIE RC, 1988, PHYSICA B, V150, P203
63225    GU JQ, 1995, SPECTROSCOPY SPECTRA, V15, P45
63226    ISHIGAME M, 1977, J AM CERAM SOC, V60, P367
63227    KOUROUKLIS GA, 1991, J AM CERAM SOC, V74, P520
63228    KULCINSKI GL, 1968, J AM CERAM SOC, V51, P582
63229    MYSEN BO, 1982, AM MINERAL, V67, P686
63230    PERRY CH, 1985, J AM CERAM SOC, V68, P184
63231    TEUFER G, 1962, ACTA CRYSTALLOGR, V15, P1187
63232    YASHIMA M, 1997, APPL SPECTROSC, V51, P1224
63233    YOU JL, 1998, J CHINESE RARE EARTH, V16, P505
63234    YOU JL, 2001, CHINESE PHYS LETT, V18, P408
63235 NR 12
63236 TC 7
63237 SN 0256-307X
63238 J9 CHIN PHYS LETT
63239 JI Chin. Phys. Lett.
63240 PD JUL
63241 PY 2001
63242 VL 18
63243 IS 7
63244 BP 991
63245 EP 993
63246 PG 3
63247 SC Physics, Multidisciplinary
63248 GA 455YW
63249 UT ISI:000170056200049
63250 ER
63251 
63252 PT J
63253 AU Cao, WG
63254    Ding, WY
63255    Wang, LY
63256    Song, LP
63257    Zhang, QY
63258 TI Convenient synthesis of 4-perfluoroalkyl-6-(2-naphthyl)-2-pyranones
63259 SO JOURNAL OF FLUORINE CHEMISTRY
63260 DT Article
63261 DE phosphoranes; fluorinated ylides;
63262    4-perfluoroalkyl-6-(2-naphthoyl)-6-pyranones
63263 ID METHYL
63264 AB In the presence of K2CO3, reaction of
63265    (2-naphthoyl)methyltriphenylphosphonium bromide (1) with methyl
63266    2-perfluoroalkynoates (2) in CH2Cl2 at room temperature gave methyl
63267    4-(2-
63268    naphthoyl)-2-triphenylphosphoranylidene-3-perfluoroalkyl-3-butenoates
63269    (3) as major products and methyl
63270    4-(2-naphthoyl)-4-triphenylphosphoranylidene-3-perfluoroalkyl-2-butenoat
63271    es r4) as minor products in excellent yields.
63272    4-Perfluoroalkyl-6-(2-naphthyl)-2-pyranones (5) were obtained in high
63273    yield by hydrolysis of the methylene phosphoranes (3) in hot aqueous
63274    methanol in a sealed tube. The structures of compounds 3, 4, and 5 were
63275    confirmed by IR, MS, H-1, F-19 and C-13 NMR, and microanalyses.
63276    Reaction mechanisms are proposed to account for the formation of
63277    products 3, 4, and 5. (C) 2001 Elsevier Science B.V. All rights
63278    reserved.
63279 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
63280 RP Cao, WG, Shanghai Univ, Dept Chem, 99 Shang Da Rd, Shanghai 200436,
63281    Peoples R China.
63282 CR BANKS RE, 1979, ORGANOFLUORINE CHEM
63283    CAO WG, 1998, J FLUORINE CHEM, V91, P99
63284    CAO WG, 1999, ACTA CHIM SINICA, V57, P1270
63285    CAO WG, 1999, J FLUORINE CHEM, V95, P135
63286    DING WY, 1986, ACTA CHIM SINICA, V44, P255
63287    HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47
63288    MANN J, 1987, CHEM SOC REV, V16, P381
63289    TAO WT, 1983, CHINESE J ORG CHEM, V3, P129
63290    WELCH JT, 1987, TETRAHEDRON, V43, P3123
63291 NR 9
63292 TC 2
63293 SN 0022-1139
63294 J9 J FLUORINE CHEM
63295 JI J. Fluor. Chem.
63296 PD JUL
63297 PY 2001
63298 VL 109
63299 IS 2
63300 BP 201
63301 EP 204
63302 PG 4
63303 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
63304 GA 454CD
63305 UT ISI:000169954100015
63306 ER
63307 
63308 PT J
63309 AU Wei, JH
63310    Xiang, SH
63311    Fan, YY
63312    Yu, NW
63313    Ma, JC
63314    Yang, SL
63315 TI Basic equations and calculation procedure for analysis of gas flow
63316    properties in tuyere under the influence of heat source
63317 SO STEEL RESEARCH
63318 DT Article
63319 ID DESIGN; LANCES
63320 AB Based on fundamentals of the dynamics and thermodynamics of
63321    compressible fluid flow as well as heat transfer, the basic equations
63322    and formulae for characterizing and calculating the gas flow properties
63323    in tubular and annular type tuyeres (constant cross-sectional area
63324    lances) under the influence of a heat source are derived. The
63325    calculation procedures of the properties at different discharge states
63326    through a tuyere are given. For the case of an annular-tube type tuyere
63327    used for an AOD (argon-oxygen decarburization) vessel of 18 t capacity,
63328    the distributions of the inner wall temperatures of the tuyere and the
63329    gas stagnation temperatures along its length have been more reasonably
63330    determined. The friction coefficients of its main tuyere and subtuyere
63331    to the gas flows during injection refining have been fixed by
63332    comparison of the pressure-flowrate (P-Q) experimentally measured in
63333    relationship to the results of trial calculations.
63334 C1 Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
63335 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
63336 CR BENNETT O, 1974, MOMENTUM HEAT MASS T
63337    BIRD RB, 1960, TRANSPORT PHENOMENA
63338    CARLSSON G, 1986, SCAND J METALL, V15, P298
63339    DEISSLER RG, 1950, 2138 NACA
63340    FARMER D, 1989, STEELM C P ISS US, V72, P487
63341    GEIGER GH, 1973, TRANSPORT PHENOMENA
63342    HODGE AL, 1977, IRONMAK STEELMAK, V4, P81
63343    ISHIDA J, 1978, P 3 INT IR STEEL C C, P150
63344    KAYE J, 1951, GEN DISC HEAT TRANSM
63345    KORIA SC, 1989, IRONMAK STEELMAK, V16, P21
63346    KORIA SC, 1989, ISIJ INT, V29, P650
63347    LEACH JCC, 1978, IRONMAK STEELMAK, V5, P107
63348    MOODY LF, 1944, T AM SOC MECH ENG, V66, P671
63349    SHAPIRO AH, 1953, DYNAMICS THERMODYNAM, V1, P219
63350    SHAPIRO AH, 1953, DYNAMICS THERMODYNAM, V2, P1131
63351    SHARMA SK, 1986, STEELM C P ISS US, V69, P653
63352    YUN L, 1990, P 4 NAT S STEELM CS, P83
63353 NR 17
63354 TC 4
63355 SN 0177-4832
63356 J9 STEEL RES
63357 JI Steel Res.
63358 PD MAY-JUN
63359 PY 2001
63360 VL 72
63361 IS 5-6
63362 BP 161
63363 EP 167
63364 PG 7
63365 SC Metallurgy & Metallurgical Engineering
63366 GA 450VV
63367 UT ISI:000169766300001
63368 ER
63369 
63370 PT J
63371 AU Wei, JH
63372    Xiang, SH
63373    Fan, YY
63374    Yu, NW
63375    Ma, JC
63376    Yang, SL
63377 TI Calculation results and analysis of gas flow properties in tuyere under
63378    the influence of heat source
63379 SO STEEL RESEARCH
63380 DT Article
63381 AB The flow properties of the gases in an annular-tube type tuyere used
63382    for an 18 t AOD vessel were analyzed using the equations and
63383    calculation formulas presented in Part I of this work. The influence of
63384    the heating and friction effects, the gas supply pressure, and the gas
63385    type and composition, on the properties were examined. The results
63386    showed that the properties in a tuyere are significantly changed due to
63387    the presence of a heat source. This has a similar effectiveness as
63388    increasing the friction action and obviously reduces the gas flowrate
63389    at the tuyere outlet. When designing a tuyere used in a practical
63390    process of metallurgy and calculating the flow properties of gas in the
63391    tuyere, the heating effect from the high temperature melt and
63392    refractory lining should be taken into account. The gas supply pressure
63393    has a decisive effect on the properties. The type and composition of
63394    the blowing gas will also influence the properties. For a given tuyere
63395    and blowing system, appropriate blowing pressures for different gases,
63396    particularly for subtuyere gases, should be used according to the
63397    technological requirements of the different refining periods.
63398 C1 Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
63399 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai, Peoples R China.
63400 CR WEI JH, 1999, IRONMAK STEELMAK, V26, P363
63401    WEI JH, 2000, IRONMAK STEELMAK, V27, P294
63402    WEI JH, 2001, STEEL RES, V72, P161
63403 NR 3
63404 TC 3
63405 SN 0177-4832
63406 J9 STEEL RES
63407 JI Steel Res.
63408 PD MAY-JUN
63409 PY 2001
63410 VL 72
63411 IS 5-6
63412 BP 168
63413 EP 172
63414 PG 5
63415 SC Metallurgy & Metallurgical Engineering
63416 GA 450VV
63417 UT ISI:000169766300002
63418 ER
63419 
63420 PT J
63421 AU Yu, XL
63422    You, JL
63423    Wang, Y
63424    Cheng, ZX
63425    Yu, BK
63426    Zhang, SJ
63427    Sun, DL
63428    Jiang, GC
63429 TI Microprobe of structure of crystal/liquid interface boundary layers
63430 SO SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES
63431 DT Article
63432 DE boundary layer; molecular structure; microprobe; KDP; DKDP
63433 ID AQUEOUS-SOLUTIONS; GROWTH
63434 AB The molecular structures and its evolutive regularities within the
63435    boundary layers in the crystal growth of KDP and DKDP have been studied
63436    in real time by using holography and Raman microprobe. The experiments
63437    show that the molecular structure of mother solution within the
63438    boundary layers is distinctly different from that of the solutions
63439    alone. In this paper, the effects of cations within the boundary layers
63440    on the structure of solution are considered. Within the characteristic
63441    boundary layers, the effects of cations cause the changes in O-P-O bond
63442    angle, electronic density redistribution of the phosphate groups, and
63443    significant changes in the bond intensity, thus leading to the breaking
63444    of partial hydrogen bonds of the phosphate associations, the
63445    readjustment of geometry of anionic phosphate groups and desolvation,
63446    and the forming of the smectic ordering structure of the
63447    anions-cations. Finally, the crystallization unit of anion-cation
63448    should be formed at the proximate interface.
63449 C1 Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China.
63450    Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
63451 RP Yu, XL, Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples
63452    R China.
63453 CR ADAMS WA, 1979, J CHEM PHYS, V70, P2074
63454    CERRETA MK, 1987, J CRYST GROWTH, V84, P577
63455    CHAPMAN AC, 1964, SPECTROCHIM ACTA, V20, P937
63456    CHAPMAN AC, 1965, SPECTROCHIM ACTA, V21, P633
63457    CHERNOV AA, 1993, PROG CRYST GROWTH CH, V26, P121
63458    DEVRIES SA, 1998, PHYS REV LETT, V80, P2229
63459    LIEBMANN P, 1982, J AM CHEM SOC, V104, P691
63460    PRESTON CM, 1979, J PHYS CHEM-US, V83, P814
63461    YU XL, 1990, J CRYST GROWTH, V106, P690
63462    YU XL, 1994, CRYST RES TECHNOL, V29, P229
63463    YU XL, 2000, 98110030, ZL
63464 NR 11
63465 TC 4
63466 SN 1006-9321
63467 J9 SCI CHINA SER E
63468 JI Sci. China Ser. E-Technol. Sci.
63469 PD JUN
63470 PY 2001
63471 VL 44
63472 IS 3
63473 BP 265
63474 EP 273
63475 PG 9
63476 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary
63477 GA 450RJ
63478 UT ISI:000169756600006
63479 ER
63480 
63481 PT J
63482 AU Li, CP
63483    Chen, GR
63484 TI Bifurcations of one-dimensional reaction-diffusion equations
63485 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
63486 DT Article
63487 AB Bifurcations of a class of one-dimensional reaction-diffusion equations
63488    of the form u " + muu - u(k) = 0, where mu is a parameter, 2 less than
63489    or equal to k is an element of Z(+), with boundary value condition u(0)
63490    = u(pi) = 0, are investigated. Using the singularity theory based on
63491    the Liapunov-Schmidt reduction, some characterization results are
63492    obtained.
63493 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
63494    Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA.
63495 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
63496 CR BEBERNES J, 1989, MATH PROBLEMS COMBUS
63497    CHOW SN, 1982, METHODS BIFURCATION
63498    FIFE PC, 1979, LECT NOTES BIOMATHEM, V28
63499    GOLUBITSKY M, 1985, SINGULARITIES GROUPS, V1
63500    IPSEN M, 1997, INT J BIFURCAT CHAOS, V7, P1539
63501    LI CP, 2000, APPL MATH MECH-ENGL, V21, P265
63502    ZHABOTINSKY AM, 1991, CHAOS, V1, P379
63503 NR 7
63504 TC 1
63505 SN 0218-1274
63506 J9 INT J BIFURCATION CHAOS
63507 JI Int. J. Bifurcation Chaos
63508 PD MAY
63509 PY 2001
63510 VL 11
63511 IS 5
63512 BP 1295
63513 EP 1306
63514 PG 12
63515 SC Mathematics, Applied; Multidisciplinary Sciences
63516 GA 452HY
63517 UT ISI:000169853300005
63518 ER
63519 
63520 PT J
63521 AU Xia, SJ
63522    Xu, CX
63523    Tang, XD
63524    Wang, WZ
63525    Du, DL
63526 TI Apoptosis and hormonal milieu in ductal system of normal prostate and
63527    benign prostatic hyperplasia
63528 SO ASIAN JOURNAL OF ANDROLOGY
63529 DT Article
63530 DE prostate; ductal system; hormonal milieu; androgen; estrogen; apoptosis
63531 ID CELL-DEATH; ANDROGEN; EPITHELIUM; ESTROGEN; STROMA
63532 AB Aim: To study the apoptotic rate (AR) and the androgen and estrogen
63533    milieu in the proximal and distal ductal systems of prostate, in order
63534    to help exploring the effects of these factors on prostatic growth and
63535    the pathogenesis of benign prostatic hypertrophy (BPH). Methods: The
63536    proximal and distal ends of the ductal system were incised from 20
63537    normal prostate as well as the hypertrophic prostate tissue from 20
63538    patients with BPH. The AR was determined by the DNA end-labeling method
63539    and dihydrotestosterone (DHT) and estrodiol (E-2), by radioimmunoassay.
63540    Results: There was no significant difference in DHT and E-2 density
63541    between the proximal and distal ends of the ductal systems in normal
63542    prostate. E-2 appeared to be higher in BPH than in normal prostatic
63543    tissues, but the difference was statistically insignificant. In normal
63544    prostatic tissue, the AR was significantly higher in the distal than in
63545    the proximal ends of the ductal system (P < 0.05), while the AR of the
63546    proximal ends was significantly higher (P < 0.01) than that in the BPH
63547    tissue. No significant correlation was noted between the DHT and E-2
63548    density and the AR both in the normal prostate and BPH tissues.
63549    Conclusion: The paper is the first time describing a difference in AR
63550    in different regions of the ductal system of normal prostate, while the
63551    hormonal milieu is similar, indicating a functional inhomogeneity of
63552    these regions. A low AR in the proximal duct, where BPH originates, and
63553    an even lower AR in the BPH tissue, sug gesting the participation of
63554    apoptosis in the BPH pathogenesis.
63555 C1 Shanghai Univ, Peoples Hosp 1, Dept Urol, Shanghai 200080, Peoples R China.
63556    Shandong Provincial Hosp, Dept Urol, Jinan 250021, Peoples R China.
63557    Shandong Provincial Hosp, Dept Pathol, Jinan 250021, Peoples R China.
63558 RP Xia, SJ, Shanghai Univ, Peoples Hosp 1, Dept Urol, 85 Wu Jin Rd,
63559    Shanghai 200080, Peoples R China.
63560 CR COLLINS AT, 1994, J ENDOCRINOL, V143, P269
63561    FARNSWORTH WE, 1996, PROSTATE, V28, P17
63562    GAVRIELI Y, 1992, J CELL BIOL, V119, P493
63563    ISAACS JT, 1984, PROSTATE, V5, P545
63564    ISAACS JT, 1994, SEMIN CANCER BIOL, V5, P391
63565    JUNIEWICZ PE, 1994, J UROLOGY, V152, P996
63566    KRIEG M, 1983, J STEROID BIOCHEM, V19, P155
63567    KRIEG M, 1993, J CLIN ENDOCR METAB, V77, P375
63568    KYPRIANOU N, 1996, HUM PATHOL, V27, P668
63569    LEE C, 1981, J ANDROL, V2, P293
63570    LEE C, 1990, BIOL REPROD, V43, P1079
63571    LEE C, 1997, PROSTATE, V31, P131
63572    MCNEAL JE, 1975, DHEW PUBLICATION, P1
63573    MCNEAL JE, 1988, AM J SURG PATHOL, V12, P619
63574    MCNEIL JE, 1983, MONOGR UROL, V4, P3
63575 NR 15
63576 TC 3
63577 SN 1008-682X
63578 J9 ASIAN J ANDROL
63579 JI Asian J. Androl.
63580 PD JUN
63581 PY 2001
63582 VL 3
63583 IS 2
63584 BP 131
63585 EP 134
63586 PG 4
63587 SC Andrology; Respiratory System; Urology & Nephrology
63588 GA 451KK
63589 UT ISI:000169801100009
63590 ER
63591 
63592 PT J
63593 AU Dai, SQ
63594 TI Poincare-Lighthill-Kuo method and symbolic computation
63595 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
63596 DT Article
63597 DE PLK method; perturbation methods; symbolic computation; intermediate
63598    expression swell; semi-inverse algorithm
63599 AB This paper elucidates the effectiveness of combining the
63600    Poincare-Lighthill-Kuo method (PLK method, for short) and symbolic
63601    computation. Firstly, the idea and history of the PLK method are
63602    briefly introduced. Then, the difficulty of intermediate expression
63603    swell, often encountered in symbolic computation, is outlined. For
63604    overcoming the difficulty, a semi-inverse algorithm was proposed by the
63605    author, with which the lengthy ports of intermediate expressions are
63606    first frozen in the form of symbols till the Fnal stage of seeking
63607    perturbation solutions. Tn discuss the applications of the above
63608    algorithm, the related work of the author and his research group on
63609    nonlinear oscillations and waves is concisely reviewed. The
63610    computer-extended perturbation solution of the Duffing equation shows
63611    that the asymptotic solution obtained with the PLK method possesses the
63612    convergence radius of 1 and thus the range of validity of the solution
63613    is considerably enlarged. The studies on internal solitary waves in
63614    stratified fluid and on the head-on collision between two solitary
63615    waves in a hyperelastic rod indicate that by means of the presented
63616    methods, very complicated manipulation, unconceivable in hand
63617    calculation, can be conducted and thus result in higher-order evolution
63618    equations and asymptotic solutions. The examples illustrate that the
63619    algorithm helps to realize the symbolic computation on
63620    micro-commputers. Finally, it is concluded that,vith the aid of
63621    symbolic computation, the vitality of the PLK method is greatly.
63622    Strengthened and at least for the solutions to conservative systems of
63623    oscillations and waves, it is a powerful tool.
63624 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
63625 RP Dai, SQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
63626    200072, Peoples R China.
63627 CR BELTZER AIB, 1990, APPL MECH REV, V403, P119
63628    CALMET J, 1988, COMPUTER ALGEBRA SYM
63629    CHENG YL, 1997, J SHANGHAI U, V1, P130
63630    CHENG YL, 1998, P 3 INT C HYDR
63631    CHENG YL, 1998, THESIS SHANGHAI U
63632    DAI HH, 2000, WAVE MOTION, V32, P93
63633    DAI SQ, 1981, SINGULAR PETURBATION, P33
63634    DAI SQ, 1982, ADV MECH, V12, P2
63635    DAI SQ, 1982, APPL MATH MECHANICS, V3, P777
63636    DAI SQ, 1983, ACTA MECH SINICA, V15, P623
63637    DAI SQ, 1984, APPL MATH MECH, V5, P1469
63638    DAI SQ, 1984, SIENTIA SINICA, V27, P507
63639    DAI SQ, 1987, KEXUE TONGBAO, V32, P589
63640    DAI SQ, 1990, ACTA MECH SINICA, V6, P111
63641    DAI SQ, 1991, APPL MATH MECH, V12, P255
63642    DAI SQ, 1991, SCI SINICA A, V34, P843
63643    DAI SQ, 1992, J HYDRODYN A, V7, P1
63644    DAI SQ, 1992, NONLINEAR PROBLEMS E
63645    DAI SQ, 1995, J NATURE, V17, P177
63646    DAI SQ, 1995, MODERN MATH MECH
63647    DAI SQ, 1997, APPL MATH MECH-ENGL, V18, P113
63648    HECK A, 1993, INTRO MAPLE
63649    KUO YH, 1953, J MATH PHYS, V32, P83
63650    KUO YH, 1956, J AERONAUT SCI, V23, P125
63651    LIGHTHILL MJ, 1949, PHIL MAG           7, V40, P1179
63652    LIU YL, 1987, APPL MATH MECH, V8, P497
63653    POINCARE H, 1967, TTF450 NASA
63654    RAND HR, 1987, ARMBRUSTER D PERTURB
63655    TANG L, 1993, APPL MATH MECH, P400
63656    TIAN M, 1995, MODERN MATH MECH
63657    TSIEN HS, 1956, ADV APPL MECH, V4, P281
63658    WANG MQ, 1994, J SHANGHAI U TECHNOL, V15, P384
63659    WANG MQ, 1995, APPL MATH MECH, V16, P429
63660    ZANG HM, 1993, J SHANGHAI U TECHNOL, V14, P189
63661    ZANG HM, 1993, THESIS SHANGHAI U TE
63662    ZANG HM, 1994, P 1 INT C HYDR BEIJ
63663    ZHANG SG, 1986, J COMM APPL MATH COM, V1, P61
63664    ZHANG SG, 1986, J SHANGHAI U TECHNOL, V7, P375
63665    ZHU Y, 1989, APPL MATH MECH, V10, P213
63666    ZHU Y, 1991, ACTA MECH SINICA, V7, P300
63667    ZHU Y, 1992, APPL MATH MECH, V13, P407
63668 NR 41
63669 TC 0
63670 SN 0253-4827
63671 J9 APPL MATH MECH-ENGL ED
63672 JI Appl. Math. Mech.-Engl. Ed.
63673 PD MAR
63674 PY 2001
63675 VL 22
63676 IS 3
63677 BP 261
63678 EP 269
63679 PG 9
63680 SC Mathematics, Applied; Mechanics
63681 GA 450BW
63682 UT ISI:000169722500001
63683 ER
63684 
63685 PT J
63686 AU Jiang, FR
63687 TI On the asymptotic solutions of boundary value problems for a class of
63688    systems of nonlinear differential equations (I)
63689 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
63690 DT Article
63691 DE system of nonlinear differential equations; boundary value problems;
63692    asymptotic solution
63693 AB A new method is applied to study the asymptotic behavior of solutions
63694    of boundary value problems for a class of systems of nonlinear
63695    differential equations
63696    u" = nu, epsilon nu" + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon
63697    much less than 1).
63698    The asymptotic expansions of solutions are constructed, the remainders
63699    are estimated. The former works are improved and generalized.
63700 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
63701 RP Jiang, FR, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
63702    200072, Peoples R China.
63703 CR DORR FW, 1970, J MATH ANAL APPL, V29, P273
63704    DORR FW, 1973, SIAM REV, V15, P43
63705    HARRIS WA, 1991, J DIFFER EQUATIONS, V92, P125
63706    HOWES FA, 1989, NONLINEAR ANAL, V13, P1013
63707    JIANG FR, 1981, APPL MATH MECH, V2, P505
63708    JIANG FR, 1987, SCI SINICA, V30, P588
63709 NR 6
63710 TC 1
63711 SN 0253-4827
63712 J9 APPL MATH MECH-ENGL ED
63713 JI Appl. Math. Mech.-Engl. Ed.
63714 PD MAR
63715 PY 2001
63716 VL 22
63717 IS 3
63718 BP 282
63719 EP 293
63720 PG 12
63721 SC Mathematics, Applied; Mechanics
63722 GA 450BW
63723 UT ISI:000169722500003
63724 ER
63725 
63726 PT J
63727 AU Li, GG
63728    Zhu, ZY
63729    Cheng, CJ
63730 TI Dynamical stability of viscoelastic column with fractional derivative
63731    constitutive relation
63732 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
63733 DT Article
63734 DE viscoelastic column; fractional derivative constitutive relation;
63735    averaging method; weakly singular Volterra integro-differential
63736    equation; dynamical stability
63737 ID CALCULUS
63738 AB The dynamic stability of simple supported viscoelastic column,
63739    subjected to a periodic axial force, is investigated. The viscoelastic
63740    material was assumed to obey the fractional derivative constitutive
63741    relation. The governing equation of motion was derived as a weakly
63742    singular Volterra integro-partial-differential equation, and it was
63743    simplified into weakly singular Volterra integro-ordinary-differential
63744    equation by the Galerkin method. In terms of the averaging method, the
63745    dynamical stability was analyzed. A new numerical method is proposed to
63746    avoid storing all history data. Numerical examples are presented and
63747    the numerical results agree with the analytical ones.
63748 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
63749    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
63750    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
63751 RP Li, GG, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
63752    Peoples R China.
63753 CR BAGLEY RL, 1983, AIAA J, V21, P741
63754    BAGLEY RL, 1983, J RHEOL, V27, P201
63755    CEDERBAUM G, 1992, J APPL MECH-T ASME, V59, P16
63756    CHENG CJ, 1998, ACTA MECH SINICA, V30, P690
63757    DROZDOV AD, 1997, ACTA MECH, V124, P155
63758    ENELUND M, 1999, INT J SOLID STRUT, V36, P1417
63759    HUANG WH, 1997, ADV MECH, V27, P5
63760    LIU YZ, 1998, MECH VIBRATIONS
63761    ROSSIKHIN YA, 1997, APPL MECH REV, V50, P15
63762    SAMKO SG, 1993, FRACTIONAL INTEGRALS
63763 NR 10
63764 TC 4
63765 SN 0253-4827
63766 J9 APPL MATH MECH-ENGL ED
63767 JI Appl. Math. Mech.-Engl. Ed.
63768 PD MAR
63769 PY 2001
63770 VL 22
63771 IS 3
63772 BP 294
63773 EP 303
63774 PG 10
63775 SC Mathematics, Applied; Mechanics
63776 GA 450BW
63777 UT ISI:000169722500004
63778 ER
63779 
63780 PT J
63781 AU Jiang, JB
63782    Lu, ZM
63783    Liu, XM
63784    Liu, YL
63785 TI Models for the counter-gradient-transport phenomena
63786 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
63787 DT Article
63788 DE turbulence; counter-gradient-transport; TSDIA
63789 ID TURBULENT SHEAR FLOWS; PASSIVE SCALARS; DIFFUSION
63790 AB The counter gradient transport phenomena on momentum, energy and
63791    passive scalar in turbulent flows were studied by use of the single
63792    response friction for TSDIA. As a result, models that can describe
63793    qualitatively the phenomena are obtained. Then the results are
63794    simplified by use of the internal range theory, and the results for
63795    lower degrees agree with results of predecessor. Finally the counter
63796    gradient-transport phenomena in channel flow and circular wake flow are
63797    analyzed.
63798 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
63799 RP Jiang, JB, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
63800    200072, Peoples R China.
63801 CR ESKINAZEI S, 1988, PHYS FLUIDS, V12, P1988
63802    HAMBA F, 1987, J PHYS SOC JPN, V56, P79
63803    HANJALIC K, 1972, J FLUID MECH, V51, P301
63804    KRAICHNAN RH, 1959, J FLUID MECH, V5, P497
63805    LESLIE DC, 1972, DEV THEORY TURBULENC
63806    SHIMOMURA Y, 1998, PHYS FLUIDS, V10, P2636
63807    SREENIVASAN KR, 1982, TURBULENT SHEAR FLOW, V3, P96
63808    VEERAVALLI S, 1990, J FLUID MECH, V216, P35
63809    YOSHIZAWA A, 1984, PHYS FLUIDS, V27, P1337
63810    YOSHIZAWA A, 1988, J FLUID MECH, V195, P541
63811 NR 10
63812 TC 0
63813 SN 0253-4827
63814 J9 APPL MATH MECH-ENGL ED
63815 JI Appl. Math. Mech.-Engl. Ed.
63816 PD MAR
63817 PY 2001
63818 VL 22
63819 IS 3
63820 BP 312
63821 EP 319
63822 PG 8
63823 SC Mathematics, Applied; Mechanics
63824 GA 450BW
63825 UT ISI:000169722500006
63826 ER
63827 
63828 PT J
63829 AU Jiang, FR
63830    Jin, QN
63831 TI Asymptotic solutions of boundary value problems for third-order
63832    ordinary differential equations with turning points
63833 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
63834 DT Article
63835 DE boundary value problems; ordinary differential equations; turning
63836    points; asymptotic solutions
63837 ID PROBLEMS EXHIBITING RESONANCE
63838 AB Boundary value problem; for third-order ordinary differential equations
63839    with turning points are studied as follows :
63840    epsilon gamma ' " + f(x ; epsilon) gamma " + g(x ; epsilon) gamma '
63841    +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1),
63842    where f(x ; 0) has several multiple zero points in ( - n, b). the
63843    necessary conditions for exhibiting resonance is given, and the
63844    uniformly valid asymptotic solutions and the estimations of remainder
63845    terms are obtained.
63846 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
63847    Nanjing Univ, Dept Math, Nanjing 210000, Peoples R China.
63848 RP Jiang, FR, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
63849    200072, Peoples R China.
63850 CR ACKERBERG RC, 1970, STUD APPL MATH, V49, P277
63851    JIANG FR, 1989, APPL MATH MECH, V10, P289
63852    JIANG FR, 1994, COMPUTATIONAL FLUID, V2, P471
63853    MATKOWSKY BJ, 1975, SIAM REV, V17, P82
63854    NAGUMO M, 1937, P PHYS-MATH SOC JPN, V19, P861
63855    ZHAO WL, 1984, J JILIN U, P10
63856 NR 6
63857 TC 0
63858 SN 0253-4827
63859 J9 APPL MATH MECH-ENGL ED
63860 JI Appl. Math. Mech.-Engl. Ed.
63861 PD APR
63862 PY 2001
63863 VL 22
63864 IS 4
63865 BP 394
63866 EP 403
63867 PG 10
63868 SC Mathematics, Applied; Mechanics
63869 GA 450WP
63870 UT ISI:000169768100003
63871 ER
63872 
63873 PT J
63874 AU Wei, EB
63875    Tian, JW
63876    Gu, GQ
63877 TI A new inverse method and application to ocean data
63878 SO SCIENCE IN CHINA SERIES D-EARTH SCIENCES
63879 DT Article
63880 DE reconstructed phase space; conditional probability density;
63881    normalization
63882 ID STRANGE ATTRACTORS; VECTOR-FIELDS; TIME-SERIES; RECONSTRUCTION; SYSTEMS
63883 AB A new method is proposed to inverse normalization data of hidden
63884    variables in a dynamical system by embedding a time series in
63885    multidimensional spaces and applying a normalization analysis to the
63886    conditional probability density of points in the reconstructed phase
63887    spaces, The method is robust in the application to Lorenz system and
63888    4-dimensional Rossler system by testing quantitatively and
63889    qualitatively the correlation coefficient between inverse data and
63890    original data in time domain and in frequency domain, respectively. By
63891    applying the method to analyzing the South China Sea data, the
63892    normalization data of wind speed is extracted from the sea surface
63893    temperature time series.
63894 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
63895    Ocean Univ Qingdao, Phys Oceanog Lab, Qingdao 266003, Peoples R China.
63896 RP Gu, GQ, Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093,
63897    Peoples R China.
63898 CR BREEDEN JL, 1990, PHYS REV A, V42, P5817
63899    ECKMANN JP, 1985, REV MOD PHYS, V57, P617
63900    FRASER AM, 1986, PHYS REV A, V33, P1134
63901    GOUESBET G, 1991, PHYS REV A, V43, P5321
63902    GOUESBET G, 1991, PHYS REV A, V44, P6264
63903    GOUESBET G, 1992, PHYS REV A, V46, P1784
63904    GRASSBERGER P, 1983, PHYSICA D, V9, P189
63905    GRASSBERGER P, 1984, PHYSICA D, V13, P34
63906    JUDD K, 1998, PHYSICA D, V120, P273
63907    MANUCA R, 1996, PHYSICA D, V93, P78
63908    ORTEGA GJ, 1995, PHYS LETT A, V209, P351
63909    PACKARD NH, 1980, PHYS REV LETT, V45, P712
63910    ROSSLER OE, 1979, PHYS LETT A, V71, P155
63911    SCELLER LL, 1996, PHYS LETT A, V211, P211
63912    TAKENS F, 1981, LECT NOTES MATH, V898, P366
63913 NR 15
63914 TC 0
63915 SN 1006-9313
63916 J9 SCI CHINA SER D
63917 JI Sci. China Ser. D-Earth Sci.
63918 PD JUN
63919 PY 2001
63920 VL 44
63921 IS 6
63922 BP 490
63923 EP 497
63924 PG 8
63925 SC Geosciences, Multidisciplinary
63926 GA 448FZ
63927 UT ISI:000169617400002
63928 ER
63929 
63930 PT J
63931 AU Cul, JH
63932    Zhong, SS
63933    Yu, C
63934 TI Accurate modeling of shorted microstrip patch antennas using the
63935    locally conformal FDTD method
63936 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
63937 DT Article
63938 DE microstrip antennas; conformal FDTD method; shorted microstrip patch
63939    antennas
63940 ID DIFFERENCE TIME-DOMAIN
63941 AB An accurate analysis of shorted microstrip patch antennas is presented
63942    based on the use of the locally conformal finite-difference time-domain
63943    (CFDTD) method. This approach enables the positions and dimensions of
63944    the probe and the shorting pin to be chosen independently. The
63945    calculated result is compared with the measured result, and good
63946    agreement is observed. (C) 2001 John Wiley & Sons, Inc.
63947 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
63948 RP Cul, JH, Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R
63949    China.
63950 CR DEY S, 1998, MICROW OPT TECHN LET, V17, P349
63951    WATERHOUSE R, 1995, ELECTRON LETT, V31, P604
63952    WATERHOUSE RB, 1997, IEEE AP S INT S, P1852
63953    WATERHOUSE RB, 1998, IEEE T ANTENN PROPAG, V46, P1629
63954    YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302
63955    YEE KS, 1992, IEEE T ANTENN PROPAG, V40, P1068
63956    YEE KS, 1994, IEEE T ANTENN PROPAG, V42, P1450
63957    YEE KS, 1997, IEEE T ANTENN PROPAG, V45, P354
63958 NR 8
63959 TC 0
63960 SN 0895-2477
63961 J9 MICROWAVE OPT TECHNOL LETT
63962 JI Microw. Opt. Technol. Lett.
63963 PD AUG 5
63964 PY 2001
63965 VL 30
63966 IS 3
63967 BP 216
63968 EP 218
63969 PG 3
63970 SC Engineering, Electrical & Electronic; Optics
63971 GA 448LB
63972 UT ISI:000169627400022
63973 ER
63974 
63975 PT J
63976 AU He, JH
63977 TI Iteration perturbation method for strongly nonlinear oscillations
63978 SO JOURNAL OF VIBRATION AND CONTROL
63979 DT Article
63980 DE perturbation method; nonlinear oscillation; iteration method
63981 ID PARAMETERS
63982 AB In this paper, the author proposes a new perturbation technique
63983    coupling with iteration method, yielding a powerful mathematical tool
63984    for an analytical solution of nonlinear equations. The obtained results
63985    are valid not only for weakly nonlinear problems but also for strongly
63986    nonlinear ones. Furthermore, the approximate solutions are valid for
63987    the whole solution domain, and even the first-step iteration leads to
63988    high accuracy. Some examples are given to illustrate its effectiveness.
63989 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
63990 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
63991    Peoples R China.
63992 CR ACTON JR, 1985, SOLVING EQUATIONS PH
63993    ANDRIANOV I, 2000, INT J NONLINEAR SCI, V1, P327
63994    HE JH, 1999, COMMUN NONL SCI NUM, V4, P109
63995    HE JH, 1999, COMMUN NONL SCI NUM, V4, P78
63996    HE JH, 1999, COMMUNICATIONS NONLI, V4, P81
63997    HE JH, 1999, COMPUT METHOD APPL M, V178, P257
63998    HE JH, 1999, MECCANICA, V34, P287
63999    HE JH, 1999, MECH PRACTICE, V21, P17
64000    HE JH, 2000, INT J NONLINEAR MECH, V35, P37
64001    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
64002    HE JH, 2000, J SOUND VIB, V229, P1257
64003    HE JH, 2000, MECCANICA, V35, P299
64004    HOWARTH L, 1938, PROC R SOC LON SER-A, V164, P547
64005    LIAO SJ, 1995, INT J NONLINEAR MECH, V30, P371
64006    LIAO SJ, 1999, J FLUID MECH, V385, P101
64007    NAYFEH AH, 1981, INTRO PERTURBATION T
64008    NAYFEH AH, 1985, PROBLEMS PERTURBATIO
64009 NR 17
64010 TC 8
64011 SN 1077-5463
64012 J9 J VIB CONTROL
64013 JI J. Vib. Control
64014 PD JUL
64015 PY 2001
64016 VL 7
64017 IS 5
64018 BP 631
64019 EP 642
64020 PG 12
64021 SC Engineering, Mechanical; Acoustics; Mechanics
64022 GA 447NP
64023 UT ISI:000169579600001
64024 ER
64025 
64026 PT J
64027 AU Ma, HL
64028    Yang, FJ
64029 TI Measurement of hyperfine coupling constants of the excited states
64030    4f(7)(S-8(7/2)0)6p(3/2)(7/2,3/2) in Eu-151,153(+)
64031 SO CHINESE PHYSICS
64032 DT Article
64033 DE fast-ion-beam laser spectroscopy; hyperfine structure; magnetic dipole
64034    and electronic quadrupole coupling constants
64035 ID BEAM LASER SPECTROSCOPY; FINE
64036 AB Hyperfine structure spectra of singly ionized europium have been
64037    measured by collinear fast-ion-beam laser spectroscopy. All the
64038    spectral lines were resolved and the magnetic dipole and electric
64039    quadrupole coupling constants of the metastable and excited levels were
64040    determined.
64041 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
64042    Fudan Univ, Inst Modern Phys, Shanghai 200433, Peoples R China.
64043 RP Ma, HL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
64044 CR ANDRA HJ, 1975, ATOMIC PHYSICS, V4, P365
64045    ANDRA HJ, 1979, PROGR ATOMIC SPECT B
64046    BELLAHMANSOUR N, 1989, PHYS REV A, V39, P5762
64047    BENGTSON A, 1980, PHYS LETT A, V76, P45
64048    GINIBRE A, 1989, PHYS SCR, V39, P694
64049    HOHLE C, 1982, Z PHYS A, V304, P279
64050    IIMURA H, 1994, PHYS REV C, V50, P661
64051    KUWAMOTO T, 1996, J PHYS SOC JPN, V65, P3180
64052    MA HL, 1999, J PHYS B-AT MOL OPT, V32, P1345
64053    SEN A, 1986, PHYS REV A, V36, P233
64054 NR 10
64055 TC 2
64056 SN 1009-1963
64057 J9 CHIN PHYS
64058 JI Chin. Phys.
64059 PD JUN
64060 PY 2001
64061 VL 10
64062 IS 6
64063 BP 512
64064 EP 515
64065 PG 4
64066 SC Physics, Multidisciplinary
64067 GA 449RR
64068 UT ISI:000169701400010
64069 ER
64070 
64071 PT J
64072 AU Zhou, SP
64073 TI Ginzburg-Landau theory and vortex lattice of high-temperature
64074    superconductors
64075 SO CHINESE PHYSICS
64076 DT Article
64077 DE Ginzburg-Landau theory; vortex lattice; high-temperature superconductor
64078 ID II SUPERCONDUCTORS; PAIRING SYMMETRY; YBA2CU3O7-DELTA; STATE; MODEL; PB
64079 AB The thermodynamics of the vortex lattice of high-temperature
64080    superconductors has been studied by solving the generalised
64081    Ginzburg-Landau equations derived microscopically. Our numerical
64082    simulation indicates that the structure of the vortex lattice is
64083    oblique at the temperature far away from the transition temperature T-C
64084    where the mixed s-d(x2-y2) state is expected to have the lowest energy.
64085    Whereas, very close to T-c, the d(x2-y2) wave is slightly lower
64086    energetically, and a triangular vortex lattice recovers. The
64087    coexistence and the coupling between the s and d waves would account
64088    for the unusual dynamic behaviours such as the upward curvature of the
64089    upper critical field curve H-C2(T), as observed in de magnetization
64090    measurements on single-crystal YBa2Cu3O7 samples.
64091 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
64092 RP Zhou, SP, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
64093 CR ABRIKOSOV AA, 1957, ZH EKSP TEOR FIZ, V32, P1442
64094    ABRIKOSOV AA, 1957, ZH EKSP TEOR FIZ, V5, P1174
64095    ANDERSON PW, 1987, SCIENCE, V235, P1196
64096    CHAKRAVARTY S, 1993, SCIENCE, V261, P337
64097    DORIA MM, 1989, PHYS REV B, V39, P9573
64098    DU Q, 1993, SIAM J APPL MATH, V53, P689
64099    GORKOV LP, 1960, SOV PHYS JETP, V9, P1364
64100    GUO BY, 1988, NUMER METH PART D E, P43
64101    JOYNT R, 1990, PHYS REV B, V41, P4271
64102    KEIMER B, 1994, J APPL PHYS 2, V76, P6778
64103    KLEINER R, 1996, PHYS REV LETT, V76, P2161
64104    KOUZNETSOV KA, 1997, PHYS REV LETT, V79, P3050
64105    LEE PA, 1987, PHYS REV LETT, V58, P2891
64106    LIECHTENSTEIN AI, 1995, PHYS REV LETT, V74, P2303
64107    MILLIS AJ, 1994, PHYS REV B, V49, P15408
64108    MONTHOUX P, 1994, PHYS REV B, V49, P4261
64109    PALSTRA TTM, 1988, PHYS REV LETT, V61, P1662
64110    REN Y, 1995, PHYS REV LETT, V74, P3680
64111    RUGGIERO S, 1982, PHYS REV B, V26, P4897
64112    SOININEN PI, 1994, PHYS REV B, V50, P13883
64113    TINKHAM M, 1964, GROUP THEORY QUANTUM
64114    TSUEI CC, 1994, PHYS REV LETT, V73, P593
64115    VOLOVIK GE, 1993, JETP LETT, V58, P469
64116    WELP U, 1989, PHYS REV LETT, V62, P1908
64117    WOLLMAN DA, 1993, PHYS REV LETT, V71, P2134
64118    ZHANG FC, 1988, PHYS REV B, V37, P3759
64119    ZHANG SC, 1997, SCIENCE, V275, P1089
64120    ZHOU SP, 1999, ACTA PHYS SIN-CH ED, V48, P342
64121 NR 28
64122 TC 13
64123 SN 1009-1963
64124 J9 CHIN PHYS
64125 JI Chin. Phys.
64126 PD JUN
64127 PY 2001
64128 VL 10
64129 IS 6
64130 BP 541
64131 EP 549
64132 PG 9
64133 SC Physics, Multidisciplinary
64134 GA 449RR
64135 UT ISI:000169701400015
64136 ER
64137 
64138 PT J
64139 AU Chen, XY
64140    Cheng, CJ
64141 TI Reconstruction of relaxation modulus for viscoelastic medium with
64142    complete data
64143 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
64144 DT Article
64145 DE viscoelastic medium; reconstruction of the relaxation modulus;
64146    scattering and propagation operators; wave impedance mismatch; volterra
64147    integral equation
64148 ID INVERSE SCATTERING
64149 AB The inverse scattering problem for viscoelastic medium with wave
64150    impedance mismatch at the rear boundary is studied in this paper. The
64151    propagation operators of the viscoelastic medium are defined first and
64152    the integro-differential equations of these operators are derived via
64153    the invariant imbedding technique. For the inverse scattering problem,
64154    a new inversion procedure to reconstruct the relaxation modulus of the
64155    viscoelastic medium is developed, which utilizes a complete set of
64156    data, namely the one-side reflection data for one round trip through
64157    the viscoelastic slab. These data are complete in the sense that they
64158    can be extended to arbitrary time t in the inversion procedure. This
64159    inverse method is implemented numerically on several problems at the
64160    end of the paper. The more general case of a medium consisting of a
64161    stack of homogeneous viscoelastic medium layers is also considered. (C)
64162    2001 Elsevier Science B.V. All rights reserved.
64163 C1 SOA, Inst Oceanog 1, Key Lab Marine Sci & Numer Modeling, Qingdao 266061, Peoples R China.
64164    Shanghai Univ, Dept Mech, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China.
64165 RP Chen, XY, SOA, Inst Oceanog 1, Key Lab Marine Sci & Numer Modeling,
64166    Qingdao 266061, Peoples R China.
64167 CR AMMICHT E, 1987, J ACOUST SOC AM, V81, P827
64168    BEEZLEY RS, 1985, J MATH PHYS, V26, P317
64169    BUI DD, 1995, INVERSE PROBL, V11, P835
64170    CHRISTENSON RM, 1982, THEORY VISCOELASTICI
64171    CORONES JP, 1988, INVERSE PROBL, V4, P643
64172    KARLSSON A, 1987, INVERSE PROBL, V3, P691
64173    KRESS R, 1989, LINEAR INTEGRAL EQUA
64174    REDHEFFER R, 1962, J MATH PHYS, V41, P1
64175 NR 8
64176 TC 0
64177 SN 0377-0427
64178 J9 J COMPUT APPL MATH
64179 JI J. Comput. Appl. Math.
64180 PD JUN 1
64181 PY 2001
64182 VL 131
64183 IS 1-2
64184 BP 445
64185 EP 456
64186 PG 12
64187 SC Mathematics, Applied
64188 GA 444QK
64189 UT ISI:000169410900025
64190 ER
64191 
64192 PT J
64193 AU Zhou, GH
64194    Liu, L
64195    Xiu, XL
64196    Jian, HM
64197    Wang, LZ
64198    Sun, BZ
64199    Tong, BS
64200 TI Productivity and carcass characteristics of pure and crossbred Chinese
64201    Yellow Cattle
64202 SO MEAT SCIENCE
64203 DT Article
64204 DE productivity; carcass characteristics; Chinese Yellow Cattle; meat
64205    performance
64206 AB The carcass characteristics of 334 Chinese Yellow Cattle, and their
64207    Simmental and Limousin crosses, were investigated in abattoirs in Hebei
64208    and Sandong provinces of China. The overall slaughter age was 4.8
64209    +/-2.2 years at a mean liveweight of 527.28 +/- 77.0 kg. Mean ages and
64210    liveweights for Yellow Cattle and its crosses were, respectively, 5.29
64211    +/-2.03 and 2.85 +/-1.71 years and 519.43 +/- 78.7 and 563.13 +/- 56.8
64212    kg. Carcass weights varied considerably and, consequently, so did
64213    subcutaneous fat depths and dressing percentages. Overall, mean carcass
64214    weights, subcutaneous fat depths and, dressing percentages and
64215    eyemuscle areas were 283.9 +/- 64.1 kg, 14.0 +/-8.0 mm, 54.0 +/-4.0%,
64216    and 62.7 +/- 13.3 cm(2), respectively; Compared with pure Yellow
64217    Cattle, the crosses were slaughtered at younger age, and had larger
64218    live and carcass weights, higher dressing percentages, less
64219    subcutaneous fat depth and bigger eyemuscle areas. It is concluded that
64220    crossbreeding can significantly improve Yellow Cattle' meat
64221    productivity, however feeding systems need to be improved and an
64222    appropriate grading system developed to improve beef production and
64223    quality in China. (C) 2001 Elsevier Science Ltd. All rights reserved.
64224 C1 Nanjing Agr Univ, Coll Food Sci & Technol, Meat Res Lab, Nanjing 210095, Peoples R China.
64225    Shanghai Univ, Coll Agr, Dept Food Engn, Shanghai 200041, Peoples R China.
64226    Beijing Acad Agr Sci, Inst Anim Husb, Beijing, Peoples R China.
64227 RP Zhou, GH, Nanjing Agr Univ, Coll Food Sci & Technol, Meat Res Lab,
64228    Nanjing 210095, Peoples R China.
64229 CR LIU L, 1998, J YELLOW CATTLE, V24, P32
64230    MAY SG, 1992, J ANIM SCI, V70, P2431
64231    TATUM D, 1997, BEEF FACTS
64232    ZHANG CG, 1999, CATTLE BEEF IND CHIN, P1
64233    ZHOU GH, 1998, ANN RECIPROCAL MEAT, V51, P92
64234 NR 5
64235 TC 1
64236 SN 0309-1740
64237 J9 MEAT SCI
64238 JI Meat Sci.
64239 PD AUG
64240 PY 2001
64241 VL 58
64242 IS 4
64243 BP 359
64244 EP 362
64245 PG 4
64246 SC Food Science & Technology
64247 GA 443VZ
64248 UT ISI:000169364000004
64249 ER
64250 
64251 PT J
64252 AU Cong, YH
64253    Zhu, ZY
64254 TI A homotopy method of switching solution branches at the pitchfork
64255    bifurcation point
64256 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
64257 DT Article
64258 DE homotopy method; switching solution branches; pitchfork point
64259 AB By introducing proper parameters in the original nonlinear system, a
64260    continuation method for switching solution branches at a pitchfork
64261    point is proposed and their theories have been established in this
64262    paper. It is sufficient to implement this method that a standard
64263    continuation procedure is only used. Some numerical examples are given
64264    to illustrate the effectiveness of this method.
64265 C1 Shandong Teachers Univ, Coll Math Sci, Shanghai 200234, Peoples R China.
64266    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
64267    Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China.
64268 CR ALLGOWER EL, 1981, LECT NOTES MATH, V878
64269    CHOW SN, 1982, METHOD BIFURCATION T
64270    GOLUBITSKY M, 1984, SINGULARITIES GROUP, V1
64271    KELLER HB, 1977, P APPL BIFURCATION T, P359
64272    RHEINBOLDT WC, 1978, SIAM J NUMER ANAL, V15, P321
64273 NR 5
64274 TC 0
64275 SN 0254-9409
64276 J9 J COMPUT MATH
64277 JI J. Comput. Math.
64278 PD MAY
64279 PY 2001
64280 VL 19
64281 IS 3
64282 BP 299
64283 EP 308
64284 PG 10
64285 SC Mathematics, Applied; Mathematics
64286 GA 443YR
64287 UT ISI:000169371600008
64288 ER
64289 
64290 PT J
64291 AU Li, YM
64292    Xing, SM
64293    Zhai, QJ
64294 TI Numerical simulation of semisolid continuous casting process
64295 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
64296 DT Article
64297 DE semisolid continuous casting; numerical simulation; mathematical model
64298 ID RHEOLOGICAL BEHAVIOR
64299 AB A general mathematical model and boundary condition applicable to
64300    momentum and heat transfer in the semisolid continuous casting(SCC)
64301    process was established. Using the model, the numerical simulation of
64302    the momentum and heat transfer of molten metal was carried out in the
64303    SCC system. The obtained results fit well with the measured ones.
64304    Moreover, using the numerical simulating software, the effect of
64305    various factors on breakout and breakage was explored. The obtained
64306    results show that heat flow density of copper mold and the withdrawal
64307    beginning time are two major influencing factors. The larger the heat
64308    flow density of copper mold, or the shorter the withdrawal beginning
64309    time, the more stable the semisolid continuous casting process.
64310 C1 Hebei Univ Sci & Technol, Sch Mat Sci & Engn, Shijiazhuang 050054, Peoples R China.
64311    Tsing Hua Univ, Dept Mech Engn, Beijing 100084, Peoples R China.
64312    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200027, Peoples R China.
64313 CR CHEN HQ, 1990, NUMERICAL SIMULATION
64314    CHEN SS, 1978, SEMISOLID CASTING
64315    MATSUMIYA T, 1981, METALL T B, V12, P17
64316    PATANKAR SV, 1982, NUMERICAL METHOD HEA
64317    SPENCER DB, 1972, METALL T, V3, P1925
64318    TAHA MA, 1988, J MATER SCI, V23, P1385
64319    TAHA MA, 1998, MAT SCI, V23, P1379
64320    WEI PY, 1996, CHINESE J NONFERROUS, V4, P98
64321    XING SM, 1996, STUDY SEMISOLID CONT, P51
64322    XING SM, 2000, CHINESE J NONFERROUS, V10, P800
64323    XING SM, 2000, SPECIAL CASTING NONF, P16
64324 NR 11
64325 TC 1
64326 SN 1003-6326
64327 J9 TRANS NONFERROUS METAL SOC CH
64328 JI Trans. Nonferrous Met. Soc. China
64329 PD JUN
64330 PY 2001
64331 VL 11
64332 IS 3
64333 BP 378
64334 EP 381
64335 PG 4
64336 SC Metallurgy & Metallurgical Engineering
64337 GA 440RK
64338 UT ISI:000169187900015
64339 ER
64340 
64341 PT J
64342 AU Yang, GH
64343    Jiang, Y
64344    Duan, YS
64345 TI Topological quantization of k-dimensional topological defects and
64346    motion equations
64347 SO CHINESE PHYSICS LETTERS
64348 DT Article
64349 ID SPACE-TIME DEFECTS; GAUGE FIELD-THEORY; DISCLINATION CONTINUUM;
64350    COORDINATE CONDITION; LINEAR DEFECTS; TENSOR CURRENT; P-BRANES;
64351    BIFURCATION; STRINGS; DISLOCATION
64352 AB Using the phi -mapping method and kth-order topological tenser current
64353    theory, we present a unified theory of describing k-dimensional
64354    topological defects and obtain their topological quantization and
64355    motion equations. It is shown that the inner structure of the
64356    topological tenser current is just the dynamic form of the topological
64357    defects, which are generated from the zeros of the m-component order
64358    parameter vector held. In this dynamic form, the topological defects
64359    are topologically quantized naturally and the topological quantum
64360    numbers are determined by the Hopf indices and the Brouwer degrees. As
64361    the generalization of Nielsen's Lagrangian and Nambu's action for
64362    strings, the action and the motion equations of the topological defects
64363    are also derived.
64364 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
64365    Chinese Acad Sci, Inst Theoret Phys, Beijing 100080, Peoples R China.
64366    Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China.
64367 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
64368 CR CARROLL SM, 1998, PHYS REV D, V57, P5189
64369    CHEN G, 2000, CHINESE PHYS LETT, V17, P82
64370    DAI J, 1989, MOD PHYS LETT A, V4, P2073
64371    DIAMANTINI MC, 1996, PHYS LETT B, V388, P273
64372    DUAN YS, 1992, GEN RELAT GRAVIT, V24, P1033
64373    DUAN YS, 1997, HELV PHYS ACTA, V70, P565
64374    DUAN YS, 1998, CHINESE PHYS LETT, V15, P781
64375    DUAN YS, 1999, CHINESE PHYS LETT, V16, P157
64376    DUAN YS, 2000, J MATH PHYS, V41, P4379
64377    DUFF MJ, 1991, PHYS LETT B, V273, P409
64378    DUFFY LC, 1991, EPIDEMIOLOGY, V2, P141
64379    HOROWITZ GT, 1991, NUCL PHYS B, V360, P197
64380    JIANG Y, 2000, J MATH PHYS, V41, P2616
64381    LALAK Z, HEPPH9702405
64382    LI S, HEPTH0001007
64383    NAMBU Y, 1970, UNPUB LECT COPENHAGE
64384    NIELSEN HB, 1973, NUCL PHYS B, V57, P367
64385    POLYAKOV A, 1986, NUCL PHYS B, V268, P406
64386    SCHOUTEN JA, 1965, TENSOR ANAL PHYSICIT, P415
64387    TAO BX, 1999, CHINESE PHYS LETT, V16, P701
64388    TOWNSEND PK, 1988, PHYS LETT B, V202, P53
64389    TOWNSEND PK, 1995, PHYS LETT B, V350, P184
64390    TUROK N, ASTROPH9612242
64391    VILENKIN A, 1994, COSMIC STRINGS OTHER
64392    YANG GH, 1998, INT J MOD PHYS B, V12, P2599
64393    YANG GH, 1998, INT J THEOR PHYS, V37, P2371
64394    YANG GH, 1998, INT J THEOR PHYS, V37, P2953
64395    YANG GH, 1998, MOD PHYS LETT A, V13, P745
64396    YANG GH, 1999, INT J ENG SCI, V37, P1037
64397 NR 29
64398 TC 6
64399 SN 0256-307X
64400 J9 CHIN PHYS LETT
64401 JI Chin. Phys. Lett.
64402 PD MAY
64403 PY 2001
64404 VL 18
64405 IS 5
64406 BP 631
64407 EP 633
64408 PG 3
64409 SC Physics, Multidisciplinary
64410 GA 440GX
64411 UT ISI:000169168500003
64412 ER
64413 
64414 PT J
64415 AU Gu, GD
64416 TI Some conditions for existence and stability of relaxed incomplete LU
64417    factorizations
64418 SO APPLIED NUMERICAL MATHEMATICS
64419 DT Article
64420 DE linear systems; preconditioners; incomplete factorizations; relaxation
64421    parameter
64422 ID LINEAR-SYSTEMS; MATRICES
64423 AB We present a condition for the existence of the relaxed incomplete LU
64424    factorization (RILU) (Axelsson and Lindskog, 1986), and based on the
64425    analytical results of Elman (1986, 1989), we show the conditions for
64426    the stability of the computations involving the triangular factors in
64427    the RILU preconditioning operation during the preconditioned iterative
64428    process, These conditions are related to the relaxation parameter omega
64429    and the focus is mainly on RILU(L,w). Our analysis consists of an
64430    analytical and numerical study of a class of pentadiagonal matrices.
64431    The numerical experiments show that these conditions play an important
64432    role in obtaining an efficient RILU preconditioner, and show that the
64433    relaxation parameter w could also play an important role in obtaining
64434    an efficient RILU preconditioner. (C) 2001 IMACS. Published by Elsevier
64435    Science B.V. All rights reserved.
64436 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
64437 RP Gu, GD, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
64438 CR AXELSSON O, 1984, FINITE ELEMENT SOLUT
64439    AXELSSON O, 1986, NUMER MATH, V48, P479
64440    AXELSSON O, 1994, NUMER LINEAR ALGEBR, V1, P155
64441    BRUASET AM, 1990, MATH COMPUT, V54, P701
64442    CHOW E, 1997, J COMPUT APPL MATH, V86, P387
64443    ELMAN HC, 1986, MATH COMPUT, V47, P191
64444    ELMAN HC, 1989, BIT, V29, P890
64445    GU GD, 1987, SOLUTION NONSYMMETRI
64446    GU GD, 1999, LINEAR ALGEBRA APPL, V299, P1
64447    GUSTAFSSON I, 1978, BIT, V18, P142
64448    GUSTAFSSON I, 1983, PRECONDITIONING METH, P265
64449    GUSTAFSSON I, 1996, BIT, V36, P86
64450    MANTEUFFEL TA, 1980, MATH COMPUT, V34, P473
64451    MEIJERINK JA, 1977, MATH COMPUT, V31, P148
64452    MEIJERINK JA, 1981, J COMPUT PHYS, V44, P134
64453    SAAD Y, 1996, ITERATIVE METHODS SP
64454    VANDERVORST HA, 1981, J COMPUT PHYS, V44, P1
64455    WITTUM G, 1989, SIAM J SCI STAT COMP, V10, P699
64456 NR 18
64457 TC 0
64458 SN 0168-9274
64459 J9 APPL NUMER MATH
64460 JI Appl. Numer. Math.
64461 PD JUL
64462 PY 2001
64463 VL 38
64464 IS 1-2
64465 BP 105
64466 EP 121
64467 PG 17
64468 SC Mathematics, Applied
64469 GA 442FB
64470 UT ISI:000169273600006
64471 ER
64472 
64473 PT J
64474 AU Wang, NN
64475 TI A theoretical and experimental study to measure the concentration and
64476    particle size distribution in two-phase flows
64477 SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION
64478 DT Article
64479 AB Based on light scattering theory, an optical method is presented for
64480    measuring the concentration and particle size distribution of the
64481    dispersed phase in two-phase flows. A prototype was also constructed.
64482    Comprehensive computer simulation and numerical calculations were
64483    carried out to calibrate the correctness of this method. An
64484    experimental study was also performed in gas-solid and gas-liquid
64485    two-phase flows. The results of the measurements are given and
64486    discussed in detail.
64487 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
64488 RP Wang, NN, Shanghai Univ Sci & Technol, 516 Jun Gong Rd, Shanghai
64489    200093, Peoples R China.
64490 CR BARTH HG, 1984, MODERN METHODS PARTI
64491    BAYVEL LP, 1981, ELECTROMAGNETIC SCAT
64492    KERKER M, 1969, SCATTERING LIGHT OTH
64493    MILLER BV, 1988, CRC CRIT R ANAL CHEM, V20, P75
64494    VANDEHULST HC, 1957, LIGHT SCATTERING SMA
64495    WANG NN, 1995, P 1 INT S 2 PHAS FLO, P695
64496    WANG NN, 1995, P INT S MEAS TECHN M, P127
64497    WANG NN, 2000, OPTICAL PARTICLE SIZ
64498    YU SM, 1999, THESIS U SHANGHAI SC
64499 NR 9
64500 TC 3
64501 SN 0934-0866
64502 J9 PART PART SYST CHARACT
64503 JI Part. Part. Syst. Charact.
64504 PD MAY
64505 PY 2001
64506 VL 18
64507 IS 1
64508 BP 26
64509 EP 32
64510 PG 7
64511 SC Engineering, Chemical; Materials Science, Characterization & Testing
64512 GA 439EZ
64513 UT ISI:000169099000004
64514 ER
64515 
64516 PT J
64517 AU Wang, XZ
64518    Lu, HB
64519    Wang, XF
64520    Yu, DY
64521    Qian, F
64522    Fang, ZJ
64523 TI Effect of wavelength-modulating parameters on intensity fluctuations of
64524    the light source in a photothermal-modulating laser-diode interferometer
64525 SO JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS
64526 DT Article
64527 DE interferometer; photothermal effect; laser diode; optical testing
64528 AB In the laser diode interferometer with a photothermal wavelength
64529    modulation which is used for optical fine measurement, intensity
64530    fluctuations of the light source cause measurement errors though the
64531    fluctuations decrease greatly as compared with the injection current
64532    modulation of wavelength. In this paper, we investigated the effect of
64533    photothermal-modulation parameters of wavelength on the intensity
64534    fluctuations of the light source. Choosing appropriate
64535    photothermal-modulation parameters, we measured microdisplacements of
64536    objects with a high measurement accuracy.
64537 C1 Acad Sinica, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
64538    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
64539 RP Wang, XZ, Acad Sinica, Shanghai Inst Opt & Fine Mech, POB 800-211,
64540    Shanghai 201800, Peoples R China.
64541 CR CASEY HC, 1978, HETEROSTRUCTURE LA A
64542    KAKUMA S, 1994, OPT ENG, V33, P2992
64543    KLIMCAK CM, 1988, J OPT SOC AM B, V5, P211
64544    SASAKI O, 1990, OPT ENG, V29, P1511
64545    WANG XF, 1999, OPT LASER TECHNOL, V31, P559
64546 NR 5
64547 TC 2
64548 SN 1464-4258
64549 J9 J OPT A-PURE APPL OPT
64550 JI J. Opt. A-Pure Appl. Opt.
64551 PD MAY
64552 PY 2001
64553 VL 3
64554 IS 3
64555 BP 222
64556 EP 224
64557 PG 3
64558 SC Optics
64559 GA 438UU
64560 UT ISI:000169073300016
64561 ER
64562 
64563 PT J
64564 AU Shang, XC
64565    Cheng, CJ
64566 TI Exact solution for cavitated bifurcation for compressible hyperelastic
64567    materials
64568 SO INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE
64569 DT Article
64570 DE cavitation; hyperelastic materials; bifurcation; exact solution
64571 ID NONLINEARLY ELASTIC SPHERES; SOLIDS; GROWTH; ELASTODYNAMICS;
64572    ELASTOSTATICS; EQUILIBRIA; EXAMPLE; FINITE
64573 AB In this paper, a new exact analytic solution for spherical cavitated
64574    bifurcation is presented for a class of compressible hyperelastic
64575    materials. The strain energy density of the materials is assumed to be
64576    a linear function of three strain invariants, which may be regarded as
64577    a first-order approximation to the general strain energy density near
64578    the reference configuration, and also may satisfy certain constitutive
64579    inequalities of hyperelastic materials. An explicit formula for the
64580    critical stretch for the cavity nucleation and a simple bifurcation
64581    solution for the deformed cavity radius which describes the cavity
64582    growth are obtained. The potential energy associated with the cavitated
64583    deformation is examined. It is always lower than that associated with
64584    the homogeneous deformation, thus the state of cavitated deformation is
64585    relatively stable. On the basis of the presented analytic solutions for
64586    the stretches and stresses, the catastrophic transition of deformation
64587    and the jumping of stresses for the cavitation are discussed in detail.
64588    The boundary layers of the displacements, the strain energy
64589    distribution and stresses near the formed cavity wall are observed.
64590    These investigations illustrate that cavitation reflects a local
64591    behaviour of materials. (C) 2001 Elsevier Science Ltd. All rights
64592    reserved.
64593 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
64594    Univ Sci & Technol Beijing, Dept Math & Mech, Beijing 100083, Peoples R China.
64595    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
64596 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
64597    200072, Peoples R China.
64598 CR ABEYARATNE R, 1991, Q J MECH APPL MATH, V44, P429
64599    ANTMAN SS, 1983, ARCH RATION MECH AN, V83, P1
64600    ANTMAN SS, 1987, J ELASTICITY, V18, P131
64601    BADEA L, 1996, MECH RES COMMUN, V23, P461
64602    BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
64603    BIWA S, 1994, J APPL MECH-T ASME, V61, P395
64604    BIWA S, 1995, INT J NONLINEAR MECH, V30, P899
64605    CHOUWANG MS, 1989, INT J ENG SCI, V27, P967
64606    CIARLET PG, 1988, MATH ELASTICITY, V1
64607    ERINGEN AC, 1962, NONLINEAR THEORY CON
64608    ERTAN N, 1988, ASCE J ENG MECHANICS, V114, P1231
64609    GENT AN, 1958, P ROY SOC LOND A MAT, V249, P195
64610    HAUGHON DM, 1990, INT J ENG SCI, V28, P162
64611    HORGAN CO, 1986, J ELASTICITY, V16, P189
64612    HORGAN CO, 1989, P ROY IRISH ACAD A, V89, P185
64613    HORGAN CO, 1992, INT J SOLIDS STRUCT, V29, P279
64614    HORGAN CO, 1995, APPL MECH REV, V48, P471
64615    HORGAN CO, 1995, J APPL MATH PHYS, V46, S107
64616    HOU HS, 1992, J MECH PHYS SOLIDS, V40, P571
64617    HOU HS, 1993, J APPL MECH-T ASME, V60, P1
64618    LEI HC, 1996, J ENG MATH, V30, P693
64619    MERNARD F, 1992, Q APPL MATH, V50, P201
64620    MURPHY JG, 1997, INT J SOLIDS STRUCT, V34, P3859
64621    PERICAKSPECTOR KA, 1988, ARCH RATION MECH AN, V101, P293
64622    PODIOGUIDUGLI P, 1986, J ELASTICITY, V16, P75
64623    POLIGNONE DA, 1993, INT J SOLIDS STRUCT, V30, P3381
64624    POLIGNONE DA, 1993, J ELASTICITY, V33, P27
64625    SHANG XC, 1996, ACTA MECH SINICA, V28, P751
64626    SIVALOGANATHAN J, 1986, ARCH RATION MECH AN, V96, P97
64627    SIVALOGANATHAN J, 1986, MATH PROC CAMBRIDGE, V99, P589
64628    STUART CA, 1985, ANN I H POINCARE-AN, V2, P33
64629    TIANHU H, 1990, INT J FRACTURE, V43, R51
64630    TIMOSHENKO S, 1956, THEORY ELASTICITY
64631    TRUESDELL C, 1965, ENCY PHYSICS, V3
64632 NR 34
64633 TC 15
64634 SN 0020-7225
64635 J9 INT J ENG SCI
64636 JI Int. J. Eng. Sci.
64637 PD JUL
64638 PY 2001
64639 VL 39
64640 IS 10
64641 BP 1101
64642 EP 1117
64643 PG 17
64644 SC Engineering, Multidisciplinary
64645 GA 438NR
64646 UT ISI:000169060400002
64647 ER
64648 
64649 PT J
64650 AU Dong, CH
64651 TI Higher-order fluctuations and their squeezing of angular momentum in
64652    atomic coherent states
64653 SO ACTA PHYSICA SINICA
64654 DT Article
64655 DE atomic coherent state; Bloch state; SU(2)squeezing
64656 ID QUANTUM-OPTICS
64657 AB The second-,fourth-and sixth-order fluctuations have been discussed by
64658    making use of SU(2)Lie algebra. On the basis of higher-order
64659    uncertainty relation,the definition of higher-order squeezing for the
64660    fluctuations of angular momentum has been put forward. In
64661    particular,the second-,fourth-and sixth-order squeezing in atomic
64662    coherent states are investigated. These methods and definition can be
64663    used for studying much higher-order squeezing. The higher-order
64664    squeezing can be generalized to the fluctuations of atomic variances
64665    thereby.
64666 C1 Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China.
64667 RP Dong, CH, Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China.
64668 CR ARECCHI FT, 1972, PHYS REV           A, V6, P2211
64669    DONG CH, 1996, ACTA OPT SINICA, V16, P1543
64670    DONG CH, 1996, ACTA PHYS SINICA, V46, P946
64671    HILLERY M, 1987, PHYS REV A, V36, P3796
64672    HONG CK, 1985, PHYS REV A, V32, P974
64673    NASREEN T, 1992, PHYS REV A, V46, P4161
64674    TU HT, 1993, J MOD OPTIC, V40, P57
64675    WILSONGORDON AD, 1991, PHYS REV A, V44, P7647
64676    WODKIEWICZ K, 1985, J OPT SOC AM B, V2, P458
64677 NR 9
64678 TC 2
64679 SN 1000-3290
64680 J9 ACTA PHYS SIN-CHINESE ED
64681 JI Acta Phys. Sin.
64682 PD JUN
64683 PY 2001
64684 VL 50
64685 IS 6
64686 BP 1058
64687 EP 1063
64688 PG 6
64689 SC Physics, Multidisciplinary
64690 GA 438CT
64691 UT ISI:000169036700012
64692 ER
64693 
64694 PT J
64695 AU Wu, Z
64696    Wang, Q
64697 TI Propagation properties of magnetic surface waves on the interface
64698    between two nonlinear antiferromagnets
64699 SO ACTA PHYSICA SINICA
64700 DT Article
64701 DE antiferromagnetic crystals; nonlinear surface waves
64702 ID MICROWAVE-ENVELOPE SOLITONS; IRON-GARNET FILMS; SPATIAL SOLITONS;
64703    FERROMAGNETIC-FILMS; COLLISION; BEAMS
64704 AB The nonlinear behavior of surface waves on the interface between two
64705    uni-axis antiferromagnets is studied. The theoretical analysis and the
64706    numerical simulation show that there exist two thresholds: frequency
64707    threshold and power threshold. All the incident waves satisfying the
64708    two thresholds can steadily propagate in this new guiding structure. It
64709    is indicated that the peak field will jump from one antiferromagnet
64710    into another when the power increases. It;is also revealed that the
64711    magnetic field amplitude on the interface is not power-dependent but
64712    frequency-dependent.
64713 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
64714 RP Wu, Z, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
64715 CR AITCHISON JS, 1991, J OPT SOC AM B, V8, P1290
64716    ALMEIDA NS, 1987, PHYS REV B, V36, P2015
64717    BOARDMAN AD, 1990, PHYS REV B, V41, P717
64718    BOARDMAN AD, 1993, PHYS REV B, V48, P13602
64719    BORDMAN AD, 1994, IEEE T MAGN, V30, P14
64720    BOYLE JW, 1996, PHYS REV B, V53, P12173
64721    CHEN M, 1994, PHYS REV B, V49, P12773
64722    CHIAO RY, 1964, PHYS REV LETT, V13, P479
64723    DEGASPERIS P, 1988, J APPL PHYS, V63, P4136
64724    HAUS HA, 1996, REV MOD PHYS, V68, P423
64725    JUN S, 1997, J MAGN MAGN MATER, V167, P223
64726    KELLEY PL, 1965, PHYS REV LETT, V15, P1005
64727    LEDERER F, 1983, APPL PHYS B-PHOTO, V31, P69
64728    MA JG, 1995, IEEE T MICROW THEORY, V43, P790
64729    MANEUF S, 1988, OPT COMMUN, V65, P193
64730    MOLLENAUER LF, 1998, IEEE J QUANTUM ELECT, V34, P2089
64731    NEWELL AC, 1991, NONLINEAR OPTICS, P129
64732    REYNAUD F, 1992, NONLINEAR GUIDED WAV
64733    SEGEV M, 1998, PHYS TODAY 1, V51, P42
64734    SHI TT, 1990, OPT LETT, V15, P1123
64735    SNYDER AW, 1994, PHYS REV LETT, V72, P1012
64736    TSANKOV MA, 1994, J APPL PHYS, V76, P4274
64737    WANG Q, 1998, J APPL PHYS, V83, P382
64738    WANG Q, 1999, SCI CHINA SER A, V42, P310
64739    WANG Q, 2000, J APPL PHYS, V87, P1998
64740    WANG YF, 1998, J APPL PHYS, V84, P6233
64741    ZHANG HY, 1998, J APPL PHYS, V84, P3776
64742 NR 27
64743 TC 1
64744 SN 1000-3290
64745 J9 ACTA PHYS SIN-CHINESE ED
64746 JI Acta Phys. Sin.
64747 PD JUN
64748 PY 2001
64749 VL 50
64750 IS 6
64751 BP 1178
64752 EP 1184
64753 PG 7
64754 SC Physics, Multidisciplinary
64755 GA 438CT
64756 UT ISI:000169036700033
64757 ER
64758 
64759 PT J
64760 AU Peng, YZ
64761    Fan, TY
64762    Jiang, FR
64763    Zhang, WG
64764    Sun, YF
64765 TI Perturbative method for solving elastic problems of one-dimensional
64766    hexagonal quasicrystals
64767 SO JOURNAL OF PHYSICS-CONDENSED MATTER
64768 DT Article
64769 ID ICOSAHEDRAL QUASI-CRYSTALS; STRAIGHT DISLOCATIONS; SYMMETRY;
64770    EXPRESSIONS; ALLOYS; ORDER; POINT; CRACK
64771 AB A new perturbation technique for solving elastic three-dimensional
64772    problems of quasicrystals is supplied. The key idea of this technique
64773    is to simplify the equations by introducing a parameter which does not
64774    exist in the original equations, and then look for the perturbation
64775    solution for the problems of interest. To illustrate the utility of our
64776    method and for comparison, we consider the crack problem for
64777    one-dimensional hexagonal quasicrystals with point groups 6mm,
64778    62(h)2(h), 6(m)2(h) and 6/m(h)mm, whose exact solution has been
64779    obtained by the first two authors of this paper. Only up to the order
64780    zero approximation, we get the exact expression for the stress
64781    intensity factor, which is the most important physical quantity in
64782    fracture theory. Moreover, the same procedure can be used to deal with
64783    the elastic problems for two- and three-dimensional quasicrystals. A
64784    simple review of the method is finally given.
64785 C1 Beijing Inst Technol, Res Ctr Mat Sci, Beijing 100080, Peoples R China.
64786    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
64787    Shanghai Univ Sci & Technol, Dept Basic Sci, Shanghai 200093, Peoples R China.
64788    Tsing Hua Univ, Dept Automat, Beijing 100084, Peoples R China.
64789 RP Peng, YZ, Beijing Inst Technol, Res Ctr Mat Sci, POB 327, Beijing
64790    100080, Peoples R China.
64791 CR BAK P, 1985, PHYS REV LETT, V54, P1517
64792    BENDER CM, 1978, ADV MATH METHODS SCI, CH8
64793    BUSBRIDGE IW, 1938, P LOND MATH SOC, V44, P114
64794    DAI MX, 1993, PHIL MAG LETT, V67, P67
64795    DE P, 1987, PHYS REV B, V35, P8609
64796    DE P, 1987, PHYS REV B, V36, P9304
64797    DING DH, 1993, PHYS REV B, V48, P7003
64798    DING DH, 1995, J PHYS-CONDENS MAT, V7, P5423
64799    DING DH, 1995, PHIL MAG LETT, V72, P353
64800    EBERT P, 1996, PHYS REV LETT, V77, P3827
64801    FAN TY, 1999, MATH THEORY ELASTICI
64802    FENG YC, 1989, J PHYS-CONDENS MAT, V1, P3695
64803    HE LX, 1988, PHYS REV LETT, V61, P1116
64804    ISHIMASA T, 1985, PHYS REV LETT, V55, P511
64805    LEVINE D, 1985, PHYS REV LETT, V54, P1520
64806    LI XF, 1999, PHILOS MAG A, V79, P1943
64807    MERLIN R, 1985, PHYS REV LETT, V55, P1768
64808    PENG YZ, 2000, CHINESE PHYS, V9, P764
64809    PENG YZ, 2000, J PHYS-CONDENS MAT, V12, P9381
64810    QIN YL, 1997, J PHYS-CONDENS MAT, V9, P859
64811    SHECHTMAN D, 1984, PHYS REV LETT, V53, P1951
64812    SOCOLAR JES, 1986, PHYS REV B, V34, P3345
64813    TITCHMARSH EC, 1937, INTRO THEORY FOURIER, P337
64814    WANG N, 1987, PHYS REV LETT, V59, P1010
64815    WANG R, 1994, ACTA CRYSTALLOGR A, V50, P366
64816    WANG RH, 1997, J PHYS-CONDENS MAT, V9, P2411
64817    YANG WG, 1995, PHYS LETT A, V200, P177
64818    YANG WG, 1998, PHILOS MAG A, V77, P1481
64819 NR 28
64820 TC 0
64821 SN 0953-8984
64822 J9 J PHYS-CONDENS MATTER
64823 JI J. Phys.-Condes. Matter
64824 PD MAY 7
64825 PY 2001
64826 VL 13
64827 IS 18
64828 BP 4123
64829 EP 4128
64830 PG 6
64831 SC Physics, Condensed Matter
64832 GA 435YY
64833 UT ISI:000168910800022
64834 ER
64835 
64836 PT J
64837 AU Wei, EB
64838    Gu, GQ
64839 TI The effective AC response of nonlinear composites
64840 SO COMMUNICATIONS IN THEORETICAL PHYSICS
64841 DT Article
64842 DE nonlinear composite; effective nonlinear susceptibility
64843 ID EFFECTIVE CONDUCTIVITIES; DIELECTRIC-CONSTANT; MEDIA; ABSORPTION;
64844    GENERATION; SPHERES
64845 AB A perturbative approach is used to study the AC response of nonlinear
64846    composite media, which obey a current-field relation of the form J =
64847    sigmaE + chi \E \ E-2 with components having nonlinear response at
64848    finite frequencies. For a sinusoidal applied field, we extend the local
64849    potential in terms of sinusoidal components at fundamental frequency
64850    and high-order harmonic frequencies to treat the nonlinear composites.
64851    For nonlinear composite media with a low concentrations of spherical
64852    inclusions, we give the formulae of the nonlinear effective AC
64853    susceptibility chi (*)(3 omega) at the third harmonic frequency.
64854 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
64855 RP Wei, EB, Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093,
64856    Peoples R China.
64857 CR BERGMAN DJ, 1979, J PHYS C SOLID STATE, V12, P4947
64858    BLUMENFELD R, 1989, PHYS REV B, V40, P1987
64859    CHEN G, 1994, COMMUN THEOR PHYS, V22, P265
64860    GERARDY JM, 1980, PHYS REV B, V22, P4950
64861    GU GQ, 1988, PHYS REV B, V37, P8612
64862    GU GQ, 1992, PHYS REV B, V46, P4502
64863    GU GQ, 1995, J APPL PHYS, V78, P1737
64864    GU GQ, 2000, PHYSICA B, V279, P62
64865    HUI PM, 1998, J APPL PHYS, V84, P3451
64866    KLINGENBERG DJ, 1998, MRS BULL, V23, P30
64867    LEVY O, 1995, PHYS REV E, V52, P3184
64868    LU SY, 1994, J APPL PHYS, V76, P2641
64869    MCPHYEDRAN RC, 1987, P ROY SOC LOND A MAT, V395, P45
64870    POLADIAN L, 1991, PHYS REV B, V44, P2092
64871    SUEN WM, 1979, J PHYS D, V12, P1325
64872    YU KW, 1992, PHYS LETT A, V168, P313
64873    YU KW, 1993, PHYS REV B, V47, P14150
64874    ZENG XC, 1989, PHYSICA A, V157, P192
64875 NR 18
64876 TC 6
64877 SN 0253-6102
64878 J9 COMMUN THEOR PHYS
64879 JI Commun. Theor. Phys.
64880 PD APR 15
64881 PY 2001
64882 VL 35
64883 IS 4
64884 BP 501
64885 EP 504
64886 PG 4
64887 SC Physics, Multidisciplinary
64888 GA 436MM
64889 UT ISI:000168939700024
64890 ER
64891 
64892 PT J
64893 AU Lu, ZM
64894    Liu, YL
64895    Jiang, JB
64896 TI Experimental study on turbulent features in the negative transport
64897    region of asymmetric plane channel flow
64898 SO ACTA MECHANICA SINICA
64899 DT Article
64900 DE negative transport; asymmetric channel flow turbulent characteristics
64901 AB Turbulent features of streamwise and vertical components of velocity in
64902    the negative transport region of asymmetric plane channel flow have
64903    been studied experimentally in details. Experiments show that turbulent
64904    fluctuations in negative transport region are suppressed, and their
64905    probability distributions are far from Gaussian. Besides, the skewness
64906    factors attain their negative maxima at the position of the maximum
64907    mean velocity, whereas the flatness factors attain their positive
64908    maxima at the same position.
64909 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
64910 RP Lu, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
64911    Peoples R China.
64912 CR CIOFALO M, 1992, INT J NUMER METH FL, V15, P453
64913    ESKINAZI S, 1956, J AERONAUT SCI, V23, P23
64914    ESKINAZI S, 1969, PHYS FLUIDS, V12, P1988
64915    HANJALIC K, 1972, J FLUID MECH, V51, P301
64916    JIANG JB, 2000, ADV MECH, V30, P425
64917    LAUNDER BE, 1975, J FLUID MECHANICS 3, V68, P537
64918 NR 6
64919 TC 2
64920 SN 0567-7718
64921 J9 ACTA MECH SINICA
64922 JI Acta Mech. Sin.
64923 PD MAY
64924 PY 2001
64925 VL 17
64926 IS 2
64927 BP 125
64928 EP 132
64929 PG 8
64930 SC Engineering, Mechanical; Mechanics
64931 GA 437HR
64932 UT ISI:000168986700003
64933 ER
64934 
64935 PT J
64936 AU Zhang, Y
64937    Ji, YF
64938    Zhao, DQ
64939    Zhuang, YX
64940    Wang, RJ
64941    Pan, MX
64942    Dong, YD
64943    Wang, WH
64944 TI Glass forming ability and properties of Zr/Nb-based bulk metallic
64945    glasses
64946 SO SCRIPTA MATERIALIA
64947 DT Article
64948 DE metallic glasses; casting; acoustic measurements
64949 ID MECHANICAL-PROPERTIES; ALLOYS; CRYSTALLIZATION
64950 C1 Chinese Acad Sci, Inst Phys, Ctr Condensed Matter Phys, Beijing 100080, Peoples R China.
64951    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
64952    Chinese Acad Sci, Natl Micrograv Lab, Beijing 100080, Peoples R China.
64953 RP Zhang, Y, Chinese Acad Sci, Inst Phys, Ctr Condensed Matter Phys, POB
64954    603, Beijing 100080, Peoples R China.
64955 CR CONNER RD, 1998, ACTA MATER, V46, P6089
64956    ECKERT J, 1999, MATER SCI FORUM, V312, P3
64957    FAN C, 1999, MATER T JIM, V40, P42
64958    GREER AL, 1993, NATURE, V366, P303
64959    INOUE A, 1995, MATER T JIM, V36, P866
64960    LI Y, 1997, SCRIPTA MATER, V36, P783
64961    LIU W, 1999, PHYS REV B, V59, P11755
64962    LU ZP, 2000, J NON-CRYST SOLIDS, V270, P103
64963    PEKER A, 1993, APPL PHYS LETT, V63, P2341
64964    TURNBULL D, 1969, CONTEMP PHYS, V10, P473
64965    WANG WH, 1998, PHYS REV B, V57, P8211
64966    WANG WH, 1999, APPL PHYS LETT, V74, P1803
64967    WANG WH, 2000, ACTA METALL SINICA, V36, P329
64968    ZHANG Y, 1999, ACTA PHOTONICA SINIC, V28, P35
64969 NR 14
64970 TC 4
64971 SN 1359-6462
64972 J9 SCRIPTA MATER
64973 JI Scr. Mater.
64974 PD APR 17
64975 PY 2001
64976 VL 44
64977 IS 7
64978 BP 1107
64979 EP 1112
64980 PG 6
64981 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
64982    Engineering
64983 GA 433DE
64984 UT ISI:000168739400017
64985 ER
64986 
64987 PT J
64988 AU Lu, HQ
64989    Harko, T
64990    Mak, MK
64991 TI Cosmic no-hair conjecture in Einstein-Cartan theory
64992 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS D
64993 DT Article
64994 ID HOMOGENEOUS COSMOLOGICAL MODELS; POWER-LAW INFLATION; R2 COSMOLOGY;
64995    SPACETIME; SPIN
64996 AB We prove the cosmic no-hair conjecture in the Einstein-Cartan theory by
64997    taking into account the effects due to the spin of matter. If the
64998    ordinary matter forming the cosmological fluid satisfies the dominant
64999    and strong energy conditions and the anisotropy energy sigma (2) is
65000    larger than the spin energy S-2 (i.e. sigma (2) - S-2 greater than or
65001    equal to 0), then all initially expanding Bianchi cosmologies-except
65002    type IX- evolve toward the de Sitter spacetime on a Hubble expansion
65003    time root3/Lambda. The behavior of the Bianchi type IX Universe is
65004    similar, provided that the cosmological constant is larger than the
65005    half of the largest scalar spatial curvature R-(3)(max).
65006 C1 Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
65007    Shanghai Univ, Dept Phys, Shanghai, Peoples R China.
65008    Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
65009 RP Lu, HQ, Univ Hong Kong, Dept Phys, Pokfulam, Hong Kong, Hong Kong,
65010    Peoples R China.
65011 CR ABBOTT LF, 1984, NUCL PHYS B, V244, P541
65012    AMSTERDAMSKI P, 1985, PHYS REV D, V31, P3037
65013    BARROW JD, 1977, MON NOT R ASTRON SOC, V178, P625
65014    BICAK J, 1992, ABSTR C GEN REL CORD, V13, P12
65015    CHAMBERS CM, 1994, PHYS REV LETT, V73, P617
65016    COTSAKIS S, 1993, PHYS LETT B, V319, P69
65017    COTSAKIS S, 1998, CLASSICAL QUANT GRAV, V15, P2795
65018    DEMIANSKI M, 1987, PHYS REV D, V35, P1181
65019    FUTAMASE T, 1984, PHYS REV D, V29, P2783
65020    GIBBONS GW, 1977, PHYS REV D, V15, P2738
65021    GUTH AH, 1981, PHYS REV D, V23, P347
65022    HEHL FW, 1976, REV MOD PHYS, V48, P393
65023    JENSEN LG, 1986, PHYS REV D, V34, P831
65024    KASPER U, GRQC9410030
65025    KITADA Y, 1992, PHYS REV D, V45, P1416
65026    KLUSKE S, GRQC9503021
65027    KONG KH, 1998, ASTROPHYS SPACE SCI, V260, P521
65028    LINDE AD, 1982, PHYS LETT B, V108, P389
65029    LINDE AD, 1983, PHYS LETT B, V129, P177
65030    LINDE AD, 1984, REP PROG PHYS, V47, P925
65031    LU HQ, 1995, CLASSICAL QUANT GRAV, V12, P2755
65032    LU HQ, 1996, 21 CENT CHIN ASTR C, P473
65033    LUCCHIN F, 1985, PHYS REV D, V32, P1316
65034    MAEDA K, 1988, PHYS REV D, V37, P858
65035    MAEDA K, 1992, ABSTR C GEN REL CORD, V13, P296
65036    MARTINEZGONZALE.E, 1986, PHYS LETT B, V167, P37
65037    MIJIC MB, 1986, PHYS REV D, V34, P2934
65038    MONDAINI R, 1993, INT J MOD PHYS D, V2, P47
65039    MOSS IG, 1986, PHYS LETT B, V178, P15
65040    OBUKHOV YN, 1987, CLASSICAL QUANT GRAV, V4, P1633
65041    ROTHMAN T, 1985, PHYS LETT B, V159, P256
65042    ROTHMAN T, 1986, PHYS LETT B, V180, P19
65043    STAROBINSKY AA, 1980, PHYS LETT B, V91, P99
65044    STEIGMAN G, 1983, PHYS LETT B, V128, P129
65045    TORII T, 1999, PHYS REV D, V59
65046    TURNER MS, 1986, PHYS REV LETT, V57, P2237
65047    WALD RM, 1983, PHYS REV D, V28, P2118
65048    YOKOYAMA J, 1990, PHYS REV D, V41, P1047
65049    ZARDECKI A, 1985, PHYS REV D, V31, P718
65050 NR 39
65051 TC 3
65052 SN 0218-2718
65053 J9 INT J MOD PHYS D
65054 JI Int. J. Mod. Phys. D
65055 PD JUN
65056 PY 2001
65057 VL 10
65058 IS 3
65059 BP 315
65060 EP 324
65061 PG 10
65062 SC Astronomy & Astrophysics
65063 GA 433XQ
65064 UT ISI:000168786300006
65065 ER
65066 
65067 PT J
65068 AU Gu, GQ
65069    Hui, PM
65070 TI Interaction between particles and particle chains in electrorheological
65071    fluids
65072 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
65073 DT Article
65074 ID SUSPENSIONS; CONDUCTIVITY; SIMULATION; SPHERES
65075 AB The electric potential in a granular system consisting of spherical
65076    inclusions in the presence of an external applied electric field is
65077    studied in detail within the framework of the Rayleigh identity. The
65078    effects of induced charges on the inclusions are taken into account
65079    explicitly. The method, in principle, includes the effects of all
65080    multipoles. The method is applied to study the interaction between two
65081    inclusions. The standard form of interaction between inclusions widely
65082    used in studying ER fluids is recovered as an approximation of our
65083    general approach. We then apply the method to a chain of inclusions.
65084    Analytic expressions for the electrostatic energy per inclusion and the
65085    electric field are obtained for the case in which the chain is parallel
65086    to the applied field. Our result reduces to the form used in the
65087    literature when appropriate approximation is taken. The method is
65088    further extended to study the interaction between chains of inclusions.
65089    An approximate expression is obtained for the force between two chains
65090    of inclusions. Our approach provides a rigorous framework for
65091    determining the interaction between inclusions and chains of inclusions
65092    to arbitrary accuracy.
65093 C1 Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 201800, Peoples R China.
65094    Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China.
65095 RP Gu, GQ, Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 201800,
65096    Peoples R China.
65097 CR GERARDY JM, 1982, PHYS REV B, V25, P4204
65098    GU GQ, UNPUB
65099    GU GQ, 1998, PHYS REV B, V58, P3057
65100    HALSEY TC, 1990, J STAT PHYS, V61, P1257
65101    JACKSON JD, 1975, CLASSICL ELECTRODYNA
65102    KLINGENBERG DJ, 1989, J CHEM PHYS, V91, P7888
65103    KLINGENBERG DJ, 1991, J CHEM PHYS, V94, P6160
65104    KLINGENBERG DJ, 1998, MRS BULL, V23, P30
65105    MCPHEDRAN RC, 1978, P ROY SOC LOND A MAT, V359, P45
65106    PHULE PP, 1998, MRS BULL, V23, P19
65107    RAYLEIGH, 1892, PHILOS MAG, V34, P481
65108    TAO R, 1991, PHYS REV LETT, V67, P398
65109 NR 12
65110 TC 2
65111 SN 0217-9792
65112 J9 INT J MOD PHYS B
65113 JI Int. J. Mod. Phys. B
65114 PD MAR 20
65115 PY 2001
65116 VL 15
65117 IS 6-7
65118 SI Sp. Iss. SI
65119 BP 1033
65120 EP 1041
65121 PG 9
65122 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
65123 GA 434TQ
65124 UT ISI:000168832300058
65125 ER
65126 
65127 PT J
65128 AU Xiang, ZH
65129    Jiang, L
65130    Kang, ZM
65131 TI Transient expression of somatostatin mRNA in developing ganglion cell
65132    layers of rat retina
65133 SO DEVELOPMENTAL BRAIN RESEARCH
65134 DT Article
65135 DE somatostatin; ganglion cell; retina; development; in situ
65136    hybridization; immunocytochemistry
65137 ID INSITU HYBRIDIZATION; CAT RETINA; IMMUNOREACTIVE CELLS; VISUAL-SYSTEM;
65138    MESSENGER-RNA; RABBIT RETINA; NEURONS; DEATH; DIFFERENTIATION; PEPTIDE
65139 AB Somatostatin (SOM) mRNA in developing ganglion cell layer (GCL)
65140    detected by in situ hybridization histochemistry anti SOM peptide in
65141    developing optic chiasma and optic tract detected by
65142    immunocytochemistry were monitored to explore whether ganglion cells
65143    expressing SOM project to the visual center. Most of these cells in the
65144    developing GCL expressed SOM transiently from embryonic day 13 (E13) to
65145    E21. The cells expressing SOM mRNA initially followed a
65146    central-to-peripheral pattern of development. The cells expressing SOM
65147    mRNA in the retinas of fetuses became detectable at E13. From E14 to
65148    E17 the number of cells expressing SOM mRNA increased rapidly. At E17
65149    most of the cells in the developing GCL expressed SOM mRNA. From E18 to
65150    postnatal days the positive cells became sparse except at the postnatal
65151    day 0 (PND0) the positive cells decreased dramatically in comparison
65152    with that at the E21. At PND15, the positive cells only can be found in
65153    the inner neuroblastic layer and in the ganglion cell layer. At PND20
65154    the distribution pattern and the number of the positive cells were
65155    essentially the same as that in adult rat. SOM immunoreactivity was
65156    detectable at E16 in the developing optic chiasma and optic tract; the
65157    majority of the fibers in these area were SOM positive. From E16 to E18
65158    the density of the immunostaining increased rapidly, whereas from E19
65159    to E21 the density decreased. At PND0 no positive fibers were seen. The
65160    transient presence of SOM in most of the ganglion cells in the
65161    developing ganglion cell layer has prompted us to study the rc,le of
65162    SOM in generation and differentiation of the retinal ganglion cells,
65163    and formation of the retina-visual center projections. (C) 2001
65164    Elsevier Science B.V. All rights reserved.
65165 C1 Second Military Med Univ, Dept Histol & Embryol, Shanghai 200433, Peoples R China.
65166    Shanghai Univ Sci & Technol, Elect Engn Coll, Shanghai 200433, Peoples R China.
65167 RP Xiang, ZH, Second Military Med Univ, Dept Histol & Embryol, Shanghai
65168    200433, Peoples R China.
65169 CR BODENANT C, 1991, NEUROSCIENCE, V41, P595
65170    ELLIS JP, 1983, P SOC EXP BIOL MED, V172, P463
65171    ENGELMANN R, 1996, EUR J NEUROSCI, V8, P220
65172    FAWCETT JW, 1984, P NATL ACAD SCI USA, V81, P5589
65173    FERRIERO DM, 1987, BRAIN RES, V431, P207
65174    FERRIERO DM, 1990, DEV BRAIN RES, V57, P15
65175    FINLEY JCW, 1978, AM J ANAT, V153, P483
65176    FONTANESI G, 1997, DEV BRAIN RES, V103, P119
65177    GOODMAN RH, 1982, J BIOL CHEM, V257, P1156
65178    HOEFLER H, 1986, HISTOCHEM J, V18, P597
65179    HOFLER H, 1987, ACTA HISTOCHEM S, V34, P101
65180    HUTSLER JJ, 1995, J COMP NEUROL, V361, P152
65181    INAGAKI S, 1989, MOL BRAIN RES, V6, P289
65182    ISHIMOTO I, 1982, J HIRN FORSCHUNG, V23, P127
65183    JU G, 1987, CELL TISSUE RES, V247, P417
65184    KATZ DM, 1992, J NEUROBIOL, V23, P855
65185    KIRSCH B, 1979, CELL TISSUE RES, V204, P127
65186    KIYAMA H, 1990, NEUROSCIENCE, V38, P223
65187    KUNGEL M, 1997, DEV BRAIN RES, V101, P107
65188    LARSEN JNB, 1990, VISUAL NEUROSCI, V5, P441
65189    LUGO N, 1997, CELL BIOL INT, V21, P447
65190    MCCABE KL, 1999, DEVELOPMENT, V126, P5713
65191    MITROFANIS J, 1989, NEUROSCI LETT, V104, P209
65192    REESE BE, 1992, NEUROSCIENCE, V46, P419
65193    RICKMAN DW, 1996, J COMP NEUROL, V365, P491
65194    SAGAR SM, 1987, J COMP NEUROL, V266, P291
65195    SCHWARTZ JP, 1998, PERSPECT DEV NEUROBI, V5, P427
65196    SENGELAUB DR, 1982, J COMP NEUROL, V204, P311
65197    TRAINA G, 1994, VISUAL NEUROSCI, V11, P165
65198    WHITE CA, 1991, J COMP NEUROL, V304, P1
65199    WHITE CA, 1992, J COMP NEUROL, V317, P129
65200    XIANG Z, 1997, CHIN J ANAT, V20, P21
65201    XIANG ZH, 1998, BRAIN RES, V813, P390
65202    YOUNG RW, 1984, J COMP NEUROL, V229, P362
65203 NR 34
65204 TC 8
65205 SN 0165-3806
65206 J9 DEVELOP BRAIN RES
65207 JI Dev. Brain Res.
65208 PD MAY 31
65209 PY 2001
65210 VL 128
65211 IS 1
65212 BP 25
65213 EP 33
65214 PG 9
65215 SC Developmental Biology; Neurosciences
65216 GA 434ET
65217 UT ISI:000168802700004
65218 ER
65219 
65220 PT J
65221 AU Liu, YR
65222    Liu, ZR
65223    Zheng, YA
65224 TI Attractors of nonautonomous Schrodinger equations
65225 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
65226 DT Article
65227 DE nonautonomous Schrodinger equations; uniform attractor; Hausdorff
65228    dimension
65229 AB The long-time behaviour of a two-dimensional nonautonomous nonlinear
65230    Schrodinger equation is considered. The existence! of uniform attractor
65231    is proved and the upper bound of the uniform attractor's Housdorff
65232    dimension is given.
65233 C1 Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China.
65234    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
65235    Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China.
65236 RP Liu, YR, Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China.
65237 CR BABIN AV, 1992, ATTRACTORS EVOLUTION
65238    CHEPYZHOV VV, 1994, J MATH PURE APPL, V73, P279
65239    GUO BL, 1995, NONLINEAR EVOLUTION
65240    HALE JK, 1987, MATH SURVEYS MONOGRA, V25
65241    MIRANVILLE A, 1997, NONLINEARITY, V10, P1047
65242    PAZY A, 1983, APPL MATH SCI, V40
65243    TEMAM R, 1988, APPL MATH SCI, V68
65244 NR 7
65245 TC 0
65246 SN 0253-4827
65247 J9 APPL MATH MECH-ENGL ED
65248 JI Appl. Math. Mech.-Engl. Ed.
65249 PD FEB
65250 PY 2001
65251 VL 22
65252 IS 2
65253 BP 180
65254 EP 189
65255 PG 10
65256 SC Mathematics, Applied; Mechanics
65257 GA 435GF
65258 UT ISI:000168868500007
65259 ER
65260 
65261 PT J
65262 AU Zhou, J
65263    Pun, EYB
65264    Chung, PS
65265    Zhang, XH
65266 TI Z-scan measurement of a novel amorphous molecular material
65267 SO OPTICS COMMUNICATIONS
65268 DT Article
65269 DE polymer; Z-scan; nonlinear optics; saturation absorption
65270 ID OPTICAL NONLINEARITIES; WAVE-GUIDE
65271 AB The nonlinear optical refractive and absorption of the novel amorphous
65272    molecular material. 5.5 ' -bis(dimesitylboryl)-2,2 ' -bithiophene have
65273    been investigated by using the Z-scan technique with a
65274    nanosecond-pulsed Nd:YAG laser at its second harmonic (532 nm)
65275    radiation. The nonlinear transmission characteristics exhibit saturable
65276    absorption at 532 nm and are explained by using the three-level
65277    saturable model. The saturation intensity, the real and imaginary parts
65278    of the nonlinear refraction index along with their sign were
65279    determined. These results indicate that BMB-2T is promising material
65280    for photonic applications. (C) 2001 Published by Elsevier Science B.V.
65281 C1 Shanghai Univ Sci & Technol, Inst Engn Phys, Shandong 271019, Peoples R China.
65282    City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China.
65283    Chinese Acad Sci, Inst Photography Chem, Beijing 100101, Peoples R China.
65284 RP Zhou, J, Shanghai Univ Sci & Technol, Inst Engn Phys, Shandong 271019,
65285    Peoples R China.
65286 CR BRANGER C, 1996, J MATER CHEM, V6, P555
65287    BREDAS JL, 1994, CHEM REV, V94, P243
65288    DEMENICIS L, 1997, J OPT SOC AM B, V14, P609
65289    GANG Y, 1998, ADV MATER, V11, P1431
65290    GUBLER U, 1998, APPL PHYS LETT, V73, P2396
65291    KAJZAR F, 1987, NONLINEAR OPTICAL PR, V2, P51
65292    KUZYK M, 1996, ORGANIC THIN FILMS W, P759
65293    MA H, 1995, APPL PHYS LETT, V66, P1581
65294    MA SJ, 1998, OPT COMMUN, V149, P8
65295    MOHAN RK, 1997, OPT COMMUN, V144, P322
65296    NODA T, 1999, ADV MATER, V11, P283
65297    NORMAN P, 1999, J CHEM PHYS, V111, P7758
65298    OLIVEIRA LC, 1996, JPN J APPL PHYS 1, V35, P2649
65299    PETROV DV, 1994, APPL PHYS LETT, V65, P1067
65300    PRASAD PN, 1991, INTRO NONLINEAR OPTI
65301    SAMOC M, 1998, J OPT SOC AM B, V15, P817
65302    SHEIKBAHAE M, 1990, IEEE J QUANTUM ELECT, V26, P760
65303    WANG J, 1994, J OPT SOC AM B, V11, P1009
65304    WANG WS, 1999, IEEE PHOTONIC TECH L, V11, P51
65305    XIA T, 1994, OPT LETT, V19, P317
65306    YANG L, 1992, OPT LETT, V17, P323
65307    ZHOU J, 1997, OPT LETT, V22, P1482
65308 NR 22
65309 TC 5
65310 SN 0030-4018
65311 J9 OPT COMMUN
65312 JI Opt. Commun.
65313 PD MAY 8
65314 PY 2001
65315 VL 191
65316 IS 3-6
65317 BP 427
65318 EP 433
65319 PG 7
65320 SC Optics
65321 GA 431FV
65322 UT ISI:000168621900034
65323 ER
65324 
65325 PT J
65326 AU Yu, LM
65327    Wang, Q
65328 TI Analysis of the existence of magnetostatic solitons in ferromagnetic
65329    films under the influence of carriers
65330 SO ACTA PHYSICA SINICA
65331 DT Article
65332 DE magnetostatic solitons; carriers; ferromagnetic film; magnetostatic
65333    surface wave
65334 ID MICROWAVE-ENVELOPE SOLITONS; IRON-GARNET FILMS
65335 AB Under the influence of semiconductor carriers, within certain
65336    frequencies, along the direction of propagation perpendicular to the
65337    external magnetic field, magnetostatic surface wave can develop into
65338    magnetostatic solitons, with the group velocity and phase velocity
65339    being opposite to each other, and the magnitude of the velocity changes
65340    with the carriers density.
65341 C1 Shanghai Univ, Coll Pure Sci, Dept Phys, Shanghai 200436, Peoples R China.
65342 RP Yu, LM, Shanghai Univ, Coll Pure Sci, Dept Phys, Shanghai 200436,
65343    Peoples R China.
65344 CR AWAI I, 1976, JPN J APPL PHYS, V15, P1297
65345    BOARDMAN AD, 1993, PHYS REV B, V48, P13602
65346    BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
65347    CHEN M, 1994, PHYS REV B, V49, P12773
65348    LIGHTHILL MJ, 1965, J I MATH APPL, V1, P269
65349    TSANKOV MA, 1994, J APPL PHYS, V76, P4274
65350 NR 6
65351 TC 0
65352 SN 1000-3290
65353 J9 ACTA PHYS SIN-CHINESE ED
65354 JI Acta Phys. Sin.
65355 PD MAY
65356 PY 2001
65357 VL 50
65358 IS 5
65359 BP 958
65360 EP 963
65361 PG 6
65362 SC Physics, Multidisciplinary
65363 GA 430VF
65364 UT ISI:000168595600031
65365 ER
65366 
65367 PT J
65368 AU Hua, ZZ
65369    Xu, HY
65370    Zhou, GY
65371    Liu, JF
65372    Huang, HM
65373    Ding, WX
65374 TI Analyses of thermal stress and fracture during cryopreservation of
65375    blood vessel
65376 SO SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES
65377 DT Article
65378 DE blood vessel; thermal stress; fracture; cryopreservation
65379 ID ARTERIES
65380 AB The occurrence of fractures in the vessel wall has been a major problem
65381    for human blood vessel cryopreservation. The large volumetric expansion
65382    of water during crystallization produces great inner stresses. To solve
65383    these complicated heat transfer and thermal stress problems, a model
65384    and an analytic method are presented in this paper, with which
65385    transient temperature field, the transient stress field inside the
65386    blood vessels during freezing can be calculated and analyzed, and the
65387    probable cracks or fractures can be predicted. The analytic results of
65388    sheep thoracic artery are consistent with the experimental observations
65389    of fractures.
65390 C1 Shanghai Univ Sci & Technol, Inst Cryobiol & Food Sci, Shanghai 200093, Peoples R China.
65391    Shanghai Second Med Univ, Shanghai 200092, Peoples R China.
65392 RP Hua, ZZ, Shanghai Univ Sci & Technol, Inst Cryobiol & Food Sci,
65393    Shanghai 200093, Peoples R China.
65394 CR BATESON EAJ, 1994, CRYOLETT, V15, P15
65395    CALDWELL J, 1998, NUMER HEAT TR B-FUND, V33, P99
65396    HU HY, 2000, J CRYOGENICS, P22
65397    HUA TC, 1994, CRYOBIOMEDICAL TECHN, P20
65398    PEGG DE, 1997, CRYOBIOLOGY, V34, P183
65399    RABIN Y, 1996, CRYOBIOLOGY, V33, P276
65400    SHI X, 1998, T ASAE, V41, P1407
65401    SHI X, 1999, T ASME, V120, P720
65402    TIMOSHENKO S, 1970, THEORY ELASTICITY, P443
65403    ZHANG J, 2000, J ENG THERMOPHYSICS, V21, P350
65404    ZHAO MJ, 1995, THESIS SHANGHAI 2 ME
65405 NR 11
65406 TC 4
65407 SN 1006-9321
65408 J9 SCI CHINA SER E
65409 JI Sci. China Ser. E-Technol. Sci.
65410 PD APR
65411 PY 2001
65412 VL 44
65413 IS 2
65414 BP 158
65415 EP 163
65416 PG 6
65417 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary
65418 GA 429HF
65419 UT ISI:000168509900006
65420 ER
65421 
65422 PT J
65423 AU Liu, WQ
65424    Li, Q
65425    Zhou, BX
65426 TI Discussion on corrosion transition mechanism of zircaloy
65427 SO RARE METAL MATERIALS AND ENGINEERING
65428 DT Review
65429 DE zircaloy; corrosion; transition; phase transformation
65430 ID RESISTANCE
65431 AB Several hypotheses on the corrosion transition phenomenon of zircaloy
65432    are presented. Among those, the phase transformation mechanism suggests
65433    that the oxide growth rate of zircaloy is mainly controlled by the
65434    transformation from t-ZrO2 to m-ZrO2 near the oxide/metal interface,
65435    and the t-m transfomation is enhanced due to stress relaxation in 400
65436    degreesC, 10.3 MPa superheated steam or triggered by the interaction of
65437    OH- with oxygen vacanices in 300 degreesC aqueous lithium hydroxide
65438    solution. More attention is paid to this hypothesis and the mechanism
65439    is discussed in this papier. Lastly, authors' view is put forwards: the
65440    break of the barrier leger of oxide-film, which may be caused by the
65441    compressive stress reaching a definite value or the degradation of its
65442    mechanical properties because of the lithium coming into the oxide
65443    film, will bring about the corrosion acceleration and transition
65444    phenomenon.
65445 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
65446 RP Liu, WQ, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
65447 CR ANADA H, 1996, ZIRCONIUM NUCL IND, P35
65448    BEIE HJ, 1994, ZIRCONIUM NUCL IND, P615
65449    GARZAROLLI F, 1991, ZIRC NUCL IND 9 INT, P395
65450    GODLESWSKI J, 1991, ZIRC NUCL IND 9 INT, P416
65451    GODLEWSKI J, 1994, ZIRCONIUM NUCL IND, P663
65452    KIDO T, 2000, ZIRCONIUM NUCL IND, P773
65453    KIM YS, 1999, J NUCL MATER, V270, P165
65454    LI ZK, 1999, RARE METAL MAT ENG, V28, P101
65455    LI ZK, 1999, RARE METAL MAT ENG, V28, P380
65456    PECHEUR D, 1996, ZIRCONIUM NUCL IND, P94
65457    PECHEUR D, 2000, ZIRCONIUM NUCL IND, P793
65458    SAARIO T, 1993, REZ, P4
65459    ZHOU BX, 1991, HIGH TEMP CORR PROT, P121
65460    ZHOU BX, 2000, NUCL POWER ENG, V21, P439
65461 NR 14
65462 TC 5
65463 SN 1002-185X
65464 J9 RARE METAL MAT ENG
65465 JI Rare Metal Mat. Eng.
65466 PD APR
65467 PY 2001
65468 VL 30
65469 IS 2
65470 BP 81
65471 EP 84
65472 PG 4
65473 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
65474    Engineering
65475 GA 430DC
65476 UT ISI:000168557400001
65477 ER
65478 
65479 PT J
65480 AU Liu, TY
65481    Zhang, QR
65482    Mi, XW
65483    Feng, XQ
65484 TI A new absorption band and the decomposition of the 350 nm absorption
65485    band of PbWO4
65486 SO PHYSICA STATUS SOLIDI A-APPLIED RESEARCH
65487 DT Article
65488 ID SINGLE-CRYSTALS
65489 AB Single crystal PbWO4 has been grown by the improved Bridgman method.
65490    The absorption spectra in polarized light of the sample with the
65491    crystal c-axis parallel to its surface have been measured. The
65492    absorption spectra of the as-grown crystal show a 350 nm weak band with
65493    dichroism in polarized light. Subtracting the polarized light
65494    absorption spectrum with the electric vector E parallel to the c-axis
65495    by that one with E perpendicular to the c-axis, the polarized light
65496    difference spectrum is obtained. The polarized light difference
65497    spectrum indicates that the 350 nm band has two peaks and can be
65498    decomposed into two bands peaking at 330 and 360 nm, respectively. In
65499    order to determine the detailed structure of the 350 nm band, annealing
65500    experiments in air condition of the as grown crystal at different
65501    temperatures were performed. Difference spectra of the annealed crystal
65502    have been obtained by subtracting the absorption spectra of the crystal
65503    annealed at different annealing temperatures by that one of the
65504    as-grown crystal. The absorption spectra features also indicate that
65505    the 350 nm absorption band is composed of two bands peaking at 330 and
65506    360 nm, respectively. The annealing properties of the 330 nm and the
65507    350 nm band are obviously different. We come to the conclusion that the
65508    350 nm band is a composed band and can be decomposed into two bands
65509    peaking at 360 and 330 nm, respectively. The two bands are suggested to
65510    belong to different color centers.
65511 C1 Shanghai Univ Sci & Technol, Dept Basic Sci, Shanghai 200093, Peoples R China.
65512    Chinese Acad Sci, Shanghai Inst Ceram, Lab Funct Inorgan Mat, Shanghai 200050, Peoples R China.
65513 RP Liu, TY, Shanghai Univ Sci & Technol, Dept Basic Sci, 516 Jun Gong Rd,
65514    Shanghai 200093, Peoples R China.
65515 CR AAMIO PA, 1993, NUCL INCTRUM METHO A, V336, P98
65516    ANNENKOV AN, 1996, PHYS STATUS SOLIDI A, V156, P493
65517    KOBAYASHI M, 1993, NUCL INSTRUM METH A, V333, P429
65518    KORZHIK MV, 1996, P INT C IN SCINT THE, P241
65519    NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311
65520    NIKL M, 1996, PHYS STATUS SOLIDI B, V196, K7
65521    NIKL M, 1997, J APPL PHYS, V82, P5758
65522    NIKL M, 1997, MATER SCI FORUM, V239, P271
65523    VANLOO W, 1975, PHYS STATUS SOLIDI A, V28, P227
65524    XIQI F, 1997, J INORGANIC MAT, V12, P449
65525 NR 10
65526 TC 10
65527 SN 0031-8965
65528 J9 PHYS STATUS SOLIDI A-APPL RES
65529 JI Phys. Status Solidi A-Appl. Res.
65530 PD APR 16
65531 PY 2001
65532 VL 184
65533 IS 2
65534 BP 341
65535 EP 348
65536 PG 8
65537 SC Physics, Condensed Matter
65538 GA 430DW
65539 UT ISI:000168559200011
65540 ER
65541 
65542 PT J
65543 AU Gu, LW
65544    Weng, XC
65545 TI Antioxidant activity and components of Salvia plebeia R.Br. - a Chinese
65546    herb
65547 SO FOOD CHEMISTRY
65548 DT Article
65549 DE Salvia plebeia R.Br.; herb; antioxidants; royleanonic acid; hispidulin;
65550    eupatorin
65551 AB The antioxidant properties of the extracts from Salvia plebeia R.Br.
65552    which was screened out of over 700 species of Chinese herbs, were
65553    tested in lard at 110 degreesC using the Oxidative Stability
65554    Instrument. The ethyl acetate extract of the herb was re-extracted by
65555    solvents (with increasing polarity) into petroleum ether-, diethyl
65556    ether-, acetone-and-ethanol-soluble fractions. The fractions obtained
65557    were then separated according to their acidic properties. From the most
65558    active sub-fractions, namely the acidic sub-fraction of the petroleum
65559    ether-soluble fraction and the weakly acidic sub-fraction of the
65560    diethyl ether-soluble fraction, three antioxidant components were
65561    isolated and identified as royleanonic acid, hispidulin and eupatorin.
65562    The royleanonic acid was a novel compound and eupatorin was isolated
65563    for the first time from the herb. Though royleanonic acid and
65564    hispidulin prolonged the induction period significantly, their
65565    antioxidant activities were much weaker than the crude extracts,
65566    implying that synergistic effects might be responsible for the high
65567    activity of the crude extracts. (C) 2001 Elsevier Science Ltd. All
65568    rights reserved.
65569 C1 Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China.
65570 RP Weng, XC, Shanghai Univ, Sch Life Sci, Shangda Rd 99, Shanghai 200436,
65571    Peoples R China.
65572 CR *AOCS, 1994, 12B92 AOCS CD
65573    *JIANGS NEW MED CO, 1993, DICT CHIN TRAD
65574    ADAMS JH, 1976, PLANTA MED, V31, P86
65575    ANGELO AJ, 1996, CRIT REV FOOD SCI NU, V36, P175
65576    CHONG PZ, 1987, APPL MASS SPECTRUM N
65577    DAS NP, 1990, J AM OIL CHEM SOC, V67, P253
65578    DZIEDZIC SZ, 1983, FOOD CHEM, V11, P161
65579    GORDON MH, 1995, J AGR FOOD CHEM, V43, P1784
65580    GU LW, 1997, CHINA OILS FATS, V22, P37
65581    GU LW, 2000, THESIS WUXI U LIGHT
65582    HERNANDEZ M, 1988, PHYTOCHEMISTRY, V27, P3297
65583    HOPIA AI, 1996, J AGR FOOD CHEM, V44, P2030
65584    HUANG L, 1988, UV SPECTRUM ORGANIC
65585    KARTNIG T, 1977, PLANTA MED, V32, P347
65586    KIM SY, 1994, J AM OIL CHEM SOC, V71, P633
65587    MARKHAM KR, 1982, TECHNIQUE FLAVONOID
65588    MICHAVILA A, 1988, PHYTOCHEMISTRY, V25, P268
65589    SAUCIER CT, 1999, J AGR FOOD CHEM, V47, P4491
65590    SU JD, 1986, AGR BIOL CHEM TOKYO, V50, P199
65591    SU JD, 1987, AGR BIOL CHEM TOKYO, V51, P2801
65592    SUKH D, 1986, CRC HDB TERPENOIDS D
65593    WENG XC, 1998, J CHINESE CEREAL OIL, V13, P46
65594    WENKERT E, 1965, J ORG CHEM, V30, P2931
65595    ZHANG HY, 1998, J AM OIL CHEM SOC, V75, P1705
65596    ZHANG KQ, 1990, J AGR FOOD CHEM, V38, P1194
65597 NR 25
65598 TC 13
65599 SN 0308-8146
65600 J9 FOOD CHEM
65601 JI Food Chem.
65602 PD MAY
65603 PY 2001
65604 VL 73
65605 IS 3
65606 BP 299
65607 EP 305
65608 PG 7
65609 SC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics
65610 GA 428TA
65611 UT ISI:000168475700006
65612 ER
65613 
65614 PT J
65615 AU Cheng, CJ
65616    Zhang, NH
65617 TI Dynamical behavior of viscoelastic cylindrical shells under axial
65618    pressures
65619 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
65620 DT Article
65621 DE Karman-Donnell theory; viscoelastic cylindrical shell; chaos;
65622    hyperchaos; strange attractor; limit cycle
65623 ID THIN PLATES
65624 AB The hypotheses of the Karman-Donnell theory of thin shells with large
65625    deflections and the Boltzmann laws for isotropic linear, viscoelastic
65626    materials, the constitutive equations of shallow shells are first
65627    derived. Then the governing equations for the deflection and stress
65628    function are formulated by using the procedure similar to establishing
65629    the Karman equations of elastic thin plates. Introducing proper
65630    assumptions, an approximate theory for viscoelastic cylindrical shells
65631    under axial pressures can be obtained. Finally, the dynamical behavior
65632    is studied in detail by using several numerical methods. Dynamical
65633    properties, such ns, hyperchaos, chaos, strange attractor, limit cycle
65634    etc., are discovered.
65635 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
65636 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
65637    Shanghai 200072, Peoples R China.
65638 CR BROTSKAYA VY, 1995, MECH SOLIDS, V30, P139
65639    CHENG CJ, 1991, BUCKLING BIFURCATION
65640    CHENG CJ, 1998, ACTA MECH SINICA, V30, P690
65641    CHENG CJ, 1998, INT J SOLIDS STRUCT, V35, P4491
65642    DING R, 1997, THESIS LANZHOU U LAN
65643    DROZDOV A, 1993, MECH RES COMMUN, V20, P481
65644    KUBICEK M, 1983, COMPUTATIONAL METHOD
65645    MINAKOVA NI, 1978, MECH SOLIDS, V13, P134
65646    POTAPOV VD, 1978, J APPL MECH TECH PHY, V18, P586
65647    SHIMADA I, 1979, PROG THEOR PHYS, V61, P1605
65648    XU ZL, 1988, THEORY ELASTICITY
65649    ZHANG NH, 1998, COMPUT METHOD APPL M, V165, P307
65650 NR 12
65651 TC 12
65652 SN 0253-4827
65653 J9 APPL MATH MECH-ENGL ED
65654 JI Appl. Math. Mech.-Engl. Ed.
65655 PD JAN
65656 PY 2001
65657 VL 22
65658 IS 1
65659 BP 1
65660 EP 9
65661 PG 9
65662 SC Mathematics, Applied; Mechanics
65663 GA 428VQ
65664 UT ISI:000168482700001
65665 ER
65666 
65667 PT J
65668 AU Zheng, LP
65669    Wang, SJ
65670    Liao, YS
65671    Feng, ZJ
65672 TI CO2 gas pools in Jiyang sag, China
65673 SO APPLIED GEOCHEMISTRY
65674 DT Article
65675 ID MID-ATLANTIC RIDGE; NATURAL GASES; ISOTOPIC COMPOSITION; VOLATILE
65676    FLUXES; SUBDUCTION-ZONE; CARBON ISOTOPES; HELIUM; MANTLE; SYSTEMATICS;
65677    VOLCANO
65678 AB The CO2 gas pools of Jiyang sag are located along the Gaoqing-Pingnan
65679    fault within a region of alkaline basalts. The concentration of CO2 in
65680    the gas pools is in the range of 68.85-96.99%. All of the geochemical
65681    tracers for the CO2 gas pools support the suggestion that CO2 was
65682    mainly derived from mantle degassing. The delta C-13 values of CO2 in
65683    the gas pools are in the range of -5.67-3.41%, which are higher than
65684    those of organogenic CO2, and near to those of abiogenic CO2. Their
65685    He-3/He-4 ratios are 2.80-4.47x10(6), i.e. the R/Ra ratios are
65686    2.00-3.19, showing that the Jiyang sag had undergone strong mantle
65687    degassing. CO2/He-3 ratios are 0.59-0.89x10(9), which are identical to
65688    those for N-MORB, indicating that CO2 in these CO2 gas pools was mainly
65689    derived from the mantle. Accompanying the intrusion of mantle-derived
65690    magma, the mantle-derived CO2 migrated upwards along deep faults and
65691    was trapped in advantageous structures forming gas pools. (C) 2001
65692    Elsevier Science Ltd. All rights reserved.
65693 C1 Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China.
65694    Chinese Acad Sci, Inst Geochem, State Key Lab Environm Geochem, Guiyang 550002, Peoples R China.
65695    Shengli Oil Co, Res Inst Geol Sci, Dongying, Peoples R China.
65696    Nanjing Univ, Dept Earth Sci, Nanjing 210008, Peoples R China.
65697 RP Zheng, LP, Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072,
65698    Peoples R China.
65699 CR *IGSSB, 1987, TANCH LUJ FAULTS
65700    CHU X, 1995, CHINESE SCI BULL, P62
65701    DAI J, 1995, INORGANIC GASES FORM
65702    DAI JX, 1993, THESIS CHICAGO
65703    EXLEY RA, 1986, EARTH PLANET SC LETT, V78, P189
65704    FROST DJ, 1997, GEOCHIM COSMOCHIM AC, V61, P1565
65705    GERLACH TM, 1990, GEOCHIM COSMOCHIM AC, V54, P2051
65706    HENNECKE EW, 1975, EARTH PLANET SC LETT, V27, P346
65707    HOEFS J, 1979, STABLE ISOTOPE GEOCH
65708    HUNT JM, 1979, PETROLEUM GEOCHEMIST, P162
65709    JAMBON A, 1987, CHEM GEOL, V62, P177
65710    JAVOY M, 1986, CHEM GEOL, V57, P41
65711    JAVOY M, 1991, EARTH PLANET SC LETT, V107, P598
65712    JINXING D, 1998, MINERAL MAG A, V62, P716
65713    LI D, 1982, PETROLEUM EXPLORATIO, V2, P1
65714    LUPTON JE, 1983, ANNU REV EARTH PL SC, V11, P371
65715    MA X, 1987, LITHOSPHERIC DYNAMIC
65716    MAMYRIN BA, 1984, HELIUM ISOTOPES NATU
65717    MARTY B, 1987, EARTH PLANET SC LETT, V83, P16
65718    MARTY B, 1989, CHEM GEOL, V76, P25
65719    MARTY B, 1998, CHEM GEOL, V145, P233
65720    MATTEY DP, 1990, CONTRIB MINERAL PETR, V104, P492
65721    NAGAO K, 1981, EARTH PLANET SC LETT, V53, P175
65722    NISHIO Y, 1998, EARTH PLANET SC LETT, V154, P127
65723    ONIONS RK, 1988, EARTH PLANET SC LETT, V90, P331
65724    PANKINA RG, 1978, INT GEOL REV, V21, P535
65725    PINEAU F, 1976, EARTH PLANET SC LETT, V29, P413
65726    PINEAU F, 1983, EARTH PLANET SC LETT, V62, P239
65727    PINEAU F, 1990, GEOCHIM COSMOCHIM AC, V54, P217
65728    POREDA RJ, 1988, CHEM GEOL, V71, P199
65729    SANO Y, 1994, APPL GEOCHEM, V9, P371
65730    SHEN W, 1998, J NANJING U NATURAL, V34, P308
65731    SHENG X, 1995, GEOCHIM COSMOCHIM AC, V59, P4675
65732    SHERWOODLOLLAR B, 1994, GEOCHIM COSMOCHIM AC, V58, P5279
65733    TAYLOR BE, 1986, REV MINERAL, V16, P185
65734    TRULL T, 1993, EARTH PLANET SC LETT, V118, P43
65735    WAKITA H, 1983, NATURE, V305, P792
65736    XIANBIN W, 1998, MINERAL MAG A, V62, P1665
65737    XU Y, 1990, EXPT PETROLEUM GEOLO, V12, P316
65738    ZHANG YX, 1993, EARTH PLANET SC LETT, V117, P331
65739    ZHENG L, 1996, CHINESE SCI BULL, V41, P624
65740    ZHOU XH, 1986, TERRA COGNITA, V6, P244
65741 NR 42
65742 TC 2
65743 SN 0883-2927
65744 J9 APPL GEOCHEM
65745 JI Appl. Geochem.
65746 PD JUL
65747 PY 2001
65748 VL 16
65749 IS 9-10
65750 BP 1033
65751 EP 1039
65752 PG 7
65753 SC Geochemistry & Geophysics
65754 GA 429AA
65755 UT ISI:000168492800003
65756 ER
65757 
65758 PT J
65759 AU Wang, YD
65760 TI Theorems about the existence of solutions to problems with nonlocal
65761    initial value
65762 SO ACTA MATHEMATICA SINICA-ENGLISH SERIES
65763 DT Article
65764 DE nonlocal problem; nonlinear boundary condition; parabolic equation;
65765    solution; existence; generalized Poincare e operator
65766 ID PARABOLIC EQUATIONS; BOUNDARY-CONDITIONS; CAUCHY-PROBLEM
65767 AB Recently much work has been devoted to nonlocal problems. However, very
65768    little has been accomplished in the literature For nonlocal initial
65769    problems with nonlinear boundary conditions. It is the purpose of this
65770    paper to prove the existence results for solutions to a semilinear
65771    parabolic PDE with linear homogeneous boundary conditions. and to
65772    of-her ones with nonlinear boundary conditions, provided the ordered
65773    upper and lower solutions are given. Semigroup, fractional order
65774    function spaces and generalized Poincare operators play an important
65775    role in proving the existence of solutions.
65776 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
65777 RP Wang, YD, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
65778 CR AMANN H, 1978, NONLINEAR ANAL COLLE, P1
65779    AMANN H, 1988, J DIFFER EQUATIONS, V72, P201
65780    BYSZEWSKI L, 1991, J MATH ANAL APPL, V162, P494
65781    CHABROWSKI J, 1984, NAGOYA MATH J, V93, P109
65782    DENG K, 1993, J MATH ANAL APPL, V179, P630
65783    GRISVARD P, 1969, ANN SCI ECOLE NORM S, V2, P311
65784    KEREFOV AA, 1979, DIFF URAVN, V15, P74
65785    LIN YP, 1996, NONLINEAR ANAL-THEOR, V26, P1023
65786    PAO CV, 1995, J MATH ANAL APPL, V195, P702
65787    PAZY A, 1983, SEMIGROUPS LINEAR OP
65788    SEELEY R, 1972, STUD MATH, V44, P47
65789    VABISHCHEVICH PN, 1981, DIFF URAVN, V17, P1193
65790    XIANG X, 1995, ACTA MATH SIN, V11, P439
65791 NR 13
65792 TC 0
65793 SN 1000-9574
65794 J9 ACTA MATH SIN-ENGLISH SERIES
65795 JI Acta. Math. Sin.-English Ser.
65796 PD APR
65797 PY 2001
65798 VL 17
65799 IS 2
65800 BP 197
65801 EP 206
65802 PG 10
65803 SC Mathematics, Applied; Mathematics
65804 GA 428QR
65805 UT ISI:000168472800002
65806 ER
65807 
65808 PT J
65809 AU Jin, H
65810    McLean, D
65811 TI Design of a state feedback controller to achieve minimum eigenvalue
65812    differential sensitivity
65813 SO TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL
65814 DT Article
65815 DE eigenstructure assignment; eigenvalues; robustness; sensitivity
65816 ID EIGENSTRUCTURE ASSIGNMENT
65817 AB This paper introduces a new design method using eigenstructure
65818    assignment. The differential sensitivity of the eigenvalues of the
65819    system is minimized. The method involves minimizing the least-squared
65820    error between the achievable and the desired eigenspace to achieve mode
65821    decoupling. A global measure of eigenvalue sensitivity for all desired
65822    eigenvalues that make the closed-loop system insensitive to
65823    perturbations or parameter Variations is included in the method. The
65824    technique requires the use of a gradient-based algorithm. The method is
65825    illustrated by an example, which is intended to show a more flexible
65826    approach to eigenstructure assignment.
65827 C1 Univ Southampton, Dept Aeronaut & Astronaut, Sch Engn Sci, Southampton SO17 1BJ, Hants, England.
65828    Shanghai Univ, Shanghai 200041, Peoples R China.
65829 RP McLean, D, Univ Southampton, Dept Aeronaut & Astronaut, Sch Engn Sci,
65830    Southampton SO17 1BJ, Hants, England.
65831 CR ANDRY AN, 1983, IEEE T AERO ELEC SYS, V19, P711
65832    APKARIAN PR, 1989, J GUID CONTROL DYNAM, V12, P162
65833    BRYSON A, 1975, APPL OPTIMAL CONTROL
65834    BURROWS SP, 1992, J GUID CONTROL DYNAM, V15, P779
65835    CUNNINGHAM TB, 1980, P IEEE C DEC CONTR A
65836    DAVIDSON JB, 1994, 109130 NASA
65837    LAM J, 1997, P I MECH ENG 1, V211, P631
65838    MIYAZAWA Y, 1992, J GUID CONTROL DYNAM, V15, P785
65839    PATEL Y, 1993, J GUID CONTROL DYNAM, V16, P118
65840    PATTON RJ, 1993, P AIAA GUID NAV CONT, P924
65841    SMITH PR, 1990, AIAA GUID NAV CONTR
65842    WHITE BA, 1997, P I MECH ENG I-J SYS, V211, P35
65843    YU WL, 1991, J GUID CONTROL DYNAM, V14, P621
65844 NR 13
65845 TC 0
65846 SN 0142-3312
65847 J9 TRANS INST MEASURE CONTROL
65848 JI Trans. Inst. Meas. Control
65849 PY 2001
65850 VL 23
65851 IS 2
65852 BP 127
65853 EP 138
65854 PG 12
65855 SC Automation & Control Systems; Instruments & Instrumentation
65856 GA 426EA
65857 UT ISI:000168335800004
65858 ER
65859 
65860 PT J
65861 AU Lin, QS
65862    Feng, XQ
65863    Man, ZY
65864    Zhang, YX
65865    Yin, ZW
65866    Zhang, QR
65867 TI Origin of the radiation-induced 420 nm color center absorption band in
65868    PbWO4 crystals
65869 SO SOLID STATE COMMUNICATIONS
65870 DT Article
65871 DE color center; optical properties; light absorption
65872 ID LEAD TUNGSTATE CRYSTALS; SINGLE-CRYSTALS; DAMAGE
65873 AB Polarized absorption spectra experiments were carried out to
65874    investigate the structural symmetries of color centers of PbWO4
65875    crystals. It was found that the intensity of the electrical vector E
65876    perpendicular to c of the radiation-induced 320 nm absorption band
65877    equals that of the E parallel to c, indicating the non-dichroic
65878    character of the band. Based on the analysis of the energy band
65879    structure and the crystal structure of PbWO4, the origin of the
65880    radiation-induced 320 nm absorption band was ascribed to the V-F(0)
65881    di-hole center. (C) 2001 Published by Elsevier Science Ltd.
65882 C1 Chinese Acad Sci, Lab Funct Inorgan Mat, Shanghai 200050, Peoples R China.
65883    Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
65884 RP Feng, XQ, Chinese Acad Sci, Lab Funct Inorgan Mat, Shanghai 200050,
65885    Peoples R China.
65886 CR ANNENKOV A, 1998, PHYS STATUS SOLIDI A, V170, P47
65887    AUFFRAY E, 1996, SCINT 95, P282
65888    BACCARO S, 1999, IEEE T NUCL SCI 1, V46, P292
65889    BARISHEVSKI VG, 1992, NUCL INSTRUM METH A, V322, P231
65890    BIEDERBICK R, 1975, PHYS STATUS SOLIDI B, V69, P55
65891    HAN BG, 1999, J APPL PHYS, V86, P3571
65892    LAGUTA VV, 1998, J PHYS-CONDENS MAT, V10, P7293
65893    LAGUTA VV, 2000, PHYS REV B, V62, P10109
65894    LECOQ P, 1995, NUCL INSTRUM METH A, V365, P291
65895    LIN QS, 2000, PHYS STATUS SOLIDI A, V181, R1
65896    NESSITEDALDI F, 1998, NUCL INSTRUM METH A, V408, P266
65897    NIKL M, 1996, PHYS STATUS SOLIDI B, V196, K7
65898    NIKL M, 1997, J APPL PHYS, V82, P5758
65899    NIKL M, 1997, MATER SCI FORUM, V239, P271
65900    WILLIAMS RT, 2000, SCINT 99, P118
65901    ZHANG Y, 1998, PHYS REV B, V57, P12738
65902 NR 16
65903 TC 19
65904 SN 0038-1098
65905 J9 SOLID STATE COMMUN
65906 JI Solid State Commun.
65907 PY 2001
65908 VL 118
65909 IS 5
65910 BP 221
65911 EP 223
65912 PG 3
65913 SC Physics, Condensed Matter
65914 GA 425XV
65915 UT ISI:000168317700001
65916 ER
65917 
65918 PT J
65919 AU Wan, YB
65920    Li, J
65921    Chu, JH
65922    Bo, LX
65923    Yu, TY
65924    Yu, BK
65925 TI The study of frequency-doubling properties of ferroelectric potassium
65926    lithium niobate
65927 SO JOURNAL OF INFRARED AND MILLIMETER WAVES
65928 DT Article
65929 DE potassium lithium niobate; frequency-doubling; phase-matching
65930 ID K3LI2-XNB5+XO15+2X
65931 AB The frequency-doubling properties of potassium lithium niobate crystals
65932    grown from melts with different content of Li2O were studied by using
65933    quasi cw-Ti:sapphire laser. The results showed that potassium lithium
65934    niobate crystal does not have nonlinear optical performance unless the
65935    Li content in the crystal reached a certain amount. The higher the
65936    content of Li in the crystal the better the frequency-doubling
65937    performance. The results of frequency-doubling experiment of the
65938    potassium:lithium niobate crystal grown from the melt with Li2O 26mol%
65939    showed that the crystal can double the cw-Ti:sapphire laser with the
65940    wavelength of 820 similar to 960nm so as to obtain the output of
65941    blue-green beam. The crystal showed good second harmonic generation
65942    properties.
65943 C1 Chinese Acad Sci, Shanghai Inst Tech, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China.
65944    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
65945 RP Wan, YB, Chinese Acad Sci, Shanghai Inst Tech, Natl Lab Infrared Phys,
65946    Shanghai 200083, Peoples R China.
65947 CR CHENG WD, 1996, CHEM PHYS LETT, V261, P66
65948    IMAI K, 1997, J CRYST GROWTH, V177, P79
65949    OWERKERK M, 1991, 409339, EP
65950    REID JJE, 1993, APPL PHYS LETT, V62, P19
65951    SONG YT, 1998, J CRYST GROWTH, V194, P379
65952    WAN YB, 1998, J SYNTH CRYST, V27, P34
65953    WAN YB, 1999, ACTA OPT SINICA, V19, P863
65954    WAN YB, 1999, CHIN J LASER, V26, P837
65955    WAN YB, 1999, J SYNTH CRYST, V28, P149
65956 NR 9
65957 TC 0
65958 SN 1001-9014
65959 J9 J INFRARED MILIM WAVES
65960 JI J. Infrared Millim. Waves
65961 PD APR
65962 PY 2001
65963 VL 20
65964 IS 2
65965 BP 147
65966 EP 150
65967 PG 4
65968 SC Optics
65969 GA 425DB
65970 UT ISI:000168272100016
65971 ER
65972 
65973 PT J
65974 AU Ma, HP
65975    Guo, BY
65976 TI Composite Legendre-Laguerre pseudospectral approximation in unbounded
65977    domains
65978 SO IMA JOURNAL OF NUMERICAL ANALYSIS
65979 DT Article
65980 DE composite Legendre-Laguerre; pseudospectral method; half-line
65981 ID PARTIAL-DIFFERENTIAL EQUATIONS; NONLINEAR CONSERVATION-LAWS; HERMITE
65982    SPECTRAL METHOD; GALERKIN METHOD; POLYNOMIALS; INTERVAL
65983 AB A composite Legendre-Laguerre pseudospectral approximation in unbounded
65984    domains is developed. Some approximation results are obtained. As an
65985    application, a composite pseudospectral scheme is proposed for the
65986    Burgers equation on the half-line. The stability and convergence of the
65987    scheme are proved. By choosing appropriate base functions, the
65988    resulting system of this method has a sparse structure and can be
65989    solved in parallel. Numerical results are given to show the efficiency
65990    of this new method.
65991 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
65992 RP Ma, HP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
65993 CR ADAMS RA, 1975, SOBOLEV SPACES
65994    BERNARDI C, 1992, J COMPUT APPL MATH, V43, P53
65995    BERNARDI C, 1997, HDBK NUM AN 2, V5, P209
65996    BOYD JP, 1987, J COMPUT PHYS, V69, P112
65997    CANUTO C, 1988, SPECTRAL METHODS FLU
65998    DAVIS PJ, 1984, METHODS NUMERICAL IN
65999    FUNARO D, 1990, MATH COMPUT, V57, P597
66000    FUNARO D, 1991, ORTHOGONAL POLYNOMIA, P263
66001    GELB A, 2000, APPL NUMER MATH, V33, P3
66002    GUO BY, 1999, MATH COMPUT, V68, P1067
66003    GUO BY, 2000, NUMER MATH, V86, P635
66004    GUO BY, 2001, IN PRESS J COMPUT MA
66005    MADAY Y, 1985, RECH AEROSPATIALE, P353
66006    MADAY Y, 1993, SIAM J NUMER ANAL, V30, P321
66007    MASTROIANNI G, 1997, IMA J NUMER ANAL, V17, P621
66008    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
66009    SZEGO G, 1975, ORTHOGONAL POLYNOMIA
66010    TADMOR E, 1989, SIAM J NUMER ANAL, V26, P30
66011    TANG T, 1993, SIAM J SCI COMPUT, V14, P594
66012    XU CL, 2001, IN PRESS J COMPUT MA
66013 NR 20
66014 TC 0
66015 SN 0272-4979
66016 J9 IMA J NUMER ANAL
66017 JI IMA J. Numer. Anal.
66018 PD APR
66019 PY 2001
66020 VL 21
66021 IS 2
66022 BP 587
66023 EP 602
66024 PG 16
66025 SC Mathematics, Applied
66026 GA 424ZK
66027 UT ISI:000168263700007
66028 ER
66029 
66030 PT J
66031 AU You, JL
66032    Jiang, GC
66033    Xu, KD
66034 TI High temperature Raman spectra of sodium disilicate crystal, glass and
66035    its liquid
66036 SO JOURNAL OF NON-CRYSTALLINE SOLIDS
66037 DT Article
66038 ID ALKALI-SILICATE-GLASSES; SPECTROSCOPY; MELTS; PRESSURE; NMR
66039 AB Raman spectra of Na2Si2O5 in solid and liquid states from room
66040    temperature to 1773 K were measured to observe phase transition and
66041    analyze the temperature-dependent variations of the structure units,
66042    five kinds of SiO4 tetrahedrons, which are defined as Q(4), Q(3), Q(2),
66043    Q(1) and Q(0) species corresponding to the number of bridging oxygen
66044    binding to each Si. A pulsed copper vapor laser was used as laser
66045    source coupled with time resolved detection system to eliminate the
66046    dense thermal emission background while temperature was >1273 K.
66047    Temperature-dependent Raman spectra can clearly indicate melting point
66048    of a crystal around 1143 K. Gaussian deconvolutions of complex
66049    stretching vibrational bands of crystal and amorphous states (glass and
66050    liquid) were described. Raman sensitivity factors were introduced to
66051    calculate the mole fractions of the different SiO4 tetrahedrons. There
66052    is a decrease of Q(3) species and an increase of Q(4) and Q(2) species
66053    with increasing temperature. And after melting, the ratio of the
66054    components remain unchanged. Q(3) species decomposes again after about
66055    1573 K. More Q(n) species would form with increasing temperature.
66056    Although the Q(n) distribution of the glass is similar to that of the
66057    liquid of melting temperature, T-m similar to 1143 K, the liquid
66058    structure has a greater disorder than that of the glass. (C) 2001
66059    Published by Elsevier Science B.V.
66060 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
66061 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
66062    200072, Peoples R China.
66063 CR DOMINE F, 1983, J NON-CRYST SOLIDS, V55, P125
66064    DORFELD WG, 1988, PHYS CHEM GLASSES, V29, P179
66065    DOWEIDAR H, 1996, J NON-CRYST SOLIDS, V194, P155
66066    FURUKAWA T, 1981, J CHEM PHYS, V75, P3226
66067    GASKELL PH, 1967, PHYS CHEM GLASSES, V8, P69
66068    GILLET P, 1996, PHYS CHEM MINER, V23, P263
66069    GUOCHANG J, 1993, ISIJ INT, V33, P20
66070    GURMAN SJ, 1990, J NON-CRYST SOLIDS, V125, P151
66071    HANDKE M, 1993, VIB SPECTROSC, V5, P75
66072    HASS M, 1970, J PHYS CHEM SOLIDS, V31, P415
66073    JINGLIN Y, IN PRESS
66074    JINGLIN Y, 1998, J CHIN RARE EARTH SC, V16, P505
66075    JINGLIN Y, 1999, CHIN J LIGHT SCATTER, V11, P378
66076    JINGLIN Y, 1999, OPT INSTR, V21, P21
66077    KASHIO S, 1980, T IRON STEEL I JPN, V20, P251
66078    KUANGDI X, 1999, SCI CHINA SER E, V22, P77
66079    LIEBAU F, 1985, STRUCTURAL CHEM SILI
66080    LONG DA, 1977, RAMAN SPECTROSCOPY, CH4
66081    MAEKAWA H, 1991, J NON-CRYST SOLIDS, V127, P53
66082    MAEKAWA H, 1992, P 4 INT C MOLT SLAGS, P35
66083    MARKIN EP, 1960, OPT SPECTROSC, V9, P309
66084    MATSON DW, 1983, J NON-CRYST SOLIDS, V58, P323
66085    MCMILLAN P, 1984, AM MINERAL, V69, P622
66086    MYSEN BO, 1982, AM MINERAL, V67, P686
66087    MYSEN BO, 1990, J GEOPHYS RES-SOLID, V95, P15733
66088    MYSEN BO, 1992, CHEM GEOL, V96, P321
66089    PEICANG X, 1996, RAMAN SPECTROSCOPY G, CH7
66090    SEIFERT FA, 1981, GEOCHIM COSMOCHIM AC, V45, P1879
66091    SHARMA SK, 1978, CARNEGIE I WASHINGTO, V77, P649
66092    SHIPING H, 2000, CHINESE PHYS LETT, V17, P279
66093    SMITH W, 1995, J NONCRYST SOLIDS, V192, P267
66094    STEBBINS JF, 1988, J NONCRYST SOLIDS, V106, P359
66095    STEBBINS JF, 1995, J NONCRYST SOLIDS, V192, P298
66096    SWAMY V, 1997, J AM CERAM SOC, V80, P2237
66097    URNES S, 1967, PHYS CHEM GLASSES, V8, P125
66098    VORONKO YK, 1991, GROWTH CRYSTALS, V16, P199
66099    ZHANG P, 1996, J NON-CRYST SOLIDS, V204, P294
66100 NR 37
66101 TC 15
66102 SN 0022-3093
66103 J9 J NON-CRYST SOLIDS
66104 JI J. Non-Cryst. Solids
66105 PD APR
66106 PY 2001
66107 VL 282
66108 IS 1
66109 BP 125
66110 EP 131
66111 PG 7
66112 SC Materials Science, Ceramics; Materials Science, Multidisciplinary
66113 GA 423XE
66114 UT ISI:000168202400015
66115 ER
66116 
66117 PT J
66118 AU Jin, Z
66119 TI Boundedness and convergence of solutions of a second-order nonlinear
66120    differential system
66121 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
66122 DT Article
66123 ID RETARDED LIENARD EQUATION; X+F(1)(X)X+F(2)(X)X(2)+G(X)=0; BEHAVIOR
66124 AB Consider the second-order nonlinear differential system
66125    (x) over dot = 1/a(x)[h(y) - F(x)],
66126    (y) over dot = -a(x)[g(x) - e(t)],
66127    where a is a positive and continuous function on R - (-infinity,
66128    +infinity); II, F, and g are continuous functions on R; and e(t) is a
66129    continuous function on I = [0, +infinity) We obtain sufficient and
66130    necessary conditions for ail solutions to be bounded and to converge to
66131    zero. Our results can be applied to the well-known equation
66132    (x) double over dot + f(1)(x)(x) over dot + f(2)(x)(x) over dot(2) +
66133    g(x) - e(t),
66134    which substantially extends and improves important results in the
66135    literature. (C) 2001 Academic Press.
66136 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
66137    Hebei Univ Technol, Dept Math Appl, Tianjin 300130, Peoples R China.
66138 RP Jin, Z, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
66139 CR ANTOSIEWICZ HA, 1955, J LOND MATH SOC, V30, P64
66140    BURTON TA, 1970, ANN MAT PUR APPL, V85, P277
66141    BUSHAW DW, 1958, DIFFERENTIAL EQUATIO
66142    FREEDMAN HI, 1990, NONLINEAR ANAL-THEOR, V15, P333
66143    GRAEF JR, 1972, J DIFFER EQUATIONS, V12, P34
66144    GUIDORIZZI HL, 1993, J MATH ANAL APPL, V176, P11
66145    HUANG LH, 1995, MATH JPN, V2, P283
66146    JIAN JF, 1997, NONLINEAR ANAL, V5, P855
66147    JIANG JF, 1995, J MATH ANAL APPL, V194, P597
66148    LASALLE JP, 1961, STABILITY LIAPUNOVS
66149    LASALLE JP, 1976, NONLINEAR ANAL, V1, P83
66150    LI HQ, 1988, ACTA MATH SINICA, V31, P209
66151    PAN ZG, 1992, J SYS SCI MATH SCI, V12, P376
66152    QIAN CX, 1992, B LOND MATH SOC, V24, P281
66153    QIAN CX, 1994, NONLINEAR ANAL, V7, P823
66154    SUGIE J, 1987, NONLINEAR ANAL-THEOR, V11, P1391
66155    VILLARI G, 1987, J DIFFER EQUATIONS, V67, P267
66156    YOSHIZAWA T, 1963, CONTRIB DIFFERENTIAL, V1, P371
66157    ZHANG B, 1992, P AM MATH SOC, V115, P779
66158    ZHANG B, 1993, NONLINEAR ANAL-THEOR, V20, P303
66159    ZHANG B, 1996, J MATH ANAL APPL, V200, P453
66160    ZHOU J, 1996, NONLINEAR ANAL, V12, P1463
66161 NR 22
66162 TC 1
66163 SN 0022-247X
66164 J9 J MATH ANAL APPL
66165 JI J. Math. Anal. Appl.
66166 PD APR 15
66167 PY 2001
66168 VL 256
66169 IS 2
66170 BP 360
66171 EP 374
66172 PG 15
66173 SC Mathematics, Applied; Mathematics
66174 GA 422ET
66175 UT ISI:000168106100002
66176 ER
66177 
66178 PT J
66179 AU Ji, PY
66180    Bao, JS
66181 TI Photon acceleration driven by an intense laser pulse
66182 SO CHINESE PHYSICS
66183 DT Article
66184 DE photon acceleration; frequency upshifting; plasma wave; optical metric
66185 ID WAKEFIELD ACCELERATION; PLASMA
66186 AB Interaction of a laser field with a plasma wave is studied by metric
66187    optics. Analysis shows that the frequency upshifting of the laser pulse
66188    results from the plasma density gradient. A laser beam can be thought
66189    of as a packet of photons moving in a plasma and thus the laser
66190    frequency upshifting is equivalent to photon acceleration. Examination
66191    of the three-dimensional motion equations shows that a laser beam
66192    diffraction occurs in the presence of a radial variation of the plasma
66193    density. It is argued that the focusing mechanism originating from the
66194    plasma wave can curb laser diffraction so that photons may be trapped
66195    in the plasma wave and accelerated continuously.
66196 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
66197 RP Ji, PY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
66198 CR AMIRANOFF F, 1998, PHYS REV LETT, V81, P995
66199    BINGHAM R, 1997, PHYS REV LETT, V78, P247
66200    GORDON W, 1923, ANN PHYS-BERLIN, V72, P421
66201    GUO H, 1995, J OPT SOC AM A, V12, P600
66202    MENDONCA JT, 1994, PHYS REV E, V49, P3520
66203    MISNER CW, GRAVITATION, P582
66204    SCHROEDER CB, 1999, PHYS REV LETT, V82, P1177
66205    SHEN WD, 1998, ACTA PHYS SIN-OV ED, V7, P1
66206    SPRANGLE P, 1988, APPL PHYS LETT, V53, P2146
66207    TAJIMA T, 1979, PHYS REV LETT, V43, P267
66208    WILKS SC, 1989, PHYS REV LETT, V62, P2600
66209    ZHU S, 1997, ACTA OPT SINICA, V17, P1677
66210    ZHU ST, 1995, INT J THEOR PHYS, V34, P169
66211    ZHU ST, 1997, SCI CHINA SER A, V40, P755
66212 NR 14
66213 TC 5
66214 SN 1009-1963
66215 J9 CHIN PHYS
66216 JI Chin. Phys.
66217 PD APR
66218 PY 2001
66219 VL 10
66220 IS 4
66221 BP 314
66222 EP 319
66223 PG 6
66224 SC Physics, Multidisciplinary
66225 GA 423KP
66226 UT ISI:000168175700010
66227 ER
66228 
66229 PT J
66230 AU Chen, LQ
66231 TI An open-plus-closed-loop control for discrete chaos and hyperchaos
66232 SO PHYSICS LETTERS A
66233 DT Article
66234 ID MULTIPLE-ATTRACTOR SYSTEMS; COMPLEX DYNAMIC-SYSTEMS; MIGRATION
66235    CONTROLS; OPCL CONTROL; ENTRAINMENT
66236 AB An open-plus-closed-loop control law is presented for chaotic maps.
66237    Some entrainment capabilities for the logistic map, the Henon map and a
66238    hyperchaotic map are respectively analyzed. Numerical examples of
66239    controlling chaos are given to demonstrate the application of the
66240    method. The robustness to the model error is proved. (C) 2001 Elsevier
66241    Science B.V. All rights reserved.
66242 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200030, Peoples R China.
66243 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
66244    200030, Peoples R China.
66245 CR CHEN G, 1997, CHAOS ORDER
66246    CHEN LQ, 1998, PHYS LETT A, V245, P87
66247    HUBLER A, 1989, NATURWISSENSCHAFTEN, V76, P67
66248    JACKSON EA, 1990, PHYS LETT A, V151, P478
66249    JACKSON EA, 1990, PHYSICA D, V44, P407
66250    JACKSON EA, 1991, PHYSICA D, V50, P341
66251    JACKSON EA, 1992, PHYSICA D, V54, P253
66252    JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1255
66253    JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1767
66254    JACKSON EA, 1995, PHYSICA D, V85, P1
66255    JACKSON EA, 1997, CHAOS, V7, P550
66256    KAPITANIAK T, 1996, CONTROLLING CHAOS TH
66257    LASALLE JP, 1976, STABILITY DYNAMICAL
66258    LIU ZR, 1999, ACTA MECH SINICA, V15, P366
66259    OTT E, 1994, COPING CHAOS
66260    WEIGEL R, 1998, INT J BIFURCAT CHAOS, V8, P173
66261 NR 16
66262 TC 7
66263 SN 0375-9601
66264 J9 PHYS LETT A
66265 JI Phys. Lett. A
66266 PD APR 2
66267 PY 2001
66268 VL 281
66269 IS 5-6
66270 BP 327
66271 EP 333
66272 PG 7
66273 SC Physics, Multidisciplinary
66274 GA 420YK
66275 UT ISI:000168032700009
66276 ER
66277 
66278 PT J
66279 AU Li, CF
66280    Wang, Q
66281 TI A traversal time for tunneling particles through a potential barrier
66282 SO PHYSICA B
66283 DT Article
66284 DE traversal time; superluminality; tunneling; energy speed
66285 ID QUANTUM-THEORY; LARMOR CLOCK; TRANSMISSION; DISTRIBUTIONS;
66286    PROBABILITIES; SCATTERING; MECHANISM; DELAY
66287 AB A new kind of traversal time for tunneling particles through a
66288    potential barrier that has no problem of superluminality is introduced.
66289    Its physical significance is investigated. Several limits are
66290    considered, which are physically meaningful. Comparisons with dwell
66291    time and phase time are also made. (C) 2001 Elsevier Science B.V. All
66292    rights reserved.
66293 C1 CCAST, World Lab, Beijing 100080, Peoples R China.
66294    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
66295 RP Li, CF, CCAST, World Lab, POB 8730, Beijing 100080, Peoples R China.
66296 CR BOHM D, 1951, QUANTUM THEORY, P240
66297    BOHM D, 1952, PHYS REV, V85, P166
66298    BOHM D, 1987, PHYS REP, V144, P321
66299    BRILLOUIN L, 1960, WAVE PROPAGATION GRO
66300    BROUARD S, 1994, PHYS REV A, V49, P4312
66301    BUTTIKER M, 1982, PHYS REV LETT, V49, P1739
66302    BUTTIKER M, 1983, PHYS REV B, V27, P6178
66303    CHIAO RY, 1997, PROG OPTICS, V37, P345
66304    CONDON EU, 1931, REV MOD PHYS, V3, P43
66305    DEUTCH JM, 1993, ANN PHYS-NEW YORK, V228, P184
66306    DIENER G, 1996, PHYS LETT A, V223, P327
66307    HARTMAN TE, 1962, J APPL PHYS, V33, P3427
66308    HASS K, 1994, PHYS LETT A, V185, P9
66309    HAUGE EH, 1989, REV MOD PHYS, V61, P917
66310    JAPHA Y, 1996, PHYS REV A, V53, P586
66311    JAUCH JM, 1967, HELV PHYS A, V40, P217
66312    KRENZLIN HM, 1996, PHYS REV A, V53, P3749
66313    LEAVENS CR, 1993, PHYS LETT A, V178, P27
66314    LEAVENS CR, 1995, PHYS LETT A, V197, P88
66315    LI CF, 1996, ANN PHYS-NEW YORK, V252, P329
66316    LI CF, 1997, PHYSICA B, V240, P98
66317    MACCOLL LA, 1932, PHYS REV, V40, P621
66318    MCKINNON WR, 1995, PHYS REV A, V51, P2748
66319    MUGA JG, 1992, J PHYS CONDENS MATT, V4, L579
66320    MUGA JG, 1992, PHYS LETT A, V167, P24
66321    SMITH FT, 1960, PHYS REV, V118, P349
66322    SOKOLOVSKI D, 1990, PHYS REV A, V42, P6512
66323    STEINBERG AM, 1995, PHYS REV A, V52, P32
66324    STEINBERG AM, 1995, PHYS REV LETT, V74, P2405
66325 NR 29
66326 TC 1
66327 SN 0921-4526
66328 J9 PHYSICA B
66329 JI Physica B
66330 PD MAR
66331 PY 2001
66332 VL 296
66333 IS 4
66334 BP 356
66335 EP 360
66336 PG 5
66337 SC Physics, Condensed Matter
66338 GA 420MC
66339 UT ISI:000168007900010
66340 ER
66341 
66342 PT J
66343 AU Xu, KX
66344 TI Decoupling of vortex-antivortex pairs: a possible explanation for
66345    nonequilibrium microwave response of YBa2Cu3O7-delta granular films
66346 SO PHYSICA C
66347 DT Article
66348 DE granular films; vortex excitation; nonbolometric photoresponse
66349 ID KOSTERLITZ-THOULESS TRANSITION; JOSEPHSON-JUNCTION ARRAYS; O
66350    THIN-FILMS; RADIATION
66351 AB A two-dimensional Josephson-junction array has been employed as a model
66352    system for YBa2Cu3O7-delta (YBCO) granular films. Based on this model,
66353    the dissociation process of the vortex-antivortex pairs is discussed in
66354    terms of applied current activation, and the unbinding vortices
66355    distribution n(T, I) is calculated as a function of temperature and
66356    applied current. When I/I-c << 1 is satisfied, the value of the n(T, I)
66357    could only be observed within the temperature region of (2/3)T-KT < T <
66358    T-KT, this behavior is analogous to that of photoresponse dissipation
66359    measured from the granular YBCO films. This similitude implies that the
66360    unbinding process of the vortex pairs might be responsible for the
66361    nonequilibrium photoresponse dissipation in granular superconducting
66362    films. (C) 2001 Elsevier Science B.V. All rights reserved.
66363 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
66364 RP Xu, KX, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
66365 CR BEASLEY MR, 1979, PHYS REV LETT, V42, P1165
66366    BOONE BG, 1991, J APPL PHYS, V69, P2676
66367    CHANG K, 1991, J APPL PHYS, V69, P7316
66368    CULBERTSON JC, 1991, PHYS REV B, V44, P9609
66369    DAVIS LC, 1990, PHYS REV B, V42, P99
66370    ENOMOTO Y, 1986, J APPL PHYS, V59, P3807
66371    FIORY AT, 1988, PHYS REV LETT, V61, P1419
66372    HERTER ST, 1998, PHYS REV B, V57, P1154
66373    LOBB CJ, 1983, PHYS REV B, V27, P150
66374    MARTIN S, 1989, PHYS REV LETT, V62, P677
66375    PHILLIPS JR, 1993, PHYS REV B, V47, P5219
66376    PHONG LN, 1993, J APPL PHYS, V74, P7414
66377    RZCHOWSKI MS, 1990, PHYS REV B, V42, P2041
66378    STROM U, 1990, PHYS REV B, V42, P4059
66379    TINKHAM M, 1995, INTRO SUPERCONDUCTIV
66380    XU KX, 1999, ACTA PHYS SIN-CH ED, V48, P1152
66381    XU KX, 1999, PHYSICA C, V321, P258
66382    YING QY, 1990, PHYS REV B, V42, P2242
66383 NR 18
66384 TC 0
66385 SN 0921-4534
66386 J9 PHYSICA C
66387 JI Physica C
66388 PD APR 1
66389 PY 2001
66390 VL 351
66391 IS 3
66392 BP 274
66393 EP 280
66394 PG 7
66395 SC Physics, Applied
66396 GA 418NA
66397 UT ISI:000167897200008
66398 ER
66399 
66400 PT J
66401 AU He, JH
66402 TI A modified perturbation technique depending upon an artificial parameter
66403 SO MECCANICA
66404 DT Article
66405 DE perturbation method; nonlinear equation; Duffing equation; van der Pol
66406    equation; artificial parameter
66407 AB In this paper, a modified perturbation method is proposed to search for
66408    analytical solutions of nonlinear oscillators without possible small
66409    parameters. An artificial perturbation equation is carefully
66410    constructed by embedding an artificial parameter, which is used as
66411    expanding parameter. It reveals that various traditional perturbation
66412    techniques can be powerfully applied in this theory. Some examples,
66413    such as the Duffing equation and the van der Pol equation, are given
66414    here to illustrate its effectiveness and convenience. The results show
66415    that the obtained approximate solutions are uniformly valid on the
66416    whole solution domain, and they are suitable not only for weak
66417    nonlinear systems, but also for strongly nonlinear systems. In applying
66418    the new method, some special techniques have been emphasized for
66419    different problems.
66420 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
66421 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang
66422    Rd,POB 189, Shanghai 200072, Peoples R China.
66423 CR CHEUNG YK, 1991, INT J NONLINEAR MECH, V26, P367
66424    HE JH, 1998, COMPUT METHOD APPL M, V167, P57
66425    HE JH, 1998, COMPUT METHOD APPL M, V167, P69
66426    HE JH, 1999, COMMUN NONL SCI NUM, V4, P109
66427    HE JH, 1999, COMMUN NONL SCI NUM, V4, P78
66428    HE JH, 1999, COMMUNICATIONS NONLI, V4, P81
66429    HE JH, 1999, COMPUT METHOD APPL M, V178, P257
66430    HE JH, 1999, INT J NONLINEAR MECH, V34, P699
66431    HE JH, 1999, MECCANICA, V34, P287
66432    HE JH, 2000, INT J NONLINEAR MECH, V35, P37
66433    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
66434    LIU GL, 1997, NAT C 7 MOD MATH MEC, P47
66435    NAYFEH AH, 1979, NONLINEAR OSCILLATIO
66436    NAYFEH AH, 1985, PROBLEMS PERTURBATIO
66437 NR 14
66438 TC 5
66439 SN 0025-6455
66440 J9 MECCANICA
66441 JI Meccanica
66442 PY 2000
66443 VL 35
66444 IS 4
66445 BP 299
66446 EP 311
66447 PG 13
66448 SC Mechanics
66449 GA 419FL
66450 UT ISI:000167938600001
66451 ER
66452 
66453 PT J
66454 AU Bian, JJ
66455    Zhu, XW
66456    Jiang, WZ
66457    Sun, ZH
66458    Wang, H
66459 TI Microwave characteristics of (Pb,Ca) (Fe,Nb,Zr)O-3 dielectric ceramics
66460 SO JOURNAL OF MATERIALS SCIENCE LETTERS
66461 DT Article
66462 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
66463 RP Bian, JJ, Shanghai Univ, Dept Inorgan Mat, 20 ChengZhong Rd, Shanghai
66464    201800, Peoples R China.
66465 CR KATO J, 1992, JPN J APPL PHYS 1, V31, P3144
66466    KUCHEIKO S, 1997, J AM CERAM SOC, V80, P2937
66467    NAKANO M, 1993, JPN J APPL PHYS 1, V32, P4314
66468    TAKAHASHI H, 1996, JPN J APPL PHYS 1, V35, P5069
66469    WAKINO K, 1989, FERROELECTRICS, V91, P68
66470    WERSING W, 1991, ELECT CERAMICS
66471    YOON KH, 1996, JPN J APPL PHYS 1, V35, P5145
66472 NR 7
66473 TC 3
66474 SN 0261-8028
66475 J9 J MATER SCI LETT
66476 JI J. Mater. Sci. Lett.
66477 PD FEB
66478 PY 2001
66479 VL 20
66480 IS 4
66481 BP 353
66482 EP 354
66483 PG 2
66484 SC Materials Science, Multidisciplinary
66485 GA 417WZ
66486 UT ISI:000167859600018
66487 ER
66488 
66489 PT J
66490 AU Chu, QL
66491    Song, LP
66492    Jin, GF
66493    Zhu, SZ
66494 TI Study of the reactions of fluorinated alpha,beta-unsaturated carbonyl
66495    compounds with nitrogen and sulfur dinucleophiles
66496 SO JOURNAL OF FLUORINE CHEMISTRY
66497 DT Article
66498 DE fluorinated alpha,beta-unsaturated carbonyl compounds; fluorinated
66499    heterocycles; dinucleophiles; nucleophilic reactions; thiazine
66500 ID KETONES
66501 AB The fluorinated alpha,beta -unsaturated ketone
66502    1,1,1-trifluoro-4-ethoxy-3-butene-2-one reacted with dinucleophiles
66503    such as 2-aminothiophenol and 2-amino-ethanethiol to give
66504    trifluoroacetyl substituted 4H-1,4-benzothiazine, or 4H-1,4-thiazine,
66505    while the reaction of 5-trifluoroacetyl-3,4-dihydro-2H-pyran or
66506    4-trifluoroacetyl-2,3-dihydro-furan with 2-amino-phenthiol gave
66507    3-(2,2,3-2H-benzothiazolyl)-2-(trifluoromethyl)-tetrahydrofuran-2-ol or
66508    3-(2-2,3-2H-benzothiazolyl)-2-(trifluoromethyl)-
66509    tetrahydro-2H-pyran-2-ol, respectively. (C) 2001 Elsevier Science B.V.
66510    All rights reserved.
66511 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Shanghai 200032, Peoples R China.
66512    Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
66513 RP Zhu, SZ, Chinese Acad Sci, Shanghai Inst Organ Chem, 345 Fenglin Rd,
66514    Shanghai 200032, Peoples R China.
66515 CR BUDESINSKY BW, 1971, J INORG NUCL CHEM, V33, P3795
66516    CHU QL, 2000, SYNTHETIC COMMUN, V30, P677
66517    FILLER R, 1979, ORGANOFLUORINE CHEM
66518    FILLER R, 1982, BIOMEDICINAL ASPECTS
66519    FILLER R, 1993, ORGANOFLUORINE COMPO
66520    GERUS II, 1994, J FLUORINE CHEM, V69, P195
66521    GORBUNOVA MG, 1993, J FLUORINE CHEM, V65, P25
66522    LISO G, 1981, J HETEROCYCLIC CHEM, V18, P279
66523    MARTINS MAP, 1999, J HETEROCYCLIC CHEM, V36, P837
66524    MIYANO S, 1975, J CHEM SOC CHEM COMM, P760
66525    WELCH JT, 1987, TETRAHEDRON, V43, P3123
66526    YOSHIOKA H, 1984, J SYN ORG CHEM JPN, V42, P809
66527    ZHU SZ, 1999, MONATSH CHEM, V130, P671
66528 NR 13
66529 TC 7
66530 SN 0022-1139
66531 J9 J FLUORINE CHEM
66532 JI J. Fluor. Chem.
66533 PD MAR
66534 PY 2001
66535 VL 108
66536 IS 1
66537 BP 51
66538 EP 56
66539 PG 6
66540 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
66541 GA 416UB
66542 UT ISI:000167797600007
66543 ER
66544 
66545 PT J
66546 AU You, JL
66547    Jiang, GC
66548    Xu, KD
66549 TI Temperature dependence of the Raman spectra of Na2Si2O5
66550 SO CHINESE PHYSICS LETTERS
66551 DT Article
66552 ID SPECTROSCOPY; MELT
66553 AB The microstructures of Na2Si2O5 from room temperature up to 1773 K are
66554    studied by high-temperature Raman spectroscopy. Deconvolutions of
66555    complex Raman spectra of crystal and amorphous states (glass and melt)
66556    are described. The results show that the temperature-dependent Raman
66557    spectra clearly indicate phase transition. The relative abundance of
66558    various kinds of SiO4 tetrahedrons (each Si binding to different
66559    numbers of bridging oxygens) can be qualitatively and quantitatively
66560    resolved as to be varied obviously with different temperatures. This
66561    shows that high-temperature Raman spectroscopy provides a useful tool
66562    for microstructure research under high temperature and helps to explain
66563    the properties of silicate glasses and melts.
66564 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
66565 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
66566    200072, Peoples R China.
66567 CR DOMINE F, 1983, J NON-CRYST SOLIDS, V55, P125
66568    HANDKE M, 1993, VIB SPECTROSC, V5, P75
66569    HUANG SP, 2000, CHINESE PHYS LETT, V17, P279
66570    JIANG GC, 1993, ISIJ INT, V33, P20
66571    LONG DA, 1977, RAMAN SPECTROSCOPY, CH4
66572    MYSEN BO, 1990, J GEOPHYS RES-SOLID, V95, P15733
66573    SMITH W, 1995, J NONCRYST SOLIDS, V192, P267
66574    XU KD, 1999, SCI CHINA, V22, P77
66575    XU PC, 1996, RAMAN SPECTROSCOPY G, CH7
66576    YOU JL, 1998, J CHINESE RARE EARTH, V16, P505
66577    YOU JL, 1999, OPTICAL INSTRUMENT, V21, P21
66578    YOU JL, 2000, IN PRESS J SHANGHAI
66579 NR 12
66580 TC 2
66581 SN 0256-307X
66582 J9 CHIN PHYS LETT
66583 JI Chin. Phys. Lett.
66584 PD MAR
66585 PY 2001
66586 VL 18
66587 IS 3
66588 BP 408
66589 EP 410
66590 PG 3
66591 SC Physics, Multidisciplinary
66592 GA 417RM
66593 UT ISI:000167848000033
66594 ER
66595 
66596 PT J
66597 AU Cheng, JR
66598    Meng, ZY
66599 TI Thickness-dependent microstructures and electrical properties of PZT
66600    films derived from sol-gel process
66601 SO THIN SOLID FILMS
66602 DT Article
66603 DE PZT films; sol-gel; thickness-dependent properties
66604 ID THIN-FILMS; ORIENTATION
66605 AB Crack free Pb(ZrxTi1-x)O-3 (x = 0.45) films with various thicknesses
66606    were prepared by a sol-gel multiple coating process on Pt-coated
66607    Si(100) substrates. Rapid thermal annealing (RTA) methods were used to
66608    crystallize the amorphous PZT films. Field emission scanning electron
66609    microscopy (FESEM) and X-ray diffraction (XRD) techniques were utilized
66610    to study the thickness dependent morphology and phase content. The
66611    relationship between the thickness and electrical properties of PZT
66612    films was investigated. The dielectric constants of PZT films increased
66613    with increasing film thickness. It was observed that the PZT films
66614    revealed spontaneous piezoelectric responses without poling process,
66615    which decreased with increasing film thickness. By poling the film with
66616    26 V/mum, the piezoelectric responses of the thin PZT films was not
66617    obviously improved. However, the piezoelectric constant of thick PZT
66618    films increased obviously after poling. The phenomenon of
66619    thickness-dependent spontaneous polarization of PZT films was utilized
66620    to interpret the thickness dependent piezoelectric properties. The I-V
66621    characteristics and the dielectric breakdown strength of PZT films have
66622    also been examined and discussed. (C) 2001 Elsevier Science B.V. All
66623    rights reserved.
66624 C1 Shanghai Jiao Tong Univ, Sch Mat Sci, Shanghai 200030, Peoples R China.
66625    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China.
66626 RP Cheng, JR, Shanghai Jiao Tong Univ, Sch Mat Sci, Shanghai 200030,
66627    Peoples R China.
66628 CR AMANUMA K, 1993, JPN J APPL PHYS 1, V32, P4150
66629    BUDD KD, 1985, BR CERAM P, V36, P107
66630    CHENG JR, 1999, ADV SCI TECH, V25, P61
66631    KHOLKIN AL, 1998, INTEGR FERROELECTR, V22, P525
66632    KIM CJ, 1998, THIN SOLID FILMS, V312, P130
66633    LEFKI K, 1994, J APPL PHYS, V76, P1764
66634    LIU DDH, 1997, INTEGR FERROELECTR, V18, P263
66635    MIYAZAWA K, 1998, J AM CERAM SOC, V81, P2333
66636    PHILLIPS NJ, 1991, J MATER CHEM, V1, P893
66637    QU X, 1986, THIN FILM PHYSICS CH, P124
66638    SCOTT JF, 1989, SCIENCE, V246, P1400
66639    SWARTZ SL, 1992, MATER RES SOC S P, V243, P533
66640    TANI T, 1993, MATER RES SOC S P, V310, P296
66641    WILLEMS GJ, 1997, INTEGR FERROELECTR, V15, P19
66642    YAMASHITA K, 1980, JPN J APPL PHYS, V19, P867
66643    YI G, 1988, J APPL PHYS, V64, P2713
66644 NR 16
66645 TC 16
66646 SN 0040-6090
66647 J9 THIN SOLID FILMS
66648 JI Thin Solid Films
66649 PD APR 2
66650 PY 2001
66651 VL 385
66652 IS 1-2
66653 BP 5
66654 EP 10
66655 PG 6
66656 SC Materials Science, Multidisciplinary; Physics, Applied; Physics,
66657    Condensed Matter
66658 GA 414KW
66659 UT ISI:000167666600002
66660 ER
66661 
66662 PT J
66663 AU Cheng, XY
66664    Wan, XJ
66665    Wu, QY
66666    Sun, XK
66667 TI Diffusion of hydrogen along the grain boundaries in Ni3Al alloys
66668 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
66669 DT Article
66670 ID ENVIRONMENTAL EMBRITTLEMENT; NICKEL; TRANSPORT; SEGREGATION
66671 AB The diffusivity of hydrogen in two Ni3Al alloys (No.1 and No.2) has
66672    been measured in the temperature range of 100 degreesC to 420 degreesC
66673    using an ultrahigh vacuum gaseous permeation technique. The diffusivity
66674    data fall into two segments, in which the hydrogen diffusivity adheres
66675    to the Arrhenius form, respectively. From the hydrogen diffusivity, it
66676    is conjectured that the hydrogen diffusivity reflects the hydrogen
66677    transportation along the grain boundaries at lower temperature and the
66678    hydrogen transportation in the lattice at higher temperature. The
66679    intergranular fracture of Lit-type intermetallics induced by hydrogen
66680    at relative low temperature results from hydrogen transportation along
66681    the grain boundaries and not in the lattice.
66682 C1 Shanghai Univ, Mat Res Inst, Shanghai 200072, Peoples R China.
66683    Chinese Acad Sci, Met Res Inst, State Key Lab RSA, Shenyang 110015, Peoples R China.
66684 RP Cheng, XY, Shanghai Univ, Mat Res Inst, Shanghai 200072, Peoples R
66685    China.
66686 CR CHENG XY, UNPUB
66687    CHENG XY, 1998, SCRIPTA MATER, V38, P959
66688    FUKUSHIMA H, 1984, ACTA METALL, V32, P851
66689    GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37
66690    HARRIS TM, 1991, METALL TRANS A, V22, P351
66691    HUANG JH, 1996, DIFFUSION METALS ALL
66692    KIRMURA A, 1988, ACTA METALL, V36, P757
66693    LADNA B, 1987, ACTA METALL, V35, P1775
66694    PALUMBO G, 1991, SCRIPTA METALL MATER, V25, P679
66695    TAKASUGI T, 1993, SCRIPTA METALL MATER, V29, P1587
66696    TSURU T, 1982, SCRIPTA METALL, V16, P575
66697    WAN X, 1994, J MATER SCI TECHNOL, V10, P39
66698    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
66699    XU J, 1993, ACTA METALL MATER, V41, P1455
66700 NR 14
66701 TC 0
66702 SN 1005-0302
66703 J9 J MATER SCI TECHNOL
66704 JI J. Mater. Sci. Technol.
66705 PD MAR
66706 PY 2001
66707 VL 17
66708 IS 2
66709 BP 207
66710 EP 210
66711 PG 4
66712 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
66713    Engineering
66714 GA 415KL
66715 UT ISI:000167720500003
66716 ER
66717 
66718 PT J
66719 AU Guo, GY
66720    Chen, YL
66721 TI High-quality zirconia powder resulting from the attempted separation of
66722    acetic acid from acrylic acid with zirconium oxychloride
66723 SO JOURNAL OF MATERIALS CHEMISTRY
66724 DT Article
66725 ID TEMPERATURE; PRECURSOR; ALKOXIDE
66726 AB Both acetic and acrylic acids are low molecular weight carboxylic acids
66727    with very similar physical and chemical properties. As a result it is
66728    difficult to separate these two acids by the now commercially
66729    significant separation techniques such as distillation, solvent
66730    extraction, adsorption, ion exchange, calcium salt precipitation, and
66731    membrane processes. We propose a metal-organic precipitation process
66732    using zirconium oxychloride to separate acetic acid from acrylic acid
66733    in the effluent of an acrylic acid plant. The process developed is
66734    based on the selective precipitation of acrylic acid, at suitable pH
66735    values, by the addition of zirconium oxychloride to the effluent. The
66736    resulting precipitate is a precursor that can yield a pure, ultrafine,
66737    and partially-stabilized zirconia powder which has been characterised
66738    using thermal analysis, infrared spectroscopy, and X-ray diffraction.
66739    Environmental, technological and cost advantages will make the present
66740    process feasible for the manufacture of advanced zirconia-based
66741    ceramics.
66742 C1 Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Shanghai 200030, Peoples R China.
66743    Shanghai Univ, Coll Chem & Chem Engn, Shanghai 200072, Peoples R China.
66744 RP Guo, GY, Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Shanghai 200030,
66745    Peoples R China.
66746 CR ALCOCK NW, 1976, J CHEM SOC DA, P2243
66747    CHEN YL, 1997, CERAM INT, V23, P267
66748    DJURADO E, 1998, J SOLID STATE CHEM, V141, P191
66749    GU GY, 1992, J AM CERAM SOC, V75, P1294
66750    GUO GY, 1991, J MATER SCI, V26, P3511
66751    GUO GY, 2000, GREEN CHEM, V2, G42
66752    HAYASHI H, 1998, J SOL-GEL SCI TECHN, V12, P87
66753    HU MZC, 1999, J AM CERAM SOC, V82, P2313
66754    JANA S, 1997, J SOL-GEL SCI TECHN, V9, P227
66755    KOMISSAROVA LN, 1966, RUSS J INORG CHEMN, V11, P2035
66756    MCDEVITT NT, 1964, SPECTROCHIM ACTA, V20, P799
66757    MEHROTRA RC, 1983, METAL CARBOXYLATES, P238
66758    MICHELI AL, 1989, CERAM INT, V15, P131
66759    PAUL RC, 1976, AUST J CHEM, V29, P1605
66760    PROZOROVSKAYA ZN, 1968, RUSS J INORG CHEM, V13, P965
66761    SOREK Y, 1997, CHEM MATER, V9, P670
66762    TOSAN JL, 1994, J NON-CRYST SOLIDS, V168, P23
66763    TSUKADA T, 1999, J AM CERAM SOC, V82, P1169
66764    UCHIKOSHI T, 1998, J MATER RES, V13, P840
66765    VEYTIZOU C, 2000, J MATER CHEM, V10, P365
66766    YOKOTA O, 1999, J AM CERAM SOC, V82, P1333
66767 NR 21
66768 TC 1
66769 SN 0959-9428
66770 J9 J MATER CHEM
66771 JI J. Mater. Chem.
66772 PY 2001
66773 VL 11
66774 IS 4
66775 BP 1283
66776 EP 1287
66777 PG 5
66778 SC Chemistry, Physical; Materials Science, Multidisciplinary
66779 GA 415NR
66780 UT ISI:000167728100050
66781 ER
66782 
66783 PT J
66784 AU Wan, YB
66785    Chu, JH
66786    Guo, SL
66787    Bo, LX
66788    Yu, TY
66789    Yu, BK
66790 TI A ferroelectric frequency-doubling material-potassium lithium niobate
66791 SO INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES
66792 DT Article
66793 DE crystal growth; ferroelectrics; optical transmission spectrum; domain
66794    structure; Second Harmonic Generation
66795 ID SINGLE-CRYSTALS; GROWTH
66796 AB The potassium lithium niobate crystals have been grown up. The shapes
66797    of solid-melt interfaces which maintaining the steady growth of the
66798    potassium lithium niobate crystals have been described. The optical
66799    transmission spectrum of the crystal has been surveyed. The perfected
66800    crystals showed good Second Harmonic Generation properties.
66801 C1 Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China.
66802    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
66803 RP Wan, YB, Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared
66804    Phys, Shanghai 200083, Peoples R China.
66805 CR CLARK R, 1973, J PHYSIQUE, V22, P143
66806    REID JJE, 1993, APPL PHYS LETT, V62, P19
66807    SONG YT, 1998, J CRYST GROWTH, V194, P379
66808    VANUITERT LG, 1967, APPL PHYS LETT, V11, P161
66809    WAN YB, 1998, J SYNTH CRYST, V27, P36
66810    WAN YB, 1999, CHIN J LASER, V26, P837
66811    XIA HR, 1997, CRYST RES TECHNOL, V32, P311
66812 NR 7
66813 TC 0
66814 SN 0195-9271
66815 J9 INT J INFRAR MILLIM WAVE
66816 JI Int. J. Infrared Millimeter Waves
66817 PD JAN
66818 PY 2001
66819 VL 22
66820 IS 1
66821 BP 197
66822 EP 205
66823 PG 9
66824 SC Engineering, Electrical & Electronic; Physics, Applied; Optics
66825 GA 414FL
66826 UT ISI:000167655300017
66827 ER
66828 
66829 PT J
66830 AU Pan, SK
66831    Yuan, QX
66832    Xu, J
66833    Yu, TY
66834    Yu, BK
66835    Wan, YB
66836 TI Crack-free K3Li2-xNb5+2xO15+2x crystals grown by the resistance-heated
66837    Czochralski technique
66838 SO JOURNAL OF CRYSTAL GROWTH
66839 DT Article
66840 DE Czochralski method; growth from melt; single crystal growth; lithium
66841    compound; niobate; potassium compounds; ferroelectric materials;
66842    nonlinear optic materials; harmonic generators; nonlinear optical
66843 ID POTASSIUM
66844 AB We report that crack-free K3Li2-chiNb5+2 chiO15+2 chi crystals (KLN)
66845    have been grown by the resistance-heated Czochralski technique. The
66846    influence of melt composition and growth parameters on crystal growth
66847    and crystal cracks are described. Blue light (445-476nm) has been
66848    obtained by frequency doubling of the light wave (890-952nm) generated
66849    from a Ti:sapphire laser. (C) 2001 Published by Elsevier Science B.V.
66850 C1 Acad Sinica, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
66851    Shanghai Univ Sci & Technol, Dept Phys, Shanghai 201800, Peoples R China.
66852    Acad Sinica, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China.
66853 RP Pan, SK, Acad Sinica, Shanghai Inst Opt & Fine Mech, POB 800211,
66854    Shanghai 201800, Peoples R China.
66855 CR FERRIOL M, 1997, J CRYST GROWTH, V173, P226
66856    OUWERKER M, 1991, ADV MATER, V3, P339
66857    SCOTT BA, 1970, MATER RES B, V5, P47
66858    VANUITERT LG, 1967, APPL PHYS LETT, V11, P161
66859    WAN YB, 1997, J SYNTH CRYST, V2, P36
66860    WAN YB, 1999, J CHIN LASERS, V8, P15
66861    YOON DH, 1994, J CRYST GROWTH, V144, P207
66862 NR 7
66863 TC 2
66864 SN 0022-0248
66865 J9 J CRYST GROWTH
66866 JI J. Cryst. Growth
66867 PD MAR
66868 PY 2001
66869 VL 223
66870 IS 3
66871 BP 389
66872 EP 393
66873 PG 5
66874 SC Crystallography
66875 GA 411FL
66876 UT ISI:000167487400011
66877 ER
66878 
66879 PT J
66880 AU Ma, JY
66881    Qiu, XJ
66882 TI Interaction between an electronic system and multiphotons in a strong
66883    laser field
66884 SO ACTA PHYSICA SINICA
66885 DT Article
66886 DE strong laser field; multiphoton; nonlinear optics
66887 ID PARTIALLY STRIPPED PLASMAS; COHERENT CONTROL; PULSES; PROPAGATION;
66888    PHOTODISSOCIATION; STABILITY; DYNAMICS
66889 AB Under the framework of nonlinear quantum field theory,we show the total
66890    Hamiltonian operator H-tot for the interaction between an electron
66891    field and a photon field,and study the contribution of the nonlinear
66892    term A(2) in the strong laser field. In this paper,we describe
66893    electrons with the Schrodinger quantum wave field of Fermi-Dirac
66894    statistics. By applying "self-consistent mean field","effective mass"
66895    approximation and the displaced harmonic oscillator coherent theory,we
66896    derive the Lee-Low-Pines expression f(b(+)) of electron wave-photon
66897    field operator function. Then using the differential formula of partial
66898    derivativef(b+)/partial derivativeb+ we derive some relevant
66899    calculating formulas, including detailed expressions of electron energy
66900    El and abt wave field parameter beta (w). Furthermore,we also derive
66901    self-energy E-k=0 and renormalized mass m** of electrons according to
66902    these expressions.
66903 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
66904 RP Ma, JY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
66905 CR BARTY CPJ, 1996, LASER FOCUS WORLD, V32, P93
66906    BORGHESI M, 1998, PHYS REV E, V57, P4899
66907    CHARRON E, 1995, J CHEM PHYS, V103, P7359
66908    CHARRON E, 1995, PHYS REV LETT, V75, P2815
66909    CLARK TR, 1997, PHYS REV LETT, V78, P2773
66910    GIUSTISUZOR A, 1995, J PHYS B-AT MOL OPT, V28, P309
66911    GUO DS, 1992, PHYS REV A, V45, P6622
66912    HAKEN H, 1976, QUANTUM FIELD THEORY
66913    KRUSHELNICK K, 1997, PHYS REV LETT, V78, P4047
66914    LANGE HR, 1998, OPT LETT, V23, P120
66915    MENG SX, 1999, PROGR PHYSICS, V19, P236
66916    MILCHBERG HM, 1996, PHYS PLASMAS 2, V3, P2149
66917    MOUROU GA, 1998, PHYS TODAY, V51, P22
66918    SPRANGLE P, 1997, PHYS REV E B, V56, P5894
66919    SPRANGLE P, 1997, PHYS REV LETT, V79, P1046
66920    SPRANGLE P, 1999, PHYS REV LETT, V82, P1173
66921 NR 16
66922 TC 0
66923 SN 1000-3290
66924 J9 ACTA PHYS SIN-CHINESE ED
66925 JI Acta Phys. Sin.
66926 PD MAR
66927 PY 2001
66928 VL 50
66929 IS 3
66930 BP 416
66931 EP 421
66932 PG 6
66933 SC Physics, Multidisciplinary
66934 GA 412UJ
66935 UT ISI:000167572500010
66936 ER
66937 
66938 PT J
66939 AU Xue, Y
66940    Dong, LY
66941    Dai, SQ
66942 TI An improved one-dimensional cellular automaton model of traffic flow
66943    and the effect of deceleration probability
66944 SO ACTA PHYSICA SINICA
66945 DT Article
66946 DE traffic flow; cellular automaton; probability of deceleration; jam phase
66947 AB Based upon the single-lane traffic cellular automaton (CA) model
66948    introduced by Negel and Schreckenberg, an improved single-lane traffic
66949    CA model has been proposed by the consideration of the relative motion
66950    of vehicles and the relation of deceleration probability with the
66951    density. Numerical simulations have been carried out. The results show
66952    the complicated evolution process of traffic flow. The flow of vehicles
66953    can be controlled by the definition of the relation between
66954    deceleration probability and the exponet v of density P-noise similar
66955    to rho (v) Different values of v have different effect on the critical
66956    point from free phase to jam phase. The simulation agrees with the
66957    measurement as v is about 0.75. With the increase of vehicles and the
66958    evolution process of traffic flow,the free and jam phases will become
66959    unsteady and appear alternatively, similiar to the propagation of wave.
66960 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
66961    Guangxi Univ, Dept Phys, Nanning 530003, Peoples R China.
66962 RP Xue, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
66963    Peoples R China.
66964 CR BIHAM O, 1992, PHYS REV A, V46, P6124
66965    ISHIBASHI Y, 1994, J PHYS SOC JPN, V63, P2882
66966    NAGEL K, 1992, J PHYS I, V2, P2221
66967    NAGEL K, 1997, TRANSIMS TRAFFIC FLO
66968    SCHREKENBERG M, 1995, PHYS REV E A, V51, P2939
66969    TOROK J, 1996, PHYSICA A, V231, P515
66970    WAGNER P, 1996, TRAFFIC GRANULAR FLO, P193
66971    WANG BH, 1996, J PHYS A-MATH GEN, V29, L31
66972    WANG BH, 1998, ACTA PHYS SINICA, V47, P906
66973    WOLFRAM S, 1986, THEORY APPL CELLULAR
66974 NR 10
66975 TC 21
66976 SN 1000-3290
66977 J9 ACTA PHYS SIN-CHINESE ED
66978 JI Acta Phys. Sin.
66979 PD MAR
66980 PY 2001
66981 VL 50
66982 IS 3
66983 BP 445
66984 EP 449
66985 PG 5
66986 SC Physics, Multidisciplinary
66987 GA 412UJ
66988 UT ISI:000167572500015
66989 ER
66990 
66991 PT J
66992 AU Ma, HL
66993    Tang, JY
66994 TI Measurement of isotope shifts among Nd-142-146,148,150(+) by using
66995    collinear fast-ion-beam laser spectroscopy
66996 SO ACTA PHYSICA SINICA
66997 DT Article
66998 DE isotope shifts; fast-ion-beam laser spectroscopy
66999 ID ND-II
67000 AB In atomic spectroscopy, the subject of isotope shifts is one of the few
67001    problems that links atomic and nuclear physics. The isotope shifts
67002    among all the seven stable isotopes in Nd II were measured by means of
67003    collinear fast-ion-beam laser spectroscopy. Compared with the data that
67004    have been published,our experimental accuracy is improved by one order
67005    of magnitude and some of the results are obtained for the first time,
67006    as far as we know.
67007 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
67008    Fudan Univ, Inst Modern Phys, Shanghai 200433, Peoples R China.
67009 RP Ma, HL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
67010 CR AHMAD SA, 1983, SPECTROCHIM ACTA B, V36, P943
67011    BLAISE J, 1984, PHYS SCR, V29, P119
67012    GERSTENKON S, 1978, ATLAS SPECTRA ABSORP
67013    KING WK, 1984, ISOTOPE SHIFTS ATOMI, CH6
67014    MA HL, 1997, J PHYS B-AT MOL OPT, V30, P3355
67015    MA HL, 1998, ACTA PHYS SIN-OV ED, V7, P572
67016    MA HL, 1999, CHINESE PHYS LETT, V6, P411
67017    WAKASUGI M, 1990, J PHYS SOC JPN, V59, P2700
67018 NR 8
67019 TC 0
67020 SN 1000-3290
67021 J9 ACTA PHYS SIN-CHINESE ED
67022 JI Acta Phys. Sin.
67023 PD MAR
67024 PY 2001
67025 VL 50
67026 IS 3
67027 BP 453
67028 EP 456
67029 PG 4
67030 SC Physics, Multidisciplinary
67031 GA 412UJ
67032 UT ISI:000167572500017
67033 ER
67034 
67035 PT J
67036 AU Li, SM
67037    Wang, Q
67038    Wu, Z
67039    Wei, Q
67040 TI Slow Bragg solitons in a periodic structure with Kerr nonlinearity
67041 SO ACTA PHYSICA SINICA
67042 DT Article
67043 DE solitary wave; slow Bragg solitons; gap solitons; coupled-mode theory
67044 ID GAP SOLITONS; OPTICAL-RESPONSE; BISTABILITY; SUPERLATTICES
67045 AB On the basis of coupled-mode theory we find a class of solitary
67046    solutions for the electromagnetic wave propagating in an infinite
67047    one-dimensional periodic structure with an intensity-dependent
67048    refractive index. We show that the amplitude of the solitary wave is
67049    dependent of the incident frequency and the pulse width. In the Bragg
67050    resonance limit, the solitary wave can he Simplified to a soliton-like
67051    solution which was named as "gap soliton" or "slow Bragg soliton".
67052 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
67053 RP Li, SM, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
67054 CR CHEN W, 1987, PHYS REV B, V36, P6269
67055    CHEN W, 1987, PHYS REV LETT, V58, P160
67056    CHRISTODOULIDES DN, 1989, PHYS REV LETT, V62, P1746
67057    DESTERKE CM, 1989, J OPT SOC AM B, V6, P1722
67058    DRAGOMAN M, 1993, APPL PHYS LETT, V62, P110
67059    FENG J, 1993, OPT LETT, V18, P1302
67060    FENG JH, 1993, IEEE J QUANTUM ELECT, V29, P590
67061    HERBERT CJ, 1993, OPT LETT, V18, P1783
67062    KUO CP, 1988, OPT LETT, V13, P1032
67063    MILLS DL, 1987, PHYS REV B, V36, P947
67064    WINFUL HG, 1979, APPL PHYS LETT, V35, P379
67065    WINFUL HG, 1985, APPL PHYS LETT, V46, P527
67066 NR 12
67067 TC 4
67068 SN 1000-3290
67069 J9 ACTA PHYS SIN-CHINESE ED
67070 JI Acta Phys. Sin.
67071 PD MAR
67072 PY 2001
67073 VL 50
67074 IS 3
67075 BP 489
67076 EP 495
67077 PG 7
67078 SC Physics, Multidisciplinary
67079 GA 412UJ
67080 UT ISI:000167572500024
67081 ER
67082 
67083 PT J
67084 AU Gan, JY
67085    Chau, KT
67086    Wang, Y
67087    Chan, CC
67088    Jiang, JZ
67089 TI Design and analysis of a new permanent magnet brushless DC machine
67090 SO IEEE TRANSACTIONS ON MAGNETICS
67091 DT Article
67092 DE flux regulation; permanent magnet brushless dc machine; square wave;
67093    time-stepping finite element method
67094 AB A new permanent magnet (PM) brushless de machine with a unique feature
67095    of flux regulation is proposed in this paper. The originality is that
67096    the air-gap flux of the machine is generated by both the PM excitation
67097    and the specially controlled stator current under the same PM pole, The
67098    machine possesses advantageous characteristics of both the PM brushless
67099    de machine and the de series machine, The rotor configuration and
67100    principle of operation are so novel that the magnetic field
67101    distribution and performances of the machine are analyzed by use of a
67102    time-stepping finite element method. The theoretical calculation is
67103    also verified by experimental measurement.
67104 C1 Univ Hong Kong, Dept Elect Engn & Elect, Hong Kong, Hong Kong, Peoples R China.
67105    Shanghai Univ, Sch Automat, Shanghai 200072, Peoples R China.
67106 RP Gan, JY, Univ Hong Kong, Dept Elect Engn & Elect, Hong Kong, Hong Kong,
67107    Peoples R China.
67108 CR CHAN CC, 1996, IEEE T IND ELECTRON, V43, P331
67109    CHAN CC, 1998, IEEE T, V4, P16
67110    CHAN CC, 1999, P INT EL VEH S, P1
67111    LAW JD, 1994, IEEE T IND APPL, V30, P1185
67112    MAYER R, 1986, P INT C EL MACH, P1138
67113 NR 5
67114 TC 2
67115 SN 0018-9464
67116 J9 IEEE TRANS MAGN
67117 JI IEEE Trans. Magn.
67118 PD SEP
67119 PY 2000
67120 VL 36
67121 IS 5
67122 PN Part 1
67123 BP 3353
67124 EP 3356
67125 PG 4
67126 SC Engineering, Electrical & Electronic; Physics, Applied
67127 GA 409EN
67128 UT ISI:000167371700380
67129 ER
67130 
67131 PT J
67132 AU Gan, JY
67133    Chau, KT
67134    Chan, CC
67135    Jiang, JZ
67136 TI A new surface-inset, permanent-magnet, brushless DC motor drive for
67137    electric vehicles
67138 SO IEEE TRANSACTIONS ON MAGNETICS
67139 DT Article
67140 DE brushless dc motors; electric vehicles; motor drives; permanent magnet
67141    motors
67142 ID OPERATING LIMITS; DESIGN; PERFORMANCE; MACHINES
67143 AB A new five-phase, surface-inset, permanent-magnet (PM), brushless de
67144    motor drive is proposed in this paper The motor drive has advantages of
67145    both the PM brushless de motor drive and the de series motor drive, The
67146    originlity is that the air-gap flux of the motor is generated by both
67147    the PM excitation and the specially controlled stator currents (two
67148    particular phases) under the same PM pole. The motor configuration and
67149    principle of operation are so unusual that the magnetic field
67150    distribution and steady-state performance are analyzed by the
67151    finite-element method (FEM), Experimental results for a prototype
67152    verify that the proposed motor drive is promising for modern electric
67153    vehicle applications.
67154 C1 Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China.
67155    Shanghai Univ, Sch Automat, Shanghai 200072, Peoples R China.
67156 RP Gan, JY, Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong,
67157    Peoples R China.
67158 CR CHAN CC, 1993, P IEEE, V81, P1202
67159    CHAN CC, 1994, IEEE T IND APPL, V30, P1258
67160    CHAN CC, 1995, IEEE T POWER ELECTR, V10, P539
67161    JAHNS TM, 1987, IEEE T IND APPL, V23, P681
67162    LAW JD, 1994, IEEE T IND APPL, V30, P1185
67163    MAYER R, 1988, P INT C EL MACH, P1138
67164    MORIMOTO S, 1990, IEEE T IND APPL, V26, P866
67165    SCHIFERL RF, 1990, IEEE T IND APPL, V26, P115
67166    SEBASTIAN T, 1987, IEEE T IND APPL, V23, P327
67167    SEBSTIAN T, 1986, IEEE T MAGN, V22, P1069
67168    SOONG WL, 1994, IEE P-ELECT POW APPL, V141, P331
67169    WEH H, 1984, IEEE T MAGN, V20, P1756
67170    WEH H, 1985, P EUR POW EL C EPE B, P1147
67171    XU LY, 1995, IEEE T IND APPL, V31, P373
67172    ZHU ZQ, 1994, IEEE T MAGN, V30, P98
67173 NR 15
67174 TC 6
67175 SN 0018-9464
67176 J9 IEEE TRANS MAGN
67177 JI IEEE Trans. Magn.
67178 PD SEP
67179 PY 2000
67180 VL 36
67181 IS 5
67182 PN Part 2
67183 BP 3810
67184 EP 3818
67185 PG 9
67186 SC Engineering, Electrical & Electronic; Physics, Applied
67187 GA 409EQ
67188 UT ISI:000167371900009
67189 ER
67190 
67191 PT J
67192 AU Ren, ZJ
67193    Cao, WG
67194    Tong, WQ
67195    Xi, JJ
67196 TI Novel synthesis of unsymmetrical azines from semicarbazones and
67197    aldehydes
67198 SO SYNTHETIC COMMUNICATIONS
67199 DT Article
67200 AB A new synthesis of unsymmetrical azines utilizing semicarbazones and
67201    aldehyde is described.
67202 C1 Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
67203 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
67204 CR BARLUENGA J, 1982, SYNTHESIS-STUTTGART, P966
67205    GEORGIA MA, 1987, ORGANOMETALLICS, V6, P421
67206    KOZIARA A, 1986, SYNTHESIS-STUTTGART, P298
67207    TENNANT G, 1979, COMPREHENSIVE ORGANI, V2, P455
67208    UGRIUMOV PG, 1959, ZH OBSHCH KHIM, V29, P4091
67209 NR 5
67210 TC 1
67211 SN 0039-7911
67212 J9 SYN COMMUN
67213 JI Synth. Commun.
67214 PY 2001
67215 VL 31
67216 IS 1
67217 BP 125
67218 EP 129
67219 PG 5
67220 SC Chemistry, Organic
67221 GA 409LC
67222 UT ISI:000167384300017
67223 ER
67224 
67225 PT J
67226 AU Jin, H
67227    Wang, Q
67228    Li, ZY
67229 TI Biocatalytic resolution of para-nitrostyrene oxide by resting cells of
67230    different Aspergillus niger strains
67231 SO CHINESE JOURNAL OF CHEMISTRY
67232 DT Article
67233 DE epoxide hydrolase; kinetic resolution; chiral epoxide; chiral vicinal
67234    diol
67235 ID MICROBIOLOGICAL TRANSFORMATIONS; EPOXIDE HYDROLASES
67236 AB Biocatalytic resolution of racemic para-nitrostyrene oxide was
67237    accomplished by employing the epoxide hydrolases from the whole cells
67238    of several Aspergillus niger (A. niger) strains. In the eases
67239    investigated, excellent selectivity was achieved with such strains as
67240    A. niger 5450, A. niger 5320.
67241 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Bioorgan & Nat Prod Chem, Shanghai 200032, Peoples R China.
67242    Shanghai Univ, Dept Biotechnol, Shanghai 200072, Peoples R China.
67243 RP Li, ZY, Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab
67244    Bioorgan & Nat Prod Chem, 345 Lingling Lu, Shanghai 200032, Peoples R
67245    China.
67246 CR ARAND M, 1994, FEBS LETT, V338, P251
67247    ARAND M, 1996, J BIOL CHEM, V271, P4223
67248    ARCHELAS A, 1997, ANNU REV MICROBIOL, V51, P491
67249    CHEN XJ, 1993, J ORG CHEM, V58, P5528
67250    FABER K, 1996, ACTA CHEM SCAND, V50, P249
67251    JACOBSEN EN, 1997, TETRAHEDRON LETT, V38, P773
67252    JOHNSON RA, 1993, CATALYTIC ASYMMETRIC, P103
67253    KATSUKI T, 1995, J SYN ORG CHEM JPN, V53, P940
67254    KOLB HC, 1994, CHEM REV, V94, P2483
67255    LARROW JF, 1996, J AM CHEM SOC, V50, P249
67256    MOREAU P, 1997, TETRAHEDRON, V53, P9707
67257    MORISSEAU C, 1997, ENZYME MICROB TECH, V20, P446
67258    MORISSEAU C, 1998, BIOTECHNOL TECH, V12, P805
67259    MOUSSOU P, 1996, J ORG CHEM, V61, P7402
67260    PEDRAGOSAMOREAU S, 1997, TETRAHEDRON, V53, P9707
67261    WEIJERS CAGM, 1997, TETRAHEDRON-ASYMMETR, V8, P639
67262 NR 16
67263 TC 0
67264 SN 1001-604X
67265 J9 CHINESE J CHEM
67266 JI Chin. J. Chem.
67267 PD MAR
67268 PY 2001
67269 VL 19
67270 IS 3
67271 BP 272
67272 EP 275
67273 PG 4
67274 SC Chemistry, Multidisciplinary
67275 GA 408AP
67276 UT ISI:000167304600011
67277 ER
67278 
67279 PT J
67280 AU Xu, K
67281    Zhou, S
67282    Bao, JS
67283 TI Nonequilibrium photoresponse of YBa2Cu3O7-x granular films to 8 mm
67284    microwave radiation
67285 SO JOURNAL OF APPLIED PHYSICS
67286 DT Article
67287 ID KOSTERLITZ-THOULESS TRANSITION; O THIN-FILMS; ANTIVORTEX PAIR
67288    DISSOCIATION; SUPERCONDUCTING WEAK LINKS; JOSEPHSON-JUNCTION ARRAYS;
67289    OPTICAL-RESPONSE; RESISTIVE TRANSITION; TEMPORAL RELAXATION;
67290    FLUCTUATIONS; CRYSTALS
67291 AB Nonequilibrium photoresponse behavior has been investigated for
67292    YBa2Cu3O7-x (YBCO) granular films to 8 mm microwave radiation under
67293    various bias currents and magnetic fields. The measurements reveal that
67294    the nonequilibrium photoresponse mode occurs only in the tail region of
67295    the resistance transition curve R(T) from the normal to the
67296    superconducting state, where transportation behavior of the granular
67297    superconducting film is found to be characterized by the
67298    Kosterlitz-Thouless (KT) phase transition model. Based on the KT model,
67299    the photoresponse mechanism has been interpreted in terms of the
67300    depinning process of the unbinding vortices, which are generated from
67301    the decoupling process of the vortex-antivortex pairs by current, and
67302    are held at the intrinsic pinning sites of the granular high-T-c
67303    superconducting films at low temperature. Under the co-action of the
67304    bias current and the incident microwave photons, these unbinding
67305    vortices will be driven out of the pinning center, creating viscous
67306    motion in the Josephson junction array system. An analytical result of
67307    the unbinding vortices density n(T,I) induced by applied current has
67308    been worked out based on the model of two-dimensional Josephson
67309    junction arrays that is employed as a model system for the YBCO
67310    granular films. The distribution of the n(T,I) is found to be analogous
67311    to that of the photoresponse measured in the temperature region of
67312    2/3T(KT)<T <T-KT. Additionally, the measurements reveal that the
67313    magnitude of the photoresponse is linearly increased with an increase
67314    of the incident microwave power. These results imply that the
67315    nonequilibrium photoresponse induced by microwave irradiation may be
67316    intrinsically related to the decoupling process of the
67317    vortex-antivortex pairs, as well as to the depinning dynamics of the
67318    unbinding vortices in the granular high-T-c superconducting films. (C)
67319    2001 American Institute of Physics.
67320 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
67321 RP Xu, K, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
67322 CR ABRAHAM DW, 1982, PHYS REV B, V26, P5268
67323    AMBEGAOKAR V, 1963, PHYS REV LETT, V10, P486
67324    BEASLEY MR, 1979, PHYS REV LETT, V42, P1165
67325    BHATTACHARYA S, 1994, J APPL PHYS, V76, P5829
67326    BLUZER N, 1991, PHYS REV B, V44, P10222
67327    BLUZER N, 1992, J APPL PHYS, V71, P1336
67328    BLUZER N, 1993, IEEE T APPL SUPERCON, V3, P2869
67329    BOONE BG, 1991, J APPL PHYS, V69, P2676
67330    CHANG K, 1991, J APPL PHYS, V69, P7316
67331    CHEN CD, 1994, PHYSICA B 1, V194, P989
67332    CHERN JD, 1993, IEEE T APPL SUPERCON, V3, P2128
67333    CHO S, 1999, J APPL PHYS, V84, P5657
67334    CULBERTSON JC, 1991, PHYS REV B, V44, P9609
67335    DAVIS LC, 1990, PHYS REV B, V42, P99
67336    DEMSAR J, 1997, J SUPERCOND, V10, P455
67337    EPSTEIN K, 1981, PHYS REV LETT, V47, P534
67338    FARDMANESH M, 1995, J APPL PHYS, V77, P4568
67339    FENKEL A, 1993, PHYS REV B, V48, P9717
67340    FIORY AT, 1988, PHYS REV LETT, V61, P1419
67341    FRENKEL A, 1990, J APPL PHYS, V67, P3054
67342    GOLTSMAN GN, 1994, J SUPERCOND, V7, P751
67343    HARRIS DC, 1991, PHYS REV LETT, V67, P3606
67344    HEBARD AF, 1980, PHYS REV LETT, V44, P291
67345    HEGMANN FA, 1993, PHYS REV B, V48, P16023
67346    HEGMANN FA, 1995, APPL PHYS LETT, V67, P285
67347    HERTER ST, 1998, PHYS REV B, V57, P1154
67348    HU Q, 1989, APPL PHYS LETT, V55, P2444
67349    HUBER WM, 1996, APPL PHYS LETT, V68, P3338
67350    KADOWAKI K, 1994, SUPERCOND SCI TECH, V7, P519
67351    KAILA MM, 1998, J SUPERCOND, V11, P463
67352    LOBB CJ, 1983, PHYS REV B, V27, P150
67353    MARTIN S, 1989, PHYS REV LETT, V62, P677
67354    PHONG LN, 1993, J APPL PHYS, V74, P7414
67355    RESNICK DJ, 1981, PHYS REV LETT, V47, P1542
67356    RZCHOWSKI MS, 1990, PHYS REV B, V42, P2041
67357    STROM U, 1990, PHYS REV B, V42, P4059
67358    TINKHAM M, 1995, INTRO SUPERCONDUCTIV, CH6
67359    WU PH, 1987, JPN J APPL PHYS, V26, L1579
67360    XU KX, 1999, ACTA PHYS SIN-CH ED, V48, P1152
67361    YEH NC, 1989, PHYS REV B, V39, P9708
67362    YESHURUN Y, 1988, PHYS REV LETT, V60, P2202
67363    YING QY, 1990, PHYS REV B, V42, P2242
67364    YUZHELEVSKI Y, 1999, PHYS REV B, V60, P9726
67365    ZELDOV E, 1989, PHYS REV B, V39, P9712
67366 NR 44
67367 TC 2
67368 SN 0021-8979
67369 J9 J APPL PHYS
67370 JI J. Appl. Phys.
67371 PD MAR 15
67372 PY 2001
67373 VL 89
67374 IS 6
67375 BP 3352
67376 EP 3361
67377 PG 10
67378 SC Physics, Applied
67379 GA 406ZZ
67380 UT ISI:000167248100043
67381 ER
67382 
67383 PT J
67384 AU He, JH
67385 TI Generalized Hellinger-Reissner principle
67386 SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME
67387 DT Article
67388 ID PARAMETRIZED VARIATIONAL-PRINCIPLES; MECHANICS
67389 AB By the semi-inverse method of establishing variational principles, the
67390    Hellinger-Reissner principle can be obtained straightforwardly from
67391    energy trial-functionals without using Lagrange multipliers, and a
67392    family of generalized Hellinger-Reissner principles with an arbitrary
67393    constant are also obtained, some of which are unknown to us at the
67394    present time. The present theory provides a straightforward tool to
67395    search for various variational principles directly from governing
67396    equations and boundary conditions.
67397 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
67398 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
67399    Shanghai 200072, Peoples R China.
67400 CR CHIEN WZ, 1983, APPL MATH MECH, V4, P137
67401    CHIEN WZ, 1984, ADV APPL MECH, V24, P93
67402    FELIPPA CA, 1989, COMMUN APPL NUMER M, V5, P79
67403    FELIPPA CA, 1994, COMPUT METHOD APPL M, V113, P109
67404    FELIPPA CA, 1996, COMPUT MECH, V18, P159
67405    GOLDSTEIN H, 1981, CLASSICAL MECH
67406    HE JH, 1997, INT J TURBO JET ENG, V14, P23
67407    HE JH, 1997, J ENG THERMOPHYSICS, V18, P440
67408    HE JH, 1997, J SHANGHAI U, V1
67409    HE JH, 1997, J SHANGHAI U, V1, P36
67410    HE JH, 1997, MODERN MECH ADV SCI, P1417
67411    HE JH, 1997, MODERN MECH ADV SCI, P603
67412    LIU GL, 1990, P 1 INT S AER INT FL, P128
67413    WASHIZU K, 1982, VARIATIONAL METHODS
67414 NR 14
67415 TC 3
67416 SN 0021-8936
67417 J9 J APPL MECH
67418 JI J. Appl. Mech.-Trans. ASME
67419 PD JUN
67420 PY 2000
67421 VL 67
67422 IS 2
67423 BP 326
67424 EP 331
67425 PG 6
67426 SC Mechanics
67427 GA 404PK
67428 UT ISI:000167109400013
67429 ER
67430 
67431 PT J
67432 AU Chen, DD
67433    Shi, WH
67434 TI On the formal solution of initial value problem of Navier-Stokes
67435    equation
67436 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
67437 DT Article
67438 DE Navier-Stokes equation; formal solution; stratification; equation
67439    secondaire
67440 AB A necessary and sufficient conditions of the existence of formal
67441    solution to the initial value problem of Navier-Stokes equation an R-3
67442    x R are presented. A computation case is also given.
67443 C1 Shanghai Univ, Dept Math, Shanghai 200041, Peoples R China.
67444 RP Chen, DD, Shanghai Univ, Dept Math, Shanghai 200041, Peoples R China.
67445 CR LANDAU J, 1971, MECHANIQUE FLUIDES
67446    SHI WH, 1994, APPL MATH MECH, V15, P1125
67447    SHIH WH, 1992, SOLUTIONS ANAL QUELQ
67448 NR 3
67449 TC 0
67450 SN 0253-4827
67451 J9 APPL MATH MECH-ENGL ED
67452 JI Appl. Math. Mech.-Engl. Ed.
67453 PD DEC
67454 PY 2000
67455 VL 21
67456 IS 12
67457 BP 1432
67458 EP 1439
67459 PG 8
67460 SC Mathematics, Applied; Mechanics
67461 GA 406LG
67462 UT ISI:000167217200011
67463 ER
67464 
67465 PT J
67466 AU He, YH
67467    Shi, WH
67468 TI The C-k instability of Navier-Stokes equation appending polynomials of
67469    unknown functions
67470 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
67471 DT Article
67472 DE Navier-Stokes equation; unstable equation; strate transversale
67473 AB Applying the theory of stratification, the solution space structure
67474    about a class of deformed Navier-Stokes equation is determined. It is
67475    proved that such kind of equation has no C-k( k greater than or equal
67476    to2) stable solution by the fact that the strate transversale is a null
67477    set.
67478 C1 Shanghai Univ, Dept Math, Shanghai 210800, Peoples R China.
67479 RP He, YH, Shanghai Univ, Dept Math, Shanghai 210800, Peoples R China.
67480 CR CHEN DD, 1996, APPL MATH MECH, V17, P541
67481    LANDAU L, 1971, MECHANIQUE FLUIDES
67482    RIDE H, 1971, MATH GEOPHYSICAL SCI
67483    SHIH W, 1987, CR ACAD SCI I-MATH, V304, P103
67484    SHIH WH, 1995, SOLUTIONS ANAL QUELQ
67485    SHIH WH, 1998, ICNM 3 INT C NONL ME, P848
67486    SHIH WS, 1986, DIAGRAMMES, P1
67487    TANG YM, 1997, MODERN MATH MECH MMM, P445
67488    TROTMANN D, 1997, SINGULARITIES MAPS A
67489 NR 9
67490 TC 0
67491 SN 0253-4827
67492 J9 APPL MATH MECH-ENGL ED
67493 JI Appl. Math. Mech.-Engl. Ed.
67494 PD DEC
67495 PY 2000
67496 VL 21
67497 IS 12
67498 BP 1440
67499 EP 1449
67500 PG 10
67501 SC Mathematics, Applied; Mechanics
67502 GA 406LG
67503 UT ISI:000167217200012
67504 ER
67505 
67506 PT J
67507 AU Cheng, XY
67508    Wan, XJ
67509 TI The influence of atomic ordering on the hydrogen embrittlement of
67510    (Co,Fe)(3)V polycrystal
67511 SO SCRIPTA MATERIALIA
67512 DT Article
67513 DE scanning electron microscopy (SEM); intermetallics; hydrogen
67514    embrittlement; order-disorder phenomena
67515 ID ENVIRONMENTAL EMBRITTLEMENT; MECHANICAL-PROPERTIES; DUCTILITY;
67516    FRACTURE; ALLOYS; NI3FE; NI3AL
67517 C1 Shanghai Univ, Mat Res Inst, Shanghai 200072, Peoples R China.
67518 RP Cheng, XY, Shanghai Univ, Mat Res Inst, Shanghai 200072, Peoples R
67519    China.
67520 CR CAMUS GM, 1989, ACTA METALL, V37, P1497
67521    COHRON JW, 1996, INTERMETALLICS, V4, P497
67522    GEORGE EP, 1993, SCRIPTA METALL MATER, V28, P857
67523    KURUVILLA AK, 1982, 3RD P INT C HYDR MET, V2, P629
67524    KURUVILLA AK, 1985, MATER RES SOC S P, V39, P229
67525    LIU CT, 1979, METALL T A, V10, P1515
67526    LIU CT, 1989, SCRIPTA METALL, V23, P875
67527    LIU CT, 1990, SCRIPTA METALL MATER, V24, P385
67528    MARCUS P, 1985, HYDROGEN DEGRADATION, P36
67529    TAKASUGI T, 1986, ACTA METALL, V34, P607
67530    TAKASUGI T, 1991, J MATER SCI, V26, P1173
67531    TAKASUGI T, 1991, J MATER SCI, V26, P3032
67532    TAKASUGI T, 1992, J MATER RES, V7, P2739
67533    TAKASUGI T, 1994, INTERMETALLICS, V2, P225
67534    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
67535    WANG S, 1999, ACTA METALL SINICA, V35, P1262
67536    XIAOJING W, 1994, J MATER SCI TECHNOL, V10, P39
67537 NR 17
67538 TC 5
67539 SN 1359-6462
67540 J9 SCRIPTA MATER
67541 JI Scr. Mater.
67542 PD FEB 2
67543 PY 2001
67544 VL 44
67545 IS 2
67546 BP 325
67547 EP 329
67548 PG 5
67549 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
67550    Engineering
67551 GA 403JF
67552 UT ISI:000167038200022
67553 ER
67554 
67555 PT J
67556 AU Jiang, GC
67557    Guo, SQ
67558    Zhang, XB
67559    Zhuang, YQ
67560    Xu, KD
67561 TI Investigation on dephosphorization of stainless steel
67562 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
67563 DT Article
67564 AB The principle of the dephosphorization for stainless steels differs
67565    from that of other low alloy steels, which should not only decrease
67566    phosphorous content efficiently but also keep the concentration of Cr
67567    almost lossless. In these cases, two techniques can be selected. The
67568    strategy for oxidational dephosphorization is illustrated in terms of
67569    "the selective oxidation among elements [Cr], EP] and [C]. So there are
67570    two critical W-[C] values. If the real W-[C] locates between these two
67571    critical values, the dephosphorization process will be optimized. The
67572    optimized region deduced theoretically coincides with the reported
67573    range very well. The experiment of reductional dephosphorization was
67574    carried out in a sealed reactor. The dephosphorization degree reached
67575    55.4%-78.0% when the original phosphorous content was 0.04%-0.05%. The
67576    processing parameters and the way to avoid pollution were suggested. So
67577    this process seems to be possibly adopted in industrial scale.
67578 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
67579 RP Jiang, GC, Shanghai Univ, Shanghai 200072, Peoples R China.
67580 CR KITAMURA K, 1984, T ISIJ, V24, P631
67581    KOROS PJ, 1986, IRON STEEL MAKER, V13, P21
67582    ZHANG X, 1997, CALPHAD, V21, P301
67583    ZHANG XB, 1997, CALPHAD, V21, P311
67584 NR 4
67585 TC 0
67586 SN 1006-706X
67587 J9 J IRON STEEL RES INT
67588 JI J. Iron Steel Res. Int.
67589 PD NOV
67590 PY 2000
67591 VL 7
67592 IS 2
67593 BP 50
67594 EP 54
67595 PG 5
67596 SC Metallurgy & Metallurgical Engineering
67597 GA 403DY
67598 UT ISI:000167028400010
67599 ER
67600 
67601 PT J
67602 AU Tao, H
67603    Ma, HW
67604 TI Experimental research of the synthesizing of 13X molecular sieves from
67605    potash feldspar ores
67606 SO JOURNAL OF INORGANIC MATERIALS
67607 DT Article
67608 DE potash feldspar; 13X molecular sieves; synthesis
67609 AB 13X molecular sieve was synthesized from potash feldspar ores by baking
67610    and hydrothermal synthesizing procedures. The optimal technological
67611    parameters were determined by means of quadrature experiment. The
67612    properties of the synthesis powder such as XRD, crystal constants, SEM,
67613    DTA, chemical composition, SiO2/Al2O3 are similar to those of the ideal
67614    13X moleclar sieve. And its absorbability comes up to the state
67615    standards of chemical industry of China.
67616 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
67617    China Univ Geosci, Beijing 100083, Peoples R China.
67618 RP Tao, H, Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
67619 NR 0
67620 TC 1
67621 SN 1000-324X
67622 J9 J INORG MATER
67623 JI J. Inorg. Mater.
67624 PD JAN
67625 PY 2001
67626 VL 16
67627 IS 1
67628 BP 63
67629 EP 68
67630 PG 6
67631 SC Materials Science, Ceramics
67632 GA 401UV
67633 UT ISI:000166947400010
67634 ER
67635 
67636 PT J
67637 AU Ye, Z
67638    Zhou, Z
67639 TI The bending of composite shallow revolutional shells
67640 SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL
67641    OF AEROSPACE ENGINEERING
67642 DT Article
67643 DE composite revolutional shell; composite spherical shell; non-orthogonal
67644    series method (NOSM)
67645 ID LAMINATED CYLINDRICAL PLATES
67646 AB This paper deals with the bending problem of composite revolutional
67647    shells under the action of distributed loading using a new approach,
67648    the non-orthogonal series method, i.e. NOSM. The formulation is based
67649    on the thin shell theory of small strains. The basic equations are
67650    developed and can be expressed in matrix form for composite
67651    revolutional shells. In general, because of the anisotropic
67652    characteristics, there will be a coupling effect in the boundary
67653    conditions, even including the axisymmetrical bending case. The
67654    non-orthogonal function series adopted showed very significant coupling
67655    effects in such anisotropic and orthotropic revolutional shells.
67656    Finally, a composite shallow spherical shell was investigated and the
67657    results show that the coupling effect at the boundary conditions makes
67658    the maximum displacement smaller than in the case of no coupling.
67659 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
67660 RP Ye, Z, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yan Chang Rd,
67661    Shanghai 200072, Peoples R China.
67662 CR CHEN LW, 1987, COMPOS STRUCT, V8, P189
67663    LOU KA, 1991, J COMPOS MATER, V25, P162
67664    REKTORYS K, 1975, VARIATIONAL METHODS
67665    SOLDATOS KP, 1984, INT J ENG SCI, V21, P217
67666    TIMOSHENKO S, 1959, THEORY PLATES SHELLS
67667    VOLMIR AC, 1963, FLEXIBLE PLATES SHEL
67668    WHITNEY JM, 1984, AIAA J, V22, P1641
67669    YE ZM, 1995, COMPUT STRUCT, V55, P325
67670 NR 8
67671 TC 0
67672 SN 0954-4100
67673 J9 PROC INST MECH ENG PT G-J A E
67674 JI Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng.
67675 PY 2000
67676 VL 214
67677 IS G6
67678 BP 369
67679 EP 376
67680 PG 8
67681 SC Engineering, Aerospace; Engineering, Mechanical
67682 GA 400QP
67683 UT ISI:000166883300004
67684 ER
67685 
67686 PT J
67687 AU Yang, YZ
67688    Zhu, YL
67689    Li, QS
67690    Ma, XM
67691    Dong, YD
67692    Wang, GM
67693    Wei, SQ
67694 TI Mechanical alloying, fine structure and thermal decomposition of
67695    nanocrystalline FCC-Fe60Cu40
67696 SO PHYSICA B
67697 DT Article
67698 DE mechanical alloying; nanocrystalline solid solution; Mossbauer effect;
67699    thermal decomposition; EXAFS
67700 ID FEXCU100-X SOLID-SOLUTIONS; FE-CU ALLOYS; MAGNETIC-PROPERTIES;
67701    STABILITY; BEHAVIOR; POWDERS; SYSTEM
67702 AB The solid dissolution of Fe atoms into Cu matrix induced by mechanical
67703    alloying and subsequent thermal decomposition of Fe atoms from the
67704    solid solution in composition of Fe60Cu40 have been studied by X-ray
67705    diffraction (XRD), Mossbauer spectroscopy and the extended X-ray
67706    absorption fine structure (EXAFS) technique. The disappearance of
67707    elemental Fe and Cu XRD peaks and the presence of FCC structural XRD
67708    peaks illustrate the formation of FCC-Fe60Cu40 solid solution.
67709    Meanwhile, the new sextet spectrum with a broadening hyperfine magnetic
67710    field distribution also demonstrates that the alloying is on an atomic
67711    level and there exist complex coordination environments in the solid
67712    solution. EXAFS results Further prove the reality of atomic alloying
67713    from the clear observation of Fe atoms taking on FCC coordination in
67714    the solid solution. Additionally, a large reduction in the first shell
67715    coordination number for a center iron atom but not for a center Cu atom
67716    indicates the composition non-uniformity, which suggests that Fe atoms
67717    enrich the surface while Cu atoms enrich the core of a FCC nanocrystal.
67718    The variation of Mossbauer spectra against the annealing temperatures
67719    during thermal decomposition indicates that the Fe atoms at the surface
67720    readily nucleate and cluster into alpha -Fe at a temperature slightly
67721    below 250 degreesC, whereas the Fe atoms in the core of nano-sized
67722    crystals first cluster into gamma -Fe cohering to the FCC matrix at a
67723    temperature about 350 degreesC and then transform to alpha -Fe for
67724    further annealing at a higher temperature or for a longer time. (C)
67725    2001 Elsevier Science B.V. All rights reserved.
67726 C1 Guangdong Univ Technol, Dept Mat Sci & Engn, Guangzhou 510090, Peoples R China.
67727    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
67728    Univ Sci & Technol China, Ctr Struct Anal, Anhua 230026, Peoples R China.
67729 RP Yang, YZ, Guangdong Univ Technol, Dept Mat Sci & Engn, Guangzhou
67730    510090, Peoples R China.
67731 CR CHIEN CL, 1986, PHYS REV B, V33, P3247
67732    CRESPO P, 1993, PHYS REV B, V48, P7134
67733    CRESPO P, 1994, J APPL PHYS 2, V76, P6322
67734    CRESPO P, 1994, PHYS REV B, V49, P13227
67735    DICICCO A, 1994, PHYS REV B, V50, P12386
67736    DRBOHLAV O, 1995, ACTA METALL MATER, V43, P1799
67737    ECKERT J, 1993, J APPL PHYS, V73, P131
67738    ECKERT J, 1993, J APPL PHYS, V73, P2794
67739    FECHT HJ, 1990, METALL TRANS A, V21, P2333
67740    HARRIS VG, 1996, PHYS REV B, V54, P6929
67741    HUANG JY, 1997, ACTA MATER, V45, P113
67742    JIANG JZ, 1993, APPL PHYS LETT, V63, P1056
67743    JIANG JZ, 1993, APPL PHYS LETT, V63, P2768
67744    MA E, 1993, J APPL PHYS, V74, P955
67745    MACRI PP, 1994, J APPL PHYS, V76, P4061
67746    MASSALSKI TB, 1986, BINARY PHASE DIAGRAM, P916
67747    NIESSEN AK, 1983, CALPHAD, V7, P51
67748    SCHILLING PJ, 1996, APPL PHYS LETT, V68, P767
67749    SUMIYAMA K, 1985, ACTA METALL MATER, V33, P1785
67750    UENISHI K, 1992, Z METALLKD, V83, P132
67751    YANG YZ, 1992, ACTA METALL SINICA, V28, P399
67752    YANG YZ, 1994, J MATER SCI TECHNOL, V10, P135
67753    YAVARI AR, 1992, PHYS REV LETT, V68, P2235
67754 NR 23
67755 TC 4
67756 SN 0921-4526
67757 J9 PHYSICA B
67758 JI Physica B
67759 PD JAN
67760 PY 2001
67761 VL 293
67762 IS 3-4
67763 BP 249
67764 EP 259
67765 PG 11
67766 SC Physics, Condensed Matter
67767 GA 401LV
67768 UT ISI:000166929800006
67769 ER
67770 
67771 PT J
67772 AU Tan, WH
67773 TI Damped Jaynes-Cummings model including spontaneous emission
67774 SO CHINESE PHYSICS LETTERS
67775 DT Article
67776 ID COLLAPSE; REVIVAL; STATES; CAVITY; FIELD
67777 AB As a continuation of the previous paper 'Collapse and revival in the
67778    damped Jaynes-Cummings model' [Chin. Phys. Lett. 16 (1999) 895], at
67779    present the problem is solved under the condition that the atomic
67780    spontaneous emission is included. In the case of no damping, c = 0,
67781    gamma (1) not equal 0, gamma (2) not equal 0, the half atomic inversion
67782    operator (sigma (z)) possesses an analytic solution, whereas in the
67783    general case c not equal 0, the problem is reduced to the numerical
67784    evaluation of first-order nonlinear differential equations. The final
67785    results show that with the increase of gamma (1) and gamma (2), the
67786    kinetic quantities converge rapidly to stationary solutions.
67787 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
67788 RP Tan, WH, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
67789 CR BARNETT SM, 1986, PHYS REV A, V33, P2444
67790    BUCK B, 1981, PHYS LETT, V81, A132
67791    EBERLY JH, 1980, PHYS REV LETT, V44, P1323
67792    GERRY CC, 1996, PHYS REV A, V53, P2857
67793    HAKEN H, 1970, ENCYCL PHYS, V25, P41
67794    JAYNES ET, 1963, P IEEE, V51, P89
67795    KUKLINSKI JR, 1988, PHYS REV A, V37, P3175
67796    RAIMOND JM, 1982, PHYS REV LETT, V49, P117
67797    SHAO B, 1997, CHINESE PHYS LETT, V14, P905
67798    ZHENG SB, 1997, CHINESE PHYS LETT, V14, P273
67799 NR 10
67800 TC 1
67801 SN 0256-307X
67802 J9 CHIN PHYS LETT
67803 JI Chin. Phys. Lett.
67804 PD FEB
67805 PY 2001
67806 VL 18
67807 IS 2
67808 BP 220
67809 EP 222
67810 PG 3
67811 SC Physics, Multidisciplinary
67812 GA 402FX
67813 UT ISI:000166976300022
67814 ER
67815 
67816 PT J
67817 AU Shen, HC
67818    Wang, XG
67819 TI Multiple hypotheses testing method for distributed multisensor systems
67820 SO JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
67821 DT Article
67822 DE hypothesis testing; decision making; uncertainty; multisensor fusion
67823 ID FUSION STRATEGIES; TARGET DETECTION; DECISION FUSION; ARCHITECTURES;
67824    ENVIRONMENTS
67825 AB In this paper, we propose a two-layer sensor fusion scheme for multiple
67826    hypotheses multisensor systems. To reflect reality in decision making,
67827    uncertain decision regions are introduced in the hypotheses testing
67828    process. The entire decision space is partitioned into distinct regions
67829    of "correct", "uncertain" and "incorrect" regions. The first layer of
67830    decision is made by each sensor indepedently based on a set of optimal
67831    decision rules. The fusion process is performed by treating the fusion
67832    center as an additional "virtual" sensor to the system. This "virtual"
67833    sensor makes decision based on the decisions reached by the set of
67834    sensors in the system. The optimal decision rules are derived by
67835    minimizing the Bayes risk function. As a consequence, the performance
67836    of the system as well as individual sensors can be quantified by the
67837    probabilities of correct, incorrect and uncertain decisions. Numerical
67838    examples of three hypotheses, two and four sensor systems are presented
67839    to illustrate the proposed scheme.
67840 C1 Hong Kong Univ Sci & Technol, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China.
67841    Shanghai Univ, Coll Mech Engn & Automat, Shanghai 200072, Peoples R China.
67842 RP Shen, HC, Hong Kong Univ Sci & Technol, Dept Comp Sci, Clear Water Bay,
67843    Kowloon, Hong Kong, Peoples R China.
67844 CR DASARATHY BV, 1994, DECISION FUSION
67845    DASARATHY BV, 1997, OPT ENG, V36, P632
67846    DASARATHY BV, 1997, P IEEE, V85, P24
67847    DASARATHY BV, 1997, P SOC PHOTO-OPT INS, V3067, P14
67848    DASARATHY BV, 1997, P SOC PHOTO-OPT INS, V3067, P26
67849    HALL D, 1997, P IEEE, V85, P1
67850    HALL DL, 1992, MATH TECHNIQUES MULT
67851    HOBALLAH IY, 1989, IEEE T INFORM THEORY, V35, P995
67852    LEE CC, 1989, IEEE T AERO ELEC SYS, V25, P536
67853    LUO RC, 1995, MULTISENSOR INTEGRAT
67854    SADJADI FA, 1986, IEEE T AERO ELEC SYS, V22, P134
67855    SAMARASOORIYA VNS, 1997, P IEEE, V85, P54
67856    TENNEY RR, 1981, IEEE T AERO ELEC SYS, V17, P501
67857    THOMOPOLOUS SCA, 1990, INT J ROBOTICS, V17, P337
67858    THOMOPOULOS SCA, 1987, IEEE T AERO ELEC SYS, V23, P644
67859    THOMOPOULOS SCA, 1990, SPIE, V1383, P623
67860    THOMOPOULOS SCA, 1996, P SOC PHOTO-OPT INS, V2905, P127
67861    TSITSIKLIS JN, 1985, IEEE T AUTOMAT CONTR, V30, P440
67862    VARSHNEY PK, 1996, DISTRIBUTED DETECTIO
67863    WANG XG, 1996, P IEEE SICE RSJ INT, P166
67864    WANG XG, 1998, P IEEE INT C ROB AUT, P3407
67865    WANG XG, 1999, P IEEE INT C INT ROB, P1008
67866    WANG XG, 1999, P IEEE INT C ROB AUT, P2090
67867 NR 23
67868 TC 0
67869 SN 0921-0296
67870 J9 J INTELL ROBOT SYST
67871 JI J. Intell. Robot. Syst.
67872 PD FEB
67873 PY 2001
67874 VL 30
67875 IS 2
67876 BP 119
67877 EP 141
67878 PG 23
67879 SC Computer Science, Artificial Intelligence; Robotics
67880 GA 398TY
67881 UT ISI:000166773600001
67882 ER
67883 
67884 PT J
67885 AU Li, CF
67886    Wang, Q
67887 TI Tunneling time of particles through a potential barrier
67888 SO CHINESE PHYSICS LETTERS
67889 DT Article
67890 ID TRAVERSAL TIME; DISTRIBUTIONS
67891 AB A new tunneling time is proposed by introducing the transfer speed of
67892    energy carried by tunneling particles. This speed is similar to the
67893    energy transfer speed in electromagnetism, and with the tunneling time,
67894    the well-known superluminality may be avoided. The low energy limit,
67895    the critical limit, and the opaque limit are considered, which are
67896    physically meaningful. Comparisons with dwell time and Buttiker and
67897    landauer's semiclassical time are also made.
67898 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
67899    CCAST, World Lab, Beijing 100080, Peoples R China.
67900 RP Li, CF, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
67901 CR BAZ AI, 1967, SOV J NUCL PHYS, V5, P161
67902    BOHM D, 1952, PHYS REV, V85, P166
67903    BOLUN D, 1951, QUANTUM THEORY, P240
67904    BOLUN D, 1987, PHYS REP, V144, P321
67905    BRILLOUIN L, 1960, WAVE PROPAGATION GRO, P98
67906    BUTTIKER M, 1982, PHYS REV LETT, V49, P1739
67907    BUTTIKER M, 1983, PHYS REV B, V27, P6178
67908    CARNIGLIA CK, 1971, J OPT SOC AM, V61, P1035
67909    CHIAO RY, 1997, PROG OPTICS, V37, P345
67910    CONDON EU, 1931, REV MOD PHYS, V3, P43
67911    DEUTCH JM, 1993, ANN PHYS-NEW YORK, V228, P184
67912    DIENER G, 1996, PHYS LETT A, V223, P327
67913    HARTMAN TE, 1962, J APPL PHYS, V33, P3427
67914    HASS K, 1994, PHYS LETT A, V185, P9
67915    HAUGE EH, 1989, REV MOD PHYS, V61, P917
67916    JAPHA Y, 1996, PHYS REV A, V53, P586
67917    JAUCH JM, 1967, HELV PHYS A, V40, P217
67918    KRENZLIN HM, 1996, PHYS REV A, V53, P3749
67919    LEAVENS CR, 1993, PHYS LETT A, V178, P27
67920    MACCOLL LA, 1932, PHYS REV, V40, P621
67921    MCKINNON WR, 1995, PHYS REV A, V51, P2748
67922    RYBACHENKO VF, 1967, SOV J NUCL PHYS, V5, P635
67923    SMITH FT, 1960, PHYS REV, V118, P349
67924    WIGNER EP, 1955, PHYS REV, V98, P145
67925    ZHU S, 1986, AM J PHYS, V54, P601
67926 NR 25
67927 TC 2
67928 SN 0256-307X
67929 J9 CHIN PHYS LETT
67930 JI Chin. Phys. Lett.
67931 PY 2000
67932 VL 17
67933 IS 12
67934 BP 902
67935 EP 904
67936 PG 3
67937 SC Physics, Multidisciplinary
67938 GA 400QB
67939 UT ISI:000166882100016
67940 ER
67941 
67942 PT J
67943 AU Jinhua, W
67944    Yoshii, F
67945    Makuuchi, K
67946 TI Radiation vulcanization of ethylene-propylene rubber with
67947    polyfunctional monomers
67948 SO RADIATION PHYSICS AND CHEMISTRY
67949 DT Article
67950 DE ethylene-propylene rubber; polyfunctional monomer; radiation
67951    vulcanization
67952 AB This paper reports on the sensitizing efficiency of several
67953    polyfunctional monomers to radiation vulcanization of
67954    ethylene-propylene rubber. And the results show that triethyleneglycol
67955    dimethacrylate (TEGDMA) gave the best results. TEGDMA not only lowers
67956    the vulcanization dose (D-v), but also increases the tensile strength
67957    greatly. The content of TEGDMA does not affect the D-v of TEGDMA-EPM,
67958    but affects the tensile strength at the D-v. At best content (0.04
67959    mol/100 g EPM), the tensile strength is increased from 6.0 to 12 MPa,
67960    and the elongation is 790% at the D-v. (C) 2001 Elsevier Science Ltd.
67961    All rights reserved.
67962 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
67963    Japan Atom Energy Res Inst, Takasaki Radiat Chem Res Estab, Takasaki, Gumma 37012, Japan.
67964 RP Jinhua, W, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
67965    Peoples R China.
67966 CR AOSHIMA M, 1991, CELL POLYM, V10, P359
67967    ODIAN G, 1964, J POLYM SCI A, V2, P2835
67968    ODIAN G, 1968, J POLYM SCI C, V16, P3619
67969    SPENADEL L, 1979, RADIAT PHYS CHEM, V14, P683
67970    XIE SZ, 1989, HDB RUBBER IND, V1, P254
67971    XU Y, 1994, J RAD RES RAD P, V12, P155
67972    XU Y, 1995, J MACROMOL SCI PURE, V32, P1801
67973    YOSHII F, 1993, J RAD STERILIZATION, V1, P171
67974 NR 8
67975 TC 0
67976 SN 0969-806X
67977 J9 RADIAT PHYS CHEM
67978 JI Radiat. Phys. Chem.
67979 PD JAN
67980 PY 2001
67981 VL 60
67982 IS 1-2
67983 BP 139
67984 EP 142
67985 PG 4
67986 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
67987    Science & Technology
67988 GA 396ZP
67989 UT ISI:000166668500022
67990 ER
67991 
67992 PT J
67993 AU Song, LP
67994    Chu, QL
67995    Zhu, SZ
67996 TI Synthesis of fluorinated pyrazole derivatives from beta-alkoxyvinyl
67997    trifluoroketones
67998 SO JOURNAL OF FLUORINE CHEMISTRY
67999 DT Article
68000 DE beta-alkoxyvinyl trifluoromethylketone pentafluorophenylhydrazine
68001    per(poly)fluoroacectyl-hydrazine; fluorinated pyrazole; derivatives
68002 AB 1.1.1-Trifluoro-4-ethoxy-3-butane-2-one, 3-trifluoroacetyl-3,
68003    4-dihydro-2H-pyran or furan reacted readily with
68004    pentafluorophenylhydrazine or per(poly)fluoroacectylhydrazine
68005    RtCO-NHNH2 (R-1: BrCF2, C3F7) to give
68006    N-substituted-5-hydroxy-5-trifluoromrthyl I heterocycles
68007    Y-N-N=CH-CH(R)C(OH)CF3 (Y: H, Ar-f - or RtCO), which were dehydrated by
68008    treatment with P2O5 or SOCl2 to form N-substituted 5-trifluoromethyl
68009    pyrazoles Y-N-N=CH-C(R)=C CF3 (Y: H, Ar-f - or RtCO) in good yields.
68010    [GRAPHICS]
68011    (C) 2001 Elsevier Science B.V. All rights reserved.
68012 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Shanghai 200032, Peoples R China.
68013    Shanghai Univ, Dept Chem, Shanghai 201800, Peoples R China.
68014 RP Zhu, SZ, Chinese Acad Sci, Shanghai Inst Organ Chem, 354 Fenglin Rd,
68015    Shanghai 200032, Peoples R China.
68016 CR ATHERTON JH, 1968, J CHEM SOC C, P1507
68017    BANK RE, 1994, ORGANOFLUORINE CHEM
68018    BRAIBANTE MEF, 1993, J HETEROCYCLIC CHEM, V30, P1159
68019    GERUS II, 1991, KHIM GETEROTSIKL+, P502
68020    GERUS II, 1994, J FLUORINE CHEM, V69, P195
68021    HOJO M, 1976, CHEM LETT, P499
68022    HUDLICKY M, 1992, CHEM ORGANIC FLUORIN
68023    SINGH SP, 1999, J FLUORINE CHEM, V94, P199
68024    SOUFYANE M, 1993, TETRAHEDRON LETT, V34, P7737
68025    WELCH JT, 1987, TETRAHEDRON, V43, P3123
68026    YOSHIOKA H, 1984, J SYN ORG CHEM JPN, V42, P809
68027    ZHU SZ, 1999, MONATSH CHEM, V130, P671
68028 NR 12
68029 TC 18
68030 SN 0022-1139
68031 J9 J FLUORINE CHEM
68032 JI J. Fluor. Chem.
68033 PD JAN
68034 PY 2001
68035 VL 107
68036 IS 1
68037 BP 107
68038 EP 112
68039 PG 6
68040 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
68041 GA 397CR
68042 UT ISI:000166676200017
68043 ER
68044 
68045 PT J
68046 AU Yong, KL
68047    Lu, JG
68048 TI Common and diverse characteristics of three-dimensional fluorescence
68049    spectra of crude oils
68050 SO SPECTROSCOPY LETTERS
68051 DT Article
68052 DE three-dimensional fluorescence spectra; crude oil; fingerprint
68053 ID SYNCHRONOUS EXCITATION
68054 AB According to the contour maps of the three-dimensional fluorescence
68055    spectra of non-quenching crude oil samples, we have found the common
68056    and diverse fluorescence characteristics of various crude oils. The
68057    common fluorescence characteristic is that the main peaks of various
68058    crude oils are located in around the position of excitation/emission
68059    wavelength pair 228nm/340nm. The diversity of fluorescence
68060    characteristics can be represented with several indexes alpha, K, F and
68061    R, and these indexes provide measurable parameters for division of
68062    fluorescence fingerprints of crude oils. The fluorescence fingerprints
68063    of crude oils can be divided into three models named O, B and Q that
68064    are corresponding to condensate oil, light oil, and heavy oil
68065    respectively.
68066 C1 Shanghai Univ Sci & Technol, Sch Life Sci, Shanghai 201800, Peoples R China.
68067    Shanghai Univ Sci & Technol, Coll Sci, Shanghai 201800, Peoples R China.
68068 RP Yong, KL, Shanghai Univ Sci & Technol, Sch Life Sci, Shanghai 201800,
68069    Peoples R China.
68070 CR BENTZ AP, 1976, ANAL CHEM, V48, A455
68071    DESIDERI PG, 1986, J CHROMATOGR, V235, P165
68072    JOHN P, 1976, ANAL CHEM, V48, P520
68073    KARYAKIN AV, 1995, J ANAL CHEM+, V50, P1078
68074    KENNICUTT MC, 1983, MAR POLL B, V14, P342
68075    LU JC, 1998, FENXI SHIYANSHI, V17, P28
68076    MASON RP, 1988, OIL CHEM POLL, V4, P57
68077    RALSTON CY, 1996, APPL SPECTROSC, V50, P1563
68078    VONDERDICK H, 1986, ORG GEOCHEM, V10, P633
68079    XIAO X, 1991, PROG NAT SCI, V1, P240
68080 NR 10
68081 TC 0
68082 SN 0038-7010
68083 J9 SPECTROSC LETT
68084 JI Spectr. Lett.
68085 PY 2000
68086 VL 33
68087 IS 6
68088 BP 963
68089 EP 970
68090 PG 8
68091 SC Spectroscopy
68092 GA 394CQ
68093 UT ISI:000166506800015
68094 ER
68095 
68096 PT J
68097 AU Guo, BY
68098    Ma, HP
68099 TI Composite Legendre-Laguerre approximation in unbounded domains
68100 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
68101 DT Article
68102 DE composite spectral approximation; unbounded domains; exterior problems
68103 ID EQUATIONS
68104 AB Composite Legendre-Laguerre approximation in unbounded domains is
68105    developed. Some approximation results are obtained. As an example, a
68106    composite spectral scheme is provided for the Burgers equation on the
68107    half line. The stability and convergence of proposed scheme are proved
68108    strictly. Two-dimensional exterior problems are discussed.
68109 C1 Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China.
68110    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
68111 CR ADAMS RA, 1975, SOBOLEV SPACES
68112    BERNARDI C, 1992, APPROXIMATIONS SPECT
68113    BOYD JP, 1987, J COMPUT PHYS, V69, P112
68114    COULAUD O, 1990, COMPUT METHOD APPL M, V80, P451
68115    FUNARO D, 1990, MATH COMPUT, V57, P597
68116    FUNARO D, 1991, ORTHOGONAL POLYNOMIA, P263
68117    GUO BY, IN PRESS NUMER MATH
68118    GUO BY, 1999, MATH COMPUT, V68, P1067
68119    MADAY Y, 1985, RECH AEROSPATIALE, P353
68120    MASTROIANNI G, 1997, IMA J NUMER ANAL, V17, P621
68121    QUARTERONI A, 1990, SIAM J SCI STAT COMP, V11, P1029
68122 NR 11
68123 TC 0
68124 SN 0254-9409
68125 J9 J COMPUT MATH
68126 JI J. Comput. Math.
68127 PD JAN
68128 PY 2001
68129 VL 19
68130 IS 1
68131 BP 101
68132 EP 112
68133 PG 12
68134 SC Mathematics, Applied; Mathematics
68135 GA 393TQ
68136 UT ISI:000166486100011
68137 ER
68138 
68139 PT J
68140 AU Deng, BQ
68141    Wu, WQ
68142    Xi, ST
68143 TI A near-wall two-equation heat transfer model for wall turbulent flows
68144 SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
68145 DT Article
68146 DE two-equation model; turbulent flow; heat transfer
68147 ID PREDICTING FLUID-FLOW; FIELD CALCULATIONS; REATTACHING FLOWS;
68148    2-EQUATION MODEL
68149 AB A proposed near-wall (t(2)) over bar-epsilon (t) two-equation model for
68150    turbulent heat transport reproduces the correct near-wall behavior of
68151    temperature under various wall thermal boundary conditions. In this
68152    model, a mixing timescale is introduced to model the production term of
68153    epsilon (t) equation, and a more convenient boundary condition for
68154    epsilon (t) under the uniform wall heat flux is suggested. The present
68155    model is tasted through application to turbulent heat transfer for
68156    channel flow. Predicted results are compared with direct numerical
68157    simulation (DNS) data. The near-wall (t(2)) over bar-epsilon (t)
68158    two-equation model predicts reasonably well the distributions of the
68159    time-mean temperature. normal turbulent heat flux, temperature
68160    variance, dissipation rate and their near-wall budgets. (C) 2001
68161    Elsevier Science Ltd. All rights reserved.
68162 C1 Shanghai Univ Sci & Technol, Dept Power Engn, Shanghai 200093, Peoples R China.
68163    Shanghai Jiao Tong Univ, Sch Power & Energy Engn, Shanghai 200030, Peoples R China.
68164 RP Deng, BQ, Shanghai Univ Sci & Technol, Dept Power Engn, Shanghai
68165    200093, Peoples R China.
68166 CR ABE K, 1994, INT J HEAT MASS TRAN, V37, P139
68167    ABE K, 1995, INT J HEAT MASS TRAN, V38, P1467
68168    ELGOBASHI SE, 1983, PHYS FLUIDS, V26, P2415
68169    JONES WP, 1973, INT J HEAT MASS TRAN, V16, P1119
68170    JONES WP, 1988, PHYS FLUIDS, V31, P3589
68171    KASAGI N, 1992, J HEAT TRANS-T ASME, V114, P598
68172    KIM J, 1989, TURBULENT SHEAR FLOW, V6, P85
68173    LAM CKG, 1981, J FLUIDS ENG, V103, P456
68174    LAUNDER BE, 1976, TURBULENCE, P232
68175    LAUNDER BE, 1988, J HEAT TRANS-T ASME, V110, P1112
68176    NAGANO Y, 1988, J HEAT TRANSFER, V110, P583
68177    NEWMAN GR, 1981, J FLUID MECH, V111, P217
68178    PARK TS, 1996, INT J HEAT MASS TRAN, V39, P3465
68179    PATANKAR SV, 1980, NUMERICAL HEAT TRANS
68180    SHIKAZONO N, 1993, P 9 S TURB SHEAR FLO
68181    SOMMER TP, 1992, INT J HEAT MASS TRAN, V35, P3375
68182    TORRI S, 1996, NUMER HEAT TRANSFER, V29, P417
68183    YOUSSEF MS, 1992, INT J HEAT MASS TRAN, V35, P3095
68184 NR 18
68185 TC 2
68186 SN 0017-9310
68187 J9 INT J HEAT MASS TRANSFER
68188 JI Int. J. Heat Mass Transf.
68189 PD FEB
68190 PY 2001
68191 VL 44
68192 IS 4
68193 BP 691
68194 EP 698
68195 PG 8
68196 SC Engineering, Mechanical; Mechanics; Thermodynamics
68197 GA 394NL
68198 UT ISI:000166530100001
68199 ER
68200 
68201 PT J
68202 AU Ying, TL
68203    Gao, MJ
68204    Zhang, XL
68205 TI Highly selective technique-molecular imprinting
68206 SO CHINESE JOURNAL OF ANALYTICAL CHEMISTRY
68207 DT Article
68208 DE molecular imprinting; molecular imprinted polymer; review
68209 ID AMINO-ACID DERIVATIVES; ANALOG-BUILT POLYMERS; MACROPOROUS POLYMERS;
68210    RACEMIC-RESOLUTION; RECOGNITION SITES; FREE SUGARS; SENSOR; MIMICS;
68211    DEPENDENCE; MEMBRANES
68212 AB Some aspects of molecular imprinting including models of self-assemble
68213    and preorganized approach. The selection of the imprint molecules,
68214    functional monomer, the condition of polymerization are summarized. The
68215    application, character and prospect of molecular imprinting are also
68216    discussed.
68217 C1 Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China.
68218 RP Ying, TL, Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072,
68219    Peoples R China.
68220 CR ANDERSSON LI, 1988, TETRAHEDRON LETT, V29, P5437
68221    ANDERSSON LI, 1990, J CHROMATOGR, V513, P167
68222    ANDERSSON LI, 1990, J CHROMATOGR, V516, P313
68223    CRAM DJ, 1988, ANGEW CHEM INT EDIT, V27, P1009
68224    DABULIS K, 1992, BIOTECHNOL BIOENG, V39, P176
68225    DICKERT FL, 1999, TRAC-TREND ANAL CHEM, V18, P192
68226    DUNKIN IR, 1993, POLYMER, V34, P77
68227    EKBERG B, 1989, TRENDS BIOTECHNOL, V7, P92
68228    FISCHER L, 1991, J AM CHEM SOC, V113, P9358
68229    HAUPT K, 1998, ANAL CHEM, V70, P628
68230    KENNETH JS, 1993, J AM CHEM SOC, V115, P3368
68231    KRIZ D, 1995, ANAL CHIM ACTA, V300, P71
68232    KRIZ D, 1997, ANAL CHEM, V69, P345
68233    LELE BS, 1999, REACT FUNCT POLYM, V39, P37
68234    LINDSEY JS, 1991, NEW J CHEM, V15, P153
68235    LIU Q, 1999, CHINESE J ANAL CHEM, V27, P1341
68236    MATSUI J, 1998, ANAL COMMUN, V35, P225
68237    MENG ZH, 1997, CHINESE J ANAL CHEM, V25, P349
68238    MENG ZH, 1998, CHINESE J ANAL CHEM, V26, P1251
68239    MOSBACH K, 1996, BIO-TECHNOL, V14, P163
68240    NICHOLLS IA, 1995, J CHROMATOGR A, V691, P349
68241    NILSSON K, 1994, J CHROMATOGR A, V680, P57
68242    OSHANNESSY DJ, 1989, ANAL BIOCHEM, V177, P144
68243    PAULING L, 1940, J AM CHEM SOC, V62, P2443
68244    PAULING L, 1942, J EXP MED, V76, P211
68245    RAMSTROM O, 1993, J ORG CHEM, V58, P7562
68246    RAMSTROM O, 1994, ANAL CHEM, V66, P2636
68247    RAMSTROM O, 1998, ANAL COMMUN, V35, P9
68248    RICHARD JA, 1998, ANALYST, V123, P1611
68249    SELLERGREN B, 1985, J CHROMATOGR, V347, P1
68250    SELLERGREN B, 1994, ANAL CHEM, V66, P1578
68251    SERGEYEVA TA, 1999, ANALYST, V124, P331
68252    SREENIVASAN K, 1997, TALANTA, V44, P1137
68253    TURKEWITSCH P, 1998, ANAL CHEM, V70, P2025
68254    VLATAKIS G, 1993, NATURE, V361, P645
68255    WANG JF, 1999, ACTA CHIM SINICA, V57, P1147
68256    WANG WQ, 1999, J CLIMATE 2, V12, P1423
68257    WU M, 1997, CHEM SENSORS, V17, P292
68258    WULFF G, 1991, J ORG CHEM, V56, P395
68259    WULFF G, 1991, MAKROMOL CHEM, V192, P1329
68260    WULFF G, 1995, ANGEW CHEM INT EDIT, V34, P1812
68261    WULLF G, 1990, J LIQ CHROMATOGR, V13, P2987
68262    YOSHIKAWA M, 1996, CHEM LETT, P611
68263 NR 43
68264 TC 0
68265 SN 0253-3820
68266 J9 CHINESE J ANAL CHEM
68267 JI Chin. J. Anal. Chem.
68268 PD JAN 20
68269 PY 2001
68270 VL 29
68271 IS 1
68272 BP 99
68273 EP 102
68274 PG 4
68275 SC Chemistry, Analytical
68276 GA 395MK
68277 UT ISI:000166584000026
68278 ER
68279 
68280 PT J
68281 AU Cui, JH
68282    Zhong, SS
68283    Yu, C
68284 TI FDTD analysis of a compact microstrip antenna with a C-shaped slot
68285 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
68286 DT Article
68287 DE microstrip antennas; FDTD; small antennas
68288 AB A novel small microstrip patch antenna with a C-shaped slot is
68289    presented in this paper: The size of the antenna is only 33% of a
68290    conventional microstrip patch antenna, and is much easier for
68291    fabrication than shorted patch antennas. The antenna is theoretically
68292    investigated using the finite-difference time-domain (FDTD) method and
68293    its return loss and radiation properties are presented. For purposes of
68294    comparison, method-of-moment (MoM) results are also presented, and good
68295    agreement is achieved. Such an antenna may be useful for applications
68296    where reduced antenna size and simplicity are major concerns. (C) 2001
68297    John Wiley & Sons, Inc.
68298 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
68299 RP Cui, JH, Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R
68300    China.
68301 CR BERENGER JP, 1996, J COMPUT PHYS, V127, P363
68302    BERENGER JP, 1997, IEEE T ANTENN PROPAG, V45, P466
68303    LO TK, 1997, ELECTRON LETT, V33, P9
68304    WATERHOUSE R, 1995, ELECTRON LETT, V31, P604
68305    WATERHOUSE RB, 1997, IEEE AP S INT S, P1852
68306    WATERHOUSE RB, 1998, IEEE T ANTENN PROPAG, V46, P1629
68307    WONG KL, 1997, ELECTRON LETT, V33, P433
68308    YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302
68309 NR 8
68310 TC 0
68311 SN 0895-2477
68312 J9 MICROWAVE OPT TECHNOL LETT
68313 JI Microw. Opt. Technol. Lett.
68314 PD FEB 5
68315 PY 2001
68316 VL 28
68317 IS 3
68318 BP 170
68319 EP 172
68320 PG 3
68321 SC Engineering, Electrical & Electronic; Optics
68322 GA 391KC
68323 UT ISI:000166354300006
68324 ER
68325 
68326 PT J
68327 AU Xing, SM
68328    Zhai, QJ
68329    Hu, HQ
68330 TI Effect of process factors on microstructure of semisolid continuous
68331    casting billets
68332 SO JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
68333 DT Article
68334 DE semisolid metal; continuous casting; process factors; microstructure
68335 AB Semisolid continuous casting (SSCC) is a new technology to produce
68336    billets for semisolid metal forming (SSMF). The effect of process
68337    factors, such as pouring temperature, stirring rate, preheating
68338    temperature and thermal conductivity of stirring chamber, on the
68339    microstructure of SSCC billets was studied by means of the factorial
68340    experimental method. The results show that the microstructure of SSCC
68341    billets can be controlled by the above-mentioned four process factors.
68342    In order to obtain fine and rounded granular grains in an SSCC billet,
68343    the pouring temperature, preheating temperature and stirring rate
68344    should be kept in a moderate range, and the thermal conductivity of
68345    stirring chamber should be high. The regression equations with the
68346    process factors connecting the microstructure was also set up based on
68347    experimental data.
68348 C1 Tsing Hua Univ, Dept Mech Engn, Beijing 100084, Peoples R China.
68349    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
68350    Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China.
68351 RP Xing, SM, Tsing Hua Univ, Dept Mech Engn, Beijing 100084, Peoples R
68352    China.
68353 CR BLAZEK K, 1995, 5379828, US
68354    FLEMINGS MC, 1975, 3902544, US
68355    HIRT G, 1994, J MATER PROCESS TECH, V45, P359
68356    JABRANE S, 1992, P C PROC SEM ALL COM, P223
68357    WAGNER RS, 1996, T METALL SOC AIME, V236, P554
68358 NR 5
68359 TC 0
68360 SN 1005-8850
68361 J9 J UNIV SCI TECHNOL BEIJING
68362 JI J. Univ. Sci. Technol. Beijing
68363 PD DEC
68364 PY 2000
68365 VL 7
68366 IS 4
68367 BP 242
68368 EP 245
68369 PG 4
68370 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
68371    Engineering; Mining & Mineral Processing
68372 GA 390YA
68373 UT ISI:000166326300002
68374 ER
68375 
68376 PT J
68377 AU Wei, JH
68378    Xiang, SH
68379    Fan, YY
68380    Yu, NW
68381    Ma, JC
68382    Yang, SL
68383 TI Design and calculation of gas property parameters for constant area
68384    lance under conditions of friction flow with heating
68385 SO IRONMAKING & STEELMAKING
68386 DT Article
68387 AB Formulae for calculating the outlet property parameters of gas heating
68388    and friction streams in tubular and annular type lances with constant
68389    area (tuyeres) are given, and have been applied to the case of an
68390    annular type used for an AOD (argon-oxygen decarburisation) vessel of
68391    18 t capacity. The distributions of both the inner wall temperatures of
68392    the tuyere and the gas stagnation temperatures along its length have
68393    been more reasonably fixed. The friction factors for the gas flows
68394    through the main and subtuyeres during blowing refining have been
68395    determined by comparison of the practically measured P-Q relationships
68396    with the results from trial calculations. The outlet parameters of the
68397    gas streams for the central tube (main tuyere) and annular slit pipe
68398    (subtuyere) of the tuyere have been calculated. The influences of the
68399    gas supply pressure, the length and diameter of the tuyere, and the
68400    type and composition of the gases, as well as the heating effect, on
68401    the gas outlet parameters have been considered. The results obtained
68402    may be expected to offer useful information and a reliable basis for
68403    tuyere design and determination, control, and optimisation of the gas
68404    blowing parameters and technology, as well as for the investigation of
68405    hydraulic modelling of the blowing processes. I&S/1440.
68406 C1 Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China.
68407 RP Wei, JH, Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China.
68408 CR CARLSSON G, 1986, SCAND J METALL, V15, P298
68409    DEISSLER RG, 1950, 2138 NACA
68410    FARMER L, 1989, ISS STEELMAKING C P, V72, P487
68411    ISHIDA J, 1978, P 3 INT IR STEEL C C, P150
68412    KAYE J, 1951, GEN DISC HEAT TRANSM
68413    KEENAN JH, 1946, J APPL MECH, V13, A91
68414    KORIA SC, 1989, IRONMAK STEELMAK, V16, P21
68415    KORIA SC, 1989, ISIJ INT, V29, P650
68416    LEACH JCC, 1978, IRONMAK STEELMAK, V5, P107
68417    MOODY LF, 1944, T AM SOC MECH ENG, V66, P671
68418    SHAPIRO AH, 1953, DYNAMICS THERMODYNAM, V1, P219
68419    SHAPIRO AH, 1953, DYNAMICS THERMODYNAM, V2, P1131
68420    SHARMA SK, 1986, I SS STEELMAKING C P, V69, P653
68421    WEI JH, IN PRESS METALL MAT
68422 NR 14
68423 TC 4
68424 SN 0301-9233
68425 J9 IRONMAKING STEELMAKING
68426 JI Ironmak. Steelmak.
68427 PY 2000
68428 VL 27
68429 IS 4
68430 BP 294
68431 EP 301
68432 PG 8
68433 SC Metallurgy & Metallurgical Engineering
68434 GA 392RA
68435 UT ISI:000166424400004
68436 ER
68437 
68438 PT J
68439 AU He, JH
68440 TI Coupled variational principles of piezoelectricity
68441 SO INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE
68442 DT Article
68443 DE piezoelectricity; elasticity; variational theory; the semi-inverse
68444    method; trial-functional
68445 ID SEMI-INVERSE METHOD; FLOW
68446 AB A family of generalized variational principles of piezoelectricity carl
68447    be obtained straightforwardly from the field equations and boundary
68448    conditions via the semi-inverse method of establishing variational
68449    principles proposed by He without using Lagrange multipliers. The
68450    present theory provides a quite straightforward tool to search for
68451    various variational principles for physical problems. This paper aims
68452    at providing a more complete theoretical basis for the finite element
68453    applications and other direct variational methods such as Ritz's,
68454    Trefftz's and Kantorovitch's methods. (C) 2001 Elsevier Science Ltd.
68455    All rights reserved.
68456 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
68457 RP He, JH, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang Rd,
68458    Shanghai 200072, Peoples R China.
68459 CR CHIEN WZ, 1983, APPL MATH MECH, V4, P137
68460    FELIPPA CA, 1989, COMMUN APPL NUMER M, V5, P79
68461    HE JH, IN PRESS ASME J APPL
68462    HE JH, 1997, INT J TURBO JET ENG, V14, P17
68463    HE JH, 1997, INT J TURBO JET ENG, V14, P23
68464    HE JH, 1997, J SHANGHAI U, V1, P117
68465    HE JH, 1997, SHANGHAI J MECH, V18, P305
68466    HE JH, 1998, APPL MATH MODEL, V22, P395
68467    HE JH, 1998, INT J TURBO JET ENG, V15, P101
68468    HE JH, 1998, INT J TURBO JET ENG, V15, P95
68469    LIU GL, 1990, 1 INT S EXP COMP AER, P128
68470    LIU GL, 1998, J SHANGHAI U, V4, P591
68471    MAUGIN GA, 1984, MECH BEHAV ELECTROMA
68472    MAUGIN GA, 1991, CONTINUUM MECH ELECT
68473    SANTILLI RM, 1978, FDN THEORETICAL MECH, V1
68474    SANTILLI RM, 1983, FDN THEORETICAL MECH, V2
68475    TONTI E, 1968, VARIATIONAL PRINCIPL
68476    WASHIZU K, 1982, VARIATIONAL METHODS
68477    ZHOU SA, 1986, INT J SOLIDS STRUCT, V22, P1411
68478 NR 19
68479 TC 8
68480 SN 0020-7225
68481 J9 INT J ENG SCI
68482 JI Int. J. Eng. Sci.
68483 PD FEB
68484 PY 2001
68485 VL 39
68486 IS 3
68487 BP 323
68488 EP 341
68489 PG 19
68490 SC Engineering, Multidisciplinary
68491 GA 391MU
68492 UT ISI:000166360400005
68493 ER
68494 
68495 PT J
68496 AU Ru, HY
68497    Sheng, YJ
68498 TI New upper and lower bounds for Ramsey numbers
68499 SO EUROPEAN JOURNAL OF COMBINATORICS
68500 DT Article
68501 AB The Ramsey number R(G(1), G(2)) is the smallest integer p such that for
68502    any graph G on p vertices either G contains G(1) or (G) over bar
68503    contains G(2), where (G) over bar denotes the complement of G. Let R(m,
68504    a) = R(K-m, K-n). Some new upper and lower bound formulas are obtained
68505    for R(G(1), G(2)) and R(m, n). (C) 2001 Academic Press.
68506 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
68507 RP Ru, HY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
68508 CR BONDY JA, 1976, GRAPH THEORY APPL
68509    RU HY, 1998, EUR J COMBIN, V19, P391
68510    RU HY, 1998, JCMCC, V28, P347
68511 NR 3
68512 TC 0
68513 SN 0195-6698
68514 J9 EUR J COMBINATORIC
68515 JI Eur. J. Comb.
68516 PD JAN
68517 PY 2001
68518 VL 22
68519 IS 1
68520 BP 101
68521 EP 105
68522 PG 5
68523 SC Mathematics
68524 GA 392NF
68525 UT ISI:000166417000012
68526 ER
68527 
68528 PT J
68529 AU Huang, H
68530    Zhou, XR
68531    Ding, PX
68532 TI A note on the third-order evolution equation of Liu and Dingemans -
68533    Discussion
68534 SO WAVE MOTION
68535 DT Editorial Material
68536 AB Three kinds of errors involving the expressions of concepts, the
68537    algebraic operations, and the typographical in the derivation of the
68538    third-order evolution equation of Liu and Dingmans are pointed out to
68539    make the detailed corrected equations available. (C) 2001 Elsevier
68540    Science B.V. All rights reserved.
68541 C1 Tianjin Univ, Dept Hydraul Engn, Sch Construct Engn, Tianjin 300072, Peoples R China.
68542    E China Normal Univ, State Key Lab Estuarine & Coastal Res, Shanghai 200062, Peoples R China.
68543 RP Huang, H, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang
68544    Rd, Shanghai 200072, Peoples R China.
68545 CR LIU PLF, 1989, WAVE MOTION, V11, P41
68546 NR 1
68547 TC 1
68548 SN 0165-2125
68549 J9 WAVE MOTION
68550 JI Wave Motion
68551 PD FEB
68552 PY 2001
68553 VL 33
68554 IS 2
68555 BP 209
68556 EP 210
68557 PG 2
68558 SC Physics, Multidisciplinary; Acoustics; Mechanics
68559 GA 391BP
68560 UT ISI:000166334500005
68561 ER
68562 
68563 PT J
68564 AU Ma, HP
68565    Sun, WW
68566 TI A Legendre-Petrov-Galerkin and Chebyshev collocation method for
68567    third-order differential equations
68568 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
68569 DT Article
68570 DE third-order differential equation; Korteweg-de Vries equation;
68571    Legendre-Petrov-Galerkin and Chebyshev collocation
68572 ID KORTEWEG-DEVRIES EQUATION; PSEUDOSPECTRAL METHOD; WAVE EQUATIONS;
68573    DIRECT SOLVERS; POLYNOMIALS; ALGORITHM; 3RD-ORDER; OPERATORS; 2ND-ORDER
68574 AB A Legendre Petrov Galerkin ( LPG) method for the third-order
68575    differential equation is developed. By choosing appropriate base
68576    functions, the method can be implemented efficiently. Also, this new
68577    approach enables us to derive an optimal rate of convergence in
68578    L-2-norm. The method is applied to some nonlinear problems such as the
68579    Korteweg de Vries ( KdV) equation with the Chebyshev collocation
68580    treatment for the nonlinear term. It is a Legendre Petrov Galerkin and
68581    Chebyshev collocation ( LPG-CC) method. Numerical experiments are given
68582    to con rm the theoretical result.
68583 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
68584    City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China.
68585 RP Ma, HP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
68586 CR ALPERT BK, 1991, SIAM J SCI STAT COMP, V12, P158
68587    ASCHER UM, 1995, SIAM J NUMER ANAL, V32, P797
68588    BERNARDI C, 1997, HDBK NUM AN 2, V5, P209
68589    BRESSAN N, 1990, COMPUT METHODS APPL, V80, P443
68590    CANUTO C, 1988, SPECTRAL METHODS FLU
68591    CAREY GF, 1991, COMPUT METHOD APPL M, V93, P1
68592    CHAN TF, 1985, SIAM J NUMER ANAL, V22, P441
68593    COUTSIAS EA, 1996, P 3 INT C SPECTR HIG, P21
68594    DJIDJELI K, 1995, J COMPUT APPL MATH, V58, P307
68595    DJIDJELI K, 1998, COMMUN NUMER METH EN, V14, P977
68596    DON WS, 1994, SIAM J NUMER ANAL, V31, P1519
68597    FORNBERG B, 1978, PHILOS T ROY SOC A, V289, P373
68598    FORNBERG B, 1999, J COMPUT PHYS, V155, P456
68599    GUO BY, 1998, SPECTRAL METHODS THE
68600    HESTHAVEN JS, 1998, SIAM J NUMER ANAL, V35, P1571
68601    HUANG WZ, 1992, SIAM J NUMER ANAL, V29, P1626
68602    KREISS H, 1978, LECT NOTES U MONTREA
68603    LI J, IN PRESS NUMER METHO
68604    MA HP, 1986, J COMPUT PHYS, V65, P120
68605    MADAY Y, 1988, RAIRO MODEL MATH ANA, V22, P499
68606    MERRYFIELD WJ, 1993, J COMPUT PHYS, V105, P182
68607    PAVONI D, 1988, CALCOLO, V25, P311
68608    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
68609    SHEN J, 1995, SIAM J SCI COMPUT, V16, P74
68610 NR 24
68611 TC 6
68612 SN 0036-1429
68613 J9 SIAM J NUMER ANAL
68614 JI SIAM J. Numer. Anal.
68615 PD DEC 14
68616 PY 2000
68617 VL 38
68618 IS 5
68619 BP 1425
68620 EP 1438
68621 PG 14
68622 SC Mathematics, Applied
68623 GA 389AG
68624 UT ISI:000166214900002
68625 ER
68626 
68627 PT J
68628 AU Sun, XL
68629    Li, D
68630 TI Asymptotic strong duality for bounded integer programming: A
68631    logarithmic-exponential dual formulation
68632 SO MATHEMATICS OF OPERATIONS RESEARCH
68633 DT Article
68634 DE integer programming; nonlinear integer programming; duality theory;
68635    logarithmic-exponential dual formulation; strong duality; primal
68636    feasibility
68637 ID NONCONVEX OPTIMIZATION PROBLEMS; GAP
68638 AB A logarithmic-exponential dual formulation is proposed in this paper
68639    for bounded integer programming problems. This new dual formulation
68640    possesses an asymptotic strong duality property and guarantees the
68641    identification of an optimal solution of the primal problem. These
68642    prominent features are achieved by exploring a novel nonlinear
68643    Lagrangian function, deriving an asymptotic zero duality gap,
68644    investigating the unimodality of the associated dual function and
68645    ensuring the primal feasibility of optimal solutions in the dual
68646    formulation. One other feature of the logarithmic-exponential dual
68647    formulation is that no actual dual search is needed when parameters are
68648    set above certain threshold-values.
68649 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
68650    Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Sha Tin, Hong Kong, Peoples R China.
68651 RP Sun, XL, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
68652 CR BERTSEKAS DP, 1982, CONSTRAINED OPTIMIZA
68653    BLAIR CE, 1982, MATH PROGRAM, V23, P237
68654    CHAVATAL V, 1973, DISCRETE MATH J, V4, P305
68655    FISHER ML, 1981, MANAGE SCI, V27, P1
68656    FLOUDAS CA, 1996, STATE ART GLOBAL OPT
68657    GEOFFRION AM, 1974, MATHEMATICAL PROGRAM, V2, P82
68658    GILL PE, 1981, PRACTICAL OPTIMIZATI
68659    GOH CJ, 1997, APPL MATH LETT, V10, P9
68660    GOH CJ, 2000, IN PRESS THEORY APPL
68661    GONDRAN M, 1970, RIRO, V5, P108
68662    GUIGNARD M, 1993, MATH PROGRAM, V33, P262
68663    GUPTA OK, 1985, MANAGE SCI, V31, P1533
68664    HESTENES MR, 1969, J OPTIMIZATION THEOR, V4, P303
68665    KAN AHG, 1989, HDB OPERATIONS RES M, V1
68666    LI D, 1995, J OPTIMIZ THEORY APP, V85, P309
68667    LI D, 1999, OPER RES LETT, V25, P89
68668    LI D, 2000, IN PRESS ANN OPER RE
68669    LI D, 2000, IN PRESS J GLOBAL OP
68670    LI XS, 1991, COMPUTATIONAL STRUCT, V8, P85
68671    LI XS, 1991, SCI CHINA SER A, V34, P1283
68672    LLEWELLYN DC, 1993, DISCRETE APPL MATH, V45, P262
68673    MICHELON P, 1991, MATH PROGRAM, V52, P303
68674    MICHELON P, 1993, DISCRETE APPL MATH, V42, P257
68675    MISRA KB, 1991, IEEE T RELIAB, V40, P81
68676    POWELL MJD, 1969, OPTIMIZATION, P283
68677    ROCKAFELLAR RT, 1973, J OPTIMIZATION THEOR, V12, P555
68678    SUN XL, 1999, J OPTIMIZ THEORY APP, V102, P385
68679    TANG HW, 1994, CHINESE SCI BULL, V39, P682
68680    TZAFESTAS SG, 1980, INT J SYST SCI, V11, P455
68681    WILLIAMS HP, 1996, J OPTIMIZ THEORY APP, V90, P257
68682    WOLSEY LA, 1981, MATH PROGRAM, V20, P173
68683    XU ZK, 1997, J OPTIMIZ THEORY APP, V94, P739
68684    YANG XQ, 2000, IN PRESS LOCAL GLOBA
68685 NR 33
68686 TC 5
68687 SN 0364-765X
68688 J9 MATH OPER RES
68689 JI Math. Oper. Res.
68690 PD NOV
68691 PY 2000
68692 VL 25
68693 IS 4
68694 BP 625
68695 EP 644
68696 PG 20
68697 SC Mathematics, Applied; Operations Research & Management Science
68698 GA 388YN
68699 UT ISI:000166210800006
68700 ER
68701 
68702 PT J
68703 AU Gu, CQ
68704 TI Generalized inverse matrix Pade approximation on the basis of scalar
68705    products
68706 SO LINEAR ALGEBRA AND ITS APPLICATIONS
68707 DT Article
68708 DE scalar product of matrices; generalized inverse; matrix Pade
68709    approximation; algebraic properties; determinantal formula; Thiele-type
68710    continued fraction; epsilon-algorithm
68711 ID RATIONAL INTERPOLANTS; ALGORITHM
68712 AB A new type of generalized matrix inverse is used to define the
68713    generalized inverse matrix Pade approximants (GMPA), GMPA is introduced
68714    on the basis of scalar product of matrices, with the form of matrix
68715    numerator and scalar denominator. It is different from the existing
68716    matrix Pade approximants in that it does not need multiplication of
68717    matrices in the construction process. Some algebraic properties are
68718    discussed. The representations of GMPA are provided with the following
68719    three forms: (i) the explicit determinantal formulas for the
68720    denominator scalar polynomials and the numerator matrix polynomials;
68721    (ii) E-algorithm expression; (iii) Thiele-type continued fraction
68722    expression. The equivalence relations above three representations are
68723    proposed. (C) 2001 Elsevier Science Inc. All rights reserved.
68724 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
68725 RP Gu, CQ, Shanghai Univ, Dept Math, 99 Qi Xiang Rd, Shanghai 200436,
68726    Peoples R China.
68727 CR ANTOULAS AC, 1986, IEEE T AUTOMAT CONTR, V31, P1121
68728    ANTOULAS AC, 1988, LINEAR ALGEBRA APPL, V108, P157
68729    BAKER GA, 1981, PADE APPROXIMANTS 1
68730    BAKER GA, 1981, PADE APPROXIMANTS 2
68731    BECKERMANN B, 1994, SIAM J MATRIX ANAL A, V15, P804
68732    BOSE NK, 1980, IEEE T CIRCUITS SYST, V27, P322
68733    BULTHEEL A, 1980, MATH COMPUT, V35, P875
68734    BULTHEEL A, 1986, J COMPUT APPL MATH, V14, P401
68735    BULTHEEL A, 1990, CONTINUED FRACTIONS, P11
68736    CABAY S, 1993, SIAM J MATRIX ANAL A, V14, P735
68737    CHUANQING G, 1995, MATH NUMER SINICA, V17, P73
68738    CHUANQING G, 1996, J MATH RES EXPOSITIO, V16, P301
68739    CHUANQING G, 1997, J COMPUT APPL MATH, V80, P71
68740    CHUANQING G, 1997, J COMPUT APPL MATH, V84, P137
68741    CHUANQING G, 1997, NUMER SINICA, V19, P19
68742    CHUANQING G, 1998, J NUMER METH COMPUT, V19, P283
68743    CHUANQING G, 1999, LINEAR ALGEBRA APPL, V295, P7
68744    DRAUX A, 1984, AN9145 U SCI TECHN L
68745    GRAGG WB, 1972, SIAM REV, V14, P1
68746    GRAVESMORRIS PR, 1983, NUMER MATH, V42, P331
68747    GRAVESMORRIS PR, 1984, IMA J NUMER ANAL, V4, P209
68748    GRAVESMORRIS PR, 1986, CONSTR APPROX, V2, P263
68749    GRAVESMORRIS PR, 1994, J COMPUT APPL MATH, V51, P205
68750    GRAVESMORRIS PR, 1996, J COMPUT APPL MATH, V66, P255
68751    GUOLIANG X, 1990, LINEAR ALGEBRA APPL, V107, P67
68752    KLABAHN G, 1989, SIAM J CIMPUT, V4, P639
68753    PESTANOGABINO C, 1998, J COMPUT APPL MATH, V94, P23
68754    STARKAND Y, 1979, J COMPUT APPL MATH, V5, P63
68755 NR 28
68756 TC 4
68757 SN 0024-3795
68758 J9 LINEAR ALGEBRA APPL
68759 JI Linear Alg. Appl.
68760 PD JAN 1
68761 PY 2001
68762 VL 322
68763 IS 1-3
68764 BP 141
68765 EP 167
68766 PG 27
68767 SC Mathematics, Applied
68768 GA 387QX
68769 UT ISI:000166134200009
68770 ER
68771 
68772 PT J
68773 AU Ju, JH
68774    Xia, YB
68775    Zhang, WL
68776    Wang, LJ
68777    Tang, DY
68778 TI Infrared optical properties of amorphous hydrogenated carbon nitride
68779    film
68780 SO JOURNAL OF NON-CRYSTALLINE SOLIDS
68781 DT Letter
68782 ID THIN-FILMS
68783 AB The microstructure and optical properties of nitrogen-doped
68784    hydrogenated carbon DLC:N films deposited by the rf plasma-enhanced
68785    chemical vapor deposition (PECVD) method were studied by atomic force
68786    microscopy (AFM), Raman, Fourier-transform infrared (FTIR) and infrared
68787    ellipsometric (IRE) spectrometry. The absorption intensities of the
68788    peaks CNH (1600 cm(-1)), CN (2200 cm(-1)) and NH (3250 cm(-1)) in the
68789    IR spectra increase with the N-2/CH4 flux ratio. Raman spectra show
68790    that the shape of the D and G bands of DLC:N film varies slightly with
68791    the increase of N content, which means that the main structures of
68792    N-doped films are still diamond-like carbon (DLC). However, four
68793    Gaussian decomposition results show that the peak of the G band widens
68794    and shifts to the low wavenumber with increased nitrogen content in
68795    Raman spectra due to amorphous C3N4 structure being formed in the
68796    nitrogen-doped DLC film. AFM topographies and lateral force microscopy
68797    (LFM?) images of DLC,N film confirm that the amorphous C3N4 exists as
68798    particles several tens of nanometers in size in the film. IRE spectral
68799    analysis results show that the refractive index of the film in the
68800    infrared region (2-14 mum) decreases slightly from 1.8 to 1.6 with
68801    increased nitrogen content. (C) 2000 Elsevier Science B.V. All rights
68802    reserved.
68803 C1 Shanghai Univ, Sch Mat & Engn, Shanghai 201800, Peoples R China.
68804    Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China.
68805 RP Ju, JH, Shanghai Univ, Sch Mat & Engn, 20 Changzhong Rd, Shanghai
68806    201800, Peoples R China.
68807 CR FRANCESCHINI DF, 1992, APPL PHYS LETT, V60, P3229
68808    JIANG X, 1989, J APPL PHYS, V66, P4729
68809    JU JH, IN PRESS
68810    KAUFMAN JH, 1989, PHYS REV B, V39, P13053
68811    SCHWAN J, 1996, J APPL PHYS, V80, P440
68812    SCHWAN J, 1998, J APPL PHYS, V84, P2071
68813    SILVA SRP, 1994, THIN SOLID FILMS, V253, P146
68814    SILVA SRP, 1997, J APPL PHYS, V81, P2626
68815    WANG EG, 1997, PROG MATER SCI, V41, P241
68816 NR 9
68817 TC 7
68818 SN 0022-3093
68819 J9 J NON-CRYST SOLIDS
68820 JI J. Non-Cryst. Solids
68821 PD DEC
68822 PY 2000
68823 VL 278
68824 IS 1-3
68825 BP 213
68826 EP 217
68827 PG 5
68828 SC Materials Science, Ceramics; Materials Science, Multidisciplinary
68829 GA 388JR
68830 UT ISI:000166177800023
68831 ER
68832 
68833 PT J
68834 AU Lu, DY
68835    Chen, XL
68836    Cao, JY
68837    Li, Z
68838    Xue, HW
68839    Luo, LJ
68840    Xu, B
68841 TI Effects of cancer chemotherapy on the blood fibrinogen concentrations
68842    of cancer patients
68843 SO JOURNAL OF INTERNATIONAL MEDICAL RESEARCH
68844 DT Article
68845 DE fibrinogen; blood fibrinogen concentration; cancer chemotherapy; tumour
68846    pathogenesis
68847 ID TUMOR; COAGULATION; PROTECTION; CARCINOMA; PROSTATE; CELLS; LUNG
68848 AB Blood fibrinogen concentrations and glutamic-pyruvic transaminase
68849    activities of 66 adult cancer inpatients (aged 22 - 70 years) were
68850    determined both before and after one or two chemotherapy regimens. The
68851    percentage of hepatoma patients with abnormal blood fibrinogen levels
68852    (< 1.5 or > 6.0 g/l) was higher (64.3% of 14 patients) than that in
68853    other cancer categories (19.2% of 52 patients). The mean blood
68854    fibrinogen concentrations of male (3.5 g/l) and female (4.5 g/l) cancer
68855    patients were higher than those previously reported for healthy humans
68856    (2.8 and 2.9 g/l, respectively). After chemotherapy, blood fibrinogen
68857    concentrations decreased in patients whose primary tumours were
68858    surgically removed (from 4.8 to 3.2 g/l) but increased (from 3.0 to 4.8
68859    gn) in those who did not undergo surgery. Glutamic-pyruvic transaminase
68860    activities did not appear to be related to blood fibrinogen levels. We
68861    conclude that the increase in mean blood fibrinogen levels of cancer
68862    patients is probably related to tumour growth. Different mechanisms may
68863    operate in patients with hepatoma.
68864 C1 Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China.
68865    Cent Hosp Jing An Dist, Shanghai 200040, Peoples R China.
68866    Chinese Acad Sci, Shanghai Inst Mat Med, Shanghai 200031, Peoples R China.
68867 RP Lu, DY, Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China.
68868 CR CARDINALI M, 1990, CANCER RES, V50, P8010
68869    COSTANTINI V, 1992, CANCER METAST REV, V11, P283
68870    DVORAK HF, 1983, CANCER METAST REV, V2, P41
68871    FRIED K, 1980, CLIN GENET, V17, P223
68872    GUNJI Y, 1988, CANCER RES, V48, P5216
68873    LOWRY OH, 1951, J BIOL CHEM, V193, P265
68874    LU DY, 1995, ACTA PHARMACOL SINIC, V16, P187
68875    LU DY, 1999, CHINESE MED J-PEKING, V112, P1052
68876    POGGI A, 1977, CANCER RES, V37, P272
68877    SOUTHAN C, 1988, FIBRINOGEN FIBRIN ST, P65
68878    WOJTUKIEWICZ MZ, 1991, CANCER, V67, P1377
68879    YUE XF, 1982, ACTA PHARMACOL SINIC, V3, P124
68880    ZACHARSKI LR, 1981, MALIGNANCY HEMOSTATI, P113
68881    ZACHARSKI LR, 1984, CANCER, V53, P2046
68882 NR 14
68883 TC 3
68884 SN 0300-0605
68885 J9 J INT MED RES
68886 JI J. Int. Med. Res.
68887 PD NOV-DEC
68888 PY 2000
68889 VL 28
68890 IS 6
68891 BP 313
68892 EP 317
68893 PG 5
68894 SC Medicine, Research & Experimental; Pharmacology & Pharmacy
68895 GA 386XC
68896 UT ISI:000166089300008
68897 ER
68898 
68899 PT J
68900 AU Wan, DC
68901    Wei, GW
68902 TI The study of quasi wavelets based numerical method applied to Burgers'
68903    equations
68904 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
68905 DT Article
68906 DE quasi-wavelets; Runge-Kutta method; Burgers' equations
68907 ID PARTIAL-DIFFERENTIAL EQUATIONS
68908 AB A quasi-wavelet based numerical method was introduced for solving the
68909    evolution of the solutions of nonlinear partial differential Burgers'
68910    equations. The quasi wavelet based numerical method tvas used to
68911    discrete the spatial deriatives, while the fourth-order Runge-Kutta
68912    method was adopted to deal with the temporal discretization. The
68913    calculations were conducted at a variety of Reynolds numbers ranging
68914    from 10 to unlimited large. The comparisons of present results with
68915    analytical solutions show that the quasi,wavelet based numerical method
68916    has distinctive local property, and is efficient and robust for
68917    numerically solving Burgers' equations.
68918 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
68919    Natl Univ Singapore, Dept Computat Sci, Singapore 119260, Singapore.
68920 RP Wan, DC, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
68921    200072, Peoples R China.
68922 CR BASDEVANT C, 1986, COMPUT FLUIDS, V14, P23
68923    CHUI CK, 1992, INTRO WAVELETS M
68924    COHEN A, 1995, WAVELETS MULTISCAL M
68925    COLE JD, 1951, Q APPL MATH, V9, P225
68926    HAAR A, 1910, MATH ANN, V69, P331
68927    MALLAT S, 1989, T AM MATH SOC, V315, P68
68928    MORLET J, 1982, GEOPHYSICS, V47, P222
68929    PROSSER R, 1998, J COMPUT PHYS, V147, P337
68930    QIAN S, 1993, J COMPUT PHYS, V106, P155
68931    VASILYEV OV, 1996, J COMPUT PHYS, V125, P498
68932    WANG C, 1997, THESIS SHANGHAI JIAT
68933    WEI GW, 1997, PHYS REV LETT, V79, P775
68934    WEI GW, 1998, CHEM PHYS LETT, V296, P215
68935    WEI GW, 1999, J CHEM PHYS, V110, P8930
68936    WICKERHAUSER MV, 1994, ADAPTED WAVELET AN M
68937 NR 15
68938 TC 3
68939 SN 0253-4827
68940 J9 APPL MATH MECH-ENGL ED
68941 JI Appl. Math. Mech.-Engl. Ed.
68942 PD OCT
68943 PY 2000
68944 VL 21
68945 IS 10
68946 BP 1099
68947 EP 1110
68948 PG 12
68949 SC Mathematics, Applied; Mechanics
68950 GA 390FH
68951 UT ISI:000166284700001
68952 ER
68953 
68954 PT J
68955 AU Tian, LX
68956    Liu, YR
68957    Liu, ZR
68958 TI The research of blow-up in 2D weakly damped forced KdV equation on thin
68959    domain
68960 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
68961 DT Article
68962 DE weakly damped forced; nonlinear solitary equation; thin domains;
68963    higher-dimensional dynamical system
68964 ID BEHAVIOR
68965 AB The time estimate of the blow up of the weakly damped forced KdV
68966    equation in thin 2 D domains is given.
68967 C1 Jiangsu Univ Sci & Technol, Dept Math & Phys, Zhenjiang 212013, Peoples R China.
68968    Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China.
68969    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
68970 RP Tian, LX, Jiangsu Univ Sci & Technol, Dept Math & Phys, Zhenjiang
68971    212013, Peoples R China.
68972 CR BALMFORTH NJ, 1997, SIAM J APPL MATH, V57, P205
68973    GHIDAGLIA JM, 1988, J DIFFER EQUATIONS, V74, P369
68974    GHIDAGLIA JM, 1994, J DIFFER EQUATIONS, V110, P356
68975    GU CH, 1990, SOLITON THEORY ITS M
68976    GUO BL, 1995, NONLINEAR EVOLUTIO M
68977    LIU SK, 1996, NONLINEAR ATMOSPHE M
68978    LIU ZG, 1995, PHYS LETT A, V204, P343
68979    LU DC, 1998, APPL AMTH MECH, V19, P975
68980    TEMAM R, 1993, J FUNCT ANAL, V117, P215
68981    TIAN LX, 1997, APPL MATH MECH-ENGL, V18, P1021
68982 NR 10
68983 TC 1
68984 SN 0253-4827
68985 J9 APPL MATH MECH-ENGL ED
68986 JI Appl. Math. Mech.-Engl. Ed.
68987 PD OCT
68988 PY 2000
68989 VL 21
68990 IS 10
68991 BP 1111
68992 EP 1118
68993 PG 8
68994 SC Mathematics, Applied; Mechanics
68995 GA 390FH
68996 UT ISI:000166284700002
68997 ER
68998 
68999 PT J
69000 AU Tian, LX
69001    Chu, ZJ
69002    Liu, ZR
69003    Jiang, Y
69004 TI Numerical analysis of longtime dynamic behavior in weakly damped forced
69005    KdV equation
69006 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
69007 DT Article
69008 DE periodic boundary conditions; partial differential equation; dynamical
69009    systems; soliton/approximate inertial manifold
69010 AB The numerical analysis of the approximate inertial manifold in,weakly
69011    damped forced KdV equation is given. The results of numerical analysis
69012    under five models is the same as that of nonlinear spectral analysis.
69013 C1 Jiangsu Univ Sci & Technol, Dept Math & Phys, Zhenjiang 212013, Peoples R China.
69014    Wuxi Univ Light & Ind, Dept Math, Wuxi 214036, Peoples R China.
69015    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
69016    Nanjing Univ Sci & Technol, Dept Math, Nanjing 210000, Peoples R China.
69017 RP Tian, LX, Jiangsu Univ Sci & Technol, Dept Math & Phys, Zhenjiang
69018    212013, Peoples R China.
69019 CR CONSTANTIN P, 1988, INTEGRAL MANIFOLDS I
69020    CROSS MC, 1993, REV MOD PHYS, V65, P851
69021    ERCOLANI NM, 1993, J NONLINEAR SCI, V3, P477
69022    TEMAM R, 1988, INFINITE DIMENSIONAL
69023    TIAN LX, 1997, APPL MATH MECH-ENGL, V18, P1021
69024 NR 5
69025 TC 1
69026 SN 0253-4827
69027 J9 APPL MATH MECH-ENGL ED
69028 JI Appl. Math. Mech.-Engl. Ed.
69029 PD OCT
69030 PY 2000
69031 VL 21
69032 IS 10
69033 BP 1123
69034 EP 1130
69035 PG 8
69036 SC Mathematics, Applied; Mechanics
69037 GA 390FH
69038 UT ISI:000166284700004
69039 ER
69040 
69041 PT J
69042 AU Tian, LX
69043    Liu, YR
69044    Liu, ZR
69045 TI Local attractors for weakly damped forced KdV equation in thin 2D
69046    domains
69047 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
69048 DT Article
69049 DE attractor; weakly damped forced; nonlinear solitary wave equation; thin
69050    domains; non-adjoint operator
69051 ID EXPONENTIAL ATTRACTORS; DYNAMICS; BEHAVIOR
69052 AB The existence of local attractors in thin 2D domains far the weakly
69053    damped forced KdV equation, whose principal operator is a non-self
69054    adjoint and non-sectorial one is given.
69055 C1 Jiangsu Univ Sch & Technol, Dept Math & Phys, Zhenjiang 212013, Peoples R China.
69056    Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China.
69057    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
69058 RP Tian, LX, Jiangsu Univ Sch & Technol, Dept Math & Phys, Zhenjiang
69059    212013, Peoples R China.
69060 CR BABIN AV, 1995, COMMUN PUR APPL MATH, V48, P167
69061    BALMFORTH NJ, 1997, SIAM J APPL MATH, V57, P205
69062    DEBUSSCHE A, 1994, PHYSICA D, V72, P372
69063    EDEN A, 1993, NONLINEARITY, V6, P93
69064    EDEN A, 1993, PHYSICA D, V63, P350
69065    GHIDAGLIA JM, 1988, J DIFFER EQUATIONS, V74, P369
69066    GHIDAGLIA JM, 1994, J DIFFER EQUATIONS, V110, P356
69067    GU CH, 1990, SOLITON THEORY ITS M
69068    GUO BL, 1995, NONLINEAR EVOLUTIO M
69069    HALE JK, 1988, AMS MATH SURV MONOGR
69070    LIU ZG, 1995, PHYS LETT A, V204, P343
69071    ROBINSON JC, 1997, J DYN DIFF EQ, V9, P373
69072    SELL GR, 1992, NONLINEAR ANAL-THEOR, V18, P671
69073    SELL GR, 1996, J DYNAMICS DIFFERENT, V8, P1
69074    TEMAM R, 1993, J FUNCT ANAL, V117, P215
69075    TIAN LX, 1997, APPL MATH MECH-ENGL, V18, P1021
69076    TIAN LX, 2000, APPL MATH MECH-ENGL, V21, P1111
69077 NR 17
69078 TC 0
69079 SN 0253-4827
69080 J9 APPL MATH MECH-ENGL ED
69081 JI Appl. Math. Mech.-Engl. Ed.
69082 PD OCT
69083 PY 2000
69084 VL 21
69085 IS 10
69086 BP 1131
69087 EP 1138
69088 PG 8
69089 SC Mathematics, Applied; Mechanics
69090 GA 390FH
69091 UT ISI:000166284700005
69092 ER
69093 
69094 PT J
69095 AU Lai, JW
69096    Zhou, SP
69097    Li, GH
69098    Xu, DM
69099 TI Synchronization of chaotics systems using occasional driving
69100 SO ACTA PHYSICA SINICA
69101 DT Article
69102 DE synchronization; occasional drive; asymptotically stability; condition
69103    lyapunov exponents
69104 AB In this paper, we study the synchronization of chaotic systems using
69105    occasional driving technique-a modified Pecora-Carroll method. Unlike
69106    Pecora-Carroll method, to synchronize the chaotic driving and response
69107    systems, the driving signal only occasionally imposes to the response
69108    system, and we update the response variables with a time-interval of
69109    the imposing action period. Numerical analysis indicates that the
69110    occasional driving method is applicable to various dynamical systems
69111    and adds the degrees of freedom in selecting the driving variables.
69112    Furthermore, the method possesses robustness while it works.
69113 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
69114    Shanghai Univ, Sch Commun & Informat Engn, Shanghai 201800, Peoples R China.
69115 RP Lai, JW, Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
69116 CR ALEXANDER, 1997, IEEE T CAS, V44, P913
69117    CARROLL TL, 1991, IEEE T CIRCUITS SYST, V38, P453
69118    CARROLL TL, 1991, IEEE T CIRCUITS SYST, V38, P453
69119    GUEMEZ J, 1995, PHYS REV E A, V52, R2145
69120    HE R, 1992, PHYS REV A, V46, P7387
69121    JOHN JK, 1994, PHYS REV E A, V49, P4843
69122    NEWELL TC, 1994, PHYS REV E, V49, P313
69123    PECORA LM, 1990, PHYS REV LETT, V64, P812
69124    WOLF A, 1985, PHYSICA D, V16, P285
69125 NR 9
69126 TC 11
69127 SN 1000-3290
69128 J9 ACTA PHYS SIN-CHINESE ED
69129 JI Acta Phys. Sin.
69130 PD JAN
69131 PY 2001
69132 VL 50
69133 IS 1
69134 BP 21
69135 EP 25
69136 PG 5
69137 SC Physics, Multidisciplinary
69138 GA 389ZQ
69139 UT ISI:000166268900004
69140 ER
69141 
69142 PT J
69143 AU Deng, BQ
69144    Wu, WQ
69145 TI An anisotropic two-equation heat transfer model for turbulent heat
69146    transport under arbitrary wall thermal conditions
69147 SO NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS
69148 DT Article
69149 ID PREDICTING FLUID-FLOW; REATTACHING FLOWS; FIELD CALCULATIONS;
69150    2-EQUATION MODEL; FLUXES
69151 AB An anisotropic near-wad (t(2)) over bar - epsilon (t) two-equation heat
69152    transfer model is presented The turbulent heat flux is expressed in the
69153    form of anisotropic eddy diffusivity representation, in which the
69154    temperature variance (t(2)) over bar and its dissipation rare epsilon
69155    (t), together with k and epsilon, were used to model the isotropic and
69156    anisotropic eddy diffusivity for Beat. The method to determine the
69157    mixing time scale characterizing turbulent heat transport in the
69158    anisotropic turbulent heat flux representation mid the requirement that
69159    it should meet nr e presented. The proposed model reproduces the
69160    correct wall-limiting Behavior of temperature under arbitrary wall
69161    thermal conditions and is applied to turbulent channel flow and heat
69162    transfer. Calculated results a, e compared with the direct numerical
69163    simulation (DNS) data. It is shown the present model works much better.
69164 C1 Shanghai Univ Sci & Technol, Dept Power Engn, Shanghai 200093, Peoples R China.
69165    Shanghai Jiao Tong Univ, Sch Power & Energy Engn, Shanghai 200030, Peoples R China.
69166 RP Deng, BQ, Shanghai Univ Sci & Technol, Dept Power Engn, Shanghai
69167    200093, Peoples R China.
69168 CR ABE K, 1994, INT J HEAT MASS TRAN, V37, P139
69169    ABE K, 1995, INT J HEAT MASS TRAN, V38, P1467
69170    DENG B, IN PRESS INT J HEAT
69171    KASAGI N, 1992, J HEAT TRANS-T ASME, V114, P598
69172    KIM J, 1989, TURBULENT SHEAR FLOW, V6, P85
69173    LAI YG, 1990, INT J HEAT MASS TRAN, V33, P1429
69174    NAGANO Y, 1988, J HEAT TRANSFER, V110, P583
69175    NAGARAJAN R, 1991, PARTICLES SURFACES, V3, P3
69176    PATANKAR SV, 1980, NUMERICAL HEAT TRANS
69177    RAHMAN MM, 1996, NUMER HEAT TR B-FUND, V30, P291
69178    RHEE GH, 1997, INT J HEAT FLUID FL, V18, P38
69179    SO RMC, 1994, J HEAT TRANS-T ASME, V116, P844
69180    SO RMC, 1996, INT J HEAT MASS TRAN, V39, P455
69181    SOMMER TP, 1992, INT J HEAT MASS TRAN, V35, P3375
69182    TORII S, 1996, NUMER HEAT TR A-APPL, V29, P417
69183    VANDOORMAAL JP, 1984, NUMER HEAT TRANSFER, V7, P147
69184    YOSHIZAWA A, 1988, J FLUID MECH, V195, P541
69185    YOUSSEF MS, 1992, INT J HEAT MASS TRAN, V35, P3095
69186 NR 18
69187 TC 0
69188 SN 1040-7790
69189 J9 NUMER HEAT TRANSFER PT B-FUND
69190 JI Numer Heat Tranf. B-Fundam.
69191 PD DEC
69192 PY 2000
69193 VL 38
69194 IS 4
69195 BP 389
69196 EP 404
69197 PG 16
69198 SC Mechanics; Thermodynamics
69199 GA 386YD
69200 UT ISI:000166092500004
69201 ER
69202 
69203 PT J
69204 AU Huang, S
69205    Jiang, G
69206    You, J
69207    Yoshida, E
69208    Xu, K
69209 TI The ionic properties of CaSiO3 melt
69210 SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND
69211    MATERIALS PROCESSING SCIENCE
69212 DT Article
69213 ID MOLECULAR-DYNAMICS; SILICATE MELTS; GLASS
69214 AB Molecular dynamics simulation of CaSiO3 melt was carried out using the
69215    effective pair potential model, with reasonable values of the
69216    interaction parameter. The result of the partial radial distribution
69217    function, the self-diffusion coefficient, and the electrical
69218    conductivity reasonably agrees with experiments. The density of states
69219    is calculated to compare with Raman spectra. Our results showing a
69220    strong vibration band in the range of 800 to 1000 cm(-1) are consistent
69221    with experiments.
69222 C1 Shiga Univ Med Sci, Dept Phys, Shiga 52021, Japan.
69223    Shanghai Univ, Shanghai Enhance Lab Ferromet, Shanghai 200072, Peoples R China.
69224 RP Huang, S, Shiga Univ Med Sci, Dept Phys, Shiga 52021, Japan.
69225 CR ABRAMO MC, 1992, J CHEM PHYS, V96, P9083
69226    ALLEN MP, 1987, COMPUTER SIMULATION, P182
69227    DELLAVALLE RG, 1994, CHEM PHYS, V179, P411
69228    HANSEN JP, 1986, THEORY SIMPLE LIQUID, CH4
69229    HUANG SP, 2000, CHINESE PHYS LETT, V17, P279
69230    IGUCHI Y, 1981, CAN METALL Q, V20, P51
69231    KATO T, 1990, J CHEM PHYS, V92, P5506
69232    KELLER H, 1979, METALL T B, V10, P67
69233    KELLER H, 1982, METALL T B, V13, P237
69234    KIEFFER J, 1989, J CHEM PHYS, V90, P4982
69235    MATSUI M, 1988, PHYS CHEM MINER, V16, P234
69236    MYSEN B, 1995, GEOCHIM COSMOCHIM AC, V59, P455
69237    MYSEN BO, 1992, CHEM GEOL, V96, P321
69238    PING HS, 1997, J PHYS SOC JPN, V66, P1356
69239    PING HS, 1997, J PHYS SOC JPN, V66, P392
69240    PRICE DL, 1987, J NON-CRYST SOLIDS, V92, P153
69241    VORONKO KY, 1991, GROWTH CRYST, V16
69242    WASEDA Y, 1989, MAT SCI EARTH INTERI, CH1
69243 NR 18
69244 TC 0
69245 SN 1073-5615
69246 J9 METALL MATER TRANS B
69247 JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci.
69248 PD DEC
69249 PY 2000
69250 VL 31
69251 IS 6
69252 BP 1241
69253 EP 1245
69254 PG 5
69255 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
69256    Engineering
69257 GA 386FR
69258 UT ISI:000166050600011
69259 ER
69260 
69261 PT J
69262 AU Wang, XJ
69263    Zhang, ZM
69264    Sun, ML
69265 TI A comparison of flow fields predicted by various turbulent lubrication
69266    models with existing measurements
69267 SO JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME
69268 DT Article
69269 AB Flow field predictions of various turbulent lubrication models are
69270    compared with the existing experimental data of turbulent Couette flow
69271    and shear-induced counter-current flow. [S0742-4787(00)00502-6].
69272 C1 Shanghai Univ, Dept Engn Mech, Shanghai 200072, Peoples R China.
69273 RP Wang, XJ, Shanghai Univ, Dept Engn Mech, Shanghai 200072, Peoples R
69274    China.
69275 CR AYDIN EM, 1991, EXP FLUIDS, V11, P302
69276    CONSTANTINESCU VN, 1962, ASME, V84, P139
69277    HIRS GG, 1973, ASME, V95, P137
69278    JONES WP, 1973, INT J HEAT MASS TRAN, V16, P1119
69279    KANEKO S, 1984, C27884 I MECH E, P205
69280    LEE DW, 1990, JSME INT J II-FLUID, V33, P200
69281    LJUBOJA M, 1980, ASME, V102, P350
69282    NG CW, 1965, ASME, V87, P675
69283    TSANIS IK, 1988, J FLUID MECH, V189, P531
69284    ZHANG YQ, 1995, TRIBOLOGY, V15, P271
69285 NR 10
69286 TC 1
69287 SN 0742-4787
69288 J9 J TRIBOL-TRANS ASME
69289 JI J. Tribol.-Trans. ASME
69290 PD APR
69291 PY 2000
69292 VL 122
69293 IS 2
69294 BP 475
69295 EP 477
69296 PG 3
69297 SC Engineering, Mechanical
69298 GA 387KL
69299 UT ISI:000166121700014
69300 ER
69301 
69302 PT J
69303 AU Zhang, C
69304    Yi, ZX
69305    Zhang, ZM
69306 TI THD analysis of high speed heavily loaded journal bearings including
69307    thermal deformation, mass conserving cavitation, and turbulent effects
69308 SO JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME
69309 DT Article
69310 ID THERMOHYDRODYNAMIC ANALYSIS
69311 AB Theoretical and experimental THD analyses of high speed heavily loaded
69312    journal bearings are presented. Numerical solutions include thermal
69313    deformation, mass conserving cavitation and turbulent effects. The
69314    pressure and temperature distributions, the eccentricity ratio, and the
69315    flow rate are measured. Agreement between theoretical results and
69316    experimental data is satisfactory. [S0742-4787(00)00803-1].
69317 C1 Shanghai Univ, Res Inst Bearings, Shanghai 20072, Peoples R China.
69318 RP Zhang, C, Northwestern Univ, Ctr Surface Engn & Tribol, Evanston, IL
69319    60201 USA.
69320 CR BONCOMPAIN R, 1986, ASME, V108, P219
69321    BOOSER ER, 1988, ASLE T, V31, P405
69322    BOUARD L, 1996, J TRIBOL-T ASME, V118, P225
69323    BOUCHOULE C, 1996, J TRIBOL-T ASME, V118, P532
69324    ELROD HG, 1981, J LUBR TECHNOL, V103, P350
69325    EZZAT HA, 1973, ASME, V95, P298
69326    FERRON J, 1983, ASME, V105, P422
69327    FILLON M, 1996, J TRIBOL-T ASME, V118, P169
69328    FITZGERALD MK, 1992, J TRIBOL-T ASME, V114, P122
69329    FLACK RD, 1993, TRIBOL T, V36, P497
69330    KHONSARI MM, 1987, ASLE TRANS, V30, P26
69331    KHONSARI MM, 1991, J TRIBOL-T ASME, V113, P398
69332    KHONSARI MM, 1992, TRIBOL T, V35, P177
69333    MA MT, 1996, TRIBOL INT, V29, P19
69334    MITTWOLLEN N, 1990, J TRIBOL-T ASME, V112, P330
69335    PARANJPE RS, 1996, TRIBOL T, V39, P636
69336    PINKUS O, 1990, THERMAL ASPECT FLUID
69337    RICHTMYER RD, 1957, DIFFERENCE METHODS I, P101
69338    TAYLOR CM, 1973, 73LUBS10 ASME
69339    TUCKER PG, 1996, J TRIBOL-T ASME, V118, P356
69340    ZHANG C, 1997, P 2 INT C HYDR BEAR, P18
69341 NR 21
69342 TC 3
69343 SN 0742-4787
69344 J9 J TRIBOL-TRANS ASME
69345 JI J. Tribol.-Trans. ASME
69346 PD JUL
69347 PY 2000
69348 VL 122
69349 IS 3
69350 BP 597
69351 EP 602
69352 PG 6
69353 SC Engineering, Mechanical
69354 GA 387KM
69355 UT ISI:000166121800017
69356 ER
69357 
69358 PT J
69359 AU Chen, T
69360    Li, Y
69361 TI 2-D wavelet analysis of 3-D planar radiating structures in stratified
69362    media
69363 SO JOURNAL OF INFRARED AND MILLIMETER WAVES
69364 DT Article
69365 DE multiresolution analysis; scaling function and wavelet; MPIE
69366 ID PATCH ANTENNA; MICROSTRIP
69367 AB The wavelet expansion method was used to analyze three-dimension (3-D)
69368    planar problem. The structure is a combination of planar sheets of
69369    current oriented along normal and transverse directions in a stratified
69370    medium. The surface integral equation was solved through a Galerkm's
69371    method with unknown current expanded in terms of two-dimension
69372    orthogonal wavelets. The different resolution levels of wavelet were
69373    chosen in accordance with the different lengths of the conducting
69374    plates. Finally, a comparison was presented between the wavelet
69375    expansion method and conventional method of moments to judge their
69376    efficiency.
69377 C1 Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R China.
69378 RP Chen, T, Shanghai Univ, Dept Commun Engn, Shanghai 201800, Peoples R
69379    China.
69380 CR CHUI CK, 1991, INTRO WAVELET, P116
69381    DELAVEAUD C, 1994, ELECTRON LETT, V30, P1
69382    DIMASSA G, 1995, MICROW OPT TECHN LET, V8, P222
69383    FANG DG, 1988, IEE P H, V135, P297
69384    HYEONGDONG K, 1993, IEEE T ANTENN PROPAG, V41, P200
69385    JOHN A, 1994, MICROW OPT TECHN LET, V7, P389
69386    MOSIG JR, 1982, ADV ELECTRON EL PHYS, V59, P139
69387    STEINBERG BZ, 1993, IEEE T ANTENN PROPAG, V41, P610
69388    STEINBERG BZ, 1994, IEEE ANT PROP SOC S, P20
69389 NR 9
69390 TC 0
69391 SN 1001-9014
69392 J9 J INFRARED MILIM WAVES
69393 JI J. Infrared Millim. Waves
69394 PD DEC
69395 PY 2000
69396 VL 19
69397 IS 6
69398 BP 435
69399 EP 439
69400 PG 5
69401 SC Optics
69402 GA 387ZF
69403 UT ISI:000166152400007
69404 ER
69405 
69406 PT J
69407 AU Wu, Z
69408    Wang, Q
69409    Li, CF
69410    Shi, JL
69411 TI Microwaves in gyromagnetic waveguides
69412 SO JOURNAL OF APPLIED PHYSICS
69413 DT Article
69414 ID MAGNETOSTATIC SURFACE-WAVES; IRON-GARNET FILMS; ENVELOPE SOLITONS;
69415    FERROMAGNETIC-FILMS; ANTIFERROMAGNET
69416 AB Properties of transverse electric waves in the microwave frequency
69417    range on a plane interface between a nonlinear antiferromagnet and a
69418    linear ferromagnet are investigated. It is revealed that there are two
69419    different field distributions and powers. An exact analytical
69420    dispersion relation is obtained. On the basis of the dispersion
69421    relation, we have investigated the properties of surface waves in this
69422    waveguide and, theoretically, found that there exist passbands and stop
69423    bands, which can be controlled by varying the power in the nonlinear
69424    gyromagnetic waveguides. (C) 2001 American Institute of Physics.
69425 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
69426 RP Wu, Z, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
69427 CR ALMEIDA NS, 1987, PHYS REV B, V36, P2015
69428    BOARDMAN AD, 1990, PHYS REV B, V41, P717
69429    BOARDMAN AD, 1994, IEEE T MAGN, V30, P1
69430    BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
69431    BOARDMAN AD, 1995, J MAGN MAGN MATER, V145, P357
69432    BOYLE JW, 1996, PHYS REV B, V53, P12173
69433    CHEN M, 1994, PHYS REV B, V49, P12773
69434    KALINIKOS BA, 1991, J APPL PHYS 2B, V69, P5712
69435    MIHALACHE D, 1987, OPT LETT, V12, P187
69436    NEWELL AC, 1991, NONLINEAR OPTICS, P120
69437    TSANKOV MA, 1994, J APPL PHYS, V76, P4274
69438    VUKOVICH S, 1991, SOV PHYS JETP, V71, P964
69439    WANG Q, 1995, J APPL PHYS, V77, P5831
69440    WANG Q, 1997, ACTA PHYS SINICA, V45, P142
69441    WANG Q, 1997, JPN J APPL PHYS 1, V36, P7064
69442    WANG Q, 1998, J APPL PHYS, V83, P382
69443    WANG Q, 1999, SCI CHINA SER A, V42, P310
69444    WANG YF, 1998, J APPL PHYS, V84, P6233
69445 NR 18
69446 TC 1
69447 SN 0021-8979
69448 J9 J APPL PHYS
69449 JI J. Appl. Phys.
69450 PD JAN 1
69451 PY 2001
69452 VL 89
69453 IS 1
69454 BP 535
69455 EP 541
69456 PG 7
69457 SC Physics, Applied
69458 GA 387JF
69459 UT ISI:000166118900083
69460 ER
69461 
69462 EF
69463 FN ISI Export Format
69464 VR 1.0
69465 PT J
69466 AU Wang, B
69467 TI Metaphorical terms for translation
69468 SO PERSPECTIVES-STUDIES IN TRANSLATOLOGY
69469 DT Article
69470 AB Translation has been traditionally treated as a metaphor in so far as
69471    it has often been taken for granted that 1. the 'meaning' of a word is
69472    objective and truth-conditional, and that 2, a 'text' is considered as
69473    a 'container' with 'objective meaning'. Such metaphorization of
69474    translation finds its most obvious form int he concept of 'equivalence'
69475    and its various derivations, which have roots deep in the philosophy of
69476    objective meaning and metaphorical thinking. The article argues that
69477    cognitive linguistics can offer an alternative to this idea of
69478    objective meaning and thus the idea of translation as
69479    text-meaning-transfer. This can help bring Translation Studies out of
69480    the metaphorical trap of the concept of equivalence.
69481 C1 Shanghai Univ Sci & Technol, Shanghai, Peoples R China.
69482 RP Wang, B, Shanghai Univ Sci & Technol, Shanghai, Peoples R China.
69483 CR ABRAMS MH, 1953, MIRROR LAMP ROMANTIC
69484    BURNER JS, 1962, STUDY THINKING
69485    FAUCONNIER G, 2002, WAY WE THINK
69486    FISH S, 1980, IS THERE TEXT THIS C
69487    GUTT EA, 1992, TRANSLATION RELEVANC
69488    POPPER K, 1970, CRITICISM GROWTH KNO
69489    SPAIR E, 1958, CULTURE LANGUAGE PER
69490    STEINER G, 1975, BABEL ASPECTS LANGAU
69491    STONE PWK, 1967, ART POETRY 1750-1820
69492    TURNER M, 1994, NATURE ONTOGENESIS M
69493    WHORF BL, 1940, TECHNOL REV, V42, P229
69494    WHORF BL, 1956, LANGUAGE THOUGHT REA
69495 NR 12
69496 TC 1
69497 SN 0907-676X
69498 J9 PERSPECT STUD TRANSLATOL
69499 JI Perspect.-Stud. Transl.
69500 PY 2003
69501 VL 11
69502 IS 3
69503 BP 189
69504 EP 195
69505 PG 7
69506 SC Language & Linguistics Theory
69507 GA 751PL
69508 UT ISI:000187076100002
69509 ER
69510 
69511 PT J
69512 AU Liu, JK
69513    Wu, QS
69514    Ding, YP
69515 TI Synthesis and properties of ZnS quasi-nanorods by celloidin membrane
69516    template
69517 SO CHINESE JOURNAL OF INORGANIC CHEMISTRY
69518 DT Article
69519 DE celloidin; template; zinc sulfide; quasi-nanorods
69520 ID NANOPARTICLES; NANOWIRES; ROUTE
69521 AB ZnS Quasi-nanorods were successfully synthesized with artificial active
69522    membrane of celloidin as template by the cooperating effect of
69523    artificial active membrane and ethylenediamine. The results indicated
69524    that ZnS quasi-nanorods, which had a hexangular wurtzite structure,
69525    could be formed at room temperature with 0.1 mol L-1 ZnSO4 which added
69526    suitable template reagent ethylenediamine and 0.1 mol . L-1 Na2S as
69527    reactants. The particles' diameter was from 200 nm to 500 nm, and the
69528    average length was about 12 mum. The photics property study showed that
69529    the product reserved the properties of IR permeation and fluorescent
69530    luminescence in bulk materials, and the UV-Vis spectrum showed that the
69531    furthest absorption peak was at 308 nm having 42 nm' s blue-shift
69532    comparing to ZnS bulk material, which indicated that the particles had
69533    obvious quantum size effect.
69534 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
69535    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
69536 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
69537 CR BANIN U, 1999, NATURE, V400, P542
69538    DENG ZX, 2002, INORG CHEM, V41, P869
69539    DUAN XF, 2000, ADV MATER, V12, P298
69540    KUANG HM, 2002, CHIN J INORG CHEM, V18, P133
69541    LAN C, 2003, SOLID STATE COMMUN, V125, P455
69542    LI Y, 1999, MOL CRYST LIQ CRYS A, V337, P193
69543    LI Y, 2002, CHIN J INORG CHEM, V18, P79
69544    QIAO ZP, 2002, J SOLID STATE CHEM, V166, P49
69545    SANCHEZLOPEZ JC, 1999, LANGMUIR, V15, P7822
69546    SHIHAI K, 2003, NAT MATER, V2, P155
69547    SHU L, 1999, CHIN J INORG CHEM, V15, P1
69548    WANG H, 2002, J CRYST GROWTH, V246, P161
69549    WANG YW, 2002, CHEM PHYS LETT, V357, P314
69550    WU QS, 2000, J MEMBRANE SCI, V172, P199
69551    WU QS, 2002, INORG CHEM COMMUN, V5, P671
69552    XU J, 2003, J COLLOID INTERF SCI, V259, P275
69553    YANG P, 2001, APPL PHYS A-MATER, V73, P455
69554    ZHANG DB, 2002, J COLLOID INTERF SCI, V246, P413
69555    ZHANG LD, 2002, NANOMATERIAL NANOSTR, P305
69556    ZHONG WZ, 1999, CRYSTAL GROWTH MORPH, P14
69557 NR 20
69558 TC 0
69559 SN 1001-4861
69560 J9 CHIN J INORG CHEM
69561 JI Chin. J. Inorg. Chem.
69562 PD DEC
69563 PY 2003
69564 VL 19
69565 IS 12
69566 BP 1322
69567 EP 1326
69568 PG 5
69569 SC Chemistry, Inorganic & Nuclear
69570 GA 750YN
69571 UT ISI:000187026200010
69572 ER
69573 
69574 PT J
69575 AU Wu, YZ
69576    Zheng, XY
69577    Zhu, WQ
69578    Sun, RG
69579    Jiang, XY
69580    Zhang, ZL
69581    Xu, SH
69582 TI Highly efficient pure blue electroluminescence from
69583    1,4-bis[2-(3-N-ethylcarbazoryl)vinyl]benzene
69584 SO APPLIED PHYSICS LETTERS
69585 DT Article
69586 ID LIGHT-EMITTING DEVICES; ELECTROPHOSPHORESCENT DEVICES; DISTYRYLARYLENE;
69587    STABILITY; DIODES; DOPANT; LAYER
69588 AB An efficient blue organic light-emitting diode with
69589    1,4-bis[2-(3-N-ethylcarbazoryl)vinyl]benzene doped into
69590    4,4(')-N,N-'-dicarbazole-biphyenyl is reported. Maximum luminance and
69591    external quantum efficiency are 8500 cd/m(2) and 2.6%. CIE-1931
69592    coordinates are x=0.15, y=0.16. The device performance was further
69593    improved by introducing bis(2-methyl-8quinolinato)4-phenylphenolate
69594    aluminum to assist electron injection. The maximum luminance and
69595    quantum efficiency reached 11000 cd/m(2) and 3.3%, respectively. Foster
69596    energy transfer and especially a carrier trapping mechanism are
69597    considered to dominate in the process of electroluminescence. (C) 2003
69598    American Institute of Physics.
69599 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
69600 RP Wu, YZ, Shanghai Univ, Dept Mat Sci, Jiading Campus, Shanghai 201800,
69601    Peoples R China.
69602 CR BALDO MA, 1999, APPL PHYS LETT, V75, P4
69603    BULOVIC V, 1998, CHEM PHYS LETT, V287, P455
69604    BURROWS PE, 1997, IEEE T ELECTRON DEV, V44, P1188
69605    BURROWS PE, 2000, APPL PHYS LETT, V76, P2493
69606    ENDO J, 1999, P INT C ADV TECHN PO, P124
69607    HOSOKAWA C, 1995, APPL PHYS LETT, V67, P3853
69608    HOSOKAWA C, 1995, J APPL PHYS, V78, P5831
69609    HOSOKAWA C, 1997, SYNTHETIC MET, V91, P3
69610    HOSOKAWA C, 2001, SID 2001 DIGEST, P522
69611    KO CW, 2002, CHEM MATER, V14, P357
69612    KWONG RC, 2002, APPL PHYS LETT, V81, P162
69613    LITTMAN J, 1992, J APPL PHYS, V72, P1957
69614    OBRIEN DF, 1999, APPL PHYS LETT, V74, P442
69615    POPE M, 1982, ELECT PROCESSES ORGA
69616    SHEN ZL, 1997, SCIENCE, V276, P2009
69617    SHI JM, 1997, APPL PHYS LETT, V70, P1665
69618    SZE SM, 1981, PHYSICS SEMICONDUCTO, P697
69619    TANG CW, 1987, APPL PHYS LETT, V51, P913
69620    TANG CW, 1989, J APPL PHYS, V65, P3610
69621    YOSHIDA M, 1996, JPN J APPL PHYS 2, V35, L397
69622 NR 20
69623 TC 6
69624 SN 0003-6951
69625 J9 APPL PHYS LETT
69626 JI Appl. Phys. Lett.
69627 PD DEC 15
69628 PY 2003
69629 VL 83
69630 IS 24
69631 BP 5077
69632 EP 5079
69633 PG 3
69634 SC Physics, Applied
69635 GA 752RR
69636 UT ISI:000187181400061
69637 ER
69638 
69639 PT J
69640 AU Zhao, JR
69641    Jia, XS
69642    Zhai, HB
69643 TI A new mild regioselective bromination of arylamines
69644 SO TETRAHEDRON LETTERS
69645 DT Article
69646 DE arylamines; boron amide; regioselective bromination
69647 ID AROMATIC-AMINES; TETRABUTYLAMMONIUM TRIBROMIDE; MONOBROMINATION;
69648    ANILINES; BROMIDE
69649 AB A new efficient regioselective boron-assisted mono bromination
69650    methodology for arylamines is described. Our one-pot, three-stage
69651    approach (lithiation, boron amide formation and bromination) proved to
69652    be highly useful in mildly brominating a variety of arylamines in up to
69653    94% yields. (C) 2003 Elsevier Ltd. All rights reserved.
69654 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Modern Synthet Organ Chem, Shanghai 200032, Peoples R China.
69655    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Bioorgan & Nat Prod Chem, Shanghai 200032, Peoples R China.
69656    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
69657 RP Zhai, HB, Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Modern
69658    Synthet Organ Chem, Shanghai 200032, Peoples R China.
69659 EM zhaih@mail.sioc.ac.cn
69660 CR ANDO W, 1982, SYNTHESIS-STUTTGART, P263
69661    BERTHELOT J, 1986, SYNTHETIC COMMUN, V16, P1641
69662    BERTHELOT J, 1989, CAN J CHEM, V67, P2061
69663    BOUGEOIS JL, 1981, TETRAHEDRON LETT, V22, P61
69664    BUCKLES RE, 1951, J AM CHEM SOC, V73, P4525
69665    CERICHELLI G, 1989, TETRAHEDRON LETT, V30, P6209
69666    FLETCHER RJ, 1995, J CHEM SOC P1, V6, P623
69667    FUSCO R, 1975, J ORG CHEM, V40, P1906
69668    MAJETICH G, 1997, J ORG CHEM, V62, P4321
69669    MUATHEN HA, 1992, J ORG CHEM, V57, P2740
69670    ONAKA M, 1984, CHEM LETT, P2007
69671    REEVES WP, 1993, SYNTHETIC COMMUN, V23, P855
69672    ROY SC, 2001, TETRAHEDRON LETT, V42, P6941
69673    SMITH MB, 2002, ORG LETT, V4, P2321
69674    SRIVASTAVA SK, 1996, CHEM COMMUN, V23, P2679
69675    STELLA L, 2001, RADICALS ORGANIC SYN, V2, P407
69676    VYAS PV, 2003, TETRAHEDRON LETT, V44, P4085
69677 NR 17
69678 TC 5
69679 SN 0040-4039
69680 J9 TETRAHEDRON LETT
69681 JI Tetrahedron Lett.
69682 PD DEC 22
69683 PY 2003
69684 VL 44
69685 IS 52
69686 BP 9371
69687 EP 9373
69688 PG 3
69689 SC Chemistry, Organic
69690 GA 749GB
69691 UT ISI:000186910100031
69692 ER
69693 
69694 PT J
69695 AU Zhou, SF
69696 TI Kernel sections for damped non-autonomous wave equations with linear
69697    memory and critical exponent
69698 SO QUARTERLY OF APPLIED MATHEMATICS
69699 DT Article
69700 ID ASYMPTOTIC STABILITY; GLOBAL ATTRACTOR; DIMENSION
69701 AB We prove the existence of kernel sections for the process generated by
69702    a non-autonomous wave equation with linear memory when there is
69703    nonlinear damping and the nonlinearity has a critically growing
69704    exponent; we also obtain a more precise estimate of upper bound of the
69705    Hausdorff dimension of the kernel sections. And we point out that in
69706    the case of autonomous systems with linear damping, the obtained upper
69707    bound of the Hausdorff dimension decreases as the damping grows for
69708    suitable large damping.
69709 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
69710 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
69711 CR ARRIETA J, 1992, COMMUN PART DIFF EQ, V17, P841
69712    CHEPYZHOV V, 1993, INDIANA U MATH J, V42, P1057
69713    DAFERMOS CM, 1970, ARCH RATIONAL MECH A, V37, P297
69714    FABRIZIO M, 1991, ARCH RATION MECH AN, V116, P139
69715    FEIREISL E, 1993, COMMUN PART DIFF EQ, V18, P1539
69716    GRASSELLI M, UNIFORM ATTRACTORS N
69717    HUANG Y, 2000, J MATH PHYS, V41, P4957
69718    LIU ZY, 1996, Q APPL MATH, V54, P21
69719    PATA V, 2001, ADV MATH SCI APPL, V11, P505
69720    PAZY A, 1983, APPL MATH SCI, V44
69721    TEMAM R, 1988, APPL MATH SCI, V68
69722    ZHOU SF, 1999, J MATH PHYS, V40, P4444
69723 NR 12
69724 TC 0
69725 SN 0033-569X
69726 J9 QUART APPL MATH
69727 JI Q. Appl. Math.
69728 PD DEC
69729 PY 2003
69730 VL 61
69731 IS 4
69732 BP 731
69733 EP 757
69734 PG 27
69735 SC Mathematics, Applied
69736 GA 750EF
69737 UT ISI:000186977800008
69738 ER
69739 
69740 PT J
69741 AU Wang, NN
69742 TI A white light-based light-scattering technique for particle sizing
69743 SO POWDER TECHNOLOGY
69744 DT Article
69745 DE particle sizing; light scattering; particle diameter; optical sizing
69746 AB A novel light-scattering technique is presented in this paper. Unlike
69747    the traditional methods, white light is used as the light source, and
69748    the light-scattering signals are collected within only one solid angle,
69749    from which the particle size and its distribution can be obtained by an
69750    inversion calculation. The basic principle is discussed. Results of the
69751    computer simulation and experimental studies made with monodisperse
69752    polystyrene latex spheres and polydisperse industrial samples are
69753    given. (C) 2003 Published by Elsevier B.V.
69754 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
69755 RP Wang, NN, Shanghai Univ Sci & Technol, 516 Jun Gong Rd, Shanghai
69756    200093, Peoples R China.
69757 CR ALLEN T, 1996, PARTICLE SIZE MEASUR
69758    VANDEHULST HC, 1957, LIGHT SCATTERING SMA
69759 NR 2
69760 TC 0
69761 SN 0032-5910
69762 J9 POWDER TECHNOL
69763 JI Powder Technol.
69764 PD OCT 20
69765 PY 2003
69766 VL 137
69767 IS 1-2
69768 BP 49
69769 EP 53
69770 PG 5
69771 SC Engineering, Chemical
69772 GA 750FR
69773 UT ISI:000186981100006
69774 ER
69775 
69776 PT J
69777 AU Chen, X
69778    Li, CF
69779 TI Negative group delay for Dirac particles traveling through a potential
69780    well
69781 SO PHYSICAL REVIEW A
69782 DT Article
69783 ID EVANESCENT ELECTROMAGNETIC-WAVES; TUNNELING TIMES; PULSE-PROPAGATION;
69784    TRAVERSAL TIME; PHASE-SHIFT; BARRIER
69785 AB The properties of group delay for Dirac particles traveling through a
69786    potential well are investigated. A necessary condition is put forward
69787    for the group delay to be negative. It is shown that this negative
69788    group delay is closely related to its anomalous dependence on the width
69789    of the potential well. In order to demonstrate the validity of
69790    stationary-phase approach, numerical simulations are made for a
69791    Gaussian-shaped temporal wave packet. A restriction to the
69792    potential-well's width is obtained that is necessary for the wave
69793    packet to remain distortionless in the traveling. Numerical comparison
69794    shows that the relativistic group delay is larger than its
69795    corresponding nonrelativistic one.
69796 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
69797    Acad Sinica, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt Technol, Xian 710068, Peoples R China.
69798 RP Chen, X, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200436,
69799    Peoples R China.
69800 CR BALCOU P, 1997, PHYS REV LETT, V78, P851
69801    BUTTIKER M, 1982, PHYS REV LETT, V49, P1739
69802    CARNIGLIA CK, 1971, J OPT SOC AM, V61, P1035
69803    CARNIGLIA CK, 1971, J OPT SOC AM, V61, P1423
69804    CHIAO RY, 1997, PROG OPTICS, V37, P345
69805    CHU S, 1982, PHYS REV LETT, V48, P738
69806    ENDERS A, 1992, J PHYS I, V2, P1693
69807    ENDERS A, 1993, J PHYS I, V3, P1089
69808    GARRETT CGB, 1970, PHYS REV A-GEN PHYS, V1, P305
69809    HARTMAN TE, 1962, J APPL PHYS, V33, P3427
69810    HAUGE EH, 1989, REV MOD PHYS, V61, P917
69811    HUANG XH, 2003, EUROPHYS LETT, V63, P28
69812    JAPHA Y, 1996, PHYS REV A, V53, P586
69813    KREKORA P, 2001, PHYS REV A, V63
69814    LEAVENS CR, 1989, PHYS REV B, V40, P5387
69815    LI CF, 2000, PHYS LETT A, V275, P287
69816    LI CF, 2002, ANN PHYS-BERLIN, V11, P916
69817    MACCOLL LA, 1932, PHYS REV, V40, P621
69818    MARTIN T, 1992, PHYS REV A, V45, P2611
69819    NIMTZ G, 1997, PROG QUANT ELECTRON, V21, P81
69820    PETRILLO V, 2003, PHYS REV A, V67
69821    SEGARD B, 1985, PHYS LETT A, V109, P213
69822    SOLLI D, 2002, PHYS REV E, V66
69823    SPIELMANN C, 1994, PHYS REV LETT, V73, P2308
69824    STEINBERG AM, 1993, PHYS REV LETT, V71, P708
69825    STEINBERG AM, 1994, PHYS REV A, V49, P3283
69826    VETTER RM, 2001, PHYS REV E 2, V63
69827    WANG LJ, 2000, NATURE, V406, P277
69828    WIGNER EP, 1955, PHYS REV, V98, P145
69829 NR 29
69830 TC 4
69831 SN 1050-2947
69832 J9 PHYS REV A
69833 JI Phys. Rev. A
69834 PD NOV
69835 PY 2003
69836 VL 68
69837 IS 5
69838 AR 052105
69839 DI ARTN 052105
69840 PG 5
69841 SC Physics, Atomic, Molecular & Chemical; Optics
69842 GA 750BF
69843 UT ISI:000186970900017
69844 ER
69845 
69846 PT J
69847 AU Hu, QY
69848    Yue, WI
69849 TI Analysis for some properties of discrete time Markov decision processes
69850 SO OPTIMIZATION
69851 DT Article
69852 DE discrete time; Markov decision processes; optimality equation; optimal
69853    policies; expected discounted total rewards
69854 AB This paper investigates properties of the optimality equation and
69855    optimal policies in discrete time Markov decision processes with
69856    expected discounted total rewards under weak conditions that the model
69857    is well defined and the optimality equation is true. The optimal value
69858    function is characterized as a solution of the optimality equation and
69859    the structure of optimal policies is also given.
69860 C1 Konan Univ, Dept Informat Sci & Syst Engn, Kobe, Hyogo 6588501, Japan.
69861    Shanghai Univ, Coll Int Business & Management, Shanghai 201800, Peoples R China.
69862 RP Yue, WI, Konan Univ, Dept Informat Sci & Syst Engn, Kobe, Hyogo
69863    6588501, Japan.
69864 CR BLACKWELL D, 1965, ANN MATH STAT, V36, P226
69865    BLACKWELL DE, 1967, ADV ASTRON ASTROPHYS, V5, P1
69866    DAWEN RV, 1986, MATH OPER RES, V11, P521
69867    DONG Z, 1987, SCI SINICA, V11, P975
69868    FEINBERG EA, 2000, HDB MURKOV DECISION, CH6
69869    HU QY, 1992, J MATH ANAL APPL, V171, P111
69870    HU QY, 1999, MATH METHOD OPER RES, V49, P255
69871    QUELLE G, 1976, J MATH ANAL APPL, V55, P239
69872    ROSS S, 1983, INTRO STOCHASTIC DYN
69873    STRAUCH RE, 1966, ANN MATH STAT, V37, P871
69874    WAL J, 1984, MATH OPE RES, V9, P290
69875 NR 11
69876 TC 0
69877 SN 0233-1934
69878 J9 OPTIMIZATION
69879 JI Optimization
69880 PD AUG-OCT
69881 PY 2003
69882 VL 52
69883 IS 4-5
69884 BP 495
69885 EP 505
69886 PG 11
69887 SC Mathematics, Applied; Operations Research & Management Science
69888 GA 749AZ
69889 UT ISI:000186897600008
69890 ER
69891 
69892 PT J
69893 AU Pan, XY
69894    Ma, XM
69895 TI Study on the milling-induced transformation in TiO2 powder with
69896    different grain sizes
69897 SO MATERIALS LETTERS
69898 DT Article
69899 DE TiO2; ball milling; phase transformation; grain size
69900 ID ANATASE TIO2; PRESSURE
69901 AB Mechanical alloying can trigger the transformations from anatase to
69902    srilankite and rutile phases in TiO2. The grain size of the powder has
69903    a significant effect on the kinetics of the milling-induced phase
69904    transformations. In the TiO2 powder with smaller gain size, the rate of
69905    the phase transformations is faster and that of the gain refinement is
69906    slower. (C) 2003 Published by Elsevier B.V.
69907 C1 E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China.
69908    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
69909 RP Ma, XM, E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R
69910    China.
69911 CR BEGINCOLIN S, 2000, J SOLID STATE CHEM, V149, P41
69912    HOFMANN M, 2003, J ALLOY COMPD, V348, P278
69913    LIN IJ, 1998, J THERM ANAL, V52, P451
69914    MAMMONE JF, 1981, J PHYS CHEM SOLIDS, V42, P379
69915    MAURICE DR, 1990, METALL TRANS A, V21, P289
69916    OHSAKA T, 1979, SOLID STATE COMMUN, V30, P345
69917    PALUMBO G, 1990, SCRIPTA METALL MATER, V24, P1347
69918    PAN XY, 2003, T NONFERR METAL SOC, V13, P271
69919    PARKER JC, 1990, J MATER RES, V5, P1246
69920    SHANNON RD, 1964, AM MINERAL, V49, P1707
69921    SURYANARAYANA C, 2001, PROG MATER SCI, V46, P1
69922 NR 11
69923 TC 2
69924 SN 0167-577X
69925 J9 MATER LETT
69926 JI Mater. Lett.
69927 PD JAN
69928 PY 2004
69929 VL 58
69930 IS 3-4
69931 BP 513
69932 EP 515
69933 PG 3
69934 SC Materials Science, Multidisciplinary; Physics, Applied
69935 GA 750AZ
69936 UT ISI:000186970300055
69937 ER
69938 
69939 PT J
69940 AU Zhang, LS
69941    Ng, CK
69942    Li, DA
69943    Tian, WW
69944 TI A new filled function method for global optimization
69945 SO JOURNAL OF GLOBAL OPTIMIZATION
69946 DT Article
69947 DE mathematical programming; global optimization; nonconvex optimization;
69948    filled function method
69949 ID TUNNELING ALGORITHM; MINIMIZATION; VARIABLES; MINIMA; SEARCH; TRUST
69950 AB A novel filled function is suggested in this paper for identifying a
69951    global minimum point for a general class of nonlinear programming
69952    problems with a closed bounded domain. Theoretical and numerical
69953    properties of the proposed filled function are investigated and a
69954    solution algorithm is proposed. The implementation of the algorithm on
69955    several test problems is reported with satisfactory numerical results.
69956 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
69957    Shanghai Univ, Dept Math, Shanghai, Peoples R China.
69958 RP Li, DA, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management,
69959    Shatin, Hong Kong, Peoples R China.
69960 CR BARHEN J, 1997, SCIENCE, V276, P1094
69961    CETIN BC, 1993, J OPTIMIZ THEORY APP, V77, P97
69962    CVIJOVIC D, 1995, SCIENCE, V267, P664
69963    DIXON LCW, 1976, OPTIMIZATION ACTION, P398
69964    GE R, 1990, MATH PROGRAM, V46, P191
69965    GE RP, 1987, J OPTIMIZ THEORY APP, V54, P241
69966    HORST R, 1993, GLOBAL OPTIMIZATION
69967    HORST R, 1995, INTRO GLOBAL OPTIMIZ
69968    KAN AHG, 1989, HDB OPERATIONS RES M, V1, P631
69969    LEVY AV, 1985, SIAM J SCI STAT COMP, V6, P15
69970    LI D, 2001, IN PRESS ANN OPERATI, V105
69971    LITINETSKI VV, 1998, ENG OPTIMIZ, V30, P125
69972    LIU X, 2001, J GLOBAL OPTIM, V19, P151
69973    PARDALOS PM, 1987, CONSTRAINED GLOBAL O
69974    PARDALOS PM, 2000, J COMPUT APPL MATH, V124, P209
69975    SUN XL, 2001, J GLOBAL OPTIM, V21, P185
69976    XU Z, 2001, J GLOBAL OPTIM, V20, P49
69977    YAO Y, 1989, IEEE T SYST MAN CYB, V19, P1222
69978    ZHENG Q, 1995, J GLOBAL OPTIM, V7, P421
69979 NR 19
69980 TC 4
69981 SN 0925-5001
69982 J9 J GLOBAL OPTIM
69983 JI J. Glob. Optim.
69984 PD JAN
69985 PY 2004
69986 VL 28
69987 IS 1
69988 BP 17
69989 EP 43
69990 PG 27
69991 SC Mathematics, Applied; Operations Research & Management Science
69992 GA 750HA
69993 UT ISI:000186984200002
69994 ER
69995 
69996 PT J
69997 AU Guo, XY
69998    Shum, KP
69999 TI p-nilpotence of finite groups and minimal subgroups
70000 SO JOURNAL OF ALGEBRA
70001 DT Article
70002 AB In this paper, it is proved that a finite group G is p-nilpotent if
70003    every minimal subgroup of P boolean AND O-p(G) is permutable in P and
70004    N-G(P) is p-nilpotent, and when p = 2 either [Omega(2) (P boolean AND
70005    O-p(G)), P] less than or equal to Omega(1)(P boolean AND O-p(G)) or P
70006    is quaternion-free, where p is a prime dividing the order of G and P is
70007    a Sylow p-subgroup of G. By using this result, we may get a series of
70008    corollaries for p-nilpotence, which contain some known results. Some
70009    other applications of this result are also given. (C) 2003 Elsevier
70010    Inc. All rights reserved.
70011 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
70012    Chinese Univ Hong Kong, Fac Sci, Shatin, Hong Kong, Peoples R China.
70013 RP Guo, XY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
70014 CR BALLESTERBOLINCHES A, 2000, J ALGEBRA, V228, P491
70015    BROWN K, 1971, ARCH MATH BASEL, V22, P146
70016    BUCKLEY J, 1970, MATH Z, V116, P15
70017    DORNHOFF L, 1967, MATH Z, V100, P226
70018    FEIT W, 1963, PAC J MATH, V13, P775
70019    GORENSTEIN D, 1968, FINITE GROUPS
70020    GUO XY, 2002, J PURE APPL ALGEBRA, V169, P43
70021    HUPPERT B, 1967, ENDLICHE GRUPPEN, V1
70022    KURZWEIL H, 1977, ENDLICHE GRUPPEN
70023    ROBINSON DJS, 1993, COURSE THEORY GROUPS
70024    WIELANDT H, 1954, MATH Z, V60, P407
70025 NR 11
70026 TC 0
70027 SN 0021-8693
70028 J9 J ALGEBRA
70029 JI J. Algebra
70030 PD DEC 15
70031 PY 2003
70032 VL 270
70033 IS 2
70034 BP 459
70035 EP 470
70036 PG 12
70037 SC Mathematics
70038 GA 749WE
70039 UT ISI:000186951900004
70040 ER
70041 
70042 PT J
70043 AU Liu, BX
70044    Xu, DJ
70045 TI Ris(2,2 '-diamino-4,4 '-bi-1,3-thiazole-kappa N-2,N ')(phthalato-kappa
70046    O-2,O ')nickel(II) 3.5-hydrate
70047 SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE
70048 DT Article
70049 AB The crystal stucture of the title compound,
70050    [Ni(C8H4O4)(C6H6N4S2)(2)].3.5H(2)O, consists of a nickel(II) complex
70051    and water of crystallization. The complex assumes an octahedral
70052    geometry formed by one phthalate dianion and two diaminobithiazole
70053    molecules.
70054 C1 Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China.
70055    Shanghai Univ, Dept Chem, Shanghai 200041, Peoples R China.
70056 RP Xu, DJ, Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China.
70057 CR *RIG CORP, 1998, PROCESS AUTO
70058    *RIG MSC, 2002, CRYSTALSTRUCTURE VER
70059    ALTOMARE A, 1993, J APPL CRYSTALLOGR, V26, P343
70060    ERLENMEYER H, 1948, HELV CHIM ACTA, V31, P206
70061    FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
70062    FARRUGIA LJ, 1999, J APPL CRYSTALLOGR, V32, P837
70063    FISHER LM, 1985, BIOCHEMISTRY-US, V24, P3199
70064    HIGASHI T, 1995, ABSCOR
70065    LIU JG, 2003, J COORD CHEM, V56, P71
70066    SHELDRICK GM, 1997, SHELXL97
70067    WARING MJ, 1981, ANNU REV BIOCHEM, V50, P159
70068 NR 11
70069 TC 1
70070 SN 1600-5368
70071 J9 ACTA CRYSTALLOGR E-STRUCT REP
70072 JI Acta Crystallogr. Sect. E.-Struct Rep. Online
70073 PD DEC
70074 PY 2003
70075 VL 59
70076 PN Part 12
70077 BP M1096
70078 EP M1098
70079 PG 3
70080 SC Crystallography
70081 GA 748XL
70082 UT ISI:000186886200009
70083 ER
70084 
70085 PT J
70086 AU Wu, LG
70087    Jiang, LB
70088    Zhou, ZA
70089    Fan, JH
70090    Zhang, QQ
70091    Zhu, HH
70092    Han, Q
70093    Xu, ZK
70094 TI Expression of foot-and-mouth disease virus epitopes in tobacco by a
70095    tobacco mosaic virus-based vector
70096 SO VACCINE
70097 DT Article
70098 DE recombinant TMV; FMDV epitopes; tobacco
70099 ID PROTECTIVE IMMUNITY; NUCLEOTIDE-SEQUENCE; SYSTEMIC PRODUCTION;
70100    TRANSGENIC PLANTS; SYNTHETIC PEPTIDE; FOREIGN PEPTIDES; PROTEIN;
70101    VACCINE; SURFACE; FMDV
70102 AB We expressed two immunogenic dominant epitopes of foot-and-mouth
70103    disease virus (FMDV) serotype O in tobacco plant using a vector based
70104    on a recombinant tobacco mosaic virus (TMV). The recombinant viruses
70105    TMVF11 and TMVF14 contained peptides of 11 and 14 amino acid residues,
70106    respectively, from FMDV VP 1 fused to the open reading frame of TMV
70107    coat protein (CP) gene between amino acid residues 154 and 155. TMVF11
70108    and TMVF14 systemically infected tobacco plant and produced large
70109    quantities of stable progeny viral particles assembled with the
70110    modified CP subunits. Guinea pigs, mice and swine were used to test the
70111    protective effects of the recombinant viruses against FMDV infection.
70112    Most guinea pigs were protected against FMDV challenge after parenteral
70113    injection with TMVF11, TMVF14, or the mixture TMVF11/TMVF14, but not
70114    wtTMV. The TMVF11/TMVF14 mixture protected all animals when challenged
70115    with 150 guinea pig 50% infection dosage (GPID(50)) FMDV. Oral
70116    administration of the TMVF11/TMVF14 mixture (3 mg total) protected 3/8
70117    guinea pigs against the same FMDV challenge. Most of the suckling mice
70118    parenterally injected with antiserum from guinea pigs immunized with
70119    the TMVF11/TMVF14 mixture, but not with wtTMV, were also protected
70120    against FMDV challenge with 10 suckling mouse 50% lethal dosage
70121    (SMLD50), indicating that antibodies produced in guinea pigs immunized
70122    with the TMVF11/TMVF14 mixture specifically neutralized FMDV. Western
70123    blot analysis indicated that antiserum from those guinea pigs reacted
70124    with the FMDV VP1 protein. The protective effect of TMVF11 was also
70125    demonstrated in swine, where preliminary tests showed that nine pigs
70126    immunized with TMVF11 in three experiments were protected against FMDV
70127    challenge with 20 minimal infecting dose (MID). (C) 2003 Elsevier Ltd.
70128    All rights reserved.
70129 C1 Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Plant Physiol & Genet, Shanghai 200032, Peoples R China.
70130    Shanghai Acad Agr Sci, Inst Vet Sci, Shanghai, Peoples R China.
70131    Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China.
70132    China Anim Husb Co, Res Ctr, Beijing, Peoples R China.
70133 RP Xu, ZK, Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Plant Physiol &
70134    Genet, 300 Fenglin Rd, Shanghai 200032, Peoples R China.
70135 CR BENDAHMANE M, 1999, J MOL BIOL, V290, P9
70136    BERINSTEIN A, 1991, VACCINE, V9, P883
70137    BERINSTEIN A, 2000, VACCINE, V18, P2231
70138    BROEKHUIJSEN MP, 1986, GENE, V49, P189
70139    BROWN F, 1992, VACCINE, V10, P1022
70140    CARRILLO C, 1998, J VIROL, V72, P1688
70141    CASPER SJ, 1996, GENE, V173, P69
70142    CHEN J, 1996, ARCH VIROL, V141, P885
70143    CLARKE BE, 1987, NATURE, V330, P381
70144    DALSGAARD K, 1997, NAT BIOTECHNOL, V15, P248
70145    DIMARCHI R, 1986, SCIENCE, V232, P639
70146    FITCHEN J, 1995, VACCINE, V13, P1051
70147    GEYSEN HM, 1984, P NATL ACAD SCI USA, V81, P3998
70148    GIERER A, 1956, NATURE, V177, P702
70149    GOELET P, 1982, P NATL ACAD SCI-BIOL, V79, P5818
70150    HAMAMOTO H, 1993, BIO-TECHNOL, V11, P930
70151    KLEID DG, 1981, SCIENCE, V214, P1125
70152    KOO M, 1999, P NATL ACAD SCI USA, V96, P7774
70153    MAYR GA, 2001, VACCINE, V19, P2152
70154    MORGAN DO, 1989, AM J VET RES, V15, P473
70155    NOORDAM D, 1973, IDENTIFICATION PLANT, P60
70156    PARRY N, 1985, VACCINES, V85, P211
70157    PORTA C, 1994, VIROLOGY, V202, P949
70158    SANTOS MJD, 2002, VACCINE, V20, P1141
70159    STROHMAIER K, 1982, J GEN VIROL, V59, P295
70160    SUGIYAMA Y, 1995, FEBS LETT, V359, P247
70161    TAM JP, 1988, P NATL ACAD SCI USA, V85, P5409
70162    TURPEN TH, 1995, BIO-TECHNOL, V13, P53
70163    USHA R, 1993, VIROLOGY, V197, P366
70164    WIGDOROVITZ A, 1999, VIROLOGY, V264, P85
70165    WONG HT, 2000, VIROLOGY, V278, P27
70166    XU ZK, 1989, VIROLOGY, V170, P511
70167    ZAMORANO P, 1995, VIROLOGY, V212, P614
70168    ZHANG Q, 2002, ACTA VIROL, V46, P1
70169 NR 34
70170 TC 5
70171 SN 0264-410X
70172 J9 VACCINE
70173 JI Vaccine
70174 PD OCT 1
70175 PY 2003
70176 VL 21
70177 IS 27-30
70178 BP 4390
70179 EP 4398
70180 PG 9
70181 SC Medicine, Research & Experimental; Immunology; Veterinary Sciences
70182 GA 747XF
70183 UT ISI:000186830800038
70184 ER
70185 
70186 PT J
70187 AU Zheng, CL
70188    Zhang, JF
70189    Chen, LQ
70190 TI Folded localized excitations in a generalized (2+l)-dimensional
70191    perturbed nonlinear Schrodinger system
70192 SO COMMUNICATIONS IN THEORETICAL PHYSICS
70193 DT Article
70194 DE perturbed nonlinear Schrodinger equation; variable separation approach;
70195    foldon
70196 ID COHERENT SOLITON-STRUCTURES; BI-HAMILTONIAN STRUCTURES; QUARK-LOOP
70197    SOLITON; PAINLEVE INTEGRABILITY; MULTISCALE REDUCTION; RECURSION
70198    OPERATORS; VAKHNENKO EQUATION; AKNS SYSTEM; MULTIDIMENSIONS; FIBERS
70199 AB Starting from a special Backlund transform and a variable separation
70200    approach, a quite general variable separation solution of the
70201    generalized (2 + 1)-dimensional perturbed nonlinear Schrodinger system
70202    is obtained. In addition to the single-valued localized coherent
70203    soliton excitations like dromions, breathers, instantons, peakons, and
70204    previously revealed chaotic localized solution, a new type of
70205    multi-valued (folded) localized excitation is derived by introducing
70206    some appropriate lower-dimensional multiple valued functions.
70207 C1 Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
70208    Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China.
70209    Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
70210 RP Zheng, CL, Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000,
70211    Peoples R China.
70212 CR BOITI M, 1993, INVERSE PROBL, V9, P1
70213    CALOGERO F, 2000, J MATH PHYS, V41, P6399
70214    CALOGERO F, 2001, J MATH PHYS, V42, P2635
70215    FOKAS AS, 1988, COMMUN MATH PHYS, V116, P449
70216    FOKAS AS, 1994, INVERSE PROBL L, V19, P10
70217    HASEGAWA A, 1973, APPL PHYS LETT, V23, P142
70218    HASEGAWA A, 1989, OPTICAL SOLITION FIB
70219    HIROTA R, 1971, PHYS REV LETT, V27, P1192
70220    HUANG GX, 2001, PHYS REV E 2, V64
70221    KAKUHATA H, 1999, J PHYS SOC JPN, V68, P757
70222    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
70223    LOU SY, 2000, PHYS LETT A, V277, P94
70224    LOU SY, 2001, EUR PHYS J B, V22, P473
70225    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
70226    LOU SY, 2001, PHYS SCR, V64, P7
70227    LOU SY, 2002, J MATH PHYS, V43, P4078
70228    MACCARI A, 1999, J MATH PHYS, V40, P3971
70229    MACCARI A, 2001, J MATH PHYS, V42, P2689
70230    MATSUTANI S, 1995, MOD PHYS LETT A, V10, P717
70231    MATSUTANI S, 2000, J GEOM PHYS, V43, P146
70232    MOLLENAUER LF, 1980, PHYS REV LETT, V45, P1095
70233    MORRISON AJ, 1999, NONLINEARITY, V12, P1427
70234    RADHA R, 1997, CHAOS SOLITON FRACT, V8, P17
70235    SANTINI PM, 1988, COMMUN MATH PHYS, V115, P375
70236    SCHLEIF M, 1998, EUR PHYS J A, V1, P171
70237    SCHLEIF M, 1998, INT J MOD PHYS E, V7, P121
70238    SCHULMAN EI, 1984, THEOR MATH PHYS, V56, P720
70239    SREELATHA KS, 1998, CHAOS SOLITON FRACT, V9, P1865
70240    TANG XY, 2002, PHYS REV E 2, V66
70241    TANG XY, 2003, COMMUN THEOR PHYS, V40, P62
70242    VAKHNENKO VA, 1992, J PHYS A-MATH GEN, V25, P4181
70243    VAKHNENKO VO, 1998, NONLINEARITY, V11, P1457
70244    ZAKHAROV VE, 1972, SOV PHYS JETP, V34, P62
70245    ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P2676
70246    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
70247    ZHENG CL, 2002, COMMUN THEOR PHYS, V38, P653
70248    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
70249    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P9
70250 NR 38
70251 TC 7
70252 SN 0253-6102
70253 J9 COMMUN THEOR PHYS
70254 JI Commun. Theor. Phys.
70255 PD OCT 15
70256 PY 2003
70257 VL 40
70258 IS 4
70259 BP 385
70260 EP 389
70261 PG 5
70262 SC Physics, Multidisciplinary
70263 GA 746MF
70264 UT ISI:000186749600001
70265 ER
70266 
70267 PT J
70268 AU Chen, GH
70269    Liu, LY
70270    Jia, HZ
70271    Yu, JM
70272    Xu, L
70273    Wang, WC
70274 TI Simultaneous pressure and temperature measurement using Hi-Bi fiber
70275    Bragg gratings
70276 SO OPTICS COMMUNICATIONS
70277 DT Article
70278 DE Hi-Bi fiber; fiber Bragg grating; Bragg wavelength; sensors; pressure
70279    measurement; temperature measurement
70280 ID SENSORS; DISCRIMINATION; BIREFRINGENCE; STRAIN; LASERS
70281 AB The fiber Bragg grating has been written in a novel high birefringence
70282    (Hi-Bi) fiber by phase-mask method. The temperature and gas pressure
70283    characteristics of the fiber Bragg grating were analyzed and
70284    demonstrated quantitatively. Two Bragg wavelengths corresponding to the
70285    fast-axis mode and slow-axis mode shift linearly with temperature
70286    change and gas pressure change. Experimental results showed that this
70287    Hi-Bi fiber Bragg grating could be used to measure temperature and gas
70288    pressure simultaneously with a deviation of less than I degreesC and
70289    0.5 MPa from the set values respectively. (C) 2003 Elsevier B.V. All
70290    rights reserved.
70291 C1 Fudan Univ, Dept Opt Sci & Engn, State Key Lab Adv Photon Mat & Devices, Shanghai 200433, Peoples R China.
70292    Shanghai Univ Sci & Technol, Coll Opt & Elect Engn, Shanghai 200093, Peoples R China.
70293    China Elect Technol Grp Corp, Res Inst 23, Shanghai 200437, Peoples R China.
70294 RP Wang, WC, Fudan Univ, Dept Opt Sci & Engn, State Key Lab Adv Photon Mat
70295    & Devices, 220 Handan Rd, Shanghai 200433, Peoples R China.
70296 CR BOCK WJ, 1998, APPL OPTICS, V37, P3897
70297    CHIANG KS, 1990, ELECTRON LETT, V26, P1952
70298    CHIANG KS, 1997, OPT ENG, V36, P999
70299    DEPARIS O, 2001, IEEE PHOTONIC TECH L, V13, P284
70300    FERREIRA LA, 2000, OPT ENG, V39, P2226
70301    KEGER S, 2002, OFS 2002
70302    KERSEY AD, 1997, J LIGHTWAVE TECHNOL, V15, P1442
70303    LEE S, 1999, IEEE PHOTONIC TECH L, V11, P1277
70304    LIU YQ, 2000, ELECTRON LETT, V36, P564
70305    NIAY P, 1995, IEEE PHOTONIC TECH L, V7, P391
70306    NODA J, 1986, J LIGHTWAVE TECHNOL, V4, P1071
70307    PATRICK HJ, 1996, IEEE PHOTONIC TECH L, V8, P1223
70308    PUREUR D, 1995, J LIGHTWAVE TECHNOL, V13, P350
70309    SUDO M, 1997, P 12 INT C OPT FIB S, P170
70310    XU MG, 1993, ELECTRON LETT, V29, P398
70311    XU MG, 1994, ELECTRON LETT, V30, P1085
70312 NR 16
70313 TC 1
70314 SN 0030-4018
70315 J9 OPT COMMUN
70316 JI Opt. Commun.
70317 PD DEC 1
70318 PY 2003
70319 VL 228
70320 IS 1-3
70321 BP 99
70322 EP 105
70323 PG 7
70324 SC Optics
70325 GA 743RA
70326 UT ISI:000186586300013
70327 ER
70328 
70329 PT J
70330 AU Li, GH
70331 TI Chaos and synchronization of Colpitts oscillators
70332 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
70333 DT Article
70334 DE Colpitts oscillator; chaos; synchronization; state observer
70335 AB In this work we numerically investigate the nonlinear dynamics of the
70336    Colpitts oscillator. Bifurcation diagrams of consecutive plots of the
70337    values of electrical current minima are presented, according to the
70338    circuit parameters. By following observer-based synchronization, two
70339    identical Colpitts oscillators with scalar transmitted signals are
70340    developed. Computer simulation results are given. (C) 2003 Wiley
70341    Periodicals, Inc.
70342 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
70343 RP Li, GH, Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R
70344    China.
70345 CR HAYES S, 1993, PHYS REV LETT, V70, P3031
70346    KENNEDY MP, 1994, IEEE T CIRCUITS-I, V41, P771
70347    KENNEDY MP, 1995, IEEE T CIRCUITS-I, V42, P376
70348    LIU JC, 1999, MICROW OPT TECHN LET, V22, P323
70349    MAGGIO GM, 1999, IEEE T CIRCUITS-I, V46, P1118
70350    MORGUL O, 1999, PHYS REV LETT, V82, P77
70351    NEWCOMB RW, 1983, IEEE T CIRCUITS SYST, V30, P54
70352    PANAS A, 2000, P NOLTA 2000 DRESD G, P445
70353    PARLITZ U, 1996, PHYS REV E A, V53, P4351
70354    PECORA LM, 1991, PHYS REV A, V44, P2374
70355    WEGENER C, 1995, P NDES 95, P255
70356 NR 11
70357 TC 1
70358 SN 0895-2477
70359 J9 MICROWAVE OPT TECHNOL LETT
70360 JI Microw. Opt. Technol. Lett.
70361 PD DEC 20
70362 PY 2003
70363 VL 39
70364 IS 6
70365 BP 446
70366 EP 449
70367 PG 4
70368 SC Engineering, Electrical & Electronic; Optics
70369 GA 743RW
70370 UT ISI:000186588200005
70371 ER
70372 
70373 PT J
70374 AU Niu, JW
70375    Zhong, SS
70376 TI Cylindrical conformal bow-tie microstrip antennas with small curvature
70377    radius
70378 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
70379 DT Article
70380 DE conformal antenna; bow-tie inicrostrip antenna; radiation pattern;
70381    return loss
70382 ID ARRAYS
70383 AB In this paper, bow-tie microstrip antennas (BMAs) conformal to
70384    cylinders with small radii are studied. One-element BMA and two-element
70385    BMA arrays, conformal to cylinders with small radii and finite length,
70386    are simulated and measured. Theoretical results are compared with
70387    experimental ones, showing good agreement. It is observed that not only
70388    radiation patterns are changed, but also the resonant frequency is
70389    lowered and the impedance bandwidth is reduced significantly when the
70390    cylinder's radius is decreased. (C) 2003 Wiley Periodicals, Inc.
70391 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
70392 RP Niu, JW, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
70393    Peoples R China.
70394 CR ASHKENAZY J, 1988, IEE P H, V135, P132
70395    BURUM N, 2002, IEEE APS INT S, P96
70396    LEE CS, 2003, MICROW OPT TECHN LET, V36, P386
70397    LOI KW, 1998, IEE P-MICROW ANTEN P, V145, P137
70398    UYSAL S, 1999, IEEE T MICROW THEO 1, V47, P738
70399    WONG KL, 1999, DESIGN NONPLANAR MIC
70400    ZHANG XP, 2001, CHINESE J RADIO SCI, V16, P419
70401 NR 7
70402 TC 0
70403 SN 0895-2477
70404 J9 MICROWAVE OPT TECHNOL LETT
70405 JI Microw. Opt. Technol. Lett.
70406 PD DEC 20
70407 PY 2003
70408 VL 39
70409 IS 6
70410 BP 511
70411 EP 514
70412 PG 4
70413 SC Engineering, Electrical & Electronic; Optics
70414 GA 743RW
70415 UT ISI:000186588200025
70416 ER
70417 
70418 PT S
70419 AU Jia, L
70420    Yao, J
70421    Pei, RQ
70422 TI Using loose and tight bounds to mine frequent itemsets
70423 SO KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1,
70424    PROCEEDINGS
70425 SE LECTURE NOTES IN ARTIFICIAL INTELLIGENCE
70426 DT Article
70427 AB Mining frequent itemsets forms a core operation in many data mining
70428    problems. The operation, however, is data intensive and produces a
70429    large output. Furthermore, we also have to scan the database many
70430    times. In this paper, we propose to use loose and tight bounds to mine
70431    frequent itemsets. We use loose bounds to remove the candidate itemsets
70432    whose support cannot satisfy the preset threshold. Then, we find
70433    whether we can determine the frequency of the remainder candidate
70434    itemsets with the tight bounds. According to the itemsets that cannot
70435    be treated, we scan the database for them. Using this new method, we
70436    can decrease not only the candidate frequent itemsets have to be
70437    tested, but also the database scan times.
70438 C1 Shanghai Univ, Sch Mechatron & Automat, Shanghai 200072, Peoples R China.
70439 RP Jia, L, Shanghai Univ, Sch Mechatron & Automat, Shanghai 200072,
70440    Peoples R China.
70441 CR AGRAWAL R, 1993, SIGMOD 93, P207
70442    AGRAWAL R, 1994, VLDB, P487
70443    BOULICAUT JF, P 4 PAC AS C KNOWL D, P62
70444    CALDER T, 2002, P 6 EUR C PRINC DAT
70445    CALDERS T, 2002, EDBT WORKSH DTDM DAT
70446    HAN J, SIGMOD 00, P1
70447    HAN J, 1995, VLDB, P420
70448    PASQUIER N, 1999, INFORM SYST, V24, P25
70449    PEI J, ICDE 01, P323
70450    SRIKANT R, 1997, P 3 INT C KNOWL DISC, P67
70451 NR 10
70452 TC 0
70453 SN 0302-9743
70454 J9 LECT NOTE ARTIF INTELL
70455 PY 2003
70456 VL 2773
70457 BP 462
70458 EP 468
70459 PG 7
70460 GA BX81T
70461 UT ISI:000186518000064
70462 ER
70463 
70464 PT S
70465 AU Jia, L
70466    Yao, J
70467    Pei, RQ
70468 TI Mining association rules with frequent closed itemsets lattice
70469 SO KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1,
70470    PROCEEDINGS
70471 SE LECTURE NOTES IN ARTIFICIAL INTELLIGENCE
70472 DT Article
70473 AB One of the most important tasks in the field of data mining is the
70474    problem of finding association rules. In the past few years, frequent
70475    closed itemsets mining has been introduced. It is a condensed
70476    representation of the data and generates a small set of rules without
70477    information loss. In this paper, based on the theory of Galois
70478    Connection, we introduce a new framework called frequent closed
70479    itemsets lattice. Compared with the traditional itemsets lattice, it is
70480    simple and only contains the itemsets that can be used to generate
70481    association rules. Using this framework, we get the support of frequent
70482    itemsets and mine association rules directly. We also extend it to
70483    fuzzy frequent closed itemsets lattice, which is more efficient at the
70484    expense of precision.
70485 C1 Shanghai Univ, Sch Mechatron & Automat, Shanghai 200072, Peoples R China.
70486 RP Jia, L, Shanghai Univ, Sch Mechatron & Automat, Shanghai 200072,
70487    Peoples R China.
70488 CR AGRAWAL R, SIGMOD 93, P207
70489    AGRAWAL R, VLDB 94, P207
70490    CRISTOFOR D, 2000, J UNIVERS COMPUT SCI, P60
70491    DAVEY BA, 1994, INTRO LATTICES ORDER
70492    PASQUIER N, 1999, 7 INT C DAT THEOR
70493    PASQUIER N, 1999, INFORM SYST, V24, P25
70494    PEI J, 2000, SIGMOD INT WORKSH DA
70495    ZAKI MJ, 2000, P 6 ACM SIGKDD INT C, P34
70496 NR 8
70497 TC 0
70498 SN 0302-9743
70499 J9 LECT NOTE ARTIF INTELL
70500 PY 2003
70501 VL 2773
70502 BP 469
70503 EP 475
70504 PG 7
70505 GA BX81T
70506 UT ISI:000186518000065
70507 ER
70508 
70509 PT J
70510 AU Zhou, XY
70511    Li, PY
70512    Qian, SQ
70513 TI Evaluation of fracture toughness of Al-Cu-Fe-B quasicrystal
70514 SO JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION
70515 DT Article
70516 DE polycrystalline quasicrystal; fracture toughness; cracks
70517 ID INDENTATION
70518 AB Vickers indentation test, a simple method for the toughness
70519    determination, is used to test the fracture toughness of
70520    Al59Cu25.5Fe12.5B3 polycrystalline quasicrystal. According to the
70521    profiles of the indentation, the radial crack size and related
70522    equation, the microhardness Hv, Young's modulus E, cracking threshold,
70523    and future toughness have been evaluated. The results show that the
70524    Young's modulus of Al-Cu-Fe-B polycrystalline quasicrystal is evaluated
70525    as 134 GPa, and the fracture toughness is about 1.36 MPa . m - 1/2. For
70526    the Vickers indenter, the cracking threshold is in the range of 250 MN
70527    - 500 MN. Moreover, the surface morphology of the indentations and the
70528    cracks are observed by means of Atomic Force Microscopy (AFM) and
70529    Scanning Electron Microscopy (SEM). The relationship between the
70530    microstructure of quasicrystal and crack initiation and propagation is
70531    discussed in detail.
70532 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200336, Peoples R China.
70533 RP Zhou, XY, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200336, Peoples R
70534    China.
70535 CR CHIANG SS, 1982, J APPL PHYS, V53, P298
70536    JANOT C, 1998, QUASICRISTAUX MATIER
70537    KANG SS, 1992, PHILOS MAG A, V66, P151
70538    PONTON CB, 1989, MATER SCI TECH SER, V5, P865
70539    SORDELET DJ, 1998, MAT SCI ENG A-STRUCT, V255, P154
70540    STEBUT JV, 1996, NEW HORIZONS QUASIER
70541 NR 6
70542 TC 0
70543 SN 1000-2413
70544 J9 J WUHAN UNIV TECHNOL-MAT SCI
70545 JI J. Wuhan Univ. Technol.-Mat. Sci. Edit.
70546 PD SEP
70547 PY 2003
70548 VL 18
70549 IS 3
70550 BP 46
70551 EP 49
70552 PG 4
70553 SC Materials Science, Multidisciplinary
70554 GA 745MP
70555 UT ISI:000186692700013
70556 ER
70557 
70558 PT J
70559 AU Wang, LJ
70560    Xia, YB
70561    Shen, HJ
70562    Zhang, ML
70563    Yang, Y
70564    Wang, L
70565 TI Infrared optical properties of diamond films and electrical properties
70566    of CVD diamond detectors
70567 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
70568 DT Article
70569 ID SPECTROSCOPIC ELLIPSOMETRY; THIN-FILMS
70570 AB In this paper, the infrared optical properties of diamond films grown
70571    on silicon substrates by means of the microwave plasma chemical vapour
70572    deposition (MPCVD) method were first studied by infrared spectroscopic
70573    ellipsometry in the photo energy range of 0.1-0.4 eV. Using the effects
70574    of annealing treatment on the extinction coefficient k and refractive
70575    index n of diamond films, the infrared optical quality of the diamond
70576    film can be significantly improved by thermal annealing treatment in
70577    N-2 atmosphere. After annealing the value of k was about
70578    10(-12)-10(-15). However, for the non-annealed diamond film, the value
70579    of k varied in a large range, about 10(-3)-10(-14). After annealing the
70580    refractive index n of the diamond film,7, increased and was close to
70581    that of a single crystal, Type IIa natural diamond. The graphite on the
70582    diamond surface can be removed to some extent after surface oxidizing
70583    treatment of the diamond film in a solution of H2O2 and H2SO4, which
70584    causes the obvious decrease of the leakage current of the CVD diamond
70585    detector. Based on these diamond films, diamond x-ray detectors with a
70586    response time of about 3 ns were fabricated. From the temperature
70587    behaviour and the time response of the CVD diamond detector to x-ray
70588    irradiation, we find that the various defects or impurities that exist
70589    in the film may be responsible for the long fall time.
70590 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
70591 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
70592    China.
70593 CR BRUGGEMAN DAG, 1935, ANN PHYS-BERLIN, V24, P636
70594    DREVILLON B, 1998, THIN SOLID FILMS, V313, P625
70595    EDGAR JH, 1992, J MATER RES, V7, P235
70596    HUANG ZM, 2002, J PHYS D APPL PHYS, V35, P246
70597    JIANG X, 1993, APPL PHYS LETT, V62, P3438
70598    MCMARR PJ, 1986, J APPL PHYS, V59, P694
70599    PALIK E, 1991, HDB OPTICAL CONSTANT, P171
70600    STONER BR, 1992, APPL PHYS LETT, V60, P698
70601 NR 8
70602 TC 7
70603 SN 0022-3727
70604 J9 J PHYS-D-APPL PHYS
70605 JI J. Phys. D-Appl. Phys.
70606 PD OCT 21
70607 PY 2003
70608 VL 36
70609 IS 20
70610 BP 2548
70611 EP 2552
70612 PG 5
70613 SC Physics, Applied
70614 GA 744CX
70615 UT ISI:000186611300021
70616 ER
70617 
70618 PT J
70619 AU Xiao, XS
70620    Fang, SS
70621    Xia, L
70622    Li, WH
70623    Hua, Q
70624    Dong, Y
70625 TI Effect of strain rates on the fracture morphologies of Zr-based bulk
70626    metallic glasses
70627 SO JOURNAL OF NON-CRYSTALLINE SOLIDS
70628 DT Letter
70629 ID MOLD CASTING METHOD; AMORPHOUS-ALLOYS; TI
70630 AB The effect of strain rates from 1 x 10(-4) s(-1) to 2x 10(3) s(-1) on
70631    tensile fracture morphologies of Zr52.5Al10Ni10Cu15Be12.5,
70632    Zr65Al10Ni10Cu15, and Zr52.5Al10Ni14.6Cu17.9Ti5 bulk amorphous alloys
70633    was investigated by scanning electron microscopy. The results show that
70634    the tensile fracture morphologies of three compositions of bulk
70635    amorphous alloys are dependent on strain rate. At low strain rates, the
70636    tensile fracture surface morphology of Zr-based bulk metallic glasses
70637    presents cleavage veins. However, the morphology will become
70638    microvoid-coalescence dimples when the strain rate is high enough. (C)
70639    2003 Elsevier B.V. All rights reserved.
70640 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
70641 RP Xiao, XS, Shanghai Univ, Inst Mat, Yanchang Rd 149, Shanghai 200072,
70642    Peoples R China.
70643 CR BRUCK HA, 1996, J MATER RES, V11, P503
70644    FAN C, 1999, MATER T JIM, V40, P1376
70645    HE G, 2001, J MATER SCI LETT, V20, P633
70646    HE G, 2001, MATER T JIM, V42, P356
70647    INOUE A, 1990, MATER T JIM, V31, P425
70648    INOUE A, 1991, MATER T JIM, V32, P609
70649    INOUE A, 1996, MATER T JIM, V37, P99
70650    INOUE A, 2001, ACTA MATER, V49, P2645
70651    INOUE A, 2001, MATER TRANS, V42, P1800
70652    PEKER A, 1993, APPL PHYS LETT, V63, P2342
70653 NR 10
70654 TC 5
70655 SN 0022-3093
70656 J9 J NON-CRYST SOLIDS
70657 JI J. Non-Cryst. Solids
70658 PD NOV 15
70659 PY 2003
70660 VL 330
70661 IS 1-3
70662 BP 242
70663 EP 247
70664 PG 6
70665 SC Materials Science, Ceramics; Materials Science, Multidisciplinary
70666 GA 743LE
70667 UT ISI:000186572600026
70668 ER
70669 
70670 PT J
70671 AU Jia, QL
70672    Zhou, SF
70673    Yin, FQ
70674 TI Kolmogorov entropy of global attractor for dissipative lattice
70675    dynamical systems
70676 SO JOURNAL OF MATHEMATICAL PHYSICS
70677 DT Article
70678 AB We consider Kolmogorov's epsilon-entropy of the global attractor for
70679    first and second order dissipative lattice dynamical systems. By using
70680    the element decomposition and the covering property of a polyhedron by
70681    balls of radii epsilon in the finite dimensional space, we obtain an
70682    estimate of the upper bound for Kolmogorov's epsilon-entropy of the
70683    global attractor. (C) 2003 American Institute of Physics.
70684 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
70685 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
70686 CR BABIN AV, 1992, STUD MATH APPL, V25
70687    BATES PW, 2001, INT J BIFURCAT CHAOS, V11, P143
70688    BELL J, 1984, Q APPL MATH, V42, P1
70689    CAHN JW, 1960, ACTA METALL, V8, P554
70690    CHATE H, 1997, PHYSICA D, V103, P1
70691    CHEPYZHOV VV, 1998, MAT SBORNIK, V189, P81
70692    CHUA LO, 1993, IEEE T CIRCUITS-I, V40, P147
70693    ERNEUX T, 1993, PHYSICA D, V67, P237
70694    FABINY L, 1993, PHYS REV A B, V47, P4287
70695    KOLMOGOROV AN, 1993, SELECTED WORKS AN KO, V3
70696    LORENTZ G, 1996, GRUNDLEHRENDER MATH, V304
70697    PECORA LM, 1990, PHYS REV LETT, V64, P821
70698    ZHOU SF, 2002, J DIFFER EQUATIONS, V179, P605
70699 NR 13
70700 TC 1
70701 SN 0022-2488
70702 J9 J MATH PHYS-NY
70703 JI J. Math. Phys.
70704 PD DEC
70705 PY 2003
70706 VL 44
70707 IS 12
70708 BP 5804
70709 EP 5810
70710 PG 7
70711 SC Physics, Mathematical
70712 GA 744ZG
70713 UT ISI:000186662300019
70714 ER
70715 
70716 PT J
70717 AU Zhang, JF
70718    Zheng, CL
70719 TI New multi-soliton solutions of the (2+1)-dimensional breaking soliton
70720    equations
70721 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
70722 DT Article
70723 ID NONLINEAR EVOLUTION-EQUATIONS; COHERENT STRUCTURES; SYSTEM
70724 AB A simple and direct method is used to solve the (2+1)-dimensional
70725    breaking soliton equations: q(t) = iq(xy) - 2iq integral (qr)(y) dx,
70726    r(t) = -ir(xy) + 2ir integral (qr)(y)dx. This technique yields a
70727    simplified form of the (2+1)-dimensional breaking soliton equations by
70728    use of a special Backlund transformation and a variable separation
70729    solution of this model is derived. Some special types of multi-soliton
70730    structure are constructed by selecting the arbitrary functions and
70731    arbitrary constants appropriately.
70732 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
70733    Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
70734    Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
70735 RP Zhang, JF, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
70736    200072, Peoples R China.
70737 CR BOGOYAVLENSKII OI, 1989, IZV AKAD NAUK SSSR M, V53, P243
70738    BOGOYAVLENSKII OI, 1990, USP MAT NAUK, V45, P17
70739    BOTIT M, 1988, PHYS LETT A, V132, P116
70740    BOTIT M, 1995, CHAOS SOLITON FRACT, V5, P2377
70741    CALOGERO F, 1976, NUOVO CIMENTO      B, V32, P201
70742    FOKAS AS, 1990, PHYSICA D, V44, P99
70743    HIETARINTA J, 1990, PHYS LETT A, V145, P237
70744    LOU SY, 1996, COMMUN THEOR PHYS, V26, P487
70745    LOU SY, 2000, PHYS LETT A, V277, P94
70746    RADHA R, 1994, J MATH PHYS, V35, P4746
70747    RUAN HY, 2000, PHYS REV E B, V62, P5738
70748    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
70749    ZHENG CL, 2003, CHINESE PHYS, V12, P11
70750    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P9
70751 NR 14
70752 TC 0
70753 SN 0217-9792
70754 J9 INT J MOD PHYS B
70755 JI Int. J. Mod. Phys. B
70756 PD SEP 30
70757 PY 2003
70758 VL 17
70759 IS 22-24
70760 PN Part 2
70761 BP 4376
70762 EP 4381
70763 PG 6
70764 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
70765 GA 743DM
70766 UT ISI:000186557200037
70767 ER
70768 
70769 PT J
70770 AU Fan, S
70771    Yan, F
70772    Zhang, HZ
70773    Zhao, ZX
70774 TI A new semiempirical expression of excitation function for (n, p)
70775    reaction
70776 SO HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION
70777 DT Article
70778 DE evaporation model; exciton model; excitation function for (n,p) reaction
70779 ID REACTION CROSS-SECTIONS; NEUTRON-INDUCED REACTIONS; STATISTICAL-MODEL;
70780    N,P; NUCLEI; ISOTOPES; N,ALPHA; TRENDS; SYSTEMATICS; DEUTERIUM
70781 AB A semiempirical expression for the excitation function for (n, p)
70782    reaction were obtained on the basis of evaporation and exciton models
70783    with the energies range up to 20 MeV. Within the nuclide of 12less than
70784    or equal toAless than or equal to209, the adjusted parameter of the
70785    semiempirical expression was investigated, the parameter is dependent
70786    on the atomic number, mass number of the target nuclide, and the energy
70787    of the incident neutron. The predictions of the excitation function for
70788    (n,p) reaction are good agreement with the experimental data.
70789 C1 Inst Atom Energy, Beijing 102413, Peoples R China.
70790    Shanghai Univ, Appl Radiat Inst, Shanghai 201800, Peoples R China.
70791    Nanhua Univ, Nucl Technol Lab, Hengyang 421000, Peoples R China.
70792    NW Univ Xian, Dept Phys, Xian 710006, Peoples R China.
70793 RP Fan, S, Inst Atom Energy, Beijing 102413, Peoples R China.
70794 CR *NUCL DAT CTR 2 ME, 1980, THEOR ITS APPL NUCL, V329
70795    BADANSKY D, 1962, ANN REV NUCL SCI, V12, P79
70796    BELGAID M, 1998, NUCL INSTRUM METH B, V142, P463
70797    CABRAL S, 1990, NUCL SCI ENG, V106, P308
70798    CHATTERJEE A, 1963, NUCL PHYS, V47, P511
70799    CHATTERJEE A, 1964, NUCL PHYS, V60, P373
70800    DOCZI R, 1998, NUCL SCI ENG, V129, P164
70801    DOSTROVSKY I, 1959, PHYS REV, V116, P683
70802    FAN S, 1996, NUCL SCI ENG, V124, P349
70803    FAN S, 2002, ICRP058L INDC, V27, P19
70804    FU CY, 1980, ORLNTM7402
70805    FUGA D, 1991, NUCL INT METH A, V309, P500
70806    GADIOLI E, 1976, PHYS REV C, V14, P573
70807    GARDNER DG, 1961, NUCL PHYS, V24, P274
70808    GARDNER DG, 1962, NUCL PHYS, V29, P373
70809    GARDNER DG, 1964, NUCL PHYS, V60, P49
70810    GARDNER DG, 1967, NUCL PHYS A, V96, P121
70811    GRIFFIN JJ, 1966, PHYS REV LETT, V17, P478
70812    HAUSER W, 1976, PHYS REV C, V14, P573
70813    HAVLIK E, 1971, ACTA PHYS AUSTRIACA, V34, P209
70814    KASUGAI Y, 1992, JAERIM93046, P277
70815    KHUUKHENKHUU G, 2002, J NUCL SCI TECH S, V2, P782
70816    KONG XZ, 1992, J CHINESE NUCL PHYS, V14, P239
70817    LEVKOSKII VN, 1957, SOV PHYS JETP, V4, P291
70818    LU HL, 1989, INDCCRP16
70819    LU HL, 1994, J CHINESE NUCL PHYS, V16, P263
70820    LU WD, 1971, PHYS REV C, V4, P1173
70821    LU XT, 1940, NUCL PHYS BEIJING, P46
70822    MOLLA NI, 1977, NUCL PHYS A, V283, P269
70823    MOLLA NI, 1977, NUCL PHYS A, V283, P269
70824    PAULSEN A, 1967, Z PHYS, V205, P226
70825    PEARLSTEIN S, 1973, J NUCL ENERGY, V27, P81
70826    PECK R, 1957, PHYS REP, V106, P965
70827    QAIM SM, 1984, NUCL SCI ENG, V88, P143
70828    SARDF SK, 1991, NUCL SCI ENG, V107, P365
70829    SIGG RA, 1976, NUCL SCI ENG, V60, P235
70830    STROHAL P, 1962, NUCL PHYS, V30, P49
70831    STRUWE W, 1974, NUCL PHYS A, V222, P605
70832    TEWES HA, 1960, UCRL6028
70833    VIENNOT M, 1991, NUCL SCI ENG, V108, P289
70834    YOUNG PG, 1977, LA6947
70835    ZHANG J, 1980, J NUCL SCI ENG, V114, P55
70836    ZHAO Z, 1988, NUCL SCI ENG, V99, P367
70837    ZONGYU B, 1994, J CHINESE NUCL PHYS, V15, P341
70838 NR 44
70839 TC 0
70840 SN 0254-3052
70841 J9 HIGH ENERGY PHYS NUCL PHYS-CH
70842 JI High Energy Phys. Nucl. Phys.-Chin. Ed.
70843 PD NOV
70844 PY 2003
70845 VL 27
70846 IS 11
70847 BP 1009
70848 EP 1014
70849 PG 6
70850 SC Physics, Nuclear; Physics, Particles & Fields
70851 GA 744MC
70852 UT ISI:000186635400014
70853 ER
70854 
70855 PT J
70856 AU Zhang, CX
70857    Wu, H
70858    Weng, XC
70859 TI Two novel synthetic antioxidants for deep frying oils
70860 SO FOOD CHEMISTRY
70861 DT Article
70862 DE antioxidant activity; tert-butylated hydroquinone; lauryl
70863    tent-butylated hydroquinone; lauryl tert-butylated quinone; deep frying
70864 ID PRODUCTS
70865 AB Lauryl tent-butylated hydroquinone (LTBHQ) and its oxidized compound,
70866    lauryl tert-butylated quinone (LTBQ) were synthesized from
70867    tert-butylated hydroquinone (TBHQ) and lauryl alcohol. Their
70868    antioxidant activities were investigated. At temperatures higher than
70869    140degreesC, the antioxidant activity of LTBHQ and LTBQ was higher than
70870    TBHQ. In emulsions, these two compounds had stronger antioxidant
70871    activity than TBHQ, butylated hydroxytoluene (BHT) and butylated
70872    hydroxyanisole (BHA). (C) 2003 Elsevier Ltd. All rights reserved.
70873 C1 Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China.
70874 RP Weng, XC, Shanghai Univ, Sch Life Sci, 99 Shangda Rd, Shanghai 200436,
70875    Peoples R China.
70876 CR FRANKEL EN, 1994, J AGR FOOD CHEM, V42, P1054
70877    KIM CM, 1990, J FOOD SCI, V55, P847
70878    LEE HS, 1979, HANGUK SIKPUM KWAHAK, V11, P86
70879    PAQUOT C, 1979, STANDARD METHODS ANA, P52
70880    WARNER CR, 1986, J AGR FOOD CHEM, V34, P1
70881    WENG XC, 1993, J ZHENGZHOU GRAIN CO, V3, P20
70882    YAGI K, 1988, LIPID PEROXIDATION B, P93
70883 NR 7
70884 TC 1
70885 SN 0308-8146
70886 J9 FOOD CHEM
70887 JI Food Chem.
70888 PY 2004
70889 VL 84
70890 IS 2
70891 BP 219
70892 EP 222
70893 PG 4
70894 SC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics
70895 GA 743RK
70896 UT ISI:000186587200009
70897 ER
70898 
70899 PT J
70900 AU Ren, JS
70901    Cheng, CJ
70902    Zhu, ZY
70903 TI Cavity formation at the center of a sphere composed of two compressible
70904    hyper-elastic materials
70905 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
70906 DT Article
70907 DE compressible hyper-elastic material; cavitated bifurcation; catastrophe
70908    and concentration of stress; energy comparison
70909 ID VOID NUCLEATION; BIFURCATION; GROWTH
70910 AB The cavitated bifurcation problem in a solid sphere composed of two
70911    compressible hyper-elastic materials under a uniform boundary radial
70912    stretch was examined. The solutions, including the trivial solution and
70913    the cavitated solutions, were obtained. The bifurcation curves and the
70914    stress contributions subsequent to cavitation were discussed. The
70915    phenomena of the right and the left bifurcations as well as the
70916    catastrophe and concentration of stresses are observed. The stability
70917    of solutions is discussed through the energy comparison.
70918 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
70919    Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
70920    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
70921 RP Ren, JS, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
70922    200072, Peoples R China.
70923 CR HORGAN CO, 1986, J ELASTICITY, V16, P189
70924    HORGAN CO, 1989, J APPL MECH, V56, P302
70925    HORGAN CO, 1989, J ELASTICITY, V21, P61
70926    HORGAN CO, 1992, INT J SOLIDS STRUCT, V29, P279
70927    HORGAN CO, 1995, APPL MECH REV, V48, P471
70928    REN JS, 2002, APPL MATH MECH-ENGL, V23, P881
70929    REN JS, 2002, J ENG MATH, V44, P245
70930    SHANG XC, 1996, ACTA MECH SINICA, V28, P751
70931    SHANG XC, 2001, INT J ENG SCI, V39, P1101
70932 NR 9
70933 TC 1
70934 SN 0253-4827
70935 J9 APPL MATH MECH-ENGL ED
70936 JI Appl. Math. Mech.-Engl. Ed.
70937 PD SEP
70938 PY 2003
70939 VL 24
70940 IS 9
70941 BP 1009
70942 EP 1016
70943 PG 8
70944 SC Mathematics, Applied; Mechanics
70945 GA 745KV
70946 UT ISI:000186688600002
70947 ER
70948 
70949 PT J
70950 AU Gang, W
70951    Le, JC
70952    Dai, SQ
70953 TI Surface effects of internal wave generated by a moving source in a
70954    two-layer fluid of finite depth
70955 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
70956 DT Article
70957 DE internal wave; surface wave; stratified fluid; divergence field;
70958    wave-wave interaction; ship wave
70959 ID SYNTHETIC APERTURE RADAR; SHIP WAVES; STRATIFIED OCEAN; REAL
70960 AB Based on the potential flow theory of water waves, the interaction
70961    mechanism between the free-surface and internal waves generated by a
70962    moving point source in the lower layer of a two-layer fluid was
70963    studied. By virtue of the method of Green's function, the properties of
70964    the divergence field at the free surface were obtained, which plays an
70965    important role in the SAR ( Synthetic Aperture Radar) image. It is
70966    shown that the coupling interaction between the surface-wave mode and
70967    internal-wave mode must be. taken into account for the cases of large
70968    density difference between two layers, the source approaching to the
70969    pynocline and the total Froude number Fr close to the critical number
70970    Fr-2. The theoretical analysis is qualitatively consistent with the
70971    experimental results presented by Ma Hui-yang.
70972 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
70973    Univ Sci & Technol, PLA, Inst Sci, Nanjing 211101, Peoples R China.
70974 RP Gang, W, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
70975    200072, Peoples R China.
70976 CR ALPERS W, 1984, J GEOPHYS RES, V89, P10529
70977    ALPERS WR, 1981, J GEOPHYS RES, V86, P6481
70978    CHOMAZ JM, 1993, J FLUID MECH, V254, P1
70979    CRAPPER GD, 1967, J FLUID MECH, V29, P667
70980    DAI SQ, 1983, SCI CHINA SER A, P1007
70981    GUO HD, 2001, THEORY APPL RADAR OB
70982    HUDIMAC AA, 1961, J FLUID MECH, V11, P229
70983    KALLEN E, 1986, J FLUID MECH, V182, P111
70984    KELLER JB, 1970, PHYS FLUIDS, V13, P1452
70985    LAMB H, 1932, HYDRODYNAMICS
70986    LIGHTHILL J, 1978, WAVES FLUID
70987    LIN JT, 1979, ANNU REV FLUID MECH, V11, P317
70988    MA HY, 2000, EXPT MEASUREMENT FLU, V14
70989    MENG JM, 2001, J HYDRODYNAMICS B, V3, P88
70990    MILES JW, 1970, PHYS FLUID DYNAMICS, V2, P63
70991    PHILLIPS OM, 1977, DYNAMATICS DYNAMICS
70992    SHARMAN RD, 1983, J ATMOS SCI, V40, P396
70993    STEFANICK T, 1988, SCI AM, V258, P41
70994    STEWART RH, 1985, METHODS SATELLITE OC
70995    WEHAUSEN JV, 1960, HDB PHYS, V9
70996    YEUNG RW, 1999, J ENG MATH, V35, P85
70997    YIH CS, 1989, Q APPL MATH, V47, P17
70998 NR 22
70999 TC 0
71000 SN 0253-4827
71001 J9 APPL MATH MECH-ENGL ED
71002 JI Appl. Math. Mech.-Engl. Ed.
71003 PD SEP
71004 PY 2003
71005 VL 24
71006 IS 9
71007 BP 1025
71008 EP 1040
71009 PG 16
71010 SC Mathematics, Applied; Mechanics
71011 GA 745KV
71012 UT ISI:000186688600004
71013 ER
71014 
71015 PT J
71016 AU Guo, GP
71017    Zhang, JF
71018 TI Jacobi elliptic function expansion method applied to long-short wave
71019    interaction equations
71020 SO ACTA PHYSICA SINICA
71021 DT Article
71022 DE Jacobi elliptic function method; long-short wave interaction equation;
71023    solitary wave solution
71024 ID KDV-BURGERS EQUATION; MULTISOLITON SOLUTIONS; NONLINEAR EQUATIONS;
71025    PERIODIC-SOLUTIONS
71026 AB In this paper, the Jacobi elliptic function method is generalized to
71027    study nonlinear evolution system. The envelope periodic solutions of
71028    long-short wave interaction equation are obtained. The solitary wave
71029    solutions for this model are also given under some conditions.
71030 C1 Zhejiang Normal Univ, Coll Educ Sci & Technol, Jinhua 321004, Peoples R China.
71031    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
71032    Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
71033 RP Guo, GP, Zhejiang Normal Univ, Coll Educ Sci & Technol, Jinhua 321004,
71034    Peoples R China.
71035 CR ABLOWITZ MJ, 1991, SOITONS NONLINEAR EV
71036    FAN EG, 1998, ACTA PHYS SINICA, V47, P353
71037    FAN EG, 2000, PHYS LETT A, V277, P212
71038    GUO BL, 1987, SOLITON
71039    GUO GP, 2002, ACTA PHYS SINICA, V51, P1163
71040    HIROTA R, 1971, PHYS REV LETT, V27, P1192
71041    LAMB GL, 1980, ELEMENTS SOLITON THE
71042    LIU SD, 2002, ACTA PHYS SIN-CH ED, V51, P718
71043    LIU SK, 2002, ACTA PHYS SIN-CH ED, V51, P10
71044    LIU SK, 2002, ACTA PHYS SIN-CH ED, V51, P1923
71045    LIU SK, 2002, ACTA PHYS SINICA, V20, P2068
71046    LOU SY, 1998, ACTA PHYS SINICA, V47, P1937
71047    LU KP, 2001, ACTA PHYS SIN-CH ED, V50, P2074
71048    PARKES EJ, 1997, PHYS LETT A, V229, P217
71049    WANG ML, 1995, PHYS LETT A, V199, P169
71050    YAN C, 1996, PHYS LETT A, V224, P377
71051    YANG L, 2001, PHYS LETT A, V278, P267
71052    YOSHINAGA T, 1991, PHYS FLUIDS A-FLUID, V3, P83
71053    ZHANG JF, 1998, ACTA PHYS SINICA, V47, P1416
71054    ZHANG JF, 2000, CHINESE PHYS, V9, P1
71055    ZHANG JF, 2001, ACTA PHYS SIN-CH ED, V50, P1648
71056    ZHANG JF, 2002, CHINESE PHYS, V11, P533
71057    ZHANG JF, 2003, ACTA PHYS SIN-CH ED, V52, P2359
71058 NR 23
71059 TC 3
71060 SN 1000-3290
71061 J9 ACTA PHYS SIN-CHINESE ED
71062 JI Acta Phys. Sin.
71063 PD NOV
71064 PY 2003
71065 VL 52
71066 IS 11
71067 BP 2660
71068 EP 2663
71069 PG 4
71070 SC Physics, Multidisciplinary
71071 GA 742LY
71072 UT ISI:000186520100003
71073 ER
71074 
71075 PT J
71076 AU Fu, JL
71077    Chen, LQ
71078    Xie, FP
71079 TI Perturbation to the symmetries of relativistic Birkhoffian systems and
71080    the inverse problems
71081 SO ACTA PHYSICA SINICA
71082 DT Article
71083 DE Lie symmetry; perturbation; adiabatic invariants; relativity
71084 ID ADIABATIC INVARIANT; DYNAMICAL-SYSTEMS
71085 AB In this paper, we have studied the positive problems of perturbation to
71086    the symmetries for relativistic Birkhoffian systems under the action of
71087    a small force of the disturbance. The fundamental theory, equations of
71088    motion and equation of small disturbance of relativistic Birkhoffian
71089    systems were established. Lie symmetries and conserved quantity of this
71090    systems were given. Perturbation to the symmetries of the systems under
71091    infinitesimal transformations, S-order adiabatic invariants, existence
71092    conditions and the form of adiabatic invariants were studied. We have
71093    also studied the inverse problems of perturbation to the symmetries for
71094    relativistic Birkhoffian systems. We obtain the perturbation to the
71095    symmetries of the systems under infinitesimal transformations, when the
71096    systems possess s-order adiabatic invariants. The relationship between
71097    relativistic Birkhoffian systems and classical Birkhoffian systems were
71098    studied. Finally an example was presented to illustrate the result.
71099 C1 Shangqiu Teachers Coll, Inst Math Mech & Math Phys, Shanqiu 476000, Peoples R China.
71100    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
71101 RP Fu, JL, Shangqiu Teachers Coll, Inst Math Mech & Math Phys, Shanqiu
71102    476000, Peoples R China.
71103 CR BIRKHOFF GD, 1927, DYNAMICAL SYSTEMS
71104    BULANOV SV, 1992, NUCL FUSION, V32, P1531
71105    BURGERS JM, 1917, ANN PHYS-BERLIN, V52, P195
71106    CHEN XW, 2000, ACTA MECH SINICA, V16, P282
71107    CHEN XW, 2000, CHINESE PHYS, V9, P721
71108    CHEN XW, 2001, CHIN Q MECH, V22, P204
71109    DJUKIC DS, 1975, ACTA MECH, V23, P13
71110    DJUKIC DS, 1981, INT J NONLINEAR MECH, V16, P489
71111    FU JL, 2000, ACTA PHYS SIN-CH ED, V49, P1023
71112    FU JL, 2001, ACTA MATH PHYS SCI, V21, P70
71113    FU JL, 2001, ACTA PHYS SIN-CH ED, V50, P2289
71114    FU JL, 2002, ACTA PHYS SIN-CH ED, V51, P2683
71115    FU JL, 2003, CHINESE PHYS, V12, P695
71116    KRUSKAL M, 1962, J MATH PHYS, V3, P806
71117    LI ZP, 1981, ACTA PHYS SINICA, V30, P1599
71118    LI ZP, 1981, ACTA PHYS SINICA, V30, P1699
71119    LI ZP, 1985, ACTA MATH SCI, V5, P379
71120    LI ZP, 1990, INT J THEOR PHYS, V29, P765
71121    LUO SK, 1991, SHANGHAI J MECH, V12, P61
71122    LUO SK, 1996, APPL MATH MECH, V17, P645
71123    MEI FX, 1991, ADV ANAL MECH, P728
71124    MEI FX, 1993, SCI CHINA SER A, V23, P709
71125    MEI FX, 1996, DYNAMICAL BIRKHOFFIA
71126    MEI FX, 1999, APPL LIE GROUPS LIE
71127    MEI FX, 2000, ASME, V53, P283
71128    MEI FX, 2000, INT J NONLINEAR MECH, V35, P229
71129    MEI FX, 2001, INT J NONLINEAR MECH, V36, P817
71130    MULLER J, 1995, J CHEM PHYS, V103, P4985
71131    NEMOV VV, 1999, PHYS PLASMAS, V6, P122
71132    NOTTE J, 1993, PHYS REV LETT, V70, P3900
71133    SANTILLI RM, 1983, FDN THEORETICAL MECH
71134    VUJANOVIC B, 1978, INT J NONLINEAR MECH, V13, P185
71135    VUJANOVIC B, 1986, ACTA MECH, V65, P63
71136    ZHANG Y, 2002, ACTA PHYS SIN-CH ED, V51, P1666
71137    ZHANG Y, 2002, ACTA PHYS SIN-CH ED, V51, P2417
71138    ZHAO YY, 1996, ACTA MECH SINICA, V28, P207
71139    ZHAO YY, 1999, SYMMETRIES INVARIANT, P164
71140 NR 37
71141 TC 3
71142 SN 1000-3290
71143 J9 ACTA PHYS SIN-CHINESE ED
71144 JI Acta Phys. Sin.
71145 PD NOV
71146 PY 2003
71147 VL 52
71148 IS 11
71149 BP 2664
71150 EP 2670
71151 PG 7
71152 SC Physics, Multidisciplinary
71153 GA 742LY
71154 UT ISI:000186520100004
71155 ER
71156 
71157 PT J
71158 AU Zhao, CY
71159    Tan, WH
71160    Guo, QZ
71161 TI The solution of the Fokker-Planck equation of non-degenerate parametric
71162    amplification system for generation of squeezed light
71163 SO ACTA PHYSICA SINICA
71164 DT Article
71165 DE non-degenerate optical parametric amplification; Fokker-Planck
71166    equation; maximum intra-cavity compression
71167 ID PODOLSKY-ROSEN PARADOX; STATES; OSCILLATOR; CAVITY
71168 AB In this paper, we present the analytical solution of the Fokker-Planck
71169    equation of non-degenerate optical parametric amplification(NOPA)for
71170    generation of squeezed light. The maximum intra-cavity compression of
71171    squeezed light derived from the analytic cal solution is 1/16(vacuum
71172    fluctuations 1/4). To compare it with that of the previous result 1/8
71173    of degenerate optical parametric amplification( DOPA), it seems that
71174    the squeezing for NOPA is superior to the squeezing for DOPA.
71175 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
71176 RP Zhao, CY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
71177 CR BONDURANT RS, 1984, PHYS REV A, V30, P343
71178    DRUMMOND PD, 1990, PHYS REV A, V41, P3930
71179    GARDINER CW, 1983, HDB STOCHASTIC METHO, P75
71180    GARNAL M, 1999, ACTA PHYS SINICA, V8, P754
71181    KUMAR P, 1984, PHYS REV A, V30, P1568
71182    LI XY, 2002, ACTA PHYS SIN-CH ED, V51, P966
71183    LI YM, 2003, ACTA PHYS SIN-CH ED, V52, P849
71184    MILBURN G, 1981, OPT COMMUN, V39, P401
71185    OU ZY, 1992, PHYS REV LETT, V68, P3663
71186    REID MD, 1989, PHYS REV A, V40, P913
71187    SLUSHER RE, 1985, PHYS REV LETT, V55, P2409
71188    TAN WH, 1987, OPT COMMUN, V64, P195
71189    TAN WH, 1988, ACTA PHYS SINICA, V37, P396
71190    TAN WH, 2000, NONLINEAR QUANTUM OP, P374
71191    WANG DL, 2000, ACTA PHYS SIN-CH ED, V49, P1484
71192    WOLINSKY M, 1985, OPT COMMUN, V55, P138
71193    WU LA, 1986, PHYS REV LETT, V57, P2520
71194    ZHANG Y, 2000, PHYS REV A, V62
71195    ZHENG SB, 2003, CHINESE PHYS, V12, P51
71196 NR 19
71197 TC 5
71198 SN 1000-3290
71199 J9 ACTA PHYS SIN-CHINESE ED
71200 JI Acta Phys. Sin.
71201 PD NOV
71202 PY 2003
71203 VL 52
71204 IS 11
71205 BP 2694
71206 EP 2699
71207 PG 6
71208 SC Physics, Multidisciplinary
71209 GA 742LY
71210 UT ISI:000186520100009
71211 ER
71212 
71213 PT J
71214 AU Xue, Y
71215 TI A car-following model with stochastically considering the relative
71216    velocity in a traffic flow
71217 SO ACTA PHYSICA SINICA
71218 DT Article
71219 DE traffic flow; car-following model; stable criteria; relative velocity
71220 ID NUMERICAL-SIMULATION; DYNAMICS; CONGESTION; SOLITON
71221 AB In this paper, the car-following model with stochastically considering
71222    the relative velocity in a traffic flow is presented through
71223    investigating the vehicle acceleration process with uncertainty. The
71224    stability criterion superior to the Bando's model is derived by the
71225    linear stability analysis. The density wave is investigated
71226    analytically with the perturbation method. The results show that the
71227    occurrence of traffic jamming transitions can be described by the kink
71228    solution of the modified Korteweg-de Vries equation. The effects of
71229    stochastic relative velocity on the traffic flow are simulated and
71230    analyzed. It is shown that the change rate of velocity in the new model
71231    is smaller than that of the Bando's model under the same condition and
71232    depends on the probability p. As the probability p increases, a small
71233    initial disturbance does not magnify and influence on the traffic flow,
71234    but fades away for a long time. The stable region in the new model is
71235    larger than in the Bando's model in the phase diagram. The existent
71236    initial hysteresis in the new model will approach to a small region
71237    with the increase of time in the headway-velocity plot, which is
71238    exactly different from that in the Bando's model. In contrast, the
71239    hysteresis region in Bando's model Will be continuously extended to
71240    cause traffic flow instability.
71241 C1 Guangxi Univ, Dept Phys, Nanning 530004, Peoples R China.
71242    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
71243 RP Xue, Y, Guangxi Univ, Dept Phys, Nanning 530004, Peoples R China.
71244 CR BANDO M, 1995, PHYS REV E, V51, P1035
71245    CHANDLER RE, 1958, OPER RES, V6, P165
71246    CHOWDHURY D, 2000, PHYS REP, V329, P199
71247    GAZIS DC, 1961, OPER RES, V9, P545
71248    HELBING D, 1998, PHYS REV E, V58, P133
71249    HELBING D, 2001, REV MOD PHYS, V73, P1076
71250    HERMAN R, 1959, OPER RES, V7, P86
71251    KINZER JP, 1933, P 1 TRAFF ENG, V5, P118
71252    KINZER JP, 1933, THESIS POLYTECHNIC I
71253    KOMATSU TS, 1995, PHYS REV E B, V52, P5574
71254    LIGHTHILL MJ, 1955, P ROY SOC LOND A MAT, V229, P281
71255    MURAMATSU M, 1999, PHYS REV E, V60, P180
71256    NEWELL GF, 1961, OPER RES, V9, P209
71257    PAYNE HJ, 1971, MATH MODELS PUBLIC S, V1, P51
71258    PAYNE HJ, 1979, FREFLO MACROSCOPIC S, V772, P68
71259    PIPES LA, 1953, J APPL PHYS, V24, P274
71260    SAWADA S, 2001, J PHYS A-MATH GEN, V34, P11253
71261    TREIBER M, 2000, PHYS REV E A, V62, P1805
71262    XUE Y, 2002, ACTA PHYS SIN-CH ED, V51, P492
71263    XUE Y, 2002, CHINESE PHYS, V11, P1129
71264    XUE Y, 2002, COMMUN THEOR PHYS, V38, P230
71265 NR 21
71266 TC 1
71267 SN 1000-3290
71268 J9 ACTA PHYS SIN-CHINESE ED
71269 JI Acta Phys. Sin.
71270 PD NOV
71271 PY 2003
71272 VL 52
71273 IS 11
71274 BP 2750
71275 EP 2756
71276 PG 7
71277 SC Physics, Multidisciplinary
71278 GA 742LY
71279 UT ISI:000186520100018
71280 ER
71281 
71282 PT J
71283 AU Zhao, JR
71284    Yang, XX
71285    Jia, XS
71286    Luo, SJ
71287    Zhai, HB
71288 TI Novel total syntheses of (+/-)-oxerine by intramolecular Heck reaction
71289 SO TETRAHEDRON
71290 DT Article
71291 DE intramolecular Heck reaction; monoterpene; oxerine pyridine; alkaloid;
71292    syntheses
71293 ID PYRIDINE MONOTERPENE ALKALOIDS; HUMAN INTESTINAL BACTERIA;
71294    HARPAGOPHYTUM-PROCUMBENS; PALLADIUM; CYCLIZATIONS; IRIDOIDS; RHODIUM;
71295    ANALOGS; ARYL
71296 AB Both a three-step and a five-step syntheses of monoterpene alkaloid
71297    (+/-)-oxerine from alcohol 6 have been accomplished. In the second
71298    approach, the synthetic efficiency was enhanced by implementing a
71299    one-pot protocol (deprotonation/silylation/alkylation/desilylation).
71300    The construction of the cyclopenta[c]pyridine framework was realized by
71301    an intramolecular Heck reaction, which should be adaptable for the
71302    synthesis of other related monoterpene pyridine alkaloids. (C) 2003
71303    Elsevier Ltd. All rights reserved.
71304 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Modern Synth Organ Chem, Shanghai 200032, Peoples R China.
71305    Shanghai Univ, Shanghai 200436, Peoples R China.
71306 RP Zhai, HB, Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Modern Synth
71307    Organ Chem, 345 Lingling Lu, Shanghai 200032, Peoples R China.
71308 EM zhaih@mail.sioc.ac.cn
71309 CR ADINOLFI M, 2002, TETRAHEDRON, V58, P6697
71310    AOYAGI Y, 1994, TETRAHEDRON, V50, P13575
71311    BAGHDIKIAN B, 1999, J NAT PROD, V62, P211
71312    BAGHDIKIAN B, 1999, PLANTA MED, V65, P164
71313    BENKRIEF R, 1991, PLANTA MED, V57, P79
71314    COREY EJ, 1983, TETRAHEDRON LETT, V24, P3291
71315    GRIGG R, 1984, J CHEM SOC CHEM COMM, P1073
71316    GRIGG R, 1988, TETRAHEDRON, V44, P2033
71317    HATTORI M, 1990, PHYTOTHER RES, V4, P66
71318    HECK RF, 1972, J ORG CHEM, V37, P2320
71319    JONES K, 1996, TETRAHEDRON LETT, V37, P8049
71320    JONES K, 2000, TETRAHEDRON, V56, P397
71321    MADDRELL SJ, 1996, TETRAHEDRON LETT, V37, P6001
71322    MIZOROKI T, 1971, B SOC CHIM JAPAN, V44, P581
71323    NICOLAOU KC, 2000, CHEM-EUR J, V6, P2783
71324    OHBA M, 2000, TETRAHEDRON LETT, V41, P10251
71325    RADL S, 2002, TETRAHEDRON LETT, V43, P2087
71326    SAKAN T, 1959, B CHEM SOC JPN, V32, P315
71327    TURNER SC, 2000, J ORG CHEM, V65, P861
71328    ZHAI HB, 2002, ORG LETT, V4, P4385
71329 NR 20
71330 TC 6
71331 SN 0040-4020
71332 J9 TETRAHEDRON
71333 JI Tetrahedron
71334 PD NOV 17
71335 PY 2003
71336 VL 59
71337 IS 47
71338 BP 9379
71339 EP 9382
71340 PG 4
71341 SC Chemistry, Organic
71342 GA 741KL
71343 UT ISI:000186457200009
71344 ER
71345 
71346 PT J
71347 AU An, BL
71348    Gong, ML
71349    Ye, JQ
71350    Dong, JP
71351    Li, MX
71352    Yang, YS
71353 TI Synthesis and fluorescence of novel conjugated europium complex
71354 SO JOURNAL OF RARE EARTHS
71355 DT Article
71356 DE inorganic chemistry; europium complex; luminescence; lifetime;
71357    absorption spectra; rare earths
71358 ID ELECTROLUMINESCENCE; LUMINESCENCE; DEVICES
71359 AB A novel organic ligand, 6-(ortho-methyl-anilino carbonyl) 2-pyridine
71360    carboxylic acid (H-o-MAP), and the corresponding europium complex, tris
71361    ( 6-(ortho-methyl-anilino carbonyl) 2-pyridine carboxylato) europium
71362    Eu-o-MAP) were designed and synthesized. The results show that solid
71363    Eu-o-MAP is a conjugated complex, emitting strong red fluorescence
71364    dominantly due to a ligand-sensitizd luminescence mechanism. The
71365    lifetimes of D-5(0) of Eu3+, in the complex were examined using
71366    time-resolved spectroscopic analysis, and the lifetime values were
71367    (1.50 +/- 0.01) ms for solid Eu(o-MAP)(3) and (1.10 +/- 0.01) ms for
71368    1.0 x 10(-5) mol(.)L(-1) Eu(o-MAP)(3) ethanol solution, respectively.
71369    Themogravimetric analysis shows that the europium complex has good
71370    thermal stability.
71371 C1 Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China.
71372    Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200436, Peoples R China.
71373 RP Gong, ML, Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol,
71374    Guangzhou 510275, Peoples R China.
71375 EM cesgml@zsu.edu.cn
71376 CR AMANDA LJ, 1996, ANAL CHEM, V68, P2974
71377    AN BL, 2001, J CHIN RARE EARTH SO, V19, P268
71378    AN BL, 2002, J LUMIN, V99, P155
71379    AN BL, 2003, J MATER SCI-MATER EL, V14, P125
71380    CHEN GZ, 1990, FLOURESCENCE ANAL ME, P15
71381    FRIEND RH, 1999, NATURE, V397, P121
71382    GAO XC, 1998, APPL PHYS LETT, V72, P2217
71383    HO PKH, 1999, SCIENCE, V285, P233
71384    HU WP, 2000, APPL PHYS LETT, V77, P4271
71385    KEMPER C, 2001, ELECTROPHORESIS, V22, P881
71386    LIANG CJ, 2000, APPL PHYS LETT, V76, P67
71387    LOBNIK A, 2001, SENSOR ACTUAT B-CHEM, V74, P200
71388    MATTHEWS LR, 1993, CHEM MATER, V5, P1697
71389    MELBY LR, 1964, J AM CHEM SOC, V86, P5117
71390    SANO T, 2000, J MATER CHEM, V10, P157
71391    THOMAS J, 1998, ANGEW CHEM INT EDIT, V37, P3084
71392    YANG YS, 1994, J ALLOY COMPD, V207, P112
71393    ZHANG XM, 1997, APPL PHYS LETT, V71, P2596
71394 NR 18
71395 TC 0
71396 SN 1002-0721
71397 J9 J RARE EARTH
71398 JI J. Rare Earths
71399 PD OCT
71400 PY 2003
71401 VL 21
71402 IS 5
71403 BP 514
71404 EP 518
71405 PG 5
71406 SC Chemistry, Applied
71407 GA 741ZB
71408 UT ISI:000186489300004
71409 ER
71410 
71411 PT J
71412 AU Xu, H
71413    Tan, XH
71414    Dong, YD
71415 TI Crystalline behavior and magnetic properties of Nd60Fe30xAl10Cox (x=0,
71416    5, 10) bulk amorphous alloys
71417 SO JOURNAL OF RARE EARTHS
71418 DT Article
71419 DE materials science; bulk amorphous alloy; crystalline behavior; hard
71420    magnetic property; rare earths
71421 ID METALLIC-GLASS; DIAMETER; MM
71422 AB Crystalline behavior and magnetic properties of Nd60Fe30-xAl10Cox (x =
71423    0, 5, 10) bulk amorphous alloys were investigated by differential
71424    scanning calorimeter (DSC), X-ray diffraction (XRD) and the vibrating
71425    sample magnetometer (VSM). Neither glass transition nor supercooled
71426    liquid region before crystallization was observed for the as-cast
71427    Nd60Fe30-x,Al10Cox (x = 0, 5, 10) bulk amorphous alloys. The glass
71428    forming ability can be improved significantly by the addition of Co.
71429    The as-east Nd60Fe30-xAl10Cox (x = 0, 5, 10) alloys show hard magnetic
71430    behavior. With the addition of Co content, intrinsic coereivity
71431    (H-i(e)) increases while the saturation magnetization (sigma(s)) and
71432    remanence (a,) decrease. The Curie temperature for the as-cast
71433    Nd60Fe30-x,Al10Cox, alloys increases from 451 K for x = 0 to 468 K for
71434    x = 10. Some precipitation of crystalline phases does not affect the
71435    hard magnetic properties of Nd60Fe30-xAl10Cox,(x = 0, 5, 10) alloys,
71436    while the hard magnetic behavior disappears quickly after the alloys
71437    being completely crystallized.
71438 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
71439 RP Xu, H, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
71440 CR INOUE A, 1993, MATER T JIM, V34, P1234
71441    INOUE A, 1996, MATER T JIM, V37, P636
71442    INOUE A, 1996, MATER T JIM, V37, P99
71443    KISSINGER HE, 1956, J RES NAT BUR STAND, V57, P217
71444    PEKER A, 1993, APPL PHYS LETT, V63, P2342
71445    SAHA DK, 1997, NANOSTRUCT MATER, V8, P1139
71446    SIRATORI K, 1990, J MAGN MAGN MATER, V83, P341
71447    WEI BC, 2002, MAT SCI ENG A-STRUCT, V334, P307
71448    ZHANG T, 1991, MATER T JIM, V32, P1005
71449 NR 9
71450 TC 1
71451 SN 1002-0721
71452 J9 J RARE EARTH
71453 JI J. Rare Earths
71454 PD OCT
71455 PY 2003
71456 VL 21
71457 IS 5
71458 BP 552
71459 EP 554
71460 PG 3
71461 SC Chemistry, Applied
71462 GA 741ZB
71463 UT ISI:000186489300013
71464 ER
71465 
71466 PT J
71467 AU Abdullah, MNA
71468    Hossain, S
71469    Sarker, MSI
71470    Das, SK
71471    Tariq, ASB
71472    Uddin, MA
71473    Basak, AK
71474    Ali, S
71475    Sen Gupta, HM
71476    Malik, FB
71477 TI Cluster structure of O-16
71478 SO EUROPEAN PHYSICAL JOURNAL A
71479 DT Article
71480 ID FOLDING-MODEL ANALYSIS; ELASTIC-SCATTERING; NUCLEAR REACTIONS;
71481    ALPHA-PARTICLES; UNIFIED THEORY; LIGHT-NUCLEI; POTENTIALS; MATTER; RANGE
71482 AB A folding potential describing the a-scattering on O-16 over a broad
71483    energy range 25.8-146.0 MeV is constructed on the basis of alpha-like
71484    cluster and unclustered-nucleon configurations of O-16. The resulting
71485    potential does not need any renormalization to fit the angular
71486    distribution of elastic cross-sections. The effects of the repulsive
71487    part of alpha-alpha and or-alpha-nucleon interactions are investigated.
71488    The analysis suggests that both the alpha-alpha repulsive potential and
71489    the unclustered nucleonic configuration in the target are important to
71490    describe the scattering data over a broad range of incident energies.
71491    The root-mean-square radius for the O-16 nucleus is deduced.
71492 C1 Rajshahi Univ, Dept Phys, Rajshahi, Bangladesh.
71493    Shanghai Univ Sci & Technol, Dept Phys, Sylhet, Bangladesh.
71494    Univ Dhaka, Dept Phys, Dhaka, Bangladesh.
71495    So Illinois Univ, Dept Phys, Carbondale, IL 62901 USA.
71496 RP Abdullah, MNA, Rajshahi Univ, Dept Phys, Rajshahi, Bangladesh.
71497 CR ABELE H, 1987, Z PHYS A ATOMS NUCL, V326, P373
71498    ABELE H, 1993, PHYS REV C, V47, P742
71499    ALI S, 1966, NUCL PHYS, V80, P99
71500    ALI S, 1985, REV MOD PHYS, V57, P923
71501    ATZROTT U, 1996, PHYS REV C, V53, P1336
71502    AUSTERN N, 1967, ANN PHYS-NEW YORK, V45, P113
71503    BERSILLON O, 1988, SCAT2 CODE NEA 0289
71504    BERTSCH G, 1977, NUCL PHYS A, V284, P399
71505    BLOCK B, 1971, ANN PHYS-NEW YORK, V62, P464
71506    BRINK DM, 1973, NUCL PHYS          A, V216, P109
71507    BUCK B, 1975, PHYS REV C, V11, P1803
71508    BUCK B, 1977, NUCL PHYS A, V275, P246
71509    COWLEY AA, 1970, NUCL PHYS A, V146, P465
71510    DAO T, 2001, PHYS REV C, V63
71511    DEVRIES H, 1987, ATOM DATA NUCL DATA, V36, P495
71512    FARID ME, 1990, J PHYS G, V16, P461
71513    FARID ME, 2001, PHYS REV C, V64
71514    FESHBACH H, 1958, ANN PHYS-NEW YORK, V5, P357
71515    FESHBACH H, 1962, ANN PHYS-NEW YORK, V19, P287
71516    HAUSER G, 1969, NUCL PHYS          A, V128, P81
71517    HODGSON PE, 1990, CONTEMP PHYS, V31, P99
71518    JAMES F, 1975, COMPUT PHYS COMMUN, V10, P343
71519    KHALLAF SAE, 1997, PHYS REV C, V56, P2093
71520    KHOA DT, 1997, PHYS REV C, V56, P954
71521    KNOPFLE KT, 1975, PHYS REV LETT, V35, P779
71522    KOBOS AM, 1984, NUCL PHYS A, V425, P205
71523    LI QR, 1993, NUCL PHYS A, V561, P181
71524    MICHEL F, 1983, PHYS REV C, V28, P1904
71525    MUELLER GP, 1970, NUCL PHYS A, V155, P561
71526    NEU R, 1989, J PHYS SOC JPN S, V58, P574
71527    ROEPKE G, 2001, COND MATTER THEORIES, V16, P468
71528    SACK S, 1954, PHYS REV, V93, P321
71529    SINGH PP, 1975, PHYS LETT B, V59, P113
71530    WHEELER JA, 1937, PHYS REV, V52, P1083
71531    YANG YX, 1993, EUROPHYS LETT, V21, P657
71532 NR 35
71533 TC 2
71534 SN 1434-6001
71535 J9 EUR PHYS J A
71536 JI Eur. Phys. J. A
71537 PD SEP
71538 PY 2003
71539 VL 18
71540 IS 1
71541 BP 65
71542 EP 73
71543 PG 9
71544 SC Physics, Nuclear; Physics, Particles & Fields
71545 GA 741MK
71546 UT ISI:000186461700009
71547 ER
71548 
71549 PT J
71550 AU Zhou, SF
71551 TI Attractors for strongly damped wave equations with critical exponent
71552 SO APPLIED MATHEMATICS LETTERS
71553 DT Article
71554 DE wave equation; global attractor; equivalent norm
71555 ID BEHAVIOR
71556 AB We prove the existence of the global attractor for the semigroup
71557    generated by strongly damped wave equations when the nonlinearity has a
71558    critical growth exponent. (C) 2003 Elsevier Ltd. All rights reserved.
71559 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
71560 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
71561 CR ARIETTA JM, 2000, T AM MATH SOC, V352, P285
71562    ARRIETA J, 1993, COMMUN PART DIFF EQ, V42, P1057
71563    CARVALHO AN, 2002, B AUST MATH SOC, V66, P443
71564    CHEN F, 1998, J DIFFER EQUATIONS, V147, P339
71565    FEIREISL E, 1993, COMMUN PART DIFF EQ, V18, P1539
71566    GHIDAGLIA JM, 1991, SIAM J MATH ANAL, V22, P861
71567    HALE JK, 1988, ASYMPTOTIC BEHAV DIS
71568    LANDAHL PS, 1982, PHYS REV B, V25, P5337
71569    MASSATT P, 1983, J DIFFER EQUATIONS, V48, P334
71570    PAZY A, 1983, APPL MATH SCI, V44
71571    WANG Z, 1997, MATH APPL, V10, P97
71572    WEBB GF, 1980, CAN J MATH, V32, P631
71573    ZHOU S, 1999, FUNCTIONAL DIFFERENT, V6, P451
71574 NR 13
71575 TC 1
71576 SN 0893-9659
71577 J9 APPL MATH LETT
71578 JI Appl. Math. Lett.
71579 PD NOV
71580 PY 2003
71581 VL 16
71582 IS 8
71583 BP 1307
71584 EP 1314
71585 PG 8
71586 SC Mathematics, Applied
71587 GA 742CJ
71588 UT ISI:000186497600023
71589 ER
71590 
71591 PT J
71592 AU Zhou, ZQ
71593    Fang, SS
71594    Feng, F
71595 TI Comparison between methods for predicting maximum solid solubility of
71596    transition metals in solvent metal
71597 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
71598 DT Article
71599 DE maximum solid solubility; function Z(f); prediction method;
71600    electronegativity difference; atomic size factor; electron concentration
71601 AB It is important to know the maximum solid solubility(C-max) of various
71602    transition metals in a metal when one designs multi-component alloys.
71603    There have been several semi-empirical approaches to qualitatively
71604    predict the C-max, such as Darken-Gurry(D-G) theorem,
71605    Miedema-Chelikowsky(M-C) theorem, electron concentration rule and the
71606    bond-parameter rule. However, they are not particularly valid for the
71607    prediction of C-max. It was developed on the basis of energetics of
71608    alloys as a new method to predict C-max of different transition metals
71609    in metal Ti, which can be described as a semi-empirical equation using
71610    the atomic parameters, ie, electronegativity difference, atomic
71611    diameter and electron concentration. It shows that the present method
71612    can be used to explain and deduce D-G theorem, M-C theorem and electron
71613    concentration rule.
71614 C1 Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China.
71615    Univ Windsor, Dept Mech Automat & Mat Engn, Windsor, ON N9B 3P4, Canada.
71616 RP Zhou, ZQ, Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072,
71617    Peoples R China.
71618 CR DARKEN LS, 1953, PHYSICAL CHEM METALS, P74
71619    FANG SS, 2002, INT J HYDROGEN ENERG, V27, P329
71620    FENG D, 1987, METAL PHYSICS, P155
71621    GSCHNEIDNER KA, 1980, THEORY ALLOY PHASE F, P1
71622    LI D, 1984, ACTA METALL SIN, V20, P375
71623    LI D, 1985, CHINESE J METAL SCI, V1, P33
71624    LIAO SZ, 1994, RARE METAL MAT ENG, V23, P19
71625    MASSALSKI TB, 1996, BINARY ALLOY PHASE D
71626    PHILLIPS JC, 1980, THEOYR ALLOY PHASE F, P332
71627    XIAO JM, 1985, SHANGHAI SHANGHAI SC, P256
71628    ZHOU ZQ, 1998, ADV ENERGY SOURCES M, P37
71629    ZHOU ZQ, 2003, T NONFERR METAL SOC, V13, P864
71630 NR 12
71631 TC 1
71632 SN 1003-6326
71633 J9 TRANS NONFERROUS METAL SOC CH
71634 JI Trans. Nonferrous Met. Soc. China
71635 PD OCT
71636 PY 2003
71637 VL 13
71638 IS 5
71639 BP 1185
71640 EP 1189
71641 PG 5
71642 SC Metallurgy & Metallurgical Engineering
71643 GA 739YN
71644 UT ISI:000186374500033
71645 ER
71646 
71647 PT J
71648 AU Guo, YF
71649    You, JL
71650    Jiang, GC
71651    Chen, H
71652    Hou, HY
71653 TI High temperature Raman spectral study of sodium phosphate structure
71654 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
71655 DT Article
71656 DE Raman spectra; high temperature; sodium phosphate; differential
71657    scanning calorimeter(DSC)
71658 ID GLASSES; LITHIUM
71659 AB The high temperature Raman spectra of Na-3 PO4 crystal and its liquid
71660    were measured. The structure of Na3PO4 crystal and its change with
71661    temperature were analyzed. From the resolution of the room and high
71662    temperature spectra, the temperature dependent Raman shifts and FWHH
71663    were observed. It was suggested that there were two phase transitions
71664    that occurred around 600 and 1773 K respectively. The high temperature
71665    DSC results also indicated the two phase transitions. It is consistent
71666    with the results of the Raman spectra analysis. Gaussian 98W program
71667    was also applied to calculating the Raman frequencies of vibrational
71668    modes and the average P-O bond length. And the calculation results were
71669    evaluated. When the bond length increased, the corresponding Raman
71670    shift decreased. This paper also generally concluded the assignment of
71671    the different peaks in the Raman spectra. Raman shift at 938 cm(-1)
71672    wavenumber was assigned to the symmetry stretch mode of the P-O bond in
71673    the (PO4)(3-) tetrahedra. It was the dominant peak in the Raman
71674    spectrum of the Na3PO4 crystal.
71675 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
71676 RP Guo, YF, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
71677    200072, Peoples R China.
71678 CR BROW RK, 1990, J NON-CRYST SOLIDS, V116, P39
71679    BROW RK, 2000, J NON-CRYST SOLIDS, V263, P1
71680    HAYAKAWA S, 2000, J NON-CRYST SOLIDS, V263, P409
71681    HUDGENS JJ, 1998, J NON-CRYST SOLIDS, V223, P21
71682    JAY J, 2000, J NONCRYST SOLIDS, V263, P416
71683    JAY J, 2000, J NONCRYST SOLIDS, V264, P416
71684    JIANG GC, 2000, SPECTROSC SPECT ANAL, V20, P206
71685    MOREY GW, 1944, AM J SCI, V4, P242
71686    NELSON C, 1985, PHYS CHEM GLASSES, V26, P119
71687    TATSUMISAGO M, 1988, PHYS CHEM GLASSES, V29, P63
71688    TURKDOGAN ET, 1952, J IRON STEEL I, V6, P172
71689    YOU JL, 2001, CHINESE J LIGHT SCAT, V4, P240
71690    YOU JL, 2001, J NON-CRYST SOLIDS, V282, P125
71691    ZHENG DM, 1998, CHEM ENG, V64, P34
71692 NR 14
71693 TC 0
71694 SN 1000-0593
71695 J9 SPECTROSC SPECTR ANAL
71696 JI Spectrosc. Spectr. Anal.
71697 PD OCT
71698 PY 2003
71699 VL 23
71700 IS 5
71701 BP 855
71702 EP 858
71703 PG 4
71704 SC Spectroscopy
71705 GA 739ZJ
71706 UT ISI:000186376200008
71707 ER
71708 
71709 PT J
71710 AU Zhao, JR
71711    Jia, XS
71712    Zhai, HB
71713 TI Application of SmI2 in organic synthesis
71714 SO CHINESE JOURNAL OF ORGANIC CHEMISTRY
71715 DT Review
71716 DE samarium diiodide; organic synthesis; application
71717 ID REDUCTIVE COUPLING REACTIONS; NUCLEOPHILIC ACYL SUBSTITUTION;
71718    SEQUENTIAL SMI2-PROMOTED REDUCTION; ALPHA-AMINOALKYL RADICALS; SAMARIUM
71719    DIIODIDE; ASYMMETRIC-SYNTHESIS; SEQUENCED REACTIONS; FACILE SYNTHESIS;
71720    REGIOSELECTIVE CLEAVAGE; 9-MEMBERED CARBOCYCLES
71721 AB A review of the synthetic transformations promoted by SmI2 in the last
71722    five years is presented, mainly focusing on special reactions of
71723    carbonyl compounds, unsaturated hydrocarbons, halohydrocarbons,
71724    nitriles and oxychalcogenides.
71725 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
71726    Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Modern Synthet Organ Chem, Shanghai 200032, Peoples R China.
71727 RP Zhao, JR, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
71728 CR AURRECOECHEA JM, 1999, TETRAHEDRON, V55, P7345
71729    AURRECOECHEA JM, 2001, J ORG CHEM, V66, P564
71730    AURRECOECHEA JM, 2001, TETRAHEDRON LETT, V42, P3839
71731    BAZIN HG, 1999, J ORG CHEM, V64, P7254
71732    BOFFEY RJ, 2001, J CHEM SOC PERK T 1, P487
71733    CABRERA A, 1998, J CHEM SOC PERK 1107, P3609
71734    CARACOTI A, 2000, TETRAHEDRON LETT, V41, P3039
71735    CARROLL GL, 2000, ORG LETT, V2, P2873
71736    CHRISTENSEN TB, 1999, CHEM COMMUN, P2051
71737    CHUNG SH, 2001, SYNLETT          AUG, P1266
71738    CONCELLON JM, 2001, CHEM-EUR J, V7, P3062
71739    CONCELLON JM, 2002, ORG LETT, V4, P189
71740    CURRAN DP, 1992, J AM CHEM SOC, V114, P6050
71741    DINESH CU, 1999, ANGEW CHEM INT EDIT, V38, P789
71742    FANG JM, 2000, TETRAHEDRON LETT, V41, P4633
71743    FARCAS S, 2000, TETRAHEDRON LETT, V41, P7299
71744    FARCAS S, 2001, TETRAHEDRON, V57, P4881
71745    FORSTER M, 2000, MACROMOL RAPID COMM, V21, P810
71746    FUCHIBE K, 2000, ORG LETT, V2, P3297
71747    FUKUZAWA S, 2000, J ORG CHEM, V65, P1702
71748    FUKUZAWA S, 2001, TETRAHEDRON LETT, V42, P4167
71749    GRACIA ISD, 1999, ORG LETT, V1, P1705
71750    GUO HY, 1999, J CHEM RES SYNOP, V5, P342
71751    GUO HY, 2000, SYNTHETIC COMMUN, V30, P1879
71752    HAN MC, 1996, J ORG CHEM, V61, P7614
71753    HASEGAWA E, 2000, TETRAHEDRON LETT, V41, P6447
71754    HONDA T, 1999, J ORG CHEM, V64, P5542
71755    HORI N, 2002, TETRAHEDRON, V58, P1853
71756    HOSOI S, 2000, J CHEM SOC P1, P1505
71757    HUANG X, 1998, SYNLETT          NOV, P1191
71758    HUANG ZZ, 1999, J CHEM RES-S     SEP, P564
71759    JACOBSEN MF, 2002, J ORG CHEM, V67, P2411
71760    JIANG HJ, 1999, CHINESE CHEM LETT, V10, P7
71761    JIANG X, 2000, J ORG CHEM, V65, P3555
71762    JOHNSTON D, 2000, J CHEM SOC PERK T 1, P681
71763    JONG SJ, 2001, J ORG CHEM, V66, P3533
71764    KAGAN H, 1999, TOPICS ORGANOMETALLI, V2, P156
71765    KAKIUCHI K, 2001, TETRAHEDRON LETT, V42, P7595
71766    KAMAL A, 2000, TETRAHEDRON LETT, V41, P8631
71767    KAMOCHI Y, 2000, TETRAHEDRON LETT, V41, P341
71768    KATRITZKY AR, 1999, J ORG CHEM, V64, P3335
71769    KECK GE, 1999, J ORG CHEM, V64, P2172
71770    KECK GE, 2000, ORG LETT, V2, P2307
71771    KHAN FA, 1997, SYNLETT          AUG, P995
71772    KIKUKAWA T, 1999, TETRAHEDRON LETT, V40, P7497
71773    KIM YH, 1998, SYNTHETIC COMMUN, V28, P4517
71774    KIM YH, 2001, PURE APPL CHEM, V73, P283
71775    KRIEF A, 1999, CHEM REV, V99, P745
71776    KRINTEL SL, 1999, TETRAHEDRON LETT, V40, P7565
71777    KUNISHIMA M, 1999, CHEM PHARM BULL, V47, P1196
71778    KUNISHIMA M, 2000, TETRAHEDRON, V56, P9927
71779    KUO CW, 2001, SYNTHETIC COMMUN, V31, P877
71780    LI ZF, 2000, CHINESE CHEM LETT, V11, P495
71781    LIU YK, 2001, SYNTHETIC COMMUN, V31, P47
71782    LU GL, 1999, CHINESE CHEM LETT, V10, P723
71783    LU L, 1999, J ORG CHEM, V64, P843
71784    LUCAS MA, 2000, TETRAHEDRON, V56, P3995
71785    MA YM, 2000, J CHEM RES-S     MAY, P250
71786    MACHROUHI F, 1999, TETRAHEDRON LETT, V40, P1315
71787    MAKINO K, 2002, TETRAHEDRON LETT, V43, P4695
71788    MARINO JP, 2002, J AM CHEM SOC, V124, P1664
71789    MATSUBARA S, 1995, CHEM LETT, P259
71790    MATSUDA F, 1999, J CHEM SOC PERK T 1, P2371
71791    MATSUDA F, 1999, TETRAHEDRON, V55, P14369
71792    MIKKELSEN LM, 2000, CHEM COMMUN, V23, P2319
71793    MIQUEL N, 2000, ANGEW CHEM INT EDIT, V39, P4111
71794    MOLANDER GA, 1993, J ORG CHEM, V58, P7216
71795    MOLANDER GA, 1998, J ORG CHEM, V63, P4366
71796    MOLANDER GA, 1998, J ORG CHEM, V63, P9031
71797    MOLANDER GA, 1998, TETRAHEDRON, V54, P9289
71798    MOLANDER GA, 1999, J ORG CHEM, V64, P4119
71799    MOLANDER GA, 2001, J ORG CHEM, V66, P4511
71800    MONOVICH LG, 2000, J AM CHEM SOC, V122, P52
71801    MUKAIYAMA T, 2000, CHEM LETT       0505, P580
71802    NANDANAN E, 2000, TETRAHEDRON, V56, P4267
71803    OHMORI K, 1999, ANGEW CHEM INT EDIT, V38, P1226
71804    ONEILL DJ, 1999, ORG LETT, V1, P1659
71805    PARK HS, 1998, CHEM COMMUN, V24, P2745
71806    PARK HS, 1998, SYNLETT          OCT, P1073
71807    REUTRAKUL V, 1999, TETRAHEDRON LETT, V40, P1019
71808    RIBER D, 2000, J ORG CHEM, V65, P5382
71809    RICCI M, 2000, J AM CHEM SOC, V122, P12413
71810    RUSSO T, 1999, ORGANOMETALLICS, V18, P5344
71811    SONO M, 2000, J ORG CHEM, V65, P3099
71812    SU WK, 2001, CHINESE J CHEM, V19, P1157
71813    TANAKA M, 2000, CHEM COMMUN, P2503
71814    TANAKA Y, 2002, ORG LETT, V4, P835
71815    TANIGUCHI N, 1998, TETRAHEDRON, V54, P12775
71816    TANIGUCHI N, 2000, J AM CHEM SOC, V122, P8301
71817    WANG W, 2000, ORG LETT, V2, P3773
71818    WEI HX, 1999, CHEM PHARM BULL, V47, P909
71819    WILLIAMS DBG, 2000, J ORG CHEM, V65, P2834
71820    WILLIAMS DBG, 2001, SYNTHETIC COMMUN, V31, P203
71821    XIA WJ, 2002, CHINESE CHEM LETT, V13, P101
71822    XU F, 2002, TETRAHEDRON LETT, V43, P1867
71823    XU MH, 2000, ORG LETT, V2, P2229
71824    XU XL, 2001, J CHEM SOC P1, V21, P2836
71825    XU XL, 2001, SYNTHETIC COMMUN, V31, P323
71826    YANG SM, 1999, J ORG CHEM, V64, P394
71827    YEH MCP, 1998, ORGANOMETALLICS, V17, P5656
71828    YODA H, 2000, TETRAHEDRON LETT, V41, P1775
71829    YODA H, 2001, TETRAHEDRON LETT, V42, P2509
71830    YODA H, 2001, TETRAHEDRON LETT, V42, P9225
71831    YOSHIDA A, 2001, TETRAHEDRON LETT, V42, P3603
71832    YOUN SW, 2000, CHEM COMMUN, P2005
71833    ZHANG S, 2000, CHINESE CHEM LETT, V11, P289
71834    ZHONG WH, 2000, J CHEM RES-S     JUN, P292
71835    ZHOU LH, 2000, SYNTHESIS-STUTTG JAN, P91
71836    ZHU JL, 1999, TETRAHEDRON LETT, V40, P7055
71837 NR 109
71838 TC 0
71839 SN 0253-2786
71840 J9 CHINESE J ORG CHEM
71841 JI Chin. J. Org. Chem.
71842 PD JUN
71843 PY 2003
71844 VL 23
71845 IS 6
71846 BP 499
71847 EP 512
71848 PG 14
71849 SC Chemistry, Organic
71850 GA 740CD
71851 UT ISI:000186382500001
71852 ER
71853 
71854 PT J
71855 AU Liu, H
71856    Lu, GZ
71857    Guo, YL
71858    Guo, Y
71859    Wang, JS
71860 TI Effect of pretreatment on properties of TS-1/diatomite catalyst
71861 SO CHINESE JOURNAL OF INORGANIC CHEMISTRY
71862 DT Article
71863 DE TS-1/diatomite; pretreatment; phenol; hydroxylation; fixed bed reactor
71864 ID CRYSTALLINE TITANIUM SILICALITES; HYDROGEN-PEROXIDE; HYDROXYLATION;
71865    CYCLOHEXANONE; AMMOXIMATION; EPOXIDATION; ZEOLITES; PHENOL; TS-1
71866 AB The TS-1/diatomite catalyst was prepared for the hydroxylation of
71867    phenol with H2O2 in a fixed-bed reactor and the effect of pretreatment
71868    on the properties of TS-1/diatomite were studied with FT-IR, XRD,
71869    UV-Vis, ICP-AES and NH3-TPD techniques. It was shown that the framework
71870    structure of TS-1 pretreated with aqueous solutions of KAc, NaAc,
71871    NH4Ac, NH4Cl and HNO3 was not destroyed and titanium in the framework
71872    was not removed, but some extra-framework TiO2 could be removed partly,
71873    and the acid concentration on the surface of the TS-1/diatomite
71874    catalyst decreased slightly, which improves the activity, selectivity
71875    and utilization of H2O2 for hydroxylation of phenol. When the
71876    TS-1/diatomite catalyst was pretreated by bases solutions of NH3 (.)
71877    H2O, Na2CO3 and Na3PO4, the framework silicon was dissolved partly and
71878    the framework structure of TS-1 was destroyed, which leads to the
71879    slight increase of strength and concentration of acid sites on the
71880    surface of catalyst, and the decrease or loss of the framework
71881    titanium, and so that the catalytic activity of the TS-1/diatomite
71882    catalyst for hydroxylation of phenol descended or deactivated
71883    completely.
71884 C1 E China Univ Sci & Technol, Res Inst Ind Catalysis, Shanghai 200237, Peoples R China.
71885    Shanghai Univ, Coll Environm & Chem Engn, Shanghai 200072, Peoples R China.
71886 RP Lu, GZ, E China Univ Sci & Technol, Res Inst Ind Catalysis, Shanghai
71887    200237, Peoples R China.
71888 CR ALLIAN M, 1995, STUD SURF SCI CATAL, V92, P239
71889    CLERICI MG, 1993, J CATAL, V140, P71
71890    HUYBRECHTS DRC, 1992, J MOL CATAL, V71, P129
71891    LI G, 2001, CHINESE J CATAL+, V22, P465
71892    LI P, 2000, ACTA CHIM SINICA, V58, P204
71893    NEMETH LT, 1994, 5354875, US
71894    PETRINI G, 1991, STUD SURF SCI CATAL, V68, P761
71895    SPINACE EV, 1995, J CATAL, V157, P631
71896    TARAMASSO M, 1983, 4410501, US
71897    TATSUMI T, 1990, CHEM COMMUN, P476
71898    THANGARAJ A, 1990, APPL CATAL, V57, L1
71899    THANGARAJ A, 1991, J CATAL, V131, P294
71900    THANGARAJ A, 1991, J CATAL, V131, P394
71901    THIELE GF, 1997, J MOL CATAL A-CHEM, V117, P351
71902    YASUYUKI H, 2001, CATAL TODAY, V71, P177
71903 NR 15
71904 TC 0
71905 SN 1001-4861
71906 J9 CHIN J INORG CHEM
71907 JI Chin. J. Inorg. Chem.
71908 PD NOV
71909 PY 2003
71910 VL 19
71911 IS 11
71912 BP 1202
71913 EP 1206
71914 PG 5
71915 SC Chemistry, Inorganic & Nuclear
71916 GA 740DQ
71917 UT ISI:000186386900010
71918 ER
71919 
71920 PT J
71921 AU Wang, LY
71922    Tu, JP
71923    Chen, WX
71924    Wang, YC
71925    Liu, XK
71926    Olk, C
71927    Cheng, DH
71928    Zhang, XB
71929 TI Friction and wear behavior of electroless Ni-based CNT composite
71930    coatings
71931 SO WEAR
71932 DT Article
71933 DE carbon nanotubes (CNTs); electroless plating; composite coating
71934 ID CARBON NANOTUBES; MATRIX; DEPOSITION
71935 AB Ni-based carbon nanotube (CNT) composite coatings with different volume
71936    fraction (from 5 to 12 vol.%) of CNTs were deposited on medium carbon
71937    steel substrates by electroless plating. The friction and wear behavior
71938    of the composite coatings were investigated using a pin-on-disk wear
71939    tester under unlubricated condition. Friction and wear tests were
71940    conducted at a sliding speed of 0.0623 m s(-1) and at an applied load
71941    of 20 N. The experimental results indicated that the friction
71942    coefficient of the composite coatings decreased with increasing the
71943    volume fraction of CNTs due to self-lubrication and unique topological
71944    structure of CNTs. Within the range of volume fraction of CNTs from 0
71945    to 11.2%, the wear rate of the composite coatings showed a steadily
71946    decreasing trend with increasing volume fraction of CNTs. Because of
71947    the conglomeration of CNTs in the matrix, however, the wear rate of the
71948    composite coatings increased with further increasing the volume
71949    fraction of CNTs. (C) 2003 Elsevier Science B.V. All rights reserved.
71950 C1 Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R China.
71951    Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China.
71952    Gen Motors Corp, Surface Engn & Tribol Ctr, Washington, DC USA.
71953    Shanghai Univ, Dept Environm Chem & Engn, Shanghai 200027, Peoples R China.
71954 RP Tu, JP, Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R
71955    China.
71956 CR BENEA L, 2002, WEAR, V249, P995
71957    DONG SR, 2001, MAT SCI ENG A-STRUCT, V313, P83
71958    FALVO MR, 1997, NATURE, V389, P582
71959    IIJIMA S, 1991, NATURE, V354, P56
71960    JIN L, 1998, APPL PHYS LETT, V73, P1197
71961    KEDWARD EC, 1974, TRIBOL INT, V7, P221
71962    KO PL, 2002, WEAR, V252, P880
71963    LEVIN BF, 2000, WEAR, V238, P160
71964    SCHADLER LS, 1998, APPL PHYS LETT, V73, P3842
71965    SHARMA AK, 2001, MAT SCI ENG B-SOLID, V79, P123
71966    SIKDER AK, 1999, SURF COAT TECH, V114, P230
71967    TREACY MMJ, 1996, NATURE, V381, P678
71968    TU JP, 2001, TRIBOL LETT, V10, P225
71969    WONG EW, 1997, SCIENCE, V277, P1971
71970 NR 14
71971 TC 5
71972 SN 0043-1648
71973 J9 WEAR
71974 JI Wear
71975 PD NOV
71976 PY 2003
71977 VL 254
71978 IS 12
71979 BP 1289
71980 EP 1293
71981 PG 5
71982 SC Engineering, Mechanical; Materials Science, Multidisciplinary
71983 GA 737TH
71984 UT ISI:000186247500008
71985 ER
71986 
71987 PT J
71988 AU Shi, W
71989    Dong, H
71990    Bell, T
71991 TI Wear performance of ion implanted ultra high molecular weight
71992    polyethylene
71993 SO SURFACE ENGINEERING
71994 DT Article
71995 ID POLYMERS
71996 AB Surface modification of ultra high molecular weight polyeththylene
71997    (UHMWPE) was explored using ion implantation with diffferent dosages (1
71998    X 10(15)-1 X 10(17) ions cm(-2)) of nitrogen. The modified surfaces
71999    it.-ere characterised by SEM, nanoindentation and tribological tests.
72000    The experimental results showed that ion implantation can significantly
72001    increase the surface hardness of UHMWPE. However, the improvement in
72002    it-ear resistance of the modified UHMWPE is highly dose dependent.
72003    Compared with the untreated material, the low dose implanted UHMWPE
72004    exhibited a three fold improvement in wear resistance, while the high
72005    close ion implanted material showed hardly any improvement although it
72006    possessed the highest hardness. (C) 2003 IoM Communications Ltd.
72007    Publishcd by Maney for the Institute of Materials, Minerals and Mining.
72008 C1 Shanghai Univ, Sch Mat & Engn, Shanghai 200072, Peoples R China.
72009    Univ Birmingham, Sch Engn, Dept Met & Mat, Birmingham, W Midlands, England.
72010 RP Shi, W, Shanghai Univ, Sch Mat & Engn, Shanghai 200072, Peoples R China.
72011 CR CHARNLEY J, 1972, J BONE JOINT SURG BR, V54, P61
72012    DONG H, 1999, SURF COAT TECH, V111, P29
72013    HARRIS WH, 1995, CLIN ORTHOP RELAT R, P46
72014    PIVIN JC, 1994, NUCL INSTRUM METH B, V84, P484
72015    RAO GR, 1993, WEAR, V162, P739
72016    RAO GR, 1995, J MATER RES, V10, P190
72017    RUTHERFORD KL, 1996, SURF COAT TECH, V79, P231
72018    SHI W, 2000, MAT SCI ENG A-STRUCT, V291, P27
72019    SHI W, 2001, THESIS U BIRMINGHAM
72020    SHI W, 2001, WEAR 1, V250, P544
72021    SWAIN MV, 1997, J MATER RES, V12, P1917
72022    TOTH A, 2000, SURF INTERFACE ANAL, V30, P434
72023 NR 12
72024 TC 2
72025 SN 0267-0844
72026 J9 SURF ENG
72027 JI Surf. Eng.
72028 PD AUG
72029 PY 2003
72030 VL 19
72031 IS 4
72032 BP 279
72033 EP 283
72034 PG 5
72035 SC Materials Science, Coatings & Films
72036 GA 736XA
72037 UT ISI:000186197400005
72038 ER
72039 
72040 PT J
72041 AU Zhang, WG
72042    Chang, QS
72043    Fan, EG
72044 TI Methods of judging shape of solitary wave and solution formulae for
72045    some evolution equations with nonlinear terms of high order
72046 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
72047 DT Article
72048 DE solitary wave; exact solution; generalized modified Boussinesq
72049    equation; generalized nonlinear wave equation; generalized Fisher
72050    equation; generalized Klein-Gordon equation; generalized Zakharov
72051    equation
72052 ID KDV
72053 AB In this paper, we present several methods of judging shape of the
72054    solitary wave and solution formulae for some nonlinear evolution
72055    equations by means of Lienard equations. Then, using the judgement
72056    methods and solution formulae, we obtain solutions of the solitary wave
72057    for some of important nonlinear evolution equations, which include
72058    generalized modified Boussinesq, generalized nonlinear wave,
72059    generalized Fisher, generalized Klein-Gordon and generalized Zakharov
72060    equations. Some new solitary-wave solutions are found for the
72061    equations. (C) 2003 Published by Elsevier Inc.
72062 C1 Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100080, Peoples R China.
72063    Shanghai Univ Sci & Technol, Dept Basic Sci, Shanghai 200093, Peoples R China.
72064    Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
72065 RP Chang, QS, Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math,
72066    Beijing 100080, Peoples R China.
72067 CR KAWAHARA T, 1983, PHYS LETT A, V97, P311
72068    KONG DX, 1995, PHYS LETT A, V196, P301
72069    KORSUNSKY S, 1997, NONLINEAR WAVE DISPE
72070    KORTEWEG DJ, 1895, PHILOS MAG, V39, P422
72071    MOHAMAD MNB, 1992, MATH METHOD APPL SCI, V15, P73
72072    WADATI M, 1975, J PHYS SOC JPN, V38, P673
72073    WANG ML, 1996, PHYS LETT A, V213, P279
72074    WANG MX, 1994, J MATH ANAL APPL, V182, P705
72075    WANG X, 1989, CHINESE SCI BULL, V34, P106
72076    WHITHAM GB, 1974, LINEAR NONLINEAR WAV
72077    ZAKHAROV VE, 1972, ZH EKSP TEOR FIZ, V35, P908
72078    ZAKHAROV VE, 1976, SOV PHYS JETP, V41, P465
72079    ZHANG WG, 1994, COMM APPL MATH COMPU, V8, P45
72080    ZHANG WG, 1996, ACTA MATH SCI, V16, P241
72081    ZHANG WG, 1998, ACTA MATH APPL SINIC, V21, P249
72082    ZHANG WG, 1999, APPL MATH MECH-ENGL, V20, P666
72083 NR 16
72084 TC 4
72085 SN 0022-247X
72086 J9 J MATH ANAL APPL
72087 JI J. Math. Anal. Appl.
72088 PD NOV 1
72089 PY 2003
72090 VL 287
72091 IS 1
72092 BP 1
72093 EP 18
72094 PG 18
72095 SC Mathematics, Applied; Mathematics
72096 GA 737BL
72097 UT ISI:000186208400001
72098 ER
72099 
72100 PT J
72101 AU Lin, BL
72102    Shi, ZR
72103 TI Noncreasy and uniformly noncreasy Orlicz function spaces
72104 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
72105 DT Article
72106 DE noncreasy; uniformly noncreasy; Orlicz function spaces
72107 AB We show that in Orlicz function spaces with Orlicz/Luxemburg norm the
72108    criteria for being non-creasy and uniformly noncreasy are interesting
72109    combinations of conditions. (C) 2003 Elsevier Inc. All rights reserved.
72110 C1 Univ Iowa, Dept Math, Iowa City, IA 52242 USA.
72111    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
72112 RP Lin, BL, Univ Iowa, Dept Math, Iowa City, IA 52242 USA.
72113 CR CHEN ST, 1996, THESIS WARSZAWA, P356
72114    KRASNOSELSKII MA, 1961, CONVEX FUNCTIONS ORL
72115    PRUS S, 1997, NONLINEAR ANAL-THEOR, V30, P2317
72116 NR 3
72117 TC 0
72118 SN 0022-247X
72119 J9 J MATH ANAL APPL
72120 JI J. Math. Anal. Appl.
72121 PD NOV 1
72122 PY 2003
72123 VL 287
72124 IS 1
72125 BP 253
72126 EP 264
72127 PG 12
72128 SC Mathematics, Applied; Mathematics
72129 GA 737BL
72130 UT ISI:000186208400016
72131 ER
72132 
72133 PT J
72134 AU Zhu, LH
72135    Huang, QW
72136    Zhao, HF
72137 TI Preparation of nanocrystalline WC-10Co-0.8VC by spark plasma sintering
72138 SO JOURNAL OF MATERIALS SCIENCE LETTERS
72139 DT Article
72140 ID POWDERS; CONSOLIDATION; PAS; WC
72141 C1 Shanghai Univ, Dept Mat Engn, Shanghai 200072, Peoples R China.
72142    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
72143 RP Zhu, LH, Shanghai Univ, Dept Mat Engn, Yanchang Rd, Shanghai 200072,
72144    Peoples R China.
72145 CR ELESKANDARANY MS, 2000, J ALLOY COMPD, V296, P175
72146    ELESKANDARANY MS, 2000, J ALLOY COMPD, V305, P225
72147    ELESKANDARANY MS, 2001, METALL MATER TRANS A, V32, P157
72148    JONES G, 1994, MATER MANUF PROCESS, V9, P1105
72149    OMORI M, 1999, MATER SCI FORUM, V308, P53
72150    SHEN Z, 2001, KEY ENG MATER, V206, P2155
72151    SHETTY DK, 1985, J MATER SCI, V20, P1873
72152    VENKATASWAMY MA, 1996, MAT SCI ENG A-STRUCT, V207, P153
72153    WANG SW, 1999, J MATER SCI LETT, V18, P1119
72154    YAMAZAKI K, 1996, J MATER PROCESS TECH, V56, P955
72155    YAO Z, 1998, MPR, V53, P26
72156 NR 11
72157 TC 3
72158 SN 0261-8028
72159 J9 J MATER SCI LETT
72160 JI J. Mater. Sci. Lett.
72161 PD NOV 15
72162 PY 2003
72163 VL 22
72164 IS 22
72165 BP 1631
72166 EP 1633
72167 PG 3
72168 SC Materials Science, Multidisciplinary
72169 GA 738CW
72170 UT ISI:000186270000021
72171 ER
72172 
72173 PT J
72174 AU Zhao, JD
72175    Chen, WC
72176 TI Global asymptotic stability of a periodic ecological model
72177 SO APPLIED MATHEMATICS AND COMPUTATION
72178 DT Article
72179 DE Lotka-Volterra system; periodic solution; global asymptotic stability
72180 ID LOTKA-VOLTERRA SYSTEM
72181 AB The periodic Lotka-Volterra model with m-predators and n-preys is
72182    considered in this paper. Under the suppose that the intrinsic growth
72183    rate of the prey species may be negative while the total intrinsic
72184    growth rate in a period are positive, sufficient conditions are
72185    obtained for existence and global asymptotic stability of the periodic
72186    solution of this model. (C) 2002 Elsevier Inc. All rights reserved.
72187 C1 Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China.
72188    Shanghai Univ Sci & Technol, Dept Appl Math, Shandong 271019, Peoples R China.
72189 RP Zhao, JD, Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R
72190    China.
72191 CR GOPALSAMY K, 1982, J AUSTRAL MATH SOC B, V24, P160
72192    GOPALSAMY K, 1985, J AUST MATH SOC B, V27, P66
72193    TINEO A, 1991, J MATH ANAL APPL, V159, P44
72194    YANG PH, 1999, J MATH ANAL APPL, V233, P221
72195    ZHAO XQ, 1991, MATH COMPUT MODEL, V15, P3
72196 NR 5
72197 TC 5
72198 SN 0096-3003
72199 J9 APPL MATH COMPUT
72200 JI Appl. Math. Comput.
72201 PD JAN 16
72202 PY 2004
72203 VL 147
72204 IS 3
72205 BP 881
72206 EP 892
72207 PG 12
72208 SC Mathematics, Applied
72209 GA 737BY
72210 UT ISI:000186209500021
72211 ER
72212 
72213 PT J
72214 AU Ni, QL
72215    Zhang, JC
72216    Liu, JM
72217    Shen, Y
72218 TI Fe/SAB-3 composite mesoporous materials and magnetic properties
72219 SO ACTA PHYSICO-CHIMICA SINICA
72220 DT Article
72221 DE composite mesoporous material; assemble; specific saturation
72222    magnetization
72223 AB A new series of mesoporous silica materials containing nanodispersed
72224    alpha-Fe2O3 were synthesized by different methods. X-ray diffraction
72225    patterns indicated that alpha-Fe2O3/SAB-3 had a hexagonal array pore
72226    structure. The N-2 adsorption and desorption showed that the materials
72227    had very high specific surface area. Fe3+ entered into pore wall, which
72228    was confirmed by Fourier-transform infrared spectroscopy. The results
72229    of magnetic measurements showed that the coercive force (H-c) of
72230    alpha-Fe2O3 decreased from 1765 Os to 87 Os, specific saturation
72231    magnetization (M-s) increased by 75.4% as compared with the
72232    conventional nano alpha-Fe2O3 particles.
72233 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
72234 RP Zhang, JC, Shanghai Univ, Sch Mat Sci & Engn, Jiading Campus, Shanghai
72235    201800, Peoples R China.
72236 CR BECK JS, 1992, J AM CHEM SOC, V114, P10834
72237    HUO QS, 1994, NATURE, V368, P317
72238    KOWALAK S, 2001, MICROPOR MESOPOR MAT, P283
72239    KRESGE CT, 1992, NATURE, V359, P710
72240    LEE CJ, 2002, J MATER SCI, V37, P2237
72241    MARIA DA, 1996, J PHYS CHEM-US, V100, P2178
72242    WANG LZ, 1999, CHINESE J CERAM SOC, V27, P89
72243    WANG LZ, 2002, J MATER SCI, V37, P801
72244    YUAN ZY, 1995, J CHEM SOC CHEM COMM, P973
72245    ZHAO D, 1995, J CHEM SOC CHEM COMM, P875
72246 NR 10
72247 TC 0
72248 SN 1000-6818
72249 J9 ACTA PHYS-CHIM SIN
72250 JI Acta Phys.-Chim. Sin.
72251 PD OCT
72252 PY 2003
72253 VL 19
72254 IS 10
72255 BP 944
72256 EP 947
72257 PG 4
72258 SC Chemistry, Physical
72259 GA 737NH
72260 UT ISI:000186238300011
72261 ER
72262 
72263 PT J
72264 AU Yang, GB
72265    Zhang, ZY
72266 TI Video object segmentation for head-shoulder sequences in the cellular
72267    neural networks architecture
72268 SO REAL-TIME IMAGING
72269 DT Article
72270 ID MOVING-OBJECTS
72271 AB MPEG-4 introduces the concept of video object to support content-based
72272    functionalities. Video object segmentation is a key step in defining
72273    the contents of any video sequences. Head-shoulder sequence (HSS) is
72274    typical in video conferencing and surveillance systems, in which
72275    real-time performance is required. Since background information can be
72276    obtained in advance and pre-stored, video segmentation for HSS can use
72277    background information a priori. To avoid the critical selection of
72278    threshold for gradient-based method, and to overcome the insufficiency
72279    of monochrome intensity-based change detection, an efficient color
72280    edge-based change detection scheme (CECD) is utilized in this paper. In
72281    order to meet the real-time performance for HSS, it is implemented in
72282    the cellular neural networks (CNN) architecture. The algorithm is
72283    mainly based on 3 by 3, linear templates. Because of CNN's high
72284    parallelism and computational abilities, real-time performance is
72285    achieved. Experimental results on several test sequences show the
72286    robustness of this approach. It can achieve better spatial accuracy and
72287    temporal coherency than COST211 AM. (C) 2003 Elsevier Ltd. All rights
72288    reserved.
72289 C1 Shanghai Univ, Sch Commun & Informat Engn, Dept Elect & Informat Engn, Shanghai 200072, Peoples R China.
72290 RP Yang, GB, Shanghai Univ, Sch Commun & Informat Engn, Dept Elect &
72291    Informat Engn, 149 Yanchang Rd, Shanghai 200072, Peoples R China.
72292 CR COST211 CALL AM COMP
72293    CAVALLARO A, 2001, P IEEE INT S CIRCUIT, P141
72294    CHUA LO, 1988, IEEE T CIRCUITS SYST, V35, P1257
72295    CHUA LO, 1989, M89130 UCBERL
72296    CHUA LO, 1991, IEEE T CIRCUITS SYST, V38, P1332
72297    CHUA LO, 1993, IEEE T CIRCUITS-I, V40, P147
72298    CZUNI L, 2001, REAL-TIME IMAGING, V7, P77
72299    MARTIN H, 2000, CELLULAR NEURAL NETW
72300    PAN J, 2002, P IEEE INT S CIRC SY, P803
72301    REKECZKY C, VISMOUSE CNN VISUAL
72302    ROSKA T, 1999, CNN SOFTWARE LIB VER
72303    SIKORA T, 1997, IEEE T CIRC SYST VID, V7, P19
72304    TSAIG Y, 2002, IEEE T CIRC SYST VID, V12, P597
72305    VAITHIANATHAN K, 2000, IM VID COMM PROC C S, V3974, P191
72306    WOLLBORN M, 1998, REFINED PROCEDURE OB
72307    YIN CL, 1999, J FRANKLIN I, V336, P903
72308    ZARANDY A, 1998, IEEE T CIRCUITS-I, V45, P163
72309    ZHANG DS, 2001, CIRC SYST SIGNAL PR, V20, P143
72310 NR 18
72311 TC 0
72312 SN 1077-2014
72313 J9 REAL-TIME IMAGING
72314 JI Real-Time Imaging
72315 PD JUN
72316 PY 2003
72317 VL 9
72318 IS 3
72319 BP 171
72320 EP 178
72321 PG 8
72322 SC Computer Science, Artificial Intelligence; Computer Science, Software
72323    Engineering; Computer Science, Theory & Methods
72324 GA 733VJ
72325 UT ISI:000186021100002
72326 ER
72327 
72328 PT J
72329 AU Shen, JQ
72330    Riebel, U
72331 TI Particle size analysis by transmission fluctuation spectrometry:
72332    Experimental results obtained with a Gaussian beam and analog signal
72333    processing
72334 SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION
72335 DT Article
72336 DE expectancy of the transmission square; particle size analysis;
72337    transmission fluctuation spectrometry
72338 ID STERICALLY INTERACTING SYSTEMS; MONODISPERSE SPHERES; FUNDAMENTALS;
72339    EXTINCTION
72340 AB Transmission fluctuation spectrometry (TFS) is a method for the
72341    analysis of particle size distributions based on the statistical
72342    fluctuations of a transmission signal. Complete information on the PSD
72343    and particle concentration can be retrieved by a special transformation
72344    of the transmission signal, whereby the expectancy of the transmission
72345    square (ETS) is determined after the signal has been subjected to a
72346    procedure of spatial and temporal averaging. By varying the averaging
72347    parameters over a wide range, a spectrum of ETSs is obtained and
72348    introduced into a linear equation system, which yields the PSD. In the
72349    experimental realization presented here, variable temporal averaging is
72350    realized in the frequency domain with a series of low pass filters at
72351    different cutoff frequencies while spatial averaging inevitably occurs
72352    as the particles pass through a focused Gaussian beam of finite cross
72353    section. Experimental results on spherical particles (glass beads) and
72354    non-spherical particles (SiC) are presented. The PSDs are resolved in
72355    30 intervals within a particle size range from 1-1000 mum, employing a
72356    modified Chahine inversion algorithm. So far, the measurements are
72357    limited to moderate particle concentrations. Some influences affecting
72358    the measurements, especially for higher particle concentrations, are
72359    discussed in detail.
72360 C1 Univ Cottbus, Lehrstuhl Mech Verfahrensttech, D-03013 Cottbus, Germany.
72361    Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
72362 RP Shen, JQ, Univ Cottbus, Lehrstuhl Mech Verfahrensttech, D-03013
72363    Cottbus, Germany.
72364 CR ALLEN T, 1990, PARTICLE SIZE MEASUR
72365    BREITENSTEIN M, 1999, PART PART SYST CHAR, V16, P249
72366    BREITENSTEIN M, 2000, THESIS COTTBUS
72367    BREITENSTEIN M, 2001, PART PART SYST CHAR, V18, P134
72368    FELLER U, 1998, P 7 EUR S PART CHAR, P367
72369    FERRI F, 1995, APPL OPTICS, V34, P5829
72370    GASKILL JD, 1978, LINEAR SYSTEMS FOURE
72371    GREGORY J, 1986, J COLLOID INTERFACE, V105
72372    KRAUTER U, 1995, PART PART SYST CHAR, V12, P132
72373    KRAUTER U, 1995, THESIS U KARLSRUHE
72374    LLOYD JJ, 1997, J AEROSOL SCI, V28, P821
72375    RIEBEL U, 1994, PART PART SYST CHAR, V11, P212
72376    SHEN J, 2001, PART PART SYST CHAR, V18, P254
72377    SHEN JQ, 2003, PART PART SYST CHAR, V20, P94
72378 NR 14
72379 TC 6
72380 SN 0934-0866
72381 J9 PART PART SYST CHARACT
72382 JI Part. Part. Syst. Charact.
72383 PD SEP
72384 PY 2003
72385 VL 20
72386 IS 4
72387 BP 250
72388 EP 258
72389 PG 9
72390 SC Engineering, Chemical; Materials Science, Characterization & Testing
72391 GA 733XL
72392 UT ISI:000186025900003
72393 ER
72394 
72395 PT J
72396 AU Wang, XD
72397    You, B
72398    Ji, WS
72399    Li, Y
72400 TI Configuration of a stepped impedance bandpass filter
72401 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
72402 DT Article
72403 DE stripline filters; bandpass filters; stepped-impedance resonators
72404 AB This paper describes the design of a compact stripline ceramic filter,
72405    using short-circuit stepped-impedance resonators (SIRs) to enhance the
72406    harmonic stop-band response. Moreover, this filter has a very small
72407    size of 3.6 mm x 3.0 mm x 0.5 mm and a low insertion loss of 0. 6 dB in
72408    the passband. The filter's response, with a design center frequency of
72409    2390 MHz and 3-dB bandwidth at 250 MHz (10.4%), shows an increase in
72410    the first harmonic frequency to 9004 MHz. At three times the
72411    fundamental passband frequency (7160 MHz), stop-band attenuation is
72412    better than -40 dB. The results demonstrate the usefulness of SIRs for
72413    improving the stopband performance of bandpass filters. (C) 2003 Wiley
72414    Periodicals, Inc.
72415 C1 Shanghai Univ, Dept Commun & Informat Engn, Shanghai, Peoples R China.
72416 RP Wang, XD, Shanghai Univ, Dept Commun & Informat Engn, Shanghai, Peoples
72417    R China.
72418 CR CRUTE JR, 2002, MICROW OPT TECHN LET, V34, P336
72419    MATTAEI GL, 1964, MICROWAVE FILTERS IM
72420    MATTHAEI GL, 1962, IRE T MICROWAVE THEO, V10, P479
72421    SAGAWA M, 1985, IEEE T MICROW THEORY, V33, P152
72422 NR 4
72423 TC 0
72424 SN 0895-2477
72425 J9 MICROWAVE OPT TECHNOL LETT
72426 JI Microw. Opt. Technol. Lett.
72427 PD DEC 5
72428 PY 2003
72429 VL 39
72430 IS 5
72431 BP 380
72432 EP 383
72433 PG 4
72434 SC Engineering, Electrical & Electronic; Optics
72435 GA 734WR
72436 UT ISI:000186081400011
72437 ER
72438 
72439 PT J
72440 AU Zhang, JQ
72441    Zhang, BN
72442    Fan, JH
72443 TI A coupled electromechanical analysis of a piezoelectric layer bonded to
72444    an elastic substrate: Part I, development of governing equations
72445 SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
72446 DT Article
72447 ID CERAMIC MULTILAYER ACTUATORS; FRACTURE-MECHANICS; INTERFACE CRACK;
72448    STRAIN-TRANSFER; SYSTEMS; DESIGN; PLATE
72449 AB This two-part contribution presents a novel and efficient method to
72450    analyze the two-dimensional (2-D) electromechanical fields of a
72451    piezoelectric layer bonded to an elastic substrate, which takes into
72452    account the fully coupled electromechanical behavior. In Part I,
72453    Hellinger-Reissner variational principle for elasticity is extended to
72454    electromechanical problems of the bimaterial, and is utilized to obtain
72455    the governing equations for the problems concerned. The 2-D
72456    electromechanical field quantities in the piezoelectric layer are
72457    expanded in the thickness-coordinate with seven one-dimensional (1-D)
72458    unknown functions. Such an expansion satisfies exactly the mechanical
72459    equilibrium equations, Gauss law, the constitutive equations, two of
72460    the three displacement-strain relations as well as one of the two
72461    electric field-electric potential relations. For the substrate the
72462    fundamental solutions of a half-plane subjected to a vertical or
72463    horizontal concentrated force on the surface are used. Two differential
72464    equations and two singular integro-differential equations of four
72465    unknown functions, the axial force, N, the moment, M, the average and
72466    the first moment of electric displacement, D-0 and D-1, as well as the
72467    associated boundary conditions have been derived rigorously from the
72468    stationary conditions of Hellinger-Reissner variational functional. In
72469    contrast to the thin film/substrate theory that ignores the interfacial
72470    normal stress the present one can predict both the interfacial shear
72471    and normal stresses, the latter one is believed to control the
72472    delamination initiation. (C) 2003 Elsevier Ltd. All rights reserved.
72473 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
72474    Chongqing Univ, Res Ctr Mat Mech, Chongqing 400044, Peoples R China.
72475 RP Zhang, JQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
72476    200072, Peoples R China.
72477 CR ANDERSON EH, 1994, J SOUND VIB, V174, P617
72478    CHANDRASEKARAN S, 2000, J INTEL MAT SYST STR, V11, P887
72479    CHATTOPADHYAY A, 1999, AIAA J, V37, P248
72480    CHUE CH, 2002, INT J SOLIDS STRUCT, V39, P3131
72481    CRAWLEY EF, 1987, AIAA J, V25, P1373
72482    CRAWLEY EF, 1990, J INTELL MATER SYST, V1, P4
72483    GONG X, 1996, J MECH PHYS SOLIDS, V44, P751
72484    HAO TH, 1996, J MECH PHYS SOLIDS, V44, P23
72485    HERRMANN KP, 2001, INT J FRACTURE, V111, P203
72486    KIM SJ, 1996, J INTEL MAT SYST STR, V7, P668
72487    LIU M, 2003, J MECH PHYS SOLIDS, V51, P921
72488    MITCHELL JA, 1995, INT J SOLIDS STRUCT, V32, P2345
72489    MOLYET KE, 1999, SMART MATER STRUCT, V8, P672
72490    PAL PF, 2000, J INTEL MAT SYST STR, V11, P642
72491    PARK C, 1993, SMART MATER STRUCT, V5, P327
72492    PEELAMEDU SM, 1999, SMART MATER STRUCT, V8, P654
72493    ROBBINS DH, 1991, COMPUT STRUCT, V41, P265
72494    SHEN SP, 1999, EUR J MECH A-SOLID, V18, P219
72495    SOSA H, 1992, INT J SOLIDS STRUCT, V29, P2613
72496    SOSA HA, 1990, INT J SOLIDS STRUCT, V26, P1
72497    SOSA HA, 1992, MECH RES COMMUN, V19, P541
72498    SUO Z, 1992, J MECH PHYS SOLIDS, V40, P739
72499    TIERSTEN HF, 1969, LINEAR PIEZOELECTRIC
72500    WANG BT, 2000, J INTEL MAT SYST STR, V11, P713
72501    WANG XD, 2000, INT J SOLIDS STRUCT, V37, P3231
72502    WASHIZU K, 1982, VARIATIONAL METHODS
72503    XU XL, 2000, INT J SOLIDS STRUCT, V37, P3253
72504    YANG W, 1994, J MECH PHYS SOLIDS, V42, P649
72505    ZHANG BN, 2000, J CHONGQING U, V23, P38
72506    ZHANG BN, 2001, ACTA MECH SOL SIN, V22, P37
72507    ZHANG TY, 1996, INT J SOLIDS STRUCT, V33, P343
72508    ZHANG TY, 1998, INT J SOLIDS STRUCT, V35, P2121
72509    ZHANG TY, 2001, ADV APPL MECH, V38, P147
72510    ZHOU X, 2000, J INTEL MAT SYST STR, V11, P169
72511 NR 34
72512 TC 3
72513 SN 0020-7683
72514 J9 INT J SOLIDS STRUCT
72515 JI Int. J. Solids Struct.
72516 PD DEC
72517 PY 2003
72518 VL 40
72519 IS 24
72520 BP 6781
72521 EP 6797
72522 PG 17
72523 SC Mechanics
72524 GA 734ZH
72525 UT ISI:000186087500012
72526 ER
72527 
72528 PT J
72529 AU Zhang, BN
72530    Zhang, JQ
72531    Fan, JH
72532 TI A coupled electromechanical analysis of a piezoelectric layer bonded to
72533    an elastic substrate: Part II, numerical solution and applications
72534 SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
72535 DT Article
72536 ID INTEGRAL-EQUATIONS; AIRFOIL
72537 AB This two-part contribution presents a novel and efficient method to
72538    analyze the two-dimensional (2-D) electromechanical fields of a
72539    piezoelectric layer bonded to an elastic substrate, which takes into
72540    account the fully coupled electric and mechanical behaviors. In Part I,
72541    we have obtained a system of governing integro-differential equations
72542    for the structure via a variational principle. This part presents a
72543    numerical solution algorithm of the integro-differential equations and
72544    the numerical results of some applications. A numerical algorithm for
72545    solving the system of four integro-differential equations with strongly
72546    singular kernels is developed. The convergence of the numerical
72547    algorithm is discussed. The numerical results suggest that the fully
72548    coupled electromechanical analysis is helpful for a better
72549    understanding of the performance of the piezoelectric sensor and
72550    actuator. The interfacial normal stress is much higher than the
72551    interfacial shear stress, suggesting that the interfacial normal stress
72552    causes a delamination initiation. (C) 2003 Elsevier Ltd. All rights
72553    reserved.
72554 C1 Chongqing Univ, Res Ctr Mat Mech, Chongqing 400044, Peoples R China.
72555    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
72556 RP Zhang, JQ, Chongqing Univ, Res Ctr Mat Mech, Chongqing 400044, Peoples
72557    R China.
72558 CR BENES E, 1995, SENSOR ACTUAT A-PHYS, V48, P1
72559    BLAND SR, 1970, SIAM J NUMER ANAL, V18, P830
72560    CESS RD, 1969, APPL SCI RES, V20, P25
72561    DELVES LM, 1974, NUMERICAL SOLUTION I
72562    DRAGOS L, 1990, AIAA J, V28, P2132
72563    ERDOGAN F, 1972, Q APPL MATH, V29, P525
72564    FRANKEL JI, 1995, Q APPL MATH, V53, P245
72565    KAYA AC, 1987, Q APPL MATH, V45, P105
72566    LAPIDUS L, 1982, NUMERICAL SOLUTIONS
72567    LI LK, 1999, NUMERICAL SOLUTION D
72568    LOAKIMIDIS NI, 1983, MATH COMPUT, V41, P79
72569    MUSKHELISHVILI NI, 1953, SINGULAR INTEGRAL EQ
72570    PAL PF, 2000, J INTEL MAT SYST STR, V11, P642
72571    PLOTKIN A, 1988, AIAA J, V26, P493
72572    QI H, 2001, ACTA MECH SINICA, V17, P59
72573    SANKAR TS, 1982, INT J NUMER METH ENG, V18, P503
72574    SOSA H, 1991, INT J SOLIDS STRUCT, V28, P491
72575    STYS K, 2000, J COMPUT APPL MATH, V126, P33
72576    WANG BT, 2000, J INTEL MAT SYST STR, V11, P713
72577    WANG XD, 2000, INT J SOLIDS STRUCT, V37, P3231
72578 NR 20
72579 TC 2
72580 SN 0020-7683
72581 J9 INT J SOLIDS STRUCT
72582 JI Int. J. Solids Struct.
72583 PD DEC
72584 PY 2003
72585 VL 40
72586 IS 24
72587 BP 6799
72588 EP 6812
72589 PG 14
72590 SC Mechanics
72591 GA 734ZH
72592 UT ISI:000186087500013
72593 ER
72594 
72595 PT J
72596 AU Li, CP
72597 TI Controlling Hopf bifurcation of nonlinear dynamical systems
72598 SO DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES
72599    B-APPLICATIONS & ALGORITHMS
72600 DT Article
72601 DE nonlinear dynamical system; Hopf bifurcation; bifurcation control;
72602    equilibrium; the first Lyapunov coefficient
72603 ID LOCAL FEEDBACK STABILIZATION
72604 AB Hopf bifurcation has been a classical subject for study, yet the
72605    investigation of its control is relatively new. This paper discuss a
72606    general methodology of controlling Hopf bifurcation emerged in
72607    nonlinear dynamical systems. For notational simplicity, this topic is
72608    addressed under the three-dimensional setting, but all analysis and
72609    results can be theoretically extended to n-dimensional systems.
72610 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
72611 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
72612 CR ABED EH, 1986, SYST CONTROL LETT, V7, P11
72613    ABED EH, 1987, SYST CONTROL LETT, V8, P467
72614    CHEN G, 1998, CHAOS ORDER METHODOL
72615    CHEN G, 2003, IN PRESS INT J BIFUR, V13
72616    CHEN GR, 2000, INT J BIFURCAT CHAOS, V10, P511
72617    HASSARD B, 1980, THEORY APPL HOPF BIF
72618    KUZNETSOV YA, 1998, ELEMENTS APPL BIFURC
72619    LI CP, 2002, IN PRESS CONT TH APP
72620    LI CP, 2003, IN PRESS INT J BIFUR, V13
72621    MOIOLA JL, 1996, HOPF BIFURCATION ANA
72622    SYDEL R, 1988, EQUILIBRIUM CHAOS PR
72623 NR 11
72624 TC 0
72625 SN 1492-8760
72626 J9 DYN CONT DISCR IMP SYST SER B
72627 PD DEC
72628 PY 2003
72629 VL 10
72630 IS 6
72631 BP 891
72632 EP 898
72633 PG 8
72634 SC Mathematics, Applied
72635 GA 735TU
72636 UT ISI:000186131300010
72637 ER
72638 
72639 PT J
72640 AU Liu, DJ
72641    Li, XZ
72642 TI Tachyon vortex
72643 SO CHINESE PHYSICS LETTERS
72644 DT Article
72645 ID GLOBAL MONOPOLE; ROLLING TACHYON; STRINGS
72646 AB The properties and gravitational fields of global strings of tachyon
72647    matter are investigated in four-dimensional approximately cylindrically
72648    symmetric spacetime with a deficit angle. In particular, we give an
72649    exact solution of the tachyon field in the flat spacetime background
72650    and we also find the solution of the metric in the linearized
72651    approximation of gravity.
72652 C1 Shanghai Univ, Shanghai United Ctr Astrophys, Shanghai 200234, Peoples R China.
72653 RP Li, XZ, Shanghai Univ, Shanghai United Ctr Astrophys, Shanghai 200234,
72654    Peoples R China.
72655 CR CHEN CM, 1996, CLASSICAL QUANT GRAV, V13, P701
72656    CHO I, 1999, PHYS REV D, V59
72657    CHO IY, 1999, PHYS REV D, V59
72658    GIBBONS G, 2001, NUCL PHYS B, V596, P136
72659    GIBBONS GW, 2002, PHYS LETT B, V537, P1
72660    HAO JG, 2002, PHYS REV D, V66
72661    HAO JG, 2003, CLASSICAL QUANT GRAV, V20, P1703
72662    HAO JG, 2003, IN PRESS PHYS REV D, V68
72663    HAO JG, 2003, PHYS REV D, V67
72664    KIBBLE TWB, 1976, J PHYS A, V9, P1387
72665    LI XZ, 1997, COMMUN THEOR PHYS, V28, P101
72666    LI XZ, 2000, PHYS REV D, V62
72667    LI XZ, 2002, CHINESE PHYS LETT, V19, P1584
72668    LI XZ, 2002, HEPTH0207146
72669    LI XZ, 2002, PHYS REV D, V66
72670    LI XZ, 2003, PHYS REV D, V67
72671    LIU DJ, 2003, IN PRESS PHYS REV D, V68
72672    SEN A, 1998, J HIGH ENERGY PHYS
72673    SEN A, 1998, J HIGH ENERGY PHYS
72674    SEN A, 1998, J HIGH ENERGY PHYS, P7
72675    SEN A, 2001, J MATH PHYS, V42, P2844
72676    SEN A, 2001, PASCOS P, P113
72677    SEN A, 2002, J HIGH ENERGY PHYS
72678    SEN A, 2002, J HIGH ENERGY PHYS
72679    SEN A, 2003, HEPTH030357
72680    SHI X, 1991, CLASSICAL QUANT GRAV, V8, P761
72681    STROMINGER A, 2002, HEPTH0202210
72682    VILENKIN A, 1985, PHYS REP, V121, P263
72683 NR 28
72684 TC 3
72685 SN 0256-307X
72686 J9 CHIN PHYS LETT
72687 JI Chin. Phys. Lett.
72688 PD OCT
72689 PY 2003
72690 VL 20
72691 IS 10
72692 BP 1678
72693 EP 1680
72694 PG 3
72695 SC Physics, Multidisciplinary
72696 GA 734DC
72697 UT ISI:000186039100007
72698 ER
72699 
72700 PT J
72701 AU Wang, XP
72702    Wang, LJ
72703    Zhang, QR
72704    Yao, N
72705    Zhang, BL
72706 TI Electroluminescence spectrum shift with switching behaviour of diamond
72707    thin films
72708 SO CHINESE PHYSICS LETTERS
72709 DT Article
72710 ID BORON
72711 AB We report a special phenomenon on switching behaviour and the
72712    electroluminescence (EL) spectrum shift of doped diamond thin films.
72713    Nitrogen and cerium doped diamond thin films were deposited on a
72714    silicon substrate by microwave plasma-assisted chemical vapour
72715    deposition system and other special techniques. An EL device with a
72716    three-layer structure of nitrogen doped diamond/cerium doped
72717    diamond/SiO2 thin films was made. The EL device was driven by a
72718    direct-current power supply. Its EL character has been investigated,
72719    and a switching behaviour was observed. The EL light emission colour of
72720    diamond films changes from yellow (590 nm) to blue (454 nm) while the
72721    switching behaviour appears.
72722 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
72723    Zhengzhou Inst Aeronaut Ind & Management, Zhengzhou 450005, Peoples R China.
72724    Zhengzhou Univ, Dept Phys, Zhengzhou 450052, Peoples R China.
72725 RP Wang, XP, Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093,
72726    Peoples R China.
72727 CR FRETAS JA, 1990, J MATER RES, V5, P2502
72728    HAFIZ MM, 1982, PHYS STATUS SOLIDI A, V71, P259
72729    KADANO M, 1990, MATER RES SOC S P, V162, P359
72730    MANIFACIER JC, 1976, J PHYS E SCI INSTRUM, V9, P1002
72731    MNFREDOTTI C, 1995, APPL PHYS LETT, V67, P3376
72732    SHEN SP, 1993, CHINESE SCI BULL, V38, P382
72733    TANAKA D, 1997, JPN J APPL PHYS, V36, P351
72734    TANAKA K, 1995, JPN J APPL PHYS 2, V34, L1651
72735    TANIGUCHI Y, 1989, JPN J APPL PHYS, V28, L1848
72736    VERCAEMST R, 1995, J LUMIN, V63, P19
72737    WANG XP, 1997, CHINESE PHYS LETT, V14, P772
72738    WANG XP, 2002, CHINESE PHYS LETT, V19, P717
72739    WANG XP, 2003, SEMICOND SCI TECH, V18, P144
72740    WEI YG, 2001, CHIN J LUMIN, V22, P243
72741    ZHANG BL, 1994, CHINESE PHYS LETT, V11, P235
72742    ZHANG BL, 1996, CHINESE PHYS LETT, V13, P455
72743    ZHANG BL, 1996, CHINESE SCI BULL, V41, P1075
72744    ZHANG HD, 2002, CHINESE PHYS LETT, V19, P1695
72745    ZHANG YF, 2001, CHINESE PHYS LETT, V18, P286
72746 NR 19
72747 TC 1
72748 SN 0256-307X
72749 J9 CHIN PHYS LETT
72750 JI Chin. Phys. Lett.
72751 PD OCT
72752 PY 2003
72753 VL 20
72754 IS 10
72755 BP 1868
72756 EP 1870
72757 PG 3
72758 SC Physics, Multidisciplinary
72759 GA 734DC
72760 UT ISI:000186039100061
72761 ER
72762 
72763 PT J
72764 AU Yao, Z
72765    Liu, GL
72766 TI Aerodynamic design method of cascade profiles based on load and blade
72767    thickness distribution
72768 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
72769 DT Article
72770 DE cascade design; hybrid problem; variational principle; finite element
72771    method
72772 ID VARIATIONAL-PRINCIPLES
72773 AB A cascade profile design method was proposed using the aerodynamic load
72774    and blade thickness distribution as the design constraints, which were
72775    correspondent to the demands from the aerodynamic characteristics and
72776    the blade strength. These constraints, together with all the other
72777    boundary conditions, were involved in the stationary conditions of a
72778    variational principle, in which the angle-function was employed as the
72779    unknown function. The angle-function (i.e., the circumferential angular
72780    coordinate) was defined in the image plane composed of the stream
72781    function coordinate ( circumferential direction) and streamline
72782    coordinate. The solution domain, i.e., the blade-to-blade passage, was
72783    transformed into a square in the image plane, while the blade contour
72784    was projected to a straight line; thus, the difficulty of the unknown
72785    blade geometry was avoided. The finite element method was employed to
72786    establish the calculation code. Applications show that this method can
72787    satisfy the design requests on the blade profile from both aerodynamic
72788    and strength respects. In addition, quite different from the most
72789    inverse-problem approaches that often encounter difficulties in the
72790    convergence of iteration, the present method shows a stable and fast
72791    convergence tendency. This will be significant for engineering
72792    applications.
72793 C1 Shanghai Univ Sci & Technol, Power Engn Sch, Shanghai 200093, Peoples R China.
72794    Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
72795 RP Yao, Z, Shanghai Univ Sci & Technol, Power Engn Sch, Shanghai 200093,
72796    Peoples R China.
72797 CR HORLOCK JK, 1958, AXIAL FLOW COMPRESSO
72798    LIU F, 2002, J GENE MED, V4, P342
72799    LIU GI, 1986, J ENG GAS TURB POWER, V108, P254
72800    LIU GL, 1980, SCI SINICA, V23, P1339
72801    LIU GL, 1982, CHINESE J ENG THERMO, V3, P138
72802    LIU GL, 1986, CHINESE J ENG THERMO, V7, P329
72803    YAO Z, 1989, J ACTA AERODYNAMICS, V7, P313
72804 NR 7
72805 TC 1
72806 SN 0253-4827
72807 J9 APPL MATH MECH-ENGL ED
72808 JI Appl. Math. Mech.-Engl. Ed.
72809 PD AUG
72810 PY 2003
72811 VL 24
72812 IS 8
72813 BP 886
72814 EP 892
72815 PG 7
72816 SC Mathematics, Applied; Mechanics
72817 GA 734FU
72818 UT ISI:000186045000003
72819 ER
72820 
72821 PT J
72822 AU Fu, JL
72823    Chen, LQ
72824 TI Non-Noether symmetries and conserved quantities of nonconservative
72825    dynamical systems
72826 SO PHYSICS LETTERS A
72827 DT Article
72828 DE conservation law; symmetry; nonconservative system; infinitesimal
72829    transformation
72830 AB This Letter focuses on studying non-Noether symmetries and conserved
72831    quantities of the nonconservative dynamical system. Based on the
72832    relationships among motion, nonconservative forces and Lagrangian, we
72833    present conservation laws on non-Noether symmetries for nonconservative
72834    dynamical systems. A criterion is obtained on which non-Noether
72835    symmetry leads to Noether symmetry in nonconservative systems. The
72836    Letter, also gives connection between the non-Noether symmetries and
72837    Lie point symmetries, and further obtains Lie invariants which form a
72838    complete set of invariants. Finally, an example is discussed to
72839    illustrate these results. (C) 2003 Elsevier B.V. All rights reserved.
72840 C1 Shangqiu Teachers Coll, Dept Phys, Shangqiu 476000, Peoples R China.
72841    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
72842    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
72843 RP Fu, JL, Shangqiu Teachers Coll, Dept Phys, Shangqiu 476000, Peoples R
72844    China.
72845 CR CICOGNA G, 1992, NUOVO CIMENTO B, V107, P1085
72846    HOJMAN SA, 1992, J PHYS A, V25, L291
72847    LUTZKY M, 1979, PHYS LETT A, V72, P86
72848    LUTZKY M, 1995, J PHYS A, V28, P637
72849    LUTZKY M, 1998, INT J NONLINEAR MECH, V33, P393
72850    MEI FX, 1999, APPL LIE GROUPS LIE, P151
72851    NOETHER AE, 1918, NACHR AKAD WISS GO 2, P235
72852 NR 7
72853 TC 25
72854 SN 0375-9601
72855 J9 PHYS LETT A
72856 JI Phys. Lett. A
72857 PD OCT 20
72858 PY 2003
72859 VL 317
72860 IS 3-4
72861 BP 255
72862 EP 259
72863 PG 5
72864 SC Physics, Multidisciplinary
72865 GA 733XB
72866 UT ISI:000186025000012
72867 ER
72868 
72869 PT J
72870 AU Zhang, J
72871    Oswald, TM
72872    Lineaweaver, WC
72873    Chen, Z
72874    Zhang, G
72875    Chen, Z
72876    Zhang, F
72877 TI Enhancement of rat sciatic nerve regeneration by fibronectin and
72878    laminin through a silicone chamber
72879 SO JOURNAL OF RECONSTRUCTIVE MICROSURGERY
72880 DT Article
72881 DE fibronectin; laminin; sciatic nerve regeneration; rat model
72882 ID CONTAINING GEL; REPAIR; COLLAGEN; GRAFT; TUBES; SURGERY; GUIDES; GAP
72883 AB In this study, the authors examined the effects of fibronectin and
72884    laminin on sciatic nerve regeneration in rats. Sixty-eight
72885    Sprague-Dawley rats underwent bilateral sciatic nerve transections and
72886    silicone tubulizations, with a 10-mm gap between the proximal and
72887    distal nerve stumps. Thirty rats (n=30) received 10 mug of fibronectin
72888    injection into the right sciatic nerve chamber, while saline was
72889    injected into the left nerve chamber, serving as the control. Another
72890    30 rats (n=30) were given 6 mug of laminin injection into the right
72891    nerve chambers and saline into the left chambers. At 1, 3, and 4 months
72892    postoperatively, electrophysiologic and histologic examinations,
72893    including nerve morphometry, were performed. Eight additional rats,
72894    receiving fibronectin (n=4) and laminin (n=4) injections, were used for
72895    horseradish peroxidase (HRP) tracing at 3 months postoperatively.
72896    Results from the study showed that fibronectin- and laminin-treated
72897    groups had significantly higher motor nerve conduction velocity and
72898    evoked muscle action potential amplitude of the anterior tibial muscle
72899    than the control group (p<0.01). Nerve diameter and the number of
72900    myelinated axons from the groups receiving fibronectin and laminin
72901    applications were greater than the controls (p<0.01). Also, a greater
72902    number of HRP-labeled motor neurons were found in the ventral horns and
72903    dorsal root ganglia of the fibronectin- and laminin-treatment groups
72904    compared to the controls. The authors conclude that local applications
72905    of fibronectin and laminin into the nerve chambers can significantly
72906    improve axonal regeneration and maturation of injured rat sciatic
72907    nerves.
72908 C1 Univ Mississippi, Med Ctr, Div Plast Surg, Jackson, MS 39216 USA.
72909    Shanghai Univ, Zhongshan Hosp, Dept Orthoped Surg, Shanghai 200041, Peoples R China.
72910    Univ Mississippi, Med Ctr, Div Plast Surg, Jackson, MS 39216 USA.
72911 RP Zhang, F, Univ Mississippi, Med Ctr, Div Plast Surg, 2500 N State St,
72912    Jackson, MS 39216 USA.
72913 CR BORA FW, 1987, J HAND SURG A, V12, P685
72914    CHEN Z, 1982, MICROSURGERY
72915    COLIN W, 1984, J DENT RES, V63, P987
72916    COOPER AR, 1981, EUR J BIOCHEM, V119, P189
72917    COTRAN RS, 1999, PATHOLOGIC BASIS DIS
72918    DELLON AL, 1988, PLAST RECONSTR SURG, V82, P849
72919    HOBSON MI, 1997, BRIT J PLAST SURG, V50, P125
72920    KAUPPILA T, 1993, EXP NEUROL, V123, P181
72921    LEBEAU JM, 1988, J NEUROCYTOL, V17, P161
72922    LUNDBORG G, 1994, J HAND SURG B, V19, P273
72923    MADISON R, 1985, EXP NEUROL, V88, P767
72924    MADISON RD, 1987, EXP NEUROL, V95, P378
72925    MANTHORPE M, 1983, J CELL BIOL, V97, P1882
72926    MATSUMOTO K, 2000, BRAIN RES, V868, P315
72927    MULLER H, 1987, BRAIN RES, V413, P320
72928    OLIVER N, 1992, J INVEST DERMATOL, V99, P579
72929    PUSSELL BA, 1985, J CLIN INVEST, V76, P143
72930    ROSEN JM, 1990, ANN PLAS SURG, V25, P375
72931    SCHWARZBAUER JE, 1991, CURR OPIN CELL BIOL, V3, P786
72932    TANG JB, 1993, J HAND SURG B, V18, P449
72933    TOBA T, 2000, J BIOMED MATER RES, V58, P622
72934    TONG XJ, 1994, BRAIN RES, V663, P155
72935    TRIGG DJ, 1998, AM J OTOLARYNG, V19, P29
72936    WEBER RA, 2000, PLAST RECONSTR SURG, V106, P1036
72937    WHITWORTH IH, 1995, J HAND SURG B, V20, P429
72938    WILLIAMS LR, 1983, J COMP NEUROL, V218, P460
72939 NR 26
72940 TC 0
72941 SN 0743-684X
72942 J9 J RECONSTR MICROSURG
72943 JI J. Reconstr. Microsurg.
72944 PD OCT
72945 PY 2003
72946 VL 19
72947 IS 7
72948 BP 467
72949 EP 472
72950 PG 6
72951 SC Surgery
72952 GA 731UQ
72953 UT ISI:000185905200005
72954 ER
72955 
72956 PT J
72957 AU Wang, QY
72958    Wu, SL
72959    Chen, JH
72960    Liu, F
72961    Chen, HL
72962 TI Expressions of Lewis antigens in human non-small cell pulmonary cancer
72963    and primary liver cancer with different pathological conditions
72964 SO JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH
72965 DT Article
72966 DE non-small cell pulmonary cancer; primary liver cancer; Lewis antigens;
72967    alpha 1,3Fucosyltransferase; metastasis
72968 ID HUMAN ALPHA(1,3)FUCOSYLTRANSFERASE GENE; FUCOSYL-TRANSFERASE; SIALYL
72969    LEWIS(X); HEPATOCARCINOMA CELLS; DETERMINES EXPRESSION;
72970    MOLECULAR-CLONING; LUNG-CANCER; X ANTIGEN;
72971    ALPHA-1,3-FUCOSYL-TRANSFERASE; CARCINOMA
72972 AB The expressions of three X series Lewis antigens, including Lewis X
72973    (Lex), sialyl Lewis X (SLe(x)) and sialyl dimeric Lewis X (SDLe(x))
72974    were studied with immuno-histochemical methods in human non-small cell
72975    pulmonary cancer (NSCPC) and primary liver cancer (PLC) with different
72976    pathological conditions. The Lewis antigens are mainly expressed on the
72977    cell surfaces, medially or slightly in,the cytoplasm, but not in the
72978    cell nuclei of the cancer tissues. The regions adjacent to the cancer
72979    tissues do not express any Lewis antigens. The positive rates of these
72980    antigens in NSCPC were within the range of 75%similar to86%. There was
72981    no apparent difference in positive rates between the cases with
72982    different differentiation and the presence or absence of metastasis in
72983    peripheral lymph nodes, nor among the three antigens, except that the
72984    positive rate of SDLex was lower (about 56%) in the cases with
72985    well/medium differentiation and without metastasis. However, the
72986    expression-intensities (SI indexes) of all three antigens were
72987    significantly higher in the samples of poor differentiation and with
72988    metastasis as compared to those with well/medium differentiation and
72989    without metastasis. The two sialyl Lewis antigens increased more
72990    significantly than non-sialylated Lex. The expressions of these
72991    antigens were also observed in the peripheral lymph nodes with
72992    metastasis, but not in those without metastasis. The positive rates of
72993    Lex, SLex and SDLex in human primary liver cancer were 83.3%, 88.9% and
72994    77.8%, respectively. In the cases with cancer cell thrombosis (CCT) in
72995    portal vein (an index of metastasis), the expressions of all these
72996    three antigens were stronger than those in the cases without CCT. SLex
72997    was the most abundant and most highly increased Lewis antigen on the
72998    surface of NSCPC and PLC, especially in the cases with poor
72999    differentiation and metastasis. In the study of the enzymatic basis of
73000    the increased Lewis antigens in PLC by using Northern blot, it was,
73001    found that the level of (alpha1,3 FucT-III NI mRNA in PLC tissues was
73002    much higher than that in the adjacent regions, and more significantly
73003    higher in the cancer tissues from patients with CCT in portal vein. In
73004    contrast, the expression of (alpha1,3 FucT-VII was rather low in cancer
73005    tissues and not different from the adjacent regions in spite of the
73006    presence or absence of CCT. These results reveal that the SLex in PLC
73007    is mainly synthesized by (alpha1,3 FucT-Ill NI (especially VI) and is
73008    the most important Lewis antigen involved in the metastasis of PLC.
73009 C1 Shanghai Univ, Sch Med, Dept Biochem, Minist Hlth,Key Lab Glycoconjugate Res, Shanghai 200032, Peoples R China.
73010    Guangxi Univ Tradit Chinese Med, Affiliated Hosp 1, Nanning, Peoples R China.
73011 RP Chen, HL, Shanghai Univ, Sch Med, Dept Biochem, Minist Hlth,Key Lab
73012    Glycoconjugate Res, Shanghai 200032, Peoples R China.
73013 CR BRINKMANVANDERLINDEN ECM, 1996, J BIOL CHEM, V271, P14492
73014    GUO P, 2003, J EXP CLIN CANC RES, V22, P135
73015    HAKOMORI S, 1996, CANCER RES, V56, P5309
73016    KUDO T, 1998, J BIOL CHEM, V273, P26729
73017    KUKOWSKALATALLO JF, 1990, GENE DEV, V4, P1288
73018    LIU F, 2001, BRIT J CANCER, V84, P1556
73019    LIU F, 2002, J CANCER RES CLIN, V128, P189
73020    LOWE JB, 1991, J BIOL CHEM, V266, P17467
73021    MATSUSAKO T, 1991, BIOCHEM BIOPH RES CO, V181, P1218
73022    MATSUSHITA Y, 1990, LAB INVEST, V63, P780
73023    NAKAMORI S, 1993, CANCER RES, V53, P3632
73024    NARIMATSU H, 1998, PROTEIN NUCL ACID EN, V48, P2394
73025    OGAWA J, 1994, CANCER, V73, P1177
73026    OGAWA J, 1997, CANCER, V79, P1678
73027    SAGERSTROM CG, 1996, LAB GUIDE RNA ISOLAT, P83
73028    SASAKI K, 1994, J BIOL CHEM, V269, P14730
73029    TAKADA A, 1993, CANCER RES, V53, P354
73030    TOGAYACHI A, 1999, INT J CANCER, V83, P70
73031    VARKI A, 1994, P NATL ACAD SCI USA, V91, P7390
73032    WESTON BW, 1992, J BIOL CHEM, V267, P24575
73033    WESTON BW, 1992, J BIOL CHEM, V267, P4152
73034 NR 21
73035 TC 1
73036 SN 0392-9078
73037 J9 J EXP CLIN CANCER RES
73038 JI J. Exp. Clin. Cancer Res.
73039 PD SEP
73040 PY 2003
73041 VL 22
73042 IS 3
73043 BP 431
73044 EP 440
73045 PG 10
73046 SC Oncology
73047 GA 731KC
73048 UT ISI:000185882000013
73049 ER
73050 
73051 PT J
73052 AU Zhang, ZL
73053    Wu, QS
73054    Ding, YP
73055 TI Inducing synthesis of US nanotubes by PTFE template
73056 SO INORGANIC CHEMISTRY COMMUNICATIONS
73057 DT Article
73058 DE CdS; nanotubes; membrane; inducing synthesis
73059 ID VANADIUM-OXIDE; DISULFIDE; ARRAY
73060 AB Using PTFE membrane as structure-directing template, the CdS nanotubes
73061    with the internal diameter of 100-130 nm, the wall thickness of 15-18
73062    nm, and the length of about 1.4 mum were inductively synthesized. (C)
73063    2003 Published by Elsevier B.V.
73064 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
73065    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
73066 RP Wu, QS, Tongji Univ, Dept Chem, 1239 Siping Rd, Shanghai 200092,
73067    Peoples R China.
73068 CR CHEN X, 2002, INORG CHEM, V41, P4524
73069    CHOPRA NG, 1995, SCIENCE, V269, P966
73070    HOYER P, 1996, LANGMUIR, V12, P1411
73071    KASUGA T, 1999, ADV MATER, V11, P1307
73072    LI YDD, 2002, J AM CHEM SOC, V124, P1411
73073    LIJIMA S, 1991, NATURE, V354, P56
73074    LU QY, 2002, NANOTECHNOLOGY, V13, P741
73075    NATH M, 2001, J AM CHEM SOC, V123, P4841
73076    SPAHR ME, 1998, ANGEW CHEM INT EDIT, V37, P1263
73077    TENNE R, 1992, NATURE, V360, P444
73078    WANG C, 2003, J MATER SCI LETT, V22, P413
73079    XU DP, 2002, CHIN J INORG CHEM, V18, P871
73080    ZHANG Y, 2000, ACTA PHYS-CHIM SIN, V16, P431
73081    ZHOU SM, 2003, EUR J INORG CHEM, V9, P1794
73082 NR 14
73083 TC 12
73084 SN 1387-7003
73085 J9 INORG CHEM COMMUN
73086 JI Inorg. Chem. Commun.
73087 PD NOV
73088 PY 2003
73089 VL 6
73090 IS 11
73091 BP 1393
73092 EP 1394
73093 PG 2
73094 SC Chemistry, Inorganic & Nuclear
73095 GA 732QR
73096 UT ISI:000185957500012
73097 ER
73098 
73099 PT J
73100 AU Chung, TS
73101    Zhang, SH
73102    Yu, CW
73103    Wong, KP
73104 TI Electricity market risk management using forward contracts with
73105    bilateral options
73106 SO IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION
73107 DT Article
73108 ID POWER MARKETS
73109 AB Extreme short-term price volatility in competitive electricity markets
73110    creates the need for risk management arrangements. A new electricity
73111    forward contract with bilateral financial options is introduced, which
73112    allows both seller and buyer to take advantage of flexibility in
73113    generation and consumption to obtain monetary benefits while
73114    simultaneously removing the risk of market price fluctuations. The
73115    option theory is incorporated to formulate the contract price. The
73116    strike prices of options are derived from solving an equilibrium model
73117    in which both the buyer and the seller aim to maximise their own
73118    profit. Theoretical analysis shows that the proposed optional forward
73119    contract presents a more equitable and reasonable payoff structure that
73120    allows the buyer and seller to earn a larger overall expected benefit,
73121    and the contractual arrangement supports efficiency in economic
73122    dispatch of electricity production and consumption. The insights
73123    obtained from these results will be helpful to participants' in the
73124    contractual decision-making process.
73125 C1 Hong Kong Polytech Univ, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China.
73126    Shanghai Univ, Dept Automat, Shanghai 200072, Peoples R China.
73127 RP Chung, TS, Hong Kong Polytech Univ, Dept Elect Engn, Kowloon, Hong
73128    Kong, Peoples R China.
73129 CR BJORGAN R, 1999, IEEE T POWER SYST, V14, P1285
73130    BJORGAN R, 2000, IEEE T POWER SYST, V15, P477
73131    COLLINS RA, 2002, IEEE T POWER SYST, V17, P100
73132    DAHLGREN RW, 2001, IEE P-GENER TRANSM D, V148, P189
73133    DAVID AK, 1994, IEE P-GENER TRANSM D, V141, P75
73134    DAVID AK, 2001, IEEE T ENERGY CONVER, V16, P352
73135    DENG SJ, 1999, THESIS U CALIFORNIA
73136    GEDRA TW, 1993, IEEE T POWER SYST, V8, P122
73137    GEDRA TW, 1994, IEEE T POWER SYST, V9, P1766
73138    GHOSH K, 1997, INT J ELEC POWER, V19, P75
73139    HERGUERA I, 2001, UTILITIES POLICY, V9, P73
73140    HULL JC, 1996, OPTIONS FUTURES OTHE
73141    KAYE RJ, 1990, IEEE T POWER SYST, V5, P46
73142    MANNILA T, 2000, P INT C EL UT DER RE, P587
73143    MIELCZARSKI W, 1999, IEEE POWER ENG REV, V19, P49
73144    OREN SS, 2001, DECIS SUPPORT SYST, V30, P279
73145    WOO CK, 2001, ENERG ECON, V23, P1
73146 NR 17
73147 TC 3
73148 SN 1350-2360
73149 J9 IEE PROC-GENER TRANSM DISTRIB
73150 JI IEE Proc.-Gener. Transm. Distrib.
73151 PD SEP
73152 PY 2003
73153 VL 150
73154 IS 5
73155 BP 588
73156 EP 594
73157 PG 7
73158 SC Engineering, Electrical & Electronic
73159 GA 731NG
73160 UT ISI:000185891600012
73161 ER
73162 
73163 PT J
73164 AU Hua, ZZ
73165    Li, BG
73166    Liu, ZJ
73167    Sun, DW
73168 TI Freeze-drying of liposomes with cryoprotectants and its effect on
73169    retention rate of encapsulated ftorafur and vitamin A
73170 SO DRYING TECHNOLOGY
73171 DT Article
73172 DE cryoprotectant; DSC; freeze-drying; ftorafur; glass transition
73173    temperature; HPLC; liposome; vitamin
73174 ID TRANSPORT-PROPERTIES; MOVING INTERFACE; FOOD MATERIALS; STABILIZATION;
73175    DEHYDRATION; TEMPERATURE; SHRINKAGE; TREHALOSE; VESICLES; BILAYER
73176 AB In this article, the glass transition temperature (T-g) of liposomal
73177    suspensions, in which glucose, sucrose, mannitol, and trehalose are
73178    used as cryoprotectants, are measured by differential scanning
73179    calorimetry (DSC). The protective effect of the cryoprotectants added
73180    for liposomes during freeze-drying is investigated. Results show that
73181    the T-g of liposomal suspension with trehalose is the highest, while
73182    that with glucose is the lowest. Depending on the concentration. the
73183    vesicle size of liposomes with trehalose as cryoprotectant varies less,
73184    while the vesicle size of liposomes, with glucose as cryoprotectant
73185    varies over a wider range during the process of freeze-drying.
73186    Water-soluble ftorafur and lipid-soluble vitamin A encapsulated in
73187    liposomes were freeze-dried. The retention rates of the encapsulated
73188    pharmaceuticals inside the liposomes are measured with high performance
73189    liquid chromatography. The results indicate that the retention rate for
73190    liposomes with trehalose is the highest, and the leakage of the
73191    pharmaceutical material is less than that with glucose used as a
73192    cryoprotectant. Through a series of experimental studies, trehalose is
73193    identified as a better cryoprotectant. An optimized freeze-drying
73194    procedure for liposomes is presented.
73195 C1 Natl Univ Ireland Univ Coll Dublin, Dept Agr & Food Engn, Dublin 2, Ireland.
73196    Shanghai Univ Sci & Technol, Inst Cryobiol Engn, Shanghai 201800, Peoples R China.
73197 RP Sun, DW, Natl Univ Ireland Univ Coll Dublin, Dept Agr & Food Engn,
73198    Earlsfort Terrace, Dublin 2, Ireland.
73199 CR ABDELREHIM ZS, 1998, DRY TECHNOL, V16, P799
73200    ARAKI T, 2001, DRY TECHNOL, V19, P297
73201    BRUTTINI R, 2001, DRY TECHNOL, V19, P2303
73202    CARPENTER JF, 1991, DEV BIOL STAND, V74, P225
73203    CHANDRASEKHAR I, 1988, J BIOMOL STRUCT DYN, V5, P1163
73204    CHENG J, 2002, DRY TECHNOL, V20, P553
73205    CROWE JH, 1989, BIOCHIM BIOPHYS ACTA, V979, P7
73206    CROWE LM, 1986, BIOCHIM BIOPHYS ACTA, V861, P131
73207    CROWE LM, 1991, DEV BIOL STAND, V74, P285
73208    KENICHI I, 1993, PHARMACEUT RES, V10, P1232
73209    LIAN Y, 1998, J PHARM SCI, V87, P774
73210    LIAPIS AI, 1995, DRY TECHNOL, V13, P43
73211    LIU ZJ, 2001, THESIS U SHANGHAI SC
73212    LOMBRANA JI, 2001, DRY TECHNOL, V19, P1613
73213    MADDEN TD, 1985, BIOCHIM BIOPHYS ACTA, V817, P67
73214    MARTINEZ SG, 2001, DRYING TECHNOLOGY, V19, P661
73215    MOREIRA R, 2000, DRY TECHNOL, V18, P279
73216    RAKOTOZAFY H, 2000, DRY TECHNOL, V18, P2253
73217    SABLANI SS, 2002, DRY TECHNOL, V20, P1379
73218    SADIKOGLU H, 1998, DRY TECHNOL, V16, P399
73219    SADIKOGLU H, 1999, DRY TECHNOL, V17, P2013
73220    SAGARA Y, 2001, DRY TECHNOL, V19, P281
73221    SHISHEHGARHA F, 2002, DRY TECHNOL, V20, P131
73222    STRAUSS G, 1986, BIOCHIM BIOPHYS ACTA, V858, P169
73223    SUZUKI T, 1999, DRY TECHNOL, V17, P1429
73224    TAMBUNAN AH, 2001, DRY TECHNOL, V19, P325
73225    TAMON H, 1999, DRY TECHNOL, V17, P1653
73226    TAMON H, 2001, DRY TECHNOL, V19, P313
73227 NR 28
73228 TC 0
73229 SN 0737-3937
73230 J9 DRY TECHNOL
73231 JI Dry. Technol.
73232 PY 2003
73233 VL 21
73234 IS 8
73235 BP 1491
73236 EP 1505
73237 PG 15
73238 SC Engineering, Chemical; Engineering, Mechanical
73239 GA 732XM
73240 UT ISI:000185970900007
73241 ER
73242 
73243 PT J
73244 AU Ping, H
73245    Zhang, JF
73246    Meng, JP
73247 TI Interaction between compacton and anticompacton, peakon and antipeakon
73248    in (2+1)-dimensional spaces
73249 SO CHINESE PHYSICS
73250 DT Article
73251 DE homogeneous balance method; compacton; peakon; (2+1)-dimensional
73252    dispersive long wave equation
73253 ID LONG-WAVE EQUATIONS; LOCALIZED COHERENT STRUCTURES; CAMASSA-HOLM
73254    EQUATION; SOLITON-STRUCTURES; KDV EQUATION; DIMENSIONS; KAUP
73255 AB Starting from the variable separation solution obtained by using the
73256    extended homogenous balance method, a class of novel localized coherent
73257    structures such as the multi-peakon-antipeakons solution and the
73258    multi-compacton-anticompactons solution of the (2 + 1)-dimensional
73259    dispersive long wave equation are found by selecting appropriate
73260    functions. These new structures exhibit some novel interaction features
73261    that are different from one of the known results. Their interaction
73262    behaviour is very similar to the completely elastic collisions between
73263    two classical particles.
73264 C1 Zhejiang Ocean Univ, Dept Phys, Zhoushan 316004, Peoples R China.
73265    Zhejiang Normal Univ, Inst Nucl Phys, Jinhua 321004, Peoples R China.
73266    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
73267    Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England.
73268 RP Ping, H, Zhejiang Ocean Univ, Dept Phys, Zhoushan 316004, Peoples R
73269    China.
73270 CR BENNEY DJ, 1964, J MATH PHYS, V43, P309
73271    BOITI M, 1987, INVERSE PROBL, V3, P371
73272    BROER LJF, 1975, APPL SCI RES, V31, P377
73273    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
73274    CHERTOCK A, 2001, J COMPUT PHYS, V171, P708
73275    COOPER F, 2001, PHYS REV E 2, V64
73276    FAN EG, 1998, ACTA PHYS SINICA, V7, P649
73277    HUANG WH, 2002, CHINESE PHYS, V11, P1101
73278    KAUP DJ, 1975, PROG THEOR PHYS, V54, P396
73279    KRAENKEL RA, 2000, PHYS LETT A, V273, P183
73280    LI ZB, 2001, ACTA PHYS SIN-CH ED, V50, P402
73281    LOU S, 1993, PHYS LETT A, V176, P96
73282    LOU SY, 1994, J PHYS A, V27, P3225
73283    LOU SY, 1995, MATH METHOD APPL SCI, V18, P789
73284    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
73285    MATVEEV VB, 1979, ANN I H POINCARE, V31, P25
73286    PAQUIN G, 1990, PHYSICA D, V46, P122
73287    QIAN TF, 2001, CHAOS SOLITON FRACT, V12, P1347
73288    ROSENAU P, 1993, PHYS REV LETT, V70, P564
73289    SHI YR, 2003, ACTA PHYS SIN-CH ED, V52, P267
73290    TANG XY, 2002, PHYS REV E, V66, P46601
73291    TIAN B, 1996, J PHYS A-MATH GEN, V29, P2895
73292    WANG ML, 1995, PHYS LETT A, V199, P169
73293    ZHANG JF, 1998, ACTA PHYS SINICA, V47, P1416
73294    ZHANG JF, 1999, CHINESE PHYS LETT, V16, P659
73295    ZHANG JF, 2000, COMMUN THEOR PHYS, V33, P577
73296    ZHANG JF, 2001, CHINESE PHYS, V10
73297    ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P2676
73298    ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P705
73299    ZHANG JF, 2002, COMMUN THEOR PHYS, V37, P277
73300 NR 30
73301 TC 0
73302 SN 1009-1963
73303 J9 CHIN PHYS
73304 JI Chin. Phys.
73305 PD OCT
73306 PY 2003
73307 VL 12
73308 IS 10
73309 BP 1166
73310 EP 1171
73311 PG 6
73312 SC Physics, Multidisciplinary
73313 GA 731UJ
73314 UT ISI:000185904600020
73315 ER
73316 
73317 PT J
73318 AU Zheng, CL
73319 TI Coherent soliton structures with chaotic and fractal behaviors in a
73320    generalized (2+1)-dimensional Korteweg de-Vries system
73321 SO CHINESE JOURNAL OF PHYSICS
73322 DT Article
73323 ID VARIABLE SEPARATION APPROACH; NOVIKOV-VESELOV EQUATION; NONLINEAR
73324    SCHRODINGER-EQUATION; DAVEY-STEWARTSON EQUATION; DISPERSIVE WAVE
73325    SYSTEM; NEWELL-SEGUR SYSTEM; KDV EQUATION; AKNS SYSTEM; EXCITATIONS;
73326    TRANSFORM
73327 AB In higher dimensions there are abundant coherent soliton excitations.
73328    In this work, we reveal a novel phenomenon whereby the localized
73329    excitations show chaotic and fractal behaviors in some (2 +
73330    1)-dimensional physical models. To clarify this interesting phenomenon,
73331    we take the generalized (2 + 1)-dimensional Korteweg de-Vries systems:
73332    v(t) + av(xxx) + bv(yyy) + cv(x) + dv(y) = 3a(uv)(x) + 3b(vw)(y), v(x)
73333    = u(y), u(y) = w(x) as a concrete example. By means of a new variable
73334    separation approach, a quite general variable separation solution of
73335    this system is derived. Along with the usual localized coherent soliton
73336    excitations such as dromions, lumps, rings, peakons, and oscillating
73337    soliton excitations, some new excitations like chaos and fractals are
73338    derived by introducing some types of lower dimensional chaotic and
73339    fractal patterns.
73340 C1 Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
73341    Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China.
73342    Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China.
73343 RP Zheng, CL, Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000,
73344    Peoples R China.
73345 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V30, P1262
73346    BOITI M, 1986, INVERSE PROBL, V2, P271
73347    CAO CW, 1990, SCI CHINA SER A, V33, P528
73348    CHEN HS, 2000, CHINESE PHYS LETT, V17, P85
73349    CHEN LL, 1999, ACTA PHYS SIN-CH ED, V48, P2149
73350    CLERC M, 1999, PHYS REV LETT, V83, P3820
73351    GEDALIN M, 1997, PHYS REV LETT, V78, P448
73352    HU XB, 1991, J PHYS A, V24, P1331
73353    HU XB, 1991, J PHYS A-MATH GEN, V24, P1979
73354    KONOPELCHENKO BG, 1991, PHYS LETT A, V175, P17
73355    LORENZ EN, 1963, J ATMOS SCI, V20, P130
73356    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
73357    LOU SY, 1997, J MATH PHYS, V38, P6401
73358    LOU SY, 1999, J MATH PHYS, V40, P6491
73359    LOU SY, 2000, CHINESE PHYS LETT, V17, P781
73360    LOU SY, 2000, PHYS LETT A, V277, P94
73361    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
73362    LOU SY, 2002, CHINESE PHYS LETT, V19, P769
73363    LOU SY, 2002, J MATH PHYS, V43, P4078
73364    LOU SY, 2002, PHYS SCRIPTA, V65, P7
73365    LOUTSENKO I, 1997, PHYS REV LETT, V78, P3011
73366    NIZHNIK LP, 1980, SOV PHYS DOKL, V25, P706
73367    NOVIKOV SP, 1986, PHYSICA D, V18, P267
73368    OHTA Y, 1992, J PHYS SOC JPN, V61, P3928
73369    RADHA R, 1994, J MATH PHYS, V35, P4746
73370    STEGEMAN GI, 1999, SCIENCE, V286, P1518
73371    TAGAMI Y, 1989, PHYS LETT A, V141, P116
73372    TAJIRI M, 1997, PHYS REV E B, V55, P3351
73373    TANG XY, 2002, CHAOS SOLITON FRACT, V14, P1451
73374    TANG XY, 2002, PHYS REV E, V66, P46601
73375    VESELOV AP, 1984, SOV MATH DOKL, V30, P88
73376    ZHANG JF, 2002, CHINESE PHYS, V11, P651
73377    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P448
73378    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
73379    ZHENG CL, 2002, COMMUN THEOR PHYS, V38, P653
73380    ZHENG CL, 2003, CHINESE PHYS, V12, P11
73381    ZHENG CL, 2003, CHINESE PHYS, V12, P472
73382    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P261
73383    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P9
73384 NR 39
73385 TC 6
73386 SN 0577-9073
73387 J9 CHIN J PHYS
73388 JI Chin. J. Phys.
73389 PD OCT
73390 PY 2003
73391 VL 41
73392 IS 5
73393 BP 442
73394 EP 455
73395 PG 14
73396 SC Physics, Multidisciplinary
73397 GA 733UL
73398 UT ISI:000186019000002
73399 ER
73400 
73401 PT J
73402 AU Chen, LQ
73403 TI A general formalism for synchronization in finite dimensional dynamical
73404    systems
73405 SO CHAOS SOLITONS & FRACTALS
73406 DT Article
73407 ID CHAOTIC SYSTEMS; FEEDBACK
73408 AB In this paper, an attempt is made to propose a general definition of
73409    synchronization for finite dimensional dynamical systems. The
73410    synchronization is defined here for two coupled dynamical systems with
73411    control inputs. Output functions of such systems are introduced to
73412    describe the systems' properties on which the synchronization problem
73413    focus. Exact synchronization, asymptotic synchronization, and
73414    approximate synchronization are, respectively, defined by comparing the
73415    output functions in the corresponding ways. The definition here can
73416    also include chaos control and anti-control. The definition here covers
73417    various synchronization investigated in the references. (C) 2003
73418    Elsevier Ltd. All rights reserved.
73419 C1 Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
73420    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200070, Peoples R China.
73421 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
73422 CR ASISCHENKO VS, 1998, PHYS REV E, V57, P316
73423    BLEKHMAN I, 1995, APPL MECH REV, V48, P733
73424    BLEKHMAN, 1988, SYNCHRONIZATION SCI
73425    BROWN R, 2000, CHAOS, V10, P344
73426    CHEN G, 1998, CHAOS ORDER METHODOL
73427    HAYES S, 1993, PHYS REV LETT, V70, P3014
73428    JOHN JK, 1994, INT J BIFURCAT CHAOS, V4, P1687
73429    MAINIERI R, 1999, PHYS REV LETT, V82, P3042
73430    PECORA LM, 1990, PHYS REV LETT, V64, P821
73431    PECORA LM, 1997, CHAOS, V7, P520
73432    ROSENBLUM MG, 1996, PHYS REV LETT, V76, P1804
73433    RULKOV NF, 1995, PHYS REV E, V51, P980
73434    WANG XF, 2000, INT J BIFURCAT CHAOS, V10, P549
73435    YANG XS, 2000, CHAOS SOLITON FRACT, V11, P1365
73436 NR 14
73437 TC 1
73438 SN 0960-0779
73439 J9 CHAOS SOLITON FRACTAL
73440 JI Chaos Solitons Fractals
73441 PD MAR
73442 PY 2004
73443 VL 19
73444 IS 5
73445 BP 1239
73446 EP 1242
73447 PG 4
73448 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
73449 GA 732LU
73450 UT ISI:000185948200026
73451 ER
73452 
73453 PT J
73454 AU Shan, EF
73455    Sohn, MY
73456    Kang, LY
73457 TI Upper bounds on signed 2-independence number of graphs
73458 SO ARS COMBINATORIA
73459 DT Article
73460 DE signed 2-independence function; signed domination; r-partite graph
73461 ID REGULAR GRAPHS; DOMINATION
73462 AB A function f: V --> {-1, 1} defined on the vertices of a graph G = (V,
73463    E) is a signed 2-independence function if the sum of its function
73464    values over any closed neighbourhood is at most one. That is, for every
73465    v is an element of V, f (N[v]) less than or equal to 1, where N[v]
73466    consists of v and every vertex adjacent to v. The weight of a signed
73467    2-independence function is f(V) = Sigmaf(v), over all vertices v is an
73468    element of V. The signed 2-independence number of a graph G, denoted
73469    alpha(s)(2)(G), is the maximum weight of a signed 2-independence
73470    function of G. In this article, we give some new upper bounds on
73471    alpha(s)(2)(G) of G, and establish a sharp upper bound on
73472    alpha(s)(2)(G) for an r-partite graph.
73473 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
73474    Changwon Natl Univ, Dept Math Appl, Changwon 641773, Peoples R China.
73475    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
73476 RP Shan, EF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
73477 CR DUNBAR JE, 1995, GRAPH THEORY COMBINA, V1, P311
73478    FAVARON O, 1996, DISCRETE MATH, V158, P287
73479    FUREDI Z, 1999, J COMB THEORY B, V76, P223
73480    HAYNES TW, 1998, FUNDAMENTALS DOMINAT
73481    HENNING MA, 1998, DOMINATION GRAPHS, V2, P31
73482    HENNING MA, 2002, DISCRETE MATH, V250, P93
73483    KANG L, IN PRESS DISCRETE MA
73484    KANG LY, 2000, ARS COMBINATORIA, V56, P121
73485    KANG LY, 2002, DISCRETE MATH, V247, P229
73486    ZELINKA B, UNPUB SIGNED 2 INDEP
73487 NR 10
73488 TC 0
73489 SN 0381-7032
73490 J9 ARS COMB
73491 JI ARS Comb.
73492 PD OCT
73493 PY 2003
73494 VL 69
73495 BP 229
73496 EP 239
73497 PG 11
73498 SC Mathematics
73499 GA 733NP
73500 UT ISI:000186007800021
73501 ER
73502 
73503 PT J
73504 AU Gao, ZY
73505    He, GP
73506    Wu, F
73507 TI Sequential systems of linear equations algorithm for nonlinear
73508    optimization problems - general constrained problems
73509 SO APPLIED MATHEMATICS AND COMPUTATION
73510 DT Article
73511 DE constrained optimization; algorithm; sequential systems of linear
73512    equations; coefficient matrices; auxiliary problem
73513 ID CONVERGENCE
73514 AB In Ref. [J. Comput. Math. 20 (3) (2002) 301], a new superlinearly
73515    convergent algorithm of sequential systems of linear equations for
73516    nonlinear optimization problems with inequality constraints was
73517    proposed. Since the new algorithm only needs to solve four systems of
73518    linear equations having a same coefficient matrix per iteration, the
73519    computation amount of the algorithm is much less than that of the
73520    existing sequential quadratic programming algorithms per iteration.
73521    Under some mild assumptions, the new algorithm is globally convergent
73522    and its rate of convergence is one-step superlinearly. In this paper,
73523    it is shown that the new algorithm also can be used to deal with
73524    nonlinear optimization problems having nonlinearly equality and
73525    inequality constraints, by solving an auxiliary problem. Some numerical
73526    results are reported. (C) 2002 Elsevier Inc. All rights reserved.
73527 C1 No Jiaotong Univ, Transportat Sch, Beijing 100044, Peoples R China.
73528    Shanghai Univ Sci & Technol, Sch Informat, Tai An 271019, Peoples R China.
73529    Acad Sinica, Inst Appl Math, Beijing 100080, Peoples R China.
73530 RP Gao, ZY, No Jiaotong Univ, Transportat Sch, Beijing 100044, Peoples R
73531    China.
73532 CR CHAMBERLAIN RM, 1982, MATH PROGRAMMING STU, V16, P1
73533    GAO ZY, 1993, THESIS I APPL MATH B
73534    GAO ZY, 2002, J COMPUT MATH, V20, P301
73535    HERSKOVITS J, 1986, MATH PROGRAM, V36, P19
73536    HOCK W, 1981, LECT NOTES EC MATH S, V187
73537    MAYNE DQ, 1976, MATH PROGRAM, V11, P67
73538    PANIER ER, 1988, SIAM J CONTROL OPTIM, V26, P788
73539    POWELL MJD, 1982, LECTURE NOTES CONTRO, V38, P529
73540    SCHITTKOWSKI K, 1981, NUMER MATH, V38, P83
73541    SCHITTKOWSKI K, 1987, LECT NOTES EC MATH S, V282
73542 NR 10
73543 TC 1
73544 SN 0096-3003
73545 J9 APPL MATH COMPUT
73546 JI Appl. Math. Comput.
73547 PD JAN 5
73548 PY 2004
73549 VL 147
73550 IS 1
73551 BP 211
73552 EP 226
73553 PG 16
73554 SC Mathematics, Applied
73555 GA 732NR
73556 UT ISI:000185952900017
73557 ER
73558 
73559 PT J
73560 AU Wei, EB
73561    Yang, ZD
73562    Song, JB
73563 TI Effective dielectric response of graded spherical composites
73564 SO PHYSICS LETTERS A
73565 DT Article
73566 DE effective dielectric response; graded material; hypergeometric function
73567 ID GRADIENT MATERIAL; FABRICATION
73568 AB The effective dielectric response of composites containing graded
73569    material is investigated when an external uniform electric field E-0 is
73570    applied to it. For a spherical particle with gradient dielectric
73571    constant, epsilon(i) (r) = b + cr, randomly embedded in a host with
73572    dielectric constant epsilon(m), we have obtained the exact solution of
73573    local electric potential in the composite media regions, which obey a
73574    linear constitutive relation D = epsilonE, using hypergeometric
73575    function. In dilute limit, the effective dielectric response of the
73576    linear graded composite media is derived. Furthermore, for larger
73577    volume fraction, we have given an effective medium approximation to
73578    estimate the effective dielectric response of the graded composite
73579    media. (C) 2003 Elsevier B.V All rights reserved.
73580 C1 Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R China.
73581    Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
73582 RP Wei, EB, Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R
73583    China.
73584 CR AMADA S, 1995, MRS BULL, V20, P35
73585    BAILEY WN, 1935, GEN HYPERGEOMETRICS
73586    BISHOP A, 1993, J MATER SCI LETT, V12, P1516
73587    CHEN YF, 1996, J MECH PHYS SOLIDS, V44, P771
73588    DONG L, 2003, PHYS REV B, V67
73589    GU GQ, 1992, PHYS REV B, V46, P4502
73590    GU GQ, 2003, IN PRESS J APPL PHYS, V93
73591    LANDAU LD, 1960, ELECTRODYNAMICS CONT
73592    MANHART PK, 1997, OPT ENG, V36, P1607
73593    MAXWELL JC, 1873, ELECT MAGNETISM
73594    PARK CW, 2000, IND ENG CHEM RES, V39, P79
73595    VASILEVSKIY MI, 1996, PHYS REV B, V54, P5844
73596    WATANABE R, 1995, MRS BULL, V20, P32
73597    ZHU JC, 1996, J MATER SCI, V31, P5829
73598 NR 14
73599 TC 3
73600 SN 0375-9601
73601 J9 PHYS LETT A
73602 JI Phys. Lett. A
73603 PD OCT 6
73604 PY 2003
73605 VL 316
73606 IS 6
73607 BP 419
73608 EP 423
73609 PG 5
73610 SC Physics, Multidisciplinary
73611 GA 729ZE
73612 UT ISI:000185804100011
73613 ER
73614 
73615 PT J
73616 AU Sun, T
73617    Hu, HY
73618 TI Nonlinear dynamics of a planetary gear system with multiple clearances
73619 SO MECHANISM AND MACHINE THEORY
73620 DT Article
73621 DE planetary gear transmission; nonlinear vibration; Fourier transform;
73622    harmonic balance method; dynamic
73623 ID LOAD; PAIR
73624 AB Presented in this paper is on the nonlinear dynamics of a planetary
73625    gear system with multiple clearances taken into account. A
73626    lateral-torsional coupled model is established with multiple
73627    backlashes, time-varying mesh stiffness, error excitation and sun-gear
73628    shaft compliance considered. The solutions are determined by using
73629    harmonic balance method from the equations in matrix form. The
73630    theoretical results from HBM are verified by using the numerical
73631    integration. Finally, effects of parameters are discussed. (C) 2003
73632    Elsevier Ltd. All rights reserved.
73633 C1 Shanghai Univ, Dept Precis Mech Engn, Shanghai 200072, Peoples R China.
73634    Nanjing Univ Aeronaut & Astronaut, Inst Vibrat Engn, Nanjing 210016, Peoples R China.
73635 RP Sun, T, Shanghai Univ, Dept Precis Mech Engn, Shanghai 200072, Peoples
73636    R China.
73637 CR *MICR INC, 1994, IMSL LIB REF
73638    COMPARIN RJ, 1989, J SOUND VIB, V134, P259
73639    HIDAKA T, 1980, B JSME, V23, P315
73640    KAHRAMAN A, 1990, J SOUND VIB, V142, P49
73641    KAHRAMAN A, 1991, J SOUND VIB, V144, P469
73642    KAHRAMAN A, 1994, MECH MACH THEORY, V29, P1151
73643    KUBO A, 1972, T JAPAN SOC MECHANIC, V38, P2692
73644    MUNRO RG, 1962, THESIS CAMBRIDGE U
73645    OZGUVEN HN, 1988, J SOUND VIBRATION, V125, P71
73646 NR 9
73647 TC 1
73648 SN 0094-114X
73649 J9 MECH MACH THEOR
73650 JI Mech. Mach. Theory
73651 PD DEC
73652 PY 2003
73653 VL 38
73654 IS 12
73655 BP 1371
73656 EP 1390
73657 PG 20
73658 SC Engineering, Mechanical
73659 GA 729UM
73660 UT ISI:000185793200004
73661 ER
73662 
73663 PT J
73664 AU Xiao, XS
73665    Li, WH
73666    Xia, L
73667    Fang, SS
73668    Hua, Q
73669    Dong, YD
73670 TI Quasistatic and dynamic tensile behavior of Zr52.5Al10Ni10Cu15Be12.5
73671    bulk metallic glass
73672 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
73673 DT Article
73674 DE mechanical properties; bulk metallic glass; fracture
73675 ID ALLOYS
73676 AB Quasistatic and dynamic tensile behavior of Zr52.5Al10Ni10Cu15Be12.5
73677    bulk amorphous alloy was investigated at the strain rates of
73678    10(-4)similar to10(3) s(-1) by using a Shimadzu AG-100KNA autograph and
73679    a pneumatic tensile impact tester. It was shown that the tensile
73680    fracture strength and the fracture morphology were sensitive to the
73681    strain rate. With the increase of the strain rate, the tensile fracture
73682    strength decreased and the fracture morphology changed from cleavage
73683    into quasi-cleavage, and then into a mixture of microvoid-coalescence
73684    dimples and quasi-cleavage veins.
73685 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
73686 RP Xiao, XS, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
73687 CR BRUCK HA, 1994, SCRIPTA METALL MATER, V30, P429
73688    BRUCK HA, 1996, J MATER RES, V11, P503
73689    INOUE A, 2001, ACTA MATER, V49, P2645
73690    KAWAMURA Y, 1997, SCRIPTA MATER, V37, P431
73691    KAWAMURA Y, 1999, MATER T JIM, V40, P749
73692    ZHOU Y, 2000, J MATER SCI, V34, P925
73693 NR 6
73694 TC 0
73695 SN 1005-0302
73696 J9 J MATER SCI TECHNOL
73697 JI J. Mater. Sci. Technol.
73698 PD SEP
73699 PY 2003
73700 VL 19
73701 IS 5
73702 BP 410
73703 EP 412
73704 PG 3
73705 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
73706    Engineering
73707 GA 730FN
73708 UT ISI:000185818700009
73709 ER
73710 
73711 PT J
73712 AU Chau, KT
73713    Jiang, JZ
73714    Wang, Y
73715 TI A novel stator doubly fed doubly salient permanent magnet brushless
73716    machine
73717 SO IEEE TRANSACTIONS ON MAGNETICS
73718 DT Article
73719 DE brushless machine; electric vehicles; finite-element analysis;
73720    permanent magnet
73721 AB A novel stator doubly fed doubly salient permanent magnet (PM)
73722    brushless machine is proposed. The novelty of this machine is to
73723    purposely add an extra flux path in shunt with each PM pole, hence
73724    amplifying the effect of flux weakening for constant power operation.
73725    Magnetic circuit analysis is adopted to illustrate the novelty. Machine
73726    flux paths and performance curves determined by a finite-element
73727    analysis are presented for various excitations. The corresponding
73728    results show that the proposed machine is promising for application to
73729    electric vehicles.
73730 C1 Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China.
73731    Shanghai Univ, Sch Automat, Shanghai, Peoples R China.
73732 RP Chau, KT, Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R
73733    China.
73734 CR CHAN CC, 2001, MODERN ELECT VEHICLE, P67
73735    CHAU KT, 2002, IEEE T MAGN 1, V38, P2382
73736    CHENG M, 2001, IEEE T MAGN 2, V37, P3012
73737    LIAO Y, 1995, IEEE T IND APPL, V31, P1059
73738 NR 4
73739 TC 2
73740 SN 0018-9464
73741 J9 IEEE TRANS MAGN
73742 JI IEEE Trans. Magn.
73743 PD SEP
73744 PY 2003
73745 VL 39
73746 IS 5
73747 PN Part 2
73748 BP 3001
73749 EP 3003
73750 PG 3
73751 SC Engineering, Electrical & Electronic; Physics, Applied
73752 GA 728MZ
73753 UT ISI:000185722100256
73754 ER
73755 
73756 PT J
73757 AU Xue, GT
73758    Shi, H
73759    You, JY
73760    Yao, WS
73761 TI Distributed stable-group differentiated admission control algorithm in
73762    mobile peer-to-peer media streaming system
73763 SO CHINESE JOURNAL OF ELECTRONICS
73764 DT Article
73765 DE stable-group; differentiated admission control algorithm; peer-to-peer;
73766    mobility; media streaming; ad hoc networks
73767 AB Mobile peer-to-peer media streaming systems are expected to become as
73768    popular as the peer-to-peer file sharing systems. In this paper, we
73769    study two key problems arising from mobile peer-to-peer media
73770    streaming: the stability of interconnection between supplying peers and
73771    requesting peers in mobile peer-to-peer streaming system; and fast
73772    capacity amplification of the entire mobile peer-to-peer streaming
73773    system. We use the Stable group algorithm to characterize user mobility
73774    in mobile ad hoc networks. Based on the stable group, we then propose a
73775    distributed Stable-group differentiated admission control algorithm
73776    (SGDAC(p2p)), which leads to fast amplifying the system's total
73777    streaming capacity using its self-growing. At last, the extensive
73778    simulation results are presented to compare between the SGDAC(p2p) and
73779    traditional methods to prove the superiority of the algorithm.
73780 C1 Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200030, Peoples R China.
73781    Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
73782 RP Xue, GT, Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai
73783    200030, Peoples R China.
73784 CR CHARAS P, 2002, P 1 INT C PEER TO PE, P55
73785    DESHPANDE H, 2001, STREAMING LIVE MEDIA, P30
73786    HONG X, 1999, P ACM IEEE MSWIM 99
73787    LI BC, 2001, LECT NOTES COMPUTER, V2092, P251
73788    MAO SW, 2001, VEH TECHN C IEEE VTS, V2, P615
73789    SANCHEZ M, 1998, MOBILITY MODELS
73790    TSCHUDIN C, 2000, IEEE COMMUNICATIONS, P122
73791    WANG KH, 2002, 21 ANN JOINT C IEEE, V2, P1089
73792    XU DY, 2002, P 22 INT C DISTR COM, P329
73793    ZONOOZI MM, 1997, IEEE J SEL AREA COMM, V15, P1239
73794 NR 10
73795 TC 0
73796 SN 1022-4653
73797 J9 CHINESE J ELECTRON
73798 JI Chin. J. Electron.
73799 PD OCT
73800 PY 2003
73801 VL 12
73802 IS 4
73803 BP 517
73804 EP 521
73805 PG 5
73806 SC Engineering, Electrical & Electronic
73807 GA 730EZ
73808 UT ISI:000185817400006
73809 ER
73810 
73811 PT J
73812 AU Chen, Y
73813    Lin, GF
73814    Hu, RY
73815    Chen, YG
73816    Ding, XY
73817 TI Activin/Nodal signals mediate the ventral expression of myf-5 in
73818    Xenopus gastrula embryos
73819 SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
73820 DT Article
73821 DE Activin/Nodal signals; Smad binding element; Xenopus myf-5; myogenesis
73822 ID NODAL-RELATED SIGNALS; VERTEBRATE EMBRYOS; MESODERM INDUCTION; SPEMANNS
73823    ORGANIZER; SPECIFICATION; ESTABLISHMENT; BINDING; LAEVIS
73824 AB Expression of myf-5, a key component of myogenic regulatory genes,
73825    expands into the ventral marginal zone during Xenopus gastrulation
73826    after the dorsal activation takes place. Little is known about how this
73827    dynamic expression pattern occurs. Here, we provide evidences to
73828    suggest that Activin/Nodal signals participate in the regulation of
73829    ventral expression of Xmyf-5 in gastrula embryos. Two Smad binding
73830    elements (SBEs) within the Xenopus myf-5 promoter can specifically
73831    interact with Smad4 protein. Furthermore, we demonstrate that the two
73832    SBEs are both indispensable for conferring responsiveness to
73833    Activin/Nodal signals and to ventral expression of myf-5 in Xenopus
73834    gastrula embryos. (C) 2003 Elsevier Inc. All rights reserved.
73835 C1 Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem & Cell Biol, Lab Mol & Cell Biol,Lab Stem Cell Biol, Shanghai 200031, Peoples R China.
73836    Shanghai Univ, Sch Life Sci, Dept Bioengn, Shanghai 200436, Peoples R China.
73837 RP Ding, XY, Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem & Cell
73838    Biol, Lab Mol & Cell Biol,Lab Stem Cell Biol, 320 Yue Yang Rd, Shanghai
73839    200031, Peoples R China.
73840 CR AGIUS E, 2000, DEVELOPMENT, V127, P1173
73841    ARNOLD HH, 2000, CURR TOP DEV BIOL, V48, P129
73842    CONLON FL, 1994, DEVELOPMENT, V120, P1919
73843    COSSU G, 1996, TRENDS GENET, V12, P218
73844    DEROBERTIS EM, 2000, NAT REV GENET, V1, P171
73845    DING XY, 1998, MECH DEVELOP, V70, P15
73846    FAURE S, 2000, DEVELOPMENT, V127, P2917
73847    FELDMAN B, 1998, NATURE, V395, P181
73848    HARLAND R, 1997, ANNU REV CELL DEV BI, V13, P611
73849    HILL CS, 2001, CURR OPIN GENET DEV, V11, P533
73850    HOOPWOOD ND, 1991, DEVELOPMENT, V111, P551
73851    JONES CM, 1998, DEV BIOL, V194, P12
73852    KROLL KL, 1999, EARLY DEV XENOPUS LA
73853    KUMANO G, 2002, DEV DYNAM, V225, P409
73854    LANE MC, 1999, DEVELOPMENT, V126, P423
73855    LANE MC, 2000, DEV BIOL, V225, P37
73856    LANE MC, 2002, DEV DYNAM, V225, P434
73857    LEE MA, 2001, DEVELOPMENT, V128, P2939
73858    LIN GF, 2003, DEV DYNAM, V226, P51
73859    MASSAGUE J, 2000, GENE DEV, V14, P627
73860    NIEUWKOOP PD, 1967, NORMAL TABLES XENOPU
73861    ORFORD R, 1999, METH MOL B, V127, P175
73862    PICCOLO S, 1999, NATURE, V397, P707
73863    POWNALL ME, 2002, ANNU REV CELL DEV BI, V18, P747
73864    SCHIER AF, 2000, NATURE, V403, P385
73865    SCHOHL A, 2002, DEVELOPMENT, V129, P37
73866    SHI YG, 1998, CELL, V94, P585
73867    SILVER J, 1995, PCR STRATEGIES, P179
73868    STEINBACH OC, 1998, DEV BIOL, V202, P280
73869    SUN BI, 1999, DEVELOPMENT, V126, P1467
73870    TAKAHASHI S, 1998, ZOOL SCI, V15, P231
73871    WHITMAN M, 2001, DEV CELL, V1, P605
73872    WRANA JL, 2000, CELL, V100, P189
73873    YANG J, 2002, MECH DEVELOP, V91, P131
73874 NR 34
73875 TC 0
73876 SN 0006-291X
73877 J9 BIOCHEM BIOPHYS RES COMMUN
73878 JI Biochem. Biophys. Res. Commun.
73879 PD OCT 10
73880 PY 2003
73881 VL 310
73882 IS 1
73883 BP 121
73884 EP 127
73885 PG 7
73886 SC Biochemistry & Molecular Biology; Biophysics
73887 GA 730MX
73888 UT ISI:000185835500020
73889 ER
73890 
73891 PT J
73892 AU Li, CF
73893 TI Negative lateral shift of a light beam transmitted through a dielectric
73894    slab and interaction of boundary effects
73895 SO PHYSICAL REVIEW LETTERS
73896 DT Article
73897 ID TOTAL INTERNAL-REFLECTION; GOOS-HANCHEN SHIFT; ABSORBING MEDIA;
73898    GAUSSIAN-BEAM; DISPLACEMENT; TIMES
73899 AB It is found that when a light beam travels through a slab of optically
73900    denser dielectric medium in air, the lateral shift of the transmitted
73901    beam can be negative. This is a novel phenomenon that is reversed in
73902    comparison with the geometrical optic prediction according to Snell's
73903    law of refraction. A Gaussian-shaped beam is analyzed in the paraxial
73904    approximation, and a comparison with numerical simulations is made.
73905    Finally, an explanation for the negativity of the lateral shift is
73906    suggested, in terms of the interaction of boundary effects of the
73907    slab's two interfaces with air.
73908 C1 Acad Sinica, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt Technol, Xian 710068, Peoples R China.
73909    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
73910 RP Li, CF, Acad Sinica, Xian Inst Opt & Precis Mech, State Key Lab
73911    Transient Opt Technol, 322 W Youyi Rd, Xian 710068, Peoples R China.
73912 CR BALCOU P, 1997, PHYS REV LETT, V78, P851
73913    BERMAN PR, 2002, PHYS REV E 2, V66
73914    BIRMAN JL, 1983, PHYS REV LETT, V50, P1664
73915    CHAN CC, 1985, OPT LETT, V10, P378
73916    COWAN JJ, 1977, J OPT SOC AM, V67, P1307
73917    GOOS F, 1947, ANN PHYSIK, V1, P333
73918    HAIBEL A, 2001, PHYS REV E 2, V63
73919    HARRICK NJ, 1960, PHYS REV LETT, V4, P224
73920    HSUE CW, 1985, J OPT SOC AM A, V2, P978
73921    LAI HM, 2000, PHYS REV E B, V62, P7330
73922    LAI HM, 2002, OPT LETT, V27, P680
73923    LI CF, 2002, PHYS REV A, V65
73924    LOTSCH HKV, 1970, OPTIK, V32, P116
73925    LOTSCH HKV, 1970, OPTIK, V32, P189
73926    LOTSCH HKV, 1971, OPTIK STUTTG, V32, P299
73927    LOTSCH HKV, 1971, OPTIK, V32, P553
73928    PFLEGHAAR E, 1993, PHYS REV LETT, V70, P2281
73929    PORRAS MA, 1997, OPT COMMUN, V135, P369
73930    RIESZ RP, 1985, J OPT SOC AM A, V2, P1809
73931    SCHIFF LI, 1968, QUANTUM MECH, P27
73932    STEINBERG AM, 1994, PHYS REV A, V49, P3283
73933    TAMIR T, 1971, J OPT SOC AM, V61, P1397
73934    TAMIR T, 1986, J OPT SOC AM A, V3, P558
73935    WHITE IA, 1977, J OPT SOC AM, V67, P703
73936    WILD WJ, 1982, PHYS REV A, V25, P2099
73937 NR 25
73938 TC 12
73939 SN 0031-9007
73940 J9 PHYS REV LETT
73941 JI Phys. Rev. Lett.
73942 PD SEP 26
73943 PY 2003
73944 VL 91
73945 IS 13
73946 AR 133903
73947 DI ARTN 133903
73948 PG 4
73949 SC Physics, Multidisciplinary
73950 GA 725ZX
73951 UT ISI:000185573700018
73952 ER
73953 
73954 PT J
73955 AU Zhou, SF
73956 TI Kernel sections for viscoelasticity and thermoviscoelasticity
73957 SO NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
73958 DT Article
73959 DE kernel section; process; Hausdorff dimension; viscoelasticity;
73960    thermoviscoelasticity
73961 ID ASYMPTOTIC STABILITY; CRITICAL EXPONENT
73962 AB We prove the existence of compact kernel sections for the process
73963    associated with viscoelastic and thermoviscoelastic equations, and
73964    obtain a more precise upper bound of the Hausdorff dimension of the
73965    kernel sections. According to our result, in the autonomous case with
73966    linear damping, the upper bound of the Hausdorff dimension decreases as
73967    the damping grows into a suitable large damping. (C) 2003 Elsevier Ltd.
73968    All rights reserved.
73969 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
73970 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
73971 CR ARRIETA J, 1993, COMMUN PART DIFF EQ, V42, P1057
73972    CHEPYZHOV V, 1993, INDIANA U MATH J, V140, P193
73973    DAFERMOS CM, 1970, ARCH RATIONAL MECH A, V37, P297
73974    FEIREISL E, 1993, COMMUN PART DIFF EQ, V18, P1539
73975    HUANG Y, 2000, J MATH PHYS, V41, P4957
73976    LIU ZY, 1996, Q APPL MATH, V54, P21
73977    NAVARRO CB, 1978, J MATH ANAL APPL, V65, P399
73978    PATA V, 2001, ADV MATH SCI APPL, V11, P505
73979    PAZY A, 1983, APPL MATH SCI, V44
73980    TERMAM R, 1988, APPL MATH SCI, V68
73981 NR 10
73982 TC 0
73983 SN 0362-546X
73984 J9 NONLINEAR ANAL-THEOR METH APP
73985 JI Nonlinear Anal.-Theory Methods Appl.
73986 PD NOV
73987 PY 2003
73988 VL 55
73989 IS 4
73990 BP 351
73991 EP 380
73992 PG 30
73993 SC Mathematics, Applied; Mathematics
73994 GA 726YY
73995 UT ISI:000185630200002
73996 ER
73997 
73998 PT J
73999 AU Wang, XD
74000    You, B
74001    Ji, WS
74002    Li, Y
74003 TI A laminated ceramic bandpass filter realized using coupled
74004    stepped-impedance resonators
74005 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
74006 DT Article
74007 DE ceramic filter; laminated filter; combline filter; tapped line; SIR
74008 ID COMB-LINE FILTER
74009 AB A tapped bandpass filter composed of two coupled stepped-impedance
74010    resonators (SIRs) is proposed. The two resonators are arranged in
74011    different plane. The volume of proposed filter is about 60% of that of
74012    conventional filter. We investigate the filtering characteristics using
74013    both network analysis and experimentation. It is shown that this filter
74014    has a very sharp response below its passband. (C) 2003 Wiley
74015    Periodicals, Inc.
74016 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
74017 RP Wang, XD, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
74018    Peoples R China.
74019 CR CHANG HC, 1996, IEEE MTT-S, P619
74020    HUANG CL, 2000, MICROW OPT TECHN LET, V24, P258
74021    ISHIZAKI T, 1991, IEICE T E, V74, P1556
74022    ISHIZAKI T, 1994, IEEE MTT S, P617
74023    ISHIZAKI T, 1994, IEEE T MICROW THEORY, V42, P2017
74024    ISHIZAKI T, 1996, IEICE T ELECTRON EC, V79, P671
74025    KITAMURA T, 1998, IEICE T ELECTRON EC, V81, P1793
74026    MATTHAEI GL, 1963, MICROWAVE J, V6, P82
74027    SAGAWA M, 1985, IEEE T MICROW THEORY, V33, P152
74028    TSAI JT, 2000, MICROW OPT TECHN LET, V27, P105
74029    VINCZE AD, 1974, IEEE T MICROW THEORY, V22, P1171
74030 NR 11
74031 TC 0
74032 SN 0895-2477
74033 J9 MICROWAVE OPT TECHNOL LETT
74034 JI Microw. Opt. Technol. Lett.
74035 PD NOV 5
74036 PY 2003
74037 VL 39
74038 IS 3
74039 BP 214
74040 EP 216
74041 PG 3
74042 SC Engineering, Electrical & Electronic; Optics
74043 GA 725QF
74044 UT ISI:000185553300015
74045 ER
74046 
74047 PT J
74048 AU Yang, QH
74049    Kim, ES
74050    Xu, J
74051 TI Effect of A-site substitution by Nd3+ on the microwave dielectric
74052    properties of (Pb0.5Ca0.5)(Fe0.5Nb0.5)O-3 ceramics
74053 SO JOURNAL OF INORGANIC MATERIALS
74054 DT Article
74055 DE (Pb,Ca,Nd)(Fe,Nb)O-3; microwave dielectric ceramics; perovskite;
74056    pyrochlore; charge unbalance substitution
74057 ID FREQUENCIES; IONS
74058 AB Microwave dielectric properties of A-site substitution by Nd3+ in
74059    (Pb0.5Ca0.5)(Fe-0.5 Nb-0.5)O-3 system were investigated. Microwave
74060    dielectric properties of [(Pb0.5Ca0.5)(1-x)Nd-x](Fe-0.5 Nb-0.5)O-3
74061    (PCNFN) were improved because the solid solution of small amount of
74062    surplus Nd3+ with (Pb,Ca)(2+) could eliminate oxygen vacancies. A
74063    single perovskite phase was formed when x = 0.02. Surplus Nd3+ resulted
74064    in the formation of secondary phase (pyrochlore), which can deteriorate
74065    to the microwave dielectric properties of PCNFN ceramics. The
74066    decreasing of dielectric properties with x content was mainly caused by
74067    the formation of pyrochlore. Dielectric constant was above 100 and
74068    quality factor Qf values were 5385similar to5797GHz as x = 0.02similar
74069    to0.05. Temperature coefficient of resonant frequency (TCF) was changed
74070    from positive to negative with the increase of x content.
74071 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
74072    Kyonggi Univ, Dept Mat Engn, Suwon 442760, South Korea.
74073    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
74074 RP Yang, QH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
74075    China.
74076 CR KAGATA H, 1993, JPN J APPL PHYS 1, V32, P4332
74077    KATO J, 1991, JPN J APPL PHYS PT 1, V30, P2343
74078    KATO J, 1992, JPN J APPL PHYS 1, V31, P3144
74079    KIM IS, 1995, MATER RES BULL, V30, P307
74080    KIM WS, 1999, J AM CERAM SOC, V82, P2111
74081    KUCHEIKO S, 1997, J AM CERAM SOC, V80, P2937
74082    MICHIURA N, 1995, J AM CERAM SOC, V78, P793
74083    SHANNON RD, 1993, J APPL PHYS, V73, P348
74084    YANG QH, 2002, J CHINESE CERAMIC SO, V30, P554
74085    YOSHIDA M, 1997, JPN J APPL PHYS, V36, P6816
74086 NR 10
74087 TC 0
74088 SN 1000-324X
74089 J9 J INORG MATER
74090 JI J. Inorg. Mater.
74091 PD SEP
74092 PY 2003
74093 VL 18
74094 IS 5
74095 BP 1051
74096 EP 1056
74097 PG 6
74098 SC Materials Science, Ceramics
74099 GA 728QM
74100 UT ISI:000185727900014
74101 ER
74102 
74103 PT J
74104 AU Wang, TL
74105    Yuan, LL
74106    Li, SFY
74107 TI Modified field amplification sample injection for micellar
74108    electrokinetic chromatography of neutral compounds with
74109    amino-substituted cyclodextrin as carrier and 1-adamantanecarboxylate
74110    as displacer
74111 SO JOURNAL OF CHROMATOGRAPHY A
74112 DT Article
74113 DE injection methods; field-enhanced sample stacking; cyclodextrin;
74114    adamantanecarboxylic acid
74115 ID PERFORMANCE CAPILLARY-ELECTROPHORESIS; ONLINE CONCENTRATION; CHIRAL
74116    SEPARATIONS; BETA-CYCLODEXTRIN; STACKING MODE; ANALYTES; ACIDS
74117 AB A modified field amplification sample injection method was proposed and
74118    evaluated by using positively mono charged cyclodextrin (CD) as carrier
74119    and 1-adamantanecarboxylate as displacer for on-capillary
74120    preconcentration of neutral compounds and improvement of the
74121    concentration limit of detection in micellar electrokinetic
74122    chromatography. In modified sample injection mode a displacer plug was
74123    introduced before sample injection to reduce the length of the
74124    concentrated sample zone and increase the peak height by slowing down
74125    the forward movement of the neutral sample associated with beta-CD-NH2
74126    and the backward movement of the neutral sample partitioned in the
74127    micelles of sodium doclecyl sulfate. Stability of the inclusion
74128    complexes formed between the carrier and the solute was found to be an
74129    important factor affecting stacking efficiency in both the conventional
74130    field amplification sample injection mode and the modified one.
74131    However, further enhancement of the stacking efficiency in the modified
74132    mode rested on the relative stability of the displacer-carrier complex
74133    to that of the solute-carrier complex. Practical limits to the stacking
74134    efficiencies in both modes were discussed as well. (C) 2003 Elsevier
74135    B.V. All rights reserved.
74136 C1 Natl Univ Singapore, Dept Chem, Singapore 119260, Singapore.
74137    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
74138 RP Li, SFY, Natl Univ Singapore, Dept Chem, 10 Kent Ridge Crescent,
74139    Singapore 119260, Singapore.
74140 CR BURGI DS, 1991, ANAL CHEM, V63, P2042
74141    CHIEN RL, 1991, J CHROMATOGR, V559, P141
74142    CHIEN RL, 1992, ANAL CHEM, V64, P489
74143    IVANYI R, 2001, CHROMATOGRAPHIA, V53, P166
74144    KIM JB, 2001, J CHROMATOGR A, V916, P123
74145    KWAK ES, 1996, CHROMATOGRAPHIA, V43, P659
74146    LELIEVRE F, 1996, J CHROMATOGR A, V735, P311
74147    LELIEVRE F, 1997, ANAL CHEM, V69, P385
74148    LIU ZY, 1994, J CHROMATOGR A, V673, P125
74149    MUNRO NJ, 1999, J CHROMATOGR B, V731, P369
74150    NIELSEN KR, 1994, J CHROMATOGR A, V686, P283
74151    PALMER J, 1999, ANAL CHEM, V71, P1679
74152    QUIRINO JP, 1997, J CHROMATOGR A, V781, P119
74153    QUIRINO JP, 1997, J CHROMATOGR A, V791, P255
74154    QUIRINO JP, 1998, ANAL CHEM, V70, P149
74155    QUIRINO JP, 1999, J CHROMATOGR A, V838, P3
74156    TERABE S, 1984, ANAL CHEM, V56, P111
74157    WANG T, 1995, P HIT SUMM SEM 95 EN, P26
74158 NR 18
74159 TC 1
74160 SN 0021-9673
74161 J9 J CHROMATOGR A
74162 JI J. Chromatogr. A
74163 PD SEP 26
74164 PY 2003
74165 VL 1013
74166 IS 1-2
74167 BP 19
74168 EP 27
74169 PG 9
74170 SC Chemistry, Analytical; Biochemical Research Methods
74171 GA 727KJ
74172 UT ISI:000185656900004
74173 ER
74174 
74175 PT J
74176 AU Cheng, JR
74177    Li, N
74178    Cross, LE
74179 TI Structural and dielectric properties of Ga-modified BiFeO3-PbTiO3
74180    crystalline solutions
74181 SO JOURNAL OF APPLIED PHYSICS
74182 DT Article
74183 ID SOLID-SOLUTIONS; BIFEO3
74184 AB The dielectric and structural properties of Bi(GaxFe1-x)O-3-PbTiO3
74185    (BGF-PT) crystalline solutions have been investigated. Studies have
74186    focused on phase-pure perovskite materials. With increasing Ga content,
74187    we have found: (i) a coexistence of tetragonal and rhombohedral
74188    ferroelectric phases; (ii) a multicell perovskite structure for
74189    BGF-0.3PT; and (iii) a maximum tetragonal c/a ratio for the composition
74190    BGF-0.6PT with x=0.25. Also, Ga modification increases the electrical
74191    resistivity to greater than or equal to10(12) Omega cm, reduces the
74192    dielectric loss or tan delta over a wide temperature range, and
74193    increases the dielectric constant K. We have developed BGF-PT materials
74194    with values of K>400 and of tan delta<0.03. (C) 2003 American Institute
74195    of Physics.
74196 C1 Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA.
74197    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
74198 RP Cheng, JR, Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA.
74199 CR EITEL RE, 2001, JPN J APPL PHYS 1, V40, P5999
74200    FISCHER P, 1980, J PHYS C SOLID STATE, V13, P1931
74201    IVANOVA TL, 2002, FERROELECTRICS, V265, P241
74202    KANAI T, 2001, ADV MATER, V7, P487
74203    KUMAR MM, 1998, PHYS STATUS SOLIDI A, V165, P317
74204    KUMAR MM, 2000, APPL PHYS LETT, V76, P2764
74205    KUMAR MM, 2000, J APPL PHYS, V87, P855
74206    POPOV YF, 2001, LOW TEMP PHYS+, V27, P478
74207    SMOLENSKY GA, 1961, FIZ TVERD TELA, V2, P2651
74208    SUNDER VVSSS, 1995, J MATER RES, V10, P1301
74209 NR 10
74210 TC 8
74211 SN 0021-8979
74212 J9 J APPL PHYS
74213 JI J. Appl. Phys.
74214 PD OCT 15
74215 PY 2003
74216 VL 94
74217 IS 8
74218 BP 5153
74219 EP 5157
74220 PG 5
74221 SC Physics, Applied
74222 GA 727NE
74223 UT ISI:000185664300065
74224 ER
74225 
74226 PT J
74227 AU Cheng, JR
74228    Cross, LE
74229 TI Effects of La substituent on ferroelectric rhombohedral/tetragonal
74230    morphotropic phase boundary in (1-x)(Bi,La)(Ga0.05Fe0.95)O-3-xPbTiO(3)
74231    piezoelectric ceramics
74232 SO JOURNAL OF APPLIED PHYSICS
74233 DT Article
74234 ID HIGH-TEMPERATURE; SOLID-SOLUTIONS; BIFEO3
74235 AB Crystalline solutions of (1-x)(Bi,La)(Fe0.95Ga0.05)O-3-xPbTiO(3)
74236    (BLGF-PT) have been fabricated with La concentrations of 0, 10, and 20
74237    at. %. The BLGF-PT system has been found to have excellent insulation
74238    resistivity less than or equal to10(13) Omega cm. In addition, La
74239    substituent was found to decrease the coercive field, resulting in much
74240    improved dielectric and piezoelectric properties. A shift in the
74241    morphotropic phase boundary of BLGF-PT with increasing La content was
74242    identified for x=0.3, 0.4, and 0.43. We have achieved optimized
74243    dielectric constant, loss factor, Curie temperature, remnant
74244    polarization, and piezoelectric d(33) properties of 881, 0.037, 386
74245    degreesC, 30 muC/cm(2) and 163 pC/N, respectively, for 0.6BLGF-0.4PT
74246    with 10 at. % La. These results clearly demonstrate that BLGF-PT is a
74247    competitive alternative piezoelectric material to Pb(Zr,Ti)O-3 with
74248    reduced lead content. (C) 2003 American Institute of Physics.
74249 C1 Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA.
74250    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
74251 RP Cheng, JR, Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA.
74252 CR BUHRER CF, 1962, J CHEM PHYS, V36, P798
74253    CHENG J, 2003, J APPL PHYS, V94, P605
74254    CHENG JR, 2003, J APPL PHYS, V94, P5153
74255    EITEL RE, 2001, JPN J APPL PHYS 1, V40, P5999
74256    FISCHER P, 1980, J PHYS C SOLID STATE, V13, P1931
74257    GERSON R, 1967, J APPL PHYS, V38, P55
74258    HERABUT A, 1997, J AM CERAM SOC, V80, P2954
74259    JAFFE B, 1971, PIEZOELECTRIC CERAMI
74260    KUMAR MM, 1998, PHYS STATUS SOLIDI A, V165, P317
74261    KUMAR MM, 2000, APPL PHYS LETT, V76, P2764
74262    MANAI T, 2001, ADV MAT WEINHEIM, V7, P487
74263    PARK SE, 1997, J APPL PHYS, V82, P1804
74264    SMITH RT, 1968, J APPL PHYS, V39, P70
74265    SMOLENSKY GA, 1961, FIZ TVERD TELA, V2, P2651
74266    SUNDER VVSSS, 1995, J MATER RES, V10, P1301
74267    VIEHLAND D, 2000, J APPL PHYS, V88, P6696
74268 NR 16
74269 TC 9
74270 SN 0021-8979
74271 J9 J APPL PHYS
74272 JI J. Appl. Phys.
74273 PD OCT 15
74274 PY 2003
74275 VL 94
74276 IS 8
74277 BP 5188
74278 EP 5192
74279 PG 5
74280 SC Physics, Applied
74281 GA 727NE
74282 UT ISI:000185664300071
74283 ER
74284 
74285 PT J
74286 AU Zhou, SP
74287    Du, HC
74288    Liao, HY
74289 TI Vortex lattice structure of high temperature superconductors
74290 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
74291 DT Article
74292 DE Ginzburg-Landau model; vortex lattice; high temperature
74293    superconductivity
74294 ID GINZBURG-LANDAU THEORY; D-WAVE SUPERCONDUCTORS; PAIRING SYMMETRY;
74295    S-WAVE; VORTICES
74296 AB We study vortex lattice structure of high temperature superconductors
74297    by using the Ginzburg-Landau model. The structure of the vortex lattice
74298    is oblique at the temperatures well below the transition temperature
74299    T-c, where the mixed s-d state is expected to have the lowest energy.
74300    Whereas, very close to T-c, the d(x2-y2) wave is slightly lower in
74301    energy, and a triangular vortex lattice recovers. The coexistence and
74302    the coupling between the s- and d-waves account for the upward
74303    curvature of the upper critical field curve H-C2(T).
74304 C1 Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
74305 RP Zhou, SP, Shanghai Univ, Dept Phys, 99 ShangDa Rd, Shanghai 201800,
74306    Peoples R China.
74307 CR ABRIKOSOV AA, 1957, ZH EKSP TEOR FIZ, V32, P1442
74308    BERLINSKY AJ, 1995, PHYS REV LETT, V75, P2200
74309    CHAKRAVARTY S, 1993, SCIENCE, V261, P337
74310    DORIA MM, 1989, PHYS REV B, V39, P9573
74311    GORKOV LP, 1960, SOV PHYS JETP, V9, P1364
74312    HEEB R, 1996, PHYS REV B, V54, P9385
74313    JOYNT R, 1990, PHYS REV B, V41, P4271
74314    KEIMER B, 1994, J APPL PHYS 2, V76, P6778
74315    LEE PA, 1987, PHYS REV LETT, V58, P2891
74316    LI QP, 1993, PHYS REV B, V48, P437
74317    LIECHTENSTEIN AI, 1995, PHYS REV LETT, V74, P2303
74318    PALSTRA TTM, 1988, PHYS REV LETT, V61, P1662
74319    REN Y, 1995, PHYS REV LETT, V74, P3680
74320    RUGGIERO S, 1982, PHYS REV B, V26, P4897
74321    SOININEN PI, 1994, PHYS REV B, V50, P13883
74322    TINKHAM M, 1964, GROUP THEORY QUANTUM
74323    VOLOVIK GE, 1993, JETP LETT, V58, P469
74324    WELP U, 1989, PHYS REV LETT, V62, P1908
74325    ZHANG SC, 1997, SCIENCE, V275, P1089
74326    ZHOU SP, 1999, ACTA PHYS SIN-CH ED, V48, P342
74327    ZHOU SP, 2000, PHYSICA C, V339, P258
74328    ZHOU SP, 2001, CHINESE PHYS, V10, P541
74329 NR 22
74330 TC 0
74331 SN 0217-9792
74332 J9 INT J MOD PHYS B
74333 JI Int. J. Mod. Phys. B
74334 PD AUG 10
74335 PY 2003
74336 VL 17
74337 IS 18-20
74338 PN Part 1
74339 BP 3415
74340 EP 3422
74341 PG 8
74342 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
74343 GA 727AV
74344 UT ISI:000185634600038
74345 ER
74346 
74347 PT J
74348 AU Chen, J
74349    Liu, ZR
74350 TI A method of controlling synchronization in different systems
74351 SO CHINESE PHYSICS LETTERS
74352 DT Article
74353 ID MASTER-SLAVE SYNCHRONIZATION; CHAOS; NEURONS
74354 AB A new control method to synchronize between two different systems is
74355    proposed and the mathematical proof of this method is provided.
74356    Moreover, numerical simulation validates the efficiency of the proposed
74357    method.
74358 C1 Shanghai Univ, Ctr Nonlinear Sci, Shanghai 200436, Peoples R China.
74359    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
74360 RP Liu, ZR, Shanghai Univ, Ctr Nonlinear Sci, Shanghai 200436, Peoples R
74361    China.
74362 EM zrongliu@aonline.sh.cn
74363 CR BAO SW, 2001, NATURE, V412, P79
74364    CHEN G, 1998, CHOAS ORDER
74365    CHEN J, 2003, UNPUB APPL MATH MECH
74366    FANG JQ, 2001, CHINESE PHYS LETT, V18, P1554
74367    FANG JS, 2001, CHINESE PHYS LETT, V18, P1438
74368    KAPITANIAK T, 1994, INT J BIFURCAT CHAOS, V4, P483
74369    LIU ZG, 1997, PHYS REV E A, V55, P199
74370    MAINEN ZF, 1995, SCIENCE, V268, P1503
74371    MING CH, 2002, PHYS LETT A, V301, P424
74372    PECORA LM, 1990, PHYS REV LETT, V64, P821
74373    SUYKENS JAK, 1997, INT J BIFURCAT CHAOS, V7, P671
74374    SUYKENS JAK, 1999, IEEE T CIRCUITS-I, V46, P841
74375    WU CW, 1994, INT J BIFURCAT CHAOS, V4, P979
74376    YU YG, 2001, CHINESE PHYS LETT, V18, P295
74377 NR 14
74378 TC 0
74379 SN 0256-307X
74380 J9 CHIN PHYS LETT
74381 JI Chin. Phys. Lett.
74382 PD SEP
74383 PY 2003
74384 VL 20
74385 IS 9
74386 BP 1441
74387 EP 1443
74388 PG 3
74389 SC Physics, Multidisciplinary
74390 GA 726UC
74391 UT ISI:000185617700009
74392 ER
74393 
74394 PT J
74395 AU Qin, L
74396    Zhang, G
74397    Hung, WY
74398    Au, SK
74399    Lu, HB
74400    Shi, YY
74401    Leung, KS
74402 TI Comparison of PQCT and DXA analysis for establishment of osteoporotic
74403    model in proximal femur of mature ovariectomized rats
74404 SO BONE
74405 DT Meeting Abstract
74406 C1 CHUK, Dept Orthopaed & Traumatol, Hong Kong, Hong Kong, Peoples R China.
74407    Shanghai Univ, Shuguang Hosp, Dept Orthopaed & Traumatol, Shanghai 200041, Peoples R China.
74408 NR 0
74409 TC 0
74410 SN 8756-3282
74411 J9 BONE
74412 JI Bone
74413 PD MAY
74414 PY 2003
74415 VL 32
74416 IS 5
74417 SU Suppl. S
74418 BP S168
74419 EP S168
74420 PG 1
74421 SC Endocrinology & Metabolism
74422 GA 683AB
74423 UT ISI:000183123300419
74424 ER
74425 
74426 PT J
74427 AU Zhang, HY
74428    Liu, ZQ
74429    Ma, XS
74430 TI The influence of interface layer characteristics on Lamb waves in
74431    layered anisotropic media
74432 SO ACTA PHYSICA SINICA
74433 DT Article
74434 DE anistropic interface; spring model; global matrix; Lamb wave dispersion
74435 ID BOUNDARY-CONDITIONS; 2 SOLIDS; WEAK
74436 AB In this paper, the spring model for the anisotropic interface layer is
74437    built and introduced to the global matrix technique that is popularly
74438    used for analyzing layered composites. In introducing the spring
74439    interface condition, the philosophy adopted is to incorporate it with a
74440    minimum disruption to the program structure, particularly the assembly
74441    of the global matrix. The spring interface has therefore been
74442    introduced as a "material layer". This layer has material constants
74443    which govern the stiffness across it and has zero thickness. The layer
74444    can be built into the appropriate location in the global matrix without
74445    making any changes in the other layers of the system. Numerical
74446    computations for the Lamb wave dispersion curves in two-layered
74447    anisotropic composite media with different interface conditions
74448    including rigid connection, slip connection, and complete disbond are
74449    made, and plots of the through-thickness particle displacement
74450    distributions of Lamb modes for the rigid bond interface and slip bond
74451    interface are compared.
74452 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
74453    Tongji Univ, Inst Acoust, Shanghai 200092, Peoples R China.
74454 RP Zhang, HY, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
74455    Peoples R China.
74456 CR AULD BA, 1973, ACOUSTIC FIELDS WAVE, CH7
74457    DU GS, 1998, ACTA PHYS SINICA, V47, P27
74458    KARPUR P, 1995, MATER EVAL, V53, P1348
74459    LU P, 2001, ACTA PHYS SIN-CH ED, V50, P697
74460    NING W, 1995, ACTA PHYS SIN-OV ED, V4, P428
74461    PAVLAKOVIC B, 2001, DISPERSE USERS MANUA, V154
74462    ROKHLIN SI, 1991, J ACOUST SOC AM, V89, P503
74463    ROKHLIN SI, 1992, J ACOUST SOC AM, V91, P1875
74464    ROKHLIN SI, 1992, J ACOUST SOC AM, V92, P1729
74465    ROKHLIN SI, 1993, J ACOUST SOC AM, V94, P3405
74466    WANG YJ, 1994, ACTA PHYS SIN-OV ED, V3, P561
74467    WANG YJ, 1996, PROGR PHYSICS, V16, P363
74468    WANG YS, 2000, ADV MECH, V30, P378
74469    ZHANG HY, 2002, THESIS TONGJI U
74470    ZHANG R, 2000, ACTA PHYS SIN-CH ED, V49, P1297
74471    ZHANG R, 2000, CHIN J SCI INS, V21, P485
74472    ZHANG R, 2001, CHIN J APPL MECH, V18, P75
74473 NR 17
74474 TC 0
74475 SN 1000-3290
74476 J9 ACTA PHYS SIN-CHINESE ED
74477 JI Acta Phys. Sin.
74478 PD OCT
74479 PY 2003
74480 VL 52
74481 IS 10
74482 BP 2492
74483 EP 2499
74484 PG 8
74485 SC Physics, Multidisciplinary
74486 GA 727WD
74487 UT ISI:000185683100026
74488 ER
74489 
74490 PT J
74491 AU Jiao, Z
74492    Wu, MH
74493    Gu, JZ
74494    Sun, XL
74495 TI The gas sensing characteristics of ITO thin film prepared by sol-gel
74496    method
74497 SO SENSORS AND ACTUATORS B-CHEMICAL
74498 DT Article
74499 DE thin film; sol-gel; gas sensor; ITO
74500 ID TIN OXIDE-FILMS; SENSORS
74501 AB In this paper, indium tin oxide (ITO) thin films were prepared by
74502    sol-gel method. The gas sensing properties of ITO thin films were
74503    investigated. The ITO thin films have better sensitivity to ethanol and
74504    nitrogen dioxide, but have little response to H-2, gasoline, liquid
74505    petrol gas (LPG), CH4 and CO, Pd, Pt, CaO, Th2O3 and rare earth
74506    elements were added to improve gas sensing characteristics. It was
74507    found that the influences of the additives on gas sensing
74508    characteristics were slight. The stability of ITO thin films is good.
74509    (C) 2003 Published by Elsevier Science B.V.
74510 C1 Shanghai Univ Sci & Technol, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
74511 RP Jiao, Z, Shanghai Univ Sci & Technol, Shanghai Appl Radiat Inst,
74512    Chengzhong Rd 20, Shanghai 201800, Peoples R China.
74513 CR BRUNDLE CR, 1976, J VAC SCI TECHNOL, V13, P301
74514    CHOPRA KL, 1983, THIN FILM DEVICE APP
74515    KARIM AA, 1989, THIN SOLID FILMS, V172, P11
74516    KIM H, 1999, APPL PHYS LETT, V74, P3444
74517    KOROBOV V, 1994, APPL PHYS LETT, V65, P2290
74518    KWOK HS, 1998, THIN SOLID FILMS, V335, P299
74519    MA J, 1997, THIN SOLID FILMS, V307, P200
74520    PATEL NG, 1995, SENSOR ACTUAT B-CHEM, V23, P49
74521    RAY S, 1983, J APPL PHYS, V54, P3497
74522    RYKARA LA, 1982, THIN SOLID FILMS, V92, P327
74523    SAKO T, 2001, SURF COAT TECH, V142, P781
74524    SBERVEGLIERI G, 1990, THIN SOLID FILMS, V186, P349
74525    TANG CW, 1987, APPL PHYS LETT, V51, P913
74526    YUMOTO H, 1999, THIN SOLID FILMS, V345, P38
74527    ZHENG JP, 1993, APPL PHYS LETT, V63, P1
74528 NR 15
74529 TC 7
74530 SN 0925-4005
74531 J9 SENSOR ACTUATOR B-CHEM
74532 JI Sens. Actuator B-Chem.
74533 PD SEP 1
74534 PY 2003
74535 VL 94
74536 IS 2
74537 BP 216
74538 EP 221
74539 PG 6
74540 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
74541 GA 724TT
74542 UT ISI:000185503300015
74543 ER
74544 
74545 PT J
74546 AU Shen, Y
74547    Zhang, JC
74548    Gu, F
74549    Xia, YB
74550 TI The influence of the C-60-toluene derivative as a hole-transporting
74551    layer on the copper phthalocyanine multilayer films
74552 SO MATERIALS CHEMISTRY AND PHYSICS
74553 DT Article
74554 DE C-60; C-60-toluene derivative; CuPc; photoconductivity
74555 ID PHOTOCONDUCTIVITY; C-60
74556 AB The influence of the C-60-toluene derivative on photoconductivity of
74557    the copper phthalocyanine (CuPc)-C-60 films is studied. The result show
74558    that the photoconductivity of the films added with C-60-toluene
74559    derivative layer has increased by one order of magnitude in several
74560    seconds. The derivative be used serves as a hole-transporting layer
74561    according to the data of UV-Vis analyses, fluorescence spectra and
74562    cyclic voltammograms. (C) 2003 Published by Elsevier B.V.
74563 C1 Shanghai Univ Sci & Technol, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
74564 RP Shen, Y, Shanghai Univ Sci & Technol, Dept Inorgan Mat, Shanghai
74565    201800, Peoples R China.
74566 CR ALLEMAND PM, 1991, SCIENCE, V253, P301
74567    DAYIN L, 1993, J CHEM SOC CHEM COMM, V603
74568    HEAYEON L, 1996, J APPL PHYS, V80, P3601
74569    HISATOMO Y, 1996, THIN SOLID FILMS, V278, P108
74570    KROTO HW, 1985, NATURE, V318, P162
74571    SMILOWITZ L, 1993, PHYS REV B, V47, P13853
74572    XU ZD, 1995, J MATER SCI LETT, V14, P1030
74573    YI W, 1999, PHOTOGRAPH SCI PHOTO, V17, P73
74574    YOSHINO K, 1993, SOLID STATE COMMUN, V85, P85
74575    YU C, 1996, J POLYLM SCI B, V34, P631
74576    YUE S, 1999, ACTA CHIM SINICA, V57, P1034
74577 NR 11
74578 TC 3
74579 SN 0254-0584
74580 J9 MATER CHEM PHYS
74581 JI Mater. Chem. Phys.
74582 PD NOV 15
74583 PY 2003
74584 VL 82
74585 IS 2
74586 BP 401
74587 EP 404
74588 PG 4
74589 SC Materials Science, Multidisciplinary
74590 GA 723QX
74591 UT ISI:000185444000024
74592 ER
74593 
74594 PT J
74595 AU Deng, SF
74596    Chen, DY
74597    Zhang, DJ
74598 TI The multisoliton solutions of the KP equation with self-consistent
74599    sources
74600 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
74601 DT Article
74602 DE KP equation with self-consistent sources; Hirota's method; Wronskian
74603    technique; coincidence
74604 ID KADOMTSEV-PETVIASHVILI EQUATION; SOLITON-SOLUTIONS; VRIES EQUATION;
74605    INTEGRATION; HIERARCHY; KORTEWEG; SYSTEM
74606 AB The KP equation with self-consistent sources is derived through the
74607    linear problem of the KP system. The multisoliton solutions for the KP
74608    equation with self-consistent sources are obtained by using Hirota
74609    method and Wronskian technique. The coincidence of these solutions is
74610    shown by direct computation.
74611 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
74612 RP Deng, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
74613 CR CHENG Y, 1991, PHYS LETT A, V157, P22
74614    DOKTOROV EV, 1995, PHYS LETT A, V207, P153
74615    FREEMAN NC, 1983, PHYS LETT A, V95, P1
74616    HIROTA R, 1971, PHYS REV LETT, V27, P1192
74617    HIROTA R, 1991, J PHYS SOC JPN, V60, P798
74618    KUNDU A, 1995, J MATH PHYS, V36, P2972
74619    LIN RL, 2001, PHYSICA A, V291, P287
74620    MELNIKOV VK, 1988, PHYS LETT A, V133, P493
74621    MELNIKOV VK, 1989, COMMUN MATH PHYS, V126, P201
74622    MELNIKOV VK, 1992, INVERSE PROBL, V8, P133
74623    SHCHESNOVICH VS, 1996, PHYS LETT A, V213, P23
74624    URASBOEV GU, 2001, THEOR MATH PHYS+, V129, P1341
74625    YE S, 2002, J PHYS A-MATH GEN, V35, L283
74626    ZENG YB, 1994, PHYSICA D, V73, P171
74627    ZENG YB, 1996, ACTA MATH SINICA, V12, P217
74628    ZENG YB, 2000, J MATH PHYS, V41, P5453
74629    ZHANG DJ, 2002, J PHYS SOC JPN, V71, P2649
74630 NR 17
74631 TC 6
74632 SN 0031-9015
74633 J9 J PHYS SOC JPN
74634 JI J. Phys. Soc. Jpn.
74635 PD SEP
74636 PY 2003
74637 VL 72
74638 IS 9
74639 BP 2184
74640 EP 2192
74641 PG 9
74642 SC Physics, Multidisciplinary
74643 GA 725JP
74644 UT ISI:000185540600014
74645 ER
74646 
74647 PT J
74648 AU Si, PC
74649    Bian, XF
74650    Zhang, JY
74651    Li, H
74652    Sun, MH
74653    Zhao, Y
74654 TI The fragility of Al-Ni-based glass-forming melts
74655 SO JOURNAL OF PHYSICS-CONDENSED MATTER
74656 DT Article
74657 ID ALLOYS; LIQUIDS; RELAXATIONS; TRANSITION
74658 AB In the original description of fragility, Angell (1988 J Phys. Chem.
74659    Solids 49 863) determined the degree of fragility from the curvature on
74660    an Arrhenius plot. This paper discusses a new measurement of the
74661    fragility value. The fragility of Al-Ni-based glass-forming melts,
74662    which is seldom reported in this field, can be analysed by using data
74663    from their viscosity and thermal properties. The fragility is observed
74664    to be very high, which is in very good agreement with the low
74665    glass-forming ability of Al-Ni-based alloys.
74666 C1 Shanghai Univ, Educ Minist China, Key Lab Liquid Struct & Hered Mat, Jinan 250061, Peoples R China.
74667 RP Si, PC, Shanghai Univ, Educ Minist China, Key Lab Liquid Struct & Hered
74668    Mat, Jingshi Rd 73, Jinan 250061, Peoples R China.
74669 CR ANGELL CA, 1985, RELAXATION COMPLEX S, P3
74670    ANGELL CA, 1988, J PHYS CHEM SOLIDS, V49, P863
74671    ANGELL CA, 1995, SCIENCE, V267, P1924
74672    BIAN XF, 2003, MATER LETT, V57, P2460
74673    BOHMER R, 1993, J CHEM PHYS, V99, P4201
74674    BRUNING R, 1996, J NONCRYST SOLIDS, V205, P480
74675    BUSCH R, 1997, MAT RES S C, V455, P369
74676    BUSCH R, 1998, ACTA MATER, V46, P4725
74677    CHEN HS, 1978, J NONCRYST SOLIDS, V27, P257
74678    EMADI D, 1993, METALL TRANS B, V24, P1055
74679    HODGE IM, 1996, J NON-CRYST SOLIDS, V202, P164
74680    INOUE A, 1996, MATER T JIM, V37, P1731
74681    INOUE A, 1996, MATER T JIM, V37, P636
74682    INOUE A, 1998, PROG MATER SCI, V43, P365
74683    LAUGHIN WT, 1972, J PHYS CHEM-US, V76, P2371
74684    PERERA DN, 1999, J PHYS-CONDENS MAT, V11, P3807
74685    WILDE G, 2002, J NON-CRYST SOLIDS, V312, P537
74686 NR 17
74687 TC 4
74688 SN 0953-8984
74689 J9 J PHYS-CONDENS MATTER
74690 JI J. Phys.-Condes. Matter
74691 PD AUG 20
74692 PY 2003
74693 VL 15
74694 IS 32
74695 BP 5409
74696 EP 5415
74697 PG 7
74698 SC Physics, Condensed Matter
74699 GA 723EX
74700 UT ISI:000185420400007
74701 ER
74702 
74703 PT J
74704 AU Wang, LJ
74705    Xia, YB
74706    Fang, ZJ
74707    Zhang, WL
74708    Zhang, WG
74709    Shi, WM
74710 TI Influence of deposition conditions on the growth of diamond films on
74711    patterned silicon
74712 SO JOURNAL OF MATERIALS SCIENCE LETTERS
74713 DT Article
74714 ID CHEMICAL-VAPOR-DEPOSITION; BIAS-ENHANCED NUCLEATION; SELECTIVE
74715    DEPOSITION; AREA DEPOSITION
74716 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
74717 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
74718    China.
74719 CR DAVIDSON JL, 1989, J ELECTRON MATER, V18, P711
74720    FOX NA, 2000, J APPL PHYS, V87, P8187
74721    HIRABAYASHI K, 1988, APPL PHYS LETT, V53, P1815
74722    HUANG JT, 1994, APPL PHYS LETT, V64, P73
74723    INOUE T, 1990, J APPL PHYS, V67, P7329
74724    IRWIN MD, 1997, APPL PHYS LETT, V71, P716
74725    JIANG X, 1993, APPL PHYS LETT, V62, P3438
74726    JOFFREAU PO, 1988, J REF HARD METALS, V7, P186
74727    MIZAKUCHUKI S, 1995, APPL PHYS LETT, V67, P3557
74728    RANKIN J, 1994, J MATER RES, V9, P2164
74729    ROBERTS PG, 1996, J MATER RES, V11, P3128
74730    STONER BR, 1993, J MATER RES, V8, P1334
74731    SUN Z, 1996, THIN SOLID FILMS, V289, P1
74732    WANG LJ, 2000, DIAM RELAT MATER, V9, P1617
74733 NR 14
74734 TC 0
74735 SN 0261-8028
74736 J9 J MATER SCI LETT
74737 JI J. Mater. Sci. Lett.
74738 PD OCT 15
74739 PY 2003
74740 VL 22
74741 IS 20
74742 BP 1447
74743 EP 1450
74744 PG 4
74745 SC Materials Science, Multidisciplinary
74746 GA 722QJ
74747 UT ISI:000185387300018
74748 ER
74749 
74750 PT J
74751 AU Zhang, QR
74752    Liu, TY
74753    Chen, J
74754    Feng, XQ
74755 TI Light-induced coloration and transformation process in PWO4 crystals
74756    and the effects of the defect pair V-Pb-V-O
74757 SO PHYSICAL REVIEW B
74758 DT Article
74759 ID PBWO4 SINGLE-CRYSTALS; LEAD TUNGSTATE CRYSTALS; NM ABSORPTION-BAND;
74760    ORIGIN; IRRADIATION
74761 AB The optical absorption spectrum of the as-grown PWO4 crystal mainly
74762    exhibits a weak band peaking at 350 nm, overlapping with the absorption
74763    edge of the crystal. The ultraviolet-irradiated crystal emits a strong
74764    band peaking at 420 nm and a broad band in the range of 500-700 nm
74765    almost in pairs along with a decreasing of the 350-nm band. It is found
74766    that the 420- and 500-700-nm bands can be reduced, with a reirradiation
74767    of the 411-nm monochromatic light, while the 350-nm band is
74768    strengthened simultaneously. In this paper the mechanism is studied. It
74769    is demonstrated that the increasing and/or decreasing of both the
74770    420-nm band and the 500-700-nm band are caused by the creation and/or
74771    the annihilation of V-Pb(2-) and V-O(2+), respectively. The creation
74772    and annihilation of V-Pb(2-) and V-O(2+) are found to be related to the
74773    separation and recombination of the vacancy pair V-Pb(2-)-V-O(2+),
74774    which plays an important role in the formation and transformation
74775    process of light induced color centers in the PWO crystal.
74776 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
74777    Chinese Acad Sci, Shanghai Inst Ceram, Lab Funct Inorgan Mat, Shanghai 200050, Peoples R China.
74778 RP Zhang, QR, Shanghai Univ Sci & Technol, Coll Sci, 516 Jungong Rd,
74779    Shanghai 200093, Peoples R China.
74780 CR ABRAHAM YB, 2001, PHYS REV B, V64
74781    ANNENKOV A, 1998, PHYS STATUS SOLIDI A, V170, P47
74782    ANNENKOV AN, 1998, 41 CMS
74783    ANNENKOV AN, 1998, RADIAT MEAS, V29, P27
74784    BACCARO S, 1998, NUCL PHYS B, V61, P66
74785    EPELBAUM BM, 1997, J CRYST GROWTH, V178, P426
74786    FANG SG, 1989, PHYSICS COLOR CTR CR
74787    FENG XQ, 1997, J INORGANIC MAT, V12, P449
74788    HAN BG, 1999, J APPL PHYS, V86, P3497
74789    KORZHIK MV, 1996, P INT C IN SCINT THE, P241
74790    LAGUTA VV, 1998, J PHYS-CONDENS MAT, V10, P7293
74791    LAGUTA VV, 2001, PHYS REV B, V64
74792    LECOQ P, 1995, NUCL INSTRUM METH A, V365, P291
74793    LI WS, 2000, PROG CRYST GROWTH CH, V40, P177
74794    LIAO JY, 1997, J INORGANIC MAT, V12, P286
74795    LIN QS, 2001, SOLID STATE COMMUN, V118, P221
74796    LIU TY, 2001, PHYS STATUS SOLIDI A, V184, P341
74797    LUTY F, 1968, PHYSICS COLOR CTR
74798    MOREAU JM, 1996, J ALLOY COMPD, V238, P46
74799    NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311
74800    NIKL M, 1996, PHYS STATUS SOLIDI B, V196, K7
74801    NIKL M, 1997, J APPL PHYS, V82, P1
74802    NIKL M, 1997, MATER SCI FORUM, V239, P271
74803    QI JL, 2000, NUCL TECHNOL, V23, P433
74804    SHI CS, 2000, CHEM PHYS LETT, V328, P1
74805    YIN ZW, 1997, P INT C IN SCINT THE, P191
74806    ZHANG Y, 1998, PHYS REV B, V57, P12738
74807 NR 27
74808 TC 13
74809 SN 1098-0121
74810 J9 PHYS REV B
74811 JI Phys. Rev. B
74812 PD AUG 1
74813 PY 2003
74814 VL 68
74815 IS 6
74816 AR 064101
74817 DI ARTN 064101
74818 PG 5
74819 SC Physics, Condensed Matter
74820 GA 720BH
74821 UT ISI:000185240600017
74822 ER
74823 
74824 PT J
74825 AU Li, GG
74826    Zhu, ZY
74827    Cheng, CJ
74828 TI Application of Galerkin method to dynamical behavior of viscoelastic
74829    timoshenko beam with finite deformation
74830 SO MECHANICS OF TIME-DEPENDENT MATERIALS
74831 DT Article
74832 DE bifurcation; chaos; finite deformation; fractional derivative
74833    constitutive relation; Galerkin method; nonlinear dynamical system;
74834    viscoelastic Timoshenko beam
74835 AB The motion equations governing the dynamical behavior of a viscoelastic
74836    Timoshenko beam with finite deformation are derived and simplified by
74837    Galerkin method. The viscoelastic material is assumed to obey the
74838    three-dimensional fractional derivative constitutive relation. The
74839    dynamical behaviors of the simplified systems with order 1 and order 2
74840    are numerically computed and compared by using the computational method
74841    presented by the authors. The dynamical behaviors of the systems are
74842    uniform qualitatively, but there is a little deviation quantitatively.
74843    And the truncated system with order 1 is safer than the one of order 2.
74844    It is also shown that the lower order system is reasonable. The
74845    influences of the load parameter and the fractional derivative
74846    parameter (material parameter) on the deflection of the beam are
74847    considered respectively. The numerical methods in nonlinear dynamics,
74848    such as phase diagram, and Poincare section, are applied to reveal
74849    dynamical behaviors of the nonlinear viscoelastic Timoshenko beam.
74850    There are plenty of dynamical behaviors, such as periodicity,
74851    bifurcation, quasi-periodicity and chaos in the dynamical system.
74852 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
74853    Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China.
74854    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
74855    Shanghai Supercomp Ctr, Shanghai 201203, Peoples R China.
74856 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
74857    200072, Peoples R China.
74858 CR BAGLEY RL, 1986, J RHEOL, V30, P133
74859    CHENG CJ, 1996, ELASTICITY
74860    ENELUND M, 1999, INT J SOLIDS STRUCT, V36, P939
74861    GEMANT A, 1938, PHILOS MAG, V25, P92
74862    MAKRIS N, 1997, J RHEOL, V41, P1007
74863    NAYFEH AH, 1979, NONLINEAR OSCILLATIO
74864    QIN TH, 1993, CHINESE ANN MATH B, V14, P335
74865    ROSS B, 1975, LECT NOTES MATH, V457
74866    SAMKO SG, 1993, FRACTIONAL INTEGRALS
74867    TIMOSHENKO S, 1972, MECH MAT
74868    WELCH SWJ, 1999, MECH TIME-DEPEND MAT, V3, P279
74869    ZHU ZY, 2003, APPL MATH MECH, V24, P331
74870 NR 12
74871 TC 0
74872 SN 1385-2000
74873 J9 MECH TIME-DEPEND MATER
74874 JI Mech. Time-Depend. Mater.
74875 PY 2003
74876 VL 7
74877 IS 2
74878 BP 175
74879 EP 188
74880 PG 14
74881 SC Materials Science, Characterization & Testing; Mechanics
74882 GA 719XB
74883 UT ISI:000185229400004
74884 ER
74885 
74886 PT J
74887 AU Ni, JS
74888    Xu, H
74889    Zhu, MY
74890    Li, Q
74891    Zhou, BX
74892    Dong, YD
74893 TI A study of two-phase nanocrystalline Nd8.5Fe75Co5Cu1Zr3Nb1B6.5
74894    permanent magnet
74895 SO JOURNAL OF RARE EARTHS
74896 DT Article
74897 DE metal materials; exchange-coupled; two-phase nanocrystalline; bonded
74898    permanent magnet; rare earths
74899 ID GRAIN-SIZE; DEPENDENCE; COMPOSITE; REMANENCE
74900 AB Nanocrystalline Nd8.5Fe75Co5Cu1Zr3Nb1B6.5 ribbons were prepared by
74901    melt-spun (18 m (.) s(-1)) and subsequent heat treatment (670
74902    degreesC/4 min). Excellent magnetic properties of the bonded magnet
74903    were achieved as follows: B-r = 0.68 T (6.8 kGs), H-J(c) = 620.3 kA (.)
74904    m(-1) (7.8 kOe), (BH)(max) = 74 kJ (.) m(-3) (9.3 MGOe). The results of
74905    TEM photomicrographs confirm that the appearance of alpha-Fe phase is
74906    earlier than that of Nd2Fe14B phase during crystallization process. The
74907    addition of Cu and Zr elements shows to be advantageous to the
74908    improvement of an intrinsic coercivity and squareness of hysteresis
74909    loop, as well as energy product.
74910 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
74911 RP Ni, JS, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
74912 CR BILLONI OV, 1998, J MAGN MAGN MATER, V187, P371
74913    COEHOORN R, 1989, J MAGN MAGN MATER, V80, P101
74914    FISCHER R, 1996, J MAGN MAGN MATER, V153, P35
74915    HUI X, 2001, NEW PROGR MAT SCI EN
74916    JURCZYK M, 1998, J MAGN MAGN MATER, V185, P66
74917    KNELLER EF, 1991, IEEE T MAGN, V27, P3588
74918    LIU XB, 1997, J CHINESE RARE EARTH, V15, P212
74919    PANAGIOTOPOULOS I, 1996, J APPL PHYS 2A, V79, P4827
74920    SCHRAEDER T, 1994, PIMA MAG, V76, P10
74921    YONEYAMA T, 1990, IEEE T MAGN, V26, P1963
74922 NR 10
74923 TC 2
74924 SN 1002-0721
74925 J9 J RARE EARTH
74926 JI J. Rare Earths
74927 PD AUG
74928 PY 2003
74929 VL 21
74930 IS 4
74931 BP 401
74932 EP 403
74933 PG 3
74934 SC Chemistry, Applied
74935 GA 722HG
74936 UT ISI:000185368900001
74937 ER
74938 
74939 PT J
74940 AU Liao, HY
74941    Zhou, SP
74942    Du, HC
74943 TI Vortex pinning by point defect in superconductors
74944 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
74945 DT Article
74946 ID HIGH-TEMPERATURE SUPERCONDUCTORS; BOSON LOCALIZATION; II
74947    SUPERCONDUCTORS; COLUMNAR DEFECTS; REGULAR ARRAY; LATTICE; FILMS;
74948    MAGNETIZATION; TRANSITION; SIMULATION
74949 AB We apply the periodic time-dependent Ginzburg-Landau model to study
74950    vortex distribution in type-II superconductors with a point-like defect
74951    and square pinning array. A defect site will pin vortices, and a
74952    periodic pinning array with right geometric parameters, which can be
74953    any form designed in advance, shapes the vortex pattern as external
74954    magnetic field varies. The maximum length over which an attractive
74955    interaction between a pinning centre and a vortex extends is estimated
74956    to be about 6.0xi. We also derive spatial distribution expressions for
74957    the order parameter, vector potential, magnetic field and supercurrent
74958    induced by a point defect. Theoretical results and numerical
74959    simulations are compared with each other and they are consistent.
74960 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
74961 RP Liao, HY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
74962 CR BAERT M, 1995, PHYS REV LETT, V74, P3269
74963    BLATTER G, 1994, REV MOD PHYS, V66, P1327
74964    CASTELLANOS A, 1997, APPL PHYS LETT, V71, P962
74965    DORIA MM, 1999, PHYS REV B, V60, P13164
74966    DORIA MM, 2002, PHYS REV B, V66
74967    DU Q, 1995, PHYS REV B, V51, P16194
74968    DU Q, 1998, MATH COMPUT, V67, P965
74969    ENOMOTO Y, 1997, J PHYS-CONDENS MAT, V9, P10203
74970    FRIESEN M, 1997, PHYS REV B, V55, P509
74971    KONCZYKOWSKI M, 1991, PHYS REV B, V44, P7167
74972    LATYSHEV YI, 1996, PHYS REV LETT, V77, P932
74973    LI QQ, 2001, PHYSICA C, V364, P495
74974    LYKOV AN, 1993, SOLID STATE COMMUN, V86, P531
74975    MKRTCHYAN GS, 1972, ZH EKSP TEOR FIZ, V34, P195
74976    MOSHCHALKOV VV, 1996, PHYS REV B, V54, P7385
74977    NELSON DR, 1992, PHYS REV LETT, V68, P2398
74978    NELSON DR, 1993, PHYS REV B, V48, P13060
74979    REED DS, 1995, PHYS REV B, V51, P16448
74980    REICHHARDT C, 1996, PHYS REV B, V54, P16108
74981    REICHHARDT C, 1998, PHYS REV B, V57, P7937
74982    REICHHARDT C, 2001, PHYS REV B, V64
74983    SHEN JH, 1998, ELEMENTARY NUMERICAL
74984    TAKEZAWA N, 1997, PHYSICA C, V290, P31
74985    THUNEBERG EV, 1984, J LOW TEMP PHYS, V57, P415
74986    THUNEBERG EV, 1989, CRYOGENICS, V29, P236
74987    XU CF, 1990, NUMERICAL SOLUTION P
74988    ZHOU SP, 2001, CHINESE PHYS, V10, P541
74989 NR 27
74990 TC 0
74991 SN 0022-3727
74992 J9 J PHYS-D-APPL PHYS
74993 JI J. Phys. D-Appl. Phys.
74994 PD JUL 7
74995 PY 2003
74996 VL 36
74997 IS 13
74998 BP 1439
74999 EP 1445
75000 PG 7
75001 SC Physics, Applied
75002 GA 722DV
75003 UT ISI:000185360900007
75004 ER
75005 
75006 PT J
75007 AU Jiang, EX
75008 TI An inverse eigenvalue problem for Jacobi matrices
75009 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
75010 DT Article
75011 DE symmetric tridiagonal matrix; Jacobi matrix; eigenvalue problem;
75012    inverse eigenvalue problem
75013 AB Let T-1,T-n be an n x n unreduced symmetric tridiagonal matrix with
75014    eigenvalues
75015    lambda(1) < lambda(2) < ... < lambda(n).
75016    and
75017    W-k = ((T1,k-1)(0) T-k+1,T-n (0))
75018    is an (n - 1) x (n - 1) submatrix by deleting the k(th) row and k(th)
75019    column, k = 1, 2, ..., n from T-n.
75020    Let
75021    mu(1) less than or equal to mu(2) less than or equal to ... less than
75022    or equal to mu(k-1)
75023    be the eigenvalues of T-1,T-k-1 and
75024    mu(k) less than or equal to mu(k+1) less than or equal to ... less than
75025    or equal to mu(n-1)
75026    be the eigenvalues of T-k+1,T-n.
75027    A new inverse eigenvalues problem has put forward as follows: How do we
75028    construct an unreduced symmetric tridiagonal matrix T-1,T-n, if we only
75029    know the spectral data: the eigenvalues of T-1,T-n, the eigenvalues of
75030    T-1,T-k-1 and the eigenvalues of T-k+1,T-n ? Namely if we only know the
75031    data: lambda(1),lambda(2), ... ,lambda(n), mu(1), mu(2), ..., mu(k-1)
75032    and mu(k), mu(k+1), ..., mu(n-1) how do we find the matrix T-1,T-n? A
75033    necessary and sufficient condition and an algorithm of solving such
75034    problem, are given in this paper.
75035 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
75036 RP Jiang, EX, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
75037 CR BOLEY D, 1987, INVERSE PROBL, V3, P595
75038    DEBOOR C, 1978, LINEAR ALGEBRA APPL, V21, P245
75039    GRAGG WB, 1984, NUMER MATH, V44, P317
75040    HALD OH, 1976, LINEAR ALGEBRA APPL, V14, P63
75041    HOCHSTADT H, 1967, ARCH MATH, V18, P201
75042    JIANG EX, 1984, SYMMETRIC MATRIX COM
75043    JIANG EX, 1999, NUMERICAL MATH J CHI, V21, P305
75044    JIANG EX, 2001, ANN OPER RES, V103, P315
75045    PAIGE CC, 1971, THESIS U LONDON
75046    PARLETT BN, 1980, SYMMETRIC EIGENVALUE
75047    RALSTON A, 1968, MATH METHODS DIGITAL, V2
75048    WILKINSON JH, 1965, ALGEBRAIC EIGENVALUE
75049 NR 12
75050 TC 0
75051 SN 0254-9409
75052 J9 J COMPUT MATH
75053 JI J. Comput. Math.
75054 PD SEP
75055 PY 2003
75056 VL 21
75057 IS 5
75058 BP 569
75059 EP 584
75060 PG 16
75061 SC Mathematics, Applied; Mathematics
75062 GA 722GK
75063 UT ISI:000185366900003
75064 ER
75065 
75066 PT J
75067 AU Wang, XD
75068    Ji, WS
75069    Li, Y
75070 TI Microstrip bandpass filter using one single patch resonator with two
75071    transmission zeros
75072 SO ELECTRONICS LETTERS
75073 DT Article
75074 ID SIZE
75075 AB A novel compact and simple microstrip patch bandpass filter structure
75076    using only one resonator is presented. This filter has two transmission
75077    zeros on both sides of the passband. Without coupling gaps, the new
75078    filter can reduce uncertainty in fabrication. Simulated results agree
75079    well with measured results.
75080 C1 Shanghai Univ, Dept Commun & Informat Engn, Shanghai 200072, Peoples R China.
75081 RP Wang, XD, Shanghai Univ, Dept Commun & Informat Engn, POB 151,149
75082    Yanchang Rd, Shanghai 200072, Peoples R China.
75083 CR HELSZAIN J, 1978, IEEE T MICROW THEORY, P95
75084    HONG JS, 2000, IEEE MTT-S, P331
75085    IWASAKI H, 1996, IEEE T ANTENN PROPAG, V44, P1399
75086    MANSOUR RR, 1996, IEEE T MICROW THEORY, V44, P322
75087    STRASSNER B, 2002, IEEE T MICROW THEORY, V50, P1431
75088    ZHU L, 1999, IEEE T MICROW THEORY, V47, P650
75089 NR 6
75090 TC 4
75091 SN 0013-5194
75092 J9 ELECTRON LETT
75093 JI Electron. Lett.
75094 PD AUG 21
75095 PY 2003
75096 VL 39
75097 IS 17
75098 BP 1255
75099 EP 1256
75100 PG 2
75101 SC Engineering, Electrical & Electronic
75102 GA 719MD
75103 UT ISI:000185206100019
75104 ER
75105 
75106 PT J
75107 AU Zhang, ML
75108    Xia, YB
75109    Wang, LJ
75110    Zhang, WL
75111 TI The electrical properties of diamond-like carbon film/D263 glass
75112    composite for the substrate of micro-strip gas chamber
75113 SO DIAMOND AND RELATED MATERIALS
75114 DT Article
75115 DE micro-strip gas chamber; diamond-like carbon film; electrical property;
75116    electronically conducting material
75117 ID CONDUCTIVITY
75118 AB Micro-Strip Gas Chamber (MSGC) used as a position sensitive gas
75119    detector has perfect performances in the detection of X-ray, alpha
75120    particles, beta particles, gamma-ray and other nuclear irradiations.
75121    However, it encounters a severe problem, that is, positive charge
75122    accumulation which can be avoided by reducing the surface resistivity
75123    of insulating substrate. So, diamond-like carbon (DLC) film is
75124    deposited on D263 glass to modify its electrical properties as
75125    substrate for MSGC. DLC film has optical smoothness and strong adhesive
75126    force on D263 glass, which helps fabricate microelectrodes on it. Raman
75127    spectroscopy demonstrates that DLC film is of sp(3) and sp(2) bonds
75128    corresponding to the occupied bonding (sigma) states and the empty
75129    antibonding (sigma*) states, and therefore it is a type of
75130    electronically conducting material. I-V plots indicate that three
75131    samples enjoy very steady resistivities between 10(9) Ohm cm and 10(12)
75132    Ohm cm, especially the DLC film under high electrical field over 10(4)
75133    V cm(-1), which meet the optimum requirements of MSGC. DLC film/D263
75134    glass composite substrate is essential for MSGC to avoid charge-up. (C)
75135    2003 Elsevier B.V. All rights reserved.
75136 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
75137 RP Zhang, ML, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples
75138    R China.
75139 CR BOUCLIER R, 1993, NUCL INSTRUM METH A, V332, P100
75140    BOUHALI O, 1996, NUCL INSTRUM METH A, V378, P432
75141    CHARPAK G, 1968, NUCL INSTRUM METHODS, V62, P235
75142    MACK V, 1995, NUCL INSTRUM METH A, V367, P173
75143    MEENAKSHI V, 1996, MATER SCI FORUM, V223, P307
75144    NEMANICH RJ, 1977, SOLID STATE COMMUN, V23, P117
75145    OED A, 1988, NUCL INSTRUM METH A, V263, P351
75146    SCHMIDT S, 1994, NUCL INSTRUM METH A, V344, P558
75147    TEO KBK, 2002, DIAM RELAT MATER, V11, P1086
75148 NR 9
75149 TC 4
75150 SN 0925-9635
75151 J9 DIAM RELAT MATER
75152 JI Diam. Relat. Mat.
75153 PD SEP
75154 PY 2003
75155 VL 12
75156 IS 9
75157 BP 1544
75158 EP 1547
75159 PG 4
75160 SC Materials Science, Multidisciplinary
75161 GA 721GP
75162 UT ISI:000185308900017
75163 ER
75164 
75165 PT J
75166 AU Wang, ZL
75167    Zhou, ZW
75168 TI Effect of heat exchange on the interfacial instability of gas-liquid jet
75169 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
75170 DT Article
75171 DE heat exchange; jet; interfacial instability; spray forming
75172 ID ATOMIZATION
75173 AB The classical linear instability theory was applied to the planar
75174    stratified two-layers flow with high speed compressible gas layer
75175    impacting on incompressible viscous liquid layer. The walls were kept
75176    at different temperatures, resulting in heat transfer across the
75177    layers. The thermal conductivity and the density of the gas were
75178    alerted when the temperature changes. After some treatment, a
75179    dour-order stiff ordinary differential equation was derived, and
75180    numerical integration and multi-shooting method were used to solve this
75181    equation for its spatial mode calculation. The numerical results of
75182    characteristic parameters show good coincidence with other models. At
75183    the same time, when the wall temperature ratio decreases, as well as
75184    the Reynolds number and the gas thermal conductivity change increases,
75185    the atomization would be more efficient and producing finer droplets.
75186    And the results show good fit with the experimental datum of HJE. Co.
75187    Inc (Glens Falls, NY, USA).
75188 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
75189 RP Wang, ZL, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
75190    200072, Peoples R China.
75191 CR BERGER SA, 1988, SIAM J APPL MATH, V48, P973
75192    BRADLEY D, 1973, J PHYS D, V6, P1724
75193    JOSEPH, 1999, METAL POWDER REP NOV, P24
75194    LEIB SJ, 1986, J FLUID MECH, V168, P479
75195    LIN SP, 1987, PHYS FLUIDS, V30, P2000
75196    LIN SP, 1990, AIAA J, V28, P120
75197    TAYLOR GI, 1965, SCI PAPERS GI TAYLOR, V3, P952
75198    WANG SC, 2000, METALLURGY CHINA, V10, P25
75199    ZHEN MA, 1998, APPL MATH MECH, V20, P1061
75200    ZHOU ZW, 1999, 4 INT C SPRAY FORM U, P35
75201 NR 10
75202 TC 0
75203 SN 0253-4827
75204 J9 APPL MATH MECH-ENGL ED
75205 JI Appl. Math. Mech.-Engl. Ed.
75206 PD JUL
75207 PY 2003
75208 VL 24
75209 IS 7
75210 BP 747
75211 EP 755
75212 PG 9
75213 SC Mathematics, Applied; Mechanics
75214 GA 722CA
75215 UT ISI:000185356700001
75216 ER
75217 
75218 PT J
75219 AU Guo, XM
75220    Zhou, SX
75221 TI Optimal control of parabolic variational inequalities with state
75222    constraint
75223 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
75224 DT Article
75225 DE state constraint; variational inequality; discontinuous and nonmonotone
75226    nonlinear multivalued mapping; optimal control
75227 ID EXISTENCE
75228 AB The optimal control problem of parabolic variational inequalities with
75229    the state constraint and nonlinear,, discontinuous nonmonotone
75230    multivalued mapping term and its approximating problem are studied,
75231    which generalizes some obtained results.
75232 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
75233 RP Guo, XM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
75234    200072, Peoples R China.
75235 CR BARBU V, 1983, OPTIMAL CONTROL VARI
75236    BARBU V, 1993, ANAL CONTROL NONLINE
75237    CLARKE FH, 1983, OPTIMIZATION NONSMOO
75238    GUO XM, 2000, J MATH ANAL APPL, V241, P198
75239    HASLINGER J, 1995, NONLINEAR ANAL-THEOR, V24, P105
75240    MIGNOT F, 1984, SIAM J CONTROL OPTIM, V22, P466
75241    TIBA D, 1985, SIAM J CONTROL OPTIM, V23, P85
75242    WANG GS, 2000, NONLINEAR ANAL-THEOR, V42, P789
75243    ZEIDLER E, 1990, NONLINEAR FUNCTION A, V2
75244    ZEIDLER E, 1990, NONLINEAR FUNCTION B, V2
75245 NR 10
75246 TC 1
75247 SN 0253-4827
75248 J9 APPL MATH MECH-ENGL ED
75249 JI Appl. Math. Mech.-Engl. Ed.
75250 PD JUL
75251 PY 2003
75252 VL 24
75253 IS 7
75254 BP 756
75255 EP 762
75256 PG 7
75257 SC Mathematics, Applied; Mechanics
75258 GA 722CA
75259 UT ISI:000185356700002
75260 ER
75261 
75262 PT J
75263 AU Cheng, CJ
75264    Ren, JS
75265 TI Transversely isotropic hyper-elastic material rectangular plate with
75266    voids under a uniaxial extension
75267 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
75268 DT Article
75269 DE transversely isotropic; hyper-elastic material; rectangular plate with
75270    voids; finite deformation; potential energy principle; growth of voids
75271 ID GROWTH; BIFURCATION; CAVITATION; NUCLEATION
75272 AB The finite deformation and stress analyses for a transversely isotropic
75273    rectangular plate with voids and made of hyper-elastic material with
75274    the generalized neo-Hookean strain energy function under a uniaxial
75275    extension are studied. The deformation functions of plates with voids
75276    that are symmetrically distributed in a certain manner are given and
75277    the functions are expressed by two parameters by solving the
75278    differential equations. The solution may be approximately obtained from
75279    the minimum potential energy principle. Thus, the analytic solutions of
75280    the deformation and stress of the plate are obtained. The growth of the
75281    voids and the distribution of stresses along the voids are analyzed and
75282    the influences of the degree of anisotropy, the size of the voids and
75283    the distance between the voids are discussed. The characteristics of
75284    the growth of the voids and the distribution of stresses of the plates
75285    with one void, three or five voids are obtained and compared.
75286 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
75287 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
75288    Shanghai 200072, Peoples R China.
75289 CR CHENG CJ, 1997, APPL MATH MECH-ENGL, V18, P615
75290    CHOUWANG MSO, 1989, INT J SOLIDS STRUCT, V25, P1239
75291    HORGAN CO, 1986, J ELASTICITY, V16, P189
75292    HORGAN CO, 1992, INT J SOLIDS STRUCT, V29, P279
75293    HORGAN CO, 1995, APPL MECH REV, V48, P471
75294    POLIGNONE DA, 1993, J ELASTICITY, V33, P27
75295    REN JS, 2001, J SHANGHAI U, V5, P177
75296    REN JS, 2002, APPL MATH MECH-ENGL, V23, P881
75297    REN JS, 2002, CHINESE Q MECH, V23, P347
75298    REN JS, 2002, J ENG MATH, V44, P245
75299 NR 10
75300 TC 0
75301 SN 0253-4827
75302 J9 APPL MATH MECH-ENGL ED
75303 JI Appl. Math. Mech.-Engl. Ed.
75304 PD JUL
75305 PY 2003
75306 VL 24
75307 IS 7
75308 BP 763
75309 EP 773
75310 PG 11
75311 SC Mathematics, Applied; Mechanics
75312 GA 722CA
75313 UT ISI:000185356700003
75314 ER
75315 
75316 PT J
75317 AU Chen, FY
75318    Chen, FJ
75319 TI Model shift and strange attractor on Mobius strip
75320 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
75321 DT Article
75322 DE model shift mapping; Mobius strip; chaos; strange attractor
75323 AB A new model shift mapping was given in bilateral symbol space. It is
75324    topologically conjugate with the traditional shift mapping. Similar to
75325    Smale Horseshoe, a model was constructed correspondent to the model
75326    shift mapping, i. e., a class of mapping on Mobius strip was given. its
75327    attractors' structure and dynamical behaviour were described.
75328 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
75329    Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China.
75330 RP Chen, FY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
75331 CR DEVANY R, 1989, CHAOTIC DYNAMICAL SY
75332    EDGER GA, 1990, MEASURE TOPOLOGY FRA
75333    LI MJ, 1999, APPL MATH JCU, V14, P125
75334    LIU ZG, 1993, SCI CHINA SER A, V23, P702
75335    LIU ZR, 1992, CHINESE SCI BULL, V37, P1269
75336    LIU ZR, 1996, STRANGE ATTRACTORS 2, P1
75337    MAI JH, 1993, CHINESE SCI BULL, V38, P1932
75338    SMALE S, 1967, B AM MATH SOC, V73, P747
75339    WANG SH, 1999, DIFFERENTIAL EQUATIO
75340    ZHENG WM, 1994, APPL SYMBOLIC DYNAMI
75341 NR 10
75342 TC 0
75343 SN 0253-4827
75344 J9 APPL MATH MECH-ENGL ED
75345 JI Appl. Math. Mech.-Engl. Ed.
75346 PD JUL
75347 PY 2003
75348 VL 24
75349 IS 7
75350 BP 845
75351 EP 852
75352 PG 8
75353 SC Mathematics, Applied; Mechanics
75354 GA 722CA
75355 UT ISI:000185356700012
75356 ER
75357 
75358 PT J
75359 AU Guo, XY
75360    Shum, KP
75361 TI On p-nilpotency of finite groups with some, subgroups c-supplemented
75362 SO ALGEBRA COLLOQUIUM
75363 DT Article
75364 DE p-nilpotent groups; c-supplemented subgroups; maximal subgroups
75365 AB A subgroup H of a group G is said to be c-supplemented in G if there
75366    exists a subgroup K of G such that G = H K and H boolean AND K is
75367    contained in core(G) (H) In this paper we prove that a group G is
75368    p-nilpotent if every maximal subgroup of P is c-supplemented in G and
75369    (\G\, p - 1) = 1, where p is a prime factor of the order of G and P is
75370    a Sylow p-subgroup of G. We also give a condition for a group to be
75371    p-nilpotent by using the 2-maximal subgroups of the Sylow p-subgroups.
75372 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
75373 RP Guo, XY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
75374 CR BALLESTERBOLINCHES A, 2000, GLASGOW MATH J 3, V42, P383
75375    BALLESTERBOLINCHES A, 2000, J ALGEBRA, V228, P491
75376    LI DY, 2000, J PURE APPL ALGEBRA, V150, P53
75377    ROBINSON DJS, 1993, COURSE THEORY GROUPS
75378    SRINIVASAN S, 1980, ISRAEL J MATH, V35, P210
75379    WALL G, 1982, ISRAEL J MATH, V43, P166
75380    WANG Y, 2000, J ALGEBRA, V224, P464
75381 NR 7
75382 TC 0
75383 SN 1005-3867
75384 J9 ALGEBR COLLOQ
75385 JI Algebr. Colloq.
75386 PD SEP
75387 PY 2003
75388 VL 10
75389 IS 3
75390 BP 259
75391 EP 266
75392 PG 8
75393 SC Mathematics, Applied; Mathematics
75394 GA 722AG
75395 UT ISI:000185350200004
75396 ER
75397 
75398 PT J
75399 AU Li, L
75400    Yu, X
75401    Dai, SQ
75402 TI One-dimensional sensitive driving cellular automaton model for traffic
75403    flow
75404 SO ACTA PHYSICA SINICA
75405 DT Article
75406 DE traffic flow; cellular automaton model; metastable state; phase
75407    separation; traffic phase transition
75408 ID SYSTEMS
75409 AB Based on the NaSch cellular automaton traffic model, a new
75410    one-dimensional cellular automaton model (called SDNaSch model, for
75411    short) is proposed through preferentially considering the sensitive
75412    behaviour of drivers, in which the randomization brake is arranged
75413    before the deterministic deceleration. According to the new update
75414    rules of the evolution of vehicles, numerical simulation is conducted
75415    and leads to some new results. The fundamental diagram obtained by the
75416    simulation shows that the traffic capacity of a road is enhanced and
75417    closer to the observed data compared with that of the NaSch model. It
75418    is found from the fundamental diagram that there exist two branches in
75419    some density regions, which illustrates the existence of the metastable
75420    state near the critical point and the phase separation. According to
75421    the evolution pattern of the vehicle speed in space and time, the wide
75422    moving jams is reproduced with the phase transitions between free flow
75423    and wide moving jams. With the consideration of the actual traffic
75424    situation, i.e., some drivers being sensitive and following the new
75425    rules, while others being not and following the original NaSch rules,
75426    the corresponding simulation verifies the remarkable effect of the
75427    sensitive driving factor on the characteristics of traffic flows. The
75428    traffic capacity rises along with the increase in the fraction of
75429    sensitive drivers.
75430 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
75431    Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Peoples R China.
75432    Guangxi Univ, Dept Phys, Nanning 530004, Peoples R China.
75433 RP Li, L, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
75434    Peoples R China.
75435 CR *OLSIM, PHYS TRANSP TRAFF
75436    BARLOVIC R, 1998, EUR PHYS J B, V5, P793
75437    BENJAMIN SC, 1996, J PHYS A-MATH GEN, V29, P3119
75438    CHOWDHURY D, 2000, PHYS REP, V329, P199
75439    DAI SQ, 1997, ZIRAN ZAZHI, V19, P196
75440    DONG LY, 2002, APPL MATH MECH-ENGL, V23, P363
75441    HELBING D, 2001, REV MOD PHYS, V73, P1067
75442    HELBING D, 2001, TRANSPORT RES B-METH, V35, P183
75443    ISHIBASHI Y, 1994, J PHYS SOC JPN, V63, P2882
75444    KERNER BS, 1993, PHYS REV E, V48, P2335
75445    KERNER BS, 1997, PHY REV LETT, V87, P91
75446    KERNER BS, 2001, NETW SPAT ECON, V1, P35
75447    LI XB, 2001, PHYS REV E, V64
75448    LIGHTHILL MH, 1955, P ROY SOC LOND A MAT, V22, P317
75449    NAGEL K, 1992, J PHYS I, V2, P2221
75450    NEWELL GF, 1959, OPER RES, V7, P589
75451    SCHADSCHNEIDER A, 2001, TRAFFIC FLOW STAT PH
75452    TAKAYASU M, 1993, FRACTALS, V1, P860
75453    TAN HL, 2002, ACTA PHYS SIN-CH ED, V51, P2713
75454    TREITERER J, 1965, APPX 9 FINAL REPORT, P202
75455    WAGNER P, 1996, TRAFFIC GRANULAR FLO, P193
75456    WANG BH, 1998, 20 IUPAP INT C STAT, V2
75457    WANG BH, 1998, ACTA PHYS SINICA, V47, P906
75458    WANG L, 1999, ACTA PHYS SIN-CH ED, V48, P808
75459    XUE Y, 2001, ACTA PHYS SIN-CH ED, V50, P445
75460    XUE Y, 2002, THESIS
75461 NR 26
75462 TC 1
75463 SN 1000-3290
75464 J9 ACTA PHYS SIN-CHINESE ED
75465 JI Acta Phys. Sin.
75466 PD SEP
75467 PY 2003
75468 VL 52
75469 IS 9
75470 BP 2121
75471 EP 2126
75472 PG 6
75473 SC Physics, Multidisciplinary
75474 GA 720AE
75475 UT ISI:000185237300004
75476 ER
75477 
75478 PT J
75479 AU Xu, PC
75480    Li, RB
75481    Sun, JH
75482    You, JL
75483 TI High temperature Raman spectroscopic study of molecular net-work
75484    fractional dimension value in the silicate melts
75485 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
75486 DT Article
75487 DE silicate melts; molecular network; fractional dimension; high
75488    temperature Raman spectrum
75489 AB In this paper, the fractional dimension values of molecular network
75490    structure in the CaO-Al2O3-SiO2 silicate melts (being abbreviated CAS)
75491    from 25 degreesC (the quenching glass phases) up to 1 700 degreesC (the
75492    high temperature melts) have been investigated by using high
75493    temperature Raman spectroscopy. The quantitative measurement method of
75494    network fractional dimension value has been established using Raman
75495    spectrum, and the changing rules of fractional dimension values of the
75496    silicate melts during increasing temperature and quenching have been
75497    obtained. So the conformational wriggling characteristic of molecular
75498    network structure has been described for nanometer size. This has
75499    important significance for the research on the viscosity, density and
75500    surface tension of the melts, and provides important new information
75501    and theory for deliberating natural magmatic crystallization and
75502    evolution, and enhancing performance of low dimensional materials and
75503    organic materials.
75504 C1 Jiangsu Teachers Coll Technol, Appl Mat Inst, Changzhou 213001, Peoples R China.
75505    Shanghai Univ, Shanghai 200072, Peoples R China.
75506 RP Xu, PC, Jiangsu Teachers Coll Technol, Appl Mat Inst, Changzhou 213001,
75507    Peoples R China.
75508 CR CLARK SP, 1966, HDB PHYSICAL CONSTAN, P301
75509    MYSEN BO, 1980, AM MINERAL, V65, P690
75510    MYSEN BO, 1992, CHEM GEOL, V96, P321
75511    YOU JL, 1998, J CHINESE RARE EARTH, V16, P505
75512    YOU JL, 1999, OPTICAL INSTRUMENT, V21, P21
75513 NR 5
75514 TC 0
75515 SN 1000-0593
75516 J9 SPECTROSC SPECTR ANAL
75517 JI Spectrosc. Spectr. Anal.
75518 PD AUG
75519 PY 2003
75520 VL 23
75521 IS 4
75522 BP 721
75523 EP 725
75524 PG 5
75525 SC Spectroscopy
75526 GA 717KK
75527 UT ISI:000185087500026
75528 ER
75529 
75530 PT J
75531 AU Lin, HX
75532    Yang, MF
75533    Huang, PG
75534    Cao, WG
75535 TI A facile procedure for the generation of dichlorocarbene from the
75536    reaction of carbon tetrachloride and magnesium using ultrasonic
75537    irradiation
75538 SO MOLECULES
75539 DT Article
75540 DE dichlorocarbene; gem-dichlorocyclopropanes; ultrasonic irradiation;
75541    olefin addition; magnesium
75542 ID DIHALOCARBENES; DERIVATIVES
75543 AB An improved method for the generation of dichlorocarbene was developed
75544    that utilizes ultrasound in the reaction of carbon tetrachloride with
75545    magnesium. High yields of gem-dichlorocyclopropane derivatives can be
75546    obtained in the presence of olefins by this method.
75547 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
75548 RP Lin, HX, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
75549 CR DIDRIKSEN T, 1999, SYNTHETIC COMMUN, V29, P1087
75550    FEDORYNSKI M, 1999, TETRAHEDRON, V55, P6329
75551    JAYACHANDRAN JP, 2001, APPL CATAL A-GEN, V206, P19
75552    KIRMSE W, 1971, CARBENE CHEM
75553    LIN HX, 1995, CHEM J CHINESE U, V16, P1572
75554    MAGARIAN RA, 1995, 5397802, US
75555    MAKOSZA M, 1969, TETRAHEDRON LETT, P4659
75556    MASON TJ, 1997, CHEM SOC REV, V26, P443
75557    NOMURA E, 1994, B CHEM SOC JPN, V67, P792
75558    REGEN SL, 1982, J ORG CHEM, V47, P1587
75559    XU L, 1988, ACTA CHIM SINICA CHI, V46, P340
75560    XU LX, 1986, ACTA CHIM SINICA, V44, P1134
75561    XU LX, 1992, J AM CHEM SOC, V114, P783
75562 NR 13
75563 TC 0
75564 SN 1420-3049
75565 J9 MOLECULES
75566 JI Molecules
75567 PD AUG
75568 PY 2003
75569 VL 8
75570 IS 8
75571 BP 608
75572 EP 613
75573 PG 6
75574 SC Chemistry, Organic
75575 GA 718ZK
75576 UT ISI:000185176800002
75577 ER
75578 
75579 PT J
75580 AU Fang, YH
75581    Hu, A
75582    Gu, Y
75583    Oh, YJ
75584 TI Synthesis of Ba(Mg1/3Ta2/3)O-3 microwave dielectrics by solid state
75585    processing
75586 SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
75587 DT Article
75588 DE synthesis; kinetics; microwave ceramics; tantalate; perovskite
75589 ID CERAMICS
75590 AB Synthesis and formation of Ba(Mg1/3Ta2/3)O-3 (BMT) from BaCO3, MgO and
75591    Ta2O5 was examined by thermal and X-ray diffraction analyses using
75592    quenching technique. Several reactions take place during heating
75593    process. BaCO3 can react with Ta2O5 to form BaTa2O6 (BT2) and B4T2. BT2
75594    as an intermediate product was found at the first stage of the
75595    reaction, and then BaTa2O6 or B4T2 react with MgO to form BMT. The
75596    reaction of BMT formation was not complete until it was sintered at
75597    1350 degreesC for 60 min. An intermediate reproduce cycle keeps company
75598    with the BMT formation in calcinations and sintering processing. The
75599    kinetics of solid-state reaction between powdered reactants for the
75600    reaction of BaTa2O6 formation was diffusion mechanism controlled, which
75601    can be described by Jander's model for three-dimensional diffusion. The
75602    activation energy was determined to be 235.6 kJ/mol. The BMT powders
75603    were sintered to similar to96% of relative density after 3 h at 1650
75604    degreesC. The final sintered ceramics exhibited a dielectric constant
75605    of 24.5, a Q.f of 120,000 GHz, and a temperature coefficient of
75606    resonant frequency of 6 ppm/degreesC. (C) 2003 Elsevier Ltd. All rights
75607    reserved.
75608 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
75609    Korea Inst Sci & Technol, Seoul 130650, South Korea.
75610 RP Fang, YH, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R
75611    China.
75612 CR AVRAMI M, 1941, J CHEM PHYS, V9, P177
75613    BAMFOND HC, 1980, REACTIONS SOLID STAT, V22
75614    BERETKA J, 1984, J AM CERAM SOC, V67
75615    CARTER RE, 1961, J CHEM PHYS, V34, P2010
75616    CHEN XM, 1994, J MATER SCI-MATER EL, V5, P244
75617    FANG YH, 2001, J EUR CERAM SOC, V21, P2745
75618    GINSTLING AM, 1950, J APPL CHEM-USSR, V23, P1327
75619    GINSTLING AM, 1950, ZH PRIKL KHIM, V23, P1249
75620    HANCOCK JD, 1972, J AM CERAM SOC, V55, P74
75621    HUBERT SF, 1967, BR CERAM SOC J, V6, P11
75622    JANDER W, 1927, Z ANORG ALLG CHEM, V163, P1
75623    KAKEGAWA K, 1986, J AM CERAM SOC, V69, C82
75624    KAWASHIMA S, 1983, J AM CERAM SOC, V66, P421
75625    KINGERY WD, 1976, INTRO CERAMICS
75626    LEE YC, 2001, J EUROPEAN CERAMIC S, V21, P2745
75627    NOMURA S, 1982, JPN J APPL PHYS, V21, L624
75628    OLOVIER R, 1992, J AM CERAM SOC, V7, P3337
75629    SHARP JH, 1966, J AM CERAM SOC, V49, P379
75630    TAMURA H, 1984, J AM CERAM SOC, V67, P59
75631    YOUN HJ, 1996, JPN J APPL PHYS 1, V35, P3947
75632 NR 20
75633 TC 1
75634 SN 0955-2219
75635 J9 J EUR CERAM SOC
75636 JI J. European Ceram. Soc.
75637 PY 2003
75638 VL 23
75639 IS 14
75640 BP 2497
75641 EP 2502
75642 PG 6
75643 SC Materials Science, Ceramics
75644 GA 718NG
75645 UT ISI:000185152600024
75646 ER
75647 
75648 PT J
75649 AU Ren, JS
75650    Cheng, CJ
75651 TI Dynamical formation of cavity in transversely isotropic hyper-elastic
75652    spheres
75653 SO ACTA MECHANICA SINICA
75654 DT Article
75655 DE transversely isotropic hyper-elastic material; finite deformation
75656    dynamics; cavity formation; nonlinear periodic oscillation
75657 ID BIFURCATION; CAVITATION
75658 AB The cavity formation in a radial transversely isotropic hyper-elastic
75659    sphere of an incompressible Ogden material, subjected to a suddenly
75660    applied uniform radial tensile boundary dead-load, is studied following
75661    the theory of finite deformation dynamics. A cavity forms at the center
75662    of the sphere when the tensile load is greater than its critical value.
75663    It is proved that the evolution of the cavity radius with time follows
75664    that of nonlinear periodic oscillations.
75665 C1 Shanghai Univ, Dept Mech, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
75666 RP Ren, JS, Shanghai Univ, Dept Mech, Shanghai Inst Appl Math & Mech,
75667    Shanghai 200072, Peoples R China.
75668 CR BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
75669    CALDERER C, 1983, J ELASTICITY, V13, P17
75670    CHOUWANG MS, 1989, INT J ENG SCI, V27, P967
75671    GUO ZH, 1963, ARCH MECH STOSOW, V15, P427
75672    HORGAN CO, 1995, APPL MECH REV, V48, P471
75673    KNOWLES JK, 1960, Q APPL MATH, V18, P71
75674    KNOWLES JK, 1962, J APPL MECH, V29, P283
75675    REN JS, 2002, ACTA MECH SOLIDA SIN, V15, P208
75676    REN JS, 2002, APPL MATH MECH-ENGL, V23, P881
75677    REN JS, 2002, J ENG MATH, V44, P245
75678    YEOH OH, 1997, RUBBER CHEM TECHNOL, V70, P175
75679 NR 11
75680 TC 2
75681 SN 0567-7718
75682 J9 ACTA MECH SINICA
75683 JI Acta Mech. Sin.
75684 PD AUG
75685 PY 2003
75686 VL 19
75687 IS 4
75688 BP 320
75689 EP 323
75690 PG 4
75691 SC Engineering, Mechanical; Mechanics
75692 GA 719RY
75693 UT ISI:000185219400005
75694 ER
75695 
75696 PT J
75697 AU Zhong, YB
75698    Ren, ZM
75699    Sun, QX
75700    Jiang, ZW
75701    Deng, K
75702    Xu, KD
75703 TI Behavior of particles in front of metallic solid/liquid interface in
75704    electromagnetic field
75705 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
75706 DT Article
75707 DE solidification; particle; electromagnetic field; pushing/engulfment;
75708    distribution of particles
75709 ID SOLID-LIQUID INTERFACE; INSOLUBLE PARTICLES; SOLIDIFICATION; REJECTION
75710 AB The first part deals with the behavior of particles theoretically, and
75711    the critical electromagnetic force needed to alter the behavior of
75712    particles was deduced under different conditions. It was proposed that
75713    applying electromagnetic force would change the distribution
75714    coefficient of the particles. By using the data from literatures, the
75715    migrating rate of SiC particle by electromagnetic force was calculated,
75716    which is far more than the critical rate of solidifying interface which
75717    will result in the engulfment of the SiC particle in the Al-SiC matrix
75718    metal. Therefore the possibility of controlling the behavior of the
75719    particles in front of the solidifying interface by electromagnetic
75720    field was confirmed. In the second part, by using simulative
75721    experiments, the man-made alternation of the behavior of the particles
75722    in front of the solidifying interface under electromagnetic field was
75723    observed, and the idea of changing the distribution of the particles in
75724    solidified metal by electromagnetic force was verified experimentally.
75725    It is shown that, the particle, which would be engulfed by the
75726    solidifying interface, would escape from the interface under
75727    electromagnetic buoyant force (EMBF), and the particles adherent to the
75728    interface would migrate toward it and be engulfed finally under EMBF.
75729    Further more, the particles being pushed by the interface would stay at
75730    the interface, the repulsive force exerted on the particles would be
75731    counteracted by EMBF, and then the particle would turn to be engulfed.
75732    Adjusting the direction and magnitude of EMBF could alter the
75733    distribution of the particles in the solidifying metal.
75734 C1 Shanghai Univ, Shanghai Enhanced Lab Ferrous Met, Shanghai 200072, Peoples R China.
75735 CR BOLLING GF, 1971, J CRYST GROWTH, V10, P56
75736    CISSE J, 1971, J CRYST GROWTH, V10, P67
75737    CISSE J, 1971, J CRYST GROWTH, V11, P25
75738    HAN Q, 1995, ISIJ INT, V35, P693
75739    HAN QY, 1996, ACTA METALLURGICA SI, V32, P365
75740    HAN QY, 1996, J MAT S, P101
75741    KOLIN A, 1953, SCIENCE, V117, P134
75742    KORBER C, 1985, J CRYST GROWTH, V72, P649
75743    SASSA K, 1992, CAMP ISIJ, V5, P990
75744    SHANGGUAN D, 1992, METALL TRANS A, V23, P669
75745    STEFANESCU DM, 1990, METALL TRANS A, V21, P231
75746    TANIGUCHI S, 1994, TETSU TO HAGANE, V80, P24
75747    UHLMANN DR, 1964, J APPL PHYS, V35, P2986
75748    WANG ZD, 1994, ACTA METALLURGICA SI, V30, B39
75749    WU SS, 1997, FOUNDRY ENG, P3
75750    WU SS, 1998, ACTA METALLURGICA SI, V34, P34
75751    XIE GH, 1995, ACTA METALLURGICA SI, V31, B275
75752    YASUDA H, 1996, ISIJ INT, V36, S167
75753    ZHONG YB, 1999, ACTA METALLURGIC SIN, V35, P503
75754    ZHONG YB, 2000, METALLOID PARTICLES
75755 NR 20
75756 TC 1
75757 SN 1003-6326
75758 J9 TRANS NONFERROUS METAL SOC CH
75759 JI Trans. Nonferrous Met. Soc. China
75760 PD AUG
75761 PY 2003
75762 VL 13
75763 IS 4
75764 BP 755
75765 EP 763
75766 PG 9
75767 SC Metallurgy & Metallurgical Engineering
75768 GA 715TE
75769 UT ISI:000184987700003
75770 ER
75771 
75772 PT J
75773 AU Zhou, ZQ
75774    Fang, SS
75775    Feng, F
75776 TI Rules for maximum solid solubility of transition metals in Ti, Zr and
75777    Hf solvents
75778 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
75779 DT Article
75780 DE maximum solid solubility; prediction method; transition metals;
75781    electronegativity difference; atomic size factor; electron concentration
75782 AB Based on the principle of energy change of alloy formation, the rules
75783    for the maximum solid solubility (C-max) of various transition:metals
75784    in the Metals Ti, Zr and Hf were studied. It is deduced that the C-max
75785    of transition metal's in the metals Ti, Zr and Hf can be described as a
75786    semi-empirical equation using three atomic parameters, i.e.,
75787    electronegativity difference, atomic diameter and electron
75788    concentration. From the equation analysis by using experimental data,
75789    it shows that atomic size para. meter and electronegativity difference
75790    are the main factors that affect the C-max of the transition metals in
75791    the metals Ti, Zr and Hf while electron concentration parameter has the
75792    smallest effect on,C-max.
75793 C1 Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China.
75794    Univ Windsor, Dept Mech Automot & Mat Engn, Windsor, ON N9B 3P4, Canada.
75795 CR DARKEN LS, 1953, PHYSICAL CHEM METALS, P74
75796    FANG SS, 1999, J ALLOY COMPD, V293, P10
75797    FANG SS, 2002, INT J HYDROGEN ENERG, V27, P329
75798    FENG D, 1987, METAL PHYSICS, P155
75799    FENG F, 1995, FUNCTONAL MAT, P476
75800    GSCHNEIDNER KA, 1980, THEORY ALLOY PHASE F, P1
75801    LI D, 1984, ACTA METALL SIN, V20, P375
75802    LI D, 1985, METAL SCI TECH, V1, P33
75803    LIAO SZ, 1994, RARE METAL MAT ENG, V23, P19
75804    MASSALSKI TB, 1996, BINARY ALLOY PHASE D
75805    PHILLIPS JC, 1980, THEOYR ALLOY PHASE F, P332
75806    XIAO J, 1985, ENERGY ALLOYS, P256
75807    ZHOU Z, 1991, MAT SCI PROGR, V5, P117
75808    ZHOU ZQ, 1993, EFFECT 3D TRANSITION, P79
75809    ZHOU ZQ, 1998, ADV ENERGY SOURCES M, P37
75810 NR 15
75811 TC 2
75812 SN 1003-6326
75813 J9 TRANS NONFERROUS METAL SOC CH
75814 JI Trans. Nonferrous Met. Soc. China
75815 PD AUG
75816 PY 2003
75817 VL 13
75818 IS 4
75819 BP 864
75820 EP 868
75821 PG 5
75822 SC Metallurgy & Metallurgical Engineering
75823 GA 715TE
75824 UT ISI:000184987700024
75825 ER
75826 
75827 PT J
75828 AU Zhang, DJ
75829    Chen, DY
75830 TI Some general formulas in the Sato theory (vol 72, pg 448, 2003)
75831 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
75832 DT Correction
75833 DE Sato theory; pseudo-differential operator; general formulas; the
75834    two-dimensional Toda lattice hierarchy
75835 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
75836 RP Zhang, DJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
75837 CR BLASZAK M, 1994, J MATH PHYS, V35, P4661
75838    KAJIWARA K, 1991, J MATH PHYS, V32, P506
75839    ZHANG DJ, 2003, J PHYS SOC JPN, V72, P448
75840    ZHANG DJ, 2003, J PHYS SOC JPN, V72, P448
75841    ZHANG DJ, 2003, SOME GEN RESULTS BLA
75842 NR 5
75843 TC 0
75844 SN 0031-9015
75845 J9 J PHYS SOC JPN
75846 JI J. Phys. Soc. Jpn.
75847 PD AUG
75848 PY 2003
75849 VL 72
75850 IS 8
75851 BP 2130
75852 EP 2131
75853 PG 2
75854 SC Physics, Multidisciplinary
75855 GA 715WM
75856 UT ISI:000184996000058
75857 ER
75858 
75859 PT J
75860 AU Yang, CL
75861    Tang, ZK
75862    Ge, WK
75863    Wang, JN
75864    Zhang, ZL
75865    Jian, XY
75866 TI Exciton diffusion in light-emitting organic thin films studied by
75867    photocurrent spectra
75868 SO APPLIED PHYSICS LETTERS
75869 DT Article
75870 ID SANDWICH CELLS; CHLOROPHYLL-A; ALUMINUM
75871 AB Photocurrent spectroscopy is employed to obtain the exciton diffusion
75872    coefficient and diffusion length in two typical light-emitting organic
75873    thin films, the hole transport material
75874    [N,N-'-diphenyl-N,N-'-bis(3-methyl-phenyl)-1,1'biphenyl-4,4'diamine]
75875    (TPD) and the electron transport material tris(8-hydroxyquinolinolato)
75876    aluminum III (Alq(3)). The photocurrent spectra of both films at higher
75877    biases exhibit either symbatic or antibatic responses. However,
75878    complicated responses are observed for smaller biases. At certain small
75879    biases, the direction of the photocurrent even alters with the energy
75880    of illuminating photons. A model based on exciton diffusion and
75881    dissociation at film/electrode interfaces is used to explain these
75882    experimental results. Good agreement is achieved between experiments
75883    and theory by taking into account both symbatic and antibatic
75884    responses, especially at zero or small biases. The diffusion
75885    coefficient and the diffusion length of excitons derived are
75886    1.53x10(-3) cm(2) s(-1) and 17 nm for TPD and 4x10(-5) cm(2) s(-1) and
75887    8 nm for Alq(3), respectively. (C) 2003 American Institute of Physics.
75888 C1 Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China.
75889    Shanghai Univ, Dept Mat Sci, Luminescence & Optoelect Res Ctr, Shanghai 201800, Peoples R China.
75890 RP Wang, JN, Hong Kong Univ Sci & Technol, Dept Phys, Clear Water Bay,
75891    Kowloon, Hong Kong, Peoples R China.
75892 CR DESORMEAUX A, 1993, J PHYS CHEM-US, V97, P6670
75893    DEVORE HB, 1956, PHYS REV, V102, P86
75894    GHOSH AK, 1974, J APPL PHYS, V45, P230
75895    GHOSH AK, 1978, J APPL PHYS, V49, P5982
75896    HARRISON MG, 1997, PHYS REV B, V55, P7831
75897    MARKS RN, 1994, J PHYS CONDENS MATT, V6, P1374
75898    MORI T, 1997, JPN J APPL PHYS 1, V36, P7239
75899    SCHREIBER A, 1998, P SOC PHOTO-OPT INS, V3471, P224
75900    SOKOLIK I, 1996, APPL PHYS LETT, V69, P4168
75901    TANG CW, 1975, J CHEM PHYS, V62, P2139
75902    TANG CW, 1987, APPL PHYS LETT, V51, P913
75903    TANG CW, 1989, J APPL PHYS, V65, P3610
75904 NR 12
75905 TC 6
75906 SN 0003-6951
75907 J9 APPL PHYS LETT
75908 JI Appl. Phys. Lett.
75909 PD SEP 1
75910 PY 2003
75911 VL 83
75912 IS 9
75913 BP 1737
75914 EP 1739
75915 PG 3
75916 SC Physics, Applied
75917 GA 715VB
75918 UT ISI:000184992000017
75919 ER
75920 
75921 PT J
75922 AU Jiao, Z
75923    Wu, MH
75924    Qin, Z
75925    Lu, MH
75926    Gu, JZ
75927 TI The NO2 sensing ITO thin films prepared by ultrasonic spray pyrolysis
75928 SO SENSORS
75929 DT Article
75930 DE thin film; spray pyrolysis; gas sensor; ITO
75931 ID TIN OXIDE-FILMS; GAS SENSORS
75932 AB In this paper ITO thin films were deposited on alumina substrates by
75933    ultrasonic spray pyrolysis. The NO2 sensing properties of ITO thin
75934    films were investigated. The results show ITO thin films have good
75935    sensitivity to nitrogen dioxide.
75936 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
75937 RP Jiao, Z, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
75938    Peoples R China.
75939 CR CHOPRA KL, 1983, THIN FILM DEVICE APP
75940    KARIM AA, 1989, THIN SOLID FILMS, V172, P11
75941    KIM H, 1999, APPL PHYS LETT, V74, P3444
75942    KOROBOV V, 1994, APPL PHYS LETT, V65, P2290
75943    KWOK HS, 1998, THIN SOLID FILMS, V335, P299
75944    MA J, 1997, THIN SOLID FILMS, V307, P200
75945    PATEL NG, 1995, SENSOR ACTUAT B-CHEM, V23, P49
75946    RAY S, 1983, J APPL PHYS, V54, P3497
75947    RYKARA LA, 1982, THIN SOLID FILMS, V92, P327
75948    SAKO T, 2001, SURF COAT TECH, V142, P781
75949    SBERVEGLIERI G, 1990, THIN SOLID FILMS, V186, P349
75950    TANG CW, 1987, APPL PHYS LETT, V51, P913
75951    YUMOTO H, 1999, THIN SOLID FILMS, V345, P38
75952    ZHENG JP, 1993, APPL PHYS LETT, V63, P1
75953 NR 14
75954 TC 2
75955 SN 1424-8220
75956 J9 SENSORS
75957 JI Sensors
75958 PD AUG
75959 PY 2003
75960 VL 3
75961 IS 8
75962 BP 285
75963 EP 289
75964 PG 5
75965 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
75966 GA 714ZV
75967 UT ISI:000184946500002
75968 ER
75969 
75970 PT J
75971 AU Liao, HY
75972    Zhou, SP
75973    Shi, XY
75974    Zhu, BH
75975 TI Vortex dynamics in superconductors with periodic pinning arrays
75976 SO PHYSICS LETTERS A
75977 DT Article
75978 DE periodic time-dependent Ginzburg-Landau model; square or triangular
75979    periodic pinning arrays; vortex lattice; magnetic field
75980 ID HIGH-TEMPERATURE SUPERCONDUCTORS; BOSON LOCALIZATION; REGULAR ARRAYS;
75981    FILMS; DEFECTS; LATTICE; MAGNETIZATION; SIMULATION; CRYSTALS; FLUX
75982 AB In this Letter, we apply the periodic time-dependent Ginzburg-Landau
75983    (TDGL) model to simulate vortex dynamics in a type-II superconductor
75984    with square or triangular pinning arrays. A pinning array, which has
75985    been designed to be periodic in advance, can pin vortices regularly and
75986    periodically, and shapes various vortex lattices depending on the
75987    applied magnetic fields. At the matching fields, vortex lattices are
75988    commensurate with defect lattices, and the pinning effects are
75989    enhanced. The results are consistent with those obtained by considering
75990    large-scale simulated annealing as well as flux-gradient-driven
75991    molecular dynamics. (C) 2003 Elsevier B.V. All rights reserved.
75992 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
75993 RP Liao, HY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
75994 CR BAERT M, 1995, PHYS REV LETT, V74, P3269
75995    BLATTER G, 1994, REV MOD PHYS, V66, P1327
75996    CASTELLANOS A, 1997, APPL PHYS LETT, V71, P962
75997    DU Q, 1992, SIAM REV, V34, P54
75998    DU Q, 1995, PHYS REV B, V51, P16194
75999    DU Q, 1998, MATH COMPUT, V67, P965
76000    ENOMOTO Y, 1997, J PHYS-CONDENS MAT, V9, P10203
76001    GORKOV LP, 1968, SOV PHYS JETP, V27, P328
76002    GORKOV LP, 1974, SOV PHYS JETP, V38, P195
76003    HARADA K, 1996, SCIENCE, V274, P1167
76004    KONCZYKOWSKI M, 1991, PHYS REV B, V44, P7167
76005    LATYSHEV YI, 1996, PHYS REV LETT, V77, P932
76006    LYKOV AN, 1993, SOLID STATE COMMUN, V86, P531
76007    MOSHCHALKOV VV, 1996, PHYS REV B, V54, P7385
76008    NELSON DR, 1992, PHYS REV LETT, V68, P2398
76009    NELSON DR, 1993, PHYS REV B, V48, P13060
76010    REED DS, 1995, PHYS REV B, V51, P16448
76011    REICHHARDT C, 1996, PHYS REV B, V54, P16108
76012    REICHHARDT C, 1998, PHYS REV B, V57, P7937
76013    REICHHARDT C, 2001, PHYS REV B, V64
76014    SHEN JH, 1998, ELEMENTARY NUMERICAL
76015    TAKEZAWA N, 1997, PHYSICA C, V290, P31
76016    WINIECKI T, 2002, PHYS REV B, V65
76017    XU CF, 1990, NUMERICAL SOLUTION P
76018    ZHOU SP, 2001, CHINESE PHYS, V10, P541
76019 NR 25
76020 TC 0
76021 SN 0375-9601
76022 J9 PHYS LETT A
76023 JI Phys. Lett. A
76024 PD AUG 18
76025 PY 2003
76026 VL 315
76027 IS 1-2
76028 BP 162
76029 EP 167
76030 PG 6
76031 SC Physics, Multidisciplinary
76032 GA 713WE
76033 UT ISI:000184880300021
76034 ER
76035 
76036 PT J
76037 AU Li-Hui, Z
76038    Qing-Wei, H
76039 TI Study on martensitic transformation of mechanically alloyed
76040    nanocrystalline Fe-Ni
76041 SO MATERIALS LETTERS
76042 DT Article
76043 DE mechanical alloying; phase transformation; nanocrystalline material;
76044    martensitic transformation
76045 ID X-RAY-DIFFRACTION; PHASE-TRANSFORMATION; MAGNETIC-PROPERTIES;
76046    PARTICLES; POWDERS; ENERGY
76047 AB Phase transformation of Fe-Ni powders with different nickel content
76048    during mechanical alloying was studied, as well as reverse
76049    transformation of mechanically alloyed nanocrystalline Fe-Ni upon
76050    heating. Results show that nickel content plays an important role in
76051    the phase transformation tendency during mechanical alloying. When
76052    heated at 300 degreesC, neither gain size nor phase changes in Fe-30
76053    wt.% Ni milled for 80 h, indicating the nanometer-sized martensite is
76054    very stable below 300 degreesC. When the temperature increases to 350
76055    degreesC, concurrently with gain growth reverse transformation takes
76056    place. The reverse transformation temperature of mechanically alloyed
76057    nanocrystalline Fe-Ni is higher than that of bulk alloys. (C) 2003
76058    Elsevier Science B.V. All rights reserved.
76059 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
76060    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
76061 RP Li-Hui, Z, Shanghai Univ, Dept Mat Sci & Engn, POB 15,Yanchang Rd,
76062    Shanghai 200072, Peoples R China.
76063 CR ASAKA K, 1999, MAT SCI ENG A-STRUCT, V273, P262
76064    BALDOKHIN YV, 1999, J MAGN MAGN MATER, V203, P313
76065    CHEN Y, 1997, MAT SCI ENG A-STRUCT, V226, P38
76066    DONG XL, 1999, J MATER RES, V14, P398
76067    JARTYCH E, 2000, J MAGN MAGN MATER, V208, P221
76068    JIANG HG, 1999, J MATER RES, V14, P549
76069    KAJIWARA S, 1991, PHILOS MAG A, V63, P625
76070    KAUFMAN L, 1956, T AIME, V206, P1393
76071    KUHRT C, 1993, J APPL PHYS 2B, V73, P6588
76072    KUSUNOKI M, 1996, ULTRAFINE PARTICLES, P98
76073    LI XG, 1997, J MAGN MAGN MATER, V170, P339
76074    PEKALA M, 1999, NANOSTRUCT MATER, V11, P789
76075    RAWERS J, 1995, SCRIPTA METALL MATER, V32, P1319
76076    RAWERS JC, 1996, MAT SCI ENG A-STRUCT, V220, P162
76077    TADAKI T, 1996, MAT SCI ENG A-STRUCT, V217, P235
76078    ZHOU YH, 1990, MAT SCI ENG A-STRUCT, V124, P241
76079    ZHOU YH, 1991, MAT SCI ENG A-STRUCT, V133, P775
76080    ZHU LH, 2001, J MATER SCI, V36, P5571
76081 NR 18
76082 TC 0
76083 SN 0167-577X
76084 J9 MATER LETT
76085 JI Mater. Lett.
76086 PD AUG
76087 PY 2003
76088 VL 57
76089 IS 24-25
76090 BP 4070
76091 EP 4073
76092 PG 4
76093 SC Materials Science, Multidisciplinary; Physics, Applied
76094 GA 713FR
76095 UT ISI:000184846900065
76096 ER
76097 
76098 PT S
76099 AU Lu, GB
76100    Hu, QY
76101 TI Market-based interest rates: Deterministic volatility case
76102 SO COMPUTATIONAL SCIENCE - ICCS 2003, PT II, PROCEEDINGS
76103 SE LECTURE NOTES IN COMPUTER SCIENCE
76104 DT Article
76105 AB Central banks issue often many kinds of bonds to guide their benchmark
76106    interest rates. Their market data are thought of to reflect current
76107    state of the countries financial system. Then at least how much data is
76108    needed? Based on the framework of HJM model, We prove that the amount
76109    of the data needed is related to the form of the volatility function of
76110    forward rates, and then the initial forward rate curve is not essential.
76111 C1 Xidian Univ, Sch Econ & Management, Xian 710071, Peoples R China.
76112    Shanghai Univ, Coll Int Business & Management, Shanghai 201800, Peoples R China.
76113 RP Lu, GB, Xidian Univ, Sch Econ & Management, Xian 710071, Peoples R
76114    China.
76115 CR BJORK T, 1999, MATH FINANC, V9, P323
76116    BJORK T, 2001, MATH FINANC, V11, P205
76117    BJORK T, 2002, FINITE MARKOVIAN REA
76118    BJORK T, 2003, IN PRESS FINA STOCH
76119    FILIPOVIC D, 2003, IN PRESS J FUNC ANAL
76120    HEATH D, 1992, ECONOMETRICA, V60, P77
76121 NR 6
76122 TC 0
76123 SN 0302-9743
76124 J9 LECT NOTE COMPUT SCI
76125 PY 2003
76126 VL 2658
76127 BP 28
76128 EP 33
76129 PG 6
76130 GA BX28K
76131 UT ISI:000184831800004
76132 ER
76133 
76134 PT S
76135 AU Hu, QY
76136    Liu, JY
76137    Yue, WY
76138 TI Continuous time Markov decision processes with expected discounted
76139    total rewards
76140 SO COMPUTATIONAL SCIENCE - ICCS 2003, PT II, PROCEEDINGS
76141 SE LECTURE NOTES IN COMPUTER SCIENCE
76142 DT Article
76143 ID TRANSITION; CRITERION; RATES
76144 AB This paper discusses continuous time Markov decision processes with
76145    criterion of expected discounted total rewards, where the state space
76146    is countable, the reward rate function is extended real-valued and the
76147    discount rate is a real number. Under necessary conditions that the
76148    model is well defined, the state space is partitioned into three
76149    subsets, on which the optimal value function is positive infinity,
76150    negative infinity, or finite, respectively. Correspondingly, the model
76151    is reduced into three submodels, by generalizing policies and
76152    eliminating some worst actions. Then for the submodel with finite
76153    optimal value, the validity of the optimality equation is shown and
76154    some its properties are obtained.
76155 C1 Shanghai Univ, Coll Int Business & Management, Shanghai 201800, Peoples R China.
76156    Acad Sinica, Inst Appl Math, Beijing 100080, Peoples R China.
76157    Konan Univ, Dept Informat Sci & Syst Engn, Kobe, Hyogo 6588501, Japan.
76158 RP Hu, QY, Shanghai Univ, Coll Int Business & Management, Shanghai 201800,
76159    Peoples R China.
76160 CR CASSANDRAS CG, 2001, IEEE T AUTOMAT CONTR, V46, P398
76161    CHUNG KL, 1960, MARKOV CHAINS STATIO
76162    GUO XP, 2002, ANZIAM J 4, V43, P541
76163    GUO XP, 2002, J APPL PROBAB, V39, P233
76164    HOU B, 1986, THESIS I APPL MATH B
76165    HU Q, 1990, CHINESE SCI BULL, V35, P710
76166    HU QY, 1999, MATH METHOD OPER RES, V49, P255
76167    KAKUMANU PV, 1969, 63 CORN U DEP OP RES
76168    KUCZURA A, 1973, SIAM J APPL MATH, V24, P169
76169    LEWIS ME, 2001, IEEE T AUTOMAT CONTR, V46, P96
76170    LIPPMAN SA, 1975, MANAGE SCI, V21, P1225
76171    SERFOZO RF, 1979, J OPER RES, V27, P60
76172    SONG J, 1988, SCI SINICA SERIAS A, V11, P1281
76173 NR 13
76174 TC 0
76175 SN 0302-9743
76176 J9 LECT NOTE COMPUT SCI
76177 PY 2003
76178 VL 2658
76179 BP 64
76180 EP 73
76181 PG 10
76182 GA BX28K
76183 UT ISI:000184831800008
76184 ER
76185 
76186 PT S
76187 AU Ding, JB
76188    Tong, WQ
76189 TI An agent model for managing distributed software resources in grid
76190    environment
76191 SO COMPUTATIONAL SCIENCE - ICCS 2003, PT II, PROCEEDINGS
76192 SE LECTURE NOTES IN COMPUTER SCIENCE
76193 DT Article
76194 AB Grid technologies enable large-scale sharing of many types of
76195    resources, among which software resources are a vital part. Abundant
76196    software resources exist in geographically distributed hosts in grid
76197    environment. The characteristic "distributed" makes the discovery,
76198    characterization, and monitoring of them challenging due to the
76199    considerable diversity, large numbers, dynamic behavior, and
76200    geographical distribution of the software entities. Thus, we put
76201    forward here an agent model, which is built on grid technologies, to
76202    manage the software resources in grid environment. The agent can store,
76203    retrieve and manage the information of software resources through a
76204    resource directory. Our model also provides a visualizing uniform
76205    interface by which user can easily find software resources in grid and
76206    utilize them. To sum up, this agent is a middleware between end user
76207    and software resources.
76208 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
76209 RP Ding, JB, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples
76210    R China.
76211 CR MDS 2 2 CREATING HIE
76212    MDS 2 2 USERS GUIDE
76213    2002, OPENLDAP 2 1 ADM GUI
76214    *GLOB, MET INFR TOOLK
76215    CZAJKOWSKI K, 2001, P 10 IEEE INT S HIGH
76216    FITZGERALD S, P 6 IEEE S HIGH PERF
76217    FOSTER I, COMPUTATIONAL GRIDS
76218    FOSTER I, 1999, GRID BLUEPRINT FUTUR
76219    FOSTER I, 2001, INT J SUPERCOMPUTER
76220    GULLAPALLI S, GWDGIS019 GRIF FOR
76221    HOWES TA, 1995, SCALABLE DEPLOYABLE
76222    LASZEWSKI GV, 2002, USAGE LDAP GLOBUS
76223    LIVNY M, 1998, P 7 IEEE S HIGH PERF
76224    RIBLER RL, 1998, P 7 IEEE S HIGH PERF
76225    ROSENBERG J, 1997, WIDE AREA NETWORK SE
76226    TUECKE S, 2002, GRID SERVICE SPECIFI
76227 NR 16
76228 TC 0
76229 SN 0302-9743
76230 J9 LECT NOTE COMPUT SCI
76231 PY 2003
76232 VL 2658
76233 BP 971
76234 EP 980
76235 PG 10
76236 GA BX28K
76237 UT ISI:000184831800105
76238 ER
76239 
76240 PT S
76241 AU Tong, WQ
76242    Ding, JB
76243    Cai, LZ
76244 TI A parallel programming environment on Grid
76245 SO COMPUTATIONAL SCIENCE - ICCS 2003, PT I, PROCEEDINGS
76246 SE LECTURE NOTES IN COMPUTER SCIENCE
76247 DT Article
76248 AB Computational grids are environment that provides the ability to
76249    exploit diverse, geographically distributed resources. Bulk Synchronous
76250    Parallel (BSP) model is a widely used parallel programming model. With
76251    rapid development of grid technologies, users need a new environment
76252    that can run parallel programs on computational grids. We present here
76253    a new implementation of BSP, which is called BSP-G. It constructs a
76254    parallel programming environment on computational grids. In our BSP-G
76255    environment, users can develop parallel programs with using BSP model
76256    and run them on grid. Our BSP-G library uses services provided by the
76257    Globus Toolkit for authentication, authorization, resource allocation,
76258    executable staging, and I/O, as well as for process creation,
76259    monitoring, and control.
76260 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
76261 RP Tong, WQ, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples
76262    R China.
76263 CR *MESS PASS INT FOR, 1995, MPI MESS PASS INT ST
76264    BESTER J, GASS DATA MOVEMENT A
76265    BONORDEN O, 1999, P 13 INT PAR PROC S
76266    CZAJKOWSKI K, 1998, P IPPS SPDP 98 WORKS, P62
76267    CZAJKOWSKI K, 1999, P 8 IEEE S HIGH PERF
76268    CZAJKOWSKI K, 2001, P 10 IEEE INT S HIGH
76269    DONALDSON SR, 2000, PARALLEL COMPUT, V26, P199
76270    DUNNING D, 1998, IEEE MICRO, V18, P66
76271    FITZGERALD S, P 6 IEEE S HIGH PERF
76272    FOSTER DK, P WORKSH IO PAR DIST
76273    FOSTER I, 1997, INT J SUPERCOMPUTER
76274    FOSTER I, 1998, GRID BLUEPRINT NEW C
76275    FOSTER I, 1998, P 5 ACM C COMP COMM, P83
76276    FOSTER I, 1999, GRID BLUE BLUEPRINT
76277    FOSTER I, 2001, INT J HIGH PERFORM C, V15, P200
76278    FOSTER I, 2002, PHYSL GRID OPEN GRID
76279    HILL JMD, 1997, PRGTR3397 OXF U COMP
76280    HILL JMD, 1998, PARALLEL COMPUT, V24, P1947
76281    KEE Y, 2002, PARALLEL PROCESSING, V12, P65
76282    MILLER R, 1993, P BCS PAR PROC SPEC, P100
76283    SKILLICORN D, 1997, SCI PROG, V6, P249
76284    SUNDERAM VS, 1990, CONCURRENCY-PRACT EX, V2, P315
76285    TONG WQ, 2000, J SHANGHAI U S, V4
76286    VALIANT LG, 1990, COMMUN ACM, V33, P103
76287    WILLIAMS TL, 2000, LECT NOTES COMPUT SC, V1800, P102
76288 NR 25
76289 TC 1
76290 SN 0302-9743
76291 J9 LECT NOTE COMPUT SCI
76292 PY 2003
76293 VL 2657
76294 BP 225
76295 EP 234
76296 PG 10
76297 GA BX28J
76298 UT ISI:000184831700023
76299 ER
76300 
76301 PT J
76302 AU An, BL
76303    Gong, ML
76304    Zhang, JM
76305    Zheng, SL
76306 TI Synthesis, bright luminescence and crystal structure of a novel neutral
76307    europium complex
76308 SO POLYHEDRON
76309 DT Article
76310 DE crystal structures; europium organic complexes; luminescence; lifetime;
76311    synthesis
76312 ID LANTHANIDE COMPLEXES; ELECTROLUMINESCENCE; DEVICES
76313 AB A novel organic ligand, 6-diphenylamine carbonyl 2-pyridine carboxylic
76314    acid, and the corresponding europium complex, tris(6-diphenylamine
76315    carbonyl 2-pyridine carboxylato) europium(III) (Eu-DPAP) have been
76316    designed and synthesized. The crystal structure and photoluminescence
76317    of Eu-DPAP complex have been studied. The results showed that Eu-DPAP
76318    is an electroneutral complex that emits very strong red fluorescence.
76319    The lifetime of D-5(0) of Eu3+ in the complex solid was examined using
76320    time-resolved spectroscopy, and the value for crystalline
76321    Eu(DPAP)3.12H(2)O is 0.69+/-0.01 ms. (C) 2003 Elsevier Ltd. All rights
76322    reserved.
76323 C1 Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200436, Peoples R China.
76324    Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China.
76325 RP An, BL, Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200436, Peoples R
76326    China.
76327 EM anbaolii@263.sina.com
76328    cesgml@zsu.edu.cn
76329 CR AN BL, 2003, J MATER SCI-MATER EL, V14, P125
76330    CHEN GZ, 1990, FLUORESCENCE ANAL ME
76331    CROMER DT, 1992, INT TABLE XRAY CRYST, C
76332    DENHOVEN GNW, 1993, APPL PHYS LETT, V62, P3065
76333    DONEGA CD, 1996, J PHYS CHEM SOLIDS, V57, P1727
76334    FRAY ST, 1994, INORG CHEM, V33, P3229
76335    FRIEND RH, 1999, NATURE, V397, P121
76336    GAO XC, 1998, APPL PHYS LETT, V72, P2217
76337    HARROWFIELD JM, 1995, AUST J CHEM, V48, P807
76338    HO PKH, 1999, SCIENCE, V285, P233
76339    JENKINS AL, 1996, ANAL CHEM, V68, P2974
76340    JUSTEL T, 1998, ANGEW CHEM INT EDIT, V37, P3084
76341    KAWAMURA Y, 1999, APPL PHYS LETT, V74, P3245
76342    KIDO J, 2002, CHEM REV, V102, P2357
76343    LIANG CJ, 2000, APPL PHYS LETT, V76, P67
76344    MATTHEWS LR, 1993, CHEM MATER, V5, P1697
76345    MELBY LR, 1964, J AM CHEM SOC, V86, P5117
76346    NORTH ACT, 1968, ACTA CRYSTALLOGR A, V24, P351
76347    PIGUET C, 1999, CHEM SOC REV, V28, P347
76348    RYU CK, 1995, APPL PHYS LETT, V66, P2496
76349    SANO T, 2000, J MATER CHEM, V10, P157
76350    SHELDRICK GM, 1995, SHELXTL VERSION 5
76351    SHELDRICK GM, 1997, SHELXS 97 PROGRAM CR
76352    YANG YS, 1994, J ALLOY COMPD, V207, P112
76353 NR 24
76354 TC 5
76355 SN 0277-5387
76356 J9 POLYHEDRON
76357 JI Polyhedron
76358 PD AUG 15
76359 PY 2003
76360 VL 22
76361 IS 19
76362 BP 2719
76363 EP 2724
76364 PG 6
76365 SC Chemistry, Inorganic & Nuclear; Crystallography
76366 GA 709ZD
76367 UT ISI:000184655700006
76368 ER
76369 
76370 PT J
76371 AU Zhang, JH
76372    Chan, YC
76373    Alam, MO
76374    Fu, S
76375 TI Contact resistance and adhesion performance of ACF interconnections to
76376    aluminum metallization
76377 SO MICROELECTRONICS RELIABILITY
76378 DT Article
76379 ID ELECTRICALLY CONDUCTIVE ADHESIVES; RELIABILITY; MECHANISMS; NITRIDE
76380 AB Flip chip joining technology using anisotropically conductive films
76381    (ACFs) has become an attractive technique for electronic packaging.
76382    However, several factors have hindered the wide spread use of this
76383    technology. Along with the reliability issue, these factors also
76384    include the low availability and high cost of the bumped wafers. This
76385    paper introduces the feasibilities of using unbumped die with respect
76386    to ACF joints for flip-chip-on-flex (FCOF) assemblies. The unbumped
76387    dies contain only bare aluminum pads. Untill now the performance of ACF
76388    to Al metallization is a controversial issue from the published
76389    reports. In this study, two different test vehicles were used to study
76390    contact resistance and adhesion performance. Reliability of contact
76391    resistance for ACF joints with the unbumped dies was investigated in
76392    terms of varying the thickness of the Al pads. Adhesion performance of
76393    ACF to the Al metallization was compared with the adhesion performance
76394    of ACF to a glass substrate using the same ACF and the same bonding
76395    parameters.
76396    FCOF assemblies containing dies with thinner aluminum pads showed lower
76397    initial contact resistance and a lower rate of increment during
76398    accelerated aging tests. Three factors were considered as the potential
76399    causes for the above results: (1) lower concentration of aluminum oxide
76400    on the thin Al pad, (2) larger contact area per deformed particle with
76401    Au/Ni/Cu electrode for the interconnection of thin Al pad and (3) lower
76402    concentration of the defects in the thin Al pad. Contact resistance was
76403    found to increase during accelerated testing because of aluminum oxide
76404    formation on top of the pads.
76405    Contrary to the usual expectation, adhesion strength of ACF with the Al
76406    metallization was increased during 60 degreesC/95% RH testing. After
76407    500 h of such moisture-soak testing, the adhesion strength becomes 3
76408    times the initial value. The change in chemical state on the aluminum
76409    surface is considered to be responsible for higher adhesion strength.
76410    It is proposed that oxidation of Al surface due to diffused moisture
76411    and the new chemical bond formation at the adhesives/aluminum interface
76412    are the key reasons for good adhesion reliability. (C) 2003 Elsevier
76413    Ltd. All rights reserved.
76414 C1 City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China.
76415    Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China.
76416 RP Chan, YC, City Univ Hong Kong, Dept Elect Engn, 83 Tat Chee Ave,
76417    Kowloon, Hong Kong, Peoples R China.
76418 CR ASAI H, 2001, IEEE TRANS ADV PACK, V24, P104
76419    BARTHESLABROUSSE MG, 1996, J ADHESION, V57, P65
76420    CONNELL G, 1997, P ELECTR C, P274
76421    GAYNES MA, 1995, IEEE T COMPON PACK B, V18, P299
76422    HOTZA D, 1995, J MATER SCI, V30, P127
76423    JAGT JC, 1995, IEEE T COMPON PACK B, V18, P292
76424    LIU J, 1999, CONDUCTIVE ADV ELECT, P234
76425    LU D, 1999, IEEE T ELECTRON PACK, V22, P228
76426    LUO S, 2001, P 51 EL COMP TECHN C
76427    LYONS AM, 1996, IEEE T COMPON PACK A, V19, P5
76428    NANCHEVA N, 1995, SCRIPTA METALL MATER, V33, P575
76429    TAN CW, 2003, MICROELECTRON RELIAB, V43, P279
76430    UDDIN MA, IN PRESS J ELECT MAT
76431    WEIDLER JD, 2000, P 50 EL COMP TECHN C
76432    YIM MJ, 1999, IEEE TRANS ADV PACK, V22, P166
76433    ZHANG JH, 2003, J ELECTRON MATER, V32, P228
76434 NR 16
76435 TC 1
76436 SN 0026-2714
76437 J9 MICROELECTRON REL
76438 JI Microelectron. Reliab.
76439 PD AUG
76440 PY 2003
76441 VL 43
76442 IS 8
76443 BP 1303
76444 EP 1310
76445 PG 8
76446 SC Engineering, Electrical & Electronic
76447 GA 710HJ
76448 UT ISI:000184674500020
76449 ER
76450 
76451 PT J
76452 AU Wu, LG
76453    Fan, JH
76454    Jiang, LB
76455    Wang, H
76456    Song, RT
76457    Zhang, QQ
76458    Zhu, HH
76459    Li, N
76460    Liu, ZX
76461    Xu, ZK
76462 TI A specific cis-hairpin ribozyme facilitates infection of a TMV-based
76463    DNA vector in tobacco protoplasts
76464 SO JOURNAL OF VIROLOGICAL METHODS
76465 DT Article
76466 DE TMV; cis-hairpin ribozyme; GFP; tobacco protoplast; infection
76467 ID MOSAIC-VIRUS; RINGSPOT VIRUS; SATELLITE RNA; SYSTEMIC PRODUCTION; COAT
76468    PROTEIN; VIRAL-RNA; CLEAVAGE; SEQUENCES; GENOMES; COMPLEMENTARY
76469 AB The effect of a specific cis-hairpin ribozyme on TMV-based vectors in
76470    the infection of tobacco protoplasts was studied. Vectors contained
76471    full-length TMV genome cDNA linked to a T7 promoter or a CaMV 35S
76472    promoter at the 5-end and an NOS gene polyadenylation signal at the
76473    3'-end. The coat protein (CP) gene was replaced with the green
76474    fluorescent protein (GFPuv) gene allowing quantification of protoplast
76475    infection. In plasmids pTMVGFPRIB (T7-driven) and pSTMVGFPRIB (CaMV
76476    35S-driven), the cDNA fragment of the cis-hairpin ribozyme (designed to
76477    specifically cleave the transcripts immediately downstream of the
76478    3'-terminus of TMV RNA) was inserted between the 3'-terminus of TMV
76479    genome and NOS sequence. The in vitro transcript TMVGFPRIB was three-
76480    to fivefold more infectious than the control TMVGFPNOS. Northern blot
76481    analysis indicated that the 3'-terminal non-viral sequence had been
76482    cleaved from the in vitro transcripts by the cis-hairpin ribozyme soon
76483    after in vitro transcription. pSTMVGFPRIB and pSTMVGFPNOS plasmid DNAs
76484    were, as expected, less infectious than their in vitro transcript
76485    counterparts. However, pSTMVGFPRIB was somewhat more infectious than
76486    pSTMVGFPNOS. Northern blot analysis indicated that pSTMVGFPRIB
76487    synthesized more genomic and sub-genomic RNAs in the protoplasts. The
76488    significant increase in infectivity and viral RNA synthesis is due to
76489    the specific activity of the cis-hairpin ribozyme in vivo. Therefore,
76490    the cis-hairpin ribozyme described here may improve TNIV-based vectors
76491    in the expression of foreign protein in plants. (C) 2003 Elsevier B.V.
76492    All rights reserved.
76493 C1 Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Plant Physiol & Ecol, Shanghai 200032, Peoples R China.
76494    Hong Kong Univ Sci & Technol, Dept Biol, Kowloon, Hong Kong, Peoples R China.
76495    Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China.
76496 RP Xu, ZK, Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Plant Physiol &
76497    Ecol, 300 Fenglin Rd, Shanghai 200032, Peoples R China.
76498 CR BUZAYAN JM, 1986, NATURE, V323, P349
76499    BUZAYAN JM, 1986, NUCLEIC ACIDS RES, V14, P9729
76500    BUZAYAN JM, 1988, BIOCHEM BIOPH RES CO, V156, P340
76501    CASPER SJ, 1996, GENE, V173, P69
76502    DAGLESS EM, 1997, ARCH VIROL, V142, P183
76503    DAWSON WO, 1986, P NATL ACAD SCI USA, V83, P307
76504    DREHER TW, 1999, ANNU REV PHYTOPATHOL, V37, P151
76505    DUGGAL R, 1994, ANNU REV PHYTOPATHOL, V32, P287
76506    DZIANOTT AM, 1989, P NATL ACAD SCI USA, V86, P4823
76507    FELDSTEIN PA, 1989, GENE, V82, P53
76508    FITCHEN J, 1995, VACCINE, V13, P1051
76509    FORSTER AC, 1987, CELL, V49, P211
76510    HAMAMOTO H, 1993, BIO-TECHNOL, V11, P930
76511    HAMPEL A, 1989, BIOCHEMISTRY-US, V28, P4929
76512    HAMPEL A, 1997, CHEM BIOL, V4, P513
76513    HASELOFF J, 1988, NATURE, V334, P585
76514    HASELOFF J, 1989, GENE, V82, P43
76515    LAI MMC, 1998, VIROLOGY, V244, P1
76516    LAMB JW, 1990, J GEN VIROL, V71, P2257
76517    MURASHIGE T, 1962, PHYSIOL PLANTARUM, V15, P473
76518    NESBITT S, 1997, CHEM BIOL, V4, P619
76519    ODELL JT, 1985, NATURE, V313, P810
76520    POGUE GP, 2002, ANNU REV PHYTOPATHOL, V40, P45
76521    RANJITHKUMAR CT, 2002, J VIROL, V76, P12526
76522    SUGIYAMA Y, 1995, FEBS LETT, V359, P247
76523    TURPEN TH, 1993, J VIROL METHODS, V42, P227
76524    TURPEN TH, 1995, BIO-TECHNOL, V13, P53
76525    VANTOL H, 1990, NUCLEIC ACIDS RES, V18, P1971
76526    WIGDOROVITZ A, 1999, VIROLOGY, V264, P85
76527    XU Z, 1992, SCI CHINA SER B, V35, P1434
76528    XU ZK, 1989, VIROLOGY, V170, P511
76529    YOUNG KJ, 1997, NUCLEIC ACIDS RES, V25, P3760
76530    ZAUG AJ, 1986, NATURE, V324, P429
76531 NR 33
76532 TC 1
76533 SN 0166-0934
76534 J9 J VIROL METH
76535 JI J. Virol. Methods
76536 PD AUG
76537 PY 2003
76538 VL 111
76539 IS 2
76540 BP 101
76541 EP 109
76542 PG 9
76543 SC Biochemical Research Methods; Biotechnology & Applied Microbiology;
76544    Virology
76545 GA 710ED
76546 UT ISI:000184667100004
76547 ER
76548 
76549 PT J
76550 AU Ma, JY
76551    Qiu, XJ
76552    Zhu, ZY
76553 TI Collective oscillation of relativistic electrons in hot plasma
76554 SO CHINESE PHYSICS LETTERS
76555 DT Article
76556 ID PULSES
76557 AB The interactions between relativistic electrons in a hot plasma are
76558    analysed theoretically. By splitting the electron density fluctuations
76559    into the individual part and the collective part, we are concerned with
76560    the collective oscillation of the relativistic electrons resulting from
76561    the Coulomb interactions. Consequently, we derive the frequency of the
76562    hot plasma and the "Debye length" with relativistic modification.
76563 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
76564    Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
76565 RP Ma, JY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
76566 CR ANATOLY S, 2000, AIP C P, V569, P183
76567    BAROV N, 2002, PHYSICS0205007
76568    BLANCHOT N, 1995, OPT LETT, V20, P395
76569    MACCHI A, 2001, PHYS REV LETT, V87
76570    MALKA G, 1996, PHYS REV LETT, V77, P75
76571    PINES D, 1952, PHYS REV, V85, P338
76572    ROUYER C, 1996, J OPT SOC AM B, V13, P55
76573    UMSTADTER D, 2001, PHYS PLASMAS 2, V8, P1774
76574 NR 8
76575 TC 3
76576 SN 0256-307X
76577 J9 CHIN PHYS LETT
76578 JI Chin. Phys. Lett.
76579 PD AUG
76580 PY 2003
76581 VL 20
76582 IS 8
76583 BP 1306
76584 EP 1308
76585 PG 3
76586 SC Physics, Multidisciplinary
76587 GA 710LA
76588 UT ISI:000184680600036
76589 ER
76590 
76591 PT J
76592 AU Hu, J
76593    Hu, GH
76594    Sun, DJ
76595    Yin, XY
76596 TI Instability of liquid film flowing down a linearly heated plate
76597 SO PROGRESS IN NATURAL SCIENCE
76598 DT Article
76599 DE falling film; Marangoni instability; surface wave instability
76600 ID INCLINED PLANE; STABILITY; WAVES; SURFACE
76601 AB The full-scale linear stability equations for a liquid film flowing
76602    down a linearly heated inclined plate are derived from the N-S
76603    equations, and the stability characters of both temporal and spatial
76604    modes are computed by using Chebyshev spectral collocation method. The
76605    effects of Weber numbers and Marangoni numbers on growth rate, marginal
76606    curve, critical Reynolds number, etc. are investigated. An explicit
76607    dispersion relation under long-wave approximation, which is in exact
76608    agreement with Miladinova's one, is obtained and the limits of
76609    long-wave approximation are discussed.
76610 C1 Univ Sci & Technol China, Dept Modern Mech, Hefei 230027, Peoples R China.
76611    Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
76612 RP Hu, J, Univ Sci & Technol China, Dept Modern Mech, Hefei 230027,
76613    Peoples R China.
76614 CR BENJAMIN TB, 1957, J FLUID MECH, V2, P554
76615    BENNEY DJ, 1966, J MATH PHYS, V45, P150
76616    BREVDO L, 1999, J FLUID MECH, V396, P554
76617    CANUTO C, 1988, SPECTRAL METHODS FLU
76618    GASTER M, 1962, J FLUID MECH, V14, P222
76619    GJEVIK B, 1970, PHYS FLUIDS, V13, P1918
76620    KALITZOVAKURTEV.P, 2000, J THEOR APPL MECH, V30, P12
76621    KLIAKHANDLER IL, 2002, J FLUID MECH, V423, P205
76622    LIN SP, 1969, J FLUID MECH, V36, P113
76623    MILADINOVA S, 2002, J FLUID MECH, V453, P153
76624    MOLER CB, 1973, SIAM J NUMER ANAL, V10, P241
76625    PUMIR A, 1983, J FLUID MECH, V135, P27
76626    YIH CS, 1963, PHYS FLUIDS, V6, P321
76627 NR 13
76628 TC 0
76629 SN 1002-0071
76630 J9 PROG NAT SCI
76631 JI Prog. Nat. Sci.
76632 PD AUG
76633 PY 2003
76634 VL 13
76635 IS 8
76636 BP 568
76637 EP 572
76638 PG 5
76639 SC Multidisciplinary Sciences
76640 GA 708GJ
76641 UT ISI:000184558600002
76642 ER
76643 
76644 PT J
76645 AU Hu, YD
76646    Hong, ZJ
76647    Zhou, XW
76648 TI Utopian preference mapping and the utopian preference method for group
76649    multiobjective optimization
76650 SO PROGRESS IN NATURAL SCIENCE
76651 DT Article
76652 DE group decision making; multiobjective optimization; utopian point;
76653    utopian preference
76654 AB The individual utopian preference and the group utopian preference on a
76655    set of alternatives, and the concept of the utopian preference mapping
76656    from the individual utopian preferences to the group utopian
76657    preferences, based on the utopian points of the corresponding
76658    multiobjective optimization models proposed by decision makers are
76659    introduced. Through studying the various fundamental properties of the
76660    utopian preference mapping, a method for solving group multiobjective
76661    optimization problems with multiple multiobjective optimization models
76662    is constructed.
76663 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
76664    Wenzhou Univ, Sch Math & Informat Sci, Wenzhou 325027, Peoples R China.
76665    Wenzhou Normal Coll, Dept Math, Wenzhou 325027, Peoples R China.
76666 RP Hong, ZJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
76667 CR ARROW KJ, 1963, SOCIAL CHOICE INDIVI
76668    HU YD, 1993, CHINESE J OPERATIONS, V12, P44
76669    HU YD, 1994, EFFICIENCY THEORY MU
76670    HU YD, 1996, SYSTEMS ENG THEORY P, V16, P52
76671    LEWIS HS, 1993, DECISION SCI, V24, P1
76672    LIN CY, 1995, J NANCHANG U, V19, P43
76673    WANG HM, 1996, FIBER INTEGRATED OPT, V15, P37
76674    WENDELL RE, 1980, OPER RES, V28, P1100
76675    YU YD, 1995, J SHANGHAI JIAOTONG, V29, P118
76676 NR 9
76677 TC 1
76678 SN 1002-0071
76679 J9 PROG NAT SCI
76680 JI Prog. Nat. Sci.
76681 PD AUG
76682 PY 2003
76683 VL 13
76684 IS 8
76685 BP 573
76686 EP 577
76687 PG 5
76688 SC Multidisciplinary Sciences
76689 GA 708GJ
76690 UT ISI:000184558600003
76691 ER
76692 
76693 PT J
76694 AU Yang, GB
76695    Zhang, ZY
76696 TI Modified intelligent scissors and video decomposing for video object
76697    segmentation
76698 SO ELECTRONICS LETTERS
76699 DT Article
76700 AB A semiautomatic video object segmentation is proposed. The initial
76701    object contour is obtained by modified intelligent scissors. Video
76702    decomposing is performed to avoid errors accumulating during object
76703    tracking. Snake-based bidirectional tracking is utilised to interpolate
76704    the VOP's of successive frames. Experimental results show the
76705    effectiveness of the method.
76706 C1 Shanghai Univ, Dept Elect Engn, Shanghai 200072, Peoples R China.
76707 RP Yang, GB, Shanghai Univ, Dept Elect Engn, POB 159,149 Yanchang Rd,
76708    Shanghai 200072, Peoples R China.
76709 CR LU Z, 2000, P IEEE INT C MULT EX, P645
76710    LUO HT, 1999, P IEEE INT C IM PROC, P944
76711    LUO HT, 2002, P IEEE INT C IM PROC, P101
76712    MORTENSEN EN, 1998, GRAPH MODEL IM PROC, V60, P349
76713    SIKORA T, 1997, IEEE T CIRC SYST VID, V7, P19
76714    WOLLBORN M, 1998, MPEG983448 ISOIEC JT
76715 NR 6
76716 TC 0
76717 SN 0013-5194
76718 J9 ELECTRON LETT
76719 JI Electron. Lett.
76720 PD JUL 24
76721 PY 2003
76722 VL 39
76723 IS 15
76724 BP 1113
76725 EP 1114
76726 PG 2
76727 SC Engineering, Electrical & Electronic
76728 GA 709UN
76729 UT ISI:000184642900013
76730 ER
76731 
76732 PT J
76733 AU Xu, GQ
76734    Li, ZB
76735 TI Bidirectional solitary wave solutions and soliton solutions for two
76736    nonlinear evolution equations
76737 SO ACTA PHYSICA SINICA
76738 DT Article
76739 DE homogeneous balance method; soliton solution; solitary wave solution;
76740    the generalized Boussinesq equation; the bidirectional Kaup-Kupershmidt
76741    equation
76742 ID KAUP-KUPERSHMIDT EQUATION; TRANSFORMATION; SYSTEM
76743 AB The homogeneous balance method for constructing solitary wave solutions
76744    and soliton solutions is further developed on obtaining quasi-solution
76745    by using step-by-step principle. The main advantage of the extended
76746    approach is to avoid the problem of "intermediate expression swell".
76747    The effectiveness of the method is demonstrated by application to the
76748    generalized Boussinesq equation and the bidirectional Kaup-Kupershmidt
76749    equation. The one-soliton, two-soliton and three-soliton solutions with
76750    multipe collisions are derived for these two equations with the
76751    assistance of Maple.
76752 C1 Shanghai Univ, Dept Informat Adm, Shanghai 200041, Peoples R China.
76753    E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China.
76754 RP Xu, GQ, Shanghai Univ, Dept Informat Adm, Shanghai 200041, Peoples R
76755    China.
76756 CR ABLOWITZ MJ, 1999, SOLITON NONLINEAR EV
76757    DYE JM, 2001, J MATH PHYS, V42, P2567
76758    DYE JM, 2002, J MATH PHYS, V43, P4921
76759    FAN EG, 2000, PHYS LETT A, V277, P212
76760    HEREMAN W, 1986, J PHYS A-MATH GEN, V19, P607
76761    HIROTA R, 1980, TOPICS MODERN PHYSIC
76762    HU XB, 1999, PHYS LETT A, V262, P409
76763    LI ZB, 2001, ACTA PHYS SIN-CH ED, V50, P402
76764    LU J, 2002, ACTA PHYS SIN-CH ED, V51, P1428
76765    NA R, 2002, ACTA PHYS SINICA, V51, P1671
76766    WANG ML, 1995, PHYS LETT A, V199, P169
76767    XU GQ, 2002, ACTA PHYS SIN-CH ED, V51, P1424
76768    ZHANG JF, 2000, APPL MATH MECH, V21, P171
76769    ZHANG JF, 2002, CHINESE PHYS, V11, P425
76770    ZHANG SQ, 2002, CHINESE PHYS, V11, P993
76771    ZHOU YB, 1996, J LANZHOU U, V32, P24
76772    ZHOU ZJ, 2003, ACTA PHYS SIN-CH ED, V52, P262
76773 NR 17
76774 TC 8
76775 SN 1000-3290
76776 J9 ACTA PHYS SIN-CHINESE ED
76777 JI Acta Phys. Sin.
76778 PD AUG
76779 PY 2003
76780 VL 52
76781 IS 8
76782 BP 1848
76783 EP 1857
76784 PG 10
76785 SC Physics, Multidisciplinary
76786 GA 708GU
76787 UT ISI:000184559500005
76788 ER
76789 
76790 PT J
76791 AU Chen, YX
76792    Wan, XJ
76793    Xu, WX
76794 TI Surface reaction of TiAl with water vapor and oxygen
76795 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
76796 DT Article
76797 DE surface reaction; XPS; TiAl alloy
76798 ID ROOM-TEMPERATURE DUCTILITY; ENVIRONMENTAL EMBRITTLEMENT; BORON; FE3AL;
76799    NI3AL
76800 AB The interaction of water vapor and oxygen with TiAl-based alloy has
76801    been studied with Auger electron spectroscopy and X-ray photoelectron
76802    spectroscopy. The results indicate that both surface reactions initiate
76803    at a very short exposure (about 6 x 10(-7) Pa(.)s) and the oxides Al2O3
76804    and TiO2 form in the surface reactions. In the oxidizing reaction, the
76805    water vapor reacts firstly with Al, and then reacts with Ti after
76806    certain exposure. The surface reaction of Al with water vapor may be
76807    responsible for the environmental embrittlement at room temperature in
76808    TiAl-based alloy.
76809 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
76810    Shanghai Iron & Steel Res Inst, Shanghai 200940, Peoples R China.
76811 RP Chen, YX, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
76812 CR CHEN SY, 1996, ANAL SCI, V12, P1
76813    CHEN YX, 1997, ACTA METALL SINICA E, V10, P363
76814    CHIA WJ, 1995, J VAC SCI TECHNOL A, V13, P1687
76815    GAO SJ, 1984, MATER SCI ENG, V62, P65
76816    GEORGE EP, 1993, SCRIPTA METALL MATER, V28, P857
76817    GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37
76818    LIU CT, 1989, SCRIPTA METALL, V23, P875
76819    LIU CT, 1990, SCRIPTA METALL MATER, V24, P385
76820    SHEA M, 1992, MAT RES SOC P, V213, P609
76821    TAKASUGI T, 1990, J MATER SCI, V25, P4239
76822    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
76823    ZHU JH, 1993, SCRIPTA METALL MATER, V29, P429
76824    ZHU JH, 1995, SCRIPTA METALL MATER, V32, P1399
76825 NR 13
76826 TC 0
76827 SN 1005-0302
76828 J9 J MATER SCI TECHNOL
76829 JI J. Mater. Sci. Technol.
76830 PD JUL
76831 PY 2003
76832 VL 19
76833 IS 4
76834 BP 334
76835 EP 336
76836 PG 3
76837 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
76838    Engineering
76839 GA 707NF
76840 UT ISI:000184516200013
76841 ER
76842 
76843 PT J
76844 AU Liu, YF
76845    Huang, AM
76846    Chen, J
76847    Chen, L
76848    Hua, JD
76849 TI Hydrogenation catalysis of nanosized palladium supported by
76850    polymer/silica disupporter. II. Effects of the characteristics of the
76851    catalyst on hydrogenation
76852 SO JOURNAL OF APPLIED POLYMER SCIENCE
76853 DT Article
76854 DE palladium; catalysts; complex transformation; hydrogenation; catalysis
76855 AB A series of nanosized palladium catalysts supported by silica and
76856    polymers, prepared by the complex transformation method, were used for
76857    catalytic hydrogenation of nitrobenzene. It was found that both the
76858    thickness of the polymer layer and the size of the palladium particles
76859    would affect the catalysis. The results indicated that the reaction
76860    rate would be optimal when a polymer supporter formed a single layer on
76861    the silica surface. The catalytic activity of the catalyst would not
76862    simply increase with the decrease of the size of palladium particles.
76863    The effects of other conditions on the catalytic properties, such as
76864    the order during preparation of the catalyst, solvent, and the pH
76865    values, were also discussed. (C) 2003 Wiley Periodicals, Inc.
76866 C1 Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R China.
76867 RP Liu, YF, Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R
76868    China.
76869 CR BAETZOLD RC, 1981, INORG CHEM, V20, P118
76870    BEKTUROV EA, 1986, MAKROMOL CHEM-RAPID, V7, P187
76871    HE M, 1990, POLYM PHYSICS, P29
76872    HUA J, 1993, J MACROMOL SCI PHY B, V32, P183
76873    HUANG AM, 2002, J APPL POLYM SCI, V85, P989
76874    HUANG K, 1980, FUNDAMENTALS CATALYS
76875    LI YL, 1981, J CATAL, V2, P42
76876    LIU Y, 1995, J MACROMOL SCI PHY B, V34, P311
76877    LIU Y, 1998, J POLYM B, V3, P11
76878    LIU Y, 2001, SPECIALITY POLYM, P9
76879    LIU Y, 2003, J SHANGHAI U, V9, P189
76880    PINNC F, 1983, ENZO S J CATAL, V82, P160
76881 NR 12
76882 TC 0
76883 SN 0021-8995
76884 J9 J APPL POLYM SCI
76885 JI J. Appl. Polym. Sci.
76886 PD SEP 23
76887 PY 2003
76888 VL 89
76889 IS 13
76890 BP 3661
76891 EP 3665
76892 PG 5
76893 SC Polymer Science
76894 GA 705TM
76895 UT ISI:000184411200033
76896 ER
76897 
76898 PT J
76899 AU Zheng, CL
76900 TI Localized coherent structures with chaotic and fractal behaviors in a
76901    (2+1)-dimensional modified dispersive water-wave system
76902 SO COMMUNICATIONS IN THEORETICAL PHYSICS
76903 DT Article
76904 DE variable separation approach; dispersive water-wave system; fractal;
76905    chaos
76906 ID NOVIKOV-VESELOV EQUATION; KADOMTSEV-PETVIASHVILI EQUATION; NONLINEAR
76907    SCHRODINGER-EQUATION; VARIABLE SEPARATION APPROACH; SINE-GORDON
76908    EQUATION; SOLITON-STRUCTURES; PAINLEVE INTEGRABILITY; SYMMETRY
76909    CONSTRAINTS; GENERAL-SOLUTION; AKNS SYSTEM
76910 AB In this work, we reveal a novel phenomenon that the localized coherent
76911    structures of some (2+1)-dimensional physical models possess chaotic
76912    and fractal behaviors. To clarify these interesting phenomena, we take
76913    the (2+1)dimensional modified dispersive water-wave system as a
76914    concrete example. Starting from a variable separation approach, a
76915    general variable separation solution of this system is derived. Besides
76916    the stable localized coherent soliton excitations like dromions,
76917    lumps,. rings, peakons, and oscillating soliton excitations, some new
76918    excitations with chaotic and fractal behaviors are derived by
76919    introducing some types of lower dimensional chaotic and fractal
76920    patterns.
76921 C1 Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
76922    Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China.
76923    Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China.
76924    Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
76925 RP Zheng, CL, Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000,
76926    Peoples R China.
76927 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V30, P1262
76928    BOITI M, 1987, INVERSE PROBL, V3, P37
76929    CAO CW, 1990, SCI CHINA SER A, V33, P528
76930    CHEN CL, 2002, PHYS REV E, V66, P36605
76931    CHEN HS, 2000, CHINESE PHYS LETT, V17, P85
76932    CHENG Y, 1991, PHYS LETT A, V157, P22
76933    CLERC M, 1999, PHYS REV LETT, V83, P3820
76934    DUROVSKY VG, 1994, J PHYS A, V27, P4619
76935    GEDALIN M, 1997, PHYS REV LETT, V78, P448
76936    GOLLUB JP, 2000, NATURE, V404, P710
76937    JALABERT RA, 2001, PHYS REV LETT, V86, P2490
76938    KIVSHAR YS, 1989, REV MOD PHYS, V61, P765
76939    KONOPELCHENKO BG, 1991, PHYS LETT A, V175, P17
76940    LORENZ EN, 1963, J ATMOS SCI, V20, P130
76941    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
76942    LOU SY, 1997, J MATH PHYS, V38, P6401
76943    LOU SY, 1998, COMMUN THEOR PHYS, V29, P145
76944    LOU SY, 1999, J MATH PHYS, V40, P6491
76945    LOU SY, 2000, PHYS LETT A, V277, P94
76946    LOU SY, 2000, PHYS SCR, V65, P7
76947    LOU SY, 2001, EUR PHYS J B, V22, P473
76948    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
76949    LOU SY, 2002, CHINESE PHYS LETT, V19, P769
76950    LOU SY, 2002, J MATH PHYS, V43, P4078
76951    LOUTSENKO I, 1997, PHYS REV LETT, V78, P3011
76952    ROSSLER OE, 1976, PHYS LETT A, V57, P398
76953    STEGEMAN GI, 1999, SCIENCE, V286, P1518
76954    TAJIRI M, 1997, PHYS REV E B, V55, P3351
76955    TANG XY, 2002, CHAOS SOLITON FRACT, V14, P1451
76956    TANG XY, 2002, COMMUN THEOR PHYS, V39, P129
76957    TANG XY, 2002, PHYS REV E, V66, P46601
76958    XIE YJ, 2001, MATH APPROACH NONLIN, P131
76959    ZHANG JF, 2002, CHINESE PHYS, V11, P651
76960    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
76961    ZHENG CL, 2002, COMMUN THEOR PHYS, V38, P653
76962    ZHENG CL, 2003, CHINESE PHYS, V12, P11
76963    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P216
76964    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P9
76965 NR 38
76966 TC 26
76967 SN 0253-6102
76968 J9 COMMUN THEOR PHYS
76969 JI Commun. Theor. Phys.
76970 PD JUL 15
76971 PY 2003
76972 VL 40
76973 IS 1
76974 BP 25
76975 EP 32
76976 PG 8
76977 SC Physics, Multidisciplinary
76978 GA 706WZ
76979 UT ISI:000184479200005
76980 ER
76981 
76982 PT J
76983 AU Chen, DY
76984    Zhang, DJ
76985 TI Comment on "a hierarchy of integrable nonlinear lattice equations and
76986    new integrable symplectic map"
76987 SO COMMUNICATIONS IN THEORETICAL PHYSICS
76988 DT Editorial Material
76989 DE Ablowitz-Ladik spectral problem; evolution equations
76990 ID DIFFERENTIAL-DIFFERENCE EQUATIONS; DISCRETE SOLITON SYSTEMS;
76991    HAMILTONIAN-STRUCTURE; RESTRICTED FLOWS
76992 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
76993 RP Chen, DY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
76994 CR ABLOWITZ MJ, 1975, J MATH PHYS, V16, P598
76995    ABLOWITZ MJ, 1976, J MATH PHYS, V17, P1011
76996    ABLOWITZ MJ, 1976, STUD APPL MATH, V55, P213
76997    ABLOWITZ MJ, 1977, STUD APPL MATH, V57, P1
76998    ANTONOWICZ M, 1990, PHYS LETT A, V147, P455
76999    ANTONOWICZ M, 1991, J PHYS A-MATH GEN, V24, P5043
77000    CAO C, 1991, ACTA MATH SINICA, V7, P216
77001    CAO CW, 1990, NONLINEAR PHYSICS RE, P68
77002    CAO CW, 1990, SCI CHINA SER A, V33, P528
77003    MA WX, 1999, J MATH PHYS, V40, P2400
77004    TU GZ, 1990, J PHYS A-MATH GEN, V23, P3903
77005    XU XX, 2002, COMMUN THEOR PHYS, V38, P523
77006    ZENG YB, 1995, J PHYS A-MATH GEN, V28, P113
77007    ZHANG DJ, 2002, CHAOS SOLITON FRACT, V14, P573
77008    ZHANG DJ, 2002, J PHYS A-MATH GEN, V35, P7225
77009 NR 15
77010 TC 0
77011 SN 0253-6102
77012 J9 COMMUN THEOR PHYS
77013 JI Commun. Theor. Phys.
77014 PD JUL 15
77015 PY 2003
77016 VL 40
77017 IS 1
77018 BP 127
77019 EP 128
77020 PG 2
77021 SC Physics, Multidisciplinary
77022 GA 706WZ
77023 UT ISI:000184479200026
77024 ER
77025 
77026 PT J
77027 AU Zhang, JF
77028    Lu, ZM
77029    Liu, YL
77030 TI Folded solitary waves and foldons in the (2+1)-dimensional long
77031    dispersive wave equation
77032 SO ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES
77033 DT Article
77034 DE variable separation solution; the (2+1)-dimensional long dispersive
77035    wave system; folded solitary wave; foldon
77036 ID QUARK-LOOP SOLITON; COHERENT STRUCTURES; VAKHNENKO EQUATION; SYSTEM;
77037    INTEGRABILITY; REDUCTIONS
77038 AB By means of the Backlund transformation, a quite general variable
77039    separation solution of the (2+1)-dimensional long dispersive wave
77040    equation: lambdaq(t) + q(xx) - 2q integral (qr)(x)dy = 0, lambdar(t) -
77041    r(xx) + 2r integral (qr)(x)dy = 0, is derived. In addition to some
77042    types of the usual localized structures such as dromion, lumps, ring
77043    soliton and oscillated dromion, breathers soliton, fractal-dromion,
77044    peakon, compacton, fractal and chaotic soliton structures can be
77045    constructed by selecting the arbitrary single valued functions
77046    appropriately, a new class of localized coherent structures, that is
77047    the folded solitary waves and foldons, in this system are found by
77048    selecting appropriate multi-valuded functions. These structures exhibit
77049    interesting novel features not found in one-dimensions. - PACS:
77050    03.40.Kf., 02.30.Jr, 03.65.Ge.
77051 C1 Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China.
77052    Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England.
77053    Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
77054 RP Lu, ZM, Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072,
77055    Peoples R China.
77056 CR BOITI M, 1987, INVERSE PROBL, V3, P371
77057    CHAKRAVARTY S, 1995, J MATH PHYS, V36, P763
77058    FOKAS AS, 1994, INVERSE PROBL L, V10, P19
77059    GOODMAN MB, 2002, NATURE, V415, P1039
77060    HIROTA R, 1971, PHYS REV LETT, V27, P1192
77061    KAKUHATA H, 1999, J PHYS SOC JPN, V68, P757
77062    LINDGARD PA, 1996, PHYS REV LETT, V77, P779
77063    LOCKLESS SW, 1999, SCIENCE, V286, P295
77064    LOU SY, 2002, J MATH PHYS, V43, P4078
77065    MACLNNIS BL, 2002, SCIENCE, V295, P1536
77066    MATSUTANI S, 2002, J GEOM PHYS, V43, P146
77067    MORRISON AJ, 1999, NONLINEARITY, V12, P1427
77068    NOVIKOV S, 1984, THEORY SOLITONS INVE
77069    RADHA R, 1997, CHAOS SOLITON FRACT, V8, P17
77070    RADHA R, 1997, J MATH PHYS, V38, P292
77071    SCHLEIF M, 1998, EUR PHYS J A, V1, P171
77072    SCHLEIF M, 1998, INT J MOD PHYS E, V7, P121
77073    TANG XY, 2002, PHYS REV E 2, V66
77074    TANG YP, 2002, J ASIAN NAT PROD RES, V4, P1
77075    TREWICK SC, 2002, NATURE, V419, P174
77076    VAKHNENKO VA, 1992, J PHYS A-MATH GEN, V25, P4181
77077    VAKHNENKO VO, 1998, NONLINEARITY, V11, P1457
77078    VELAN MS, 1997, NONLINEAR MATH PHYS, V4, P251
77079    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
77080    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P261
77081 NR 25
77082 TC 2
77083 SN 0932-0784
77084 J9 Z NATURFORSCH SECT A
77085 JI Z. Naturfors. Sect. A-J. Phys. Sci.
77086 PD MAY-JUN
77087 PY 2003
77088 VL 58
77089 IS 5-6
77090 BP 280
77091 EP 284
77092 PG 5
77093 SC Chemistry, Physical; Physics, Multidisciplinary
77094 GA 703HU
77095 UT ISI:000184274600003
77096 ER
77097 
77098 PT S
77099 AU Liu, ZT
77100    Li, LS
77101    Zhang, Q
77102 TI Research on a union algorithm of multiple concept lattices
77103 SO ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING
77104 SE LECTURE NOTES IN ARTIFICIAL INTELLIGENCE
77105 DT Article
77106 DE formal concept analysis; multiple concept lattices; union operation of
77107    concept lattices; union algorithm of concept lattices
77108 AB Concept lattice has played an important role in data mining and data
77109    processing. The paper gives definitions of same-field contexts,
77110    consistent contexts, same-field concept lattices, and consistent
77111    concept lattices, provides definitions of the addition operation of two
77112    same-field and consistent contexts as well as the union operation of
77113    two same-field and consistent concept lattices, and proves that the two
77114    operations above are isomorphic and satisfy other interesting
77115    mathematical properties, such as commutative and associative laws as
77116    well as having left and right identity elements. According to the
77117    definitions and properties of the union operation, a union algorithm of
77118    multiple concept lattices is deduced, in which some heuristic knowledge
77119    from order relation of the concepts is used, so the time efficiency of
77120    the algorithm can be improved. Experiments show that using the
77121    algorithm to merge two concept lattices distributed on different sites
77122    into one is evidently superior to the method of using Gordin's
77123    algorithm to insert the objects of the formal context corresponding to
77124    second concept lattice one by one into the first lattice. Evidently,
77125    the algorithm provided in the paper is an effective parallel algorithm
77126    to construct concept lattice.
77127 C1 Shanghai Univ, Sch Comp, Shanghai 200072, Peoples R China.
77128    Armored Force Engn Inst, Automat Command Staff, Beijing, Peoples R China.
77129    Fudan Univ, Dept Comp & Informat Technol, Shanghai 200433, Peoples R China.
77130 RP Liu, ZT, Shanghai Univ, Sch Comp, Shanghai 200072, Peoples R China.
77131 CR BILOHLAVEK R, 2000, J LOGIC COMUPUTAION, V10, P823
77132    BURUSCO A, 1994, MATHWARE SOFT COMPUT, V1, P209
77133    GANTER B, 1999, FORMAL CONCEPT ANAL
77134    GODIN R, 1995, COMPUT INTELL, V11, P246
77135    LIU Z, 2000, CHINESE J COMPUTER, V23, P66
77136    NJIWOUA P, 1997, P 4 GRON INT INF TEC, P103
77137    WANG Z, 1998, THESIS HEFEI U TECHN
77138    WILLIAMS DF, 1982, BIOCOMPATIBILITY ORT, V1, P1
77139    XIE Z, 2001, THESIS HEFEI U TECHN
77140 NR 9
77141 TC 0
77142 SN 0302-9743
77143 J9 LECT NOTE ARTIF INTELL
77144 PY 2003
77145 VL 2639
77146 BP 533
77147 EP 540
77148 PG 8
77149 GA BX12N
77150 UT ISI:000184350600088
77151 ER
77152 
77153 PT J
77154 AU Huang, DB
77155 TI A novel singular pattern in the sine-Gordon equation
77156 SO PHYSICS LETTERS A
77157 DT Article
77158 ID BACKLUND TRANSFORMATION
77159 AB By the scatter problem and the Backlund transformation of the
77160    sine-Gordon equation, we find a novel solution with the singularity of
77161    jumping phenomenon, which displays pattern structure similar
77162    respectively to soliton, kink, anti-kink and double pole solution with
77163    the different choice of the purely imaginary spectrum of the
77164    sine-Gordon equation. (C) 2003 Elsevier B.V. All rights reserved.
77165 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
77166 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
77167 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V31, P125
77168    BISHOP AR, 1990, PHYS LETT A, V144, P17
77169    BISHOP AR, 1990, SIAM J MATH ANAL, V21, P1511
77170    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
77171    CHEN DY, 2002, J PHYS SOC JPN, V71, P658
77172    HUANG DB, 2000, CHINESE PHYS LETT, V17, P1
77173    MATVEEV VB, 1992, PHYS LETT A, V166, P205
77174    MATVEEV VB, 1992, PHYS LETT A, V166, P209
77175    NAKKEERAN K, 2002, NONLINEARITY, V15, P1747
77176    ROSENAU P, 1994, PHYS REV LETT, V73, P1737
77177    TAKAHASHI H, 1989, J PHYS SOC JPN, V58, P3085
77178    WADATI M, 1975, PROG THEOR PHYS, V53, P419
77179 NR 12
77180 TC 0
77181 SN 0375-9601
77182 J9 PHYS LETT A
77183 JI Phys. Lett. A
77184 PD JUL 21
77185 PY 2003
77186 VL 314
77187 IS 1-2
77188 BP 51
77189 EP 58
77190 PG 8
77191 SC Physics, Multidisciplinary
77192 GA 703RJ
77193 UT ISI:000184294500009
77194 ER
77195 
77196 PT J
77197 AU Li, CP
77198    Chen, GR
77199 TI A note on Hopf bifurcation in Chen's system
77200 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
77201 DT Article
77202 DE Chen's system; Hopf bifurcation; the first Lyapunov coefficient
77203 ID CHAOTIC ATTRACTOR; SYNCHRONIZATION
77204 AB In this technical note, the Hopf bifurcation in Chen's system is
77205    studied. Some corresponding dynamics are also discussed briefly.
77206 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
77207    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
77208 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
77209 CR AGIZA HN, 2001, PHYS LETT A, V278, P191
77210    CELIKOVSKY S, 2002, INT J BIFURCAT CHAOS, V12, P1789
77211    CHEN GR, 1999, INT J BIFURCAT CHAOS, V9, P1465
77212    KUZNETSOV YA, 1998, ELEMENTS APPL BIFURC
77213    LU JH, 2002, INT J BIFURCAT CHAOS, V12, P2257
77214    SPARROW C, 1982, LORENZ EQUATIONS BIF
77215    UETA T, 2000, INT J BIFURCAT CHAOS, V10, P1917
77216    WANG XF, 1999, CONTR TH APPL, V16, P779
77217    YU XH, 2000, INT J BIFURCAT CHAOS, V10, P1987
77218    ZHONG GQ, 2002, INT J BIFURCAT CHAOS, V12, P1423
77219 NR 10
77220 TC 8
77221 SN 0218-1274
77222 J9 INT J BIFURCATION CHAOS
77223 JI Int. J. Bifurcation Chaos
77224 PD JUN
77225 PY 2003
77226 VL 13
77227 IS 6
77228 BP 1609
77229 EP 1615
77230 PG 7
77231 SC Mathematics, Applied; Multidisciplinary Sciences
77232 GA 705DP
77233 UT ISI:000184380700017
77234 ER
77235 
77236 PT J
77237 AU Zhang, JC
77238    Li, PL
77239    Deng, DM
77240    Liu, LH
77241    Cao, SX
77242 TI Magnetic ion Fe and Ni doping in the Cu-O chain and the CuO2 plane in
77243    YBa2Cu3O7-delta: A positron study
77244 SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY
77245 DT Article
77246 DE high-T-c superconductor; magnetic ion substitution in Cu site; positron
77247    annihilation experiment
77248 ID TEMPERATURE-DEPENDENCE; SUPERCONDUCTORS; ANNIHILATION; SUBSTITUTION;
77249    PEROVSKITES; LIFETIME; ELECTRON; PHONON; FILMS
77250 AB Fe and Ni substitutions in the Cu-O chain and the CuO2 plane ate
77251    studied by positron lifetime experiment. Change of lifetime parameters
77252    is given and local electron density is evaluated as a function of
77253    substitution content. The results show fantastic and opposite behaviors
77254    for A and Ni substitutions. A strengthen effect of the localized
77255    carriers in the CuO2 planes for Ni substitution and electronic weak
77256    localization in the Cu-O chains for Fe substitution are found in
77257    YBa2Cu3O7-delta superconducting systems. The positron distribution and
77258    the annihilation mechanism are also discussed.
77259 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
77260    Chinese Acad Sci, Inst Phys, Natl Lab Superconduct, Beijing 100080, Peoples R China.
77261 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
77262 CR BALOGH AG, 1988, PHYS REV B, V38, P2883
77263    BERNHARD C, 1996, PHYS REV LETT, V77, P2304
77264    BOBROFF J, 1997, PHYS REV LETT, V79, P2117
77265    BRANDT W, 1967, POSITRON ANNIHILATIO, CH3
77266    CLAYHOLD J, 1989, PHYS REV B, V39, P7324
77267    GINSBERG DM, 1990, PHYSICAL PROPERTIES, V2, CH8
77268    GUPTA RP, 1977, PHYS REV LETT, V39, P1212
77269    HAM KM, 1993, PHYS REV B, V47, P11439
77270    HARSHMAN DR, 1988, PHYS REV B, V38, P848
77271    HAUTOJARVI P, 1979, POSITRONS SOLID, CH4
77272    ISLAM MS, 1991, PHYS REV B, V44, P9492
77273    JEAN YC, 1990, PHYS REV LETT, V64, P1593
77274    JINCANG Z, 1999, PHYS LETT A, V263, P452
77275    JINCANG Z, 2002, PHYS REV B, V65
77276    LANZARA A, 2001, NATURE, V412, P510
77277    SMEDSKJAER LC, 1988, PHYS REV B, V37, P2330
77278    SUMNER MJ, 1993, PHYS REV B, V47, P12248
77279    TARASCON JM, 1987, PHYS REV B, V36, P8393
77280    TARASCON JM, 1988, PHYS REV B, V37, P7458
77281    TSUEI CC, 2000, REV MOD PHYS, V72, P969
77282 NR 20
77283 TC 0
77284 SN 1051-8223
77285 J9 IEEE TRANS APPL SUPERCONDUCT
77286 JI IEEE Trans. Appl. Supercond.
77287 PD JUN
77288 PY 2003
77289 VL 13
77290 IS 2
77291 PN Part 3
77292 BP 3140
77293 EP 3143
77294 PG 4
77295 SC Engineering, Electrical & Electronic; Physics, Applied
77296 GA 702UH
77297 UT ISI:000184242400179
77298 ER
77299 
77300 PT J
77301 AU Yang, XX
77302    Zhao, JR
77303    Jia, XS
77304    Yang, LW
77305    Zhai, HB
77306 TI A concise synthesis of monoterpene pyridine alkaloid aucubinine B
77307 SO CHINESE JOURNAL OF CHEMISTRY
77308 DT Article
77309 DE aucubinine B; monoterpene alkaloid; intramolecular Heck reaction
77310 ID HUMAN INTESTINAL BACTERIA; HARPAGOPHYTUM-PROCUMBENS; (+/-)-OXERINE;
77311    CYCLIZATIONS; RADICALS; IRIDOIDS; RHODIUM
77312 AB Aucubinine B (4), a monoterpene alkaloid obtained from the metabolites
77313    of aucubin in the presence of human intestinal bacteria, has been
77314    synthesized from 3-bromo-4-pyridinecarboxaldehyde (5) in four steps
77315    with 39% overall yield. The construction of the cyclopenta [c] pyridine
77316    intermediate (7) was realized by an intramolecular Heck reaction.
77317 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Modern Synthet Organ Chem, Shanghai 200032, Peoples R China.
77318    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
77319    Shanghai Univ, Coll Life Sci, Shanghai 100436, Peoples R China.
77320 RP Yang, XX, Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Modern
77321    Synthet Organ Chem, 345 Lingling Lu, Shanghai 200032, Peoples R China.
77322 EM zhaih@mail.sioc.ac.cn
77323 CR ANTHORY JM, 1979, J ORG CHEM, V44, P4148
77324    AOYAGI Y, 1994, TETRAHEDRON, V50, P13575
77325    BAGHDIKIAN B, 1999, J NAT PROD, V62, P211
77326    BAGHDIKIAN B, 1999, PLANTA MED, V65, P164
77327    BENKRIEF R, 1991, PLANTA MED, V57, P79
77328    BLASER A, 1999, HELV CHIM ACTA, V82, P760
77329    COREY EJ, 1983, TETRAHEDRON LETT, V24, P3291
77330    GRIGG R, 1984, J CHEM SOC CHEM COMM, P1073
77331    GRIGG R, 1988, TETRAHEDRON, V44, P2033
77332    HATTORI M, 1990, PHYTOTHER RES, V4, P66
77333    JONES K, 1996, TETRAHEDRON LETT, V37, P8049
77334    JONES K, 2000, TETRAHEDRON, V56, P397
77335    OHBA M, 2000, TETRAHEDRON LETT, V41, P10251
77336    SAKAN T, 1959, B CHEM SOC JPN, V32, P315
77337 NR 14
77338 TC 3
77339 SN 1001-604X
77340 J9 CHINESE J CHEM
77341 JI Chin. J. Chem.
77342 PD JUL
77343 PY 2003
77344 VL 21
77345 IS 7
77346 BP 970
77347 EP 971
77348 PG 2
77349 SC Chemistry, Multidisciplinary
77350 GA 703QH
77351 UT ISI:000184292100049
77352 ER
77353 
77354 PT J
77355 AU Qian, GR
77356    Sun, DDL
77357    Tay, JH
77358 TI Immobilization of mercury and zinc in an alkali-activated slag matrix
77359 SO JOURNAL OF HAZARDOUS MATERIALS
77360 DT Article
77361 DE immobilization; alkali-activated slag; mercury; zinc; hydration product
77362 ID CALCIUM SILICATE; PORTLAND-CEMENT; SOLIDIFICATION; SPECTROSCOPY;
77363    STABILIZATION; HYDRATION; METALS; WASTE
77364 AB The behavior of heavy metals mercury and zinc immobilized in an
77365    alkali-activated slag (AAS) matrix has been evaluated using physical
77366    property tests, pore structure analysis and XRD, TG-DTG, FTIR and TCLP
77367    analysis. Low concentrations (0.5%) of mercury and zinc ions had only a
77368    slight affect on compressive strength, pore structure and hydration of
77369    AAS matrixes. The addition of 2% Hg ions to the AAS matrix resulted in
77370    a reduction in early compressive strength but no negative effects were
77371    noticed after 28 days of hydration. Meanwhile, 2% Hg ions can be
77372    effectively immobilized in the AAS matrix with the leachate meeting the
77373    USEPA TCLP mercury limit. For a 2% Zn-doped AAS matrix, the hydration
77374    of the AAS paste was greatly retarded and the zinc concentration in the
77375    leachate from this matrix was higher than 5 mg/l even at 28 days. Based
77376    on these results, we conclude that the physical encapsulation and
77377    chemical fixation mechanisms were likely to be responsible for the
77378    immobilization of Hg ions in the AAS matrix while only chemical
77379    fixation mechanisms were responsible for the immobilization of Zn ions
77380    in the AAS matrix. (C) 2003 Elsevier Science B.V. All rights reserved.
77381 C1 Shanghai Univ, Sch Environm Engn, Shanghai 200072, Peoples R China.
77382    Nanyang Technol Univ, Sch Civil & Environm Engn, Environm & Engn Res Ctr, Singapore 2263, Singapore.
77383 RP Qian, GR, Shanghai Univ, Sch Environm Engn, 149 Yanchang Rd, Shanghai
77384    200072, Peoples R China.
77385 CR *IUPAC, 1978, J PURE APPL CHEM, V31, P578
77386    COCKE DL, 1993, CHEM MICROSTRUCTURE, P187
77387    CONNER JR, 1990, CHEM FIXATION SOLIDI
77388    DIAMOND S, 1966, AM MINERAL, V51, P388
77389    GLASSER FP, 1993, CHEM MICROSTRUCTURE, P1
77390    GLASSER FP, 2001, ADV ENV MAT, V2, P281
77391    GOTO S, 1981, CEMENT CONCRETE RES, V11, P75
77392    ILER RK, 1979, CHEM SILICA
77393    KOMARNENI S, 1978, CEMENT CONCRETE RES, V8, P204
77394    MALIAVSKI NI, 2001, CERAM-SILIKATY, V45, P48
77395    MCWHINNEY HG, 1990, CEMENT CONCRETE RES, V20, P79
77396    METHA PK, 1986, CONCRETE ITS STRUCTU
77397    MOLLAH MYA, 1992, J ENV SCI HLTH A, V27, P1503
77398    MOULIN I, 1999, LANGMUIR, V15, P2829
77399    ORTEGO JD, 1989, J ENVIRON SCI HEAL A, V24, P589
77400    POON CS, 1986, CEMENT CONCRETE RES, V16, P161
77401    POON CS, 1987, P MAT RES SOC S MAT, P67
77402    POURBAIX M, 1974, ATLAS ELECTROCHEMICA
77403    QIAN GG, 2001, J NUCL MATER, V299, P199
77404    ROSE J, 2001, LANGMUIR, V17, P3658
77405    ROY D, 1999, CEMENT CONCRETE RES, V29, P249
77406    UBBRIACO P, 2001, J THERM ANAL CALORIM, V66, P293
77407    VANJAARSVELD JGS, 1999, CEMENT CONCRETE RES, V29, P1189
77408    WANG SD, 2000, ADV CEM RES, V12, P163
77409    YOUSUF M, 1995, WASTE MANAGE, V15, P137
77410 NR 25
77411 TC 1
77412 SN 0304-3894
77413 J9 J HAZARD MATER
77414 JI J. Hazard. Mater.
77415 PD JUL 4
77416 PY 2003
77417 VL 101
77418 IS 1
77419 BP 65
77420 EP 77
77421 PG 13
77422 SC Engineering, Civil; Engineering, Environmental; Environmental Sciences
77423 GA 702QQ
77424 UT ISI:000184234900005
77425 ER
77426 
77427 PT J
77428 AU Wang, KS
77429    Gelgele, HL
77430    Wang, Y
77431    Yuan, QF
77432    Fang, ML
77433 TI A hybrid intelligent method for modelling the EDM process
77434 SO INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE
77435 DT Article
77436 DE computational intelligence; artificial neural networks; genetic
77437    algorithms; electro-discharge machining; hybrid systems; modelling;
77438    optimisation
77439 ID OPTIMIZATION
77440 AB This paper discusses the development and application of a hybrid
77441    artificial neural network and genetic algorism methodology to modelling
77442    and optimisation of electro-discharge machining. The hybridisation
77443    approach is aimed not only at exploiting the strong capabilities of the
77444    two tools, but also at solving manufacturing problems that are not
77445    amenable for modelling using traditional methods. Based on an
77446    experimental data, the model was tested with satisfactory results. The
77447    developed methodology with the model is highly beneficial to
77448    manufacturing industries, such as aerospace, automobile and tool making
77449    industries. (C) 2003 Elsevier Science Ltd. All rights reserved.
77450 C1 Norwegian Univ Sci & Technol, Dept Prod & Qual Engn, N-7491 Trondheim, Norway.
77451    Stavanger Univ Coll, Dept Mech Engn & Mat Technol, Stavanger, Norway.
77452    Shanghai Univ, CIMS, Shanghai, Peoples R China.
77453    Shanghai Univ, Robot Ctr, Shanghai, Peoples R China.
77454 RP Wang, KS, Norwegian Univ Sci & Technol, Dept Prod & Qual Engn, N-7491
77455    Trondheim, Norway.
77456 CR *POC GRAPH INC, 1994, EDM TECHN MAN
77457    DIBITONTO DD, 1989, J APPL PHYS, V66, P4095
77458    KOZAK J, 2001, ISEM, V13, P405
77459    KUNIEDA M, 1991, ANN CIRP, V40, P215
77460    LEE HT, 2000, MATER MANUF PROCESS, V15, P781
77461    LIN CL, 2002, INT J ADV MANUF TECH, V19, P271
77462    LIN YC, 2001, INT J ADV MANUF TECH, V18, P673
77463    MOHRI N, 1997, ANN CIRP, V40, P207
77464    PURI AB, 2003, INT J MACH TOOL MANU, V43, P151
77465    VANDIJCK FS, 1974, J PHYS D, V7, P899
77466    WANG K, 2001, APPL COMPUTATIONAL I
77467    YAN MT, 2002, J CHINESE SOC MECH C, V23, P355
77468 NR 12
77469 TC 1
77470 SN 0890-6955
77471 J9 INT J MACH TOOL MANUF
77472 JI Int. J. Mach. Tools Manuf.
77473 PD AUG
77474 PY 2003
77475 VL 43
77476 IS 10
77477 BP 995
77478 EP 999
77479 PG 5
77480 SC Engineering, Manufacturing; Engineering, Mechanical
77481 GA 703DN
77482 UT ISI:000184264900003
77483 ER
77484 
77485 PT J
77486 AU Hu, XF
77487    Cheng, TF
77488    Wu, HX
77489 TI Do multiple cycles of aeolian deposit-pedogenesis exist in the
77490    reticulate red clay sections in southern China?
77491 SO CHINESE SCIENCE BULLETIN
77492 DT Article
77493 DE reticulate red clay; Xianyyang reticulate red clay section; (Xiangyang
77494    section); chi; weathering degree
77495 ID LOESS; SEDIMENTS; ORIGIN
77496 AB The Xiangyang reticulate red clay section was newly sampled in
77497    high-resolution. The viewpoints different from the previous
77498    studies([1-7]) are put forward after studying Munsell color values,
77499    weathering degrees, magnetic parameters and stable carbon isotopic
77500    compositions of the section. They are as follows: (1) The curves of
77501    hue, DCB extracted iron (Fed), DCB extracted iron/total iron ratio
77502    (Fe-d/Fe-t), weathering index (BA) of the section show that the redness
77503    is not significantly correlated with the weathering degree of the
77504    layers though the uppermost yellow-brown-colored layer is relatively
77505    weakly weathered. The variation in hues of the section is possibly
77506    attributed to the change of hematite and goethite contents. It is
77507    insufficient to determine the existence of the multiple
77508    deposit-pedogenesis cycles in the section, like the loess-paleosol
77509    sequence in Chinese Loess Plateau, only by the color variation. (2)
77510    Magnetic susceptibility (chi) values in the non-reticulate and weakly
77511    reticulate layers are high; but are quite low in the reticulate red
77512    clay layer. The former are more than ten times higher than the latter
77513    because of the leaching and collapse of superparamagnetic (SP) and
77514    stable single domain (SSD) magnetic particles during the plinthitic
77515    processes. Hence, chi values in the section are not controlled by
77516    weathering and pedogenic processes, and no longer have clear
77517    paleoclimatic implication. It is not correct to prove the existence of
77518    the multiple deposit-pedogenesis cycles in the section using chi
77519    curves. (3) The organic delta(13)C curve of the section illustrates the
77520    reduction of forests and increasing of C-4 plants in the study area
77521    since the late stage of the Quaternary period. It could not prove the
77522    existence of the multiple deposit-pedogenesis cycles in the section
77523    either. (4) As a matter of fact, it is difficult to prove the existence
77524    of the multiple deposit-pedogenesis cycles in the Xiangyang section
77525    like the loess-paleosol sequence in Chinese Loess Plateau using the
77526    evidence available currently.
77527 C1 Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China.
77528 RP Hu, XF, Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072,
77529    Peoples R China.
77530 CR *NANJ I SOIL SCI C, 1989, NEW STAND SOIL COL C
77531    *USDA, 1996, SOIL SURV LAB METH M
77532    AN ZH, 1991, QUATERNARY RES, V36, P29
77533    CAO JX, 1997, J LANZHOU U, V33, P124
77534    CHU SM, 1948, J CHINESE SOIL SCI S, V1, P51
77535    DEINES P, 1980, HDB ENV ISOTOPE GEOC, V1, P329
77536    FANG HQ, 1961, ACTA GEOL SINICA, V41, P354
77537    FINE P, 1992, SOIL SCI SOC AM J, V56, P1195
77538    FINE P, 1993, SOIL SCI SOC AM J, V57, P1537
77539    GONG ZT, 1985, CHINESE RED SOILS, P24
77540    HU XF, 1999, ACTA PEDOLOGICA SINI, V36, P301
77541    HU XF, 1999, SOILS, V13, P39
77542    HU XF, 2001, ACTA PEDOLOGICA SINI, V38, P1
77543    LI JJ, 1983, SCI CHINA SER B, V13, P734
77544    LI XS, 1998, J ANHUI NORMAL U, V21, P64
77545    LI XS, 1999, MARINE GEOLOGY QUATE, V19, P75
77546    LI YY, 1965, GEOLOGICAL REV, V23, P144
77547    LIN BH, 1996, QUATERNARY GEOLOGY G, P82
77548    LIN WL, 2000, J CEREBR BLOOD F MET, V20, P37
77549    LIU Q, 2000, NUTR RES, V20, P5
77550    LIU TS, 1985, LOESS ENV
77551    LU JG, 1997, PEDOGEOLOGY, P97
77552    LU SG, 2000, ACTA PEDOLOGICA SINI, V37, P183
77553    OLDFIELD F, 1994, SEDIMENTOLOGY, V41, P1093
77554    SAGE RF, 1999, PLANT BIOLOGY, P311
77555    SUN JM, 2000, EARTH PLANET SC LETT, V180, P287
77556    SUN XJ, 1995, CHINESE SCI BULL, V40, P1222
77557    TORRENT J, 1983, SOIL SCI, V136, P354
77558    XI CF, 1965, CHINESE QUATERNARY S, V4, P42
77559    XIONG Y, 1983, SOIL COLLOID, P132
77560    XU BH, 1986, SELECTIVE DISCUSSION, P54
77561    YANG D, 1991, MARINE GEOLOGY QUATE, V11, P97
77562    YANG DY, 1991, QUATERNARY SCI, V11, P345
77563    YANG H, 1992, ACTA PEDOLOGICA SI S, V32, P195
77564    YANG H, 1995, ACTA PEDOLOGICA SI S, V32, P177
77565    YANG H, 1996, ACTA PEDOLOGICA SINI, V33, P293
77566    YU TR, 1990, CHEM PROCESSES PEODO, P432
77567    ZHANG WG, 2000, OCEANOLOGIA LIMNOLOG, V31, P616
77568    ZHOU LP, 1990, NATURE, V346, P737
77569    ZHU XM, 1993, QUATERNARY SCI, P75
77570    ZHU ZY, 1991, QUATERNARY SCI, V11, P18
77571    ZHU ZY, 1995, Q SCI, P267
77572 NR 42
77573 TC 2
77574 SN 1001-6538
77575 J9 CHIN SCI BULL
77576 JI Chin. Sci. Bull.
77577 PD JUN
77578 PY 2003
77579 VL 48
77580 IS 12
77581 BP 1251
77582 EP 1258
77583 PG 8
77584 SC Multidisciplinary Sciences
77585 GA 702XD
77586 UT ISI:000184249300020
77587 ER
77588 
77589 PT J
77590 AU Zhang, M
77591    Zhang, ZH
77592    Blessington, D
77593    Li, H
77594    Busch, TM
77595    Madrak, V
77596    Miles, J
77597    Chance, B
77598    Glickson, JD
77599    Zheng, G
77600 TI Pyropheophorbide 2-deoxyglucosamide: A new photosensitizer targeting
77601    glucose transporters
77602 SO BIOCONJUGATE CHEMISTRY
77603 DT Article
77604 ID ESCHERICHIA-COLI-CELLS; PHOTODYNAMIC THERAPY; FLUORESCENCE; SINGLE;
77605    2-NBDG; TUMOR; ANALOG; OXYGEN; TISSUE; RATIO
77606 AB To prepare near-infrared fluorescence imaging and photodynamic therapy
77607    agents targeted at glucose transporters, pyropheophorbide
77608    2-deoxyglucosamide (Pyro-2DG) was synthesized and evaluated in a 9L
77609    glioma rat model. Fluorescence imaging studies demonstrate that
77610    Pyro-2DG is selectively accumulated in the tumor. Upon its
77611    photoactivation, we demonstrate that this agent efficiently causes
77612    selective mitochondrial damage to the region of a tumor that was
77613    photoirradiated after administration of this agent, but does not affect
77614    tissues photoirradiated in the absence of the agent or tissues treated
77615    with the agent that are not photoirradiated. Preliminary confocal
77616    microscopy studies suggest that Pyro-2DG is delivered and trapped in
77617    tumor cells via the GLUT/hexokinase pathway and therefore is useful
77618    both as a tumor-targeted NIR fluorescence imaging probe and as a PDT
77619    agent for the destruction of cancer.
77620 C1 Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA.
77621    Univ Penn, Dept Biochem & Biophys, Philadelphia, PA 19104 USA.
77622    Univ Penn, Dept Radiat Oncol, Philadelphia, PA 19104 USA.
77623    Univ Penn, Dept Phys, Philadelphia, PA 19104 USA.
77624    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
77625    Huazhong Univ Sci & Technol, Key Lab Biomed Photon, Minister Educ, Wuhan 430074, Peoples R China.
77626 RP Zheng, G, Univ Penn, Dept Radiol, Chem Bldg R310,Box 66,231 S 34th St,
77627    Philadelphia, PA 19104 USA.
77628 CR BAIDOO KE, 2000, 8 INT C PEAC MIND BR
77629    CHANCE B, 1979, J BIOL CHEM, V254, P4764
77630    CZERNIN J, 2002, ANNU REV MED, V53, P89
77631    DOUGHERTY TJ, 1998, J NATL CANCER I, V90, P889
77632    GU YQ, 2002, REV SCI INSTRUM, V73, P172
77633    GURFINKEL M, 2000, PHOTOCHEM PHOTOBIOL, V72, P94
77634    HENDERSON BW, 1997, CANCER RES, V57, P4000
77635    LIN Y, 2002, J MED CHEM, V45, P2003
77636    LLOYD PG, 1999, PHYSIOL RES, V48, P401
77637    MEDINA RA, 2002, BIOL RES, V35, P9
77638    MUJUMDAR SR, 1996, BIOCONJUGATE CHEM, V7, P356
77639    NATARAJAN A, 2000, J MICROBIOL METH, V42, P87
77640    OH KB, 2002, INT J FOOD MICROBIOL, V76, P47
77641    PAUWELS EKJ, 1998, NUCL MED BIOL, V25, P317
77642    QUISTORFF B, 1985, ANAL BIOCHEM, V148, P389
77643    RAMANUJAM N, 2001, OPT EXPRESS, V8, P335
77644    ROMAN Y, 2001, PFLUG ARCH EUR J PHY, V443, P234
77645    SPEIZER L, 1985, BIOCHIM BIOPHYS ACTA, V815, P75
77646    STERNBERG ED, 1998, TETRAHEDRON, V54, P4151
77647    VAUPEL P, 1989, CANCER RES, V49, P6449
77648    WEINHOUSE S, 1976, Z KREBSFORSCH, V87, P115
77649    WEISHAUPT KR, 1976, CANCER RES, V36, P2326
77650    YAMADA K, 2000, J BIOL CHEM, V275, P22278
77651    YOSHIOKA K, 1996, BBA-GEN SUBJECTS, V1289, P5
77652    YOSHIOKA K, 1996, BIOSCI BIOTECH BIOCH, V60, P1899
77653    ZHENG G, 2002, BIOCONJUGATE CHEM, V13, P392
77654 NR 26
77655 TC 19
77656 SN 1043-1802
77657 J9 BIOCONJUGATE CHEMISTRY
77658 JI Bioconjugate Chem.
77659 PD JUL-AUG
77660 PY 2003
77661 VL 14
77662 IS 4
77663 BP 709
77664 EP 714
77665 PG 6
77666 SC Chemistry, Multidisciplinary; Chemistry, Organic; Biochemical Research
77667    Methods; Biochemistry & Molecular Biology
77668 GA 703LK
77669 UT ISI:000184280700003
77670 ER
77671 
77672 PT J
77673 AU Li, SR
77674    Cheng, CJ
77675    Zhou, YH
77676 TI Thermal post-buckling of an elastic beams subjected to a transversely
77677    non-uniform temperature rising
77678 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
77679 DT Article
77680 DE elastic beam; transverse temperature change; thermal post-buckling;
77681    shooting method; numerical solution
77682 ID RODS
77683 AB Based on the nonlinear geometric theory of axially extensible beams and
77684    by using the shooting method, the thermal post-buckling responses of an
77685    elastic beams, with immovably simply supported ends and subjected to a
77686    transversely non-uniformly distributed temperature rising, were
77687    investigated. Especially, the influences of the transverse temperature
77688    change on the thermal post-buckling deformations were examined and the
77689    corresponding characteristic curves were plotted. The numerical results
77690    show that the equilibrium path,; of the beam are similar to what of an
77691    initially deformed beam because of the thermal bending moment produced
77692    in the beam by the transverse temperature change.
77693 C1 Gansu Univ Technol, Dept Basic Sci, Lanzhou 730050, Peoples R China.
77694    Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
77695    Lanzhou Univ, Dept Mech, Lanzhou 730000, Peoples R China.
77696 RP Li, SR, Gansu Univ Technol, Dept Basic Sci, Lanzhou 730050, Peoples R
77697    China.
77698 CR ANTMAN SS, 1995, NONLINEAR PROBLEMS E
77699    CHENG CJ, 1991, BUCKLING BIFURCATION
77700    COFFIN DW, 1999, INT J NONLINEAR MECH, V34, P935
77701    FILIPICH CP, 2000, INT J NONLINEAR MECH, V35, P997
77702    LI SR, 1997, J LANZHOU U, V33, P43
77703    LI SR, 2000, APPL MATH MECH-ENGL, V21, P133
77704    LI SR, 2000, ENG MACHANICS, V17, P115
77705    LI SR, 2000, J GANSU U TECHNOLOGY, V4, P106
77706    STEMPLE T, 1990, INT J NONLINEAR MECH, V25, P615
77707    WILLIAM HP, 1986, NUMERICAL RECIPES AR
77708 NR 10
77709 TC 1
77710 SN 0253-4827
77711 J9 APPL MATH MECH-ENGL ED
77712 JI Appl. Math. Mech.-Engl. Ed.
77713 PD MAY
77714 PY 2003
77715 VL 24
77716 IS 5
77717 BP 514
77718 EP 520
77719 PG 7
77720 SC Mathematics, Applied; Mechanics
77721 GA 703JE
77722 UT ISI:000184275600003
77723 ER
77724 
77725 PT J
77726 AU Zheng, YA
77727    Liu, ZR
77728 TI Periodic solutions in one-dimensional coupled map lattices
77729 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
77730 DT Article
77731 DE coupled map lattice; nonlinear periodic solution; anti-integrable
77732    limit; logistic map
77733 ID EXISTENCE; BREATHERS; STABILITY; DYNAMICS; NETWORKS
77734 AB It is proven that the existence of nonlinear solutions with time period
77735    in one-dimensional coupled map lattice with nearest neighbor coupling.
77736    This is a class of systems whose behavior can be regarded as infinite
77737    array of coupled oscillators. A method for estimating the critical
77738    coupling strength below which these solutions with time period persist
77739    is given. For some particular nonlinear solutions with time period,
77740    exponential decay in space is proved.
77741 C1 Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China.
77742    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
77743 RP Zheng, YA, Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China.
77744 CR ABEL M, 1998, PHYSICA D, V119, P22
77745    AUBRY S, 1990, PHYSICA D, V43, P199
77746    AUBRY S, 1997, PHYSICA D, V103, P201
77747    BAESENS C, 1997, NONLINEARITY, V10, P931
77748    COUTINHO R, 1997, PHYSICA D, V108, P60
77749    CRUTCHFIELD JP, 1987, DIRECTIONS CHAOS, V1, P272
77750    KANEKO K, 1989, PHYSICA D, V34, P1
77751    MACKAY RS, 1994, NONLINEARITY, V7, P1623
77752    ZEIDLER E, 1986, NONLINEAR FUNCTIONAL
77753 NR 9
77754 TC 0
77755 SN 0253-4827
77756 J9 APPL MATH MECH-ENGL ED
77757 JI Appl. Math. Mech.-Engl. Ed.
77758 PD MAY
77759 PY 2003
77760 VL 24
77761 IS 5
77762 BP 521
77763 EP 526
77764 PG 6
77765 SC Mathematics, Applied; Mechanics
77766 GA 703JE
77767 UT ISI:000184275600004
77768 ER
77769 
77770 PT J
77771 AU Shen, Z
77772 TI On the well posedness of initial value problem for Euler equations of
77773    incompressible inviscid fluid (I)
77774 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
77775 DT Article
77776 DE Euler equation; ill posed problem; formal solution; equation secondaire
77777 AB The ill posed initial value problem of the Euler equations and the
77778    formal solvability of ill posed problem based on stratification theory
77779    are discussed. For some ill posed initial value problems, the existence
77780    conditions of formal solutions and the methods of how to construct a
77781    formal solution are given. Finally, an example is given to discuss the
77782    ill posedness of the initial value problem on hyper plane { t = 0 } in
77783    R-4, and explain that the problem has more than one solution.
77784 C1 Shanghai Univ, Dept Math, Shanghai 2000436, Peoples R China.
77785 RP Shen, Z, Shanghai Univ, Dept Math, Shanghai 2000436, Peoples R China.
77786 CR BAOUENDI S, 1997, SEMINAIRE SCHWARZ, P97
77787    EHRESMANN C, 1953, GEOMETRIE DIFFERENTI, P97
77788    JIU QS, 1995, SHANTOU U T, V10, P28
77789    JIU QS, 1999, ADV MATH, V28, P55
77790    LANDAU J, 1971, MECANIQUE FLUIDES
77791    SHIH WH, 1992, SOLOUTIONS ANAL QUEL
77792    SHIH WH, 2001, EQUATION SECONDAIRE
77793    YIN HC, 1996, MATH ANN A, P495
77794 NR 8
77795 TC 3
77796 SN 0253-4827
77797 J9 APPL MATH MECH-ENGL ED
77798 JI Appl. Math. Mech.-Engl. Ed.
77799 PD MAY
77800 PY 2003
77801 VL 24
77802 IS 5
77803 BP 545
77804 EP 554
77805 PG 10
77806 SC Mathematics, Applied; Mechanics
77807 GA 703JE
77808 UT ISI:000184275600007
77809 ER
77810 
77811 PT J
77812 AU Shen, Z
77813 TI On the well posedness of initial value problem for Euler equations of
77814    incompressible inviscid fluid (II)
77815 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
77816 DT Article
77817 DE Euler equation; ill-posed problem; formal solution; equation secondaire
77818 AB The solvability of the Euler equations about incompressible inviscid
77819    fluid based on the stratification theory is discussed. And the
77820    conditions for the existence of formal solutions and the methods are
77821    presented for calculating all kinds of ill-paved initial value
77822    problems. Two examples are given as the evidences that the initial
77823    problems at the hyper surface does not exist any unique solution.
77824 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
77825 RP Shen, Z, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
77826 CR BAOUENDI S, 1997, SEMINAIRE SCHWARZ, P97
77827    EHRESMANN C, 1953, GEOMETRIE DIFFERENTI, P97
77828    JIU QS, 1995, SHANTOU U T, V10, P28
77829    JIU QS, 1999, ADV MATH, V28, P55
77830    LANDAU J, 1971, MECANIQUE FLUIDES
77831    SHEN Z, 2003, APPL MATH MECH-ENGL, V24, P545
77832    SHIH WH, 1992, SOLUTIONS ANAL QUELQ
77833    SHIH WH, 2001, EQUATION SECONDAIRE
77834    YIUN HC, 1996, MATH ANN A, P495
77835 NR 9
77836 TC 0
77837 SN 0253-4827
77838 J9 APPL MATH MECH-ENGL ED
77839 JI Appl. Math. Mech.-Engl. Ed.
77840 PD MAY
77841 PY 2003
77842 VL 24
77843 IS 5
77844 BP 555
77845 EP 567
77846 PG 13
77847 SC Mathematics, Applied; Mechanics
77848 GA 703JE
77849 UT ISI:000184275600008
77850 ER
77851 
77852 PT J
77853 AU Zhou, BX
77854    Li, Q
77855    Yao, MY
77856    Liu, WQ
77857 TI The grains morphology of oxide films for zircaloy-4
77858 SO RARE METAL MATERIALS AND ENGINEERING
77859 DT Article
77860 DE zircaloy-4; oxide film; microstructure; scanning probe microscopy
77861 AB The microstructure and morphology of oxide film for Zircaloy-4 alloy in
77862    autoclave at 360degreesC and 18.6MPa have been investigated by means of
77863    scanning probe microscopy (SPM). The diameter of grains observed on the
77864    surface of oxide films is 100mn similar to 400nm, which is larger than
77865    that observed on the section of oxide films. This means that the grain
77866    still grow during the process of corrosion testing. Some column grain
77867    with large angle grain boundaries can; be observed on the section
77868    surface etched by ion-bombardment, and some small equal-axis grains
77869    with small angle grain boundaries exist in the column grains. Some
77870    depressed areas in the size of nanometer to decadal nanometer can be
77871    found at the junctures of three or more grains, which should be the
77872    pores caused by the diffusion and condensation of vacancies. Besides,
77873    some flaky zirconium hydrides and amorphous ZrO2 without grain
77874    boundaries can be occasionally observed at the metal/oxide interface.
77875 C1 Shanghai Univ, Inst Mat, Chinese Acad Engn, Shanghai 200072, Peoples R China.
77876 RP Zhou, BX, Shanghai Univ, Inst Mat, Chinese Acad Engn, Shanghai 200072,
77877    Peoples R China.
77878 CR ANADA H, 1996, ASTM STP, V1295, P35
77879    ZHOU BX, 1989, ASTM STP, V1023, P360
77880    ZHOU BX, 2000, NUCL POWER ENG, V21, P439
77881 NR 3
77882 TC 1
77883 SN 1002-185X
77884 J9 RARE METAL MAT ENG
77885 JI Rare Metal Mat. Eng.
77886 PD JUN
77887 PY 2003
77888 VL 32
77889 IS 6
77890 BP 417
77891 EP 419
77892 PG 3
77893 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
77894    Engineering
77895 GA 700JM
77896 UT ISI:000184108900004
77897 ER
77898 
77899 PT J
77900 AU Zhang, JF
77901 TI Homogeneous balance method and chaotic and fractal solutions for the
77902    Nizhnik-Novikov-Veselov equation
77903 SO PHYSICS LETTERS A
77904 DT Article
77905 ID SOLITON-LIKE SOLUTIONS; LONG-WAVE EQUATIONS; VARIABLE SEPARATION
77906    APPROACH; KDV EQUATION; COHERENT STRUCTURES; BACKLUND TRANSFORMATION;
77907    MULTISOLITON SOLUTIONS; NONLINEAR EQUATIONS; SYSTEMS
77908 AB The Backlund transformation (BT) for the Nizhnik-Novikov-Veselov (NNV)
77909    equation is derived by using the extended homogeneous balance method.
77910    By means of the BT, a rather general variable separation solution of
77911    the model is obtained. The chaotic and fractal solution structures of
77912    the model are constructed by the entrance of two variable-separated
77913    arbitrary functions. (C) 2003 Elsevier B.V. All rights reserved.
77914 C1 Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
77915    Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England.
77916    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
77917 RP Zhang, JF, Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004,
77918    Peoples R China.
77919 CR ABDELHAMID B, 1999, PHYS LETT A, V263, P338
77920    BOITI M, 1986, INVERSE PROBL, V2, P271
77921    CHEN HS, 2000, CHINESE PHYS LETT, V17, P85
77922    CLERC M, 1999, PHYS REV LETT, V83, P3820
77923    FAN EG, 1998, PHYS LETT A, V245, P389
77924    FAN EG, 1998, PHYS LETT A, V246, P403
77925    FAN EG, 2000, PHYS LETT A, V265, P1409
77926    GEDALIN M, 1997, PHYS REV LETT, V78, P448
77927    GOLLUB JP, 2000, NATURE, V404, P710
77928    HU XB, 1996, J PHYS A-MATH GEN, V29, P4589
77929    JALABERT RA, 2001, PHYS REV LETT, V86, P2490
77930    KIVSHAR YS, 1989, REV MOD PHYS, V61, P765
77931    LORENZ EN, 1963, J ATMOS SCI, V20, P130
77932    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
77933    LOU SY, 1999, J MATH PHYS, V40, P6491
77934    LOU SY, 2000, CHINESE PHYS LETT, V17, P781
77935    LOU SY, 2000, PHYS LETT A, V277, P94
77936    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
77937    LOUTSENKO I, 1997, PHYS REV LETT, V78, P3011
77938    NIZHNIK LP, 1980, SOV PHYS DOKL, V25, P706
77939    OHTA Y, 1992, J PHYS SOC JPN, V61, P3928
77940    RADHA R, 1994, J MATH PHYS, V35, P4746
77941    ROSSLER OE, 1976, PHYS LETT A, V57, P398
77942    RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P586
77943    STEGEMAN GI, 1999, SCIENCE, V286, P1518
77944    TAGAMI Y, 1989, PHYS LETT A, V141, P116
77945    TAJIRI M, 1997, PHYS REV E B, V55, P3351
77946    TANG XY, 2002, CHAOS SOLITON FRACT, V14, P1451
77947    TANG XY, 2002, PHYS REV E, V66, P46601
77948    VESELOV AP, 1984, SOV MATH DOKL, V30, P588
77949    WANG ML, 1995, PHYS LETT A, V199, P169
77950    WANG ML, 1996, ADV MATH, V28, P279
77951    WANG ML, 1996, PHYS LETT A, V213, P279
77952    WANG ML, 1996, PHYS LETT A, V216, P67
77953    WANG ML, 2001, PHYS LETT A, V287, P211
77954    XIE YJ, 2001, MATH APPROACH NONLIN, P131
77955    YANG L, 1999, PHYS LETT A, V260, P55
77956    YANG L, 2001, PHYS REV E, V63, P6301
77957    ZHANG JF, 1998, INT J THEOR PHYS, V37, P2449
77958    ZHANG JF, 1999, CHINESE PHYS LETT, V16, P4
77959    ZHANG JF, 1999, COMMUN THEOR PHYS, V32, P315
77960    ZHANG JF, 2000, CHINESE PHYS, V9, P1
77961    ZHANG JF, 2000, COMMUN THEOR PHYS, V33, P577
77962    ZHANG LY, 1998, CHINESE PHYS LETT, V15, P846
77963    ZHAO XQ, 2002, PHYS LETT A, V297, P59
77964 NR 45
77965 TC 9
77966 SN 0375-9601
77967 J9 PHYS LETT A
77968 JI Phys. Lett. A
77969 PD JUL 14
77970 PY 2003
77971 VL 313
77972 IS 5-6
77973 BP 401
77974 EP 407
77975 PG 7
77976 SC Physics, Multidisciplinary
77977 GA 698RW
77978 UT ISI:000184013400013
77979 ER
77980 
77981 PT J
77982 AU Hu, QY
77983    Yue, WY
77984 TI Optimal replacement of a system according to a semi-Markov decision
77985    process in a semi-Markov environment
77986 SO OPTIMIZATION METHODS & SOFTWARE
77987 DT Article
77988 DE optimal replacement; semi-Markov process; Markov environment; Markov
77989    decision process
77990 ID DETERIORATING SYSTEMS; MAINTENANCE POLICY; INSPECTION; SUBJECT; SHOCKS;
77991    MODEL
77992 AB This paper investigates an optimal replacement problem of a system in a
77993    semi-Markov environment. The system itself deteriorates according to a
77994    semi-Markov process, and is further influenced by its environment,
77995    which changes according to a semi-Markov process. Each change of the
77996    environment's state will change the parameters modelling the system and
77997    also cause damage on the system. For minimizing the discounted total
77998    costs with finite and infinite horizons, we show the existence of
77999    optimal control limit policies. A special case of Markov environment is
78000    discussed, and the state space can be simplified equivalently to be
78001    finite, so the real computation of the problem is feasible. Finally, a
78002    numerical example is given to prove the correctness and validity of the
78003    analysis.
78004 C1 Konan Univ, Dept Informat Sci & Syst Engn, Kobe, Hyogo 6588501, Japan.
78005    Shanghai Univ, Coll Int Business & Management, Shanghai 201800, Peoples R China.
78006 RP Yue, WY, Konan Univ, Dept Informat Sci & Syst Engn, Kobe, Hyogo
78007    6588501, Japan.
78008 CR CAO J, 1989, MICROELECTRON RELIAB, V28, P889
78009    CHIANG JH, 2001, RELIAB ENG SYST SAFE, V71, P165
78010    CHO DI, 1991, EUR J OPER RES, V51, P1
78011    HINDERER K, 1970, LECT NOTES OPERATION, V33
78012    HU Q, 1997, OPTIMIZATION, V39, P367
78013    MULLER A, 2002, COMPARISON METHODS S
78014    SATOW T, 2000, MATH COMPUT MODEL, V31, P313
78015    SCHAL M, 1975, Z WAHRSCHEINLICHKEIT, V32, P179
78016    SHEU SH, 1998, EUR J OPER RES, V108, P345
78017    SHEU SH, 2002, INT J SYST SCI, V33, P267
78018    WANG HZ, 2002, EUR J OPER RES, V139, P469
78019    YEH RH, 1997, EUR J OPER RES, V96, P248
78020    ZHANG ZG, 2000, COMPUT OPER RES, V27, P321
78021 NR 13
78022 TC 0
78023 SN 1055-6788
78024 J9 OPTIM METHOD SOFTW
78025 JI Optim. Method Softw.
78026 PD APR
78027 PY 2003
78028 VL 18
78029 IS 2
78030 BP 181
78031 EP 196
78032 PG 16
78033 SC Computer Science, Software Engineering; Mathematics, Applied;
78034    Operations Research & Management Science
78035 GA 698NT
78036 UT ISI:000184006200005
78037 ER
78038 
78039 PT J
78040 AU Jin, DR
78041    Meng, ZY
78042    Zhou, F
78043 TI Mechanism of resistivity gradient in monolithic PZT ceramics
78044 SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
78045    TECHNOLOGY
78046 DT Article
78047 DE FGM; PZT ceramics; resistivity gradient and piezoelectric actuator
78048 AB The interdiffusion of Fe3+ and La3+ doping ions in the PZT perovskites
78049    was examined. The distribution of doping ions, crystal structures and
78050    microstructures was characterized by using Electron Probe Microbeam
78051    Analysis (EPMA), X-ray diffractormeter (XRD) and Optical Microscope
78052    (OM), respectively. The diffusion behavior of doping ions was
78053    quantitatively investigated by using Fick' second law and qualitatively
78054    examined from the viewpoint of ion transfer. The forming mechanism of
78055    the resistivity and piezoelectric property gradients was investigated.
78056    It was verified that the interdiffusion of La3+ and Fe3+ ions occurs
78057    via vacancy mechanism on the A-site and B-site in the PZT perovskite
78058    structure, respectively. (C) 2002 Elsevier Science B.V. All rights
78059    reserved.
78060 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
78061 RP Meng, ZY, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
78062    China.
78063 CR ADIKARY SU, 2000, J MATER SCI TECHNOL, V16, P1
78064    HEARTLING GH, 1994, AM CERAM SOC B, V73, P93
78065    HOLMAN RL, 1973, J APPL PHYS, V44
78066    JIN D, P IUMRS ICAM 99 BEIJ
78067    NINO M, 1990, ISIJ INT, V30, P699
78068    WU CCM, 1996, J AM CERAM SOC, V79, P809
78069    ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169
78070    ZHU XH, 1998, J MATER SCI, V33, P1023
78071 NR 8
78072 TC 1
78073 SN 0921-5107
78074 J9 MATER SCI ENG B-SOLID STATE M
78075 JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
78076 PD MAY 25
78077 PY 2003
78078 VL 99
78079 IS 1-3
78080 BP 83
78081 EP 87
78082 PG 5
78083 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
78084 GA 700PL
78085 UT ISI:000184120300019
78086 ER
78087 
78088 PT J
78089 AU Yang, QH
78090    Kim, ES
78091    Xu, J
78092    Meng, ZY
78093 TI Effect of La3+ and Nd3+ on the microwave dielectric properties of
78094    (Pb0.5Ca0.5)(Fe0.5Nb0.5)O-3 ceramics
78095 SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
78096    TECHNOLOGY
78097 DT Article
78098 DE [(Pb0.5Ca0.5)(La0.5Nd0.5)](Fe0.5Nb0.5)O3+delta; microwave dielectric
78099    ceramics; A-site substitution
78100 ID FREQUENCIES
78101 AB Microwave dielectric properties of A-site substitution by both La3+ and
78102    Nd3+ in (Pb0.5Ca0.5)(Fe0.5Nb0.5)O-3 system were investigated. Microwave
78103    dielectric properties of A-site charge unbalance substitution of
78104    [(Pb0.5Ca0.5)(1 -) (x) (La0.5Nd0.5)(x)](Fe0.5Nb0.5)O3 + delta (PCLNFN)
78105    were improved because the solid solution of small amount of surplus
78106    (La, Nd)(3+) with (Pb, Ca)(2+) could eliminate oxygen vacancies; the
78107    formation of secondary phase (pyrochlore phase) was also caused by
78108    surplus (La, Nd)(3+). The decreasing of dielectric constant with the
78109    increase of (La, Nd)(3+) content was due to the formation of pyrochlore
78110    phase. Qf values were almost unchanged at x = 0.02-0.08, but the
78111    temperature coefficient of resonant frequency (TCF) was decreased.
78112    Typically, at x = 0.06, the excellent microwave dielectric properties
78113    of Qf = 5822 GHz, epsilon(r) = 99.9 with TCF = 0 ppm/degreesC were
78114    obtained. (C) 2002 Elsevier Science B.V. All rights reserved.
78115 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
78116    Kyonggi Univ, Dept Mat Engn, Suwon 442760, South Korea.
78117    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
78118 RP Yang, QH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
78119    China.
78120 CR KAGATA H, 1993, JPN J APPL PHYS 1, V32, P4332
78121    KATO J, 1991, JPN J APPL PHYS PT 1, V30, P2343
78122    KATO J, 1992, JPN J APPL PHYS 1, V31, P3144
78123    MICHIURA N, 1995, J AM CERAM SOC, V78, P793
78124 NR 4
78125 TC 1
78126 SN 0921-5107
78127 J9 MATER SCI ENG B-SOLID STATE M
78128 JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
78129 PD MAY 25
78130 PY 2003
78131 VL 99
78132 IS 1-3
78133 BP 259
78134 EP 261
78135 PG 3
78136 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
78137 GA 700PL
78138 UT ISI:000184120300060
78139 ER
78140 
78141 PT J
78142 AU Yang, QH
78143    Kim, ES
78144    Xu, J
78145    Meng, ZY
78146 TI Microwave dielectric properties of (Pb,Ca,La)(Fe,Nb)O3+delta ceramics
78147    substituted by Ti for B-site
78148 SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
78149    TECHNOLOGY
78150 DT Article
78151 DE (Pb,Ca,La)(Fe,Nb,Ti)O3+delta; microwave dielectric ceramics; B-site
78152    substitution
78153 ID FREQUENCIES
78154 AB Microwave dielectric properties of B-site substitution by Ti4+ in
78155    [(Pb0.5Ca0.5)(0.95)La-0.05][(Fe0.5Nb0.5)(1 - y) Ti-y]O-3 + delta
78156    (PCLFNT) system were investigated. Qf values and grain sizes of PCLFNT
78157    specimens decreased with the increase of Ti4+ content. Dielectric
78158    constant epsilon(r) increased with the increase of Ti4+ content even
78159    though the ionic polarizability of Te4+ ion (alpha(Ti) = 2.93 Angstrom)
78160    was lower than that of (Fe,Nb)(4+) ions (alpha(B-site) = 3.13
78161    Angstrom). This is due to the increase of rattling of B-site ions by
78162    the smaller Ti4+, substitution. Especially, the microwave dielectric
78163    properties of PCLFNT specimens with epsilon(r) = 116.6, Qf = 4950 GHz
78164    and TCF = + 17.4 ppm/degreesC were obtained at y = 0.10. (C) 2002
78165    Elsevier Science B.V. All rights reserved.
78166 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
78167    Kyonggi Univ, Dept Mat Engn, Suwon 442760, South Korea.
78168    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
78169 RP Yang, QH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
78170    China.
78171 CR 2002, CHINESE J CERAM SOC, V30, P554
78172    KAGATA H, 1993, JPN J APPL PHYS 1, V32, P4332
78173    KATO J, 1991, JPN J APPL PHYS PT 1, V30, P2343
78174    KATO J, 1992, JPN J APPL PHYS 1, V31, P3144
78175    MICHIURA N, 1995, J AM CERAM SOC, V78, P793
78176    SHANNON RD, 1994, J APPL PHYS, V33, P5463
78177 NR 6
78178 TC 1
78179 SN 0921-5107
78180 J9 MATER SCI ENG B-SOLID STATE M
78181 JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
78182 PD MAY 25
78183 PY 2003
78184 VL 99
78185 IS 1-3
78186 BP 332
78187 EP 335
78188 PG 4
78189 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
78190 GA 700PL
78191 UT ISI:000184120300079
78192 ER
78193 
78194 PT J
78195 AU Liang, XF
78196    Wu, WB
78197    Meng, ZY
78198 TI Dielectric and tunable characteristics of barium strontium titanate
78199    modified with Al2O3 addition
78200 SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
78201    TECHNOLOGY
78202 DT Article
78203 DE BST; dielectric properties; tunablity; Al2O3 doping
78204 ID FIELD-DEPENDENCE; FILMS
78205 AB The effect of doping Al2O3 on the Ba0.6Sr0.4TiO3 ceramics was
78206    investigated. A strong correlation was observed between the average
78207    grain size and Al2O3 content. The results indicate that Al3+ behaves as
78208    a grain-growth helper below a certain doping level and at the same time
78209    lowers the dielectric constant. Both the dielectric loss and tunable
78210    properties were modified by the addition of Al2O3. The minimum of the
78211    dissipation factor was achieved at Al2O3 doping level up to 0.8 wt.%.
78212    The maximum tunability is 30.1% at the doping level of 0.4 wt.% Al2O3,
78213    It was explained by a phenomenological equation that was based on
78214    Devonshire's theory by the least square method fitting. (C) 2002
78215    Elsevier Science B.V. All rights reserved.
78216 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
78217 RP Meng, ZY, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
78218    China.
78219 CR BATLLO F, 1990, FERROELECTRICS, V109, P113
78220    COLE MW, 2000, THIN SOLID FILMS, V374, P34
78221    DEVONSHIRE AF, 1949, PHILOS MAG, V40, P1040
78222    DING YP, 2002, MATER CHEM PHYS, V75, P220
78223    HERNER SB, 1993, MATER LETT, V15, P317
78224    JONHSON K, 1961, J APPL PHYS, V33, P2826
78225    LIOU JW, 1997, J AM CERAM SOC, V80, P3093
78226    LIOU JW, 2000, J MATER SCI-MATER EL, V11, P645
78227    OUTZOURHIT A, 1995, MAT RES, V10
78228    WU L, 2000, J AM CERAM SOC, V83, P1713
78229    ZIMMERMANN F, 2001, J EUR CERAM SOC, V21, P2019
78230 NR 11
78231 TC 7
78232 SN 0921-5107
78233 J9 MATER SCI ENG B-SOLID STATE M
78234 JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
78235 PD MAY 25
78236 PY 2003
78237 VL 99
78238 IS 1-3
78239 BP 366
78240 EP 369
78241 PG 4
78242 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
78243 GA 700PL
78244 UT ISI:000184120300088
78245 ER
78246 
78247 PT J
78248 AU Chen, HY
78249    Long, JW
78250    Meng, ZY
78251 TI Effect of Zr/Ti ratio on the properties of PMMN-PZT ceramics near the
78252    morphotropic phase boundary
78253 SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
78254    TECHNOLOGY
78255 DT Article
78256 DE PMMN-PZT; morphotropic phase boundary; piezoelectric properties;
78257    dielectric properties; temperature stability
78258 ID LEAD-ZIRCONATE-TITANATE; X-RAY-DIFFRACTION; SOLID-SOLUTIONS
78259 AB Pb(Mg1/3Nb2/3)O-3 -Pb(Mn1/3Nb2/3)O-3-Pb(ZrxTi1-x)O-3 quaternary
78260    piezoelectric ceramics with varying Zr/Ti ratio, which locate in the
78261    vicinity of the morphotropic phase boundary (MPB), were prepared. The
78262    phase structure, the piezoelectric and dielectric properties of the
78263    system were investigated. X-ray diffraction patterns indicate that the
78264    MPB of the tetragonal and rhombohedral phase lies in the range 0.49 < x
78265    < 0.52. Both the piezoelectric coefficient (d(33))/electromechanical
78266    coupling factor (K-p) and the dielectric constant (epsilon(r)) reach
78267    the maximum values at x = 0.50. The changes of resonant frequency with
78268    increasing Zr/Ti ratio are from a positive to a negative value and
78269    obtained a minimum value at x = 0.50, which reflects the transition
78270    from tetragonal phase to rhombohedral phase. (C) 2002 Elsevier Science
78271    B.V. All rights reserved.
78272 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
78273    Shanghai Jiao Tong Univ, State Key Lab Met Matrix, Shanghai 200030, Peoples R China.
78274 RP Meng, ZY, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
78275    China.
78276 CR ARIGUR P, 1974, SOLID STATE COMMUN, V15, P1077
78277    BOUTARFAIA A, 2000, CERAM INT, V26, P583
78278    CAO WW, 1992, JPN J APPL PHYS PT 1, V31, P1399
78279    CHEN HY, 2002, MATER CHEM PHYS, V75, P136
78280    HAMMER M, 1998, J ELECTROCERAM, V2, P75
78281    KAKEGAWA K, 1977, SOLID STATE COMMUN, V24, P679
78282    MISHRA SK, 1997, PHILOS MAG B, V76, P213
78283    SWARTZ SL, 1983, MAT RES B, V7, P1245
78284    YONEDA A, 1990, NIPPON SERAM KYO GAK, V98, P890
78285 NR 9
78286 TC 5
78287 SN 0921-5107
78288 J9 MATER SCI ENG B-SOLID STATE M
78289 JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
78290 PD MAY 25
78291 PY 2003
78292 VL 99
78293 IS 1-3
78294 BP 433
78295 EP 436
78296 PG 4
78297 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
78298 GA 700PL
78299 UT ISI:000184120300104
78300 ER
78301 
78302 PT J
78303 AU Long, JW
78304    Chen, HY
78305    Meng, ZY
78306 TI Effects of compositions and Nb-doping on microstructure and
78307    piezoelectric properties of PMS-PZ-PT system
78308 SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
78309    TECHNOLOGY
78310 DT Article
78311 DE PMS-PZ-PT; MPB; Nb-doping; piezoelectric properties; USM
78312 ID ELECTRICAL-PROPERTIES; CERAMICS; LA
78313 AB Sr-substituted (2 mol%) xPMS-(1-x)(PZ-PT) compositions were
78314    investigated systematically as a function of PMS concentrations as well
78315    as Niobium (Nb) contents. X-ray diffraction (XRD) patterns show that
78316    phases shift from tetragonal phase to rhombohedral phase with the
78317    increase of PMS concentrations and with the increase of Nb-doping
78318    contents in PMS2. The compositions with x = 0.05 (PMS2) was found to
78319    have superior piezoelectric properties. The properties of the PMS2
78320    compositions were optimized by the Nb-doping contents of 0.1 mol%
78321    (d(33) = 450 pC N-1, K-p = 0.65, Q(m) = 1210). The compositions of PMS2
78322    and 0.1 mol% Nb-doped compositions of PMS2 are practically suitable for
78323    ultrasonic motor (USM) applications. (C) 2002 Elsevier Science B.V. All
78324    rights reserved.
78325 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
78326 RP Meng, ZY, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
78327    China.
78328 CR BARRANCO AP, 2001, J EUR CERAM SOC, V21, P523
78329    GAO YK, 2001, JPN J APPL PHYS 1, V40, P687
78330    GUO X, 2002, KEY ENG MATER, V224, P112
78331    LEBRUN L, 2001, J EUR CERAM SOC, V21, P1357
78332    LEE DL, 1998, IEEE INT C COND BREA, P381
78333    NADOLIISKY MM, 1992, FERROELECTRICS, V129, P141
78334    PEREIRA M, 2001, J EUR CERAM SOC, V21, P1353
78335    PFERNER RA, 1999, MATER CHEM PHYS, V61, P24
78336    RUKMINI HR, 1998, MATER CHEM PHYS, V55, P108
78337    TAKAHASHI S, 1994, J AM CERAM SOC, V77, P2429
78338    YOON SJ, 1998, J AM CERAM SOC, V81, P2473
78339    ZHENG H, 2001, J EUR CERAM SOC, V21, P1371
78340 NR 12
78341 TC 4
78342 SN 0921-5107
78343 J9 MATER SCI ENG B-SOLID STATE M
78344 JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
78345 PD MAY 25
78346 PY 2003
78347 VL 99
78348 IS 1-3
78349 BP 445
78350 EP 448
78351 PG 4
78352 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
78353 GA 700PL
78354 UT ISI:000184120300107
78355 ER
78356 
78357 PT J
78358 AU Gu, F
78359    Shen, Y
78360    Liang, XF
78361 TI Preparation and characteristics of Ba(Mg1/3Ta2/3)O-3 from
78362    nanostructured powder
78363 SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
78364    TECHNOLOGY
78365 DT Article
78366 DE Ba(Mg1/3Ta2/3)O-3; nanostructured powder; microwave dielectric
78367    characteristics
78368 ID CERAMICS
78369 AB Nanostructured MgTa2O6 (BMT) powder was synthesized by co-precipitate
78370    wet chemical routes. The average particle size of the precipitate was
78371    similar to50 nm. The crystallization temperature of BMT nanostructured
78372    powder was similar to200 degreesC, lower than that of the ordinary
78373    mixed-oxide moth. Ceramics of BMT so produced showed fine grains of
78374    about 0.5-1.5 mum and high densities. Increased unloaded Q from 6000 to
78375    8000 at 9.8 GHz and unchanged dielectric constant (about 23-25) were
78376    observed when the samples were annealed in Ar, the possible mechanism
78377    of enhanced characteristics is discussed. (C) 2002 Elsevier Science
78378    B.V. All rights reserved.
78379 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
78380 RP Gu, F, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R
78381    China.
78382 CR ABOTHU IR, 1999, J ELECTROCERAM, V3, P165
78383    EURUIA M, 1982, JPN J APPL PHYS, V21, P624
78384    FURUYA M, 1994, JPN J APPL PHYS 1, V33, P5482
78385    KEGAWA KK, 1986, J CERAM SOC, V69, P82
78386    KIM YK, 2000, J MATER SCI, V35, P4885
78387    ONADA M, 1982, JPN J APPL PHYS, V21, P170
78388    RAO TS, 1990, FERROELECTRICS, V102, P155
78389    RENOULT O, 1992, J AM CERAM SOC, V75, P3337
78390 NR 8
78391 TC 4
78392 SN 0921-5107
78393 J9 MATER SCI ENG B-SOLID STATE M
78394 JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
78395 PD MAY 25
78396 PY 2003
78397 VL 99
78398 IS 1-3
78399 BP 453
78400 EP 456
78401 PG 4
78402 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
78403 GA 700PL
78404 UT ISI:000184120300109
78405 ER
78406 
78407 PT J
78408 AU Zhang, C
78409    Janssen, R
78410    Claussen, N
78411 TI Pressureless sintering of beta-sialon with improved green strength by
78412    using metallic Al powder
78413 SO MATERIALS LETTERS
78414 DT Article
78415 DE pressureless sintering; sialon ceramics; green bodies
78416 ID CERAMICS; PHASE; RBAO
78417 AB The "reaction bonding of aluminum oxide" (RBAO) technology is a novel
78418    process that has been well developed for manufacturing low-cost alumina
78419    or ZTA components. The principle of this technology is using metallic
78420    At as one of the starting components so that the green strength of such
78421    Al/ceramic compact is much higher than that of conventional ceramic
78422    green bodies. This allows easy machining on green bodies to give a
78423    desired shape and dimension instead of the hard work on fired product.
78424    In the present study, this technology was used to prepare beta-sialon
78425    (beta') from starting powders Of Si3N4, AlN and Al. Precursor powder
78426    mixture after attrition milling possessed a much higher green strength
78427    than that without Al additive. Al in the mixture was converted to Al2O3
78428    via an oxidation firing at 900 degreesC for 1 h in air. Dense beta' can
78429    be achieved by pressureless sintering (PLS) in 0.1 MPa nitrogen at 1700
78430    degreesC for 2 h. Even lower temperature sintering at 1650 degreesC
78431    yielded the product with same density but a small amount of O-sialon
78432    (O') phase remained in the composition. Results from this research show
78433    a great potential of fabrication low-cost sialon ceramics through
78434    reaction-sintering process. (C) 2003 Elsevier Science B.V. All rights
78435    reserved.
78436 C1 Tech Univ Hamburg, Adv Ceram Grp, D-21071 Hamburg, Germany.
78437 RP Zhang, C, Shanghai Univ, Dept Elect & Informat Mat, Shanghai, Peoples R
78438    China.
78439 CR CLAUSSEN N, 1990, CERAM ENG SCI P, V11, P806
78440    CLAUSSEN N, 1995, J CERAM SOC JPN, V103, P749
78441    HAMPSHIRE S, 1994, MAT SCI TECHNOLOGY C, V11, P119
78442    HOLZ D, 1994, J AM CERAM SOC, V77, P2509
78443    HOLZ D, 1994, THESIS VDI VERLAG
78444    IZHEVSKIY VA, 2000, J EUR CERAM SOC, V20, P2275
78445    JACK KH, 1976, J MATER SCI, V11, P1135
78446    SCHEPPOKAT S, 1999, J AM CERAM SOC, V82, P319
78447    WU SX, 1993, J AM CERAM SOC, V76, P970
78448 NR 9
78449 TC 0
78450 SN 0167-577X
78451 J9 MATER LETT
78452 JI Mater. Lett.
78453 PD JUL
78454 PY 2003
78455 VL 57
78456 IS 22-23
78457 BP 3352
78458 EP 3356
78459 PG 5
78460 SC Materials Science, Multidisciplinary; Physics, Applied
78461 GA 699HJ
78462 UT ISI:000184050700008
78463 ER
78464 
78465 PT J
78466 AU Huang, QW
78467    Zhu, LH
78468    Wang, PL
78469    Cheng, YB
78470 TI Formation behaviors of Sr0.4Ba0.6Nb2O6 powders synthesized from the
78471    molten salt of KCl
78472 SO JOURNAL OF MATERIALS SCIENCE LETTERS
78473 DT Article
78474 ID STRONTIUM BARIUM NIOBATE; FABRICATION; CERAMICS
78475 C1 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
78476    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
78477    Monash Univ, Sch Phys & Mat Engn, Clayton, Vic 3800, Australia.
78478 RP Huang, QW, Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High
78479    Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
78480 CR DURAN C, 2000, J AM CERAM SOC, V83, P2203
78481    FANG TT, 1994, J MATER SCI LETT, V13, P1746
78482    HUANG QW, 2002, MATER LETT, V56, P915
78483    JAMIESON PB, 1968, J CHEM PHYS, V48, P5048
78484    JOHANSSON KE, 1980, J PHYS E, V13, P1289
78485    LEE WJ, 1998, J AM CERAM SOC, V81, P1019
78486    NEURGAONKAR RR, 1993, FERROELECTRICS, V142, P167
78487    VANDAMME NS, 1991, J AM CERAM SOC, V74, P1785
78488    WERNER PE, 1969, ARK KEMI, V31, P513
78489    YOON KH, 1998, J MATER SCI, V33, P2922
78490 NR 10
78491 TC 0
78492 SN 0261-8028
78493 J9 J MATER SCI LETT
78494 JI J. Mater. Sci. Lett.
78495 PD JUL 1
78496 PY 2003
78497 VL 22
78498 IS 13
78499 BP 949
78500 EP 951
78501 PG 3
78502 SC Materials Science, Multidisciplinary
78503 GA 698JA
78504 UT ISI:000183994200009
78505 ER
78506 
78507 PT J
78508 AU Jin, DR
78509    Meng, ZY
78510 TI Functionally graded PZT/ZnO piezoelectric composites
78511 SO JOURNAL OF MATERIALS SCIENCE LETTERS
78512 DT Article
78513 ID ACTUATOR
78514 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
78515    Shanghai Jiao Tong Univ, Inst Composite Mat, Shanghai 200030, Peoples R China.
78516 RP Meng, ZY, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
78517    China.
78518 CR ADIKARY SU, 2000, J MATER SCI TECHNOL, V16, P383
78519    HAN JP, 2001, J MATER RES, V16, P459
78520    JIN DR, 2002, IN PRESS P INT JOINT
78521    KAWAI T, 1990, NIPPON SERAM KYO GAK, V98, P900
78522    LI XP, 2001, J AM CERAM SOC, V84, P996
78523    NINO M, 1990, ISIJ INT, V30, P699
78524    TAKAGI K, 2002, SCI TECHNOLOGY ADV M, V3, P217
78525    WU CCM, 1996, J AM CERAM SOC, V79, P809
78526    ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169
78527 NR 9
78528 TC 3
78529 SN 0261-8028
78530 J9 J MATER SCI LETT
78531 JI J. Mater. Sci. Lett.
78532 PD JUL 1
78533 PY 2003
78534 VL 22
78535 IS 13
78536 BP 971
78537 EP 974
78538 PG 4
78539 SC Materials Science, Multidisciplinary
78540 GA 698JA
78541 UT ISI:000183994200015
78542 ER
78543 
78544 PT J
78545 AU Ma, H
78546    Kamiya, N
78547 TI Nearly singular approximations of CPV integrals with end- and
78548    corner-singularities for the numerical solution of hypersingular
78549    boundary integral equations
78550 SO ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS
78551 DT Article
78552 DE boundary element method; hypersingular boundary integral equation;
78553    end-singularity; corner-singularity; nearly singular approximation;
78554    distance transformation; numerical evaluation
78555 ID PRINCIPAL VALUE INTEGRALS; ELEMENT METHOD; ELASTICITY; TRANSFORMATION;
78556    KERNELS; IDENTITIES; BEM
78557 AB A local numerical approach to cope with the singular and hypersingular
78558    boundary integral equations (BIEs) in non-regularized forms is
78559    presented in the paper for 2D elastostatics. The approach is based on
78560    the fact that the singular boundary integrals can be represented
78561    approximately by the mean values of two nearly singular boundary
78562    integrals and on the techniques of distance transformations developed
78563    primarily in previous work of the authors. The nearly singular
78564    approximations in the present work, including the normal and the
78565    tangential distance transformations, are designed for the numerical
78566    evaluation of boundary integrals with end-singularities at junctures
78567    between two elements, especially at corner points where sufficient
78568    continuity requirements are met. The approach is very general, which
78569    makes it possible to solve the hypersingular BIE numerically in a
78570    non-regularized form by using conforming C-0 quadratic boundary
78571    elements and standard Gaussian quadratures without paying special
78572    attention to the corner treatment.
78573    With the proposed approach, an infinite tension plate with an
78574    elliptical hole and a pressurized thick cylinder were analyzed by using
78575    both the formulations of conventional displacement and traction
78576    boundary element methods, showing encouragingly the efficiency and the
78577    reliability of the proposed approach. The behaviors of boundary
78578    integrals with end- and corner-singular kernels were observed and
78579    compared by the additional numerical tests. It is considered that the
78580    weakly singularities remain but should have been cancelled with each
78581    other if used in pairs by the corresponding terms in the neighboring
78582    elements, where the corner information is included naturally in the
78583    approximations. (C) 2003 Elsevier Science Ltd. All rights reserved.
78584 C1 Shanghai Univ, Sch Sci, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200436, Peoples R China.
78585    Nagoya Univ, Sch Informat & Sci, Nagoya, Aichi 4648601, Japan.
78586 RP Ma, H, Shanghai Univ, Sch Sci, Shanghai Inst Appl Math & Mech, Dept
78587    Mech, Shanghai 200436, Peoples R China.
78588 CR ALIABADI MH, 1985, INT J NUMER METH ENG, V21, P2221
78589    ALIABADI MH, 2000, INT J NUMER METH ENG, V48, P995
78590    BREBBIA CA, 1984, BOUNDARY ELEMENT TEC
78591    CERROLAZA M, 1989, INT J NUMER METH ENG, V28, P987
78592    CHEN HB, 2001, ENG ANAL BOUND ELEM, V25, P851
78593    CRUSE TA, 1993, INT J NUMER METH ENG, V36, P237
78594    CRUSE TA, 1996, INT J NUMER METH ENG, V39, P3273
78595    DOBLARE M, 1997, INT J NUMER METH ENG, V40, P3325
78596    GRANADOS JJ, 2001, ENG ANAL BOUND ELEM, V25, P165
78597    GUIGGIANI M, 1987, INT J NUMER METH ENG, V24, P1711
78598    GUIGGIANI M, 1990, ASME, V57, P906
78599    GUIGGIANI M, 1992, ASME, V59, P604
78600    HUANG Q, 1994, INT J NUMER METH ENG, V37, P2041
78601    HUI CY, 1999, INT J NUMER METH ENG, V44, P205
78602    JOHNSTON PR, 1997, INT J NUMER METH ENG, V40, P2087
78603    JOHNSTON PR, 1999, INT J NUMER METH ENG, V45, P1333
78604    KARAMI G, 1999, ENG ANAL BOUND ELEM, V23, P317
78605    KRISHNASAMY G, 1990, J APPL MECH-T ASME, V57, P404
78606    LEAN MH, 1985, INT J NUMER METH ENG, V21, P211
78607    LIU YJ, 1999, COMPUT MECH, V24, P286
78608    LIU YJ, 2000, ENG ANAL BOUND ELEM, V24, P789
78609    MA H, 1999, ENG ANAL BOUND ELEM, V23, P281
78610    MA H, 2001, ENG ANAL BOUNDARY EL, V25, P843
78611    MA H, 2002, COMPUT MECH, V29, P277
78612    MA H, 2002, ENG ANAL BOUND ELEM, V26, P329
78613    MARTIN PA, 1996, INT J NUMER METH ENG, V39, P687
78614    MATSUMOTO T, 1993, INT J NUMER METH ENG, V36, P783
78615    MUKHERJEE S, 2000, ENG ANAL BOUND ELEM, V24, P767
78616    MUKHERJEE S, 2000, INT J SOLIDS STRUCT, V37, P6623
78617    MUKHERJEE S, 2000, INT J SOLIDS STRUCT, V37, P7633
78618    RICHARDSON JD, 1999, INT J NUMER METH ENG, V45, P13
78619    TELLES JCF, 1987, INT J NUMER METH ENG, V24, P959
78620 NR 32
78621 TC 2
78622 SN 0955-7997
78623 J9 ENG ANAL BOUND ELEM
78624 JI Eng. Anal. Bound. Elem.
78625 PD JUN
78626 PY 2003
78627 VL 27
78628 IS 6
78629 BP 625
78630 EP 637
78631 PG 13
78632 SC Engineering, Multidisciplinary; Mathematics, Applied
78633 GA 699JH
78634 UT ISI:000184052900008
78635 ER
78636 
78637 PT J
78638 AU Xu, GQ
78639    Li, ZB
78640 TI A maple package for the Painleve test of nonlinear partial differential
78641    equations
78642 SO CHINESE PHYSICS LETTERS
78643 DT Article
78644 ID EVOLUTION-EQUATIONS; INTEGRABLE MODEL; REDUCTIONS; SYMMETRIES; SYSTEMS
78645 AB A Maple package, named PLtest, is presented to study whether or not
78646    nonlinear partial differential equations (PDEs) pass the Painleve test.
78647    This package is based on the so-called WTC-Kruskal algorithm, which
78648    combines the standard WTC algorithm and the Kruskal simplification
78649    algorithm. Therefore, we not only study whether the given PDEs pass the
78650    test or not, but also obtain its truncated expansion form related to
78651    some integrability properties. Several well-known nonlinear models with
78652    physical interests illustrate the effectiveness of this package.
78653 C1 E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China.
78654    Shanghai Univ, Dept Informat Adm, Shanghai 200436, Peoples R China.
78655 RP Xu, GQ, E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R
78656    China.
78657 CR ABLOWITZ MJ, 1978, LETT NUOVO CIMENTO, V23, P333
78658    ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
78659    ALAGESAN T, 1986, CHAOS SOLITON FRACT, V8, P893
78660    CONTE R, 1989, PHYS LETT A, V140, P383
78661    DORIZZI B, 1986, J MATH PHYS, V27, P2848
78662    FAN EG, 2002, PHYS LETT A, V292, P335
78663    FLASCHKA H, 1991, INTEGRABILITY WHAT I, P73
78664    HEREMAN W, 1989, MACSYMA NEWSLETTER, V6, P11
78665    HEREMAN W, 1998, COMPUT PHYS COMMUN, V115, P428
78666    HLAVATY L, 1986, COMPUT PHYS COMMUN, V42, P427
78667    HU XB, 1999, PHYS LETT A, V262, P409
78668    JIMBO M, 1982, PHYS LETT A, V92, P59
78669    LI HM, 2002, CHINESE PHYS LETT, V19, P745
78670    LOU SY, 1997, COMMUN THEOR PHYS, V28, P129
78671    LOU SY, 1998, Z NATURFORSCH A, V53, P251
78672    LOU SY, 1999, PHYS LETT A, V262, P344
78673    LOU SY, 2002, J MATH PHYS, V43, P4078
78674    PARKES EJ, 1996, COMPUT PHYS COMMUN, V98, P288
78675    SENATORSKI A, 1996, PHYS REV LETT, V77, P2855
78676    TAM HT, 1999, J PHYS SOC JPN, V68, P369
78677    TANG XY, 2002, CHINESE PHYS LETT, V19, P1225
78678    WEISS J, 1983, J MATH PHYS, V24, P522
78679    ZHANG SL, 2002, CHINESE PHYS LETT, V19, P1741
78680    ZHANG SL, 2002, PHYS LETT A, V300, P40
78681    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
78682    ZHU SM, 1997, MODERN MATH MECH, V2, P482
78683 NR 26
78684 TC 3
78685 SN 0256-307X
78686 J9 CHIN PHYS LETT
78687 JI Chin. Phys. Lett.
78688 PD JUL
78689 PY 2003
78690 VL 20
78691 IS 7
78692 BP 975
78693 EP 978
78694 PG 4
78695 SC Physics, Multidisciplinary
78696 GA 699ZM
78697 UT ISI:000184088000001
78698 ER
78699 
78700 PT J
78701 AU Zhang, JF
78702    Meng, JP
78703 TI New coherent structures in the generalized (2+1)-imensional
78704    Nizhnik-Novikov-Veselov system
78705 SO CHINESE PHYSICS LETTERS
78706 DT Article
78707 ID CAMASSA-HOLM EQUATION; TRANSFORM; SOLITONS; WAVES
78708 AB In high dimensions there are abundant coherent soliton excitations.
78709    From the known variable separation solutions for the generalized
78710    (2+1)-dimensional Nizhnik-Novikov-Veselov system, two kinds of new
78711    coherent structures in this system are obtained. Some interesting novel
78712    features of these structures are revealed.
78713 C1 Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
78714    Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England.
78715    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
78716 RP Zhang, JF, Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004,
78717    Peoples R China.
78718 CR BOITI M, 1986, INVERSE PROBL, V2, P271
78719    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
78720    CHERTOCK A, 2001, J COMPUT PHYS, V171, P708
78721    COOPER F, 2001, PHYS RE E, V64
78722    HU XB, 1991, J PHYS A, V24, P1331
78723    HU XB, 1991, J PHYS A-MATH GEN, V24, P1979
78724    KRAENKEL RA, 2000, PHYS LETT A, V273, P183
78725    LOU SY, 2000, CHINESE PHYS LETT, V17, P781
78726    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
78727    NIZHNIK LP, 1980, SOV PHYS DOKL, V25, P706
78728    NOVIKOV SP, 1986, PHYSICA D, V18, P267
78729    OHTA Y, 1992, J PHYS SOC JPN, V61, P3928
78730    QIAN TF, 2001, CHAOS SOLITON FRACT, V12, P1347
78731    RADHA R, 1994, J MATH PHYS, V35, P4746
78732    ROSENAU P, 1993, PHYS REV LETT, V70, P564
78733    TAGAMI Y, 1989, PHYS LETT A, V141, P116
78734    TANG XY, 2002, PHYS REV E, V66, P46601
78735    ZHANG JF, 2002, CHINESE PHYS, V11, P651
78736    ZHANG JF, 2002, COMMUN THEOR PHYS, V38, P395
78737    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
78738 NR 20
78739 TC 11
78740 SN 0256-307X
78741 J9 CHIN PHYS LETT
78742 JI Chin. Phys. Lett.
78743 PD JUL
78744 PY 2003
78745 VL 20
78746 IS 7
78747 BP 1006
78748 EP 1008
78749 PG 3
78750 SC Physics, Multidisciplinary
78751 GA 699ZM
78752 UT ISI:000184088000010
78753 ER
78754 
78755 PT J
78756 AU Fu, JL
78757    Chen, LQ
78758    Bai, JH
78759    Yang, XD
78760 TI Lie symmetries and conserved quantities of controllable nonholonomic
78761    dynamical systems
78762 SO CHINESE PHYSICS
78763 DT Article
78764 DE control; nonholonomic dynamical systems; Lie symmetry; conserved law
78765 AB This paper concentrates on studying the Lie symmetries and conserved
78766    quantities of controllable nonholonomic dynamical systems. Based on the
78767    infinitesimal transformation, we establish the Lie symmetric
78768    determining equations and restrictive equations and give three
78769    definitions of Lie symmetries before the structure equations and
78770    conserved quantities of the Lie symmetries are obtained. Then we make a
78771    study of the inverse problems. Finally, an example is presented for
78772    illustrating the results.
78773 C1 Shangqiu Teachers Coll, Inst Math Mech & Math Phys, Shangqiu 476000, Peoples R China.
78774    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
78775    Kaifeng Univ, Dept Math, Kaifeng 475000, Peoples R China.
78776 RP Fu, JL, Shangqiu Teachers Coll, Inst Math Mech & Math Phys, Shangqiu
78777    476000, Peoples R China.
78778 CR FU JL, 2000, ACTA MATH PHYS SIN, V20, P63
78779    FU JL, 2000, ACTA PHYS SIN-CH ED, V49, P1023
78780    FU JL, 2000, APPL MATH MECH-ENGL, V21, P549
78781    FU JL, 2001, ACTA MECH SOL SIN, V22, P263
78782    GE WK, 2002, ACTA PHYS SIN-CH ED, V51, P939
78783    LI YC, 2001, CHINESE PHYS, V10, P376
78784    LI ZP, 1981, ACTA PHYS SINICA, V30, P1659
78785    LI ZP, 1993, CLASSICAL QUANTUM CO
78786    LIU D, 1989, ACTA MECH SINICA, V21, P75
78787    LIU D, 1990, SCI CHINA SER A, V20, P1189
78788    LUTZKY M, 1979, J PHYS A, V12, P973
78789    MEI FX, 1985, MECH FDN NONHOLONOMI
78790    MEI FX, 1991, ADV ANAL MECH
78791    MEI FX, 1993, SCI CHINA SER A, V23, P709
78792    MEI FX, 1998, ACTA MECH SINICA, V30, P468
78793    MEI FX, 1999, APPL LIE GROUPS LIE
78794    MEI FX, 2000, ACTA PHYS SIN-CH ED, V49, P1207
78795    MEI FX, 2000, ACTA PHYS SIN-CH ED, V49, P1901
78796    NOETHER E, 1918, NACHR GES WISS GOTT, V2, P235
78797    OGATE K, 1998, MODERN CONTROL ENG
78798    QIAO YF, 2001, ACTA PHYS SIN-CH ED, V50, P811
78799    YOU CD, 1996, MODERN CONTROL THEOR
78800    ZHANG JF, 1991, CHIN SIN B, V33, P1756
78801    ZHANG RC, 2000, CHINESE PHYS, V9, P801
78802    ZHANG Y, 2000, CHINESE PHYS, V9, P401
78803    ZHAO YY, 1993, ADV MECH, V23, P360
78804    ZHAO YY, 1994, ACTA MECH SINICA, V26, P380
78805 NR 27
78806 TC 18
78807 SN 1009-1963
78808 J9 CHIN PHYS
78809 JI Chin. Phys.
78810 PD JUL
78811 PY 2003
78812 VL 12
78813 IS 7
78814 BP 695
78815 EP 699
78816 PG 5
78817 SC Physics, Multidisciplinary
78818 GA 699HE
78819 UT ISI:000184050300001
78820 ER
78821 
78822 PT J
78823 AU Guo, YF
78824    Jiang, GC
78825    You, JL
78826    Hou, HY
78827    Chen, H
78828    Wu, YQ
78829 TI Raman spectroscopic study and ab initio calculation of the
78830    micro-structure of several Na2O-P2O5 binary crystals
78831 SO CHINESE JOURNAL OF INORGANIC CHEMISTRY
78832 DT Article
78833 DE Raman spectra; sodium phosphate; ab initio calculation
78834 ID MOLECULAR-ORBITAL CALCULATIONS; PHOSPHATE-GLASSES;
78835    ELECTRONIC-STRUCTURE; LITHIUM
78836 AB Raman spectra of several (1 - x) Na2O . xP(2)O(5) (x = 0.25, 0.33,
78837    0.50, 1.0) crystals were determined. Raman vibrational modes were
78838    assigned and also calculated by ab initio calculation method with
78839    Gaussian 98W software. Results show that calculation results agree well
78840    with those of experiment and phosphor-us-oxygen tetrahedrons are the
78841    micro-structure units of those crystals along with different number of
78842    bridging oxygen connected to each centre phosphor-us atom. The number
78843    of bridging oxygen are 0, 1, 2 and 3 for Na3PO4, Na4P2O7, NaPO3 and
78844    P2O5 crystals, respectively. The frequencies of stretching vibrational
78845    modes dependent on the number of bridging oxygen and increase with the
78846    P2O5 content in crystal. Difference between the computational and
78847    experimental spectra is also discussed.
78848 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
78849 RP Jiang, GC, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
78850    200072, Peoples R China.
78851 CR CHEN NY, 1987, COMPUTATIONAL CHEM A
78852    FRISCH MJ, 1998, GAUSSIAN 98W
78853    GLEENER FL, 1979, SOLIDS STATE COMMUNI, V30, P505
78854    HEERMANN DW, 1986, COMPUTER SIMULATION
78855    HUDGENS JJ, 1998, J NON-CRYST SOLIDS, V223, P21
78856    JAY JL, 2000, J NONCRYST SOLIDS, P263
78857    JIANG GC, 2000, SPECTROSC SPECT ANAL, V20, P206
78858    LEACH AR, 1996, MOL MODELING PRINCIP
78859    RICHARD KB, 2000, J NONCRYST SOLIDS, V263, P1
78860    SATOSHI H, 2000, J NONCRYST SOLIDS, P263
78861    TATSUMISAGO M, 1988, PHYS CHEM GLASSES, V29, P63
78862    UCHINO T, 1995, J NON-CRYST SOLIDS, V181, P175
78863    UCHINO T, 1995, J NON-CRYST SOLIDS, V191, P56
78864    UCHINO T, 2000, J NONCRYST SOLIDS, V263, P18
78865    YOU JL, 1999, GUANGXUE YIQI, V21, P21
78866    YOU JL, 2001, J NON-CRYST SOLIDS, V282, P125
78867 NR 16
78868 TC 0
78869 SN 1001-4861
78870 J9 CHIN J INORG CHEM
78871 JI Chin. J. Inorg. Chem.
78872 PD JUL
78873 PY 2003
78874 VL 19
78875 IS 7
78876 BP 717
78877 EP 721
78878 PG 5
78879 SC Chemistry, Inorganic & Nuclear
78880 GA 698JT
78881 UT ISI:000183996100008
78882 ER
78883 
78884 PT J
78885 AU Chen, BX
78886    Lu, HL
78887    Zhao, DX
78888    Yuan, YF
78889    Iso, M
78890 TI Optimized design of polarization-independent and
78891    temperature-insensitive broadband optical waveguide coupler by use of
78892    fluorinated polyimide
78893 SO APPLIED OPTICS
78894 DT Article
78895 ID MU-M; WAVELENGTH
78896 AB A statistically optimized design method suitable for a
78897    polarization-independent and temperature-insensitive broadband
78898    waveguide coupler is proposed. By use of this method, a fluorinated
78899    polyimide waveguide 3-dB waveguide coupler for 1490 similar to 1610 run
78900    application is designed by optimizing polarization and temperature
78901    fluctuation. The validity of the design is verified through simulation
78902    based on the three-dimensional beam propagation method (3D-BPM), which
78903    revealed a coupling ratio of 50 +/- 0.8% in a 120-nm bandwidth in the
78904    temperature range -10 to 40 degreesC for both orthogonal polarizations.
78905    (C) 2003 Optical Society of America.
78906 C1 Shanghai Univ Sci & Technol, Coll Opt & Elect Informat Engn, Shanghai 200093, Peoples R China.
78907    Tokyo Univ Agr & Technol, Dept Chem Engn, Tokyo 1848588, Japan.
78908    Nitta Shanghai Co, Shanghai 200233, Peoples R China.
78909 RP Chen, BX, Shanghai Univ Sci & Technol, Coll Opt & Elect Informat Engn,
78910    Shanghai 200093, Peoples R China.
78911 CR BOOTH BL, 1989, J LIGHTWAVE TECHNOL, V7, P1445
78912    CHEN BX, 2001, ACTA OPT SINICA, V21, P996
78913    HARTMAN DH, 1989, APPL OPTICS, V28, P40
78914    HO KC, 2002, IEEE J LIGHTWAVE TEC, V20, P1018
78915    IMAMURA S, 1991, ELECTRON LETT, V27, P1342
78916    KAINO T, 1981, APPL OPTICS, V20, P2886
78917    KANG JW, 2001, J LIGHTWAVE TECHNOL, V19, P872
78918    KEIL N, 1989, ELECTRON LETT, V30, P1445
78919    KOBAYASHI J, 1998, J LIGHTWAVE TECHNOL, V16, P1024
78920    KOKUBUN Y, 1996, ELECTRON LETT, V32, P1998
78921    KUROKAWA T, 1980, APPL OPTICS, V19, P3124
78922    MATSUURA T, 1999, APPL OPTICS, V38, P966
78923    NISHIHARA H, 1993, OPTICAL INTEGRATED C
78924    NOSE T, 1997, DAIGAKUIN KOUBUNSHIK
78925    REUTER R, 1988, APPL OPTICS, V27, P4565
78926    TAKAGI A, 1992, IEEE J LIGHTWAVE TEC, V10, P1815
78927    TAKAGI A, 1992, IEEE J QUANTUM ELECT, V28, P848
78928    TAKAHASHI H, 1995, J LIGHTWAVE TECHNOL, V13, P447
78929    TAKATO N, 1994, NTT R D, V43, P1281
78930 NR 19
78931 TC 0
78932 SN 0003-6935
78933 J9 APPL OPT
78934 JI Appl. Optics
78935 PD JUL 10
78936 PY 2003
78937 VL 42
78938 IS 20
78939 BP 4196
78940 EP 4201
78941 PG 6
78942 SC Optics
78943 GA 698YW
78944 UT ISI:000184029000007
78945 ER
78946 
78947 PT J
78948 AU Chen, BX
78949    Jia, HB
78950    Zhou, JZ
78951    Zhao, DX
78952    Lu, HL
78953    Yuan, YF
78954    Iso, M
78955 TI Optimized design of fluorinated polyimide based interleaver
78956 SO APPLIED OPTICS
78957 DT Article
78958 ID OPTICAL WAVE-GUIDES; FILTER; MULTIPLEXER
78959 AB Statistical optimization method for the design of a fluorinated
78960    polyimide wavelength division element for optical communications is
78961    proposed. The optimized device is an interleaver element suitable for
78962    dividing over 40 wavelengths in the 1550 run band. Optimization
78963    considers the inherent polarization dependence of fluorinated polyimide
78964    based on measurements of the dispersion characteristics and
78965    birefringence of fluorinated polyimide film. A 40-wavelength device is
78966    designed by use of the proposed technique for a working wavelength of
78967    1550 nm and a wavelength interval of 0.8 nm. The device exhibited a
78968    1-dB passband of 0.5 nm and a 3-dB passband of 0.8 nm, and output
78969    wavelength fluctuation due to polarization effects of less than 0.08
78970    rim. (C) 2003 Optical Society of America.
78971 C1 Shanghai Univ Sci & Technol, Coll Opt & Elect Informat Engn, Shanghai 200093, Peoples R China.
78972    Nitta Shanghai Co Ltd, Shanghai 200233, Peoples R China.
78973    Tokyo Univ Agr & Technol, Dept Chem Engn, Tokyo 1848588, Japan.
78974 RP Chen, BX, Shanghai Univ Sci & Technol, Coll Opt & Elect Informat Engn,
78975    Shanghai 200093, Peoples R China.
78976 CR BOOTH BL, 1989, J LIGHTWAVE TECHNOL, V7, P1445
78977    CHEN BX, 2003, APPL OPTICS, V42, P271
78978    CHIBA T, 2001, OFC 2001 AN CAL
78979    CHON J, 2001, TECHN P NAT FIB OPT, P1410
78980    HARTMAN DH, 1989, APPL OPTICS, V28, P40
78981    JINGUJI K, 2000, J LIGHTWAVE TECHNOL, V18, P252
78982    KANG JW, 2001, J LIGHTWAVE TECHNOL, V19, P872
78983    KEIL N, 1989, ELECTRON LETT, V30, P1445
78984    KOBAYASHI J, 1998, J LIGHTWAVE TECHNOL, V16, P1024
78985    KUROKAWA T, 1980, APPL OPTICS, V19, P3124
78986    MATSUURA T, 1999, APPL OPTICS, V38, P966
78987    MIZUNO T, 2002, ELECTRON LETT, V38, P1121
78988    NISHIHARA H, 1993, OPTICAL INTEGRATED C
78989    OGUMA M, 2000, ELECTRON LETT, V36, P1299
78990    OGUMA M, 2001, OFC 2001 AN CAL
78991    REUTER R, 1988, APPL OPTICS, V27, P4565
78992    TAKADA K, 2001, IEEE PHOTONIC TECH L, V13, P577
78993    TAKAHASHI H, 1995, J LIGHTWAVE TECHNOL, V13, P447
78994    TAKAHASHI H, 1998, NTT REVIEW, V10, P30
78995    WATANABE T, 1997, ELECTRON LETT, V33, P1547
78996 NR 20
78997 TC 2
78998 SN 0003-6935
78999 J9 APPL OPT
79000 JI Appl. Optics
79001 PD JUL 10
79002 PY 2003
79003 VL 42
79004 IS 20
79005 BP 4202
79006 EP 4207
79007 PG 6
79008 SC Optics
79009 GA 698YW
79010 UT ISI:000184029000008
79011 ER
79012 
79013 PT J
79014 AU He, JH
79015 TI A variational approach to the Burridge-Knopoff equation
79016 SO APPLIED MATHEMATICS AND COMPUTATION
79017 DT Article
79018 DE Burridge-Knopoff model; earthquake; variational principle
79019 ID MODEL
79020 AB A variational principle is obtained for the Burridge-Knopoff model for
79021    earthquake faults, and this paper considers an analytic approach that
79022    does not require linearization or perturbation. (C) 2002 Elsevier
79023    Science Inc. All rights reserved.
79024 C1 Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R China.
79025    Shanghai Donghua Univ, Coll Sci, Shanghai 200051, Peoples R China.
79026    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
79027 RP He, JH, Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R
79028    China.
79029 CR ADOMIAN G, 1996, APPL MATH COMPUT, V77, P131
79030    AKISHIN PG, 2000, CHAOS SOLITON FRACT, V11, P207
79031    HAHNER P, 1998, PHYSICA A, V260, P391
79032    HE JH, 1997, INT J TURBO JET ENG, V14, P23
79033    HE JH, 2001, INT J NONLINEAR SCI, V2, P309
79034    LIU GL, 2000, INT J NONLINEAR SCI, V1, P25
79035 NR 6
79036 TC 0
79037 SN 0096-3003
79038 J9 APPL MATH COMPUT
79039 JI Appl. Math. Comput.
79040 PD NOV 20
79041 PY 2003
79042 VL 144
79043 IS 1
79044 BP 1
79045 EP 2
79046 PG 2
79047 SC Mathematics, Applied
79048 GA 700GV
79049 UT ISI:000184105000001
79050 ER
79051 
79052 PT J
79053 AU Liu, XJ
79054    Qiu, HL
79055    Wang, AH
79056    Yin, ST
79057    You, JL
79058    Jiang, GC
79059 TI Raman spectra study of tellurium dioxide (TeO2) crystal
79060 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
79061 DT Article
79062 DE laser micro-Raman spectrum; real time meassurement; solid/melt growth
79063    boundary layers; tellurium dioxide (TeO2)
79064 ID PARATELLURITE TEO2
79065 AB The room temperature and high temperature Raman spectra of solid/melt
79066    growth boundary layers of TeO2 grown from melt were measured by
79067    high-temperature laser-micro-Raman spectrum. By analyzing, vibrational
79068    modes of the room temperature Raman spectra peaks of TeO2 crystal from
79069    band 200-800 cm(-1) were confimed, the expansion and frequency shift of
79070    each peak of the high temperature Raman spectra were interpreted and
79071    the possible structure group of the melt was proposed. So, certain
79072    foundation for studying the growth theory of functional crystal
79073    materials was provided.
79074 C1 Acad Sinica, Anhui Inst Opt & Fine Mech, Hefei 230031, Peoples R China.
79075    Shanghai Univ, Shanghai City Key Lab Ferromet, Shanghai 200072, Peoples R China.
79076 RP Liu, XJ, Acad Sinica, Anhui Inst Opt & Fine Mech, Hefei 230031, Peoples
79077    R China.
79078 CR AYRAULT B, 1972, SOLID STATE COMMUN, V11, P639
79079    MIYAZAWA S, 1970, JPN J APPL PHYS, V9, P441
79080    PINE AS, 1972, PHYS REV B, V5, P4087
79081    RALGH WG, 1961, CRYST STRUCT, V1, P255
79082    UCHIDE N, 1970, PHYSICAL REV B, V4, P3738
79083    YOU JL, 1998, J CHINESE RARE EARTH, V16, P505
79084    YU XL, 2001, SCI CHINA SER E, V44, P265
79085    ZENG Z, 1981, KUEI SUAN YEN HSUEH, V9, P228
79086 NR 8
79087 TC 1
79088 SN 1000-0593
79089 J9 SPECTROSC SPECTR ANAL
79090 JI Spectrosc. Spectr. Anal.
79091 PD JUN
79092 PY 2003
79093 VL 23
79094 IS 3
79095 BP 484
79096 EP 486
79097 PG 3
79098 SC Spectroscopy
79099 GA 696ZD
79100 UT ISI:000183917000018
79101 ER
79102 
79103 PT J
79104 AU Liu, JK
79105    Liu, CY
79106 TI Several reasons for atomic spectral line broadening
79107 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
79108 DT Article
79109 DE spectroscopy; natural broadening; Doppler broadening; collision
79110    broadening
79111 AB Several reasons for atomic spectral line broadening in terms of theory
79112    are given, that's: natural broadening; Doppler broadening; collision
79113    broadening, respectively. Some estimated data based on these reasons
79114    are provided, which may be of significance for atomic spectral
79115    measurements, and the data are in agreement with experiments.
79116 C1 Shanghai Univ Sci & Technol, Fac Sci, Xianyang 712081, Peoples R China.
79117    Xian Tech Inst Garden, Xian 710061, Peoples R China.
79118 RP Liu, JK, Shanghai Univ Sci & Technol, Fac Sci, Xianyang 712081, Peoples
79119    R China.
79120 CR BUDDE W, 1983, OPTICAL RAD MEASUREM, V4
79121    WICHMANN EH, 1971, BERKELEY PHYSICS COU, V4
79122 NR 2
79123 TC 0
79124 SN 1000-0593
79125 J9 SPECTROSC SPECTR ANAL
79126 JI Spectrosc. Spectr. Anal.
79127 PD JUN
79128 PY 2003
79129 VL 23
79130 IS 3
79131 BP 605
79132 EP 606
79133 PG 2
79134 SC Spectroscopy
79135 GA 696ZD
79136 UT ISI:000183917000053
79137 ER
79138 
79139 PT J
79140 AU Leng, GS
79141 TI The minimum number of acute dihedral angles of a simplex
79142 SO PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
79143 DT Article
79144 DE simplex; dihedral angle; dual basis
79145 AB For any n-dimensional simplex Omega subset of R-n, we confirm a
79146    conjecture of Klamkin and Pook (1988) that there are always at least n
79147    acute dihedral angles in Omega.
79148 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
79149 RP Leng, GS, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
79150 CR KLAMKIN MS, 1988, MATH MAG, V61, P320
79151    SCHNEIDER R, 1993, CONVEX BODIES BRUNNM
79152    YANG L, 1983, ACTA MATH SINICA, V26, P250
79153 NR 3
79154 TC 0
79155 SN 0002-9939
79156 J9 PROC AMER MATH SOC
79157 JI Proc. Amer. Math. Soc.
79158 PY 2003
79159 VL 131
79160 IS 10
79161 BP 3039
79162 EP 3042
79163 PG 4
79164 SC Mathematics, Applied; Mathematics
79165 GA 695BJ
79166 UT ISI:000183811000010
79167 ER
79168 
79169 PT J
79170 AU Hong, L
79171    Shi, LY
79172    Tang, XZ
79173 TI Conductivities and spectroscopic studies of polymer electrolytes based
79174    on linear polyurethane and hybrid and copolymer of linear and
79175    hyperbranched polyurethanes
79176 SO MACROMOLECULES
79177 DT Article
79178 ID ION SOLVENT INTERACTIONS; NMR; LICLO4; ACETONE; GLYCOL); RAMAN
79179 AB Three polyurethane electrolytes, linear polyurethane (LPU),hybrid of
79180    linear and hyper-branched polyurethane (MHPU), and low cross-linked
79181    copolymer of linear and hyperbranched polyurethane (CHPU) complex with
79182    LiClO4, were studied using conductivity, FTIR, Raman, and C-13, H-1,
79183    and Li-7 solid-state NMR measurements. The best conductivity value
79184    measured at 25 degreesC was 2.7 x 10(-7) s cm(-1) at about a EO/Li
79185    ratio of 8 for the LPU electrolytes. At a higher salt concentration
79186    (EO/Li = 4), the MHPU and CHPU electrolytes reached its maximum
79187    conductivity, 1.35 x 10(-6) and 1.51 x 10(-5) s cm-1, respectively.
79188    FTIR, Raman, and C-13 NMR analysis showed that hyperbranched polymer
79189    could function as a "solvent" for the lithium salt. Correlation times
79190    and the activation energies for the polymer segmental and the lithium
79191    hopping motions were determined from the temperature dependence of the
79192    spin-lattice relaxation of the polymer (H-1) and lithium (Li-7). The
79193    correlation time and activation energy for the lithium hopping motions
79194    in the CHPU electrolytes had a relatively low value. This indicated
79195    that lithium ion transport was easier in such a system.
79196 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R China.
79197    Shanghai Jiao Tong Univ, Sch Chem & Chem Technol, Shanghai 200240, Peoples R China.
79198 RP Hong, L, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R
79199    China.
79200 CR ASANO A, 1999, POLYM J, V31, P602
79201    ASHOOTOSH V, 2001, J POLYM SCI A, V39, P1295
79202    BLOEMBERGEN N, 1948, PHYS REV, V73, P679
79203    CAZZANELLI E, 1996, SOLID STATE IONICS 1, V86, P379
79204    DESAI A, 2000, J POLYM SCI POL CHEM, V38, P1033
79205    FERY A, 1996, POLYMER, V37, P737
79206    FORSYTH M, 1994, J POLYM SCI POL PHYS, V32, P2077
79207    HAWKER CJ, 1996, MACROMOLECULES, V29, P3831
79208    HONG L, 2002, J POLYM SCI POL CHEM, V40, P344
79209    JAHANSSON A, 1996, POLYMER, V8, P1387
79210    JAMES DW, 1982, AUST J CHEM, V35, P1775
79211    JAMES DW, 1982, AUST J CHEM, V35, P1785
79212    PEERLINGS HWI, 2001, J POLYM SCI POL CHEM, V39, P3112
79213    ROUX C, 1998, ELECTROCHIM ACTA, V43, P1575
79214    SILVA RA, 2001, ELECTROCHIM ACTA, V46, P1687
79215    STEVENS JR, 1991, CAN J CHEM, V69, P1980
79216    TAMBELLI CE, 2001, ELECTROCHIM ACTA, V46, P1665
79217    VETTER S, 2001, J POLYM SCI POL CHEM, V39, P1940
79218    VINCENT CA, 1995, ELECTROCHIM ACTA, V40, P2035
79219    VOIT B, 2000, J POLYM SCI POL CHEM, V38, P2505
79220    WEN TC, 2000, POLYMER, V41, P6755
79221    ZHU WH, 2001, J POLYM SCI POL PHYS, V39, P1246
79222 NR 22
79223 TC 3
79224 SN 0024-9297
79225 J9 MACROMOLECULES
79226 JI Macromolecules
79227 PD JUL 1
79228 PY 2003
79229 VL 36
79230 IS 13
79231 BP 4989
79232 EP 4994
79233 PG 6
79234 SC Polymer Science
79235 GA 696HK
79236 UT ISI:000183881400046
79237 ER
79238 
79239 PT J
79240 AU Lu, HQ
79241    Shen, LM
79242    Ji, P
79243    Ji, GF
79244    Sun, NJ
79245 TI Classical Euclidean wormhole solution and wave function for a nonlinear
79246    scalar field
79247 SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
79248 DT Article
79249 DE Euclidean wormhole; Born-Infeld field; wormhole wave function;
79250    Wheeler-Dewitt equation
79251 AB In this paper we consider the classical Euclidean wormhole solution of
79252    the Born - Infeld scalar field. The corresponding classical Euclidean
79253    wormhole solution can be obtained analytically for both very small and
79254    large (phi) over dot.. At the extreme limit of small (phi) over dot.
79255    the wormhole solution has the same format as one obtained by Giddings
79256    and Strominger ( Nuclear Physics B 306, 890, 1988). At the extreme
79257    limit of large (phi) over dot. the wormhole solution is a new one. The
79258    wormhole wave functions can also be obtained for both very small and
79259    large (phi) over dot.. These wormhole wave functions are regarded as
79260    solutions of quantum-mechanical Wheeler - Dewitt equation with certain
79261    boundary conditions.
79262 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
79263 RP Lu, HQ, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
79264 CR BOILLAT G, 1999, J MATH PHYS, V40, P1
79265    BORN M, 1934, PROC R SOC LON SER-A, V144, P425
79266    COLEMAN S, 1988, NUCL PHYS B, V310, P643
79267    COULE DH, 1992, CLASSICAL QUANT GRAV, V9, P2353
79268    COULE DH, 1997, PHYS REV D, V55, P6606
79269    DEOLIVEIRA HP, 1995, J MATH PHYS, V36, P2988
79270    DESER S, 1998, CLASSICAL QUANT GRAV, V15, L35
79271    FEIGENBAUM JA, 1998, PHYS REV D, V58
79272    GIDDINGS SB, 1988, NUCL PHYS B, V306, P890
79273    GONZALEZDIAZ PF, 1990, MOD PHYS LETT A, V5, P1307
79274    HAWKING SW, 1990, PHYS REV D, V42, P2655
79275    HEISENBERG W, 1936, Z PHYS, V98, P714
79276    LU HQ, 1999, INT J MOD PHYS D, V8, P625
79277    MIGNEMI S, 1993, PHYS REV D, V48, P3725
79278    PALATNIK D, 1998, PHYS LETT B, V432, P287
79279    PALATNIK D, 2001, QUANTPH9608014
79280    TSEYTLIN AA, 1986, NUCL PHYS B, V276, P391
79281 NR 17
79282 TC 1
79283 SN 0020-7748
79284 J9 INT J THEOR PHYS
79285 JI Int. J. Theor. Phys.
79286 PD APR
79287 PY 2003
79288 VL 42
79289 IS 4
79290 BP 837
79291 EP 844
79292 PG 8
79293 SC Physics, Multidisciplinary
79294 GA 695MH
79295 UT ISI:000183834300018
79296 ER
79297 
79298 PT J
79299 AU Huang, XH
79300    Li, CF
79301 TI Novel light beam propagation through optical "potential well"
79302 SO EUROPHYSICS LETTERS
79303 DT Article
79304 ID TOTAL INTERNAL-REFLECTION; DIELECTRIC INTERFACE; LATERAL DISPLACEMENT;
79305    TUNNELING TIMES; ABSORBING MEDIA; GAUSSIAN-BEAM; TRANSMISSION;
79306    REFRACTION; PULSES; SHIFT
79307 AB The propagation of a Gaussian-shaped beam through a slab of optically
79308    denser dielectric medium in the air, a two-dimensional optical
79309    counterpart of the quantum potential well, is investigated in order to
79310    elucidate the negative lateral shifts of transmitted and reflected
79311    beams. It is shown that the locus of the peak of the beam inside the
79312    slab consists of two parts. One propagates backwards and seems to be
79313    the geometric reflection of the other that propagates forwards. But
79314    they are not continuous with the loci of the peaks of the incident and
79315    reflected beams. A restriction to the thickness of the slab is obtained
79316    that is necessary for the shape of the beam to remain unchanged in the
79317    travelling.
79318 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
79319    Acad Sinica, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt Technol, Xian 710068, Peoples R China.
79320 RP Huang, XH, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200436,
79321    Peoples R China.
79322 CR ANTAR YM, 1974, CAN J PHYS, V52, P962
79323    BALCOU P, 1997, PHYS REV LETT, V78, P851
79324    BERMAN PR, 2002, PHYS REV E 2, V66
79325    CHIAO RY, 1991, PHYSICA B, V175, P257
79326    CHIAO RY, 1997, PROG OPTICS, V37, P345
79327    ENDERS A, 1992, J PHYS I, V2, P1693
79328    ENDERS A, 1993, J PHYS I, V3, P1089
79329    GHATAK AK, 1986, OPT COMMUN, V56, P313
79330    GOOS F, 1947, ANN PHYSIK, V1, P333
79331    HAIBEL A, 2001, PHYS REV E 2, V63
79332    HOROWITZ BR, 1971, J OPT SOC AM, V61, P586
79333    HSUE CW, 1985, J OPT SOC AM A, V2, P978
79334    LAI HM, 2000, PHYS REV E B, V62, P7330
79335    LAI HM, 2002, OPT LETT, V27, P680
79336    LI CF, UNPUB PHYS REV LETT
79337    LI CF, 2000, PHYS LETT A, V275, P287
79338    LOTSCH HKV, 1971, OPTIK, V32, P553
79339    MOJAHEDI M, 2000, PHYS REV E B, V62, P5758
79340    MUGNAI D, 1998, PHYS LETT A, V247, P281
79341    PENDRY JB, 2000, PHYS REV LETT, V85, P3966
79342    PORRAS MA, 1997, OPT COMMUN, V135, P369
79343    PURI A, 1986, J OPT SOC AM A, V3, P543
79344    RA JW, 1973, SIAM J APPL MATH, V24, P396
79345    RANFAGNI A, 1991, PHYSICA B, V175, P283
79346    RIESZ RP, 1985, J OPT SOC AM A, V2, P1809
79347    SHELBY RA, 2001, APPL PHYS LETT, V78, P489
79348    SHELBY RA, 2001, SCIENCE, V292, P77
79349    SMITH DR, 2000, PHYS REV LETT, V84, P4184
79350    SPIELMANN C, 1994, PHYS REV LETT, V73, P2308
79351    STEINBERG AM, 1993, PHYS REV LETT, V71, P708
79352    STEINBERG AM, 1995, PHYS REV A, V51, P3525
79353    TAMIR T, 1971, J OPT SOC AM, V61, P1397
79354    TAMIR T, 1986, J OPT SOC AM A, V3, P558
79355    VESELAGO VG, 1968, SOV PHYS USP, V10, P509
79356    VETTER RM, 2001, PHYS REV E 2, V63
79357    WILD WJ, 1982, PHYS REV A, V25, P2099
79358 NR 36
79359 TC 5
79360 SN 0295-5075
79361 J9 EUROPHYS LETT
79362 JI Europhys. Lett.
79363 PD JUL
79364 PY 2003
79365 VL 63
79366 IS 1
79367 BP 28
79368 EP 34
79369 PG 7
79370 SC Physics, Multidisciplinary
79371 GA 696HC
79372 UT ISI:000183880700005
79373 ER
79374 
79375 PT J
79376 AU Liu, ZR
79377    Chen, GR
79378 TI On a possible mechanism of the brain for responding to dynamical
79379    features extracted from input signals
79380 SO CHAOS SOLITONS & FRACTALS
79381 DT Article
79382 ID SYNCHRONIZATION; OSCILLATORS; PHYSIOLOGY; NETWORKS
79383 AB Based on the general theory of nonlinear dynamical systems, a possible
79384    mechanism for responding to some dynamical features extracted from
79385    input, signals in brain activities is described and discussed. This
79386    mechanism is first converted to a nonlinear dynamical configuration-a
79387    generalized synchronization of complex dynamical systems. Then, some
79388    general conditions for achieving such synchronizations are derived. It
79389    is-shown that dynamical systems have potentials of. producing different
79390    responses for different features extracted from various input signals,
79391    which may be used to describe brain activities. For illustration, some
79392    numerical examples are given with simulation figures. (C) 2003 Elsevier
79393    Science Ltd. All rights reserved.
79394 C1 City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China.
79395    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
79396 RP Chen, GR, City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong,
79397    Peoples R China.
79398 CR BARABASI A, 2002, LINKED NEW SCI NETWO
79399    BRUSSLER SL, 1991, NATURE, V366, P153
79400    BURKITT GR, 2000, CLIN NEUROPHYSIOL, V111, P246
79401    CASTELOBRANCO M, 2000, NATURE, V405, P685
79402    FIRE P, 2001, SCIENCE, V291, P1560
79403    FREEMAN WJ, 1991, SCI AM, V264, P78
79404    GLASS L, 2001, NATURE, V410, P277
79405    HOPPENSTEADT FC, 1998, BIOSYSTEMS, V48, P85
79406    IZHIKEVICH EM, 1999, SIAM J APPL MATH, V59, P2193
79407    NUNEZ PL, 1995, NEOCORTICAL DYNAMICS
79408    PATEL AD, 2000, NATURE, V404, P80
79409    SCHACK B, 2002, INT J PSYCHOPHYSIOL, V44, P143
79410    SRINIVASAN R, 1999, J NEUROSCI, V19, P5425
79411    STEINMETZ PN, 2000, NATURE, V404, P187
79412    UHL C, 1999, ANAL NEUROPHYSIOLOGI
79413    WANG XF, 2002, INT J BIFURCAT CHAOS, V12, P885
79414    WATTS DJ, 1998, NATURE, V393, P440
79415 NR 17
79416 TC 0
79417 SN 0960-0779
79418 J9 CHAOS SOLITON FRACTAL
79419 JI Chaos Solitons Fractals
79420 PD NOV
79421 PY 2003
79422 VL 18
79423 IS 4
79424 BP 785
79425 EP 794
79426 PG 10
79427 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
79428 GA 695BA
79429 UT ISI:000183810200015
79430 ER
79431 
79432 PT J
79433 AU Li, CP
79434    Chen, GR
79435 TI On the Marotto-Li-Chen theorem and its application to chaotification of
79436    multi-dimensional discrete dynamical systems
79437 SO CHAOS SOLITONS & FRACTALS
79438 DT Article
79439 ID FEEDBACK ANTICONTROL; CHAOS; REPELLERS
79440 AB This paper further discusses the modified Marotto Theorem developed
79441    recently by Li and Chen (called "Marotto-Li-Chen Theorem" here for
79442    distinction). A simple yet rigorous chaotification (i.e., "anticontrol
79443    of chaos") schemes is proposed for multi-dimensional dynamical systems
79444    based on the Marotto-Li-Chen Theorem. An illustrative example is
79445    included to show that the constructed chaotification algorithm is
79446    effective. (C) 2003 Elsevier Science Ltd. All rights reserved.
79447 C1 City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China.
79448    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
79449 RP Chen, GR, City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong,
79450    Peoples R China.
79451 CR CHEN G, IEEE CIRCUITS SY MAR, P1
79452    CHEN G, 1997, P IEEE C DEC CONTR S, P367
79453    CHEN G, 1998, CHAOS ORDER METHODOL
79454    CHEN G, 1998, J MATH PHYS, V39, P6459
79455    CHEN GR, 1996, INT J BIFURCAT CHAOS, V6, P1341
79456    CHEN GR, 1998, INT J BIFURCAT CHAOS, V8, P1585
79457    DITTO WL, 2000, INT J BIFURCAT CHAOS, V10, P593
79458    GLENDINNING P, 1994, STABILITY INSTABILIT
79459    JAKIMOSKI G, 2001, IEEE T CIRCUITS-I, V48, P163
79460    KOCAREV L, 2001, IEEE T CIRCUITS-I, V48, P1385
79461    LI CP, IN PRESS CHAOS SOLIT
79462    LI CP, IN PRESS J SYS SCI C
79463    LI TY, 1975, AM MATH MONTHLY, V82, P985
79464    LIN W, 2002, INT J BIFURCAT CHAOS, V12, P1129
79465    MAROTTO FR, 1978, J MATH ANAL APPL, V63, P199
79466    SCHNIFF SJ, 1994, NATURE, V370, P615
79467    WANG XF, 1999, INT J BIFURCAT CHAOS, V9, P1435
79468    WANG XF, 2000, INT J BIFURCAT CHAOS, V10, P549
79469 NR 18
79470 TC 7
79471 SN 0960-0779
79472 J9 CHAOS SOLITON FRACTAL
79473 JI Chaos Solitons Fractals
79474 PD NOV
79475 PY 2003
79476 VL 18
79477 IS 4
79478 BP 807
79479 EP 817
79480 PG 11
79481 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
79482 GA 695BA
79483 UT ISI:000183810200018
79484 ER
79485 
79486 PT J
79487 AU Wei, Q
79488    Wang, Q
79489    Shi, JL
79490 TI Analysis of the existence of one-dimensional dark and gray spatial
79491    solitons in logarithmically nonlinear media
79492 SO ACTA PHYSICA SINICA
79493 DT Article
79494 DE dark spatial solitons; gray spatial solitons; logarithmical nonlinear
79495    media
79496 ID PHOTOVOLTAIC-PHOTOREFRACTIVE CRYSTALS; BRIGHT; PAIRS
79497 AB The existence of dark and gray spatial solitons in logarithmically
79498    nonlinear media is investigated. It is shown that both dark and gray
79499    solitons are possible in corresponding nonlinear media. The spatial
79500    width for dark solitons is analyzed. It is revealed as follows: the
79501    beam width decreases dramatically with increasing power when the peak
79502    power is much lower, exhibiting the good nonlinear effects in such
79503    cases. The variation of beam width is slow at first and then becomes
79504    constant when the peak power continuously increases.
79505 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
79506 RP Wei, Q, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
79507 CR CHRISTODOULIDES DN, 1995, J OPT SOC AM B, V12, P1628
79508    CHRISTODOULIDES DN, 1996, APPL PHYS LETT, V68, P1763
79509    CHRISTODOULIDES DN, 1997, OPT LETT, V22, P1080
79510    COSKUN TH, 1998, OPT LETT, V23, P418
79511    DUREE GC, 1993, PHYS REV LETT, V71, P533
79512    GRANDPIERRE AG, 2001, J OPT SOC AM B, V18, P55
79513    HOU CF, 2000, ACTA PHYS SIN-CH ED, V49, P1969
79514    HOU CF, 2000, CHIN J LASER B, V9, P551
79515    HOU CF, 2000, OPT COMMUN, V181, P141
79516    HOU CF, 2001, ACTA PHYS SIN-CH ED, V50, P1709
79517    HOU CF, 2001, CHINESE PHYS, V10, P310
79518    KROLIKOWSKI W, 2000, PHYS REV E, V61, P3122
79519    LIU JS, 1999, J OPT SOC AM B, V16, P550
79520    LU KQ, 2000, PHYS REV A, V61
79521    SEGEV M, 1992, PHYS REV LETT, V68, P923
79522    SHE WL, 1999, PHYS REV LETT, V83, P3182
79523    SNYDER AW, 1997, OPT LETT, V22, P16
79524    TAYA M, 1995, PHYS REV A, V52, P3095
79525    YURI SK, 1998, PHYS REP, V298, P81
79526 NR 19
79527 TC 2
79528 SN 1000-3290
79529 J9 ACTA PHYS SIN-CHINESE ED
79530 JI Acta Phys. Sin.
79531 PD JUL
79532 PY 2003
79533 VL 52
79534 IS 7
79535 BP 1645
79536 EP 1649
79537 PG 5
79538 SC Physics, Multidisciplinary
79539 GA 698GQ
79540 UT ISI:000183990700017
79541 ER
79542 
79543 PT J
79544 AU Huang, H
79545 TI A generalized wave action conservative equation for the dissipative
79546    dynamical system in the nearshore region
79547 SO PROGRESS IN NATURAL SCIENCE
79548 DT Article
79549 DE dissipative dynamical system; wave action conservation; the averaged
79550    flow equations; the Navier-Stokes equations
79551 ID WATER-WAVES; WAVETRAINS
79552 AB To describe the various complex mechanisms of the dissipative dynamical
79553    system between waves, currents, and bottoms in the nearshore region
79554    that induce typically the wave motion on large-scale variation of
79555    ambient currents, a generalized wave action equation for the
79556    dissipative dynamical system in the nearshore region is developed by
79557    using the mean-flow equations based on the Navier-Stokes equations of
79558    viscous fluid, thus raising two new concepts: the vertical velocity
79559    wave action and the dissipative wave action, extending the classical
79560    concept, wave action, from the ideal averaged flow conservative system
79561    into the real averaged flow dissipative system (that is, the
79562    generalized conservative system). It will have more applications.
79563 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
79564    Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R China.
79565 RP Huang, H, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
79566    200072, Peoples R China.
79567 CR BAL G, 2002, WAVE MOTION, V35, P107
79568    BENJAMIN TB, 1982, J FLUID MECH, V125, P137
79569    BRETHERTHON FP, 1968, P ROY SOC LOND A MAT, V302, P529
79570    CHRISTOFFERSEN JB, 1980, APPL OCEAN RES, V2, P179
79571    DINGEMANS MW, 1997, WATER WAVE PROPERGAT
79572    HARA T, 2002, J FLUID MECH, V470, P223
79573    JIMENEZ J, 1976, P ROY SOC LOND A MAT, V349, P277
79574    MEI CC, 1989, APPL DYNAMICS OCEAN
79575    PEREGRINE DH, 1976, ADV APPL MECH, V16, P9
79576    PHILLIPS OM, 1977, DYNAMICS UPPER OCEAN
79577    PRIGOGINE I, 1996, END CERTAINTY TIME C
79578    RIEWE F, 1996, PHYS REV E, V53, P1890
79579    THOMAS GP, 1997, SERIES ADV FLUID MEC, P254
79580    WANG T, 1996, ACTA MECH SINICA, V28, P282
79581    WHITHAM GB, 1999, LINEAR NONLINEAR WAV
79582 NR 15
79583 TC 0
79584 SN 1002-0071
79585 J9 PROG NAT SCI
79586 JI Prog. Nat. Sci.
79587 PD JUL
79588 PY 2003
79589 VL 13
79590 IS 7
79591 BP 550
79592 EP 552
79593 PG 3
79594 SC Multidisciplinary Sciences
79595 GA 695UM
79596 UT ISI:000183848800013
79597 ER
79598 
79599 PT J
79600 AU Ji, WS
79601    You, B
79602    Wang, XD
79603    Li, Y
79604 TI Relationship between the propagation characteristics of via and
79605    microstrip connecting angle
79606 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
79607 DT Article
79608 DE via; propagation characteristics; microstrip connecting angle;
79609    multilaver circuit
79610 ID HOLE
79611 AB The microstrip-via-microstrip is a popular interconnect structure in
79612    multilayer circuits at microwave frequency. The microstrip connecting
79613    angle is an arbitrary angle due to layout and technical error. The
79614    relationship between the propagation characteristics of via and the
79615    microstrip connecting angle was analyzed by using the Ansoft simulator.
79616    The obtained results have important application value for the design of
79617    a similar multilayer circuit. (C) 2003 Wiley Periodicals, Inc.
79618 C1 Shanghai Univ, Dept Radio Phys, Shanghai 200436, Peoples R China.
79619 RP Ji, WS, Shanghai Univ, Dept Radio Phys, Shanghai 200436, Peoples R
79620    China.
79621 CR HSU SG, 1994, IEEE T MICROW THEORY, V42, P1540
79622    LAM CW, 1993, IEEE T COMPON HYBR, V16, P699
79623    MAEDA S, 1991, IEEE T MICROW THEORY, V39, P2154
79624    WANG TY, 1988, IEEE T MICROW THEORY, V36, P1000
79625 NR 4
79626 TC 0
79627 SN 0895-2477
79628 J9 MICROWAVE OPT TECHNOL LETT
79629 JI Microw. Opt. Technol. Lett.
79630 PD AUG 5
79631 PY 2003
79632 VL 38
79633 IS 3
79634 BP 225
79635 EP 228
79636 PG 4
79637 SC Engineering, Electrical & Electronic; Optics
79638 GA 695PR
79639 UT ISI:000183839900018
79640 ER
79641 
79642 PT J
79643 AU Li, HY
79644    Ma, HP
79645 TI Shifted Chebyshev collocation domain truncation for solving problems on
79646    an infinite interval
79647 SO JOURNAL OF SCIENTIFIC COMPUTING
79648 DT Article
79649 DE shifted Chebyshev collocation; domain truncation
79650 ID KORTEWEG-DEVRIES EQUATION; PSEUDOSPECTRAL METHOD; SPECTRAL METHODS;
79651    MULTIPLE LAYERS; APPROXIMATION; MAPPINGS
79652 AB A shifted Chebyshev collocation method is proposed for solving problems
79653    on an infinite interval with domain truncation strategy.
79654 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
79655    Chinese Acad Sci, Inst Software, RDCPS, Beijing 100080, Peoples R China.
79656    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
79657 RP Li, HY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
79658 CR BAYLISS A, 1987, J COMPUT PHYS, V71, P147
79659    BAYLISS A, 1989, J COMPUT PHYS, V81, P421
79660    BAYLISS A, 1992, J COMPUT PHYS, V101, P349
79661    BAYLISS A, 1995, J COMPUT PHYS, V116, P160
79662    BAYLISS A, 1995, J COMPUT PHYS, V119, P132
79663    BOYD JP, 1982, J COMPUT PHYS, V45, P43
79664    BOYD JP, 1987, J COMPUT PHYS, V69, P112
79665    BOYD JP, 1987, J COMPUT PHYS, V70, P63
79666    BOYD JP, 1988, J SCI COMPUT, V3, P109
79667    BOYD JP, 1992, J COMPUT PHYS, V98, P181
79668    BOYD JP, 1999, CHEBYSHEV FOURIER SP
79669    CANUTO C, 1988, SPECTRAL METHODS FLU
79670    CHAN TF, 1985, SIAM J NUMER ANAL, V22, P441
79671    DJIDJELI K, 1998, COMMUN NUMER METH EN, V14, P977
79672    FORNBERG B, 1978, PHILOS T ROY SOC A, V289, P373
79673    GOTTLIEB D, 1977, NUMERICAL ANAL SPECT
79674    GOTTLIEB D, 1984, SPECTRAL METHODS PAR, P1
79675    MA HP, 1986, J COMPUT PHYS, V65, P120
79676    MA HP, 1988, CHINESE J NUMER MATH, V10, P11
79677    MA HP, 1997, MODERN MATH MECH M M, P103
79678    MA HP, 2001, SIAM J NUMER ANAL, V38, P1425
79679    MADAY Y, 1988, RAIRO MODEL MATH ANA, V22, P499
79680    OLIVEIRA F, 1973, GEN TRIGONOMETRIC AP
79681    PASCIAK J, 1982, SIAM J NUMER ANAL, V19, P142
79682    PAVONI D, 1988, CALCOLO, V25, P311
79683    SHEN J, 1996, HOUSTON J MATH, P233
79684 NR 26
79685 TC 0
79686 SN 0885-7474
79687 J9 J SCI COMPUT
79688 JI J. Sci. Comput.
79689 PD APR
79690 PY 2003
79691 VL 18
79692 IS 2
79693 BP 191
79694 EP 213
79695 PG 23
79696 SC Mathematics, Applied
79697 GA 694KP
79698 UT ISI:000183774000002
79699 ER
79700 
79701 PT J
79702 AU Xia, L
79703    Wei, BC
79704    Pan, MX
79705    Zha, DQ
79706    Wang, WH
79707    Dong, YD
79708 TI Phase evolution and its effect on magnetic properties of
79709    Nd60Al10Fe20Co10 bulk metallic glass
79710 SO JOURNAL OF PHYSICS-CONDENSED MATTER
79711 DT Article
79712 ID AMORPHOUS-ALLOYS; FORMING ALLOY; RELAXATION; MICROSTRUCTURE;
79713    TRANSITION; VISCOSITY; SOLIDS
79714 AB The thermal stability of nanocrystalline clusters, the phase evolution,
79715    and their effects on magnetic properties were studied for as-cast
79716    Nd60Al10Fe20Co10 alloy using differential scanning calorimetry curves,
79717    x-ray diffraction patterns, scanning electron microscopy, and
79718    high-resolution transition electron microscopy. Thermomagnetic curves
79719    and hysteresis loops of the bulk metallic glass were measured during
79720    the annealing process. The high thermostability of the hard magnetic
79721    properties of the samples observed is attributed to the stability of
79722    the nanocrystalline clusters upon annealing, While the slight
79723    enhancement in the magnetization is due to the precipitation of some
79724    Nd-rich metastable phases. The mechanism of thermostability of the
79725    nanocrystalline clusters and the formation of the metastable phases are
79726    discussed.
79727 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
79728    Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China.
79729    Chinese Acad Sci, Natl Microgravity Lab, Inst Mech, Beijing 100080, Peoples R China.
79730 RP Xia, L, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
79731 CR DELAMARE J, 1994, J ALLOY COMPD, V216, P273
79732    DING J, 1999, APPL PHYS LETT, V75, P1763
79733    FAN GJ, 1999, APPL PHYS LETT, V75, P2984
79734    FAN GJ, 2000, J MATER RES, V15, P1556
79735    FECHT HJ, 1995, MATER T JIM, V36, P777
79736    GREER AL, 1995, SCIENCE, V267, P1947
79737    HAYS CC, 2000, PHYS REV LETT, V84, P2901
79738    INOUE A, 2000, ACTA MATER, V48, P279
79739    JOHNSON WL, 1999, MRS BULL, V24, P42
79740    MENUSHENKOV VP, 1998, P 10 INT S MAGN AN C, P97
79741    PAN MX, 2002, INTERMETALLICS, V10, P1215
79742    SCHNEIDER S, 2002, APPL PHYS LETT, V80, P1749
79743    VANDENBEUKEL A, 1994, MAT SCI ENG A-STRUCT, V179, P86
79744    VOLKERT CA, 1989, ACTA METALL, V37, P1355
79745    WANG WH, 1997, APPL PHYS LETT, V71, P58
79746    WANG XZ, 1999, J ALLOY COMPD, V290, P209
79747    WEI BC, 2001, PHYS REV B, V64
79748    XIA L, 2003, J PHYS D APPL PHYS, V36, P775
79749    XING LQ, 2000, J APPL PHYS, V88, P3565
79750    ZHU J, 1997, APPL PHYS LETT, V70, P1709
79751    ZHUANG YX, 2000, J APPL PHYS, V87, P8209
79752 NR 21
79753 TC 10
79754 SN 0953-8984
79755 J9 J PHYS-CONDENS MATTER
79756 JI J. Phys.-Condes. Matter
79757 PD JUN 4
79758 PY 2003
79759 VL 15
79760 IS 21
79761 BP 3531
79762 EP 3537
79763 PG 7
79764 SC Physics, Condensed Matter
79765 GA 694QQ
79766 UT ISI:000183785800008
79767 ER
79768 
79769 PT J
79770 AU Li, Y
79771    Kim, YB
79772    Song, MS
79773    Yoon, TS
79774    Kim, CO
79775 TI The temperature dependence of the anisotropic Nd-Fe-B fabricated by
79776    single-stage hot deformation
79777 SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
79778 DT Article
79779 DE anisotropy; Nd-Fe-B; single-stage hot deformation; temperature
79780    coefficient
79781 ID PERMANENT-MAGNETS; NDFEB MAGNETS
79782 AB Anisotropic Nd-Fe-B magnets were fabricated by a single-stage hot
79783    deformation process. In this study, the temperature characteristics of
79784    the single-stage hot deformed Nd-Fe-B magnets were investigated. The
79785    temperature coefficient of B-r is -0.12%/degreesC, similar to those of
79786    isotropic MQPA powder, die-upset and sintered Nd-Fe-B magnets. The
79787    temperature coefficient of H-ic is -0.72%/degreesC, which is about
79788    twice as high as isotropic MQPA (-0.38%/degreesC), and slightly higher
79789    than those of die-upset and sintered Nd-Fe-B magnets. (C) 2002 Elsevier
79790    Science B.V. All rights reserved.
79791 C1 Shanghai Univ, Inst Mat, Shanghai, Peoples R China.
79792    Chungnam Natl Univ, Res Ctr Adv Magnet Mat, Yousung Gu, Taejon, South Korea.
79793 RP Li, Y, Shanghai Univ, Inst Mat, Shanghai, Peoples R China.
79794 CR AHARONI A, 1998, J APPL PHYS, V83, P3432
79795    LI Y, 2000, IEEE T MAGN 1, V36, P3309
79796    LI Y, 2000, J MAGN, V3, P106
79797    LI Y, 2000, J MATER SCI TECHNOL, V16, P129
79798    LI Y, 2001, J MAGN MAGN MATER, V223, P279
79799    LI Y, 2002, J MAGN MAGN MATER 2, V242, P1369
79800    LIU S, 1999, IEEE T MAGN 2, V35, P3271
79801    PANCHANATHAN V, 1990, J MATER ENG, V12, P29
79802    SONG MS, 2000, IEEE T MAGN 1, V36, P3637
79803 NR 9
79804 TC 0
79805 SN 0304-8853
79806 J9 J MAGN MAGN MATER
79807 JI J. Magn. Magn. Mater.
79808 PD JUL
79809 PY 2003
79810 VL 263
79811 IS 1-2
79812 BP 11
79813 EP 14
79814 PG 4
79815 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
79816 GA 693WR
79817 UT ISI:000183741800002
79818 ER
79819 
79820 PT J
79821 AU Shen, JQ
79822    Riebel, U
79823 TI The fundamentals of particle size analysis by transmission fluctuation
79824    spectrometry. Part 3: A theory on transmission fluctuations in a
79825    gaussian beam and with signal filtering
79826 SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION
79827 DT Article
79828 DE expectancy of the transmission square; particle size analysis;
79829    transmission fluctuation spectrometry
79830 ID SPHERES
79831 AB A transmission signal measured on a flowing suspension of particles
79832    with a high spatial and temporal resolution shows significant
79833    fluctuations, which contain the complete information on particle size
79834    distribution and particle concentration. In Parts 1 and 2, the basic
79835    properties of signal fluctuations were studied for temporal averaging
79836    by a gliding time window and for spatial averaging by a circular beam
79837    of uniform intensity. However, the experimental implementation of such
79838    conditions is difficult. Now, the theory is extended for Gaussian beams
79839    of variable diameter and averaging by signal filtering in the frequency
79840    domain. provides the basis for an experimental implementation by
79841    transmission of a laser beam and analog signal processing by an array
79842    of low pass filters.
79843 C1 Brandenburg Tech Univ Cottbus, Lehrstuhl Mech Verfahrenstech, D-03013 Cottbus, Germany.
79844    Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
79845 RP Shen, JQ, Brandenburg Tech Univ Cottbus, Lehrstuhl Mech Verfahrenstech,
79846    D-03013 Cottbus, Germany.
79847 CR BREITENSTEIN M, 1999, PART PART SYST CHAR, V16, P249
79848    BREITENSTEIN M, 2000, THESIS COTTBUS
79849    BREITENSTEIN M, 2001, PART PART SYST CHAR, V18, P134
79850    CHEN W, 1995, CIRCUITS FILTERS HDB
79851    KAUTER U, 1995, PART PART SYST CHAR, V12, P132
79852    RIEBEL U, 1993, PART PART SYST CHAR, V10, P201
79853    RIEBEL U, 1994, PART PART SYST CHAR, V11, P212
79854 NR 7
79855 TC 8
79856 SN 0934-0866
79857 J9 PART PART SYST CHARACT
79858 JI Part. Part. Syst. Charact.
79859 PD APR
79860 PY 2003
79861 VL 20
79862 IS 2
79863 BP 94
79864 EP 103
79865 PG 10
79866 SC Engineering, Chemical; Materials Science, Characterization & Testing
79867 GA 689KV
79868 UT ISI:000183492600002
79869 ER
79870 
79871 PT J
79872 AU Henderson, JM
79873    Lu, Y
79874    Wang, S
79875    Cartwright, H
79876    Halliday, GM
79877 TI Olfactory deficits and sleep disturbances in Parkinson's disease: a
79878    case-control survey
79879 SO JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY
79880 DT Article
79881 ID EXCESSIVE DAYTIME SLEEPINESS; BEHAVIOR DISORDER; SYMPTOMS; DYSFUNCTION;
79882    DIAGNOSIS; DURATION; CRITERIA; STAGE
79883 AB Background: Olfactory and sleep disturbances are common in Parkinson's
79884    disease, and may be early disease indicators.
79885    Objective: To obtain information about olfactory and sleep deficits
79886    preceding the onset of motor symptoms in Parkinson's disease.
79887    Subjects: 38 community dwelling patients with Parkinson's disease (73%
79888    response rate) and 32 age matched controls (60% response rate).
79889    Methods: Using a questionnaire survey, the frequencies, timing, and
79890    relations between olfactory and sleep disturbances, drug treatment,
79891    mood, and motor deficits in Parkinson's disease were compared with
79892    those in age matched controls. Reliability of information was validated
79893    by informant interview in 9% of the sample. Interdependency of factors
79894    was assessed using Fisher's fourfold table test, and differences
79895    between populations were analysed using chi(2) and unpaired t tests.
79896    Results: Microsmia was reported by 26 patients (68%) (and only one
79897    control), on average within a year of the diagnosis of Parkinson's
79898    disease. More patients than controls had excessive daytime somnolence
79899    (45% v 6%), restless legs (50% v 19%), and abnormal movements during
79900    sleep (34% v 0%), which generally occurred three to five years after
79901    diagnosis and were independent of mood disorders and drug treatment.
79902    Conclusions: Many patients with Parkinson's disease have microsmia at
79903    the onset of motor deficits, but some sleep disorders are a subsequent
79904    occurrence.
79905 C1 Prince Wales Med Res Inst, Sydney, NSW, Australia.
79906    Univ New S Wales, Sydney, NSW, Australia.
79907    Shanghai Univ, Dept Neurol, Peoples Hosp 1, Shanghai, Peoples R China.
79908 RP Henderson, JM, Univ Sydney, Dept Pharmacol, Bosch Bldg, Sydney, NSW
79909    2006, Australia.
79910 CR COMELLA CL, 1998, NEUROLOGY, V51, P526
79911    DOTY RL, 1988, NEUROLOGY, V38, P1237
79912    DOTY RL, 1992, J NEUROL NEUROSUR PS, V55, P138
79913    DOTY RL, 1995, NEURODEGENERATION, V4, P93
79914    EISENSEHR I, 2001, J NEUROL SCI, V186, P7
79915    FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189
79916    GELB DJ, 1999, ARCH NEUROL-CHICAGO, V56, P33
79917    GONERA EG, 1997, MOVEMENT DISORD, V12, P871
79918    GUILLEMINAULT C, 2001, BRAIN 8, V124, P1482
79919    HARDING AJ, 2002, BRAIN 11, V125, P2431
79920    KRAUTH J, 1990, DISTRIBUTION FREE ST
79921    MONTGOMERY EB, 1999, NEUROLOGY, V52, P757
79922    MORRIS JC, 1993, NEUROLOGY, V43, P2412
79923    NUGENT AM, 2001, J SLEEP RES, V10, P69
79924    OLSON EJ, 2000, BRAIN 2, V123, P331
79925    PAPPERT EJ, 1999, MOVEMENT DISORD, V14, P117
79926    PEARCE RKB, 1995, MOVEMENT DISORD, V10, P283
79927    RYE DB, 2000, J SLEEP RES, V9, P63
79928    SHULMAN LM, 2001, MOVEMENT DISORD, V16, P507
79929    SNIDER SR, 1976, NEUROLOGY, V26, P423
79930    TANDBERG E, 1998, MOVEMENT DISORD, V13, P895
79931    TISSINGH G, 2001, MOVEMENT DISORD, V16, P41
79932    WALTERS SJ, 2001, AGE AGEING, V30, P337
79933    WOLTERS EC, 2000, J NEUROL S2, V247, P103
79934 NR 24
79935 TC 7
79936 SN 0022-3050
79937 J9 J NEUROL NEUROSURG PSYCHIAT
79938 JI J. Neurol. Neurosurg. Psychiatry
79939 PD JUL
79940 PY 2003
79941 VL 74
79942 IS 7
79943 BP 956
79944 EP 958
79945 PG 3
79946 SC Clinical Neurology; Psychiatry; Psychiatry; Surgery
79947 GA 690JB
79948 UT ISI:000183543800031
79949 ER
79950 
79951 PT J
79952 AU Wang, J
79953    He, Y
79954    Danninger, H
79955 TI Influence of porosity on the sliding wear behavior of sintered
79956    Fe-1.5Mo-0.7C steels
79957 SO JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
79958 DT Article
79959 DE porosity; sintered steels; wear behavior
79960 ID IRON
79961 AB Fe-1.5Mo-0.7C steels with different porosity can successfully be
79962    prepared by using traditional compacting, vacuum sintering, and in part
79963    Hot Isostatically Pressing (HIPing). Their dry sliding wear behavior in
79964    both as-sintered and heat treated states were investigated. When
79965    porosity is lower than 6.2%, further decreases of porosity have less
79966    influence on the wear coefficient of both as-sintered and heat treated
79967    steels. Pores in the sintered steels collect the debris during the
79968    rubbing process, and therefore the disadvantage in wear process due to
79969    the poor hardness and mechanical strength caused by high porosity is
79970    partly compensated for. During dry sliding the as-sintered steels have
79971    three types of wear mechanisms (i.e., oxidational wear, abrasive wear,
79972    and delamination wear), while oxidational wear and delamination wear
79973    are the main regimes in heat treated steels. Oxidation leads to the
79974    wear of sintered steels and in the meantime the oxides attached to the
79975    rubbing surface further lower intense wear of the rubbing system.
79976    Abrasive wear and delamination wear, which result in flake debris, are
79977    responsible for high wear coefficients.
79978 C1 Chongqing Univ, State Key Lab Mech Transmiss, Chongqing, Peoples R China.
79979    Tech Univ Vienna, Inst Chem Technol & Analyt, Vienna, Austria.
79980    Shanghai Univ, Sch Mat Sci & Engn, Shanghai, Peoples R China.
79981 RP Wang, J, Shanghai Univ, Sch Mat Sci & Engn, Shanghai, Peoples R China.
79982 CR 1997, FRICTION WEAR TESTIN, P124
79983    AMSALLEM C, 1973, WEAR, V23, P97
79984    ASTASHKEVICH BM, 1996, METALLOVEDENIE TERMI, V7, P20
79985    DANNINGER H, 1994, PRACT METALLOGR, V31, P56
79986    DANNINGER H, 1996, ADV POWDER METALL, V13, P177
79987    DANNINGER H, 1998, Z METALLKD, V89, P135
79988    LIM SC, 1986, WEAR, V113, P371
79989    LIM SC, 1987, ACTA METALL, V35, P1
79990    UETZ H, 1977, WEAR, V43, P375
79991    VARDAVOULIAS M, 1993, WEAR, V165, P141
79992    WANG J, 1999, THESIS VIENNA U TECH
79993    WANG JA, 1998, WEAR, V222, P49
79994 NR 12
79995 TC 1
79996 SN 1059-9495
79997 J9 J MATER ENG PERFORM
79998 JI J. Mater. Eng. Perform.
79999 PD JUN
80000 PY 2003
80001 VL 12
80002 IS 3
80003 BP 339
80004 EP 344
80005 PG 6
80006 SC Materials Science, Multidisciplinary
80007 GA 691EJ
80008 UT ISI:000183591600015
80009 ER
80010 
80011 PT J
80012 AU Ge, XS
80013    Liu, YZ
80014    Chen, LQ
80015 TI Dynamical modeling of free multibody systems in fully Cartesian
80016    coordinates
80017 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
80018 DT Article
80019 DE dynamics; free multibody system; fully Cartesian coordinate; spacecraft
80020    attitude motion
80021 AB Multibody dynamics described by fully Cartesian coordinates is treated
80022    in this paper. The explicit expressions of linear and angular momentum
80023    of rigid body and multibody systems are deduced using fully Cartesian
80024    coordinates. First order differential equations of free multibody
80025    systems in term of fully Cartesian coordinates are established. The
80026    equations are applied to analyze attitude motion of multibody
80027    spacecraft without torque.
80028 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
80029    Beijing Inst Machinery, Beijing 100085, Peoples R China.
80030    Shanghai Jiao Tong Univ, Dept Mech Engn, Shanghai 200030, Peoples R China.
80031    Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
80032 RP Ge, XS, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
80033    Peoples R China.
80034 CR BAYO E, 1991, COMPUT METHOD APPL M, V92, P377
80035    BRENAM KE, 1996, NUMERICAL SOLUTION I
80036    DEJALON JG, 1986, COMPUT METHOD APPL M, V56, P309
80037    DEJALON JG, 1993, KINEMATICS DYNAMIC S
80038    HAUG EJ, 1989, COMPUTER AIDED KINEM
80039    LIU YZ, 1995, SPACECRAFT ATTITUDE
80040    LIU YZ, 1997, ACTA MECH, V29, P303
80041    SCHIEHLEN W, 1990, MULTIBODY SYSTEM HDB
80042    WITTENBURG J, 1977, DYNAMICS SYSTEM RIGI
80043 NR 9
80044 TC 1
80045 SN 1565-1339
80046 J9 INT J NONLINEAR SCI NUMER SIM
80047 JI Int. J. Nonlinear Sci. Numer. Simul.
80048 PY 2003
80049 VL 4
80050 IS 3
80051 BP 279
80052 EP 287
80053 PG 9
80054 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
80055    Mathematical; Mechanics
80056 GA 690FG
80057 UT ISI:000183536300009
80058 ER
80059 
80060 PT J
80061 AU Zhang, BL
80062    Wan, ZS
80063 TI New techniques in designing finite-difference domain decomposition
80064    algorithm for the heat equation
80065 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
80066 DT Article
80067 DE finite-difference scheme; domain decomposition; Saul'yev schemes; heat
80068    equation; parallel computation
80069 AB This paper presents some new techniques in designing finite-difference
80070    domain decomposition algorithm for the heat equation. The basic
80071    procedure is to define the finite-difference schemes at the interface
80072    grid points with smaller time step Delta(t) over bar = Deltat/m (m is a
80073    positive integer) by Saul'yev asymmetric schemes. The algorithm can
80074    increase the stability bounds of the classical explicit method by 2m
80075    times, and the prior error estimates for the numerical solutions are
80076    obtained for some algorithms when m = 2 or m = 3. Numerical experiments
80077    on stability and accuracy are also presented. (C) 2003 Elsevier Science
80078    Ltd. All rights reserved.
80079 C1 Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China.
80080    Chinese Acad Sci, Comp Informat Network Ctr, Beijing 100080, Peoples R China.
80081    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
80082 RP Zhang, BL, Inst Appl Phys & Computat Math, Lab Computat Phys, POB 8009,
80083    Beijing 100088, Peoples R China.
80084 CR DAWSON CN, 1991, MATH COMPUT, V57, P63
80085    EVANS DJ, 1985, APPL MATH MODEL, V19, P201
80086    SAULYEV VK, 1964, INTEGRATION EQUATION
80087    ZHANG BL, 1992, CHINESE J NUM MATH A, V14, P27
80088    ZHANG BL, 2002, J NUMER METH COMPUT, V23, P81
80089 NR 5
80090 TC 0
80091 SN 0898-1221
80092 J9 COMPUT MATH APPL
80093 JI Comput. Math. Appl.
80094 PD MAY-JUN
80095 PY 2003
80096 VL 45
80097 IS 10-11
80098 BP 1695
80099 EP 1705
80100 PG 11
80101 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
80102 GA 691JD
80103 UT ISI:000183601900019
80104 ER
80105 
80106 PT J
80107 AU Zheng, CL
80108    Zhang, JF
80109    Huang, WH
80110    Chen, LQ
80111 TI Peakon and foldon excitations in a (2+1)-dimensional breaking soliton
80112    system
80113 SO CHINESE PHYSICS LETTERS
80114 DT Article
80115 ID LOOP SOLITON; PAINLEVE INTEGRABILITY; SIMILARITY REDUCTIONS; VAKHNENKO
80116    EQUATION; GENERAL-SOLUTION; AKNS SYSTEM; FIELDS
80117 AB Starting from the standard truncated Painleve expansion and a variable
80118    separation approach, a general variable separation solution of the
80119    breaking soliton system is derived. In addition to the usual localized
80120    coherent soliton excitations like dromions, lumps, rings, breathers,
80121    instantons, oscillating soliton excitations, and previously revealed
80122    chaotic and fractal localized solutions, some new types of excitations,
80123    peakons and foldons, are obtained by introducing appropriate
80124    lower-dimensional piecewise smooth functions and multiple valued
80125    functions.
80126 C1 Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
80127    Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China.
80128    Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
80129    Jiangxi Yichu Univ, Dept Phys, Yichu 336000, Peoples R China.
80130 RP Zheng, CL, Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000,
80131    Peoples R China.
80132 CR CAMASSA R, 1993, PHYS REV LETT, V71, P1661
80133    CHEN CL, 2002, PHYS REV E 2B, V66
80134    HOLM DD, 1998, ADV MATH, V137, P1
80135    KAKUHATA H, 1999, J PHYS SOC JPN, V68, P757
80136    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
80137    LOU SY, 2000, PHYS LETT A, V277, P94
80138    LOU SY, 2000, PHYS SCR, V65, P7
80139    LOU SY, 2001, EUR PHYS J B, V22, P473
80140    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
80141    LOU SY, 2002, J MATH PHYS, V43, P4078
80142    MATSUTANI S, 1995, MOD PHYS LETT A, V10, P717
80143    MORRISON AJ, 1999, NONLINEARITY, V12, P1427
80144    RADHA R, 1995, PHYS LETT A, V199, P7
80145    SCHLEIF M, 1998, INT J MOD PHYS E, V7, P121
80146    TANG XY, 2002, PHYS REV E 2, V66
80147    TANG YP, 2002, J ASIAN NAT PROD RES, V4, P1
80148    VAKHNENKO VA, 1992, J PHYS A-MATH GEN, V25, P4181
80149    VAKHNENKO VO, 1998, NONLINEARITY, V11, P1457
80150    ZHENG CL, 2002, ACTA PHYS SIN-CH ED, V51, P2426
80151    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
80152    ZHENG CL, 2002, COMMUN THEOR PHYS, V38, P653
80153    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
80154    ZHENG CL, 2003, CHINESE PHYS, V12, P11
80155    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P9
80156    ZHENG CL, 2003, IN PRESS CHIN PHYS, V12
80157 NR 25
80158 TC 27
80159 SN 0256-307X
80160 J9 CHIN PHYS LETT
80161 JI Chin. Phys. Lett.
80162 PD JUN
80163 PY 2003
80164 VL 20
80165 IS 6
80166 BP 783
80167 EP 786
80168 PG 4
80169 SC Physics, Multidisciplinary
80170 GA 692QM
80171 UT ISI:000183671800001
80172 ER
80173 
80174 PT J
80175 AU Qian, G
80176    Sun, DD
80177    Tay, JH
80178 TI Characterization of mercury- and zinc-doped alkali-activated slag
80179    matrix - Part I. Mercury
80180 SO CEMENT AND CONCRETE RESEARCH
80181 DT Article
80182 DE mercury; immobilization; alkali-activated slag matrix; hydration
80183    products and physical properties
80184 ID PORTLAND-CEMENT; SOLIDIFICATION; STABILIZATION; WASTES; FTIR
80185 AB The physical properties, pore structure, hydration process and
80186    hydration products of mercury-doped (Hg-doped) alkali-activated slag
80187    (AAS) matrixes have been evaluated by examination of physical
80188    properties, pore structure analysis and XRD, TG-DTG, FTIR and TCLP
80189    methods. Low concentrations of Hg2+ ions had little effect on the
80190    compressive strength, pore structure and degree of hydration of AAS
80191    matrixes. The addition of 2% Hg2+ ions into the AAS matrix brought out
80192    an evident retardation on early hydration and reduction of early
80193    compressive strength, but no negative effects were noticed after
80194    hydration for 28 days. The results also show that up to 2% of Hg2+ ions
80195    can be effectively immobilized in the AAS matrix, with the leaching
80196    meeting the TCLP mercury limit. Two mechanisms, physical encapsulation
80197    and chemical fixation, are assumed to be responsible for the
80198    immobilization of mercury in the AAS matrix. (C) 2003 Elsevier Science
80199    Ltd. All rights reserved.
80200 C1 Shanghai Univ, Sch Environm Engn, Shanghai 200072, Peoples R China.
80201    Nanyang Technol Univ, Sch Civil & Environm Engn, Environm & Engn Res Ctr, Singapore 2263, Singapore.
80202 RP Qian, G, Shanghai Univ, Sch Environm Engn, 149 Yanchang Rd, Shanghai
80203    200072, Peoples R China.
80204 CR *IUPAC, 1978, J PURE APPL CHEM, V31, P578
80205    COCKE DL, 1993, CHEM MICROSTRUCTURE, P187
80206    CONNER JR, 1990, CHEM FIXATION SOLIDI
80207    GLASSER FP, 1993, CHEM MICROSTRUCTURE, P1
80208    GLASSER FP, 2001, ENV PERFERRED MAT AD, V2, P281
80209    GLUKHOVSKY VD, 1959, SOIL SILICATES
80210    GOTO S, 1981, CEMENT CONCRETE RES, V11, P75
80211    ILER RK, 1979, CHEM SILICA
80212    KOMARNENI S, 1978, CEMENT CONCRETE RES, V8, P204
80213    MALIAVSKI NI, 2001, CERAM-SILIKATY, V45, P48
80214    MCWHINNEY HG, 1990, CEMENT CONCRETE RES, V20, P79
80215    METHA PK, 1986, CONCRETE ITS STRUCTU
80216    ORTEGO JD, 1989, J ENVIRON SCI HEAL A, V24, P589
80217    ORTEGO JD, 1991, ENVIRON SCI TECHNOL, V25, P1171
80218    POON CS, 1986, CEMENT CONCRETE RES, V16, P161
80219    POON CS, 1987, MAT RES SOC S P 5, V86, P67
80220    ROY D, 1999, CEMENT CONCRETE RES, V29, P249
80221    TITTLEBAUM ME, 1985, CRC CRIT R ENVIRON, V15, P179
80222    VAIL JG, 1952, SOLUBLE SILICATES
80223    VANJAARSVELD JGS, 1999, CEMENT CONCRETE RES, V29, P1189
80224    WANG SD, 1995, CEMENT CONCRETE RES, V25, P561
80225 NR 21
80226 TC 2
80227 SN 0008-8846
80228 J9 CEM CONCR RES
80229 JI Cem. Concr. Res.
80230 PD AUG
80231 PY 2003
80232 VL 33
80233 IS 8
80234 BP 1251
80235 EP 1256
80236 PG 6
80237 SC Materials Science, Multidisciplinary; Construction & Building Technology
80238 GA 692RG
80239 UT ISI:000183673600017
80240 ER
80241 
80242 PT J
80243 AU Qian, GR
80244    Sun, DD
80245    Tay, JH
80246 TI Characterization of mercury- and zinc-doped alkali-activated slag
80247    matrix - Part II. Zinc
80248 SO CEMENT AND CONCRETE RESEARCH
80249 DT Article
80250 DE zinc; immobilization; alkali-activated slag matrix; hydration products
80251    and physical properties
80252 ID CALCIUM SILICATE; PORTLAND-CEMENT; LEAD; SPECTROSCOPY; METALS
80253 AB The compressive strength, setting time, pore structure and hydration
80254    product of Zn-doped, alkali-activated slag (AAS) matrix have been
80255    investigated by examination of physical properties, micropore analysis,
80256    thermal analysis, FTIR, SEM and TCLP methods. The results show that the
80257    effects of Zn2+ on the AAS matrix depend on Zn2+ ion concentrations. At
80258    low Zn2+ ion concentrations, little negative influences on the
80259    compressive strength, setting time and distribution of pore structure
80260    were observed. Moreover, low concentrations of Zn2+ ion could be
80261    effectively immobilized in the AAS matrix. For 2% Zn-doped AAS matrix,
80262    the hydration of AAS paste was greatly retarded and leaching from this
80263    matrix was higher than TCLP zinc limit even at 28 days. Based on the
80264    analyses of hydration products, the chemical fixation mechanisms are
80265    considered responsible for the immobilization of Zn2+ ions in the AAS
80266    matrix. (C) 2003 Elsevier Science Ltd. All rights reserved.
80267 C1 Shanghai Univ, Sch Environm Engn, Shanghai 200072, Peoples R China.
80268    Nanyang Technol Univ, Sch Civil & Environm Engn, Environm & Engn Res Ctr, Singapore 2263, Singapore.
80269 RP Qian, GR, Shanghai Univ, Sch Environm Engn, 149 Yanchang Rd, Shanghai
80270    200072, Peoples R China.
80271 CR COCKE DL, 1992, J HAZARD MATER, V30, P83
80272    COCKE DL, 1993, CHEM MICROSTRUCTURE
80273    KOMARNENI S, 1988, CEMENT CONCRETE RES, V18, P204
80274    MALIAVSKI NI, 2001, CERAM-SILIKATY, V45, P48
80275    MOLLAH MYA, 1992, J ENV SCI HLTH A, V27, P1503
80276    MOULIN I, 1999, LANGMUIR, V15, P2829
80277    OLMO IF, 2001, CEMENT CONCRETE RES, V31, P1213
80278    ORTEGO JD, 1991, ENVIRON SCI TECHNOL, V25, P1171
80279    POON CS, 1987, FLY ASH COAL CONVERS, V86, P67
80280    POURBAIX M, 1974, ATLAS ELECTROCHEMICA
80281    QIAN G, 2003, CEMENT CONCRETE RES, V33, P1251
80282    ROSE J, 2001, LANGMUIR, V17, P3658
80283    STEPHAN D, 1999, CEMENT CONCRETE RES, V29, P545
80284    YOUSUF M, 1995, WASTE MANAGE, V15, P137
80285 NR 14
80286 TC 1
80287 SN 0008-8846
80288 J9 CEM CONCR RES
80289 JI Cem. Concr. Res.
80290 PD AUG
80291 PY 2003
80292 VL 33
80293 IS 8
80294 BP 1257
80295 EP 1262
80296 PG 6
80297 SC Materials Science, Multidisciplinary; Construction & Building Technology
80298 GA 692RG
80299 UT ISI:000183673600018
80300 ER
80301 
80302 PT J
80303 AU Zhu, ZY
80304    Li, GG
80305    Cheng, CJ
80306 TI A numerical method for fractional integral with applications
80307 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
80308 DT Article
80309 DE fractional calculus; numerical method; fractional derivative
80310    constitutive relation; weakly singular Volterra integro-differential
80311    equation
80312 ID BEHAVIOR; BEAMS; LAWS
80313 AB A new numerical method for the fractional integral that only stores
80314    part history data is presented, and its discretization error is
80315    estimated. The method can be used to solve the integro-differential
80316    equation including fractional integral or fractional derivative in a
80317    long history. The difficulty of storing all history data is overcome
80318    and the error can he controlled. As application, motion equations
80319    governing the dynamical behavior of a viscoelastic Timoshenko beam with
80320    fractional derivative constitutive relation are given. The dynamical
80321    response of the beam subjected to a periodic excitation is studied by
80322    using the separation variables method. Then the new numerical method is
80323    used to solve a class of weakly singular Volterra integro-differential
80324    equations which are applied to describe the dynamical behavior of
80325    viscoelastic beams with fractional derivative constitutive relations.
80326    The analytical and unmerical results are compared. It is found that
80327    they are very close.
80328 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
80329    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
80330    Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
80331    Shanghai Supercomp Ctr, Shanghai 201203, Peoples R China.
80332 RP Zhu, ZY, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
80333    200072, Peoples R China.
80334 CR AKOZ Y, 1999, INT J NUMER METH ENG, V44, P1909
80335    ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151
80336    ATKINSON KE, 1978, INTRO NUMERICAL ANAL, P120
80337    BAGLEY RL, 1986, J RHEOL, V30, P133
80338    CHEN LQ, 2000, APPL MATH MECH-ENGL, V21, P995
80339    CHENG CJ, 1998, ACTA MECH SINICA, V30, P690
80340    DELBOSCO D, 1996, J MATH ANAL APPL, V204, P609
80341    ENELUND M, 1999, INT J SOLIDS STRUCT, V36, P2417
80342    ENELUND M, 1999, INT J SOLIDS STRUCT, V36, P939
80343    GEMANT A, 1938, PHILOS MAG, V25, P92
80344    KOELLER RC, 1984, J APPL MECH, V51, P294
80345    LIU YZ, 1998, MECH VIBRATIONS, P143
80346    MAKRIS N, 1997, J RHEOL, V41, P1007
80347    ROSS B, 1975, LECT NOTES MATH, V457, P40
80348    ROSSIKHIN YA, 1997, APPL MECH REV, V50, P15
80349    SAKO SG, 1993, FRACTIONAL INTEGRALS, P24
80350    SUIRE G, 1995, INT J MECH SCI, V37, P753
80351    TIMOSHENKO S, 1972, MECH MAT
80352    YANG TQ, 1990, VISCOELASTIC MECH, P55
80353 NR 19
80354 TC 0
80355 SN 0253-4827
80356 J9 APPL MATH MECH-ENGL ED
80357 JI Appl. Math. Mech.-Engl. Ed.
80358 PD APR
80359 PY 2003
80360 VL 24
80361 IS 4
80362 BP 373
80363 EP 384
80364 PG 12
80365 SC Mathematics, Applied; Mechanics
80366 GA 691RF
80367 UT ISI:000183618700001
80368 ER
80369 
80370 PT J
80371 AU Yang, L
80372    Liu, ZR
80373    Mao, JM
80374 TI Controlling hyperchaos in planar systems by adjusting parameters
80375 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
80376 DT Article
80377 DE control of chaos; hyperchaotic orbits; parameter adjustment
80378 ID CONTROLLING CHAOS; TARGETS; ORBITS; MAP
80379 AB For the two-parameter family of planar mapping, a method to stabilize
80380    an unstable fixed point without stable manifold embedding in hyperchaos
80381    is introduced. It works by adjusting the two parameters in each
80382    iteration of the map. The explicit expressions for the parameter
80383    adjustments are derived, and strict proof of convergence for method is
80384    given.
80385 C1 Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China.
80386    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
80387    Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China.
80388 RP Yang, L, Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China.
80389 CR AUERBACH D, 1992, PHYS REV LETT, V69, P3479
80390    DITTO WL, 1990, PHYS REV LETT, V65, P3211
80391    OTT E, 1990, PHYS REV LETT, V64, P1196
80392    PASKOTA M, 1995, INT J BIFURCAT CHAOS, V5, P573
80393    PETROV V, 1992, J CHEM PHYS, V96, P7506
80394    PYRAGAS K, 1992, PHYS LETT A, V170, P421
80395    ROMEIRAS FJ, 1992, PHYSICA D, V58, P165
80396    SHINBROT T, 1990, PHYS REV LETT, V65, P3215
80397    SHINBROT T, 1992, PHYS LETT A, V169, P349
80398    SHINBROT T, 1992, PHYS REV A, V45, P4165
80399    SINGER J, 1991, PHYS REV LETT, V66, P1123
80400    YANG L, 1998, APPL MATH MECH-ENGL, V19, P1
80401    YANG L, 2000, PHYS REV LETT, V84, P67
80402 NR 13
80403 TC 0
80404 SN 0253-4827
80405 J9 APPL MATH MECH-ENGL ED
80406 JI Appl. Math. Mech.-Engl. Ed.
80407 PD APR
80408 PY 2003
80409 VL 24
80410 IS 4
80411 BP 396
80412 EP 401
80413 PG 6
80414 SC Mathematics, Applied; Mechanics
80415 GA 691RF
80416 UT ISI:000183618700003
80417 ER
80418 
80419 PT J
80420 AU Chen, LQ
80421    Liu, YZ
80422 TI Chaotic attitude motion of a magnetic rigid spacecraft
80423 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
80424 DT Article
80425 DE spacecraft attitude dynamics; chaos; Melnikov's method; numerical
80426    simulation
80427 AB Chaotic attitude motion of a magnetic rigid spacecraft in a circular
80428    orbit of the earth is,treated. The dynamical model of the problem was
80429    derived from the law of moment of momentum. The Melnikov analysis-was
80430    carried out to prove the existence of a complicated nonwandering Cantor
80431    set. The dynamical behaviors were numerically investigated by means of
80432    time history, Poincare map power spectrum and Liapunov exponents.
80433    Numerical simulations indicate that the onset of chaos is characterized
80434    by break of torus as the increase of the torque of the, magnetic forces.
80435 C1 Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
80436    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
80437    Shanghai Jiao Tong Univ, Dept Engn Mech, Shanghai 200030, Peoples R China.
80438 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
80439 CR BELETSKII VV, 1996, CHAOS, V6, P155
80440    BELETSKY VV, 1995, REGULAR CHAOTISCH BE, P31
80441    CHEN LQ, 2002, INT J NONLINEAR MECH, V37, P493
80442    CHEN LQ, 2002, J FRANKLIN I, V339, P121
80443    LIU YZ, 1995, SPACECRAFT ATTITUDE, P1
80444    LIU YZ, 1998, P 3 INT C NONL MECH, P80
80445    LIU YZ, 2000, ADV MECH, V30, P351
80446    LIU YZ, 2002, NONLINEAR DYNAM, P217
80447    RIMROTT FJP, 1989, INTRO ATTITUDE DYNAM, P1
80448    WOLF A, 1985, PHYSICA D, V16, P285
80449 NR 10
80450 TC 0
80451 SN 0253-4827
80452 J9 APPL MATH MECH-ENGL ED
80453 JI Appl. Math. Mech.-Engl. Ed.
80454 PD APR
80455 PY 2003
80456 VL 24
80457 IS 4
80458 BP 434
80459 EP 440
80460 PG 7
80461 SC Mathematics, Applied; Mechanics
80462 GA 691RF
80463 UT ISI:000183618700008
80464 ER
80465 
80466 PT J
80467 AU He, JH
80468 TI Variational approach to the sixth-order boundary value problems
80469 SO APPLIED MATHEMATICS AND COMPUTATION
80470 DT Article
80471 DE boundary value problem; variational principle; Ritz method
80472 AB Recently, Wazwaz [Appl. Math. Comput. 118 (2001) 311-325] applied the
80473    Adomian's decomposition method to solve analytically the solution of
80474    sixth-order boundary value problems. The same problem is discussed via
80475    the variational principle, which reveals to be much more simpler and
80476    much more efficient. (C) 2002 Elsevier Science Inc. All rights reserved.
80477 C1 Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R China.
80478    Shanghai DOnghua Univ, Coll Sci, Shanghai 200051, Peoples R China.
80479    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
80480 RP He, JH, Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R
80481    China.
80482 CR HE JH, 1997, INT J TURBO JET ENG, V14, P23
80483    WAZWAZ AM, 2000, INT J NONLINEAR SCI, V1, P17
80484    WAZWAZ AM, 2001, APPL MATH COMPUT, V118, P311
80485 NR 3
80486 TC 0
80487 SN 0096-3003
80488 J9 APPL MATH COMPUT
80489 JI Appl. Math. Comput.
80490 PD NOV 10
80491 PY 2003
80492 VL 143
80493 IS 2-3
80494 BP 537
80495 EP 538
80496 PG 2
80497 SC Mathematics, Applied
80498 GA 691QD
80499 UT ISI:000183616200027
80500 ER
80501 
80502 PT J
80503 AU He, JH
80504 TI Variational approach to the Lane-Emden equation
80505 SO APPLIED MATHEMATICS AND COMPUTATION
80506 DT Article
80507 DE variational principle; Ritz method; Lane-Emden equation
80508 AB By the semi-inverse method, a variational principle is obtained for the
80509    Lane-Emden equation, which gives much numerical convenience when
80510    applying finite element methods or Ritz method. (C) 2002 Elsevier
80511    Science Inc. All rights reserved.
80512 C1 Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R China.
80513    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
80514 RP He, JH, Shanghai DOnghua Univ, Coll Sci, POB 471,1882 Yanan Xilu Rd,
80515    Shanghai 200051, Peoples R China.
80516 CR ANDRIANOV I, 2000, INT J NONLINEAR SCI, V1, P327
80517    BENDER CM, 1989, J MATH PHYS, V30, P1447
80518    HE JH, 1997, INT J TURBO JET ENG, V14, P23
80519    WAZWAZ AM, 2000, INT J NONLINEAR SCI, V1, P17
80520    WAZWAZ AM, 2001, APPL MATH COMPUT, V118, P287
80521 NR 5
80522 TC 2
80523 SN 0096-3003
80524 J9 APPL MATH COMPUT
80525 JI Appl. Math. Comput.
80526 PD NOV 10
80527 PY 2003
80528 VL 143
80529 IS 2-3
80530 BP 539
80531 EP 541
80532 PG 3
80533 SC Mathematics, Applied
80534 GA 691QD
80535 UT ISI:000183616200028
80536 ER
80537 
80538 PT J
80539 AU He, JH
80540 TI A Lagrangian for von Karman equations of large deflection problem of
80541    thin circular plate
80542 SO APPLIED MATHEMATICS AND COMPUTATION
80543 DT Article
80544 DE von Karman equations; plate; variational principle; semi-inverse
80545    method; Ritz method
80546 ID GENERALIZED VARIATIONAL-PRINCIPLES; SEMI-INVERSE METHOD; PERTURBATION
80547    TECHNIQUE; FLUID-MECHANICS; EMPHASIS
80548 AB By the semi-inverse method proposed by He, a Lagrangian is established
80549    for the large deflection problem of thin circular plate. Ritz method is
80550    used to obtain an approximate analytical solution of the problem. First
80551    order approximate solution is obtained, which is similar to those in
80552    open literature. By Mathematica a more accurate solution can be
80553    deduced. (C) 2002 Elsevier Science Inc. All rights reserved.
80554 C1 Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R China.
80555    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
80556 RP He, JH, Shanghai Donghua Univ, Coll Sci, POB 471,1882 Yanan Xilu Rd,
80557    Shanghai 200051, Peoples R China.
80558 CR CHIEN WZ, 1947, CHINESE J PHYS, V7, P102
80559    CHIEN WZ, 1948, NATIONAL TSING HUA U, V5, P71
80560    CHIEN WZ, 1985, APPL MATH MECH, V6, P25
80561    HE JH, 1997, INT J TURBO JET ENG, V14, P23
80562    HE JH, 1999, COMPUT METHOD APPL M, V178, P257
80563    HE JH, 1999, INT J NONLINEAR MECH, V34, P699
80564    HE JH, 2000, AIRCR ENG AEROSP TEC, V72, P18
80565    HE JH, 2000, APPL MATH MECH-ENGL, V21, P797
80566    HE JH, 2000, ASME, V67, P326
80567    HE JH, 2000, INT J ENG SCI, V39, P323
80568    HE JH, 2000, INT J NONLINEAR SCI, V1, P133
80569    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
80570    HE JH, 2000, MECCANICA, V35, P299
80571    HE JH, 2001, ACTA MECH, V149, P247
80572    HE JH, 2001, J APPL MECH-T ASME, V68, P666
80573    HE JH, 2001, J VIB CONTROL, V7, P631
80574    LEVY S, 1942, 737 NACA
80575    MCPHERSON A, 1942, 744 NACA
80576    NOOR AK, 1984, UNIFICATION FINITE E, P275
80577    TIMOSHENKO S, 1940, THEORY PLATES SHELLS, P333
80578    WAY S, 1934, T ASME, V56, P627
80579 NR 21
80580 TC 0
80581 SN 0096-3003
80582 J9 APPL MATH COMPUT
80583 JI Appl. Math. Comput.
80584 PD NOV 10
80585 PY 2003
80586 VL 143
80587 IS 2-3
80588 BP 543
80589 EP 549
80590 PG 7
80591 SC Mathematics, Applied
80592 GA 691QD
80593 UT ISI:000183616200029
80594 ER
80595 
80596 PT J
80597 AU Chen, Y
80598    Qiu, XJ
80599 TI Collective radiation of water in cytoskeletal microtubule
80600 SO ACTA PHYSICA SINICA
80601 DT Article
80602 DE microtubule; water; electric dipole; electriomagnetic radiation;
80603    collective radiation; heatbath
80604 AB microtubules are the important components and function units in
80605    cytoskeletal, and filled with water inside it. In this paper, by using
80606    the quantum field theory, we study the interactions between the
80607    electric dipole field of water molecules confined within the hollow
80608    core of microtubules and the quantized electromagnetic radiation field,
80609    and the characteristic of collective electromagnetic radiation raised
80610    from water's electric dipoles. In addition, the coupling between the
80611    water molecule system confined within microtubules and the surrounding
80612    heatbath is discussed.
80613 C1 Shanghai Univ, Sch Sci, Dept Phys, Shanghai 200436, Peoples R China.
80614 RP Chen, Y, Shanghai Univ, Sch Sci, Dept Phys, Shanghai 200436, Peoples R
80615    China.
80616 CR AMOS LA, 1974, J CELL SCI, V14, P523
80617    CRICK F, 1990, SEMINARS NEUROSCIENC, V2, P263
80618    DELGIUDICE E, 1984, NUCL PHYS, P375
80619    DELGIUDICE E, 1986, BIOL MATTER, P185
80620    DELGIUDICE E, 1988, PHYS REV LETT, V61, P1085
80621    ECCLES JC, 1986, P ROY SOC LOND B BIO, V227, P411
80622    GRAY CM, 1989, P NATL ACAD SCI USA, V86, P1698
80623    HAMEROFF SR, 1982, J THEOR BIOL, V98, P549
80624    JIBU M, 1994, BIOSYSTEMS, V32, P195
80625    LURIE D, 1968, PARTICLES FIELDS, P124
80626    MARSHALL IN, 1989, NEW IDEAS PSYCHOL, V7, P73
80627    RIEHLE A, 1997, SCIENCE, V278, P1500
80628    SINGER W, 1993, ANNU REV PHYSIOL, V55, P349
80629    XU KZ, 2000, ADV ATOM MOL PHYSICS, P209
80630 NR 14
80631 TC 3
80632 SN 1000-3290
80633 J9 ACTA PHYS SIN-CHINESE ED
80634 JI Acta Phys. Sin.
80635 PD JUN
80636 PY 2003
80637 VL 52
80638 IS 6
80639 BP 1554
80640 EP 1560
80641 PG 7
80642 SC Physics, Multidisciplinary
80643 GA 689BV
80644 UT ISI:000183472500047
80645 ER
80646 
80647 PT J
80648 AU Chen, LQ
80649    Zu, JW
80650    Wu, J
80651 TI Steady-state response of the parametrically excited axially moving
80652    string constituted by the Boltzmann superposition principle
80653 SO ACTA MECHANICA
80654 DT Article
80655 ID NONLINEAR VIBRATION; STABILITY ANALYSIS; BELTS; DISCRETIZATION
80656 AB The steady-state transverse vibration of a parametrically excited
80657    axially moving string with geometric nonlinearity is investigated in
80658    this paper. The Boltzmann superposition principle is employed to
80659    characterize the material property of the string. The method of
80660    multiple scales is applied directly to the governing equation, which is
80661    a nonlinear partial-differential-integral equation. The solvability
80662    condition of eliminating the secular terms is established. Closed form
80663    solutions for the amplitude and the existence conditions of nontrivial
80664    steady-state response of the summation resonance are obtained. Some
80665    numerical examples showing effects of the viscoelastic parameter, the
80666    amplitude of excitation, the frequency of excitation, and the transport
80667    speed are presented.
80668 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200436, Peoples R China.
80669    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
80670    Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada.
80671 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
80672    Shanghai 200436, Peoples R China.
80673 CR ABRATE S, 1992, MECH MACH THEORY, V27, P645
80674    CHEN LQ, IN PRESS J SOUND VIB
80675    CHEN LQ, 2001, ADV MECH, V31, P535
80676    CHEN LQ, 2002, MECH RES COMMUN, V29, P81
80677    CHRISTENSEN RM, 1982, THEORY VISCOELASTICI
80678    FUNG RF, 1997, J SOUND VIB, V201, P153
80679    HOU Z, 2001, ASME 18 BIANN C MECH
80680    HUANG JS, 1995, INT J MECH SCI, V37, P145
80681    MAHALINGAM S, 1957, BRIT J APPL PHYS, V8, P145
80682    MOCKENSTURM EM, 1996, J VIB ACOUST, V118, P346
80683    MOTE CD, 1972, SHOCK VIBRATION DIGE, V4, P2
80684    NAYFEH AH, 1979, NONLINEAR OSCILLATIO
80685    NAYFEH AH, 1992, NONLINEAR DYNAM, V3, P145
80686    PAKDEMIRLI M, 1994, J SOUND VIB, V169, P179
80687    PAKDEMIRLI M, 1995, J SOUND VIB, V186, P837
80688    PAKDEMIRLI M, 1995, NONLINEAR DYNAM, V8, P65
80689    PAKDEMIRLI M, 1997, J SOUND VIB, V203, P815
80690    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
80691    WICKERT JA, 1990, J APPL MECH-T ASME, V57, P738
80692    WU J, IN PRESS APPL MATH M
80693    ZHANG L, 1999, J APPL MECH-T ASME, V66, P396
80694    ZHANG L, 1999, J APPL MECH-T ASME, V66, P403
80695    ZHANG L, 2002, INT J STRUCTURAL STA, V2, P265
80696    ZHAO WJ, 2002, INT J NONLINEAR SCI, V3, P129
80697    ZHAO WJ, 2002, P 4 INT C NONL MECH, P1114
80698 NR 25
80699 TC 6
80700 SN 0001-5970
80701 J9 ACTA MECH
80702 JI Acta Mech.
80703 PY 2003
80704 VL 162
80705 IS 1-4
80706 BP 143
80707 EP 155
80708 PG 13
80709 SC Mechanics
80710 GA 691HR
80711 UT ISI:000183600600010
80712 ER
80713 
80714 PT S
80715 AU Zhang, Y
80716    Fan, JY
80717    Wang, DZ
80718 TI Experimental investigations of the impacts of sidecast dredging process
80719    on water environment
80720 SO PROGRESS IN EXPERIMENTAL AND COMPUTATIONAL MECHANICS IN ENGINEERING
80721 SE KEY ENGINEERING MATERIALS
80722 DT Article
80723 DE sidecast dredging; pollutant diffusion; water environment
80724 AB The impacts of sidecast dredging process on water environment in
80725    waterway dredging engineering were experimentally investigated in a
80726    water channel. The flow and diffusion patterns of high concentration
80727    pollutant in shallow crossflow were obtained by means of flow
80728    visualization and quantitative measurement. Experimental results
80729    indicate that the high concentration pollutant will spread downstream
80730    in the manner of stratified flow. The impacts of the pollutant on water
80731    environment are remarkable within the scope of 300D downstream and 100D
80732    transversely from the released point in the near field while the high
80733    concentration pollutant converges mainly near the bottom layer of the
80734    ambient currents. In addition, the longitudinal accumulative
80735    sedimentation rates of the dredged slurry are gained and can provide
80736    important referenced efficiency for the sidecast dredging process.
80737 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
80738 RP Zhang, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
80739    200072, Peoples R China.
80740 CR RODI W, 1982, TURBULENT BUOYANT JE
80741    YU CZ, 1993, TURBULENT JETS
80742    ZHANG Y, 2001, J HYDRODYNAMICS B, V13, P117
80743 NR 3
80744 TC 0
80745 SN 1013-9826
80746 J9 KEY ENG MAT
80747 PY 2003
80748 VL 243-2
80749 BP 249
80750 EP 254
80751 PG 6
80752 GA BW88H
80753 UT ISI:000183458800042
80754 ER
80755 
80756 PT J
80757 AU Mori, K
80758    Nishimura, K
80759    Cao, SX
80760 TI Magnetic and superconducting properties of R1-xNdxNi2B2C (R = Y and Er)
80761    systems
80762 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
80763 DT Article
80764 DE magnetism and superconductivity; borocarbide
80765 ID BORIDE
80766 AB We investigated Nd concentration dependence of the superconducting
80767    transition temperature, T-C, and magnetic transition temperature, T-N,
80768    for the R1-xNdxNi2B2C (R = Y and Er) systems. T-C and T-N curves
80769    against x for the R = Er system cross over at the substitution
80770    concentration x similar to 0.165, for which T-N = 5 K, but T-C could
80771    not be observed. In the meanwhile, T-C and T-N curves for the R = Y
80772    system did not cross over. The phase diagram, (T-C, T-N) against Nd
80773    concentration x, for the R1-xNdxNi2B2C systems are given and discussed.
80774    (C) 2003 Elsevier Science B.V. All rights reserved.
80775 C1 Toyama Univ, Fac Engn, Toyama 9308555, Japan.
80776    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
80777 RP Mori, K, Toyama Univ, Fac Engn, 3190 Gofuku, Toyama 9308555, Japan.
80778 CR CAO SX, 1999, PHYSICA C, V316, P273
80779    CAVA RJ, 1994, NATURE, V367, P146
80780    EISAKI H, 1994, PHYS REV B, V50, P647
80781    LYNN JW, 1997, PHYS REV B, V55, P6584
80782    MORI K, 2002, ADV CRYOGEN ENG, V48, P1074
80783    SCHMIDT H, 1996, CZECH J PHYS S2, V46, P827
80784 NR 6
80785 TC 0
80786 SN 0921-4534
80787 J9 PHYSICA C
80788 JI Physica C
80789 PD MAY
80790 PY 2003
80791 VL 388
80792 BP 187
80793 EP 188
80794 PG 2
80795 SC Physics, Applied
80796 GA 686UX
80797 UT ISI:000183340300087
80798 ER
80799 
80800 PT J
80801 AU Cao, SX
80802    Zhang, JC
80803    Qin, XL
80804    Nishimura, K
80805    Mori, K
80806 TI Thermal conductivity study on the borocarbide superconductor LuNi2B2C
80807    under applied magnetic fields
80808 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
80809 DT Article
80810 DE superconductivity; thermal conductivity; upper critical field; LuNi2B2C
80811 ID YNI2B2C
80812 AB Applied magnetic field dependence of thermal conductivity (TC) and the
80813    temperature dependences of resistivity and magnetization on the nickel
80814    borocarbide superconducting compound LuNi2B2C have been measured in the
80815    temperature range from 4.2 to 30 K, under the applied magnetic field
80816    range of 0-8 T. The magnetic field dependence of the TC showed
80817    characteristic behavior at the lower and the upper critical fields at
80818    temperatures below T,. We present the first temperature dependence
80819    curve of upper critical field derived from the results of TC
80820    measurement of LuNi2B2C. (C) 2003 Elsevier Science B.V. All rights
80821    reserved.
80822 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
80823    Toyama Univ, Fac Engn, Toyama 9308555, Japan.
80824 RP Cao, SX, Shanghai Univ, Dept Phys, Shangda Rd 99, Shanghai 200436,
80825    Peoples R China.
80826 CR CAVA RJ, 1994, NATURE, V367, P146
80827    MAMIYA T, 1966, J PHYS SOC JPN, V21, P1032
80828    NAGARAJAN R, 1994, PHYS REV LETT, V72, P274
80829    NAROZHNYI VN, 1999, PHYS REV B, V59, P14762
80830    SERA M, 1996, PHYS REV B, V54, P3062
80831    SHULGA SV, 1998, PHYS REV LETT, V80, P1730
80832 NR 6
80833 TC 0
80834 SN 0921-4534
80835 J9 PHYSICA C
80836 JI Physica C
80837 PD MAY
80838 PY 2003
80839 VL 388
80840 BP 195
80841 EP 196
80842 PG 2
80843 SC Physics, Applied
80844 GA 686UX
80845 UT ISI:000183340300091
80846 ER
80847 
80848 PT J
80849 AU Cao, SX
80850    Li, PL
80851    Cao, GX
80852    Zhang, JC
80853 TI Effect of magnetic ion Ni doping for Cu in the CuO2 plane on electronic
80854    structure and superconductivity on Y123 cuprate
80855 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
80856 DT Article
80857 DE high-T-c superconductor; electron structure; positron annihilation; Ni
80858    substitution
80859 ID POSITRON; FILMS
80860 AB The YBa2Cu3-xNixO7-delta with x = 0-0.4 have been studied using
80861    positron annihilation technique. The changes of positron annihilation
80862    parameters with the Ni substitution concentration x are given. From the
80863    change of electronic density n(e) and T-c, it would prove that the
80864    localized carriers (electron and hole) in Cu-O chain and CuO2 planes
80865    have enormous influence on superconductivity by affecting charge
80866    transfer between the reservoir layer and CuO2 planes. (C) 2003 Elsevier
80867    Science B.V. All rights reserved.
80868 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
80869 RP Cao, SX, Shanghai Univ, Dept Phys, Shangda Rd 99, Shanghai 200436,
80870    Peoples R China.
80871 CR CLAYHOLD J, 1989, PHYS REV B, V39, P7324
80872    HAM KM, 1993, PHYS REV B, V47, P11439
80873    JEAN YC, 1990, PHYS REV LETT, V64, P1593
80874    JENSEN KO, 1989, J PHYS-CONDENS MAT, V1, P3727
80875    SUMNER MJ, 1993, PHYS REV B, V47, P12248
80876    ZHANG J, 1999, PHYS LETT A, V26, P452
80877    ZHANG J, 2002, PHYS REV B, V65, P54513
80878 NR 7
80879 TC 0
80880 SN 0921-4534
80881 J9 PHYSICA C
80882 JI Physica C
80883 PD MAY
80884 PY 2003
80885 VL 388
80886 BP 383
80887 EP 384
80888 PG 2
80889 SC Physics, Applied
80890 GA 686UX
80891 UT ISI:000183340300185
80892 ER
80893 
80894 PT J
80895 AU Fang, Y
80896    Chow, TWS
80897 TI 2-d analysis for iterative learning controller for discrete-time
80898    systems with variable initial conditions
80899 SO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND
80900    APPLICATIONS
80901 DT Article
80902 DE discrete-time systems; iterative learning control (ILC);
80903    two-dimensional (2-D) system theory; variable initial conditions
80904 ID NONLINEAR-SYSTEMS; MANIPULATORS; STABILITY; MODEL
80905 AB In this brief an iterative learning controller applying to linear
80906    discrete-time multivariable systems with variable initial conditions is
80907    investigated based on two-dimensional (2-D) system theory. The brief
80908    first introduces a 2-D tracking error system and shows the effect of
80909    tracking errors against variable initial conditions. The sufficient
80910    conditions for the convergence of the learning control rules are
80911    derived and discussed. Based on the proposed iterative learning control
80912    (ILC) rule, we have shown that the convergence of the learning rule is
80913    guaranteed with less restriction. An improved ILC rule is proposed. As
80914    a result, the convergence is robust with respect to small perturbations
80915    of the system parameters. Two numerical simulation examples are used to
80916    validate the effectiveness of the proposed methodologies.
80917 C1 City Univ Hong Kong, Kowloon, Hong Kong, Peoples R China.
80918 RP Fang, Y, Shanghai Univ, Shanghai 20072, Peoples R China.
80919 CR AMANN N, 1996, P IEE CONTR THEOR AP, V143
80920    ARIMOTO S, 1984, J ROBOTIC SYST, V1, P123
80921    BONDI P, 1988, IEEE J ROBITICS AUTO, V4, P14
80922    BOSE T, 1992, IEEE T SIGNAL PROCES, V40, P2589
80923    CHOW TWS, 1998, IEEE T CIRCUITS-I, V45, P683
80924    CHOW TWS, 1998, IEEE T IND ELECTRON, V45, P151
80925    CRAIG JJ, 1984, P AM CONTR C SAN DIE, P1566
80926    FANG Y, 1998, AUTOMATICA, V34, P1458
80927    GENG Z, 1990, INT J CONTROL, V52, P833
80928    HEINZINGER G, 1992, IEEE T AUTOMAT CONTR, V37, P110
80929    HINAMOTO T, 1993, IEEE T CIRCUITS-I, V40, P102
80930    HINAMOTO T, 1997, IEEE T CIRCUITS-I, V44, P254
80931    HWANG DH, 1991, IEE PROC-D, V138, P139
80932    KACZOREK T, 1985, 2 DIMENSIONAL LINEAR
80933    KUREK JE, 1993, IEEE T AUTOMAT CONTR, V38, P121
80934    LEE K, 1996, ARCH PSYCHOL, V64, P3
80935    LEE KH, 1991, IEE PROC-D, V138, P525
80936    MOORE KL, 1993, ITERATIVE LEARNING C
80937    ROESSER RP, 1975, IEEE T AUTOMAT CONTR, V20, P1
80938    SUN MX, 2000, P AMER CONTR CONF, P277
80939    WANG DW, 1995, AUTOMATICA, V31, P257
80940 NR 21
80941 TC 5
80942 SN 1057-7122
80943 J9 IEEE TRANS CIRCUIT SYST-I
80944 JI IEEE Trans. Circuits Syst. I-Fundam. Theor. Appl.
80945 PD MAY
80946 PY 2003
80947 VL 50
80948 IS 5
80949 BP 722
80950 EP 727
80951 PG 6
80952 SC Engineering, Electrical & Electronic
80953 GA 688CA
80954 UT ISI:000183413700018
80955 ER
80956 
80957 PT J
80958 AU Xu, GQ
80959    Li, ZB
80960    Liu, YP
80961 TI Exact solutions to a large class of nonlinear evolution equations
80962 SO CHINESE JOURNAL OF PHYSICS
80963 DT Article
80964 ID SOLITARY WAVE SOLUTIONS
80965 AB A unified approach is presented for finding the travelling wave
80966    solutions to a large class of nonlinear evolution equations defined by
80967    the concept of "rank". The key idea of this method is to make use of
80968    the arbitrariness of the Painleve analysis manifold. We selected a new
80969    expansion variable, thus obtaining a rich variety of exact travelling
80970    wave solutions to a nonlinear evolution equation, including solitary
80971    wave solutions, triangular periodic solutions and Jacobi periodic wave
80972    solutions, as well as rational solutions and so on. This method is
80973    completely algorithmic, hence the Maple implementation is also used.
80974    Several examples illustrate the capabilities of the package; new
80975    solutions and more general types of solutions are obtained for some
80976    nonlinear evolution equations.
80977 C1 Shanghai Univ, Dept Informat Adm, Shanghai 200436, Peoples R China.
80978    E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China.
80979 RP Xu, GQ, Shanghai Univ, Dept Informat Adm, Shanghai 200436, Peoples R
80980    China.
80981 CR ABLOWITZ MJ, 1999, SOLITON NONLINEAR EV
80982    FAN EG, 2000, PHYS LETT A, V277, P212
80983    FAN EG, 2002, PHYS LETT A, V300, P243
80984    FENG X, 2000, INT J THEOR PHYS, V39, P207
80985    HEREMAN W, 1986, J PHYS A-MATH GEN, V19, P607
80986    HIROTA R, 1980, TOPICS MODERN PHYSIC
80987    LAN H, 1990, J PHYS A, V23, P4097
80988    LI ZB, 1997, ACTA MATH SINICA, V17, P81
80989    LI ZB, 2002, COMPUT PHYS COMMUN, V148, P256
80990    LIU SK, 2001, PHYS LETT A, V289, P69
80991    MALFLIET W, 1992, AM J PHYS, V60, P650
80992    WANG ML, 1995, PHYS LETT A, V199, P169
80993    WEISS J, 1983, J MATH PHYS, V24, P522
80994    WU WT, 1984, ALGORITHMS COMPUTATI, V834, P1
80995    WU YT, 1999, PHYS LETT A, V255, P259
80996 NR 15
80997 TC 2
80998 SN 0577-9073
80999 J9 CHIN J PHYS
81000 JI Chin. J. Phys.
81001 PD JUN
81002 PY 2003
81003 VL 41
81004 IS 3
81005 BP 232
81006 EP 241
81007 PG 10
81008 SC Physics, Multidisciplinary
81009 GA 688TY
81010 UT ISI:000183453500002
81011 ER
81012 
81013 PT J
81014 AU Zhang, JF
81015    Zheng, CL
81016 TI Abundant localized coherent structures of the (2+1)-dimensional
81017    generalized Nozhnik-Novikov-Veselov system
81018 SO CHINESE JOURNAL OF PHYSICS
81019 DT Article
81020 ID PARTIAL-DIFFERENTIAL EQUATIONS; DIMENSIONAL INTEGRABLE MODELS;
81021    KADOMTSEV-PETVIASHVILI EQUATION; NONLINEAR-EVOLUTION-EQUATIONS;
81022    SIMILARITY REDUCTIONS; BOUSSINESQ EQUATION; KDV EQUATION; PAINLEVE
81023    ANALYSIS; POTENTIAL SYMMETRIES; SINGULARITY ANALYSIS
81024 AB In a previous paper (Chin. Phys. 11, 651, (2002)), a rather general
81025    variable separation solution of the generalized
81026    Nizhnik-Novikov-Veselov(GNNV) system was obtained by using a special
81027    Backlund transformation, which can be derived from the extended
81028    homogenous balance method. However we did not discuss the related
81029    localized coherent structures of the model. In this article, the
81030    abundance of the localized coherent structures of the system,
81031    particularly some localized excitations with fractal behaviours, i.e.
81032    the fractal dromion and fractal lump excitations, were induced by the
81033    appropriate selection of the separated variables arbitrary functions.
81034 C1 Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
81035    Shanghai Univ, Inst Math & Mech, Shanghai 200072, Peoples R China.
81036    Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
81037 RP Zhang, JF, Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004,
81038    Peoples R China.
81039 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V30, P1262
81040    ABLOWITZ MJ, 1973, PHYS REV LETT, V31, P125
81041    BLUMAN GW, 1969, J MATH MECH, V18, P1025
81042    BLUMAN GW, 1989, APPL MATH SCI, V81
81043    BOGOYAVLENSKII O, 1989, IZV AKAD NAUK SSSR M, V53, P907
81044    BOGOYAVLENSKII OI, 1990, USP MAT NAUK, V45, P17
81045    BOGOYOVLENSKII OI, 1989, IZV AKAD NAUK SSSR M, V53, P234
81046    BOGOYOVLENSKII OI, 1989, IZV AKAD NAUK SSSR M, V54, P1123
81047    BOITI M, 1986, INVERSE PROBL, V2, P271
81048    BOITI M, 1988, PHYS LETT A, V132, P432
81049    CALOGERO F, 1976, NUOVO CIMENTO B, V31, P201
81050    CALOGERO F, 1977, NUOVO CIMENTO B, V39, P54
81051    CAO CW, 1990, SCI CHINA SER A, V33, P528
81052    CHENG Y, 1991, PHYS LETT A, V157, P22
81053    CLARKSON PA, 1989, J MATH PHYS, V30, P2201
81054    CLARKSON PA, 1989, J PHYS A-MATH GEN, V22, P2355
81055    CLARKSON PA, 1989, J PHYS A-MATH GEN, V22, P3821
81056    CLARKSON PA, 1990, PHYS LETT, V151, P133
81057    CLARKSON PA, 1995, CHAOS SOLITON FRACT, V5, P2261
81058    CONTE R, 1989, PHYS LETT A, V140, P383
81059    DAVEY A, 1974, P ROY SOC LOND A MAT, V338, P101
81060    FORDY A, 1991, PHYS LETT A, V160, P347
81061    HU XB, 1991, J PHYS A, V24, P1331
81062    HU XB, 1991, J PHYS A-MATH GEN, V24, P1979
81063    JIMBO M, 1982, PHYS LETT A, V92, P59
81064    KONOPELCHENKO BG, 1991, PHYS LETT A, V175, P17
81065    LAI DWC, 2001, J PHYS SOC JPN, V70, P666
81066    LI YS, 1993, J PHYS A-MATH GEN, V26, P7487
81067    LIN J, 2001, PHYS LETT A, V287, P257
81068    LOU S, 2000, J MATH PHYS, V41, P6509
81069    LOU S, 2000, J MATH PHYS, V41, P8286
81070    LOU SY, 1990, J PHYS A, V23, L649
81071    LOU SY, 1990, PHYS LETT A, V151, P133
81072    LOU SY, 1993, J PHYS A-MATH GEN, V26, P4387
81073    LOU SY, 1993, PHYS REV LETT, V71, P4099
81074    LOU SY, 1994, J PHYS A, V27, P207
81075    LOU SY, 1995, J PHYS A, V28, L191
81076    LOU SY, 1995, J PHYS A-MATH GEN, V28, P7227
81077    LOU SY, 1995, PHYS LETT A, V201, P47
81078    LOU SY, 1996, J PHYS A, V29, P4029
81079    LOU SY, 1996, J PHYS A-MATH GEN, V29, P5989
81080    LOU SY, 1997, COMMUN THEOR PHYS, V28, P41
81081    LOU SY, 1997, J MATH PHYS, V38, P6401
81082    LOU SY, 1997, SCI CHINA SER A, V34, P1317
81083    LOU SY, 1998, PHYS REV LETT, V80, P5027
81084    LOU SY, 1998, Z NATURFORSCH A, V53, P251
81085    LOU SY, 1999, J MATH PHYS, V40, P6491
81086    LOU SY, 2000, CHINESE PHYS LETT, V17, P781
81087    LOU SY, 2000, PHYS LETT A, V277, P94
81088    LOU SY, 2000, PHYS SCR, V65, P7
81089    LOU SY, 2000, Z NATURFORSCH A, V55, P867
81090    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
81091    MACCARI A, 1997, J MATH PHYS, V38, P4151
81092    OHTA Y, 1992, J PHYS SOC JPN, V61, P3928
81093    OLVER PJ, 1993, GRADUATE TEXTS MATH, V107
81094    PUCCI E, 1992, J PHYS A-MATH GEN, V25, P2631
81095    PUCCI E, 1993, J PHYS A-MATH GEN, V26, P681
81096    RADHA R, 1994, J MATH PHYS, V35, P4746
81097    RADHA R, 1994, J MATH PHYS, V35, P4746
81098    RAMANI A, 1989, PHYS REP, V180, P159
81099    SACCOMANDI G, 1997, J PHYS A-MATH GEN, V30, P2211
81100    TAGAMI Y, 1989, PHYS LETT A, V141, P116
81101    TANG XY, 2002, IN PRESS CHAOS SOLIT
81102    TANG XY, 2002, IN PRESS COMMUN THEO
81103    UTHAYAKUMAR A, 1999, CHAOS SOLITON FRACT, V10, P1513
81104    WEISS J, 1983, J MATH PHYS, V24, P522
81105    ZHANG JF, 2001, COMMUN THEOR PHYS, V35, P267
81106    ZHANG JF, 2002, CHINESE PHYS, V11, P651
81107 NR 68
81108 TC 0
81109 SN 0577-9073
81110 J9 CHIN J PHYS
81111 JI Chin. J. Phys.
81112 PD JUN
81113 PY 2003
81114 VL 41
81115 IS 3
81116 BP 242
81117 EP 256
81118 PG 15
81119 SC Physics, Multidisciplinary
81120 GA 688TY
81121 UT ISI:000183453500003
81122 ER
81123 
81124 PT J
81125 AU Shi, ZJ
81126    Nie, LQ
81127    Cao, WG
81128 TI Reaction of 1,5-diazabicyclo[4,3,0] non-5-ene and perfluoroalkynoates
81129    and study on the nuclear magnetic resonance spectra of the products
81130 SO CHINESE JOURNAL OF ANALYTICAL CHEMISTRY
81131 DT Article
81132 DE nuclear magnetic resonance; 1,5-diazabicyclo[4,3,0]non-5-ene;
81133    perfluoroalkynoates
81134 AB The tricyclic derivative was formed by the reaction of
81135    1,5-diazabicyclo[4,3,0] non -5-ene (DBN) and perfluoro-2-alkynoates.
81136    The products were analyzed in detail by H-1 nuclear magnetic resonance
81137    (NMR), C-13 NMR and 2D NMR. Their chemical shifts and J-coupling
81138    constants were discussed. The reaction paths and mechanism were also
81139    proposed.
81140 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
81141 RP Shi, ZJ, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
81142 CR HUDLICKY M, 1965, CHEM ORGANIC FLUOROC, P179
81143    NI ZG, 1991, CHINESE J PHARM, V22, P180
81144    PERBOST M, 1993, J HETEROCYCLIC CHEM, V30, P637
81145 NR 3
81146 TC 0
81147 SN 0253-3820
81148 J9 CHINESE J ANAL CHEM
81149 JI Chin. J. Anal. Chem.
81150 PD MAY
81151 PY 2003
81152 VL 31
81153 IS 5
81154 BP 573
81155 EP 576
81156 PG 4
81157 SC Chemistry, Analytical
81158 GA 687UD
81159 UT ISI:000183394600015
81160 ER
81161 
81162 PT J
81163 AU Ge, HH
81164    Zhou, DD
81165    Wu, WQ
81166 TI Passivation model of 316 stainless steel in simulated cooling water and
81167    the effect of sulfide on the passive film
81168 SO APPLIED SURFACE SCIENCE
81169 DT Article
81170 DE Mott-Schottky plot; electrochemical impedance spectroscopy; stainless
81171    steel; passive film; sulfide
81172 ID ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; IRON-CHROMIUM ALLOYS;
81173    CORROSION; POTENTIALS; STATE; ELECTRODES; STABILITY; METALS; BORATE;
81174    LAYERS
81175 AB Through the measurement and analysis of electrochemical impedance
81176    spectroscopy (EIS) data from the 316 stainless steel/simulated cooling
81177    water system, among the four selected passivation models, the
81178    equivalent circuit of Model D is most consistent with the conditions of
81179    this system. In this model, the charge-transfer resistance R-1 is
81180    relatively small at the beginning of the immersion. When the immersion
81181    time increases, the values of R-1 and Y-01 stabilize. Over the time
81182    period of the immersion, the film resistance R-2 increases while the
81183    value of Y-02 decreases continuously, indicating that the passive film
81184    is getting thicker and more compact. With the addition of sulfide, R-2
81185    decreases rapidly. The polarization curve shows that the passivity
81186    current of the stainless steel increases with addition of the sulfide.
81187    The Mott-Schottky plots indicate that as the sulfide concentration
81188    increases, the slope of the straight segment which reflects the
81189    properties of p-type semiconductor (chromium oxide) decreases or even
81190    almost disappears. The slope of the straight segment which reflects the
81191    properties of n-type semiconductor (iron oxide) also decreases, and the
81192    acceptor density N-A and the donor density N-D increase to a certain
81193    extent. This shows that the sulfide changes the composition and
81194    structure of the passive film of the stainless steel and thereby
81195    decreases the corrosion resistance of the film. (C) 2003 Elsevier
81196    Science B.V. All rights reserved.
81197 C1 Shanghai Univ Elect Power, Electrochem Res Grp, Shanghai 200090, Peoples R China.
81198    Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
81199 RP Ge, HH, Shanghai Univ Elect Power, Electrochem Res Grp, Shanghai
81200    200090, Peoples R China.
81201 CR ARMSTRONG RD, 1973, ELECTROCHIM ACTA, V18, P937
81202    AZUMI K, 1986, T JPN I MET, V27, P382
81203    BLENGINO JM, 1995, CORROS SCI, V37, P621
81204    BOJINOV M, 1999, CORROS SCI, V41, P1557
81205    CASTRO EB, 1993, ELECTROCHIM ACTA, V38, P1567
81206    CHAO CY, 1982, J ELECTROCHEM SOC, V129, P1874
81207    CHLER SM, 1991, CORROS SCI, V32, P925
81208    DEAN MH, 1987, J ELECTROANAL CH INF, V228, P135
81209    GABERSCEK M, 1996, ELECTROCHIM ACTA, V41, P1137
81210    GONZALEZ JEG, 1998, CORROS SCI, V40, P2141
81211    HAKIKI NE, 1998, J ELECTROCHEM SOC, V145, P3821
81212    HONG T, 1996, CORROS SCI, V38, P1525
81213    HORVATRADOSEVIC V, 1994, ELECTROCHIM ACTA, V39, P119
81214    ITAGAKI M, 1999, CORROSION ENG, V48, P905
81215    JAMNIK J, 1999, ELECTROCHIM ACTA, V44, P4139
81216    KENNEDY JH, 1978, J ELECTROCHEM SOC, V125, P723
81217    LOVRECEK B, 1972, ELECTROCHIM ACTA, V17, P1151
81218    MACDONALD DD, 1990, ELECTROCHIM ACTA, V35, P1509
81219    MACDONALD DD, 1992, J ELECTROCHEM SOC, V139, P3434
81220    MARCUS P, 1998, ELECTROCHIM ACTA, V43, P109
81221    MARTINI EMA, 2000, CORROS SCI, V42, P443
81222    MONTEMOR MF, 2000, CORROS SCI, V42, P1635
81223    MORRISON SR, 1980, ELECTROCHEMISTRY SEM
81224    SCHULTZE JW, 2000, ELECTROCHIM ACTA, V45, P2499
81225    SYRETT BC, 1979, CORROSION, V35, P409
81226    YIN Q, 2001, J ELECTROCHEM SOC, V148, A200
81227    ZHU YB, 2000, CHINA WATER WASTE WA, V16, P45
81228 NR 27
81229 TC 5
81230 SN 0169-4332
81231 J9 APPL SURF SCI
81232 JI Appl. Surf. Sci.
81233 PD APR 30
81234 PY 2003
81235 VL 211
81236 IS 1-4
81237 BP 321
81238 EP 334
81239 PG 14
81240 SC Chemistry, Physical; Materials Science, Coatings & Films; Physics,
81241    Applied; Physics, Condensed Matter
81242 GA 683UZ
81243 UT ISI:000183170000039
81244 ER
81245 
81246 PT J
81247 AU Zhao, CJ
81248    Debnath, L
81249    Wang, K
81250 TI Positive periodic solutions of a delayed model in population
81251 SO APPLIED MATHEMATICS LETTERS
81252 DT Article
81253 DE coincidence degree; positive periodic solution; Fredholm operator
81254 AB Using the theory of coincidence degree, the existence of positive
81255    periodic solutions for a delayed model in population is proved. A new
81256    result is obtained. Some related results are improved. (C) 2003
81257    Elsevier Science Ltd. All rights reserved.
81258 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
81259    Binzhou Teachers Coll, Shandong 256604, Peoples R China.
81260    Univ Texas Pan Amer, Dept Math, Edinburg, TX 78539 USA.
81261    NE Normal Univ, Dept Math, Changchun 130024, Peoples R China.
81262 RP Zhao, CJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
81263 CR CHEN BS, 1999, MATH APPL, V12, P42
81264    GAINES RE, 1977, COINCIDENCE DEGREE N
81265    GYORI I, 1991, OSCILLATION THEORY D
81266    KUANG Y, 1993, DELAY DIFFERENTIAL E
81267    LENHART SM, 1986, P AM MATH SOC, V96, P75
81268    SEIFERT G, 1987, NONLIENAR ANAL TMA, V9, P1051
81269    YU JS, 1996, SCI CHINA SER A, V26, P23
81270    ZHANG BG, 1990, J MATH ANAL APPL, V150, P274
81271 NR 8
81272 TC 0
81273 SN 0893-9659
81274 J9 APPL MATH LETT
81275 JI Appl. Math. Lett.
81276 PD MAY
81277 PY 2003
81278 VL 16
81279 IS 4
81280 BP 561
81281 EP 565
81282 PG 5
81283 SC Mathematics, Applied
81284 GA 687LP
81285 UT ISI:000183378400020
81286 ER
81287 
81288 PT J
81289 AU Wu, H
81290    Ma, HP
81291    Li, HY
81292 TI Optimal error estimates of the Chebyshev-Legendre spectral method for
81293    solving the generalized burgers equation
81294 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
81295 DT Article
81296 DE optimal error estimate; Chebyshev-Legendre method; generalized Burgers
81297    equation
81298 ID NONLINEAR CONSERVATION-LAWS; VISCOSITY METHOD; GALERKIN METHOD; DIRECT
81299    SOLVERS; APPROXIMATIONS; COLLOCATION; POLYNOMIALS; OPERATORS; 2ND-ORDER
81300 AB In this paper the Chebyshev-Legendre collocation method is applied to
81301    the generalized Burgers equation. Optimal error estimate of the method
81302    is proved for the problem with the Dirichlet boundary conditions. Also,
81303    a Legendre - Galerkin - Chebyshev collocation method is given for the
81304    generalized Burgers equation. The scheme is basically formulated in the
81305    Legendre spectral form but with the nonlinear term being treated by the
81306    Chebyshev collocation method so that the scheme can be implemented at
81307    Chebyshev - Gauss - Lobatto points efficiently. Optimal order
81308    convergence is also obtained through coupling estimates in the L-2-norm
81309    and the H-1-norm.
81310 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
81311    Chinese Acad Sci, Inst Software, Beijing 100080, Peoples R China.
81312 RP Wu, H, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
81313 CR ALPERT BK, 1991, SIAM J SCI STAT COMP, V12, P158
81314    BERNARDI C, 1997, HDBK NUM AN 2, V5, P209
81315    BRESSAN N, 1986, CALCOLO, V23, P265
81316    CANUTO C, 1988, SPECTRAL METHODS FLU
81317    COUTSIAS EA, 1996, P 3 INT C SPECTR HIG, P21
81318    DON WS, 1994, SIAM J NUMER ANAL, V31, P1519
81319    E W, 1992, SIAM J NUMER ANAL, V29, P1520
81320    FUNARO D, 1988, NUMER MATH, V52, P329
81321    GUO BY, 1998, SPECTRAL METHODS THE
81322    HESTHAVEN JS, 1998, SIAM J NUMER ANAL, V35, P1571
81323    KIM SD, 1996, SIAM J NUMER ANAL, V33, P2375
81324    KIM SD, 1997, SIAM J NUMER ANAL, V34, P939
81325    LI HY, 2003, IMA J NUMER ANAL, V23, P109
81326    MA HP, 1988, CHINESE J NUMER MATH, V10, P11
81327    MA HP, 1988, J COMPUT MATH, V6, P48
81328    MA HP, 1998, SIAM J NUMER ANAL, V35, P869
81329    MA HP, 1998, SIAM J NUMER ANAL, V35, P893
81330    MADAY Y, 1981, NUMER MATH, V37, P321
81331    MADAY Y, 1982, RAIRO ANAL NUMER, V16, P375
81332    QUARTERONI A, 1992, SIAM J NUMER ANAL, V29, P917
81333    REYNA LG, 1988, J SCI COMPUT, V3, P1
81334    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
81335    SHEN J, 1995, P INT C SPECTR HIGH, P233
81336    SHEN J, 1995, SIAM J SCI COMPUT, V16, P74
81337    SHEN J, 1997, SIAM J SCI COMPUT, V18, P1583
81338 NR 25
81339 TC 0
81340 SN 0036-1429
81341 J9 SIAM J NUMER ANAL
81342 JI SIAM J. Numer. Anal.
81343 PY 2003
81344 VL 41
81345 IS 2
81346 BP 659
81347 EP 672
81348 PG 14
81349 SC Mathematics, Applied
81350 GA 684YF
81351 UT ISI:000183233500012
81352 ER
81353 
81354 PT J
81355 AU Li, L
81356    Wollants, P
81357    Xu, ZY
81358    De Cooman, BC
81359    Zhu, XD
81360 TI Effects of alloying elements on the concentration profile of
81361    equilibrium phases in transformation induced plasticity steel
81362 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
81363 DT Article
81364 DE composition; interaction; transformation induced plasticity steel
81365 ID REGULAR SOLUTION MODEL; RETAINED AUSTENITE; MECHANICAL-PROPERTIES;
81366    CARBON; SHEET; SI
81367 AB With the two sublattices model, equilibrium compositions of ferrite
81368    (alpha) and austenite (gamma) phases, as well as the volume percent of
81369    austenite (gamma) in different TRIP steels are calculated.
81370    Concentration profiles of carbon, manganese, aluminum and silicon in
81371    these steels are also estimated under the lattice fixed frame of
81372    reference so as to identify if the equilibrium state is obtained.
81373    Through the comparison between the profiles after different time
81374    diffusion, the distribution of elements in phases is exhibited and the
81375    complex effect due to the mutual interaction of the elements on
81376    diffusion is discussed.
81377 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
81378    Katholieke Univ Leuven, Detp MTM, B-3001 Louvain, Belgium.
81379    Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Shanghai 200030, Peoples R China.
81380    State Univ Ghent, Lab Iron & Steelmaking, B-9052 Zwijnaarde, Belgium.
81381    Shanghai Baosteel Res Inst, Shanghai 201900, Peoples R China.
81382 RP Li, L, Shanghai Univ, Dept Mat Sci & Engn, 149 Yanchang Rd, Shanghai
81383    200072, Peoples R China.
81384 CR AGREN J, 1992, ISIJ INT, V32, P291
81385    BALK SC, 2001, ISIJ INT, V41, P290
81386    CHEN HC, 1989, METALL TRANS A, V20, P437
81387    FRIDBERG J, 1969, JERNKONTORETS ANN, V153, P263
81388    HANZAKI AZ, 1993, 34 MWSP C P, V15, P507
81389    HILLERT M, 1970, ACTA CHEM SCAND, V24, P3618
81390    HILLERT M, 1993, ACTA METALL MATER, V41, P1951
81391    JONSSON B, 1992, TRITAMAC0478
81392    LIU SK, 1990, METALL TRANS A, V21, P1517
81393    MEYER MD, 1999, ISIJ INT, V39, P813
81394    SAKUMA Y, 1991, ISIJ INT, V31, P1348
81395    SPEICH GR, 1981, METALL T A, V12, P1419
81396    SUGIMOTO K, 1992, ISIJ INT, V32, P1311
81397    SUGIMOTO K, 1993, ISIJ INT, V33, P775
81398    SUNDMAN B, 1981, J PHYS CHEM SOLIDS, V42, P297
81399    SUNDMAN B, 1985, CALPHAD, V9, P153
81400    ZACKAY VF, 1967, T AM SOC MET, V60, P252
81401 NR 17
81402 TC 1
81403 SN 1005-0302
81404 J9 J MATER SCI TECHNOL
81405 JI J. Mater. Sci. Technol.
81406 PD MAY
81407 PY 2003
81408 VL 19
81409 IS 3
81410 BP 273
81411 EP 277
81412 PG 5
81413 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
81414    Engineering
81415 GA 685UQ
81416 UT ISI:000183282000023
81417 ER
81418 
81419 PT J
81420 AU Guy, GD
81421    Zhang, JJ
81422    Li, ZW
81423 TI Restarted GMRES augmented with eigenvectors for shifted linear systems
81424 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
81425 DT Article
81426 DE shifted systems; augmented GMRES method; restarting
81427 ID KRYLOV SUBSPACE METHODS; NONSYMMETRIC SYSTEMS; ARNOLDI METHODS;
81428    EQUATIONS
81429 AB Shifted matrices, which differ by a multiple of the identity only,
81430    generate the same Krylov subspaces with respect to any fixed vector.
81431    Frommer and Glassner [5] develop a variant of the restarted GMRES
81432    method for such shifted systems at the expense of only one
81433    matrix-vector multiplication per iteration. However, restarting slows
81434    down the convergence, even stagnation. We present a variant of the
81435    restarted GMRES augmented with some eigenvectors for the shifted
81436    systems. The convergence can be much faster at little extra expense.
81437    Numerical experiments show its efficiency.
81438 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
81439 RP Guy, GD, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
81440 CR CHAPIN R, 2001, GERONTOLOGIST, V41, P43
81441    DATTA BN, 1991, LINEAR ALGEBRA APPL, V154, P225
81442    ERHEL J, 1996, J COMPUT APPL MATH, V69, P303
81443    FREUND RW, 1993, NUMERICAL LINEAR ALG, P101
81444    FROMMER A, 1995, INT J MOD PHYS C, V6, P627
81445    FROMMER A, 1998, SIAM J SCI COMPUT, V19, P15
81446    GUIDING G, 1999, LINEAR ALGEBRA APPL, V299, P1
81447    GUIDING G, 2002, INT J COMPUT MATH, V79, P307
81448    GUIDING GU, 2001, APPL MATH COMPUT, V121, P271
81449    LECALVEZ C, 1999, NUMER ALGORITHMS, V21, P261
81450    MORGAN RB, 1995, SIAM J MATRIX ANAL A, V16, P1154
81451    MORGAN RB, 2000, SIAM J MATRIX ANAL A, V21, P1112
81452    SAAD Y, 1996, ITERATIVE METHODS SP
81453    SAAD Y, 1997, SIAM J MATRIX ANAL A, V18, P435
81454    SIMONCINI V, 1996, J COMPUT APPL MATH, V66, P457
81455    SIMONCINI V, 2000, SIAM J MATRIX ANAL A, V22, P430
81456    SWEET R, 1988, SIAM J SCI STAT COMP, V9, P89
81457    YOUNG DM, 1992, APPL NUMER MATH, V10, P261
81458 NR 18
81459 TC 0
81460 SN 0020-7160
81461 J9 INT J COMPUT MATH
81462 JI Int. J. Comput. Math.
81463 PD AUG
81464 PY 2003
81465 VL 80
81466 IS 8
81467 BP 1037
81468 EP 1047
81469 PG 11
81470 SC Mathematics, Applied
81471 GA 685NM
81472 UT ISI:000183270200011
81473 ER
81474 
81475 PT J
81476 AU Wu, H
81477    Zhang, DJ
81478 TI Mixed rational-soliton solutions of two differential-difference
81479    equations in Casorati determinant form
81480 SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
81481 DT Article
81482 ID KORTEWEG-DEVRIES EQUATION; LINEAR EVOLUTION EQUATIONS; TODA LATTICE;
81483    WRONSKIAN FORM; VOLTERRA; TRANSFORMATIONS; COLLISIONS
81484 AB By reconsidering soliton solutions of the Toda lattice and
81485    differential-difference KdV equation in the Casorati determinant form
81486    with new entries, we obtain rational and mixed rational-soliton
81487    solutions in the Casorati determinant form. All these solutions are
81488    verified by direct substitutions into bilinear equations. The method
81489    used is general and can apply to other discrete systems.
81490 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
81491 RP Wu, H, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
81492 CR ABLOWITZ MJ, 1978, J MATH PHYS, V19, P2180
81493    ABLOWITZ MJ, 1979, PHYS LETT A, V72, P277
81494    ADLER M, 1978, COMMUN MATH PHYS, V61, P1
81495    AIRAULT H, 1977, COMMUN PURE APPL MAT, V30, P25
81496    CARSTEA AS, 1996, PROG THEOR PHYS, V96, P29
81497    CARSTEA AS, 1997, PHYS LETT A, V233, P378
81498    CRUMM M, 1955, QUART J MATH OXFORD, V6, P121
81499    FREEMAN NC, 1983, PHYS LETT A, V95, P1
81500    GARDNER CS, 1967, PHYS REV LETT, V19, P1095
81501    HIROTA R, 1971, PHYS REV LETT, V27, P1192
81502    HIROTA R, 1973, J PHYS SOC JPN, V35, P286
81503    HIROTA R, 1974, PROG THEOR PHYS, V52, P1498
81504    HIROTA R, 1976, PROGR THEOR PHYS SUP, V59, P64
81505    HIROTA R, 1977, J PHYS SOC JPN, V43, P1424
81506    HU XB, 1995, J PHYS A-MATH GEN, V28, P5009
81507    MATVEEV VB, 1992, PHYS LETT A, V166, P205
81508    MATVEEV VB, 1992, PHYS LETT A, V166, P209
81509    NARITA K, 1997, J PHYS SOC JPN, V66, P4047
81510    NARITA K, 1998, PROG THEOR PHYS, V99, P337
81511    NARITA K, 2002, CHAOS SOLITON FRACT, V13, P1121
81512    NIMMO JJC, 1983, PHYS LETT A, V95, P4
81513    NIMMO JJC, 1983, PHYS LETT A, V96, P443
81514    NIMMO JJC, 1983, PHYS LETT A, V99, P281
81515    NIMMO JJC, 1984, J PHYS A-MATH GEN, V17, P1415
81516    SATSUMA J, 1979, J PHYS SOC JPN, V46, P359
81517    STAHLHOFEN AA, 1995, J PHYS A-MATH GEN, V28, P1957
81518    TODA M, 1975, PHYS REP, V8, P1
81519 NR 27
81520 TC 4
81521 SN 0305-4470
81522 J9 J PHYS-A-MATH GEN
81523 JI J. Phys. A-Math. Gen.
81524 PD MAY 2
81525 PY 2003
81526 VL 36
81527 IS 17
81528 BP 4867
81529 EP 4873
81530 PG 7
81531 SC Physics, Mathematical; Physics, Multidisciplinary
81532 GA 684AP
81533 UT ISI:000183183500015
81534 ER
81535 
81536 PT J
81537 AU Fang, SS
81538    Xiao, X
81539    Lei, X
81540    Li, WH
81541    Dong, YD
81542 TI Relationship between the widths of supercooled liquid regions and bond
81543    parameters of Mg-based bulk metallic glasses
81544 SO JOURNAL OF NON-CRYSTALLINE SOLIDS
81545 DT Article
81546 ID Y AMORPHOUS-ALLOYS; FORMING ABILITY; MECHANICAL-PROPERTIES;
81547    THERMAL-STABILITY; NI; CRYSTALLIZATION; AG
81548 AB The relationship between the widths of supercooled liquid regions
81549    (DeltaT(x)) of Mg-based bulk metallic glasses (BMG) and bond parameters
81550    (i.e., electronegativity difference and atomic size parameters) was
81551    investigated. From the available experimental data in the literatures,
81552    it seems that for Mg-based BMG DeltaT(x) has a close correlation to
81553    bond parameters. It increases with the atomic size parameter (delta)
81554    and electronegativity difference (Deltax) of Mg-based alloys, which are
81555    defined by atomic radius and electronegativity. An equation was deduced
81556    for the first time by a linear regression analysis program in order to
81557    judge whether Mg-based multicomponent alloys can form metallic glasses.
81558    (C) 2003 Elsevier Science B.V. All rights reserved.
81559 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
81560 RP Fang, SS, Shanghai Univ, Inst Mat, Box 269,Yanchang Rd 149, Shanghai
81561    200072, Peoples R China.
81562 CR ALLRED AL, 1961, J INORG NUCL CHEM, V17, P215
81563    AMIYA K, 2000, MATER T JIM, V41, P1460
81564    FANG SS, 1999, J ALLOY COMPD, V293, P10
81565    GOTTSCHALL RJ, 2001, MATER TRANS, V42, P548
81566    INOUE A, 1989, MATER T JIM, V30, P378
81567    INOUE A, 1993, J NON-CRYST SOLIDS, V156, P473
81568    INOUE A, 1999, J NONCRYST SOLIDS, V250, P552
81569    JOHNSON WL, 1999, MRS BULL, V24, P42
81570    KANG HG, 2000, MATER T JIM, V41, P846
81571    KIM SG, 1990, MATER T JIM, V31, P929
81572    LAIO L, 2000, CRYATALLINE CHEM CRY, P177
81573    LI Y, 1992, SCRIPTA METALL MATER, V26, P1371
81574    LI Y, 2001, MATER TRANS, V42, P556
81575    LINDEROTH S, 2001, MAT SCI ENG A-STRUCT, V304, P656
81576    LIU WS, 1996, J MATER RES, V11, P2388
81577    MURTY BS, 2000, MATER T JIM, V41, P1538
81578    PAN ZL, 1984, CRYSTALLOGRAPHY MINE, P133
81579    PAULING L, 1960, NATURE CHEM BOND
81580    SENKOV ON, 2001, MATER RES BULL, V36, P2183
81581    SHEK CH, 2000, MAT SCI ENG A-STRUCT, V291, P78
81582    SHIBATA T, 1993, J MATER SCI, V28, P379
81583    WANG WH, 1998, PHYS REV B, V57, P8211
81584    XIAO J, 1985, ALLOY ENERGETICS, P294
81585    ZHANG BW, 1981, ACTA METALL SIN, V17, P285
81586 NR 24
81587 TC 7
81588 SN 0022-3093
81589 J9 J NON-CRYST SOLIDS
81590 JI J. Non-Cryst. Solids
81591 PD JUN 15
81592 PY 2003
81593 VL 321
81594 IS 1-2
81595 BP 120
81596 EP 125
81597 PG 6
81598 SC Materials Science, Ceramics; Materials Science, Multidisciplinary
81599 GA 684CE
81600 UT ISI:000183187200015
81601 ER
81602 
81603 PT J
81604 AU Wu, YQ
81605    You, JL
81606    Jiang, GC
81607 TI Molecular dynamics study of the structure of calcium aluminate melts
81608 SO JOURNAL OF INORGANIC MATERIALS
81609 DT Article
81610 DE CaO center dot Al2O3 melt; microstructure; molecular dynamics
81611 ID GLASSES; LIQUID
81612 AB The microstructure of high- temperature xCaO-(1 - x)Al2O3 melts was
81613    studied by the molecular dynamics simulation. By comparing the
81614    positions of first peaks of partial radial distribution functions
81615    between Al and O, Ca and O, O and O, and the coordination numbers of Al
81616    and Ca with the corresponding experimental data of X-ray diffraction
81617    and neutron scattering, which agree very well with each other, the
81618    simulation is proved very successful. Based on the verification, it was
81619    found that Al playes the roll of network former in the calcium
81620    aluminate melt. That's to say, the average coordination number of Al is
81621    4 and tetrahedron is the main structural unit in calcium aluminate just
81622    as the action of Si in silicate melts. In the meantime, the
81623    distribution of 5 kinds of tetrahedrons Q(i) was counted and then the
81624    regulation of the changing microstructure of calcium aluminate melt
81625    following with the composition was analyzed. With the analysis of the
81626    number of next nearest neighbor around the centering atom Al and the
81627    examination of the snapshot, 3-coordinated oxygen and charge-balanced
81628    bridging oxygen were found to be the explanations of the phenomena of
81629    redundant charge and location of the cation Ca2+.
81630 C1 Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai 200072, Peoples R China.
81631 RP Wu, YQ, Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai
81632    200072, Peoples R China.
81633 CR CORMIER L, 2000, J NON-CRYST SOLIDS, V274, P110
81634    HANNON AC, 2000, J NON-CRYST SOLIDS, V274, P102
81635    HOOVER WG, 1985, PHYS REV A, V31, P1695
81636    KIEFFER J, 1989, J CHEM PHYS, V90, P4982
81637    MATSUMIYA T, 1993, ISIJ INT, V33, P210
81638    MCMILLAN P, 1983, J NON-CRYST SOLIDS, V55, P221
81639    WU YQ, 2001, P 6 INT S MOLT SALT, P359
81640    WU YQ, 2001, T NONFERR METAL SOC, V11, P965
81641    WU YQ, 2002, T NONFERR METAL SOC, V12, P1218
81642    YOU JL, 2001, J NON-CRYST SOLIDS, V282, P125
81643 NR 10
81644 TC 2
81645 SN 1000-324X
81646 J9 J INORG MATER
81647 JI J. Inorg. Mater.
81648 PD MAY
81649 PY 2003
81650 VL 18
81651 IS 3
81652 BP 619
81653 EP 626
81654 PG 8
81655 SC Materials Science, Ceramics
81656 GA 684PR
81657 UT ISI:000183216200018
81658 ER
81659 
81660 PT J
81661 AU Ge, HH
81662    Zhou, GD
81663    Wu, WQ
81664 TI The spontaneous passivation of stainless steel in simulated cooling
81665    water and the influence of sulfide
81666 SO ACTA PHYSICO-CHIMICA SINICA
81667 DT Article
81668 DE Mott-Schottky plot; electrochemical impedance spectroscopy; passive
81669    film; stainless steel; sulfide
81670 ID ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; POTENTIALS; CORROSION; ALLOYS;
81671    MODEL; ELECTRODES; STATE; IRON
81672 AB The spontaneous passivation of 316 stainless steel in simulated cooling
81673    water is studied by electrochemical impedance spectroscopy, and a
81674    suitable model is chosen through fitting. It is shown that the film
81675    resistance R-2 increases while the value of Y-02 which reflects the
81676    film capacitance decreases continuously in the course of immersion of
81677    the,electrode, but R-2 decreases sharply with addition of sulfide. The
81678    Mott-Schottky plots show that the donor and accepter densities of the
81679    passive films on stainless steel immersed in simulated cooling water
81680    for 65, days have the values of 1.47 X 10(20) cm(-3) and 2. 20 X 10(20)
81681    cm(-3), respectively, but the values increase to 4.52 x 10(20) cm(-3)
81682    and 7.02 X 10(20) cm(-3) after the addition of 9 mg . L-1 sulfide for 1
81683    h. The polarization curves indicate that the passive current rises in
81684    the presence of sulfide.
81685 C1 Shanghai Coll Elect Power, Electrochem Res Grp, Shanghai 200090, Peoples R China.
81686    Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
81687 RP Ge, HH, Shanghai Coll Elect Power, Electrochem Res Grp, Shanghai
81688    200090, Peoples R China.
81689 CR CAO CN, 1989, J CHIN SOC CORROS PR, V9, P261
81690    CASTRO EB, 1993, ELECTROCHIM ACTA, V38, P1567
81691    CHAO CY, 1982, J ELECTROCHEM SOC, V129, P1874
81692    DEAN MH, 1987, J ELECTROANAL CH INF, V228, P135
81693    GABERSCEK M, 1996, ELECTROCHIM ACTA, V41, P1137
81694    GONZALEZ JEG, 1998, CORROS SCI, V40, P2141
81695    GRYSE RD, 1975, J ELECTROCHEM SOC, V122, P711
81696    HAKIKI NE, 1998, J ELECTROCHEM SOC, V145, P3821
81697    HONG T, 1996, CORROS SCI, V38, P1525
81698    HORVATRADOSEVIC V, 1994, ELECTROCHIM ACTA, V39, P119
81699    ISMAIL KM, 1999, ELECTROCHIM ACTA, V44, P4685
81700    ITAGAKI M, 1999, CORROSION ENG, V48, P905
81701    JAMNIK J, 1999, ELECTROCHIM ACTA, V44, P4139
81702    KENNEDY JH, 1978, J ELECTROCHEM SOC, V125, P723
81703    LOVRECEK B, 1972, ELECTROCHIM ACTA, V17, P1151
81704    MACDONALD DD, 1990, ELECTROCHIM ACTA, V35, P1509
81705    MACDONALD DD, 1992, J ELECTROCHEM SOC, V139, P3434
81706    MARCUS P, 1998, ELECTROCHIM ACTA, V43, P109
81707    MARTINI EMA, 2000, CORROS SCI, V42, P443
81708    MONTEMOR MF, 2000, CORROS SCI, V42, P1635
81709    SYRETT BC, 1979, CORROSION, V35, P409
81710    YIN Q, 2001, J ELECTROCHEM SOC, V148, A200
81711    ZHU YB, 2000, CHINA WATER WASTE WA, V16, P45
81712 NR 23
81713 TC 0
81714 SN 1000-6818
81715 J9 ACTA PHYS-CHIM SIN
81716 JI Acta Phys.-Chim. Sin.
81717 PD MAY
81718 PY 2003
81719 VL 19
81720 IS 5
81721 BP 403
81722 EP 407
81723 PG 5
81724 SC Chemistry, Physical
81725 GA 683LD
81726 UT ISI:000183149100005
81727 ER
81728 
81729 PT J
81730 AU Yang, X
81731    Cheng, CJ
81732 TI Gurtin variational principle and finite element simulation for
81733    dynamical problems of fluid-saturated porous media
81734 SO ACTA MECHANICA SOLIDA SINICA
81735 DT Article
81736 DE saturated porous media; Curtin variational principle; finite element
81737    method; longitudinal wave
81738 ID BEHAVIOR; MIXTURES; MODELS; FLOW
81739 AB Based on the theory of porous media, a general Gurtin variational
81740    principle for the initial boundary value problem of dynamical response
81741    of fluid-saturated elastic porous media is developed by assuming
81742    infinitesimal deformation and incompressible constituents of the solid
81743    and fluid phase. The finite element formulation based on this
81744    variational principle is also derived. As the functional of the
81745    variational principle is a spatial integral of the convolution
81746    formulation, the general finite element discretization in space results
81747    in symmetrical differential-integral equations in the time domain. In
81748    some situations, the differential-integral equations can be reduced to
81749    symmetrical differential equations and, as a numerical example, it is
81750    employed to analyze the reflection of one-dimensional longitudinal wave
81751    in a fluid-saturated porous solid. The numerical results can provide
81752    further understanding of the wave propagation in porous media.
81753 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200436, Peoples R China.
81754 RP Yang, X, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
81755    Shanghai 200436, Peoples R China.
81756 CR ABOUSTIT BL, 1985, INT J NUMER ANAL MET, V9, P49
81757    BIOT MA, 1941, J APPL PHYS, V12, P155
81758    BIOT MA, 1956, J ACOUST SOC AM, V28, P168
81759    BOWEN RM, 1980, INT J ENG SCI, V18, P1129
81760    BOWEN RM, 1982, INT J ENG SCI, V20, P697
81761    BREUER S, 1996, P SOIL MEC 96 C MIER, P27
81762    BREUER S, 1999, TRANSPORT POROUS MED, V34, P285
81763    DEBOER R, 1993, ARCH APPL MECH-ING, V63, P59
81764    DEBOER R, 1996, APPL MECH REV, V49, P201
81765    DEBOER R, 2000, APPL MECH REV, V53, P323
81766    DIEBELS S, 1996, INT J NUMER METH ENG, V39, P81
81767    EHLERS W, 1998, INT J SOLIDS STRUCT, V35, P4597
81768    EHLERS W, 1999, TRANSPORT POROUS MED, V34, P159
81769    EHLERS W, 2000, GRANUL MATTER, V2, P153
81770    GURTIN ME, 1966, Q J APPL MATH, V12, P252
81771    LEWIS RW, 1998, FINITE ELEMENT METHO
81772    LI XK, 1990, INT J NUMER METH ENG, V30, P1195
81773    LIU ZF, 1997, TRANSPORT POROUS MED, V29, P207
81774    SCHREFLER BA, 1993, WATER RESOUR RES, V29, P155
81775    ZIENKIEWICZ OC, 1990, P ROY SOC LOND A MAT, V429, P311
81776 NR 20
81777 TC 1
81778 SN 0894-9166
81779 J9 ACTA MECH SOLIDA SINICA
81780 JI Acta Mech. Solida Sin.
81781 PD MAR
81782 PY 2003
81783 VL 16
81784 IS 1
81785 BP 24
81786 EP 32
81787 PG 9
81788 SC Materials Science, Multidisciplinary; Mechanics
81789 GA 683KX
81790 UT ISI:000183148300004
81791 ER
81792 
81793 PT J
81794 AU Jiao, Z
81795    Wu, MG
81796    Qin, Z
81797    Xu, H
81798 TI The electrochromic characteristics of sol-gel-prepared NiO thin film
81799 SO NANOTECHNOLOGY
81800 DT Article
81801 ID STRUCTURAL-PROPERTIES; NICKEL-OXIDE; WO3
81802 AB In this work, NiO thin film was prepared by the sol-gel technique and
81803    analysed by thermogravimetry, x-ray diffractometry and x-ray
81804    photoelectron spectroscopy. The electrochromic characteristics were
81805    studied by ultraviolet spectroscopy. NiO thin film shows electrochromic
81806    characteristics. Its colour changes from transparent to brown when a
81807    voltage is applied. The transmittance of the film can shift from 90 to
81808    40%. Deterioration of the film caused by colouring and discolouring was
81809    not observed for up to 100 cycles.
81810 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
81811 RP Jiao, Z, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
81812    Peoples R China.
81813 CR AGARWAL V, 1996, J ELECTROCHEM SOC, V143, P3239
81814    BELL JM, 2001, SOL ENERG MAT SOL C, V68, P239
81815    BENI S, 1980, SOLID STATE COMMUN, V70, P383
81816    BRUKE LD, 1980, J ELECTROANAL CHEM, V111, P383
81817    CHEMSEDDINE A, 1983, SOLID STATE IONICS, V9, P357
81818    DEB SK, 1973, PHILOS MAG, V27, P203
81819    ESTRADA W, 1988, J APPL PHYS, V3678, P64
81820    FANTINI MCA, 1996, P SOC PHOTO-OPT INS, V1536, P81
81821    FERREIRA FF, 1996, SOLID STATE IONICS 2, V86, P971
81822    JUDEINSTEIN P, 1990, SPIE SOL GEL OPTICS, V1328, P344
81823    KRINGS LHM, 1998, SOL ENERG MAT SOL C, V54, P27
81824    NISHIO K, 2001, SOL ENERG MAT SOL C, V68, P279
81825    OZER N, 1996, P 5 WORLD C CHEM ENG, P933
81826    PASSERINI S, 1990, J ELECTROCHEM SOC, V137, P3297
81827    PYPER O, 1998, MATER RES BULL, V33, P1095
81828    SCARMINIO J, 1992, J MATER SCI LETT, V562, P11
81829    SURCA A, 1996, J ELECTROANAL CHEM, V408, P83
81830    SURCA A, 1997, J SOL-GEL SCI TECHN, V8, P743
81831    WRUCK DA, 1991, J VAC SCI TECHNOL, V19, P2170
81832 NR 19
81833 TC 5
81834 SN 0957-4484
81835 J9 NANOTECHNOL
81836 JI Nanotechnology
81837 PD APR
81838 PY 2003
81839 VL 14
81840 IS 4
81841 BP 458
81842 EP 461
81843 PG 4
81844 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary;
81845    Physics, Applied
81846 GA 681TG
81847 UT ISI:000183051000010
81848 ER
81849 
81850 PT J
81851 AU Wang, ZH
81852    Zhang, H
81853    Meunier, JP
81854 TI Improved Ritz-Galerkin method for field distribution of graded-index
81855    optical fibers
81856 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
81857 DT Article
81858 DE optical fibers; modal fields; Laguerre-Gauss expansion; coupling
81859    coefficient
81860 ID GAUSSIAN APPROXIMATION; WAVE-PROPAGATION; MODE
81861 AB Having obtained the eigenvalue and the modal field by using the
81862    Ritz-Galerkin method, we quit the cladding-field expression in the form
81863    of a Laguerre-Gaussian function and reconstruct it with a modified
81864    Bessel function. The accuracy of the cladding field is thus improved We
81865    also show its application to the calculation of the coupling
81866    coefficient. (C) 2003 Wiley Periodicals, Inc.
81867 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
81868    Univ St Etienne, Lab TSI, CNRS, UMR 5516, F-42023 St Etienne 2, France.
81869 RP Wang, ZH, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
81870    Peoples R China.
81871 CR ABRAMOWITZ M, 1965, HDB MATH FUNCTIONS
81872    ADAMS MJ, 1978, OPT QUANT ELECTRON, V10, P17
81873    ADAMS MJ, 1981, INTRO OPTICAL WAVEGU, P100
81874    ANGELIS GD, 1999, J LIGHTWAVE TECHNOL, V17, P2665
81875    ANKIEWICZ A, 1992, J LIGHTWAVE TECHNOL, V10, P22
81876    CLARRICOATS PJB, 1970, ELECTRON LETT, V6, P694
81877    GAMBLING WA, 1978, OPT QUANT ELECTRON, V10, P301
81878    GHETAK AK, 1980, PROGR OPTICS, V18, P1
81879    HARTOG AH, 1977, OPT QUANT ELECTRON, V9, P223
81880    MARCUSE D, 1978, J OPT SOC AM, V68, P103
81881    MEUNIER JP, 1980, OPT QUANT ELECTRON, V12, P41
81882    MEUNIER JP, 1981, OPT QUANT ELECTRON, V13, P71
81883    OKAMOTO K, 1978, IEEE T MICROW THEORY, V26, P109
81884    OKOSHI T, 1974, IEEE T MICROW THEORY, V22, P938
81885    OLSHANSKY R, 1976, APPL OPTICS, V15, P483
81886    PENG GD, 1991, IEE PROC-J, V138, P33
81887    SHARMA A, 1981, OPT COMMUN, V36, P22
81888    SHARMA A, 1982, OPT QUANT ELECTRON, V14, P7
81889    SNYDER AW, 1972, J OPT SOC AM, V62, P1267
81890    SNYDER AW, 1979, J OPT SOC AM, V69, P1663
81891 NR 20
81892 TC 0
81893 SN 0895-2477
81894 J9 MICROWAVE OPT TECHNOL LETT
81895 JI Microw. Opt. Technol. Lett.
81896 PD JUN 20
81897 PY 2003
81898 VL 37
81899 IS 6
81900 BP 433
81901 EP 436
81902 PG 4
81903 SC Engineering, Electrical & Electronic; Optics
81904 GA 680VD
81905 UT ISI:000182998900013
81906 ER
81907 
81908 PT J
81909 AU Du, H
81910    Liao, H
81911    Zhou, S
81912 TI Static magnetic flux dynamics in one-dimensional (1D) Josephson lattices
81913 SO JOURNAL OF SUPERCONDUCTIVITY
81914 DT Article
81915 DE Josephson junction; chaos; bifurcation
81916 ID BOUND-STATES; VORTEX DYNAMICS; JUNCTIONS; SOLITONS; ARRAYS
81917 AB We investigated static magnetic flux dynamical properties of
81918    one-dimensional lattices of Josephson junctions. The discretized wave
81919    equations of the Josephson junction lattice were solved using a
81920    generalized relaxation iteration algorithm. Numerical simulations
81921    indicated that transitions between periodic state and chaotic state
81922    will occur as the physical parameters and geometric parameters such as
81923    external current y(n), magnetic field h(0), h, and the length of
81924    Josephson junction mu(n) and d(n), varied. A shot length of the
81925    Josephson junction favors stable periodic states.
81926 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
81927 RP Du, H, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
81928 CR ATKIN IL, 1997, IEEE T APPL SUPERC 3, V7, P2894
81929    BOYADJIEV TL, 1988, 1188409 JINR
81930    BOYADJIEV TL, 1989, E1789106 JINR
81931    BOYADJIEV TL, 2002, SUPERCOND SCI TECH, V15, P1
81932    CHRISTIANSEN PL, 1989, SINGULAR BEHAV NONLI
81933    CIRIA JC, 1998, J PHYS-CONDENS MAT, V10, P1453
81934    CIRILLO M, 1993, PHYS LETT A, V183, P383
81935    FILIPPOV AT, 1983, SOLID STATE COMMUN, V48, P665
81936    FILIPPOV AT, 1987, PHYS LETT A, V120, P47
81937    FULTON TA, 1973, P IEEE, V61, P28
81938    GALPERN YS, 1982, JETP LETT, V35, P580
81939    GALPERN YS, 1984, ZH EKSP TEOR FIZ, V86, P1527
81940    LARSEN BH, 1994, PHYS LETT A, V193, P359
81941    MACHIDA M, 2000, PHYSICA C 2, V341, P1385
81942    MALOMED BA, 1994, PHYS REV B, V49, P13204
81943    MCLAUGHLIN DW, 1978, PHYS REV A, V18, P1652
81944    SMITH GD, 1978, NUMERICAL SOLUTION P
81945    USTINOV AV, 1995, PHYS REV B, V51, P3081
81946    VYSTAVKIN AN, 1988, FIZ NIZK TEMP, V14, P646
81947    VYSTAVKIN AN, 1989, P INT SUP EL C ISEC
81948    ZHANG L, 1995, J PHYS-CONDENS MAT, V7, P353
81949 NR 21
81950 TC 0
81951 SN 0896-1107
81952 J9 J SUPERCOND
81953 JI J. Supercond.
81954 PD JUN
81955 PY 2003
81956 VL 16
81957 IS 3
81958 BP 537
81959 EP 542
81960 PG 6
81961 SC Physics, Applied; Physics, Condensed Matter
81962 GA 681NG
81963 UT ISI:000183041800014
81964 ER
81965 
81966 PT J
81967 AU Zhu, LH
81968    Ma, XM
81969 TI Microstructural evolution of 2.25Cr-1.6W-V-Nb heat resistant steel
81970    during creep
81971 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
81972 DT Article
81973 DE heat resistant steel; creep; microstructural evolution
81974 AB 2.25Cr-1.6W-V-Nb developed in Japan, is a low alloy heat resistant
81975    steel with good comprehensive properties. Influence of long term creep
81976    at elevated temperature on the structure of 2.25Cr-1.6W-V-Nb steel was
81977    studied in this paper, and the micromechanism of creep strength
81978    degradation was elucidated, too. Both TEM observation and thermodynamic
81979    calculation reveal that during creep the transformation occurs from
81980    M7C3 and M23C6, to M6C, which can be cavity nucleation sites. Besides,
81981    creep at 600degreesC also leads to the decrease of dislocation density,
81982    the coarsening and coalescence of M23C6, the nucleation of cavities and
81983    development of cracks. The strength decrease of 2.25Cr-1.6W-V-Nb steel
81984    after long term creep is related to the decrease of dislocation
81985    hardening, precipitation,hardening, solution hardening, the nucleation
81986    of cavities and development of cracks.
81987 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
81988    Shanghai Univ, Res Ctr Nanosci & Nanotechnol, Shanghai 200436, Peoples R China.
81989 RP Zhu, LH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
81990    China.
81991 CR FUJITA T, 2000, ADV MATER PROCESS, V157, P55
81992    KENSUKE Y, 2000, CAMP ISIJ, V13, P261
81993    MASUYAMA F, 1996, THERMAL NUCL POWER, V47, P66
81994    MASUYAMA F, 2000, CAMP ISIJ, V13, P566
81995    SAWARAGI Y, 1997, SUMITOMO SEARCH, V59, P113
81996    VISWANATHAN R, 1998, ADV HEAT RESISTANT S, P12
81997    VISWANATHAN R, 1998, ADV HEAT RESISTANT S, P144
81998    YOKOYAMA T, 1994, THERMAL NUCL POWER, V45, P43
81999 NR 8
82000 TC 0
82001 SN 1005-0302
82002 J9 J MATER SCI TECHNOL
82003 JI J. Mater. Sci. Technol.
82004 PD MAR
82005 PY 2003
82006 VL 19
82007 IS 2
82008 BP 126
82009 EP 128
82010 PG 3
82011 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
82012    Engineering
82013 GA 681RB
82014 UT ISI:000183048200009
82015 ER
82016 
82017 PT J
82018 AU Zheng, G
82019    Zhang, M
82020    Li, H
82021    Blessington, D
82022    Busch, T
82023    Chance, B
82024    Glickson, J
82025 TI Molecular beacon based photosensitizers for imaging guided cancer
82026    therapy
82027 SO EUROPEAN JOURNAL OF CANCER
82028 DT Meeting Abstract
82029 C1 Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA.
82030    Univ Penn, Dept Biochem Biophys, Philadelphia, PA 19104 USA.
82031    Univ Penn, Sch Med, Dept Radiat Oncol, Philadelphia, PA 19104 USA.
82032    Shanghai Univ, Dept Chem, Shanghai 200041, Peoples R China.
82033 NR 0
82034 TC 0
82035 SN 0959-8049
82036 J9 EUR J CANCER
82037 JI Eur. J. Cancer
82038 PD NOV
82039 PY 2002
82040 VL 38
82041 SU Suppl. 7
82042 BP S119
82043 EP S119
82044 PG 1
82045 SC Oncology
82046 GA 626VZ
82047 UT ISI:000179895700398
82048 ER
82049 
82050 PT J
82051 AU Li, MC
82052    Zeng, CL
82053    Luo, SZ
82054    Shen, JN
82055    Lin, HC
82056    Cao, CN
82057 TI Electrochemical corrosion characteristics of type 316 stainless steel
82058    in simulated anode environment for PEMFC
82059 SO ELECTROCHIMICA ACTA
82060 DT Article
82061 DE stainless steel; corrosion; PEMFC; electrochemical impedance
82062    spectroscopy; bipolar plate
82063 ID POLYMER FUEL-CELLS; IMPEDANCE SPECTROSCOPY; PASSIVATING FILMS; BIPOLAR
82064    PLATES; CARBON-STEEL; HYDROGEN; IRON; BEHAVIOR; LAYER; RESISTANCE
82065 AB The corrosion behavior of type 316 stainless steel in simulated anode
82066    environment for proton exchange membrane fuel cell (PEMFC), i.e.,
82067    dilute hydrochloric acid solutions bubbled with pure* hydrogen gas at
82068    80 degreesC, was investigated by using electrochemical measurement
82069    techniques. The main purpose is to offer some fundamental information
82070    for the use of stainless steels as bipolar plate 'material for PEMFC.
82071    Both polarization curve and electrochemical impedance spectroscopy
82072    (EIS) measurements illustrate that 316 stainless steel cannot passivate
82073    spontaneously in the simulated environments. The absorbed (and/or
82074    adsorbed) hydrogen atoms from cathodic corrosion reactions on the steel
82075    surface may deteriorate the passivity and corrosion resistance. The
82076    oxidation of these hydrogen atoms gives rise to a second current peak
82077    in the anodic polarization curve, and the current increases with
82078    immersion time. EIS spectra also reveal that a porous corrosion product
82079    layer formed on the steel surface during the active dissolution in the
82080    test solutions. 316 stainless steel exhibits the similar corrosion
82081    behavior in sulfate ions containing dilute hydrochloric acid solution.
82082    (C) 2003 Elsevier Science Ltd. All rights reserved.
82083 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
82084    Inst Met Sci & Technol, State Key Lab Corros & Protect, Shenyang 110016, Peoples R China.
82085 RP Li, MC, Shanghai Univ, Inst Mat, 149 Yanchang Rd, Shanghai 200072,
82086    Peoples R China.
82087 CR ARMACANQUI ME, 1988, CORROSION, V44, P696
82088    BOUKAMP BA, 1989, P 9 EUR CORR C UTR N
82089    BOUSSELMI L, 1997, CORROS SCI, V39, P1711
82090    BOZEC NL, 2001, CORROS SCI, V43, P765
82091    COVINO BS, 1986, CORROS SCI, V26, P95
82092    DAVIES DP, 2000, J APPL ELECTROCHEM, V30, P101
82093    DAVIES DP, 2000, J POWER SOURCES, V86, P237
82094    FRATEUR I, 1999, ELECTROCHIM ACTA, V44, P4345
82095    GARTLEDGE GH, 1957, J ELECTROCHEM SOC, V104, P420
82096    HENTALL PL, 1999, J POWER SOURCES, V80, P235
82097    HERMAS AA, 1995, ELECTROCHIM ACTA, V40, P837
82098    HERMAS AA, 1999, CORROS SCI, V41, P2251
82099    HODGSON DR, 2001, J POWER SOURCES, V96, P233
82100    HORNUNG R, 1998, J POWER SOURCES, V72, P20
82101    HSU CH, 2001, CORROSION, V57, P747
82102    JUTTNER K, 1988, J ELECTROCHEM SOC, V135, P332
82103    KIM CD, 1970, CORROS SCI, V10, P735
82104    KIM JS, 2002, CORROS SCI, V44, P635
82105    KONIG U, 1988, WERKST KORROS, V39, P595
82106    KOROVIN YM, 1966, CORRISON, V22, P16
82107    LEVIE R, 1963, ELECTROCHIM ACTA, V8, P751
82108    LI MC, 2001, BRIT CORROS J, V36, P179
82109    MA L, 2000, J NEW MAT ELECT SYST, V3, P221
82110    MACDONALD DD, 1973, J ELECTROCHEM SOC, V120, P317
82111    MAKKUS RC, 2000, J POWER SOURCES, V86, P274
82112    MANSFELD F, 1995, J APPL ELECTROCHEM, V25, P187
82113    MURPHY OJ, 1998, ELECTROCHIM ACTA, V43, P3829
82114    PARK JR, 1983, CORROS SCI, V23, P295
82115    PYUN SI, 1989, CORROS SCI, V29, P485
82116    PYUN SI, 1992, CORROS SCI, V33, P437
82117    RAMMELT U, 1987, CORROS SCI, V27, P373
82118    SONG RH, 1990, J ELECTROCHEM SOC, V137, P1703
82119    UHLIG HH, 1954, J ELECTROCHEM SOC, V101, P215
82120    WAIDHAS M, 2000, MATER RES SOC SYMP P, V575, P229
82121    WILSON MS, P 2000 DOE HYDR PROG
82122    WU XJ, 1999, J ELECTROCHEM SOC, V146, P1847
82123    YANG MZ, 1999, J ELECTROCHEM SOC, V146, P2107
82124 NR 37
82125 TC 5
82126 SN 0013-4686
82127 J9 ELECTROCHIM ACTA
82128 JI Electrochim. Acta
82129 PD MAY 30
82130 PY 2003
82131 VL 48
82132 IS 12
82133 BP 1735
82134 EP 1741
82135 PG 7
82136 SC Electrochemistry
82137 GA 681FJ
82138 UT ISI:000183026000011
82139 ER
82140 
82141 PT J
82142 AU Zheng, CL
82143    Zhang, JF
82144    Wu, FM
82145    Sheng, ZM
82146    Chen, LQ
82147 TI Solitons in a generalized (2+1)-dimensional Ablowitz-Kaup-Newell-Segur
82148    system
82149 SO CHINESE PHYSICS
82150 DT Article
82151 DE GAKNS system; variable separation approach; soliton
82152 ID VARIABLE SEPARATION APPROACH; NONLINEAR SCHRODINGER-EQUATION; PAINLEVE
82153    INTEGRABILITY; SIMILARITY REDUCTIONS; COHERENT STRUCTURES; AKNS SYSTEM
82154 AB In the previous Letter (Zheng C L and Zhang J F 2002 Chin. Phys. Lett.
82155    19 1399), a localized excitation of the generalized
82156    Ablowitz-Kaup-Newell-Segur (GAKNS) system was obtained via the standard
82157    Painleve truncated expansion and a special variable separation
82158    approach. In this work, starting from a new variable separation
82159    approach, a more general variable separation excitation of this system
82160    is derived. The abundance of the localized coherent soliton excitations
82161    like dromions, lumps, rings, peakons and oscillating soliton
82162    excitations can be constructed by introducing appropriate
82163    lower-dimensional soliton patterns. Meanwhile we discuss two kinds of
82164    interactions of solitons. One is the interaction between the travelling
82165    peakon type soliton excitations, which is not completely elastic. The
82166    other is the interaction between the travelling ring type soliton
82167    excitations, which is completely elastic.
82168 C1 Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
82169    Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China.
82170    Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China.
82171    Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
82172 RP Zheng, CL, Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R
82173    China.
82174 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V30, P1262
82175    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
82176    CAO CW, 1990, SCI CHINA SER A, V33, P528
82177    CHEN LL, 1999, ACTA PHYS SIN-CH ED, V48, P2149
82178    CHENG Y, 1991, PHYS LETT A, V157, P22
82179    GEDALIN M, 1997, PHYS REV LETT, V78, P448
82180    HIROTA R, 1971, PHYS REV LETT, V27, P1192
82181    HOLM DD, 1998, ADV MATH, V137, P1
82182    HUANG WH, 2002, CHINESE PHYS, V11, P1101
82183    KONOPELCHENKO BG, 1991, PHYS LETT A, V175, P17
82184    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
82185    LOU SY, 1997, J MATH PHYS, V38, P6401
82186    LOU SY, 1999, J MATH PHYS, V40, P6491
82187    LOU SY, 2000, CHINESE PHYS LETT, V17, P781
82188    LOU SY, 2000, PHYS LETT A, V277, P94
82189    LOU SY, 2000, PHYS SCR, V65, P7
82190    LOU SY, 2001, EUR PHYS J B, V22, P473
82191    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
82192    LOU SY, 2002, J MATH PHYS, V43, P4078
82193    LOUTSENKO I, 1997, PHYS REV LETT, V78, P3011
82194    RADHA R, 1997, CHAOS SOLITON FRACT, V8, P17
82195    TAJIRI M, 1997, PHYS REV E B, V55, P3351
82196    ZHENG CL, 2002, ACTA PHYS SIN-CH ED, V51, P2426
82197    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
82198    ZHENG CL, 2002, COMMUN THEOR PHYS, V38, P653
82199    ZHENG CL, 2003, CHINESE PHYS, V12, P11
82200 NR 26
82201 TC 21
82202 SN 1009-1963
82203 J9 CHIN PHYS
82204 JI Chin. Phys.
82205 PD MAY
82206 PY 2003
82207 VL 12
82208 IS 5
82209 BP 472
82210 EP 478
82211 PG 7
82212 SC Physics, Multidisciplinary
82213 GA 682HR
82214 UT ISI:000183086100002
82215 ER
82216 
82217 PT J
82218 AU Du, HC
82219    Liao, HY
82220    Zhou, SP
82221 TI Bifurcation, chaotic phenomena and control of chaos in a
82222    one-dimensional discrete Josephson lattice
82223 SO CHINESE PHYSICS
82224 DT Article
82225 DE Josephson junction; chaos; bifurcation; controlling chaos
82226 ID SELF-CONTROLLING FEEDBACK; VORTEX DYNAMICS; JUNCTIONS; SYSTEM; ARRAYS
82227 AB We have investigated the fluxon dynamical behaviour in a
82228    one-dimensional parallel array of small Josephson junctions in the
82229    presence of an externally applied magnetic field. In the case of high
82230    damping, the system is in stable states. On the contrary, in the case
82231    of low damping, bifurcation and chaotic phenomena have been observed.
82232    Control of chaos is achieved by a delayed feedback mechanism, which
82233    drives the chaotic system into a selected unstable periodic orbit
82234    embedded within the associated strange attractor. It is attractive to
82235    control chaos to a periodic state, rather than operating always outside
82236    the device parameter space where chaos dominates.
82237 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
82238 RP Du, HC, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
82239 CR CHEN YY, 2002, ACTA PHYS SIN-CH ED, V51, P1489
82240    CIRIA JC, 1998, J PHYS-CONDENS MAT, V10, P1453
82241    CIRILLO M, 1993, PHYS LETT A, V183, P383
82242    DITTO WL, 1995, PHYSICA D, V86, P198
82243    GREBOGI C, 1997, IEEE T CIRCUITS-I, V44, P971
82244    HAI WH, 2000, CHINESE PHYS, V9, P175
82245    KITTEL A, 1994, PHYS REV E, V50, P262
82246    LI L, 2001, CHINESE PHYS, V10, P796
82247    LIKHAREV KK, 1991, IEEE T APPL SUPERCON, V1, P3
82248    LU JH, 2002, CHINESE PHYS, V11, P12
82249    LUO XS, 2000, CHINESE PHYS, V9, P333
82250    MACHIDA M, 2000, PHYSICA C 2, V341, P1385
82251    OTT E, 1990, PHYS REV LETT, V64, P1196
82252    PEDERSEN NF, 1995, SUPERCOND SCI TECH, V8, P389
82253    PLATOV KY, 2001, PHYSICA C, V350, P302
82254    PYRAGAS K, 1992, PHYS LETT A, V170, P421
82255    PYRAGAS K, 1993, PHYS LETT A, V180, P99
82256    TARUTANI Y, 2001, PHYSICA C 2, V357, P1548
82257    TIAN YP, 1999, INT J CONTROL, V72, P258
82258    WANG ZY, 2001, ACTA PHYS SIN-CH ED, V50, P1996
82259 NR 20
82260 TC 0
82261 SN 1009-1963
82262 J9 CHIN PHYS
82263 JI Chin. Phys.
82264 PD MAY
82265 PY 2003
82266 VL 12
82267 IS 5
82268 BP 557
82269 EP 561
82270 PG 5
82271 SC Physics, Multidisciplinary
82272 GA 682HR
82273 UT ISI:000183086100018
82274 ER
82275 
82276 PT J
82277 AU Zhang, DJ
82278 TI The N-soliton solutions of some soliton equations with self-consistent
82279    sources
82280 SO CHAOS SOLITONS & FRACTALS
82281 DT Article
82282 ID NONLINEAR INTEGRABLE SYSTEMS; LINEAR EVOLUTION-EQUATIONS;
82283    KORTEWEG-DEVRIES EQUATION; RATIONAL SOLUTIONS; VRIES EQUATION; KDV
82284    HIERARCHY; TRANSFORMATIONS; WAVES; FORM; LAWS
82285 AB The hierarchy of the mKdV-sine-Gordon equation with self-consistent
82286    sources is derived. The N-soliton solutions of the mKdV-sine-Gordon
82287    equation with N self-consistent sources are obtained through Hirota
82288    method and Wronskian technique, respectively, from which we also reduce
82289    solutions for some soliton equations with self-consistent sources, such
82290    as one-dimensional atomic grid equation with self-consistent sources,
82291    the sine-Gordon equation with self-consistent sources. the mKdV
82292    equation with self-consistent sources and the KdV equation with
82293    self-consistent Sources (KdVESCS). Finally. the mixed rational-soliton
82294    Solutions in Wronskian form for the KdVESCS are discussed. (C) 2003
82295    Elsevier Science Ltd. All rights reserved.
82296 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
82297 RP Zhang, DJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
82298 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V30, P1262
82299    ABLOWITZ MJ, 1978, J MATH PHYS, V19, P2180
82300    ABLOWITZ MJ, 1981, SOLITON INVERSE SCAT
82301    ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
82302    CARSTEA AS, 1996, PROG THEOR PHYS, V96, P29
82303    CHEN DY, 2002, J PHYS SOC JPN, V71, P2072
82304    CHEN DY, 2002, J PHYS SOC JPN, V71, P658
82305    FREEMAN NC, 1983, PHYS LETT A, V95, P1
82306    FREEMAN NC, 1984, IMA J APPL MATH, V32, P125
82307    GU CH, 1986, LETT MATH PHYS, V11, P31
82308    HIROTA R, 1971, PHYS REV LETT, V27, P1192
82309    HIROTA R, 1974, PROG THEOR PHYS, V52, P1498
82310    KONNO K, 1974, J PHYS SOC JPN, V37, P171
82311    KONNO K, 1974, J PHYS SOC JPN, V37, P2071
82312    LEON J, 1990, J PHYS A-MATH GEN, V23, P1385
82313    LEON J, 1990, PHYS LETT A, V144, P444
82314    LIN RL, 2001, PHYSICA A, V291, P287
82315    MELNIKOV VK, 1986, PHYS LETT A, V118, P22
82316    MELNIKOV VK, 1987, COMMUN MATH PHYS, V112, P639
82317    MELNIKOV VK, 1988, PHYS LETT A, V133, P493
82318    MELNIKOV VK, 1989, COMMUN MATH PHYS, V120, P451
82319    MELNIKOV VK, 1989, COMMUN MATH PHYS, V126, P201
82320    MELNIKOV VK, 1990, J MATH PHYS, V31, P1106
82321    MELNIKOV VK, 1992, INVERSE PROBL, V8, P133
82322    NIMMO JJC, 1983, PHYS LETT A, V96, P443
82323    NIMMO JJC, 1984, J PHYS A-MATH GEN, V17, P1415
82324    URASBOEV GU, 2001, THEOR MATH PHYS+, V129, P1341
82325    WADATI M, 1973, J PHYS SOC JPN, V34, P1289
82326    WADATI M, 1975, PROG THEOR PHYS, V53, P419
82327    YE S, 2002, J PHYS A-MATH GEN, V35, L283
82328    ZENG YB, 1996, ACTA MATH SINICA, V12, P217
82329    ZENG YB, 1998, PHYSICA A, V259, P278
82330    ZENG YB, 1999, PHYSICA A, V262, P405
82331    ZENG YB, 2000, J MATH PHYS, V41, P5453
82332    ZENG YB, 2001, J MATH PHYS, V42, P2113
82333    ZHANG D, 2001, MULTISOLITON SOLUTIO
82334    ZHANG DJ, 2002, J PHYS SOC JPN, V71, P2649
82335 NR 37
82336 TC 3
82337 SN 0960-0779
82338 J9 CHAOS SOLITON FRACTAL
82339 JI Chaos Solitons Fractals
82340 PD SEP
82341 PY 2003
82342 VL 18
82343 IS 1
82344 BP 31
82345 EP 43
82346 PG 13
82347 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
82348 GA 681DP
82349 UT ISI:000183021900004
82350 ER
82351 
82352 PT J
82353 AU Li, CP
82354    Chen, GR
82355 TI An improved version of the Marotto theorem
82356 SO CHAOS SOLITONS & FRACTALS
82357 DT Article
82358 ID CHAOS; REPELLERS
82359 AB In 1975, Li and Yorke introduced the first precise definition of
82360    discrete chaos and established a very simple criterion for chaos in
82361    one-dimensional difference equations, "period three implies chaos" for
82362    brevity. After three years. Marotto generalized this result to
82363    n-dimensional difference equations, showing that the existence of a
82364    snap-back repeller implies chaos in the sense of Li-Yorke. This theorem
82365    is up to now the best one in predicting and analyzing discrete chaos in
82366    multidimensional difference equations. Yet, it is well known that there
82367    exists an error in the condition of the original Marotto Theorem, and
82368    several authors had tried to correct it in different ways. In this
82369    paper, we further clarify the issue, with an improved version of the
82370    Marotto Theorem derived. (C) 2003 Elsevier Science Ltd. All rights
82371    reserved.
82372 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
82373    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
82374 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
82375 CR AMBROSETTI A, 1993, PRIME NONLINEAR ANAL
82376    CHEN G, 1998, J MATH PHYS, V39, P6459
82377    LI TY, 1975, AM MATH MONTHLY, V82, P985
82378    LIN W, 2002, INT J BIFURCAT CHAOS, V12, P1129
82379    LIN W, 2002, THESIS FUDAN U CHINA
82380    MAROTTO FR, 1978, J MATH ANAL APPL, V63, P199
82381    NOBLE B, 1977, APPL LINEAR ALGEBRA
82382 NR 7
82383 TC 14
82384 SN 0960-0779
82385 J9 CHAOS SOLITON FRACTAL
82386 JI Chaos Solitons Fractals
82387 PD SEP
82388 PY 2003
82389 VL 18
82390 IS 1
82391 BP 69
82392 EP 77
82393 PG 9
82394 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
82395 GA 681DP
82396 UT ISI:000183021900007
82397 ER
82398 
82399 PT J
82400 AU Zhang, NH
82401    Cheng, CJ
82402 TI Two-mode Galerikin approach in dynamic stability analysis of
82403    viscoelastic plates
82404 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
82405 DT Article
82406 DE viscoelastic plate; dynamic stability; von Karman's hypothesis;
82407    Galerkin method; chaos; Hopf bifurcation
82408 AB The dynamic stability of viscoelastic thin plates with large
82409    deflections was investigated by using the largest Liapunov exponent
82410    analysis and other numerical and analytical dynamic methods. The
82411    material behavior was described in terms of the Boltzmann superposition
82412    principle. The Galerkin method was used to simplify the original
82413    integro-partial-differential model into a two-mode approximate integral
82414    model, which further reduced to an ordinary differential model by
82415    introducing new variables. The dynamic properties of one-mode and
82416    two-mode truncated systems were numerically compared. The influence of
82417    viscoelastic properties of the material, the loading amplitude and the
82418    initial values on the dynamic behavior of the plate under in-plane
82419    periodic excitations was discussed.
82420 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
82421    Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
82422 RP Zhang, NH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
82423    200072, Peoples R China.
82424 CR ABOUDI J, 1990, J SOUND VIB, V139, P459
82425    BOLOTIN VV, 1964, DYNAMIC STABILITY EL
82426    CHEN LQ, 1999, APPL MATH MECH-ENGL, V20, P1324
82427    CHEN LQ, 2000, MECH RES COMMUN, V27, P413
82428    CHENG CJ, 1998, ACTA MECH SINICA, V30, P690
82429    TOUATI D, 1994, INT J SOLIDS STRUCT, V31, P2367
82430    WOJCIECH S, 1990, ACTA MECH, V85, P43
82431    ZHANG NH, 1998, COMPUT METHOD APPL M, V165, P307
82432    ZHANG NH, 1998, P 3 INT C NONL MECH, P432
82433    ZHANG NH, 2000, ACTA MECH SINCA SOLI, V21, P160
82434    ZHU YY, 1998, P 3 INT C NONL MECH, P445
82435 NR 11
82436 TC 1
82437 SN 0253-4827
82438 J9 APPL MATH MECH-ENGL ED
82439 JI Appl. Math. Mech.-Engl. Ed.
82440 PD MAR
82441 PY 2003
82442 VL 24
82443 IS 3
82444 BP 247
82445 EP 255
82446 PG 9
82447 SC Mathematics, Applied; Mechanics
82448 GA 680LE
82449 UT ISI:000182979000001
82450 ER
82451 
82452 PT J
82453 AU Fang, DF
82454    Wang, HX
82455    TAng, MN
82456 TI Poisson limit theorem for countable Markov chains in Markovian
82457    environments
82458 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
82459 DT Article
82460 DE Poisson distributions; Markov chains; random environments
82461 AB A countable Markov chain in a Markovian environment is considered. A
82462    Poisson limit theorem for the chain recurring to small cylindrical sets
82463    is mainly achieved. In order to prove this theorem, the entropy
82464    function h is introduced and the Shannon-McMillan-Breiman theorem for
82465    the Markov chain in a Markovian environment is shown. It's well-known
82466    that a Markov process in a Markovian environment is generally not a
82467    standard Markov chain, so an example of Poisson approximation for a
82468    process which is not a Markov process is given. On the other hand, when
82469    the environmental process degenerates to a constant sequence, a Poisson
82470    limit theorem for countable Markov chains, which is the generalization
82471    of Pitskel's result for finite Markov chains is obtained.
82472 C1 Yueyang Normal Univ, Dept Math, Yueyang 414000, Hunan, Peoples R China.
82473    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
82474 RP Fang, DF, Yueyang Normal Univ, Dept Math, Yueyang 414000, Hunan,
82475    Peoples R China.
82476 CR BLUM JR, 1963, Z WAHRSCHEINLICHKEIT, V2, P1
82477    COGBURN R, 1980, ANN PROBAB, V8, P908
82478    CORNFELD IP, 1982, ERGODIC THEORY
82479    NAWROTZKI K, 1981, J INFORM PROCESS CYB, V17, P569
82480    NAWROTZKI K, 1982, J INFORM PROCESS CYB, V18, P83
82481    PITSKEL B, 1991, ERGOD THEOR DYN SYST, V11, P501
82482    SEYASTYANOV BA, 1972, THEORY PROBABILITY I, V17, P695
82483    WANG YH, 1991, ANN PROBAB, V19, P452
82484 NR 8
82485 TC 0
82486 SN 0253-4827
82487 J9 APPL MATH MECH-ENGL ED
82488 JI Appl. Math. Mech.-Engl. Ed.
82489 PD MAR
82490 PY 2003
82491 VL 24
82492 IS 3
82493 BP 298
82494 EP 306
82495 PG 9
82496 SC Mathematics, Applied; Mechanics
82497 GA 680LE
82498 UT ISI:000182979000006
82499 ER
82500 
82501 PT J
82502 AU Pu, DG
82503    Tian, WW
82504 TI The revised DFP algorithm without exact line search
82505 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
82506 DT Article
82507 DE DFP algorithm; line search; convergence; convergence rate
82508 ID QUASI-NEWTON METHODS; UNCONSTRAINED OPTIMIZATION; BROYDEN FAMILY; BFGS;
82509    CONVERGENCE; DIRECTIONS
82510 AB In this paper, we discuss the convergence of the DFP algorithm with
82511    revised search direction. Under some inexact line searches, we prove
82512    that the algorithm is globally convergent for continuously
82513    differentiable functions and the rate of convergence of the algorithm
82514    is one-step superlinear and n-step second order for uniformly convex
82515    objective functions.
82516    From the proof of this paper, we obtain the superlinear and n-step
82517    second-order convergence of the DFP algorithm for uniformly convex
82518    objective functions. (C) 2002 Elsevier Science B.V. All rights reserved.
82519 C1 Tongji Univ, Dept Appl Math, Shanghai 200092, Peoples R China.
82520    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
82521 RP Pu, DG, Tongji Univ, Dept Appl Math, 1239 Siping Rd, Shanghai 200092,
82522    Peoples R China.
82523 CR ALBAALI M, 1993, J OPTIMIZ THEORY APP, V77, P127
82524    ARMAND P, 2000, SIAM J OPTIMIZ, V11, P199
82525    BROYDEN CG, 1965, MATH COMPUT, V19, P577
82526    BYRD RH, 1987, SIAM J NUMER ANAL, V24, P1171
82527    DAVIDON WC, 1959, VARIABLE METRIC ALGO
82528    DAVIDON WC, 1975, MATH PROGRAM, V9, P1
82529    DENNIS JE, 1977, SIAM REV, V19, P46
82530    DIXON LCW, 1972, J OPTIMIZATION THEOR, V10, P34
82531    FLETCHER R, 1963, COMPUT J, V6, P163
82532    FLETCHER R, 1987, PRACTICAL METHODS OP, V1
82533    HU YF, 1994, J OPTIM THEORY APPL, V83, P421
82534    LALEE M, 1993, SIAM J OPTIMIZ, V3, P637
82535    MIFFLIN RB, 1994, MATH PROGRAM, V65, P247
82536    OREN SS, 1972, THESIS STANFORD U
82537    OREN SS, 1974, J OPT THEORY APPL, V37, P137
82538    POWELL MJD, 1971, J I MATHS APPLICS, V7, P21
82539    POWELL MJD, 1976, SIAM AMS P NONLINEAR, V6
82540    POWELL MJD, 1983, MATH PROGRAMMING STA, P288
82541    POWELL MJD, 1984, LECT NOTES MATH, V1066, P122
82542    POWELL MJD, 1986, MATH PROGRAM, V34, P34
82543    POWELL MJD, 1987, MATH PROGRAM, V38, P29
82544    PU D, 1990, J ACTA MATH APPL SIN, V13, P118
82545    PU D, 1990, J ANN OPERATIONS RES, V24, P175
82546    PU D, 1992, ASIA PACIFIC J OPERA, V9, P207
82547    PU D, 1994, J COMPUTATIONAL MATH, V8, P366
82548    PU D, 2000, J ACTA MATH APPLICAT, V16, P313
82549    PU D, 2002, J OPTIMIZ THEORY APP, V112, P187
82550    PU DG, 1997, ASIA PAC J OPER RES, V14, P93
82551    QI HD, 2000, SIAM J OPTIMIZ, V11, P113
82552    SIEGEL D, 1993, MATH PROGRAM, V60, P167
82553    SIEGEL D, 1994, MATH PROGRAM, V66, P45
82554    SPEDICATO E, 1976, J OPTIMIZATION THEOR, V20, P315
82555    SPEDICATO E, 1978, MATH PROG, V15, P123
82556    SPEDICATO E, 1982, MATH OPER STAT SER O, V14, P61
82557    WOLFE P, 1969, SIAM REV, V11, P226
82558    WOLFE P, 1971, SIAM REV, V13, P185
82559    ZHANG Y, 1988, IMA J NUMER ANAL, V8, P487
82560    ZOUTENDIJK G, 1970, INTEGER NONLINEAR PR, P37
82561 NR 38
82562 TC 0
82563 SN 0377-0427
82564 J9 J COMPUT APPL MATH
82565 JI J. Comput. Appl. Math.
82566 PD MAY 15
82567 PY 2003
82568 VL 154
82569 IS 2
82570 BP 319
82571 EP 339
82572 PG 21
82573 SC Mathematics, Applied
82574 GA 678YX
82575 UT ISI:000182895200004
82576 ER
82577 
82578 PT J
82579 AU Pan, XY
82580    Chen, Y
82581    Ma, XM
82582    Zhu, LH
82583 TI Phase transformation of nanocrystalline anatase powders during high
82584    energy planetary ball milling
82585 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
82586 DT Article
82587 DE nanocrystalline anatase; transformation; ball milling
82588 ID RAMAN-SPECTRUM; TIO2; PRESSURE
82589 AB The microstructure evolution of nanocrystalline anatase during high
82590    energy planetary milling was studied by X-ray diffraction and
82591    transmission electron microscopy. The results show that mechanical
82592    activation induces the transformations from anatase to srilankite and
82593    rutile at room temperature and under ambient pressure, which should
82594    primarily be attributed to the rise of local temperature and pressure
82595    at the collision sites of the powders and the balls. In addition, the
82596    additional energy caused by defects, lattice distortion and the
82597    refinement of the crystallite is responsible for the transformations.
82598    As milling time increases, anatase phase content reduces and the
82599    amounts of both srilankite and rutile phase increase. And the
82600    transformation from srilankite to rutile phase takes place by further
82601    milling. In anatase phase, the crystallite size decreases and lattice
82602    strain rises with milling time. There is no indication of the formation
82603    of amorphous phase during milling.
82604 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
82605    E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China.
82606 CR DACHILLE F, 1962, AM CERAM SOC B, V41, P225
82607    FAN X, 1989, XRAY DIFFRACTION MET
82608    LI FS, 2000, ULTRAFINE POWDER TEC
82609    LIAO SC, 1999, NANOSTRUCT MATER, V11, P553
82610    LIN LJ, 1998, J THERM ANAL, V52, P451
82611    MAMMONE JF, 1981, J PHYS CHEM SOLIDS, V42, P379
82612    MAURICE DR, 1990, METALL TRANS A, V21, P289
82613    NICOL M, 1971, J CHEM PHYS, V54, P3167
82614    OHSAKA T, 1979, SOLID STATE COMMUN, V30, P345
82615    REN RM, 2000, J MATER SCI, V35, P6015
82616    RICARDO BS, 1986, APPL PHYS LETT, V49, P146
82617    SHANNON RD, 1964, AM MINERAL, V49, P1707
82618    YANG JY, 1997, ACTA METALLURGICAL S, V33, P381
82619 NR 13
82620 TC 3
82621 SN 1003-6326
82622 J9 TRANS NONFERROUS METAL SOC CH
82623 JI Trans. Nonferrous Met. Soc. China
82624 PD APR
82625 PY 2003
82626 VL 13
82627 IS 2
82628 BP 271
82629 EP 275
82630 PG 5
82631 SC Metallurgy & Metallurgical Engineering
82632 GA 675YW
82633 UT ISI:000182726000008
82634 ER
82635 
82636 PT J
82637 AU Peng, ZF
82638    Chen, Y
82639 TI Preparation of BaTiO3 nanoparticles in aqueous solutions
82640 SO MICROELECTRONIC ENGINEERING
82641 DT Article
82642 DE barium titanate; nanoparticles; preparation
82643 ID BARIUM-TITANATE; ELECTRICAL-PROPERTIES; THIN-FILMS; CERAMICS; LA
82644 AB A novel approach to prepare nanopowders of barium titanate by a
82645    solution reaction was established. A solution including titanate group
82646    was formed using metatitanate, hydrogen peroxide, and ammonia as the
82647    reactants. By controlling the reaction conditions, dispersed and
82648    uniform nanopowders of barium titanate were obtained from the solution,
82649    whose average size is 15 nm. A series of titanates nanopowders such as
82650    nickel titanate, calcium titanate, and lead titanate can be prepared
82651    using this approach. (C) 2003 Elsevier Science B.V. All rights reserved.
82652 C1 Nagoya Univ, Grad Sch Engn, Dept Appl Chem, Nagoya, Aichi 4648603, Japan.
82653    Shanghai Univ, Sch Mat Sci, Shanghai 201800, Peoples R China.
82654 RP Peng, ZF, Nagoya Univ, Grad Sch Engn, Dept Appl Chem, Nagoya, Aichi
82655    4648603, Japan.
82656 CR AIZENBERG J, 2000, PHYS REV LETT, V84, P2997
82657    DIALLO PT, 2001, J ALLOY COMPD, V323, P218
82658    DORFMAN S, 2001, PHYSICA B, V304, P339
82659    FOR GR, 1990, J MATER SCI, V25, P3643
82660    GARG A, 2001, MAT SCI ENG B-SOLID, V86, P134
82661    KHAN MN, 2001, MATER LETT, V47, P95
82662    KUMAR MS, 2002, MATER LETT, V52, P80
82663    LANGHAMMER HT, 2002, SOLID STATE SCI, V4, P197
82664    MORRISON FD, 2001, INT J INORG MATER, V3, P1205
82665    NUNES MSJ, 2001, MATER LETT, V49, P365
82666    PENG Z, 1996, CHIN J FUNC MAT, V27, P429
82667    RAJENDRAN V, 2001, J NON-CRYST SOLIDS, V296, P39
82668    RAPOPORT L, 1997, NATURE, V387, P791
82669    SCHLOM DG, 2001, MAT SCI ENG B-SOLID, V87, P282
82670    YAO K, 2002, THIN SOLID FILMS, V408, P11
82671    YASUDA N, 2001, J CRYST GROWTH, V229, P299
82672    ZHONG Z, 1989, COLLOID SCI
82673    ZUO RZ, 2001, MATER CHEM PHYS, V70, P326
82674 NR 18
82675 TC 2
82676 SN 0167-9317
82677 J9 MICROELECTRON ENG
82678 JI Microelectron. Eng.
82679 PD APR
82680 PY 2003
82681 VL 66
82682 IS 1-4
82683 BP 102
82684 EP 106
82685 PG 5
82686 SC Engineering, Electrical & Electronic; Physics, Applied; Optics
82687 GA 675YQ
82688 UT ISI:000182725500017
82689 ER
82690 
82691 PT J
82692 AU Peng, DW
82693    Meng, ZY
82694 TI Influence of buffer layer on dielectric properties of (Ba1-xSrx)TiO3
82695    thin films
82696 SO MICROELECTRONIC ENGINEERING
82697 DT Article
82698 DE BST; buffer layer; sol-gel; dielectric tunability
82699 AB Ba0.6Sr0.4TiO3 thin films without and with homo- and hetero-buffer
82700    layer were deposited on (001) MgO substrates by modified sol-gel
82701    techniques, respectively. Ba0.8Sr0.2TiO3 and Ba0.6Sr0.4TiO3 were chosen
82702    as the materials of the buffer layer. The buffer layer was obtained
82703    from a highly dilute solution by sol-gel methods. The thin films were
82704    characterized by X-ray diffraction (XRD), field emission scanning
82705    electron microscope (FE-SEM), and electrical measurements. It is found
82706    that after using buffer layer, the lattice parameters of the films are
82707    smaller and closer to the bulk, and that the larger grains and columnar
82708    structure were observed. In addition, the influences of the buffer
82709    layer on the dielectric properties of BST thin films are discussed. (C)
82710    2002 Elsevier Science B.V. All rights reserved.
82711 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
82712 RP Meng, ZY, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
82713    China.
82714 CR AYGUAVIVES AT, 2001, IEEE MTTS, V1, P1453
82715    BANIECKI JD, 1998, APPL PHYS LETT, V72, P498
82716    CHANG WT, 1999, INTEGR FERROELECTR, V24, P257
82717    CHEN YC, 2001, MICROW OPT TECHN LET, V29, P359
82718    CHIEN AT, 1999, J MATER RES, V14, P3330
82719    DEFLAVIIS F, 1997, IEEE T MICROW THEORY, V45, P963
82720    DING W, 2000, P SOC PHOTO-OPT INS, V4086, P675
82721    DING Y, 2002, THESIS SHANGHAI JIAO
82722    DING YP, 2000, THIN SOLID FILMS, V375, P196
82723    JIANG H, 1999, MATER RES SOC SYMP P, V574, P311
82724    TERAUCHI H, 1992, J PHYS SOC JPN, V61, P2194
82725    TSU R, 1995, MATER RES SOC S P, V361, P275
82726    VENDIK OG, 1993, TERMARIROSYAN FERRO, V144, P3
82727    WU WB, 2001, MAT SCI SEMICON PROC, V4, P673
82728    ZHOU C, 1997, J APPL PHYS, V82, P3081
82729 NR 15
82730 TC 1
82731 SN 0167-9317
82732 J9 MICROELECTRON ENG
82733 JI Microelectron. Eng.
82734 PD APR
82735 PY 2003
82736 VL 66
82737 IS 1-4
82738 BP 631
82739 EP 636
82740 PG 6
82741 SC Engineering, Electrical & Electronic; Physics, Applied; Optics
82742 GA 675YQ
82743 UT ISI:000182725500092
82744 ER
82745 
82746 PT J
82747 AU Chen, LQ
82748 TI Parametrical resonance of the excited axially moving string with an
82749    integral constitutive law
82750 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
82751 DT Article
82752 DE nonlinear vibration; two-to-one resonance; method of multiple scales;
82753    axially moving viscoelastic string; integral constitutive law
82754 ID NONLINEAR VIBRATION; STABILITY ANALYSIS; DISCRETIZATION; BELTS
82755 AB The two-to-one resonance in a parametrically excited axially moving
82756    viscoelastic string is investigated. The material of the viscoelastic
82757    string obeys an integral constitutive law. The method of multiple
82758    scales is applied directly the nonlinear partial-differential-integral
82759    equation that governs the transverse vibration of the string.
82760    Solvability conditions, which lead to the differential equations
82761    satisfied by the amplitude and the phase angle of the nontrivial
82762    response, are derived. Closed form solutions for the amplitude and the
82763    existence conditions of nontrivial steady-state response of the
82764    two-to-one resonance are presented. The effects of the viscoelastic
82765    parameter, the amplitude of excitation, the frequency of excitation,
82766    and the transport speed on the nontrivial solutions are demonstrated in
82767    several numerical examples.
82768 C1 Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
82769    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
82770    Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada.
82771 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
82772 CR CHEN LQ, IN PRESS J SOUND VIB
82773    CHEN LQ, 2001, ADV MECH, V31, P535
82774    CHEN LQ, 2002, MECH RES COMMUN, V29, P81
82775    CHRISTENSEN RM, 1982, THEORY VISCOELASTICI
82776    FUNG RF, 1997, J SOUND VIB, V201, P153
82777    HUANG JS, 1995, INT J MECH SCI, V37, P145
82778    MAHALINGAM S, 1957, BRIT J APPL PHYS, V8, P145
82779    MOCKENSTURM EM, 1996, J VIB ACOUST, V118, P346
82780    NAYFEH AH, 1979, NONLINEAR OSCILLATIO
82781    NAYFEH AH, 1992, NONLINEAR DYNAM, V3, P145
82782    PAKDEMIRLI M, 1994, J SOUND VIB, V169, P179
82783    PAKDEMIRLI M, 1995, J SOUND VIB, V186, P837
82784    PAKDEMIRLI M, 1995, NONLINEAR DYNAM, V8, P65
82785    PAKDEMIRLI M, 1997, J SOUND VIB, V203, P815
82786    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
82787    WICKERT JA, 1990, J APPL MECH-T ASME, V57, P738
82788    ZHANG L, 1999, J APPL MECH-T ASME, V66, P396
82789    ZHANG L, 1999, J APPL MECH-T ASME, V66, P403
82790    ZHAO WJ, 2002, INT J NONLINEAR SCI, V3, P129
82791 NR 19
82792 TC 7
82793 SN 1565-1339
82794 J9 INT J NONLINEAR SCI NUMER SIM
82795 JI Int. J. Nonlinear Sci. Numer. Simul.
82796 PY 2003
82797 VL 4
82798 IS 2
82799 BP 169
82800 EP 177
82801 PG 9
82802 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
82803    Mathematical; Mechanics
82804 GA 676NU
82805 UT ISI:000182759200007
82806 ER
82807 
82808 PT J
82809 AU Chen, GR
82810    Li, CP
82811 TI A note on bifurcation control
82812 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
82813 DT Article
82814 DE bifurcation control; Banach space; nonlinear operator
82815 AB In the Letter, we propose a simple, yet general and mathematically
82816    rigorous bifurcation control method for bifurcation suppression in an
82817    abstract system setting that covers both continuous and discrete cases
82818    defined by nonlinear operators in Banach spaces.
82819 C1 City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
82820    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
82821 RP Chen, GR, City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong,
82822    Peoples R China.
82823 CR AMBROSETTI A, 1993, PRIMER NONLINEAR ANA
82824    CHEN DS, 2001, IEEE T CIRCUITS-I, V48, P661
82825    CHEN G, 1998, CHAOS ORDER METHODOL
82826    CHEN GR, 1996, INT J BIFURCAT CHAOS, V6, P1341
82827    CHEN GR, 2000, INT J BIFURCAT CHAOS, V10, P511
82828    CHOW SN, 1982, METHODS BIFURCATION
82829    DEFIGUEIREDO RJP, 1993, NONLINEAR FEEDBACK C
82830    GUCKENHEIMER J, 1999, NONLINEAR OSCILLATIO
82831    IOOSS G, 1992, TOPICS BIFURCATION T
82832    KZUNETSOV YA, 1998, ELEMENTS APPL BIFURC
82833    YOSIDA K, 1999, FUNCTIONAL ANAL
82834 NR 11
82835 TC 0
82836 SN 0218-1274
82837 J9 INT J BIFURCATION CHAOS
82838 JI Int. J. Bifurcation Chaos
82839 PD MAR
82840 PY 2003
82841 VL 13
82842 IS 3
82843 BP 667
82844 EP 669
82845 PG 3
82846 SC Mathematics, Applied; Multidisciplinary Sciences
82847 GA 675JG
82848 UT ISI:000182690300010
82849 ER
82850 
82851 PT J
82852 AU Fu, JL
82853    Chen, LQ
82854    Luo, Y
82855    Luo, SK
82856 TI Stability for the equilibrium state manifold of relativistic
82857    Birkhoffian systems
82858 SO CHINESE PHYSICS
82859 DT Article
82860 DE relativity; Birkhoffian systems; stability; equilibrium state; manifold
82861 AB In this paper, the stability of equilibrium state manifold for
82862    relativistic Birkhoffian systems is studied. The equilibrium state
82863    equations, the disturbance equations and their first approximation are
82864    presented. The criteria of stability for the equilibrium state manifold
82865    are obtained. The relationship between the stability of the
82866    equilibrium-state manifold of relativistic Birkhoffian systems and that
82867    of classical Birkhoffian systems is discussed. An example is given to
82868    illustrate the results.
82869 C1 Shangqiu Teachers Coll, Inst Math Mech & Math Phys, Shangqiu 476000, Peoples R China.
82870    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
82871    Kunming Univ Sci & Technol, Dept Engn Mech, Sch Civil & Architectural Engn, Kunming 650024, Peoples R China.
82872    Changsha Univ, Inst Math Mech & Math Phys, Changsha 410003, Peoples R China.
82873 RP Fu, JL, Shangqiu Teachers Coll, Inst Math Mech & Math Phys, Shangqiu
82874    476000, Peoples R China.
82875 CR AISERMAN MA, 1957, Z ANGEW MATH MECH, V37, P74
82876    BOTTEMA O, 1949, P K NED AKAD WETENSC, V52, P848
82877    FU JL, 2000, ACTA PHYS SIN-CH ED, V49, P1023
82878    FU JL, 2000, ACTA PHYS SINICA, V52, P256
82879    FU JL, 2001, ACTA PHYS SIN-CH ED, V50, P2289
82880    FU JL, 2002, ACTA PHYS SIN-CH ED, V51, P2683
82881    LUO SK, 2001, MECH RES COMMUN, V28, P463
82882    MEI FX, 1992, CHINESE SCI BULL, V37, P82
82883    MEI FX, 1993, CHINESE SCI BULL, V38, P311
82884    MEI FX, 1996, DYNAMICS BIRKHOFFIAN
82885    MEI FX, 1996, J BEIJING I TECHNOLO, V16, P245
82886    MEI FX, 1997, STABILITY MOTION CON
82887    MIKHAILOV GK, 1990, APPL MECH SOV REV, V61
82888    RUMYANTSEV VV, 1967, APPL MATH MECH, V31, P260
82889    RUMYANTSEV VV, 1971, APPL MATH MECH, V35, P138
82890    SHI RC, 1994, MECH RES COMMUN, V21, P269
82891    WHITTAKER ET, 1904, ENG CAMBRIDGE, P221
82892    ZHU HP, 1994, CHINESE SCI BULL, V39, P129
82893    ZHU HP, 1994, THESIS BEIJING I TEC
82894 NR 19
82895 TC 1
82896 SN 1009-1963
82897 J9 CHIN PHYS
82898 JI Chin. Phys.
82899 PD APR
82900 PY 2003
82901 VL 12
82902 IS 4
82903 BP 351
82904 EP 356
82905 PG 6
82906 SC Physics, Multidisciplinary
82907 GA 675HT
82908 UT ISI:000182688600001
82909 ER
82910 
82911 PT J
82912 AU Dong, CH
82913 TI Non-conservation of energy arising from atomic dipole interactions and
82914    its effects on light field and coupled atoms
82915 SO CHINESE PHYSICS
82916 DT Article
82917 DE Jaynes-Cummings model; squeezing; collapse and revival
82918 ID JAYNES-CUMMINGS MODEL; ROTATING-WAVE APPROXIMATION; MICROMASER; SYSTEM
82919 AB The interactions between coupled atoms and a single mode of a quantized
82920    electromagnetic field, which involve the terms originating from the
82921    dipole interactions, are discussed. In the usual Jaynes-Cummings model
82922    for coupled atoms, the terms of non-conservation of energy originating
82923    from dipole interactions are neglected, however, we take them into
82924    consideration in this paper. The effects of these terms on the
82925    evolutions of quantum statistic properties and squeezing of the field,
82926    the squeezing of atomic dipole moments and atomic population inversion
82927    are investigated. It has been shown that the coupling between atoms
82928    modulates these evolutions of fields and atoms. The terms of
82929    non-conservation of energy affect these evolutions of fields and atoms
82930    slightly. They also have effects on the squeezing of the field, the
82931    squeezing of atomic dipole and atomic population inversions. The
82932    initial states of atoms also affect these properties.
82933 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
82934 RP Dong, CH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
82935 CR BENSON O, 1994, PHYS REV LETT, V72, P3506
82936    BRUNE M, 1996, PHYS REV LETT, V76, P1800
82937    CRISP MD, 1991, PHYS REV A, V43, P2430
82938    HASSAN SS, 1993, J MOD OPTIC, V40, P1351
82939    HUANG CJ, 2000, ACTA PHYS SINICA, V49, P2160
82940    HUANG CJ, 2001, ACTA PHYS SIN-CH ED, V50, P473
82941    HUANG CJ, 2002, ACTA PHYS SIN-CH ED, V51, P805
82942    HUNG CJ, 2001, ACTA PHYS SINICA, V50, P1920
82943    JOSHI A, 1991, PHYS REV A, V44, P2135
82944    KNIGHT PL, 1990, PHYS REV A, V41, P6255
82945    LIU TK, 2000, ACTA OPT SINICA, V20, P1449
82946    LIU TK, 2000, ACTA PHYS SIN-CH ED, V49, P708
82947    PENG JS, 1993, PHYS REV A B, V47, P4212
82948    RAITHEL G, 1995, PHYS REV LETT, V75, P3446
82949    SEKE J, 1991, QUANTUM OPT, V3, P127
82950    SHORE BW, 1993, J MOD OPTIC, V40, P1195
82951    SKORNIA C, 2001, PHYS REV A, V64
82952    TIAN YH, 1999, ACTA PHYS SIN-OV ED, V8, P252
82953    VARADA GV, 1992, PHYS REV A, V45, P6721
82954    WAN L, 2002, ACTA PHYS SIN-CH ED, V51, P84
82955    ZHOU L, 2001, CHINESE PHYS, V10, P413
82956 NR 21
82957 TC 0
82958 SN 1009-1963
82959 J9 CHIN PHYS
82960 JI Chin. Phys.
82961 PD APR
82962 PY 2003
82963 VL 12
82964 IS 4
82965 BP 408
82966 EP 414
82967 PG 7
82968 SC Physics, Multidisciplinary
82969 GA 675HT
82970 UT ISI:000182688600012
82971 ER
82972 
82973 PT J
82974 AU Zhang, ZL
82975    Jiang, XY
82976    Zhu, WQ
82977    Zheng, XY
82978    Wu, YZ
82979    Xu, SH
82980 TI Blue and white emitting organic diodes based on anthracene derivative
82981 SO SYNTHETIC METALS
82982 DT Article
82983 DE anthracene derivative; blue OLED; white OLED
82984 ID ELECTROLUMINESCENT DEVICES; LAYER
82985 AB Organic light emitting diodes (OLED) with blue or white emission have
82986    been made from a new blue emitting material 9,10-bis(3'5'-diaryl)phenyl
82987    anthracene (JBEM). The two devices have the same structure except for a
82988    red dye doped in JBEM layer of the white device. The white device shows
82989    higher quantum efficiency and more than twice stability than that of
82990    the blue device. Mmaximum luminance of 14850cd/m(2), quantum efficiency
82991    of 1.75% and a half lifetime of 2860h at initial luminance of
82992    100cd/m(2) were achieved. This indicates that the doping is very
82993    important for improving the EL properties, particularly the stability.
82994    With comparison of a blue device from distyrylarylene derivatives, the
82995    blue device using JBEM shows 5 times better stability, indicating JBEM
82996    is a promising blue emitter.
82997 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
82998 RP Zhang, ZL, Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R
82999    China.
83000 CR DESHPANDE RS, 1999, APPL PHYS LETT, V75, P888
83001    GAO ZQ, 1999, APPL PHYS LETT, V74, P865
83002    HOSOKAWA C, 1995, APPL PHYS LETT, V67, P3853
83003    JIANG XY, 2000, J PHYS D APPL PHYS, V33, P473
83004    JIANG XZ, 2000, APPL PHYS LETT, V76, P1813
83005    KIDO J, 1994, APPL PHYS LETT, V64, P815
83006    LIU SY, 2000, THIN SOLID FILMS, V363, P294
83007    SHI JM, 1999, 5972247, US
83008    TAO XT, 1999, APPL PHYS LETT, V75, P1655
83009 NR 9
83010 TC 6
83011 SN 0379-6779
83012 J9 SYNTHET METAL
83013 JI Synth. Met.
83014 PD APR 4
83015 PY 2003
83016 VL 137
83017 IS 1-3
83018 PN Part 2 Sp. Iss. SI
83019 BP 1141
83020 EP 1142
83021 PG 2
83022 SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
83023    Polymer Science
83024 GA 672QY
83025 UT ISI:000182533900132
83026 ER
83027 
83028 PT J
83029 AU Xia, L
83030    Wei, BC
83031    Zhang, Z
83032    Pan, MX
83033    Wang, WH
83034    Dong, YD
83035 TI Microstructure and magnetic properties of Nd60Al10Fe20Co10
83036    glass-forming alloy
83037 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
83038 DT Article
83039 ID BULK METALLIC-GLASS; AMORPHOUS-ALLOYS; SUPERCOOLED LIQUID;
83040    THERMAL-STABILITY; CRYSTALLIZATION; NI; TRANSITION; ABILITY; SOLIDS
83041 AB The microstructural variations of the Nd60Al10Fe20CO10 melt-spun
83042    ribbons and the as-cast rod were studied by high resolution
83043    transmission electron microscopy (HRTEM), x-ray diffraction (XRD) and
83044    differential scanning calorimetry. Nano-clusters in glassy matrix in
83045    both melt-spun ribbon and the as-cast rod samples were observed by
83046    HRTEM, though no obvious crystalline reflections were displayed in
83047    either the XRD or selected area electron diffraction patterns. The
83048    magnetic properties of the rod sample were compared to that of the
83049    ribbons. It was found that the coercivity of the alloy increases with
83050    the size of the nano-scaled clusters, while the cluster size increases
83051    with the reduction of cooling rate at which the sample were prepared.
83052    The relationship between the microstructure and magnetic and thermal
83053    properties of the Nd based alloy were discussed by random anisotropy
83054    model.
83055 C1 Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China.
83056    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
83057    Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Beijing 100080, Peoples R China.
83058 RP Wang, WH, Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China.
83059 CR ALBEN R, 1978, J APPL PHYS, V49, P1653
83060    DING J, 1999, APPL PHYS LETT, V75, P1763
83061    FAN GJ, 1999, APPL PHYS LETT, V75, P2984
83062    FAN GJ, 2000, J MATER RES, V15, P1556
83063    FECHT HJ, 1995, MATER T JIM, V36, P777
83064    GREER AL, 1995, SCIENCE, V267, P1947
83065    INOUE A, 1996, MATER T JIM, V37, P99
83066    INOUE A, 1997, MAT SCI ENG A-STRUCT, V226, P393
83067    INOUE A, 1998, METALL MATER TRANS A, V29, P1779
83068    INOUE A, 2000, ACTA MATER, V48, P279
83069    JIANG JZ, 2001, APPL PHYS LETT, V79, P1112
83070    JOHNSON WL, 1999, MRS BULL, V24, P42
83071    LI Y, 1998, PHIL MAG LETT, V78, P213
83072    LUBORSKY FE, 1979, IEEE T MAGN, V15, P1146
83073    NAGENDRA N, 2000, ACTA MATER, V48, P2603
83074    SCHNEIDER S, 2002, APPL PHYS LETT, V80, P1749
83075    SCHROERS J, 2000, APPL PHYS LETT, V76, P2343
83076    SHEN TD, 1999, APPL PHYS LETT, V75, P49
83077    WANG WH, 1997, APPL PHYS LETT, V71, P58
83078    WANG WH, 1998, PHYS REV B, V57, P8211
83079    WEI BC, UNPUB
83080    WEI BC, 2001, J APPL PHYS, V89, P3529
83081    WEI BC, 2001, PHYS REV B, V64
83082    XIA L, UNPUB
83083    XING LQ, 2000, J APPL PHYS, V88, P3565
83084 NR 25
83085 TC 11
83086 SN 0022-3727
83087 J9 J PHYS-D-APPL PHYS
83088 JI J. Phys. D-Appl. Phys.
83089 PD APR 7
83090 PY 2003
83091 VL 36
83092 IS 7
83093 BP 775
83094 EP 778
83095 PG 4
83096 SC Physics, Applied
83097 GA 673NE
83098 UT ISI:000182586400002
83099 ER
83100 
83101 PT J
83102 AU Zhang, JF
83103    Zheng, CL
83104    Meng, JP
83105    Fang, JP
83106 TI Chaotic dynamical behaviour in soliton solutions for a new
83107    (2+1)-dimensional long dispersive wave system
83108 SO CHINESE PHYSICS LETTERS
83109 DT Article
83110 ID NOVIKOV-VESELOV EQUATION; COHERENT STRUCTURES; REDUCTIONS
83111 AB With the help of variable separation approach, a quite general
83112    excitation of a new (2+1)-dimensional long dispersive wave system is
83113    derived. The chaotic behaviour, such as chaotic line soliton patterns,
83114    chaotic dromion patterns, chaotic-period patterns, and chaotic-chaotic
83115    patterns, in some new localized excitations are found by selecting
83116    appropriate functions.
83117 C1 Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
83118    Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
83119    Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
83120 RP Zhang, JF, Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004,
83121    Peoples R China.
83122 CR BENNEY DJ, 1964, J MATH PHYS, V43, P309
83123    CHAKRAVARTY S, 1995, J MATH PHYS, V36, P763
83124    HIROTA R, 1971, PHYS REV LETT, V27, P1192
83125    HUANG WH, 2002, CHINESE PHYS, V11, P1101
83126    KAUP DJ, 1975, PROG THEOR PHYS, V31, P377
83127    LOU SY, 2000, PHYS LETT A, V277, P94
83128    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
83129    LOU SY, 2001, PHYS SCR, V64, P7
83130    LOU SY, 2002, CHINESE PHYS LETT, V19, P769
83131    LOU SY, 2002, J MATH PHYS, V43, P4078
83132    MACCARI A, 1996, J MATH PHYS, V37, P6207
83133    PORSEZIAN K, 1997, J MATH PHYS, V38, P4675
83134    RADHA R, 1997, J MATH PHYS, V38, P292
83135    ROSSLER OE, 1976, PHYS LETT A, V57, P397
83136    TANG XY, 2002, CHAOS SOLITON FRACT, V14, P1415
83137    TANG XY, 2002, J PHYS A, V35, P4078
83138    TANG XY, 2002, PHYS REV E, V66, P46601
83139    ZHANG JF, 2002, COMMUN THEOR PHYS, V38, P517
83140    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
83141    ZHENG CL, 2002, COMMUN THEOR PHYS, V38, P653
83142    ZHENG CL, 2003, CHINESE PHYS, V12, P11
83143    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P9
83144 NR 22
83145 TC 27
83146 SN 0256-307X
83147 J9 CHIN PHYS LETT
83148 JI Chin. Phys. Lett.
83149 PD APR
83150 PY 2003
83151 VL 20
83152 IS 4
83153 BP 448
83154 EP 451
83155 PG 4
83156 SC Physics, Multidisciplinary
83157 GA 672UZ
83158 UT ISI:000182542500002
83159 ER
83160 
83161 PT J
83162 AU Bao, XH
83163    Lu, WC
83164    Liu, L
83165    Chen, NY
83166 TI Hyper-polyhedron model applied to molecular screening of guanidines as
83167    Na/H exchange inhibitors
83168 SO ACTA PHARMACOLOGICA SINICA
83169 DT Article
83170 DE guanidines; structure-activity relationship; sodium-hydrogen
83171    antiporter; pattern recognition; hyper-polyhedron models
83172 ID DESIGN; PREDICTION
83173 AB Aim: To investigate structure-activity relationships of
83174    N-(3-Oxo-3,4-dihydro-2H-benzo[1,4]oxazine-6-carbonyl) guanidines in
83175    Na/H exchange inhibitory activities and probe into a new method of the
83176    computer-aided molecular screening. Methods: The hyper-polyhedron model
83177    (HPM) was proposed in our lab. Results: The samples with probably
83178    higher activities could be determined in such a way that their
83179    representing points should be in the hyper-polyhedron region where all
83180    known samples with high activities were distributed. And the predictive
83181    ability of different methods available was tested by the
83182    cross-validation experiment. Conclusion: The accurate rate of molecular
83183    screening of N-(3-Oxo-3,4-dihydro-2H-benzo[1,4]oxazine-6-carbonyl)
83184    guanidines by HPM was much higher than that obtained by PCA (principal
83185    component analysis) and Fisher methods for the data set available here.
83186    Therefore, HPM could be used as a powerful tool for screening new
83187    compounds with probably higher activities.
83188 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R China.
83189 RP Bao, XH, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R
83190    China.
83191 CR CHEN NY, 1999, CHEMOMETR INTELL LAB, V45, P329
83192    DOMINE D, 1993, J CHEMOMETR, V7, P227
83193    HUANG XQ, 2000, ACTA PHARMACOL SIN, V21, P46
83194    LIU HL, 1994, ANAL LETT, V27, P2195
83195    LU WC, 1993, CHINESE SCI BULL, V38, P1534
83196    LU WC, 1993, J MOL SCI, V9, P123
83197    LU WC, 1996, J SHANGHAI U, V2, P301
83198    LUO XM, 2001, ACTA PHARMACOL SINIC, V22, P50
83199    RUKUNAGA K, 1972, INTRO STAT PATTERN R
83200    SONG HF, 2000, ACTA PHARMACOL SIN, V21, P80
83201    YAMAMOTO T, 1998, CHEM PHARM BULL, V46, P1716
83202    YU HX, 2001, ACTA PHARMACOL SIN, V22, P45
83203 NR 12
83204 TC 1
83205 SN 1671-4083
83206 J9 ACTA PHARMACOL SIN
83207 JI Acta Pharmacol. Sin.
83208 PD MAY
83209 PY 2003
83210 VL 24
83211 IS 5
83212 BP 472
83213 EP 476
83214 PG 5
83215 SC Chemistry, Multidisciplinary; Pharmacology & Pharmacy
83216 GA 672ZG
83217 UT ISI:000182553500016
83218 ER
83219 
83220 PT J
83221 AU Wang, WG
83222    Zhou, BX
83223 TI The local internal stress in ferromagnetic alloys: SB theory and the
83224    local internal stress source
83225 SO MATERIALS & DESIGN
83226 DT Article
83227 DE SB theory; damping capacity; internal friction; local internal stress
83228 ID DAMPING CAPACITY
83229 AB The local internal stress theory concerning the damping mechanisms of
83230    ferromagnetic alloys is thoroughly analyzed and the local internal
83231    stress is characterized by the amplitude, discontinuity and
83232    distribution. The influences of various crystal defects on the
83233    irreversible movements of magnetic domain walls are summarized and the
83234    solute atom model for local internal stress source is proposed. With
83235    this new model, by the experimental results of which the damping
83236    capacity (internal friction) of ferromagnetic alloys increasing with
83237    rising annealing temperature can be explained quite well. (C) 2003
83238    Elsevier Science Ltd. All rights reserved.
83239 C1 Shandong Univ Technol, Fac Mech Engn, Zibo 255012, Peoples R China.
83240    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
83241 CR ASTIE B, 1981, J PHYS, V42, C5
83242    COCHARDT AW, 1953, T ASME, V75, P196
83243    DEGAUGE J, 1993, MATER SCI FORUM, V119, P839
83244    DEGAUQUE J, 1979, J APPL PHYS, V50, P2140
83245    HA KF, 1983, MICROSTRUCTURAL THEO
83246    HINAI M, 1991, T JIM, V32, P1082
83247    HINAI M, 1992, T JIM, V33, P856
83248    HINAI M, 1993, MATER T JIM, V34, P359
83249    KRONMULLER H, 1972, INT J NONDESTRUCTIVE, V3, P315
83250    LU J, 1993, J MATER SCI TECHNOL, V9, P365
83251    MASUMOTO H, 1986, T JIM, V27, P401
83252    SMITH GW, 1968, J APPL PHYS, V39, P2311
83253    SMITH GW, 1969, J APPL PHYS, V40, P5174
83254    TAO ZG, 1983, INSTRU MAT, V14, P73
83255    WANG WG, 1998, ACTA METALL SIN, V34, P1039
83256    WANG WG, 1998, THESIS NUCL POWER I
83257    YU R, 1978, CHINESE SCI BULL, V23, P217
83258    YU RH, 1981, CHINESE SCI BULL, V26, P206
83259 NR 18
83260 TC 2
83261 SN 0261-3069
83262 J9 MATER DESIGN
83263 JI Mater. Des.
83264 PD MAY
83265 PY 2003
83266 VL 24
83267 IS 3
83268 BP 163
83269 EP 167
83270 PG 5
83271 SC Materials Science, Multidisciplinary
83272 GA 670BQ
83273 UT ISI:000182387700001
83274 ER
83275 
83276 PT J
83277 AU Wei, XC
83278    Li, L
83279    Fu, RY
83280    Shi, W
83281 TI Effect of microstructure in TRIP steel on its tensile behavior at high
83282    strain
83283 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
83284 DT Article
83285 DE high strain rate; TRIP steel; microstructure; morphology; retained
83286    austenite
83287 ID RETAINED AUSTENITE; MECHANICAL-PROPERTIES; PHASE STEELS; SHEET STEELS;
83288    TRANSFORMATION; ENHANCEMENT; DEFORMATION; TEMPERATURE; STABILITY;
83289    DUCTILITY
83290 AB The relationships between microstructure of 0.195C-1.6Si-1.58Mn TRIP
83291    steel and its dynamic mechanical properties at high strain rate were
83292    investigated. The effect of microstructures on dynamic proper ties was
83293    discussed and the comparison with its static mechanical properties was
83294    also presented. The specimens of TRIP steel via three heat treatment
83295    techniques exhibit different morphological structures, responsible for
83296    their dynamic mechanical performances. The dynamic tensile testing was
83297    performed on self-made pneumatic tensile impact tester. The results
83298    showed that the size, volume fraction, morphology and distribution of
83299    retained austenite all affect the final mechanical properties at high
83300    strain rate. Among them, the second phase (retained austenite +
83301    bainite) with net structure severely decreases the elongation of TRIP
83302    steel in spite of the fact that it enhances strength because it
83303    restrains ferrite deformation. In order to obtain the excellent
83304    combination of strength and elongation, rational matching of
83305    morphology, size and volume fraction of several phases in TRIP steel
83306    can be obtained via proper heat treatment techniques.
83307 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
83308 RP Wei, XC, Shanghai Univ, Shanghai 200072, Peoples R China.
83309 CR BLECK W, 1999, STEEL RES, V70, P472
83310    BRANDT ML, 1993, IRON STEELMAKER, V20, P55
83311    FURUKAWA T, 1979, STRUCTURE PROPERTIES
83312    FURUYA H, 2000, TETSU TO HAGANE, V86, P409
83313    GIRAULT E, 1998, MATER CHARACT, V40, A111
83314    HAIDEMENOPOULOS GN, 1996, STEEL RES, V67, P513
83315    HAIDEMENOPOULOS GN, 1996, STEEL RES, V67, P93
83316    HANZAKI AZ, 1992, 3 MWSP C P ISS AIM, V29, P459
83317    HARRY CR, 1979, ANN REV MAT SCI C, V9, P283
83318    JACQUES P, 1998, METALL MATER TRANS A, V29, P2383
83319    JEONG WC, 1993, MAT SCI ENG A-STRUCT, V165, P1
83320    KOJIMA N, 1996, SUMITOMO METAL, V50, P31
83321    KOT RA, 1977, FORMABLE HSLA DUAL P
83322    MALVERN LE, 1984, MECHANICAL PROPERTIE, P1
83323    MATSUMURA O, 1987, T IRON STEEL I JPN, V27, P570
83324    MATSUMURA O, 1992, ISIJ INT, V32, P1110
83325    QIU H, 1999, ISIJ INT, V39, P955
83326    SAKUMA Y, 1991, ISIJ INT, V31, P1348
83327    SAKUMA Y, 1992, METALL TRANS A, V23, P1233
83328    SUGIMOTO K, 1992, ISIJ INT, V32, P1311
83329    SUGIMOTO K, 1993, ISIJ INT, V33, P775
83330    SUGIMOTO K, 1999, ISIJ INT, V39, P56
83331    TAKAGI S, 1996, CAMP ISIJ, V9, P1108
83332    THOMAS G, 1979, STRUCTURE PROPERTIES, P183
83333    WANG SH, 1996, SOLID STATE NUCL MAG, V8, P1
83334    ZHOU YX, 2000, J MATER SCI, V35, P925
83335 NR 26
83336 TC 0
83337 SN 1006-706X
83338 J9 J IRON STEEL RES INT
83339 JI J. Iron Steel Res. Int.
83340 PD FEB
83341 PY 2003
83342 VL 10
83343 IS 1
83344 BP 49
83345 EP 54
83346 PG 6
83347 SC Metallurgy & Metallurgical Engineering
83348 GA 669AF
83349 UT ISI:000182329200011
83350 ER
83351 
83352 PT J
83353 AU Li, MZ
83354    Xu, DH
83355 TI A class of nonlinear boundary value problems for the second-order E-2
83356    class elliptic systems in general form
83357 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
83358 DT Article
83359 DE elliptic systems; boundary value problems; singular integral equations;
83360    singular integral operators; existence
83361 AB A class of nonlinear boundary value problems (BVP) for the second-order
83362    E-2 class elliptic systems in general form is discussed. By introducing
83363    a kind of transformation, this kind of BVP is reduced to a class of
83364    generalized nonlinear Riemann-Hilbert BVP. And then some singular
83365    integral operators are introduced to establish the equivalent nonlinear
83366    singular integral equations. The solvability is proved under some
83367    suitable hypotheses by means of the properties of singular integral
83368    operators and the function theoretic methods.
83369 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
83370    E China Inst Technol, Dept Computat Sci, Fuzhou 344000, Jiangxi, Peoples R China.
83371 RP Li, MZ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
83372 CR BEGEHR H, 1981, LECT NOTES MATH, V846, P55
83373    GILBERT RP, 1997, COMPLEX VARIABLES, V32, P105
83374    KENCHT S, 1986, COMPLEX VARIABLES, V6, P240
83375    LI MZ, 1990, THEORY BOUNDARY VALU, P18
83376    LI MZ, 1998, P 3 INT C NONL MECH, P809
83377    WOLFERSDORF LV, 1984, MATH NACHR, V116, P89
83378    WOLFERSDORF LV, 1987, MATH NACHR, V130, P111
83379 NR 7
83380 TC 0
83381 SN 0253-4827
83382 J9 APPL MATH MECH-ENGL ED
83383 JI Appl. Math. Mech.-Engl. Ed.
83384 PD FEB
83385 PY 2003
83386 VL 24
83387 IS 2
83388 BP 163
83389 EP 181
83390 PG 19
83391 SC Mathematics, Applied; Mechanics
83392 GA 670AX
83393 UT ISI:000182385700004
83394 ER
83395 
83396 PT J
83397 AU Li, FC
83398 TI Asymptotic dynamic solution to the mode I propagating crack-tip field
83399    in elastic-viscoplastic material
83400 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
83401 DT Article
83402 DE crack-tip field; dynamic propagating; viscoplastic
83403 AB A new elastic-viscoplastic mode was proposed to analyze the stress and
83404    strain fields surrounding the lip of a propagating mode I cracks. A
83405    proper displacement pattern was suggested and asymptotic equations were
83406    derived, and numerical solutions were illustrated. The analysis and
83407    calculation show that the crack-tip field is of logarithmic singularity
83408    for smaller viscosity, however no solution exists for large viscosity.
83409    By a careful analysis and comparison, it is found that the present
83410    results retain all merits of those given by Gao Yu-chen, while removing
83411    existing problems.
83412 C1 Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
83413    Harbin Engn Univ, Sch Civil Engn, Harbin 150001, Peoples R China.
83414 RP Li, FC, Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples
83415    R China.
83416 CR CHITALEY AD, 1971, J MECH PHYS SOLIDS, V19, P163
83417    GAO YC, 1980, ACTA MECH SINICA, V12, P48
83418    GAO YC, 1983, MECH MATER, V2, P47
83419    GAO YC, 1984, J MECH PHYS SOLIDS, V32, P1
83420    GAO YC, 1985, INT J FRACTURE, V29, P171
83421    GAO YC, 1988, MECH RES COMMUN, V15, P307
83422    GAO YC, 1990, THEORETICAL APPL FRA, V14, P233
83423    LI FC, 1992, ACTA MECH SOLIDS, V5, P184
83424    LI FC, 1993, ACTA MECH SINICA, V25, P732
83425    LI FC, 1997, APPL MATH MECH-ENGL, V18, P173
83426 NR 10
83427 TC 0
83428 SN 0253-4827
83429 J9 APPL MATH MECH-ENGL ED
83430 JI Appl. Math. Mech.-Engl. Ed.
83431 PD FEB
83432 PY 2003
83433 VL 24
83434 IS 2
83435 BP 208
83436 EP 215
83437 PG 8
83438 SC Mathematics, Applied; Mechanics
83439 GA 670AX
83440 UT ISI:000182385700007
83441 ER
83442 
83443 PT J
83444 AU Li, CJ
83445    Gu, CQ
83446 TI Epsilon-algorithm and eta-algorithm of generalized inverse
83447    function-valued Pade approximants using for solution of integral
83448    equations
83449 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
83450 DT Article
83451 DE generalized inverse; function-valued Pade approximant;
83452    epsilon-algorithm; eta-algorithm; integral equations
83453 AB Two efficient recursive algorithms epsilon-algorithm and eta-algorithm
83454    are introduced to compute the generalized inverse function-valued Pade
83455    approximants. The approximants were used to accelerate the convergence
83456    of the power series with function-valued coefficients and to estimate
83457    characteristic value of the integral equations. Famous Wynn identities
83458    of the Pade approximants is also established by means of the connection
83459    of two algorithms.
83460 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
83461    Tongji Univ, Dept Math, Shanghai 200331, Peoples R China.
83462 RP Li, CJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
83463 CR BAKER GA, 1978, NUMERICAL TREATMENT
83464    BAKER GA, 1981, PADE APPROXIMANTS 1
83465    CHISHOLM JSR, 1963, J MATH PHYS, V4, P1506
83466    COOPE ID, 1993, NUMER ALGORITHMS, V5, P275
83467    GRAVESMORRIS PR, 1986, CONSTR APPROX, V2, P263
83468    GRAVESMORRIS PR, 1990, J COMPUT APPL MATH, V32, P117
83469    GU CQ, 2001, APPL MATH MECH-ENGL, V22, P1057
83470    GU CQ, 2001, LINEAR ALGEBRA APPL, V322, P141
83471 NR 8
83472 TC 0
83473 SN 0253-4827
83474 J9 APPL MATH MECH-ENGL ED
83475 JI Appl. Math. Mech.-Engl. Ed.
83476 PD FEB
83477 PY 2003
83478 VL 24
83479 IS 2
83480 BP 221
83481 EP 229
83482 PG 9
83483 SC Mathematics, Applied; Mechanics
83484 GA 670AX
83485 UT ISI:000182385700009
83486 ER
83487 
83488 PT J
83489 AU Jiao, Z
83490    Chen, F
83491    Su, R
83492    Huang, XJ
83493    Liu, W
83494    Liu, JH
83495 TI Study on the characteristics of Ag doped CuO-BaTiO3CO2 sensors
83496 SO SENSORS
83497 DT Article
83498 DE gas sensor; CO2 sensor; solid ion electrolyte; sensitivity; doping
83499 ID CARBON-DIOXIDE SENSOR; CO2 GAS SENSOR; CONDUCTING SOLID ELECTROLYTE;
83500    MIXED-OXIDE CAPACITOR; SENSING CHARACTERISTICS; ELECTROMOTIVE-FORCE;
83501    PARTIAL PRESSURES; POROUS CERAMICS; PROBE
83502 AB In this paper the characteristics of a CuO-BaTiO3 based CO2 gas sensor
83503    was investigated. The sensitivity of the CuO-BaTiO3 based CO2 sensor
83504    was influenced by doping various metal elements such as Au, Ag, Pt, Pd,
83505    Ce, Mg, Sr, La, Zn, Fe and Bi, which were added as a pure metal or in
83506    the form of metal oxides. It was found that Ag is the most suitable
83507    additive among all substances tested. The Ag-doped CO2 gas sensor has
83508    better sensitivity and lower operating temperature, with a detection
83509    concentration range of from 100 ppm to 10%. The sensor also shows good
83510    stability.
83511 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
83512    Univ Sci & Technol China, Dept Automat, Hefei 230026, Peoples R China.
83513    Chinese Acad Sci, Hefei Inst Intelligent Machines, Hefei 230031, Peoples R China.
83514 RP Jiao, Z, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
83515    Peoples R China.
83516 CR COTE R, 1984, J ELECTROCHEM SOC, V131, P63
83517    IMANAKA N, 1990, CHEM LETT, P497
83518    IMANAKA N, 1991, CHEM LETT        OCT, P1743
83519    IMANAKA N, 1991, CHEM LETT, P13
83520    IMANAKA N, 1992, CHEM LETT, P103
83521    ISHIHARA T, 1990, CHEM LETT, P1163
83522    ISHIHARA T, 1991, J ELECTROCHEM SOC, V138, P173
83523    MARUYAMA T, 1987, SOLID STATE IONICS, V23, P107
83524    MARUYAMA T, 1987, SOLID STATE IONICS, V23, P113
83525    MARUYAMA T, 1987, SOLID STATE IONICS, V24, P281
83526    OGATA T, 1986, J MATER SCI LETT, V5, P285
83527    SAITO Y, 1988, SOLID STATE IONICS, V28, P1644
83528    SHIMIZU Y, 1989, J ELECTROCHEM SOC, V136, P2256
83529    WU XQ, 1989, J ELECTROCHEM SOC, V136, P2892
83530    YAO S, 1990, CHEM LETT, P2033
83531    YAO S, 1991, CHEM LETT        NOV, P2069
83532 NR 16
83533 TC 2
83534 SN 1424-8220
83535 J9 SENSORS
83536 JI Sensors
83537 PD SEP
83538 PY 2002
83539 VL 2
83540 IS 9
83541 BP 366
83542 EP 373
83543 PG 8
83544 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
83545 GA 667EK
83546 UT ISI:000182218000002
83547 ER
83548 
83549 PT J
83550 AU Zhang, YF
83551 TI Two types of new Lie algebras and corresponding hierarchies of
83552    evolution equations
83553 SO PHYSICS LETTERS A
83554 DT Article
83555 DE lie algebra; loop algebra; integrable system
83556 ID INTEGRABLE SYSTEMS; HAMILTONIAN-STRUCTURE
83557 AB An extension of Lie algebra A(n-1) is proposed. As special cases, two
83558    new loop algebras are constructed, respectively. It follows that two
83559    types of new integrable Hamiltonian hierarchies are engendered. As
83560    their reduction cases, generalized nonlinear Schrodinger equations,
83561    coupled Fisher equations, the standard heat-conduction equation are
83562    obtained, respectively. This method proposed in this Letter can be used
83563    generally. (C) 2003 Published by Elsevier Science B.V.
83564 C1 Shanghai Univ Sci & Technol, Sch Informat, Math Inst, Tai An 271019, Peoples R China.
83565    Chinese Acad Sci, Inst Computat Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China.
83566 RP Zhang, YF, Shanghai Univ Sci & Technol, Sch Informat, Math Inst, Tai An
83567    271019, Peoples R China.
83568 CR FAN EG, 2000, J MATH PHYS, V41, P7769
83569    GU C, 1990, SOLITON THEORY ITS A
83570    HU XB, 1997, J PHYS A-MATH GEN, V30, P619
83571    MA W, 1990, THESIS ACADEMIA SINI
83572    TU GZ, 1989, J MATH PHYS, V30, P330
83573 NR 5
83574 TC 3
83575 SN 0375-9601
83576 J9 PHYS LETT A
83577 JI Phys. Lett. A
83578 PD APR 7
83579 PY 2003
83580 VL 310
83581 IS 1
83582 BP 19
83583 EP 24
83584 PG 6
83585 SC Physics, Multidisciplinary
83586 GA 664WX
83587 UT ISI:000182088400004
83588 ER
83589 
83590 PT J
83591 AU Zhang, DJ
83592    Chen, DY
83593 TI The N-soliton solutions of the sine-Gordon equation with
83594    self-consistent sources
83595 SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
83596 DT Article
83597 DE sine-Gordon equation with self-consistent sources; Hirota method;
83598    Wronskian technique
83599 ID NONLINEAR INTEGRABLE SYSTEMS; VRIES EQUATION; KDV HIERARCHY; KORTEWEG;
83600    TRANSFORMATIONS
83601 AB The hierarchy of the sine-Gordon equation with self-consistent sources
83602    is derived by using the eigenfunctions of recursion operator. The
83603    bilinear form of the sine-Gordon equation with self-consistent sources
83604    is given and the N-soliton solutions are obtained through Hirota method
83605    and Wronskian technique, respectively. Some novel determinantal
83606    identities are presented to treat the nonlinear term in the time
83607    evolution and finish the Wronskian verifications. (C) 2002 Elsevier
83608    Science B.V. All rights reserved.
83609 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
83610 RP Zhang, DJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
83611 CR ABLOWITZ MJ, 1981, SOLITON INVERSE SCAT
83612    ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
83613    FREEMAN NC, 1983, PHYS LETT A, V95, P1
83614    FREEMAN NC, 1984, IMA J APPL MATH, V32, P125
83615    HIROTA R, 1971, PHYS REV LETT, V27, P1192
83616    HIROTA R, 1974, PROG THEOR PHYS, V52, P1498
83617    LEON J, 1990, J PHYS A-MATH GEN, V23, P1385
83618    LEON J, 1990, PHYS LETT A, V144, P444
83619    LIN RL, 2001, PHYSICA A, V291, P287
83620    MELNIKOV VK, 1986, PHYS LETT A, V118, P22
83621    MELNIKOV VK, 1988, PHYS LETT A, V133, P493
83622    MELNIKOV VK, 1989, COMMUN MATH PHYS, V120, P451
83623    MELNIKOV VK, 1990, J MATH PHYS, V31, P1106
83624    MELNIKOV VK, 1992, INVERSE PROBL, V8, P133
83625    NIMMO JJC, 1983, PHYS LETT A, V95, P4
83626    NIMMO JJC, 1984, J PHYS A-MATH GEN, V17, P1415
83627    URASBOEV GU, 2001, THEOR MATH PHYS+, V129, P1341
83628    YE S, 2002, J PHYS A-MATH GEN, V35, L283
83629    ZENG YB, 1996, ACTA MATH SINICA, V12, P217
83630    ZENG YB, 1998, PHYSICA A, V259, P278
83631    ZENG YB, 1999, PHYSICA A, V262, P405
83632    ZENG YB, 2000, J MATH PHYS, V41, P5453
83633    ZENG YB, 2001, J MATH PHYS, V42, P2113
83634 NR 23
83635 TC 4
83636 SN 0378-4371
83637 J9 PHYSICA A
83638 JI Physica A
83639 PD APR 15
83640 PY 2003
83641 VL 321
83642 IS 3-4
83643 BP 467
83644 EP 481
83645 PG 15
83646 SC Physics, Multidisciplinary
83647 GA 667UG
83648 UT ISI:000182251400007
83649 ER
83650 
83651 PT J
83652 AU Guo, HW
83653    Chen, MY
83654 TI Multiview connection technique for 360-deg three-dimensional measurement
83655 SO OPTICAL ENGINEERING
83656 DT Article
83657 DE three-dimensional measurement; 360-deg profilometry; shape measurement;
83658    multiview connection; coordinate transformation
83659 ID 3-D DIFFUSE OBJECTS; SHAPE MEASUREMENT; FRINGE PROJECTION;
83660    PROFILOMETRY; SURFACE; INTERFEROMETRY; REGISTRATION
83661 AB A new multiview connection technique for 360-deg three-dimensional
83662    (3-D) measurement is presented. The 3-D shape of a 360-deg object is
83663    usually obtained by two steps, first measuring the object from
83664    different views and afterward connecting all the views together. We
83665    determine the relationship between two adjacent views from their over:
83666    lapping areas by a least-squares algorithm. To promote computability,
83667    the coordinate transform formula is expanded into a Taylor series, and
83668    a linear equation system is deduced, from which the relationship
83669    parameters between two adjacent views can be easily calculated.
83670    According to the resulting parameters, the connection of different
83671    views is performed by coordinate transformation in 3-D space. The two
83672    steps, parameter calculation and coordinate transformation, are
83673    iterated until the algorithm converges or the remaining error decreases
83674    below a given threshold. The 360-deg 3-D shape of a plaster statue is
83675    measured and reconstructed, thus experimentally demonstrating the
83676    validity of suggested method. (C) 2003 Society of Photo-Optical
83677    Instrumentation Engineers.
83678 C1 Shanghai Univ, Lab Appl Opt & Metrol, Shanghai 200072, Peoples R China.
83679 RP Guo, HW, Shanghai Univ, Lab Appl Opt & Metrol, Shanghai 200072, Peoples
83680    R China.
83681 CR ASUNDI A, 1999, OPT ENG, V38, P339
83682    ASUNDI AK, 1994, OPT ENG, V33, P2760
83683    BESL PJ, 1992, IEEE T PATTERN ANAL, V14, P239
83684    BRAY M, 1999, P SOC PHOTO-OPT INS, V3739, P259
83685    BRUNING JH, 1974, APPL OPTICS, V13, P2693
83686    CHANG M, 1995, OPT ENG, V34, P3572
83687    CHEN F, 2000, OPT ENG, V39, P10
83688    CHEN MY, 1996, P SOC PHOTO-OPT INS, V2861, P107
83689    CHEN MY, 2000, P SOC PHOTO-OPT  A&B, V4101, P193
83690    CHEN Y, 1992, IMAGE VISION COMPUT, V10, P145
83691    CHENG XX, 1991, APPL OPTICS, V30, P1274
83692    COGGRAVE CR, 1999, OPT ENG, V38, P1573
83693    HALIOUA M, 1985, APPL OPTICS, V24, P2193
83694    HEARN D, 1997, COMPUTER GRAPHICS
83695    MINGYI C, 1991, P SOC PHOTO-OPT INS, V1553, P626
83696    OHARA H, 1996, APPL OPTICS, V35, P4476
83697    OTSUBO M, 1994, OPT ENG, V33, P608
83698    REICH C, 2000, OPT ENG, V39, P224
83699    SITNIK R, 2002, OPT ENG, V41, P443
83700    SRINIVASAN V, 1984, APPL OPTICS, V23, P3105
83701    STETSON KA, 1985, APPL OPTICS, V24, P3631
83702    TANG SH, 1998, P SOC PHOTO-OPT INS, V3479, P43
83703    TURK G, 1994, P SIGGRAPH 94, P311
83704    WEIMING C, 1993, OPT ENG, V32, P1947
83705    WEIMING C, 1996, P SOC PHOTO-OPT INS, V2860, P321
83706    ZHANG YL, 1996, P SOC PHOTO-OPT INS, V2899, P162
83707 NR 26
83708 TC 1
83709 SN 0091-3286
83710 J9 OPT ENG
83711 JI Opt. Eng.
83712 PD APR
83713 PY 2003
83714 VL 42
83715 IS 4
83716 BP 900
83717 EP 905
83718 PG 6
83719 SC Optics
83720 GA 666UE
83721 UT ISI:000182194200004
83722 ER
83723 
83724 PT J
83725 AU Fang, ZJ
83726    Xia, YB
83727    Wang, LJ
83728    Zhang, WL
83729    Ma, ZG
83730    Zhang, ML
83731 TI Study of the stress observed in diamond films on carbon-implanted
83732    alumina surfaces
83733 SO ACTA PHYSICA SINICA
83734 DT Article
83735 DE diamond films; stress; ion implantation; alumina ceramic
83736 AB The compressive stress in the diamond films formed on alumina ceramics
83737    can be reduced by implantation of carbon ions into alumina substrates
83738    before the deposition of diamond films. After carbon ion implantation,
83739    there is no new phase identified as interlayer by comparing the x-ray
83740    diffraction (XRD) patterns of the un-implanted and implanted
83741    substrates. In addition, the stress in the diamond films decreases
83742    linearly with the increase of the C+ implantation dose. This is because
83743    the implanted ions settle in the interstitial position and induce the
83744    residual compressive stress in the alumina lattice. This compressive
83745    stress, when the diamond films deposited and cooled down to room
83746    temperature, will be released and partly offset the compressive stress
83747    in the diamond films.
83748 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
83749 RP Fang, ZJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
83750    China.
83751 CR AGER JW, 1993, PHYS REV B, V48, P2601
83752    FAN WD, 1995, SURF COAT TECH, V72, P78
83753    FIELD JE, 1979, PROPERTIES NATURAL S, P520
83754    GRIMSDITCH MH, 1978, PHYS REV B, V18, P901
83755    ITO T, 1994, JPN J APPL PHYS 1, V33, P5681
83756    VONKAENEL Y, 1997, J APPL PHYS, V81, P1726
83757    XIA Y, 1996, CHINESE PHYS LETT, V13, P459
83758 NR 7
83759 TC 0
83760 SN 1000-3290
83761 J9 ACTA PHYS SIN-CHINESE ED
83762 JI Acta Phys. Sin.
83763 PD APR
83764 PY 2003
83765 VL 52
83766 IS 4
83767 BP 1028
83768 EP 1033
83769 PG 6
83770 SC Physics, Multidisciplinary
83771 GA 665AP
83772 UT ISI:000182097700047
83773 ER
83774 
83775 PT J
83776 AU Li, FS
83777    Lu, XG
83778    Jin, CJ
83779    Zhou, GZ
83780    Zhu, LX
83781    Hu, XJ
83782    Li, Z
83783    Wang, F
83784    Shen, Q
83785 TI Unpolluted deoxidation in steel melts with solid electrolyte
83786 SO ACTA METALLURGICA SINICA
83787 DT Article
83788 DE steel melt; solid electrolyte; deoxidization; unpolluted
83789 ID MOLTEN METALS; CELL
83790 AB Solid electrolyte, electronic conduction materials and deoxidizer are
83791    integrated to make into a deoxidization unit which is used in
83792    examination of the unpolluted deoxidization without inclusion for steel
83793    melts. Experimental results show that deoxidization process using the
83794    deoxidization units in steel melts is fast and effective, and steel
83795    melts will not be polluted by deoxidization production and deoxidizer.
83796 C1 Univ Sci & Technol Beijing, Dept Inorgan & Nonmet Mat, Beijing 100083, Peoples R China.
83797    Shanghai Univ, State Enhance Lab Ferromet, Shanghai 200072, Peoples R China.
83798    Baoshan Iron & Steel Co Ltd, Ctr Res & Dev, Shanghai 201900, Peoples R China.
83799    Univ Sci & Technol Beijing, Dept Chem Phys, Beijing 100083, Peoples R China.
83800 RP Li, FS, Univ Sci & Technol Beijing, Dept Inorgan & Nonmet Mat, Beijing
83801    100083, Peoples R China.
83802 CR ELLIOTT JF, 1963, THERMOCHEM STEEL MAK, V2, P618
83803    FISCHER WA, 1972, SCRIPTA METALL, V6, P923
83804    HASHAM Z, 1995, J ELECTROCHEM SOC, V142, P469
83805    HU XJ, 1999, ACTA METALL SIN, V35, P316
83806    IWASE M, 1981, METALL T B, V12, P517
83807    KOROUSIC B, 1968, HELV CHIM ACTA, V51, P907
83808    OBERG KE, 1973, METALL T B, V4, P75
83809    PAL UB, 1994, 5312525, US
83810    PAL UB, 1995, 5443699, US
83811    PAL UB, 1996, 5567286, US
83812    WANG LM, 1998, J CHIN RARE EARTH SO, V16, P441
83813    WEI SK, 1980, THERMODYNAMIC METALL, P17
83814    YUAN S, 1994, J ELECTROCHEM SOC, V141, P467
83815    YUAN S, 1996, J AM CERAM SOC, V79, P641
83816 NR 14
83817 TC 2
83818 SN 0412-1961
83819 J9 ACTA METALL SIN
83820 JI Acta Metall. Sin.
83821 PD MAR 11
83822 PY 2003
83823 VL 39
83824 IS 3
83825 BP 287
83826 EP 292
83827 PG 6
83828 SC Metallurgy & Metallurgical Engineering
83829 GA 667DR
83830 UT ISI:000182216200013
83831 ER
83832 
83833 PT J
83834 AU Chen, LQ
83835    Zhang, NH
83836    Zu, JW
83837 TI The regular and chaotic vibrations of an axially moving viscoelastic
83838    string based on fourth order Galerkin truncaton
83839 SO JOURNAL OF SOUND AND VIBRATION
83840 DT Letter
83841 ID NONLINEAR VIBRATION; DYNAMICAL BEHAVIOR; STABILITY ANALYSIS; BELTS;
83842    BEAMS
83843 C1 Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
83844    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
83845    Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada.
83846 RP Chen, LQ, Shanghai Univ, Dept Math, Hu Tai Rd 555,Room 1101,Bldg 2,
83847    Shanghai 200070, Peoples R China.
83848 CR ABHYANKAR NS, 1993, J APPL MECH-T ASME, V60, P167
83849    ABRATE S, 1992, MECH MACH THEORY, V27, P645
83850    CHEN LQ, 2000, APPL MATH MECH-ENGL, V21, P995
83851    CHEN LQ, 2000, MECH RES COMMUN, V27, P413
83852    CHEN LQ, 2001, ADV MECH, V31, P535
83853    FUNG RF, 1997, J SOUND VIB, V201, P153
83854    HUANG JS, 1995, INT J MECH SCI, V37, P145
83855    MAHALINGAM S, 1957, BRIT J APPL PHYS, V8, P145
83856    MOCHENSTURM EM, 1996, J VIB ACOUST, V116, P346
83857    MOON FC, 1979, J SOUND VIB, V65, P285
83858    MOTE CD, 1972, SHOCK VIBRATION DIGE, V4, P2
83859    PAKDEMIRLI M, 1993, J SOUND VIB, V168, P371
83860    PAKDEMIRLI M, 1994, J SOUND VIB, V169, P179
83861    PAKDEMIRLI M, 1997, J SOUND VIB, V203, P815
83862    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
83863    ZHANG L, 1999, J APPL MECH-T ASME, V66, P396
83864    ZHANG L, 1999, J APPL MECH-T ASME, V66, P403
83865    ZHAO WJ, 2002, INT J NONLINEAR SCI, V3, P129
83866 NR 18
83867 TC 9
83868 SN 0022-460X
83869 J9 J SOUND VIB
83870 JI J. Sound Vibr.
83871 PD APR 3
83872 PY 2003
83873 VL 261
83874 IS 4
83875 BP 764
83876 EP 773
83877 PG 10
83878 SC Engineering, Mechanical; Acoustics; Mechanics
83879 GA 664HG
83880 UT ISI:000182055200012
83881 ER
83882 
83883 PT J
83884 AU Zhang, JH
83885    Chan, YC
83886 TI Research on the contact resistance, reliability, and degradation
83887    mechanisms of anisotropically conductive film interconnection for
83888    flip-chip-on-flex applications
83889 SO JOURNAL OF ELECTRONIC MATERIALS
83890 DT Article
83891 DE anisotropically conductive adhesive or film; contact resistance;
83892    reliability; degradation mechanism; oxide formation; coefficient of
83893    thermal expansion; flip chip
83894 ID ADHESIVES; ACF
83895 AB Although there have been many years of development, the degradation of
83896    the electrical performance of anisotropically conductive adhesive or
83897    film (ACA or ACF) interconnection for flip-chip assembly is still a
83898    critical drawback despite wide application. In-depth study about the
83899    reliability and degradation mechanism of ACF interconnection is
83900    necessary. In this paper, the initial contact resistance, electrical
83901    performance after reliability tests, and degradation mechanisms of ACF
83902    interconnection for flip-chip-on-flex (FCOF) assembly were studied
83903    using very-low-height Ni and Au-coated Ni-bumped chips. The combination
83904    of ACF and very-low-height bumped chips was considered because it has
83905    potential for very low cost and ultrafine pitch interconnection.
83906    Contact resistance changes were monitored during reliability tests,
83907    such as high humidity and temperature and thermal cycling. The high,
83908    initial contact resistance resulted from a thin oxide layer on the
83909    surface of the bumps. The reliability results showed that the
83910    degradation of electrical performance was mainly related to the oxide
83911    formation on the surface of deformed particles with non-noble metal
83912    coating, the severe metal oxidation on the conductive surface of bumps,
83913    and coefficient of thermal expansion (CTE) mismatch between the ACF
83914    adhesive and the contact conductive-surface metallization. Some methods
83915    for reducing initial contact resistance and improving ACF
83916    interconnection reliability were suggested. The suggestions include the
83917    removal of the oxide layer and an increase of the Au-coating film to
83918    improve conductive-surface quality, appropriate choice of conductive
83919    particle, and further development of better polymeric adhesives with
83920    low CTE and high electrical performance.
83921 C1 Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China.
83922    City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China.
83923 RP Zhang, JH, Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai
83924    200072, Peoples R China.
83925 CR ASCHENBRENNER R, 1997, IEEE T COMPON PACK C, V20, P95
83926    BOTTER H, 1996, P 2 INT C ADH JOIN C, P333
83927    EVANS UR, 1960, CORROSION OXIDATION
83928    FAN SH, 2002, MICROELECTRON RELIAB, V42, P1081
83929    GAYNES MA, 1995, IEEE T COMPON PACK B, V18, P299
83930    JAGT JC, 1995, IEEE T COMPON PACK B, V18, P292
83931    LEE CH, 1995, FLIPCHIP TECHNOLOGY, P317
83932    LIU J, 1996, CIRCUIT WORLD, V22, P19
83933    LIU J, 1999, IEEE T COMPON PACK T, V22, P186
83934    LU D, 1999, IEEE T ELECTRON PACK, V22, P228
83935    MILAZZO G, 1963, ELECTROCHEMISTRY THE, P157
83936    TORRI M, 1996, P 9 INT MICR C, P324
83937    WATANABE I, 1995, FLIP CHIP TECHNOLOGI, P301
83938    WILLIAMS DJ, 1993, SOLDERING SURFACE MO, V14, P4
83939    YIM MJ, 1999, IEEE TRANS ADV PACK, V22, P166
83940    YIM MJ, 2001, IEEE T COMPON PACK T, V24, P24
83941 NR 16
83942 TC 3
83943 SN 0361-5235
83944 J9 J ELECTRON MATER
83945 JI J. Electron. Mater.
83946 PD APR
83947 PY 2003
83948 VL 32
83949 IS 4
83950 BP 228
83951 EP 234
83952 PG 7
83953 SC Engineering, Electrical & Electronic; Materials Science,
83954    Multidisciplinary; Physics, Applied
83955 GA 664LV
83956 UT ISI:000182063300005
83957 ER
83958 
83959 PT J
83960 AU Fang, ZJ
83961    Xia, YB
83962    Wang, LJ
83963    Zhang, WL
83964    Ma, ZG
83965    Zhang, ML
83966 TI An ellipsometric analysis of CVD-diamond films at infrared wavelengths
83967 SO CARBON
83968 DT Article
83969 DE diamond; chemical vapor deposition; ellipsometry; optical properties
83970 AB The ellipsometric measurements of diamond films, which were deposited
83971    onto polished [100]-oriented silicon and rough alumina ceramic
83972    substrates by hot filament chemical vapor deposition (HFCVD) technique,
83973    have been performed over the spectral range from 3 to 12 mum. The
83974    parameters of the films, namely, film thickness and volume fraction for
83975    each constituent have been calculated from the ellipsometric data by
83976    the best fitting procedure using the optimized model. A two-layer stack
83977    with about 870-nm thick surface rough layer on top of diamond basis can
83978    be perfectly used to simulate the films on silicon substrates. However,
83979    the films on alumina substrates cannot be well described by the
83980    two-layer model. For the sake of good fit, a three-component interface
83981    layer, which consists of 64.13+/-4% alumina, 23.34+/-3% diamond and
83982    12.53+/-1% void, must be appended to the model by Bruggeman effective
83983    medium approximation. (C) 2002 Elsevier Science Ltd. All rights
83984    reserved.
83985 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
83986 RP Fang, ZJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
83987    China.
83988 CR COMFORT JC, 1987, ANN SIM S NEW YORK, P185
83989    FANG ZJ, 2002, J PHYS-CONDENS MAT, V14, P5271
83990    FERRIEU F, 1988, THIN SOLID FILMS, V164, P43
83991    JELLISON GE, 1996, THIN SOLID FILMS, V290, P40
83992    LEE J, 1998, THIN SOLID FILMS, V313, P506
83993    MCMARR PJ, 1986, J APPL PHYS, V59, P694
83994    PALIK E, 1991, HDB OPTICAL CONSTANT, P171
83995    SUSSMAN RS, 1969, IND DIAMOND REV
83996 NR 8
83997 TC 2
83998 SN 0008-6223
83999 J9 CARBON
84000 JI Carbon
84001 PY 2003
84002 VL 41
84003 IS 5
84004 BP 967
84005 EP 972
84006 PG 6
84007 SC Chemistry, Physical; Materials Science, Multidisciplinary
84008 GA 663VV
84009 UT ISI:000182027800011
84010 ER
84011 
84012 PT J
84013 AU Zhai, HB
84014    Chen, QS
84015    Zhao, JR
84016    Luo, SJ
84017    Jia, XS
84018 TI A new synthesis of tanikolide
84019 SO TETRAHEDRON LETTERS
84020 DT Article
84021 DE tanikolide; synthesis; marine natural products
84022 ID ANTIFUNGAL LACTONE; LYNGBYA-MAJUSCULA; (-)-MALYNGOLIDE; DERIVATIVES
84023 AB We report a concise synthesis of tanikolide 1, which was obtained from
84024    ethyl 2-oxocyclopentanecarboxylate in four steps: alkylation,
84025    Baeyer-Villiger reaction, saponification, and reduction/lactonization.
84026    in 70% overall yield. Our strategy should be suitable for the
84027    preparation of 1 in multigram or larger quantities. The net result of
84028    the last two steps (i.e. saponification and reduction/lactonization) is
84029    an efficient reduction of the ethoxycarbonyl of 3 while keeping the
84030    lactone carbonyl intact. (C) 2003 Elsevier Science Ltd. All rights
84031    reserved.
84032 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Modern Synthet Organ Chem, Shanghai 200032, Peoples R China.
84033    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Bioorgan & Nat Prod Chem, Shanghai 200032, Peoples R China.
84034    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
84035 RP Zhai, HB, Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Modern
84036    Synthet Organ Chem, 345 Lingling Lu, Shanghai 200032, Peoples R China.
84037 EM zhaih@pub.sioc.ac.cn
84038 CR ALEXANDRE FR, 2000, TETRAHEDRON, V56, P3921
84039    CHANG MY, 2001, J CHIN CHEM SOC-TAIP, V48, P787
84040    KANADA RM, 2000, SYNLETT          JUL, P1019
84041    KRAUS GA, 1980, J ORG CHEM, V45, P4262
84042    KRAUSS J, 2001, NAT PROD LETT, V15, P393
84043    MAILLARD A, 1955, CR HEBD ACAD SCI, V240, P317
84044    MATSUO K, 1981, CHEM PHARM BULL, V29, P3047
84045    NISHIMURA Y, 1998, EUR J ORG CHEM, V2, P233
84046    SINGH IP, 1999, J NAT PROD, V62, P1333
84047    SUEMUNE H, 1988, CHEM PHARM BULL, V36, P4337
84048    TEIXEIRA LHP, 1997, SYNTHETIC COMMUN, V27, P3241
84049    VENTON DL, 1979, J MED CHEM, V22, P824
84050    WAN ZH, 2000, J AM CHEM SOC, V122, P10470
84051    WHITE JD, 1992, J ORG CHEM, V57, P2270
84052    WILLIAMS TR, 1980, J ORG CHEM, V45, P5082
84053 NR 15
84054 TC 3
84055 SN 0040-4039
84056 J9 TETRAHEDRON LETT
84057 JI Tetrahedron Lett.
84058 PD MAR 31
84059 PY 2003
84060 VL 44
84061 IS 14
84062 BP 2893
84063 EP 2894
84064 PG 2
84065 SC Chemistry, Organic
84066 GA 661MF
84067 UT ISI:000181893800029
84068 ER
84069 
84070 PT J
84071 AU Zhang, WL
84072    Xia, YB
84073    Ju, JH
84074    Wang, LJ
84075    Fang, ZJ
84076    Zhang, ML
84077 TI Electrical conductivity of nitride carbon films with different nitrogen
84078    content
84079 SO SOLID STATE COMMUNICATIONS
84080 DT Article
84081 DE nitride carbon film; electrical conductivity; annealing effect
84082 ID THIN-FILMS; DEPOSITION
84083 AB The electrical conductivity of nitride carbon (DLC: N) films has been
84084    studied. It is found that the electrical conductivity of the deposited
84085    films increases slowly with increasing nitrogen content, however, it
84086    decreases after the nitrogen content in the film reaches a certain
84087    value of 12.8 at%. Thermal treatment results show that the electrical
84088    conductivity of the lowly nitrogen doped DLC film increases rapidly,
84089    while that of the heavily doped film decreases after annealing at 300 T
84090    for 30 min. Raman and XPS spectra results show that when the nitrogen
84091    content in the films reaches a certain value, there appears
84092    nonconductive phases. Therefore the electrical conductivity of the
84093    heavily doped films decreases. FTIR spectra analysis results show that
84094    the nitrogen atom as an impurity center undergoes an 'activation'
84095    process during the thermal treatment, which leads to the increase of
84096    the electrical conductivity. Therefore, the nitrogen in these two kinds
84097    of films has different effects on the electrical conductivity. (C) 2003
84098    Elsevier Science Ltd. All rights reserved.
84099 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
84100 RP Zhang, WL, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples
84101    R China.
84102 CR ANGUS JC, 1988, J VAC SCI TECHNOL  2, V6, P1778
84103    CHEN MY, 1993, J VAC SCI TECHNOL A, V11, P521
84104    HAMMER P, 1998, J VAC SCI TECHNOL A, V16, P2941
84105    JU JH, 2000, CHIN PHYS SOC, V49, P2310
84106    LIU AY, 1989, SCIENCE, V245, P841
84107    NIU CM, 1993, SCIENCE, V261, P334
84108    SILVA SRP, 1997, J APPL PHYS, V81, P2626
84109    WANG EG, 1997, PROG MATER SCI, V41, P241
84110    WU DW, 1997, ACTA PHYS SINICA, V46, P530
84111    WU XC, 1999, 5 IUMRS INT C ADV MA, P254
84112    WU ZC, 1996, APPL PHYS LETT, V68, P1291
84113    XU QA, 1999, ACTA PHYS SIN-CH ED, V48, P1292
84114    ZHANG YF, 1996, APPL PHYS LETT, V68, P1
84115    ZHANG YP, 2000, NAT C MAT SCI BEIJ, P511
84116 NR 14
84117 TC 2
84118 SN 0038-1098
84119 J9 SOLID STATE COMMUN
84120 JI Solid State Commun.
84121 PD APR
84122 PY 2003
84123 VL 126
84124 IS 3
84125 BP 163
84126 EP 166
84127 PG 4
84128 SC Physics, Condensed Matter
84129 GA 661YZ
84130 UT ISI:000181919100012
84131 ER
84132 
84133 PT J
84134 AU Huang, DB
84135 TI Periodic orbits and homoclinic orbits of the diffusionless Lorenz
84136    equations
84137 SO PHYSICS LETTERS A
84138 DT Article
84139 ID SLOWLY VARYING OSCILLATORS
84140 AB In this Letter, the diffusionless Lorenz equations, which physically
84141    correspond to diffusionless convection, are studied qualitatively.
84142    Under the strong forcing, the model is reduced to a special case of
84143    slowly varying oscillators. Then the existence of three periodic orbits
84144    and two homoclinic orbits is proved rigorously by the Melnikov method.
84145    It is also shown that one of these periodic orbits is stable, and the
84146    other two fully unstable. (C) 2003 Elsevier Science B.V. All rights
84147    reserved.
84148 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
84149 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
84150 CR KOLAR M, 1992, PHYS REV A, V45, P626
84151    MAAS LRM, 1994, TELLUS A, V46, P671
84152    SPARROW C, 1982, LORENZ EQUATIONS BIF
84153    VANDERSCHRIER G, 2000, PHYSICA D, V141, P19
84154    WIGGINS S, 1987, SIAM J MATH ANAL, V18, P592
84155    WIGGINS S, 1987, SIAM J MATH ANAL, V18, P612
84156    WIGGINS S, 1988, GLOBAL BIFURCATION C
84157    WIGGINS S, 1988, SIAM J MATH ANAL, V19, P1254
84158 NR 8
84159 TC 1
84160 SN 0375-9601
84161 J9 PHYS LETT A
84162 JI Phys. Lett. A
84163 PD MAR 24
84164 PY 2003
84165 VL 309
84166 IS 3-4
84167 BP 248
84168 EP 253
84169 PG 6
84170 SC Physics, Multidisciplinary
84171 GA 661QW
84172 UT ISI:000181902100013
84173 ER
84174 
84175 PT J
84176 AU Wang, ZH
84177    Zhang, H
84178 TI Calculation of the absorption efficiency of double-clad fiber by using
84179    the modal analysis method
84180 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
84181 DT Article
84182 DE absorption; double-clad fiber laser; modal analysis; multimode fiber
84183 AB In this Paper, it e present a nett method, based on the theory of mode
84184    analysis, to calculate the absorption efficiency of symmetric or offset
84185    double-clad optical fibers. Both symmetric and offset conditions have
84186    been analyzed. In principle, our results tire consistent with, but more
84187    accurate than, those of previous ray-optics methods. (C) 2003 Wiley
84188    Periodicals.
84189 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
84190 RP Wang, ZH, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
84191    Peoples R China.
84192 CR BEDO S, 1993, OPT COMMUN, V99, P331
84193    CHERNIKOV SV, 1997, OPT LETT, V22, P298
84194    DOYA V, 2001, OPT LETT, V26, P872
84195    LIU AP, 1996, OPT COMMUN, V132, P511
84196    MARCUSE D, 1974, THEORY DIELECTRIC OP
84197    MUENDEL MH, 1996, CLEO 96, P209
84198    SNITZER E, 1988, DOUBLE CLAD OFFSET C
84199    UNGER HG, 1977, PLANAR OPTICAL WAVEG
84200 NR 8
84201 TC 1
84202 SN 0895-2477
84203 J9 MICROWAVE OPT TECHNOL LETT
84204 JI Microw. Opt. Technol. Lett.
84205 PD APR 20
84206 PY 2003
84207 VL 37
84208 IS 2
84209 BP 111
84210 EP 113
84211 PG 3
84212 SC Engineering, Electrical & Electronic; Optics
84213 GA 661WF
84214 UT ISI:000181912300010
84215 ER
84216 
84217 PT J
84218 AU Luo, Y
84219    Zhang, ZY
84220    An, P
84221 TI Stereo video coding based on frame estimation and interpolation
84222 SO IEEE TRANSACTIONS ON BROADCASTING
84223 DT Article
84224 DE Bayesian rule; frame estimation and interpolation; stereo
84225    communication; stereo vision
84226 ID COMPRESSION; COMPENSATION
84227 AB This paper proposes a stereo video coding system. To ensure
84228    compatibility with monoscopic transmission, one of the view sequences
84229    is coded and transmitted conforming to the MPEG standard, referred to
84230    as the reference stream, and the other view stream is referred to as
84231    target stream. Only a few frames of the latter are coded and
84232    transmitted, while the rest are skipped and reconstructed at the
84233    decoder using a novel stereoscopic frame compensation and interpolation
84234    technique, termed SFEI_BLCF. In disparity estimation, smooth and
84235    accurate disparity fields are obtained by using hierarchical Markov
84236    random field (MRF) and Gibbs random field (GRF) models. A fast search
84237    method is used to improve the precision and computation speed. Coding
84238    and decoding results show that, with only 8-30% additional
84239    bandwidth,over a single view bit stream, one can transmit, store, and
84240    reconstruct stereoscopic video sequences with reasonably good
84241    performance.
84242 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
84243 RP Luo, Y, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
84244    Peoples R China.
84245 CR *DISTIMA, 1994, DISTIMA STER TES OCT
84246    *ISO IEC 13818 2 A, ISOIECJTC1SC29WG11
84247    GRAMMALIDIS N, 1995, SIGNAL PROCESS-IMAGE, V7, P129
84248    GUNATILAKE PD, 1993, INT WORKSH HDTV 93 O
84249    IZQUIERDO ME, 1998, SIGNAL PROCESS-IMAGE, V11, P231
84250    JIANG Q, SPIE, V3309
84251    LIU J, 1993, SIGNAL PROCESS-IMAGE, V5, P305
84252    OHM JR, ECMAST 1998, P26
84253    PING A, 2001, P SOC PHOTO-OPT INS, V4553, P262
84254    PURI A, 1995, P SOC PHOTO-OPT INS, V2501, P745
84255    SETHURAMAN S, 1996, THESIS CARNEGIC MELL
84256    SIEGEL M, 1997, P SOC PHOTO-OPT INS, V3012, P227
84257    TZOVARAS D, 1998, SIGNAL PROCESS-IMAGE, V11, P205
84258    WALKER D, 1984, P IEEE T COMM, V32
84259    WOO WT, 1996, P SOC PHOTO-OPT  1-3, V2727, P28
84260    YANG CH, 9705 INRS TEL
84261 NR 16
84262 TC 2
84263 SN 0018-9316
84264 J9 IEEE TRANS BROADCASTING
84265 JI IEEE Trans. Broadcast.
84266 PD MAR
84267 PY 2003
84268 VL 49
84269 IS 1
84270 BP 14
84271 EP 21
84272 PG 8
84273 SC Engineering, Electrical & Electronic; Telecommunications
84274 GA 660UM
84275 UT ISI:000181852200002
84276 ER
84277 
84278 PT J
84279 AU Zheng, CL
84280    Zhu, JM
84281    Zhang, JF
84282    Chen, LQ
84283 TI Fractal dromion, fractal lump, and multiple peakon excitations in a new
84284    (2+1)-dimensional long dispersive wave system
84285 SO COMMUNICATIONS IN THEORETICAL PHYSICS
84286 DT Article
84287 DE variable separation approach; new (2+1)-dimensional long dispersive
84288    wave system; fractal localized structure; peakon excitation
84289 ID SIMILARITY REDUCTIONS; COHERENT STRUCTURES; BOUSSINESQ EQUATION;
84290    SOLITONS
84291 AB By means of variable separation approach, quite a general excitation of
84292    the new (2 + 1)-dimensional long dispersive wave system: lambda(qt) +
84293    q(xx) - 2q integral (qr)(x) dy = 0, lambdar(t) - r(xx)+ 2r integral
84294    (qr)(x) dy = 0, is derived. Some types of the usual localized
84295    excitations such as dromions, lumps, rings, and oscillating soliton
84296    excitations can be easily constructed by selecting the arbitrary
84297    functions appropriately. Besides these usual localized structures, some
84298    new localized excitations like fractal-dromion, fractal-lump, and
84299    multi-peakon excitations of this new system are found by selecting
84300    appropriate functions.
84301 C1 Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
84302    Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China.
84303    Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
84304    Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China.
84305 RP Zheng, CL, Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000,
84306    Peoples R China.
84307 CR BOITI M, 1988, PHYS LETT A, V132, P116
84308    BOITI M, 1995, CHAOS SOLITON FRACT, V5, P2377
84309    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
84310    CHAKRAVARTY S, 1995, J MATH PHYS, V36, P763
84311    CHEN HS, 2000, CHINESE PHYS LETT, V17, P85
84312    CLARKSON PA, 1989, J MATH PHYS, V30, P2201
84313    DAVEY A, 1974, P ROY SOC LOND A MAT, V338, P17
84314    FOKAS AS, 1989, PHYS REV LETT, V63, P1329
84315    FOKAS AS, 1990, PHYSICA D, V44, P99
84316    GARDNER CS, 1967, PHYS REV LETT, V19, P1095
84317    GEDALIN M, 1997, PHYS REV LETT, V78, P448
84318    GOLLUB JP, 2000, NATURE, V404, P710
84319    HIROTA R, 1971, PHYS REV LETT, V27, P1192
84320    HOLM DD, 1998, ADV MATH, V137, P1
84321    KADOMTSEV BB, 1970, SOV PHYS DOKL, V15, P539
84322    KIVSHAR YS, 1989, REV MOD PHYS, V61, P765
84323    KONOPELCHENKO B, 1991, PHYS LETT A, V158, P391
84324    KONOPELCHENKO BG, 1993, J MATH PHYS, V34, P214
84325    LOU SY, 1990, PHYS LETT A, V151, P133
84326    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
84327    LOU SY, 1996, J PHYS A-MATH GEN, V29, P5989
84328    LOU SY, 2000, PHYS LETT A, V277, P94
84329    LOU SY, 2001, EUR PHYS J B, V22, P473
84330    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
84331    LOUTSENKO I, 1997, PHYS REV LETT, V78, P3011
84332    MATVEEV VB, 1991, DARBOUX TRANSFORMATI
84333    NIZHNIK LP, 1980, SOV PHYS DOKL, V25, P706
84334    NOVIKOV SP, 1986, PHYSICA D, V18, P267
84335    OLVER PJ, 1986, APPL LIE GROUP DIFFE
84336    RADHA R, 1994, J MATH PHYS, V35, P4746
84337    RADHA R, 1995, PHYS LETT A, V197, P7
84338    RADHA R, 1997, J PHYS A-MATH GEN, V30, P3229
84339    RUAN HY, 1997, J MATH PHYS, V38, P3123
84340    RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P586
84341    STEGEMAN GI, 1999, SCIENCE, V286, P1518
84342    TAJIRI M, 1997, PHYS REV E B, V55, P3351
84343    VESLOV AP, 1984, SOV MATH DOKL, V30, P588
84344    ZHENG CL, 2002, ACTA PHYS SIN-CH ED, V51, P2426
84345 NR 38
84346 TC 23
84347 SN 0253-6102
84348 J9 COMMUN THEOR PHYS
84349 JI Commun. Theor. Phys.
84350 PD MAR 15
84351 PY 2003
84352 VL 39
84353 IS 3
84354 BP 261
84355 EP 266
84356 PG 6
84357 SC Physics, Multidisciplinary
84358 GA 661LZ
84359 UT ISI:000181893200002
84360 ER
84361 
84362 PT J
84363 AU Zhou, SF
84364 TI Attractors for first order dissipative lattice dynamical systems
84365 SO PHYSICA D-NONLINEAR PHENOMENA
84366 DT Article
84367 DE global attractor; lattice system; approximation
84368 ID REACTION-DIFFUSION SYSTEMS; UNBOUNDED-DOMAINS; SPATIAL CHAOS;
84369    PROPAGATION; EQUATIONS; WAVES
84370 AB We prove the existence of a global attractor for first order
84371    dissipative lattice dynamical systems (1-order DLDSs) arising in. many
84372    applications and we consider the finite-dimensional approximations of
84373    attractors for the lattice systems which can be regarded as spatial
84374    discretization of reaction-diffusion equations in R-k. (C) 2003
84375    Elsevier Science B.V. All rights reserved.
84376 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
84377 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
84378 EM zhoushengfan@sohu.com
84379 CR BATES PW, 2001, INT J BIFURCAT CHAOS, V11, P143
84380    BELL J, 1984, Q APPL MATH, V42, P1
84381    CAHN JW, 1960, ACTA METALL, V8, P554
84382    CHATE H, 1997, PHYSICA D, V103, P1
84383    CHOW SN, 1995, IEEE T CIRCUITS-I, V42, P746
84384    CHOW SN, 1998, J DIFFER EQUATIONS, V149, P248
84385    ERNEUX T, 1993, PHYSICA D, V67, P237
84386    FABINY L, 1993, PHYS REV A, V47
84387    FEIREISL E, 1996, J DIFFER EQUATIONS, V129, P239
84388    FIRTH WJ, 1988, PHYS REV LETT, V61, P329
84389    HALE JK, 1988, ASYMPTOTIC BEHAV DIS
84390    KAPRAL R, 1991, J MATH CHEM, V6, P113
84391    KEENER JP, 1987, SIAM J APPL MATH, V47, P556
84392    KEENER JP, 1991, J THEOR BIOL, V148, P49
84393    MERINO S, 1996, J DIFFER EQUATIONS, V132, P87
84394    SHEN WX, 1996, SIAM J APPL MATH, V56, P1379
84395    TEMAM R, 1997, APPL MATH SCI, V68
84396    WANG BX, 1999, PHYSICA D, V128, P41
84397    WINALOW RL, 1993, PHYSICA D, V64, P281
84398 NR 19
84399 TC 7
84400 SN 0167-2789
84401 J9 PHYSICA D
84402 JI Physica D
84403 PD APR 1
84404 PY 2003
84405 VL 178
84406 IS 1-2
84407 BP 51
84408 EP 61
84409 PG 11
84410 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
84411 GA 659BG
84412 UT ISI:000181756300004
84413 ER
84414 
84415 PT J
84416 AU Zhang, Y
84417    Deng, SF
84418    Chen, DY
84419 TI The novel multi-soliton solutions of equation for shallow water waves
84420 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
84421 DT Article
84422 DE shallow water wave equation; Hirota method; soliton; solutions
84423 ID MULTISOLITON SOLUTIONS
84424 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
84425    Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China.
84426 RP Zhang, Y, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
84427 CR ABLOWITZ MJ, 1981, SOLITON INVERSE SCAT
84428    CHEN DY, 2000, PREPRINT
84429    CHEN DY, 2002, J PHYS SOC JPN, V71, P658
84430    CLARKSON PA, 1994, NONLINEARITY, V7, P975
84431    DENG SF, 2001, J PHYS SOC JPN, V70, P3174
84432    HIROTA R, 1971, PHYS REV LETT, V27, P1192
84433    HIROTA R, 1976, J PHYS SOC JPN, V40, P611
84434    HIROTA R, 1980, TOP CURR PHYS, V17, P157
84435 NR 8
84436 TC 5
84437 SN 0031-9015
84438 J9 J PHYS SOC JPN
84439 JI J. Phys. Soc. Jpn.
84440 PD MAR
84441 PY 2003
84442 VL 72
84443 IS 3
84444 BP 763
84445 EP 764
84446 PG 2
84447 SC Physics, Multidisciplinary
84448 GA 657QN
84449 UT ISI:000181678000049
84450 ER
84451 
84452 PT J
84453 AU Li, ZY
84454    Wu, ZL
84455    Li, J
84456 TI New methods in immobilization: Biocapsulation by epoxy-amine resins and
84457    silicone elastomers
84458 SO CHINESE JOURNAL OF ORGANIC CHEMISTRY
84459 DT Article
84460 DE epoxy-amine resin; silicon elastomer; bioencapsulation; biocomposite;
84461    non-sol-gel polymer
84462 ID POLYMER BIOCOMPOSITES; BIOSENSOR; BIOENCAPSULATION; EFFICIENT; SYSTEMS
84463 AB In the investigation of bioencapsulation technique, it was found that
84464    biological function can be incorporated into, and preserved within
84465    polymer matrices. After the introduction of sol-gel bioencapsulation a
84466    number of non-sol-gel polymers have been used to immobilize proteins.
84467    Various enzymes were trapped in such diverse polymers as epoxy-amine
84468    resins, polyvinyl plasticsm, polyurethane foams and silicon elastomers.
84469    Together with sol-gel encapsulates, these biocomposites represent a
84470    powerful approach for immobilizing biological materials for
84471    applications as biosensors and biocatalysts, and hold promise as
84472    bioactive, fouling-resistant polymers for enviromental, food and
84473    medical uses. Utilization of non-sel-gel polymer for bioencapsulation
84474    will be a strong alternative to the traditional entrapment methods of
84475    enzymes and proteins. In this paper the most interesting non-sol-gel
84476    polymers, epoxy-amine resins and silicon elastomers are introduced in
84477    detail.
84478 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Shanghai 200032, Peoples R China.
84479    Shanghai Univ, Dept Bioengn, Shanghai 200436, Peoples R China.
84480 RP Li, ZY, Chinese Acad Sci, Shanghai Inst Organ Chem, 345 Lingling Lu,
84481    Shanghai 200032, Peoples R China.
84482 EM lizy@pub.sioc.ac.cn
84483 CR ALEGRET S, 1996, BIOSENS BIOELECTRON, V11, P35
84484    BICKERSTAFF GF, 1997, IMMOBILIZATION ENZYM
84485    CEPEDES F, 1994, ELECTROANAL, V6, P759
84486    CEPEDES F, 2000, TRENDS ANAL CHEM, V19, P276
84487    DUTRA RF, 2000, BIOTECHNOL LETT, V22, P579
84488    GALANVIDAL CA, 1997, SENSOR ACTUAT B-CHEM, V45, P55
84489    GALANVIDAL CA, 1999, SENSOR ACTUAT B-CHEM, V52, P247
84490    GILL I, 1999, J AM CHEM SOC, V121, P9487
84491    GILL I, 2000, BIOTECHNOL BIOENG, V70, P400
84492    GILL I, 2000, TRENDS BIOTECHNOL, V18, P282
84493    GILL I, 2000, TRENDS BIOTECHNOL, V18, P469
84494    GUM WF, 1992, REACTION POLYM POLYU
84495    KRICHELDORF HR, 1994, HDB POLYM SYNTHESIS
84496    LALONDE J, 1997, CHEMTECH, V27, P28
84497    LUTZ ESM, 1996, ELECTROANAL, V8, P117
84498    MARGOLIN AL, 1996, TRENDS BIOTECHNOL, V14, P223
84499    MARTORELL D, 1994, ANAL CHIM ACTA, V290, P343
84500    MARTORELL D, 1997, ANAL CHIM ACTA, V337, P305
84501    MORALES A, 1996, ANAL CHIM ACTA, V332, P131
84502    MORALES A, 1998, ELECTROCHIM ACTA, V43, P3575
84503    OENNERFJORD P, 1995, BIOSENS BIOELECTRON, V10, P607
84504    SANDLER SR, 1998, SOURCEBOOK ADV POLYM
84505    SANTANDREU M, 1998, BIOSENS BIOELECTRON, V13, P7
84506    SHTILMAN MI, 1993, IMMOBILIZATION POLYM
84507    TESS ME, 1999, J PHARMACEUT BIOMED, V19, P55
84508 NR 25
84509 TC 1
84510 SN 0253-2786
84511 J9 CHINESE J ORG CHEM
84512 JI Chin. J. Org. Chem.
84513 PD FEB
84514 PY 2003
84515 VL 23
84516 IS 2
84517 BP 150
84518 EP 154
84519 PG 5
84520 SC Chemistry, Organic
84521 GA 657QX
84522 UT ISI:000181678800005
84523 ER
84524 
84525 PT J
84526 AU Bai, YQ
84527    Roos, C
84528    El Ghami, M
84529 TI A primal-dual interior-point method for linear optimization based on a
84530    new proximity function
84531 SO OPTIMIZATION METHODS & SOFTWARE
84532 DT Article
84533 DE kernel function; proximity function; primal-dual interior-point
84534    algorithm; large-update method; complexity
84535 ID SEMIDEFINITE OPTIMIZATION; ALGORITHMS
84536 AB In this article we present a generic primal-dual interior-point
84537    algorithm for linear optimization in which the search direction depends
84538    on a univariate kernel function which is also used as proximity measure
84539    in the analysis of the algorithm. We present some powerful tools for
84540    the analysis of the algorithm under the assumption that the kernel
84541    function satisfies three easy to check and mild conditions (i.e.,
84542    exponential convexity, superconvexity and monotonicity of the second
84543    derivative). The approach is demonstrated by introducing a new kernel
84544    function and showing that the corresponding large-update algorithm
84545    improves the iteration complexity with a factor n(1/4) when compared
84546    with the classical method, which is based on the use of the logarithmic
84547    barrier function.
84548 C1 Delft Univ Technol, Fac Informat Technol & Syst, NL-2600 GA Delft, Netherlands.
84549    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
84550 RP Roos, C, Delft Univ Technol, Fac Informat Technol & Syst, POB 5031,
84551    NL-2600 GA Delft, Netherlands.
84552 CR ANDERSEN ED, 1996, INTERIOR POINT METHO, P189
84553    BAI YQ, 2002, IN PRESS SIAM J OPTI
84554    DANTZIG GB, 1963, LINEAR PROGRAMMING E
84555    DANTZIG GB, 1991, HIST MATH PROGRAMMIN
84556    DENHERTOG D, 1994, MATH ITS APPL, V277
84557    GONZAGA CC, 1992, SIAM REV, V34, P167
84558    JANSEN B, 1994, J OPTIMIZ THEORY APP, V83, P1
84559    KARMARKAR N, 1984, P 16 ANN ACM S THEOR, P302
84560    KHACHIYAN LG, 1979, DOKL AKAD NAUK SSSR, V244, P1093
84561    KOJIMA M, 1989, PROGR MATH PROGRAMMI, P29
84562    MEGIDDO N, 1986, P 6 MATH PROGR S JAP, P1
84563    MEGIDDO N, 1989, PROGR MATH PROGRAMMI, P131
84564    MONTEIRO RDC, 1989, MATH PROGRAM, V44, P27
84565    PENG J, IN PRESS SIAM J OPTI
84566    PENG J, 2001, J COMPUT TECH, V6, P61
84567    PENG J, 2002, SELF EGULARITY NEW P
84568    PENG JM, 2002, EUR J OPER RES, V143, P234
84569    PENG JM, 2002, MATH PROGRAM, V93, P129
84570    ROOS C, 1997, THEORY ALGORITHMS LI
84571    SONNEVEND G, 1986, LECT NOTES CONTR INF, V84, P866
84572    TODD MJ, 1989, MATH PROGRAMMING REC, P109
84573 NR 21
84574 TC 1
84575 SN 1055-6788
84576 J9 OPTIM METHOD SOFTW
84577 JI Optim. Method Softw.
84578 PD DEC
84579 PY 2002
84580 VL 17
84581 IS 6
84582 BP 985
84583 EP 1008
84584 PG 24
84585 SC Computer Science, Software Engineering; Mathematics, Applied;
84586    Operations Research & Management Science
84587 GA 657LM
84588 UT ISI:000181668700001
84589 ER
84590 
84591 PT J
84592 AU Wang, HX
84593    Tang, MN
84594    Fang, HC
84595    Wang, RM
84596 TI A Poisson limit theorem for a strongly ergodic non-homogeneous Markov
84597    chain
84598 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
84599 DT Article
84600 DE Markov chains; strongly ergodic; Poisson distributions
84601 AB A strongly ergodic non-homogeneous Markov chain is considered in the
84602    paper. As an analog of the Poisson limit theorem for a homogeneous
84603    Markov chain recurring to small cylindrical sets, a Poisson limit
84604    theorem is given for the non-homogeneous Markov chain. Meanwhile, some
84605    interesting results about approximation independence and probabilities
84606    of small cylindrical sets are given. (C) 2003 Elsevier Science (USA).
84607    All rights reserved.
84608 C1 Changsha Univ, Dept Math & Informat Sci, Changsha 410001, Peoples R China.
84609    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
84610    E China Normal Univ, Dept Stat, Shanghai 200062, Peoples R China.
84611 RP Wang, HX, Changsha Univ, Dept Math & Informat Sci, Changsha 410001,
84612    Peoples R China.
84613 CR CORNFELD IP, 1982, ERGODIC THEORY
84614    ISAACSON D, 1978, J APPL PROBAB, V15, P87
84615    PITSKEL B, 1991, ERGOD THEOR DYN SYST, V11, P501
84616    WANG YH, 1975, ANN PROBAB, V3, P534
84617    WANG YH, 1991, ANN PROBAB, V19, P452
84618 NR 5
84619 TC 0
84620 SN 0022-247X
84621 J9 J MATH ANAL APPL
84622 JI J. Math. Anal. Appl.
84623 PD JAN 15
84624 PY 2003
84625 VL 277
84626 IS 2
84627 BP 722
84628 EP 730
84629 PG 9
84630 SC Mathematics, Applied; Mathematics
84631 GA 656YR
84632 UT ISI:000181639100026
84633 ER
84634 
84635 PT J
84636 AU Kwon, OH
84637    Nho, YC
84638    Chen, J
84639 TI Surface modification of polypropylene film by Radiation-induced
84640    grafting and its blood compatibility
84641 SO JOURNAL OF APPLIED POLYMER SCIENCE
84642 DT Article
84643 DE surfaces; modification; functionalization of polymers; poly(propylene)
84644    (PP)
84645 ID NYLON HEMODIALYSIS MEMBRANES; POLYETHER-SEGMENTED NYLON;
84646    HEPARIN-IMMOBILIZED POLYURETHANES; CONTAINING BLOCK-COPOLYMERS;
84647    PERMEABILITY CHARACTERISTICS; ACRYLIC-ACID; GLOW-DISCHARGE; METALLIC
84648    SALT; PEO; ADSORPTION
84649 AB To endow blood-compatible properties onto polypropylene (PP) film, we
84650    grafted 2,3-epoxypropyl methacrylate (EPMA) to PP film with a
84651    preirradiation grafting technique and then introduced various
84652    functional groups onto the grafted PP film. The EPMA grafting extent
84653    was dependent on the absorbed dose, reaction time, and temperature. The
84654    reactions of hydroxylation, iminodiacetation, sulfonation,
84655    phosphonation, and amination were performed under various conditions to
84656    introduce functional groups into the epoxy group of EPMA-grafted PP
84657    films, respectively. We also immobilized heparin on aminated PP film to
84658    compare blood compatibility with various functionalized samples. The
84659    grafting, functionalization, and heparinization reaction were confirmed
84660    by Fourier transform infrared spectroscopy in the attenuated total
84661    reflectance mode and electron spectroscopy for chemical analysis. The
84662    blood compatibility of various functional groups and heparin-introduced
84663    samples as well as control samples was examined by the determination of
84664    platelet adsorption and thrombus formation. For the examination of the
84665    blood compatibility of functionalized PP samples, acid citrate dextrose
84666    human whole blood and platelet-rich plasma were used. The amount of the
84667    formed thrombus and the adherent platelets on functionalized PP sample
84668    surfaces were evaluated by an in vitro method following Imai and Nose's
84669    technique and by scanning electron microscopy, respectively. The blood
84670    compatibility of various functional-group-introduced PP films after
84671    grafting was better than that of the PP control. Phosphoric-acid-group-
84672    and heparin-introduced PP films had especially good blood
84673    compatibility. (C) 2003 Wiley Periodicals, Inc.
84674 C1 Hanyang Univ, Dept Ind Chem, Coll Engn, Seoul 133791, South Korea.
84675    Korea Atom Energy Res Inst, Radiat Applicat Div, Yusong 305600, Daejon, South Korea.
84676    Shanghai Univ, Dept Chem Engn & Technol, Shanghai 201800, Peoples R China.
84677 RP Nho, YC, Hanyang Univ, Dept Ind Chem, Coll Engn, Seoul 133791, South
84678    Korea.
84679 CR ANDERHEIDEN D, 1992, J MATER SCI-MATER M, V3, P1
84680    ANDRADE JD, 1985, SURFACE INTERFACIAL, V1, P105
84681    BARBOUR PSM, 1997, J MATER SCI-MATER M, V8, P603
84682    BENDERSKII LL, 1978, PLAST MASSY, V6, P73
84683    CHAPIRO A, 1962, RAD CHEM POLYM SYSTE, P596
84684    CHOI SH, 1999, J APPL POLYM SCI, V71, P999
84685    CHOI SH, 1999, KOREAN J CHEM ENG, V16, P241
84686    CHOWDHURY P, 1998, J APPL POLYM SCI, V70, P523
84687    GORMAN SP, 1997, J MATER SCI-MATER M, V8, P631
84688    HAN DK, 1989, J BIOMED MATER RES-A, V23, P211
84689    HRUDKOVA H, 1977, BR POLYM J, V9, P238
84690    IMAI Y, 1972, J BIOMED MATER RES, V6, P165
84691    IRELAND H, 1989, HEPARIN CHEM BIOL PR, P549
84692    KANG IK, 1996, BIOMATERIALS, V17, P841
84693    KRISHNAN VK, 1991, J MATER SCI-MATER M, V2, P56
84694    KWON OH, 1999, J APPL POLYM SCI, V71, P631
84695    LEE JH, 1993, J BIOMAT SCI-POLYM E, V4, P467
84696    LEE JH, 1998, J BIOMED MATER RES, V40, P314
84697    LEE YM, 1995, POLYMER, V36, P81
84698    MIYAMA H, 1991, HIGH PERFORMANCE BIO, P271
84699    MOCHIZUKI A, 1997, J APPL POLYM SCI, V65, P1713
84700    MOCHIZUKI A, 1997, J APPL POLYM SCI, V65, P1723
84701    MOCHIZUKI A, 1997, J APPL POLYM SCI, V65, P1731
84702    NHO YC, 1992, POLYMER, V16, P115
84703    NHO YC, 1993, J POLYM SCI POL CHEM, V31, P1621
84704    NHO YC, 1995, J KOREA IND ENG CHEM, V6, P77
84705    NHO YC, 1995, POLYM-KOREA, V19, P659
84706    NHO YC, 1996, J KOREA IND ENG CHEM, V7, P75
84707    NHO YC, 1996, J KOREAN IND ENG CHE, V7, P946
84708    NHO YC, 1997, J APPL POLYM SCI, V63, P1101
84709    NHO YC, 1997, J MACROMOL SCI PUR A, V34, P831
84710    NHO YC, 1998, J APPL POLYM SCI, V70, P2323
84711    NOJIRI C, 1990, J BIOMED MATER RES, V24, P1151
84712    PARIENTE JL, 1998, J BIOMED MATER RES, V40, P31
84713    PARK JS, 1998, J APPL POLYM SCI, V69, P2213
84714    PARK KD, 1991, J POLYM SCI POL CHEM, V29, P1725
84715    PARZER S, 1993, J MATER SCI-MATER M, V4, P12
84716    PLESSIER C, 1998, J APPL POLYM SCI, V69, P1343
84717    RATNR BD, 1987, J BIOMED MATER RES-A, V21, P59
84718    SEITA Y, 1997, J APPL POLYM SCI, V65, P1703
84719    SINGH RP, 1992, PROG POLYM SCI, V17, P251
84720    SMITH PK, 1980, ANAL BIOCHEM, V109, P466
84721    SOFIA SJ, 1998, J BIOMED MATER RES, V40, P153
84722    SUZUKI M, 1986, MACROMOLECULES, V19, P1804
84723    TSUNEDA S, 1994, BIOTECHNOL PROGR, V10, P76
84724    VADURARAYANAN PV, 1983, B MATER SCI, V5, P97
84725    VIDEM V, 1991, J THORAC CARDIOV SUR, V101, P654
84726    VULIC I, 1993, J MATER SCI-MATER M, V4, P353
84727    VULIC I, 1993, J MATER SCI-MATER M, V4, P448
84728    WILSON JE, 1981, POLYM-PLAST TECHNOL, V16, P119
84729    YAND JM, 1997, J BIOMED MATER RES, V35, P175
84730 NR 51
84731 TC 5
84732 SN 0021-8995
84733 J9 J APPL POLYM SCI
84734 JI J. Appl. Polym. Sci.
84735 PD MAY 16
84736 PY 2003
84737 VL 88
84738 IS 7
84739 BP 1726
84740 EP 1736
84741 PG 11
84742 SC Polymer Science
84743 GA 654WU
84744 UT ISI:000181520600017
84745 ER
84746 
84747 PT J
84748 AU Ma, HL
84749    Lu, J
84750    Wang, CT
84751 TI Measurement of hyperfine structure spectrum in 569.08 nm line of
84752    Pr-141(+)
84753 SO ACTA PHYSICA SINICA
84754 DT Article
84755 DE hyperfine structure; fast-ion-beam laser spectroscopy; magnetic dipole
84756    and electric quadruple coupling constants
84757 ID BEAM-LASER SPECTROSCOPY; ISOTOPE SHIFTS; STATES
84758 AB Hyperfine structure spectrum in 569.08nm line of Pr-141(+) was measured
84759    by the collinear fast-ion-beam laser spectroscopy. All the spectral
84760    lines were resolved. The magnetic dipole and electric quadruple
84761    coupling constants, and hyperfine splitting of the metastable levels
84762    and excited levels were determined. Our results were in agreement with
84763    the published data within experiment uncertainty. The accuracy of the
84764    magnetic dipole coupling constants was improved by one order of
84765    magnitude compared with the published data.
84766 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
84767 RP Ma, HL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
84768 CR CHENG KT, 1985, PHYS REV A, V31, P2775
84769    CHILDS WJ, 1984, J OPT SOC AM B, V1, P22
84770    CHILDS WJ, 1991, PHYS REV A, V44, P760
84771    GEORGE S, 1985, J OPT SOC AM B, V2, P1258
84772    GINIBRE A, 1981, PHYS SCR, V23, P260
84773    HOHLE C, 1982, Z PHYS A, V304, P279
84774    IIMURA H, 1990, J PHYS SOC JPN, V59, P4208
84775    JOHANSSON S, 1996, ASTROPHYS J 1, V462, P943
84776    KUWAMOTO T, 1996, J PHYS SOC JPN, V65, P3180
84777    LECKRONE DS, 1991, ASTROPHYS, V377, L377
84778    LECKRONE DS, 1993, PHYSICA SCRIPTA T, V47, P149
84779    LIMUZA H, 1994, PHYS REV C, V50, P661
84780    MA HL, 1997, ACTA PHYS SIN-OV ED, V6, P677
84781    MA HL, 1999, J PHYS B-AT MOL OPT, V32, P1345
84782    MA HL, 2001, CHINESE PHYS, V10, P512
84783    SILVERANS RE, 1986, PHYS REV A, V33, P2117
84784    VILLEMOES P, 1995, PHYS REV A, V51, P2838
84785    YONG L, 1987, PHYS REV A, V36, P2148
84786 NR 18
84787 TC 1
84788 SN 1000-3290
84789 J9 ACTA PHYS SIN-CHINESE ED
84790 JI Acta Phys. Sin.
84791 PD MAR
84792 PY 2003
84793 VL 52
84794 IS 3
84795 BP 566
84796 EP 569
84797 PG 4
84798 SC Physics, Multidisciplinary
84799 GA 657AA
84800 UT ISI:000181642200010
84801 ER
84802 
84803 PT J
84804 AU Bai, YQ
84805    El Ghami, M
84806    Roos, C
84807 TI A new efficient large-update primal-dual interior-point method based on
84808    a finite barrier
84809 SO SIAM JOURNAL ON OPTIMIZATION
84810 DT Article
84811 DE linear optimization; interior-point method; primal-dual method;
84812    large-update method; polynomial complexity
84813 ID SEMIDEFINITE OPTIMIZATION; ALGORITHMS
84814 AB We introduce a new barrier-type function which is not a barrier
84815    function in the usual sense: it has finite value at the boundary of the
84816    feasible region. Despite this, the iteration bound of a large-update
84817    interior-point method based on this function is shown to be O(rootn
84818    (log n/epsilon) log n), which is as good as the currently best known
84819    bound for large-update methods. The recently introduced property of
84820    exponential convexity for the kernel function underlying the barrier
84821    function, as well as the strong convexity of the kernel function, are
84822    crucial in the analysis.
84823 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
84824    Delft Univ Technol, Fac Informat Technol & Syst, NL-2600 GA Delft, Netherlands.
84825 RP El Ghami, M, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
84826 CR ANDERSEN ED, 1996, INTERIOR POINT METHO, P189
84827    BAI YQ, IN PRESS OPTIM METHO
84828    FRISCH R, 1955, LOGARITHMIC POTENTIA
84829    HIRIARTURRITY JP, 1996, CONVEX ANAL MINIMIZA, V1
84830    KARMARKAR N, 1984, COMBINATORICA, V4, P373
84831    MEGIDDO N, 1989, PROGR MATH PROGRAMMI, P131
84832    MEHROTRA S, 1993, MATH PROGRAM, V62, P497
84833    PENG J, UNPUB MATH OPER RES
84834    PENG J, 2000, ANN OPER RES, V99, P23
84835    PENG J, 2001, J COMPUT TECH, V6, P61
84836    PENG J, 2002, SELF REGULARITY NEW
84837    PENG JM, 2002, EUR J OPER RES, V143, P234
84838    PENG JM, 2002, MATH PROGRAM, V93, P129
84839    PENG JM, 2002, SIAM J OPTIMIZ, V13, P179
84840    RENEGAR J, 2001, MPS SIAM SER OPTIM
84841    ROOS C, 1997, THEORY ALGORITHMS LI
84842    ROOS C, 2001, UNPUB COMP STUDY BAR
84843    SONNEVEND G, 1986, LECT NOTES CONTR INF, V84, P866
84844    WRIGHT SJ, 1997, PRIMAL DUAL INTERIOR
84845    YE Y, 1997, INTERIOR POINT ALGOR
84846    YE YY, 1992, MATH PROGRAM, V57, P325
84847 NR 21
84848 TC 2
84849 SN 1052-6234
84850 J9 SIAM J OPTIMIZATION
84851 JI SIAM J. Optim.
84852 PY 2003
84853 VL 13
84854 IS 3
84855 BP 766
84856 EP 782
84857 PG 17
84858 SC Mathematics, Applied
84859 GA 654CJ
84860 UT ISI:000181475800008
84861 ER
84862 
84863 PT J
84864 AU Xiao, XS
84865    Li, WH
84866    Xia, L
84867    Hua, Q
84868    Fang, SS
84869    Dong, Y
84870 TI Dynamic tensile response of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic
84871    glass
84872 SO JOURNAL OF MATERIALS SCIENCE LETTERS
84873 DT Article
84874 ID BEHAVIOR; ALLOYS; PHASE
84875 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
84876 RP Xiao, XS, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
84877 CR BRUCK HA, 1994, SCRIPTA METALL MATER, V30, P429
84878    BRUCK HA, 1996, J MATER RES, V11, P503
84879    HAYS CC, 2000, PHYS REV LETT, V84, P2901
84880    INOUE A, 1994, MATER T JIM, V35, P85
84881    INOUE A, 1995, MATER T JIM, V36, P689
84882    KAWAMURA Y, 1996, APPL PHYS LETT, V69, P1208
84883    KAWAMURA Y, 1998, ACTA METALL MATER, V46, P253
84884    PEKER A, 1993, APPL PHYS LETT, V63, P2342
84885    WANG JG, 2000, J MATER RES, V15, P913
84886    ZHOU Y, 2000, J MATER SCI, V34, P925
84887 NR 10
84888 TC 0
84889 SN 0261-8028
84890 J9 J MATER SCI LETT
84891 JI J. Mater. Sci. Lett.
84892 PD MAR 1
84893 PY 2003
84894 VL 22
84895 IS 5
84896 BP 407
84897 EP 411
84898 PG 5
84899 SC Materials Science, Multidisciplinary
84900 GA 652RZ
84901 UT ISI:000181394200022
84902 ER
84903 
84904 PT J
84905 AU Yang, XJ
84906    Jing, YH
84907    Liu, J
84908 TI The rheological behavior for thixocasting of semi-solid aluminum alloy
84909    (A356)
84910 SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
84911 DT Article
84912 DE shear rate; apparent viscosity; viscosity model; thixocasting
84913 AB Under the condition of die-casting and reheating temperature of 570-580
84914    degreesC, the theological behavior for thixocasting of semi-solid
84915    aluminum alloy (A356) is pseudoplastic at the shear rate of 2 x 10(3)
84916    to 104 s(-1), and is dilatancy at the rate over 10(6) s(-1). It is
84917    given a new model of metal mush during thixocasting. (C) 2002 Elsevier
84918    Science B.V. All rights reserved.
84919 C1 Nanchang Univ, Coll Mech & Elect Engn, Nanchang 330029, Jiangxi, Peoples R China.
84920    Shanghai Univ, Coll Mech & Elect Engn, Shanghai 200072, Peoples R China.
84921 RP Yang, XJ, Nanchang Univ, Coll Mech & Elect Engn, 339 Beijing Dong Rd,
84922    Nanchang 330029, Jiangxi, Peoples R China.
84923 CR FLEMINGS MC, 1991, METALL TRANS B, V22, P269
84924    HIRAI M, 1993, ISIJ INT, V33, P405
84925    JOLY PA, 1976, J MATER SCI, V11, P1393
84926    KATTAMIS TZ, 1991, MAT SCI ENG A-STRUCT, V131, P265
84927    KUMER P, 1993, METALL T A, V24, P1107
84928    NAN W, 1990, J MATER SCI, V25, P2185
84929    PING Y, 1997, SPECIAL CASTING NONF, V4, P1
84930    SU HQ, 1998, SPECIAL CASTING NONF, V5, P1
84931    TURNG LS, 1991, J MATER SCI, V26, P2173
84932 NR 9
84933 TC 0
84934 SN 0924-0136
84935 J9 J MATER PROCESS TECHNOL
84936 JI J. Mater. Process. Technol.
84937 PD DEC 20
84938 PY 2002
84939 VL 130
84940 SI Sp. Iss. SI
84941 BP 569
84942 EP 573
84943 PG 5
84944 SC Engineering, Industrial; Engineering, Manufacturing; Materials Science,
84945    Multidisciplinary
84946 GA 628FC
84947 UT ISI:000179981100093
84948 ER
84949 
84950 PT J
84951 AU Sang, WB
84952    Qian, YB
84953    Li, DM
84954    Min, JH
84955    Wang, WL
84956    Shi, WM
84957    Liu, YF
84958 TI Synthesis and optical properties of CdS nanocrystals in
84959    polyacrylonitrile film
84960 SO JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS
84961 DT Article
84962 DE CdS nanocrystals; TEM; luminescence; polyacrylonitrile
84963 ID SEMICONDUCTOR CLUSTERS; QUANTUM DOTS; POLYMER; ELECTROLUMINESCENCE;
84964    ELECTRON; SIZE
84965 AB A novel process using polyacrylonitrile (PAN) containing
84966    well-distributed ligands as a medium for forming CdS nanocrystals by an
84967    ion coordination method is presented in this paper. PAN consists of a
84968    large number of repeat units, and each unit has a ligand or group like
84969    CN and CO. A metal ion with a strong capability of complexing, such as
84970    Cd, Zn, Mn, etc., can complex with the group in PAN, and the complexed
84971    metal ion will react with negative ionlike S2- to be transformed into
84972    semiconductor nanocrystals. This growth mechanism has been identified
84973    by the results of Infrared Spectroscopic Analysis. The typical
84974    morphologies observed by TEM show that the CdS nanocrystals are rather
84975    evenly distributed throughout the PAN film and the size is estimated to
84976    be about 1-10 nm in diameter, depending on the growth parameters. The
84977    results of x-ray diffraction show that the crystallites of CdS
84978    nanocrystals in PAN film might be a mixture of crystals including both
84979    alpha-hexagonal CdS and beta-cubic CdS. Quantum-size effects at room
84980    temperature have been demonstrated using ultraviolet-visible absorption
84981    spectra, excitation, and emission spectra, respectively. A rather sharp
84982    and strong emission band peaked at about 610 nm was observed and its
84983    mechanism is also briefly discussed.
84984 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
84985    Shanghai Univ, Dept Polymer Mat, Shanghai, Peoples R China.
84986 RP Sang, WB, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
84987    China.
84988 CR ALIVISATOS AP, 1996, SCIENCE, V271, P933
84989    ARTEMYEV MV, 1997, J APPL PHYS, V81, P6975
84990    BRUS LE, 1984, J CHEM PHYS, V80, P4403
84991    CALVERT P, 1996, NATURE, V383, P300
84992    COLVIN VL, 1994, NATURE, V370, P354
84993    DABBOUSI BO, 1995, APPL PHYS LETT, V66, P1316
84994    EMPEDOCLES SA, 1997, SCIENCE, V278, P2114
84995    HASSELBARTH A, 1993, CHEM PHYS LETT, V203, P271
84996    HENGLEIN A, 1989, CHEM REV, V89, P1861
84997    JAIN RK, 1983, J OPT SOC AM, V73, P647
84998    NARAYAN KS, 1999, APPL PHYS LETT, V74, P871
84999    OZIN GA, 1992, ADV MATER, V4, P612
85000    PILENI MP, 1992, CHEM MATER, V4, P338
85001    POOL R, 1990, SCIENCE, V248, P1186
85002    SANG WB, 1996, J PHYS-CONDENS MAT, V8, L499
85003    WANG Y, 1989, J OPT SOC AM B, V6, P808
85004 NR 16
85005 TC 0
85006 SN 0022-2348
85007 J9 J MACROMOL SCI-PHYS
85008 JI J. Macromol. Sci.-Phys.
85009 PY 2003
85010 VL B42
85011 IS 1
85012 BP 75
85013 EP 84
85014 PG 10
85015 SC Polymer Science
85016 GA 653TX
85017 UT ISI:000181454100003
85018 ER
85019 
85020 PT S
85021 AU Liu, J
85022    Miao, HK
85023    Gao, XL
85024 TI A specification-based software construction framework for reuse
85025 SO FORMAL METHODS AND SOFTWARE ENGINEERING, PROCEEDINGS
85026 SE LECTURE NOTES IN COMPUTER SCIENCE
85027 DT Article
85028 AB Software reuse includes low-level components reuse, high-level
85029    components reuse and system architecture reuse. High-level components
85030    reuse and software architecture reuse are still limited to some domain
85031    specific models, while low-level components reuse is constrained by
85032    machine's retrieve ability. This paper proposes a mechanism that builds
85033    software in three levels, namely software system, high-level components
85034    and low-level components. Each level has a unique structure and
85035    organization manner. The focus of the paper is on the construction of
85036    high-level components and their matching and composition approaches.
85037    Design pattern is proposed for building generic high-level components
85038    with large number of alternatives. Once a pattern model of high-level
85039    component is constructed, it can be directly used or generalized.
85040    Design space incorporated with formal specification technology is
85041    introduced to not only precisely describe the relationship between
85042    high-level components but also easily analyze components matching and
85043    composing. The method is illustrated with a debugger example.
85044 C1 Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200072, Peoples R China.
85045 RP Liu, J, Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200072, Peoples R
85046    China.
85047 CR JACKY J, 1997, WAY Z PRACTICAL PROG
85048    MATTHEWS C, 2000, FUZZY CONCEPT FORMAL
85049    MATTHEWS C, 2000, FUZZY CONCEPT FORMAL, P491
85050    MIAO H, 1999, SOFTWARE ENG LANGUAG
85051    MIAO H, 2000, 36 INT C TECHN OBJ O
85052    MILI H, 1995, IEEE T SOFTWARE ENG, V21, P528
85053    PENIX J, 1997, P 9 INT C SOFTW ENG, P535
85054    PENIX J, 1999, AUTOMATED SOFTWARE E, V6, P139
85055    RAKOTONIRIANY A, 2000, SCAF SIMPLE COMPONEN
85056    ROLLINS EJ, 1991, P 8 INT C LOG PROGR
85057    SHAW M, 1996, SOFTWARE ARCHITECTUR
85058    ZAREMSKI AM, 1993, P ACM SIGSOFT S FDN
85059    ZAREMSKI AM, 1995, 3 ACM SIGSOFT S FDN
85060    ZAREMSKI AM, 1995, ACM T SOFTWARE ENG M
85061    ZAREMSKI AM, 1995, SIGSOFT 95 P 3 ACM S
85062    ZAREMSKI AM, 1997, ACM T SOFTW ENG METH, V6, P333
85063 NR 16
85064 TC 0
85065 SN 0302-9743
85066 J9 LECT NOTE COMPUT SCI
85067 PY 2002
85068 VL 2495
85069 BP 69
85070 EP 79
85071 PG 11
85072 GA BW29N
85073 UT ISI:000181471000009
85074 ER
85075 
85076 PT S
85077 AU Miao, HK
85078    Liu, L
85079    Li, L
85080 TI Formalizing UML models with object-Z
85081 SO FORMAL METHODS AND SOFTWARE ENGINEERING, PROCEEDINGS
85082 SE LECTURE NOTES IN COMPUTER SCIENCE
85083 DT Article
85084 AB The Unified Modeling Language (UML) has been developed as a standard
85085    language for object-oriented designs. Through its graphical and
85086    intuitive diagrams, software analysis and design process become easy.
85087    However, this graphical notation lacks precisely defined semantics. It
85088    is difficult to determine whether the design is consistent, unambiguous
85089    and complete. This paper provides a method of formalizing UML models.
85090    It gives the transforming rules from UML models to Object-Z constructs.
85091    With this method, the semantics of UML models are directly expressed in
85092    formal language Object-Z. The UML class, sequence and statechart
85093    diagrams are formalized using this method. A tool OZRose is developed
85094    to automate the transforming process.
85095 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
85096 RP Miao, HK, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples
85097    R China.
85098 CR *OBJ MAN GROUP, 1999, OMG UN MOD LANG SPEC
85099    BICKFORD M, 1998, 10 OD RES ASS
85100    DUKE R, 1994, 9445
85101    EVANS A, 1997, P 2 BCS FACS NO FORM
85102    EVANS A, 1998, P WORKSH IND STRENGT
85103    FRANCE R, 1998, COMP STAND INTER, V19, P325
85104    GOGOLLA M, 1998, LNCS, V1618, P87
85105    HAMIE A, 1998, P AS PAC C SOFTW ENG
85106    HAMIE A, 1998, P OOPSLA 98 WORKSH F
85107    KIM SK, 1999, LECT NOTES COMPUT SC, V1723, P83
85108    KIM SK, 2000, 7 AS PAC SOFTW ENG C, P240
85109    MANN S, 1998, P 2 WORKSH RIG OBJ O
85110 NR 12
85111 TC 1
85112 SN 0302-9743
85113 J9 LECT NOTE COMPUT SCI
85114 PY 2002
85115 VL 2495
85116 BP 523
85117 EP 534
85118 PG 12
85119 GA BW29N
85120 UT ISI:000181471000053
85121 ER
85122 
85123 PT J
85124 AU Ming, DM
85125    Wen, T
85126    Dai, JX
85127    Evenson, WE
85128    Dai, XX
85129 TI A unified solution of the specific-heat-phonon spectrum inversion
85130    problem
85131 SO EUROPHYSICS LETTERS
85132 DT Article
85133 ID ART. NO. 045601; MOBIUS; FORMULA; PHYSICS
85134 AB In the specific-heat-phonon spectrum inversion problem (SPI), Chen's
85135    solution with modifed Mobius inversion formula (N. X. Chen, Phys. Rev.
85136    Lett., 64 ( 1990) 1193) was novel and of great interest. Meanwhile,
85137    Dai's exact solution formula with a parameter s for canceling the
85138    divergence has succeeded in obtaining a series of exact solutions and
85139    was employed to obtain a phonon spectrum from real specific data of
85140    YBCO. In this paper we will show that, by using an integral
85141    representation of inverse Laplace transformations and some properties
85142    of the Riemann zeta-function, Chen s solution can be derived from Dai's
85143    formula, without necessarily using the Mobius inversion formula.
85144    Furthermore, the unique existence theorem and convergence of the series
85145    of Chen's solution were also obtained. It is also shown that Dai's
85146    parameter s and the asymptotic behavior control condition are of
85147    crucial importance in the derivation.
85148 C1 Fudan Univ, Grp Quantum Stat, Shanghai 200433, Peoples R China.
85149    Fudan Univ, Dept Phys, Methods Theoret Phys Surface Phys Lab, Shanghai 200433, Peoples R China.
85150    Brigham Young Univ, Dept Phys, Provo, UT 84602 USA.
85151    NYU, Dept Chem, New York, NY 10003 USA.
85152    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
85153 RP Ming, DM, Fudan Univ, Grp Quantum Stat, Shanghai 200433, Peoples R
85154    China.
85155 CR BOJARSKI NN, 1982, IEEE T ANTENN PROPAG, V30, P778
85156    BOJARSKI NN, 1984, IEEE T ANTENN PROPAG, V32, P415
85157    CHAMBERS RG, 1961, P PHYS SOC LOND, V78, P941
85158    CHEN NX, 1990, PHYS REV LETT, V64, P1193
85159    CHEN NX, 1998, PHYS REV E B, V57, P6216
85160    CHEN NX, 1998, PHYS REV E, V57, P1320
85161    DAI XX, 1989, P BEIJ INT C HIGH TC, P521
85162    DAI XX, 1990, PHYS LETT A, V147, P445
85163    DAI XX, 1991, PHYS LETT A, V161, P45
85164    DAI XX, 1992, IEEE T ANTENN PROPAG, V40, P257
85165    DAI XX, 1999, PHYS LETT A, V264, P68
85166    DENG W, 1992, PHYS LETT A, V168, P378
85167    HADAMARD J, 1896, B SOC MATH FRANCE, V24, P199
85168    HARDY GH, 1981, INTRO THEORY NUMBERS
85169    HUGHES BD, 1990, PHYS REV A, V42, P3643
85170    KIM Y, 1985, IEEE T ANTENN PROPAG, V33, P797
85171    LIFSHITZ IM, 1954, ZH EKSP TEOR FIZ, V26, P551
85172    MADDOX J, 1990, NATURE, V344, P377
85173    MING D, 2000, PHYS REV E, V62, P3019
85174    MING DM, 2002, PHYS REV E 2A, V65
85175    MONTROLL EW, 1942, J CHEM PHYS, V10, P218
85176    SHANG YR, 1991, PHYS LETT A, V154, P215
85177    WEN T, 2001, PHYS REV E 2, V63
85178 NR 23
85179 TC 1
85180 SN 0295-5075
85181 J9 EUROPHYS LETT
85182 JI Europhys. Lett.
85183 PD MAR
85184 PY 2003
85185 VL 61
85186 IS 6
85187 BP 723
85188 EP 728
85189 PG 6
85190 SC Physics, Multidisciplinary
85191 GA 653VB
85192 UT ISI:000181456800001
85193 ER
85194 
85195 PT J
85196 AU Liu, ZR
85197    Chen, GR
85198 TI On area-preserving non-hyperbolic chaotic maps: A case study
85199 SO CHAOS SOLITONS & FRACTALS
85200 DT Article
85201 AB This paper provides a case study of a two-dimensional area-preserving
85202    non-hyperbolic chaotic map, revealing to some new phenomena that have
85203    not been well discussed in the literature to date. (C) 2002 Elsevier
85204    Science Ltd. All rights reserved.
85205 C1 City Univ Hong Kong, Ctr Chaos Control & Synchronizat, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China.
85206    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
85207 RP Chen, GR, City Univ Hong Kong, Ctr Chaos Control & Synchronizat, Dept
85208    Elect Engn, Kowloon, Hong Kong, Peoples R China.
85209 CR BOLLT EM, 1999, INT J BIFURCAT CHAOS, V9, P2081
85210    BUESCU J, 1997, EXOTIC ATTRACTORS LY
85211    LORENZ EN, 1963, J ATMOS SCI, V20, P130
85212    MILNOR J, 1985, COMMUN MATH PHYS, V99, P177
85213 NR 4
85214 TC 0
85215 SN 0960-0779
85216 J9 CHAOS SOLITON FRACTAL
85217 JI Chaos Solitons Fractals
85218 PD JUN
85219 PY 2003
85220 VL 16
85221 IS 5
85222 BP 811
85223 EP 818
85224 PG 8
85225 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
85226 GA 653NP
85227 UT ISI:000181442800018
85228 ER
85229 
85230 PT J
85231 AU Liu, YZ
85232    Chen, LQ
85233 TI Chaotic attitude motion of a magnetic rigid spacecraft in an elliptic
85234    orbit and its control
85235 SO ACTA MECHANICA SINICA
85236 DT Article
85237 DE magnetic spacecraft; attitude motion; chaos; Melnikov method; control
85238 ID CIRCUMFERENTIAL NUTATIONAL DAMPER; ASYMMETRIC GYROSTAT; SPINNING
85239    SPACECRAFT; SATELLITE; FIELD; LINEARIZATION; DYNAMICS
85240 AB This paper deals with the chaotic attitude motion of a magnetic rigid
85241    spacecraft with internal damping in an elliptic orbit. The dynamical
85242    model of the spacecraft is established. The Melnikov analysis is
85243    carried out to prove the existence of a complicated nonwandering Cantor
85244    set. The dynamical behaviors are numerically investigated by means of
85245    time history, Poincare map, Lyapunov exponents and power spectrum.
85246    Numerical simulations demonstrate the chaotic motion of the system. The
85247    input-output feedback linearization method and its modified version are
85248    applied, respectively, to control the chaotic attitude motions to the
85249    given fixed point or periodic motion.
85250 C1 Shanghai Jiao Tong Univ, Dept Mech Engn, Shanghai 200030, Peoples R China.
85251    Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
85252 RP Liu, YZ, Shanghai Jiao Tong Univ, Dept Mech Engn, Shanghai 200030,
85253    Peoples R China.
85254 CR BELETSKII VV, 1996, CHAOS, V6, P155
85255    BELETSKY VV, 1995, REGULAR CHAOTISCH BE
85256    BELETSKY VV, 1999, CHAOS, V9, P493
85257    CHEN LQ, 1998, ACTA MECH SINICA, V30, P363
85258    CHEN LQ, 1998, TECH MECH, V18, P41
85259    CHEN LQ, 1999, NONLINEAR DYNAM, V20, P309
85260    CHEN LQ, 2000, Z ANGEW MATH MECH, V80, P701
85261    CHEN LQ, 2002, ACTA MECH SOLIDA SIN, V23, P177
85262    CHEN LQ, 2002, INT J NONLINEAR MECH, V37, P493
85263    CHEN LQ, 2002, J FRANKLIN I, V339, P121
85264    CHENG G, 2000, ACTA MECH SINICA, V32, P379
85265    CHENG G, 2000, ACTA MECH, V141, P125
85266    CHENG LRL, 1999, TOP LANG DISORD, V19, P1
85267    FUJII HA, 2000, J GUID CONTROL DYNAM, V23, P145
85268    GE ZM, 1998, J SOUND VIB, V217, P807
85269    GUCKENHEIMER J, 1997, NONLINEAR OSCILLATIO
85270    GURAN A, 1991, MECH RES COMMUN, V18, P287
85271    LIU YZ, 1995, SPACECRAFT ATTITUDE
85272    LIU YZ, 2000, ADV MECH, V30, P351
85273    MEEHAN PA, 1997, NONLINEAR DYNAM, V12, P69
85274    MEEHAN PA, 1998, NONLINEAR DYNAM, V17, P269
85275    PENG JH, 1996, TECH METH, V16, P327
85276    PENG JH, 2000, INT J NONLINEAR MECH, V35, P431
85277    SEISL M, 1989, Z ANGEW MATH MECH, V69, P352
85278    TONG X, 1991, CHAOS SOLITON FRACT, V1, P179
85279    TONG X, 1995, INT J NONLINEAR MECH, V30, P191
85280    TSUI APM, 2000, PHYSICA D, V135, P41
85281    WOLF A, 1985, PHYSICA D, V16, P285
85282 NR 28
85283 TC 2
85284 SN 0567-7718
85285 J9 ACTA MECH SINICA
85286 JI Acta Mech. Sin.
85287 PD FEB
85288 PY 2003
85289 VL 19
85290 IS 1
85291 BP 71
85292 EP 78
85293 PG 8
85294 SC Engineering, Mechanical; Mechanics
85295 GA 653MF
85296 UT ISI:000181439700008
85297 ER
85298 
85299 PT J
85300 AU Li, YH
85301    Ge, XR
85302 TI Model and numerical analysis of 3D corrosion layer of reinforced
85303    concrete structure
85304 SO SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES
85305 DT Article
85306 DE corrosion at the end; 3D corrosion layer; patch element model;
85307    fictitious corrosion layer; 3D finite element method
85308 AB Under the assumption that the corrosion at the end of steel bolt or
85309    steel bar is shaped like the contour line of ellipsoid, a mathematic
85310    model and formulas of calculating the thickness of corrosion layer at
85311    arbitrary point are presented in this paper. Then regarding the
85312    arbitrary points of 3D corrosion layer as patch element model of
85313    fictitious displacement discontinuity, we propose the basic solution of
85314    3D problem of the patch element acting on discontinuous displacement.
85315    With three basic assumptions of the corrosion layer, we set up the 3D
85316    numerical discreted model, and derive the stress boundary equation for
85317    fictitious corrosion layer of 3D numerical analysis. We also make the
85318    numerical stimulating calculation of the shotcrete structure at some
85319    lane using 3D finite element method. The results show that this method
85320    is effective and reasonable.
85321 C1 Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R China.
85322    Chinese Acad Sci, Wuhan Inst Rock & Soil Mech, Beijing 100864, Peoples R China.
85323 RP Li, YH, Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R
85324    China.
85325 CR CROUCH SL, 1983, BOUNDARY ELEMENT MET, P85
85326    HUI YL, 1997, IND BUILDING, V27, P19
85327    LI YH, 1997, J XIAN HIGHWAY U, P25
85328    LI YH, 1997, P 7 INT C EPMESC GUA, P835
85329    LI YH, 1997, P 9 INT C COMP METH, P621
85330    LI YH, 1998, J CHINESE COAL SOC, V23, P48
85331    LI YH, 1999, THESIS CHINESE ACAD, P30
85332    LIU X, 1990, J CHINA CIVIL ENG SO, V23, P69
85333    QIU WJ, 1996, DEFINITION REINFORCE, P1
85334    WANG Q, 1996, CHINESE J CATAL+, V17, P3
85335 NR 10
85336 TC 4
85337 SN 1006-9321
85338 J9 SCI CHINA SER E
85339 JI Sci. China Ser. E-Technol. Sci.
85340 PD FEB
85341 PY 2003
85342 VL 46
85343 IS 1
85344 BP 82
85345 EP 92
85346 PG 11
85347 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary
85348 GA 649ZV
85349 UT ISI:000181238600008
85350 ER
85351 
85352 PT J
85353 AU Wang, XF
85354    Wang, XZ
85355    Liu, YM
85356    Zhang, CN
85357    Yu, DY
85358 TI A sinusoidal phase-modulating fiber-optic interferometer insensitive to
85359    the intensity change of the light source
85360 SO OPTICS AND LASER TECHNOLOGY
85361 DT Article
85362 DE displacement measurement; interferometer; laser diode
85363 ID LASER-DIODE INTERFEROMETER; SURFACE
85364 AB In a conventional laser-diode sinusoidal phase-modulating (LD-SPM)
85365    interferometer, the wavelength of the LD is modulated by varying its
85366    injection current. The intensity modulation concurrent with the
85367    wavelength modulation leads to measurement errors. A
85368    photothermal-modulation method has been proposed to decrease the
85369    intensity change of the LD; however, this method cannot be used to
85370    measure vibration with a high frequency, and the beam diameter is too
85371    large to be used to measure minute objects. In this paper, we propose
85372    LD-SPM fiber-optic interferometer, in which the effect of the intensity
85373    change of the light source on measurement is eliminated. The diameter
85374    of the light beam is less than 0.5 mm. Using this interferometer, we
85375    measured displacements of a mirror driven by a piezoelectric
85376    transducer. The measurement repeatability is less than 1 nm. (C) 2003
85377    Elsevier Science Ltd. All rights reserved.
85378 C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Informat Opt Lab, Shanghai 201800, Peoples R China.
85379    Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
85380 RP Wang, XZ, Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Informat Opt
85381    Lab, POB 800-211, Shanghai 201800, Peoples R China.
85382 CR CHIEN C, 1998, APPL OPTICS, V37, P4137
85383    DALHOFF E, 1998, J MOD OPTIC, V45, P765
85384    KAKUMA S, 1994, OPT ENG, V33, P2992
85385    MEHDI VI, 1993, OPT ENG, V32, P1879
85386    RUAN F, 2000, OPT COMMUN, V176, P105
85387    SASAKI O, 1986, APPL OPTICS, V25, P3137
85388    SASAKI O, 1988, APPL OPTICS, V27, P4139
85389    SASAKI O, 1990, OPT ENG, V29, P1511
85390    SUZUKI T, 1999, APPL OPTICS, V38, P7069
85391    WANG XZ, 2000, APPL OPTICS, V33, P2670
85392    WANG XZ, 2000, APPL OPTICS, V39, P4593
85393 NR 11
85394 TC 0
85395 SN 0030-3992
85396 J9 OPT LASER TECHNOL
85397 JI Opt. Laser Technol.
85398 PD APR
85399 PY 2003
85400 VL 35
85401 IS 3
85402 BP 219
85403 EP 222
85404 PG 4
85405 SC Optics
85406 GA 650FU
85407 UT ISI:000181253000011
85408 ER
85409 
85410 PT J
85411 AU Yang, XX
85412    Zhong, SS
85413    Zhao, GQ
85414 TI Analysis of the dual-polarised patch antenna and two-element array by
85415    FDTD
85416 SO IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION
85417 DT Article
85418 ID MICROSTRIP ANTENNAS; POLARIZATION
85419 AB The effects of a dual-polarised patch antenna's structure parameters,
85420    such as the width of the feedline, the relative dielectric constant and
85421    the depth of the substrate, on the antenna resonant frequency,
85422    reflection coefficient and isolation are analysed by means of the FDTD
85423    method. The different effects of the structure parameters on the
85424    two-element array are compared with that of individual elements. The
85425    changes in the array's coupling with the antenna parameters are also
85426    studied by means of the FDTD method.
85427 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
85428    Shanghai Jiao Tong Univ, Sch Technol, Shanghai 200030, Peoples R China.
85429 RP Yang, XX, Shanghai Univ, Sch Commun & Informat Engn, 149 Yanchang Rd,
85430    Shanghai 200072, Peoples R China.
85431 CR GAO SC, MICROW OPT TECH 1020, P214
85432    HUANG J, 1991, MICROW OPT TECHN LET, V4, P99
85433    LIAO ZY, 1984, SCI SIN A, V21, P1063
85434    LINDMARK B, 1998, IEEE T ANTENN PROPAG, V46, P758
85435    MALKOMES M, 1982, ELECTRON LETT, V18, P520
85436    MUNSON RE, 1974, IEEE T ANTENN PROPAG, V22, P74
85437    RICHARDS WF, 1981, IEEE T ANTENN PROPAG, V29, P38
85438    SHAFAI LL, 2000, IEEE T ANTENN PROPAG, V48, P58
85439    TURKMANI AMD, 1995, IEEE T VEH TECHNOL, V44, P318
85440    YANG XX, 2000, MICROW OPT TECHN LET, V26, P153
85441    YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302
85442    ZHAO AP, 1996, IEEE T MICROW THEORY, V44, P1535
85443    ZIVANOVIC SS, 1991, IEEE T MICROW THEORY, V39, P471
85444 NR 13
85445 TC 0
85446 SN 1350-2417
85447 J9 IEE PROC-MICROWAVE
85448 JI IEE Proc.-Microw. Antennas Propag.
85449 PD OCT-DEC
85450 PY 2002
85451 VL 149
85452 IS 5-6
85453 BP 275
85454 EP 279
85455 PG 5
85456 SC Engineering, Electrical & Electronic; Telecommunications
85457 GA 650WC
85458 UT ISI:000181285500009
85459 ER
85460 
85461 PT J
85462 AU Xiang, L
85463    Zhou, J
85464    Liu, ZR
85465    Sun, S
85466 TI On the asymptotic behavior of Hopfield neural network with periodic
85467    inputs
85468 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
85469 DT Article
85470 DE Hopfield neural network; periodic solution; global exponential
85471    stability; coincidence degree; Liapunov's function
85472 ID STABILITY
85473 AB Without assuming the boundedness and differentiability of the nonlinear
85474    activation functions, the new sufficient conditions of the existence
85475    and the global exponential stability of periodic solutions for Hopfield
85476    neural network with periodic inputs are given by using Mawhin's
85477    coincidence degree theory and Liapunov's function method.
85478 C1 Hebei Univ Technol, Dept Phys, Tianjin 300130, Peoples R China.
85479    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
85480    USN, Submarine Acad, Qingdao 266071, Peoples R China.
85481 RP Xiang, L, Hebei Univ Technol, Dept Phys, Tianjin 300130, Peoples R
85482    China.
85483 CR GAINEY LF, 1977, MAR BIOL, V40, P41
85484    GAO J, 2000, PHYS LETT A, V270, P157
85485    GUAN ZH, 2000, IEEE T NEURAL NETWOR, V11, P534
85486    HOPFIELD JJ, 1982, P NATL ACAD SCI USA, V79, P2554
85487    HOPFIELD JJ, 1984, P NATL ACAD SCI USA, V81, P3088
85488    HUANG XK, 1999, APPL MATH MECH-ENGL, V20, P1116
85489    LI TC, 1997, JCU APPL MATH A, V12, P25
85490    LIANG XB, 1995, SCI CHINA SER A, V25, P523
85491    LIAO X, 1993, SCI CHINA SER A, V23, P1025
85492    YOSHIZAWA T, 1996, STABILITY THEORY LIA, P165
85493 NR 10
85494 TC 5
85495 SN 0253-4827
85496 J9 APPL MATH MECH-ENGL ED
85497 JI Appl. Math. Mech.-Engl. Ed.
85498 PD DEC
85499 PY 2002
85500 VL 23
85501 IS 12
85502 BP 1367
85503 EP 1373
85504 PG 7
85505 SC Mathematics, Applied; Mechanics
85506 GA 650HF
85507 UT ISI:000181257000002
85508 ER
85509 
85510 PT J
85511 AU Zhu, WP
85512    Huang, Q
85513 TI Finite element displacement perturbation method for geometric nonlinear
85514    behaviors of shells of revolution overall bending in a meridional plane
85515    and application to bellows (I)
85516 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
85517 DT Article
85518 DE shell of revolution; bellows; deflection by lateral force; geometrical
85519    nonlinearity; perturbation technique; finite element method
85520 ID GENERAL-SOLUTION
85521 AB In order to analyze bellows effectively and practically, the
85522    finite-element-displacement-perturbation method (FEDPM) is proposed for
85523    the geometric nonlinear behaviors of shells of revolution subjected to
85524    pure bending moments or lateral forces in one of their meridional
85525    planes. The formulations are mainly based upon the idea of perturbation
85526    that the nodal displacement vector and the nodal force vector of each
85527    finite element are expanded by taking root-mean-square value of
85528    circumferential strains of the shells as a perturbation parameter. The
85529    load steps and the iteration times are not as arbitrary and
85530    unpredictable as in usual nonlinear analysis. Instead, there are
85531    certain relations between the load steps and the displacement
85532    increments, and no need of iteration for each load step. Besides, in
85533    the formulations, the shell is idealized into a series of conical
85534    frusta for the convenience of practice, Sander's nonlinear geometric
85535    equations of moderate small rotation are used, and the shell made of
85536    more than one material ply is also considered.
85537 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
85538 RP Zhu, WP, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
85539    200072, Peoples R China.
85540 CR *EXP JOINT MAN ASS, 1998, STAND EXP JOINT MAN
85541    CHIEN WZ, 1947, CHINESE J PHYS, V7, P102
85542    CHIEN WZ, 1948, NATIONAL TSING HUA U, V5, P71
85543    CHIEN WZ, 1979, J TSINGHUA U, V19, P27
85544    CHIEN WZ, 1980, APPL MATH MECH ENGLI, V1, P305
85545    CHIEN WZ, 1981, APPL MATH MECH ENGLI, V2, P103
85546    COOK RD, 1981, CONCEPTS APPL FINITE
85547    HUANG Q, 1983, APPL MATH MECH, V4, P791
85548    HUANG Q, 1986, APPL MATH MECH, V7, P573
85549    OUYANG C, 1983, ELASTICITY PLASTICIT, P377
85550    SANDERS JL, 1963, QUARTERLY APPLIED MA, V21, P21
85551    SKOCZEN B, 1999, J PRESS VESS-T ASME, V121, P127
85552    ZHU WP, 1999, APPL MATH MECH-ENGL, V20, P952
85553    ZHU WP, 2000, APPL MATH MECH-ENGL, V21, P371
85554 NR 14
85555 TC 0
85556 SN 0253-4827
85557 J9 APPL MATH MECH-ENGL ED
85558 JI Appl. Math. Mech.-Engl. Ed.
85559 PD DEC
85560 PY 2002
85561 VL 23
85562 IS 12
85563 BP 1374
85564 EP 1389
85565 PG 16
85566 SC Mathematics, Applied; Mechanics
85567 GA 650HF
85568 UT ISI:000181257000003
85569 ER
85570 
85571 PT J
85572 AU Zhu, WP
85573    Huang, Q
85574 TI Finite element displacement perturbation method for geometric nonlinear
85575    behaviors of shells of revolution overall beding in a meridional plane
85576    and application to bellow (II)
85577 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
85578 DT Article
85579 DE shell of revolution; bellows; deflection by lateral force; geometrical
85580    nonlinearity; perturbation technique; finite element method
85581 ID GENERAL-SOLUTION
85582 AB The finite-element-displacement-perturbation method (FEDPM) for the
85583    geometric nonlinear behaviors of shells of revolution subjected to pure
85584    bending moments or lateral forces in one of their meridional planes ( I
85585    ) was employed to calculate the stress distributions and the stiffness
85586    of the bellows. Firstly, by applying the first-order perturbation
85587    solution (the linear solution) of the FEDPM to the bellows, the
85588    obtained results were compared with those of the general solution and
85589    the initial parameter integration solution proposed by the present
85590    authors earlier, as well as of the experiments and the FEA by others.
85591    It is shown that the FEDPM is with good precision and reliability, and
85592    as it was pointed out in ( I ) the abrupt changes of the meridian
85593    curvature of bellows would not affect the use of the usual straight
85594    element. Then the nonlinear behaviors of the bellows were discussed. As
85595    expected, the nonlinear effects mainly come from the bellows ring
85596    plate, and the wider the ring plate is, the stronger the nonlinear
85597    effects are. Contrarily, the vanishing of the ring plate, like the
85598    C-shaped bellows, the nonlinear effects almost vanish. In addition,
85599    when the pure bending moments act on the bellows, each convolution has
85600    the same stress distributions calculated by the linear solution and
85601    other linear theories, but by the present nonlinear solution they vary
85602    with respect to the convolutions of the bellows. Yet for most bellows,
85603    the linear solutions are valid in practice.
85604 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
85605 RP Zhu, WP, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
85606    200072, Peoples R China.
85607 CR *EXP JOINT MAN ASS, 1998, STAND EXP JOINT MAN
85608    CHIEN WZ, 1979, J TSINGHUA U, V19, P27
85609    CHIEN WZ, 1980, APPL MATH MECH ENGLI, V1, P305
85610    CHIEN WZ, 1981, APPL MATH MECH ENGLI, V2, P103
85611    LI TX, 1994, J S CHINA U TECH, V22, P94
85612    SKOCZEN B, 1999, J PRESS VESS-T ASME, V121, P127
85613    ZHU WP, 1998, THIN WALL STRUCT, P477
85614    ZHU WP, 1999, APPL MATH MECH-ENGL, V20, P952
85615    ZHU WP, 2000, APPL MATH MECH-ENGL, V21, P371
85616    ZHU WP, 2000, CHINESE Q MECH, V21, P311
85617    ZHU WP, 2002, APPL MATH MECH-ENGL, V23, P1153
85618 NR 11
85619 TC 0
85620 SN 0253-4827
85621 J9 APPL MATH MECH-ENGL ED
85622 JI Appl. Math. Mech.-Engl. Ed.
85623 PD DEC
85624 PY 2002
85625 VL 23
85626 IS 12
85627 BP 1390
85628 EP 1406
85629 PG 17
85630 SC Mathematics, Applied; Mechanics
85631 GA 650HF
85632 UT ISI:000181257000004
85633 ER
85634 
85635 PT J
85636 AU He, JH
85637 TI Ancient Chinese algorithm: The Ying Buzu Shu (method of surplus and
85638    deficiency) vs Newton iteration method
85639 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
85640 DT Article
85641 DE ancient chinese mathematics; Jiuzhang Suanshu (nine chapters); Newton
85642    iteration method; Duffing equation
85643 AB Air exploratory discussion of an ancient Chinese algorithm, the Ying
85644    Buzu Shu, in about 2nd century BC, known as the rule of double false
85645    position in the West is given. In addition to pointing out that the
85646    rule of double false position is actually a translation version of the
85647    ancient Chinese algorithm, a comparison with well-known Newton
85648    iteration method is also made. If derivative is introduced, the ancient
85649    Chinese algorithm reduces to the Newton method. A modification of the
85650    ancient Chinese algorithm is also proposed, and some of applications to
85651    nonlinear oscillators are illustrated.
85652 C1 Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R China.
85653    Shanghai Donghua Univ, Coll Sci, Shanghai 200051, Peoples R China.
85654    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
85655 RP He, JH, Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R
85656    China.
85657 CR BAI SS, 1983, ANNOTATED EDITION JI
85658    DAUBEN JW, 1998, INT J ENG SCI, V36, P1339
85659    EVES H, 1983, GREAT MOMENTS MATH
85660    EVES H, 1983, INTRO HIST MATH
85661    HE JH, 1998, COMMUN NONLINEAR SCI, V3, P106
85662    HE JH, 1999, COMPUT METHOD APPL M, V178, P257
85663    HE JH, 1999, INT J NONLINEAR MECH, V34, P699
85664    HE JH, 2000, INT J NONLINEAR SCI, V1, P239
85665    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
85666    KLINE M, 1972, MATH THOUGHT ANCIENT
85667    LI WL, 1998, MOMENTS MATH
85668    QIAN BC, 1992, HIST CHINESE MATH
85669 NR 12
85670 TC 1
85671 SN 0253-4827
85672 J9 APPL MATH MECH-ENGL ED
85673 JI Appl. Math. Mech.-Engl. Ed.
85674 PD DEC
85675 PY 2002
85676 VL 23
85677 IS 12
85678 BP 1407
85679 EP 1412
85680 PG 6
85681 SC Mathematics, Applied; Mechanics
85682 GA 650HF
85683 UT ISI:000181257000005
85684 ER
85685 
85686 PT J
85687 AU Zhu, HL
85688 TI Dynamic analysis of a spatial coupled Timoshenko rotating shaft with
85689    large displacements
85690 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
85691 DT Article
85692 DE Timoshenko rating shaft; dynamic response; nonlinear model; coupled
85693    vibration
85694 AB The dynamic simulation is presented for an axial moving flexible
85695    rotating shafts, which have large rigid motions and small elastic
85696    deformation. The effects of the axial inertia, shear deformation,
85697    rotating inertia, gyroscopic moment, and dynamic unbalance are
85698    considered based on the Timoshenko rotating shaft theory. The equations
85699    of motion and boundary conditions are derived by Hamilton principle,
85700    and the solution is obtained by using the perturbation approach and
85701    assuming mode method. This study confirms that the influence of the
85702    axial rigid motion, shear deformation, slenderness ratio and rotating
85703    speed on the dynamic behavior of Timoshenko rotating shaft is evident,
85704    especially to a high-angular velocity rotor.
85705 C1 Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
85706 RP Zhu, HL, Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
85707 CR BERNASCONI O, 1987, J APPL MECH, V54, P893
85708    CASCH R, 1979, J SOUND VIBRATION, V63, P393
85709    CHOI SH, 1992, J VIB ACOUST, V114, P249
85710    MELANSON J, 1998, J VIB ACOUST, V120, P776
85711    NATARAJ C, 1993, J APPL MECH-T ASME, V60, P239
85712    WANG Y, 1997, J VIB ACOUST, V119, P346
85713    WONG E, 1999, J VIB ACOUST, V121, P110
85714    ZU JW, 1992, ASME, V59, P197
85715 NR 8
85716 TC 0
85717 SN 0253-4827
85718 J9 APPL MATH MECH-ENGL ED
85719 JI Appl. Math. Mech.-Engl. Ed.
85720 PD DEC
85721 PY 2002
85722 VL 23
85723 IS 12
85724 BP 1413
85725 EP 1420
85726 PG 8
85727 SC Mathematics, Applied; Mechanics
85728 GA 650HF
85729 UT ISI:000181257000006
85730 ER
85731 
85732 PT J
85733 AU Zhang, Y
85734    Wang, DZ
85735    Fan, JY
85736 TI Experimental investigations on diffusion characteristics of high
85737    concentration jets in environmental currents
85738 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
85739 DT Article
85740 DE high concentration jet; density current; diffusion
85741 AB By means of flow visualization and quantitative measurement, the
85742    diffusion pattern and concentration distribution characteristics of
85743    high concentration jets vertically discharged into shallow moving
85744    waterbody were experimentally investigated in water channel. The
85745    interactions between the high concentration jets and environmental flow
85746    conditions were analysed, and the formulae of impinging point
85747    coordinate and transverse spread angle are gained from data analysis.
85748    Experimental results indicate that the jets show complicated flow
85749    patterns and diffusion characteristics in near region, which are
85750    different from common submerged jets, and spread downstream in the
85751    manner of density currents.
85752 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
85753 RP Zhang, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
85754    200072, Peoples R China.
85755 CR QIAN N, 1991, SAND MOVEMENT MECH
85756    RODI W, 1982, TURBULENT BUOYANT JE
85757    YANG YD, 1999, PORT WATERWAY ENG, P75
85758    YU CZ, 1993, TURBULENT JETS
85759 NR 4
85760 TC 1
85761 SN 0253-4827
85762 J9 APPL MATH MECH-ENGL ED
85763 JI Appl. Math. Mech.-Engl. Ed.
85764 PD DEC
85765 PY 2002
85766 VL 23
85767 IS 12
85768 BP 1429
85769 EP 1436
85770 PG 8
85771 SC Mathematics, Applied; Mechanics
85772 GA 650HF
85773 UT ISI:000181257000008
85774 ER
85775 
85776 PT J
85777 AU Ma, YQ
85778    Feng, W
85779 TI Object-oriented finite element analysis and programming in VC++
85780 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
85781 DT Article
85782 DE object-oriented programming; finite element method; program; design;
85783    VC+ +
85784 AB The design of finite element analysis program using object-oriented
85785    programming (OOP) techniques is presented. The objects, classes and the
85786    subclasses used in the programming are explained. The system of classes
85787    library of finite element analysis program and Windows-type Graphical
85788    User Interfaces by VC + + and its MFC are developed. The reliability,
85789    reusability and extensibility of program are enhanced. It is a
85790    reference to develop the large-scale, versatile and powerful systems of
85791    object-oriented finite element software.
85792 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
85793 RP Ma, YQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
85794    Peoples R China.
85795 CR ARCHER GC, 1999, COMPUT STRUCT, V70, P63
85796    FENVES GL, 1990, ENG COMPUT, V6, P1
85797    FORDE BWR, 1990, COMPUT STRUCT, V34, P355
85798    GREGORY K, 1998, SPECIAL EDITION USIN, P5
85799    KONG XA, 1995, CPLUSPLUS LANGUAGE O
85800    MA YQ, 2000, J BEIJING U CHEM TEC, V27, P51
85801    MACKIE RI, 2000, COMPUT STRUCT, V77, P461
85802    WAN YK, 1998, CPLUSPLUS LANGUAGE O, P3
85803    YU LC, 2001, COMPUT STRUCT, V79, P919
85804 NR 9
85805 TC 0
85806 SN 0253-4827
85807 J9 APPL MATH MECH-ENGL ED
85808 JI Appl. Math. Mech.-Engl. Ed.
85809 PD DEC
85810 PY 2002
85811 VL 23
85812 IS 12
85813 BP 1437
85814 EP 1443
85815 PG 7
85816 SC Mathematics, Applied; Mechanics
85817 GA 650HF
85818 UT ISI:000181257000009
85819 ER
85820 
85821 PT J
85822 AU Fu, JL
85823    Chen, LQ
85824    Xue, Y
85825 TI Stability for the equilibrium state of rotational relativistic
85826    Birkhoffian systems
85827 SO ACTA PHYSICA SINICA
85828 DT Article
85829 DE relativity; rotational Birkhoffian systems; stability; equilibrium
85830    state; the first approximate; directive method
85831 ID UNILATERAL CONSTRAINTS; RXS3 TOPOLOGY; FIELD-THEORY; EQUATIONS;
85832    SYMMETRIES; DYNAMICS; MOTION
85833 AB The stability for equilibrium state of rotational relativistic
85834    Birkhofflan systems is studied. The equilibrium state equations, the
85835    disturbance equation and the first approximation equation are given.
85836    The stability criteria for equilibrium state, and the stability
85837    criteria of the direct method for the rotational relativistic
85838    Birkhoffian autonomous systems are obtained. The relationship of the
85839    stability of equilibrium state between rotational relativistic
85840    Birkhoffian systems and rotational classical Birkhoffian systems are
85841    discussed. Two examples are presented to illustrate the results.
85842 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
85843    Shangqiu Teachers Coll, Inst Math Mech & Math Phys, Shanghai 476000, Peoples R China.
85844 RP Fu, JL, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
85845    Peoples R China.
85846 CR BIRKHOFF GD, 1927, DYNAMICAL SYSTEMS
85847    CARMELI M, 1985, FDN PHYSICS, V15, P889
85848    CARMELI M, 1985, FOUND PHYS, V15, P1019
85849    CARMELI M, 1985, FOUND PHYS, V15, P175
85850    CARMELI M, 1986, INT J THEOR PHYS, V25, P89
85851    FANG JH, 2000, ACTA PHYS SIN-CH ED, V49, P1028
85852    FU JL, 1999, APPL MATH MECH-ENGL, V20, P1266
85853    FU JL, 1999, J SHANGQIU TEACHERS, V15, P10
85854    FU JL, 1999, J SHANGQIU TEACHERS, V15, P15
85855    FU JL, 2000, ACTA PHYS SIN-CH ED, V49, P1023
85856    FU JL, 2000, APPL MATH MECH, V21, P5496
85857    FU JL, 2000, J YUNNAN U, V23, P194
85858    FU JL, 2001, ACTA MATH PHYS SCI, V21, P701
85859    FU JL, 2001, ACTA MECH SOL SIN, V22, P263
85860    FU JL, 2001, ACTA PHYS SIN-CH ED, V50, P2289
85861    FU JL, 2002, ACTA PHYS SIN-CH ED, V51, P2683
85862    LUO SK, 1987, TEACH MAT COMMUN, V5, P31
85863    LUO SK, 1991, SHANGHAI J MECH, V12, P67
85864    LUO SK, 1996, APPL MATH MECH, V17, P683
85865    LUO SK, 1998, APPL MATH MECH-ENGL, V19, P45
85866    LUO SK, 2001, ACTA PHYS SIN-CH ED, V50, P2049
85867    LUO SK, 2001, ACTA PHYS SIN-CH ED, V50, P383
85868    LUO SK, 2001, CHINESE PHYS, V10, P271
85869    MEI FX, 1993, J BEIJING I TECHNOLO, V13, P266
85870    MEI FX, 1993, SCI B, V38, P31
85871    MEI FX, 1993, SCI CHINA SER A, V23, P709
85872    MEI FX, 1996, DYNAMICS BIRKHOFFIAN
85873    MEI FX, 1997, STABILITY MOTION CON
85874    SANTILLI RM, 1983, FDN THEORETICAL MECH, V2
85875    SHI RC, 1994, MECH RES COMMUN, V21, P269
85876    ZHANG HB, 2001, ACTA PHYS SIN-CH ED, V50, P1837
85877    ZHANG Y, 2002, ACTA PHYS SIN-CH ED, V51, P1666
85878    ZHANG Y, 2002, ACTA PHYS SINICA, V51, P939
85879 NR 33
85880 TC 5
85881 SN 1000-3290
85882 J9 ACTA PHYS SIN-CHINESE ED
85883 JI Acta Phys. Sin.
85884 PD FEB
85885 PY 2003
85886 VL 52
85887 IS 2
85888 BP 256
85889 EP 261
85890 PG 6
85891 SC Physics, Multidisciplinary
85892 GA 651NB
85893 UT ISI:000181325100002
85894 ER
85895 
85896 PT J
85897 AU Dong, CH
85898 TI The squeezing of angular momentum and its evolutions in atomic
85899    Schrodinger cat states
85900 SO ACTA PHYSICA SINICA
85901 DT Article
85902 DE atomic coherent states; Schrodinger cat states; angular momentum
85903    squeezing; Bloch state
85904 ID QUANTUM-SUPERPOSITION STATES; COHERENT STATES; KERR MEDIUM; GENERATION;
85905    PROBABILITY
85906 AB The atomic coherent states will evolve to the atomic Schrodinger cat
85907    states at some special times in a low-Q acvity. The fluctuations and
85908    higher-order fluctuations of angular momentum in these atomic
85909    Schrodinger cat states are discussed. According to the uncertainty
85910    principle, the squeezing and higher-order squeezing for atomic angular
85911    momentum are investigated. It shows that the atomic Schrodinger cat
85912    states can be squeezed to second-and sixth-order, but cannot be
85913    squeezed to fourth-order. The properties of squeezing of atomic
85914    Schrodinger cat states formed by superposing infinite terms of atomic
85915    coherent states are identical with those of atomic coherent states.
85916 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
85917 RP Dong, CH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
85918 CR AGARWAL GS, 1996, PHYS LETT A, V217, P215
85919    AGARWAL GS, 1997, PHYS REV A, V56, P2249
85920    ARECCHI FT, 1972, PHYS REV           A, V6, P2211
85921    BOLLINGER JJ, 1996, PHYS REV A, V54, P4649
85922    CHUMAKOV SM, 1999, PHYS REV A, V60, P1817
85923    CIRAC JI, 1995, PHYS REV LETT, V74, P4091
85924    DENG CH, 2001, ACTA PHYS SINICA, V50, P1058
85925    DONG CH, 1996, ACTA PHYS SINICA, V45, P946
85926    GERRY CC, 1997, PHYS REV A, V56, P2390
85927    GERRY CC, 1998, PHYS REV A, V57, P2247
85928    MEEKHOF DM, 1996, PHYS REV LETT, V76, P1796
85929    RECAMIER J, 2000, PHYS REV A, V61
85930    REID MD, 1993, PHYS REV A, V47, P552
85931    TANAS R, 1991, J OPT SOC AM B, V8, P1576
85932    TAO XY, 2000, ACTA PHYS SIN-CH ED, V49, P1471
85933    TARA K, 1993, PHYS REV A, V47, P5024
85934    WU SD, 2001, ACTA PHYS SIN-CH ED, V50, P1925
85935    YURKE B, 1986, PHYS REV LETT, V57, P13
85936 NR 18
85937 TC 0
85938 SN 1000-3290
85939 J9 ACTA PHYS SIN-CHINESE ED
85940 JI Acta Phys. Sin.
85941 PD FEB
85942 PY 2003
85943 VL 52
85944 IS 2
85945 BP 337
85946 EP 344
85947 PG 8
85948 SC Physics, Multidisciplinary
85949 GA 651NB
85950 UT ISI:000181325100018
85951 ER
85952 
85953 PT J
85954 AU Kang, LY
85955    Qiao, H
85956    Shan, EF
85957    Du, DZ
85958 TI Lower bounds on the minus domination and k-subdomination numbers
85959 SO THEORETICAL COMPUTER SCIENCE
85960 DT Article
85961 DE domination number; minus domination; k-subdomination
85962 ID GRAPHS
85963 AB A three-valued function f defined on the vertex set of a graph G = (V,
85964    E), f : V --> {-1, 0,1} is a minus dominating function if the sum of
85965    its function values over any closed neighborhood is at least one. That
85966    is, for every nu is an element of V, f(N[nu]) greater than or equal to
85967    1, where N[nu] consists of nu and all vertices adjacent to nu. The
85968    weight of a minus function is f(V) = Sigma(nuis an element ofV) f(nu).
85969    The minus domination number of a graph G, denoted by gamma(-)(G),
85970    equals the minimum weight of a minus dominating function of G. In this
85971    paper, sharp lower bounds on minus domination of a bipartite graph are
85972    given. Thus, we prove a conjecture proposed by Dunbar et al. (Discrete
85973    Math.. 199 (1999) 35), and we give a lower bound on gamma(ks)(G) of a
85974    graph G. (C) 2002 Elsevier Science B.V. All rights reserved.
85975 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
85976    City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China.
85977    Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA.
85978 RP Kang, LY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
85979 CR COCKAYNE EJ, 1996, ARS COMBINATORIA, V43, P235
85980    DUNBAR J, 1995, GRAPH THEORY COMBINA, P311
85981    DUNBAR J, 1996, DISCRETE APPL MATH, V68, P73
85982    DUNBAR J, 1999, DISCRETE MATH, V199, P35
85983    HAYNES TW, 1998, DOMINATION GRAPHS AD
85984    HEDETNIEMI ST, 1998, FUNDAMENTERS DOMINAT
85985    HENNING MA, 1996, ARS COMBINATORIA, V43, P263
85986    HENNING MA, 1996, DISCRETE MATH, V158, P87
85987    HENNING MA, 1998, J GRAPH THEOR, V28, P49
85988    KANG LY, 2000, ARS COMBINATORIA, V56, P121
85989    KANG LY, 2002, DISCRETE MATH, V247, P229
85990 NR 11
85991 TC 1
85992 SN 0304-3975
85993 J9 THEOR COMPUT SCI
85994 JI Theor. Comput. Sci.
85995 PD MAR 4
85996 PY 2003
85997 VL 296
85998 IS 1
85999 BP 89
86000 EP 98
86001 PG 10
86002 SC Computer Science, Theory & Methods
86003 GA 648AC
86004 UT ISI:000181125400008
86005 ER
86006 
86007 PT J
86008 AU Xiao, XS
86009    Fang, SS
86010    Xia, L
86011    Li, WH
86012    Hua, Q
86013    Dong, YD
86014 TI Thermal and mechanical properties of Zr52.5Al10Ni10Cu15Be12.5 bulk
86015    metallic glass
86016 SO JOURNAL OF ALLOYS AND COMPOUNDS
86017 DT Article
86018 DE amorphous materials; transition metal alloys; mechanical properties;
86019    thermal analysis
86020 ID SUPERCOOLED LIQUID REGION; AMORPHOUS-ALLOYS; DEFORMATION; BEHAVIOR
86021 AB The formation, thermal stability and mechanical properties of
86022    Zr52.5Al10Ni10Cu15Be12.5 bulk amorphous alloy were investigated by
86023    means of X-ray diffraction, differential scanning calorimetry,
86024    differential thermal analysis and tensile strength measurements.
86025    Compared with the Zr65Al10Ni10Cu15 amorphous alloy, the substitution of
86026    12.5 at.% Be for part of the Zr results from an off-eutectic alloy
86027    composition into a eutectic one, and enhances the reduced glass
86028    transition temperature T-rg (T-g/T-m) increase from 0.58 to 0.68,
86029    DeltaT(x) from 105 to 142 K, and causes a change in fracture strength
86030    from 1.33 to 1.75 GPa. These results can be explained on the basis of
86031    then-nodynarnics and topological packing changes by the addition of
86032    beryllium. (C) 2002 Elsevier Science B.V. All rights reserved.
86033 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
86034 RP Xiao, XS, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
86035 CR BAKKER H, 1998, ENTHALPIES ALLOYS MI, V1, P1
86036    BRUCK HA, 1994, SCRIPTA METALL MATER, V30, P429
86037    INOUE A, 1990, MATER T JIM, V31, P425
86038    INOUE A, 1991, MATER T JIM, V32, P609
86039    INOUE A, 1996, MATER T JIM, V37, P99
86040    KAWAMURA Y, 1996, APPL PHYS LETT, V69, P1208
86041    KAWAMURA Y, 1997, SCRIPTA MATER, V37, P431
86042    PEKER A, 1993, APPL PHYS LETT, V63, P2342
86043    ZHANG T, 1991, MATER T JIM, V32, P1005
86044 NR 9
86045 TC 4
86046 SN 0925-8388
86047 J9 J ALLOYS COMPOUNDS
86048 JI J. Alloy. Compd.
86049 PD MAR 10
86050 PY 2003
86051 VL 351
86052 IS 1-2
86053 BP 324
86054 EP 328
86055 PG 5
86056 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
86057    Metallurgical Engineering
86058 GA 648JQ
86059 UT ISI:000181148200060
86060 ER
86061 
86062 PT J
86063 AU Zheng, YA
86064    Nian, YB
86065    Liu, ZR
86066 TI Impulsive synchronization of discrete chaotic systems
86067 SO CHINESE PHYSICS LETTERS
86068 DT Article
86069 ID SECURE COMMUNICATION; STABILIZATION; OSCILLATORS
86070 AB Impulsive synchronization of two chaotic maps is reformulated as
86071    impulsive control of the synchronization error system. We then present
86072    a theorem on the asymptotic synchronization of two chaotic maps by
86073    using synchronization impulses with varying impulsive intervals. As an
86074    example and application of the theorem, we derives some sufficient
86075    conditions for the synchronization of two chaotic Lozi maps via
86076    impulsive control. The effectiveness of this approach has been
86077    demonstrated with chaotic Lozi map.
86078 C1 Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China.
86079    Jiangsu Univ, Sch Elect & Informat Engn, Zhenjiang 212013, Peoples R China.
86080    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
86081 RP Zheng, YA, Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China.
86082 CR CARROLL TL, 1991, IEEE T CIRCUITS SYST, V38, P453
86083    FANG JS, 2001, CHINESE PHYS LETT, V18, P1438
86084    GUAN XP, 2002, CHINESE PHYS LETT, V19, P1031
86085    ITOH M, 2001, INT J BIFURCAT CHAOS, V11, P551
86086    MISIWREWICZ M, 1980, ANN NY ACAD SCI, V375, P348
86087    MORGUL O, 1997, INT J BIFURCAT CHAOS, V7, P1307
86088    PECORA LM, 1990, PHYS REV LETT, V64, P821
86089    PECORA LM, 1991, PHYS REV A, V44, P2374
86090    TEL T, 1983, J STAT PHYS, V33, P195
86091    TEL T, 1983, PHYS LETT A, V94, P334
86092    XIE WX, 2000, PHYS LETT A, V275, P67
86093    YANG T, 1997, IEEE T CIRCUITS-I, V44, P976
86094    YANG T, 1997, INT J BIFURCAT CHAOS, V7, P645
86095    ZHENG ZG, 2001, CHINESE PHYS LETT, V18, P874
86096 NR 14
86097 TC 0
86098 SN 0256-307X
86099 J9 CHIN PHYS LETT
86100 JI Chin. Phys. Lett.
86101 PD FEB
86102 PY 2003
86103 VL 20
86104 IS 2
86105 BP 199
86106 EP 201
86107 PG 3
86108 SC Physics, Multidisciplinary
86109 GA 649EE
86110 UT ISI:000181193300008
86111 ER
86112 
86113 PT J
86114 AU Liu, ZR
86115    Mao, JM
86116 TI Control of unstable flows
86117 SO CHINESE PHYSICS LETTERS
86118 DT Article
86119 ID CHAOS; STABILIZATION; SYSTEMS; ORBITS
86120 AB Without introducing a discrete model, unstable continuous flows in a
86121    neighbourhood of an unstable stationary. point can be stabilized. The
86122    linear part of the vector field of disturbing the flow can be managed
86123    to become the state variable multiplied by a negative constant. The
86124    nonlinear part of the vector field keeps to be unchanged, therefore
86125    flows far away from the stationary point are almost unaffected by the
86126    disturbance. The control method is easy to be used, even for practical
86127    problems for which a priori analytical knowledge of system dynamics is
86128    unavailable.
86129 C1 Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
86130    Photonify Technol Inc, Fremont, CA 94538 USA.
86131 RP Liu, ZR, Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800,
86132    Peoples R China.
86133 CR GARFINKEL A, 1992, SCIENCE, V257, P1230
86134    HUNT ER, 1991, PHYS REV LETT, V67, P1953
86135    MAO JM, 1992, PHYS REV A, V45, P1746
86136    MAO JM, 2000, PHYS REV E A, V62, P4846
86137    MYNENI K, 1999, PHYS REV LETT, V83, P2175
86138    OSIPOV G, 1998, CHAOS SOLITON FRACT, V9, P307
86139    OSIPOV GV, 1998, PHYS LETT A, V247, P119
86140    OTT E, 1990, PHYS REV LETT, V64, P1196
86141    PETTOV V, 1993, NATURE, V361, P240
86142    ROMEIRAS FJ, 1992, PHYSICA D, V58, P165
86143    ROXIN EO, 1997, CONTROL THEORY ITS A
86144    ROY R, 1992, PHYS REV LETT, V68, P1259
86145    SONTAG ED, 1998, MATH CONTROL THEORY
86146    XU HB, 2001, CHINESE PHYS LETT, V18, P878
86147    YANG L, 2000, PHYS REV LETT, V84, P67
86148    ZHU SQ, 2001, CHINESE PHYS LETT, V18, P727
86149 NR 16
86150 TC 1
86151 SN 0256-307X
86152 J9 CHIN PHYS LETT
86153 JI Chin. Phys. Lett.
86154 PD FEB
86155 PY 2003
86156 VL 20
86157 IS 2
86158 BP 206
86159 EP 208
86160 PG 3
86161 SC Physics, Multidisciplinary
86162 GA 649EE
86163 UT ISI:000181193300010
86164 ER
86165 
86166 PT J
86167 AU Li, R
86168    Liu, WB
86169    Ma, HP
86170    Tang, T
86171 TI Adaptive finite element approximation for distributed elliptic optimal
86172    control problems
86173 SO SIAM JOURNAL ON CONTROL AND OPTIMIZATION
86174 DT Article
86175 DE mesh adaptivity; optimal control; a posteriori error estimate; finite
86176    element method
86177 ID BOUNDARY CONTROL-PROBLEMS; PARTIAL-DIFFERENTIAL EQUATIONS; POSTERIORI
86178    ERROR ESTIMATORS; RITZ-GALERKIN APPROXIMATION; SHAPE OPTIMIZATION;
86179    CONVERGENCE
86180 AB In this paper, sharp a posteriori error estimators are derived for a
86181    class of distributed elliptic optimal control problems. These error
86182    estimators are shown to be useful in adaptive finite element
86183    approximation for the optimal control problems and are implemented in
86184    the adaptive approach. Our numerical results indicate that the sharp
86185    error estimators work satisfactorily in guiding the mesh adjustments
86186    and can save substantial computational work.
86187 C1 Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China.
86188    Univ Kent, CBS, Canterbury CT2 7NF, Kent, England.
86189    Univ Kent, Inst Math & Stat, Canterbury CT2 7NF, Kent, England.
86190    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
86191    Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China.
86192 RP Li, R, Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China.
86193 CR AINSWORTH M, 1997, COMPUT METHOD APPL M, V142, P1
86194    ALOTTO P, 1996, IEEE T MAGN, V32, P1
86195    ALT W, 1989, SIAM J CONTROL OPTIM, V27, P718
86196    BANICHUK NV, 1995, STRUCT OPTIMIZATION, V9, P46
86197    BANK RE, 1985, MATH COMPUT, V44, P283
86198    BARANGER J, 1991, RAIRO-MATH MODEL NUM, V25, P31
86199    BARRETT JW, 1994, PITMAN RES, V303, P1
86200    BECKER R, 1998, P ENUMATH 97 WORLD S, P147
86201    BECKER R, 2000, SIAM J CONTROL OPTIM, V39, P113
86202    CIARLET PG, 1978, FINITE ELEMENT METHO
86203    DECKELNICK K, 2001, IN PRESS P CONTR EST
86204    FALK RS, 1973, J MATH ANAL APPL, V44, P28
86205    FRENCH DA, 1991, NUMER FUNC ANAL OPT, V12, P299
86206    GEVECI T, 1979, RAIRO ANAL NUMER, V13, P313
86207    GIRAULT V, 1986, FINITE ELEMENT METHO
86208    GUNZBURGER MD, 1996, SIAM J CONTROL OPTIM, V34, P1001
86209    HASLINGER J, 1989, FINITE ELEMENT APPRO
86210    HE BS, 1994, NUMER MATH, V68, P71
86211    HINZE M, 2000, THESIS TU BERLIN BER
86212    KNOWLES G, 1982, SIAM J CONTROL OPTIM, V20, P414
86213    KUFNER A, 1977, FUNCTION SPACES
86214    KUNISCH K, 2001, UNPUB P EUR C NUM MA
86215    LASIECKA I, 1984, SIAM J CONTROL OPTIM, V22, P477
86216    LI R, UNPUB MOVING MESH ME
86217    LI R, 2001, J COMPUT PHYS, V170, P562
86218    LI R, 2002, J COMPUT PHYS, V177, P365
86219    LIONS JL, 1971, OPTIMAL CONTROL SYST
86220    LIU WB, IN PRESS NUMER MATH
86221    LIU WB, 1994, RAIRO-MATH MODEL NUM, V28, P725
86222    LIU WB, 2000, J COMPUT APPL MATH, V120, P159
86223    LIU WB, 2000, J SCI COMPUT, V35, P361
86224    LIU WB, 2000, P EUNMATH99 SING, P146
86225    LIU WB, 2001, ADV COMPUT MATH, V15, P285
86226    LIU WB, 2001, NUMER FUNC ANAL OPT, V22, P953
86227    LIU WB, 2001, SIAM J NUMER ANAL, V39, P100
86228    LIU WB, 2001, SIAM J NUMER ANAL, V39, P73
86229    MALANOWSKI K, 1982, APPL MATH OPT, V8, P69
86230    MAUTE K, 1998, STRUCT OPTIMIZATION, V15, P81
86231    NEITTAANMAKI P, 1994, OPTIMAL CONTROL NONL
86232    PIRONNEAU O, 1984, OPTIMAL SHAPE DESIGN
86233    SCHLEUPEN A, 2000, STRUCT MULTIDISCIP O, V19, P282
86234    SCOTT LR, 1990, MATH COMPUT, V54, P483
86235    TIBA D, 1996, NUMER FUNC ANAL OPT, V17, P1005
86236    TROLTZSCH F, 1994, APPL MATH OPT, V29, P309
86237    VERFURTH R, 1989, NUMER MATH, V55, P309
86238    VERFURTH R, 1994, FAST SOLVERS FLOW PR, P273
86239    VERFURTH R, 1996, REV POSTERIORI ERROR
86240 NR 47
86241 TC 0
86242 SN 0363-0129
86243 J9 SIAM J CONTR OPTIMIZAT
86244 JI SIAM J. Control Optim.
86245 PD JAN 15
86246 PY 2003
86247 VL 41
86248 IS 5
86249 BP 1321
86250 EP 1349
86251 PG 29
86252 SC Mathematics, Applied; Automation & Control Systems
86253 GA 643WC
86254 UT ISI:000180883600001
86255 ER
86256 
86257 PT J
86258 AU Zhang, DJ
86259    Chen, DY
86260 TI Some general formulas in the Sato theory
86261 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
86262 DT Article
86263 DE Sato theory; pseudo-differential operator; general formulas
86264 ID CONSERVED QUANTITIES; KADOMTSEV-PETVIASHVILI; KP HIERARCHY; SYMMETRIES;
86265    REDUCTIONS
86266 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
86267 RP Zhang, DJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
86268 CR CHEN DY, 2002, J MATH PHYS, V43, P1956
86269    CHENG Y, 1991, PHYS LETT A, V157, P22
86270    CHENG Y, 1992, J MATH PHYS, V33, P3774
86271    CHENG Y, 1992, J PHYS A, V25, P419
86272    KAJIWARA K, 1990, PHYS LETT A, V146, P115
86273    KAJIWARA K, 1991, J MATH PHYS, V32, P506
86274    KONOPELCHENKO B, 1992, J MATH PHYS, V33, P3676
86275    MATSUKIDAIRA J, 1990, J MATH PHYS, V31, P1426
86276    OHTA Y, 1988, PROG THEOR PHYS SUPP, V94, P210
86277    SATO M, 1981, RIMS KOKYUROKU, V439, P30
86278    SATO M, 1983, NONLINEAR PARTIAL DI, P259
86279    SIDORENKO J, 1993, J MATH PHYS, V34, P1429
86280    STRAMPP W, 1990, LETT MATH PHYS, V20, P195
86281 NR 13
86282 TC 1
86283 SN 0031-9015
86284 J9 J PHYS SOC JPN
86285 JI J. Phys. Soc. Jpn.
86286 PD FEB
86287 PY 2003
86288 VL 72
86289 IS 2
86290 BP 448
86291 EP 449
86292 PG 2
86293 SC Physics, Multidisciplinary
86294 GA 647AC
86295 UT ISI:000181068200044
86296 ER
86297 
86298 PT J
86299 AU Zhong, XM
86300    Liu, YH
86301    Chou, KC
86302    Lu, XG
86303    Zivkovic, D
86304    Zivkovic, Z
86305 TI Estimating ternary viscosity using the thermodynamic geometric model
86306 SO JOURNAL OF PHASE EQUILIBRIA
86307 DT Article
86308 ID BINARY; MELTS
86309 AB In this paper, a new method for estimating ternary viscosity in terms
86310    of an extension of Chou's thermodynamic geometric model([1,2]) has been
86311    developed. This new method has been employed to evaluate the viscosity
86312    of the Au-Ag-Cu ternary system. Good agreement between the calculated
86313    and experimental data in the ternary system indicates that this
86314    approach can be successfully used to predict viscosity of ternary and
86315    multicomponent systems. Currently, this method requires less
86316    information than any other for the calculation of viscosity for a
86317    multicomponent system.
86318 C1 Univ Sci & Technol Beijing, Beijing 100083, Peoples R China.
86319    Shanghai Univ, Shanghai, Peoples R China.
86320    Univ Belgrade, Bor, Yugoslavia.
86321 RP Zhong, XM, Univ Sci & Technol Beijing, Beijing 100083, Peoples R China.
86322 CR ANSARA I, 1979, INT METAL REV, V1, P20
86323    CHEN SG, 1989, CALPHAD, V13, P79
86324    CHEN SL, 1989, CALPHAD, V13, P225
86325    CHEN SL, 1989, RARE METALS, V18, P22
86326    CHOU KC, 1987, CALPHAD, V11, P293
86327    CHOU KC, 1989, BER BUNSEN PHYS CHEM, V93, P569
86328    CHOU KC, 1989, BER BUNSEN PHYS CHEM, V93, P735
86329    CHOU KC, 1989, RARE METALS, V18, P12
86330    CHOU KC, 1995, CALPHAD, V19, P315
86331    CHOU KC, 1997, METALL MATER TRANS B, V28, P439
86332    DU SC, 1994, METALL MATER TRANS B, V25, P519
86333    GEBHARDT E, 1951, Z METALLKD, V42, P106
86334    GEBHARDT E, 1951, Z METALLKD, V42, P111
86335    GEBHARDT E, 1951, Z METALLKD, V42, P358
86336    HILLERT M, 1980, CALPHAD, V4, P1
86337    HIRAI M, 1993, ISIJ INT, V33, P251
86338    HU JH, 1990, J UNIV SCI TECHNOL B, V12, P558
86339    KOHLER F, 1960, MONATSH CHEM, V91, P738
86340    LI RQ, 1988, THESIS U SCI TECHNOL
86341    LIU YH, 1998, P 27 CALPH M CALPH 2
86342    MOELWYNHUGHES EA, 1961, PHYSICAL CHEM
86343    MUGGIANU YM, 1975, J CHIMIE PHYSIQUE, V72, P83
86344    SEETHARAMAN S, 1994, METALL MATER TRANS B, V25, P589
86345    TOOP GW, 1965, T METALL SOC AIME, V233, P850
86346    ZHONG XM, 2001, CALPHAD, V25, P455
86347 NR 25
86348 TC 4
86349 SN 1054-9714
86350 J9 J PHASE EQUILIB
86351 JI J. Phase Equilib.
86352 PD FEB
86353 PY 2003
86354 VL 24
86355 IS 1
86356 BP 7
86357 EP 11
86358 PG 5
86359 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
86360    Metallurgical Engineering
86361 GA 647HQ
86362 UT ISI:000181087700002
86363 ER
86364 
86365 PT J
86366 AU An, BL
86367    Liu, PY
86368    Shi, JX
86369    Gong, ML
86370    Yang, YS
86371    Xu, NS
86372 TI Preparation, photoluminescence and thermal stability of sodium
86373    tris(pyridine dicarboxylato) europate(III) complex incorporated into
86374    silica matrix
86375 SO JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
86376 DT Article
86377 ID SOL-GEL METHOD; LUMINESCENCE CHARACTERISTICS; TERBIUM COMPLEXES;
86378    EUROPIUM
86379 AB Silica-based composite materials incorporated with sodium tris(pyridine
86380    dicarboxylato) europate(III), SiO2 : Na3Eu(DPA)(3), where H(2)DPA is
86381    2,6-pyridine dicarboxylic acid, were prepared by a sol-gel method.
86382    Photoluminescent properties of SiO2 : Na3Eu(DPA)(3) composite were
86383    studied after heat treatment between room temperature and 600degreesC.
86384    The strong red emission of SiO2 : Na3Eu(DPA)(3) was intensified by
86385    heat-treatment under appropriate conditions. The thermal stability of
86386    Na3Eu(DPA)(3) . 9H(2)O and its silica-based composite was examined. The
86387    results demonstrate that SiO2 : Na3Eu(DPA)(3) composite material
86388    possesses very good thermal stability with intense visible
86389    fluorescence, and may be applied as a potential luminescent material.
86390    (C) 2003 Kluwer Academic Publishers.
86391 C1 Sun Yat Sen Univ, State Key Lab Elect Mat & Technol, Guangzhou 510275, Peoples R China.
86392    Sun Yat Sen Univ, Sch Chem & Chem Engn, Guangzhou 510275, Peoples R China.
86393    Shanghai Univ, Dept Chem, Coll Sci, Shanghai 200436, Peoples R China.
86394 RP Gong, ML, Sun Yat Sen Univ, State Key Lab Elect Mat & Technol,
86395    Guangzhou 510275, Peoples R China.
86396 EM cesgml@zsu.edu.cn
86397 CR ADACHI T, 1988, J NONCRYST SOLIDS, V99, P118
86398    CHEN GZ, 1990, FLUORESCENCE ANAL ME
86399    DENHOVEN GNW, 1993, APPL PHYS LETT, V62, P3065
86400    HART FA, 1965, J INORG NUCL CHEM, V27, P1825
86401    JIN T, 1995, J ELECTROCHEM SOC, V142, L195
86402    JIN T, 1996, J ELECTROCHEM SOC, V143, P3333
86403    JIN T, 1997, J ALLOY COMPD, V252, P59
86404    JIN T, 1998, J ALLOY COMPD, V265, P234
86405    LIN J, 1995, J MATER CHEM, V5, P1603
86406    MATTHEWS LR, 1993, CHEM MATER, V5, P1697
86407    RYU CK, 1995, APPL PHYS LETT, V66, P2496
86408    SAKKA S, 1980, J NONCRYST SOLIDS, V42, P403
86409    XU W, 1996, J NON-CRYST SOLIDS, V194, P235
86410    YAN B, 1997, MATER CHEM PHYS, V51, P92
86411    YAN B, 1998, MATER RES BULL, V33, P1517
86412    ZHANG HJ, 1999, MATER LETT, V38, P260
86413 NR 16
86414 TC 5
86415 SN 0957-4522
86416 J9 J MATER SCI-MATER ELECTRON
86417 JI J. Mater. Sci.-Mater. Electron.
86418 PD MAR
86419 PY 2003
86420 VL 14
86421 IS 3
86422 BP 125
86423 EP 128
86424 PG 4
86425 SC Engineering, Electrical & Electronic; Materials Science,
86426    Multidisciplinary; Physics, Condensed Matter
86427 GA 645ZY
86428 UT ISI:000181011400001
86429 ER
86430 
86431 PT J
86432 AU Zheng, CL
86433    Zhang, JF
86434    Sheng, ZM
86435    Huang, WH
86436 TI Exact solution and exotic coherent soliton structures of the
86437    (2+1)-dimensional generalized nonlinear Schrodinger equation
86438 SO CHINESE PHYSICS
86439 DT Article
86440 DE variable separation approach; generalized nonlinear Schrodinger
86441    equation; coherent structure
86442 ID NOVIKOV-VESELOV EQUATION; SIMILARITY REDUCTIONS; BOUSSINESQ EQUATION;
86443    SYSTEM; INTEGRABILITY
86444 AB In this paper, a variable separation approach is used to obtain
86445    localized coherent structures of the (2 + 1)dimensional generalized
86446    nonlinear Schrodinger equation: iphi(t)-(alpha-beta)phi(xx) + (alpha +
86447    beta)phi(yy) - 2lambdaphi[(alpha +
86448    beta)(integral(-infinity)(x)\phi\(2)(y)dx + u(1)(y, t)) - (alpha -
86449    beta)(integral(-infinity)(y)\phi\(2)(x)dy + u(2)(x,t))] = 0. By
86450    applying a special Backlund transformation and introducing arbitrary
86451    functions of the seed solutions, the abundance of the localized
86452    structures of this model are derived. By selecting the arbitrary
86453    functions appropriately, some special types of localized excitations
86454    such as dromions, dromion lattice, breathers and instantons are
86455    constructed.
86456 C1 Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
86457    Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
86458    Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China.
86459    Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China.
86460 RP Zheng, CL, Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R
86461    China.
86462 CR BOTIT M, 1986, INVERSE PROBL, V2, P271
86463    BOTIT M, 1988, PHYS LETT A, V132, P116
86464    BOTIT M, 1988, PHYS LETT A, V132, P432
86465    BOTIT M, 1995, CHAOS SOLITON FRACT, V5, P2377
86466    CLARKSON PA, 1989, J MATH PHYS, V30, P2201
86467    DAVEY A, 1974, P ROY SOC LOND A MAT, V338, P17
86468    FOKAS AS, 1989, PHYS REV LETT, V63, P1329
86469    FOKAS AS, 1994, INVERSE PROBL, V10, L19
86470    GARDNER CS, 1967, PHYS REV LETT, V19, P1095
86471    GEDALIN M, 1997, PHYS REV LETT, V78, P448
86472    HIROTA R, 1971, PHYS REV LETT, V27, P1192
86473    HUANG WH, 2002, CHINESE PHYS, V11, P1101
86474    KADOMTSEV BB, 1970, SOV PHYS DOKL, V15, P539
86475    KIVSHAR YS, 1989, REV MOD PHYS, V61, P765
86476    KONOPELCHENKO B, 1991, PHYS LETT A, V158, P391
86477    LIU DB, 2001, CHINESE PHYS, V10, P683
86478    LOU SY, 1990, PHYS LETT A, V151, P133
86479    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
86480    LOU SY, 1996, J PHYS A-MATH GEN, V29, P5989
86481    LOU SY, 2000, PHYS LETT A, V277, P94
86482    LOU SY, 2001, EUR PHYS J B, V22, P473
86483    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
86484    LOU SY, 2001, PHYSICA SCRIPTA, V64, P1
86485    LOUTSENKO I, 1997, PHYS REV LETT, V78, P3011
86486    MATVEEV VB, 1991, DARBOUX TRANSFORMATI
86487    OLVER PJ, 1986, APPL LIE GROUP DIFFE
86488    RADHA R, 1994, J MATH PHYS, V35, P4746
86489    RADHA R, 1997, CHAOS SOLITON FRACT, V8, P17
86490    RUAN HY, 1997, J MATH PHYS, V38, P3123
86491    RUAN HY, 1999, ACTA PHYS SIN-OV ED, V8, P241
86492    RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P586
86493    TAJIRI M, 1997, PHYS REV E B, V55, P3351
86494    ZHANG JF, 2001, CHINESE PHYS, V10
86495    ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P705
86496    ZHANG JF, 2002, COMMUN THEOR PHYS, V37, P277
86497    ZHANG JF, 2002, COMMUN THEOR PHYS, V38, P517
86498    ZHENG CL, 2002, ACTA PHYS SIN-CH ED, V51, P2426
86499    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
86500 NR 38
86501 TC 25
86502 SN 1009-1963
86503 J9 CHIN PHYS
86504 JI Chin. Phys.
86505 PD JAN
86506 PY 2003
86507 VL 12
86508 IS 1
86509 BP 11
86510 EP 16
86511 PG 6
86512 SC Physics, Multidisciplinary
86513 GA 646FM
86514 UT ISI:000181024500002
86515 ER
86516 
86517 PT J
86518 AU Yan, QY
86519    Zhang, YF
86520    Wei, XP
86521 TI New periodic solutions to a generalized Hirota-Satsuma coupled KdV
86522    system
86523 SO CHINESE PHYSICS
86524 DT Article
86525 DE periodic solution; Hirota-Satsuma coupled KdV system; Jacobi elliptic
86526    function
86527 ID EQUATION
86528 AB Using expansions in terms of the Jacobi elliptic cosine function and
86529    third Jacobi elliptic function, some new periodic solutions to the
86530    generalized Hirota-Satsuma coupled KdV system are obtained with the
86531    help of the algorithm Mathematica. These periodic solutions are also
86532    reduced to the bell-shaped solitary wave solutions and kink-shape
86533    solitary solutions. As special cases, we obtain new periodic solution,
86534    bell-shaped and kink-shaped solitary solutions to the well-known
86535    Hirota-Satsuma equations.
86536 C1 Dalian Univ, Ctr Adv Design Technol, Dalian 116622, Peoples R China.
86537    Dalian Univ Technol, Sch Mech Engn, Dalian 116024, Peoples R China.
86538    Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, Beijing 100080, Peoples R China.
86539    Shanghai Univ Sci & Technol, Sch Informat Sci & Engn, Tai An 271019, Peoples R China.
86540 RP Yan, QY, Dalian Univ, Ctr Adv Design Technol, Dalian 116622, Peoples R
86541    China.
86542 CR FAN EG, 1998, PHYS LETT A, V246, P403
86543    FAN EG, 2002, PHYS LETT A, V292, P335
86544    GUO GP, 2002, ACTA PHYS SIN-CH ED, V51, P1159
86545    LIU SD, 2002, ACTA PHYS SIN-CH ED, V51, P718
86546    LIU SK, 2002, ACTA PHYS SIN-CH ED, V51, P1923
86547    LIU SK, 2002, ACTA PHYS SINICA, V51, P14
86548    WANG ML, 1999, J LANZHOU U, V35, P8
86549    XIA TC, 2001, CHINESE PHYS, V10, P694
86550    XU GQ, 2002, ACTA PHYS SIN-CH ED, V51, P946
86551    ZHANG JD, 1998, ACTA PHYS SINICA, V47, P1057
86552    ZHANG JF, 2001, ACTA PHYS SIN-CH ED, V50, P1648
86553    ZHANG YF, 2001, COMMUN THEOR PHYS, V36, P657
86554 NR 12
86555 TC 4
86556 SN 1009-1963
86557 J9 CHIN PHYS
86558 JI Chin. Phys.
86559 PD FEB
86560 PY 2003
86561 VL 12
86562 IS 2
86563 BP 131
86564 EP 135
86565 PG 5
86566 SC Physics, Multidisciplinary
86567 GA 646FN
86568 UT ISI:000181024600001
86569 ER
86570 
86571 PT J
86572 AU Zhang, WG
86573 TI Explicit exact solitary wave solutions for generalized symmetric
86574    regularized long-wave equations with high-order nonlinear terms
86575 SO CHINESE PHYSICS
86576 DT Article
86577 DE symmetric regularized long-wave equation; undetermined assumption
86578    method; solitary wave solution
86579 ID LATTICE
86580 AB In this paper, we have obtained the bell-type and kink-type solitary
86581    wave solutions of the generalized symmetric regularized long-wave
86582    equations with high-order nonlinear terms by means of proper
86583    transformation and undetermined assumption method.
86584 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
86585 RP Zhang, WG, Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093,
86586    Peoples R China.
86587 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
86588    BOGOLUBSKY IL, 1977, COMPUT PHYS COMMUN, V13, P149
86589    CHEN LL, 1999, ACTA PHYS SIN-OV E S, V8, S285
86590    FAN EG, 1998, ACTA PHYS SINICA, V47, P353
86591    GUO BL, 1987, J COMPUT MATH, V5, P297
86592    GUO BL, 1992, ACTA MATH APPL SIN, V8, P59
86593    HIROTA R, 1981, PHYS LETT A, V85, P407
86594    LIU SK, 2001, ACTA PHYS SIN-CH ED, V50, P2068
86595    LOU SY, 1998, ACTA PHYS SINICA, V47, P1937
86596    LU KP, 2000, CHINESE PHYS, V9, P81
86597    SEYLER CE, 1984, PHYS FLUIDS, V27, P4
86598    WADATI M, 1975, J PHYS SOC JPN, V38, P673
86599    WANG ML, 1996, PHYS LETT A, V216, P67
86600    YAN ZY, 1999, ACTA PHYS SIN-OV ED, V8, P889
86601    ZHENG JD, 1989, APPL MATH MECH, V10, P801
86602 NR 15
86603 TC 9
86604 SN 1009-1963
86605 J9 CHIN PHYS
86606 JI Chin. Phys.
86607 PD FEB
86608 PY 2003
86609 VL 12
86610 IS 2
86611 BP 144
86612 EP 148
86613 PG 5
86614 SC Physics, Multidisciplinary
86615 GA 646FN
86616 UT ISI:000181024600004
86617 ER
86618 
86619 PT J
86620 AU Yu, F
86621    Sang, WB
86622    Pang, EW
86623    Liu, DH
86624    Teng, JY
86625 TI Stress analysis in silicon die under different types of mechanical
86626    loading by finite element method (FEM)
86627 SO IEEE TRANSACTIONS ON ADVANCED PACKAGING
86628 DT Article
86629 DE failure stress; finite element analysis (FEA); silicon die; vfBGA
86630 AB Stress analysis is of crucial importance in the design of components
86631    and systems in the electronic industry. In this paper, the authors
86632    present a new strength criterion combined with a finite element
86633    analysis (FEA) to predict the failure stress of silicon die. Several
86634    different models of pushers were designed to apply the load in the
86635    vfBGA reliability test until some units failed electrical test.
86636    Meanwhile, finite element analysis was performed in order to find the
86637    location of the highest stress and the expected modes of failure. In
86638    the simulation, parametric study of the effect of different types of
86639    applying pushers on internal stress of die is carried out and the
86640    failure stress of die can be determined eventually. Potential for chip
86641    damage under certain pusher during electrical test process has been
86642    assessed and the relationship between the maximum principal stress and
86643    the thickness of the silicon die is also explored.
86644 C1 Shanghai Univ, Dept Elect Informat Mat, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
86645    Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China.
86646 RP Yu, F, Shanghai Univ, Dept Elect Informat Mat, Sch Mat Sci & Engn,
86647    Shanghai 201800, Peoples R China.
86648 CR ENGEL PA, 1988, FINIE ELEMENTS ANAL, V4, P9
86649    FRUTSCHY K, 1999, ADV ELECT PACKAG, V26, P247
86650    JAYATILAKA ADS, 1979, FRACTURE ENG BRITTLE, P47
86651    MOORE TD, 2001, IEEE TRANS ADV PACK, V24, P216
86652    PANG JHL, 1999, ADV ELECT PACKAG, V26, P803
86653    STEPIN P, 1963, STRENGTH MAT
86654    WILLEMS N, 1981, STRENGTH MAT, P310
86655 NR 7
86656 TC 0
86657 SN 1521-3323
86658 J9 IEEE TRANS ADV PACKAG
86659 JI IEEE Trans. Adv. Packag.
86660 PD NOV
86661 PY 2002
86662 VL 25
86663 IS 4
86664 BP 522
86665 EP 527
86666 PG 6
86667 SC Engineering, Electrical & Electronic; Engineering, Manufacturing;
86668    Materials Science, Multidisciplinary
86669 GA 643LP
86670 UT ISI:000180863000008
86671 ER
86672 
86673 PT J
86674 AU Li, L
86675    Van Der Biest, O
86676    Wang, PL
86677 TI Application of substitutional model in oxide systems
86678 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
86679 DT Article
86680 DE oxide systems; Gibbs free energy; thermodynamics
86681 ID PHASE-DIAGRAMS; OPTIMIZATION
86682 AB The application of substitutional model in oxide systems, in comparison
86683    with that of sublattice model, is discussed. The results show that in
86684    the case of crystalline phases and liquid phases without molecular-like
86685    associates or the shortage of element in sublattice, these two models
86686    get consistent in the description of the formalism of Gibbs free
86687    energies of phases and obtain the same result of phase diagram
86688    calculation when the valence of the cations keep the same.
86689 C1 Shanghai Univ, Dept Mater Sci & Eng, Shanghai 200072, Peoples R China.
86690    Katholieke Univ Leuven, Dept MTM, B-3001 Heverlee, Belgium.
86691    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
86692 RP Li, L, Shanghai Univ, Dept Mater Sci & Eng, Shanghai 200072, Peoples R
86693    China.
86694 CR DU Y, 1991, CALPHAD, V15, P59
86695    DU Y, 1991, J AM CERAM SOC, V74, P1569
86696    FERNANDEZ A, 1981, METALL T B, V12, P747
86697    HILLERT M, 1970, ACTA CHEM SCAND, V24, P3618
86698    HILLERT M, 1975, METALL T B, V6, P37
86699    JORDAN AS, 1979, CALCULATION PHASE DI, P100
86700    KAUFMAN L, 1978, CALPHAD, V2, P35
86701    LI L, 1996, J MATER SCI TECHNOL, V12, P159
86702    LI L, 1997, PHYS CHEM GLASSES, V38, P323
86703    LUKAS HL, 1977, CALPHAD, V1, P225
86704    SOMMER F, 1983, ALLOY PHASE DIAGRAMS, V19, P163
86705    SUNDMAN B, 1985, CALPHAD, V9, P153
86706 NR 12
86707 TC 1
86708 SN 1005-0302
86709 J9 J MATER SCI TECHNOL
86710 JI J. Mater. Sci. Technol.
86711 PD JAN
86712 PY 2003
86713 VL 19
86714 IS 1
86715 BP 66
86716 EP 68
86717 PG 3
86718 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
86719    Engineering
86720 GA 640LV
86721 UT ISI:000180691100020
86722 ER
86723 
86724 PT J
86725 AU Lu, XG
86726    Li, FS
86727    Li, LF
86728    Zhou, GZ
86729 TI Electrochemical method to accelerate metal-slag reaction
86730 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
86731 DT Article
86732 DE metal-slag reaction; electrochemistry; electronic conduction
86733 AB The electrochemical nature of reaction between melt and slag in a
86734    closed system was worked out. Experimental results demonstrated that
86735    both the rate and reaction extent increase when the electronic
86736    conductor or voltage was applied between melt and slag. The bigger the
86737    contact area of the conductor with melts is, the faster the reaction
86738    rate is. With the increase of applied voltage which is beneficial for
86739    electron's migration between metal and slags, the rate and extent of
86740    reaction increase.
86741 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
86742    Univ Sci & Technol Beijing, Beijing 100083, Peoples R China.
86743 RP Lu, XG, Shanghai Univ, Shanghai 200072, Peoples R China.
86744 CR FRUEHAN RJ, 1990, NEW SMELTING REDUCTI, P39
86745    LU XG, 1997, S MET PHYS CHEM C, P218
86746    LU XG, 1997, STUDY ELECTROCHEMICA
86747    LU XG, 1998, J UNIV SCI TECHNOL B, V5, P20
86748    MURTHY GGK, 1993, IRONMAK STEELMAK, V20, P191
86749 NR 5
86750 TC 0
86751 SN 1006-706X
86752 J9 J IRON STEEL RES INT
86753 JI J. Iron Steel Res. Int.
86754 PD NOV
86755 PY 2002
86756 VL 9
86757 IS 2
86758 BP 7
86759 EP 9
86760 PG 3
86761 SC Metallurgy & Metallurgical Engineering
86762 GA 639KA
86763 UT ISI:000180626400002
86764 ER
86765 
86766 PT J
86767 AU Tian, ZF
86768    Ge, YB
86769 TI A fourth-order compact finite difference scheme for the steady stream
86770    function-vorticity formulation of the Navier-Stokes/Boussinesq equations
86771 SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
86772 DT Article
86773 DE Navier-Stokes/Boussinesq equations; stream-function-vorticity
86774    formulation; compact scheme; natural convection; heated cavity problem
86775 ID LAMINAR NATURAL-CONVECTION; SQUARE CAVITY; DIFFUSION EQUATION; STOKES
86776    EQUATIONS; ACCURACY
86777 AB A fourth-order compact finite difference scheme on the nine-point 2D
86778    stencil is formulated for solving the steady-state
86779    Navier-Stokes/Boussinesq equations for two-dimensional, incompressible
86780    fluid flow and heat transfer using the stream function-vorticity
86781    formulation. The main feature of the new fourth-order compact scheme is
86782    that it allows point-successive overrelaxation (SOR) or
86783    point-successive under-relaxation iteration for all Rayleigh numbers Ra
86784    of physical interest and all Prandtl numbers Pr attempted. Numerical
86785    solutions are obtained for the model problem of natural convection in a
86786    square cavity with benchmark solutions and compared with some of the
86787    accurate results available in the literature. Copyright (C) 2003 John
86788    Wiley Sons, Ltd.
86789 C1 Ningxia Univ, Inst Appl Math & Engn Mech, Ningxia 750021, Peoples R China.
86790    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
86791    Shanghai Univ Sci & Technol, Sch Power Engn, Shanghai 200093, Peoples R China.
86792 RP Tian, ZF, Ningxia Univ, Inst Appl Math & Engn Mech, Ningxia 750021,
86793    Peoples R China.
86794 CR BRANDT A, 1991, J COMPUT PHYS, V93, P128
86795    CHEN GQ, 1993, J COMPUT PHYS, V104, P129
86796    CHOO JY, 1992, INT J NUMER METH FL, V15, P1313
86797    DAVIS GD, 1983, INT J NUMER METH FL, V3, P227
86798    DAVIS GD, 1983, INT J NUMER METH FL, V3, P249
86799    DENNIS SCR, 1989, J COMPUT PHYS, V85, P390
86800    GUPTA MM, 1979, J COMPUT PHYS, V31, P265
86801    GUPTA MM, 1984, INT J NUMER METH FL, V4, P641
86802    GUPTA MM, 1991, J COMPUT PHYS, V93, P343
86803    HIRSH RS, 1975, J COMPUT PHYS, V19, P90
86804    HORTMANN M, 1990, INT J NUMER METH FL, V11, P189
86805    LEQUERE P, 1991, COMPUT FLUIDS, V20, P29
86806    LI M, 1995, INT J NUMER METH FL, V20, P1137
86807    MORTON KW, 1996, NUMERICAL SOLUTION C
86808    SPOTZ WF, 1995, INT J NUMER METH ENG, V38, P3497
86809    SPOTZ WF, 1998, INT J NUMER METH FL, V28, P737
86810    SYRJALA S, 1996, NUMER HEAT TR A-APPL, V29, P197
86811    TIAN ZF, 1997, P 6 EPMESC C GUANGZH, P286
86812    TIAN ZF, 1997, P 7 INT S COMP FLUID, P116
86813    ZHANG J, 1997, NUMER METH PART D E, V13, P77
86814 NR 20
86815 TC 0
86816 SN 0271-2091
86817 J9 INT J NUMER METHOD FLUID
86818 JI Int. J. Numer. Methods Fluids
86819 PD FEB 20
86820 PY 2003
86821 VL 41
86822 IS 5
86823 BP 495
86824 EP 518
86825 PG 24
86826 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied;
86827    Physics, Fluids & Plasmas; Mechanics
86828 GA 640QK
86829 UT ISI:000180699300003
86830 ER
86831 
86832 PT J
86833 AU Zhou, SF
86834    Wang, LS
86835 TI Kernel sections for damped non-autonomous wave equations with critical
86836    exponent
86837 SO DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
86838 DT Article
86839 DE wave equation; process; kernel section; Hausdorff dimension
86840 ID GLOBAL ATTRACTOR; DIMENSION
86841 AB We prove the existence of kernel sections for the process generated by
86842    a damped non-autonomous wave equation when there is nonlinear damping
86843    and the nonlinearity has a critically growing exponent. We show uniform
86844    boundedness of the Hausdorff dimension of the kernel sections. Finally,
86845    we point out that in the case of autonomous systems with linear
86846    damping, the obtained upper bound of the Hausdorff dimension decreases
86847    as the damping grows for suitable large damping.
86848 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
86849    Ocean Univ Qingdao, Dept Math, Qingdao 266000, Peoples R China.
86850 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
86851 CR ALLEGRETTO W, 2002, DISCRETE CONT DYN S, V8, P757
86852    ARRIETA J, 1993, COMMUN PART DIFF EQ, V42, P1057
86853    BELLERI V, 2001, DISCRET CONTIN DYN S, V7, P719
86854    CHEPYZHOV V, 1991, INDIANA U MATH J, V140, P193
86855    CHEPYZHOV VV, 1994, J MATH PURE APPL, V73, P279
86856    CHOI QH, 2000, DISCRET CONTIN DYN S, V6, P797
86857    FABRIE P, 2000, DISCRETE CONT DYN S, V6, P793
86858    FEIREISL E, 1993, COMMUN PART DIFF EQ, V18, P1539
86859    HUANG Y, 2000, J MATH PHYS, V41, P4957
86860    KARACHALIOS NI, 2002, DISCRETE CONT DYN S, V8, P939
86861    PAZY A, 1983, APPL MATH SCI, V44
86862    TEMAM R, 1988, APPL MATH SCI, V68
86863    YANG T, 2001, DISCRET CONTIN DYN S, V7, P763
86864    ZELIK SV, 2001, DISCRET CONTIN DYN S, V7, P593
86865    ZHANG LH, 2002, DISCRETE CONT DYN S, V8, P1025
86866    ZHOU SF, 1999, J MATH PHYS, V40, P4444
86867 NR 16
86868 TC 0
86869 SN 1078-0947
86870 J9 DISCRETE CONTIN DYN SYST
86871 JI Discret. Contin. Dyn. Syst.
86872 PD MAR
86873 PY 2003
86874 VL 9
86875 IS 2
86876 BP 399
86877 EP 412
86878 PG 14
86879 SC Mathematics, Applied; Mathematics
86880 GA 640BF
86881 UT ISI:000180665700011
86882 ER
86883 
86884 PT J
86885 AU Zheng, CL
86886    Zhang, JF
86887 TI Exact excitation and abundant localized coherent soliton structures of
86888    (2+1)-dimensional perturbed AKNS system
86889 SO COMMUNICATIONS IN THEORETICAL PHYSICS
86890 DT Article
86891 DE variable separation approach; perturbed AKNS system; exact solution;
86892    coherent structure
86893 ID NONLINEAR SCHRODINGER-EQUATION; DROMION SOLUTIONS; SIMILARITY
86894    REDUCTIONS; BOUSSINESQ EQUATION; KDV EQUATION; KP EQUATION; WAVES;
86895    SCATTERING; BREATHERS; PACKETS
86896 AB A simple and direct method is applied to solving the (2+1)-dimensional
86897    perturbed Ablowitz-Kaup-Newell-Segur system (PAKNS). Starting from a
86898    special Bicklund transformation and the variable separation approach,
86899    we convert the PAKNS system into the simple forms, which are four
86900    variable separation equations, then obtains a quite general solution.
86901    Some special localized coherent structures like fractal dromions and
86902    fractal lumps of this, model are constructed by selecting some types of
86903    lower-dimensional fractal patterns.
86904 C1 Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
86905    Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
86906    Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China.
86907    Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China.
86908 RP Zheng, CL, Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000,
86909    Peoples R China.
86910 CR BOITI M, 1988, PHYS LETT A, V132, P432
86911    CLARKSON PA, 1989, J MATH PHYS, V30, P2201
86912    DAS GC, 1997, PHYS PLASMAS, V4, P2095
86913    DAVEY A, 1974, P ROY SOC LOND A MAT, V338, P101
86914    DJORDJEVIC VD, 1977, J FLUID MECH, V79, P703
86915    FOKAS AS, 1990, PHYSICA D, V44, P99
86916    GARDNER CS, 1967, PHYS REV LETT, V19, P1095
86917    GEDALIN M, 1997, PHYS REV LETT, V78, P448
86918    HIETARINTA J, 1990, PHYS LETT A, V149, P113
86919    HIROTA R, 1971, PHYS REV LETT, V27, P1192
86920    KADOMTSEV BB, 1970, SOV PHYS DOKL, V15, P539
86921    KISELEV OM, 2000, J NONLINEAR MATH PHY, V7, P411
86922    KIVSHAR YS, 1989, REV MOD PHYS, V61, P765
86923    LAI DWC, 1999, J PHYS SOC JPN, V65, P1847
86924    LAI DWC, 2001, J PHYS SOC JPN, V70, P666
86925    LOU SY, 1990, PHYS LETT A, V151, P133
86926    LOU SY, 1995, J PHYS A-MATH GEN, V28, P7227
86927    LOU SY, 1995, J PHYS A-MATH GEN, V28, P7227
86928    LOU SY, 1995, MOD PHYS LETT B, V9, P1231
86929    LOU SY, 1996, COMMUN THEOR PHYS, V26, P487
86930    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
86931    LOU SY, 1997, COMMUN THEOR PHYS, V27, P249
86932    LOU SY, 1999, CHINESE PHYS LETT, V16, P659
86933    LOU SY, 1999, MOD PHYS LETT B, V16, P11
86934    LOU SY, 2000, COMMUN THEOR PHYS, V33, P7
86935    LOU SY, 2000, PHYS LETT A, V277, P94
86936    LOU SY, 2000, PHYS LETT A, V277, P94
86937    LOU SY, 2001, EUR PHYS J B, V22, P473
86938    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
86939    LOU SY, 2001, PHYSICA SCRIPTA, V64, P1
86940    LOU SY, 2002, PHYS SCRIPTA, V65, P7
86941    LOUTSENKO I, 1997, PHYS REV LETT, V78, P3011
86942    NIZHNIK LP, 1980, SOV PHYS DOKL, V25, P706
86943    NOVIKOV SP, 1986, PHYSICA D, V18, P267
86944    OLVER PJ, 1986, APPL LIE GROUP DIFFE
86945    RADHA R, 1991, PHYS LETT A, V197, P7
86946    RADHA R, 1997, J MATH PHYS, V38, P292
86947    RUAN HY, 1997, J MATH PHYS, V38, P3132
86948    RUAN HY, 1999, ACTA PHYS SIN-CH ED, V48, P1781
86949    RUAN HY, 1999, ACTA PHYS SIN-OV ED, V8, P241
86950    RUAN HY, 2000, PHYS REV E B, V62, P5738
86951    RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P586
86952    TAJIRI M, 1997, PHYS REV E B, V55, P3351
86953    TANG XY, 2002, J PHYS A, V43, P4078
86954    VESLOV AP, 1984, SOV MATH DOKL, V30, P588
86955    ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P705
86956    ZHANG JF, 2002, COMMUN THEOR PHYS, V37, P277
86957    ZHANG JF, 2002, COMMUN THEOR PHYS, V38, P715
86958    ZHENG CL, 2002, ACTA PHYS SIN-CH ED, V51, P2426
86959 NR 49
86960 TC 20
86961 SN 0253-6102
86962 J9 COMMUN THEOR PHYS
86963 JI Commun. Theor. Phys.
86964 PD JAN 15
86965 PY 2003
86966 VL 39
86967 IS 1
86968 BP 9
86969 EP 14
86970 PG 6
86971 SC Physics, Multidisciplinary
86972 GA 641RC
86973 UT ISI:000180758800003
86974 ER
86975 
86976 PT J
86977 AU Xu, GQ
86978    Li, ZB
86979 TI Travelling wave solutions to a special type of nonlinear evolution
86980    equation
86981 SO COMMUNICATIONS IN THEORETICAL PHYSICS
86982 DT Article
86983 DE Painleve analysis; rank; travelling wave solution; nonlinear evolution
86984    equation
86985 ID PARTIAL-DIFFERENTIAL EQUATIONS; PAINLEVE ANALYSIS; MATHEMATICAL PHYSICS
86986 AB A unified approach is presented for finding the travelling wave
86987    solutions to one kind of nonlinear evolution equation by introducing-a
86988    concept of "rank". The key idea of this method is to make use of the
86989    arbitrariness of the manifold in Painleve analysis. We selected a new
86990    expansion variable and thus obtained a rich variety of travelling wave
86991    solutions to nonlinear evolution equation, which covered solitary wave
86992    solutions, periodic wave solutions, Weierstrass elliptic function
86993    solutions, and rational solutions. Three illustrative equations are
86994    investigated by this means, and abundant travelling wave solutions are
86995    obtained in a systematic way. In addition, some new solutions are
86996    firstly reported here.
86997 C1 E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China.
86998    Shanghai Univ, Dept Informat Adm, Shanghai 200436, Peoples R China.
86999 RP Xu, GQ, E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R
87000    China.
87001 CR ABLOWITZ MJ, 1999, SOLITON NONLINEAR EV
87002    CLARKSON PA, 1989, J PHYS A-MATH GEN, V22, P3821
87003    CONTE R, 1988, PHYS LETT A, V134, P100
87004    FAN EG, 2000, PHYS LETT A, V277, P212
87005    FENG X, 2000, INT J THEOR PHYS, V39, P207
87006    GAO YT, 2001, COMPUT PHYS COMMUN, V133, P158
87007    GU CH, 1990, SOLITON THEORY ITS A
87008    KAUP DJ, 1975, PROG THEOR PHYS, V54, P396
87009    LIU SK, 2001, PHYS LETT A, V289, P69
87010    LOU SY, 1989, J MATH PHYS, V30, P1614
87011    MALFLIET W, 1992, AM J PHYS, V60, P650
87012    NEWELL AC, 1987, PHYSICA D, V29, P1
87013    PICKERING A, 1993, J PHYS A-MATH GEN, V26, P4395
87014    WANG ML, 1996, PHYS LETT A, V216, P67
87015    WEISS J, 1983, J MATH PHYS, V24, P522
87016    YAO RX, 2002, PHYS LETT A, V297, P196
87017 NR 16
87018 TC 3
87019 SN 0253-6102
87020 J9 COMMUN THEOR PHYS
87021 JI Commun. Theor. Phys.
87022 PD JAN 15
87023 PY 2003
87024 VL 39
87025 IS 1
87026 BP 39
87027 EP 43
87028 PG 5
87029 SC Physics, Multidisciplinary
87030 GA 641RC
87031 UT ISI:000180758800008
87032 ER
87033 
87034 PT J
87035 AU Tian, LX
87036    Xu, BQ
87037    Liu, ZR
87038 TI Wavelet approximate inertial manifold and numerical solution of
87039    Burgers' equation
87040 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
87041 DT Article
87042 DE wavelet; wavelet approximate inertial manifold (WAIM); wavelet Galerkin
87043    solution; infinite dimensional dynamic system
87044 AB The existence of approximate inertial manifold Using wavelet to
87045    Burgers' equation, and numerical solution under multiresolution
87046    analysis with the low modes were studied. It is shown that the Burgers'
87047    equation has a good localization property of the numerical solution
87048    distinguishably.
87049 C1 Jiangsu Univ Sci & Technol, Fac Sci, Zhengzhou 212013, Peoples R China.
87050    Shanghai Univ, Dept Math, Shanghai 200018, Peoples R China.
87051 RP Tian, LX, Jiangsu Univ Sci & Technol, Fac Sci, Zhengzhou 212013,
87052    Peoples R China.
87053 CR BACRY E, 1992, RAIRO-MATH MODEL NUM, V26, P793
87054    PERRIER V, 1989, RECH AEROSPATIALE, V3, P54
87055    SOINA MG, 1996, SIAM J NUMER ANAL, V33, P149
87056    TEMAM R, 1988, INFINITE DIMENSIONAL
87057    TIAN LX, 2000, APPL MATH MECH-ENGL, V21, P1123
87058    TIAN LX, 2000, J MATH PHY, V41, P5771
87059    XU BQ, 2001, J JIANGSU U SCI TECH, V22, P1
87060 NR 7
87061 TC 0
87062 SN 0253-4827
87063 J9 APPL MATH MECH-ENGL ED
87064 JI Appl. Math. Mech.-Engl. Ed.
87065 PD OCT
87066 PY 2002
87067 VL 23
87068 IS 10
87069 BP 1140
87070 EP 1152
87071 PG 13
87072 SC Mathematics, Applied; Mechanics
87073 GA 641AL
87074 UT ISI:000180721500004
87075 ER
87076 
87077 PT J
87078 AU Zhu, WP
87079    Huang, Q
87080 TI General solution of the overall bending of flexible circular ring
87081    shells with moderately slender ratio and applications to the bellows
87082    (III) - Calculation for C-shaped bellows
87083 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
87084 DT Article
87085 DE theory of flexible shell; circular ring shell; C-shaped bellows;
87086    over-all bending; general solution
87087 AB This is one of the applications of Part (I), in which the angular
87088    stiffness, the lateral stiffness and the corresponding stress
87089    distributions of C-shaped bellows were calculated. The bellows was
87090    divided into protruding sections and concave sections for the use of
87091    the general solution (I), but the continuity of the stress resultants
87092    and the deformations at each joint of the sections were entirely
87093    satisfied. The present results were compared with those of the other
87094    theories and experiments, and are also tested by the numerically
87095    integral method. It is shown that the governing equation and the
87096    general solution (I) are very effective.
87097 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
87098 RP Zhu, WP, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
87099    200072, Peoples R China.
87100 CR CHEN SL, 1987, PROGR APPL MECH, P181
87101    CHIEN WZ, 1979, J TSINGHUA U, V19, P27
87102    CHIEN WZ, 1979, J TSINGHUA U, V19, P84
87103    CHIEN WZ, 1980, APPL MATH MECH ENGLI, V1, P305
87104    CHIEN WZ, 1981, APPL MATH MECH ENGLI, V2, P103
87105    HUANG CC, 1982, CARCINOGENESIS, V3, P1
87106    HUANG Q, 1986, APPL MATH MECH, V7, P125
87107    HUANG Q, 1986, APPL MATH MECH, V7, P573
87108    ZHU WP, 1998, THIN WALL STRUCT, P477
87109    ZHU WP, 1999, APPL MATH MECH-ENGL, V20, P952
87110    ZHU WP, 2000, CHINESE Q MECH, V21, P311
87111 NR 11
87112 TC 1
87113 SN 0253-4827
87114 J9 APPL MATH MECH-ENGL ED
87115 JI Appl. Math. Mech.-Engl. Ed.
87116 PD OCT
87117 PY 2002
87118 VL 23
87119 IS 10
87120 BP 1153
87121 EP 1163
87122 PG 11
87123 SC Mathematics, Applied; Mechanics
87124 GA 641AL
87125 UT ISI:000180721500005
87126 ER
87127 
87128 PT J
87129 AU Zhu, WP
87130    Huang, Q
87131 TI General solution of the overall bending of flexible circular ring
87132    shells with moderately slender ratio and applications to the bellows
87133    (IV) - Calculation for C-shaped bellows
87134 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
87135 DT Article
87136 DE theory of flexible shell; circular ring shell; U-shaped bellows; pure
87137    bending; general solution
87138 AB This is one of the applications of Part (I), in which the angular
87139    stiffness, and the corresponding stress distributions of U-shaped
87140    bellows were discussed. The bellows was divided into protruding
87141    sections, concave sections and ring plates for the calculation that the
87142    general solution (I) with its reduced form to ring plates were used
87143    respectively, but the continuity of the surface stresses and the
87144    meridian rotations at each joint of the sections were entirely
87145    satisfied. The present results were compared with those of the slender
87146    ring shell solution proposed earlier by the authors, the standards of
87147    the Expansion Joint Manufacturers Association (EJMA), the experiment
87148    and the finite element method. It is shown that the governing equation
87149    and the general solution (I) are very effective.
87150 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
87151 RP Zhu, WP, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
87152    200072, Peoples R China.
87153 CR *EJMA INC, 1993, STAND EXP JOINT MAN
87154    *EJMA INC, 1998, STAND EXP JOINT MAN
87155    CHIEN WZ, 1980, APPL MATH MECH ENGLI, V1, P305
87156    CHIEN WZ, 1983, APPL MATH MECH, V4, P649
87157    HAMADA M, 1971, B JSME, V14, P401
87158    HUANG Q, 1986, APPL MATH MECH, V7, P125
87159    HUANG Q, 1986, APPL MATH MECH, V7, P573
87160    LI TX, 1994, J S CHINA U TECH, V22, P94
87161    ZHU WP, 2000, APPL MATH MECH-ENGL, V21, P371
87162 NR 9
87163 TC 0
87164 SN 0253-4827
87165 J9 APPL MATH MECH-ENGL ED
87166 JI Appl. Math. Mech.-Engl. Ed.
87167 PD OCT
87168 PY 2002
87169 VL 23
87170 IS 10
87171 BP 1164
87172 EP 1169
87173 PG 6
87174 SC Mathematics, Applied; Mechanics
87175 GA 641AL
87176 UT ISI:000180721500006
87177 ER
87178 
87179 PT J
87180 AU Zhang, CH
87181    Feng, W
87182    Huang, Q
87183 TI The stress subspace of hybrid stress element and the diagonalization
87184    method for flexibility matrix H
87185 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
87186 DT Article
87187 DE hybrid stress finite element; Hilbert stress subspace; diagonalization
87188    method for flexibility matrix
87189 AB The following is proved: 1) The linear independence of assumed stress
87190    modes is the necessary and sufficient condition for the nonsingular
87191    flexibility matrix; 2) The equivalent assumed stress modes lead to the
87192    identical hybrid element. The Hilbert stress subspace of the assumed
87193    stress modes is established. So, it is easy to derive the equivalent
87194    orthogonal normal stress modes by Schmidt's method. Because of the
87195    resulting diagonal flexibility matrix, the identical hybrid element is
87196    free from the complex matrix inversion so that the hybrid efficiency,
87197    is improved greatly. The numerical examples show that the method is
87198    effective.
87199 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
87200 RP Zhang, CH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
87201    200072, Peoples R China.
87202 CR FENG W, 1997, INT J NUMER METH ENG, V40, P4313
87203    HAN JH, 1993, INT J NUMER METH ENG, V36, P3903
87204    HOA SV, 1998, HYBRID FINITE ELEMEN
87205    HUANG Q, 1991, LAP, V3, P283
87206    JIAO ZP, 1991, COMPUT STRUCT MECH A, V8, P214
87207    KARDESTUNCER H, 1995, FINITE ELEMENT HDB
87208    MACNEAL RH, 1985, FINITE ELEM ANAL DES, V1, P3
87209    MACNEAL RH, 1987, INT J NUMER METH ENG, V24, P1793
87210    PIAN THH, 1964, AIAA J, V2, P576
87211    SAETHER E, 1995, INT J NUMER METH ENG, V38, P2547
87212    WU CC, 1997, INCOMPATIBLE NUMERIC
87213 NR 11
87214 TC 0
87215 SN 0253-4827
87216 J9 APPL MATH MECH-ENGL ED
87217 JI Appl. Math. Mech.-Engl. Ed.
87218 PD NOV
87219 PY 2002
87220 VL 23
87221 IS 11
87222 BP 1263
87223 EP 1273
87224 PG 11
87225 SC Mathematics, Applied; Mechanics
87226 GA 639YM
87227 UT ISI:000180657900003
87228 ER
87229 
87230 PT J
87231 AU Zheng, YA
87232    Liu, ZH
87233 TI Motion of level sets by a generalized mean curvature
87234 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
87235 DT Article
87236 DE level set; mean curvature; signed distance function; principal curvature
87237 AB Short time existence and uniqueness for the classical motion are
87238    studied by the function of the principal curvatures of a smooth surface
87239    and the Evans and Spruck's results are generalized.
87240 C1 Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China.
87241    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
87242 RP Zheng, YA, Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China.
87243 CR BRAKKE K, 1978, MOTION SURFACE ITS C
87244    EVANS LC, 1992, T AM MATH SOC, V330, P321
87245    LADYZHENSKAJA OA, 1968, LINEAR QUASILINEAR E
87246 NR 3
87247 TC 0
87248 SN 0253-4827
87249 J9 APPL MATH MECH-ENGL ED
87250 JI Appl. Math. Mech.-Engl. Ed.
87251 PD NOV
87252 PY 2002
87253 VL 23
87254 IS 11
87255 BP 1310
87256 EP 1318
87257 PG 9
87258 SC Mathematics, Applied; Mechanics
87259 GA 639YM
87260 UT ISI:000180657900007
87261 ER
87262 
87263 PT J
87264 AU Huang, TZ
87265    Wang, GB
87266 TI Convergence theorems for the AOR method
87267 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
87268 DT Article
87269 DE convergence; AOR method; iteration; H-matrices
87270 ID OVER-RELAXATION METHOD
87271 AB Practical sufficient conditions for the convergence of the AOR method
87272    and a practical sufficient condition for H-matrices are studied. The
87273    obtained convergence conditions suited to matrices, which need not to
87274    be diagonally dominant.
87275 C1 Univ Elect Sci & Technol China, Sch Appl Math, Chengdu 610054, Peoples R China.
87276    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
87277 RP Huang, TZ, Univ Elect Sci & Technol China, Sch Appl Math, Chengdu
87278    610054, Peoples R China.
87279 CR CAO ZH, 1995, NUMERICAL MATH SINIC, V17, P98
87280    CVETKOVIC LJ, 1984, NUMERICAL METHODS AP, P143
87281    HADJIDIMOS A, 1978, MATH COMPUT, V32, P149
87282    HADJIDIMOS A, 1980, LINEAR ALGEBRA APPL, V30, P115
87283    HUANG TZ, 1998, J APPL SCI, V16, P269
87284    LI ZL, 1996, MATRIX THEORY ITS AP
87285    YOU ZY, 1983, NONSINGULAR M MATRIC
87286 NR 7
87287 TC 0
87288 SN 0253-4827
87289 J9 APPL MATH MECH-ENGL ED
87290 JI Appl. Math. Mech.-Engl. Ed.
87291 PD NOV
87292 PY 2002
87293 VL 23
87294 IS 11
87295 BP 1326
87296 EP 1330
87297 PG 5
87298 SC Mathematics, Applied; Mechanics
87299 GA 639YM
87300 UT ISI:000180657900009
87301 ER
87302 
87303 PT J
87304 AU Luo, J
87305    Zhai, QJ
87306    Zhao, P
87307 TI Microstructures of liquid pure iron and Fe-C alloy near the melting
87308    point
87309 SO ACTA METALLURGICA SINICA
87310 DT Article
87311 DE pure iron; Fe-C alloy; liquid structure; X-ray diffraction;
87312    medium-range order
87313 AB Liquid structure of pure iron and Fe-C, alloy was studied with
87314    theta-theta type liquid metal Xray diffractometer. Based on this study,
87315    the microstructures of the metals were given. The experimental results
87316    show that near the melting point there are a lot of atom clusters in
87317    pure iron and Fe-C alloy melts. The atom cluster of pure iron has the
87318    body-centered cubic units as the same as its the solid state, and the
87319    body-centered cubic units connect into network by occupying the same
87320    edge. In liquid Fe-C alloy there are not only Fe-C atom clusters but
87321    also Fe-Fe atom clusters. In both of the. liquid metals, the atom
87322    cluster size, the average coordination number, the average nearest
87323    distance of atoms, and the atom number in the clusters all decrease
87324    with increasing temperature.
87325 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
87326    Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China.
87327    Cent Iron & Steel Res Inst, Beijing 100081, Peoples R China.
87328 RP Zhai, QJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
87329    China.
87330 CR BIAN XF, 1999, HEREDITY CASTING MET, P1
87331    CERVINKA L, 1998, J NONCRYST SOLIDS, V232, P1
87332    ELLIOTT SR, 1991, NATURE, V354, P445
87333    HUANG ST, 1987, STRUCTURE STRUCTURE, P10
87334    MARET M, 1989, J PHYS-PARIS, V50, P295
87335    QIN JY, 1998, CHINESE SCI BULL, V43, P1445
87336    QIN JY, 1998, J SCI CHIN E, V28, P97
87337    QIN JY, 1998, SCI CHINA SER E, V41, P182
87338    WANG HR, 2000, CHINESE SCI BULL, V45, P1501
87339    WASEDA Y, 1980, STRUCTURE NONCRYSTAL, P27
87340    WASEDA Y, 1995, JPN J APPL PHYS PT 1, V34, P4124
87341    XU SS, 1986, DEV XRAY DIFFRACTION, P103
87342 NR 12
87343 TC 0
87344 SN 0412-1961
87345 J9 ACTA METALL SIN
87346 JI Acta Metall. Sin.
87347 PD JAN
87348 PY 2003
87349 VL 39
87350 IS 1
87351 BP 5
87352 EP 9
87353 PG 5
87354 SC Metallurgy & Metallurgical Engineering
87355 GA 640QH
87356 UT ISI:000180699100002
87357 ER
87358 
87359 PT J
87360 AU Chen, WX
87361    Tu, JP
87362    Xu, ZD
87363    Chen, WL
87364    Zhang, XB
87365    Cheng, DH
87366 TI Tribological properties of Ni-P-multi-walled carbon nanotubes
87367    electroless composite coating
87368 SO MATERIALS LETTERS
87369 DT Article
87370 DE carbon nanotubes; Ni-P-CNTs composite coatings; tribological properties
87371 ID TUBULES
87372 AB Carbon nanotubes (CNTs) have super-strong mechanical characteristics
87373    and unique hollow nanotube structure and are believed as very ideal
87374    materials for fabricating the excellent composites. In this paper,
87375    tribological properties of Ni-P-CNTs composite coating prepared by
87376    electroless technique were investigated using a ring-on-block test rig.
87377    The results indicated that addition of CNTs would result in an increase
87378    in hardness of the composite coating. Due to reinforcement and reduced
87379    friction, the tribological properties of Ni-P-CNTs composite coating
87380    were greatly improved. The Ni-P-CNTs composite coating exhibited not
87381    only higher wear resistance but also lower friction coefficient than
87382    the Ni-P-SiC and Ni-P-graphite coatings. After treatment at 400
87383    degreesC for 2 h, the wear resistance of the Ni-P-CNTs electroless
87384    composite coating improved because of the Ni3P precipitation in
87385    Ni-matrix. (C) 2002 Published by Elsevier Science B.V.
87386 C1 Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R China.
87387    Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China.
87388    Shanghai Univ, Coll Environm & Chem Engn, Shanghai 200027, Peoples R China.
87389 RP Tu, JP, Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R
87390    China.
87391 CR CALVERT P, 1999, NATURE, V399, P210
87392    CHEN XH, 2000, COMPOS SCI TECHNOL, V60, P301
87393    FILES BS, 1999, ADV MATER PROCESS, V156, P47
87394    HE JL, 1992, SURF COAT TECH, V53, P87
87395    IIJIMA S, 1996, J CHEM PHYS, V104, P2089
87396    KUZUMAKI T, 1998, J MATER RES, V13, P2445
87397    LOURIE O, 1999, COMPOS SCI TECHNOL, V59, P975
87398    OVERNEY G, 1993, Z PHYS D ATOM MOL CL, V27, P93
87399    SAITO R, 1992, APPL PHYS LETT, V60, P2204
87400    SOLVETAT JP, 1999, APPL PHYS A, V69, P255
87401    TU JP, 2001, TRIBOL LETT, V10, P225
87402    WANG LY, 2001, CHIN J NONFERROUS ME, V11, P367
87403 NR 12
87404 TC 5
87405 SN 0167-577X
87406 J9 MATER LETT
87407 JI Mater. Lett.
87408 PD JAN
87409 PY 2003
87410 VL 57
87411 IS 7
87412 BP 1256
87413 EP 1260
87414 PG 5
87415 SC Materials Science, Multidisciplinary; Physics, Applied
87416 GA 637WL
87417 UT ISI:000180536700004
87418 ER
87419 
87420 PT J
87421 AU He, JH
87422 TI A simple perturbation approach to Blasius equation
87423 SO APPLIED MATHEMATICS AND COMPUTATION
87424 DT Article
87425 DE Blasius equation; perturbation method; homotopy technique
87426 AB In this paper, we couple the iteration method with the perturbation
87427    method to solve the well-known Blasius equation. The obtained
87428    approximate analytic solutions are valid for the whole solution domain.
87429    Comparison with Howarth's numerical solution reveals that the proposed
87430    method is of high accuracy, the first iteration step leads to 6.8%
87431    accuracy, and the second iteration step yields the 0.73% accuracy of
87432    initial slop. (C) 2002 Elsevier Science Inc. All rights reserved.
87433 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
87434 RP He, JH, Shanghai Donghua Univ, Coll Sci, 1882 Yanan Xilu Rd, Shanghai
87435    200051, Peoples R China.
87436 CR HE JH, IN PRESS J VIB CONTR
87437    HE JH, 1998, COMMUN NONLINEAR SCI, V3, P206
87438    HE JH, 1999, COMPUT METHOD APPL M, V178, P257
87439    HE JH, 1999, INT J NONLINEAR MECH, V34, P699
87440    HE JH, 2000, INT J NONLINEAR MECH, V35, P37
87441    HE JH, 2000, INT J NONLINEAR SCI, V1, P51
87442    HOWARTH L, 1938, PROC R SOC LON SER-A, V164, P547
87443    LIAO SJ, 1995, INT J NONLINEAR MECH, V30, P371
87444    LIAO SJ, 1999, J FLUID MECH, V385, P101
87445    NAYFEH AH, 1981, INTRO PERTURBATION T
87446 NR 10
87447 TC 2
87448 SN 0096-3003
87449 J9 APPL MATH COMPUT
87450 JI Appl. Math. Comput.
87451 PD AUG 10
87452 PY 2003
87453 VL 140
87454 IS 2-3
87455 BP 217
87456 EP 222
87457 PG 6
87458 SC Mathematics, Applied
87459 GA 639AZ
87460 UT ISI:000180606600003
87461 ER
87462 
87463 PT J
87464 AU Bai, YJ
87465    Liu, YX
87466    Geng, GL
87467    Yin, LW
87468    Wang, SR
87469 TI Microstructural changes of a CuZnAlMnNi shape memory alloy due to
87470    cooling in liquid nitrogen
87471 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
87472    MICROSTRUCTURE AND PROCESSING
87473 DT Article
87474 DE CuZnAlMnNi shape memory alloy; liquid nitrogen; scanning electron
87475    microscopy; transmission electron microscopy
87476 ID CU-ZN-AL; MARTENSITIC-TRANSFORMATION; STRUCTURAL DEFECTS;
87477    THERMOELASTICITY
87478 AB The microstructures of a CuZnAlMnNi alloy immediately after quenching,
87479    as well as further cooling in liquid nitrogen, were investigated by
87480    scanning electron microscopy and transmission electron microscopy. It
87481    was found that when the as-quenched alloy was subjected to cooling in
87482    liquid nitrogen, the spear-like martensite changed into the granular
87483    microstructures, resulting in the destruction of the continuity of the
87484    martensite plates and the increment of the boundary area.
87485    Simultaneously, the stacking faults in the original martensite plates
87486    became confused and the degree of ordering decreased from 0.0929 to
87487    0.0417 Angstrom. (C) 2002 Elsevier Science B.V. All rights reserved.
87488 C1 Shanghai Univ Sci & Technol, Dept Mech, Shandong 250031, Peoples R China.
87489    Shandong Univ, Sch Mat Sci & Engn, Shandong 250061, Peoples R China.
87490    Jinan Univ, Inst Engn Mech, Shandong 250022, Peoples R China.
87491 RP Bai, YJ, Shanghai Univ Sci & Technol, Dept Mech, 17 Shenglizhuang Rd,
87492    Shandong 250031, Peoples R China.
87493 CR ARAB AA, 1988, ACTA METALL, V36, P2627
87494    BAI YJ, 2001, MATER RES BULL, V36, P2415
87495    DELAEY L, 1974, J MATER SCI, V9, P1521
87496    DELAEY L, 1978, INCRA RES REPORT
87497    GUILEMANY JM, 1995, SCRIPTA METALL MATER, V32, P2029
87498    KAINUMA R, 1996, METALL MATER TRANS A, V27, P2187
87499    LOVEY FC, 1984, PHYS STATUS SOLIDI A, V86, P553
87500    LOVEY FC, 1990, PHILOS MAG A, V61, P159
87501    LOVEY FC, 1995, J PHYS IV, V5, P235
87502    LOVEY FC, 1999, PROG MATER SCI, V44, P189
87503    MINGPU W, 1986, P ITN S SHAP MEM ALL, P255
87504    MORRIS MA, 1992, ACTA METALL MATER, V40, P1573
87505    NAKATA Y, 1993, MATER T JIM, V34, P429
87506    STALMANS R, 1992, ACTA METALL MATER, V40, P501
87507    SUGIMOTO K, 1982, J PHYS-PARIS, V43, P761
87508    WAYMAN CM, 1990, ENG ASPECTS SHAPE ME, P3
87509    WU MH, 1990, MATER SCI FORUM, V56, P553
87510 NR 17
87511 TC 1
87512 SN 0921-5093
87513 J9 MATER SCI ENG A-STRUCT MATER
87514 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
87515 PD MAR 15
87516 PY 2003
87517 VL 344
87518 IS 1-2
87519 BP 31
87520 EP 34
87521 PG 4
87522 SC Materials Science, Multidisciplinary
87523 GA 635FX
87524 UT ISI:000180389300004
87525 ER
87526 
87527 PT J
87528 AU Luo, X
87529    Guan, X
87530    Li, ML
87531    Roetzel, W
87532 TI Dynamic behaviour of one-dimensional flow multistream heat exchangers
87533    and their networks
87534 SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
87535 DT Article
87536 DE heat exchangers; systems; transient
87537 ID PERFORMANCE PREDICTION; NUMERICAL INVERSION; LAPLACE TRANSFORMS; FIN
87538    EFFICIENCY; MECHANISMS
87539 AB The dynamic behaviour of one-dimensional flow (cocurrent and
87540    countercurrent) multistream heat exchangers and their networks is
87541    modelled and simulated. The problems can be classified into two types:
87542    (1) dynamic responses to arbitrary temperature transients and to sudden
87543    flow rate transients from a uniform temperature initial condition or a
87544    steady-state condition, which yield a linear mathematical model; (2)
87545    dynamic responses to disturbances in thermal flow rates, heat transfer
87546    coefficients or flow distributions, which are non-linear problems and
87547    should be solved numerically. A linearized model is developed to solve
87548    the non-linear problems with small disturbances. The linear model and
87549    the linearized model for small disturbances are solved by means of
87550    Laplace transform and numerical inverse algorithm. Introducing four
87551    matching matrices, the general solution can be applied to various types
87552    of one-dimensional flow multistream heat exchangers such as
87553    shell-and-tube heat exchangers and plate heat exchangers as well as
87554    their networks. The time delays in connecting and bypass pipes are
87555    included in the models. The software TAIHE (transient analysis in heat
87556    exchangers) is further developed to include the present general
87557    solution and is applied to the simulation of fluid temperature
87558    responses of multistream heat exchangers. Examples are given to
87559    illustrate the procedures in detail. (C) 2002 Elsevier Science Ltd. All
87560    rights reserved.
87561 C1 Univ Fed Armed Forces Hamburg, Inst Thermodynam, D-22039 Hamburg, Germany.
87562    Tongji Univ, Dept Thermal Engn, Shanghai 200093, Peoples R China.
87563    Shanghai Univ Sci & Technol, Inst Thermal Engn, Shanghai 200093, Peoples R China.
87564 RP Roetzel, W, Univ Fed Armed Forces Hamburg, Inst Thermodynam, D-22039
87565    Hamburg, Germany.
87566 CR ANZELIUS A, 1926, Z ANGEW MATH MECH, V6, P291
87567    CHATO JC, 1971, INT J HEAT MASS TRAN, V14, P1691
87568    CHEN BD, 1998, ENERGY ENV, P313
87569    CRUMP KS, 1976, J ASSOC COMPUT MACH, V23, P89
87570    DENG B, 2001, COMPACT HEAT EXCHANG, P179
87571    DU P, 1996, ENERGY ENV, P442
87572    DU P, 1996, J E CHINA U TECHNOLO, V18, P27
87573    DU P, 1996, THESIS U SHANGHAI SC
87574    GRIGULL U, 1990, WARMELEITUNG
87575    HASELER LE, 1983, HEAT EXCHANGERS THEO, P495
87576    ICHIKAWA S, 1972, KYOTO U MEMORIES 1, V34, P53
87577    JACQUOT RG, 1983, IEEE CIRCUITS SYSTEM, V5, P4
87578    KANOH H, 1982, DISTRIBUTED PARAMETE, P417
87579    KAO S, 1961, 61WA255 ASME
87580    KAYS WM, 1984, COMPACT HEAT EXCHANG
87581    LI A, 1995, THESIS U SHANGHAI SC
87582    LUO X, 1990, ADV ENERG CONVERS, P470
87583    LUO X, 1998, FORTSCHRITT BERIC 19, V109
87584    LUO X, 2000, HEAT TRANSFER SCI TE, P691
87585    LUO X, 2000, INT J HEAT EXCHANGER, V1, P151
87586    LUO X, 2001, INT J HEAT EXCHANGER, V2, P47
87587    LUO X, 2001, INT J HEAT MASS TRAN, V44, P3745
87588    LUO X, 2002, INT J HEAT MASS TRAN, V45, P2695
87589    MALINOWSKI L, 1983, INT J HEAT MASS TRAN, V26, P316
87590    NARANONG C, IN PRESS INT J THERM
87591    NARANONG C, 2001, THESIS U BUNDESWEHR
87592    PAFFENBARGER J, 1990, COMPACT HEAT EXCHANG, P727
87593    PAFFENBERGER J, 1988, ASME, V101, P129
87594    PINGAUD H, 1989, COMPUT CHEM ENG, V13, P577
87595    PRASAD BSV, 1991, HEAT TRANSFER ENG, V12, P58
87596    PRASAD BSV, 1992, J HEAT TRANS-T ASME, V114, P41
87597    PRASAD BSV, 1996, HEAT TRANSFER ENG, V17, P35
87598    PRASAD BSV, 1996, INT J HEAT MASS TRAN, V39, P419
87599    PRASAD BSV, 1997, COMPACT HEAT EXCHANG, P79
87600    PRASAD BSV, 1997, INT J HEAT MASS TRAN, V40, P4279
87601    ROETZEL W, 1992, INT J HEAT MASS TRAN, V35, P703
87602    ROETZEL W, 1996, NEW DEV HEAT EXCHANG, P547
87603    ROETZEL W, 1999, DYNAMIC BEHAV HEAT E
87604    ROETZEL W, 2001, P 13 SCH SEM YOUNG S, V2, P401
87605    ROETZEL W, 2002, 7 INT C ADV COMP MET
87606    SETTARI A, 1972, INT J HEAT MASS TRAN, V15, P555
87607    SETTARI A, 1972, INT J HEAT MASS TRAN, V15, P819
87608    SHAH RK, 1981, HEAT EXCHANGERS THER, P915
87609    STEHFEST H, 1970, COMMUN ACM, V13, P47
87610    WANG L, 1998, PROGR ENG HEAT TRANS, P597
87611    WOLF J, 1964, INT J HEAT MASS TRAN, V7, P901
87612    XU YF, 1998, J CHEM IND ENG, V49, P721
87613    YE DH, 1998, THESIS U SHANGHAI SC
87614    YEE TF, 1990, COMPUT CHEM ENG, V14, P1151
87615    ZALESKI T, 1973, INT J HEAT MASS TRAN, V16, P1527
87616    ZALESKI T, 1974, INT J HEAT MASS TRAN, V17, P1116
87617    ZALESKI T, 1984, CHEM ENG SCI, V39, P1251
87618 NR 52
87619 TC 10
87620 SN 0017-9310
87621 J9 INT J HEAT MASS TRANSFER
87622 JI Int. J. Heat Mass Transf.
87623 PD FEB
87624 PY 2003
87625 VL 46
87626 IS 4
87627 BP 705
87628 EP 715
87629 PG 11
87630 SC Engineering, Mechanical; Mechanics; Thermodynamics
87631 GA 635WM
87632 UT ISI:000180423000011
87633 ER
87634 
87635 PT J
87636 AU Li, HY
87637    Wu, H
87638    Ma, HP
87639 TI The Legendre Galerkin-Chebyshev collocation method for Burgers-like
87640    equations
87641 SO IMA JOURNAL OF NUMERICAL ANALYSIS
87642 DT Article
87643 DE error estimates; Legendre Galerkin; Chebyshev collocation; Burgers-like
87644    equations
87645 ID SINGULAR DIFFERENTIAL-EQUATIONS; NONLINEAR CONSERVATION-LAWS; SPECTRAL
87646    VISCOSITY METHOD; APPROXIMATIONS; SPACES
87647 AB A Legendre Galerkin-Chebyshev collocation method for Burgers-like
87648    equations is developed. This method is based on the Legendre-Galerkin
87649    variational form, but the nonlinear term and the right-hand term are
87650    treated by Chebyshev-Gauss interpolation. Error estimates of the
87651    semi-discrete scheme and the fully discrete scheme are given in the
87652    L-2-norm. Numerical results indicate that our method is as stable and
87653    accurate as the standard Legendre collocation method, and as efficient
87654    and easy to implement as the standard Chebyshev collocation method.
87655 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
87656 RP Li, HY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
87657 CR ALPERT BK, 1991, SIAM J SCI STAT COMP, V12, P158
87658    BENNETT C, 1988, INTERPOLATION OPERAT
87659    BERNARDI C, 1992, J COMPUT APPL MATH, V43, P53
87660    BERNARDI C, 1997, HDBK NUM AN 2, V5, P209
87661    CANUTO C, 1988, SPECTRAL METHODS FLU
87662    DON WS, 1994, SIAM J NUMER ANAL, V31, P1519
87663    GOTTLIEB D, 1977, NUMERICAL ANAL SPECT
87664    GUO BY, 1998, SPECTRAL METHODS THE
87665    GUO BY, 2000, J MATH ANAL APPL, V243, P373
87666    GUO BY, 2001, ADV COMPUT MATH, V14, P227
87667    LI J, 2000, NUMER METH PART D E, V16, P513
87668    MA HP, 1988, CHINESE J NUMER MATH, V10, P11
87669    MA HP, 1998, SIAM J NUMER ANAL, V35, P869
87670    MA HP, 1998, SIAM J NUMER ANAL, V35, P893
87671    MERRYFIELD WJ, 1993, J COMPUT PHYS, V105, P182
87672    REYNA LG, 1988, J SCI COMPUT, V3, P1
87673    SHEN J, 1994, SIAM J SCI COMPUT, V15, P1489
87674    SHEN J, 1996, HOUSTON J MATH, P233
87675    SZEGO G, 1975, ORTHOGONAL POLYNOMIA
87676 NR 19
87677 TC 1
87678 SN 0272-4979
87679 J9 IMA J NUMER ANAL
87680 JI IMA J. Numer. Anal.
87681 PD JAN
87682 PY 2003
87683 VL 23
87684 IS 1
87685 BP 109
87686 EP 124
87687 PG 16
87688 SC Mathematics, Applied
87689 GA 634BQ
87690 UT ISI:000180320500006
87691 ER
87692 
87693 PT J
87694 AU Yang, ZY
87695    Cao, HZ
87696    Hu, J
87697    Shan, RL
87698    Yu, B
87699 TI 1 -> 2 Migration and concurrent glycosidation of phenyl
87700    1-thio-alpha-mannopyranosides via 2,3-O-cyclic dioxonium intermediates
87701 SO TETRAHEDRON
87702 DT Article
87703 DE glycosidation; phenyl 1-thio-alpha-mannopyranoside; 2,3-O-cyclic
87704    dioxonium
87705 ID CYCLIC KETENE ACETALS; STEREOSELECTIVE SYNTHESIS; READY PRECURSORS;
87706    1,2-MIGRATION
87707 AB Treatment of phenyl 2,3-O-cyclic ketene acetal- and
87708    2,3-O-thionocarbonyl-1-thio-mannopyranosides with TMSOTf and MeOTf,
87709    respectively, gave the corresponding 2,3-O-cyclic dioxonium
87710    intermediates, which proceeded via 1-->2 migration and concurrent
87711    glycosidation in the presence of alcohols to provide the corresponding
87712    2-S-phenyl glycosides stereoselectively. While the former donors were
87713    too labile, the latter donors have proved superior for the present
87714    purpose. The X-ray crystallographic structures of phenyl
87715    4-O-methyl-2,3-O-thiocarbonyl-1-thio-alpha-L-rhamnopyranoside (1), a
87716    typical donor for the present reaction, and its anomeric azide analogue
87717    (6), which could not undergo the present reaction under similar
87718    conditions, are provided. (C) 2002 Elsevier Science Ltd. All rights
87719    reserved.
87720 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Bioorgan & Nat Prod Chem, Shanghai 200032, Peoples R China.
87721    Shanghai Univ, Shanghai 200436, Peoples R China.
87722    Goodway Chem Joint Res Ctr, Shanghai 200436, Peoples R China.
87723 RP Yu, B, Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab
87724    Bioorgan & Nat Prod Chem, 345 Lingling Lu, Shanghai 200032, Peoples R
87725    China.
87726 EM byu@mail.sioc.ac.cn
87727 CR AUZANNEAU FI, 1991, CARBOHYD RES, V212, P13
87728    BAILEY WJ, 1991, TETRAHEDRON LETT, V32, P1539
87729    DIAZORTIZ A, 1993, SYNTHETIC COMMUN, V23, P1935
87730    GYORGYDEAK Z, 1985, LIEBIGS ANN CHEM, P103
87731    NICOLAOU KC, 1986, J AM CHEM SOC, V108, P2466
87732    NICOLAOU KC, 2001, ANGEW CHEM INT EDIT, V40, P3849
87733    POZSGAY V, 1992, CARBOHYD RES, V235, P295
87734    SZNAIDMAN ML, 1995, J ORG CHEM, V60, P3942
87735    YANG ZY, 2000, CARBOHYD RES, V329, P879
87736    YANG ZY, 2001, CARBOHYD RES, V333, P105
87737    YU B, 2000, TETRAHEDRON LETT, V41, P2961
87738    YU B, 2001, ORG LETT, V3, P377
87739    YU B, 2001, TETRAHEDRON, V57, P9403
87740    YU B, 2002, ORG LETT, V4, P1919
87741    ZHU PC, 1995, J ORG CHEM, V60, P5729
87742 NR 15
87743 TC 0
87744 SN 0040-4020
87745 J9 TETRAHEDRON
87746 JI Tetrahedron
87747 PD JAN 6
87748 PY 2003
87749 VL 59
87750 IS 2
87751 BP 249
87752 EP 254
87753 PG 6
87754 SC Chemistry, Organic
87755 GA 633BM
87756 UT ISI:000180259400013
87757 ER
87758 
87759 PT J
87760 AU Lin, GF
87761    Geng, X
87762    Chen, Y
87763    Qu, B
87764    Wang, FB
87765    Hu, RY
87766    Ding, XY
87767 TI T-box binding site mediates the dorsal activation of myf-5 in Xenopus
87768    gastrula embryos
87769 SO DEVELOPMENTAL DYNAMICS
87770 DT Article
87771 DE Xenopus; myogenesis; myf-5; T-box binding site; restriction enzyme
87772    mediated integration transgenesis
87773 ID MESODERM INDUCTION; MUSCLE DETERMINATION; MATERNAL VEGT; EXPRESSION;
87774    GENE; MYOGENESIS; CELLS; DIFFERENTIATION; BRACHYURY; MORPHOGEN
87775 AB Myf-5, a member of the muscle regulatory factor family of transcription
87776    factors, plays an important role in the determination, development, and
87777    differentiation of the skeletal muscle. Factors that regulate the
87778    expression of myf-5 itself are not well understood. We show here that a
87779    T-box binding site in the Xenopus myf-5 promoter mediated the
87780    activation of myf-5 expression through specific interaction with
87781    nuclear proteins of gastrula embryos. The T-box binding site could be
87782    bound by and respond to T-box proteins. T-box genes could induce
87783    Xmyf-5. The results suggest that T-box proteins are involved in the
87784    specification of myogenic mesoderm and muscle development.
87785 C1 Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem & Cell Biol, Shanghai 200031, Peoples R China.
87786    Shanghai Univ, Sch Life Sci, Dept Bioengn, Shanghai 200041, Peoples R China.
87787 RP Ding, XY, Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem & Cell
87788    Biol, 320 Yue Yang Rd, Shanghai 200031, Peoples R China.
87789 CR ARNOLD HH, 1998, CURR OPIN GENET DEV, V8, P539
87790    ARNOLD HH, 2000, CURR TOP DEV BIOL, V48, P129
87791    BARTH JL, 1998, EXP CELL RES, V238, P430
87792    BORYCKI AG, 1999, DEVELOPMENT, V126, P4053
87793    CARVAJAL JJ, 2001, DEVELOPMENT, V128, P1875
87794    CASEY ES, 1998, DEVELOPMENT, V125, P3887
87795    CASEY ES, 1999, DEVELOPMENT, V126, P4193
87796    CHAPMAN DL, 1998, NATURE, V391, P695
87797    CONLON FL, 2001, DEVELOPMENT, V128, P3479
87798    COSSU G, 1996, TRENDS GENET, V12, P218
87799    COSSU G, 1999, EMBO J, V18, P6867
87800    COUTELLE O, 2001, DEV BIOL, V236, P136
87801    CROCE J, 2001, MECH DEVELOP, V107, P159
87802    DING XY, 1998, MECH DEVELOP, V70, P15
87803    DOSCH R, 1997, DEVELOPMENT, V124, P2325
87804    FRIDAY BB, 2001, J CELL SCI, V114, P303
87805    GRASS S, 1996, DEVELOPMENT, V122, P141
87806    GUSTAFSSON MK, 2002, GENE DEV, V16, P114
87807    HERRMANN BG, 1990, NATURE, V343, P617
87808    HOPWOOD ND, 1991, DEVELOPMENT, V111, P551
87809    JONES CM, 1998, DEV BIOL, V194, P12
87810    KOFRON M, 1999, DEVELOPMENT, V126, P5759
87811    KROLL KL, 1999, EARLY DEV XENOPUS LA
87812    KUSCH T, 2002, GENE DEV, V16, P518
87813    MARCELLE C, 1997, DEVELOPMENT, V124, P3955
87814    MEI WY, 2001, FEBS LETT, V505, P47
87815    MITANI Y, 2001, DEVELOPMENT, V128, P3717
87816    NIEUWKOOP PD, 1967, NORMAL TABLES XENOPU
87817    PAPAIOANNOU VE, 2001, INT REV CYTOL, V207, P1
87818    POLLI M, 2002, DEVELOPMENT, V129, P2917
87819    SAKA Y, 2000, MECH DEVELOP, V93, P27
87820    SHI DL, 2002, DEV BIOL, V245, P124
87821    SMITH JC, 2001, INT J DEV BIOL, V45, P219
87822    STEINBACH OC, 1998, DEV BIOL, V202, P280
87823    STENNARD F, 1997, CURR OPIN GENET DEV, V7, P620
87824    TADA M, 1998, DEVELOPMENT, V125, P3997
87825    TADA M, 2000, DEVELOPMENT, V127, P2227
87826    TAKAHASHI S, 1998, ZOOL SCI, V15, P231
87827    UCHIYAMA H, 2001, DEV GROWTH DIFFER, V43, P657
87828    YANG J, 2002, MECH DEVELOP, V115, P79
87829    ZERNICKAGOETZ M, 1996, DEVELOPMENT, V122, P3719
87830    ZHANG J, 1998, CELL, V94, P515
87831 NR 42
87832 TC 7
87833 SN 1058-8388
87834 J9 DEVELOP DYNAM
87835 JI Dev. Dyn.
87836 PD JAN
87837 PY 2003
87838 VL 226
87839 IS 1
87840 BP 51
87841 EP 58
87842 PG 8
87843 SC Anatomy & Morphology; Developmental Biology
87844 GA 632WD
87845 UT ISI:000180245900007
87846 ER
87847 
87848 PT J
87849 AU Zhang, YF
87850    Yan, QY
87851 TI Integrable couplings of the hierarchies of evolution equations
87852 SO CHAOS SOLITONS & FRACTALS
87853 DT Article
87854 AB An efficient, straightforward method for obtaining integrable couplings
87855    of a hierarchy of evolution equations is proposed in this paper. First
87856    a transformation of a kind of Lax pairs is presented, a new loop
87857    algebra is constructed, which can be used to obtain the integrable
87858    couplings of the Levi hierarchy. Using this method can also obtain the
87859    integrable couplings of the well-known generalized AKNS hierarchy. As
87860    special cases, the integrable couplings of KdV equation and mKdV
87861    equation are obtained, respectively. This method can be used generally.
87862    (C) 2002 Elsevier Science Ltd. All rights reserved.
87863 C1 Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, Beijing 100080, Peoples R China.
87864    Shanghai Univ Sci & Technol, Informat Sch, Inst Math, Tainan 271019, Peoples R China.
87865    Dalian Univ Technol, Mech Engn Coll, Dalian 116024, Peoples R China.
87866 RP Zhang, YF, Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math,
87867    Beijing 100080, Peoples R China.
87868 CR MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
87869    MA WX, 2000, METH APPL ANAL, V7, P21
87870    PICKERING A, 1993, J PHYS A-MATH GEN, V26, P4395
87871    TU GZ, 1989, ACTA MATH APPL SINIC, V5, P89
87872    TU GZ, 1989, J MATH PHYS, V30, P330
87873    WANG ML, 1996, PHYS LETT A, V216, P67
87874    ZHANG Y, 2002, J MATH PHYS, V43, P1
87875 NR 7
87876 TC 13
87877 SN 0960-0779
87878 J9 CHAOS SOLITON FRACTAL
87879 JI Chaos Solitons Fractals
87880 PD MAR
87881 PY 2003
87882 VL 16
87883 IS 2
87884 BP 263
87885 EP 269
87886 PG 7
87887 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
87888 GA 634PP
87889 UT ISI:000180349800009
87890 ER
87891 
87892 PT J
87893 AU Chen, BX
87894    Lu, HL
87895    Zhao, DX
87896    Yuan, YF
87897    Iso, M
87898 TI Optimized design of temperature-insensitive optical waveguide coupler
87899    with 120-nm bandwidth using fluorinated polyimide
87900 SO APPLIED OPTICS
87901 DT Article
87902 ID CHANNEL WAVE-GUIDES
87903 AB Method for designing optimized temperature-insensitive optical
87904    waveguide couplers by use of fluorinated polyimide is presented. Based
87905    on measured temperature and dispersion characteristics of fluorinated
87906    polyimide, a 3-dB waveguide coupler with a 120-nm bandwidth with
87907    minimal temperature variance is designed and verified through
87908    simulation based on three-dimensional beam propagation. The coupling
87909    ratio of the theoretical device is 50 +/- 0.7% in the waveband 1490
87910    similar to 1610 mn and the temperature range -10similar to40degreesC.
87911    (C) 2003 Optical Society of America.
87912 C1 Shanghai Univ Sci & Technol, Coll Opt & Elect Informat Engn, Shanghai 200093, Peoples R China.
87913    Nitta Shanghai Co Ltd, Shanghai 200233, Peoples R China.
87914    Tokyo Univ Agr & Technol, Dept Chem Engn, Tokyo 1848588, Japan.
87915 RP Chen, BX, Shanghai Univ Sci & Technol, Coll Opt & Elect Informat Engn,
87916    Shanghai 200093, Peoples R China.
87917 CR BOOTH BL, 1989, J LIGHTWAVE TECHNOL, V7, P1445
87918    CHEN BX, 2001, ACTA OPT SINICA, V21, P996
87919    IMAMURA S, 1991, ELECTRON LETT, V27, P1342
87920    KAINO T, 1981, APPL OPTICS, V20, P2886
87921    KITAZAWA M, 1995, HITATI HYORONN, V77, P15
87922    KOBAYASHI J, 1998, J LIGHTWAVE TECHNOL, V16, P1024
87923    NISHIHARA H, 1993, OPTICAL INTEGRATED C
87924    REUTER R, 1988, APPL OPTICS, V27, P4565
87925    TAKATO N, 1994, NTT R D, V43, P1281
87926 NR 9
87927 TC 2
87928 SN 0003-6935
87929 J9 APPL OPT
87930 JI Appl. Optics
87931 PD JAN 10
87932 PY 2003
87933 VL 42
87934 IS 2
87935 BP 271
87936 EP 274
87937 PG 4
87938 SC Optics
87939 GA 632PN
87940 UT ISI:000180232000012
87941 ER
87942 
87943 PT J
87944 AU Ma, CA
87945    Zhang, WK
87946    Chen, DH
87947    Zhou, BX
87948 TI Preparation and electrocatalytic properties of tungsten carbide
87949    electrocatalysts
87950 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
87951 DT Article
87952 DE tungsten carbide; electrocatalyst; electrochemical performance
87953 ID CATALYTIC PROPERTIES
87954 AB The tungsten carbide(WC) electrocatalysts with definite phase
87955    components and high specific surface area were prepared by gas-solid
87956    reduction method. The crystal structure, phase components and
87957    electrochemical properties of the as-prepared materials were
87958    characterized by XRD, BET(Brunauer Emmett and Teller Procedure) and
87959    electrochemical test techniques. If is shown that the tungsten carbide
87960    catalysts with definite phase components can be obtained by controlling
87961    the carburizing conditions including temperature, gas flowing rate and
87962    duration time. The electrocatalysts with the major phase of W2C show
87963    higher electrocatalytic activity for the hydrogen evolution reaction.
87964    The electrocatalysts with the major phase of WC are suitable to be used
87965    as the anodic electrocatalyst for hydrogen anodic oxidation, which
87966    exhibit higher hydrogen anodic oxidation electrocatalytic properties in
87967    HCI solutions.
87968 C1 Zhejiang Univ Technol, Dept Appl Chem, Hangzhou 310014, Peoples R China.
87969    Shanghai Univ, Dept Mat Sci & Technol, Shanghai 200072, Peoples R China.
87970 CR BARNETT CJ, 1997, ELECTROCHIM ACTA, V42, P2381
87971    BODOARDO S, 1997, ELECTROCHIMICA CATA, V17, P2603
87972    BOHM H, 1970, NATURE, V227, P484
87973    BOHM H, 1976, J POWER SOURCES, V1, P177
87974    BURSTEIN GT, 1996, J ELECTROCHEMISTRY S, V143, P189
87975    COSTA P, 2001, CATAL TODAY, V65, P195
87976    FLEISCHMANN R, 1977, ELECTROCHIM ACTA, V22, P1123
87977    GAO L, 1995, NANOSTRUCT MATER, V5, P555
87978    IGLESIA E, 1992, CATAL TODAY, V15, P307
87979    LEE JS, 1990, J MOL CATAL, V62, P45
87980    LEVY RB, 1973, SCIENCE, V181, P547
87981    MAAS KP, 1978, P 28 POW SOURC S EL, P35
87982    NEYLON MK, 1999, APPL CATAL A-GEN, V183, P253
87983    NIKOLOV I, 1980, J POWER SOURCES, V5, P197
87984    NIKOLOV I, 1981, J POWER SOURCES, V7, P83
87985    ROSS PN, 1977, J CATAL, V48, P42
87986    VIDICK B, 1986, J CATAL, V99, P428
87987 NR 17
87988 TC 2
87989 SN 1003-6326
87990 J9 TRANS NONFERROUS METAL SOC CH
87991 JI Trans. Nonferrous Met. Soc. China
87992 PD DEC
87993 PY 2002
87994 VL 12
87995 IS 6
87996 BP 1015
87997 EP 1019
87998 PG 5
87999 SC Metallurgy & Metallurgical Engineering
88000 GA 631NJ
88001 UT ISI:000180173600001
88002 ER
88003 
88004 PT J
88005 AU Wu, YQ
88006    Huang, SP
88007    You, JL
88008    Jiang, GC
88009 TI Molecular dynamics of structural properties of molten CaO-SiO2 with
88010    varying composition
88011 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
88012 DT Article
88013 DE MD simulation; structural properties; CaO-SiO2 melts
88014 ID SILICATE-GLASSES; RAMAN-SPECTROSCOPY; MELTS; SPECTRA; NMR
88015 AB Molecular dynamics simulations of the xCaO-(1-x) SiO2 melts (x varying
88016    with the composition of melt) were performed to achieve some structural
88017    information. It is found that the first peak positions of Si-Si, Si-O
88018    and 0-0 partial radial distribution functions RDFs(3.165 Angstrom,
88019    1.612 Angstrom and 2.6 Angstrom) agree very well with those of x-ray
88020    diffraction experiments. The discovered relation of coordinate number
88021    NSi-Si (r(0)) with the molar ratio of CaO is linear and the slope is
88022    -0.05617. The average bond lengths Of Si-O-b and Si-O-nb are 1.6275
88023    similar to 1.630 Angstrom and 1.595 similar to 1.60 Angstrom,
88024    respectively. Both distribution curves of the angles O-Si-O and Si-O-Si
88025    show one peak. For the distribution of angle O-Si-O the positions of
88026    the peaks are just a little less than the typical tetrahedral angle
88027    109.5degrees. And for angle Si-O-Si the positions of peaks fluctuate in
88028    the range from 148degrees to 151degrees. At last, the distribution of
88029    five Si-O tetrahedra was obtained and discussed.
88030 C1 Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai 200072, Peoples R China.
88031 CR BELASHCHENKO DK, 1992, ISIJ INT, V32, P990
88032    HUFF NT, 1999, J NON-CRYST SOLIDS, V253, P133
88033    HWA LG, 1998, J NON-CRYST SOLIDS, V238, P193
88034    JEN JS, 1989, J NONCRYST SOLIDS, V38, P21
88035    LIEBAU F, 1989, STRUCTURAL CHEM SILI
88036    MAEKAWA H, 1991, J NON-CRYST SOLIDS, V127, P53
88037    MCMILLAN P, 1984, AM MINERAL, V69, P622
88038    MCMILLAN PF, 1992, CHEM GEOL, V96, P351
88039    MYSEN BO, 1982, REV GEOPHYS SPACE PH, V20, P353
88040    SPRENGER D, 1993, J NON-CRYST SOLIDS, V159, P187
88041    TSUNAWAKI Y, 1981, J NONCRYST SOLIDS, V44, P369
88042    WASEDA Y, 1977, T ISIJ, V17, P601
88043    WU YQ, 2001, T NONFERR METAL SOC, V11, P965
88044    XU PC, 1996, RAMAN SPECTROSCOPY G, P46
88045    YOU JL, 2001, J NON-CRYST SOLIDS, V282, P125
88046 NR 15
88047 TC 2
88048 SN 1003-6326
88049 J9 TRANS NONFERROUS METAL SOC CH
88050 JI Trans. Nonferrous Met. Soc. China
88051 PD DEC
88052 PY 2002
88053 VL 12
88054 IS 6
88055 BP 1218
88056 EP 1223
88057 PG 6
88058 SC Metallurgy & Metallurgical Engineering
88059 GA 631NJ
88060 UT ISI:000180173600047
88061 ER
88062 
88063 PT J
88064 AU Wei, EB
88065    Song, JB
88066    Gu, GQ
88067 TI Effective response of a non-linear composite in external AC electric
88068    field
88069 SO PHYSICA B-CONDENSED MATTER
88070 DT Article
88071 DE nonlinear composites; effective medium approximation; effective response
88072 ID NONLINEAR COMPOSITES; EFFECTIVE CONDUCTIVITY; PERTURBATION APPROACH;
88073    APPROXIMATION; GENERATION; MEDIA
88074 AB A general effective response is proposed for nonlinear composite media,
88075    which obey a current field relation of the form J = sigmaE + chi\E\(2)
88076    E when an external alternating current (AC) electrical field is
88077    applied. For a sinusoidal applied field with finite frequency omega,
88078    the effective constitutive relation between the current density and
88079    electric field can be defined as, <J(x, omega, t)> = sigma(e) <E(x,
88080    omega, t)> + chi(e) <\E(x, omega, t)\(2) E(x, omega, t)> + (. . .),
88081    where sigma(e) and chi(e) are the general effective linear and
88082    nonlinear conductive responses, respectively. The angled brackets <(. .
88083    .)> denotes the ensemble average. As two examples, we have investigated
88084    the cylindrical and spherical inclusions embedded in a host and also
88085    derived the formulae of the general effective linear and nonlinear
88086    conductive responses in dilute limit. For higher volume fraction of
88087    inclusions, we have proposed a nonlinear effective medium approximation
88088    (EMA) method to estimate the general effective response of nonlinear
88089    composites in external AC field. Furthermore, the effective nonlinear
88090    responses at harmonics are predicted by using the general effective
88091    response. (C) 2002 Elsevier Science B.V. All rights reserved.
88092 C1 Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R China.
88093    Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 200093, Peoples R China.
88094 RP Wei, EB, Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R
88095    China.
88096 CR BERGMAN DJ, 1992, SOLID STATE PHYS, V46, P147
88097    GU GQ, 1992, PHYS REV B, V46, P4502
88098    GU GQ, 2000, J U SHANGHAI SCI TEC, V22, P95
88099    GU GQ, 2000, PHYSICA B, V279, P62
88100    HUI PM, 1997, J APPL PHYS, V82, P4740
88101    LANDAU LD, 1960, ELECTRODYNAMICS CONT, V8
88102    LEVY O, 1992, PHYS REV B, V46, P7189
88103    LEVY O, 1995, PHYS REV E, V52, P3184
88104    STROUD D, 1988, PHYS REV B, V37, P8719
88105    WEI EB, 2001, CHINESE PHYS LETT, V18, P960
88106    WEI EB, 2001, COMMUN THEOR PHYS, V35, P501
88107    YU KW, 1992, PHYS LETT A, V168, P313
88108    YU KW, 1993, PHYS REV B, V47, P1782
88109 NR 13
88110 TC 6
88111 SN 0921-4526
88112 J9 PHYSICA B
88113 JI Physica B
88114 PD NOV-DEC
88115 PY 2002
88116 VL 324
88117 IS 1-4
88118 BP 322
88119 EP 328
88120 PG 7
88121 SC Physics, Condensed Matter
88122 GA 630JQ
88123 UT ISI:000180104100041
88124 ER
88125 
88126 PT J
88127 AU Yoon, TS
88128    Li, Y
88129    Koo, ES
88130    Kim, CO
88131 TI Soft magnetic properties of as-deposited Fe-Si-O thin films
88132 SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
88133 DT Article
88134 DE soft magnetic properties; thin film; nanocrystalline
88135 AB The properties of the nanocrystalline as-deposited Fe-Si-O thin films
88136    fabricated by RF agnetron reactive sputtering method have been studied.
88137    The best magnetic softness obtained from as-deposited Fe79.8Si17.3O2.9
88138    thin films is the saturation flux density of 17.2kG, coercivity of 3.1
88139    Oe and effective permeability of about 1000 at 100 MHz. The electrical
88140    resistivity of Fe79.8Si17.3O2.9 thin film is 35 muOmega cm (C) 2002
88141    Elsevier Science B.V. All rights reserved.
88142 C1 Chungnam Natl Univ, Res Ctr Adv Magnet Mat, Yousung Gu, Taejon 305764, South Korea.
88143    Shanghai Univ, Inst Mat, Shanghai 200041, Peoples R China.
88144 RP Li, Y, Chungnam Natl Univ, Res Ctr Adv Magnet Mat, Yousung Gu, Gung
88145    Dong 220, Taejon 305764, South Korea.
88146 CR BLOEMEN PJH, 1998, J APPL PHYS, V84, P6778
88147    CULLITY BD, 1978, ELEMENTS XRAY DIFFRA, CH3
88148    FUJIMORI H, 1995, SCRIPTA METALL MATER, V33, P1625
88149    HAYAKAWA Y, 1995, NANOSTRUCT MATER, V6, P989
88150    KOBAYASHI N, 1996, J MAGN SOC JAPAN, V20, P469
88151    MAKINO A, 1994, MAT SCI ENG A-STRUCT, V181, P1020
88152    YOON TS, 2001, J MAGN MAGN MATER, V226, P1530
88153 NR 7
88154 TC 0
88155 SN 0304-8853
88156 J9 J MAGN MAGN MATER
88157 JI J. Magn. Magn. Mater.
88158 PD JAN
88159 PY 2003
88160 VL 254
88161 SI Sp. Iss. SI
88162 BP 416
88163 EP 418
88164 PG 3
88165 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
88166 GA 629WR
88167 UT ISI:000180075600127
88168 ER
88169 
88170 PT J
88171 AU Zhong, SS
88172    Yang, XX
88173    Gao, SC
88174    Cui, JH
88175 TI Corner-fed microstrip antenna element and arrays for dual-polarization
88176    operation
88177 SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
88178 DT Article
88179 DE antenna array; impedance; isolation; microstrip antenna; patterns;
88180    polarization
88181 ID PATCH ANTENNAS
88182 AB A systematical study on the dual-polarized corner-fed microstrip
88183    antenna element and arrays with thin single-layer structure is
88184    presented. The impedance matrices and S-parameters of the element and
88185    arrays are investigated by the proposed extended multiport network
88186    method (EMNM). The co- and cross-polarization patterns are also
88187    analyzed. It is shown that this kind of antenna element has the
88188    isolation about 10 dB higher than that of a conventional edge-fed
88189    square patch. A series of new dual-polarized arrays of corner-fed
88190    patches have been designed and analyzed based on the EMNM. The
88191    experimental results of five arrays indicate that these arrays achieve
88192    the isolation of 27similar to38 dB with maximum of higher than
88193    28similar to58 dB and the cross-polarization level of lower than
88194    -23similar to -30 at boresight, which are substantially better than
88195    those of similar dual-polarized arrays of edge-fed patches. All
88196    theoretical results are in good agreement with experimental ones.
88197 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
88198 RP Zhong, SS, Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R
88199    China.
88200 CR CRUZ EM, 1991, ELECTRON LETT, V27, P1410
88201    CRUZ EM, 1993, ELECTRON LETT, V29, P88
88202    CRYAN MJ, 1996, ELECTRON LETT, V32, P286
88203    DANIEL JP, 1985, P ISAP 85, P121
88204    DANIEL JP, 1989, HDB MICROSTRIP ANT 2, P579
88205    DERNERYD AG, 1976, P 6 EUR MICR C, P339
88206    DUTOIT LJ, 1987, P IEEE ANT PROP INT, P810
88207    GAO SC, 1998, MICROW OPT TECHN LET, V19, P214
88208    GAO SC, 1999, THESIS SHANGHAI U
88209    GUPTA KC, 1981, COMPUTER AIDED DESIG
88210    GUPTA KC, 1987, P IEEE ANT PROP SOC, V2, P786
88211    HALL PS, 1997, ADV MICROSTRIP PRINT, P163
88212    HUANG J, 1991, MICROW OPT TECHN LET, V4, P99
88213    LIM BW, 1995, ELECTRON LETT, V31, P691
88214    LINDMARK B, 1998, IEEE T ANTENN PROPAG, V46, P758
88215    PORTER BG, 1999, IEEE T ANTENN PROPAG, V47, P1836
88216    RICHARDS WF, 1981, IEEE T ANTENN PROPAG, V29, P38
88217    ZHONG SS, 1991, MICROSTRIP ANTENNA T
88218    ZHONG SS, 1995, J SHANGHAI U NATURAL, V1, P680
88219    ZHONG SS, 1998, P J INA 98 NIC FRANC, P738
88220    ZHONG SS, 1999, P AS PAC MICR C SING, P928
88221    ZHONG SS, 2000, MICROW OPT TECHN LET, V24, P176
88222 NR 22
88223 TC 4
88224 SN 0018-926X
88225 J9 IEEE TRANS ANTENNAS PROPAGAT
88226 JI IEEE Trans. Antennas Propag.
88227 PD OCT
88228 PY 2002
88229 VL 50
88230 IS 10
88231 BP 1473
88232 EP 1480
88233 PG 8
88234 SC Engineering, Electrical & Electronic; Telecommunications
88235 GA 628XD
88236 UT ISI:000180021100017
88237 ER
88238 
88239 PT J
88240 AU Wu, YQ
88241    Jiang, GC
88242    You, JL
88243    Hou, HY
88244    Chen, H
88245 TI A new method for the Raman spectra calculation of vitreous or molten
88246    silicate
88247 SO CHINESE PHYSICS LETTERS
88248 DT Article
88249 ID BOND POLARIZABILITY MODEL; VIBRATIONAL-SPECTRA; GLASSES; SODIUM;
88250    INTENSITIES; SIMULATION; SYSTEM; MELTS
88251 AB A new method is deduced to calculate the Raman spectra of vitreous or
88252    molten silicate. This method includes five steps: (i) molecular
88253    dynamics simulation to generate thousands of vitreous or molten
88254    configurations in equilibrium; (ii) decomposing the configurations into
88255    five kinds of defined tetrahedral units; (iii) normal vibrational
88256    analysis with Wilson's GF matrix method for the eigenfrequencies and
88257    eigenvectors of each tetrahedral unit; (iv) Raman intensity
88258    calculations for each vibrational mode by utilizing the electro-optical
88259    parameter method and bond polarizability model; (v) accumulating the
88260    data of frequencies and corresponding intensities to form the partial
88261    Raman spectral line of each defined tetrahedral unit and finally the
88262    envelope.
88263 C1 Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai 200072, Peoples R China.
88264 RP Wu, YQ, Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai
88265    200072, Peoples R China.
88266 CR ABBATE S, 1977, J CHEM PHYS, V67, P1519
88267    ABBATE S, 1977, J MOL SPECTROSC, V66, P1
88268    BARRON LD, 1982, J RAMAN SPECTROSC, V13, P155
88269    BARRON LD, 1986, MOL PHYS, V57, P653
88270    BELL RJ, 1970, DISCUSS FARADAY SOC, V50, P55
88271    BOUGEARD D, 2000, J PHYS CHEM B, V104, P9210
88272    BRAWER S, 1975, PHYS REV B, V11, P3173
88273    DIMITROV V, 1999, J NON-CRYST SOLIDS, V249, P160
88274    DOWTY E, 1987, PHYS CHEM MINER, V14, P542
88275    DOWTY E, 1987, PHYS CHEM MINER, V14, P67
88276    FURUKAWA T, 1981, J CHEM PHYS, V75, P3226
88277    GASKELL PH, 1967, PHYS CHEM GLASSES, V8, P69
88278    GO S, 1975, PHYS REV LETT, V34, P580
88279    GUHA S, 1996, PHYS REV B, V53, P13106
88280    GUSSONI M, 1976, J CHEM PHYS, V65, P343
88281    HUANG SP, 2000, CHINESE PHYS LETT, V17, P279
88282    MARINOV M, 1994, J PHYS CONDENS MATT, V6, P381
88283    MEGAHED AA, 1999, PHYS CHEM GLASSES, V40, P130
88284    MIHAILOVA B, 1994, J NON-CRYST SOLIDS, V168, P265
88285    MURRAY RA, 1989, PHYS REV B, V39, P1320
88286    SCAMEHORN CA, 1991, GEOCHIM COSMOCHIM AC, V55, P721
88287    UMARI P, 2001, PHYS REV B, V63
88288    WILSON EB, 1955, MOL VIBRATIONS
88289    WU YQ, 2001, T NONFERR METAL SOC, V11, P965
88290    WU YQ, 2002, IN PRESS T NONFERROU
88291    YOU JL, 2001, CHINESE PHYS LETT, V18, P3408
88292    YOU JL, 2001, CHINESE PHYS LETT, V18, P991
88293    ZOTOV N, 1996, J NON-CRYST SOLIDS, V197, P179
88294    ZOTOV N, 1999, PHYS REV B, V60, P6383
88295 NR 29
88296 TC 2
88297 SN 0256-307X
88298 J9 CHIN PHYS LETT
88299 JI Chin. Phys. Lett.
88300 PD DEC
88301 PY 2002
88302 VL 19
88303 IS 12
88304 BP 1880
88305 EP 1883
88306 PG 4
88307 SC Physics, Multidisciplinary
88308 GA 628VB
88309 UT ISI:000180016300042
88310 ER
88311 
88312 PT J
88313 AU Li, CF
88314    Chen, X
88315 TI Traversal time for Dirac particles through a potential barrier
88316 SO ANNALEN DER PHYSIK
88317 DT Article
88318 DE traversal time; quantum tunnelling; relativistic theory
88319 ID FRONT PROPAGATION; EVANESCENT MEDIA; TUNNELING TIMES; KLEIN PARADOX
88320 AB A traversal time that has no problem of supertuminality was advanced
88321    for particles to runnel through potential barriers in the
88322    non-relativistic quantum theory in a previous paper by C.-F. Li and Q.
88323    Wang, Physica B 296 (2001) 356. This time is generalized in this paper
88324    to Dirac's relativistic quantum theory. Both evanescent and propagating
88325    cases are considered. It is shown that the traversal time in the
88326    evanescent case has much the same properties as in the,
88327    non-relativistic quantum theory and thus has no problem of
88328    superluminality. It also gets rid of the problem of superluminality in
88329    the propagating case. Comparisons with the dwell time, the group delay,
88330    and the velocity of monochromatic front are also made.
88331 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
88332    Acad Sinica, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt Technol, Xian 710068, Peoples R China.
88333 RP Li, CF, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
88334 CR BRILLOUIN L, 1960, WAVE PROPAGATION GRO
88335    BUTTIKER M, 1983, PHYS REV B, V27, P6178
88336    BUTTIKER M, 1998, ANN PHYS-BERLIN, V7, P602
88337    BUTTIKER M, 1998, SUPERLATTICE MICROST, V23, P781
88338    CALOGERACOS A, 1999, CONTEMP PHYS, V40, P313
88339    CALOGERACOS A, 1999, INT J MOD PHYS A, V14, P631
88340    CHIAO RY, 1997, PROG OPTICS, V37, P345
88341    HAUGE EH, 1989, REV MOD PHYS, V61, P917
88342    LEAVENS CR, 1989, PHYS REV B, V40, P5387
88343    LI CF, 2001, J OPT SOC AM B, V18, P1174
88344    LI CF, 2001, PHYSICA B, V296, P356
88345    TODOROV NS, 2000, ANN FDN L BROGLIE, V25, P209
88346    WIGNER EP, 1955, PHYS REV, V98, P145
88347 NR 13
88348 TC 2
88349 SN 0003-3804
88350 J9 ANN PHYS-BERLIN
88351 JI Ann. Phys.-Berlin
88352 PD DEC
88353 PY 2002
88354 VL 11
88355 IS 12
88356 BP 916
88357 EP 925
88358 PG 10
88359 SC Physics, Multidisciplinary
88360 GA 629VX
88361 UT ISI:000180073400004
88362 ER
88363 
88364 PT J
88365 AU Zhou, SF
88366    Fan, XM
88367 TI Kernel sections for non-autonomous strongly damped wave equations
88368 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
88369 DT Article
88370 DE wave equation; Kernel section; Hausdorff dimension; equivalent norm
88371 ID DIMENSION; BEHAVIOR
88372 AB We prove the existence of compact kernel sections for the process
88373    generated by a non-autonomous strongly damped wave equation with
88374    homogeneous Dirichlet boundary condition. We show that the upper bound
88375    of the Hausdorff dimension of sections decreases as the damping grows
88376    for large strong damping. (C) 2002 Elsevier Science (USA). All rights
88377    reserved.
88378 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
88379    Univ Elect Sci & Technol China, Dept Appl Math, Chengdu 610054, Peoples R China.
88380 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
88381 CR CHEN F, 1998, J DIFFER EQUATIONS, V147, P339
88382    CHEPYZHOV V, 1991, INDIANA U MATH J, V140, P193
88383    CHEPYZHOV VV, 1994, J MATH PURE APPL, V73, P279
88384    GHIDAGLIA JM, 1991, SIAM J MATH ANAL, V22, P861
88385    HALE JK, 1988, ASYMPTOTIC BEHAV DIS
88386    LANDAHL PS, 1982, PHYS REV B, V25, P5337
88387    LI J, 1991, CHAOS MELNIKOV METHO
88388    MASSATT P, 1983, J DIFFER EQUATIONS, V48, P334
88389    PAZY A, 1983, APPL MATH SCI, V44
88390    TEMAM R, 1988, APPL MATH SCI, V68
88391    WANG Z, 1997, MATH APPL, V10, P97
88392    WEBB GF, 1980, CAN J MATH, V32, P631
88393    ZHOU SF, 1999, J MATH ANAL APPL, V233, P102
88394 NR 13
88395 TC 1
88396 SN 0022-247X
88397 J9 J MATH ANAL APPL
88398 JI J. Math. Anal. Appl.
88399 PD NOV 15
88400 PY 2002
88401 VL 275
88402 IS 2
88403 BP 850
88404 EP 869
88405 PG 20
88406 SC Mathematics, Applied; Mathematics
88407 GA 627VE
88408 UT ISI:000179956200026
88409 ER
88410 
88411 PT J
88412 AU Li, TS
88413    Sheng, WC
88414 TI The general Riemann problem for the linearized system of
88415    two-dimensional isentropic flow in gas dynamics
88416 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
88417 DT Article
88418 DE general Riemann problem; linearized system; two-dimensional isentropic
88419    flow; explicit solution
88420 AB In this paper, we give the explicit solution to the general Riemann
88421    problem for the linearized system of two-dimensional isentropic flow in
88422    gas dynamics. (C) 2002 Published by Elsevier Science (USA).
88423 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
88424    Fudan Univ, Dept Math, Shanghai 200433, Peoples R China.
88425 RP Sheng, WC, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
88426 CR LI T, 2002, DISCRETE CONT DYN S, V8, P737
88427 NR 1
88428 TC 0
88429 SN 0022-247X
88430 J9 J MATH ANAL APPL
88431 JI J. Math. Anal. Appl.
88432 PD DEC 15
88433 PY 2002
88434 VL 276
88435 IS 2
88436 BP 598
88437 EP 610
88438 PG 13
88439 SC Mathematics, Applied; Mathematics
88440 GA 628BV
88441 UT ISI:000179972800008
88442 ER
88443 
88444 PT J
88445 AU Wang, Q
88446    Zhou, JM
88447    Wu, Z
88448    Li, CF
88449 TI Infrared frequency characteristic of antiferromagnetic crystal
88450 SO JOURNAL OF INFRARED AND MILLIMETER WAVES
88451 DT Article
88452 DE antiferromagnetic crystal; S-polarized surface wave; frequency region;
88453    infrared band
88454 ID SURFACE-WAVES; INTERFACE
88455 AB Frequency proper-ties of infrared nonlinear s-polarized surface waves,
88456    which transmit through the interface between a dielectric and a
88457    nonlinear antiferromagnet were studied. The nonlinear dispersion
88458    equation was derived. It is found that there is a critical frequency in
88459    the nonlinear s-polarized surface waves. Below this frequency, the
88460    nonlinear s-polarized waves on the interface are backward surface
88461    waves. Using the dispersion equation and boundary conditions, the
88462    frequency region of nonlinear s-polarized waves was discussed in
88463    detail. The results show that not only the power but also the ratio of
88464    dielectric constants of two materials can influence the frequency
88465    region significantly.
88466 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
88467 RP Wang, Q, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
88468 CR ALMEIDA NS, 1987, PHYS REV B, V36, P2015
88469    BOARDMAN AD, 1994, IEEE T MAGN, V30, P14
88470    EMTAGE PR, 1984, PHYS REV B, V29, P212
88471    PATTON CE, 1984, PHYS REP, V103, P252
88472    WANG Q, 1993, ACTA PHYSIC SINICA, V42, P2005
88473    WANG Q, 1997, ACTA PHYS SINICA, V46, P145
88474    WANG Q, 1998, SCI CHINA SER A, V28, P1135
88475    WANG Q, 2000, ACTA PHYS SIN-CH ED, V49, P349
88476    WANG Q, 2000, J APPL PHYS, V87, P1908
88477    ZHOU JM, 2000, JPN J APPL PHYS 1, V39, P6223
88478 NR 10
88479 TC 0
88480 SN 1001-9014
88481 J9 J INFRARED MILIM WAVES
88482 JI J. Infrared Millim. Waves
88483 PD DEC
88484 PY 2002
88485 VL 21
88486 IS 6
88487 BP 423
88488 EP 428
88489 PG 6
88490 SC Optics
88491 GA 627DU
88492 UT ISI:000179918100005
88493 ER
88494 
88495 PT S
88496 AU Kang, LY
88497    Qiao, H
88498    Shan, EF
88499    Du, DZ
88500 TI Lower bounds on the minus domination and k-subdomination numbers
88501 SO COMPUTING AND COMBINATORICS
88502 SE LECTURE NOTES IN COMPUTER SCIENCE
88503 DT Article
88504 ID REGULAR GRAPHS
88505 AB A three-valued function f defined on the vertex set of a graph G = (V,
88506    E), f : V --> {1, 0, 1} is a minus dominating function if the sum of
88507    its function values over any closed neighborhood is at least one. That
88508    is, for every upsilon is an element of V, f (N[upsilon]) greater than
88509    or equal to 1, where N[upsilon] consists of upsilon and all vertices
88510    adjacent to upsilon. The weight of a minus function is f(V) =
88511    Sigma(upsilonis an element ofV) f(upsilon). The minus domination number
88512    of a graph G, denoted by gamma(-) (G), equals the minimum weight of a
88513    minus dominating function of G. In this paper, sharp lower bounds on
88514    minus domination of a bipartite graph are given. Thus, we prove a
88515    conjecture proposed by J. Dunbar etc.(Discrete Math. 199(1999) 35-47),
88516    and we give a lower bound on gamma(ks) (G) of a graph G.
88517 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
88518    City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China.
88519    Shijiazhuang Normal Coll, Dept Math, Shijiazhuang 050041, Peoples R China.
88520    Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA.
88521    Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China.
88522 RP Kang, LY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
88523 CR BROERE I, 1995, DISCRETE MATH, V138, P125
88524    COCKAYNE EJ, 1996, ARS COMBINATORIA, V43, P235
88525    DUNBAR J, 1996, DISCRETE APPL MATH, V68, P73
88526    DUNBAR J, 1999, DISCRETE MATH, V199, P35
88527    DUNBAR JE, 1995, GRAPH THEORY COMBINA, V1, P311
88528    FAVARON O, 1996, DISCRETE MATH, V158, P287
88529    HAYNES TW, 1998, DOMINATION GRAPHS AD
88530    HEDETNIEMI ST, 1998, FUNDAMENTERS DOMINAT
88531    HENNING MA, 1996, ARS COMBINATORIA, V43, P263
88532    HENNING MA, 1996, DISCRETE MATH, V158, P87
88533    HENNING MA, 1998, J GRAPH THEOR, V28, P49
88534    KANG LY, IN PRESS DISCRETE MA
88535    KANG LY, 2000, ARS COMBINATORIA, V56, P121
88536 NR 13
88537 TC 0
88538 SN 0302-9743
88539 J9 LECT NOTE COMPUT SCI
88540 PY 2001
88541 VL 2108
88542 BP 375
88543 EP 383
88544 PG 9
88545 GA BV76F
88546 UT ISI:000179960000041
88547 ER
88548 
88549 PT J
88550 AU Fu, JL
88551    Chen, LQ
88552    Xue, Y
88553    Luo, SK
88554 TI Stability of the equilibrium state in relativistic Birkhoff systems
88555 SO ACTA PHYSICA SINICA
88556 DT Article
88557 DE relativity; Birkhoff systems; stability of the equilibrium state; the
88558    first approximate
88559 ID CONSERVED QUANTITIES; ROTATIONAL SYSTEMS; LIE SYMMETRIES; RXS3
88560    TOPOLOGY; FIELD-THEORY; EQUATIONS; DYNAMICS; MOTION
88561 AB The stabilities of the equilibrium state in relativistic Birkhoff
88562    autonomous systems, relativistic Birkhoff semi-autonomous systems and
88563    relativistic Birkhoff non-autonomous systems are studied. The
88564    equilibrium state equations are given. The disturbance equation and the
88565    first approximate equation are established. The stability criteria for
88566    the equilibrium state are obtained. The relationship between the
88567    stabilities of the equilibrium state in relativistic Birkhoff systems
88568    and classical Birkhoff systems is discussed. Several examples are
88569    presented to illustrate the results.
88570 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
88571    Shangqiu Teachers Coll, Inst Math Mech & Math Phys, Shangqiu 476000, Peoples R China.
88572    Changsha Univ, Inst Math Mech & Math Phys, Changsha 410003, Peoples R China.
88573 RP Fu, JL, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
88574    Peoples R China.
88575 CR BIRKHOFF GD, 1927, DYNAMICAL SYSTEMS
88576    CARMELI M, 1985, FDN PHYSICS, V15, P889
88577    CARMELI M, 1985, FOUND PHYS, V15, P1019
88578    CARMELI M, 1985, FOUND PHYS, V15, P175
88579    CARMELI M, 1986, INT J THEOR PHYS, V25, P89
88580    FANG JH, 2000, ACTA PHYS SIN-CH ED, V49, P1028
88581    FU JL, 1999, APPL MATH MECH-ENGL, V20, P1266
88582    FU JL, 2000, ACTA PHYS SIN-CH ED, V49, P1023
88583    FU JL, 2000, APPL MATH MECH-ENGL, V21, P549
88584    FU JL, 2000, J YUNNAN U, V23, P194
88585    FU JL, 2001, ACTA MATH PHYS SCI, V21, P70
88586    FU JL, 2001, ACTA MECH SOL SIN, V22, P263
88587    FU JL, 2001, ACTA PHYS SIN-CH ED, V50, P2289
88588    LOU SK, 1991, SHANGHAI J MECH, V12, P67
88589    LUO SK, 1987, TEACHING MAT COMMUNI, P31
88590    LUO SK, 1996, APPL MATH MECH, V17, P683
88591    LUO SK, 1998, APPL MATH MECH-ENGL, V19, P45
88592    LUO SK, 2001, ACTA PHYS SIN-CH ED, V50, P2049
88593    LUO SK, 2001, ACTA PHYS SIN-CH ED, V50, P383
88594    LUO SK, 2001, CHINESE PHYS, V10, P271
88595    LUO SK, 2002, ACTA PHYS SIN-CH ED, V51, P1913
88596    MEI FX, 1993, J BEIJING I TECHNOLO, V13, P266
88597    MEI FX, 1993, SCI CHINA SER A, V23, P709
88598    MEI FX, 1996, DYNAMICAL BIRKHOFFIA
88599    MEI FX, 1997, STABILITY MOTION CON
88600    MEI FX, 1998, SCI B, V38, P31
88601    SANTILLI RM, 1983, FDN THEORETICS MECH, V2
88602    SHI RC, 1994, MECH RES COMMUN, V21, P269
88603    ZHANG HB, 2001, ACTA PHYS SIN-CH ED, V50, P1837
88604 NR 29
88605 TC 7
88606 SN 1000-3290
88607 J9 ACTA PHYS SIN-CHINESE ED
88608 JI Acta Phys. Sin.
88609 PD DEC
88610 PY 2002
88611 VL 51
88612 IS 12
88613 BP 2683
88614 EP 2689
88615 PG 7
88616 SC Physics, Multidisciplinary
88617 GA 626JM
88618 UT ISI:000179868100004
88619 ER
88620 
88621 PT S
88622 AU Tao, LR
88623    Hua, TC
88624 TI Microscopic study of crystal growth in cryopreservation agent solutions
88625    and water
88626 SO VISUALIZATION AND IMAGING IN TRANSPORT PHENOMENA
88627 SE ANNALS OF THE NEW YORK ACADEMY OF SCIENCES
88628 DT Article
88629 DE cryopreservation; crystal growth; electric field; microscopy
88630 ID CELLS
88631 AB Ice formation inside or outside cells during cryopreservation is
88632    evidently the main factor of cryoinjury to cells. In the study
88633    described here a high voltage DC electric field and a cryomicroscopic
88634    stage were used to test DMSO and NaCl solutions under electric field
88635    strengths ranging from 83 kV/m to 320 kV/m. Dendritic ice crystals
88636    became asymmetric when the electric field was activated. This change in
88637    the ice crystal shape was more pronounced in the ionic NaCl solution.
88638    In addition, ice growth of distilled water without an electric field
88639    was tested under different cooling rates.
88640 C1 Shanghai Univ Sci & Technol, Inst Refrigerat & Cryogen, Shanghai 200093, Peoples R China.
88641 RP Tao, LR, Shanghai Univ Sci & Technol, Inst Refrigerat & Cryogen, 516
88642    Jungong Rd, Shanghai 200093, Peoples R China.
88643 CR BARI SA, 1974, J GLACIOL, V13, P489
88644    CARTE AE, 1961, P PHYS SOC LOND, V77, P757
88645    HANYU Y, 1992, J MICROSC, V165, P225
88646    ISHIGURO H, 1994, CRYOBIOLOGY, V31, P483
88647    JACKSON TH, 1997, CRYOBIOLOGY, V34, P363
88648    KORBER C, 1985, J MICROSC, V141, P263
88649    MAZUR P, 1977, CRYOBIOLOGY, V14, P251
88650    SVISHCHEV IM, 1994, PHYS REV LETT, V73, P975
88651    SVISHCHEV IM, 1996, J AM CHEM SOC, V118, P649
88652    WANG DR, 1988, CRYOBIOLOGY, V25, P510
88653 NR 10
88654 TC 0
88655 SN 0077-8923
88656 J9 ANN N Y ACAD SCI
88657 JI Ann.NY Acad.Sci.
88658 PY 2002
88659 VL 972
88660 BP 151
88661 EP 157
88662 PG 7
88663 GA BV68H
88664 UT ISI:000179766500021
88665 ER
88666 
88667 PT J
88668 AU Xie, ZP
88669    Hsu, W
88670    Liu, ZT
88671    Lee, ML
88672 TI Concept lattice based composite classifiers for high predictability
88673 SO JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE
88674 DT Article
88675 DE concept lattice; Naive Bayes; nearest neighbour algorithm;
88676    classification
88677 ID RULES
88678 AB Concept lattice model, the core structure in formal concept analysis,
88679    has been successfully applied in software engineering and knowledge
88680    discovery. This paper integrates the simple base classifier (Naive
88681    Bayes or Nearest Neighbour) into each node of the concept lattice to
88682    form a new composite classifier. Two new classification systems are
88683    developed, CLNB and CLNN, which employ efficient constraints to search
88684    for interesting patterns and voting strategy to classify a new object.
88685    CLNB integrates the Naive Bayes base classifier into concept nodes
88686    while CLNN incorporates the Nearest Neighbour base classifier into
88687    concept nodes. Experimental results indicate that these two composite
88688    classifiers greatly improve the accuracy of their corresponding base
88689    classifier. In addition, CLNB even outperforms three other
88690    state-of-the-art classification methods, NBTree, CBA and C4.5 Rules.
88691 C1 Natl Univ Singapore, Sch Comp, Singapore 117543, Singapore.
88692    Shanghai Univ, Sch Comp, Shanghai 200072, Peoples R China.
88693 CR AHA DW, 1997, LAZY LEARNING
88694    BLANZIERI E, 1999, P 16 INT C MACH LEAR, P22
88695    BREIMAN L, 1996, MACH LEARN, V24, P123
88696    DASARATHY B, 1991, NEAREST NEIGHBOR NN
88697    DOMINGOS P, 1997, MACH LEARN, V29, P103
88698    DUDA R, 1973, PATTERN CLASSIFICATI
88699    FAYYAD UM, 1993, P 13 INT JOINT C ART, P1022
88700    FREUND Y, 1995, INFORM COMPUT, V121, P256
88701    FRIEDMAN N, 1997, MACH LEARN, V29, P131
88702    GANTER B, 1999, P 2 INT C KNOWL DISC
88703    GODIN R, 1994, THEOR COMPUT SCI, V133, P387
88704    LIU B, 1998, P 4 INT C KNOWL DISC, P80
88705    MEPHUNGUIFO E, 1994, P 6 INT C TOOLS ART, P461
88706    MERZ CJ, 1996, UCI REPOSITORY MACHI
88707    MYLES JP, 1990, PATTERN RECOGN, V23, P1291
88708    NJIWOUA P, 1996, P BENELEARN 96 U LIM, P57
88709    PASQUIER N, 1999, INFORMATION SYSTEMS, V19, P33
88710    QUINLAN JR, 1993, C4 5 PROGRAMS MACHIN
88711    SAHAMI M, 1995, P 8 EUR C MACH LEARN, P343
88712    SHORT R, 1981, IEEE T INFORMATION T, V27, P622
88713    WILLE R, 1982, ORDERED SETS, P445
88714    ZHENG ZJ, 2000, MACH LEARN, V41, P53
88715 NR 22
88716 TC 2
88717 SN 0952-813X
88718 J9 J EXP THEOR ARTIF INTELL
88719 JI J. Exp. Theor. Artif. Intell.
88720 PD APR
88721 PY 2002
88722 VL 14
88723 IS 2
88724 BP 143
88725 EP 156
88726 PG 14
88727 SC Computer Science, Artificial Intelligence
88728 GA 622VC
88729 UT ISI:000179666900005
88730 ER
88731 
88732 PT J
88733 AU Xia, Z
88734    Sheng, JW
88735    Ying, L
88736 TI An accurate and fast simulated model of CPW discontinuities
88737 SO INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES
88738 DT Article
88739 DE CPW discontinuities; SDIE; dyadic Green's function
88740 ID COPLANAR WAVE-GUIDE
88741 AB A space-domain integral equation(SDIE) which is solved using the method
88742    of moments is used to study the CPW discontinuities. And this paper
88743    attempts for the first time to use a fast, efficient computational
88744    method and leads to reasonable computation times. Good agreement has
88745    been found. The driving closed-form expressions and available models
88746    are useful in the design of coplanar circuits such as filters.
88747 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
88748 RP Xia, Z, Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R
88749    China.
88750 CR ACHIM H, 1991, IEEE T MTT, V39, P83
88751    DIB NI, 1992, INT J MICROWAVE MILL, V2, P331
88752    HETTAK K, 1999, IEEE T MTT, V47, P635
88753    ITOH T, 1989, NUMERICAL TECHNIQUES
88754    JACKSON RW, 1986, IEEE T MICROW THEORY, V34, P1450
88755    JACKSON RW, 1986, IEEE T MICROW THEORY, V34, P1450
88756    SIMONS RN, 1988, IEEE T MICROW THEORY, V36, P1796
88757    WOLFGANG H, 1998, IEEE T MTT, V46, P2264
88758 NR 8
88759 TC 4
88760 SN 0195-9271
88761 J9 INT J INFRAR MILLIM WAVE
88762 JI Int. J. Infrared Millimeter Waves
88763 PD JAN
88764 PY 2003
88765 VL 24
88766 IS 1
88767 BP 55
88768 EP 60
88769 PG 6
88770 SC Engineering, Electrical & Electronic; Physics, Applied; Optics
88771 GA 625GV
88772 UT ISI:000179809500006
88773 ER
88774 
88775 EF
88776 FN ISI Export Format
88777 VR 1.0
88778 PT S
88779 AU Tang, J
88780    Tong, WQ
88781    Zhi, XL
88782    Yin, ZJ
88783 TI Economic heuristic guided price-regulating mechanism in SHGRB
88784 SO GRID AND COOPERATIVE COMPUTING GCC 2004 WORKSHOPS, PROCEEDINGS
88785 SE LECTURE NOTES IN COMPUTER SCIENCE
88786 DT Article
88787 AB The accelerated development in Grid Computing has positioned as
88788    promising next generation computing platforms for solving large-scale
88789    resource intensive problems. However, the management of resources and
88790    scheduling computations in a Grid environment remain complex and
88791    immature. The computing economy is argued for the necessity to create a
88792    real world scalable Grid because it provides a fair basis in
88793    successfully regulating decentralization and heterogeneity presented in
88794    Grid environment. Although efforts have, been made on the economic
88795    mechanisms in Grid, the fixed cost model of resources pricing in
88796    current super-scheduler or meta-scheduler and the weakness of load
88797    balance in resource scheduling should be improved by any means.
88798    Therefore, this paper proposes an economic heuristic guided
88799    price-regulating mechanism in the Shanghai Grid Resource Broker (SHGRB)
88800    to 1) better adapt to the dynamic changes of grid environment; 2)
88801    regulate resource prices for stronger load balance; 3) provide higher
88802    quality services for users.
88803 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
88804 RP Tang, J, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R
88805    China.
88806 EM tangfly_jj@163.com
88807    wqtong@mail.shu.edu.cn
88808    xlzhi@mail.shu.edu.cn
88809 CR BUYYA R, ARCHITECTURE MODELS
88810    BUYYA R, 2000, 4 INT C HIGH PERF CO
88811    BUYYA R, 2000, INT C PAR DISTR PROC
88812    CASSANOV H, 1997, INT J SUPERCOMPUTING, V11
88813    FOSTER, 1999, GRID BLUEPRINT FUTUR
88814    SHUANG L, 1996, ACCOUNTING ENGLISH C
88815 NR 6
88816 TC 0
88817 SN 0302-9743
88818 J9 LECT NOTE COMPUT SCI
88819 PY 2004
88820 VL 3252
88821 BP 617
88822 EP 624
88823 PG 8
88824 GA BBD88
88825 UT ISI:000225062800076
88826 ER
88827 
88828 PT J
88829 AU Lu, YR
88830    Herrera, PL
88831    Guo, YB
88832    Sun, D
88833    Tang, ZY
88834    LeRoith, D
88835    Liu, JL
88836 TI Pancreatic-specific inactivation of IGF-I gene causes enlarged
88837    pancreatic islets and significant resistance to diabetes
88838 SO DIABETES
88839 DT Article
88840 ID GROWTH-FACTOR-I; BETA-CELL GROWTH; INSULIN-RESISTANCE; TRANSGENIC MICE;
88841    SIGNAL-TRANSDUCTION; ENDOCRINE PANCREAS; C57BL/6J MICE; RAT ISLETS; NOD
88842    MICE; RECEPTOR
88843 AB The dogma that IGF-I stimulates pancreatic islet growth has been
88844    challenged by combinational targeting of IGF or IGF-IR (IGF receptor)
88845    genes as well as beta-cell-specific IGF-IR gene deficiency, which
88846    caused no defect in islet cell growth. To assess the physiological role
88847    of locally produced IGF-I, we have developed pancreatic-specific IGF-I
88848    gene deficiency (PID) by crossing Pdx1-Cre and IGF-I/loxP mice. PID
88849    mice are normal except for decreased blood glucose level and a 2.3-fold
88850    enlarged islet cell mass. When challenged with low doses of
88851    streptozotocin, control mice developed hyperglycemia after 6 days that
88852    was maintained at high levels for at least 2 months. In contrast, PID
88853    mice only exhibited marginal hyperglycemia after 12 days, maintained
88854    throughout the experiment. Fifteen days after streptozotocin, PID mice
88855    demonstrated significantly higher levels of insulin production.
88856    Furthermore, streptozotocin-induced P-cell apoptosis
88857    (transferase-mediated dUTP nick-end labeling [TUNEL] assay) was
88858    significantly prevented in PID mice. Finally, PID mice exhibited a
88859    delayed onset of type 2 diabetes induced by a high-fat diet,
88860    accompanied by super enlarged pancreatic islets, increased insulin mRNA
88861    levels, and preserved sensitivity to insulin. Our results suggest that
88862    locally produced IGF-I within the pancreas inhibits islet cell growth;
88863    its deficiency provides a protective environment to the beta-cells and
88864    potential in combating diabetes.
88865 C1 McGill Univ, Ctr Hlth, Dept Med, Montreal, PQ H3A 2T5, Canada.
88866    Univ Geneva, Sch Med, Dept Genet Med & Dev, CH-1211 Geneva 4, Switzerland.
88867    NIDDK, Diabet Branch, NIH, Bethesda, MD USA.
88868    Shanghai Univ, E Inst, Shanghai Clin Ctr Endocrine & Metab Dis, Div Endocrine & Metab, Shanghai, Peoples R China.
88869 RP Liu, JL, Royal Victoria Hosp, Fraser Labs, Room M3-15,687 Pine Ave W,
88870    Montreal, PQ H3A 1A1, Canada.
88871 EM jun-li.liu@mcgill.ca
88872 CR BELL GI, 2001, NATURE, V414, P788
88873    BERGEROT I, 1995, CLIN EXP IMMUNOL, V102, P335
88874    BERNARDKARGAR C, 2001, DIABETES S1, V50, S30
88875    BONNERWEIR S, 2001, DIABETES S1, V50, S20
88876    CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156
88877    DEVEDJIAN JC, 2000, J CLIN INVEST, V105, P731
88878    EGAN JM, 2003, DIABETES-METAB RES, V19, P115
88879    FEHMANN HC, 1996, METABOLISM, V45, P759
88880    GARCIAOCANA A, 2001, J CLIN ENDOCR METAB, V86, P984
88881    GEORGE M, 2002, J CLIN INVEST, V109, P1153
88882    HALUZIK M, 2003, DIABETES, V52, P2483
88883    HARRRISON M, 1998, FEBS LETT, V435, P207
88884    HERRERA PL, 2000, DEVELOPMENT, V127, P2317
88885    HERRERA PL, 2002, ENDOCRINE, V19, P267
88886    HERRERA PL, 2002, INT J DEV BIOL, V46, P97
88887    HILL DJ, 1997, J ENDOCRINOL, V153, P15
88888    HILL DJ, 1999, J ENDOCRINOL, V160, P305
88889    HILL DJ, 1999, J ENDOCRINOL, V161, P153
88890    HILL DJ, 2000, ENDOCRINOLOGY, V141, P1151
88891    HUGL SR, 1998, J BIOL CHEM, V273, P17771
88892    KAHN SE, 2003, DIABETOLOGIA, V46, P3
88893    KAINO Y, 1996, DIABETES RES CLIN PR, V34, P7
88894    KIDO Y, 2002, J BIOL CHEM, V277, P36740
88895    KIM JK, 2000, J CLIN INVEST, V105, P1791
88896    KULKARNI RN, 2002, NAT GENET, V31, P111
88897    LEAHY JL, 1990, ENDOCRINOLOGY, V126, P1593
88898    LEROITH D, 1997, NEW ENGL J MED, V336, P633
88899    LEROUX L, 2001, DIABETES S1, V50, S150
88900    LINGOHR MK, 2002, DIABETES, V51, P966
88901    LIU JL, 1998, MOL ENDOCRINOL, V12, P1452
88902    LIU JL, 2004, AM J PHYSIOL-ENDOC M, V287, E405
88903    LIU WL, 2002, ENDOCRINOLOGY, V143, P3802
88904    MAAKE C, 1993, CELL TISSUE RES, V273, P249
88905    OBERGWELSH C, 1996, PANCREAS, V12, P334
88906    OBRIEN BA, 1996, J PATHOL, V178, P176
88907    ORCI L, 1990, P NATL ACAD SCI USA, V87, P9953
88908    PORTELAGOMES GM, 2000, J ENDOCRINOL, V165, P245
88909    REIMER MK, 2002, DIABETES S1, V51, S138
88910    ROBITAILLE R, 2003, ENDOCRINOLOGY, V144, P3037
88911    ROSENAU C, 2002, BIOTECHNIQUES, V33, P1354
88912    SURWIT RS, 1988, DIABETES, V37, P1163
88913    TOMITA T, 1999, ENDOCR PATHOL, V10, P213
88914    VASAVADA RC, 1996, J BIOL CHEM, V271, P1200
88915    WEIR GC, 2001, DIABETES S1, V50, S154
88916    WITHERS DJ, 1999, NAT GENET, V23, P32
88917    XUAN SH, 2002, J CLIN INVEST, V110, P1011
88918    YAKAR S, 2001, DIABETES, V50, P1110
88919    YAKAR S, 2004, J CLIN INVEST, V113, P96
88920    YU R, 2003, MOL CELL ENDOCRINOL, V204, P31
88921    ZHAO AZ, 1997, P NATL ACAD SCI USA, V94, P3223
88922 NR 50
88923 TC 6
88924 SN 0012-1797
88925 J9 DIABETES
88926 JI Diabetes
88927 PD DEC
88928 PY 2004
88929 VL 53
88930 IS 12
88931 BP 3131
88932 EP 3141
88933 PG 11
88934 SC Endocrinology & Metabolism
88935 GA 874CI
88936 UT ISI:000225328100013
88937 ER
88938 
88939 PT J
88940 AU Chen, LQ
88941    Zhao, WJ
88942 TI A numerical method for simulating transverse vibrations of an axially
88943    moving string
88944 SO APPLIED MATHEMATICS AND COMPUTATION
88945 DT Article
88946 AB A modified finite difference method is presented to simulate transverse
88947    vibrations of an axially moving string. By discretizing the governing
88948    equation and the stress-strain relation at different frictional knots,
88949    two linear sparse finite difference equations are obtained, which can
88950    be computed alternatively. The numerical method makes the nonlinear
88951    model easier to deal with and of small truncation errors. It also shows
88952    stable for small initial values, so it can be used in analyzing the
88953    non-linear vibration of viscoelastic moving string efficiently. A
88954    practical way of testing the precise of the numerical results is given
88955    by using a conservative quantity. Numerical examples are presented and
88956    dynamical analysis is given by using the numerical results. (C) 2003
88957    Published by Elsevier Inc.
88958 C1 Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
88959    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
88960    Univ Qingdao, Dept Math, Qingdao 266071, Peoples R China.
88961 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
88962 EM lqchen@mie.utoronto.ca
88963 CR CHEN LQ, IN PRESS ASME APPL M
88964    CHEN LQ, IN PRESS ASME J VIB
88965    CHEN LQ, IN PRESS J ENG MATH
88966    CHEN LQ, 2003, ACTA MECH, V162, P143
88967    CHEN LQ, 2003, J SOUND VIB, V261, P764
88968    FUNG RF, 1997, J SOUND VIB, V201, P153
88969    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
88970    ZHANG L, 1999, J APPL MECH-T ASME, V66, P396
88971 NR 8
88972 TC 0
88973 SN 0096-3003
88974 J9 APPL MATH COMPUT
88975 JI Appl. Math. Comput.
88976 PD JAN 14
88977 PY 2005
88978 VL 160
88979 IS 2
88980 BP 411
88981 EP 422
88982 PG 12
88983 SC Mathematics, Applied
88984 GA 874JC
88985 UT ISI:000225345700011
88986 ER
88987 
88988 PT J
88989 AU Zhang, J
88990    Lie, LR
88991    Zhou, Y
88992 TI Optimum design of a novel electro-optically tunable birefringent
88993    interleaver filter
88994 SO JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS
88995 DT Article
88996 DE interleaver filter; electro-optic effect; tunability; analogue
88997    birefingent structure; dense wavelength-division multiplexing (DWDM)
88998 ID WAVELENGTH FILTER; PASSBAND
88999 AB An electro-optically tunable interleaver filter based on an analogue
89000    birefringent structure is optimally designed. It is feasible to achieve
89001    small channel spacing (less than or equal to50 GHz), a wide pass-band
89002    and stop-band (> 1/5 period), high isolation (-30 dB) and
89003    electro-optical tunability simultaneously without using large
89004    birefringent crystals. A simple experiment verifies the feasibility of
89005    achieving electro-optic tunability in principle. A highly efficient
89006    electro-optic configuration, which needs the lowest operating voltage
89007    and shows no walk-off effect when an extraordinary ray propagates
89008    through the electro-optic crystal plates in the analogue birefringent
89009    structures, is proposed and analysed.
89010 C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
89011    Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
89012 RP Zhang, J, Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, POB 800-211,
89013    Shanghai 201800, Peoples R China.
89014 EM juanzhang_zj@hotmail.com
89015 CR BHANDARE S, 2003, THESIS U PADERBORN G, P25
89016    BOLODEAU F, 1995, IEEE PHOTONIC TECH L, V7, P388
89017    COJOCARU E, 1997, APPL OPTICS, V36, P302
89018    DRAGONE C, 1998, J LIGHTWAVE TECHNOL, V16, P1895
89019    KALYMNIOS D, 1970, ELECTRON LETT, V6, P804
89020    KALYMNIOS D, 1972, THESIS CITY U LONDON, P101
89021    LIBRECHT FM, 1971, IEEE J QUANTUM E JUL, P374
89022    OGUMA M, 2000, ELECTRON LETT, V36, P1299
89023    SHINE B, 2000, LIGHTWAVE, V8, P140
89024    SPENCER EG, 1967, P IEEE, V55, P2074
89025    STONE J, 1991, ELECTRON LETT, V27, P2239
89026    TIAN F, 1994, J LIGHTWAVE TECHNOL, V12, P1192
89027    WARZANSKYJ W, 1988, APPL PHYS LETT, V53, P13
89028    YANG M, 1999, APPL OPTICS, V38, P1692
89029    ZHANG J, 2003, J MOD OPTIC, V50, P2031
89030    ZHANG J, 2003, P SOC PHOTO-OPT INS, V5174, P147
89031 NR 16
89032 TC 0
89033 SN 1464-4258
89034 J9 J OPT A-PURE APPL OPT
89035 JI J. Opt. A-Pure Appl. Opt.
89036 PD NOV
89037 PY 2004
89038 VL 6
89039 IS 11
89040 BP 1052
89041 EP 1057
89042 PG 6
89043 SC Optics
89044 GA 871ZR
89045 UT ISI:000225175800009
89046 ER
89047 
89048 PT J
89049 AU Cheng, JR
89050    Meng, ZY
89051    Cross, LE
89052 TI Piezoelectric performances of lead-reduced
89053    (1-x)(Bi0.9La0.1)(Ga0.05Fe0.95)O-3-x(Pb0.9Ba0.1)TiO3 crystalline
89054    solutions in the morphotropic phase boundary
89055 SO JOURNAL OF APPLIED PHYSICS
89056 DT Article
89057 ID ELECTROMECHANICAL PROPERTIES; DIELECTRIC-PROPERTIES; CERAMICS; SYSTEM;
89058    BIFEO3
89059 AB In this investigation,
89060    (1-x)(Bi0.9La0.1)(Ga0.05Fe0.95)O-3-x(Pb0.9Ba0.1)TiO3(BLGF-PBT)
89061    crystalline solutions have been fabricated by using the solid-state
89062    reaction method. A ferroelectric rhombohedral/tetragonal morphotropic
89063    phase boundary (MPB) of (1-x)BLGF-xPBT was observed for x=0.4. In the
89064    vicinity of MPB, 0.6BLGF-0.4PBT revealed the maximum dielectric
89065    constant K and piezoelectric d(33) constant of 1168 and 186 pC/N,
89066    respectively. The substitution of 10 at. % Ba for Pb dramatically
89067    increased K and d(33) of (1-x)BLGF-xPBT relative to (1-x)BLGF-xPT at
89068    the same x content. The Curie temperature T-c of (1-x)BLGF-xPBT was
89069    determined to be above 386 degreesC through the compositions
89070    investigated. The phase diagram of (1-x)BLGF-xPBT revealed a V-shaped
89071    relationship between T-c and x content. The planar coupling coefficient
89072    K-p was measured to be 0.37 for 0.6BLGF-0.4PBT, which was stable with
89073    increasing the measurement temperature until 170 degreesC. It is
89074    demonstrated that BLGF-PBT is a competitive alternative piezoelectric
89075    material, with the superior piezoelectricity and lead-reduced
89076    composition. (C) 2004 American Institute of Physics.
89077 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
89078    Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA.
89079 RP Cheng, JR, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples
89080    R China.
89081 EM jrcheng@mail.shu.edu.cn
89082 CR BUHRER CF, 1962, J CHEM PHYS, V36, P798
89083    CHENG JR, 2003, J APPL PHYS, V94, P5153
89084    CHENG JR, 2003, J APPL PHYS, V94, P5188
89085    EITEL RE, 2001, JPN J APPL PHYS 1, V40, P5999
89086    HERABUT A, 1997, J AM CERAM SOC, V80, P2954
89087    HONG SH, 2000, J AM CERAM SOC, V83, P113
89088    INAGUMA Y, 2004, J APPL PHYS, V95, P231
89089    JAFFE B, 1971, PIEZOELECTRIC CERAMI
89090    KANAI T, 2001, ADV MATER, V7, P487
89091    KUMAR MM, 1998, PHYS STATUS SOLIDI A, V165, P317
89092    LEE JK, 2002, J APPL PHYS, V91, P4538
89093    PARK SE, 1997, J APPL PHYS, V82, P1804
89094    POPOV YF, 2001, LOW TEMP PHYS+, V27, P478
89095    RANDALL CA, 2004, J APPL PHYS, V95, P3633
89096    SMOLENSKY GA, 1961, FIZ TVERD TELA, V2, P2651
89097    SUNDER VVSSS, 1995, J MATER RES, V10, P1301
89098    TAKENAKA T, 1990, FERROELECTRICS, V106, P375
89099    YILMAZ H, 2003, US NAV WORKSH AC TRA
89100 NR 18
89101 TC 0
89102 SN 0021-8979
89103 J9 J APPL PHYS
89104 JI J. Appl. Phys.
89105 PD DEC 1
89106 PY 2004
89107 VL 96
89108 IS 11
89109 BP 6611
89110 EP 6615
89111 PG 5
89112 SC Physics, Applied
89113 GA 873SI
89114 UT ISI:000225300800103
89115 ER
89116 
89117 PT J
89118 AU Lei, ZS
89119    Ren, ZM
89120    Deng, K
89121    Li, WX
89122    Wang, HM
89123 TI Experimental study on mould oscillation-less continuous casting process
89124    under high frequency amplitude-modulated magnetic field
89125 SO ISIJ INTERNATIONAL
89126 DT Article
89127 DE continuous casting; electromagnetic continuous casting; high frequency
89128    amplitude-modulated magnetic field; intermittent contacting distance;
89129    withdrawing resistance; surface quality
89130 ID INITIAL SOLIDIFICATION; ELECTROMAGNETIC-FIELD; CONTINUOUS CASTER;
89131    IMPOSITION; BEHAVIOR; METAL
89132 AB In order to investigate the influence of high frequency magnetic fields
89133    on surface quality of billets in the soft-contacted electromagnetic
89134    continuous casting, several kinds of high frequency Amplitude-Modulated
89135    Magnetic Field (AMMF), that is, rectangle, triangle and sine wave AMMF
89136    were adopted in this experimental research. The magnetic field flux in
89137    the mould and the intermittent contacting distance were measured. The
89138    experiments of Mould Oscillation-Less Electromagnetic Continuous
89139    Casting (MOLECC) of tin under the three wave kinds of AMMF were carried
89140    out. It is shown that: (1) During the MOLECC process under the
89141    rectangle, triangle and sine wave AMMF when the modulated wave
89142    frequency is a little lower than the intrinsic frequency of the
89143    experimental system the intermittent contacting distance is the
89144    greatest, the mould flux lubrication is the best, the continuous
89145    casting withdrawing resistance is the least and the surface quality of
89146    billets is the best. (2) among the three kinds of AMMF, sine wave is
89147    the best in deducing the withdrawing resistance and improving the
89148    billets surface quality.
89149 C1 Shanghai Univ, Dept Mat, Shanghai 200072, Peoples R China.
89150 RP Lei, ZS, Shanghai Univ, Dept Mat, Shanghai 200072, Peoples R China.
89151 EM zmrenb@online.sh.cn
89152 CR ASAI S, 1989, TETSU TO HAGANE, V75, P32
89153    CHEN F, 1999, EXPT MAT MECH, P133
89154    DONG HF, 1998, J IRON STEEL, V10, P5
89155    FUJISAKI K, 2003, IEEE T IND APPL, V39, P1442
89156    LI TJ, 1996, ISIJ INT, V36, P410
89157    LI TJ, 1997, ACTA METALL SIN, V33, P971
89158    PARK JP, 2003, ISIJ INT, V43, P813
89159    REN ZM, 2001, ISIJ INT, V41, P981
89160    SASSA K, 1993, TETSU TO HAGANE, V79, P1075
89161    SU Z, 1998, CAMP ISIJ, V11, P132
89162    SU ZJ, 1999, ISIJ INT, V39, P1224
89163    SUMI I, 2003, ISIJ INT, V43, P807
89164    YE JT, 1989, HYDRODYNAMICS, P345
89165    ZHOU YM, 1999, TETSU TO HAGANE, V85, P460
89166    ZHOU YM, 2000, TETSU TO HAGANE, V86, P446
89167    ZHOU YM, 2000, TETSU TO HAGANE, V86, P514
89168 NR 16
89169 TC 0
89170 SN 0915-1559
89171 J9 ISIJ INT
89172 JI ISIJ Int.
89173 PY 2004
89174 VL 44
89175 IS 11
89176 BP 1842
89177 EP 1846
89178 PG 5
89179 SC Metallurgy & Metallurgical Engineering
89180 GA 872SB
89181 UT ISI:000225227600009
89182 ER
89183 
89184 PT J
89185 AU Xia, TC
89186    Yu, FJ
89187    Chen, DY
89188 TI Multi-component C-KdV hierarchy of soliton equations and its
89189    multi-component integrable coupling system
89190 SO COMMUNICATIONS IN THEORETICAL PHYSICS
89191 DT Article
89192 DE C-KdV hierarchy; integrable coupling; loop algebra
89193 ID HAMILTONIAN-STRUCTURE; LIOUVILLE; GENERATE
89194 AB A new simple loop algebra (G) over tilde(M) is constructed, which is
89195    devoted to establishing an isospectral problem. By making use of Tu
89196    scheme, the multi-component C-KdV hierarchy is obtained. Further, an
89197    expanding loop algebra (F) over tilde(M) of the loop algebra (G) over
89198    tilde(M) is presented. Based on (F) over tilde(M), the multi-component
89199    integrable coupling system of the multi-component C-KdV hierarchy is
89200    worked out. The method can be used to other nonlinear evolution
89201    equations hierarchy.
89202 C1 Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
89203    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
89204 RP Xia, TC, Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
89205 EM xiatc@yahoo.com.cn
89206 CR FAN E, 2001, PHYSICA A, V301, P105
89207    FAN EG, 2000, J MATH PHYS, V41, P7769
89208    GU ZQ, 1990, J MATH PHYS, V31, P1374
89209    GUO FK, 2000, ACTA MATH APPL SIN, V23, P181
89210    GUO FK, 2003, J MATH PHYS, V44, P5793
89211    GUO FK, 2003, J SYST SCI MATH SCI, V22, P36
89212    HU XB, 1994, J PHYS A, V27, P2497
89213    HU XB, 1997, J PHYS A-MATH GEN, V30, P619
89214    TSUCHIDA T, 1999, PHYS LETT A, V257, P53
89215    TSUCHIDA T, 1999, PHYS SOC JPN, V69, P2241
89216    TU GZ, 1989, J MATH PHYS, V30, P330
89217 NR 11
89218 TC 9
89219 SN 0253-6102
89220 J9 COMMUN THEOR PHYS
89221 JI Commun. Theor. Phys.
89222 PD OCT 15
89223 PY 2004
89224 VL 42
89225 IS 4
89226 BP 494
89227 EP 496
89228 PG 3
89229 SC Physics, Multidisciplinary
89230 GA 863XN
89231 UT ISI:000224596900005
89232 ER
89233 
89234 PT J
89235 AU Ma, ZY
89236    Zhu, JM
89237    Zheng, CL
89238 TI New fractal localized structures in Boiti-Leon-Pempinelli system
89239 SO COMMUNICATIONS IN THEORETICAL PHYSICS
89240 DT Article
89241 DE extended homogeneous balance approach; Boiti-Leon-Pernpinelli system;
89242    fractal
89243 ID DISPERSIVE WAVE SYSTEM; COHERENT STRUCTURES; EQUATION; SOLITONS; CHAOS
89244 AB A novel phenomenon that the localized coherent structures of a
89245    (2+1)-dimensinal physical model possess fractal behaviors is revealed.
89246    To clarify the interesting phenomenon, we take the (2+1)-dimensional
89247    Boiti-Leon-Pempinelli system as a concrete example. Starting from an
89248    extended homogeneous balance approach, a general solution of the system
89249    is derived. From which some special localized excitations with fractal
89250    behaviors are obtained by introducing some types of lower-dimensional
89251    fractal patterns.
89252 C1 Lishui Univ, Dept Math & Phys, Lishui 323000, Peoples R China.
89253    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
89254 RP Ma, ZY, Lishui Univ, Dept Math & Phys, Lishui 323000, Peoples R China.
89255 EM ma-zhengyi@163.com
89256 CR BOITI M, 1987, INVERSE PROBL, V3, P37
89257    CHEN HS, 2000, CHINESE PHYS LETT, V17, P85
89258    GARAGASH TI, 1994, THEOR MATH PHYS, V100, P1075
89259    GEDALIN M, 1997, PHYS REV LETT, V78, P448
89260    GOLLUB JP, 2000, NATURE, V404, P710
89261    KIVSHAR YS, 1989, REV MOD PHYS, V61, P765
89262    LOU SY, 2002, CHINESE PHYS LETT, V19, P769
89263    LOUTSENKO I, 1997, PHYS REV LETT, V78, P3011
89264    LU ZS, 2003, PHYS LETT A, V307, P269
89265    LU ZS, 2004, CHAOS SOLITON FRACT, V19, P527
89266    STEGEMAN GI, 1999, SCIENCE, V286, P1518
89267    TAJIRI M, 1997, PHYS REV E B, V55, P3351
89268    TANG XY, 2002, CHAOS SOLITON FRACT, V14, P1415
89269    TANG XY, 2002, J PHYS A, V35, P4078
89270    WANG ML, 1995, PHYS LETT A, V199, P169
89271    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P448
89272    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
89273    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
89274    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P261
89275    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
89276    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
89277 NR 21
89278 TC 0
89279 SN 0253-6102
89280 J9 COMMUN THEOR PHYS
89281 JI Commun. Theor. Phys.
89282 PD OCT 15
89283 PY 2004
89284 VL 42
89285 IS 4
89286 BP 521
89287 EP 523
89288 PG 3
89289 SC Physics, Multidisciplinary
89290 GA 863XN
89291 UT ISI:000224596900012
89292 ER
89293 
89294 PT J
89295 AU Lei, ZS
89296    Ren, ZM
89297    Yai, YG
89298    Deng, K
89299 TI Experimental study on mold oscillation-less continuous casting process
89300    under high frequency amplitude-modulated magnetic field
89301 SO ACTA METALLURGICA SINICA
89302 DT Article
89303 DE electromagnetic continuous casting; high frequency amplitude-modulated
89304    magnetic field; intermittent contacting distance; withdraw resistance;
89305    surface quality
89306 ID CONTINUOUS CASTER; IMPOSITION
89307 AB A high frequency amplitude-modulated magnetic field (AMMF) generator
89308    that can produce rectangle, triangle and sine waves has been invented,
89309    and the magnetic field inducted in the mold by the generator was
89310    measured. The amplitude-modulated magnetic field has been applied in
89311    mold oscillation-less electromagnetic continuous casting (MOLECC)
89312    process, the experiment results show that under rectangle, triangle and
89313    sine wave AMMF, when the modulated wave frequency is a little less then
89314    the intrinsic frequency of the experimental system the intermittent
89315    contacting distance is the greatest, the mold flux lubricating is the
89316    best, the continuous casting withdraw resistance is the least and the
89317    surface quality of billets is better relatively. Among the three wave
89318    types, the sine wave is better than the rectangle and triangle waves
89319    for deducing the withdraw resistance and improving the billets surface
89320    quality.
89321 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
89322 RP Ren, ZM, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
89323    200072, Peoples R China.
89324 EM lei_zsh@263.net
89325 CR ASAI S, 1989, TETSU TO HAGANE, V75, P32
89326    CHEN F, 1999, EXPT MAT MECH, P133
89327    DONG HF, 1998, J IRON STEEL, V10, P5
89328    LEI ZS, 2002, CHIN J NONFERROUS S1, V12, P30
89329    LI TJ, 1996, ISIJ INT, V36, P410
89330    LI TJ, 1997, ACTA METALL SIN, V33, P971
89331    REN ZM, 2001, ISIJ INT, V41, P981
89332    SASSA K, 1993, TETSU TO HAGANE, V79, P1075
89333    SU Z, 1998, CAMP ISIJ, V11, P132
89334    SU ZJ, 1999, ISIJ INT, V39, P1224
89335    YE JT, 1989, HYDRODYNAMICS, P345
89336    ZHANG XY, 1986, APPL CHEM HDB, P322
89337    ZHOU YM, 1999, TETSU TO HAGANE, V85, P460
89338    ZHOU YM, 2001, ACTA METALL SIN, V37, P772
89339    ZHOU YM, 2001, ACTA METALL SIN, V37, P777
89340 NR 15
89341 TC 0
89342 SN 0412-1961
89343 J9 ACTA METALL SIN
89344 JI Acta Metall. Sin.
89345 PD SEP 11
89346 PY 2004
89347 VL 40
89348 IS 9
89349 BP 995
89350 EP 999
89351 PG 5
89352 SC Metallurgy & Metallurgical Engineering
89353 GA 864GV
89354 UT ISI:000224622900018
89355 ER
89356 
89357 PT J
89358 AU Xiong, G
89359    Li, DY
89360 TI Reconstructing triangles inscribed in convex bodies from X-ray functions
89361 SO ACTA MATHEMATICA SCIENTIA
89362 DT Article
89363 DE convex body; X-ray; reconstruction
89364 AB This paper provides a method using fixed-point theory for the
89365    reconstruction of the triangle inscribed in convex bodies from X-ray
89366    functions in three arbitrary mutual directions.
89367 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
89368    Wuhan Univ Sci & Technol, Dept Math, Wuhan 430081, Peoples R China.
89369 RP Xiong, G, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
89370 CR DELIN R, 1994, TOPICS INTERGRAL GEO
89371    GARDNER RJ, 1995, GEOMETRIC TOMOGRAPHY
89372    MICHELACCI G, 1989, CALCOLO, V26, P107
89373    MICHELACCI G, 1997, GEOMETRIAE DEDICATA, V66, P357
89374    VOLCIC A, 1987, RICERCHE MAT S, V36, P185
89375 NR 5
89376 TC 0
89377 SN 0252-9602
89378 J9 ACTA MATH SCI
89379 JI Acta Math. Sci.
89380 PD OCT
89381 PY 2004
89382 VL 24
89383 IS 4
89384 BP 608
89385 EP 612
89386 PG 5
89387 SC Mathematics
89388 GA 871EC
89389 UT ISI:000225111100013
89390 ER
89391 
89392 PT J
89393 AU Li, GZ
89394    Yang, J
89395    Zhang, LM
89396    Lu, WC
89397    Chen, NY
89398 TI Relationships between Pitzer's ion interaction coefficients and ionic
89399    parameters of electrolyte solutions
89400 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
89401 DT Article
89402 DE concentrated electrolyte solutions; Pitzer's coefficients; ionic
89403    parameters; corresponding state theory
89404 ID OSMOTIC COEFFICIENTS; CORRESPONDING STATES; THERMODYNAMICS
89405 AB Pattern recognition methods were used to treat the experimentally
89406    measured data of Pitzer's coefficients of 107 electrolytes, to find the
89407    relationships between the ionic structural parameters of these
89408    electrolytes and Pitzer's coefficients. It is found that these
89409    relationships can be approximately expressed as linear equations of
89410    four dimensionless numbers, (R+/R-), (R+ +R_)/Z(+) Z_, (Z(+) /Z_) and
89411    (R-t/R-I), where R+ and R_ are the cationic and anionic radii
89412    respectively; Z(+) and Z_ are the cationic and anionic charge numbers
89413    respectively, and (Rt/RI) denotes the nonsphericity of some
89414    non-spherical ions. Besides, it is found that the difference of the
89415    nuclear magnetic resonance measured rotational relaxation time of water
89416    molecules around cations and anions, |Deltatau|, has good correlation
89417    with Pitzer's coefficients. The relationships can be interpreted by the
89418    theory of corresponding states of ionic solutions. Based on the
89419    relationships, an example of application to some hydrometallurgical
89420    process was discussed.
89421 C1 Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200030, Peoples R China.
89422    Shanghai Univ, Dept Chem, Lab Chem Data Mining, Shanghai 200436, Peoples R China.
89423 RP Li, GZ, Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit,
89424    Shanghai 200030, Peoples R China.
89425 EM lIgz@sjtu.edu.cn
89426 CR CHEN NY, 1999, CHEMOMETR INTELL LAB, V45, P329
89427    CHEN NY, 2000, APPL PATTERN RECOGNI
89428    FANG Z, 2001, T NONFERR METAL SOC, V11, P425
89429    FRIEDMAN HL, 1979, J CHEM PHYS, V70, P92
89430    GURNEY RW, 1953, IONIC PROCESSES SOLU
89431    OHTAKI H, 1993, CHEM REV, V93, P1157
89432    PITZER KS, 1973, J PHYS CHEM-US, V77, P2300
89433    PITZER KS, 1974, J AM CHEM SOC, V96, P5701
89434    PITZER KS, 1991, ACTIVITY COEFFICIENT
89435    REISS H, 1961, J CHEM PHYS, V35, P820
89436    ROSIPAL R, 2001, J MACH LEARN RES, P97
89437    SUN WA, 1992, T NONFERR METAL SOC, V2, P37
89438    WOLD S, 1984, SIAM J SCI STAT COMP, V5, P735
89439    YASHIMIRSKII KB, 1951, THERMOCHEMISTRY COMP
89440 NR 14
89441 TC 0
89442 SN 1003-6326
89443 J9 TRANS NONFERROUS METAL SOC CH
89444 JI Trans. Nonferrous Met. Soc. China
89445 PD OCT
89446 PY 2004
89447 VL 14
89448 IS 5
89449 BP 1029
89450 EP 1032
89451 PG 4
89452 SC Metallurgy & Metallurgical Engineering
89453 GA 870QG
89454 UT ISI:000225072300037
89455 ER
89456 
89457 PT J
89458 AU Ren, ZJ
89459    Cao, WG
89460    Ding, WY
89461    Wang, Y
89462    Wang, LL
89463 TI Stereoselective synthesis of
89464    cis-1-aryl-2-benzoyl-3,3-dicyanocyclopropanes in the presence of KF
89465    center dot 2H(2)O
89466 SO SYNTHETIC COMMUNICATIONS
89467 DT Article
89468 DE arsonium ylide; cis-cyclopropane; cyclopropanation; potassium fluoride
89469    dihydrate; stereoselective synthesis
89470 ID CATALYZED CYCLOPROPANATION; ORGANIC-SYNTHESIS; DERIVATIVES
89471 AB KF (.) 2H(2)O was found to be a highly efficient base for synthesis of
89472    cis-1,2-cyclopropanes with arsonium salt and olefins. The advantages of
89473    the process are mild reaction condition, easy workup, excellent yields,
89474    and high stereoselectivity.
89475 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
89476    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
89477 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
89478 EM renrui198229@hotmail.com
89479 CR BRUNEL JM, 1999, J AM CHEM SOC, V121, P5807
89480    CAO WG, 2000, SYNTHETIC COMMUN, V30, P4523
89481    CHE CM, 2001, J AM CHEM SOC, V123, P4119
89482    CHEN YL, 1998, CHEM J CHINESE U, V19, P1614
89483    CLARK JH, 1980, CHEM REV, V80, P429
89484    DING WY, 1965, B NAT SCI U CHEM CE, P540
89485    DING WY, 1996, CHEM RES CHINESE U, V12, P50
89486    DOYLE MP, 1998, TETRAHEDRON, V54, P7919
89487    GUNTHER H, 1980, NMR SPECTROSCOPY, P384
89488    LAUTENS M, 1992, J ORG CHEM, V57, P798
89489    LEBEL H, 2003, CHEM REV, V103, P977
89490    NISHINO F, 2003, ORG LETT, V5, P2615
89491    REN ZJ, 2002, SYNTHETIC COMMUN, V32, P3143
89492    REN ZJ, 2002, SYNTHETIC COMMUN, V32, P3475
89493    TABER DF, 1991, COMPREHENSIVE ORGANI, V3, P1045
89494    WONG HNC, 1989, CHEM REV, V89, P165
89495    ZIMMERMAN HE, 1985, TETRAHEDRON LETT, V26, P5859
89496 NR 17
89497 TC 4
89498 SN 0039-7911
89499 J9 SYN COMMUN
89500 JI Synth. Commun.
89501 PY 2004
89502 VL 34
89503 IS 20
89504 BP 3785
89505 EP 3792
89506 PG 8
89507 SC Chemistry, Organic
89508 GA 869IQ
89509 UT ISI:000224977000017
89510 ER
89511 
89512 PT J
89513 AU Chen, GD
89514    Cao, WG
89515    Chen, J
89516    Chen, RQ
89517 TI High stereoselective synthesis of trans-2,3-dihydrofuran derivatives
89518 SO SYNTHETIC COMMUNICATIONS
89519 DT Article
89520 DE arsonium ylide; dihydrofurans derivatives; stereoselective synthesis
89521 AB In the presence of K2CO3, acetylmethyltriphenylarsonium bromide 1
89522    reacted with 3-arylidene-2,4-pentadione 2 in benzene at 50 C for 48 h
89523    to give
89524    2-(Z-4-oxo-2-penten-2-yl)-3-substitutedphenyl-4-acetyl-5-methyltrarrs-2,
89525    3-dihydrofurans 3 in good yield with high stereoselectivity.
89526 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
89527    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
89528 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
89529 EM wgcao@staff.shu.edu.cn
89530 CR CAO WG, 2004, SYNTHETIC COMMUN, V34, P1599
89531    CHEN BY, 1998, BIOPROCESS ENG, V19, P7
89532    DULERE JP, 1994, J CHEM SOC CHEM COMM, P303
89533    EISTERT B, 1961, CHEM BER, V94, P929
89534    HUDLICKY T, 1990, SYNTHETIC COMMUN, V20, P1721
89535    PALLAUD R, 1963, CHIM IND, V89, P283
89536    SUGIMURA H, 1994, J ORG CHEM, V59, P653
89537 NR 7
89538 TC 0
89539 SN 0039-7911
89540 J9 SYN COMMUN
89541 JI Synth. Commun.
89542 PY 2004
89543 VL 34
89544 IS 20
89545 BP 3793
89546 EP 3799
89547 PG 7
89548 SC Chemistry, Organic
89549 GA 869IQ
89550 UT ISI:000224977000018
89551 ER
89552 
89553 PT J
89554 AU Zhang, ML
89555    Gu, BB
89556    Wang, LJ
89557    Xia, YB
89558 TI X-ray detectors based on (100)-textured CVD diamond films
89559 SO PHYSICS LETTERS A
89560 DT Article
89561 DE CVD diamond film; X-ray detector; photocurrent; charge collection
89562    efficiency
89563 AB The inherent properties of diamond make it an ideal material for
89564    radiation detectors. In this Letter, two (100)-textured CVD diamond
89565    films with different quality were obtained by using a hot filament
89566    chemical vapor deposition (HFCVD) technique to fabricate as X-ray
89567    detectors. 5.9 keV X-rays were used to investigate the photocurrent and
89568    charge collection efficiency of the detectors. For the CVD diamond
89569    detector based on the film with larger grain size, the electrical
89570    contact is a fine ohmic for bias voltage up to 100 V, and the
89571    darkcurrent of similar to 16.3 nA and the photocurrent of similar to
89572    16.8 nA are obtained at an electrical field of 50 kV cm(-1). The
89573    average charge collection efficiency of similar to 45.1% corresponding
89574    to the charge collection distance (CCD) value of 9.0 mum is achieved.
89575    (C) 2004 Elsevier B.V. All rights reserved.
89576 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
89577 RP Zhang, ML, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples
89578    R China.
89579 EM zhamilong@hotmail.com
89580 CR BAUER C, 1996, NUCL INSTRUM METH A, V383, P64
89581    BERGONZO P, 2001, DIAM RELAT MATER, V10, P631
89582    FRANKLIN M, 1992, NUCL INSTRUM METH A, V315, P39
89583    HECHT K, 1932, Z PHYS, V77, P235
89584    KOSLOV SF, 1975, IEEE T NUCL SCI, V22, P160
89585    MANFREDOTTI C, 1996, PHYS STATUS SOLIDI A, V154, P327
89586    SALVATORI S, 1997, DIAM RELAT MATER, V6, P361
89587    SPEAR KE, 1989, J AM CERAM SOC, V72, P171
89588    VATNITSKY S, 1993, PHYS MED BIOL, V38, P173
89589    ZHANG ML, 2004, SOLID STATE COMMUN, V130, P551
89590 NR 10
89591 TC 4
89592 SN 0375-9601
89593 J9 PHYS LETT A
89594 JI Phys. Lett. A
89595 PD NOV 15
89596 PY 2004
89597 VL 332
89598 IS 3-4
89599 BP 320
89600 EP 325
89601 PG 6
89602 SC Physics, Multidisciplinary
89603 GA 870GB
89604 UT ISI:000225044500022
89605 ER
89606 
89607 PT J
89608 AU Huang, DB
89609 TI Stabilizing near-nonhyperbolic chaotic systems with applications
89610 SO PHYSICAL REVIEW LETTERS
89611 DT Article
89612 ID MODEL; SYNCHRONIZATION; FAILURE
89613 AB Based on the invariance principle of differential equations a simple,
89614    systematic, and rigorous feedback scheme with the variable feedback
89615    strength is proposed to stabilize nonlinearly finite-dimensional
89616    chaotic systems without any prior analytical knowledge of the systems.
89617    Especially the method may be used to control near-nonhyperbolic chaotic
89618    systems, which, although arising naturally from models in astrophysics
89619    to those for neurobiology, all Ott-Grebogi-York type methods will fail
89620    to stabilize. The technique is successfully used for the famous
89621    Hindmarsh-Rose neuron model, the FitzHugh-Rinzel neuron model, and the
89622    Rossler hyperchaos system, respectively.
89623 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
89624 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
89625 EM dbhuang@staff.shu.edu.cn
89626 CR ACHESON DJ, 1993, NATURE, V366, P215
89627    CHAY TR, 1985, BIOPHYS J, V47, P357
89628    FAN YS, 1995, PHYS REV E, V51, P1012
89629    HINDMARSH JL, 1984, P ROY SOC LOND B BIO, V221, P87
89630    HUANG DB, IN PRESS SIMPLE ADAP
89631    HUANG DB, 2002, CHINESE PHYS LETT, V19, P762
89632    HUANG DB, 2004, CHAOS, V14, P152
89633    HUANG DB, 2004, PHYS REV E 2, V69
89634    HUERTA R, 1997, PHYS REV E A, V55, R2108
89635    IZHIKEVICH EM, 2000, INT J BIFURCAT CHAOS, V10, P1171
89636    IZHIKEVICH EM, 2001, SIAM REV, V43, P315
89637    LASALLE J, 1960, IRE T CIRCUIT THEORY, V7, P520
89638    LASALLE JP, 1960, P NATL ACAD SCI USA, V46, P363
89639    OLIVEIRA VA, 2003, PHYS REV E 2, V68
89640    OTT E, 1990, PHYS REV LETT, V64, P1196
89641    RABINOVICH MI, 1998, NEUROSCIENCE, V87, P5
89642    RINZEL J, 1987, LECT NOTES BIOMATHEM, V71
89643    ROSENBLUM MG, 2004, PHYS REV LETT, V92
89644    RULKOV NF, 2001, PHYS REV LETT, V86, P183
89645    SCHIFF SJ, 1994, NATURE, V370, P615
89646    SHINBROT T, 1993, NATURE, V363, P411
89647    SPIEGEL EA, 1985, CHAOS ASTROPHYSICS, P91
89648    STEWART GW, 1973, INTRO MATRIX COMPUTA
89649    VANDEWATER W, 2000, PHYS REV E A, V62, P6398
89650    WANG XJ, 1993, PHYSICA D, V62, P263
89651    YANG L, 2000, PHYS REV LETT, V84, P67
89652 NR 26
89653 TC 4
89654 SN 0031-9007
89655 J9 PHYS REV LETT
89656 JI Phys. Rev. Lett.
89657 PD NOV 19
89658 PY 2004
89659 VL 93
89660 IS 21
89661 AR 214101
89662 DI ARTN 214101
89663 PG 4
89664 SC Physics, Multidisciplinary
89665 GA 872PU
89666 UT ISI:000225220500031
89667 ER
89668 
89669 PT J
89670 AU Yang, QH
89671    Kim, ES
89672    Xu, J
89673 TI Effect of Nd3+ on the microwave dielectric properties of
89674    (Pb0.5Ca0.5)(Fe0.5Nb0.5)O-3 ceramics
89675 SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
89676    TECHNOLOGY
89677 DT Article
89678 DE (Pb,Ca,Nd)(Fe,Nb)O-3; microwave dielectric ceramics; perovskite;
89679    pyrochlore
89680 ID FREQUENCIES; PEROVSKITE; SITE
89681 AB Microwave dielectric properties of A-site substitution by Nd3+ in
89682    (Pb0.5Ca0.5)(Fe0.5Nb0.5)O-3 system were investigated. Microwave
89683    dielectric properties of [(Pb0.5Ca0.5)(1-x)Nd-x] (Fe0.5Nb0.5)O-3
89684    (PCNFN) system with x = 0.02-0.05 were improved because the solid
89685    solution of small amount of excessive Nd3+ with (Pb,Ca)(2+) could
89686    eliminate oxygen vacancies. Surplus Nd3+ resulted in the formation of
89687    secondary phase (pyrochlore), which deteriorated the microwave
89688    dielectric properties of PCNFN ceramics. Dielectric constant was above
89689    100 and quality factor Qf values were 5385-5797 GHz as x = 0.02-0.05.
89690    Temperature coefficient of resonant frequency (TCF) was changed from
89691    positive to negative with x content. (C) 2004 Elsevier B.V. All rights
89692    reserved.
89693 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
89694    Kyonggi Univ, Dept Mat Engn, Suwon 442760, South Korea.
89695    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Beijing 100864, Peoples R China.
89696 RP Yang, QH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
89697    China.
89698 EM yangqiuhong@hotmail.com
89699 CR KAGATA H, 1993, JPN J APPL PHYS 1, V32, P4332
89700    KATO J, 1991, JPN J APPL PHYS PT 1, V30, P2343
89701    KATO J, 1992, JPN J APPL PHYS 1, V31, P3144
89702    KIM IS, 1995, MATER RES BULL, V30, P307
89703    KIM WS, 1999, J AM CERAM SOC, V82, P2111
89704    KUCHEIKO S, 1997, J AM CERAM SOC, V80, P2937
89705    MICHIURA N, 1995, J AM CERAM SOC, V78, P793
89706    PARK HS, 2001, J AM CERAM SOC, V84, P99
89707    YANG QH, 2002, J CHINESE CERAMIC SO, V30, P554
89708    YOSHIDA M, 1997, JPN J APPL PHYS, V36, P6816
89709 NR 10
89710 TC 0
89711 SN 0921-5107
89712 J9 MATER SCI ENG B-SOLID STATE M
89713 JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
89714 PD NOV 15
89715 PY 2004
89716 VL 113
89717 IS 3
89718 BP 224
89719 EP 227
89720 PG 4
89721 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
89722 GA 868XI
89723 UT ISI:000224946000008
89724 ER
89725 
89726 PT J
89727 AU Chen, LQ
89728    Zhao, WJ
89729    Zu, JW
89730 TI Transient responses of an axially accelerating viscoelastic string
89731    constituted by a fractional differentiation law
89732 SO JOURNAL OF SOUND AND VIBRATION
89733 DT Article
89734 ID NONLINEAR VIBRATION; MOVING BELTS
89735 AB This paper deals with the transverse vibration of an initially stressed
89736    moving viscoelastic string obeying a fractional differentiation
89737    constitutive law. The governing equation is derived from Newtonian
89738    second law of motion, and reduced to a set of non-linear
89739    differential-integral equations based on Galerkin's truncation. A
89740    numerical approach is proposed to solve numerically the
89741    differential-integral equation through developing an approximate
89742    expression of the fractional derivatives involved. Some numerical
89743    examples are presented to highlight the effects of viscoelastic
89744    parameters and frequencies of parametric excitations on the transient
89745    responses of the axially moving string. (C) 2003 Elsevier Ltd. All
89746    rights reserved.
89747 C1 Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
89748    Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
89749    Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada.
89750    Ocean Univ Qingdao, Dept Math, Qingdao 266071, Peoples R China.
89751 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
89752 EM lqchen@online.sh.cn
89753 CR CHEN LQ, 2001, ADV MECH, V31, P535
89754    CHEN LQ, 2002, MECH RES COMMUN, V29, P81
89755    CHEN LQ, 2003, ACTA MECH, V162, P143
89756    CHEN LQ, 2003, INT J NONLINEAR SCI, V4, P169
89757    CHEN LQ, 2003, J SOUND VIB, V261, P764
89758    DROZDOV AD, 1996, POLYM ENG SCI, V36, P1907
89759    FUNG RF, 1997, J SOUND VIB, V201, P153
89760    FUNG RF, 1998, COMPUT STRUCT, V66, P777
89761    ROSSIKHIN YA, 1997, APPL MECH REV, V50, P15
89762    SAMKO SG, 1993, FRACTIONAL INTEGRALS
89763    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
89764    ZHANG L, 1999, J APPL MECH-T ASME, V66, P396
89765    ZHANG L, 1999, J APPL MECH-T ASME, V66, P403
89766    ZHANG L, 2002, INT J STRUCTURAL STA, V2, P265
89767    ZHAO WJ, 2002, INT J NONLINEAR SCI, V3, P139
89768 NR 15
89769 TC 2
89770 SN 0022-460X
89771 J9 J SOUND VIB
89772 JI J. Sound Vibr.
89773 PD DEC 22
89774 PY 2004
89775 VL 278
89776 IS 4-5
89777 BP 861
89778 EP 871
89779 PG 11
89780 SC Engineering, Mechanical; Acoustics; Mechanics
89781 GA 870HQ
89782 UT ISI:000225048600009
89783 ER
89784 
89785 PT J
89786 AU Li, Z
89787    Wu, MH
89788    Jiao, Z
89789    Bao, BR
89790    Lu, SL
89791 TI Extraction of phenol from wastewater by N-octanoylpyrrolidine
89792 SO JOURNAL OF HAZARDOUS MATERIALS
89793 DT Article
89794 DE wastewater treatment; N-octanoylpyrrolidine (OPOD); solvent extraction;
89795    phenol
89796 ID SUPERCRITICAL WATER; AQUEOUS-SOLUTION; ADSORPTION; BENTONITE;
89797    OXIDATION; REMOVAL; RESIN
89798 AB In this paper a new type of phenol extractant, N-octanoylpyrrolidine
89799    (OPOD), was synthesized. The behavior of phenol of wastewater
89800    extraction by N-octanoylpyrrolidine (OPOD) in kerosene was studied and
89801    the dependence of the extraction distribution ratios on the
89802    concentrations of extractant, phenol, acidity and temperature was
89803    investigated. The experimental results proved that OPOD could extract
89804    phenol effectively. The mechanism of the extraction of phenol by OPOD
89805    was studied in detail. (C) 2004 Elsevier B.V. All rights reserved.
89806 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
89807 RP Li, Z, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
89808    Peoples R China.
89809 EM zli@mail.shu.edu.cn
89810 CR BANAT FA, 2000, ENVIRON POLLUT, V107, P391
89811    BROHOLM MM, 2000, J CONTAM HYDROL, V44, P239
89812    GONZALEZMUNOZ MJ, 2003, J MEMBRANE SCI, V213, P181
89813    HEBATPURIA VM, 1999, J HAZARD MATER, V70, P117
89814    JIANG H, 2003, J HAZARD MATER, V101, P179
89815    KU Y, 2000, J HAZARD MATER, V80, P59
89816    LI S, 1981, PRACTICAL HDB ORGANI, P345
89817    PORTELA JR, 2001, CHEM ENG J, V81, P287
89818    RENGARAJ S, 2002, J HAZARD MATER, V89, P185
89819    VIRARAGHAVAN T, 1998, J HAZARD MATER, V57, P59
89820    YU JL, 2000, APPL CATAL B-ENVIRON, V28, P275
89821 NR 11
89822 TC 3
89823 SN 0304-3894
89824 J9 J HAZARD MATER
89825 JI J. Hazard. Mater.
89826 PD OCT 18
89827 PY 2004
89828 VL 114
89829 IS 1-3
89830 BP 111
89831 EP 114
89832 PG 4
89833 SC Engineering, Civil; Engineering, Environmental; Environmental Sciences
89834 GA 871QL
89835 UT ISI:000225148200012
89836 ER
89837 
89838 PT J
89839 AU Chen, Y
89840    Qiu, XJ
89841    Li, RX
89842 TI Pseudo-spin model for the cytoskeletal microtubule surface
89843 SO CHINESE PHYSICS LETTERS
89844 DT Article
89845 ID MECHANISM
89846 AB Due to the inherent symmetry structures and the electric Properties in
89847    the microtubule (MT), we treat the MT as a one-dimensional
89848    ferroelectric system and describe the nonlinear dynamics of dimer
89849    electric dipoles in one protofilament of the MT by virtue of the
89850    double-well potential. Consequently, the physical problem has been
89851    mapped onto the pseudo-spin system, and the mean-field approximation
89852    has been taken to obtain some physical results, including the
89853    expression for the phase transition temperature T-c and the estimated
89854    value of T-c (approximate to 312 K).
89855 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
89856    Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
89857    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
89858 RP Chen, Y, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
89859 EM chenying@mail.sic.ac.cn
89860 CR ATHENSTAEDT H, 1974, ANN NY ACAD SCI, V238, P68
89861    BLINC R, 1974, SOFT MODES FERROELEC
89862    COLLINS MA, 1979, PHYS REV B, V19, P3630
89863    ENGLEBORGHS Y, 1992, NANOBIOLOGY, V1, P97
89864    HAKEN H, 1976, QUANTUM FIELD THEORY
89865    HAMEROFF SR, 1982, J THEOR BIOL, V98, P549
89866    JIANG XF, 2002, CHINESE PHYS LETT, V19, P560
89867    MARGULIS L, 1978, SCIENCE, V200, P1118
89868    NOGALES E, 1998, NATURE, V391, P199
89869    SATARIC M, 1990, J MOL ELECTRON, V6, P63
89870    SATARIC MV, 1993, PHYS REV E, V48, P589
89871 NR 11
89872 TC 1
89873 SN 0256-307X
89874 J9 CHIN PHYS LETT
89875 JI Chin. Phys. Lett.
89876 PD NOV
89877 PY 2004
89878 VL 21
89879 IS 11
89880 BP 2313
89881 EP 2315
89882 PG 3
89883 SC Physics, Multidisciplinary
89884 GA 870KP
89885 UT ISI:000225056300067
89886 ER
89887 
89888 PT J
89889 AU Jiao, Z
89890    Wu, MH
89891    Shi, LY
89892    Li, Z
89893    Wang, YL
89894 TI Preparation of TiO2 nanowire by atomic force microscopy electrochemical
89895    anode oxidation
89896 SO CHINESE JOURNAL OF INORGANIC CHEMISTRY
89897 DT Article
89898 DE nanowire; anode oxidation; atomic force microscopy; TiO2
89899 ID DEVICES
89900 AB TiO2 nanowires on Ti/SiO2/Si were prepared by Atomic Force
89901    Microscopy(AFM) anode oxidation. The effects of applied bias and
89902    duration on the formation TiO2 nanowires were discussed. The results
89903    show that the thickness of titanium oxide is inversely proportional to
89904    the square root of applied bias and duration.
89905 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
89906 RP Li, Z, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
89907    Peoples R China.
89908 EM analysislab@263.net
89909 CR DAGATA JA, 1990, APPL PHYS LETT, V56, P2001
89910    MATSUMOTO K, 1996, APPL PHYS LETT, V68, P34
89911    MOON WC, 2001, J SURF SCI SOC JPN, V22, P805
89912    MOON WC, 2002, JPN J APPL PHYS 1, V41, P4754
89913    NEMUTUDI R, 2002, J VAC SCI TECHNOL B, V20, P2810
89914    PINER RD, 1999, SCIENCE, V283, P661
89915    SASA S, 2002, PHYSICA B, V314, P95
89916    SNOW ES, 1995, SCIENCE, V270, P1639
89917    SUGIMURA H, 1993, JPN J APPL PHYS, V32, P553
89918 NR 9
89919 TC 0
89920 SN 1001-4861
89921 J9 CHIN J INORG CHEM
89922 JI Chin. J. Inorg. Chem.
89923 PD NOV
89924 PY 2004
89925 VL 20
89926 IS 11
89927 BP 1325
89928 EP 1328
89929 PG 4
89930 SC Chemistry, Inorganic & Nuclear
89931 GA 868RE
89932 UT ISI:000224929900014
89933 ER
89934 
89935 PT J
89936 AU Zhou, J
89937    Li, DM
89938    Sang, WB
89939    Fan, ZY
89940    Wang, H
89941 TI Preparation of core-shell structure CdS/ZnS nanoparticles and their
89942    optical properties
89943 SO CHINESE JOURNAL OF CHEMICAL PHYSICS
89944 DT Article
89945 DE CdS; ZnS; core-shell structure; nanoparticles; luminous efficiency
89946 ID NANOCRYSTALS; ELECTRON; CDSE
89947 AB CdS and CdS/ZnS core-shell structure nanoparticles were synthesized in
89948    microemulsion, and characterized by X-ray diffraction (XRD),
89949    transmission electron microscopy (TEM), UV absorption spectra and PL.
89950    The average diameter of CdS was about 3.3 nm, and CdS/ZnS core-shell
89951    structure was confirmed by XRD and UV. Considering the optical
89952    properties of CdS/ZnS core-shell structure nanoparticles which have
89953    different ZnS shell thickness, the UV absorption edge of CdS/ZnS
89954    becomes a slight red-shift with the thickness of ZnS layer increasing,
89955    and the absorption of shortwave band is strongly enhanced at the same
89956    time. The PL spectra indicate that ZnS shell layer can greatly
89957    eliminate surface defects of CdS nanoparticles and make its band-edge
89958    directed recombination increased, and the luminous efficiency of CdS is
89959    improved greatly when it has appropriate shell thickness.
89960 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
89961 RP Li, DM, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
89962    China.
89963 EM dmli@mail.shu.edu.cn
89964 CR BRUS LE, 1984, J CHEM PHYS, V80, P4403
89965    FU XC, 1990, PHYS CHEM, P108
89966    HASSELBARTH A, 1993, CHEM PHYS LETT, V203, P271
89967    HEINE JR, 1998, J CRYST GROWTH, V195, P564
89968    LIU SM, 2000, PHYSICA E, V8, P174
89969    SASHCHIUK A, 2002, J CRYST GROWTH, V240, P431
89970    SONG K, 2001, CURRENT APPL PHYS, V1, P169
89971    SUN LD, 2001, CHEM J CHINESE U, V22, P879
89972    WU QS, 2000, J MEMBRANE SCI, V172, P199
89973    XU L, 2000, PHYSICA E, V8, P129
89974    ZHANG LD, 2001, NAMI CAILIAO HE NAMI, P140
89975 NR 11
89976 TC 0
89977 SN 1003-7713
89978 J9 CHIN J CHEM PHYS
89979 JI Chin. J. Chem. Phys.
89980 PD OCT
89981 PY 2004
89982 VL 17
89983 IS 5
89984 BP 637
89985 EP 640
89986 PG 4
89987 SC Physics, Atomic, Molecular & Chemical
89988 GA 870SH
89989 UT ISI:000225077700024
89990 ER
89991 
89992 PT J
89993 AU Xia, TC
89994    Yu, FJ
89995    Chen, DY
89996 TI The multi-component classical-Boussinesq hierarchy of soliton equations
89997    and its multi-component integrable coupling system
89998 SO CHAOS SOLITONS & FRACTALS
89999 DT Article
90000 ID HAMILTONIAN-STRUCTURE; TRANSFORMATION; GENERATE
90001 AB A new simple loop algebra G(M) is constructed, which is devoted to
90002    establishing an isospectral problem. By making use of Tu scheme, the
90003    multi-component classical-Boussinesq hierarchy is obtained.
90004    Furthermore, an expanding loop algebra F-M of the loop algebra G(M) is
90005    presented. Based on F-M, the multi-component integrable coupling system
90006    of the multi-component classical-Boussinesq hierarchy is worked out.
90007    The method can be applied to other nonlinear evolution equations
90008    hierarchy. (C) 2004 Elsevier Ltd. All rights reserved.
90009 C1 Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
90010    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
90011 RP Xia, TC, Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
90012 EM xiatc@yahoo.com.cn
90013 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
90014    FAN E, 2001, PHYSICA A, V301, P105
90015    FAN EG, 2000, J MATH PHYS, V41, P7769
90016    GUO F, 2002, J SYS SCI MATH SCI, V22, P36
90017    GUO FK, 2000, ACTA MATH APPL SIN, V23, P181
90018    GUO FK, 2003, J MATH PHYS, V44, P5793
90019    HU XB, 1994, J PHYS A, V27, P2497
90020    HU XB, 1997, J PHYS A-MATH GEN, V30, P619
90021    NEWELL AC, 1985, SOLITON MATH PHYS
90022    TSUCHIDA T, 1999, J PHYS SOC JPN, V68, P2241
90023    TSUCHIDA T, 1999, PHYS LETT A, V257, P53
90024    TU GZ, 1989, ACTA MATH APPL SINIC, V5, P89
90025    TU GZ, 1989, J MATH PHYS, V30, P330
90026    WADATI M, 1972, J PHYS SOC JPN, V32, P1681
90027    WADATI M, 1973, J PHYS SOC JPN, V34, P1289
90028    WADATI M, 1975, PROG THEOR PHYS, V53, P419
90029    ZENG YB, 1992, CHINESE SCI BULL, V37, P769
90030    ZHANG YF, 2004, CHAOS SOLITON FRACT, V44, P305
90031 NR 18
90032 TC 6
90033 SN 0960-0779
90034 J9 CHAOS SOLITON FRACTAL
90035 JI Chaos Solitons Fractals
90036 PD FEB
90037 PY 2005
90038 VL 23
90039 IS 4
90040 BP 1163
90041 EP 1167
90042 PG 5
90043 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
90044 GA 869WA
90045 UT ISI:000225014000009
90046 ER
90047 
90048 PT J
90049 AU Sun, MN
90050    Deng, SF
90051    Chen, DY
90052 TI The Backlund transformation and novel solutions for the Toda lattice
90053 SO CHAOS SOLITONS & FRACTALS
90054 DT Article
90055 ID EXPONENTIAL LATTICE; INVERSE METHOD; FORM
90056 AB The bilinear Backlund transformation for the Toda lattice is derived
90057    from the Darboux transformation and some novel solutions to the Toda
90058    lattice are obtained through a modified bilinear Backlund
90059    transformation. (C) 2004 Elsevier Ltd. All rights reserved.
90060 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
90061 RP Sun, MN, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
90062 EM smnwhy0350@163.com
90063 CR FLASCHKA H, 1974, PROG THEOR PHYS, V51, P703
90064    HIROTA R, 1976, PROGR THEOR PHYS SUP, V59, P64
90065    KONNO K, 1975, PROG THEOR PHYS, V53, P1652
90066    NIMMO JJC, 1983, PHYS LETT A, V99, P281
90067    SATSUMA K, 1978, J PHYS SOC JPN, V43, P692
90068    SUN MN, 2004, SHANGHAI U PREPRINT
90069    TODA M, 1970, PROGR THEOR PHYS SUP, V45, P174
90070    TODA M, 1975, J PHYS SOC JPN, V39, P1204
90071    WADATI M, 1975, J PHYS SOC JPN, V39, P1196
90072    WADATI M, 1975, PROG THEOR PHYS, V53, P419
90073 NR 10
90074 TC 1
90075 SN 0960-0779
90076 J9 CHAOS SOLITON FRACTAL
90077 JI Chaos Solitons Fractals
90078 PD FEB
90079 PY 2005
90080 VL 23
90081 IS 4
90082 BP 1169
90083 EP 1175
90084 PG 7
90085 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
90086 GA 869WA
90087 UT ISI:000225014000010
90088 ER
90089 
90090 PT J
90091 AU Zhang, DJ
90092 TI Singular solutions in Casoratian form for two differential-difference
90093    equations
90094 SO CHAOS SOLITONS & FRACTALS
90095 DT Article
90096 ID N-SOLITON SOLUTIONS; SELF-CONSISTENT SOURCES; DE-VRIES EQUATION; LINEAR
90097    EVOLUTION EQUATIONS; MULTIPLE-POLE SOLUTIONS; SINE-GORDON EQUATION;
90098    WRONSKIAN FORM; RATIONAL SOLUTIONS; CONSERVATION-LAWS; KORTEWEG-DEVRIES
90099 AB Negatons, positons, rational solutions and mixed solutions in
90100    Casoratian form for the Toda lattice and the differential-difference
90101    KdV equation are obtained. Some characteristics of the obtained
90102    singular solutions are investigated through density graphics. (C) 2004
90103    Elsevier Ltd. All rights reserved.
90104 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
90105 RP Zhang, DJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
90106 EM djzhang@mail.shu.edu.cn
90107 CR ABLOWITZ MJ, 1978, J MATH PHYS, V19, P2180
90108    DENG SF, 2003, J PHYS SOC JPN, V72, P2184
90109    FREEMAN NC, 1983, PHYS LETT A, V95, P1
90110    HIROTA R, 1976, PROGR THEOR PHYS SUP, V59, P64
90111    HIROTA R, 1977, J PHYS SOC JPN, V43, P1429
90112    MA WX, 2004, CHAOS SOLITON FRACT, V19, P163
90113    MATVEEV VB, 1991, DARBOUX TRANSFORMATI
90114    MATVEEV VB, 1992, PHYS LETT A, V166, P205
90115    MATVEEV VB, 1992, PHYS LETT A, V166, P209
90116    NIMMO JJC, 1983, PHYS LETT A, V95, P4
90117    NIMMO JJC, 1983, PHYS LETT A, V96, P443
90118    NIMMO JJC, 1983, PHYS LETT A, V99, P281
90119    NIMMO JJC, 1984, J PHYS A-MATH GEN, V17, P1415
90120    RASINARIU C, 1996, J PHYS A-MATH GEN, V29, P1803
90121    SATSUMA J, 1979, J PHYS SOC JPN, V46, P359
90122    SIRIANUNPIBOON S, 1988, PHYS LETT A, V134, P31
90123    STAHLHOFEN AA, 1995, J PHYS A-MATH GEN, V28, P1957
90124    TODA M, 1975, PHYSICS REPORTS    C, V18, P1
90125    TSURU H, 1984, J PHYS SOC JPN, V53, P2908
90126    WADATI M, 1975, PROG THEOR PHYS, V53, P419
90127    WADATI M, 1976, PROG THEOR PHYS SUPP, V59, P36
90128    WADATI M, 1982, J PHYS SOC JPN, V51, P2029
90129    WU H, 2003, J PHYS A-MATH GEN, V36, P4867
90130    ZHANG DJ, 2002, J PHYS SOC JPN, V71, P2649
90131    ZHANG DJ, 2003, CHAOS SOLITON FRACT, V18, P31
90132    ZHANG DJ, 2003, PHYSICA A, V321, P467
90133    ZHANG DJ, 2004, J PHYS A-MATH GEN, V37, P851
90134 NR 27
90135 TC 0
90136 SN 0960-0779
90137 J9 CHAOS SOLITON FRACTAL
90138 JI Chaos Solitons Fractals
90139 PD FEB
90140 PY 2005
90141 VL 23
90142 IS 4
90143 BP 1333
90144 EP 1350
90145 PG 18
90146 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
90147 GA 869WA
90148 UT ISI:000225014000028
90149 ER
90150 
90151 PT J
90152 AU Lai, XJ
90153    Zhang, JF
90154 TI On shifted periodic solutions of two nonlinear equations
90155 SO CHAOS SOLITONS & FRACTALS
90156 DT Article
90157 ID SOLITARY WAVE SOLUTIONS; EVOLUTION-EQUATIONS
90158 AB Using the linear superposition approach, we find periodic solutions
90159    with shifted periods and velocities of the (2 + 1)-dimensional modified
90160    Zakharov-Kuznetsov equation and the (3 + 1)-dimensional
90161    Kadomtsev-Petviashvili equation by making appropriate linear
90162    superpositions of known periodic solutions. This unusual procedure of
90163    generating solutions of nonlinear evolution equations is successful as
90164    a consequence of some cyclic identities satisfied by the Jacobi
90165    elliptic functions which reduce by 2 (or a larger even number) the
90166    degree of cyclic homogeneous polynomials in Jacobi elliptic functions.
90167    (C) 2004 Elsevier Ltd. All rights reserved.
90168 C1 Zhejiang Normal Univ, Inst Theoret Phys, Jinhua 321004, Peoples R China.
90169    Shanghai Univ, Inst Math & Mech, Shanghai 200072, Peoples R China.
90170    Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England.
90171 RP Lai, XJ, Zhejiang Normal Univ, Inst Theoret Phys, Jinhua 321004,
90172    Peoples R China.
90173 EM laixianjing@163.com
90174 CR CHEN Y, 2002, PHYS LETT A, V307, P107
90175    COOPER F, 2002, J PHYS A-MATH GEN, V35, P10085
90176    FAN EG, UNIFORMLY CONSTRUCTI
90177    HEREMAN W, 1991, COMPUT PHYS COMMUN, V65, P143
90178    JAWORSKI M, 2003, PHYS REV LETT, V90
90179    KHARE A, 2002, J MATH PHYS, V43, P3798
90180    KHARE A, 2002, PHYS REV LETT, V88
90181    LI B, 2003, COMPUT MATH APPL, V146, P653
90182    LIU SK, 2001, PHYS LETT A, V289, P69
90183    LIU SK, 2002, ACTA PHYS SIN-CH ED, V51, P10
90184    MALFLIET W, 1992, AM J PHYS, V60, P650
90185    PARKES EJ, 1996, COMPUT PHYS COMMUN, V98, P288
90186 NR 12
90187 TC 0
90188 SN 0960-0779
90189 J9 CHAOS SOLITON FRACTAL
90190 JI Chaos Solitons Fractals
90191 PD FEB
90192 PY 2005
90193 VL 23
90194 IS 4
90195 BP 1399
90196 EP 1404
90197 PG 6
90198 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
90199 GA 869WA
90200 UT ISI:000225014000034
90201 ER
90202 
90203 PT J
90204 AU Xia, TC
90205    Chen, DY
90206 TI New families of exact soliton-like solutions and dromion solutions to
90207    the (2+1)-dimensional higher-order Broer-Kaup equations
90208 SO CHAOS SOLITONS & FRACTALS
90209 DT Article
90210 ID KADOMTSEV-PETVIASHVILI EQUATION; MULTISOLITON SOLUTIONS
90211 AB Using homogeneous balance method we obtain Backlund transformation (BT)
90212    and a linear partial differential equation of higher-order Broer-Kaup
90213    equations. As a result, new soliton-like solutions and new dromion
90214    solution and other exact solutions of (2 + 1)-dimensional higher-order
90215    Broer-Kaup equations are given. By analyzing a soliton-like solution,
90216    we get some dromions solutions. This method, which can be generalized
90217    to some (2 + 1)-dimensional nonlinear evolution equations, is simple
90218    and powerful. (C) 2004 Elsevier Ltd. All rights reserved.
90219 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
90220    Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
90221 RP Xia, TC, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
90222 EM xiatc@yahoo.com.cn
90223 CR BOITI M, 1988, PHYS LETT A, V132, P432
90224    CLARKSON PA, 1993, PHYSICA D, V70, P250
90225    GAO Y, 1997, COMMUN MATH APPL, V30, P115
90226    GAO YT, 1995, COMPUT MATH APPL, V30, P97
90227    GARDNER CS, 1967, PHYS REV LETT, V19, P1905
90228    KARGAYAN NA, 1996, J PHYS A, V29, P8067
90229    LIN J, 2001, CHINESE PHYS LETT, V18, P1173
90230    LOU SY, 1993, J PHYS A-MATH GEN, V26, P4387
90231    LOU SY, 1994, J PHYS A, V27, P207
90232    LOU SY, 1995, J PHYS A-MATH GEN, V28, P7227
90233    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
90234    LOU SY, 1998, COMMUN THEOR PHYS, V29, P145
90235    LOU SY, 2000, CHINESE PHYS LETT, V17, P781
90236    RADHA R, 1994, J MATH PHYS, V35, P4746
90237    RUSSELL SJ, 1838, 7 M BRIT ASS ADV SCI, P417
90238    SMYTH NF, 1992, J AUST MATH SOC B, V33, P403
90239    TIAN B, 1996, J PHYS A-MATH GEN, V29, P2895
90240    ZHANG JF, 2002, APPL MATH MECH, V23, P489
90241 NR 18
90242 TC 0
90243 SN 0960-0779
90244 J9 CHAOS SOLITON FRACTAL
90245 JI Chaos Solitons Fractals
90246 PD FEB
90247 PY 2005
90248 VL 23
90249 IS 4
90250 BP 1405
90251 EP 1411
90252 PG 7
90253 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
90254 GA 869WA
90255 UT ISI:000225014000035
90256 ER
90257 
90258 PT J
90259 AU Zhang, ZH
90260    Li, H
90261    Liu, Q
90262    Zhou, LL
90263    Zhang, M
90264    Luo, QM
90265    Glickson, J
90266    Chance, B
90267    Zheng, G
90268 TI Metabolic imaging of tumors using intrinsic and extrinsic fluorescent
90269    markers
90270 SO BIOSENSORS & BIOELECTRONICS
90271 DT Article
90272 DE Pyro-2DG; redox ratio; metabolic index; glucose utilization;
90273    fluorescent imaging
90274 ID RATIO
90275 AB One of the biochemical "hallmarks" of malignancy is enhanced tumor
90276    glycolysis, which is primary due to the overexpression of glucose
90277    transporters (GLUTs) and the increased activity of mitochondria-bound
90278    hexokinase in tumors. Easy methods for assessing glucose utilization in
90279    vitro and in vivo should find widespread application in biological and
90280    biomedical studies, as illustrated by the adoption of FDG PET imaging
90281    in medicine. We have recently synthesized a new NIR fluorescent
90282    pyropheophorbide conjugate of 2-deoxyglucose (2DG), Pyro-2DG, as a
90283    GLUT-targeted photosensitizer. In this study, we have evaluated the in
90284    vivo uptake of Pyro-2DG and found that Pyro-2DG selectively accumulated
90285    in two tumor models, 9L glioma in the rat and c-MYC-induced mammary
90286    tumor in the mouse, compared to surrounding normal muscle tissues at a
90287    ratio of about 10:1. By simultaneously performing redox ratio and
90288    fluorescence imaging, a high degree of correlation between the
90289    PN/(Fp+PN) redox ratio, where PN denotes reduced pyridine nucleotides
90290    (NADH) and Fp denotes oxidized flavoproteins, and the Pyro-2DG uptake
90291    was found in both murine tumor models, indicating that Pyro-2DG Could
90292    serve as an extrinsic NIR fluorescent metabolic index for the tumors.
90293    The fact that only a low level of correlation was observed between the
90294    redox ratio and the uptake of Pyro-acid (the free fluorophore without
90295    the 2-deoxyglucose moiety) supports the hypothesis that Pyro-2DG is an
90296    index of the mitochondrial status (extent of PN reduction) of a tumor.
90297    (C) 2004 Elsevier B.V. All rights reserved.
90298 C1 Univ Penn, Sch Med, Dept Radiol, Philadelphia, PA 19104 USA.
90299    Univ Penn, Sch Med, Dept Biochem & Biophys, Philadelphia, PA 19104 USA.
90300    Huazhong Univ Sci & Technol, Minist Educ, Key Lab Biomed Photon, Wuhan 430074, Hubei, Peoples R China.
90301    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
90302 RP Zheng, G, Univ Penn, Sch Med, Dept Radiol, Chem 1958 Wing R284,Box
90303    66,250 S 33rd St, Philadelphia, PA 19104 USA.
90304 EM zheng@rad.upenn.edu
90305 CR CHANCE B, 1979, J BIOL CHEM, V254, P4764
90306    CZERNIN J, 2002, ANNU REV MED, V53, P89
90307    DCRUZ CM, 2001, NAT MED, V7, P235
90308    GU YQ, 2002, REV SCI INSTRUM, V73, P172
90309    MAYEVSKY A, 1983, BRAIN RES, V276, P95
90310    PAUWELS EKJ, 1998, NUCL MED BIOL, V25, P317
90311    QUISTORFF B, 1985, ANAL BIOCHEM, V148, P389
90312    RAMANUJAM N, 2001, OPT EXPRESS, V8, P335
90313    SEMENZA GL, 2001, NOVART FDN SYMP, V240, P251
90314    SEMENZA GLA, 2001, NOVART FDN SYMP, V240, P260
90315    SHIINO A, 1998, METHOD ENZYMOL, V352, P475
90316    VAUPEL P, 1989, CANCER RES, V49, P6449
90317    ZHANG M, 2003, BIOCONJUGATE CHEM, V14, P709
90318    ZHANG ZH, 2004, IN PRESS J BIOMED OP
90319 NR 14
90320 TC 3
90321 SN 0956-5663
90322 J9 BIOSENS BIOELECTRON
90323 JI Biosens. Bioelectron.
90324 PD OCT 15
90325 PY 2004
90326 VL 20
90327 IS 3
90328 BP 643
90329 EP 650
90330 PG 8
90331 SC Biophysics; Biotechnology & Applied Microbiology
90332 GA 869UE
90333 UT ISI:000225009000033
90334 ER
90335 
90336 PT J
90337 AU Shen, JN
90338    Song, JJ
90339    Ma, HB
90340    Wu, PF
90341    Xiao, MQ
90342    Yao, SD
90343 TI Characteristics of photo-catalytic nano crystalline TiO2 film prepared
90344    by electrochemical oxidation on titanium
90345 SO RARE METAL MATERIALS AND ENGINEERING
90346 DT Article
90347 DE nano titanium dioxide film; photocatalysis; electrochemical oxidation
90348    of titanium
90349 AB Photo-catalytic nano titanium dioxide film has been prepared by
90350    electrochemical oxidation process. The microstructure and grain
90351    morphology in the film are characterized by TEM and XRD. The photo
90352    absorption character of the film is measured using spectrometer. It
90353    shows that porous amorphous titanium dioxide films are formed by the
90354    electrochemical oxidation process in the dielectric solution at an
90355    applied voltage and temperature. The amorphous film transforms into
90356    nano crystallized titanium dioxide film with anatase structure by means
90357    of heat treatment. The oxidation current density decrease with time
90358    increase at the voltage of 0similar to80 V in logarithm law. The grain
90359    size in the film is about 20 nmsimilar to40 nm. The film has high photo
90360    catalytic activity as demonstrated by the degradation test of acid red
90361    B in dye solution.
90362 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
90363 RP Shen, JN, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
90364 CR DUTTA PK, 1999, J PHYS CHEM B, V103, P4412
90365    FUJISHIMA A, 2000, J PHOTOCH PHOTOBIO C, P1
90366    HAUFFE K, 1965, OXID MET, P87
90367    HUANG RC, 1999, PROCESS BIOCHEM, V35, P1
90368    SEBASTIAN VR, 1992, J AM CERAM SOC, V75, P3408
90369    SHANNON RD, 1965, J AM CERAM SOC, V48, P391
90370    SONG JJ, 2002, J CHINESE SOC CORROS, V22, P99
90371 NR 7
90372 TC 1
90373 SN 1002-185X
90374 J9 RARE METAL MAT ENG
90375 JI Rare Metal Mat. Eng.
90376 PD OCT
90377 PY 2004
90378 VL 33
90379 IS 10
90380 BP 1076
90381 EP 1079
90382 PG 4
90383 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
90384    Engineering
90385 GA 868VY
90386 UT ISI:000224942400017
90387 ER
90388 
90389 PT J
90390 AU Liu, WQ
90391    Li, Q
90392    Zhou, BX
90393    Yao, MY
90394 TI The effect of water chemistry on compressive stress at interface of
90395    oxide/matrix of zircaloy-4
90396 SO RARE METAL MATERIALS AND ENGINEERING
90397 DT Article
90398 DE water chemistry; zircaloy-4; compressive stress
90399 ID ZIRCONIUM ALLOYS; MECHANISM; OXIDATION
90400 AB The compressive stress at interface of oxide/matrix of Zr-4 alloy
90401    specimens exposed in 400degreesC, 10.3 MPa superheated steam, 0.01
90402    mol/L and 0.04 mol/L LiOH aqueous solution individually were measured
90403    and compared. It was found that the compressive stress of specimen
90404    exposed in 0.04 mol/L LiOH aqueous solution was always lower than that
90405    of specimens exposed in 0.01 mol/L LiOH aqueous solution and
90406    400degreesC superheated steam; the compressive stress of specimen
90407    exposed in 0.01 mol/L LiOH aqueous solution was lower than that of
90408    specimens exposed in 400degreesC superheated steam when the thickness
90409    of oxide reached to a range. The results indicated that high
90410    concentration LiOH aqueous solution would play down the compressive
90411    stress in the oxide and the higher the concentration, the more obvious
90412    the effect.
90413 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
90414 RP Liu, WQ, Shanghai Univ, Shanghai 200072, Peoples R China.
90415 EM wqliu@mail.shu.edu.cn
90416 CR BEIE HJ, 1994, AM SOC TEST MATER, V1245, P615
90417    GARZAROLLI F, 1991, ZIRC NUCL IND 9 INT, P395
90418    GODLEWSKI J, 1994, AM SOC TEST MATER, V1245, P663
90419    GODLEWSKI J, 2000, AM SOC TEST MATER, V1354, P877
90420    LI ZK, 1999, RARE METAL MAT ENG, V28, P101
90421    LIU JZ, 1996, RARE METAL MAT ENG, V25, P1
90422    LIU WQ, 2001, RARE METAL MAT ENG, V30, P81
90423    LIU WQ, 2002, EFFECT ALLOY ELEMENT
90424    PECHEUR D, 2000, AM SOC TEST MATER, V1354, P793
90425    ZHOU BX, 1989, ASTM STP, V1023, P360
90426    ZHOU BX, 1991, P INT S SHEN LIAON S, P121
90427    ZHOU BX, 2000, NUCL POWER ENG, V21, P439
90428    ZHU MS, 1996, RARE METAL MAT ENG, V25, P34
90429 NR 13
90430 TC 0
90431 SN 1002-185X
90432 J9 RARE METAL MAT ENG
90433 JI Rare Metal Mat. Eng.
90434 PD OCT
90435 PY 2004
90436 VL 33
90437 IS 10
90438 BP 1112
90439 EP 1115
90440 PG 4
90441 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
90442    Engineering
90443 GA 868VY
90444 UT ISI:000224942400026
90445 ER
90446 
90447 PT J
90448 AU Zhao, ZX
90449    Cui, RQ
90450    Meng, FY
90451    Zhao, BC
90452    Yu, HC
90453    Zhou, ZB
90454 TI Nanocrystalline silicon thin films prepared by RF sputtering at low
90455    temperature and heterojunction solar cell
90456 SO MATERIALS LETTERS
90457 DT Article
90458 DE nanometer silicon; low temperature growth; heterojunction solar cell
90459 ID CHEMICAL-VAPOR-DEPOSITION; MICROCRYSTALLINE SILICON
90460 AB This paper reports some results about intrinsic nanocrystalline silicon
90461    thin films deposited by radio frequency (RF) sputtering on p-type c-Si
90462    substrates at low temperature (fixed at 95 degreesC). Samples were
90463    examined by atomic force microscopy (AFM), X-ray diffraction (XRD) and
90464    laser Raman spectrometer allowing the determination of the grain size
90465    and the crystalline volume fraction X-c. XRD measurements showed that
90466    this film has a new microstructure, which is different from the films
90467    deposited by using other methods. The Raman shift of the film is also
90468    shown in the paper. In addition, the n-type nc-Si:H/p-type c-Si
90469    heterojunction solar cell, which has open circuit voltage (V-oc) of 370
90470    mV and short circuit current intensity (J(sc)) of 6.5 mA/cm(2), was
90471    obtained based on the nanocrystalline silicon thin film. (C) 2004
90472    Published by Elsevier B.V.
90473 C1 Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China.
90474    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
90475 RP Zhao, ZX, Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples
90476    R China.
90477 EM zhaoxia0809@sina.com
90478 CR ACHIQ A, 1999, THIN SOLID FILMS, V348, P74
90479    ALI AM, 2001, MAT SCI ENG C-BIO S, V15, P125
90480    CABARROCAS PRI, 2000, J NON-CRYST SOLIDS A, V266, P31
90481    CHEN Y, 1999, APPL PHYS LETT, V75, P1125
90482    CHENG IC, 2003, THIN SOLID FILMS, V427, P56
90483    CICALA G, 1999, THIN SOLID FILMS, V337, P59
90484    GONCALVES C, 2002, THIN SOLID FILMS, V403, P91
90485    HAN W, 1996, CHINESE J SEMICONDUC, V17, P406
90486    HE YL, 1994, J APPL PHYS, V70, P798
90487    KLUNG HP, 1974, XRAY DIFFRACTION PRO
90488    MEIER J, 1994, APPL PHYS LETT, V65, P860
90489    MULLER J, 1999, PHYS REV B, V60, P11666
90490    OSSADNIK C, 1999, THIN SOLID FILMS, V337, P148
90491    SAHA SC, 1995, J APPL PHYS, V78, P5713
90492    SCHROPP REI, 1988, AMORPHOUS MICROCRYST
90493 NR 15
90494 TC 0
90495 SN 0167-577X
90496 J9 MATER LETT
90497 JI Mater. Lett.
90498 PD DEC
90499 PY 2004
90500 VL 58
90501 IS 30
90502 BP 3963
90503 EP 3966
90504 PG 4
90505 SC Materials Science, Multidisciplinary; Physics, Applied
90506 GA 868YA
90507 UT ISI:000224947900027
90508 ER
90509 
90510 PT J
90511 AU Chen, LQ
90512    Yang, XD
90513 TI Steady-state response of axially moving viscoelastic beams with
90514    pulsating speed: comparison of two nonlinear models
90515 SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
90516 DT Article
90517 DE axially accelerating beam; principal parametric resonance;
90518    nonlinearity; viscoelascity
90519 ID INTEGRAL CONSTITUTIVE LAW; TIME-DEPENDENT VELOCITY; TRANSVERSE
90520    VIBRATION; STABILITY ANALYSIS; CHAOTIC RESPONSE; TRAVELING BEAM; BELTS;
90521    DYNAMICS; TENSION; WEB
90522 AB Principal parametric resonance in transverse vibration is investigated
90523    for viscoelastic beams moving with axial pulsating speed. A nonlinear
90524    partial-differential equation governing the transverse vibration is
90525    derived from the dynamical, constitutive. and geometrical relations.
90526    Under certain assumption, the partial-differential reduces to an
90527    integro-partial-differential equation for transverse vibration of
90528    axially accelerating viscoelastic nonlinear beams. The method of
90529    multiple scales is applied to two equations to calculate the
90530    steady-state response. Closed form solutions for the amplitude of the
90531    vibration are derived from the solvability condition of eliminating
90532    secular terms. The stability of straight equilibrium and nontrivial
90533    steady-state response are analyzed by use of the Lyapunov linearized
90534    stability theory. Numerical examples are presented to highlight the
90535    effects of speed pulsation, viscoelascity, and nonlinearity and to
90536    compare results obtained from two equations. (C) 2004 Published by
90537    Elsevier Ltd.
90538 C1 Shanghai Jiao Tong Univ, Dept Engn Mech, Shanghai 200030, Peoples R China.
90539    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
90540 RP Chen, LQ, Shanghai Jiao Tong Univ, Dept Engn Mech, Shanghai 200030,
90541    Peoples R China.
90542 EM lqchen@online.sh.cn
90543 CR ABRATE S, 1992, MECH MACH THEORY, V27, P645
90544    CHAKRABORTY G, 1998, NONLINEAR DYNAM, V17, P301
90545    CHAKRABORTY G, 1999, INT J NONLINEAR MECH, V34, P655
90546    CHEN LQ, IN PRESS APPL MATH C
90547    CHEN LQ, IN PRESS ASME
90548    CHEN LQ, IN PRESS J SOUND VIB
90549    CHEN LQ, 2003, INT J NONLINEAR SCI, V4, P169
90550    CHEN LQ, 2003, J SOUND VIB, V261, P764
90551    CHEN LQ, 2004, 21 INT C THEOR APPL
90552    CHEN LQ, 2004, CHAOS SOLITON FRACT, V21, P349
90553    CHEN LQ, 2004, EUR J MECH A-SOLID, V23, P659
90554    CHEN LQ, 2004, J ENG MATH, V48, P171
90555    CHEN LQ, 2004, NONLINEAR DYNAM, V35, P347
90556    FUNG RF, 1997, J SOUND VIB, V201, P153
90557    FUNG RF, 1998, COMPUT STRUCT, V66, P777
90558    MARYNOWSKI K, 2002, INT J NONLINEAR MECH, V37, P1147
90559    MARYNOWSKI K, 2002, J THEORET APPL MECH, V40, P465
90560    MARYNOWSKI K, 2004, CHAOS SOLITON FRACT, V21, P481
90561    OZ HR, 1998, J SOUND VIB, V215, P571
90562    OZ HR, 1999, J SOUND VIB, V227, P239
90563    OZ HR, 2001, INT J NONLINEAR MECH, V36, P107
90564    OZ HR, 2001, J SOUND VIB, V239, P556
90565    OZKAYA E, 2000, J SOUND VIB, V234, P521
90566    OZKAYA E, 2002, J SOUND VIB, V254, P782
90567    PAKDEMIRLI M, 1994, J SOUND VIB, V169, P179
90568    PAKDEMIRLI M, 1997, J SOUND VIB, V203, P815
90569    PARK SW, 2001, INT J SOLIDS STRUCT, V38, P8065
90570    PARKER RG, 2001, J APPL MECH-T ASME, V68, P49
90571    PASIN F, 1972, ING ARCH, V41, P387
90572    PELLICANO F, 1998, INT J NONLINEAR MECH, V33, P691
90573    PELLICANO F, 2000, J VIB ACOUST, V122, P21
90574    PELLICANO F, 2001, J SOUND VIB, V244, P669
90575    PELLICANO F, 2002, J SOUND VIB, V258, P31
90576    RAVINDRA B, 1998, ARCH APPL MECH, V68, P195
90577    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
90578    WICKERT JA, 1990, J APPL MECH-T ASME, V57, P738
90579    WICKERT JA, 1992, INT J NONLINEAR MECH, V27, P503
90580    YANG XD, 2005, CHAOS SOLITON FRACT, V23, P249
90581    ZHANG L, 1999, J APPL MECH-T ASME, V66, P396
90582    ZHANG L, 1999, J APPL MECH-T ASME, V66, P403
90583    ZHAO WJ, 2002, INT J NONLINEAR SCI, V3, P139
90584 NR 41
90585 TC 1
90586 SN 0020-7683
90587 J9 INT J SOLIDS STRUCT
90588 JI Int. J. Solids Struct.
90589 PD JAN
90590 PY 2005
90591 VL 42
90592 IS 1
90593 BP 37
90594 EP 50
90595 PG 14
90596 SC Mechanics
90597 GA 868AY
90598 UT ISI:000224885500003
90599 ER
90600 
90601 PT J
90602 AU Li, SF
90603    Hu, JH
90604    Yan, YC
90605    Chen, YG
90606    Koide, SS
90607    Li, YP
90608 TI Identification and characterization of a novel splice variant of beta 3
90609    subunit of GABA(A) receptor in rat testis and spermatozoa
90610 SO INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY
90611 DT Article
90612 DE GABA(A) receptor; beta 3 subunit; splice variant; rat testis and
90613    spermatozoa
90614 ID MESSENGER-RNA; EXPRESSION; SYSTEM; SPERM
90615 AB gamma-Aminobutyric acid type A (GABA(A)) receptors are the major sites
90616    of inhibitory action of fast synaptic neurotransmission in the brain.
90617    Their receptors are also widely distributed in peripheral and endocrine
90618    tissues. A full-length cDNA encoding a novel splice variant of beta3
90619    subunit of GABA(A) receptor, designated as beta3t, was identified in
90620    rat testis. This isoform contains a segment, having identical amino
90621    acid sequence as the beta3 subunit of neuronal GABA(A) receptors except
90622    for a section composed of 25 different amino acid sequence in the
90623    N-terminus. Northern blot shows that this isoform is found in rat
90624    testis. The beta3t isoform mRNA was detected in germ cells in the late
90625    step of spermatogenesis by in situ hybridization assay. Results of
90626    immunohistochemical and immunocytochemical assays indicate that the
90627    beta3t isoform is expressed in rat testis and spermatozoa. To determine
90628    a possible function of the N-terminal 25 amino acid segment, a
90629    recombinant plasmid of beta3t-EGFPC was constructed by fusing green
90630    fluorescent protein to the C-terminus of the beta3t isoform. The
90631    chimera product failed to be translocated unto the cell surface when
90632    expressed in HEK 293 cells; whereas, the beta3 subunit of rat brain is
90633    incorporated into the plasma membrane. In conclusion, the present
90634    results show that one variant of beta3 subunit of GABA(A) receptor,
90635    designated as beta3t, is found in germ cells of rat testis and sperm.
90636    The inability of the beta3t variant to target into the plasma membrane
90637    maybe a consequence of the unique 25 amino acid segment in the
90638    N-terminus. (C) 2004 Elsevier Ltd. All rights reserved.
90639 C1 Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem & Cell Biol, Mol Cell Biol Lab, Shanghai 200031, Peoples R China.
90640    Shanghai Univ, E Inst, Model Organism Div, Shanghai, Peoples R China.
90641    Shanghai Univ, Coll Life Sci, Shanghai 200436, Peoples R China.
90642    Populat Council, Ctr Biomed Res, New York, NY 10021 USA.
90643 RP Yan, YC, Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem & Cell
90644    Biol, Mol Cell Biol Lab, Shanghai 200031, Peoples R China.
90645 EM ycyan@sunm.shcnc.ac.cn
90646 CR AKINCI MK, 1999, NEUROSCI RES, V35, P145
90647    BLANKENSTEIN MA, 1995, J STEROID BIOCHEM, V53, P361
90648    BUENO OF, 1998, MOL BRAIN RES, V59, P165
90649    BURT DR, 1991, FASEB J, V5, P2916
90650    CONNOR JX, 1998, J BIOL CHEM, V273, P28906
90651    DAVIES PA, 1997, BRIT J PHARMACOL, V120, P899
90652    GEIGERSEDER C, 2003, NEUROENDOCRINOLOGY, V77, P314
90653    GOODWIN LO, 2000, MOL HUM REPROD, V6, P484
90654    GUASCH RM, 1993, EXP CELL RES, V207, P136
90655    HE XB, 2001, BIOCHEM BIOPH RES CO, V283, P243
90656    HERMAN JP, 1993, CELL MOL NEUROBIOL, V13, P349
90657    HU JH, 2000, CELL RES, V10, P51
90658    HU JH, 2002, CELL RES, V12, P33
90659    HU JH, 2002, NEUROCHEM RES, V27, P195
90660    ISOMOTO S, 1998, BIOCHEM BIOPH RES CO, V253, P10
90661    KITTLER JT, 2000, MOL CELL NEUROSCI, V16, P440
90662    KOMMINOTH P, 1992, DIAGN MOL PATHOL, V1, P142
90663    KOPF GS, 1991, MAMMALIAN SPERM ACRO
90664    LEROITH D, 1993, ANN NY ACAD SCI, V692, P1
90665    LONG AA, 1992, DIAGN MOL PATHOL, V1, P45
90666    MA YH, 2000, CELL RES, V10, P59
90667    MEIZEL S, 1990, INITIATION HUMAN SPE
90668    MEIZEL S, 1997, BIOL REPROD, V56, P569
90669    NAYEEM N, 1994, J NEUROCHEM, V62, P815
90670    PARADISI R, 2001, INT J ANDROL, V24, P8
90671    SHI QX, 1995, BIOL REPROD, V52, P373
90672    SHNYDER SD, 2002, J HISTOCHEM CYTOCHEM, V50, P557
90673    SONNENBERG A, 1993, CURR TOP MICROBIOL I, V184, P7
90674    STEPHENSON FA, 1995, BIOCHEM J, V310, P1
90675    YANAGIMACHI R, 1994, MAMMALIAN FERTILIZAT
90676    YMER S, 1989, EMBO J, V8, P1665
90677    ZHANG L, 1996, RNA, V2, P682
90678 NR 32
90679 TC 2
90680 SN 1357-2725
90681 J9 INT J BIOCHEM CELL BIOL
90682 JI Int. J. Biochem. Cell Biol.
90683 PD FEB
90684 PY 2005
90685 VL 37
90686 IS 2
90687 BP 350
90688 EP 360
90689 PG 11
90690 SC Biochemistry & Molecular Biology; Cell Biology
90691 GA 868JH
90692 UT ISI:000224909400013
90693 ER
90694 
90695 PT J
90696 AU Fu, JL
90697    Chen, LQ
90698    Liu, RW
90699 TI Non-Noether symmetries and conserved quantities of the Lagrange
90700    mechano-electrical systems
90701 SO CHINESE PHYSICS
90702 DT Article
90703 DE mechano-electrical system; non-Noether symmetry; non-Noether conserved
90704    quantity; infinitesimal transformation
90705 ID LIE SYMMETRIES; MECHANICAL SYSTEMS; DYNAMICAL-SYSTEMS; INVARIANCE;
90706    INVERSE; THEOREM
90707 AB This paper focuses on studying non-Noether symmetries and conserved
90708    quantities of Lagrange mechano-electrical dynamical systems. Based on
90709    the relationships between the motion and Lagrangian, we present
90710    conservation laws on non-Noether symmetries for Lagrange
90711    mechano-electrical dynamical systems. A criterion is obtained on which
90712    non-Noether symmetry leads to Noether symmetry of the systems. The work
90713    also gives connections between the non-Noether symmetries and Lie point
90714    symmetries, and further obtains Lie invariants to form a complete set
90715    of non-Noether conserved quantity. Finally, an example is discussed to
90716    illustrate these results.
90717 C1 Zhejiang Univ Sci, Dept Appl Phys, Hangzhou 310018, Peoples R China.
90718    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
90719    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
90720 RP Fu, JL, Zhejiang Univ Sci, Dept Appl Phys, Hangzhou 310018, Peoples R
90721    China.
90722 EM sqfujingli@163.com
90723    lqchen@online.sh.cn
90724 CR CICOGNA G, 1992, NUOVO CIMENTO B, V107, P1085
90725    CRASMAREANU M, 2000, INT J NONLINEAR MECH, V35, P947
90726    DJUKIC DS, 1975, ACTA MECH, V23, P17
90727    FU JL, 2003, CHINESE PHYS, V12, P695
90728    FU JL, 2003, PHYS LETT A, V317, P255
90729    FU JL, 2004, MECH RES COMMUN, V31, P9
90730    HOJMAN SA, 1992, J PHYS A, V25, L291
90731    LI ZP, 1981, ACTA PHYS SINICA, V30, P1659
90732    LIU D, 1991, SCI CHINA SER A, V34, P419
90733    LIU YZ, 2001, ADV DYNAMICS
90734    LUO SK, 2004, ACTA PHYS SIN-CH ED, V53, P1271
90735    LUTZKY M, 1979, PHYS LETT A, V72, P86
90736    LUTZKY M, 1979, PHYS LETT A, V75, P8
90737    LUTZKY M, 1995, J PHYS A, V28, P637
90738    LUTZKY M, 1998, INT J NONLINEAR MECH, V33, P393
90739    MEI FX, 1993, SCI CHINA SER A, V36, P1456
90740    MEI FX, 1999, APPL LIE GROUPS LIE, P151
90741    MEI FX, 2000, ACTA PHYS SIN-CH ED, V49, P1207
90742    MEI FX, 2002, CHINESE SCI BULL, V47, P1544
90743    MEI FX, 2003, ACTA PHYS SIN-CH ED, V52, P1048
90744    NOETHER E, 1918, NACHR GES WISS GOTT, V2, P235
90745    QIAO YF, 2001, ACTA PHYS SIN-CH ED, V50, P1
90746    QIU JJ, 1992, ANAL DYNAMICS MECHAN
90747    ZHANG Y, 2004, ACTA PHYS SIN-CH ED, V53, P2419
90748 NR 24
90749 TC 1
90750 SN 1009-1963
90751 J9 CHIN PHYS
90752 JI Chin. Phys.
90753 PD NOV
90754 PY 2004
90755 VL 13
90756 IS 11
90757 BP 1784
90758 EP 1789
90759 PG 6
90760 SC Physics, Multidisciplinary
90761 GA 868OX
90762 UT ISI:000224924000002
90763 ER
90764 
90765 PT J
90766 AU Wang, ZL
90767    Zhou, ZW
90768 TI An improved level-set re-initialization solver
90769 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
90770 DT Article
90771 DE level set method; volume conservation; level set re-initialization
90772 ID FLOWS
90773 AB Re- initialization procedure in level-set interface capturing method
90774    were investigated. The algorithm accomplishes the re- initialization
90775    step through locking the interface positions. Better accuracy was
90776    obtained both on the interface positions and the total fluid volume
90777    keeping. Though one more step of the interpolations is added in the
90778    procedure, there is no significant increase in total machine time spent.
90779 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
90780 RP Zhou, ZW, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
90781    200072, Peoples R China.
90782 EM wangzl_one@sina.com
90783    zhwzhou@yc.shu.edu.cn
90784 CR CHANG YC, 1996, J COMPUT PHYS, V124, P449
90785    CHEN S, 1997, J COMPUT PHYS, V135, P8
90786    FATEMI E, 1995, SIAM J SCI STAT COMP, V158, P36
90787    FEDKIW RP, 1999, J COMPUT PHYS, V152, P457
90788    JIANG GS, 1996, J COMPUT PHYS, V126, P202
90789    LIU RX, 2001, NUMERICAL SIMULATION
90790    MULDER W, 1992, J COMPUT PHYS, V100, P209
90791    OSHER S, 1988, J COMPUT PHYS, V79, P12
90792    SUSSMAN M, 1997, J FLUID MECH, V341, P269
90793    SUSSMAN M, 1999, J COMPUT PHYS, V148, P81
90794 NR 10
90795 TC 0
90796 SN 0253-4827
90797 J9 APPL MATH MECH-ENGL ED
90798 JI Appl. Math. Mech.-Engl. Ed.
90799 PD OCT
90800 PY 2004
90801 VL 25
90802 IS 10
90803 BP 1083
90804 EP 1088
90805 PG 6
90806 SC Mathematics, Applied; Mechanics
90807 GA 868SP
90808 UT ISI:000224933600001
90809 ER
90810 
90811 PT J
90812 AU Yao, WJ
90813    Ye, ZM
90814 TI Analytical solution for bending beam subject to lateral force with
90815    different modulus
90816 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
90817 DT Article
90818 DE different tension-compression modulus; neutral axis; beam subjected to
90819    lateral force; analytical solution
90820 ID COMPOSITES; ELEMENTS; PLATES
90821 AB A bending beam, subjected to state of plane stress, was chosen to
90822    investigate. The determination of the neutral surface of the structure
90823    was made, and the calculating formulas of neutral axis, normal stress,
90824    shear stress and displacement were derived. It is concluded that, for
90825    the elastic bending beam with different tension-compression modulus in
90826    the condition of complex stress, the position of the neutral axis is
90827    not related with the shear stress, and the analytical solution can be
90828    derived by normal stress used as a criterion, improving the multiple
90829    cyclic method which determines the position of neutral point by the
90830    principal stress. Meanwhile, a comparison is made between the results
90831    of the analytical solution and those calculated from the classic
90832    mechanics theory, assuming the tension modulus is equal to the
90833    compression modulus, and those from the finite element method (FEM)
90834    numerical solution. The comparison shows that the analytical solution
90835    considers well the effects caused by the condition of different tension
90836    and compression modulus. Finally, a calculation correction of the
90837    structure with different modulus is proposed to optimize the structure.
90838 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Civil Engn, Shanghai 200072, Peoples R China.
90839 RP Yao, WJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Civil
90840    Engn, Shanghai 200072, Peoples R China.
90841 EM wjyao@staff.shu.edu.cn
90842 CR AMBARTSUMYAN SA, 1986, ELASTICITY THEORY DI
90843    GAO XL, 2003, INT J SOLIDS STRUCT, V40, P981
90844    MEDRI G, 1982, T ASME, V26, P26
90845    PAPAZOGLOU JL, 1991, COMPOS STRUCT, V17, P1
90846    SRINIVASAN RS, 1989, COMPUT STRUCT, V31, P681
90847    SRINIVASAN RS, 1989, ENG STRUCT, V11, P195
90848    TSENG YP, 1995, COMPOS STRUCT, V30, P341
90849    TSENG YP, 1998, INT J SOLIDS STRUCT, V35, P2025
90850    YANG HT, 1992, J DALIAN U TECHNOLOG, V32, P35
90851    YAO WJ, 2004, APPL MATH MECH, V25, P983
90852    YE ZM, 1997, INT J NUMER METH ENG, V40, P2579
90853    YE ZM, 2001, COM2M C COMP MATH C, P2
90854    ZHANG YZ, 1989, J COMPUTED STRUCT, V6, P236
90855    ZINNO R, 2001, COMPOS STRUCT, V53, P381
90856 NR 14
90857 TC 0
90858 SN 0253-4827
90859 J9 APPL MATH MECH-ENGL ED
90860 JI Appl. Math. Mech.-Engl. Ed.
90861 PD OCT
90862 PY 2004
90863 VL 25
90864 IS 10
90865 BP 1107
90866 EP 1117
90867 PG 11
90868 SC Mathematics, Applied; Mechanics
90869 GA 868SP
90870 UT ISI:000224933600004
90871 ER
90872 
90873 PT J
90874 AU Al-Saif, ASJ
90875    Zhu, ZY
90876 TI Upwind local differential quadrature method for solving coupled viscous
90877    flow and heat transfer equations
90878 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
90879 DT Article
90880 DE upwind locall DQM; Navier-Stokes equation; heat equation
90881 ID NATURAL-CONVECTION; ENCLOSURE; VIBRATION; ANNULUS; PLATES
90882 AB The differential quadrature method ( DQM) has been applied successfully
90883    to solve numerically many problems in the fluid mechanics. But it is
90884    only limited to the flow problems in regular regions. At the same time,
90885    here is no upwind mechanism to deal with the convective property of the
90886    fluid flow in traditional DQ method. A local differential quadrature
90887    method owning upwind mechanism ( ULDQM) was given to solve the coupled
90888    problem of incompressible viscous flow and heat transfer in an
90889    irregular region. For the problem of flow past a contraction channel
90890    whose boundary does not parallel to coordinate direction, the
90891    satisfactory numerical solutions were obtained by using ULDQM with a
90892    few grid points. The numerical results show that the ULDQM possesses
90893    advantages including well convergence, less computational workload and
90894    storage as compared with the low- order finite difference method.
90895 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
90896    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
90897    Univ Basrah, Dept Math, Basrah, Iraq.
90898 RP Zhu, ZY, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
90899    200072, Peoples R China.
90900 EM ajsaif9@hotmail.com
90901    chjcheng@yc.shu.edu.cn
90902 CR BELLMAN R, 1971, J MATH ANAL APPL, V34, P235
90903    BELLMAN R, 1972, J COMPUT PHYS, V10, P40
90904    BERT CW, 1996, INT J MECH SCI, V38, P589
90905    CHEN WL, 1997, INT J NUMER METH ENG, V40, P1941
90906    HAN JB, 1997, COMPUT METHOD APPL M, V141, P265
90907    LAM SSE, 1993, COMPUT STRUCT, V47, P459
90908    LIAQAT A, 2001, INT J HEAT MASS TRAN, V44, P3273
90909    LIN WX, 2001, INT J HEAT FLUID FL, V22, P72
90910    PAPANICOLAOU E, 2002, INT J HEAT MASS TRAN, V45, P1425
90911    SHU C, 1998, INT J HEAT FLUID FL, V19, P59
90912    SHU C, 1999, INT J NUMER METH FL, V30, P977
90913    SHU C, 2000, J COMPUT PHYS, V163, P452
90914    SHU C, 2001, INT J HEAT MASS TRAN, V44, P3321
90915    WANG XW, 1997, INT J NUMER METH ENG, V40, P759
90916 NR 14
90917 TC 0
90918 SN 0253-4827
90919 J9 APPL MATH MECH-ENGL ED
90920 JI Appl. Math. Mech.-Engl. Ed.
90921 PD OCT
90922 PY 2004
90923 VL 25
90924 IS 10
90925 BP 1130
90926 EP 1138
90927 PG 9
90928 SC Mathematics, Applied; Mechanics
90929 GA 868SP
90930 UT ISI:000224933600006
90931 ER
90932 
90933 PT J
90934 AU Cheng, CJ
90935    Ren, JS
90936 TI Cavitation bifurcation for compressible anisotropic hyperelastic
90937    materials
90938 SO ACTA MECHANICA SOLIDA SINICA
90939 DT Article
90940 DE compressible hyperelastic material; anisotropy; cavitation bifurcation;
90941    energy comparison
90942 ID HYPER-ELASTIC MATERIALS; GROWTH
90943 AB The effect of material anisotropy on the bifurcation for void formation
90944    in anisotropic compressible hyperelastic materials is examined.
90945    Numerical solutions are obtained in an anisotropic sphere, whose
90946    material is transversely isotropic in the radial direction. It is shown
90947    that the bifurcation may occur either to the right or to the left,
90948    depending on the degree of material anisotropy. The deformation and
90949    stress contribution in the sphere before cavitation are different from
90950    those after cavitation. The stability of solutions is discussed through
90951    a comparison of energy.
90952 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
90953 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
90954    Shanghai 200072, Peoples R China.
90955 CR BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
90956    GENT AN, 1958, P ROY SOC LOND A MAT, V249, P195
90957    HAO TH, 1990, INT J FRACTURE, V43, R51
90958    HORGAN CO, 1986, J ELASTICITY, V16, P189
90959    HORGAN CO, 1995, APPL MECH REV, V48, P471
90960    POLIGNONE DA, 1993, J ELASTICITY, V33, P27
90961    REN JS, 2002, ACTA MECH SOLIDA SIN, V15, P208
90962    REN JS, 2002, J ENG MATH, V44, P245
90963    REN JS, 2002, J SHANGHAI U, V6, P185
90964    SHANG XC, 2001, INT J ENG SCI, V39, P1101
90965    SHANG XC, 2002, ACTA MECH SOLIDS SIN, V15, P1
90966 NR 11
90967 TC 0
90968 SN 0894-9166
90969 J9 ACTA MECH SOLIDA SINICA
90970 JI Acta Mech. Solida Sin.
90971 PD SEP
90972 PY 2004
90973 VL 17
90974 IS 3
90975 BP 218
90976 EP 222
90977 PG 5
90978 SC Materials Science, Multidisciplinary; Mechanics
90979 GA 868SH
90980 UT ISI:000224932800005
90981 ER
90982 
90983 PT J
90984 AU Wang, HB
90985    Wu, XC
90986    Xu, LY
90987 TI Thermal stability of nanocrystalline layer prepared by surface
90988    mechanical attrition in 0Cr18Ni9Ti stainless steel
90989 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
90990 DT Article
90991 DE grain growth; phase transformation; surface mechanical attrition;
90992    surface nanocrystalline layer
90993 ID IRON
90994 AB By means of surface mechanical attrition (SMA), a nanostructured
90995    surface layer was formed on a 0Cr18Ni9Ti austenite stainless steel
90996    plate. A strain-induced martensite transformation was observed during
90997    SMA treatment, and a single magnetic martensite phase layer with
90998    thickness of about 30 mum was gotten. The grain growth and phase
90999    transformations in the nanocrystalline layer are investigated during
91000    heating. The grain growth exponent for nanocrystalline polycrystalline
91001    steel is estimated. The kinetics mechanism governing the grain growth
91002    in the nanocrystalline layer is discussed. The martensite in the
91003    surface layer is quite stable and the temperature at which the reverse
91004    transformation of martensite to austenite starts during heating is
91005    about 500 degreesC.
91006 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
91007 RP Wang, HB, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
91008    China.
91009 EM hbwang@mail.shu.edu.cn
91010 CR DIVINSKI SV, 2002, Z METALLKD, V93, P256
91011    GLEITER H, 1989, PROG MATER SCI, V33, P223
91012    LIU G, 2000, MAT SCI ENG A-STRUCT, V286, P91
91013    MALOW TR, 1997, ACTA MATER, V45, P2177
91014    NAGAHORA J, 1999, MATER SCI FORUM, V304, P825
91015    RONG YH, 2001, P 4 PAC RIM C ADV MA, P147
91016    TAO NR, 2002, ACTA MATER, V50, P4603
91017    TONG WP, 2003, SCIENCE, V299, P686
91018    WANG HB, 2003, NANOTECHNOLOGY, V14, P696
91019    WANG XY, 2003, WEAR 2, V255, P836
91020    WANG ZB, 2001, ACTA METALL SIN, V37, P1251
91021 NR 11
91022 TC 0
91023 SN 1003-6326
91024 J9 TRANS NONFERROUS METAL SOC CH
91025 JI Trans. Nonferrous Met. Soc. China
91026 PD OCT
91027 PY 2004
91028 VL 14
91029 SI Sp. Iss. 2
91030 BP 210
91031 EP 214
91032 PG 5
91033 SC Metallurgy & Metallurgical Engineering
91034 GA 867DG
91035 UT ISI:000224821800046
91036 ER
91037 
91038 PT J
91039 AU Min, YA
91040    Xu, X
91041    Wu, XC
91042    Li, L
91043    Xu, LP
91044 TI Influence of plasma peening on oxidation of H13 hot work steel in water
91045    vapor
91046 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
91047 DT Article
91048 DE oxidation; hot work tool steel; plasma nitriding; surface treatment
91049 ID SAMPLES
91050 AB The surface oxidation films on H13 steel samples, obtained by different
91051    oxidation processes were observed by optical microscope. It is shown
91052    that the oxidation speed of H13 steel is increased remarkably due to
91053    the surface modification of plasma peening. Further researches were
91054    made by XRD, SEM and EDS. The activation of H13 surface caused by
91055    plasma peening and the subsequent higher oxygen diffusion rate into the
91056    steel seem to be the main reasons of higher oxidation speed. The
91057    nitride layer, generally formed on the steel surface under plasma
91058    nitriding process, can be substituted by oxide in subsequent oxidation
91059    process, which can reduce the risk of heat cracking in some hot work
91060    applications. Therefore, the plasma nitriding plus oxidation process is
91061    a proper choice for some hot work dies which demands high hardness to
91062    avoid indentation as well as high toughness to avoid cracks.
91063 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
91064 RP Min, YA, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
91065    China.
91066 EM yamin@mail.shu.edu.cn
91067 CR ALSARAN A, 2003, SURFACE COATINGS TEC, V176, P344
91068    ASTEMAN H, 2002, CORROS SCI, V44, P2635
91069    ATKINSON A, 1985, J PHYS CHEM SOLIDS, V46, P469
91070    EBERSBACH U, 1995, MATER SCI FORUM, V185, P713
91071    FRASER DT, 2001, MAT AUSTR, V33, P13
91072    HAASE B, 2000, HTM, V55, P294
91073    KLARENFJORD B, 1998, P INT C TOOL STEEL D, P3
91074    SONG SH, 2003, J MATER SCI, V38, P499
91075    TOMLINSON L, 1989, CORROS SCI, V29, P939
91076    ZLATANOVIC M, 2003, SURF COAT TECH, V174, P1220
91077    ZLATANOVIC M, 2004, SURF COAT TECH, V177, P277
91078 NR 11
91079 TC 0
91080 SN 1003-6326
91081 J9 TRANS NONFERROUS METAL SOC CH
91082 JI Trans. Nonferrous Met. Soc. China
91083 PD OCT
91084 PY 2004
91085 VL 14
91086 SI Sp. Iss. 2
91087 BP 305
91088 EP 309
91089 PG 5
91090 SC Metallurgy & Metallurgical Engineering
91091 GA 867DG
91092 UT ISI:000224821800067
91093 ER
91094 
91095 PT J
91096 AU Zhang, F
91097    Chen, F
91098    Tang, GC
91099 TI Convex quadratic programming relaxations for parallel machine
91100    scheduling with controllable processing times subject to release times
91101 SO PROGRESS IN NATURAL SCIENCE
91102 DT Article
91103 DE scheduling with controllable processing time; release time; quadratic
91104    programming; approximation algorithm
91105 ID SINGLE-MACHINE; FLOW COST
91106 AB Scheduling unrelated parallel machines with controllable processing
91107    times subject to release times is investigated. Based on the convex
91108    quadratic programming relaxation and the randomized rounding strategy,
91109    a 2-approximation algorithm is obtained for a special case with the
91110    all-or-none property and then a 3-approximation algorithm is presented
91111    for general problem.
91112 C1 Shanghai Second Polytech Univ, Dept Math, Shanghai 201209, Peoples R China.
91113    Tongji Univ, Dept Math, Shanghai 200092, Peoples R China.
91114    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
91115 RP Zhang, F, Shanghai Second Polytech Univ, Dept Math, Shanghai 201209,
91116    Peoples R China.
91117 EM zhangfeng@sf.sspu.cn
91118 CR CHEN ZL, 1997, OPER RES LETT, V21, P69
91119    CHENG TCE, 1996, IIE TRANS, V28, P177
91120    HUANG W, 1999, IMA J MATH APPL BUSI, V10, P15
91121    MOTWANI R, 1995, RANDOMIZED ALGORITHM
91122    NOWICKI E, 1990, DISCRETE APPL MATH, V26, P271
91123    SKUTELLA M, 2001, J ACM, V48, P206
91124    TANG G, 2003, THEORY MODERN SCHEDU
91125    VICKSON RG, 1980, OPS RES, V28, P1155
91126    WAN GH, 2001, INFORM PROCESS LETT, V79, P273
91127    ZHANG F, 2001, OPER RES LETT, V11, P41
91128 NR 10
91129 TC 0
91130 SN 1002-0071
91131 J9 PROG NAT SCI
91132 JI Prog. Nat. Sci.
91133 PD SEP
91134 PY 2004
91135 VL 14
91136 IS 9
91137 BP 758
91138 EP 764
91139 PG 7
91140 SC Multidisciplinary Sciences
91141 GA 865FP
91142 UT ISI:000224688200003
91143 ER
91144 
91145 PT J
91146 AU Hu, XF
91147    Lu, HY
91148    Xu, Q
91149    Dong, LJ
91150    Hu, X
91151 TI Red ratings for loess-paleosol sequences on China's loess plateau and
91152    their paleo-climatic implications
91153 SO PEDOSPHERE
91154 DT Article
91155 DE hematite; loess-paleosol sequences; Loess Plateau; magnetic
91156    susceptibility; red ratings
91157 ID MAGNETIC-SUSCEPTIBILITY RECORD; SOIL COLOR; DEPOSITS; PALEOCLIMATE;
91158    PEDOGENESIS; LUOCHUAN; PEDOSTRATIGRAPHY; MINERALOGY; EVOLUTION; SECTION
91159 AB Comparisons of red ratings (RR) with Fe-d, Fe-d/Fe-t, clay content, and
91160    magnetic susceptibility (chi) of two loess-paleosol sequences at
91161    Luochuan and Lingtai on China's Loess Plateau were conducted to study
91162    the possible relationship between RR and pedogenic degrees of the two
91163    loess-palecsol sequences, and to discuss whether the RR could become
91164    new paleo-climatic indicators. Results showed that the RR of the two
91165    loess-paleosol sequences had positive, highly significant (P < 0.01)
91166    correlations with: 1) citrate-bicarbonate-dithionite (CBD) extracted
91167    iron (Fed), 2) ratios of CBD extracted iron to total iron (Fed/Fet), 3)
91168    clay (< 2 mum), and 4) magnetic susceptibility (chi). This suggested
91169    that the RR of these loess-paleosol sequences could indicate degrees of
91170    loess weathering and pedogenesis and were potential paleo-climatic
91171    proxies. The strong correlations of RR to Fe-d and chi also implied
91172    that during pedogenic processes, pedogenic hematite in loess and
91173    paleosols were closely related to the amount of total secondary iron
91174    oxides and pedogenic ferrimagnetic minerals (predominantly maghemite).
91175 C1 Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China.
91176    Chinese Acad Sci, Inst Earth Environm, State Key Lab Loess & Quaternary Geol, Xian 710075, Peoples R China.
91177 RP Hu, XF, Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072,
91178    Peoples R China.
91179 EM xfhu@mail.shu.edu.cn
91180 CR *I SOIL SCI CAS XI, 1989, NEW STAND SOIL COL C
91181    *USDA NRCS NSSC, 1996, SOIL SURV LAB METH M, P588
91182    AN ZS, 1991, CATENA, V18, P125
91183    BANERJEE SK, 1993, GEOPHYS RES LETT, V20, P843
91184    BRONGER A, 1989, GEODERMA, V45, P123
91185    CHEN JF, 1983, SOIL COLLOID 1 MAT B, P132
91186    DENG CL, 2000, GEOPHYS RES LETT, V27, P3715
91187    DING ZL, 1993, CATENA, V20, P73
91188    DING ZL, 1999, PALAEOGEOGR PALAEOCL, V152, P49
91189    DING ZL, 2001, EARTH PLANET SC LETT, V185, P99
91190    EVANS ME, 1994, GEOPHYS J INT, V117, P257
91191    GUO ZT, 1996, SCI CHINA SER D, V39, P392
91192    HU XF, 1999, ACTA PEDOLOGICA SINI, V36, P301
91193    HU XF, 2000, SCI GEOGRAPHICA SINI, V20, P39
91194    HU XF, 2003, CHINESE SCI BULL, V48, P1251
91195    HUANG MH, 2000, INT J INFORM MANAGE, V20, P337
91196    JI JF, 2001, QUATERNARY RES, V56, P23
91197    KETTERINGS QM, 2000, SOIL SCI SOC AM J, V64, P1826
91198    LIU TS, 1985, LOESS ENV, P44
91199    LIU XM, 1992, GEOPHYS J INT, V108, P301
91200    LIU XM, 1999, PHYS EARTH PLANET IN, V112, P191
91201    LU H, 1998, SCI CHINA, V28, P278
91202    LU HU, 1999, PALAEOGEOGR PALAEOCL, V154, P237
91203    MAHER BA, 1991, GEOLOGY, V19, P3
91204    MAHER BA, 1994, GEOLOGY, V22, P857
91205    MEHRA OP, 1960, CLAYS CLAY MINERALS, V7, P317
91206    ROBERTSON AR, 1977, COLOR RES APPL, V2, P7
91207    SCHWERTMANN U, 1982, GEODERMA, V27, P209
91208    SUN DH, 1998, GEOPHYS RES LETT, V25, P85
91209    SUN JZ, 1991, QUATERNARY LOESS PLA, P113
91210    TORII M, 2001, GEOPHYS J INT, V146, P416
91211    TORRENT J, 1980, GEODERMA, V23, P191
91212    TORRENT J, 1983, SOIL SCI, V136, P354
91213    VEROSUB KL, 1993, GEOLOGY, V21, P1011
91214    XIA YF, 2000, ACTA PEDOLOGICA SINI, V37, P443
91215    XIONG Y, 1987, SOILS CHINA, P495
91216    YANG SL, 2001, SCI CHINA SER D S, V44, P218
91217    ZHOU LP, 1990, NATURE, V346, P737
91218    ZHU XM, 1958, CHINESE QUATERNARY S, V1, P74
91219 NR 39
91220 TC 1
91221 SN 1002-0160
91222 J9 PEDOSPHERE
91223 JI Pedosphere
91224 PD NOV
91225 PY 2004
91226 VL 14
91227 IS 4
91228 BP 433
91229 EP 440
91230 PG 8
91231 SC Agriculture, Soil Science
91232 GA 866LC
91233 UT ISI:000224774000003
91234 ER
91235 
91236 PT J
91237 AU Wang, J
91238    Liu, PT
91239    Li, Y
91240 TI TM010 dielectric loaded cavity resonator for microwave filter
91241 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
91242 DT Article
91243 DE dielectric resonator filter; cavity resonator; wireless communications
91244    filter
91245 AB This paper describes a type of rectangular dielectric-loaded cavity
91246    resonator based on TM010 mode. The resonator has an unloaded quality
91247    factor (Q) of about 10, 000 and good spurious-firee performance and is
91248    suitable for the design of multiple cavity microwave filters. We
91249    present two sample filters using this kind of resonator. (C) 2004 Wiley
91250    Periodicals, Inc.
91251 C1 Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China.
91252 RP Wang, J, Shanghai Univ, Dept Phys, Shanghai 200072, Peoples R China.
91253 CR KOBAYASHI Y, 1978, IEEE I MICR S MIT S, P233
91254    WANG C, 1998, IEEE T MICROW THEO 2, V46, P2501
91255    WEXLER A, 1967, IEEE T MICROW THEORY, V15, P508
91256 NR 3
91257 TC 0
91258 SN 0895-2477
91259 J9 MICROWAVE OPT TECHNOL LETT
91260 JI Microw. Opt. Technol. Lett.
91261 PD DEC 5
91262 PY 2004
91263 VL 43
91264 IS 5
91265 BP 373
91266 EP 376
91267 PG 4
91268 SC Engineering, Electrical & Electronic; Optics
91269 GA 865YV
91270 UT ISI:000224741000004
91271 ER
91272 
91273 PT J
91274 AU Li, WH
91275    Wei, BC
91276    Sun, YF
91277    Xia, L
91278    Wang, YR
91279    Dong, YD
91280 TI Effect of Fe content on the thermal stability and dynamic mechanical
91281    behavior of NdAlNiCu bulk metallic glasses
91282 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
91283    MICROSTRUCTURE AND PROCESSING
91284 DT Article
91285 DE bulk metallic glass; glass transition; crystallization; dynamic
91286    mechanical thermal analysis
91287 ID MAGNETIC-PROPERTIES; INTERNAL-FRICTION; AMORPHOUS-ALLOYS;
91288    CRYSTALLIZATION; EVOLUTION; VISCOSITY; LIQUID; PHASE; RANGE; FLOW
91289 AB The dependence of microstructure and thermal stability on Fe content of
91290    bulk Nd60Al10Ni10Cu20-xFex (0 less than or equal to x less than or
91291    equal to 20) metallic glasses is investigated by means of differential
91292    scanning calorimetry (DSC), X-ray diffraction (XRD) and high-resolution
91293    transmission electron micrograph (HRTEM). All samples exhibit typical
91294    amorphous feature under the detect limit of XRD, however, HRTEM results
91295    show that the microstructure of Nd60Al10Ni10Cu20-xFex alloys changes
91296    from a homogeneous amorphous phase to a composite structure consisting
91297    of clusters dispersed in amorphous matrix by increasing Fe content.
91298    Dynamic mechanical properties of these alloys with controllable
91299    microstructure are studied, expressed via storage modulus, the loss
91300    modulus and the mechanical damping. The results reveal that the storage
91301    modulus of the alloy without Fe added shows a distinct decrease due to
91302    the main a relaxation. This decrease weakens and begins at a higher
91303    temperature with increasing Fe content. The mechanism of the effect of
91304    Fe addition on the microstructure and thermal stability in this system
91305    is discussed in terms of thermodynamics viewpoints. (C) 2004 Elsevier
91306    B.V. All rights reserved.
91307 C1 Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Beijing 100080, Peoples R China.
91308    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
91309 RP Wei, BC, Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Beijing
91310    100080, Peoples R China.
91311 EM weibc@imech.ac.cn
91312 CR BOBROV OP, 2003, SCRIPTA MATER, V49, P255
91313    CHEN HS, 1983, AMORPHOUS METALLIC A, P169
91314    CORSARO RD, 1976, PHYS CHEM GLASSES, V17, P128
91315    DEBAST J, 1963, PHYSICS CHEM GLASS, V4, P117
91316    FLORES KM, 2001, ACTA MATER, V49, P2527
91317    HE Y, 1994, PHIL MAG LETT, V70, P213
91318    HIKI Y, 2003, J ALLOY COMPD, V355, P42
91319    INOUE A, 1996, MATER T JIM, V37, P636
91320    INOUE A, 1997, MAT SCI ENG A-STRUCT, V226, P357
91321    INOUE A, 1998, METALL MATER TRANS A, V29, P1779
91322    JOHNSON WL, 1999, MRS BULL, V24, P42
91323    KONG HZ, 2002, J PHYS D APPL PHYS, V35, P423
91324    LEE ML, 2003, PHYS REV B, V67
91325    MASSALSKI TB, 1992, BINRY ALLOY PHASE DI
91326    MIEDEMA AR, 1975, J LESS-COMMON MET, V41, P283
91327    MILLS JJ, 1974, J NONCRYST SOLIDS, V14, P255
91328    NOWICK AS, 1972, ANELASTIC RELAXATION
91329    ORTEGAHERTOGS RJ, 2001, SCRIPTA MATER, V44, P1333
91330    PELLETIER JM, 2002, MAT SCI ENG A-STRUCT, V336, P190
91331    PEREZ J, 1988, POLYMER, V29, P483
91332    SCHROTER K, 1998, EUR PHYS J B, V5, P1
91333    TURNBULL D, 1969, CONTEMP PHYS, V10, P473
91334    WANIUK TA, 1998, ACTA MATER, V46, P5229
91335    WEI BC, 2001, J APPL PHYS, V89, P3529
91336    WEI BC, 2001, PHYS REV B, V64
91337    ZHANG Z, 2002, APPL PHYS LETT, V81, P4371
91338 NR 26
91339 TC 0
91340 SN 0921-5093
91341 J9 MATER SCI ENG A-STRUCT MATER
91342 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
91343 PD NOV 15
91344 PY 2004
91345 VL 385
91346 IS 1-2
91347 BP 397
91348 EP 401
91349 PG 5
91350 SC Materials Science, Multidisciplinary
91351 GA 867DI
91352 UT ISI:000224822000050
91353 ER
91354 
91355 PT J
91356 AU Zhao, CY
91357    Tan, WH
91358    Guo, QZ
91359 TI Generalized optical ABCD theorem and its application to the diffraction
91360    integral calculation
91361 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND
91362    VISION
91363 DT Article
91364 ID MATRIX
91365 AB We generalize the transfer matrix ABCD theorem for paraxial rays of the
91366    optical system to skew rays propagated off axis, whether or not the
91367    system possesses rotational symmetry. Furthermore, we apply the
91368    generalized ABCD theorem to evaluate the diffraction integral matrix
91369    elements A-D expressed in terms of the angle eikonal T, with the
91370    primary aberrations included. Finally, analysis and numerical
91371    calculation are given for propagation of a light beam through the
91372    optical system in the case in which spherical aberration and coma are
91373    present. (C) 2004 Optical Society of America.
91374 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
91375 RP Zhao, CY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
91376 EM zchy49@sohu.com
91377 CR BORN M, 1999, PRINCIPLES OPTICS, P143
91378    BROUWER W, 1963, APPL OPTICS, V2, P1239
91379    BROUWER W, 1964, MATRIX METHODS OPTIC
91380    COLLINS SA, 1970, J OPT SOC AM, V60, P1168
91381    KOGELNIK H, 1966, P IEEE, V54, P1312
91382    MAITLAND A, 1969, LASER PHYS, P161
91383    PIQUERO G, 1997, OPTIK, V105, P20
91384    SHAOMIN W, 1988, PROGR OPTICS, V25, P281
91385    YURA HT, 1987, J OPT SOC AM A, V4, P1931
91386 NR 9
91387 TC 0
91388 SN 1084-7529
91389 J9 J OPT SOC AM A-OPT IMAGE SCI
91390 JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis.
91391 PD NOV
91392 PY 2004
91393 VL 21
91394 IS 11
91395 BP 2154
91396 EP 2163
91397 PG 10
91398 SC Optics
91399 GA 865RX
91400 UT ISI:000224721500013
91401 ER
91402 
91403 PT J
91404 AU Wang, JH
91405    Bao, BR
91406    Wu, MH
91407    Sun, XL
91408    Zhang, XY
91409    Hu, JX
91410    Ye, GA
91411 TI Qualitative and quantitative analysis of the light hydrocarbons
91412    produced by radiation degradation of N,N-diethylhydroxylamine
91413 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
91414 DT Article
91415 AB This paper reports on the qualitative and quantitative analyses of
91416    light hydrocarbons produced by radiation degradation of
91417    N,N-diethylhydroxylamine. The results show that when the absorbed doses
91418    are between 10 and 1000 kGy, the main light hydrocarbons are methane,
91419    ethane, ethene, propane and n-butane. Their volume fractions are
91420    increased with the increase of the dose. The volume fraction of ethene
91421    is also increased at low doses with the increase of the dose, but it is
91422    decreased with the increase of dose at high doses.
91423 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
91424    Inst Atom Energy, Beijing 102413, Peoples R China.
91425 RP Wang, JH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
91426    Peoples R China.
91427 EM jinhuawang@online.sh.cn
91428 CR HENRICH LH, 1988, J CHROMATOGR SCI, V26, P198
91429    KOLTUNOV VS, 1993, RADIOKHIMIYA, V35, P79
91430    SZE YK, 1983, NUCL TECHNOL, V63, P431
91431    ZHANG AY, 1999, AT ENERGY SCI TECHNO, V33, P97
91432    ZHANG AY, 2001, AT ENERGY SCI TECHNO, V35, P83
91433 NR 5
91434 TC 0
91435 SN 0236-5731
91436 J9 J RADIOANAL NUCL CHEM
91437 JI J. Radioanal. Nucl. Chem.
91438 PY 2004
91439 VL 262
91440 IS 2
91441 BP 451
91442 EP 453
91443 PG 3
91444 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
91445    & Technology
91446 GA 867QR
91447 UT ISI:000224857800020
91448 ER
91449 
91450 PT J
91451 AU Wang, ZL
91452    Yaegashi, O
91453    Sakaue, H
91454    Takahagi, T
91455    Shingubara, S
91456 TI Effect of additives on hole filling characteristics of electroless
91457    copper plating
91458 SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES &
91459    REVIEW PAPERS
91460 DT Article
91461 DE electroless Cu plating; bottom-up filling; additives; damascene process
91462 ID ELECTRODEPOSITION
91463 AB The effects of additives, such as Cl-, thiourea, benzotriazole,
91464    bis(3-sulfopropyl)-disulfide (SPS), and mercaptonicotinic acid, upon
91465    the hole filling characteristic of electroless Cu plating were
91466    investigated. With the addition of thiourea, the Cu deposition rate was
91467    suppressed and the hole filling characteristic became anti-bottom-up
91468    filling with the presence of voids. With the addition of SPS, bottom-up
91469    Cu filling was achieved and the bottom-up tendency increased with an
91470    increase in SPS concentration. The mechanism of anti-bottom-up filling
91471    and bottom-up filling with the addition of thiourea or SPS is
91472    attributed to the diffusion flux of thiourea being higher than that of
91473    Cu2+-EDTA complex, and the diffusion flux of SPS being lower than that
91474    of Cu2+-EDTA complex.
91475 C1 Hiroshima Univ, Grad Sch Adv Sci Matter, Higashihiroshima 7398530, Japan.
91476    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
91477 RP Wang, ZL, Hiroshima Univ, Grad Sch Adv Sci Matter, 1-3-1 Kagamiyama,
91478    Higashihiroshima 7398530, Japan.
91479 EM wangzl@hiroshima-u.ac.jp
91480 CR CHIU SY, 2000, J VAC SCI TECHNOL B, V18, P2835
91481    DOW WP, 2003, ELECTROCHEM SOLID ST, V6, C134
91482    KANG M, 2003, J ELECTROCHEM SOC, V150, C426
91483    MOFFAT TP, 2003, ELECTROCHEM SOLID ST, V6, C59
91484    PYM SG, 2003, J APPL PHYS, V93, P1257
91485    SHINGUBARA S, 2002, IEEE INT INT C 2002, P176
91486    SHINGUBARA S, 2003, P IEDM 2003
91487    SHINGUBARA S, 2004, ELECTROCHEM SOLID ST, V7, C78
91488    WANG Z, IN PRESS J ELECTROCH
91489    WANG Z, 2003, ELECTROCHEM SOLID ST, V6, C38
91490    WANG ZL, 2003, J APPL PHYS, V94, P4697
91491    WANG ZL, 2003, JPN J APPL PHYS 2, V42, L1223
91492 NR 12
91493 TC 2
91494 SN 0021-4922
91495 J9 JPN J APPL PHYS PT 1
91496 JI Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap.
91497 PD OCT
91498 PY 2004
91499 VL 43
91500 IS 10
91501 BP 7000
91502 EP 7001
91503 PG 2
91504 SC Physics, Applied
91505 GA 866NN
91506 UT ISI:000224780300035
91507 ER
91508 
91509 PT J
91510 AU Chen, YM
91511    Chen, YB
91512 TI Research & reform on real-time operating system applied to robot
91513 SO CHINESE JOURNAL OF ELECTRONICS
91514 DT Article
91515 DE real-time characteristic; preemption model; real-time characteristic
91516    reform; interrupt service
91517 AB The paper describes some current popular real-time operation systems
91518    such as QNX, VxWorks, and analyses Linux present status and weak points
91519    for real-time supporting characteristics and related main trend
91520    technology of real-time support based on Linux kernel, and compares
91521    comprehensively strong and weak points among different kinds of
91522    solutions. By drawing out a typical realtime application model and
91523    combining some present research results and thoughts, this paper puts
91524    forward reform scheme of real-time operation system which is realized
91525    in Linux operation system, and some good results are given at last.
91526 C1 Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200072, Peoples R China.
91527 RP Chen, YM, Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200072, Peoples
91528    R China.
91529 EM ymchen@yc.shu.edu.cn
91530 CR CHENG PK, 2001, J INTELLIGENT ROBOTI, V30, P377
91531    CHOI SH, 2000, INT J TIM CRIT COMP, V19, P25
91532    DANKWARDT K, FUNDAMENTALS K COMPU
91533    DANKWARDT K, FUNDAMENTALS REAL TI
91534    ELHAJJ I, 2000, P 2000 IEEE INT C RO, P388
91535    KRISHNA CM, 2001, REAL-TIME SYST, P40
91536    TERRASA A, 2002, REAL-TIME SYST, V22, P151
91537 NR 7
91538 TC 0
91539 SN 1022-4653
91540 J9 CHINESE J ELECTRON
91541 JI Chin. J. Electron.
91542 PD OCT
91543 PY 2004
91544 VL 13
91545 IS 4
91546 BP 564
91547 EP 568
91548 PG 5
91549 SC Engineering, Electrical & Electronic
91550 GA 866QE
91551 UT ISI:000224787200002
91552 ER
91553 
91554 PT J
91555 AU Wu, ZM
91556    Chen, C
91557    Liu, GL
91558 TI Multipoint inverse shape design of airfoils based on variable-domain
91559    variational principle
91560 SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY
91561 DT Article
91562 DE aerodynamics; finite element analysis; numerical analysis
91563 AB As a kind of free (unknown) boundary problems, inverse shape design of
91564    airfoils attracts extensive attention in recent years. By
91565    variable-domain variational theory; free boundary condition can be
91566    coupled with the governing equations for flow field, which makes it
91567    possible to calculate the flow field with the free boundary
91568    simultaneously. In this paper, the variational principle (VP) of 2D
91569    airfoil shape design problem is obtained from the basic dimensionless
91570    velocity potential equations for 2D compressible flow by using
91571    systematic approach and variable-domain variational formula. The
91572    cleformable finite element method based on the VP is used to
91573    segmentally design airfoil at two design points (angles of attack) and
91574    four design points, respectively. The results show that the present
91575    method is highly effective and accurate to solve multipoint inverse
91576    problem of airfoils.
91577 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai, Peoples R China.
91578 RP Wu, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai,
91579    Peoples R China.
91580 CR EPPLER R, 1979, J SHIP RES, V23, P209
91581    HAWTHORNE WR, 1984, J ENG GAS TURB POWER, V106, P346
91582    HENNE PA, 1980, 800330 AIAA
91583    LIGHTHILL MJ, 1945, 2112 ARC RD
91584    LIU GL, 1993, INT J TURBO JET ENGI, V10, P273
91585    LIU GL, 1998, INVERSE PROBL ENG, P391
91586    LIU GL, 2000, ACTA MECH, V140, P73
91587    SCHMIDT E, 1989, AGARDCP463
91588    SELIG MS, 1992, AIAA J, V30, P1162
91589 NR 9
91590 TC 0
91591 SN 0002-2667
91592 J9 AIRCRAFT ENG AEROSP TECHNOL
91593 JI Aircr. Eng. Aerosp. Technol.
91594 PY 2004
91595 VL 76
91596 IS 5
91597 BP 516
91598 EP 522
91599 PG 7
91600 SC Engineering, Aerospace
91601 GA 864TR
91602 UT ISI:000224656300008
91603 ER
91604 
91605 PT J
91606 AU Xu, XM
91607    Sun, Y
91608    Chen, AQ
91609    Zheng, L
91610 TI Triple-gluon scatterings and early thermalization
91611 SO NUCLEAR PHYSICS A
91612 DT Article
91613 DE triple-gluon scatterings; transport equation; thermalization
91614 ID HEAVY-ION COLLISIONS; ULTRARELATIVISTIC NUCLEAR COLLISIONS; PLUS AU
91615    COLLISIONS; DUAL PARTON MODEL; ELLIPTIC FLOW; PARTICLE-PRODUCTION;
91616    ENTROPY PRODUCTION; ROOT-S(NN)=130 GEV; TRANSPORT-THEORY; CASCADE MODELS
91617 AB Triple-gluon scattering processes in gluon matter initially created in
91618    Au-Au collisions at RHIC energies become important. The three-gluon
91619    scatterings are calculated in perturbative QCD and give rise to a new
91620    term in a transport equation for gluon distribution. A numerical
91621    solution of the transport equation demonstrates gluon momentum isotropy
91622    achieved at a time of the order of 0.65 fm/c and can thus be fitted to
91623    a thermal distribution with fugacity of 0.065 and temperature of 0.75
91624    GeV. Triple-gluon scatterings lead to a short thermalization time of
91625    gluon matter. (C) 2004 Elsevier B.V. All rights reserved.
91626 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
91627    Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
91628    Chinese Acad Sci, Shanghai Inst Nucl Res, Div Nucl Phys, Shanghai 201800, Peoples R China.
91629    Shanghai Univ, Dept Commun, Shanghai 200436, Peoples R China.
91630 RP Xu, XM, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
91631 EM xmxucao@sh.cnuninet.net
91632 CR ACKERMANN KH, 2001, PHYS REV LETT, V86, P402
91633    ADLER C, 2001, PHYS REV LETT, V87
91634    ADLER C, 2002, PHYS REV C, V66
91635    ADLER C, 2003, PHYS REV LETT, V90
91636    ADLER SS, 2003, PHYS REV LETT, V91
91637    ALAM JE, 1994, PHYS REV LETT, V73, P1895
91638    AURENCHE P, 1992, PHYS REV D, V45, P92
91639    AURENCHE P, 1994, COMPUT PHYS COMMUN, V83, P107
91640    BASS SA, 2003, PHYS LETT B, V551, P277
91641    BEARDEN IG, 2003, NUCL PHYS A, V715, C171
91642    BERENDS FA, 1981, PHYS LETT B, V103, P124
91643    BERENDS FA, 1987, NUCL PHYS B, V294, P700
91644    BERENDS FA, 1988, NUCL PHYS B, V306, P759
91645    BHALERAO RS, 2000, PHYS REV C, V61
91646    BIRO TS, 1992, PHYS LETT B, V283, P171
91647    BIRO TS, 1993, PHYS REV C, V48, P1275
91648    BJORKEN JD, 1964, RELATIVISTIC QUANTUM
91649    BLAIZOT JP, 1987, NUCL PHYS B, V289, P847
91650    BLAIZOT JP, 1993, NUCL PHYS B, V390, P589
91651    BLAIZOT JP, 1994, NUCL PHYS B, V417, P608
91652    CAPELLA A, 1994, PHYS REP, V236, P225
91653    CARAVAGLIOS F, 1999, NUCL PHYS B, V539, P215
91654    CASSING W, 1999, PHYS REP, V308, P65
91655    CERCIGNANI C, 1975, THEORY APPL BOLTZMAN
91656    CHAPMAN S, 1973, MATH THEORY NONUNIFO
91657    COMBRIDGE BL, 1977, PHYS LETT B, V70, P234
91658    COOPER F, 2003, PHYS LETT B, V555, P181
91659    CORLESS RM, 1995, ESSENTIAL MAPLE
91660    CUTLER R, 1978, PHYS REV D, V17, P196
91661    DRAGGIOTIS P, 1998, PHYS LETT B, V439, P157
91662    ELZE HT, 1989, PHYS REP, V183, P81
91663    ESKOLA KJ, 1989, NUCL PHYS B, V323, P37
91664    ESKOLA KJ, 1996, PHYS LETT B, V374, P20
91665    ESKOLA KJ, 2000, NUCL PHYS B, V570, P379
91666    ESKOLA KJ, 2001, PHYS LETT B, V497, P39
91667    ESKOLA KJ, 2003, NUCL PHYS A, V715, C561
91668    ESKOLA KJ, 2003, PHYS LETT B, V566, P187
91669    GEIGER K, 1992, NUCL PHYS B, V369, P600
91670    GEIGER K, 1992, PHYS REV D, V46, P4965
91671    GEIGER K, 1992, PHYS REV D, V46, P4986
91672    GEIGER K, 1993, PHYS REV D, V47, P133
91673    GEIGER K, 1993, PHYS REV D, V47, P4905
91674    GOTTSCHALK T, 1980, PHYS REV D, V21, P102
91675    GUNION JF, 1986, PHYS REV D, V34, P2119
91676    GYULASSY M, 1994, COMPUT PHYS COMMUN, V83, P307
91677    GYULASSY M, 1997, NUCL PHYS A, V626, P999
91678    GYULASSY M, 2001, NUCL PHYS B, V594, P371
91679    GYULASSY M, 2002, PHYS LETT B, V526, P301
91680    HEINZ U, 2002, P 18 WINT WORKSH NUC
91681    HEISELBERG H, 1996, PHYS REV C, V53, P1892
91682    HIRANO T, 2002, PHYS REV C, V65
91683    HUOVINEN P, 2003, NUCL PHYS A, V715, C299
91684    HWA RC, 1986, PHYS REV LETT, V56, P696
91685    KRASNITZ A, 1999, NUCL PHYS B, V557, P237
91686    KRASNITZ A, 2000, PHYS REV LETT, V84, P4309
91687    KRASNITZ A, 2001, PHYS REV LETT, V86, P1717
91688    KUNSZT Z, 1986, NUCL PHYS B, V271, P333
91689    LACEY RA, 2002, NUCL PHYS A, V698, P559
91690    LEE JH, 2003, 7 INT C STRANG QUARK
91691    LEPAGE GP, 1978, J COMPUT PHYS, V27, P192
91692    LEVAI P, 1995, PHYS REV C, V51, P3326
91693    MANGANO M, 1988, NUCL PHYS B, V298, P653
91694    MOEHRING HJ, 1991, Z PHYS C, V52, P643
91695    MOLNAR D, 2000, PHYS REV C, V62
91696    MOLNAR D, 2002, NUCL PHYS A, V697, P495
91697    MOLNAR D, 2002, NUCL PHYS A, V698, C379
91698    MORITA K, 2002, PHYS REV C, V66
91699    MROWCZYNSKI S, 1994, ANN PHYS-NEW YORK, V229, P1
91700    OEURDANE D, 2003, NUCL PHYS A, V715, C478
91701    PANG Y, CUTP815
91702    PARKE SJ, 1986, NUCL PHYS B, V269, P410
91703    PARKE SJ, 1986, PHYS REV LETT, V56, P2459
91704    POSCHL W, 2000, COMPUT PHYS COMMUN, V125, P282
91705    PRESS WH, 1982, NUMERICAL RECIPES
91706    REDFERN D, 1993, MAPLE HDB
91707    SATZ H, 2000, PHYS LETT B, V475, P225
91708    SHURYAK E, 1992, PHYS REV LETT, V68, P3270
91709    SHURYAK EV, 2003, NUCL PHYS A, V715, C289
91710    SNELLINGS RJM, 2002, NUCL PHYS A, V698, C193
91711    TEANEY D, NUCLTH0110037
91712    WANG XN, 1991, PHYS REV D, V44, P3501
91713    WANG XN, 1997, PHYS REP, V280, P287
91714    WERNER K, 1993, PHYS REP, V232, P87
91715    XIONG L, 1995, NUCL PHYS A, V590, C589
91716    XU XM, 1996, PHYS REV C, V53, P3051
91717    XU XM, 2002, NUCL PHYS A, V697, P825
91718    ZHANG B, 1998, COMPUT PHYS COMMUN, V109, P193
91719    ZHANG B, 1998, PHYS REV C, V58, P1175
91720    ZHANG B, 2000, PHYS REV C, V61
91721 NR 89
91722 TC 4
91723 SN 0375-9474
91724 J9 NUCL PHYS A
91725 JI Nucl. Phys. A
91726 PD NOV 15
91727 PY 2004
91728 VL 744
91729 BP 347
91730 EP 377
91731 PG 31
91732 SC Physics, Nuclear
91733 GA 864LD
91734 UT ISI:000224634100016
91735 ER
91736 
91737 PT J
91738 AU Li, YW
91739    Ding, WZ
91740    Lu, XG
91741    Xu, KD
91742 TI Reduction mechanism of chromite ore in blast furnace
91743 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
91744 DT Article
91745 DE smelting reduction; chromite ore; mechanism; blast furnace
91746 AB The structural changes and reduction degree of chromite ore in blast
91747    furnace were studied by optical micrograph analysis, scanning electron
91748    microscope (SEM) and energy dispersive X-ray analysis (EDXA). The
91749    smelting reduction mechanism of chromite in blast furnace was primarily
91750    discussed.
91751 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
91752 RP Li, YW, Shanghai Univ, Shanghai 200072, Peoples R China.
91753 CR *VON HANS MAR, 1945, STAHL EISEN, V65, P57
91754    DUKASHCHENKO MK, 1944, STAL, P4
91755    GATSEUKOV GV, 1945, STAL, P3
91756    LANGENBERG FC, 1967, MANUFACTURE STAINLES, P695
91757    LI YW, 2002, SPECIAL STEEL, V23, P23
91758    LI YW, 2004, IRON STEEL, V39, P17
91759    SOYKAN O, 1991, METALL TRANS B, V22, P53
91760    WEBER P, 1993, METALL TRANS B, V24, P987
91761 NR 8
91762 TC 0
91763 SN 1006-706X
91764 J9 J IRON STEEL RES INT
91765 JI J. Iron Steel Res. Int.
91766 PD JUL
91767 PY 2004
91768 VL 11
91769 IS 4
91770 BP 19
91771 EP 23
91772 PG 5
91773 SC Metallurgy & Metallurgical Engineering
91774 GA 863DU
91775 UT ISI:000224541700004
91776 ER
91777 
91778 PT J
91779 AU Leung, AYT
91780    Liu, ZR
91781 TI Some new methods to suppress chaos for a kind of nonlinear oscillator
91782 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
91783 DT Article
91784 DE nonlinear oscillator; suppressing chaos; Melnikov method
91785 ID WEAK PERIODIC PERTURBATIONS; BISTABLE CHAOS; EQUATION
91786 AB This article extends the range of applications of a previous paper
91787    [Leung & Liu, 2003]. Some new methods to suppress chaos are proposed so
91788    that the Melnikov function is modified only slightly for the easy
91789    elimination of simple zeros. The reasonability of the methods is
91790    analyzed by the previously established criteria. Some examples are also
91791    given.
91792 C1 City Univ Hong Kong, Dept Bldg Construct, Hong Kong, Hong Kong, Peoples R China.
91793    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
91794 RP Leung, AYT, City Univ Hong Kong, Dept Bldg Construct, Hong Kong, Hong
91795    Kong, Peoples R China.
91796 CR BENJACOB E, 1982, PHYS REV LETT, V49, P1599
91797    BRAIMAN Y, 1991, PHYS REV LETT, V66, P2545
91798    FANG J, 1990, PHYS LETT A, V146, P35
91799    GOMES MGM, 1992, PHYS REV A, V46, P3100
91800    KAPITANIAK J, 1991, CHAOTIC OSCILLATIONS
91801    KING GP, 1992, PHYS REV A, V46, P3092
91802    LEUNG AYT, 2004, INT J BIFURCAT CHAOS, V14, P1455
91803    LIMA R, 1990, PHYS REV A, V41, P726
91804    LIU Z, 1993, SCI CHINA SER A, V36, P976
91805    OSIPOV G, 1998, CHAOS SOLITON FRACT, V9, P307
91806    QU ZL, 1995, PHYS REV LETT, V74, P1736
91807    RAJASEKAR S, 1992, CHAOS SOLITON FRACT, V2, P271
91808    RAJASEKAR S, 1993, PRAMANA-J PHYS, V41, P295
91809    SATO S, 1983, PHYS REV A, V28, P1654
91810    UEDA Y, 1979, J STAT PHYS, V20, P181
91811    UEDA Y, 1980, ANN NY ACAD SCI, V357, P422
91812    YANG J, 1996, PHYS REV E, V56, P4402
91813 NR 17
91814 TC 0
91815 SN 0218-1274
91816 J9 INT J BIFURCATION CHAOS
91817 JI Int. J. Bifurcation Chaos
91818 PD AUG
91819 PY 2004
91820 VL 14
91821 IS 8
91822 BP 2955
91823 EP 2961
91824 PG 7
91825 SC Mathematics, Applied; Multidisciplinary Sciences
91826 GA 863ZW
91827 UT ISI:000224603300026
91828 ER
91829 
91830 PT J
91831 AU Fang, SS
91832    Xiao, XS
91833    Xia, L
91834    Wang, Q
91835    Li, WH
91836    Dong, YD
91837 TI Effects of bond parameters on the widths of supercooled liquid regions
91838    of ferrous BMGs
91839 SO INTERMETALLICS
91840 DT Article
91841 DE alloy design; glasses, metallic; thermal stability
91842 ID SOFT-MAGNETIC PROPERTIES; BULK METALLIC GLASSES; C-B ALLOYS; HIGH
91843    SATURATION MAGNETIZATION; AMORPHOUS-ALLOYS; THERMAL-STABILITY; FORMING
91844    ABILITY; BEHAVIOR
91845 AB Correlation is investigated between supercooled liquid regions (SLRs)
91846    DeltaT(x) (= T-x - T-g, where T-x is the onset crystallization
91847    temperature and T-g the glass transition temperature) of ferrous bulk
91848    metallic glasses (BMGs) and three bond parameters, i.e.
91849    electronegativity, atomic size and valent electron. From the available
91850    experimental data in literatures, DeltaT(x) has strong correlation with
91851    the bond parameters. A semi-empirical equation is established to
91852    elucidate the correlation between DeltaT(x) and the three bond
91853    parameters. In detail, DeltaT(x) increases obviously with the increase
91854    of the atomic size parameter (delta), and electronegativity difference
91855    (Deltax) and the electron concentration. An ellipse arc with thickness
91856    derived from the equation is drawn to determine the range of BMG with
91857    large SLR. (C) 2004 Published by Elsevier Ltd.
91858 C1 Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
91859 RP Fang, SS, Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
91860 EM ssfang@eastday.com
91861 CR ALLRED AL, 1961, J INORG NUCL CHEM, V17, P215
91862    BUSCHOW KHJ, 1980, SOLID STATE COMMUN, V35, P233
91863    DAVIES HA, 1976, PHYS CHEM GLASSES, V17, P159
91864    EGAMI T, 2003, J NON-CRYST SOLIDS, V317, P30
91865    FANG S, 2000, INT J HYDROGEN ENERG, V25, P143
91866    FANG SS, 1995, J ALLOY COMPD, V293, P10
91867    FANG SS, 2003, J NON-CRYST SOLIDS, V321, P120
91868    FANG SS, 2004, IN PRESS RARE MET MA
91869    GOTTSCHALL RJ, 2001, MATER TRANS, V42, P548
91870    IMAFUKU M, 2000, MATER T JIM, V41, P1526
91871    INOUE A, 1998, MATER SCI FORUM 2, V269, P855
91872    INOUE A, 2000, ACTA MATER, V48, P279
91873    INOUE A, 2000, ACTA MATER, V48, P279
91874    INOUE A, 2000, J MAGN MAGN MATER, V215, P246
91875    INOUE A, 2000, MATER SCI FORUM 1&2, V343, P81
91876    INOUE A, 2002, MATER TRANS, V43, P2350
91877    ITOI T, 1999, MATER T JIM, V40, P643
91878    LIA LB, 2000, CRYSTALLINE CHEM CRY, P177
91879    LU ZP, 2002, ACTA MATER, V50, P3501
91880    MIEDEMA AR, 1975, J LESS-COMMON MET, V41, P283
91881    MIZUSHIMA T, 1997, IEEE T MAGN 2, V33, P3784
91882    MIZUSHIMA T, 1999, MATER T JIM, V40, P1019
91883    PAN ZL, 1984, CRYSTALLOGRAPHY MINE, P133
91884    PANG S, 2002, MATER TRANS, V43, P2137
91885    PANG SJ, 2002, ACTA MATER, V50, P489
91886    PAULING L, 1960, NATURE CHEM BOND
91887    SHEN BL, 2000, MATER T JIM, V41, P1478
91888    SHEN BL, 2000, MATER T JIM, V41, P1675
91889    SHEN TD, 2001, ACTA MATER, V49, P837
91890    XU M, 2001, ACTA METALL SIN, V37, P637
91891    ZHANG BW, 1981, ACTA METALL SIN, V17, P285
91892    ZHANG W, 2001, MAT T JIM, V42, P660
91893 NR 32
91894 TC 0
91895 SN 0966-9795
91896 J9 INTERMETALLICS
91897 JI Intermetallics
91898 PD OCT-NOV
91899 PY 2004
91900 VL 12
91901 IS 10-11
91902 BP 1069
91903 EP 1072
91904 PG 4
91905 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
91906    Metallurgical Engineering
91907 GA 863MT
91908 UT ISI:000224566700007
91909 ER
91910 
91911 PT J
91912 AU Wei, BC
91913    Zhang, TH
91914    Li, WH
91915    Sun, YF
91916    Yu, Y
91917    Wang, YR
91918 TI Serrated plastic flow during nanoindentation in Nd-based bulk metallic
91919    glasses
91920 SO INTERMETALLICS
91921 DT Article
91922 DE composites; glasses, metallic; mechanical properties at ambient
91923    temperature
91924 ID AMORPHOUS-ALLOYS; CRYSTALLIZATION; INDENTATION; DEFORMATION;
91925    MICROSCOPY; MECHANISMS; BEHAVIOR
91926 AB The microstructure of Nd60Al10Ni10Cu20-xFex (x = 0, 5, 7, 10, 15, 20)
91927    alloys can change from homogeneous phase to a composite structure
91928    consisting of amorphous phase plus clusters or nanocrystals by
91929    adjusting the Fe content. The effect of microstructure on the plastic
91930    deformation behavior in this alloy system is studied by using
91931    nanoindentation. The alloys with homogeneous amorphous structure
91932    exhibit pronounced flow serrations during the loading process of
91933    nanoindentation. The addition of Fe changes the plastic deformation
91934    behavior remarkablely. No flow serration is observed in the alloys with
91935    high Fe content for the indentation depth of 500 nm. The mechanism for
91936    the change of plastic serrated flow behavior is discussed. (C) 2004
91937    Elsevier Ltd. All rights reserved.
91938 C1 Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Beijing 100080, Peoples R China.
91939    Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100080, Peoples R China.
91940    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
91941 RP Wei, BC, Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Beijing
91942    100080, Peoples R China.
91943 EM weibc@imech.ac.cn
91944 CR BENAMEUR T, 2002, MATER TRANS, V43, P2617
91945    FLORES KM, 2001, ACTA MATER, V49, P2527
91946    GREER AL, 2002, MATER SCI FORUM, V386, P77
91947    HUFNAGEL TC, 2002, INTERMETALLICS, V10, P1163
91948    INOUE A, 1998, METALL MATER TRANS A, V29, P1779
91949    INOUE A, 2000, ACTA MATER, V48, P279
91950    LI Y, 1998, PHIL MAG LETT, V78, P213
91951    NIEH TG, 2002, INTERMETALLICS, V10, P1177
91952    OLIVER WC, 1992, J MATER RES, V7, P1564
91953    PEKARSKAYA E, 2001, J MATER RES, V16, P2513
91954    SCHUH CA, 2003, ACTA MATER, V51, P87
91955    WANG JG, 2000, J MATER RES, V15, P798
91956    WEI BC, 2002, ACTA MATER, V50, P4357
91957    WRIGHT WJ, 2001, MATER TRANS, V42, P642
91958    XIA L, 2003, J PHYS D, V36, P1
91959    ZHANG Z, 2002, APPL PHYS LETT, V81, P4371
91960    ZHANG ZF, 2003, PHYS REV LETT, V91
91961 NR 17
91962 TC 6
91963 SN 0966-9795
91964 J9 INTERMETALLICS
91965 JI Intermetallics
91966 PD OCT-NOV
91967 PY 2004
91968 VL 12
91969 IS 10-11
91970 BP 1239
91971 EP 1243
91972 PG 5
91973 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
91974    Metallurgical Engineering
91975 GA 863MT
91976 UT ISI:000224566700033
91977 ER
91978 
91979 PT J
91980 AU Xia, TC
91981    Chen, XH
91982    Chen, DY
91983 TI Two types of new Lie algebras and corresponding hierarchies of evolution
91984 SO CHAOS SOLITONS & FRACTALS
91985 DT Article
91986 ID BI-HAMILTONIAN STRUCTURE; LAX INTEGRABLE HIERARCHY; NEWELL SPECTRAL
91987    PROBLEM; INVOLUTIVE SYSTEMS; CONSTRAINED FLOWS; EQUATIONS;
91988    NONLINEARIZATION; TRANSFORMATION; PERTURBATION; COUPLINGS
91989 AB An extension of Lie algebra A(n-1) was proposed [Phys. Lett. A 310
91990    (2003) 19, J. Math. Phys. 26 (1985) 1189]. Based on that extension, we
91991    presented two new Lie algebras. Meanwhile we obtained the corresponding
91992    hierarchies of evolution equations and it was shown that the
91993    corresponding hierarchies of evolution equations were integrable in
91994    Liouville sense. Finally we found integrable couplings of the second
91995    equations hierarchy based on a new loop algebra G which was different
91996    from A(2) in Refs. [Chaos, Solitons & Fractals 7 (1996) 1227, Phys.
91997    Lett. A 310 (2003) 19]. (C) 2004 Elsevier Ltd. All rights reserved.
91998 C1 Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
91999    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
92000 RP Xia, TC, Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
92001 EM xiatc@yahoo.com.cn
92002 CR 2002, CHAOS SOLITONS FRACT, V14, P1445
92003    ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
92004    CAO CW, 1990, SCI CHINA SER A, V33, P528
92005    FAN E, 2001, J PHYS A-MATH GEN, V34, P513
92006    FAN E, 2001, PHYSICA A, V301, P105
92007    FAN EG, 2000, J MATH PHYS, V41, P7769
92008    FUCHSSTEINER B, 1993, APPL ANAL GEOMETRIC, P125
92009    GENG XG, 1993, J MATH PHYS, V34, P805
92010    LAKSHMANAN M, 1985, J MATH PHYS, V26, P1189
92011    MA WX, 1992, J MATH ANN, V13, P115
92012    MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
92013    MA WX, 1999, J MATH PHYS, V40, P4419
92014    NEWELL AC, 1985, SOLITON MATH PHYS
92015    QIAO ZJ, 1993, J PHYS A-MATH GEN, V26, P4407
92016    TSUCHIDA T, 1998, CHAOS SOLITON FRACT, V9, P869
92017    TU GZ, 1989, J MATH PHYS, V30, P330
92018    WADATI M, 1972, J PHYS SOC JPN, V32, P1681
92019    WADATI M, 1973, J PHYS SOC JPN, V34, P1289
92020    WADATI M, 1975, PROG THEOR PHYS, V53, P419
92021    XIA TC, IN PRESS CHAOS SOLIT
92022    XIA TC, 2004, CHAOS SOLITON FRACT, V22, P939
92023    XU XX, 2003, CHAOS SOLITON FRACT, V15, P475
92024    YAN ZY, 2002, CHAOS SOLITON FRACT, V13, P1439
92025    YAN ZY, 2002, CHAOS SOLITON FRACT, V14, P441
92026    YAN ZY, 2003, CHAOS SOLITON FRACT, V15, P639
92027    ZENG YB, 1991, PHYS LETT A, V160, P541
92028    ZENG YB, 1996, J PHYS A-MATH GEN, V29, P5241
92029    ZHANG YF, 2002, J MATH PHYS, V43, P466
92030    ZHANG YF, 2002, PHYS LETT A, V299, P543
92031    ZHANG YF, 2003, CHAOS SOLITON FRACT, V18, P855
92032    ZHANG YF, 2003, PHYS LETT A, V310, P19
92033    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P305
92034    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P413
92035 NR 33
92036 TC 4
92037 SN 0960-0779
92038 J9 CHAOS SOLITON FRACTAL
92039 JI Chaos Solitons Fractals
92040 PD FEB
92041 PY 2005
92042 VL 23
92043 IS 3
92044 BP 1033
92045 EP 1041
92046 PG 9
92047 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
92048 GA 863YT
92049 UT ISI:000224600200034
92050 ER
92051 
92052 PT J
92053 AU Zhang, Y
92054    Chen, DY
92055 TI A new representation of N-soliton solution and limiting solutions for
92056    the fifth order KdV equation
92057 SO CHAOS SOLITONS & FRACTALS
92058 DT Article
92059 ID DE-VRIES EQUATION; KORTEWEG-DEVRIES EQUATION; POSITON-LIKE SOLUTIONS;
92060    SINE-GORDON EQUATIONS; SHALLOW-WATER WAVES; BACKLUND TRANSFORMATION;
92061    MULTISOLITON SOLUTIONS; EVOLUTION-EQUATIONS; RATIONAL SOLUTIONS; FORM
92062 AB A new representation of N-soliton solution of the fifth order KdV
92063    equation is obtained by using Backlund transformation method. It is
92064    shown that the new representation of N-soliton solution is in agreement
92065    with Hirota's expression. Some novel soliton solutions are derived by
92066    performing an appropriate limiting procedure on the known soliton
92067    solutions. (C) 2004 Elsevier Ltd. All rights reserved.
92068 C1 Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China.
92069    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
92070 RP Zhang, Y, Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R
92071    China.
92072 EM zy2836@163.com
92073 CR ABLOWITZ MJ, 1978, J MATH PHYS, V19, P2180
92074    ABLOWITZ MJ, 1981, SOLITON INVERSE SCAT
92075    CHEN DY, 2002, J PHYS SOC JPN, V71, P658
92076    CHOW KW, 1998, CHAOS SOLITON FRACT, V9, P1901
92077    FREEMAN NC, 1983, PHYS LETT A, V95, P1
92078    HIROTA R, 1971, PHYS REV LETT, V27, P1192
92079    HIROTA R, 1974, PROG THEOR PHYS, V52, P1498
92080    HIROTA R, 1976, PROGR THEOR PHYS SUP, V59, P64
92081    HIROTA R, 1978, J PHYS SOC JPN, V45, P1741
92082    HIROTA R, 1980, TOP CURR PHYS, V17, P157
92083    HU XB, 1988, ACTA MATH APPL SINIC, V4, P46
92084    HU XB, 2003, J PHYS A, V36, P4867
92085    JAWORSKI M, 1995, CHAOS SOLITON FRACT, V5, P2229
92086    LAX PD, 1968, COMMUN PUR APPL MATH, V21, P467
92087    MA WX, 2004, CHAOS SOLITON FRACT, V19, P163
92088    MATEEV VB, 1992, PHYSL LETT A, V166, P205
92089    MATSUNO Y, 1984, TRANSFORMATION METHO
92090    NIMMO JJC, 1983, PHYS LETT A, V96, P443
92091    SATSUMA J, 1977, J PHYS SOC JPN, V43, P692
92092    SATSUMA J, 1979, J MATH PHYS, V20, P1496
92093    TAKAHASHI M, 1989, J PHYS SOC JPN, V58, P3505
92094    WU H, 1997, J PHYS A, V30, P8225
92095    ZHANG Y, 2003, J PHYS SOC JPN, V72, P763
92096    ZHANG Y, 2004, CHAOS SOLITON FRACT, V20, P343
92097    ZHANG Y, 2004, IN PRESS CHAOS SOLIT, P20
92098 NR 25
92099 TC 0
92100 SN 0960-0779
92101 J9 CHAOS SOLITON FRACTAL
92102 JI Chaos Solitons Fractals
92103 PD FEB
92104 PY 2005
92105 VL 23
92106 IS 3
92107 BP 1055
92108 EP 1061
92109 PG 7
92110 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
92111 GA 863YT
92112 UT ISI:000224600200037
92113 ER
92114 
92115 PT J
92116 AU Fu, JL
92117    Chen, LQ
92118 TI On Noether symmetries and form invariance of mechanico-electrical
92119    systems
92120 SO PHYSICS LETTERS A
92121 DT Article
92122 DE mechanico-electrical system; form invariance; noether symmetry;
92123    infinitesimal transformation
92124 ID THEOREM
92125 AB This Letter focuses on form invariance and Noether symmetries of
92126    mechanico-electrical systems. Based on the invariance of Hamiltonian
92127    actions for mechanico-electrical systems under the infinitesimal
92128    transformation of the coordinates, the electric quantities and the
92129    time, the authors present the Noether symmetry transformation, the
92130    Noether quasi-symmetry transformation, the generalized Noether
92131    quasi-symmetry transformation and the general Killing equations of
92132    Lagrange mechanico-electrical systems and Lagrange-Maxwell
92133    mechanico-electrical systems. Using the invariance of the differential
92134    equations, satisfied by physical quantities, such as Lagrangian,
92135    non-potential general forces, under the infinitesimal transformation,
92136    the authors propose the definition and criterions of the form
92137    invariance for mechanico-electrical systems. The Letter also
92138    demonstrates connection between the Noether symmetries and the form
92139    invariance of mechanico-electrical systems. An example is designed to
92140    illustrate these results. (C) 2004 Elsevier B.V. All rights reserved.
92141 C1 Zhejiang Univ Sci, Dept Appl Phys, Hangzhou 310018, Peoples R China.
92142    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
92143 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
92144 EM sqfujingli@163.com
92145    lqchen@online.sh.cn
92146 CR BATLLE C, 1989, J MATH PHYS, V30, P1345
92147    BESSELHAGEN E, 1921, MATH ANN, V84, P258
92148    CARINENA JF, 1989, J PHYS A-MATH GEN, V22, P4777
92149    CRASMAREANU M, 2000, INT J NONLINEAR MECH, V35, P947
92150    DJUKIC DS, 1975, ACTA MECH, V23, P17
92151    FAY S, 2001, CLASSICAL QUANT GRAV, V18, P4863
92152    FU JL, 2004, MECH RES COMMUN, V31, P9
92153    LI ZP, 1993, CLASSICS QUANTUM CON
92154    MARSDEN JE, 1994, INTRO MECH SYMMETRY
92155    MEI FX, 1993, SCI CHINA SER A, V36, P1456
92156    MEI FX, 1999, APPL LIE GROUP LIE A
92157    MEI FX, 2000, BEIJING I TECHNOL, V9, P120
92158    MEI FX, 2001, CHINESE PHYS, V10, P177
92159    NOETHER E, 1918, NACHR GES WISS GOTT, V2, P235
92160    OLVER PJ, 1999, APPL LIE GROUPS DIFF
92161 NR 15
92162 TC 2
92163 SN 0375-9601
92164 J9 PHYS LETT A
92165 JI Phys. Lett. A
92166 PD OCT 18
92167 PY 2004
92168 VL 331
92169 IS 3-4
92170 BP 138
92171 EP 152
92172 PG 15
92173 SC Physics, Multidisciplinary
92174 GA 862GI
92175 UT ISI:000224478200002
92176 ER
92177 
92178 PT J
92179 AU Bian, JJ
92180    Bo, GH
92181    Wang, XW
92182 TI Microwave dielectric properties of (Pb1-3x/2Lax)(Mg1/2W1/2)O-3
92183 SO MATERIALS RESEARCH BULLETIN
92184 DT Article
92185 DE ceramics; X-ray diffraction; dielectric properties
92186 ID PB2MGWO6
92187 AB La modified Pb(Mg1/2W1/2)O-3 were prepared by solid-state reaction
92188    process, and the sintering behavior, microstructure and microwave
92189    dielectric properties were investigated by X-ray powder diffraction
92190    (XRD), Raman scattering and HP network analyzer in this paper. A series
92191    of single phase perovskite type solid solutions with A-site vacancies
92192    (Pb1-3x/2Lax(Mg1/2W1/2)O-3 (0 less than or equal to x less than or
92193    equal to (2/3))) were formed. The solid solution took cubic perovskite
92194    type structure (Fm3m) with random distribution of A-site vacancies when
92195    0 less than or equal to x less than or equal to 0.5, and tetragonal or
92196    orthorhombic structure with the ordering of A-site vacancies when 0.5
92197    less than or equal to x less than or equal to 2/3. The dielectric
92198    constant and temperature coefficient of resonant frequency decrease
92199    with increasing La content. Relatively good combination microwave
92200    dielectric properties were obtained for x = 0.56: epsilon(r) = 28.7; Q
92201    x f = 18098; and tau(f) = -5.8 ppm/degreesC. (C) 2004 Elsevier Ltd. All
92202    rights reserved.
92203 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 200072, Peoples R China.
92204 RP Bian, JJ, Shanghai Univ, Dept Inorgan Mat, 149 Yangchan Rd,Zhabei Dist,
92205    Shanghai 200072, Peoples R China.
92206 EM jjbian1@sohu.com
92207 CR BABAKISHI KZ, 1992, J APPL CRYSTALLOGR, V25, P477
92208    BALDINOZZI G, 1993, SOLID STATE COMMUN, V86, P541
92209    BALDINOZZI G, 1995, J PHYS-CONDENS MAT, V7, P8109
92210    BIAN JJ, 2003, J EUR CERAM SOC, V23, P2589
92211    BROWN ID, 1992, ACTA CRYSTALLOGR B, V48, P553
92212    CHO SY, 1999, J MATER RES, V14, P114
92213    KANIA A, 1996, J PHYS-CONDENS MAT, V8, P4441
92214    KATO J, 1992, JPN J APPL PHYS 1, V31, P3144
92215    PENN SJ, 1997, J AM CERAM SOC, V80, P1885
92216    RII Y, 1981, MAT RES B, V16, P1153
92217    SHANNON RD, 1993, J APPL PHYS, V73, P348
92218    YANG JH, 1994, FERROELECTRICS, V152, P243
92219    YASUDA N, 1986, J PHYS C SOLID STATE, V19, P1055
92220 NR 13
92221 TC 1
92222 SN 0025-5408
92223 J9 MATER RES BULL
92224 JI Mater. Res. Bull.
92225 PD NOV 2
92226 PY 2004
92227 VL 39
92228 IS 13
92229 BP 2127
92230 EP 2135
92231 PG 9
92232 SC Materials Science, Multidisciplinary
92233 GA 863BK
92234 UT ISI:000224535000017
92235 ER
92236 
92237 PT J
92238 AU Ren, ZM
92239    Li, X
92240    Wang, H
92241    Deng, K
92242    Zhuang, YQ
92243 TI The segregated structure of MnBi in Bi-Mn alloy solidified under a high
92244    magnetic field
92245 SO MATERIALS LETTERS
92246 DT Article
92247 DE solidification; high magnetic field; Bi-Mn alloy; magnetic force;
92248    crystallization; phase separation
92249 ID PHASE
92250 AB Influence of high magnetic field on segregation of BiMn grains during
92251    solidification of Bi-Mn alloy has been investigated. Experiment of
92252    melting and solidifying of the alloy in a 10 T magnetic field generated
92253    by superconductor magnet was conducted. An interesting phenomenon was
92254    found that the BiMn gains accumulated on the periphery of the specimen,
92255    forming a ring-like MnBi phase-rich layer where MnBi phase aligned
92256    along the magnetic direction. This pheromone was analyzed and
92257    discussed. (C) 2004 Elsevier B.V. All rights reserved.
92258 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
92259 RP Ren, ZM, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R
92260    China.
92261 EM zmrenb@online.sh.en
92262 CR KATSUKI A, 1996, CHEM LETT, P607
92263    MOFFATT WG, 1984, HDB BINARY PHASE DIA
92264    RANGO PD, 1991, NATURE, V349, P770
92265    REN ZM, 1990, ACTA METALL SIN, V26, B374
92266    REN ZM, 1992, J MATER SCI, V27, P4663
92267    SASSA K, 1997, J JPN I MET, V61, P1283
92268    SASSA K, 1997, P INT S EL P MAT CTR, P157
92269    SASSA K, 1998, CAMP ISIJ, V11, P888
92270    SASSA K, 2000, P 2 C PROC MAT PROP, P565
92271    SAVITSKY EM, 1981, J CRYST GROWTH, V52, P519
92272    WAN DF, 1987, PHYS MAGNETISM ELECT, P22
92273    WANG H, 2002, ACTA METALL SIN, V38, P41
92274 NR 12
92275 TC 0
92276 SN 0167-577X
92277 J9 MATER LETT
92278 JI Mater. Lett.
92279 PD NOV
92280 PY 2004
92281 VL 58
92282 IS 27-28
92283 BP 3405
92284 EP 3409
92285 PG 5
92286 SC Materials Science, Multidisciplinary; Physics, Applied
92287 GA 861WO
92288 UT ISI:000224449500007
92289 ER
92290 
92291 PT J
92292 AU Shen, Y
92293    Zhang, JC
92294    Gu, F
92295    Huang, PP
92296    Xia, YB
92297 TI Intermolecular and intramolecular charge transfer in
92298    polymethylphenylsilane/C-60 films
92299 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
92300 DT Article
92301 ID C-60; PHOTOCONDUCTIVITY
92302 AB The influence of C-60 on fluorescence spectra, UV-visible spectra and
92303    photoconductivity of polymethylphenylsilane (PMPS) has been studied.
92304    The results show that the photoconductivity of PMPS doped with C-60
92305    increases by one order of magnitude. The fluorescence and UV-visible
92306    analyses indicate that an intermolecular charge-transfer complex of
92307    PMPS and C-60 may be formed. Compared with C-60-doped PMPS, the
92308    C-60-linked PMPS displays higher photoconductivity than expected, which
92309    may come from the intramolecular charge-transfer process.
92310 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
92311 RP Shen, Y, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
92312    China.
92313 EM yuesen@china.com
92314 CR ALLEMAND PM, 1991, SCIENCE, V253, P301
92315    BENFIELD RE, 1996, POLYMER, V37, P5761
92316    DAYIN L, 1993, J CHEM SOC CHEM COMM, V7, P603
92317    KEPLER RG, 1993, APPL PHYS LETT, V63, P1552
92318    KROTO HW, 1985, NATURE, V318, P162
92319    NESPUREK S, 2000, SYNTHETIC MET, V109, P309
92320    NESPUREK S, 2002, J LUMIN, V99, P131
92321    OLAH GA, 1991, J AM CHEM SOC, V113, P9387
92322    SHEN Y, 2001, MATER CHEM PHYS, V72, P405
92323    SHEN Y, 2003, MATER CHEM PHYS, V82, P401
92324    WANG Y, 1993, J AM CHEM SOC, V115, P3844
92325    WATANABE A, 1994, J PHYS CHEM-US, V98, P7736
92326    YUE S, 1999, ACTA CHIM SINICA, V57, P1034
92327 NR 13
92328 TC 0
92329 SN 0022-3727
92330 J9 J PHYS-D-APPL PHYS
92331 JI J. Phys. D-Appl. Phys.
92332 PD SEP 21
92333 PY 2004
92334 VL 37
92335 IS 18
92336 BP 2579
92337 EP 2582
92338 PG 4
92339 SC Physics, Applied
92340 GA 861LM
92341 UT ISI:000224418000014
92342 ER
92343 
92344 PT J
92345 AU Sheng, DF
92346    Cheng, CJ
92347 TI Dynamical behaviors of nonlinear viscoelastic thick plates with damage
92348 SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
92349 DT Article
92350 DE viscoelastic solid with damage; thick plate; geometrical non-linearity;
92351    stability; chaos; bifurcation; parameter study
92352 ID STABILITY; SHELLS
92353 AB Based on the deformation hypothesis of Timoshenko's plates and the
92354    Boltzmann's superposition principles for linear viscoelastic materials,
92355    the nonlinear equations governing the dynamical behavior of
92356    Timoshenko's viscoelastic thick plates with damage are presented. The
92357    Galerkin method is applied to simplify the set of equations. The
92358    numerical methods in nonlinear dynamics are used to solve the
92359    simplified systems. It could be seen that there are plenty of dynamical
92360    properties for dynamical systems formed by this kind of viscoelastic
92361    thick plate with damage under a transverse harmonic load. The
92362    influences of load, geometry and material parameters on the dynamical
92363    behavior of the nonlinear system are investigated in detail. At the
92364    same time, the effect of damage on the dynamical behavior of plate is
92365    also discussed. (C) 2004 Elsevier Ltd. All rights reserved.
92366 C1 Shanghai Univ, Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
92367    Nanchang Univ Technol, Acad Engn Mech, Inst Civil Engn, Nanchang 330029, Peoples R China.
92368 RP Cheng, CJ, Shanghai Univ, Inst Appl Math & Mech, Dept Mech, Shanghai
92369    200072, Peoples R China.
92370 EM shengdf@eyou.com
92371    chjcheng@yc.shu.edu.cn
92372 CR ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151
92373    CEDERBAUM G, 1991, INT J SOLIDS STRUCT, V28, P317
92374    CEDERBAUM G, 1992, J APPL MECH-T ASME, V59, P16
92375    CEDERBAUM G, 1994, INT J MECH SCI, V36, P149
92376    CHEN CJ, 1991, BUCKLING BIFURCATION
92377    CHENG CJ, 1998, ACTA MECH SINICA, V30, P690
92378    COWIN SC, 1983, J ELASTICITY, V13, P125
92379    DING R, 1998, P 3 INT C NONL MECH, P185
92380    DROZDOV A, 1993, MECH RES COMMUN, V20, P481
92381    LI JJ, 2002, J SHANGHAI U, V6, P115
92382    PARKER TS, 1989, PRACTICAL NUMERICAL
92383    SUIRE G, 1995, INT J MECH SCI, V37, P753
92384    TOUATI D, 1995, ACTA MECH, V113, P215
92385    TYLIKOWSKI A, 1989, INT J MED SCI, V31, P591
92386    ZHU YY, 1998, P 3 INT C NONL MECH, P445
92387 NR 15
92388 TC 0
92389 SN 0020-7683
92390 J9 INT J SOLIDS STRUCT
92391 JI Int. J. Solids Struct.
92392 PD DEC
92393 PY 2004
92394 VL 41
92395 IS 26
92396 BP 7287
92397 EP 7308
92398 PG 22
92399 SC Mechanics
92400 GA 862KN
92401 UT ISI:000224489600003
92402 ER
92403 
92404 PT J
92405 AU Wang, X
92406 TI Eshelby's problem of an inclusion of arbitrary shape in a decagonal
92407    quasicrystalline plane or half-plane
92408 SO INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE
92409 DT Article
92410 DE decagonal quasicrystal; Eshelby inclusion; complex variable method
92411 ID ELASTIC FIELD; ELLIPSOIDAL INCLUSION; SYMMETRY; CRACK
92412 AB In this paper, a simple method based on analytical continuation and
92413    conformal mapping is presented to obtain an analytic solution for
92414    Eshelby's problem of a two-dimensional inclusion of arbitrary shape in
92415    a decagonal quasicrystalline plane or half-plane. The inclusion in this
92416    study refers to a subdomain which tends to undergo uniform stress-free
92417    phonon and phason eigenstrains without the constraint of the
92418    surrounding matrix. Furthermore, the inclusion penetrates through the
92419    solid along the period direction. The present method leads to
92420    elementary expressions for the internal phonon and phason fields within
92421    the inclusion in an entire decagonal quasicrystalline plane. Several
92422    examples are discussed to illustrate the method. (C) 2004 Published by
92423    Elsevier Ltd.
92424 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
92425 RP Wang, X, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
92426    200072, Peoples R China.
92427 EM wjq_wang@sina.com
92428 CR BACHTELER J, 1998, EUR PHYS J B, V4, P299
92429    DE P, 1987, PHYS REV B, V35, P8609
92430    DING DH, 1993, PHYS REV B, V48, P7003
92431    ESHELBY JD, 1957, P ROY SOC LOND A MAT, V241, P376
92432    ESHELBY JD, 1959, P ROY SOC LOND A MAT, V252, P561
92433    HASEGAVA H, 2003, ASME, V70, P825
92434    HU CZ, 2000, REP PROG PHYS, V63, P1
92435    LI XF, 1999, PHILOS MAG A, V79, P1943
92436    MARKENSCOFF X, 1998, J ELASTICITY, V49, P163
92437    MURA T, 1987, MICROMECHANICS DEFEC
92438    NOZAKI H, 2001, J APPL MECH-T ASME, V68, P441
92439    RICKER M, 1998, EUR PHYS J B, V23, P351
92440    RU CQ, 1999, J APPL MECH-T ASME, V66, P315
92441    SHECHTMAN D, 1984, PHYS REV LETT, V53, P1951
92442    TING TCT, 2000, INT J SOLIDS STRUCT, V37, P401
92443    WANG X, 2004, INT J ENG SCI, V42, P521
92444    WU LZ, 1995, ASME J APPL MECH, V62, P579
92445    WU LZ, 1995, ASME J APPL MECH, V62, P585
92446    WU LZ, 1996, J APPL MECH-T ASME, V63, P925
92447 NR 19
92448 TC 0
92449 SN 0020-7225
92450 J9 INT J ENG SCI
92451 JI Int. J. Eng. Sci.
92452 PD OCT
92453 PY 2004
92454 VL 42
92455 IS 17-18
92456 BP 1911
92457 EP 1930
92458 PG 20
92459 SC Engineering, Multidisciplinary
92460 GA 862MG
92461 UT ISI:000224494400011
92462 ER
92463 
92464 PT J
92465 AU Gu, BB
92466    Wang, LJ
92467    Zhang, ML
92468    Xia, YB
92469 TI Investigation of chemical-vapour-deposition diamond alpha-particle
92470    detectors
92471 SO CHINESE PHYSICS LETTERS
92472 DT Article
92473 ID CVD DIAMOND; RADIATION; SENSORS; FILMS
92474 AB Diamond films with [100] texture were prepared by a hot-filament
92475    chemical vapour deposition technique to fabricate particle detectors.
92476    The response of detectors to 5.5 MeV Am-241 particles is studied. The
92477    photocurrent increases linearly and then levels off with voltage, and 7
92478    nA is obtained at bias voltage of 100 V. The time-dependent
92479    photocurrent initially increases rapidly and then tends to reach
92480    saturation. Furthermore, a little increase of the dark-current after
92481    irradiation can be accounted for by the release of the charges captured
92482    by the trapping centres at low energy levels during irradiation. An
92483    obvious peak of the pulse height distribution can be observed,
92484    associated with the energy of 5.5 MeV.
92485 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
92486 RP Gu, BB, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
92487    China.
92488 EM emma_guzhang@hotmail.com
92489 CR ADAM W, 1999, NUCL INSTRUM METH A, V434, P131
92490    ADAM W, 2000, NUCL INSTRUM METH A, V453, P141
92491    BERGONZO P, 2002, NUCL INSTRUM METH A, V476, P694
92492    BUTTAR CM, 2000, DIAM RELAT MATER, V9, P965
92493    DERRY TE, 1992, MAT SCI ENG B-SOLID, V11, P249
92494    HAN SK, 2000, DIAM RELAT MATER, V9, P1008
92495    PRINS JF, 1992, MATER SCI REP, V7, P271
92496    SALVATORI S, 1997, DIAM RELAT MATER, V6, P361
92497    SOUW EK, 1997, NUCL INSTRUM METH A, V400, P69
92498    WANG LJ, 2000, DIAM RELAT MATER, V9, P1617
92499    ZHANG ML, 2004, SOLID STATE COMMUN, V130, P551
92500 NR 11
92501 TC 2
92502 SN 0256-307X
92503 J9 CHIN PHYS LETT
92504 JI Chin. Phys. Lett.
92505 PD OCT
92506 PY 2004
92507 VL 21
92508 IS 10
92509 BP 2051
92510 EP 2053
92511 PG 3
92512 SC Physics, Multidisciplinary
92513 GA 861XY
92514 UT ISI:000224453100052
92515 ER
92516 
92517 PT J
92518 AU Ma, ZQ
92519    Zhang, Q
92520 TI Surface partition of ion energy during the growth of TiNx thin films
92521 SO SOLID STATE COMMUNICATIONS
92522 DT Article
92523 DE titanium nitride; thin films; epitaxy; energy partition
92524 ID TITANIUM NITRIDE; ELECTRICAL-PROPERTIES; CONTACTS; SILICON; DEVICES; GAN
92525 AB A simple evaluation of ion-deposited energy during surface displacement
92526    of adatoms has been presented for physical vapor deposition technology
92527    using an appropriate interaction model. The rf reactive magnetron
92528    sputtering deposition of titanium nitride (TiNx) thin films was taken
92529    as evidence supporting the theoretical calculation. The evolution of
92530    crystallite morphology dependent on bias (or input power) illustrates
92531    that surface and subsurface microstructure of growing films can be
92532    optimized by increasing the mobility of adatoms through ion-assistance.
92533    (C) 2004 Elsevier Ltd. All rights reserved.
92534 C1 Shanghai Univ, Dept Phys, Microelect Grp, Shanghai 200436, Peoples R China.
92535    Shanghai Univ, Dept Phys, Analyt Lab, Shanghai 200436, Peoples R China.
92536 RP Ma, ZQ, Shanghai Univ, Dept Phys, Microelect Grp, Shang Da Rd 99,
92537    Shanghai 200436, Peoples R China.
92538 EM zqma@mail.shu.edu.cn
92539 CR CHEN GS, 2002, J VAC SCI TECHNOL A, V20, P479
92540    DIMITRIADIS CA, 1995, APPL PHYS LETT, V66, P502
92541    DIMITRIADIS CA, 1999, J APPL PHYS 1, V85, P4238
92542    DOOLITTLE LR, 1986, NUCL INSTRUM METH B, V15, P227
92543    EVANGELOU EK, 2000, J APPL PHYS, V88, P7192
92544    GAUTIER S, 2003, SEMICOND SCI TECH, V18, P594
92545    KARR BW, 2000, PHYS REV B, V61, P16317
92546    KOMNINOU P, 2000, J PHYS-CONDENS MAT, V12, P10295
92547    KONOFAOS N, 2001, APPL PHYS LETT, V78, P1682
92548    KROGER R, 2002, J APPL PHYS, V91, P5149
92549    LI TQ, 2002, J VAC SCI TECHNOL A, V20, P583
92550    MA ZQ, 1998, CHINESE PHYS LETT, V15, P668
92551    MA ZQ, 1999, APPL SURF SCI, V137, P184
92552    MA ZQ, 2000, THIN SOLID FILMS, V359, P288
92553    MARLO M, 2000, PHYS REV B, V62, P2899
92554    PATSALAS P, 2001, J APPL PHYS, V90, P4725
92555    SCHWARZ K, 1987, CRC CRIT R SOLID ST, V13, P211
92556    SMITH LL, 1999, J MATER RES, V14, P1032
92557    SUNDGREN JE, 1985, THIN SOLID FILMS, V128, P21
92558    ZIEGLER JF, 1985, STOPPING RANGE IONS
92559 NR 20
92560 TC 1
92561 SN 0038-1098
92562 J9 SOLID STATE COMMUN
92563 JI Solid State Commun.
92564 PD NOV
92565 PY 2004
92566 VL 132
92567 IS 5
92568 BP 347
92569 EP 350
92570 PG 4
92571 SC Physics, Condensed Matter
92572 GA 860HZ
92573 UT ISI:000224334400013
92574 ER
92575 
92576 PT J
92577 AU Chen, XY
92578    Sun, ML
92579    Wang, W
92580    Sun, DC
92581    Zhang, ZM
92582    Wang, XJ
92583 TI Experimental investigation of time-dependent cavitation in an
92584    oscillatory squeeze film
92585 SO SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY
92586 DT Article
92587 DE dynamically loaded journal bearing; squeeze film effect; time-dependent
92588    cavitation
92589 ID BEARING
92590 AB The occurrence of time-dependent cavitation and tensile stress in an
92591    oscillatory oil squeeze film were investigated experimentally. The test
92592    apparatus was a simple thrust bearing consisting of two parallel
92593    circular plates separated by a thin viscous oil film. During the test,
92594    one plate was at rest while the other (transparent) oscillated in a
92595    direction normal to its surface. This test configuration was chosen to
92596    avoid the rotational motion and complicated geometry of a squeeze film
92597    journal bearing. The frequency of oscillation was in the range of 5 to
92598    50 Hz and was controlled by an electro-magnetic exciter. The process of
92599    cavity formation and its subsequent development was recorded by a
92600    high-speed video camera. Concomitant pressure in the oil film was
92601    measured both within and without the cavitation region. It was found
92602    that both tensile stress and cavities existed in a squeeze film under
92603    certain working conditions.
92604 C1 Shanghai Univ, Res Inst Bearings, Shanghai 200072, Peoples R China.
92605    SUNY Binghamton, Dept Engn Mech, Binghamton, NY 13902 USA.
92606 RP Chen, XY, Shanghai Univ, Res Inst Bearings, Shanghai 200072, Peoples R
92607    China.
92608 EM xychen@mail.shu.edu.cn
92609 CR HAYES DF, 1964, CAVITIES MOVING PARA, P122
92610    KU CP, 1990, J TRIBOL-T ASME, V112, P725
92611    MEGED Y, 1995, WEAR, V186, P444
92612    OPTASANU V, 2000, J TRIBOL-T ASME, V122, P162
92613    PARKINS DW, 1984, T ASME, V106, P360
92614    SUN DC, 1991, T ASME, V113, P287
92615    SUN DC, 1993, J TRIBOL-T ASME, V115, P88
92616 NR 7
92617 TC 0
92618 SN 1672-1799
92619 J9 SCI CHINA SER G
92620 JI Sci. China Ser. G-Phys. Mech. Astron.
92621 PD JUL
92622 PY 2004
92623 VL 47
92624 SU Suppl. S
92625 BP 107
92626 EP 112
92627 PG 6
92628 SC Physics, Multidisciplinary
92629 GA 860YQ
92630 UT ISI:000224381000016
92631 ER
92632 
92633 PT J
92634 AU Xia, TC
92635    Yu, FJ
92636    Zhang, Y
92637 TI The multi-component coupled Burgers hierarchy of soliton equations and
92638    its multi-component integrable couplings system with two arbitrary
92639    functions
92640 SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
92641 DT Article
92642 DE coupled Burgers hierarchy; multi-component coupled Burgers hierarchy;
92643    loop algebra; multicomponent integrable couplings system
92644 ID BI-HAMILTONIAN STRUCTURE; INVOLUTIVE SYSTEMS; CONSTRAINED FLOWS; LOOP
92645    ALGEBRA; NONLINEARIZATION; TRANSFORMATION; WELL
92646 AB A new loop algebra (G) over tilde (M) is constructed, which is devoted
92647    to establishing an isospectral problem. By making use of Tu scheme, the
92648    multi-component coupled Burgers hierarchy is obtained. Furthermore, an
92649    expanding loop algebra (F) over tilde (M) of the loop algebra (G) over
92650    tilde (M) is presented. It follows that the multi-component integrable
92651    coupling system of the multi-component coupled Burgers hierarchy is
92652    worked out. In general, the method can be applied to other evolution
92653    equations hierarchies. (C) 2004 Elsevier B.V. All rights reserved.
92654 C1 Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
92655    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
92656 RP Xia, TC, Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
92657 EM xiatc@yahoo.com.cn
92658 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
92659    CAO CW, 1990, SCI CHINA SER A, V33, P528
92660    FAN E, 2001, J PHYS A-MATH GEN, V34, P513
92661    FAN E, 2001, PHYSICA A, V301, P105
92662    FAN EG, 2000, J MATH PHYS, V41, P7769
92663    GENG XG, 1993, J MATH PHYS, V34, P805
92664    GUO F, 1999, ACTA MATH PHYS SINIC, V19, P507
92665    GUO FK, 2000, ACTA MATH APPL SIN, V23, P181
92666    GUO FK, 2003, J MATH PHYS, V44, P5793
92667    GUO FK, 2003, J SYST SCI MATH SCI, V22, P36
92668    MA WX, 1992, J MATH ANN, V13, P115
92669    MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
92670    MA WX, 1999, J MATH PHYS, V40, P4419
92671    NEWELL AC, 1985, SOLITON MATH PHYS
92672    QIAO ZJ, 1993, J PHYS A-MATH GEN, V26, P4407
92673    TSUCHIDA T, 1998, CHAOS SOLITON FRACT, V9, P869
92674    TSUCHIDA T, 1999, J PHYS SOC JPN, V69, P2241
92675    TSUCHIDA T, 1999, PHYS LETT A, V257, P53
92676    TU GZ, 1989, J MATH PHYS, V30, P330
92677    WADATI M, 1972, J PHYS SOC JPN, V32, P1681
92678    WADATI M, 1973, J PHYS SOC JPN, V34, P1289
92679    WADATI M, 1975, PROG THEOR PHYS, V53, P419
92680    XIA TC, 2004, CHAOS SOLITON FRACT, V22, P939
92681    XIA TC, 2004, IN PRESS COMMUN THEO
92682    XU XX, 2003, CHAOS SOLITON FRACT, V15, P475
92683    YAN ZY, 2002, CHAOS SOLITON FRACT, V13, P1439
92684    YAN ZY, 2002, CHAOS SOLITON FRACT, V14, P1445
92685    YAN ZY, 2002, CHAOS SOLITON FRACT, V14, P441
92686    ZENG YB, 1991, PHYS LETT A, V160, P541
92687    ZENG YB, 1996, J PHYS A-MATH GEN, V29, P5241
92688    ZHANG B, 1993, J NE MATH, V9, P338
92689    ZHANG YF, 2003, CHAOS SOLITON FRACT, V18, P855
92690    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P305
92691    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P413
92692    ZHANG YF, 2004, CHAOS SOLITON FRACT, V44, P305
92693 NR 35
92694 TC 9
92695 SN 0378-4371
92696 J9 PHYSICA A
92697 JI Physica A
92698 PD NOV 15
92699 PY 2004
92700 VL 343
92701 BP 238
92702 EP 246
92703 PG 9
92704 SC Physics, Multidisciplinary
92705 GA 862MV
92706 UT ISI:000224495900015
92707 ER
92708 
92709 PT J
92710 AU Wu, YQ
92711    Jiang, GC
92712    You, JL
92713    Hou, HY
92714    Chen, H
92715    Xu, KD
92716 TI Theoretical study of the local structure and Raman spectra of CaO-SiO2
92717    binary melts
92718 SO JOURNAL OF CHEMICAL PHYSICS
92719 DT Article
92720 ID SODIUM-SILICATE GLASSES; BOND POLARIZABILITY MODEL; SI-29 MAS-NMR;
92721    MOLECULAR-DYNAMICS; COMPUTER-SIMULATION; VIBRATIONAL-SPECTRA; VITREOUS
92722    SILICA; ELECTROOPTICAL PARAMETERS; ALUMINOSILICATE GLASSES; ABSORPTION
92723    INTENSITIES
92724 AB A procedure for the Raman spectra calculation of vitreous and molten
92725    silicates was presented in this paper. It includes molecular dynamics
92726    MD simulation for the generation of equilibrium configurations,
92727    Wilson's GF matrix method for the calculations of eigenfrequencies and
92728    corresponding vectors, electro-optical parameters method (EOPM) for the
92729    Raman intensity calculations, and the bond polarizability model (BPM)
92730    for the determination of polarizability and polarizability derivative.
92731    One of the most important characteristics of this procedure is the
92732    achievement of the partial Raman spectra of five tetrahedral units, as
92733    well as the total spectral envelope. In this paper, the calculation was
92734    carried out for the vitreous and molten calcium silicates with
92735    different compositions and at various temperatures. It is worthwhile to
92736    note that the calculation is based on statistical configurations
92737    distribution in the space and so it is not needed to artificially
92738    adjust the full width at half maximum (FWHM) of spectra. It was also
92739    tested through the good agreement of the calculated spectra with the
92740    experimental, including some regularity of spectral properties.
92741    According to the calculation, the symmetrical stretching of whole
92742    tetrahedral units, to which the stretching of Si-O-nb bond gives the
92743    main contribution to intensity, is proven to be the dominance in the
92744    high-frequency range (800-1200 cm(-1)) and the symmetrical bending of
92745    Si-O-b-Si, to which the stretching of Si-O-b bond exhibits the main
92746    contribution, is the dominance in the medium-frequency range (400-700
92747    cm-1). As the first theoretical results, the Raman scattering
92748    coefficient of each Q(i) was found little change along with the
92749    variation of composition and temperature. (C) 2004 American Institute
92750    of Physics.
92751 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
92752 RP Wu, YQ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
92753    China.
92754 EM yqwu@staff.shu.edu.cn
92755 CR ABBATE S, 1977, J CHEM PHYS, V67, P1519
92756    ABBATE S, 1977, J MOL SPECTROSC, V66, P1
92757    ALAVI A, 1992, PHILOS MAG B, V65, P489
92758    BARRON LD, 1982, J RAMAN SPECTROSC, V13, P155
92759    BARRON LD, 1986, MOL PHYS, V57, P653
92760    BELASHCHENKO DK, 1992, ISIJ INT, V32, P990
92761    BELL RJ, 1970, DISCUSS FARADAY SOC, V50, P55
92762    BELL RJ, 1976, J PHYS C SOLID STATE, V9, P2955
92763    BRAWER S, 1975, PHYS REV B, V11, P3173
92764    BRAWER SA, 1975, J CHEM PHYS, V63, P2421
92765    BRAWER SA, 1977, J NONCRYST SOLIDS, V23, P261
92766    COONEY TF, 1990, J NON-CRYST SOLIDS, V122, P10
92767    DOWTY E, 1987, PHYS CHEM MINER, V14, P542
92768    DOWTY E, 1987, PHYS CHEM MINER, V14, P67
92769    FARNAN I, 1990, J AM CHEM SOC, V112, P32
92770    FINCHAM D, 1994, MOL SIMULAT, V13, P1
92771    FRANTZ JD, 1995, CHEM GEOL, V121, P155
92772    FUKUMI K, 1990, J NON-CRYST SOLIDS, V119, P297
92773    FURUKAWA T, 1981, J CHEM PHYS, V75, P3226
92774    GAROFALINI SH, 1990, J NON-CRYST SOLIDS, V120, P1
92775    GASKELL PH, 1967, PHYS CHEM GLASSES, V8, P69
92776    GILLET P, 1990, J GEOPHYS RES-SOLID, V95, P21635
92777    GO S, 1975, PHYS REV LETT, V34, P580
92778    GUHA S, 1996, PHYS REV B, V53, P13106
92779    GUSSONI M, 1976, J CHEM PHYS, V65, P3439
92780    GUTTMAN L, 1985, J NON-CRYST SOLIDS, V75, P419
92781    HAYAKAWA S, 2000, J NON-CRYST SOLIDS, V272, P103
92782    HIMMEL B, 1991, J NON-CRYST SOLIDS, V136, P27
92783    HOOVER WG, 1985, PHYS REV A, V31, P1695
92784    HUFF NT, 1999, J NON-CRYST SOLIDS, V253, P133
92785    JIANG GC, 2000, SPECTROSC SPECT ANAL, V20, P206
92786    JOHNSON JA, 1999, J NON-CRYST SOLIDS, V246, P104
92787    KASHIO S, 1980, T IRON STEEL I JPN, V20, P251
92788    KEEN DA, 1999, J PHYS-CONDENS MAT, V11, P9263
92789    KIEFFER J, 1989, J CHEM PHYS, V90, P4982
92790    LIANG YQ, 1990, MOL VIBRATION VIBRAT
92791    MAEKAWA H, 1991, J NON-CRYST SOLIDS, V127, P53
92792    MARINOV M, 1994, J PHYS-CONDENS MAT, V6, P3813
92793    MCMILLAN P, 1984, AM MINERAL, V69, P622
92794    MCMILLAN PF, 1994, GEOCHIM COSMOCHIM AC, V58, P3653
92795    MICHAILOVA B, 1994, J NONCRYST SOLIDS, V168, P265
92796    MURRAY RA, 1989, PHYS REV B, V39, P1320
92797    MYSEN BO, 1982, AM MINERAL, V67, P686
92798    MYSEN BO, 1982, REV GEOPHYS SPACE PH, V20, P353
92799    MYSEN BO, 1990, AM MINERAL, V75, P120
92800    MYSEN BO, 1992, CHEM GEOL, V96, P321
92801    MYSEN BO, 1994, CONTRIB MINERAL PETR, V117, P1
92802    NOFZ M, 1989, PHYS CHEM GLASSES, V30, P46
92803    OKADA I, 1982, J CHEM SOC JPN, P910
92804    PARRINELLO M, 1981, J APPL PHYS, V52, P7182
92805    POE BT, 1992, CHEM GEOL, V96, P333
92806    PRESS WH, 1992, NUMERICAL RECIPES C
92807    REDFERN SAT, 1999, PHASE TRANSIT B, V69, P17
92808    RICHET P, 1993, J APPL PHYS, V74, P5451
92809    SASAKI S, 1980, ACTA CRYSTALLOGR A, V36, P904
92810    SCHNEIDER J, 2000, J NON-CRYST SOLIDS, V273, P8
92811    SEN PN, 1977, PHYS REV B, V15, P4030
92812    SHARMA SK, 1981, NATURE, V292, P140
92813    STEBBINS JF, 1988, J NONCRYST SOLIDS, V106, P359
92814    STEBBINS JF, 2000, J NON-CRYST SOLIDS, V275, P1
92815    STEBBINS JF, 2001, CHEM GEOL, V174, P63
92816    STEIN DJ, 1995, AM MINERAL, V80, P417
92817    SWAINSON IP, 1993, PHYS REV LETT, V71, P193
92818    TURRELL G, 1996, RAMAN MICROSCOPY DEV
92819    VOLLMAYR K, 1996, PHYS REV B, V54, P15808
92820    WASEDA Y, 1989, MAT SCI EARTHS INTER, P37
92821    WILSON EB, 1955, MOL VIBRATIONS
92822    WU YQ, 2001, T NONFERR METAL SOC, V11, P965
92823    WU YQ, 2002, CHIN J ATOM MOL PHYS, V19, P433
92824    YOU JL, 2000, CHINESE J LIGHT SCAT, V11, P378
92825    YOU JL, 2000, P 17 INT C RAM SPECT
92826    YOU JL, 2000, SPECTROSC SPECT ANAL, V20, P797
92827    YOU JL, 2001, CHINESE PHYS LETT, V18, P408
92828    YOU JL, 2001, J NON-CRYST SOLIDS, V282, P125
92829    ZHANG P, 1997, J PHYS CHEM B, V101, P4004
92830    ZOTOV N, 1996, J NON-CRYST SOLIDS, V197, P179
92831    ZOTOV N, 1996, J NON-CRYST SOLIDS, V202, P153
92832    ZOTOV N, 1999, PHYS REV B, V60, P6383
92833    ZOTOV N, 2001, J NON-CRYST SOLIDS, V287, P231
92834 NR 79
92835 TC 4
92836 SN 0021-9606
92837 J9 J CHEM PHYS
92838 JI J. Chem. Phys.
92839 PD OCT 22
92840 PY 2004
92841 VL 121
92842 IS 16
92843 BP 7883
92844 EP 7895
92845 PG 13
92846 SC Physics, Atomic, Molecular & Chemical
92847 GA 861ZF
92848 UT ISI:000224456500040
92849 ER
92850 
92851 PT J
92852 AU Xiao, ZY
92853    Wang, ZH
92854 TI Broad stopband characteristic of dielectric chiral photonic crystals
92855 SO INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES
92856 DT Article
92857 DE chiral; photonic crystal; photonic band gap; reflection coefficient
92858 ID BAND-GAP STRUCTURE; MICROCAVITIES
92859 AB In this paper, a novel chiral photonic crystal structure is presented.
92860    The formula of reflection coefficient of multi-layer chiral media is
92861    applied to dielectric-chiral photonic crystal structure, which is
92862    composed of thin chiral layers sandwiched by conventional media. To
92863    compare with previous literature, we consider the dielectric structure
92864    with alternate glass and GaAs layers. The power reflectance as a
92865    function of wavelength for this photonic crystal structure has been
92866    calculated. The results are in good agreement with that of Reference.
92867    However, our method is simpler. From these graphs, it is found that
92868    100% reflectance is only in finite wavelength ranges, and reflection
92869    bandwidth is also small for conventional photonic crystal structure.
92870    For chiral photonic crystal, the results show that the chiral photonic
92871    band gap (PBG) structure gives nearly 100% reflections in the
92872    near-infrared region in addition to some parts of the visible region of
92873    the wavelengths. Therefore, it can be used as a broadband reflector and
92874    filter.
92875 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
92876 RP Xiao, ZY, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
92877    Peoples R China.
92878 CR BIRKS TA, 1997, OPT LETT, V22, P961
92879    FORESI JS, 1997, NATURE, V390, P143
92880    LIU SH, 1999, MICROW OPT TECHN LET, V23, P357
92881    SRIVASTAVA SK, 2003, MICROW OPT TECHN LET, V38, P293
92882    VILLENEUVE P, 1998, OPT LETT, V21, P2017
92883    VILLENEUVE PR, 1995, APPL PHYS LETT, V67, P167
92884    XIAO ZY, 2004, OPT COMMUN, V237, P229
92885 NR 7
92886 TC 0
92887 SN 0195-9271
92888 J9 INT J INFRAR MILLIM WAVE
92889 JI Int. J. Infrared Millimeter Waves
92890 PD SEP
92891 PY 2004
92892 VL 25
92893 IS 9
92894 BP 1309
92895 EP 1314
92896 PG 6
92897 SC Engineering, Electrical & Electronic; Physics, Applied; Optics
92898 GA 862HH
92899 UT ISI:000224481100004
92900 ER
92901 
92902 PT J
92903 AU Xiao, ZY
92904    Wang, ZH
92905 TI Super narrow bandpass filter using fractal cantor structures
92906 SO INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES
92907 DT Article
92908 DE narrow passband filter; fractal Cantor structure; transmission matrix;
92909    transmittance and reflectance
92910 ID GAP STRUCTURES
92911 AB In this paper, we present a new photonic crystal structure, which is
92912    composed of fractal Cantor multilayer with a defect embedded in its
92913    middle. Optical transmission matrix method is used to calculating the
92914    transmittance and reflectance. Compared with general Cantor multilayer,
92915    we find the new structure has wider stopband and shows a super narrow
92916    band in the middle of wider stopband. It can be served as a super
92917    narrow bandpass filter. The pass band obtained can be less than 0.6nm
92918    near the infrared 1530 nm. The optical transmission in the center
92919    wavelength is higher than 99 %. This means a very low insert loss. It
92920    is more superior to other kind narrow band filters. This kind of
92921    photonic crystal super narrow band optical filter may find applications
92922    in super dense wavelength division multiplexing for optical
92923    communications and precise optical measurement.
92924 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
92925 RP Xiao, ZY, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
92926    Peoples R China.
92927 CR BLOEMER MJ, 1998, J APP PHYS, V83, P1676
92928    BORN M, 1999, PRINCIPLES OPTICS
92929    FEDER J, 1988, FRACTALS
92930    FINK Y, 1998, SCIENCE, V282, P1679
92931    FORESI JS, 1997, NATURE, V390, P143
92932    LAVRINENKO AV, 2002, PHYS REV E 2B, V65
92933    SCALORA M, 1998, J APPL PHYS, V83, P2377
92934    SIBILIA C, 1999, J OPT A-PURE APPL OP, V1, P490
92935    VILLENEUVE P, 1998, OPT LETT, V21, P2017
92936 NR 9
92937 TC 1
92938 SN 0195-9271
92939 J9 INT J INFRAR MILLIM WAVE
92940 JI Int. J. Infrared Millimeter Waves
92941 PD SEP
92942 PY 2004
92943 VL 25
92944 IS 9
92945 BP 1315
92946 EP 1323
92947 PG 9
92948 SC Engineering, Electrical & Electronic; Physics, Applied; Optics
92949 GA 862HH
92950 UT ISI:000224481100005
92951 ER
92952 
92953 PT J
92954 AU Zhang, Y
92955    Chen, DY
92956 TI The novel multi-solitary wave solution to the fifth-order KdV equation
92957 SO CHINESE PHYSICS
92958 DT Article
92959 DE solitary wave; bilinear method; Backlund transformation; fifth-order
92960    KdV equation
92961 ID KORTEWEG-DEVRIES EQUATION; MULTISOLITON SOLUTIONS; BACKLUND
92962    TRANSFORMATION; EVOLUTION-EQUATIONS
92963 AB By using Hirota's method, the novel multi-solitary wave solutions to
92964    the fifth-order KdV equation are obtained. Furthermore, various new
92965    solitary wave solutions are also derived by a reconstructed bilinear
92966    Backlund transformation.
92967 C1 Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China.
92968    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
92969 RP Zhang, Y, Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R
92970    China.
92971 EM zy2836@163.com
92972 CR ABLOWITZ MJ, 1981, SOLITON INVERSE SCAT
92973    CAUDREY PJ, 1976, PROC ROY SOC LONDON, V351, P407
92974    CHEN DY, 2002, J PHYS SOC JPN, V71, P2072
92975    CHEN DY, 2002, J PHYS SOC JPN, V71, P658
92976    DENG SF, 2001, J PHYS SOC JPN, V70, P3174
92977    FORDY AP, 1981, J MATH PHYS, V22, P1170
92978    HIROTA R, 1971, PHYS REV LETT, V27, P1192
92979    HIROTA R, 1974, PROG THEOR PHYS, V52, P1498
92980    HIROTA R, 1980, TOP CURR PHYS, V17, P157
92981    HU XB, 1988, ACTA MATH APPL SINIC, V4, P46
92982    ITO M, 1980, J PHYS SOC JPN, V49, P771
92983    KOVALYOV M, 1996, APPL MATH LETT, V9, P89
92984    LAX PD, 1968, COMMUN PUR APPL MATH, V21, P467
92985    LI Y, 1989, J TONGJI U, V17, P377
92986    LOU SY, 1997, ACTA PHYS SIN-OV ED, V6, P561
92987    RUAN HY, 1999, ACTA PHYS SIN-CH ED, V48, P1781
92988    SATSUMA J, 1977, J PHYS SOC JPN, V43, P692
92989    SAWADA K, 1974, PROG THEOR PHYS, V51, P1355
92990    XU GQ, 2003, ACTA PHYS SIN-CH ED, V52, P1848
92991    ZHANG JF, 2001, CHINESE PHYS, V10
92992    ZHANG JF, 2002, CHINESE PHYS, V11, P425
92993    ZHANG JF, 2002, CHINESE PHYS, V11, P533
92994    ZHANG Y, 2003, J PHYS SOC JPN, V72, P763
92995 NR 23
92996 TC 0
92997 SN 1009-1963
92998 J9 CHIN PHYS
92999 JI Chin. Phys.
93000 PD OCT
93001 PY 2004
93002 VL 13
93003 IS 10
93004 BP 1606
93005 EP 1610
93006 PG 5
93007 SC Physics, Multidisciplinary
93008 GA 860HH
93009 UT ISI:000224332600004
93010 ER
93011 
93012 PT J
93013 AU Fu, JL
93014    Chen, LQ
93015    Xie, FP
93016 TI Lie symmetries and non-Noether conserved quantities for Hamiltonian
93017    canonical equations
93018 SO CHINESE PHYSICS
93019 DT Article
93020 DE Hamiltonian system; Lie symmetry; non-Noether conserved quantity; Lie
93021    groups
93022 ID DYNAMICAL-SYSTEMS; FORM INVARIANCE; INTEGRATION; THEOREM; HOJMAN
93023 AB This paper focuses on studying Lie symmetries and non-Noether conserved
93024    quantities of Hamiltonian dynamical systems in phase space. Based on
93025    the infinitesimal transformations with respect to the generalized
93026    coordinates and generalized momenta, we obtain the determining
93027    equations and structure equation of the Lie symmetry for Hamiltonian
93028    dynamical systems. This work extends the research of non-Noether
93029    conserved quantity for Hamilton canonical equations, and leads directly
93030    to a new type of non-Noether conserved quantities of the systems.
93031    Finally, an example is given to illustrate these results.
93032 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
93033    Zhejiang Univ, Dept Appl Phys, Hangzhou 310018, Peoples R China.
93034    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
93035 RP Fu, JL, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
93036    Peoples R China.
93037 EM sqfujingli@163.com
93038 CR ABRAHAMSHRAUNER B, 1995, PHYS LETT A, V203, P169
93039    DJUKIC DS, 1975, ACTA MECH, V23, P17
93040    FAY S, 2001, CLASSICAL QUANT GRAV, V18, P4863
93041    FU JL, 2003, PHYS LETT A, V317, P255
93042    FU JL, 2004, CHINESE PHYS, V13, P287
93043    FU JL, 2004, MECH RES COMMUN, V31, P9
93044    GONZALEZGASCON F, 1994, J PHYS A-MATH GEN, V27, L59
93045    HOJMAN SA, 1992, J PHYS A, V25, L291
93046    LAKSHMANAN M, 1992, J MATH PHYS, V33, P4068
93047    LI ZP, 1981, ACTA PHYS SINICA, V30, P1659
93048    LI ZP, 1993, CLASSICAL QUANTUM DY
93049    LI ZP, 1999, J PHYS A-MATH GEN, V32, P6391
93050    LUO SK, 2003, CHINESE PHYS, V12, P841
93051    LUO SK, 2004, ACTA PHYS SIN-CH ED, V53, P1271
93052    LUO SK, 2004, ACTA PHYS SIN-CH ED, V53, P5
93053    LUTZKY M, 1979, J PHYS A, V12, P973
93054    LUTZKY M, 1979, PHYS LETT A, V72, P86
93055    LUTZKY M, 1995, J PHYS A-MATH GEN, V28, L637
93056    MASQUE JM, 2002, J PHYS A-MATH GEN, V35, P2013
93057    ME FX, 1999, APPL GROUPS ALGEBRAS
93058    MEI FX, 1993, SCI CHINA SER A, V36, P1456
93059    MEI FX, 2002, CHINESE SCI BULL, V47, P1544
93060    MEI FX, 2003, ACTA PHYS SIN-CH ED, V52, P1048
93061    NOETHER E, 1918, NACHR GES WISS GOTT, V2, P235
93062    QIAO YF, 2003, ACTA PHYS SIN-CH ED, V52, P1051
93063    SARLET W, 1987, J PHYS A-MATH GEN, V20, P1365
93064    SOH CW, 1999, CLASSICAL QUANT GRAV, V16, P3553
93065    VUJANOVIC B, 1978, INT J NONLINEAR MECH, V13, P185
93066    ZHANG Y, 2002, ACTA PHYS SINICA, V51, P2423
93067    ZHANG Y, 2003, ACTA PHYS SIN-CH ED, V52, P1326
93068    ZHAO YY, 1993, ADV MECH, V23, P360
93069 NR 31
93070 TC 1
93071 SN 1009-1963
93072 J9 CHIN PHYS
93073 JI Chin. Phys.
93074 PD OCT
93075 PY 2004
93076 VL 13
93077 IS 10
93078 BP 1611
93079 EP 1614
93080 PG 4
93081 SC Physics, Multidisciplinary
93082 GA 860HH
93083 UT ISI:000224332600005
93084 ER
93085 
93086 PT J
93087 AU Liu, RW
93088    Chen, LQ
93089 TI Lie symmetries and invariants of constrained Hamiltonian systems
93090 SO CHINESE PHYSICS
93091 DT Article
93092 DE analytical mechanics; constrained Hamilton system; Lie symmetry;
93093    invariant
93094 ID CONSERVED QUANTITIES; CANONICAL FORMALISM; DYNAMICAL-SYSTEMS
93095 AB According to the theory of the invariance of ordinary differential
93096    equations under the infinitesimal transformations of group, the
93097    relations between Lie symmetries and invariants of the mechanical
93098    system with a singular Lagrangian are investigated in phase space. New
93099    dynamical equations of the system are given in canonical form and the
93100    determining equations of Lie symmetry transformations are derived. The
93101    proposition about the Lie symmetries and invariants are presented. An
93102    example is given to illustrate the application of the result in this
93103    paper.
93104 C1 Shaoguan Univ, Dept Phys, Shaoguan 512005, Peoples R China.
93105    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
93106 RP Liu, RW, Shaoguan Univ, Dept Phys, Shaoguan 512005, Peoples R China.
93107 EM lrw@sgu.edu.cn
93108 CR BERGMANN PG, 1955, PHYS REV, V98, P531
93109    CHEN XW, 2000, CHINESE PHYS, V9, P721
93110    DIRAC PAM, 1950, CAN J MATH, V2, P129
93111    DIRAC PAM, 1964, LECT QUANTUM MECH
93112    FU JL, 2003, CHINESE PHYS, V12, P695
93113    FU JL, 2004, CHINESE PHYS, V13, P287
93114    KAMIMURA K, 1982, NUOVO CIMENTO B, V68, P33
93115    LAO SK, 2003, CHINESE PHYS, V12, P841
93116    LI AM, 2003, CHINESE PHYS, V12, P467
93117    LI ZP, 2002, SYMMETRIES CONSTRAIN
93118    MEI FX, 1999, APPL GROUPS ALGEBRAS
93119    MEI FX, 1999, MECH RES COMMUN, V26, P7
93120    SHANMUGADHASAN S, 1973, J MATH PHYS, V14, P677
93121    WU HB, 2004, CHINESE PHYS, V13, P589
93122    ZHANG HB, 2002, CHINESE PHYS, V11, P765
93123    ZHANG RC, 2000, CHINESE PHYS, V9, P561
93124    ZHANG Y, 2000, CHINESE PHYS, V9, P401
93125 NR 17
93126 TC 5
93127 SN 1009-1963
93128 J9 CHIN PHYS
93129 JI Chin. Phys.
93130 PD OCT
93131 PY 2004
93132 VL 13
93133 IS 10
93134 BP 1615
93135 EP 1619
93136 PG 5
93137 SC Physics, Multidisciplinary
93138 GA 860HH
93139 UT ISI:000224332600006
93140 ER
93141 
93142 PT J
93143 AU Cao, WG
93144    Shi, ZJ
93145    Fan, C
93146    Sun, RS
93147 TI A facile synthesis of ethyl 2,4-dimethoxy-6-perfluoroalkyl-benzoates
93148    via acyclic precursors
93149 SO CHINESE JOURNAL OF CHEMISTRY
93150 DT Article
93151 DE acyclic precursor; intramolecular Wittig reaction; fluorinated
93152    polysubstituted arene; ethyl 2,4-dimethoxy-6-perfluoroalkylbenzoate
93153 AB The acyclic precursors, methyl
93154    3-perfluoroalkyl-4-carbethoxy-5-methoxy-6-(triphenylphosphoranylidene)he
93155    xa-2,4-dienoates (4) were obtained via the addition reaction of ethyl
93156    3-methoxy-4-(triphenylphosphoranyhdene)but-2-enoate (2) with equally
93157    molar methyl 2-perfluoroalkynoates (3). Ethyl
93158    2,4-dimethoxy-6-perfluoroalkylbenzoates (5) were synthesized in high
93159    yield via an intramolecular elimination of Ph3PO of 4 by heating in
93160    anhydrous benzene in a sealed tube. The structure of these compounds
93161    was confirmed by IR, H-1, C-13, 2D C-H cosy NMR and mass spectra and
93162    elemental analyses. The possible reaction mechanisms were also proposed.
93163 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
93164    Chinese Acad Sci, Shanghai Inst Organ Chem, Key Lab Organofluorine Chem, Shanghai 200032, Peoples R China.
93165 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
93166 EM wgcao@mail.shu.edu.cn
93167 CR BANKS RE, 1979, ORGANOFLUORINE CHEM
93168    DING WY, 1987, TETRAHEDRON LETT, V28, P81
93169    DING WY, 1992, SYNTHESIS-STUTTGART, P635
93170    DING WY, 1993, CHINESE J CHEM, V11, P81
93171    DING WY, 1993, J CHEM SOC P1, P855
93172    HUANG YZ, 1979, ACTA CHIM SINICA, V37, P47
93173    KOCHHAR KS, 1984, J ORG CHEM, V49, P3222
93174    SMISSMAN EE, 1964, J ORG CHEM, V29, P3161
93175    WELCH JT, 1987, TETRAHEDRON, V43, P3123
93176 NR 9
93177 TC 0
93178 SN 1001-604X
93179 J9 CHINESE J CHEM
93180 JI Chin. J. Chem.
93181 PD OCT
93182 PY 2004
93183 VL 22
93184 IS 10
93185 BP 1174
93186 EP 1176
93187 PG 3
93188 SC Chemistry, Multidisciplinary
93189 GA 861FI
93190 UT ISI:000224401100022
93191 ER
93192 
93193 PT J
93194 AU Fan, XM
93195    Zhou, SF
93196 TI Kernel sections for non-autonomous strongly damped wave equations of
93197    non-degenerate Kirchhoff-type
93198 SO APPLIED MATHEMATICS AND COMPUTATION
93199 DT Article
93200 DE wave equation; Kirchhoff-type; kernel section; Hausdorff dimension;
93201    equivalent norm; non-degenerate; global attractor
93202 ID EXISTENCE; BEHAVIOR; STRINGS
93203 AB We prove the existence of compact kernel sections for the process
93204    generated by strongly damped wave equations of non-degenerate
93205    Kirchhoff-type modelling the non-linear vibrations of an elastic
93206    string. And we obtain a precise estimate of upper bound of Hausdorff
93207    dimension of kernel sections, which decreases as the strong damping
93208    grows for large strong damping under some conditions, particularly in
93209    the autonomous case. (C) 2003 Published by Elsevier Inc.
93210 C1 Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China.
93211    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
93212 RP Fan, XM, Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China.
93213 EM fanxm@uestc.edu.cn
93214 CR CARRIER GF, 1949, Q APPL MATH, V7, P97
93215    CHEPYZHOV V, 1991, INDIANA U MATH J, V140, P193
93216    GHIDAGLIA JM, 1991, SIAM J MATH ANAL, V22, P861
93217    MASSATT P, 1983, J DIFFER EQUATIONS, V48, P334
93218    NARASIMHA R, 1968, J SOUND VIB, V8, P134
93219    NISHIHARA K, FUNKCIAL EKVAC, V33
93220    ONO K, 1995, ADV MATH SCI APPL, V5, P457
93221    ONO K, 1997, J DIFFER EQUATIONS, V137, P273
93222    ONO K, 1997, J MATH ANAL APPL, V216, P321
93223    PARK JY, 2000, INT J MATH MATH SCI, V23, P369
93224    PAZY A, 1983, SEMIGROUPS LINEAR OP
93225    TEMAM R, 1988, APPL MATH SCI, V68
93226    WEBB GF, 1980, CAN J MATH, V32, P631
93227    ZHOU S, 1999, FUNCTIONAL DIFFERENT, V6, P451
93228 NR 14
93229 TC 0
93230 SN 0096-3003
93231 J9 APPL MATH COMPUT
93232 JI Appl. Math. Comput.
93233 PD OCT 25
93234 PY 2004
93235 VL 158
93236 IS 1
93237 BP 253
93238 EP 266
93239 PG 14
93240 SC Mathematics, Applied
93241 GA 860NT
93242 UT ISI:000224351000021
93243 ER
93244 
93245 PT J
93246 AU Zhu, JM
93247    Ma, ZY
93248    Zheng, CL
93249 TI Localized fractal structure of the (2+1)-dimensional Broer-Kaup
93250    equations
93251 SO ACTA PHYSICA SINICA
93252 DT Article
93253 DE homogeneous balance method; (2+1)-dimensional Broer-Kaup equations;
93254    fractal structure
93255 ID VARIANT BOUSSINESQ EQUATIONS; NOVIKOV-VESELOV EQUATION; BACKLUND
93256    TRANSFORMATION; COHERENT STRUCTURES; WAVE SOLUTIONS; SYSTEM; SERIES;
93257    CHAOS
93258 AB The linearized form of (2 + 1)-dimensional Broer-Kaup equations is
93259    established by using the improved homogeneous balance method. Starting
93260    from the Backlund transformation, a variable-separation solution with
93261    the entrance of some arbitrary function is obtained. By using Jacobian
93262    elliptic functions, new fractal structures are obtained.
93263 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
93264    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
93265 RP Zhu, JM, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R
93266    China.
93267 EM zjm64@163.com
93268 CR CHEN HS, 2000, CHINESE PHYS LETT, V17, P85
93269    FAN EG, 1998, PHYS LETT A, V246, P403
93270    FAN EG, 2003, CHAOS SOLITON FRACT, V15, P559
93271    FAN EG, 2003, J PHYS A-MATH GEN, V36, P7009
93272    GEDALIN M, 1997, PHYS REV LETT, V78, P448
93273    GOLLUB JP, 2000, NATURE, V404, P710
93274    HAN P, 2003, CHINESE PHYS, V12, P1166
93275    JALABERT RA, 2001, PHYS REV LETT, V86, P2490
93276    KIVSHAR YS, 1989, REV MOD PHYS, V61, P765
93277    LOU SY, 1998, COMMUN THEOR PHYS, V29, P145
93278    LOU SY, 2002, CHINESE PHYS LETT, V19, P769
93279    LOU SY, 2002, J MATH PHYS, V43, P4078
93280    LOUTSENKO I, 1997, PHYS REV LETT, V78, P3011
93281    RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P586
93282    TANG XY, 2002, J PHYS A, V43, P4078
93283    WANG ML, 1995, PHYS LETT A, V199, P169
93284    WANG ML, 1996, PHYS LETT A, V213, P279
93285    WANG WH, 2002, CHINESE PHYS, V11, P1101
93286    ZHANG JF, 1998, ACTA PHYS SINICA, V47, P1416
93287    ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P2676
93288    ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P705
93289    ZHANG JF, 2002, CHINESE PHYS, V11, P425
93290    ZHANG JF, 2002, CHINESE PHYS, V11, P651
93291    ZHANG JF, 2003, ACTA PHYS SIN-CH ED, V52, P2359
93292    ZHANG JL, 2003, CHINESE PHYS, V12, P245
93293    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
93294    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
93295    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P261
93296    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
93297 NR 29
93298 TC 2
93299 SN 1000-3290
93300 J9 ACTA PHYS SIN-CHINESE ED
93301 JI Acta Phys. Sin.
93302 PD OCT
93303 PY 2004
93304 VL 53
93305 IS 10
93306 BP 3248
93307 EP 3251
93308 PG 4
93309 SC Physics, Multidisciplinary
93310 GA 861MR
93311 UT ISI:000224421300002
93312 ER
93313 
93314 PT J
93315 AU Liu, WQ
93316    Zhou, BX
93317    Li, Q
93318    Yao, MY
93319 TI Degradation of corrosion resistance of Zircaloy-4 in LiOH aqueous
93320    solution
93321 SO RARE METALS
93322 DT Article
93323 DE Zircaloy-4; corrosion resistance; SIMS; LiOH aqueous solution
93324 ID ZIRCONIUM-OXIDE
93325 AB To investigate the degradation of corrosion resistance of Zircaloy-4 in
93326    LiOH aqueous solution, SIMS (secondary ion mass spectrometry) analysis
93327    was performed to examine the profiles of Li+, K+, and OH- in oxide
93328    layers formed in the same concentration (0.1 mol/L) LiOH and KOH
93329    solutions. Even though the oxide layers have an equal thickness, the
93330    penetration depth of K+ is shallower than that of Li+, and the
93331    penetration depth of OH- corroded in KOH solution is also shallower
93332    than that corroded in LiOH solution. It shows that the diffusion of OH-
93333    into oxide layer is accompanied by the corresponding cation. The
93334    difference of degradation effect of LiOH and KOH solutions on the
93335    corrosion resistance of Zircaloy-4 was discussed.
93336 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
93337 RP Liu, WQ, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
93338 EM lwq88@163.com
93339 CR HILLNER E, 1962, WAPRTM307 BETT AT PO
93340    JEONG YH, 1999, J NUCL MATER, V270, P322
93341    JEONG YH, 1999, J NUCL MATER, V275, P221
93342    KIM YS, 1999, J NUCL MATER, V270, P165
93343 NR 4
93344 TC 0
93345 SN 1001-0521
93346 J9 RARE METALS
93347 JI Rare Metals
93348 PD SEP
93349 PY 2004
93350 VL 23
93351 IS 3
93352 BP 286
93353 EP 288
93354 PG 3
93355 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
93356    Engineering
93357 GA 858MH
93358 UT ISI:000224195400019
93359 ER
93360 
93361 PT J
93362 AU Liu, JK
93363    Wu, QS
93364    Ding, YP
93365    Wang, SY
93366 TI Biomimetic synthesis of BaSO4 nanotubes using eggshell membrane as
93367    template
93368 SO JOURNAL OF MATERIALS RESEARCH
93369 DT Article
93370 ID BORON-NITRIDE NANOTUBES; MATRIX; LOCALIZATION; TEMPERATURE; NANOWIRES;
93371    TUBULES; CARBON
93372 AB BaSO4 nanotubes were biomimetically synthesized by the combined
93373    assembly of eggshell membrane and C12H25SH. The products were tubular
93374    structure with the external diameter of 90-140 nm and the length of
93375    1.5-2.5 mum. The formation mechanism was also investigated. It provided
93376    a novel method for the fabrication of inorganic oxysalt nanotubes.
93377 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
93378    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
93379 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
93380 EM qswu@mail.tongji.edu.cn
93381 CR *NBS, 1972, NBS MON, V23, P10
93382    AJIKUMAR PK, 2003, BIOMACROMOLECULES, V4, P1321
93383    BERNADETTE A, 2002, CHEM MATER, V14, P480
93384    BRORSON M, 2002, J AM CHEM SOC, V124, P11582
93385    CHEN J, 2003, CHEM MATER, V15, P1012
93386    CHOPRA NG, 1995, SCIENCE, V269, P966
93387    ERIK PAM, 2003, J AM CHEM SOC, V125, P3440
93388    FAN R, 2003, J AM CHEM SOC, V125, P5254
93389    FERNANDEZ MS, 2001, MATRIX BIOL, V19, P793
93390    HAN WQ, 1999, CHEM MATER, V11, P3620
93391    HINCKE MT, 2000, MATRIX BIOL, V19, P443
93392    HSU WK, 2000, CHEM MATER, V12, P3541
93393    IIJIMA S, 1991, NATURE, V354, P56
93394    JUNGHWAN D, 2001, INORG CHEM, V40, P2468
93395    KASUGA T, 1998, LANGMUIR, V14, P3160
93396    LI YD, 2001, J AM CHEM SOC, V123, P9904
93397    LIU SM, 2002, CHEM MATER, V14, P1391
93398    LU QY, 2002, NANO LETTERS, V2, P725
93399    MA RZ, 2002, J AM CHEM SOC, V124, P7672
93400    MILLET P, 1999, J SOLID STATE CHEM, V147, P676
93401    NATH M, 2001, J AM CHEM SOC, V123, P4841
93402    SATISHKUMAR BC, 1997, J MATER RES, V12, P604
93403    SELINGER JV, 2001, J PHYS CHEM B, V105, P7157
93404    SPECTOR MS, 1998, LANGMUIR, V14, P3493
93405    WANG X, 2003, ADV MATER, V15, P1442
93406    WANG XB, 2002, J PHYS CHEM B, V106, P2186
93407    WU TM, 1994, MATRIX BIOL, V14, P507
93408    XU AW, 2003, J AM CHEM SOC, V125, P1494
93409    ZHANG ZL, 2003, INORG CHEM COMMUN, V6, P1393
93410 NR 29
93411 TC 0
93412 SN 0884-2914
93413 J9 J MATER RES
93414 JI J. Mater. Res.
93415 PD OCT
93416 PY 2004
93417 VL 19
93418 IS 10
93419 BP 2803
93420 EP 2806
93421 PG 4
93422 SC Materials Science, Multidisciplinary
93423 GA 858TE
93424 UT ISI:000224213900004
93425 ER
93426 
93427 PT J
93428 AU Chen, GR
93429    Zhou, J
93430    Liu, ZR
93431 TI Global synchronization of coupled delayed neural networks and
93432    applications to chaotic CNN models
93433 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
93434 DT Article
93435 DE chaos; synchronization; delayed neural networks; chaotic cellular
93436    neural networks
93437 ID DYNAMICAL NETWORKS; SYSTEMS; STABILITY; BEHAVIOR; WORLD
93438 AB This paper formulates the model and then studies its dynamics of a
93439    system of linearly and diffusively coupled identical delayed neural
93440    networks (DNNs), which is generalization of delayed Hopfied neural
93441    networks (DHNNs) and delayed cellular neural networks (DCNNs). In
93442    particularly, a simple yet generic sufficient condition for global
93443    synchronization of such coupled DNNs is derived based on the Lyapunov
93444    functional methods and Hermitian matrix theory. It is shown that global
93445    synchronization of coupled DNNs is ensured by a suitable design of the
93446    coupling matrix and the inner linking matrix. Furthermore, the result
93447    is applied to some typical chaotic neural networks. Finally, numerical
93448    simulations are presented to demonstrate the effectiveness of the
93449    approach.
93450 C1 City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
93451    Hebei Univ Technol, Dept Appl Math, Tianjin 300130, Peoples R China.
93452    Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
93453    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
93454 RP Chen, GR, City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong,
93455    Peoples R China.
93456 CR CAO JD, 2000, PHYS LETT A, V270, P157
93457    CHEN G, 1998, CHAOS ORDER METHODOL
93458    CHEN Y, 2000, MATRIX ANAL
93459    FIRE P, 2001, SCIENCE, V291, P1560
93460    HALE JK, 1977, INTRO FUNCTIONAL DIF
93461    HJELMFELT A, 1994, P NATL ACAD SCI USA, V91, P63
93462    JIANG GP, 2003, CHAOS SOLITON FRACT, V15, P925
93463    LU H, 2001, PHYS REV E, V64, P1
93464    LU HT, 1996, IEEE T CIRCUITS-I, V43, P700
93465    LU HT, 2002, PHYS LETT A, V298, P109
93466    PECORA LM, 1997, CHAOS, V7, P520
93467    PECORA LM, 1998, PHYS REV E, V58, P347
93468    PECORA LM, 1998, PHYS REV LETT, V80, P2109
93469    POGROMSKY A, 2001, IEEE T CIRCUITS-I, V48, P152
93470    RANGARAJAN G, 2002, PHYS LETT A, V296, P312
93471    RUAN J, 2002, NEURAL DYNAMICAL MOD
93472    SKARDA CA, 1987, BEHAV BRAIN SCI, V10, P161
93473    STEINMETZ PN, 2000, NATURE, V404, P187
93474    WANG XF, 2002, IEEE T CIRCUITS-I, V49, P54
93475    WANG XF, 2002, INT J BIFURCAT CHAOS, V12, P187
93476    WU CW, 1995, IEEE T CIRCUITS-I, V42, P430
93477    ZHANG Y, 2002, IEEE T CIRCUITS-I, V49, P256
93478    ZHOU TS, 2002, PHYS LETT A, V301, P231
93479    ZOU F, 1993, IEEE T CIRCUITS-I, V40, P166
93480 NR 24
93481 TC 10
93482 SN 0218-1274
93483 J9 INT J BIFURCATION CHAOS
93484 JI Int. J. Bifurcation Chaos
93485 PD JUL
93486 PY 2004
93487 VL 14
93488 IS 7
93489 BP 2229
93490 EP 2240
93491 PG 12
93492 SC Mathematics, Applied; Multidisciplinary Sciences
93493 GA 858GD
93494 UT ISI:000224179400006
93495 ER
93496 
93497 PT J
93498 AU Huang, DB
93499 TI Breather competition and pulse orbits in the damped driven Sine-Gordon
93500    equation
93501 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
93502 DT Article
93503 DE GAIM; Sine-Gordon equation; PDE; ODE
93504 ID ATTRACTORS; BEHAVIOR
93505 AB The generalized asymptotic inertial manifold (GAIM) of the damped
93506    driven Sine-Gordon equation is put forward to govern the long-term
93507    behavior of the full partial differential equation (PDE). We then study
93508    qualitatively the ordinary differential equation (ODE) by the singular
93509    perturbation-theory, which results from restricting the damped driven
93510    Sine-Gordon equation to its GAIM. Firstly an analytical criterion for
93511    the existence of the homoclinic orbit resulting in chaos is given.
93512    Further, the existence of the pulse orbits is showed under the same
93513    parametric values as those used in the previous numerical experiments.
93514    In our viewpoint these results reflect just the breather competition
93515    behavior observed numerically in the Sine-Gordon equation. By comparing
93516    with the earlier results obtained in the two-mode Fourier truncation
93517    system of the damped driven Sine-Gordon equation, we think that a
93518    reasonable discretization reduction from PDE to ODE is very important
93519    in the study of dynamics in the infinite dimensional dynamical systems.
93520 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
93521 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
93522 EM dbhuang@mail.shu.edu.cn
93523 CR BISHOP AR, 1990, PHYS LETT A, V144, P17
93524    BISHOP AR, 1990, SIAM J MATH ANAL, V21, P1511
93525    CONSTANTIN P, 1989, INTEGRAL MANIFOLDS I
93526    DAWSON SP, 1997, PHYSICA D, V100, P231
93527    HALLER G, 1999, CHAOS NEAR RESONANCE
93528    HUANG DB, 2002, DYN SYST APPL, V11, P127
93529    KOVACIC G, 1992, PHYSICA D, V57, P187
93530    KOVACIC G, 1995, SIAM J MATH ANAL, V26, P1611
93531    LIU ZG, 1995, PHYS LETT A, V204, P343
93532    LIU ZR, 1999, PHYS LETT A, V258, P249
93533    MCLAUGHLIN DW, 1995, SURV APPL MATH, V1, P83
93534    MORA X, 1986, EXISTENCE NONEXISTEN
93535    QIAN M, 2000, J NONLINEAR SCI, V10, P417
93536    TAN Y, 1998, PHYS REV E, V57, P381
93537    TEMAM R, 1988, INFINITE DIMENSIONAL
93538    WIGGINS S, 1988, GLOBAL BIFURCATION C
93539 NR 16
93540 TC 0
93541 SN 0218-1274
93542 J9 INT J BIFURCATION CHAOS
93543 JI Int. J. Bifurcation Chaos
93544 PD JUL
93545 PY 2004
93546 VL 14
93547 IS 7
93548 BP 2363
93549 EP 2373
93550 PG 11
93551 SC Mathematics, Applied; Multidisciplinary Sciences
93552 GA 858GD
93553 UT ISI:000224179400014
93554 ER
93555 
93556 PT J
93557 AU Zhang, Y
93558    Chen, DY
93559 TI A modified Backlund transformation and multi-soliton solution for the
93560    Boussinesq equation
93561 SO CHAOS SOLITONS & FRACTALS
93562 DT Article
93563 ID SHALLOW-WATER WAVES; SOLITON
93564 AB It is shown that a modified Backlund transformation is presented by the
93565    dependent variable transformation. Starting from it, a new
93566    representation of N-soliton solution and a class of novel multi-soliton
93567    solution of the Boussinesq equation have been derived. We also find the
93568    novel soliton solution may be deduced by limiting. (C) 2004 Elsevier
93569    Ltd. All rights reserved.
93570 C1 Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China.
93571    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
93572 RP Zhang, Y, Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R
93573    China.
93574 EM zy2836@163.com
93575 CR ABLOWITZ MJ, 1981, SOLITON INVERSE SCAT
93576    BOUSSINESQ J, 1872, J MATH PURE APPL, V17, P55
93577    CHEN DY, 2002, J PHYS SOC JPN, V71, P658
93578    DENG SF, 2001, J PHYS SOC JPN, V70, P3174
93579    HIROTA R, 1971, PHYS REV LETT, V27, P1192
93580    HIROTA R, 1974, PROG THEOR PHYS, V52, P1498
93581    HIROTA R, 1976, PROGR THEOR PHYS SUP, V59, P64
93582    HIROTA R, 1977, PROG THEOR PHYS, V57, P797
93583    HIROTA R, 1978, J PHYS SOC JPN, V45, P1741
93584    HIROTA R, 1980, TOP CURR PHYS, V17, P157
93585    NIMMO JJC, 1983, PHYS LETT A, V95, P4
93586    SATSUMA J, 1977, J PHYS SOC JPN, V43, P692
93587    TODA M, 1973, J PHYS SOC JPN, V34, P18
93588    WADATI M, 1976, PROG THEOR PHYS SUPP, V59, P36
93589    ZAKHAROV VE, 1974, ZH EKSP TEOR FIZ, V38, P108
93590    ZHANG Y, 2003, J PHYS SOC JPN, V72, P763
93591    ZHANG Y, 2004, CHAOS SOLITON FRACT, V20, P343
93592 NR 17
93593 TC 2
93594 SN 0960-0779
93595 J9 CHAOS SOLITON FRACTAL
93596 JI Chaos Solitons Fractals
93597 PD JAN
93598 PY 2005
93599 VL 23
93600 IS 1
93601 BP 175
93602 EP 181
93603 PG 7
93604 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
93605 GA 858JO
93606 UT ISI:000224188300020
93607 ER
93608 
93609 PT J
93610 AU Yang, XD
93611    Chen, LQ
93612 TI Bifurcation and chaos of an axially accelerating viscoelastic beam
93613 SO CHAOS SOLITONS & FRACTALS
93614 DT Article
93615 ID NONLINEAR VIBRATIONS; MOVING BEAM; TRAVELING BEAM; DYNAMICS; VELOCITY;
93616    BELT; WEB
93617 AB This paper investigates bifurcation and chaos of an axially
93618    accelerating viscoelastic beam. The Kelvin-Voigt model is adopted to
93619    constitute the material of the beam. Lagrangian strain is used to
93620    account for the beam's geometric non-linearity. The nonlinear
93621    partial-differential equation governing transverse motion of the beam
93622    is derived from the Newton second law. The Galerkin method is applied
93623    to truncate the governing equation into a set of ordinary differential
93624    equations. By use of the Poincare map, the dynamical behavior is
93625    identified based on the numerical solutions of the ordinary
93626    differential equations. The bifurcation diagrams are presented in the
93627    case that the mean axial speed, the amplitude of speed fluctuation and
93628    the dynamic viscoelasticity is respectively varied while other
93629    parameters are fixed. The Lyapunov exponent is calculated to identify
93630    chaos. From numerical simulations, it is indicated that the periodic,
93631    quasi-periodic and chaotic motions occur in the transverse vibrations
93632    of the axially accelerating viscoelastic beam. (C) 2004 Elsevier Ltd.
93633    All rights reserved.
93634 C1 Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
93635    Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
93636 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
93637 EM lqchen@online.sh.cn
93638 CR ABRATE S, 1992, MECH MACH THEORY, V27, P645
93639    ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151
93640    CHAKRABORTY G, 1999, INT J NONLINEAR MECH, V34, P655
93641    CHEN LQ, IN PRESS EUR J MEC A
93642    CHEN LQ, 2002, MECH RES COMMUN, V29, P81
93643    CHEN LQ, 2004, CHAOS SOLITON FRACT, V21, P349
93644    CHEN LQ, 2004, NONLINEAR DYNAM, V35, P347
93645    CHEN QL, 2003, J SOUND VIBR, V261, P764
93646    MARYNOWSKI K, 2002, INT J NONLINEAR MECH, V37, P1147
93647    MARYNOWSKI K, 2002, J THEORET APPL MECH, V40, P465
93648    MARYNOWSKI K, 2004, CHAOS SOLITON FRACT, V21, P481
93649    OZ HR, 1998, J SOUND VIB, V215, P571
93650    OZ HR, 2001, INT J NONLINEAR MECH, V36, P107
93651    OZ HR, 2001, J SOUND VIB, V239, P556
93652    OZKAYA E, 2000, J SOUND VIB, V234, P521
93653    OZKAYA E, 2002, J SOUND VIB, V254, P782
93654    PELLICANO F, 1998, INT J NONLINEAR MECH, V33, P691
93655    PELLICANO F, 2000, J VIB ACOUST, V122, P21
93656    PELLICANO F, 2001, J SOUND VIB, V244, P669
93657    PELLICANO F, 2002, J SOUND VIB, V258, P31
93658    RAVINDRA B, 1998, ARCH APPL MECH, V68, P195
93659    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
93660    YANG XD, IN PRESS APPL MATH M
93661 NR 23
93662 TC 6
93663 SN 0960-0779
93664 J9 CHAOS SOLITON FRACTAL
93665 JI Chaos Solitons Fractals
93666 PD JAN
93667 PY 2005
93668 VL 23
93669 IS 1
93670 BP 249
93671 EP 258
93672 PG 10
93673 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
93674 GA 858JO
93675 UT ISI:000224188300027
93676 ER
93677 
93678 PT J
93679 AU Sion, EM
93680    Cheng, FH
93681    Gansicke, BT
93682    Szkody, P
93683 TI A Hubble Space Telescope STIS observation of VW Hydri at the exact
93684    far-ultraviolet onset of an outburst
93685 SO ASTROPHYSICAL JOURNAL
93686 DT Article
93687 DE accretion, accretion disks; stars : dwarf novae; stars : individual (VW
93688    Hydri); white dwarfs
93689 ID WHITE-DWARF; CATACLYSMIC VARIABLES; SUPEROUTBURST; SPECTROSCOPY;
93690    QUIESCENCE; NOVA; ATMOSPHERES
93691 AB We present an analysis of Hubble Space Telescope (HST) Space Telescope
93692    Imaging Spectrograph data of VW Hyi that we acquired 14 days after a
93693    superoutburst. At the time of our observation, the system appears to be
93694    going into outburst with the longest wavelengths increasing in flux by
93695    a factor of 5 while the shortest wavelengths increase by only a factor
93696    of 2. Using the distance of 65 pc, a system inclination angle of
93697    60degrees, and a white dwarf mass of 0.86 M-circle dot, we carried out
93698    model fits involving a white dwarf by itself; an optically thick
93699    accretion disk by itself; a composite model using an optically thick
93700    accretion disk and a white dwarf; a two-temperature white dwarf model
93701    with a cooler, more slowly rotating photosphere and a hotter, rapidly
93702    rotating accretion belt; and a composite model involving a white dwarf
93703    and a rapidly rotating cooler disk ring heated up to a "low"
93704    temperature of 13-14,000 K. This component of temperature stays fairly
93705    constant throughout the HST observations, while the area of the disk
93706    ring increases by a factor of 12. We see evidence of a delay in the UV
93707    emission consistent with the outburst beginning outside of a disk
93708    truncation radius.
93709 C1 Villanova Univ, Dept Astron & Astrophys, Villanova, PA 19085 USA.
93710    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
93711    Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
93712    Univ Washington, Dept Astron, Seattle, WA 98195 USA.
93713 RP Sion, EM, Villanova Univ, Dept Astron & Astrophys, 800 Lancaster Ave,
93714    Villanova, PA 19085 USA.
93715 EM edward.sion@villanova.edu
93716    cheng3@prodigy.net
93717    boris.gaensicke@warwick.ac.uk
93718    szkody@alicar.astro.washington.edu
93719 CR GANSICKE BT, 1996, ASTRON ASTROPHYS, V309, L47
93720    GANSICKE BT, 1999, ASTR SOC P, V169, P315
93721    HUANG M, 1996, ASTROPHYS J 1, V458, P355
93722    HUBENY I, 1988, COMPUT PHYS COMMUN, V52, P103
93723    HUBENY I, 1994, NEWSLETTER ANAL ASTR, V20, P30
93724    HUBENY I, 1995, ASTROPHYS J 1, V439, P875
93725    LIVIO M, 1992, MNRAS, V259, P23
93726    SION EM, 1995, APJ, V444, L97
93727    SION EM, 1995, APJ, V445, L31
93728    SION EM, 1996, ASTROPHYS J 2, V471, L41
93729    SION EM, 1997, ASTROPHYS J 2, V480, L17
93730    SION EM, 1999, PUBL ASTRON SOC PAC, V111, P532
93731    SION EM, 2001, ASTROPHYS J 2, V561, L127
93732    WADE RA, 1998, ASTROPHYS J 1, V509, P350
93733    WARNER B, 1995, CATACLYSMIC VARIABLE
93734 NR 15
93735 TC 1
93736 SN 0004-637X
93737 J9 ASTROPHYS J
93738 JI Astrophys. J.
93739 PD OCT 10
93740 PY 2004
93741 VL 614
93742 IS 1
93743 PN Part 2
93744 BP L61
93745 EP L64
93746 PG 4
93747 SC Astronomy & Astrophysics
93748 GA 860TV
93749 UT ISI:000224367100016
93750 ER
93751 
93752 PT J
93753 AU Yuan, XG
93754    Zhu, ZY
93755    Cheng, CJ
93756 TI Qualitative analysis of spherical cavity nucleation and growth for
93757    incompressible generalized Valanis-Landel hyperelastic materials
93758 SO ACTA MECHANICA SOLIDA SINICA
93759 DT Article
93760 DE incompressible generalized Valanis-Landel material; cavitated
93761    bifurcation; critical dead-load; normal form; stability and catastrophe
93762 ID HYPER-ELASTIC MATERIALS; VOID NUCLEATION; BIFURCATION; CAVITATION
93763 AB A cavitated bifurcation problem is examined for a sphere composed of a
93764    class of generalized Valanis-Landel materials subjected to a uniform
93765    radial tensile dead-load. A cavitated bifurcation equation is obtained.
93766    An explicit formula for the critical value associated with the
93767    variation of the imperfection parameters is presented. The
93768    distinguishing between the left-bifurcation and right-bifurcation of
93769    the nontrivial solution of the cavitated bifurcation equation at the
93770    critical point is made. It is proved that there exists a secondary
93771    turning bifurcation point on the nontrivial solution branch, which
93772    bifurcates locally to the left. It is shown that the dimensionless
93773    cavitated bifurcation equation is equivalent to normal forms with
93774    single-sided constraint conditions at the critical point by using the
93775    singularity theory. The stability and catastrophe of the solutions of
93776    the cavitated bifurcation equation are discussed.
93777 C1 Shanghai Univ, Coll Sci, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
93778    Yantai Univ, Dept Math & Informat Sci, Yantai 264005, Peoples R China.
93779 RP Yuan, XG, Shanghai Univ, Coll Sci, Shanghai Inst Appl Math & Mech,
93780    Shanghai 200072, Peoples R China.
93781 CR BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
93782    CHOUWANG MSO, 1989, INT J SOLIDS STRUCT, V25, P1239
93783    CHUNG DT, 1987, INT J SOLIDS STRUCT, V23, P983
93784    GENT AN, 1958, P ROY SOC LOND A MAT, V249, P195
93785    GOLUBITSKY M, 1985, SINGULARITIES GROUPS, V1
93786    HOU HS, 1993, J APPL MECH-T ASME, V60, P1
93787    POLIGNONE DA, 1993, J ELASTICITY, V33, P27
93788    REN JS, 2002, ACTA MECH SOLIDA SIN, V15, P208
93789    REN JS, 2002, APPL MATH MECH-ENGL, V23, P881
93790    REN JS, 2002, J ENG MATH, V44, P245
93791    REN JS, 2002, J SHANGHAI U, V6, P185
93792    SHANG XC, 2001, INT J ENG SCI, V39, P1101
93793    VALANIS KC, 1967, J APPL PHYS, V38, P2997
93794 NR 13
93795 TC 4
93796 SN 0894-9166
93797 J9 ACTA MECH SOLIDA SINICA
93798 JI Acta Mech. Solida Sin.
93799 PD JUN
93800 PY 2004
93801 VL 17
93802 IS 2
93803 BP 158
93804 EP 165
93805 PG 8
93806 SC Materials Science, Multidisciplinary; Mechanics
93807 GA 859PB
93808 UT ISI:000224279300008
93809 ER
93810 
93811 PT J
93812 AU Ke, XX
93813    Gong, ZB
93814    Fu, JL
93815 TI Lie symmetries and conserved quantity of a biped robot
93816 SO ACTA MECHANICA SOLIDA SINICA
93817 DT Article
93818 DE biped robot; Lie symmetry; conserved quantity
93819 AB For a better understanding of the dynamic principles governing biped
93820    locomotion, the Lie symmetries and conservation laws of a biped robot
93821    are studied. In Lie theory, Lie symmetries and conservation laws can be
93822    derived from the form invariance of differential equations undergoing
93823    infinitesimal transformation. By introducing infinitesimal
93824    transformations including time and spatial coordinates, the determining
93825    equations of a biped robot are established. Then the necessary and
93826    sufficient conditions for a biped robot to have conserved quantities
93827    are obtained. For the lateral-plane dynamical model of a biped robot, a
93828    Lie conserved quantity is found.
93829 C1 Shanghai Univ, Dept Precis Mech Engn, Shanghai 200072, Peoples R China.
93830    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
93831 RP Ke, XX, Shanghai Univ, Dept Precis Mech Engn, Shanghai 200072, Peoples
93832    R China.
93833 CR FU JL, 2000, ACTA PHYS SIN-CH ED, V49, P1023
93834    GONG ZB, 1995, ROBOTIC MECH DESIGN
93835    HIRAI K, 1998, IEEE INT CONF ROBOT, P1321
93836    HUANG QI, 1999, IEEE INT C ROB AUT, P65
93837    KAJITA S, 1991, IEEE INT C ROB AUT S, P1405
93838    KE XX, 2002, J APPL SCI, V21, P241
93839    LUTZKY M, 1979, J PHYS A, V12, P973
93840    MEI FX, 1993, SCI CHINA SER A, V23, P709
93841    MEI FX, 1999, APPL LIE GROUPS LIE
93842    MEI FX, 2000, INT J NONLINEAR MECH, V35, P229
93843    MIRON R, 1995, INT J THEOR PHYS, V34, P1123
93844    NOETHER AE, 1918, NACHR AKED WISS G MP, V26, P235
93845    SANO A, 1989, IEEE INT C ROB AUT C, P1476
93846    YAMAGUCHI J, 1993, IEEE INT C ROB AUT Y, P561
93847    ZHAO XF, 1992, ROBOTIC DYNAMICS
93848 NR 15
93849 TC 0
93850 SN 0894-9166
93851 J9 ACTA MECH SOLIDA SINICA
93852 JI Acta Mech. Solida Sin.
93853 PD JUN
93854 PY 2004
93855 VL 17
93856 IS 2
93857 BP 183
93858 EP 188
93859 PG 6
93860 SC Materials Science, Multidisciplinary; Mechanics
93861 GA 859PB
93862 UT ISI:000224279300011
93863 ER
93864 
93865 PT J
93866 AU Wang, W
93867    Wong, PL
93868    Guo, F
93869 TI Application of partial elastohydrodynamic lubrication analysis in
93870    dynamic wear study for running-in
93871 SO WEAR
93872 DT Article
93873 DE dynamic wear; running-in; PEHL
93874 ID PEHL CONTACTS
93875 AB Lubrication and wear are usually studied as separate issues. However,
93876    the effects of lubrication and wear can be interrelated in highly
93877    stressed contacts that are running under partial (or micro)
93878    elastohydrodynamic lubrication, especially during the running-in stage
93879    of operations. The incorporation of lubrication numerical analysis into
93880    the dynamic wear study of running-in contacts under partial
93881    elastohydrodynamic lubrication (PEHL) is presented. Results from PEHL
93882    numerical analyses, based on surface data that was obtained at various
93883    intervals during a running-in experiment, clearly indicate the change
93884    in the severity of contact surface wear. A simple system for dynamic
93885    wear prediction in run-in contacts under PEHL conditions, that includes
93886    consideration of lubrication effects, is proposed. The approach
93887    demonstrates the incorporation of PEHL analyses into the calculation of
93888    wear, and also shows the interrelation of surface roughness,
93889    lubrication condition and wear rate for running-in PEHL contacts. (C)
93890    2004 Elsevier B.V. All rights reserved.
93891 C1 City Univ Hong Kong, Dept Mfg Engn & Engn Management, Kowloon, Hong Kong, Peoples R China.
93892    Shanghai Univ, Dept Mech Automat, Shanghai, Peoples R China.
93893    Qindao Inst Architecture & Engn, Dept Mech Engn, Qingdao, Peoples R China.
93894 RP Wong, PL, City Univ Hong Kong, Dept Mfg Engn & Engn Management,
93895    Kowloon, Hong Kong, Peoples R China.
93896 EM meplwong@cityu.edu.hk
93897 CR CHENG HS, 1986, P WORKSH US SURF DEF
93898    GREENWOOD JA, 1970, P I MECH ENG, V185, P625
93899    HORNG JH, 2002, WEAR, V253, P899
93900    HU YZ, 1991, T ASME, V113, P499
93901    HU YZ, 2000, T ASME, V122, P1
93902    PATIR N, 1978, T ASME, V100, P12
93903    SASTRY VRK, 1990, WEAR, V138, P259
93904    STOLARSKI TA, 1979, TRIBOL INT, V12, P169
93905    STOLARSKI TA, 1996, LUBRICATION SCI, V8, P315
93906    TAYLOR CM, 1998, P 16 INT TRIB C TRIB
93907    WANG W, 1906, TRIBOL INT, V29, P313
93908    WANG W, 2000, TRIBOL INT, V33, P501
93909    WANG W, 2000, WEAR, V244, P140
93910    WU SF, 1991, J TRIBOL-T ASME, V113, P134
93911 NR 14
93912 TC 0
93913 SN 0043-1648
93914 J9 WEAR
93915 JI Wear
93916 PD OCT
93917 PY 2004
93918 VL 257
93919 IS 7-8
93920 BP 823
93921 EP 832
93922 PG 10
93923 SC Engineering, Mechanical; Materials Science, Multidisciplinary
93924 GA 856RK
93925 UT ISI:000224062200018
93926 ER
93927 
93928 PT J
93929 AU Liao, HY
93930    Zhou, SP
93931    Shi, XY
93932    Zhu, BH
93933 TI Vortex dynamics in superconductors with periodic pinning arrays
93934 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
93935 DT Article
93936 DE periodic TDGL model; periodic pinning arrays; vortex lattice; magnetic
93937    field
93938 ID MAGNETIZATION; LATTICES; FILMS
93939 AB We apply the periodic time-dependent Ginzburg-Landau (TDGL) model to
93940    type-II superconductors with periodic pinning arrays. A pinning array
93941    can pin vortices regularly and periodically, and shapes various vortex
93942    lattices depending on the applied magnetic fields. At the matching
93943    fields, vortex lattices are commensurate with defect lattices, and the
93944    pinning effects are enhanced. The results are consistent with those
93945    obtained by considering large-scale simulated annealing as well as
93946    flux-gradient-driven molecular dynamics. (C) 2004 Elsevier B.V. All
93947    rights reserved.
93948 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
93949 RP Zhou, SP, Shanghai Univ, Dept Phys, 99 ShangDa Rd, Shanghai 200436,
93950    Peoples R China.
93951 EM shipingzhou@online.sh.cn
93952 CR BAERT M, 1995, PHYS REV LETT, V74, P3269
93953    CASTELLANOS A, 1997, APPL PHYS LETT, V71, P962
93954    DU Q, 1995, PHYS REV B, V51, P16194
93955    KONCZYKOWSKI M, 1991, PHYS REV B, V44, P7167
93956    LATYSHEV YI, 1996, PHYS REV LETT, V77, P932
93957    MOSHCHALKOV VV, 1996, PHYS REV B, V54, P7385
93958    REICHHARDT C, 1996, PHYS REV B, V54, P16108
93959    REICHHARDT C, 2001, PHYS REV B, V64
93960    WINIECKI T, 2002, PHYS REV B, V65
93961    XU CF, 1990, NUMERICAL SOLUTION P
93962    ZHOU SP, 2001, CHINESE PHYS, V10, P541
93963 NR 11
93964 TC 0
93965 SN 0921-4534
93966 J9 PHYSICA C
93967 JI Physica C
93968 PD AUG
93969 PY 2004
93970 VL 408-10
93971 BP 603
93972 EP 605
93973 PG 3
93974 SC Physics, Applied
93975 GA 856NK
93976 UT ISI:000224051700257
93977 ER
93978 
93979 PT J
93980 AU Wu, ZH
93981    Jiang, DY
93982    Liu, JM
93983    Ji, YM
93984    Shi, WM
93985    Zhang, C
93986 TI Preparation and property characteristics of non-agglomerated HfO2 nano
93987    powders by wet chemical method
93988 SO JOURNAL OF INORGANIC MATERIALS
93989 DT Article
93990 DE chemical precipitant method; non-agglomerate; HfO2 nano powder; sinter
93991 ID PARTICLE-SIZE; ZIRCONIA
93992 AB HfO2 nano powders were prepared by the chemical precipitant method. The
93993    influence of different preparation parameters on the agglomeration was
93994    investigated by X-ray diffraction analysis (XRD), scanning electron
93995    microscopy (SEM), transmission electron microscopy (TEM), BET surface
93996    area techniques and laser particle analyzer. Non-agglomerated
93997    orthorhombic, HfO2 powders with a size of about 25nm can be obtained by
93998    controlling starting concentration and pH values of solution, adding
93999    surfactants, washing gels with alcohol and calcining at 700degreesC.
94000    Orthorhombic HfO2 ceramics of 96% theoretical density can be prepared
94001    by sintering at 1800degreesC for 2h in hydrogen. The results show that
94002    there are both o-HfO2 and m-HfO2 in the sample, mainly o-HfO2.
94003 C1 Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800, Peoples R China.
94004    Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
94005 RP Wu, ZH, Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800,
94006    Peoples R China.
94007 EM dyjiang@mail.sic.ac.cn
94008 CR ALEXANDER GB, 1961, 298628, US
94009    BLANC P, 1997, J EUR CERAM SOC, V17, P397
94010    BLEIER A, 1991, J AM CERAM SOC, V74, P3100
94011    CHIN TH, 1992, JPN J APPL PHYS, V31, P2501
94012    CHOI KJ, 2002, J ELECTROCHEM SOC, V149, F18
94013    CLEARFIELD A, 1990, J MATER RES, V5, P161
94014    DACIS RF, 1978, PROCESSING CRYSTALLI, P171
94015    LAKHLIFI A, 1996, CERAM INT, V23, P349
94016    RHODES WH, 1981, J AM CERAM SOC, V64, P19
94017    TORAYA H, 1982, J AM CERAM SOC, V65, C72
94018 NR 10
94019 TC 0
94020 SN 1000-324X
94021 J9 J INORG MATER
94022 JI J. Inorg. Mater.
94023 PD SEP
94024 PY 2004
94025 VL 19
94026 IS 5
94027 BP 970
94028 EP 976
94029 PG 7
94030 SC Materials Science, Ceramics
94031 GA 857UN
94032 UT ISI:000224144100002
94033 ER
94034 
94035 PT J
94036 AU Li, Y
94037    Pan, QY
94038    Zhang, JP
94039    Cheng, ZX
94040    Chen, HH
94041 TI Preparation process of nanosized organic/inorganic thin films by
94042    sol-gel spin-coating method
94043 SO JOURNAL OF INORGANIC MATERIALS
94044 DT Article
94045 DE nano-NiO; thin film; sol-gel spin-coating method; rheology
94046 AB PEG6000/nano-Ni(OH)(2) sol was prepared by a modified sol-gel method
94047    with Ni(AC)(2). The stable region of the sol was definited by measuring
94048    the viscosity of the sol. Furthermore the flow patterns of the stable
94049    sol were studied and the results show that the stable sol has two flow
94050    patterns: Newtonian and pseudoplastic fluid. With the Newtonian fluid
94051    of the stable sol, the nano-NiO thin films were produced by the
94052    spin-coating method. The-research results indicate that the thickness
94053    of the film: (d) is largely determined by the factors including angular
94054    velocity (omega), the apparent viscosity of the sol (eta) and the
94055    content of Ni(OH)(2)(M) to the equation: d = K
94056    eta(0.74)M(2.1)/omega(0.54). The quality of the films is influenced by
94057    the flow patterns and the content of PEG of the stable sol. The
94058    surfaces of the thin films with Newtonian sol are smooth while those
94059    with pseudoplastic sol are rough and wavy. The surfaces of nano-NiO
94060    films with high content of Ni(OH)(2) and low content of PEG6000 are
94061    compact and dense while those with low content of Ni(OH)(2) and high
94062    content of PEG6000 are loose.
94063 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
94064 RP Pan, QY, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
94065 EM qypan@mail.shu.edu.cn
94066 CR AZENS A, 1998, SOLID STATE IONICS, V113, P449
94067    BORNSIDE DE, 1989, J APPL PHYS, V66, P5185
94068    DIRKSEN JA, 2001, SENSOR ACTUAT B-CHEM, V80, P106
94069    HOTOVY I, 2002, THIN SOLID FILMS, V418, P9
94070    JIMENEZGONZALEZ AE, 2000, SURFACE ENG, V16, P73
94071    MEYERHOFER D, 1978, J APPL PHYS, V49, P3993
94072    NAM KW, 2002, J ELECTROCHEM SOC, V149, A346
94073    PETHRICK RA, 1999, J MATER SCI-MATER EL, V10, P141
94074    PORQUERAS I, 2001, THIN SOLID FILMS, V398, P41
94075    SCHUBERT DW, 1997, POLYM BULL, V38, P177
94076 NR 10
94077 TC 1
94078 SN 1000-324X
94079 J9 J INORG MATER
94080 JI J. Inorg. Mater.
94081 PD SEP
94082 PY 2004
94083 VL 19
94084 IS 5
94085 BP 1065
94086 EP 1072
94087 PG 8
94088 SC Materials Science, Ceramics
94089 GA 857UN
94090 UT ISI:000224144100016
94091 ER
94092 
94093 PT J
94094 AU Wang, PC
94095    Sun, SW
94096    Pan, XM
94097    Zhu, LH
94098    Li, DL
94099    Wen, BS
94100    Huang, QW
94101    Yin, ZW
94102 TI High performance grain-oriented 0.7Pb(Mg1/3Nb2/3)O-3-0.3PbTiO(3)
94103    piezoelectric ceramics
94104 SO JOURNAL OF INORGANIC MATERIALS
94105 DT Article
94106 DE grain-oriented ceramics; Pb(Mg1/3Nb2/3)O-3-PbTiO3; dielectric;
94107    piezoelectric
94108 ID SINGLE-CRYSTALS
94109 AB High performance grain-oriented 0.7Pb(Mg1/3Nb2/3)O-3-0.3PbTiO(3)
94110    ceramics were prepared by the directional solidification method, of
94111    which the preferential orientation is [112], and the orientation degree
94112    is about 35%, the quasistatic d(33) is about 1500similar to1600pC/N,
94113    coupling factors k(t) is 0.51 and k(33) is 0.82, and the strain is
94114    0.23% under 22kV/cm electric field.
94115 C1 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
94116    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
94117 RP Wang, PC, Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High
94118    Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
94119 EM pcwang@sic.ac.cn
94120 CR FU HX, 2000, NATURE, V403, P281
94121    GUO R, 2000, PHYS REV LETT, V84, P5423
94122    KUWATA J, 1982, JPN J APPL PHYS, V21, P1298
94123    LIDONGLIN, 2001, 4 PAC RIM INT C ADV, P1735
94124    LOTGERING FK, 1959, J INORG NUCL CHEM, V9, P113
94125    OKLEY CG, 2000, 2000 IEEE ULTR S P I, P1157
94126    PARK SE, 1997, MATER RES INNOV, V1, P20
94127    SABOLSKY EM, 2001, APPL PHYS LETT, V78, P2551
94128    SERVICE RF, 1997, SCIENCE, V275, P1878
94129    SUN SW, 2004, J INORG MATER, V19, P541
94130    WANG PC, 2000, P 2000 12 IEEE INT S, V2, P537
94131    YU L, 2001, APPL PHYS LETT, V78, P3109
94132 NR 12
94133 TC 0
94134 SN 1000-324X
94135 J9 J INORG MATER
94136 JI J. Inorg. Mater.
94137 PD SEP
94138 PY 2004
94139 VL 19
94140 IS 5
94141 BP 1195
94142 EP 1198
94143 PG 4
94144 SC Materials Science, Ceramics
94145 GA 857UN
94146 UT ISI:000224144100038
94147 ER
94148 
94149 PT J
94150 AU Wang, LJ
94151    Xia, YB
94152    Shen, HJ
94153    Zhang, ML
94154    Su, QF
94155    Lou, YY
94156    Gu, BB
94157 TI Fitting models of IRSE data for diamond films on silicon grown by MPCVD
94158    method
94159 SO JOURNAL OF CRYSTAL GROWTH
94160 DT Article
94161 DE infrared spectroscopic ellipsometry; optical properties; MPCVD; diamond
94162    films
94163 AB The infrared optical properties of diamond films on silicon substrates,
94164    grown by means of microwave plasma CVD method, are studied by infrared
94165    spectroscopic ellipsometry in the spectral range of 2.5-12.5 mum. It
94166    has been found that the establishment of appropriate models has the
94167    strongest influence on the fit of ellipsometric spectra. The best fit
94168    is achieved for a diamond film with a 77.5 nm middle layer of SiO2
94169    included by Bruggeman EMA. Finally, the refractive index (n) and the
94170    extinctive coefficient (k) are calculated for the diamond films. (C)
94171    2004 Elsevier B.V. All rights reserved.
94172 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
94173 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, 20 Chengzhong Rd, Shanghai
94174    201800, Peoples R China.
94175 EM ljwang@mail.shu.edu.cn
94176 CR BRUGGEMAN DAG, 1935, ANN PHYS-BERLIN, V24, P636
94177    COMFORT JC, 1987, ANN SIM S NEW YORK, P185
94178    MCMARR PJ, 1986, J APPL PHYS, V59, P694
94179    MCNAMARA KM, 1994, THIN SOLID FILMS, V253, P157
94180    SILVA F, 1996, DIAM RELAT MATER, V5, P338
94181    YIN Z, 1997, DIAM RELAT MATER, V6, P153
94182 NR 6
94183 TC 0
94184 SN 0022-0248
94185 J9 J CRYST GROWTH
94186 JI J. Cryst. Growth
94187 PD SEP 15
94188 PY 2004
94189 VL 270
94190 IS 1-2
94191 BP 228
94192 EP 231
94193 PG 4
94194 SC Crystallography
94195 GA 857RB
94196 UT ISI:000224134900037
94197 ER
94198 
94199 PT J
94200 AU Zhang, HB
94201    Chen, LQ
94202    Gu, SL
94203 TI Lie symmetries and non-noether conserved quantities of nonholonomic
94204    systems
94205 SO COMMUNICATIONS IN THEORETICAL PHYSICS
94206 DT Article
94207 DE nonholonomic system; Lie symmetry; non-Noether conserved quantity
94208 ID THEOREM; SET; LAW
94209 AB A new conservation theorem of the nonholonomic systems is studied. The
94210    conserved quantity is only constructed in terms of a general Lie group
94211    of transformation vector of the dynamical equations. Firstly, we
94212    establish the dynamical equations of the nonholonomic systems and the
94213    determining equations of Lie symmetry. Next, the theorem of non-Noether
94214    conserved quantity is deduced. Finally, we give an example to
94215    illustrate the application of the result.
94216 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
94217    Chaohu Teachers Coll, Dept Phys, Chaohu 238000, Peoples R China.
94218 RP Zhang, HB, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
94219    200072, Peoples R China.
94220 CR APPELL P, 1889, AVEX DEUX NOTES M HA
94221    FANG JH, 2003, COMMUN THEOR PHYS, V40, P269
94222    GONALEZGASCON F, 1994, J PHYS A, V27, L59
94223    HAMEL G, 1949, THEORETISCHE MECH
94224    HOJMAN SA, 1992, J PHYS A, V25, L291
94225    LI ZP, 1999, CLASSICAL QUANTUAL D
94226    LUO SK, 2003, COMMUN THEOR PHYS, V40, P265
94227    LURE AI, 1961, ANAL MECH
94228    LUTZKY M, 1979, J PHYS A, V12, P973
94229    LUTZKY M, 1995, J PHYS A-MATH GEN, V28, L637
94230    MEI FX, 1985, FDN MECH NONHOLONOMI
94231    MEI FX, 1999, APPL LIE GROUPS LIE
94232    MEI FX, 2002, ACTA PHYS SINICA, V52, P1048
94233    MEI FX, 2002, CHINESE SCI BULL, V47, P1544
94234    NEIMARK JI, 1967, DYNAMICS NONHOLONOMI
94235    NOETHER E, 1918, NACHR GES WISS GOTT, V2, P235
94236    OSTROVSKAYA S, 1998, APPL MECH REV, V51, P415
94237    PILLAY T, 1996, J PHYS A-MATH GEN, V29, P6999
94238    WITTENBURG J, 1977, DYNAMICS SYSTEMS RIG
94239    ZHANG Y, 2002, ACTA PHYS SIN-CH ED, V51, P461
94240    ZHAO YY, 1999, SYMMETRIES INVARIANT
94241 NR 21
94242 TC 1
94243 SN 0253-6102
94244 J9 COMMUN THEOR PHYS
94245 JI Commun. Theor. Phys.
94246 PD SEP 15
94247 PY 2004
94248 VL 42
94249 IS 3
94250 BP 321
94251 EP 324
94252 PG 4
94253 SC Physics, Multidisciplinary
94254 GA 856MG
94255 UT ISI:000224048700001
94256 ER
94257 
94258 PT J
94259 AU Xia, TC
94260    Chen, XH
94261    Chen, DY
94262 TI A new Lax integrable hierarchy, N Hamiltonian structure and its
94263    integrable couplings system
94264 SO CHAOS SOLITONS & FRACTALS
94265 DT Article
94266 ID NEWELL SPECTRAL PROBLEM; CONSTRAINED FLOWS; NONLINEARIZATION;
94267    EQUATIONS; TRANSFORMATION; REPRESENTATION; DEDUCTION
94268 AB In this Letter, a new isospectral problem is established by choosing
94269    subalgebra of loop algebra (A) over tilde (2) as its basis. By making
94270    use of Tu's scheme, the N Hamiltonian structure is established and it
94271    is shown that the new hierarchy is integrable in Liouville sense. As
94272    two reductions, the two generalized nonlinear Schrodinger equations are
94273    obtained, respectively. Integrable couplings of the new hierarchy are
94274    obtained by taking a proper algebraic transformation to turn the loop
94275    algebra (A) over tilde (2) into its equivalent loop algebra like the
94276    form of (A) over tilde (1). Finally, the Hamiltonian form of a binary
94277    symmetric constrained flows of the system is given. (C) 2004 Elsevier
94278    Ltd. All rights reserved.
94279 C1 Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
94280    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
94281 RP Xia, TC, Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
94282 EM xiatc@yahoo.com.cn
94283    chen-xiao-hong-1@163.com
94284 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
94285    CAO CW, 1990, SCI CHINA SER A, V33, P528
94286    FAN E, 2001, J PHYS A-MATH GEN, V34, P513
94287    FAN E, 2001, PHYSICA A, V301, P105
94288    FAN EG, 2000, J MATH PHYS, V41, P7769
94289    FUCHSSTEINER B, 1993, APPL ANAL GEOMETRIC, P125
94290    GENG XG, 1993, J MATH PHYS, V34, P805
94291    KUNDU A, 1987, PHYSICA D, V25, P339
94292    LI YS, 2000, PHYS LETT A, V272, P245
94293    MA W, 1992, CHINESE ANN MATH A, V13, P115
94294    MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
94295    MA WX, 1999, J MATH PHYS, V40, P4419
94296    NEWELL AC, 1985, SOLITON MATH PHYS
94297    QIAO ZJ, 1993, J PHYS A-MATH GEN, V26, P4407
94298    TSUCHIDA T, 1998, CHAOS SOLITON FRACT, V9, P869
94299    TU GZ, 1989, J MATH PHYS, V30, P330
94300    WADATI M, 1972, J PHYS SOC JPN, V32, P1681
94301    WADATI M, 1973, J PHYS SOC JPN, V34, P1289
94302    WADATI M, 1975, PROG THEOR PHYS, V53, P419
94303    XU XX, 2003, CHAOS SOLITON FRACT, V15, P475
94304    YAN ZY, 2002, CHAOS SOLITON FRACT, V13, P1439
94305    YAN ZY, 2002, CHAOS SOLITON FRACT, V14, P1445
94306    YAN ZY, 2002, CHAOS SOLITON FRACT, V14, P441
94307    YAN ZY, 2003, CHAOS SOLITON FRACT, V15, P639
94308    ZENG YB, 1991, PHYS LETT A, V160, P541
94309    ZENG YB, 1993, J PHYS A, V26, L273
94310    ZENG YB, 1994, PHYSICA D, V73, P171
94311    ZENG YB, 1996, J PHYS A-MATH GEN, V29, P5241
94312    ZHANG YF, 2002, J MATH PHYS, V43, P466
94313    ZHANG YF, 2003, CHAOS SOLITON FRACT, V18, P855
94314    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P305
94315    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P413
94316 NR 32
94317 TC 4
94318 SN 0960-0779
94319 J9 CHAOS SOLITON FRACTAL
94320 JI Chaos Solitons Fractals
94321 PD JAN
94322 PY 2005
94323 VL 23
94324 IS 2
94325 BP 451
94326 EP 458
94327 PG 8
94328 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
94329 GA 857WA
94330 UT ISI:000224148700013
94331 ER
94332 
94333 PT J
94334 AU Yu, J
94335    Zhang, HY
94336    Gu, J
94337    Lin, S
94338    Li, JH
94339    Lu, W
94340    Wang, YF
94341    Zhu, JD
94342 TI Methylation profiles of thirty four promoter-CpG islands and concordant
94343    methylation behaviours of sixteen genes that may contribute to
94344    carcinogenesis of astrocytoma
94345 SO BMC CANCER
94346 DT Article
94347 ID HUMAN-BRAIN-TUMORS; HEPATOCELLULAR-CARCINOMA CELLS; EGF RECEPTOR GENE;
94348    DNA METHYLATION; MULTIPLE GENES; COLORECTAL-CANCER; PROSTATE-CANCER;
94349    E-CADHERIN; P14(ARF)/MDM2/P53 PATHWAY; ABERRANT METHYLATION
94350 AB Background: Astrocytoma is a common aggressive intracranial tumor and
94351    presents a formidable challenge in clinic. Association of the altered
94352    DNA methylation pattern of the promoter CpG islands with the expression
94353    profile of the cancer related genes has been found in many human
94354    tumors. Therefore, DNA methylation status as such may serve as the
94355    epigenetic biomarker for both diagnosis and prognosis of human tumors
94356    including astrocytoma.
94357    Methods: We used the methylation specific PCR in conjunction with
94358    sequencing verification to establish the methylation profile of the
94359    promoter CpG island of thirty four genes in astrocytoma tissues from
94360    fifty three patients ( The WHO grading:. I: 14, II: 15, III: 12 and IV:
94361    12 cases, respectively). In addition, the compatible tissues ( normal
94362    tissues distant from lesion) from three non-astrocytoma patients were
94363    also included as the control.
94364    Results: Seventeen genes (ABL, APC, APAF1, BRCA1, CSPG2, DAPK1, hMLH1,
94365    LKB1, PTEN, p14(ARF), p15(INK4b), p27(KIP1), p57(KIP2), RASSF1C, RB1,
94366    SURVIVIN, and VHL) displayed a uniformly unmethylated pattern in all
94367    the astrocytoma and non-astrocytoma tissues examined. However, the
94368    MAGEA1 gene that was inactivated and hypermethylated in non-astrocytoma
94369    tissues, was partially demethylated in 24.5% of the astrocytoma tissues
94370    (co-existence of the hypermethylated and demethylated alleles). Of the
94371    astrocytoma associated hypermethylated genes, the methylation pattern
94372    of the CDH13, cyclin a1, DBCCR1, EPO, MYOD1, and p16(INK4a) genes
94373    changed in no more than 5.66% (3/53) of astrocytoma tissues compared to
94374    non-astrocytoma controls, while the RASSF1A, p73, AR, MGMT, CDH1,
94375    OCT6,, MT1A, WT1, and IRF7 genes were more frequently hypermethylated
94376    in 69.8%, 47.2%, 41.5%, 35.8%, 32%, 30.2%, 30.2%, 30.2% and 26.4% of
94377    astrocytoma tissues, respectively. Demethylation mediated inducible
94378    expression of the CDH13, MAGEA1, MGMT, p73 and RASSF1A genes was
94379    established in an astrocytoma cell line (U251), demonstrating that
94380    expression of these genes is likely regulated by DNA methylation. The
94381    AR hypermethylation was found exclusively in female patients ( 22/27,
94382    81%, 0/26, 0%, P < 0.001), while the IRF7 hypermethylation
94383    preferentially occurred in the male counterparts (11/26, 42.3% to 3/27,
94384    11%, P < 0.05). Applying the mathematic method "the Discovery of
94385    Association Rules", we have identified the groups consisting of up to
94386    three genes that more likely display the altered methylation patterns
94387    in concert in astrocytoma.
94388    Conclusions: Of the thirty four genes examined, sixteen genes exhibited
94389    astrocytoma associated changes in the methylation profile. In addition
94390    to the possible pathological significance, the established concordant
94391    methylation profiles of the subsets consisting of two to three target
94392    genes may provide useful clues to the development of the useful
94393    prognostic as well as diagnostic assays for astrocytoma.
94394 C1 Shanghai Jiao Tong Univ, Shanghai Canc Inst, State Key Lab Oncogenes & Related Genes, Shanghai 200032, Peoples R China.
94395    Capital Univ Med Sci, Beijing Neurosurg Inst, Tiantan Hosp, Dept Neurosurg, Beijing 100050, Peoples R China.
94396    Shanghai Univ, Dept Math, Shanghai, Peoples R China.
94397 RP Zhu, JD, Shanghai Jiao Tong Univ, Shanghai Canc Inst, State Key Lab
94398    Oncogenes & Related Genes, LN 2200-25,Xie Tu Rd, Shanghai 200032,
94399    Peoples R China.
94400 EM gyujian@hotmail.com
94401    posset@sina.com.cn
94402    GuJune@yahoo.com
94403    linsong@public.fhnet.cn.net
94404    linsong@public.fhnet.cn.net
94405    luwei_thomas@163.com
94406    yfwang@mail.shu.edu.cn
94407    zhujingde@yahoo.com
94408 CR 1998, CANC INCIDENCE MORTA
94409    AGATHANGGELOU A, 2001, ONCOGENE, V20, P1509
94410    AGRAWAL R, 1993, ACM SIGMOD INT C MAN, P207
94411    ALONSO ME, 2003, CANCER GENET CYTOGEN, V144, P134
94412    AZARSCHAB P, 2003, ONCOL REP, V10, P501
94413    CHEN B, 1998, AM J PATHOL, V152, P1071
94414    CHEN RZ, 1998, NATURE, V395, P89
94415    CHO BS, 2003, BIOCHEM BIOPH RES CO, V307, P52
94416    CLARK SJ, 1994, NUCLEIC ACIDS RES, V22, P2990
94417    CUI HM, 2002, CANCER RES, V62, P6442
94418    CUI J, 2001, PROSTATE, V46, P249
94419    DESMET C, 1996, P NATL ACAD SCI USA, V93, P7149
94420    DETJEN KM, 2003, EXP CELL RES, V282, P78
94421    DONG SM, 2002, INT J CANCER, V98, P370
94422    EDEN A, 2003, SCIENCE, V300, P455
94423    ESTELLER M, 2000, NEW ENGL J MED, V343, P1350
94424    ESTELLER M, 2001, CANCER RES, V61, P4689
94425    ESTELLER M, 2001, HUM MOL GENET, V10, P3001
94426    FAN X, 2002, INT J ONCOL, V21, P667
94427    FEARON ER, 2000, J NATL CANCER I, V92, P515
94428    FENINBERG A, 1908, P NATL ACAD SCI USA, V98, P392
94429    FOSTER SA, 1998, MOL CELL BIOL, V18, P1793
94430    GAUDET F, 2003, SCIENCE, V300, P489
94431    GHIMENTI C, 2003, J NEURO-ONCOL, V61, P95
94432    GHOSHAL K, 2000, J BIOL CHEM, V275, P539
94433    GONZALEZGOMEZ P, 2003, BRIT J CANCER, V88, P109
94434    GONZALEZGOMEZ P, 2003, INT J ONCOL, V22, P601
94435    GRADY WM, 2000, NAT GENET, V26, P16
94436    HABUCHI T, 1998, GENOMICS, V48, P277
94437    HATTORI M, 2001, CANCER LETT, V169, P155
94438    HEGI ME, 1997, INT J CANCER, V73, P57
94439    ICHIMURA K, 1996, ONCOGENE, V13, P1065
94440    ICHIMURA K, 2000, CANCER RES, V60, P417
94441    JONES PA, 2003, ANN NY ACAD SCI, V983, P213
94442    KIBEL AS, 2001, PROSTATE, V48, P248
94443    KLEIHUES P, 2000, PATHOLOGY GENETICS T, P9
94444    LAUX DE, 1999, BREAST CANCER RES TR, V56, P35
94445    LI J, 1997, SCIENCE, V275, P1943
94446    LI YH, 2002, BLOOD, V100, P2572
94447    LIBERMANN TA, 1985, NATURE, V313, P144
94448    LINEHAN WM, 1995, JAMA-J AM MED ASSOC, V273, P564
94449    LOISEAU H, 1999, NEUROSCI LETT, V263, P173
94450    LU RQ, 2000, J BIOL CHEM, V275, P31805
94451    MASHIYAMA S, 1991, ONCOGENE, V6, P1313
94452    MOU DC, 2002, BRIT J CANCER, V86, P110
94453    MULLER C, 2000, MOL CELL BIOL, V20, P3316
94454    NEIBERGS HL, 2002, J SURG ONCOL, V80, P204
94455    PFEIFER GP, 2002, BIOL CHEM, V383, P907
94456    RACHMILEWITZ EA, 2000, PRZEGL LEK S1, V57, P25
94457    ROSAS SLB, 2001, CANCER RES, V61, P939
94458    SASAKI M, 2002, J NATL CANCER I, V94, P384
94459    SATOH Y, 2003, J BIOCHEM, V133, P303
94460    SAUTER P, 1998, MOL CELL BIOL, V18, P7397
94461    SHERR CJ, 2002, CANCER CELL, V2, P103
94462    SOENGAS MS, 2001, NATURE, V409, P207
94463    SUYAMA T, 2002, LEUKEMIA RES, V26, P1113
94464    TOMITA Y, 2003, INT J CANCER, V104, P400
94465    TOYOOKA KO, 2001, CANCER RES, V61, P4556
94466    TOYOOKA S, 2002, CANCER RES, V62, P3382
94467    TOYOTA M, 1999, CANCER RES, V59, P2307
94468    TOYOTA M, 2000, P NATL ACAD SCI USA, V97, P710
94469    VISWANATHAN M, 2003, INT J CANCER, V105, P41
94470    WATANABE T, 2002, ACTA NEUROPATHOL, V104, P357
94471    WHITEHALL VLJ, 2001, CANCER RES, V61, P827
94472    YAMANAKA M, 2003, INT J CANCER, V106, P382
94473    YIN H, 2000, BLOOD, V95, P111
94474    YU J, 2002, BMC CANCER, V2
94475    YU J, 2003, CELL RES, V13, P319
94476    ZOCHBAUERMULLER S, 2001, CANCER RES, V61, P249
94477 NR 69
94478 TC 4
94479 SN 1471-2407
94480 J9 BMC CANCER
94481 JI BMC Cancer
94482 PD SEP 14
94483 PY 2004
94484 VL 4
94485 AR 65
94486 DI ARTN 65
94487 PG 15
94488 SC Oncology
94489 GA 859NZ
94490 UT ISI:000224276500001
94491 ER
94492 
94493 PT J
94494 AU Lu, W
94495    Zheng, P
94496    Du, WJ
94497    Meng, ZY
94498 TI Effect of heat-treatment on LaNiO3 film electrode of PZT thin films
94499    derived by a sol-gel method
94500 SO JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
94501 DT Article
94502 ID FERROELECTRIC MEMORIES
94503 AB Lanthanum nickel oxide (LaNiO3 or LNO) conducting thin films that could
94504    be used as electrodes for improving fatigue and aging properties of
94505    ferroelectric thin films were investigated. In this paper, LNO films
94506    were directly spin-coated onto SiO2/Si(l 0 0) substrates followed by
94507    thermal treatment in air and in oxygen. It was found that crack-free
94508    dense and uniform films with good crystallinity and medium grains were
94509    obtained, preferentially (10 0)oriented LNO thin films could be formed
94510    at a lower annealing temperature of 550degreesC and that with the
94511    increase in thermal annealing temperature the LNO thin film possessed
94512    better electrical properties especially at 750degreesC. However, the
94513    LNO film displayed a structure transformation above 850degreesC. A
94514    phenomenon was found that the first heat-treatment temperature and time
94515    played a key role to determine the crystallite size of LNO films. A
94516    subsequent deposition of a sol-gel derived Pb(Zr0.53Ti0.47)O-3
94517    (PZT53/47) thin film on the LNO-coated SiO2/Si(1 0 0) substrates was
94518    also found to have a (10 0)-oriented texture. Moreover, the Au/PZT/LNO
94519    capacitor was found to significantly improve the fatigue and the
94520    effects of the LNO electrodes to the fatigue were discussed. (C) 2004
94521    Kluwer Academic Publishers.
94522 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
94523 RP Meng, ZY, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
94524    China.
94525 EM zymeng@guomai.sh.cn
94526 CR CHAE BG, 1996, INTEGR FERROELECTR, V13, P87
94527    CHEN SY, 1998, J AM CERAM SOC, V81, P97
94528    DUIKER HM, 1990, J APPL PHYS, V68, P5783
94529    KIM SS, 2002, THIN SOLID FILMS, V405, P117
94530    LEE SJ, 1998, APPL PHYS LETT, V72, P299
94531    LIU Y, 2000, J MATER SCI, V35, P937
94532    MIYAKE S, 2001, KEY ENG MATER, V216, P93
94533    MOULSEN J, 1990, ELECTROCERAMICS, P276
94534    PALKAR VR, 1999, J PHYS D APPL PHYS, V32, R1
94535    PARK CH, 1998, PHYS REV B, V57, P13961
94536    SCOTT JF, 1989, SCIENCE, V246, P1400
94537    WAKIYA N, 2002, THIN SOLID FILMS, V410, P114
94538    WARREN WL, 1996, MRS BULL, V21, P40
94539    YANG YS, 1998, J APPL PHYS, V84, P5005
94540 NR 14
94541 TC 1
94542 SN 0957-4522
94543 J9 J MATER SCI-MATER ELECTRON
94544 JI J. Mater. Sci.-Mater. Electron.
94545 PD NOV
94546 PY 2004
94547 VL 15
94548 IS 11
94549 BP 739
94550 EP 742
94551 PG 4
94552 SC Engineering, Electrical & Electronic; Materials Science,
94553    Multidisciplinary; Physics, Condensed Matter
94554 GA 857ZD
94555 UT ISI:000224158700008
94556 ER
94557 
94558 PT J
94559 AU Wang, HQ
94560    Wang, SZ
94561 TI Cyber warfare: Steganography vs. steganalysis
94562 SO COMMUNICATIONS OF THE ACM
94563 DT Article
94564 ID INFOSEC PROFESSIONALS; TERRORISTS; TACTICS
94565 C1 City Univ Hong Kong, Dept Informat Syst, Hong Kong, Hong Kong, Peoples R China.
94566    Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200041, Peoples R China.
94567 RP Wang, HQ, City Univ Hong Kong, Dept Informat Syst, Hong Kong, Hong
94568    Kong, Peoples R China.
94569 EM iswang@is.cityu.edu.hk
94570    shuowang@staff.shu.edu.cn
94571 CR BERGHEL H, 1996, IEEE COMPUT, V29, P101
94572    CHEN B, 2001, IEEE T INFORM THEORY, V47, P1423
94573    FRIDRICH J, 2002, P SPIE SEC WAT MULT, V4, P1
94574    JOHNSON NF, 1998, COMPUTER, V31, P26
94575    KATZENBEISSER S, 2002, P SPIE SEC WAT MULT, V4, P50
94576    KOVACICH GL, 2002, COMPUT SECUR, V21, P113
94577    KOVACICH GL, 2002, COMPUT SECUR, V21, P35
94578    MARVEL LM, 1999, IEEE T IMAGE PROCESS, V8, P1075
94579    MEMON N, 1998, COMMUN ACM, V41, P34
94580    MOSKOWITZ I, 2000, P 2000 WORKSH NEW SE, P41
94581    PROVOS N, 2002, P NETW DISTR SYST SE
94582    WESTFELD A, 2001, LNCS, V2137, P289
94583    WESTFELD A, 2003, LECT NOTES COMPUTER, V2137, P324
94584 NR 13
94585 TC 5
94586 SN 0001-0782
94587 J9 COMMUN ACM
94588 JI Commun. ACM
94589 PD OCT
94590 PY 2004
94591 VL 47
94592 IS 10
94593 BP 76
94594 EP 82
94595 PG 7
94596 SC Computer Science, Hardware & Architecture; Computer Science, Software
94597    Engineering; Computer Science, Theory & Methods
94598 GA 856RU
94599 UT ISI:000224063300026
94600 ER
94601 
94602 PT J
94603 AU Yao, K
94604    Imai, Y
94605    Shi, LY
94606    Abe, E
94607    Adachi, Y
94608    Nishikubo, K
94609    Tateyama, H
94610 TI Ion-exchangeable layered aminophenylsilica prepared with anionic
94611    surfactant templates
94612 SO CHEMISTRY LETTERS
94613 DT Article
94614 ID MESOPOROUS SILICA
94615 AB The synthesis of a novel anion-exchangeable nanostructured aminophenyl
94616    silica with a well-ordered layer geometry was demonstrated by utilizing
94617    the sol-gel reaction of rho-aminophenyltrimethoxysilane in the presence
94618    of an anionic surfactant micelle under acidic conditions.
94619 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
94620    AIST, Saga 8410052, Japan.
94621 RP Yao, K, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
94622 CR BURKETT SL, 1997, CHEM MATER, V9, P1071
94623    DAFONSECA MG, 1999, J CHEM SOC DA, V21, P3687
94624    DEJUAN F, 2000, ADV MATER, V12, P430
94625    INAGAKI S, 2002, NATURE, V416, P304
94626    KANEKO Y, 2003, J MATER CHEM, V13, P2058
94627    LU YF, 2000, J AM CHEM SOC, V122, P5258
94628    OGAWA M, 1995, CHEM REV, V95, P399
94629    STEIN A, 2003, ADV MATER, V15, P763
94630    TRIANTAFILLIDIS CS, 1997, CHEM MATER, V14, P4088
94631    YAO K, 2003, ANGEW CHEM, V42, P4057
94632    ZHANG QM, 2004, J AM CHEM SOC, V126, P988
94633 NR 11
94634 TC 4
94635 SN 0366-7022
94636 J9 CHEM LETT
94637 JI Chem. Lett.
94638 PD SEP 5
94639 PY 2004
94640 VL 33
94641 IS 9
94642 BP 1112
94643 EP 1113
94644 PG 2
94645 SC Chemistry, Multidisciplinary
94646 GA 855CZ
94647 UT ISI:000223951900019
94648 ER
94649 
94650 PT J
94651 AU Liu, H
94652    Lu, GZ
94653    Guo, YL
94654    Guo, Y
94655    Wang, JS
94656 TI Effect of pretreatment on properties of TS-1/diatomite catalyst for
94657    hydroxylation of phenol by H2O2 in fixed-bed reactor
94658 SO CATALYSIS TODAY
94659 DT Article
94660 DE TS-1/diatomite; pretreatment; phenol; hydroxylation; fixed-bed reactor
94661 ID HYDROGEN-PEROXIDE; TITANIUM SILICALITE; EPOXIDATION; OXIDATION; ALKANES
94662 AB The TS-1/diatomite catalyst was prepared for the hydroxylation of
94663    phenol with H2O2 in the fixed-bed reactor and the effects of
94664    pretreatment on the properties of TS-1/diatomite were studied by FT-IR,
94665    XRD, UV-vis, ICP-AES, BET surface area and NH3-TPD techniques. It is
94666    shown when the catalyst is pretreated by the KAc, NaAc, NH4Ac, NH4Cl or
94667    HNO3 aqueous solution, the framework structure of TS- I is not
94668    destroyed and titanium in the framework is not removed. The surface
94669    area of catalyst has no obvious change compared with that of the
94670    untreated catalyst. But the extra-framework TiO2 can be removed partly,
94671    which leads to the slight increase of the crystallinity of catalyst and
94672    the decrease of acid concentration on the surface of the TS-1/diatomite
94673    catalyst. As a result, the activity, selectivity and utilization of
94674    H2O2 for hydroxylation of phenol are improved. After the TS-1/diatomite
94675    catalyst is pretreated by the (NH3H2O)-H-., Na2CO3 or Na3PO4 solution,
94676    its framework silicon is dissolved partly in the base solution and the
94677    framework structure of TS-1 is destroyed. While the crystallinity and
94678    surface area of catalyst decrease and the concentration of acid sites
94679    on the surface of catalyst increased slightly. As a result, the
94680    catalytic activity of the TS-1/diatomite catalyst for hydroxylation of
94681    phenol descended or deactivated completely. (C) 2004 Elsevier B.V. All
94682    rights reserved.
94683 C1 E China Univ Sci & Technol, Adv Mat Lab, Res Inst Ind Catalysis, Shanghai 200237, Peoples R China.
94684    Shanghai Univ, Coll Environm & Chem Engn, Shanghai 200072, Peoples R China.
94685 RP Lu, GZ, E China Univ Sci & Technol, Adv Mat Lab, Res Inst Ind
94686    Catalysis, Shanghai 200237, Peoples R China.
94687 EM gzhlu@ecust.edu.cn
94688 CR ALLIAN M, 1995, STUD SURF SCI CATAL, V92, P239
94689    CLERICI MG, 1993, J CATAL, V140, P71
94690    HUYBRECHTS DRC, 1990, NATURE, V345, P240
94691    HUYBRECHTS DRC, 1992, J MOL CATAL, V71, P129
94692    LI P, 2000, ACTA CHIM SINICA, V58, P204
94693    LIU H, 2004, CHINESE J CATAL+, V25, P49
94694    REDDY JS, 1992, J MOL CATAL, V71, P373
94695    ROFFIA P, 1990, STUD SURF SCI CATAL, V55, P43
94696    TARAMASSO M, 1983, 4410501, US
94697    TATSUMI T, 1990, J CHEM SOC CHEM COMM, P476
94698    THANGARAJ A, 1990, APPL CATAL, V57, L1
94699    THIELE GF, 1997, J MOL CATAL A-CHEM, V117, P351
94700    VANDERPOL AJHP, 1992, APPL CATAL A-GEN, V92, P113
94701    YASUYUKI H, 2001, CATAL TODAY, V71, P177
94702 NR 14
94703 TC 1
94704 SN 0920-5861
94705 J9 CATAL TODAY
94706 JI Catal. Today
94707 PD SEP 1
94708 PY 2004
94709 VL 93-95
94710 BP 353
94711 EP 357
94712 PG 5
94713 SC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical
94714 GA 855KX
94715 UT ISI:000223973200049
94716 ER
94717 
94718 PT J
94719 AU Wang, W
94720    Chen, SB
94721    Zhong, SS
94722 TI A broadband slope-strip-fed microstrip patch antenna
94723 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
94724 DT Article
94725 DE microstrip antenna; antenna feed; broadband antenna
94726 AB A novel slope-strip feeding technique for a microstrip antenna is
94727    presented in order to achieve a broad bandwidth. The experimental
94728    results show that the optimal bandwidth attained is 53.4% for less than
94729    -10-dB return loss. (C) 2004 Wiley Periodicals, Inc.
94730 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
94731    Xidian Univ, Inst Antennas & EM Scattering, Xian 710071, Peoples R China.
94732 RP Wang, W, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
94733    Peoples R China.
94734 CR HALL PS, 1987, ELECTRON LETT, V23, P606
94735    HUYANH T, 1995, ELECTRON LETT, V31, P1310
94736    LEE KF, 1997, P I ELECTR ENG, V144, P354
94737    MAK CL, 1999, IEEE APS INT S USNC, P1216
94738    POZAR DM, 1985, ELECTRON LETT, V21, P49
94739 NR 5
94740 TC 1
94741 SN 0895-2477
94742 J9 MICROWAVE OPT TECHNOL LETT
94743 JI Microw. Opt. Technol. Lett.
94744 PD OCT 20
94745 PY 2004
94746 VL 43
94747 IS 2
94748 BP 121
94749 EP 123
94750 PG 3
94751 SC Engineering, Electrical & Electronic; Optics
94752 GA 853GM
94753 UT ISI:000223815300011
94754 ER
94755 
94756 PT S
94757 AU Ran, X
94758    Qi, FH
94759 TI Segmental active contour model integrating region information for
94760    medical image segmentation
94761 SO MEDICAL IMAGING AND AUGMENTED REALITY, PROCEEDINGS
94762 SE LECTURE NOTES IN COMPUTER SCIENCE
94763 DT Article
94764 ID SNAKES
94765 AB A segmental active contour model integrating region information is
94766    proposed. Different deformation schemes are used at two stages for
94767    segmenting the object correctly in image plain. At the first stage the
94768    contour of the model is divided into several segments hierarchically
94769    that deform respectively using affine transformation. After the contour
94770    is deformed to the approximate boundary of object, a fine match
94771    mechanism using statistical information of local region is adopted to
94772    make the contour fit the object's boundary exactly. The experimental
94773    results indicate that the proposed model is robust to local minima and
94774    able to search for concave objects.
94775 C1 Shanghai Univ, Dept Comp Sci & Engn, Shanghai, Peoples R China.
94776 RP Ran, X, Shanghai Univ, Dept Comp Sci & Engn, Shanghai, Peoples R China.
94777 EM simonran@sjtu.edu.cn
94778 CR BRIGGER P, 2000, IEEE T IMAGE PROCESS, V9, P1484
94779    HORACE HS, 1998, IMAGE VISION COMPUT, V16, P135
94780    KASS M, 1987, INT J COMPUT VISION, V1, P321
94781    PERRIN D, 2001, P IEEE INT C COMP VI
94782    RONFARD R, 1994, INT J COMPUT VISION, V13, P229
94783    SHEN DG, 2000, IEEE T PATTERN ANAL, V22, P906
94784    XU CY, 1998, IEEE T IMAGE PROCESS, V7, P359
94785    XUE Z, 2002, IMAGE VISION COMPUT, V20, P77
94786 NR 8
94787 TC 0
94788 SN 0302-9743
94789 J9 LECT NOTE COMPUT SCI
94790 PY 2004
94791 VL 3150
94792 BP 129
94793 EP 136
94794 PG 8
94795 GA BAU21
94796 UT ISI:000223567700016
94797 ER
94798 
94799 PT J
94800 AU Cui, YJ
94801    Jia, GQ
94802    Han, YB
94803    Wang, XY
94804    Ge, HL
94805    Zhang, JC
94806 TI Structure and transport properties of La0.67Ca0.33Mn1-xAlxO3
94807 SO JOURNAL OF RARE EARTHS
94808 DT Article
94809 DE metal materials; structure and transport properties; Al3+ substitution;
94810    La0.67Ca0.33MnO3; rare earths
94811 ID CA-MN-O; COLOSSAL MAGNETORESISTANCE; FILMS; RESISTIVITY; TRANSITION;
94812    LA2/3CA1/3MNO3; TEMPERATURE; THERMOPOWER
94813 AB The effects of Al ion doping on the Mn site were studied for the
94814    colossal magnetoresistance material La0.67Ca0.33 MnO3. It is found that
94815    the volume of the crystal cell decreases monotonically when the
94816    population of Al3+ increases across the entire doping range. As the
94817    Al3+ population increases, the resistance of the material rises
94818    rapidly, while the insulator-metal transition temperature T-IM
94819    decreases linearly. At small Al3+ dosage, a thermal activation model
94820    properly describes the transport properties at T > T-IM, while a
94821    metallic model is more suitable at T < T-IM. The variation of transport
94822    properties with the change of Al dosage may be attributed to lattice
94823    distortion caused by the destruction of Mn3+-O2--Mn4+ double exchange
94824    channel as a result of Al3+-doping. The doped Al3+ ions may modify the
94825    local field for electrons so to affect the transport properties.
94826 C1 China Inst Metrol, Dept Appl Phys, Hangzhou 310018, Peoples R China.
94827    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
94828 RP Cui, YJ, China Inst Metrol, Dept Appl Phys, Hangzhou 310018, Peoples R
94829    China.
94830 EM yjcui@cjlu.edu.cn
94831 CR AHN KH, 1996, PHYSICAL REV B, V54, P299
94832    BLASCO J, 1997, PHYS REV B, V55, P8905
94833    CAI JW, 1997, APPL PHYS LETT, V71, P1727
94834    CHAHARA K, 1993, APPL PHYS LETT, V63, P1990
94835    FENG JW, 1999, APPL PHYS LETT, V75, P1592
94836    GARATHRI N, 1997, PHYS REV B, V56, P1345
94837    GHOSH K, 1999, PHYS REV B, V59, P533
94838    HWANG HY, 1995, PHYS REV LETT, V75, P914
94839    JAIME M, 1996, PHYS REV B, V54, P11914
94840    JIN S, 1994, SCIENCE, V264, P413
94841    JU HL, 1994, APPL PHYS LETT, V65, P2108
94842    LANZARA A, 1998, PHYS REV LETT, V81, P878
94843    LEE HJ, 1999, PHYS REV B, V60, P5251
94844    LI BH, 2003, J RARE EARTH, V21, P94
94845    LIU YH, 2003, J RARE EARTH, V21, P112
94846    MILLIS AJ, 1995, PHYS REV LETT, V74, P5144
94847    OGALE SB, 1998, PHYS REV B, V57, P7841
94848    RAVEAU B, 1998, J ALLOY COMPD, V275, P461
94849    RUBINSTEIN M, 1997, PHYS REV B, V56, P5412
94850    SUN Y, 2001, PHYS REV B, V63
94851    TRIKI M, 2003, J ALLOY COMPD, V361, P54
94852    VANITHA PV, 2003, J SOLID STATE CHEM, V174, P74
94853    VONHELMOLT R, 1993, PHYS REV LETT, V71, P2331
94854    WANG ZH, 1999, J APPL PHYS 2B, V85, P5399
94855    ZENER C, 1951, PHYS REV, V82, P403
94856 NR 25
94857 TC 2
94858 SN 1002-0721
94859 J9 J RARE EARTH
94860 JI J. Rare Earths
94861 PD AUG
94862 PY 2004
94863 VL 22
94864 IS 4
94865 BP 492
94866 EP 496
94867 PG 5
94868 SC Chemistry, Applied
94869 GA 854CJ
94870 UT ISI:000223877600012
94871 ER
94872 
94873 PT J
94874 AU Wang, W
94875    Ni, JS
94876    Xu, H
94877    Zhou, BX
94878    Li, Q
94879    Wang, ZY
94880 TI Preparation and magnetic properties of melt-spinning Nd2Fe14B alpha-Fe
94881    nanocomposite magnets
94882 SO JOURNAL OF RARE EARTHS
94883 DT Article
94884 DE nanocomposite magnets; melt spinning; exchange coupling; rare earths
94885 ID PERMANENT-MAGNETS
94886 AB Nd11Fe71Co8V1.5Cr1B7.5 magnet was prepared by melt-spinning and
94887    subsequently annealed. The effects of the wheel speed on the magnetic
94888    properties and microstructure were studied. The results reveal that
94889    fine nanocomposite microstructure consisting of Nd2Fe14B and alpha-Fe
94890    phases can be developed at an optimum wheel speed of about 21
94891    m(.)s(-1). After optimal annealing (640 degreesC x 4 min), magnetic
94892    properties of B-r=0.64 T, H-j(c) = 903.5 kA(.)m(-1) and (BH)(max) = 71
94893    kJ(.)m(-3) were obtained for the bonded magnets. The addition of Cr
94894    element significantly reduces grain size, increasing the intrinsic
94895    coercivity and maximum magnetic energy product.
94896 C1 Shanghai Univ, Inst Mat, Res Ctr Nanosci & Nanotechnol, Shanghai 200072, Peoples R China.
94897 RP Ni, JS, Shanghai Univ, Inst Mat, Res Ctr Nanosci & Nanotechnol,
94898    Shanghai 200072, Peoples R China.
94899 EM nijiansen@163.com
94900 CR CHOONG JY, 1999, IEEE T MAGN, V35, P3328
94901    HIROSAWA S, 1996, MAT SCI ENG A-STRUCT, V217, P367
94902    KNELLER EF, 1991, IEEE T MAGN, V27, P3588
94903    LEWIS LH, 1998, J ALLOY COMPD, V270, P265
94904    NI JS, 2002, J CHINESE RARE EARTH, V20, P215
94905    NI JS, 2002, METALLIC FUNCTIONAL, V9, P8
94906    PING DH, 2002, J MAGN MAGN MATER, V239, P437
94907    SCHRAEDER T, 1994, PIMA MAG, V76, P10
94908    WANG ZC, 2000, J ALLOY COMPD, V299, P258
94909    YAO JM, 1994, J APPL PHYS 2, V76, P7071
94910    ZHANG ZD, 2000, J PHYS D APPL PHYS, V33, R217
94911 NR 11
94912 TC 1
94913 SN 1002-0721
94914 J9 J RARE EARTH
94915 JI J. Rare Earths
94916 PD AUG
94917 PY 2004
94918 VL 22
94919 IS 4
94920 BP 505
94921 EP 508
94922 PG 4
94923 SC Chemistry, Applied
94924 GA 854CJ
94925 UT ISI:000223877600015
94926 ER
94927 
94928 PT J
94929 AU Li, WW
94930    Sang, WB
94931    Min, JH
94932    Yu, F
94933    Zhang, B
94934    Wang, KS
94935    Cao, ZC
94936 TI Optimization of crucible descending rate during the crystal growth of
94937    CdZnTe by a vertical bridgman method
94938 SO JOURNAL OF INORGANIC MATERIALS
94939 DT Article
94940 DE CdZnTe; vertical bridgman method; finite element method; experimental
94941    study
94942 ID CADMIUM ZINC TELLURIDE; HEAT-TRANSFER; CDTE; TEMPERATURE; CONVECTION
94943 AB During the crystal growth by VBM, the relationships between crucible
94944    descending rate and crystal growth rate greatly influence the crystal
94945    quality. In this paper, finite element method (FEM) was used to
94946    simulate the growth process of CdZnTe crystal and the effects of
94947    different crucible descending rates on crystal growth rate and
94948    solid-liquid interface configuration were studied as well. Simulations
94949    show that when crucible descends at the rate of about 1mm/h, which
94950    nearly equals to crystal growth rate, nearly flat solid/liquid
94951    interface and little variation of axial temperature gradient near it
94952    can be attained, which are well consistent with the results of
94953    experiments. Therefore, CdZnTe crystal with low dislocation density can
94954    be obtained by employing and adjusting appropriate crucible moving rate
94955    during the crystal growth.
94956 C1 Shanghai Univ, Sch Mat Sci & Engn, Dept Elect Informat Mat, Shanghai 201800, Peoples R China.
94957 RP Li, WW, Shanghai Univ, Sch Mat Sci & Engn, Dept Elect Informat Mat,
94958    Shanghai 201800, Peoples R China.
94959 EM fangwanli@sohu.com
94960 CR ALEXIADES V, 1993, MATH MODELING MELTIN
94961    ASAHI T, 1996, J CRYST GROWTH, V161, P20
94962    BRANDON S, 1992, J CRYST GROWTH, V121, P473
94963    BUTLER JF, 1992, IEEE T NUCL SCI, V39, P605
94964    CERNY R, 1993, THERMOCHIM ACTA, V218, P17
94965    CERNY R, 2000, COMP MATER SCI, V17, P34
94966    CHANG CE, 1974, J CRYST GROWTH, V21, P135
94967    ELMOKRI A, 1994, J CRYST GROWTH, V138, P168
94968    KIM DH, 1991, J CRYST GROWTH, V114, P411
94969    KUPPURAO S, 1995, J CRYST GROWTH, V155, P103
94970    KUPPURAO S, 1995, J CRYST GROWTH, V155, P93
94971    KUPPURAO S, 1997, J CRYST GROWTH, V172, P350
94972    MARTINEZTOMAS C, 2001, J CRYST GROWTH, V222, P435
94973    MUHLBERG M, 1990, J CRYST GROWTH, V101, P275
94974    NIEMELA A, 1996, NUCL INSTRUM METH A, V377, P484
94975    PARFENIUK C, 1992, J CRYST GROWTH, V119, P261
94976    REQUET JP, 1976, CRYST GROWTH, V33, P303
94977    SCHIEBER M, 1996, J CRYST GROWTH, V237, P2082
94978    SEN S, 1988, J CRYST GROWTH, V86, P111
94979    YU TC, 1992, J PHASE EQUILI, V13, P476
94980 NR 20
94981 TC 0
94982 SN 1000-324X
94983 J9 J INORG MATER
94984 JI J. Inorg. Mater.
94985 PD JUL
94986 PY 2004
94987 VL 19
94988 IS 4
94989 BP 723
94990 EP 732
94991 PG 10
94992 SC Materials Science, Ceramics
94993 GA 852SB
94994 UT ISI:000223775600003
94995 ER
94996 
94997 PT J
94998 AU Wang, LJ
94999    Fang, ZJ
95000    Zhang, ML
95001    Shen, HJ
95002    Xia, YB
95003 TI Dielectric and thermal properties of diamond film/alumina composite
95004 SO JOURNAL OF INORGANIC MATERIALS
95005 DT Article
95006 DE diamond films; alumina; integrated circuits; packaging substrates
95007 ID FILMS
95008 AB The feasibility of diamond film coated alumina ceramics used as the
95009    packaging substrate of integrated circuits with ultra high speed and
95010    high power was studied. The measurement results of dielectric
95011    properties of the diamond film/alumina composites show that CVD diamond
95012    films can effectively reduce the dielectric constant of the composite.
95013    Carbon ions implantated into alumina substrates prior to the diamond
95014    deposition can reduce the dielectric loss of the composite from
95015    5x10(-3) to 2x10(-3), and make the composite have better frequency
95016    stability. The thermal conductivity of the composite can obviously
95017    increase by CVD diamond film. With increasing the thickness of diamond
95018    film, the thermal conductivity of the composite will monotonously
95019    increase. The composite has a dielectric coefficient of 6.5 and a
95020    thermal conductivity of 3.98W/cm(.)K when the thickness of diamond film
95021    is up to 100mum.
95022 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
95023 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
95024    China.
95025 EM ljwang@mail.shu.edu.cn
95026 CR FANG ZJ, 2002, J PHYS D APPL PHYS, V35, L57
95027    JOHNSON WB, 1993, J MATER RES, V8, P1169
95028    MO YW, 1997, THIN SOLID FILMS, V305, P266
95029    NAZERI A, 1993, AM CERAM SOC B, V75, P59
95030    POPOVICI G, 1994, J MATER RES, V9, P2839
95031    SPEAR KE, 1989, J AM CERAM SOC, V72, P171
95032    WERNER M, 1998, REP PROG PHYS, V61, P1665
95033    XIAO YB, 1996, CHINESE PHYS LETT, V7, P557
95034 NR 8
95035 TC 1
95036 SN 1000-324X
95037 J9 J INORG MATER
95038 JI J. Inorg. Mater.
95039 PD JUL
95040 PY 2004
95041 VL 19
95042 IS 4
95043 BP 902
95044 EP 906
95045 PG 5
95046 SC Materials Science, Ceramics
95047 GA 852SB
95048 UT ISI:000223775600032
95049 ER
95050 
95051 PT J
95052 AU Chen, H
95053    Nho, YC
95054    Hoffman, AS
95055 TI Grafting copolymerization of 2-methacryloyloxyethyl phosphorylcholine
95056    (MPC) onto pre-irradiated cellulose films
95057 SO JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION
95058 DT Article
95059 DE radiation grafting; cellulose film; blood compatibility; MPC; PEGMA
95060 ID PHOSPHOLIPID POLAR GROUP; ADSORPTION-RESISTANCE PROPERTIES; BLOOD
95061    COMPATIBILITY; DIALYSIS MEMBRANE; POLYMER; IMPROVEMENT; SURFACE;
95062    HEMOCOMPATIBILITY; POLYURETHANES; PURIFICATION
95063 AB Grafting of 2-methacryloyloxyethyl phosphorylcholine (MPC) and
95064    poly(ethylene glycol mathacrylate) (PEGMA) onto cellulose films was
95065    performed using the pre-irradiation grafting method. The effects of
95066    monomer concentration, solvent system and co-solvent composition, and
95067    reaction time on the degree of grafting were determined. The grafted
95068    samples were confirmed by FT-IR-ATR spectra. The blood compatibilities
95069    of the grafted cellulose were evaluated by platelet-rich plasma contact
95070    studies and viewed by scanning electron microscopy; non-grafted
95071    cellulose film sample was used as references. As a result, MPC and
95072    MPC/PEGMA were grafted on the surface of cellulose films. It was found
95073    that fewer platelets adhered to the MPC-grafted surfaces and that they
95074    showed less shape variation than the ungrafted references.
95075 C1 Shanghai Univ, Dept Chem Engn & Technol, Shanghai 201800, Peoples R China.
95076    Korea Atom Energy Res Inst, Radiat Applicat Div, Taejon, South Korea.
95077    Univ Washington, Dept Bioengn, Seattle, WA 98159 USA.
95078 RP Chen, H, Shanghai Univ, Dept Chem Engn & Technol, Jiadiang Campus,
95079    Shanghai 201800, Peoples R China.
95080 EM chenjjd@online.sh.cn
95081 CR CHEN J, 1999, RADIAT PHYS CHEM, V55, P87
95082    FUKOMOTO K, 1992, BIOMATERIALS, V13, P235
95083    IKADA Y, 1981, RADIAT PHYS CHEM, V18, P1270
95084    ISHIHARA K, 1992, BIOMATERIALS, V13, P145
95085    ISHIHARA K, 1994, ARTIF ORGANS, V18, P559
95086    ISHIHARA K, 1994, J POLYM SCI POL CHEM, V32, P859
95087    ISHIHARA K, 1996, J POLYM SCI POL CHEM, V34, P199
95088    ISHIHARA K, 1999, BIOMATERIALS, V20, P1545
95089    KOREMATSU A, 2002, BIOMATERIALS, V23, P263
95090    LEE MK, 1995, J KOR SOC DYERS FINI, V7, P63
95091    LEWIS AL, 2001, BIOMATERIALS, V22, P99
95092    LI YJ, 1997, J BIOMATER APPL, V12, P167
95093    SAITO K, 1999, RADIAT PHYS CHEM, V54, P517
95094    XU JM, 2003, COLLOID SURFACE B, V30, P215
95095    YAMASAKI A, 2003, COLLOID SURFACE B, V28, P53
95096    YE SH, 2002, J MEMBRANE SCI, V210, P411
95097    YE SH, 2003, BIOMATERIALS, V24, P4143
95098    YONEYAMA T, 2002, BIOMATERIALS, V23, P1455
95099 NR 18
95100 TC 0
95101 SN 0920-5063
95102 J9 J BIOMATER SCI-POLYM ED
95103 JI J. Biomater. Sci.-Polym. Ed.
95104 PY 2004
95105 VL 15
95106 IS 7
95107 BP 841
95108 EP 849
95109 PG 9
95110 SC Engineering, Biomedical; Materials Science, Biomaterials; Polymer
95111    Science
95112 GA 854CQ
95113 UT ISI:000223878300003
95114 ER
95115 
95116 PT J
95117 AU Liu, YS
95118    Zhang, JC
95119    Yu, LM
95120    Jia, GQ
95121    Chao, J
95122    Cao, SX
95123 TI Magnetic properties of nanocrystalline Fe-Co alloys by high-energy
95124    milling
95125 SO JOURNAL OF ALLOYS AND COMPOUNDS
95126 DT Article
95127 DE Fe-Co alloy; Co-doping; frequency property; ball milling; strain
95128 ID POWDERS; MOSSBAUER; FE/CO; CU
95129 AB The Fe-Co alloys were fabricated by high-energy milling. The X-ray
95130    diffraction (XRD) results exhibit that a nanocrystalline Fe-Co alloy
95131    was obtained and the evaluated grain sizes were about 7-12 nm. The
95132    dc-magnetization properties and initial permeability were
95133    systematically studied. The results show that Co-doping increases the
95134    cut-off frequencies of the samples and makes the initial permeability
95135    keep a constant value in a wider frequency range. The corresponding
95136    peak value of the initial permeability as function of Co-doping
95137    concentration turns to the region of low Co concentration. Moreover,
95138    the experimental magnetic moments of the alloys studied are smaller
95139    than ones displayed in the Slater-Pauling plot. (C) 2004 Elsevier B.V.
95140    All rights reserved.
95141 C1 Shanghai Univ, Dept Phys & Nanosci, Shanghai 200436, Peoples R China.
95142    Shanghai Univ, Technol Res Ctr, Shanghai 200436, Peoples R China.
95143 RP Zhang, JC, Shanghai Univ, Dept Phys & Nanosci, Shanghai 200436, Peoples
95144    R China.
95145 EM jczhang@mail.shu.edu.cn
95146 CR CALKA A, 2002, NATURE, V419, P147
95147    CHEN CW, 1961, J APPL PHYS, V32, P348
95148    COEY JMD, 2001, J ALLOY COMPD, V326, P2
95149    DING J, 2002, J MAGN MAGN MATER, V247, P249
95150    ESCORIAL AG, 1991, MAT SCI ENG A-STRUCT, V134, P1394
95151    FADEEVA VI, 1996, MAT SCI ENG A-STRUCT, V206, P90
95152    FADEEVA VI, 2001, INORG MATER, V37, P190
95153    GOODENOUGH JB, 2002, IEEE T MAGN 2, V38, P3398
95154    HERZER G, 1990, IEEE T MAGN, V26, P1937
95155    JARTYCH E, 1993, J PHYS-CONDENS MAT, V5, P927
95156    KIM YD, 2000, MAT SCI ENG A-STRUCT, V291, P17
95157    KITTEL C, 1986, INTRO SOLID STATE PH, P594
95158    LEE BH, 2003, MATER LETT, V57, P1103
95159    LI GD, 1999, CONT MAGNETISM, P187
95160    LI T, 1997, J PHYS-CONDENS MAT, V9, P1381
95161    LINDEROTH S, 1994, J APPL PHYS, V75, P5869
95162    MILHAM CD, 1994, J APPL PHYS, V75, P5659
95163    MURAYAMA M, 2002, SCIENCE, V295, P2433
95164    NASCIMENTO VP, 2001, J PHYS-CONDENS MAT, V13, P665
95165    PASSAMANI EC, 2002, J MATER SCI, V37, P819
95166    REN L, 2001, J MATER SCI, V36, P1451
95167    ROCHMAN NT, 1999, J MATER PROCESS TECH, V89, P367
95168    SHABANOVA IN, 2000, J STRUCT CHEM+, V41, P954
95169    WAN DF, 1994, MAGNETIC PHYS, P370
95170    XU SY, 1998, J SHANGHAI U, V2, P301
95171    XU SY, 2001, J SHANGHAI U, V5, P147
95172    YU RH, 2000, IEEE T MAGN 1, V36, P3388
95173    ZHU GH, 2000, J MATER SCI TECHNOL, V16, P543
95174    ZHU M, 1998, J MATER SCI LETT, V17, P445
95175 NR 29
95176 TC 2
95177 SN 0925-8388
95178 J9 J ALLOYS COMPOUNDS
95179 JI J. Alloy. Compd.
95180 PD SEP 8
95181 PY 2004
95182 VL 377
95183 IS 1-2
95184 BP 202
95185 EP 206
95186 PG 5
95187 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
95188    Metallurgical Engineering
95189 GA 853BK
95190 UT ISI:000223801000038
95191 ER
95192 
95193 PT J
95194 AU Zhang, JM
95195    Yang, W
95196    He, P
95197    Zhu, SZ
95198 TI Efficient and convenient preparation of water-soluble fullerenol
95199 SO CHINESE JOURNAL OF CHEMISTRY
95200 DT Article
95201 DE fullerene; water-soluble fullerenol; polyethylene glycol; sodium
95202    hydroxide
95203 ID CHEMISTRY; FULLEROLS
95204 AB An efficient and convenient preparation of fullerenols was described.
95205    With polyethylene glycol (PEG) 400 as catalyst, fullerenols were
95206    conveniently synthesized via the direct reaction of fullerene with
95207    aqueous NaOH. By control of reaction conditions, either water-soluble
95208    C-60 fullerenol or water-insoluble C60 fullerenol could be obtained
95209    selectively.
95210 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R China.
95211    Chinese Acad Sci, Shanghai Inst Organ Chem, Key Lab Organofluorine Chem, Shanghai 200032, Peoples R China.
95212 RP Zhu, SZ, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R
95213    China.
95214 EM zhusz@mail.sioc.ac.cn
95215 CR CHIANG LY, 1992, J AM CHEM SOC, V114, P10154
95216    CHIANG LY, 1992, J CHEM SOC CHEM COMM, P1791
95217    CHIANG LY, 1992, MATER RES SOC S P, V247, P285
95218    CHIANG LY, 1993, 5177248, US
95219    CHIANG LY, 1993, J AM CHEM SOC, V115, P5453
95220    CHIANG LY, 1994, J ORG CHEM, V59, P3960
95221    LI J, 1993, J CHEM SOC CHEM COMM, P1784
95222    NAIM A, 1992, TETRAHEDRON LETT, V33, P7097
95223    ROY S, 1994, J CHEM SOC CHEM 0207, P275
95224    SCHNEIDER NS, 1994, J CHEM SOC CHEM COMM, P463
95225    SUN DY, 1996, CHEM J CHINESE U, V17, P19
95226    WEBER WP, 1977, PHASE TRANSFER CATAL
95227    YU BC, 1997, SCI B, V5, P25
95228 NR 13
95229 TC 3
95230 SN 1001-604X
95231 J9 CHINESE J CHEM
95232 JI Chin. J. Chem.
95233 PD SEP
95234 PY 2004
95235 VL 22
95236 IS 9
95237 BP 1008
95238 EP 1011
95239 PG 4
95240 SC Chemistry, Multidisciplinary
95241 GA 853QJ
95242 UT ISI:000223842000026
95243 ER
95244 
95245 PT J
95246 AU Li, CP
95247    Xia, XH
95248 TI On the bound of the Lyapunov exponents for continuous systems
95249 SO CHAOS
95250 DT Article
95251 AB In this paper, both upper bounds and lower bounds for all the Lyapunov
95252    exponents of continuous differential systems are determined. Several
95253    examples are given to show the application of the estimates derived
95254    here. (C) 2004 American Institute of Physics.
95255 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
95256    Univ Pretoria, Dept Elect Elect & Comp Engn, ZA-0002 Pretoria, South Africa.
95257 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
95258 EM changpin.li@up.ac.za
95259    xxia@postino.up.ac.za
95260 CR CHEN G, 1998, CHAOS ORDER METHODOL
95261    CHENG YP, 2001, MATRIX THEORY
95262    HIRSCH MW, 1974, DIFFERENTIAL EQUATIO
95263    HOLZFUSS J, 1991, LECT NOTES MATH, V1486, P263
95264    LEONOV GA, 1997, LYAPUNOV EXPONENTS P
95265    LI CP, 2003, CHAOS SOLITON FRACT, V18, P807
95266    LI CP, 2004, CHAOS, V14, P343
95267    LINZ SJ, 1999, PHYS LETT A, V259, P240
95268    OSELEDEC VI, 1968, T MOSCOW MATH SOC, V19, P197
95269    PARKER TS, 1989, PRACTICAL NUMERICAL
95270    ROSENSTEIN MT, 1993, PHYSICA D, V65, P117
95271    ROSENSTEIN MT, 1994, PHYSICA D, V73, P82
95272    ROSSLER OE, 1976, PHYS LETT A, V57, P397
95273    SATO S, 1987, PROG THEOR PHYS, V77, P1
95274    SEYDEL R, 1994, PRACTICAL BIFURCATIO
95275    VERHULST F, 1990, NONLINEAR DIFFERENTI
95276    VIDYASAGAR M, 1978, NONLINEAR SYSTEMS AN
95277    WOLF A, 1985, PHYSICA D, V16, P285
95278    XUE YS, 1999, QUANTITATIVE STUDY G
95279 NR 19
95280 TC 3
95281 SN 1054-1500
95282 J9 CHAOS
95283 JI Chaos
95284 PD SEP
95285 PY 2004
95286 VL 14
95287 IS 3
95288 BP 557
95289 EP 561
95290 PG 5
95291 SC Mathematics, Applied; Physics, Mathematical
95292 GA 854LL
95293 UT ISI:000223904400005
95294 ER
95295 
95296 PT S
95297 AU Fan, J
95298    Wu, GF
95299    Ma, F
95300    Liu, J
95301 TI Reinforcement learning and ART2 neural network based collision
95302    avoidance system of mobile robot
95303 SO ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 2
95304 SE LECTURE NOTES IN COMPUTER SCIENCE
95305 DT Article
95306 AB In view of the collision avoidance problem of multi-moving-obstacles in
95307    path planning of mobile robot, we present a solution based on
95308    reinforcement learning and ART2 (Adaptive Resonance Theory 2) neural
95309    network as well as the method of rule-based collision avoidance. The
95310    simulation experiment shows that the solution is of good flexibility
95311    and can solve the problem on random moving obstacles.
95312 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai, Peoples R China.
95313 RP Fan, J, Shanghai Univ, Sch Engn & Comp Sci, Shanghai, Peoples R China.
95314 EM jfan@mail.shu.edu.cn
95315    gfwu@mail.shu.edu.cn
95316 CR ARAI Y, 1999, ROBOT AUTON SYST, V29, P21
95317    CHEN CT, 1997, P IEEE INT C ROB AUT, P2007
95318    FUJIMORI A, 2002, IEEE ICIT 02 BANGK T, P1
95319    SMART WD, 2002, P IEEE INT C ROB AUT, P3404
95320    SUWIMONTEERABUT.D, 2002, P IEEE RSJ INT C INT, P921
95321    TANG P, 2001, IEEE INT FUZZ SYST C, P1062
95322    XU H, 2002, P IEEE INT C ROB AUT, P3087
95323 NR 7
95324 TC 1
95325 SN 0302-9743
95326 J9 LECT NOTE COMPUT SCI
95327 PY 2004
95328 VL 3174
95329 BP 35
95330 EP 41
95331 PG 7
95332 GA BAT68
95333 UT ISI:000223502900006
95334 ER
95335 
95336 PT S
95337 AU Liu, Y
95338    Wang, Y
95339    Li, Y
95340    Zhang, BF
95341    Wu, GF
95342 TI Earthquake prediction by RBF neural network ensemble
95343 SO ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 2
95344 SE LECTURE NOTES IN COMPUTER SCIENCE
95345 DT Article
95346 ID CLASSIFICATION
95347 AB Earthquake Prediction is one of the most difficult subjects in the
95348    world. It is difficult to simulate the non-linear relationship between
95349    the magnitude of earthquake and many complicated attributes arising the
95350    earthquake. In this paper, RBF neural network ensemble was employed to
95351    predict the magnitude of earthquake. Firstly, the earthquake examples
95352    were divided to several training sets based on Bagging algorithm. Then
95353    a component RBF neural network, which was optimized by Adaptive Genetic
95354    Algorithm, was trained from each of those training sets. The result was
95355    obtained by majority voting method, which combined the predictions of
95356    component neural networks. Experiments demonstrated that the prediction
95357    accuracy was increased through using RBF neural network ensemble.
95358 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
95359 RP Liu, Y, Shanghai Univ, Sch Engn & Comp Sci, Yanchang Rd 149, Shanghai
95360    200072, Peoples R China.
95361 EM yliu@mail.shu.edu.cn
95362 CR BAUER E, 1999, MACH LEARN, V36, P105
95363    BREIMAN L, 1996, MACH LEARN, V24, P123
95364    CHEN Q, 2002, CHINA EARTHQUAKE EXA
95365    CUNNINGHAM P, 2000, ARTIF INTELL MED, V20, P217
95366    DRUCKER H, 1993, ADV NEURAL INFORMATI, V5, P42
95367    EFRON B, 1993, INTRO BOOTSTRAP
95368    FREUND Y, 1995, INFORM COMPUT, V121, P256
95369    FREUND Y, 1995, P 2 EUR C COMP LEARN, P23
95370    GUTTA S, 1996, P IEEE INT C NEUR NE, P1017
95371    HAN J, 2000, DATA MINING CONCEPTS
95372    HANSEN LK, 1990, IEEE T PATTERN ANAL, V12, P993
95373    HANSEN LK, 1992, P IEEE WORKSH NEUR N, P333
95374    HUANG FJ, 2000, P 4 IEEE INT C AUT F, P245
95375    MAO J, 1998, P IEEE INT JOINT C N, V3, P1828
95376    MOODY J, 1989, P 1988 CONN MOD SUMM
95377    PERRONE MP, 1993, ARTIFICIAL NEURAL NE, P126
95378    ROBERT J, 2001, IEEE T NEURAL NETWOR, V12
95379    SCHAPIRE RE, 1990, MACH LEARN, V5, P197
95380    SCHAPIRE RE, 2000, MACH LEARN, V39, P135
95381    SHIMSHONI Y, 1998, IEEE T SIGNAL PROCES, V46, P1194
95382    WANG XP, 2002, GENETIC ALGORITHM TH, P79
95383    WOLPERT DH, 1999, MACH LEARN, V35, P41
95384    ZHANG Z, 1990, CHINA EARTHQUAKE EXA
95385    ZHANG Z, 2000, CHINA EARTHQUAKE EXA
95386    ZHOU ZH, 2001, P IJCAI 01 SEATTL WA, V2, P797
95387    ZHOU ZH, 2002, ARTIF INTELL MED, V24, P25
95388 NR 26
95389 TC 0
95390 SN 0302-9743
95391 J9 LECT NOTE COMPUT SCI
95392 PY 2004
95393 VL 3174
95394 BP 962
95395 EP 969
95396 PG 8
95397 GA BAT68
95398 UT ISI:000223502900153
95399 ER
95400 
95401 PT S
95402 AU Jiang, M
95403    Meng, ZQ
95404    Hu, QY
95405 TI A neural network model on solving multiobjective conditional
95406    value-at-risk
95407 SO ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 2
95408 SE LECTURE NOTES IN COMPUTER SCIENCE
95409 DT Article
95410 DE credit risk; loss functions; oe-CVaR; Pareto efficient solutions
95411 ID OPTIMIZATION
95412 AB Conditional Value-at-Risk (CVaR) is a new approach for credit risk
95413    optimization in the field of finance engineering. This paper introduces
95414    the concept of alpha-CVaR for the case of multiple losses under the
95415    confidence level vector alpha. The problem of solving the minimal
95416    alpha-CVaR results in a multiobjective problem (MCVaR). In order to get
95417    Pareto efficient solutions of the (MCVaR), we introduce a single
95418    objective problem (SCVaR) and show that the optimal solutions of the
95419    (SCVaR) are Pareto efficient solutions of (MCVaR). We construct a
95420    nonlinear neural networks model with an approximate problem (SCVaR)' of
95421    (SCVaR). We may get an approximate solution (SCVaR) by solving this
95422    nonlinear neural networks model.
95423 C1 Xidian Univ, Sch Econ & Management, Xian 710071, Peoples R China.
95424    Zhejiang Univ Technol, Coll Business & Adm, Hangzhou 310032, Peoples R China.
95425    Shanghai Univ, Coll Int Business & Management, Shanghai 201800, Peoples R China.
95426 RP Jiang, M, Xidian Univ, Sch Econ & Management, Xian 710071, Peoples R
95427    China.
95428 EM j_yx@263.net
95429    mengzhiqing@zjut.edu.cn
95430    huqiying@sina.com
95431 CR ANDERSSON F, 2001, MATH PROGRAM, V89, P273
95432    CHERNOZHUKOV V, 2001, EMPIRICAL EC, V26, P271
95433    HOPFIELD JJ, 1985, BIOL CYBERN, V58, P67
95434    JOYA G, 2002, NEUROCOMPUTING, V43, P219
95435    KROKHMAL P, 2002, J RISK, V2, P124
95436    ROCKAFELLAR RT, 2000, J RISK, V2, P21
95437    ROCKAFELLAR RT, 2002, J BANK FINANC, V26, P1443
95438    SAWRAGI Y, 1985, THEORY MULTIOBJECTIV
95439    XIA YS, 1998, IEEE T NEURAL NETWOR, V9, P1331
95440 NR 9
95441 TC 0
95442 SN 0302-9743
95443 J9 LECT NOTE COMPUT SCI
95444 PY 2004
95445 VL 3174
95446 BP 1000
95447 EP 1006
95448 PG 7
95449 GA BAT68
95450 UT ISI:000223502900159
95451 ER
95452 
95453 PT S
95454 AU Lin, YP
95455    Liu, ZR
95456 TI Local stability and bifurcation in a model of delayed neural network
95457 SO ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1
95458 SE LECTURE NOTES IN COMPUTER SCIENCE
95459 DT Article
95460 AB A system of n-units neural network with coupled cells is investigated,
95461    the local stability of null solution is considered, and the parameter
95462    values of the periodic solution bifurcation are given.
95463 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
95464    Kunming Univ Sci & Technol, Dept Math Appl, Kunming 650093, Peoples R China.
95465 RP Lin, YP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
95466 EM lin_yiping@hotmail.com
95467 CR BELAIR J, 1993, J DYNAM DIFF EQNS, V5, P607
95468    BURTON TA, 1993, NEURAL NETWORKS, V6, P677
95469    GOPALSAMY K, 1994, PHYSICA D, V76, P344
95470    HALE JK, 1993, APPL MATH SCI, V99
95471    HOPFIELD JJ, 1984, P NATL ACAD SCI USA, V81, P3088
95472    MARCUS CM, 1989, PHYS REV A, V39, P347
95473 NR 6
95474 TC 0
95475 SN 0302-9743
95476 J9 LECT NOTE COMPUT SCI
95477 PY 2004
95478 VL 3173
95479 BP 67
95480 EP 71
95481 PG 5
95482 GA BAT64
95483 UT ISI:000223492600012
95484 ER
95485 
95486 PT S
95487 AU Li, GZ
95488    Yang, J
95489    Lu, J
95490    Lu, WC
95491    Chen, NY
95492 TI On multivariate calibration problems
95493 SO ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1
95494 SE LECTURE NOTES IN COMPUTER SCIENCE
95495 DT Article
95496 ID SELECTION
95497 AB Multivariate calibration is a classic problem in the analytical
95498    chemistry field and frequently solved by partial least squares method
95499    in the previous work. Unfortunately there are so many redundant
95500    features in the problem, that feature selection are often performed
95501    before modeling by partial least squares method and the features not
95502    selected are usually discarded. In this paper, the redundant
95503    information is, however, reused in the learning of partial least
95504    squares method within the frame of multitask learning. Results on three
95505    multivariate calibration data sets show that multitask learning can
95506    greatly improve the accuracy of partial least squares method.
95507 C1 Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200030, Peoples R China.
95508    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
95509 RP Li, GZ, Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit,
95510    Shanghai 200030, Peoples R China.
95511 CR CAPITANVALLVEY LF, 2000, TALANTA, V52, P1069
95512    CARUANA R, 2003, J MACHINE LEARNING R, V3, P1245
95513    DING YP, 2002, COMPUTERS APPL CHEM, V19, P752
95514    FORESEE FD, 1997, P 1997 INT JOINT C N, P1930
95515    GUYON I, 2003, J MACHINE LEARNING R, V3, P1157
95516    HOPKE PK, 2003, ANAL CHIM ACTA, V500, P365
95517    KOHAVI R, 1997, ARTIF INTELL, V97, P273
95518    MARTENS H, 1989, MULTIVARIATE CALIBRA
95519    ROSIPAL R, 2001, J MACHINE LEARNING R, V2, P97
95520    SHAWETAYLOR J, 2004, KERNEL METHODS PATTE
95521    WOLD H, 1966, MULTIVARIATE ANAL, P391
95522 NR 11
95523 TC 0
95524 SN 0302-9743
95525 J9 LECT NOTE COMPUT SCI
95526 PY 2004
95527 VL 3173
95528 BP 389
95529 EP 394
95530 PG 6
95531 GA BAT64
95532 UT ISI:000223492600065
95533 ER
95534 
95535 PT J
95536 AU Chen, YY
95537    Wang, Q
95538    Shi, JL
95539 TI Incoherently coupled screening soliton pairs composed of spatially
95540    incoherent multimode beams
95541 SO ACTA PHYSICA SINICA
95542 DT Article
95543 DE spatially incoherent multimode beams; coupled solitons; coherent
95544    density; coherent components
95545 ID PHOTOREFRACTIVE CRYSTALS; BRIGHT; DARK; MEDIA
95546 AB Incoherently coupled screening soliton pairs composed of spatially
95547    incoherent multimode beams can be established in biased photorefractive
95548    media under steady-state conditions, every soliton constituent of which
95549    is not only spatially incoherent with respect to each other, but also
95550    to itself. We study that the property of these incoherently coupled
95551    soliton pairs in bright-bright, dark-dark configurations by the
95552    coherent density approach and get the intensity expression of these
95553    soliton pairs. The propagation characteristics of coherent components
95554    that compose each soliton constituent of the coupled soliton pairs are
95555    discussed in detail.
95556 C1 Shanghai Univ, Sch Sci, Shanghai 200436, Peoples R China.
95557 RP Chen, YY, Shanghai Univ, Sch Sci, Shanghai 200436, Peoples R China.
95558 EM chenyuanyuan_shu@sohu.com
95559 CR CHEN YY, 2003, ACTA PHOT SIN, V32, P693
95560    CHEN ZG, 1996, OPT LETT, V21, P1436
95561    CHEN ZG, 1996, OPT LETT, V21, P1821
95562    CHEN ZG, 1997, J OPT SOC AM B, V14, P3066
95563    CHRISTODOULIDES DN, 1995, J OPT SOC AM B, V12, P1628
95564    CHRISTODOULIDES DN, 1996, APPL PHYS LETT, V68, P1763
95565    CHRISTODOULIDES DN, 1997, OPT LETT, V22, P1080
95566    CHRISTODOULIDES DN, 1997, PHYS REV LETT, V78, P646
95567    COSKUN TH, 1998, OPT LETT, V23, P418
95568    HOU CF, 2000, ACTA PHYS SIN-CH ED, V49, P1969
95569    HOU CF, 2001, ACTA PHYS SIN-CH ED, V50, P1709
95570    HOU CF, 2002, OPT MATER, V19, P377
95571    LU Y, 2003, ACTA PHYS SINICA, V52, P3074
95572    MANDEL L, 1995, OPTICAL COHERENCE QU
95573    MITCHELL M, 1996, PHYS REV LETT, V77, P490
95574    SEGEV M, 1994, PHYS REV LETT, V73, P3211
95575    SEGEV M, 1996, J OPT SOC AM B, V13, P706
95576    TRILLO S, 1995, SPATIAL SOLITONS, P96
95577    WANG XS, 2001, ACTA PHYS SIN-CH ED, V50, P496
95578    WANG XS, 2002, ACTA PHYS SIN-CH ED, V51, P573
95579 NR 20
95580 TC 2
95581 SN 1000-3290
95582 J9 ACTA PHYS SIN-CHINESE ED
95583 JI Acta Phys. Sin.
95584 PD SEP
95585 PY 2004
95586 VL 53
95587 IS 9
95588 BP 2980
95589 EP 2985
95590 PG 6
95591 SC Physics, Multidisciplinary
95592 GA 852YT
95593 UT ISI:000223793500032
95594 ER
95595 
95596 PT J
95597 AU Jin, S
95598    Hou, JM
95599    Xie, BH
95600    Tian, LJ
95601    Ge, ML
95602 TI Superfluid-Mott-insulator transition of spin-2 cold bosons in an
95603    optical lattice in a magnetic field
95604 SO PHYSICAL REVIEW A
95605 DT Article
95606 ID BOSE-EINSTEIN CONDENSATE; ATOMS; ARRAYS; FILMS
95607 AB The superfluid-Mott-insulator transition of spin-2 boson atoms with
95608    repulsive interaction in an optical lattice in a magnetic field is
95609    presented. By using the mean-field theory, the Mott ground states and
95610    phase diagrams of the superfluid-Mott-insulator transition at zero
95611    temperature are revealed. An applied magnetic field leads to splitting
95612    of some phase boundaries. For all the initial Mott ground states
95613    containing multiple spin components, different spin components take on
95614    different phase boundaries. It is found that in this system phase
95615    boundaries with different magnetization can be moved in different ways
95616    by changing only the intensity of the applied magnetic field.
95617 C1 Nankai Univ, Nankai Inst Math, Div Theoret Phys, Tianjin 300071, Peoples R China.
95618    Liuhui Ctr Appl Math, Tianjin 300071, Peoples R China.
95619    Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China.
95620    Beihang Univ, Sch Sci, Dept Phys, Beijing 100083, Peoples R China.
95621    Beijing Informat Technol Inst, Beijing 100101, Peoples R China.
95622    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
95623 RP Jin, S, Nankai Univ, Nankai Inst Math, Div Theoret Phys, Tianjin
95624    300071, Peoples R China.
95625 EM jinshuo@eyou.com
95626    jmhou@eyou.com
95627 CR ANDERSON BP, 1998, SCIENCE, V282, P1686
95628    BARRETT MD, 2001, PHYS REV LETT, V87
95629    BULGAKOV EN, 2003, PHYS REV LETT, V90
95630    CHEN GH, 2003, PHYS REV A, V67
95631    CIOBANU CV, 2000, PHYS REV A, V61
95632    DEMLER E, 2002, PHYS REV LETT, V88
95633    DUINE RA, 2002, PHYS REV A, V65
95634    DUINE RA, 2003, PHYS REV A, V68
95635    FISHER MPA, 1989, PHYS REV B, V40, P546
95636    GENKIN GM, 2001, PHYS REV A, V63
95637    GREINER M, 2002, NATURE, V415, P39
95638    GREINER M, 2002, NATURE, V419, P51
95639    GRYNBERG G, 1993, PHYS REV LETT, V70, P2249
95640    HEBARD AF, 1990, PHYS REV LETT, V65, P927
95641    HO TL, 1998, PHYS REV LETT, V81, P742
95642    HOU JM, 2003, PHYS REV A, V67
95643    JAKSCH D, 1998, PHYS REV LETT, V81, P3108
95644    JESSEN PS, 1996, ADV ATOM MOL OPT PHY, V37, P95
95645    KOASHI M, 2000, PHYS REV LETT, V84, P1066
95646    OHMI T, 1998, J PHYS SOC JPN, V67, P1822
95647    ORZEL C, 2001, SCIENCE, V291, P2386
95648    PANNETIER B, 1984, PHYS REV LETT, V53, P1845
95649    STAMPERKURN DM, 1998, PHYS REV LETT, V80, P2027
95650    STENGER J, 1998, NATURE, V396, P345
95651    SVICAINSKY AA, 2003, PHYS REV A, V68
95652    TSUCHIYA S, CONDMAT0209676
95653    UEDA M, 2002, PHYS REV A, V65
95654    VANDERZANT HSJ, 1992, PHYS REV LETT, V69, P2971
95655    VANOOSTEN D, 2001, PHYS REV A, V63
95656    WU Y, 1996, PHYS REV A, V54, P4534
95657    WU Y, 2000, PHYS REV A, V62
95658    YAZDANI A, 1995, PHYS REV LETT, V74, P3037
95659    YU ZX, 2003, PHYS LETT A, V320, P318
95660    ZHANG P, 2002, PHYS REV A, V66
95661 NR 34
95662 TC 1
95663 SN 1050-2947
95664 J9 PHYS REV A
95665 JI Phys. Rev. A
95666 PD AUG
95667 PY 2004
95668 VL 70
95669 IS 2
95670 AR 023605
95671 DI ARTN 023605
95672 PG 8
95673 SC Physics, Atomic, Molecular & Chemical; Optics
95674 GA 851WO
95675 UT ISI:000223717400105
95676 ER
95677 
95678 PT J
95679 AU Lu, D
95680    Chi, J
95681    Lin, LP
95682    Huang, M
95683    Xu, B
95684    Ding, J
95685 TI Effect of anti-cancer drugs on the binding of I-125-fibrinogen to two
95686    leukaemia cell lines in vitro
95687 SO JOURNAL OF INTERNATIONAL MEDICAL RESEARCH
95688 DT Article
95689 DE fibrinogen; metastasis; anti-neoplastic agents; anti-coagulant;
95690    probimane
95691 ID FIBRIN; ANGIOGENESIS; METASTASIS; CANCER
95692 AB Anti-cancer drugs may be able to inhibit tumour growth and metastasis
95693    by blocking fibrinogen- and/or fibrin-related pathways. To test this
95694    hypothesis, the effect of various anti-neoplastic drugs on the binding
95695    of I-125-Fibrinogen to two leukaemia cell lines, HL60 and P388, was
95696    investigated. All the drugs tested inhibited the binding of fibrinogen
95697    to leukaemia cells. This effect was particularly marked for drugs that
95698    act as inhibitors of protein synthesis. Since these anti-neoplastic
95699    drugs do not have anti-coagulant actions, these results provide
95700    evidence for the potential of targeting tumour fibrinogen as a new form
95701    of cancer chemotherapy.
95702 C1 Shanghai Univ, Sch Life Sci, Shanghai, Peoples R China.
95703    Chinese Acad Sci, Shanghai Inst Mat Med, Shanghai 200031, Peoples R China.
95704 RP Lu, D, Shanghai Univ, Sch Life Sci, Shanghai, Peoples R China.
95705 EM ludayong@sh163.net
95706 CR BLANN AD, 2003, BRIT MED J, V326, P153
95707    COLLEN A, 2000, CANCER RES, V60, P6196
95708    COSTANTINI V, 1992, CANCER METAST REV, V11, P283
95709    DVORAK HF, 1983, CANCER METAST REV, V2, P41
95710    EIKELBOOM JW, 2000, NEW ENGL J MED, V343, P1337
95711    LU DY, 1996, CHIN J PHARM, V27, P255
95712    LU DY, 2000, J INT MED RES, V28, P313
95713    PALUMBO JS, 2002, CANCER RES, V62, P6966
95714    RYBARCZYK BJ, 2000, CANCER RES, V60, P2033
95715    ZACHARSKI LR, 1981, MALIGNANCY HEMOSTATI, P113
95716 NR 10
95717 TC 1
95718 SN 0300-0605
95719 J9 J INT MED RES
95720 JI J. Int. Med. Res.
95721 PD SEP-OCT
95722 PY 2004
95723 VL 32
95724 IS 5
95725 BP 488
95726 EP 491
95727 PG 4
95728 SC Medicine, Research & Experimental; Pharmacology & Pharmacy
95729 GA 853FR
95730 UT ISI:000223813000005
95731 ER
95732 
95733 PT J
95734 AU Shen, Y
95735    Xia, YB
95736    Chen, JW
95737    Gu, F
95738    Jiao, FH
95739    Zhang, JC
95740 TI Up-conversion luminescence of a high soluble zinc phthalocyanine-epoxy
95741    derivative
95742 SO CHINESE PHYSICS LETTERS
95743 DT Article
95744 ID PHOTODYNAMIC THERAPY; DYE; ABSORPTION
95745 AB Synthesis and photoelectric properties of a high soluble zinc
95746    phthalocyanine-epoxy derivative are investigated. The derivative can be
95747    solubilized in convenient solvents, such as CH3OH, CH3 CH2 OH and H2O.
95748    The fluorescence and UV-visible analyses indicate that the ZnPc-epoxy
95749    derivative still maintains the plane structure which comes from
95750    Zn(4,4',4",4"'-ta)Pc and the derivative has obvious up-conversion
95751    luminescence in room temperature. The up-conversion luminescence can be
95752    explained by the selection rule depending on the two-photon absorption.
95753 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
95754 RP Shen, Y, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
95755    China.
95756 EM yuesen@china.com
95757 CR DIMITRI AP, 1989, SCIENCE, V245, P843
95758    DING XM, 1997, PHOTOGRAPHIC SCI PHO, V15, P241
95759    FILIPPIS MPD, 2000, TETRAHEDRON LETT, V41, P9143
95760    GRIFFITHS J, 1997, DYES PIGMENTS, V33, P65
95761    HUANG JL, 2000, SCI CHINA SER B, V30, P481
95762    LIU CJ, 1998, SENSOR ACTUAT B-CHEM, V52, P264
95763    SAKAMOTO K, 1998, DYES PIGMENTS, V37, P291
95764    VANFAASSEN E, 2003, SENSOR ACTUAT B-CHEM, V88, P329
95765    VISONA A, 2000, J PHOTOCH PHOTOBIO B, V57, P94
95766    WANG D, 2002, CHINESE PHYS LETT, V19, P208
95767    WANG D, 2002, OPT LASER TECHNOL, V34, P55
95768    YOSHINO K, 2000, OPT COMMUN, V181, P161
95769    ZHANG XF, 1994, CHEM J CHINESE U, V15, P917
95770    ZHOU GY, 2002, CHINESE PHYS LETT, V19, P739
95771 NR 14
95772 TC 0
95773 SN 0256-307X
95774 J9 CHIN PHYS LETT
95775 JI Chin. Phys. Lett.
95776 PD SEP
95777 PY 2004
95778 VL 21
95779 IS 9
95780 BP 1717
95781 EP 1719
95782 PG 3
95783 SC Physics, Multidisciplinary
95784 GA 851VY
95785 UT ISI:000223715500011
95786 ER
95787 
95788 PT J
95789 AU Ma, ZY
95790    Zhu, JM
95791    Zheng, CL
95792 TI Fractal localized structures related to Jacobian elliptic functions in
95793    the higher-order Broer-Kaup system
95794 SO CHINESE PHYSICS
95795 DT Article
95796 DE higher-order Broer-Kaup system; Backlund transformation; variable
95797    separation approach; Jacobian elliptic function; fractal
95798 ID NONLINEAR SCHRODINGER-EQUATION; COHERENT SOLITON-STRUCTURES;
95799    COEFFICIENT KDV EQUATION; DISPERSIVE WAVE SYSTEM; NEWELL-SEGUR SYSTEM;
95800    TRANSFORMATION; DROMION; CHAOS
95801 AB This work reveals a novel phenomenon-that the localized coherent
95802    structures of a (2+1)-dimensional physical model possesses fractal
95803    behaviours. To clarify the interesting phenomenon, we take the (2+1)
95804    -dimensional higher-order Broer-Kaup system as a concrete example.
95805    Starting from a Backlund transformation, we obtain a linear equation,
95806    and then a general solution of the system is derived. From this some
95807    special localized excitations with fractal behaviours are obtained by
95808    introducing some types of lower-dimensional fractal patterns that
95809    related to Jacobian elliptic functions.
95810 C1 Lishui Univ, Dept Phys & Math, Lishui 323000, Peoples R China.
95811    Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
95812 RP Ma, ZY, Lishui Univ, Dept Phys & Math, Lishui 323000, Peoples R China.
95813 EM ma-zhengyi@163.com
95814 CR CHEN HS, 2000, CHINESE PHYS LETT, V17, P85
95815    CHEN LL, 1999, ACTA PHYS SIN-CH ED, V48, P2149
95816    FAN EG, 1998, ACTA PHYS SINICA, V47, P353
95817    FAN EG, 2000, ACTA PHYS SIN-CH ED, V49, P1409
95818    GEDALIN M, 1997, PHYS REV LETT, V78, P448
95819    GOLLUB JP, 2000, NATURE, V404, P710
95820    KIVSHAR YS, 1989, REV MOD PHYS, V61, P765
95821    LI DS, 2004, ACTA PHYS SINICA, V53, P1634
95822    LI DS, 2004, ACTA PHYS SINICA, V53, P1641
95823    LIN J, 2001, ACTA PHYS SIN-CH ED, V50, P13
95824    LIN J, 2003, PHYS LETT A, V313, P93
95825    LOU SY, 1997, J MATH PHYS, V38, P6401
95826    LOU SY, 1998, ACTA PHYS SINICA, V47, P1937
95827    LOU SY, 2002, CHINESE PHYS LETT, V19, P769
95828    LOUTSENKO I, 1997, PHYS REV LETT, V78, P3011
95829    NARANMANDULA B, 2003, ACTA PHYS SINICA, V52, P1565
95830    STEGEMAN GI, 1999, SCIENCE, V286, P1518
95831    TANG XY, 2002, CHAOS SOLITON FRACT, V14, P1415
95832    TANG XY, 2002, J PHYS A, V35, P4078
95833    WANG ML, 1995, PHYS LETT A, V199, P169
95834    YAN ZY, 1999, ACTA PHYS SIN-OV ED, V8, P889
95835    ZHANG JF, 2000, CHINESE PHYS, V9, P1
95836    ZHANG JF, 2001, ACTA PHYS SIN-CH ED, V50, P1648
95837    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P448
95838    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
95839    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
95840    ZHENG CL, 2003, CHINESE PHYS, V12, P11
95841    ZHENG CL, 2003, CHINESE PHYS, V12, P472
95842    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P261
95843    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
95844    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
95845    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
95846    ZHOU ZJ, 2003, ACTA PHYS SIN-CH ED, V52, P262
95847 NR 33
95848 TC 2
95849 SN 1009-1963
95850 J9 CHIN PHYS
95851 JI Chin. Phys.
95852 PD SEP
95853 PY 2004
95854 VL 13
95855 IS 9
95856 BP 1382
95857 EP 1385
95858 PG 4
95859 SC Physics, Multidisciplinary
95860 GA 850YM
95861 UT ISI:000223650300002
95862 ER
95863 
95864 PT J
95865 AU Li, JJ
95866    Cheng, CJ
95867 TI Differential quadrature method for bending of orthotropic plates with
95868    finite deformation and transverse shear effects
95869 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
95870 DT Article
95871 DE higher-order transverse shear deformation; finite deformation;
95872    differential quadrature method; DQWB approach; convergence and
95873    comparison study of solution
95874 ID ELASTIC FOUNDATIONS; RECTANGULAR-PLATES; LAMINATED PLATES;
95875    FREE-VIBRATION; BEAMS
95876 AB Based on the Reddy's theory of plates with the effect of higher-order
95877    shear deformations, the governing equations for bending of orthotropic
95878    plates with finite deformations were established. The differential
95879    quadrature (DQ) method of nonlinear analysis to the problem was
95880    presented. New DQ approach, presented by Wang and Bert (DQWB), is
95881    extended to handle the multiple boundary conditions of plates. The
95882    techniques were also further extended to simplify nonlinear
95883    computations. The numerical convergence and comparison of solutions
95884    were studied. The results show that the DQ method presented is very
95885    reliable and valid. Moreover, the influences of geometric and material
95886    parameters as well as the transverse shear deformations on nonlinear
95887    bending were investigated. Numerical results show the influence of the
95888    shear deformation on the static bending of orthotropic moderately thick
95889    plate is significant.
95890 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
95891    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
95892 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
95893    200072, Peoples R China.
95894 EM chjcheng@mail.shu.edu.cn
95895 CR BELLMAN R, 1971, J MATH ANAL APPL, V34, P235
95896    BERT CW, 1989, COMPUT MECH, V5, P217
95897    BERT CW, 1993, INT J SOLIDS STRUCT, V30, P1737
95898    BERT CW, 1996, APPL MECH REV, V49, P1
95899    CHEN W, 2000, COMPUT STRUCT, V74, P65
95900    CHIA CY, 1988, APPL MECH REV, V41, P439
95901    LANCASTER P, 1985, THEORY MATRICES APPL
95902    LI JJ, 2003, J SHANGHAI U, V7, P228
95903    REDDY JN, 1984, INT J SOLIDS STRUCT, V20, P881
95904    REDDY JN, 1997, MECH LAMINATED COMPO
95905    SHEN HS, 2000, COMPOS STRUCT, V50, P131
95906    SHEN HS, 2000, INT J MECH SCI, V42, P1171
95907    WANG X, 1993, COMPUT STRUCT, V48, P473
95908    WANG X, 1993, J SOUND VIB, V162, P566
95909 NR 14
95910 TC 0
95911 SN 0253-4827
95912 J9 APPL MATH MECH-ENGL ED
95913 JI Appl. Math. Mech.-Engl. Ed.
95914 PD AUG
95915 PY 2004
95916 VL 25
95917 IS 8
95918 BP 878
95919 EP 886
95920 PG 9
95921 SC Mathematics, Applied; Mechanics
95922 GA 851MY
95923 UT ISI:000223690400005
95924 ER
95925 
95926 PT J
95927 AU Wang, W
95928    Zhong, SS
95929    Chen, SB
95930 TI A novel wideband coplanar-fed monopole antenna
95931 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
95932 DT Article
95933 DE monopole antenna; coplanar waveguide; bandwidth
95934 ID FED MICROSTRIP ANTENNAS; SLOT
95935 AB A new T-shaped monopole antenna with a CPW feed line is presented. The
95936    theoretical analysis is based on the finite-difference time-domain
95937    (FDTD) method. The novel antenna is designed, fabricated, and then
95938    measured. The measured results, which agree with the numerical
95939    calculations very well, are given. The measured bandwidth of the
95940    antenna is approximately 116% for VSWR less than or equal to 2.0. (C)
95941    2004 Wiley Periodicals, Inc.
95942 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
95943    Xidian Univ, Inst Antennas & EM Scattering, Xian 710071, Peoples R China.
95944 RP Wang, W, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
95945    Peoples R China.
95946 CR AKSUN MI, 1991, MICROW OPT TECHN LET, V4, P292
95947    CUI JH, 2001, ACTA ELECT SINICA, V29, P785
95948    DENG SM, 1995, IEEE T ANTENN PROPAG, V43, P734
95949    MENZEL W, 1991, IEEE MICROW GUIDED W, V1, P340
95950    NESIC A, 1982, ELECTRON LETT, V18, P275
95951    NIU JW, 2003, MICR MILL WAV S CHIN, P740
95952    SIERRAGARCIA S, 1999, IEEE T ANTENN PROPAG, V47, P58
95953    TSAI HS, 1996, IEEE T ANTENN PROPAG, V44, P217
95954 NR 8
95955 TC 4
95956 SN 0895-2477
95957 J9 MICROWAVE OPT TECHNOL LETT
95958 JI Microw. Opt. Technol. Lett.
95959 PD OCT 5
95960 PY 2004
95961 VL 43
95962 IS 1
95963 BP 50
95964 EP 52
95965 PG 3
95966 SC Engineering, Electrical & Electronic; Optics
95967 GA 849MO
95968 UT ISI:000223543000017
95969 ER
95970 
95971 PT J
95972 AU Niu, YP
95973    Gong, SQ
95974 TI Manipulation of population transfer to atomic superposition states: An
95975    extension of stimulated Raman adiabatic passage to a four-level ladder
95976    system
95977 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
95978 DT Article
95979 DE coherent population transfer; adiabatic passage; superposition state
95980 ID DELAYED LASER-PULSES; COHERENT MANIPULATION; MULTILEVEL SYSTEMS;
95981    3-LEVEL; LIGHT; EXCITATION; MOLECULES; CREATION; PHASE; FIELD
95982 AB We extend the existing theory of stimulated Raman adiabatic passage to
95983    a four-level ladder system for realizing superposition of two
95984    high-lying Rydberg states by applying a control field to couple them.
95985    We find, due to the effect of the control field, that population is
95986    completely transferred from the initial level to a superposition of the
95987    two high-lying states. Suitable manipulation of the control field and
95988    detunings makes it possible to create any coherent superposition states
95989    we desired.
95990 C1 Shanghai Inst Opt & Fine Mech, Key Lab High Intensity Opt, Shanghai 201800, Peoples R China.
95991    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
95992 RP Niu, YP, Shanghai Inst Opt & Fine Mech, Key Lab High Intensity Opt,
95993    Shanghai 201800, Peoples R China.
95994 CR AHN J, 2000, SCIENCE, V287, P463
95995    BARENCO A, 1995, PHYS REV LETT, V74, P4083
95996    BERGMANN K, 1998, REV MOD PHYS, V70, P1003
95997    BROERS B, 1992, PHYS REV LETT, V69, P2062
95998    COULSTON GW, 1992, J CHEM PHYS, V96, P3467
95999    DITTMANN P, 1992, J CHEM PHYS, V97, P9472
96000    FLEISCHHAUER M, 2002, PHYS REV LETT, V88
96001    GAUBATZ U, 1988, CHEM PHYS LETT, V149, P463
96002    GOLDNER LS, 1994, PHYS REV LETT, V72, P997
96003    GONG SQ, 2002, EUR PHYS J D, V19, P257
96004    JIN SQ, 2004, PHYS REV A, V69
96005    KOBRAK MN, 1998, J CHEM PHYS, V109, P1
96006    KOBRAK MN, 1998, PHYS REV A, V57, P2885
96007    KUKLINSKI JR, 1989, PHYS REV A, V40, P6741
96008    KULIN S, 1997, PHYS REV LETT, V78, P4185
96009    MALINOVSKY VS, 1997, PHYS REV A, V56, P4929
96010    MARTE P, 1991, PHYS REV A, V44, P4118
96011    OREG J, 1992, PHYS REV A, V45, P4888
96012    SHOE BW, 1990, THEORY COHERENT ATOM
96013    SMITH AV, 1992, J OPT SOC AM B, V9, P1543
96014    STEANE A, 1998, REP PROG PHYS, V61, P117
96015    SUPTITZ W, 1997, J OPT SOC AM B, V14, P1001
96016    UNANYAN R, 1998, OPT COMMUN, V155, P144
96017    VITANOV NV, 1998, EUR PHYS J D, V4, P15
96018    VITANOV NV, 1999, J PHYS B-AT MOL OPT, V32, P4535
96019    VITANOV NV, 2001, ADV ATOM MOL OPT PHY, V46, P55
96020    WEITZ M, 1994, PHYS REV A, V50, P2438
96021 NR 27
96022 TC 1
96023 SN 0031-9015
96024 J9 J PHYS SOC JPN
96025 JI J. Phys. Soc. Jpn.
96026 PD AUG
96027 PY 2004
96028 VL 73
96029 IS 8
96030 BP 2131
96031 EP 2134
96032 PG 4
96033 SC Physics, Multidisciplinary
96034 GA 850RU
96035 UT ISI:000223630900020
96036 ER
96037 
96038 PT J
96039 AU Xiao, Z
96040    Wang, Z
96041 TI Compact bandpass filter realised using coupled linear tapered line
96042    resonators
96043 SO ELECTRONICS LETTERS
96044 DT Article
96045 AB A new compact bandpass filter composed of two coupled linear tapered
96046    line resonators is proposed. The two resonators are arranged in
96047    different planes. The filter is very small and has a very sharp
96048    response below its passband. It is also shown that this filter has a
96049    low insertion loss of 0.6 dB in the centre frequency and 10.5% 3 dB
96050    bandwidth.
96051 C1 Shanghai Univ, Sch Comp & Informat Engn, Shanghai 200072, Peoples R China.
96052 RP Xiao, Z, Shanghai Univ, Sch Comp & Informat Engn, 149 Yanchang Rd,
96053    Shanghai 200072, Peoples R China.
96054 EM zhongyinxiao@163.com
96055 CR CHANG HC, 1996, IEEE MTT-S, P619
96056    ISHIZAKI T, 1991, IEICE T E, V74, P1556
96057    ISHIZAKI T, 1994, IEEE MTT S, P617
96058    ISHIZAKI T, 1996, IEICE T ELECTRON EC, V79, P671
96059    MATTHAEI GL, 1963, IEEE T MICROW THEORY, P82
96060    SAGAWA M, 1985, IEEE T MICROW THEORY, V33, P152
96061 NR 6
96062 TC 0
96063 SN 0013-5194
96064 J9 ELECTRON LETT
96065 JI Electron. Lett.
96066 PD AUG 19
96067 PY 2004
96068 VL 40
96069 IS 17
96070 BP 1066
96071 EP 1067
96072 PG 2
96073 SC Engineering, Electrical & Electronic
96074 GA 850PC
96075 UT ISI:000223623900024
96076 ER
96077 
96078 PT J
96079 AU Zhang, JF
96080    Meng, JP
96081    Huang, WH
96082 TI A new class of (2+1)-dimensional localized coherent structures with
96083    completely elastic and non-elastic interactive properties
96084 SO COMMUNICATIONS IN THEORETICAL PHYSICS
96085 DT Article
96086 DE (2+1)-dimensional localized coherent structures; soliton; variable
96087    separation method
96088 ID NOVIKOV-VESELOV EQUATION; VARIABLE SEPARATION SOLUTIONS; DISPERSIVE
96089    WAVE SYSTEM; KDV-TYPE EQUATION; DROMION SOLUTIONS; FRACTAL SOLUTIONS;
96090    SOLITON SYSTEM; LONG; EXCITATIONS; INSTANTONS
96091 AB From the variable separation solution and by selecting appropriate
96092    functions, a new class of localized coherent structures consisting of
96093    solitons in various types are found in the (2+1)-dimensional
96094    long-wave-short-wave resonance interaction equation. The completely
96095    elastic and non-elastic interactive behavior between the dromion and
96096    compacton, dromion and peakon, as well as between peakon and compacton
96097    are investigated. The novel features exhibited by these new structures
96098    are revealed for the first time.
96099 C1 Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
96100    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
96101    Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England.
96102 RP Zhang, JF, Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004,
96103    Peoples R China.
96104 CR ABONOV AG, 2001, PHYS REV LETT, V86, P1319
96105    BOITI M, 1988, PHYS LETT A, V132, P432
96106    DAS GC, 1997, PLASMAS, V42, P2095
96107    DOLAN L, 1997, NUCL PHYS B, V489, P245
96108    FOKAS AS, 1990, PHYSICA D, V44, P99
96109    GEDALIN M, 1997, PHYS REV LETT, V78, P448
96110    HE H, 1997, PHYS REV LETT, V78, P4311
96111    HIETARINTA J, 1990, PHYS LETT A, V149, P133
96112    HIROTA R, 1971, PHYS REV LETT, V27, P1192
96113    HONG KZ, 2003, COMMUN THEOR PHYS, V39, P393
96114    HU XB, 2000, PHYS LETT A, V276, P30
96115    HUANG GX, 1998, PHYS REV B, V58, P9194
96116    HUANG WH, 2002, CHINESE PHYS, V11, P1101
96117    KIVSHAR YS, 1989, REV MOD PHYS, V61, P765
96118    LAI DWC, 1999, J PHYS SOC JPN, V68, P1847
96119    LIU QP, 1998, PHYS LETT A, V239, P159
96120    LOU SY, 1995, J PHYS A-MATH GEN, V28, P7227
96121    LOU SY, 1996, COMMUN THEOR PHYS, V26, P487
96122    LOU SY, 1996, J PHYS A, V29, P4029
96123    LOU SY, 1996, J PHYS A-MATH GEN, V29, P5989
96124    LOU SY, 2000, PHYS LETT A, V277, P94
96125    LOU SY, 2002, CHINESE PHYS LETT, V19, P769
96126    LOU SY, 2002, J MATH PHYS, V43, P4078
96127    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
96128    LOU SY, 2002, PHYS SCR, V665, P7
96129    LOU SY, 2002, PHYS SCRIPTA, V65, P7
96130    LOU SY, 2003, J PHYS A-MATH GEN, V36, P3877
96131    LOUTSENKO I, 1997, PHYS REV LETT, V78, P3011
96132    OIKAWA M, 1989, J PHYS SOC JPN, V58, P4416
96133    RADAHA R, 1994, J MATH PHYS, V35, P4746
96134    RUAN HY, 1999, J MATH PHYS, V40, P248
96135    RUAN HY, 2000, ACTA PHYS SINICA, V52, P1313
96136    RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P586
96137    RUAN HY, 2003, ACTA PHYS SIN-CH ED, V52, P1313
96138    RUAN HY, 2003, CHAOS SOLITON FRACT, V17, P929
96139    TANG XY, 2002, COMMUN THEOR PHYS, V38, P1
96140    TANG XY, 2002, J PHYS A-MATH GEN, V35, L293
96141    TANG XY, 2002, PHYS REV E 2, V66
96142    TANG XY, 2003, CHINESE PHYS LETT, V20, P335
96143    ZHANG JF, 2001, CHINESE PHYS, V10, P89
96144    ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P705
96145    ZHANG JF, 2002, ACTA PHYS SINICA, V51, P2627
96146    ZHANG JF, 2002, CHINESE PHYS, V11, P651
96147    ZHANG JF, 2002, COMMUN THEOR PHYS, V37, P277
96148    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P1006
96149    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P448
96150    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P653
96151    ZHANG JF, 2003, COMMUN THEOR PHYS, V40, P533
96152    ZHANG JF, 2003, IN PRESS PHYS LETT A
96153    ZHANG JF, 2003, PHYS LETT A, V313, P401
96154    ZHANG SL, 2003, COMMUN THEOR PHYS, V40, P401
96155    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
96156    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
96157    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P783
96158    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P261
96159 NR 55
96160 TC 2
96161 SN 0253-6102
96162 J9 COMMUN THEOR PHYS
96163 JI Commun. Theor. Phys.
96164 PD AUG 15
96165 PY 2004
96166 VL 42
96167 IS 2
96168 BP 161
96169 EP 170
96170 PG 10
96171 SC Physics, Multidisciplinary
96172 GA 849YC
96173 UT ISI:000223576600001
96174 ER
96175 
96176 PT J
96177 AU Fang, JP
96178    Zheng, CL
96179    Chen, LQ
96180 TI Sernifolded localized structures in three-dimensional soliton systems
96181 SO COMMUNICATIONS IN THEORETICAL PHYSICS
96182 DT Article
96183 DE Broer-Kaup-Kupershmidt system with variable coefficients; multi-linear
96184    variable separation approach; localized excitation
96185 ID (2+1)-DIMENSIONAL INTEGRABLE SYSTEMS; KAUP-KUPERSHMIDT EQUATION;
96186    DISPERSIVE WAVE SYSTEM; NEWELL-SEGUR SYSTEM; COHERENT STRUCTURES;
96187    GENERAL-SOLUTION; EXCITATIONS; DIMENSIONS
96188 AB By means of a Painleve-Bicklund transformation and a multi-linear
96189    variable separation approach, abundant localized coherent excitations
96190    of the three-dimensional Broer-Kaup-Kupershmidt system with variable
96191    coefficients are derived. There are possible phase shifts for the
96192    interactions of the three-dimensional novel localized structures
96193    discussed in this paper.
96194 C1 Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
96195    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
96196 RP Zheng, CL, Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000,
96197    Peoples R China.
96198 EM zjclzheng@yahoo.com.cn
96199 CR BOITI M, 1986, INVERSE PROBL, V2, P271
96200    CHEN CL, 2002, COMMUN THEOR PHYS, V38, P129
96201    CHEN CL, 2002, PHYS REV E, V66
96202    LI HM, 2003, COMMUN THEOR PHYS, V39, P513
96203    LIN J, 2003, PHYS LETT A, V313, P93
96204    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
96205    LOU SY, 1997, J MATH PHYS, V38, P6401
96206    LOU SY, 1998, PHYS REV LETT, V80, P5027
96207    LOU SY, 2000, PHYS LETT A, V277, P94
96208    LOU SY, 2000, PHYS SCR, V65, P7
96209    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
96210    LOU SY, 2002, J MATH PHYS, V43, P4078
96211    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
96212    LOU SY, 2002, MOD PHYS LETT B, V16, P1075
96213    LOU SY, 2003, J PHYS A-MATH GEN, V36, P3877
96214    MOITA M, 1988, PHYS LETT A, V102, P432
96215    TANG XY, 2002, PHYS REV E 2, V66
96216    TANG XY, 2003, CHINESE PHYS LETT, V30, P335
96217    TANG XY, 2003, COMMUN THEOR PHYS, V40, P62
96218    TANG XY, 2003, J MATH PHYS, V44, P4040
96219    YING JP, 2001, Z NATURFORSCH A, V56, P619
96220    ZAKHAROV VE, 1998, APPL MECH TECH PHYS, V9, P190
96221    ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P705
96222    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P448
96223    ZHANG JL, 2003, J ATOM MOL PHYS, V20, P92
96224    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
96225    ZHENG CL, 2002, COMMUN THEOR PHYS, V38, P653
96226    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
96227    ZHENG CL, 2003, CHINESE PHYS, V12, P11
96228    ZHENG CL, 2003, CHINESE PHYS, V12, P472
96229    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P261
96230    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
96231    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P385
96232 NR 33
96233 TC 2
96234 SN 0253-6102
96235 J9 COMMUN THEOR PHYS
96236 JI Commun. Theor. Phys.
96237 PD AUG 15
96238 PY 2004
96239 VL 42
96240 IS 2
96241 BP 175
96242 EP 179
96243 PG 5
96244 SC Physics, Multidisciplinary
96245 GA 849YC
96246 UT ISI:000223576600003
96247 ER
96248 
96249 PT J
96250 AU Xia, TC
96251    Chen, XH
96252    Chen, DY
96253    Zhang, YF
96254 TI Integrable couplings of the coupled Burgers hierarchy
96255 SO COMMUNICATIONS IN THEORETICAL PHYSICS
96256 DT Article
96257 DE coupled Burgers hierarchy; integrable couplings; loop algebra
96258 ID PERTURBATION; EQUATIONS
96259 AB In this letter, a new loop algebra (G) over tilde is constructed, from
96260    which a new isospectral problem is established. It follows that
96261    integrable couplings of the well-known coupled Burgers hierarchy are
96262    obtained.
96263 C1 Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
96264    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
96265    Chinese Acad Sci, Inst Math, Inst Computat Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China.
96266 RP Xia, TC, Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
96267 EM xiatc@yahoo.com.cn
96268 CR FUCHSSTEINER B, 1993, APPL ANAL GEOMETRIC, P125
96269    LAKSHMANAN M, 1985, J MATH PHYS, V26, P1189
96270    MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
96271    SIRENDAOERJI, 1997, MATH APPL, V26, P80
96272    TU GZ, 1989, J MATH PHYS, V30, P330
96273    ZHANG Y, 2002, J MATH PHYS, V43, P1
96274    ZHANG YF, 2002, J MATH RES EXPO, V22, P289
96275    ZHANG YF, 2002, PHYS LETT A, V299, P543
96276    ZHANG YF, 2003, CHAOS SOLITON FRACT, V26, P263
96277 NR 9
96278 TC 10
96279 SN 0253-6102
96280 J9 COMMUN THEOR PHYS
96281 JI Commun. Theor. Phys.
96282 PD AUG 15
96283 PY 2004
96284 VL 42
96285 IS 2
96286 BP 180
96287 EP 182
96288 PG 3
96289 SC Physics, Multidisciplinary
96290 GA 849YC
96291 UT ISI:000223576600004
96292 ER
96293 
96294 PT J
96295 AU Yang, GH
96296    Wang, YS
96297    Duan, YS
96298 TI Contribution of disclination lines to free energy of liquid crystals in
96299    single-elastic constant approximation
96300 SO COMMUNICATIONS IN THEORETICAL PHYSICS
96301 DT Article
96302 DE director field; disclination line; free energy; Lagrangian multiplier
96303 ID DEFECTS
96304 AB In the light of phi-mapping method and topological current theory, the
96305    contribution of disclination lines to free energy density of liquid
96306    crystals is studied in the single-elastic constant approximation. It is
96307    pointed out that the total free energy density can be divided into two
96308    parts. One is the usual distorted energy density of director field
96309    around the disclination lines. The other is the free energy density of
96310    disclination lines themselves, which is shown to be centralized at the
96311    disclination lines and to be topologically quantized in the unit of
96312    kpi/2. The topological quantum numbers are determined by the Hopf
96313    indices and Brouwer degrees of the director held at the disclination
96314    lines, i.e. the disclination strengths. From the Lagrange's method of
96315    multipliers, the equilibrium equation and the molecular field of liquid
96316    crystals are also obtained. The physical meaning of the Lagrangian
96317    multiplier is just the distorted energy density.
96318 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
96319    Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China.
96320 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
96321 EM ghyang@mail.shu.edu.cn
96322 CR DEGENNES PG, 1974, PHYS LIQUID CRYSTALS
96323    DUAN YS, 1997, HELV PHYS ACTA, V70, P565
96324    FRIEDEL J, 1964, DISLOCATIONS
96325    HOLZ A, 1992, PHYSICA A, V182, P240
96326    KLEMAN M, 1983, POINTS LINES WALLS L
96327    LUBENSKY TC, 1997, SOLID STATE COMMUN, V102, P187
96328    MERMIN ND, 1979, REV MOD PHYS, V51, P591
96329    NABARRO FRN, 1967, THEORY CRYSTAL DISLO
96330    YANG GH, 2002, COMMUN THEOR PHYS, V37, P513
96331 NR 9
96332 TC 1
96333 SN 0253-6102
96334 J9 COMMUN THEOR PHYS
96335 JI Commun. Theor. Phys.
96336 PD AUG 15
96337 PY 2004
96338 VL 42
96339 IS 2
96340 BP 185
96341 EP 188
96342 PG 4
96343 SC Physics, Multidisciplinary
96344 GA 849YC
96345 UT ISI:000223576600006
96346 ER
96347 
96348 PT J
96349 AU Chen, LQ
96350 TI Energy-like conserved quantity of a nonlinear nonconsevative continuous
96351    system
96352 SO CHINESE SCIENCE BULLETIN
96353 DT Article
96354 DE conserved quantity; energy; nonconservative system; nonlinearity;
96355    axially moving beam; bending vibration
96356 AB A system whose energy is not conserved is called nonconservative. To
96357    investigate if there exists a conserved quantity that has the same
96358    dimension as energy and is positively definite, the author analyzed the
96359    bending vibration of an axially moving beam with geometric
96360    nonlinearity. Based on the governing equation, the energy was proven to
96361    be not conserved in the case where the beam has two simply supported or
96362    fixed ends. A definitely positive quantity with the energy dimension
96363    was defined. The quantity was verified to remain a constant during the
96364    motion. The investigation indicates that an energy-like conserved
96365    quantity may exist in a nonlinear nonconservative continuous system.
96366 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200436, Peoples R China.
96367 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
96368    Shanghai 200436, Peoples R China.
96369 EM lqchen@online.sh.cn
96370 CR BLUMAN GW, 1989, SYMMETRIES DIFFERENT, P215
96371    FU JL, 2003, PHYS LETT A, V317, P255
96372    MEI FX, 1999, CONSTRAINED MECH SYS, P237
96373    MEI FX, 2000, APPL MECH REV, V53, P284
96374    RENSHAW AA, 1998, J VIB ACOUST, V120, P634
96375    VUJANOVIC B, 1986, ACTA MECH, V65, P63
96376 NR 6
96377 TC 0
96378 SN 1001-6538
96379 J9 CHIN SCI BULL
96380 JI Chin. Sci. Bull.
96381 PD JUN
96382 PY 2004
96383 VL 49
96384 IS 12
96385 BP 1224
96386 EP 1226
96387 PG 3
96388 SC Multidisciplinary Sciences
96389 GA 850BR
96390 UT ISI:000223586500004
96391 ER
96392 
96393 PT J
96394 AU Godon, P
96395    Sion, EM
96396    Cheng, FH
96397    Szkody, P
96398    Long, KS
96399    Froning, CS
96400 TI Far-ultraviolet observations of the dwarf nova VW Hydri in quiescence
96401 SO ASTROPHYSICAL JOURNAL
96402 DT Article
96403 DE accretion, accretion disks; novae, cataclysmic variables; stars :
96404    individual (VW Hydri); white dwarfs
96405 ID TELESCOPE FOS SPECTROSCOPY; WHITE-DWARF; CATACLYSMIC VARIABLES;
96406    ACCRETION DISK; BOUNDARY-LAYER; MODEL; SUPEROUTBURST; ATMOSPHERES;
96407    EMISSION; OUTBURST
96408 AB We present a 904-1183 Angstrom spectrum of the dwarf nova VW Hyi taken
96409    with the Far Ultraviolet Spectroscopic Explorer during quiescence, 11
96410    days after a normal outburst, when the underlying white dwarf accreter
96411    is clearly exposed in the far-ultraviolet. However, model fitting shows
96412    that a uniform-temperature white dwarf does not reproduce the overall
96413    spectrum, especially at the shortest wavelengths. A better
96414    approximation to the spectrum is obtained with a model consisting of a
96415    white dwarf and a rapidly rotating "accretion belt.'' The white dwarf
96416    component accounts for 83% of the total flux, has a temperature of
96417    23,000 K, a v sin i=400 km s(-1), and a low carbon abundance. The
96418    best-fit accretion belt component accounts for 17% of the total flux,
96419    with a temperature of about 48,000-50,000 K and a rotation rate V-rot
96420    sin i around 3000-4000 km s(-1). The requirement of two components in
96421    the modeling of the spectrum of VW Hyi in quiescence helps to resolve
96422    some of the differences in interpretation of ultraviolet spectra of VW
96423    Hyi in quiescence. However, the physical existence of a second
96424    component (and its exact nature) in VW Hyi itself is still relatively
96425    uncertain, given the lack of better models for spectra of the inner
96426    disk in a quiescent dwarf nova.
96427 C1 Villanova Univ, Dept Astron & Astrophys, Villanova, PA 19085 USA.
96428    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
96429    Univ Washington, Dept Astron, Seattle, WA 98195 USA.
96430    Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA.
96431    Space Telescope Sci Inst, Baltimore, MD 21218 USA.
96432 RP Godon, P, Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD
96433    21218 USA.
96434 EM patrick.godon@villanova.edu
96435    edward.sion@villanova.edu
96436    cheng3@prodigy.net
96437    szkody@alicar.astro.washington.edu
96438    long@stsci.edu
96439    cfroning@casa.colorado.edu
96440 CR BELLONI T, 1991, ASTRON ASTROPHYS, V246, L44
96441    CANNIZZO JK, 1993, ASTROPHYS J, V419, P318
96442    GANSICKE BT, 1996, ASTRON ASTROPHYS, V309, L47
96443    GANSICKE BT, 1999, ASTR SOC P, V169, P315
96444    HACK M, 1993, NASA
96445    HUANG M, 1996, ASTRON J, V111, P2386
96446    HUANG M, 1996, ASTROPHYS J 1, V458, P355
96447    HUBENY I, 1988, COMPUT PHYS COMMUN, V52, P103
96448    HUBENY I, 1994, NEWSLETTER ANAL ASTR, V20, P30
96449    HUBENY I, 1995, ASTROPHYS J 1, V439, P875
96450    KIPPENHAHN R, 1978, ASTRON ASTROPHYS, V63, P265
96451    KO YK, 1989, BAAS, V21, P1208
96452    KO YK, 1992, BAAS, V24, P1258
96453    KO YK, 1996, ASTROPHYS J 1, V457, P363
96454    KUTTER GS, 1987, ASTROPHYS J, V321, P386
96455    KUTTER GS, 1989, ASTROPHYS J, V340, P985
96456    LADOUS C, 1997, ASTRON ASTROPHYS, V321, L213
96457    LIU BF, 1997, ASTRON ASTROPHYS, V328, P247
96458    LONG KS, 1993, ASTROPHYS J, V405, P327
96459    LONG KS, 1996, ASTROPHYS J 1, V466, P964
96460    MATEO M, 1984, ASTRON J, V89, P863
96461    MAUCHE CW, 1991, ASTROPHYS J, V372, P659
96462    MAUCHE CW, 1996, IAU C, V158, P243
96463    MEYER F, 1989, ASTRON GESELLSCHAFT, V3, P64
96464    MOOS HW, 2000, ASTROPHYS J 2, V538, L1
96465    POLIDAN RS, 1990, ASTROPHYS J 1, V356, P211
96466    SAHNOW DJ, 2000, ASTROPHYS J 2, V538, L7
96467    SCHOEMBS R, 1981, ASTRON ASTROPHYS, V97, P185
96468    SION EM, 1995, ASTROPHYS J 1, V439, P957
96469    SION EM, 1996, ASTROPHYS J 2, V471, L41
96470    SION EM, 1997, ASTROPHYS J 2, V480, L17
96471    SION EM, 1999, PUBL ASTRON SOC PAC, V111, P532
96472    SION EM, 2001, ASTROPHYS J 2, V561, L127
96473    WADE RA, 1994, ASTR SOC P, V56, P319
96474    WADE RA, 1998, ASTROPHYS J 1, V509, P350
96475    WARNER B, 1987, MON NOT R ASTRON SOC, V227, P23
96476 NR 36
96477 TC 3
96478 SN 0004-637X
96479 J9 ASTROPHYS J
96480 JI Astrophys. J.
96481 PD SEP 1
96482 PY 2004
96483 VL 612
96484 IS 1
96485 PN Part 1
96486 BP 429
96487 EP 436
96488 PG 8
96489 SC Astronomy & Astrophysics
96490 GA 850TC
96491 UT ISI:000223634400035
96492 ER
96493 
96494 PT J
96495 AU Liu, YZ
96496    Yu, HJ
96497    Chen, LQ
96498 TI Chaotic attitude motion and its control of spacecraft in elliptic orbit
96499    and geomagnetic field
96500 SO ACTA ASTRONAUTICA
96501 DT Article
96502 ID MAGNETIC RIGID SPACECRAFT; ASYMMETRIC GYROSTAT
96503 AB The chaotic attitude motion and its control of a magnetic spacecraft
96504    with internal damping in an elliptic orbit and geomagnetic field is
96505    discussed. Based on the dynamical equations, the Melnikov method is
96506    used to predict the existence of chaos in the sense of Smale horseshoe.
96507    The chaotic behavior is numerically identified by means of Poincare map
96508    and Lyapunov exponents. The chaotic attitude motion of spacecraft can
96509    be controlled by a method based on the stability criterion of linear
96510    system. The method can stabilize the chaos onto any desired periodic
96511    orbit by a small time-continuous perturbation feedback. The
96512    linearization of the system around the stabilized orbit is not
96513    required. The desired periodic solution can be automatically detected
96514    in the control process. The numerical simulation demonstrates the
96515    stabilization of chaotic attitude motion to period-1 or period-2 motion
96516    and shows the effectiveness and flexibility of the proposed control
96517    method. (C) 2003 International Astronautical Federation. Published by
96518    Elsevier Ltd. All rights reserved.
96519 C1 Shanghai Jiao Tong Univ, Dept Mech Engn, Shanghai 200030, Peoples R China.
96520    Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
96521 RP Liu, YZ, Shanghai Jiao Tong Univ, Dept Mech Engn, Shanghai 200030,
96522    Peoples R China.
96523 EM liuyzhc@online.sh.cn
96524    yuhongjie@sjtu.edu.cn
96525    lqchen@online.sh.cn
96526 CR BELETSKII VV, 1996, CHAOS, V6, P155
96527    BELETSKY VV, 1995, REGULAR CHAOTISCH BE
96528    BELETSKY VV, 1999, CHAOS, V9, P493
96529    BISHOP SR, 1996, PHYS REV E A, V54, P3204
96530    CHEN LQ, 1998, TECH MECH, V18, P41
96531    CHEN LQ, 2002, INT J NONLINEAR MECH, V37, P493
96532    CHEN LQ, 2002, J FRANKLIN I, V339, P121
96533    CHENG G, 2000, ACTA MECH, V141, P125
96534    HUBINGER B, 1993, Z PHYS B CON MAT, V90, P103
96535    MATIAS MA, 1994, PHYS REV LETT, V72, P1455
96536    MEEHAN PA, 1997, NONLINEAR DYNAM, V12, P69
96537    OTT E, 1990, PHYS REV LETT, V64, P1196
96538    PENG JH, 1996, TECH METH, V16, P327
96539    PENG JH, 2000, INT J NONLINEAR MECH, V35, P431
96540    PYRAGAS K, 1992, PHYS LETT A, V170, P421
96541    SEISL M, 1989, Z ANGEW MATH MECH, V69, P352
96542    SHINBROT T, 1993, NATURE, V363, P411
96543    TONG X, 1991, CHAOS SOLITON FRACT, V1, P179
96544    TONG X, 1995, INT J NONLINEAR MECH, V30, P191
96545    XU D, 1996, PHYS LETT A, V210, P273
96546 NR 20
96547 TC 0
96548 SN 0094-5765
96549 J9 ACTA ASTRONAUT
96550 JI Acta Astronaut.
96551 PD AUG-NOV
96552 PY 2004
96553 VL 55
96554 IS 3-9
96555 BP 487
96556 EP 494
96557 PG 8
96558 SC Engineering, Aerospace
96559 GA 849XG
96560 UT ISI:000223574300032
96561 ER
96562 
96563 PT J
96564 AU Chen, LQ
96565    Zu, JW
96566 TI Energetics and conserved functional of axially moving materials
96567    undergoing transverse nonlinear vibration
96568 SO JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME
96569 DT Article
96570 ID GENERALIZED TREATMENT; TRANSLATING CONTINUA; OSCILLATION; STRINGS; PIPES
96571 C1 Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
96572    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200436, Peoples R China.
96573    Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada.
96574 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
96575 CR BARAKAT R, 1968, J ACOUST SOC AM, V43, P533
96576    CHEN LQ, IN PRESS APPL MECH R
96577    CHEN LQ, 2001, ADV MECH, V31, P535
96578    CHUBACHI T, 1958, B JAPAN SOC MECH ENG, V1, P24
96579    LEE SY, 1997, J SOUND VIB, V204, P717
96580    LEE SY, 1997, J SOUND VIB, V204, P735
96581    LUO AH, 1999, STABILITY STABILIZAT
96582    MIRANKER WL, 1960, IBM J RES DEV, V4, P36
96583    MOTE CD, 1966, J APPL MECH, V33, P463
96584    QUEIROZ MA, 2000, LYAPUNOV BASED CONTR
96585    RENSHAW AA, 1997, J VIB ACOUST, V119, P643
96586    RENSHAW AA, 1998, J VIB ACOUST, V120, P634
96587    TABARROK B, 1974, J FRANKLIN I, V297, P201
96588    THURMAN AL, 1969, J APPLIED MECHANICS, V36, P83
96589    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
96590    WICKERT JA, 1989, J ACOUST SOC AM, V85, P1365
96591    ZHU WD, 2000, J VIB ACOUST, V122, P295
96592 NR 17
96593 TC 3
96594 SN 1048-9002
96595 J9 J VIB ACOUST
96596 JI J. Vib. Acoust.-Trans. ASME
96597 PD JUL
96598 PY 2004
96599 VL 126
96600 IS 3
96601 BP 452
96602 EP 455
96603 PG 4
96604 SC Engineering, Mechanical; Acoustics; Mechanics
96605 GA 848IR
96606 UT ISI:000223461400019
96607 ER
96608 
96609 PT J
96610 AU Lu, ZP
96611    Liu, CT
96612    Dong, YD
96613 TI Effects of atomic bonding nature and size mismatch on thermal stability
96614    and glass-forming ability of bulk metallic glasses
96615 SO JOURNAL OF NON-CRYSTALLINE SOLIDS
96616 DT Article
96617 ID SUPERCOOLED LIQUID REGION; CU-NI ALLOYS; AMORPHOUS-ALLOYS; TRANSITION
96618    TEMPERATURE; B-ADDITION; P ALLOYS; PARAMETERS; EXTENSION; TM
96619 AB Two mathematical models used for quantitatively measuring the effects
96620    of atomic bonding nature and atomic size ratios among constituent
96621    elements on thermal stability of Mg-based bulk metallic glasses (BMGs)
96622    have been proposed recently. In this paper, these models are extended
96623    to other BMG systems, and the reliability and feasibility of these
96624    models for assessing glass-forming ability (GFA) and the thermal
96625    stability of BMGs are carefully examined. It was found that these
96626    models are not suitable for evaluating the thermal stability of BMGs in
96627    other alloy systems. Instead, a weak correlation between the parameters
96628    calculated based on these models (i.e., the electronegativity
96629    difference Deltax and the atomic size difference 5) and the GFA of BMGs
96630    is observed. Our analyses indicate that these two models only partially
96631    reflect the effects of the atomic bonding nature and the atomic size
96632    ratios on the GFA and need to be further refined. (C) 2004 Elsevier
96633    B.V. All rights reserved.
96634 C1 Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA.
96635    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
96636 RP Lu, ZP, Oak Ridge Natl Lab, Div Met & Ceram, 1 Bethel Valley Rd, Oak
96637    Ridge, TN 37831 USA.
96638 EM luzp@ornl.gov
96639 CR CHEN W, 2003, ACTA MATER, V51, P1899
96640    DAVIES HA, 1978, RAPIDLY QUENCHED MET, V1, P1
96641    FANG SS, 2003, J NON-CRYST SOLIDS, V321, P120
96642    HNG HH, 1996, J NON-CRYST SOLIDS, V208, P127
96643    HU X, 2003, ACTA MATER, V51, P561
96644    INOUE A, 1993, J NON-CRYST SOLIDS, V156, P473
96645    INOUE A, 1994, MAT SCI ENG A-STRUCT, V178, P255
96646    INOUE A, 1994, MAT SCI ENG A-STRUCT, V179, P210
96647    INOUE A, 1995, MATER T JIM, V36, P1420
96648    INOUE A, 1997, MATER T JIM, V38, P175
96649    INOUE A, 1997, MATER T JIM, V38, P179
96650    INOUE A, 1997, MATER T JIM, V38, P185
96651    INOUE A, 1998, MATER SCI FORUM 2, V269, P855
96652    KIM YJ, 1994, APPL PHYS LETT, V65, P2136
96653    KUNDIG AA, 2002, MATER TRANS, V43, P3206
96654    LIU CT, 2002, INTERMETALLICS, V10, P1105
96655    LU ZP, IN PRESS INTERMETALL
96656    LU ZP, IN PRESS J MAT SCI
96657    LU ZP, 2000, J NON-CRYST SOLIDS, V270, P103
96658    LU ZP, 2000, SCRIPTA MATER, V42, P667
96659    LU ZP, 2002, ACTA MATER, V50, P3501
96660    LU ZP, 2003, APPL PHYS LETT, V83, P2581
96661    LU ZP, 2003, PHYS REV LETT, V91
96662    MA CL, 2002, MATER TRANS, V43, P1737
96663    NISHIYAMA N, 1996, MATER T JIM, V37, P1531
96664    NISHIYAMA N, 2002, MATER TRANS, V43, P1913
96665    RICHMAN MH, 1967, INTRO PHYS METALLURG, P215
96666    WANG YM, 2003, SCRIPTA MATER, V48, P1525
96667    ZHANG T, 1991, MATER T JIM, V32, P1005
96668    ZHANG T, 1993, J MATER SCI LETT, V12, P700
96669    ZHANG T, 1998, MATER T JIM, V39, P857
96670 NR 31
96671 TC 3
96672 SN 0022-3093
96673 J9 J NON-CRYST SOLIDS
96674 JI J. Non-Cryst. Solids
96675 PD AUG 1
96676 PY 2004
96677 VL 341
96678 IS 1-3
96679 BP 93
96680 EP 100
96681 PG 8
96682 SC Materials Science, Ceramics; Materials Science, Multidisciplinary
96683 GA 849FQ
96684 UT ISI:000223524500014
96685 ER
96686 
96687 PT J
96688 AU Li, HY
96689    Zhou, SF
96690    Yin, FQ
96691 TI Global periodic attractor for strongly damped wave equations with
96692    time-periodic driving force
96693 SO JOURNAL OF MATHEMATICAL PHYSICS
96694 DT Article
96695 ID BEHAVIOR
96696 AB In this paper, we consider the existence of a global periodic attractor
96697    for a strongly damped nonlinear wave equation with time-periodic
96698    driving force under homogeneous Dirichlet boundary condition. It is
96699    proved that in certain parameter region, for arbitrary time-periodic
96700    driving force, the system has a unique periodic solution attracting any
96701    bounded set exponentially. This implies that the system behaves exactly
96702    as a one-dimensional system. We mention, in particular, that the
96703    obtained result can be used to prove the existence of global periodic
96704    attractor of the usual damped and driven wave equations. (C) 2004
96705    American Institute of Physics.
96706 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
96707 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
96708 EM sfzhou@mail.shu.edu.cn
96709 CR CHEN FX, 1998, J DIFFER EQUATIONS, V147, P231
96710    GHIDAGLIA JM, 1991, SIAM J MATH ANAL, V22, P879
96711    LOMDAHL PS, 1982, PHYS REV B, V25, P5737
96712    MASSATT P, 1983, J DIFFER EQUATIONS, V48, P334
96713    PAZY A, 1983, APPL MATH SCI, V44
96714    TEMAM R, 1988, APPL MATH SCI, V68
96715    WEBB GF, 1980, CAN J MATH, V32, P631
96716    ZHAO Y, 1999, J SYST SCI MATH SCI, V19, P205
96717    ZHOU SF, 2002, J MATH ANAL APPL, V275, P850
96718    ZHU S, 1999, ACTA MATH APPL SIN, V42, P809
96719 NR 10
96720 TC 0
96721 SN 0022-2488
96722 J9 J MATH PHYS-NY
96723 JI J. Math. Phys.
96724 PD SEP
96725 PY 2004
96726 VL 45
96727 IS 9
96728 BP 3462
96729 EP 3467
96730 PG 6
96731 SC Physics, Mathematical
96732 GA 849QP
96733 UT ISI:000223555200004
96734 ER
96735 
96736 PT J
96737 AU Zhai, QJ
96738    Luo, J
96739    Zhao, P
96740 TI Effect of thermal cycle on liquid structure of pure iron at just above
96741    its melting point
96742 SO ISIJ INTERNATIONAL
96743 DT Article
96744 DE liquid structure; pure iron; X-ray diffraction
96745 ID X-RAY-DIFFRACTION; MEDIUM-RANGE ORDER; GLASSES; ALLOYS
96746 AB The effect of thermal cycle on liquid structure of pure iron was
96747    investigated by means of theta-theta type liquid metal X-ray
96748    diffractometer. The increase of thermal cycle times results in the
96749    reduction of the atomic cluster size and its atomic numbers, the
96750    expansion of the disorder areas, and the increase of the disorder
96751    degree of the liquid pure iron. The first sharp diffraction peak (FSDP)
96752    or pre-peak is found in the structure factor curve of liquid pure iron,
96753    which means there is medium-range order (MRO) in this melt. The FSDP or
96754    pre-peak directly relates to the correlation of Fe-Fe atoms on the MRO
96755    scale. It is concluded that the body-centered cubic (BCC) crystal
96756    structure of the previous delta-Fe is partly kept in the liquid pure
96757    iron, and the liquid pure iron is a mixture of atomic clusters and
96758    disorder areas.
96759 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
96760    Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China.
96761    Cent Iron & Steel Res Inst, Beijing 100081, Peoples R China.
96762 RP Zhai, QJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
96763    China.
96764 EM qjzhai@mail.shu.edu.cn
96765 CR ABDEL A, 1981, ARCH EISENHUTTENWES, V51, P317
96766    ADACHI A, 1971, P INT C SCI TECHN IR, P395
96767    BERGMAN C, 1999, J NON-CRYST SOLIDS 1, V250, P253
96768    BIAN XF, 1999, HEREDITY CASTING MET, P1
96769    BORJESSON L, 1989, PHYS REV B, V39, P3404
96770    CERVINKA L, 1998, J NONCRYST SOLIDS, V232, P1
96771    ELLIOTT SR, 1990, PHYSICS AMORPHOUS MA, P1
96772    ELLIOTT SR, 1991, NATURE, V354, P445
96773    HAJDU F, 1980, PHYS STATUS SOLIDI A, V60, P365
96774    HINES AL, 1996, METALL MATER TRANS B, V27, P29
96775    IIDA T, 1993, PROPERTIES LIQUID ME, P142
96776    KRISHNAN S, 1999, J NON-CRYST SOLIDS 1, V250, P286
96777    MARET M, 1989, J PHYS-PARIS, V50, P295
96778    MATUBARA E, 1988, J MATER SCI, V23, P753
96779    MORITA Z, 1970, J JPN I MET, V34, P248
96780    SHIRAKAWA Y, 1991, J PHYS SOC JPN, V60, P2678
96781    SOKOLOV AP, 1992, PHYS REV LETT, V69, P1540
96782    WANG L, 2002, PHYS LETT A, V301, P477
96783    WASEDA Y, 1980, STRUCTURE NONCRYSTAL, P280
96784    WASEDA Y, 1995, JPN J APPL PHYS PT 1, V34, P4124
96785    WIJS GA, 1995, J CHEM PHYS, V103, P5031
96786 NR 21
96787 TC 0
96788 SN 0915-1559
96789 J9 ISIJ INT
96790 JI ISIJ Int.
96791 PY 2004
96792 VL 44
96793 IS 8
96794 BP 1279
96795 EP 1282
96796 PG 4
96797 SC Metallurgy & Metallurgical Engineering
96798 GA 848GD
96799 UT ISI:000223454700001
96800 ER
96801 
96802 PT J
96803 AU Lei, H
96804    Luo, JB
96805 TI CMP of hard disk substrate using a colloidal SiO2 slurry: preliminary
96806    experimental investigation
96807 SO WEAR
96808 DT Article
96809 DE chemical-mechanical polishing (CMP); hard disk substrate; colloidal
96810    SiO2 slurry; planarization
96811 ID PARTICLE-SIZE; ULTRA-THIN; CONTACT; REMOVAL; WEAR; MODEL;
96812    PLANARIZATION; PRESSURE; COATINGS; FRICTION
96813 AB With magnetic heads operating closer to hard disks, the hard disks are
96814    forced to be ultra-smooth. At present, chemical-mechanical polishing
96815    (CMP) has become a widely accepted global planarization technology. In
96816    this paper, the effects Of SiO2 particle size, and the contents Of SiO2
96817    particle, oxidizer and lubricant additive in the prepared slurry, as
96818    well as pH value of the slurry, on the polishing performances in the
96819    CMP of hard disk substrates with nickel-phosphorous plated were
96820    investigated. Results indicated that the average roughness (R-a) and
96821    the average waviness (W-a) of the polished surfaces as well as material
96822    removal amount were much dependent on all of the factors above. For
96823    comparison, CMP of hard disk substrates with a kind of commercial SiO2
96824    slurry was conducted under the same polishing conditions. Based on
96825    Auger electron spectrogram (AES) examinations of the chemical changes
96826    in the polished surfaces with the prepared slurry, the CMP mechanism
96827    was deduced preliminarily. (C) 2004 Elsevier B.V. All rights reserved.
96828 C1 Shanghai Univ, Res Ctr Nanosci & Nanotechnol, Shanghai 200436, Peoples R China.
96829    Tsing Hua Univ, State Key Lab Tribol, Beijing 100084, Peoples R China.
96830 RP Lei, H, Shanghai Univ, Res Ctr Nanosci & Nanotechnol, Shanghai 200436,
96831    Peoples R China.
96832 EM hong_lei2000@sohu.com
96833 CR *IDEMA, 2000, INT DISK DRIV EQ MAT, P7
96834    ALI I, 1994, SOLID STATE TECHNOL, V34, P63
96835    BASIM GB, 2000, J ELECTROCHEM SOC, V147, P3523
96836    BHUSHAN B, 1995, WEAR, V181, P743
96837    BHUSHAN B, 1996, TRIBOLOGY MECH MAGNE
96838    BHUSHAN B, 1999, DIAM RELAT MATER, V8, P1985
96839    BIELMANN M, 1999, ELECTROCHEM SOLID ST, V2, P401
96840    CHO CH, 2001, THIN SOLID FILMS, V389, P254
96841    COB CORP, 2000, 6015506, US
96842    COB MICR CORP AUR IL, 2002, 6468137, US
96843    COB MICR CORP AUT, 2002, 6461227, US
96844    FARID M, 1995, THIN SOLID FILMS, V270, P612
96845    GROVER GS, 1998, WEAR, V214, P10
96846    HAN H, 1999, SURF COAT TECH, V121, P579
96847    HORN M, 1991, SOLID STATE TECHNOL, V31, P57
96848    HSU J, 2002, J ELECTROCHEM SOC, V149, P204
96849    KAO CORP, 1999, 5868604, US
96850    LARSENBASSE J, 1999, WEAR, V233, P647
96851    LEI H, 2002, INT J NONLINEAR SCI, V3, P455
96852    LI YL, 1996, WEAR, V202, P60
96853    LIANG H, 1997, WEAR, V211, P271
96854    LIANG H, 2002, SCRIPTA MATER, V46, P343
96855    LIU Y, 2003, MICROELECTRONIC ENG, V66, P438
96856    LUO JF, 2001, IEEE T SEMICONDUCT M, V14, P112
96857    MENON AK, 1999, ASME P S INT TECHN 1, P1
96858    MICHAEL CP, 1996, J ELECT MAT, V25, P1612
96859    NANZ G, 1995, IEEE T SEMICONDUCT M, V8, P382
96860    PARK SS, 2000, TRIBOL INT, V33, P723
96861    POON CY, 1995, WEAR, V190, P89
96862    RAHUL J, 1994, SOLID STATE TECHNOL, V34, P71
96863    SAXENA AN, 1986, SOLID STATE TECHNOL, V29, P95
96864    SEOK J, 2003, WEAR, V254, P307
96865    STEIGERWARD JM, 1997, CHEM MECH PLANARIZAT
96866    STEIN DJ, 1999, J ELECTROCHEM SOC, V146, P376
96867    WARNOCK J, 1991, J ELECTROCHEM SOC, V138, P2398
96868    XIE YS, 1996, WEAR, V200, P281
96869    XU J, 2003, TRIBOL INT, V36, P459
96870    ZHANG B, 2003, TRIBOL INT, V36, P291
96871    ZHAO YW, 2002, WEAR, V252, P220
96872    ZHAO YW, 2003, WEAR, V254, P332
96873    ZHAO Z, 2001, P I MECH ENG J-J ENG, V215, P63
96874    ZHOU CH, 2002, LUBR ENG, V58, P35
96875    ZHOU CH, 2002, TRIBOL T, V45, P230
96876    ZHOU CH, 2002, WEAR, V253, P430
96877 NR 44
96878 TC 1
96879 SN 0043-1648
96880 J9 WEAR
96881 JI Wear
96882 PD SEP
96883 PY 2004
96884 VL 257
96885 IS 5-6
96886 BP 461
96887 EP 470
96888 PG 10
96889 SC Engineering, Mechanical; Materials Science, Multidisciplinary
96890 GA 847BA
96891 UT ISI:000223362500003
96892 ER
96893 
96894 PT J
96895 AU Liu, WQ
96896    Li, Q
96897    Zhou, BX
96898    Yao, MY
96899 TI Corrosion of zircaloy-4 in aqueous solutions of LiOH and KOH
96900 SO RARE METAL MATERIALS AND ENGINEERING
96901 DT Article
96902 DE Zircaloy-4; SIMS; corrosion resistance; water chemistry
96903 ID ZIRCONIUM-OXIDE
96904 AB The specimens of Zircaloy-4 are tested in autoclaves filled with 0.1
96905    mol/L LiOH and KOH, respectively, aqueous solutions at 350degreesC.
96906    When their oxide layers have an equal thickness, the intensity
96907    distribution of Li+, K+ and OH- over the cross section of the oxide
96908    layers is determined by SIMS analysis. The results show that the
96909    penetration depth of K+ is shallower than that of Li+, and the
96910    penetration depth of OH- corroded in KOH solution is also shallower
96911    than that corroded in LiOH solution. It is shown that the diffusion of
96912    OH- into the oxide layer is accompanied by the corresponding cation.
96913    Based on above the results, the difference between the degradation
96914    effects of LiOH and KOH solutions on the corrosion resistance of
96915    Zircaloy-4 is discussed.
96916 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
96917 RP Liu, WQ, Shanghai Univ, Shanghai 200072, Peoples R China.
96918 EM lwq88@163.com
96919 CR HILLNER E, 1962, WAPDTM307 WEST EL CO, P19
96920    JEONG YH, 1999, J NUCL MATER, V270, P322
96921    JEONG YH, 1999, J NUCL MATER, V275, P221
96922    KIM YS, 1999, J NUCL MATER, V270, P165
96923    LIU WQ, 2001, RARE METAL MAT ENG, V30, P81
96924    RAMASUBRAMANIAN N, 1989, ZIRCONIUM NUCL IND, P187
96925 NR 6
96926 TC 0
96927 SN 1002-185X
96928 J9 RARE METAL MAT ENG
96929 JI Rare Metal Mat. Eng.
96930 PD JUL
96931 PY 2004
96932 VL 33
96933 IS 7
96934 BP 728
96935 EP 730
96936 PG 3
96937 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
96938    Engineering
96939 GA 847PZ
96940 UT ISI:000223408700013
96941 ER
96942 
96943 PT J
96944 AU Gang, S
96945    Ma, XM
96946    Shi, WZ
96947 TI Structural properties of Cr-Fe-Mn alloys prepared by mechanical alloying
96948 SO PHYSICA B-CONDENSED MATTER
96949 DT Article
96950 DE mechanical alloying; Mossbauer spectroscopy; Cr-Fe-Mn alloys
96951 ID MOSSBAUER; POWDERS
96952 AB Structural properties of Cr72Fe18Mn10 alloys prepared by mechanical
96953    alloying were studied by scanning electron microscopy (SEM), X-ray
96954    diffraction (XRD), and Fe-57 Mossbauer spectroscopy. Lamellar structure
96955    with some small particles embedded in them was observed during the
96956    first stage of mechanical alloying. XRD results show that the alpha-Mn
96957    phase disappears with the milling time increasing up to 5 h. The
96958    as-milled samples maintain the BCC structure throughout the course of
96959    milling. For 30 h the paramagnetic Cr-Fe-Mn ternary alloys are
96960    obtained, the average crystalline size is about 42 nm considering the
96961    internal strains. (C) 2004 Elsevier B.V. All rights reserved.
96962 C1 E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China.
96963    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
96964 RP Ma, XM, E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R
96965    China.
96966 EM xmma@phy.ecnu.edu.cn
96967 CR BURKE SK, 1983, J PHYS F MET PHYS, V13, P451
96968    COTES SM, 2002, PHYSICA B, V320, P274
96969    CZUBAYKO U, 2002, MAT SCI ENG A-STRUCT, V327, P54
96970    DAS A, 1999, J PHYS-CONDENS MAT, V11, P5209
96971    DELCROIX P, 2001, MATER SCI FORUM, V360, P329
96972    DUBIEL SM, 1981, J MAGN MAGN MATER, V23, P214
96973    FAWCETT E, 1994, REV MOD PHYS, V66, P25
96974    FRIEDEL J, 1964, DISLOCATIONS
96975    KLUG HP, 1974, XRAY DIFFRACTION PRO
96976    LECAER G, 2000, HYPERFINE INTERACT, V130, P45
96977    LEMOINE C, 1999, J MAGN MAGN MATER, V203, P184
96978    MAURICE D, 1995, METALL MATER TRANS A, V26, P2437
96979    MIEDEMA AR, 1980, PHYSICA B, V100, P1
96980    SOMSEN C, 2000, J MAGN MAGN MATER, V208, P191
96981    SZYMANSKI K, 2001, J MAGN MAGN MATER, V236, P56
96982    TOOP W, 1965, T METALL SOC, V237, P738
96983    TSUCHIYA Y, 1997, PHYSICA B, V237, P446
96984    WILLIAMSON GK, 1953, ACTA METALL, V1, P22
96985    WU WM, 1997, J MAGN MAGN MATER, V172, P183
96986 NR 19
96987 TC 0
96988 SN 0921-4526
96989 J9 PHYSICA B
96990 JI Physica B
96991 PD AUG 15
96992 PY 2004
96993 VL 351
96994 IS 1-2
96995 BP 96
96996 EP 101
96997 PG 6
96998 SC Physics, Condensed Matter
96999 GA 848AJ
97000 UT ISI:000223439000015
97001 ER
97002 
97003 PT J
97004 AU Wang, Q
97005    Pelletier, JM
97006    Da Dong, Y
97007    Ji, YF
97008    Xiu, H
97009 TI Correlation between microstructure and internal friction in a
97010    Zr-41.2-Ti-13.8-Cu-12.5-Ni-8-Be-22.5-Fe-2 bulk metallic glass
97011 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
97012    MICROSTRUCTURE AND PROCESSING
97013 DT Article
97014 DE bulk metallic glass; internal friction; microstructure
97015 ID LA55AL25NI20 AMORPHOUS ALLOY; ANGLE NEUTRON-SCATTERING; SUPERCOOLED
97016    LIQUID; STRUCTURAL RELAXATION; MECHANICAL RELAXATION; PHASE-SEPARATION;
97017    VISCOUS-FLOW; CRYSTALLIZATION; DECOMPOSITION; ZR41TI14CU12.5NI10BE22.5
97018 AB The microstructural evolution in a Zr-Ti-Cu-Ni-Be-Fe bulk metallic
97019    glass (BMG) has been investigated by measurements of dynamical shear
97020    modulus and internal friction combined with other analytical methods
97021    such as differential scanning calorimetry (DSC), X-ray diffraction
97022    (XRD) and high resolution transmission electron microscopy (TEM). When
97023    heated from room temperature up to 873 K, the as-received BMG exhibits
97024    an exponential increase in internal friction accompanying the strong
97025    decrease of storage modulus and the presence of the first loss modulus
97026    peak during the dynamic glass transition, which can be well described
97027    using quasi-point defect model. The correlative changes of the
97028    mechanical response at higher temperature are associated with the
97029    crystallisation process of the supercooled liquid phase, which occurs
97030    in four different stages. It is shown that the main crystallisation
97031    process is completed in the first two stages. With further increasing
97032    temperature, the remaining amorphous phases crystallise and/or the
97033    metastable crystalline phases are transformed into the stable ones.
97034    Isothermal annealing were also performed at temperatures in the
97035    supercooled liquid region far below the onset temperature of the
97036    crystallisation process (T-x). Their influence on microstucture and
97037    internal friction behaviour of the BMG is also presented in this paper.
97038    The most striking result is that the internal friction is very
97039    sensitive to the local atomic short range ordering induced by the
97040    preheating treatment. (C) 2004 Elsevier B.V. All rights reserved.
97041 C1 Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
97042    INSA, GEMPPM, F-69621 Villeurbanne, France.
97043 RP Pelletier, JM, Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R
97044    China.
97045 EM jean-marc.pelletier@insa-lyon.fr
97046 CR BINCZYCKA H, 2003, J PHYS-CONDENS MAT, V15, P945
97047    BONETTI E, 1987, J NONCRYST SOLIDS, V67, P93
97048    BUSCH R, 1995, APPL PHYS LETT, V67, P1544
97049    DENG D, 1986, ACTA METALL, V34, P2011
97050    ETIENNE S, 1982, REV SCI INSTRUM, V53, P1261
97051    GAUTHIER C, 2000, J NON-CRYST SOLIDS, V274, P181
97052    HAYS CC, 2000, MATER SCI FORUM 1&2, V343, P103
97053    HERMANN H, 1998, PHYSICA B, V241, P352
97054    INOUE A, 1995, MATER T JIM, V36, P866
97055    JI YF, 2000, CHINESE SCI BULL, V45, P23
97056    JOHNSON WL, 1996, MATER SCI FORUM, V225, P35
97057    LIU JM, 1997, MATER SCI FORU 1 & 2, V235, P523
97058    LIU JM, 1997, PHYS STATUS SOLIDI B, V199, P379
97059    LOFFLER JF, 2000, APPL PHYS LETT, V76, P3394
97060    MACHT MP, 1996, MATER SCI FORUM, V225, P65
97061    MASUHR A, 1999, PHYS REV LETT, V82, P2290
97062    MILLER MK, 1998, MAT SCI ENG A-STRUCT, V250, P133
97063    MYUNG WN, 1992, J NON-CRYST SOLIDS, V150, P406
97064    MYUNG WN, 1995, J NONCRYST SOLIDS, V192, P401
97065    OKUMURA H, 1992, J NON-CRYST SOLIDS, V150, P401
97066    OKUMURA H, 1992, J NONCRYST SOLIDS, V142, P165
97067    PEKER A, 1993, APPL PHYS LETT, V63, P2342
97068    PELLETIER JM, 2000, J NON-CRYST SOLIDS, V274, P301
97069    PEREZ J, 1998, POLYM SCI SER B, V40, P17
97070    PEREZ J, 1999, J MOL STRUCT, V479, P183
97071    RAMBOUSKY R, 1996, Z PHYS B CON MAT, V99, P387
97072    SCHNEIDER S, 1996, APPL PHYS LETT, V68, P493
97073    SCHNEIDER S, 1997, MATER SCI FORU 1 & 2, V235, P337
97074    SHUI JP, 1986, CHINESE PHYS LETT, V3, P69
97075    SHUI JP, 1996, PHYS STATUS SOLIDI B, V196, P309
97076    SINNING HR, 1989, J NON-CRYST SOLIDS, V110, P195
97077    TANG XP, 2003, J NON-CRYST SOLIDS, V317, P118
97078    WANDERKA N, 1998, MATER SCI FORUM 2, V269, P773
97079    WANDERKA N, 1999, MAT SCI ENG A-STRUCT, V270, P44
97080    WANG WH, 1998, PHYS REV B, V57, P8211
97081    WANG WH, 2002, J MATER RES, V17, P1385
97082    WIEDENMANN A, 1996, MATER SCI FORUM, V225, P71
97083    WIEDENMANN A, 1996, SOLID STATE COMMUN, V100, P331
97084    ZHANG B, 2002, J PHYS-CONDENS MAT, V14, P7461
97085    ZHANG JX, 1989, J PHYS-CONDENS MAT, V1, P9717
97086    ZHANG T, 1991, MATER T JIM, V32, P1005
97087    ZHUANG YX, 2000, J APPL PHYS, V87, P8209
97088 NR 42
97089 TC 1
97090 SN 0921-5093
97091 J9 MATER SCI ENG A-STRUCT MATER
97092 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
97093 PD AUG 15
97094 PY 2004
97095 VL 379
97096 IS 1-2
97097 BP 197
97098 EP 203
97099 PG 7
97100 SC Materials Science, Multidisciplinary
97101 GA 846QG
97102 UT ISI:000223330100023
97103 ER
97104 
97105 PT J
97106 AU Zhai, QI
97107    Liu, GJ
97108    Zhai, HY
97109    Li, ZQ
97110 TI Nucleation of bainite in bainite ductile cast iron
97111 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
97112 DT Article
97113 DE bainite; ductile cast iron; nucleation; thermodynamics
97114 AB The bainite ductile cast iron with given composition was quenched to
97115    get bainite structure. The nucleating position of bainite and the
97116    distribution of alloying elements in the matrix were measured. The
97117    results show that the bainite nucleates at the interface between
97118    graphite and austenite during quenching. Based on the experimental
97119    results and thermodynamics. the nucleating mechanism of bainite in
97120    ductile iron was analyzed.
97121 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
97122    Univ Sci & Technol Beijing, Beijing 100083, Peoples R China.
97123 RP Zhai, QI, Shanghai Univ, Shanghai 200072, Peoples R China.
97124 CR *AM SOC MET, 1988, MET HDB, V15
97125    AHMADABADI MN, 1999, WEAR, V231, P293
97126    LAI HY, 1984, DIFFUSION THERMODYNA
97127    RACE J, 1991, HEAT TREAT MET, V18, P105
97128    ZHAI QJ, 1995, PHYS METALLURGY ITS
97129    ZHAI QJ, 1999, J UNIV SCI TECHNOL B, V6, P250
97130 NR 6
97131 TC 0
97132 SN 1006-706X
97133 J9 J IRON STEEL RES INT
97134 JI J. Iron Steel Res. Int.
97135 PD MAY
97136 PY 2004
97137 VL 11
97138 IS 3
97139 BP 41
97140 EP 43
97141 PG 3
97142 SC Metallurgy & Metallurgical Engineering
97143 GA 847IR
97144 UT ISI:000223386400009
97145 ER
97146 
97147 PT S
97148 AU Jiang, M
97149    Hu, QY
97150    Meng, ZQ
97151 TI A method on solving multiobjective conditional value-at-risk
97152 SO COMPUTATIONAL SCIENCE - ICCS 2004, PROCEEDINGS
97153 SE LECTURE NOTES IN COMPUTER SCIENCE
97154 DT Article
97155 DE credit risk; loss functions; alpha-CVaR; Pareto efficient solutions
97156 AB This paper studies Conditional Value-at-Risk (CVaR) with multiple
97157    losses. We introduce the concept of alpha-CVaR for the case of multiple
97158    losses under the confidence level vector alpha. The alpha-CVaR
97159    indicates the conditional expected losses corresponding to the
97160    alpha-VaR. The problem of solving the minimal alpha-CVaR results in a
97161    multiobjective problem (MCVaR). In order to get Pareto efficient
97162    solutions of the (MCVaR), we introduce a single objective problem
97163    (SCVaR) and show that the optimal solutions of the (SCVaR) are the
97164    Pareto efficient solutions of (MCVaR).
97165 C1 Xidian Univ, Sch Econ & Management, Xian 710071, Peoples R China.
97166    Shanghai Univ, Coll Int Business & Management, Shanghai 201800, Peoples R China.
97167    Zhejiang Univ Technol, Coll Business & Adm, Hangzhou 310032, Peoples R China.
97168 RP Jiang, M, Xidian Univ, Sch Econ & Management, Xian 710071, Peoples R
97169    China.
97170 EM j_yx@263.net
97171    huqiying@sina.com
97172    mengzhiqing@xtu.edu.cn
97173 CR ANDERSSON F, 2001, MATH PROGRAM, V89, P273
97174    CHEN JL, 2002, CVAR UNIFYING MODEL, V1, P68
97175    CHERNOZHUKOV V, 2001, EMPIRICAL EC, V26, P271
97176    KROKHMAL P, 2002, J RISK, V2, P124
97177    ROCKAFELLAR RT, 2000, J RISK, V2, P21
97178    ROCKAFELLAR RT, 2002, J BANK FINANC, V26, P1443
97179    SAWRAGI Y, 1985, THEORY MULTIOBJECTIV
97180    WANG JH, 2002, NEW METHOD MEASUREME, V24, P60
97181 NR 8
97182 TC 0
97183 SN 0302-9743
97184 J9 LECT NOTE COMPUT SCI
97185 PY 2004
97186 VL 3039
97187 PN Part 4
97188 BP 923
97189 EP 930
97190 PG 8
97191 GA BAO62
97192 UT ISI:000223079700119
97193 ER
97194 
97195 PT J
97196 AU Zheng, B
97197    Bapat, RB
97198 TI Generalized inverse AT, S-(2) and a rank equation
97199 SO APPLIED MATHEMATICS AND COMPUTATION
97200 DT Article
97201 DE rank equation; characterization; generalized inverse; matrix
97202    decomposition
97203 ID DRAZIN INVERSE; REPRESENTATION; A(T,S)((2)); MATRIX
97204 AB In this paper the rank equation
97205    rank (A B) = rank (A) (C X)
97206    is considered in the sense that B and C are characterized when
97207    A(T,S)((2)) is solution to this equation. As the special cases, similar
97208    results for A(dagger), A(MN)(dagger), A(d) and A(g) are also derived.
97209    This contributes to certain recent results in the literature, including
97210    that obtained by Grobeta [Linear Algebra Appl. 289 (1999) 127] and
97211    Thome and Wei [Appl. Math. Comput. 141 (2003) 471]. (C) 2003 Elsevier
97212    Inc. All rights reserved.
97213 C1 Shanghai Univ, Dept Math, Shanghai 730000, Peoples R China.
97214    Indian Stat Inst, New Delhi 110016, India.
97215 RP Zheng, B, Shanghai Univ, Dept Math, Shanghai 730000, Peoples R China.
97216 EM dzhengbing@eastday.com
97217 CR BENISRAEL A, 2003, GEN INVERSES THEORY
97218    FIEDLER M, 1993, LINEAR ALGEBRA APPL, V179, P129
97219    GROSS J, 1999, LINEAR ALGEBRA APPL, V289, P127
97220    LI X, 2002, INT J MATH MATH SCI, V31, P497
97221    RAO CR, 1972, SANKHYA A, V34, P5
97222    THOME N, 2003, APPL MATH COMPUT, V141, P471
97223    VANLOAN CF, 1976, SIAM J NUMER ANAL, V13, P76
97224    WEI YM, 1996, SIAM J MATRIX ANAL A, V17, P744
97225    WEI YM, 1997, P M MATR AN APPL SPA, P421
97226    WEI YM, 1998, LINEAR ALGEBRA APPL, V280, P87
97227    WEI YM, 2001, INT J COMPUT MATH, V77, P401
97228    WEI YM, 2001, J COMPUT APPL MATH, V137, P317
97229    WEI YM, 2002, APPL MATH COMPUT, V125, P303
97230    WEI YM, 2003, APPL MATH COMPUT, V135, P263
97231    WEI YM, 2003, APPL MATH COMPUT, V142, P189
97232    ZHANG N, 2000, APPL MATH COMPUT, V142, P63
97233    ZHENG B, IN PRESS APPL MATH C
97234 NR 17
97235 TC 0
97236 SN 0096-3003
97237 J9 APPL MATH COMPUT
97238 JI Appl. Math. Comput.
97239 PD AUG 6
97240 PY 2004
97241 VL 155
97242 IS 2
97243 BP 407
97244 EP 415
97245 PG 9
97246 SC Mathematics, Applied
97247 GA 845WV
97248 UT ISI:000223276900008
97249 ER
97250 
97251 PT J
97252 AU Zhang, BN
97253    Zhang, JQ
97254 TI A sub-layer model for a thick piezoelectric patch bonded on elastic
97255    substrate
97256 SO ACTA MECHANICA
97257 DT Article
97258 ID COUPLED ELECTROMECHANICAL ANALYSIS; STRAIN-TRANSFER; LAYER; CRACK;
97259    DISPLACEMENT; COMPOSITES; FRACTURE
97260 AB In this paper, the two-dimensional electromechanical coupling problems
97261    that a piezoelectric patch of finite size bonded to an elastic
97262    substrate are considered. A subdivision model that the single physical
97263    piezoelectric layer is mathematically divided into a number of thinner
97264    layers is proposed to analyze the electromechanical responses of the
97265    structures. Within each virtual sub-layer of the piezoelectric patch
97266    the electric displacement and normal stress in the axial direction are
97267    assumed to be linear functions of the thickness coordinate.
97268    Hellinger-Reissner variational principle for elasticity is extended to
97269    the systems of piezoelectric multi-materials. The governing equations
97270    that comprise one-dimensional differential equations and
97271    integro-differential equations are rigorously derived from the
97272    stationary conditions of the variational functional along with
97273    substitution of the assumed electromechanical fields. The subdivision
97274    model satisfies all mechanical and electric continuity conditions
97275    across the virtual interfaces and the physical interface of
97276    piezoelectrics/substrate. The numerical solutions of the governing
97277    equations are conducted, and the convergence of the subdivision model
97278    is demonstrated.
97279 C1 Chongqing Jiaotong Univ, Coll Comp & Informat, Chongqing 400074, Peoples R China.
97280    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
97281 RP Zhang, BN, Chongqing Jiaotong Univ, Coll Comp & Informat, Chongqing
97282    400074, Peoples R China.
97283 EM jqzhang@mail.shu.edu.cn
97284 CR CRAWLEY EF, 1987, AIAA J, V25, P1373
97285    CRAWLEY EF, 1990, J INTELL MATER SYST, V1, P4
97286    KEKANA M, 2003, INT J SOLIDS STRUCT, V40, P715
97287    KWON JH, 2000, EUR J MECH A-SOLID, V19, P979
97288    LIU M, 2003, J MECH PHYS SOLIDS, V51, P921
97289    MOLYET KE, 1999, SMART MATER STRUCT, V8, P672
97290    PARK C, 1993, SMART MATER STRUCT, V5, P327
97291    PEELAMEDU SM, 1999, SMART MATER STRUCT, V8, P654
97292    QI H, 2001, ACTA MECH SINICA, V17, P59
97293    REDDY J, 1991, FINITE ELEMENT ANAL, P59
97294    ROBBINS DH, 1991, COMPUT STRUCT, V41, P265
97295    SOSA H, 1992, INT J SOLIDS STRUCT, V29, P2613
97296    TIAN WY, 2000, INT J SOLIDS STRUCT, V37, P7743
97297    WANG BL, 2001, ENG FRACT MECH, V68, P1003
97298    WANG BL, 2002, INT J ENG SCI, V40, P1697
97299    WANG XD, 2000, INT J SOLIDS STRUCT, V37, P3231
97300    WASHIZU K, 1982, VARIATIONAL METHODS
97301    YU N, 1999, COMPOS PART B-ENG, V30, P709
97302    ZHANG BN, 2003, INT J SOLIDS STRUCT, V40, P6799
97303    ZHANG JQ, 2003, INT J SOLIDS STRUCT, V40, P6781
97304    ZHOU X, 2000, J INTEL MAT SYST STR, V11, P169
97305 NR 21
97306 TC 1
97307 SN 0001-5970
97308 J9 ACTA MECH
97309 JI Acta Mech.
97310 PD JUL
97311 PY 2004
97312 VL 170
97313 IS 3-4
97314 BP 163
97315 EP 186
97316 PG 24
97317 SC Mechanics
97318 GA 847KF
97319 UT ISI:000223390400003
97320 ER
97321 
97322 PT J
97323 AU Fan, Y
97324    Ge, Y
97325    Zhu, H
97326    Wang, Y
97327    Yang, B
97328    Zhuang, Y
97329    Ma, H
97330    Zhang, X
97331 TI Characterization and application of two novel monoclonal antibodies
97332    against CD40L: epitope and functional studies on cell membrane CD40L
97333    and studies on the origin of soluble serum CD40L
97334 SO TISSUE ANTIGENS
97335 DT Article
97336 DE CD40 ligand; ELISA; monoclonal antibody; soluble CD40 ligand
97337 ID CD40-CD40 LIGAND INTERACTION; HYPER-IGM SYNDROME; T-CELLS;
97338    ALLOGRAFT-REJECTION; ACTIVATION; RECEPTOR; ACCEPTANCE; LYMPHOCYTE;
97339    PLATELETS; RESPONSES
97340 AB CD40 ligand, a 33-kDa cell membrane molecule, a member of the tumor
97341    necrosis factor superfamily, is an important costimulatory molecule
97342    during immune response. Here, we report on two functional mouse
97343    anti-human CD40L monoclonal antibodies 1B1 and 4F1 characterized by
97344    flow cytometry, Western blotting, and competition assay. The antibodies
97345    bound to distinct CD40L epitopes and therefore resulted in different
97346    bioactivity. Both antibodies could induce CD4(+) T-cell alloantigenic
97347    hyporesponsiveness ex vivo. The antibodies were matched to develop a
97348    two-site enzyme-linked immunosorbent assay (ELISA) for soluble CD40L
97349    (sCD40L). Using this ELISA assay, we found major differences between
97350    plasma and serum sCD40L levels. Because the count of platelet sharply
97351    decreased in aplastic anemia (AA) and idiopathic thrombocytopenic
97352    purpura (ITP), we further analyzed the sCD40L concentration in the
97353    plasma of AA and ITP patients. The results showed that the sCD40L in
97354    serum was much lower than that of healthy subjects. These data
97355    demonstrate that platelets seem to be a major contributor to sCD40L,
97356    though not the only source of sCD40L in serum.
97357 C1 Suzhou Univ, Inst Biotechnol, Suzhou 215006, Peoples R China.
97358    Suzhou Univ, Affiliated Hosp 1, Suzhou 215006, Peoples R China.
97359    Shanghai Univ, E Inst, Div Immunol, Shanghai, Peoples R China.
97360 RP Zhang, X, Suzhou Univ, Inst Biotechnol, Suzhou 215006, Peoples R China.
97361 EM smbxuegz@publicl.sz.js.cn
97362 CR ARMITAGE RJ, 1992, NATURE, V357, P80
97363    AUKRUST P, 1999, CIRCULATION, V100, P614
97364    CASAMAYORPALLEJA M, 1995, J EXP MED, V181, P1293
97365    CLARK EA, 1990, TISSUE ANTIGENS, V36, P33
97366    DATTA SK, 1997, ARTHRITIS RHEUM, V40, P1735
97367    ELWOOD ET, 1998, TRANSPLANTATION, V65, P1422
97368    GREWAL IS, 1996, IMMUNOL TODAY, V17, P410
97369    GROTH SFD, 1980, J IMMUNOL METHODS, V35, P1
97370    HENN V, 1998, NATURE, V391, P591
97371    HENN V, 2001, BLOOD, V98, P1047
97372    KARPUSAS M, 1995, STRUCTURE, V3, P1031
97373    KAWABE T, 1994, IMMUNITY, V1, P167
97374    KIRK AD, 1997, P NATL ACAD SCI USA, V94, P8789
97375    KIRK AD, 1999, NAT MED, V5, P5686
97376    LARSEN CP, 1996, NATURE, V381, P434
97377    LARSEN CP, 1997, CURR OPIN IMMUNOL, V9, P641
97378    MACKEY MF, 1998, J LEUKOCYTE BIOL, V63, P418
97379    NOTARANGELO LD, 1996, IMMUNOL TODAY, V17, P511
97380    SCHOENBERGER SP, 1998, NATURE, V393, P480
97381    SHU U, 1995, EUR J IMMUNOL, V25, P1125
97382    SMITH CA, 1994, CELL, V76, P959
97383    STAMENKOVIC I, 1989, EMBO J, V8, P1403
97384    STOUT RD, 1996, J IMMUNOL, V156, P8
97385    VAKKALANKA RK, 1999, ARTHRITIS RHEUM, V42, P871
97386    VILLA A, 1994, P NATL ACAD SCI USA, V91, P2110
97387    ZHOU ZH, 1999, HYBRIDOMA, V18, P471
97388 NR 26
97389 TC 3
97390 SN 0001-2815
97391 J9 TISSUE ANTIGEN
97392 JI Tissue Antigens
97393 PD SEP
97394 PY 2004
97395 VL 64
97396 IS 3
97397 BP 257
97398 EP 263
97399 PG 7
97400 SC Cell Biology; Immunology; Pathology
97401 GA 845EG
97402 UT ISI:000223218300006
97403 ER
97404 
97405 PT J
97406 AU Liang, XL
97407    Zhong, SS
97408    Wang, W
97409 TI Cross-polarization suppression of dual-polarization linear microstrip
97410    antenna arrays
97411 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
97412 DT Article
97413 DE microstrip antenna array; polarization; isolation
97414 ID BAND
97415 AB The cross-polarization suppression of dual-polarization linear
97416    microstrip antenna arrays is investigated theoretically and
97417    experimentally. Four designs of 4-element linear microstrip antenna
97418    arrays for suppressing cross-polarization are presented by using the
97419    pair-wise anti-phase feeding technique and different combinations. The
97420    simulated results are in good agreement with the experimental ones. The
97421    experimental results show that one design (design D) has much lower
97422    cross-polarization level (about 6-10 dB) and higher isolation (about
97423    2-4 dB) than the other three designs. The cross-polarization level of
97424    this array is less than -27 dB and the isolation between two
97425    polarization ports is better than 34 dB in the entire frequency range
97426    of 8.74-9.5 GHz. (C) 2004 Wiley Periodicals, Inc.
97427 C1 Shanghai Univ, Sch Comp & Informat Engn, Shanghai 200072, Peoples R China.
97428 RP Liang, XL, Shanghai Univ, Sch Comp & Informat Engn, Shanghai 200072,
97429    Peoples R China.
97430 CR CHAKRABARTY SB, 2002, MICROW OPT TECHN LET, V33, P52
97431    CHIOU TW, 2002, IEEE T ANTENN PROPAG, V50, P399
97432    DU X, 2002, MODERN RADAR, P67
97433    GAO SC, 1998, MICROW OPT TECHN LET, V19, P214
97434    GAO SC, 2003, IEEE T ANTENN PROPAG, V51, P441
97435    LUDWIG AC, 1973, IEEE T AP, V21, P116
97436    POZAR DM, 1985, ELECTRON LETT, V21, P49
97437    WOELDERS K, 1997, IEEE T ANTENN PROPAG, V45, P1727
97438    WONG KL, 2002, IEEE T ANTENN PROPAG, V50, P346
97439 NR 9
97440 TC 1
97441 SN 0895-2477
97442 J9 MICROWAVE OPT TECHNOL LETT
97443 JI Microw. Opt. Technol. Lett.
97444 PD SEP 20
97445 PY 2004
97446 VL 42
97447 IS 6
97448 BP 448
97449 EP 451
97450 PG 4
97451 SC Engineering, Electrical & Electronic; Optics
97452 GA 846JX
97453 UT ISI:000223312900005
97454 ER
97455 
97456 PT J
97457 AU Xia, TC
97458    Chen, XH
97459    Chen, DY
97460 TI A Lax integrable hierarchy, bi-Hamiltonian structure and
97461    finite-dimensional Liouville integrable involutive systems
97462 SO CHAOS SOLITONS & FRACTALS
97463 DT Article
97464 ID NEWELL SPECTRAL PROBLEM; CONSTRAINED FLOWS; NONLINEARIZATION;
97465    EQUATIONS; TRANSFORMATION
97466 AB An eigenvalue problem and the associated new Lax integrable hierarchy
97467    of nonlinear evolution equations are presented in this paper. As two
97468    reductions, the generalized nonlinear Schrodinger equations and the
97469    generalized mKdV equations are obtained. Zero curvature representation
97470    and bi-Hamiltonian structure are established for the whole hierarchy
97471    based on a pair of Hamiltonian operators (Lenard's operators), and it
97472    is shown that the hierarchy of nonlinear evolution equations is
97473    integrable in Lionville's sense. Thus the hierarchy of nonlinear
97474    evolution equations has infinitely many commuting symmetries and
97475    conservation laws. Moreover the eigenvalue problem is nonlinearized as
97476    a finite-dimensional completely integrable system under the Bargmann
97477    constraint between the potentials and the eigenvalue functions. Finally
97478    finite-dimensional Liouville integrable system are found, and the
97479    involutive solutions of the hierarchy of equations are given. In
97480    particular, the involutive solutions are developed for the system of
97481    generalized nonlinear Schrodinger equations. (C) 2004 Elsevier Ltd. All
97482    rights reserved.
97483 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
97484    Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
97485 RP Xia, TC, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
97486 EM xiatc@yahoo.com.cn
97487 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
97488    CAO CW, 1990, SCI CHINA SER A, V33, P528
97489    FAN E, 2001, J PHYS A-MATH GEN, V34, P513
97490    FAN E, 2001, PHYSICA A, V301, P105
97491    FAN EG, 2000, J MATH PHYS, V41, P7769
97492    GENG XG, 1993, J MATH PHYS, V34, P805
97493    MA WX, 1992, J MATH ANN, V13, P115
97494    MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
97495    MA WX, 1999, J MATH PHYS, V40, P4419
97496    NEWELL AC, 1985, SOLITON MATH PHYS
97497    QIAO ZJ, 1993, J PHYS A-MATH GEN, V26, P4407
97498    TSUCHIDA T, 1998, CHAOS SOLITON FRACT, V9, P869
97499    TU GZ, 1989, J MATH PHYS, V30, P330
97500    WADATI M, 1972, J PHYS SOC JPN, V32, P1681
97501    WADATI M, 1973, J PHYS SOC JPN, V34, P1289
97502    WADATI M, 1975, PROG THEOR PHYS, V53, P419
97503    XU XX, 2003, CHAOS SOLITON FRACT, V15, P475
97504    YAN ZY, 2002, CHAOS SOLITON FRACT, V14, P441
97505    YAN ZY, 2003, CHAOS SOLITON FRACT, V15, P639
97506    ZENG YB, 1991, PHYS LETT A, V160, P541
97507    ZENG YB, 1996, J PHYS A-MATH GEN, V29, P5241
97508    ZHANG YF, 2003, CHAOS SOLITON FRACT, V18, P855
97509    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P305
97510    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P413
97511 NR 24
97512 TC 13
97513 SN 0960-0779
97514 J9 CHAOS SOLITON FRACTAL
97515 JI Chaos Solitons Fractals
97516 PD NOV
97517 PY 2004
97518 VL 22
97519 IS 4
97520 BP 939
97521 EP 945
97522 PG 7
97523 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
97524 GA 845LH
97525 UT ISI:000223243700019
97526 ER
97527 
97528 PT J
97529 AU Zhang, J
97530    Zhou, ZW
97531 TI Chebyshev approximation of the second kind of modified Bessel function
97532    of order zero
97533 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
97534 DT Article
97535 DE second kind of modified Bessel function of order zero; exponential
97536    transformation; rational Chebyshev basis
97537 ID COMPLEX ARGUMENT; REAL ORDER; COMPUTATION; RATIOS
97538 AB The second kind of modified Bessel function of order zero is the
97539    solutions of many problems in engineering. Modified Bessel equation is
97540    transformed by exponential transformation and expanded by J. P. Boyd's
97541    rational Chebyshev basis.
97542 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
97543 RP Zhang, J, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
97544    200072, Peoples R China.
97545 EM jerryzh@cableplus.com.cn
97546 CR AMOS DE, 1974, MATH COMPUT, V28, P239
97547    BOYD JP, 1987, J COMPUT PHYS, V70, P63
97548    CAMPBELL JB, 1981, COMPUT PHYS COMMUN, V24, P97
97549    GAUTSCHI W, 1978, MATH COMPUT, V32, P865
97550    KERIMOV MK, 1984, USSR COMP MATH MATH, V24, P15
97551    LUKE YL, 1969, SPECIAL FUNCTIONS TH
97552    SEGURA J, 1997, COMPUT PHYS COMMUN, V105, P263
97553    THOMPSON IJ, 1987, COMPUT PHYS COMMUN, V47, P245
97554    YOSHIDA T, 1974, J INFORM PROCESS, V14, P32
97555 NR 9
97556 TC 0
97557 SN 0253-4827
97558 J9 APPL MATH MECH-ENGL ED
97559 JI Appl. Math. Mech.-Engl. Ed.
97560 PD MAY
97561 PY 2004
97562 VL 25
97563 IS 5
97564 BP 483
97565 EP 487
97566 PG 5
97567 SC Mathematics, Applied; Mechanics
97568 GA 845WR
97569 UT ISI:000223276500001
97570 ER
97571 
97572 PT J
97573 AU Liu, YZ
97574    Yun, X
97575    Li-Qun, C
97576 TI Dynamical stability of equilibrium of a thin elastic rod
97577 SO ACTA PHYSICA SINICA
97578 DT Article
97579 DE dynamic equations of elastic rod; Kirchhoff theory; Lyapunov stability
97580 ID DNA
97581 AB The problem on stability of equilibrium of a thin elastic rod in view
97582    of dynamics is discussed in this paper. The dynamical equations of the
97583    rod is established, and the definitions of Lyapunov stability for a
97584    discrete dynamical system with are-coordinate s and time t as double
97585    arguments are proposed. As an example, the stability of straight
97586    equilibrium of a rod with noncircular cross-section and intrinsic
97587    twisting is analyzed by use of the first approximation method. It was
97588    proved that the straight equilibrium of the rod is stable dynamically
97589    when the conditions of stability are satisfied within the scope of
97590    statics.
97591 C1 Shanghai Jiao Tong Univ, Dept Engn Mech, Shanghai 200030, Peoples R China.
97592    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
97593 RP Liu, YZ, Shanghai Jiao Tong Univ, Dept Engn Mech, Shanghai 200030,
97594    Peoples R China.
97595 CR BENHAM CJ, 1979, BIOPOLYMERS, V18, P609
97596    GORIELY A, 2000, PHYS REV E B, V61, P4508
97597    KIRCHHOFF GR, 1859, J REINE ANGEW MATH, V56, P285
97598    LIU YZ, 2002, J SHANGHAI JIAOTONG, V36, P1587
97599    LIU YZ, 2002, MECH ENG, V24, P56
97600    LOVE AEH, 1944, TREATISE MATH THEORY, P381
97601    NIZZETE M, 1999, J MATH PHYS, V40, P2830
97602    SHI YM, 1994, J CHEM PHYS, V101, P5186
97603    TABOR M, 1996, MATH APPROACHES BIOM, P139
97604    TOBIAS I, 2000, PHYS REV E, V61, P747
97605 NR 10
97606 TC 3
97607 SN 1000-3290
97608 J9 ACTA PHYS SIN-CHINESE ED
97609 JI Acta Phys. Sin.
97610 PD AUG
97611 PY 2004
97612 VL 53
97613 IS 8
97614 BP 2424
97615 EP 2428
97616 PG 5
97617 SC Physics, Multidisciplinary
97618 GA 844SE
97619 UT ISI:000223179200004
97620 ER
97621 
97622 PT J
97623 AU Xia, L
97624    Dong, YD
97625 TI Glass forming ability and kinetic characters of paramagnetic
97626    Nd60Co40-(x)A1(x) (x = 5, 10, 15) bulk metallic glasses
97627 SO MODERN PHYSICS LETTERS B
97628 DT Article
97629 DE bulk metallic glass; glass forming ability; kinetics
97630 ID MAGNETIC-PROPERTIES; THERMAL-STABILITY; ALLOYS; MICROSTRUCTURE;
97631    ND60FE30AL10; PHASE; CO
97632 AB Paramagnetic Nd60Co40-xAlx (x = 5, 10, 15) bulk metallic glasses (BMGs)
97633    were prepared in the shape of rods 2 mm in diameter by suction casting.
97634    The ternary alloys have shown distinct glass transitions in
97635    Differential Scanning Calorimetry (DSC) measurements and excellent
97636    glass-forming ability. The glass transition and crystallization
97637    behaviors as well as their kinetics have been studied. The reduced
97638    glass transition temperature and the supercooled liquid region of the
97639    alloys were found to increase with the increasing content of Al. The
97640    role of Al was discussed. The parameter gamma defined by Liu et al. was
97641    employed to discuss the glass-forming ability of the alloys and the
97642    critical cooling rates as well as the critical section thickness of the
97643    alloys were predicted accordingly.
97644 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
97645 RP Xia, L, Shanghai Univ, Inst Mat, 14,Yan Chang Rd, Shanghai 200072,
97646    Peoples R China.
97647 EM xialei@mail.shu.edu.cn
97648 CR DING J, 1999, J PHYS D APPL PHYS, V32, P713
97649    FAN GJ, 1999, APPL PHYS LETT, V75, P2984
97650    FAN GJ, 2000, J MATER RES, V15, P1556
97651    HE Y, 1994, PHIL MAG LETT, V70, P371
97652    INOUE A, 1993, J NON-CRYST SOLIDS, V156, P473
97653    INOUE A, 1997, MAT SCI ENG A-STRUCT, V226, P393
97654    INOUE A, 1998, METALL MATER TRANS A, V29, P1779
97655    KISSINGER HE, 1956, J RES NAT BUR STAND, V57, P217
97656    LU ZP, 2002, ACTA MATER, V50, P3501
97657    LU ZP, 2003, PHYS REV LETT, V91
97658    MIEDEMA AR, 1975, J LESS-COMMON MET, V41, P283
97659    SCHNEIDER S, 2002, APPL PHYS LETT, V80, P1749
97660    TAKEUCHI A, 2001, MATER TRANS, V42, P1435
97661    TURNBULL D, 1969, CONTEMP PHYS, V10, P473
97662    WANG XZ, 1999, J ALLOY COMPD, V290, P209
97663    WEI BC, 2001, J APPL PHYS, V89, P3529
97664    WEI BC, 2001, PHYS REV B, V64
97665    WEI BC, 2002, ACTA MATER, V50, P4357
97666    XIA L, 2003, J PHYS D APPL PHYS, V36, P2954
97667    XIA L, 2003, J PHYS D APPL PHYS, V36, P775
97668    XIA L, 2003, J PHYS-CONDENS MAT, V15, P3531
97669    XING LQ, 2000, J APPL PHYS, V88, P3565
97670 NR 22
97671 TC 0
97672 SN 0217-9849
97673 J9 MOD PHYS LETT B
97674 JI Mod. Phys. Lett. B
97675 PD JUN 10
97676 PY 2004
97677 VL 18
97678 IS 14
97679 BP 679
97680 EP 685
97681 PG 7
97682 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
97683 GA 843VU
97684 UT ISI:000223115700003
97685 ER
97686 
97687 PT J
97688 AU Liu, YS
97689    Zhang, JC
97690    Yu, LM
97691    Jia, GQ
97692    Zhang, YF
97693    Wang, XY
97694    Cao, SX
97695 TI Frequency and magnetic properties in the range of 10 kHz to 100 MHz for
97696    nanocrystal Fe-Co alloy
97697 SO CURRENT APPLIED PHYSICS
97698 DT Article
97699 DE Fe-based soft magnetic alloy; co-doping; frequency property; ball
97700    milling; strain
97701 ID POWDERS; MOSSBAUER; FE/CO; CU
97702 AB Fe-based soft magnetic alloy with Co-doping was fabricated by
97703    high-energy milling. The X-ray diffraction (XRD) results exhibit a
97704    single phased structure, which could be regarded as BCC-like Fe-Co
97705    solid solution, was formed. Moreover, it has also been demonstrated
97706    that a nanocrystalline Fe-Co alloy was obtained and the evaluated grain
97707    sizes were about 7-12 nm. The frequency dependence of the initial
97708    permeability and magnetic losses, as well as DC-magnetization
97709    measurements, was systematically studied then. The results show that
97710    the f(n) (f(n) is the frequency when the curve of the No. n sample has
97711    a minimum value) shifts to the higher frequency with the increasing Co
97712    content in the range of 10 kHz to 100 MHz, while the magnetic losses of
97713    the samples decrease with the increasing Co content at the high
97714    frequency (800 kHz to 20 MHz). The Co-doping increases the cut-off
97715    frequencies of the samples and makes the initial permeability to keep a
97716    constant value in a wider frequency range. The corresponding peak value
97717    of the initial permeability as function of Co-doping concentration
97718    turns to the region of low Co concentration. For the long milling time,
97719    the loss apparently decreases beyond 1 MHz. (C) 2004 Elsevier B.V. All
97720    rights reserved.
97721 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
97722    Shanghai Univ, Res Ctr Nano Sci & Technol, Shanghai 200436, Peoples R China.
97723 RP Liu, YS, Shanghai Univ, Dept Phys, Shangda Rd 99, Shanghai 200436,
97724    Peoples R China.
97725 EM lysly99313@sohu.com
97726    jczhang@mail.shu.edu.cn
97727 CR CALKA A, 2002, NATURE, V419, P147
97728    CHEN CW, 1961, J APPL PHYS, V32, P348
97729    COEY JMD, 2001, J ALLOY COMPD, V326, P2
97730    DING J, 2002, J MAGN MAGN MATER, V247, P249
97731    ESCORIAL AG, 1991, MAT SCI ENG A-STRUCT, V134, P1394
97732    FADEEVA VI, 1996, MAT SCI ENG A-STRUCT, V206, P90
97733    FADEEVA VI, 2001, INORG MATER, V37, P190
97734    GOODENOUGH JB, 2002, IEEE T MAGN 2, V38, P3398
97735    HERZER G, 1990, IEEE T MAGN, V26, P1937
97736    JARTYCH E, 1993, J PHYS-CONDENS MAT, V5, P927
97737    KIM YD, 2000, MAT SCI ENG A-STRUCT, V291, P17
97738    LEE BH, 2003, MATER LETT, V57, P1103
97739    LI GD, 1999, CONT MAGNETISM, P187
97740    LI T, 1997, J PHYS-CONDENS MAT, V9, P1381
97741    LINDEROTH S, 1994, J APPL PHYS, V75, P5869
97742    MILHAM CD, 1994, J APPL PHYS, V75, P5659
97743    MURAYAMA M, 2002, SCIENCE, V295, P2433
97744    NASCIMENTO VP, 2001, J PHYS-CONDENS MAT, V13, P665
97745    PASSAMANI EC, 2002, J MATER SCI, V37, P819
97746    REN L, 2001, J MATER SCI, V36, P1451
97747    ROCHMAN NT, 1999, J MATER PROCESS TECH, V89, P367
97748    SHABANOVA IN, 2000, J STRUCT CHEM+, V41, P954
97749    WAN DF, 1994, MAGNETIC PHYS, P370
97750    XU SY, 1998, J SHANGHAI U, V2, P301
97751    XU SY, 2001, J SHANGHAI U, V5, P147
97752    YU RH, 2000, IEEE T MAGN 1, V36, P3388
97753    ZHU GH, 2000, J MATER SCI TECHNOL, V16, P543
97754    ZHU M, 1998, J MATER SCI LETT, V17, P445
97755 NR 28
97756 TC 0
97757 SN 1567-1739
97758 J9 CURR APPL PHYS
97759 JI Curr. Appl. Phys.
97760 PD AUG
97761 PY 2004
97762 VL 4
97763 IS 5
97764 BP 455
97765 EP 460
97766 PG 6
97767 SC Materials Science, Multidisciplinary; Physics, Applied
97768 GA 843KK
97769 UT ISI:000223077500007
97770 ER
97771 
97772 PT J
97773 AU Yan, W
97774    Yu, XL
97775    Jing, S
97776    Cheng, XF
97777    Yin, ST
97778 TI Measurements of solution heat and fusion heat of lithium formate
97779    monohydrate (HCOOLi center dot H2O) crystals
97780 SO CRYSTAL RESEARCH AND TECHNOLOGY
97781 DT Article
97782 DE LFM; solubility; solution heat; DSC analysis; fusion heat
97783 ID DEHYDRATION; SURFACE
97784 AB The solubility curve of Lithium Formate Monohydrate (LFM) crystal was
97785    measured using laser schlieren technique in 300-320K. According to the
97786    effects of temperature to solubility, solution heat of LFM crystal was
97787    calculated. Differential scanning calorimetry (DSC) analysis of LFM was
97788    performed in the temperature range of 300-500K. Endothermic peaks of
97789    the DSC curve of LFM crystal were assigned, and fusion heat and
97790    hydration activation energy of LFM were calculated.
97791 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
97792    Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China.
97793    Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Hefei 230031, Peoples R China.
97794 RP Yan, W, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
97795 EM yanwang@mail.shu.edu.cn
97796 CR BREDIKHIN VI, 2000, J CRYST GROWTH, V219, P83
97797    FLOR G, 1979, Z NATURFORSCH A, V34, P1113
97798    GAPONOV YA, 1988, J THERM ANAL, V33, P547
97799    GUARINI GGT, 1983, J CHEM SOC FARAD T 1, V79, P1599
97800    MANG CY, 2003, ACTA CHIM SINICA, V61, P359
97801    MASUDA Y, 1990, THERMOCHIM ACTA, V163, P271
97802    MOUAINE K, 1997, PHYS STATUS SOLIDI B, V200, P273
97803    MOUAINE K, 1999, J THERM ANAL CALORIM, V55, P807
97804    SINGH S, 1970, APPL PHYS LETT, V17, P292
97805    XIE SW, 1995, OPT COMMUN, V118, P648
97806    YAN W, 2001, J SYNTHETIC CRYSTALS, V30, P149
97807 NR 11
97808 TC 0
97809 SN 0232-1300
97810 J9 CRYST RES TECH
97811 JI Cryst. Res. Technol.
97812 PD AUG
97813 PY 2004
97814 VL 39
97815 IS 8
97816 BP 726
97817 EP 731
97818 PG 6
97819 SC Crystallography
97820 GA 844LD
97821 UT ISI:000223158800009
97822 ER
97823 
97824 PT J
97825 AU Lai, XJ
97826    Zhang, JF
97827 TI A new class of periodic solutions to the (2+1)-dimensional breaking
97828    soliton equation
97829 SO CHINESE JOURNAL OF PHYSICS
97830 DT Article
97831 ID NONLINEAR-WAVE EQUATIONS; COHERENT STRUCTURES; KDV EQUATION
97832 AB We investigate a new class of periodic solutions to the (2+1)
97833    -dimensional breaking soliton equation, by both the linear
97834    superposition approach and the mapping deformation method. These new
97835    periodic solutions are suitable combinations of the known periodic
97836    solutions to the (2+1)-dimensional breaking soliton equation obtained
97837    by means of the Jacobian elliptic function method, but they possess
97838    different periods and velocities.
97839 C1 Zhejiang Normal Univ, Inst Theoret Phys, Jinhua 321004, Peoples R China.
97840    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
97841 RP Lai, XJ, Zhejiang Normal Univ, Inst Theoret Phys, Jinhua 321004,
97842    Peoples R China.
97843 CR ABLOWITZ MJ, 1981, SOLITON INVERSE SCAT
97844    ALBER MS, 2001, INVERSE PROBL, V17, P1017
97845    BELOKOLOS E, 1994, ALGEBRO GEMETRICAL A
97846    BOGOYAVLENSKII OI, 1990, IZV AKAD NAUK SSSR M, V54, P123
97847    BOGOYAVLENSKII OI, 1990, USP MAT NAUK, V45, P17
97848    CAO CW, 2002, J MATH PHYS, V43, P621
97849    COOPER F, 2002, J PHYS A-MATH GEN, V35, P10085
97850    ESTEVEZ PG, 1999, J MATH PHYS, V40, P1406
97851    JAWORSKI M, 2003, PHYS REV LETT, V90
97852    KHARE A, 2002, J MATH PHYS, V43, P3798
97853    KHARE A, 2002, PHYS REV LETT, V88
97854    KONOPELCHENKO G, 1993, SOLITONS MULTIDIMENS
97855    LIU SK, 2001, PHYS LETT A, V289, P69
97856    LOU SY, 1989, J MATH PHYS, V30, P1614
97857    LOU SY, 1999, J MATH PHYS, V40, P6491
97858    LOU SY, 2000, PHYS LETT A, V277, P94
97859    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
97860    MALFLIET W, 1992, AM J PHYS, V60, P650
97861    MIURA MR, 1978, BACKLUND TRANSFORMAT
97862    NOVIKOV DP, 1999, SIBERIAN MATH J+, V40, P136
97863    RADHA R, 1995, PHYS LETT A, V197, P7
97864    TAM HW, 2000, J PHYS SOC JPN, V69, P45
97865    TANG XY, 2002, CHAOS SOLITON FRACT, V14, P1451
97866    TANG XY, 2002, PHYS REV E 2, V66
97867    WANG ML, 1995, PHYS LETT A, V199, P169
97868    ZHANG JF, 2002, COMMUN THEOR PHYS, V37
97869    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P653
97870 NR 27
97871 TC 1
97872 SN 0577-9073
97873 J9 CHIN J PHYS
97874 JI Chin. J. Phys.
97875 PD AUG
97876 PY 2004
97877 VL 42
97878 IS 4
97879 PN Part 1
97880 BP 361
97881 EP 370
97882 PG 10
97883 SC Physics, Multidisciplinary
97884 GA 843XI
97885 UT ISI:000223120000005
97886 ER
97887 
97888 PT J
97889 AU Yang, GB
97890    Zhang, ZY
97891 TI An adaptive frame skipping and VOP interpolation algorithm for video
97892    object segmentation
97893 SO CHINESE JOURNAL OF ELECTRONICS
97894 DT Article
97895 DE adaptive frame skipping; VOP (video object plane) interpolation; video
97896    object segmentation; MPEG-4
97897 ID MOVING-OBJECTS
97898 AB Video object segmentation is a key step for the successful use of
97899    MPEG-4. However, most of the current available segmentation algorithms
97900    are still far away from real-time performance. In order to improve the
97901    processing speed, an adaptive frame skipping and VOP interpolation
97902    algorithm is proposed in this paper. It adaptively determines the
97903    number of skipped frames based on the rigidity and motion complexity of
97904    video object. To interpolate the VOPs for skipped frames, a
97905    bi-directional projection scheme is adopted. Its principle is to
97906    perform a classification of those regions obtained by spatial
97907    segmentation for every frame in the sequence. It is valid for both
97908    rigid object and non-rigid object and can get good localization of
97909    object boundaries. Experimental results show that the proposed approach
97910    can improve the processing speed greatly while maintaining visually
97911    pleasant results.
97912 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
97913 RP Yang, GB, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
97914    Peoples R China.
97915 CR EROL B, 2000, IEEE T MULTIMEDIA, V2, P129
97916    KIM DW, 1999, IEEE T CONSUMER ELEC, V45
97917    TSAIG Y, 2002, IEEE T CIRC SYST VID, V12, P597
97918    TUCNEL E, 2000, IEEE T CIRCUITS SYST, V10
97919    WANG CK, 1996, P IEEE INT C AC SPEE, V4, P2327
97920    WOLLBORN M, 1998, ISOIECJTC1SC29WG11
97921    YANG G, 2003, IEE ELECT LETT, V39, P1113
97922    ZHANG DS, 2001, CIRC SYST SIGNAL PR, V20, P143
97923    ZHONG D, 1998, P IEEE INT C IM PROC, V2, P647
97924    ZHONG D, 1999, IEEE T CIRC SYST VID, V9, P1259
97925 NR 10
97926 TC 0
97927 SN 1022-4653
97928 J9 CHINESE J ELECTRON
97929 JI Chin. J. Electron.
97930 PD JUL
97931 PY 2004
97932 VL 13
97933 IS 3
97934 BP 453
97935 EP 458
97936 PG 6
97937 SC Engineering, Electrical & Electronic
97938 GA 843DZ
97939 UT ISI:000223057400018
97940 ER
97941 
97942 PT J
97943 AU Fang, JH
97944    Ding, WH
97945    Shen, X
97946    Shi, LY
97947    Chen, NY
97948 TI The phase diagram of the RbBr-NaBr system
97949 SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY
97950 DT Article
97951 DE phase diagram; rubidium bromide; sodium bromide; atomic
97952    parameter-pattern recognition method; DTA
97953 AB In this paper, the data from 75 known phase diagrams of MX-M'X systems
97954    (X = F, Cl, Br, I; M and M' are monovalent metals) are processed by an
97955    atomic parameter-pattern recognition method (employing the Fisher
97956    method). It is pointed out that the solid solution formers and solid
97957    solution nonformers are distributed in different regions in a
97958    hyperspace spanned by Pauling's ionic radii and Batsanov's
97959    electronegativities of the constituent elements. On the basis of a
97960    criterion found in the paper, the formation of a solid solution of NaBr
97961    in RbBr in the RbBr-NaBr system is suggested. The phase diagram of the
97962    RbBr-NaBr system is determined by differential thermal analysis. It is
97963    suggested that there is a eutectic at 786 K and 55 mol%RbBr in the
97964    phase diagram of RbBr-NaBr, with a solubility of NaBr in RbBr of about
97965    8 mol% at the eutectic temperature, and negligible solid solubility on
97966    the NaBr side of the diagram. (C) 2004 Published by Elsevier Ltd.
97967 C1 Shanghai Univ, Coll Sci, Shanghai 200436, Peoples R China.
97968    Shanghai Univ, Coll Mat Sci & Engn, Shanghai 200072, Peoples R China.
97969 RP Fang, JH, Shanghai Univ, Coll Sci, Shanghai 200436, Peoples R China.
97970 EM fangjianhui66@163.com
97971 CR BARIN I, 1993, THERMOCHEMICAL DATA
97972    CHEN NY, 1999, J ALLOY COMPD, V289, P120
97973    PASIPAIKO FE, 1977, PHASE DIAGRAMS SALT
97974    SAMUSEVA RG, 1964, ZH NEORG KHIM, V9, P2436
97975    SANGSTER J, 1987, J PHYS CHEM REF DATA, V16, P509
97976    TOVMASYAN IK, 1970, ZH NEORG KHIM, V15, P2535
97977    VOSKRESINSKAYA NK, 1961, HDB FUSIBILITY ANHYD
97978    WOJAKOWSKA A, 2000, THERMOCHIM ACTA, V344, P55
97979    WOJAKOWSKA A, 2001, J THERM ANAL CALORIM, V65, P491
97980 NR 9
97981 TC 0
97982 SN 0364-5916
97983 J9 CALPHAD-COMPUT COUP PHASE DIA
97984 JI Calphad-Comput. Coupling Ph. Diagrams Thermochem.
97985 PD MAR
97986 PY 2004
97987 VL 28
97988 IS 1
97989 BP 9
97990 EP 14
97991 PG 6
97992 SC Chemistry, Physical; Thermodynamics
97993 GA 843PQ
97994 UT ISI:000223097000002
97995 ER
97996 
97997 PT J
97998 AU Ni, SY
97999    Wang, XR
98000    Wu, YZ
98001    Chen, HY
98002    Zhu, WQ
98003    Jiang, XY
98004    Zhang, ZL
98005    Sun, RG
98006 TI Decay mechanisms of a blue organic light emitting diode
98007 SO APPLIED PHYSICS LETTERS
98008 DT Article
98009 ID ELECTROLUMINESCENCE; DEVICES; ELECTRODES; LAYER
98010 AB A blue organic light-emitting diode employing perylene as light
98011    emitting dopant and 9,10-bis(3'5'-diaryl)phenyl anthracene (DPA) as
98012    host has been studied for its decay mechanisms. The device structure is
98013    ITO(indium tin oxide)/CuPc(copper
98014    phthalocyanine)/NPD(alpha-naphthylphenylbiphenyl
98015    diamine)/DPA:perylene/Alq(3) (8-hydroxy-quinoline aluminum)/MgAg. In
98016    this device, CuPc and NPD are used as hole injection and transporting
98017    layers, DPA as a blue host, perylene as a blue emitting dopant, Alq(3)
98018    as an electron transport layer, MgAg as cathode, respectively. A
98019    luminance of 4359 cd/m(2) at 15 V and a current efficiency of 3 cd/A at
98020    5 V have been achieved. The breakdown of the interfaces in the device
98021    is found to be one of the factors for the decay and the decomposition
98022    of the light emitter is not significantly studied by
98023    current-voltage-luminance, photoluminescence, and electroluminescence
98024    measurements. The lifetime is not intrinsic for this type of device.
98025    (C) 2004 American Institute of Physics.
98026 C1 Shanghai Univ, Key Lab Adv Displays & Syst Applicat, Shanghai 201800, Peoples R China.
98027    Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
98028 RP Sun, RG, Shanghai Univ, Key Lab Adv Displays & Syst Applicat, Jiading
98029    Campus, Shanghai 201800, Peoples R China.
98030 EM rgsun@mail.shu.edu.cn
98031 CR *NIKK BUS, 2003, FLAT PAN DISPL 2003
98032    AZIZ H, 1999, SCIENCE, V283, P1900
98033    CAO Y, 2000, J APPL PHYS, V88, P3618
98034    HOSOKAWA C, 1995, APPL PHYS LETT, V67, P3853
98035    HOSOKAWA C, 1997, SYNTHETIC MET, V91, P3
98036    KITAMURA M, 2003, APPL PHYS LETT, V83, P3410
98037    KONDAKOV DY, 2003, J APPL PHYS, V93, P1108
98038    LEE ST, 1999, APPL PHYS LETT, V75, P1404
98039    LIU Y, 2001, APPL PHYS LETT, V78, P2300
98040    POPE M, 1982, ELECT PROCESSES ORGA
98041    POPOVIC ZD, 2001, J APPL PHYS, V89, P4673
98042    SHI JM, 2002, APPL PHYS LETT, V80, P3201
98043    STEUBER F, 2000, ADV MATER, V12, P130
98044    ZHANG ZL, 2000, CHIN J LUMIN, V21, P369
98045    ZOU DC, 1998, APPL PHYS LETT, V72, P2484
98046 NR 15
98047 TC 3
98048 SN 0003-6951
98049 J9 APPL PHYS LETT
98050 JI Appl. Phys. Lett.
98051 PD AUG 9
98052 PY 2004
98053 VL 85
98054 IS 6
98055 BP 878
98056 EP 880
98057 PG 3
98058 SC Physics, Applied
98059 GA 843TM
98060 UT ISI:000223109500009
98061 ER
98062 
98063 PT J
98064 AU Wei, JH
98065    Hu, HT
98066 TI On metallurgical processes and non-equilibrium thermodynamics
98067 SO STEEL RESEARCH INTERNATIONAL
98068 DT Article
98069 DE metallurgical processes; non-linearity; non-equilibrium; metallurgical
98070    reaction engineering; non-equilibrium thermodynamics
98071 ID SUBMERGED POWDER INJECTION; KINETIC-MODEL; MOLTEN STEEL; LIQUID-IRON;
98072    DESULFURIZATION; DECARBURIZATION; FURNACE; LADLE
98073 AB Taking the vacuum circulation (RH) refining of clean steel (ultra-low
98074    carbon and ultra-low sulphur steel) as an example, the non-linear and
98075    non-equilibrium features of metallurgical processes have been
98076    illustrated. The similarities and differences between metallurgical
98077    reaction engineering and non-equilibrium thermodynamics have been
98078    analysed. A generalized theory of non-equilibrium thermodynamics is
98079    introduced and described. The necessity and feasibility investigating
98080    and dealing with practical metallurgical processes from the viewpoints,
98081    fundamentals and methods of non-equilibrium thermodynamics together
98082    with metallurgical reaction engineering have been discussed. It is
98083    pointed out that in order to really and quantitatively describe
98084    practical metallurgical processes, their features of non-linearity and
98085    non-equilibrium must fully be taken into account, and non-equilibrium
98086    thermodynamics would and can play its role in the metallurgical area.
98087 C1 Shanghai Univ, Dept Met Mat, Shanghai 200072, Peoples R China.
98088 RP Wei, JH, Shanghai Univ, Dept Met Mat, 149 Yan Chang Rd, Shanghai
98089    200072, Peoples R China.
98090 EM jihew@hotmail.com
98091 CR ANDERSSON MAT, 2000, ISIJ INT, V40, P1080
98092    BAKAKIN AB, 1981, IZV VUZ FERROUS META, V9, P33
98093    BEJAN A, 1982, ENTROPY GENERATION H
98094    BEJAN A, 1996, ENTROPY GENERATION M
98095    BEKKER JG, 1999, ISIJ INT, V39, P23
98096    ECKART C, 1940, PHYS REV, V58, P267
98097    ECKART C, 1940, PHYS REV, V58, P269
98098    ECKART C, 1940, PHYS REV, V58, P919
98099    ENDOH K, 1989, SADA TETSU TOGISATA, V335, P20
98100    ENDOH K, 1990, NIPPON STEEL TECHNIC, V4, P45
98101    EU BC, 1992, KINETIC THEORY IRREV
98102    FORLAND KS, 1988, IRREVERSIBLE THERMOD
98103    FUJII T, 1970, TETSU TO HAGANE, V56, P1165
98104    HALE RJ, 1990, STEELM C P ISS AIME, V73, P69
98105    HARA Y, 1986, PRODUCTION ULTRALO 1
98106    HATAKEYAMA T, 1989, IRON STEELMAKER, V15, P23
98107    ITO K, 1975, TETSU TO HAGANE, V61, P312
98108    JONSSON L, 1997, STEELMAKING C P, V80, P69
98109    JONSSON L, 1998, ISIJ INT, V38, P260
98110    JOU D, 1996, EXTENDED IRREVERSIBL
98111    KORIA SC, 2000, SCAND J METALL, V29, P259
98112    KUWABARA T, 1988, T IRON STEEL I JPN, V28, P305
98113    MEIXNER J, 1959, HDB PHYS 2
98114    MORI K, 1971, TETSU TO HAGANE, V57, S55
98115    MYRAYAMA N, 1990, P 6 INT IR STEEL C N, V3, P151
98116    OHGUCHI S, 1984, IRONMAK STEELMAK, V11, P202
98117    OHGUCHI S, 1984, IRONMAK STEELMAK, V11, P262
98118    OHGUCHI S, 1984, IRONMAK STEELMAK, V11, P274
98119    OKADA Y, 1992, CAMP ISIJ, V5, P1238
98120    OKADA Y, 1994, TETSU TO HAGANE, V80, T9
98121    ONSAGER L, 1931, PHYS REV, V38, P2265
98122    PRIGOGINE I, 1961, INTRO THERMODYNAMICS
98123    ROBERTSON DGC, 1984, IRONMAK STEELMAK, V11, P41
98124    SAWADA I, 1986, 12 SCANNINJECT IV 1
98125    SLATTERY JC, 1990, INTERFACIAL TRANSPOR
98126    SOLHED H, 2000, SCAND J METALL, V29, P127
98127    STRATONOVICH RL, 1994, NONLINEAR NONEQUILIB, V1
98128    TAO XJ, 1998, ISIJ INT, V38, P1185
98129    TAO XJ, 1999, ISIJ INT, V39, P301
98130    TRAEBERT A, 1999, SCAND J METALL, V28, P285
98131    UEHARAL H, 1992, CAMP ISIJ, V5, P1240
98132    WATANABE H, 1968, TETSU TO HAGANE, V54, P1327
98133    WEI CHJ, 1982, P 3 PROC TECHN C US, P232
98134    WEI JH, 1986, CHIN J MET SCI TECHN, V2, P11
98135    WEI JH, 1986, CHINESE J MET SCI TE, V2, P24
98136    WEI JH, 1987, MASS TRANSFER MODEL, V23, B126
98137    WEI JH, 1989, CHIN J MET SCI TECHN, V5, P235
98138    WEI JH, 1997, 74 XIANGSH SCI FOR O
98139    WEI JH, 2000, IRONMAK STEELMAK, V27, P129
98140    WEI JH, 2002, STEEL RES, V73, P135
98141    WEI JH, 2002, STEEL RES, V73, P143
98142 NR 51
98143 TC 0
98144 SN 0177-4832
98145 J9 STEEL RES INT
98146 JI Steel Res. Int.
98147 PD JUL
98148 PY 2004
98149 VL 75
98150 IS 7
98151 BP 449
98152 EP 454
98153 PG 6
98154 SC Metallurgy & Metallurgical Engineering
98155 GA 842HQ
98156 UT ISI:000222994700004
98157 ER
98158 
98159 PT J
98160 AU Chou, KC
98161    Zhong, XM
98162    Xu, KD
98163 TI Calculation of physicochemical properties in a ternary system with
98164    miscibility gap
98165 SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND
98166    MATERIALS PROCESSING SCIENCE
98167 DT Article
98168 ID THERMODYNAMIC PROPERTIES; BINARY DATA; MODEL; ALLOYS
98169 AB For a ternary system with a complete miscible area, one may use
98170    geometrical models, such as the Kohler model, Muggianu-Jacob model,
98171    Toop model, Hillert model, Luck-Chou model, etc. to calculate
98172    thermodynamic properties. However, for the ternary system with a
98173    partial miscible area, if that area does not touch the binary edges in
98174    a ternary composition triangle, in principle, the geometric model
98175    cannot give an accurate estimation for thermodynamic properties due to
98176    the absence of accurate binary information at the given temperature. In
98177    this article, a special method has been proposed for calculating
98178    thermodynamic properties and other physicochemical properties for the
98179    partial miscible area in a ternary system if those properties along the
98180    miscible boundary are known. Two examples have shown that this method
98181    works very well.
98182 C1 Chinese Acad Sci, Beijing 100864, Peoples R China.
98183    Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China.
98184    Shanghai Univ, Shanghai 200072, Peoples R China.
98185 RP Chou, KC, Chinese Acad Sci, Beijing 100864, Peoples R China.
98186 EM kcc@public.bta.net.cn
98187 CR ANSARA I, 1979, INT METAL REV, V1, P20
98188    CAI WJ, 1987, ACTA METALL SIN, V23, P248
98189    CHEN SG, 1989, CALPHAD, V13, P79
98190    CHEN SL, 1989, CALPHAD, V13, P225
98191    CHEN SL, 1989, RARE METALS, V18, P22
98192    CHOU K, 1987, CALPHAD, V11, P287
98193    CHOU KC, 1978, SCI SINICA, V21, P601
98194    CHOU KC, 1981, CHEM METALLURGY TRIB, P195
98195    CHOU KC, 1981, P 1 INT C APPL MOD S, V4, P35
98196    CHOU KC, 1987, CALPHAD, V11, P123
98197    CHOU KC, 1988, METALL T A, V19, P373
98198    CHOU KC, 1989, BER BUNSEN PHYS CHEM, V93, P741
98199    CHOU KC, 1989, RARE METALS, V18, P12
98200    CHOU KC, 1990, PHYS CHEM ACTA, V6, P169
98201    CHOU KC, 1996, ACTA METALL SIN, V33, P126
98202    CHOU KC, 1997, METALL MATER TRANS B, V28, P439
98203    HARA S, 1988, T JPN I MET, V29, P977
98204    HILLERT M, 1980, CALPHAD, V14, P1
98205    HU JH, 1990, J UNIV SCI TECHNOL B, V12, P558
98206    JACOB KT, 1977, THERMOCHIM ACTA, V18, P197
98207    KOHLER F, 1960, MONATSH CHEM, V91, P738
98208    LI RQ, 1988, THESIS U SCI TECHNOL
98209    LUCK R, 1986, Z METALLKD, V77, P442
98210    MILLS KC, 1981, SLAG ATLAS, P65
98211    MUGGIANU YM, 1975, J CHIMIE PHYSIQUE, V72, P83
98212    TOOP GW, 1965, T METALL SOC AIME, V233, P850
98213    ZHONG XM, 2003, J PHASE EQUILIB, V24, P7
98214 NR 27
98215 TC 2
98216 SN 1073-5615
98217 J9 METALL MATER TRANS B
98218 JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci.
98219 PD AUG
98220 PY 2004
98221 VL 35
98222 IS 4
98223 BP 715
98224 EP 720
98225 PG 6
98226 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
98227    Engineering
98228 GA 841OH
98229 UT ISI:000222939500011
98230 ER
98231 
98232 PT J
98233 AU Meng, YC
98234    Guo, QZ
98235    Tan, WH
98236    Huang, ZM
98237 TI Analytical solutions of coupled-mode equations for multiwaveguide
98238    systems, obtained by use of Chebyshev and generalized Chebyshev
98239    polynomials
98240 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND
98241    VISION
98242 DT Article
98243 ID OPTICAL FIBER COUPLERS; WAVE-GUIDE; DESIGN; EXPANSION
98244 AB A novel approach is proposed for obtaining the analytical solutions of
98245    the coupled-mode equations (CMEs); the method is applicable for an
98246    arbitrary number of coupled waveguides. The mathematical aspects of the
98247    CMEs and their solution by use of Chebyshev polynomials are discussed.
98248    When mode coupling between only adjacent waveguides is considered
98249    (denoted weak coupling), the first and second kinds of the usual
98250    Chebyshev polynomials are appropriate for evaluating the CMEs for
98251    linearly distributed and circularly distributed multi-waveguide
98252    systems, respectively. However, when one is considering the coupling
98253    effects between nonadjacent waveguides also (denoted strong coupling),
98254    it is necessary to use redefined generalized Chebyshev polynomials to
98255    express general solutions in a form similar to those for the
98256    weak-coupling case. As concrete examples, analytical solutions for 2 x
98257    2, 3 x 3, and 4 x 4 linearly distributed directional couplers are
98258    obtained by the proposed approach, which treats the calculation as a
98259    nondegenerate eigenvalue problem. In addition, for the 3 x 3 circularly
98260    distributed directional coupler, which gives rise to a degenerate
98261    eigenvalue problem, an analytical solution is obtained in an improved
98262    way. Also, for comparison and without loss of generality, to clarify
98263    the difference between the two coupling cases, analytical solutions for
98264    a 5 x 5 circularly distributed directional coupler are obtained by use
98265    of the usual and the redefined generalized Chebyshev polynomials. (C)
98266    2004 Optical Society of America.
98267 C1 Shanghai Univ Sci & Technol, Inst Fiber Opt, Shanghai 201800, Peoples R China.
98268    Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
98269    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
98270 RP Meng, YC, Shanghai Univ Sci & Technol, Inst Fiber Opt, Jiading Campus,
98271    Shanghai 201800, Peoples R China.
98272 EM mengyichao@sh163.net
98273 CR ANKIEWICZ A, 1986, J LIGHTWAVE TECHNOL, V4, P1317
98274    ARKRIGHT JW, 1991, ELECTRON LETT, V27, P1767
98275    BISWAS A, 2003, OPT QUANT ELECTRON, V35, P221
98276    BUAH PA, 1997, IEEE J QUANTUM ELECT, V33, P874
98277    CHANG CS, 1994, J LIGHTWAVE TECHNOL, V12, P415
98278    CHEN Y, 1991, OPT QUANT ELECTRON, V24, P539
98279    CHEW YH, 1993, J LIGHTWAVE TECHNOL, V11, P1998
98280    CHUANG SL, 1987, J LIGHTWAVE TECHNOL, V5, P174
98281    FALCIAL R, 1990, INT J OPTOELECTRON, V5, P41
98282    GRADSHEYN S, 1990, TABLE INTEGRALS, P30
98283    HARDY A, 1986, IEEE J QUANTUM ELECT, V22, P528
98284    HARDY A, 1988, OPT LETT, V13, P161
98285    HAUS HA, 1983, IEEE J QUANTUM ELECT, V19, P840
98286    HUANG WP, 1994, J OPT SOC AM A, V11, P963
98287    HUANG Y, 1995, ACTA OPT SINICA, V15, P248
98288    KISHI N, 1988, IEEE T MICROW THEORY, V36, P1861
98289    KOWALSKI A, 1990, J LIGHTWAVE TECHNOL, V8, P164
98290    KUBO H, 1989, J LIGHTWAVE TECHNOL, V7, P1924
98291    MEHRANY K, 2003, J OPT SOC AM B, V20, P2434
98292    MORTIMORE DB, 1990, APPL OPTICS, V29, P371
98293    PENG GD, 1991, APPL OPTICS, V30, P2533
98294    SHE SX, 1988, OPT COMMUN, V87, P271
98295    SNYDER AW, 1972, J OPT SOC AM, V62, P1267
98296    SUN LP, 1989, MICROW OPT TECHN LET, V2, P52
98297    VANCE RWC, 1994, IEE P-OPTOELECTRON, V141, P231
98298    WANG QJ, 2004, IEEE PHOTONIC TECH L, V16, P168
98299    WANG Z, 2000, INTRO SPECIAL FUNCTI, P168
98300    WRAGE M, 2002, OPT COMMUN, V205, P367
98301    YAO SQ, 2000, ACTA OPT SINICA, V20, P952
98302    YARIV A, 1973, IEEE J QUANTUM ELECT, V9, P919
98303 NR 30
98304 TC 0
98305 SN 1084-7529
98306 J9 J OPT SOC AM A-OPT IMAGE SCI
98307 JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis.
98308 PD AUG
98309 PY 2004
98310 VL 21
98311 IS 8
98312 BP 1518
98313 EP 1528
98314 PG 11
98315 SC Optics
98316 GA 841KI
98317 UT ISI:000222928300019
98318 ER
98319 
98320 PT J
98321 AU Wang, LJ
98322    Xia, YB
98323    Zhang, ML
98324    Shen, HJ
98325    Su, QF
98326    Gu, BB
98327    Lou, YY
98328 TI Spectroscopic ellipsometric study of CVD diamond films: modelling and
98329    optical properties in the energy range of 0.1-0.4 eV
98330 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
98331 DT Article
98332 AB In this paper, the infrared optical properties of diamond films on
98333    silicon substrates grown by means of hot filament chemical vapour
98334    deposition (HFCVD) and microwave plasma chemical vapour deposition
98335    (MPCVD) method, are studied by infrared spectroscopic ellipsometry
98336    (IRSE) in the energy range of 0.1-0.4 eV. The establishment of
98337    appropriate models has the strongest influence on the fit of
98338    ellipsometric spectra. For diamond films grown by HFCVD method, the
98339    best fitting model is Si\diamond\(diamond + void)\ air with an 879 nm
98340    rough surface layer included by Bruggeman EMA, but for MPCVD film with
98341    a 77.5 nm middle layer of SiO2. The average refractive index n of the
98342    HFCVD film is about 2.19 and the extinction coefficients k are between
98343    1.0 and 10(-3). However, for the MPCVD film, the value of n is very
98344    close to that of natural diamond and the k values are about
98345    10(-12)-10(-15), which show that the film grown by MPCVD is transparent
98346    in infrared region, and is optically much better than the HFCVD film.
98347 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
98348 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
98349    China.
98350 EM ljwang@mail.shu.edu.cn
98351 CR ANGUS JC, 1988, SCIENCE, V241, P913
98352    BRUGGEMAN DAG, 1935, ANN PHYS-BERLIN, V24, P636
98353    COMFORT JC, 1987, ANN SIM S NEW YORK, P185
98354    FANG ZJ, 2002, J PHYS-CONDENS MAT, V14, P5271
98355    MCNAMARA KM, 1994, THIN SOLID FILMS, V253, P157
98356    WANG LJ, 2000, J PHYS-CONDENS MAT, V12, L257
98357    WANG LJ, 2003, J PHYS D APPL PHYS, V36, P2548
98358    ZHU W, 1991, P IEEE, V79, P621
98359 NR 8
98360 TC 0
98361 SN 0022-3727
98362 J9 J PHYS-D-APPL PHYS
98363 JI J. Phys. D-Appl. Phys.
98364 PD JUL 21
98365 PY 2004
98366 VL 37
98367 IS 14
98368 BP 1976
98369 EP 1979
98370 PG 4
98371 SC Physics, Applied
98372 GA 842TC
98373 UT ISI:000223026100013
98374 ER
98375 
98376 PT J
98377 AU Xiao, XS
98378    Shoushi, F
98379    Wang, GM
98380    Qin, H
98381    Dong, Y
98382 TI Influence of beryllium on thermal stability and glass-forming ability
98383    of Zr-Al-Ni-Cu bulk amorphous alloys
98384 SO JOURNAL OF ALLOYS AND COMPOUNDS
98385 DT Article
98386 DE bulk metallic glass; glass forming ability; thermal stability; reduced
98387    supercooled liquid region
98388 ID SUPERCOOLED LIQUID REGION; MOLD CASTING METHOD; METALLIC GLASSES
98389 AB Thermal stability and glass-forming ability of Zr65-xAl10Ni10Cu15Bex (x
98390    = 0, 3, 6, 9, 12.5, 16) bulk metallic glasses were investigated by
98391    differential scanning calorimetry, differential thermal analysis, X-ray
98392    diffraction and high-resolution transmission electron microscopy
98393    (HRTEM). The results show that the substitution of beryllium for
98394    zirconium strongly affects the supercooled liquid region (DeltaT(x) =
98395    T-x - T-g(onset)), the reduced supercooled liquid region (DeltaT(rg) =
98396    (T-g(onset))/(T-i - T-g(onset))) and the reduced glass transition
98397    temperature (T-rg = T-g/T-i). With increasing of x values, the three
98398    parameters that were used to indicate the glass forming ability and
98399    thermal stability increase first and then decrease. It is in agreement
98400    with the result that these glasses gradually change from an
98401    off-eutectic composition into a eutectic one (x = 12.5) that favours
98402    higher glass-forming ability, and then there is again a departure from
98403    the eutectic composition. Consequently, a moderate Be content will
98404    favor to increase the glass forming ability and thermal stability in
98405    Zr65-xAl10Ni10Cu15Bex bulk amorphous alloys. The effect of Be was
98406    explained in terms of Miedema's theory, electronegativity difference
98407    and atomic size parameter of the amorphous alloys. (C) 2004 Elsevier
98408    B.V. All rights reserved.
98409 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
98410 RP Xiao, XS, Shanghai Univ, Inst Mat, Yanchang Rd 149, Shanghai 200072,
98411    Peoples R China.
98412 EM xsxiao@mail.shu.edu.cn
98413 CR BAKKER H, 1998, ALLOYS MIEDEMAS SEMI, V1, P1
98414    FANG SS, 1999, J ALLOY COMPD, V293, P10
98415    FANG SS, 2003, J NON-CRYST SOLIDS, V321, P120
98416    INOUE A, 1990, MATER T JIM, V31, P425
98417    INOUE A, 1991, MATER T JIM, V32, P609
98418    INOUE A, 1994, MAT SCI ENG A-STRUCT, V179, P210
98419    INOUE A, 1997, MAT SCI ENG A-STRUCT, V393, P226
98420    INOUE A, 1997, MATER T JIM, V38, P175
98421    INOUE A, 2000, ACTA MATER, V48, P279
98422    INOUE A, 2001, MATER TRANS, V42, P1800
98423    LU ZP, 2002, ACTA MATER, V50, P3501
98424    NISHIYAMA N, 1997, MATER T JIM, V38, P464
98425    PEKER A, 1993, APPL PHYS LETT, V63, P2342
98426    WANG WH, 1998, J APPL PHYS, V84, P1
98427    XIAO XS, 2003, J ALLOY COMPD, V351, P324
98428    ZHANG T, 1991, MATER T JIM, V32, P1005
98429 NR 16
98430 TC 2
98431 SN 0925-8388
98432 J9 J ALLOYS COMPOUNDS
98433 JI J. Alloy. Compd.
98434 PD AUG 11
98435 PY 2004
98436 VL 376
98437 IS 1-2
98438 BP 145
98439 EP 148
98440 PG 4
98441 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
98442    Metallurgical Engineering
98443 GA 842SV
98444 UT ISI:000223025400027
98445 ER
98446 
98447 PT J
98448 AU Wang, X
98449    Li, YZ
98450    Zhang, SH
98451 TI Oligopolistic equilibrium analysis for electricity markets: A nonlinear
98452    complementarity approach
98453 SO IEEE TRANSACTIONS ON POWER SYSTEMS
98454 DT Article
98455 DE Karush-Kuhn-Tucker (KKT) conditions; Nash equilibrium; nonlinear
98456    complementarity method; supply function equilibrium
98457 ID SPOT MARKET; POWER-SYSTEMS; COMPETITION; ALGORITHM; MODELS
98458 AB Oligopolistic equilibrium models are widely used in electricity market
98459    analysis, among which the supply function equilibrium model has been
98460    chosen as the basis of many power market models. A nonlinear
98461    complementarity approach has been proposed in this paper to calculate
98462    the Nash supply function equilibrium for a bid-based-pool generation
98463    market with a de transmission model. A mixed nonlinear complementarity
98464    problem (NCP) is presented by combining the Karush-Kuhn-Tucker
98465    conditions of all strategic generating firms. Using a special nonlinear
98466    complementarity function, the mixed NCP is reformulated as a set of
98467    nonlinear algebraic equations and thus can be solved by an inexact
98468    Levenberg-Marquardt algorithm. Numerical examples are presented to
98469    verify the effectiveness of the proposed method. The results show that
98470    the generating firms could exercise their market power by
98471    over-production under congestion, or by capacity withholding in case of
98472    power shortage. The approach developed in this paper provides an
98473    efficient way to the solution of large-scale, complicated equilibrium
98474    models for electricity markets.
98475 C1 Shanghai Univ, Dept Elect Engn, Shanghai, Peoples R China.
98476 RP Wang, X, Shanghai Univ, Dept Elect Engn, Shanghai, Peoples R China.
98477 EM xianwang0427@sina.com
98478    yzli@mail.shu.edu.cn
98479    eeshzhan@sina.com
98480 CR BALDICK R, 2002, IEEE T POWER SYST, V17, P1170
98481    DAVID AK, 2001, IEEE T ENERGY CONVER, V16, P352
98482    DAY CJ, 2002, IEEE T POWER SYST, V17, P597
98483    DELUCA T, 2000, COMPUT OPTIM APPL, V16, P173
98484    FACCHINEI F, 1997, MATH PROGRAM, V76, P493
98485    GREEN R, 1996, J IND ECON, V44, P205
98486    GREEN RJ, 1992, J POLIT ECON, V100, P929
98487    HOBBS BF, 2000, IEEE T POWER SYST, V15, P638
98488    HOBBS BF, 2001, IEEE T POWER SYST, V16, P194
98489    LATORRE MD, 2003, IEEE T POWER SYST, V18, P611
98490    LUO ZQ, 1996, MATH PROGRAMS EQUILI
98491    MUNSON TS, 2001, INFORMS J COMPUT, V13, P294
98492    NEWBERY DM, 1998, RAND J ECON, V29, P726
98493    WEBER JD, 1999, IEEE POW ENG M EDM A
98494    YOUNES Z, 1999, DECIS SUPPORT SYST, V24, P207
98495 NR 15
98496 TC 0
98497 SN 0885-8950
98498 J9 IEEE TRANS POWER SYST
98499 JI IEEE Trans. Power Syst.
98500 PD AUG
98501 PY 2004
98502 VL 19
98503 IS 3
98504 BP 1348
98505 EP 1355
98506 PG 8
98507 SC Engineering, Electrical & Electronic
98508 GA 842AX
98509 UT ISI:000222975800013
98510 ER
98511 
98512 PT J
98513 AU Du, G
98514 TI Detection of sea-surface radar targets based on fractal model
98515 SO ELECTRONICS LETTERS
98516 DT Article
98517 ID FRACTIONAL BROWNIAN-MOTION
98518 AB A novel method for detecting radar targets based on fractal
98519    characteristics of sea-surface scattering is proposed, in which the
98520    fractional Brownian motion model is used. The experiments show that the
98521    method is reliable and can improve the accuracy of detection.
98522 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200041, Peoples R China.
98523 RP Du, G, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200041,
98524    Peoples R China.
98525 CR FRANCESCHETTI G, 1999, IEEE T ANTENN PROPAG, V47, P1405
98526    LIU SC, 1997, IEEE T IMAGE PROCESS, V6, P1176
98527    MANDELBROT BB, 1983, FRACTAL GEOMETRY NAT, P31
98528    POTAPOV AA, 2001, 4 INT KHARK S PHYS E, V1, P268
98529    TO L, 1993, IEE P F, V140, P243
98530 NR 5
98531 TC 0
98532 SN 0013-5194
98533 J9 ELECTRON LETT
98534 JI Electron. Lett.
98535 PD JUL 8
98536 PY 2004
98537 VL 40
98538 IS 14
98539 BP 906
98540 EP 907
98541 PG 2
98542 SC Engineering, Electrical & Electronic
98543 GA 841IE
98544 UT ISI:000222922700043
98545 ER
98546 
98547 PT J
98548 AU Xu, GQ
98549    Li, ZB
98550 TI Symbolic computation of the Painleve test for nonlinear partial
98551    differential equations using Maple
98552 SO COMPUTER PHYSICS COMMUNICATIONS
98553 DT Article
98554 DE nonlinear partial differential equations; Painleve test; truncated
98555    expansion; symbolic computation
98556 ID LINEAR EVOLUTION-EQUATIONS; SINGULARITY ANALYSIS; SOLITON-SOLUTIONS;
98557    BURGERS-EQUATION; WAVE SOLUTIONS; KDV EQUATION; INTEGRABILITY;
98558    PROPERTY; TRANSFORMATIONS; REDUCTIONS
98559 AB A software package wkptest written in Maple is presented, which can
98560    carry out the traditional Painleve test for polynomial partial
98561    differential equations automatically. Furthermore, some truncated
98562    expansions are also obtained whether an equation passes the test or
98563    not. The truncated expansions play an important role in studying the
98564    integrability, such as Lax pairs, bilinear forms, Darboux
98565    transformations and explicit solutions. The effectiveness of wkptest is
98566    illustrated by applying it to a variety of equations.
98567 C1 E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China.
98568    Shanghai Univ, Coll Int Business & Management, Shanghai 200436, Peoples R China.
98569 RP Xu, GQ, E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R
98570    China.
98571 EM xuguiqiong@yahoo.com
98572    lizb@cs.ecnu.edu.cn
98573 CR ABLOWITZ MJ, 1978, LETT NUOVO CIMENTO, V23, P333
98574    ABLOWITZ MJ, 1999, NONLINEAR EVOLUTION
98575    ALAGESAN T, 1996, CHAOS SOLITON FRACT, V8, P893
98576    CANOSA J, 1977, J COMPUT PHYS, V23, P393
98577    CHWDHURY AR, 2000, PAINLEVE ANAL ITS AP
98578    CONTE R, 1989, PHYS LETT A, V140, P383
98579    CONTE R, 1993, PHYSICA D, V69, P33
98580    CONTE R, 1999, PAINLEVE PROPERTY ON
98581    DORIZZI B, 1986, J MATH PHYS, V27, P2848
98582    ESTEVEZ PG, 1997, INVERSE PROBL, V13, P939
98583    ESTEVEZ PG, 2000, J PHYS A-MATH GEN, V33, P2131
98584    FAN EG, 2001, PHYS LETT A, V282, P18
98585    GORIELY A, 1992, J MATH PHYS, V33, P2728
98586    HEREMAN W, 1989, MACSYMA NEWSLETTER, V6, P11
98587    HEREMAN W, 1998, COMPUT PHYS COMMUN, V115, P428
98588    HIROTA R, 1981, PHYS LETT A, V85, P407
98589    HLAVATY L, 1986, COMPUT PHYS COMMUN, V42, P427
98590    ITO M, 1980, J PHYS SOC JPN, V49, P771
98591    JIMBO M, 1982, PHYS LETT A, V92, P59
98592    KRUSKAL MD, 1992, STUD APPL MATH, V86, P87
98593    LI ZB, 1993, J PHYS A-MATH GEN, V26, P6027
98594    LI ZB, 2002, COMPUT PHYS COMMUN, V148, P256
98595    LOU SY, 1998, Z NATURFORSCH A, V53, P251
98596    LOU SY, 2002, J MATH PHYS, V43, P4078
98597    NEWELL AC, 1987, PHYSICA D, V29, P1
98598    RADHA R, 1994, J MATH PHYS, V35, P4746
98599    RAMANI A, 1989, PHYS REP, V180, P159
98600    SCHEEN C, 1997, THEOR COMPUT SCI, V187, P87
98601    SENATORSKI A, 1996, PHYS REV LETT, V77, P2855
98602    STEEB WH, 1988, NONLINEAR EVOLUTION
98603    WANG ML, 2002, PHYS LETT A, V303, P45
98604    WEISS J, 1983, J MATH PHYS, V24, P522
98605    YOSHIDA H, 1987, PHYS LETT A, V120, P388
98606    ZHANG SL, 2002, PHYS LETT A, V300, P40
98607 NR 34
98608 TC 9
98609 SN 0010-4655
98610 J9 COMPUT PHYS COMMUN
98611 JI Comput. Phys. Commun.
98612 PD AUG 1
98613 PY 2004
98614 VL 161
98615 IS 1-2
98616 BP 65
98617 EP 75
98618 PG 11
98619 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
98620 GA 842ZN
98621 UT ISI:000223043300005
98622 ER
98623 
98624 PT J
98625 AU Lu, WG
98626    Guo, XM
98627    Zhou, SX
98628 TI Optimal control of hyperbolic H-hemivariational inequalities with state
98629    constraints
98630 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
98631 DT Article
98632 DE H-hemivariational inequality; optimal control; state constraint;
98633    nonnomotone multivalued mapping
98634 ID VARIATIONAL-INEQUALITIES; EXISTENCE
98635 AB The optimal control problems of hyperbolic H-hemivariational
98636    inequalities with the state constraints and nonnomotone multivalued
98637    mapping term are considered. The optimal solutions are obtained. In
98638    addition, their approximating problems are also studied.
98639 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
98640 RP Guo, XM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
98641    200072, Peoples R China.
98642 EM xmguo@yc.shu.edu.cn
98643 CR ARADA N, 2000, SIAM J CONTROL OPTIM, V39, P1391
98644    BARBU V, 1983, OPTIMAL CONTROL VARI
98645    BARBU V, 1993, ANAL CONTROL NONLINE
98646    BONNANS F, 1995, SIAM J CONTROL OPTIM, V33, P271
98647    CHANG KC, 1981, J MATH ANAL APPL, V80, P102
98648    FRIEDMAN A, 1986, SIAM J CONTROL OPTIM, V24, P439
98649    GUO XM, 2000, J MATH ANAL APPL, V241, P198
98650    GUO XM, 2003, APPL MATH MECH-ENGL, V24, P756
98651    GUO ZW, 2001, DIAGN CYTOPATHOL, V25, P43
98652    HASLINGER J, 1995, NONLINEAR ANAL-THEOR, V24, P105
98653    HE ZX, 1987, SIAM J CONTROL OPTIM, V25, P1119
98654    MIGNOT F, 1984, SIAM J CONTROL OPTIM, V22, P466
98655    PANAGIOTOPOULOS PD, 1991, NONLINEAR ANAL-THEOR, V16, P209
98656    PANAGIOTOPOUS PD, 1993, HEMIVARIATIONAL INEQ
98657    TIBA D, 1985, SIAM J CONTROL OPTIM, V23, P85
98658    WANG GS, 2000, NONLINEAR ANAL-THEOR, V42, P789
98659 NR 16
98660 TC 0
98661 SN 0253-4827
98662 J9 APPL MATH MECH-ENGL ED
98663 JI Appl. Math. Mech.-Engl. Ed.
98664 PD JUL
98665 PY 2004
98666 VL 25
98667 IS 7
98668 BP 723
98669 EP 729
98670 PG 7
98671 SC Mathematics, Applied; Mechanics
98672 GA 842IT
98673 UT ISI:000222998100001
98674 ER
98675 
98676 PT J
98677 AU Wu, ZM
98678    Chen, C
98679    Liu, GL
98680 TI Multipoint inverse shape design of airfoils based on variable-domain
98681    variational principle
98682 SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY
98683 DT Article
98684 DE aerodynamics; finite element analysis; numerical analysis; simulation
98685 AB As a kind of free (unknown) boundary problem, inverse shape design of
98686    airfoils has attracted extensive attention in recent years. By
98687    variable-domain variational theory free boundary condition can be
98688    coupled with the governing equations for flow field, which makes it
98689    possible to calculate the flow field with the free boundary
98690    simultaneously. In this paper, the variational principle (VP) of 2D
98691    airfoil shape design problem is obtained from the basic dimensionless
98692    velocity potential equations for 2D compressible flow by using a
98693    systematic approach and variable-domain variational formula. The
98694    deformable finite element method based on the VP is used to segmentally
98695    design airfoil at two design points (angles of attack) and four design
98696    points, respectively. The results show that the present method is
98697    highly effective and accurate for solving multipoint inverse problem of
98698    airfoils.
98699 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
98700 RP Wu, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
98701    Peoples R China.
98702 CR EPPLER R, 1979, J SHIP RES, V23, P209
98703    HAWTHORNE WR, 1984, J ENG GAS TURB POWER, V106, P346
98704    HENNE PA, 1980, 800330 AIAA
98705    LIGHTHILL MJ, 1945, 2112 ARC R D
98706    LIU GL, 1993, INT J TURBO JET ENGI, V10, P273
98707    LIU GL, 1998, INVERSE PROBL ENG, P391
98708    LIU GL, 2000, ACTA MECH, V140, P73
98709    SCHMIDT E, 1989, AGARDCP463
98710    SELIG MS, 1992, AIAA J, V30, P1162
98711 NR 9
98712 TC 0
98713 SN 0002-2667
98714 J9 AIRCRAFT ENG AEROSP TECHNOL
98715 JI Aircr. Eng. Aerosp. Technol.
98716 PY 2004
98717 VL 76
98718 IS 4
98719 BP 376
98720 EP 383
98721 PG 8
98722 SC Engineering, Aerospace
98723 GA 841OA
98724 UT ISI:000222938700002
98725 ER
98726 
98727 PT J
98728 AU Li, FS
98729    Jin, CJ
98730    Lu, XG
98731    Zhou, GZ
98732    Zhu, LX
98733    Hu, XJ
98734    Li, ZY
98735    Wang, F
98736    Shen, Q
98737 TI Oxygen rerising phenomenon during deoxidation with solid electrolyte
98738    deoxidation units in steel melts
98739 SO ACTA METALLURGICA SINICA
98740 DT Article
98741 DE steel melt; solid electrolyte; deoxidization; unpolluted
98742 AB Deoxidation experiments using improved deoxidation unit are carried out
98743    in 20 kg induction furnace. Experimental results prove that
98744    deoxidization process is fast and effective. But the oxygen in melt can
98745    not be decreased below 20x10(-6) because oxygen in melt is recovered by
98746    some experimental conditions such as existing oxidizing slag and
98747    refractory or closed experimental system was destroyed while measuring
98748    oxygen in melts and replacing deoxidation unit.
98749 C1 Univ Sci & Technol Beijing, Dept Inorgan & Non Metal Mat, Beijing 100083, Peoples R China.
98750    Baoshan Iron & Steel Co Ltd, Ctr Res & Dev, Shanghai 201900, Peoples R China.
98751    Shanghai Univ, State Enhance Lab Ferromet, Shanghai 200072, Peoples R China.
98752    Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China.
98753 RP Li, FS, Univ Sci & Technol Beijing, Dept Inorgan & Non Metal Mat,
98754    Beijing 100083, Peoples R China.
98755 EM lifsh@public.fhnet.cn.net
98756 CR HU XJ, 1999, ACTA METALL SIN, V35, P316
98757    LI FS, 2000, J CHIN RARE EARTH SO, V18, P258
98758    LI FS, 2003, ACTA METALL SIN, V39, P287
98759    LIANG YJ, 1993, THERMODYNAMICS DATA, P506
98760    QU Y, 1980, PRINCIPLES STEELMAKI, P250
98761 NR 5
98762 TC 0
98763 SN 0412-1961
98764 J9 ACTA METALL SIN
98765 JI Acta Metall. Sin.
98766 PD JUL
98767 PY 2004
98768 VL 40
98769 IS 7
98770 BP 673
98771 EP 676
98772 PG 4
98773 SC Metallurgy & Metallurgical Engineering
98774 GA 841NT
98775 UT ISI:000222938000001
98776 ER
98777 
98778 PT J
98779 AU Wang, K
98780    Qian, G
98781    Lu, WC
98782    Chen, NY
98783 TI Correlation between potential-time curves of constant-current anodic
98784    dissolution and corrosion resistance of tinplate
98785 SO ACTA METALLURGICA SINICA
98786 DT Article
98787 DE tinplate; corrosion resistance; constant-current coulometric method;
98788    potential-time curve
98789 AB The potential-time curve of anodic dissolution of tinplate by
98790    constant-current electrolysis in hydrochloric acid solution with
98791    relatively high current density has been used as a tool for the
98792    characterization of corrosion resistance of tinplate products. Three
98793    pattern recognition methods, including SVM (support vector machine),
98794    PCA (principal component analysis) and Fisher method have been used for
98795    modeling the relationship between E-t curve and ATC (alloy-tin couple)
98796    values describing the corrosion resistance of tinplate samples. The
98797    obvious correlation between E-t curves and ATC values implies that it
98798    may be possible to find a quick method useful for monitoring and
98799    optimal control of the quality of tinplate in industrial production.
98800 C1 Shanghai Univ, Lab Chem Data Min, Shanghai 200436, Peoples R China.
98801    Baoshan Iron & Steel Co Ltd, Tinplate Dept, Shanghai 200941, Peoples R China.
98802 RP Chen, NY, Shanghai Univ, Lab Chem Data Min, Shanghai 200436, Peoples R
98803    China.
98804 EM chennianyi@Tsinghua.org.cn
98805 CR *TOYO STEEL PLAT C, 1977, THIN TINPL, P133
98806    BARD AJ, 2001, ELECTROCHEMICAL METH, P4
98807    CHEN NY, 2002, PATTERN RECOGN, P2
98808    CRISTININI N, 2000, INTRO SUPPORT VECTOR, P42
98809    LU WC, 2002, COMPUTERS APPL CHEM, V19, P696
98810 NR 5
98811 TC 0
98812 SN 0412-1961
98813 J9 ACTA METALL SIN
98814 JI Acta Metall. Sin.
98815 PD JUL
98816 PY 2004
98817 VL 40
98818 IS 7
98819 BP 759
98820 EP 762
98821 PG 4
98822 SC Metallurgy & Metallurgical Engineering
98823 GA 841NT
98824 UT ISI:000222938000017
98825 ER
98826 
98827 PT J
98828 AU Sang, WB
98829    Wei, J
98830    Qi, Z
98831    Li, WW
98832    Min, JH
98833    Teng, JY
98834    Qian, YB
98835 TI Primary study on the contact degradation mechanism of CdZnTe detectors
98836 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION
98837    A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
98838 DT Article
98839 DE cadmium zinc telluride; electrical contacts; degradation; gamma-ray
98840    detectors
98841 ID NUCLEAR RADIATION DETECTORS
98842 AB The metal-CdZnTe (CZT) interface plays a vital role in determining the
98843    contact characteristics, which is often the dominant factor influencing
98844    detector performance. The effects of the degradation of the interfacial
98845    layer between the metal contact layer and CZT surface on the mechanical
98846    and electrical properties have been investigated in this paper. The
98847    interfacial thermal stresses were simulated using 3-D finite element
98848    method (FEM). The results indicate that the maximum thermal stress is
98849    concentrated on the midst of the electrode and the magnitude of the
98850    stress produced by the different electrode materials in order is Al >
98851    Au > Pt > In. The adhesion forces between the metal contact layer and
98852    CZT surface were measured by using a Dage PC2400 Micro tester with the
98853    shear-off-method. The inter-diffusion between the metal contact layer
98854    and CZT was identified using the Anger depth profiles. The experimental
98855    results indicate that the electroless Au electrode on p-type high
98856    resistivity CZT is of smaller interfacial adhesion strength, but of
98857    better ohmicity than the sputtered An. In addition, the aging effects
98858    on the contact characteristics of the detector were also examined. (C)
98859    2004 Elsevier B.V. All rights reserved.
98860 C1 Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800, Peoples R China.
98861 RP Sang, WB, Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800,
98862    Peoples R China.
98863 EM wbsang@mail.shu.edu.cn
98864 CR BURGER A, 1997, IEEE T NUCL SCI 1, V44, P934
98865    DARMADASA IM, 1998, PROG CRYST GROWTH CH, V36, P249
98866    EGARIEVWE SU, 1996, J XRAY SCI TECHNOL, V6, P309
98867    LI WW, 2002, SEMICOND SCI TECH, V17, L55
98868    MURRAY W, 1999, IEEE NUCL SCI S MED, V1, P643
98869    NIRAULA M, 2002, NUCL INSTRUM METH A, V491, P168
98870    WANG LJ, 2000, NUCL INSTRUM METH A, V448, P581
98871 NR 7
98872 TC 0
98873 SN 0168-9002
98874 J9 NUCL INSTRUM METH PHYS RES A
98875 JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
98876    Equip.
98877 PD JUL 21
98878 PY 2004
98879 VL 527
98880 IS 3
98881 BP 487
98882 EP 492
98883 PG 6
98884 SC Physics, Particles & Fields; Instruments & Instrumentation; Nuclear
98885    Science & Technology; Spectroscopy
98886 GA 839UF
98887 UT ISI:000222809700019
98888 ER
98889 
98890 PT J
98891 AU Bu, TM
98892    Yu, SN
98893    Guan, HW
98894 TI Binary-coding-based ant colony optimization and its convergence
98895 SO JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
98896 DT Article
98897 DE ant colony optimization; genetic algorithm; binary-coding; convergence;
98898    heuristic; function optimization
98899 ID ARGENTINE ANT
98900 AB Ant colony optimization (ACO for short) is a meta-heuristics for hard
98901    combinatorial optimization problems. It is a population-based approach
98902    that uses exploitation of positive feedback as well as greedy search.
98903    In this paper, genetic algorithm's (GA for short) ideas are introduced
98904    into ACO to present a new binary-coding based ant colony optimization.
98905    Compared with the typical ACO, the algorithm is intended to replace the
98906    problem's parameter-space with coding-space, which links ACO with GA so
98907    that the fruits of GA can be applied to ACO directly. Furthermore, it
98908    can not only solve general combinatorial optimization problems, but
98909    also other problems such as function optimization. Based on the
98910    algorithm, it is proved that if the pheromone remainder factor rho is
98911    under the condition of rho greater than or equal to 1, the algorithm
98912    can promise to converge at the optimal, whereas if 0 < rho < 1, it does
98913    not.
98914 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
98915 RP Bu, TM, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R
98916    China.
98917 EM tmbu@acm.shu.edu.cn
98918    yusn@mail.shu.edu.cn
98919    hguan@nscc.mass.edu
98920 CR BONABEAU E, 1999, SWARM INTELLIGENCE N
98921    BONABEAU E, 2000, NATURE, V406, P39
98922    BU TM, 4 SHANGH C COMB SHAN
98923    DEJONG KA, 1975, 769381 U MICHIGAN
98924    DENEUBOURG JL, 1990, J INSECT BEHAV, V3, P159
98925    DORIGO M, 1996, IEEE T SYST MAN CY B, V26, P29
98926    DORIGO M, 1997, IEEE T EVOLUTIONARY, V1, P53
98927    DORIGO M, 1999, ARTIF LIFE, V5, P137
98928    DORIGO M, 1999, NEW IDEAS OPTIMIZATI, P11
98929    GOSS S, 1989, NATURWISSENSCHAFTEN, V76, P579
98930    LI MQ, 2002, GENETIC ALGORITHMS F
98931    LIU Y, 1995, NONNUMERICAL PARLLEL
98932    STUTZLE T, 1999, METAHEURISTICS ADV T, P313
98933    WANG XP, 2002, GENETIC ALGORITHM TH
98934    WANG ZZ, 2000, EVOLUTIONARY COMPUTI
98935 NR 15
98936 TC 0
98937 SN 1000-9000
98938 J9 J COMPUT SCI TECHNOL
98939 JI J. Comput. Sci. Technol.
98940 PD JUL
98941 PY 2004
98942 VL 19
98943 IS 4
98944 BP 472
98945 EP 478
98946 PG 7
98947 SC Computer Science, Hardware & Architecture; Computer Science, Software
98948    Engineering
98949 GA 839MT
98950 UT ISI:000222789900004
98951 ER
98952 
98953 PT J
98954 AU Zhang, DS
98955    Arola, DD
98956 TI Applications tissues of digital image correlation to biological
98957 SO JOURNAL OF BIOMEDICAL OPTICS
98958 DT Article
98959 DE digital image correlation; biological tissue; interferometry
98960 ID HOLOGRAPHIC-INTERFEROMETRY; ALUMINUM-ALLOY; POISSONS RATIO; AORTA
98961 AB Optical methods are becoming commonplace in investigations of the
98962    physical and mechanical behavior of biological tissues. Digital image
98963    correlation (DIC) is a versatile optical method that shows tremendous
98964    promise for applications involving biological tissues and biomaterials.
98965    We present the fundamentals of DIC with an emphasis on the application
98966    to biological materials. An approach for surface preparation is
98967    described that facilitates its application to hydrated substrates.
98968    Three examples are presented that highlight the use of DIC for
98969    biomedical research. The first example describes the use of DIC to
98970    study the mechanical behavior of arterial tissues up to 40% elongation.
98971    The second example describes an evaluation of the mechanical properties
98972    of bovine hoof horn in the dehydrated and fully hydrated states.
98973    Uniaxial tension experiments are performed to determine the elastic
98974    modulus (E) and Poisson's ratio (v) of both the arterial and dermal
98975    tissues. Spatial variations in the mechanical properties are evident
98976    from the full-field characterization of both tissues. Finally, an
98977    application of DIC to study the evolution of loosening in cemented
98978    total hip replacements is described. The noncontact analysis enables
98979    measurement of the relative displacement between the bone/bone cement
98980    and bone cement/prosthesis interfaces. Based on the elementary optical
98981    arrangement, the simple surface preparation, and the ability to acquire
98982    displacement/strain measurements over a large range of deformation, DIC
98983    should serve as a valuable tool for biomedical research. Further
98984    developments will enable the use of DIC for in vivo applications. (C)
98985    2004 Society of Photo-Optical Instrumentation Engineers.
98986 C1 Univ Maryland Baltimore Cty, Dept Mech Engn, Baltimore, MD 21250 USA.
98987    Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
98988 RP Zhang, DS, Univ Maryland Baltimore Cty, Dept Mech Engn, 1000 Hilltop
98989    Circle, Baltimore, MD 21250 USA.
98990 CR AROLA D, 2002, EXP MECH, V42, P380
98991    AROLA D, 2002, P 21 SO BIOM ENG C B, P147
98992    BASTAWROS AF, 2000, J MECH PHYS SOLIDS, V48, P301
98993    BRAUN S, 2000, AM J ORTHOD DENTOFAC, V118, P257
98994    BROUGHER JA, 2002, P SEM ANN C THEOR EX, P238
98995    BRUCK HA, 1989, EXP MECH, V29, P261
98996    CHU TC, 1985, EXP MECH, V25, P232
98997    FUNG YC, 1993, BIOMECHANICS MECH PR, P321
98998    HUMPHREY JD, 1987, J BIOMECH, V20, P59
98999    KISHEN A, 2001, J BIOMED MATER RES, V55, P121
99000    LU H, 1997, EXP MECH, V37, P433
99001    MCGOWAN DM, 2001, J AIRCRAFT, V38, P122
99002    NIU X, 2000, EXP TECHNIQUES, V24, P27
99003    OVRYN B, 1987, ANN BIOMED ENG, V15, P67
99004    OVRYN B, 1989, CRC CRIT R BIOMED EN, V16, P269
99005    PETERS WH, 1982, OPT ENG, V21, P427
99006    RAJKONDAWAR P, 2002, P SEM ANN C THEOR EX, P256
99007    SILVER FH, 1989, CRIT REV BIOMED ENG, V17, P323
99008    SMOLEK MK, 1994, J CATARACT REFR SURG, V20, P277
99009    SUTTON MA, 1993, ASME AMD, V176, P20317
99010    TONG W, 1997, EXP MECH, V37, P452
99011    WANG RZ, 1998, J BIOMECH, V31, P135
99012    WATTRISSE B, 2001, EXP MECH, V41, P29
99013    WOISETSCHLAGER J, 1994, APPL OPTICS, V33, P5011
99014    YANG DT, 2002, P ANN M SOC BIOM, P546
99015    YANG DT, 2002, P SEM ANN C THEOR EX, P75
99016    ZENTNER A, 1996, ANGLE ORTHOD, V66, P463
99017    ZHANG D, 1999, EXP MECH, V39, P62
99018    ZHANG D, 2002, EXP TECH, V25, P32
99019    ZHANG D, 2002, P ANN INT IEEE EMBS, P1276
99020    ZHANG D, 2002, P ANN M SOC BIOM TAM, P315
99021    ZHANG D, 2002, P SEM ANN C THEOR EX
99022    ZHANG DS, 2002, EXP MECH, V42, P409
99023    ZHAO WZ, 1996, J APPL POLYM SCI, V60, P1083
99024    ZHOU J, 1997, P NATL ACAD SCI USA, V94, P14255
99025 NR 35
99026 TC 0
99027 SN 1083-3668
99028 J9 J BIOMED OPT
99029 JI J. Biomed. Opt.
99030 PD JUL-AUG
99031 PY 2004
99032 VL 9
99033 IS 4
99034 BP 691
99035 EP 699
99036 PG 9
99037 SC Radiology, Nuclear Medicine & Medical Imaging; Biochemical Research
99038    Methods; Optics
99039 GA 840NM
99040 UT ISI:000222865800003
99041 ER
99042 
99043 PT J
99044 AU Tian, HJ
99045 TI Numerical and analytic dissipativity of the theta-method for delay
99046    differential equations with a bounded variable lag
99047 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
99048 DT Article
99049 DE theta-method; dissipativity; delay differential equations; variable lag
99050 ID RUNGE-KUTTA METHODS; STABILITY ANALYSIS; DYNAMICAL-SYSTEMS;
99051    CONTRACTIVITY
99052 AB This paper focuses on the analytic and numerical dissipativity of
99053    theta-method for delay differential equations with a bounded variable
99054    lag. A generalized Halanay inequality is derived, and a sufficient
99055    condition is presented to ensure that delay differential equations with
99056    a bounded variable lag are dissipative. We then apply theta-method to
99057    such delay differential equations, and investigate the numerical
99058    dissipativity of the theta-method.
99059 C1 Shanghai Univ, E Inst, Div Comp Sci, Dept Matemat,Shanghai Teachers Univ, Shanghai 200234, Peoples R China.
99060 RP Tian, HJ, Shanghai Univ, E Inst, Div Comp Sci, Dept Matemat,Shanghai
99061    Teachers Univ, 100 Guilin Rd, Shanghai 200234, Peoples R China.
99062 EM hongjiongtian@263.net
99063 CR BARWELL VK, 1975, BIT, V15, P130
99064    BELLEN A, 1992, APPL NUMER MATH, V9, P321
99065    BELLEN A, 1997, APPL NUMER MATH, V24, P219
99066    BELLEN A, 1997, BIT, V39, P1
99067    BELLMAN R, 1963, DIFFERENTIAL DIFFERE
99068    HALANAY A, 1966, DIFFERENTIAL EQUATIO
99069    HALE JK, 1993, INTRO FUNCTIONAL DIF
99070    HUANG CM, 2000, IMA J NUMER ANAL, V20, P153
99071    HUMPHRIES AR, 1994, SIAM J NUMER ANAL, V31, P1452
99072    INTHOUT KJ, 1996, SIAM J NUMER ANAL, V33, P1125
99073    LIU JB, 1990, EARTHQUAKE ENG ENG V, V10, P1
99074    TIAN HJ, 1996, J COMPUT MATH, V14, P203
99075    TIAN HJ, 1996, SIAM J NUMER ANAL, V33, P883
99076    TORELLI L, 1989, J COMPUT APPL MATH, V25, P15
99077    TORELLI L, 1991, NUMER MATH, V59, P311
99078    ZENNARO M, 1993, APPL NUMER MATH, V10, P321
99079    ZENNARO M, 1997, NUMER MATH, V77, P549
99080 NR 17
99081 TC 0
99082 SN 0218-1274
99083 J9 INT J BIFURCATION CHAOS
99084 JI Int. J. Bifurcation Chaos
99085 PD MAY
99086 PY 2004
99087 VL 14
99088 IS 5
99089 BP 1839
99090 EP 1845
99091 PG 7
99092 SC Mathematics, Applied; Multidisciplinary Sciences
99093 GA 839WI
99094 UT ISI:000222815200022
99095 ER
99096 
99097 PT J
99098 AU Das, DK
99099    Fujiwara, H
99100    Li, YA
99101    Min, YH
99102    Xu, SY
99103    Zorian, Y
99104 TI Design & test education in Asia
99105 SO IEEE DESIGN & TEST OF COMPUTERS
99106 DT Editorial Material
99107 C1 Virage Log, Fremont, CA 94538 USA.
99108    Jadavpur Univ, Dept Comp Sci & Engn, Calcutta, India.
99109    Nara Inst Sci & Technol, Grad Sch Informat Sci, Dept Informat Proc, Nara, Japan.
99110    Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China.
99111    Beijing Huahong IC Design Co, Beijing, Peoples R China.
99112    Shanghai Univ, Shanghai, Peoples R China.
99113    Shanghai Coll Sci & Technol, Shanghai, Peoples R China.
99114 RP Das, DK, Virage Log, Fremont, CA 94538 USA.
99115 NR 0
99116 TC 0
99117 SN 0740-7475
99118 J9 IEEE DES TEST COMPUT
99119 JI IEEE Des. Test Comput.
99120 PD JUL-AUG
99121 PY 2004
99122 VL 21
99123 IS 4
99124 BP 331
99125 EP 338
99126 PG 8
99127 SC Computer Science, Hardware & Architecture
99128 GA 839DG
99129 UT ISI:000222762900009
99130 ER
99131 
99132 PT J
99133 AU Jiang, GC
99134    Wu, YQ
99135    You, JL
99136    Hou, HY
99137    Chen, H
99138 TI Discussion on the microstructure units of alumino-silicate melts
99139 SO ACTA PETROLOGICA SINICA
99140 DT Article
99141 DE alumino-silicates and aluminates; microstructure of melts; amphoteric
99142    compound
99143 ID CALCIUM ALUMINATE; SILICATE GLASSES; SPECTROSCOPY; SI-29; COORDINATION;
99144    TEMPERATURE
99145 AB This is a review concerning the discussion on amphoterie behavior of Al
99146    in molten alumino-silicates and aluminates, which is significant in
99147    both metallurgy and petrology. So far it does not acquire a reliable
99148    conclusion. According to the present authors every one 4-coordinated
99149    Al-a gains a coordination bond, such as Al-O(-Si)(-Ca)or Al-O--Al(-Ca).
99150    Meanwhile, the corresponding non-bridging oxygen O-nb does not
99151    disappear, it becomes a O3-. Whether the 6-coordinated Al-b can appear
99152    or not is determined by the acid-basicity equilibrium of the system.
99153    For the cluster model of silicates it was suggested by the present
99154    authors that 5 Si-O tetrahedra (Q(n)) should be used as the
99155    microstructural units. Namely, to describe the macro-properties (as
99156    component activity) based on the information of the molar fraction and
99157    micro chemical potential of these Q(n). In order to link the
99158    microstructure with the macro-properties of alumino-silicates 5 kinds
99159    of Q(n) still can be used. The influence of containing Al may be
99160    reflected by the associating change of the micro-chemical potential of
99161    these Q(n). For aluminates, it is suggested to use Al-n-O tetrahedral
99162    (T-n) as the microstructural units.
99163 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
99164 RP Jiang, GC, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples
99165    R China.
99166 EM gcjiang@online.sh.cn
99167 CR BALTA P, 1983, INTRO PHYS CHEM GLAS, P150
99168    BRUCKNER R, 1978, GLASTECH BER, V51, P1
99169    COONEY TF, 1990, J NON-CRYST SOLIDS, V122, P10
99170    DEJONG BHWS, 1983, GEOCHIM COSMOCHIM AC, V47, P1223
99171    DUFFY JA, 1976, J NON-CRYST SOLIDS, V21, P373
99172    ENGELHARDT G, 1985, PHYS CHEM GLASSES, V26, P157
99173    HUNOLD VK, 1980, GLASTECH BER, V53, P149
99174    IWAMOTO N, 1977, J JIM, V16, P771
99175    JIANG GC, 1990, ISIJ INT, P240
99176    JIANG GC, 1993, ISIJ INT, V33, P20
99177    LACY ED, 1963, PHYS CHEM GLASSES, V4, P234
99178    MAEKAWA H, 1991, J PHYS CHEM-US, V95, P6822
99179    MAEKAWA T, 1985, J JPN I MET, V24, P186
99180    MAUSBACH K, 1994, BER BUNSEN PHYS CHEM, V98, P257
99181    MCMILLAN P, 1982, GEOCHIM COSMOCHIM AC, V46, P2021
99182    MCMILLAN P, 1983, J NON-CRYST SOLIDS, V55, P221
99183    MERZBACHER CI, 1991, J NON-CRYST SOLIDS, V130, P18
99184    MIZOGUCHI K, 1984, T JIM, V48, P1179
99185    MURDOCH JB, 1985, AM MINERAL, V70, P332
99186    MYSEN B, 1995, EUR J MINERAL, V7, P745
99187    MYSEN BO, 1981, AM MINERAL, V66, P678
99188    MYSEN BO, 1990, J GEOPHYS RES-SOLID, V95, P15733
99189    SHELBY JE, 1978, J APPL PHYS, V49, P5885
99190    SMETS BMJ, 1981, PHYS CHEM GLASSES, V22, P158
99191    WU YQ, 2003, J INORG MATER, V18, P619
99192    YAMANE M, 1982, J NON-CRYST SOLIDS, V52, P217
99193    YAMANE M, 1987, T JIM, V51, P1151
99194    YOLDAS BE, 1971, PHYS CHEM GLASSES, V12, P28
99195 NR 28
99196 TC 0
99197 SN 1000-0569
99198 J9 ACTA PETR SIN
99199 JI Acta Petrol. Sin.
99200 PD MAY
99201 PY 2004
99202 VL 20
99203 IS 3
99204 BP 753
99205 EP 758
99206 PG 6
99207 SC Geology
99208 GA 840YT
99209 UT ISI:000222897200040
99210 ER
99211 
99212 PT J
99213 AU Zhu, LH
99214    Huang, QW
99215    Zhao, HF
99216 TI Effect of nickel content and milling parameters on martensitic
99217    transformation of Fe-Ni during mechanical alloying
99218 SO SCRIPTA MATERIALIA
99219 DT Article
99220 DE mechanical alloying; phase transformations; martensitic transformation
99221 ID X-RAY-DIFFRACTION; PARTICLES; POWDERS; PHYSICS; METALS
99222 AB Effect of nickel content and mechanical alloying parameters on
99223    martensitic transformation during mechanical alloying of Fe-Ni was
99224    studied in this paper. Both nickel content and the whole transferred
99225    energy E-t are two important parameters governing phase transformation
99226    during mechanical alloying of Fe-Ni. They respectively decide whether
99227    and when the reverse transformation of martensite to austenite occurs.
99228    (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights
99229    reserved.
99230 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
99231    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
99232 RP Zhu, LH, Shanghai Univ, Dept Mat Sci & Engn, Yanchang Rd, Shanghai
99233    200072, Peoples R China.
99234 EM lhzhu8888@163.com
99235 CR ABDELLAOUI M, 1994, J ALLOY COMPD, V209, P351
99236    ABDELLAOUI M, 1995, ACTA METALL MATER, V43, P1087
99237    BALDOKHIN YV, 1999, J MAGN MAGN MATER, V203, P313
99238    CHEN Y, 1993, PHYS REV B, V48, P14
99239    CHEN Y, 1997, MAT SCI ENG A-STRUCT, V226, P38
99240    DONG XL, 1999, J MATER RES, V14, P398
99241    JARTYCH E, 2000, J MAGN MAGN MATER, V208, P221
99242    JIANG HG, 1999, J MATER RES, V14, P549
99243    KAJIWARA S, 1991, PHILOS MAG A, V63, P625
99244    KAUFMAN L, 1956, T AIME, V206, P1393
99245    KUHRT C, 1993, J APPL PHYS 2B, V73, P6588
99246    KUHRT C, 1993, J APPL PHYS, V73, P1975
99247    MAGINI M, 1995, MATER T JIM, V36, P123
99248    MAURICE DR, 1990, METALL TRANS A, V21, P289
99249    PEKALA M, 1999, NANOSTRUCT MATER, V11, P789
99250    POCHET P, 1995, PHYS REV B, V52, P4006
99251    RAWERS J, 1995, SCRIPTA METALL MATER, V32, P1319
99252    RAWERS JC, 1996, MAT SCI ENG A-STRUCT, V220, P162
99253    SCHWARZ RB, 1986, APPL PHYS LETT, V49, P146
99254    STRELETSKII AN, 2000, MAT SCI ENG A-STRUCT, V282, P213
99255    SURYANARAYANA C, 2001, PROG MATER SCI, V46, P1
99256    YANG JY, 1997, ACTA METALLURGICAL S, V33, P381
99257    ZHU LH, 2001, J MATER SCI, V36, P5571
99258 NR 23
99259 TC 2
99260 SN 1359-6462
99261 J9 SCRIPTA MATER
99262 JI Scr. Mater.
99263 PD SEP
99264 PY 2004
99265 VL 51
99266 IS 6
99267 BP 527
99268 EP 531
99269 PG 5
99270 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
99271    Engineering
99272 GA 838HD
99273 UT ISI:000222703200011
99274 ER
99275 
99276 PT J
99277 AU Guo, BY
99278    Wang, ZQ
99279 TI Legendre rational approximation on the whole line
99280 SO SCIENCE IN CHINA SERIES A-MATHEMATICS
99281 DT Article
99282 DE Legendre rational approximation; spectral method on the whole line
99283 ID INTERVAL
99284 AB The Legendre rational approximation is investigated. Some approximation
99285    results are established, which form the mathematical foundation of a
99286    new spectral method on the whole line. A model problem is considered.
99287    Numerical results show the efficiency of this new approach.
99288 C1 Shanghai Univ, Shanghai Normal Univ, Div Sci Computat, E Inst,Dept Math, Shanghai 200234, Peoples R China.
99289 RP Guo, BY, Shanghai Univ, Shanghai Normal Univ, Div Sci Computat, E
99290    Inst,Dept Math, Shanghai 200234, Peoples R China.
99291 EM byguo@guomei.sh.cn
99292 CR BOYD JP, 1987, J COMPUT PHYS, V69, P112
99293    GUO BY, 1998, SPECTRAL METHODS THE
99294    GUO BY, 2000, J MATH ANAL APPL, V243, P373
99295    GUO BY, 2002, INT J NUMER METH ENG, V53, P65
99296    GUO BY, 2003, CONTEMP MATH, V329, P157
99297    SZEGO G, 1959, ORTHOGONAL POLYNOMIA
99298 NR 6
99299 TC 0
99300 SN 1006-9283
99301 J9 SCI CHINA SER A
99302 JI Sci. China Ser. A-Math.
99303 PD APR
99304 PY 2004
99305 VL 47
99306 SU Suppl. S
99307 BP 155
99308 EP 164
99309 PG 10
99310 SC Mathematics, Applied; Mathematics
99311 GA 837YZ
99312 UT ISI:000222678800015
99313 ER
99314 
99315 PT J
99316 AU Chen, MY
99317    Yu, JP
99318    Xu, DM
99319 TI Measurement of complex permittivity of thin substrates using the Te-01n
99320    resonant cavity
99321 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
99322 DT Article
99323 DE thin substrate; dielectric; complex permittivity; measurement; TE01n
99324    resonant cavity
99325 ID DIELECTRIC-CONSTANT
99326 AB An improved TEOIn resonant-cavity method for measuring the complex
99327    permittivity of thin substrates is presented. The theory and the
99328    experimental results are described in this paper. (C) 2004 Wiley
99329    Periodicals, Inc.
99330 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai Dielect Measurement Lab, Shanghai 200072, Peoples R China.
99331 RP Chen, MY, Shanghai Univ, Sch Commun & Informat Engn, Shanghai Dielect
99332    Measurement Lab, Shanghai 200072, Peoples R China.
99333 CR 1990, ASSESSMENT PLASTIC P
99334    *INT EL COMM, 1977, INT EL COMM IEC STAN
99335    HIPPEL V, 1952, DIELECTRIC MAT APPL
99336    JAMES BJ, 1996, IEEE T ELECTROMAGN C, V38, P67
99337    JIANG Y, 2000, ACTA OPT SINICA, V20, P642
99338    KOBAYASHI Y, 1999, IEEE MTT-S, P1885
99339    KOBAYASHI Y, 1999, MWE 99 MICR WKSHP, P155
99340    LI M, 2001, IEEE J SEL TOP QUANT, V7, P624
99341    NI EH, 1999, TECHNIQUES PERMITTIV
99342    PHAM A, 1998, IEEE MTT S, P957
99343    SARABANDI K, 1988, IEEE T INSTRUM MEAS, V37, P631
99344    SELTMANN EW, 1996, IEEE MTT-S, P1411
99345    SHIMIZU T, 2002, AS PAC MICR C, P1019
99346    WANG SJ, 1998, ACTA ELECT SINICA, V26, P30
99347    ZHANG G, 1997, AS PAC MICR C, P913
99348    ZHAO KY, 1995, J LANZHOU U NATURAL, V31, P122
99349    ZHOU QY, 1964, TECHNIQUE MEASURING
99350 NR 17
99351 TC 0
99352 SN 0895-2477
99353 J9 MICROWAVE OPT TECHNOL LETT
99354 JI Microw. Opt. Technol. Lett.
99355 PD AUG 20
99356 PY 2004
99357 VL 42
99358 IS 4
99359 BP 274
99360 EP 277
99361 PG 4
99362 SC Engineering, Electrical & Electronic; Optics
99363 GA 836OK
99364 UT ISI:000222565100005
99365 ER
99366 
99367 PT J
99368 AU Wang, XD
99369    Zou, J
99370    Li, Y
99371 TI New compact microstrip-patch bandpass filter with two transmission zeros
99372 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
99373 DT Article
99374 DE bandpass filter; patch resonator; transmission zero
99375 ID RESONATOR; SIZE
99376 AB This paper presents a new compact and simple microstrip-patch bandpass
99377    filter structure using only one resonator. This filter has two
99378    transmission zeros on the both sides of the pass-band. The volume of
99379    this filter is about 1/3 or 1/2 of a conventional filter. Because the
99380    new filter is without coupling gaps, uncertainty during fabrication can
99381    be reduced. The effects of varying the parameters of the structure have
99382    been studied. The simulated results agree well with the measured
99383    results. (C) 2004 Wiley Periodicals, Inc.
99384 C1 Shanghai Univ, Dept Commun & Informat Engn, Shanghai, Peoples R China.
99385    Cent Elect Shanghai Ltd, Shanghai, Peoples R China.
99386 RP Wang, XD, Shanghai Univ, Dept Commun & Informat Engn, Shanghai, Peoples
99387    R China.
99388 CR HELSZAJN J, 1978, IEEE T MICROW THEORY, V26, P95
99389    HONG JS, 2000, IEEE MTT-S, P331
99390    HSIEH LH, 2000, ELECTRON LETT, V36, P2022
99391    IWASAKI H, 1996, IEEE T ANTENN PROPAG, V44, P1399
99392    STRASSNER B, 2002, IEEE T MICROW THEORY, V50, P1431
99393    ZHU L, 1999, IEEE T MICROW THEORY, V47, P650
99394 NR 6
99395 TC 0
99396 SN 0895-2477
99397 J9 MICROWAVE OPT TECHNOL LETT
99398 JI Microw. Opt. Technol. Lett.
99399 PD AUG 20
99400 PY 2004
99401 VL 42
99402 IS 4
99403 BP 315
99404 EP 317
99405 PG 3
99406 SC Engineering, Electrical & Electronic; Optics
99407 GA 836OK
99408 UT ISI:000222565100018
99409 ER
99410 
99411 PT J
99412 AU Zhang, ZC
99413    Zou, LJ
99414    Cui, DL
99415 TI ESR detection of Ga self-interstitial defects in GaP nano-solids
99416 SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
99417    TECHNOLOGY
99418 DT Article
99419 DE nano-solid; GaP; self-interstitial; ESR
99420 ID ELECTRON-IRRADIATED GAP; GALLIUM-PHOSPHIDE; VACANCY
99421 AB The intrinsic point defects of GaP nano-solids have been investigated
99422    by means of electron spin resonance (ESR). An ESR spectrum attributed
99423    to the Ga self-interstitial in GaP nano-solids was observed with value
99424    g = 2.0028 or 2.0030. The collapse of hyperfine splitting and narrowing
99425    of peak-to-peak linewidth (DeltaH(pp)) of the ESR spectrum result from
99426    the possible rapid electron spin exchange effect. The concentration of
99427    dangling bonds for GaP nano-solids decreases when decreasing compaction
99428    pressure and with higher heat-treatment temperature. Both detection and
99429    control of the intrinsic point defects of nano-sized GaP materials are
99430    beneficial for further exploration of its fundamental properties and
99431    applications. (C) 2003 Published by Elsevier B.V.
99432 C1 Shanghai Univ, Sch Mat Sci & Technol, Shanghai 200072, Peoples R China.
99433    Shandong Univ, Inst Crystal Mat, Jinan 250100, Peoples R China.
99434 RP Zhang, ZC, Shanghai Univ, Sch Mat Sci & Technol, Chengzhong Rd 20,
99435    Shanghai 200072, Peoples R China.
99436 EM datafordollar@sina.com
99437 CR CUI DL, 2000, PROG CRYST GROWTH CH, V40, P145
99438    DELIANG C, 2001, J MINHUA SCI CHINA B, V44, P627
99439    KAUFMANN U, 1976, APPL PHYS LETT, V29, P312
99440    KENNEDY TA, 1978, PHYS REV LETT, V41, P977
99441    KENNEDY TA, 1981, PHYS REV B, V23, P6585
99442    KRAUSEREHBERG R, 1993, SEMICOND SCI TECH, V8, P290
99443    LEE KM, 1988, MATERIALS RES SOC S, V104, P449
99444    PALCZEWSKA M, 1995, J APPL PHYS, V78, P3680
99445    POOLE CP, 1983, ELECT SPIN RESONANCE, P11
99446    ZHAOCHUN Z, IN PRESS REAR MET
99447 NR 10
99448 TC 0
99449 SN 0921-5107
99450 J9 MATER SCI ENG B-SOLID STATE M
99451 JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
99452 PD AUG 15
99453 PY 2004
99454 VL 111
99455 IS 1
99456 BP 5
99457 EP 8
99458 PG 4
99459 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
99460 GA 838TD
99461 UT ISI:000222735200002
99462 ER
99463 
99464 PT J
99465 AU Cao, JN
99466    Cao, M
99467    Chan, AST
99468    Wu, GF
99469    Das, SK
99470 TI A framework for architecting and high-level programming support of
99471    CORBA applications
99472 SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING
99473 DT Article
99474 DE CORBA; middleware; distributed software; software architecture; dynamic
99475    reconfiguration; graph-oriented programming
99476 AB In this paper, we present a framework, called OrbGOP, to support the
99477    architecting and high-level programming of CORBA-based distributed
99478    applications. OrbGOP makes two contributions to the development of
99479    CORBA applications: (1) it provides higher-level abstractions for
99480    programming CORBA applications and frees the programmer from the
99481    underlying irrelevant details; (2) it facilitates the architecture
99482    description and dynamic reconfiguration of CORBA applications. OrbGOP
99483    is based on the graph-oriented programming (GOP) model, where the
99484    configuration of a distributed program is described as a logical graph
99485    separated from the programming of the constituent components of the
99486    program. Component interactions and dynamic reconfiguration are
99487    implemented by executing a set of operations that are defined over the
99488    graph. OrbGOP extends the application of GOP to the CORBA environment
99489    and provides more powerful support for distributed software
99490    architecture. Through a sample example, we show that OrbGOP provides a
99491    reflective, architectural approach to high-level programming support
99492    for the development of CORBA-based distributed applications. The system
99493    architecture, the design of runtime support and functional library
99494    support, as well as the preliminary evaluation of a working prototype
99495    of OrbGOP are also presented. (C) 2003 Elsevier Inc. All rights
99496    reserved.
99497 C1 Hong Kong Polytech Univ, Dept Comp, Software Management & Dev Lab, Internet & Mobile Comp Lab, Kowloon, Hong Kong, Peoples R China.
99498    Shanghai Univ, Sch Comp Sci & Engn, Shanghai, Peoples R China.
99499    Univ Texas, Dept Comp Sci & Engn, Arlington, TX 76019 USA.
99500 RP Cao, JN, Hong Kong Polytech Univ, Dept Comp, Software Management & Dev
99501    Lab, Internet & Mobile Comp Lab, Kowloon, Hong Kong, Peoples R China.
99502 EM csjcao@comp.polyu.edu.hk
99503 CR *CORBA, 2002, CORBA SUCC STOR
99504    *OBJ MAN GROUP, 2002, COMM OBJ REQ BROK AR
99505    ALLEN R, 1998, P 1998 C FUND APPR S
99506    BALTER R, 1998, IFIP INT C DISTR SYS
99507    BATISTA T, 2000, 5 INT S SOFTW ENG PA
99508    CAO J, IN PRESS SOFTWARE PR
99509    CAO J, 1996, INTENSIONAL PROGRAMM, P83
99510    CAO J, 2002, 2002 INT C PAR DISTR
99511    CHAN F, 2003, PARALLEL COMPUT, V29, P1589
99512    COULSON G, 2002, DISTRIB COMPUT, V15, P67
99513    KON F, 2000, IFIP INT C DISTR SYS
99514    KRAMER J, 1994, P 16 INT C SOFTW ENG
99515    KRAMER J, 1998, IEE PROC-SOFTW, V145, P146
99516    LEDOUX T, 1999, LECT NOTES COMPUTER, V1616
99517    MAGEE J, 1989, IEEE T SOFTWARE ENG, V15, P663
99518    MAGEE J, 1994, DISTRIBUTED SYSTEMS, V1, P304
99519    METAYER DL, 1998, IEEE T SOFTWARE ENG, V24, P521
99520    MORICONI M, 1995, IEEE T SOFTWARE ENG, V21, P356
99521    PAPADOPOULOS GA, 1998, SENR9834 CWI
99522    PAULO AJ, 2001, P 19 BRAZ S COMP NET
99523    PRASAD SK, 2003, P WORKSH MOB WIR NET
99524    PURTILO JM, 1994, ACM T PROGR LANG SYS, V16, P151
99525    RODRIGUEZ N, 1998, P 4 INT C CONF DISTR, P27
99526    RODRIGUEZ N, 1999, P SOFSEM 99 26 C CUR, P95
99527    ROMAN M, 2000, WORKSH REFL MIDDL IF
99528    STAFFORD JA, 2001, COMPONENT BASED SOFT
99529 NR 26
99530 TC 0
99531 SN 0743-7315
99532 J9 J PARALLEL DISTRIB COMPUT
99533 JI J. Parallel Distrib. Comput.
99534 PD JUN
99535 PY 2004
99536 VL 64
99537 IS 6
99538 BP 725
99539 EP 739
99540 PG 15
99541 SC Computer Science, Theory & Methods
99542 GA 838ED
99543 UT ISI:000222695400004
99544 ER
99545 
99546 PT J
99547 AU Wang, Y
99548    Wu, QS
99549    Ding, YP
99550 TI Preparation of Group IIB selenide nanoparticles using soft-hard dual
99551    template method
99552 SO JOURNAL OF NANOPARTICLE RESEARCH
99553 DT Article
99554 DE soft-hard dual template; celloidin membrane; nanoparticles; ZnSe; CdSe;
99555    HgSe
99556 ID OPTICAL-PROPERTIES; CDS; NANOSTRUCTURES; POLYMERIZATION; NANOCRYSTALS;
99557    FABRICATION; PARTICLES; TRANSPORT; MEMBRANES; ARRAYS
99558 AB Using a celloidin membrane as template, the uniform Group IIB selenide
99559    nanoparticles were inductively synthesized at room temperature and
99560    ambient pressure. The nanoparticles are cubic ZnSe quantum dots,
99561    hexagonal CdSe quantum dots and cubic HgSe nanoparticles with average
99562    diameters of 3.1, 2.0 and 44 nm, respectively. In the
99563    ultraviolet-visible spectra, their absorption peaks are at about 360,
99564    480 and 440 nm individually, and have large blue shifts due to quantum
99565    size effect. The corresponding photoluminescence peaks individually
99566    showed at 367, 438 and 440 nm. In addition, the preparation conditions
99567    and formation mechanism have been explored.
99568 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
99569    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
99570 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
99571 EM qswu@mail.tongji.edu.cn
99572 CR BECK JS, 1992, J AM CHEM SOC, V114, P10834
99573    CEPAK VM, 1997, CHEM MATER, V9, P1065
99574    COLVIN VL, 1994, NATURE, V370, P354
99575    ESTROFF LA, 2001, CHEM MATER, V13, P3227
99576    HERRON N, 1993, SCIENCE, V259, P1426
99577    HOFFMAN AJ, 1992, J PHYS CHEM-US, V96, P5540
99578    HOFFMAN AJ, 1992, J PHYS CHEM-US, V96, P5546
99579    HORNYAK GL, 1997, J PHYS CHEM B, V101, P1548
99580    HOU ZZ, 2000, LANGMUIR, V16, P2401
99581    KLEIN JD, 1993, CHEM MATER, V5, P902
99582    LAKSHMI BB, 1997, CHEM MATER, V9, P857
99583    LI YD, 1999, INORG CHEM, V38, P1382
99584    MARTIN CR, 1994, SCIENCE, V266, P1961
99585    METCALF HC, 1982, MODERN CHEM, P54
99586    MIKULEC FV, 2000, J AM CHEM SOC, V122, P2532
99587    NISHIZAWA M, 1995, SCIENCE, V268, P700
99588    OZIN GA, 1992, ADV MATER, V4, P612
99589    PARTHASARATHY RV, 1994, NATURE, V369, P298
99590    PENG Q, 2003, ANGEW CHEM INT EDIT, V42, P3027
99591    QUINLAN FT, 2000, LANGMUIR, V16, P4049
99592    TRINDADE T, 1997, CHEM MATER, V9, P523
99593    TRINDADE T, 2001, CHEM MATER, V13, P3843
99594    WELLER H, 1993, ADV MATER, V5, P88
99595    WU QS, 2000, J MEMBRANE SCI, V172, P199
99596    WU QS, 2002, INORG CHEM COMMUN, V5, P671
99597    ZHU JJ, 2000, J PHYS CHEM B, V104, P7344
99598 NR 26
99599 TC 3
99600 SN 1388-0764
99601 J9 J NANOPART RES
99602 JI J. Nanopart. Res.
99603 PD JUN
99604 PY 2004
99605 VL 6
99606 IS 2-3
99607 BP 253
99608 EP 257
99609 PG 5
99610 SC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
99611 GA 837EF
99612 UT ISI:000222610500012
99613 ER
99614 
99615 PT J
99616 AU Chung, TS
99617    Li, YZ
99618    Wang, ZY
99619 TI Optimal generation expansion planning via improved genetic algorithm
99620    approach
99621 SO INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS
99622 DT Article
99623 DE genetic algorithm; generation expansion; optimal mix problem
99624 ID OPTIMAL MIX ALGORITHMS
99625 AB This paper presents an improved genetic algorithm approach developed to
99626    solve the optimal generation expansion planning problem of an
99627    all-thermal power system. The problem is focused on the optimal mix of
99628    generation units in a given target year with the constrained
99629    consideration of certain thermal units committed during peaking
99630    periods. The problem formulation thus requires considering the
99631    technical limits of the thermal unit outputs due to the large
99632    difference between the daily peak-load and valley-load demands. In
99633    addition, the implementation issues of penalty coefficients, ranking,
99634    adaptive crossover and mutation probabilities are effectively
99635    considered in the algorithm. The test results on a 14-generator power
99636    system are presented. The results show that the methodology is
99637    effective in solving such mixed integer, constrained nonlinear
99638    generation expansion problem. (C) 2004 Elsevier Ltd. All rights
99639    reserved.
99640 C1 Shanghai Univ, Dept Automat, Shanghai 200072, Peoples R China.
99641    Hong Kong Polytech Univ, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China.
99642 RP Chung, TS, Hong Kong Polytech Univ, Dept Elect Engn, Kowloon, Hong
99643    Kong, Peoples R China.
99644 EM eetschun@polyu.edu.hk
99645 CR BOONE G, 1993, ELECT POWER ENERGY S, V15
99646    FUKUYAMA Y, 1995, ELECTR ENG JPN, V115, P71
99647    GOLDBERG DE, 1989, GENETIC ALGORITHMS S
99648    KAZARLIS SA, 1996, IEEE T POWER SYSTEMS, V11
99649    LEVIN N, 1984, IEEE T POWER AP SYST, V103, P954
99650    LEVIN N, 1985, IEEE T PAS, V104, P1131
99651    STEINBERG MJ, 1943, EC LOADING POWER PLA
99652    WALTERS DC, 1993, IEEE T POWER SYST, V8, P1325
99653    WALTERS DC, 1995, IFAC INT S LARG SCAL
99654 NR 9
99655 TC 1
99656 SN 0142-0615
99657 J9 INT J ELEC POWER ENERG SYST
99658 JI Int. J. Electr. Power Energy Syst.
99659 PD OCT
99660 PY 2004
99661 VL 26
99662 IS 8
99663 BP 655
99664 EP 659
99665 PG 5
99666 SC Engineering, Electrical & Electronic
99667 GA 837VY
99668 UT ISI:000222670500011
99669 ER
99670 
99671 PT J
99672 AU Chen, LQ
99673    Yang, XD
99674    Cheng, CJ
99675 TI Dynamic stability of an axially accelerating viscoelastic beam
99676 SO EUROPEAN JOURNAL OF MECHANICS A-SOLIDS
99677 DT Article
99678 DE axially accelerating beam; viscoelasticity; method of averaging
99679 ID VIBRATIONS
99680 AB This work investigates dynamic stability in transverse parametric
99681    vibration of an axially accelerating viscoelastic tensioned beam. The
99682    material of the beam is described by the Kelvin model. The axial speed
99683    is characterized as a simple harmonic variation about the constant mean
99684    speed. The Galerkin method is applied to discretize the governing
99685    equation into a infinite set of ordinary-differential equations under
99686    the fixed-fixed boundary conditions. The method of averaging is employ
99687    to analyze the dynamic stability of the 2-term truncated system. The
99688    stability conditions are presented and confirmed by numerical
99689    simulations in the case of subharmonic and combination resonance.
99690    Numerical examples demonstrate the effects of the dynamic viscosity,
99691    the mean axial speed and the tension on the stability conditions. (C)
99692    2004 Elsevier SAS. All rights reserved.
99693 C1 Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
99694    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
99695 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
99696 EM lqchen@online.sh.cn
99697 CR ABRATE S, 1992, MECH MACH THEORY, V27, P645
99698    ARIARATNAM ST, 1986, J SOUND VIB, V107, P215
99699    ASOKANTHAN SF, 1994, J VIB ACOUST, V116, P275
99700    BISHOP RED, 1979, MECH VIBRATION
99701    BOGOLIUBOV N, 1961, ASYMPTOTIC METHODS T
99702    MARYNOWSKI K, 2002, INT J NONLINEAR MECH, V37, P1147
99703    MARYNOWSKI K, 2002, J THEORET APPL MECH, V40, P465
99704    OZ HR, 1998, J SOUND VIB, V215, P571
99705    OZ HR, 2001, J SOUND VIB, V239, P556
99706    OZKAYA E, 2000, J SOUND VIB, V234, P521
99707    OZKAYA E, 2002, J SOUND VIB, V254, P782
99708    PARKER RG, 2001, J APPL MECH-T ASME, V68, P49
99709    PASIN F, 1972, ING ARCH, V41, P387
99710    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
99711 NR 14
99712 TC 4
99713 SN 0997-7538
99714 J9 EUR J MECH A-SOLID
99715 JI Eur. J. Mech. A-Solids
99716 PD JUL-AUG
99717 PY 2004
99718 VL 23
99719 IS 4
99720 BP 659
99721 EP 666
99722 PG 8
99723 SC Mechanics
99724 GA 836YY
99725 UT ISI:000222593700008
99726 ER
99727 
99728 PT J
99729 AU Wu, QS
99730    Sun, DM
99731    Liu, HJ
99732    Ding, YP
99733 TI Abnormal polymorph conversion of calcium carbonate and
99734    nano-self-assembly of vaterite by a supported liquid membrane system
99735 SO CRYSTAL GROWTH & DESIGN
99736 DT Article
99737 ID HYDROPHILIC BLOCK-COPOLYMERS; ARAGONITE; PRECIPITATION; CACO3;
99738    CRYSTALLIZATION; NUCLEATION; MINERALS; SURFACE
99739 AB This article describes a novel biomimetic strategy for the synthesis of
99740    CaCO3 crystals with different structures by a supported liquid membrane
99741    containing a mobile carrier, and first reports the abnormal structure
99742    conversion of CaCO3 from calcite to vaterite. Furthermore, we found
99743    that the sub-micron-sphere vaterite prepared by the supported liquid
99744    membrane was a nano-self-assembled system. This kind of vaterite has a
99745    bright future for various applications.
99746 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
99747    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
99748 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
99749 EM qswu@mail.tongji.edu.cn
99750 CR BELCHER AM, 1996, NATURE, V381, P36
99751    CHEN BD, 1998, J AM CHEM SOC, V120, P1625
99752    COLFEN H, 1998, LANGMUIR, V14, P582
99753    COLFEN H, 2001, CHEM-EUR J, V7, P106
99754    COLFEN H, 2003, CURR OPIN COLLOID IN, V8, P23
99755    DALAS E, 1999, LANGMUIR, V15, P8322
99756    DELEEUW NH, 1998, J PHYS CHEM B, V102, P2914
99757    DSOUZA SM, 1999, NATURE, V398, P312
99758    FALINI G, 1996, SCIENCE, V271, P67
99759    FANG WM, 2001, CHIN J INORG CHEM, V17, P685
99760    LITVIN AL, 1997, ADV MATER, V9, P124
99761    LOPEZMACIPE A, 1996, J CRYST GROWTH, V166, P1015
99762    LOWENSTAM HA, 1981, SCIENCE, V211, P1126
99763    MANN S, 1988, NATURE, V332, P119
99764    NAKA K, 2002, LANGMUIR, V18, P3655
99765    RICHTER A, 1996, CHEM TECH-LEIPZIG, V48, P271
99766    SEDLAK M, 1998, MACROMOL CHEM PHYSIC, V199, P247
99767    SHUI M, 1999, CHIN J INORG CHEM, V15, P715
99768    SOUZA SMD, 1999, NATURE, V398, P312
99769    SPANOS N, 1998, J PHYS CHEM B, V102, P6679
99770    WHITE WB, 1974, INFRARED SPECTRA MIN, P227
99771    YU SH, 2003, J PHYS CHEM B, V107, P7396
99772 NR 22
99773 TC 2
99774 SN 1528-7483
99775 J9 CRYST GROWTH DES
99776 JI Cryst. Growth Des.
99777 PD JUL-AUG
99778 PY 2004
99779 VL 4
99780 IS 4
99781 BP 717
99782 EP 720
99783 PG 4
99784 SC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary;
99785    Crystallography
99786 GA 836KG
99787 UT ISI:000222553800013
99788 ER
99789 
99790 PT J
99791 AU Gu, SL
99792    Zhang, HB
99793 TI Characteristic functional structure of infinitesimal symmetry
99794    transformations of Birkhoffian systems
99795 SO CHINESE PHYSICS
99796 DT Article
99797 DE analytical mechanics; Birkhoffian system; constant of motion;
99798    characteristic functional structure; infinitesimal symmetry
99799    transformation
99800 ID CLASSICAL DYNAMIC-SYSTEMS; CONSERVED QUANTITIES; LIE SYMMETRIES;
99801    UNILATERAL CONSTRAINTS; DIFFERENTIAL-EQUATIONS; MAPPINGS
99802 AB In this paper, it is shown that infinitesimal symmetry transformations
99803    of Birkhoffian systems have a characteristic functional structure,
99804    which is formulated by means of an auxiliary symmetry transformation
99805    function Z(mu) (t, a) (introduced by the relation xi(mu) (t, a) = Z(mu)
99806    (t, a) + a(mu)xi(0)(t, a)) and is manifestly dependent upon the
99807    constants of motion of the system. At the end of the paper, an example
99808    is given to illustrate the application of the results.
99809 C1 Chaohu Coll, Dept Phys, Chaohu 238000, Peoples R China.
99810    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
99811 RP Gu, SL, Chaohu Coll, Dept Phys, Chaohu 238000, Peoples R China.
99812 EM gsl2142@sohu.com
99813 CR BIRKHOFF GD, 1927, DYNAMICAL SYSTEMS
99814    FU JL, 2000, ACTA PHYS SINICA, V49, P1203
99815    KATZIN GH, 1985, J MATH PHYS, V26, P3080
99816    KATZIN GH, 1985, J MATH PHYS, V26, P3100
99817    KATZIN GH, 1986, J MATH PHYS, V27, P1756
99818    MEI FX, 1993, SCI CHINA SER A, V23, P709
99819    MEI FX, 1996, DYNAMICS BIRKHOFF SY
99820    MEI FX, 1998, CHINESE SCI BULL, V43, P1937
99821    MEI FX, 1999, APPL LIE GROUPS LIE
99822    MEI FX, 1999, MECH RES COMMUN, V26, P7
99823    STANTILLI RM, 1983, FDN THEORETICAL MECH
99824    ZHANG HB, 2001, ACTA PHYS SIN-CH ED, V50, P1837
99825    ZHANG HB, 2002, CHINESE PHYS, V11, P765
99826    ZHANG Y, 2002, ACTA PHYS SIN-CH ED, V51, P461
99827    ZHANG Y, 2002, CHINESE PHYS, V11, P437
99828 NR 15
99829 TC 1
99830 SN 1009-1963
99831 J9 CHIN PHYS
99832 JI Chin. Phys.
99833 PD JUL
99834 PY 2004
99835 VL 13
99836 IS 7
99837 BP 979
99838 EP 983
99839 PG 5
99840 SC Physics, Multidisciplinary
99841 GA 837QW
99842 UT ISI:000222651500001
99843 ER
99844 
99845 PT J
99846 AU Lu, ZM
99847    Tian, EM
99848    Grimshaw, R
99849 TI Interaction of two lump solitons described by the
99850    Kadomtsev-Petviashvili I equation
99851 SO WAVE MOTION
99852 DT Article
99853 ID SCHRODINGER; EVOLUTION; BULLETS; WAVES
99854 AB The interaction of two lump solitons described by the
99855    Kadomtsev-Petviashvili I (KPI) equation is analysed using both exact
99856    and numerical methods. The numerical method is based on a third order
99857    Runge-Kutta method, and a Crank-Nicholson scheme. The main
99858    characteristic of a direct interaction when the two lumps are initially
99859    aligned along the x-axis is that they may separate in the y-direction,
99860    but then come back to the x-axis after collision; the dependence of the
99861    maximum separation in the y-direction on the relative velocity
99862    difference is described. Two lumps may also experience an abrupt phase
99863    change in the case of an oblique interaction. (C) 2004 Elsevier B.V.
99864    All rights reserved.
99865 C1 Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England.
99866    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
99867    Wright State Univ, Dept Math & Stat, Dayton, OH 45435 USA.
99868 RP Lu, ZM, Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics,
99869    England.
99870 EM z.lu@lboro.ac.uk
99871 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
99872    ABLOWITZ MJ, 1997, PHYS REV LETT, V78, P570
99873    BERGER KM, 2000, SIAM J APPL MATH, V61, P731
99874    BRATSOS AG, 1998, INT J COMPUT MATH, V68, P175
99875    CAO Q, 1999, J ENG MATH, V35, P323
99876    FENG BF, 1998, J COMPUT APPL MATH, V90, P95
99877    FOKAS AS, 2001, PHYSICA D, V152, P189
99878    FORNBERG B, 1978, PHILOS T ROY SOC A, V289, P373
99879    FRANTZESKAKIS DJ, 1998, PHYS LETT A, V248, P203
99880    GORSHKOV KA, 1993, SOV PHYS JETP, V77, P237
99881    INFELD E, 1995, PHYS REV E A, V51, P3183
99882    KADOMTSEV BB, 1970, SOV PHYS DOKL, V15, P539
99883    KATSIS C, 1987, J FLUID MECH, V177, P49
99884    MANAKOV SV, 1977, PHYS LETT A, V63, P205
99885    MINZONI AA, 1996, WAVE MOTION, V24, P291
99886    PELINOVSKII DE, 1993, JETP LETT, V57, P24
99887    POLYMILIS C, 2001, J OPT SOC AM B, V18, P75
99888    WAZWAZ AM, 2001, APPL MATH COMPUT, V123, P205
99889 NR 18
99890 TC 2
99891 SN 0165-2125
99892 J9 WAVE MOTION
99893 JI Wave Motion
99894 PD AUG
99895 PY 2004
99896 VL 40
99897 IS 2
99898 BP 123
99899 EP 135
99900 PG 13
99901 SC Physics, Multidisciplinary; Acoustics; Mechanics
99902 GA 836OO
99903 UT ISI:000222565500003
99904 ER
99905 
99906 PT J
99907 AU Zhang, JM
99908    Yang, W
99909    Song, LP
99910    Cai, M
99911    Zhu, SZ
99912 TI Microwave promoted solvent-free one-pot three-component reaction to
99913    2-pentafluorophenylquinoline derivatives
99914 SO TETRAHEDRON LETTERS
99915 DT Article
99916 DE microwave; pentafluorobenzaldehyde; aniline; alkyne; quinoline
99917 ID QUINOLINES
99918 AB A novel and efficient one-pot multi-component reaction of
99919    pentafluorobenzaldehyde, alkynes and anilines for the synthesis of
99920    2-pentafluorophenyl substituted quinolines under microwave irradiation
99921    and a solvent-free condition is presented. (C) 2004 Elsevier Ltd. All
99922    rights reserved.
99923 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Organofluorine Chem, Shanghai 200032, Peoples R China.
99924    Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R China.
99925 RP Zhu, SZ, Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Organofluorine
99926    Chem, 345 Lingling Lu, Shanghai 200032, Peoples R China.
99927 EM zhusz@mail.sioc.ac.cn
99928 CR BILLAH M, 2002, BIOORG MED CHEM LETT, V12, P1617
99929    GERUS II, 1994, J FLUORINE CHEM, V69, P195
99930    HUMA HZS, 2002, TETRAHEDRON LETT, V43, P6485
99931    SHAO LX, 2003, ADV SYNTH CATAL, V345, P963
99932    VARMA RS, 1999, GREEN CHEM, V1, P43
99933    WANG QF, 2000, MONATSH CHEM, V131, P55
99934    WANG YL, 2002, SYNTHESIS-STUTTG SEP, P1813
99935    XU G, 2004, ORG LETT, V6, P985
99936    YADAV JS, 2002, TETRAHEDRON LETT, V43, P1905
99937    YADAV JS, 2003, SYNTHESIS-STUTTG JUL, P1610
99938 NR 10
99939 TC 2
99940 SN 0040-4039
99941 J9 TETRAHEDRON LETT
99942 JI Tetrahedron Lett.
99943 PD JUL 12
99944 PY 2004
99945 VL 45
99946 IS 29
99947 BP 5771
99948 EP 5773
99949 PG 3
99950 SC Chemistry, Organic
99951 GA 836NH
99952 UT ISI:000222562100051
99953 ER
99954 
99955 PT J
99956 AU Shan, S
99957    Jiang, GH
99958    Jiang, L
99959 TI The multivariate Waring distribution and its application
99960 SO SCIENTOMETRICS
99961 DT Article
99962 AB The multivariate Waring distribution is developed and investigated. A
99963    special case, the bivariate Waring distribution, is considered. It is
99964    shown that the distributions have some nice properties as multivariate
99965    distribution. Some applications to the distribution of scientific
99966    productivity are discussed.
99967 C1 Shanghai Univ, Dept Management & Informat Engn, Shanghai 201800, Peoples R China.
99968    China Natl Inst Educ Res, Beijing, Peoples R China.
99969 RP Shan, S, Shanghai Univ, Dept Management & Informat Engn, Shanghai
99970    201800, Peoples R China.
99971 CR BAI PC, 1996, SOME EMPIRICAL STUDI
99972    BORMHOLDT S, 2001, PHYS REV E, V65, P1
99973    EGGHE L, 1990, INTRO INFORMETRICS
99974    GLANZEL W, 1984, Z WAHRSCHEINLICHKEIT, V66, P173
99975    HUBERMAN BA, 1998, SCIENCE, V280, P95
99976    IRWIN JO, 1963, J ROYAL STATISTICA A, V126, P1
99977    JOHNSON NL, 1997, DISCRETE MULTIVARIAT
99978    KENDALL MG, 1961, J ROYAL STATISTICA A, V124, P1
99979    PRICE DJD, 1976, J AM SOC INFORM SCI, V27, P292
99980    SIMON HA, 1955, BIOMETRIKA, V42, P425
99981    TAKAHASI K, 1965, ANN I STAT MATH, V17, P257
99982    XEKALAKI E, 1981, STATISTICAL DISTRIBU, V4, P157
99983 NR 12
99984 TC 3
99985 SN 0138-9130
99986 J9 SCIENTOMETRICS
99987 JI Scientometrics
99988 PY 2004
99989 VL 60
99990 IS 3
99991 BP 523
99992 EP 535
99993 PG 13
99994 SC Computer Science, Interdisciplinary Applications; Information Science &
99995    Library Science
99996 GA 835QY
99997 UT ISI:000222501800021
99998 ER
99999 
100000 PT J
100001 AU Hou, XL
100002    Shi, YJ
100003    Luo, JJ
100004    Li, ZF
100005    Zhang, HL
100006    Pang, W
100007 TI Effects of elements addition on properties sintered NdFeB permanent
100008    magnets
100009 SO RARE METAL MATERIALS AND ENGINEERING
100010 DT Article
100011 DE elements addition; sintered; NdFeB
100012 AB At present, research for sintered NdFeB permanent magnets has focused
100013    on increasing temperature performance and corrosion stability of
100014    magnets. Thereby, this material can be wide applied in precision
100015    instrument and permanent electromotor field. The addition of tra
100016    elements can increase magnetic properties, temperature stability and
100017    corrosion stability. The added elements are divided into substitute;
100018    elements(Tb Dy), transition elements (Co) and doping elements(Ga Al).It
100019    is proved that the suitable amounts of Tb and Dy is in range 0.5-1at%
100020    and 0.1-3at%, respectively. Co content is within 5-10at% for NdFeB
100021    magnets with high operating temperature. Ga and Al conter should be
100022    controlled within 0.2-1at% and 0.03-2at%, respectively, for excellent
100023    performance.
100024 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
100025    NW Inst Nonferrous Met Res, Xian 710016, Peoples R China.
100026 RP Hou, XL, Shanghai Univ, Shanghai 200072, Peoples R China.
100027 EM houxueling@eyou.com
100028 CR BALE H, 1992, MAGNETISM MAGNETIC M, V23, P58
100029    HIYOSAWA S, 1989, IEEE T MAGN, V25, P3437
100030    HIYOSAWA S, 1991, J APPL PHYS, V69, P5844
100031    SHI QM, 1991, RARE METAL MAT ENG, V20, P1
100032    SHI YJ, 1999, RARE METAL MAT ENG, V28, P53
100033    SONG XP, 1992, RARE METAL MAT ENG, V21, P8
100034    YAMAMOTO H, 1987, IEEE T MAGN, V23, P2100
100035    ZHOU SZ, 1990, RARE EARTH PERMANENT, P106
100036 NR 8
100037 TC 1
100038 SN 1002-185X
100039 J9 RARE METAL MAT ENG
100040 JI Rare Metal Mat. Eng.
100041 PD JUN
100042 PY 2004
100043 VL 33
100044 IS 6
100045 SU Suppl. 1
100046 BP 150
100047 EP 153
100048 PG 4
100049 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
100050    Engineering
100051 GA 835PM
100052 UT ISI:000222496500035
100053 ER
100054 
100055 PT J
100056 AU Xu, H
100057    Tan, XH
100058    Dong, YD
100059 TI Crystalline behaviour and magnetic properties of Nd55Fe30Al10Dy5 bulk
100060    metallic glasses alloy
100061 SO RARE METAL MATERIALS AND ENGINEERING
100062 DT Article
100063 DE bulk metallic glasses alloy; hard magnetic properties; soft magnetic
100064    properties
100065 ID SUPERCOOLED LIQUID REGION; NI AMORPHOUS-ALLOYS; FE-AL ALLOYS;
100066    TEMPERATURE; DIAMETER; CU; MM
100067 AB Crystalline behavior and magnetic properties of Nd55Fe30Al10Dy5 bulk
100068    metallic glasses alloy were investigated by differential scanning
100069    calorimeter (DSC), x-ray diffraction (XRD) and the vibrating sample
100070    magnetometer (VSM). Neither glass transition nor supercooled liquid
100071    region before crystallization was observed for the as-cast
100072    Nd55Fe30Al10Dy5 bulk metallic glasses alloy. The as-cast
100073    Nd55Fe30Al10Dy5 alloy shows the intrinsic coercivity with 452kA/m,
100074    which is higher than Nd60Fe30Al10 alloy. With increasing of annealed
100075    temperature, the intrinsic coercivity of the alloy decreases
100076    significantly, while the saturation magnetization and remanence
100077    decrease monotonously. The Nd55Fe30Al10Dy5 alloy shows soft magnetic
100078    behavior after annealing at 773K for 30 min.
100079 C1 Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
100080 RP Xu, H, Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
100081 EM hxu@mail.shu.edu.cn
100082 CR DING J, 1999, APPL PHYS LETT, V75, P1763
100083    FAN GJ, 2000, ACTA MATER, V48, P3823
100084    HE Y, 1994, PHIL MAG LETT, V70, P371
100085    INOUE A, 1988, JPN J APPL PHYS 2, V27, L2248
100086    INOUE A, 1989, MATER T JIM, V30, P965
100087    INOUE A, 1990, MATER T JIM, V31, P177
100088    INOUE A, 1996, MATER T JIM, V37, P181
100089    INOUE A, 1996, MATER T JIM, V37, P636
100090    INOUE A, 1996, MATER T JIM, V37, P99
100091    INOUE A, 1997, MAT SCI ENG A-STRUCT, V226, P357
100092    INOUE H, 1995, PHYS CHEM GLASSES, V36, P1
100093    KISSINGER HE, 1956, J RES NAT BUR STAND, V57, P217
100094    KONG HZ, 2001, SCRIPTA MATER, V44, P829
100095    PEKER A, 1993, APPL PHYS LETT, V63, P2342
100096    SCHNEIDER S, 2002, APPL PHYS LETT, V80, P1749
100097    SIRATORI K, 1990, J MAGN MAGN MATER, V83, P341
100098    WANG XZ, 1999, J ALLOY COMPD, V290, P209
100099    WEI BC, 2001, PHYS REV B, V64
100100    ZHANG T, 1999, MATER T JIM, V40, P301
100101    ZHANG YH, 1998, EUR PHYS J A, V1, P1
100102 NR 20
100103 TC 0
100104 SN 1002-185X
100105 J9 RARE METAL MAT ENG
100106 JI Rare Metal Mat. Eng.
100107 PD JUN
100108 PY 2004
100109 VL 33
100110 IS 6
100111 SU Suppl. 1
100112 BP 183
100113 EP 186
100114 PG 4
100115 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
100116    Engineering
100117 GA 835PM
100118 UT ISI:000222496500043
100119 ER
100120 
100121 PT J
100122 AU Wang, JA
100123    Zhou, BX
100124    Yao, MY
100125    Li, Q
100126    Chen, WJ
100127 TI Formation of sharp {100}(021) texture in silicon steel sheets
100128 SO RARE METAL MATERIALS AND ENGINEERING
100129 DT Article
100130 DE {100}< 021 > texture; silicon steel sheet; recrystallization
100131 ID SECONDARY RECRYSTALLIZATION
100132 AB The silicon steels containg a base composition of Fe-3.2%Si with
100133    certain amount of carbon and manganese were employed to obtain
100134    {100}<021> texture through one stage cold rolling and annealing. The
100135    results indicated that by careful controlling the amount of alloying
100136    elements and annealing temperature, the sharp {100}<021> texture in
100137    fairly thick commercial sheets can be obtained. A weak component of
100138    {100}<021> and strong component of {447}<11184> texture, which
100139    constitute a Sigma9 coincidence site lattice boundary with a common
100140    [011] axis for 39degrees difference, are present after primary
100141    recrystallization. This relationship facilitates the growth of
100142    {100}<021> grains in addition to the motivation of growth of (100)
100143    grains during secondary recrystallization.
100144 C1 Shanghai Univ, Sch Mat Sci & Engn, Inst Mat, Shanghai 200072, Peoples R China.
100145 RP Wang, JA, Shanghai Univ, Sch Mat Sci & Engn, Inst Mat, Shanghai 200072,
100146    Peoples R China.
100147 EM jawang@mail.shu.edu.cn
100148 CR ABE H, 1968, J JAPAN I METALS, V32, P927
100149    ASMUS F, 1957, METALLK, V48, P341
100150    BARRETT CS, 1966, PREFERRED ORIENTATIO
100151    DETERT K, 1959, ACTA METALL, V7, P589
100152    RANDLE V, 1996, ROLE COINCIDENCE SIT
100153    TAKASHIMA M, 2001, P 1 JOINT INT C COND, P1215
100154    TOMIDA T, 1995, ISIJ INT, V35, P548
100155    WALTER JL, 1959, ACTA METALL, V7, P424
100156    WIENER GW, 1964, J APPL PHYS, V35, P856
100157 NR 9
100158 TC 0
100159 SN 1002-185X
100160 J9 RARE METAL MAT ENG
100161 JI Rare Metal Mat. Eng.
100162 PD JUN
100163 PY 2004
100164 VL 33
100165 IS 6
100166 SU Suppl. 1
100167 BP 187
100168 EP 190
100169 PG 4
100170 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
100171    Engineering
100172 GA 835PM
100173 UT ISI:000222496500044
100174 ER
100175 
100176 PT J
100177 AU No, JS
100178    Xu, H
100179    Wang, W
100180    Zhou, BX
100181    Li, Y
100182    Yao, MY
100183 TI Effect of Cr on mean grain size and magnetic properties of two-phase
100184    nanocrystalline Nd-Fe-B permanent magnets
100185 SO RARE METAL MATERIALS AND ENGINEERING
100186 DT Article
100187 DE rare earths; two-phase nanocrystalline; bonded magnets; magnetic
100188    properties
100189 AB A crystallization peak occurs at 634 degreesC as determined by the DSC
100190    datum of the as-spun Nd8.5Fe74Co5Cu1Nb1Zr3Cr1B6.5 ribbons (nu(s) =
100191    18m/s) at heating rate of 20 degreesC/m. The crystallization
100192    temperature increases by 5 degreesC compared with that the as-spun
100193    Nd8.5Fe75Co5Cu1Nb1Zr3B6.5 ribbons. Apparently the addition of Cr
100194    element strengthens the thermal stability of the ribbons. The addition
100195    of element Cr shows significant advantage in reducting mean grain size
100196    and increasing the intrinsic coercivity from 50 nm and 620.3 kA/m to
100197    20nm and 716 kA/m respectively.
100198 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
100199    Shanghai Univ, Res Ctr Nanosci & Nanotech, Shanghai 200072, Peoples R China.
100200 RP No, JS, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
100201 EM nijiansen@163.com
100202 CR CHANG C, 1996, FILM COMMENT, V32, P4
100203    COEHOORN R, 1989, J MAGN MAGN MATER, V80, P101
100204    HIROSAWA S, 2002, J MAGN MAGN MATER, V239, P424
100205    JURCZYK M, 1998, J MAGN MAGN MATER, V185, P66
100206    KNELLER EF, 1991, IEEE T MAGN, V27, P3588
100207    NI JS, 2003, J RARE EARTH, V21, P401
100208    SCHREFL T, 1994, J APPL PHYS 2, V76, P7053
100209    WANG W, 2003, J CHINESE RARE EARTH, V21, P530
100210 NR 8
100211 TC 0
100212 SN 1002-185X
100213 J9 RARE METAL MAT ENG
100214 JI Rare Metal Mat. Eng.
100215 PD JUN
100216 PY 2004
100217 VL 33
100218 IS 6
100219 SU Suppl. 1
100220 BP 191
100221 EP 194
100222 PG 4
100223 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
100224    Engineering
100225 GA 835PM
100226 UT ISI:000222496500045
100227 ER
100228 
100229 PT J
100230 AU Chen, X
100231    Li, CF
100232 TI Lateral shift of the transmitted light beam through a left-handed slab
100233 SO PHYSICAL REVIEW E
100234 DT Article
100235 ID NEGATIVE REFRACTIVE-INDEX; POTENTIAL WELL; PERMITTIVITY; PERMEABILITY;
100236    PROPAGATION; DISPLACEMENT
100237 AB It is reported that when a light beam travels through a slab of
100238    left-handed medium in the air, the lateral shift of the transmitted
100239    beam can be negative as well as positive. The necessary condition for
100240    the lateral shift to be positive is given. The validity of the
100241    stationary-phase approach is demonstrated by numerical simulations for
100242    a Gaussian-shaped beam. A restriction to the slab's thickness is
100243    provided that is necessary for the beam to retain its profile in the
100244    traveling. It is shown that the lateral shift of the reflected beam is
100245    equal to that of the transmitted beam in the symmetric configuration.
100246 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
100247    Acad Sinica, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt Technol, Xian 710068, Peoples R China.
100248 RP Chen, X, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200436,
100249    Peoples R China.
100250 EM xchen@mail.shu.edu.cn
100251    cfli@mail.shu.edu.cn
100252 CR ARTMANN K, 1948, ANN PHYS, V2, P87
100253    BERMAN PR, 2002, PHYS REV E 2, V66
100254    BORN M, 1980, PRINCIPLES OPTICS, P323
100255    FOTEINOPOULOU S, 2003, PHYS REV B, V67
100256    GARCIA N, 2002, PHYS REV LETT, V88
100257    GOOS F, 1947, ANN PHYSIK, V1, P333
100258    HUANG XH, 2003, EUROPHYS LETT, V63, P28
100259    KONG JA, 2002, APPL PHYS LETT, V80, P2084
100260    KONG JA, 2002, MICROW OPT TECHN LET, V33, P136
100261    LAI HM, 2000, PHYS REV E B, V62, P7330
100262    LAKHTAKIA A, 2003, ELECTROMAGNETICS, V23, P71
100263    LI CF, 2000, PHYS LETT A, V275, P287
100264    LI CF, 2002, PHYS REV A, V65
100265    LI CF, 2003, PHYS REV LETT, V91
100266    LIU Z, 2003, PHYS LETT A, V308, P294
100267    NOTOMI M, 2000, PHYS REV B, V62, P10696
100268    PARAZZOLI CG, 2003, PHYS REV LETT, V90
100269    PENDRY JB, 2000, PHYS REV LETT, V85, P3966
100270    SHADRIVOV IV, 2003, APPL PHYS LETT, V83, P2713
100271    SHELBY RA, 2001, SCIENCE, V292, P77
100272    SMITH DR, 2000, PHYS REV LETT, V84, P4184
100273    SMITH DR, 2000, PHYS REV LETT, V85, P2933
100274    STEINBERG AM, 1994, PHYS REV A, V49, P3283
100275    THOOFT GW, 2001, PHYS REV LETT, V87
100276    VALANJU PM, 2002, PHYS REV LETT, V88
100277    VESELAGO VG, 1968, SOV PHYS USP, V10, P509
100278    WIGNER EP, 1955, PHYS REV, V98, P145
100279    WILLIAMS JM, 2001, PHYS REV LETT, V87
100280    ZHANG ZM, 2002, APPL PHYS LETT, V80, P1097
100281    ZIOLKOWSKI RW, 2001, PHYS REV E 2, V64
100282 NR 30
100283 TC 6
100284 SN 1063-651X
100285 J9 PHYS REV E
100286 JI Phys. Rev. E
100287 PD JUN
100288 PY 2004
100289 VL 69
100290 IS 6
100291 PN Part 2
100292 AR 066617
100293 DI ARTN 066617
100294 PG 6
100295 SC Physics, Fluids & Plasmas; Physics, Mathematical
100296 GA 835RI
100297 UT ISI:000222502800126
100298 ER
100299 
100300 PT J
100301 AU Huang, DB
100302 TI Synchronization-based estimation of all parameters of chaotic systems
100303    from time series
100304 SO PHYSICAL REVIEW E
100305 DT Article
100306 ID CONDITIONAL LYAPUNOV EXPONENTS
100307 AB By a simple combination of adaptive scheme and linear feedback with the
100308    updated feedback strength, for a large class of chaotic systems it is
100309    proved rigorously by using the invariance principle of differential
100310    equations that all unknown model parameters can be estimated
100311    dynamically. This approach supplies a systematic and analytical
100312    procedure for estimating parameters from time series, and it is simple
100313    to implement in practice. In addition, this method is quite robust
100314    against the effect of noise and able to respond rapidly to changes in
100315    operating parameters of the experimental system. Lorenz and Rossler
100316    hyperchaos systems are used to illustrate the validity of this
100317    technique.
100318 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
100319 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
100320 EM dbhuang@mail.shu.edu.cn
100321 CR BOCCALETTI S, 2001, PHYS REV E 2, V63
100322    BOCCALETTI S, 2002, PHYS REP, V366, P1
100323    CUOMO KM, 1993, PHYS REV LETT, V71, P65
100324    DITTO WL, 1997, CHAOS, P13
100325    HUANG DB, 2004, CHAOS, V14, P152
100326    HUBERMAN BA, 1990, IEEE T CIRCUITS SYST, V37, P547
100327    KOCAREV L, 1995, PHYS REV LETT, V74, P5028
100328    KONNUR R, 1996, PHYS REV LETT, V77, P2937
100329    KONNUR R, 2003, PHYS REV E 2, V67
100330    LASALLE J, 1960, IRE T CIRCUIT THEORY, V7, P520
100331    LASALLE JP, 1960, P NATL ACAD SCI USA, V46, P363
100332    MAYBHATE A, 1999, PHYS REV E A, V59, P284
100333    PARLITZ U, 1996, PHYS REV E, V54, P6253
100334    PARLITZ U, 1996, PHYS REV LETT, V76, P1232
100335    PECORA LM, 1990, PHYS REV LETT, V64, P821
100336    SHUAI JW, 1997, PHYS REV E, V56, P2272
100337    ZHOU CS, 2000, PHYSICA D, V135, P1
100338 NR 17
100339 TC 9
100340 SN 1063-651X
100341 J9 PHYS REV E
100342 JI Phys. Rev. E
100343 PD JUN
100344 PY 2004
100345 VL 69
100346 IS 6
100347 PN Part 2
100348 AR 067201
100349 DI ARTN 067201
100350 PG 4
100351 SC Physics, Fluids & Plasmas; Physics, Mathematical
100352 GA 835RI
100353 UT ISI:000222502800141
100354 ER
100355 
100356 PT J
100357 AU Li, PL
100358    Zhang, JC
100359    Cao, GX
100360    Jing, C
100361    Cao, SX
100362 TI Suppression of superconductivity by the nonmagnetic ions Zn and Al for
100363    the YBa2Cu3O7-delta system: From dopant clusters to carrier localization
100364 SO PHYSICAL REVIEW B
100365 DT Article
100366 ID POSITRON-ANNIHILATION; CUPRATE SUPERCONDUCTORS; COPPER OXIDES;
100367    SUBSTITUTION; LIFETIME; TEMPERATURE; OXYGEN; CU; RELAXATION; TRANSITION
100368 AB To clarify the suppressing mechanism of Zn and Al substitution on
100369    high-T-c superconductivity, positron annihilation experiment and
100370    simulated calculation are used to study systemically the
100371    YBa2Cu3-x(Zn,Al)(x)O7-delta (x=0.0-0.4) cuprates. The results show that
100372    Zn doping ions prefer to combine into the cluster of seven ions with a
100373    double square and Al doping ions prefer to form six-ion-cluster with a
100374    hexamer structure, respectively. These clusters, especially for Zn,
100375    would evidently influence the positron annihilation characteristics,
100376    which can be seen from the variation of n(e) with Zn content x in the
100377    clustering process. n(e) displays an abrupt change as the impurity
100378    phases appear in both Zn and Al doping systems. From the doping
100379    process, Zn ions occupy Cu(2) sites in the CuO2 planes and make the
100380    change of electron structure, resulting in the carrier localization. As
100381    a result, it interferes the pairing and transportation of
100382    superconducting carriers and then suppresses the superconductivity with
100383    the formation of Zn clusters. While Al ions enter Cu(1) sites in the
100384    Cu-O chains, they induce the localization of hole carriers and weaken
100385    the function of carrier reservoir by forming clusters. Therefore, the
100386    carriers cannot easily transfer to the CuO2 planes. Since Al doping
100387    does not affect the pairing and transportation directly, it suppresses
100388    the superconductivity weakly than Zn doping. The effect of pairing and
100389    transportation of carriers on charge transfer is also discussed.
100390 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
100391 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
100392 EM jczhang@mail.shu.edu.cn
100393 CR AXNAS J, 1996, PHYS REV B, V53, R3003
100394    BANERJEE T, 2000, SOLID STATE COMMUN, V114, P655
100395    BHARATHI A, 1989, J PHYS-CONDENS MAT, V1, P1467
100396    BRANDT W, 1967, POSITRON ANNIHILATIO, P155
100397    BRANDT W, 1971, PHYS LETT          A, V35, P109
100398    BRINGLEY JF, 1988, PHYS REV B, V38, P2432
100399    BULUT N, 1989, PHYS REV LETT, V62, P2192
100400    CAPONE M, 2002, SCIENCE, V296, P2364
100401    CHAKRABORTY B, 1989, PHYS REV B, V39, P215
100402    DE UY, 2000, PHYS REV B, V62, P14519
100403    GINSBERG DM, 1990, PHYS PROPERTIES HIGH, V2, P543
100404    GUO SQ, 2002, CHINESE PHYS, V11, P379
100405    GUO W, 2001, CHINESE PHYS LETT, V18, P582
100406    GUPTA RP, 1998, PHYSICA C, V305, P179
100407    HAGHIGHI H, 1990, J PHYS-CONDENS MAT, V2, P1911
100408    HOFFMANN L, 1993, PHYS REV LETT, V71, P4047
100409    HORLAND RS, 1989, PHYS REV B, V39, P9017
100410    ISHIBASHI S, 1991, J PHYS-CONDENS MAT, V3, P9169
100411    ISLAM MS, 1991, PHYS REV B, V44, P9492
100412    JEAN YC, 1988, PHYS REV LETT, V60, P1069
100413    JEAN YC, 1990, PHYS REV LETT, V64, P1593
100414    JENSEN KO, 1989, J PHYS-CONDENS MAT, V1, P3727
100415    JORGENSEN JD, 1991, PHYS TODAY, V44, P34
100416    KUO YK, 1997, PHYS REV B, V56, P6201
100417    LI PC, 2002, CHINESE PHYS, V11, P282
100418    LORTZ R, 2003, PHYS REV LETT, V91
100419    MACDONALD AH, 2001, NATURE, V414, P409
100420    MORR DK, 2003, PHYS REV LETT, V90
100421    NACHUMI B, 1996, PHYS REV LETT, V77, P5421
100422    NAGEL C, 1999, PHYS REV B, V60, P9212
100423    SAARINEN K, 1999, PHYS REV LETT, V82, P1883
100424    SOMOZA A, 2000, PHYS REV B, V61, P14454
100425    STAAB TEM, 1999, PHYS REV LETT, V83, P5519
100426    TAKAGI H, 2000, PHYSICA C 1, V341, P3
100427    TARASCON JM, 1987, PHYS REV B, V36, P8393
100428    TARASCON JM, 1988, PHYS REV B, V37, P7458
100429    VONSTETTEN EC, 1988, PHYS REV LETT, V60, P2198
100430    WEI ST, 1998, MATER LETT, V35, P27015
100431    XIAO G, 1990, PHYS REV B, V42, P240
100432    ZHANG HB, 1993, PHYS REV LETT, V70, P1697
100433    ZHANG J, 1999, PHYS LETT A, V26, P452
100434    ZHANG JC, 1995, PHYS LETT A, V201, P70
100435    ZHANG JC, 2002, PHYS REV B, V65
100436 NR 43
100437 TC 4
100438 SN 1098-0121
100439 J9 PHYS REV B
100440 JI Phys. Rev. B
100441 PD JUN
100442 PY 2004
100443 VL 69
100444 IS 22
100445 AR 224517
100446 DI ARTN 224517
100447 PG 7
100448 SC Physics, Condensed Matter
100449 GA 836BU
100450 UT ISI:000222530900079
100451 ER
100452 
100453 PT J
100454 AU Shi, XY
100455    Zhou, SP
100456    Zhu, BH
100457 TI Numerical simulations of the fluxon dynamics of a two-dimensional
100458    Josephson junction system
100459 SO JOURNAL OF SUPERCONDUCTIVITY
100460 DT Article
100461 DE perturbation; sine-Gordon equation; two-dimensional Josephson junction;
100462    Fiske steps
100463 ID SELF-CONTROLLING FEEDBACK; CONTROLLING CHAOS; MAGNETIC-FIELD;
100464    PHASE-LOCKING; LONG
100465 AB A direct perturbation method applied to a long Josephson junction
100466    molded by one-dimensional sine-Gordon equation is presented and the
100467    modulation of perturbations on fluxon velocity and stable state is
100468    studied. Simulations of a two-dimensional Josephson junction with dc
100469    bias current in an external magnetic field provide an I - V
100470    characteristic curve for the system and determine the various dynamic
100471    behaviors, including the periodic, quasiperiodic, and chaotic motions.
100472    Physical explanations for the behaviors are presented. The numerical
100473    results are in good agreement with the energetic analysis.
100474 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
100475 RP Shi, XY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
100476 CR ALMAAS E, 2003, PHYS REV B, V67
100477    COSTABILE G, 1978, APPL PHYS LETT, V32, P587
100478    DELEO C, 2002, PHYS LETT A, V270, P195
100479    DITTO WL, 1995, PHYSICA D, V86, P198
100480    EILBECK JC, 1985, J APPL PHYS, V57, P861
100481    GREBOGI C, 1997, IEEE T CIRCUITS-I, V44, P971
100482    GRONBECHJENSEN N, 1991, PHYS LETT A, V154, P14
100483    HAI WH, 2000, PHYS LETT A, V265, P128
100484    KAUTZ RL, 1995, J APPL PHYS, V78, P5811
100485    KEENER JP, 1977, PHYS REV A, V16, P777
100486    KITTEL A, 1994, PHYS REV E, V50, P262
100487    LACHENMANN SG, 1996, PHYS REV B, V53, P14541
100488    MCLAUGHLIN DW, 1978, PHYS REV A, V18, P1652
100489    OLSEN OH, 1981, J APPL PHYS, V52, P6247
100490    OTT E, 1990, PHYS REV LETT, V64, P1196
100491    PARMENTIER RD, 1978, SOLITONS ACTION, P173
100492    PYRAGAS K, 1992, PHYS LETT A, V170, P421
100493    PYRAGAS K, 1993, PHYS LETT A, V180, P99
100494    TIAN YP, 1999, INT J CONTROL, V72, P258
100495    YEH WJ, 1990, PHYS REV B A, V42, P4080
100496 NR 20
100497 TC 0
100498 SN 0896-1107
100499 J9 J SUPERCOND
100500 JI J. Supercond.
100501 PD JUN
100502 PY 2004
100503 VL 17
100504 IS 3
100505 BP 401
100506 EP 408
100507 PG 8
100508 SC Physics, Applied; Physics, Condensed Matter
100509 GA 835RA
100510 UT ISI:000222502000014
100511 ER
100512 
100513 PT J
100514 AU Xia, L
100515    Tang, MB
100516    Pan, MX
100517    Wang, WH
100518    Dong, YD
100519 TI Glass forming ability and magnetic properties of Nd48Al20Fe27Co5 bulk
100520    metallic glass with distinct glass transition
100521 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
100522 DT Article
100523 ID AL AMORPHOUS-ALLOYS; THERMAL-STABILITY; FE; MICROSTRUCTURE; CO;
100524    ND60FE30AL10
100525 AB Nd48Al20Fe27Co5 bulk metallic glass (BMG) was prepared in the shape of
100526    rods 3 mm in diameter by suction casting. In contrast to the previously
100527    reported hard magnetic Nd-Al-Fe-Co BMGs, the Nd48Al20Fe27Co5 as-cast
100528    rod exhibits a distinct glass transition, multi-step crystallizations
100529    in DSC traces and much lower coercivity. The glass forming ability as
100530    well as the kinetics of the glass transition and crystallizations of
100531    the Nd48Al20Fe27Co5 as-cast rod have been studied. The magnetic
100532    properties of the alloy were investigated in comparison with
100533    Nd60Al10Fe20Co10 glass forming alloys.
100534 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
100535    Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China.
100536 RP Xia, L, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
100537 EM xialei@mail.shu.edu.cn
100538 CR ARCAS J, 1998, PHYS REV B, V58, P5193
100539    CROAT JJ, 1982, J APPL PHYS, V53, P3161
100540    DING J, 1999, J PHYS D APPL PHYS, V32, P713
100541    FAN GJ, 2000, J MATER RES, V15, P1556
100542    HE Y, 1994, PHIL MAG LETT, V70, P371
100543    INOUE A, 1996, MATER T JIM, V37, P99
100544    INOUE A, 1997, MAT SCI ENG A-STRUCT, V226, P393
100545    INOUE A, 1998, METALL MATER TRANS A, V29, P1779
100546    KISSINGER HE, 1956, J RES NAT BUR STAND, V57, P217
100547    KUMAR G, 2003, ACTA MATER, V51, P229
100548    LOFFLER JF, 2000, PHYS REV LETT, V85, P1990
100549    LU ZP, 2002, ACTA MATER, V50, P3501
100550    LU ZP, 2003, PHYS REV LETT, V91
100551    RANDRIANANTOAND.N, 1997, PHYS REV B, V56, P10979
100552    SCHNEIDER S, 2002, APPL PHYS LETT, V80, P1749
100553    TURNBULL D, 1969, CONTEMP PHYS, V10, P473
100554    WANG L, 2000, J PHYS-CONDENS MAT, V12, P4253
100555    WANG XZ, 1999, J ALLOY COMPD, V290, P209
100556    WEI BC, 2001, J APPL PHYS, V89, P3529
100557    WEI BC, 2001, PHYS REV B, V64
100558    WEI BC, 2002, ACTA MATER, V50, P4357
100559    XIA L, 2003, J PHYS D APPL PHYS, V36, P2954
100560    XIA L, 2003, J PHYS D APPL PHYS, V36, P775
100561    XIA L, 2003, J PHYS-CONDENS MAT, V15, P3531
100562    XING LQ, 2000, J APPL PHYS, V88, P3565
100563 NR 25
100564 TC 0
100565 SN 0022-3727
100566 J9 J PHYS-D-APPL PHYS
100567 JI J. Phys. D-Appl. Phys.
100568 PD JUN 21
100569 PY 2004
100570 VL 37
100571 IS 12
100572 BP 1706
100573 EP 1709
100574 PG 4
100575 SC Physics, Applied
100576 GA 835LX
100577 UT ISI:000222486000018
100578 ER
100579 
100580 PT J
100581 AU Zhang, D
100582    Arola, D
100583    Charalambides, PG
100584    Patterson, MCL
100585 TI On the mechanical behavior of carbon-carbon optic grids determined
100586    using a bi-axial optical extensometer
100587 SO JOURNAL OF MATERIALS SCIENCE
100588 DT Article
100589 AB Ion engines accelerate electrically charged plasma through two optic
100590    grids and emit the ions as exhaust. The process facilitates propulsion
100591    without use of chemical propellants. Braided carbon fiber reinforced
100592    composite (C-(f)/C) optics are presently being considered for use as
100593    the accelerator and screen grids in ion propulsion engines. In this
100594    study the mechanical behavior of four candidate tow configurations
100595    proposed for the grids of NASA's Evolutionary Xenon Thruster (NEXT)
100596    were examined. A new bi-axial optical extensometer based on Digital
100597    Image Correlation (DIC) was developed and employed in determining the
100598    in-plane strain distribution resulting from uniaxial tension. The
100599    effective elastic modulus ranged from 4 GPa to 10 GPa at the onset of
100600    deformation. The stiffness either increased or decreased with further
100601    elongation as a result of bending of the axial tows and corresponding
100602    unit cell distortion. The transverse strain and Poisson's ratio of the
100603    panels were found to be a function of the tow dimensions and bonding
100604    between longitudinal and transverse tows. (C) 2004 Kluwer Academic
100605    Publishers.
100606 C1 Univ Maryland Baltimore Cty, Dept Mech Engn, Baltimore, MD 21250 USA.
100607    Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
100608    Adv Ceram Res Inc, Tucson, AZ 85706 USA.
100609 RP Arola, D, Univ Maryland Baltimore Cty, Dept Mech Engn, 1000 Hilltop
100610    Circle, Baltimore, MD 21250 USA.
100611 EM darola@engr.umbc.edu
100612 CR BRUCK HA, 1989, EXP MECH, V29, P261
100613    CARLSSON LA, 1987, EXPT CHARACTERIZATIO
100614    CHU TC, 1985, EXP MECH, V25, P232
100615    COIMBRA D, 2000, J MATER SCI, V35, P3341
100616    DAICOS S, 1995, EXP TECH, V2, P13
100617    HAAG TW, 2002, 200024335 AIAA
100618    KIRKPATRICK SJ, 2000, P SOC PHOTO-OPT INS, V3914, P630
100619    KUJAWINSKA M, 2000, P SOC PHOTO-OPT  A&B, V4101, P380
100620    LIU T, 1996, P SOC PHOTO-OPT INS, V2895, P279
100621    MUELLER J, 1996, 963204 AIAA
100622    PATTERSON MCL, 2002, P JANNAF PROP M ORL, P1
100623    PETERS WH, 1982, OPT ENG, V21, P427
100624    POLK JE, 1999, 992446 AIAA
100625    PYE CT, 1993, MATER WORLD, V10, P557
100626    PYE CT, 1993, SENSORS, V11, P10
100627    RAWLIN VK, 1999, 994612 AIAA
100628    SALBUT L, 2002, P SOC PHOTO-OPT  1&2, V4900, P1254
100629    SHARPE WN, 1968, EXP MECH, V8, P164
100630    SOULAS GC, 2000, IEEE AER C MARCH
100631    SOULAS GC, 2001, IEPC C OCT
100632    SOVEY JS, 1997, 972778 AIAA
100633    ZHANG D, 2001, P SEM ANN C THEOR EX
100634 NR 22
100635 TC 1
100636 SN 0022-2461
100637 J9 J MATER SCI
100638 JI J. Mater. Sci.
100639 PD JUL 15
100640 PY 2004
100641 VL 39
100642 IS 14
100643 BP 4495
100644 EP 4505
100645 PG 11
100646 SC Materials Science, Multidisciplinary
100647 GA 835HM
100648 UT ISI:000222473300009
100649 ER
100650 
100651 PT J
100652 AU Guan, WB
100653    Gao, YL
100654    Zhai, QJ
100655    Xu, KD
100656 TI Effect of droplet size on nucleation undercooling of molten metals
100657 SO JOURNAL OF MATERIALS SCIENCE
100658 DT Letter
100659 ID SOLIDIFICATION; ALUMINUM
100660 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
100661 RP Guan, WB, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
100662    China.
100663 EM qjzhai@mail.shu.edu.cn
100664 CR BARTH M, 1994, MAT SCI ENG A-STRUCT, V178, P305
100665    HU HQ, 2000, FUNDAMENTAL METAL SO
100666    KIM WT, 1991, METALL TRANS A, V22, P2487
100667    KUI HW, 1984, APPL PHYS LETT, V45, P615
100668    LEE ES, 1994, ACTA METALL MATER, V9, P3233
100669    LEE ES, 1994, ACTA METALL MATER, V9, P3236
100670    MUELLER BA, 1987, METALL TRANS A, V18, P1143
100671    PEREPEZKO JH, 1984, MATER SCI ENG, V65, P125
100672    TOSHIHIKO KK, 1995, METALL T A, V26, P2911
100673    TURNBULL D, 1950, J APPL PHYS, V21, P804
100674    YAO WJ, 2000, CHINESE SCI BULL, V47, P826
100675 NR 11
100676 TC 0
100677 SN 0022-2461
100678 J9 J MATER SCI
100679 JI J. Mater. Sci.
100680 PD JUL 15
100681 PY 2004
100682 VL 39
100683 IS 14
100684 BP 4633
100685 EP 4635
100686 PG 3
100687 SC Materials Science, Multidisciplinary
100688 GA 835HM
100689 UT ISI:000222473300025
100690 ER
100691 
100692 PT J
100693 AU Bian, JI
100694    Kim, DW
100695    Hong, KS
100696 TI Microwave dielectric properties of A(2)P(2)O(7) (A = Ca, Sr, Ba; Mg,
100697    Zn, Mn)
100698 SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES &
100699    REVIEW PAPERS
100700 DT Article
100701 DE ceramic; dielectric properties
100702 ID CRYSTAL STRUCTURE; SOLIDS; OXIDES
100703 AB Microwave dielectric properties of A(2)P(2)O(7) (A = Ca, Sr, Ba, Mn,
100704    Mg, Ba) ceramic materials were investigated by a network analyzer at
100705    the frequency of 10GHz. It was found that A(2)P(2)O(7) ceramics could
100706    be sintered at relatively lower temperature below 1150degreesC,
100707    although the thortveitite type series, Mn2P2O7, alpha-Mg2P2O7 and
100708    alpha-Zn2P2O7 with smaller ionic radii of A cations were hard to sinter
100709    to full density. The dielectric constant of A(2)P(2)O(7) is lower than
100710    10. The Q x f value increased according to the sequence of
100711    delta-Ba2P2O7, alpha-Sr2P2O7 and beta-Ca2P2O7 in dichromatic type
100712    series, and the sequence of Mn2P2O7, alpha-Mg2P2O7 and alpha-Zn2P2O7 in
100713    thortveitite type series, respectively. The temperature coefficient of
100714    resonant frequency rf for all samples exhibits negative value. Larger
100715    tau(f) for alpha-Zn2P2O7, alpha-Mg2P2O7 and delta-Ba2P2O7 is mainly due
100716    to their reversible phase transformations. The microwave dielectric
100717    properties were discussed from the point view of bond valence.
100718 C1 Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151742, South Korea.
100719    Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
100720 RP Bian, JI, Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151742, South
100721    Korea.
100722 CR BRESE NE, 1991, ACTA CRYSTALLOGR B, V47, P192
100723    BROWN ID, 1970, J SOLID STATE CHEM, V1, P173
100724    BROWN ID, 1973, ACTA CRYSTALLOGR A, V29, P266
100725    BROWN ID, 1992, ACTA CRYSTALLOGR B, V48, P553
100726    CALVO C, 1967, ACTA CRYST ALLOGR, V23, P289
100727    CHO SY, 1999, J MATER RES, V14, P114
100728    DUBE DC, 1997, J AM CERAM SOC, V80, P1095
100729    ELLLBELGHITTI AA, 1995, ACTA CRYSTALLOGR C, V51, P1478
100730    HAGMAN LO, 1968, ACTA CHEM SCAND, V22, P1419
100731    HAKKI BW, 1960, IRE T MICROWAVE THEO, V8, P402
100732    NAKAMOTO K, 1997, INFRARED RAMAN SPE A, P14
100733    PENN SJ, 1997, J AM CERAM SOC, V80, P1885
100734    RANBY PW, 1855, BRIT J APPL PHYS S, V4, P18
100735    ROBERTSON BE, 1970, J SOLID STATE CHEM, V1, P120
100736    SHANNON RD, 1993, J APPL PHYS, V73, P348
100737    STEFANIDIS T, 1984, ACTA CRYSTALLOGR C, V40, P1995
100738    TEMPLETON A, 2000, J AM CERAM SOC, V83, P95
100739    WEBB NC, 1966, ACTA CRYSTALLOGR, V21, P942
100740 NR 18
100741 TC 0
100742 SN 0021-4922
100743 J9 JPN J APPL PHYS PT 1
100744 JI Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap.
100745 PD JUN
100746 PY 2004
100747 VL 43
100748 IS 6A
100749 BP 3521
100750 EP 3525
100751 PG 5
100752 SC Physics, Applied
100753 GA 835RO
100754 UT ISI:000222503400053
100755 ER
100756 
100757 PT J
100758 AU Ma, H
100759    Kamiya, N
100760 TI Approximate formulation of the hypersingular boundary integral equation
100761    in potential theory
100762 SO ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS
100763 DT Article
100764 DE BEM; hypersingular boundary integral equation; approximate formulation;
100765    continuity condition; distance transformation
100766 ID ELEMENT METHOD; DISPLACEMENT GRADIENTS; NUMERICAL EVALUATION;
100767    SINGULAR-INTEGRALS; LINEAR ELASTICITY; BEM; REGULARIZATION;
100768    COMPUTATION; IDENTITIES; CPV
100769 AB The basis of hypersingular boundary integral equation (HBIE)
100770    development is singular and hypersingular field solutions of kernel
100771    functions. Instead of taking traditional local or global regularization
100772    strategies, the current paper proposes an approximate formulation of
100773    the HBIE in potential theory, designed for numerical solution when
100774    collocating at irregular places such as corners and edges. This is
100775    because any CPV boundary integral can be approximated by the mean value
100776    of two corresponding nearly singular boundary integrals at boundary
100777    points where the continuity requirements are met. The nearly singular
100778    boundary integrals can be evaluated accurately with the previously
100779    developed distance transformation techniques. In consequence, both the
100780    analytical and numerical efforts can be reduced associated with the
100781    difficult problems of the singularity removal and especially the free
100782    term representation, thus the resulting algorithm can be greatly
100783    simplified. The 2D and the 3D examples are presented, showing that the
100784    algorithm works very well. With the algorithm, both the primary and
100785    secondary field variables can be computed accurately at the places near
100786    boundaries, on smooth boundaries or on irregular boundaries such as
100787    corners and edges. (C) 2003 Elsevier Ltd. All rights reserved.
100788 C1 Shanghai Univ, Dept Mech, Shanghai Inst Appl Math & Mech, Sch Sci, Shanghai 200436, Peoples R China.
100789    Nagoya Univ, Sch Informat & Sci, Nagoya, Aichi 4648601, Japan.
100790 RP Ma, H, Shanghai Univ, Dept Mech, Shanghai Inst Appl Math & Mech, Sch
100791    Sci, Shanghai 200436, Peoples R China.
100792 EM hma@mail.shu.edu.cn
100793 CR AIMI A, 1999, INT J NUMER METH ENG, V45, P1807
100794    ALIABADI MH, 2000, INT J NUMER METH ENG, V48, P995
100795    BREBBIA CA, 1984, BOUNDARY ELEMENT TEC
100796    CRUSE TA, 1993, COMPUTATIONAL MECHAN, V11, P1
100797    CRUSE TA, 1993, INT J NUMER METH ENG, V36, P237
100798    CRUSE TA, 1996, INT J NUMER METH ENG, V39, P3273
100799    DELACERDA LA, 2001, INT J NUMER METH ENG, V52, P1337
100800    DONG YF, 1998, ACTA MECH, V129, P187
100801    FIEDLER C, 1995, INT J NUMER METH ENG, V38, P3275
100802    GRACIANI E, 2000, COMPUT MECH, V25, P542
100803    GRANADOS JJ, 2001, ENG ANAL BOUND ELEM, V25, P165
100804    GUIGGIANI M, 1990, ASME, V57, P906
100805    GUIGGIANI M, 1992, ASME, V59, P604
100806    GUIGGIANI M, 1994, ENG ANAL, V13, P169
100807    GUIGGIANI M, 1995, COMPUT MECH, V16, P245
100808    HUANG Q, 1993, INT J NUMER METH ENG, V36, P2643
100809    HUANG Q, 1994, INT J NUMER METH ENG, V37, P2041
100810    HUI CY, 1997, INT J SOLIDS STRUCT, V34, P203
100811    HUI CY, 1999, INT J NUMER METH ENG, V44, P205
100812    IOAKIMIDIS NI, 2000, INT J NUMER METH ENG, V47, P1865
100813    KRISHNASAMY G, 1990, J APPL MECH-T ASME, V57, P404
100814    KRISHNASAMY G, 1992, COMPUT MECH, V9, P267
100815    LIU YJ, 1999, COMPUT MECH, V24, P286
100816    MA H, 1999, ENG ANAL BOUND ELEM, V23, P281
100817    MA H, 2001, ENG ANAL BOUNDARY EL, V25, P843
100818    MA H, 2002, COMPUT MECH, V29, P277
100819    MA H, 2002, ENG ANAL BOUND ELEM, V26, P329
100820    MA H, 2003, ENG ANAL BOUND ELEM, V27, P625
100821    MARTIN PA, 1996, INT J NUMER METH ENG, V39, P687
100822    MATSUMOTO T, 1993, INT J NUMER METH ENG, V36, P783
100823    MUKHERJEE S, 2000, ENG ANAL BOUND ELEM, V24, P767
100824    MUKHERJEE S, 2000, INT J SOLIDS STRUCT, V37, P6623
100825    MUKHERJEE S, 2000, INT J SOLIDS STRUCT, V37, P7633
100826    RICHARDSON JD, 1999, INT J NUMER METH ENG, V45, P13
100827    SCHULZ H, 1998, COMPUT METHOD APPL M, V157, P225
100828    SLADEK V, 1993, INT J NUMER METH ENG, V36, P1609
100829 NR 36
100830 TC 0
100831 SN 0955-7997
100832 J9 ENG ANAL BOUND ELEM
100833 JI Eng. Anal. Bound. Elem.
100834 PD AUG
100835 PY 2004
100836 VL 28
100837 IS 8
100838 BP 945
100839 EP 953
100840 PG 9
100841 SC Engineering, Multidisciplinary; Mathematics, Applied
100842 GA 836MX
100843 UT ISI:000222561000006
100844 ER
100845 
100846 PT J
100847 AU Liu, L
100848    Wu, QS
100849    Ding, YP
100850    Liu, HJ
100851    Zhang, BQ
100852 TI Synthesis of HgSe quantum dots through templates controlling and
100853    gas-liquid transport with emulsion liquid membrane system
100854 SO COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS
100855 DT Article
100856 DE HgSe; quantum dots; emulsion liquid membrane; template controlling;
100857    gas-liquid transport
100858 ID ROOM-TEMPERATURE; MERCURY CHALCOGENIDES; DEVICE APPLICATIONS; CDSE
100859    NANOCRYSTALS; CDE E; PARTICLES; CLUSTERS; ETHYLENEDIAMINE;
100860    SEMICONDUCTORS; LUMINESCENCE
100861 AB A new synthetic method of HgSe quantum dots has been investigated
100862    through template controlling with emulsion liquid membrane system. The
100863    membrane system consists of kerosene as solvent, span80 as surfactant,
100864    N7301 as carrier, and HgCl2 solution as internal-aqueous phase
100865    containing template of different concentrations, and uses gas-liquid
100866    transport on interface of external phase. Its optimum condition is as
100867    follows, kerosene: span80:N7301 = 74:6:20, Roi = 1:1. While using
100868    inorganic KI as the template and adjusting HgCl2 concentrations
100869    (keeping KI/HgCl2 = 10), transmission electron microscope shows that
100870    HgSe quantum dots of different sizes can be obtained respectively,
100871    X-ray diffraction (XRD) reveals that the products have a cubic
100872    structure. The research has shown that quantum confinement effect of
100873    these HgSe quantum dots (2-3 nm) have inverted band structure (HgSe
100874    bulk) increase their effective bandgap giving rise to infrared (IR)
100875    luminescence. Its forming process is also inferred. (C) 2004 Elsevier
100876    B.V. All rights reserved.
100877 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
100878    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
100879    Tangshan Steel & Iron Co Ltd, Ctr Technol, Tangshan 063016, Hebei, Peoples R China.
100880 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
100881 EM qswu@mail.tongji.edu.cn
100882 CR ALIVISATOS AP, 1996, SCIENCE, V271, P933
100883    ARNIM H, 1989, CHEM REV, V89, P1861
100884    BALCERAK R, 1987, OPT ENG, V26, P191
100885    BATTAGLIA D, 2002, NANO LETT, V2, P1027
100886    BAWENDI MG, 1992, J CHEM PHYS, V96, P946
100887    CHEN Y, 2002, CHEM LETT       0605, P556
100888    CHEN YF, 2002, NANO LETT, V2, P1299
100889    DENG ZX, 2003, INORG CHEM, V42, P2331
100890    FIRTH AV, 1999, APPL PHYS LETT, V75, P3120
100891    GAO XH, 2002, J BIOMED OPT, V7, P532
100892    GE XW, 2001, MATER RES BULL, V36, P1609
100893    GODOVSKY DY, 2000, ADV POLYM SCI, V153, P163
100894    HARRISON MT, 2000, ADV MATER, V12, P123
100895    HENSHAW G, 1997, J CHEM SOC DA, V2, P231
100896    HIRAI T, 2000, LANGMUIR, V16, P955
100897    KUNO M, 2003, J PHYS CHEM B, V107, P5758
100898    LANDOLTBORNSTEI., 1982, NUMERICAL DATA FUN B, V17
100899    LI YD, 1999, INORG CHEM, V38, P1382
100900    LI YD, 1999, J PHYS CHEM SOLIDS, V60, P965
100901    LIAO XH, 2001, MAT SCI ENG B-SOLID, V85, P85
100902    OHMIYA T, 1970, JPN J APPL PHYS, V9, P840
100903    PALCHIK O, 2001, J MATER CHEM, V11, P874
100904    QU LH, 2001, NANO LETTERS, V1, P333
100905    RAVINDRAN S, 2003, NANO LETT, V3, P447
100906    ROGACH A, 1999, ADV MATER, V11, P552
100907    ROGALSKI A, 1994, OPT ENG, V33, P1395
100908    SERVICE RF, 1996, SCIENCE, V271, P920
100909    SPANHEL L, 1987, J AM CHEM SOC, V109, P5649
100910    STEIGERWALD ML, 1987, J AM CHEM SOC, V109, P7200
100911    TAIMNI IK, 1955, ANAL CHIM ACTA, V12, P519
100912    WANG C, 1999, MATER CHEM PHYS, V60, P99
100913    YANG Q, 2002, J MATER RES, V17, P1147
100914    ZENG JH, 2001, MATER RES BULL, V36, P343
100915    ZHAO WB, 2000, J CRYST GROWTH, V252, P587
100916 NR 34
100917 TC 0
100918 SN 0927-7757
100919 J9 COLLOID SURFACE A
100920 JI Colloid Surf. A-Physicochem. Eng. Asp.
100921 PD JUN 15
100922 PY 2004
100923 VL 240
100924 IS 1-3
100925 BP 135
100926 EP 139
100927 PG 5
100928 SC Chemistry, Physical
100929 GA 835XP
100930 UT ISI:000222519100016
100931 ER
100932 
100933 PT J
100934 AU Xue, Y
100935    Chen, LQ
100936    Liu, YZ
100937 TI Problems on equilibrium of a thin elastic rod constrained on a surface
100938 SO ACTA PHYSICA SINICA
100939 DT Article
100940 DE thin elastic rod; DNA surpercoils; surface constraint; helical rod
100941 ID LIE SYMMETRIES; DNA; SYSTEMS; MECHANICS; MODEL
100942 AB Nonlinear mechanics of thin elastic rod, as a model of DNA, aroused
100943    extensive interest as a joint research subject of mechanics and
100944    molecular biology. The study of the equilibrium of a thin elastic rod
100945    constrained on a surface found an important application in industry,
100946    especially in molecular biology. In the present paper the constraint
100947    equations and constraint forces of the elastic rod are analyzed, and
100948    the differential/algebraic equations of equilibrium are established
100949    with the arc - coordinate of the central line as the independent
100950    variable. In a special case when the constraint surface is a cylinder
100951    the dimensionless differential equations contain only one physical
100952    parameter, the ratio of the bending and torsional stiffness of the
100953    cross section. A special solution of helical equilibrium can be derived
100954    and is corresponding to a regular precession of the Lagrange heavy
100955    rigid body about a fixed point. The numerical analysis shows that the
100956    geometrical form of the central line is dependent on the initial
100957    conditions of the rod more than its physical parameters.
100958 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
100959    Shanghai Inst Technol, Dept Mech Engn, Shanghai 200233, Peoples R China.
100960    Shanghai Jiao Tong Univ, Dept Engn Mech, Shanghai 200030, Peoples R China.
100961 RP Xue, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
100962    Peoples R China.
100963 CR BENHAM CJ, 1979, BIOPOLYMERS, V18, P609
100964    GUO YX, 2001, CHINESE PHYS, V10, P1
100965    HUNT NG, 1991, J CHEM PHYS, V95, P9329
100966    LEBRET M, 1979, BIOPOLYMERS, V18, P1709
100967    LIU YZ, 2001, CIN Q MECH, V22, P147
100968    LIU YZ, 2002, J SHANGHAI JIAOTONG, V36, P1587
100969    LIU YZ, 2003, MECH PRACTICE, V25, P1
100970    LOVE AEH, 1927, TREATISE MATH THEORY
100971    LUO SK, 2004, ACTA PHYS SIN-CH ED, V53, P1271
100972    MEI FX, 2000, ACTA PHYS SIN-CH ED, V49, P1207
100973    QIAO YF, 2002, CHINESE PHYS, V11, P988
100974    SCHLICK T, 1995, CURR OPIN STRUC BIOL, V5, P245
100975    TANAKA F, 1985, J CHEM PHYS, V83, P6017
100976    VANDERHEIJDEN GHM, 2002, INT J SOLIDS STRUCT, V39, P1863
100977    VOLOGODSKII AV, 1979, NATURE, V280, P294
100978    ZHANG Y, 2001, ACTA PHYS SIN-CH ED, V50, P816
100979 NR 16
100980 TC 2
100981 SN 1000-3290
100982 J9 ACTA PHYS SIN-CHINESE ED
100983 JI Acta Phys. Sin.
100984 PD JUL
100985 PY 2004
100986 VL 53
100987 IS 7
100988 BP 2040
100989 EP 2045
100990 PG 6
100991 SC Physics, Multidisciplinary
100992 GA 835XS
100993 UT ISI:000222519400003
100994 ER
100995 
100996 PT J
100997 AU An, WK
100998    Qiu, XJ
100999    Zhu, ZY
101000 TI Theoretical study on the nuclear fusion mechanism of deuterium clusters
101001    aroused by Coulomb explosions with ferntosecond intense laser
101002 SO ACTA PHYSICA SINICA
101003 DT Article
101004 DE femtosecond intense laser; deuterium cluster; Coulomb explosion;
101005    nuclear fusion
101006 ID RARE-GAS CLUSTERS; ATOMIC CLUSTERS; PULSES; DYNAMICS; FIELDS
101007 AB Considering the Coulomb explosion induced by the interaction of a
101008    deuterium cluster target with an ultra-intensie femtosecond laser, the,
101009    mechanism which generates energetic deuterium nuclei for the fusion has
101010    been analyzed. The formulas for expansions of deuterium ion clusters,
101011    which are driven by Coulomb explosion, are proposed; and hence the
101012    kinetic energies of deuterium nuclei and the expansion time of
101013    deuterium ion clusters have been estimated.
101014 C1 Shanghai Univ, Sch Sci, Dept Phys, Shanghai 200436, Peoples R China.
101015    Yueyang Normal Coll, Dept Phys, Yueyang 414000, Peoples R China.
101016    Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
101017 RP An, WK, Shanghai Univ, Sch Sci, Dept Phys, Shanghai 200436, Peoples R
101018    China.
101019 EM anweike@citiz.net
101020 CR CHANG TQ, 1991, INTERACTION LASER PH, P393
101021    DITMIRE T, 1996, PHYS REV A, V53, P3379
101022    DITMIRE T, 1997, PHYS REV LETT, V78, P2732
101023    DITMIRE T, 1999, NATURE, V398, P489
101024    KOLLER L, 1999, PHYS REV LETT, V82, P3783
101025    LAST I, 1997, J CHEM PHYS, V107, P6685
101026    LAST I, 2000, PHYS REV A, V62, P13201
101027    LAST I, 2001, PHYS REV LETT, V87, P33401
101028    LEI AL, 2000, PHYSICS, V29, P300
101029    LEZIUS M, 1998, PHYS REV LETT, V80, P261
101030    LI SH, 2003, CHINESE PHYS, V12, P856
101031    LIN JQ, 2001, ACTA PHYS SIN-CH ED, V50, P457
101032    LIU JS, 2001, ACTA PHYS SIN-CH ED, V50, P1121
101033    SCHLIPPER R, 1998, PHYS REV LETT, V80, P1194
101034    SHAO YL, 1996, PHYS REV LETT, V77, P3343
101035    ZWEIBACK J, 2000, PHYS REV LETT, V84, P2634
101036 NR 16
101037 TC 1
101038 SN 1000-3290
101039 J9 ACTA PHYS SIN-CHINESE ED
101040 JI Acta Phys. Sin.
101041 PD JUL
101042 PY 2004
101043 VL 53
101044 IS 7
101045 BP 2250
101046 EP 2253
101047 PG 4
101048 SC Physics, Multidisciplinary
101049 GA 835XS
101050 UT ISI:000222519400043
101051 ER
101052 
101053 PT J
101054 AU Zhang, YF
101055    Zhang, JC
101056    Wang, XY
101057    Tubata, K
101058    Cao, GX
101059    Liu, YS
101060    Shu, Y
101061    Jing, C
101062    Nishimura, N
101063    Mori, K
101064    Cao, SX
101065 TI Studies on the structure and transport properties for Y-doped
101066    La2/3Ca1/3MnO3 perovsksite manganate
101067 SO ACTA PHYSICA SINICA
101068 DT Article
101069 DE La2/3Ca1/3MnO3 perovsksite manganese; Y-doping; crystal structure;
101070    transport properties
101071 ID COLOSSAL MAGNETORESISTANCE; THIN-FILMS; MANGANITES; LAMNO3
101072 AB The structure and transport properties of perovskite
101073    (La1-xYx)(2/3)Ca-1/3 MnO3 (0 less than or equal to x less than or equal
101074    to 0.3) systems are systematically investigated. It is found that all
101075    the compounds show a single phase structure. With the increase of Y3+
101076    doping content the metal-insulator transition temperature T-MI(M-I)
101077    shifts to lower temperatures. While the relevant resistance peak rho(p)
101078    is sharply increased, for the sample of x = 0. 3, it has been enhanced
101079    by eight orders of magnitude larger than the non-doped sample( x =
101080    0.0). In these materials a large magnetoresistance effect has been
101081    observed under an external magnetic field. At the same time, it is also
101082    directly shown that the correlation between the transport properties
101083    and the variation of crystal structure from the experiment result.
101084    Based on the double-exchange model and the variable-range-hopping(VRH)
101085    theory, the mechanism of the influence of Y-doping for La in
101086    La2/3Ca1/3MnO3 systems is also discussed.
101087 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
101088    Toyama Univ, Fac Engn, Toyama 9308555, Japan.
101089 RP Zhang, YF, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
101090 CR BISWAS A, 1998, APPL PHYS A, V66, P1213
101091    CHAHARA K, 1993, APPL PHYS LETT, V63, P1990
101092    CHEN X, 2001, CHINESE PHYS, V10, P751
101093    CHEN Y, 1998, CHIN J LOW TEMP PHYS, V20, P62
101094    COEY JMD, 1995, PHYS REV LETT, V75, P3910
101095    DAI DS, 1997, PROGR PHYSICS, V17, P201
101096    FONTCUBERTA J, 1996, PHYS REV LETT, V76, P1122
101097    GOODENOUGH JB, 1970, LANDOLTBORNSTEIN T
101098    GORBENKO OY, 2000, SOLID STATE COMMUN, V114, P407
101099    HELMOLT RV, 1993, PHYS REV LETT, V71, P2331
101100    HIROTA K, 1998, J MAGN MAGN MATER 2, V177, P864
101101    HWANG HY, 1995, PHYS REV LETT, V75, P914
101102    JAIME M, 1999, PHYS REV B, V60, P1028
101103    JIN S, 1994, J APPL PHYS 2, V76, P6929
101104    JIN S, 1995, APPL PHYS LETT, V66, P3
101105    LIU N, 2001, CHIN J LOW TEMP PHYS, V23, P1
101106    MAHENDIRAN R, 1996, PHYS REV B, V53, P3348
101107    MILLIS AJ, 1995, PHYS REV LETT, V74, P5144
101108    PRADHAN AK, 2000, APPL PHYS LETT, V76, P763
101109    RAVINDRANATH V, 2001, PHYS REV B, V63
101110    TERAI T, 1998, PHYS REV B, V58, P1028
101111    WU J, 1999, ACTA PHYS SIN-CH ED, V48, P370
101112    XIAO CT, 2003, ACTA PHYS SIN-CH ED, V52, P1245
101113    XU MX, 1998, ACTA PHYS SINICA, V47, P1007
101114    YUAN SL, 2000, APPL PHYS LETT, V77, P4398
101115    ZENER C, 1951, PHYS REV, V82, P403
101116 NR 26
101117 TC 0
101118 SN 1000-3290
101119 J9 ACTA PHYS SIN-CHINESE ED
101120 JI Acta Phys. Sin.
101121 PD JUL
101122 PY 2004
101123 VL 53
101124 IS 7
101125 BP 2299
101126 EP 2304
101127 PG 6
101128 SC Physics, Multidisciplinary
101129 GA 835XS
101130 UT ISI:000222519400052
101131 ER
101132 
101133 PT J
101134 AU Zhu, WQ
101135    Wu, YZ
101136    Zheng, XY
101137    Jiang, XY
101138    Zhang, ZU
101139    Sun, RG
101140    Xu, SH
101141 TI Multicomponent excited-state emissions in a bilayer organic
101142    electroluminescent device
101143 SO ACTA PHYSICA SINICA
101144 DT Article
101145 DE electroluminescence; excited state emission; exciplex; electroplex
101146 ID LIGHT-EMITTING-DIODES; EXCIPLEX EMISSION; POLYMERS; LAYER
101147 AB Multicomponent excited-state emissions from monomer, exciplex and
101148    electroplex were observed in a bilayer organic electroluminescent
101149    device with a structure of ITO/TPD (60nm)/PBD (60nm)/Al (where TPD and
101150    PBD stand for N,N'-diphenyl-N, N'-bis( 3-methylphenyl)-1,
101151    1'-biphenyl-4, 4'-diamine) and
101152    (2-(4'-biphenyl)-5-(4"-tert-butylphenyl)-1, 3, 4-oxadiazole,
101153    respectively). The difference between the photoluminescence of this
101154    device and the TPD : PBD equimolar evaporated films suggests that the
101155    exciplex takes place only at the interface of TPD/PBD. The Variation of
101156    electroluminescence spectra with bias indicates the different formation
101157    mechanisms and the different population of each excited state
101158    component, as well as the different dynamic recombination process of
101159    carriers in this device.
101160 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
101161 RP Zhu, WQ, Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
101162 CR CAO H, 2000, APPL SURF SCI, V161, P443
101163    CHAO CI, 1998, APPL PHYS LETT, V73, P426
101164    COCCHI M, 2002, APPL PHYS LETT, V80, P2401
101165    COWAN DO, 1976, ELEMENTS ORGANIC PHO
101166    GEBLER DD, 1997, APPL PHYS LETT, V70, P1644
101167    GEBLER DD, 1998, J CHEM PHYS, V108, P7842
101168    ITANO K, 1998, APPL PHYS LETT, V72, P636
101169    JENEKHE SA, 1994, SCIENCE, V265, P765
101170    KALINOWSKI J, 1996, P SOC PHOTO-OPT INS, V2780, P293
101171    KALINOWSKI J, 2000, J PHYS D APPL PHYS, V33, P2379
101172    KHRAMTCHENKOV DV, 1996, J APPL PHYS, V79, P9283
101173    RUHSTALLER B, 2001, J APPL PHYS, V89, P4575
101174    THOMPSON J, 2001, APPL PHYS LETT, V79, P560
101175    WANG JF, 1998, ADV MATER, V10, P230
101176    ZHU DB, 1999, ORGANIC SOLIDS
101177 NR 15
101178 TC 0
101179 SN 1000-3290
101180 J9 ACTA PHYS SIN-CHINESE ED
101181 JI Acta Phys. Sin.
101182 PD JUL
101183 PY 2004
101184 VL 53
101185 IS 7
101186 BP 2325
101187 EP 2329
101188 PG 5
101189 SC Physics, Multidisciplinary
101190 GA 835XS
101191 UT ISI:000222519400057
101192 ER
101193 
101194 PT J
101195 AU Cheng, J
101196    Yamamoto, M
101197 TI Determination of two convection coefficients from Dirichlet to Neumann
101198    map in the two-dimensional case
101199 SO SIAM JOURNAL ON MATHEMATICAL ANALYSIS
101200 DT Article
101201 DE Dirichlet to Neumann map; convection coefficients; global uniqueness;
101202    inverse scattering method; first order elliptic system
101203 ID INVERSE SCATTERING TRANSFORM; STEWARTSON-II EQUATIONS; BOUNDARY-VALUE
101204    PROBLEM; GLOBAL UNIQUENESS; DETERMINING CONDUCTIVITY; DIMENSIONS
101205 AB In the two-dimensional case, we consider the problem of determining two
101206    convection coefficients from the Dirichlet to Neumann map. With the
101207    theory of generalized analytic functions which was developed by Bers
101208    and Vekua, we can formulate the problem as an inverse problem for a
101209    first order elliptic system. By using the inverse scattering method for
101210    the first order elliptic system, we prove that, in two dimensions, the
101211    Dirichlet to Neumann map uniquely determines two convection
101212    coefficients without any smallness assumption of unknown coefficients.
101213 C1 Fudan Univ, Dept Math, Shanghai 200433, Peoples R China.
101214    Shanghai Univ, E Inst, Div Computat Sci, Shanghai, Peoples R China.
101215    Univ Tokyo, Dept Math Sci, Tokyo 153, Japan.
101216 RP Cheng, J, Fudan Univ, Dept Math, Shanghai 200433, Peoples R China.
101217 EM jcheng@fudan.edu.cn
101218    myama@ms.u-tokyo.ac.jp
101219 CR ADAMS RA, 1975, SOBOLEV SPACES
101220    BARROSNETO J, 1973, INTRO THEORY DISTRIB
101221    BEALS R, 1985, P SYMP PURE MATH, V43, P45
101222    BERS L, 1953, THEORY PSEUDOANALYTI
101223    BROWN RM, 1997, COMMUN PART DIFF EQ, V22, P1009
101224    BUKHGEIM AL, 1993, J INVERSE ILL POSED, V1, P17
101225    CALDERON AP, 1980, SEM NUM AN ITS APPL, P65
101226    CHENEY M, 1990, P APPL MATH, V42, P37
101227    HORMANDER L, 1963, LINEAR PARTIAL DIFFE
101228    IKEHATA M, 1999, SUGAKU EXPOSITIONS, V12, P57
101229    ISAKOV V, 1995, T AM MATH SOC, V347, P3375
101230    ISAKOV V, 1998, INVERSE PROBLEMS PAR
101231    KOHN R, 1984, COMMUN PUR APPL MATH, V37, P289
101232    KOHN RV, 1985, COMMUN PUR APPL MATH, V38, P643
101233    NACHMAN AI, 1988, ANN MATH, V128, P531
101234    NACHMAN AI, 1996, ANN MATH, V143, P71
101235    NAKAMURA G, 1995, MATH ANN, V303, P377
101236    SUN ZQ, 1990, J DIFFER EQUATIONS, V87, P227
101237    SUNG LY, 1994, J MATH ANAL APPL, V183, P121
101238    SUNG LY, 1994, J MATH ANAL APPL, V183, P289
101239    SUNG LY, 1994, J MATH ANAL APPL, V183, P477
101240    SYLVESTER J, 1987, ANN MATH, V125, P153
101241    SYLVESTER J, 1988, COMMUN PUR APPL MATH, V41, P197
101242    SYLVESTER J, 1990, P APPL MATH, V42, P101
101243    VEKUA IN, 1962, GEN ANAL FUNCTIONS
101244 NR 25
101245 TC 1
101246 SN 0036-1410
101247 J9 SIAM J MATH ANAL
101248 JI SIAM J. Math. Anal.
101249 PY 2004
101250 VL 35
101251 IS 6
101252 BP 1371
101253 EP 1393
101254 PG 23
101255 SC Mathematics, Applied
101256 GA 835CI
101257 UT ISI:000222457100001
101258 ER
101259 
101260 PT J
101261 AU Yao, MY
101262    Zhou, BX
101263    Li, Q
101264    Liu, WQ
101265    Miao, Z
101266    Yu, YH
101267 TI The effect of alloying composition on hydrogen uptake of welding zones
101268    of zirconium alloys during corrosion tests
101269 SO RARE METAL MATERIALS AND ENGINEERING
101270 DT Article
101271 DE zirconium alloy; hydrogen uptake; corrosion resistance; electron beam
101272    welding
101273 ID MICROARC OXIDATION
101274 AB When the zirconium alloy plates with the same Fe content and different
101275    Cr content were used to make the butt joints with Zr-4 alloy plates,
101276    the hydrogen content in. welding samples is obviously different after
101277    corrosion and is not in proportion to the thickness of oxide films.
101278    This shows that alloying element Cr has a. significant effect on
101279    hydrogen uptake performance. The hydrogen content in welding samples,
101280    in which zirconium alloy plates being used to make the butt joints with
101281    Zr-4 plates don't contain Cr, decreases sharply after corrosion. The
101282    relationship between hydrogen content and the number and size of
101283    Zr(Fe,Cr)(2) second phase particles in Zr-4 with different heat-treated
101284    states indicates that the formation of Zr(Fe,Cr)2 second phase
101285    particles is the main reason that the amount of hydrogen uptake
101286    increases. Adding Nb alloying element in zirconium alloys without Cr,
101287    not only improves the corrosion resistance; but also make hydrogen
101288    uptake not to increase. The zirconium hydrides induced by tensile
101289    stress are easy to precipitate in the front of faulty fusion, and they
101290    are also easy to precipitate along the interface between molten zones
101291    and matrix. These will influence the dispersity of mechanical
101292    properties.
101293 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
101294    Nucl Power Inst China, Key Lab Nucl Fuel & Mat, Chengdu 610041, Peoples R China.
101295 RP Yao, MY, Shanghai Univ, Shanghai 200072, Peoples R China.
101296 CR HARTCORN LA, 1963, QUANTITATIVE METALLO, P63
101297    LI C, 2002, J NUCL MATER, V304, P134
101298    PAN SF, 1989, P S NUCL MAT IRR COR, P1
101299    PERRYMAN ECW, 1978, NUCL ENERGY, V17, P95
101300    SHALTIEL D, 1977, J LESS-COMMON MET, V53, P117
101301    SIMPSON CJ, 1974, J NUCL MATER, V52, P289
101302    XUE WB, 2001, RARE METAL MAT ENG, V30, P281
101303    YAO MY, 2004, NUCL POWER ENG, V25, P147
101304    ZHANG DL, 2003, RARE METAL MAT ENG, V32, P658
101305    ZHOU BX, 1989, ACTA METALLURGICA SI, V25, A190
101306    ZHOU BX, 1996, CNIC01074
101307    ZHOU BX, 2003, NUCL POWER ENG, V24, P236
101308 NR 12
101309 TC 0
101310 SN 1002-185X
101311 J9 RARE METAL MAT ENG
101312 JI Rare Metal Mat. Eng.
101313 PD JUN
101314 PY 2004
101315 VL 33
101316 IS 6
101317 BP 641
101318 EP 645
101319 PG 5
101320 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
101321    Engineering
101322 GA 833XU
101323 UT ISI:000222375800020
101324 ER
101325 
101326 PT J
101327 AU Cao, XF
101328    Shi, YM
101329    Song, XL
101330    Chen, H
101331 TI Andreev reflection resonant tunneling through a precessing spin
101332 SO PHYSICS LETTERS A
101333 DT Article
101334 DE Andreev reflection; precessing spin; spin-orbit interaction
101335 ID MICROSCOPY; METAL
101336 AB We investigated Andreev reflection (AR) resonant tunneling through a
101337    precessing spin which is coupled to a normal metallic lead and a
101338    superconducting lead. The formula of the AR conductance at zero
101339    temperature is obtained as a function of chemical potential and
101340    azimuthal angle of the spin precessing by using the nonequilibrium
101341    Green function method. It is found that as the local spin precesses in
101342    a weak external magnetic field at Larmor frequency omega(l), the AR
101343    tunneling conductance exhibits an oscillation at the frequency
101344    2omega(l) alone. The amplitude of AR conductance oscillation enhances
101345    with spin-flip tunneling coupling increasing. The study also shows that
101346    spin-orbit interaction in tunneling barriers is crucial for the
101347    oscillations of AR conductance. The effect of local spin precessing and
101348    spin-flip tunneling coupling caused by spin-orbit interaction on the
101349    resonant behavior of the AR conductance is examined. (C) 2004 Elsevier
101350    B.V. All rights reserved.
101351 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
101352    Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
101353 RP Cao, XF, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
101354 EM caoyanjie80@163.com
101355    ymshi@mail.shu.edu.cn
101356 CR BALATSKY AV, CONDMAT0112407
101357    DURKAN C, 2002, APPL PHYS LETT, V80, P458
101358    FENG JF, 2003, PHYS REV B, V67
101359    MA J, CONDMAT0309520
101360    MANASSEN Y, 2000, PHYS REV B, V61, P16223
101361    SHACHAL D, 1992, PHYS REV B, V46, P4795
101362    SOULEN RJ, 1998, SCIENCE, V282, P85
101363    SUN QF, 1999, PHYS REV B, V59, P3831
101364    SUN QF, 2001, PHYS REV LETT, V87
101365    ZHANG P, 2002, PHYS REV LETT, V28
101366    ZHU JX, 2002, PHYS REV LETT, V89
101367    ZHU Y, 2002, PHYS REV B, V65
101368 NR 12
101369 TC 0
101370 SN 0375-9601
101371 J9 PHYS LETT A
101372 JI Phys. Lett. A
101373 PD JUL 5
101374 PY 2004
101375 VL 327
101376 IS 4
101377 BP 337
101378 EP 343
101379 PG 7
101380 SC Physics, Multidisciplinary
101381 GA 834DT
101382 UT ISI:000222392500010
101383 ER
101384 
101385 PT J
101386 AU Zhang, Y
101387    Deng, SF
101388    Zhang, DJ
101389    Chen, DY
101390 TI The N-soliton solutions for the non-isospectral mKdV equation
101391 SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
101392 DT Article
101393 DE the non-isospectral mKdV equation; Hirota method; Wronskian technique
101394 ID LINEAR EVOLUTION-EQUATIONS; SELF-CONSISTENT SOURCES; TERMS
101395 AB The bilinear form of the non-isospectral mKdV equation is given and the
101396    exact N-soliton solutions are obtained through Hirota method and
101397    Wronskian technique, respectively. (C) 2004 Elsevier B.V. All rights
101398    reserved.
101399 C1 Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China.
101400    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
101401 RP Zhang, Y, Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R
101402    China.
101403 EM zy2836@163.com
101404 CR FREEMAN NC, 1983, PHYS LETT A, V95, P1
101405    FREEMAN NC, 1984, IMA J APPL MATH, V32, P125
101406    FREEMAN NC, 1984, J PHYS A, V17, P1415
101407    HIROTA R, 1971, PHYS REV LETT, V27, P1192
101408    HIROTA R, 1976, J PHYS SOC JPN, V41, P2141
101409    HIROTA R, 1978, J PHYS SOC JPN, V45, P174
101410    LIN RL, 2001, PHYSICA A, V291, P287
101411    NIMMO JJC, 1983, PHYS LETT A, V95, P4
101412    ROGERS C, 1982, BACKLUND TRANSFORMAT
101413    SATSUMA J, 1979, J PHYS SOC JPN, V46, P359
101414    ZHANG DJ, 2002, J PHYS SOC JPN, V71, P2649
101415 NR 11
101416 TC 1
101417 SN 0378-4371
101418 J9 PHYSICA A
101419 JI Physica A
101420 PD AUG 15
101421 PY 2004
101422 VL 339
101423 IS 3-4
101424 BP 228
101425 EP 236
101426 PG 9
101427 SC Physics, Multidisciplinary
101428 GA 833YV
101429 UT ISI:000222378500003
101430 ER
101431 
101432 PT J
101433 AU Ning, TK
101434    Chen, DY
101435    Zhang, DJ
101436 TI The exact solutions for the nonisospectral AKNS hierarchy through the
101437    inverse scattering transform
101438 SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
101439 DT Article
101440 DE exact solution; the nonisospectral AKNS hierarchy; the inverse
101441    scattering transform
101442 ID KORTEWEG-DEVRIES EQUATION; EVOLUTION-EQUATIONS
101443 AB Exact solutions for the nonisospectral AKNS hierarchy are obtained
101444    through the inverse scattering transform. Some explicit forms of these
101445    solutions are further given. Reductions are also considered. Exact
101446    solutions of some nonisospectral hierarchies, such as the
101447    nonisospectral mKdV hierarchy, the nonisospectral KdV hierarchy, the
101448    nonisospectral nonlinear Schrodinger hierarchy and the nonisospectral
101449    sine-Gordon hierarchy, are obtained. (C) 2004 Elsevier B.V. All rights
101450    reserved.
101451 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
101452 RP Zhang, DJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
101453 EM tkning@mail.shu.edu.cn
101454    dychen@mail.shu.edu.cn
101455    djzhang@mail.shu.edu.cn
101456 CR ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
101457    ABLOWITZ MJ, 1981, SOLITON INVERSE SCAT
101458    ABLOWITZ MJ, 1991, NONLINEAR EVOLUTION
101459    CALOGERO F, 1978, LETT NUOVO CIMENTO, V22, P131
101460    CALOGERO F, 1982, SPECTRAL TRANSFORM S
101461    CHAN WL, 1989, J MATH PHYS, V30, P2521
101462    CHEN DY, 1996, J MATH PHYS, V37, P5524
101463    GARDNER CS, 1967, PHYS REV LETT, V19, P1095
101464    GUPTA MR, 1979, PHYS LETT A, V72, P420
101465    HIROTA R, 1976, J PHYS SOC JPN, V41, P2141
101466    LI YS, 1982, SCI SINICA A, V25, P911
101467    MA WX, 1992, J MATH PHYS, V33, P2464
101468    MA WX, 1992, J PHYS A, V25, L719
101469    TIAN C, 1990, RES REPORTS PHYS, P35
101470    ZAKHAROV VE, 1972, SOV PHYS JETP, V34, P62
101471    ZENG YB, 2000, J MATH PHYS, V41, P5453
101472 NR 16
101473 TC 3
101474 SN 0378-4371
101475 J9 PHYSICA A
101476 JI Physica A
101477 PD AUG 15
101478 PY 2004
101479 VL 339
101480 IS 3-4
101481 BP 248
101482 EP 266
101483 PG 19
101484 SC Physics, Multidisciplinary
101485 GA 833YV
101486 UT ISI:000222378500005
101487 ER
101488 
101489 PT J
101490 AU Xiao, ZY
101491    Wang, ZH
101492 TI One-dimensional chiral photonic band gap structure analyzed by
101493    non-symmetric transmission-line method
101494 SO OPTICS COMMUNICATIONS
101495 DT Article
101496 DE chiral; photonic crystal; photonic band gap; refractive; reflectance
101497 ID MICROCAVITIES; AIR
101498 AB In this paper, the formula of reflection coefficient of mufti-layer
101499    chiral media is derived by non-symmetric transmission-line method.
101500    Then, it is applied to one-dimensional (1-D) chiral photonic crystal
101501    structure, which is composed of thin chiral layers sandwiched by air.
101502    The results show that it is difficult to obtain photonic band gap for
101503    general dielectric when the contrast of two media refractive indices is
101504    not large, and the reflection coefficient is small. However, for chiral
101505    photonic crystal, although the refractive index of chiral layer is
101506    small, the wave spectrum contains forbidden zones and the reflection
101507    coefficient from such a structure is found to be almost equal to 1,
101508    i.e., the wave is almost totally reflected through adjusting chiral
101509    parameter. Therefore it is easier to obtain an ideal photonic band gap.
101510    (C) 2004 Elsevier B.V. All rights reserved.
101511 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
101512 RP Xiao, ZY, Shanghai Univ, Sch Commun & Informat Engn, 149 Yangchang Rd,
101513    Shanghai 200072, Peoples R China.
101514 EM xiaozhongyin@163.com
101515 CR CREGAN RF, 1999, SCIENCE, V285, P1537
101516    FLOOD KM, 1996, J OPT SOC AM A, V13, P1395
101517    FORESI JS, 1997, NATURE, V390, P143
101518    LAKHTAKIA A, 1993, ESSAYS FORMAL ASPECT
101519    LINDELL IV, 1994, ELECTROMAGNETIC WAVE
101520    SANJEEV KS, 2003, MICROW OPT TECHN LET, V38, P293
101521    SIHVOLA AH, 1991, MICROW OPT TECHN LET, V4, P295
101522    VILLENEUVE P, 1998, OPT LETT, V21, P2017
101523    VILLENEUVE PR, 1995, APPL PHYS LETT, V67, P167
101524 NR 9
101525 TC 1
101526 SN 0030-4018
101527 J9 OPT COMMUN
101528 JI Opt. Commun.
101529 PD JUL 15
101530 PY 2004
101531 VL 237
101532 IS 4-6
101533 BP 229
101534 EP 233
101535 PG 5
101536 SC Optics
101537 GA 833YD
101538 UT ISI:000222376700001
101539 ER
101540 
101541 PT J
101542 AU Liu, ZY
101543    Zhang, GD
101544 TI Microstructure analysis of carbon-carbon preform
101545 SO JOURNAL OF MATERIALS RESEARCH
101546 DT Article
101547 ID CHEMICAL-VAPOR INFILTRATION; METHANE PARTIAL-PRESSURE; FIBER FELT;
101548    PYROCARBON; COMPOSITES; DEPOSITION; CHEMISTRY; KINETICS
101549 AB The microstructure of three kinds of porous carbon-carbon preforms
101550    prepared for carbon-carbon/aluminum composites was identified by x-ray
101551    diffraction, Raman spectroscopy, and field emission scan electronic
101552    microscope. Although manufactured at same processing conditions,
101553    including the temperature, type of organic gas, and pressure of
101554    pyrolysis, the structure of the pyrolytic carbon (C-py) in three kinds
101555    of preforms is different. The morphology of the C-py is influence by
101556    the topology of the preforms greatly, and the crystal structure of the
101557    C-py is influenced by the crystal structure of the carbon fiber
101558    greatly, on which surface the C-py was deposited. The degree of
101559    graphitization of the C-py had been enhanced and the structure of the
101560    C-py changed to more anisotropic form when the preforms were annealed
101561    at 2773 K.
101562 C1 Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200030, Peoples R China.
101563    Shanghai Univ, Composites Ctr, Shanghai 200072, Peoples R China.
101564 RP Liu, ZY, Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites,
101565    Shanghai 200030, Peoples R China.
101566 EM zhenyi_liu@hotmail.com
101567 CR BENZINGER W, 1996, CARBON, V34, P1465
101568    BENZINGER W, 1998, CARBON, V36, P1033
101569    BENZINGER W, 1999, CARBON, V37, P1311
101570    BENZINGER W, 1999, CARBON, V37, P181
101571    BENZINGER W, 1999, CARBON, V37, P941
101572    BOKROS JC, 1968, CHEM PHYS CARBON, V5, P1
101573    DELHAES P, 2002, CARBON, V40, P641
101574    DONG GL, 2002, CARBON, V40, P2515
101575    EVANS AG, 1994, J MATER SCI, V29, P3857
101576    FERON O, 1999, CARBON, V37, P1343
101577    GU MY, 1996, ADV COMPOS MATER, V5, P119
101578    JEFFREY JW, 1971, METHODS XRAY CRYSTAL, P83
101579    KELLY BT, 1968, CHEM PHYS CARBON, V5, P119
101580    QULI FA, 1998, CARBON, V36, P1623
101581    ZHANG WG, 2002, CARBON, V40, P2529
101582 NR 15
101583 TC 0
101584 SN 0884-2914
101585 J9 J MATER RES
101586 JI J. Mater. Res.
101587 PD JUL
101588 PY 2004
101589 VL 19
101590 IS 7
101591 BP 2124
101592 EP 2130
101593 PG 7
101594 SC Materials Science, Multidisciplinary
101595 GA 834NQ
101596 UT ISI:000222418200026
101597 ER
101598 
101599 PT J
101600 AU Bi, JB
101601    Chen, ZY
101602    Chen, DY
101603 TI Novel solutions to sine-Gordon equation from modified Backlund
101604    transformation
101605 SO COMMUNICATIONS IN THEORETICAL PHYSICS
101606 DT Article
101607 DE sine-Gordon equation; Backlund transformation; novel solutions
101608 AB Some novel solutions are constructed for the sine-Gordon equation from
101609    the modified bilinear derivative Backlund transformation. The approach
101610    used here is general and can be applied to other soliton equations.
101611 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
101612 RP Bi, JB, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
101613 CR ABLOWITZ MJ, 1981, SOLITONS INVERSE SCA
101614    CHEN DY, 2002, J PHYS SOC JPN, V71, P658
101615    HIROTA R, 1971, PHYS REV LETT, V27, P1192
101616    HIROTA R, 1974, PROG THEOR PHYS, V52, P1498
101617    HIROTA R, 1980, DIRECT METHODS SOLIT, P157
101618    SATSUMA J, 1976, J PHYS SOC JPN, V40, P286
101619 NR 6
101620 TC 0
101621 SN 0253-6102
101622 J9 COMMUN THEOR PHYS
101623 JI Commun. Theor. Phys.
101624 PD JUN 15
101625 PY 2004
101626 VL 41
101627 IS 6
101628 BP 805
101629 EP 806
101630 PG 2
101631 SC Physics, Multidisciplinary
101632 GA 834JZ
101633 UT ISI:000222408700002
101634 ER
101635 
101636 PT J
101637 AU Zheng, CL
101638    Fang, JP
101639    Chen, LQ
101640 TI Evolution property of multisoliton excitations for a higher-dimensional
101641    coupled burgers system
101642 SO COMMUNICATIONS IN THEORETICAL PHYSICS
101643 DT Article
101644 DE higher-dimensional coupled Burgers system; multisoliton excitation;
101645    dromion
101646 ID COHERENT SOLITON-STRUCTURES; DAVEY-STEWARTSON EQUATION; DISPERSIVE WAVE
101647    SYSTEM; GENERAL-SOLUTION; AKNS SYSTEM; DROMION; ABUNDANT; PEAKON
101648 AB By means of the standard truncated Painleve expansion and a special
101649    Backlund transformation, the higher-dimensional coupled Burgers system
101650    (HDCB) is reduced to a linear equation, and an exact multisoliton
101651    excitation is derived. The evolution properties of the multisoliton
101652    excitation are investigated and some novel features or interesting
101653    behaviors are revealed. The results show that after interactions for
101654    dromion-dromion, solitoff-solitoff, and solitoff-dromion, they are
101655    combined with some new types of localized structures, which are similar
101656    to classic particles with completely nonelastic behaviors.
101657 C1 Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
101658    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
101659 RP Zheng, CL, Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R
101660    China.
101661 EM zjclzheng@yahoo.com.cn
101662 CR CHEN CL, 2002, PHYS REV E 2B, V66
101663    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
101664    LOU SY, 2000, PHYS LETT A, V277, P94
101665    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
101666    LOU SY, 2002, J MATH PHYS, V43, P4078
101667    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
101668    LOU SY, 2002, PHYS SCRIPTA, V65, P7
101669    MA WX, 1993, J PHYS A, V26, P17
101670    TANG XY, 2002, PHYS REV E, V66, P46601
101671    YAN ZY, 2002, CHINESE J PHYS, V40, P203
101672    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P1006
101673    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P448
101674    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
101675    ZHENG CL, 2002, COMMUN THEOR PHYS, V38, P653
101676    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
101677    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P783
101678    ZHENG CL, 2003, CHINESE PHYS, V12, P11
101679    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P261
101680    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P9
101681    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
101682    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
101683 NR 21
101684 TC 1
101685 SN 0253-6102
101686 J9 COMMUN THEOR PHYS
101687 JI Commun. Theor. Phys.
101688 PD JUN 15
101689 PY 2004
101690 VL 41
101691 IS 6
101692 BP 903
101693 EP 906
101694 PG 4
101695 SC Physics, Multidisciplinary
101696 GA 834JZ
101697 UT ISI:000222408700021
101698 ER
101699 
101700 PT J
101701 AU Lu, DQ
101702 TI Interaction of viscous wakes with a free surface
101703 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
101704 DT Article
101705 DE free-surface wave; viscous wake; viscosity; submergence depth;
101706    Oseenlet; Lighthill's two-stage scheme; asymptotic solution
101707 ID SHIP-WAVE PATTERN; VISCOSITY; FLOW
101708 AB The interaction of laminar wakes with free-surface waves generated by a
101709    moving body beneath the surface of an incompressible, viscous fluid of
101710    infinite depth was investigated analytically. The analysis was based on
101711    the steady Oseen equations for disturbed flows. The kinematic and
101712    dynamic boundary conditions were linearized for the small-amplitude
101713    free-surface waves. The effect of the moving body was mathematically
101714    modeled as an Oseenlet. The disturbed flow was regarded as the sum of
101715    an unbounded singular Oseen flow which represents the effect of the
101716    viscous wake and a bounded regular Oseen flow which represents the
101717    influence of the free surface. The exact solution for the free-surface
101718    waves was obtained by the method of integral transforms. The asymptotic
101719    representation with additive corrections for the free-surface waves was
101720    derived by means of Lighthill's two-stage scheme. The symmetric
101721    solution obtained shows that the amplitudes of the free-surface waves
101722    are exponentially damped by the presences of viscosity and submergence
101723    depth.
101724 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
101725    Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China.
101726 RP Lu, DQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
101727    Peoples R China.
101728 EM dqlu@mail.shu.edu.cn
101729 CR ALLEN RF, 1968, J FLUID MECH, V34, P417
101730    BRARD R, 1970, J SHIP RES, V14, P207
101731    CHAN AT, 1996, PHYS FLUIDS, V8, P421
101732    CHUNG YK, 1991, J SHIP RES, V35, P191
101733    CHWANG AT, 1975, J FLUID MECH, V67, P787
101734    CRAPPER GD, 1964, P ROY SOC LOND A MAT, V282, P547
101735    CUMBERBATCH E, 1965, J FLUID MECH, V23, P471
101736    DUFFY DG, 1994, TRANSFORM METHODS SO, P116
101737    HAPPEL J, 1973, LOW REYNOLDS NUMBER, P79
101738    LAGERSTROM PA, 1996, LAMINAR FLOW THEORY, P74
101739    LIGHTHILL MJ, 1960, PHILOS T ROY SOC A, V252, P397
101740    LIU MJ, 2002, APPL MATH MECH-ENGL, V23, P1221
101741    LU DQ, 2003, J HYDRODYNAMICS B, V15, P10
101742    LUGT HJ, 1987, PHYS FLUIDS, V30, P3647
101743    LURYE JR, 1968, PHYS FLUIDS, V11, P261
101744    LURYE JR, 1973, PHYS FLUIDS, V16, P750
101745    LYDEN JD, 1988, J GEOPHYS RES, V93, P12293
101746    MILGRAM JH, 1988, J SHIP RES, V32, P54
101747    REED AM, 2002, ANNU REV FLUID MECH, V34, P469
101748    URSELL F, 1960, J FLUID MECH, V8, P418
101749    WEN SL, 1969, INT J ENG SCI, V7, P53
101750 NR 21
101751 TC 2
101752 SN 0253-4827
101753 J9 APPL MATH MECH-ENGL ED
101754 JI Appl. Math. Mech.-Engl. Ed.
101755 PD JUN
101756 PY 2004
101757 VL 25
101758 IS 6
101759 BP 647
101760 EP 655
101761 PG 9
101762 SC Mathematics, Applied; Mechanics
101763 GA 834NA
101764 UT ISI:000222416600006
101765 ER
101766 
101767 PT J
101768 AU Li, XY
101769    He, BW
101770    Leng, GS
101771 TI Mid-facets of a simplex
101772 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
101773 DT Article
101774 DE simplex; mid-facet; median line; Grassmann algebra; geometric inequality
101775 AB The mid-facet of a simplex in n-dimensional Euclidean space which was
101776    introduced quite recently is an important geometric element. An
101777    analytic expression for the mid-facet area of a simplex is firstly
101778    given. In order to obtain the expression, the exterior differential
101779    method was presented. Furthermore, the properties of the mid-facets of
101780    a simplex analogous to median lines of a triangle ( such as for all
101781    mid-facets of a simplex, there exists another simplex such that its
101782    edge-lengths equal to these mid-facets area respectively, and all of
101783    the mid-facets of a simplex have a common point) were proved. Finally,
101784    by applying the analytic expression, a number of inequalities which
101785    combine edge-lengths, circumradius, median line, bisection area and
101786    facet area with the mid-facet area for a simplex were established.
101787 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
101788    Hunan Normal Univ, Dept Math, Changsha 410081, Peoples R China.
101789    Hunan Univ Sci & technol, Dept Math, Yueyang 414000, Peoples R China.
101790 RP Li, XY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
101791 EM lixy77@sohu.com
101792 CR BOOTHBY WM, 1975, INTRO DIFFERENTIABLE
101793    GUO SG, 1997, J MATH PRC, V17, P413
101794    LENG GS, 2000, J MATH ANAL APPL, V248, P429
101795    LENG GS, 2002, SIAM J MATRIX ANAL A, V23, P990
101796    MITRINOVIC DS, 1989, RECENT ADV GEOMETRIC
101797    REZNIKOV AG, 1991, GEOMETRIC ASPECTS FU, V1469, P90
101798    SANYAL A, 1967, AM MATH MONTHLY, V74, P967
101799    SCHNEIDER R, 1993, COVEX BODIES BRUNN M
101800 NR 8
101801 TC 0
101802 SN 0253-4827
101803 J9 APPL MATH MECH-ENGL ED
101804 JI Appl. Math. Mech.-Engl. Ed.
101805 PD JUN
101806 PY 2004
101807 VL 25
101808 IS 6
101809 BP 679
101810 EP 685
101811 PG 7
101812 SC Mathematics, Applied; Mechanics
101813 GA 834NA
101814 UT ISI:000222416600010
101815 ER
101816 
101817 PT J
101818 AU Chen, LQ
101819    Zu, JW
101820    Wu, J
101821 TI Principal resonance in transverse nonlinear parametric vibration of an
101822    axially accelerating viscoelastic string
101823 SO ACTA MECHANICA SINICA
101824 DT Article
101825 DE principal parametric resonance; axially accelerating string;
101826    viscoelasticity; method of multiple scales; stability
101827 ID INTEGRAL CONSTITUTIVE LAW; STABILITY ANALYSIS; MOVING BELTS
101828 AB To investigate the principal resonance in transverse nonlinear
101829    parametric vibration of an axially accelerating viscoelastic string,
101830    the method of multiple scales is applied directly to the nonlinear
101831    partial differential equation that governs the transverse vibration of
101832    the string. To derive the governing equation, Newton's second law,
101833    Lagrangean strain, and Kelvin's model are respectively used to account
101834    the dynamical relation, geometric nonlinearity and the viscoelasticity
101835    of the string material. Based on the solvability condition of
101836    eliminating the secular terms, closed form solutions are obtained for
101837    the amplitude and the existence conditions of nontrivial steady-state
101838    response of the principal parametric resonance. The Lyapunov linearized
101839    stability theory is employed to analyze the stability of the trivial
101840    and nontrivial solutions in the principal parametric resonance. Some
101841    numerical examples are presented to show the effects of the mean
101842    transport speed, the amplitude and the frequency of speed variation.
101843 C1 Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
101844    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
101845    Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada.
101846 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
101847 EM lqchen@online.sh.cn
101848 CR CHEN LQ, 2001, ADV MECH, V31, P535
101849    CHEN LQ, 2003, ACTA MECH, V162, P143
101850    CHEN LQ, 2003, INT J NONLINEAR SCI, V4, P169
101851    CHEN LQ, 2003, J SOUND VIB, V261, P764
101852    CHEN LQ, 2004, CHAOS SOLITON FRACT, V21, P349
101853    CHEN LQ, 2004, J ENG MATH, V47, P171
101854    CHEN LQ, 2004, NONLINEAR DYNAM, V35, P347
101855    FUNG RF, 1997, J SOUND VIB, V201, P153
101856    MIRANKER WL, 1960, IBM J RES DEV, V4, P36
101857    OZKAYA E, 2000, J SOUND VIB, V230, P729
101858    PAKDEMIRLI M, 1993, J SOUND VIB, V168, P371
101859    PAKDEMIRLI M, 1994, J SOUND VIB, V169, P179
101860    PAKDEMIRLI M, 1997, J SOUND VIB, V203, P815
101861    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
101862    WICKERT JA, 1990, J APPL MECH-T ASME, V57, P738
101863    ZHANG L, 1999, J APPL MECH-T ASME, V66, P396
101864    ZHANG L, 1999, J APPL MECH-T ASME, V66, P403
101865    ZHAO WJ, 2002, INT J NONLINEAR SCI, V3, P139
101866 NR 18
101867 TC 0
101868 SN 0567-7718
101869 J9 ACTA MECH SINICA
101870 JI Acta Mech. Sin.
101871 PD JUN
101872 PY 2004
101873 VL 20
101874 IS 3
101875 BP 307
101876 EP 316
101877 PG 10
101878 SC Engineering, Mechanical; Mechanics
101879 GA 834QV
101880 UT ISI:000222426500013
101881 ER
101882 
101883 PT J
101884 AU Lu, YY
101885    Ren, ZJ
101886    Cao, WG
101887    Tong, WQ
101888    Gao, MF
101889 TI Solvent-free synthesis of ethyl alpha-cyanocinnamate in the presence of
101890    CaO
101891 SO SYNTHETIC COMMUNICATIONS
101892 DT Article
101893 DE knoevenagel condensation; alpha-cyanocinnamates; calcium oxide; ethyl
101894    cyanoacetate
101895 ID SOLID-STATE; KNOEVENAGEL CONDENSATION; ABSENCE; CATALYSTS
101896 AB Ethyl alpha-cyanocinnamate can be prepared by grinding in the presence
101897    of CaO at room temperature. This method is simple, efficient,
101898    economical, and environmentally benign.
101899 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
101900    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
101901 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
101902 EM renruil98229@hotmail.com
101903 CR CABELLO JA, 1984, J ORG CHEM, V49, P5195
101904    HAGIWARA H, 1996, MOL CRYST LIQ CRYST, V279, P291
101905    IM J, 1997, TETRAHEDRON LETT, V38, P451
101906    LI JP, 2001, SYNTHETIC COMMUN, V31, P781
101907    MOGILAIAH K, 2003, SYNTHETIC COMMUN, V33, P2309
101908    REN ZJ, 2002, SYNTHETIC COMMUN, V32, P3475
101909    SCHMEYERS T, 1998, J CHEM SOC P2, P989
101910    TANAKA K, 1991, J ORG CHEM, V56, P4333
101911    TANAKA K, 2000, CHEM REV, V100, P1025
101912    TANAKA M, 1998, J CHEM SOC CHEM COMM, P1965
101913    TODA F, 1989, ANGEW CHEM INT EDIT, V28, P320
101914    TODA F, 1989, CHEM EXP, V4, P507
101915    TODA F, 1989, J ORG CHEM, V54, P3007
101916    TODA F, 1990, J CHEM SOC P1, P3207
101917    TODA F, 1998, J CHEM SOC PERK 1107, P3521
101918    TROST RM, 1991, COMPREHENSIVE ORGANI, V2, P369
101919    XIAO JP, 2001, SYNTHETIC COMMUN, V31, P661
101920 NR 17
101921 TC 1
101922 SN 0039-7911
101923 J9 SYN COMMUN
101924 JI Synth. Commun.
101925 PD JUN
101926 PY 2004
101927 VL 34
101928 IS 11
101929 BP 2047
101930 EP 2051
101931 PG 5
101932 SC Chemistry, Organic
101933 GA 830YS
101934 UT ISI:000222160700015
101935 ER
101936 
101937 PT J
101938 AU Leng, GS
101939    Si, L
101940    Zhu, QS
101941 TI Mixed-mean inequalities for subsets
101942 SO PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
101943 DT Article
101944 DE mixed mean; power mean; Carlson inequality
101945 AB For A subset of X = {x(1),...,xn \ x(i) greater than or equal to 0, i =
101946    1, 2, ..., n}, let a(A) and g(A) denote the arithmetic mean and
101947    geometric mean of elements of A, respectively. It is proved that if k
101948    is an integer in ((n)(2), n], then
101949    [GRAPHICS]
101950    with equality if and only if x(1) = ... = x(n). Furthermore, as a
101951    generalization of this inequality, a mixed power-mean inequality for
101952    subsets is established.
101953 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
101954    Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China.
101955 RP Leng, GS, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
101956 EM gleng@mail.shu.edu.cn
101957    silin_mail@sohu.com
101958 CR BECKENBACH EF, 1961, ERGEBNISSE MATH IHRE, V30
101959    CARLSON BC, 1971, SIAM REV, V13, P253
101960    CHUAN HZ, 1990, PAC J MATH, V143, P43
101961    HARDY GH, 1952, INEQUALITIES
101962    KOBER H, 1958, P AM MATH SOC, V9, P452
101963    MITRINOVIC DS, 1970, ANAL INEQUALITIES
101964    MITRINOVIC DS, 1993, CLASSICAL NEW INEQUA
101965 NR 7
101966 TC 0
101967 SN 0002-9939
101968 J9 PROC AMER MATH SOC
101969 JI Proc. Amer. Math. Soc.
101970 PY 2004
101971 VL 132
101972 IS 9
101973 BP 2655
101974 EP 2660
101975 PG 6
101976 SC Mathematics, Applied; Mathematics
101977 GA 830KZ
101978 UT ISI:000222122200020
101979 ER
101980 
101981 PT J
101982 AU Xia, L
101983    Tang, MB
101984    Xu, H
101985    Pan, MX
101986    Zhao, DQ
101987    Wang, WH
101988 TI Kinetic nature of hard magnetic Nd50Al15Fe15Co20 bulk metallic glass
101989    with distinct glass transition
101990 SO JOURNAL OF MATERIALS RESEARCH
101991 DT Article
101992 ID AL AMORPHOUS-ALLOYS; CRYSTALLIZATION KINETICS; THERMAL-STABILITY;
101993    FORMING ABILITY; FE; MICROSTRUCTURE; CO; ND60FE30AL10; TEMPERATURE;
101994    SOLIDS
101995 AB A hard magnetic Nd50Al15Fe15Co20 bulk metallic glass (BMG) was prepared
101996    in the shape of a rod up to 3 mm in diameter by suction casting. The
101997    glass transition and crystallization behaviors as well as their kinetic
101998    nature have been studied. In contrast to the previously reported hard
101999    magnetic Nd-Al-Fe-Co BMGs, Nd50Al15Fe15Co20 as-cast rod exhibits a
102000    distinct glass transition and multistep crystallization behaviors in
102001    the differential scanning calorimetry traces and lower coercivity. The
102002    BMG provides an ideal model for the investigation of glass transition
102003    and crystallization of hard magnetic Nd-Al-Fe-Co glass-forming alloys.
102004 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
102005    Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China.
102006 RP Xia, L, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
102007 EM xialei@aphy.iphy.ac.cn
102008 CR BUSCH R, 1995, J APPL PHYS, V77, P4093
102009    CROAT JJ, 1982, J APPL PHYS, V53, P3161
102010    DING J, 1999, J PHYS D APPL PHYS, V32, P713
102011    FAN GJ, 2000, J MATER RES, V15, P1556
102012    FECHT HJ, 1995, MATER T JIM, V36, P777
102013    HE Y, 1994, PHIL MAG LETT, V70, P371
102014    HWANG CH, 1985, SCRIPTA METALL, V19, P1403
102015    INOUE A, 1996, MATER T JIM, V37, P99
102016    INOUE A, 1997, MAT SCI ENG A-STRUCT, V226, P393
102017    INOUE A, 1998, METALL MATER TRANS A, V29, P1779
102018    KAUZMANN W, 1948, CHEM REV, V43, P219
102019    KISSINGER HE, 1956, J RES NAT BUR STAND, V57, P217
102020    KUMAR G, 2003, ACTA MATER, V51, P229
102021    LASOCKA M, 1976, MATER SCI ENG, V23, P173
102022    MITROVIC N, 2001, APPL PHYS LETT, V78, P2145
102023    SCHNEIDER S, 2002, APPL PHYS LETT, V80, P1749
102024    WANG L, 2000, J PHYS-CONDENS MAT, V12, P4253
102025    WANG XZ, 1999, J ALLOY COMPD, V290, P209
102026    WEI BC, 2001, J APPL PHYS, V89, P3529
102027    WEI BC, 2001, PHYS REV B, V64
102028    WEI BC, 2002, ACTA MATER, V50, P4357
102029    XIA L, 2003, J PHYS D APPL PHYS, V36, P2954
102030    XIA L, 2003, J PHYS D APPL PHYS, V36, P775
102031    XIA L, 2003, J PHYS-CONDENS MAT, V15, P3531
102032    XING LQ, 2000, J APPL PHYS, V88, P3565
102033    ZHAO ZF, 2003, APPL PHYS LETT, V82, P4701
102034    ZHUANG YX, 1999, APPL PHYS LETT, V75, P2392
102035    ZHUANG YX, 2000, J APPL PHYS, V87, P8209
102036 NR 28
102037 TC 2
102038 SN 0884-2914
102039 J9 J MATER RES
102040 JI J. Mater. Res.
102041 PD MAY
102042 PY 2004
102043 VL 19
102044 IS 5
102045 BP 1307
102046 EP 1310
102047 PG 4
102048 SC Materials Science, Multidisciplinary
102049 GA 833DL
102050 UT ISI:000222316500002
102051 ER
102052 
102053 PT J
102054 AU Zhu, LH
102055    Huang, QW
102056    Gu, H
102057 TI Preparation of acicular strontium barium potassium niobate seed crystals
102058 SO JOURNAL OF CRYSTAL GROWTH
102059 DT Article
102060 DE crystal morphology; molten salt synthesis; seed crystal; strontium
102061    barium potassium mobate
102062 ID TEXTURED SR0.53BA0.47NB2O6 CERAMICS; TEMPLATED GRAIN-GROWTH;
102063    PHOTOREFRACTIVE PROPERTIES; ELECTRICAL-PROPERTIES; FABRICATION; PHASE
102064 AB Acicular strontium barium potassium niobate seed crystals with
102065    approximate composition Sr0.36Ba0.51K0.31Nb2O6 can be synthesized from
102066    SrCO3, BaCO3 and Nb2O5 in molten salt. When KCl is used as molten salt,
102067    unfortunately, the synthesized seed crystals have asymmetric diameter
102068    and aspect ratio distribution due to the evaporation of KCl flux. While
102069    K2SO4 is used as molten salt, highly anisotropic Sr0.36Ba0.51K0.31Nb2O6
102070    particles and small equi-axed BaSO4 particles are developed, in which
102071    BaSO4 particles can be removed by conventional sedimentation treatment.
102072    The synthesized seed crystals have the mean diameter of 2.1 mum and the
102073    mean aspect ratio of 5.8, which are believed to be ideal templates for
102074    the preparation of textured niobate ceramics. (C) 2004 Elsevier B.V.
102075    All rights reserved.
102076 C1 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
102077    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
102078 RP Huang, QW, Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High
102079    Performance Ceram & Superfine, 1295 Ding Xi Rd, Shanghai 200050,
102080    Peoples R China.
102081 EM huangqw@mail.sic.ac.cn
102082 CR ANTISIGIN VD, 1981, FERROELECTRICS, V38, P761
102083    DURAN C, 2000, J AM CERAM SOC, V83, P2203
102084    DURAN C, 2002, J MATER RES, V17, P2399
102085    GLASS AM, 1969, J APPL PHYS, V40, P4699
102086    HUANG QW, 2002, MATER LETT, V56, P915
102087    JAMIESON PB, 1968, J CHEM PHYS, V48, P5048
102088    JOHANSSON KE, 1980, J PHYS E, V13, P1289
102089    LEE SI, 1988, FERROELECTRICS, V87, P209
102090    LENZO PV, 1967, APPL PHYS LETT, V11, P23
102091    MORENOGOBBI A, 2000, J ALLOY COMPD, V310, P29
102092    NEURGAONKAR RR, 1980, MATER RES BULL, V15, P1235
102093    NEURGAONKAR RR, 1986, J OPT SOC AM B, V3, P274
102094    NEURGAONKAR RR, 1987, OPT ENG, V26, P392
102095    PICARD G, 1991, MATER SCI FORUM, V73, P505
102096    VANDAMME NS, 1991, J AM CERAM SOC, V74, P1785
102097    WERNER PE, 1969, ARK KEMI, V31, P513
102098    WOIKE T, 2001, APPL PHYS B-LASERS O, V72, P661
102099 NR 17
102100 TC 2
102101 SN 0022-0248
102102 J9 J CRYST GROWTH
102103 JI J. Cryst. Growth
102104 PD JUN 15
102105 PY 2004
102106 VL 267
102107 IS 1-2
102108 BP 199
102109 EP 203
102110 PG 5
102111 SC Crystallography
102112 GA 832SF
102113 UT ISI:000222286600031
102114 ER
102115 
102116 PT J
102117 AU Pei, Y
102118    Chen, J
102119    Yang, LM
102120    Shi, LL
102121    Tao, Q
102122    Hui, BJ
102123    Li, R
102124 TI The effect of pH on the LCST of poly(N-isopropylacrylamide) and
102125    poly(N-isopropylacrylamide-co-acrylic acid)
102126 SO JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION
102127 DT Article
102128 DE temperature sensitivity; pH sensitivity; LCST; PNIPAAm; P(NIPAAm-co-AAc)
102129 ID TEMPERATURE-SENSITIVE HYDROGELS; SWELLING EQUILIBRIA;
102130    PHASE-TRANSITIONS; POLYMER; GELS; IRRADIATION; CONJUGATE; WATER
102131 AB Poly(N-isopropylacrylamide) (PNIPAAm) and
102132    poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAAm-co-AAc))
102133    hydrogels are synthesized by irradiating the aqueous solutions of
102134    NIPAAm and NlPAAm/AAc with Co-60 gamma-ray. The effects of pH on the
102135    swelling ratio and on the lower critical solution temperature (LCST)
102136    are studied by determining the dependence of swelling ratio on
102137    temperature in different pH butter solutions. Differential scanning
102138    calorimetry (DSC) is applied in determination of the LCST of the
102139    hydrogels. Fourier transform infrared (FT-IR) spectrometry is used in
102140    the comparison of hydrogels swelled in various pH conditions. As a
102141    result, PNIPAAm was found to be a pH-sensitive hydrogel and the LCST of
102142    the PNIPAAm and P(NIPAAm-co-AAc) hydrogels are influenced by pH.
102143 C1 Shanghai Univ, Sch Environm & Chem Engn, Dept Chem Engn & Technol, Shanghai 201800, Peoples R China.
102144 RP Chen, J, Shanghai Univ, Sch Environm & Chem Engn, Dept Chem Engn &
102145    Technol, Jiading Campus, Shanghai 201800, Peoples R China.
102146 EM chenjjd@online.sh.cn
102147 CR ANASTASERAVION S, 2001, J CHROMATOGR B, V761, P247
102148    BELTRAN S, 1990, J CHEM PHYS, V92, P2061
102149    BELTRAN S, 1991, MACROMOLECULES, V24, P549
102150    BRAZEL CS, 1996, J CONTROL RELEASE, V39, P57
102151    CHEN GH, 1995, NATURE, V373, P49
102152    CHEN JP, 1990, BIOMATERIALS, V11, P625
102153    CHEN JP, 1990, BIOMATERIALS, V11, P631
102154    DING ZL, 1999, BIOCONJUGATE CHEM, V10, P395
102155    FUJISHIGE S, 1990, J CHEM PHYS, V94, P5154
102156    HIROKAWA Y, 1984, J CHEM PHYS, V81, P6379
102157    HIROTSU S, 1987, J CHEM PHYS, V87, P1392
102158    PANDA A, 2000, RADIAT PHYS CHEM, V58, P101
102159    QU X, 2000, POLYMER, V41, P4589
102160    ROSIAK JM, 1999, RADIAT PHYS CHEM, V55, P139
102161    SCHILD HG, 1990, J PHYS CHEM-US, V94, P4352
102162    STAYTON PS, 1995, NATURE, V378, P472
102163    TANAKA T, 1978, PHYS REV LETT, V40, P820
102164    WINNIK FM, 1990, MACROMOLECULES, V23, P233
102165    YOO MK, 2000, POLYMER, V41, P5713
102166    ZHANG XZ, 2000, CHEM J CHINESE U, V21, P1309
102167 NR 20
102168 TC 1
102169 SN 0920-5063
102170 J9 J BIOMATER SCI-POLYM ED
102171 JI J. Biomater. Sci.-Polym. Ed.
102172 PY 2004
102173 VL 15
102174 IS 5
102175 BP 585
102176 EP 594
102177 PG 10
102178 SC Engineering, Biomedical; Materials Science, Biomaterials; Polymer
102179    Science
102180 GA 832QA
102181 UT ISI:000222280800003
102182 ER
102183 
102184 PT S
102185 AU Zhi, XL
102186    Tong, WQ
102187 TI Toward a virtual grid service of high availability
102188 SO COMPUTATIONAL SCIENCE - ICCS 2004, PT 1, PROCEEDINGS
102189 SE LECTURE NOTES IN COMPUTER SCIENCE
102190 DT Article
102191 AB A new regulation approach is proposed to obtain a virtual resource
102192    service of high availability and service capacity on the basis of
102193    resources of low availability and small capacity. Some regulation
102194    algorithms with distinct characteristics are introduced.
102195 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
102196 RP Zhi, XL, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R
102197    China.
102198 EM xlzhi@mail.shu.edu.cn
102199    wqtong@mail.shu.edu.cn
102200 CR FOSTER I, 1999, GRID BLUEPRINT NEW C
102201    MANI A, 2002, UNDERSTANDING QUALIT
102202    MATEESCU G, 2003, INT J HIGH PERFORM C, V17, P209
102203 NR 3
102204 TC 0
102205 SN 0302-9743
102206 J9 LECT NOTE COMPUT SCI
102207 PY 2004
102208 VL 3036
102209 BP 511
102210 EP 514
102211 PG 4
102212 GA BAG03
102213 UT ISI:000222043200078
102214 ER
102215 
102216 PT J
102217 AU Meng, ZQ
102218    Hu, QY
102219    Dang, CY
102220    Yang, XQ
102221 TI An objective penalty function method for nonlinear programming
102222 SO APPLIED MATHEMATICS LETTERS
102223 DT Article
102224 DE nonlinear programming; exact penalty function; objective penalty
102225    function
102226 ID CONSTRAINED OPTIMIZATION; PENALIZATION
102227 AB In this paper, we propose a novel objective penalty function for
102228    inequality constrained optimization problems. The objective penalty
102229    function differs from any existing penalty function and also has two
102230    desired features: exactness and smoothness if the constraints and
102231    objective function are differentiable. All exact penalty result is
102232    proved for the objective penalty function. In addition to these
102233    results, based on the objective penalty function, we develop an
102234    algorithm for solving the original problem and show its convergence
102235    under some mild conditions. (C) 2004 Elsevier Ltd. All rights reserved.
102236 C1 Zhejiang Univ Technol, Coll Business & Adm, Hangzhou, Zhejiang 310032, Peoples R China.
102237    Shanghai Univ, Coll Int Business & Management, Shanghai 201800, Peoples R China.
102238    City Univ Hong Kong, Dept Mfg Engn & Engn Management, Kowloon, Hong Kong, Peoples R China.
102239    Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China.
102240 RP Meng, ZQ, Zhejiang Univ Technol, Coll Business & Adm, Hangzhou,
102241    Zhejiang 310032, Peoples R China.
102242 EM mengzhiqing@163.net
102243    mecdang@cityu.edu.hk
102244    mayangxq@polyu.edu.hk
102245 CR DIPPILLO G, 1986, MATH PROGRAM, V36, P1
102246    HAN SP, 1979, MATH PROGRAM, V17, P251
102247    HUANG XX, 2001, J OPTIMIZ THEORY APP, V111, P615
102248    LASSERRE JB, 1981, EUROPEAN J OPERATION, V7, P389
102249    MONGEAU M, 1995, EUROPEAN J OPERATION, V83, P686
102250    PINAR MC, 1994, SIAM J OPTIMIZ, V4, P486
102251    ROSENBERG E, 1981, MATH OPERATIONAL RES, V6, P437
102252    RUBINOV AM, 1999, OPTIMIZATION, V46, P327
102253    RUBINOV AM, 1999, SIAM J OPTIMIZ, V10, P289
102254    YANG XQ, 2001, SIAM J OPTIMIZ, V11, P1119
102255    ZANGWILL WI, 1967, MANAGE SCI, V13, P334
102256    ZENIOS SA, 1993, EUROPEAN J OPERATION, V64, P258
102257 NR 12
102258 TC 0
102259 SN 0893-9659
102260 J9 APPL MATH LETT
102261 JI Appl. Math. Lett.
102262 PD JUN
102263 PY 2004
102264 VL 17
102265 IS 6
102266 BP 683
102267 EP 689
102268 PG 7
102269 SC Mathematics, Applied
102270 GA 831SE
102271 UT ISI:000222215600011
102272 ER
102273 
102274 PT J
102275 AU Mang, BW
102276    Ren, ZM
102277    Wang, H
102278    Li, X
102279    Zhuang, YQ
102280 TI On dynamics of grain alignment during alloy solidification under
102281    applied magnetic field
102282 SO ACTA METALLURGICA SINICA
102283 DT Article
102284 DE alignment; texture; solidification; magnetic anisotropy; high magnetic
102285    field; dynamics
102286 ID MODEL; PHASE
102287 AB A model responsible for the magnetic-induced rotation of single
102288    anisotropic grain in free medium has been proposed firstly based on the
102289    classical dynamics of rigid body, in which the grain is treated as a
102290    prolate spheroid. A theoretical expression was derived for the
102291    alignment time of grain as a function of viscidity of liquid matrix,
102292    aspect ratio of grain, difference of anisotropic magnetic
102293    susceptibility of grain and applied magnetic intensity. It was applied
102294    to predict the alignment time of paramagnetic superconductor material
102295    Bi-2212 and ferromagnetic material Bi-3%Mn in melt processing. An
102296    experiment was conducted for the latter melted fully at 300degreesC
102297    then rapidly quenched under different applied magnetic field, and the
102298    MnBi texture is obtained. It is found that the alignment time is less
102299    than one second, in good agreement with the theoretical prediction.
102300 C1 Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai 200072, Peoples R China.
102301 RP Mang, BW, Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai
102302    200072, Peoples R China.
102303 EM bangwen@263.net
102304 CR BARRETT SE, 1990, PHYS REV B, V41, P6283
102305    CLOOTS R, 1994, APPL PHYS LETT, V65, P3386
102306    FARRELL DE, 1987, PHYS REV B, V36, P4025
102307    FERREIRA PJ, 1999, J MATER RES, V14, P2751
102308    MA YW, 1997, PHYSICA C 4, V282, P2619
102309    MOFFATT WG, 1984, HDB BINARY PHASE DIA
102310    MORIKAWA H, 1998, MATER T JIM, V39, P814
102311    OHANDLY RC, 2000, MODERN MAGNETIC MAT, P45
102312    PROBSTEIN RF, 1989, PHYSICOCHEM HYDRODYN, P85
102313    SHETTY MN, 1987, J MATER SCI, V22, P1908
102314    VAKNIN D, 1990, PHYS REV B, V41, P1926
102315    WAN DF, 1999, PHYS MAGNETISM, P436
102316    WANG H, 2002, ACTA METALL SIN, V38, P41
102317    WANG ZG, 2002, MECHATRONICS, V12, P3
102318    YASUDA H, 2000, 3 INT S EL PROC MAT, P647
102319 NR 15
102320 TC 0
102321 SN 0412-1961
102322 J9 ACTA METALL SIN
102323 JI Acta Metall. Sin.
102324 PD JUN
102325 PY 2004
102326 VL 40
102327 IS 6
102328 BP 604
102329 EP 608
102330 PG 5
102331 SC Metallurgy & Metallurgical Engineering
102332 GA 833LJ
102333 UT ISI:000222338500009
102334 ER
102335 
102336 PT J
102337 AU Zhang, BW
102338    Deng, K
102339    Lei, ZS
102340    Ren, ZM
102341 TI A mathematical model on coalescence and removal of inclusion particles
102342    in continuous casting tundish
102343 SO ACTA METALLURGICA SINICA
102344 DT Article
102345 DE continuous casting; tundish; inclusion; removal
102346 ID SIMULATION; STEEL
102347 AB Combing Euler framework for flow fluid and Larangian framework for
102348    particle motion, a statistic model coupling the motion, coalescence and
102349    removal of inclusion in molten melts has been developed to interpret
102350    the basic behavior of inclusion in continuous casting tundish.
102351    Numerical calculation was conducted for 3D turbulent flow field using
102352    k-epsilon turbulence model, then the removal efficiencies and growth
102353    rate of inclusion were statistically computed based on the
102354    random-trajectory model. The results indicate that the total removal
102355    efficiencies of 10, 20 and 30mum inclusion are approximately 20%, 36%
102356    and 75% respectively, of which the attribution due to adhesion to the
102357    refractory of inclusion occupies 1/6-1/4. It is found that the growth
102358    of inclusion due to coalescence is not marked, restricted by the
102359    realistic condition in tundish.
102360 C1 Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai 200072, Peoples R China.
102361 RP Zhang, BW, Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai
102362    200072, Peoples R China.
102363 EM bangwen@263.net
102364 CR CROWE C, 2000, MULTIPHASE FLOWS DRO, P37
102365    FANG DY, 1988, 2 PHASE FLOW, P34
102366    GAO WF, 1997, IRON STEEL S, V32, P740
102367    GOSMAN AD, 1983, J ENERGY, V7, P482
102368    HE YD, 1989, ACTA METALL SIN, V25, B272
102369    ILEGBUSI OJ, 1989, ISIJ INT, V29, P1031
102370    KALLIO GA, 1989, INT J MULTIPHAS FLOW, V15, P433
102371    LI BK, 1997, J RES IRON STEEL, V9, P1
102372    MAZUMDAR D, 1995, STEEL RES, V66, P14
102373    MIKI Y, 1999, METALL MATER TRANS B, V30, P639
102374    NAKAOKA T, 1997, CAMP ISIJ, V10, P760
102375    PATANKER SV, 1980, NUMERICAL HEAT TRANS
102376    SINHA AK, 1993, ISIJ INT, V33, P556
102377    SOO J, 1993, METALL T B, V24, P755
102378    TOZAWA H, 1999, ISIJ INT, V39, P426
102379    ZHANG BW, 2002, J RARE EARTH, V20, P398
102380    ZHANG BW, 2003, THESIS SHANGHAI U, P46
102381    ZHANG E, 1999, J INFRARED MILLIM W, V18, P125
102382    ZHANG L, 2002, METALL MATER TRANS B, V31, P253
102383 NR 19
102384 TC 1
102385 SN 0412-1961
102386 J9 ACTA METALL SIN
102387 JI Acta Metall. Sin.
102388 PD JUN
102389 PY 2004
102390 VL 40
102391 IS 6
102392 BP 623
102393 EP 628
102394 PG 6
102395 SC Metallurgy & Metallurgical Engineering
102396 GA 833LJ
102397 UT ISI:000222338500013
102398 ER
102399 
102400 PT J
102401 AU Shi, ZR
102402 TI Orlicz spaces that are uniformly rotund in the direction of weakly
102403    compact sets
102404 SO TAIWANESE JOURNAL OF MATHEMATICS
102405 DT Article
102406 DE uniform rotundity in the direction of weakly compact sets; Orlicz
102407    space; Orlicz norm
102408 ID BANACH-SPACES
102409 AB Sufficient and necessary condition of Orlicz spaces equipped with
102410    Orlicz norm that are uniformly rotund in the direction of weakly
102411    compact sets using only conditions on generated function of the space
102412    are given.
102413 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
102414 RP Shi, ZR, Shanghai Univ, Dept Math, Box 028, Shanghai 200436, Peoples R
102415    China.
102416 EM zshi@sh163.net
102417 CR ANDO T, 1962, CAN J MATH, V14, P170
102418    CHEN S, 1986, B POLISH ACAD SCI MA, V34, P585
102419    CHEN S, 1996, THESIS WARSZAWA
102420    HAO C, 1998, FUNCT APPROX COMMENT, V26, P127
102421    HUDZIK H, 1997, ARCH MATH, V68, P159
102422    KRASNOSELSKII MA, 1961, CONVEX FUNCTIONS ORL
102423    SMITH MA, 1977, CAN J MATH, V29, P963
102424    SMITH MA, 1978, MATH ANN, V233, P155
102425    WANG T, 1992, J HEILONGJIANG U, V9, P10
102426    WANG T, 1995, COMMENT MATH PRACE M, V35, P245
102427    WANG T, 1999, J HARBIN U SCI TECH, V3, P1
102428    WANG Z, 1992, ELECTROANAL, V4, P77
102429    WU C, 1978, J HARBIN I TECH, V2, P1
102430    YAO H, 2000, SE ASIAN B MATH, V24, P667
102431 NR 14
102432 TC 0
102433 SN 1027-5487
102434 J9 TAIWAN J MATH
102435 JI Taiwan. J. Math.
102436 PD JUN
102437 PY 2004
102438 VL 8
102439 IS 2
102440 BP 343
102441 EP 359
102442 PG 17
102443 SC Mathematics
102444 GA 831VZ
102445 UT ISI:000222225900014
102446 ER
102447 
102448 PT J
102449 AU Xiao, XS
102450    Fang, SS
102451    Wang, Q
102452    Wang, GM
102453    Hua, Q
102454    Dong, YD
102455 TI Effect of hot rolling on thermal stability and microstructure of
102456    Zr52.5Al10Ni10Cu15Be12.5 bulk metallic glass
102457 SO MATERIALS LETTERS
102458 DT Article
102459 DE thermal stability; bulk metallic glasses; hot rolling; supercooled
102460    liquid region
102461 AB The thermal stability and microstructure of hot rolled
102462    Zr52.5Al10Ni10Cu15Be12.5 bulk metallic glass have been investigated.
102463    The decrease of thermal stability is due to the change of
102464    microstructure when the rolled reduction ratio is over 50%. Some
102465    ordered clusters embedded in the glassy matrix were regarded as the
102466    heterogeneous nuclear sites in subsequent crystallization. (C) 2004
102467    Elsevier B.V. All rights reserved.
102468 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
102469 RP Xiao, XS, Shanghai Univ, Inst Mat, Yangchang Rd 19, Shanghai 200072,
102470    Peoples R China.
102471 EM xsxiao@mail.shu.edu.cn
102472 CR BRUCK HA, 1996, J MATER RES, V11, P503
102473    EKELUND S, 1927, JERNKONT ANN, V2, P39
102474    JIN HJ, 2001, SCRIPTA MATER, V44, P1083
102475    KAWAMURA Y, 1998, ACTA METALL MATER, V46, P253
102476    NIEH TG, 2001, ACTA MATER, V49, P2887
102477    XIAO XS, 2003, J ALLOY COMPD, V351, P324
102478 NR 6
102479 TC 0
102480 SN 0167-577X
102481 J9 MATER LETT
102482 JI Mater. Lett.
102483 PD JUL
102484 PY 2004
102485 VL 58
102486 IS 19
102487 BP 2357
102488 EP 2360
102489 PG 4
102490 SC Materials Science, Multidisciplinary; Physics, Applied
102491 GA 830ER
102492 UT ISI:000222105000006
102493 ER
102494 
102495 PT J
102496 AU Zheng, ZY
102497    Engblom, JJ
102498 TI Computational and experimental characterization of continuously fiber
102499    reinforced plastic extrusions: Part II - Long-term flexural loading
102500 SO JOURNAL OF REINFORCED PLASTICS AND COMPOSITES
102501 DT Article
102502 DE experimental characterization; finite element method; continuous fiber
102503    reinforced; plastic extrusion; long-term loading; creep; fiber
102504    micro-buckling
102505 ID CREEP; COMPOSITES
102506 AB Experimental characterization of time-dependent properties for
102507    rectangular hollow-cored, continuous fiber reinforced, commingled
102508    recycled plastic extruded forms under long-term (creep) flexural
102509    loading has been presented in this paper. Finite element based computer
102510    models have been developed to predict the effects of damage progression
102511    in such reinforced extruded plastic forms. In the long-term (creep)
102512    tests, reinforced and unreinforced extrusions with varying compositions
102513    were used as specimens. These extruded specimens were submerged in
102514    heated water and subjected to different loads. Experimental results
102515    indicate that fiber micro-buckling and fiber-matrix interface failure
102516    occur during the creep loading environment. The fiber micro-buckling
102517    occurs over time, compared with similar but dramatic damage that occurs
102518    in a short-period of time during short-term (static) loading, as
102519    discussed in Part I of this work. Experimental data also shows that
102520    these damage modes significantly reduce the long-term (life cycle)
102521    flexural properties, and the specimens with a coupling agent
102522    demonstrated much better performance. "Damage dependent" finite element
102523    models were developed using different material property types to
102524    represent the glass-fiber roving, fiber-matrix interface and plastic
102525    matrix respectively. Material nonlinearity of the plastic matrix has
102526    been incorporated along with stress-based failure criteria to account
102527    for fiber-matrix interfacial shear failure and local fiber
102528    micro-buckling. A user-defined material model has been incorporated
102529    into an industrial standard finite element software package to
102530    accommodate damage progression. The developed finite element based
102531    model(s) have correlated well with the long-term (creep) test results,
102532    and can provide a valuable tool in designing reinforced plastics for
102533    long-term loading conditions.
102534 C1 Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
102535    Florida Inst Technol, Dept Mech & Aerosp Engn, Melbourne, FL 32901 USA.
102536 RP Engblom, JJ, Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072,
102537    Peoples R China.
102538 EM engblom@fit.edu
102539 CR GIBSON RF, 1990, J COMPOS MATER, V24, P441
102540    KELLY KW, 1993, P 38 SAMPE INT S AN
102541    LI J, 1994, COMPOS SCI TECHNOL, V52, P615
102542    LOCKERT CR, 1993, THESIS FLORIDA TECH
102543    READ BE, 1997, POLYM ENG SCI, V37, P1572
102544    ZHENG Z, 2002, THESIS FLORIDA I TEC
102545    ZHENG ZY, 2002, COMPOS STRUCT, V56, P157
102546 NR 7
102547 TC 0
102548 SN 0731-6844
102549 J9 J REINF PLAST COMPOSITE
102550 JI J. Reinf. Plast. Compos.
102551 PY 2004
102552 VL 23
102553 IS 8
102554 BP 799
102555 EP 810
102556 PG 12
102557 SC Materials Science, Composites; Polymer Science
102558 GA 830DE
102559 UT ISI:000222101000001
102560 ER
102561 
102562 PT J
102563 AU Liu, GL
102564 TI A coupled aerothermoelastic theory of vibrating blade-fluid interaction
102565    in fully 3-D transonic rotor flow
102566 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
102567 DT Article
102568 DE coupled aerothermoelasticity; blade vibration; variational principles;
102569    gas turbine
102570 ID VARIATIONAL PRINCIPLE; FORMULATION; INVERSE; SYSTEM
102571 AB In the present paper a unified variational acrothermoelastic theory of
102572    fluid-blade vibrating system in fully 3-D transonic rotor flow is
102573    developed that takes fall account of the coupled fluid-solid-heat
102574    interaction. As a result, from every one of the variational principles
102575    (VP) presented herein one can obtain not only the basic equations of
102576    fluid dynamics, elastodynamics and heat transfer, but also the matching
102577    conditions at all unknown interfaces such as the fluid-blade interface,
102578    shock and free trailing vortex sheet. In addition, a new method that
102579    enables all initial-value conditions to be incorporated in, while all
102580    final-value conditions to be excluded fiom, the VP is also suggested.
102581    Thus, a new rigorous theoretical basis for the coupled
102582    aerothermoelastic analysis of blade vibration (especially flutter) in
102583    high temperature gas turbines via finite elements is founded.
102584 C1 Shanghai Univ, Inst Mech, Shanghai 200041, Peoples R China.
102585 RP Liu, GL, Shanghai Univ, Inst Mech, Shanghai 200041, Peoples R China.
102586 CR CHIEN WZ, 1980, CALCULUS VARIATIONS
102587    COLLATZ L, 1966, NUMERICAL TREATMENT
102588    DOWELL FD, 1988, APPL MECH REV, V41, P299
102589    FINLAYSON BA, 1972, METHOD WEIGHTED RESI
102590    LIU GL, 1989, SCI CHINA SER A, V32, P707
102591    LIU GL, 1993, P 2 INT C FLUID MECH, P438
102592    LIU GL, 1995, INT J TURBO JET ENG, V12, P109
102593    LIU GL, 1996, INT C THEOR APPL MAC
102594    LIU GL, 1997, INT J TURBO JET ENG, V14, P71
102595    LIU GL, 1997, NONLINEAR ANAL-THEOR, V30, P5229
102596    LIU GL, 1999, ACTA MECH SINICA, V31, P165
102597    LIU GL, 2000, ACTA MECH, V140, P73
102598    LIU GL, 2000, AIRCR ENG AEROSP TEC, V72, P334
102599    LIU L, 1999, COMPUT SYST SCI ENG, V14, P99
102600    POLING DR, 1986, AIAA J, V24, P193
102601    WASHIZU K, 1975, VARIATIONAL METHODS
102602    XU JZ, 1980, CHINESE J MECH ENG, V16, P66
102603    YAMAMOTO Y, 1981, INT J ENG SCI, V19, P1757
102604 NR 18
102605 TC 0
102606 SN 0334-0082
102607 J9 INT J TURBO JET ENGINES
102608 JI Int. J. Turbo. Jet-Engines
102609 PY 2004
102610 VL 21
102611 IS 1
102612 BP 29
102613 EP 37
102614 PG 9
102615 SC Engineering, Aerospace
102616 GA 831AP
102617 UT ISI:000222165600004
102618 ER
102619 
102620 PT J
102621 AU Wu, ZM
102622    Li, H
102623    Liu, GL
102624 TI A new characteristics-based finite difference method for hyperbolic
102625    partial differential equations
102626 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
102627 DT Article
102628 DE hyperbolic partial differential equation; finite difference method;
102629    characteristic line; unsteady flow; supersonic flow
102630 AB A new finite difference method is presented for solving hyperbolic
102631    partial differential equations, in which the differential equations are
102632    discretized by using directional derivatives and correspondingly
102633    differencing along the lines connecting the nodes that are close to
102634    characteristic lines, so that various interpolations can be entirely
102635    avoided. The method is numerically validated well by the classical
102636    problem of 1-D unsteady homoentropic flow, 2-D steady supersonic
102637    potential flow, etc.
102638 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
102639 RP Wu, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
102640    Peoples R China.
102641 CR BENSON RS, 1982, THERMODYNAMICS GAS D, V1
102642    BORIS JP, 1973, J COMPUT PHYS, V11, P38
102643    GELINAS RJ, 1981, J COMPUT PHYS, V40, P202
102644    JINSHAN P, 1980, ELEMENTS GASDYNAMICS
102645    LIEPMANN HW, 1957, ELEMENTS GEODYNAMICS
102646    LIU GL, 1988, CHARACTERISTIC GUIDE
102647    ZAUDERER E, 1983, PARTIAL DIFFERENTIAL
102648 NR 7
102649 TC 0
102650 SN 0334-0082
102651 J9 INT J TURBO JET ENGINES
102652 JI Int. J. Turbo. Jet-Engines
102653 PY 2004
102654 VL 21
102655 IS 1
102656 BP 39
102657 EP 46
102658 PG 8
102659 SC Engineering, Aerospace
102660 GA 831AP
102661 UT ISI:000222165600005
102662 ER
102663 
102664 PT J
102665 AU Qi, CH
102666    Zheng, L
102667    Zhou, X
102668    Tao, Y
102669    Ge, Y
102670    Zhuang, YM
102671    Xu, Y
102672    Yu, GH
102673    Zhang, XG
102674 TI Cross-linking of CD40 using anti-CD40 antibody, 5C11, has different
102675    effects on XG2 multiple myeloma cells
102676 SO IMMUNOLOGY LETTERS
102677 DT Article
102678 DE multiple myeloma; CD40; IL-6
102679 ID NECROSIS-FACTOR TNF; MATRIX METALLOPROTEINASES; STEM-CELL; APOPTOSIS;
102680    ACTIVATION; RECEPTOR; GROWTH; LINES; SECRETION; PROLIFERATION
102681 AB A multiple myeloma (MM) cell line, XG2, has high-level expression of
102682    CD40, a tumor necrosis factor receptor (TNFR) family member. CD40 is
102683    present on the surfaces of a large variety of cells, including B cells,
102684    endothelial cells, dendritic cells and some carcinoma cells, and
102685    delivers signals regulating diverse cellular responses, such as
102686    proliferation, differentiation, growth suppression, cell death. In this
102687    research, we study the effects of cross-linking of CD40 on myeloma
102688    cells using different concentrations of anti-CD40 monoclonal antibody
102689    (mAb), 5C11. We found that low concentrations of 5C11 induced
102690    proliferation of XG2, while high concentrations of 5C11 resulted in
102691    homotypic aggregation of XG2, and strongly suppression of its
102692    proliferation and apoptosis after 24 h of treatment. These
102693    dose-dependent effects of 5C11 were verified by flow cytometry, Western
102694    blotting and immunoprecipitation. Autocrine or paracrine induction of
102695    IL-6, and up-regulation of membrane TNF and phosphorylation of TNFR1
102696    may partially explain the contradictory biological effects of CD40
102697    cross-linking on XG2 by anti-CD40 mAb. (C) 2004 Elsevier B.V. All
102698    rights reserved.
102699 C1 Soochow Univ, Inst Biotechnol, Jiangsu Key lab Clin Immunol, Suzhou 215007, Peoples R China.
102700    Shanghai Univ, Div Immunol, Inst E, Shanghai 200025, Peoples R China.
102701    First Renmin Hosp, Mol Med Lab, Changzhou 213001, Peoples R China.
102702 RP Zhang, XG, Soochow Univ, Inst Biotechnol, Jiangsu Key lab Clin Immunol,
102703    48 Renmin Rd, Suzhou 215007, Peoples R China.
102704 EM smbxuegz@public1.sz.js.cn
102705 CR ALEXOPOULOU L, 1997, EUR J IMMUNOL, V27, P2588
102706    BERGAMO A, 1997, BRIT J HAEMATOL, V97, P652
102707    CHAN FKM, 2000, IMMUNITY, V13, P419
102708    DEKKERS PEP, 1999, BLOOD, V94, P2252
102709    DIEHL L, 2000, J MOL MED-JMM, V78, P363
102710    ELIOPOULOS AG, 2000, MOL CELL BIOL, V20, P5503
102711    GADO K, 2002, IMMUNOL LETT, V82, P191
102712    GARRONE P, 1995, J EXP MED, V182, P1265
102713    GEARING AJH, 1994, NATURE, V370, P555
102714    GRAVESTEIN LA, 1998, SEMIN IMMUNOL, V10, P423
102715    GRELL M, 1999, EMBO J, V18, P3034
102716    KLEIN B, 1989, BLOOD, V73, P517
102717    KOOTEN C, 2000, J LEUKOC BIO, V67, P2
102718    KOOTEN CV, 2000, FRONT BIOSCI, V5, P880
102719    KUSTERS S, 1997, EUR J IMMUNOL, V27, P2870
102720    LEVI E, 2001, BLOOD, V98, P1630
102721    LOS M, 1999, IMMUNITY, V10, P629
102722    MCCAWLEY LJ, 2000, MOL MED TODAY, V6, P149
102723    MIR SS, 2001, BLOOD, V98, P1631
102724    PELLATDECEUNYNCK C, 1996, CANCER RES, V56, P1909
102725    PHAM LV, 2002, IMMUNITY, V16, P37
102726    RUULS SR, 2001, IMMUNITY, V15, P533
102727    SCHONBECK U, 2001, CELL MOL LIFE SCI, V58, P4
102728    STEVENSON FK, 2000, IMMUNOL TODAY, V21, P170
102729    TAI YT, 2002, BLOOD, V99, P1419
102730    TEOH G, 2000, BLOOD, V95, P1039
102731    TOMECZKOWSKI J, 1995, BLOOD, V86, P1469
102732    TONG AW, 1994, BLOOD, V84, P3026
102733    TONG AW, 2000, LEUKEMIA LYMPHOMA, V36, P543
102734    URASHIMA M, 1995, BLOOD, V85, P1903
102735    WASSENAAR A, 1999, CLIN EXP IMMUNOL, V115, P161
102736    WESTENDORF JJ, 1994, J IMMUNOL, V152, P117
102737    YOUNG LS, 1998, IMMUNOL TODAY, V19, P502
102738    ZHANG XG, 1994, BLOOD, V83, P3654
102739    ZHANG XG, 1998, LEUKEMIA, V12, P610
102740    ZHOU ZH, 1999, HYBRIDOMA, V18, P471
102741 NR 36
102742 TC 1
102743 SN 0165-2478
102744 J9 IMMUNOL LETT
102745 JI Immunol. Lett.
102746 PD MAY 15
102747 PY 2004
102748 VL 93
102749 IS 2-3
102750 BP 151
102751 EP 158
102752 PG 8
102753 SC Immunology
102754 GA 828SP
102755 UT ISI:000221993600008
102756 ER
102757 
102758 PT J
102759 AU Peng, R
102760    Xu, XM
102761    Zhou, DC
102762 TI Baryonic effect on chi cJ suppression in Au plus Au collisions at RHIC
102763    energies
102764 SO CHINESE PHYSICS LETTERS
102765 DT Article
102766 ID DISSOCIATION CROSS-SECTIONS; HEAVY-ION COLLISIONS; ROOT-S(NN)=130 GEV;
102767    DEPENDENCE; EQUILIBRATION; PRODUCTIONS
102768 AB We predict that chi(cJ) mesons at low transverse momentum in the
102769    central rapidity region are almost dissociated by nucleons and
102770    antinucleons in hadronic matter produced in central Au+Au collisions at
102771    relativistic high-ion collider (RHIC) energies roots(NN) = 130 and 200
102772    GeV. In the calculations the nucleon and antinucleon distributions in
102773    hadronic matter are results of evolution from their freeze-out
102774    distributions which well fit the experimental transverse momentum
102775    spectra of proton and antiproton.
102776 C1 Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China.
102777    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
102778    Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
102779 RP Peng, R, Cent China Normal Univ, Inst Particle Phys, Wuhan 430079,
102780    Peoples R China.
102781 EM pengru@iopp.ccnu.edu.cn
102782 CR ADCOX K, 2002, PHYS REV LETT, V88
102783    ADCOX K, 2002, PHYS REV LETT, V88
102784    ADCOX K, 2003, PHYS LETT B, V561, P82
102785    ADLER C, 2001, PHYS REV LETT, V87
102786    ADLER SS, 2003, PHYS REV LETT, V91
102787    ADLER SS, 2004, PHYS REV C, V69
102788    BIRO TS, 1993, PHYS REV C, V48, P1275
102789    COOPER F, 1974, PHYS REV D, V10, P186
102790    DREES A, 2004, P QUARK MATT OAKL CA
102791    ESKOLA KJ, 2003, NUCL PHYS A, V715, C561
102792    ESKOLA KJ, 2003, PHYS LETT B, V566, P187
102793    FENG YC, 2002, CHINESE PHYS LETT, V19, P1602
102794    HEINZ U, 2002, P 18 WINT WORKSH NUC
102795    HIRANO T, 2002, PHYS REV C, V65
102796    HUOVINEN P, 2003, NUCL PHYS A, V715, C299
102797    KARSCH F, 2001, NUCL PHYS B, V605, P579
102798    LEVAI P, 1995, PHYS REV C, V51, P3326
102799    MORITA K, 2002, PHYS REV C, V66
102800    RAMELLO L, 1996, NUCL PHYS A, V610, P404
102801    SONDEREGGER P, 2004, P QUARK MATT OAKL CA
102802    SPENGLER J, 2004, P QUARK MATT OAKL CA
102803    SRIVASTAVA DK, 1997, PHYS REV C, V56, P1064
102804    TEANEY D, NUCLTH0110037
102805    VELKOVSKA J, 2002, NUCL PHYS A, V698, P507
102806    XU XM, 2002, COMMUN THEOR PHYS, V38, P483
102807    XU XM, 2002, NUCL PHYS A, V697, P825
102808    XU XM, 2003, NUCL PHYS A, V713, P470
102809    ZOCCOLI A, 2003, NUCL PHYS A, V715, C280
102810 NR 28
102811 TC 0
102812 SN 0256-307X
102813 J9 CHIN PHYS LETT
102814 JI Chin. Phys. Lett.
102815 PD JUN
102816 PY 2004
102817 VL 21
102818 IS 6
102819 BP 1031
102820 EP 1034
102821 PG 4
102822 SC Physics, Multidisciplinary
102823 GA 831NV
102824 UT ISI:000222202100014
102825 ER
102826 
102827 PT J
102828 AU Wang, LJ
102829    Xia, YB
102830    Fang, ZJ
102831    Zhang, ML
102832    Shen, HJ
102833 TI Properties of diamond film/alumina composites for integrated circuits
102834    with ultra-high speed and high power
102835 SO CHINESE PHYSICS LETTERS
102836 DT Article
102837 ID CHEMICAL-VAPOR-DEPOSITION; FILMS; ALUMINA
102838 AB We report the properties of the diamond film/alumina composites which
102839    were thought of as promising substrate materials for integrated
102840    circuits with ultra-high speed and high power. The measurement results
102841    of dielectric properties of diamond film/alumina composites show that
102842    the coating of CVD diamond films could effectively reduce the
102843    dielectric constant of the composite. Carbon ion implantation into
102844    alumina substrates prior to the diamond deposition can reduce the
102845    dielectric loss of the composite from 5 x 10(-3) to 2 x 10(-3), and can
102846    give the composite better frequency stability. The thermal conductivity
102847    of composites could be obviously increased by coating CVD diamond film.
102848    The composite has a dielectric constant of 6.5 and a thermal
102849    conductivity of 3.98 W/(cmK) when the thickness of diamond film is up
102850    to 100 mum.
102851 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
102852 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
102853    China.
102854 EM ljwang@mail.shu.edu.cn
102855 CR FANG ZJ, 2002, CHINESE PHYS LETT, V19, P1663
102856    FANG ZJ, 2002, J PHYS D APPL PHYS, V35, L57
102857    JIN ZS, 2002, CHINESE PHYS LETT, V19, P1374
102858    MO Y, 1998, J CRYST GROWTH, V191, P459
102859    MO YW, 1997, THIN SOLID FILMS, V305, P266
102860    POPOVICI G, 1994, J MATER RES, V9, P2839
102861    WANG CS, 1993, CHIN J ELECTR COMPON, V12, P7
102862    WANG XP, 2003, CHINESE PHYS LETT, V20, P1868
102863    WANG YY, 1993, BOOK INTEGRATED CIRC
102864    WERNER M, 1998, REP PROG PHYS, V61, P1665
102865 NR 10
102866 TC 1
102867 SN 0256-307X
102868 J9 CHIN PHYS LETT
102869 JI Chin. Phys. Lett.
102870 PD JUN
102871 PY 2004
102872 VL 21
102873 IS 6
102874 BP 1161
102875 EP 1163
102876 PG 3
102877 SC Physics, Multidisciplinary
102878 GA 831NV
102879 UT ISI:000222202100051
102880 ER
102881 
102882 PT J
102883 AU Xue, Y
102884    Liu, YZ
102885    Chen, LQ
102886 TI The Schrodinger equation for a Kirchhoff elastic rod with noncircular
102887    cross section
102888 SO CHINESE PHYSICS
102889 DT Article
102890 DE Kirchhoff elastic rod; Schrodinger equation; DNA model
102891 ID DNA
102892 AB The extended Schrodinger equation for the Kirchhoff elastic rod with
102893    noncircular cross section is derived using the concept of complex
102894    rigidity. As a mathematical model of supercoiled DNA, the Schrodinger
102895    equation for the rod with circular cross section is a special case of
102896    the equation derived in this paper. In the twistless case of the rod
102897    when the principal axes of the cross section are coincident with the
102898    Frenet coordinates of the centreline, the Schrodinger equation is
102899    transformed to the Duffing equation, The equilibrium and stability of
102900    the twistless rod are discussed, and a bifurcation phenomenon is
102901    presented.
102902 C1 Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
102903    Shanghai Inst Technol, Dept Mech Engn, Shanghai 200233, Peoples R China.
102904    Shanghai Jiao Tong Univ, Dept Mech Engn, Shanghai 200030, Peoples R China.
102905 RP Xue, Y, Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples
102906    R China.
102907 CR GREENHILL AG, 1883, P I MECH ENG
102908    KIRCHHOFF GR, 1859, J REINE ANGEW MATH, V56, P285
102909    LIU JB, 2001, ACTA PHYS SIN-CH ED, V50, P820
102910    LOVE AEH, 1944, TREATISE MATH THEORY
102911    RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P586
102912    SHI Y, 1998, J CHEM PHYS, V109, P2959
102913    SHI YM, 1994, J CHEM PHYS, V101, P5186
102914    SHI YM, 1995, J CHEM PHYS, V103, P3166
102915    TIAN Q, 1999, ACTA PHYS SIN-CH ED, V48, P2125
102916 NR 9
102917 TC 1
102918 SN 1009-1963
102919 J9 CHIN PHYS
102920 JI Chin. Phys.
102921 PD JUN
102922 PY 2004
102923 VL 13
102924 IS 6
102925 BP 794
102926 EP 797
102927 PG 4
102928 SC Physics, Multidisciplinary
102929 GA 830UZ
102930 UT ISI:000222150700002
102931 ER
102932 
102933 PT J
102934 AU Lu, HQ
102935    Ji, PY
102936    Pan, PP
102937 TI Euclidean non-vacuum wormholes in Brans-Dicke theory
102938 SO CHINESE PHYSICS
102939 DT Article
102940 DE Brans-Dicke theory; Jordan frame; Einstein frame
102941 ID GRAVITATIONAL-FIELD; COSMOLOGY
102942 AB The Brans-Dicke theory is investigated in which the Pauli metric is
102943    identified to be a physical spacetime metric. The solutions of a
102944    wormhole are obtained in Brans-Dicke theory with a relativistic
102945    radiation field for omega > -3/2. However, it is found that one cannot
102946    construct a. wormhole in the presence of a 3-form axion field.
102947 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
102948 RP Lu, HQ, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
102949 EM alberthq_lu@hotmail.com
102950 CR ACCETTA FC, 1991, NUCL PHYS B, V333, P221
102951    BREVIK I, 1999, 9902224 HEPTH
102952    CHO YM, 1992, PHYS REV LETT, V68, P3133
102953    FARAONI V, 1999, INT J THEOR PHYS, V38, P217
102954    GARAY LJ, 1993, NUCL PHYS B, V400, P416
102955    GONG Y, 1995, EUROPHYS LETT, V31, P7
102956    GONG YG, 1995, INT J MOD PHYS D, V4, P33
102957    GRADSHTEGN IS, 1994, TABLE INTEGRALS SERI
102958    HAWKING SW, 1990, PHYS REV D, V42, P2655
102959    ICHINOSE S, 1999, NUCL PHYS B, V539, P634
102960    LU HQ, 1996, ASTROPHYS SPACE SCI, V235, P207
102961    LU HQ, 1999, NUOVO CIMENTO B, V114, P127
102962    LU HQ, 2002, INT J THEOR PHYS, V41, P939
102963    MAGNANO G, 1994, PHYS REV D, V50, P5039
102964    NOJIRI S, 1998, PHYS LETT B, V426, P29
102965    NOJIRI S, 1998, PHYS REV D, V57, P2363
102966    VANNIEUWENHUIZE.P, 1999, 9901119 HEPTH
102967    WANG YJ, 2001, CHINESE PHYS, V10, P679
102968    WU YB, 2001, CHINESE PHYS, V10, P902
102969    YANG HH, 1996, PHYS LETT A, V212, P39
102970 NR 20
102971 TC 0
102972 SN 1009-1963
102973 J9 CHIN PHYS
102974 JI Chin. Phys.
102975 PD JUN
102976 PY 2004
102977 VL 13
102978 IS 6
102979 BP 824
102980 EP 827
102981 PG 4
102982 SC Physics, Multidisciplinary
102983 GA 830UZ
102984 UT ISI:000222150700007
102985 ER
102986 
102987 PT J
102988 AU Bin, C
102989    Yu, BY
102990    Yan, XN
102991    Qiu, JR
102992    Jiang, XW
102993    Zhu, CS
102994 TI Study of the microstructural transformations of borate glass and barium
102995    metaborate crystals induced by femtosecond laser
102996 SO CHINESE PHYSICS
102997 DT Article
102998 DE femtosecond laser; borate glass; barium metaborate crystal; Raman
102999    spectra
103000 ID BETA-BAB2O4; TRANSITION
103001 AB This paper describes the microstructural transformations of borate
103002    glass and barium metaborate crystals induced by femtosecond laser. Such
103003    structural transformations were verified by Raman spectroscopy. The
103004    borate glass is transformed into low temperature (LT) phase of barium
103005    metaborate (BaB2O4) crystals after being irradiated for 10 min by a
103006    femtosecond laser. In addition, after 20 min of irradiation, high
103007    temperature (HT) phase of BaB2O4 crystals is also produced. Further
103008    studies demonstrate that LT phase BaB2O4 crystals are formed in the HT
103009    phase BaB2O4 crystals after femtosecond laser irradiation for 10 s.
103010 C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
103011    Shanghai Univ, Coll Sci, Dept Phys, Shanghai 200436, Peoples R China.
103012 RP Bin, C, Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai
103013    201800, Peoples R China.
103014 EM chenbinfir@163.com
103015 CR CHEN C, 1985, SCI SIN B, V28, P235
103016    JIANG XW, 2001, ACTA PHYS SINICA, V50, P870
103017    KONIJNENDIJK WL, 1975, J NONCRYST SOLIDS, V18, P307
103018    LAI XJ, 1987, SPECTROCHIM ACTA, V11, P1423
103019    LU J, 1988, J PHYS CHEM SOLIDS, V49, P519
103020    MIURA K, 1998, NUCL INSTRUM METH B, V141, P726
103021    QIU JR, 2001, APPL PHYS LETT, V79, P3567
103022    QIU JR, 2003, CHIN J MAT RES, V17, P1
103023    ROUSSIGNE Y, 1992, SOLID STATE COMMUN, V82, P287
103024    TIAN BG, 1987, SPECTROCHIM ACTA A, V43, P65
103025    YU BK, 2000, P SOC PHOTO-OPT INS, V4098, P210
103026 NR 11
103027 TC 0
103028 SN 1009-1963
103029 J9 CHIN PHYS
103030 JI Chin. Phys.
103031 PD JUN
103032 PY 2004
103033 VL 13
103034 IS 6
103035 BP 968
103036 EP 973
103037 PG 6
103038 SC Physics, Multidisciplinary
103039 GA 830UZ
103040 UT ISI:000222150700031
103041 ER
103042 
103043 PT J
103044 AU Hong, ZJ
103045    Guo, P
103046 TI On the reliability of establishing mapping functions with standard
103047    atmospheric model
103048 SO CHINESE ASTRONOMY AND ASTROPHYSICS
103049 DT Article
103050 DE astrometry; Earth : atmospheric model
103051 ID ASTRONOMICAL REFRACTION; PROFILE
103052 AB With the ever increasing precision of space techniques, the study of
103053    the errors in atmospheric refractive delay has become one of the ways
103054    of improving the observational accuracy. In order to reduce the
103055    influence of selection of atmospheric profile on the mapping function
103056    of atmospheric refractive delay, the adopted atmospheric profile has
103057    gradually changed from the past standard atmospheric model to
103058    radiosonde atmospheric profiles. Using the data of two representative
103059    radiosonde stations, the mapping functions provided by standard
103060    atmospheric model is compared with the results of radiosonde
103061    observations. The reliability of the mapping function given by standard
103062    atmosphere is investigated, and the selection of geophysical parameters
103063    is briefly discussed.
103064 C1 Wenzhou Normal Coll, Dept Math, Wenzhou 325000, Peoples R China.
103065    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
103066    Chinese Acad Sci, Shanghai Astron Observ, Shanghai 200030, Peoples R China.
103067    Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China.
103068 RP Hong, ZJ, Wenzhou Normal Coll, Dept Math, Wenzhou 325000, Peoples R
103069    China.
103070 CR ASTRONOMICAL ALMANAC
103071    ALLEN CW, 1973, ASTROPHYSICAL QUANTI, V6, P114
103072    DAVIS JL, 1985, RADIO SCI, V20, P1593
103073    HOPFIELD HS, 1969, J GEOPHYS RES, V74, P4487
103074    MARINI JW, 1972, RADIO SCI, V7, P223
103075    MENDUS VB, 2002, GEOPHYS RES LETT, V29, P53
103076    NIELL AE, 1996, J GEOPHYS RES-SOL EA, V101, P3227
103077    PING JS, 1997, MON NOT R ASTRON SOC, V287, P812
103078    SAASTAMOINEN J, 1973, B GEOD, V105, P279
103079    SAASTRAMOINEN J, 1972, B GEOD, V105, P383
103080    SAASTRAMOINEN J, 1973, B GEOD, V105, P13
103081    YAN HJ, 1995, ASTRON J, V110, P934
103082    YAN HJ, 1996, ASTRON J, V112, P1312
103083    YAN HJ, 1998, CHINESE ASTRON ASTR, V22, P487
103084    YAN HJ, 1999, ANN SHANGHAI OBSERVA, V20, P71
103085    YAN HJ, 1999, MON NOT R ASTRON SOC, V307, P605
103086    YAN HJ, 2002, TERR ATMOS OCEAN SCI, V13, P563
103087    ZHANG FP, 2001, CHINESE SCI BULL, V46, P1756
103088 NR 18
103089 TC 0
103090 SN 0275-1062
103091 J9 CHIN ASTRON ASTROPHYS-ENGL TR
103092 JI Chin. Astron. Astrophys.
103093 PD APR-JUN
103094 PY 2004
103095 VL 28
103096 IS 2
103097 BP 200
103098 EP 211
103099 PG 12
103100 SC Astronomy & Astrophysics
103101 GA 829EC
103102 UT ISI:000222026000010
103103 ER
103104 
103105 PT J
103106 AU Xia, TC
103107    Chen, DY
103108 TI Dromion and other exact solutions of (2+1)-dimensional dispersive long
103109    water equations
103110 SO CHAOS SOLITONS & FRACTALS
103111 DT Article
103112 ID N-SOLITON SOLUTION; MULTISOLITON SOLUTIONS
103113 AB Using homogenous balance method we obtain Backlund transformation (BT)
103114    and a linear partial differential equation of (2+1)-dimensional
103115    dispersive long water equations (DLWE). As a result, multisoliton and
103116    single soliton and other exact solutions of (2+1)-dimensional DLWE are
103117    obtained. By analyzing single soliton solution, we get some dromions
103118    solutions. This method, which can be generalized to some
103119    (2+1)-dimensional nonlinear evolution equations, is simple and
103120    powerful. (C) 2004 Elsevier Ltd. All rights reserved.
103121 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
103122    Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
103123 RP Xia, TC, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
103124 EM xiatc@yahoo.com.cn
103125 CR BOITI M, 1988, PHYS LETT A, V132, P432
103126    GARDNER CS, 1967, PHYS REV LETT, V19, P1905
103127    GU CH, 1985, SOLITON THEORY ITS A
103128    HIETARINTA J, 1990, PHYS LETT A, V149, P117
103129    LIN J, 2001, CHINESE PHYS LETT, V18, P1173
103130    LOU SY, 1993, J PHYS A-MATH GEN, V26, P4387
103131    LOU SY, 1994, J PHYS A, V27, P207
103132    LOU SY, 1995, J PHYS A-MATH GEN, V28, P7227
103133    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
103134    LOU SY, 2000, CHINESE PHYS LETT, V17, P781
103135    NISHINARI K, 1995, PHYS REV E, V51, P4986
103136    RADHA R, 1994, J MATH PHYS, V35, P4746
103137    RADHA R, 1995, PHYS LETT A, V197, P7
103138    RUSSELL SJ, 1838, 7 M BRIT ASS ADV SCI, P417
103139    SATSUMA J, 1976, J PHYS SOC JPN, V40, P286
103140    WADATI M, 1972, J PHYS SOC JPN, V32, P1403
103141    WANG ML, 1996, PHYS LETT A, V216, P67
103142    XIA TC, 2003, CHAOS SOLITON FRACT, V16, P165
103143    YAJIMA T, 1998, J PHYS SOC JPN, V67, P1157
103144    YAN ZY, 2001, APPL MATH MECH, V8, P925
103145 NR 20
103146 TC 1
103147 SN 0960-0779
103148 J9 CHAOS SOLITON FRACTAL
103149 JI Chaos Solitons Fractals
103150 PD NOV
103151 PY 2004
103152 VL 22
103153 IS 3
103154 BP 577
103155 EP 582
103156 PG 6
103157 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
103158 GA 830BM
103159 UT ISI:000222096600009
103160 ER
103161 
103162 PT J
103163 AU Kang, L
103164    Sohn, MY
103165    Cheng, TCE
103166 TI Paired-domination in inflated graphs
103167 SO THEORETICAL COMPUTER SCIENCE
103168 DT Article
103169 DE domination; inflated graphs; perfect matching
103170 ID IRREDUNDANCE
103171 AB The inflation G(I) of a graph G with n(G) vertices and m(G) edges is
103172    obtained from G by replacing every vertex of degree d of G by a clique
103173    K-d. A set S of vertices in a graph G is a paired dominating set of G
103174    if every vertex of G is adjacent to some vertex in S and if the
103175    subgraph induced by S contains a perfect matching. The paired
103176    domination number gamma(p)(G) is the minimum cardinality of a paired
103177    dominating set of G. In this paper, we show that if a graph G has a
103178    minimum degree delta(G) greater than or equal to 2, then n(G) less than
103179    or equal to gamma(p)(G(I)) less than or equal to 4m(G)/[delta(G) + 1],
103180    and the equality gamma(p)(G(I)) = n(G) holds if and only if G has a
103181    perfect matching. In addition, we present a linear time algorithm to
103182    compute a minimum paired-dominating set for an inflation tree. (C) 2004
103183    Elsevier B.V. All rights reserved.
103184 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
103185    Changwon Natl Univ, Dept Appl Math, Changwon 641773, Peoples R China.
103186    Hong Kong Polytech Univ, Dept Logist, Kowloon, Hong Kong, Peoples R China.
103187 RP Kang, L, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
103188 EM lykang@mail.shu.edu.cn
103189 CR BONDY JA, 1976, GRAPH THEORY APPL
103190    DUNBAR JE, 1996, C NUMER, V118, P143
103191    FAVARON O, 1998, J GRAPH THEOR, V28, P97
103192    FAVARON O, 2001, DISCRETE MATH, V236, P81
103193    FITZPATRICK S, 1998, DISCUSS MATH GRAPH T, V18, P63
103194    HAYNES TW, 1995, C NUMER, V109, P65
103195    HAYNES TW, 1998, FUNDAMENTALS DOMINAT
103196    HAYNES TW, 1998, NETWORKS, V32, P199
103197    PUECH J, 2000, J COMBIN MATH COMBIN, V33, P117
103198    QIAO H, 2003, J GLOBAL OPTIM, V25, P43
103199 NR 10
103200 TC 0
103201 SN 0304-3975
103202 J9 THEOR COMPUT SCI
103203 JI Theor. Comput. Sci.
103204 PD JUN 14
103205 PY 2004
103206 VL 320
103207 IS 2-3
103208 BP 485
103209 EP 494
103210 PG 10
103211 SC Computer Science, Theory & Methods
103212 GA 827XC
103213 UT ISI:000221936000018
103214 ER
103215 
103216 PT J
103217 AU Huang, DG
103218    Li, XG
103219 TI Rotordynamic characteristics of a rotor with labyrinth gas seals. Part
103220    1: comparison with Childs' experiments
103221 SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL
103222    OF POWER AND ENERGY
103223 DT Article
103224 DE rotordynamic coefficients; labyrinth seals; three-dimensional unsteady
103225    computation
103226 ID COEFFICIENTS; FORCES
103227 AB A numerical method based on three-dimensional unsteady compressible
103228    Navier-Stokes equations with moving boundaries is employed to predict
103229    the fluid reaction forces and the rotordynamic coefficients of
103230    labyrinth gas seals. A large number of simulations under various
103231    conditions have been conducted. Comparison of the values from an
103232    experimental, two-control-volume model and current unsteady
103233    computational fluid dynamics (CFD) under different conditions shows
103234    that the computer code works well for most of the simulations.
103235 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
103236    Southeast Univ, Natl Vibrat Engn Res Ctr Turbogenerators, Nanjing, Peoples R China.
103237 RP Huang, DG, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
103238    200072, Peoples R China.
103239 CR ALFORD JS, 1965, ASME, V87, P333
103240    CHILDS DW, 1986, J ENG GAS TURB POWER, V108, P325
103241    CHILDS DW, 1986, T ASME, V108, P599
103242    CHILDS DW, 1988, T ASME, V110, P270
103243    CHILDS DW, 1988, T ASME, V110, P281
103244    DIETZEN FJ, 1987, J TRIBOL-T ASME, V109, P388
103245    HUANG D, 2004, J POWER ENERGY, V218, P179
103246    IWATSUBO T, 1980, P WORKSH ROT INST PR, P139
103247    IWATSUBO T, 1982, P WORKSH ROT INST PR, P205
103248    KOSTYUK AG, 1972, TEPLOENERGETIKA, V19, P39
103249    LI PW, 1993, INT J HEAT FLUID FL, V14, P246
103250    LI W, 2000, HYBRID FINITE ANAL D
103251    LI X, 2002, THESIS SE U PR CHINA
103252    LI X, 2003, CHIN J MECH ENG, V39, P136
103253    RHODE DL, 1986, T ASME, V108, P674
103254    RHODE DL, 1993, TRIBOL T, V36, P461
103255    VANCE JM, 1980, I MECH ENG, P369
103256    WILLIAMS M, 1997, AIAA J, V35, P1417
103257    WYSSMANN HR, 1984, J ENG GAS TURB POWER, V106, P920
103258 NR 19
103259 TC 0
103260 SN 0957-6509
103261 J9 PROC INST MECH ENG A-J POWER
103262 JI Proc. Inst. Mech. Eng. Part A-J. Power Energy
103263 PD MAY
103264 PY 2004
103265 VL 218
103266 IS A3
103267 BP 171
103268 EP 177
103269 PG 7
103270 SC Engineering, Mechanical
103271 GA 828QZ
103272 UT ISI:000221989100004
103273 ER
103274 
103275 PT J
103276 AU Huang, DG
103277    Li, XS
103278 TI Rotordynamic characteristics of a rotor with labyrinth gas seals. Part
103279    2: a non-linear model
103280 SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL
103281    OF POWER AND ENERGY
103282 DT Article
103283 DE labyrinth seals; three-dimensional flow; rotordynamic coefficients;
103284    non-linear aerodynamic force
103285 AB This paper focuses mainly on a model of the aerodynamic force of rotors
103286    subjected to an unsteady flowfield in labyrinth gas seals. An unsteady
103287    three-dimensional Navier-Stokes solver is used to simulate the
103288    flowfield in labyrinth gas seals. The basic time marching algorithm
103289    used to solve the fully three-dimensional unsteady governing equations
103290    is known as a hybrid finite analytic difference scheme. The k-epsilon
103291    model is chosen to model the turbulent components in the governing
103292    equations owing to its widely acknowledged reputation. The
103293    three-dimensional unsteady flowfield in labyrinth gas seals and the
103294    aerodynamic force acting on the rotor under various conditions are
103295    predicted, and then the rotordynamic coefficients of the rotor are
103296    estimated. It is shown that the relationship between the force excited
103297    by the flow and the displacement and velocity is not simply linear. A
103298    non-linear model of aerodynamic force for labyrinth seals is developed.
103299    The study shows that the direct stiffness increases rapidly with
103300    increase in the non-dimensionalized amplitude in the x direction, (A)
103301    over bar (x), the cross-coupled stiffness increases in a very moderate
103302    manner with increase in (A) over bar (x), the direct damping decreases
103303    dramatically with increase in the nondimensionalized maximum velocity
103304    in the x direction, (V) over bar (xmax), and the cross-coupled damping
103305    decreases at a small rate with increase in (V) over bar (xmax).
103306    Furthermore, the direct stiffness and damping coefficients are also
103307    functions of displacement and velocity.
103308 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
103309    Southeast Univ, Natl Vibrat Engn Res Ctr Turbogenerator, Nanjing, Peoples R China.
103310 RP Huang, DG, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
103311    200072, Peoples R China.
103312 CR CHILDS DW, 1986, J ENG GAS TURB POWER, V108, P325
103313    CHILDS DW, 1986, T ASME, V108, P599
103314    CHILDS DW, 1988, T ASME, V110, P270
103315    HUANG D, 2004, J POWER ENERGY, V218, P171
103316    LI X, 2003, CHIN J MECH ENG, V39, P136
103317    NELSON CC, 1985, T ASME, V107, P318
103318    WYSSMANN HR, 1984, J ENG GAS TURB POWER, V106, P920
103319 NR 7
103320 TC 0
103321 SN 0957-6509
103322 J9 PROC INST MECH ENG A-J POWER
103323 JI Proc. Inst. Mech. Eng. Part A-J. Power Energy
103324 PD MAY
103325 PY 2004
103326 VL 218
103327 IS A3
103328 BP 179
103329 EP 185
103330 PG 7
103331 SC Engineering, Mechanical
103332 GA 828QZ
103333 UT ISI:000221989100005
103334 ER
103335 
103336 PT J
103337 AU Huang, DG
103338    Li, XS
103339 TI Rotordynamic characteristics of a rotor with labyrinth gas seals. Part
103340    3: coupled fluid-solid vibration
103341 SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL
103342    OF POWER AND ENERGY
103343 DT Article
103344 DE coupled fluid-solid vibration; labyrinth gas seals; unsteady flowfield
103345 ID FORCES
103346 AB This paper focuses on the fluid solid interaction between a vibrating
103347    rotor and the unsteady flowfield around it in labyrinth gas seals. The
103348    object under consideration is a zero damping Jeffcott rotor subjected
103349    to an unsteady fluid field in labyrinth gas seals. An unsteady
103350    time-accurate three-dimensional Navier-Stokes solver is used to
103351    simulate the flowfield in the labyrinth gas seals, and the unsteady
103352    aerodynamic force vector acting on the vibrating rotor is obtained. A
103353    fourth-order explicit Adams scheme is used to simulate the dynamic
103354    response of the rotor. The coupled fluid-solid vibration of the rotor
103355    is studied under various inlet tangential velocities. The research
103356    shows that the current method is more accurate in predicting the
103357    stability of such shafts than the conventional method.
103358 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
103359    Southeast Univ, Natl Vibrat Engn Res Ctr Turbogenerator, Nanjing, Peoples R China.
103360 RP Huang, DG, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
103361    200072, Peoples R China.
103362 CR ALFORD JS, 1965, ASME, V87, P333
103363    CHILDS DW, 1986, T ASME, V108, P599
103364    CHILDS DW, 1988, T ASME, V110, P270
103365    CHILDS DW, 1988, T ASME, V110, P281
103366    HUANG D, 2004, J POWER ENERGY, V218, P171
103367    KOSTYUK AG, 1972, TEPLOENERGETIKA, V19, P39
103368    WILLIAMS M, 1997, AIAA J, V35, P1417
103369    WYSSMANN HR, 1984, J ENG GAS TURB POWER, V106, P920
103370 NR 8
103371 TC 0
103372 SN 0957-6509
103373 J9 PROC INST MECH ENG A-J POWER
103374 JI Proc. Inst. Mech. Eng. Part A-J. Power Energy
103375 PD MAY
103376 PY 2004
103377 VL 218
103378 IS A3
103379 BP 187
103380 EP 197
103381 PG 11
103382 SC Engineering, Mechanical
103383 GA 828QZ
103384 UT ISI:000221989100006
103385 ER
103386 
103387 PT J
103388 AU Wei, BC
103389    Yu, GS
103390    Li, WH
103391    Loser, W
103392    Roth, S
103393    Eckert, J
103394 TI Magnetic properties and magnetic domain structure of bulk glass forming
103395    Nd60Al10Fe20Co10 alloy
103396 SO PHYSICA STATUS SOLIDI A-APPLIED RESEARCH
103397 DT Article
103398 ID ND-FE ALLOYS; AMORPHOUS-ALLOYS; FORCE MICROSCOPY; METALLIC GLASSES;
103399    PHASE; COERCIVITY; ND60FE30AL10; AL; TRANSITION; EVOLUTION
103400 AB The transition from hard to soft magnetic behaviour with increasing
103401    quenching rate is shown for Nd60WAl10Fe20Co10 melt-spun ribbons with
103402    different thickness. Microstructure and magnetic domain structure of
103403    ribbons were studied by magnetic force microscopy (MFM). Particle sizes
103404    < 5 nm decreasing gradually with increasing quenching rate were deduced
103405    from topographic images which differ from large-scale magnetic domains
103406    with a periodicity of about 350 nm in all ribbons irrespective the
103407    coercivity. This indicates that the magnetic properties of the alloy
103408    are governed by interaction of small magnetic particles. It is
103409    concluded that the presence of short-range-ordered structures with a
103410    local ordering similar to the Al metastable Nd-Fe binary phase is
103411    responsible for the hard magnetic properties in samples subjected to
103412    relatively low quenching rate. (C) 2004 WILEY-VCH Verlag GmbH & Co.
103413    KGaA, Weinheim.
103414 C1 Chinese Acad Sci, Inst Mech, Beijing 100080, Peoples R China.
103415    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
103416    IFW Dresden, Inst Met Werkstoffe, D-01171 Dresden, Germany.
103417 RP Wei, BC, Chinese Acad Sci, Inst Mech, Beijing 100080, Peoples R China.
103418 EM weibc@imech.ac.cn
103419 CR ALKHAFAJI MA, 1998, J MAGN MAGN MATER, V182, P111
103420    CHANTRELL RW, 2001, PHYS REV B, V63
103421    CHEN LC, 1988, NATURE, V24, P336
103422    CHEN YJ, 1998, APPL PHYS LETT, V72, P2472
103423    CHIRIAC H, 2001, J NON-CRYST SOLIDS, V287, P135
103424    CROAT JJ, 1981, J APPL PHYS, V52, P2509
103425    DELAMARE J, 1994, J ALLOY COMPD, V216, P273
103426    DING J, 1999, J PHYS D APPL PHYS, V32, P713
103427    FAN GJ, 1999, APPL PHYS LETT, V75, P2984
103428    FAN GJ, 2000, ACTA MATER, V48, P3823
103429    GIVORD D, 1991, J ALLOY COMPD, V176, L5
103430    INOUE A, 1996, MATER T JIM, V37, P636
103431    INOUE A, 1998, METALL MATER TRANS A, V29, P1779
103432    KNOCH KG, 1990, IEEE T MAGN, V26, P1951
103433    KONG HZ, 2002, J PHYS D APPL PHYS, V35, P423
103434    KUMAR G, 2001, MATER RES SOC S P, V644, L12
103435    KUMAR G, 2003, J ALLOY COMPD, V348, P309
103436    LI Y, 1998, PHIL MAG LETT, V78, P213
103437    LLAMAZARES JLS, 1990, J MAGN MAGN MATER, V84, P79
103438    MENUSHENKOV VP, 1998, P 10 INT S MAGN AN C, P97
103439    MENUSHENKOV VP, 1999, J MAGN MAGN MATER, V203, P149
103440    ORTEGAHERTOGS RJ, 2001, SCRIPTA MATER, V44, P1333
103441    STRZESZEWSKI J, 1990, J APPL PHYS, V67, P4966
103442    TAYLOR RC, 1978, J APPL PHYS, V49, P2885
103443    TURTELLI RS, 2002, PHYS REV B, V66
103444    WANG L, 2001, J MAGN MAGN MATER, V224, P143
103445    WEI BC, 2001, J APPL PHYS, V89, P3529
103446    WEI BC, 2001, PHYS REV B, V64
103447    XIA L, 2003, J PHYS-CONDENS MAT, V15, P3531
103448    XING LQ, 2000, J APPL PHYS, V88, P3565
103449 NR 30
103450 TC 0
103451 SN 0031-8965
103452 J9 PHYS STATUS SOLIDI A-APPL RES
103453 JI Phys. Status Solidi A-Appl. Res.
103454 PD MAY
103455 PY 2004
103456 VL 201
103457 IS 7
103458 BP 1563
103459 EP 1569
103460 PG 7
103461 SC Physics, Condensed Matter
103462 GA 826NR
103463 UT ISI:000221836300030
103464 ER
103465 
103466 PT J
103467 AU Fan, S
103468    Luo, WY
103469    Yan, F
103470    Zhang, HZ
103471    Zhao, ZX
103472 TI MSDM calculations of primary isotopic yields from proton-induced
103473    reaction on Pb-208 at energy of 1 GeV
103474 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
103475    INTERACTIONS WITH MATERIALS AND ATOMS
103476 DT Article
103477 ID CASCADE-EXCITON MODEL; CROSS-SECTIONS; NUCLEI; LEAD
103478 AB The simple Fermi-gas level density is replaced by the Ignatyuk formula
103479    in the many stage dynamical model (MSDM). The MSDM code has been being
103480    used to study the isotopic cross sections from proton-induced
103481    spallation reaction on Pb-208 at the energy of 1 GeV for the elements
103482    from manganese to lead. The MSDM simulations of charge and mass
103483    distributions are compared with the experimental data measured by
103484    Titarenko at ITEP and Enqvist at GSI. Good agreements are shown between
103485    the MSDM calculations and experimental data. The deviations from data
103486    mainly show up between the results of the LAHET code, INCL4 + KHSv3p
103487    model and Silberberg's semi-empirical method YIELDX. (C) 2004 Elsevier
103488    B.V. All rights reserved.
103489 C1 Inst Atom Energy, China Nucl Data Ctr, Beijing 102413, Peoples R China.
103490    Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
103491    Hunan City Univ, Dept Phys, Yiyang 413000, Peoples R China.
103492    NW Univ Xian, Dept Phys, Xian 710006, Peoples R China.
103493 RP Fan, S, Inst Atom Energy, China Nucl Data Ctr, POB 275,41, Beijing
103494    102413, Peoples R China.
103495 EM sfan@iris.ciae.ac.cn
103496 CR AICHELIN J, 1988, PHYS REV C, V37, P2451
103497    BOTVINA AS, 1987, NUCL PHYS A, V475, P663
103498    BOUDARD A, 2002, PHYS REV C, V66
103499    BOWMAN CD, 1992, NUCL INSTRUM METH A, V320, P336
103500    DEMENTYEV A, 1999, NUCL PHYS B-PROC SUP, V70, P486
103501    ENQVIST T, 2001, NUCL PHYS A, V686, P481
103502    FAN S, 1999, EUR PHYS J A, V4, P61
103503    FAN S, 2001, NUCL SCI ENG, V137, P89
103504    FERMI E, 1950, PROG THEOR PHYS, V5, P1570
103505    GLORIS M, 1996, NUCL INSTRUM METH B, V113, P429
103506    GLORIS M, 2001, NUCL INSTRUM METH A, V463, P593
103507    GUDIMA KK, 1983, NUCL PHYS A, V401, P329
103508    IGNATYUK AV, 1975, YAD FIZ, V21, P1185
103509    IWAQMOTO O, 2002, J NUCL SCI TECHNOL S, V2, P128
103510    MASHNIK SG, 2002, J NUCL SCI TECHN S, V2, P720
103511    MASHNIK SG, 2002, J NUCL SCI TECHNOL S, V2, P785
103512    MICHEL R, 1997, NUCL INSTRUM METH B, V129, P153
103513    NIITA K, 1995, PHYS REV C, V52, P2620
103514    PETERSON RJ, 2001, EUR PHYS J A, V10, P69
103515    PRAEL RE, 1989, LAUR893014 LANL
103516    PROKOFIEV AV, 1999, NUCL SCI ENG, V131, P78
103517    RUBBIA C, 1995, CERNAT9545ET
103518    SIERK A, 1998, LAUR985998 LANL
103519    SILBERBERG R, 1990, PHYS REP, V191, P351
103520    SUEMMERER K, 1990, PHYS REV C, V42, P2546
103521    TITARENKO YE, 2002, INDCCCP434
103522    TONEEV D, 1990, YAD FIZ, V51, P1730
103523 NR 27
103524 TC 0
103525 SN 0168-583X
103526 J9 NUCL INSTRUM METH PHYS RES B
103527 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
103528 PD JUL
103529 PY 2004
103530 VL 222
103531 IS 1-2
103532 BP 44
103533 EP 52
103534 PG 9
103535 SC Physics, Atomic, Molecular & Chemical; Physics, Nuclear; Instruments &
103536    Instrumentation; Nuclear Science & Technology
103537 GA 829PN
103538 UT ISI:000222062200005
103539 ER
103540 
103541 PT J
103542 AU Pan, XY
103543    Chen, Y
103544    Ma, XM
103545    Zhu, LH
103546 TI Transformation of nanocrystalline anatase powders induced by mechanical
103547    activation
103548 SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
103549 DT Article
103550 ID RAMAN-SPECTRUM; TIO2; PRESSURE; METALS
103551 AB The microstructural evolution of nanocrystalline anatase TiO2 during
103552    high-energy planetary ball milling was studied. The results show that
103553    mechanical activation induces the transformations of nanocrystalline
103554    TiO2 from anatase to srilankite and rutile at room temperature and
103555    under ambient pressure. As the milling time increases, more anatase
103556    powder transforms to the srilankite and rutile phase, and the particle
103557    size of the powder decreases. There is no indication of the formation
103558    of amorphous phase during ball milling.
103559 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
103560    E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China.
103561 RP Pan, XY, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
103562    China.
103563 CR CULLITY BD, 1978, ELEMENTS XRAY DIFFRA, P94
103564    DACHILLE F, 1962, AM CERAM SOC B, V41, P225
103565    LIAO SC, 1999, NANOSTRUCT MATER, V11, P553
103566    MAMMONE JF, 1981, J PHYS CHEM SOLIDS, V42, P379
103567    NICOL M, 1971, J CHEM PHYS, V54, P3167
103568    OCHRING M, 1991, MAT SCI ENG A-STRUCT, V134, P1330
103569    OHSAKA T, 1979, SOLID STATE COMMUN, V30, P345
103570    REN RM, 2000, J MATER SCI, V35, P6015
103571    SCHULTZ L, 1988, MATER SCI ENG, V97, P15
103572    SCHWARZ RB, 1986, APPL PHYS LETT, V49, P146
103573    SHANNON RD, 1964, AM MINERAL, V49, P1707
103574 NR 11
103575 TC 3
103576 SN 0002-7820
103577 J9 J AMER CERAM SOC
103578 JI J. Am. Ceram. Soc.
103579 PD JUN
103580 PY 2004
103581 VL 87
103582 IS 6
103583 BP 1164
103584 EP 1166
103585 PG 3
103586 SC Materials Science, Ceramics
103587 GA 829UN
103588 UT ISI:000222075800034
103589 ER
103590 
103591 PT J
103592 AU Guo, GY
103593    Chen, YL
103594 TI New zirconium hydroxide
103595 SO JOURNAL OF MATERIALS SCIENCE
103596 DT Letter
103597 ID AQUEOUS SALT-SOLUTIONS; LOW-TEMPERATURE T-ZRO2; HYDROUS-ZIRCONIA;
103598    PHASE-TRANSFORMATION; RAMAN-SPECTROSCOPY; MONOCLINIC PHASE; ZRO2;
103599    PARTICLES; SPECTRA; CRYSTALLIZATION
103600 C1 Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Shanghai 200030, Peoples R China.
103601    Shanghai Univ, Coll Chem & Chem Engn, Shanghai 200072, Peoples R China.
103602 RP Guo, GY, Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Shanghai 200030,
103603    Peoples R China.
103604 EM guo_gongyi@hotmail.com
103605 CR ALI AAM, 1999, THERMOCHIM ACTA, V336, P17
103606    BLESA MA, 1985, J MATER SCI, V20, P4601
103607    BOLIS V, 2001, THERMOCHIM ACTA, V379, P147
103608    CLEARFIELD A, 1990, J MATER RES, V5, P161
103609    GARCIA ET, 2001, J MATER RES, V16, P2209
103610    GUO GY, 1991, J MATER SCI, V26, P3511
103611    GUO GY, 1992, J AM CERAM SOC, V75, P1294
103612    HU MZC, 1999, J AM CERAM SOC, V82, P2313
103613    JONES SL, 1988, J AM CERAM SOC, V71, P190
103614    KERAMIDAS VG, 1974, J AM CERAM SOC, V57, P22
103615    KIM BK, 1997, PHYS STATUS SOLIDI B, V203, P557
103616    KIM DJ, 1993, J AM CERAM SOC, V76, P2106
103617    LEE K, 1999, J AM CERAM SOC, V82, P338
103618    LIU DW, 1988, J APPL PHYS, V64, P1413
103619    LIU FX, 1997, PHYS REV B, V55, P8847
103620    MAMOTT GT, 1991, J MATER SCI, V26, P4054
103621    MATSUI K, 1997, J AM CERAM SOC, V80, P1949
103622    MATSUI K, 1998, J CERAM SOC JPN, V106, P1232
103623    MATTA J, 1999, PHYS CHEM CHEM PHYS, V1, P4975
103624    MOON YT, 1995, J AM CERAM SOC, V78, P2690
103625    PHILLIPPI CM, 1971, J AM CERAM SOC, V54, P254
103626    QUINTARD PE, 2002, J AM CERAM SOC, V85, P1745
103627    SATO T, 2002, J THERM ANAL CALORIM, V69, P255
103628    SERGENT N, 2000, CHEM MATER, V12, P3830
103629    SHI L, 1999, J MATER SCI, V34, P3367
103630    SRINIVASAN R, 1988, J MATER RES, V3, P787
103631    SRINIVASAN R, 1993, CHEM MATER, V5, P27
103632    STEFANIC G, 1998, J PHYS CHEM SOLIDS, V59, P879
103633    STEFANIC G, 2000, MATER CHEM PHYS, V65, P197
103634    TANI E, 1983, J AM CERAM SOC, V66, P11
103635    TORRESGARCIA E, 2001, J MATER RES, V16, P2209
103636    TOSAN JL, 1993, EUR J SOL STATE INOR, V30, P179
103637    WHITNEY ED, 1970, J AM CERAM SOC, V53, P697
103638    XIE SB, 2000, CHEM MATER, V12, P2442
103639    YAMAGUCHI T, 1994, CATAL TODAY, V20, P199
103640    ZAITSEV LM, 1966, ZH NEORG KHIM+, V11, P1684
103641 NR 36
103642 TC 2
103643 SN 0022-2461
103644 J9 J MATER SCI
103645 JI J. Mater. Sci.
103646 PD JUN 15
103647 PY 2004
103648 VL 39
103649 IS 12
103650 BP 4039
103651 EP 4043
103652 PG 5
103653 SC Materials Science, Multidisciplinary
103654 GA 827YT
103655 UT ISI:000221940300027
103656 ER
103657 
103658 PT J
103659 AU Dang, CY
103660    Kang, LY
103661 TI Batch-processing scheduling with setup times
103662 SO JOURNAL OF COMBINATORIAL OPTIMIZATION
103663 DT Article
103664 DE scheduling; batching; approximation algorithm
103665 ID TOTAL COMPLETION-TIME; MACHINE
103666 AB The problem is to minimize the total weighted completion time on a
103667    single batch-processing machine with setup times. The machine can
103668    process a batch of at most B jobs at one time, and the processing time
103669    of a batch is given by the longest processing time among the jobs in
103670    the batch. The setup time of a batch is given by the largest setup time
103671    among the jobs in the batch. This batch-processing problem reduces to
103672    the ordinary uni-processor scheduling problem when B = 1. In this paper
103673    we focus on the extreme case of B = +infinity, i.e. a batch can contain
103674    any number of jobs. We present in this paper a polynomial-time
103675    approximation algorithm for the problem with a performance guarantee of
103676    2. We further show that a special case of the problem can be solved in
103677    polynomial time.
103678 C1 City Univ Hong Kong, Dept Mfg Engn & Engn Management, Kowloon, Hong Kong, Peoples R China.
103679    Shanghai Univ, Dept Math, Shanghai, Peoples R China.
103680 RP Dang, CY, City Univ Hong Kong, Dept Mfg Engn & Engn Management,
103681    Kowloon, Hong Kong, Peoples R China.
103682 EM mecdang@cityu.edu.hk
103683 CR ALBERS S, 1993, DISCRETE APPL MATH, V47, P87
103684    BRUCKER P, 1998, J SCHEDULING, V1, P31
103685    CHANDRU V, 1993, OPER RES LETT, V13, P61
103686    DENG X, 1999, LECT NOTES COMPUTER, V1627, P231
103687    FISCHETTI M, 1992, OPER RES, V40, P96
103688    GHOSH JB, 1994, OPER RES LETT, V16, P271
103689    GRAHAM RL, 1966, BELL SYST TECH J, V45, P1563
103690    HOCHBAUM DS, 1997, OPER RES, V45, P874
103691    PAPADIMITRIOU CH, 1982, COMBINATORIAL OPTIMI
103692 NR 9
103693 TC 0
103694 SN 1382-6905
103695 J9 J COMB OPTIM
103696 JI J. Comb. Optim.
103697 PD JUN
103698 PY 2004
103699 VL 8
103700 IS 2
103701 BP 137
103702 EP 146
103703 PG 10
103704 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
103705 GA 827ZB
103706 UT ISI:000221941100003
103707 ER
103708 
103709 PT J
103710 AU Wu, YQ
103711    Jiang, GC
103712    You, JL
103713    Hou, HY
103714    Chen, H
103715 TI Coordination properties and structural units distribution of Q(T)(i) in
103716    calcium aluminosilicate melts from MD simulation
103717 SO JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY
103718 DT Article
103719 DE molecular dynamics simulation; calcium aluminositicate melt;
103720    coordination number; structural unit of tetrahedra
103721 ID MOLECULAR-DYNAMICS; COMPUTER-SIMULATION; GLASSES; NMR; SI-29;
103722    ALUMINATE; SYSTEM; SILICA; AL-27; METASILICATE
103723 AB The distribution of Al(j) and the structural units distribution of Q(r)
103724    in calcium aluminosilicate melts were studied by means of molecular
103725    dynamics simulation. The results show that provided there exists
103726    lower-field strength cation relative to Al3+, such as alkaline and
103727    alkaline earth metals, At will be four-coordinated but not
103728    six-coordinated. Meanwhile, if there exist a large number of
103729    higher-field strength cations such as Si4+ and little lower-field
103730    strength cation, six-coordinated aluminum will be formed. The relation
103731    of structural units distribution of Q(T) with chemical composition
103732    shift was also extracted, showing that as Ca2+ exists, the
103733    distributions of Q(Si)(i), Q(Al)(i), or Q(T) have the similar changing
103734    trend with the variation of component. Because of high-temperature
103735    effect, the Al-tetrahedral units in melts are greatly active and
103736    unstable and there exist dynamic transforming equilibria of Al(3)
103737    reversible arrow Al(4) and Al(5) reversible arrow Al(4). The
103738    three-coordinated oxygen and charge-compensated bridging oxygen are
103739    proposed to explain phenomena of the negative charge redundancy of AlO4
103740    and location of network modifier with charge-compensated function in
103741    aluminosilicate melts.
103742 C1 Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai 200072, Peoples R China.
103743 RP Wu, YQ, Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai
103744    200072, Peoples R China.
103745 EM wu_yq1222@163.com
103746 CR *VER DTSCH EIS, 1981, SLAG ATL M
103747    AKSAY IA, 1979, J AM CERAM SOC, V62, P332
103748    CLARK TM, 2001, J PHYS CHEM B, V105, P12257
103749    CORMIER L, 2000, J NON-CRYST SOLIDS, V274, P110
103750    DANIEL I, 1995, PHYS CHEM MINER, V22, P74
103751    DOMINE F, 1986, AM MINERAL, V71, P38
103752    DOWEIDAR H, 1999, PHYS CHEM GLASSES, V40, P85
103753    ENGELHARDT G, 1985, PHYS CHEM GLASSES, V26, P157
103754    FARNAN I, 1990, J AM CHEM SOC, V112, P32
103755    HANADA T, 1982, COMMU AM CERAM SOC, V6, C84
103756    HANDKE M, 1997, MIKROCHIM ACTA, V14, P507
103757    HANNON AC, 2000, J NON-CRYST SOLIDS, V274, P102
103758    HIMMEL B, 1991, J NON-CRYST SOLIDS, V136, P27
103759    HOOVER WG, 1985, PHYS REV A, V31, P1695
103760    HUANG SP, 1999, J PHYS-CONDENS MAT, V11, P5429
103761    HWA LG, 1998, J NON-CRYST SOLIDS, V238, P193
103762    JEN JS, 1989, J NONCRYST SOLIDS, V38, P21
103763    JIANG GC, 2003, GEOLOGY GEOCHEMISTRY, V31, P80
103764    KEEFER KD, 1978, AM MINERAL, V63, P1264
103765    KIEFFER J, 1989, J CHEM PHYS, V90, P4982
103766    MCMILLAN P, 1982, GEOCHIM COSMOCHIM AC, V46, P2021
103767    MEGAHED AA, 1999, PHYS CHEM GLASSES, V40, P130
103768    MIURA Y, 2000, PHYS CHEM GLASSES, V41, P24
103769    MOZZI RL, 1969, J APPL CRYSTALLOGR, V2, P164
103770    MYSEN BO, 1990, AM MINERAL, V75, P120
103771    OESTRIKE R, 1987, GEOCHIM COSMOCHIM AC, V51, P2199
103772    OKUNO M, 1982, MINERAL J JAPAN, V11, P180
103773    SCHNEIDER J, 2000, J NON-CRYST SOLIDS, V273, P8
103774    STEBBINS JF, 2000, J NON-CRYST SOLIDS, V275, P1
103775    STEIN DJ, 1995, AM MINERAL, V80, P417
103776    TAYLOR M, 1979, GEOCHIM COSMOCHIM AC, V43, P61
103777    WU YQ, 2001, T NONFERR METAL SOC, V11, P965
103778    WU YQ, 2002, T NONFERR METAL SOC, V12, P1218
103779    WU YQ, 2003, J INORG MATER, V18, P619
103780 NR 34
103781 TC 0
103782 SN 1005-9784
103783 J9 J CENT SOUTH UNIV TECHNOL
103784 JI J. Cent. South Univ. Technol.
103785 PD MAR
103786 PY 2004
103787 VL 11
103788 IS 1
103789 BP 6
103790 EP 14
103791 PG 9
103792 SC Metallurgy & Metallurgical Engineering
103793 GA 827JX
103794 UT ISI:000221896800002
103795 ER
103796 
103797 PT J
103798 AU Leung, AYT
103799    Liu, ZR
103800 TI Suppressing chaos for some nonlinear oscillators
103801 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
103802 DT Article
103803 DE nonlinear oscillator; chaos; strange attractor; Melnikov method;
103804    controlling chaos; suppressing chaos
103805 ID WEAK PERIODIC PERTURBATIONS; STRANGE ATTRACTOR; DUFFING EQUATION;
103806    BISTABLE CHAOS; SYSTEMS
103807 AB In this paper, a criteria of suppressing chaos for a kind of nonlinear
103808    oscillators is established by the theory of the strange attractor. The
103809    oscillators considered include Duffing, van der Pol, Duffing-van der
103810    Pol and pendulum. According to this criteria, we analyze the phase
103811    effect using two methods, one by adding the second external force term
103812    and the other by adding parametric excitation, both of which may be
103813    used to suppress chaos in the systems. Some examples are used to
103814    illustrate the validity of the criteria and the importance of phase
103815    effect in suppressing chaos.
103816 C1 City Univ Hong Kong, Dept Building & Construct, Hong Kong, Hong Kong, Peoples R China.
103817    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
103818 RP Leung, AYT, City Univ Hong Kong, Dept Building & Construct, Hong Kong,
103819    Hong Kong, Peoples R China.
103820 CR BENJACOB E, 1982, PHYS REV LETT, V49, P1599
103821    BRAIMAN Y, 1991, PHYS REV LETT, V66, P2545
103822    CHEN GR, 2000, DISCRETE DYN NAT SOC, V5, P29
103823    FANG J, 1990, PHYS LETT A, V146, P35
103824    GOMES MGM, 1992, PHYS REV A, V46, P3100
103825    GUCKENHEIMER J, 1983, NONLINEAR OSCILLATIO
103826    KAPITANIAK J, 1991, CHAOTIC OSCILLATIONS
103827    KING GP, 1992, PHYS REV A, V46, P3092
103828    LIMA R, 1990, PHYS REV A, V41, P726
103829    LIU Z, 1991, CHINESE PHYS LETT, V8, P503
103830    LIU Z, 1993, SCI CHINA SER A, V36, P976
103831    QU ZL, 1995, PHYS REV LETT, V74, P1736
103832    RAJASEKAR S, 1992, CHAOS SOLITON FRACT, V2, P271
103833    RAJASEKAR S, 1993, PRAMANA-J PHYS, V41, P295
103834    SATO S, 1983, PHYS REV A, V28, P1654
103835    SMALE S, 1967, B AM MATH SOC, V73, P747
103836    UEDA Y, 1979, J STAT PHYS, V20, P181
103837    UEDA Y, 1980, ANN NY ACAD SCI, V357, P422
103838    YANG JZ, 1996, PHYS REV E A, V53, P4402
103839 NR 19
103840 TC 2
103841 SN 0218-1274
103842 J9 INT J BIFURCATION CHAOS
103843 JI Int. J. Bifurcation Chaos
103844 PD APR
103845 PY 2004
103846 VL 14
103847 IS 4
103848 BP 1455
103849 EP 1465
103850 PG 11
103851 SC Mathematics, Applied; Multidisciplinary Sciences
103852 GA 830EV
103853 UT ISI:000222105400023
103854 ER
103855 
103856 PT J
103857 AU Wang, ZC
103858    Ge, YH
103859    Dai, YM
103860    Zhao, DY
103861 TI A Mathematica program for the two-step twelfth-order method with
103862    multi-derivative for the numerical solution of a one-dimensional
103863    Schrodinger equation
103864 SO COMPUTER PHYSICS COMMUNICATIONS
103865 DT Article
103866 DE multi-derivative method; high-order linear two-step methods;
103867    Schrodinger equation; eigenvalue problems; high precision methods;
103868    Numerov's method
103869 ID INITIAL-VALUE-PROBLEMS; FITTING METHODS; INTEGRATION; OBRECHKOFF; ORDER
103870 AB In this paper, we present the detailed Mathematica symbolic derivation
103871    and the program which is used to integrate a one-dimensional
103872    Schrodinger equation by a new two-step numerical method. We add the
103873    fourth- and sixth-order derivatives to raise the precision of the
103874    traditional Numerov's method from fourth order to twelfth order, and to
103875    expand the interval of periodicity from (0, 6) to the one of (0,
103876    9.7954) and (9.94792, 55.6062). In the program we use an efficient
103877    algorithm to calculate the first-order derivative and avoid
103878    unnecessarily repeated calculation resulting from the
103879    multi-derivatives. We use the well-known Woods-Saxon's potential to
103880    test our method. The numerical test shows that the new method is not
103881    only superior to the previous lower order ones in accuracy, but also in
103882    the efficiency. This program is specially applied to the problem where
103883    a high accuracy or a larger step size is required. (C) 2004 Elsevier
103884    B.V. All rights reserved.
103885 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
103886 RP Wang, ZC, Shanghai Univ, Dept Phys, 99 ShangDa Rd, Shanghai 200436,
103887    Peoples R China.
103888 EM zc_wang89@hotmail.com
103889 CR ALLISON AC, 1970, J COMPUT PHYS, V6, P378
103890    ALLISON AC, 1991, J COMPUT PHYS, V97, P240
103891    ANANTHAKRISHNAI.U, 1987, MATH COMPUT, V49, P553
103892    AVDELAS G, 1996, COMPUT MATH APPL, V31, P85
103893    BLATT JM, 1967, J COMP PHYSIOL, V1, P382
103894    CASH JR, 1984, COMPUT PHYS COMMUN, V33, P299
103895    COOLEY JW, 1961, MATH COMPUT, V15, P363
103896    HERZBERG G, 1950, SPECTRA DIATOMIC MOL
103897    IXARU LG, 1980, COMPUT PHYS COMMUN, V19, P23
103898    LAMBERT JD, 1962, ZAMP, V13, P223
103899    LAMBERT JD, 1973, COMPUTATIONAL METHOD
103900    LAMBERT JD, 1976, J INST MATH APPL, V18, P189
103901    NETA B, 2003, COMPUT MATH APPL, V45, P383
103902    OBRECHKOFF N, 1942, SPISANIE BULGAR AKAD, V65, P191
103903    RAPTIS AD, 1978, COMPUT PHYS COMMUN, V14, P1
103904    RAPTIS AD, 1982, COMPUTING, V28, P373
103905    RAPTIS AD, 1985, COMPUT PHYS COMMUN, V36, P113
103906    RAPTIS AD, 1987, COMPUT PHYS COMMUN, V44, P95
103907    SIMOS TE, 1993, P ROY SOC LOND A MAT, V441, P283
103908    SIMOS TE, 1999, J COMPUT PHYS, V148, P305
103909    WANG Z, 2003, N MATH J CHIN U, V12, P146
103910    WANG Z, 2003, NUMER J MODERN PHYS, V14, P1087
103911    WILLIAMS PS, 2000, INT J MOD PHYS C, V11, P785
103912 NR 23
103913 TC 10
103914 SN 0010-4655
103915 J9 COMPUT PHYS COMMUN
103916 JI Comput. Phys. Commun.
103917 PD JUN 15
103918 PY 2004
103919 VL 160
103920 IS 1
103921 BP 23
103922 EP 45
103923 PG 23
103924 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
103925 GA 828LH
103926 UT ISI:000221974300003
103927 ER
103928 
103929 PT S
103930 AU Lu, CH
103931    An, P
103932    Zhang, ZY
103933 TI Intermediate view synthesis from stereoscopic videoconference images
103934 SO COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 4
103935 SE LECTURE NOTES IN COMPUTER SCIENCE
103936 DT Article
103937 AB A procedure is described for stereoscopic videoconference system with
103938    viewpoint adaptation. The core to such a system is to synthesize the
103939    intermediate views from stereoscopic videoconference images with rather
103940    large baseline. The foreground object is first segmented by using
103941    intensity and disparity information. For this purpose, the region
103942    growing technique is used. The reliability of disparity estimation is
103943    then measured with a criterion based on uniqueness and smoothness
103944    constrains. In occluded areas and image points with unreliable
103945    disparity assignments, region-based interpolation strategy is applied
103946    to compensate the disparity values. Finally, an object-based
103947    interpolation algorithm is developed to synthesize arbitrary
103948    intermediate views. Experimental results with natural stereoscopic
103949    image pairs show that the proposed method can obtain the intermediate
103950    views with high quality.
103951 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
103952 RP Lu, CH, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
103953    Peoples R China.
103954 EM llvch@hotmail.com
103955    anping@mail.shu.edu.cn
103956    zhyzhang@yc.shu.edu.cn
103957 CR IZQUIERDO E, 1997, IEEE T CIRC SYST VID, V7, P629
103958    IZQUIERDO E, 1998, SIGNAL PROCESS-IMAGE, V1, P231
103959    JENSRAINER O, 1997, IEEE T CIRCUITS SYST, V7, P801
103960    MANSOURI AR, 2000, IEEE T IMAGE PROCESS, V9, P1
103961    MCVEIGH JS, 1996, SIGNAL PROCESS-IMAGE, V9, P21
103962    NIKOLAOS D, 2000, IEEE T CIRC SYST VID, V10, P501
103963    WANG D, 2000, OPT ENG, V39, P2876
103964    WERNER T, 1995, P IEEE INT C COMP VI, P957
103965    XIA LZ, 1999, DIGITAL IMAGE PROCES
103966    ZHANG L, 2002, P IEEE INT C IMAGE P, V3, P24
103967 NR 10
103968 TC 0
103969 SN 0302-9743
103970 J9 LECT NOTE COMPUT SCI
103971 PY 2004
103972 VL 3046
103973 BP 243
103974 EP 250
103975 PG 8
103976 GA BAE52
103977 UT ISI:000221854800026
103978 ER
103979 
103980 PT J
103981 AU Li, CP
103982    Peng, GJ
103983 TI Chaos in Chen's system with a fractional order
103984 SO CHAOS SOLITONS & FRACTALS
103985 DT Article
103986 ID DIFFERENTIAL-EQUATIONS; LYAPUNOV EXPONENTS
103987 AB In this paper, by utilizing the fractional calculus techniques, we
103988    found that chaos does exist in Chen's system with a fractional order,
103989    and some phase diagrams are constructed. (C) 2004 Elsevier Ltd. All
103990    rights reserved.
103991 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
103992 RP Li, CP, Univ Pretoria, Dept Elect Elect & Comp Engn, ZA-0002 Pretoria,
103993    South Africa.
103994 EM leecp@online.sh.cn
103995 CR BUTZER PL, 2000, APPL FRACTIONAL CALC, P1
103996    CAPUTO M, 1967, GEOPHYS J ROY ASTRON, V13, P529
103997    CHAREF A, 1992, IEEE T AUTOMAT CONTR, V37, P1465
103998    CHEN GR, 1999, INT J BIFURCAT CHAOS, V9, P1465
103999    DIETHELM K, 1997, ELECTRON T NUMER ANA, V5, P1
104000    DIETHELM K, 1999, FORSCHUNG WISSENSCHA, P57
104001    DIETHELM K, 2002, J MATH ANAL APPL, V265, P229
104002    DIETHELM K, 2002, NONLINEAR DYNAM, V29, P3
104003    HARTLEY TT, 1995, IEEE T CIRCUITS-I, V42, P485
104004    PODLUBNY I, 1999, FRACTIONAL DIFFERENT
104005    ROSENSTEIN MT, 1993, PHYSICA D, V65, P117
104006    ROSENSTEIN MT, 1994, PHYSICA D, V73, P82
104007    SAMKO SG, 1993, FRACTIONAL INTEGRALS
104008    SATO S, 1987, PROG THEOR PHYS, V77, P1
104009    WOLF A, 1985, PHYSICA D, V16, P285
104010 NR 15
104011 TC 13
104012 SN 0960-0779
104013 J9 CHAOS SOLITON FRACTAL
104014 JI Chaos Solitons Fractals
104015 PD OCT
104016 PY 2004
104017 VL 22
104018 IS 2
104019 BP 443
104020 EP 450
104021 PG 8
104022 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
104023 GA 827SP
104024 UT ISI:000221921300020
104025 ER
104026 
104027 PT J
104028 AU Li, CP
104029    Yang, ZH
104030 TI Symmetry-breaking bifurcation in O(2) x O(2)-symmetric nonlinear large
104031    problems and its application to the Kuramoto-Sivashinsky equation in
104032    two spatial dimensions
104033 SO CHAOS SOLITONS & FRACTALS
104034 DT Article
104035 ID NON-LINEAR ANALYSIS; HYDRODYNAMIC INSTABILITY; LAMINAR FLAMES; WAVES;
104036    EQUILIBRIUM; PROPAGATION
104037 AB The paper deals with the detection and calculation of bifurcation from
104038    nontrivial static solutions to rotating wave solutions of the nonlinear
104039    evolution equation partial derivativeu/partial derivativet + g(u,
104040    alpha) = 0, where g is equivariant with respect to an action of the
104041    group O(2) x O(2), alpha is a bifurcation parameter. The method and
104042    technique derived here is applied to the nonlocal Kuramoto-Sivashinsky
104043    (K-S) equation in two spatial dimensions. The bifurcation point to
104044    rotating waves is numerically determined, where the rotating wave
104045    solution branch is bifurcated, and the original reflectional symmetry
104046    is broken. (C) 2004 Elsevier Ltd. All rights reserved.
104047 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
104048    Shanghai Teachers Univ, Dept Math, Shanghai 200234, Peoples R China.
104049 RP Li, CP, Univ Pretoria, Dept Elect Elect & Comp Engn, ZA-0002 Pretoria,
104050    South Africa.
104051 EM leecp@online.sh.cn
104052 CR ABDELGAWAD HI, 2001, CHAOS SOLITON FRACT, V12, P2039
104053    ASTON PJ, 1992, SIAM J APPL MATH, V52, P792
104054    BENNEY DJ, 1966, J MATH PHYS, V45, P150
104055    GOLUBITSKY M, 1988, SINGULARITIES GROUPS, V2
104056    KURAMOTO Y, 1975, PROG THEOR PHYS, V54, P687
104057    KURAMOTO Y, 1976, PROG THEOR PHYS, V55, P356
104058    KURAMOTO Y, 1978, PROG THEOR PHYS    S, V64, P346
104059    LI CP, 2001, INT J BIFURCAT CHAOS, V11, P2493
104060    LI CP, 2002, INT J BIFURCAT CHAOS, V12, P103
104061    MICHELSON DM, 1977, ACTA ASTRONAUT, V4, P1207
104062    SIVASHINSKY GI, 1977, ACTA ASTRONAUT, V4, P1177
104063    SIVASHINSKY GI, 1980, SIAM J APPL MATH, V39, P67
104064    TEMAN R, 1988, INFINITE DIMENSIONAL
104065    WERNER B, 1984, SIAM J NUMER ANAL, V21, P388
104066    YANG ZH, 1996, APPL MATH MECH, V17, P633
104067    YE RS, 1995, APPL MATH JCU B, V10, P179
104068 NR 16
104069 TC 0
104070 SN 0960-0779
104071 J9 CHAOS SOLITON FRACTAL
104072 JI Chaos Solitons Fractals
104073 PD OCT
104074 PY 2004
104075 VL 22
104076 IS 2
104077 BP 451
104078 EP 468
104079 PG 18
104080 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
104081 GA 827SP
104082 UT ISI:000221921300021
104083 ER
104084 
104085 PT S
104086 AU Gu, SS
104087    Yu, SN
104088 TI A chaotic neural network for the maximum clique problem
104089 SO ADVANCES IN ARTIFICIAL INTELLIGENCE
104090 SE LECTURE NOTES IN ARTIFICIAL INTELLIGENCE
104091 DT Article
104092 DE maximum clique; Hopfield neural network; chaotic neural network;
104093    transiently chaotic neural network; chaos
104094 ID OPTIMIZATION; HOPFIELD; MODEL
104095 AB This paper applies a chaotic neural network (CNN) to solve the maximum
104096    clique problem (MCP), a classic NP-hard and computationally intractable
104097    graph optimization problem, which has many real-world applications.
104098    From analyzing the chaotic states of its neuron output and
104099    computational energy, we reach the conclusion that, unlike the
104100    conventional Hopfield neural networks (HNN) for the MCP such as
104101    steepest descent (SD) algorithm and continuous Hopfield dynamics (CHD)
104102    algorithm based on the discrete Hopfield neural network and the
104103    continuous Hopfield neural network respectively, CNN can avoid getting
104104    stuck in local minima and thus yields excellent solutions. Detailed
104105    analysis of the optimality, efficiency, robustness and scalability
104106    verifies that CNN provides a more effective and efficient approach than
104107    conventional Hopfield neural networks to solve the MCP.
104108 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
104109 RP Gu, SS, Shanghai Univ, Sch Engn & Comp Sci, 149 Yan Chang Rd, Shanghai
104110    200072, Peoples R China.
104111 EM gushenshen@163.com
104112 CR ARORA S, 1992, P 33 IEEE S FDN COMP, P14
104113    ASAI H, 1995, P IEEE INT C NEUR NE, V4, P1584
104114    AVONDOBODENO G, 1962, EC APPL THEORY GRAPH
104115    BATTITI R, 1997, P WORKSH ALG ENG WAE, P74
104116    BUI TN, 1995, P 6 INT C GAS, P478
104117    CHEN LN, 1995, NEURAL NETWORKS, V8, P915
104118    DEO N, 1974, GRAPH THEORY APPL EN
104119    FUNABIKI N, 1992, J PARALLEL DISTR COM, V14, P340
104120    HOPFIELD JJ, 1985, BIOL CYBERN, V52, P141
104121    JAGOTA A, 1995, IEEE T NEURAL NETWOR, V6, P724
104122    JOHNSON DS, 1974, J COMPUT SY, V9, P256
104123    KARP RM, 1972, COMPLEXITY COMPUTER, P85
104124    KWOK T, 2000, NEURAL NETWORKS, V13, P731
104125    WANG LP, 1998, IEEE T NEURAL NETWOR, V9, P716
104126    WILSON GV, 1988, BIOL CYBERN, V58, P63
104127    WIMER S, 1987, IEEE T COMPUT AID D, V6, P795
104128 NR 16
104129 TC 1
104130 SN 0302-9743
104131 J9 LECT NOTE ARTIF INTELL
104132 PY 2004
104133 VL 3060
104134 BP 391
104135 EP 405
104136 PG 15
104137 GA BAE41
104138 UT ISI:000221818900028
104139 ER
104140 
104141 PT J
104142 AU Cheng, CF
104143    Wang, XF
104144    Lu, B
104145 TI Nonlinear propagation and supercontinuum generation of a femtosecond
104146    pulse in photonic crystal fibers
104147 SO ACTA PHYSICA SINICA
104148 DT Article
104149 DE photonic crystal fibers; soliton self-frequency shift; supercontinuum
104150 ID SELF-FREQUENCY SHIFT; MICROSTRUCTURE-FIBER; CONTINUUM GENERATION;
104151    DISPERSION
104152 AB A theoretical investigation with the method of split-step Fourier is
104153    presented on the nonlinear propagation and supercontinuum generation of
104154    a femtosecond laser pulse in a photonic crystal fiber. The impact of
104155    high-order dispersion and nonlinear effects on spectral shape and band
104156    width is simulated and analyzed. It is found that soliton
104157    self-frequency shift is generated in a photonic crystal fiber. It is
104158    also found that intrapulse stimulated Raman scattering and self-phase
104159    modulation result in the fine spectral substructure of the
104160    supercontinnum. The band width and smoothing of the supercontinuum are
104161    found to be related to the higher-order dispersion and the power of the
104162    initial laser pulse.
104163 C1 Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
104164    Shanghai Univ, Coll Sci, Shanghai 200436, Peoples R China.
104165 RP Cheng, CF, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R
104166    China.
104167 EM cefu@mail.siom.ac.cn
104168 CR AGRAWL GP, 1989, NONLINEAR FIBER OPTI
104169    BIRKS TA, 1997, OPT LETT, V22, P961
104170    GU X, 2002, OPT LETT, V27, P1174
104171    HARTL I, 2001, OPT LETT, V26, P608
104172    HERRMANN J, 2002, PHYS REV LETT, V88
104173    HOLZWARTH R, 2000, PHYS REV LETT, V85, P2264
104174    HUSAKOU AV, 2002, J OPT SOC AM B, V19, P2171
104175    JONES DJ, 2000, SCIENCE, V288, P635
104176    LIU X, 2001, OPT LETT, V26, P358
104177    MITSCHKE FM, 1986, OPT LETT, V11, P659
104178    RANKA JK, 2000, OPT LETT, V25, P25
104179    RAO M, 2003, CHINESE PHYS, V12, P502
104180    RUSSELL PS, 1992, PHYS WORLD, V5, P37
104181    STOLEN RH, 1989, J OPT SOC AM B, V6, P1159
104182    STOLEN RH, 1992, J OPT SOC AM B, V9, P565
104183    XU WC, 2002, CHINESE PHYS, V11, P352
104184 NR 16
104185 TC 7
104186 SN 1000-3290
104187 J9 ACTA PHYS SIN-CHINESE ED
104188 JI Acta Phys. Sin.
104189 PD JUN
104190 PY 2004
104191 VL 53
104192 IS 6
104193 BP 1826
104194 EP 1830
104195 PG 5
104196 SC Physics, Multidisciplinary
104197 GA 828AZ
104198 UT ISI:000221946200040
104199 ER
104200 
104201 PT J
104202 AU Luo, SY
104203    Shao, MZ
104204    Wei, LX
104205    Liu, ZR
104206 TI Dynamics of dislocation and global bifurcation for a system
104207 SO ACTA PHYSICA SINICA
104208 DT Article
104209 DE dislocation; bifurcation; superlattice; nonlinearity
104210 AB An external periodic field has been introduced in the Seeger equation;
104211    a motion equation of a crystal dislocation has been induced to Duffing
104212    function with the hard-spring properties. A global bifurcation of the
104213    system and a probable way into the chaos have been discussed by using
104214    Melnikov methoud. It shows that the system enters into the critical
104215    state, then enters the chaos by the cascading bifurcation, if
104216    delta/alpha is defined and Omega is reduced continuously.
104217 C1 Dongguan Univ Technol, Dongguan 523106, Peoples R China.
104218    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
104219 RP Luo, SY, Dongguan Univ Technol, Dongguan 523106, Peoples R China.
104220 CR GRADSHTEYN IS, 1980, TABLE INTEGRALS SERI, P948
104221    KOROL A, 1998, J PHYS G, V24, P145
104222    KOROL AV, 1999, INT J MOD PHYS E, V8, P49
104223    LUO SY, 1984, CHINESE PHYS, V4, P670
104224    LUO SY, 1988, ACTA PHYS SINICA, V37, P1278
104225    LUO SY, 1988, ACTA PHYS SINICA, V37, P1394
104226    LUO SY, 2002, NUCL PHYS REV, V19, P407
104227    LUO SY, 2004, ACTA PHYS SIN-CH ED, V53, P1157
104228    LUO SZ, 2003, CHIN J SEMICONDUCTOR, V24, P485
104229    SEEGER A, 1956, PHILOS MAG, V1, P651
104230    SHAO MZ, 1990, ACTA PHYS SINICA, V39, P1189
104231    SHAO MZ, 1992, ACTA PHYS SINICA, V41, P1825
104232 NR 12
104233 TC 2
104234 SN 1000-3290
104235 J9 ACTA PHYS SIN-CHINESE ED
104236 JI Acta Phys. Sin.
104237 PD JUN
104238 PY 2004
104239 VL 53
104240 IS 6
104241 BP 1940
104242 EP 1945
104243 PG 6
104244 SC Physics, Multidisciplinary
104245 GA 828AZ
104246 UT ISI:000221946200060
104247 ER
104248 
104249 PT J
104250 AU Shen, HJ
104251    Wang, LJ
104252    Fang, ZJ
104253    Zhang, ML
104254    Yang, Y
104255    Wang, L
104256    Xia, YB
104257 TI Study on optical properties of diamond films by means of infrared
104258    spectroscopic ellipsometry
104259 SO ACTA PHYSICA SINICA
104260 DT Article
104261 DE diamond films; infrared spectroscopic ellipsometry; optical properties;
104262    effective medium approximation
104263 AB We have made spectroscopic ellipsometric measurement to characterize
104264    the structure of diamond films in infrared region (2.5-12.5 mum). These
104265    films are grown respectively by microwave plasma chemical vapor
104266    deposition (MPCVD) and hot filament chemical vapor deposition (HFCVD).
104267    It is found that the establishment of appropriate models has the
104268    strongest influence on the fit of ellipsometric spectra. The best fit
104269    is achieved for MPCVD film with a 77.5 nm middle layer of SiO2, and for
104270    HFCVD film with a 879 nm rough surface layer included by Bruggeman
104271    effective medium approximation. Finally, the refractive index (n) and
104272    the extinctive coefficient (k) are calculated for both films, which
104273    show that the film grown by MPCVD is optically better than by HFCVD
104274    apparently.
104275 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
104276 RP Shen, HJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
104277    China.
104278 EM sissyshj@sohu.com
104279 CR BRUGGEMAN DAG, 1935, ANN PHYS-BERLIN, V24, P636
104280    COMFORT JC, 1987, ANN SIM S NEW YORK, P185
104281    FANG ZJ, 2002, J PHYS-CONDENS MAT, V14, P5271
104282    HUANG ZM, 1999, J INFRARED MILLIM W, V18, P23
104283    LORENTZ HA, 1916, THEORY ELECT, P132
104284    MCMARR PJ, 1986, J APPL PHYS, V59, P694
104285    MCNAMARA KM, 1994, THIN SOLID FILMS, V253, P157
104286    PALIK ED, 1985, HDB OPTICAL CONSTANT, P104
104287    SILVA F, 1996, DIAM RELAT MATER, V5, P338
104288    WANG LJ, 2000, J PHYS CONDENS MATT, V12, P257
104289    XIA YB, 1996, CHINESE PHYS LETT, V7, P557
104290    YIN Z, 1997, DIAM RELAT MATER, V6, P153
104291 NR 12
104292 TC 1
104293 SN 1000-3290
104294 J9 ACTA PHYS SIN-CHINESE ED
104295 JI Acta Phys. Sin.
104296 PD JUN
104297 PY 2004
104298 VL 53
104299 IS 6
104300 BP 2009
104301 EP 2013
104302 PG 5
104303 SC Physics, Multidisciplinary
104304 GA 828AZ
104305 UT ISI:000221946200073
104306 ER
104307 
104308 PT J
104309 AU Li, CF
104310    Wang, Q
104311 TI Prediction of simultaneously large and opposite generalized
104312    Goos-Hanchen shifts for TE and TM light beams in an asymmetric
104313    double-prism configuration
104314 SO PHYSICAL REVIEW E
104315 DT Article
104316 ID TOTAL INTERNAL-REFLECTION; LATERAL DISPLACEMENT; DIELECTRIC INTERFACE;
104317    ABSORBING MEDIA; OPTICAL BEAMS; INCIDENT; TIMES; SLAB
104318 AB It is predicted that large and opposite generalized Goos-Hanchen (GGH)
104319    shifts may occur simultaneously for TE and TM light beams upon
104320    reflection from an asymmetric double-prism configuration when the angle
104321    of incidence is below but near the critical angle for total reflection,
104322    which may lead to interesting applications in optical devices and
104323    integrated optics. Numerical simulations show that the magnitude of the
104324    GGH shift can be of the order of beam's width.
104325 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
104326    Acad Sinica, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt Technol, Xian 710068, Peoples R China.
104327 RP Li, CF, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200436,
104328    Peoples R China.
104329 EM cfli@mail.shu.edu.cn
104330 CR ARTMANN K, 1948, ANN PHYS, V2, P87
104331    BALCOU P, 1997, PHYS REV LETT, V78, P851
104332    BIRMAN JL, 1983, PHYS REV LETT, V50, P1664
104333    BRETENAKER F, 1992, PHYS REV LETT, V68, P931
104334    BRIERS R, 2000, J ACOUST SOC AM, V108, P1622
104335    BROE J, 2002, J OPT SOC AM A, V19, P1212
104336    COWAN JJ, 1977, J OPT SOC AM, V67, P1307
104337    DEBEAUREGARD OC, 1977, PHYS REV D, V15, P3553
104338    DUTRIAUX L, 1996, EUROPHYS LETT, V33, P359
104339    EMILE O, 1995, PHYS REV LETT, V75, P1511
104340    GHATAK AK, 1986, OPT COMMUN, V56, P313
104341    GILLES H, 2002, OPT LETT, V27, P1421
104342    GOOS F, 1947, ANN PHYSIK, V1, P333
104343    GOOS F, 1949, ANN PHYS-LEIPZIG, V5, P251
104344    HAIBEL A, 2001, PHYS REV E 2, V63
104345    HARRICK NJ, 1960, PHYS REV LETT, V4, P224
104346    HSUE CW, 1985, J OPT SOC AM A, V2, P978
104347    JOST BM, 1998, PHYS REV LETT, V81, P2233
104348    KAISER R, 1996, PURE APPL OPT, V5, P891
104349    LAI HM, 2002, OPT LETT, V27, P680
104350    LI CF, 2003, PHYS REV LETT, V91
104351    LOTSCH HKV, 1970, OPTIK, V32, P116
104352    LOTSCH HKV, 1970, OPTIK, V32, P189
104353    LOTSCH HKV, 1971, OPTIK STUTTG, V32, P299
104354    LOTSCH HKV, 1971, OPTIK, V32, P553
104355    MAZUR P, 1984, PHYS REV B, V30, P6759
104356    MIDWINTER JE, 1970, APPL PHYS LETT, V16, P198
104357    PFLEGHAAR E, 1993, PHYS REV LETT, V70, P2281
104358    PORRAS MA, 1997, OPT COMMUN, V135, P369
104359    READ LAA, 1978, J OPT SOC AM, V68, P319
104360    RIESZ RP, 1985, J OPT SOC AM A, V2, P1809
104361    SHAH V, 1983, J OPT SOC AM, V73, P37
104362    STEINBERG AM, 1994, PHYS REV A, V49, P3283
104363    TAMIR T, 1971, J OPT SOC AM, V61, P1397
104364    WILD WJ, 1982, PHYS REV A, V25, P2099
104365 NR 35
104366 TC 1
104367 SN 1063-651X
104368 J9 PHYS REV E
104369 JI Phys. Rev. E
104370 PD MAY
104371 PY 2004
104372 VL 69
104373 IS 5
104374 PN Part 2
104375 AR 055601
104376 DI ARTN 055601
104377 PG 4
104378 SC Physics, Fluids & Plasmas; Physics, Mathematical
104379 GA 826EZ
104380 UT ISI:000221813400005
104381 ER
104382 
104383 PT J
104384 AU Wang, G
104385    Fang, SS
104386    Xiao, XS
104387    Hua, Q
104388    Gu, HZ
104389    Dong, YD
104390 TI Microstructure and properties of Zr65Al10Ni10CU15 amorphous plates
104391    rolled in the supercooled liquid region
104392 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
104393    MICROSTRUCTURE AND PROCESSING
104394 DT Article
104395 DE hot rolling; supercooled liquid region; bulk metallic glass
104396 ID BULK METALLIC-GLASS; DEFORMATION; PLASTICITY; DUCTILITY; ALLOY
104397 AB The effects of rolling at different rolled reduction ratios (0, 37.5,
104398    50 and 62.5%) in the supercooled liquid region on the microstructure,
104399    thermal stability, micro-hardness and electrical resistivity of
104400    Zr65Al10Ni10Cu15 bulk amorphous plates were investigated by means of
104401    X-ray diffraction (XRD), high-resolution transmission electron
104402    microscopy (HRTEM), differential scanning calorimetry (DSC),
104403    micro-hardness measurements and four probe method. With the increase of
104404    rolled reduction ratios, the nano-scale clusters and the local
104405    crystalline phases appeared in the amorphous matrix, which resulted in
104406    the decrease of the thermal stability and the increase of
104407    micro-hardness while the electrical resistivity first increased and
104408    then decreased. (C) 2004 Elsevier B.V. All rights reserved.
104409 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
104410 RP Xiao, XS, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
104411    China.
104412 EM xsxiao@mail.shu.edu.cn
104413 CR BAE DH, 2002, ACTA MATER, V50, P1749
104414    DENG YF, 2003, ADV ENG MATER, V5, P738
104415    EKELUND S, 1927, JERNKONT ANN, V2, P39
104416    INOUE A, 1995, MATER T JIM, V36, P866
104417    KAWAMURA Y, 1997, SCRIPTA MATER, V37, P431
104418    KAWAMURA Y, 1998, ACTA METALL MATER, V46, P253
104419    KAWAMURA Y, 1999, MATER T JIM, V40, P794
104420    NIEH TG, 2001, ACTA MATER, V49, P2887
104421    YANG TB, 1988, PLASTIC PROCESSING M, P47
104422    YOKOYAMA Y, 2001, MATER TRANS, V42, P623
104423    YOKOYAMA Y, 2003, J NON-CRYST SOLIDS, V316, P104
104424 NR 11
104425 TC 0
104426 SN 0921-5093
104427 J9 MATER SCI ENG A-STRUCT MATER
104428 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
104429 PD MAY 25
104430 PY 2004
104431 VL 373
104432 IS 1-2
104433 BP 217
104434 EP 220
104435 PG 4
104436 SC Materials Science, Multidisciplinary
104437 GA 825SS
104438 UT ISI:000221779200026
104439 ER
104440 
104441 PT J
104442 AU Huang, SG
104443    Li, L
104444    Vleugels, J
104445    Biest, OVD
104446 TI Influence of phase constitution on mechanical performance of
104447    12Ce-3Y-ZrO2/2.5 wt pct Al2O3 composites
104448 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
104449 DT Article
104450 DE thermodynamics; mechanical properties; ZrO2-CeO2-Y2O3
104451 ID FRACTURE-TOUGHNESS; ZIRCONIA; SYSTEM; CERAMICS; DIAGRAM; CERIA; TZP;
104452    POLYCRYSTALS
104453 AB The phase constitution of a composite consisting of 1.2 at. pct CeO2-3
104454    at. Pct Y2O3-ZrO2/2.5 wt pct Al2O3 (3Y12Ce2.5Al) was determined by
104455    thermodynamic calculation. It is a combination of 36.9 at. pct cubic
104456    phase and 63.1 at. pct tetragonal phase at 1450 C. Green compacts were
104457    fabricated by cold isostatic pressing with powder synthesized by
104458    coating technique, and pressureless sintered at 1450 degreesC. The
104459    fracture toughness and Vickers hardness, evaluated by the
104460    micro-indentation method, are 2.02 MPa(.)m(1/2) and 11.395 GPa,
104461    respectively. The addition of 3 at. Pct Y2O3 to 12 at. pct CeO2-ZrO2
104462    ceramic leads to drastically decrease in toughness compared to
104463    composites without yttria stabilizer. No monoclinic phase is detected
104464    on the surface of all the ground samples. The high content of cubic
104465    phase and lack of phase transformation can be attributed to the low
104466    toughness based on the thermodynamic: prediction.
104467 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
104468    Katholieke Univ Leuven, Dept MTM, B-3001 Heverlee, Belgium.
104469 RP Li, L, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
104470    China.
104471 EM liling@public6.sta.net.cn
104472 CR *THERMOCALC SOFTW, THERMOCALC US GUID V
104473    ANSTIS GR, 1981, J AM CERAM SOC, V64, P533
104474    BOUTZ MMR, 1994, J EUR CERAM SOC, V13, P89
104475    GARVIE RC, 1982, J MATER SCI LETT, V1, P437
104476    HANNINK RHJ, 2000, J AM CERAM SOC, V83, P461
104477    HIRANO M, 1991, J MATER SCI, V26, P5047
104478    LAWSON S, 1995, J EUR CERAM SOC, V15, P485
104479    LI L, 1996, J MATER SCI TECHNOL, V12, P159
104480    LI L, 2001, J EUR CERAM SOC, V21, P2903
104481    LI L, 2003, J MATER SCI TECHNOL, V19, P66
104482    LIN JD, 1998, J AM CERAM SOC, V81, P853
104483    PASCUAL C, 1983, J AM CERAM SOC, V66, P23
104484    SCHMID HK, 1987, J AM CERAM SOC, V70, P367
104485    TANI E, 1983, J AM CERAM SOC, V66, P506
104486    TORAYA H, 1984, COMMUN AM CERAM  JUN, P119
104487    TSUKUMA K, 1985, J MATER SCI, V20, P1178
104488    VLEUGELS J, 2002, J EUR CERAM SOC, V22, P873
104489    WANG J, 1992, J MATER SCI, V27, P5348
104490    YUAN ZX, 2000, MATER LETT, V46, P249
104491 NR 19
104492 TC 1
104493 SN 1005-0302
104494 J9 J MATER SCI TECHNOL
104495 JI J. Mater. Sci. Technol.
104496 PD MAY
104497 PY 2004
104498 VL 20
104499 IS 3
104500 BP 284
104501 EP 286
104502 PG 3
104503 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
104504    Engineering
104505 GA 826KB
104506 UT ISI:000221826900011
104507 ER
104508 
104509 PT J
104510 AU Zhai, QJ
104511    Fu, L
104512    Zhai, HY
104513 TI Effect of Nb on structure and mechanical properties of chilled cast
104514    iron at room and elevated temperatures
104515 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
104516 DT Article
104517 DE Nb; chilled cast iron; structure; properties
104518 ID STATIC RECRYSTALLIZATION; MICROALLOYED STEELS; TI; MICROSTRUCTURE;
104519    PRECIPITATION
104520 AB Effect of Nb on microstructure and mechanical properties of chilled
104521    cast iron at room and elevated temperatures is studied in this
104522    research. The results demonstrate that the cast structure and
104523    mechanical properties of chilled cast iron at room and elevated
104524    temperatures are improved with the addition of trace amount of Nb.
104525    However, if Nb was added too much, the cast structure and mechanical
104526    properties of chilled cast iron would deteriorate. The suitable content
104527    of Nb in chilled cast iron is about 0.05% (mass fraction). Except the
104528    dissolution in the matrix of cast iron the excessive Nb will form
104529    Nb-rich phases in three morphologies. Those are lumpy NbC, complicated
104530    strip-like phase and compound with pearlite structure.
104531 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
104532    Shenyang Univ, Sch Mat Sci & Engn, Shenyang 110044, Peoples R China.
104533    Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China.
104534 RP Zhai, QJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
104535    China.
104536 EM qjzhai@mail.shu.edu.cn
104537 CR ELWAZRI AM, 2000, CAN METALL QUART, V39, P55
104538    HUANG C, 2000, CAN METALL QUART, V39, P369
104539    KANG KB, 1997, SCRIPTA MATER, V36, P1303
104540    KATAOKA N, 1993, B JAPAN I METALS, V32, P223
104541    KUZUCU V, 1998, J MATER PROCESS TECH, V82, P165
104542    MEDINA SF, 2001, ISIJ INT, V41, P774
104543    PIEKARSKI B, 2002, METALURGIJA, V41, P77
104544 NR 7
104545 TC 0
104546 SN 1005-0302
104547 J9 J MATER SCI TECHNOL
104548 JI J. Mater. Sci. Technol.
104549 PD MAY
104550 PY 2004
104551 VL 20
104552 IS 3
104553 BP 301
104554 EP 303
104555 PG 3
104556 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
104557    Engineering
104558 GA 826KB
104559 UT ISI:000221826900016
104560 ER
104561 
104562 PT J
104563 AU Ren, ZM
104564    Wang, H
104565    Deng, K
104566    Xu, KD
104567 TI Aligned solidification structure of the MnBi phase in semisolidified
104568    Bi-Mn alloy with a static magnetic field
104569 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
104570 DT Article
104571 DE magnetic field; Bi-Mn alloy; MnBi; solidification
104572 ID CRYSTALLIZATION
104573 AB The solidification structure of Bi-3 wt pct Mn alloy grown up in the
104574    semisolid zone under the influence of a static magnetic field (up to
104575    1.0 T) and the relation of the magnetic property with the
104576    solidification structure have been investigated experimentally. It was
104577    shown that the primary phase MnBi crystals in the alloy aligned and
104578    oriented along the direction of the applied magnetic field. The
104579    orientating tendency and the average length of the elongated MnBi
104580    crystals increased with the increase of the applied field and the
104581    solidification time. Moreover, the remanence of the alloy along the
104582    aligned direction of the MnBi phase in the case of solidification with
104583    a magnetic field was apparently anisotropic and nearly double of that
104584    without the magnetic field. This indicated that the MnBi crystals
104585    oriented and aligned along their easy magnetization axis. A model was
104586    proposed to explain the alignment and orientation growth of the MnBi
104587    crystals in a magnetic field in terms of the magnetic anisotropy of the
104588    crystals and the magnetic interaction between them.
104589 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
104590 RP Ren, ZM, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R
104591    China.
104592 EM zmrenb@online.sh.cn
104593 CR GILLON P, 1995, JOM, V47, P34
104594    GUO X, 1991, J APPL PHYS 2B, V69, P6067
104595    KATSUKI A, 1996, CHEM LETT, P607
104596    MIKELSON AE, 1981, J CRYST GROWTH, V52, P524
104597    MOFFATT WG, 1984, HDB BINARY PHASE DIA
104598    MORIKAWA H, 1998, MATER T JIM, V39, P814
104599    RANGO PD, 1991, NATURE, V349, P770
104600    SHETTY MN, 1987, J MATER SCI, V22, P1908
104601    WAN DF, 1987, PHYSICS MAGNETISM, P8
104602    WANG H, 2000, CHIN SCI ABSTR, V6, P240
104603    WANG H, 2001, MATER SCI ENG, V19, P119
104604    YASUDA H, 2000, P 3 INT S EL PROC MA, P647
104605 NR 12
104606 TC 1
104607 SN 1005-0302
104608 J9 J MATER SCI TECHNOL
104609 JI J. Mater. Sci. Technol.
104610 PD MAY
104611 PY 2004
104612 VL 20
104613 IS 3
104614 BP 311
104615 EP 314
104616 PG 4
104617 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
104618    Engineering
104619 GA 826KB
104620 UT ISI:000221826900019
104621 ER
104622 
104623 PT J
104624 AU Song, CB
104625    Han, BS
104626    Li, Y
104627 TI A study on alnico permanent magnet powders prepared by atomization
104628 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
104629 DT Article
104630 DE gas atomization; alnico magnetic powder
104631 AB Alnico powders were prepared by gas atomization process. Composition of
104632    the Alnico powders was Fe37.1 Al8.2 Ni17.6-Co26.6 Cu3.3 Ti7.2 (wt pct)
104633    which was the same as that of commercially available Alnico magnets.
104634    Average particle size of the powders was 119 mum. Effects of heat
104635    treatment in magnetic field on magnetic properties of the powders were
104636    investigated. The optimum process of heat treatment was found as
104637    follows, heated at 870 C for 1 min first, then cooled down to
104638    700degreesC at cooling rate 0.3degreesC/s in magnetic field, and
104639    finally aged isothermally for 4 h. Magnetic properties of the Alnico
104640    powders were measured and the results were that intrinsic coercivity
104641    H-i(c) was 1.0 kOe and remanence M-r was 36.5 emu/g.
104642 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
104643    Kongju Natl Univ, Div Mat Engn, Kong Ju 314701, South Korea.
104644    Hanbat Natl Univ, Div Mech Engn, Taejon, South Korea.
104645 RP Li, Y, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
104646 EM liying62@yahoo.com
104647 CR CHAN JW, 1961, ACTA METALL, V9, P795
104648    CHOI SD, 1996, J KOREAN I MET MAT, V34, P158
104649    IWAMA Y, 1960, THESIS NAGOYA U JAPA
104650    KIM HT, 1988, THESIS CHUNGNAM NATL
104651    KIM YB, 1986, THESIS CHUNGNAM NATL
104652    MISHIMA T, 1932, OHM, V19, P353
104653    OLIVER DA, 1938, NATURE, V142, P209
104654    STONER EC, 1948, PHILOS T ROY SOC A, V240, P599
104655 NR 8
104656 TC 0
104657 SN 1005-0302
104658 J9 J MATER SCI TECHNOL
104659 JI J. Mater. Sci. Technol.
104660 PD MAY
104661 PY 2004
104662 VL 20
104663 IS 3
104664 BP 347
104665 EP 349
104666 PG 3
104667 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
104668    Engineering
104669 GA 826KB
104670 UT ISI:000221826900028
104671 ER
104672 
104673 PT J
104674 AU Shi, LL
104675    Yang, LM
104676    Chen, J
104677    Pei, Y
104678    Chen, M
104679    Hui, BJ
104680    Li, J
104681 TI Preparation and characterization of pH-sensitive hydrogel of
104682    chitosan/poly(acrylic acid) co-polymer
104683 SO JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION
104684 DT Article
104685 DE chitosan; poly(acrylic acid); hydrogel; pH-sensitivity
104686 ID POLY(ACRYLIC ACID); TEMPLATE POLYMERIZATION; CHITOSAN MICROSPHERES;
104687    SWELLING BEHAVIOR; DRUG-DELIVERY; ACRYLIC-ACID; IN-VITRO; MEMBRANES;
104688    NETWORK; COMPLEXES
104689 AB A pH-sensitive co-polymer hydrogel of chitosan/poly(acrylic acid)
104690    (CS/PAAc) was prepared by irradiating the aqueous solution mixture of
104691    chitosan and acrylic acid with Co-60 gamma-ray irradiation. The effect
104692    of the composition of chitosan and AAc on the properties of the
104693    hydrogel, such as swelling ratio and pH-sensitivity, were determined.
104694    Fourier Transform Infrared (FT-IR) spectrometry was applied in the
104695    attenuated total reflectance (ATR) mode for analyzing the structure
104696    change of the hydrogels after the treatment in different pH buffer
104697    solutions.
104698 C1 Shanghai Univ, Sch Environm & Chem Engn, Dept Chem Engn & Technol, Shanghai 201800, Peoples R China.
104699 RP Chen, J, Shanghai Univ, Sch Environm & Chem Engn, Dept Chem Engn &
104700    Technol, Jiading Campus, Shanghai 201800, Peoples R China.
104701 EM jchen@mail.shu.edu.cn
104702 CR AHN JS, 2001, BIOMATERIALS, V22, P923
104703    AHN JS, 2002, BIOMATERIALS, V23, P1411
104704    CAO SG, 1998, POLYM BULL, V41, P553
104705    CHOI HK, 1999, J APPL POLYM SCI, V73, P2749
104706    DELATORRE PM, 2003, BIOMATERIALS, V24, P1499
104707    HARRIS D, 1992, J PHARM SCI, V81, P1
104708    HE P, 1998, INT J PHARM, V166, P75
104709    HU Y, 2002, BIOMATERIALS, V23, P3193
104710    JIN JJ, 1994, REACT POLYM, V23, P95
104711    KIM SJ, 2003, REACT FUNCT POLYM, V55, P53
104712    LORENZOLAMOSA ML, 1998, J CONTROL RELEASE, V52, P109
104713    MACLAUGHLIN FC, 1998, J CONTROL RELEASE, V56, P259
104714    NAM SY, 1997, J MEMBRANE SCI, V135, P161
104715    PENICHE C, 1999, BIOMATERIALS, V20, P1869
104716    QU X, 2000, POLYMER, V41, P4589
104717    SAITO H, 1997, MACROMOL RAPID COMM, V18, P547
104718    SHAHABEDDIN L, 1991, J MATER SCI-MATER M, V2, P222
104719    WANG HF, 1997, J APPL POLYM SCI, V65, P1445
104720    WILSON JE, 1974, RAD CHEM MONOMERS PO, P369
104721 NR 19
104722 TC 0
104723 SN 0920-5063
104724 J9 J BIOMATER SCI-POLYM ED
104725 JI J. Biomater. Sci.-Polym. Ed.
104726 PY 2004
104727 VL 15
104728 IS 4
104729 BP 465
104730 EP 474
104731 PG 10
104732 SC Engineering, Biomedical; Materials Science, Biomaterials; Polymer
104733    Science
104734 GA 826ID
104735 UT ISI:000221821900009
104736 ER
104737 
104738 PT J
104739 AU Hao, TH
104740 TI Perturbation method of the piezoelectric fracture mechanics considering
104741    the permittivity of the medium in the crack gap
104742 SO INTERNATIONAL JOURNAL OF FRACTURE
104743 DT Article
104744 DE boundary condition; permittivity; perturbation; piezoelectric
104745 ID THERMOPIEZOELECTRIC PROPERTIES; DAMAGE ANALYSIS; ACTUATORS
104746 AB In this paper, the problem of the cracks with arbitrary forms in
104747    piezoelectric material is studied. The permittivity of the medium in
104748    the crack gap is considered. Except the collinear cracks, this boundary
104749    condition is too difficult to deal with; therefore, a perturbation
104750    method is recommended. By the way, the electric boundary conditions of
104751    electric fracture mechanics are discussed. For example, a small
104752    parameter solution of a crack is given and compared with the known
104753    'exact' (it will be discussed later) solution. This result shows that
104754    the impermeable or permeable conditions are only the boundary
104755    conditions for the first approximations of the perturbation solutions.
104756 C1 Shanghai Univ, Shanghai 200051, Peoples R China.
104757 RP Hao, TH, Shanghai Univ, POB 220,Dong Hua,China Text, Shanghai 200051,
104758    Peoples R China.
104759 EM hao@dhu.edu.cn
104760 CR BERLINCOURT DA, 1964, PHYS ACOUSTICS A, V1
104761    CHEREPANOV GP, 1977, MECH BRITTLE FRACTUR
104762    CHIEN WZ, 1980, LECT PERTURBATION ME
104763    ESHELBY JD, 1956, CONTINUM THEORY DATT, V3
104764    GAO CF, 1999, INT J SOLIDS STRUCT, V36, P2527
104765    GAO HJ, 1997, J MECH PHYS SOLIDS, V45, P491
104766    HAO TH, 1994, ENG FRACT MECH, V47, P793
104767    HAO TH, 1996, J MECH PHYS SOLIDS, V44, P23
104768    HAO TH, 2001, INT J FRACTURE, V112, P197
104769    HAO TH, 2001, INT J SOLIDS STRUCT, V38, P9201
104770    LEKHNITSKII SG, 1981, THEORY ELASTICITY AN
104771    MCMEEKING RM, 1989, Z ANGEW MATH PHYS, V40, P615
104772    MIKHAILOV GK, 1990, ELECTROMAGNETOELASTI
104773    MUSKHELISHVILLI NI, 1963, SOME BASIC PROBLEMS
104774    SAVIN GN, 1961, STRESS CONCENTRATION
104775    SUO Z, 1991, MECH CONCEPTS FAI AD, V24
104776    SUO Z, 1992, J MECH PHYS SOLIDS, V40, P739
104777    YANG W, 1994, J MECH PHYS SOLIDS, V42, P649
104778    YANG W, 2001, MECHATRONIC RELIABIL
104779    YU SW, 1996, THEOR APPL FRACT MEC, V25, P263
104780    YU SW, 1996, THEOR APPL FRACT MEC, V25, P279
104781    ZHANG TY, 2001, ADV APPL MECH, V38, P147
104782    ZHANG TY, 2002, PHILOS MAG A, V82, P2805
104783 NR 23
104784 TC 0
104785 SN 0376-9429
104786 J9 INT J FRACTURE
104787 JI Int. J. Fract.
104788 PD MAR
104789 PY 2004
104790 VL 126
104791 IS 1
104792 BP 57
104793 EP 69
104794 PG 13
104795 SC Mechanics
104796 GA 825OQ
104797 UT ISI:000221768200004
104798 ER
104799 
104800 PT J
104801 AU Liu, YD
104802    Li, YH
104803 TI Mechanistic model and numerical analysis for corrosion damage of
104804    reinforced concrete structure
104805 SO INTERNATIONAL JOURNAL OF FRACTURE
104806 DT Article
104807 DE conditions of displacement; corrosion layer; fictitious boundary;
104808    model; numerical manifold method; track of crack propagation
104809 AB Through sampling, we have conducted systematically the analyses of
104810    changing characteristics of steel bar corrosion and crack width on
104811    reinforced concrete surfaces. Based on the analyses from the sampling,
104812    we have obtained the mathematical model for outer elliptical contour
104813    and the formulas to calculate thickness of corrosion layer at any
104814    associated point on steel bars. A stress model of discrete displacement
104815    on fictitious boundary for the corrosion layer and corresponding
104816    solutions for displacement and stress on the fictitious boundary have
104817    been advanced, which solve quantitatively the stress to the structure
104818    acted by corrosion layer. Finally, under the conditions of displacement
104819    on the fictitious boundary and by applying numerical manifold method,
104820    we had performed the simulation of track for crack propagation caused
104821    by corrosion and expansion of side steel bars as time elapses in
104822    existing reinforced concrete structures. The simulation results have
104823    conformed to those of the experiment.
104824 C1 Shanghai Univ, Dept Civil Engn, Shanghai, Peoples R China.
104825 RP Liu, YD, Shanghai Univ, Dept Civil Engn, Shanghai, Peoples R China.
104826 CR ANDRADE C, 1993, MATER STRUCT, V26, P162
104827    BEEBY AE, STRUCTURAL ENG A, V56, P3
104828    CROUCH SL, 1983, BOUNDARY ELEMENT MET, P85
104829    HUI Y, 1997, IND BUILING, V27, P5
104830    KIYOSHI O, 1998, ACI STRUCT J, V85, P2
104831    LI Y, 1997, J XIAN HIGHWAY U, V4
104832    LI Y, 1997, P 7 INT C EPMESC U T
104833    LI Y, 1997, P 9 INT C COMP METH
104834    LIU X, 1990, CHINESE J CIVIL ENG, V23, P4
104835    MOLINATERRIZA G, 2001, OPT LETT, V26, P163
104836    NIU D, 1997, ENG MECHANICS, V14, P2
104837    QIU WJ, 1996, DEFINITION REINFORCE, P1
104838    WANG Q, 1996, CHINESE J CATAL+, V17, P3
104839 NR 13
104840 TC 0
104841 SN 0376-9429
104842 J9 INT J FRACTURE
104843 JI Int. J. Fract.
104844 PD MAR
104845 PY 2004
104846 VL 126
104847 IS 1
104848 BP 71
104849 EP 78
104850 PG 8
104851 SC Mechanics
104852 GA 825OQ
104853 UT ISI:000221768200005
104854 ER
104855 
104856 PT J
104857 AU Lei, ZS
104858    Ren, ZM
104859    Yan, YG
104860    Deng, K
104861 TI Mold flux channel dynamic pressure in electromagnetic continuous casting
104862 SO ACTA METALLURGICA SINICA
104863 DT Article
104864 DE electromagnetic continuous casting; mold flux channel; dynamic pressure
104865 ID ALTERNATING MAGNETIC-FIELD; INITIAL SOLIDIFICATION; SURFACE QUALITY;
104866    STEEL; OSCILLATION
104867 AB Molten metal meniscus profile and mold flux channel width are measured
104868    under high frequency magnetic field with different intensities by model
104869    experiments, then the dynamic pressure in mold flux channel is
104870    calculated during one mold oscillation period. It is found that the
104871    high frequency magnetic field can decrease the dynamic pressure
104872    greatly, which may be one possible mechanism of improving the billets
104873    surface quality by soft-contact mold electromagnetic continuous
104874    casting. According to the calculation, the mold flux channel dynamic
104875    pressure can not be decreased unlimitedly by increasing magnetic flux
104876    density, there must be a most appropriate magnetic flux density in
104877    order to get best billet surface quality.
104878 C1 Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai 200072, Peoples R China.
104879 RP Lei, ZS, Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai
104880    200072, Peoples R China.
104881 EM lei_zsh@263.net
104882 CR *ASM INT, 1990, MET HDB, V2, P1093
104883    ASAI S, 1989, TETSU TO HAGANE, V75, P32
104884    AYATA K, 2000, 3 INT S EL PROC MAT, P376
104885    BIKERMAN JJ, 1970, PHYSICAL SURFACES, P12
104886    LI TJ, 1996, ISIJ INT, V36, P410
104887    MIYOSHINO I, 1989, ISIJ INT, V29, P104
104888    NA XZ, 2002, ACTA METALL SIN, V38, P105
104889    NAKATA H, 1992, ISIJ INT, V32, P521
104890    REN ZM, 2001, ISIJ INT, V41, P981
104891    SUMI I, 1992, TETSU TO HAGANE, V78, P447
104892    TAKEUCHI E, 1984, METALL TRANS B, V15, P493
104893    TOH T, 1997, ISIJ INT, V37, P1112
104894    ZHANG XY, 1986, APPL CHEM HDB, P322
104895 NR 13
104896 TC 0
104897 SN 0412-1961
104898 J9 ACTA METALL SIN
104899 JI Acta Metall. Sin.
104900 PD MAY 11
104901 PY 2004
104902 VL 40
104903 IS 5
104904 BP 546
104905 EP 550
104906 PG 5
104907 SC Metallurgy & Metallurgical Engineering
104908 GA 826OR
104909 UT ISI:000221838900021
104910 ER
104911 
104912 PT J
104913 AU Zhang, XP
104914    Wang, SZ
104915 TI Invertibility attack against watermarking based on forged algorithm and
104916    a countermeasure
104917 SO PATTERN RECOGNITION LETTERS
104918 DT Article
104919 DE digital watermarking; protocol; invertibility attack
104920 AB It is shown in this paper that, even with a non-invertible watermarking
104921    algorithm or an asymmetric watermarking protocol, it is still possible
104922    to effect an invertibility attack, which relies on a forged
104923    watermarking algorithm, a counterfeit mark, and a fake key. Two
104924    examples are given to show the vulnerability of the unfortified
104925    non-invertible algorithm/ asymmetric protocol. As a solution, a secure
104926    watermarking protocol is proposed, which establishes correlation
104927    between the watermarking algorithm and the embedded mark. (C) 2004
104928    Elsevier B.V. All rights reserved.
104929 C1 Shanghai Univ, Sch Comp & Informat Engn, Shanghai 200072, Peoples R China.
104930 RP Zhang, XP, Shanghai Univ, Sch Comp & Informat Engn, 149 Yanchang Rd,
104931    Shanghai 200072, Peoples R China.
104932 EM zhangxinpeng@263.net
104933    wang@yc.shu.edu.cn
104934 CR CHEN B, 1999, P SOC PHOTO-OPT INS, V3657, P342
104935    CRAVER S, 1997, P IEEE INT C IM PROC, V1, P540
104936    CRAVER S, 1998, IEEE J SEL AREA COMM, V16, P573
104937    HARTUNG F, 1999, P IEEE, V87, P1079
104938    HWANG MS, 1999, IEEE T CONSUM ELECTR, V45, P286
104939    KATZENBEISSER S, 2002, P SOC PHOTO-OPT INS, V4675, P260
104940    KUTTER M, 2000, P SOC PHOTO-OPT INS, V3971, P371
104941    PETITCOLAS FAP, 1999, P IEEE, V87, P1062
104942    SWANSON MD, 1998, IEEE J SEL AREA COMM, V16, P540
104943    VOLOSHYNOVSKIY S, 2001, IEEE COMMUNICATI AUG, P118
104944 NR 10
104945 TC 1
104946 SN 0167-8655
104947 J9 PATTERN RECOGNITION LETT
104948 JI Pattern Recognit. Lett.
104949 PD JUN
104950 PY 2004
104951 VL 25
104952 IS 8
104953 BP 967
104954 EP 973
104955 PG 7
104956 SC Computer Science, Artificial Intelligence
104957 GA 823YN
104958 UT ISI:000221650400014
104959 ER
104960 
104961 PT J
104962 AU Tan, XH
104963    Xu, H
104964    Wang, Q
104965    Qi, NN
104966    Dong, YD
104967 TI Changes of structure and magnetic properties during crystallization in
104968    cast Nd60Fe20Al8Co10B2 alloy
104969 SO JOURNAL OF RARE EARTHS
104970 DT Article
104971 DE materials science; microstructure; crystalline behavior;
104972    Nd60Fe20Al8Co10B2 alloy; rare earths
104973 ID AMORPHOUS-ALLOYS
104974 AB The Nd60Fe20Al8Co10B2 alloy was prepared by suction casting of the
104975    molten alloy into a copper mold under argon atmosphere. The
104976    micro-structural and magnetic property changes in the Nd60Fe20Al8Co10B2
104977    alloy during crystallization were investigated by X-ray diffraction
104978    (XRD), differential scanning calorimetry (DSC), scanning electron
104979    microscope (SEM) and the vibrating sample magnetometer (VSM). The
104980    precipitation and Nd-rich and Fe-rich phases have no significant effect
104981    on the intrinsic coercitity for Nd60Fe20Al8Co10B2 alloy annealed below
104982    723 K. However, the growth of Fe-rich phase decreases the saturate
104983    magnetization and remanence of the alloy. The hard magnetic behavior is
104984    disappeared when the alloy is fully crystallized.
104985 C1 Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
104986 RP Tan, XH, Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
104987 EM tanxiaohua123@163.com
104988 CR DING J, 1999, APPL PHYS LETT, V75, P1763
104989    FAN GJ, 2000, J MATER RES, V15, P1556
104990    INOUE A, 1996, MATER T JIM, V37, P636
104991    KONG HZ, 2000, J MAGN MAGN MATER, V217, P65
104992    KUMAR G, 2003, ACTA MATER, V51, P229
104993    LI Y, 1998, J MAGN MAGN MATER, V187, P273
104994    NGUYEN C, 2002, J MAGN MAGN MATER, V242, P1314
104995    SIRATORI K, 1990, J MAGN MAGN MATER, V83, P341
104996    XU H, 2003, J RARE EARTH, V21, P552
104997 NR 9
104998 TC 0
104999 SN 1002-0721
105000 J9 J RARE EARTH
105001 JI J. Rare Earths
105002 PD APR
105003 PY 2004
105004 VL 22
105005 IS 2
105006 BP 239
105007 EP 241
105008 PG 3
105009 SC Chemistry, Applied
105010 GA 825GO
105011 UT ISI:000221744300013
105012 ER
105013 
105014 PT J
105015 AU Liu, YF
105016    Sang, WB
105017    Meng, ZY
105018    Liu, XY
105019 TI Kinetics of the coordination transformation for preparation of
105020    nanosized ZnS in a PVA film
105021 SO JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS
105022 DT Article
105023 DE nanoparticles; ZnS; diffusion; coordination transformation method
105024 ID POLYMER COMPOSITES; NANOCLUSTERS; SULFIDE
105025 AB This study was focused on the pervasion process of sulfion in a
105026    PVA-Zn2+ complex film. A diffusion equation for this process, based on
105027    the Fick first diffusion law, is suggested, which was in good agreement
105028    with the experimental results. The diffusion constant was 9.92 x 10(-6)
105029    cm(2)/sec, calculated by combining the model and the experimental
105030    results.
105031 C1 Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R China.
105032    Shanghai Univ, Dept Elect Informat Mat, Shanghai, Peoples R China.
105033    Xuzhou Univ, Dept Math, Jiangsu, Peoples R China.
105034 RP Liu, XY, Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R
105035    China.
105036 EM liuyf@sh163.net
105037 CR FOGG DE, 1997, MACROMOLECULES, V30, P8433
105038    HAGGATA SW, 1997, J MATER CHEM, V7, P1969
105039    HUANG D, 1987, ANAL CHEM, V15, P343
105040    KANE RS, 1999, CHEM MATER, V11, P90
105041    LIU Y, 1998, POLYM B, P11
105042    LIU Y, 2002, POLYM B, P18
105043    RAY RC, 1980, ANALYST, V105, P984
105044    SYTY A, 1979, ANAL CHEM, V51, P911
105045    WANG J, 1999, J APPL POLYM SCI, V72, P1851
105046 NR 9
105047 TC 0
105048 SN 0022-2348
105049 J9 J MACROMOL SCI-PHYS
105050 JI J. Macromol. Sci.-Phys.
105051 PY 2004
105052 VL B43
105053 IS 3
105054 BP 625
105055 EP 637
105056 PG 13
105057 SC Polymer Science
105058 GA 825MC
105059 UT ISI:000221761600007
105060 ER
105061 
105062 PT J
105063 AU Chow, TWS
105064    Hai, S
105065 TI Induction machine fault diagnostic analysis with wavelet technique
105066 SO IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
105067 DT Article
105068 DE fault diagnostic; induction machine; narrow filter banks; wavelet
105069    analysis
105070 ID NEURAL-NETWORKS; IDENTIFICATION
105071 AB A wavelets-transform-based method was developed for diagnosing machine
105072    faults operating at different rotating speeds. This paper shows that
105073    machine fault diagnosis can be effectively performed when an
105074    appropriate narrow-band filter is used to extract the required spectra
105075    components. A wavelets-transform-based technique is used to design
105076    specified narrow filter banks. This enables effective machine fault
105077    diagnostic analysis to be performed in the frequency domain.
105078    Gaussian-enveloped oscillation-type wavelet is employed. By matching
105079    the wavelet basis functions with the associated faulty signals, the
105080    required narrow filter banks are obtained. As a result, the detection
105081    and diagnosis of machine faults operating at different rotating speeds
105082    are made possible. The proposed technique was thoroughly tested at
105083    different rotating speeds.
105084 C1 City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
105085    Shanghai Univ, Dept Telecommun Engn, Shanghai 200083, Peoples R China.
105086 RP Chow, TWS, City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong,
105087    Peoples R China.
105088 EM eetchow@cityu.edu.hk
105089 CR ALGUINDIGUE IE, 1993, IEEE T IND ELECTRON, V40, P209
105090    ARTHUR N, 2000, IEEE T IND ELECTRON, V47, P1031
105091    BENBOUZID ME, 2000, IEEE T IND ELECTRON, V47, P984
105092    CHOW TWS, 1995, IEEE T ENERGY CONVER, V10, P688
105093    CHOW TWS, 2000, IEEE T IND ELECTRON, V47, P1051
105094    CHUI CK, 1992, INTRO WAVELETS
105095    FILIPPETTI F, 2000, IEEE T IND ELECTRON, V47, P994
105096    GOLDMAN PES, 1999, VIBRATION SPECTRUM A
105097    LI B, 2000, IEEE T IND ELECTRON, V47, P1060
105098    MALLAT GS, 1999, WAVELET TOUR SIGNAL
105099    NEWLANDS DE, 1996, INTRO RANDOM VIBRATI
105100    TAN HZ, 2000, IEEE T IND ELECTRON, V47, P687
105101    THOMSON WT, 2001, IEEE IND APPL MA JUL, P26
105102    WANG WJ, 1996, J SOUND VIB, V192, P927
105103    WOWK V, 1991, MACHINERY VIBRATION
105104    YE Z, 2001, P IEEE APEC 2001, V2, P1015
105105 NR 16
105106 TC 1
105107 SN 0278-0046
105108 J9 IEEE TRANS IND ELECTRON
105109 JI IEEE Trans. Ind. Electron.
105110 PD JUN
105111 PY 2004
105112 VL 51
105113 IS 3
105114 BP 558
105115 EP 565
105116 PG 8
105117 SC Engineering, Electrical & Electronic; Automation & Control Systems;
105118    Instruments & Instrumentation
105119 GA 825RA
105120 UT ISI:000221774700005
105121 ER
105122 
105123 PT S
105124 AU Liu, LL
105125    Yu, T
105126    Shi, ZB
105127    Fang, ML
105128 TI Resource management and scheduling in manufacturing Grid
105129 SO GRID AND COOPERATIVE COMPUTING, PT 2
105130 SE LECTURE NOTES IN COMPUTER SCIENCE
105131 DT Article
105132 AB In order to resolve resource management and scheduling problem in
105133    Manufacturing Grid (MG) - an application of Grid technology, we develop
105134    a resource management and scheduling system with the interaction of
105135    Manufacturing Grid Information Service (MGIS) and the Manufacturing
105136    Grid Resource Scheduler (MGRS). The former, MGIS, provides fundamental
105137    mechanisms for remote resource encapsulating, registration, and
105138    monitoring, and the latter, MGRS, performs scheduling roles as Global
105139    Process Planning (GPP) analyzing, resource discovery, resource
105140    selection, and resource mapping.
105141 C1 Shanghai Univ, Robot Ctr, CIMS, Shanghai 200072, Peoples R China.
105142 RP Liu, LL, Shanghai Univ, Robot Ctr, CIMS, Shanghai 200072, Peoples R
105143    China.
105144 EM llliu@mail.shu.edu.cn
105145 CR GT3 INDEX SERVICE US
105146    LILAN L, 2003, RES RAPID MANUFACTUR
105147    LILAN L, 2003, SELF ORG MANUFACTURI
105148    RANGANATHAN K, COMPUTATION DATA SCH
105149    SANDHOLM T, GRID SERVICE CONTAIN
105150    WU SH, 2002, CONCURRENT PROCESS P
105151    ZHANBEI S, 2003, SERVICE REGISTRY DIS
105152 NR 7
105153 TC 0
105154 SN 0302-9743
105155 J9 LECT NOTE COMPUT SCI
105156 PY 2004
105157 VL 3033
105158 BP 137
105159 EP 140
105160 PG 4
105161 GA BAC97
105162 UT ISI:000221609100018
105163 ER
105164 
105165 PT S
105166 AU Chen, JH
105167    Zhang, W
105168    Shao, WM
105169 TI Two extensions to NetSolve System
105170 SO GRID AND COOPERATIVE COMPUTING, PT 2
105171 SE LECTURE NOTES IN COMPUTER SCIENCE
105172 DT Article
105173 AB This paper deals with the NetSolve system based on the cluster-ZQ2000.
105174    The work mechanism of NetSolve is pointed out clearly. Server Proxy, a
105175    new component running on pre-server was used as a bridge between
105176    clients and servers. Moreover, a Zero-Changed scheme in source code is
105177    also presented.
105178 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
105179 RP Chen, JH, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples
105180    R China.
105181 EM 1977cjh@sina.com
105182    wzhang@mai1.shu.edu.cn
105183 CR ARNOLD DC, 2000, EUROPAR 2000 PARALLE
105184    CASANOVA H, 1998, IEEE COMPUT SCI ENG, V5, P57
105185    CASANOVA H, 1999, IN PRESS INT J SUP A
105186    DORIAN C, NETSOLVE ENV PROGRES
105187    NEUMAN BC, 1994, IEEE COMMUN MAG, V32, P33
105188 NR 5
105189 TC 0
105190 SN 0302-9743
105191 J9 LECT NOTE COMPUT SCI
105192 PY 2004
105193 VL 3033
105194 BP 430
105195 EP 433
105196 PG 4
105197 GA BAC97
105198 UT ISI:000221609100072
105199 ER
105200 
105201 PT S
105202 AU Yan, H
105203    Yu, SN
105204 TI A multiple-neighborhoods-based simulated annealing algorithm for
105205    Timetable Problem
105206 SO GRID AND COOPERATIVE COMPUTING, PT 2
105207 SE LECTURE NOTES IN COMPUTER SCIENCE
105208 DT Article
105209 ID SEARCH
105210 AB This paper presents a simulated annealing algorithm that based on
105211    multiple search neighborhoods to solve a special kind of timetable
105212    problem. The new algorithm also can solve those problems that can be
105213    solved by local search algorithm. Various experimental results show
105214    that the new algorithm can actually give more satisfactory solutions
105215    than general simulated annealing algorithm can do.
105216 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
105217 RP Yan, H, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R
105218    China.
105219 EM yanhe790926@sina.com
105220    yyww@sh163.net
105221 CR AARTS E, 1997, LOCAL SEARCH COMBINA
105222    ABRAMSON D, 1991, MANAGE SCI, V37, P98
105223    ABRAMSON DA, 1992, IJCAI WORKSH PAR PRO
105224    BURKE EK, 1999, IEEE T EVOLUT COMPUT, V3, P63
105225    BURKE EK, 2002, IN PRESS EUR J OPERA
105226    HERTZ A, 1991, EUR J OPER RES, V54, P39
105227    KANG LS, 1995, NONNUMERICAL PARALLE
105228    LING W, 2001, INTELLIGENT OPTIMIZA
105229    LU KC, 1996, INTRO ALGORITHM ALGO
105230    SCHAERF A, 1999, IEEE T SYST MAN CY A, V29, P368
105231 NR 10
105232 TC 0
105233 SN 0302-9743
105234 J9 LECT NOTE COMPUT SCI
105235 PY 2004
105236 VL 3033
105237 BP 474
105238 EP 481
105239 PG 8
105240 GA BAC97
105241 UT ISI:000221609100081
105242 ER
105243 
105244 PT S
105245 AU Shi, ZB
105246    Yu, T
105247    Liu, LL
105248 TI MG-QoS: QoS-based resource discovery in manufacturing Grid
105249 SO GRID AND COOPERATIVE COMPUTING, PT 2
105250 SE LECTURE NOTES IN COMPUTER SCIENCE
105251 DT Article
105252 AB The emerging of the Open Grid Service Architecture (OGSA) andGT3
105253    provides a solution to Network Manufacturing- Manufacturing Grid (MG).
105254    We apply GT3 to manufacturing by developing a MG Quality of Service
105255    (MG-QoS) management system. The main focus of this framework is to
105256    provide a means for the users to search for services based on QoS
105257    criteria in Manufacturing Grid, to provide QoS guarantees for service
105258    execution and to enforce these guarantees by establishing Service Level
105259    Agreements (SLAs). Hereby, we imagine a set-vice discovery mechanism
105260    based on QoS properties with regarding to SLAs between the user and the
105261    service providers, with the GPP analyzer to decompose the requested
105262    job, and the Reservation and Allocation Agent to reserve and allocate
105263    the service.
105264 C1 Shanghai Univ, Dept Comp Sci, Shanghai 200072, Peoples R China.
105265    Shanghai Univ, CIMS, Shanghai 200072, Peoples R China.
105266    Shanghai Univ, Robot Ctr, Shanghai 200072, Peoples R China.
105267 RP Shi, ZB, Shanghai Univ, Dept Comp Sci, Shanghai 200072, Peoples R China.
105268 EM zbshi@mail.shu.edu.cn
105269 CR ALALI R, 2002, COMPUTING INFORMATIC
105270    FOSTER I, PHYSL GRID OPEN GRID
105271    FOSTER I, 1999, P INT WORKSH QOS
105272    LIU LL, 2003, SELF ORG MANUFACTURI
105273    OGUZ A, 1998, IEEE PERSONAL COMMUN, V5
105274    SHENKER S, 1997, 2212 RFC INT ENG TAS
105275    SHI ZB, 2003, SERVICE REGISTRY DIS
105276    SOHAIL S, 2002, 0206 UNSW CSE TR
105277    TEITELBAUM B, 1999, IEEE NETWORK, V13, P8
105278    TUECKE K, OPEN GRID SERVICES I
105279    WROCLAWSKI J, 1997, 2211 RFC IETF
105280 NR 11
105281 TC 1
105282 SN 0302-9743
105283 J9 LECT NOTE COMPUT SCI
105284 PY 2004
105285 VL 3033
105286 BP 500
105287 EP 506
105288 PG 7
105289 GA BAC97
105290 UT ISI:000221609100084
105291 ER
105292 
105293 PT S
105294 AU Gao, XL
105295    Miao, HK
105296    Liu, SY
105297    Liu, L
105298 TI The availability semantics of predicate data flow diagram
105299 SO GRID AND COOPERATIVE COMPUTING, PT 2
105300 SE LECTURE NOTES IN COMPUTER SCIENCE
105301 DT Article
105302 AB The core of the SOZL(structured methodology + object-oriented
105303    methodology + Z language) is Predicate Data Flow Diagram. In order to
105304    eliminate the ambiguity of predicate data flow diagrams and their
105305    associated textual specifications, a formalization of the syntax and
105306    semantics of predicate data flow diagrams are necessary. In this paper
105307    we use Z notation to define an abstract syntax and the related
105308    structural constraints for the predicate data flow diagram notation,
105309    and provide it with an axiomatic semantics based on the concept of data
105310    availability. Necessary proofs are given to establish important
105311    properties on the axiomatic semantics.
105312 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
105313    Hosei Univ, Fac Comp & Informat Sci, Tokyo, Japan.
105314    Xu Zhu Normal Univ, Xuzhou 221116, Peoples R China.
105315 RP Gao, XL, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R
105316    China.
105317 EM gaoxiaolei@163.net
105318    hkmiao@mail.shu.edu.cn
105319    liuling@mail.shu.edu.cn
105320    Sliu@k.hosei.ac.jp
105321 CR GAO X, 2000, 16 IFIP WORLD COMP C
105322    LIU SY, 1993, J SYST SOFTWARE, V21, P141
105323    LIU SY, 1998, INT J SOFTW ENG KNOW, V8, P253
105324    MIAO HK, 1999, COMPUTER ENG SCI, V21
105325    SPIVEY JM, 1988, CAMBRIDGE TRACTS THE
105326 NR 5
105327 TC 0
105328 SN 0302-9743
105329 J9 LECT NOTE COMPUT SCI
105330 PY 2004
105331 VL 3033
105332 BP 970
105333 EP 977
105334 PG 8
105335 GA BAC97
105336 UT ISI:000221609100152
105337 ER
105338 
105339 PT B
105340 AU Lei, YM
105341    Xu, WM
105342    Wang, BQ
105343 TI The system for computing of molecule structure on the computational
105344    grid environment
105345 SO GRID AND COOPERATIVE COMPUTING, PT 1
105346 SE LECTURE NOTES IN COMPUTER SCIENCE
105347 DT Article
105348 AB The computing grid can offer users tremendous computer resources. In
105349    this paper, we proposed an application model for computing of molecule
105350    structure on the computational grid. According to the need of grid
105351    computing, a high-resolution system has been implemented; which
105352    includes middleware based OGSA, domain master-slave model, the
105353    explanation and calculation of complex molecule structure and 3D
105354    visualization in Shanghai University- East China University of Science
105355    and Technology grid environment.
105356 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
105357    E China Univ Sci & Technol, Dept Chem, Shanghai 200237, Peoples R China.
105358 RP Lei, YM, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R
105359    China.
105360 EM ymlei@mail.shu.edu.cn
105361    wangbingqiang@hotmail.com
105362 CR ALLEN G, 2001, P SC01 SC2001 DENV
105363    BAKER M, 2000, GRID SURVEY GLOBAL E
105364    FORSTER I, 1998, SUP 98
105365    PACHECO PS, 1997, PARALLEL PROGRAMMING
105366 NR 4
105367 TC 0
105368 PY 2004
105369 BP 225
105370 EP 228
105371 PG 4
105372 GA BAC96
105373 UT ISI:000221608900037
105374 ER
105375 
105376 PT B
105377 AU Cheng, HY
105378    Zhang, W
105379    Shen, YF
105380    Song, AP
105381 TI The development and application of numerical packages based on NetSolve
105382 SO GRID AND COOPERATIVE COMPUTING, PT 1
105383 SE LECTURE NOTES IN COMPUTER SCIENCE
105384 DT Article
105385 AB NetSolve is a kind of grid middleware used for high performance
105386    compute. In this article, the architecture and operational principle of
105387    NetSolve are first analyzed. This paper mainly discusses the
105388    implementation of the server with several numerical packages and
105389    numerical experiment is given. At last, we point out the limitations of
105390    the Netsolve.
105391 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
105392 RP Cheng, HY, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples
105393    R China.
105394 EM sunnychy@163.com
105395    wzhang@mail.shu.edu.cn
105396    yfshen@mail.shu.edu.cn
105397    apsong@mail.shu.edu.cn
105398 CR CASANOVA H, 1996, CS96343 U TENN DEP C
105399    DONGARRA JJ, 1990, ACM T MATH SOFTWARE, V16, P1
105400    FOSTER I, 2001, GRID BLUEPRINT NEW C
105401    FREUND RW, 1991, NUMER MATH, V60, P315
105402 NR 4
105403 TC 0
105404 PY 2004
105405 BP 233
105406 EP 236
105407 PG 4
105408 GA BAC96
105409 UT ISI:000221608900039
105410 ER
105411 
105412 PT B
105413 AU Cao, M
105414    Cao, JN
105415    Wu, GF
105416    Wang, YY
105417 TI Architecting CORBA-based distributed applications
105418 SO GRID AND COOPERATIVE COMPUTING, PT 1
105419 SE LECTURE NOTES IN COMPUTER SCIENCE
105420 DT Article
105421 AB In this paper, we present a novel graph-oriented approach for
105422    architecting and modeling CORBA-based distributed applications. It
105423    provides higher-level abstractions for the architecture description of
105424    CORBA-based distributed applications. In the proposed model, the
105425    configuration of a CORBA-based distributed application is described as
105426    a logical graph separated from the programming of the constituent
105427    components of the application. It also provides more powerful support
105428    for dynamic reconfiguration and simplification of component programming.
105429 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
105430    Zhongyuan Univ Technol, Sect Math, Zhengzhou 450002, Peoples R China.
105431    Hong Kong Polytech Univ, Dept Comp, Kowloon, Hong Kong, Peoples R China.
105432 RP Cao, M, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R
105433    China.
105434 EM mcao@mail.shu.edu.cn
105435 CR CAO J, 2002, IN PRESS P 2002 INT
105436    COULSON G, 2002, DISTRIB COMPUT, V15, P67
105437    KRAMER J, 1998, IEEE P SOFTWARE, V145
105438    LEMETAYER D, 1998, IEEE T SOFTWARE ENG, V24, P521
105439    MEDVIDOVIC N, 2000, IEEE T SOFTWARE ENG, V26, P70
105440    RODRIGUEZ N, 1998, P 4 INT C CONF DISTR, P27
105441 NR 6
105442 TC 0
105443 PY 2004
105444 BP 266
105445 EP 268
105446 PG 3
105447 GA BAC96
105448 UT ISI:000221608900047
105449 ER
105450 
105451 PT B
105452 AU Tong, WQ
105453    Ding, JB
105454    Tang, JQ
105455    Wang, B
105456    Cai, LZ
105457 TI A service-based hierarchical architecture for parallel computing in
105458    grid environment
105459 SO GRID AND COOPERATIVE COMPUTING, PT 1
105460 SE LECTURE NOTES IN COMPUTER SCIENCE
105461 DT Article
105462 AB Grid computing technologies enable widespread sharing and coordinated
105463    us of networked. resources, including computing resources. Open Grid
105464    Service Architecture (OGSA) marries Web services to grid protocols,
105465    thereby making progress in defining interfaces for grid services. We
105466    put forward here a hierarchical architecture, which is based on grid
105467    service, for parallel computing in grid environment. Several grid
105468    services are proposed in this paper for building our architecture,
105469    including cooperation service, resource information service, computing
105470    service, communication service, and other atomic services such as MOM
105471    service. The technology of building high layer grid service is also
105472    introduced in this paper.
105473 C1 Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200072, Peoples R China.
105474    Shanghai Software Test Lab, Shanghai 200235, Peoples R China.
105475 RP Tong, WQ, Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200072, Peoples
105476    R China.
105477 EM wqtong@mail.shu.edu.cn
105478 CR CAI LZ, 2003, P INT WORKSH GRID CO, P323
105479    COLEGOMOLSKI B, 1997, COMPUTERWORLD, V31
105480    FOSTER I, 2001, INT J SUPERCOMPUTER, V15
105481    TONG WQ, 2003, P INT C COMP SCI, P225
105482 NR 4
105483 TC 0
105484 PY 2004
105485 BP 641
105486 EP 644
105487 PG 4
105488 GA BAC96
105489 UT ISI:000221608900102
105490 ER
105491 
105492 PT B
105493 AU Tong, WQ
105494    Tang, JQ
105495    Jin, L
105496    Wang, B
105497    Zong, YW
105498 TI Towards a mobile service mechanism in a grid environment
105499 SO GRID AND COOPERATIVE COMPUTING, PT 1
105500 SE LECTURE NOTES IN COMPUTER SCIENCE
105501 DT Article
105502 AB With the rapid development of Internet, Grid becomes more and more
105503    popular. In this paper, mobile service is introduced to solve some key
105504    problems in Grid environment, such as load balance and fault tolerance
105505    etc. A mobile service is the combination of Grid service and mobile
105506    agent and has migration ability that can make it migrate between grids
105507    and ability to detect surroundings to decide when and where to migrate.
105508 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
105509    Shanghai Software Test Lab, Shanghai 200235, Peoples R China.
105510 RP Tong, WQ, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples
105511    R China.
105512 EM wqtong@mail.shu.edu.cn
105513 CR BOUCHENAK S, 2001, 6 UNENIX C OBJ OR TE
105514    BUYYA R, 2000, 1 IEEE ACM INT WORKS
105515    FOSTER I, 2001, INT J HIGH PERFORM C, V15, P200
105516    LI CL, 2002, J COMPUTER STANDARD, V24, P321
105517 NR 4
105518 TC 0
105519 PY 2004
105520 BP 829
105521 EP 832
105522 PG 4
105523 GA BAC96
105524 UT ISI:000221608900132
105525 ER
105526 
105527 PT B
105528 AU Gao, XL
105529    Miao, HK
105530    Chen, YH
105531 TI Structured object-Z software specification language
105532 SO GRID AND COOPERATIVE COMPUTING, PT 1
105533 SE LECTURE NOTES IN COMPUTER SCIENCE
105534 DT Article
105535 AB In this paper, we review and compare strengths and weakness of the
105536    structure methods, object-oriented methods and formal methods. In order
105537    to overcome the disadvantages of each kind of methods and combine the
105538    advantages of these three kinds of methods, we propose a new software
105539    development methodology named SOFM that attempts to integrate structure
105540    method, object-oriented method and formal method. SOZRSL(Structured
105541    Object-Z Software Specification Language) is a language to support
105542    SOFM. The core of this language is Predicate Data Flow Diagram. We
105543    combine PDFD with Object-Z notation to define SOZRSL syntax and the
105544    related structures.
105545 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
105546    Xuzhou Normal Univ, Xuzhou 221116, Peoples R China.
105547 RP Gao, XL, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R
105548    China.
105549 EM gaoxiaolei@163.net
105550    hkmiao@mail.shu.edu.cn
105551    yhchen@mail.shu.edu.cn
105552 CR *SWAP MITR, OBJ OR SPEC VDMPLUSP
105553    BOLOGNESI T, 1989, INTRO ISO SPECIFICAT, P23
105554    DAWES J, 1991, VDM SL REFERENCE GUI
105555    DILLER A, 1990, INTRO FORMAL METHODS
105556    GOGUEN JA, 1993, INTRO OBJ OCT
105557    GUTTAG JV, 1993, LARCH LANGUAGES TOOL
105558    HUAIKOU M, 1999, COMPUTER ENG SCI, V21
105559    LANO K, 1990, ZPLUSPLUS OBJECT Z
105560    LIU S, 1998, IEEE T SOFTWARE ENG, V24, P24
105561    LIU SY, 1998, INT J SOFTW ENG KNOW, V8, P253
105562    SMITH G, 2000, OBJECT Z
105563    XIAODONG Y, 1997, J SOFTWARE, V8
105564 NR 12
105565 TC 0
105566 PY 2004
105567 BP 956
105568 EP 963
105569 PG 8
105570 GA BAC96
105571 UT ISI:000221608900148
105572 ER
105573 
105574 PT B
105575 AU Zhi, XL
105576    Tong, WQ
105577 TI Design for reliable service aggregation in an architectural environment
105578 SO GRID AND COOPERATIVE COMPUTING, PT 1
105579 SE LECTURE NOTES IN COMPUTER SCIENCE
105580 DT Article
105581 AB How to construct a reliable service aggregation is an important issue
105582    in service oriented computing. The paper introduces a design
105583    environment to improve the consistence of a service aggregation by
105584    cost-effectively using the model checking technique in a software
105585    architecture framework.
105586 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
105587 RP Zhi, XL, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R
105588    China.
105589 EM xl@mail.shu.edu.cn
105590 CR ERDOGMUS H, 1996, P 1 WORKSH FORM METH, P39183
105591    GARLAN D, 1994, CMUCS94166
105592    GARLAN D, 1997, P CASCON 97 TOR ONT, P169
105593    NAKAJIMA S, 2001, LNCS, V2057, P163
105594    ZIRPINS C, 2003, 1 EUR WORKSH OBJ OR
105595 NR 5
105596 TC 0
105597 PY 2004
105598 BP 1059
105599 EP 1062
105600 PG 4
105601 GA BAC96
105602 UT ISI:000221608900170
105603 ER
105604 
105605 PT J
105606 AU Zhang, JF
105607    Meng, JP
105608 TI (2+1)-Dimensional combined structures of various solitons with
105609    completely nonelastic interaction properties
105610 SO COMMUNICATIONS IN THEORETICAL PHYSICS
105611 DT Article
105612 DE combined structure dromion; solitoff; compacton; peakon
105613 ID NOVIKOV-VESELOV EQUATION; LOCALIZED COHERENT STRUCTURES; VARIABLE
105614    SEPARATION SOLUTIONS; DISPERSIVE WAVE SYSTEM; FRACTAL SOLUTIONS; KDV
105615    EQUATION; EXCITATIONS; PEAKON; INSTANTONS; COMPACTON
105616 AB Starting from the variable separation solution obtained by using the
105617    extended homogenous balance method, a new class of combined structures,
105618    such as multi-peakon and multi-dromion solution, multi-compacton and
105619    multi-dromion solution, multi-peakon and multi-compacton solution, for
105620    the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are found by
105621    selecting appropriate functions. These new structures exhibit novel
105622    interaction features. Their interaction behavior is very similar to the
105623    completely nonelastic collisions between two classical particles.
105624 C1 Zhejiang Normal Univ, Inst Nonlinear Phys, Jinan 321004, Peoples R China.
105625    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
105626    Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England.
105627 RP Zhang, JF, Zhejiang Normal Univ, Inst Nonlinear Phys, Jinan 321004,
105628    Peoples R China.
105629 CR BOITI M, 1986, INVERSE PROBL, V2, P271
105630    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
105631    HONG KZ, 2003, COMMUN THEOR PHYS, V39, P393
105632    HU XB, 1996, J PHYS A-MATH GEN, V29, P4589
105633    HUANG WH, 2000, CHINESE PHYS, V11, P299
105634    LOU SY, 1996, J PHYS A, V29, P4029
105635    LOU SY, 2000, CHINESE PHYS LETT, V17, P781
105636    LOU SY, 2000, PHYS LETT A, V277, P94
105637    LOU SY, 2002, CHINESE PHYS LETT, V19, P769
105638    LOU SY, 2002, J MATH PHYS, V43, P4078
105639    LOU SY, 2002, J PHYS A, V35, P305
105640    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
105641    LOU SY, 2002, PHYS SCRIPTA, V65, P7
105642    LOU SY, 2003, J PHYS A-MATH GEN, V36, P3877
105643    NIZHNIK LP, 1980, SOV PHYS DOKL, V25, P706
105644    OHTA Y, 1992, J PHYS SOC JPN, V61, P3928
105645    RADHA R, 1994, J MATH PHYS, V35, P4746
105646    ROSENAU P, 1993, PHYS REV LETT, V70, P564
105647    RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P586
105648    RUAN HY, 2003, ACTA PHYS SIN-CH ED, V52, P1313
105649    TAGAMI Y, 1989, PHYS LETT A, V141, P116
105650    TANG XY, 2000, PHYS REV E, V66, P46601
105651    TANG XY, 2002, CHAOS SOLITON FRACT, V14, P1451
105652    TANG XY, 2002, COMMUN THEOR PHYS, V38, P1
105653    TANG XY, 2002, J PHYS A-MATH GEN, V35, L293
105654    TANG XY, 2003, CHINESE PHYS LETT, V20, P335
105655    VESELOV AP, 1984, SOV MATH DOKL, V30, P588
105656    ZHANG JF, 2001, CHINESE PHYS, V10, P89
105657    ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P705
105658    ZHANG JF, 2002, ACTA PHYS SINICA, V51, P2627
105659    ZHANG JF, 2002, CHINESE PHYS, V11, P651
105660    ZHANG JF, 2002, COMMUN THEOR PHYS, V37, P277
105661    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P1006
105662    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P448
105663    ZHANG JF, 2003, PHYS LETT A, V313, P401
105664    ZHANG JF, 2003, Z NATURFORSCH A, V58, P280
105665    ZHANG JF, 2004, COMMUN THEOR PHYS, V41, P7
105666    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
105667    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
105668    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P783
105669    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P261
105670 NR 41
105671 TC 1
105672 SN 0253-6102
105673 J9 COMMUN THEOR PHYS
105674 JI Commun. Theor. Phys.
105675 PD MAY 15
105676 PY 2004
105677 VL 41
105678 IS 5
105679 BP 655
105680 EP 664
105681 PG 10
105682 SC Physics, Multidisciplinary
105683 GA 825DR
105684 UT ISI:000221736700004
105685 ER
105686 
105687 PT J
105688 AU Zheng, CL
105689    Chen, LQ
105690 TI A general mapping approach and new Travelling wave solutions to
105691    (2+1)-dimensional Boussinesq equation
105692 SO COMMUNICATIONS IN THEORETICAL PHYSICS
105693 DT Article
105694 DE (2+1)-dimensional Boussinesq system; general mapping approach;
105695    travelling wave solution
105696 ID JACOBI ELLIPTIC FUNCTION; COHERENT SOLITON-STRUCTURES; KDV-BURGERS
105697    EQUATION; NEWELL-SEGUR SYSTEM; FUNCTION EXPANSION; WATER-WAVES;
105698    EXCITATIONS; EXPLICIT; DROMION; PEAKON
105699 AB A general mapping deformation method is presented and applied to a
105700    (2+1)-dimensional Boussinesq system. Many new types of explicit and
105701    exact travelling wave solutions, which contain solitary wave solutions,
105702    periodic wave solutions, Jacobian and Weierstrass doubly periodic wave
105703    solutions, and other exact excitations like polynomial solutions,
105704    exponential solutions, and rational solutions, etc., are obtained by a
105705    simple algebraic transformation relation between the (2+1)-dimensional
105706    Boussinesq equation and a generalized cubic nonlinear Klein-Gordon
105707    equation.
105708 C1 Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
105709    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
105710 RP Zheng, CL, Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000,
105711    Peoples R China.
105712 EM zjclzheng@yahoo.com.cn
105713 CR CAMASSA R, 1993, PHYS REV LETT, V71, P1661
105714    CARDNER CS, 1967, PHYS REV LETT, V19, P1095
105715    FAN EG, 2000, ACTA PHYS SIN-CH ED, V49, P1409
105716    FAN EG, 2002, ACTA PHYS SIN A, V295, P280
105717    FAN EG, 2002, ACTA PHYS SIN A, V305, P383
105718    FAN EG, 2003, CHAOS SOLITON FRACT, V15, P559
105719    FAN EG, 2003, J PHYS A-MATH GEN, V36, P7009
105720    FU ZT, 2001, PHYS LETT A, V290, P72
105721    GU CH, 1987, LETT MATH PHYS, V13, P179
105722    HIROTA R, 1981, PHYS LETT A, V85, P407
105723    HUANG WH, 2003, CHINESE PHYS, V12
105724    JOHNSON RS, 1996, J FLUID MECH, V323, P65
105725    LI HM, 2002, ACTA PHYS SINICA, V51, P467
105726    LI HM, 2002, CHINESE PHYS LETT, V19, P745
105727    LI HM, 2002, COMMUN THEOR PHYS, V37, P561
105728    LI HM, 2003, COMMUN THEOR PHYS, V40, P395
105729    LIU SK, 2001, ACTA PHYS SIN-CH ED, V50, P2068
105730    LIU SK, 2001, PHYS LETT A, V289, P69
105731    LOU SY, 1989, J MATH PHYS, V30, P1614
105732    LOU SY, 2000, PHYS LETT A, V277, P94
105733    LOU SY, 2002, PHYS SCRIPTA, V65, P7
105734    LU J, 2002, ACTA PHYS SINICA, V51, P1448
105735    LU KP, 2001, ACTA PHYS SIN-CH ED, V50, P2074
105736    PNG YZ, 2003, CHINESE J PHYS, V41, P103
105737    SIRENDAOREJI, 2002, PHYS LETT A, V298, P133
105738    SIRENDAOREJI, 2003, PHYS LETT A, V309, P387
105739    TANG XY, 2002, PHYS REV E 2, V66
105740    VAKHNENKO VA, 1992, J PHYS A-MATH GEN, V25, P4181
105741    VAKHNENKO VO, 1998, NONLINEARITY, V11, P1457
105742    WAHLQUIST HD, 1971, PHYS LETT, V31, P1386
105743    WANG ML, 1995, PHYS LETT A, V199, P169
105744    XIA TC, 2001, CHINESE PHYS, V10, P694
105745    XU GQ, 2002, ACTA PHYS SIN-CH ED, V51, P1424
105746    XU GQ, 2002, ACTA PHYS SIN-CH ED, V51, P946
105747    ZHANG JF, 1998, ACTA PHYS SINICA, V47, P1416
105748    ZHANG JF, 2001, CHINESE PHYS, V10
105749    ZHANG JF, 2002, CHINESE PHYS, V11, P425
105750    ZHANG JF, 2002, CHINESE PHYS, V11, P533
105751    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P1006
105752    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P448
105753    ZHENG CL, 2002, ACTA PHYS SIN-CH ED, V51, P2426
105754    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
105755    ZHENG CL, 2002, COMMUN THEOR PHYS, V38, P653
105756    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
105757    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P783
105758    ZHENG CL, 2003, CHINESE PHYS, V12, P11
105759    ZHENG CL, 2003, CHINESE PHYS, V12, P472
105760    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P261
105761    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P9
105762    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
105763    ZHENG Y, 2000, ACTA PHYS SINICA, V49, P1
105764 NR 51
105765 TC 6
105766 SN 0253-6102
105767 J9 COMMUN THEOR PHYS
105768 JI Commun. Theor. Phys.
105769 PD MAY 15
105770 PY 2004
105771 VL 41
105772 IS 5
105773 BP 671
105774 EP 674
105775 PG 4
105776 SC Physics, Multidisciplinary
105777 GA 825DR
105778 UT ISI:000221736700007
105779 ER
105780 
105781 PT J
105782 AU Li, CP
105783    Chen, GR
105784 TI Estimating the Lyapunov exponents of discrete systems
105785 SO CHAOS
105786 DT Article
105787 ID CELLULAR NEURAL NETWORKS; TOPOLOGICAL-ENTROPY; CHAOS; MACHINE; MAP
105788 AB In the present paper, our aim is to determine both upper and lower
105789    bounds for all the Lyapunov exponents of a given finite-dimensional
105790    discrete map. To show the efficiency of the proposed estimation method,
105791    two examples are given, including the well-known Henon map and a
105792    coupled map lattice. (C) 2004 American Institute of Physics.
105793 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
105794    Univ Pretoria, Dept Elect Elect & Comp Engn, ZA-0002 Pretoria, South Africa.
105795    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
105796 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
105797 CR ADLER RL, 1965, T AM MATH SOC, V114, P309
105798    BANKS J, 1994, SIAM REV, V36, P265
105799    BHATIA R, 1997, MATRIX ANAL
105800    BLANCHARD F, 2002, J REINE ANGEW MATH, V547, P51
105801    BLOCK LS, 1992, DYNAMICS ONE DIMENSI
105802    CHEN G, 1998, CHAOS ORDER METHODOL
105803    CHUA LO, 1988, IEEE T CIRCUITS SYST, V35, P1257
105804    CHUA LO, 1988, IEEE T CIRCUITS SYST, V35, P1273
105805    DEVANEY RL, 1989, INTRO CHAOTIC DYNAMI
105806    DING MZ, 1997, PHYS REV E, V56, P4009
105807    ERNEUX T, 1993, PHYSICA D, V67, P237
105808    HOLZFUSS J, 1991, LECT NOTES MATH, V1486, P263
105809    HSU CH, 2002, AM MATH MON, V109, P840
105810    HUANG W, 2002, TOPOL APPL, V117, P259
105811    LI CP, 2003, CHAOS SOLITON FRACT, V18, P809
105812    LI CP, 2003, SOLITONS FRACTALS, V18, P69
105813    LI CP, 2004, CHAOS SOLITON FRACT, V20, P655
105814    LI CP, 2004, CHAOS SOLITON FRACT, V21, P855
105815    LI TY, 1975, AM MATH MONTHLY, V82, P985
105816    MAROTTO FR, 1978, J MATH ANAL APPL, V63, P199
105817    MISIUREWICZ M, 1979, B ACAD POLON SC SMAP, V27, P167
105818    OSELEDEC VI, 1968, T MOSCOW MATH SOC, V19, P197
105819    PARKER TS, 1989, PRACTICAL NUMERICAL
105820    ROSKA T, 1993, IEEE T CIRCUITS-II, V40, P163
105821    SEYDEL R, 1988, EQUILIBRIUM CHAOS PR
105822    SHARKOVSKII AN, 1964, UKR MAT ZH, V16, P61
105823    SINGH S, 1997, FIXED POINT THEORY B
105824    SMITAL J, 1986, T AM MATH SOC, V297, P269
105825    VELLEKOOP M, 1994, AM MATH MON, V101, P353
105826    WINSLOW RL, 1993, PHYSICA D, V64, P281
105827    XUE YS, 1999, QUANTITATIVE STUDY G
105828 NR 31
105829 TC 2
105830 SN 1054-1500
105831 J9 CHAOS
105832 JI Chaos
105833 PD JUN
105834 PY 2004
105835 VL 14
105836 IS 2
105837 BP 343
105838 EP 346
105839 PG 4
105840 SC Mathematics, Applied; Physics, Mathematical
105841 GA 824UJ
105842 UT ISI:000221712100014
105843 ER
105844 
105845 PT S
105846 AU Li, SC
105847    Li, SC
105848    Chen, WH
105849    Zhu, WS
105850    Zhang, L
105851    Chau, KT
105852 TI Hydro-mechanical coupling analyses of cofferdam stability of Taian
105853    pumped storage power station
105854 SO ADVANCES IN FRACTURE AND FAILURE PREVENTION, PTS 1 AND 2
105855 SE KEY ENGINEERING MATERIALS
105856 DT Article
105857 DE unsaturated flow; hydro-mechanical coupling; FLAC; cofferdam
105858 AB Three-dimensional hydro-mechanical coupling analyses have been
105859    conducted on the water-tight structure of the cofferdam for both intake
105860    and outlet of Taian pumped storage power station, located in Shandong
105861    Province of China. In addition, the effects of excavation on the
105862    cofferdam and foundation slopes were also studied by using the 3D FLAC.
105863    The calculation results show that the central core of high-pressure
105864    grouting has a prefect anti-seepage effect and therefore is able to
105865    strengthen the stability of the cofferdam and foundation slopes. The
105866    excavation process has only some local effects on the cofferdam and
105867    does not greatly affect the global stability of the cofferdam.
105868    Therefore, no failure takes place around slope toes. The results show
105869    that the width of platform left on the excavation side is reasonable.
105870 C1 Shandong Univ, Inst Rock & Soil Mech, Jinan 250061, Peoples R China.
105871    Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
105872    Chinese Acad Sci, Inst Rock & Soil Mech, Key Lab Rock & Soil Mech, Wuhan 430071, Peoples R China.
105873    Hong Kong Polytech Univ, Dept Civil & Struct Engn, Hong Kong, Hong Kong, Peoples R China.
105874 RP Li, SC, Shandong Univ, Inst Rock & Soil Mech, Jinan 250061, Peoples R
105875    China.
105876 CR *IT CONS GROUP INC, FLAC MAN
105877    *NAT SUP BUR TECHN, GB5028698 RRC NAT SU
105878    SU BY, 1999, CHI J ROCK MECH ENG, V18, P73
105879    YUAN BJC, 1999, INT J TECHNOL MANAGE, V18, P1
105880    ZHAO YS, 1992, J SCI CHINA E, V29
105881    ZHOU CB, 1994, J ROCK SOIL MECH, V15, P46
105882 NR 6
105883 TC 0
105884 SN 1013-9826
105885 J9 KEY ENG MAT
105886 PY 2004
105887 VL 261-263
105888 PN Part 1&2
105889 BP 1545
105890 EP 1550
105891 PG 6
105892 GA BAC70
105893 UT ISI:000221573900247
105894 ER
105895 
105896 PT S
105897 AU Zhang, LW
105898    Li, SC
105899    Li, SC
105900 TI Displacement back analysis research on bolt-grouting supporting
105901    parameter of rock mass in jointed rock roadway
105902 SO ADVANCES IN FRACTURE AND FAILURE PREVENTION, PTS 1 AND 2
105903 SE KEY ENGINEERING MATERIALS
105904 DT Article
105905 DE roadway in jointed rock; bolt-grouting supporting; parameter of rock
105906    mass; displacement back analysis algorithm; numerical method
105907 AB The method of bolt-grouting supporting, grouting into surrounding rock
105908    mass by bolts in jointed rock mass roadway, is obtained wide
105909    application. However, it is difficult to determine rock mass parameter
105910    of bolt-grouting supporting. This paper begins with the displacement,
105911    which is measured easily in practice. The method of back analysis is
105912    adopted to calculate the equivalent mechanics parameters of
105913    bolt-grouting rock mass. In process of back analysis three mechanics
105914    models is supposed which are homogeneous elastic model, inhomogeneous
105915    elastic model and elastic-plastic model and corresponding algorithm is
105916    established. What's more, this paper discusses the stability of inverse
105917    algorithm and copes the problem of back analysis parameter probably
105918    instable with QR decomposed algorithm and singular value decomposed
105919    algorithm, which will be a theoretical base to determine the mechanics
105920    parameter of bolt-grouting supporting rock mass and to estimate the
105921    surrounding rock stability. In a word, the method is established to
105922    estimate mechanics parameters of bolt-grouting jointed surrounding rock
105923    mass, and some significant results are obtained, which are of reference
105924    for actual project.
105925 C1 Shandong Univ, Geotech & Struct Engn Ctr, Jinan 250061, Peoples R China.
105926    Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
105927 RP Zhang, LW, Shandong Univ, Geotech & Struct Engn Ctr, Jinan 250061,
105928    Peoples R China.
105929 CR AIZHONG L, 1998, INVERSE QUESTION ROC, P39
105930    LEWEN Z, 1999, THESIS SHANDONG SCI, P26
105931 NR 2
105932 TC 0
105933 SN 1013-9826
105934 J9 KEY ENG MAT
105935 PY 2004
105936 VL 261-263
105937 PN Part 1&2
105938 BP 1563
105939 EP 1568
105940 PG 6
105941 GA BAC70
105942 UT ISI:000221573900250
105943 ER
105944 
105945 PT J
105946 AU Cao, WG
105947    Ding, WY
105948    Chen, J
105949    Chen, YL
105950    Zang, Q
105951    Chen, GD
105952 TI A highly stereoselective synthesis of
105953    2,3,4,5-tetrasubstituted-trans-2,3-dihydrofurans
105954 SO SYNTHETIC COMMUNICATIONS
105955 DT Article
105956 DE stereoselective synthesis; alpha,beta-unsaturated sulfones;
105957    dihydrofurans derivatives; arsonium bromide
105958 AB alpha,beta-Unsaturated sulfones derivatives 5 was prepared from sodium
105959    p-toluenesulfinate (1) and the products reacted with
105960    substituted-carbomethoxymethyltriphenylarsonium bromide 6 in the
105961    presence of potassium carbonate at room temperature to give
105962    cyclopropane derivatives
105963    2-substituted-3-substitutedphenyl-4-p-toluenesulfonyl-5-phenyltrans-2,3-
105964    dihydrofurans 7 and/or 8 with high stereoselectivity.
105965 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
105966    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
105967 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
105968 EM wgcao@mail.shu.edu.cn
105969 CR DULERE JP, 1994, J CHEM SOC CHEM COMM, P303
105970    EISTERT B, 1961, CHEM BER, V94, P929
105971    SUGIMURA H, 1994, J ORG CHEM, V59, P653
105972    WILDEMAN J, 1979, SYNTHESIS-STUTTGART, P733
105973 NR 4
105974 TC 3
105975 SN 0039-7911
105976 J9 SYN COMMUN
105977 JI Synth. Commun.
105978 PD MAY
105979 PY 2004
105980 VL 34
105981 IS 9
105982 BP 1599
105983 EP 1608
105984 PG 10
105985 SC Chemistry, Organic
105986 GA 823FZ
105987 UT ISI:000221596800007
105988 ER
105989 
105990 PT J
105991 AU Wang, QW
105992 TI A system of matrix equations and a linear matrix equation over
105993    arbitrary regular rings with identity
105994 SO LINEAR ALGEBRA AND ITS APPLICATIONS
105995 DT Article
105996 DE regular ring; linear matrix equation; system of matrix equations; inner
105997    inverse of a matrix; reflexive inverse of a matrix
105998 ID GENERALIZED SYLVESTER EQUATIONS; PRINCIPAL IDEAL DOMAIN; ROTH THEOREMS;
105999    COMMON SOLUTION; EQUIVALENCE; PAIR; CONSISTENCY; MODULES
106000 AB In this paper we consider the classical system of matrix equations
106001    {A(1) x B-1 = C-1,
106002    A(2) x B-2 = C-2 over R, an arbitrary regular ring with identity.
106003    Necessary and sufficient conditions for the existence and the
106004    expression of the general solution to the system are derived. As an
106005    application, the linear matrix equation A X B + C Y D = E over R is
106006    considered. (C) 2004 Published by Elsevier Inc.
106007 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
106008 RP Wang, QW, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
106009 EM wqw858@ustc.edu
106010 CR BAKSALARY JK, 1980, LINEAR ALGEBRA APPL, V30, P141
106011    BEITIA MA, 1996, LINEAR ALGEBRA APPL, V232, P155
106012    BROWN B, 1950, P AM MATH SOC, V1, P165
106013    GURALNICK R, 1981, LINEAR ALGEBRA APPL, V39, P155
106014    GURALNICK RM, 1982, LINEAR ALGEBRA ITS A, V43, P125
106015    GURALNICK RM, 1985, LINEAR ALGEBRA APPL, V71, P113
106016    GUSTAFSON W, 1979, LINEAR ALGEBRA APPL, V27, P219
106017    GUSTAFSON WH, 1979, LINEAR ALGEBRA APPL, V23, P245
106018    HARTWIG R, 1984, LINEAR ALGEBRA APPL, V49, P91
106019    HARTWIG RE, 1976, P AM MATH SOC, V59, P39
106020    HUANG L, 1995, LINEAR MULTILINEAR A, V38, P225
106021    HUANG L, 1997, ADV MATH, V26, P269
106022    HUANG LP, 1997, LINEAR ALGEBRA APPL, V259, P229
106023    HUYLEBROUCK D, 1996, LINEAR ALGEBRA APPL, V246, P159
106024    MITRA SK, 1973, P CAMBRIDGE PHILOS S, V74, P213
106025    MITRA SK, 1990, LINEAR ALGEBRA APPL, V131, P97
106026    NAVARRA A, 2001, COMPUT MATH APPL, V41, P929
106027    OZGULER AB, 1991, LINEAR ALGEBRA APPL, V144, P85
106028    OZGULER AB, 1991, SIAM J MATRIX ANAL A, V12, P581
106029    ROTH WE, 1952, P AM MATH SOC, V3, P392
106030    SHINOZAKI N, 1974, KEIO ENG REP, V27, P141
106031    VANDERWOUDE JW, 1987, SYST CONTROL LETT, V9, P7
106032    VANDERWOULDE J, 1987, THESIS TU EINDHOVEN
106033    WANG QW, IN PRESS SE ASIAN B, V27
106034    WANG QW, 1996, ACTA MATH SINICA, V39, P396
106035    WANG QW, 2001, J NAT SCI MATH, V41, P61
106036    WANG QW, 2001, MATH SCI RES HOT LIN, V5, P11
106037    WANG QW, 2002, LINEAR ALGEBRA APPL, V353, P169
106038    WANG QW, 2004, ACTA MATH SINICA, V47, P27
106039    WIMMER HK, 1989, LINEAR ALGEBRA APPL, V120, P149
106040    WIMMER HK, 1994, IEEE T AUTOMAT CONTR, V39, P1014
106041    WIMMER HK, 1994, LINEAR ALGEBRA APPL, V199, P357
106042 NR 32
106043 TC 3
106044 SN 0024-3795
106045 J9 LINEAR ALGEBRA APPL
106046 JI Linear Alg. Appl.
106047 PD JUN 1
106048 PY 2004
106049 VL 384
106050 BP 43
106051 EP 54
106052 PG 12
106053 SC Mathematics, Applied
106054 GA 823EI
106055 UT ISI:000221592100004
106056 ER
106057 
106058 PT J
106059 AU Dai, HH
106060    Huang, DB
106061    Liu, ZR
106062 TI Singular dynamics with application to singular waves in physical
106063    problems
106064 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
106065 DT Article
106066 DE singular waves; singular dynamics; compactons
106067 ID SHOCK-WAVES; EQUATIONS; COMPACTONS; SOLITONS; MODEL; ROD
106068 AB Many physical problems are governed by certain systems of singular
106069    ordinary differential equations (ODEs). As a result, singular solutions
106070    can arise. In this paper, we provide some theoretical results to deal
106071    with these solutions. By applying straightforwardly the notion of weak
106072    solutions for partial differential equations (PDEs), a notion of weak
106073    solutions for this ODE type is proposed to include these singular
106074    solutions. As an application, we consider some traveling-wave solutions
106075    of a nonlinear dispersion equation arising in a physical problem. It is
106076    shown that compactons can arise in nonlinear elastic rods.
106077 C1 City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China.
106078    Shanghai Univ, Dept Math, Shanghai 200439, Peoples R China.
106079 RP Dai, HH, City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R
106080    China.
106081 EM mahhdai@cityu.edu.hk
106082 CR ABRAHAM A, 1983, MANIFOLDS TENSOR ANA
106083    BEARDMORE RE, 1998, INT J BIFURCAT CHAOS, V8, P1399
106084    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
106085    CHUA LO, 1989, INT J CIRC THEOR APP, V17, P271
106086    CONSTANTIN A, 2002, PHYS LETT A, V270, P140
106087    DAI HH, 1998, ACTA MECH, V127, P193
106088    DAI HH, 2000, P ROY SOC LOND A MAT, V456, P331
106089    DAI HH, 2001, NONLINEAR ELASTICITY, P392
106090    FOKAS AS, 1995, PHYSICA D, V87, P145
106091    JOHNSON RS, 2002, J FLUID MECH, V455, P63
106092    KIVSHAR YS, 1994, NATO ADV SCI INST SE, V329, P255
106093    MARCHANT BP, 2000, SIAM J APPL MATH, V60, P463
106094    ROSENAU P, 1993, PHYS REV LETT, V70, P564
106095    SASTRY SS, 1981, IEEE T CIRCUITS SYST, V28, P1109
106096    VENKATASUBRAMAN.V, 1994, IEEE T CIRCUITS-I, V41, P765
106097    WAZWAZ AM, 2003, APPL MATH COMPUT, V142, P495
106098    WIGGINS S, 1990, INTRO APPL NONLINEAR
106099    YAN ZY, 2002, COMPUT PHYS COMMUN, V149, P11
106100 NR 18
106101 TC 0
106102 SN 0031-9015
106103 J9 J PHYS SOC JPN
106104 JI J. Phys. Soc. Jpn.
106105 PD MAY
106106 PY 2004
106107 VL 73
106108 IS 5
106109 BP 1151
106110 EP 1155
106111 PG 5
106112 SC Physics, Multidisciplinary
106113 GA 822OS
106114 UT ISI:000221550100016
106115 ER
106116 
106117 PT J
106118 AU Sun, DM
106119    Wu, QS
106120    Ding, YP
106121 TI Fabrication of Cu7S4 nano-crystals with supported liquid membrane
106122 SO JOURNAL OF INORGANIC MATERIALS
106123 DT Article
106124 DE supported liquid membrane; nano-crystals; Cu7S4; mobile carrier
106125 ID SIZED SEMICONDUCTOR CLUSTERS; METAL; FILMS; PARTICLES; CUS
106126 AB A novel fabrication method of Cu7S4 nano-crystals by supported liquid
106127    membrane (SLM) system was investigated. SLM consists of CHCl3 as
106128    solvent, o-phenanthroline as a mobile carrier and polymer membrane as
106129    supported template. The results indicated that Cu7S4 which has
106130    hexagonal structure with cell constant of a=15.475Angstrom and
106131    C=13.356Angstrom can be prepared at room temperature with 0.2mol/L
106132    CuCl2 and 0.2mol/L Na2S as reactants. The average size of Cu7S4 is
106133    about 7nm. In addition, the forming mechanism and optical properties of
106134    Cu7S4 were discussed.
106135 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
106136    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
106137 RP Sun, DM, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
106138 EM qswu@mail.tongji.edu.cn
106139 CR BRUS L, 1986, J PHYS CHEM-US, V90, P2555
106140    CHOPRA KL, 1983, THIN FILMS SOLAR CEL
106141    DANESI PR, 1984, SEPAR SCI TECHNOL, V19, P857
106142    GADAVE KM, 1993, THIN SOLID FILMS, V229, P1
106143    GEDDES N, 1982, J CHEM SOC, V104, P5828
106144    GEORGE J, 1983, SOLID STATE COMMUN, V48, P601
106145    GROZDANOV I, 1995, J SOLID STATE CHEM, V114, P469
106146    HENGLEIN A, 1989, CHEM REV, V89, P1861
106147    KHRAMOV MI, 1993, J PHOTOCH PHOTOBIO A, V71, P279
106148    LI YD, 1999, INORG CHEM, V38, P4737
106149    LI YS, 2003, NANO LETT ASAP ARTIC
106150    MO CM, 1995, NANOSTRUCT MATER, V5, P95
106151    WANG Y, 1991, ACCOUNTS CHEM RES, V24, P133
106152    WANG Y, 1991, RES CHEM INTERMEDIAT, V15, P17
106153    WU PW, 2002, J INORG MATER, V17, P792
106154    WU QS, 2000, CHEM J CHINESE U, V21, P1471
106155    WU QS, 2000, J MEMB SCI, V72, P199
106156 NR 17
106157 TC 0
106158 SN 1000-324X
106159 J9 J INORG MATER
106160 JI J. Inorg. Mater.
106161 PD MAY
106162 PY 2004
106163 VL 19
106164 IS 3
106165 BP 487
106166 EP 491
106167 PG 5
106168 SC Materials Science, Ceramics
106169 GA 822GZ
106170 UT ISI:000221528400007
106171 ER
106172 
106173 PT J
106174 AU Sun, SW
106175    Pan, XM
106176    Li, DL
106177    Li, HJ
106178    Zhu, LH
106179    Huang, QW
106180    Wang, PC
106181 TI Structure and grain growth habit of directional solidification ceramics
106182    of (1-x)Pb(Mg1/3Nb2/3 )O-3-xPbTiO(3) (x=0.30, 0.33, 0.38) relaxor
106183    ferroelectric solid solutions
106184 SO JOURNAL OF INORGANIC MATERIALS
106185 DT Article
106186 DE PMN-PT; directional solidification ceramics; grain growth habit
106187 ID PIEZOELECTRIC PROPERTIES; SINGLE-CRYSTALS
106188 AB This work describes the grain growth habit of the
106189    (1-x)Pb(Mg1/3Nb2/3)O-3-xPbTiO(3) (PMN-PT or PMNT) system ferroelectric
106190    solid solutions prepared by a directional solidification technique. The
106191    results show that the preferential direction of the grain growth
106192    depends not only on the composition of the melts, but also on the
106193    crucible pulling-down speed. For a fixed PMN/PT ratio, e.g. 62/38,
106194    higher speed of crucible pulling-down leads to a preferential grain
106195    growth orientation of [110], rather than the [111], which is usually
106196    reported in single crystal growth studies, whereas lower crucible
106197    pulling-down speed tends to produce [111] grain-orientation ceramics.
106198    When the crucible is pulled down at a certain rate, the preferential
106199    grain-growth orientation changes from [111] to [110] with reducing
106200    PbTiO3 molar contents.
106201 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
106202    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
106203 RP Sun, SW, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
106204    China.
106205 EM pcwang@mail.sic.ac.cn
106206 CR CHEN XC, 2000, J INORG MATER, V15, P109
106207    IGARASHI H, 1978, AM CERAM SOC BULL, V57, P815
106208    KELLY J, 1997, J AM CERAM SOC, V80, P957
106209    LI DL, 2001, 4 PAC RIM INT C ADV, P1735
106210    LOTGERING FK, 1959, J INORG NUCL CHEM, V9, P113
106211    OAKLEY CG, 2000, 2000 IEEE ULTR S, P1157
106212    PARK S, 1997, MATH SCI RES HOT LIN, V1, P1
106213    PARK SE, 1997, IEEE T ULTRASON FERR, V44, P1140
106214    PARK SE, 1997, J APPL PHYS, V82, P1804
106215    SABOLSKY EM, 2000, P 2000 21 IEEE INT S, V1, P393
106216    SAITO S, 1994, J WILDERNESS MED, V5, P295
106217    SAITOH S, 1995, 5402791, US
106218    SERVICE RF, 1997, SCIENCE, V275, P1878
106219    SUN DZ, 2000, J INORG MATER, V15, P939
106220    TAKENAKA T, 1980, JPN J APPL PHYS, V19, P31
106221    WANG PC, 2000, P 2000 12 IEEE INT S, V2, P537
106222    WANG PC, 2001, J INORG MATER, V16, P56
106223    YAMASHITA Y, 1995, 5209410, US
106224 NR 18
106225 TC 1
106226 SN 1000-324X
106227 J9 J INORG MATER
106228 JI J. Inorg. Mater.
106229 PD MAY
106230 PY 2004
106231 VL 19
106232 IS 3
106233 BP 541
106234 EP 545
106235 PG 5
106236 SC Materials Science, Ceramics
106237 GA 822GZ
106238 UT ISI:000221528400016
106239 ER
106240 
106241 PT J
106242 AU Zhou, F
106243    Long, JW
106244    Meng, ZY
106245 TI Temperature stability of Nb-doped PMS-PZ-PT ceramics
106246 SO JOURNAL OF INORGANIC MATERIALS
106247 DT Article
106248 DE PMS-PZ-PT; temperature stability; Nb-doping; high power
106249 ID PIEZOELECTRIC PROPERTIES; RESONANT-FREQUENCY; FATIGUE BEHAVIOR; TI)O-3
106250    CERAMICS; DEPENDENCE
106251 AB The influences of Nb-doping on the temperature stability of PMS-PZ-PT
106252    ternary system ceramics were investigated. The stable temperature
106253    dependence of resonance frequency, electromechanical coupling
106254    coefficient K-31 and piezoelectric constant d(31) were measured.
106255    Results show that the donor dopants can not only optimize piezoelectric
106256    properties of the system, but also improve the temperature stability.
106257    So the modified PMS-PZ-PT ceramics can achieve the requirements for
106258    high-power piezoelectric devices such as ultrasonic motors.
106259 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
106260 RP Zhou, F, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
106261    China.
106262 EM zhoufei4000@163.net
106263 CR CHEON CI, 1997, J MATER SCI LETT, V16, P2043
106264    CHEON CI, 1999, J MATER SCI-MATER EL, V10, P81
106265    GAO YK, 2001, JPN J APPL PHYS, V40, P387
106266    GUI XB, 2002, KEY ENG MATER, V224, P1112
106267    HAMMER M, 1998, J ELECTROCERAM, V2, P75
106268    JIANG QY, 1993, J MATER SCI, V28, P4536
106269    KAMIYA T, 1993, JPN J APPL PHYS 1, V32, P4223
106270    KONDO M, 1999, JPN J APPL PHYS 1, V38, P5539
106271    NADOLIISKY MM, 1992, FERROELECTRICS, V129, P141
106272    WANG D, 1998, J APPL PHYS, V83, P5342
106273    WI SK, 1992, JPN J APPL PHYS PT 1, V31, P2825
106274    YOON SJ, 1998, J AM CERAM SOC, V81, P2473
106275    ZHANG QM, 1994, J APPL PHYS, V75, P1
106276    ZHANG S, 1997, JPN J APPL PHYS 1, V36, P2994
106277 NR 14
106278 TC 2
106279 SN 1000-324X
106280 J9 J INORG MATER
106281 JI J. Inorg. Mater.
106282 PD MAY
106283 PY 2004
106284 VL 19
106285 IS 3
106286 BP 586
106287 EP 592
106288 PG 7
106289 SC Materials Science, Ceramics
106290 GA 822GZ
106291 UT ISI:000221528400023
106292 ER
106293 
106294 PT J
106295 AU Ding, JY
106296    Jia, JW
106297    Yang, LT
106298    Wen, HB
106299    Zhang, CM
106300    Liu, WX
106301    Zhang, DB
106302 TI Validation of a rice specific gene, sucrose phosphate synthase, used as
106303    the endogenous reference gene for qualitative and real-time
106304    quantitative PCR detection of transgenes
106305 SO JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
106306 DT Article
106307 DE Oryza sativa; rice; sucrose phosphate synthase; qualitative PCR;
106308    quantitative PCR; endogenous reference gene; GMOs detection
106309 ID GENETICALLY-MODIFIED ORGANISMS; POLYMERASE-CHAIN-REACTION; FOOD
106310 AB With the development of transgenic crops, many countries have issued
106311    regulations to label the genetically modified organisms (GMOs) and
106312    their derived products. Polymerase Chain Reaction (PCR) methods are
106313    thought to be reliable and useful techniques for qualitative and
106314    quantitative detection of GMOs. These methods generally need to amplify
106315    the transgene and compare the amplified result with that of the
106316    corresponding reference gene to obtain reliable results. In this
106317    article, we reported the development of specific primers and probe for
106318    the rice (Oryza sativa) sucrose phosphate synthase (SPS) gene and PCR
106319    cycling conditions suitable for the use of this sequence as an
106320    endogenous reference gene in both qualitative and quantitative PCR
106321    assays. Both methods were assayed with 13 different rice varieties, and
106322    identical amplification products were obtained with all of them. No
106323    amplification products were observed when DNA samples from other
106324    species, such as wheat, maize, barley, tobacco, soybean, rapeseed,
106325    tomato, sunflower, carrot, pepper, eggplant, lupine, mung bean, plum,
106326    and Arabidopsis thaliana, were used as templates, which demonstrated
106327    that this system was specific for rice. In addition, the results of the
106328    Southern blot analysis confirmed that the SPS gene was a single copy in
106329    the tested rice varieties. In qualitative and quantitative PCR
106330    analyses, the detection sensitivities were 0.05 and 0.005 ng of rice
106331    genomic DNA, respectively. To test the practical use of this SPS gene
106332    as an endogenous reference gene, we have also quantified the
106333    beta-glucuronidase (GUS) gene in transgenic rice using this reference
106334    gene. These results indicated that the SPS gene was species specific,
106335    had one copy number, and had a low heterogeneity among the tested
106336    cultivars. Therefore, this gene could be used as an endogenous
106337    reference gene of rice and the optimized PCR systems could be used for
106338    practical qualitative and quantitative detection of transgenic rice.
106339 C1 Shanghai Acad Agr Sci, Agrobiotech Res Ctr, Key Lab Agr Genet & Breeding, Shanghai 201106, Peoples R China.
106340    Nanjing Univ, Dept Biol Sci & Technol, Nanjing 210093, Peoples R China.
106341    Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China.
106342 RP Zhang, DB, Shanghai Acad Agr Sci, Agrobiotech Res Ctr, Key Lab Agr
106343    Genet & Breeding, 2901 Beidi Rd, Shanghai 201106, Peoples R China.
106344 EM zdb3000@yahoo.com.cn
106345 CR ARUMUGANATHAN K, 1991, PLANT MOL BIOL REP, V9, P208
106346    BONFINI L, 2002, 20348 EUR EN
106347    CIRILLO C, 1999, PETRIA, V9, P344
106348    DELANO J, 2003, J AGR FOOD CHEM, V51, P5839
106349    EHLERS B, 1997, BUNDESGESUNDHBL, V4, P118
106350    FARID EA, 2002, TRENDS BIOTECHNOL, V20, P5
106351    HERNANDEZ M, 2001, J AGR FOOD CHEM, V49, P3622
106352    HOLSTJENSEN A, 2003, GMO DETECTION METHOD, P10
106353    HUANG J, 2002, SCIENCE, V295, P25
106354    JAMES C, 2003, ISAAA BRIEFS, V30
106355    LIVAK KJ, 2001, METHODS, V25, P402
106356    MEYER R, 1996, Z LEBENSM UNTERS FOR, V203, P339
106357    SAMBROOK J, 2001, MOL CLONING LAB MANU
106358    STUDER E, 1997, MITT GEBIETE LEBENSM, V88, P515
106359    VAITILINGOM M, 1999, J AGR FOOD CHEM, V47, P5261
106360    VALDEZALARCON JJ, 1996, GENE, V170, P217
106361    VOLLENHOFER S, 1999, J AGR FOOD CHEM, V47, P5038
106362    WURZ A, 1999, FOOD CONTROL, V10, P385
106363    ZHANG YL, 2003, NUCLEIC ACIDS RES, V31
106364    ZIMMERMANN A, 1998, FOOD SCI TECHNOL-LEB, V31, P664
106365 NR 20
106366 TC 13
106367 SN 0021-8561
106368 J9 J AGR FOOD CHEM
106369 JI J. Agric. Food Chem.
106370 PD JUN 2
106371 PY 2004
106372 VL 52
106373 IS 11
106374 BP 3372
106375 EP 3377
106376 PG 6
106377 SC Agriculture, Multidisciplinary; Chemistry, Applied; Food Science &
106378    Technology
106379 GA 823ZG
106380 UT ISI:000221652400027
106381 ER
106382 
106383 PT J
106384 AU Xia, L
106385    Dong, YD
106386 TI Crystallization-melting behaviors and crystallization kinetics of
106387    Nd60Al10Fe20Co10 bulk metallic glass
106388 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
106389 DT Article
106390 DE bulk metallic glass; crystallization kinetics
106391 ID MAGNETIC-PROPERTIES; AMORPHOUS-ALLOYS; FORMING ALLOY; FE; TRANSITION;
106392    MICROSTRUCTURE; ND60FE30AL10
106393 AB Crystallization and melting behaviors of the Nd60Al10Fe20Co10 bulk
106394    metallic glass (BMG) have been studied by differential scanning
106395    calorimetry (DSC), scanning electron microscopy (SEM) and energy
106396    dispersive spectrometry (EDS). It is found that the BMG exhibits a
106397    melting process before the crystallization when the heating rate is
106398    larger than 20 K/min and the anomalous melting and crystallization
106399    behaviors are attributed to the partially melted phase due to primary
106400    crystallization. The kinetics of the main crystallization exclusive of
106401    the effect of melting process is studied by subtracting the heating
106402    behaviors from the DSC traces of the as-cast rod.
106403 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
106404 RP Xia, L, Shanghai Univ, Inst Mat, 149 Yan Chang Rd, Shanghai 200072,
106405    Peoples R China.
106406 EM xialei@mail.shu.edu.cn
106407 CR BUSCH R, 1995, J APPL PHYS, V77, P4093
106408    CROAT JJ, 1982, J APPL PHYS, V53, P3161
106409    DING J, 1999, J PHYS D APPL PHYS, V32, P713
106410    FAN GJ, 2000, J MATER RES, V15, P1556
106411    INOUE A, 1996, MATER T JIM, V37, P99
106412    INOUE A, 1998, METALL MATER TRANS A, V29, P1779
106413    KISSINGER HE, 1956, J RES NAT BUR STAND, V57, P217
106414    MITROVIC N, 2001, APPL PHYS LETT, V78, P2145
106415    PAN MX, 2002, INTERMETALLICS, V10, P1215
106416    SCHNEIDER S, 2002, APPL PHYS LETT, V80, P1749
106417    WEI BC, 2001, J APPL PHYS, V89, P3529
106418    WEI BC, 2001, PHYS REV B, V64
106419    WEI BC, 2002, ACTA MATER, V50, P4357
106420    XIA L, 2003, J PHYS D APPL PHYS, V36, P775
106421    XIA L, 2003, J PHYS-CONDENS MAT, V15, P3531
106422    XING LQ, 2000, J APPL PHYS, V88, P3565
106423    ZHUANG YX, 1999, APPL PHYS LETT, V75, P2392
106424    ZHUANG YX, 2000, J APPL PHYS, V87, P8209
106425 NR 18
106426 TC 0
106427 SN 0217-9792
106428 J9 INT J MOD PHYS B
106429 JI Int. J. Mod. Phys. B
106430 PD MAR 10
106431 PY 2004
106432 VL 18
106433 IS 6
106434 BP 911
106435 EP 917
106436 PG 7
106437 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
106438 GA 823OK
106439 UT ISI:000221622300008
106440 ER
106441 
106442 PT J
106443 AU He, BW
106444    Li, XY
106445    Leng, GS
106446 TI An inequality for two simplices and two points
106447 SO INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS
106448 DT Article
106449 DE simplices; volumes; mass-point systems; inequalities
106450 ID SIMPLEXES
106451 AB We establish an inequality involving two simplices and two points,
106452    which combines the distances between any point in n-dimensional
106453    Euclidean space E-n to the vertices of one simplex with the distances
106454    from an interior point of another simplex to its facets and prove some
106455    applications thereof.
106456 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
106457 RP He, BW, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
106458 EM hebinwu@163.com
106459 CR ALI MM, 1970, PAC J MATH, V33, P1
106460    BARTOS P, 1968, CAS PEST MAT, V93, P273
106461    CHEN J, 1992, B MATH FUJIAN, V5, P8
106462    FEJES L, 1964, TOTH REGULAR FIGURES
106463    GERBER L, 1975, PAC J MATH, V56, P97
106464    LENG GS, 1997, ACTA MATH SINICA, V40, P14
106465    LENG GS, 1997, GEOM DEDICATA, V68, P43
106466    LENG GS, 1997, GEOMETRIAE DEDICATA, V66, P89
106467    LENG GS, 1999, DISCRETE MATH, V202, P163
106468    LENG GS, 2000, J MATH ANAL APPL, V248, P429
106469    LI HQ, 1993, LINEAR ALGEBRA ITS A, V185, P273
106470    MITRINOVIC D, 1989, RECENT ADV GEOMETRIC
106471    YANG L, 1983, B AUST MATH SOC, V27, P203
106472    ZHANG JZ, 1981, J CHINA U SCI TECHNO, V11, P1
106473 NR 14
106474 TC 0
106475 SN 0019-5588
106476 J9 INDIAN J PURE APPL MATH
106477 JI Indian J. Pure Appl. Math.
106478 PD APR
106479 PY 2004
106480 VL 35
106481 IS 4
106482 BP 545
106483 EP 553
106484 PG 9
106485 SC Mathematics
106486 GA 823DO
106487 UT ISI:000221590100010
106488 ER
106489 
106490 PT J
106491 AU Chen, BZ
106492    Wu, YZ
106493    Wang, MZ
106494    Wang, S
106495    Sheng, SH
106496    Zhu, WH
106497    Sun, RG
106498    Tian, H
106499 TI Novel fluorene-alt-thienylenevinylene-based copolymers: tuning
106500    luminescent wavelength via thiophene substitution position
106501 SO EUROPEAN POLYMER JOURNAL
106502 DT Article
106503 DE copolymers; synthesis; fluorene; polymer light-emitting diode
106504 ID LIGHT-EMITTING-DIODES; CONJUGATED POLYMERS; ELECTROCHEMICAL PROPERTIES;
106505    COLOR; HOLE; ELECTROLUMINESCENCE; CARBAZOLE
106506 AB The design, synthesis and characterization of three novel
106507    fluorene-alt-thienylenevinylene-based copolymers have been reported.
106508    All these polymers consist of similar repeating unit, while thiophene
106509    unit with different substitution position is incorporated to well tune
106510    the conjugation degree that realizes multi-color luminance. These
106511    polymers show emission maxima in the blue, orange and red region of the
106512    visible spectrum. Considering the compatibility of luminescent
106513    materials with similar structure units, our methodology provides a
106514    facile and effective way for designing multicolor luminescent polymeric
106515    blending to realize full color electroluminescent (EL) devices. All
106516    these polymers have been successfully tested in single-layer sandwiched
106517    EL devices. (C) 2004 Elsevier Ltd. All rights reserved.
106518 C1 E China Univ Sci & Technol, Inst Fine Chem, Shanghai 200237, Peoples R China.
106519    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
106520 RP Tian, H, E China Univ Sci & Technol, Inst Fine Chem, Meilong Rd 130,
106521    Shanghai 200237, Peoples R China.
106522 EM tianhe@ecust.edu.cn
106523 CR BARROUGHES JH, 1990, NATURE, V347, P539
106524    BEAUPRE S, 2002, ADV FUNCT MATER, V12, P192
106525    BERNIUS MT, 2000, ADV MATER, V12, P1737
106526    CHARAS A, 2001, CHEM COMMUN, P1216
106527    CHO NS, 2002, MACROMOLECULES, V35, P1224
106528    EGO C, 2003, J AM CHEM SOC, V125, P437
106529    GOWRI R, 1998, MACROMOLECULES, V31, P1819
106530    HAY M, 1995, J AM CHEM SOC, V117, P7112
106531    HOU Q, 2002, J MATER CHEM, V12, P2887
106532    HUANG J, 2002, MACROMOL RAPID COMM, V23, P709
106533    HWANG SW, 2002, MACROMOLECULES, V35, P5438
106534    JESTIN I, 1998, J AM CHEM SOC, V120, P8150
106535    JIANG XZ, 2002, ADV FUNCT MATER, V12, P745
106536    KIM JH, 2002, CHEM MATER, V14, P2270
106537    KIM JK, 1997, POLYM BULL, V38, P169
106538    KRAFT A, 1998, ANGEW CHEM INT EDIT, V37, P402
106539    LI XC, 1999, CHEM MATER, V11, P1568
106540    LIU B, 2001, MACROMOLECULES, V34, P7932
106541    MA CQ, 2002, J MATER CHEM, V12, P1671
106542    MARTINEZ M, 1998, J POLYM SCI A, V26, P914
106543    MCMURRY JE, 1989, CHEM REV, V89, P1513
106544    MITSCHKE U, 2000, J MATER CHEM, V10, P1471
106545    MORIN JF, 2001, MACROMOLECULES, V34, P4680
106546    NEHER D, 2001, MACROMOL RAPID COMM, V22, P1365
106547    PAKBAZ K, 1994, SYNTHETIC MET, V64, P295
106548    PAKBAZ K, 1996, SYNTHETIC MET, V80, P119
106549    SCHERF U, 2002, ADV MATER, V14, P477
106550    WU TY, 2002, J POLYM SCI POL CHEM, V40, P3847
106551 NR 28
106552 TC 5
106553 SN 0014-3057
106554 J9 EUR POLYM J
106555 JI Eur. Polym. J.
106556 PD JUN
106557 PY 2004
106558 VL 40
106559 IS 6
106560 BP 1183
106561 EP 1191
106562 PG 9
106563 SC Polymer Science
106564 GA 823CP
106565 UT ISI:000221587600019
106566 ER
106567 
106568 PT J
106569 AU Li, MC
106570    Luo, SZ
106571    Zeng, CL
106572    Shen, JN
106573    Lin, HC
106574    Cao, CN
106575 TI Corrosion behavior of TiN coated type 316 stainless steel in simulated
106576    PEMFC environments
106577 SO CORROSION SCIENCE
106578 DT Article
106579 DE TiN coating; stainless steel; PEMFC; bipolar plate; EIS
106580 ID POLYMER FUEL-CELLS; IMPEDANCE SPECTROSCOPY EIS; BIPOLAR PLATE
106581    MATERIALS; OXIDE-FILMS; RESISTANCE; COATINGS; ELECTROLYTE; PASSIVATION;
106582    ALUMINUM; IRON
106583 AB The corrosion behavior of TiN coated type 316 stainless steel (SS) was
106584    investigated in simulated proton exchange membrane fuel cell
106585    environments, i.e. 0.01 M HCl + 0.01 M Na2SO4 solutions bubbled with
106586    pure oxygen and hydrogen gases, respectively, by using electrochemical
106587    measurement techniques. 316SS substrate can passivate spontaneously in
106588    simulated cathode environment, while it is in active state at the
106589    corrosion potential in simulated anode environment. TiN coatings have
106590    much better corrosion resistance and passivity under both simulated
106591    conditions. No significant degradation takes place in TiN coatings
106592    under the typical load conditions of fuel cell for 4 h. The loss of
106593    small part of coatings occurs during the immersion tests of TiN
106594    coatings in the oxygen environment for 1000 h and in the hydrogen
106595    environment for 240 h, respectively, but the exposed substrate areas
106596    are passivated in both environments. The results reveal that TiN
106597    coating can offer 316SS higher corrosion resistance and electric
106598    conductivity, and that further effort to improve the coating quality
106599    and to evaluate the long-term stability of 316SS/TiN coating systems
106600    under simulated conditions are deserved. in addition, the
106601    characteristics of corrosion process for TiN coatings on passivatable
106602    substrate were discussed in detail. (C) 2003 Elsevier Ltd. All rights
106603    reserved.
106604 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
106605    Met Res Inst, State Key Lab Corros & Protect, Shenyang 110016, Peoples R China.
106606 RP Li, MC, Shanghai Univ, Inst Mat, POB 269,149 Yanchang Rd, Shanghai
106607    200072, Peoples R China.
106608 EM mouchengli@yahoo.com.cn
106609 CR BESMANN TM, 2000, J ELECTROCHEM SOC, V147, P4083
106610    BOUKAMP BA, 1989, P 9 EUR CORR C UTR T, V1
106611    BURLEIGH TD, 1991, J ELECTROCHEM SOC, V138, L34
106612    CAVIGLIASSO GE, 1998, J APPL ELECTROCHEM, V28, P1213
106613    DAVIES DP, 2000, J APPL ELECTROCHEM, V30, P101
106614    DAVIES DP, 2000, J POWER SOURCES, V86, P237
106615    HENTALL PL, 1999, J POWER SOURCES, V80, P235
106616    HERMAS AA, 1999, CORROS SCI, V41, P2251
106617    HODGSON DR, 2001, J POWER SOURCES, V96, P233
106618    HORNUNG R, 1998, J POWER SOURCES, V72, P20
106619    HSU CH, 2001, CORROSION, V57, P747
106620    JONES DA, 1984, CORROSION, V40, P181
106621    JUTTNER K, 1989, CORROS SCI, V29, P279
106622    KEIJZER M, 1999, J ELECTROCHEM SOC, V146, P2508
106623    KIM JS, 2002, CORROS SCI, V44, P635
106624    LI MC, 2001, BRIT CORROS J, V36, P179
106625    LI MC, 2002, THESI I METAL RES SH
106626    LIU C, 1995, SURF COAT TECH, V76, P615
106627    LIU C, 2001, CORROS SCI, V43, P1953
106628    MA L, 2000, J NEW MAT ELECT SYST, V3, P221
106629    MAKKUS RC, 2000, J POWER SOURCES, V86, P274
106630    MANSFELD F, 1971, CORROSION, V27, P436
106631    MANSFELD F, 1990, ELECTROCHIM ACTA, V35, P1533
106632    MASSIANI Y, 1990, THIN SOLID FILMS, V191, P305
106633    MASSIANI Y, 1991, SURF COAT TECH, V45, P115
106634    MILOSEV I, 1994, SURF COAT TECH, V63, P173
106635    MORITA R, 2001, SURF COAT TECH, V136, P207
106636    MURPHY OJ, 1998, ELECTROCHIM ACTA, V43, P3829
106637    PARK JR, 1983, CORROS SCI, V23, P295
106638    RAMMELT U, 1987, CORROS SCI, V27, P373
106639    RUDENJA S, 1999, J ELECTROCHEM SOC, V146, P4082
106640    RUDENJA S, 1999, SURF COAT TECH, V114, P129
106641    SCHOLTA J, 1999, J POWER SOURCES, V84, P231
106642    SHIEU FS, 1997, CORROS SCI, V39, P893
106643    SOUTO RM, 2000, CORROS SCI, V42, P2201
106644    VANLEAVEN L, 1992, SURF COAT TECH, V53, P25
106645    WU XJ, 1999, J ELECTROCHEM SOC, V146, P1847
106646 NR 37
106647 TC 7
106648 SN 0010-938X
106649 J9 CORROS SCI
106650 JI Corrosion Sci.
106651 PD JUN
106652 PY 2004
106653 VL 46
106654 IS 6
106655 BP 1369
106656 EP 1380
106657 PG 12
106658 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
106659    Engineering
106660 GA 822VT
106661 UT ISI:000221569300004
106662 ER
106663 
106664 PT J
106665 AU Xu, DL
106666    Chee, CY
106667    Li, CP
106668 TI A necessary condition of projective synchronization in discrete-time
106669    systems of arbitrary dimensions
106670 SO CHAOS SOLITONS & FRACTALS
106671 DT Article
106672 ID 3-DIMENSIONAL CHAOTIC SYSTEMS; PHASE SYNCHRONIZATION
106673 AB The necessary condition of projective synchronization in discrete-time
106674    systems of arbitrary dimensions is investigated. We found that the
106675    determinant of the multiplication of Jacobian matrices of the uncoupled
106676    sub-system tends to zero when projective synchronization happens. This
106677    finding also provides a theoretical explanation why the conditional
106678    Lyapunov exponent becomes null in projective synchronization, observed
106679    in the early studies. (C) 2004 Elsevier Ltd. All rights reserved.
106680 C1 Nanyang Technol Univ, Dept Engn Mech, Sch Mech Prod Engn, Singapore 639798, Singapore.
106681    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
106682 RP Xu, DL, Nanyang Technol Univ, Dept Engn Mech, Sch Mech Prod Engn, 50
106683    Nanyang Ave, Singapore 639798, Singapore.
106684 EM mdlxu@ntu.edu.sg
106685 CR BLASIUS B, 1999, NATURE, V399, P354
106686    CARROLL TL, 1996, PHYS REV E, V54, P4676
106687    CUOMO KM, 1993, PHYS REV LETT, V71, P65
106688    GONZALEZMIRANDA JM, 1996, PHYS REV E A, V53, R5
106689    HAYES S, 1993, PHYS REV LETT, V70, P3031
106690    HAYES S, 1994, PHYS REV LETT, V73, P1781
106691    KOCAREV L, 1996, PHYS REV LETT, V76, P1816
106692    LI ZG, 2001, PHYS LETT A, V282, P175
106693    MAINIERI R, 1999, PHYS REV LETT, V82, P3042
106694    PARLITZ U, 1996, PHYS REV E, V54, P6253
106695    PECORA LM, 1990, PHYS REV LETT, V64, P821
106696    ROSENBLUM MG, 1996, PHYS REV LETT, V76, P1804
106697    SCHAFER C, 1998, NATURE, V392, P239
106698    XU D, 2001, PHYS REV E, V63
106699    XU DL, 2001, CHAOS, V11, P439
106700    XU DL, 2002, INT J BIFURCAT CHAOS, V12, P1395
106701    XU DL, 2002, PHYS LETT A, V305, P167
106702    XU DL, 2002, PHYS REV E 2, V66
106703 NR 18
106704 TC 3
106705 SN 0960-0779
106706 J9 CHAOS SOLITON FRACTAL
106707 JI Chaos Solitons Fractals
106708 PD OCT
106709 PY 2004
106710 VL 22
106711 IS 1
106712 BP 175
106713 EP 180
106714 PG 6
106715 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
106716 GA 823AT
106717 UT ISI:000221582800018
106718 ER
106719 
106720 PT J
106721 AU Huang, DB
106722 TI Bi-Hamiltonian structure and homoclinic orbits of the Maxwell-Bloch
106723    equations with RWA
106724 SO CHAOS SOLITONS & FRACTALS
106725 DT Article
106726 ID LOTKA-VOLTERRA EQUATIONS; SYSTEMS
106727 AB In this paper, a bi-Hamiltonian structure of the Maxwell-Bloch
106728    equations with the rotating wave approximation (RWA) is given
106729    explicitly. Then by the Casimir function theory, the existence of
106730    homoclinic orbits is proved rigorously, which is a sign causing chaotic
106731    behavior in the Maxwell-Bloch equations, and hence supports the
106732    previous numerical results. (C) 2004 Elsevier Ltd. All rights reserved.
106733 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
106734 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
106735 EM dbhuang@mail.shu.edu.cn
106736 CR ALEKSEEV KN, 1987, SOV PHYS JETP, V65, P1115
106737    BELOBROV PI, 1979, ZH EKSP TEOR FIZ, V49, P993
106738    BERMEJO B, 2001, PHYS LETT A, V287, P371
106739    BERMEJO BH, 1998, PHYS LETT A, V241, P148
106740    DONNAT P, 1996, ARCH RATION MECH AN, V136, P291
106741    GUO BY, 1996, J COMPUT PHYS, V129, P181
106742    HAAS F, 1995, PHYS LETT A, V199, P173
106743    HOJMAN SA, 1996, J PHYS A-MATH GEN, V29, P667
106744    MILONNI PW, 1983, PHYS REV LETT, V50, P966
106745    NEWELL AC, 1992, NONLINEAR OPTICS
106746    OLVER PJ, 1993, APPL LIE GROUPS DIFF
106747    PLANK M, 1996, NONLINEARITY, V9, P887
106748    PLANK M, 1999, SIAM J APPL MATH, V59, P1540
106749 NR 13
106750 TC 1
106751 SN 0960-0779
106752 J9 CHAOS SOLITON FRACTAL
106753 JI Chaos Solitons Fractals
106754 PD OCT
106755 PY 2004
106756 VL 22
106757 IS 1
106758 BP 207
106759 EP 212
106760 PG 6
106761 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
106762 GA 823AT
106763 UT ISI:000221582800022
106764 ER
106765 
106766 PT J
106767 AU He, XH
106768    Tang, ZQ
106769    Cheng, ZN
106770 TI The density of states in liquid RbCl
106771 SO ACTA PHYSICO-CHIMICA SINICA
106772 DT Article
106773 DE hessian matrix; eigenvalues of matrix; density of states
106774 ID NORMAL-MODE ANALYSIS; SIMULATION; DIFFUSION
106775 AB This paper presents the normal-mode analytical approach of Fumi-Tosi
106776    ionic liquid based on molecular dynamics simulation. We replace the
106777    Lennard-Jones potential with the Fumi-Tosi potential (including the
106778    long-range potential) and handle the long-range Coulomb interaction
106779    using the equivalent Coulomb potential. The computation methods of the
106780    elements of Hessian matrix and the eigenvalues of Hessian matrix are
106781    discussed. It is shown that the Hessian matrix and the density of
106782    states can be obtained reasonably using the equivalent Coulomb
106783    potential in the form of the complementary error function. The
106784    numerical results of the configuration-averaged densities of states in
106785    liquid RbCl show that they have similar characteristics to those in
106786    Lennard-Jones liquids.
106787 C1 Shanghai Univ, Coll Sci, Shanghai 200436, Peoples R China.
106788    Chinese Acad Sci, Shanghai Inst Met, Shanghai 200050, Peoples R China.
106789 RP Tang, ZQ, Shanghai Univ, Coll Sci, Shanghai 200436, Peoples R China.
106790 EM zqtang@mail.shu.edu.cn
106791 CR ANASTASIOU N, 1982, COMPUT PHYS COMMUN, V25, P159
106792    CHENG ZN, 1995, ACTA PHYS-CHIM SIN, V11, P390
106793    DING H, 1995, ACTA PHYS SINICA, V44, P1081
106794    DIXON M, 1977, J PHYS C SOLID STATE, V10, P3015
106795    MADAN B, 1990, J CHEM PHYS, V92, P7565
106796    SEELEY G, 1989, J CHEM PHYS, V91, P5581
106797    SEELEY G, 1991, J CHEM PHYS, V95, P3847
106798    SEELEY G, 1992, J CHEM PHYS, V96, P593
106799    SOULES TF, 1979, J CHEM PHYS, V71, P4570
106800    WILKINSON JH, 2001, ALGEBRAIC EIGENVALUE, P533
106801 NR 10
106802 TC 0
106803 SN 1000-6818
106804 J9 ACTA PHYS-CHIM SIN
106805 JI Acta Phys.-Chim. Sin.
106806 PD MAY
106807 PY 2004
106808 VL 20
106809 IS 5
106810 BP 494
106811 EP 497
106812 PG 4
106813 SC Chemistry, Physical
106814 GA 823PG
106815 UT ISI:000221624700010
106816 ER
106817 
106818 PT J
106819 AU Liu, HJ
106820    Wu, QS
106821    Ding, YP
106822    Liu, L
106823 TI Biomimetic synthesis of metastable PbCrO4 nanoparticles by emulsion
106824    liquid membrane system with carrier and coupled treatment of Pb(II) and
106825    Cr(VI) wastewaters
106826 SO ACTA CHIMICA SINICA
106827 DT Article
106828 DE PbCrO4; biomimetic synthesis; nanoparticle; emulsion liquid membrane;
106829    metastable phase; Pb(II) and Cr(VI) wastewater
106830 ID LEAD CHROMATE; OPTICAL-PROPERTIES; TEMPERATURE; PARTICLES
106831 AB PbCrO4 nanoparticles of metastable orthorhombic phase with the diameter
106832    of 5 similar to 15 nm were first synthesized through a new kind of
106833    biomimetic method. This kind of method was based on emulsion liquid
106834    membrane system to mimic the vesicle structure and ion-transport
106835    function. In this system, membrane phase consisted of kerosene, Span-80
106836    and N7301. Cr(VI) and MOO, which usually existed in plating and
106837    accumulator wastewaters, were used as external and internal phase
106838    respectively. XRD and TEM were taken to characterize the structure and
106839    morphology of, as-product. And the optic properties of as-prepared and
106840    bulk PbCrO4 materials were first compared with FT-IR and UV-vis
106841    results. The possible mechanism was proposed initially. This method is
106842    also promising in the treatment of various industrial wastewaters
106843    simultaneously.
106844 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
106845    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
106846 RP Liu, HJ, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
106847 EM qswu@mail.tongji.edu.cn
106848 CR ANANDPRAKASH KP, 1998, DEFENCE SCI J, V48, P303
106849    BAEUERLEIN E, 2003, ANGEW CHEM INT EDIT, V42, P614
106850    ERKENS LJH, 2001, SURF COAT INT PT B-C, V84, P169
106851    KASOWSKI RV, 1980, B AM PHYS SOC, V25, P420
106852    LI BY, 2001, J FUNCT MAT, V32, P647
106853    LI XL, 2002, APPL PHYS LETT, V81, P4832
106854    LIU SH, 2003, J PHYS CHEM SOLIDS, V64, P455
106855    MANN S, 1995, J MATER CHEM, V5, P935
106856    PANDA AK, 2001, LANGMUIR, V17, P1811
106857    REDDY BJ, 1981, PHYS LETT A, V86, P386
106858    SUN JY, 2001, PREPARATIN APPL INOR, P456
106859    SVIRIDOV VV, 1996, COLLOID J+, V58, P372
106860    VANSANTEN RA, 1984, J PHYS CHEM-US, V88, P5768
106861    WANG LJ, 2002, ACTA CHIM SINICA, V60, P1144
106862    WU QS, 2000, J MEMBRANE SCI, V172, P199
106863    WU QS, 2002, INORG CHEM COMMUN, V5, P671
106864    XIE Y, 1996, SCIENCE, V272, P1926
106865    ZHANG LD, 2002, NANOMATERIALS NANOST, P79
106866    ZHANG RH, 1981, CHEMISTRY, V5, P295
106867    ZHENG Y, 2001, SCI CHINA SER E, V31, P204
106868    ZHUANG J, 2002, CHEM J CHINESE U, V23, P1223
106869 NR 21
106870 TC 0
106871 SN 0567-7351
106872 J9 ACTA CHIM SIN
106873 JI Acta Chim. Sin.
106874 PD MAY 28
106875 PY 2004
106876 VL 62
106877 IS 10
106878 BP 946
106879 EP 950
106880 PG 5
106881 SC Chemistry, Multidisciplinary
106882 GA 822RK
106883 UT ISI:000221557400004
106884 ER
106885 
106886 PT J
106887 AU Zhu, LH
106888    Ma, XM
106889    Lei, JX
106890    Zhao, HF
106891 TI Development in research on nano-cemented carbide
106892 SO RARE METAL MATERIALS AND ENGINEERING
106893 DT Review
106894 DE nano-structured materials; cemented carbide; microwave sintering;
106895    plasma activated sintering
106896 ID NANOSTRUCTURED WC-CO; POWDER; ALLOY
106897 AB Much research worldwide is concentrated on nano-cemented carbide due to
106898    its excellent properties and promising market prospect. This paper
106899    reviewes some developments in nano-cemented carbide. New fast sintering
106900    techniques should be employed because the key to obtaining
106901    nano-cemented carbide is to control the WC grain growth during
106902    sintering.
106903 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
106904    E China Normal Univ, Shanghai 200062, Peoples R China.
106905 RP Zhu, LH, Shanghai Univ, Shanghai 200072, Peoples R China.
106906 CR AGRAWAL D, 2000, POWDER METALL, V43, P15
106907    BROOKES KJA, 2000, METAL POWDER REPORT, V55, P10
106908    CONNER CL, 1997, METAL POWDER REPT, V52, P27
106909    DUNMEAD SD, 1992, 9310042, US
106910    FAN JL, 2001, RARE METAL MAT ENG, V30, P401
106911    FANG ZG, 1995, INT J REFRACT MET H, V13, P297
106912    GAO Y, 2000, CEMENTED CARBIDE, V17, P18
106913    GROZA JR, 1999, INT J POWDER METALL, V35, P58
106914    HE JH, 2001, J MATER RES, V16, P478
106915    HUANG ZG, 1998, RARE METAL CEMENTED, V135, P51
106916    JIA ZC, 2000, CEMENTED CARBIDE, V17, P58
106917    KEAR BH, 1993, J ADV MATER, V25, P11
106918    KEAR BH, 1993, NANOSTRUCT MATER, V3, P19
106919    LIU L, 1994, CHINESE SCI BULL, V39, P1166
106920    LUO XY, 2001, POWDER METALLURGY IN, V11, P7
106921    MA XM, 1996, J ALLOY COMPD, V245, L30
106922    MA XM, 1997, J MATER SCI LETT, V16, P968
106923    MA XM, 1998, RARE METALS, V17, P88
106924    MCCANDLISH LE, 1992, NANOSTRUCT MATER, V1, P119
106925    RODIGER K, 1998, INT J REFRACT MET H, V16, P409
106926    SADANGI RK, 1999, INT J POWDER METALL, V35, P27
106927    SEEGOPAUL P, 1997, INT J REFRACT MET H, V15, P133
106928    SUDARSHAN TS, 1998, METAL POWDER REPORT, V53, P26
106929    TAN GL, 1998, CHINESE J NONFERROUS, V8, P214
106930    WEIXI, 1999, CHINESE J MECH ENG, V35, P57
106931    ZHANG L, 2000, CHINESE J RARE METAL, V24, P445
106932    ZHANG L, 2001, CEMENTED CARBIDE, V18, P65
106933    ZHONG HY, 2001, RARE METAL CEMENTED, V145, P44
106934    ZHOU J, 1999, CHINESE J NONFERROUS, V9, P465
106935    ZHU YT, 1996, COMPOS PART B-ENG, V27, P407
106936    ZHU YTT, 1994, J AM CERAM SOC, V77, P2777
106937 NR 31
106938 TC 2
106939 SN 1002-185X
106940 J9 RARE METAL MAT ENG
106941 JI Rare Metal Mat. Eng.
106942 PD APR
106943 PY 2004
106944 VL 33
106945 IS 4
106946 BP 349
106947 EP 353
106948 PG 5
106949 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
106950    Engineering
106951 GA 820YU
106952 UT ISI:000221426900003
106953 ER
106954 
106955 PT J
106956 AU Wang, XM
106957 TI China on the brink of a 'momentous era'
106958 SO POSITIONS-EAST ASIA CULTURES CRITIQUE
106959 DT Article
106960 C1 Shanghai Univ, Shanghai 200041, Peoples R China.
106961 RP Wang, XM, Shanghai Univ, Shanghai 200041, Peoples R China.
106962 CR HE QL, 2000, SHUWU, V2, P1
106963    LI PL, 1995, ZONGGUO XINSHIQI JIE
106964    LI Q, 1999, ZHANLUE YU GUANLI, V3, P35
106965    LU X, 1958, ERYI JI
106966    LU X, 1958, NANQIANG BEIDIAOJI, P133
106967    LU ZL, 2000, TIANYA, V3, P31
106968    SUN LP, 1998, ZHANLUE YU GUANLI, V5, P1
106969    WANG H, 2000, 1989 SHEHUI YUNDONG
106970    YANG XY, 1980, LU XUN SELECTED WORK
106971 NR 9
106972 TC 0
106973 SN 1067-9847
106974 J9 POSITIONS-EAST ASIA CULT CRIT
106975 JI Positions East Asia Cult. Crit.
106976 PD WIN
106977 PY 2003
106978 VL 11
106979 IS 3
106980 BP 585
106981 EP 611
106982 PG 27
106983 SC Asian Studies
106984 GA 755ZV
106985 UT ISI:000187442100005
106986 ER
106987 
106988 PT J
106989 AU Guo, SQ
106990    Huang, ZM
106991 TI Densely dispersion-managed fiber transmission system with both
106992    decreasing average dispersion and decreasing local dispersion
106993 SO OPTICAL ENGINEERING
106994 DT Article
106995 DE dense dispersion-managed soliton; ultra-short pulse propagation; Kerr
106996    effect; high-speed optical communication
106997 ID SOLITON TRANSMISSION
106998 AB A novel design of densely dispersion-managed optical fiber transmission
106999    systems with decreasing average dispersion and decreasing local
107000    dispersion (dual-decreasing DDM) is proposed. The system is
107001    characterized by gradually decreasing not only local dispersion in each
107002    fiber segment, but also average dispersion in every dispersion
107003    compensation cell. When an optical pulse propagates along an optical
107004    fiber link, transmission loss weakens the Kerr effect to break the
107005    balance between dispersion and nonlinearity. To deal with the problem,
107006    dispersion parameters in a densely dispersion-managed system are made
107007    to vary gradually to counterbalance the nonlinearity. This novel
107008    approach has a number of advantages over ordinary densely
107009    dispersion-managed (DDM) soliton transmission systems, including
107010    allowing higher pulse power and reduction of optical pulse broadening,
107011    hence there is less interaction between neighboring pulses. Simulation
107012    results indicate that the dual-decreasing DDM has better propagation
107013    performance in comparison with the ordinary DDM in a high-speed optical
107014    communication system. (C) 2004 Society of Photo-optical Instrumentation
107015    Engineers.
107016 C1 Shanxi Univ, Dept Phys, Shanxi, Peoples R China.
107017    Shanghai Univ, Sch Commun & Informat Engn, Shanghai, Peoples R China.
107018 RP Guo, SQ, Shanxi Univ, Dept Phys, Shanxi, Peoples R China.
107019 EM sq.g@263.net
107020 CR AGRAWA GP, 1995, NONLINEAR FIBER OPTI
107021    CHI S, 1999, IEEE PHOTONIC TECH L, V11, P1605
107022    CONSTANTINO ME, 1999, J APPL PHYS, V86, P425
107023    EVANS AF, 1998, OPTICAL FIBER COMMUN, V2, P22
107024    HASEGAWA A, 1995, SOLITONS OPTICAL COM
107025    HIROOKA T, 2000, IEEE PHOTONIC TECH L, V12, P633
107026    KITYK IV, 1999, PHYS REV B, V60, P942
107027    KUTZ JN, 1998, IEEE PHOTONIC TECH L, V10, P702
107028    LIANG AH, 1999, OPT LETT, V24, P799
107029    NAKAZAWA Y, 1996, NTT REVIEW, V8, P8
107030    SMITH NJ, 1996, OPT LETT, V21, P1981
107031    TURITSYN SK, 1999, OPT LETT, V24, P869
107032 NR 12
107033 TC 1
107034 SN 0091-3286
107035 J9 OPT ENG
107036 JI Opt. Eng.
107037 PD MAY
107038 PY 2004
107039 VL 43
107040 IS 5
107041 BP 1227
107042 EP 1230
107043 PG 4
107044 SC Optics
107045 GA 821JS
107046 UT ISI:000221456900034
107047 ER
107048 
107049 PT J
107050 AU Chen, LQ
107051    Wu, J
107052    Zu, JW
107053 TI Asymptotic nonlinear behaviors in transverse vibration of an axially
107054    accelerating viscoelastic string
107055 SO NONLINEAR DYNAMICS
107056 DT Article
107057 DE axially accelerating string; bifurcation diagram; Galerkin method;
107058    Poincare map; viscoelasticity
107059 ID STABILITY
107060 AB This paper investigates longtime dynamical behaviors of an axially
107061    accelerating viscoelastic string with geometric nonlinearity.
107062    Application of Newton's second law leads to a nonlinear
107063    partial-differential equation governing transverse motion of the
107064    string. The Galerkin method is applied to truncate the
107065    partial-differential equation into a set of ordinary differential
107066    equations. By use of the Poincare maps, the dynamical behaviors are
107067    presented based on the numerical solutions of the ordinary differential
107068    equations. The bifurcation diagrams are presented for varying one of
107069    the following parameter: the mean transport speed, the amplitude and
107070    the frequency of transport speed fluctuation, the string stiffness or
107071    the string dynamic viscosity, while other parameters are fixed.
107072 C1 Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
107073    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
107074    Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada.
107075 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
107076 EM lqchen@online.sh.cn
107077 CR CHEN LQ, IN PRESS APPL MECH R
107078    CHEN LQ, 2003, J SOUND VIB, V261, P764
107079    CHEN LQ, 2004, J ENG MATH, V48, P171
107080    FUNG RF, 1997, J SOUND VIB, V201, P153
107081    KOIVUROVA H, 1999, J SOUND VIB, V225, P845
107082    MIRANKER WL, 1960, IBM J RES DEV, V4, P36
107083    MOCHENSTURM EM, 1996, J VIB ACOUST, V116, P346
107084    MOTE CD, 1975, T AM SOC MECH ENG, V97, P96
107085    OZKAYA E, 2000, J SOUND VIB, V230, P729
107086    PAKDEMIRLI M, 1993, J SOUND VIB, V168, P371
107087    PAKDEMIRLI M, 1994, J SOUND VIB, V169, P179
107088    PAKDEMIRLI M, 1997, J SOUND VIB, V203, P815
107089    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
107090    WICKERT JA, 1990, J APPL MECH-T ASME, V57, P738
107091    ZHANG L, 2002, INT J STRUCTURAL STA, V2, P265
107092 NR 15
107093 TC 5
107094 SN 0924-090X
107095 J9 NONLINEAR DYNAMICS
107096 JI Nonlinear Dyn.
107097 PD MAR
107098 PY 2004
107099 VL 35
107100 IS 4
107101 BP 347
107102 EP 360
107103 PG 14
107104 SC Engineering, Mechanical; Mechanics
107105 GA 820LH
107106 UT ISI:000221389900003
107107 ER
107108 
107109 PT J
107110 AU Li, R
107111    Liu, WB
107112    Ma, HP
107113 TI Moving mesh method with error-estimator-based monitor and its
107114    applications to static obstacle problem
107115 SO JOURNAL OF SCIENTIFIC COMPUTING
107116 DT Article
107117 DE finite element method; moving mesh method; a posteriori error
107118    estimator; obstacle problem
107119 ID ADAPTIVE-GRID GENERATION; SINGULAR PROBLEMS; HARMONIC MAPS; DIMENSIONS;
107120    EQUATIONS
107121 AB The main objective of this work is to demonstrate that sharp a
107122    posteriori error estimators can be employed as appropriate monitor
107123    functions for moving mesh methods. We illustrate the main ideas by
107124    considering elliptic obstacle problems. Some important issues such as
107125    how to derive the sharp estimators and how to smooth the monitor
107126    functions are addressed. The numerical schemes are applied to a number
107127    of test problems in two dimensions. It is shown that the moving mesh
107128    methods with the proposed monitor functions can effectively capture the
107129    free boundaries of the elliptic obstacle problems and reduce the
107130    numerical errors arising from the free boundaries.
107131 C1 Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China.
107132    Xiangtan Univ, Inst Computat & Appl Math, Hunan, Peoples R China.
107133    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
107134 RP Li, R, Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China.
107135 EM rli@math.pku.edu.cn
107136    W.B.Liu@ukc.ac.uk
107137    hpma@guomai.sh.cn
107138 CR AINSWORTH M, 1993, NUMER MATH, V65, P23
107139    AINSWORTH M, 1993, NUMER METH PART D E, V9, P22
107140    AINSWORTH M, 1997, COMPUT METHOD APPL M, V142, P1
107141    AZARENOK BN, 2002, SIAM J NUMER ANAL, V40, P651
107142    BAINES MJ, 1994, MOVING FINITE ELEMEN
107143    BECKETT G, 2002, J COMPUT PHYS, V182, P478
107144    BRACKBILL JU, 1982, J COMP PHYSIOL, V46, P342
107145    CENICEROS HD, 2001, J COMPUT PHYS, V172, P609
107146    CHEN ZM, 2000, NUMER MATH, V84, P527
107147    CIARLET PG, 1978, FINITE ELEMENT METHO
107148    DAVIS SF, 1982, SIAM J SCI STAT COMP, V3, P6
107149    DVINSKY AS, 1991, J COMPUT PHYS, V95, P450
107150    ELLIOTT CM, 1982, RES NOTES MATH, V59
107151    FRENCH DA, 2001, COMPUT METHODS APPL, V1, P18
107152    FRIEDMAN A, 1982, VARIATIONAL PRINCIPL
107153    GLOWINSKI R, 1976, NUMERICAL ANAL VARIA
107154    HE BS, 1994, NUMER MATH, V68, P71
107155    KINDERLEHRER D, 1980, INTRO VARIATIONAL IN
107156    KORNHUBER R, 1996, COMPUT MATH APPL, V31, P49
107157    KUFNER A, 1977, FUNCTION SPACES
107158    LI R, 2001, J COMPUT PHYS, V170, P562
107159    LI R, 2002, J COMPUT PHYS, V177, P365
107160    LI R, 2002, SIAM J CONTROL OPTIM, V41, P1321
107161    LI ST, 1997, J COMPUT PHYS, V131, P368
107162    LIU WB, 2000, J SCI COMPUT, V35, P361
107163    LIU WB, 2001, ADV COMPUT MATH, V15, P261
107164    MILLER K, 1981, SIAM J NUMER ANAL, V18, P1019
107165    REN Y, 1992, SIAM J SCI STAT COMP, V13, P1265
107166    TANG HZ, 2003, SIAM J NUMER ANAL, V41, P487
107167    VERFURTH R, 1989, NUMER MATH, V55, P309
107168    VERFURTH R, 1996, ERROR ESTIMATION ADA
107169    WINSLOW AM, 1967, J COMPUT PHYS, V1, P149
107170 NR 32
107171 TC 1
107172 SN 0885-7474
107173 J9 J SCI COMPUT
107174 JI J. Sci. Comput.
107175 PD AUG
107176 PY 2004
107177 VL 21
107178 IS 1
107179 BP 31
107180 EP 55
107181 PG 25
107182 SC Mathematics, Applied
107183 GA 821KX
107184 UT ISI:000221460400002
107185 ER
107186 
107187 PT J
107188 AU Zheng, ZY
107189    Engblom, JJ
107190 TI Computational and experimental characterization of continuously fiber
107191    reinforced plastic extrusions: Part I - Short-term flexural loading
107192 SO JOURNAL OF REINFORCED PLASTICS AND COMPOSITES
107193 DT Article
107194 DE experimental characterization; finite element method; continuously
107195    fiber reinforced; plastic extrusion; short-term loading; fiber
107196    micro-buckling
107197 AB Experimental characterization of time-independent properties for
107198    rectangular hollow-cored continuous fiber reinforced commingled
107199    recycled plastic extruded forms under short-term flexural loading has
107200    been presented in this paper. Finite element based computer models have
107201    been developed to predict the effects of damage progression in such
107202    reinforced extruded plastic forms. Experimental results demonstrate
107203    that fiber micro-buckling and fiber matrix interface failures occur
107204    during the static flexural loading environment. Experimental data also
107205    indicates that these damage modes significantly reduce the short-term
107206    flexural properties and should be avoided or minimized through
107207    optimizing the location of continuous reinforcement and using a
107208    coupling agent in enhancing interfacial bonding between reinforcement
107209    and matrix. "Damage dependent" finite element models were developed
107210    using different material property types to represent the glass-fiber
107211    roving, fiber-matrix interface and plastic matrix respectively.
107212    Material nonlinearity of the plastic matrix has been incorporated along
107213    with stress-based failure criteria to account for fiber matrix
107214    interfacial shear failure and local fiber micro-buckling. A
107215    user-defined subroutine, part of an industry standard finite element
107216    software package, has been modified to accommodate the damage
107217    progression. The developed finite element based model(s) have
107218    correlated well with the short-term test results, and can provide a
107219    "design tool" in predicting fiber micro-buckling and fiber-matrix
107220    interfacial shear failure associated with future to-be-studied
107221    composite extrusions/forms under short-term loading.
107222 C1 Florida Inst Technol, Dept Mech & Aerosp Engn, Melbourne, FL 32901 USA.
107223    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
107224 RP Engblom, JJ, Florida Inst Technol, Dept Mech & Aerosp Engn, Melbourne,
107225    FL 32901 USA.
107226 EM engblom@fit.edu
107227 CR ENGBLOM JJ, 2000, J REINF PLAST COMP, V19, P1317
107228    LAMPO R, 1999, ASTM STANDARDIZATION, V7, P22
107229    MCLAREN MG, 1995, P STRUCT C 13 BOST M, P819
107230    REBEIZ KS, 1992, WASTE AGE, V2, P35
107231    SANADI AR, 1994, J REINF PLAST COMP, V13, P54
107232    SANADI AR, 1994, PLASTIC ENG, V4, P27
107233    SPICOLA FC, 1990, P 22 SAMPE S EXH AN
107234    ZHENG Z, 2000, THESIS FLORIDA I TEC
107235    ZHENG Z, 2001, J REINFORCED PLASTIC, V24, P517
107236 NR 9
107237 TC 0
107238 SN 0731-6844
107239 J9 J REINF PLAST COMPOSITE
107240 JI J. Reinf. Plast. Compos.
107241 PY 2004
107242 VL 23
107243 IS 7
107244 BP 777
107245 EP 793
107246 PG 17
107247 SC Materials Science, Composites; Polymer Science
107248 GA 820PO
107249 UT ISI:000221402000007
107250 ER
107251 
107252 PT J
107253 AU Hui, BJ
107254    Chen, J
107255    Yang, LM
107256    Li, J
107257    Pei, Y
107258    Shi, LL
107259 TI Preparation of pH- and thermo-sensitive hydrogel by two-step grafting
107260    of acrylamide and acrylic acid onto preirradiated polyethylene film
107261 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
107262 DT Article
107263 ID RELEASE
107264 AB Two-step grafting reaction of acrylamide (AAm) and acrylic acid (AAc)
107265    onto preirradiated polyethylene (PE) film were performed. The effects
107266    of irradiation dose, reaction temperature and reaction time on the
107267    grafting yield were studied. The effect of reaction time of the first
107268    step grafting on the yield of the second step grafting was also
107269    evaluated. The original and the irradiated PE films were tested by
107270    Fourier transform infrared (FTIR) spectroscopy in the attenuated total
107271    reflectance mode (ATR). The AAm and AAc grafted PE film appeared
107272    thermo- and pH-sensitive which are similar to the interpenetrating
107273    polymer network hydrogel.
107274 C1 Shanghai Univ, Sch Environm & Chem Engn, Dept Chem Engn & Technol, Shanghai 201800, Peoples R China.
107275 RP Chen, J, Shanghai Univ, Sch Environm & Chem Engn, Dept Chem Engn &
107276    Technol, Jiading Campus, Shanghai 201800, Peoples R China.
107277 EM Chenjd@online.sh.cn
107278 CR CHAPIRO A, 1962, RAD CHEM POLYM SYSTE, P385
107279    CHEN J, 1998, RADIAT PHYS CHEM, V52, P201
107280    CHEN J, 2000, RADIAT PHYS CHEM, V59, P313
107281    CHEN J, 2001, THESIS KINKI U
107282    HOFFMAN AS, 1986, J CONTROL RELEASE, V4, P213
107283    HOFFMANN MA, 2001, EUR PHYS J D, V16, P9
107284    KAETSU I, 1995, RADIAT PHYS CHEM, V46, P247
107285    KAETSU I, 1999, RADIAT PHYS CHEM, V55, P111
107286    KATANO H, 1991, POLYM J, V23, P1179
107287    KUDAIBERGENOV SE, 2000, POLYM ADVAN TECHNOL, V11, P15
107288    OKANO T, 1990, J CONTROL RELEASE, V11, P255
107289    PEPPAS NA, 1986, HYDROGELS MED PHARM, P1
107290    SEN M, 2000, INT J PHARM, V203, P149
107291 NR 13
107292 TC 0
107293 SN 0236-5731
107294 J9 J RADIOANAL NUCL CHEM
107295 JI J. Radioanal. Nucl. Chem.
107296 PY 2004
107297 VL 260
107298 IS 3
107299 BP 673
107300 EP 677
107301 PG 5
107302 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
107303    & Technology
107304 GA 821RJ
107305 UT ISI:000221479900031
107306 ER
107307 
107308 PT J
107309 AU Silber-Li, ZH
107310    Cui, HH
107311    Xu, Z
107312    Tan, YP
107313    Wang, LD
107314 TI Analyses of factors influencing liquid experiments in microtubes
107315 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
107316 DT Article
107317 DE microchannels; liquids; microfluidic; uncertainty
107318 ID FLOWS
107319 AB The experiments of microflow are very difficult to handle, owing to a
107320    few factors influencing the measurement accuracy. Based on our
107321    experiences, a detailed introduction about the experimental uncertainty
107322    and the relative factors is presented in this paper. From the analysis
107323    of the experimental uncertainty, the measurement of microtube diameters
107324    obviously dominates the experimental precision. Several factors, for
107325    example, the evaporation on gas/liquid interfaces, the deformation of
107326    microtube, the compressibility of liquid, the viscous heating and the
107327    wall slip are discussed. According to our present experimental results,
107328    the flow characteristics driven by the lower pressure in microtubes
107329    with the diameter larger than 20 mum agree well with the prediction
107330    from classical Hagen-Poiseuille (H-P) theory, while the viscosity vs.
107331    pressure relationship should be considered under a high pressures in
107332    the microtubes with 3-10 mu diameters, and the precision depiction of
107333    shape is taken into account in the cone-shape microneedle with the
107334    outlet diameter 1-15 mum.
107335 C1 Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, LNM, Beijing 100080, Peoples R China.
107336    Dalian Univ Technol, MEMS Res Ctr, Dalian 116024, Peoples R China.
107337    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
107338 RP Silber-Li, ZH, Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear
107339    Mech, LNM, Beijing 100080, Peoples R China.
107340 CR BRIDGMAN PW, 1952, PHYS HIGH PRESSURE
107341    CHOI CH, 2003, PHYS FLUIDS, V15, P2897
107342    CUI HH, 2004, PHYS FLUIDS, V16
107343    GADELHAK M, 2001, HDB MEMS
107344    HO CM, 1998, ANNU REV FLUID MECH, V30, P579
107345    JIANG XN, 1995, MICROFLUID FLOW MICR, P317
107346    LANDAU LD, 1986, THEORY ELASTICITY
107347    LANDAU LD, 1987, FLUID MECH, P530
107348    LI ZH, 2001, INT J NONLINEAR SCI, V3, P577
107349    LI ZH, 2002, ACTA MECH SINICA, V3, P432
107350    MALA GM, 1999, INT J HEAT FLUID FL, V20, P142
107351    PFAHLER J, 1991, DSC ASME, V32, P49
107352    SHARP KV, 2001, HDB MEMS
107353    WANG LKT, 1999, J INSTRUMENTS, V20, P165
107354    XU Z, IN PRESS J APPL MECH
107355 NR 15
107356 TC 0
107357 SN 1565-1339
107358 J9 INT J NONLINEAR SCI NUMER SIM
107359 JI Int. J. Nonlinear Sci. Numer. Simul.
107360 PY 2004
107361 VL 5
107362 IS 2
107363 BP 183
107364 EP 189
107365 PG 7
107366 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
107367    Mathematical; Mechanics
107368 GA 820KK
107369 UT ISI:000221387400009
107370 ER
107371 
107372 PT J
107373 AU Liu, L
107374    Wu, QS
107375    Ding, YP
107376    Liu, HJ
107377    Zhang, BQ
107378 TI Biomimetic synthesis of CdSe quantum dots through emulsion liquid
107379    membrane system of gas-liquid transport
107380 SO CHINESE JOURNAL OF CHEMISTRY
107381 DT Article
107382 DE emulsion liquid membrane; CdSe; quantum dot; template-control;
107383    nanoparticle; biomimetic synthesis
107384 ID DEVICE APPLICATIONS; ROOM-TEMPERATURE; CDE E; NANOCRYSTALS;
107385    ETHYLENEDIAMINE; NANOPARTICLES; PARTICLES; SE
107386 AB The cadmium selenide quantum dots (QD) have been synthesized by
107387    template-control in an emulsion liquid membrane system. The system
107388    consisted of kerosene as solvent, L152 (dialkylene succinimide) as
107389    surfactant, N7301 (trialiphatic amine, R3N, R=C-8-C-10) as carrier, 0.1
107390    mol/L CdCl2 solution as internal-aqueous phase and H2Se gas as external
107391    phase. Additive organic template agent in internal-aqueous phase was
107392    necessary to form CdSe QD. The influence of the nature of template and
107393    its concentration on sizes of the formed CdSe QD has also been studied.
107394    Transmission electron microscopy showed that the sizes of the products
107395    could be controlled down to 3-4 run. X-ray diffraction analysis
107396    revealed that the crystals had cubic structure. The formation process
107397    and the optical properties of CdSe QD have also been presented.
107398 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
107399    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
107400    Tangshan Steel & Iron Co Ltd, Ctr Technol, Tangshan 063016, Hebei, Peoples R China.
107401 RP Liu, L, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
107402 EM qswu@mail.tongji.edu.cn
107403 CR ALIVISATOS AP, 1996, SCIENCE, V271, P933
107404    CHEN Y, 2002, CHEM LETT       0605, P556
107405    CHEN YF, 2002, NANO LETT, V2, P1299
107406    DENG ZX, 2003, INORG CHEM, V42, P2331
107407    FIRTH AV, 1999, APPL PHYS LETT, V75, P3120
107408    GAO XH, 2002, J BIOMED OPT, V7, P532
107409    GE XW, 2001, MATER RES BULL, V36, P1609
107410    GODOVSKY DY, 2000, ADV POLYM SCI, V153, P163
107411    LI YD, 1999, J PHYS CHEM SOLIDS, V60, P965
107412    MANN S, 1995, J MATER CHEM, V5, P935
107413    MURRAY CB, 1993, J AM CHEM SOC, V115, P8706
107414    PALCHIK O, 2001, J MATER CHEM, V11, P874
107415    RAVINDRAN S, 2003, NANO LETT, V3, P447
107416    STEIGERWALD ML, 1990, ACCOUNTS CHEM RES, V23, P183
107417    VOET D, 1995, BIOCHEMISTRY-US, P525
107418    WANG C, 1999, MATER CHEM PHYS, V60, P99
107419    WU QS, 2000, J MEMBRANE SCI, V172, P199
107420    WU QS, 2002, INORG CHEM COMMUN, V5, P671
107421    YANG Q, 2002, J MATER RES, V17, P1147
107422    ZHAO WB, 2003, J CRYST GROWTH, V252, P587
107423    ZHOU HC, 2003, ACTA CHIM SINICA, V61, P372
107424 NR 21
107425 TC 1
107426 SN 1001-604X
107427 J9 CHINESE J CHEM
107428 JI Chin. J. Chem.
107429 PD MAY
107430 PY 2004
107431 VL 22
107432 IS 5
107433 BP 441
107434 EP 444
107435 PG 4
107436 SC Chemistry, Multidisciplinary
107437 GA 821YG
107438 UT ISI:000221498700009
107439 ER
107440 
107441 PT J
107442 AU Guo, HW
107443    He, HT
107444    Chen, M
107445 TI Gamma correction for digital fringe projection profilometry
107446 SO APPLIED OPTICS
107447 DT Article
107448 ID FOURIER-TRANSFORM PROFILOMETRY; PHASE-MEASURING PROFILOMETRY; 3-D
107449    OBJECT SHAPES; AUTOMATIC-MEASUREMENT; LIGHT PROJECTION; INTERFEROMETRY;
107450    DESIGN; VIDEO
107451 AB Digital fringe projection profilometry utilizes a digital video
107452    projector as a structured light source and thus gains great
107453    flexibility. However, the gamma nonlinearity of the video projector
107454    inevitably decreases the accuracy and resolution of the measurement. We
107455    propose a gamma-correction technique based on statistical analysis of
107456    the fringe images. The technique allows one to estimate the value of
107457    gamma from the normalized cumulative histogram of the fringe images. By
107458    iterating the two steps, gamma estimation and phase evaluation, the
107459    actual gamma value can be calculated. At the same time the phase
107460    distribution of the fringe pattern can be solved with higher accuracy.
107461    In so doing, neither photometric calibration nor knowledge of the
107462    device is required. Both computer simulation and experiment are carried
107463    out to demonstrate the validity of this technique. (C) 2004 Optical
107464    Society of America.
107465 C1 Shanghai Univ, Lab Appl Opt & Metrol, Shanghai 20072, Peoples R China.
107466 RP Guo, HW, Shanghai Univ, Lab Appl Opt & Metrol, Shanghai 20072, Peoples
107467    R China.
107468 EM hw-guo@yeah.net
107469 CR COGGRAVE CR, 1999, OPT ENG, V38, P1573
107470    FARID H, 2001, IEEE T IMAGE PROCESS, V10, P1428
107471    HUANG PS, 1999, OPT ENG, V38, P1065
107472    HUANG PS, 1999, OPT LASER ENG, V31, P371
107473    HUNG YY, 2000, OPT ENG, V39, P143
107474    KAKUNAI S, 1999, APPL OPTICS, V38, P2824
107475    LI WS, 2002, OPT ENG, V41, P1365
107476    LIN JF, 1995, OPT ENG, V34, P3297
107477    MERMELSTEIN MS, 2000, OPT ENG, V39, P106
107478    PIRGA M, 1994, MEASUREMENT, V13, P191
107479    POYNTON CA, 1993, SMPTE J, V102, P1099
107480    RIVERA M, 2000, APPL OPTICS, V39, P284
107481    SANSONI G, 1999, APPL OPTICS, V38, P6565
107482    SPAGNOLO GS, 2001, OPT ENG, V40, P44
107483    SRINIVASAN V, 1984, APPL OPTICS, V23, P3105
107484    SRINIVASAN V, 1985, APPL OPTICS, V24, P185
107485    STETSON KA, 1985, APPL OPTICS, V24, P3631
107486    SURREL Y, 1996, APPL OPTICS, V35, P51
107487    TAKEDA M, 1983, APPL OPTICS, V22, P3977
107488    TANG S, 1990, APPL OPTICS, V29, P3012
107489    WOMACK KH, 1984, OPT ENG, V23, P391
107490    WU F, 2001, OPT COMMUN, V187, P347
107491 NR 22
107492 TC 1
107493 SN 0003-6935
107494 J9 APPL OPT
107495 JI Appl. Optics
107496 PD MAY 10
107497 PY 2004
107498 VL 43
107499 IS 14
107500 BP 2906
107501 EP 2914
107502 PG 9
107503 SC Optics
107504 GA 819UB
107505 UT ISI:000221340200013
107506 ER
107507 
107508 PT S
107509 AU Zhao, YW
107510    Wang, ZC
107511    Zhang, GX
107512 TI Conceptual design based on the divergent tree method for tool torage
107513 SO ADVANCES IN GRINDING AND ABRASIVE PROCESSES
107514 SE KEY ENGINEERING MATERIALS
107515 DT Article
107516 DE divergent tree method; computer aided conceptual design (CACD); tool
107517    storage; excellent degree appraisal approach; extensics
107518 AB The divergent tree method is adopted in this paper, and an illustrative
107519    example of tool storage design in the machining center is given to
107520    describe the divergent thinking in the conceptual design process of
107521    mechanical products. Firstly, general divergent tree method is applied
107522    to get various schemes of storage, and then the primary schemes are
107523    achieved by using the measure of known characteristics. Finally, the
107524    excellent degree appraisal approach is applied to find out the optimum
107525    one. In addition, an intelligent computer aided conceptual design
107526    system of tool storage based on the divergent tree method and excellent
107527    degree appraisal approach is also demonstrated in this paper.
107528 C1 Zhejiang Univ Technol, Coll Mech & Elect Engn, Hangzhou 310014, Peoples R China.
107529    Shanghai Univ, Coll Mech & Elect Engn, Shanghai 210072, Peoples R China.
107530 RP Zhao, YW, Zhejiang Univ Technol, Coll Mech & Elect Engn, Hangzhou
107531    310014, Peoples R China.
107532 CR CAI W, 1997, EXTENSION ENG METHOD
107533    CAI W, 1999, CHINESE SCI BULL, V44, P673
107534    HAGUE MJ, 1998, CONCURRENT ENG-RES A, V6, P111
107535    PAN YH, 1997, INTELLIGENT CAD METH
107536    RAN QW, 1994, ANAL HIERARCHY PROCE
107537    WYNNE H, 1998, COMPUT AIDED DESIGN, V30, P377
107538    YANG CY, 1992, SYSTEM ENG THEORY PR, V19, P120
107539    ZHAO YW, 2000, MECH ENG, V11, P684
107540 NR 8
107541 TC 0
107542 SN 1013-9826
107543 J9 KEY ENG MAT
107544 PY 2004
107545 VL 259-2
107546 BP 772
107547 EP 777
107548 PG 6
107549 GA BY96C
107550 UT ISI:000189505200157
107551 ER
107552 
107553 PT J
107554 AU Wang, Q
107555    Pelletier, JM
107556    Dong, YD
107557    Ji, YF
107558 TI Structural relaxation and crystallisation of bulk metallic glasses
107559    Zr41Ti14CU12.5Ni10-xBe22.5Fex (x=0 or 2) studied by mechanical
107560    spectroscopy
107561 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
107562    MICROSTRUCTURE AND PROCESSING
107563 DT Article
107564 DE bulk metallic glass; structural relaxation; crystallization; mechanical
107565    spectroscopy
107566 ID SUPERCOOLED LIQUID; AMORPHOUS-ALLOYS; PARTICLES; BEHAVIOR
107567 AB The measurements of the internal friction and dynamic shear modulus as
107568    well as differential scanning calorimetry have been performed in order
107569    to investigate the structural relaxation and crystallization of
107570    Zr41Ti14Cu12.5Be22.5Fex (x = 0 or 2) bulk metallic glasses. It is found
107571    that the glass transition is retarded and the thermal stability of
107572    supercooled liquid is increased by the Fe addition. The experimental
107573    results are well analyzed using a physical model, which can
107574    characterize atomic mobility and mechanical response of disordered
107575    condensed materials. (C) 2003 Elsevier B.V. All rights reserved.
107576 C1 Shanghai Univ, Inst Sci Mat, Shanghai 200072, Peoples R China.
107577    Inst Natl Sci Appl, GEMPPM Bat B Pascal, F-69621 Villeurbanne, France.
107578 RP Pelletier, JM, Shanghai Univ, Inst Sci Mat, Shanghai 200072, Peoples R
107579    China.
107580 EM pelletier@insa-lyon.fr
107581 CR ECKERT J, 2000, MATER T JIM, V41, P1415
107582    ETIENNE S, 1982, REV SCI INSTRUM, V53, P1261
107583    GAUTHIER C, 2000, J NON-CRYST SOLIDS, V274, P181
107584    HAYS CC, 1999, APPL PHYS LETT, V75, P1089
107585    INOUE A, 1999, J METASTABLE NANOCRY, V1, P1
107586    INOUE A, 1999, MATER T JIM, V40, P1382
107587    INOUE A, 2000, INTERMETALLICS, V8, P455
107588    MASUHR A, 1999, PHYS REV LETT, V82, P2290
107589    PELLETIER JM, 2000, J NON-CRYST SOLIDS, V274, P301
107590    PELLETIER JM, 2001, P 22 RIS INT S MAT S, P359
107591    PEREZ J, 1998, POLYM SCI SER B, V40, P17
107592    PEREZ J, 1999, J MOL STRUCT, V479, P183
107593    WANG WH, 1998, J APPL PHYS, V84, P5961
107594    XING LQ, 2000, APPL PHYS LETT, V77, P1970
107595    XING LQ, 2001, PHYS REV B, V64, P1802
107596    YINGFEI J, 2000, CHINESE SCI BULL, V45, P23
107597 NR 16
107598 TC 2
107599 SN 0921-5093
107600 J9 MATER SCI ENG A-STRUCT MATER
107601 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
107602 PD APR 15
107603 PY 2004
107604 VL 370
107605 IS 1-2
107606 SI Sp. Iss. SI
107607 BP 316
107608 EP 320
107609 PG 5
107610 SC Materials Science, Multidisciplinary
107611 GA 818IJ
107612 UT ISI:000221238500061
107613 ER
107614 
107615 PT J
107616 AU Xu, J
107617    Zhu, LH
107618    Huang, QW
107619    Gu, H
107620 TI Comparison of formation behavior of Ba2NaNb5O15 in air and molten NaCl
107621    salt
107622 SO JOURNAL OF MATERIALS SCIENCE
107623 DT Article
107624 ID TUNGSTEN BRONZE STRUCTURE; BARIUM SODIUM NIOBATE; FERROELECTRIC
107625    PROPERTIES; SINGLE-CRYSTALS; PHASE
107626 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
107627    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
107628 RP Xu, J, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
107629    China.
107630 EM huangqw@mail.sic.ac.cn
107631 CR GEUSIC JE, 1967, APPL PHYS LETT, V11, P69
107632    GIESS EA, 1969, J AM CERAM SOC, V52, P276
107633    HUANG QW, 2002, MATER LETT, V56, P915
107634    JOHANSSON KE, 1980, J PHYS E, V13, P1289
107635    RAO KS, 2003, J MATER SCI, V38, P391
107636    RAVEZ J, 1977, MAT RES B, V12, P769
107637    SINGH S, 1970, PHYS REV           B, V2, P2709
107638    VANUITERT LG, 1968, IEEE J QUANTUM ELECT, V4, P622
107639 NR 8
107640 TC 0
107641 SN 0022-2461
107642 J9 J MATER SCI
107643 JI J. Mater. Sci.
107644 PD MAY 15
107645 PY 2004
107646 VL 39
107647 IS 10
107648 BP 3443
107649 EP 3445
107650 PG 3
107651 SC Materials Science, Multidisciplinary
107652 GA 818VU
107653 UT ISI:000221273400020
107654 ER
107655 
107656 PT J
107657 AU Liao, LB
107658    Liu, WH
107659    Xiao, XM
107660 TI The influence of sodium diphenylamine sulfonate on the
107661    electrodeposition of Mg-Ni alloy and its electrochemical characteristics
107662 SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY
107663 DT Article
107664 DE sodium diphenylamine sulfonate; levelling agent; phenothiazine
107665 ID HYDROGEN STORAGE PROPERTIES; HYDRIDING PROPERTIES; MG2NI-H SYSTEM;
107666    SUBSTITUTION; DEPOSITION; MAGNESIUM
107667 AB Voltammetric measurements showed that sodium diphenylamine sulfonate
107668    (SDS) could inhibit hydrogen evolution and form complexes with nickel
107669    and magnesium ions for Mg-Ni alloy electrodeposition. The
107670    characteristics of differential capacity curves from differential pulse
107671    anodic stripping voltammetry showed that SDS had an absorption effect
107672    on the cathode electrode. Steady state cathode polarization of Mg-Ni
107673    alloy measurements on rotating disk copper electrodes were performed,
107674    the relative results from the polarization curves indicated that SDS
107675    acted as a levelling agent. The phases and morphology of Mg-Ni alloy
107676    were examined by X-ray diffraction and scanning electron microscopy. A
107677    series of spectra showed that phenothiazine codeposited with Mg-Ni
107678    alloy. The value 0.9 of H/M (M = Mg-Ni alloy) was determined by
107679    pressure-composition isotherm measurements. The maximum discharge
107680    capacity of the alloy was 388 mAh/g; the decay of discharge capacity
107681    was studied by electrochemical impedance spectroscopy measurements. (C)
107682    2003 Published by Elsevier B.V.
107683 C1 Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Organ Geochem, Guangzhou 510640, Peoples R China.
107684    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
107685 RP Liao, LB, Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Organ
107686    Geochem, Guangzhou 510640, Peoples R China.
107687 EM lbliao@gig.ac.cn
107688 CR ALBALAT R, 1991, J APPL ELECTROCHEM, V21, P109
107689    BAJAT JB, 2001, J APPL ELECTROCHEM, V31, P355
107690    FRANKLIN TC, 1954, J PHYS CHEM-US, V58, P951
107691    FRANKLIN TC, 1960, J ELECTROCHEM SOC, V107, P556
107692    FRANKLIN TC, 1982, SURF TECHNOL, V18, P63
107693    FRANKLIN TC, 1986, J ELECTROCHEM SOC, V133, P893
107694    FRANKLIN TC, 1988, SURF COAT TECH, V34, P515
107695    FRANKLIN TC, 1994, PLAT SURF FINISH, V81, P48
107696    FRANKLIN TC, 1996, J ELECTROCHEM SOC, V143, P97
107697    FUJII H, 1997, J ALLOY COMPD, V253, P80
107698    GOMEZ E, 2000, J ELECTROANAL CHEM, V495, P19
107699    HARRIS TM, 1995, J ELECTROCHEM SOC, V142, P1031
107700    HIRSCHER M, 1994, Z PHYS CHEM, V183, P51
107701    IWAKURA C, 1998, J ALLOY COMPD, V270, P142
107702    IWAKURA C, 2001, ELECTROCHIM ACTA, V46, P2781
107703    KAKUTA H, 2000, MATER SCI FORUM, V350, P329
107704    KARDOS O, 1974, PLATING, V61, P129
107705    KARWAS C, 1998, J ELECTROCHEM SOC, V135, B839
107706    KELLY JJ, 2000, J ELECTROCHEM SOC, V147, P2975
107707    KOHNO T, 1996, J ELECTROCHEM SOC, V143, L198
107708    KOHNO T, 1997, J ELECTROCHEM SOC, V144, P2384
107709    KRUYLIKLY SS, 1967, ELECTROCHIM ACTA, V12, P1263
107710    MONTASER A, 1976, ANAL CHEM, V48, P1490
107711    MUTSCHELE T, 1987, SCRIPTA METALL, V21, P1101
107712    ORIMO S, 1996, J ALLOY COMPD, V232, L16
107713    REEVES RM, 1974, MODERN ASPECTS ELECT
107714    REILLY JJ, 1968, INORG CHEM, V7, P2254
107715    ROYERS GT, 1965, MET FINISH, V43, P75
107716    SILLEN LG, 1964, STABILITY CONSTANTS
107717    SPASSOV T, 1999, J ALLOY COMPD, V287, P243
107718    SUN D, 2000, ACTA MATER, V48, P2363
107719    SUN L, 1999, J ALLOY COMPD, V293, P536
107720    TANAKA K, 2002, J ALLOY COMPD, V256, P330
107721    TRASATTI S, 1979, MOD ASPECT ELECTROC, V13, P81
107722    VILLARS P, 1991, PEARSONS HDB CRYSTAL
107723    WANG J, 1985, STRIPPING ANAL PRINC
107724    YANG F, 1989, XIAMEN U ACTA, V13, P220
107725 NR 37
107726 TC 1
107727 SN 0022-0728
107728 J9 J ELECTROANAL CHEM
107729 JI J. Electroanal. Chem.
107730 PD MAY 15
107731 PY 2004
107732 VL 566
107733 IS 2
107734 BP 341
107735 EP 350
107736 PG 10
107737 SC Chemistry, Analytical; Electrochemistry
107738 GA 817XJ
107739 UT ISI:000221209900012
107740 ER
107741 
107742 PT J
107743 AU Zheng, CL
107744    Chen, LQ
107745    Zhang, JF
107746 TI Multi-valued solitary waves in multidimensional soliton systems
107747 SO CHINESE PHYSICS
107748 DT Article
107749 DE multidimensional soliton system; multivalued solitary wave; foldon
107750 ID NONLINEAR SCHRODINGER-EQUATION; NEWELL-SEGUR SYSTEM; QUARK-LOOP
107751    SOLITON; COHERENT STRUCTURES; VAKHNENKO EQUATION; EXCITATIONS;
107752    INTEGRABILITY; PEAKON
107753 AB Considering that folded phenomena are rather universal in nature and
107754    some arbitrary functions can be included in the exact excitations of
107755    many (2+1)-dimensional soliton systems, we use adequate multivalued
107756    functions to construct folded solitary structures in multi-dimensions.
107757    Based on some interesting variable separation results in the
107758    literature, a common formula with arbitrary functions has been derived
107759    for suitable physical quantities of some significant (2+1)-dimensional
107760    soliton systems like the generalized Ablowitz-Kaup-Newell-Segur (GAKNS)
107761    model, the generalized Nizhnik-Novikov-Veselov (GNNV) system and the
107762    new (2+1)-dimensional long dispersive wave (NLDW) system. Then a new
107763    special type of two-dimensional solitary wave structure, i.e. the
107764    folded solitary wave and foldon, is obtained. The novel structure
107765    exhibits interesting features not found in the single valued solitary
107766    excitations.
107767 C1 Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
107768    Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China.
107769    Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
107770 RP Zheng, CL, Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000,
107771    Peoples R China.
107772 EM zjclzheng@yahoo.com.cn
107773 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V30, P1262
107774    BENNEY DJ, 1964, J MATH PHYS, V43, P309
107775    BOITI M, 1986, INVERSE PROBL, V2, P271
107776    FOKAS AS, 1994, INVERSE PROBL L, V19, P10
107777    GOODMAN MB, 2002, NATURE, V415, P1039
107778    KAKUHATA H, 1999, J PHYS SOC JPN, V68, P757
107779    LINDGARD PA, 1996, PHYS REV LETT, V77, P779
107780    LOCKLESS SW, 1999, SCIENCE, V286, P295
107781    LOU SY, 1996, J PHYS A, V29, P4029
107782    LOU SY, 1997, J MATH PHYS, V38, P6401
107783    LOU SY, 2000, PHYS LETT A, V277, P94
107784    LOU SY, 2002, J MATH PHYS, V43, P4078
107785    MACINNIS BL, 2002, SCIENCE, V295, P1536
107786    MATSUTANI S, 2002, J GEOM PHYS, V43, P146
107787    MORRISON AJ, 1999, NONLINEARITY, V12, P1427
107788    NIZHNIK LP, 1980, SOV PHYS DOKL, V25, P706
107789    RADHA R, 1997, CHAOS SOLITON FRACT, V8, P17
107790    SCHLEIF M, 1998, EUR PHYS J A, V1, P171
107791    SCHLEIF M, 1998, INT J MOD PHYS E, V7, P121
107792    TANG XY, 2002, PHYS REV E 2, V66
107793    TANG XY, 2002, SI0210009
107794    TANG XY, 2003, J MATH PHYS, V44, P4000
107795    VAKHNENKO VA, 1992, J PHYS A-MATH GEN, V25, P4181
107796    VAKHNENKO VO, 1998, NONLINEARITY, V11, P1457
107797    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P448
107798    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
107799    ZHENG CL, 2003, CHINESE J PHYS, V41, P442
107800    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
107801    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P783
107802    ZHENG CL, 2003, CHINESE PHYS, V12, P11
107803    ZHENG CL, 2003, CHINESE PHYS, V12, P472
107804    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P261
107805    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
107806 NR 33
107807 TC 6
107808 SN 1009-1963
107809 J9 CHIN PHYS
107810 JI Chin. Phys.
107811 PD MAY
107812 PY 2004
107813 VL 13
107814 IS 5
107815 BP 592
107816 EP 597
107817 PG 6
107818 SC Physics, Multidisciplinary
107819 GA 818VC
107820 UT ISI:000221271600006
107821 ER
107822 
107823 PT J
107824 AU Liao, HY
107825    Zhou, SP
107826    Shi, XY
107827 TI Simulating the time-dependent Ginzburg-Landau equations for type-III
107828    superconductors by finite-difference method
107829 SO CHINESE PHYSICS
107830 DT Article
107831 DE periodic time-dependent; Ginzburg-Landau model; finite-difference
107832    approximation; vortex dynamics
107833 ID CONFIGURATIONS; FILMS; MODEL
107834 AB This article presents numerical solutions of the periodic
107835    time-dependent Ginzburg-Landau model for the type-II superconductors by
107836    a finite-difference approximation. Both the static and dynamical
107837    properties of a single vortex are studied as the external magnetic
107838    field varies. Vortex and anti-vortex can coexist and annihilate with
107839    time in the case of no external magnetic field, while the vortex will
107840    approach a steady state in the presence of magnetic field. We also
107841    study vortex dynamical behaviours while pinning centres exist in the
107842    sample and find that the pinning site, which has a significant
107843    potential to keep the vortex from moving, may trap the vortex.
107844 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
107845 RP Liao, HY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
107846 EM hhyy_liao@163.com
107847 CR BAERT M, 1995, PHYS REV LETT, V74, P3269
107848    DORIA MM, 1990, PHYS REV B, V41, P6335
107849    DU Q, 1992, SIAM REV, V34, P54
107850    DU Q, 1994, APPL ANAL, V53, P1
107851    DU Q, 1995, PHYS REV B, V51, P16194
107852    DU Q, 1998, MATH COMPUT, V67, P965
107853    DU Q, 1999, SIAM J APPL MATH, V59, P1225
107854    FARAM H, 1991, PHYS REV LETT, V66, P3067
107855    FRIESEN M, 1997, PHYS REV B, V55, P509
107856    GORKOV LP, 1974, SOV PHYS JETP, V38, P195
107857    KAPER HG, 1995, J COMPUT PHYS, V119, P120
107858    KATO R, 1993, PHYS REV B, V47, P8016
107859    LIU F, 1991, PHYS REV LETT, V66, P3071
107860    NIU JH, 1998, ACTA PHYS SINICA, V47, P985
107861    REICHHARDT C, 1998, PHYS REV B, V57, P7937
107862    SERFATY S, 1999, ARCH RATION MECH AN, V149, P329
107863    SHEN JH, 1998, ELEMENTARY NUMERICAL
107864    TANG Q, 1995, PHYSICA D, V88, P139
107865    TINKHAM M, 1975, INTRO SUPERCONDUCTIV
107866    WANG ZD, 1991, PHYS REV B, V44, P11918
107867    XU CF, 1990, NUMERICAL SOLUTION P
107868    ZHOU SP, 2001, CHINESE PHYS, V10, P541
107869 NR 22
107870 TC 1
107871 SN 1009-1963
107872 J9 CHIN PHYS
107873 JI Chin. Phys.
107874 PD MAY
107875 PY 2004
107876 VL 13
107877 IS 5
107878 BP 737
107879 EP 745
107880 PG 9
107881 SC Physics, Multidisciplinary
107882 GA 818VC
107883 UT ISI:000221271600028
107884 ER
107885 
107886 PT J
107887 AU Wang, XY
107888    Cao, SX
107889    Zhang, YF
107890    Tubata, K
107891    Cui, YJ
107892    Liu, YS
107893    Cao, GX
107894    Nishimura, K
107895    Mori, K
107896    Chao, J
107897    Zhang, JC
107898 TI Study of the structural and transport properties for (La1-x
107899    Ce-x)(2/3)Ca1/3MnO3 system
107900 SO ACTA PHYSICA SINICA
107901 DT Article
107902 DE perovsksite manganate; Ce doping; crystal structure; transport
107903    properties
107904 ID METAL-INSULATOR-TRANSITION; MAGNETORESISTANCE; LA1-XSRXMNO3;
107905    MANGANITES; CE; FILMS
107906 AB The structural and transport properties of the perovskite
107907    (La1-xCex)(2/3)Ca1/3MnO3 (0 < x < 1.0) system are systematically
107908    investigated. It is found that the compounds with smaller Ce content
107909    show orthorhombic crystal structure, while CeO2 impurity phase appears
107910    with increasing Ce content. The fluctuations of Ce3+ and Ce4+ and
107911    multiple states in Mn (Mn2+/Mn3+/Mn4+) site induce disorder in this
107912    system and drive the metal-insulator transition temperature T-IM and
107913    ferromagnetic-paramagnetic transition temperature T-e to lower
107914    temperatures. Interestingly, it is seen that in these Ce-doped
107915    compounds, T-IM is higher than T-c and the difference DeltaT( = T-IM -
107916    T-c) becomes remarkable with increasing Ce content and reaches 50 K for
107917    x = 0.5. All the samples show colossal magnetoresistance (CMR) effect
107918    around T-c and the maximum value increases with increasing Ce content;
107919    for the sample with x = 0.5, it has enhanced by six orders of magnitude
107920    larger than the undoped sample (x = 0), but it shows an abnormal
107921    decrease for the samples of x greater than or equal to 0.7. On the
107922    whole, it is shown that the correlation between the magnetism and the
107923    transport properties can be well explained based on the double-exchange
107924    model and the thermal activation theory. The influence of Ce
107925    substitution for La in La2/3Ca1/3MnO3 system is also discussed.
107926 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
107927    Toyama Univ, Fac Engn, Toyama 9308555, Japan.
107928    China Inst Metrol, Dept Phys, Hangzhou 310034, Peoples R China.
107929 RP Cao, SX, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
107930 EM sxcao@mail.shu.edu.cn
107931 CR ASAMITSU A, 1995, NATURE, V373, P407
107932    CHAHARA K, 1993, APPL PHYS LETT, V63, P1990
107933    CHEN X, 2001, CHINESE PHYS, V10, P751
107934    DAI DS, 1997, PROGR PHYSICS, V17, P201
107935    DAS S, 1997, INDIAN J PHYS, V71, P231
107936    DAS S, 1997, Z PHYS B CON MAT, V104, P7
107937    DUAN P, 2003, ACTA PHYS SINICA, V52, P2065
107938    JONKER GH, 1950, PHYSICA, V16, P337
107939    JONKER GH, 1956, PHYSICA, V22, P707
107940    LIN WP, 2001, CHINESE J ASTRON AST, V1, P21
107941    LU Y, 2003, CHINESE PHYS, V12, P789
107942    MAIGNAN A, 1998, PHYS REV B, V58, P2758
107943    MANDAL P, 1997, PHYS REV B, V56, P15073
107944    MARTIN C, 2000, PHYS REV B, V62, P6442
107945    MILLIS AJ, 1995, PHYS REV LETT, V74, P5144
107946    MILLIS AJ, 1996, PHYS REV LETT, V77, P175
107947    MITRA C, 2001, J APPL PHYS, V89, P524
107948    NEUMEIER JJ, 2000, PHYS REV B, V61, P14319
107949    OKUDA T, 1998, PHYS REV LETT, V81, P3203
107950    PHILIP, 1999, J PHYS COMDENS MATTE, V11, P85237
107951    SCHIFFER P, 1995, PHYS REV LETT, V75, P3336
107952    VONHELMOLT R, 1993, PHYS REV LETT, V71, P2331
107953    WU JA, 2003, CHINESE PHYS, V12, P792
107954    WU SY, 2002, J PHYS-CONDENS MAT, V14, P12585
107955    XI L, 2004, ACTA PHYS SINICA, V53, P260
107956    XIAO CT, 2003, ACTA PHYS SIN-CH ED, V52, P1245
107957    YANG HD, 2000, PHYSICA B 2, V284, P1684
107958    ZENER C, 1951, PHYS REV, V82, P403
107959 NR 28
107960 TC 1
107961 SN 1000-3290
107962 J9 ACTA PHYS SIN-CHINESE ED
107963 JI Acta Phys. Sin.
107964 PD MAY
107965 PY 2004
107966 VL 53
107967 IS 5
107968 BP 1456
107969 EP 1462
107970 PG 7
107971 SC Physics, Multidisciplinary
107972 GA 818DP
107973 UT ISI:000221226100035
107974 ER
107975 
107976 PT J
107977 AU Zhang, ML
107978    Xia, YB
107979    Wang, LJ
107980    Shen, HJ
107981    Gu, BB
107982 TI Performance of CVD diamond alpha particle detectors
107983 SO SOLID STATE COMMUNICATIONS
107984 DT Article
107985 DE CVD diamond; alpha particle detector; charge collection distance
107986 ID ELECTRICAL-PROPERTIES; RADIATION SENSORS; FILMS; EFFICIENCY
107987 AB The inherent properties of diamond can, in principle, make it an ideal
107988    material for radiation detectors with interesting capabilities. We have
107989    fabricated a particle detector using a free-standing CVD diamond film
107990    with a thickness of 300 mum and area of 2 cm x 2 cm and measured 5.5
107991    MeV alpha spectra from an Am-241 source. The I-V characteristics
107992    indicate that a fine Ohmic contact is formed between the CVD diamond
107993    and electrode. At the external electric field 10 kV/cm, the collection
107994    efficiency reaches an average value of 41%, corresponding to a charge
107995    collection distance (CCD) of about 259 mum and the energy resolution
107996    achieves 4.3%. (C) 2004 Elsevier Ltd. All rights reserved.
107997 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai Univ Jiading, Shanghai 201800, Peoples R China.
107998 RP Zhang, ML, Shanghai Univ, Sch Mat Sci & Engn, Shanghai Univ Jiading,
107999    Shanghai 201800, Peoples R China.
108000 EM zhamilong@hotmail.com
108001 CR BERQONZO P, 1998, IEEE T NUCL SCI, V45, P370
108002    FIELDS JC, 1979, PROPERTIES DIAMOND
108003    HECHT K, 1932, Z PHYS, V77, P235
108004    MANFREDOTTI C, 1994, NUCL INSTRUM METH B, V93, P516
108005    MARINELLI M, 1999, APPL PHYS LETT, V75, P3216
108006    MARINELLI M, 2001, DIAM RELAT MATER, V10, P1783
108007    PLANO MA, 1994, APPL PHYS LETT, V64, P193
108008    SCHNETZER S, 1999, IEEE T NUCL SCI 1, V46, P193
108009    VITTONE E, 2002, DIAM RELAT MATER, V11, P1472
108010    WANG LJ, 2003, J PHYS D APPL PHYS, V36, P2548
108011    WEILHAMMER P, 1998, NUCL INSTRUM METH A, V409, P264
108012    ZHANG ML, 2003, DIAM RELAT MATER, V12, P1544
108013    ZHAO S, 1993, MATER RES SOC S P, V302, P257
108014 NR 13
108015 TC 4
108016 SN 0038-1098
108017 J9 SOLID STATE COMMUN
108018 JI Solid State Commun.
108019 PD MAY
108020 PY 2004
108021 VL 130
108022 IS 8
108023 BP 551
108024 EP 555
108025 PG 5
108026 SC Physics, Condensed Matter
108027 GA 817WZ
108028 UT ISI:000221208900010
108029 ER
108030 
108031 PT J
108032 AU Zhou, SF
108033 TI Attractors and approximations for lattice dynamical systems
108034 SO JOURNAL OF DIFFERENTIAL EQUATIONS
108035 DT Article
108036 DE global attractor; lattice system; equivalent norm
108037 ID REACTION-DIFFUSION SYSTEMS; UNBOUNDED-DOMAINS; GLOBAL ATTRACTOR;
108038    WAVE-EQUATIONS; SPATIAL CHAOS; PROPAGATION; EXISTENCE; FAILURE; R(N)
108039 AB We present a sufficient condition for the existence of a global
108040    attractor for general lattice dynamical systems, then consider the
108041    existence of attractors and their approximation for second-order and
108042    first-order lattice systems which, in particular case, can be regarded
108043    as the spatial discretizations of corresponding wave equations and
108044    reaction-diffusion equations in R-k. (C) 2004 Elsevier Inc. All rights
108045    reserved.
108046 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
108047 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
108048 EM sfzhou@mail.shu.edu.cn
108049 CR BATES PW, 2001, INT J BIFURCAT CHAOS, V11, P143
108050    BELL J, 1984, Q APPL MATH, V42, P1
108051    BELLERI V, 2001, DISCRET CONTIN DYN S, V7, P719
108052    CAHN JW, 1960, ACTA METALL, V8, P554
108053    CHATE H, 1997, PHYSICA D, V103, P1
108054    CHOW SN, 1995, IEEE T CIRCUITS-I, V42, P746
108055    CHOW SN, 1998, J DIFFER EQUATIONS, V149, P248
108056    CHUA LO, 1993, IEEE T CIRCUITS-I, V40, P147
108057    ERNEUX T, 1993, PHYSICA D, V67, P237
108058    FABINY L, 1993, PHYS REV A B, V47, P4287
108059    FEIREISL E, 1996, J DIFFER EQUATIONS, V129, P239
108060    FEIREISL E, 1997, J DYNAM DIFFERENTIAL, V9, P133
108061    FIRTH WJ, 1988, PHYS REV LETT, V61, P329
108062    HALE JK, 1988, ASYMPTOTIC BEHAV DIS
108063    HILLERT M, 1961, ACTA METALL, V9, P525
108064    JIANG MH, 1999, J STAT PHYS, V95, P791
108065    KANEKO K, 1993, THEORY APPL COUPLED
108066    KAPRAL R, 1991, J MATH CHEM, V6, P113
108067    KARACHALIOS NI, 1999, J DIFFER EQUATIONS, V157, P183
108068    KEENER JP, 1987, SIAM J APPL MATH, V47, P556
108069    KEENER JP, 1991, J THEOR BIOL, V148, P49
108070    LAPLANTE JP, 1992, J PHYS CHEM-US, V96, P4931
108071    MERINO S, 1996, J DIFFER EQUATIONS, V132, P87
108072    PECORA LM, 1990, PHYS REV LETT, V64, P821
108073    PEREZMUNUZURI A, 1993, IEEE T CIRCUITS SYST, V40, P872
108074    SHEN WX, 1996, SIAM J APPL MATH, V56, P1379
108075    TEMAM R, 1997, APPL MATH SCI, V68
108076    VONNEUMANN J, 1951, CEREBRAL MECH BEHAV, P9
108077    WANG BX, 1999, PHYSICA D, V128, P41
108078    WEINBERGER HE, 1988, SIAM J MATH ANAL, V19, P1057
108079    WINALOW RL, 1993, PHYSICA D, V64, P281
108080    YU J, 1998, PHYS LETT A, V240, P60
108081    ZHOU SF, 2002, J DIFFER EQUATIONS, V179, P605
108082 NR 33
108083 TC 3
108084 SN 0022-0396
108085 J9 J DIFFERENTIAL EQUATIONS
108086 JI J. Differ. Equ.
108087 PD JUN 10
108088 PY 2004
108089 VL 200
108090 IS 2
108091 BP 342
108092 EP 368
108093 PG 27
108094 SC Mathematics
108095 GA 817KK
108096 UT ISI:000221176200007
108097 ER
108098 
108099 PT J
108100 AU Yao, RX
108101    Xu, GQ
108102    Li, ZB
108103 TI Conservation laws and soliton solutions for generalized seventh order
108104    KdV equation
108105 SO COMMUNICATIONS IN THEORETICAL PHYSICS
108106 DT Article
108107 DE seventh order evolution equation; conservation law; soliton solution;
108108    symbolic computation
108109 ID NONLINEAR EVOLUTION-EQUATIONS; WAVE SOLUTIONS
108110 AB With the assistance of the symbolic computation system Maple, rich
108111    higher order polynomial-type conservation laws and a sixth order
108112    t/x-dependent conservation law are constructed for a generalized
108113    seventh order nonlinear evolution equation by using a direct algebraic
108114    method. From the compatibility conditions that guaranteeing the
108115    existence of conserved densities, an integrable unnamed seventh order
108116    KdV-type equation is found. By introducing some nonlinear
108117    transformations, the one-, two-, and three-solition solutions as well
108118    as the solitary wave solutions are obtained.
108119 C1 E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China.
108120    Weinan Teachers Coll, Dept Comp Sci, Weinan 714000, Peoples R China.
108121    Shanghai Univ, Dept Informat Adm, Shanghai 200436, Peoples R China.
108122 RP Yao, RX, E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R
108123    China.
108124 CR FAN EG, 2000, PHYS LETT A, V277, P212
108125    FU ZT, 2001, PHYS LETT A, V290, P72
108126    GOKTAS U, 1998, PHYSICA D, V123, P425
108127    HICKERNELL FJ, 1983, STUD APPL MATH, V69, P23
108128    HOHLER EGB, 1996, INT J MOD PHYS A, V11, P1831
108129    ITO M, 1980, J PHYS SOC JPN, V49, P771
108130    LEVEQUE RJ, 1992, NUMERICAL METHODS CO
108131    LI ZB, 1993, J PHYS A-MATH GEN, V26, P6027
108132    LI ZB, 1997, ACTA MATH SINICA, V17, P81
108133    LI ZB, 2002, COMPUT PHYS COMMUN, V148, P256
108134    MALFLIET W, 1992, AM J PHYS, V60, P650
108135    OLVER PJ, 1986, APPL LIE GROUPS DIFF
108136    PARKES EJ, 1994, J PHYS A, V27, P497
108137    SANDERS JA, 1997, MATH COMPUT SIMULAT, V44, P471
108138    SANDERS JA, 2000, J DIFFER EQUATIONS, V166, P132
108139    SANZSERNA JM, 1982, J COMPUT PHYS, V47, P199
108140    WANG ML, 2002, PHYS LETT A, V303, P45
108141    WOLF T, 2003, J APPL MATH, V13, P129
108142    YAO RX, 2002, PHYS LETT A, V297, P196
108143 NR 19
108144 TC 1
108145 SN 0253-6102
108146 J9 COMMUN THEOR PHYS
108147 JI Commun. Theor. Phys.
108148 PD APR 15
108149 PY 2004
108150 VL 41
108151 IS 4
108152 BP 487
108153 EP 492
108154 PG 6
108155 SC Physics, Multidisciplinary
108156 GA 816ZI
108157 UT ISI:000221147400002
108158 ER
108159 
108160 PT J
108161 AU Zheng, CL
108162 TI Interactions among peakons, dromions, and compactons for a
108163    (2+1)-dimensional soliton system
108164 SO COMMUNICATIONS IN THEORETICAL PHYSICS
108165 DT Article
108166 DE interaction; peakon; dromion; compacton
108167 ID NONLINEAR SCHRODINGER-EQUATION; LOCALIZED COHERENT STRUCTURES;
108168    DAVEY-STEWARTSON EQUATION; NOVIKOV-VESELOV EQUATION; DISPERSIVE WAVE
108169    SYSTEM; NEWELL-SEGUR SYSTEM; PAINLEVE INTEGRABILITY; SIMILARITY
108170    REDUCTIONS; GENERAL-SOLUTION; AKNS SYSTEM
108171 AB Starting from the known variable separation excitations of a (2 +
108172    1)-dimensional generalized Ablowitz-Kaup-Newell-Segur system,
108173    rich-coherent structures can be derived. The interactions among
108174    different types of solitary waves like peakons, dromions, and
108175    compactons are investigated and some novel features or interesting
108176    behaviors are revealed. The results show that the interactions for
108177    peakon-dromion, compacton-dromion, and peakon-compacton may be
108178    completely nonelastic or completely elastic.
108179 C1 Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
108180    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
108181 RP Zheng, CL, Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000,
108182    Peoples R China.
108183 EM zjclzheng@yahoo.com.cn
108184 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V30, P1262
108185    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
108186    CHEN CL, 2002, PHYS REV E 2B, V66
108187    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
108188    LOU SY, 1997, J MATH PHYS, V38, P6401
108189    LOU SY, 1999, PHYS LETT A, V262, P344
108190    LOU SY, 2000, PHYS LETT A, V277, P94
108191    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
108192    LOU SY, 2002, J MATH PHYS, V43, P4078
108193    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
108194    LOU SY, 2002, PHYS SCRIPTA, V65, P7
108195    RADHA R, 1997, CHAOS SOLITON FRACT, V8, P17
108196    ROSENAU P, 1993, PHYS REV LETT, V70, P564
108197    ROSENAU P, 1994, PHYS REV LETT, V73, P1737
108198    TANG XY, 2002, PHYS REV E, V66, P46601
108199    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P1006
108200    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P448
108201    ZHANG JF, 2003, PHYS LETT A, V313, P401
108202    ZHENG CL, 2002, ACTA PHYS SIN-CH ED, V51, P2426
108203    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
108204    ZHENG CL, 2002, COMMUN THEOR PHYS, V38, P653
108205    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
108206    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P783
108207    ZHENG CL, 2003, CHINESE PHYS, V12, P11
108208    ZHENG CL, 2003, CHINESE PHYS, V12, P472
108209    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P261
108210    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P261
108211    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P9
108212    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
108213    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P385
108214 NR 30
108215 TC 1
108216 SN 0253-6102
108217 J9 COMMUN THEOR PHYS
108218 JI Commun. Theor. Phys.
108219 PD APR 15
108220 PY 2004
108221 VL 41
108222 IS 4
108223 BP 513
108224 EP 520
108225 PG 8
108226 SC Physics, Multidisciplinary
108227 GA 816ZI
108228 UT ISI:000221147400008
108229 ER
108230 
108231 PT J
108232 AU An, WK
108233    Qiu, XJ
108234    Zhu, ZY
108235 TI Nuclear fusion induced by Coulomb-hydrodynamic explosion of deuterium
108236    clusters in intense laser pulses
108237 SO CHINESE PHYSICS LETTERS
108238 DT Article
108239 ID ATOMIC CLUSTERS; IONIZATION; DYNAMICS; FIELDS
108240 AB Considering the Coulomb-hydrodynamic explosion induced by the
108241    interaction of a deuterium cluster target with an ultra-intensity
108242    femtosecond laser, we analyse the mechanism of generating energetic
108243    deuterium nuclei for the fusion. We propose formulae for expansions of
108244    deuterium ion cluster which are driven by Coulomb-hydrodynamic
108245    explosion. Hence the kinetic energies of deuterium nuclei, the
108246    expansion time and exploding efficiency of deuterium ion cluster have
108247    been estimated.
108248 C1 Shanghai Univ, Sch Sci, Dept Phys, Shanghai 200436, Peoples R China.
108249    Hunan Inst Sci & Technol, Dept Phys, Yueyang 414000, Peoples R China.
108250    Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
108251 RP An, WK, Shanghai Univ, Sch Sci, Dept Phys, Shanghai 200436, Peoples R
108252    China.
108253 EM anweike12@163.com
108254 CR AN WK, 2004, IN PRESS ACTA PHYS S
108255    AUGST S, 1989, PHYS REV LETT, V63, P2212
108256    DITMIRE T, 1997, NATURE, V386, P54
108257    DITMIRE T, 1997, PHYS REV LETT, V78, P2732
108258    DITMIRE T, 1999, NATURE, V398, P489
108259    DOBOSZ S, 1997, PHYS REV A, V56, P2526
108260    KOLLER L, 1999, PHYS REV LETT, V82, P3783
108261    LAST I, 1997, J CHEM PHYS, V107, P6685
108262    LEZIUS M, 1998, PHYS REV LETT, V80, P261
108263    LIU JS, 2003, CHINESE PHYS LETT, V20, P1492
108264    MORSE PM, 1968, THOERETICAL ACOUSTIC
108265    SCHLIPPER R, 1998, PHYS REV LETT, V80, P1194
108266    SHAV YL, 1996, PHYS REV LETT, V77, P3343
108267    SPITZER L, 1967, PHYS FULLY IONIZED G
108268    SWRAND E, 2000, PHYS REV LETT, V85, P2296
108269    ZWEIBACK J, 2000, PHYS REV LETT, V84, P2634
108270 NR 16
108271 TC 0
108272 SN 0256-307X
108273 J9 CHIN PHYS LETT
108274 JI Chin. Phys. Lett.
108275 PD MAY
108276 PY 2004
108277 VL 21
108278 IS 5
108279 BP 895
108280 EP 897
108281 PG 3
108282 SC Physics, Multidisciplinary
108283 GA 817KB
108284 UT ISI:000221175300037
108285 ER
108286 
108287 PT J
108288 AU Ge, XS
108289    Chen, LQ
108290 TI Attitude control of a rigid spacecraft with two momentum wheel
108291    actuators using genetic algorithm
108292 SO ACTA ASTRONAUTICA
108293 DT Article
108294 ID STABILIZATION; DYNAMICS; TORQUES; BODIES
108295 AB The control problem of the spacecraft attitude using two momentum wheel
108296    actuators is investigated. It is well-known that attitude of a rigid
108297    spacecraft can be controlled by using three momentum wheels. If one of
108298    the momentum wheels is failure, the complete spacecraft equations are
108299    not controllable. When the total angular momentum of the system is
108300    zero, the control problem of the spacecraft attitude becomes a steering
108301    problem for a drift free control system. In this paper, based on the
108302    optimal control theory, a genetic algorithm for steering a rigid
108303    spacecraft with two momentum wheels is proposed. The genetic algorithm
108304    provide the results of a numerical simulation to prove its efficiency
108305    and stability. (C) 2004 Elsevier Ltd. All rights reserved.
108306 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
108307    Beijing Inst Machinery, Basic Sci Courses Dept, Beijing 100085, Peoples R China.
108308 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
108309    200072, Peoples R China.
108310 EM lqchen@online.sh.cn
108311 CR AEYELS D, 1985, SYSTEMS CONTROL LETT, V5, P59
108312    BLOCH AM, 1992, AUTOMATICA, V28, P745
108313    CHENG GL, 1996, GENETIC ALGORITHM IT
108314    CROUCH PE, 1984, IEEE T AUTOMAT CONTR, V29, P87
108315    FERNANDES C, 1991, P IEEE INT C ROB AUT, P680
108316    FERNANDES C, 1994, IEEE T AUTOMAT CONTR, V39, P450
108317    GE XS, 1999, TECHNISCHE MECH, V19, P233
108318    GOLDBERG DE, 1991, COMPLEX SYSTEMS, V5, P139
108319    KRISHNAN H, 1994, AUTOMATICA, V30, P1023
108320    KRISHNAN H, 1995, J GUID CONTROL DYNAM, V18, P256
108321    LIU YZ, 1995, SPACECRAFT ATTITUDE
108322    TSIOTRAS P, 1995, AUTOMATICA, V31, P1099
108323    WALSH GC, 1995, IEEE T ROBOTIC AUTOM, V11, P139
108324 NR 13
108325 TC 0
108326 SN 0094-5765
108327 J9 ACTA ASTRONAUT
108328 JI Acta Astronaut.
108329 PD JUL
108330 PY 2004
108331 VL 55
108332 IS 1
108333 BP 3
108334 EP 8
108335 PG 6
108336 SC Engineering, Aerospace
108337 GA 817VG
108338 UT ISI:000221204400001
108339 ER
108340 
108341 PT J
108342 AU Zhang, HB
108343    Zhai, QJ
108344    Qi, FP
108345    Gong, YY
108346 TI Effect of side transmission of power ultrasonic on structure of AZ81
108347    magnesium alloy
108348 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
108349 DT Article
108350 DE power ultrasonic; side transmission; AZ81 alloy; solidification
108351    structure
108352 ID CAVITATION MELT TREATMENT
108353 AB In order to promote the application of power ultrasonic in metallurgic
108354    industry, ultrasonic vibration is introduced from the side of AZ81
108355    ingot by adopting the automatic-attracting amplitude transformer horn
108356    which has independently been designed and produced, and the effect of
108357    the side transmission of ultrasonic on the solidification structure of
108358    metal is investigated. The results show that under this experimental
108359    condition, power ultrasonic can greatly improve the solidification
108360    structure of AZ81 magnesium alloy. Compared with the traditional
108361    modification methods in which inoculants are added into melt, power
108362    ultrasonic has a better performance. The present research gives us a
108363    new way for the application of ultrasonic refinement technique.
108364 C1 Shanghai Univ, Sch Mat Sci & Technol, Shanghai 200072, Peoples R China.
108365 RP Zhai, QJ, Shanghai Univ, Sch Mat Sci & Technol, Shanghai 200072,
108366    Peoples R China.
108367 EM qjzhai@mail.shu.edu.cn
108368 CR ABDELREHIM M, 1984, METAL, V38, P131
108369    ABDELREIHIM M, 1984, METALL, V38, P1156
108370    ABRAMOV OV, 1987, ULTRASONICS, V25, P73
108371    DAHLE AK, 2001, J LIGHT METALS, P63
108372    ESKIN GI, 1997, MATER SCI FORUM, V242, P65
108373    ESKIN GI, 2001, ULTRASON SONOCHEM, V8, P319
108374    LI YL, 1999, CHINESE J NONFERROUS, V9, P719
108375    LIU Z, 2000, BASIC PRINCIPLES APP, P27
108376    LU WH, 1996, FOUNDRY ALLOYS MELTI, P381
108377    PUSKAR A, 1982, USE HIGH INTENSITY U, P56
108378 NR 10
108379 TC 0
108380 SN 1003-6326
108381 J9 TRANS NONFERROUS METAL SOC CH
108382 JI Trans. Nonferrous Met. Soc. China
108383 PD APR
108384 PY 2004
108385 VL 14
108386 IS 2
108387 BP 302
108388 EP 305
108389 PG 4
108390 SC Metallurgy & Metallurgical Engineering
108391 GA 816EQ
108392 UT ISI:000221093600019
108393 ER
108394 
108395 PT J
108396 AU Leng, GS
108397    Zhao, CJ
108398    He, BW
108399    Li, XY
108400 TI Inequalities for polars of mixed projection bodies
108401 SO SCIENCE IN CHINA SERIES A-MATHEMATICS
108402 DT Article
108403 DE convex body; mixed volume; projection body mixed projection body; polar
108404    of mixed projection body; John basis
108405 ID MINIMAL VOLUME-PRODUCT; CONVEX-BODIES; WIDTH; ZONOIDS
108406 AB In 1993 Lutwak established some analogs of the Brunn-Minkowsi
108407    inequality and the Aleksandrov-Fenchel inequality for mixed projection
108408    bodies. In this paper, following Lutwak, we give their polars forms.
108409    Further, as applications of our methods, we give a generalization of
108410    Pythagorean inequality for mixed volumes.
108411 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
108412    Binzhou Teachers Coll, Dept Math, Binzhou 256604, Peoples R China.
108413 RP Leng, GS, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
108414 EM gleng@mail.shu.edu.cn
108415 CR ALEXANDER R, 1988, GEOM DEDICATA, V28, P199
108416    BALL K, 1991, T AM MATH SOC, V327, P891
108417    BARTHE F, 1998, MATH ANN, V310, P685
108418    BETKE U, 1983, J LOND MATH SOC, V27, P525
108419    BLASCHKE W, 1949, VORLESUNGEN INTEGRAL
108420    BOLKER ED, 1969, T AM MATH SOC, V145, P323
108421    BONNESEN T, 1934, THEORIE KONVEXEN KOR
108422    BOURGAIN J, 1988, LECT NOTES MATH, V1317, P250
108423    BRANNEN NS, 1996, MATHEMATIKA 2, V43, P255
108424    CHAKERIAN GD, 1967, T AM MATH SOC, V129, P26
108425    CHAKERIAN GD, 1997, T AM MATH SOC, V349, P1811
108426    FIREY WJ, 1960, MATH SCAND, V8, P168
108427    GOODEY PR, 1993, HDB CONVEX GEOMETRY, V326, P1297
108428    GORDON Y, 1988, P AM MATH SOC, V104, P273
108429    HARDY GH, 1934, INEQUALITIES
108430    KAWASHIMA, 1991, GEOM DEDICATA, V38, P73
108431    KUTWAK E, 1990, GEOM DEDICATA, V33, P51
108432    LENG GS, 2001, SCI CHINA SER A, V44, P837
108433    LUTWAK E, 1975, P AM MATH SOC, V53, P435
108434    LUTWAK E, 1985, T AM MATH SOC, V287, P91
108435    LUTWAK E, 1986, T AM MATH SOC, V294, P487
108436    LUTWAK E, 1988, ADV MATH, V71, P232
108437    LUTWAK E, 1990, P LOND MATH SOC, V60, P365
108438    LUTWAK E, 1993, T AM MATH SOC, V339, P901
108439    MARTINI H, 1984, BEITRAGE ALGEBRA GEO, V18, P75
108440    REISNER S, 1986, MATH Z, V192, P339
108441    REN DL, 1988, INTRO INTEGRAL GEOME
108442    RICHARD J, 1995, GEOMETRIC TOMOGRAPHY
108443    ROGERS CA, 1965, SETIONS PROJECTION C, V24, P99
108444    SCHNEIDER R, 1982, B LOND MATH SOC, V14, P549
108445    SCHNEIDER R, 1983, ZONOIDS RELATED TOPI, P296
108446    SCHNEIDER R, 1993, BRUNN MINKOWSKI THEO
108447    STANLEY RP, 1981, J COMB THEORY A, V31, P56
108448    VITALE RA, 1991, ANN APPL PROBAB, V1, P293
108449    WITSENHAUSEN HS, 1978, MATHEMATIKA, V25, P13
108450    YANG L, 1986, ACTA MATH SINICA, V6, P802
108451    ZHANG JZ, 1981, ACTA MATH SINICA, V24, P481
108452 NR 37
108453 TC 0
108454 SN 1006-9283
108455 J9 SCI CHINA SER A
108456 JI Sci. China Ser. A-Math.
108457 PD APR
108458 PY 2004
108459 VL 47
108460 IS 2
108461 BP 175
108462 EP 186
108463 PG 12
108464 SC Mathematics, Applied; Mathematics
108465 GA 816NX
108466 UT ISI:000221117700002
108467 ER
108468 
108469 PT J
108470 AU Shi, W
108471    Li, XY
108472    Dong, H
108473 TI Preliminary investigation into the load bearing capacity of ion beam
108474    surface modified UHMWPE
108475 SO JOURNAL OF MATERIALS SCIENCE
108476 DT Article
108477 ID MOLECULAR-WEIGHT POLYETHYLENE; IMPLANTATION
108478 C1 Shanghai Univ, Sch Mat & Engn, Shanghai 200072, Peoples R China.
108479    Univ Birmingham, Sch Engn, Dept Met & Mat, Birmingham B15 2TT, W Midlands, England.
108480 RP Shi, W, Shanghai Univ, Sch Mat & Engn, Shanghai 200072, Peoples R China.
108481 CR ANDERS A, 2000, HDB PLASMA IMMERSION
108482    DONG H, 1999, SURF COAT TECH, V111, P29
108483    HUTCHINGS R, 1991, P 7 INT C SURF WASH, P15
108484    SHI W, 2001, THESIS U BIRMINGHAM
108485    SHI W, 2001, WEAR 1, V250, P544
108486    TOTH A, 2000, SURF INTERFACE ANAL, V30, P434
108487    TUROS A, 2003, VACUUM, V70, P201
108488    WILLIAMS DB, 1996, TRANSMISSION ELECT M, P353
108489 NR 8
108490 TC 1
108491 SN 0022-2461
108492 J9 J MATER SCI
108493 JI J. Mater. Sci.
108494 PD MAY 1
108495 PY 2004
108496 VL 39
108497 IS 9
108498 BP 3183
108499 EP 3186
108500 PG 4
108501 SC Materials Science, Multidisciplinary
108502 GA 816HC
108503 UT ISI:000221100000033
108504 ER
108505 
108506 PT J
108507 AU Fang, XM
108508    Fan, X
108509    Tang, YF
108510    Chen, JH
108511    Lub, JC
108512 TI Liquid chromatography/quadrupole time-of-flight mass spectrometry for
108513    determination of saxitoxin and decarbamoylsaxitoxin in shellfish
108514 SO JOURNAL OF CHROMATOGRAPHY A
108515 DT Article
108516 DE shellfish poisoning; saxitoxin; decarbamoylsaxitoxin
108517 ID POISONING TOXINS; PRECHROMATOGRAPHIC OXIDATION; FLUORESCENCE DETECTION;
108518    HPLC; PSP
108519 AB Saxitoxin (STX) and decarbamoylsaxitoxin (dcSTX) were determined by
108520    liquid chromatography with quadrupole time-of-flight mass spectrometry
108521    (Q-TOF MS). A shellfish tissue was extracted with 0.1 mol/l HCl under
108522    ultrasonication, and cleanup of extract was accomplished by solid-phase
108523    extraction with a C 18 cartridge. Chromatographic separation was
108524    carried out on a C 18 column (150 mm x 2.1 mm, 3.5 mum) with gradient
108525    elution of MeOH-H2O (20:80) containing 0.05% heptafluorobutyric acid
108526    and MeOH-H2O (15:85) containing 0.05% acetic acid. The protonated
108527    molecule [M + H](+) ions at m/z 257 for dcSTX and 300 for STX were
108528    selected in precursor ion scanning for Q-TOF MS in the positive
108529    electrospray ionizaion mode. Average recoveries and relative standard
108530    deviations, by analyzing samples spiked at a level of 0.1, 0.8 or 1.6
108531    mug/g, were 84-92 and 8-14%, respectively. Identification of the
108532    presence of the toxins in shellfish tissues was based on the structural
108533    information offered by Q-TOF MS. (C) 2004 Elsevier B.V. All rights
108534    reserved.
108535 C1 Shanghai Exit Entry Inspect & Quarantine Bur, Ctr Anim Plant & Food Inspect & Quarantine, Shanghai 200135, Peoples R China.
108536    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
108537 RP Fang, XM, Shanghai Exit Entry Inspect & Quarantine Bur, Ctr Anim Plant
108538    & Food Inspect & Quarantine, 1208 Minsheng Rd, Shanghai 200135, Peoples
108539    R China.
108540 EM fangxm@shciq.gov.cn
108541 CR *AOAC, 1995, 95908 AOAC
108542    *CHIN IMP EXP COMM, 1995, SNT00011995 CHIN IMP
108543    BOYER GL, 1996, 5 CAN WORKSH HARM MA, P1
108544    DAHLMANN J, 2003, J CHROMATOGR A, V94, P45
108545    HASHIMOTO T, 2002, J FOOD HYG SOC JPN, V43, P144
108546    ITO K, 2003, TOXICON, V41, P291
108547    JAIME E, 2001, J CHROMATOGR A, V929, P43
108548    LAGOS N, 1999, TOXICON, V37, P1359
108549    LAWRENCE JF, 1991, J ASSOC OFF ANA CHEM, V74, P404
108550    LAWRENCE JF, 2001, J AOAC INT, V84, P1099
108551    LEHANE L, 2000, PARALYTIC SHELLFISH
108552    OIKAWA H, 2002, TOXICON, V40, P1593
108553    QUILLIAM MA, 1996, APPL LC MS ENV CHEM, P427
108554    VALE P, 2001, TOXICON, V39, P561
108555    YU RC, 1998, CHROMATOGRAPHIA, V48, P671
108556 NR 15
108557 TC 2
108558 SN 0021-9673
108559 J9 J CHROMATOGR A
108560 JI J. Chromatogr. A
108561 PD MAY 21
108562 PY 2004
108563 VL 1036
108564 IS 2
108565 BP 233
108566 EP 237
108567 PG 5
108568 SC Chemistry, Analytical; Biochemical Research Methods
108569 GA 816II
108570 UT ISI:000221103200019
108571 ER
108572 
108573 PT J
108574 AU Shi, ZJ
108575    Fan, C
108576    Cao, WG
108577    Tang, XH
108578 TI A convenient synthesis and structures analysis of multi substituted
108579    benzene by alkanes containing fluorine and other groups
108580 SO CHINESE JOURNAL OF ANALYTICAL CHEMISTRY
108581 DT Article
108582 DE multi substituted benzenes; structures analysis; nuclear magnetic
108583    resonance; infrared spectroscopy; mass spectroscopy
108584 ID ACYCLIC PRECURSORS; FACILE SYNTHESIS
108585 AB A group of multi substituted benzenes was prepared via intramolecular
108586    Wittig reaction of a kind of long chain phosphonic yelides. The
108587    products were analysis by H-1 nuclear magnetic resonance (NMR), C-13
108588    NMR, infrared, mass spectrometry and element analysis. The reaction
108589    paths and mechanism were also discussed.
108590 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
108591 RP Shi, ZJ, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
108592 CR CAO WG, 1997, J FLUORINE CHEM, V83, P21
108593    DING WY, 1987, TETRAHEDRON LETT, V28, P81
108594    DING WY, 1992, SYNTHESIS-STUTTGART, P635
108595    DING WY, 1993, CHINESE J CHEM, V11, P81
108596    DING WY, 1993, J CHEM SOC P1, P855
108597    DING WY, 1995, CHINESE J CHEM, V13, P468
108598    FAN C, 2001, CHINESE J MAGNETIC R, V18, P383
108599    NING YC, 2000, STRUCTURE IDENTIFICA, P47
108600 NR 8
108601 TC 1
108602 SN 0253-3820
108603 J9 CHINESE J ANAL CHEM
108604 JI Chin. J. Anal. Chem.
108605 PD FEB
108606 PY 2004
108607 VL 32
108608 IS 2
108609 BP 161
108610 EP 165
108611 PG 5
108612 SC Chemistry, Analytical
108613 GA 815ER
108614 UT ISI:000221026100008
108615 ER
108616 
108617 PT J
108618 AU Guo, GY
108619    Chen, YL
108620 TI Preparation and characterization of a novel zirconia precursor
108621 SO CERAMICS INTERNATIONAL
108622 DT Article
108623 DE precursor; spectroscopy; X-ray methods; thermal properties; zirconia
108624 ID ACETIC-ACID; STRETCHING FREQUENCIES; THERMAL-DECOMPOSITION; ACETATE
108625    GELS; COMPLEXES; CRYSTALLIZATION; BEHAVIOR; MONOMERS; DIMERS; WATER
108626 AB A novel zirconium oxy-hydroxy-acetate was synthesized from zirconium
108627    oxychloride and acetic acid solution by a simple metalorganic
108628    precipitation process. On the basis of differential thermal,
108629    thermogravimetric, and elemental analyses of the precipitation complex,
108630    it could be described as Zr4O3(OH)(7)(CH3COO)(3).5H(2)O, which was
108631    further confirmed by its infrared spectra and X-ray diffraction
108632    measurements. A tentative assignment was made for each band in the
108633    infrared spectrum of the zirconium-oxy-hydroxyacetate. and the
108634    assignments discordant with those in the literature proposed for some
108635    bands. The structure development in the precipitating complex and its
108636    pyrolysis products was investigated as a function of the heat
108637    processing temperatures, showing that the zirconium oxy-hydroxv-acetate
108638    could yield a zirconia comparable to that formed from zirconium acetate
108639    solution by the other processes in the literature. The present process
108640    offers distinct advantages in terms of time- and energy-saving and
108641    environmental friendliness. (C) 2003 Elsevier Ltd and Techna S.r.l. All
108642    rights reserved.
108643 C1 Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Shanghai 200030, Peoples R China.
108644    Shanghai Univ, Coll Chem & Chem Engn, Shanghai 200072, Peoples R China.
108645 RP Guo, GY, Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Shanghai 200030,
108646    Peoples R China.
108647 CR ALCOCK NW, 1976, J CHEM SOC DA, P2238
108648    BALMER ML, 1992, J AM CERAM SOC, V75, P946
108649    BARRACLOUGH CG, 1959, J CHEM SOC, P3552
108650    BERRY FJ, 1999, J SOLID STATE CHEM, V145, P394
108651    BRUSAU EV, 1999, J SOLID STATE CHEM, V143, P174
108652    BURNEAU A, 2000, PHYS CHEM CHEM PHYS, V2, P5020
108653    COLTHUP NB, 1990, INTRO INFRARED RAMAN
108654    COTTON FA, 1972, ADV INORGANIC CHEM
108655    DEACON GB, 1980, COORDIN CHEM REV, V33, P227
108656    GEICULESCU AC, 1999, J SOL-GEL SCI TECHN, V16, P243
108657    GEICULESCU AC, 2000, J SOL-GEL SCI TECHN, V17, P25
108658    GENIN F, 2001, PHYS CHEM CHEM PHYS, V3, P932
108659    GUO GY, 1991, J MATER SCI, V26, P3511
108660    GUO GY, 1992, J AM CERAM SOC, V75, P1294
108661    HOWARD WA, 1997, J ORGANOMET CHEM, V528, P95
108662    JANA S, 1997, J SOL-GEL SCI TECHN, V9, P227
108663    KAKLHANA M, 1983, J PHYS CHEM-US, V87, P2526
108664    KOMISSAROVA LN, 1966, RUSS J INORG CHEMN, V11, P2035
108665    KOMMISAROVA LN, 1963, RUSS J INORG CHEM, V8, P56
108666    LIU DW, 1988, J APPL PHYS, V64, P1413
108667    NAKAMOTO K, 1997, INFRARED RAMAN SPECT
108668    PARKIN G, 1998, PROGR INORGANIC CHEM, P1
108669    PAUL RC, 1976, AUST J CHEM, V29, P1605
108670    POWERS DA, 1973, INORG CHEM, V12, P2721
108671    PROZOROVSKAYA L, 1967, RUSS J INORG CHEM, V12, P2553
108672    SAMDI A, 1993, J EUR CERAM SOC, V12, P353
108673    SILVERSTEIN RM, 1991, SPECTROMETRIC IDENTI
108674    SMITH BC, 1998, INFRARED SPECTRAL IN
108675    STRAUGHAN BP, 1986, SPECTROCHIM ACTA A, V42, P451
108676    TURI L, 1993, J PHYS CHEM-US, V97, P12197
108677 NR 30
108678 TC 0
108679 SN 0272-8842
108680 J9 CERAM INT
108681 JI Ceram. Int.
108682 PY 2004
108683 VL 30
108684 IS 3
108685 BP 469
108686 EP 475
108687 PG 7
108688 SC Materials Science, Ceramics
108689 GA 815HQ
108690 UT ISI:000221033800020
108691 ER
108692 
108693 PT J
108694 AU Sheng, DF
108695    Cheng, CJ
108696    Fu, MF
108697 TI Generalized variational principles of the viscoelastic body with voids
108698    and their applications
108699 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
108700 DT Article
108701 DE viscoelastic solid with void; variational integral method; generalized
108702    variational principle; generalized potential energy principle;
108703    Timoshenko beam
108704 AB From the Boltzmann's constitutive law of viscoelastic materials and the
108705    linear theory of elastic materials with voids, a constitutive model of
108706    generalized force fields for viscoelastic solids with voids was given.
108707    By using the variational integral method, the convolution-type
108708    functional was given and the corresponding generalized variational
108709    principles and potential energy principle of viscoelastic solids with
108710    voids were presented. It can be shown that the variational principles
108711    correspond to the differential equations and the initial and boundary
108712    conditions of viscoelastic body with voids. As an application, a
108713    generalized variational principle of viscoelastic Timoshenko beams with
108714    damage was obtained which corresponds to the differential equations of
108715    generalized motion and the initial and boundary conditions of beams.
108716    The variational principles provide a way for solving problems of
108717    viscoelastic solids with voids.
108718 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
108719    Nanchang Univ, Inst Civil Engn, Grad Sch Engn Mech, Nanchang 330029, Peoples R China.
108720 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
108721    Shanghai 200072, Peoples R China.
108722 EM shengdf@eyou.com
108723    chjcheng@yc.shu.edu.cn
108724 CR CHENG CJ, 1998, INT J SOLIDS STRUCT, V35, P4491
108725    CHENG CJ, 2002, ACTA MECH SOLIDA SIN, V23, P90
108726    CHIEN WZ, 1980, VARIATIONAL METHODS
108727    CHIEN WZ, 1985, GEN VARIATIONAL PRIN
108728    COWIN SC, 1983, J ELASTICITY, V13, P125
108729    GURTIN ME, 1964, ARCHS RATION MECH AN, V16, P34
108730    LIANG LF, 1985, J HARBIN SHIPBUILDIN, V6, P86
108731    LUO E, 1987, SCI CHINA SER A, V17, P936
108732    LUO E, 1990, ACTA MECH SINICA, V22, P484
108733    LUO E, 1999, SCI CHINA SER A, V29, P81
108734    UO ZD, 1994, THEORY MAT ANISOTROP
108735 NR 11
108736 TC 1
108737 SN 0253-4827
108738 J9 APPL MATH MECH-ENGL ED
108739 JI Appl. Math. Mech.-Engl. Ed.
108740 PD APR
108741 PY 2004
108742 VL 25
108743 IS 4
108744 BP 381
108745 EP 389
108746 PG 9
108747 SC Mathematics, Applied; Mechanics
108748 GA 816UJ
108749 UT ISI:000221134500003
108750 ER
108751 
108752 PT J
108753 AU Dai, WW
108754    Jin, GQ
108755    Zhang, XL
108756    Zhao, WK
108757 TI Partial Abstracts of East China Symposium of Biochemistry & Molecular
108758    Biology - 2003 (Part II) - Abstracts
108759 SO ACTA BIOCHIMICA ET BIOPHYSICA SINICA
108760 DT Article
108761 C1 Inst Naut Med, Nantong Med Coll, Nantong 226001, Peoples R China.
108762    Shanghai TCM, Res Inst Gerontol, Shanghai 200032, Peoples R China.
108763    Shanghai Univ, Dept Biochem, TCM, Shanghai 200041, Peoples R China.
108764    Suzhou Univ, Dept Biochem & Mol, Suzhou 215007, Peoples R China.
108765    Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem & Cell Biol, Key Lab Proteom, Shanghai 200031, Peoples R China.
108766    Hiroshima Univ, Dept Mol Biochem, Hiroshima 7390024, Japan.
108767    Fujian Normal Univ, Coll Bioengn, Fuzhou 350007, Peoples R China.
108768    Chinese Acad Agr Sci, Sericultural Res Inst, Minist Agr, Key Lab Silkworm Biotechnol, Zhenjiang 212018, Peoples R China.
108769    Chinese Acad Sci, Inst Biochem & Cell Biol, Shanghai 200031, Peoples R China.
108770    Univ Sci & Technol China, Dept Mol Biol & Cell Biol, Hefei 230027, Peoples R China.
108771 RP Dai, WW, Inst Naut Med, Nantong Med Coll, Nantong 226001, Peoples R
108772    China.
108773 NR 0
108774 TC 0
108775 SN 0582-9879
108776 J9 ACTA BIOCHIM BIOPHYS SINICA
108777 JI Acta Biochim. Biophys. Sin.
108778 PD FEB
108779 PY 2004
108780 VL 36
108781 IS 2
108782 BP 163
108783 EP 167
108784 PG 5
108785 SC Biochemistry & Molecular Biology; Biophysics
108786 GA 815WY
108787 UT ISI:000221073600012
108788 ER
108789 
108790 PT J
108791 AU Zhang, ML
108792    Xia, YB
108793    Wang, LJ
108794    Shen, HJ
108795 TI Response of chemical vapor deposition diamond detectors to X-ray
108796 SO SOLID STATE COMMUNICATIONS
108797 DT Article
108798 DE chemical vapor deposition diamond; X-ray; radiation detector
108799 ID PARTICLE DETECTOR; FILMS
108800 AB The outstanding properties of diamond, Such as radiation hardness. high
108801    carrier mobility, high hand gap and breakdown field, distinguish it as
108802    a good candidate for radiation detectors. The detector's performance is
108803    strongly limited by the concentration of defects (grain boundaries
108804    and/or impurities) in chemical vapor deposition (CVD) diamond. We
108805    report the response of freestanding CVD diamond with a thickness of 300
108806    mum and area of 2 x 2 cm(2) synthesized by a hot filament chemical
108807    vapor deposition (HFCVD) technique, to 5.9 keV X-ray radiation from a
108808    Fe-55 Source. The linear l-V characteristics indicate that CVD diamond
108809    has good ohmic contacts. This detector also shows good results Such as
108810    dark-current Of 10(-8) A, photocurrent of 10(-6) A. energy resolution
108811    <0.4%. and a high ratio of signal to noise. (C) 2004 Elsevier Ltd. All
108812    rights reserved.
108813 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
108814 RP Zhang, ML, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples
108815    R China.
108816 EM zhamilong@hotmail.com
108817 CR ADAM W, 2003, NUCL INSTRUM METH A, V514, P79
108818    BEETZ CP, 1991, IEEE T NUCL SCI, V38, P107
108819    BEHNKE T, 1998, DIAM RELAT MATER, V7, P1553
108820    FOULON F, 1994, IEEE T NUCL SCI, V41, P927
108821    KOSLOV SF, 1975, IEEE T NUCL SCI, V22, P160
108822    KOZLOV SF, 1975, IEEE T NUCL SCI, V22, P160
108823    KOZLOV SF, 1988, CARBON, V26, P345
108824    NAVA F, 1979, IEEE T NUCL SCI, V26, P308
108825    VATNITSKY S, 1993, PHYS MED BIOL, V38, P173
108826    VATNITSKY SM, 1993, RADIAT PROT DOSIM, V47, P515
108827    ZHANG ML, 2003, DIAM RELAT MATER, V12, P1544
108828 NR 11
108829 TC 5
108830 SN 0038-1098
108831 J9 SOLID STATE COMMUN
108832 JI Solid State Commun.
108833 PD MAY
108834 PY 2004
108835 VL 130
108836 IS 6
108837 BP 425
108838 EP 428
108839 PG 4
108840 SC Physics, Condensed Matter
108841 GA 814XF
108842 UT ISI:000221006700013
108843 ER
108844 
108845 PT J
108846 AU Fu, JL
108847    Chen, LQ
108848 TI Perturbation of symmetries of rotational relativistic Birkhoffian
108849    systems and its inverse problem
108850 SO PHYSICS LETTERS A
108851 DT Article
108852 DE Lie symmetry; perturbation of symmetry; adiabatic invariants;
108853    rotational relativistic Birkhoffian mechanics; inverse problem
108854 ID ADIABATIC INVARIANT; EQUILIBRIUM STATE; DYNAMICS; STABILITY
108855 AB This Letter investigates the perturbation of symmetries and adiabatic
108856    invariants for the rotational relativistic Birkhoffian systems. The
108857    Pfaff-Birkhoff principle, equation of motion and equation of small
108858    disturbance are established. Lie symmetries, laws of conservations,
108859    symmetrical perturbations and adiabatic invariants are presented, based
108860    on the invariance of differential equations under infinitesimal
108861    transformations. The inverse problems are also discussed for the
108862    perturbation of the symmetries of these systems. The connection is
108863    demonstrated between the symmetrical perturbations of rotational
108864    relativistic Birkhoffian systems and those of classical rotational
108865    Birkhoffian systems. Finally, an example is discussed to further
108866    illustrate the applications. (C) 2004 Elsevier B.V. All rights reserved.
108867 C1 Shangqiu Teachers Coll, Dept Phys, Shangqui 476000, Peoples R China.
108868    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
108869 RP Fu, JL, Shangqiu Teachers Coll, Dept Phys, Shangqui 476000, Peoples R
108870    China.
108871 EM sqfujingli@163.com
108872    lqchen@online.sh.cn
108873 CR AGUIRRE M, 1988, J MATH PHYS, V29, P9
108874    BIRGERS JM, 1917, ANN PHYS, V52, P195
108875    BIRKHOFF GD, 1927, DYNAMICAL SYSTEMS
108876    BULANOV SV, 1992, NUCL FUSION, V32, P1531
108877    CARMELI M, 1985, FDN PHYS, V15, P173
108878    CARMELI M, 1985, FDN PHYSICS, V15, P889
108879    CARMELI M, 1985, FOUND PHYS, V15, P1019
108880    CARMELI M, 1985, INT THEOR PHYS, V25, P89
108881    CHEN XW, 2000, ACTA MECH SINICA, V16, P282
108882    CHEN XW, 2000, CHINESE PHYS, V9, P721
108883    CIZEWSKI JA, 1978, PHYS REV LETT, V40, P167
108884    DJUKIC DS, 1981, INT J NONLINEAR MECH, V16, P489
108885    FU JL, 2001, ACTA PHYS SIN-CH ED, V50, P2289
108886    FU JL, 2002, ACTA PHYS SINICA, V51, P2983
108887    FU JL, 2003, ACTA PHYS SIN-CH ED, V52, P256
108888    FU JL, 2003, ACTA PHYS SIN-CH ED, V52, P2664
108889    FU JL, 2003, CHINESE PHYS, V12, P351
108890    FUCHS JC, 1991, J MATH PHYS, V32, P1703
108891    KRUSKAL M, 1962, J MATH PHYS, V3, P806
108892    LUO SK, 2001, ACTA PHYS SIN-CH ED, V50, P383
108893    MEI FX, 1985, INT J NONLINEAR MECH, V36, P817
108894    MULLER J, 1995, J CHEM PHYS, V103, P4985
108895    NEMOV VV, 1999, PHYS PLASMAS, V6, P122
108896    NOTTE J, 1993, PHYS REV LETT, V70, P3900
108897    SANTILLI RM, 1983, FDN THEORETICAL MECH, V2
108898    ZHAO YY, 1996, ACTA MECH SINICA, V28, P207
108899 NR 26
108900 TC 2
108901 SN 0375-9601
108902 J9 PHYS LETT A
108903 JI Phys. Lett. A
108904 PD APR 12
108905 PY 2004
108906 VL 324
108907 IS 2-3
108908 BP 95
108909 EP 103
108910 PG 9
108911 SC Physics, Multidisciplinary
108912 GA 812KL
108913 UT ISI:000220838300001
108914 ER
108915 
108916 PT J
108917 AU Shi, YM
108918    Cao, XF
108919    Chen, H
108920 TI Spin-polarized transmission through a mesoscopic ring with a magnetic
108921    impurity
108922 SO PHYSICS LETTERS A
108923 DT Article
108924 DE spin-polarized AB oscillations; mesoscopic ring; magnetic impurity
108925 ID AHARONOV-BOHM OSCILLATIONS; QUANTUM-DOT; PHASE; INTERFERENCE; DETECTOR
108926 AB Based on one-dimensional quantum waveguide theory we study the symmetry
108927    of the spin-polarized transmission through an Aharonov-Bohm ring with a
108928    magnetic impurity, in which the spin-exchange interaction between an
108929    incident electron and the magnetic impurity leads to spin-flip
108930    scattering. It shows that for some special Fermi energies, both spin-up
108931    and spin-down transmission coefficients are symmetric under the flux
108932    reversal in the spin-flip scattering process and the spin-polarized
108933    conductance also is symmetric. In above case, AB oscillations of
108934    spin-down transmission and reflection are perfectly identical. The
108935    effect of the exchange interaction strength and Fermi wave vector on
108936    transmission behavior of spin-state electrons is examined. (C) 2004
108937    Elsevier B.V. All rights reserved.
108938 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
108939    Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
108940 RP Shi, YM, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
108941 EM ymshi@mail.shu.edu.cn
108942 CR BRUDER C, 1996, PHYS REV LETT, V76, P114
108943    BUKS E, 1998, NATURE, V391, P871
108944    CHEN H, 1998, INT J MOD PHYS B, V12, P1792
108945    DEO PS, 1996, MOD PHYS LETT B, V10, P787
108946    HACKENBROICH G, 1996, PHYS REV LETT, V76, P110
108947    JOSHI SK, 2001, PHYS REV B, V64
108948    PRINZ G, 1995, PHYS TODAY, V28, P58
108949    PRINZ GA, 1998, SCIENCE, V282, P1660
108950    SCHUSTER R, 1997, NATURE, V385, P417
108951    SHI YM, 1999, J SHANGHAI UNIV, V3, P339
108952    SHI YM, 1999, PHYS REV B, V60, P10949
108953    SHI YM, 2002, PHYS LETT A, V299, P4101
108954    SPRINZAK D, 2000, PHYS REV LETT, V84, P5820
108955    WOLF SA, 2001, SCIENCE, V294, P1488
108956    WU J, 1998, PHYS REV LETT, V80, P1952
108957    XIA JB, 1992, PHYS REV B, V45, P3593
108958    YACOBY A, 1995, PHYS REV LETT, V74, P4047
108959    YEYATI AL, 1995, PHYS REV B, V52, P14360
108960 NR 18
108961 TC 1
108962 SN 0375-9601
108963 J9 PHYS LETT A
108964 JI Phys. Lett. A
108965 PD APR 19
108966 PY 2004
108967 VL 324
108968 IS 4
108969 BP 331
108970 EP 336
108971 PG 6
108972 SC Physics, Multidisciplinary
108973 GA 813AB
108974 UT ISI:000220878900012
108975 ER
108976 
108977 PT J
108978 AU Hu, XF
108979    Wu, HX
108980    Hu, X
108981    Fang, SQ
108982    Wu, CJ
108983 TI Impact of urbanization on Shanghai's soil environmental quality
108984 SO PEDOSPHERE
108985 DT Article
108986 DE contamination; heavy metals; soil environmental quality; urbanization
108987 ID LAND-USE; URBAN; HEALTH
108988 AB Heavy metal contents in the soils in the Baoshan District of Shanghai
108989    were monitored to evaluate the risk of soil environmental quality
108990    degradation due to rapid urbanization and to reveal the ways of heavy
108991    metal accumulation in soil during rapid urban sprawl. It was found that
108992    the soils in this district were commonly contaminated by Pb, Zn and Cd.
108993    Evaluated with a geo-accumulation index (I-geo), the rate of Pb
108994    contamination in soils was 100% with 59% of these graded as
108995    moderate-severe or severe; Zn contamination reached 59% with 6% graded
108996    as moderate-severe or severe; and Cd contamination was over 50%, with
108997    one site graded as moderate-severe and another severe-extremely severe.
108998    Metal contamination of soils around the Shanghai metropolis was mainly
108999    attributed to traffic, industrial production, wastewater irrigation and
109000    improper disposal of solid wastes. Because of continuing urbanization,
109001    the cultivated land around the metropolis should be comprehensively
109002    planned and carefully managed. Also the soil environmental quality of
109003    vegetable production bases in this area should be monitored regularly,
109004    with vegetables to be grown selected according to the degrees and types
109005    of soil contamination.
109006 C1 Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China.
109007 RP Hu, XF, Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072,
109008    Peoples R China.
109009 EM xfhu@mail.shu.edu.cn
109010 CR *NSPRC, 1995, GB156181995 NSPRC
109011    *SEPB, 2002, SHANGH ENV B
109012    *UN, 1993, WORLD URB PROSP 1992
109013    *USDA NRCS NSSC, 1996, SOIL SURV LAB METH M, P217
109014    GURJAR BR, 1996, REGUL TOXICOL PHAR 1, V24, P141
109015    LIAO JF, 2001, ECOLOGIC SCI, V20, P91
109016    LU Y, 2002, ACTA SCI CIRCUMSTANT, V22, P156
109017    MCDADE TW, 2001, SOC SCI MED, V53, P55
109018    MULLER G, 1969, GEOJOURNAL, V2, P108
109019    NAKAMURA T, 2001, LANDSCAPE URBAN PLAN, V53, P1
109020    PANG JH, 1994, J PLANT RESOURCES EN, V8, P20
109021    PANG JH, 1995, TROPICAL SUBTROPICAL, V4, P47
109022    REN WW, 2003, ENVIRON INT, V29, P649
109023    SHEN H, 1990, ACT PEDOLOGICA SINIC, V27, P104
109024    TSO CP, 1996, ATMOS ENVIRON, V30, P507
109025    YOU YA, 1999, ELECT POWER ENV PROT, V15, P5
109026    ZHAN JQ, 1998, GUANGDONG TRACE ELEM, V5, P5
109027    ZHANG JE, 1997, SOILS, V4, P189
109028    ZHANG MK, 2003, PEDOSPHERE, V13, P173
109029    ZHOU GD, 1992, ACTA AGR SHANGHAI, V8, P87
109030 NR 20
109031 TC 0
109032 SN 1002-0160
109033 J9 PEDOSPHERE
109034 JI Pedosphere
109035 PD MAY
109036 PY 2004
109037 VL 14
109038 IS 2
109039 BP 151
109040 EP 158
109041 PG 8
109042 SC Agriculture, Soil Science
109043 GA 813LS
109044 UT ISI:000220909200003
109045 ER
109046 
109047 PT J
109048 AU Fan, S
109049    Shi, XC
109050    Yan, F
109051    Zhang, HZ
109052    Zhao, ZX
109053 TI A systematics to investigate the (n, alpha) cross section with energy
109054    below 20 MeV based on the evaporation and exciton models
109055 SO NUCLEAR SCIENCE AND ENGINEERING
109056 DT Article
109057 ID 14.5 MEV NEUTRONS; SEMIEMPIRICAL SYSTEMATICS; EXCITATION-FUNCTIONS;
109058    STATISTICAL-MODEL; N,ALPHA REACTIONS; N,P; ISOTOPES; NUCLEI; SPECTRA;
109059    TRENDS
109060 AB To simplify the calculation, some assumptions are considered in the
109061    current work. The preequilibrium emission in the first step in the
109062    equilibrium process, which is characterized by exciton n = 3 and "never
109063    come back, " is considered in the preequilibrium emission process; the
109064    alpha emission is only completed with the neutron and proton emission,
109065    and the second particle emission is neglected. Under those assumptions,
109066    a semiempirical systematics of the cross section for the (n, a)
109067    reaction is obtained on the basis of the evaporation and exciton models
109068    for the energies ranging up to 20 Me V Within the nuclide mass region
109069    of 23 less than or equal to A < 209, a strong dependence on (N - Z +
109070    1)/A and the incident neutron has been observed. The predictions of the
109071    semiempirical systematics with the global parameter of the excitation
109072    functions for the (n,alpha) reaction are in good agreement with the
109073    experimental data.
109074 C1 Inst Atom Energy, Beijing 102413, Peoples R China.
109075    Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
109076    Hunan City Univ, Dept Phys, Yiyang 413049, Peoples R China.
109077    N China Elect Power Univ, Beijing 102206, Peoples R China.
109078    NW Univ Xian, Dept Phys, Xian 710006, Peoples R China.
109079 RP Fan, S, Inst Atom Energy, Beijing 102413, Peoples R China.
109080 EM sfan@iris.ciae.ac.cn
109081 CR ALLAN DL, 1961, NUCL PHYS, V24, P274
109082    BAYHURST BP, 1961, J INORG NUCL CHEM, V23, P173
109083    BELGAID M, 1998, NUCL INSTRUM METH B, V142, P463
109084    CAHTERJEE A, 1963, NUCL PHYS, V49, P686
109085    CHATTERJEE A, 1963, NUCL PHYS, V47, P511
109086    CHATTERJEE A, 1964, NUCL PHYS, V60, P273
109087    CHITTENDEN DM, 1961, PHYS REV, V122, P860
109088    COLEMAN RF, 1959, P PHYS SOC LOND, V73, P215
109089    DOCZI R, 1998, NUCL SCI ENG, V129, P164
109090    DOSTROVSKY I, 1959, PHYS REV, V116, P683
109091    EDER G, 1972, Z PHYS, V253, P335
109092    FAN S, 1996, NUCL SCI ENG, V124, P349
109093    FORREST RA, 1986, 12419 AERER HARW LAB
109094    FU CY, 1980, ORNLTM7402
109095    GADIOLI E, 1976, PHYS REV C, V14, P573
109096    GARDNER DG, 1962, NUCL PHYS, V29, P373
109097    GARDNER DG, 1964, NUCL PHYS, V60, P49
109098    GARDNER DG, 1967, NUCL PHYS A, V96, P121
109099    GRALLERT A, 1993, INDCNDS286131
109100    GRIFFIN JJ, 1966, PHYS REV LETT, V17, P478
109101    HAUSER W, 1952, PHYS REV, V87, P366
109102    HERMAN M, EMPIRE 2 MODULAR SYS
109103    HUSAIN L, 1970, PHYS REV           C, V1, P1233
109104    IKEDA Y, 1988, JAERI1312
109105    IWAMOTO A, 1982, PHYS REV C, V26, P1821
109106    KASUGAI Y, 1992, JAERIM93046277
109107    KHUUKHENKHUU G, 2002, J NUCL SCI TECH S, V2, P782
109108    KONOBEYEV AY, 1995, NUCL INSTRUM METH B, V103, P15
109109    KONOBEYEV AY, 1996, NUCL INSTRUM METH B, V108, P233
109110    LU D, 1970, PHYS REV C, V1, P358
109111    LU H, 1989, INDCCPR16
109112    LU WD, 1971, PHYS REV C, V4, P1173
109113    MANNAN A, 1988, PHYS REV C, V38, P630
109114    MOLLA NI, 1977, NUCL PHYS A, V283, P269
109115    PAULSEN A, 1979, NUCL SCI ENG, V72, P113
109116    QAIM SM, 1975, NUCL PHYS A, V242, P317
109117    QAIM SM, 1984, NUCL SCI ENG, V88, P143
109118    RUBBIA C, 1995, CERNAT9545ET
109119    SARAF SK, 1991, NUCL SCI ENG, V107, P365
109120    SIGG RA, 1976, NUCL SCI ENG, V60, P235
109121    STROHAL P, 1962, NUCL PHYS, V30, P49
109122    STRUWE W, 1974, NUCL PHYS A, V222, P605
109123    YOUNG PG, 1977, LA6947
109124    ZHANG J, 1980, NUCL SCI ENG, V114, P55
109125    ZHANG J, 1992, Z PHYS A, V344, P251
109126    ZHAO Z, 1988, NUCL SCI ENG, V99, P367
109127 NR 46
109128 TC 0
109129 SN 0029-5639
109130 J9 NUCL SCI ENG
109131 JI Nucl. Sci. Eng.
109132 PD MAY
109133 PY 2004
109134 VL 147
109135 IS 1
109136 BP 63
109137 EP 72
109138 PG 10
109139 SC Nuclear Science & Technology
109140 GA 814ZB
109141 UT ISI:000221011500005
109142 ER
109143 
109144 PT J
109145 AU Luo, J
109146    Zhai, QJ
109147    Zhao, P
109148    Qin, XB
109149 TI Liquid structure of pure iron by X-ray diffraction
109150 SO JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
109151 DT Article
109152 DE pure iron; liquid structure; X-ray diffraction
109153 ID ALLOYS
109154 AB The liquid structure of pure iron at 1540, 1560 and 1580degreesC was
109155    studied by X-ray diffraction. The results show that near the melting
109156    point there is a medium-range order structure that fades away with the
109157    increasing temperature. The average nearest distance of atoms is almost
109158    independent of the melts temperature, but the average coordination
109159    number, the atom cluster size and the atom number in an atom cluster
109160    all decrease with the increasing temperature of the melt. Near the
109161    melting point there are a lot of atom clusters in the pure iron melt.
109162    The atom cluster of pure iron has the body-centered cubic lattices,
109163    which are kept from the solid state. And the body-centered cubic
109164    lattices connect into network by occupying a same edge. The atoms in
109165    the surrounding of the atom clusters are arranged disorderly.
109166 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
109167    Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China.
109168    Cent Iron & Steel Res Inst, Beijing 100081, Peoples R China.
109169    Shandong Univ, Key Lab State Educ Minist Liquid Struct & Hered M, Jinan 250061, Peoples R China.
109170 RP Zhai, QJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
109171    China.
109172 EM qjzhai@mail.shu.edu.cn
109173 CR BIAN XF, 1999, ACTA METALL SIN, V35, P19
109174    BIAN XF, 1999, HEREDITY CASTING MET, P1
109175    CERVINKA L, 1998, J NONCRYST SOLIDS, V232, P1
109176    HUANG SS, 1987, SCI METEOROLOGICA SI, P1
109177    KLUG HP, 1986, XRAY DIFFRACTION PRO, P513
109178    LUX B, 1983, METALLURGY CAST IRON, P1
109179    MARET M, 1989, J PHYS-PARIS, V50, P295
109180    QIN JY, 1998, CHINESE SCI BULL, V43, P1445
109181    QIN JY, 1998, SCI CHINA SER E, V41, P182
109182    WANG HR, 2000, CHINESE SCI BULL, V45, P1501
109183    WASEDA Y, 1980, STRUCTURE NONCRYSTAL, P27
109184    WASEDA Y, 1995, JPN J APPL PHYS PT 1, V34, P4124
109185    XU SS, 1986, DEV XRAY DIFFRACTION, P103
109186 NR 13
109187 TC 0
109188 SN 1005-8850
109189 J9 J UNIV SCI TECHNOL BEIJING
109190 JI J. Univ. Sci. Technol. Beijing
109191 PD APR
109192 PY 2004
109193 VL 11
109194 IS 2
109195 BP 161
109196 EP 164
109197 PG 4
109198 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
109199    Engineering; Mining & Mineral Processing
109200 GA 813NG
109201 UT ISI:000220913200015
109202 ER
109203 
109204 PT J
109205 AU Ho, SL
109206    Fei, MR
109207    Cheng, KWE
109208    Wong, HC
109209 TI An auto-tuning algorithm for the IRBF network of brushless DC motor
109210 SO IEEE TRANSACTIONS ON MAGNETICS
109211 DT Article
109212 DE auto-tuning; brushless dc motor; finite element; integrated radial
109213    basis function (IRBF) neural network
109214 AB The integrated radial basis function (IRBF) network has been reported
109215    as an efficient algorithm to study the performance of brushless dc
109216    motors. However, such an algorithm cannot be implemented readily since
109217    it is difficult to auto-tune or even to find the undetermined
109218    coefficients in the integrated RBF network. In this paper, a novel
109219    auto-tuning algorithm that can effectively guarantee the automatic
109220    implementation of the integrated RBF network of a brushless dc motor is
109221    reported.
109222 C1 Hong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
109223    Shanghai Univ, Dept Automat, Shanghai 200072, Peoples R China.
109224    Hong Kong Polytech Univ, Ind Ctr, Hong Kong, Hong Kong, Peoples R China.
109225 RP Ho, SL, Hong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong,
109226    Peoples R China.
109227 EM eeslho@polyu.edu.hk
109228    mrfei888@x263.net
109229    eekwcheng@polyu.edu.hk
109230    ichewong@polyu.edu.hk
109231 CR FEI M, 1999, P IEEE PEDS      JUL, P1108
109232    HO SL, 1997, IEEE T MAGN, V33, P2265
109233    HO SL, 2002, IEEE T MAGN 1, V38, P1033
109234    VAS P, 1996, P IEEE IAS PELS WORK, P55
109235 NR 4
109236 TC 0
109237 SN 0018-9464
109238 J9 IEEE TRANS MAGN
109239 JI IEEE Trans. Magn.
109240 PD MAR
109241 PY 2004
109242 VL 40
109243 IS 2
109244 PN Part 2
109245 BP 1168
109246 EP 1171
109247 PG 4
109248 SC Engineering, Electrical & Electronic; Physics, Applied
109249 GA 813CA
109250 UT ISI:000220884000160
109251 ER
109252 
109253 PT J
109254 AU Silber-Li, ZH
109255    Tan, YP
109256    Weng, PF
109257 TI A microtube viscometer with a thermostat
109258 SO EXPERIMENTS IN FLUIDS
109259 DT Article
109260 AB The viscometer presented in this paper is suitable for measuring the
109261    viscosity of liquids in micro-litre quantities. It consists of a
109262    micro-flow experimental system with a thermostat. Using the
109263    measurements of the flow rates and pressure drops of a liquid passing
109264    through a microtube, the liquid's viscosity can be calculated from on
109265    Hagen-Poiseuille theory. After calibration, the viscometer was used to
109266    measure viscosities of deionized water and ethyl alcohol at
109267    temperatures ranging from 0 to 40 degreesC. For both test liquids, the
109268    relative deviation of the measured values from those quoted in the
109269    literature (obtained using other viscometers) was less than 2.6%. The
109270    relative uncertainty of the experimental system was reduced to +/-1.8%
109271    using the relative measuring method. Due to the micro-scale of the test
109272    section, only a micro-litre quantity of liquid is needed for a test;
109273    this is a potential advantage for measurement of bio-liquid viscosities.
109274 C1 Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R China.
109275    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
109276 RP Silber-Li, ZH, Chinese Acad Sci, Inst Mech, LNM, 15 Bei Si Huan Xi Lu,
109277    Beijing 100080, Peoples R China.
109278 EM lili@lnm.imech.ac.cn
109279 CR GADELHAK M, 1999, J FLUID ENG-T ASME, V121, P5
109280    HOLMAN JP, 1984, EXPT METHODS ENG, P549
109281    JIANG XN, 1995, TECH DIGEST TRANSDUC, V2, P317
109282    KREITH F, 2001, PRINCIPLES HEAT TRAN, P700
109283    LANDAU LD, 1998, FLUID MECH, P539
109284    LI ZH, 2002, ACTA MECH SINICA, V34, P432
109285    LI ZH, 2002, INT J NONLINEAR SCI, V3, P577
109286    MALA GM, 1999, INT J HEAT FLUID FL, V20, P142
109287    PFAHLER J, 1990, J SENSORS ACTORS A, V21, P431
109288    QUINN TJ, 1983, TEMPERATURE
109289    SHARP KV, 2001, MEMS HDB, V6, P1
109290    VANWAZER JR, 1963, VISCOSITY FLOW MEASU, P406
109291    WEAST RC, 1983, CRC HDB CHEM PHYSICS, F38
109292 NR 13
109293 TC 0
109294 SN 0723-4864
109295 J9 EXP FLUID
109296 JI Exp. Fluids
109297 PD APR
109298 PY 2004
109299 VL 36
109300 IS 4
109301 BP 586
109302 EP 592
109303 PG 7
109304 SC Engineering, Mechanical; Mechanics
109305 GA 813WN
109306 UT ISI:000220937300007
109307 ER
109308 
109309 PT J
109310 AU Ye, ZM
109311    Kettle, R
109312    Li, LY
109313 TI Analysis of cold-formed zed-purlins partially restrained by steel
109314    sheeting
109315 SO COMPUTERS & STRUCTURES
109316 DT Article
109317 DE cold-formed; purlin; steel; thin-walled; strength; restrained;
109318    sheeting; bending
109319 ID GENERALIZED BEAM THEORY
109320 AB This paper presents an analysis model for cold-formed purlin-sheeting
109321    systems subjected to wind uplift loading in which the restraint of the
109322    sheeting to the purlin is taken into account by using two springs
109323    representing the translational and rotational restraints provided by
109324    the sheeting. The model yields a set of three differential equations
109325    corresponding to one torsion and two bending equations. The set of
109326    equations is solved by means of trigonometric series. The influence of
109327    spring stiffness and fixing position of the purlin and sheeting on the
109328    stresses resulted in the cross-section of the purlin is discussed. The
109329    results obtained from this study not only highlight the influence of
109330    the sheeting restraints on the results of stresses but also can be used
109331    as an input to the finite strip code for carrying out the linear
109332    elastic buckling analysis of the sections. (C) 2004 Elsevier Ltd. All
109333    rights reserved.
109334 C1 Aston Univ, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands, England.
109335    Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R China.
109336 RP Li, LY, Aston Univ, Sch Engn & Appl Sci, Aston Triangle, Birmingham B4
109337    7ET, W Midlands, England.
109338 EM l.y.li@aston.ac.uk
109339 CR *BRIT STAND I, 1987, BS5950 BRIT STANC I
109340    *BRIT STAND I, 1996, EUROCODE 3 DES STEEL
109341    BRADFORD MA, 2000, J CONSTR STEEL RES, V53, P183
109342    DAVIES JM, 1994, J CONSTR STEEL RES, V31, P187
109343    DAVIES JM, 1994, J CONSTR STEEL RES, V31, P221
109344    DAVIES JM, 2000, J CONSTR STEEL RES, V55, P267
109345    HANCOCK G, 1997, STEEL CONSTRUCTION, V15, P2
109346    KITIPORNCHAI S, 1980, J STRUCTURAL DIVISIO, V106, P941
109347    LEACH P, 1993, STRUCTURAL ENG, V71, P250
109348    MOORE DB, 1988, LOAD TESTS FULL SCAL
109349    RHODES J, 1993, SCI PUBLICATION, V89
109350    SCHAFER B, 2001, CUFSM VERSION 2
109351    TOMA T, 1994, J CONSTR STEEL RES, V31, P149
109352    TRAHAIR NS, 1993, FLEXURAL TORSIONAL B
109353    TRAHAIR NS, 1998, BEHAV DESIGN STEEL S
109354    WALKER AC, 1975, DESIGN ANAL COLD FOR
109355    WILLIAMS FW, 1987, J CONSTR STEEL RES, V7, P133
109356 NR 17
109357 TC 4
109358 SN 0045-7949
109359 J9 COMPUT STRUCT
109360 JI Comput. Struct.
109361 PD APR
109362 PY 2004
109363 VL 82
109364 IS 9-10
109365 BP 731
109366 EP 739
109367 PG 9
109368 SC Computer Science, Interdisciplinary Applications; Engineering, Civil
109369 GA 814WX
109370 UT ISI:000221005900004
109371 ER
109372 
109373 PT J
109374 AU You, JL
109375    Jiang, GC
109376    Hou, HY
109377    Chen, H
109378    Wu, YQ
109379    Xu, KD
109380 TI An ab-initio calculation of Raman spectra of binary sodium silicates
109381 SO CHINESE PHYSICS LETTERS
109382 DT Article
109383 ID PHASE-TRANSITION; BULK COMPOSITION; TEMPERATURE; GLASSES; MELTS;
109384    SPECTROSCOPY; BEHAVIOR
109385 AB Raman spectra of binary sodium silicates are calculated by
109386    self-consistent field (SCF) molecular orbital ab initio calculation of
109387    the quantum chemical method with several poly silicon-oxygen
109388    tetrahedral model clusters when both the basis sets of 6-31 G and 6-31
109389    G(d) are applied. The symmetric stretching vibrational frequency of
109390    non-bridging oxygen in a high frequency range and its Raman optical
109391    activity and scattering cross section are deduced and analysed. The
109392    correlation between this vibrational Raman shift and its microscopic
109393    environment of the silicon-oxygen tetrahedron is found based on
109394    interior stress of configuration, which depends on the connecting
109395    topology of adjacent silicon-oxygen tetrahedra (SiOT). A newly
109396    established empirical stress index of tetrahedron is introduced to
109397    elucidate the above relationship.
109398 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
109399 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai
109400    200072, Peoples R China.
109401 EM jlyou@163.com
109402 CR AMOS RD, 1986, CHEM PHYS LETT, V124, P376
109403    ANDREI ME, 1999, J NONCRYST SOLIDS, V253, P95
109404    FLUKIGER P, 2000, MOLEKEL 4 0
109405    FRIEDRICH L, 1985, STRUCTURAL CHEM SILI
109406    FRISCH MJ, 1986, J CHEM PHYS, V84, P531
109407    FRUKAWA T, 1981, J CHEM PHYS, V75, P3226
109408    GILLET P, 1991, J GEOPHYS RES-SOLID, V96, P11805
109409    HARRIS RK, 1980, J CHEM SOC FARADAY T, P393
109410    IGUCHI Y, 1981, CAN METALL Q, V20, P51
109411    MAEKAWA H, 1991, J NON-CRYST SOLIDS, V127, P53
109412    MATSON DW, 1983, J NON-CRYST SOLIDS, V58, P323
109413    MCMILLAN P, 1984, AM MINERAL, V69, P622
109414    MYSEN BO, 1990, J GEOPHYS RES-SOLID, V95, P15733
109415    MYSEN BO, 1994, CONTRIB MINERAL PETR, V117, P1
109416    POLAVARAPU PL, 1990, J PHYS CHEM-US, V94, P8106
109417    RICHET P, 1996, PHYS CHEM MINER, V23, P157
109418    SALJE E, 1986, PHYS CHEM MINER, V13, P340
109419    SHARMA SK, 1978, CARNEGIE I WASHINGTO, V77, P649
109420    UMESAKI N, 1993, J MATER SCI, V28, P3473
109421    WANG Z, 1991, EOS T AM GEOPHYS RES, V92, P8116
109422    XU PC, 1996, RAMAN SPECTROSCOPY G, CH7
109423    XUEDONG G, 1998, J INORG CHEM, V14, P175
109424    YOU JL, 2001, CHINESE PHYS LETT, V18, P991
109425    YOU JL, 2001, J NON-CRYST SOLIDS, V282, P125
109426    YOU JL, 2002, CHINESE PHYS LETT, V19, P205
109427 NR 25
109428 TC 1
109429 SN 0256-307X
109430 J9 CHIN PHYS LETT
109431 JI Chin. Phys. Lett.
109432 PD APR
109433 PY 2004
109434 VL 21
109435 IS 4
109436 BP 640
109437 EP 643
109438 PG 4
109439 SC Physics, Multidisciplinary
109440 GA 811ZW
109441 UT ISI:000220810800014
109442 ER
109443 
109444 PT J
109445 AU Zhang, ZJ
109446    Pan, ZH
109447 TI Three-dimensional measurement with use of a single camera
109448 SO APPLIED OPTICS
109449 DT Article
109450 ID MACHINE VISION METROLOGY; CALIBRATION; PARAMETERS
109451 AB A new, to our knowledge, measurement technique that uses a single image
109452    of a handheld probe on known points, to measure geometric features of
109453    an object, is discussed in detail. A new method is also proposed to
109454    calculate three-dimensional coordinates of points on the object
109455    relative to a reference. Furthermore, the validity of the proposed
109456    measuring system is confirmed by experiments. (C) 2004 Optical Society
109457    of America.
109458 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
109459 RP Zhang, ZJ, Shanghai Univ, Dept Commun Engn, 149 Yanchang Rd, Shanghai
109460    200072, Peoples R China.
109461 EM yuyj@sh163.net
109462 CR BIEN Z, 1991, ROBOTICA, V19, P265
109463    CHANG YL, 1993, PATTERN RECOGN, V26, P75
109464    CHEN NY, 1980, IEEE T AUTOM CONT AC, V25, P1207
109465    EIAN J, 2002, J NEUROSCI METH, V120, P65
109466    HARALICK RM, 1989, PATTERN RECOGN, V22, P225
109467    HORAUD R, 1989, COMPUT VISION GRAPH, V47, P33
109468    IONVENITTI P, 1996, OPT ENG, V35, P1496
109469    LENZ RK, 1988, IEEE T PATTERN ANAL, V10, P713
109470    LINNAINMAA S, 1988, IEEE T PATTERN ANAL, V10, P634
109471    RAY LP, 1996, P IEEE INT C ROB AUT, P408
109472    SAFAEERAD R, 1992, IEEE T ROBOTIC AUTOM, V8, P624
109473    SALVI J, 2002, PATTERN RECOGN, V35, P1617
109474    SHAH S, 1996, PATTERN RECOGN, V29, P1775
109475    SIDAHMED MA, 1980, IEEE T INSTRUM MEAS, V39, P79
109476    TSAI RY, 1987, IEEE J ROBOTIC AUTOM, V3, P323
109477 NR 15
109478 TC 0
109479 SN 0003-6935
109480 J9 APPL OPT
109481 JI Appl. Optics
109482 PD APR 20
109483 PY 2004
109484 VL 43
109485 IS 12
109486 BP 2449
109487 EP 2455
109488 PG 7
109489 SC Optics
109490 GA 813BN
109491 UT ISI:000220882700010
109492 ER
109493 
109494 PT J
109495 AU Zheng, B
109496    Bapat, RB
109497 TI Characterization of generalized inverses by a rank equation
109498 SO APPLIED MATHEMATICS AND COMPUTATION
109499 DT Article
109500 DE rank equation; outer inverse; core-nilpotent decomposition; singular
109501    value decomposition
109502 ID REPRESENTATION; MATRIX
109503 AB If A is a nonsingular matrix of order n and if B = C = I-n, then the
109504    inverse of A is the unique matrix X such that
109505    rank ((A)(C) (B)(X)) = rank(A).
109506    In this paper, we generalize this fact to any matrix A of dimension m x
109507    n over the complex field to obtain analogous results for outer inverses
109508    of A. The converse problem is also considered in the sense that B and C
109509    are characterized when A(d), A(k), A((1.2)), A((1.2.3)) and A((1.2.4))
109510    are solutions to this equation, respectively. This contributes to
109511    certain recent results in the literature, including that obtained by
109512    GroB [Linear Algebra Appl. 289 (1999) 127]. (C) 2003 Elsevier Inc. All
109513    rights reserved.
109514 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
109515    Indian Stat Inst, New Delhi 110016, India.
109516 RP Zheng, B, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
109517 EM dzhengbing@eastday.com
109518 CR BAPAT RB, 2000, LINEAR ALGEBRA LINEA
109519    BENISRAEL A, 1974, GENERALIZED INVERSES
109520    CHEN YL, 2000, LINEAR ALGEBRA APPL, V308, P85
109521    FIEDLER M, 1993, LINEAR ALGEBRA APPL, V179, P129
109522    GROSS J, 1999, LINEAR ALGEBRA APPL, V289, P127
109523    RAO CR, 1972, SANKHYA A, V34, P5
109524    THOME N, 2003, APPL MATH COMPUT, V141, P471
109525    WEI Y, 1998, LINEAR ALGEBRA APPL, V29, P87
109526    WEI YM, 1996, SIAM J MATRIX ANAL A, V17, P744
109527 NR 9
109528 TC 0
109529 SN 0096-3003
109530 J9 APPL MATH COMPUT
109531 JI Appl. Math. Comput.
109532 PD MAR 30
109533 PY 2004
109534 VL 151
109535 IS 1
109536 BP 53
109537 EP 67
109538 PG 15
109539 SC Mathematics, Applied
109540 GA 814TV
109541 UT ISI:000220997900005
109542 ER
109543 
109544 PT J
109545 AU Sheng, GF
109546    Cheng, CJ
109547 TI Generalized variational principles for viscoelastic thin and thick
109548    plates with damage
109549 SO ACTA MECHANICA SOLIDA SINICA
109550 DT Article
109551 DE viscoelastic materials with damage; convolution-type functional;
109552    generalized variational principle; thin plate and thick plate;
109553    dynamical behavior
109554 AB From the constitutive model with generalized force fields for a
109555    viscoelastic body with damage, the differential equations of motion for
109556    thin and thick plates with damage are derived under arbitrary boundary
109557    conditions. The convolution-type functionals for the bending of
109558    viscoelastic thin and thick plates with damage are presented, and the
109559    corresponding generalized variational principles are given. From these
109560    generalized principles, all the basic equations of the displacement and
109561    damage variables and initial and boundary conditions can be deduced. As
109562    an example; we compare the difference between the dynamical properties
109563    of plates with and without damage and consider the effect of damage on
109564    the dynamical properties of plates.
109565 C1 Shanghai Univ, Dept Mech, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
109566    Nanchang Univ, Inst Civil Engn, Inst Engn Mech, Nanchang 330029, Peoples R China.
109567 RP Sheng, GF, Shanghai Univ, Dept Mech, Shanghai Inst Appl Math & Mech,
109568    Shanghai 200072, Peoples R China.
109569 CR CHENG CJ, 1998, INT J SOLIDS STRUCT, V35, P4491
109570    CHENG CJ, 2001, INT J SOLIDS STRUCT, V38, P6627
109571    CHENG CJ, 2002, ACTA MECH SOLIDA SIN, V23, P190
109572    CHIEN WZ, 1980, VARIATIONAL METHODS
109573    CHIEN WZ, 1985, GEN VARIATIONAL PRIN
109574    COWIN SC, 1983, J ELASTICITY, V13, P125
109575    GURTIN ME, 1964, ARCHS RATION MECH AN, V16, P34
109576    LUO E, 1987, SCI CHINA SER A, P936
109577    LUO E, 1990, ACTA MECH SINICA, V22, P484
109578    LUO E, 1999, SCI CHINA SER A, V29, P851
109579    MINDLIN RD, 1951, J APPLIED MECHANICS, V18, P31
109580    REISSNER E, 1945, J APPL MECH, V12, P69
109581 NR 12
109582 TC 1
109583 SN 0894-9166
109584 J9 ACTA MECH SOLIDA SINICA
109585 JI Acta Mech. Solida Sin.
109586 PD MAR
109587 PY 2004
109588 VL 17
109589 IS 1
109590 BP 65
109591 EP 73
109592 PG 9
109593 SC Materials Science, Multidisciplinary; Mechanics
109594 GA 813OI
109595 UT ISI:000220916000009
109596 ER
109597 
109598 PT J
109599 AU Niu, JW
109600    Zhong, SS
109601 TI A CPW-fed broadband slot antenna with linear taper
109602 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
109603 DT Article
109604 DE slot antenna; CPW; broadband; linear taper
109605 ID MICROSTRIP ANTENNA
109606 AB A new coplanar waveguide (CPW)-fed broadband printed slot antenna is
109607    presented. The impedance bandwidth is greatly increased by using a
109608    linear taper. The test antenna's impedance bandwidth of -10-dB return
109609    loss reaches 40% with low cross-polarization level. The impedance
109610    characteristics and radiation patterns of the slot antenna with
109611    different sizes of tapers art presented. The simulated results agree
109612    well with the measured ones. (C) 2004 Wiley Periodicals, Inc.
109613 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
109614 RP Niu, JW, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
109615    Peoples R China.
109616 CR CHEN JS, 2003, MICROW OPT TECHN LET, V37, P243
109617    GARCIA SS, 1999, IEEE T ANTENN PROPAG, V47, P58
109618    GIRARD T, 1998, ELECTRON LETT, V34, P226
109619    HUANG CY, 2000, IEEE T ANTENN PROPAG, V48, P328
109620    HUANG TF, 1999, IEEE T ANTENN PROPAG, V47, P1560
109621    LIN YD, 1997, IEEE T ANTENN PROPAG, V45, P305
109622    MIAO M, 2000, MICROW OPT TECHN LET, V25, P206
109623    SOLIMAN EA, 1999, ELECTRON LETT, V35, P514
109624 NR 8
109625 TC 1
109626 SN 0895-2477
109627 J9 MICROWAVE OPT TECHNOL LETT
109628 JI Microw. Opt. Technol. Lett.
109629 PD MAY 5
109630 PY 2004
109631 VL 41
109632 IS 3
109633 BP 218
109634 EP 221
109635 PG 4
109636 SC Engineering, Electrical & Electronic; Optics
109637 GA 811KR
109638 UT ISI:000220771300020
109639 ER
109640 
109641 PT J
109642 AU Zhang, ML
109643    Xia, YB
109644    Wang, LJ
109645    Zhang, WL
109646 TI A suitable material for the substrate of micro-strip gas chamber
109647 SO HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION
109648 DT Article
109649 DE MSGC detector; DLC film; electronically conducting material; charge
109650    pile-up effect
109651 ID AMORPHOUS-CARBON; FILMS; ANODE; GLASS
109652 AB Micro-strip Gas Chamber (MSGC) used as a position sensitive detector
109653    has perfect performances in the detection of nuclear irradiations.
109654    However, it encounters a severe problem, that is, positive charge
109655    accumulation which can be avoided by reducing the surface resistivity
109656    of insulating substrate. So, diamond-like carbon (DLC) film is coated
109657    on D263 glass to modify its electrical properties as substrate for
109658    MSGC. Raman spectroscopy demonstrates that DLC film is of sp(3) (sigma
109659    bonding) and sp(2) bonding (pi bonding), and therefore it is a type of
109660    electronically conducting material. It also reveals that the film
109661    deposited on D263 glass possesses very large Of SP3 content and
109662    consequently is a high quality DLC film. I-V plots indicate that
109663    samples with DLC film enjoy very steady and suitable resistivities in
109664    the range of 10(9)-10(12) Omega.cm. C-F characteristics also show that
109665    samples coated by DLC film have low and stable capacitance with
109666    frequency. These excellent performances of the new material, DLC
109667    film/D263 glass, meet the optimum requirements of MSGC. DLC film/D263
109668    glass used as the substrate of MSGC should effectively avoid the charge
109669    pile-up effect and substrate instability and then improve its
109670    performances.
109671 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
109672 RP Zhang, ML, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples
109673    R China.
109674 CR BISHAI MR, 1997, NUCL INSTRUM METH A, V400, P233
109675    BOUHALI O, 1996, NUCL INSTRUM METH A, V378, P423
109676    CHARPAK G, 1968, NUCL INSTRUM METHODS, V62, P235
109677    CICOGNANI G, 1998, NUCL INSTRUM METH A, V416, P263
109678    MACK V, 1995, NUCL INSTRUM METH A, V367, P173
109679    MEENAKSHI V, 1996, MATER SCI FORUM, V223, P307
109680    NEMANICH RJ, 1977, SOLID STATE COMMUN, V23, P117
109681    OED A, 1988, NUCL INSTRUM METH A, V263, P351
109682    SCHMIDT S, 1994, NUCL INSTRUM METH A, V344, P558
109683    SHIMAKAWA K, 1989, PHYS REV B, V39, P7578
109684    TEO KBK, 2002, DIAM RELAT MATER, V11, P1086
109685    YU ZQ, 1996, HEP NP, V20, P678
109686    ZHANG ML, 2003, NUCL ELECT DETEC TEC, V23, P113
109687 NR 13
109688 TC 0
109689 SN 0254-3052
109690 J9 HIGH ENERGY PHYS NUCL PHYS-CH
109691 JI High Energy Phys. Nucl. Phys.-Chin. Ed.
109692 PD APR
109693 PY 2004
109694 VL 28
109695 IS 4
109696 BP 408
109697 EP 411
109698 PG 4
109699 SC Physics, Nuclear; Physics, Particles & Fields
109700 GA 812JH
109701 UT ISI:000220835300016
109702 ER
109703 
109704 PT J
109705 AU Tian, WW
109706    Wu, DH
109707    Zhang, LS
109708    Li, SL
109709 TI Modified integral-level set method for the constrained solving global
109710    optimization
109711 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
109712 DT Article
109713 DE constrained global optimization; integral-level set; convergence
109714 AB The constrained global optimization problem being considered, a
109715    modified integral-level set method was illustrated based on
109716    Chew-Zheng's paper on Integral Global Optimization and Wu's paper on
109717    Implementable Algorithm Convergence of Modified Integral-Level Set
109718    Method for Global Optimization Problem. It has two characters: 1) Each
109719    phase must construct a new function which has the same global optimal
109720    value as that of primitive objective function; 2) Comparing it with
109721    Zheng's method, solving level set procedure is avoided. An
109722    implementable algorithm also is given and it is proved that this
109723    algorithm is convergent.
109724 C1 Shanghai Univ, Sch Sci, Dept Math, Shanghai 200436, Peoples R China.
109725    Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China.
109726    Fudan Univ, Sch Management, Shanghai 200433, Peoples R China.
109727 RP Tian, WW, Shanghai Univ, Sch Sci, Dept Math, Shanghai 200436, Peoples R
109728    China.
109729 EM wwtian@mail.shu.edu.cn
109730 CR CHEW SH, 1988, LECT NOTES EC MATH S, V298
109731    HUA LG, 1978, APPL NUMBER THEORY N
109732    WU DH, 1998, J SHANGHAI U NATURAL, V4, P482
109733    WU DH, 1999, OR T, V3, P82
109734    WU DH, 2000, OR T, V4, P33
109735    WU DH, 2001, ACTA MATH APPL SINIC, V24, P100
109736    ZHANG LS, 1988, J COMPUTATIONAL MATH, V6, P375
109737    ZHANG LS, 1996, CHINESE J OPERATIONS, V15, P60
109738    ZHENG Q, 1978, ACTA MATH APPL SINIC, V2, P164
109739 NR 9
109740 TC 0
109741 SN 0253-4827
109742 J9 APPL MATH MECH-ENGL ED
109743 JI Appl. Math. Mech.-Engl. Ed.
109744 PD FEB
109745 PY 2004
109746 VL 25
109747 IS 2
109748 BP 202
109749 EP 209
109750 PG 8
109751 SC Mathematics, Applied; Mechanics
109752 GA 812PN
109753 UT ISI:000220851500009
109754 ER
109755 
109756 PT J
109757 AU Chen, H
109758    Lu, JH
109759    Liang, WQ
109760    Huang, YH
109761    Zhang, WJ
109762    Zhang, DB
109763 TI Purification of the recombinant hepatitis B virus core antigen (rHBcAg)
109764    produced in the yeast Saccharomyces cerevisiae and comparative
109765    observation of its particles by transmission electron microscopy (TEM)
109766    and atomic force microscopy (AFM)
109767 SO MICRON
109768 DT Review
109769 DE rHBcAg purification; Saccharomyces cerevisiae; rHBcAg (core) particles
109770    (capsids); transmission electron microscopy; atomic force microscopy;
109771    dimorphism
109772 ID ESCHERICHIA-COLI; EXPRESSION; CELLS
109773 AB Hepatitis B virus core antigen (HBcAg) gene (C gene) was expressed in
109774    Saccharomyces cerevisiae and the products (rHBcAg or core particles)
109775    were purified from a crude lysate of the yeast by three steps: Sephrose
109776    CL-4B chromatography, Sucrose step-gradient ultracentrifugation and
109777    CsCl-isopycnic ultracentrifugation. It has been observed that HBcAg was
109778    synthesized in yeast cells as a particle consisting of polypeptides
109779    with a molecular weight of 21.5 kDa (p21.5). Results of ELISA test and
109780    density analysis of CsCl-isopycnic ultracentrifugation indicated that
109781    the purified products (rHBcAg particles) with HBcAg antigenicity mainly
109782    located at the densities of 1.27 and 1.40 g ml(-1), respectively.
109783    Observation and analysis of the purified rHBcAg products by TEM
109784    indicated that rHBcAg peptides could mainly self-assemble into two size
109785    classes of core particles. The larger particles were similar to 30.1 nm
109786    and the smaller were similar to 21.5 nm in mean diameter. Further
109787    observation and analysis of the same rHBcAg (core) particles by AFM
109788    also indicated that rHBcAg (core) particles were similar to the native
109789    HBcAg (core) particles from infected human hepatocytes and mainly
109790    composed of two size classes of particles core. The larger particles
109791    were similar to 3 1.3 nm and the smaller were similar to 22.5 mn in
109792    mean diameter which was similar to the results obtained by TEM. All
109793    results from both TEM and AFM suggested that core particles (capsids)
109794    produced in S. cerevisiae possessed dimorphism. (C) 2004 Elsevier Ltd.
109795    All rights reserved.
109796 C1 Shanghai Jiao Tong Univ, Coll Life Sci & Biotechnol, Shanghai 200030, Peoples R China.
109797    Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China.
109798    Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.
109799    Shanghai Acad Agr Sci, Agro Biotech Res Ctr, Shanghai 201106, Peoples R China.
109800    Nanjing Univ, Dept Biol Sci & Technol, Nanjing 210093, Peoples R China.
109801 RP Chen, H, Shanghai Jiao Tong Univ, Coll Life Sci & Biotechnol, Shanghai
109802    200030, Peoples R China.
109803 EM dr.chenheng@163.com
109804    zdb30@hotmail.com
109805 CR BENEDIETE W, 2002, J VIROL METHOD, V102, P175
109806    COHEN BJ, 1982, NATURE, V296, P677
109807    CROWTHER RA, 1994, CELL, V77, P943
109808    EDMAN JC, 1981, NATURE, V291, P503
109809    FUJIYAMA A, 1983, NUCLEIC ACIDS RES, V11, P4601
109810    HILDITCH CM, 1990, J GEN VIROL, V71, P2755
109811    KENNEY JM, 1995, STRUCTURE, V3, P1009
109812    KUZNETSOV YG, 2001, J GEN VIROL 9, V82, P2025
109813    MILICH DR, 1997, J VIROL, V71, P2192
109814    MILICH DR, 1997, P NATL ACAD SCI USA, V94, P14648
109815    MIYANOHARA A, 1986, J VIROL, V59, P176
109816    NAITO M, 1997, RES VIROLOGY, V148, P299
109817    NASSAL M, 1993, TRENDS MICROBIOL, V1, P221
109818    ONODERA S, 1982, J MED VIROL, V10, P147
109819    PASEK M, 1979, NATURE, V282, P575
109820    SAMBROOK J, 1989, MOL CLONING LAB MANU
109821    SEIFER M, 1995, INTERVIROLOGY, V38, P47
109822    TAKAYUKI I, 1988, J BIOTECHNOL, V8, P149
109823    TOWBIN H, 1979, P NATL ACAD SCI USA, V76, P4350
109824    WILKINSON KJ, 1999, COLLOID SURFACE A, V155, P287
109825    WINGFIELD PT, 1995, BIOCHEMISTRY-US, V34, P4919
109826    WIZEMANN H, 1999, J VIROL METHODS, V77, P189
109827    WYNNE SA, 1999, MOL CELL, V3, P771
109828    YAMAGUCHI M, 1988, EUR J CELL BIOL, V47, P138
109829    YAMAGUCHI M, 1988, J ELECTRON MICROSC, V37, P337
109830    ZHOU SL, 1991, J VIROL, V65, P5457
109831    ZHOU SL, 1992, J VIROL, V66, P5393
109832    ZIEGLER U, 1998, FEBS LETT, V436, P179
109833 NR 28
109834 TC 1
109835 SN 0968-4328
109836 J9 MICRON
109837 JI Micron
109838 PY 2004
109839 VL 35
109840 IS 5
109841 BP 311
109842 EP 318
109843 PG 8
109844 SC Microscopy
109845 GA 810DC
109846 UT ISI:000220684000001
109847 ER
109848 
109849 PT J
109850 AU Li, L
109851    De Cooman, BC
109852    Wollants, P
109853    He, YL
109854    Zhou, XD
109855 TI Effect of aluminum and silicon on transformation induced plasticity of
109856    the TRIP steel
109857 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
109858 DT Article
109859 DE equilibrium composition; concentration profile; thermodynamic; kinetic
109860 ID REGULAR SOLUTION MODEL; RETAINED AUSTENITE; MECHANICAL-PROPERTIES;
109861    PHASES; SI
109862 AB With the sublattice model, equilibrium compositions of ferrite (alpha)
109863    and austenite (gamma) phases, as well as the volume percent of
109864    austenite (gamma) at 780degreesC in different TRIP steels were
109865    calculated. Concentration profiles of carbon, Mn, Al and Si in the
109866    steels were also estimated under the lattice fixed frame of reference
109867    so as to understand the complex mechanical behavior of TRIP steels
109868    after different isothermal bainitic transformation treatments. The
109869    effect of Si and Mn on transformation induced plasticity (TRIP) was
109870    discussed according to thermodynamic and kinetic analyses. It is
109871    recognized that Al also induces phase transformation in the steels but
109872    its TRIP effect is not as strong as that of Si.
109873 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
109874    State Univ Ghent, Lab Iron & Steelmaking, B-9052 Zwijnaarde, Belgium.
109875    Katholieke Univ Leuven, Dept MTM, B-3001 Heverlee, Belgium.
109876    Shanghai Baosteel Res Inst, Shanghai 201900, Peoples R China.
109877 RP Li, L, Shanghai Univ, Dept Mat Sci & Engn, 149 Yanchang Rd, Shanghai
109878    200072, Peoples R China.
109879 EM liling@sh163.net
109880 CR 1978, HDB HEAT TREATMENT, V4, A85
109881    AGREN J, 1992, ISIJ INT, V32, P291
109882    BALK SC, 2001, ISIJ INT, V41, P290
109883    CHEN HC, 1989, METALL TRANS A, V20, P437
109884    HILLERT M, 1970, ACTA CHEM SCAND, V24, P3618
109885    LIU SK, 1990, METALL TRANS A, V21, P1517
109886    MEYER MD, 1999, ISIJ INT, V39, P813
109887    SAKUMA Y, 1991, ISIJ INT, V31, P1348
109888    SUGIMOTO K, 1992, ISIJ INT, V32, P1311
109889    SUNDMAN B, 1981, J PHYS CHEM SOLIDS, V42, P297
109890    SUNDMAN B, 1985, CALPHAD, V9, P153
109891    ZACKAY VF, 1967, T AM SOC MET, V60, P252
109892 NR 12
109893 TC 0
109894 SN 1005-0302
109895 J9 J MATER SCI TECHNOL
109896 JI J. Mater. Sci. Technol.
109897 PD MAR
109898 PY 2004
109899 VL 20
109900 IS 2
109901 BP 135
109902 EP 138
109903 PG 4
109904 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
109905    Engineering
109906 GA 810LH
109907 UT ISI:000220705300002
109908 ER
109909 
109910 PT J
109911 AU Ni, JS
109912    Xu, H
109913    Zhu, MY
109914    Li, Q
109915    Zhou, BX
109916    Dong, YD
109917 TI Study on two-phase nanocrystalline Nd8.5Fe74Co5Cu1Nb1Zr3Cr1B6.5
109918    permanent magnet
109919 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
109920 DT Article
109921 DE Nd-Fe-B; nanocrystalline; melt-spinning; magnetic properties
109922 ID MELT-SPUN RIBBONS; ENHANCEMENT; REMANENCE; COMPOSITE
109923 AB Nd8.5Fe74Co5Cu1Nb1Zr3Cr1B6.5 bonded magnets were prepared by melt-spun
109924    and subsequent heat treatment. Magnetic properties of B-r = 0.68 T,
109925    H-J(c) = 716 kA/m, (BH)(max) = 77 kJ/m(3) were achieved. The addition
109926    of Cr element shows to be significantly advantageous in reducing grain
109927    size and increasing the intrinsic coercivity.
109928 C1 Shanghai Univ, Inst Math, Shanghai 200072, Peoples R China.
109929 RP Ni, JS, Shanghai Univ, Inst Math, Shanghai 200072, Peoples R China.
109930 EM nijiansen@163.com
109931 CR BILLONI OV, 1998, J MAGN MAGN MATER, V187, P371
109932    CHANG WC, 1996, IEEE T MAGN 2, V32, P4425
109933    CHANG WC, 1997, J APPL PHYS 2A, V81, P4453
109934    COEHOORN R, 1989, J MAGN MAGN MATER, V80, P101
109935    HIROSAWA S, 2002, J MAGN MAGN MATER, V239, P424
109936    JIANSEN NI, 2002, J CHINESE RARE EARTH, V20, P215
109937    JURCZYK M, 1998, J MAGN MAGN MATER, V185, P66
109938    KNELLER EF, 1991, IEEE T MAGN, V27, P3588
109939    PANAGIOTOPOULOS I, 1996, J APPL PHYS 2A, V79, P4827
109940    SCHREFL T, 1994, J APPL PHYS 2, V76, P7053
109941    XU H, 2001, NEW MAT SCI ENG 2000, P319
109942    YONEYAMA T, 1990, IEEE T MAGN, V26, P1963
109943 NR 12
109944 TC 0
109945 SN 1005-0302
109946 J9 J MATER SCI TECHNOL
109947 JI J. Mater. Sci. Technol.
109948 PD MAR
109949 PY 2004
109950 VL 20
109951 IS 2
109952 BP 142
109953 EP 144
109954 PG 3
109955 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
109956    Engineering
109957 GA 810LH
109958 UT ISI:000220705300004
109959 ER
109960 
109961 PT J
109962 AU Wang, LJ
109963    Xia, YB
109964    Zhang, WL
109965    Mang, ML
109966    Shi, WM
109967 TI Luminescent properties of porous Si passivated by diamond film and DLC
109968    film
109969 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
109970 DT Article
109971 DE porous Si; passivation; diamond film; diamond-like carbon film
109972 ID SILICON; PHOTOLUMINESCENCE
109973 AB Surface passivation methods for porous Si (PS) surfaces, i.e.,
109974    depositing diamond film or diamond-like carbon (DLC) film on PS
109975    surfaces, were attempted. Two emission bands, weak blue band and strong
109976    red band existed in the PL spectrum of diamond film coated on PS, were
109977    discovered by the photoluminescence measurements. The luminescent
109978    mechanism and stability were discussed. The results indicated that
109979    diamond film may stabilize the PL wavelength and intensity of PS, and
109980    therefore could become a promising passivation film of porous Si. The
109981    PL properties of PS coated by DLC films, including hydrogenated diamond
109982    like carbon (DLC:H) film and nitrogen doped DLC film (DLC:N) were also
109983    studied in this paper. The DLC films may stabilize the PL of PS, but
109984    the photoluminescent intensity was obviously weaker than that of
109985    diamond film coated PS.
109986 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
109987 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
109988    China.
109989 EM ljwang@mail.shu.edu.cn
109990 CR CANHAM LT, 1990, APPL PHYS LETT, V57, P1046
109991    CHEN HJ, 1996, ACTA PHYS SINICA, V45, P297
109992    GARDELIS S, 1994, J APPL PHYS, V76, P5327
109993    HADJZOUBIR N, 1994, APPL PHYS LETT, V65, P82
109994    JU JH, 2001, CHINESE J FUNC MAT, V32, P473
109995    JU JH, 2001, THESIS SHANGHAI I TE
109996    KANCMITSU Y, 1994, PHYS REV B, V49, P14732
109997    LI GB, 1996, ACTA PHYS SINICA, V45, P1232
109998    LI SJ, 1999, PHYSICS, V28, P195
109999    LIN VSY, 1997, SCIENCE, V278, P840
110000    LIU XB, 1997, ACTA PHYS SINICA, V46, P2059
110001    MULLER C, 1993, SCI SOC, V57, P111
110002    PETROVAKOCH V, 1992, APPL PHYS LETT, V61, P943
110003    PROKES SM, 1995, J APPL PHYS, V78, P2671
110004    TISCHLER MA, 1992, APPL PHYS LETT, V60, P639
110005    WANG LJ, 2000, DIAM RELAT MATER, V9, P1617
110006    WANG LJ, 2001, ACTA OPTICA SIN, V21, P753
110007    XIONG ZH, 2001, THIN SOLID FILMS, V388, P271
110008    ZHU DL, 2000, CHINESE J LOW TEMP P, V22, P241
110009 NR 19
110010 TC 1
110011 SN 1005-0302
110012 J9 J MATER SCI TECHNOL
110013 JI J. Mater. Sci. Technol.
110014 PD MAR
110015 PY 2004
110016 VL 20
110017 IS 2
110018 BP 145
110019 EP 148
110020 PG 4
110021 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
110022    Engineering
110023 GA 810LH
110024 UT ISI:000220705300005
110025 ER
110026 
110027 PT J
110028 AU Chen, WJ
110029    Wu, YY
110030    Shen, JN
110031 TI Effect of copper and bronze addition on corrosion resistance of alloyed
110032    316L stainless steel cladded on plain carbon steel by powder metallurgy
110033 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
110034 DT Article
110035 DE surface cladding; powder metallurgy; corrosion resistance
110036 ID ELECTROCHEMICAL CHARACTERIZATION; BEHAVIOR
110037 AB A sandwich structure with cladding alloyed 316L stainless steel on
110038    plain carbon steel was prepared by means of powder metallurgy (PM)
110039    processing. Electrolytic Cu and prealloyed bronze (95Cu wt pct, 5Sn wt
110040    pct) were added in different contents up to 15% into the surface
110041    cladded 316L layers and the effect of alloying concentrations on the
110042    corrosion resistance of the 316L cladding layers was studied. The
110043    corrosion performances of the cladding samples were studied by
110044    immersion tests and potentio-dynamic anodic polarization tests in H2SO4
110045    and FeCl3 solutions. Both 316L and alloyed 316L surface layers with 1.0
110046    mm depth produced by PM cladding had an effect to improve corrosion
110047    resistance in H2SO4 and FeCl3 solutions. Small Cu and bronze addition
110048    (4%) had a positive effect in H2SO4 and FeCl3 solutions. 4% Cu alloyed
110049    316L surface layer produced by PM cladding showed similar anodic
110050    polarization behaviour to the 316L cladding layer in H2SO4 and FeCl3
110051    solutions.
110052 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
110053    Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China.
110054 RP Chen, WJ, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
110055 EM cwjue1403@sohu.com
110056 CR CHEN W, 2001, POWDER METALL, V44, P309
110057    CHOE HC, 1999, SURF COAT TECH, V112, P299
110058    DATTA P, 2001, MATER CHEM PHYS, V67, P234
110059    DEFLORIAN F, 1992, WERKST KORROS, V43, P447
110060    FEDRIZZI L, 1990, P PM 90, V2, P319
110061    FEDRIZZI L, 1994, WERKST KORROS, V45, P264
110062    GOLD R, 1982, PRECIS MET       MAR, P31
110063    ITZHAK D, 1986, CORROS SCI, V26, P49
110064    JONES WE, 1981, POWDER METALL, V2, P101
110065    MCCAFFERTY E, 1986, J ELECTROCHEM SOC, V133, P1090
110066    MOLINARI A, 1989, MODERN DEV POWDER ME, V21, P313
110067    OTERO E, 1995, MATER CHARACT, V35, P145
110068    REEN OW, 1977, PRECIS MET       JUL, P38
110069    REINSHAGEN JH, 1992, ADV POWDER METALLURG, V5, P385
110070 NR 14
110071 TC 0
110072 SN 1005-0302
110073 J9 J MATER SCI TECHNOL
110074 JI J. Mater. Sci. Technol.
110075 PD MAR
110076 PY 2004
110077 VL 20
110078 IS 2
110079 BP 217
110080 EP 220
110081 PG 4
110082 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
110083    Engineering
110084 GA 810LH
110085 UT ISI:000220705300025
110086 ER
110087 
110088 PT J
110089 AU An, BL
110090    Gong, ML
110091    Cheah, KW
110092    Wong, WK
110093    Zhang, JM
110094 TI Synthesis, structure and photoluminescence of novel lanthanide
110095    (Tb(III), Gd(III)) complexes with 6-diphenylamine carbonyl 2-pyridine
110096    carboxylate
110097 SO JOURNAL OF ALLOYS AND COMPOUNDS
110098 DT Article
110099 DE optical materials; chemical synthesis; crystal structure; luminescence;
110100    thermal analysis
110101 ID INTRAMOLECULAR ENERGY TRANSFER; EUROPIUM COMPLEX; ELECTROLUMINESCENCE;
110102    LUMINESCENCE; DEVICES
110103 AB A novel organic ligand, 6-diphenylamine carbonyl 2-pyridine carboxylic
110104    acid (HDPAP), and the corresponding lanthanide complexes,
110105    tris(6-diphenylamine carbonyl 2-pyridine carboxylato) terbium(111)
110106    (Tb-DPAP) and tris(6-diphenylamine carbonyl 2-pyridine carboxylato)
110107    gadolinium(111) (Gd-DPAP) have been designed and synthesized. The
110108    crystal structure and photoluminescence of Tb-DPAP and Gd-DPAP have
110109    been studied. The results showed that the lanthanide complexes have
110110    electroneutral structures, and the solid terbium complex emits
110111    characteristic green fluorescence of Tb(111) ions at room temperature
110112    while the gadolinium complex emits the DPAP ligand phosphorescence. The
110113    lowest triplet level of DPAP ligand was calculated from the
110114    phosphorescence spectrum of Gd-DPAP in N,N-dimethyl formamide (DMF)
110115    dilute solution determined at 77 K, and the energy transfer mechanisms
110116    in the lanthanide complexes were discussed. The lifetimes of the D-5(4)
110117    levels of Tb3+ ions in the terbium complex were examined using
110118    time-resolved spectroscopy, and the values are 0.0153 +/- 0.0001 ms for
110119    solid Tb(DPAP)(3)(.)11.5H(2)O and 0.074 +/- 0.007 ms for 2.5 x 10(-5)
110120    mol/l Tb-DPAP ethanol solution. (C) 2003 Elsevier B.V. All rights
110121    reserved.
110122 C1 Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200436, Peoples R China.
110123    Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China.
110124    Hong Kong Baptist Univ, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
110125    Hong Kong Baptist Univ, Dept Chem, Hong Kong, Hong Kong, Peoples R China.
110126 RP An, BL, Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200436, Peoples R
110127    China.
110128 EM anbaolii@263.sina.com
110129    cesgml@zsu.edu.cn
110130 CR AN BL, 2002, J LUMIN, V99, P155
110131    CHEN GZ, 1990, FLUORESCENCE ANAL ME
110132    CROMER DT, 1992, INT TABLE XRAY CRYST, C
110133    DENHOVEN GNW, 1993, APPL PHYS LETT, V62, P3065
110134    FILIPESCU N, 1964, J PHYS CHEM-US, V68, P3324
110135    FRIEND RH, 1999, NATURE, V397, P121
110136    GAO XC, 1998, APPL PHYS LETT, V72, P2217
110137    HO PKH, 1999, SCIENCE, V285, P233
110138    KAWAMURA Y, 1999, APPL PHYS LETT, V74, P3245
110139    LI Q, 1998, ACTA CHIM SINICA, V56, P52
110140    LIANG CJ, 2000, APPL PHYS LETT, V76, P67
110141    NORTH ACT, 1968, ACTA CRYSTALLOGR A, V24, P351
110142    RYU CK, 1995, APPL PHYS LETT, V66, P2496
110143    SANO T, 2000, J MATER CHEM, V10, P157
110144    SATO S, 1970, B CHEM SOC JPN, V43, P1955
110145    SHELDRICK GM, 1995, SHELXTL VERSION 5
110146    SHELDRICK GM, 1997, SHELXS 97 PROGORAM C
110147    YANG YS, 1994, J ALLOY COMPD, V207, P112
110148    ZHAO DX, 2000, THIN SOLID FILMS, V363, P208
110149 NR 19
110150 TC 4
110151 SN 0925-8388
110152 J9 J ALLOYS COMPOUNDS
110153 JI J. Alloy. Compd.
110154 PD APR 14
110155 PY 2004
110156 VL 368
110157 IS 1-2
110158 BP 326
110159 EP 332
110160 PG 7
110161 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
110162    Metallurgical Engineering
110163 GA 809JO
110164 UT ISI:000220633200051
110165 ER
110166 
110167 PT J
110168 AU Liu, BX
110169    Su, JR
110170    Xu, DJ
110171 TI catena-Poly[[[aquabis(1H-benzimidazole-kappa
110172    N-3)cadmium(II)]-mu-phthalato-kappa O-3,O ': O ''] hemihydrate]
110173 SO ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS
110174 DT Article
110175 AB The title compound is a polymeric complex bridged by a phthalate
110176    dianion, {[Cd(C8H4O4)(C7H6N2)(2)(H2O)] . 0.5H(2)O}(n). The asymmetric
110177    unit contains two Cd complex units, and both Cd-II atoms have the same
110178    distorted octahedral coordination geometry. Each phthalate dianion
110179    bridges two Cd atoms through the two terminal carboxy groups, one in a
110180    monodentate fashion and the other in a chelating mode, thus forming
110181    zigzag polymeric chains; pi-pi stacking occurs between neighboring
110182    chains. The bond angle involving the chelating carboxy group is large,
110183    but the corresponding bond distance is normal. This implies the
110184    existence of an electrostatic interaction between the Cd-II atoms and
110185    the carboxy groups.
110186 C1 Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China.
110187    Shanghai Univ, Dept Chem, Shanghai 200041, Peoples R China.
110188 RP Xu, DJ, Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China.
110189 EM xudj@mail.hz.zj.cn
110190 CR *RIG CORP, 1998, PROCESS AUTO
110191    *RIG MSC, 2002, CRYSTALSTRUCTURE VER
110192    ALTOMARE A, 1993, J APPL CRYSTALLOGR, V26, P343
110193    DEISENHOFER J, 1989, EMBO J, V8, P2149
110194    FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
110195    FARRUGIA LJ, 1999, J APPL CRYSTALLOGR, V32, P837
110196    HIGASHI T, 1995, ABSCOR
110197    NIE JJ, 2001, J COORD CHEM, V53, P365
110198    SHELDRICK GM, 1997, SHELXL97
110199 NR 9
110200 TC 8
110201 SN 0108-2701
110202 J9 ACTA CRYSTALLOGR C-CRYST STR
110203 JI Acta Crystallogr. Sect. C-Cryst. Struct. Commun.
110204 PD APR
110205 PY 2004
110206 VL 60
110207 PN Part 4
110208 BP M183
110209 EP M185
110210 PG 3
110211 SC Crystallography
110212 GA 810GT
110213 UT ISI:000220693500020
110214 ER
110215 
110216 PT J
110217 AU Zhao, H
110218    Lu, WC
110219    Song, HF
110220 TI Support vector regression applied to the prediction of maximum
110221    absorption wavelength of azo dyestuff
110222 SO ACTA CHIMICA SINICA
110223 DT Article
110224 DE azo dyestuff; SVM; ZINDO/S; owf(p-p)
110225 ID ELECTRONIC-STRUCTURE; MACHINES
110226 AB Support vector regression was applied to represent the relationship
110227    between the owf(p-p) value and the structural parameters of azo
110228    dyestuff molecule, and owf(p-p) value was predicted by using leave-one
110229    method and the average absolute value of relative error was 4.8%. The
110230    default owf(p-p) value in Hyperchem was replaced with the predicted
110231    owf(p-p) value when the maximum absorption wavelength was calculated,
110232    thus the average absolute value of relative error was 3.8%. Therefore,
110233    the method can be used to predict the maximum absorption wavelength in
110234    the work of computer-aided molecular design of azo dyestuff.
110235 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R China.
110236    E China Univ Sci & Technol, Inst Fine Chem, Shanghai 200237, Peoples R China.
110237 RP Zhao, H, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R
110238    China.
110239 EM wclu@mail.shu.edu.cn
110240 CR *HYP INC, 2002, REL 7 0 WIND MOL MOD
110241    BURBIDGE R, 2001, COMPUT CHEM, V26, P5
110242    CAO Y, 2002, DYESTUFF IND, V39, P16
110243    CAO Y, 2002, DYESTUFF IND, V39, P29
110244    CHEN NY, 2002, COMPUT APPL CHEM, V19, P673
110245    CORY MG, 1997, INT J QUANTUM CHEM, V63, P781
110246    HOU YF, 1994, DYESTUFF CHEM
110247    LIN T, 1998, ACTA PHYS-CHIM SIN, V14, P493
110248    LU WC, 2002, COMPUT APPL CHEM, V19, P697
110249    NELLO C, 2000, INTRO SUPPORT VECTOR
110250    THORSTEN J, 2001, THESIS U DORTMUND
110251    TROTTER MWB, 2001, MEAS CONTROL-UK, V34, P235
110252    VAN GT, 2001, IEEE T NEURAL NETWOR, V12, P809
110253    VAPNIK NV, 1995, NATURE STAT LEARNING
110254    WAN V, 2000, NEURAL NETWORKS SIGN, V10, P775
110255    WANG SR, 1999, DYESTUFF IND, V34, P1
110256    WANG XJ, 2000, COMPUT APPL CHEM, V17, P324
110257    WANG XJ, 2002, SPECTROSC SPECT ANAL, V22, P9
110258    ZHANG XY, 1999, CHEM J CHINESE U, V20, P268
110259 NR 19
110260 TC 1
110261 SN 0567-7351
110262 J9 ACTA CHIM SIN
110263 JI Acta Chim. Sin.
110264 PD APR 14
110265 PY 2004
110266 VL 62
110267 IS 7
110268 BP 649
110269 EP 656
110270 PG 8
110271 SC Chemistry, Multidisciplinary
110272 GA 810CL
110273 UT ISI:000220682300002
110274 ER
110275 
110276 PT J
110277 AU Yu, HF
110278    Lei, JX
110279    Ma, XM
110280    Zhu, LH
110281    Lu, Y
110282    Xiang, J
110283    Weng, W
110284 TI Application of nanotechnology in a silver/graphite contact material and
110285    optimization of its physical and mechanical properties
110286 SO RARE METALS
110287 DT Article
110288 DE contact material; AgC-N (newly developed); nanotechnology; high-energy
110289    ball milling; reducer liquid spraying-coating method; optimization
110290 AB By applying nanotechnology, a new type of silver/graphite (AgC)
110291    electrical contact was fabricated and characterized. The AgC coating
110292    powders were obtained through high-energy ball milling and reducer
110293    liquid spraying-coating method. The as-prepared powders were examined
110294    by transmission electron microscope (TEM), scanning electron microscope
110295    (SEM), and X-ray diffraction (XRD). The results show that the thickness
110296    of graphite flakes milled for 10 h is about 50-60 nm and the AgC
110297    coating powders exhibit flocculent structure with quite fine and
110298    homogeneous internal micropores. XRD implies that the average
110299    crystalline size of silver in coating powders is about 50 nm. The
110300    mechanical and physical properties of this newly developed AgC contact
110301    made from the above-mentioned nanocrystalline powders by traditional
110302    powder metallurgy technique were measured. Compared with its
110303    counterparts made from other techniques, the properties of this new AgC
110304    contact have been optimized. High surface energy and high-energy
110305    interfaces of the nanocrystalline AgC coating powders provide powerful
110306    driving force for sintering densification. Moreover, the flocculent
110307    structure of the powders is also an important factor to acquire fine
110308    density ratio.
110309 C1 E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China.
110310    Shanghai Univ, Sch Mat Sci & Technol, Shanghai 200072, Peoples R China.
110311    Shanghai Elect Apparatus Res Inst, Shanghai 200063, Peoples R China.
110312 RP Ma, XM, E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R
110313    China.
110314 EM xmma@phy.ecnu.edu.cn
110315 CR BEHRENS V, 1992, P 16 INT C EL CONT L, P185
110316    LAMBERT C, 1978, P 9 INT C EL CONT CH
110317    LEE GG, 1996, J JAP SOC POWD POWD, V43, P795
110318    LI XY, 1999, CHINESE J RARE METAL, V23, P362
110319    TOUSIMI K, 1999, MATER SCI FORUM, V307, P223
110320    VINARICKY E, 1998, P ANN HOLM C EL CONT
110321    WANG C, 2001, CHINESE J NONFERROUS, V11, P741
110322    WINGERT P, 1992, IEEE T COMP HYBR MAN
110323    WINGERT P, 1996, P ANN HOLM C EL CONT
110324    YAN SQ, 1998, MATER SCI ENG, V16, P72
110325    ZHANG WS, 1995, ELECT ALLOY, V1, P1
110326    ZHENG FQ, 1998, PRECIOUS METALS, V19, P1
110327 NR 12
110328 TC 1
110329 SN 1001-0521
110330 J9 RARE METALS
110331 JI Rare Metals
110332 PD MAR
110333 PY 2004
110334 VL 23
110335 IS 1
110336 BP 79
110337 EP 83
110338 PG 5
110339 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
110340    Engineering
110341 GA 808FD
110342 UT ISI:000220554100016
110343 ER
110344 
110345 PT J
110346 AU Liu, HT
110347    Wu, XZ
110348    Liu, XH
110349    Pu, MH
110350    Zhou, L
110351    Mossang, E
110352    Sulpice, A
110353 TI Flux pinning mechanism in superconducting NbTi composites with Ti5Nb
110354    artificial pinning center
110355 SO RARE METAL MATERIALS AND ENGINEERING
110356 DT Article
110357 DE NbTi multifilamentary composite; artificial pinning center; normal
110358    metal pining mechanism; Delta kappa pinning mechanism
110359 ID CRITICAL-CURRENT-DENSITY; WIRES
110360 AB Flux pinning mechanism in superconducting NbTi composites with Ti5wt%Nb
110361    artificial pinning center is analyzed in detail. The results show that
110362    F-p(B) mainly depends on normal metal pinning mechanism and Deltakappa
110363    pinning mechanism. The results suggeste that both normal metal pinning
110364    mechanism and Deltakappa pinning mechanism are very important. The
110365    value of F-p(B) in lower magnetic field is mainly dominated by normal
110366    metal pinning mechanism and the value of F-p(B) in higher magnetic
110367    field is mainly dominated by Deltakappa pinning mechanism. The function
110368    value of Fp(B) dependant on normal metal pinning mechanism and
110369    Deltakappa pinning mechanism increase respectively with the decrease of
110370    the wire diameter.
110371 C1 NE Univ Technol, Shenyang 110004, Peoples R China.
110372    NW Inst Nonferrous Met Res, Xian, Peoples R China.
110373    CNRS, F-38042 Grenoble, France.
110374 RP Liu, HT, Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800,
110375    Peoples R China.
110376 EM Lhtm_l@sina.com.cn
110377 CR CHLATTER RS, 1974, J VAC SCI TECHNOL, V11, P1047
110378    COLLINGS EW, 1986, APPL SUPERCOND, V2, P112
110379    COOLEY LD, 1993, SCALING RULE FLUXION
110380    DEWHUGHES D, 1974, PHILOS MAG, V30, P293
110381    HEUSSNER RW, 1997, APPL PHYS LETT, V70, P901
110382    LU JL, 1987, RARE METAL MAT ENG, V1, P28
110383    MEINGAST C, 1989, J APPL PHYS, V66, P5971
110384    MOTOWIDLO LR, 1992, APPL PHYS LETT, V61, P991
110385    PU MH, 2003, PHYSICA C, V386, P47
110386    WANG JQ, 1997, IEEE T APPL SUPERC 2, V7, P1130
110387    ZHOU GX, 1987, RARE METAL MAT ENG, P43
110388 NR 11
110389 TC 0
110390 SN 1002-185X
110391 J9 RARE METAL MAT ENG
110392 JI Rare Metal Mat. Eng.
110393 PD MAR
110394 PY 2004
110395 VL 33
110396 IS 3
110397 BP 229
110398 EP 233
110399 PG 5
110400 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
110401    Engineering
110402 GA 807UJ
110403 UT ISI:000220526100002
110404 ER
110405 
110406 PT J
110407 AU Fu, JL
110408    Chen, LQ
110409 TI Form invariance, Noether symmetry and Lie symmetry of Hamiltonian
110410    systems in phase space
110411 SO MECHANICS RESEARCH COMMUNICATIONS
110412 DT Article
110413 DE form invariance; noether symmetry; Lie symmetry; Hamiltonian system;
110414    phase space
110415 ID CONSERVED QUANTITIES
110416 AB For the holonomic and non-holonomic Hamiltonian systems in phase space,
110417    the definitions and criterions of the form invariance of both Hamilton
110418    and generalized Hamilton canonical equations are given. The relations
110419    among the form invariance, Noether symmetry and Lie symmetry are
110420    studied. Two examples are given to illustrate these results. (C) 2003
110421    Elsevier Ltd. All rights reserved.
110422 C1 Shangqui Teachers Coll, Dept Phys, Shangqiu 476000, Peoples R China.
110423    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
110424 RP Fu, JL, Shangqui Teachers Coll, Dept Phys, Shangqiu 476000, Peoples R
110425    China.
110426 EM sqfujingli@163.com
110427    lqchen@online.sh.cn
110428 CR FU JL, 2000, ACTA PHYS SIN-CH ED, V49, P1023
110429    FU JL, 2001, ACTA MECH SOLIDA SIN, V21, P67
110430    LI ZP, 1993, CLASSICAL QUANTUM DY
110431    LIU D, 1991, SCI CHINA SER A, V34, P419
110432    LIU RW, 1999, APPL MATH MECH-ENGL, V20, P635
110433    MEI FX, 1993, SCI CHINA SER A, V23, P709
110434    MEI FX, 1998, ACTA MECH SINICA, V30, P468
110435    MEI FX, 1999, APPL LIE GROUPS LIE
110436    MEI FX, 2000, J BEIJING I TECHNOL, V21, P535
110437    MEI FX, 2000, J BEIJING I TECHNOL, V9, P120
110438    MEI FX, 2001, CHINESE PHYS, V10, P177
110439    NOETHER E, 1918, NACHR GES WISS GOTT, V2, P235
110440    ZHAO YY, 1993, ADV MECH, V23, P360
110441    ZHAO YY, 1994, ACTA MECH SINICA, V26, P380
110442 NR 14
110443 TC 11
110444 SN 0093-6413
110445 J9 MECH RES COMMUN
110446 JI Mech. Res. Commun.
110447 PD JAN-FEB
110448 PY 2004
110449 VL 31
110450 IS 1
110451 BP 9
110452 EP 19
110453 PG 11
110454 SC Mechanics
110455 GA 808PU
110456 UT ISI:000220581800002
110457 ER
110458 
110459 PT J
110460 AU He, YL
110461    Li, L
110462    Wu, XC
110463    Wollants, P
110464 TI Computer aided composition design of prehardened-mould steel for plastic
110465 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
110466 DT Article
110467 DE prehardened-mould steel for plastic; precipitation; computer-aided
110468    composition design; Thermo-Calc software
110469 ID INCLUSIONS; PRECIPITATION
110470 AB The improvement of machining behavior of prehardened-mould steel for
110471    plastic is realized by using computer-aided composition design in this
110472    work. The results showed that the matrix composition of large sectional
110473    prehardened mould steel for plastic markedly influences the
110474    precipitation of non-metallic inclusion and the control of composition
110475    aided by Thermo-Calc software package minimizes the amount of
110476    detrimental oxide inclusion. In addition the modification of calcium is
110477    optimized in the light of composition design.
110478 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
110479    Katholieke Univ Leuven, Dept MTM, B-3001 Heverlee, Belgium.
110480 RP He, YL, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
110481    China.
110482 EM liling@public6.sta.net.cn
110483 CR GATELLIER G, 1993, MATER TECHNOL, V1, P87
110484    GAYE H, 1984, P 2 INT S MET SLAGS, P357
110485    GAYE H, 1988, IRONMAK STEELMAK, V15, P319
110486    GAYE H, 2001, STEEL RES, V72, P446
110487    JIANG GC, 1996, PURE STELL SECONDARY, P166
110488    KOBAYASHI S, 1999, ISIJ INT, V39, P664
110489    SUBRAMANIAN SV, 1998, CIM BULL, V91, P107
110490    SUNDMAN B, 1997, S100 ROY I TECHN, P1
110491    WINTZ M, 1995, ISIJ INT, V35, P715
110492    YAMASHITA T, 1999, J PHASE EQUILIB, V20, P231
110493    ZHANG X, 1999, WIRE J INT, V12, P102
110494 NR 11
110495 TC 1
110496 SN 1005-0302
110497 J9 J MATER SCI TECHNOL
110498 JI J. Mater. Sci. Technol.
110499 PD JAN
110500 PY 2004
110501 VL 20
110502 IS 1
110503 BP 71
110504 EP 74
110505 PG 4
110506 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
110507    Engineering
110508 GA 808MR
110509 UT ISI:000220573700021
110510 ER
110511 
110512 PT J
110513 AU Huang, SG
110514    Li, L
110515    Vleugels, J
110516    Biest, OVD
110517    Wang, PL
110518 TI Thermodynamic assessment and microstructure of the ZrO2-CeO2-Al2O3
110519    system
110520 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
110521 DT Article
110522 DE Ce-TZP; Al2O3; thermodynamics
110523 ID ZIRCONIA ALUMINA COMPOSITES; FRACTURE-TOUGHNESS; PHASE-DIAGRAM;
110524    AL2O3-ZRO2; HARDNESS; STRENGTH
110525 AB The ZrO2-CeO2-Al2O3 system has been assessed with the CALPHAD
110526    (Calculation of Phase Diagrams) technique using the PARROT procedure.
110527    The experimental information on the ZrO2-Al2O3, Al2O3-CeO2 systems as
110528    well as the isothermal sections of the ternary system at 1673 K and
110529    1873 K is well reproduced. According to the assessed isothermal section
110530    at 1723 K, no alumina dissolves into the tetragonal zirconia phase.
110531    Specimens with different alumina content are fabricated from commercial
110532    12 mol pct CeO2-stabilized ZrO2 powder (12Ce-ZrO2)The thermodynamic
110533    properties are consistent with the observed microstructure, which
110534    present a combination of tetragonal phase and alumina grains.
110535 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
110536    Katholieke Univ Leuven, Dept MTM, B-3001 Heverlee, Belgium.
110537    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
110538 RP Li, L, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
110539    China.
110540 EM liling@public6.sta.net.cn
110541 CR 1997, SGTE SUBSTANCE DATAB
110542    ALPER AM, 1964, AM CERAM SOC B, V43, P643
110543    BLEIER A, 1992, J AM CERAM SOC, V75, P2619
110544    CEVALES G, 1968, BER DEUT KERAM GES, V45, P217
110545    CUTLER RA, 1991, J AM CERAM SOC, V74, P179
110546    DU Y, 1991, J AM CERAM SOC, V74, P1569
110547    DURAN P, 1990, J MATER SCI, V25, P5001
110548    FISCHER GR, 1981, J MATER SCI, V16, P3447
110549    HEUSSNER KH, 1989, J EUR CERAM SOC, V5, P193
110550    HIRANO M, 1991, BRIT CERAM TRANS J, V90, P48
110551    HIRANO M, 1992, J MATER SCI, V27, P3511
110552    JEREBTSOV DA, 2000, CERAM INT, V26, P821
110553    KAUFMAN L, 1978, CALPHAD, V2, P35
110554    LIN L, 2003, J EUROPEAN CERAMIC S, V23, P99
110555    LIN L, 2003, MAT SCI TECHNOL, V19, P66
110556    LIN LI, 1996, J MATER SCI TECHNOL, V12, P159
110557    LIN LI, 2001, J MATER SCI TECHNOL, V17, P529
110558    LONGO V, 1971, CERAMURGIA, V1, P11
110559    LUKACS MD, 1993, P 3 EUR CERAMICS, P635
110560    MARSHALL DB, 1991, J AM CERAM SOC, V74, P2979
110561    MIZUNO M, 1975, YOGYO-KYOKAI-SHI, V83, P90
110562    MUGGIANU YM, 1975, J CHIMIE PHYSIQUE, V72, P83
110563    YASHIMA M, 1994, J AM CERAM SOC, V77, P1869
110564 NR 23
110565 TC 3
110566 SN 1005-0302
110567 J9 J MATER SCI TECHNOL
110568 JI J. Mater. Sci. Technol.
110569 PD JAN
110570 PY 2004
110571 VL 20
110572 IS 1
110573 BP 75
110574 EP 78
110575 PG 4
110576 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
110577    Engineering
110578 GA 808MR
110579 UT ISI:000220573700022
110580 ER
110581 
110582 PT J
110583 AU Tian, HJ
110584    Guo, Q
110585 TI Dynamics of linear multistep methods for delay differential equations
110586 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
110587 DT Article
110588 DE period-two solution; spurious solution; asymptotic behavior; stability
110589 ID SPURIOUS SOLUTIONS; NUMERICAL-METHODS; THETA-METHODS; STABILITY
110590 AB In this paper we study the relationship between the asymptotic behavior
110591    of a numerical simulation by linear multistep method and that of the
110592    true solution itself for fixed step sizes. The numerical method is
110593    viewed as a dynamical system in which the step size acts as a
110594    parameter. Numerical stability of linear multistep method for nonlinear
110595    delay differential equation is investigated and we prove that A-stable
110596    linear multistep methods are NP-stable. It is shown that a consistent
110597    zero-stable linear multistep method does not admit spurious fixed
110598    points. The existence of spurious period-two solutions in the time-step
110599    is also studied. Finally we give a simple example to illustrate
110600    instability of the spurious period-two solutions.
110601 C1 Shanghai Univ, E Inst, Div Computat Sci, Shanghai Teachers Univ,Dept Math, Shanghai 200234, Peoples R China.
110602    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
110603    Donghua Univ, Coll Sci, Shanghai 200051, Peoples R China.
110604 RP Tian, HJ, Shanghai Univ, E Inst, Div Computat Sci, Shanghai Teachers
110605    Univ,Dept Math, 100 Guilin Rd, Shanghai 200234, Peoples R China.
110606 EM hongjiongtian@263.net
110607 CR BARCLAY GJ, 1999, 9 U DUND U STRATHCL
110608    BUTCHER JC, 1997, J COMPUT APPL MATH, V81, P181
110609    HALE JK, 1993, INTRO FUNCTIONAL DIF
110610    HUMPHRIES AR, 1993, IMA J NUMER ANAL, V13, P263
110611    ISERLES A, 1990, IMA J NUMER ANAL, V10, P1
110612    ISERLES A, 1991, SIAM J NUMER ANAL, V28, P1723
110613    KLOEDEN PE, 1986, SIAM J NUMER ANAL, V23, P986
110614    STUART AM, 1991, SIAM J SCI STAT COMP, V12, P1351
110615    STUART AM, 1996, DYNAMICAL SYSTEMS NU
110616    TIAN HJ, 1995, J COMPUT APPL MATH, V58, P171
110617    TIAN HJ, 1996, J COMPUT MATH, V14, P203
110618    TIAN HJ, 1996, SIAM J NUMER ANAL, V33, P883
110619 NR 12
110620 TC 0
110621 SN 0218-1274
110622 J9 INT J BIFURCATION CHAOS
110623 JI Int. J. Bifurcation Chaos
110624 PD JAN
110625 PY 2004
110626 VL 14
110627 IS 1
110628 BP 329
110629 EP 336
110630 PG 8
110631 SC Mathematics, Applied; Multidisciplinary Sciences
110632 GA 808PK
110633 UT ISI:000220580800021
110634 ER
110635 
110636 PT J
110637 AU Shan, EF
110638    Kang, LY
110639 TI A note on balance vertices in trees
110640 SO DISCRETE MATHEMATICS
110641 DT Article
110642 DE minus domination; domination; k-partite graphs
110643 ID CENTERS; GRAPH
110644 AB The notion of balanced! bipartitions of the vertices in a tree T was
110645    introduced and studied by Reid (Networks 34 (1999) 264). Reid proved
110646    that the set of balance vertices of a tree T consists of a single
110647    vertex or two adjacent vertices. In this note, we give a simple proof
110648    of that result. (C)2003 Elsevier B.V. All rights reserved.
110649 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
110650 RP Shan, EF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
110651 EM kangly@online.sh.cn
110652 CR HAKIMI SL, 1965, OPER RES, V13, P462
110653    HARARY F, 1971, DISCRETE MATH, V1, P7
110654    JORDAN C, 1918, J REINE ANGEW MATH, V70, P143
110655    MMCORRIS F, 1997, C NUMER, V124, P139
110656    REID KB, 1991, NETWORKS, V21, P11
110657    REID KB, 1997, APPL DISCR MATH, V80, P243
110658    REID KB, 1999, NETWORKS, V34, P264
110659    SLATER PJ, 1982, TRANSPORT SCI, V16, P1
110660    ZELINKA B, 1968, ARCHIVUM MATH BRNO, V4, P87
110661 NR 9
110662 TC 1
110663 SN 0012-365X
110664 J9 DISCRETE MATH
110665 JI Discret. Math.
110666 PD APR 6
110667 PY 2004
110668 VL 280
110669 IS 1-3
110670 BP 265
110671 EP 269
110672 PG 5
110673 SC Mathematics
110674 GA 808NC
110675 UT ISI:000220574800021
110676 ER
110677 
110678 PT J
110679 AU Zheng, CL
110680 TI Variable separation approach to solve (2+1)-dimensional generalized
110681    burgers system: Solitary wave and Jacobi periodic wave excitations
110682 SO COMMUNICATIONS IN THEORETICAL PHYSICS
110683 DT Article
110684 DE generalized Burgers system; variable separation approach; solitary
110685    wave; Jacobi periodic wave
110686 ID ELLIPTIC FUNCTION EXPANSION; DAVEY-STEWARTSON EQUATION; NEWELL-SEGUR
110687    SYSTEM; PAINLEVE INTEGRABILITY; SOLITONS
110688 AB By means of the standard truncated Painleve expansion and a variable
110689    separation approach, a general variable separation solution of the
110690    generalized Burgers system is derived. In addition to the usual
110691    localized coherent soliton excitations like dromions, lumps, rings,
110692    breathers, instantons, oscillating soliton excitations, peakons,
110693    foldons, and previously revealed chaotic and fractal localized
110694    solutions, some new types of excitations - compacton and Jacobi
110695    periodic wave solutions are obtained by introducing appropriate lower
110696    dimensional piecewise smooth functions and Jacobi elliptic functions.
110697 C1 Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
110698    Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China.
110699 RP Zheng, CL, Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000,
110700    Peoples R China.
110701 EM zjclzheng@yahoo.com.cn
110702 CR CAMASSA R, 1993, PHYS REV LETT, V71, P1661
110703    CHEN CL, 2002, PHYS REV E 2B, V66
110704    FAN EG, 2002, PHYS LETT A, V295, P280
110705    FAN EG, 2002, PHYS LETT A, V305, P383
110706    FU ZT, 2001, PHYS LETT A, V290, P72
110707    HONG KZ, 2003, CHINESE PHYS LETT, V20, P335
110708    HONG KZ, 2003, COMMUN THEOR PHYS, V39, P393
110709    LIU SK, 2001, ACTA PHYS SIN-CH ED, V50, P2068
110710    LIU SK, 2001, PHYS LETT A, V289, P69
110711    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
110712    LOU SY, 1999, PHYS LETT A, V262, P344
110713    LOU SY, 2000, PHYS LETT A, V277, P94
110714    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
110715    LOU SY, 2002, J MATH PHYS, V43, P4078
110716    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
110717    LOU SY, 2002, PHYS SCRIPTA, V65, P7
110718    PARKES EJ, 2002, PHYS LETT A, V280, P295
110719    ROSENAU P, 1993, PHYS REV LETT, V70, P564
110720    ROSENAU P, 1994, PHYS REV LETT, V73, P1737
110721    TANG XY, 2002, PHYS REV E 2, V66
110722    TANG XY, 2003, COMMUN THEOR PHYS, V39, P129
110723    VAKHNENKO VA, 1992, J PHYS A-MATH GEN, V25, P4181
110724    VAKHNENKO VO, 1998, NONLINEARITY, V11, P1457
110725    WEBB GM, 1990, J PHYS A-MATH GEN, V23, P5465
110726    YAN ZY, 2002, CHINESE J PHYS, V40, P203
110727    ZENG CL, 2003, COMMUN THEOR PHYS, V39, P261
110728    ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P2676
110729    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P448
110730    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
110731    ZHENG CL, 2002, COMMUN THEOR PHYS, V38, P653
110732    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P783
110733    ZHENG CL, 2003, CHINESE PHYS, V12, P11
110734    ZHENG CL, 2003, CHINESE PHYS, V12, P472
110735    ZHENG CL, 2003, PHYS LETT, V20, P331
110736    ZHENG CL, 2003, THEOR PHYS, V39, P9
110737 NR 35
110738 TC 5
110739 SN 0253-6102
110740 J9 COMMUN THEOR PHYS
110741 JI Commun. Theor. Phys.
110742 PD MAR 15
110743 PY 2004
110744 VL 41
110745 IS 3
110746 BP 391
110747 EP 396
110748 PG 6
110749 SC Physics, Multidisciplinary
110750 GA 807UQ
110751 UT ISI:000220526800015
110752 ER
110753 
110754 PT J
110755 AU Chen, ZY
110756    Bi, JB
110757    Chen, DY
110758 TI Novel solutions of KdV equation
110759 SO COMMUNICATIONS IN THEORETICAL PHYSICS
110760 DT Article
110761 DE novel solutions; Hirota's method; Backlund transformation; KdV equation
110762 ID MULTISOLITON SOLUTIONS
110763 AB Some novel solutions of the KdV equation are obtained through the
110764    modified bilinear Backlund transformation.
110765 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
110766 RP Chen, ZY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
110767 EM yuyisheng184@sohu.com
110768 CR CHEN DY, 2000, NOVEL MULTISOLITON S
110769    CHEN DY, 2002, J PHYS SOC JPN, V71, P2071
110770    CHEN DY, 2002, J PHYS SOC JPN, V71, P658
110771    DENG SF, 2001, J PHYS SOC JPN, V70, P3174
110772    FREEMAN NC, 1983, PHYS LETT A, V95, P1
110773    HIROTA R, 1971, PHYS REV LETT, V27, P1192
110774    HIROTA R, 1974, PROG THEOR PHYS, V52, P1498
110775 NR 7
110776 TC 1
110777 SN 0253-6102
110778 J9 COMMUN THEOR PHYS
110779 JI Commun. Theor. Phys.
110780 PD MAR 15
110781 PY 2004
110782 VL 41
110783 IS 3
110784 BP 397
110785 EP 399
110786 PG 3
110787 SC Physics, Multidisciplinary
110788 GA 807UQ
110789 UT ISI:000220526800016
110790 ER
110791 
110792 PT J
110793 AU Xue, Y
110794 TI One-dimensional traffic model to consider priority of the Stochastic
110795    deceleration
110796 SO COMMUNICATIONS IN THEORETICAL PHYSICS
110797 DT Article
110798 DE traffic flow; cellular automaton; fundamental diagram
110799 ID CELLULAR-AUTOMATON MODEL; FLOW MODEL
110800 AB A one-dimensional cellular automaton model of traffic flow is proposed
110801    to introduce the different delay probabilities in the steps of rules
110802    and the stochastic deceleration prior to the deterministic one when the
110803    anticipation velocity of vehicle is larger than the headway. The
110804    fundamental diagram shows the capacity of road more approaches to the
110805    observed data compared with that by the NaSch model. Moreover, the
110806    model is able to reproduce the complicated behavior of the real
110807    traffic, such as the metastability state, the separation of different
110808    phases and the effect of hysteresis. It is concluded that the order
110809    arrangement of the stochastic deceleration and deterministic
110810    acceleration has indeed remarkable effect on traffic flow and the
110811    modification presented in this paper is reasonable and realistic.
110812 C1 Guangxi Univ, Dept Phys, Nanning 530003, Peoples R China.
110813    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
110814    Guangxi Univ, Key Lab Guangxi Numer Computat & Simulat, Guilin 541004, Peoples R China.
110815 RP Xue, Y, Guangxi Univ, Dept Phys, Nanning 530003, Peoples R China.
110816 CR BARLOVIC R, 1998, EUR PHYS J B, V5, P793
110817    BENJAMIN SC, 1996, J PHYS A-MATH GEN, V29, P3119
110818    DONG LY, 2002, APPL MATH MECH-ENGL, V23, P363
110819    HELBING D, 2001, REV MOD PHYS, V73, P1076
110820    KERNER BS, 1998, PHYS REV LETT, V81, P3797
110821    KERNER BS, 2001, NETW SPAT ECON, V1, P35
110822    LIGHTHILL MJ, 1955, P ROY SOC LOND A MAT, V229, P317
110823    LUBECK S, 1998, PHYS REV E, V57, P1171
110824    NAGEL K, 1992, J PHYS I, V2, P2221
110825    NAGEL K, 1995, THESIS U COLOGNE GER
110826    ROTERS L, 1999, PHYS REV E A, V59, P2672
110827    TAKAYASU M, 1993, FRACTALS, V1, P860
110828    TREITERER J, 1965, 2022 COL OH STAT U
110829    WAGNER P, 1996, TRAFFIC GRANULAR FLO, P139
110830    XUE Y, 2001, ACTA PHYS SIN-CH ED, V50, P445
110831    YU X, 2002, COMMUN THEOR PHYS, V38, P230
110832 NR 16
110833 TC 0
110834 SN 0253-6102
110835 J9 COMMUN THEOR PHYS
110836 JI Commun. Theor. Phys.
110837 PD MAR 15
110838 PY 2004
110839 VL 41
110840 IS 3
110841 BP 477
110842 EP 480
110843 PG 4
110844 SC Physics, Multidisciplinary
110845 GA 807UQ
110846 UT ISI:000220526800029
110847 ER
110848 
110849 PT J
110850 AU Suo, YH
110851    Huang, H
110852 TI A general linear wave theory for water waves propagating over uneven
110853    porous bottoms
110854 SO CHINA OCEAN ENGINEERING
110855 DT Article
110856 DE porous medium bottoms; mild-slope equation; wave number variation;
110857    Greens second identity
110858 ID VARYING TOPOGRAPHY; BED
110859 AB Starting from the widespread phenomena of porous bottoms in the near
110860    shore region, considering fully the diversity of bottom topography and
110861    wave number variation, and including the effect of evanescent modes, a
110862    general linear wave theory for water waves propagating over uneven
110863    porous bottoms in the near shore region is established by use of
110864    Green's second identity. This theory can be reduced to a number of the
110865    most typical mild-slope equations currently in use and provide a
110866    reliable research basis for follow-up development of nonlinear water
110867    wave theory involving porous bottoms.
110868 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
110869 RP Suo, YH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
110870    200072, Peoples R China.
110871 CR BERKHOFF JCW, 1972, P 13 INT C COAST ENG, P471
110872    CHAMBERLAIN PG, 1995, J FLUID MECH, V291, P393
110873    CHWANG AT, 1998, ANNU REV FLUID MECH, V30, P53
110874    DINGEMANS M, 1997, ADV SERIES OCEAN ENG, V13
110875    HSIAO SC, 2002, P ROY SOC LOND A MAT, V458, P1291
110876    HUANG H, 2001, ACTA MECH SINICA, V33, P11
110877    KIRBY J, 1998, CACR9807 U DEL
110878    KIRBY JT, 1984, J GEOPHYS RES-OCEANS, V89, P745
110879    KUZNETSOV N, 2002, LINEAR WATER WAVES M, P1
110880    OHARE TJ, 1993, APPL OCEAN RES, V15, P1
110881    SILVA R, 2002, COAST ENG, V44, P239
110882    SILVA R, 2003, OCEAN ENG, V30, P437
110883    ZHANG LB, 1996, P 25 INT C COAST ENG, P941
110884    ZHU ST, 2001, COAST ENG, V42, P87
110885 NR 14
110886 TC 1
110887 SN 0890-5487
110888 J9 CHINA OCEAN ENG
110889 JI China Ocean Eng.
110890 PY 2004
110891 VL 18
110892 IS 1
110893 BP 163
110894 EP 171
110895 PG 9
110896 SC Engineering, Civil; Engineering, Mechanical; Engineering, Ocean; Water
110897    Resources
110898 GA 807NK
110899 UT ISI:000220508000016
110900 ER
110901 
110902 PT J
110903 AU Chen, DD
110904    He, YH
110905 TI On the well-posedness of the initial value problem of non-static
110906    rotating fluid
110907 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
110908 DT Article
110909 DE stratification; well-posedness; secondaire
110910 AB A systematic study was made on the topological nature of the system of
110911    non-static rotating fluid. Several initial ( boundary) value problems
110912    and their well-posedness were discussed.
110913 C1 Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
110914 RP Chen, DD, Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
110915 EM chlee@online.sh.cn
110916 CR CHEN DD, 1996, APPL MATH MECH, V17, P541
110917    GUO BL, 1996, CHINESE ANN MATH A, V17, P595
110918    HE YH, 2000, APPL MATH MECH, V21, P1432
110919    LANDAU L, 1971, MECANIQUE FLUIDES
110920    SHIH WH, 1992, SOLUTIONS ANAL QUELQ
110921    SHIH WH, 1997, APPL MATH MECH, V18, P259
110922    ZENG QC, 1979, MATH PHYS METHODS NU
110923 NR 7
110924 TC 1
110925 SN 0253-4827
110926 J9 APPL MATH MECH-ENGL ED
110927 JI Appl. Math. Mech.-Engl. Ed.
110928 PD MAR
110929 PY 2004
110930 VL 25
110931 IS 3
110932 BP 288
110933 EP 296
110934 PG 9
110935 SC Mathematics, Applied; Mechanics
110936 GA 809EB
110937 UT ISI:000220618900007
110938 ER
110939 
110940 PT J
110941 AU Li, GH
110942 TI Analytical design of the observer-based chaotic generalized
110943    synchronization
110944 SO ACTA PHYSICA SINICA
110945 DT Article
110946 DE chaos; generalized synchronization; state observer; Rossler system
110947 ID COMMUNICATION
110948 AB This paper develops a modified state observer for chaotic generalized
110949    synchronization. An analytic approach is proposed for constructing a
110950    response system to implement generalized chaos synchronization with
110951    drive system. From the state observer theory, some sufficient
110952    conditions of global asymptotic linear-generalized synchronization
110953    between the drive system and response system are obtained. Finally, a
110954    hyperchaotic Rossler system is given to illustrate the effectiveness of
110955    the proposed synchronization method.
110956 C1 Shanghai Univ, Sch Comp & Informat Engn, Shanghai 200072, Peoples R China.
110957 RP Li, GH, Shanghai Univ, Sch Comp & Informat Engn, Shanghai 200072,
110958    Peoples R China.
110959 CR DAI D, 2001, ACTA PHYS SIN-CH ED, V50, P1237
110960    KOCAREV L, 1995, PHYS REV LETT, V74, P5028
110961    LI JF, 2002, CHINESE PHYS, V11, P9
110962    RULKOV NF, 1995, PHYS REV E, V51, P980
110963    TAO CH, 2002, ACTA PHYS SIN-CH ED, V51, P1497
110964    YANG T, 1996, INT J BIFURCAT CHAOS, V6, P2653
110965    YANG T, 1999, INT J BIFURCAT CHAOS, V9, P215
110966 NR 7
110967 TC 3
110968 SN 1000-3290
110969 J9 ACTA PHYS SIN-CHINESE ED
110970 JI Acta Phys. Sin.
110971 PD APR
110972 PY 2004
110973 VL 53
110974 IS 4
110975 BP 999
110976 EP 1002
110977 PG 4
110978 SC Physics, Multidisciplinary
110979 GA 807XL
110980 UT ISI:000220534100006
110981 ER
110982 
110983 PT J
110984 AU Chen, YY
110985    Wang, Q
110986    Shi, JL
110987 TI Incoherent multimode spatially bistable soliton
110988 SO ACTA PHYSICA SINICA
110989 DT Article
110990 DE incoherent multimode beam; spatially soliton; bistable state
110991 ID REFRACTION INDEX CHANGE; MEDIA; LIGHT; PROPAGATION; STATES; BRIGHT;
110992    BEAMS
110993 AB Incoherent multimode bistable soliton can exist in higher-order
110994    nonlinearity media. Using the coherent density method, we obtain the
110995    analytical expression of the incoherent multimode bistable soliton, and
110996    the higher-order nonlinearity controls the existence and the intensity
110997    peak of bistable solitons. We find the cut-off wavelength, the minimum
110998    width of the incoherent beam and the nonlinearity condition for the
110999    media, and then we study the propagation characteristics of coherent
111000    components that consist of incoherent multimode beams. According to the
111001    stability criterion, we demonstrate rigorously that the incoherent
111002    multimode bistable soliton can propagate stably against small
111003    perturbation.
111004 C1 Shanghai Univ, Sch Sci, Shanghai 200436, Peoples R China.
111005 RP Chen, YY, Shanghai Univ, Sch Sci, Shanghai 200436, Peoples R China.
111006 CR CHEN YY, 2002, ACTA PHYS SIN-CH ED, V51, P559
111007    CHEN YY, 2003, ACTA PHOT SIN, V32, P693
111008    CHRISTODOULIDES DN, 1997, OPT LETT, V22, P1080
111009    CHRISTODOULIDES DN, 1997, PHYS REV LETT, V78, P646
111010    COSKUN TH, 1998, OPT LETT, V23, P418
111011    DATTOLI G, 1989, OPT LETT, V14, P456
111012    ENNS RH, 1987, IEEE J QUANTUM ELECT, V23, P1199
111013    ENNS RH, 1987, OPT LETT, V12, P108
111014    ENNS RH, 1987, PHYS REV A, V36, P1270
111015    ENNS RH, 1993, PHYS REV A B, V47, P4524
111016    GATZ S, 1991, J OPT SOC AM B, V8, P2296
111017    GATZ S, 1992, IEEE J QUANTUM ELECT, V28, P1732
111018    GATZ S, 1997, J OPT SOC AM B, V14, P1795
111019    HERRMANN J, 1992, OPT COMMUN, V87, P161
111020    KAPLAN AE, 1985, PHYS REV LETT, V55, P1291
111021    KUMAR A, 1999, OPT LETT, V24, P373
111022    KUMAR A, 2001, J OPT SOC AM B, V18, P897
111023    MITCHELL M, 1996, PHYS REV LETT, V77, P490
111024    MITCHELL M, 1997, NATURE, V387, P880
111025    TRILLO S, 1995, SPATIAL SOLITONS, P96
111026    WANG XS, 2001, ACTA PHYS SIN-CH ED, V50, P496
111027    WANG XS, 2002, ACTA PHYS SIN-CH ED, V51, P573
111028    WANG XS, 2003, ACTA PHYS SIN-CH ED, V52, P595
111029 NR 23
111030 TC 1
111031 SN 1000-3290
111032 J9 ACTA PHYS SIN-CHINESE ED
111033 JI Acta Phys. Sin.
111034 PD APR
111035 PY 2004
111036 VL 53
111037 IS 4
111038 BP 1070
111039 EP 1075
111040 PG 6
111041 SC Physics, Multidisciplinary
111042 GA 807XL
111043 UT ISI:000220534100019
111044 ER
111045 
111046 PT J
111047 AU Min, F
111048    Qing, W
111049    Shi, JL
111050    Yun, X
111051 TI Modulation instability of non-paraxial beams for self-focusing Kerr
111052    media
111053 SO ACTA PHYSICA SINICA
111054 DT Article
111055 DE non-paraxial beam; modulation instability; gain spectrum; Kerr media
111056 ID OPTICAL BEAMS; LASER-BEAMS; PROPAGATION; SOLITONS
111057 AB Propagation stability of non-paraxial beam in nonlinear Kerr media is
111058    investigated by using the linear stability method. Both theoretical
111059    analysis and numerical simulation show that the modulation instability
111060    gain spectrum has three different distribution features, which are
111061    determined by ap(0), where a and p(0) represent the non-paraxial
111062    parameter and the incident power, respectively. Furthermore, the
111063    corresponding criterion is given to distinguish the three different
111064    distributions.
111065 C1 Shanghai Univ, Sch Sci, Dept Phys, Shanghai 200436, Peoples R China.
111066 RP Min, F, Shanghai Univ, Sch Sci, Dept Phys, Shanghai 200436, Peoples R
111067    China.
111068 CR AGRAWAL GP, 2001, NONLINEAR FIBER OPTI, CH5
111069    AKHMEDIEV N, 1993, OPT LETT, V18, P411
111070    ANDERSON D, 1979, PHYS FLUIDS, V22, P105
111071    BLAIR S, 1998, OPT QUANT ELECTRON, V30, P697
111072    CHAMORROPOSADA P, 1998, J MOD OPTIC, V45, P1111
111073    CHAMORROPOSADA P, 2000, J MOD OPTIC, V47, P1877
111074    CHAMORROPOSADA P, 2001, OPT COMMUN, V1, P192
111075    CHIAVARAS MM, 2001, NEUROIMAGE, V13, P479
111076    FEIT MD, 1988, J OPT SOC AM B, V5, P633
111077    FIBICH G, 1996, PHYS REV LETT, V76, P4356
111078    FIBICH G, 2003, PHYS REV E, V67, P36622
111079    WEN SC, 2000, ACTA PHYS SIN-CH ED, V49, P460
111080    WEN SC, 2001, CHINESE J LASERS, V28, P1066
111081 NR 13
111082 TC 0
111083 SN 1000-3290
111084 J9 ACTA PHYS SIN-CHINESE ED
111085 JI Acta Phys. Sin.
111086 PD APR
111087 PY 2004
111088 VL 53
111089 IS 4
111090 BP 1088
111091 EP 1094
111092 PG 7
111093 SC Physics, Multidisciplinary
111094 GA 807XL
111095 UT ISI:000220534100022
111096 ER
111097 
111098 PT J
111099 AU Li, PL
111100    Zhang, JC
111101    Chao, GX
111102    Deng, DM
111103    Liu, LH
111104    Cheng, D
111105    Chao, J
111106    Cao, SX
111107 TI Characteristics of structure and carrier localization in YBCO systems
111108    doped with magnetic ions Fe and Ni
111109 SO ACTA PHYSICA SINICA
111110 DT Article
111111 DE YBCO high-T-c superconductor; magnetic ion substitution; positron
111112    annihilation; simulated calculations
111113 ID POSITRON-ANNIHILATION; ELECTRONIC-STRUCTURE; VACANCY PROPERTIES; COPPER
111114    OXIDES; SUPERCONDUCTIVITY; YBA2CU3O7-DELTA; SUBSTITUTION; LIFETIME;
111115    DENSITY; OXYGEN
111116 AB To make clear the physical mechanism of substitution by the magnetic
111117    ions Fe and Ni in different sites in YBCO systems, the positron
111118    annihilation technology ( PAT) and simulated calculations are utilized
111119    to systemically investigate the compounds YBa2Cu3-x,
111120    (Fe,Ni)(x)O7-delta( x = 0.0-0.5). The results obtained show that the
111121    doping ions Fe and Ni form different kinds of ion clusters and enter
111122    the crystal lattice. When occupying Cu(2) sites in CuO2 planes, the
111123    ions gather into double square and/or other clusters, which results in
111124    a strong electronic localization and would directly affect the pairing
111125    and transportation of carriers' so the superconductivity is suppressed
111126    dramatically. While ions substitution for Cu(1) through gathering
111127    hexamer and/or other clusters, this induces the localization of holes
111128    and weakens the function of carrier reservoir; thus carriers cannot
111129    easily transfer to CuO2 planes. However, in this case, the pairing and
111130    transportation of carriers are not affected directly, thus the
111131    superconductivity will be suppressed weakly. On the other hand, the
111132    present results indicate the suppression of superconductivity has no
111133    direct correlation with the magnetism of Fe and Ni ions itself.
111134 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
111135    Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China.
111136 RP Li, PL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
111137 CR ABRIKOSOV A, 1961, SOV PHYS JETP, V12, P1234
111138    BANERJEE T, 2000, SOLID STATE COMMUN, V114, P655
111139    BHARATHI A, 1989, J PHYS-CONDENS MAT, V1, P1467
111140    BORDET P, 1988, SOLID STATE COMMUN, V66, P435
111141    BRANDT W, 1971, PHYS LETT          A, V35, P109
111142    BRIDGES F, 1990, PHYS REV B, V42, P2137
111143    BRINGLEY JF, 1988, PHYS REV B, V38, P2432
111144    CAPONE M, 2002, SCIENCE, V296, P2364
111145    CHAKRABORTY B, 1989, PHYS REV B, V39, P215
111146    CHEN ZP, 2002, ACTA PHYS SIN-CH ED, V51, P2150
111147    FRANCOIS M, 1987, SOLID STATE COMMUN, V63, P1149
111148    GINSBERG DM, 1990, PHYS PROPERTIES HIGH, V2, P538
111149    GUO SQ, 2002, CHINESE PHYS, V11, P379
111150    GUO W, 2001, CHINESE PHYS LETT, V18, P582
111151    GUPTA RP, 1998, PHYSICA C, V305, P179
111152    HAGHIGHI H, 1990, J PHYS-CONDENS MAT, V2, P1911
111153    HAUTOJARVI P, 1983, POSITRONS SOLID, P255
111154    HORLAND RS, 1989, PHYS REV B, V39, P9017
111155    ISLAM MS, 1991, PHYS REV B, V44, P9492
111156    JEAN YC, 1990, PHYS REV LETT, V64, P1593
111157    JENSEN KO, 1989, J PHYS-CONDENS MAT, V1, P3727
111158    JORGENSEN JD, 1991, PHYS TODAY, V44, P34
111159    KUO YK, 1997, PHYS REV B, V56, P6201
111160    LI LJ, 1998, ACTA PHYS SINICA, V47, P844
111161    LI PC, 2002, CHINESE PHYS, V11, P282
111162    LI PL, 2003, CHIN J LOW TEMP PHYS, V25, P81
111163    LIU LH, 2001, ACTA PHYS SIN-CH ED, V50, P769
111164    MACDONALD AH, 2001, NATURE, V414, P409
111165    NAGEL C, 1999, PHYS REV B, V60, P9212
111166    SAITOVITCH B, 1988, PHYS REV B, V37, P7697
111167    SANTORO A, 1987, MATER RES BULL, V22, P1007
111168    SOMOZA A, 2000, PHYS REV B, V61, P14454
111169    TAKAGI H, 2000, PHYSICA C 1, V341, P3
111170    TAMAKI T, 1988, SOLID STATE COMMUN, V65, P43
111171    TARASCON JM, 1988, PHYS REV B, V37, P7458
111172    UDAYAN D, 2000, PHYS REV B, V62, P14519
111173    XIAO G, 1987, PHYS REV B, V35, P8782
111174    XIAO G, 1988, PHYS REV LETT, V60, P1446
111175    ZHANG J, 2002, PHYS REV B, V65, P54513
111176    ZHANG JC, 1993, PHYS REV B, V48, P16830
111177    ZHANG JC, 1995, PHYS LETT A, V201, P70
111178    ZHANG LW, 1998, ACTA PHYS SINICA, V47, P1906
111179 NR 42
111180 TC 1
111181 SN 1000-3290
111182 J9 ACTA PHYS SIN-CHINESE ED
111183 JI Acta Phys. Sin.
111184 PD APR
111185 PY 2004
111186 VL 53
111187 IS 4
111188 BP 1223
111189 EP 1231
111190 PG 9
111191 SC Physics, Multidisciplinary
111192 GA 807XL
111193 UT ISI:000220534100046
111194 ER
111195 
111196 PT J
111197 AU Liu, BX
111198    Xu, DJ
111199 TI Aqua(2,2 '-diamino-4,4 '-bi-1,3-thiazole-kappa N-2,N
111200    ')(iminodiacetato-kappa O-3,N,O ')chromium(III) chloride monohydrate
111201 SO ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS
111202 DT Article
111203 ID CRYSTAL; TRIHYDRATE; ACID
111204 AB Crystals of the title compound, [Cr(C4H5NO4)(C6H6N4S2)-(H2O)]Cl.H2O,
111205    consist of Cr-III complex cations, Cl- counter-ions and lattice water
111206    molecules. The complex cation assumes an octahedral coordination
111207    geometry, formed by a tridentate iminodiacetate dianion (IDA), a
111208    diaminobithiazole (DABT) molecule and a water molecule. The planar DABT
111209    group chelates the Cr-III ion with normal Cr-N distances [2.0574 (17)
111210    and 2.0598 (17) Angstrom], but the DABT molecule is inclined to the
111211    coordination plane by a dihedral angle of 17.23 (7)degrees. In the
111212    monodentate carboxylate groups of the IDA ion, the coordinated C-O
111213    bonds [1.288 (3) and 1.284 (3) Angstrom] are much longer than the
111214    uncoordinated C-O bonds [1.222 (3) and 1.225 (3) Angstrom].
111215 C1 Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China.
111216    Shanghai Univ, Dept Chem, Shanghai 200041, Peoples R China.
111217 RP Xu, DJ, Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China.
111218 EM xudj@mail.hz.zj.cn
111219 CR *RIG CORP, 1998, PROCESS AUTO
111220    *RIG CORP, 2002, CRYST STRUCT VERS 3
111221    ALTOMARE A, 1993, J APPL CRYSTALLOGR, V26, P343
111222    BERNSTEIN J, 1979, ACTA CRYSTALLOGR B, V35, P360
111223    BIANCHINI RJ, 1986, INORG CHEM, V25, P2129
111224    ERLENMEYER H, 1948, HELV CHIM ACTA, V31, P206
111225    FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
111226    FARRUGIA LJ, 1999, J APPL CRYSTALLOGR, V32, P837
111227    FISHER LM, 1985, BIOCHEMISTRY-US, V24, P3199
111228    HIGASHI T, 1995, ABSCOR
111229    MOOTZ D, 1980, ACTA CRYSTALLOGR B, V36, P445
111230    OHBO H, 1983, B CHEM SOC JPN, V56, P1982
111231    SHELDRICK GM, 1997, SHELXL97
111232    SUBRAMANIAM V, 1994, INORG CHIM ACTA, V216, P155
111233    SWAMINATHAN K, 1988, ACTA CRYSTALLOGR C, V44, P447
111234    WARING MJ, 1981, ANNU REV BIOCHEM, V50, P159
111235 NR 16
111236 TC 5
111237 SN 0108-2701
111238 J9 ACTA CRYSTALLOGR C-CRYST STR
111239 JI Acta Crystallogr. Sect. C-Cryst. Struct. Commun.
111240 PD MAR
111241 PY 2004
111242 VL 60
111243 PN Part 3
111244 BP M137
111245 EP M139
111246 PG 3
111247 SC Crystallography
111248 GA 808IV
111249 UT ISI:000220563700017
111250 ER
111251 
111252 PT J
111253 AU Wang, LJ
111254    Xia, YB
111255    Zhang, ML
111256    Fang, ZJ
111257    Shi, WM
111258 TI The influence of deposition conditions on the dielectric properties of
111259    diamond films
111260 SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY
111261 DT Article
111262 ID SPECTROSCOPIC ELLIPSOMETRY; CVD DIAMOND; ALUMINA; STRESS
111263 AB In this letter, with the aim of optimizing the growth conditions of
111264    diamond films on carbon ions implanted in alumina ceramic substrates by
111265    the hot filament chemical vapour deposition method using a gaseous
111266    mixture of alcohol and hydrogen, the dielectric constants of diamond
111267    films deposited under different conditions are determined by infrared
111268    spectroscopic ellipsometry in the spectral range of 2.5-12.5 mum.
111269    Results show that diamond films with low dielectric constant can be
111270    obtained under lower alcohol concentration and higher substrate
111271    temperature. Under an alcohol concentration of 0.8% and a substrate
111272    temperature of 850 C, the dielectric constant and the thermal
111273    conductivity of the diamond film/alumina composite, with a diamond film
111274    of 100 mum thickness, are 6.5 and 3.98 W cm(-1) K-1, respectively.
111275 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
111276 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
111277    China.
111278 CR BRUGGEMAN DAG, 1935, ANN PHYS-BERLIN, V24, P636
111279    DREVILLON B, 1998, THIN SOLID FILMS, V313, P625
111280    EBERT W, 1999, DIAM RELAT MATER, V8, P1875
111281    FANG ZJ, 2002, J PHYS D APPL PHYS, V35, L57
111282    FANG ZJ, 2002, J PHYS-CONDENS MAT, V14, P5271
111283    IBARRA A, 1997, DIAM RELAT MATER, V6, P856
111284    JIANG X, 1993, APPL PHYS LETT, V62, P3438
111285    MCMARR PJ, 1986, J APPL PHYS, V59, P694
111286    MO Y, 1998, J CRYST GROWTH, V191, P459
111287    MO YW, 1997, THIN SOLID FILMS, V305, P266
111288    NATH S, 1996, DIAM RELAT MATER, V5, P65
111289    PLESKOV YV, 1999, DIAM RELAT MATER, V8, P64
111290    STONER BR, 1992, APPL PHYS LETT, V60, P698
111291 NR 13
111292 TC 0
111293 SN 0268-1242
111294 J9 SEMICOND SCI TECHNOL
111295 JI Semicond. Sci. Technol.
111296 PD MAR
111297 PY 2004
111298 VL 19
111299 IS 3
111300 BP L35
111301 EP L38
111302 PG 4
111303 SC Engineering, Electrical & Electronic; Materials Science,
111304    Multidisciplinary; Physics, Condensed Matter
111305 GA 806FT
111306 UT ISI:000220420500008
111307 ER
111308 
111309 PT J
111310 AU Cheng, XY
111311    Lin, GW
111312    Li, HG
111313 TI The effect of atomic ordering on the hydrogen absorption and desorption
111314    of Ni4Mo alloy
111315 SO SCRIPTA MATERIALIA
111316 DT Article
111317 DE order-disorder phenomena; hydrogen embrittlement; hydrogen absorption;
111318    hydrogen desorption; gas chromatographic analysis
111319 ID ENVIRONMENTAL EMBRITTLEMENT; (CO,FE)(3)V; NI3FE
111320 AB Hydrogen absorption and desorption of disordered and ordered Ni4Mo
111321    alloys were investigated. The results show that the atomic ordering can
111322    promote gaseous hydrogen absorption at room temperature and therefore
111323    exacerbates the hydrogen gas-induced environmental embrittlement. (C)
111324    2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights
111325    reserved.
111326 C1 Shanghai Univ, Dept Mat, Inst Mat Sci, Shanghai 200072, Peoples R China.
111327 RP Cheng, XY, Shanghai Univ, Dept Mat, Inst Mat Sci, Box 269,149 Yanchang
111328    Rd, Shanghai 200072, Peoples R China.
111329 EM hhtxy@online.sh.cn
111330 CR BROOKS CR, 1984, INT MET REV, V29, P210
111331    CAMUS GM, 1989, ACTA METALL, V37, P1497
111332    CHENG XY, 2001, SCRIPTA MATER, V44, P325
111333    CHENG XY, 2002, SCRIPTA MATER, V46, P465
111334    CHENG XY, 2002, T NONFERR METAL SOC, V12, P786
111335    COHRON JW, 1997, ACTA MATER, V45, P2801
111336    HAMMER B, 1995, SURF SCI, V343, P211
111337    KURUVILLA AK, 1982, 3RD P INT C HYDR MET, V2, P629
111338    NISHIMURA C, 1996, SCRIPTA MATER, V35, P1441
111339    NORSKOV JK, 1981, J VAC SCI TECHNOL, V18, P420
111340    PASCO RW, 1983, ACTA METALL, V31, P541
111341    TAKASUGI T, 1994, INTERMETALLICS, V2, P225
111342    WRIGHT JL, 1998, SCRIPTA MATER, V38, P253
111343 NR 13
111344 TC 0
111345 SN 1359-6462
111346 J9 SCRIPTA MATER
111347 JI Scr. Mater.
111348 PD MAY
111349 PY 2004
111350 VL 50
111351 IS 10
111352 BP 1293
111353 EP 1296
111354 PG 4
111355 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
111356    Engineering
111357 GA 805WB
111358 UT ISI:000220395300006
111359 ER
111360 
111361 PT J
111362 AU Guo, GY
111363    Chen, YL
111364    Ying, WJ
111365 TI Thermal, spectroscopic and X-ray diffractional analyses of zirconium
111366    hydroxides precipitated at low pH values
111367 SO MATERIALS CHEMISTRY AND PHYSICS
111368 DT Article
111369 DE zirconium hydroxide; precipitation; DTA; TGA XRD; IR; Raman spectroscopy
111370 ID AQUEOUS SALT-SOLUTIONS; LOW-TEMPERATURE T-ZRO2; HYDROUS-ZIRCONIA;
111371    PHASE-TRANSFORMATION; RAMAN-SPECTROSCOPY; MONOCLINIC PHASE; ZRO2;
111372    PARTICLES; SPECTRA; CRYSTALLIZATION
111373 AB Differential thermal, thermogravimetric and elemental analyses in
111374    combination with infrared and Raman spectroscopies and X-ray
111375    diffraction (XRD) were used to follow the structural properties of
111376    zirconium hydroxides precipitated from zirconium oxychloride solution
111377    with aqueous ammonia at pH < 7. The results show that the zirconium
111378    hydroxides have the composition and structure significantly different
111379    from the three types of the existing zirconium hydroxides, which were
111380    formed under alkaline conditions, and hence can behave much differently
111381    from those previously known. The DTA and TGA curves demonstrates that
111382    there is an abrupt weight drop for the former and hardly any weight
111383    loss for the latter in the region of the exothermic peak. (C) 2003
111384    Published by Elsevier B.V.
111385 C1 Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Shanghai 200030, Peoples R China.
111386    Shanghai Univ, Coll Chem & Chem Engn, Shanghai 200072, Peoples R China.
111387    Shanghai Jiao Tong Univ, Inst Anal Ctr, Shanghai 200030, Peoples R China.
111388 RP Guo, GY, Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Shanghai 200030,
111389    Peoples R China.
111390 EM gou_gongyi@hotmail.com
111391 CR ALI AAM, 1999, THERMOCHIM ACTA, V336, P17
111392    BLESA MA, 1985, J MATER SCI, V20, P4601
111393    BOLIS V, 2001, THERMOCHIM ACTA, V379, P147
111394    CLEARFIELD A, 1990, J MATER RES, V5, P161
111395    GARCIA ET, 2001, J MATER RES, V16, P2209
111396    GUO GY, 1991, J MATER SCI, V26, P3511
111397    GUO GY, 1992, J AM CERAM SOC, V75, P1294
111398    HU MZC, 1999, J AM CERAM SOC, V82, P2313
111399    JONES SL, 1988, J AM CERAM SOC, V71, C190
111400    KERAMIDAS VG, 1974, J AM CERAM SOC, V57, P22
111401    KIM BK, 1997, PHYS STATUS SOLIDI B, V203, P557
111402    KIM DJ, 1993, J AM CERAM SOC, V76, P2106
111403    LEE K, 1999, J AM CERAM SOC, V82, P338
111404    LIU DW, 1988, J APPL PHYS, V64, P1413
111405    LIU FX, 1997, PHYS REV B, V55, P8847
111406    MAMOTT GT, 1991, J MATER SCI, V26, P4054
111407    MATSUI K, 1997, J AM CERAM SOC, V80, P1949
111408    MATSUI K, 1998, J CERAM SOC JPN, V106, P1232
111409    MATTA J, 1999, PHYS CHEM CHEM PHYS, V1, P4975
111410    MOON YT, 1995, J AM CERAM SOC, V78, P2690
111411    PHILLIPPI CM, 1971, J AM CERAM SOC, V54, P254
111412    QUINTARD PE, 2002, J AM CERAM SOC, V85, P1745
111413    SATO T, 2002, J THERM ANAL CALORIM, V69, P255
111414    SERGENT N, 2000, CHEM MATER, V12, P3830
111415    SHI L, 1999, J MATER SCI, V34, P3367
111416    SRINIVASAN R, 1988, J MATER RES, V3, P787
111417    SRINIVASAN R, 1993, CHEM MATER, V5, P27
111418    STEFANIC G, 1998, J PHYS CHEM SOLIDS, V59, P879
111419    STEFANIC G, 2000, MATER CHEM PHYS, V65, P197
111420    TANI E, 1983, J AM CERAM SOC, V66, P11
111421    TORRESGARCIA E, 2001, J MATER RES, V16, P2209
111422    TOSAN JL, 1993, EUR J SOL STATE INOR, V30, P179
111423    WHITNEY ED, 1970, J AM CERAM SOC, V53, P697
111424    XIE SB, 2000, CHEM MATER, V12, P2442
111425    YAMAGUCHI T, 1994, CATAL TODAY, V20, P199
111426    ZAITSEV LM, 1966, ZH NEORG KHIM+, V11, P1684
111427 NR 36
111428 TC 2
111429 SN 0254-0584
111430 J9 MATER CHEM PHYS
111431 JI Mater. Chem. Phys.
111432 PD APR
111433 PY 2004
111434 VL 84
111435 IS 2-3
111436 BP 308
111437 EP 314
111438 PG 7
111439 SC Materials Science, Multidisciplinary
111440 GA 805VC
111441 UT ISI:000220392800018
111442 ER
111443 
111444 PT J
111445 AU Wang, ZY
111446 TI Controlling chaos in the RF-biased Josephson junction with thermal noise
111447 SO JOURNAL OF SUPERCONDUCTIVITY
111448 DT Article
111449 DE Josephson junction; control of chaos; delayed feedback control;
111450    unstable periodic orbits
111451 AB In this paper the control of chaos in the rf-biased Josephson junction
111452    circuit is studied. Numerical simulation indicates that the unstable
111453    periodic orbits (UPO) embedded in the chaotic attractor can be
111454    stabilized with the delayed feedback technique. Upon controlling,
111455    operation state of the chaotic Josephson junction circuit switches back
111456    to its conventional state. Namely, phase locking is reestablished and
111457    typical I-V curve recovers. Furthermore, we investigate the influence
111458    of thermal noise on the control and estimate the range of the
111459    environmental temperature for an effective control through numerical
111460    simulation.
111461 C1 Shanghai Univ, Dept Phys, Shanghai, Peoples R China.
111462 RP Wang, ZY, Shanghai Univ, Dept Phys, Shanghai, Peoples R China.
111463 CR GILLESPIE DT, 1993, AM J PHYS, V61, P1077
111464    HUBERMAN BA, 1980, APPL PHYS LETT, V37, P750
111465    INOUE M, 1982, PROG THEOR PHYS, V68, P2184
111466    KAUTZ RL, 1987, PHYS LETT A, V125, P315
111467    KAUTZ RL, 1996, REP PROG PHYS, V59, P935
111468    MACDONALD AH, 1983, PHYS REV B, V27, P201
111469    OCTAVIO M, 1984, PHYS REV B, V29, P1231
111470    PYRAGAS K, 1993, PHYS LETT A, V180, P99
111471 NR 8
111472 TC 0
111473 SN 0896-1107
111474 J9 J SUPERCOND
111475 JI J. Supercond.
111476 PD APR
111477 PY 2004
111478 VL 17
111479 IS 2
111480 BP 233
111481 EP 237
111482 PG 5
111483 SC Physics, Applied; Physics, Condensed Matter
111484 GA 806CZ
111485 UT ISI:000220413300012
111486 ER
111487 
111488 PT J
111489 AU Liu, L
111490    Lu, WC
111491    Chen, NY
111492 TI On the criteria of formation and lattice distortion of perovskite-type
111493    complex halides
111494 SO JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS
111495 DT Article
111496 DE inorganic compounds; crystal structure; phase transitions
111497 AB The famous Goldschmidt's tolerance factor t = (R-A + R-X)/root2-(R-B +
111498    R-X) gives us a necessary but not sufficient condition for the
111499    formation of perovskite-type compounds (ABX(3)). In this work,
111500    computerized data analysis has been used to find some complementary
111501    criteria for the formation and lattice distortion of perovskite-type
111502    complex halides. It has been found that the radius ratio (R-A/R-X) and
111503    (R-B/R-X), affecting the stability of BX6 octahedra and AX(12)
111504    cubo-octahedra (they are basic units of perovskite structure), are also
111505    dominating factors for the formation and lattice distortion of
111506    perovskite-type compounds. Besides, it has been found that the
111507    transition between the perovskite structure (with comer-sharing BX6
111508    octahedra) to BaNiO3 structure (with face-sharing BX6 octahedra) can be
111509    predicted by a criterion based on the relative magnitude of ionic radii
111510    and electronegativity. Based on multivariate data analysis, several
111511    complementary criteria for the formation and lattice distortion of
111512    perovskite-type complex halides have been obtained, and some empirical
111513    equations expressing the relationships between the ionic radii (R-A,
111514    R-B, R-X) and the lattice constants of perovskite-type complex halides
111515    have been found. The physical meaning of these empirical relationships
111516    has been discussed based on Pauling's rules of the crystal lattice
111517    stability of complex ionic compounds. (C) 2003 Elsevier Ltd. All rights
111518    reserved.
111519 C1 Shanghai Univ, Dept Chem, Lab Chem Data Min, Shanghai 200436, Peoples R China.
111520 RP Lu, WC, Shanghai Univ, Dept Chem, Lab Chem Data Min, Shanghai 200436,
111521    Peoples R China.
111522 EM wclu@mail.shu.edu.cn
111523 CR BEZNOSIKOV BV, 2001, PERSPECTIVE MAT, V3, P34
111524    GALASSO FS, 1990, PEROVSKITES HIGH TC
111525    MCMURDIE HF, 1969, J RES NATL BUREAU A, V37, P621
111526    MULLER O, 1974, MAJOR TERNARY STRUCT
111527    NAKAJIMA T, 2000, ADV INORGANIC FLUORI
111528    NIANYI C, 1997, J PHYS CHEM SOLIDS, V58, P731
111529    NIANYI C, 1999, CHEMOMETRICS INTELLI, V45, P329
111530    NIANYI C, 1999, J ALLOY COMPD, V289, P20
111531    NIANYI C, 1999, P 2 INT C INT PROC M, V2, P1417
111532    PASIPAIKO VI, 1977, DIAGRAMS FUSIBILITY
111533    PAULING LS, 1960, NATURE CHEM BOND
111534 NR 11
111535 TC 0
111536 SN 0022-3697
111537 J9 J PHYS CHEM SOLIDS
111538 JI J. Phys. Chem. Solids
111539 PD MAY
111540 PY 2004
111541 VL 65
111542 IS 5
111543 BP 855
111544 EP 860
111545 PG 6
111546 SC Chemistry, Multidisciplinary; Physics, Condensed Matter
111547 GA 806CN
111548 UT ISI:000220412100003
111549 ER
111550 
111551 PT J
111552 AU Qin, YM
111553    Rivera, JM
111554 TI Blow-up of solutions to the Cauchy problem in nonlinear one-dimensional
111555    thermoelasticity
111556 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
111557 DT Article
111558 DE nonlinear thermoelasticity; blow-up; singularity; positive definite
111559    kernel
111560 ID PARABOLIC COUPLED SYSTEMS; GLOBAL-SOLUTIONS; ASYMPTOTIC STABILITY;
111561    LINEAR THERMOELASTICITY; EXPONENTIAL STABILITY; SMOOTH SOLUTIONS;
111562    ENERGY DECAY; EQUATIONS; NONEXISTENCE; EXISTENCE
111563 AB This paper is concerned with the blow-up phenomena of solutions to the
111564    Cauchy problem in non-autonomous nonlinear one-dimensional
111565    thermoelastic models obeying both Fourier's law of heat flux and the
111566    theory due to Gurtin and Pipkin. Moreover some previously related
111567    results have been extended. (C) 2003 Elsevier Inc. All rights reserved.
111568 C1 Henan Univ, Coll Math & Informat Sci, Dept Math, Inst Math, Kaifeng 475001, Peoples R China.
111569    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
111570    LNCC, Natl Lab Sci Computat, BR-25621070 Petropolis, RJ, Brazil.
111571 RP Qin, YM, Henan Univ, Coll Math & Informat Sci, Dept Math, Inst Math,
111572    Kaifeng 475001, Peoples R China.
111573 EM yuming_qin@hotmail.com
111574    rivera@lncc.br
111575 CR BURNS JA, 1993, J MATH ANAL APPL, V179, P574
111576    COLEMAN BD, 1965, ARCH RATIONAL MECH A, V19, P266
111577    COLEMAN BD, 1967, Z ANGEW MATH PHYS, V18, P199
111578    DAFERMOS CM, 1968, ARCH RATIONAL MECH A, V29, P241
111579    DAFERMOS CM, 1979, COMMUN PART DIFF EQ, V4, P219
111580    DAFERMOS CM, 1982, NONLINEAR ANAL, V6, P435
111581    FATORI LH, IN PRESS Q APPL MATH
111582    GIBSON JS, 1992, SIAM J CONTROL OPTIM, V30, P1163
111583    GIORGI C, 1997, QUAD SEM MAT BRESCIA, V2
111584    GURTIN ME, 1968, ARCH RATION MECH AN, V31, P113
111585    HANSEN SW, 1992, J MATH ANAL APPL, V167, P429
111586    HRUSA WJ, 1990, ARCH RATION MECH AN, V111, P135
111587    JIANG S, 2000, MONOGR SURVEYS PURE, V112
111588    KALANTAROV V, 1978, J SOVIET MATH, V10, P53
111589    KIM JU, 1992, SIAM J MATH ANAL, V23, P889
111590    KIRANE M, 1995, MATH NACHR, V176, P139
111591    KIRANE M, 2001, J MATH ANAL APPL, V254, P71
111592    KNOPS RJ, 1974, ARCH RATIONAL MECH A, V55, P52
111593    LAGNESE JE, 1989, INT SERIES NUMERICAL, V91, P211
111594    LEBEAU G, 1999, ARCH RATION MECH AN, V148, P179
111595    LEVINE HA, 1974, T AM MATH SOC, V192, P1
111596    LEVINE HA, 1984, J DIFFER EQUATIONS, V52, P135
111597    LIU Z, 1999, RES NOTES MATH, V398
111598    MESSAOUDI S, 1992, MAGHREB MATH REV, V1, P31
111599    RACKE R, 1990, MATH Z, V203, P649
111600    RACKE R, 1991, ARCH RATION MECH AN, V116, P1
111601    RACKE R, 1993, Q APPL MATH, V51, P751
111602    RIVERA JEM, UNPUB GLOBAL EXISTEN
111603    RIVERA JEM, 1992, FUNKCIAL EKVAC, V35, P19
111604    RIVERA JEM, 2002, NONLINEAR ANAL-THEOR, V51, P11
111605    SLEMROD M, 1981, ARCH RATION MECH AN, V76, P97
111606    STAFFANS OJ, 1980, SIAM J MATH ANAL, V11, P793
111607    ZHANG X, DECAY SOLUTIONS THER
111608    ZHENG SM, 1984, SCI SINICA SER A, V27, P1274
111609    ZHENG SM, 1987, SCI SINICA SER A, V30, P1133
111610 NR 35
111611 TC 0
111612 SN 0022-247X
111613 J9 J MATH ANAL APPL
111614 JI J. Math. Anal. Appl.
111615 PD APR 1
111616 PY 2004
111617 VL 292
111618 IS 1
111619 BP 160
111620 EP 193
111621 PG 34
111622 SC Mathematics, Applied; Mathematics
111623 GA 806LM
111624 UT ISI:000220435400013
111625 ER
111626 
111627 PT J
111628 AU Li, CP
111629 TI On super-chaotifying discrete dynamical systems
111630 SO CHAOS SOLITONS & FRACTALS
111631 DT Article
111632 ID CHAOS
111633 AB This paper derives a super-chaotification (or hyper-chaotification)
111634    scheme by making all Lyapunov exponents of the controlled dynamical
111635    system Positive Via, the controller of some simple triangular function.
111636    (C) 2004 Elsevier Ltd. All rights reserved.
111637 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
111638 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
111639 EM leecp@online.sh.cn
111640 CR BLANCHARD F, 2002, J REINE ANGEW MATH, V547, P51
111641    CHEN G, 1998, CHAOS ORDER METHODOL
111642    CHEN G, 2003, CHAOS CONTROL, V1
111643    CHEN GR, 1996, INT J BIFURCAT CHAOS, V6, P1341
111644    CHENG YP, 2001, MATRIX THEORY
111645    DEVANEY RL, 1989, INTRO CHAOTIC DYNAMI
111646    FROYLAND J, 1992, INTRO CHAOS COHERENC
111647    GLENDINNING P, 1994, STABILITY INSTABILIT
111648    HOLZFUSS J, 1991, LYAPUNOV EXPONENTS, P263
111649    LI CP, 2003, CHAOS SOLITON FRACT, V18, P69
111650    LI CP, 2003, CHAOS SOLITON FRACT, V18, P809
111651    LI CP, 2003, J SYS SCI COMPLEX, V16, P159
111652    LI TY, 1975, AM MATH MONTHLY, V82, P985
111653    MAROTTO FR, 1978, J MATH ANAL APPL, V63, P199
111654    OTTINO JM, 1989, KINEMATICS MIXING ST
111655    OTTINO JM, 1992, SCIENCE, V257, P754
111656    PARKER TS, 1989, PRACTICAL NUMERICAL
111657    WIGGINS S, 1991, INTRO APPL NONLINEAR
111658 NR 18
111659 TC 3
111660 SN 0960-0779
111661 J9 CHAOS SOLITON FRACTAL
111662 JI Chaos Solitons Fractals
111663 PD AUG
111664 PY 2004
111665 VL 21
111666 IS 4
111667 BP 855
111668 EP 861
111669 PG 7
111670 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
111671 GA 806CW
111672 UT ISI:000220413000008
111673 ER
111674 
111675 PT J
111676 AU Li, CP
111677 TI A new method of determining chaos-parameter-region for the tent map
111678 SO CHAOS SOLITONS & FRACTALS
111679 DT Article
111680 ID REPELLERS
111681 AB In this paper, we apply the modified Marotto Theorem developed by Li
111682    and Chen to determination of the chaos-parameter-region of the tent
111683    map, which provides a new approach to detection of the
111684    chaos-parameter-region for the nonlinear maps. (C) 2004 Elsevier Ltd.
111685    All rights reserved.
111686 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
111687 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
111688 EM leecp@online.sh.cn
111689 CR BILLINGS L, 2001, CHAOS SOLITON FRACT, V12, P365
111690    CHEN G, 1998, J MATH PHYS, V39, P6459
111691    GARDINI L, 1994, NONLINEAR ANAL-THEOR, V23, P1039
111692    GLENDINNING P, 1994, STABILITY INSTABILIT
111693    HABUTSU T, 1991, LECT NOTES COMPUT SC, V547, P127
111694    HALE JK, 1986, ANN MAT PUR APPL, V144, P229
111695    HUANG Y, 2004, CHAOS SOLITON FRACT, V19, P1105
111696    LI CP, 2003, CHAOS SOLITON FRACT, V18, P69
111697    LI CP, 2004, CHAOS SOLITON FRACT, V20, P655
111698    LI TY, 1975, AM MATH MONTHLY, V82, P985
111699    LIN W, 2002, INT J BIFURCAT CHAOS, V12, P1129
111700    MAROTTO FR, 1978, J MATH ANAL APPL, V63, P199
111701    YOSHIDA T, 1983, J STAT PHYS, V31, P279
111702 NR 13
111703 TC 0
111704 SN 0960-0779
111705 J9 CHAOS SOLITON FRACTAL
111706 JI Chaos Solitons Fractals
111707 PD AUG
111708 PY 2004
111709 VL 21
111710 IS 4
111711 BP 863
111712 EP 867
111713 PG 5
111714 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
111715 GA 806CW
111716 UT ISI:000220413000009
111717 ER
111718 
111719 PT J
111720 AU Leng, GS
111721 TI The Brunn-Minkowski inequality for volume differences
111722 SO ADVANCES IN APPLIED MATHEMATICS
111723 DT Article
111724 DE compact domain; convex body; mixed volume; Brunn-Minkowski inequality;
111725    Minkowski inequality; isoperimetric inequality; volume difference;
111726    quermassintegral difference
111727 ID CAPACITY
111728 AB In this paper, we establish some theorems for the volume differences of
111729    compact domains, which are extensions of the Brunn-Minkowski
111730    inequality, Minkowski inequality, and isoperimetric inequality.
111731    Further, we give a generalizations of the matrix form of the
111732    Brunn-Minkowski inequality and prove the Brunn-Minkowski inequality for
111733    quermassintegral differences of convex bodies. (C) 2003 Elsevier Inc.
111734    All rights reserved.
111735 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
111736 RP Leng, GS, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
111737 EM gleng@mail.shu.edu.cn
111738 CR BAKELMAN IJ, 1994, CONVEX ANAL NONLINER
111739    BECKENBACH EF, 1965, INEQUALITIES
111740    BORELL C, 1975, INVENT MATH, V30, P207
111741    BORELL C, 1983, MATH ANN, V263, P179
111742    BURAGO YD, 1988, GEOMETRIC INEQUALITY
111743    CAFFARELLI LA, 1996, ADV MATH, V117, P193
111744    COSTA MHM, 1984, IEEE T INFORM THEORY, V30, P837
111745    DEMBO A, 1991, IEEE T INFORM THEORY, V37, P1501
111746    EWALD G, 1996, COMBINATORIAL CONVEX
111747    GARDNER RJ, 1996, GEOMETRIC TOMOGRAPHY
111748    GARDNER RJ, 2001, T AM MATH SOC, V353, P3995
111749    GARDNER RJ, 2002, B AM MATH SOC, V39, P355
111750    JERISON D, 1996, ACTA MATH-DJURSHOLM, V176, P1
111751    OKOUNKOV A, 1996, INVENT MATH, V125, P405
111752    OSSERMAN R, 1978, B AM MATH SOC, V84, P1182
111753    SCHNEIDER R, 1993, CONVEX BODIES BRUNN
111754    ZHANG GY, 1999, J DIFFER GEOM, V53, P183
111755 NR 17
111756 TC 1
111757 SN 0196-8858
111758 J9 ADVAN APPL MATH
111759 JI Adv. Appl. Math.
111760 PD APR
111761 PY 2004
111762 VL 32
111763 IS 3
111764 BP 615
111765 EP 624
111766 PG 10
111767 SC Mathematics, Applied
111768 GA 806BK
111769 UT ISI:000220409200009
111770 ER
111771 
111772 PT J
111773 AU Wang, XD
111774    Liu, PT
111775    Liu, XY
111776    Li, Y
111777 TI New compact configuration of a stepped-impedance ceramic bandpass filter
111778 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
111779 DT Article
111780 DE ceramic filter; laminated filter; planar filter; SIR
111781 AB A new compact configuration of a stepped-impedance comb-line filter is
111782    proposed. By reversing one of the two resonators, the size of the
111783    filter becomes much smaller than that of the former. The impedance
111784    ratio has a small effect on the filter's size. The filter is made of
111785    low-temperature co-fired ceramic (LTCC). The simulated frequency
111786    characteristics are compared with the measured data of the fabricated
111787    filter and good agreement is reported. (C) 2004 Wiley Periodicals, Inc.
111788 C1 Shanghai Univ, Dept Commun & Informat Engn, Shanghai, Peoples R China.
111789 RP Wang, XD, Shanghai Univ, Dept Commun & Informat Engn, Shanghai, Peoples
111790    R China.
111791 CR HUANG CL, 2000, MICROW OPT TECHN LET, V24, P258
111792    ISHIZAKI T, 1994, IEEE MTT S, P617
111793    ISHIZAKI T, 1994, IEEE T MICROW THEORY, V42, P2017
111794    JONES EMT, 1956, IRE T MICROWAVE THEO, V4, P75
111795    MAKIMOTO M, 1979, P IEEE, V67, P16
111796    MATTHAEI GL, 1964, MICROWAVE FILTERS IM
111797    VINCZE AD, 1974, IEEE T MICROW THEORY, V22, P1171
111798 NR 7
111799 TC 1
111800 SN 0895-2477
111801 J9 MICROWAVE OPT TECHNOL LETT
111802 JI Microw. Opt. Technol. Lett.
111803 PD APR 20
111804 PY 2004
111805 VL 41
111806 IS 2
111807 BP 146
111808 EP 149
111809 PG 4
111810 SC Engineering, Electrical & Electronic; Optics
111811 GA 804XY
111812 UT ISI:000220332600024
111813 ER
111814 
111815 PT J
111816 AU Wang, ZC
111817    Dai, YM
111818 TI A twelfth-order four-step formula for the numerical integration of the
111819    one-dimensional Schrodinger equation
111820 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS C
111821 DT Article
111822 DE multi-derivative; high-order linear four-step methods; Schrodinger
111823    equation; eigenvalue problems; high precision methods
111824 ID INITIAL-VALUE-PROBLEMS; FITTING METHODS
111825 AB A new twelfth-order four-step formula containing fourth derivatives for
111826    the numerical integration of the one-dimensional Schrodinger equation
111827    has been developed. It was found that by adding multi-derivative terms,
111828    the stability of a linear multi-step method can be improved and the
111829    interval of periodicity of this new method is larger than that of the
111830    Numerov's method. The numerical test shows that the new method is
111831    superior to the previous lower orders in both accuracy and efficiency
111832    and it is specially applied to the problem when an increasing accuracy
111833    is requested.
111834 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
111835 RP Wang, ZC, Shanghai Univ, Dept Phys, 99 ShangDa Rd, Shanghai 200436,
111836    Peoples R China.
111837 CR ALLISON AC, 1970, J COMPUT PHYS, V6, P378
111838    ALLISON AC, 1991, J COMPUT PHYS, V97, P240
111839    AVDELAS G, 1996, COMPUT MATH APPL, V31, P85
111840    BLATT JM, 1967, J COMP PHYSIOL, V1, P382
111841    CASH JR, 1984, COMPUT PHYS COMMUN, V33, P299
111842    COOLEY JW, 1961, MATH COMPUT, V15, P363
111843    HERZBERG G, 1950, SPECTRA DIATOMIC MOL
111844    IXARU LG, 1980, COMPUT PHYS COMMUN, V19, P23
111845    LAMBERT JD, 1976, J INST MATH APPL, V18, P189
111846    RAPTIS AD, 1978, COMPUT PHYS COMMUN, V14, P1
111847    RAPTIS AD, 1982, COMPUTING, V28, P373
111848    RAPTIS AD, 1985, COMPUT PHYS COMMUN, V36, P113
111849    RAPTIS AD, 1987, COMPUT PHYS COMMUN, V44, P95
111850    SIMOS TE, 1993, P ROY SOC LOND A MAT, V441, P283
111851    SIMOS TE, 1999, J COMPUT PHYS, V148, P305
111852    WANG Z, 2003, N MATH J CHIN U, V12, P146
111853    WILLIAMS PS, 2000, INT J MOD PHYS C, V11, P785
111854 NR 17
111855 TC 5
111856 SN 0129-1831
111857 J9 INT J MOD PHYS C
111858 JI Int. J. Mod. Phys. C
111859 PD OCT
111860 PY 2003
111861 VL 14
111862 IS 8
111863 BP 1087
111864 EP 1105
111865 PG 19
111866 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
111867 GA 805DO
111868 UT ISI:000220347200009
111869 ER
111870 
111871 PT J
111872 AU Shen, YS
111873    Liu, GL
111874    Liu, YJ
111875 TI Quasi-variational principle for the vortexpotential function of
111876    rotational flow in three-dimension pipe
111877 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
111878 DT Article
111879 DE pseudo-potential function; vortex-potential function; curl;
111880    quasi-variational principle; boundary condition
111881 AB The variational analysis of the Pseudo-potential
111882    function-vortex-potential function model, a new mathematical model, was
111883    developed and by which the flow field with transonic speed and curl was
111884    decided, and different sorts of the variational principle for vortex
111885    potential function were established by transforming the original
111886    equation for vortex-function, the boundary conditions for
111887    vortex-potential function was raised.
111888 C1 Jinan Univ, Sch Mat Sci & Engn, Jinan 250022, Peoples R China.
111889    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
111890 RP Shen, YS, Jinan Univ, Sch Mat Sci & Engn, Jinan 250022, Peoples R China.
111891 EM shengysh@sina.com
111892 CR GIESE JH, 1951, J MATH PHYS, V30, P31
111893    LIU GL, 1980, IMPELLER MCH AERODYN
111894    LIU GL, 1983, J SHANGHAI MACHINERY, P15
111895    PAN WQ, 1983, FLUID MECH BASIS
111896    SHEN YS, 1997, 11 NAT C FLUID DYN 4, P29
111897    SHEN YS, 1999, PSEUDOPOTENTIAL MODE
111898    WU CH, 1952, T ASME
111899    WU WQ, 1979, J MECH ENG, V15, P86
111900 NR 8
111901 TC 0
111902 SN 0253-4827
111903 J9 APPL MATH MECH-ENGL ED
111904 JI Appl. Math. Mech.-Engl. Ed.
111905 PD JAN
111906 PY 2004
111907 VL 25
111908 IS 1
111909 BP 10
111910 EP 15
111911 PG 6
111912 SC Mathematics, Applied; Mechanics
111913 GA 805QL
111914 UT ISI:000220380700002
111915 ER
111916 
111917 PT J
111918 AU Shao, J
111919    Xu, H
111920    Lu, WC
111921    Chen, NY
111922 TI Transport property anomalies under high pressure in molten Na2O-SiO2
111923    binary system studied by molecular dynamics simulation
111924 SO ACTA PHYSICO-CHIMICA SINICA
111925 DT Article
111926 DE molecular dynamics simulation; Na2O-SiO2 binary system; coordination
111927    number of silicon by oxygen; transport property anomaly; high pressure
111928    physics
111929 ID COMPUTER-SIMULATION; GLASS; WATER; SILICATES; VISCOSITY
111930 AB A series of ion dynamics simulations on Na2O-SiO2 binary system at 6000
111931    K ranging from 0 to 100 GPa pressure have been carried out. These
111932    systems include SiO2, Na2O . 10SiO(2), Na2O . 5SiO(2), Na2O . 2SiO(2),
111933    Na2O . SiO2, 2Na(2)O . SiO2. The simulated results show that there
111934    exists anomalous pressure dependence for oxygen component diffusion
111935    coefficient in SiO2, Na2O . 10SiO(2), Na2O . 5SiO(2), Na2O . 2SiO(2)
111936    systems. Besides SiO2 system, others have not been reported earlier. In
111937    Na2O . 10SiO(2), Na2O . 5SiO(2), Na2O. 2SiO(2) systems, the silicon
111938    component diffusion coefficient also shows anomalous pressure
111939    dependence, this result has not been reported earlier.
111940    In these systems at about 20 GPa the diffusion coefficient of oxygen
111941    component is larger than that at ambient pressure by more than an order
111942    of magnitude. That the pressure-induced peak position of oxygen
111943    diffusion coefficient is at about 20 GPa is different from the results
111944    reported earlier, which is at about 30 GPa.
111945    It is observed that the diffusivity maximum in SiO2 system corresponds
111946    approximately to a prevalence of five-coordination of silicon by
111947    oxygen, but the diffusivity maximum in Na2O . 10SiO(2) system
111948    corresponds approximately to a prevalence of six-coordination of
111949    silicon by oxygen. The latter has not been reported earlier.
111950 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
111951    Arizona State Univ, Dept Chem, Tempe, AZ 85027 USA.
111952    Changshu Inst Technol, Changshu 215500, Peoples R China.
111953 RP Xu, H, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
111954 EM xuhua@cslg.cn
111955 CR ABRAMO MC, 1992, J CHEM PHYS, V96, P9083
111956    ANGELL CA, 1982, LECT NOTE PHYS, P131
111957    ANGELL CA, 1982, SCIENCE, V218, P885
111958    ANGELL CA, 1994, NUOVO CIMENTO D, V16, P993
111959    BRAWER SA, 1981, J CHEM PHYS, V75, P3516
111960    HEMMATI M, 2001, J CHEM PHYS, V115, P6663
111961    KANNO H, 2001, J PHYS CHEM B, V105, P2019
111962    KESTIN J, 1977, J CHEM ENG DATA, V22, P207
111963    KIEFFER J, 1989, J CHEM PHYS, V90, P4982
111964    POOLE PH, 1997, PHYS REV LETT, V79, P2281
111965    SHAO J, 1993, ACTA METALLURGICA SI, V29, B11
111966    SHAO J, 1993, CHINESE PHYS LETT, V10, P669
111967    XU H, 2002, ACTA PHYS-CHIM SIN, V18, P10
111968 NR 13
111969 TC 0
111970 SN 1000-6818
111971 J9 ACTA PHYS-CHIM SIN
111972 JI Acta Phys.-Chim. Sin.
111973 PD MAR
111974 PY 2004
111975 VL 20
111976 IS 3
111977 BP 237
111978 EP 239
111979 PG 3
111980 SC Chemistry, Physical
111981 GA 805JM
111982 UT ISI:000220362600004
111983 ER
111984 
111985 PT J
111986 AU Li, GH
111987    Xu, DM
111988    Zhou, SP
111989 TI A parameter-modulated method for chaotic digital communication based on
111990    state observers
111991 SO ACTA PHYSICA SINICA
111992 DT Article
111993 DE state observer; chaos synchronization; parameter modulation
111994 ID SYNCHRONIZATION; SYSTEMS
111995 AB By designing an appropriate state observer, we have constructed two
111996    subsystems which alternately synchronize the chaotic drive system. When
111997    the parameter of the transmitter is modulated using the binary digital
111998    signal, the two systems can alternately be synchronized with the
111999    chaotic system. In the receiver, information is demodulated by
112000    analyzing synchronization error. An observer-based parameter modulation
112001    and demodulation Henon system was chosen to be a typical example.
112002    Numerical simulation is carried out to illustrate the effectiveness and
112003    efficiency of the proposed method.
112004 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
112005    Shanghai Univ, Sch Sci, Shanghai 200436, Peoples R China.
112006 RP Li, GH, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
112007    Peoples R China.
112008 CR CHEN SH, 2002, ACTA PHYS SIN-CH ED, V51, P749
112009    KOCAREV L, 1995, PHYS REV LETT, V74, P5028
112010    KOLUMBAN G, 1997, IEEE T CIRCUITS-I, V44, P927
112011    KOLUMBAN G, 1998, IEEE T CIRCUITS-I, V45, P1129
112012    LAI JW, 2001, ACTA PHYS SIN-CH ED, V50, P21
112013    PECORA LM, 1990, PHYS REV LETT, V64, P821
112014    YANG XS, 2000, ACTA PHYS SIN-CH ED, V49, P1919
112015 NR 7
112016 TC 2
112017 SN 1000-3290
112018 J9 ACTA PHYS SIN-CHINESE ED
112019 JI Acta Phys. Sin.
112020 PD MAR
112021 PY 2004
112022 VL 53
112023 IS 3
112024 BP 706
112025 EP 709
112026 PG 4
112027 SC Physics, Multidisciplinary
112028 GA 805LI
112029 UT ISI:000220367400011
112030 ER
112031 
112032 PT J
112033 AU Wang, SS
112034    Zheng, ZG
112035    Weng, YQ
112036    Yu, YJ
112037    Zhang, DF
112038    Fan, WH
112039    Dai, RH
112040    Hu, ZB
112041 TI Angiogenesis and anti-angiogenesis activity of Chinese medicinal herbal
112042    extracts
112043 SO LIFE SCIENCES
112044 DT Article
112045 DE angiogenesis; anti-angiogenesis; Chinese medicinal herbs
112046 ID EMBRYO CHORIOALLANTOIC MEMBRANE; CORONARY-ARTERY-DISEASE; IN-VITRO;
112047    TUMOR ANGIOGENESIS; ENDOTHELIAL-CELLS; GENE-THERAPY; SOLE THERAPY;
112048    GROWTH; MICE; METASTASIS
112049 AB The aqueous extracts of 24 herbs traditionally used as curing ischemic
112050    heart disease in clinic in China were screened for their in vitro
112051    angiogenic activity, another twenty-four traditionally used as
112052    anti-tumor or anti-inflammatory remedies in China were screened for
112053    their in vitro anti-angiogenic activity. The activity of angiogenesis
112054    was determined by quantitation of vessels on chick embryo
112055    chorioallantoic membrane (CAM) model and cell proliferation of cultured
112056    bovine aortic endothelial cells (BAECs). Among the herbal extracts
112057    examined, the aqueous extracts of Epimedium sagittatum, Trichosanthes
112058    kirilowii and Dalbergia odorifera showed the strong angiogenetic.
112059    activity both in CAM and BAECs models; and the aqueous extracts of
112060    Berberis paraspecta, Catharanthus roseus, Coptis chinensis, Taxus
112061    chinensis, Scutellaria baicalensis, Polygonum cuspidatum and
112062    Scrophularia ningpoensis elicited significant inhibition at a
112063    concentration of 1g dry herb /ml. (C) 2004 Elsevier Inc. All rights
112064    reserved.
112065 C1 Shanghai Univ, Tradit Chinese Med, Inst Chinese Mat Med, Shanghai 201203, Peoples R China.
112066    Huashan Hosp, Lab Cardiovasc Dis, Shanghai 200040, Peoples R China.
112067    Dongfang Hosp, Dept Cardiovasc Dis, Shanghai 200120, Peoples R China.
112068 RP Zheng, ZG, Shanghai Univ, Tradit Chinese Med, Inst Chinese Mat Med,
112069    Shanghai 201203, Peoples R China.
112070 EM zhengzhengui@163.com
112071 CR 1997, ANIMAL CELL CULTURE, P112
112072    *JIANGS NEW MED CO, 1986, DICT CHIN MED
112073    BAUMGARTNER I, 1998, CIRCULATION, V97, P1114
112074    BRAKENHIELM E, 2001, FASEB J, V15, P1798
112075    CHOI S, 2002, PLANTA MED, V68, P330
112076    DEPAULO SA, 2000, INT J MOL MED   0605, P667
112077    FOLKMAN J, 1987, SCIENCE, V235, P442
112078    FOTSIS T, 1993, P NATL ACAD SCI USA, V90, P2690
112079    GLINKOWSKA G, 1997, ACTA POL PHARM, V54, P151
112080    GONZALEZ S, 2000, ANTICANCER RES, V20, P567
112081    HANAHAN D, 1996, CELL, V86, P353
112082    HISA T, 1998, ANTICANCER RES, V18, P783
112083    HORVATH KA, 1997, J THORAC CARDIOV SUR, V113, P645
112084    JUAREZ CP, 2000, EUR J OPHTHALMOL, V10, P51
112085    JUNG YD, 2001, INT J EXP PATHOL, V82, P309
112086    KIM MS, 2000, INT J CANCER, V87, P269
112087    KIM Y, 2002, PLANTA MED, V68, P271
112088    KIMURA Y, 2000, ANTICANCER RES, V50, P2899
112089    KIMURA Y, 2001, J NUTR, V131, P1844
112090    KOBAYASHI S, 1995, BIOL PHARM BULL, V18, P1382
112091    LANSINK M, 1998, BLOOD, V92, P927
112092    LOSORDO DW, 1998, CIRCULATION, V98, P2800
112093    MCELWAIN MC, 1995, MOL CELL DIFFER, V3, P31
112094    MOCHIZUKI M, 1995, BIOL PHARM BULL, V18, P1197
112095    MORISAKI N, 1995, BRIT J PHARMACOL, V115, P1188
112096    NGUYEN M, 1994, MICROVASC RES, V47, P31
112097    OHSUGI M, 1999, J ETHNOPHARMACOL, V67, P111
112098    RIBATTI D, 1995, DEV BIOL, V170, P39
112099    RIBATTI D, 2001, ANAT REC, V264, P317
112100    RISAU W, 1997, NATURE, V386, P671
112101    ROSENGART TK, 1999, CIRCULATION, V100, P468
112102    SHIBATA S, 2001, J KOREAN MED SCI S, S28
112103    SHUKLA A, 1999, J ETHNOPHARMACOL, V65, P1
112104    SILVESTRE JS, 2002, ARCH MAL COEUR VAISS, V95, P189
112105    TAKAKU T, 2001, J NUTR, V131, P1409
112106    VACCA A, 1999, BLOOD, V94, P4143
112107    YOON TJ, 1995, CANCER LETT, V97, P83
112108    ZHOU JR, 1999, J NUTR, V129, P1628
112109 NR 38
112110 TC 6
112111 SN 0024-3205
112112 J9 LIFE SCI
112113 JI Life Sci.
112114 PD APR 2
112115 PY 2004
112116 VL 74
112117 IS 20
112118 BP 2467
112119 EP 2478
112120 PG 12
112121 SC Medicine, Research & Experimental; Pharmacology & Pharmacy
112122 GA 802MG
112123 UT ISI:000220167000001
112124 ER
112125 
112126 PT J
112127 AU Zhu, YH
112128    Shi, DH
112129    Yong, XO
112130    Gao, J
112131    Luo, HZ
112132 TI A general probability formula of the number of location areas'
112133    boundaries crossed by a mobile between two successive call arrivals
112134 SO JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
112135 DT Article
112136 DE mobile computing; location management; mobility management
112137 ID TRACKING
112138 AB Mobility management is a challenging topic in mobile computing
112139    environment. Studying the situation of mobiles crossing the boundaries
112140    of location areas is significant for evaluating the costs and
112141    performances of various location management strategies. Hitherto,
112142    several formulae were derived to describe the probability of the number
112143    of location areas' boundaries crossed by a mobile. Some of them were
112144    widely used in analyzing the costs and performances of mobility
112145    management strategies. Utilizing the density evolution method of vector
112146    Markov processes, we propose a general probability formula of the
112147    number of location areas' boundaries crossed by a mobile between two
112148    successive calls. Fortunately, several widely-used formulae are special
112149    cases of the proposed formula.
112150 C1 Zhejiang Univ Technol, Inst Informat Intelligence & Decis Optimisat, Hangzhou 310032, Peoples R China.
112151    Shanghai Univ, Coll Sci, Dept Math, Shanghai 200436, Peoples R China.
112152    Zhejiang Univ, Inst Artificial Intelligence, Hangzhou 310027, Peoples R China.
112153    Zhejiang Univ Technol, Coll Sci, Hangzhou 310032, Peoples R China.
112154 RP Zhu, YH, Zhejiang Univ Technol, Inst Informat Intelligence & Decis
112155    Optimisat, Hangzhou 310032, Peoples R China.
112156 EM yhzhu@zjut.edu.cn
112157 CR JAIN R, 1995, IEEE INT C COMM ICC, P740
112158    LIN YB, 1997, IEEE ACM T NETWORK, V5, P25
112159    LIN YB, 1998, IEEE T VEH TECHNOL, V47, P58
112160    MA W, 2002, IEEE T MOBILE COMPUT, V1, P32
112161    PITOURA E, 2001, IEEE T KNOWL DATA EN, V13, P571
112162    ROSS SM, 1972, STOCHASTIC PROCESSES
112163    SATYANARAYANAN M, 2001, IEEE PERS COMMUN, V8, P10
112164    SHI DH, 1999, DENSITY EVOLUTION ME
112165    SUE KL, 1997, IEEE J SEL AREA COMM, V15, P1455
112166    TABBANE S, 1997, IEEE COMM MAGAZI AUG
112167    ZHU YH, 2002, ACTA ELECT SINICA, V30, P1145
112168    ZHU YH, 2002, J CHINA I COMMUNICAT, V23, P8
112169    ZHU YH, 2002, J COMPUTER RES DEV, V39, P557
112170 NR 13
112171 TC 0
112172 SN 1000-9000
112173 J9 J COMPUT SCI TECHNOL
112174 JI J. Comput. Sci. Technol.
112175 PD MAR
112176 PY 2004
112177 VL 19
112178 IS 2
112179 BP 177
112180 EP 182
112181 PG 6
112182 SC Computer Science, Hardware & Architecture; Computer Science, Software
112183    Engineering
112184 GA 803DV
112185 UT ISI:000220212700007
112186 ER
112187 
112188 PT J
112189 AU Shang, HJ
112190    Lu, YC
112191    Jin, P
112192    Zhang, L
112193 TI Unlimited information diffusion method and application in risk analysis
112194    in coronary heart disease
112195 SO INTERNATIONAL JOURNAL OF GENERAL SYSTEMS
112196 DT Article
112197 DE information diffusion; prevalence rate; optimization; coronary heart
112198    disease
112199 AB There is a need for methods that will extract accurate results from
112200    limited data in information processing. This paper probes into the
112201    mechanism of unlimited information diffusion, which is similar to those
112202    of molecular diffusion and heat conduction. Therefore the information
112203    diffusion function is deduced to be the solution of the Cauchy problem.
112204    Then we apply it to a practical project to study the relationship
112205    between the prevalence rates of coronary heart disease and the relevant
112206    risk factors. The results are satisfactory and reveal that the
112207    information diffusion technique is efficient in dealing with the small
112208    sample problem. Finally, in order to get rid of the randomicity of the
112209    parameter in the information diffusion function, two criteria are
112210    proposed for the establishment of an optimization model in the
112211    one-dimensional case.
112212 C1 Fudan Univ, Dept Math, Shanghai 200433, Peoples R China.
112213    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
112214 RP Shang, HJ, Fudan Univ, Dept Math, Shanghai 200433, Peoples R China.
112215 EM afac@fudan.edu.cn
112216    chuiwj@online.sh.cn
112217    xiaoxiao_jin@yahoo.com
112218    topkevin@etang.com
112219 CR HUANG CF, 1997, FUZZY SET SYST, V91, P69
112220    HUANG CF, 2000, SIGNAL PROCESS, V80, P1037
112221    HUANG CF, 2002, EFF FUZZ INF P US PR
112222    HUANG CF, 2002, J INFORMATION TECHNO, V1, P229
112223    SHANG HJ, 2000, P N AM FUZZ INF P SO, P168
112224 NR 5
112225 TC 0
112226 SN 0308-1079
112227 J9 INT J GEN SYSTEM
112228 JI Int. J. Gen. Syst.
112229 PD APR-JUN
112230 PY 2004
112231 VL 33
112232 IS 2-3
112233 BP 233
112234 EP 242
112235 PG 10
112236 SC Computer Science, Theory & Methods
112237 GA 802EP
112238 UT ISI:000220147100010
112239 ER
112240 
112241 PT J
112242 AU Hong, J
112243    Zang, YCQ
112244    Li, SF
112245    Rivera, VM
112246    Zhang, JWZ
112247 TI Ex vivo detection of myelin basic protein-reactive T cells in multiple
112248    sclerosis and controls using specific TCR oligonucleotide probes
112249 SO EUROPEAN JOURNAL OF IMMUNOLOGY
112250 DT Article
112251 DE myelin basic protein; multiple sclerosis; TCR
112252 ID INTERFERON-BETA; GENE REARRANGEMENTS; PROTEOLIPID PROTEIN;
112253    CEREBROSPINAL-FLUID; CLONAL EXPANSION; LYMPHOCYTES-T; PILOT TRIAL;
112254    PEPTIDE; FREQUENCY; MS
112255 AB T cell reactivity to candidate myelin autoantigens, such as myelin
112256    basic protein (MBP), may play an important role in the pathogenesis of
112257    multiple sclerosis (MS). Although MBP-reactive T cells have been found
112258    to undergo in vivo activation in patients with MS, their true precursor
112259    frequency in MS is unknown as current frequency analysis is commonly
112260    based on the T cell functional responses to MBR In this study, we
112261    developed a TCR sequence-based ex vivo detection system using colony
112262    hybridization with oligonucleotide probes specific for CDR3 of selected
112263    T cell clones for the analysis of true T cell precursor frequency in
112264    PBMC. The results revealed that the precursor frequency of five
112265    independent T cell clones recognizing the immunodominant MBP83-99
112266    region was found to be in the range of 1.6x10(-4) in total T cells in
112267    three HLA-DR2 patients with MS compared to that of 0.25x10(-4) in
112268    HLA-DR2 healthy individuals. The observed frequency of
112269    MBP83-99-reactive T cells in MS patients was considerably higher than
112270    those measured in parallel by cell culture-based analysis (2.3x10(-6))
112271    or by enzyme-linked immunospot assay (3.9x10(-5)) in the same
112272    peripheral blood mononuclear cell specimens. Furthermore, the study
112273    showed that MBP83-99-reactive T cells detected ex vivo belonged to
112274    CD45RA(+), CD25(+) and CD95(-) T cell subsets as evidenced by
112275    preferential expression of specific TCR transcripts in these cell
112276    fractions.
112277 C1 Baylor Coll Med, Dept Neurol, Coll Med, Houston, TX 77030 USA.
112278    Baylor Coll Med, Baylor Methodist Multiple Sclerosis Ctr, Coll Med, Houston, TX 77030 USA.
112279    Shanghai Med Univ 2, Shanghai Inst Biol Sci, Joint Immunol Lab, Hlth Sci Ctr, Shanghai, Peoples R China.
112280    Shanghai Med Univ 2, Shanghai Inst Biol Sci, Shanghai Inst Immunol, Shanghai, Peoples R China.
112281    Shanghai Univ, E Inst, Div Immunol, Shanghai, Peoples R China.
112282 RP Zhang, JWZ, Baylor Coll Med, Dept Neurol, Coll Med, 6501 Fannin
112283    St,NB302, Houston, TX 77030 USA.
112284 EM jzang@bcm.tmc.edu
112285 CR ALTMAN JD, 1996, SCIENCE, V274, P94
112286    BIEGANOWSKA KD, 1997, J EXP MED, V185, P1585
112287    CHOU YK, 1989, J NEUROSCI RES, V23, P207
112288    CHOU YK, 1992, J NEUROIMMUNOL, V38, P105
112289    DAY CL, 2003, J CLIN INVEST, V112, P831
112290    HELLINGS N, 2001, J NEUROSCI RES, V63, P290
112291    HONG J, 1999, J IMMUNOL, V163, P3530
112292    JINGWU Z, 1992, ANN NEUROL, V32, P330
112293    KOZOVSKA ME, 1999, NEUROLOGY, V53, P1692
112294    KROGSGAARD M, 2000, J EXP MED, V191, P1395
112295    MARTIN R, 1991, J EXP MED, V173, P19
112296    MARTIN R, 1992, ANNU REV IMMUNOL, V10, P153
112297    MCCUTCHEON M, 1997, J IMMUNOL METHODS, V210, P149
112298    MEDAER R, 1995, LANCET, V346, P807
112299    MURARO PA, 2000, J IMMUNOL, V164, P5474
112300    OKSENBERG JR, 1993, NATURE, V362, P68
112301    OLSSON T, 1990, J CLIN INVEST, V86, P981
112302    OTA K, 1990, NATURE, V346, P183
112303    PETTE M, 1990, P NATL ACAD SCI USA, V87, P7968
112304    SANGER F, 1975, J MOL BIOL, V94, P441
112305    TEJADASIMON MV, 2000, INT IMMUNOL, V12, P1641
112306    VANDENBARK AA, 1996, NAT MED, V2, P1109
112307    VANDEVYVER C, 1995, EUR J IMMUNOL, V25, P958
112308    WUCHERPFENNIG KW, 1994, J IMMUNOL, V152, P5581
112309    XU XN, 2002, J IMMUNOL METHODS, V268, P21
112310    ZANG YCQ, 2000, NEUROLOGY, V55, P397
112311    ZHANG JW, 1990, CELL IMMUNOL, V129, P189
112312    ZHANG JW, 1993, SCIENCE, V261, P1451
112313    ZHANG JW, 1994, J EXP MED, V179, P973
112314    ZHANG JW, 2002, CLIN THER, V24, P1998
112315 NR 30
112316 TC 2
112317 SN 0014-2980
112318 J9 EUR J IMMUNOL
112319 JI Eur. J. Immunol.
112320 PD MAR
112321 PY 2004
112322 VL 34
112323 IS 3
112324 BP 870
112325 EP 881
112326 PG 12
112327 SC Immunology
112328 GA 802WH
112329 UT ISI:000220193100028
112330 ER
112331 
112332 PT J
112333 AU Ma, ZQ
112334    Zhang, Q
112335 TI Microstructure controlling of Ti/N particles dissipated energy to
112336    superficial layer of titanium nitride film
112337 SO CHINESE SCIENCE BULLETIN
112338 DT Article
112339 DE TiNx thin film; average deposition energy; microstructure of thin film;
112340    energetic impact
112341 ID X-RAY-SCATTERING; PREFERRED ORIENTATION; THIN-FILMS; TIN FILMS;
112342    SUBSTRATE
112343 AB The titanium nitride (TiNx) thin film with a controllable surface
112344    structure was fabricated by the dc-reactive magnetron sputtering
112345    technique, and the variation of microstructure in the surface layer
112346    with the energy of condensed adatom was investigated through X-ray
112347    diffraction (XRD) pattern and transmission electron microscope (TEM).
112348    It was found that the lattice parameters and the full width at half
112349    maximum (fwhm) of XRD peak on the top layers in the preferred
112350    orientation of (111) and (002) were closely correlated to the impacting
112351    induced phase composition, compressive strain, crystallite size and the
112352    fault density of the thin films. In the theory, a new means was used to
112353    model the atomistic process of per condensed adatom. The average energy
112354    at least in the minimum energy state of the incorporate adatom on TiN
112355    surface layer was statistically formulized through a careful
112356    consideration of dynamical process, which properly interpreted the
112357    experimental observations.
112358 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
112359    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
112360 RP Ma, ZQ, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
112361 EM zqma@mail.shu.edu.cn
112362 CR ABIDI F, 1993, J APPL PHYS, V73, P8580
112363    DIMITRIADIS CA, 1995, APPL PHYS LETT, V66, P502
112364    DIMITRIADIS CA, 1999, J APPL PHYS 1, V85, P4238
112365    HULTMAN L, 1995, J APPL PHYS, V78, P5395
112366    JE JH, 1997, J APPL PHYS, V81, P6126
112367    JE JH, 1997, J MATER RES, V12, P9
112368    LOGOTHETIDIS S, 1995, J APPL PHYS, V77, P1043
112369    MA ZQ, 2000, THIN SOLID FILMS, V359, P288
112370    MARLO M, 2000, PHYS REV B, V62, P2899
112371    PATSALAS P, 2000, SURF COAT TECH, V125, P335
112372    PATSALAS P, 2001, J APPL PHYS, V90, P4725
112373    PETROV I, 1992, J VAC SCI TECHNOL A, V10, P265
112374    PETROV I, 1994, J VAC SCI TECHNOL A, V12, P2846
112375    SCHELL N, 2002, J APPL PHYS, V91, P2037
112376    ZIEGLER JF, 1985, STOPPING RANGE IONS
112377 NR 15
112378 TC 0
112379 SN 1001-6538
112380 J9 CHIN SCI BULL
112381 JI Chin. Sci. Bull.
112382 PD FEB
112383 PY 2004
112384 VL 49
112385 IS 3
112386 BP 230
112387 EP 234
112388 PG 5
112389 SC Multidisciplinary Sciences
112390 GA 803OD
112391 UT ISI:000220239500004
112392 ER
112393 
112394 PT J
112395 AU Li, CF
112396    Yang, XY
112397 TI Thin-film enhanced Goos-Hunchen shift in total internal reflection
112398 SO CHINESE PHYSICS LETTERS
112399 DT Article
112400 ID BEAM DISPLACEMENT; ABSORBING MEDIA; HANCHEN SHIFT; TIMES
112401 AB It is reported that the Goos-Hanchen (GH) shift of both TE and TM light
112402    beams totally reflected from a dielectric interface can be greatly
112403    enhanced by a dielectric thin film without changing the property of
112404    total internal reflection. Numerical simulations confirm the
112405    theoretical analysis and show that the enhanced GH shift can be as
112406    large as the width of the beam for beam's width up to 820 times of the
112407    wavelength. This may stimulate investigations in other areas of physics
112408    and may lead to interesting applications in optical devices. The
112409    enhancement of the GH shift is accompanied by the enhancement of the
112410    intensity of the decaying field in the optically thin medium and of the
112411    propagating field inside the film.
112412 C1 Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt Technol, Xian 710068, Peoples R China.
112413    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
112414 RP Li, CF, Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab
112415    Transient Opt Technol, Xian 710068, Peoples R China.
112416 EM cfli@mail.shu.edu.cn
112417 CR ARTMANN K, 1948, ANN PHYS, V2, P87
112418    BALCOU P, 1997, PHYS REV LETT, V78, P851
112419    BIRMAN JL, 1983, PHYS REV LETT, V50, P1664
112420    BRETENAKER F, 1992, PHYS REV LETT, V68, P931
112421    BRIERS R, 2000, J ACOUST SOC AM, V108, P1622
112422    EMILE O, 1995, PHYS REV LETT, V75, P1511
112423    GILLES H, 2002, OPT LETT, V27, P1421
112424    GOOS F, 1947, ANN PHYSIK, V1, P333
112425    GOOS F, 1949, ANN PHYS-LEIPZIG, V5, P251
112426    HARRICK NJ, 1960, PHYS REV LETT, V4, P224
112427    HUANG XH, 2003, EUROPHYS LETT, V63, P28
112428    JOST BM, 1998, PHYS REV LETT, V81, P2233
112429    LAI HM, 2002, OPT LETT, V27, P680
112430    LI CF, 2002, PHYS REV A, V65
112431    LOTSCH HKV, 1970, OPTIK, V32, P116
112432    LOTSCH HKV, 1970, OPTIK, V32, P189
112433    LOTSCH HKV, 1971, OPTIK STUTTG, V32, P299
112434    LOTSCH HKV, 1971, OPTIK, V32, P553
112435    PFLEGHAAR E, 1993, PHYS REV LETT, V70, P2281
112436    STEINBERG AM, 1994, PHYS REV A, V49, P3283
112437    WIGNER EP, 1955, PHYS REV, V98, P145
112438    WILD WJ, 1982, PHYS REV A, V25, P2099
112439 NR 22
112440 TC 0
112441 SN 0256-307X
112442 J9 CHIN PHYS LETT
112443 JI Chin. Phys. Lett.
112444 PD MAR
112445 PY 2004
112446 VL 21
112447 IS 3
112448 BP 485
112449 EP 488
112450 PG 4
112451 SC Physics, Multidisciplinary
112452 GA 802ZY
112453 UT ISI:000220202600019
112454 ER
112455 
112456 PT J
112457 AU Cui, YJ
112458    Jia, GQ
112459    Han, YB
112460    Li, JB
112461    Wang, XY
112462    Ge, HL
112463    Cao, SX
112464    Zhang, JC
112465 TI Structural and transport properties for Al- and Fe-doping
112466    La0.67Ca0.33MnO3 perovskite manganese
112467 SO CHINESE PHYSICS LETTERS
112468 DT Article
112469 ID COLOSSAL MAGNETORESISTANCE; DOUBLE EXCHANGE; RESISTIVITY; MANGANITES;
112470    FILMS
112471 AB The effects of Al and Fe ion doping in Mn sites was studied for the
112472    colossal La0.67Ca0.33MnO3 magnetoresistance material. It was found that
112473    when Fe-doping amount x increases, the crystal cell structure has no
112474    obvious change, but the crystal cell volume decrease monotonically for
112475    Al-doping. Both resistances increase rapidly and the insulator-metal
112476    transition temperature moves to lower temperature and decreases
112477    linearly with Al-doping. The area for Al-doping is broader than Fe. At
112478    small amount of AT-doping, the resistance satisfy metal transport
112479    property when T < T-IM. The characteristic of the transport behaviour
112480    for Al- and Fe-doping can be explained by terminating the double
112481    exchange channel of Mn3+-O2--Mn4+.
112482 C1 Chinese Inst Metrol, Dept Phys, Hangzhou 310028, Peoples R China.
112483    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
112484    Henan Polytech Inst, Dept Phys, Nanyang 473009, Peoples R China.
112485 RP Cui, YJ, Chinese Inst Metrol, Dept Phys, Hangzhou 310028, Peoples R
112486    China.
112487 EM yjcui@cim.edu.cn
112488 CR AHN KH, 1997, J APPL PHYS 2B, V81, P5505
112489    BANKS E, 1970, J APPL PHYS, V41, P1186
112490    BLASCO J, 1997, PHYS REV B, V55, P8905
112491    CHAHARA K, 1993, APPL PHYS LETT, V63, P1990
112492    FENG JW, 1999, APPL PHYS LETT, V75, P1592
112493    GHOSH K, 1999, PHYS REV B, V59, P533
112494    HWANG HY, 1995, PHYS REV LETT, V75, P914
112495    JIN S, 1994, SCIENCE, V264, P413
112496    JONKER GH, 1954, PHYSICA, V20, P1118
112497    MILLIS AJ, 1995, PHYS REV LETT, V74, P5144
112498    RUBINSTEIN M, 1997, PHYS REV B, V56, P5412
112499    SHU ZH, 2002, CHINESE PHYS LETT, V19, P1528
112500    VONHELMOLT R, 1993, PHYS REV LETT, V71, P2331
112501    WANG ZH, 1999, J APPL PHYS 2B, V85, P5399
112502    YUAN SL, 2002, CHINESE PHYS LETT, V19, P1675
112503    ZENER C, 1951, PHYS REV, V82, P403
112504    ZHOU JS, 1998, PHYS REV LETT, V80, P2665
112505 NR 17
112506 TC 4
112507 SN 0256-307X
112508 J9 CHIN PHYS LETT
112509 JI Chin. Phys. Lett.
112510 PD MAR
112511 PY 2004
112512 VL 21
112513 IS 3
112514 BP 540
112515 EP 543
112516 PG 4
112517 SC Physics, Multidisciplinary
112518 GA 802ZY
112519 UT ISI:000220202600035
112520 ER
112521 
112522 PT J
112523 AU Fu, JL
112524    Chen, LQ
112525    Yang, XD
112526 TI Velocity-dependent symmetries and conserved quantities of the
112527    constrained dynamical systems
112528 SO CHINESE PHYSICS
112529 DT Article
112530 DE velocity-dependent symmetry; Lie group; determining equation;
112531    non-Noether type conserved quantity
112532 ID FORM INVARIANCE; LIE SYMMETRIES; BIRKHOFF SYSTEMS; EQUATIONS; THEOREM
112533 AB In this paper, we have extended the theorem of the velocity-dependent
112534    symmetries to nonholonomic dynamical systems. Based on the
112535    infinitesimal transformations with respect to the coordinates, we
112536    establish the determining equations and restrictive equation of the
112537    velocity-dependent system before the structure equation is obtained.
112538    The direct and the inverse issues of the velocity-dependent symmetries
112539    for the nonholonomic dynamical system is studied and the non-Noether
112540    type conserved quantity is found as the result. Finally, we give an
112541    example to illustrate the conclusion.
112542 C1 Shangqiu Teachers Coll, Inst Math Mech & Math Phys, Shanghai, Peoples R China.
112543    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
112544 RP Fu, JL, Shangqiu Teachers Coll, Inst Math Mech & Math Phys, Shanghai,
112545    Peoples R China.
112546 EM sqfujingli@163.com
112547 CR DJUKIC DS, 1975, ACTA MECH, V23, P17
112548    FANG JH, 2002, CHINESE PHYS, V11, P313
112549    FU JL, 2000, ACTA PHYS SIN-CH ED, V49, P1023
112550    FU JL, 2003, PHYS LETT A, V317, P255
112551    FU JL, 2004, MECH RES COMMUN, V31, P9
112552    GE WK, 2003, ACTA PHYS SIN-CH ED, V52, P2105
112553    GONZALEZGASCON F, 1994, J PHYS A-MATH GEN, V27, L59
112554    HOJAM S, 1992, J PHYS A, V25, L291
112555    LAKSHMANN M, 1991, J MATH PHYS, V32, P35
112556    LI ZP, 1981, ACTA PHYS SINICA, V30, P1599
112557    LI ZP, 1993, CLASSICAL QUANTUM DY
112558    LUO SK, 2002, CHINESE PHYS LETT, V19, P449
112559    LUTZKY M, 1979, J PHYS A, V12, P973
112560    LUTZKY M, 1995, J PHYS A-MATH GEN, V28, L637
112561    LUTZKY M, 1998, INT J NONLINEAR MECH, V33, P393
112562    MEI FX, 1985, FDN MECH NONHOLONOMI
112563    MEI FX, 1993, SCI CHINA SER A, V23, P709
112564    MEI FX, 1999, APPL LIE GROUPS LIE
112565    MEI FX, 2000, ASME, V53, P283
112566    MEI FX, 2000, J BEIJING I TECHNOL, V9, P120
112567    MEI FX, 2001, CHINESE PHYS, V10, P177
112568    MEI FX, 2001, J BEIJING I TECHNOL, V10, P138
112569    MEI FX, 2003, ACTA PHYS SIN-CH ED, V52, P1048
112570    NOETHER AE, 1918, NACHR KGL GES WISS G, V2, P235
112571    NOVOSELOV VS, 1966, VARIATIONAL METHODS
112572    PAPASTAVRIDIS JG, 1998, APPL MECH REV, V51, P239
112573    QIAO YF, 2003, ACTA PHYS SIN-CH ED, V52, P1051
112574    SARLET W, 1987, J PHYS A-MATH GEN, V20, P1365
112575    THOMPSON G, 1986, J PHYS A, V19, P105
112576    VUJANOVIC B, 1978, INT J NONLINEAR MECH, V13, P185
112577    ZHANG HB, 2002, CHINESE PHYS, V11, P765
112578    ZHANG Y, 2000, CHINESE SCI BULL, V45, P135
112579    ZHAO YY, 1994, ACTA MECH SINICA, V26, P380
112580 NR 33
112581 TC 15
112582 SN 1009-1963
112583 J9 CHIN PHYS
112584 JI Chin. Phys.
112585 PD MAR
112586 PY 2004
112587 VL 13
112588 IS 3
112589 BP 287
112590 EP 291
112591 PG 5
112592 SC Physics, Multidisciplinary
112593 GA 803OR
112594 UT ISI:000220240900004
112595 ER
112596 
112597 PT J
112598 AU Ma, JY
112599    Qiu, XJ
112600    Zhu, ZY
112601 TI Energy loss of a fast-electron beam due to the excitation of collective
112602    oscillation in hot plasma
112603 SO CHINESE PHYSICS
112604 DT Article
112605 DE fast-electron beam; excitation of collective oscillation; hot plasma
112606 ID LASERS; PHYSICS
112607 AB Energy loss due to a fast-electron beam interacting with the hot plasma
112608    at a high density is analysed theoretically. By splitting the particle
112609    density fluctuations into the individual part due to the random thermal
112610    motion of the individual electrons and the collective part due to
112611    plasma-wave excitation, we are concerned with the collective
112612    interaction of the relativistic plasma electrons resulting from the
112613    Coulomb interactions. Consequently, we derive the frequency of the hot
112614    plasma and the "Debye length" with the modification of the relativistic
112615    effect. And finally we calculate the energy loss of a fast-electron
112616    beam due to the excitation of collective oscillation in the hot plasma.
112617 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
112618    Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
112619 RP Ma, JY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
112620 EM xpfma@163.com
112621 CR *MKRE, 1987, 37 MKRE
112622    BAROV N, 2002, PHYSICS0205007
112623    DEUTSCH C, 1996, PHYS REV LETT, V77, P2483
112624    DU CG, 1999, ACTA PHYS SIN-CH ED, V48, P86
112625    MACCHI A, 2001, PHYS REV LETT, V87
112626    MALKA G, 1996, PHYS REV LETT, V77, P75
112627    MOUROU G, 1992, PHYS FLUIDS B-PLASMA, V4, P2315
112628    NAJMUDIN Z, 2003, PHYS PLASMAS, V10, P438
112629    PERRY MD, 1994, SCIENCE, V264, P917
112630    PINES D, 1952, PHYS REV, V85, P338
112631    SPITKOVSKY A, 2000, AIP C P, V569, P183
112632    STARDUBTSEV SV, 1962, PROKHOZHDENIYE ZARYA
112633    UMSTADTER D, 2001, PHYS PLASMAS 2, V8, P1774
112634    VALCHUK VV, 1995, PLASMA PHYS REP, V21, P159
112635 NR 14
112636 TC 1
112637 SN 1009-1963
112638 J9 CHIN PHYS
112639 JI Chin. Phys.
112640 PD MAR
112641 PY 2004
112642 VL 13
112643 IS 3
112644 BP 373
112645 EP 378
112646 PG 6
112647 SC Physics, Multidisciplinary
112648 GA 803OR
112649 UT ISI:000220240900020
112650 ER
112651 
112652 PT J
112653 AU Chen, LQ
112654    Wu, J
112655    Zu, JW
112656 TI The chaotic response of the viscoelastic traveling string: an integral
112657    constitutive law
112658 SO CHAOS SOLITONS & FRACTALS
112659 DT Article
112660 ID NONLINEAR VIBRATION; MOVING BELTS
112661 AB This paper investigates chaotic behaviors of an axially traveling
112662    viscoelastic string with geometric nonlinearity. The stress and the
112663    strain of the viscoelastic string obey the Boltzmann superposition
112664    principle. The Galerkin method is applied to truncate a nonlinear
112665    partial-differential-integral equation governing transverse motion into
112666    a set of ordinary differential-integral equations. For the string
112667    modeled as a standard linear solid, new auxiliary variables are
112668    introduced to transform those equations into ordinary differential
112669    equations. By use of the Poincare maps, the chaotic behaviors are
112670    presented based on the numerical solutions of the ordinary differential
112671    equations. The bifurcation diagrams are presented for varying one of
112672    the following parameter: the axial traveling speed, the amplitude of
112673    tension fluctuation, the viscoelastic exponent and coefficient of the
112674    string, while other parameters are fixed. (C) 2003 Published by
112675    Elsevier Ltd.
112676 C1 Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
112677    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
112678    Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada.
112679 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
112680 CR ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151
112681    CHEN LQ, IN PRESS ASME
112682    CHEN LQ, 2002, MECH RES COMMUN, V29, P81
112683    CHEN LQ, 2003, ACTA MECH, V162, P143
112684    CHEN LQ, 2003, INT J NONLINEAR SCI, V4, P169
112685    CHEN LQ, 2003, J SOUND VIB, V261, P764
112686    FUNG RF, 1997, J SOUND VIB, V201, P153
112687    FUNG RF, 1998, COMPUT STRUCT, V66, P777
112688    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
112689    ZHANG L, 1999, J APPL MECH-T ASME, V66, P396
112690    ZHANG L, 1999, J APPL MECH-T ASME, V66, P403
112691    ZHANG L, 2002, INT J STRUCTURAL STA, V2, P265
112692    ZHAO WJ, 2002, INT J NONLINEAR SCI, V3, P129
112693 NR 13
112694 TC 4
112695 SN 0960-0779
112696 J9 CHAOS SOLITON FRACTAL
112697 JI Chaos Solitons Fractals
112698 PD JUL
112699 PY 2004
112700 VL 21
112701 IS 2
112702 BP 349
112703 EP 357
112704 PG 9
112705 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
112706 GA 802FS
112707 UT ISI:000220150000011
112708 ER
112709 
112710 PT J
112711 AU Ning, TK
112712    Chen, DY
112713    Zhang, DJ
112714 TI Soliton-like solutions for a nonisospectral KdV hierarchy
112715 SO CHAOS SOLITONS & FRACTALS
112716 DT Article
112717 ID LINEAR EVOLUTION EQUATIONS; KORTEWEG-DEVRIES EQUATION; SPECTRAL
112718    TRANSFORM METHOD; EXTENSION
112719 AB Soliton-like solutions for a nonisospectral KdV hierarchy are obtained
112720    by using the inverse scattering transform. The interaction of two
112721    solitons is investigated. (C) 2004 Elsevier Ltd. All rights reserved.
112722 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
112723 RP Ning, TK, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
112724 EM tkning@mail.shu.edu.cn
112725 CR ABLOWITZ MJ, 1981, SOLITONS INVERSE SCA
112726    ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
112727    CALOGERO F, 1978, LETT NUOVO CIMENTO, V22, P131
112728    CALOGERO F, 1978, LETT NUOVO CIMENTO, V22, P263
112729    CALOGERO F, 1978, LETT NUOVO CIMENTO, V22, P420
112730    CALOGERO F, 1982, SPECTRAL TRANSFORM S
112731    CHAN WL, 1989, J MATH PHYS, V30, P2521
112732    CHEN HH, 1976, PHYS REV LETT, V37, P693
112733    GARDNER CS, 1967, PHYS REV LETT, V19, P1095
112734    GUPTA MR, 1979, PHYS LETT A, V72, P420
112735    LI YS, 1982, SCI SINICA A, V25, P911
112736    MA WX, 1992, J PHYS A, V25, L719
112737    WADATI M, 1972, J PHYS SOC JPN, V32, P1403
112738 NR 13
112739 TC 0
112740 SN 0960-0779
112741 J9 CHAOS SOLITON FRACTAL
112742 JI Chaos Solitons Fractals
112743 PD JUL
112744 PY 2004
112745 VL 21
112746 IS 2
112747 BP 395
112748 EP 401
112749 PG 7
112750 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
112751 GA 802FS
112752 UT ISI:000220150000015
112753 ER
112754 
112755 PT J
112756 AU Yin, RH
112757    Zhao, YP
112758    Dai, YC
112759    Zhang, XS
112760 TI Effect of sodium salicylate on electropolymerization of pyrrole on
112761    zincated steel
112762 SO ACTA METALLURGICA SINICA
112763 DT Article
112764 DE sodium salicylate; electropolymerization; cyclic voltammetry; pyrrole
112765 ID AQUEOUS-ELECTROLYTES; POLYPYRROLE; ELECTRODEPOSITION; ANIONS; MEDIA
112766 AB The role of sodium salicylate in electropolymerization of pyrrole on
112767    zincated steel was studied by cyclic voltammetry. The results show that
112768    as supporting electrolyte, the sodium salicylate inhibits the zinc
112769    dissolution and favours the electropolymerization of pyrrole by
112770    passivating the substrate. Consequently, an uniform and compact
112771    polypyrrole film may be formed on zincated steel.
112772 C1 Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200436, Peoples R China.
112773    E China Univ Sci & Technol, Natl United Chem Engn Lab, Shanghai 200237, Peoples R China.
112774 RP Yin, RH, Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200436, Peoples R
112775    China.
112776 EM rhyin@mail.shu.edu.cn
112777 CR FERREIRA CA, 1996, ELECTROCHIM ACTA, V41, P1801
112778    GARCIA B, 1998, SYNTHETIC MET, V98, P135
112779    GILANI TH, 1997, SYNTHETIC MET, V84, P845
112780    GU SY, 2000, MAT PROTECT, V33, P41
112781    HERMELIN E, 2001, J APPL ELECTROCHEM, V31, P905
112782    HULSER P, 1990, J APPL ELECTROCHEM, V20, P596
112783    LI CG, 1994, CHINESE J ANAL CHEM, V22, P922
112784    LIU YH, 1987, ELECTROCHEMICAL TECH, P136
112785    PETITJEAN J, 1999, J ELECTROANAL CHEM, V478, P92
112786    SILVERSTEIN RM, 1998, SPECTROMETRIC IDENTI
112787    WARREN LF, 1987, J ELECTROCHEM SOC, V134, P101
112788    WEI PH, 2002, J SHANDONG ED COLL, V17, P84
112789    XIAO S, 1998, J S CHINA U TECHNOL, V26, P95
112790    ZHENG YB, 1996, J FUNCT POLYM, V9, P613
112791    ZHOU M, 1999, ELECTROCHIM ACTA, V44, P1733
112792 NR 15
112793 TC 1
112794 SN 0412-1961
112795 J9 ACTA METALL SIN
112796 JI Acta Metall. Sin.
112797 PD FEB
112798 PY 2004
112799 VL 40
112800 IS 2
112801 BP 168
112802 EP 172
112803 PG 5
112804 SC Metallurgy & Metallurgical Engineering
112805 GA 803XV
112806 UT ISI:000220264700011
112807 ER
112808 
112809 PT J
112810 AU Ma, CA
112811    Gan, YP
112812    Chu, YQ
112813    Huang, H
112814    Chen, DH
112815    Zhou, BX
112816 TI Electro-oxidation behavior of tungsten carbide electrode in different
112817    electrolytes
112818 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
112819 DT Article
112820 DE tungsten carbide; electrocatalyst; electrochemical behavior
112821 ID HYDROGEN
112822 AB The electrochemical activity and stability of tungsten carbide gas
112823    diffusion electrode in different electrolytes were determined by
112824    galvanostatic charge method. It is shown that WC exhibits good
112825    electrocatalytic activity and stability for hydrogen oxidation in
112826    acidic solutions when the electrode potential is below about 800 mV(vs
112827    DHE), WC is firstly oxidized to an unstable blue tungsten oxides at 800
112828    - 900 mV which are closed to a composite stoichiometry of W2O5 in H2SO4
112829    solution and W8O23 in HCl solution calculated by charge consumed.
112830    Furthermore, the generated intermediate tungsten oxides can be further
112831    oxidized into WO3 at higher potentials. While in alkali solution, WC
112832    can not be used as anodic catalyst for its poor stability and catalytic
112833    activity due to the fact that WC will be directly oxidized into WO3.
112834 C1 Zhejiang Univ Technol, Dept Appl Chem, Hangzhou 310014, Peoples R China.
112835    Shanghai Univ, Dept Mat Sci & Technol, Shanghai 200072, Peoples R China.
112836 RP Ma, CA, Zhejiang Univ Technol, Dept Appl Chem, Hangzhou 310014, Peoples
112837    R China.
112838 EM science@zjut.edu.cn
112839 CR BOHM H, 1970, NATURE, V227, P483
112840    BOHM H, 1976, J POWER SOURCES, V1, P177
112841    BURSTEIN GT, 1996, J ELECTROCHEMISTRY S, V143, P189
112842    CHA XX, 1987, INTRO ELECTRODE KINE, P326
112843    CHUNAN MA, 2002, T NONFERR METAL SOC, V12, P1015
112844    CHUNEN MA, 1990, ACTA PHYS-CHIM SIN, V6, P622
112845    FLEISCHMANN R, 1977, ELECTROCHIM ACTA, V22, P1123
112846    HOUSTON JE, 1974, SCIENCE, V185, P258
112847    IGLESIA E, 1992, CATAL TODAY, V15, P307
112848    MCINTYRE DR, 2002, J POWER SOURCES, V107, P67
112849    NIKOLOV I, 1981, J POWER SOURCES, V7, P83
112850    NIKOLOV I, 1983, INT J HYDROGEN ENERG, V8, P437
112851    ROSS PN, 1977, J CATAL, V48, P42
112852    YANG ZW, 1988, 86106868, CN
112853    YANG ZW, 1988, RARE METALS, V12, P155
112854 NR 15
112855 TC 1
112856 SN 1003-6326
112857 J9 TRANS NONFERROUS METAL SOC CH
112858 JI Trans. Nonferrous Met. Soc. China
112859 PD FEB
112860 PY 2004
112861 VL 14
112862 IS 1
112863 BP 11
112864 EP 14
112865 PG 4
112866 SC Metallurgy & Metallurgical Engineering
112867 GA 800NI
112868 UT ISI:000220034600002
112869 ER
112870 
112871 PT J
112872 AU Li, CR
112873    Hong, X
112874    Zheng, SB
112875    Jinang, GC
112876 TI Distribution behavior of Copper and Tin between FeO-rich slag and iron
112877    solution
112878 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
112879 DT Article
112880 DE residual elements; distribution ratio; iron solution; FeO-rich slag
112881 ID SCRAP; STEEL
112882 AB The distribution behavior of residual elements copper and tin between
112883    FeO-rich slag and iron solution was investigated under the condition of
112884    an induction furnace. The results indicate that a part of copper and
112885    tin is incidently oxidized when oxygen is blasted into bath to react
112886    with iron element. The distribution ratio of copper and tin between
112887    slag and metal is about 0.1. Phenomena of Cu and Sn elements
112888    segregation and accumulation in slag were observed by means of EPMA
112889    analysis. The distribution ratio of copper and tin between slag and
112890    metal may descend with increasing of CaO content in slag.
112891 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
112892    Guizhou Univ Technol, Dept Met, Guiyang 550003, Peoples R China.
112893 RP Li, CR, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
112894    China.
112895 EM er263@163.com
112896 CR IWASE M, 1995, DENKI SEIKO, V66, P20
112897    LIANG YJ, 1993, HDB THERMODYNAMIC DA, P8
112898    MARIQUE C, 1996, REV METALL CIT, P1377
112899    NORO K, 1997, ISIJ INT, V37, P198
112900    SANO N, 1998, SCAND J METALL, V27, P24
112901    SAVOV L, 1998, METALL, V56, P374
112902    SHIRO BY, 2001, IRONMAK STEELMAK, P248
112903    TOSHIHIKO E, 1996, P 79 STEELM C WAR IR, P551
112904    XIAN AP, 1999, IRON STEEL, V34, P64
112905    XU KD, 2001, ACTA METALL SIN, V37, P395
112906 NR 10
112907 TC 0
112908 SN 1003-6326
112909 J9 TRANS NONFERROUS METAL SOC CH
112910 JI Trans. Nonferrous Met. Soc. China
112911 PD FEB
112912 PY 2004
112913 VL 14
112914 IS 1
112915 BP 194
112916 EP 197
112917 PG 4
112918 SC Metallurgy & Metallurgical Engineering
112919 GA 800NI
112920 UT ISI:000220034600039
112921 ER
112922 
112923 PT J
112924 AU Wu, ZY
112925    Bai, FS
112926    Yang, XQ
112927    Zhang, LS
112928 TI An exact lower order penalty function and its smoothing in nonlinear
112929    programming
112930 SO OPTIMIZATION
112931 DT Article
112932 DE nonlinear programming; exact penalization; lower order penalty
112933    function; epsilon-smoothing; smooth exact penalty function
112934 ID CONSTRAINED OPTIMIZATION; PENALIZATION
112935 AB In this article, we consider a lower order penalty function and its
112936    epsilon-smoothing for an inequality constrained nonlinear programming
112937    problem. It is shown that any strict local minimum satisfying the
112938    second-order sufficiency condition for the original problem is a strict
112939    local minimum of the lower order penalty function with any positive
112940    penalty parameter. By using an epsilon-smoothing approximation to the
112941    lower order penalty function, we get a modified smooth global exact
112942    penalty function under mild assumptions.
112943 C1 Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China.
112944    Chongqing Normal Univ, Dept Math & Comp Sci, Chongqing 400047, Peoples R China.
112945    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
112946 RP Yang, XQ, Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong,
112947    Peoples R China.
112948 EM zhiyouwu@263.net
112949    baifs@263.net
112950    mayangxq@polyu.edu.bk
112951 CR BAZARAA MS, 1982, MATH PROGRAMMING STU, V19, P1
112952    BERTSEKAS DP, 1975, MATH PROGRAMMING STU, V3, P1
112953    BZARAA MS, 1993, NONLINEAR PROGRAMMIN
112954    DIPILLO G, 1989, SIMA J CONTROL OPTIM, V27, P133
112955    DIPILLO G, 1994, EXACT PENALTY METHOD, P209
112956    HAN SP, 1979, MATH PROGRAM, V17, P140
112957    HUANG XX, 2003, J OPTIMIZ THEORY APP, V116, P311
112958    LUO ZO, 1996, MATH PROGRAMS EQUILI
112959    MANGASARIAN OL, 1985, SIAM J CONTROL OPTIM, V23, P30
112960    PINAR MC, 1994, SIAM J OPTIMIZ, V4, P486
112961    ROSENBERG E, 1984, MATH PROGRAM, V30, P340
112962    RUBINOV AM, 1999, OPTIMIZATION, V46, P327
112963    RUBINOV AM, 1999, SIAM J OPTIMIZ, V10, P289
112964    RUBINOV AM, 2002, OPTIM METHOD SOFTW, V17, P931
112965    RUBINOV AM, 2003, LAGRANGE TYPE FUNCTI
112966    RUBINOV AM, 2003, OPTIMIZATION, V52, P1
112967    WU ZY, 2002, UNPUB J COMPUTATIONA
112968    ZENIOS SA, 1995, EUR J OPER RES, V83, P220
112969 NR 18
112970 TC 0
112971 SN 0233-1934
112972 J9 OPTIMIZATION
112973 JI Optimization
112974 PD FEB
112975 PY 2004
112976 VL 53
112977 IS 1
112978 BP 51
112979 EP 68
112980 PG 18
112981 SC Mathematics, Applied; Operations Research & Management Science
112982 GA 801QH
112983 UT ISI:000220109900004
112984 ER
112985 
112986 PT J
112987 AU Jiang, WZ
112988    Zhu, ZY
112989    Shen, WQ
112990    Qiu, XJ
112991    Ren, ZZ
112992 TI Two-body correlation contributions in halo nuclei with a relativistic
112993    Hartree approach
112994 SO MODERN PHYSICS LETTERS A
112995 DT Article
112996 DE two-body correlation; halo nucleus; relativistic Hartree approach
112997 ID FINITE NUCLEI; NEUTRON HALO; STATE PROPERTIES; CROSS-SECTIONS;
112998    LIGHT-NUCLEI; FIELD-THEORY; LI-11; C-19; DISTRIBUTIONS; MODEL
112999 AB The relativistic density-dependent Hartree framework, where the
113000    relativistic two-body correlations are properly incorporated, is
113001    developed to study the properties of halo nuclei. The halo
113002    nucleon-meson vertex is reconstructed considering the nuclear
113003    potentials can be built dominantly from the two-body interactions. The
113004    two-neutron halo nucleus Li-11, together with the one-neutron halo
113005    nucleus C-19, is investigated. Separation energies, root-mean-square
113006    (rms) radii, and halo tails of above halo nuclei are nicely reproduced.
113007    The correlation contribution which provides essential attractions for
113008    halo neutrons is important to guarantee the relation S-n > S-2n for
113009    Li-11.
113010 C1 Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
113011    Natl Lab Heavy Ion Accelerator, Ctr Theoret Nucl Phys, Lanzhou 730000, Peoples R China.
113012    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
113013    Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China.
113014 RP Jiang, WZ, Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800,
113015    Peoples R China.
113016 EM jiangwz02@hotmail.com
113017 CR AUDI G, 1993, NUCL PHYS A, V565, P1
113018    BAI XH, 1997, PHYS REV C, V56, P1410
113019    BANG JM, 1996, PHYS REP, V264, P27
113020    BAUMANN T, 1998, PHYS LETT B, V439, P256
113021    BAZIN D, 1995, PHYS REV LETT, V74, P3569
113022    BERTSCH GF, 1989, PHYS REV C, V39, P1154
113023    BOGNER SK, 2003, PHYS REP, V386, P1
113024    BROCKMANN R, 1990, PHYS REV C, V42, P1965
113025    BROCKMANN R, 1992, PHYS REV LETT, V68, P3408
113026    CHINN CR, 1995, PHYS REV C, V52, P669
113027    DESCOUVEMONT P, 2000, NUCL PHYS A, V675, P559
113028    FRITZ R, 1993, PHYS REV LETT, V71, P46
113029    FUCHS C, 1995, PHYS REV C, V52, P3043
113030    HOSHINO T, 1990, NUCL PHYS A, V506, P271
113031    JONSON B, 1998, NUCL PHYS A, V631, C376
113032    LENSKE H, 1995, PHYS LETT B, V345, P355
113033    LENSKE H, 1998, J PHYS G NUCL PARTIC, V24, P1429
113034    LENSKE H, 2001, PROG PART NUCL PHYS, V46, P187
113035    MA ZY, 1994, PHYS REV C, V50, P3170
113036    MA ZY, 2002, PHYS REV C, V66
113037    MARQUES FM, 1996, PHYS LETT B, V381, P407
113038    MENG J, 1996, PHYS REV LETT, V77, P3963
113039    NAKAMURA T, 1999, PHYS REV LETT, V83, P1112
113040    REN ZZ, 1995, PHYS LETT B, V351, P11
113041    SAGAWA H, 1992, PHYS LETT B, V286, P7
113042    SEROT BD, 1986, ADV NUCL PHYS, V16
113043    TANIHATA I, 1985, PHYS REV LETT, V55, P2676
113044    TANIHATA I, 1992, PHYS LETT B, V287, P307
113045    TANIHATA I, 1996, J PHYS G NUCL PARTIC, V22, P157
113046    UETA K, 1999, PHYS REV C, V59, P1806
113047    ZHU ZY, 1994, PHYS LETT B, V328, P1
113048    ZHUKOV MV, 1993, PHYS REP, V231, P151
113049    ZINSER M, 1997, NUCL PHYS A, V619, P151
113050 NR 33
113051 TC 0
113052 SN 0217-7323
113053 J9 MOD PHYS LETT A
113054 JI Mod. Phys. Lett. A
113055 PD MAR 7
113056 PY 2004
113057 VL 19
113058 IS 7
113059 BP 533
113060 EP 541
113061 PG 9
113062 SC Physics, Mathematical; Physics, Nuclear; Physics, Particles & Fields
113063 GA 801NI
113064 UT ISI:000220102200004
113065 ER
113066 
113067 PT J
113068 AU Jiang, GC
113069    Lu, XG
113070    Lu, LM
113071    Chen, JX
113072    Ding, WZ
113073    Chou, KC
113074    Xu, KD
113075 TI Decarburization of Fe-C melt by pressured oxygen
113076 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
113077 DT Article
113078 DE Fe-C melt; decarburization; [C] - [O] reaction; temperature rising
113079 ID SILICA-ALUMINA SLAG; CARBON
113080 AB From thermodynamics and kinetics principles, the reason of accelerated
113081    decarburization and temperature rising of Fe-C melt in a reactor in
113082    which gas is pressured by oxygen was described.
113083 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
113084 RP Jiang, GC, Shanghai Univ, Shanghai 200072, Peoples R China.
113085 CR HIRATA T, 1992, ISIJ INT, V32, P182
113086    IBARAKI T, 1995, IRON STEEL SOC AIME, V22, P91
113087    KAJIOKA H, 1985, T IRON STEEL I JPN, V26, P194
113088    LI XG, 1998, J UNIV SCI TECHNOL B, V5, P20
113089    LI XG, 1998, STUDY ELECTROCHEMICA
113090    MURTHY GGK, 1993, IRONMAK STEELMAK, V20, P191
113091    SPEELMAN JL, 1989, METALL T B, V20, P31
113092    WOOLLEY DE, 1999, METALL MATER TRANS B, V30, P877
113093    ZHANG LY, 1999, STEEL RES, V70, P83
113094 NR 9
113095 TC 1
113096 SN 1006-706X
113097 J9 J IRON STEEL RES INT
113098 JI J. Iron Steel Res. Int.
113099 PD JAN
113100 PY 2004
113101 VL 11
113102 IS 1
113103 BP 5
113104 EP 8
113105 PG 4
113106 SC Metallurgy & Metallurgical Engineering
113107 GA 800TF
113108 UT ISI:000220049900002
113109 ER
113110 
113111 PT J
113112 AU Gu, CQ
113113 TI Matrix Pade-type approximant and directional matrix Pade approximant in
113114    the inner product space
113115 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
113116 DT Article
113117 DE scalar product of matrices; MPTA; algebraic properties; orthogonal
113118    polynomial; determinant; directional matrix pade approximant;
113119    multivariable system reduction
113120 AB A new matrix Pade-type approximant (MPTA) is defined in the paper by
113121    introducing a generalized linear functional in the inner product space.
113122    The expressions of MPTA are provided with the generating function form
113123    and the determinant form. Moreover, a directional matrix Pade
113124    approximant is also established by giving a set of linearly independent
113125    matrices. In the end, it is shown that the method of MPTA can be
113126    applied to the reduction problems of the high degree multivariable
113127    linear system. (C) 2003 Elsevier B.V. All rights reserved.
113128 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
113129 RP Gu, CQ, Shanghai Univ, Dept Math, 99 Qi Xiang Rd, Shanghai 200436,
113130    Peoples R China.
113131 EM guchqing@guomai.sh.cn
113132 CR BAKER GA, 1995, PADE APPROXIMANTS
113133    BOSE NK, 1980, IEEE T CIRCUITS SYST, V27, P322
113134    BREZINSKI C, 1980, PADE TYPE APPROXIMAT
113135    BREZINSKI C, 1991, NUMER ALGORITHMS, V1, P207
113136    DRAUX A, 1983, PUBLICATION U SCI TE
113137    GRAVESMORRIS PR, 1984, IMA J NUMER ANAL, V4, P209
113138    GRAVESMORRIS PR, 1994, J COMPUT APPL MATH, V51, P205
113139    GU CQ, 1997, MATH NUMER SINICA, V19, P19
113140    GU CQ, 2001, LINEAR ALGEBRA APPL, V322, P141
113141    SALAM A, 1999, J APPROX THEORY, V97, P92
113142    SHAMASH Y, 1975, INT J CONTROL, V21, P257
113143    SHIEH LS, 1975, IEEE T AUTOMAT CONTR, V19, P429
113144 NR 12
113145 TC 0
113146 SN 0377-0427
113147 J9 J COMPUT APPL MATH
113148 JI J. Comput. Appl. Math.
113149 PD MAR 1
113150 PY 2004
113151 VL 164-65
113152 BP 365
113153 EP 385
113154 PG 21
113155 SC Mathematics, Applied
113156 GA 801ML
113157 UT ISI:000220099900026
113158 ER
113159 
113160 PT J
113161 AU Sun, W
113162    Nie, H
113163    Li, N
113164    Zang, Y
113165    Zhang, D
113166    Feng, G
113167    Ni, L
113168    Xu, R
113169    Sercarz, E
113170    Zhang, JZ
113171 TI Skewed T-cell receptor BV14 and BV16 expression, and shared
113172    complementarity-determining region 3 sequence and common sequence
113173    motifs in synovial T cells of rheumatoid arthritis
113174 SO ARTHRITIS RESEARCH & THERAPY
113175 DT Meeting Abstract
113176 C1 Shanghai Univ, E Inst, Shanghai Inst Immunol, Shanghai 200041, Peoples R China.
113177    Shanghai Univ, E Inst, Div Immunol, Shanghai 200041, Peoples R China.
113178    Baylor Coll Med, Dept Immunol, Houston, TX 77030 USA.
113179    Shanghai Med Univ 2, Chinese Acad Sci, Hlth Sci Ctr, Shanghai, Peoples R China.
113180    Torrey Pines Inst Mol Studies, San Diego, CA USA.
113181    Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China.
113182    Guanghua Rheumatol Hosp, Shanghai, Peoples R China.
113183 NR 0
113184 TC 0
113185 SN 1478-6362
113186 J9 ARTHRITIS RES THER
113187 JI Arthritis Res. Ther.
113188 PY 2003
113189 VL 5
113190 SU Suppl. 3
113191 BP S39
113192 EP S39
113193 PG 1
113194 SC Rheumatology
113195 GA 801SX
113196 UT ISI:000220116700125
113197 ER
113198 
113199 PT J
113200 AU Cai, YC
113201    Lu, MG
113202 TI On the upper bound for pi(2)(x)
113203 SO ACTA ARITHMETICA
113204 DT Article
113205 ID ARITHMETIC PROGRESSIONS; PRIMES; SUM
113206 C1 Tongji Univ, Inst Math, Shanghai 200092, Peoples R China.
113207    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
113208 RP Cai, YC, Tongji Univ, Inst Math, Shanghai 200092, Peoples R China.
113209 EM yccai@mail.shu.edu.cn
113210    lumg0202@online.sh.cn
113211 CR BOMBIERI E, 1966, P ROY SOC LOND A MAT, V239, P1
113212    BOMBIERI E, 1986, ACTA MATH-DJURSHOLM, V156, P203
113213    BRUN V, 1919, CR HEBD ACAD SCI, V168, P544
113214    CHEN JR, 1973, SCI SINICA, V16, P157
113215    CHEN JR, 1978, SCI SINICA, V21, P701
113216    FOUVRY E, 1983, ACTA ARITH, V42, P197
113217    FOUVRY E, 1984, ACTA MATH-DJURSHOLM, V152, P219
113218    FOUVRY E, 1986, J REINE ANGEW MATH, V370, P101
113219    HALBERSTAM H, 1974, SIEVE METHODS
113220    HARDY GH, 1923, ACTA MATH-DJURSHOLM, V44, P1
113221    HUA LK, 1989, ACTA MATH SINICA, V5, P1
113222    IWANIEC H, 1980, ACTA ARITH, V37, P307
113223    PAN CD, 1964, CHINESE MATH ACTA, V5, P642
113224    PAN CD, 1982, CHINESE ANN MATH, V3, P555
113225    SELBERG A, 1949, 11 SKAND MATH TRONDH, P13
113226    WANG Y, 1962, SCI SINICA, V11, P1033
113227    WU J, 1990, ACTA ARITH, V55, P365
113228 NR 17
113229 TC 1
113230 SN 0065-1036
113231 J9 ACTA ARITHMET
113232 JI Acta Arith.
113233 PY 2003
113234 VL 110
113235 IS 3
113236 BP 275
113237 EP 298
113238 PG 24
113239 SC Mathematics
113240 GA 801BU
113241 UT ISI:000220072200006
113242 ER
113243 
113244 PT J
113245 AU Zhong, SS
113246    Yang, XX
113247    Gao, SC
113248 TI Polarization-agile microstrip antenna array using a single phase-shift
113249    circuit
113250 SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
113251 DT Article
113252 DE active antenna; microstrip antenna array; phase shifter; polarization
113253 AB A novel polarization-agile microstrip antenna array is proposed, in
113254    which the polarization agility from linear to circular polarization for
113255    the Whole array is realized easily by controlling a single phase-shift
113256    circuit. Using the corner-fed square. patch element, a new 16 element
113257    dual-polarized array with high isolation and low cross-polarization is
113258    designed and analyzed by the extended multiport network method. A
113259    special FET phase shifter circuit is created, where 0degrees or
113260    90degrees phase shift between dual ports is electrically switched.
113261    Experimental results are presented to verify the theory, and measured
113262    circularly-polarized radiation patterns show a boresight axial ratio of
113263    0.5 dB. Another experiment that connects a low noise amplifier together
113264    with the phase-shift circuit is also introduced, realizing both
113265    polarization agility and power amplification with one active circuit.
113266 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
113267 RP Zhong, SS, Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R
113268    China.
113269 EM sszhongf@online.sh.cn
113270    shichang.gao@unn.ac.uk
113271 CR DAUGUET S, 1994, MICROW OPT TECHN LET, V7, P36
113272    GAO SC, 1999, J ELECT, V21, P529
113273    GAO SC, 1999, THESIS SHANGHAI U CH
113274    GUPTA KC, 1981, COMPUTER AIDED DESIG
113275    GUPTA KC, 1987, P IEEE ANT PROP SOC, V2, P786
113276    HASKINS PM, 1994, ELECTRON LETT, V30, P98
113277    HASKINS PM, 1996, ELECTRON LETT, V32, P509
113278    HASKINS PM, 1997, P AS PAC MICR C SING, V33, P1189
113279    RICHARDS WF, 1981, IEEE T ANTENN PROPAG, V29, P38
113280    YANG XX, 2001, THESIS SHANGHAI U CH
113281    ZHONG SS, 1991, MICROSTRIP ANTENNA T
113282    ZHONG SS, 1998, P J INA 98 NIC FRANC, P738
113283    ZHONG SS, 2000, P IEEE ANT PROP SOC, P1288
113284    ZHONG SS, 2002, IEEE T ANTENN PROPAG, V50, P1473
113285 NR 14
113286 TC 0
113287 SN 0018-926X
113288 J9 IEEE TRANS ANTENNAS PROPAGAT
113289 JI IEEE Trans. Antennas Propag.
113290 PD JAN
113291 PY 2004
113292 VL 52
113293 IS 1
113294 BP 84
113295 EP 87
113296 PG 4
113297 SC Engineering, Electrical & Electronic; Telecommunications
113298 GA 778YQ
113299 UT ISI:000189269300011
113300 ER
113301 
113302 PT J
113303 AU Liu, L
113304    Wu, QS
113305    Ding, YP
113306    Liu, HJ
113307    Qi, JY
113308    Liu, QA
113309 TI Biomimetic synthesis of Ag2CrO4 quasi-nanorods and nanowires by
113310    emulsion liquid membranes
113311 SO AUSTRALIAN JOURNAL OF CHEMISTRY
113312 DT Article
113313 ID FINE PARTICLES; SEMICONDUCTOR NANOWIRES; CATALYTIC GROWTH; VAPOR
113314    TRANSPORT; SYSTEM; BIOMINERALIZATION; DISCHARGE; ROUTE; SIZE
113315 AB Semiconductor Ag2CrO4 quasi-nanorods and nanowires have been
113316    successfully prepared through novel emulsion liquid membrane
113317    technology. The membrane phase in this system consists of Span-80 as
113318    the surfactant, N7301 as the carrier (or free carrier), and kerosene as
113319    the solvent. The internal aqueous phase is 0.1 M AgNO3 and the external
113320    aqueous phase is 0.1 M K2Cr2O7. Under the conditions of Roi = 2.0, Rew
113321    = 0.5, [Span-80] = 6% (v/v), and room temperature, Ag2CrO4
113322    quasi-nanorods with diameters of 180-300 nm and lengths of up to 2300
113323    nm, or nanowires with diameters of 15-25 nm and lengths of up to 1000
113324    nm, were obtained in the presence or absence of 5% (v/v) N7301,
113325    respectively. X-Ray diffraction and transmission electron microscopy
113326    were used to characterize the structure and morphology of the Ag2CrO4
113327    quasi-nanorods and nanowires. In addition, the photoluminescence
113328    spectrum showed strong emissions.
113329 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
113330    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
113331    Tongji Univ, Sch Ocean & Earth Sci, Shanghai 200092, Peoples R China.
113332    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
113333 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
113334 EM qswu@mail.tongji.edu.cn
113335 CR ABUZIED BM, 2000, APPL CATAL A-GEN, V198, P139
113336    BENFIELD JF, 2000, SCIENCE, V289, P751
113337    CARACCIOLO F, 1975, AICHE J, V21, P160
113338    CHEN CC, 1997, SCIENCE, V276, P398
113339    CHOI YC, 2000, ADV MATER, V12, P746
113340    CLARK RJH, 1982, INORG CHEM, V21, P3585
113341    DUAN XF, 2000, ADV MATER, V12, P298
113342    GADSBY DC, 1984, ANNU REV BIOPHYS BIO, V13, P73
113343    GREENFIELD EM, 1984, AM ZOOL, V24, P925
113344    HIRAI T, 1999, LANGMUIR, V15, P6291
113345    HIRAI T, 2000, J MATER CHEM, V10, P2306
113346    HIRAI T, 2002, CHEM MATER, V14, P3576
113347    HU JQ, 2001, INORG CHEM, V40, P3130
113348    HUANG MH, 2001, ADV MATER, V13, P113
113349    LIU YF, 2003, EUR J INORG CHEM FEB, P644
113350    MANN S, 1988, NATURE, V332, P119
113351    MANN S, 1995, J MATER CHEM, V5, P935
113352    MORALES AM, 1998, SCIENCE, V279, P208
113353    MOTTE L, 1997, J PHYS CHEM B, V101, P138
113354    NISHIHAMA S, 2002, J MATER CHEM, V12, P1053
113355    VISWANATHAN A, 1996, B ELECTROCHEM, V12, P702
113356    VOET D, 1995, BIOCHEMISTRY
113357    WANG X, 2002, ANGEW CHEM INT EDIT, V24, P4790
113358    WEINER S, 1984, PHILOS T ROY SOC B, V304, P425
113359    WU QS, 2000, J MEMBRANE SCI, V172, P199
113360    WU QS, 2001, CHEM J CHINESE U, V22, P898
113361    WU QS, 2002, INORG CHEM COMMUN, V5, P671
113362    WU YY, 2000, CHEM MATER, V12, P605
113363    YAZAWA M, 1992, APPL PHYS LETT, V61, P2051
113364    ZHENG NW, 2000, CHEM LETT       0605, P638
113365 NR 30
113366 TC 1
113367 SN 0004-9425
113368 J9 AUST J CHEM
113369 JI Aust. J. Chem.
113370 PY 2004
113371 VL 57
113372 IS 3
113373 BP 219
113374 EP 222
113375 PG 4
113376 SC Chemistry, Multidisciplinary
113377 GA 780BZ
113378 UT ISI:000189352500007
113379 ER
113380 
113381 PT J
113382 AU Li, X
113383    Ren, ZM
113384    Wang, H
113385    Li, WX
113386    Deng, K
113387    Zhuang, YQ
113388 TI Ring-like solidification structure of MnBi phase in Bi-Mn alloy under a
113389    high magnetic field
113390 SO ACTA METALLURGICA SINICA
113391 DT Article
113392 DE high magnetic field; solidification; Bi-Mn alloy; phase separation
113393 AB The influences of high intensity magnetic field on the solidification
113394    structure of Bi-Mn alloys in semi-solidified as well as melted state
113395    have been investigated experimentally. It is found that under the
113396    magnetic field of 10T, MnBi phase moves towards to and accumulates at
113397    the periphery of the specimen, forming a ring-like MnBi phase-rich
113398    layer where the rod-like MnBi phase aligned along the magnetic
113399    direction, and no primary MnBi in the center of the sample is found.
113400    Slow solidification above the Curie point makes the rod-like MnBi
113401    phases evolve into single crystal gradually. The above phenomena is
113402    analyzed and discussed.
113403 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
113404 RP Ren, ZM, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R
113405    China.
113406 EM zmrenb@163.com
113407 CR FARRELL DE, 1987, PHYS REV B, V36, P4025
113408    FENG D, 1998, PHYSICS METAL, V4, P460
113409    GLEW JP, 1982, IEEE T MAG, V18, P1656
113410    KATSUKI A, 1996, CHEM LETT, P607
113411    MOFFATT WG, 1984, HDB BINARY PHASE DIA
113412    RANGO PD, 1991, NATURE, V349, P770
113413    REN ZM, 1990, ACTA METALL SIN, V26, B374
113414    SASSA K, 1997, J JPN I MET, V61, P1283
113415    SASSA K, 1998, CAMP ISIJ, V11, P88
113416    WAN DF, 1987, PHYSICS MAGNETISM, P8
113417    WANG H, 2002, ACTA METALL SIN, V38, P41
113418 NR 11
113419 TC 2
113420 SN 0412-1961
113421 J9 ACTA METALL SIN
113422 JI Acta Metall. Sin.
113423 PD JAN
113424 PY 2004
113425 VL 40
113426 IS 1
113427 BP 40
113428 EP 45
113429 PG 6
113430 SC Metallurgy & Metallurgical Engineering
113431 GA 780KL
113432 UT ISI:000189379800008
113433 ER
113434 
113435 PT J
113436 AU Cai, DM
113437    Lin, KH
113438    Song, MP
113439    You, TP
113440 TI Ring-expanded C-nucleoside analogues of tiazofurin
113441 SO SYNTHETIC COMMUNICATIONS
113442 DT Article
113443 DE ring-expanded; tiazofurin; 2 ',3 '-dideoxynucleoside; C-nucleosides;
113444    synthesis; conformation
113445 ID IMMUNODEFICIENCY-VIRUS TYPE-1; 2'-DEOXY-3'-THIACYTIDINE BCH-189;
113446    ANTIVIRAL AGENT; ZIDOVUDINE AZT; INVITRO; HIV; INFECTIVITY;
113447    PYRIMIDINES; TOXICITY; POTENT
113448 AB Novel 1,3-dioxane C-nucleoside analogues of tiazofurin
113449    2-[2-(hydroxymethyl)-1,3-dioxan-5-methyl-5-yl]
113450    1,3-thiazole-4-carboxamide,
113451    2-[2(hydroxymethyl)-1,3-dioxan-5-ethyl-5-yl] 1,3-thiazole-4-carboxamide
113452    and 2-[5-(hydroxymethyl)-1,3-dioxan-5-methyl-2-yl] furan,
113453    2-[5-(hydroxymethyl)-1,3-dioxan-5-methyl-2-yl] thiophen have been
113454    synthesized from DMPA and DMBA. Their conformational characteristics
113455    have been investigated.
113456 C1 Univ Sci & Technol China, Dept Chem, Anhua 230026, Peoples R China.
113457    Shanghai Univ, Dept Chem, Shanghai, Peoples R China.
113458    Zhengzhou Univ, Dept Chem, Zhengzhou 450052, Peoples R China.
113459 RP You, TP, Univ Sci & Technol China, Dept Chem, Anhua 230026, Peoples R
113460    China.
113461 EM ytp@ustc.edu.cn
113462 CR BEACH JW, 1992, J ORG CHEM, V57, P2217
113463    CADET G, 1998, J ORG CHEM, V63, P4574
113464    CHU CK, 1991, J ORG CHEM, V56, P6503
113465    COATES JAV, 1992, ANTIMICROB AGENTS CH, V36, P202
113466    DALUGE SM, 1997, ANTIMICROB AGENTS CH, V41, P1082
113467    DIENSTAG JL, 1995, NEW ENGL J MED, V333, P1657
113468    LARDER BA, 1989, SCIENCE, V243, P1731
113469    MAURINSH Y, 1997, J ORG CHEM, V62, P2861
113470    MITSUYA H, 1985, P NATL ACAD SCI USA, V82, P7096
113471    MITSUYA H, 1986, P NATL ACAD SCI USA, V83, P1911
113472    NORBECK DW, 1989, TETRAHEDRON LETT, V30, P6263
113473    PEDERSEN H, 1992, HETEROCYCLES, V34, P265
113474    PEREZPEREZ MJ, 1995, J ORG CHEM, V60, P1531
113475    RICHMAN DD, 1987, NEW ENGL J MED, V317, P192
113476    RIDDLER SA, 1995, ANTIVIR RES, V27, P189
113477    SCHINAZI RF, 1992, ANTIMICROB AGENTS CH, V36, P672
113478    SOUDEYNS H, 1991, ANTIMICROB AGENTS CH, V35, P1386
113479    STRIVASTAVA PC, 1977, J MED CHEM, V20, P256
113480    STRIVASTAVA PC, 1983, J MED CHEM, V26, P445
113481    YARCHOAN R, 1988, LANCET          0116, V1, P76
113482 NR 20
113483 TC 0
113484 SN 0039-7911
113485 J9 SYN COMMUN
113486 JI Synth. Commun.
113487 PY 2004
113488 VL 34
113489 IS 1
113490 BP 159
113491 EP 170
113492 PG 12
113493 SC Chemistry, Organic
113494 GA 777RH
113495 UT ISI:000189191000019
113496 ER
113497 
113498 PT J
113499 AU Chen, QH
113500    Shi, DH
113501 TI The modeling of scale-free networks
113502 SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
113503 DT Article
113504 DE scale-free networks; degree distribution; scaling exponent
113505 ID COMPLEX NETWORKS
113506 AB In order to explore further the mechanism responsible for scale-free
113507    networks, we introduce two extended models of the BA model. The model
113508    A, where the system incorporates the addition of new links between
113509    existing nodes, a new node with new links and the rewiring of some
113510    links at every time step, all sites are born with some initial
113511    attractiveness. We calculate analytically the degree distribution. The
113512    system self-organizes into a scale-free network, the scaling exponent
113513    gamma>2. The model B is a new model; we consider that some old links
113514    are deleted with the anti-preferential probability. The result
113515    indicates that the system evolves itself into a scale-free network, the
113516    scaling exponent gamma varies from 2 to 3. (C) 2003 Elsevier B.V. All
113517    rights reserved.
113518 C1 Shanghai Univ, Coll Sci, Dept Math, Shanghai 200436, Peoples R China.
113519    Fujian Normal Univ, Coll Math & Comp Sci, Fuzhou 350007, Peoples R China.
113520 RP Chen, QH, Shanghai Univ, Coll Sci, Dept Math, Shanghai 200436, Peoples
113521    R China.
113522 EM qhdchen@yahoo.com.cn
113523    shidh2001@263.net
113524 CR ALBERT R, 1999, NATURE, V401, P130
113525    ALBERT R, 2000, PHYS REV LETT, V85, P5234
113526    ALBERT R, 2002, REV MOD PHYS, V74, P47
113527    BARABASI AL, 1999, PHYSICA A, V272, P173
113528    BARABASI AL, 1999, SCIENCE, V286, P509
113529    BOLLOBAS B, 1985, RANDOM GRAPHS
113530    ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
113531    JEONG H, 2000, NATURE, V407, P651
113532    JEONG H, 2001, NATURE, V411, P41
113533    STROGATZ SH, 2001, NATURE, V410, P268
113534    WATTS DJ, 1998, NATURE, V393, P440
113535 NR 11
113536 TC 4
113537 SN 0378-4371
113538 J9 PHYSICA A
113539 JI Physica A
113540 PD APR 1
113541 PY 2004
113542 VL 335
113543 IS 1-2
113544 BP 240
113545 EP 248
113546 PG 9
113547 SC Physics, Multidisciplinary
113548 GA 777ZX
113549 UT ISI:000189215600017
113550 ER
113551 
113552 PT J
113553 AU Zhong, SS
113554    Cui, JH
113555    Xue, RF
113556    Niu, JW
113557 TI Compact circularly polarized microstrip antenna on organic magnetic
113558    substrate
113559 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
113560 DT Article
113561 DE microstrip antenna; magnetic material; miniature antenna; circular
113562    polarization; FDTD method
113563 AB A novel compact slotted microstrip antenna for circular polarization
113564    (CP), using a new type of organic magnetic substrate for the first
113565    time, is proposed in this paper. The proposed antenna is analyzed using
113566    the FDTD method and demonstrated by experiment. The measured results of
113567    proposed CP square and circular patches show that this new magnetic
113568    substrate design not only reduces the antenna's size, but also provides
113569    much wider impedance and CP bandwidth. (C) 2004 Wiley Periodicals, Inc.
113570 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
113571 RP Zhong, SS, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
113572    Peoples R China.
113573 CR CHEN HD, 2001, MICROW OPT TECHN LET, V29, P52
113574    CHEN WS, 2001, IEEE T ANTENN PROPAG, V49, P340
113575    CUI JH, 2000, J MICROWAVES, V16, P537
113576    CUI JH, 2002, THESIS SHANGHAI U SH
113577    LIN Z, 1999, J MICROWAVES, V15, P329
113578    LWASAKI H, 1996, IEEE T ANTENN PROPAG, V44, P1399
113579    WONG KL, 1997, ELECTRON LETT, V33, P1833
113580 NR 7
113581 TC 0
113582 SN 0895-2477
113583 J9 MICROWAVE OPT TECHNOL LETT
113584 JI Microw. Opt. Technol. Lett.
113585 PD MAR 20
113586 PY 2004
113587 VL 40
113588 IS 6
113589 BP 497
113590 EP 500
113591 PG 4
113592 SC Engineering, Electrical & Electronic; Optics
113593 GA 777DT
113594 UT ISI:000189160800015
113595 ER
113596 
113597 PT J
113598 AU Zheng, CL
113599    Chen, LQ
113600 TI Semifolded localized coherent structures in general (2+1)-dimensional
113601    Korteweg de Vries system
113602 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
113603 DT Article
113604 DE general Korteweg de Vries system; multilinear variable separated
113605    approach; semifolded localized excitation
113606 ID VARIABLE SEPARATION APPROACH; NONLINEAR SCHRODINGER SYSTEM;
113607    SOLITON-STRUCTURES; FRACTAL BEHAVIORS; KDV EQUATION; AKNS SYSTEM; WAVE
113608    SYSTEM; EXCITATIONS; REDUCTIONS; SYMMETRIES
113609 AB Using the Painleve-Backlund transformation and a multilinear variable
113610    separation approach, an exact variable separation excitation of the
113611    generalthree-dimensional Korteweg de Vries system is derived first.
113612    Based on the derived excitation, a new type of solitary wave, i.e., a
113613    semifolded localized coherent structure, is constructed.
113614 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
113615    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
113616 RP Zheng, CL, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R
113617    China.
113618 EM zjclzheng@yahoo.com.cn
113619 CR BOITI M, 1988, PHYS LETT A, V132, P432
113620    CALOGERO F, 1975, LETT NUOVO CIMENTO, V14, P443
113621    CHEN CL, 2002, PHYS REV E 2B, V66
113622    CLARKSON PA, 1995, ACTA APPL MATH, V39, P245
113623    HIROTA R, 1971, PHYS REV LETT, V27, P1192
113624    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
113625    LOU SY, 2000, PHYS LETT A, V277, P94
113626    LOU SY, 2000, PHYS SCR, V65, P7
113627    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
113628    LOU SY, 2002, J MATH PHYS, V43, P4078
113629    LOU SY, 2003, J PHYS A-MATH GEN, V36, P3877
113630    MANSFIELD EL, 1997, MATH COMPUT SIMULAT, V43, P39
113631    TANG XY, 2002, COMMUN THEOR PHYS, V38, P1
113632    TANG XY, 2002, PHYS REV E 2, V66
113633    TANG XY, 2003, COMMUN THEOR PHYS, V40, P62
113634    TANG XY, 2003, J MATH PHYS, V44, P4000
113635    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P448
113636    ZHEBNG CL, 2003, CHINESE PHYS LETT, V20, P783
113637    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
113638    ZHENG CL, 2002, COMMUN THEOR PHYS, V38, P653
113639    ZHENG CL, 2003, CHINESE J PHYS, V41, P442
113640    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
113641    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P9
113642    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
113643    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P385
113644    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
113645 NR 26
113646 TC 22
113647 SN 0031-9015
113648 J9 J PHYS SOC JPN
113649 JI J. Phys. Soc. Jpn.
113650 PD FEB
113651 PY 2004
113652 VL 73
113653 IS 2
113654 BP 293
113655 EP 295
113656 PG 3
113657 SC Physics, Multidisciplinary
113658 GA 778AD
113659 UT ISI:000189216200001
113660 ER
113661 
113662 PT J
113663 AU Xu, H
113664    Lu, XC
113665    Tan, XH
113666    Dong, YD
113667 TI Structural and magnetic studies in Nd60Fe20Al10Co10 amorphous powder
113668    made by mechanical alloying
113669 SO JOURNAL OF MATERIALS SCIENCE
113670 DT Article
113671 C1 Shanghai Univ, Inst Mat Res, Shanghai 200072, Peoples R China.
113672 RP Xu, H, Shanghai Univ, Inst Mat Res, Shanghai 200072, Peoples R China.
113673 EM xuhui01@public6.sta.net.cn
113674 CR FAN GJ, 2000, MATER SCI FORUM 1&2, V343, P97
113675    HONG HZ, 2000, J MAGN MAGN MATER, V217, P65
113676    INOUE A, 1996, MATER T JIM, V37, P63
113677    INOUE A, 1996, MATER T JIM, V37, P99
113678    WEI BC, 2002, MAT SCI ENG A-STRUCT, V334, P307
113679 NR 5
113680 TC 0
113681 SN 0022-2461
113682 J9 J MATER SCI
113683 JI J. Mater. Sci.
113684 PD MAR 15
113685 PY 2004
113686 VL 39
113687 IS 6
113688 BP 2231
113689 EP 2232
113690 PG 2
113691 SC Materials Science, Multidisciplinary
113692 GA 778KD
113693 UT ISI:000189240000043
113694 ER
113695 
113696 PT J
113697 AU Zhang, NH
113698 TI Dynamic behavior of nonlinear viscoelastic karman plates under a
113699    transverse harmonic load
113700 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
113701 DT Article
113702 DE nonlinear viscoelastic plates; geometry nonlinearity; dynamic
113703    bifurcation; chaos and period
113704 ID LYAPUNOV EXPONENTS; STABILITY; STRAIN
113705 AB The dynamic behavior of a nonlinear viscoelastic Karman plate under a
113706    transverse harmonic load is investigated. A high order mathematical
113707    model is set up under the hypotheses of the Karman theory of thin
113708    plates. The material behavior is described by the Leaderman
113709    representation of nonlinear viscoelasticity. The influence of the
113710    loading amplitude and the material relaxation time on the dynamic
113711    behavior of the plate is discussed with the help of the largest
113712    Lyapunov exponent.
113713 C1 Shanghai Univ, Coll Sci, Dept Mech, Shanghai 200436, Peoples R China.
113714 RP Zhang, NH, Shanghai Univ, Coll Sci, Dept Mech, 99 Shangha Rd, Shanghai
113715    200436, Peoples R China.
113716 EM nhzhang@mail.shu.edu.cn
113717 CR BERNSTEIN B, 1963, T SOC RHEOL, V7, P391
113718    BOLOTIN VV, 1964, DYNAMIC STABILITY EL
113719    CEDERBAUM G, 1991, INT J SOLIDS STRUCT, V28, P317
113720    CHEN LQ, 2000, MECH RES COMMUN, V27, P413
113721    CHENG CJ, 1991, BUCKLING BIFURCATION
113722    CHENG CJ, 1998, ACTA MECH SINICA, V30, P690
113723    CHIA CY, 1980, NONLINEAR ANAL PLATE
113724    HUANG LJ, 2001, INT J NONLINEAR SCI, V2, P303
113725    KUBICEK M, 1983, COMPUTATIONAL METHOD
113726    LEADERMAN H, 1962, T SOC RHEOL, V6, P361
113727    OTT E, 1993, CHAOS DYNAMICAL SYST
113728    POPELAR CF, 1990, POLYM ENG SCI, V30, P577
113729    SCHAPERY RA, 1969, POLYM ENG SCI, V9, P29
113730    SMART J, 1972, J MECH PHYS SOLIDS, V20, P313
113731    SUIRE G, 1995, INT J MECH SCI, V37, P753
113732    SUN YX, 2001, INT J MECH SCI, V43, P1195
113733    TOUATI D, 1994, INT J SOLIDS STRUCT, V31, P2367
113734    TOUATI D, 1995, ACTA MECH, V113, P215
113735    WOJCIECH S, 1990, ACTA MECH, V85, P43
113736    WOLF A, 1985, PHYSICA D, V16, P285
113737    ZAPAS LJ, 1965, J RES NBS A PHYS CH, V69, P541
113738    ZHANG NH, 1998, P 3 INT C NONL MECH, P432
113739    ZHANG NH, 2000, ACTA MECH SINCA SOLI, V21, P160
113740    ZHANG NH, 2003, APPL MATH MECH-ENGL, V24, P247
113741    ZHU YY, 1998, P 3 INT C NONL MECH, P445
113742 NR 25
113743 TC 1
113744 SN 1565-1339
113745 J9 INT J NONLINEAR SCI NUMER SIM
113746 JI Int. J. Nonlinear Sci. Numer. Simul.
113747 PY 2004
113748 VL 5
113749 IS 1
113750 BP 45
113751 EP 59
113752 PG 15
113753 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
113754    Mathematical; Mechanics
113755 GA 778FJ
113756 UT ISI:000189228500007
113757 ER
113758 
113759 PT J
113760 AU Ren, SJ
113761    Sang, WB
113762    Jin, W
113763    Li, WW
113764    Zhang, Q
113765    Min, JH
113766 TI Primary study of Monte Carlo simulation on CdZnTe nuclear detector
113767 SO HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION
113768 DT Article
113769 DE semi-conductor nuclear detector; Monte Carlo simulation; CdZnTe
113770 ID CADMIUM ZINC TELLURIDE; PARTIAL PRESSURES; CRYSTAL-GROWTH; GAMMA-RAY
113771 AB The Monte Carlo simulation software is developed based on the operating
113772    principle of CdZnTe detector, the randomicity of gamma ray reaction in
113773    the detector and the statistic rule of the amount of electron-hole
113774    pairs produced. First, the reaction depth of photons is calculated
113775    based on the disintegration rule. Secondly, the reaction section of
113776    every reaction is estimated and the reaction probability of the three
113777    atoms in CZT and the probability of every reaction of every atom are
113778    calculated. Based on these probabilities, the category of atoms and the
113779    type of reactions of a photon reacting with the detector are
113780    determined, and the amount of electron-hole pairs produced by the
113781    photon is obtained. From the reaction depth and the amount of
113782    electron-hole pairs produced, the amount of charge collected can be
113783    calculated.
113784    The response energy spectra of gamma ray in the CdZnTe detector are
113785    simulated by using the Monte Carlo software developed. The simulation
113786    results are well comparable with the data of the real CdZnTe devices.
113787    In addition, the ideal thickness of the device, which is of maximum
113788    detecting efficiency, is also obtained based on the analysis over the
113789    relationship between the thickness and the efficiency, assuming the
113790    device to be under the radiation of (CO)-C-57 Source.
113791 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
113792 RP Ren, SJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
113793    China.
113794 EM shaojunren@vip.sina.com.cn
113795 CR AMMAN M, 1997, P SOC PHOTO-OPT INS, V3115, P205
113796    ARLT R, 1996, NUCL INSTRUM METH A, V380, P455
113797    EISEN Y, 1996, NUCL INSTRUM METH A, V380, P431
113798    EISEN Y, 1998, J CRYST GROWTH, V184, P1302
113799    EISEN Y, 1999, NUCL INSTRUM METH A, V428, P1584
113800    HE Z, 1998, MAT RES SOC P, V487, P89
113801    JAMES E, 1998, UNIFORMITY DEFECTS C
113802    LEE EY, 1998, MATER RES SOC S P, V487, P537
113803    LEE EY, 1999, NUCL INSTRUM METH A, V428, P66
113804    LI WW, 2002, SEMICOND SCI TECH, V17, L55
113805    LUKE PN, 1996, NUCL INSTRUM METH A, V380, P232
113806    MANFREDOTTI C, 1993, MAT RES S P, V302, P183
113807    REDUS RH, 1998, MATER RES SOC S P, V487, P101
113808    ROSSI M, 1996, NUCL INSTRUM METH A, V380, P419
113809    SANG WB, 2000, J CRYST GROWTH, V214, P30
113810    SCHLESINGER TE, 2001, MAT SCI ENG R, V32, P103
113811    VIZKELETHY G, 2000, P SOC PHOTO-OPT INS, V4141, P178
113812    WANG LJ, 2000, NUCL INSTRUM METH A, V448, P581
113813    WEN WX, 2002, HIGH ENERG PHYS NUC, V26, P1178
113814 NR 19
113815 TC 0
113816 SN 0254-3052
113817 J9 HIGH ENERGY PHYS NUCL PHYS-CH
113818 JI High Energy Phys. Nucl. Phys.-Chin. Ed.
113819 PD FEB
113820 PY 2004
113821 VL 28
113822 IS 2
113823 BP 191
113824 EP 195
113825 PG 5
113826 SC Physics, Nuclear; Physics, Particles & Fields
113827 GA 777EQ
113828 UT ISI:000189163200017
113829 ER
113830 
113831 PT J
113832 AU Yang, W
113833    Zhang, JM
113834    Lou, H
113835    Wang, S
113836 TI Synthesis of C-60-tetrahydropyrrole ring derivatives under microwave
113837    irradiation
113838 SO CHINESE JOURNAL OF ORGANIC CHEMISTRY
113839 DT Article
113840 DE C-60 -tetrahydropyrrole ring derivative; microwave irradiation;
113841    synthesis
113842 ID C-60; ANTHRACENE
113843 AB A series of C-60-tetrahydropyrrole ring derivatives were synthesized
113844    via the reaction of amino acid, aldehyde with C-60 under microwave
113845    irradiation conditions without any solvent. The reactions were
113846    completed within 8 similar to 10 min in 50% similar to 74% yields.
113847 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
113848 RP Yang, W, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
113849 EM jnzhang@public6.sta.net.cn
113850 CR GEDYE R, 1986, TETRAHEDRON LETT, V27, P279
113851    KOMATSU K, 1993, TETRAHEDRON LETT, V34, P8473
113852    LI YL, 1997, CHINESE SCI BULL, V42, P704
113853    LI YX, 1996, NAT SCI ED, P107
113854    MAGGINI M, 1993, J AM CHEM SOC, V115, P9798
113855    MAGGINI M, 1994, J CHEM SOC CHEM 0207, P305
113856    SU YZ, 2000, CHEM ONLINE, V13
113857    TSUDA M, 1993, J CHEM SOC CHEM COMM, P1296
113858    WANG J, 2002, CHINESE J ORG CHEM, V22, P212
113859    WILSON S, 1996, TETRAHEDRON LETT, V17, P775
113860 NR 10
113861 TC 1
113862 SN 0253-2786
113863 J9 CHINESE J ORG CHEM
113864 JI Chin. J. Org. Chem.
113865 PD FEB
113866 PY 2004
113867 VL 24
113868 IS 2
113869 BP 231
113870 EP 233
113871 PG 3
113872 SC Chemistry, Organic
113873 GA 776MH
113874 UT ISI:000189119400018
113875 ER
113876 
113877 PT J
113878 AU Huang, DB
113879    Guo, RW
113880 TI Identifying parameter by identical synchronization between different
113881    systems
113882 SO CHAOS
113883 DT Article
113884 ID CONDITIONAL LYAPUNOV EXPONENTS; CHAOTIC SYSTEMS; TIME-SERIES;
113885    DYNAMICAL-SYSTEMS; COMMUNICATION
113886 AB In this paper, parameters of a given (chaotic) dynamical system are
113887    estimated from time series by using identical synchronization between
113888    two different systems. This technique is based on the invariance
113889    principle of differential equations, i.e., a dynamical Lyapunov
113890    function involving synchronization error and the estimation error of
113891    parameters. The control used in this synchronization consists of
113892    feedback and adaptive control loop associated with the update law of
113893    estimation parameters. Our estimation process indicates that one may
113894    identify dynamically all unknown parameters of a given (chaotic) system
113895    as long as time series of the system are available. Lorenz and Rossler
113896    systems are used to illustrate the validity of this technique. The
113897    corresponding numerical results and analysis on the effect of noise are
113898    also given. (C) 2004 American Institute of Physics.
113899 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
113900 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
113901 EM dbhuang@mail.shu.edu.cn
113902 CR 1997, CHAOS, V7
113903    2003, CHAOS, V13
113904    BOCCALETTI S, 2001, PHYS REV E 2, V63
113905    BOCCALETTI S, 2002, PHYS REP, V366, P1
113906    BROWN R, 1994, PHYS REV E A, V49, P3784
113907    BROWN R, 2000, CHAOS, V10, P344
113908    CHEN GR, 1999, INT J BIFURCAT CHAOS, V9, P1465
113909    CUOMO KM, 1993, PHYS REV LETT, V71, P65
113910    FEMAT R, 1999, PHYS LETT A, V262, P50
113911    FUJISAKA H, 1983, PROG THEOR PHYS, V69, P32
113912    HAYES S, 1993, PHYS REV LETT, V70, P3031
113913    KOCAREV L, 1995, PHYS REV LETT, V74, P5028
113914    MARINO IP, 2003, CHAOS, V13, P286
113915    MAYBHATE A, 1999, PHYS REV E A, V59, P284
113916    MURALI K, 1993, PHYS REV E, V48, R1624
113917    PARLITZ U, 1994, PHYS LETT A, V188, P146
113918    PARLITZ U, 1996, PHYS REV E A, V53, P4351
113919    PARLITZ U, 1996, PHYS REV E, V54, P6253
113920    PARLITZ U, 1996, PHYS REV LETT, V76, P1232
113921    PECORA LM, 1990, PHYS REV LETT, V64, P821
113922    PYRAGAS K, 1992, PHYS LETT A, V170, P421
113923    RODRIGUES HM, 2001, J DIFFER EQUATIONS 3, V169, P228
113924    SHUAI JW, 1997, PHYS REV E, V56, P2272
113925    WU CW, 1994, INT J BIFURCAT CHAOS, V4, P979
113926    ZHOU CS, 2000, PHYSICA D, V135, P1
113927 NR 25
113928 TC 7
113929 SN 1054-1500
113930 J9 CHAOS
113931 JI Chaos
113932 PD MAR
113933 PY 2004
113934 VL 14
113935 IS 1
113936 BP 152
113937 EP 159
113938 PG 8
113939 SC Mathematics, Applied; Physics, Mathematical
113940 GA 778WQ
113941 UT ISI:000189264700019
113942 ER
113943 
113944 PT J
113945 AU Ma, CM
113946 TI Internal resonant interactions of three free surface-waves in a
113947    circular cylindrical basin
113948 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
113949 DT Article
113950 DE free surface-wave; internal resonant interaction; stationary solution
113951 ID GRAVITY-WAVES
113952 AB The basic equations of free capillary-gravity surface-waves in a
113953    circular cylindrical basin were derived from Luke's principle. Taking
113954    Galerkin's expansion of the velocity potential and the free surface
113955    elevation, the second-order perturbation equations were derived by use
113956    of expansion of multiple scale. The nonlinear interactions with the
113957    second order internal resonance of three free surface-waves were
113958    discussed based on the above. The results include: derivation of the
113959    couple equations of resonant interactions among three waves and the
113960    conservation laws; analysis of the positions of equilibrium points in
113961    phase plane; study of the resonant parameters and the non-resonant
113962    parameters respectively in all kinds of circumstances; derivation of
113963    the stationary solutions of the second-order interaction equations
113964    corresponding to different parameters and analysis of the stability
113965    property of the solutions; discussion of the effective solutions only
113966    in the limited time range. The analysis makes it clear that the energy
113967    transformation mode among three waves differs because of the different
113968    initial conditions under nontrivial circumstance. The energy may either
113969    exchange among three waves periodically or damp or increase in single
113970    waves.
113971 C1 Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
113972    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
113973 RP Ma, CM, Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
113974 EM chenmingma@sina.com
113975 CR ANNENKOV SY, 1999, EUR J MECH B-FLUID, V18, P463
113976    BENIELLI D, 1998, J FLUID MECH, V374, P117
113977    HAMMACK JL, 1993, ANNU REV FLUID MECH, V25, P55
113978    HASSELMANN K, 1962, J FLUID MECH, V12, P481
113979    MA CM, 2002, THESIS SHANGHAI U SH
113980    MCGOLDRICK LF, 1965, J FLUID MECH, V21, P305
113981    MILES JW, 1976, J FLUID MECH 3, V75, P419
113982    MILES JW, 1984, J FLUID MECH, V149, P1
113983    SHIVAMOGGI BK, 1994, J SOUND VIB, V176, P271
113984 NR 9
113985 TC 0
113986 SN 0253-4827
113987 J9 APPL MATH MECH-ENGL ED
113988 JI Appl. Math. Mech.-Engl. Ed.
113989 PD DEC
113990 PY 2003
113991 VL 24
113992 IS 12
113993 BP 1411
113994 EP 1420
113995 PG 10
113996 SC Mathematics, Applied; Mechanics
113997 GA 777ZM
113998 UT ISI:000189214400007
113999 ER
114000 
114001 PT J
114002 AU Liu, JK
114003    Wu, QS
114004    Ding, YP
114005 TI Controlled synthesis and photics properties of nanorods of PbCrO4 and
114006    BaCrO4 with artificial active membrane as template
114007 SO ACTA PHYSICO-CHIMICA SINICA
114008 DT Article
114009 DE active membrane; template; lead chromate; barium chromate; nanorods
114010 ID NANOSTRUCTURES; NANOPARTICLES; NANOWIRES; CDS
114011 AB Nanorods of lead chromate and barium chromate were synthesized by using
114012    artificial active membrane of celloidin as template and the cooperating
114013    effect of artificial active membrane with ethylenediamine. The results
114014    indicated that the diameter of lead chromate nanorods is between 28
114015    similar to 55 nm and the largest ratio of length to diameter is 25, the
114016    nanorod exhibited a monoclinic single crystal structure. The diameter
114017    of barium chromate nanorods is between 24 similar to 38 nm and the
114018    largest ratio of length to diameter is 28. The rod had an orthorhombic
114019    single crystal structure. The products have optical properties which
114020    are different from those of bulk materials: the IR absorption peaks
114021    have slightly blue-shift, the fluorescent emission peaks have 9 nm and
114022    15 nm blue-shift respectively compared to those of the bulk materials,
114023    and the UV-Vis spectra showed that the obvious absorption peaks
114024    respectively blue-shifted 30 nm and 35 nm compared to bulk that of
114025    materials as a result of quantum size effect. The synthesis mechanism
114026    of the products was discussed primarily.
114027 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
114028    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
114029 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
114030 EM qswu@mail.tongji.edu.cn
114031 CR CAO LY, 2002, ACTA PHYS-CHIM SIN, V18, P1062
114032    LI M, 1999, NATURE, V402, P393
114033    LI YD, 1999, INORG CHEM, V38, P1382
114034    PANDA AK, 2001, LANGMUIR, V17, P1811
114035    SHI HT, 2003, J AM CHEM SOC, V125, P3450
114036    WU QS, 2000, CHEM J CHINESE U, V21, P1471
114037    WU QS, 2000, J MEMBRANE SCI, V172, P199
114038    WU QS, 2001, CHEM J CHINESE U, V22, P898
114039    WU QS, 2002, INORG CHEM COMMUN, V5, P671
114040    YANG PD, 2002, CHEMPHYSCHEM, V3, P503
114041    YAO SW, 2002, ACTA PHYS-CHIM SIN, V18, P930
114042    YU SH, 2003, NANO LETT, V3, P379
114043    ZHENG NW, 2000, CHEM LETT, V6, P636
114044 NR 13
114045 TC 2
114046 SN 1000-6818
114047 J9 ACTA PHYS-CHIM SIN
114048 JI Acta Phys.-Chim. Sin.
114049 PD FEB
114050 PY 2004
114051 VL 20
114052 IS 2
114053 BP 221
114054 EP 224
114055 PG 4
114056 SC Chemistry, Physical
114057 GA 777PH
114058 UT ISI:000189186400024
114059 ER
114060 
114061 PT J
114062 AU Yu, HF
114063    Lei, JX
114064    Ma, XM
114065    Zhu, LH
114066    Lu, Y
114067    Xiang, J
114068 TI Properties and microstructure of a newly developed AgC electrical
114069    contact material
114070 SO RARE METAL MATERIALS AND ENGINEERING
114071 DT Article
114072 DE electrical contact material; silver-graphite (AgC); high-energy ball
114073    milling; chemical coating; reductant liquid spraying; powder
114074    metallurgy; microstructure; property
114075 AB A newly developed Ag5wt%C electrical contact material was fabricated
114076    using the technique of high-energy in conjunction with reductant liquid
114077    spraying chemical coating and powder metallurgy. Compared with its
114078    conventional counterparts made from traditional blending and extrusion,
114079    the new contact material has excellent physical and mechanical
114080    properties. Contact-erosion experiments were performed using an ASTM
114081    Contact Material Automatic Measuring Device. The experimental results
114082    indicated that the arc erosion resistance of the newly developed
114083    Ag5wt%C material was more than 40% higher than that of the
114084    conventionally blended counterpart. The microstructures of the AgC
114085    coating powder and the sintered-pressed sample were characterized by
114086    SEM and metallographic microscopy. The surface morphologies of the two
114087    types of Ag5wt%C contact after breaking arc melting were examined by
114088    SEM together with EDS. It was found that the melted Ag particles
114089    produced by arc thermal shock become spherical and adhered to the
114090    matrix, thereby decreasing the splattering loss of Ag. The wettability
114091    and interfacial strength between silver and graphite were much improved
114092    as a result of using the new technique. The newly developed AgC may
114093    substitute for those counterparts made from extrusion or blending as a
114094    new electrical contact material.
114095 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
114096    E China Normal Univ, Shanghai 200062, Peoples R China.
114097    Shanghai Elect Apparatus Res Inst, Shanghai 2000063, Peoples R China.
114098 RP Yu, HF, Shanghai Univ, Shanghai 200072, Peoples R China.
114099 EM shyhf@163.com
114100 CR BEHRENS V, 1995, P ANN HOLM C EL CONT, P393
114101    DONG YD, 1993, MATER SCI ENG, V11, P30
114102    FAN JL, 2001, RARE METAL MAT ENG, V30, P208
114103    JOSHI PB, 1998, INT J POWDER METALL, V34, P63
114104    LI YT, 1995, CHINESE J MAT RES, V9, P399
114105    SUN CZ, 1992, POWDER METALLURGY TE, V10, P103
114106    WANG JQ, 2001, RARE METAL MAT ENG, V30, P205
114107    WINGERT P, 1992, P ANN HOLM C EL CONT, P38
114108    WINGERT PC, 1996, P 42 IEEE HOLM C EL, P60
114109    YAN SQ, 1998, MATER SCI ENG, V16, P72
114110    YUAN HM, 1992, RARE METAL MAT ENG J, V21, P3
114111    ZHANG WS, 1995, ELECT ALLOY, P1
114112 NR 12
114113 TC 1
114114 SN 1002-185X
114115 J9 RARE METAL MAT ENG
114116 JI Rare Metal Mat. Eng.
114117 PD JAN
114118 PY 2004
114119 VL 33
114120 IS 1
114121 BP 96
114122 EP 100
114123 PG 5
114124 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
114125    Engineering
114126 GA 773PM
114127 UT ISI:000188932200024
114128 ER
114129 
114130 PT J
114131 AU Lu, HQ
114132    Shi, QP
114133    Shen, LM
114134    Cheung, PCH
114135 TI The solutions of wormhole in Brans-Dicke theory
114136 SO NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS
114137    RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS
114138 DT Article
114139 ID COSMOLOGY; GRAVITY
114140 AB We discuss wormhole solution in the Brans-Dicke theory with existence
114141    of relativistic radiation field. The solutions of wormhole are obtained
114142    in the Einstein frame. When the dilaton field sigma = const, the
114143    solution of wormhole should be reduced to the well-known Tolman
114144    wormhole. Euclidean wormhole solution also has been obtained in the
114145    Einstein frame when a sigma not equal const. For the comparison, we
114146    also derive the wormhole solution in the Jordan frame with existence of
114147    relativistic radiation field. However, the two frames, the Einstein
114148    frame and the Jordan frame, are not physically equivalent.
114149 C1 Shanghai Univ, Dept Phys, Shanghai, Peoples R China.
114150    Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
114151 RP Lu, HQ, Shanghai Univ, Dept Phys, Shanghai, Peoples R China.
114152 CR ACCETTA FS, 1990, NUCL PHYS B, V333, P221
114153    BERKIN AL, 1991, PHYS REV D, V44, P1691
114154    BERKIN AL, 1995, PHYS REV LETT, V65, P41
114155    CHO YM, 1992, PHYS REV LETT, V68, P3133
114156    CHO YM, 1997, CLASSICAL QUANT GRAV, V14, P2963
114157    COULE DH, 1998, MOD PHYS LETT A, V13, P961
114158    GONG YG, 1995, INT J MOD PHYS D, V4, P333
114159    GRADSHTEYN IS, 1994, TABLE INTEGRALS SERI
114160    ICHINOSE S, 1999, NUCL PHYS B, V539, P634
114161    LA D, 1991, PHYS REV D, V44, P1680
114162    LU HQ, 1999, NUOVO CIMENTO B, V114, P127
114163    LU HQ, 2002, INT J THEOR PHYS, V41, P56
114164    MAGNANO G, 1994, PHYS REV D, V5, P5049
114165    YANG HH, 1996, PHYS LETT A, V212, P39
114166 NR 14
114167 TC 0
114168 SN 0369-3554
114169 J9 NUOVO CIMENTO B-GEN PHYS R
114170 JI Nouvo Cimento Soc. Ital. Fis. B-Gen. Phys. Relativ. Astron. Math. Phys.
114171    Methods
114172 PD JUN
114173 PY 2003
114174 VL 118
114175 IS 6
114176 BP 547
114177 EP 557
114178 PG 11
114179 SC Physics, Multidisciplinary
114180 GA 773RD
114181 UT ISI:000188935800002
114182 ER
114183 
114184 PT J
114185 AU Kang, LY
114186    Kim, HK
114187    Sohn, MY
114188 TI Minus domination number in k-partite graphs
114189 SO DISCRETE MATHEMATICS
114190 DT Article
114191 DE domination; minus domination; k-partite graph
114192 ID LOWER BOUNDS
114193 AB A function f defined on the vertices of a graph G = (V,E),f : V -->
114194    {-1,0,1} is a minus dominating function if the sum of its values over
114195    any closed neighborhood is at least one. The weight of a minus
114196    dominating function is f (V) =Sigma(vepsilonV) f(v). The minus
114197    domination number of a graph G, denoted by gamma(-)(G), equals the
114198    minimum weight of a minus dominating function of G. In this paper, a
114199    sharp lower bound on gamma(-) of k-partite graphs is given. The special
114200    case k=2 implies that a conjecture proposed by Dunbar et al. (Discrete
114201    Math. 199(1999) 35) is true. (C) 2003 Elsevier B.V. All rights reserved.
114202 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
114203    Changwon Natl Univ, Dept Appl Math, Chang Won, South Korea.
114204    Catholic Univ Deagu, Dept Math, Taegu, South Korea.
114205 RP Kang, LY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
114206 EM kangly@online.sh.cn
114207 CR DUNBAR J, 1996, DISCRETE APPL MATH, V68, P73
114208    DUNBAR J, 1999, DISCRETE MATH, V199, P35
114209    HAYNES TW, 1998, FUNDAMENTALS DOMINAT
114210    HENNING MA, 1996, ARS COMBINATORIA, V43, P263
114211    HENNING MA, 1996, DISCRETE MATH, V158, P87
114212    HENNING MA, 1998, J GRAPH THEOR, V28, P49
114213    KANG LY, 2000, ARS COMBINATORIA, V56, P121
114214    KANG LY, 2003, THEOR COMPUT SCI, V296, P89
114215 NR 8
114216 TC 0
114217 SN 0012-365X
114218 J9 DISCRETE MATH
114219 JI Discret. Math.
114220 PD FEB 28
114221 PY 2004
114222 VL 277
114223 IS 1-3
114224 BP 295
114225 EP 300
114226 PG 6
114227 SC Mathematics
114228 GA 774CQ
114229 UT ISI:000188962500018
114230 ER
114231 
114232 PT J
114233 AU Liu, H
114234    Lu, GZ
114235    Guo, YL
114236    Guo, Y
114237    Wang, JS
114238 TI Catalytic performance of titanium silicalite-1 for hydroxylation of
114239    phenol in fixed-bed reactor
114240 SO CHINESE JOURNAL OF CATALYSIS
114241 DT Article
114242 DE titanium silicalite-1; supported catalyst; phenol; hydrogen peroxide;
114243    hydroxylation; dihydroxybenzene; fixed-bed reactor
114244 ID HYDROGEN-PEROXIDE; EPOXIDATION; COMPLEX
114245 AB The TS-1 zeolite prepared by the hydrothermal method was supported on
114246    different supports, and their catalytic performance for the
114247    hydroxylation of phenol in a fixed-bed reactor system was studied. The
114248    effects of the support property, Ti content and pretreatment reagent on
114249    the performance of the supported TS-1 catalyst were investigated. The
114250    stronger acid sites on the support promoted the decomposition of H2O2
114251    and decreased the phenol conversion and utilization efficiency of H2O2.
114252    Among ZSM-5, TiO2, Al2O3, ZrO2, SiO2 and diatomite supports, diatomite
114253    was the best support of TS-1 for the hydroxylation of phenol. The
114254    catalytic performance of the TS-1/diatomite catalyst for the
114255    hydroxylation was related to the amount of Ti in the TS-1 lattice and
114256    was improved by pretreatment with HNO3, KAc, NaAc, NH4Ac and NH4Cl
114257    aqueous solutions. On the contrary, the activity of TS-1/diatomite was
114258    inhibited by pretreatment with base solutions such as NH3 (.) H2O,
114259    Na2CO3 and Na3PO4. The studies of reaction conditions in the fixed-bed
114260    reactor system showed that the operation parameters such as solvent,
114261    reaction temperature, WHSV and phenol/H2O2 ratio had obvious influences
114262    on the hydroxylation of phenol. When the reaction was carried out using
114263    acetone as the solvent with a phenol to H2O2 molar ratio of 3 at WHSV =
114264    8.46 h(-1) and 84 V, the phenol conversion, H2O2 conversion,
114265    selectivity for dihydroxybenzene and utilization efficiency of H2O2
114266    reached 27.7%, 94.8%, 97.7% and 75.1%, respectively.
114267 C1 E China Univ Sci & Technol, Res Inst Ind Catalysis, Shanghai 200237, Peoples R China.
114268    Shanghai Univ, Coll Environm & Chem Engn, Shanghai 200072, Peoples R China.
114269 RP Lu, GZ, E China Univ Sci & Technol, Res Inst Ind Catalysis, Shanghai
114270    200237, Peoples R China.
114271 EM gzhlu@ecust.edu.cn
114272 CR DAI PSE, 1996, APPL CATAL A-GEN, V143, P101
114273    GAO HX, 2002, CHINESE J CATAL+, V23, P3
114274    HASEGAWA Y, 2001, CATAL TODAY, V71, P177
114275    HUYBRECHTS DRC, 1992, J MOL CATAL, V71, P129
114276    LIN S, 2000, J MOL CATAL A-CHEM, V156, P113
114277    LU GZ, 1997, J MOL CATAL, V11, P191
114278    NEMETH LT, 1994, 5354875, US
114279    RAO PRHP, 1993, APPL CATAL A-GEN, V93, P123
114280    THIELE G, 1998, 5756778, US
114281    THIELE GF, 1997, J MOL CATAL A-CHEM, V117, P351
114282    TUEL A, 1991, J MOL CATAL, V68, P45
114283    VANDERPOL AJHP, 1992, APPL CATAL A-GEN, V92, P113
114284    WANG HL, 1999, CHINESE J CATAL+, V20, P557
114285    XIONG CR, 2000, CATAL LETT, V69, P231
114286    YU RB, 1999, CATAL TODAY, V51, P39
114287    YU XD, 2002, PETROCHEM TECH, V31, P708
114288 NR 16
114289 TC 2
114290 SN 0253-9837
114291 J9 CHIN J CATAL
114292 JI Chin. J. Catal.
114293 PD JAN
114294 PY 2004
114295 VL 25
114296 IS 1
114297 BP 49
114298 EP 54
114299 PG 6
114300 SC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical
114301 GA 774LG
114302 UT ISI:000188980500012
114303 ER
114304 
114305 PT J
114306 AU An, BL
114307    Gong, ML
114308    Cheah, KW
114309    Zhang, JM
114310    Li, KF
114311 TI Synthesis and bright luminescence of lanthanide (Eu(III), Tb(III))
114312    complexes sensitized with a novel organic ligand
114313 SO CHEMICAL PHYSICS LETTERS
114314 DT Article
114315 ID CONJUGATED EUROPIUM COMPLEX; THERMAL-STABILITY; SILICA MATRIX;
114316    PHOTOLUMINESCENCE; CRYSTAL
114317 AB A novel organic ligand, 6-[(benzylamino) carbonyl]-2-pyridine
114318    carboxylic acid (HBAP), and the corresponding lanthanide complexes,
114319    tris(6-[(benzylamino) carbonyl]- 2-pyridine carboxylato)
114320    lanthanide(III) (Ln-BAP, Ln = Eu, Tb, Gd), have been designed and
114321    synthesized. The lanthanide (Eu(III), Tb(III)) complexes were
114322    efficiently sensitized by BAP ligand. The fluorescence quantum yields
114323    were investigated by comparison with a luminescence standard, and the
114324    yields were 15 +/- 3%, 34 +/- 3% for the solid europium. and terbium
114325    complexes respectively. The lowest triplet level of HBAP ligand was
114326    calculated from the phosphorescence spectrum of Gd-BAP complex, and the
114327    energy transfer mechanisms in the lanthanide complexes were discussed.
114328    (C) 2004 Elsevier B.V. All rights reserved.
114329 C1 Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200436, Peoples R China.
114330    Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China.
114331    Hong Kong Baptist Coll, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
114332 RP An, BL, Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200436, Peoples R
114333    China.
114334 EM anbaolii@263.sina.com
114335    cesgml@zsu.edu.cn
114336 CR ALBERTSSON J, 1972, ACTA CHEM SCAND, V26, P1023
114337    AN BL, 2001, MATER RES BULL, V36, P1335
114338    AN BL, 2002, J LUMIN, V99, P155
114339    AN BL, 2003, J ALLOY COMPD, V352, P143
114340    AN BL, 2003, J MATER SCI-MATER EL, V14, P125
114341    AN BL, 2003, POLYHEDRON, V22, P2719
114342    CHEN GZ, 1990, FLUORESCENCE ANAL ME
114343    DEW W, 1979, J AM CHEM SOC, V101, P334
114344    DEXTER DL, 1953, J CHEM PHYS, V21, P836
114345    DONEGA CD, 1996, J PHYS CHEM SOLIDS, V57, P1727
114346    FREY ST, 1995, INORG CHIM ACTA, V229, P383
114347    FRIEND RH, 1999, NATURE, V397, P121
114348    GRENTHE I, 1961, J AM CHEM SOC, V83, P360
114349    HEMMILA I, 1995, J ALLOY COMPD, V225, P480
114350    HO PKH, 1999, SCIENCE, V285, P233
114351    KIDO J, 2002, CHEM REV, V102, P2357
114352    LESSMANN JJ, 2000, INORG CHEM, V39, P3114
114353    MELBY LR, 1964, J AM CHEM SOC, V86, P5117
114354    MOYNAGH J, 1999, NATURE, V400, P105
114355    PARK W, 2000, MAT SCI ENG B-SOLID, V78, P28
114356    RYAN JL, 1966, J PHYS CHEM-US, V70, P2845
114357    SANO T, 2000, J MATER CHEM, V10, P157
114358    SATO S, 1970, B CHEM SOC JPN, V43, P1955
114359    SLOOFF LH, 2000, OPT MATER, V14, P101
114360    WEISSMAN SI, 1942, J CHEM PHYS, V10, P214
114361    YANG YS, 1994, J ALLOY COMPD, V207, P112
114362    ZN D, 1998, APPL PHYS LETT, V72, P2806
114363 NR 27
114364 TC 5
114365 SN 0009-2614
114366 J9 CHEM PHYS LETT
114367 JI Chem. Phys. Lett.
114368 PD FEB 16
114369 PY 2004
114370 VL 385
114371 IS 5-6
114372 BP 345
114373 EP 350
114374 PG 6
114375 SC Physics, Atomic, Molecular & Chemical
114376 GA 775YG
114377 UT ISI:000189087800003
114378 ER
114379 
114380 PT J
114381 AU Chen, LQ
114382 TI The parametric open-plus-closed-loop control of chaotic maps and its
114383    robustness
114384 SO CHAOS SOLITONS & FRACTALS
114385 DT Article
114386 ID MULTIPLE-ATTRACTOR SYSTEMS; MIGRATION CONTROLS; NONLINEAR OSCILLATIONS;
114387    OPCL CONTROL; SYNCHRONIZATION; ENTRAINMENT
114388 AB This paper proposes a parametric open-plus-closed-loop control approach
114389    to controlling chaos. The logistic map is treated as an example to
114390    demonstrate the application of the proposed approach. It is proved that
114391    the approach is robust to the model error. Its relations to the
114392    open-plus-closed-loop control and the parametric entrainment control
114393    are discussed. (C) 2003 Elsevier Ltd. All rights reserved.
114394 C1 Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
114395    Shanghai Univ, Shanghai Inst Appl Math & Appl Mech, Shanghai 200072, Peoples R China.
114396 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
114397 EM lqchen@online.sh.cn
114398 CR BOCCALETTI S, 1997, CHAOS SOLITON FRACT, V8, P1431
114399    CHEN G, 1998, CHAOS ORDER METHODOL
114400    CHEN LQ, 1997, ACTA MECH SOLIDA SIN, V10, P316
114401    CHEN LQ, 1998, PHYS LETT A, V245, P87
114402    CHEN LQ, 1999, PHYS LETT A, V262, P350
114403    CHEN LQ, 2001, PHYS LETT A, V281, P327
114404    CHEN LQ, 2002, INT J BIFURCAT CHAOS, V12, P1219
114405    FEKI M, 2003, CHAOS SOLITON FRACT, V15, P883
114406    GROSU I, 1997, PHYS REV E B, V56, P3709
114407    IPLIKCI S, 2002, CHAOS, V12, P965
114408    JACKSON EA, 1990, PHYS LETT A, V151, P478
114409    JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1255
114410    JACKSON EA, 1995, INT J BIFURCAT CHAOS, V5, P1767
114411    JACKSON EA, 1995, PHYSICA D, V85, P1
114412    JACKSON EA, 1997, CHAOS, V7, P550
114413    KAPITANIAK T, 1996, CONTROLLING CHAOS TH
114414    METTIN R, 1995, PHYS REV E A, V51, P4065
114415    OTT E, 1994, COPING CHAOS
114416    TSAI HH, 2002, CHAOS SOLITON FRACT, V14, P627
114417    WEIGEL R, 1998, INT J BIFURCAT CHAOS, V8, P173
114418 NR 20
114419 TC 0
114420 SN 0960-0779
114421 J9 CHAOS SOLITON FRACTAL
114422 JI Chaos Solitons Fractals
114423 PD JUL
114424 PY 2004
114425 VL 21
114426 IS 1
114427 BP 113
114428 EP 118
114429 PG 6
114430 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
114431 GA 775XU
114432 UT ISI:000189086600014
114433 ER
114434 
114435 PT J
114436 AU Li, GH
114437    Xu, DM
114438    Zhou, SP
114439 TI Chaos synchronization by using random parametric adaptive control method
114440 SO ACTA PHYSICA SINICA
114441 DT Article
114442 DE Henon map; chaos synchronization; random adaptive control
114443 AB Synchronization of two chaotic systems with different parameters using
114444    the random parametric adaptive control algorithm is proposed. Under the
114445    appropriate control law and feedback coefficient, the synchronization
114446    is achieved. To make this method realizable, Henon map is taken as a
114447    typical numerical example. The characteristic of random control period
114448    and flexible feedback coefficient shows its practicality.
114449 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
114450    Shanghai Univ, Sch Sci, Shanghai 200436, Peoples R China.
114451 RP Li, GH, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
114452    Peoples R China.
114453 CR CUOMO KM, 1993, PHYS REV LETT, V71, P65
114454    DAI D, 2001, ACTA PHYS SIN-CH ED, V50, P1237
114455    HE MF, 2000, ACTA PHYS SIN-CH ED, V49, P830
114456    LI GH, 2000, ACTA PHYS SIN-CH ED, V49, P2123
114457    LI JF, 2002, CHINESE PHYS, V11, P9
114458    OTT E, 1990, PHYS REV LETT, V64, P1196
114459    YANG T, 2001, INFORM CONTR, V30, P456
114460 NR 7
114461 TC 7
114462 SN 1000-3290
114463 J9 ACTA PHYS SIN-CHINESE ED
114464 JI Acta Phys. Sin.
114465 PD FEB
114466 PY 2004
114467 VL 53
114468 IS 2
114469 BP 379
114470 EP 382
114471 PG 4
114472 SC Physics, Multidisciplinary
114473 GA 775NT
114474 UT ISI:000189048100010
114475 ER
114476 
114477 PT J
114478 AU Cheng, TCE
114479    Kang, L
114480    Ng, CT
114481 TI Due-date assignment and single machine scheduling with deteriorating
114482    jobs
114483 SO JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY
114484 DT Article
114485 DE single machine scheduling; due-date; deteriorating jobs
114486 ID DEPENDENT PROCESSING TIMES; COMMON; MINIMIZE
114487 AB We study a scheduling problem with deteriorating jobs, that is, jobs
114488    whose processing times are an increasing function of their start times.
114489    We consider the case of a single machine and linear job-independent
114490    deterioration. The problem is to determine an optimal combination of
114491    the due-date and schedule so as to minimize the sum of due-date,
114492    earliness and tardiness penalties. We give an O(n log n) time algorithm
114493    to solve this problem.
114494 C1 Hong Kong Polytech Univ, Dept Logist, Kowloon, Hong Kong, Peoples R China.
114495    Shanghai Univ, Shanghai, Peoples R China.
114496 RP Cheng, TCE, Hong Kong Polytech Univ, Dept Logist, Kowloon, Hong Kong,
114497    Peoples R China.
114498 EM lgtcheng@polyu.edu.hk
114499 CR ALIDAEE B, 1991, COMPUT OPER RES, V18, P317
114500    ALIDAEE B, 1999, J OPER RES SOC, V50, P711
114501    BAKER KR, 1990, OPER RES, V38, P22
114502    BROWNE S, 1990, OPER RES, V38, P495
114503    BRUCKER P, 1995, SCHEDULING ALGORITHM
114504    CHENG TCE, 1998, INFORM PROCESS LETT, V65, P75
114505    CHENG TCE, 2002, COMPUT OPER RES, V29, P1957
114506    CHENG TCE, 2004, EUR J OPER RES, V152, P1
114507    GORDON V, 2002, EUR J OPER RES, V139, P1
114508    GORDON VS, 2002, PROD PLAN CONTROL, V13, P117
114509    GRAHAM RL, 1979, ANN DISCRETE MATH, V5, P287
114510    MOSHEIOV G, 1991, OPER RES, V39, P979
114511    MOSHEIOV G, 1994, COMPUT OPER RES, V21, P653
114512    NG CT, 2002, INFORM PROCESS LETT, V81, P327
114513    PANWALKAR SS, 1982, OPER RES, V30, P391
114514 NR 15
114515 TC 1
114516 SN 0160-5682
114517 J9 J OPER RES SOC
114518 JI J. Oper. Res. Soc.
114519 PD FEB
114520 PY 2004
114521 VL 55
114522 IS 2
114523 BP 198
114524 EP 203
114525 PG 6
114526 SC Management; Operations Research & Management Science
114527 GA 770QG
114528 UT ISI:000188741300012
114529 ER
114530 
114531 PT J
114532 AU Wang, JB
114533    Gu, CQ
114534 TI Vector valued Thiele-Werner-type osculatory rational interpolants
114535 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
114536 DT Article
114537 DE vector valued; osculatory rational interpolation; Thiele-Werner
114538    continued fraction; characteristic properties
114539 AB A method of solving vector-valued osculatory rational interpolation
114540    problems is presented by using the Samelson inverse of vectors. The
114541    rational interpolants are constructed in the form of Thiele-Werner-type
114542    continued fraction expression. Its interpolation structures are
114543    analyzed and important characteristic properties are obtained. (C) 2003
114544    Elsevier B.V. All rights reserved.
114545 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
114546 RP Wang, JB, Chengdu Westone Informat Ind Inc, 810 Box, Chengdu 610041,
114547    Peoples R China.
114548 EM wjbzyx@sh163.net
114549 CR GRAVESMORRIS PR, 1983, NUMER MATH, V42, P331
114550    GU CQ, 1997, J COMPUT APPL MATH, V80, P71
114551    GU CQ, 1999, LINEAR ALGEBRA APPL, V295, P7
114552    KAHNG SW, 1969, MATH COMPUT, V23, P621
114553    ROBERTS DE, 1985, P IMA SHRIV C OXF
114554    SALZER HE, 1962, MATH COMPUT, V16, P486
114555    WERNER H, 1979, PADE APPROXIMATION I, P257
114556    WUYTACK L, 1975, MATH COMPUT, V29, P837
114557    WYNN P, 1963, ARCH RATION MECH AN, V12, P273
114558 NR 9
114559 TC 0
114560 SN 0377-0427
114561 J9 J COMPUT APPL MATH
114562 JI J. Comput. Appl. Math.
114563 PD FEB 1
114564 PY 2004
114565 VL 163
114566 IS 1
114567 BP 241
114568 EP 252
114569 PG 12
114570 SC Mathematics, Applied
114571 GA 772HJ
114572 UT ISI:000188836300021
114573 ER
114574 
114575 PT J
114576 AU Chen, J
114577    Yang, LM
114578    Chen, LQ
114579    Wu, MH
114580    Nho, YC
114581    Kaetsua, I
114582 TI An interesting grafting reactivity of EB preirradiated polypropylene
114583    film
114584 SO RADIATION PHYSICS AND CHEMISTRY
114585 DT Article
114586 DE radiation grafting; polypropylene; free radical; peroxide; acrylic
114587    acid; acrylamide
114588 AB An interesting grafting reactivity of electron beam preirradiated
114589    polypropylene (PP) film was found by grafting of acrylic acid (AAc) and
114590    acrylamide (AAm) repeatedly or intermittently. The preirradiated PP
114591    film could be grafted several times intermittently and the free
114592    radicals or peroxides on the samples could be determined after several
114593    times grafting reaction. The effects of storage time, reaction time and
114594    repeated reaction times on the degree of grafting were investigated.
114595    The trapped radicals, peroxy-radicals and peroxides on the
114596    preirradiated and reacted PP films were determined by using electron
114597    spin resonance (ESR) and 1,1-diphenyl-2-picryl hydrazyl (DPPH),
114598    respectively. An interpenetrating polymer networks (IPN) with both
114599    temperature and pH sensitive properties was obtained by two times
114600    grafting of AAm and AAc onto preirradiated PP film. (C) 2003 Elsevier
114601    Ltd. All rights reserved.
114602 C1 Shanghai Univ, Dept Chem Engn & Technol, Shanghai 201800, Peoples R China.
114603    Kinki Univ, Fac Sci & Technol, Higashiosaka, Osaka 5770818, Japan.
114604    Korea Atom Energy Res Inst, Radiat Applicat Div, Taejon, South Korea.
114605 RP Chen, J, Shanghai Univ, Dept Chem Engn & Technol, Shanghai 201800,
114606    Peoples R China.
114607 EM chenjjd@online.sh.cn
114608 CR CHAPIRO A, 1962, RAD CHEM POLYM SYSTE
114609    CHEN J, 2000, RADIAT PHYS CHEM, V59, P313
114610    CHEN YG, 1998, MAT SCI ENG B-SOLID, V52, P1
114611    KATANO H, 1991, POLYM J, V23, P1179
114612    NHO YC, 1999, RADIAT PHYS CHEM, V54, P317
114613    SUZUKI M, 1986, MACROMOLECULES, V19, P1804
114614    ZHAO XZ, 1986, POLYM COMMUN, V4, P270
114615 NR 7
114616 TC 0
114617 SN 0969-806X
114618 J9 RADIAT PHYS CHEM
114619 JI Radiat. Phys. Chem.
114620 PD FEB
114621 PY 2004
114622 VL 69
114623 IS 2
114624 BP 149
114625 EP 154
114626 PG 6
114627 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
114628    Science & Technology
114629 GA 770MC
114630 UT ISI:000188733700008
114631 ER
114632 
114633 PT J
114634 AU Zhang, JF
114635    Meng, JP
114636 TI New localized coherent structures to the (2+1)-dimensional breaking
114637    soliton equation
114638 SO PHYSICS LETTERS A
114639 DT Article
114640 DE breaking soliton equation; peakon; compacton
114641 ID NOVIKOV-VESELOV EQUATION; CAMASSA-HOLM EQUATION; SYMMETRY CONSTRAINTS;
114642    TRANSFORMATION; WAVES
114643 AB Starting from the standard truncated Painleve expansion, by making use
114644    of the variable separation procedure, a general variable separation
114645    solution of the (2 + 1)-dimensional breaking soliton system is derived.
114646    Two classes of novel localized coherent structures like both
114647    multi-peakon-antipeakon solution and multi-compacton-anticompacton
114648    solution are found by selecting appropriate functions. These new
114649    structures exhibit some novel interaction features which are different
114650    from one of the known results. (C) 2003 Elsevier B.V. All rights
114651    reserved.
114652 C1 Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
114653    Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England.
114654    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
114655 RP Zhang, JF, Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004,
114656    Peoples R China.
114657 EM jfzhang2002@yahoo.com.cn
114658 CR BOGOYAVLENSKII O, 1989, IZV AKAD NAUK SSSR M, V53, P907
114659    BOGOYAVLENSKII OI, 1989, IZV AKAD NAUK SSSR M, V53, P243
114660    BOGOYAVLENSKII OI, 1990, IZV AKAD NAUK SSSR M, V54, P123
114661    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
114662    CHERTOCK A, 2001, J COMPUT PHYS, V171, P708
114663    COOPER F, 2001, PHYS REV E 2, V64
114664    KONOPELCHENKO BG, 1993, SOLITONS MULTIDIMENS
114665    KRAENKEL RA, 2000, PHYS LETT A, V273, P183
114666    LOU SY, 1997, J MATH PHYS, V38, P6401
114667    LOU SY, 1998, COMMUN THEOR PHYS, V29, P145
114668    LOU SY, 2000, PHYS LETT A, V277, P94
114669    LOU SY, 2001, EUR PHYS J B, V22, P473
114670    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
114671    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
114672    MANNA MA, 2001, PHYSICA D, V149, P231
114673    QIAN TF, 2001, CHAOS SOLITON FRACT, V12, P1347
114674    RADHA R, 1995, PHYS LETT A, V199, P7
114675    ROSENAU P, 1993, PHYS REV LETT, V70, P564
114676    TANG XY, 2002, PHYS REV E, V66, P46601
114677    ZHANG JF, 2002, CHINESE PHYS, V11, P651
114678 NR 20
114679 TC 2
114680 SN 0375-9601
114681 J9 PHYS LETT A
114682 JI Phys. Lett. A
114683 PD FEB 2
114684 PY 2004
114685 VL 321
114686 IS 3
114687 BP 173
114688 EP 178
114689 PG 6
114690 SC Physics, Multidisciplinary
114691 GA 767YV
114692 UT ISI:000188502200006
114693 ER
114694 
114695 PT J
114696 AU Zhang, DJ
114697    Chen, DY
114698 TI Negatons, positons, rational-like solutions and conservation laws of
114699    the Korteweg-de Vries equation with loss and non-uniformity terms
114700 SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
114701 DT Article
114702 ID SELF-CONSISTENT SOURCES; N-SOLITON SOLUTIONS; SINE-GORDON EQUATION;
114703    DEVRIES EQUATION; EVOLUTION EQUATIONS; WRONSKIAN FORM; KDV EQUATION
114704 AB Solitons, negatons, positons, rational-like solutions and mixed
114705    solutions of a non-isospectral equation, the Korteweg-de Vries equation
114706    with loss and non-uniformity terms, are obtained through the Wronskian
114707    technique. The non-isospectral characteristics of the motion behaviours
114708    of some solutions are described with some figures made by using
114709    Mathematica. We also derive an infinite number of conservation laws of
114710    the equation.
114711 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
114712 RP Zhang, DJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
114713 EM djzhang@mail.shu.edu.cn
114714 CR ABLOWITZ MJ, 1978, J MATH PHYS, V19, P2180
114715    BEUTLER R, 1993, J MATH PHYS, V34, P3098
114716    BOGOYAVLENSKY OI, 1989, OPROKIDIWAYUSHIESYA
114717    CHAN WL, 1989, J MATH PHYS, V30, P2521
114718    CHEN HH, 1976, PHYS REV LETT, V37, P693
114719    FREEMAN NC, 1983, PHYS LETT A, V95, P1
114720    HIROTA R, 1971, PHYS REV LETT, V27, P1192
114721    HIROTA R, 1976, J PHYS SOC JPN, V41, P2141
114722    MA WX, 2003, CHAOS SOLITON FRACT, V19, P163
114723    MATVEEV VB, 1992, PHYS LETT A, V166, P205
114724    MATVEEV VB, 1994, J MATH PHYS, V35, P2955
114725    NEWELL AC, 1979, P ROY SOC LOND A MAT, V365, P283
114726    NIMMO JJC, 1983, PHYS LETT A, V96, P443
114727    RASINARIU C, 1996, J PHYS A-MATH GEN, V29, P1803
114728    SIRIANUNPIBOON S, 1988, PHYS LETT A, V134, P31
114729    STAHLHOFEN AA, 1995, J PHYS A-MATH GEN, V28, P1957
114730    WU H, 2003, J PHYS A-MATH GEN, V36, P4867
114731    ZENG YB, 2003, J PHYS A-MATH GEN, V36, P5035
114732    ZHANG DJ, 2002, J PHYS SOC JPN, V71, P2649
114733    ZHANG DJ, 2003, CHAOS SOLITON FRACT, V18, P31
114734    ZHANG DJ, 2003, PHYSICA A, V321, P467
114735 NR 21
114736 TC 2
114737 SN 0305-4470
114738 J9 J PHYS-A-MATH GEN
114739 JI J. Phys. A-Math. Gen.
114740 PD JAN 23
114741 PY 2004
114742 VL 37
114743 IS 3
114744 BP 851
114745 EP 865
114746 PG 15
114747 SC Physics, Mathematical; Physics, Multidisciplinary
114748 GA 770EQ
114749 UT ISI:000188710600024
114750 ER
114751 
114752 PT J
114753 AU Long, JW
114754    Chen, HY
114755    Meng, ZY
114756 TI Effects of doping on microstructure and piezoelectric properties of
114757    PMS-PZ-PT ceramics
114758 SO JOURNAL OF INORGANIC MATERIALS
114759 DT Article
114760 DE doping; PMS-PZ-PT; piezoelectric properties; ultrasonic motors
114761 AB The microstructure and piezoelectric properties of Pb0.98Sr0.02(Mn-1/3
114762    Sb-2/3)(x)-(Zr0.5Ti0.5)(1-x)O-3 ceramics with different dopants of
114763    Nb2O5, NiO, Fe2O3 and doping amounts were Investigated. Results show
114764    that phases shift from tetragonal phase to rhombohedral phase with the
114765    increase of doping amounts. The solubility of B-site dopants in
114766    PMS-PZ-PT ceramics is very small. The compositions with small doping
114767    amount have optimized property values of d(33), K-p and Q(m). The Q(m)
114768    can be improved with small amount of acceptor dopants, but deceases all
114769    through with the increase of Nb-doping concentration. The modified
114770    compositions have superior piezoelectric properties, so they are
114771    practically suitable for the applications in ultrasonic motors.
114772 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
114773 RP Long, JW, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
114774    China.
114775 EM ljw0408@sohu.com
114776 CR GAO YK, 2001, JPN J APPL PHYS 1, V40, P687
114777    GUO X, 2002, KEY ENG MATER, V224, P112
114778    GUO XB, 2002, J CHINESE CERAM SOC, V30, P125
114779    LEE DJ, P 5 INT C PROP APPL, P875
114780    LEE DL, 1998, 1998 IEEE INT C COND, P381
114781    LI LT, 1980, FERROELECTRICS, V28, P403
114782    NADOLIISKY MM, 1992, FERROELECTRICS, V129, P141
114783    OCHI SY, 1998, 5759433, US
114784    PEREIRA M, 2001, J EUR CERAM SOC, V21, P1353
114785    YASUHIRO S, 1998, 5759433, US
114786    YOON SJ, 1998, J AM CERAM SOC, V81, P2473
114787 NR 11
114788 TC 0
114789 SN 1000-324X
114790 J9 J INORG MATER
114791 JI J. Inorg. Mater.
114792 PD JAN
114793 PY 2004
114794 VL 19
114795 IS 1
114796 BP 101
114797 EP 106
114798 PG 6
114799 SC Materials Science, Ceramics
114800 GA 769UA
114801 UT ISI:000188667100017
114802 ER
114803 
114804 PT J
114805 AU Jin, DR
114806    Meng, ZY
114807 TI Structural and electrical properties of PZT/ZnO piezoelectric ceramic
114808    composites with resistivity gradient
114809 SO JOURNAL OF INORGANIC MATERIALS
114810 DT Article
114811 DE PZT/ZnO composite ceramics; functionally gradient materials (FGMs);
114812    resistivity gradient; monolithic piezoelectric actuators with
114813    functional gradients
114814 ID ACTUATOR
114815 AB La-PZT/Al-ZnO piezoelectric ceramics with gradients of resistivity and
114816    piezoelectric modulus were fabricated by using a powder metallurgical
114817    process. They are a kind of monolithic Piezoelectric Actuator with
114818    Functional Gradients (FGMPA), which can effectively reduce or smooth
114819    its interfacial stress concentration and requires much lower driving
114820    field than that of La-PZT/Fe-PZT FGMPA. The distributions of
114821    composition, phase-and microstructure were examined respectively by
114822    using electron probe microanalysis (EPMA), X-ray Diffraction (XRD) and
114823    scanning electron microscopy (SEM). Results show that the gradient
114824    distributions of structural and electrical properties are mainly caused
114825    by the diffusion and aggregation of Zn ions in the PZT layer. It is
114826    also the main cause of reducing the resistivity in partial gradient PZT
114827    region adjacent to ZnO layer. The existence of ZnO in the PZT region as
114828    a second phase was detected by XRD.
114829 C1 Shanghai Jiao Tong Univ, Inst Composite Mat, Shanghai 200030, Peoples R China.
114830    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
114831 RP Jin, DR, Shanghai Jiao Tong Univ, Inst Composite Mat, Shanghai 200030,
114832    Peoples R China.
114833 EM zymeng@guomai.sh.cn
114834 CR ADIKARY SU, 2000, J MATER SCI TECHNOL, V16, P383
114835    CLARKE DR, 1999, J AM CERAM SOC, V82, P485
114836    HAN JP, 2001, J MATER RES, V16, P459
114837    HEARTLING GH, 1994, AM CERAM SOC B, V73, P93
114838    JIN DR, 1999, RELATIONSHIP PROPERT, P273
114839    JIN DR, 2003, MAT SCI ENG B-SOLID, V99, P83
114840    NINO M, 1987, J JPN SOC COMPOS MAT, V13, P257
114841    NINO M, 1990, ISIJ INT, V30, P699
114842    WU CCM, 1996, J AM CERAM SOC, V79, P809
114843    ZHU XH, 1995, J MATER SCI LETT, V14, P516
114844    ZHU XH, 1995, SENSOR ACTUAT A-PHYS, V48, P169
114845 NR 11
114846 TC 0
114847 SN 1000-324X
114848 J9 J INORG MATER
114849 JI J. Inorg. Mater.
114850 PD JAN
114851 PY 2004
114852 VL 19
114853 IS 1
114854 BP 107
114855 EP 113
114856 PG 7
114857 SC Materials Science, Ceramics
114858 GA 769UA
114859 UT ISI:000188667100018
114860 ER
114861 
114862 PT J
114863 AU Li, GH
114864    Zhou, SP
114865    Xu, DM
114866 TI Chaos synchronization based on intermittent state observer
114867 SO CHINESE PHYSICS
114868 DT Article
114869 DE chaos synchronization; state observer; intermittent method
114870 ID SYSTEMS
114871 AB This paper describes the method of synchronizing slave to the master
114872    trajectory using an intermittent state observer by constructing a
114873    synchronizer which drives the response system globally tracing the
114874    driving system asymptotically. It has been shown from the theory of
114875    synchronization error-analysis that a satisfactory result of chaos
114876    synchronization is expected under an appropriate intermittent period
114877    and state observer. Compared with continuous control method, the
114878    proposed intermittent method can target the desired orbit more
114879    efficiently. The application of the method is demonstrated on the
114880    hyperchaotic Rossler systems. Numerical simulations show that the
114881    length of the synchronization interval tau(s) is of crucial importance
114882    for our scheme, and the method is robust with respect to parameter
114883    mismatch.
114884 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
114885    Shanghai Univ, Sch Sci, Shanghai 200436, Peoples R China.
114886 RP Li, GH, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
114887    Peoples R China.
114888 EM ghlee@sh163.net
114889 CR CARROLL TL, 1991, IEEE T CIRCUITS SYST, V38, P453
114890    CUOMO KM, 1993, PHYS REV LETT, V71, P65
114891    DAI D, 2001, ACTA PHYS SIN-CH ED, V50, P1237
114892    LAI JW, 2001, ACTA PHYS SIN-CH ED, V50, P21
114893    LI Z, 2002, CHINESE PHYS, V11, P9
114894    MORGUL O, 1997, PHYS REV E A, V55, P5004
114895    MORGUL O, 1999, PHYS REV LETT, V82, P77
114896    MURALI K, 2000, PHYS LETT A, V272, P184
114897    PECORA LM, 1990, PHYS REV LETT, V64, P821
114898 NR 9
114899 TC 5
114900 SN 1009-1963
114901 J9 CHIN PHYS
114902 JI Chin. Phys.
114903 PD FEB
114904 PY 2004
114905 VL 13
114906 IS 2
114907 BP 168
114908 EP 172
114909 PG 5
114910 SC Physics, Multidisciplinary
114911 GA 770UK
114912 UT ISI:000188749100008
114913 ER
114914 
114915 PT J
114916 AU Lin, KH
114917    Song, MP
114918    Du, CX
114919    Zhang, QH
114920    Hao, XQ
114921    Wu, YJ
114922 TI Synthesis and structure characterization of
114923    [HgCl(eta(5)-C5H3C(CH3)=N-3C(5)H(4)N)Fe(eta(5)-C5H5)]center dot
114924    1/2CH(2)Cl(2)
114925 SO CHINESE JOURNAL OF STRUCTURAL CHEMISTRY
114926 DT Article
114927 DE cyclomercurated ferrocenylimine; pyridyl compounds; crystal structure
114928 AB A new cyclomercurated ferrocenylketimine containing pyridyl ring
114929    ([HgCl(eta(5)-C5H3C(CH3)=N-3-C5H4N)Fe(eta(5)-C5H5)].(1)/2CH2Cl2, Mr =
114930    581.66) was synthesized and its molecular structure has been confirmed
114931    by IR, elemental analysis, H-1-NMR and X-ray crystal structure
114932    analysis. It is of monoclinic system, space group P2(1)/c with a =
114933    9.213(2), b = 17.479(4), c = 11.510(2) Angstrom, beta =
114934    100.32(3)degrees, V = 1823.7(6) Angstrom(3), Z = 4, C17.5H16Cl2FeHgN2,
114935    D-c = 2.119 g/cm(3), mu = 9.497 mm(-1), F(000) = 1100, R = 0.0436 and
114936    wR = 0.0987. The independent reflections are 3527, of which 3153 with I
114937    greater than or equal to 2sigma(I) were observed. The compound contains
114938    a five-membered metallocycle. The mercury atom is bonded with the
114939    2-position of substituted cyclopentadienyl ring (Cp), and coordinated
114940    weakly to the N atom of imino group. The pyridyl ring is almost
114941    perpendicular to the substituted Cp which is nearly coplanar with the
114942    metallocycle. The Hg(1)-C(1) and Hg(1)-Cl(1) bond lengths are 2.050(8)
114943    and 2.321(2) Angstrom, respectively.
114944 C1 Zhengzhou Univ, Dept Chem, Henan Key Lab Appl Chem, Zhengzhou 450052, Henan, Peoples R China.
114945    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
114946 RP Song, MP, Zhengzhou Univ, Dept Chem, Henan Key Lab Appl Chem, Zhengzhou
114947    450052, Henan, Peoples R China.
114948 EM mpsong9350@zzu.edu.cn
114949 CR BERMEJO E, 1999, EUR J INORG CHEM, V6, P965
114950    HAUSER CR, 1957, J ORG CHEM, V22, P482
114951    MA HR, 1990, XIBEI DAXUE XUEBAO Z, V20, P45
114952    REN P, 2002, CHIN J STRUCT CHEM, V21, P38
114953    SHELDRICK GM, 1997, SHELX97 PROGRAM CRYS
114954    SHELDRICK GM, 1997, SHELXL97 PROGRAM CRY
114955    SHOU QH, 1994, TETRAHEDRON, V50, P10467
114956    TOGNI A, 1995, FERROCENES HOMOGENEO
114957    WU YJ, 2001, J ORGANOMET CHEM, V637, P27
114958    YANG JW, 1997, J ORGANOMET CHEM, V543, P63
114959 NR 10
114960 TC 2
114961 SN 0254-5861
114962 J9 CHIN J STRUCT CHEM
114963 JI Chin. J. Struct. Chem.
114964 PY 2004
114965 VL 23
114966 IS 1
114967 BP 15
114968 EP 18
114969 PG 4
114970 SC Chemistry, Inorganic & Nuclear; Crystallography
114971 GA 768NU
114972 UT ISI:000188549700003
114973 ER
114974 
114975 PT J
114976 AU Liu, BX
114977    Xu, DJ
114978 TI Poly[[bis(1H-benzimidazole-kappa
114979    N-3)cadmium(II)]-mu-aqua-mu-succinato-kappa O-2(1): O-4]
114980 SO ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS
114981 DT Article
114982 ID BIS(TRIPHENYLTIN) SUCCINATE; CRYSTAL-STRUCTURES; COMPLEX; CADMIUM(II)
114983 AB The title compound, [Cd(C4H4O4)(C7H6N2)(2)(H2O)](n), is a
114984    three-dimensional polymeric complex. The Cd-II atom is located on an
114985    inversion centre and assumes an elongated octahedral coordination
114986    geometry, with a long Cd-O distance of 2.5381 (5) Angstrom to the
114987    coordinated bridging water molecule. The succinate dianion, located on
114988    another inversion centre, bridges adjacent Cd atoms to form
114989    succinate-bridged polymeric chains. The coordinated water molecule is
114990    located on a twofold axis and links adjacent succinate-bridged chains
114991    to form a water-bridged polymeric chain.
114992 C1 Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China.
114993    Shanghai Univ, Dept Chem, Shanghai 200041, Peoples R China.
114994 RP Xu, DJ, Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China.
114995 EM xudj@mail.hz.zj.cn
114996 CR *RIG CORP, 1998, PROCESS AUTO VERS 1
114997    *RIG MSC, 2002, CRYST VERS 3 00
114998    ALTOMARE A, 1993, J APPL CRYSTALLOGR, V26, P343
114999    FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
115000    FARRUGIA LJ, 1999, J APPL CRYSTALLOGR, V32, P837
115001    GRIFFITH EAH, 1982, ACTA CRYSTALLOGR B, V38, P262
115002    HIGASHI T, 1995, ABSCOR
115003    LIU Y, 2003, J COORD CHEM, V56, P155
115004    NAKASUKA N, 1986, ACTA CRYSTALLOGR C, V42, P1736
115005    NG SW, 1993, ACTA CRYSTALLOGR C, V49, P754
115006    NG SW, 1998, ACTA CRYSTALLOGR C 6, V54, P745
115007    NISHIKIORI SI, 1996, J COORD CHEM, V37, P23
115008    RASTSVETAEVA RK, 1996, Z KRISTALLOGR, V211, P808
115009    SHELDRICK GM, 1997, SHELXL97
115010    ZHANG CG, 1996, ACTA CRYSTALLOGR C 3, V52, P591
115011 NR 15
115012 TC 2
115013 SN 0108-2701
115014 J9 ACTA CRYSTALLOGR C-CRYST STR
115015 JI Acta Crystallogr. Sect. C-Cryst. Struct. Commun.
115016 PD FEB
115017 PY 2004
115018 VL 60
115019 PN Part 2
115020 BP M39
115021 EP M41
115022 PG 3
115023 SC Crystallography
115024 GA 768VG
115025 UT ISI:000188555300005
115026 ER
115027 
115028 PT J
115029 AU Wei, GZ
115030    Xin, ZH
115031    Liang, YQ
115032    Zhang, Q
115033 TI Mean-field theory on mixed ferro-ferrimagnetic compounds with
115034    (A(a)B(b)C(c))(y)D
115035 SO PHYSICS LETTERS A
115036 DT Article
115037 DE mixed ferro-ferrimagnet; Ising model; four sublattices; phase diagram;
115038    transition temperature; compensation temperature
115039 ID MAGNETIC-PROPERTIES; PRUSSIAN BLUE; ALLOY
115040 AB The magnetic properties of the mixed ferro-ferrimagnetic compounds with
115041    (A(a)B(b)C(c))(y)D, in which A, B, C and D are four different magnetic
115042    ions and form four different sublattices, are studied by using the
115043    Ising model. And the Ising model was dealt with standard mean-field
115044    approximation. The regions of concentration in which two compensation
115045    points or one compensation point exit are given in c-a, b-c and a-b
115046    planes. The phase diagrams of the transition temperature T-c and
115047    compensation temperature T-comp are obtained. The temperature
115048    dependences of the magnetization are also investigated. Some of the
115049    result can be used to explain the experimental work of the
115050    molecule-based ferro-ferrimagnet ((NiaMnbFecII)-Mn-II-Fe-II)(1.5)
115051    [Cr-III (CN)6] - zH(2)O. (C) 2003 Elsevier B.V. All rights reserved.
115052 C1 Shanghai Univ, Coll Sci, Shanghai 200436, Peoples R China.
115053    Northeastern Univ, Coll Sci, Shenyang 110006, Peoples R China.
115054    Acad Sinica, Int Ctr Mat Phys, Shenyang 110015, Peoples R China.
115055 RP Xin, ZH, Shanghai Univ, Coll Sci, Shanghai 200436, Peoples R China.
115056 EM zihuaxin@yahoo.com
115057 CR ENTLEY WR, 1994, INORG CHEM, V33, P5165
115058    FERLAY S, 1995, NATURE, V378, P701
115059    JASCUR M, 1996, PHYS REV B, V54, P9232
115060    KANEYOSHI T, 1988, J APPL PHYS, V64, P2545
115061    KANEYOSHI T, 1991, J MAGN MAGN MATER, V98, P201
115062    KANEYOSHI T, 1995, J MAGN MAGN MATER 1, V140, P261
115063    MALLAH T, 1993, SCIENCE, V262, P1554
115064    MILLER JS, 1995, CHEM ENG NEWS, V73, P30
115065    OHKOSHI S, 1997, PHYS REV B, V56, P11642
115066    OHKOSHI S, 1999, PHYS REV LETT, V82, P1285
115067    SATO O, 1996, SCIENCE, V271, P49
115068    WILLIAM RE, 1995, SCIENCE, V268, P397
115069 NR 12
115070 TC 1
115071 SN 0375-9601
115072 J9 PHYS LETT A
115073 JI Phys. Lett. A
115074 PD JAN 19
115075 PY 2004
115076 VL 321
115077 IS 1
115078 BP 56
115079 EP 61
115080 PG 6
115081 SC Physics, Multidisciplinary
115082 GA 765TW
115083 UT ISI:000188300600007
115084 ER
115085 
115086 PT J
115087 AU Liao, HY
115088    Zhou, SP
115089    Zhang, YB
115090    Zhu, HM
115091    Zhu, BH
115092 TI Thermal vortex dynamics in s+id-wave superconductors
115093 SO PHYSICS LETTERS A
115094 DT Article
115095 DE s plus id-wave TDGL model; pairing symmetry; temperature; thermal
115096    fluctuations; additive noise or multiplicative noise
115097 ID HIGH-TEMPERATURE SUPERCONDUCTORS; PAIRING STATE; MODEL; FIELD
115098 AB We study, using a finite-different method, singlevortex structure of a
115099    s + id-wave superconductor by solving a time-dependent Ginzburg-Landau
115100    (TDGL) model for high-T-C superconductors. We find that, below a phase
115101    transition temperature, the order parameters indicate twofold symmetry,
115102    whereas a fourfold symmetry appears beyond the temperature. We have
115103    also investigated the effects of thermal fluctuations on the pairing
115104    symmetry while existing an additive noise or a multiplicative noise in
115105    the TDGL models. The regular vortex pattern will be distorted and
115106    disordered steadily as the noise level increases. And, it becomes no
115107    longer recognizable as a sufficiently high magnitude of noise exists.
115108    (C) 2003 Elsevier B.V. All rights reserved.
115109 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
115110 RP Liao, HY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
115111 EM hhyy_liao@163.com
115112 CR BRAWNER DA, 1994, PHYS REV B, V50, P6530
115113    DAHM T, 1997, PHYS REV B, V56, P11419
115114    DEANG J, 2001, PHYS REV B, V64
115115    DU Q, 1999, SIAM J APPL MATH, V59, P1225
115116    FRANZ M, 1996, PHYS REV B, V53, P5795
115117    GORKOV LP, 1959, ZH EKSP TEOR FIZ, V36, P1918
115118    LI QQ, 1999, PHYS REV B, V59, P613
115119    LI QQ, 1999, PHYS REV B, V60, P14577
115120    MOLER KA, 1994, PHYS REV LETT, V73, P2744
115121    PLAKIDA NM, 1997, PHYS REV B, V55, P11997
115122    SASIK R, 2000, PHYS REV B, V62, P1238
115123    SHEN JH, 1998, ELEMENTARY NUMERICAL
115124    SKOCPOL WJ, 1975, REP PROGR PHYS, V38, P1049
115125    VANHARLINGEN DJ, 1995, REV MOD PHYS, V67, P515
115126    WANG QH, 1996, PHYS REV B, V54, P15645
115127    WANG ZD, 1997, PHYS REV B, V55, P11756
115128    WELP U, 1989, PHYS REV LETT, V62, P1908
115129    WOLLMAN DA, 1993, PHYS REV LETT, V71, P2134
115130    XU CF, 1990, NUMERICAL SOLUTION P
115131    XU JH, 1996, PHYS REV B, V53, R2991
115132    ZHOU SP, 2001, CHINESE PHYS, V10, P541
115133 NR 21
115134 TC 0
115135 SN 0375-9601
115136 J9 PHYS LETT A
115137 JI Phys. Lett. A
115138 PD JAN 26
115139 PY 2004
115140 VL 321
115141 IS 2
115142 BP 127
115143 EP 136
115144 PG 10
115145 SC Physics, Multidisciplinary
115146 GA 766XQ
115147 UT ISI:000188409400009
115148 ER
115149 
115150 PT J
115151 AU Fan, S
115152    Yan, F
115153    Zhang, HZ
115154    Zhao, ZX
115155 TI A semiempirical approach to study the excitation functions for (n,p)
115156    reaction on the basis of evaporation and exciton models below 20 MeV
115157 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
115158    INTERACTIONS WITH MATERIALS AND ATOMS
115159 DT Article
115160 DE evaporation model; exciton model; excitation function for (n,p) reaction
115161 ID REACTION CROSS-SECTIONS; NEUTRON-INDUCED REACTIONS; STATISTICAL-MODEL;
115162    NUCLEI; ISOTOPES; N,ALPHA; TRENDS; SYSTEMATICS; DEUTERIUM; SPECTRA
115163 AB A semiempirical approach for the excitation functions of (n,p) reaction
115164    was obtained on the basis of evaporation and exciton models with the
115165    energies range up to 20 MeV. Within the nuclide mass region of 23 less
115166    than or equal to A less than or equal to 209, the adjusted parameter of
115167    the semiempirical method was investigated, it has a strong dependence
115168    on (N - Z + 1)/A and the incident neutron energy. The predictions of
115169    the excitation functions for (n,p) reaction for different nuclei are in
115170    good agreement with the experimental data. (C) 2003 Elsevier B.V. All
115171    rights reserved.
115172 C1 Inst Atom Energy, Beijing 102413, Peoples R China.
115173    Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200436, Peoples R China.
115174    Nanhua Univ, Nuclear Technol Coll, Hengyang 421000, Peoples R China.
115175    NW Univ Xian, Dept Phys, Xian 710006, Peoples R China.
115176 RP Fan, S, Inst Atom Energy, Beijing 102413, Peoples R China.
115177 EM sfan@iris.ciae.ac.cn
115178 CR BADANSKY D, 1962, ANN REV NUCL SCI, V12, P79
115179    BAO Z, 1994, J CHIN NUCL PHYS, V15, P341
115180    BELGAID M, 1998, NUCL INSTRUM METH B, V142, P463
115181    CABRAL S, 1990, NUCL SCI ENG, V106, P308
115182    CHATTERJEE A, 1963, NUCL PHYS, V47, P511
115183    CHATTERJEE A, 1963, NUCL PHYS, V49, P686
115184    CHATTERJEE A, 1964, NUCL PHYS, V60, P373
115185    DOCZI R, 1998, NUCL SCI ENG, V129, P164
115186    DOSTROVSKY I, 1959, PHYS REV, V116, P683
115187    EDER G, 1972, Z PHYS, V253, P335
115188    FAN S, 1996, NUCL SCI ENG, V124, P349
115189    FU CY, 1980, ORNLTM7402
115190    FUGA D, 1991, NUCL INT METH A, V309, P500
115191    GADIOLI E, 1976, PHYS REV C, V14, P573
115192    GARDNER DG, 1961, NUCL PHYS, V24, P274
115193    GARDNER DG, 1962, NUCL PHYS, V29, P373
115194    GARDNER DG, 1964, NUCL PHYS, V60, P49
115195    GARDNER DG, 1967, NUCL PHYS A, V96, P121
115196    GRIFFIN JJ, 1966, PHYS REV LETT, V17, P478
115197    HAUSER W, 1976, PHYS REV C, V14, P573
115198    HAVLIK E, 1971, ACTA PHYS AUSTRIACA, V34, P209
115199    KASUGAI Y, 1992, JAERIM93046, P277
115200    KHUUKHENKHUU G, 2002, J NUCL SCI TECH S, V2, P782
115201    KONG XZ, 1992, J CHINESE NUCL PHYS, V14, P239
115202    LEVKOSKII VN, 1957, SOV PHYS JETP, V4, P291
115203    LU H, 1989, INDCCRP16
115204    LU HL, 1994, J CHINESE NUCL PHYS, V16, P263
115205    LU WD, 1971, PHYS REV C, V4, P1173
115206    MOLLA NI, 1977, NUCL PHYS A, V283, P269
115207    MOLLA NI, 1977, NUCL PHYS A, V283, P269
115208    PAULSEN A, 1967, Z PHYS, V205, P226
115209    PEARLSTEIN S, 1973, J NUCL ENERGY, V27, P81
115210    PECK R, 1957, PHYS REP, V106, P965
115211    QAIM SM, 1984, NUCL SCI ENG, V88, P143
115212    SARDF SK, 1991, NUCL SCI ENG, V107, P365
115213    SIGG RA, 1976, NUCL SCI ENG, V60, P235
115214    STROHAL P, 1962, NUCL PHYS, V30, P49
115215    STRUWE W, 1974, NUCL PHYS A, V222, P605
115216    TEWES HA, 1960, UCRL6028
115217    VIENNOT M, 1991, NUCL SCI ENG, V108, P289
115218    YOUNG PG, 1977, LA6947
115219    ZHANG J, 1980, NUCL SCI ENG, V114, P55
115220    ZHAO Z, 1988, NUCL SCI ENG, V99, P367
115221 NR 43
115222 TC 0
115223 SN 0168-583X
115224 J9 NUCL INSTRUM METH PHYS RES B
115225 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
115226 PD JAN
115227 PY 2004
115228 VL 215
115229 IS 1-2
115230 BP 16
115231 EP 26
115232 PG 11
115233 SC Physics, Atomic, Molecular & Chemical; Physics, Nuclear; Instruments &
115234    Instrumentation; Nuclear Science & Technology
115235 GA 766XJ
115236 UT ISI:000188400400004
115237 ER
115238 
115239 PT J
115240 AU Wang, Q
115241    Blandin, JJ
115242    Suery, M
115243    Van de Moortele, B
115244    Pelletier, JM
115245 TI Homogeneous plastic flow of fully amorphous and partially crystallized
115246    Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass
115247 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
115248 DT Article
115249 DE homogeneous plastic flow; Zr41.2Ti13.8Cu12.5Ni10Be22.5 amorphous alloy;
115250    partially crystallized amorphous alloy
115251 ID NANOSCALE COMPOUND PARTICLES; ANGLE NEUTRON-SCATTERING;
115252    MECHANICAL-PROPERTIES; PHASE-SEPARATION; ALLOYS; DECOMPOSITION;
115253    BEHAVIOR; LIQUID; TEMPERATURE; DEFORMATION
115254 AB The homogeneous plastic flow of fully amorphous and partially
115255    crystallized Zr41.2Ti13.9Cu12.5Ni10Be22.5 bulk metallic glass (Vit1)
115256    has been investigated by compression tests at high temperatures in
115257    supercooled liquid region. Experimental results show that at
115258    sufficiently low strain rates, the supercooled liquid of the fully
115259    amorphous alloy reveals Newtonian flow with a linear relationship
115260    between the flow stress and strain rate. As the strain rate is
115261    increased, a transition from linear Newtonian to nonlinear flow is
115262    detected, which can be explained by the transition state theory. Over
115263    the entire strain rate interval investigated, however, only nonlinear
115264    flow is present in the partially crystallized alloy, and the flow
115265    stress for each strain rate is much higher. It is found that the strain
115266    rate-stress relationship for the partially crystallized alloy at the
115267    given temperature of 646 K also obeys the sinh law derived from the
115268    transition state theory, similar to that of the initial homogeneous
115269    amorphous alloy. Thus, it is proposed that the flow behavior of the
115270    nanocrystalline/amorphous composite at 646 K is mainly controlled by
115271    the viscous flow of the remaining supercooled liquid.
115272 C1 ENSPG, GPM2, DU, F-38042 Grenoble, France.
115273    INSA, GEMPPM, F-69621 Villeurbanne, France.
115274    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
115275 RP Wang, Q, ENSPG, GPM2, DU, BP 46, F-38042 Grenoble, France.
115276 EM qwangfr@yahoo.com
115277 CR BRUCK HA, 1994, SCRIPTA METALL MATER, V30, P429
115278    CHEN HS, 2001, APPL PHYS LETT, V79, P60
115279    DANIEL BSS, 2000, MRS S L SUP LIQ BULK
115280    FAN C, 1999, MATER T JIM, V40, P1376
115281    FAN C, 2000, APPL PHYS LETT, V77, P46
115282    GILLERT C, 1997, APPL PHYS LETT, V71, P476
115283    HEILMAIER M, 2001, J MATER PROCESS TECH, V117, P374
115284    INOUE A, 1999, J METASTABLE NANOCRY, V1, P1
115285    INOUE A, 1999, J NONCRYST SOLIDS, V250, P724
115286    INOUE A, 1999, MATER T JIM, V40, P1382
115287    INOUE A, 2000, INTERMETALLICS, V8, P455
115288    KAWAMURA Y, 1997, SCRIPTA MATER, V37, P431
115289    LIU JM, 1997, MAT SCI ENG A-STRUCT, V222, P182
115290    LIU JM, 1997, PHYS STATUS SOLIDI B, V199, P379
115291    NIEH TG, 1999, SCRIPTA MATER, V40, P1021
115292    NIEH TG, 2001, ACTA MATER, V49, P2887
115293    OKUMURA H, 1991, MATER T JIM, V32, P593
115294    REGERLEONHARD A, 2000, SCRIPTA MATER, V43, P459
115295    SCHNEIDER S, 1996, APPL PHYS LETT, V68, P49
115296    SCHNEIDER S, 1997, MATER SCI FORU 1 & 2, V235, P337
115297    SPAEPEN F, 1977, ACTA METALL, V25, P407
115298    TAUB AI, 1980, ACTA METALL, V28, P633
115299    WANIUK TA, 1998, ACTA MATER, V46, P5229
115300    WIEDENMANN A, 1996, MATER SCI FORUM, V225, P71
115301 NR 24
115302 TC 0
115303 SN 1005-0302
115304 J9 J MATER SCI TECHNOL
115305 JI J. Mater. Sci. Technol.
115306 PD NOV
115307 PY 2003
115308 VL 19
115309 IS 6
115310 BP 557
115311 EP 560
115312 PG 4
115313 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
115314    Engineering
115315 GA 766GE
115316 UT ISI:000188365400011
115317 ER
115318 
115319 PT J
115320 AU Tian, WW
115321    Zhang, LS
115322 TI An algorithm for finding global minimum of nonlinear integer programming
115323 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
115324 DT Article
115325 DE local integer minimizer; global integer minimizer; filled function
115326 AB A filled function is proposed by R.Ge-[2] for finding a global
115327    minimizer of a function of several continuous variables. In [4], an
115328    approach for finding a global integer minimizer of nonlinear function
115329    using the above filled function is given. Meanwhile a major obstacle is
115330    met: if rho > 0 is small, and ||x(I)-x*(I)|| is large, where x(I)- an
115331    integer point, x*(I)- a current local integer minimizer, then the value
115332    of the filled function almost equals zero. Thus it is difficult to
115333    recognize the size of the value of the filled function and can not to
115334    find the global integer minimizer of nonlinear function. In this paper,
115335    two new filled functions are proposed for finding global integer
115336    minimizer of nonlinear function, the new filled function improves some
115337    properties of the filled function proposed by R. Ge [2].
115338    Some numerical results are given, which indicate the new filled
115339    function (4.1) to find global integer minimizer of nonlinear function
115340    is efficient.
115341 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
115342 RP Tian, WW, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
115343 CR GE R, 1973, OPER RES, V21, P221
115344    GE R, 1989, APPL MATH COMPUT, V34, P191
115345    GE R, 1990, MATH PROGRAM, V46, P191
115346    LITINETSKI VV, 1998, ENG OPTIMIZ, V30, P125
115347    NEMHANSER GL, 1988, INTEGER COMBINATORIA
115348    ZHANG LS, 1998, INT C OPT TECHN APPL, P446
115349    ZHENG Q, 1995, J GLOBAL OPTIM, V7, P421
115350 NR 7
115351 TC 1
115352 SN 0254-9409
115353 J9 J COMPUT MATH
115354 JI J. Comput. Math.
115355 PD JAN
115356 PY 2004
115357 VL 22
115358 IS 1
115359 BP 69
115360 EP 78
115361 PG 10
115362 SC Mathematics, Applied; Mathematics
115363 GA 765RX
115364 UT ISI:000188298200007
115365 ER
115366 
115367 PT J
115368 AU Zheng, YG
115369    Chen, GR
115370    Liu, ZR
115371 TI On chaotification of discrete systems
115372 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
115373 DT Article
115374 DE chaotification; chaos generation; bernoulli shift
115375 ID FEEDBACK ANTICONTROL; CHAOS; BREATHERS; EXISTENCE; NETWORKS; MAP
115376 AB In this paper, the problem of making a nonlinear system chaotic by
115377    using state-feedback control is studied. The feedback controller uses a
115378    simple sine function of the system state, but only one component in
115379    each dimension. It is proved, by using the anti-integrable limit
115380    method, that the designed control system generates chaos in the sense
115381    of Devaney. In fact, the controlled system so designed is a
115382    perturbation of the original system, which turns out to be a simple
115383    Bernoulli shift.
115384 C1 Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China.
115385    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
115386    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
115387 RP Zheng, YG, Yangzhou Univ, Dept Math, Yangzhou 225006, Peoples R China.
115388 CR AUBRY S, 1990, PHYSICA D, V43, P199
115389    AUBRY S, 1997, PHYSICA D, V103, P201
115390    CHEN G, 1998, CHAOS ORDER METHODOL
115391    CHEN G, 2003, CHAOS CONTROL THEORY, P159
115392    CHEN GR, 1996, INT J BIFURCAT CHAOS, V6, P1341
115393    CHEN GR, 1998, INT J BIFURCAT CHAOS, V8, P1585
115394    CHEN XS, 1997, BIOMED ENVIRON SCI, V10, P367
115395    DEVANEY RL, 1987, INTRO CHAOTIC DYNAMI
115396    DITTO WL, 2000, INT J BIFURCAT CHAOS, V10, P593
115397    ELWIKIL AS, 2002, IEEE T CIRCUITS-I, V49, P527
115398    IN V, 1995, PHYS REV LETT, V74, P4420
115399    JAKIMOSKI G, 2001, IEEE T CIRCUITS-I, V48, P163
115400    KOCAREV L, 2001, IEEE T CIRCUITS-I, V48, P1385
115401    LI TY, 1975, AM MATH MONTHLY, V82, P481
115402    LI Z, 2002, IEEE T CIRCUITS-I, V49, P249
115403    MACKAY RS, 1994, NONLINEARITY, V7, P1623
115404    MACKAY RS, 1995, PHYSICA D, V82, P243
115405    SCHIFF SJ, 1994, NATURE, V370, P615
115406    SHCWARTZ IB, 2002, PHYS REV E, V66
115407    TRIANDAF I, 2000, PHYS REV E A, V62, P3529
115408    VANECEK A, 1996, CONTROL SYSTEMS LINE
115409    WANG XF, 1999, INT J BIFURCAT CHAOS, V9, P1435
115410    WANG XF, 2000, INT J BIFURCAT CHAOS, V10, P549
115411    WANG XF, 2000, INT J CIRC THEOR APP, V28, P305
115412    YANG WM, 1995, PHYS REV E, V51, P102
115413    ZEIDLER E, 1986, NONLINEAR FUNCTIONAL, V1
115414    ZHANG H, 2003, IN PRESS INT J BIFUR
115415 NR 27
115416 TC 5
115417 SN 0218-1274
115418 J9 INT J BIFURCATION CHAOS
115419 JI Int. J. Bifurcation Chaos
115420 PD NOV
115421 PY 2003
115422 VL 13
115423 IS 11
115424 BP 3443
115425 EP 3447
115426 PG 5
115427 SC Mathematics, Applied; Multidisciplinary Sciences
115428 GA 766UL
115429 UT ISI:000188393900016
115430 ER
115431 
115432 PT J
115433 AU Chen, FY
115434    Liu, ZR
115435 TI Chaotic stationary solutions of Cellular Neural Networks
115436 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
115437 DT Article
115438 DE Cellular Neural Networks; stationary solutions; conley-moser
115439    conditions; smale horseshoe
115440 ID PATTERN
115441 AB This study describes the chaotic stationary solutions of
115442    one-dimensional Cellular Neural Networks (CNN) without inputs with a
115443    specific term by applying the iteration map method. Under perfectly
115444    determined specific parameters, the map which corresponds to the
115445    stationary solution of CNN is two-dimensional and has a hyperbolic
115446    invariant Cantor set on which it is topologically conjugate to a
115447    two-sided shift of symbols space. The used main tool is the
115448    Conley-Moser conditions.
115449 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
115450    Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China.
115451 RP Chen, FY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
115452 CR CHUA LO, 1988, IEEE T CIRCUITS SYST, V35, P1257
115453    CHUA LO, 1988, IEEE T CIRCUITS SYST, V35, P1273
115454    CHUA LO, 1993, IEEE T CIRCUITS-I, V40, P147
115455    HSU CH, 1999, SPATIAL DISORDER CEL
115456    HSU CH, 2000, INT J BIFURCAT CHAOS, V10, P2119
115457    JUANG J, 2000, SIAM J APPL MATH, V60, P891
115458    THIRAN P, 1995, IEEE T CIRCUITS-I, V42, P757
115459    WIGGINS S, 1990, INTRO APPL NONLINEAR
115460 NR 8
115461 TC 1
115462 SN 0218-1274
115463 J9 INT J BIFURCATION CHAOS
115464 JI Int. J. Bifurcation Chaos
115465 PD NOV
115466 PY 2003
115467 VL 13
115468 IS 11
115469 BP 3499
115470 EP 3504
115471 PG 6
115472 SC Mathematics, Applied; Multidisciplinary Sciences
115473 GA 766UL
115474 UT ISI:000188393900022
115475 ER
115476 
115477 PT J
115478 AU Sun, XH
115479    Zhang, W
115480 TI A Parallel Two-Level Hybrid method for tridiagonal systems and its
115481    application to fast Poisson solvers
115482 SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
115483 DT Article
115484 DE Parallel processing; scalable computing; tridiagonal systems; Poisson
115485    solver
115486 ID EQUATIONS; ALGORITHM
115487 AB A new method, namely, the Parallel Two-Level Hybrid (PTH) method, is
115488    developed to solve tridiagonal systems on parallel computers. PTH has
115489    two levels of parallelism. The first level is based on algorithms
115490    developed from the Sherman-Morrison modification formula, and the
115491    second level can choose different parallel tridiagonal solvers for
115492    different applications. By choosing different outer and inner Solvers
115493    and by controlling its two-level partition, PTH can deliver better
115494    performance for different applications on different machine,ensembles
115495    and problem sizes. In an extreme case, the two levels of parallelism
115496    can be merged into one, and PTH can be the best algorithm otherwise
115497    available. Theoretical analyses and numerical experiments indicate that
115498    PTH is significantly better than existing methods or massively parallel
115499    computers. For instance, using PTH in a fast Poisson solver results in
115500    a 2-folds speedup compared to a conventional parallel Poisson solver on
115501    a 512 nodes IBM machine. When only the tridiagonal solver is
115502    considered, PTH is over 10 times faster than the currently used
115503    implementation.
115504 C1 IIT, Dept Comp Sci, Chicago, IL 60616 USA.
115505    Shanghai Univ, Coll Comp Sci & Engn, Shanghai 200072, Peoples R China.
115506 RP Sun, XH, IIT, Dept Comp Sci, Chicago, IL 60616 USA.
115507 EM sun@cs.iit.edu
115508    wzhang@mail.shu.edit.cn
115509 CR *IBM, 1999, PAR ENG SCI SUBR LIB
115510    ARBENZ P, 1999, PARALLEL DISTRIBUTED, V2, P385
115511    DUFF I, 1986, DIRECT METHODS SPARS
115512    EDISON TM, 1995, CONCURRENCY PRACTICS
115513    EGECIOGLU O, 1989, J COMPUTATIONAL APPL, V27
115514    HO CT, 1990, SIAM J SCI STAT COMP, V11, P563
115515    HOCKNEY RW, 1965, J ASSOC COMPUT MACH, V12, P95
115516    HOCKNEY RW, 1988, PARALLEL COMPUTERS, V2
115517    LAWRIE D, 1984, ACM T MATH SOFTW JUN, V10, P155
115518    ORTEGA J, 1985, SIAM REV, P149
115519    SHERMAN J, 1949, ANN MATH STAT, V20, P618
115520    STONE HS, 1973, J ASSOC COMPUT MACH, V20, P27
115521    SUN XH, 1992, IEEE T COMPUT, V41, P286
115522    SUN XH, 1994, IEEE T PARALL DISTR, V5, P599
115523    SUN XH, 1995, IEEE T PARALL DISTR, V6, P1185
115524    SUN XH, 1995, PARALLEL COMPUT, V18, P1241
115525    SUN XH, 1997, CONCURRENCY-PRACT EX, V9, P781
115526    WALLCRAFT AJ, 1997, PARALLEL COMPUT, V23, P2227
115527    WANG HH, 1981, ACM T MATH SOFTWARE, V7, P170
115528 NR 19
115529 TC 0
115530 SN 1045-9219
115531 J9 IEEE TRANS PARALL DISTRIB SYS
115532 JI IEEE Trans. Parallel Distrib. Syst.
115533 PD FEB
115534 PY 2004
115535 VL 15
115536 IS 2
115537 BP 97
115538 EP 106
115539 PG 10
115540 SC Computer Science, Theory & Methods; Engineering, Electrical & Electronic
115541 GA 766GZ
115542 UT ISI:000188369400001
115543 ER
115544 
115545 PT J
115546 AU Zhang, JF
115547    Meng, JP
115548    Wu, FM
115549    Si, JQ
115550 TI Compacton, peakon, and foldon structures in the (2+1)-dimensional
115551    Nizhnik-Novikov-Veselov equation
115552 SO COMMUNICATIONS IN THEORETICAL PHYSICS
115553 DT Article
115554 DE compacton; peakon; foldon; Nizhnik-Novikov-Veselov equation
115555 ID HOMOGENEOUS BALANCE METHOD; SOLITON-LIKE SOLUTIONS; LONG-WAVE
115556    EQUATIONS; CAMASSA-HOLM EQUATION; QUARK-LOOP SOLITON; KDV EQUATION;
115557    BACKLUND TRANSFORMATION; NONLINEAR EQUATIONS; VAKHNENKO EQUATION;
115558    DIMENSIONS
115559 AB By the use of the extended homogenous balance,method, the Backlund
115560    transformation for a (2+1)-dimensional integrable model,
115561    the(2+1)-dimensional Nizhnik-Novikov-Veselov (NNV) equation, is
115562    obtained, and then the NNV equation is transformed into three equations
115563    of linear, bilinear, and tri-linear forms, respectively. From the above
115564    three equations, a rather general variable separation solution of the
115565    model is obtained. Three novel class localized structures of the model
115566    are founded by the entrance of two variable-separated arbitrary
115567    functions.
115568 C1 Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
115569    Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England.
115570    Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
115571    Zhejiang Univ Technol, Dept Phys, Hangzhou 310014, Peoples R China.
115572 RP Zhang, JF, Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004,
115573    Peoples R China.
115574 EM jfzhang2002@yahoo.com.cn
115575 CR ABDELHAMID B, 1999, PHYS LETT A, V263, P338
115576    BOITI M, 1986, INVERSE PROBL, V2, P271
115577    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
115578    CHERTOCK A, 2001, J COMPUT PHYS, V171, P708
115579    COOPER F, 2001, PHYS REV E 2, V64
115580    FAN EG, 1998, PHYS LETT A, V245, P389
115581    FAN EG, 1998, PHYS LETT A, V246, P403
115582    FAN EG, 2000, PHYS LETT A, V265, P140
115583    GOODMAN MB, 2002, NATURE, V415, P1039
115584    HU XB, 1996, J PHYS A-MATH GEN, V29, P4589
115585    KAKUHATA H, 1999, J PHYS SOC JPN, V68, P757
115586    KRAENKEL RA, 2000, PHYS LETT A, V273, P183
115587    LINDGARD PA, 1996, PHYS REV LETT, V77, P779
115588    LOCKLESS SW, 1999, SCIENCE, V286, P295
115589    LOU SY, 2000, PHYS LETT A, V277, P94
115590    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
115591    MACLNNIS BL, 2002, SCIENCE, V295, P1536
115592    MANNA MA, 2001, PHYSICA D, V149, P231
115593    MATSUTANI S, 2002, J GEOM PHYS, V43, P146
115594    MORRISON AJ, 1999, NONLINEARITY, V12, P1427
115595    NIZHNIK LP, 1980, SOV PHYS DOKL, V25, P706
115596    OHTA Y, 1992, J PHYS SOC JPN, V61, P3928
115597    QIAN TF, 2001, CHAOS SOLITON FRACT, V12, P1347
115598    RADHA R, 1994, J MATH PHYS, V35, P746
115599    ROSENAU P, 1993, PHYS REV LETT, V70, P564
115600    SCHLEIF M, 1998, EUR PHYS J A, V1, P171
115601    SCHLEIF M, 1998, INT J MOD PHYS E, V7, P121
115602    TAGAMI Y, 1989, PHYS LETT A, V141, P116
115603    TANG XY, 2002, PHYS REV E, V66, P46601
115604    TANG XY, 2003, COMMUN THEOR PHYS, V40, P62
115605    TANG XY, 2003, J MATH PHYS, V44, P4000
115606    TREWICK SC, 2002, NATURE, V419, P174
115607    VAKHNENKO VA, 1992, J PHYS A-MATH GEN, V25, P4181
115608    VAKHNENKO VO, 1998, NONLINEARITY, V11, P1457
115609    VESELOV AP, 1984, SOV MATH DOKL, V30, P588
115610    WANG ML, 1995, PHYS LETT A, V199, P169
115611    WANG ML, 1996, PHYS LETT A, V213, P279
115612    WANG ML, 1996, PHYS LETT A, V216, P67
115613    WANG ML, 2001, PHYS LETT A, V287, P211
115614    YANG L, 1999, PHYS LETT A, V260, P55
115615    YANG L, 2001, PHYS REV E, V63, P6301
115616    ZHANG JF, 1998, INT J THEOR PHYS, V37, P2449
115617    ZHANG JF, 1999, CHINESE PHYS LETT, V16, P4
115618    ZHANG JF, 1999, COMMUN THEOR PHYS, V32, P315
115619    ZHANG JF, 2000, CHINESE PHYS, V9, P1
115620    ZHANG JF, 2000, COMMUN THEOR PHYS, V33, P577
115621    ZHAO XQ, 2002, PHYS LETT A, V297, P59
115622 NR 47
115623 TC 3
115624 SN 0253-6102
115625 J9 COMMUN THEOR PHYS
115626 JI Commun. Theor. Phys.
115627 PD JAN 15
115628 PY 2004
115629 VL 41
115630 IS 1
115631 BP 7
115632 EP 14
115633 PG 8
115634 SC Physics, Multidisciplinary
115635 GA 767KX
115636 UT ISI:000188439700002
115637 ER
115638 
115639 PT J
115640 AU Yuan, MF
115641    Chen, YL
115642    Ding, WY
115643    Cao, WG
115644 TI Chemistry of electron-dericient cyclopropane derivatives
115645 SO CHINESE JOURNAL OF ORGANIC CHEMISTRY
115646 DT Article
115647 DE electron-deficient cyclopropane; nucleophile reagent; stereoselective
115648    synthesis
115649 ID HIGHLY STEREOSELECTIVE-SYNTHESIS; EFFICIENT; METHANOL
115650 AB The reaction of electron-deficient cyclopropane derivatives, cis-1,
115651    2-disubstituented-6, 6-dialkyl-5, 7dioxa-spiro-[2,5]-4,8-octadiones,
115652    with nucleophiles containing oxygen, nitrogen and sulfur was summarized
115653    in this paper.
115654 C1 Shanghai Univ, Sch Sci, Shanghai 200436, Peoples R China.
115655    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
115656 RP Chen, YL, Shanghai Univ, Sch Sci, Shanghai 200436, Peoples R China.
115657 EM chenyali3@yahoo.com.cn
115658 CR BLANCHARD EP, 1964, J AM CHEM SOC, V86, P1337
115659    BROWN HC, 1969, J AM CHEM SOC, V91, P2149
115660    BUUMGARDENER CL, 1961, J AM CHEM SOC, V83, P4420
115661    CAO WG, UNPUB SYNTH COMMUN
115662    CAO WG, 2000, CHEM J CHINESE U, V21, P740
115663    CAO WG, 2000, SYNTHETIC COMMUN, V30, P3793
115664    CAO WG, 2000, SYNTHETIC COMMUN, V30, P4523
115665    CAO WG, 2000, SYNTHETIC COMMUN, V30, P4531
115666    CHALLAND BD, 1969, J ORG CHEM, V34, P794
115667    CHEN YL, 1998, CHEM J CHINESE U, V19, P1614
115668    CHEN YL, 2001, CHINESE J CHEM, V19, P901
115669    CHEN YL, 2001, SYNTHETIC COMMUN, V31, P3107
115670    CHEN YL, 2002, SYNTHETIC COMMUN, V32, P1953
115671    DEWAR MJS, 1984, J AM CHEM SOC, V106, P669
115672    DING WY, 1996, CHEM RES CHINESE U, V12, P50
115673    FREY HM, 1966, ADV PHYS ORG CHEM, V4, P147
115674    GAO JS, 1999, J SHANGHAI U NATURL, V5, P491
115675    GAO WG, UNPUB SYNTH COMMUN
115676    GLOSS GL, 1964, J AM CHEM SOC, V86, P4042
115677    HOEG DF, 1965, J AM CHEM SOC, V87, P4147
115678    JACQUES S, 1989, CHEM REV, V89, P1247
115679    LU C, 2000, J SHANGHAI U NAT SCI, V6, P60
115680    MONTI SA, 1974, TETRAHEDRON LETT, V36, P3239
115681    PU JQ, 2000, CHIN J SYNTH CHEM, V8, P356
115682    SAUCERCS RR, 1964, TETRAHEDRON, V20, P1029
115683    SUN XH, 2002, CHIN J SNTH CHEM, V10, P216
115684    YU JZ, 1994, MODERN ORGANIC ANAL, P441
115685 NR 27
115686 TC 0
115687 SN 0253-2786
115688 J9 CHINESE J ORG CHEM
115689 JI Chin. J. Org. Chem.
115690 PD SEP
115691 PY 2003
115692 VL 23
115693 IS 9
115694 BP 901
115695 EP 905
115696 PG 5
115697 SC Chemistry, Organic
115698 GA 766WT
115699 UT ISI:000188398900001
115700 ER
115701 
115702 PT J
115703 AU Ding, YP
115704    Wu, QS
115705    Su, QD
115706 TI Ant colony algorithm and optimization of test conditions in analytical
115707    chemistry
115708 SO CHINESE JOURNAL OF CHEMISTRY
115709 DT Article
115710 DE Ant Colony Algorithm; optimization; fitting; CASAI; photometry
115711 AB The research for the new algorithm is in the forward position and an
115712    issue of general interest in chemometrics all along. A novel
115713    chemometrics method, Chemical Ant Colony Algorithm, has first been
115714    developed. In this paper, the basic principle, the evaluation function,
115715    and the parameter choice were discussed. This method has been
115716    successfully applied to the fitting of nonlinear multivariate function
115717    and the optimization of test conditions in chrome-azure-S-Al
115718    spctrophotometric system. The sum of residual square of the results is
115719    0.0009, which has reached a good convergence result.
115720 C1 Univ Sci & Technol China, Dept Chem, Hefei 230026, Anhui, Peoples R China.
115721    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
115722    Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
115723 RP Ding, YP, Univ Sci & Technol China, Dept Chem, Hefei 230026, Anhui,
115724    Peoples R China.
115725 EM wdingyp@sina.com
115726    qdsu@ustc.edu.cn
115727 CR BONABEAU E, 2000, NATURE, V406, P39
115728    COLORNI A, 1991, P 1 EUR C ART LIF, P134
115729    COSTA D, 1997, J OPER RES SOC, V48, P295
115730    DORIGO M, 1997, BIOSYSTEMS, V43, P73
115731    FANG KT, 1982, CHIN J APPL MATH, V3, P363
115732    GAMBARDELLA LM, 1999, J OPER RES SOC, V50, P167
115733    GAMBARDELLA LM, 1999, NEW IDEAS OPTIMIZATI, P63
115734    HEUSSE M, 1998, ADV COMPLEX SYST, V1, P237
115735    KRIEGER MJB, 2000, NATURE, V406, P992
115736    YU ZG, 1988, CHIN J COMPUT APPL C, V5, P143
115737 NR 10
115738 TC 0
115739 SN 1001-604X
115740 J9 CHINESE J CHEM
115741 JI Chin. J. Chem.
115742 PD JUN
115743 PY 2003
115744 VL 21
115745 IS 6
115746 BP 607
115747 EP 609
115748 PG 3
115749 SC Chemistry, Multidisciplinary
115750 GA 765PD
115751 UT ISI:000188291800005
115752 ER
115753 
115754 PT J
115755 AU Huang, DB
115756 TI A coordinate-free reduction for flows on the volume manifold
115757 SO APPLIED MATHEMATICS LETTERS
115758 DT Article
115759 DE flows; volume preserving; reduction
115760 ID SYMMETRY
115761 AB In this paper, instead of previous methods such as the Lie group method
115762    dependent of coordinate transformation, a coordinate-free and pure
115763    geometric reduction procedure for flows preserving volume form on any
115764    n-dimensional volume manifold is given by the general differential form
115765    theory. That is, a volume form-preserving flow with a r-parameter
115766    Abelian volume-preserving symmetry group on any n-dimensional volume
115767    manifold can be reduced into a volume-preserving flow on the
115768    corresponding (n - r)-dimensional manifold by the differential
115769    geometric method. (C) 2004 Elsevier Ltd. All rights reserved.
115770 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
115771 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
115772 EM dbhuang@mail.shu.edu.cn
115773 CR GASCON FG, 1996, PHYS LETT A, V225, P559
115774    GASCON FG, 2000, INT J NONLINEAR MECH, V35, P589
115775    HALLER G, 1998, NONLINEARITY, V11, P319
115776    HUANG DB, 1998, PHYS LETT A, V244, P377
115777    MARSDEN JE, 1999, INTRO MECH SYMMETRY
115778    MEZIC I, 1994, J NONLINEAR SCI, V4, P157
115779    OLVER PJ, 1993, APPL LIE GROUP DIFFE
115780    QUISPEL GRW, 1998, PHYS LETT A, V242, P25
115781 NR 8
115782 TC 2
115783 SN 0893-9659
115784 J9 APPL MATH LETT
115785 JI Appl. Math. Lett.
115786 PD JAN
115787 PY 2004
115788 VL 17
115789 IS 1
115790 BP 17
115791 EP 22
115792 PG 6
115793 SC Mathematics, Applied
115794 GA 766WM
115795 UT ISI:000188398400004
115796 ER
115797 
115798 PT J
115799 AU Wu, DH
115800    Tian, WW
115801 TI Inequalities for medians of two simplices
115802 SO APPLIED MATHEMATICS LETTERS
115803 DT Article
115804 DE simplices; medians; volumes; inequalities
115805 ID NEUBERG-PEDOE
115806 AB We establish in this paper some inequalities for medians and volumes of
115807    two simplices whose form is analogous to the Neuberg-Pedoe inequality.
115808    (C) 2004 Elsevier Ltd. All rights reserved.
115809 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
115810 RP Wu, DH, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
115811 CR GREGORAC RJ, 1996, J GEOM, V56, P45
115812    LENG GS, 1997, ACTA MATH SINICA, V40, P14
115813    LENG GS, 1997, GEOM DEDICATA, V68, P43
115814    LENG GS, 1997, GEOMETRIAE DEDICATA, V66, P89
115815    LENG GS, 1999, DISCRETE MATH, V202, P163
115816    LENG GS, 2000, J MATH ANAL APPL, V248, P429
115817    MITRINOVIC D, 1989, RECENT ADV GEOMETRIC
115818    MITRINOVIC DS, 1988, J MATH ANAL APPL, V129, P196
115819    PEDOE D, 1942, MATH P CAMBRIDGE PHI, V38, P397
115820    PEDOE D, 1970, AM MATH MONTHLY, V77, P711
115821    PEDOE D, 1976, U BEOGRAD PUBL EL MF, V544, P95
115822    SANYAL A, 1967, AM MATH MONTHLY, V74, P697
115823    VELJAN D, 1995, LINEAR ALGEBRA APPL, V219, P79
115824    YANG L, 1983, B AUST MATH SOC, V27, P203
115825 NR 14
115826 TC 0
115827 SN 0893-9659
115828 J9 APPL MATH LETT
115829 JI Appl. Math. Lett.
115830 PD JAN
115831 PY 2004
115832 VL 17
115833 IS 1
115834 BP 107
115835 EP 110
115836 PG 4
115837 SC Mathematics, Applied
115838 GA 766WM
115839 UT ISI:000188398400020
115840 ER
115841 
115842 PT J
115843 AU Zhang, JF
115844    Liu, YL
115845 TI New truncated expansion method and soliton-like solution of variable
115846    coefficient KdV-MKdV equation with three arbitrary functions
115847 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
115848 DT Article
115849 DE variable coefficient; nonlinear evolution equation; soliton-like
115850    solution; truncated expansion method
115851 AB The truncated expansion method for finding explicit and exact
115852    soliton-like solution of variable coefficient nonlinear evolution
115853    equation was described. The crucial idea of the method was first the
115854    assumption that coefficients of the truncated expansion formal solution
115855    are functions of time satisfying a set of algebraic equations, and then
115856    a set of ordinary different equations of undetermined functions that
115857    can be easily integrated were obtained. The simplicity and
115858    effectiveness of the method by application to a general variable
115859    coefficient KdV-MKdV equation with three arbitrary functions of time is
115860    illustrated.
115861 C1 Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Zhejiang, Peoples R China.
115862    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
115863 RP Zhang, JF, Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004,
115864    Zhejiang, Peoples R China.
115865 EM jfzhang2002@yahoo.com.cn
115866 CR CHEN ZX, 1990, J MATH PHYS, V31, P2851
115867    GAZEAU JP, 1992, J MATH PHYS, V33, P4087
115868    LI YS, 1986, CHINESE SCI BULL, V31, P1449
115869    LIU XQ, 1998, APPL MATH J CHINESE, V13, P25
115870    LOU SY, 1991, SCI CHINESE A, V21, P622
115871    LOU SY, 1992, ACTA PHYS SINICA, V41, P182
115872    RUAN HY, 2000, ACTA PHYS SIN-CH ED, V49, P177
115873    WEN SC, SCI CHINA A, V27, P949
115874    XU B, 1994, APPL MATH J CHINES B, V9, P331
115875    YAN ZY, 1999, ACTA PHYS SIN-CH ED, V48, P1957
115876    ZHANG JF, 2001, ACTA PHYS SIN-CH ED, V50, P1648
115877    ZHEN YK, 1989, J PHYSICS A, V22, P441
115878    ZHU ZN, 1992, ACTA PHYS SINICA, V41, P1561
115879    ZHU ZN, 1995, J PHYSICS A, V28, P5673
115880 NR 14
115881 TC 0
115882 SN 0253-4827
115883 J9 APPL MATH MECH-ENGL ED
115884 JI Appl. Math. Mech.-Engl. Ed.
115885 PD NOV
115886 PY 2003
115887 VL 24
115888 IS 11
115889 BP 1259
115890 EP 1263
115891 PG 5
115892 SC Mathematics, Applied; Mechanics
115893 GA 766RZ
115894 UT ISI:000188390500003
115895 ER
115896 
115897 PT J
115898 AU Xie, LB
115899    Jiang, FR
115900 TI Computer computation of the method of multiple scales - Dirichlet
115901    problem for a class of system of nonlinear differential equations
115902 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
115903 DT Article
115904 DE system of nonlinear differential equation; boundary value problem;
115905    method of boundary layer with multiple scale; computer algebra;
115906    asymptotic solution
115907 ID BOUNDARY-VALUE-PROBLEMS
115908 AB The method of boundary layer with multiple scales and computer algebra
115909    were applied to study the asymptotic behavior of solution of boundary
115910    value problems for a class of system of nonlinear differential
115911    equations. The asymptotic expansions of solution were constructed. The
115912    remainders were estimated. And an example was analysed. It provides a
115913    new foreground for the application of the method of boundary layer with
115914    multiple scales.
115915 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
115916 RP Xie, LB, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
115917    200072, Peoples R China.
115918 CR DORR FW, 1970, J MATH ANAL APPL, V29, P273
115919    HOWES FA, 1989, NONLINEAR ANAL, V13, P1013
115920    JIANG FR, COMPUTATIONAL FLUID, V2, P471
115921    JIANG FR, 1981, APPL MATH MECH, V2, P505
115922    JIANG FR, 1987, SCI SINICA A, V30, P558
115923    JIANG FR, 2001, APPL MATH MECH-ENGL, V22, P282
115924 NR 6
115925 TC 0
115926 SN 0253-4827
115927 J9 APPL MATH MECH-ENGL ED
115928 JI Appl. Math. Mech.-Engl. Ed.
115929 PD NOV
115930 PY 2003
115931 VL 24
115932 IS 11
115933 BP 1264
115934 EP 1272
115935 PG 9
115936 SC Mathematics, Applied; Mechanics
115937 GA 766RZ
115938 UT ISI:000188390500004
115939 ER
115940 
115941 PT J
115942 AU Shi, WH
115943    Shen, Z
115944 TI Formal solutions of partial differential equations and the projective
115945    limit
115946 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
115947 DT Article
115948 DE formal solution; Ehresmann chain; projective limit
115949 AB Based on stratification theory, the existence theorems of formal
115950    solutions of partial differential equation (PDE) are given. And the
115951    relationship between formal solutions and projective limit of Ehresmann
115952    chain is presented.
115953 C1 Shanghai Univ, Coll Sci, Shanghai 200072, Peoples R China.
115954 RP Shi, WH, Shanghai Univ, Coll Sci, Shanghai 200072, Peoples R China.
115955 EM shiweihui@eastday.com
115956 CR CHEN DD, 1996, APPL MATH MECH, V17, P541
115957    LANDAU L, 1971, MECANINQUE FLUIDES
115958    SHEN Z, 2003, APPL MATH MECH-ENGL, V24, P545
115959    SHI WH, 1998, P 3 INT C NONL MECH
115960    SHI WH, 2001, FDN STRATIFICATION T
115961    SHIH WH, 1992, SOLUTIONS ANAL QUELQ
115962    SHIH WS, 1986, METHODE ELEMENTAIRE, P16
115963    TROTMANN D, 1997, SINGULARITIES MAPS A
115964 NR 8
115965 TC 0
115966 SN 0253-4827
115967 J9 APPL MATH MECH-ENGL ED
115968 JI Appl. Math. Mech.-Engl. Ed.
115969 PD NOV
115970 PY 2003
115971 VL 24
115972 IS 11
115973 BP 1281
115974 EP 1289
115975 PG 9
115976 SC Mathematics, Applied; Mechanics
115977 GA 766RZ
115978 UT ISI:000188390500006
115979 ER
115980 
115981 PT J
115982 AU Yu, X
115983 TI Lattice models of the optimal traffic current
115984 SO ACTA PHYSICA SINICA
115985 DT Article
115986 DE traffic flow; phase transition in traffic; stability criterion;
115987    modified KdV equation
115988 ID JAMMING TRANSITION; NUMERICAL-SIMULATION; FLOW; EQUATION
115989 AB Based on the lattice model of traffic flow, the lattice models which
115990    consider the next-nearest-neighbour flow on traffic and pay attention
115991    to the following vehicle as well as the preceding vehicle are
115992    presented, respectively. The stability criterion is derived by the
115993    linear stability analysis. The evolution of density wave has been
115994    investigated analytically with the perturbation method. The results
115995    show that the occurrence of traffic jamming transitions is described by
115996    the kink solution of the modified KdV equation. The theoretical results
115997    are in good agreement with the simulation. Moreover, the simulation
115998    indicates that the lattice models considering the
115999    next-nearest-neighbour interaction can stabilize the. traffic flow, but
116000    the other model is just in opposition to the former model.
116001 C1 Guangxi Univ, Dept Phys, Nanning 530004, Peoples R China.
116002    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
116003 RP Yu, X, Guangxi Univ, Dept Phys, Nanning 530004, Peoples R China.
116004 CR BANDO M, 1995, PHYS REV E, V51, P1035
116005    BIHAM O, 1992, PHYS REV A, V46, P6124
116006    CHOWDHURY D, 2000, PHYS REP, V329, P199
116007    HAYAKAWA H, 1998, PHYS REV E, V57, P3839
116008    HELBING D, 2001, REV MOD PHYS, V73, P1076
116009    HERMAN R, 1959, OPER RES, V7, P86
116010    JOST D, 2002, THESIS ETH ZURICH
116011    KERNER BS, 1996, PHYS REV E, V53, P1297
116012    KRAUSS S, 1998, THESIS DLR FORSCHUNS
116013    LANDAU LD, 1999, STAT PHYS 1
116014    LIGHTHILL MJ, 1955, P ROY SOC LOND A MAT, V229, P281
116015    NAGATANI T, 1998, PHYS REV E, V58, P4271
116016    NAGATANI T, 1999, PHYS REV E A, V59, P4857
116017    NAGATANI T, 1999, PHYSICA A, V264, P581
116018    NAGATANI T, 1999, PHYSICA A, V265, P297
116019    NAKAYAMA A, 2001, PHYS REV E, V65
116020    PAYNE HJ, 1971, MATH MODELS PUBLIC S, V1, P51
116021    SAWADA S, 2001, J PHYS A-MATH GEN, V34, P11253
116022    WHITAM G, 1974, LINEAR NONLINEAR WAV, P65
116023    XUE Y, 2002, ACTA PHYS SIN-CH ED, V51, P492
116024 NR 20
116025 TC 1
116026 SN 1000-3290
116027 J9 ACTA PHYS SIN-CHINESE ED
116028 JI Acta Phys. Sin.
116029 PD JAN
116030 PY 2004
116031 VL 53
116032 IS 1
116033 BP 25
116034 EP 30
116035 PG 6
116036 SC Physics, Multidisciplinary
116037 GA 765LR
116038 UT ISI:000188285500006
116039 ER
116040 
116041 PT J
116042 AU Song, LP
116043    Guo, QZ
116044    Tan, WH
116045 TI The quasi invariant V" analysis for the chaotic behavior of Lorenz map
116046    in the nearest neighborhood of the second threshold of laser
116047 SO ACTA PHYSICA SINICA
116048 DT Article
116049 DE the second threshold of laser; Lorenz map; quasi invariant V
116050 ID INSTABILITIES; MODEL; FLOW
116051 AB In order to study the laser oscillation instability, in this paper we
116052    present the "quasi invariant V" method for analysis of the chaotic
116053    behavior of Lorenz map in the nearest neighborhood of the second
116054    threshold of laser, and demonstrate the relation between initial value
116055    V-0 and the time t(c) for the occurrence of chaos, i.e. V(0)t(c) equals
116056    a constant C-0 depending on the parameter sigma, b, r of the system.
116057 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
116058 RP Song, LP, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
116059 CR HAKEN H, 1975, PHYS LETT          A, V53, P77
116060    KAPLAN JL, 1979, COMMUN MATH PHYS, V67, P93
116061    LORENZ EN, 1963, J ATMOS SCI, V20, P130
116062    MANNEVILLE P, 1979, PHYS LETT A, V75, P1
116063    MANNEVILLE P, 1980, PHYSICA            D, V1, P219
116064    MILONNI PW, 1987, CHAOS LASER MATTER I, P124
116065    SPARROV C, 1982, LORENZ EQUATIONS BIF
116066    TAN WH, 2000, NONLINEAR QUANTUM OP, P399
116067    WEISS CO, 1984, OPT COMMUN, V51, P47
116068    WEISS CO, 1985, OPT COMMUN, V52, P405
116069    YU JZ, 1998, ACTA PHYS SINICA, V47, P397
116070    ZHANG XH, 1999, ACTA PHYS SIN-CH ED, V48, P2186
116071 NR 12
116072 TC 1
116073 SN 1000-3290
116074 J9 ACTA PHYS SIN-CHINESE ED
116075 JI Acta Phys. Sin.
116076 PD JAN
116077 PY 2004
116078 VL 53
116079 IS 1
116080 BP 119
116081 EP 124
116082 PG 6
116083 SC Physics, Multidisciplinary
116084 GA 765LR
116085 UT ISI:000188285500023
116086 ER
116087 
116088 PT J
116089 AU Huang, WZ
116090    Ma, HP
116091    Sun, WW
116092 TI Convergence analysis of spectral collocation methods for a singular
116093    differential equation
116094 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
116095 DT Article
116096 DE coordinate singularity; convergence; spectral collocation method
116097 ID INCOMPRESSIBLE FLUID-FLOW; LEGENDRE-PETROV-GALERKIN; COORDINATE
116098    SINGULARITIES; SPHERICAL GEOMETRIES; TURBULENT FLOWS; SOBOLEV SPACES;
116099    CIRCULAR BASIN; POLAR; MODEL
116100 AB Solutions of partial differential equations with coordinate
116101    singularities often have special behavior near the singularities, which
116102    forces them to be smooth. Special treatment for these coordinate
116103    singularities is necessary in spectral approximations in order to avoid
116104    degradation of accuracy and efficiency. It has been observed
116105    numerically in the past that, for a scheme to attain high accuracy, it
116106    is unnecessary to impose all the pole conditions, the constraints
116107    representing the special solution behavior near singularities. In this
116108    paper we provide a theoretical justification for this observation.
116109    Specifically, we consider an existing approach, which uses a pole
116110    condition as the boundary condition at a singularity and solves the
116111    reformulated boundary value problem with a commonly used Gauss-Lobatto
116112    collocation scheme. Spectral convergence of the Legendre and Chebyshev
116113    collocation methods is obtained for a singular differential equation
116114    arising from polar and cylindrical geometries.
116115 C1 Univ Kansas, Dept Math, Lawrence, KS 66045 USA.
116116    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
116117    City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China.
116118 RP Huang, WZ, Univ Kansas, Dept Math, Lawrence, KS 66045 USA.
116119 EM huang@math.ukans.edu
116120    hpma@mail.shu.edu.cn
116121    maweiw@math.cityu.edu.hk
116122 CR BABUSKA I, 1994, SIAM REV, V36, P578
116123    BERNARDI C, 1989, SIAM J NUMER ANAL, V26, P769
116124    BERNARDI C, 1992, J COMPUT APPL MATH, V43, P53
116125    BERNARDI C, 1997, HDBK NUM AN 2, V5, P209
116126    BERNARDI C, 1999, SPECTRAL METHODS AXI
116127    BOYD JP, 1989, CHEBYSHEV FOURIER SP
116128    CANUTO C, 1984, SPECTRAL METHODS PAR, P55
116129    CANUTO C, 1988, SPECTRAL METHODS FLU
116130    EISEN H, 1991, J COMPUT PHYS, V96, P241
116131    FORNBERG B, 1995, SIAM J SCI COMPUT, V16, P1071
116132    GOTTLIEB D, 1977, CBMS NSF REGIONAL C, V26
116133    HUANG WZ, 1993, J COMPUT PHYS, V107, P254
116134    HUANG WZ, 2000, APPL NUMER MATH, V33, P167
116135    KARAGEORGHIS A, 1996, COMPUT FLUIDS, V25, P541
116136    KIM SD, 1997, SIAM J NUMER ANAL, V34, P939
116137    LI J, 2000, NUMER METH PART D E, V16, P513
116138    MA HP, 1988, J COMPUT MATH, V6, P48
116139    MA HP, 2000, SIAM J NUMER ANAL, V38, P1425
116140    MA HP, 2001, SIAM J NUMER ANAL, V39, P1380
116141    MATSUSHIMA T, 1995, J COMPUT PHYS, V120, P365
116142    ORSZAG SA, 1974, M WEATH REV, V102, P56
116143    PRIYMAK VG, 1995, J COMPUT PHYS, V118, P366
116144    PRIYMAK VG, 1998, J COMPUT PHYS, V142, P370
116145    SHEN J, 1997, SIAM J SCI COMPUT, V18, P1583
116146    SHEN J, 1999, SIAM J SCI COMPUT, V20, P1438
116147    TORRES DJ, 1999, SIAM J SCI COMPUT, V21, P378
116148    VERKLEY WTM, 1997, J COMPUT PHYS, V136, P100
116149    VERKLEY WTM, 1997, J COMPUT PHYS, V136, P115
116150 NR 28
116151 TC 0
116152 SN 0036-1429
116153 J9 SIAM J NUMER ANAL
116154 JI SIAM J. Numer. Anal.
116155 PY 2003
116156 VL 41
116157 IS 6
116158 BP 2333
116159 EP 2349
116160 PG 17
116161 SC Mathematics, Applied
116162 GA 765BP
116163 UT ISI:000188247500017
116164 ER
116165 
116166 PT J
116167 AU Xue, Y
116168    Dai, SQ
116169 TI Continuum traffic model with the consideration of two delay time scales
116170 SO PHYSICAL REVIEW E
116171 DT Article
116172 ID STATISTICAL PHYSICS; FLOW; DYNAMICS; SYSTEMS; WAVES
116173 AB This paper presents a continuum traffic model. The derivation of this
116174    model is based upon the assumption that the stream velocity u reaches
116175    the equilibrium velocity u(e) within the relaxation time T, while the
116176    equilibrium velocity u(e) is adjusted to be attained through the
116177    driver's reaction time t(r). It is also assumed that the former delay
116178    time scale is greater than the latter. A motion equation with
116179    nonconstant propagation velocity of a disturbance in traffic flow is
116180    derived that can reflect the anisotropy of disturbance propagation in
116181    real traffic, unlike some other higher-order continuum models. It
116182    indicates that in our model the undesirable "wrong-way travel"
116183    phenomenon and gaslike behavior have been eliminated. The formation and
116184    diffusion of traffic shock can be better simulated.
116185 C1 Guangxi Univ, Dept Phys, Nanning 530004, Peoples R China.
116186    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
116187 RP Xue, Y, Guangxi Univ, Dept Phys, Nanning 530004, Peoples R China.
116188 EM yuxuegxu@gxu.edu.cn
116189 CR AW A, 2000, SIAM J APPL MATH, V60, P916
116190    CHANDLER RE, 1958, OPER RES, V6, P165
116191    CHOWDHURY D, 2000, PHYS REP, V329, P199
116192    CREMER M, 1985, UCBITSRR857
116193    DAGANZO CF, 1995, TRANSPORT RES B-METH, V29, P277
116194    DELCASTILLO JM, 1993, TRANSPORTATION TRAFF, P387
116195    DELCASTILLO JM, 1995, TRANSPORT RES B-METH, V29, P373
116196    EDIE LC, 1967, VEHICULAR TRAFFIC SC, P26
116197    FENG SW, 1998, THESIS SHANGHAI U, P80
116198    GAZIS DC, 1961, OPER RES, V9, P545
116199    GREENSHIELD BD, 1935, HIGHWAY RES BOARD P, V14, P448
116200    HELBING D, 2001, REV MOD PHYS, V73, P1067
116201    JIANG R, 2002, TRANSP RES B, V37, P85
116202    JIANG R, 2002, TRANSPORT RES B-METH, V36, P405
116203    KINZER JP, 1933, THESIS POLYTECHNIC I
116204    KLAR A, 1996, SURVEYS MATH IND, V6, P215
116205    KUHNE RD, 1991, P 1991 WINT SIM C
116206    KUHNE RD, 1993, TRANSPORTATION TRAFF, P367
116207    LEO CJ, 1992, TRANSPORT RES B-METH, V26, P207
116208    LIGHTHILL MJ, 1955, P ROY SOC LOND A MAT, V229, P281
116209    LIU GQ, 1996, APPL MATH MODEL, V20, P459
116210    NAGATANI T, 2002, REP PROG PHYS, V65, P1331
116211    NEWELL GF, 1961, OPER RES, V9, P209
116212    PAPAGEORGIOU M, 1983, APPL AUTOMATIC CONTR, P4
116213    PAYNE HJ, 1971, MATH MODELS PUBLIC S, V1, P51
116214    PAYNE HJ, 1979, TRANSPORT RES REC, V722, P68
116215    PIPES LA, 1953, J APPL PHYS, V24, P274
116216    RICHARDS PI, 1956, OPER RES, V4, P42
116217    SCHADSCHNEIDER A, 2002, PHYSICA A, V313, P153
116218    TREIBER M, 2000, PHYS REV E A, V62, P1805
116219    TREITERER J, 1974, P 6 INT S TRANSP TRA
116220    WHITHAM GB, 1979, LECT WAVE PROPAGATIO
116221    ZHANG HM, 2001, NETW SPAT ECON, V1, P9
116222    ZHANG HM, 2002, TRANSPORT RES B-METH, V36, P275
116223    ZHANG HM, 2003, TRANSPORT RES B-METH, V37, P101
116224 NR 35
116225 TC 3
116226 SN 1063-651X
116227 J9 PHYS REV E
116228 JI Phys. Rev. E
116229 PD DEC
116230 PY 2003
116231 VL 68
116232 IS 6
116233 PN Part 2
116234 AR 066123
116235 DI ARTN 066123
116236 PG 6
116237 SC Physics, Fluids & Plasmas; Physics, Mathematical
116238 GA 765XQ
116239 UT ISI:000188316700038
116240 ER
116241 
116242 PT J
116243 AU Jing, C
116244    Cao, SX
116245    Zhang, JC
116246 TI Lattice constant dependence of magnetic properties in bcc and fcc
116247    FexMn1-x alloys
116248 SO PHYSICAL REVIEW B
116249 DT Article
116250 ID ELECTRONIC-STRUCTURE; EPITAXIAL-GROWTH; FERROMAGNETISM; IRON;
116251    ANTIFERROMAGNETISM; STABILIZATION; GAAS(001); SURFACE
116252 AB The dependence of magnetic properties on lattice constants in both
116253    body-centered-cubic (bcc) and face-centered-cubic (fcc) FexMn1-x
116254    (x=0,0.25,0.5,0.75,1) has been studied systematically using
116255    first-principles linearized augmented plane-wave (LAPW) calculations.
116256    The results indicate that the magnetic properties of bcc FexMn1-x
116257    alloys are ferromagnetism within a fairly large range of lattice
116258    constants, and the atomic moment increases with an increase of the
116259    lattice constants. However, for fcc FexMn1-x alloys, the magnetic
116260    properties change from paramagnetism to antiferromagnetism (or
116261    ferrimagnetism) and finally to ferromagnetism with an increase of the
116262    lattice constants. The calculated magnetic moment is consistent with
116263    previous experiments for bcc FexMn1-x alloys at the normal lattice
116264    constants, while for fcc FexMn1-x alloys on the whole the magnetic
116265    properties are also in agreement with the experimental results. The
116266    present results may facilitate a better understanding of the
116267    correlation between the structures and the corresponding magnetic
116268    properties.
116269 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
116270 RP Jing, C, Shanghai Univ, Dept Phys, Shanghai Rd 99, Shanghai 200436,
116271    Peoples R China.
116272 EM caojing@mail.shu.edu.cn
116273 CR BAGAYOKO D, 1983, PHYS REV B, V28, P5419
116274    DOSTERNAK M, 1980, PHYS REV B, V21, P5601
116275    ENDOH Y, 1971, J PHYS SOC JPN, V30, P1614
116276    FUSTER G, 1988, PHYS REV B, V38, P423
116277    GENG WT, 1999, CHIN J COMP PHYS, V16, P372
116278    GILLIES MF, 1995, J APPL PHYS, V78, P5554
116279    HASHIMOTO T, 1967, J PHYS SOC JPN, V23, P213
116280    HEDIN L, 1971, J PHYS C SOLID STATE, V4, P2064
116281    HEINRICH B, 1986, J VAC SCI TECHNOL  2, V4, P1376
116282    JIN X, 1994, APPL PHYS LETT, V65, P3078
116283    JIN XF, 1998, SURF REV LETT, V5, P273
116284    JING C, 1999, ACTA PHYS SIN-CH ED, V48, P289
116285    JING C, 1999, J MAGN MAGN MATER, V198, P270
116286    JING C, 2000, NATURAL SCI ADV, V10, P21
116287    MARCUS PM, 1988, PHYS REV B, V38, P6949
116288    PRINZ GA, 1985, PHYS REV LETT, V54, P1051
116289    PRINZ GA, 1994, MAGNETIC METAL FILMS, V1, P1
116290    SERENA PA, 1994, PHYS REV B, V50, P944
116291    SINGH DJ, 1993, PLANEWAVES PSEUDOPOT, P35
116292    TEBBLE RS, 1969, MAGNETIC MATERIALS, P61
116293    WANG DS, 1981, PHYS REV B, V23, P1685
116294    ZHOU YM, 1997, J MAGN MAGN MATER, V167, P136
116295 NR 22
116296 TC 2
116297 SN 1098-0121
116298 J9 PHYS REV B
116299 JI Phys. Rev. B
116300 PD DEC
116301 PY 2003
116302 VL 68
116303 IS 22
116304 AR 224407
116305 DI ARTN 224407
116306 PG 11
116307 SC Physics, Condensed Matter
116308 GA 763JN
116309 UT ISI:000188081900052
116310 ER
116311 
116312 PT J
116313 AU Zhang, XP
116314    Wang, SZ
116315 TI Vulnerability of pixel-value differencing steganography to histogram
116316    analysis and modification for enhanced security
116317 SO PATTERN RECOGNITION LETTERS
116318 DT Article
116319 DE steganography; steganalysis; pixel-value differencing; histogram
116320    analysis
116321 ID IMAGES
116322 AB The pixel-value differencing (PVD) steganography can embed a large
116323    amount of secret bits into a still image with high imperceptibility as
116324    it makes use of the characteristics of human vision sensitivity.
116325    However, a loophole exists in the PVD method. Unusual steps in the
116326    histogram of pixel differences reveal the presence of a secret message.
116327    An analyst can even estimate the length of hidden bits from the
116328    histogram. To enhance security, a modified scheme is proposed which
116329    avoids occurrence of the above-mentioned steps in the pixel difference
116330    histogram while preserving the advantage of low visual distortion of
116331    the PVD. The histogram-based steganalysis is therefore defeated. (C)
116332    2003 Elsevier B.V. All rights reserved.
116333 C1 Shanghai Univ, Sch Commun & Inforamt Engn, Shanghai 200072, Peoples R China.
116334 RP Zhang, XP, Shanghai Univ, Sch Commun & Inforamt Engn, 149 Yanchang Rd,
116335    Shanghai 200072, Peoples R China.
116336 EM zhangxinpeng@263.net
116337 CR BENDER W, 1996, IBM SYST J, V35, P313
116338    FRIDRICH J, 2001, MAG IEEE MULTIMEDIA, V1, P22
116339    FRIDRICH J, 2002, 5 INF HID WORK NOORD, P310
116340    FRIDRICH J, 2002, P SOC PHOTO-OPT INS, V4675, P1
116341    HARMSEN JJ, 2003, SPIE ELECT IMAGING
116342    PETITCOLAS FAP, 1999, P IEEE, V87, P1062
116343    WANG H, IN PRESS COMM ACM
116344    WESTFELD A, 1999, LNCS, V1768, P61
116345    WU DC, 2003, PATTERN RECOGN LETT, V24, P1613
116346    ZHANG XP, 2003, LECT NOTES COMPUT SC, V2776, P395
116347 NR 10
116348 TC 3
116349 SN 0167-8655
116350 J9 PATTERN RECOGNITION LETT
116351 JI Pattern Recognit. Lett.
116352 PD FEB
116353 PY 2004
116354 VL 25
116355 IS 3
116356 BP 331
116357 EP 339
116358 PG 9
116359 SC Computer Science, Artificial Intelligence
116360 GA 764TM
116361 UT ISI:000188222200006
116362 ER
116363 
116364 PT J
116365 AU Wang, WG
116366    Zhou, BX
116367 TI The correlation of damping capacity with grain-boundary precipitates in
116368    Fe-Cr-basecl clamping alloys annealed at high temperature
116369 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
116370    MICROSTRUCTURE AND PROCESSING
116371 DT Article
116372 DE Fe-Cr-based damping alloy; damping capacity; grain-boundary precipitates
116373 ID INTERNAL STRESS DISTRIBUTION; FERROMAGNETIC-ALLOYS; DEPENDENCE
116374 AB We report the damping capacity measurements and grain-boundary (GB)
116375    precipitates observations on a set of four Fe-Cr-based ferromagnetic
116376    damping alloys annealed at 1473 K. The alloys were prepared by vacuum
116377    induction melt furnace of which each cast ingot weighed 15 kg. The
116378    technique of inverted torsion pendulum was employed to measure the
116379    damping capacity, and a field emission scanning electron microscope
116380    (FESEM) with a X-ray energy dispersive spectrometer (EDS) attachment
116381    was used to observe the grain-boundary precipitates. The results
116382    indicate the damping capacity of the alloys is definitely correlated
116383    with the amount of the grain-boundary precipitates as well as with the
116384    chromium concentration in the precipitates. Among the alloys
116385    investigated, Fe-Cr-2Al-Si exhibits the highest damping capacity but
116386    the least amount of grain-boundary precipitates with the lowest
116387    chromium concentration, and vice versa to that Fe-Cr-Al-Si(L) does.
116388    Though chromium concentration in the grain-boundary precipitates are
116389    very close, the amount of grain-boundary precipitates in Fe-Cr-Al is
116390    obviously less than that in Fe-Cr-Si, and the damping capacity of the
116391    former is apparently higher than that of the latter. Further discussion
116392    pointed out such correlation stems from the effects of alloying on the
116393    diffusion behavior of solute atoms as well as on the chemical potential
116394    of Cr in the matrix, with which correlates the magnetic properties
116395    especially the energy density of domain walls (DWs) which has a
116396    significant impact on the damping capacity of Fe-Cr-based damping
116397    alloys annealed at high temperature. (C) 2003 Elsevier B.V. All rights
116398    reserved.
116399 C1 Shandong Univ Technol, Fac Mech Engn, Shandong 255012, Peoples R China.
116400    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
116401 RP Wang, WG, Shandong Univ Technol, Fac Mech Engn, Shandong 255012,
116402    Peoples R China.
116403 EM wangwgnpic@hotmail.com
116404 CR BESHERS DN, 1993, MATER SCI FORUM, V119, P17
116405    FENG D, 1964, METAL PHYSICS, P17
116406    FENG DA, 1995, DICT SOLID STATE PHY, P812
116407    GOLOVIN IS, 1994, J ALLOY COMPD, V211, P147
116408    GOLOVIN IS, 1994, METALL MATER TRANS A, V25, P111
116409    KARIMI A, 1995, MATER SCI FORUM, V179, P679
116410    KARIMI A, 2000, J MAGN MAGN MATER, V215, P601
116411    MASUMOTO H, 1984, T JPN I MET, V25, P891
116412    PULINOSAGRADI D, 1998, SCRIPTA MATER, V39, P131
116413    RITCHIE IG, 1991, METALL TRANS A, V22, P607
116414    SHUBAT GJ, 1973, METALS HDB, P291
116415    SMITH GW, 1968, J APPL PHYS, V39, P2311
116416    SMITH GW, 1969, J APPL PHYS, V40, P5174
116417    WANG WG, IN PRESS MAT DESIGN
116418    WANG WG, 1998, ACTA METALL SIN, V34, P1039
116419    WANG WG, 2000, MATER DESIGN, V21, P541
116420    WANG WG, 2003, MATER DESIGN, V24, P163
116421 NR 17
116422 TC 0
116423 SN 0921-5093
116424 J9 MATER SCI ENG A-STRUCT MATER
116425 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
116426 PD FEB 5
116427 PY 2004
116428 VL 366
116429 IS 1
116430 BP 45
116431 EP 49
116432 PG 5
116433 SC Materials Science, Multidisciplinary
116434 GA 764PV
116435 UT ISI:000188216000007
116436 ER
116437 
116438 PT J
116439 AU Shao, K
116440    Liu, ZT
116441 TI Modeling the imprecise relationship of goals for agent-oriented
116442    requirements engineering
116443 SO CHINESE JOURNAL OF ELECTRONICS
116444 DT Article
116445 DE agent-oriented requirement engineering; (AORE); fuzzy set; fuzzy Z;
116446    knowledge acquisition in automated specification (KAOS) method; goal;
116447    uncertainty
116448 AB Agent concepts have been used in a number of recent approaches of
116449    requirement engineering (RE), such as KAOS (Knowledge acquisition in
116450    automated specification), i* and GBRAM (Goal-based requirements
116451    analysis method). And the modeling languages used in those approaches
116452    only permit precise and unambiguous modeling of system properties and
116453    behavior. However, some system problems, particularly those drawn from
116454    the agent-oriented problem domain, may be difficult to model in crisp
116455    or precise terms. There are several reasons for this. On one hand, the
116456    lack of information may produce the uncertainty of the class to which
116457    an object belongs. If we have enough information or if we are
116458    considering sufficient attributes, we should be able to make a precise
116459    categorization. On the other hand, uncertainty may also arise from some
116460    natural imprecision in requirement describing itself, such as soft goal
116461    describing and uncertain concepts describing. In the second case, the
116462    classification into precise classes may be impossible, not because we
116463    do not have enough information, but because the classes themselves are
116464    not naturally discrete. In this paper, we start with a discussion of
116465    the uncertainty in agent-oriented requirement engineering. Then we
116466    propose to handle the uncertainty using fuzzy sets. Finally we refine
116467    this proposal to integrate a fuzzy version of Z with the KAOS method.
116468    This integration is illustrated on the example of the mine pump. In the
116469    conclusion part, we compare the advantages of our approach with those
116470    of the classical KAOS approach.
116471 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
116472    Hefei Univ Technol, Comp Applicat Inst, Hefei 230031, Peoples R China.
116473 RP Shao, K, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R
116474    China.
116475 CR DARDENNE A, 1993, SCI COMPUT PROGRAM, V20, P3
116476    KUN S, 2003, COMP SCI TECHN 2003
116477    LETIER E, 2001, THESIS
116478    LETIER E, 2002, P ICSE 02 24 INT C S, P83
116479    LUCK M, 1995, P 1 INT C MULT SYST, P254
116480    MATTHEWS C, 1997, 2 AUSTR WORKSH REQ E, P99
116481    MATTHEWS C, 2000, P ZB2000 YORK US 29
116482    VANLAMSWEERDE A, 2000, 22 INT C SOFTW ENG, P5
116483    VANLAMSWEERDE A, 2001, P 5 IEEE INT S REQ E, P249
116484    YU E, 2001, LNCS, V2222, P206
116485    ZHANG Q, 1998, J PRAGMATICS, V29, P13
116486 NR 11
116487 TC 0
116488 SN 1022-4653
116489 J9 CHINESE J ELECTRON
116490 JI Chin. J. Electron.
116491 PD JAN
116492 PY 2004
116493 VL 13
116494 IS 1
116495 BP 127
116496 EP 132
116497 PG 6
116498 SC Engineering, Electrical & Electronic
116499 GA 765DF
116500 UT ISI:000188251300028
116501 ER
116502 
116503 PT J
116504 AU Sun, SW
116505    Pan, XM
116506    Wang, PC
116507    Zhu, LH
116508    Huang, QW
116509    Li, DL
116510    Yin, ZW
116511 TI Fabrication and electrical properties of grain-oriented
116512    0.7Pb(Mg1/3Nb2/3)O-3-0.3PbTiO(3) ceramics
116513 SO APPLIED PHYSICS LETTERS
116514 DT Article
116515 ID FERROELECTRIC SINGLE-CRYSTALS; PIEZOELECTRIC PROPERTIES; MONOCLINIC
116516    PHASE; POLARIZATION; BEHAVIOR; PMNT
116517 AB <112> grain-oriented 0.7Pb(Mg1/3Nb2/3)O-3-0.3PbTiO(3) (PMN-0.3PT)
116518    piezoelectric ceramics with a degree of orientation of 0.35 have been
116519    produced from melt by a directional solidification method. The
116520    dielectric, ferroelectric, and piezoelectric properties were
116521    investigated, e.g., epsilon(rt)similar to4800, tan delta<0.6%,
116522    d(33)similar to1500-1600 pC/N, k(t)similar to51%, and k(33)similar
116523    to82%, some of these values are comparable to those of PMN-PT single
116524    crystals. The strain-electric-field curve with a maximum strain of
116525    0.23% at a field of 22 kV/cm and well-saturated hysteresis loops with a
116526    P(r)similar to35 muC/cm(2) were recorded. The results demonstrate that
116527    the directional solidification method is a promising technique to
116528    fabricate high performance grain-oriented PMN-PT ceramics. (C) 2004
116529    American Institute of Physics.
116530 C1 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
116531    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
116532 RP Sun, SW, Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High
116533    Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
116534 EM pcwang@mail.sic.ac.cn
116535 CR GUO YP, 2002, J APPL PHYS, V92, P6134
116536    JAFFE H, 1965, P IEEE, V53, P1372
116537    KELLY J, 1997, J AM CERAM SOC, V80, P957
116538    LOTGERING FK, 1959, J INORG NUCL CHEM, V9, P113
116539    LU Y, 2001, APPL PHYS LETT, V78, P3109
116540    LUO HS, 1999, FERROELECTRICS, V231, P685
116541    NOHEDA B, 2001, PHYS REV LETT, V86, P3891
116542    OAKLEY C, 2000, P IEEE ULTRASON S, V2, P1157
116543    PARK SE, 1997, J APPL PHYS, V82, P1804
116544    SABOLSKY EM, 2001, APPL PHYS LETT, V78, P2551
116545    SAITOH S, 1999, IEEE T ULTRASON FERR, V46, P414
116546    SWARTZ SL, 1982, MATER RES BULL, V17, P1245
116547    VIEHLAND D, 2000, J APPL PHYS, V88, P4794
116548    VIEHLAND D, 2002, J APPL PHYS, V92, P3985
116549    XU GS, 2000, CHINESE SCI BULL, V45, P491
116550    XU GS, 2001, PHYS REV B, V64
116551    YE ZG, 2001, PHYS REV B, V64
116552 NR 17
116553 TC 1
116554 SN 0003-6951
116555 J9 APPL PHYS LETT
116556 JI Appl. Phys. Lett.
116557 PD JAN 26
116558 PY 2004
116559 VL 84
116560 IS 4
116561 BP 574
116562 EP 576
116563 PG 3
116564 SC Physics, Applied
116565 GA 765XN
116566 UT ISI:000188316500040
116567 ER
116568 
116569 PT J
116570 AU Wu, QS
116571    Liu, JK
116572    Ding, YP
116573    Liu, Q
116574 TI Controlled synthesis and properties of CdS quasi-nanospheres with
116575    artificial active membrane as template
116576 SO ACTA CHIMICA SINICA
116577 DT Article
116578 DE cadmium sulfide; quasi-nanosphere; active collodion membrane;
116579    controlled synthesis
116580 ID NANOPARTICLES
116581 AB Quasi-nanospheres of US were successfully synthesized with artificial
116582    active membrane of collodion as template. The results indicated that
116583    regular US quasi-nanospheres, which had a cubic zinc-blende structure
116584    with a cell constant a = 0.5818 nm, could be formed with 0.1 mol/L
116585    CdCl2 and 0.1 mol/L Na2S as reactants at room temperature. The sphere
116586    diameter range was from 80 to 280 nm, and the average diameter was
116587    about 170 nm. When the exciting wavelength was 390 nm, two emission
116588    peaks at 480 nm with blue light and at 535 nm with green light
116589    appeared. The UV-vis spectrum showed a wider absorption peak at 475 nm,
116590    and had 40 nm blue-shift compared with bulky materials, indicating that
116591    the particles had obvious quantum size effect. In addition, the
116592    reaction mechanism has primarily been explored.
116593 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
116594    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
116595    Chinese Acad Sci, State Key Lab Performance Ceram & Superfine Micro, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
116596 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
116597 EM qswu@mail.tongji.edu.cn
116598 CR DOLLEFELD H, 2002, J CHEM PHYS, V117, P8953
116599    GAO F, 2002, CHEM PHYS LETT, V360, P585
116600    LI YD, 1999, INORG CHEM, V38, P4737
116601    LI Z, 2003, MATER LETT, V57, P2480
116602    LIU JK, 2003, CHEM J CHIN U, V24
116603    PARDOYISSAR V, 2003, J AM CHEM SOC, V125, P622
116604    SANG WB, 2003, J MACROMOL SCI PHYS, P75
116605    WANG L, 2002, ANAL CHIM ACTA, V468, P35
116606    WU QS, 2000, CHEM J CHINESE U, V21, P1471
116607    WU QS, 2000, J MEMBRANE SCI, V172, P199
116608    ZHANG LD, 2002, NANOMATERIAL NANOSTR, P305
116609    ZHONG WZ, 1999, CRYSTAL GROWTH MORPH, P51
116610 NR 12
116611 TC 5
116612 SN 0567-7351
116613 J9 ACTA CHIM SIN
116614 JI Acta Chim. Sin.
116615 PD NOV
116616 PY 2003
116617 VL 61
116618 IS 11
116619 BP 1824
116620 EP 1827
116621 PG 4
116622 SC Chemistry, Multidisciplinary
116623 GA 765AY
116624 UT ISI:000188245800024
116625 ER
116626 
116627 PT J
116628 AU Xu, H
116629    Lu, WC
116630    Shao, J
116631    Chen, NY
116632 TI Molecular dynamics simulation of CaSiO3 perovskite on decompression and
116633    re-compression
116634 SO ACTA CHIMICA SINICA
116635 DT Article
116636 DE molecular dynamics simulation; CaSiO3 perovskite; non-crystallization
116637    on decompression; infrared spectrum; spinodal value; metastable state
116638 ID PHASE-TRANSITIONS; HIGH-PRESSURE; MGSIO3; GLASSES; STABILITY; EQUATION;
116639    LIQUIDS; STATE
116640 AB The decompression process of CaSiO3 perovskite was studied with
116641    molecular dynamics (MD) simulation from high pressure to negative
116642    pressure. The computed equation of state for CaSiO3 is in good
116643    agreement with the experimental data and the results of the MD
116644    simulation reported. The computed bulk modulus is within the range of
116645    the experimental data. The results of our MD simulation on
116646    decompression and recompression are similar to the experimental
116647    results. There are two stages in the collapse of CaSiO3 perovskite
116648    under decompression: the breakage of SiO6 octahedron and the breakage
116649    of CaO12 icosahedron. If the Ca-O icosahedron has not been destroyed,
116650    the collapsed CaSiO3 perovskite on decompression can be recovered on
116651    recompression. If the Ca-O icosahedron has been destroyed, it is not
116652    recoverable on recompression. This is a new result in our MD
116653    simulation. The infrared spectrum of CaSiO3 perovskite has been
116654    calculated with MD data. It is shown that the non-crystallization of
116655    CaSiO3 perovskite on decompression is a second transition of softening
116656    mode and kinetically controlled metastable process. It is well obeyed
116657    that there is an isochoris metastable limit in CaSiO3 perovskite and
116658    the quadratic law (P - P-s) similar to (V - Vs)(2).
116659 C1 Changshu Coll Sci & Technol, Dept Chem, Changshu 215500, Peoples R China.
116660    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
116661 RP Xu, H, Changshu Coll Sci & Technol, Dept Chem, Changshu 215500, Peoples
116662    R China.
116663 EM wclu@mail.shu.edu.cn
116664 CR ANGELL CA, 1988, PHYS CHEM MINER, V15, P221
116665    ANGELL CA, 1994, NUOVO CIMENTO D, V16, P993
116666    BELONOSHKO AB, 2001, AM MINERAL, V86, P193
116667    BOULARD B, 1992, J NON-CRYST SOLIDS, V140, P350
116668    CHAPLOT SL, 2000, SOLID STATE COMMUN, V116, P599
116669    CHAPLOT SL, 2001, AM MINERAL, V86, P195
116670    HEMMATI M, 1995, PHYS REV B, V51, P14841
116671    LIU LG, 1975, EARTH PLANET SC LETT, V28, P209
116672    MAO HK, 1977, CARNEGIE I WASHINGTO, V76, P502
116673    MAO HK, 1989, J GEOPHYS RES-SOLID, V94, P17889
116674    POOLE PH, 1997, SCIENCE, V275, P322
116675    SCIORTINO F, 1995, PHYS REV E B, V52, P6484
116676    SHAO J, 1993, ACTA METALLURGICA SI, V29, B11
116677    SHAO J, 1993, CHINESE PHYS LETT, V10, P669
116678    SHIM SH, 2000, PHYS EARTH PLANET IN, V120, P327
116679    WANG Z, 2000, J PHYS CHEM SOLIDS, V61, P1815
116680    XU H, 1999, ACTA METALLURGICA SI, V35, P1065
116681    XU H, 2000, ACTA PHYS-CHIM SIN, V16, P512
116682    XU H, 2002, ACTA PHYS-CHIM SIN, V18, P10
116683 NR 19
116684 TC 0
116685 SN 0567-7351
116686 J9 ACTA CHIM SIN
116687 JI Acta Chim. Sin.
116688 PD SEP
116689 PY 2003
116690 VL 61
116691 IS 9
116692 BP 1416
116693 EP 1419
116694 PG 4
116695 SC Chemistry, Multidisciplinary
116696 GA 765AX
116697 UT ISI:000188245700014
116698 ER
116699 
116700 PT J
116701 AU Zhang, HH
116702    Xu, LP
116703    Shao, GJ
116704    Yu, ZT
116705 TI Strengthening technology and mechanism for semi-solid die casting of
116706    aluminum alloy
116707 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
116708 DT Article
116709 DE aluminum alloy; semi-solid die casting; strengthening of heat
116710    treatment; microstructure
116711 AB Combined with theoretical evaluation, an optimized strengthening
116712    process for the semi-solid die castings of A356 aluminum alloy was
116713    obtained by studying the mechanical properties of castings solution
116714    treated and aged under different conditions in detail, then, the
116715    semi-solid die castings and liquid die castings were heat treated with
116716    the optimized process. The results show that the mechanical properties
116717    of semi-solid die castings of aluminum alloy are superior to those of
116718    the liquid die castings, especially the strengthening degree of heat
116719    treated semi-solid die castings is much greater than that of liquid die
116720    castings with the tensile strength more than 330 MPa and the elongation
116721    more than 10 %, and this is mainly contributed to the non-dendritic and
116722    more compact microstructure of semi-solid die castings. The
116723    strengthening mechanism of heat treatment for the semi-solid die
116724    castings of A356 aluminum alloy is due to the dispersive precipitation
116725    of the second phase(Mg-2 Si) and formation of GP Zone.
116726 C1 Shanghai Univ, Sch Mat Sci, Shanghai 200072, Peoples R China.
116727 RP Zhang, HH, Shanghai Univ, Sch Mat Sci, Shanghai 200072, Peoples R China.
116728 EM hhzhang@mail.shu.edu.cn
116729 CR BRANDES EA, 1983, SMITHELLS METALS REF
116730    CABIBBO M, 2002, MATER CHARACT, V49, P193
116731    CERRI E, 2000, MAT SCI ENG A-STRUCT, V284, P254
116732    FINK R, 1998, 5 INT C SEM PROC ALL, P557
116733    GARAT M, 1998, 5 INT C SEM SOL PROC, P199
116734    HIRATA K, 1997, JPN I LIGHT MET, V47, P672
116735    KANG CG, 2001, METALL MATER TRANS B, V32, P363
116736    KIRKWOOD DH, 1998, 5 INT C SEM PROC ALL
116737    NAGY E, 1998, LIGHT MET, P1097
116738    SPENCER DB, 1972, METALL T, V3, P1925
116739    STEPHEN PM, 1997, MODERN CASTIN, P41
116740    YOUNGKP, 2000, P 6 INT C SEM SOL PR, P97
116741    YU YB, 1999, SCRIPTA MATER, V41, P767
116742    ZHANG HH, 2001, CHINESE J NONFERROUS, V11, P221
116743    ZHANG HH, 2003, STUDY TECHNIQUE SIMU
116744    ZHANG K, 2000, CHINESE J NONFERR S1, V10, P135
116745 NR 16
116746 TC 0
116747 SN 1003-6326
116748 J9 TRANS NONFERROUS METAL SOC CH
116749 JI Trans. Nonferrous Met. Soc. China
116750 PD DEC
116751 PY 2003
116752 VL 13
116753 IS 6
116754 BP 1280
116755 EP 1284
116756 PG 5
116757 SC Metallurgy & Metallurgical Engineering
116758 GA 760PT
116759 UT ISI:000187843400006
116760 ER
116761 
116762 PT J
116763 AU Wang, H
116764    Ren, ZM
116765    Li, X
116766    Li, WX
116767    Deng, K
116768    Xu, KD
116769 TI Alignment behavior of MnBi phase in Bi-Mn alloy solidified in static
116770    magnetic field
116771 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
116772 DT Article
116773 DE magnetic field; Bi-Mn alloy; MnBi; alignment; congregation
116774 ID GROWTH
116775 AB During the solidification of Bi-Mn alloys from the mushy zone between
116776    262 degreesC and 355 degreesC in a static magnetic field up to 1.0 T,
116777    the alignment behavior of the MnBi primary phase in the alloys was
116778    studied experimentally. The ferromagnetic MnBi crystals are magnetized
116779    and rotate their c-axes parallel to the field. Then, the oriented
116780    crystals congregate and grow up under the influence of magnetic
116781    interactions so that the alignment structure of the rodlike MnBi phase
116782    is produced. It is found that the orientation of MnBi crystals occurs
116783    immediately when the heating temperature or magnetic intensity reaches
116784    a critical value and beyond the value the orientation factor P of the
116785    MnBi phase is increased with increasing the heating temperature and the
116786    magnetic intensity. The critical temperature for Bi-6% Mn alloy is 275
116787    degreesC in a 1.0 T magnetic field and increases to 290 degreesC when
116788    the magnetic field intensity decreases to 0.1 T. When the alloys are
116789    hold at 275 degreesC, the critical magnetic intensity for Bi-6% Mn
116790    alloy is 0.4T and 0.05 T for Bi-3%Mn alloy. The orientation and
116791    congregation of the MnBi crystals were analyzed in terms of the
116792    magnetic anisotropy of the crystals and their magnetic interactions.
116793 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
116794 RP Ren, ZM, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R
116795    China.
116796 EM zmrenb@163.com
116797 CR DI GQ, 1992, J MAGN MAGN MATER, V104, P1023
116798    FARRELL DE, 1987, PHYS REV B, V36, P4025
116799    GUO X, 1991, J APPL PHYS 2B, V69, P6067
116800    KATSUKI A, 1996, CHEM LETT, P607
116801    LEES MR, 1992, PHYSICA C, V191, P414
116802    MOFFATT WG, 1984, HDB BINARY PHASE DIA, V11, P83
116803    MORIKAWA H, 1998, MATER T JIM, V39, P814
116804    PIRICH RG, 1980, IEEE T MAGN, V16, P1065
116805    PIRICH RG, 1984, METALL TRANS A, V15, P2139
116806    SHETTY MN, 1987, J MATER SCI, V22, P1908
116807    WAN DF, 1987, PHYS MAGNETISM
116808    YASUDA H, 2000, 3 INT S EL PROC MAT, P647
116809 NR 12
116810 TC 0
116811 SN 1003-6326
116812 J9 TRANS NONFERROUS METAL SOC CH
116813 JI Trans. Nonferrous Met. Soc. China
116814 PD DEC
116815 PY 2003
116816 VL 13
116817 IS 6
116818 BP 1405
116819 EP 1409
116820 PG 5
116821 SC Metallurgy & Metallurgical Engineering
116822 GA 760PT
116823 UT ISI:000187843400030
116824 ER
116825 
116826 PT J
116827 AU Zhou, J
116828    Liu, ZR
116829    Chen, GR
116830 TI Dynamics of periodic delayed neural networks
116831 SO NEURAL NETWORKS
116832 DT Article
116833 DE periodic delayed neural networks; dynamic attractor; periodic
116834    solutions; stability; global dynamics
116835 ID EXPONENTIAL STABILITY; PATTERN-FORMATION; GLOBAL STABILITY; SYSTEMS;
116836    CNNS; ENVIRONMENTS; INSTABILITY; EQUILIBRIA; NEURONS; MODELS
116837 AB This paper formulates and studies a model of periodic delayed neural
116838    networks. This model can well describe many practical architectures of
116839    delayed neural networks, which is generalization of some additive
116840    delayed neural networks such as delayed Hopfied neural networks and
116841    delayed cellular neural networks, under a time-varying environment,
116842    particularly when the network parameters and input stimuli are varied
116843    periodically with time. Without assuming the smoothness, monotonicity
116844    and boundedness of the activation functions, the two functional issues
116845    on neuronal dynamics of this periodic networks, i.e. the existence and
116846    global exponential stability of its periodic solutions, are
116847    investigated. Some explicit and conclusive results are established,
116848    which are natural extension and generalization of the corresponding
116849    results existing in the literature. Furthermore, some examples and
116850    simulations are presented to illustrate the practical nature of the new
116851    results. (C) 2003 Elsevier Ltd. All rights reserved.
116852 C1 Hebei Univ Technol, Dept Math Appl, Tianjin 300130, Peoples R China.
116853    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
116854 RP Zhou, J, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
116855 CR ARIK S, 1998, IEEE T CIRCUITS-I, V45, P168
116856    CAO J, 2000, PHYS LETT A, V267, P312
116857    CAO J, 2001, IEEE T CIRCUITS-I, V48, P494
116858    CAO JD, 2000, PHYS LETT A, V270, P157
116859    CAO JD, 2001, IEEE T CIRCUITS-I, V48, P1330
116860    CHEN TP, 2001, NEURAL NETWORKS, V14, P251
116861    CHEN TP, 2001, NEURAL NETWORKS, V14, P977
116862    CHEN Y, 2000, MATRIX ANAL
116863    CHUA LO, 1988, IEEE T CIRCUITS SYST, V35, P1257
116864    CHUA LO, 1988, IEEE T CIRCUITS SYST, V35, P1273
116865    COHEN MA, 1983, IEEE T SYST MAN CYB, V13, P815
116866    FORTI M, 1995, IEEE T CIRCUITS-I, V42, P354
116867    FREEMAN WJ, 1988, NEURAL NETWORKS, V1, P277
116868    GAIN RE, 1977, LECT NOTES MATH, P567
116869    GOPALSAMY K, 1994, PHYSICA D, V76, P344
116870    GOPALSAMY K, 2002, IEEE T NEURAL NETWOR, V13, P551
116871    GROSSBERG S, 1967, P NATIONAL ACADEMY S, V58, P1329
116872    GROSSBERG S, 1969, B AM MATH SOC, V75, P1238
116873    GROSSBERG S, 1972, DELAY FUNCTIONAL DIF, P121
116874    GUAN ZH, 2000, IEEE T NEURAL NETWOR, V11, P534
116875    HALE JK, 1977, INTRO FUNCTIONAL DIF
116876    HJELMFELT A, 1994, P NATL ACAD SCI USA, V91, P63
116877    HOPFIELD JJ, 1982, P NATL ACAD SCI USA, V79, P2554
116878    HOPFIELD JJ, 1984, P NATL ACAD SCI USA, V81, P3088
116879    HSU CH, 2000, INT J BIFURCAT CHAOS, V10, P2119
116880    LIANG XB, 2000, IEEE T NEURAL NETWOR, V11, P1506
116881    LU H, 2001, PHYS REV E, V64, P1
116882    MARCUS CM, 1989, PHYS REV A, V39, P347
116883    MOHAMAD S, 2000, DISCRET CONTIN DYN S, V6, P841
116884    ROSKA T, 1992, INT J CIRC THEOR APP, V20, P469
116885    SKARDA CA, 1987, BEHAV BRAIN SCI, V10, P161
116886    VANDENDRIESSCHE P, 1998, SIAM J APPL MATH, V58, P1878
116887    XU DY, 2001, COMPUT MATH APPL, V42, P39
116888    XU DY, 2001, INT J SYST SCI, V32, P863
116889    YAU Y, 1991, NEURAL NETWORKS, V4, P103
116890    ZHANG Y, 1996, INT J SYST SCI, V27, P227
116891    ZHANG Y, 1996, INT J SYST SCI, V27, P895
116892    ZHANG Y, 2002, IEEE T CIRCUITS-I, V49, P256
116893 NR 38
116894 TC 21
116895 SN 0893-6080
116896 J9 NEURAL NETWORKS
116897 JI Neural Netw.
116898 PD JAN
116899 PY 2004
116900 VL 17
116901 IS 1
116902 BP 87
116903 EP 101
116904 PG 15
116905 SC Computer Science, Artificial Intelligence
116906 GA 762ZD
116907 UT ISI:000188041400008
116908 ER
116909 
116910 PT J
116911 AU Wang, WG
116912    Zhou, BX
116913 TI The local internal stress in ferromagnetic alloys. Dislocation-solute
116914    interaction model for local internal stress source
116915 SO MATERIALS & DESIGN
116916 DT Article
116917 DE damping capacity; internal friction; local internal stress;
116918    dislocation-solute interaction
116919 ID DAMPING CAPACITY; CR ALLOYS; FE
116920 AB In order to elucidate the Raleigh and Left Shift phenomena encountered
116921    in the investigations into damping capacity (internal friction) of
116922    ferromagnetic alloys (Acta Metall Sin 34 (1998) 1039; Trans Jpn Inst
116923    Met 25 (1984) 891; Trans Jpn Inst Met 20 (1979) 409; Mater Sci Forum
116924    119-121 (1993) 415; Metall Mater Trans A 25 (1994) 111), the solute
116925    atom model (Mater Design (in press)) for the local internal stress
116926    source is modified and replaced by the dislocation-solute interaction
116927    model proposed by the authors. The coercive force as well as crystal
116928    lattice parameter of Fe-Cr-Al and Fe-Cr-Al-Si alloys was measured and
116929    the local internal stress of these alloys was discussed. It is pointed
116930    out that only when the alloy is fully re-crystallized, the potential of
116931    damping capacity could be fully developed, and at the pre-requisite of
116932    which do not lower the energy density of domain walls (Mater Design 21
116933    (2000) 541), to choose those alloying element that distort crystal
116934    lattice slightly is benefit to improve the damping capacity of
116935    ferromagnetic alloys. (C) 2003 Elsevier Ltd. All rights reserved.
116936 C1 Shandong Univ Technol, Fac Mech Engn, Zibo 255012, Peoples R China.
116937    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
116938 RP Wang, WG, Shandong Univ Technol, Fac Mech Engn, Zibo 255012, Peoples R
116939    China.
116940 EM wangwgnpic@hotmail.com
116941 CR BESHERS DN, 1993, MATER SCI FORUM, V191, P17
116942    FENG D, 1964, METAL PHYS, P258
116943    GOLOVIN IS, 1993, MATER SCI FORUM, V119, P415
116944    GOLOVIN IS, 1994, METALL MATER TRANS A, V25, P111
116945    LI S, 1990, FUNDAMENTALS XRAY DI, P187
116946    MASUMOTO H, 1979, T JIM, V20, P409
116947    MASUMOTO H, 1984, T JPN I MET, V25, P891
116948    SMITH GW, 1968, J APPL PHYS, V39, P23
116949    SMITH GW, 1969, J APPL PHYS, V40, P517
116950    WAN D, 1995, PHYS MAGNETISM, P345
116951    WANG W, 1998, THESIS NUCL POW I CH, P94
116952    WANG WG, 1998, ACTA METALL SIN, V34, P1039
116953    WANG WG, 2000, MATER DESIGN, V21, P541
116954    WANG WG, 2003, MATER DESIGN, V24, P163
116955 NR 14
116956 TC 1
116957 SN 0261-3069
116958 J9 MATER DESIGN
116959 JI Mater. Des.
116960 PD FEB
116961 PY 2004
116962 VL 25
116963 IS 1
116964 BP 25
116965 EP 29
116966 PG 5
116967 SC Materials Science, Multidisciplinary
116968 GA 761PD
116969 UT ISI:000187916400004
116970 ER
116971 
116972 PT J
116973 AU Xia, L
116974    Tang, MB
116975    Pan, MX
116976    Zhao, DQ
116977    Wang, WH
116978    Dong, YD
116979 TI Primary crystallization and hard magnetic properties of
116980    Nd60Al10Fe20Co10 metallic glasses
116981 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
116982 DT Article
116983 ID AMORPHOUS-ALLOYS; FORMING ALLOY; FE; MICROSTRUCTURE; ND60FE30AL10;
116984    TRANSITION; SOFT
116985 AB The primary crystallization in Nd60Al10Fe20Co10 ribbons and its effect
116986    on magnetic properties are investigated by means of DSC, x-ray
116987    diffraction, vibrating sample magnetometer and high-resolution electron
116988    microscope (HREM). The kinetic primary crystallization is found in the
116989    DSC traces of Nd60Al10Fe20Co10 ribbons and is invisible in annealed
116990    ribbons and as-cast rods. The amorphous feature of the as-spun ribbons
116991    is determined by HREM and is in accordance with the reduced glass
116992    transition temperature (about 0.52) of the alloy. Ribbons annealed at
116993    473 K contain the same nano-scaled particles as those in as-cast rods
116994    and exhibit a coercivity higher than as-spun ribbons but much lower
116995    than as-cast rod. The enhanced coercivity of the ribbons depends
116996    strongly upon the primary crystallization, and the difference in
116997    coercivity between as-cast rods and annealed ribbons is attributed to
116998    the different volume fraction of the nano-scaled particles in the
116999    samples.
117000 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
117001    Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China.
117002 RP Xia, L, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
117003 EM xialei@aphy.iphy.ac.cn
117004 CR ARCAS J, 1998, PHYS REV B, V58, P5193
117005    CROAT JJ, 1982, J APPL PHYS, V53, P3161
117006    DING J, 1999, J PHYS D APPL PHYS, V32, P713
117007    FAN GJ, 2000, J MATER RES, V15, P1556
117008    INOUE A, 1996, MATER T JIM, V37, P99
117009    INOUE A, 1998, METALL MATER TRANS A, V29, P1779
117010    KISSINGER HE, 1956, J RES NAT BUR STAND, V57, P217
117011    LOFFLER JF, 2000, PHYS REV LETT, V85, P1990
117012    RANDRIANANTOAND.N, 1997, PHYS REV B, V56, P10979
117013    SCHNEIDER S, 1996, APPL PHYS LETT, V68, P493
117014    SCHNEIDER S, 2002, APPL PHYS LETT, V80, P1749
117015    TURNBULL D, 1969, CONTEMP PHYS, V10, P473
117016    WANG L, 2000, J PHYS-CONDENS MAT, V12, P4253
117017    WANG XZ, 1999, J ALLOY COMPD, V290, P209
117018    WEI BC, 2001, J APPL PHYS, V89, P3529
117019    WEI BC, 2001, PHYS REV B, V64
117020    XIA L, 2003, J PHYS D APPL PHYS, V36, P775
117021    XIA L, 2003, J PHYS-CONDENS MAT, V15, P3531
117022    XING LQ, 2000, J APPL PHYS, V88, P3565
117023    YOSHIZAWA Y, 1990, MATER T JIM, V31, P307
117024    ZHUANG YX, 1999, APPL PHYS LETT, V75, P2392
117025    ZHUANG YX, 2000, J APPL PHYS, V87, P8209
117026 NR 22
117027 TC 7
117028 SN 0022-3727
117029 J9 J PHYS-D-APPL PHYS
117030 JI J. Phys. D-Appl. Phys.
117031 PD DEC 7
117032 PY 2003
117033 VL 36
117034 IS 23
117035 BP 2954
117036 EP 2957
117037 PG 4
117038 SC Physics, Applied
117039 GA 760PK
117040 UT ISI:000187842600014
117041 ER
117042 
117043 PT J
117044 AU Liang, XF
117045    Wu, WB
117046    Meng, ZY
117047 TI Microstructure and dielectric tunable properties of Al2O3-doped barium
117048    strontium titanate in the paraelectric state
117049 SO JOURNAL OF INORGANIC MATERIALS
117050 DT Article
117051 DE BST; Al2O3-doping; microstructure; dielectric tunablity
117052 ID DEPENDENCE; CERAMICS; FILMS
117053 AB Al2O3-doped Ba0.6Sr0.4TiO3(BST) ceramics were prepared by using
117054    conventional ceramic technology. The samples were analysed by SEM and
117055    XRD. The results indicate that Al3+ behaves as a grain-growth helper
117056    below a certain doping level and also the dopants have entered the
117057    unit-cell maintaining the perovskite structure of the solid solution.
117058    The dielectric constant and dissipation factor decrease and the
117059    tunability increases by, addition of Al2O3. The specimen at doping
117060    level of 0.8wt% has the optimal overall dielectric properties.
117061 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
117062 RP Liang, XF, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples
117063    R China.
117064 EM lxf5433@sohu.com
117065 CR BATLLO F, 1990, FERROELECTRICS, V109, P113
117066    COLE MW, 2000, THIN SOLID FILMS, V374, P34
117067    DEVONSHIRE AF, 1949, PHILOS MAG, V40, P1040
117068    DING YP, 2002, MATER CHEM PHYS, V75, P220
117069    GEYER RG, 1996, ISAF 96 P 10 IEEE IN, V2, P851
117070    HERNER SB, 1993, MATER LETT, V15, P317
117071    LIANG XF, 2003, J MAT SCI ENG B, V99, P366
117072    LIOU JW, 1997, J AM CERAM SOC, V80, P3093
117073    LIOU JW, 1998, PHYS CONDENS MATTER, V10, P2772
117074    MARTIRENA HT, 1974, J PHYS C SOLID STATE, V7, P3182
117075    OUTZOURHIT A, 1995, J MATER RES, V10, P1411
117076    WU L, 2000, J AM CERAM SOC, V83, P1713
117077    ZIMMERMANN F, 2001, J EUR CERAM SOC, V21, P2019
117078 NR 13
117079 TC 2
117080 SN 1000-324X
117081 J9 J INORG MATER
117082 JI J. Inorg. Mater.
117083 PD NOV
117084 PY 2003
117085 VL 18
117086 IS 6
117087 BP 1240
117088 EP 1244
117089 PG 5
117090 SC Materials Science, Ceramics
117091 GA 761MG
117092 UT ISI:000187912100016
117093 ER
117094 
117095 PT J
117096 AU Chen, LQ
117097    Zu, JW
117098    Wu, J
117099    Yang, XD
117100 TI Transverse vibrations of an axially accelerating viscoelastic string
117101    with geometric nonlinearity
117102 SO JOURNAL OF ENGINEERING MATHEMATICS
117103 DT Article
117104 DE axially accelerating string; geometric nonlinearity; method of multiple
117105    scales; stability; viscoelasticity
117106 ID MOVING BELTS; STABILITY ANALYSIS; DYNAMIC STABILITY; PART II
117107 AB Two-to-one parametric resonance in transverse vibration of an axially
117108    accelerating viscoelastic string with geometric nonlinearity is
117109    investigated. The transport speed is assumed to be a constant mean
117110    speed with small harmonic variations. The nonlinear partial
117111    differential equation that governs transverse vibration of the string
117112    is derived from Newton's second law. The method of multiple scales is
117113    applied directly to the equation, and the solvability condition of
117114    eliminating secular terms is established. Closed-form solutions for the
117115    amplitude of the vibration and the existence conditions of nontrivial
117116    steady-state response in two-to-one parametric resonance are obtained.
117117    Some numerical examples showing effects of the mean transport speed,
117118    the amplitude and the frequency of speed variation are presented.
117119    Lyapunov's linearized stability theory is employed to analyze the
117120    stability of the trivial and nontrivial solutions for two-to-one
117121    parametric resonance. Some numerical examples highlighting the effects
117122    of the related parameters on the stability conditions are presented.
117123 C1 Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
117124    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
117125    Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada.
117126 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
117127 EM lgchen@online.sh.cn
117128 CR ABRATE S, 1992, MECH MACH THEORY, V27, P645
117129    CHEN LQ, 2001, ADV MECH, V31, P535
117130    CHEN LQ, 2003, ACTA MECH, V162, P143
117131    FUNG RF, 1997, J SOUND VIB, V201, P153
117132    HUANG JS, 1995, INT J MECH SCI, V37, P145
117133    MIRANKER WL, 1960, IBM J RES DEV, V4, P36
117134    MOCHENSTURM EM, 1996, J VIB ACOUST, V116, P346
117135    MOTE CD, 1972, SHOCK VIBRATION DIGE, V4, P2
117136    OZKAYA E, 2000, J SOUND VIB, V230, P729
117137    PAKDEMIRLI M, 1993, J SOUND VIB, V168, P371
117138    PAKDEMIRLI M, 1994, J SOUND VIB, V169, P179
117139    PAKDEMIRLI M, 1997, J SOUND VIB, V203, P815
117140    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
117141    WICKERT JA, 1990, J APPL MECH-T ASME, V57, P738
117142    WU J, IN PRESS APPL MATH M
117143    ZHANG L, 1998, J SOUND VIB, V216, P75
117144    ZHANG L, 1998, J SOUND VIB, V216, P93
117145    ZHANG L, 1999, J APPL MECH-T ASME, V66, P396
117146    ZHANG L, 1999, J APPL MECH-T ASME, V66, P403
117147    ZHAO WJ, 2002, INT J NONLINEAR SCI, V3, P129
117148 NR 20
117149 TC 5
117150 SN 0022-0833
117151 J9 J ENG MATH
117152 JI J. Eng. Math.
117153 PD FEB
117154 PY 2004
117155 VL 48
117156 IS 2
117157 BP 171
117158 EP 182
117159 PG 12
117160 SC Engineering, Multidisciplinary; Mathematics, Applied
117161 GA 762YN
117162 UT ISI:000188035300005
117163 ER
117164 
117165 PT J
117166 AU Jia, XS
117167    Zhang, YM
117168 TI Reductive cleavage of the sulfur-sulfur bond by the samarium/Cp2TiCl2
117169    used for the synthesis of S-phenyl thiolesters
117170 SO JOURNAL OF CHEMICAL RESEARCH-S
117171 DT Article
117172 DE sulfur-sulfur bond; samarium/Cp2TiCl2; S-phenyl thiolesters
117173 ID ARYL THIOESTERS
117174 AB A mild method is reported for the reductive cleavage of the
117175    sulfur-sulfur bond by the samarium/ Cp2TiCl2 system to give a
117176    phenylthiolate anion species which reacts with acyl chlorides to give
117177    the corresponding S-phenyl thiolesters in good yields.
117178 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
117179    Hangzhou Univ, Dept Chem, Hangzhou 310028, Peoples R China.
117180 RP Jia, XS, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
117181 EM xsjia@mail.shu.edu.cn
117182 CR ALVAREZIBARRA C, 1989, SYNTHESIS-STUTTGART, P560
117183    BERENGUER R, 1989, SYNTHESIS-STUTTGART, P305
117184    BRUNNER H, 1990, 4946492, US
117185    CARDELLICCHIO C, 1985, TETRAHEDRON LETT, V26, P3595
117186    CHUNG A, 1988, 4745124, US
117187    ELZOHRY MF, 1991, PHOSPHORUS SULFUR, V61, P373
117188    GIOVANNI P, 1989, TETRAHEDRON, V45, P7411
117189    MIYAKI K, 1956, J PHARM SOC JPN, V76, P1196
117190    PRANGOVA L, 1985, J CHEM RES SYNOP, V4, P118
117191    SAEED A, 1986, TETRAHEDRON LETT, V27, P3791
117192    SASSIN G, 1956, J ORG CHEM, V21, P852
117193    SHIMIZU T, 2002, TETRAHEDRON LETT, V6, P1039
117194    SHLOMO A, 1986, ORGANOMETALLICS, V5, P596
117195    TURPIN JA, 1999, J MED CHEM, V42, P67
117196    WALDEMAR A, 1992, TETRAHEDRON LETT, V33, P469
117197    ZHANG YM, 1995, SYNTHETIC COMMUN, V25, P1825
117198 NR 16
117199 TC 1
117200 SN 0308-2342
117201 J9 J CHEM RES-S
117202 JI J. Chem. Res.-S
117203 PD SEP
117204 PY 2003
117205 IS 9
117206 BP 540
117207 EP 541
117208 PG 2
117209 SC Chemistry, Multidisciplinary
117210 GA 760DY
117211 UT ISI:000187797400007
117212 ER
117213 
117214 PT J
117215 AU Zheng, XY
117216    Zhu, WQ
117217    Wu, YZ
117218    Jiang, XY
117219    Sun, RG
117220    Zhang, ZL
117221    Xu, SH
117222 TI A white OLED based on DPVBi blue light emitting host and DCJTB red
117223    dopant
117224 SO DISPLAYS
117225 DT Article
117226 DE white organic light emitting diode; doping; 4,4
117227    '-bis(2,2-diphenylvinyl)-1,1 '-biphenyl;
117228    4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H
117229    -pyran
117230 ID ORGANIC ELECTROLUMINESCENCE DEVICES; EMISSION; DIODE; LAYERS
117231 AB A white organic light emitting diode (OLED) was fabricated in which a
117232    blue light emitting host DPVBi was doped with a red dye DCJTB. The
117233    device structure was ITO/CuPc/NPB/DPVBi:DCJTB/Alq/LiF/Al, where CuPc is
117234    copper phthalocyanine, NPB is
117235    NM-bis-(1-naphthyl)N,M-diphenyl-1,1'-biphenyl-4,4'-diamine, DPVBi is
117236    4,4!-bis(2,2-diphenylvinyl)-1,1'-biphenyl, DCJTB is
117237    4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H
117238    -pyran, and Alq is tris(8-quinolinolato) aluminium. White light
117239    emission was realized in an OLED with 0.08% DCJTB doping concentration
117240    by weight. The fabricated white OLED showed a little shift from blue to
117241    red with the increase of injection current, e.g. the CIE coordinates
117242    from (0.26, 0.32) at 4 mA/cm 2 current density to (0.24, 0.30) at 400
117243    mA/cm(2) current density. The maximum luminance reaches 7822 cd/m(2),
117244    and the maximum luminous efficiency is 1.75 lm/W (2.45 cd/A) at 20
117245    mA/cm(2). (C) 2003 Elsevier B.V. All rights reserved.
117246 C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Sci Res Management Div, Shanghai 201800, Peoples R China.
117247    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
117248 RP Zheng, XY, Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Sci Res
117249    Management Div, Shanghai 201800, Peoples R China.
117250 EM xyzheng@mail.siom.ac.cn
117251 CR CHEN ZJ, 2002, J PHYS D APPL PHYS, V35, P742
117252    FORREST SR, 1997, SYNTHETIC MET, V91, P9
117253    GRANSTROM M, 1996, APPL PHYS LETT, V68, P147
117254    HAMADAY Y, 1993, JPN J APPL PHYS, V32, L917
117255    HUANG YS, 2002, APPL PHYS LETT, V80, P2782
117256    JIANG XY, 2000, J PHYS D APPL PHYS, V33, P473
117257    JORDAN RH, 1996, APPL PHYS LETT, V68, P1192
117258    KIDO J, 1995, SCIENCE, V267, P1332
117259    KIDO J, 1996, JPN J APPL PHYS, V35, P394
117260    KIM CH, 2002, APPL PHYS LETT, V80, P2201
117261    KO CW, 2001, APPL PHYS LETT, V79, P4234
117262    SAKAKIBARA Y, 1999, APPL PHYS LETT, V74, P2587
117263    STRUKELJ M, 1996, J AM CHEM SOC, V118, P1213
117264    TOKITO S, 1995, J APPL PHYS, V77, P1985
117265    XIE ZY, 2000, SYNTHETIC MET, V108, P81
117266    YANG Y, 1997, J APPL PHYS, V81, P3294
117267    ZHANG YJ, 2001, BIOTECHNOL APPL BI 1, V34, P1
117268 NR 17
117269 TC 10
117270 SN 0141-9382
117271 J9 DISPLAYS
117272 JI Displays
117273 PD OCT
117274 PY 2003
117275 VL 24
117276 IS 3
117277 BP 121
117278 EP 124
117279 PG 4
117280 SC Computer Science, Hardware & Architecture; Engineering, Electrical &
117281    Electronic; Instruments & Instrumentation; Optics
117282 GA 763AE
117283 UT ISI:000188045000004
117284 ER
117285 
117286 PT J
117287 AU Wu, YQ
117288    You, JL
117289    Jiang, GC
117290    Chen, H
117291 TI Theoretical study of structural and Raman spectral properties of CaSiO3
117292    quenched from melt to glass
117293 SO CHINESE JOURNAL OF INORGANIC CHEMISTRY
117294 DT Article
117295 DE CaSiO3 melt and glass; micro-structure; Raman spectra; computer
117296    simulation
117297 ID SODIUM DISILICATE CRYSTAL; BOND POLARIZABILITY; SILICATE-GLASSES;
117298    TEMPERATURE; CAO-SIO2; LIQUID
117299 AB With the molecular dynamics simulation and a newly method for the Raman
117300    spectra calculation, we studied the changes of micro-structural and
117301    Raman spectral properties of CaSiO3 under the quenching process from
117302    high-temperature melt down to the room-temperature glass. In the
117303    structural properties, the Si-O bond is shortened following with the
117304    decrease of temperature, and the shortening degree of Si-Ob bond is
117305    obviously greater than that of Si-O-nb bond. Meanwhile, the variation
117306    of molar fractions of Si-O-b and Si-O-nb bonds indicated that the
117307    decrease of temperature reduced the disorder degree of the system. With
117308    the decrease of temperature, the characteristic bands of five kinds of
117309    tetrahedral units in the partial Raman spectra shifted to the high
117310    frequency direct, and a linear relation was found between the frequency
117311    and temperature. The calculated results also gave the strong conclusion
117312    that the temperature has no effect on the Raman scattering
117313    coefficients. Finally, two ratios of Raman scattering coefficients were
117314    obtained as follow: S-3/S-2=0.3987 and S-2/S-1=0.48011 which agreed
117315    very well with the corresponding experimental values.
117316 C1 Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai 200072, Peoples R China.
117317 RP Wu, YQ, Shanghai Univ, Shanghai Enhanced Lab Ferro Met, Shanghai
117318    200072, Peoples R China.
117319 EM wu_yq1222@163.com
117320 CR ABBATE S, 1977, J CHEM PHYS, V67, P1519
117321    BARRON LD, 1986, MOL PHYS, V57, P653
117322    CORMIER L, 1996, CHEM GEOL, V128, P77
117323    FRANTZ JD, 1995, CHEM GEOL, V121, P155
117324    GO S, 1975, PHYS REV LETT, V34, P580
117325    KIEFFER J, 1989, J CHEM PHYS, V90, P4982
117326    MYSEN BO, 1994, CONTRIB MINERAL PETR, V117, P1
117327    TANIGUCHI T, 1997, J NON-CRYST SOLIDS, V211, P56
117328    WASEDA Y, 1977, MET T              B, V8, P563
117329    WILSON EB, 1955, MOL VIBRATIONS
117330    WOLF GH, 1990, J CHEM PHYS, V93, P2280
117331    WU YQ, 2002, CHINESE PHYS LETT, V19, P1880
117332    WU YQ, 2002, NONFERROUS MET SOC C, V12, P1218
117333    YOU JL, 2000, SPECTROSC SPECT ANAL, V20, P797
117334    YOU JL, 2001, J NON-CRYST SOLIDS, V282, P125
117335    ZHANG P, 1996, J NON-CRYST SOLIDS, V204, P294
117336 NR 16
117337 TC 1
117338 SN 1001-4861
117339 J9 CHIN J INORG CHEM
117340 JI Chin. J. Inorg. Chem.
117341 PD FEB
117342 PY 2004
117343 VL 20
117344 IS 2
117345 BP 133
117346 EP 138
117347 PG 6
117348 SC Chemistry, Inorganic & Nuclear
117349 GA 763AD
117350 UT ISI:000188044800003
117351 ER
117352 
117353 PT J
117354 AU Ma, HL
117355    Yang, FJ
117356 TI Measurement of hyperfine coupling constants of singly ionized rare
117357    earth ions
117358 SO ATOMIC DATA AND NUCLEAR DATA TABLES
117359 DT Article
117360 ID BEAM LASER SPECTROSCOPY; LINES; FINE; NM
117361 AB Hyperfine structure spectra of singly ionized rare earth ions were
117362    measured by collinear fast-ion-beam laser spectroscopy. Hypertine
117363    structures in the range of 560-620 nm were well resolved. The magnetic
117364    dipole coupling constants and electric quadrupole coupling constants of
117365    the excited levels and metastable levels in La-139(+), Pr-141(+),
117366    Nd-143,145(+), Eu-151,153(+), and Tb-159(+) were determined. (C) 2003
117367    Elsevier Inc. All rights reserved.
117368 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
117369    Fudan Univ, Inst Modern Phys, Shanghai 200433, Peoples R China.
117370 RP Ma, HL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
117371 EM hl-ma@mail.shu.edu.cn
117372 CR ANDRA HJ, 1975, ATOMIC PHYSICS, V4, P365
117373    ANDRA HJ, 1979, PROGR ATOMIC SPECT B
117374    ARMSTRONG L, 1971, THEORY HYPERFINE STR
117375    BENGTSON A, 1980, PHYS LETT A, V76, P45
117376    BERRAHMANSOUR N, 1989, PHYS REV A, V39, P5762
117377    BROSTROM L, 1994, PHYS REV A, V49, P3333
117378    DORSCHEL K, 1984, Z PHYS A ATOMS NUCL, V317, P233
117379    GINIBRE A, 1989, PHYS SCR, V39, P694
117380    HOHLE C, 1982, Z PHYS A, V304, P279
117381    IIMURA H, 1994, PHYS REV C, V50, P661
117382    KUWAMOTO T, 1996, J PHYS SOC JPN, V65, P3180
117383    LI MS, 2000, HYPERFINE INTERACT, V128, P417
117384    MA HL, 1999, J PHYS B-AT MOL OPT, V32, P1345
117385    SEN A, 1987, PHYS REV A, V36, P1983
117386 NR 14
117387 TC 3
117388 SN 0092-640X
117389 J9 AT DATA NUCL DATA TABLES
117390 JI Atom. Data Nucl. Data Tables
117391 PD JAN
117392 PY 2004
117393 VL 86
117394 IS 1
117395 BP 3
117396 EP 18
117397 PG 16
117398 SC Physics, Atomic, Molecular & Chemical; Physics, Nuclear
117399 GA 763BE
117400 UT ISI:000188048800002
117401 ER
117402 
117403 PT J
117404 AU Li, CP
117405    Chen, GR
117406    Zhao, SC
117407 TI Exact travelling wave solutions to the generalized Kuramoto-Sivashinsky
117408    equation
117409 SO LATIN AMERICAN APPLIED RESEARCH
117410 DT Article
117411 DE travelling wave solutions; solitary wave solutions;
117412    Kuramoto-Sivashinsky equation
117413 ID BIFURCATION
117414 AB By using a special transformation, the new exact travelling wave
117415    solutions to the generalized Kuramoto- Sivashinsky equation are
117416    obtained.
117417 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
117418    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
117419    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
117420 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
117421 CR ABDELGAWAD HI, 2001, CHAOS SOLITON FRACT, V12, P2039
117422    KURAMOTO Y, 1978, PROG THEOR PHYS    S, V64, P346
117423    LI CP, 2001, INT J BIFURCAT CHAOS, V11, P2493
117424    LI CP, 2002, INT J BIFURCAT CHAOS, V12, P103
117425    LU BQ, 1993, PHYS LETT A, V175, P113
117426    SIVASHINSKY GI, 1977, ACTA ASTRONAUT, V4, P1177
117427    SIVASHINSKY GI, 1980, SIAM J APPL MATH, V39, P67
117428    TEMAM R, 1988, INFINITE DIMENSIONAL
117429    YANG ZJ, 1994, J PHYS A-MATH GEN, V27, P2837
117430 NR 9
117431 TC 0
117432 SN 0327-0793
117433 J9 LATIN AM APPL RES
117434 JI Latin Am. Appl. Res.
117435 PD JAN
117436 PY 2004
117437 VL 34
117438 IS 1
117439 BP 65
117440 EP 68
117441 PG 4
117442 SC Engineering, Chemical
117443 GA 758HY
117444 UT ISI:000187629400011
117445 ER
117446 
117447 PT J
117448 AU Chen, Y
117449    Wang, Q
117450    Shi, J
117451    Zhou, J
117452 TI Propagation characteristics of anisotropic incoherent dipolar beams
117453 SO LASER PHYSICS
117454 DT Article
117455 ID BESSEL-GAUSS BEAMS; ELECTROMAGNETIC BEAMS; DIFFRACTION
117456 AB The propagation characteristics of anisotropic incoherent
117457    electromagnetic vector beams in free space are investigated by using
117458    the Poynting vector method. The energy distribution in the beam cross
117459    section is analyzed. Also, the influence of incoherence on dipolar
117460    beams is studied. There are two side lobes beside the energy peak of
117461    beams whose location changes during the propagation. The movements of
117462    the side lobes are different for different incoherence. Finally, we
117463    find that there are three different types of evolution of the beam
117464    profile during the propagation.
117465 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
117466 RP Chen, Y, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
117467 CR BAGINI V, 1996, J MOD OPTIC, V43, P1155
117468    BOUCHAL Z, 1995, J MOD OPTIC, V42, P1555
117469    DURNIN J, 1987, J OPT SOC AM A, V4, P651
117470    DURNIN J, 1987, PHYS REV LETT, V58, P1499
117471    GORRI F, 1987, OPT COMMUN, V64, P491
117472    GREENE PL, 1998, J OPT SOC AM A, V15, P3020
117473    JORDAN RH, 1997, J OPT SOC AM B, V14, P449
117474    MANDEL L, 1995, OPTICAL COHERENCE QU
117475    SESHADRI SR, 1999, J OPT SOC AM A, V16, P1373
117476    SESHADRI SR, 2000, J OPT SOC AM A, V17, P780
117477 NR 10
117478 TC 0
117479 SN 1054-660X
117480 J9 LASER PHYS
117481 JI Laser Phys.
117482 PD DEC
117483 PY 2003
117484 VL 13
117485 IS 12
117486 BP 1513
117487 EP 1518
117488 PG 6
117489 SC Physics, Applied; Optics
117490 GA 758CP
117491 UT ISI:000187615200009
117492 ER
117493 
117494 PT J
117495 AU Yu, B
117496    Chen, B
117497    Yang, XY
117498    Qiu, JR
117499    Jiang, XW
117500    Zhu, CS
117501    Hirao, K
117502 TI Study of crystal formation in borate, niobate, and titanate glasses
117503    irradiated by femtosecond laser pulses
117504 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS
117505 DT Article
117506 ID RAMAN-SCATTERING; OPTICAL FIBER
117507 AB The generation of nonlinear optical functional crystals in borate,
117508    niobate, and titanate glasses that have been irradiated by 800-nm
117509    femtosecond laser pulses was investigated by Raman spectroscopy. The
117510    effects of the length of irradiation time on the generation of crystals
117511    were measured. We show that the structure of the glass network was
117512    destroyed during irradiation by the femtosecond laser. (B3O6)(3-),
117513    (NbO6)(7-), and (TiO4)(4-) anion units as well as beta-BaB2O4, LiNbO3,
117514    and Ba2TiO4 crystals were formed in the focal area of the irradiation.
117515    We suggest that femtosecond laser irradiation can be a useful approach
117516    to the fabrication of integrated optical devices. (C) 2004 Optical
117517    Society of America.
117518 C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Photon Craft Project, Shanghai 201800, Peoples R China.
117519    Japan Sci & Technol Corp, Shanghai 201800, Peoples R China.
117520    Shanghai Univ, Coll Sci, Shanghai 200436, Peoples R China.
117521 RP Yu, B, Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Photon Craft
117522    Project, Shanghai 201800, Peoples R China.
117523 CR FUKUMI K, 1989, J NON-CRYST SOLIDS, V110, P61
117524    GAO HX, 1989, J NON-CRYST SOLIDS, V112, P332
117525    HILL KO, 1978, APPL PHYS LETT, V32, P647
117526    KAMITSOS EI, 1989, J NON-CRYST SOLIDS, V111, P252
117527    KAMIYA K, 1982, J NON-CRYST SOLIDS, V52, P357
117528    KONIJNENDIJK WL, 1975, J NONCRYST SOLIDS, V18, P307
117529    MIURA K, 1997, APPL PHYS LETT, V71, P3329
117530    OSTERBERG U, 1986, OPT LETT, V11, P516
117531    ROUSSIGNE Y, 1992, SOLID STATE COMMUN, V82, P287
117532    SCHAUFFLE RF, 1966, PHYS REV, V152, P705
117533    SONG XL, 1998, CHIN J LIGHT SCATT, V10, P30
117534    STRICKLER JH, 1991, OPT LETT, V16, P1780
117535    WANG J, 1999, ACTA PHYS SIN-CH ED, V48, P1103
117536    WILL M, 2000, OSA TRENDS OPTICS PH, V73, P127
117537    YU BK, 2000, P SOC PHOTO-OPT INS, V4098, P210
117538 NR 15
117539 TC 4
117540 SN 0740-3224
117541 J9 J OPT SOC AM B-OPT PHYSICS
117542 JI J. Opt. Soc. Am. B-Opt. Phys.
117543 PD JAN
117544 PY 2004
117545 VL 21
117546 IS 1
117547 BP 83
117548 EP 87
117549 PG 5
117550 SC Optics
117551 GA 759EH
117552 UT ISI:000187725000013
117553 ER
117554 
117555 PT J
117556 AU An, BL
117557    Gong, ML
117558    Li, MX
117559    Zhang, JM
117560 TI Synthesis, structure and luminescence properties of samarium (III) and
117561    dysprosium (III) complexes with a new tridentate organic ligand
117562 SO JOURNAL OF MOLECULAR STRUCTURE
117563 DT Article
117564 DE X-ray crystallography; samarium complex; dysprosium complex;
117565    luminescence property; synthesis
117566 ID INTRAMOLECULAR ENERGY TRANSFER; EUROPIUM COMPLEX; ELECTROLUMINESCENCE;
117567    FLUORESCENCE; DEVICES
117568 AB A novel organic ligand, 6-diphenylamine carbonyl 2-pyridine carboxylic
117569    acid (HDPAP), and the corresponding lanthanide complexes,
117570    tris(6-diphenylamine carbonyl 2-pyridine carboxylato) samarium (III)
117571    (Sm-DPAP) and tris(6-diphenylamine carbonyl 2-pyridine carboxylato)
117572    dysprosium (III) (Dy-DPAP) have been designed and synthesized. The
117573    crystal structures and photoluminescence of Sm-DPAP and Dy-DPAP have
117574    been studied. The results showed that the lanthanide complexes have
117575    electroneutral structures, and the solid samarium complex emits
117576    characteristic red fluorescence of Sm (III) ions at room temperature
117577    while the dysprosium complex emits the DPAP ligand phosphorescence. The
117578    lowest triplet level of DPAP ligand was calculated from the
117579    phosphorescence spectrum of Gd-DPAP in N,N-dimethyl formamide dilute
117580    solution determined at 77 K, and the energy transfer mechanisms in the
117581    lanthanide complexes were discussed. (C) 2003 Elsevier B.V. All rights
117582    reserved.
117583 C1 Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200436, Peoples R China.
117584    Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China.
117585 RP An, BL, Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200436, Peoples R
117586    China.
117587 EM anbaolii@263.sina.com
117588    cesgml@zsu.edu.cn
117589 CR AN BL, 2002, J LUMIN, V99, P155
117590    AN DC, 1998, APPL PHYS LETT, V72, P2806
117591    BRITO HF, 2002, J ALLOY COMPD, V344, P293
117592    CROMER DT, 1992, INT TABLE XRAY CRYST, C
117593    FILIPESCU N, 1964, J PHYS CHEM-US, V68, P3324
117594    FRIEND RH, 1999, NATURE, V397, P121
117595    GAO XC, 1998, APPL PHYS LETT, V72, P2217
117596    HEMMILA I, 1995, J ALLOY COMPD, V225, P480
117597    HO PKH, 1999, SCIENCE, V285, P233
117598    KAWAMURA Y, 1999, APPL PHYS LETT, V74, P3245
117599    LIANG CJ, 2000, APPL PHYS LETT, V76, P67
117600    MELBY LR, 1964, J AM CHEM SOC, V86, P5117
117601    MOYNAGH J, 1999, NATURE, V400, P105
117602    NORTH ACT, 1968, ACTA CRYSTALLOGR A, V24, P351
117603    SANO T, 2000, J MATER CHEM, V10, P157
117604    SATO S, 1970, B CHEM SOC JPN, V43, P1955
117605    SHELDRICK GM, 1995, SHELXTL VERSION 5
117606    SHELDRICK GM, 1997, SHELXL 97 PROGRAM CR
117607    SHELDRICK GM, 1997, SHELXS 97 PROGRAM CR
117608    SLOOFF LH, 2000, OPT MATER, V14, P101
117609    WEISSMAN SI, 1942, J CHEM PHYS, V10, P214
117610    YANG YS, 1994, J ALLOY COMPD, V207, P112
117611    ZHAO DX, 2000, THIN SOLID FILMS, V363, P208
117612 NR 23
117613 TC 7
117614 SN 0022-2860
117615 J9 J MOL STRUCT
117616 JI J. Mol. Struct.
117617 PD JAN
117618 PY 2004
117619 VL 687
117620 IS 1-3
117621 BP 1
117622 EP 6
117623 PG 6
117624 SC Chemistry, Physical
117625 GA 758BG
117626 UT ISI:000187612200001
117627 ER
117628 
117629 PT J
117630 AU Shan, EF
117631    Dang, CY
117632    Kang, LY
117633 TI A note on Nordhaus-Gaddum inequalities for domination
117634 SO DISCRETE APPLIED MATHEMATICS
117635 DT Article
117636 DE domination; total domination; double domination
117637 ID GRAPHS
117638 AB For a graph G of order n, let gamma(G), gamma(2)(G) and gamma(t)(G) be
117639    the domination, double domination and total domination numbers of G,
117640    respectively. The minimum degree of the vertices of G is denoted by
117641    delta(G) and the maximum degree by Delta(G). In this note we prove a
117642    conjecture due to Harary and Haynes saying that if a graph G has
117643    gamma(G), gamma((G) over bar) greater than or equal to 4, then
117644    gamma(2)(G) + gamma(2)((G) over bar) less than or equal to n - Delta(G)
117645    + delta(G) - 1 less than or equal to n - I
117646    and
117647    gamma(t)(G) + gamma(t)((G) over bar) less than or equal to n - Delta(G)
117648    + delta(G) - I less than or equal to n - 1,
117649    where (G) over bar is the complement of G. (C) 2003 Elsevier B.V. All
117650    rights reserved.
117651 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
117652    City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China.
117653 RP Shan, EF, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
117654 CR FINK JF, 1985, GRAPH THEORY APPL AL, P283
117655    FINK JF, 1985, GRAPH THEORY APPL AL, P301
117656    HARARY F, 1996, DISCRETE MATH, V155, P99
117657    HARARY F, 2000, ARS COMBINATORIA, V55, P201
117658    NORDHAUS EA, 1956, AM MATH MONTHLY, V63, P175
117659 NR 5
117660 TC 0
117661 SN 0166-218X
117662 J9 DISCRETE APPL MATH
117663 JI Discret Appl. Math.
117664 PD JAN 30
117665 PY 2004
117666 VL 136
117667 IS 1
117668 BP 83
117669 EP 85
117670 PG 3
117671 SC Mathematics, Applied
117672 GA 759UV
117673 UT ISI:000187756000008
117674 ER
117675 
117676 PT J
117677 AU Liu, JK
117678    Wu, QS
117679    Ding, YP
117680    Wang, B
117681 TI Controlled synthesis of HgS nanocrystals with artificial active
117682    membrane as template
117683 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
117684 DT Article
117685 DE mercury sulfide; nanocrystals; artificial active membrane; template
117686    synthesis
117687 ID FORMATION MECHANISM; ZNS NANOWIRES; FABRICATION
117688 AB Polynanocrystals of HgS were synthesized with artificial active
117689    membrane of collodion as the template. The results indicated that
117690    approximately spherical HgS particles about 33 nm, which has a cubic
117691    zinc-blende structure with a cell parameter a=0.585 16 nm, could be
117692    formed at room temperature with 0.1 mol/L HgS and 0.1 mol/L Na2S as the
117693    reactants. In addition, the tentative research for the reaction
117694    mechanism has been carried out.
117695 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
117696    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
117697 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
117698 CR FAN R, 2003, J AM CHEM SOC, V125, P5254
117699    GAO F, 2001, NANO LETTERS, V1, P743
117700    HUANG LM, 2000, J AM CHEM SOC, V122, P3530
117701    JIANG X, 2001, CHEM MATER, V13, P1213
117702    LI YD, 1999, J PHYS CHEM SOLIDS, V60, P965
117703    WEI ZX, 2002, LANGMUIR, V18, P917
117704    WU QS, 2000, CHEM J CHINESS U, V21, P1417
117705    WU QS, 2000, J MEMBRANE SCI, V172, P199
117706    WU QS, 2001, CHEM J CHINESE U, V22, P898
117707    WU QS, 2002, INORG CHEM COMMUN, V5, P671
117708    ZENG JH, 2001, MATER RES BULL, V36, P343
117709    ZHANG DB, 2001, CHEM MATER, V13, P2753
117710    ZHU JJ, 2000, J SOLID STATE CHEM, V153, P342
117711 NR 13
117712 TC 0
117713 SN 0251-0790
117714 J9 CHEM J CHINESE UNIV-CHINESE
117715 JI Chem. J. Chin. Univ.-Chin.
117716 PD DEC
117717 PY 2003
117718 VL 24
117719 IS 12
117720 BP 2147
117721 EP 2150
117722 PG 4
117723 SC Chemistry, Multidisciplinary
117724 GA 758PZ
117725 UT ISI:000187660500003
117726 ER
117727 
117728 PT J
117729 AU Zhang, Y
117730    Chen, DY
117731 TI Backlund transformation and soliton solutions for the shallow water
117732    waves equation
117733 SO CHAOS SOLITONS & FRACTALS
117734 DT Article
117735 ID MULTISOLITON SOLUTIONS; INVERSE METHOD; FORM
117736 AB A new bilinear Backlund transformation is presented for the shallow
117737    water waves equation. Starting from the new Backlund transformation, a
117738    wide variety of novel soliton solutions of the shallow water waves
117739    equation are generated. Moreover, the relationship between these
117740    solutions has been discussed. (C) 2003 Elsevier Ltd. All rights
117741    reserved.
117742 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
117743    Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China.
117744 RP Zhang, Y, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
117745 CR ABLOWITZ MJ, 1981, SOLITON INVERSE SCAT
117746    CHEN DY, 2002, J PHYS SOC JPN, V71, P2072
117747    CHEN DY, 2002, J PHYS SOC JPN, V71, P658
117748    DENG SF, 2001, J PHYS SOC JPN, V70, P3174
117749    HIROTA R, 1971, PHYS REV LETT, V27, P1192
117750    HIROTA R, 1974, PROG THEOR PHYS, V52, P1498
117751    HIROTA R, 1976, J PHYS SOC JPN, V40, P611
117752    HIROTA R, 1980, TOP CURR PHYS, V17, P157
117753    HU XB, 1991, J PHYS A-MATH GEN, V24, P1979
117754    KONNO K, 1975, PROG THEOR PHYS, V53, P1652
117755    MIURA RM, 1976, BACKLUND TRANSFORMAT
117756    SATSUMA J, 1977, J PHYS SOC JPN, V43, P692
117757    WADATI M, 1975, PROG THEOR PHYS, V53, P419
117758    ZHANG Y, 2003, J PHYS SOC JPN, V71, P763
117759 NR 14
117760 TC 3
117761 SN 0960-0779
117762 J9 CHAOS SOLITON FRACTAL
117763 JI Chaos Solitons Fractals
117764 PD APR
117765 PY 2004
117766 VL 20
117767 IS 2
117768 BP 343
117769 EP 351
117770 PG 9
117771 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
117772 GA 759PB
117773 UT ISI:000187745100019
117774 ER
117775 
117776 PT J
117777 AU Zhang, JF
117778    Meng, JP
117779    Zheng, CL
117780    Huang, WH
117781 TI Folded solitary waves and foldons in the (2+1)-dimensional breaking
117782    soliton equation
117783 SO CHAOS SOLITONS & FRACTALS
117784 DT Article
117785 ID QUARK-LOOP SOLITON; VAKHNENKO EQUATION
117786 AB Starting from the standard truncated Painleve expansion, a Backlund
117787    transformation for the (2 + I)-dimensional breaking soliton equation is
117788    derived. Making use of the variable separation approach, a variable
117789    separation solution of this model is obtained. By selecting appropriate
117790    multi-valued functions, a new class of localized coherent structures
117791    for the model are found. These structures exhibit interesting novel
117792    features not found in one-dimensions. (C) 2003 Elsevier Ltd. All rights
117793    reserved.
117794 C1 Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China.
117795    Zhejiang Normal Univ, Inst Nonlinear Phys, Zhejiang 321004, Peoples R China.
117796    Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England.
117797    Zhejiang Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China.
117798    Huzhou Teachers Coll, Dept Phys, Huzhou, Peoples R China.
117799 RP Zhang, JF, Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072,
117800    Peoples R China.
117801 CR BOGOYAVLENSKII O, 1989, IZV AKAD NAUK SSSR M, V53, P907
117802    BOGOYAVLENSKY OI, 1998, IZV AKAD NAUK SSSR M, V53, P243
117803    BOGOYAVLENSKY OI, 1999, IZV AKAD NAUK SSSR M, V54, P123
117804    GOODMAN MB, 2002, NATURE, V415, P1039
117805    KAKUHATA H, 1999, J PHYS SOC JPN, V68, P757
117806    LINDGARD PA, 1996, PHYS REV LETT, V77, P779
117807    LOCKLESS SW, 1999, SCIENCE, V286, P295
117808    LOU SY, 2002, J MATH PHYS, V43, P4078
117809    MATSUTANI S, 1985, MOD PHYS LETT A, V10, P717
117810    MATSUTANI S, 2002, J GEOM PHYS, V43, P146
117811    MORRISON AJ, 1999, NONLINEARITY, V12, P1427
117812    RADHA R, 1995, PHYS LETT A, V199, P7
117813    SCHLEIF M, 1998, EUR PHYS J A, V1, P171
117814    SCHLEIF M, 1998, INT J MOD PHYS E, V7, P121
117815    TANG XY, IN PRESS J MATH HYS
117816    TANG XY, 2002, PHYS REV E 2, V66
117817    TANG XY, 2003, COMMUN THEOR PHYS, V40, P62
117818    TREWICK SC, 2002, NATURE, V419, P174
117819    VAKHNENKO VA, 1992, J PHYS A-MATH GEN, V25, P4181
117820    VAKHNENKO VO, 1998, NONLINEARITY, V11, P1457
117821 NR 20
117822 TC 0
117823 SN 0960-0779
117824 J9 CHAOS SOLITON FRACTAL
117825 JI Chaos Solitons Fractals
117826 PD MAY
117827 PY 2004
117828 VL 20
117829 IS 3
117830 BP 523
117831 EP 527
117832 PG 5
117833 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
117834 GA 759PC
117835 UT ISI:000187745200012
117836 ER
117837 
117838 PT J
117839 AU Li, CP
117840    Chen, GR
117841 TI An improved version of the Marotto theorem (vol 18, pg 69, 2003)
117842 SO CHAOS SOLITONS & FRACTALS
117843 DT Correction
117844 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
117845    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
117846 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
117847 CR LI CP, 2003, CHAOS SOLITON FRACT, V18, P69
117848 NR 1
117849 TC 4
117850 SN 0960-0779
117851 J9 CHAOS SOLITON FRACTAL
117852 JI Chaos Solitons Fractals
117853 PD MAY
117854 PY 2004
117855 VL 20
117856 IS 3
117857 BP 655
117858 EP 655
117859 PG 1
117860 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
117861 GA 759PC
117862 UT ISI:000187745200025
117863 ER
117864 
117865 PT J
117866 AU Zhong, YB
117867    Ren, ZM
117868    Sun, QX
117869    Jiang, ZW
117870    Deng, K
117871    Xu, KD
117872 TI Pushing/engulfment behavior of the particles in front of metallic
117873    solid/liquid interface in electromagnetic field
117874 SO ACTA METALLURGICA SINICA
117875 DT Article
117876 DE solidifying interface; particle; pushing/engulfment; electromagnetic
117877    field; distribution of particles
117878 ID SOLID-LIQUID INTERFACE; INSOLUBLE PARTICLES; SOLIDIFICATION; REJECTION
117879 AB Behavior of the particles in front of metallic solidifying interface
117880    under electromagnetic force was discussed. The critical electromagnetic
117881    force needed to alter the behavior of the particles was deduced by
117882    considering the force balance. By using simulative experiments, three
117883    representative processes of alternating the behavior of the particles
117884    in front of solidifying interface under electromagnetic force were
117885    observed, and it was verified in ground experiment that the
117886    distribution of the particles in solidified metal could be controlled
117887    with applying electromagnetic force.
117888 C1 Shanghai Univ, Shanghai Enhanced Lab Ferrous Met, Shanghai 200072, Peoples R China.
117889 RP Zhong, YB, Shanghai Univ, Shanghai Enhanced Lab Ferrous Met, Shanghai
117890    200072, Peoples R China.
117891 CR BOLLING GF, 1971, J CRYST GROWTH, V10, P56
117892    CISSE J, 1971, J CRYST GROWTH, V10, P67
117893    CISSE J, 1971, J CRYST GROWTH, V11, P25
117894    HAN Q, 1995, ISIJ INT, V35, P693
117895    HAN QY, 1996, ACTA METALLURGICA SI, V32, P365
117896    HAN QY, 1996, B MAT S, P101
117897    KOLIN A, 1953, SCIENCE, V117, P134
117898    KORBER C, 1985, J CRYST GROWTH, V72, P649
117899    SASSA K, 1992, CAMP ISIJ, P990
117900    SHANGGUAN D, 1992, METALL TRANS A, V23, P669
117901    SHOJI T, 1994, IRON STEEL, V80, P24
117902    STEFANESCU DM, 1990, METALL TRANS A, V21, P231
117903    UHLMANN DR, 1964, J APPL PHYS, V35, P2986
117904    WANG ZD, 1994, ACTA METALLURGICA SI, V30, B39
117905    WU SS, 1997, FOUNDRY ENG, P3
117906    WU SS, 1998, ACTA METALL SIN, V3, P34
117907    XIE GH, 1995, ACTA METALLURGICA SI, V31, B275
117908    YASUDA H, 1996, ISIJ INT, V36, S167
117909    ZHONG YB, 1999, ACTA METALLURGIC SIN, V35, P503
117910    ZHONG YB, 2000, METALLOID PARTICLES
117911 NR 20
117912 TC 1
117913 SN 0412-1961
117914 J9 ACTA METALL SIN
117915 JI Acta Metall. Sin.
117916 PD DEC
117917 PY 2003
117918 VL 39
117919 IS 12
117920 BP 1269
117921 EP 1275
117922 PG 7
117923 SC Metallurgy & Metallurgical Engineering
117924 GA 760EC
117925 UT ISI:000187797800009
117926 ER
117927 
117928 PT J
117929 AU Cheng, JR
117930    Eitel, R
117931    Cross, LE
117932 TI Lanthanum-modified (1-x)(Bi0.8La0.2)(Ga0.05Fe0.9.)O-3 center dot
117933    xPbTiO(3) crystalline solutions: Novel morphotropic phase-boundary
117934    lead-reduced piezoelectrics
117935 SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
117936 DT Article
117937 ID HIGH-TEMPERATURE; SOLID-SOLUTIONS; BIFEO3
117938 AB (1 - x)(Bi0.8La0.2)(Ga0.05Fe0.95)O-3.xPbTiO(3) (BLGF-PT) crystalline
117939    solutions have been fabricated by solid-state reactions. BLGF-PT has
117940    single perovskite phase structure with a rhombohedral-tetragonal
117941    (FEGamma-FEt) morphotropic phase boundary (MPB) at a PT content of x =
117942    0.43. Lanthanum substitution has been found to increase the insulation
117943    resistance and decrease the coercive field down to 20 kV/cm, which
117944    results in significant improvements in dielectric and piezoelectric
117945    properties of BLGF-PT. The dielectric constant, loss tangent, Curie
117946    temperature, remnant polarization, piezoelectric d(33) constant, and
117947    planar coupling factor of 1760, 0.05, 264degreesC, 33 muC/cm(2) 295
117948    pC/N, and 0.36, respectively, have been achieved for BLFG-PT in the
117949    vicinity of the MPB. Compared with conventional Pb(Zr,Ti)O-3 (PZT)
117950    piezoelectric ceramics, the BLGFPT is a competitive alternative
117951    piezoelectric material with decreased lead content.
117952 C1 Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA.
117953    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
117954 RP Cheng, JR, Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA.
117955 CR *IEEE, 1761987 IEEE
117956    CHENG J, 2002, J APPL PHYS, V94, P5153
117957    CHENG JR, 2003, MATER LETT, V57, P2090
117958    EITEL RE, 2001, JPN J APPL PHYS 1, V40, P5999
117959    EITEL RE, 2002, JPN J APPL PHYS 1, V41, P2099
117960    GERSON R, 1967, J APPL PHYS, V38, P55
117961    KANAI T, 2001, ADV MATER, V7, P487
117962    KUMAR MM, 1998, PHYS STATUS SOLIDI A, V165, P317
117963    MULLER O, 1974, CRYSTAL CHEM NONMETA
117964    PALKAR VR, 2002, PRAMANA-J PHYS, V58, P1003
117965    POPOV YF, 2001, LOW TEMP PHYS+, V27, P478
117966    SMITH RT, 1968, J APPL PHYS, V39, P70
117967    SUNDER VVSSS, 1995, J MATER RES, V10, P1301
117968 NR 13
117969 TC 5
117970 SN 0002-7820
117971 J9 J AMER CERAM SOC
117972 JI J. Am. Ceram. Soc.
117973 PD DEC
117974 PY 2003
117975 VL 86
117976 IS 12
117977 BP 2111
117978 EP 2115
117979 PG 5
117980 SC Materials Science, Ceramics
117981 GA 756EA
117982 UT ISI:000187451800018
117983 ER
117984 
117985 PT J
117986 AU Yang, XC
117987    Bao, BR
117988    Sun, GX
117989    Cao, WG
117990 TI N,N'-dioctanoylpiperazine as a novel extractant for U(VI)
117991 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
117992 DT Article
117993 ID HNO3
117994 AB N,N'-Dioctanoylpiperazine (DOPEZ), a novel extractant for U(VI) in
117995    carbon tetrachloride has been studied. The principal factors affecting
117996    the U(VI) distribution ratio, i.e., the concentration of aqueous nitric
117997    acid, extractant, salting-out agent and temperature, were investigated.
117998 C1 Adm Comm, Jinan High Tech Dev Zone, Shandong 250101, Peoples R China.
117999    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
118000    Jinan Univ, Dept Chem, Jinan 250022, Peoples R China.
118001 RP Yang, XC, Adm Comm, Jinan High Tech Dev Zone, Shandong 250101, Peoples
118002    R China.
118003 CR CHARBORNNEL MC, 1988, SOLVENT EXTR ION EXC, V5, P151
118004    DONG LY, 1982, ANAL CHEM URANIUM, P58
118005    MUSIKAS C, 1987, SOLVENT EXTR ION EXC, V5, P151
118006    NIGOND L, 1994, SOLVENT EXTR ION EXC, V12, P261
118007    SIDDALL TH, 1960, J PHYS CHEM-US, V64, P1683
118008    SUN GX, 1998, THESIS CHINESE ACAD, P16
118009 NR 6
118010 TC 0
118011 SN 0236-5731
118012 J9 J RADIOANAL NUCL CHEM
118013 JI J. Radioanal. Nucl. Chem.
118014 PD DEC
118015 PY 2003
118016 VL 258
118017 IS 3
118018 BP 677
118019 EP 679
118020 PG 3
118021 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
118022    & Technology
118023 GA 757YD
118024 UT ISI:000187603200035
118025 ER
118026 
118027 PT J
118028 AU Yang, XC
118029    Bao, BR
118030    Cao, WG
118031 TI Effect of diluents in U(VI) extraction with N,N'-dihexanoylpiperazine
118032 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
118033 DT Article
118034 AB A systematic investigation has been carried out on the extractive
118035    behavior of N,N'-dihexanoylpiperazine (DHPEZ) with respect to U(VI) in
118036    five diluents, from aqueous nitric acid media. The variation of U(VI)
118037    distribution ratio with the concentrations of aqueous nitric acid,
118038    extractant, salting-out agent and with temperature has been
118039    investigated and discussed. The increasing order of extractive ability
118040    of DHPEZ towards U(VF) is: chloroform, carbon tetrachloride,
118041    1,4-dimethyl-benzene, toluene, benzene. The composition of the
118042    extracted species and extraction constants as well as the enthalpy
118043    changes are given.
118044 C1 Adm Comm, Jinan High Tech Dev Zone, Shandong 250101, Peoples R China.
118045    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
118046 RP Yang, XC, Adm Comm, Jinan High Tech Dev Zone, Shandong 250101, Peoples
118047    R China.
118048 CR DONG LY, 1982, ANAL CHEM URANIUM, P58
118049    HAN JT, 2000, THESIS CHINESE ACAD, P67
118050    KOMASAWA I, 1984, J CHEM ENG JPN, V17, P410
118051    SEKINE T, 1977, SOLVENT EXTRACTION C
118052    SHEN CH, 1993, J NUCL RADIOCHEM, V15, P243
118053    SIDDALL TH, 1963, J INORG NUCL CHEM, V25, P883
118054    SUN GX, 1998, THESIS CHINESE ACAD, P16
118055    SUN SX, 1992, ACTA CHIM SINICA, V50, P877
118056    SUN SX, 1996, ACTA CHIM SINICA, V54, P1101
118057    THIOLLET G, 1989, SOLVENT EXTR ION EXC, V7, P813
118058 NR 10
118059 TC 0
118060 SN 0236-5731
118061 J9 J RADIOANAL NUCL CHEM
118062 JI J. Radioanal. Nucl. Chem.
118063 PD DEC
118064 PY 2003
118065 VL 258
118066 IS 3
118067 BP 681
118068 EP 684
118069 PG 4
118070 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
118071    & Technology
118072 GA 757YD
118073 UT ISI:000187603200036
118074 ER
118075 
118076 PT J
118077 AU Gu, CQ
118078 TI A practical two-dimensional Thiele-type matrix Pade approximation
118079 SO IEEE TRANSACTIONS ON AUTOMATIC CONTROL
118080 DT Article
118081 DE matrix power series; Pade approximation; state-space realization;
118082    Thiele-type continued fraction; two-dimension
118083 ID STATE-SPACE REALIZATION; RECURSIVE COMPUTATION
118084 AB In view of several potential applications in multivariable
118085    two-dimensional (2-D) systems theory, a practical 2-D matrix Pade
118086    approximation is introduced by using a generalized inverse of the
118087    matrices. The approximants are expressed in the form of the 2-D
118088    Thiele-type continued fractions and are computed by an efficient
118089    recursive algorithm. As it's an application, the state-space
118090    realization problem of the 2-D filters is discussed.
118091 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
118092 RP Gu, CQ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
118093 CR ANTONIOU GE, 1988, IEEE T CIRCUITS SYST, V35, P1055
118094    BAKER GA, 1975, ESSENTIALS PADE APPR
118095    BOSE NK, 1980, IEEE T AUTOMAT CONTR, V25, P509
118096    BOSE NK, 1980, IEEE T CIRCUITS SYST, V27, P323
118097    CHUANQING G, 1995, EXPANSION BIVARIATE, V1, P355
118098    CHUANQING G, 1997, J COMPUT APPL MATH, V80, P71
118099    CHUANQING G, 1999, LINEAR ALGEBRA APPL, V295, P7
118100    CHUANQING G, 2001, LINEAR ALQ APPLICAT, V322, P141
118101    CUYT A, 1988, J COMPUT APPL MATH, V21, P145
118102    DICKINSON BW, 1974, IEEE T AUTOMAT CONTR, V19, P31
118103    FORNASINI E, 1976, IEEE TRANS AUTOMAT C, V21, P484
118104    GRAVESMORRIS PR, 1973, PADE APPROXIMANTS
118105    KALMAN RE, 1971, ASPECTS NETWORK SYST, P385
118106 NR 13
118107 TC 0
118108 SN 0018-9286
118109 J9 IEEE TRANS AUTOMAT CONTR
118110 JI IEEE Trans. Autom. Control
118111 PD DEC
118112 PY 2003
118113 VL 48
118114 IS 12
118115 BP 2259
118116 EP 2263
118117 PG 5
118118 SC Engineering, Electrical & Electronic; Automation & Control Systems
118119 GA 757TJ
118120 UT ISI:000187577300024
118121 ER
118122 
118123 PT J
118124 AU Zheng, JA
118125    Wu, MH
118126    Gu, JZ
118127    Qin, Z
118128 TI Preparation and gas-sensing characteristics of nanocrystalline spinel
118129    zinc ferrite thin films
118130 SO IEEE SENSORS JOURNAL
118131 DT Article
118132 DE gas sensing; nanomaterial; spray pyrolysis; thin film; zinc ferrite
118133 ID SOL-GEL PROCESS; TIN OXIDE; SENSITIVITY; ALPHA-FE2O3; SENSORS
118134 AB Zinc ferrite is a promising sensor material. In this paper, thin films
118135    of nanocrystalline zinc ferrite were deposited on alumina substrates by
118136    nebulization of a 0.01-M solution of a mixture of ZnCL2 and FeCl3 in
118137    ethanol (Zn:Fe=1:2) followed by pyrolysis and annealing in flowing air.
118138    The resulting films were characterized by X-ray diffraction and
118139    scanning electron microscopy, and the gas-sensing properties of
118140    as-deposited films were also investigated.
118141 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai, Peoples R China.
118142 RP Zheng, JA, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai, Peoples
118143    R China.
118144 CR CHAI CC, 1996, SENSOR ACTUAT B-CHEM, V34, P412
118145    CHU XF, 1999, SENSOR ACTUAT B-CHEM, V55, P19
118146    DAVIS SR, 1997, J PHYS CHEM B, V101, P9901
118147    DAVIS SR, 1998, J MATER CHEM, V8, P2065
118148    DELA M, 1997, SENSOR ACTUAT B-CHEM, V45, P49
118149    FOURNIER J, 1988, MAT RES B, V23, P3331
118150    GALDIKAS A, 1995, SENSOR ACTUAT B-CHEM, V26, P29
118151    GOPEL W, 1995, SENSOR ACTUAT B-CHEM, V26, P1
118152    HOTOVY I, 1998, VACUUM, V50, P41
118153    JIAO Z, 2002, SENSORS, V2, P71
118154    KOHL D, 1989, SENSOR ACTUATOR, V18, P71
118155    KORDAS G, 1990, J NON-CRYST SOLIDS, V121, P436
118156    LANTTO V, 1988, SENSOR ACTUATOR, V14, P149
118157    LANTTO V, 1992, GAS SENSORS, P117
118158    LIU XQ, 1997, SENSOR ACTUAT B-CHEM, V40, P161
118159    PARK SS, 1993, MATER LETT, V17, P346
118160    SCHIESSL W, 1996, PHYS REV B, V53, P9143
118161    STAMBOLOVA I, 1997, J SOLID STATE CHEM, V128, P305
118162    WILLIAMS DE, 1987, SOLID STATE GAS SENS, P71
118163    WILSON A, 1994, SENSOR ACTUAT B-CHEM, V18, P506
118164 NR 20
118165 TC 0
118166 SN 1530-437X
118167 J9 IEEE SENS J
118168 JI IEEE Sens. J.
118169 PD AUG
118170 PY 2003
118171 VL 3
118172 IS 4
118173 BP 435
118174 EP 438
118175 PG 4
118176 SC Engineering, Electrical & Electronic; Physics, Applied; Instruments &
118177    Instrumentation
118178 GA 755WZ
118179 UT ISI:000187435600012
118180 ER
118181 
118182 PT J
118183 AU Yu, J
118184    Zhang, HY
118185    Ma, ZZ
118186    Lu, W
118187    Wang, YF
118188    Zhu, JD
118189 TI Methylation profiling of twenty four genes and the concordant
118190    methylation behaviours of nineteen genes that may contribute to
118191    hepatocellular carcinogenesis
118192 SO CELL RESEARCH
118193 DT Article
118194 DE promoter CpG island; methylation specific PCR; concordant behaviors of
118195    methylation.
118196 ID DNA METHYLATION; CPG ISLAND; COLORECTAL-CANCER; CARCINOMA-CELLS;
118197    HEPATIC PRENEOPLASIA; PROMOTER METHYLATION; ALTERED METHYLATION;
118198    PROSTATE-CANCER; MULTIPLE GENES; WILMS-TUMOR
118199 AB To determine the possible role of the epigenetic mechanisms in
118200    carcinogenesis of the hepatocellular carcinoma, we methylation-profiled
118201    the promoter CpG islands of twenty four genes both in HCC tumors and
118202    the neighboring non-cancerous tissues of twenty eight patients using
118203    the methylation-specific PCR (MSP) method in conjunction with the DNA
118204    sequencing. In comparison with the normal liver tissues from the
118205    healthy donors, it was found that while remained unmethylated the ABL,
118206    CAV, EPO, GATA3, LKB1, NEP, NFL, NIS and p27(KIP1) genes, varying
118207    extents of the HCC specific hypermethylation were found associated with
118208    the ABO, AR, CSPG2, cyclin a1, DBCCR1, GALR2, IRF7, MGMT, MT1A, MYOD1,
118209    OCT6, p57(KIP2), p73, WT1 genes, and demethylation with the MAGEA1
118210    gene, respectively. Judged by whether the hypermethylated occurred in
118211    HCC more frequently than in their neighboring normal tissues, the
118212    hypermethylation status of the AR, DBCCR1, IRF7, OCT6, and p73 genes
118213    was considered as the event specific to the late stage, while that the
118214    rest that lacked such a distinguished contrast, as the event specific
118215    to the early stage of HCC carcinogenesis. Among all the clinical
118216    pathological parameters tested for the association with, the
118217    hypermethylation of the cyclin a1 gene was more prevalent in the
118218    non-cirrhosis group (P=0. 021) while the hypermethylated p16(INK4a)
118219    gene was more common in the cirrhosis group (P=0.017). The concordant
118220    methylation behaviors of nineteen genes, including the four previously
118221    studied and their association with cirrhosis has been evaluated by the
118222    best subgroup selection method. The data presented in this report would
118223    enable us to shape our understanding of the mechanisms for the HCC
118224    specific loss of the epigenetic stability of the genome, as well as the
118225    strategy of developing the novel robust methylation based diagnostic
118226    and prognostic tools.
118227 C1 Shanghai Jiao Tong Univ, Shanghai Canc Inst, State Key Lab Oncogenes & Related Genes, Shanghai 200032, Peoples R China.
118228    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
118229 RP Zhu, JD, Shanghai Jiao Tong Univ, Shanghai Canc Inst, State Key Lab
118230    Oncogenes & Related Genes, Ln 220-25,Xietu Rd, Shanghai 200032, Peoples
118231    R China.
118232 CR 1998, CANC INCIDENCE MORTA
118233    *LIV CANC STUD GRO, 1989, WORLD J SURG, V13, P213
118234    BAYLIN S, 2002, CANCER CELL, V1, P299
118235    BAYLIN SB, 2000, TRENDS GENET, V16, P168
118236    BESTOR TH, 2003, ANN NY ACAD SCI, V983, P22
118237    CHEN B, 1998, AM J PATHOL, V152, P1071
118238    CHEN RZ, 1998, NATURE, V395, P89
118239    CHO BS, 2003, BIOCHEM BIOPH RES CO, V307, P52
118240    CUI HM, 2002, CANCER RES, V62, P6442
118241    CUI J, 2001, PROSTATE, V46, P249
118242    DETJEN KM, 2003, EXP CELL RES, V282, P78
118243    DONG SM, 2002, INT J CANCER, V98, P370
118244    EDEN A, 2003, SCIENCE, V300, P455
118245    EHRLICH M, 2002, ONCOGENE, V21, P5400
118246    ESTELLER M, 2001, HUM MOL GENET, V10, P3001
118247    ESTELLER M, 2002, J PATHOL, V196, P1
118248    ESTELLER M, 2003, LANCET ONCOL, V4, P351
118249    FEITELSON MA, 2002, ONCOGENE, V21, P2593
118250    FENINBERG A, 2001, P NATL ACAD SCI USA, V98, P392
118251    FERLAY J, 2001, GOBOCAB 2000 CANC IN
118252    FOSTER SA, 1998, MOL CELL BIOL, V18, P1793
118253    GAUDET F, 2003, SCIENCE, V300, P489
118254    GEIMAN TM, 2002, J CELL BIOCHEM, V87, P117
118255    GHOSHAL K, 2000, J BIOL CHEM, V275, P539
118256    HABUCHI T, 1998, GENOMICS, V48, P277
118257    HATTORI M, 2001, CANCER LETT, V169, P155
118258    HOARE SF, 2001, CANCER RES, V61, P27
118259    HUTCHINS AS, 2002, MOL CELL, V10, P81
118260    IWAMOTO S, 1999, GLYCOCONJUGATE J, V16, P659
118261    JAENISCH R, 2003, NAT GENET S, V33, P245
118262    JONES PA, 2001, SCIENCE, V293, P1068
118263    JONES PA, 2003, ANN NY ACAD SCI, V983, P213
118264    KIBEL AS, 2001, PROSTATE, V48, P248
118265    KIM JW, 2003, CARCINOGENESIS, V24, P363
118266    KOPPSCHNEIDER A, 2003, TOXICOL PATHOL, V31, P121
118267    LAUX DE, 1999, BREAST CANCER RES TR, V56, P35
118268    LI YH, 2002, BLOOD, V100, P2572
118269    LIU Q, 2000, LIVER CANC
118270    LOISEAU H, 1999, NEUROSCI LETT, V263, P173
118271    LU RQ, 2000, J BIOL CHEM, V275, P31805
118272    MILLER AJ, 1990, SUBSET SELECTION REG
118273    MOU DC, 2002, BRIT J CANCER, V86, P110
118274    MULLER C, 2000, MOL CELL BIOL, V20, P3316
118275    PARKIN DM, 1999, CA-CANCER J CLIN, V49, P33
118276    RACHMILEWITZ EA, 2000, PRZEGL LEK S1, V57, P25
118277    REEBEN M, 1995, GENE, V157, P325
118278    RICHARDSON B, 2003, AGEING RES REV, V2, P245
118279    ROSAS SLB, 2001, CANCER RES, V61, P939
118280    SASAKI M, 2002, J NATL CANCER I, V94, P384
118281    SATOH Y, 2003, J BIOCHEM, V133, P303
118282    SAUTER P, 1998, MOL CELL BIOL, V18, P7397
118283    SU Q, 2003, TOXICOL PATHOL, V31, P126
118284    TAVIAN D, 2002, HISTOL HISTOPATHOL, V17, P1113
118285    TOMITA Y, 2003, INT J CANCER, V104, P400
118286    TOYOTA M, 1999, CANCER RES, V59, P2307
118287    TOYOTA M, 1999, P NATL ACAD SCI USA, V96, P8681
118288    USMANI BA, 2000, CLIN CANCER RES, V6, P1664
118289    VENKATARAMAN GM, 1999, J CLIN ENDOCR METAB, V84, P2449
118290    WANG S, 1998, BIOCHEMISTRY-US, V37, P6711
118291    WANG XW, 2002, TOXICOLOGY, V181, P43
118292    WATANABE T, 2002, ACTA NEUROPATHOL, V104, P357
118293    YAMANAKA M, 2003, INT J CANCER, V106, P382
118294    YIN H, 2000, BLOOD, V95, P111
118295    YU J, 2002, BMC CANCER, V2
118296    YUASA Y, 2002, MECH AGEING DEV, V123, P1649
118297    ZOCHBAUERMULLER S, 2001, CANCER RES, V61, P249
118298 NR 66
118299 TC 8
118300 SN 1001-0602
118301 J9 CELL RES
118302 JI Cell Res.
118303 PD OCT
118304 PY 2003
118305 VL 13
118306 IS 5
118307 BP 319
118308 EP 333
118309 PG 15
118310 SC Cell Biology
118311 GA 756XD
118312 UT ISI:000187509700002
118313 ER
118314 
118315 PT J
118316 AU Guo, QZ
118317    Tan, WH
118318    Meng, YC
118319 TI Generalized Tschebyshev polynomial and its application in solving the
118320    strong coupling waveguide equations
118321 SO ACTA PHYSICA SINICA
118322 DT Article
118323 DE generalized Tschebyshev polynomial; waveguide couplers with strong
118324    coupling
118325 ID MODE THEORY; SYSTEMS
118326 AB In this paper, by means of generalized Tschebyshev polynomial, the
118327    analytical solution is derived for ( N + 1) x ( N + 1) waveguide
118328    couplers arranged in a ring with strong coupling. As a concrete
118329    example, the solution of 5 x 5 waveguide couplers is calculated, and
118330    the relationship between strong and weak couplings is analyzed., The
118331    property of generalized Tschebyshev polynomial is discussed in detail.
118332 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
118333    Shanghai Univ, Inst Fiber Opt, Shanghai 200436, Peoples R China.
118334 RP Guo, QZ, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
118335 CR CHUANG SL, 1987, J LIGHTWAVE TECHNOL, V5, P174
118336    HAUS HA, 1983, IEEE J QUANTUM ELECT, V19, P840
118337    KUBO H, 1989, J LIGHTWAVE TECHNOL, V7, P1924
118338    LI ZB, 2001, ACTA PHYS SIN-CH ED, V50, P2062
118339    MENG YC, 2003, ACTA OPT SINICA, V23, P964
118340    MORTIMORE DB, 1990, APPL OPTICS, V29, P371
118341    SHE SX, 1988, OPT COMMUN, V87, P271
118342    SNYDER AW, 1972, J OPT SOC AM, V62, P1267
118343    YU CY, 2001, ACTA PHYS SINICA, V50, P904
118344    ZHANG RF, 2003, ACTA PHYS SIN-CH ED, V52, P390
118345 NR 10
118346 TC 0
118347 SN 1000-3290
118348 J9 ACTA PHYS SIN-CHINESE ED
118349 JI Acta Phys. Sin.
118350 PD DEC
118351 PY 2003
118352 VL 52
118353 IS 12
118354 BP 3092
118355 EP 3097
118356 PG 6
118357 SC Physics, Multidisciplinary
118358 GA 757HD
118359 UT ISI:000187556200027
118360 ER
118361 
118362 PT J
118363 AU Ren, LP
118364    Dai, WL
118365    Cao, Y
118366    Li, HX
118367    Zhang, WH
118368    Fan, KN
118369 TI Highly active Ag-SiO2-Al2O3 catalyst used for the dehydrogenation of
118370    methanol to anhydrous formaldehyde
118371 SO ACTA CHIMICA SINICA
118372 DT Article
118373 DE direct dehydrogenation; anhydrous formaldehyde; Ag-SiO2-Al2O3 catalyst
118374 ID OXIDATIVE DEHYDROGENATION
118375 AB The sol-gel method was applied to prepare a novel Ag-SiO2-Al2O3
118376    catalyst which showed high activity in the reaction of direct
118377    dehydrogenation of methanol to formaldehyde. The influence of silver
118378    loading, calcination temperature and reaction temperature on the
118379    catalytic activity was investigated, respectively. XRD patterns show
118380    that there are no sharp diffraction peaks before reaction, but after
118381    reaction, a set of sharp peaks corresponding to Ag(111), Ag(200),
118382    Ag(220), Ag(311) and Ag(222) are observed. SEM results accord well with
118383    those from XRD. The special structure of the novel Ag-SiO2-Al2O3
118384    catalyst may lead to its excellent catalytic performance (95.0% of
118385    conversion of methanol and 81.2% of HCHO yield), which is the best of
118386    all the previous results.
118387 C1 Fudan Univ, Dept Chem, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China.
118388    Shanghai Univ, Dept Chem, Shanghai 200234, Peoples R China.
118389 RP Ren, LP, Fudan Univ, Dept Chem, Shanghai Key Lab Mol Catalysis &
118390    Innovat Mat, Shanghai 200433, Peoples R China.
118391 CR CALKINS WH, 1984, CATAL REV, V26, P347
118392    CAO Y, 1997, APPL CATAL A-GEN, V158, L27
118393    CAO Y, 2001, MATER LETT, V50, P12
118394    CUI DL, 1994, CHEM J CHINESE U, V10, P1421
118395    DAI WL, 1997, CHEM LETT, P197
118396    DONG Y, 2001, CHEM LETT       0605, P534
118397    LEFFERTS L, 1988, J CHEM SOC FARADAY T, V84, P491
118398    LIU Q, 1998, CATAL LETT, V55, P87
118399    LIU QS, 2001, CHEM J CHINESE U, V122, P2091
118400    MA J, 1991, J NAT GAS CHEM, V6, P34
118401    RUF S, 2001, APPL CATAL A-GEN, V213, P203
118402    SATO R, 1972, 7219252 JP
118403    SAUER J, 1995, CHEM ENG TECHNOL, V18, P284
118404    SCATTERFIELD NS, 1980, HETEROGENEOUS CATALY, P366
118405    SU SJ, 1994, CHEM ENG TECHNOL, V17, P34
118406    TAKAGI K, 1985, CHEM LETT, P527
118407    WENDER I, 1996, FUEL PROCESS TECHNOL, V48, P189
118408    WIESGICKL G, 1990, APPL CATAL, V59, L1
118409    YAMAMOTO T, 1988, CHEM LETT, P273
118410 NR 19
118411 TC 3
118412 SN 0567-7351
118413 J9 ACTA CHIM SIN
118414 JI Acta Chim. Sin.
118415 PD JUN
118416 PY 2003
118417 VL 61
118418 IS 6
118419 BP 937
118420 EP 940
118421 PG 4
118422 SC Chemistry, Multidisciplinary
118423 GA 757DP
118424 UT ISI:000187533800023
118425 ER
118426 
118427 PT S
118428 AU Zhang, KW
118429    Wang, SZ
118430    Zhang, XP
118431 TI Detection and removal of hidden data in images embedded with
118432    quantization index modulation
118433 SO COMPUTER NETWORK SECURITY
118434 SE LECTURE NOTES IN COMPUTER SCIENCE
118435 DT Article
118436 ID DIGITAL WATERMARKING; DCT COEFFICIENTS
118437 AB Methods of attack on watermarks embedded with quantization index
118438    modulation and block DCT are introduced in this paper. The proposed
118439    method can detect the presence of hidden data by analyzing the
118440    histogram or spectrum of the transform coefficients, and prevent their
118441    extraction without further degrading the image. It is shown that, in
118442    some cases, the embedding-induced distortion can even be reduced in
118443    terms of peak-signal-to-noise ratio. Experimental results are given to
118444    show the effectiveness of the method.
118445 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
118446 RP Zhang, KW, Shanghai Univ, Shanghai 200072, Peoples R China.
118447 CR CHEN B, 1999, P SOC PHOTO-OPT INS, V3657, P342
118448    CHEN B, 2001, IEEE T INFORM THEORY, V47, P1423
118449    EGGERS JJ, 2001, SIGNAL PROCESS, V81, P239
118450    FISK G, 2002, 5 INT WORKSH INF HID
118451    MULLER F, 1993, ELECTRON LETT, V29, P1935
118452    PETITCOLAS FAP, 1999, P IEEE MULT SYST 99, V1, P574
118453    PRATT WK, 1978, DIGITAL IMAGE PROCES
118454    REININGER RC, 1983, IEEE T COMMUN, V31, P835
118455    WANG H, IN PRESS COMMUNICATI
118456    WANG S, 2002, J IMAGING SOC JAPAN, V41, P398
118457 NR 10
118458 TC 1
118459 SN 0302-9743
118460 J9 LECT NOTE COMPUT SCI
118461 PY 2003
118462 VL 2776
118463 BP 360
118464 EP 370
118465 PG 11
118466 GA BY02M
118467 UT ISI:000187294700031
118468 ER
118469 
118470 PT S
118471 AU Wang, SZ
118472    Zhang, XP
118473    Zhang, KW
118474 TI Data hiding in digital audio by frequency domain dithering
118475 SO COMPUTER NETWORK SECURITY
118476 SE LECTURE NOTES IN COMPUTER SCIENCE
118477 DT Article
118478 ID WATERMARKING; MULTIMEDIA
118479 AB A technique that inserts data densely into short frames in a digital
118480    audio signal by frequency domain dithering is described. With the
118481    proposed method, large embedding capacity can be realized, and the
118482    presence of the hidden data is imperceptible. Synchronization in
118483    detection is achieved by using a two-step search process that
118484    accurately locates a PN sequence-based pilot signal attached to the
118485    data during embedding. Except for a few system parameters, no
118486    information about the host signal or the embedded data is needed at the
118487    receiver. Experimental results show that the method is robust against
118488    attacks including AWGN interference and MP3 coding.
118489 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
118490 RP Wang, SZ, Shanghai Univ, Shanghai 200072, Peoples R China.
118491 CR BASSIA P, 2001, IEEE T MULTIMEDIA, V3, P232
118492    BENDER W, 1996, IBM SYST J, V35, P313
118493    CHEN B, 2001, IEEE T INFORM THEORY, V47, P1423
118494    COX IJ, 1997, IEEE T IMAGE PROCESS, V6, P1673
118495    COX RV, 1998, P IEEE, V86, P755
118496    JOHNSON NF, 2000, INFORMATION HIDING S
118497    JOHNSTON JD, 1988, IEEE J SEL AREA COMM, V6, P314
118498    MEYER EB, 1990, ABX TESTS TESTING PR, V19
118499    SWANSON MD, 1998, P IEEE, V86, P1064
118500    SWANSON MD, 1998, SIGNAL PROCESS, V66, P337
118501    TILKI JF, 1998, ENCODING HIDDEN DIGI
118502    TSOUKALAS DE, 1997, IEEE T SPEECH AUDI P, V5, P497
118503 NR 12
118504 TC 0
118505 SN 0302-9743
118506 J9 LECT NOTE COMPUT SCI
118507 PY 2003
118508 VL 2776
118509 BP 383
118510 EP 394
118511 PG 12
118512 GA BY02M
118513 UT ISI:000187294700033
118514 ER
118515 
118516 PT S
118517 AU Zhang, XP
118518    Wang, SZ
118519    Zhang, KW
118520 TI Steganography with least histogram abnormality
118521 SO COMPUTER NETWORK SECURITY
118522 SE LECTURE NOTES IN COMPUTER SCIENCE
118523 DT Article
118524 ID STEGANALYSIS
118525 AB A novel steganographic scheme is proposed which avoids asymmetry
118526    inherent in conventional LSB embedding techniques so that abnormality
118527    in the image histogram is kept minimum. The proposed technique is
118528    capable of resisting the chi(2) test and RS analysis, as well as a new
118529    steganalytic method named GPC analysis as introduced in this paper. In
118530    the described steganographic technique, a pair of mutually
118531    complementary mappings, F-1 and F-1 is used, leading to a balanced
118532    behavior of several statistical parameters explored by several
118533    steganalytic schemes, thus improved security. Experimental results are
118534    presented to demonstrate the effectiveness of the method.
118535 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
118536 RP Zhang, XP, Shanghai Univ, Shanghai 200072, Peoples R China.
118537 CR ETTINGER JM, 1998, LECT NOTES COMPUT SC, V1525, P319
118538    FRIDRICH J, 2000, 2000 IEEE INT C MULT, V3, P1279
118539    FRIDRICH J, 2001, MAGAZINE IEEE MU OCT, P22
118540    FRIDRICH J, 2001, P SOC PHOTO-OPT INS, V4518, P275
118541    FRIDRICH J, 2002, 5 INT WORKSH INF HID
118542    FRIDRICH J, 2002, P ACM WORKSH MULT SE
118543    FRIDRICH J, 2002, P SOC PHOTO-OPT INS, V4675, P1
118544    LYU S, 2002, 5 INT WORKSH INF HID
118545    PETITCOLAS FAP, 1999, P IEEE, V87, P1062
118546    PROVOS N, 2001, 0111 CITI
118547    PROVOS N, 2001, 10 US SEC S WASH DC
118548    WANG H, IN PRESS COMMUNICATI
118549    WANG S, 2002, J SHANGHAI U, V6, P273
118550    WESTFELD A, 1999, LNCS, V1768, P61
118551    WESTFELD A, 2001, LNCS, V2137, P289
118552 NR 15
118553 TC 5
118554 SN 0302-9743
118555 J9 LECT NOTE COMPUT SCI
118556 PY 2003
118557 VL 2776
118558 BP 395
118559 EP 406
118560 PG 12
118561 GA BY02M
118562 UT ISI:000187294700034
118563 ER
118564 
118565 PT S
118566 AU Zhang, XP
118567    Wang, SZ
118568    Zhang, KW
118569 TI Multi-bit watermarking scheme based on addition of orthogonal sequences
118570 SO COMPUTER NETWORK SECURITY
118571 SE LECTURE NOTES IN COMPUTER SCIENCE
118572 DT Article
118573 ID ROBUST AUDIO WATERMARKING; DOMAIN; MODULATION; MASKING; IMAGES; VIDEO
118574 AB In this paper, a scheme of watermark embedding based on a set of
118575    orthogonal binary sequences is introduced. The described technique is
118576    intended to be incorporated into various public watermarking frameworks
118577    developed for different digital media including images and audio
118578    signals. Unlike some previous methods using PN sequences in which each
118579    sequence carries only one bit of the watermark data, the proposed
118580    approach maps a number of bits to a single sequence from an orthogonal
118581    set. Both analytical and experimental studies show that, owing to the
118582    full exploitation of information carrying capability of each binary
118583    sequence, the performance is significantly improved compared with
118584    previous methods based on a one-bit-per-sequence technique.
118585 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
118586 RP Zhang, XP, Shanghai Univ, Shanghai 200072, Peoples R China.
118587 CR BARNI M, 2001, IEEE T IMAGE PROCESS, V10, P755
118588    BARNI M, 2001, IEEE T IMAGE PROCESS, V10, P783
118589    BASSIA P, 2001, IEEE T MULTIMEDIA, V3, P232
118590    CHEN B, 2001, IEEE T INFORM THEORY, V47, P1423
118591    CHENG Q, 2001, IEEE T MULTIMEDIA, V3, P273
118592    EGGERS JJ, 2000, P SPIE, V3971
118593    HARTUNG F, 1999, P IEEE, V87, P1079
118594    HERNANDEZ JR, 1998, IEEE J SEL AREA COMM, V16, P510
118595    INOUE H, 1999, P IEEE INT C IM PROC, V1, P296
118596    KIM JR, 1999, P IEEE INT C IM PROC, V2, P226
118597    LANGELAAR GC, 2001, IEEE T IMAGE PROCESS, V10, P148
118598    LIANG TS, 2000, P IEEE INT C ACOUSTI, P1951
118599    PETITCOLAS FAP, 1999, P IEEE, V87, P1062
118600    PIVA A, 1997, P IEEE INT C IM PROC, V1, P520
118601    PIVA A, 1999, P ICIP99 IEEE INT C, V1, P306
118602    PODILCHUK CI, 1998, IEEE J SEL AREA COMM, V16, P529
118603    SOLACHIDIS V, 2000, P IEEE INT C AC SPEE, P1955
118604    STANKOVIC S, 2001, IEEE T IMAGE PROCESS, V10, P650
118605    SWANSON MD, 1998, IEEE J SEL AREA COMM, V16, P540
118606    SWANSON MD, 1998, SIGNAL PROCESS, V66, P337
118607    ZHANG XP, 2001, P SOC PHOTO-OPT INS, V4551, P107
118608    ZHANG XP, 2002, SIGNAL PROCESS, V82, P1801
118609 NR 22
118610 TC 0
118611 SN 0302-9743
118612 J9 LECT NOTE COMPUT SCI
118613 PY 2003
118614 VL 2776
118615 BP 407
118616 EP 418
118617 PG 12
118618 GA BY02M
118619 UT ISI:000187294700035
118620 ER
118621 
118622 EF
118623 FN ISI Export Format
118624 VR 1.0
118625 PT J
118626 AU Wu, JL
118627    Hu, DQ
118628 TI Total coloring of series-parallel graphs
118629 SO ARS COMBINATORIA
118630 DT Article
118631 AB It is proved that the total chromatic number of any series-parallel
118632    graph of degree at least 3 is Delta(G) + 1.
118633 C1 Shanghai Univ Sci & Technol, Jinan 250031, Peoples R China.
118634 RP Wu, JL, Shanghai Univ Sci & Technol, Jinan 250031, Peoples R China.
118635 EM jlwu@ustsd.edu.cn
118636 CR DUFFIN RJ, 1965, J MATH ANAL APPL, V10, P303
118637    YAP HP, 1996, LECT NOTES MATH, V1623
118638    ZHANG ZF, 1988, SCI SINICA A, P1434
118639 NR 3
118640 TC 0
118641 SN 0381-7032
118642 J9 ARS COMB
118643 JI ARS Comb.
118644 PD OCT
118645 PY 2004
118646 VL 73
118647 BP 215
118648 EP 217
118649 PG 3
118650 SC Mathematics
118651 GA 873HB
118652 UT ISI:000225269400023
118653 ER
118654 
118655 PT J
118656 AU Gao, Y
118657 TI Representation of the Clarke generalized Jacobian via the
118658    quasidifferential
118659 SO JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
118660 DT Article
118661 DE nonsmooth analysis; quasidifferential calculus; Clarke generalized
118662    Jacobian; difference of sets
118663 AB Two differences of convex compact sets in R-mxn are proposed. In the
118664    light of these differences, representations of the Clarke generalized
118665    Jacobian and the B-differential via the quasidifferential are developed
118666    for a certain class of functions. These representations can be used to
118667    calculate the Clarke generalized Jacobian and the B-differential via
118668    the quasidifferential.
118669 C1 Shanghai Univ Sci & Technol, Sch Management, Shanghai 201800, Peoples R China.
118670 RP Gao, Y, Shanghai Univ Sci & Technol, Sch Management, Shanghai 201800,
118671    Peoples R China.
118672 CR BARTELS SG, 1995, NONLINEAR ANAL-THEOR, V24, P385
118673    CHANEY RW, 1990, NONLINEAR ANAL-THEOR, V15, P649
118674    CLARKE FH, 1983, OPTIMIZATION NONSMOO
118675    DEMYANOV VF, 1981, VESTNIK LENINGRAD U, V13, P183
118676    DEMYANOV VF, 1995, CONSTRUCTIVE NONSMOO
118677    DEMYANOV VF, 1995, J OPTIMIZ THEORY APP, V87, P553
118678    DEMYANOV VF, 1996, QUASIDIFFERENTIABILI
118679    GAO Y, 2000, J OPTIMIZ THEORY APP, V104, P377
118680    HIRIARTURRUTY JB, 1993, CONVEX ANAL MINIMIZA
118681    PALLASCHKE D, 1986, OPTIMIZATION, V17, P287
118682    PANG JS, 1996, MATH OPER RES, V21, P401
118683    QI L, 1991, MATH PROGRAM, V49, P263
118684    QI LQ, 1993, MATH OPER RES, V18, P227
118685    ROCKAFELLAR RT, 1972, CONVEX ANAL
118686    RUBINOV AM, 1992, NONSMOOTH OPTIMIZATI, P366
118687    RUBINOV AM, 1992, OPTIMIZATION, V23, P179
118688    RUBINOV AM, 2000, QUASIDIFFERENTIABILI, P263
118689 NR 17
118690 TC 0
118691 SN 0022-3239
118692 J9 J OPTIMIZ THEOR APPL
118693 JI J. Optim. Theory Appl.
118694 PD DEC
118695 PY 2004
118696 VL 123
118697 IS 3
118698 BP 519
118699 EP 532
118700 PG 14
118701 SC Mathematics, Applied; Operations Research & Management Science
118702 GA 868KP
118703 UT ISI:000224912800004
118704 ER
118705 
118706 PT J
118707 AU Tam, HW
118708    Zhang, YF
118709 TI A general method for generating multicomponent integrable hierarchies
118710 SO CHAOS SOLITONS & FRACTALS
118711 DT Article
118712 ID HAMILTONIAN-STRUCTURE; SYSTEMS; EQUATIONS
118713 AB A Lie algebra, whose bases are the forms of M x 3 matrices, is defined.
118714    Subsequently two types of loop algebras are constructed, whose
118715    commutative operations are equivalent to known ones proposed before. By
118716    using the Tu scheme, the mulicomponent KN hierarchy and its integrable
118717    coupling system, as well as a generalized multicomponent AKNS
118718    integrable hierarchy with five potential functions are obtained. The
118719    procedure presented in this paper is simple and straightforward and can
118720    be used generally (C) 2004 Elsevier Ltd. All rights reserved.
118721 C1 Hong Kong Baptist Univ, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China.
118722    Shanghai Univ Sci & Technol, Informat Sch, Inst Math, Shanghai 271019, Peoples R China.
118723 RP Tam, HW, Hong Kong Baptist Univ, Dept Comp Sci, Kowloon, Hong Kong,
118724    Peoples R China.
118725 EM tam@comp.hkbu.edu.hk
118726 CR ABLOWITZ MJ, 1981, SOLITONS INVERSE SCA
118727    FAN EG, 2000, J MATH PHYS, V41, P7769
118728    GIO FK, IN PRESS J MATH PHYS
118729    GU CH, 1990, SOLITON THEORY ITS A
118730    GUO FK, 1997, ACTA MATH SINICA, V40, P801
118731    HU XB, 1994, J PHYS A, V27, P2497
118732    HU XB, 1997, J PHYS A-MATH GEN, V30, P619
118733    LI YS, 1999, SOLITON INTEGRABLE S
118734    MA W, 1992, CHIN ANN MATH A, V12, P115
118735    MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
118736    MAGRI F, 1978, J MATH PHYS, V19, P1156
118737    TSUCHIDA T, 1996, J PHYS SOC JPN, V65, P3153
118738    TSUCHIDA T, 1998, J PHYS SOC JPN, V67, P1175
118739    TSUCHIDA T, 1999, J PHYS SOC JPN, V68, P2241
118740    TSUCHIDA T, 1999, PHYS LETT A, V257, P53
118741    TU GZ, 1989, J MATH PHYS, V30, P330
118742 NR 16
118743 TC 0
118744 SN 0960-0779
118745 J9 CHAOS SOLITON FRACTAL
118746 JI Chaos Solitons Fractals
118747 PD FEB
118748 PY 2005
118749 VL 23
118750 IS 3
118751 BP 963
118752 EP 971
118753 PG 9
118754 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
118755 GA 863YT
118756 UT ISI:000224600200027
118757 ER
118758 
118759 PT J
118760 AU Wang, JS
118761    Yang, JK
118762    Bao, Y
118763    Sun, JQ
118764 TI Preparation of crystalline manganese oxides hollow spheres
118765 SO POWDER TECHNOLOGY
118766 DT Article
118767 DE hollow spheres; NaCl and NP9; heating time; heating temperature; XRD
118768 ID NANOWIRES; REDUCTION
118769 AB Manganese oxides hollow spheres were synthesized by heating manganese
118770    carbonate precursors prepared by a one-step, solid-state method.
118771    Addition of sodium chloride (NaCl) and surfactant nonylphenyl ether
118772    (NP9), heating time and heating temperature played important roles in
118773    the synthesis process. The crystals were characterized by X-ray powder
118774    diffraction (XRD) and transmission electronic microscopy (TEM). It was
118775    shown that the product was pure and crystallized very well. (C) 2004
118776    Elsevier B.V. All rights reserved.
118777 C1 Shanghai Univ Sci & Technol, Sch Power & Control Engn, Jinan 250031, Peoples R China.
118778 RP Wang, JS, Shanghai Univ Sci & Technol, Sch Power & Control Engn, Jinan
118779    250031, Peoples R China.
118780 EM wjsbl@sdu.edu.cn
118781 CR LIU JW, 2002, CARBON, V411, P1645
118782    MAESTRE JB, 2001, INT J INORG MATER, V3, P889
118783    MOORE GJ, 2001, J POWER SOURCES, V97, P393
118784    NEVES MC, 2001, MATER RES BULL, V36, P1099
118785    SHEN GZ, 2003, CHEM PHYS LETT, V375, P177
118786    SUN XD, 2002, MATER RES BULL, V37, P331
118787    TSANG C, 1998, J SOLID STATE CHEM, V137, P28
118788    WANG JS, 2003, J MATER SCI TECHNOL, V19, P489
118789    WANG WZ, 2002, ADV MATER, V14, P837
118790    YUAN ZY, 2003, CHEM PHYS LETT, V378, P349
118791 NR 10
118792 TC 1
118793 SN 0032-5910
118794 J9 POWDER TECHNOL
118795 JI Powder Technol.
118796 PD AUG 9
118797 PY 2004
118798 VL 145
118799 IS 3
118800 BP 172
118801 EP 175
118802 PG 4
118803 SC Engineering, Chemical
118804 GA 862MK
118805 UT ISI:000224494800003
118806 ER
118807 
118808 PT J
118809 AU Chen, BX
118810    Zhou, JZ
118811    Zhao, DX
118812    Jia, HB
118813    Yuan, YF
118814    Iso, M
118815 TI Polarization-independent, thickness-insensitive, and
118816    refractive-index-difference-independent broad-band fluorinated
118817    polyrimide waveguide coupler
118818 SO JOURNAL OF LIGHTWAVE TECHNOLOGY
118819 DT Article
118820 DE fluorinated polyimide; optical device; optical waveguides; polarization
118821    independent; polymer materials; refractive index difference
118822    independent; thickness insensitive
118823 ID POLYIMIDES
118824 AB A statistically optimized design method is proposed for the
118825    construction of polarization-independent, thickness-insensitive, and
118826    refractive-index-difference-independent broad-band waveguide couplers.
118827    Using this method, a fluorinated polyimide waveguide 3-dB coupler for a
118828    1490-1610-nm operation is designed through optimization of the
118829    polarization, variation in thickness of the waveguide core, and
118830    variation in refractive-index difference of the waveguide core and
118831    cladding. The performance of the design is verified through simulation
118832    based on the three-dimensional beam-propagation method (3-D-BPM). The
118833    two orthogonal polarizations of the final design have a coupling ratio
118834    of (50 +/- 2.0) % for a bandwidth of 120 run, a thickness fluctuation
118835    of 7-8 mum, and a refractive-index-difference fluctuation of 0.24-0.30%.
118836 C1 Shanghai Univ Sci & Technol, Coll Opt & Electron Engn, Shanghai 200093, Peoples R China.
118837    Nitta Shanghai Co, Shanghai 200233, Peoples R China.
118838    Tokyo Univ Agr & Technol, Dept Chem Engn, Tokyo 1848588, Japan.
118839 RP Chen, BX, Shanghai Univ Sci & Technol, Coll Opt & Electron Engn,
118840    Shanghai 200093, Peoples R China.
118841 CR BOOTH BL, 1989, J LIGHTWAVE TECHNOL, V7, P1445
118842    CHEN BX, 2001, ACTA OPT SINICA, V21, P996
118843    CHEN BX, 2003, APPL OPTICS, V42, P271
118844    HARTMAN DH, 1989, APPL OPTICS, V28, P40
118845    KANG JW, 2001, J LIGHTWAVE TECHNOL, V19, P872
118846    KEIL N, 1989, ELECTRON LETT, V30, P1445
118847    KOBAYASHI J, 1998, APPL OPTICS, V47, P943
118848    KUROKAWA T, 1980, APPL OPTICS, V19, P3124
118849    MATSUURA T, 1999, APPL OPTICS, V38, P966
118850    NISHIHARA H, 1995, OPTICAL INTEGRATED C, P45
118851    REUTER R, 1988, APPL OPTICS, V27, P4565
118852    TAKAGI A, 1992, J LIGHTWAVE TECHNOL, V10, P1815
118853    TAKAHASHI H, 1995, J LIGHTWAVE TECHNOL, V13, P447
118854 NR 13
118855 TC 0
118856 SN 0733-8724
118857 J9 J LIGHTWAVE TECHNOL
118858 JI J. Lightwave Technol.
118859 PD OCT
118860 PY 2004
118861 VL 22
118862 IS 10
118863 BP 2341
118864 EP 2347
118865 PG 7
118866 SC Engineering, Electrical & Electronic; Optics
118867 GA 862LQ
118868 UT ISI:000224492700015
118869 ER
118870 
118871 PT J
118872 AU Liu, TY
118873    Zhang, QR
118874    Zhuang, SL
118875 TI The hole trappers related to lead vacancy in PbWO4 crystal
118876 SO SOLID STATE COMMUNICATIONS
118877 DT Article
118878 DE lead vacancy V-Pb(2-); PbWO4; geometry optimization; electronic
118879    structure; color centre
118880 ID SINGLE-CRYSTALS; TUNGSTATE CRYSTALS; CENTERS; ORIGIN
118881 AB Several lattice structures around a lead vacancy V-Pb(2-) in PbWO4
118882    (PWO) are optimized using a plane-wave pseudo-potential formulation
118883    within the framework of density function theory, with generalized
118884    gradient correction in the form of Perdew- Wang-91. The electronic
118885    structures around V-Pb(2-) in the PWO crystal are studied using the
118886    molecular-cluster model within the framework of the fully relativistic
118887    self-consistent Dirac-Slater theory by using a numerically discrete
118888    variational (DV-Xalpha) method. By analyzing the lattice relaxation and
118889    electronic structures around Pb we can reasonably believe that once
118890    V-Pb(2-) O2- formed in PWO crystal, turns to be prior to trap holes to
118891    compensate the electrical negativity V-Pb(2-) Pb2+ may never be the
118892    hole-trap compensating V-Pb(2-) and V-Pb(2-) and V-Pb(2-) in PWO
118893    crystal may not actually exist. The possible defect micro-model by
118894    V-Pb(2-) in the as-grown PWO crystal is that each V-Pb(2-) creates a
118895    V-K(+) - V-F(-) aggregate color center. (C) 2004 Elsevier Ltd. All
118896    rights reserved.
118897 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
118898 RP Liu, TY, Shanghai Univ Sci & Technol, Coll Sci, 516 Jun Gong Rd,
118899    Shanghai 200093, Peoples R China.
118900 EM liutyyxj@163.com
118901 CR ANNENKOV A, 1998, PHYS STATUS SOLIDI A, V170, P47
118902    ANNENKOV AN, 1996, PHYS STATUS SOLIDI A, V156, P493
118903    EPELBAUM BM, 1997, J CRYST GROWTH, V178, P426
118904    FANG SG, 1989, PHYS COLOUR CTR CRYS
118905    FENG XQ, 1997, J INORGANIC MAT, V12, P449
118906    KORZHIK MV, 1996, SCINT 96, P241
118907    LAGUTA VV, 1998, J PHYS-CONDENS MAT, V10, P7293
118908    LIAO JY, 1997, J INORGANIC MAT, V12, P286
118909    LIN QS, 2000, PHYS STATUS SOLIDI A, P181
118910    LIN QS, 2001, SOLID STATE COMMUN, V118, P221
118911    MOREAU JM, 1996, J ALLOY COMPD, V238, P46
118912    MOREAU JM, 1999, J ALLOY COMPD, V284, P104
118913    NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311
118914    NIKL M, 1997, J APPL PHYS, V82, P5758
118915    WEI K, 1996, J ELECTRON SPECTROSC, V79, P83
118916    ZHANG QR, 2003, PHYS REV B, V6806, P4101
118917 NR 16
118918 TC 5
118919 SN 0038-1098
118920 J9 SOLID STATE COMMUN
118921 JI Solid State Commun.
118922 PD OCT
118923 PY 2004
118924 VL 132
118925 IS 3-4
118926 BP 169
118927 EP 173
118928 PG 5
118929 SC Physics, Condensed Matter
118930 GA 858JG
118931 UT ISI:000224187500005
118932 ER
118933 
118934 PT J
118935 AU Wang, JS
118936    Bian, XF
118937    Sun, JQ
118938 TI Transformation mechanism among various nano-morphologies
118939 SO JOURNAL OF ADVANCED MATERIALS
118940 DT Article
118941 ID NANOPARTICLES; MICROEMULSION
118942 AB Transformation phenomenon was initially found among elongated
118943    nanoparticles, oriented nanowhiskers, line-like nanobelts and nanotubes
118944    with certain wrapped angle of manganese oxide prepared via a
118945    microemulsion technique and heat treatment. The oriented growth model
118946    has been built up and discussed to explain the transformation mechanism
118947    from nanoparticles to nanowhiskers, nanobelts and nanotubes step by
118948    step. The size scale of the original nanoparticle takes an important
118949    role in the growth process and that of 50nm is critical point to
118950    nanowhiskers growth in our experiment. The images of the transformation
118951    stage were recorded by TEM in succession.
118952 C1 Shandong Univ, Jinan 250100, Peoples R China.
118953    Shanghai Univ Sci & Technol, Jinan, Peoples R China.
118954 RP Wang, JS, Shandong Univ, Jinan 250100, Peoples R China.
118955 EM wjsbl@ustsd.edu.cn
118956 CR CHARLIER JC, 1997, SCIENCE, V275, P647
118957    DEBUIGNE F, 2001, J COLLOID INTERF SCI, V243, P90
118958    FU X, 2001, COLLOID SURFACE A, V179, P65
118959    GAUTAM G, 2002, CHEM PHYS LETT, V351, P189
118960    LI JY, 2001, OBSERVATIONS MORPHOL
118961    PAN ZW, 2001, SCIENCE, V291, P1947
118962    QI LM, 2001, THESIS BEIJING U, P406
118963    ROTHSCHILD A, 1999, MATER RES INNOV, V3, P145
118964    TANG ZY, 2002, SCIENCE, V297, P237
118965    WANG CC, 2001, COLLOID SURFACE A, V189, P145
118966    XIANG J, 2001, SYNTHESIS BETA GA2 O
118967 NR 11
118968 TC 0
118969 SN 1070-9789
118970 J9 J ADV MATER
118971 JI J. Adv. Mater.
118972 PD OCT
118973 PY 2004
118974 VL 36
118975 IS 4
118976 BP 39
118977 EP 42
118978 PG 4
118979 SC Materials Science, Multidisciplinary
118980 GA 856YU
118981 UT ISI:000224082800008
118982 ER
118983 
118984 PT J
118985 AU Wei, YH
118986    Zhang, CQ
118987    Ma, XL
118988    Zhang, GY
118989    Hou, Q
118990    Wang, HC
118991    Sun, YS
118992 TI Molecular dynamics simulations of the variation of structure and energy
118993    in the solidification of liquid Cu
118994 SO CHINESE JOURNAL OF CHEMICAL PHYSICS
118995 DT Article
118996 DE Cu; liquid metal; molecular dynamics simulation; FS potential; pair
118997    correlation function
118998 AB During the hot-dip process of Cu on the surface of the steel, it
118999    involves the solidification from liquid to coating. The cooling rate
119000    has great influence on the microstructure and the performance. By means
119001    of constant-temperature, constant-pressure molecular dynamics
119002    simulation technique, the solidification process of the liquid model
119003    system made of 500 Cu particles has been studied with the period
119004    boundary condition. With the pairs analysis technology and the bond
119005    orientational order method, the difference of the structure and energy
119006    of the liquid Cu model system between different cooling velocities has
119007    been compared. The significant information of microcosmic structural
119008    transformation in the solidification process of liquid Cu system has
119009    been obtained. The calculation results show that the Finnis-Sinclair
119010    (FS) potential works very well in the solidification process of Cu.
119011    Cooling slowly the crystal copper layer can be obtained. Cooling
119012    quickly the amorphous copper layer can be obtained.
119013 C1 Shandong Univ Sci & Tech, Sch Chem & Chem Engn, Jinan 250061, Peoples R China.
119014    Shanghai Univ Sci & Technol, Dept Chem Engn, Qingdao 266510, Peoples R China.
119015    Jinan Railway Substn, Jinan 250001, Peoples R China.
119016 RP Zhang, CQ, Shandong Univ Sci & Tech, Sch Chem & Chem Engn, Jinan
119017    250061, Peoples R China.
119018 EM zhangchqiao@sdu.edu.cn
119019 CR ACLAND GJ, 1990, PHYS REV, V41, P10324
119020    ALIEN MP, 1987, COMPUTER SIMULATION
119021    BRANDT EH, 1989, J PHYS-CONDENS MAT, V1, P9985
119022    DAW MS, 1983, PHYS REV LETT, V50, P1285
119023    DENG D, 1989, PHILOS T ROY SOC A, V329, P549
119024    FINCHAM D, 1985, ADV CHEM PHYS, V63, P493
119025    JOHNSON RA, 1988, PHYS REV B, V37, P3927
119026    LI XP, 1995, ACTA METALLURGICA SI, V8, A356
119027    WANG L, 2000, CHIN J CHEM PHYS, V13, P544
119028    ZHANG CQ, 1997, CHIN J SCI B, V42, P782
119029    ZHANG CQ, 1997, J MAT ENG, V11, P23
119030    ZHANG CQ, 2001, CHIN J CHEM PHYS, V14, P669
119031    ZHANG CQ, 2002, CHIN J CHEM PHYS, V15, P447
119032 NR 13
119033 TC 0
119034 SN 1003-7713
119035 J9 CHIN J CHEM PHYS
119036 JI Chin. J. Chem. Phys.
119037 PD AUG
119038 PY 2004
119039 VL 17
119040 IS 4
119041 BP 443
119042 EP 448
119043 PG 6
119044 SC Physics, Atomic, Molecular & Chemical
119045 GA 853QL
119046 UT ISI:000223842300015
119047 ER
119048 
119049 PT J
119050 AU Dai, HH
119051    Liu, ZG
119052 TI Nonlinear traveling waves in a compressible Mooney-Rivlin rod - I. Long
119053    finite-amplitude waves
119054 SO ACTA MECHANICA SINICA
119055 DT Article
119056 DE hyperelastic rod; nonlinear traveling waves; solitary waves; periodic
119057    waves
119058 ID ELASTIC RODS; MODEL-EQUATIONS; SOLITARY WAVES
119059 AB In literature, nonlinear traveling waves in elastic circular rods have
119060    only been studied based on single partial differential equation (pde)
119061    models, and here we consider such a problem by using a more accurate
119062    coupled-pde model. We derive the Hamiltonian from the model equations
119063    for the long finite-amplitude wave approximation, analyze how the
119064    number of singular points of the system changes with the parameters,
119065    and study the features of these singular points qualitatively. Various
119066    physically acceptable nonlinear traveling waves are also discussed, and
119067    corresponding examples are given. In particular; we find that certain
119068    waves, which cannot be counted by the single-equation model, can arise.
119069 C1 City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China.
119070    Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
119071 RP Dai, HH, City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples
119072    R China.
119073 EM mahhdai@cityu.edu.hk
119074 CR ACHENBACH JD, 1973, WAVE PROPAGATION ELA
119075    BENJAMIN TB, 1972, PHILOS T ROY SOC A, V272, P47
119076    CLARKSON PA, 1986, STUD APPL MATH, V75, P95
119077    COHEN H, 1993, ACTA MECH, V100, P223
119078    COLEMAN BD, 1990, ARCH RATION MECH AN, V109, P39
119079    DAI HH, 1998, ACTA MECH, V127, P193
119080    DAI HH, 1999, P ROY SOC LOND A MAT, V455, P3845
119081    DAI HH, 2000, P ROY SOC LOND A MAT, V456, P331
119082    DAI HH, 2001, NONLINEAR ELASTICITY, P392
119083    GREEN WA, 1960, PROGR SOLID MECH, V1, P128
119084    NARIBOLI GA, 1970, J MATH PHYS SCI, V4, P64
119085    SAMSONOV AM, 1994, NONLINEAR WAVES SOLI
119086    SOERENSEN MP, 1984, J ACOUST SOC AM, V76, P871
119087    SOERENSEN MP, 1987, J ACOUST SOC AM, V81, P1718
119088    WRIGHT T, 1982, P IUTAM S FIN EL, P423
119089    WRIGHT TW, 1985, STUD APPL MATH, V72, P149
119090 NR 16
119091 TC 0
119092 SN 0567-7718
119093 J9 ACTA MECH SINICA
119094 JI Acta Mech. Sin.
119095 PD AUG
119096 PY 2004
119097 VL 20
119098 IS 4
119099 BP 435
119100 EP 446
119101 PG 12
119102 SC Engineering, Mechanical; Mechanics
119103 GA 851MA
119104 UT ISI:000223688000014
119105 ER
119106 
119107 PT J
119108 AU Zhang, TH
119109    Han, MA
119110    Zang, H
119111    Meng, XZ
119112 TI Bifurcations of limit cycles for a cubic Hamiltonian system under
119113    quartic perturbations
119114 SO CHAOS SOLITONS & FRACTALS
119115 DT Article
119116 ID HOMOCLINIC LOOPS; CYCLICITY; SET
119117 AB This paper is concerned with the number of limit cycles of a cubic
119118    system with quartic perturbations. Fifteen limit cycles are found and
119119    their distributions are studied by using the methods of bifurcation
119120    theory and qualitative analysis. It gives rise to the conclusion: H(4)
119121    greater than or equal to 15, where H(n) is the Hilbert number for the
119122    second part of Hilbert's 16th problem. (C) 2004 Elsevier Ltd. All
119123    rights reserved.
119124 C1 Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China.
119125    Shanghai Univ Sci & Technol, Dept Basic Courses, Shandong 271019, Peoples R China.
119126 RP Zhang, TH, Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples
119127    R China.
119128 EM zhangtongh@sjtu.edu.cn
119129 CR BAUTIN NN, 1952, MAT SBORNIK, V30, P181
119130    CAO HJ, 2000, CHAOS SOLITON FRACT, V11, P2293
119131    HAN M, 2000, SCI CHINA SER A, V43, P914
119132    HAN M, 2003, NONLINEAR ANAL-THEOR, V53, P701
119133    HAN M, 2004, INT J BIFURCAT CHAOS, V14, P41
119134    HAN MA, 1997, SCI CHINA SER A, V40, P1247
119135    HAN MA, 1999, SCI CHINA SER A, V42, P605
119136    LI JB, 1987, CHIN ANN MATH B, V8, P391
119137    LI JB, 1991, PUBLICATIONS MATH, V35, P487
119138    LI JB, 2002, SCI CHINA SER A, V45, P817
119139    LI JB, 2003, INT J BIFURCAT CHAOS, V13, P47
119140    LIU ZR, 2002, CHAOS SOLITON FRACT, V13, P295
119141    LIU ZR, 2003, INT J BIFURCAT CHAOS, V13, P243
119142    ROUSSARIE R, 1986, BOL SOC BRAS MAT, V17, P67
119143    WANG RQ, 2002, CHAOS SOLITON FRACT, V13, P61
119144    YE Y, 1986, T MATH MONOGRAPHS, V66
119145    ZANG H, 2004, CHAOS SOLITON FRACT, V22, P61
119146    ZHANG TH, 2004, CHAOS SOLITON FRACT, V20, P629
119147 NR 18
119148 TC 5
119149 SN 0960-0779
119150 J9 CHAOS SOLITON FRACTAL
119151 JI Chaos Solitons Fractals
119152 PD DEC
119153 PY 2004
119154 VL 22
119155 IS 5
119156 BP 1127
119157 EP 1138
119158 PG 12
119159 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
119160 GA 849FP
119161 UT ISI:000223524400015
119162 ER
119163 
119164 PT J
119165 AU Jiang, ZJ
119166    Li, Q
119167 TI Study of J/psi suppression in Pb-Pb collisions at 158GeV/c
119168 SO HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION
119169 DT Article
119170 DE J/psi anomalous suppression; transverse energy fluctuation; the number
119171    fluctuation of participants; the number fluctuation of NN collisions
119172 ID NUCLEUS-NUCLEUS COLLISIONS; J-PSI-SUPPRESSION; TRANSVERSE ENERGY;
119173    CHARMONIUM SUPPRESSION; MODEL; GEV/C; DISTRIBUTIONS; PATTERN
119174 AB On the basis of model proposed by Blaizot et al., we take into account
119175    the effects on J/psi suppression in AA collisions of the number
119176    fluctuations of participants and NN collisions, and analyze the data of
119177    the NA50 Collaboration in Pb-Pb collisions at 158GeV/c. The theoretical
119178    results fit the data well.
119179 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
119180 RP Jiang, ZJ, Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093,
119181    Peoples R China.
119182 CR ABREU MC, 1997, PHYS LETT B, V410, P337
119183    ABREU MC, 1999, PHYS LETT B, V450, P2456
119184    ABREU MC, 2000, PHYS LETT B, V477, P28
119185    ALDE DM, 1991, PHYS REV LETT, V66, P133
119186    ANTINORI F, 2000, EUR PHYS J C, V18, P57
119187    ARMESTO N, 1999, PHYS REV C, V59, P395
119188    BAGLIN C, 1991, PHYS LETT B, V255, P459
119189    BLAIZOT JP, 1996, PHYS REV LETT, V77, P1703
119190    BLAIZOT JP, 2000, PHYS REV LETT, V85, P4012
119191    BORDALO P, 2002, NUCL PHYS A, V698, C127
119192    CAPELLA A, 1988, PHYS LETT B, V206, P354
119193    CAPELLA A, 2000, PHYS REV LETT, V85, P2080
119194    CERSCHEL C, 1992, Z PHYS C, V56, P171
119195    CHAUDHURI AK, 1990, NUCL PHYS A, V515, P736
119196    CHAUDHURI AK, 2001, PHYS REV C, V64
119197    GEISS J, 1999, PHYS LETT B, V447, P31
119198    JIANG ZJ, 1989, NUOVO CIMENTIO A, V102, P771
119199    LIU LS, 1988, PHYS REV D, V38, P3405
119200    MATSUI T, 1986, PHYS LETT B, V178, P416
119201    NARDI M, 1998, PHYS LETT B, V442, P14
119202    QIU JW, 2002, PHYS REV LETT, V88
119203    SPIELES C, 1999, PHYS REV C, V60
119204 NR 22
119205 TC 0
119206 SN 0254-3052
119207 J9 HIGH ENERGY PHYS NUCL PHYS-CH
119208 JI High Energy Phys. Nucl. Phys.-Chin. Ed.
119209 PD AUG
119210 PY 2004
119211 VL 28
119212 IS 8
119213 BP 846
119214 EP 849
119215 PG 4
119216 SC Physics, Nuclear; Physics, Particles & Fields
119217 GA 846HG
119218 UT ISI:000223305900011
119219 ER
119220 
119221 PT J
119222 AU Liu, TY
119223    Zhang, QR
119224    Zhuang, SL
119225 TI Local lattice distortion around V-Pb(2-) in PbWO4 and the origin of the
119226    420 nm luminescence band
119227 SO CHINESE PHYSICS LETTERS
119228 DT Article
119229 ID LEAD TUNGSTATE CRYSTALS; ELECTRONIC-STRUCTURE
119230 AB The lattice structures around one lead vacancy V-Pb(2-) in PbWO4 are
119231    studied within the framework of the full-relativistic density
119232    functional theory. Using the conjugate gradient method, we optimize the
119233    geometry of the ions around V-Pb(2-) by moving the ions within the
119234    sub-cell until specified tolerance is satisfied. We obtain the
119235    geometric positions of ions around V-Pb(2-) after optimization. The
119236    calculated results indicate that there would be local lattice
119237    distortion caused by the existence of V-Pb(2-). The electronic
119238    structures of both the optimized and pre-optimized PWO containing have
119239    been calculated. The density of states of the distorted PWO indicates
119240    that the energy gap between the 2p state of O2- and the 5d state of W6+
119241    is 3.90eV, which shows that the distorted W-O tetrahedron may be the
119242    420nm luminescence centre.
119243 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
119244 RP Liu, TY, Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093,
119245    Peoples R China.
119246 EM liutyyxj@163.com
119247 CR ANNENKOV A, 1998, PHYS STATUS SOLIDI A, V170, P47
119248    EPELBAUM BM, 1997, J CRYST GROWTH, V178, P426
119249    FENG XQ, 1997, J INORGANIC MAT, V12, P449
119250    GUO J, 1992, PHYS REV B, V45, P3204
119251    HIZHNYI YA, 2003, J LUMIN, V102, P688
119252    KORZHIK MV, 1996, P INT C IN SCINT THE, P241
119253    LIAO JY, 1997, J INORGANIC MAT, V12, P286
119254    LIN QS, 2000, PHYS STATUS SOLIDI A, P181
119255    LIN QS, 2001, SOLID STATE COMMUN, V118, P221
119256    MOREAU JM, 1996, J ALLOY COMPD, V238, P46
119257    MOREAU JM, 1999, J ALLOY COMPD, V284, P104
119258    NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311
119259    YAO MZ, 2002, ACTA PHYS SIN, V51
119260    ZHANG QR, 2003, PHYS REV B, V68
119261    ZHANG QR, 2004, CHINESE PHYS LETT, V21, P6
119262 NR 15
119263 TC 6
119264 SN 0256-307X
119265 J9 CHIN PHYS LETT
119266 JI Chin. Phys. Lett.
119267 PD AUG
119268 PY 2004
119269 VL 21
119270 IS 8
119271 BP 1596
119272 EP 1599
119273 PG 4
119274 SC Physics, Multidisciplinary
119275 GA 844MN
119276 UT ISI:000223162500052
119277 ER
119278 
119279 PT J
119280 AU Meng, YC
119281    Guo, QZ
119282    Tan, WH
119283    Huang, ZM
119284 TI Analytical solutions of coupled-mode equations for multiwaveguide
119285    systems, obtained by use of Chebyshev and generalized Chebyshev
119286    polynomials
119287 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND
119288    VISION
119289 DT Article
119290 ID OPTICAL FIBER COUPLERS; WAVE-GUIDE; DESIGN; EXPANSION
119291 AB A novel approach is proposed for obtaining the analytical solutions of
119292    the coupled-mode equations (CMEs); the method is applicable for an
119293    arbitrary number of coupled waveguides. The mathematical aspects of the
119294    CMEs and their solution by use of Chebyshev polynomials are discussed.
119295    When mode coupling between only adjacent waveguides is considered
119296    (denoted weak coupling), the first and second kinds of the usual
119297    Chebyshev polynomials are appropriate for evaluating the CMEs for
119298    linearly distributed and circularly distributed multi-waveguide
119299    systems, respectively. However, when one is considering the coupling
119300    effects between nonadjacent waveguides also (denoted strong coupling),
119301    it is necessary to use redefined generalized Chebyshev polynomials to
119302    express general solutions in a form similar to those for the
119303    weak-coupling case. As concrete examples, analytical solutions for 2 x
119304    2, 3 x 3, and 4 x 4 linearly distributed directional couplers are
119305    obtained by the proposed approach, which treats the calculation as a
119306    nondegenerate eigenvalue problem. In addition, for the 3 x 3 circularly
119307    distributed directional coupler, which gives rise to a degenerate
119308    eigenvalue problem, an analytical solution is obtained in an improved
119309    way. Also, for comparison and without loss of generality, to clarify
119310    the difference between the two coupling cases, analytical solutions for
119311    a 5 x 5 circularly distributed directional coupler are obtained by use
119312    of the usual and the redefined generalized Chebyshev polynomials. (C)
119313    2004 Optical Society of America.
119314 C1 Shanghai Univ Sci & Technol, Inst Fiber Opt, Shanghai 201800, Peoples R China.
119315    Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
119316    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
119317 RP Meng, YC, Shanghai Univ Sci & Technol, Inst Fiber Opt, Jiading Campus,
119318    Shanghai 201800, Peoples R China.
119319 EM mengyichao@sh163.net
119320 CR ANKIEWICZ A, 1986, J LIGHTWAVE TECHNOL, V4, P1317
119321    ARKRIGHT JW, 1991, ELECTRON LETT, V27, P1767
119322    BISWAS A, 2003, OPT QUANT ELECTRON, V35, P221
119323    BUAH PA, 1997, IEEE J QUANTUM ELECT, V33, P874
119324    CHANG CS, 1994, J LIGHTWAVE TECHNOL, V12, P415
119325    CHEN Y, 1991, OPT QUANT ELECTRON, V24, P539
119326    CHEW YH, 1993, J LIGHTWAVE TECHNOL, V11, P1998
119327    CHUANG SL, 1987, J LIGHTWAVE TECHNOL, V5, P174
119328    FALCIAL R, 1990, INT J OPTOELECTRON, V5, P41
119329    GRADSHEYN S, 1990, TABLE INTEGRALS, P30
119330    HARDY A, 1986, IEEE J QUANTUM ELECT, V22, P528
119331    HARDY A, 1988, OPT LETT, V13, P161
119332    HAUS HA, 1983, IEEE J QUANTUM ELECT, V19, P840
119333    HUANG WP, 1994, J OPT SOC AM A, V11, P963
119334    HUANG Y, 1995, ACTA OPT SINICA, V15, P248
119335    KISHI N, 1988, IEEE T MICROW THEORY, V36, P1861
119336    KOWALSKI A, 1990, J LIGHTWAVE TECHNOL, V8, P164
119337    KUBO H, 1989, J LIGHTWAVE TECHNOL, V7, P1924
119338    MEHRANY K, 2003, J OPT SOC AM B, V20, P2434
119339    MORTIMORE DB, 1990, APPL OPTICS, V29, P371
119340    PENG GD, 1991, APPL OPTICS, V30, P2533
119341    SHE SX, 1988, OPT COMMUN, V87, P271
119342    SNYDER AW, 1972, J OPT SOC AM, V62, P1267
119343    SUN LP, 1989, MICROW OPT TECHN LET, V2, P52
119344    VANCE RWC, 1994, IEE P-OPTOELECTRON, V141, P231
119345    WANG QJ, 2004, IEEE PHOTONIC TECH L, V16, P168
119346    WANG Z, 2000, INTRO SPECIAL FUNCTI, P168
119347    WRAGE M, 2002, OPT COMMUN, V205, P367
119348    YAO SQ, 2000, ACTA OPT SINICA, V20, P952
119349    YARIV A, 1973, IEEE J QUANTUM ELECT, V9, P919
119350 NR 30
119351 TC 0
119352 SN 1084-7529
119353 J9 J OPT SOC AM A-OPT IMAGE SCI
119354 JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis.
119355 PD AUG
119356 PY 2004
119357 VL 21
119358 IS 8
119359 BP 1518
119360 EP 1528
119361 PG 11
119362 SC Optics
119363 GA 841KI
119364 UT ISI:000222928300019
119365 ER
119366 
119367 PT J
119368 AU Wei, GF
119369    Yao, PJ
119370    Luo, X
119371    Roetzel, W
119372 TI A parallel genetic algorithm/simulated annealing algorithm for
119373    synthesizing multistream heat exchanger networks
119374 SO JOURNAL OF THE CHINESE INSTITUTE OF CHEMICAL ENGINEERS
119375 DT Article
119376 DE multistream; heat exchanger network; non-isothermal mixing; genetic
119377    algorithm; simulated annealing algorithm; global optimization
119378 ID SIMULTANEOUS-OPTIMIZATION MODELS; INTEGRATION
119379 AB A mathematical model for synthesizing multistream heat exchanger
119380    networks is presented which eliminates the unreasonable assumption on
119381    isothermal mixing of stream branches, hence the model is more rigorous
119382    and practical. The model becomes more complex due to its large scale
119383    dimensions, nonlinear constraints and nonconvexity of objective
119384    function. Multiple local optima might also exist. It is difficult to
119385    use traditional algorithms to find the global optimization solution of
119386    this mathematical model. A Parallel Genetic Algorithm/Simulated
119387    Annealing Algorithm (PGA/SA) with the strategy of inter-subpopulation
119388    crossover and migration, generation of initial feasible population and
119389    infeasible individual repair approach is proposed to obtain the global
119390    optimization solution with larger probability. Some computational
119391    examples from literatures and an industrial project show that the
119392    proposed mathematical model and algorithm are feasible and effective.
119393 C1 Dalian Univ Technol, Inst Proc Syst Engn, Dalian 116012, Peoples R China.
119394    Univ Fed Armed Forces Hamburg, Inst Thermodynam, D-22039 Hamburg, Germany.
119395    Shanghai Univ Sci & Technol, Inst Thermal Engn, Shandong 200093, Peoples R China.
119396 RP Wei, GF, Dalian Univ Technol, Inst Proc Syst Engn, Dalian 116012,
119397    Peoples R China.
119398 CR ALEKSANDER S, 2002, COMPUT CHEM ENG, V26, P599
119399    ATHIER G, 1997, AICHE J, V43, P3007
119400    CIRIC AR, 1991, COMPUT CHEM ENG, V15, P385
119401    DANIEL RL, 1998, COMPUT CHEM ENG, V22, P1503
119402    DOLAN WB, 1990, COMPUT CHEM ENG, V14, P1039
119403    GOLDBERG D, 1989, GENETIC ALGORITHMS S
119404    KAJMIKAEL B, 2002, COMPUT CHEM ENG, V26, P1581
119405    LUO X, 2002, INT J HEAT MASS TRAN, V45, P2695
119406    LUO X, 2003, INT J HEAT MASS TRAN, V46, P705
119407    MUHLENBEIN H, 1991, PARALLEL COMPUT, V17, P619
119408    PAVIS L, 1991, HDB GENETIC ALGORITH
119409    WANG KF, 1998, COMPUT CHEM ENG, V23, P125
119410    YEE TF, 1990, COMPUT CHEM ENG, V14, P1151
119411    YEE TF, 1990, COMPUT CHEM ENG, V14, P1165
119412    YIN HC, 1995, J DALIAN U TECHNOLOG, V35, P640
119413    YU HM, 2000, COMPUT CHEM ENG, V24, P2023
119414    ZHANG HP, 2000, J BEIJING U CHEM TEC, V27, P22
119415    ZHOU M, 1999, GENETIC ALGORITHMS T
119416 NR 18
119417 TC 0
119418 SN 0368-1653
119419 J9 J CHINESE INST CHEM ENGINEERS
119420 JI J. Chin. Inst. Chem. Eng.
119421 PD MAY
119422 PY 2004
119423 VL 35
119424 IS 3
119425 BP 285
119426 EP 297
119427 PG 13
119428 SC Engineering, Chemical
119429 GA 842LD
119430 UT ISI:000223004700004
119431 ER
119432 
119433 PT S
119434 AU Peng, DL
119435    Yuan, Y
119436    Yue, K
119437    Wang, XL
119438    Zhou, A
119439 TI Capacity planning for composite web services using queueing
119440    network-based models
119441 SO ADVANCES IN WEB-AGE INFORMATION MANAGEMENT: PROCEEDINGS
119442 SE LECTURE NOTES IN COMPUTER SCIENCE
119443 DT Article
119444 AB In this paper, queueing network-based models are proposed to predict
119445    the performance of composite Web services and make them run in an
119446    optimal way with limited resources. The models are necessary
119447    constituents of reliable Web service composition. They are flexible
119448    enough to evaluate the performance indices of the composite Web
119449    services simply by solving some equations rather than doing a lot of
119450    exhausting experiments. Research shows that our models provide an
119451    effective way for both running the services optimally with certain
119452    resources and estimating the growth needs accurately.
119453 C1 Fudan Univ, Dept Comp Sci & Engn, Shanghai 200433, Peoples R China.
119454    Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 201800, Peoples R China.
119455 RP Peng, DL, Fudan Univ, Dept Comp Sci & Engn, Shanghai 200433, Peoples R
119456    China.
119457 EM dlpeng@fudan.edu.cn
119458    yyuan@fudan.edu.cn
119459    kuny@fudan.edu.cn
119460    wxling@fudan.edu.cn
119461    ayzhou@fudan.edu.cn
119462 CR BALSAMO S, 2000, PERFORM EVALUATION, P377
119463    BANATALLAH B, 2001, UNSECSETR01111
119464    BANATALLAH B, 2001, UNSWCSE0108
119465    BHATTI N, 1999, IEEE NETWORK, V13, P64
119466    BUZEN JP, 1971, THESIS HARVARD U CAM
119467    BUZEN JP, 1973, COMMUN ACM, V16, P527
119468    CHAKRABORTY D, 2002, 7 PERS WIR COMM C SI
119469    CHEN X, 2001, P 10 WWW C HONG KONG
119470    HAMADI R, 2003, P 14 AUSTR DAT C ADC
119471    HOSCHEK W, 2002, P 2002 ACM IEEE C SU
119472    KANT K, 1999, IEEE T KNOWLEDGE DAT, V11
119473    LAM S, 1987, COMPUTER CAPACITY PL
119474    LAZOWSKA E, 1984, QUANTITATIVE SYSTEM
119475    LIMTHANMAPHON B, 2003, P 14 AUSTR DAT C ADC
119476    WODTKE D, 1997, P 6 DISTR INT C DAT
119477 NR 15
119478 TC 1
119479 SN 0302-9743
119480 J9 LECT NOTE COMPUT SCI
119481 PY 2004
119482 VL 3129
119483 BP 439
119484 EP 448
119485 PG 10
119486 GA BAK53
119487 UT ISI:000222635400044
119488 ER
119489 
119490 PT J
119491 AU Gao, C
119492    Wang, WH
119493    Hu, TJ
119494    Xu, Y
119495    Zhou, GY
119496    Hua, ZZ
119497 TI Glass transition and enthalpy relaxation behavior of ethylene glycol
119498    and its aqueous solution with different crystallinity
119499 SO ACTA PHYSICO-CHIMICA SINICA
119500 DT Article
119501 DE glass transition; enthalpy relaxation; ethylene glycol; differential
119502    scanning calorimetry; cryomicroscopy
119503 ID DIELECTRIC-RELAXATION; DIMETHYL-SULFOXIDE; DECAY FUNCTION; ICE
119504    CRYSTALS; GLYCEROL; VITRIFICATION; POLYALCOHOLS; DSC
119505 AB In order to investigate the effects of the crystals on glass transition
119506    and enthalpy relaxation behaviors, differential scanning calorimetry
119507    (DSC) and cryomicroscopy technique were used to study ethylene glycol
119508    (EG) and its aqueous solution (50% EG, mass fraction) with different
119509    crystallinity. Isothermal crystallization method was used in
119510    devitrification region to get different crystal fractions after samples
119511    quenched below the glass transition temperature (T-g). The DSC
119512    thermograms upon heating showed that EG had a single glass transition
119513    while 50% EG had two (amorphous phase I and the warmer one, phase II)
119514    with different crystal fractions. T-g of phase I was equal to while
119515    phase II was 6 degreesC higher than T-g of 50% EG in purely amorphous
119516    phase. It is believed that the lower transition represents the glass
119517    transition of bulk amorphous phase of EG aqueous solution glass state,
119518    while the second one is related to inclusions, whose mobility is
119519    restricted by ice crystals. Cryomicroscopy experiments indicated that
119520    EG crystal had regular shape while ice crystal in 50% EG aqueous
119521    solution glass matrix had no clear surface. It can be concluded that
119522    contact area between crystal and amorphous phase in EG is larger than
119523    that in 50% EG, which is helpful to explain double glass-like
119524    transitions. Isothermal annealing experiments at temperatures lower
119525    than T-g were also conducted on these amorphous samples in DSC, and
119526    KWW(Kohlrausch-Williams-Watts) decay function was used to analyze DSC
119527    enthalpy relaxation data. The results showed that both the two
119528    amorphous phases presented in 50% EG experience enthalpy relaxation,
119529    and the relaxation process of phase I is faster than that of phase II
119530    at the same value of (T-g - T-a).
119531 C1 Shanghai Univ Sci & Technol, Inst Cryomed & Food Refrigerat, Shanghai 200093, Peoples R China.
119532 RP Hua, ZZ, Shanghai Univ Sci & Technol, Inst Cryomed & Food Refrigerat,
119533    Shanghai 200093, Peoples R China.
119534 EM tchua@sh163.net
119535 CR ALVES NM, 2002, POLYMER, V43, P4111
119536    ANGELL CA, 1982, J PHYS CHEM-US, V86, P3845
119537    BRONSHTEYN VL, 1995, CRYOBIOLOGY, V32, P1
119538    CLAUDY P, 1997, THERMOCHIM ACTA, V293, P1
119539    FAHY GM, 1987, CRYOBIOLOGY, V24, P196
119540    GAO C, 2004, ACTA PHYS-CHIM SIN, V20, P123
119541    GOFF HD, 2003, THERMOCHIM ACTA, V399, P43
119542    HODGE IM, 1994, J NONCRYST SOLIDS, V169, P211
119543    HUA ZZ, 1994, CRYOBIOLOGY CRYOMEDI
119544    MACFARLANE DR, 1990, CRYOBIOLOGY, V27, P345
119545    MEHL PM, 1996, THERMOCHIM ACTA, V272, P201
119546    MURTHY SSN, 1997, J PHYS CHEM B, V101, P6043
119547    MURTHY SSN, 1998, CRYOBIOLOGY, V36, P84
119548    PIKAL MJ, 1999, FREEZE DRYING LYOPHI, P161
119549    SCHICNER B, 1995, J NONCRYSTA SOL, V172, P180
119550    TAKEDA K, 1998, J NON-CRYST SOLIDS, V231, P273
119551    VANDENMOOTER G, 1999, EUR J PHARM BIOPHARM, V48, P43
119552    WILLIAMS G, 1970, T FARADAY SOC, V66, P80
119553 NR 18
119554 TC 5
119555 SN 1000-6818
119556 J9 ACTA PHYS-CHIM SIN
119557 JI Acta Phys.-Chim. Sin.
119558 PD JUL
119559 PY 2004
119560 VL 20
119561 IS 7
119562 BP 701
119563 EP 706
119564 PG 6
119565 SC Chemistry, Physical
119566 GA 839OM
119567 UT ISI:000222794400007
119568 ER
119569 
119570 PT J
119571 AU Deng, BQ
119572    Kim, CN
119573 TI Physical-based double-exponential model for VOCs emission from carpet
119574 SO ATMOSPHERIC ENVIRONMENT
119575 DT Article
119576 DE VOCs emission; double-exponential mode; gas-phase mass transfer
119577    coefficient
119578 ID VOLATILE ORGANIC-COMPOUNDS
119579 AB VOCs emission from carpet can be described by the mass transfer between
119580    the air adjacent to the material, and the room air. And the
119581    concentration in the air adjacent to the material is assumed to always
119582    keep equilibrium with the concentration in the material. Thus, a
119583    double-exponential model for VOCs emission is developed, which contains
119584    fast and slow decay terms. The present model is validated through the
119585    experiment in a small environmental chamber. The results from the
119586    present model accord well with the experimental data. Compared with
119587    empirical models, the present model has a clear physical meaning, is
119588    easy to scale up. It has only two parameters to determine from the
119589    emission test. The experimental results can be processed conveniently
119590    by linear fitting technique. (C) 2004 Elsevier Ltd. All rights reserved.
119591 C1 Kyung Hee Univ, Coll Mech & Ind Syst Engn, Yongin 449701, Kyunggi, South Korea.
119592    Shanghai Univ Sci & Technol, Dept Civil & Environm Engn, Shanghai 200093, Peoples R China.
119593    Kyung Hee Univ, Ind Liaison Res Inst, Yongin 449701, Kyunggi, South Korea.
119594 RP Kim, CN, Kyung Hee Univ, Coll Mech & Ind Syst Engn, 1
119595    Sechon,Kilhung,Yongin, Yongin 449701, Kyunggi, South Korea.
119596 EM cnkim@khu.ac.kr
119597 CR CLAUSEN PA, 1993, INDOOR AIR, V3, P269
119598    DENG BQ, 2003, KOREAN J CHEM ENG, V20, P685
119599    DUNN JE, 1987, ATMOS ENVIRON, V21, P425
119600    HODGSON AT, 1993, J AIR WASTE MANAGE, V43, P316
119601    HUANG H, 2002, BUILD ENVIRON, V37, P1349
119602    LITTLE JC, 1994, ATMOS ENVIRON, V28, P227
119603    LOW JM, 1998, TO98232 ASHRAE, V23, P1281
119604    SHIN DM, 2003, J SAREK, V15, P40
119605    TICHENOR BA, 1993, INDOOR AIR, V3, P263
119606    WHITE FM, 1988, HEAT MASS TRANSFER
119607    YANG X, 2001, BUILD ENVIRON, V36, P1099
119608 NR 11
119609 TC 0
119610 SN 1352-2310
119611 J9 ATMOS ENVIRON
119612 JI Atmos. Environ.
119613 PD AUG
119614 PY 2004
119615 VL 38
119616 IS 24
119617 BP 4085
119618 EP 4089
119619 PG 5
119620 SC Environmental Sciences; Meteorology & Atmospheric Sciences
119621 GA 836QE
119622 UT ISI:000222569800016
119623 ER
119624 
119625 PT J
119626 AU Fu, YL
119627    Wu, YC
119628    Yuan, YF
119629    Chen, BX
119630 TI Raman spectra of proton-exchanged LiNbO3 optical waveguides
119631 SO CHINESE PHYSICS LETTERS
119632 DT Article
119633 ID WAVEGUIDES
119634 AB Based on the Raman spectrum measurement, we investigate the mechanism
119635    of proton exchange, by which the optical waveguides are formed in the
119636    LiNbO3 crystal which are proton doped. The proton source is formed by a
119637    mixture of benzoic and adipic acids. The experimental results show that
119638    there is a Raman formant peak of optical waveguide at 650 cm(-1), and
119639    the higher the relative percentage of the mol ratio of adipic acid
119640    dilution, the higher the intensity of the Raman formant peak.
119641 C1 Hainan Normal Univ, Dept Phys, Haikou 571158, Peoples R China.
119642    Shanghai Univ Sci & Technol, Coll Opt & Electron Informat Engn, Shanghai 200093, Peoples R China.
119643 RP Fu, YL, Hainan Normal Univ, Dept Phys, Haikou 571158, Peoples R China.
119644 EM fuyunliang@163.com
119645 CR CAO X, 2000, ACTA OPT SINICA, V20, P1549
119646    CHENG GX, 2002, CHINESE PHYS LETT, V19, P861
119647    CLARK DF, 1983, J APPL PHYS, V54, P6218
119648    JACKEL JL, 1982, APPL PHYS LETT, V41, P607
119649    LI SL, 2003, CHINESE PHYS LETT, V20, P1994
119650    PUN EYB, 1993, J APPL PHYS, V73, P3114
119651    SAVOVA I, 2001, OPT MATER, V16, P353
119652    WHITE JM, 1976, APPL OPTICS, V15, P151
119653    ZILING C, 1993, J APPL PHYS, V73, P3125
119654 NR 9
119655 TC 0
119656 SN 0256-307X
119657 J9 CHIN PHYS LETT
119658 JI Chin. Phys. Lett.
119659 PD JUL
119660 PY 2004
119661 VL 21
119662 IS 7
119663 BP 1292
119664 EP 1293
119665 PG 2
119666 SC Physics, Multidisciplinary
119667 GA 836FW
119668 UT ISI:000222542100030
119669 ER
119670 
119671 PT J
119672 AU Liu, XF
119673    Xiao, JR
119674    Jian, XZ
119675    Wang, JB
119676    Gao, JD
119677 TI a-C : F : H films prepared by PECVD
119678 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
119679 DT Article
119680 DE a-C : F : H thin films; PECVD; dielectric constant; optical band gap
119681 ID LOW DIELECTRIC-CONSTANT; CARBON THIN-FILMS; CHEMICAL-VAPOR-DEPOSITION;
119682    INTERLAYER DIELECTRICS; HYDROGEN DILUTION; PLASMA
119683 AB Fluorinated amorphous hydrogenated a-C : F : H carbon thin films were
119684    deposited using radio frequency plasma enhanced chemical vapor
119685    deposition (RF-PECVD) reactor with CF4 and CH4 as source gases and were
119686    annealed in a N-2 atmosphere. The properties of these films were
119687    evaluated by FTJR spectrometry, UV-VIS spectrophotometry and
119688    single-wavelength spectroscopic ellipsometry. A correspondence
119689    relativity connection between the deposition rate and technology was
119690    found. The chemical bonding structures and the content of CHx and CFx
119691    in the films are transformed and the optical band gap decreases
119692    monotonically with increasing temperature after annealing. The
119693    dielectric constant is increased with decreasing content of F in the
119694    films and the optical band gap is decreased with decreasing the content
119695    of H in the film.
119696 C1 Cent S Univ Technol, Sch Phys Sci & Technol, Changsha 410083, Peoples R China.
119697    Shanghai Univ Sci & Technol, Sch Elect Engn, Shanghai 200093, Peoples R China.
119698    Chinese Acad Sci, Inst Technol Phys, Shanghai 200083, Peoples R China.
119699 RP Jian, XZ, Cent S Univ Technol, Sch Phys Sci & Technol, Changsha 410083,
119700    Peoples R China.
119701 EM xiaojianrong248@163.com
119702 CR ENDO K, 1995, J APPL PHYS, V78, P1370
119703    ENDO K, 1996, APPL PHYS LETT, V68, P2864
119704    FREIRE FL, 2001, DIAM RELAT MATER, V10, P125
119705    JEONG W, 2003, THIN SOLID FILMS, V423, P97
119706    JUNG HS, 2002, THIN SOLID FILMS, P420
119707    LABELLE CB, 1999, J VAC SCI TECHNOL A, V17, P445
119708    MA YJ, 1998, APPL PHYS LETT, V72, P3353
119709    XIN Y, 2001, ACTA PHYS SIN-CH ED, V50, P2492
119710    YANG SH, 1999, MICROCHEM J, V63, P161
119711    YI JW, 2000, THIN SOLID FILMS, V374, P103
119712    YOKOMICHI H, 1999, J APPL PHYS, V86, P2468
119713    YOKOMICHI H, 2000, VACUUM, V59, P771
119714    YOKOMIEHI H, 1998, J NONCRYSTAL SOLIDS, P227
119715 NR 13
119716 TC 1
119717 SN 1003-6326
119718 J9 TRANS NONFERROUS METAL SOC CH
119719 JI Trans. Nonferrous Met. Soc. China
119720 PD JUN
119721 PY 2004
119722 VL 14
119723 IS 3
119724 BP 426
119725 EP 429
119726 PG 4
119727 SC Metallurgy & Metallurgical Engineering
119728 GA 835AC
119729 UT ISI:000222451000003
119730 ER
119731 
119732 PT J
119733 AU Xiao, HH
119734    Hua, TC
119735    Li, J
119736    Gu, XL
119737    Wang, X
119738    Wu, ZJ
119739    Meng, LR
119740    Gao, QR
119741    Chen, J
119742    Gong, ZP
119743 TI Freeze-drying of mononuclear cells and whole blood of human cord blood
119744 SO CRYOLETTERS
119745 DT Article
119746 DE freeze-drying; human cord blood; MNC; lyoprotectant; CD34(+) cell
119747 ID UNRELATED BONE-MARROW; COOLING RATE; CRYOPRESERVATION; GROWTH
119748 AB The research on haematopoietic stem cells of human cord blood has
119749    become more important recently. People have concentrated on the
119750    preservation of cord blood stem cells. At present, cord blood can be
119751    preserved at ultra-low temperatures. In this study, we try to preserve
119752    cord blood and its constituents by freeze-drying. The experiments on
119753    both the mononuclear cell content and the whole blood of human cord
119754    blood were carried out respectively. The samples were frozen firstly by
119755    different cooling protocols in the presence of PVP, sucrose, and
119756    mannitol. Afterwards, they were vacuum-dried at a selected shelf
119757    temperature of -30degreesC for the main drying stage, and then
119758    vacuum-dried at 15degreesC for the second drying stage. The entire time
119759    of the freeze drying was 52 hours. Samples were stored at room
119760    temperature for 2 days prior to evaluation. Subsequently, the dried
119761    samples were suspended in an isotonic phosphate-buffered saline
119762    solution.
119763    The recovery of the cells were tested by a haemacytometer, and the
119764    highest cell numerical count recovery of MNC was 75.0 +/- 4.1%(P<0.01),
119765    obtained in the protocol of 40% VP + 20% Sucrose + 10% Mannitol. The
119766    viability of the nucleated cells measured by PI staining and the ratio
119767    of the number of CD34(+) to the number of lymphocytes (by the FITC
119768    anti-human CD34(+) conjugated antibody method) were measured using a
119769    flow cytometer (FCM). The protocol of 40% PVP + 20% Sucrose + 10% fetal
119770    bovine serum had the highest viability of 98.57 &PLUSMN; 0.68%(P<0.01).
119771    The highest ratio of CD34(+) to lymphocytes was 1.17%, and the highest
119772    recovery of C1334(+) was 68.42 +/- 39.5% (P<0.05). Comparing the
119773    results of the lyophilized MNC subfraction with that of the whole
119774    blood, the lyophilization of the isolated MNC was more successful than
119775    that of whole blood.
119776 C1 Shanghai Univ Sci & Technol, Inst Cryomed & Food Refrigerat, Shanghai 200093, Peoples R China.
119777    Chinese Acad Sci, Shanghai Inst Biochem & Cell Biol, Shanghai 200031, Peoples R China.
119778 RP Hua, TC, Shanghai Univ Sci & Technol, Inst Cryomed & Food Refrigerat,
119779    No 516 Jun Gong Rd, Shanghai 200093, Peoples R China.
119780 EM tchua@sh163.net
119781 CR BROXMEYER HE, 1992, P NATL ACAD SCI USA, V89, P4109
119782    CROWE LM, 1986, MEMBRANES METABOLISM, P210
119783    GOODRICH RP, 1992, 5171661, US
119784    GOODRICH RP, 1992, P NATL ACAD SCI USA, V89, P967
119785    HOWS JM, 1992, LANCET, V340, P73
119786    HUNT CJ, 2003, CRYOBIOLOGY, V46, P76
119787    LANSDORP PM, 1993, J EXP MED, V178, P787
119788    RINDLER V, 1999, CRYOBIOLOGY, V38, P2
119789    RINDLER V, 1999, CRYOBIOLOGY, V39, P228
119790    ROCHA V, 2001, BLOOD, V97, P2962
119791    RUBINSTEIN P, 1995, P NATL ACAD SCI USA, V92, P10119
119792    SPIELES G, 1996, CRYO-LETT, V17, P43
119793    WEINSTEIN R, 1995, TRANSFUS CLIN BIOL, V2, P427
119794 NR 13
119795 TC 1
119796 SN 0143-2044
119797 J9 CRYOLETTERS
119798 JI CryoLetters
119799 PD MAR-APR
119800 PY 2004
119801 VL 25
119802 IS 2
119803 BP 111
119804 EP 120
119805 PG 10
119806 SC Biology; Physiology
119807 GA 823WE
119808 UT ISI:000221643700004
119809 ER
119810 
119811 PT J
119812 AU Zhang, WG
119813    Chang, QS
119814    Zhang, QR
119815 TI Lienard equation and exact solutions for some soliton-producing
119816    nonlinear equations
119817 SO COMMUNICATIONS IN THEORETICAL PHYSICS
119818 DT Article
119819 DE solitary wave; Lienard equation; compound KdV equation; compound
119820    KdV-Burgers equation; generalized Boussinesq equation; generalized KP
119821    equation; Ginzburg-Landau equation
119822 ID EXPLICIT EXACT-SOLUTIONS; KDV-BURGERS EQUATION; SYSTEMS; WAVES
119823 AB In this paper, we first consider exact solutions for Lienard equation
119824    with nonlinear terms of any order. Then, explicit exact bell and kink
119825    profile solitary-wave solutions for many nonlinear evolution equations
119826    are obtained by means of results of the Lienard equation and proper
119827    deductions, which transform original partial differential equations
119828    into the Lienard one. These nonlinear equations include compound KdV,
119829    compound KdV-Burgers, generalized Boussinesq, generalized KP and
119830    Ginzburg-Landau equation. Some new solitary-wave solutions are found.
119831 C1 Shanghai Univ Sci & Technol, Dept Basic Sci, Shanghai 200093, Peoples R China.
119832    Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100080, Peoples R China.
119833 RP Zhang, WG, Shanghai Univ Sci & Technol, Dept Basic Sci, Shanghai
119834    200093, Peoples R China.
119835 CR ABLOWITZ MJ, 1978, STUD APPL MATH, V58, P17
119836    BONA JL, 1985, P ROY SOC EDINB A, V101, P207
119837    CHEN HH, 1979, PHYS SCR, V20, P490
119838    COFFEY MW, 1990, SIAM J APPL MATH, V50, P1580
119839    DEY B, 1986, J PHYS A, V19, L9
119840    FENG ZS, 2002, PHYS LETT A, V293, P50
119841    GERDJIKOV VS, 1983, BULG J PHYS, V10, P130
119842    KONG DX, 1995, PHYS LETT A, V196, P301
119843    KUNDU A, 1984, J MATH PHYS, V25, P3433
119844    NI WS, 1997, SOLITARY WAVE WATER
119845    PEGO RL, 1992, PHILOS T ROY SOC A, V340, P47
119846    PEGO RL, 1993, PHYSICA D, V67, P45
119847    VANSAARLOOS W, 1992, PHYSICA D, V56, P303
119848    WADATI M, 1975, J PHYS SOC JPN, V38, P673
119849    WANG ML, 1996, PHYS LETT A, V213, P279
119850    WHITHAM GB, 1974, LINEAR NONLINEAR WAV
119851    ZHANG WG, 1996, ACTA MATH SCI, V16, P241
119852    ZHANG WG, 1998, ACTA MATH APPL SINIC, V21, P249
119853 NR 18
119854 TC 2
119855 SN 0253-6102
119856 J9 COMMUN THEOR PHYS
119857 JI Commun. Theor. Phys.
119858 PD JUN 15
119859 PY 2004
119860 VL 41
119861 IS 6
119862 BP 849
119863 EP 858
119864 PG 10
119865 SC Physics, Multidisciplinary
119866 GA 834JZ
119867 UT ISI:000222408700011
119868 ER
119869 
119870 PT J
119871 AU Zhang, QR
119872    Liu, TY
119873    Yan, FN
119874 TI V-F(-) and V-K(+) aggregate colour centres: Origin of the
119875    room-temperature 350 nm absorption band in PbWO4
119876 SO CHINESE PHYSICS LETTERS
119877 DT Article
119878 ID SINGLE-CRYSTALS; PARAMAGNETIC RESONANCE; DAMAGE
119879 AB A PbWO4 (PWO) single crystal has been grown by the advanced Bridgman
119880    method. The as-grown PWO crystal exhibits a weak band at 350 nm. This
119881    band was fitted into two overlapping bands peaking at 330 nm and 360 nm
119882    respectively. The absorption spectra of the as-grown crystal sample on
119883    un-polarized light and polarized light are measured respectively. The
119884    formation mechanism of colour centres in the as-grown PWO crystal is
119885    discussed and the 330 nm and 360 nm bands are ascribed to V-F(-) and
119886    V-K(+) centres respectively. The structure models of V-F(-) and V-K(+)
119887    centres are illustrated. The configuration terms, absorption
119888    transitions between the energy terms, the absorption spectral features
119889    on polarized light and the distributions of V-F(-) and V-K(+) centres
119890    in PWO are systematically studied.
119891 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
119892 RP Zhang, QR, Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093,
119893    Peoples R China.
119894 EM liutyyxj@163.com
119895 CR ANNENKOV A, 1998, PHYS STATUS SOLIDI A, V170, P47
119896    BACCARO S, 1998, NUCL PHYS B, V61, P66
119897    FANG SG, 1989, PHYS COLOUR CTR CRYS
119898    FENG XQ, 1997, J INORGANIC MAT, V12, P449
119899    HAN BG, 1999, J APPL PHYS, V86, P71
119900    KANZIG W, 1960, J PHYS CHEM SOLIDS, V17, P80
119901    KANZIG W, 1960, J PHYS CHEM SOLIDS, V17, P88
119902    KORZHIK MV, 1996, P INT C IN SCINT THE, P241
119903    LAGUTA VV, 1998, J PHYS-CONDENS MAT, V10, P7293
119904    LAGUTA VV, 2001, PHYS REV B, V64, P1
119905    LIN QS, 2001, SOLID STATE COMMUN, V118, P221
119906    LIU TY, 2001, PHYS STATUS SOLIDI A, V184, P341
119907    MOREAU JM, 1999, J ALLOY COMPD, V284, P104
119908    NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311
119909    NIKL M, 1996, PHYS STATUS SOLIDI B, V196, K7
119910    NIKL M, 1997, J APPL PHYS, V82, P1
119911    NIKL M, 1997, MATER SCI FORUM, V239, P271
119912    ZHANG QR, 2003, PHYS REV B, V68, P1
119913    ZHANG Y, 1998, PHYS REV B, V57, P12738
119914 NR 19
119915 TC 9
119916 SN 0256-307X
119917 J9 CHIN PHYS LETT
119918 JI Chin. Phys. Lett.
119919 PD JUN
119920 PY 2004
119921 VL 21
119922 IS 6
119923 BP 1131
119924 EP 1134
119925 PG 4
119926 SC Physics, Multidisciplinary
119927 GA 831NV
119928 UT ISI:000222202100043
119929 ER
119930 
119931 PT J
119932 AU Ali, MY
119933    Homma, K
119934    Iwane, AH
119935    Adachi, K
119936    Itoh, H
119937    Kinosita, K
119938    Yanagida, T
119939    Ikebe, M
119940 TI Unconstrained steps of myosin VI appear longest among known molecular
119941    motors
119942 SO BIOPHYSICAL JOURNAL
119943 DT Article
119944 ID ACTIN-BASED MOTOR; DOMAIN DETERMINES; KINESIN; MOVEMENT; BINDING;
119945    DIRECTION; PROTEINS; MOTILITY; CORE
119946 AB Myosin VI is a two-headed molecular motor that moves along an actin
119947    filament in the direction opposite to most other myosins. Previously, a
119948    single myosin VI molecule has been shown to proceed with steps that are
119949    large compared to its neck size: either it walks by somehow extending
119950    its neck or one head slides along actin for a long distance before the
119951    other head lands. To inquire into these and other possible mechanism of
119952    motility, we suspended an actin filament between two plastic beads, and
119953    let a single myosin VI molecule carrying a bead duplex move along the
119954    actin. This configuration, unlike previous studies, allows
119955    unconstrained rotation of myosin VI around the right-handed double
119956    helix of actin. Myosin VI moved almost straight or as a right-handed
119957    spiral with a pitch of several micrometers, indicating that the
119958    molecule walks with strides slightly longer than the actin helical
119959    repeat of 36 nm. The large steps without much rotation suggest
119960    kinesin-type walking with extended and flexible necks, but how to move
119961    forward with flexible necks, even under a backward load, is not clear.
119962    As an answer, we propose that a conformational change in the lifted
119963    head would facilitate landing on a forward, rather than backward, site.
119964    This mechanism may underlie stepping of all two-headed molecular motors
119965    including kinesin and myosin V.
119966 C1 Natl Inst Nat Sci, Okazaki Inst Integrat Biosci, Higashiyama 51, Okazaki, Aichi 4448787, Japan.
119967    Shanghai Univ Sci & Technol, Fac Phys Sci, Dept Phys, Sylhet 3114, Bangladesh.
119968    Univ Massachusetts, Sch Med, Dept Physiol, Worcester, MA 01655 USA.
119969    Osaka Univ, Grad Sch Med, Dept Physiol & Biosignaling, Suita, Osaka 5650871, Japan.
119970    Hamamatsu Photon KK, Tsukuba Res Lab, Tsukuba, Ibaraki 3002635, Japan.
119971    Hyperfunct Mol Machine Team 13, Core Res Evolutional Sci & Technol Creat & Applic, Tsukuba, Ibaraki 3002635, Japan.
119972 RP Kinosita, K, Natl Inst Nat Sci, Okazaki Inst Integrat Biosci,
119973    Higashiyama 51, Okazaki, Aichi 4448787, Japan.
119974 EM kazuhiko@ims.ac.jp
119975 CR ALI MY, 2002, NAT STRUCT BIOL, V9, P464
119976    BAHLOUL A, 2004, P NATL ACAD SCI USA, V101, P4787
119977    BLOCK SM, 1990, NATURE, V348, P348
119978    BURGESS S, 2002, J CELL BIOL, V159, P983
119979    FORKEY JN, 2003, NATURE, V422, P399
119980    HOMMA K, 2001, NATURE, V412, P831
119981    HOWARD J, 1996, ANNU REV PHYSIOL, V58, P703
119982    HUA W, 2002, SCIENCE, V295, P844
119983    HUXLEY HE, 1969, SCIENCE, V164, P1356
119984    MEHTA AD, 1999, NATURE, V400, P590
119985    MERMALL V, 1994, NATURE, V369, P560
119986    MOORE JR, 2001, J CELL BIOL, V155, P625
119987    NISHIKAWA S, 2002, BIOCHEM BIOPH RES CO, V290, P311
119988    RICE S, 2003, BIOPHYS J, V84, P1844
119989    RIEF M, 2000, P NATL ACAD SCI USA, V97, P9482
119990    ROCK RS, 2001, P NATL ACAD SCI USA, V98, P13655
119991    SUZUKI N, 1996, BIOPHYS J, V70, P401
119992    SVOBODA K, 1993, NATURE, V365, P721
119993    TANAKA H, 2002, NATURE, V415, P192
119994    TOMINAGA M, 2003, EMBO J, V22, P1263
119995    UEMURA S, 2003, NAT STRUCT BIOL, V10, P308
119996    VALE RD, 2000, SCIENCE, V288, P88
119997    VEIGEL C, 2002, NAT CELL BIOL, V4, P59
119998    WALKER ML, 2000, NATURE, V405, P804
119999    WELLS AL, 1999, NATURE, V401, P505
120000    WOEHLKE G, 2000, BBA-MOL CELL RES, V1496, P117
120001    XU J, 2000, BIOPHYS J, V79, P1498
120002    YASUDA R, 1998, CELL, V93, P1117
120003 NR 28
120004 TC 6
120005 SN 0006-3495
120006 J9 BIOPHYS J
120007 JI Biophys. J.
120008 PD JUN
120009 PY 2004
120010 VL 86
120011 IS 6
120012 BP 3804
120013 EP 3810
120014 PG 7
120015 SC Biophysics
120016 GA 829GK
120017 UT ISI:000222035200039
120018 ER
120019 
120020 PT S
120021 AU Liu, W
120022    Chen, ZL
120023    Tu, SL
120024    Du, W
120025 TI Adaptable QOS management in OSGi-based cooperative gateway middleware
120026 SO GRID AND COOPERATIVE COMPUTING, PT 2
120027 SE LECTURE NOTES IN COMPUTER SCIENCE
120028 DT Article
120029 AB The Open Services Gateway Initiative (OSGi) Specification defines a
120030    service-oriented cooperative framework between home and outer home. It
120031    uses the OSGi-gateways to deliver products and services to end-users,
120032    such as home security control and intelligent home equipments. The
120033    paper studies the QOS problem of OSGi technology, and puts forward the
120034    QOS problems and other limitations. And it uses Real-Time Specification
120035    for Java (RTSJ) and dynamic adaptable QOS management integrating the
120036    OSGi framework to solve the QOS problem.
120037 C1 Fudan Univ, Dept Comp Sci & Engn, Shanghai 200433, Peoples R China.
120038    Shanghai Univ Sci & Technol, Coll Management, Shanghai 200093, Peoples R China.
120039 RP Liu, W, Fudan Univ, Dept Comp Sci & Engn, Shanghai 200433, Peoples R
120040    China.
120041 EM wliu@udan.edu.cn
120042    chenzl@fudan.edu.cn
120043    sltu@fudan.edu.cn
120044    chinawhdw@163.com
120045 CR *OP SERV GAT IN, 2003, OSGI SERV PLATF REL
120046    BOLLELLA G, 2000, REAL TIME SPECIFICAT
120047    CAMPBELL, 1997, IEEE NETWORK
120048    CHEN K, 2001, PROGRAMMING OPEN SER
120049    GARDNER ES, J FORECASTING
120050    HARDIN D, DR DOBBS J, V25
120051    JORDAN D, 2000, JAVA REPORT      SEP, P104
120052    JORDAN D, 2000, JAVA REPORT      SEP, P38
120053    RAJKUMAR R, 1997, 18 IEEE REAL TIM SYS
120054 NR 9
120055 TC 0
120056 SN 0302-9743
120057 J9 LECT NOTE COMPUT SCI
120058 PY 2004
120059 VL 3033
120060 BP 604
120061 EP 607
120062 PG 4
120063 GA BAC97
120064 UT ISI:000221609100097
120065 ER
120066 
120067 PT S
120068 AU Chen, WZ
120069    Wang, CG
120070    Li, SC
120071    Qiu, XB
120072    Yang, CH
120073 TI Brittle damage and coalescence model of jointed rock mass
120074 SO ADVANCES IN FRACTURE AND FAILURE PREVENTION, PTS 1 AND 2
120075 SE KEY ENGINEERING MATERIALS
120076 DT Article
120077 DE damage; coalescence; fracture; rock mass
120078 ID SOLIDS
120079 AB Based on equivalent energy theory, the anisotropy damage constitutive
120080    model of jointed rock mass is set up with joint surface closing and
120081    friction considered. The flexibility tensor and its increments are
120082    deduced. The FEM with the new constitutive model has been applied to
120083    analyze the stability of a planed two-lane subsea road tunnel between
120084    the mainland and island in Xiamen city, China. Damage evolution zone of
120085    fractures, plastic zone and deformation of rock mass due to excavation
120086    are obtained from numerical results.
120087 C1 Chinese Acad Sci, Inst Rock & Soil Mech, Key Lab Rock & Soil Mech, Wuhan 430071, Peoples R China.
120088    Shanghai Univ Sci & Technol, Shandong 271019, Peoples R China.
120089 RP Chen, WZ, Chinese Acad Sci, Inst Rock & Soil Mech, Key Lab Rock & Soil
120090    Mech, Wuhan 430071, Peoples R China.
120091 CR ASHBY MF, 1986, ACTA METALL, V34, P497
120092    BETHMONT M, 1990, NUCL ENG DES, V119, P249
120093    BUDIANSKY B, 1976, INT J SOLIDS STRUCT, V12, P81
120094    CHEN WZ, 2000, CHINESE J ROCK MECH, V19, P132
120095    FANELLA D, 1988, ENG FRACT MECH, V29, P49
120096    LAWS N, 1987, INT J SOLIDS STRUCT, V23, P1247
120097    NEEDLEMAN A, 1987, J MECH PHYS SOLIDS, V35, P151
120098    RUGGIERI C, 1996, INT J FRACTURE, V82, P67
120099    SHEN J, 1998, CHINESE J GEOTECHNIC, V20, P97
120100 NR 9
120101 TC 0
120102 SN 1013-9826
120103 J9 KEY ENG MAT
120104 PY 2004
120105 VL 261-263
120106 PN Part 1&2
120107 BP 201
120108 EP 206
120109 PG 6
120110 GA BAC70
120111 UT ISI:000221573900032
120112 ER
120113 
120114 PT J
120115 AU Tao, SQ
120116    Wang, B
120117    Burr, GW
120118    Chen, JB
120119 TI Diffraction efficiency of volume gratings with finite size: corrected
120120    analytical solution
120121 SO JOURNAL OF MODERN OPTICS
120122 DT Letter
120123 ID HOLOGRAMS; STORAGE
120124 AB In order to correct errors in a previously published work on a
120125    treatment of two-dimensional coupled-wave theory, a complete derivation
120126    of the two-dimensional `overlap grating' coupled wave equations is
120127    given. By using the Riemann method, a corrected solution to the
120128    equations in closed mathematical form is obtained. On the basis of this
120129    solution a brief investigation of the diffraction properties of
120130    finite-sized gratings, and in particular the dependence of diffraction
120131    efficiency on the geometric size of gratings, is given.
120132 C1 Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China.
120133    IBM Almaden Res Ctr, San Jose, CA 95120 USA.
120134    Shanghai Univ Sci & Technol, Coll Opt & Elect, Shanghai 200093, Peoples R China.
120135 RP Chen, JB, Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples
120136    R China.
120137 CR BARBASTATHIS G, 1999, OPT LETT, V24, P811
120138    BURR GW, 2001, OPT LETT, V26, P444
120139    COURANT R, 1962, METHODS MATH PHYS, CH5
120140    HUKRIEDE J, 1998, OPT LETT, V23, P1405
120141    JONES ML, 1995, APPL OPTICS, V34, P4149
120142    KOLGELNIK H, 1969, BELL SYST TECH J, V48, P2909
120143    MOK FH, 1993, OPT LETT, V18, P915
120144    RUSSELL PS, 1980, OPT ACTA, V27, P997
120145    RUSSELL PSJ, 1979, OPT ACTA, V26, P329
120146    SOLYMAR L, 1977, APPL PHYS LETT, V31, P820
120147    SOLYMAR L, 1977, MICROWAVES OPT ACOUS, V1, P89
120148    SOLYMAR L, 1981, VOLUME HOLOGRAPHY VO, P164
120149    WALPITA LM, 1984, APPL OPTICS, V23, P3434
120150 NR 13
120151 TC 1
120152 SN 0950-0340
120153 J9 J MOD OPTIC
120154 JI J. Mod. Opt.
120155 PD MAY 20
120156 PY 2004
120157 VL 51
120158 IS 8
120159 BP 1115
120160 EP 1122
120161 PG 8
120162 SC Optics
120163 GA 822FG
120164 UT ISI:000221522300001
120165 ER
120166 
120167 PT J
120168 AU Wang, BS
120169    Sun, JP
120170    Zhang, JC
120171    Cai, ZX
120172    Jiang, ZX
120173    Jia, HY
120174    Zhang, ML
120175 TI The differences of geochemical characteristics in four coal seams from
120176    the Huangxian Lignite, China
120177 SO ENERGY EXPLORATION & EXPLOITATION
120178 DT Article
120179 ID SOUTHWEST POLAND; SANGERHAUSEN BASIN; SULFIDE FORMATION; BASAL
120180    ZECHSTEIN; LUBIN DISTRICT; ORGANIC-MATTER; KUPFERSCHIEFER; SEDIMENTS;
120181    GERMANY; MINERALIZATION
120182 AB In order to study the differences of geochemical characteristics of
120183    four lignite seams from the Huangxiang Basin, China, 68 samples of four
120184    seams were analyzed by various geochemical methods. Four seams show
120185    different S, C, H, N, O contents, biomarkers and metal enrichment.
120186    These differences may indicate that the four seams were formed in
120187    different environments. The coal quality and its utilization are
120188    related to the environments in which the coals are formed.
120189 C1 Shanghai Univ Sci & Technol, Acad Geosci, Shandong 271019, Peoples R China.
120190    Univ Petr, Basic & Reservoir Res Ctr, Beijing 102200, Peoples R China.
120191    China Univ Geosci, Beijing 100083, Peoples R China.
120192    Petr Explorat Inst Sinopec, Beijing 100083, Peoples R China.
120193 RP Wang, BS, Shanghai Univ Sci & Technol, Acad Geosci, Shandong 271019,
120194    Peoples R China.
120195 CR BERNER RA, 1983, GEOCHIM COSMOCHIM AC, V47, P855
120196    BERNER RA, 1984, GEOCHIM COSMOCHIM AC, V48, P605
120197    CAI J, 1981, COAL GEOLOGY EXPLORA, V4, P1
120198    DAS MC, 1983, PHYTOCHEMISTRY, V22, P1071
120199    DEV S, 1989, NATURAL PRODUCTS, P691
120200    OURRISSON G, 1984, SPEKTRUM WISSENSCHAF, V10, P54
120201    PETERS KE, 1993, BIOMARKER GUIDE INTE
120202    PUTTMANN W, 1994, ENERG FUEL, V8, P1460
120203    RUSSELL PL, 1990, OIL SHADES WORLD
120204    SIMONEIT BRT, 1986, METHODS GEOCHEMISTRY, V24, P43
120205    SUN YZ, 1995, ORG GEOCHEM, V23, P819
120206    SUN YZ, 1996, 30 INT GEOL C BEIJ, V2, P887
120207    SUN YZ, 1996, APPL GEOCHEM, V11, P567
120208    SUN YZ, 1997, APPL GEOCHEM, V12, P577
120209    SUN YZ, 1998, ORG GEOCHEM, V29, P1419
120210    SUN YZ, 1998, ORG GEOCHEM, V29, P583
120211    SUN YZ, 1999, ENERG EXPLOR EXPLOIT, V17, P277
120212    SUN YZ, 1999, ENVIRON GEOCHEM HLTH, V21, P141
120213    SUN YZ, 2000, ENVIRON GEOCHEM HLTH, V22, P249
120214    SUN YZ, 2000, ORG GEOCHEM, V31, P1143
120215    SUN YZ, 2001, ENERG EXPLOR EXPLOIT, V19, P569
120216    SUN YZ, 2002, INT J COAL GEOL, V49, P251
120217    TISSOT BP, 1984, PETROLEUM FORMATION, P699
120218    VANAARSSEN BGK, 1994, GEOCHIM COSMOCHIM AC, V58, P223
120219 NR 24
120220 TC 0
120221 SN 0144-5987
120222 J9 ENERG EXPLOR EXPLOIT
120223 JI Energy Explor. Exploit.
120224 PY 2004
120225 VL 22
120226 IS 1
120227 BP 57
120228 EP 64
120229 PG 8
120230 SC Energy & Fuels
120231 GA 821AH
120232 UT ISI:000221431000003
120233 ER
120234 
120235 PT J
120236 AU Serajzadeh, S
120237 TI Modelling the warm rolling of a low carbon steel
120238 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
120239    MICROSTRUCTURE AND PROCESSING
120240 DT Article
120241 DE warm rolling; low carbon steel; dynamic strain aging; finite element
120242    analysis
120243 ID TEMPERATURE DISTRIBUTION; SERRATED FLOW; STRAIN; BEHAVIOR
120244 AB Dynamic strain ageing may occur during warm working of low carbon
120245    steels and causes significant changes in flow behaviour and
120246    microstructure of the deformed material. Therefore, for a proper
120247    designing of an industrial forming process performing under warm
120248    deformation conditions, the effect of dynamic strain aging should be
120249    taken into account. The aim of this investigation is to predict the
120250    velocity and the temperature fields within the rolling metal with
120251    regard to the dynamic strain aging. For this purpose, compression tests
120252    at various temperatures and strain rates have been conducted to
120253    evaluate dynamic strain aging in a low carbon steel. Then, by coupling
120254    the experimental results with a mathematical model based on a
120255    two-dimensional finite element method, the occurrence of dynamic strain
120256    aging and its effect on strain distribution during the warm rolling
120257    process have been determined. (C) 2004 Published by Elsevier B.V.
120258 C1 Shanghai Univ Sci & Technol, Dept Mat Sci & Engn, Tehran, Iran.
120259 RP Serajzadeh, S, Shanghai Univ Sci & Technol, Dept Mat Sci & Engn, POB
120260    11365-9466,Avadi Ave, Tehran, Iran.
120261 EM serajzadeh@sharif.edu
120262 CR ALUKO O, 1998, J MATER ENG PERFORM, V7, P474
120263    BARNETT MR, 1999, ISIJ INT, V39, P856
120264    GUPTA C, 2000, MAT SCI ENG A-STRUCT, V292, P49
120265    HAHNER P, 1997, ACTA MATER, V45, P3695
120266    HALE CL, 2001, MAT SCI ENG A-STRUCT, V300, P153
120267    HARTLEY CS, 1983, T ASME, V105, P162
120268    HAWKINS DN, 1985, J MECH WORK TECHNOL, V11, P5
120269    KANEKO K, 2000, INT J PLASTICITY, V16, P337
120270    KOBAYASHI S, 1988, METAL FORMING FINITE
120271    KUMAR S, 1995, SCRIPTA METALL MATER, V33, P81
120272    MAJTA J, MODELLING FERRITE MI, P461
120273    MURATA K, 1984, T IRON STEEL I JPN, V24, B309
120274    RAO KP, 1982, J MECH WORK TECHNOL, V6, P5
120275    ROBINSON JM, 1994, INT MATER REV, V39, P113
120276    SERAJZADEH S, 2002, INT J MECH SCI, V44, P2447
120277    SERAJZADEH S, 2002, MODEL SIMUL MATER SC, V10, P185
120278    STASA FL, 1985, APPL FINITE ELEMENT
120279    TAHERI AK, 1995, ISIJ INT, V35, P1532
120280 NR 18
120281 TC 0
120282 SN 0921-5093
120283 J9 MATER SCI ENG A-STRUCT MATER
120284 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
120285 PD APR 25
120286 PY 2004
120287 VL 371
120288 IS 1-2
120289 BP 318
120290 EP 323
120291 PG 6
120292 SC Materials Science, Multidisciplinary
120293 GA 818IL
120294 UT ISI:000221238700042
120295 ER
120296 
120297 PT J
120298 AU Fu, YL
120299    Jin, GL
120300    Yuan, YF
120301    He, MX
120302    Deng, GQ
120303 TI Infrared absorption spectroscopy of optical waveguide in
120304    proton-exchanged LiNbO3
120305 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
120306 DT Article
120307 DE proton-exchanged; LiNbO3 optical waveguide; infrared absorption spectra
120308 AB Z-cut proton-exchanged LiNbO3 optical wave-guides exchanged with
120309    different proton sources mixed with adipic acid and benzoic acid in
120310    different mol ratios were analyzed by infrared absorption spectroscopy.
120311    The result shows that there is an absorption peak of OH- free group at
120312    3 500 cm(-1) with the characteristic of substitute protons, and the
120313    absorption peak of H-bond is nearby 700 cm(-1) with the characteristic
120314    of packing protons. The different mixing ratios and different
120315    concentrations of H+ in the proton source, result in different
120316    proton-exchanged velocities and bring on the change in these absorption
120317    peaks. It is very important to study the change in these absorption
120318    peaks for making high quality LiNbO3 optical waveguide.
120319 C1 Hainan Normal Coll, Dept Phys, Haikou 571158, Peoples R China.
120320    Shanghai Jiao Tong Univ, Dept Appl Phys, Shanghai 200240, Peoples R China.
120321    Shanghai Univ Sci & Technol, Coll Opt & Elect Informat Engn, Shanghai 200093, Peoples R China.
120322    Hainan Normal Coll, Ctr Anal & Testing, Haikou 571158, Peoples R China.
120323 RP Fu, YL, Hainan Normal Coll, Dept Phys, Haikou 571158, Peoples R China.
120324 CR JACKEL JL, 1991, SPIE, V1583, P54
120325    KORKISHKO YN, 1996, OPT MATER, V5, P175
120326    VITORIO MN, 2002, J LIGHTWAVE TECHNOL, V20, P71
120327    WANG YX, 2000, CNS DRUG REV, V6, P1
120328 NR 4
120329 TC 0
120330 SN 1000-0593
120331 J9 SPECTROSC SPECTR ANAL
120332 JI Spectrosc. Spectr. Anal.
120333 PD MAR
120334 PY 2004
120335 VL 24
120336 IS 3
120337 BP 303
120338 EP 304
120339 PG 2
120340 SC Spectroscopy
120341 GA 810FA
120342 UT ISI:000220689000013
120343 ER
120344 
120345 PT J
120346 AU Jiang, ZJ
120347 TI The study of centrality dependence of rapidity densities of
120348    charged-multiplicity
120349 SO ACTA PHYSICA SINICA
120350 DT Article
120351 DE heavy ion collision; charged; multiplicity; pseudo-rapidity densities;
120352    centrality
120353 ID AU-AU COLLISIONS; PARTICLE MULTIPLICITY; PSEUDORAPIDITY DISTRIBUTIONS;
120354    TRANSVERSE ENERGIES; NUCLEUS COLLISIONS; AA COLLISIONS
120355 AB Based on the theory of independent source model, the
120356    charged-multiplicity distributions in heavy ion collisions are derived
120357    which are then used to analyze the centrality dependence of the
120358    charged-multiplicity pseudo-rapidity densities, dn(ch)/deta, in Au + An
120359    collisions at rootS(NN) = 130 GeV in midrapidity region. The
120360    theoretical results agree well with experimental facts.
120361 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
120362 RP Jiang, ZJ, Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093,
120363    Peoples R China.
120364 CR ADCOX K, 2001, PHYS REV LETT, V86, P3500
120365    ALNER GJ, 1986, Z PHYS C PART FIELDS, V33, P1
120366    ANDERSSON B, 1986, PHYS SCR, V34, P451
120367    BACK BB, 2000, PHYS REV LETT, V85, P3100
120368    BEARDEN IG, 2002, PHYS REV LETT, V88
120369    CHAUDHURI AK, 2002, PHYS REV LETT, V88
120370    CSERNAI LP, 1984, PHYS REV D, V29, P2664
120371    ESKOLA KJ, 2000, NUCL PHYS B, V570, P379
120372    ESKOLA KJ, 2001, NUCL PHYS A, V696, P715
120373    GLAUBER RJ, 1970, NUCL PHYS          B, V21, P135
120374    HUFNER J, 1985, Z PHYS C, V27, P283
120375    JIANG ZJ, 1989, IL NUOVO CIMENTO A, V102, P771
120376    KATZY JM, 2002, NUCL PHYS A, V698, C555
120377    KOLB PF, 2001, NUCL PHYS A, V696, P197
120378    LIU FH, 1998, ACTA PHYS SIN-OV ED, V7, P321
120379    MARZO CD, 1982, PHYS REV D, V26, P1019
120380    MILOV A, 2002, NUCL PHYS A, V698, C171
120381    WANG XN, 1991, PHYS REV D, V44, P3501
120382    WANG XN, 2001, PHYS REV LETT, V86, P3496
120383    WUOSMAA AH, 2002, NUCL PHYS A, V698, C88
120384 NR 20
120385 TC 0
120386 SN 1000-3290
120387 J9 ACTA PHYS SIN-CHINESE ED
120388 JI Acta Phys. Sin.
120389 PD APR
120390 PY 2004
120391 VL 53
120392 IS 4
120393 BP 1020
120394 EP 1022
120395 PG 3
120396 SC Physics, Multidisciplinary
120397 GA 807XL
120398 UT ISI:000220534100010
120399 ER
120400 
120401 PT J
120402 AU Long, JW
120403    Chen, HY
120404    Zhou, F
120405    Meng, ZY
120406 TI Research on microstructure and piezoelectric properties of PMS-PZ-PT
120407    ceramics doped with NiO
120408 SO JOURNAL OF INORGANIC MATERIALS
120409 DT Article
120410 DE PMS-PZ-PT; NiO doping; piezoelectric properties; USM
120411 AB The microstructure and piezoelectric properties of Pb0.98Sr0.02(Mn-1/3
120412    Sb-2/3)(x)-(Zr0.5Ti0.5)(1-x)O-3 ceramics were investigated
120413    systematically as a function of NiO-doping contents. Results show that,
120414    phases shift from tetragonal to rhombohedral phase with the increase of
120415    doping amounts, the solubility of NiO in PMS-PZ-PT ceramics is very
120416    small, and the composition with doping amount of 0.02wt% has superior
120417    piezoelectric properties. The modified compositions are practically
120418    suitable for ultrasonic motor (USM) applications.
120419 C1 Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
120420 RP Long, JW, Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai
120421    201800, Peoples R China.
120422 CR GAO YK, 2001, JPN J APPL PHYS 1, V40, P687
120423    GUO XB, 2002, J CHINESE CERAM SOC, V30, P125
120424    GUO XB, 2002, KEY ENG MATER, V224, P1112
120425    LI LT, 1980, FERROELECTRICS, V28, P403
120426    NADOLIISKY MM, 1992, FERROELECTRICS, V129, P141
120427    PRIBOSIC I, 2001, J EUR CERAM SOC, V21, P1327
120428    TEXIER N, 2001, J EUR CERAM SOC, V21, P1499
120429    UEHA S, 1993, ULTRASONIC MOTORS TH, P4
120430    YOON SJ, 1998, J AM CERAM SOC, V81, P2473
120431    ZHENG H, 2001, J EUR CERAM SOC, V21, P1371
120432    ZHU XW, 1992, J CHINESE CERAMIC SO, V20, P532
120433 NR 11
120434 TC 0
120435 SN 1000-324X
120436 J9 J INORG MATER
120437 JI J. Inorg. Mater.
120438 PD MAR
120439 PY 2004
120440 VL 19
120441 IS 2
120442 BP 319
120443 EP 323
120444 PG 5
120445 SC Materials Science, Ceramics
120446 GA 806WL
120447 UT ISI:000220463900010
120448 ER
120449 
120450 PT J
120451 AU Gu, ZT
120452    Liang, PH
120453 TI Novel optical film sensor design based on p-polarized reflectance
120454 SO OPTICS AND LASER TECHNOLOGY
120455 DT Article
120456 DE optical film sensor; p-polarized reflectance; optical parameter
120457 ID SURFACE-PLASMON RESONANCE; TIN OXIDE-FILMS; FIBER
120458 AB A new scheme of optical film sensor is presented. The sensor is based
120459    on p-polarized reflectance, consisting of a sensing coated substrate,
120460    is easily optimized for maximum sensitivity in different applications.
120461    The resolutions of refractive index m(f), extinction coefficient k(f)
120462    and thickness h(f) of the sensitive films are predicted to be 10(-7),
120463    10(-5) and 10(-3) nm, respectively. Experimentally, we selected the
120464    sol-gel derived SnO2, films as gas-sensitive films and conducted
120465    preliminary gas-sensing test. The results indicate that novel optical
120466    film sensor scheme has higher sensitivity, and the detection
120467    sensitivity is available to 10(-1) ppm on the condition of optimum
120468    optical parameters and incident angle. (C) 2003 Elsevier Ltd. All
120469    rights reserved.
120470 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
120471    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
120472 RP Gu, ZT, Shanghai Univ Sci & Technol, Coll Sci, POB 249,516 Jun Gong Rd,
120473    Shanghai 200093, Peoples R China.
120474 EM zhengtiangu@yahoo.com.cn
120475    liangph@mail.shcnc.ac.cn
120476 CR BADER G, 1998, APPL OPTICS, V37, P1146
120477    BEVENOT X, 2002, MEAS SCI TECHNOL, V13, P118
120478    BRIKER CJ, 1990, SOL GEL SCI, P788
120479    DE G, 1999, SENSOR ACTUAT B-CHEM, V55, P134
120480    DOSTALEK J, 2001, SENSOR ACTUAT B-CHEM, V76, P8
120481    GU ZT, 2000, MEAS SCI TECHNOL, V12, P56
120482    HOMOLA J, 1999, SENSOR ACTUAT B-CHEM, V54, P3
120483    INGERSOLL CM, 1998, J SOL-GEL SCI TECHN, V11, P169
120484    LICCIULLI A, 2001, J SOL-GEL SCI TECHN, V21, P195
120485    MACCRAITH BD, 1995, SENSOR ACTUAT B-CHEM, V29, P51
120486    NELSON SG, 1996, SENSOR ACTUAT B-CHEM, V35, P187
120487    SLAVIK R, 2001, SENSOR ACTUAT B-CHEM, V74, P106
120488 NR 12
120489 TC 0
120490 SN 0030-3992
120491 J9 OPT LASER TECHNOL
120492 JI Opt. Laser Technol.
120493 PD APR
120494 PY 2004
120495 VL 36
120496 IS 3
120497 BP 211
120498 EP 217
120499 PG 7
120500 SC Optics
120501 GA 804TT
120502 UT ISI:000220321700007
120503 ER
120504 
120505 PT J
120506 AU Wang, J
120507    Wang, JD
120508    Daw, N
120509    Wu, QH
120510 TI Identification of pneumatic cylinder friction parameters using genetic
120511    algorithms
120512 SO IEEE-ASME TRANSACTIONS ON MECHATRONICS
120513 DT Article
120514 DE genetic algorithms (GA); nonlinear system; pneumatic actuators;
120515    parameter identification
120516 ID ACTUATOR SYSTEMS
120517 AB A method for identifying friction parameters of pneumatic actuator
120518    systems is developed in this paper, based on genetic algorithms (GA).
120519    The statistical expectation of mean-squared errors is traditionally
120520    used to form evaluation functions in general optimization problems
120521    using GA. However, it has been found that, sometimes, this type of
120522    evaluation function does not lead the algorithms to have a satisfactory
120523    convergence, that is, the algorithm takes a long period of time or
120524    fails to reach the values of parameters to be identified. Different
120525    evaluation functions are, therefore, studied in the paper and two types
120526    of evaluation functions are found to have the expected rate of
120527    convergence and the precision. The algorithm is initially developed and
120528    tested using the benchmark data generated by simulations before it is
120529    applied for parameter identification using the data obtained from the
120530    real system measurement. The results obtained in the paper can provide
120531    the manufacturers with the observation to the characteristics inside
120532    the pneumatic cylinders.
120533 C1 Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, Merseyside, England.
120534    Shanghai Univ Sci & Technol, Dept Mech Engn, Shandong 250013, Peoples R China.
120535 RP Wang, J, Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ,
120536    Merseyside, England.
120537 EM jh-wang@liverpool.ac.uk
120538 CR ANDERSON BW, 1976, ANAL DESIGN PNEUMATI
120539    ARMSTRONGHELOUV.B, 1994, AUTOMATICA, V30, P1083
120540    BENDOV D, 1995, IEEE T ROBOTIC AUTOM, V11, P906
120541    BLACKBURN JF, 1960, FLUID POWER CONTROL
120542    DAW N, 2002, NONLINEAR ADAPTIVE C, P77
120543    DRAKUNOV S, 1997, AUTOMATICA, V33, P1401
120544    GOLDBERG DE, 1989, GENETIC ALGORITHMS S
120545    HORNER M, 1998, ENG TECHNOL, V1, P24
120546    MCDONELL BW, 1993, J DYN SYST-T ASME, V115, P427
120547    MOORE PR, 1993, FLUID POWER CIRCUIT, P347
120548    SACKS T, 1999, DRIVES CONTROL, P43
120549    SESMAT S, 1995, P 4 SCAND INT C FLUI, V1, P504
120550    VANVARSEVELD RB, 1997, IEEE-ASME T MECH, V2, P195
120551    WANG J, 1998, INT J CONTROL, V71, P459
120552    WANG J, 2001, IEE P-CONTR THEOR AP, V148, P35
120553    WANG JH, 1999, CONTROL ENG PRACT, V7, P1483
120554 NR 16
120555 TC 0
120556 SN 1083-4435
120557 J9 IEEE-ASME TRANS MECHATRON
120558 JI IEEE-ASME Trans. Mechatron.
120559 PD MAR
120560 PY 2004
120561 VL 9
120562 IS 1
120563 BP 100
120564 EP 107
120565 PG 8
120566 SC Engineering, Electrical & Electronic; Engineering, Manufacturing;
120567    Engineering, Mechanical; Automation & Control Systems
120568 GA 805II
120569 UT ISI:000220359600011
120570 ER
120571 
120572 PT J
120573 AU Xu, F
120574    Cai, XS
120575    Ren, KF
120576 TI Geometrical-optics approximation of forward scattering by coated
120577    particles
120578 SO APPLIED OPTICS
120579 DT Article
120580 ID LIGHT
120581 AB By means of geometrical optics we present an approximation algorithm
120582    with which to accelerate the computation of scattering intensity
120583    distribution within a forward angular range (0degrees-60degrees) for
120584    coated particles illuminated by a collimated incident beam. Phases of
120585    emerging rays are exactly calculated to improve the approximation
120586    precision. This method proves effective for transparent and tiny
120587    absorbent particles with size parameters larger than 75 but fails to
120588    give good approximation results at scattering angles at which
120589    refractive rays are absent. When the absorption coefficient of a
120590    particle is greater than 0.01, the geometrical optics approximation is
120591    effective only for forward small angles, typically less than 10degrees
120592    or so. (C) 2004 Optical Society of America.
120593 C1 Shanghai Univ Sci & Technol, Inst Particle & Phase Flow Measurement Technol 2, Shanghai 200093, Peoples R China.
120594    Inst Natl Sci Appl, CNRS, Lab Energet Syst & Procedes, UMR 6614, F-76801 St Etienne, France.
120595    Univ Rouen, F-76801 St Etienne, France.
120596 RP Xu, F, Shanghai Univ Sci & Technol, Inst Particle & Phase Flow
120597    Measurement Technol 2, 516 Jungong Rd, Shanghai 200093, Peoples R China.
120598 EM xufeng123@etang.com
120599 CR ADEN AL, 1951, J APPL PHYS, V22, P1242
120600    BARTH HG, 1984, MODERN METHODS PARTI
120601    BAYVEL LP, 1981, ELECTROMAGNETIC SCAT
120602    BELAFHAL A, 2002, J QUANT SPECTROSC RA, V72, P385
120603    BOHREN CF, 1983, ABSORPTION SCATTERIN
120604    CHEN TW, 1987, APPL OPTICS, V26, P4155
120605    GHATAK A, 1977, OPTICS
120606    GLANTSCHNIG WJ, 1981, APPL OPTICS, V20, P2499
120607    GRYNKO Y, 2003, J QUANT SPECTROSC RA, V78, P319
120608    MIN M, 2003, J QUANT SPECTROSC RA, V79, P939
120609    SCHIFF LI, 1956, PHYS REV, V104, P1481
120610    VANDEHULST HC, 1981, LIGHT SCATTERING SMA
120611    XU F, 2003, ACTA OPT SINICA, V23, P1464
120612    XU R, 1996, LIQUID SURFACE BORN, P745
120613 NR 14
120614 TC 0
120615 SN 0003-6935
120616 J9 APPL OPT
120617 JI Appl. Optics
120618 PD MAR 20
120619 PY 2004
120620 VL 43
120621 IS 9
120622 BP 1870
120623 EP 1879
120624 PG 10
120625 SC Optics
120626 GA 805JK
120627 UT ISI:000220362400014
120628 ER
120629 
120630 PT J
120631 AU Zhang, YF
120632    Yan, QY
120633 TI Applications of an anti-symmetry loop algebra and its expanding forms
120634 SO CHAOS SOLITONS & FRACTALS
120635 DT Article
120636 ID EVOLUTION-EQUATIONS
120637 AB Constructing an anti-symmetry subalgebra (A) over tilde (2) of loop
120638    algebra (A) over tilde (2) gives the well-known Jaulent-Miodek (JM)
120639    hierarchy, the JM equation and its new Lax pair. Further, the Darboux
120640    transformation of the JM equation is deduced by anstaz method. By
120641    making use of a high-order loop algebra and Tu scheme, an expanding
120642    integrable model of the JM hierarchy is obtained. A direct expansion
120643    (A) over tilde (2) of loop algebra (A) over tilde (2) by considering
120644    the definition of Lie algebra is presented, which is used to establish
120645    two isospectral problems. It follows that corresponding two new
120646    integrable systems are engendered, which possess bi-Hamiltonian
120647    structures, respectively. Furthermore, a scalar transformation is
120648    applied to turn the loop algebra (A) over bar (*)(2) into its
120649    equivalent subalgebra (A) over tilde (1) of loop algebra (A) over tilde
120650    (1). With the help of (A) over tilde (1) another new high-order loop
120651    algebra G is constructed, which is used to obtain an expanding
120652    integrable model of one of two integrable systems presented. (C) 2004
120653    Elsevier Ltd. All rights reserved.
120654 C1 Shanghai Univ Sci & Technol, Sch Informat Sci & Engn, Tai An, Peoples R China.
120655    Acad Sinica, Acad Math & Syst Sci, Inst Computat Mech, Beijing 100080, Peoples R China.
120656    Shandong Finance Inst, Dept Ecol & Stat, Jinan 250014, Peoples R China.
120657    Dalian Univ Technol, Sch Mech Engn, Dalian 116024, Peoples R China.
120658 RP Zhang, YF, Shanghai Univ Sci & Technol, Sch Informat Sci & Engn, Tai
120659    An, Peoples R China.
120660 EM zhang_yfshandong@163.com
120661    yanqingyou@263.net
120662 CR ABLOWITZ MJ, 1981, SOLITONS INVERSE SCA
120663    BOITI M, 1988, STUD APPL MATH, V78, P1
120664    FUCHSSTEINER B, 1993, COUPLING COMPLETELY, P125
120665    GUO FK, 2003, J SHANDONG U SCI TEC, V22, P87
120666    GUO FK, 2004, IN PRESS ACTA MATH S, V47
120667    LI YS, 2000, PHYS LETT A, V275, P60
120668    LUO SY, 1999, CHINESE PHYS, V8, P280
120669    MAGRI F, 1978, J MATH PHYS, V19, P1156
120670    SHIMIZU T, 1980, PROG THEOR PHYS, V63, P808
120671    TU GZ, 1989, J PHYS A-MATH GEN, V22, P2375
120672    WADATI M, 1972, J PHYS SOC JPN, V32, P1681
120673    WADATI M, 1973, J PHYS SOC JPN, V34, P1289
120674    WADATI M, 1979, J PHYS SOC JPN, V47, P1698
120675    ZHANG QY, 2000, DIS AQUAT ORGAN, V42, P1
120676    ZHANG TG, 1989, J MATH PHYS, V8, P330
120677    ZHANG Y, 2002, PHYS LETT A, V299, P466
120678    ZHANG YF, 2003, CHAOS SOLITON FRACT, V16, P263
120679    ZHOU RG, 1997, J MATH PHYS, V38, P2535
120680 NR 18
120681 TC 11
120682 SN 0960-0779
120683 J9 CHAOS SOLITON FRACTAL
120684 JI Chaos Solitons Fractals
120685 PD JUL
120686 PY 2004
120687 VL 21
120688 IS 2
120689 BP 413
120690 EP 423
120691 PG 11
120692 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
120693 GA 802FS
120694 UT ISI:000220150000017
120695 ER
120696 
120697 PT J
120698 AU Yan, QY
120699    Zhang, YF
120700    Wei, XP
120701 TI A new subalgebra of the Lie algebra A(2) and two types of integrable
120702    Hamiltonian hierarchies, expanding integrable models
120703 SO CHAOS SOLITONS & FRACTALS
120704 DT Article
120705 ID EQUATIONS; SYSTEMS; PERTURBATION
120706 AB A new subalgebra G of the Lie algebra A(2) is first constructed. Then
120707    two loop algebra (G) over tilde (1), (G) over tilde (2) are presented
120708    in terms of different definitions of gradations. Using (G) over tilde
120709    (1), (G) over tilde (2) designs two isospectral problems, respectively.
120710    Again utilizing Tu-pattern obtains two types of various integrable
120711    Hamiltonian hierarchies of evolution equations. As reduction cases, the
120712    well-known Schrodinger equation and MKdV equation are obtained. At
120713    last, we turn the subalgebras (G) over tilde (1), (G) over tilde (2) of
120714    the loop algebra (A) over tilde (2) into equivalent subalgebras of the
120715    loop algebra (A) over tilde (1) by making a suitable linear
120716    transformation so that the two types of 5-dimensional loop algebras are
120717    constructed. Two kinds of integrable couplings of the obtained
120718    hierarchies are showed. Specially, the integrable couplings of
120719    Schrodinger equation and MKdV equation are obtained, respectively. (C)
120720    2003 Elsevier Ltd. All rights reserved.
120721 C1 Dalian Univ, Ctr Adv Design Technol, Dalian 116622, Peoples R China.
120722    N China Elect Power Univ, Sch Business Adm, Beijing 102206, Peoples R China.
120723    Shandong Finance Inst, Dept Econ & Stat, Jinan 250014, Peoples R China.
120724    Shanghai Univ Sci & Technol, Math Inst, Tai An 271019, Peoples R China.
120725 RP Yan, QY, Dalian Univ, Ctr Adv Design Technol, Dalian 116622, Peoples R
120726    China.
120727 EM yanqingyou@263.net
120728 CR FAN E, 2001, PHYSICA A, V301, P105
120729    FAN EG, 2000, J MATH PHYS, V41, P7769
120730    GUO FK, 1997, ACTA MATH SINICA, V40, P801
120731    GUO FK, 2002, ACTA PHYS SIN-CH ED, V51, P951
120732    HU XB, 1997, J PHYS A-MATH GEN, V30, P619
120733    LAKSHMANAN M, 1985, J MATH PHYS, V26, P1189
120734    MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
120735    TU GZ, 1989, J MATH PHYS, V30, P330
120736    ZHANG Y, 2002, J MATH PHYS, V43, P1
120737    ZHANG Y, 2002, J MATH RES EXP, V21, P289
120738    ZHANG YF, 2002, PHYS LETT A, V299, P543
120739 NR 11
120740 TC 0
120741 SN 0960-0779
120742 J9 CHAOS SOLITON FRACTAL
120743 JI Chaos Solitons Fractals
120744 PD JUL
120745 PY 2004
120746 VL 21
120747 IS 2
120748 BP 425
120749 EP 434
120750 PG 10
120751 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
120752 GA 802FS
120753 UT ISI:000220150000018
120754 ER
120755 
120756 PT J
120757 AU Zhang, YF
120758    Xu, XX
120759 TI A trick loop algebra and a corresponding Liouville integrable hierarchy
120760    of evolution equations
120761 SO CHAOS SOLITONS & FRACTALS
120762 DT Article
120763 ID BI-HAMILTONIAN STRUCTURE; LIE-ALGEBRAS; SYSTEMS; PERTURBATION;
120764    SYMMETRIES; COUPLINGS
120765 AB A subalgebra of loop algebra (A) over tilde (2) is first constructed,
120766    which has its own special feature. It follows that a new Liouville
120767    integrable hierarchy of evolution equations is obtained, possessing a
120768    tri-Hamiltonian structure, which is proved by us in this paper.
120769    Especially, three symplectic operators are constructed directly from
120770    recurrence relations. The conjugate operator of a recurrence operator
120771    is a hereditary symmetry. As reduction cases of the hierarchy presented
120772    in this paper, the celebrated MKdV equation and heat-conduction
120773    equation are engendered, respectively. Therefore, we call the hierarchy
120774    a generalized MKdV-H system. At last, a high-dimension loop algebra (G)
120775    over tilde is constructed by making use of a proper scalar
120776    transformation. As a result, a type expanding integrable model of the
120777    MKdV-H system is given. (C) 2004 Elsevier Ltd. All rights reserved.
120778 C1 Shanghai Univ Sci & Technol, Math Inst, Informat Sch, Tai An 271019, Peoples R China.
120779    Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, Beijing 100080, Peoples R China.
120780    Shanghai Univ Sci & Technol, Dept Basic Care, Tai An 271019, Peoples R China.
120781 RP Zhang, YF, Shanghai Univ Sci & Technol, Math Inst, Informat Sch, Tai An
120782    271019, Peoples R China.
120783 EM zhang_yfshandong@163.com
120784 CR FAN EG, 2000, J MATH PHYS, V41, P7769
120785    GU C, 1990, SOLITON THEORY ITS A
120786    GUO F, 2002, J SYS SCI MATH SCI, V22, P36
120787    GUO FK, 1997, ACTA MATH SINICA, V40, P801
120788    GUO FK, 2002, ACTA PHYS SIN-CH ED, V51, P951
120789    HU XB, 1994, J PHYS A, V27, P2497
120790    LAKSHMANAN M, 1985, J MATH PHYS, V26, P1189
120791    MA W, 1996, CHAOS SOLITON FRACT, V8, P1227
120792    MA WX, 1990, J PHYS A-MATH GEN, V23, P2707
120793    MA WX, 1996, PHYS LETT A, V213, P49
120794    MAGRI F, 1978, J MATH PHYS, V19, P1156
120795    TU GZ, 1989, J MATH PHYS, V30, P330
120796    WADATI M, 1973, J PHYS SOC JPN, V34, P1289
120797    ZHANG YF, 2002, J MATH PHYS, V43, P466
120798    ZHANG YF, 2002, PHYS LETT A, V299, P543
120799    ZHANG YF, 2003, PHYS LETT A, V310, P19
120800    ZHOU ZX, 2002, J PHYS SOC JPN, V71, P1857
120801 NR 17
120802 TC 0
120803 SN 0960-0779
120804 J9 CHAOS SOLITON FRACTAL
120805 JI Chaos Solitons Fractals
120806 PD JUL
120807 PY 2004
120808 VL 21
120809 IS 2
120810 BP 445
120811 EP 456
120812 PG 12
120813 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
120814 GA 802FS
120815 UT ISI:000220150000020
120816 ER
120817 
120818 PT J
120819 AU Shi, WJ
120820 TI Spectrophotometric determination of chondroitin sulfate by Victoria
120821    Pure Blue BO.
120822 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
120823 DT Meeting Abstract
120824 C1 Shanghai Univ Sci & Technol, Coll City Construct, Shanghai 201800, Peoples R China.
120825 EM swj1957@msn.com
120826 NR 0
120827 TC 0
120828 SN 0065-7727
120829 J9 ABSTR PAP AMER CHEM SOC
120830 JI Abstr. Pap. Am. Chem. Soc.
120831 PD SEP
120832 PY 2003
120833 VL 226
120834 PN Part 1
120835 BP U105
120836 EP U105
120837 PG 1
120838 SC Chemistry, Multidisciplinary
120839 GA 751JF
120840 UT ISI:000187062400421
120841 ER
120842 
120843 PT J
120844 AU Shi, WJ
120845 TI Chromogenic reaction of victoria pure blue to anions.
120846 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
120847 DT Meeting Abstract
120848 C1 Shanghai Univ Sci & Technol, Coll City Construct, Shanghai 201800, Peoples R China.
120849 EM swj1957@msn.com
120850 NR 0
120851 TC 0
120852 SN 0065-7727
120853 J9 ABSTR PAP AMER CHEM SOC
120854 JI Abstr. Pap. Am. Chem. Soc.
120855 PD SEP
120856 PY 2003
120857 VL 226
120858 PN Part 1
120859 BP U105
120860 EP U105
120861 PG 1
120862 SC Chemistry, Multidisciplinary
120863 GA 751JF
120864 UT ISI:000187062400422
120865 ER
120866 
120867 PT J
120868 AU Shi, WJ
120869 TI Treat industrial wastewater with sulfhydryl cotton fiber.
120870 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
120871 DT Meeting Abstract
120872 C1 Shanghai Univ Sci & Technol, Coll City Construct, Shanghai, Peoples R China.
120873 EM swj1975@msn.com
120874 NR 0
120875 TC 0
120876 SN 0065-7727
120877 J9 ABSTR PAP AMER CHEM SOC
120878 JI Abstr. Pap. Am. Chem. Soc.
120879 PD SEP
120880 PY 2003
120881 VL 226
120882 PN Part 1
120883 BP U498
120884 EP U498
120885 PG 1
120886 SC Chemistry, Multidisciplinary
120887 GA 751JF
120888 UT ISI:000187062402387
120889 ER
120890 
120891 PT J
120892 AU Feng, X
120893    Bai, YJ
120894    Lu, B
120895    Zhao, YR
120896    Yang, H
120897    Chi, HR
120898 TI A novel reduction-oxidation synthetic route to cubic zirconia
120899    nanocrystallite
120900 SO JOURNAL OF CRYSTAL GROWTH
120901 DT Article
120902 DE nanostructure; X-ray diffration; crystal morphology; nanomaterials;
120903    ceramics; oxides
120904 ID GLASS-FORMING MELTS; ZRO2; PHASE; SILICATE; OXIDES
120905 AB Cubic ZrO2 nanocrystals were successfully synthesized through a novel
120906    reduction-oxidation route, in which metal zirconium was reduced from
120907    zirconium tetrachloride (ZrCl4) by sodium, and then oxidized in
120908    atmosphere. The crystals were characterized by high temperature X-ray
120909    powder diffraction and transmission electron microscopy. It was shown
120910    that cubic nanocrystalline ZrO2 with high crystallinity was obtained,
120911    which consists dominantly of spherical particles with an average size
120912    of 17 nm or so. (C) 2003 Elsevier B.V. All rights reserved.
120913 C1 Shanghai Univ Sci & Technol, Dept Mech Engn, Jinan 250031, Peoples R China.
120914    Ocean Univ Qingdao, Coll Mech Engn, Qingdao 266071, Peoples R China.
120915 RP Feng, X, Shanghai Univ Sci & Technol, Dept Mech Engn, Jinan 250031,
120916    Peoples R China.
120917 EM fengx01@hotmail.com
120918    byj97@263.net
120919 CR *AN CTR, 1985, XRD HDB CHEM
120920    AKOPOV FA, 2001, HIGH TEMP+, V39, P846
120921    ATIK M, 1992, J NONCRYST SOLIDS, V813, P147
120922    BELYKH DB, 2002, GLASS PHYS CHEM+, V28, P36
120923    BELYKH DB, 2003, GLASS PHYS CHEM+, V29, P75
120924    BENEDETTI A, 1989, J AM CERAM SOC, V72, P467
120925    CHATTERJEE A, 1994, J MATER RES, V9, P263
120926    ELSHANSHOURY IA, 1970, J AM CERAM SOC, V53, P264
120927    GILLAN EG, 2001, J MATER CHEM, V11, P1951
120928    KATZ G, 1971, J AM CERAM SOC, V54, P531
120929    LAJAVARDI M, 2000, J CHIN CHEM SOC-TAIP, V47, P1055
120930    LANGE EF, 1986, J AM CERAM SOC, V69, P40
120931    MAZDIYASNI KS, 1965, J AM CERAM SOC, V48, P372
120932    MAZDIYASNI KS, 1967, J AM CERAM SOC, V50, P532
120933    POZHIDAEVA OV, 2002, RUSS J GEN CHEM+, V72, P849
120934    SHANE M, 1990, J MATER SCI, V25, P1537
120935    SHULA S, 2002, J NANOPART RES, V4, P553
120936    STREKALOVSKII VN, 1969, ELEKTROKHIMIYA RASPL, P120
120937    SWAIN MV, 1983, J AM CERAM SOC, V66, P358
120938    YOSHIMURA M, 1981, ADV CERAM, V3, P455
120939 NR 20
120940 TC 2
120941 SN 0022-0248
120942 J9 J CRYST GROWTH
120943 JI J. Cryst. Growth
120944 PD FEB 15
120945 PY 2004
120946 VL 262
120947 IS 1-4
120948 BP 420
120949 EP 423
120950 PG 4
120951 SC Crystallography
120952 GA 776FN
120953 UT ISI:000189098700066
120954 ER
120955 
120956 PT J
120957 AU Gao, C
120958    Zhou, GY
120959    Xu, Y
120960    Hua, ZZ
120961 TI Freezing properties of EG and glycerol aqueous solutions studied by DSC
120962 SO ACTA PHYSICO-CHIMICA SINICA
120963 DT Article
120964 DE ethylene glycol (EG); glycerol.; differential scanning
120965    calorimetry(DSC); supercooling degree; hydration; glass transition and
120966    devitrification
120967 ID DIFFERENTIAL SCANNING CALORIMETRY; VITRIFICATION SOLUTIONS; ICE
120968    NUCLEATION; CRYSTALLIZATION; WATER
120969 AB In order to examine possible relationship between freezing properties
120970    and the number of hydroxyl group in solute molecules, a differential
120971    scanning calorimeter (Pyris-Diamond DSC) was employed to study the
120972    thermal behaviors (supercooling degree of heterogeneous nucleating
120973    temperature, hydration properties, glass transition and
120974    devitrification) of ethylene glycol and glycerol aqueous solutions.
120975    Experiments were conducted on 12 groups (24 in total) aqueous solutions
120976    with different concentrations. At the same concentrations (mass
120977    fraction, w), the supercooling behaviors of these two polyols aqueous
120978    solutions followed similar rules of change. At concentration of 0
120979    similar to 5% ( w), supercooling degrees decreased first and then
120980    increased with increasing concentration. But at concentration of 5%
120981    similar to 25% ( w), experimental results showed that supercooling
120982    behaviors became disorder. At concentrations > 25%, supercooling
120983    degrees enhanced monotonically with the increasing solutes contents.
120984    Hydration experiments showed that the unfreezable water content in
120985    aqueous solutions of these two polyols solutions had no significant
120986    difference (ratios of unfreezable water contents are 1.04 similar to
120987    1.15) with the same mass percentage. However, the temperature of glass
120988    transition and devitrification exhibited distinct difference. It can be
120989    concluded that "hydroxyl-group concentration" of this two polyols
120990    aqueous solutions could predict supercooling behaviors and hydration
120991    capabilities. Neither mass percentage nor molality of these two polyols
120992    solutions could characterize glass transition and devitrification
120993    temperature.
120994 C1 Shanghai Univ Sci & Technol, Inst Cryomed & Food Freezing, Shanghai 200093, Peoples R China.
120995 RP Hua, ZZ, Shanghai Univ Sci & Technol, Inst Cryomed & Food Freezing,
120996    Shanghai 200093, Peoples R China.
120997 EM tchua@shl63.net
120998 CR ANGELL CA, 1987, BIOPHYSICS ORGAN CRY, P79
120999    BRONSHTEYN VL, 1995, CRYOBIOLOGY, V32, P1
121000    DEVIREDDY RV, 2002, INT J HEAT MASS TRAN, V45, P1915
121001    FAHY GM, 1987, CRYOBIOLOGY, V24, P196
121002    FRANKS F, 1987, NATURE, V325, P146
121003    HEY JM, 1996, CRYOBIOLOGY, V33, P205
121004    HUA ZZ, 1994, CRYOBIOLOGY CRYOMEDI, P78
121005    KRISTIANSEN E, 1999, J COMP PHYSIOL B, V169, P5
121006    MACFARLANE DR, 1990, CRYOBIOLOGY, V27, P345
121007    OKAWA S, 2001, INT J REFRIG, V24, P108
121008    RASMUSSEN PH, 1997, THERMOCHIM ACTA, V303, P23
121009    VIGIER G, 1987, CRYOBIOLOGY, V24, P345
121010    WILSON PW, 1999, BIOPHYS J, V77, P2850
121011    WILSON PW, 2003, CRYOBIOLOGY, V46, P88
121012    WOWK B, 1999, CRYOBIOLOGY, V39, P215
121013 NR 15
121014 TC 5
121015 SN 1000-6818
121016 J9 ACTA PHYS-CHIM SIN
121017 JI Acta Phys.-Chim. Sin.
121018 PD FEB
121019 PY 2004
121020 VL 20
121021 IS 2
121022 BP 123
121023 EP 128
121024 PG 6
121025 SC Chemistry, Physical
121026 GA 777PH
121027 UT ISI:000189186400003
121028 ER
121029 
121030 PT J
121031 AU Deng, BQ
121032    Kim, CN
121033 TI An analytical model for VOCs emission from dry building materials
121034 SO ATMOSPHERIC ENVIRONMENT
121035 DT Article
121036 DE VOCs emission; analytical model; gas-phase mass transfer coefficient;
121037    diffusion
121038 ID VOLATILE ORGANIC-COMPOUNDS
121039 AB A new analytical model for VOCs emission is presented in this paper.
121040    This model considers both the diffusion in the materials and the mass
121041    transfer through the air boundary layer. Compared to other models
121042    capable of accounting for those two mechanisms, this model is fully
121043    analytical. A general characteristic equation is developed, which would
121044    reduce to that of Little et al. (Atmos. Environ. 28 (1994) 227) when
121045    the gas-phase mass transfer coefficient becomes infinite. Thus, with
121046    the current model the concentration in the air can be solved
121047    conveniently without iteration. Results of the present model show a
121048    good agreement with the experimental data while the model of Little et
121049    al., overestimated the concentration in the air. Also, further analysis
121050    on this model shows that the concentration in the air increases with
121051    the increase of the gas-phase mass transfer coefficient in the early
121052    stage. And the normalization of the concentrations in the materials and
121053    in the air shows that five dimensionless numbers are needed to
121054    determine the characteristics of VOCs transport from the building
121055    materials to the air. (C) 2004 Elsevier Ltd. All rights reserved.
121056 C1 Shanghai Univ Sci & Technol, Dept Civil & Environm Engn, Shanghai 200093, Peoples R China.
121057    Kyung Hee Univ, Ind Liaison Res Inst, Yongin 449701, South Korea.
121058    Kyung Hee Univ, Coll Adv Technol, Yongin 449701, South Korea.
121059 RP Kim, CN, Kyung Hee Univ, Coll Mech & Ind Syst Engn, 1 Sechon, Yongin
121060    449701, Kyunggi, South Korea.
121061 EM cnkim@khu.ac.kr
121062 CR COX SS, 2002, ENVIRON SCI TECHNOL, V36, P709
121063    HUANG H, 2002, BUILD ENVIRON, V37, P1349
121064    LITTLE JC, 1994, ATMOS ENVIRON, V28, P227
121065    SHIN DM, 2003, J SAREK, V15, P40
121066    WHITE FM, 1988, HEAT MASS TRANSFER
121067    XU Y, 2003, ATMOS ENVIRON, V37, P2497
121068    YANG X, 2001, BUILD ENVIRON, V36, P1099
121069    ZHAO D, 2002, INDOOR AIR, V12, P184
121070 NR 8
121071 TC 4
121072 SN 1352-2310
121073 J9 ATMOS ENVIRON
121074 JI Atmos. Environ.
121075 PD MAR
121076 PY 2004
121077 VL 38
121078 IS 8
121079 BP 1173
121080 EP 1180
121081 PG 8
121082 SC Environmental Sciences; Meteorology & Atmospheric Sciences
121083 GA 776DQ
121084 UT ISI:000189101800011
121085 ER
121086 
121087 PT J
121088 AU Ding, HY
121089    Xu, XX
121090    Zhao, XD
121091 TI A hierarchy of lattice soliton equations and its Darboux transformation
121092 SO CHINESE PHYSICS
121093 DT Article
121094 DE discrete lattice equation; trace identity; Darboux transformation
121095 ID INTEGRABLE SYSTEMS; BACKLUND TRANSFORMATION; SYMMETRY CONSTRAINT; TRACE
121096    IDENTITY
121097 AB A new discrete spectral problem is introduced and the corresponding
121098    hierarchy of the lattice soliton equations are derived by means of the
121099    trace identity. We find a new Darboux transformation of the lattice
121100    soliton equation, through which the explicit solutions are shown.
121101 C1 Shanghai Univ Sci & Technol, Dept Basic Course, Tai An 271019, Peoples R China.
121102 RP Ding, HY, Shanghai Univ Sci & Technol, Dept Basic Course, Tai An
121103    271019, Peoples R China.
121104 EM dhyong@tom.com
121105 CR BAI CL, 2001, CHINESE PHYS, V10, P1091
121106    GUO FK, 2002, ACTA PHYS SINICA, V51, P5
121107    LIU SK, 2001, ACTA PHYS SIN-CH ED, V50, P2068
121108    LIU SK, 2001, ACTA PHYS SINICA, V51, P10
121109    MA W, 1992, CHINESE ANN MATH A, V13, P115
121110    MA WX, 1994, PHYS LETT A, V185, P277
121111    MA WX, 1995, PHYSICA A, V219, P467
121112    TAMIZHMANI KM, 2000, J PHYS SOC JPN, V69, P351
121113    TU GZ, 1989, ACTA MATH APPL SINIC, V5, P89
121114    TU GZ, 1989, J MATH PHYS, V30, P330
121115    TU GZ, 1990, J PHYS A-MATH GEN, V23, P3903
121116    WANG ML, 1995, PHYS LETT A, V199, P169
121117    WU YT, 1998, J PHYS A, V31, L678
121118    XU XX, 1997, ACTA MATH SCI, V17, P57
121119    XU XX, 2002, PHYS LETT A, V301, P250
121120    YAN ZY, 2001, ACTA PHYS SINICA, V50, P7
121121    ZHANG GX, 2000, SCI CHINA SER A, V30, P1103
121122    ZHANG JF, 2002, CHINESE PHYS, V11, P425
121123    ZHANG JF, 2002, CHINESE PHYS, V11, P651
121124    ZHANG JL, 2003, CHINESE PHYS, V12, P245
121125 NR 20
121126 TC 5
121127 SN 1009-1963
121128 J9 CHIN PHYS
121129 JI Chin. Phys.
121130 PD FEB
121131 PY 2004
121132 VL 13
121133 IS 2
121134 BP 125
121135 EP 131
121136 PG 7
121137 SC Physics, Multidisciplinary
121138 GA 770UK
121139 UT ISI:000188749100001
121140 ER
121141 
121142 PT J
121143 AU Zhang, YF
121144    Tam, HW
121145    Guo, FK
121146 TI A subalgebra of loop algebra A(2) and its applications
121147 SO CHINESE PHYSICS
121148 DT Article
121149 DE loop algebra; integrable hierarchy; Hamiltonian structure
121150 ID INTEGRABLE COUPLINGS; HIERARCHY; EQUATIONS
121151 AB A subalgebra of loop algebra (A) over tilde (2) and its expanding loop
121152    algebra G are constructed. It follows that both resulting integrable
121153    Hamiltonian hierarchies are obtained. As a reduction case of the first
121154    hierarchy, a generalized nonlinear coupled Schrodinger equation, the
121155    standard heat-conduction and a formalism of the well known Ablowitz,
121156    Kaup, Newell and Segur hierarchy are given, respectively. As a
121157    reduction case of the second hierarchy, the nonlinear Schrodinger and
121158    modified Korteweg de Vries hierarchy and a new integrable system are
121159    presented. Especially, a coupled generalized Burgers equation is
121160    generated.
121161 C1 Shanghai Univ Sci & Technol, Inst Math, Informat Sch, Tai An 271019, Peoples R China.
121162    Hong Kong Baptist Univ, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China.
121163 RP Zhang, YF, Shanghai Univ Sci & Technol, Inst Math, Informat Sch, Tai An
121164    271019, Peoples R China.
121165 EM zhang_yfshandong@163.com
121166 CR GUO F, 1999, ACTA MATH PHYS SINIC, V19, P507
121167    GUO F, 2002, ACTA PHYS SINICA, V51, P13
121168    GUO FK, 1997, ACTA MATH SINICA, V40, P801
121169    GUO FK, 2000, ACTA MATH APPL SIN, V23, P181
121170    MA WX, 1990, J PHYS A-MATH GEN, V23, P2707
121171    TU GZ, 1989, J MATH PHYS, V30, P330
121172    ZHANG YF, 2002, J MATH PHYS, V43, P466
121173    ZHANG YF, 2002, PHYS LETT A, V299, P543
121174    ZHANG YF, 2003, ACTA PHYS SIN-CH ED, V52, P5
121175 NR 9
121176 TC 1
121177 SN 1009-1963
121178 J9 CHIN PHYS
121179 JI Chin. Phys.
121180 PD FEB
121181 PY 2004
121182 VL 13
121183 IS 2
121184 BP 132
121185 EP 138
121186 PG 7
121187 SC Physics, Multidisciplinary
121188 GA 770UK
121189 UT ISI:000188749100002
121190 ER
121191 
121192 PT J
121193 AU Wei, EB
121194    Yang, ZD
121195    Gu, GQ
121196 TI Effective ac response in weakly nonlinear composites
121197 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
121198 DT Article
121199 ID ELECTRORHEOLOGICAL FLUIDS; ELECTRIC-FIELD
121200 AB The perturbation method is developed to deal with the problem of
121201    determining the effective nonlinear conductivity of Kerr-like nonlinear
121202    media under an external ac electric field. As an example, we have
121203    considered the cylindrical inclusion embedded in a host under the
121204    sinusoidal external field E-1 sin(omegat) + E-3 sin(3omegat) with
121205    frequencies omega and 3omega. The potentials of composites at higher
121206    harmonics are derived in both local inclusion particle and host
121207    regions. The effective responses of bulk nonlinear composites at basic
121208    frequency and harmonics are given for cylindrical composites in the
121209    dilute limit. Moreover, the relationships between the nonlinear
121210    effective responses at the basic frequency and the third harmonics are
121211    derived.
121212 C1 Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R China.
121213    Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
121214    E China Normal Univ, Informat Coll Sci & Technol, Shanghai 200062, Peoples R China.
121215 RP Wei, EB, Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R
121216    China.
121217 EM ebwei@bms.qdio.ac.cn
121218 CR GU GQ, 1992, PHYS REV B, V46, P4502
121219    GU GQ, 2000, PHYSICA B, V279, P62
121220    GU GQ, 2001, INT J MOD PHYS B, V15, P1033
121221    GU GQ, 2002, INT J MOD PHYS B, V16, P2597
121222    HUI PM, 1998, J APPL PHYS, V84, P3451
121223    TAO R, 1999, INT J MOD PHYS B, V13, P2189
121224    TAO R, 2001, INT J MOD PHYS B, V15, P918
121225    WANG ZW, 1997, J PHYS D APPL PHYS, V30, P1265
121226    WEI EB, 2001, COMMUN THEOR PHYS, V35, P501
121227    WEI EB, 2002, PHYSICA B, V324, P322
121228    WEI EB, 2003, PHYS LETT A, V309, P160
121229    YU KW, 2000, COMPUT PHYS COMMUN, V129, P177
121230 NR 12
121231 TC 5
121232 SN 0022-3727
121233 J9 J PHYS-D-APPL PHYS
121234 JI J. Phys. D-Appl. Phys.
121235 PD JAN 7
121236 PY 2004
121237 VL 37
121238 IS 1
121239 BP 107
121240 EP 111
121241 PG 5
121242 SC Physics, Applied
121243 GA 768MD
121244 UT ISI:000188546000020
121245 ER
121246 
121247 PT J
121248 AU Chen, GH
121249    Liu, LY
121250    Jia, HZ
121251    Yu, JM
121252    Xu, L
121253    Wang, WC
121254 TI Simultaneous strain and temperature measurements with fiber Bragg
121255    grating written in novel Hi-Bi optical fiber
121256 SO IEEE PHOTONICS TECHNOLOGY LETTERS
121257 DT Article
121258 DE Bragg wavelength; fiber Bragg grating (FBG); high birefringence (Hi-Bi)
121259    fiber; sensors; strain measurement; temperature measurement
121260 ID SENSORS; DISCRIMINATION; SYSTEM
121261 AB A fiber Bragg grating (FBG) was written in a novel "quasi-rectangle"
121262    high birefringence fiber by the phase-mask method. Two Bragg
121263    wavelengths corresponding to the fast-axis mode and slow-axis mode are
121264    observed in this grating, and a wavelength splitting as large as 0.765
121265    nm was obtained. The wavelength splitting changes proportionally to the
121266    temperature, but remains the same as the strain increases. This novel
121267    FBG can be used to measure temperature and strain simultaneously.
121268 C1 Fudan Univ, Dept Opt Sci & Engn, State Key Lab Adv Photon Mat & Devices, Shanghai 200433, Peoples R China.
121269    China Elect Technol Grp Corp, Res Inst 23, Shanghai 200437, Peoples R China.
121270    Shanghai Univ Sci & Technol, Coll Opt & Elect Engn, Shanghai 200093, Peoples R China.
121271 RP Chen, GH, Fudan Univ, Dept Opt Sci & Engn, State Key Lab Adv Photon Mat
121272    & Devices, Shanghai 200433, Peoples R China.
121273 EM stlgkyzx@81890.net
121274 CR FERREIRA LA, 2000, OPT ENG, V39, P2226
121275    HJELME DR, 1997, APPL OPTICS, V36, P328
121276    JIN W, 1997, OPT ENG, V36, P2272
121277    KANELLOPOULOS SE, 1995, OPT LETT, V20, P333
121278    MEASURES RM, 1994, P SOC PHOTO-OPT INS, V2294, P53
121279    NELLEN PM, 1995, P SOC PHOTO-OPT INS, V2507, P14
121280    NODA J, 1986, J LIGHTWAVE TECHNOL, V4, P1071
121281    PATRICK HJ, 1996, IEEE PHOTONIC TECH L, V8, P1223
121282    SUDO M, 1997, P 12 INT C OPT FIB S, P170
121283    ULRICH R, 1980, OPT LETT, V5, P273
121284    XU MG, 1994, ELECTRON LETT, V30, P1085
121285    YE CC, 2002, MEAS SCI TECHNOL, V13, P1446
121286 NR 12
121287 TC 10
121288 SN 1041-1135
121289 J9 IEEE PHOTONIC TECHNOL LETT
121290 JI IEEE Photonics Technol. Lett.
121291 PD JAN
121292 PY 2004
121293 VL 16
121294 IS 1
121295 BP 221
121296 EP 223
121297 PG 3
121298 SC Engineering, Electrical & Electronic; Physics, Applied; Optics
121299 GA 761DX
121300 UT ISI:000187885800074
121301 ER
121302 
121303 PT J
121304 AU Sui, JL
121305    Li, MS
121306    Lu, YP
121307    Yin, LW
121308    Song, YJ
121309 TI Plasma-sprayed hydroxyapatite coatings on carbon/carbon composites
121310 SO SURFACE & COATINGS TECHNOLOGY
121311 DT Article
121312 DE scanning electron microscopy; plasma spraying; carbon fiber reinforced
121313    carbon composites; hydroxyapatite coating
121314 ID TITANIUM
121315 AB Carbon fiber reinforced carbon composites (C/C composites) are
121316    candidate materials for loaded human bones because of their excellent
121317    biocompatibility, as well as appropriate elastic modulus similar to
121318    that of human cortical bone. A simple plasma spraying method was used
121319    to coat hydroxyapatite (HA) on C/C composite substrates to endow
121320    surface bioactivity. The microstructure and composition of the
121321    plasma-sprayed HA coatings before and after heat treatment have been
121322    examined by scanning electron microscopy and X-ray diffraction,
121323    respectively. A stronger adhesive interface between the HA coating and
121324    C/C substrate was also analyzed by cross-sectional observation. (C)
121325    2003 Elsevier Science B.V. All rights reserved.
121326 C1 Shandong Univ, Sch Mat Sci & Engn, Jinan 250061, Peoples R China.
121327    Shanghai Univ Sci & Technol, Sch Power & Control Engn, Jinan 250031, Peoples R China.
121328    Shandong Elect Power Res Inst, Jinan 250002, Peoples R China.
121329 RP Li, MS, Shandong Univ, Sch Mat Sci & Engn, 73 Jing Shi Rd, Jinan
121330    250061, Peoples R China.
121331 CR CHANG YL, 1999, J ORAL MAXIL SURG, V57, P1096
121332    HARRIS DH, 1990, THERMAL SPRAY RES AP, P419
121333    HASTINGS GW, 1988, BIOCERAMICS, V4, P355
121334    LEEA IS, 2000, SURF COAT TECH, V131, P181
121335    LI SH, 1998, J BIOMED MATER RES, V40, P520
121336    LIN H, 1992, J BIOMED MATER RES, V26, P7
121337    LUCIE BK, 2001, J BIOMED MATER RES, V54, P567
121338    TSUI YC, 1998, BIOMATERIALS, V19, P2015
121339    WHITEHEAD RY, 1993, J BIOMED MATER RES, V27, P1501
121340    WILLIAMS DF, 1989, J BIOMED ENG, V11, P185
121341    ZHANG CG, 2001, BIOMATERIALS, V22, P1357
121342 NR 11
121343 TC 3
121344 SN 0257-8972
121345 J9 SURF COAT TECH
121346 JI Surf. Coat. Technol.
121347 PD JAN 1
121348 PY 2004
121349 VL 176
121350 IS 2
121351 BP 188
121352 EP 192
121353 PG 5
121354 SC Materials Science, Coatings & Films
121355 GA 759RN
121356 UT ISI:000187750800008
121357 ER
121358 
121359 EF
121360 FN ISI Export Format
121361 VR 1.0
121362 PT J
121363 AU Lu, XG
121364    Liang, XW
121365    Yuan, W
121366    Sun, MS
121367    Ding, WZ
121368    Zhou, GZ
121369 TI Study of unpolluted deoxidization method with applied voltage between
121370    metal and slag
121371 SO ACTA METALLURGICA SINICA
121372 DT Article
121373 DE Cu melt; deoxidization; applied voltage; metal-slag reaction
121374 ID STABILIZED ZIRCONIA; MOLTEN METALS; DEOXIDATION; TRANSPORT; OXYGEN; CELL
121375 AB Unpolluted deoxidization technique has been studied with applied stable
121376    DC voltage between Na(3)AIF(6)-Al2O3 slag and Cu melt. The experimental
121377    result shows that the oxygen concentration in Cu melt can be decreased
121378    to 10 X 10(-6) rapidly and effectively with this method. The comparison
121379    of experimental data with model calculation representing oxygen ion
121380    immigration between slag and metal melt under applied voltage has
121381    proved that the model is right. Based on the experimental result, the
121382    electrochemistry of oxygen ion transpcrt in slag has been discussed.
121383    The technique can avoid oxide inclusion to contaminate metal melts,
121384    high cost and secondary oxidation of solid oxide electrolyte
121385    deoxidation methods.
121386 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
121387 RP Lu, XG, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
121388    China.
121389 EM luxg@mail.shu.edu.cn
121390 CR FISCHER WA, 1972, SCRIPTA METALL, V6, P923
121391    HASHAM Z, 1995, J ELECTROCHEM SOC, V142, P469
121392    HU XJ, 1999, ACTA METALL SIN, V35, P316
121393    IWASE M, 1981, METALL T B, V12, P517
121394    LI FS, 2000, J CHIN RARE EARTH SO, V18, P258
121395    LU XG, 1999, ACTA METALL SIN, V35, P743
121396    LU XG, 2002, T NONFERR METAL SOC, V12, P326
121397    OBERG KE, 1973, METALL T B, V4, P75
121398    ODLE RR, 1997, METALL T B, V8, P581
121399    QIU ZX, 1985, PHYS CHEM ALUMINUM M
121400    WANG LM, 2000, J STEEL IRON RES, V12, P16
121401    YUAN S, 1994, J ELECTROCHEM SOC, V141, P467
121402    YUAN S, 1996, J AM CERAM SOC, V79, P641
121403    ZHOU GZ, 1997, 971169543, CN
121404 NR 14
121405 TC 1
121406 SN 0412-1961
121407 J9 ACTA METALL SIN
121408 JI Acta Metall. Sin.
121409 PD FEB
121410 PY 2005
121411 VL 41
121412 IS 2
121413 BP 113
121414 EP 117
121415 PG 5
121416 SC Metallurgy & Metallurgical Engineering
121417 GA 906QI
121418 UT ISI:000227656500001
121419 ER
121420 
121421 PT J
121422 AU Cao, WG
121423    Chen, GD
121424    Chen, J
121425    Chen, RQ
121426 TI Simple approach to the high stereoselective synthesis of
121427    trans-2,3-dihydrofuran derivatives
121428 SO SYNTHETIC COMMUNICATIONS
121429 DT Article
121430 DE stereoselective synthesis; arsonium ylide; dihydrofuran derivatives
121431 AB In the presence of K2CO3, benzoylmethyltriphenylarsonium bromide I
121432    reacted with 3-arylidene-2,4-pentadione 2 in benzene under heating to
121433    give 2-benzoyl-3-aryl-4-acetyl-5-methyl-trans-2,3-dihydrofurans 3 in
121434    good yield with high stereoselectivity.
121435 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
121436    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
121437 RP Cao, WG, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
121438 EM wgcao@staff.shu.edu.cn
121439 CR CAO WG, 2000, SYNTHETIC COMMUN, V30, P3793
121440    CAO WG, 2004, SYNTHETIC COMMUN, V34, P1599
121441    CHEN YL, 1998, CHEM J CHINESE U, V19, P1614
121442    DULERE JP, 1994, J CHEM SOC CHEM COMM, P303
121443    EISTERT B, 1961, CHEM BER, V94, P929
121444    HUDLICKY T, 1990, SYNTHETIC COMMUN, V20, P1721
121445    PALLAUD R, 1963, CHIM IND, V89, P283
121446    PU JQ, 2000, HECHENG HUAXUE, V8, P356
121447    SUGIMURA H, 1994, J ORG CHEM, V59, P7653
121448 NR 9
121449 TC 0
121450 SN 0039-7911
121451 J9 SYN COMMUN
121452 JI Synth. Commun.
121453 PY 2005
121454 VL 35
121455 IS 4
121456 BP 527
121457 EP 533
121458 PG 7
121459 SC Chemistry, Organic
121460 GA 907HP
121461 UT ISI:000227707400005
121462 ER
121463 
121464 PT J
121465 AU Zhao, SC
121466    Zhang, LN
121467    Li, GR
121468    Wang, TB
121469    Ding, AL
121470 TI Dielectric properties of Na0.25K0.25Bi0.5TiO3 lead-free ceramics
121471 SO PHYSICA STATUS SOLIDI A-APPLIED RESEARCH
121472 DT Article
121473 ID PIEZOELECTRIC PROPERTIES; AXIAL PRESSURE
121474 AB Na0.25K0.25Bi0.5TiO3 (NKBT50) lead-free ceramics were prepared by
121475    solid-state reaction. The dielectric property of the ceramics was
121476    investigated from room temperature to 400 degrees C. There exists a
121477    dielectric anomaly between room temperature and 150 degrees C for the
121478    unpoled ceramics sintered in air atmosphere while the anomaly
121479    disappears after the ceramic were poled or sintered in oxygen. It is
121480    believed that the dielectric anomaly is caused by defect dipoles
121481    related to oxygen vacancies due to the volatility of the bismuth
121482    component and the effect of poling to it is discussed. The materials
121483    undergo a ferroelectric-antiferroelectric phase transition at 225
121484    degrees C and the dielectric anomaly corresponding to this phase
121485    transition also is affected by oxygen vacancies.
121486 C1 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
121487    Chinese Acad Sci, Grad Sch, Shanghai 200050, Peoples R China.
121488    Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
121489 RP Li, GR, Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High
121490    Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
121491 EM sicaccn@yahoo.com.cn
121492 CR CAITO Y, 2004, NATURE, V432, P84
121493    CHEN A, 2000, PHYS REV B, V62, P228
121494    CHU BJ, 2002, J EUR CERAM SOC, V22, P2115
121495    DONG Y, 2005, J CRYST GROWTH, V273, P500
121496    ELKCHAL O, 1996, PHYS STATUS SOLIDI A, V157, P499
121497    LI HD, 2004, MATER LETT, V58, P1194
121498    NAGATA H, 1998, JPN J APPL PHYS 1, V37, P5311
121499    RAYMOND MV, 1996, J PHYS CHEM SOLIDS, V57, P1507
121500    SAID S, 2001, J EUR CERAM SOC, V21, P1333
121501    SAKATA K, 1974, FERROELECTRICS, V7, P347
121502    SASKI A, 1999, JPN J APPL PHYS, V38, P5564
121503    SUCHANICZ J, 2001, PHYS STATUS SOLIDI B, V225, P459
121504    SUCHANICZ J, 2002, PHYS STATUS SOLIDI A, V193, P179
121505    SUCHANICZ J, 2003, MAT SCI ENG B-SOLID, V97, P154
121506    TAKANAKA T, 1991, JPN J APPL PHYS, V30, P2236
121507    WADA T, 2001, JPN J APPL PHYS 1, V40, P5703
121508    WADA T, 2002, JPN J APPL PHYS 1, V41, P7025
121509    WANG B, 1987, J CHIN CERAM SOC, V15, P248
121510    WANG XX, 2003, SOLID STATE COMMUN, V125, P395
121511    WOLNY WW, 2004, CERAM INT, V30, P1079
121512    YAO YY, 2004, J APPL PHYS, V95, P3126
121513    ZHAO SC, 2005, KEY ENG MAT 1-2, V280, P251
121514 NR 22
121515 TC 0
121516 SN 0031-8965
121517 J9 PHYS STATUS SOLIDI A-APPL RES
121518 JI Phys. Status Solidi A-Appl. Res.
121519 PD FEB
121520 PY 2005
121521 VL 202
121522 IS 3
121523 BP R22
121524 EP R24
121525 PG 3
121526 SC Physics, Condensed Matter
121527 GA 907NU
121528 UT ISI:000227725600003
121529 ER
121530 
121531 PT J
121532 AU Shen, JQ
121533    Riebel, U
121534 TI Transmission fluctuation spectrometry in concentrated suspensions part
121535    one: Effects of the monolayer structure
121536 SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION
121537 DT Article
121538 DE high concentration effects; monolayer; particle size analysis;
121539    transmission fluctuation spectrometry
121540 ID PERCUS-YEVICK EQUATION; SIZE ANALYSIS; GAUSSIAN-BEAM; FUNDAMENTALS;
121541    SPHERES
121542 AB The theory of transmission fluctuation spectrometry (TFS) was recently
121543    developed for particle size analysis in dilute flowing particle
121544    suspensions, whereby the statistical transmission fluctuations are used
121545    to extract the particle size distribution and particle concentration.
121546    This study addresses the high concentration effects on TFS. As a first
121547    part of this publication, the steric interactions between particles
121548    within the same monolayer are investigated by introducing a
121549    2-dimensional particle-particle pair correlation function (PPCF), which
121550    describes the monolayer structure. As a result, the expression for the
121551    expectancy of the transmission square (ETS) through a monolayer is
121552    extended to high concentrations. The transmission fluctuation spectrum
121553    is found to be influenced by the monolayer structure, which is
121554    determined by the particle concentration and the particle-particle
121555    interaction potentials.
121556 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
121557    Brandenburg Tech Univ Cottbus, Lehrstuhl Mech Verfahrenstech, D-03013 Cottbus, Germany.
121558 RP Shen, JQ, Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
121559 EM shenjq@online.sh.cn
121560 CR BAXTER RJ, 1968, J CHEM PHYS, V49, P2770
121561    BREITENSTEIN M, 1999, PART PART SYST CHAR, V16, P249
121562    BREITENSTEIN M, 2001, PART PART SYST CHAR, V18, P134
121563    KAUTER U, 1995, PART PART SYST CHAR, V12, P132
121564    KRAUTER U, 1995, THESIS U KARLRUHE
121565    RIEBEL U, 1993, PART PART SYST CHAR, V10, P201
121566    RIEBEL U, 1994, PART PART SYST CHAR, V11, P212
121567    RIPLEY BD, 1981, SPATIAL STAT
121568    RIPOLL MS, 1995, MOL PHYS, V85, P423
121569    SHEN J, 2001, PART PART SYST CHAR, V18, P254
121570    SHEN JQ, 2003, PART PART SYST CHAR, V20, P250
121571    SHEN JQ, 2003, PART PART SYST CHAR, V20, P94
121572    SMITH WR, 1981, CHEM PHYS LETT, V82, P96
121573 NR 13
121574 TC 0
121575 SN 0934-0866
121576 J9 PART PART SYST CHARACT
121577 JI Part. Part. Syst. Charact.
121578 PD MAR
121579 PY 2005
121580 VL 21
121581 IS 6
121582 BP 429
121583 EP 439
121584 PG 11
121585 SC Engineering, Chemical; Materials Science, Characterization & Testing
121586 GA 907QT
121587 UT ISI:000227733700001
121588 ER
121589 
121590 PT J
121591 AU Song, X
121592    Gong, X
121593    Peng, S
121594    Shao, F
121595 TI Effect of content of Nb2O5-Ta2O5 on properties of low power loss Mn-Zn
121596    ferrites
121597 SO MATERIALS TECHNOLOGY
121598 DT Article
121599 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
121600    Zhejiang Tiantong Elect Co Ltd, Zhejiang 314412, Peoples R China.
121601 RP Song, X, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
121602 CR INABA H, 1994, J MAGN MAGN MATER, V133, P487
121603    JEONG WH, 2002, J APPL PHYS 2, V91, P7619
121604    KAWANO T, 1998, P J MAG SOC JPN, V22, P219
121605    MORINEAU R, 1975, IEEE T MAGN, V11
121606    NIE J, 2003, J MAGN MAGN MATER, V265, P172
121607    OTOBE S, 1999, IEEE T MAGN 2, V35, P3409
121608    PANKERT J, 1994, ELECTROCERAMICS, V4, P1129
121609    STIJNTJES TGW, 1989, P ICF, V5, P589
121610    STOPPELS D, 1996, J MAGN MAGN MATER, V160, P323
121611 NR 9
121612 TC 0
121613 SN 1066-7857
121614 J9 MATER TECHNOL
121615 JI Mater. Technol.
121616 PD MAR
121617 PY 2005
121618 VL 20
121619 IS 1
121620 BP 23
121621 EP 25
121622 PG 3
121623 SC Materials Science, Multidisciplinary
121624 GA 908DF
121625 UT ISI:000227766800007
121626 ER
121627 
121628 PT J
121629 AU You, JL
121630    Jiang, GC
121631    Hou, HY
121632    Chen, H
121633    Wu, YQ
121634    Xu, KD
121635 TI Quantum chemistry study on superstructure and Raman spectra of binary
121636    sodium silicates
121637 SO JOURNAL OF RAMAN SPECTROSCOPY
121638 DT Article
121639 DE R; silicate; ab initio calculation; Raman scattering cross-section;
121640    stress
121641 ID MOLECULAR-ORBITAL CALCULATIONS; NUCLEAR MAGNETIC-RESONANCE;
121642    X-RAY-DIFFRACTION; THERMODYNAMIC PROPERTIES; VIBRATIONAL-SPECTRA;
121643    LATTICE-VIBRATIONS; PHASE-TRANSITION; BULK COMPOSITION; GLASSES;
121644    TEMPERATURE
121645 AB Raman spectra of binary sodium silicates in various components were
121646    calculated by the self-consistent field molecular orbital ab initio
121647    calculation quantum chemical (QC) method with several
121648    polysilicon-oxygen tetrahedral model clusters with both 6-31G and
121649    6-31G(d) basis sets being applied. Relevant pure anion clusters were
121650    also be calculated in order to determine the cation effect by
121651    comparison with the available sodium series. High and intermediate
121652    Raman-active wavenumber ranges were especially considered. The
121653    symmetric stretching vibrational wavenumber of non-bridging oxygen
121654    (NBO) in the high-wavenumber range and its Raman scattering
121655    cross-section were deduced and analyzed. Several synthesized binary
121656    sodium silicate crystals were measured for comparison. The correlation
121657    between the vibrational Raman shift and the microscopic environment of
121658    the silicon-oxygen tetrahedron (SiOT) was found based on interior
121659    stress of configuration or superstructure, which depends on the
121660    connecting topology of adjacent SiOTs. A newly established empirical
121661    stress index of a tetrahedron (SIT) was introduced to elucidate the
121662    above relationship. A new notation of SiOT accompanied by
121663    superstructure information was proposed and used to describe the
121664    practical and delicate types of SiOT in various states of binary sodium
121665    silicates. The Raman scattering cross-section of the symmetric
121666    stretching vibration of NBO shows a roughly decreasing relationship
121667    with SIT or the Raman shift in the high-wavenumber range only under the
121668    circumstance of equivalent linkage between SiOTs, and Raman optical
121669    activity (ROA) enhancement of Q(3) species occurs with Q(4) species as
121670    its nearest neighbor, which indicates the electronic coupling between
121671    them. It was also demonstrated that the Si-Ob-Si bending vibrational
121672    Raman shift in the intermediate wavenumber range shows a monotonic
121673    decreasing relationship with the value of the Si-Ob-Si angle while
121674    other minor impacting factors remains unknown. This work offers basic
121675    information on the superstructure of binary sodium silicates and its
121676    relationship with characteristic vibrational Raman spectra, which can
121677    be widely applied in qualitative and quantitative studies of the
121678    microstructure of silicates. Copyright (c) 2004 John Wiley R Sons, Ltd.
121679 C1 Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
121680 RP You, JL, Shanghai Univ, Shanghai Enhanced Lab Ferromet, 149 Yanchang
121681    Rd, Shanghai 200072, Peoples R China.
121682 EM jlyou@163.com
121683 CR AKAOGI M, 1984, AM MINERAL, V69, P499
121684    AMOS RD, 1986, CHEM PHYS LETT, V124, P376
121685    ANDREI ME, 1999, J NONCRYST SOLIDS, V253, P95
121686    BRAGG WL, 1930, Z KRISTALLOGR, V74, P237
121687    BRAWER S, 1975, PHYS REV B, V11, P3173
121688    CHANTRY GW, 1971, RAMAN EFFECT, V1, CH2
121689    DURBEN DJ, 1991, EOS T AM GEOPHYS UN, V72, P464
121690    FARNAN I, 1990, J AM CHEM SOC, V112, P32
121691    FRIEDRICH L, 1985, STRUCTURAL CHEM SILI
121692    FRISCH MJ, 1986, J CHEM PHYS, V84, P531
121693    FRISCH MJ, 1998, GAUSSIAN 98 REVISION
121694    FRUKAWA T, 1981, J CHEM PHYS, V75, P3226
121695    GILLET P, 1991, J GEOPHYS RES-SOLID, V96, P11805
121696    HANDKE M, 1995, J MOL STRUCT, V348, P341
121697    HARRIS RK, 1983, J CHEM SOC FARAD T 2, V79, P1525
121698    HARRIS RK, 1983, J CHEM SOC FARAD T 2, V79, P1539
121699    HATALOVA B, 1992, J NON-CRYST SOLIDS, V146, P218
121700    HESS AC, 1986, J PHYS CHEM-US, V90, P5661
121701    IGUCHI Y, 1981, CAN METALL Q, V20, P51
121702    KIER LB, 1986, MOL CONNECTIVITY STR, P69
121703    KOSTOV I, 1975, BULG ACAD SCI GEOCHE, V1, P5
121704    LAZAREV AN, 1972, VIBRATIONAL SPECTRA
121705    LONG DA, 1977, RAMAN SPECTROSCOPY, CH4
121706    MACHATSCHKI F, 1928, ZENTRALBL MINERAL, P97
121707    MAEKAWA H, 1991, J NON-CRYST SOLIDS, V127, P53
121708    MATSON DW, 1983, J NON-CRYST SOLIDS, V58, P323
121709    MURAKAMI M, 1987, J NONCRYST SOLIDS, V95, P225
121710    MYSEN BO, 1990, J GEOPHYS RES-SOLID, V95, P15733
121711    MYSEN BO, 1994, CONTRIB MINERAL PETR, V117, P1
121712    NARAYSZABO SV, 1930, Z PHYS CHEM, V9, P356
121713    NAVROTSKY A, 1985, PHYS CHEM MINER, V11, P284
121714    OLIVIER L, 2001, J NON-CRYST SOLIDS, V293, P53
121715    PENG MS, 2001, ACTA MINERAL SIN, V21, P165
121716    POLAVARAPU PL, 1990, J PHYS CHEM-US, V94, P8106
121717    RICHET P, 1996, PHYS CHEM MINER, V23, P157
121718    SALJE E, 1982, CONTRIB MINERAL PETR, V79, P56
121719    SALJE E, 1985, PHYS CHEM MINER, V12, P93
121720    SALJE E, 1986, PHYS CHEM MINER, V13, P340
121721    SHARMA SK, 1978, CARNEGIE I WASHINGTO, V77, P649
121722    SMITH W, 1995, J NONCRYST SOLIDS, V192, P267
121723    UCHIDA N, 1990, J NON-CRYST SOLIDS, V122, P276
121724    UCHINO T, 1991, J PHYS CHEM-US, V95, P5455
121725    UMESAKI N, 1993, J MATER SCI, V28, P3473
121726    VORONKO YK, 1991, GROWTH CRYSTALS, V16, P199
121727    WANG Z, 1991, EOS T AM GEOPHYS RES, V92, P8116
121728    XU KD, 1999, SCI CHINA, V22, P77
121729    XU PC, 1996, RAMAN SPECTROSCOPY G, CH7
121730    XUEDONG G, 1998, CHINESE J INORG CHEM, V14, P175
121731    YASUI I, 1983, PHYS CHEM GLASSES, V24, P65
121732    YOU JL, 1998, J CHINESE RARE EARTH, V16, P505
121733    YOU JL, 2001, CHINESE PHYS LETT, V18, P991
121734    YOU JL, 2001, J NON-CRYST SOLIDS, V282, P125
121735    ZOLTAI T, 1960, AM MINERAL, V45, P960
121736    ZOTOV N, 1996, J NON-CRYST SOLIDS, V197, P179
121737 NR 54
121738 TC 1
121739 SN 0377-0486
121740 J9 J RAMAN SPECTROSC
121741 JI J. Raman Spectrosc.
121742 PD MAR
121743 PY 2005
121744 VL 36
121745 IS 3
121746 BP 237
121747 EP 249
121748 PG 13
121749 SC Spectroscopy
121750 GA 907VT
121751 UT ISI:000227746900007
121752 ER
121753 
121754 PT J
121755 AU Chang, TC
121756    Li, GQ
121757    Hou, J
121758 TI Effects of applied stress level on plastic zone size and opening stress
121759    ratio of a fatigue crack
121760 SO INTERNATIONAL JOURNAL OF FATIGUE
121761 DT Article
121762 DE fatigue crack closure; stress level; reversed plastic zone; opening
121763    stress
121764 ID FINITE-ELEMENT-ANALYSIS; STRIP-YIELD MODEL; CLOSURE; GROWTH;
121765    CONSTRAINT; LOAD
121766 AB Based on a complex function method developed by Budiansky and
121767    Hutchinson [J Appl Mech, 1978;45:267], a theoretical analysis of the
121768    effects of the applied stress level on fatigue crack closure under
121769    large-scale yielding conditions is conducted. Firstly, we obtain the
121770    explicit expression for the crack opening displacement in plastic zone
121771    under large-scale yielding conditions from the Dugdale model. The
121772    expression, along with that of the plastic zone size under large-scale
121773    yielding conditions, is then introduced into the Budiansky and
121774    Hutchinson model to account for the effects of the applied stress level
121775    over a large stress range on the reversed-to-forward ratio and the
121776    opening stress ratio of fatigue cracks. We show that both the ratios
121777    decrease with the increasing applied stress level. The present results
121778    are compared with the experimental data, the finite element
121779    calculations and the prediction of the Newman equation. (c) 2004
121780    Elsevier Ltd. All rights reserved.
121781 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
121782    Tongji Univ, Dept Civil Engn, Shanghai 200092, Peoples R China.
121783    Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R China.
121784 RP Chang, TC, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
121785    200072, Peoples R China.
121786 EM tchang@staff.shu.edu.cn
121787 CR BATHIAS C, 1973, METALL T, V4, P1265
121788    BERGNER F, 2001, INT J FATIGUE, V23, P383
121789    BLANDFORD RS, 2002, FATIGUE FRACT ENG M, V25, P17
121790    BLOM AF, 1985, ENG FRACT MECH, V22, P997
121791    BUDIANSKY B, 1978, J APPLIED MECHANICS, V45, P267
121792    CHANG T, 1999, ENG FRACT MECH, V64, P59
121793    CHANG T, 1999, INT J FATIGUE, V21, P881
121794    CHERMAHINI RG, 1989, ENG FRACT MECH, V34, P393
121795    DANIEWICZ SR, 1994, ENG FRACT MECH, V49, P95
121796    DANIEWICZ SR, 1996, INT J FATIGUE, V18, P483
121797    ELBER W, 1971, ASTM STP, V486, P230
121798    FLECK NA, 1986, ENG FRACT MECH, V25, P441
121799    GUO WL, 1994, ENG FRACT MECH, V49, P265
121800    GUO WL, 1994, ENG FRACT MECH, V49, P277
121801    KIM CY, 1994, ENG FRACT MECH, V49, P105
121802    KIM SW, 2000, IPAP CONFERENCE SER, V1, P247
121803    MCCLUNG RC, 1989, ENG FRACT MECH, V33, P253
121804    MCCLUNG RC, 1991, FATIGUE FRACT ENG M, V14, P455
121805    MCCLUNG RC, 1994, FATIGUE FRACT ENG M, V17, P861
121806    NEWMAN JC, NASATM1999209133
121807    NEWMAN JC, 1975, AIAA J, V13, P1017
121808    NEWMAN JC, 1976, ASTM STP, V590, P281
121809    NEWMAN JC, 1981, ASTM SPEC TECH PUBL, V748, P53
121810    NEWMAN JC, 1984, INT J FRACTURE, V24, R131
121811    NICOLETTO G, 1989, INT J FATIGUE, V11, P107
121812    NYSTROM M, 1995, INT J FATIGUE, V17, P141
121813    OHJI K, 1975, ENG FRACT MECH, V7, P457
121814    PARK HB, 1996, INT J PRES VES PIP, V68, P279
121815    PINEAU AG, 1974, METALL T, V5, P1013
121816    RUBIOLO GH, 1998, ENG FRACT MECH, V60, P447
121817    SCHIJVE J, 1981, ENG FRACT MECH, V14, P461
121818 NR 31
121819 TC 0
121820 SN 0142-1123
121821 J9 INT J FATIGUE
121822 JI Int. J. Fatigue
121823 PD MAY
121824 PY 2005
121825 VL 27
121826 IS 5
121827 BP 519
121828 EP 526
121829 PG 8
121830 SC Engineering, Mechanical; Materials Science, Multidisciplinary
121831 GA 904HL
121832 UT ISI:000227486600006
121833 ER
121834 
121835 PT J
121836 AU Cheng, XY
121837    Lin, GW
121838    Li, HG
121839 TI Effect of atomic ordering on the hydrogen-induced environmental
121840    embrittlement of Ni4Mo intermetallics
121841 SO INTERMETALLICS
121842 DT Article
121843 DE intermetallics, miscellaneous; hydrogen embrittlement; order/disorder
121844    transformations; diffraction
121845 ID DUCTILITY; NI3AL; NI3FE
121846 AB Hydrogen induced environmental embrittlement of a Ni4Mo alloy in
121847    different degree of ordered conditions was investigated by tensile
121848    tests in various atmosphere. The results show that the disordered Ni4Mo
121849    alloy is not susceptible to embrittlement in hydrogen gas, but very
121850    susceptible to embrittlement in hydrogen charging. However, for the
121851    ordered Ni4Mo alloy, there is similar deterioration in ductility when
121852    the environment changes from oxygen to hydrogen gas and simultaneous
121853    hydrogen charging. It indicates that the atomic ordering does not
121854    influence the dynamic hydrogen charging-induced environmental
121855    embrittlement, but has a considerable effect on the gaseous
121856    hydrogen-induced environmental embrittlement. In addition, hydrogen
121857    absorption and desorption of the Ni4Mo alloy with disordered and
121858    ordered structures were also investigated using gas chromatographic
121859    analysis. The results show that the atomic ordering can promote gaseous
121860    hydrogen absorption at room temperature. This suggests that the atomic
121861    ordering accelerates the kinetics of the catalytic reaction for the
121862    dissociation of molecular hydrogen into atomic hydrogen due to the
121863    change of the outer layer electron structure and therefore exacerbates
121864    the hydrogen gas-induced environmental embrittlement. (c) 2004 Elsevier
121865    Ltd. All rights reserved.
121866 C1 Shanghai Univ, Mat Res Inst, Dept Mat, Shanghai 200072, Peoples R China.
121867 RP Cheng, XY, Shanghai Univ, Mat Res Inst, Dept Mat, 149 Yanchang Rd,
121868    Shanghai 200072, Peoples R China.
121869 EM hhtxy@online.sh.cn
121870 CR BROOKS CR, 1984, INT MET REV, V29, P210
121871    BROOKS CR, 1992, PHILOS MAG A, V65, P327
121872    CAMUS GM, 1989, ACTA METALL, V37, P1497
121873    CAO SQ, 1995, MATER CHARACT, V34, P87
121874    COHRON JW, 1997, ACTA MATER, V45, P2801
121875    FRIEND WZ, 1980, CORROSION NICKEL NIC, P248
121876    GEORGE EP, 1993, SCRIPTA METALL MATER, V28, P857
121877    GEORGE EP, 1994, SCRIPTA METALL MATER, V30, P37
121878    HAMMER B, 1995, SURF SCI, V343, P211
121879    KOLTS J, 1983, METAL PROG       SEP, P25
121880    LIU CT, 1990, HIGH TEMPERATURE ALU, P133
121881    NISHIMURA C, 1996, SCRIPTA MATER, V35, P1441
121882    NORSKOV JK, 1981, J VAC SCI TECHNOL, V18, P420
121883    TAKASUGI T, 1986, ACTA METALL, V34, P607
121884    TAKASUGI T, 1991, J MATER SCI, V26, P1173
121885    TAKASUGI T, 1994, INTERMETALLICS, V2, P225
121886    WAN X, 1994, J MATER SCI TECHNOL, V10, P39
121887    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
121888    WRIGHT JL, 1998, SCRIPTA MATER, V38, P253
121889 NR 19
121890 TC 0
121891 SN 0966-9795
121892 J9 INTERMETALLICS
121893 JI Intermetallics
121894 PD MAR-APR
121895 PY 2005
121896 VL 13
121897 IS 3-4
121898 SI Sp. Iss. SI
121899 BP 289
121900 EP 294
121901 PG 6
121902 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
121903    Metallurgical Engineering
121904 GA 906UC
121905 UT ISI:000227668000009
121906 ER
121907 
121908 PT J
121909 AU Wan, XJ
121910    Chen, YX
121911    Chen, AP
121912    Yan, SR
121913 TI The influence of atomic order on H-2-induced environmental
121914    embrittlement of Ni3Fe intermetallics
121915 SO INTERMETALLICS
121916 DT Article
121917 DE intermetallics; miscellaneous; environmental embrittlement
121918 ID INTERGRANULAR HYDROGEN EMBRITTLEMENT; DUCTILITY; FRACTURE; ALLOYS;
121919    FE3AL; CO3TI; FEAL
121920 AB The different sensitivity to H-2-induced environmental embrittlement
121921    for the ordered and disordered Ni3Fe alloys has been investigated. The
121922    results show no environmental embrittlement in disordered Ni3Fe in
121923    gaseous H-2 when tested at room temperature. However, the H-2-induced
121924    environmental embrittlement for the ordered Ni3Fe becomes severer as
121925    the degree of order increases. The results of testing on simultaneous
121926    hydrogen charging show that disordered Ni3Fe embritted as hydrogen
121927    atoms are forced into the material, implying that the embrittlement of
121928    ordered Ni3Fe in gaseous H-2 is due to the acceleration of the kinetics
121929    of catalytic reaction to produce more atomic hydrogen. Further more,
121930    the hydrogen adsorption test of Ni3Fe powder shows that the amount of
121931    chemically adsorbed hydrogen in the ordered state at room temperature
121932    is significantly larger than that adsorbed by the disordered materials,
121933    indicating that the more sensitive to H-2-induced embrittlement in the
121934    ordered Ni3Fe is essentially due to accelerated catalytic reaction to
121935    produce more atomic hydrogen. (c) 2004 Elsevier Ltd. All rights
121936    reserved.
121937 C1 Shanghai Univ, Inst Sci Mat, Shanghai 200072, Peoples R China.
121938    Fudan Univ, Key Lab Mol Catal & Innovat Mat, Shanghai 200933, Peoples R China.
121939 RP Wan, XJ, Shanghai Univ, Inst Sci Mat, Shanghai 200072, Peoples R China.
121940 EM xjwan@sh163.net
121941 CR ALFRED C, 1970, PHYSL CHEM SERIES MO, V18, P333
121942    BHATIA S, 1990, CATAL TODAY, V7, P309
121943    CAMS GM, 1989, ACTA METALL, V37, P1497
121944    CHENG XY, 2001, SCRIPTA MATER, V44, P325
121945    CHENG XY, 2002, SCRIPTA MATER, V46, P465
121946    KURUVILLA AK, 1982, 3RD P INT C HYDR MET, V2, P629
121947    LIU CT, 1989, SCRIPTA METALL, V23, P875
121948    LIU CT, 1990, SCRIPTA METALL MATER, V24, P1285
121949    LIU CT, 1990, SCRIPTA METALL MATER, V24, P385
121950    LIU CT, 1992, SCRIPTA METALL MATER, V27, P25
121951    MORRIS DG, 1976, ACTA METALL, V24, P21
121952    TAKASUGI T, 1985, SCRIPTA METALL, V19, P903
121953    TAKASUGI T, 1986, ACTA METALL, V34, P607
121954    TAKASUGI T, 1991, J MATER SCI, V26, P3032
121955    TAKASUGI T, 1992, J MATER RES, V7, P2739
121956    TAKASUGI T, 1994, INTERMETALLICS, V2, P225
121957    WAN XJ, 1992, SCRIPTA METALL MATER, V26, P473
121958    WANG J, 2000, INTERMETALLICS, V8, P353
121959    ZHU JH, 1993, SCRIPTA METALL MATER, V29, P429
121960    ZHU JH, 1995, SCRIPTA METALL MATER, V32, P1399
121961 NR 20
121962 TC 0
121963 SN 0966-9795
121964 J9 INTERMETALLICS
121965 JI Intermetallics
121966 PD MAY
121967 PY 2005
121968 VL 13
121969 IS 5
121970 BP 454
121971 EP 459
121972 PG 6
121973 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
121974    Metallurgical Engineering
121975 GA 907ER
121976 UT ISI:000227698800002
121977 ER
121978 
121979 PT J
121980 AU Peng, XZ
121981    Zhang, G
121982    Zheng, LP
121983    Mai, BX
121984    Zeng, SW
121985 TI The vertical variations of hydrocarbon pollutants and organochlorine
121986    pesticide residues in a sediment core in Lake Taihu, East China
121987 SO GEOCHEMISTRY-EXPLORATION ENVIRONMENT ANALYSIS
121988 DT Article
121989 DE Lake Taihu; sediment core; hydrocarbon pollutants; organochlorine
121990    pesticides residues
121991 ID POLYCYCLIC AROMATIC-HYDROCARBONS; PADDY FIELD; REGION; TRANSPORT;
121992    URBAN; PCBS; SOIL; DDT
121993 AB A sedimentary core in Wulihu Bay in Lake Taihu, the third largest
121994    freshwater lake in China, was analysed to delineate the vertical
121995    variation of alkanes, polycyclic aromatic hydrocarbon compounds (PAHs)
121996    and organochlorine pesticide (OCP) residues. The measured PAH compounds
121997    are the 16 US Environmental Protection Agency (US EPA) priority
121998    contaminants. The distribution patterns of normal alkanes indicate that
121999    they originate mainly from terrestrial inputs and autochthonous
122000    organisms as well as petroleum residues. Total PAH levels are mainly in
122001    the range of 698-962 ng/g dry weight with 4-ring compounds dominant.
122002    Twenty organochlorine pesticides were quantitatively determined, of
122003    which alpha- HCH, beta- HCH, p,p'-DDT and its degradation product
122004    p,p'-DDD and Dieldrin were dominant. Total organochlorine pesticides,
122005    HCH compounds and DDT compounds were in the range of 14-104 ng/g,
122006    3.0-10.4 ng/g and 0.65-38 ng/g dry weight, respectively. The sum of DDT
122007    and HCH compounds represents 30-47% of total pesticides residues. Total
122008    OCP residues, DDT compounds and HCH compounds reach peak concentrations
122009    at the depth of 2-4 cm, which may be related to the serious flooding in
122010    the Yangzi River in 1998.Their sharp drop in the 0-2 cm interval may be
122011    due to the comprehensive control and treatment of pollution in Lake
122012    Taihu drainage area implemented by the Chinese Government since 1998.
122013 C1 Chinese Acad Sci, State Key Lab Organ Geochem, Guangzhou Inst Geochem, Guangzhou 510640, Peoples R China.
122014    Shanghai Univ, Dept Environm Engn, Shanghai 200072, Peoples R China.
122015 RP Peng, XZ, Chinese Acad Sci, State Key Lab Organ Geochem, Guangzhou Inst
122016    Geochem, Guangzhou 510640, Peoples R China.
122017 EM pengx@gig.ac.cn
122018 CR CATALLO WJ, 1995, ENVIRON SCI TECHNOL, V29, P1436
122019    CHEN H, 1999, WATER RESOURCE PROTE, V3, P11
122020    CHEN JF, 1999, CHINA ENV SCI, V19, P206
122021    CHEN XM, 2003, CHEMOSPHERE, V50, P703
122022    CHRISTENSEN ER, 1993, ENVIRON SCI TECHNOL, V27, P139
122023    COLOMBO JC, 1989, ENVIRON SCI TECHNOL, V23, P888
122024    FENG K, 2003, CHEMOSPHERE, V50, P683
122025    GARRISON AW, 2000, ENVIRON SCI TECHNOL, V34, P1663
122026    HOWARD PH, 1989, HDB ENV FATE EXPOSUR
122027    HU CH, 2000, OCEANOLOGIA LIMNOLOG, V31, P327
122028    JIN X, 1999, RES ENV SCI, V12, P4
122029    JONES KC, 1999, ENVIRON POLLUT, V100, P209
122030    KIDD KA, 1998, ENVIRON POLLUT, V102, P91
122031    KUMBLAD L, 2001, ENVIRON POLLUT, V112, P193
122032    LIZEMBACH GWM, 1975, P 9 WPC 1
122033    MACHAY D, 2000, CHEMOSPHERE, V41, P681
122034    MAI BX, 2002, ENVIRON POLLUT, V117, P457
122035    MAI BX, 2003, ENVIRON SCI TECHNOL, V37, P4855
122036    MEYERS PA, 1993, ORG GEOCHEM, V20, P867
122037    MUIR DCG, 1995, SCI TOTAL ENVIRON, V160, P447
122038    NHAN DD, 2001, ENVIRON POLLUT, V112, P311
122039    RACHDAWONG P, 1998, WATER RES, V32, P2422
122040    REN T, 1998, INORG CHEM COMMUN, V1, P23
122041    SANDERS G, 1996, ENVIRON SCI TECHNOL, V30, P2958
122042    SMIRNOV A, 1998, ORG GEOCHEM, V29, P1813
122043    VANMETRE PC, 1997, ENVIRON SCI TECHNOL, V31, P2339
122044    VANMETRE PC, 2000, ENVIRON SCI TECHNOL, V34, P4064
122045    WANG XC, 2003, CHEMOSPHERE, V50, P707
122046    WANG ZD, 1999, J CHROMATOGR A, V843, P369
122047    WU WZ, 1997, CHEMOSPHERE, V34, P191
122048    ZHANG XN, 1999, SCRIPTA MATER, V41, P39
122049    ZOU S, 1997, WATER CONSERVANCY HY, V28, P2
122050    ZUO QA, 2003, CHEMOSPHERE, V50, P689
122051 NR 33
122052 TC 0
122053 SN 1467-7873
122054 J9 GEOCHEM-EXPLOR ENVIRON ANAL
122055 JI Geochem.-Explor. Environ. Anal.
122056 PD FEB
122057 PY 2005
122058 VL 5
122059 PN Part 1
122060 BP 99
122061 EP 104
122062 PG 6
122063 SC Geochemistry & Geophysics
122064 GA 906XA
122065 UT ISI:000227676900011
122066 ER
122067 
122068 PT J
122069 AU Ruan, HB
122070    Zhang, N
122071    Gao, X
122072 TI Identification. of a novel point mutation of mouse proto-oncogene c-kit
122073    through N-ethyl-N-nitrosourea mutagenesis
122074 SO GENETICS
122075 DT Article
122076 ID RECEPTOR TYROSINE KINASE; W-LOCUS; ENU MUTAGENESIS; NEOPLASTIC
122077    TRANSFORMATION; CONFORMATION POLYMORPHISM; HEMATOPOIETIC-CELLS; HUMAN
122078    PIEBALDISM; GENE-MUTATIONS; GROWTH-FACTOR; STEEL FACTOR
122079 AB Manipulation of the mouse genome has emerged as an important approach
122080    for studying gene function and establishing human disease models. In
122081    this study, the mouse mutants were generated through
122082    N-ethyl-N-nitrosourea (ENU)-induced mutagenesis in C57BL/6J mice. The
122083    screening for dominant mutations yielded several mice with fur color
122084    abnormalities. One of them causes a phenotype similar to that shown by
122085    dominant-white spotting (W) allele mutants. This strain was named Wads
122086    because the homozygous mutant mice are white color, anemic, deaf, and
122087    sterile. The new mutation was mapped to 42 cM on chromosome five, where
122088    proto-oncogene c-kit resides. Sequence analysis of c-kit cDNA from
122089    Wads(m/m) revealed a unique T-to-C transition mutation that resulted in
122090    Phe-to-Ser substitution at amino acid 856 within a highly conserved
122091    tyrosine kinase domain. Compared with other c-kit mutants, Wads may
122092    present a novel loss-of-function or hypomorphic mutation. In addition
122093    to the examination of adult phenotypes in hearing loss, anemia, and
122094    mast cell deficiency, we also detected some early developmental defects
122095    during germ cell differentiation in the testis and ovary of neonatal
122096    Wads(m/m). mice. Therefore, the Wads mutant may serve as a new disease
122097    model of human piebaldism, anemia, deafness, sterility, and mast cell
122098    diseases.
122099 C1 Nanjing Univ, Model Anim Res Ctr, State Key Lab Pharmaceut Biotechnol, Nanjing 210089, Peoples R China.
122100    Van Andel Res Inst, Grand Rapids, MI 49503 USA.
122101    Shanghai Univ, E Inst, Model Organism Div, Shanghai, Peoples R China.
122102 RP Gao, X, Nanjing Univ, Model Anim Res Ctr, State Key Lab Pharmaceut
122103    Biotechnol, 308 Xuefu Rd,Pukou Dist, Nanjing 210089, Peoples R China.
122104 EM gaoxiang@nju.edu.cn
122105 CR BALLING R, 2001, ANNU REV GENOM HUM G, V2, P463
122106    BELLVE AR, 1977, J CELL BIOL, V74, P68
122107    BENNETT DC, 2003, PIGM CELL RES, V16, P333
122108    BERNSTEIN A, 1991, SEMIN HEMATOL, V28, P138
122109    BLUMEJENSEN P, 2000, NAT GENET, V24, P157
122110    BROWN SDM, 2003, SEMIN CELL DEV BIOL, V14, P19
122111    CABLE J, 1994, PIGM CELL RES, V7, P17
122112    CABLE J, 1995, MECH DEVELOP, V50, P139
122113    CHABOT B, 1988, NATURE, V335, P88
122114    DEANGELIS MH, 2000, NAT GENET, V25, P444
122115    FLEISCHMAN RA, 1996, J INVEST DERMATOL, V107, P703
122116    GEISSLER EN, 1981, GENETICS, V97, P337
122117    HE F, 2003, CHINESE SCI BULL, V48, P2665
122118    HELDIN CH, 1995, CELL, V80, P213
122119    HERRON BJ, 2002, NAT GENET, V30, P185
122120    HIROTA S, 1998, SCIENCE, V279, P577
122121    HORIE K, 1991, BIOL REPROD, V45, P547
122122    HOSHINO T, 1999, HEARING RES, V140, P145
122123    HOU L, 2000, DEVELOPMENT, V127, P5379
122124    HUIZINGA JD, 1995, NATURE, V373, P347
122125    IKUTA K, 1992, P NATL ACAD SCI USA, V89, P1502
122126    KISSEL H, 2000, EMBO J, V19, P1312
122127    KITAYAMA H, 1996, BLOOD, V88, P995
122128    KUNISADA T, 1998, DEVELOPMENT, V125, P2915
122129    KURODA H, 1988, DEV BIOL, V126, P71
122130    LAUTERMANN J, 1998, CELL TISSUE RES, V294, P415
122131    LINNEKIN D, 1999, INT J BIOCHEM CELL B, V31, P1053
122132    MANOVA K, 1991, DEV BIOL, V146, P312
122133    NOLAN PM, 2000, NAT GENET, V25, P440
122134    OGAWA M, 1991, J EXP MED, V174, P63
122135    OHTA H, 2003, BIOL REPROD, V69, P1815
122136    PIAO XH, 1996, BLOOD, V87, P3117
122137    PIELBERG G, 2002, GENETICS, V160, P305
122138    PRICE ER, 1998, J BIOL CHEM, V273, P17983
122139    REEVES RH, 1997, GENOME ANAL LAB MANU, P71
122140    REITH AD, 1990, GENE DEV, V4, P390
122141    RUSSELL ES, 1949, GENETICS, V34, P708
122142    SCHRANSSTASSEN BHGJ, 1999, ENDOCRINOLOGY, V140, P5894
122143    SPRITZ RA, 1994, J INVEST DERMATOL, V103, S137
122144    STRIPPOLI P, 2001, INT J MOL MED, V8, P567
122145    SU AI, 2002, P NATL ACAD SCI USA, V99, P4465
122146    SUNNUCKS P, 2000, MOL ECOL, V9, P1699
122147    TIAN QS, 1999, AM J PATHOL, V154, P1643
122148    TIMOKHINA I, 1998, EMBO J, V17, P6250
122149    TSUJIMURA T, 1991, BLOOD, V78, P1942
122150    TSUJIMURA T, 1996, PATHOL INT, V46, P933
122151    VANDENBARK GR, 1992, ONCOGENE, V7, P1259
122152    WITTE ON, 1990, CELL, V63, P5
122153    ZEMKE D, 2002, VET PATHOL, V39, P529
122154    ZHAO SL, 1997, INT REV CYTOL, V171, P225
122155    ZHENG QY, 1999, HEARING RES, V130, P94
122156 NR 51
122157 TC 0
122158 SN 0016-6731
122159 J9 GENETICS
122160 JI Genetics
122161 PD FEB
122162 PY 2005
122163 VL 169
122164 IS 2
122165 BP 819
122166 EP 831
122167 PG 13
122168 SC Genetics & Heredity
122169 GA 907EC
122170 UT ISI:000227697200026
122171 ER
122172 
122173 PT J
122174 AU Zhang, JC
122175    Cao, SX
122176    Zhang, RY
122177    Yu, LM
122178    Jing, C
122179 TI Effect of fabrication conditions on I-V properties for ZnO varistor
122180    with high concentration additives by sol-gel technique
122181 SO CURRENT APPLIED PHYSICS
122182 DT Article
122183 DE ZnO nonlinear varistor; sol-gel method; threshold voltage; the
122184    sintering characteristics
122185 ID ZINC-OXIDE VARISTOR; LEVEL TRANSIENT SPECTROSCOPY; GRAIN-BOUNDARIES;
122186    NONLINEARITY COEFFICIENTS; CERAMICS; SIZE
122187 AB Polycrystalline nano-grain-boundary multi-doping ZnO-based nonlinear
122188    varistors with higher concentration additives have been fabricated by
122189    sol-gel and standard solid-state reaction method, of which the best
122190    sample has a very high threshold voltage of E-b = 3300 V/mm. The effect
122191    of sintering processes, sintering temperature and sintering time, and
122192    that of additive concentration of Bi2O3 on E-b of the samples are
122193    systematically investigated. The results show that the great merit of
122194    sol-gel method is its high threshold voltage obtained by a lower
122195    sintering temperature than the solid-state reaction method. The present
122196    work also shows that five phases including solid-state sintering, rich
122197    Bi liquid phase formation and ZnO as well as other additive
122198    dissolution, ZnO grain growth, the secondary phase sufficient formation
122199    and evolution have been experienced at different sintering
122200    temperatures. The hole type defect and nonhomogeneity of the
122201    microstructure will lead to the decrease of threshold voltage, i.e.,
122202    the grain size and the homogeneity of the material will be important
122203    factors and directly affect the characteristic of the varistor. The
122204    sintering characteristic and the influence of Bi2O3 content on the
122205    threshold voltage are also discussed. (c) 2004 Elsevier B.V. All rights
122206    reserved.
122207 C1 Shanghai Univ, Ctr Nanosci & Technol, Dept Phys, Shanghai 200436, Peoples R China.
122208    Chinese Acad Sci, Inst Semicond, Beijing 100084, Peoples R China.
122209 RP Zhang, JC, Shanghai Univ, Ctr Nanosci & Technol, Dept Phys, Shangda Rd
122210    99, Shanghai 200436, Peoples R China.
122211 EM jczhang@mail.shu.edu.cn
122212 CR BLATTER G, 1986, PHYS REV B, V33, P3952
122213    BLATTER G, 1986, PHYS REV B, V34, P8555
122214    BURTKOWIAK M, 1995, PHYS REV B, V51, P10825
122215    EMTAGE PR, 1979, J APPL PHYS, V50, P6833
122216    EZHILVALAVAN S, 1996, J MATER SCI-MATER EL, V7, P137
122217    EZHILVALAVAN S, 1997, MATER CHEM PHYS, V49, P258
122218    GUPTA TK, 1981, J APPL PHYS, V52, P4104
122219    GUPTA TK, 1989, J APPL PHYS, V66, P6132
122220    KUTTY TRN, 1994, MATER CHEM PHYS, V38, P267
122221    KUTTY TRN, 1996, J PHYS D APPL PHYS, V29, P809
122222    LEVINSON LM, 1986, B AM CERAM SOC, V65, P639
122223    NAN CW, 1996, J AM CERAM SOC, V79, P3185
122224    PIKE GE, 1982, MATER RES SOC S P, V5, P369
122225    PIKE GE, 1984, PHYS REV B, V30, P795
122226    PIKE GE, 1985, J APPL PHYS, V57, P5521
122227    ROHATGI A, 1988, J APPL PHYS, V63, P5375
122228    SANTOS JD, 1998, J MATER RES, V13, P1152
122229    STUCKI F, 1990, APPL PHYS LETT, V57, P446
122230    ULRICH S, 1984, J APPL PHYS, V57, P5372
122231    WANG YP, 1996, APPL PHYS LETT, V69, P1807
122232 NR 20
122233 TC 1
122234 SN 1567-1739
122235 J9 CURR APPL PHYS
122236 JI Curr. Appl. Phys.
122237 PD MAY
122238 PY 2005
122239 VL 5
122240 IS 4
122241 BP 381
122242 EP 386
122243 PG 6
122244 SC Materials Science, Multidisciplinary; Physics, Applied
122245 GA 907BT
122246 UT ISI:000227690700018
122247 ER
122248 
122249 PT J
122250 AU Ma, H
122251    Qin, QH
122252 TI A second-order scheme for integration of one-dimensional dynamic
122253    analysis
122254 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
122255 DT Article
122256 DE precision integration; second-order scheme; initial problem;
122257    differential quadrature method
122258 ID DISTRIBUTED SYSTEM EQUATIONS; TIME-STEP INTEGRATION; DIFFERENTIAL
122259    QUADRATURE; INSIGHTS
122260 AB This paper proposes a second-order scheme of precision integration for
122261    dynamic analysis with respect to long-term integration. Rather than
122262    transforming into first-order equations, a recursive scheme is
122263    presented in detail for direct solution of the homogeneous part of
122264    second-order algebraic and differential equations. The sine and cosine
122265    matrices involved in the scheme are calculated using the so-called 2(N)
122266    algorithm. Numerical tests show that both the efficiency and the
122267    accuracy of homogeneous equations can be improved considerably with the
122268    second-order scheme. The corresponding particular solution is also
122269    presented, incorporated with the second-order scheme where the
122270    excitation vector is approximated by the truncated Taylor series. (c)
122271    2005 Elsevier Ltd. All rights reserved.
122272 C1 Shanghai Univ, Coll Sci, Dept Mech, Shanghai 200436, Peoples R China.
122273    Australian Natl Univ, Dept Engn, Canberra, ACT 0200, Australia.
122274 RP Ma, H, Shanghai Univ, Coll Sci, Dept Mech, Shanghai 200436, Peoples R
122275    China.
122276 CR BELLMAN R, 1972, J COMPUT PHYS, V10, P40
122277    BERT CW, 1996, APPL MECH REV, V49, P1
122278    DEIF AS, 1991, ASV MATRIX THEORY SC
122279    LIN JH, 1995, COMPUT STRUCT, V56, P113
122280    LIN JH, 1995, STRUCT ENG MECH, V3, P215
122281    LIN JH, 1997, ENG STRUCT, V19, P586
122282    LIU XJ, 1997, STRUCT ENG MECH, V5, P283
122283    QUAN JR, 1989, COMPUT CHEM ENG, V13, P1017
122284    QUAN JR, 1989, COMPUT CHEM ENG, V13, P779
122285    SMITH BT, 1976, MATRIX EIGENSYSTEM R
122286    WILLIAM HP, 1997, NUMERICAL RECIPES FO, V1
122287    ZHONG WX, 1994, J DALIAN U TECHNOLOG, V34, P131
122288    ZHONG WX, 1994, P I MECH ENG C-J MEC, V208, P427
122289    ZHU XQ, 2001, J SOUND VIB, V240, P962
122290    ZONG Z, 2002, COMPUT MECH, V29, P382
122291 NR 15
122292 TC 1
122293 SN 0898-1221
122294 J9 COMPUT MATH APPL
122295 JI Comput. Math. Appl.
122296 PD JAN-FEB
122297 PY 2005
122298 VL 49
122299 IS 2-3
122300 BP 239
122301 EP 252
122302 PG 14
122303 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
122304 GA 907CT
122305 UT ISI:000227693600005
122306 ER
122307 
122308 PT J
122309 AU Huang, ZG
122310    Lu, HQ
122311    Pan, PP
122312 TI The deviation of light path in Einstein-Brans-Dicke theory
122313 SO ASTROPHYSICS AND SPACE SCIENCE
122314 DT Article
122315 DE EBD theory; spherically symmetric metric; cosmological medel; deviation
122316    of light path
122317 ID INFLATIONARY COSMOLOGY; EXTENDED INFLATION; SCALAR FIELD; GRAVITY; DELAY
122318 AB Both Jordan-Brans-Dicke (shortened JBD) theory and Brans-Dicke theory
122319    in the Einstein's frame (shortened EBD) are treated as Brans-Dicke
122320    theory. However, we learn that only Pauli metric represents the
122321    massless spin-two graviton and thus, should be identified as physical.
122322    If one just considers the weak field approximation and Newtonian limit,
122323    EBD theory gives the same results with Einstein's general relativity.
122324    So, it is necessary to consider strong field effects and cosmological
122325    model. The purpose of this paper is to find the exact spherically
122326    symmetric metric in the strong field situation, and deduce the
122327    deviation of light path in EBD theory.
122328 C1 Shanghai Univ, Dept Phys, Shanghai, Peoples R China.
122329 RP Huang, ZG, Shanghai Univ, Dept Phys, Shanghai, Peoples R China.
122330 EM hzg800213@sohu.com
122331 CR BERKIN AL, 1990, PHYS REV LETT, V65, P141
122332    CHO YM, 1992, PHYS REV LETT, V68, P3133
122333    CIUFOLINI I, 2002, CLASSICAL QUANT GRAV, V19, P3863
122334    DAMOUR T, 1990, PHYS REV LETT, V64, P123
122335    HOLMAN R, 1991, PHYS REV D, V43, P3833
122336    LA D, 1989, PHYS LETT B, V220, P375
122337    LA D, 1989, PHYS REV LETT, V62, P376
122338    LA D, 1991, PHYS REV D, V44, P1680
122339    LU HQ, 1996, ASTROPHYS SPACE SCI, V235, P207
122340    LU HQ, 1997, ASTROPHYS SPACE SCI, V253, P291
122341    LU HQ, 1999, INT J MOD PHYS D, V8, P625
122342    MAGNANO G, 1994, PHYS REV D, V50, P5039
122343    MAGNUS W, 1966, FORMULAS THEOREMS SP, V3, P37
122344    NOJIRI S, 1998, PHYS REV D, V57, P2363
122345    REASENBERG RD, 1979, ASTROPHYS J, V234, P219
122346    STEINHARDT PJ, 1990, PHYS REV LETT, V64, P2740
122347    WEINBERG EJ, 1989, PHYS REV D, V40, P3950
122348    WEINBERG S, 1972, GRAVITATION COSMOLOG, V1, P149
122349    YOON JH, 1990, CLASSICAL QUANT GRAV, V7, P1253
122350    ZHANG YZ, 1993, CHINESE PHYS LETT, V10, P513
122351 NR 20
122352 TC 0
122353 SN 0004-640X
122354 J9 ASTROPHYS SPACE SCI
122355 JI Astrophys. Space Sci.
122356 PD JAN
122357 PY 2005
122358 VL 295
122359 IS 4
122360 BP 493
122361 EP 505
122362 PG 13
122363 SC Astronomy & Astrophysics
122364 GA 907FR
122365 UT ISI:000227701700008
122366 ER
122367 
122368 PT J
122369 AU Han, YH
122370    Wang, Q
122371    Jiang, H
122372    Miao, XW
122373    Chen, JS
122374    Chi, CW
122375 TI Sequence diversity of T-superfamily conotoxins from Conus marmoreus
122376 SO TOXICON
122377 DT Article
122378 DE Conus marmroeus; T-superfamily conotoxin; cDNA cloning; protein
122379    purification; sequence diversity
122380 ID NICOTINIC ACETYLCHOLINE-RECEPTORS; SODIUM-CHANNELS;
122381    GAMMA-CARBOXYGLUTAMATE; CYSTEINE PATTERN; VENOM PEPTIDES; CONANTOKIN-T;
122382    ION-CHANNEL; TRYPTOPHAN; SUBTYPES; TARGETS
122383 AB Remarkable sequence diversity of T-superfamily conotoxins was found in
122384    a mollusk-hunting cone snail Conus marmoreus. The sequence of mr5a
122385    purified from the snail venom was determined, while six other sequences
122386    of Mr5.1a, Mr5.1b, Mr5.2, Mr5.3, Mr5.4a, and Mr5.4b were deduced from
122387    their corresponding cDNA cloned by RACE approach. mr5a of 10 amino acid
122388    residues is one of the shortest T-superfamily conotoxins ever found.
122389    They all share a typical (-CC-CC-) Cys pattern, a conserved signal
122390    peptide and a long 3'-untranslated region. A consensus Glu residue is
122391    preceded by the second two adjacent cysteines in all these toxins
122392    except in mr5a, whereas Mr5.1a, Mr5.1b, Mr5.4a and Mr5.4b are abundant
122393    in Trp residues. The identification of these highly divergent
122394    T-superfamily conotoxins will facilitate the understanding the
122395    relationship of their structure and function. (c) 2004 Elsevier Ltd.
122396    All rights reserved.
122397 C1 Chinese Acad Sci, Shanghai Inst Biochem & Cell Biol, Inst Biochem & Cell Biol, Grad Sch, Shanghai 200031, Peoples R China.
122398    Tongji Univ, Inst Prot Res, Shanghai 200092, Peoples R China.
122399    Beijing Inst Pharmaceut Chem, Beijing 102005, Peoples R China.
122400    Shanghai Univ, Dept Biol Engn, Sch Life Sci, Shanghai 200436, Peoples R China.
122401 RP Chi, CW, Chinese Acad Sci, Shanghai Inst Biochem & Cell Biol, Inst
122402    Biochem & Cell Biol, Grad Sch, 320 Yue Yang Rd, Shanghai 200031,
122403    Peoples R China.
122404 EM chi@sunm.shcnc.ac.cn
122405 CR ADAMS DJ, 1999, DRUG DEVELOP RES, V46, P219
122406    BALAJI RA, 2000, J BIOL CHEM, V275, P39516
122407    CRAIG AG, 1998, BIOCHEMISTRY-US, V37, P16019
122408    CRAIG AG, 1999, EUR J BIOCHEM, V264, P271
122409    CRAIG AG, 1999, J BIOL CHEM, V274, P13752
122410    ENGLAND LJ, 1998, SCIENCE, V281, P575
122411    FAN CX, 2003, J BIOL CHEM, V278, P12624
122412    HAACK JA, 1990, J BIOL CHEM, V265, P6025
122413    HANSSON K, 2004, BIOCHEM BIOPH RES CO, V319, P1081
122414    JACOBSEN R, 1998, J PEPT RES, V51, P173
122415    JIMENEZ EC, 1996, J BIOL CHEM, V271, P28002
122416    JIMENEZ EC, 1997, BIOCHEMISTRY-US, V36, P989
122417    JIMENEZ EC, 2002, EPILEPSY RES, P73
122418    LOUGHNAN M, 1998, J BIOL CHEM, V273, P15667
122419    LOUGHNAN ML, 2004, J MED CHEM, V47, P1234
122420    MCINTOSH JM, 1984, J BIOL CHEM, V259, P4343
122421    MCINTOSH JM, 2000, J BIOL CHEM, V275, P32391
122422    OLIVERA BM, 1997, MOL BIOL CELL, V8, P2101
122423    RIGBY AC, 1997, BIOCHEMISTRY-US, V36, P6906
122424    RIGBY AC, 1999, P NATL ACAD SCI USA, V96, P5758
122425    ROGERS JP, 1999, BIOCHEMISTRY-US, V38, P3874
122426    SAFO P, 2000, J NEUROSCI, V20, P76
122427    SATO K, 1991, J BIOL CHEM, V266, P16989
122428    SHARPE IA, 2001, NAT NEUROSCI, V4, P902
122429    SHON KJ, 1998, J NEUROSCI, V18, P4473
122430    SKJAERBAEK N, 1997, J BIOL CHEM, V272, P2291
122431    TARLAU H, 2003, PHYSIOL REV, V84, P41
122432    WALKER CS, 1999, J BIOL CHEM, V274, P30664
122433    WEST PJ, 2002, BIOCHEMISTRY-US, V41, P15388
122434    WHITE HS, 2000, J PHARMACOL EXP THER, V292, P425
122435    WOODWARD SR, 1990, EMBO J, V9, P1015
122436 NR 31
122437 TC 1
122438 SN 0041-0101
122439 J9 TOXICON
122440 JI Toxicon
122441 PD MAR 15
122442 PY 2005
122443 VL 45
122444 IS 4
122445 BP 481
122446 EP 487
122447 PG 7
122448 SC Pharmacology & Pharmacy; Toxicology
122449 GA 905PE
122450 UT ISI:000227580500012
122451 ER
122452 
122453 PT J
122454 AU Chu, XT
122455    Ye, ZM
122456    Kettle, R
122457    Li, LY
122458 TI Buckling behaviour of cold-formed channel sections under uniformly
122459    distributed loads
122460 SO THIN-WALLED STRUCTURES
122461 DT Article
122462 DE local buckling; distortional buckling; cold-formed section; finite
122463    strip analysis
122464 ID ZED-PURLINS
122465 AB This paper presents an investigation on the buckling behaviour of
122466    cold-formed steel channel section beams when subjected to a uniformly
122467    distributed load. The focus of the study is on the local and
122468    distortional buckling, for which existing results are only for sections
122469    subjected to pure compression and/or pure bending. The results obtained
122470    from this study have shown that, for local buckling, there is no
122471    practical difference in the critical loads between pure bending and a
122472    uniformly distributed load. For distortional buckling, however,
122473    remarkable difference exists. The critical load for a uniformly
122474    distributed load is generally higher than that for pure bending by
122475    about 10% for beams between 3 and 6 m in length. (c) 2004 Elsevier Ltd.
122476    All rights reserved.
122477 C1 Aston Univ, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands, England.
122478    Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R China.
122479 RP Li, LY, Aston Univ, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands,
122480    England.
122481 EM l.y.li@aston.ac.uk
122482 CR BORESI AP, 2002, APPROXIMATE SOLUTION
122483    CAMOTIM D, 2004, INT WORKSH ADV FUT T, P137
122484    CHU XT, 2004, J APPL MECH-T ASME, V71, P742
122485    CHU XT, 2004, J CONSTR STEEL RES, V60, P1159
122486    HANCOCK G, 1997, STEEL CONSTRUCTION, V15, P2
122487    HANCOCK GJ, 2003, J CONSTR STEEL RES, V59, P473
122488    LI LY, 2004, THIN WALL STRUCT, V42, P995
122489    RHODES J, 1993, SCI PUBLICATION
122490    SCHAFER BW, 1999, ICSAS 99 4 INT C LIG, V20, P89
122491    SCHAFER BW, 2003, ADV STRUCTURES
122492    SCHAFER BW, 2003, CUFSM VERSION 2 6
122493    VONKARMAN T, 1932, T ASME, V54, P54
122494    WINTER G, 1968, 8 C INT ASS BRIDG ST, P101
122495    YE ZM, 2002, THIN WALL STRUCT, V40, P853
122496    YE ZM, 2004, COMPUT STRUCT, V82, P731
122497 NR 15
122498 TC 1
122499 SN 0263-8231
122500 J9 THIN WALL STRUCT
122501 JI Thin-Walled Struct.
122502 PD APR
122503 PY 2005
122504 VL 43
122505 IS 4
122506 BP 531
122507 EP 542
122508 PG 12
122509 SC Engineering, Civil
122510 GA 905PC
122511 UT ISI:000227580300001
122512 ER
122513 
122514 PT J
122515 AU Zu, JH
122516    Wu, MH
122517    Fu, HY
122518    Yao, S
122519 TI Cation-exchange membranes by radiation-induced graft copolymerization
122520    of monomers onto HDPE
122521 SO RADIATION PHYSICS AND CHEMISTRY
122522 DT Article
122523 ID ION; ACID; POLYETHYLENE; POLYMERS; FILM
122524 AB Studies were made on preparation of the cation-exchange membranes
122525    obtained by pre-irradiation grafting of acrylic acid (AA) and sodium
122526    styrene sulfonate (SSS) onto high-density polyethylene (HDPE), and its
122527    properties such as swelling behavior and electric resistance were
122528    measured as a function of ion-exchange capacity (IEC). Thermal and
122529    chemical stability was also investigated. These properties were found
122530    to be mainly dependent on IEC. The grafted membranes possessed good
122531    electrochemical, thermal and chemical properties, and were found to be
122532    acceptable for practical use as cation-exchange membranes. (C) 2004
122533    Elsevier Ltd. All rights reserved.
122534 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
122535    Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
122536 RP Zu, JH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
122537    Peoples R China.
122538 EM zujianhua1999@163.com
122539 CR CHAKRAVORTY B, 1989, J MEMBRANE SCI, V41, P155
122540    CHEN WKW, 1957, J POLYM SCI, V23, P903
122541    COHN D, 1987, J APPL POLYM SCI, V33, P1
122542    GUPTA B, 1996, J MEMBRANE SCI, V118, P231
122543    HIROTSU T, 1987, J APPL POLYM SCI, V34, P1159
122544    ISHIGAKI I, 1982, J APPL POLYM SCI, V27, P1033
122545    JIANHUA Z, 2001, NUCL SCI TECH, V11, P202
122546    MIZUTANI Y, 1963, B CHEM SOC JPN, V36, P361
122547    NASEF MM, 2000, POLYM DEGRAD STABIL, V68, P231
122548    NHO YC, 1992, J POLYM SCI POL CHEM, V30, P1219
122549    OMICHI H, 1985, J APPL POLYM SCI, V30, P1277
122550    SCHERER GG, 1992, INT J HYDROGEN ENERG, V17, P115
122551    SHKOLNIK S, 1982, J APPL POLYM SCI, V27, P2189
122552    SZENTIRMAY MN, 1984, J ELECTROCHEM SOC, V131, P1652
122553 NR 14
122554 TC 0
122555 SN 0969-806X
122556 J9 RADIAT PHYS CHEM
122557 JI Radiat. Phys. Chem.
122558 PD APR
122559 PY 2005
122560 VL 72
122561 IS 6
122562 BP 759
122563 EP 764
122564 PG 6
122565 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
122566    Science & Technology
122567 GA 904TM
122568 UT ISI:000227520600015
122569 ER
122570 
122571 PT J
122572 AU Zhao, CJ
122573    Leng, GS
122574 TI Inequalities for dual quermassintegrals of mixed intersection bodies
122575 SO PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES
122576 DT Article
122577 DE dual mixed volumes; mixed projection bodies; mixed intersection bodies
122578 ID MINKOWSKI-FIREY THEORY; BUSEMANN-PETTY PROBLEM; PROJECTION BODIES;
122579    VOLUMES
122580 AB In this paper, we first introduce a new concept of dual
122581    quermassintegral sum function of two star bodies and establish
122582    Minkowski's typed inequality for dual quermassintegral sum of mixed
122583    intersection bodies, which is a general form of the Minkowski
122584    inequality for mixed intersection bodies. Then, we give the
122585    Aleksandrov-Fenchel inequality and the Brunn-Minkowski inequality for
122586    mixed intersection bodies and some related results. Our results
122587    present, for intersection bodies, all dual inequalities for Lutwak's
122588    mixed prosection bodies inequalities.
122589 C1 China Inst Metrol, Coll Sci, Dept Informat & Math Sci, Hangzhou 310018, Peoples R China.
122590    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
122591 RP Zhao, CJ, China Inst Metrol, Coll Sci, Dept Informat & Math Sci,
122592    Hangzhou 310018, Peoples R China.
122593 EM chjzhao@163.com
122594    lenggangsong@163.com
122595 CR BALL K, 1991, J LOND MATH SOC, V44, P351
122596    BALL K, 1991, T AM MATH SOC, V327, P891
122597    BOURGAIN J, 1991, GEOM FUNCT ANAL, V1, P1
122598    BUSEMANN H, 1949, P NATL ACAD SCI USA, V35, P27
122599    BUSEMANN H, 1950, COMMENT MATH HELV, V24, P156
122600    GARDNER RJ, 1994, ANN MATH, V140, P435
122601    GARDNER RJ, 1994, T AM MATH SOC, V342, P435
122602    GARDNER RJ, 1995, GEOMETRIC TOMOGRAPHY
122603    HARDY GH, 1934, INEQUALITIES
122604    LENG GS, 2004, ADV APPL MATH, V32, P615
122605    LUTWAK E, 1975, PAC J MATH, V58, P531
122606    LUTWAK E, 1985, T AM MATH SOC, V287, P92
122607    LUTWAK E, 1988, ADV MATH, V71, P232
122608    LUTWAK E, 1990, GEOM DEDICATA, V33, P51
122609    LUTWAK E, 1990, P LOND MATH SOC, V60, P365
122610    LUTWAK E, 1993, J DIFFER GEOM, V38, P131
122611    LUTWAK E, 1993, T AM MATH SOC, V339, P901
122612    LUTWAK E, 1996, ADV MATH, V118, P244
122613    SCHNEIDER R, 1993, BRUNNMINKOWSKI THEOR
122614    SUSS W, 1932, TOHOKU MATH J, V35, P47
122615    ZHANG GY, 1994, T AM MATH SOC, V345, P777
122616 NR 21
122617 TC 1
122618 SN 0253-4142
122619 J9 PROC INDIAN ACAD SCI-MATH SCI
122620 JI Proc. Indian Acad. Sci.-Math. Sci.
122621 PD FEB
122622 PY 2005
122623 VL 115
122624 IS 1
122625 BP 79
122626 EP 91
122627 PG 13
122628 SC Mathematics
122629 GA 904QZ
122630 UT ISI:000227514100006
122631 ER
122632 
122633 PT J
122634 AU Huang, QW
122635    Xu, J
122636    Zhu, LH
122637    Gu, H
122638    Wang, PL
122639 TI Molten salt synthesis of acicular Ba2NaNb5O15 seed crystals
122640 SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
122641 DT Article
122642 ID BARIUM SODIUM NIOBATE; FERROELECTRIC PROPERTIES; PARTICLES; POWDERS;
122643    GROWTH
122644 AB , (BNN) seed crystals Well-developed acicular Ba2NaNb5O15, have been
122645    successfully prepared by the reaction between BaCO3, Nb2O5 and molten
122646    NaCl salt. The effects of the calcination temperature, time, and weight
122647    ratio of the oxide mixture to salt on the morphology of BNN particles
122648    were investigated. Uniform acicular seeds with high aspect ratio could
122649    be achieved at 1200 degrees C for 4 h with the salt-to-oxide mixture of
122650    2:1.
122651 C1 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance & Superfine Micros, Shanghai 200050, Peoples R China.
122652    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
122653 RP Gu, H, Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High
122654    Performance & Superfine Micros, Shanghai 200050, Peoples R China.
122655 EM gu@mail.sic.ac.cn
122656 CR BRAHMAROUTU B, 1996, ISAF 96 P 10 IEEE IN, V2, P883
122657    BRAHMAROUTU B, 1999, J AM CERAM SOC, V82, P1565
122658    DURAN C, 2000, J AM CERAM SOC, V83, P2203
122659    FERRIOL M, 2001, PROG CRYST GROWTH CH, V43, P221
122660    GEUSIC JE, 1967, APPL PHYS LETT, V11, P269
122661    GRANHAN M, 1982, J AM CERAM SOC, V64, C68
122662    HASHIMOTO S, 2000, J EUR CERAM SOC, V20, P397
122663    HAYASHI Y, 1986, J MATER SCI, V21, P757
122664    JOHANSSON KE, 1980, J PHYS E, V13, P1289
122665    KIMURA T, 1982, J MATER SCI, V17, P1863
122666    KIMURA T, 1983, J AM CERAM SOC, V66, P597
122667    OLIVER JR, 1989, J AM CERAM SOC, V72, P202
122668    PICARD G, 1991, MATER SCI FORUM, V73, P505
122669    RAO KS, 2003, J MATER SCI, V38, P391
122670    SINGH S, 1970, PHYS REV           B, V2, P2709
122671    WERNER PE, 1969, ARK KEMI, V31, P513
122672    YOHANNAN K, 1999, NUCL INSTRUM METH B, V156, P227
122673 NR 17
122674 TC 1
122675 SN 0002-7820
122676 J9 J AMER CERAM SOC
122677 JI J. Am. Ceram. Soc.
122678 PD FEB
122679 PY 2005
122680 VL 88
122681 IS 2
122682 BP 447
122683 EP 449
122684 PG 3
122685 SC Materials Science, Ceramics
122686 GA 904PM
122687 UT ISI:000227510200033
122688 ER
122689 
122690 PT J
122691 AU Cui, YJ
122692    Ge, HL
122693    Jia, GQ
122694    Han, YB
122695    Yu, SJ
122696    Zhang, JC
122697 TI Transport properties of rare earth manganese oxide
122698    La0.67Ca0.33Mn1-xFexO3
122699 SO JOURNAL OF RARE EARTHS
122700 DT Article
122701 DE metal material; transport properties; Fe doping; La2/3Ca1/3MnO3; rare
122702    earths
122703 ID COLOSSAL MAGNETORESISTANCE; DOUBLE EXCHANGE; TRANSITION; FILMS;
122704    RESISTIVITY; MANGANITES
122705 AB The transport properties were studied for rare earth manganese oxide
122706    La0.67Ca0.33Mn1-xFexO3(x = 0 similar to 0.3) systems. It is found that
122707    with increasing Fe3+-doping content x, the resistance increases and the
122708    insulator-metal transition temperature (T-IM) shifts to lower
122709    temperature. If the doping content is small, the transport properties,
122710    manifest metallic characteristics in the temperature range of T < T-IM,
122711    while they will obey a thermal activation model in the temperature
122712    range of T > T-IM. Such a behavior may be attributed to the Fe3+-doping
122713    and possible Mn ions scattering,,to electrons. The Fe3+ doping may lead
122714    to the formation of Fe3+-O2--Mn4+ channels, which could terminate the
122715    double exchange Mn3+O2--Mn4+ channels. The antiferromagnetic clusters
122716    of Fe ions may induce the Mn ions to scetter to the electrons.
122717 C1 China Inst Metrol, Dept Phys, Hangzhou 310018, Peoples R China.
122718    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
122719 RP Cui, YJ, China Inst Metrol, Dept Phys, Hangzhou 310018, Peoples R China.
122720 EM yjcui@cim.edu.cn
122721 CR AHN KH, 1996, PHYSICAL REV B, V54, P299
122722    BLASCO J, 1997, PHYS REV B, V55, P8905
122723    CAI JW, 1997, APPL PHYS LETT, V71, P1727
122724    CHAHARA K, 1993, APPL PHYS LETT, V63, P1990
122725    CUI YJ, 2004, J RARE EARTH, V22, P492
122726    FENG JW, 1999, APPL PHYS LETT, V75, P1592
122727    GARATHRI N, 1997, PHYS REV B, V56, P1345
122728    GHOSH K, 1999, PHYS REV B, V59, P533
122729    HWANG HY, 1995, PHYS REV LETT, V75, P914
122730    JAIME M, 1996, PHYS REV B, V54, P11914
122731    JIN S, 1994, SCIENCE, V264, P413
122732    LANZARA A, 1998, PHYS REV LETT, V81, P878
122733    LEE HJ, 1999, PHYS REV B, V60, P5251
122734    LI BH, 2001, J RARE EARTH, V19, P174
122735    LIU YH, 2001, J RARE EARTH, V19, P418
122736    MILLIS AJ, 1995, PHYS REV LETT, V74, P5144
122737    OGALE SB, 1998, PHYS REV B, V57, P7841
122738    SIMOPOULOS A, 1999, PHYS REV B, V59, P1263
122739    SUN Y, 1999, PHYS REV B, V63
122740    VONHELMOLT R, 1993, PHYS REV LETT, V71, P2331
122741    WANG ZH, 1999, J APPL PHYS 2B, V85, P5399
122742    ZENER C, 1951, PHYS REV, V82, P403
122743    ZHOU JS, 1998, PHYS REV LETT, V80, P2665
122744 NR 23
122745 TC 1
122746 SN 1002-0721
122747 J9 J RARE EARTH
122748 JI J. Rare Earths
122749 PD OCT
122750 PY 2004
122751 VL 22
122752 IS 5
122753 BP 663
122754 EP 667
122755 PG 5
122756 SC Chemistry, Applied
122757 GA 904AO
122758 UT ISI:000227467600021
122759 ER
122760 
122761 PT J
122762 AU Wang, LJ
122763    Lu, JF
122764    Zhang, ML
122765    Yang, Y
122766    Wang, L
122767    Su, QF
122768    Shi, WM
122769    Xia, YB
122770 TI Development of MSGC detectors on diamond film-coated silicon composite
122771    substrates
122772 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
122773 DT Article
122774 ID ELECTRICAL-PROPERTIES; GLASS; CARBON
122775 AB In this paper, diamond film-coated silicon was developed to be used as
122776    a substrate in a microstrip gas chamber (MSGC) for the first time. The
122777    toughness of the composite substrate was rather low, and the
122778    resistivity was in the range of 10(10)-10(11) Omega cm. Its capacitance
122779    was very small and almost had no variation with frequency. All these
122780    results prove that the diamond film/Si composite material is a
122781    promising substrate for MSGCs. Using this composite substrate, a MSGC
122782    detector with an area of 2 x 2 cm(2) was fabricated. The effects of the
122783    drift voltage and cathode voltage on the energy resolution for 5.9 keV
122784    55 Fe x-rays have been examined in detail and discussed. An energy
122785    resolution (the relative full width at half maximum of the x-ray peak)
122786    of 12.3% was achieved when the MSGC was operated at a drift voltage of
122787    -1000 V and a cathode voltage of -650 V with a gas mixture (90% Ar +
122788    10% CH4).
122789 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
122790    Tongji Univ, Inst Sci & Technol Informat, Shanghai 200092, Peoples R China.
122791 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
122792    China.
122793 CR BATEMAN JE, 2002, NUCL INSTRUM METH A, V484, P384
122794    BISHAI MR, 1997, NUCL INSTRUM METH A, V400, P233
122795    CICOGNANI G, 1997, NUCL INSTRUM METH A, V392, P115
122796    OED A, 1988, NUCL INSTRUM METH A, V263, P351
122797    POPOVICI G, 1994, J MATER RES, V9, P2839
122798    WANG LJ, 2003, J PHYS D APPL PHYS, V36, P2548
122799    YOSHIDA Y, 1990, CHIRALITY, V2, P10
122800    ZHANG ML, 2003, DIAM RELAT MATER, V12, P1544
122801 NR 8
122802 TC 0
122803 SN 0022-3727
122804 J9 J PHYS-D-APPL PHYS
122805 JI J. Phys. D-Appl. Phys.
122806 PD FEB 7
122807 PY 2005
122808 VL 38
122809 IS 3
122810 BP 464
122811 EP 467
122812 PG 4
122813 SC Physics, Applied
122814 GA 904GC
122815 UT ISI:000227483100019
122816 ER
122817 
122818 PT J
122819 AU Yu, LM
122820    Zhang, JC
122821    Liu, YS
122822    Jing, C
122823    Cao, SX
122824 TI Fabrication, structure and magnetic properties of nanocrystalline
122825    NiZn-ferrite by high-energy milling
122826 SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
122827 DT Article
122828 DE NiZn-ferrite; Fe3O4; nanocrystalline; high-energy milling
122829 ID FERROMAGNETS; PARTICLES; HEMATITE
122830 AB Nanocrystalline NiZn-ferrite was fabricated by a high-energy milling
122831    method with Fe3O4 + NiO + ZnO. The structure and magnetic properties of
122832    the milled powder were measured and analyzed. The results show that the
122833    grain possesses a single-phase NiZn-ferrite structure in a typical size
122834    of 10-50 tim. The magnetic measurement gives a typical value of the
122835    saturation magnetization of 45emu/g and a coercivity of 367 Oe.
122836    Superparamagnetic behavior is not observed. The experiment reveals that
122837    a purer NiZn-ferrite material can be obtained after the milled powder
122838    is annealed at relatively low temperature of about 1000 degreesC. The
122839    mechanism and efficiency of the synthesis technique are also discussed
122840    in this paper. (C) 2004 Elsevier B.V. All rights reserved.
122841 C1 Shanghai Univ, Dept Phys, Shanghai 200435, Peoples R China.
122842 RP Zhang, JC, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200435,
122843    Peoples R China.
122844 EM zjincang@online.sh.cn
122845 CR BADESHA H, 1998, 5840796, US
122846    BALOGH J, 1997, J PHYS-CONDENS MAT, V9, L503
122847    HARRIS VG, 2003, J APPL PHYS, V94, P496
122848    HELLSTERN E, 1989, J MATER RES, V4, P1292
122849    HERZER G, 1989, IEEE T MAGN, V25, P3327
122850    HERZER G, 1990, IEEE T MAGN, V26, P1397
122851    JIANG JS, 1999, J MAT SI LETT, V18
122852    JILES DC, 2002, J MAGN MAGN MATER 1, V242, P116
122853    KLETETSCHKA G, 2002, PHYS EARTH PLANET IN, V129, P173
122854    LEE J, 1996, J COLLOID INTERF SCI, V177, P490
122855    LIU KW, 2001, J MATER RES, V16, P2459
122856    OHANDLEY RC, 2000, MODERN MAGNETIC MAT
122857    RAMING TP, 2002, J COLLOID INTERF SCI, V249, P346
122858    VERMA A, 1999, J MAGN MAGN MATER, V192, P271
122859 NR 14
122860 TC 1
122861 SN 0304-8853
122862 J9 J MAGN MAGN MATER
122863 JI J. Magn. Magn. Mater.
122864 PD MAR
122865 PY 2005
122866 VL 288
122867 BP 54
122868 EP 59
122869 PG 6
122870 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
122871 GA 904FF
122872 UT ISI:000227480800007
122873 ER
122874 
122875 PT J
122876 AU Liu, YT
122877    Lv, F
122878    Zou, J
122879    Zhang, D
122880    Yao, ZG
122881 TI Synthesis and photographic properties of novel development accelerator
122882    releasing (DAR) coupler
122883 SO DYES AND PIGMENTS
122884 DT Article
122885 DE coupler; DAR coupler; synthesis; structure
122886 AB Several novel DAR couplers were synthesized. The structures of the
122887    compounds were confirmed by elemental analysis, MS, IR and H-1 NMR. (c)
122888    2004 Elsevier Ltd. All rights reserved.
122889 C1 E China Univ Sci & Technol, Inst Fine Chem, Shanghai 200237, Peoples R China.
122890    Shanghai Univ Sci & Technol, Coll Chem & Chem Engn, Xianyang 712081, Peoples R China.
122891    China Luckyfilm Cooperat, Baoding 071054, Peoples R China.
122892 RP Liu, YT, E China Univ Sci & Technol, Inst Fine Chem, Shanghai 200237,
122893    Peoples R China.
122894 EM yutingliu318@sohu.com
122895 CR JARVIS JR, 1989, J IMAGING SCI, V33, P217
122896    KOBAYASHI H, 1982, 3209110, DE
122897    KOBAYASHI H, 1985, 147765
122898    KOBAYASHI H, 1986, P 16 S NIPP SHASH KO, P58
122899    LIU YT, IN PRESS DYES PIGMEN
122900    TSOI SC, 1999, 5958664, US
122901 NR 6
122902 TC 0
122903 SN 0143-7208
122904 J9 DYE PIGMENT
122905 JI Dyes Pigment.
122906 PD AUG
122907 PY 2005
122908 VL 66
122909 IS 2
122910 BP 143
122911 EP 148
122912 PG 6
122913 SC Chemistry, Applied; Engineering, Chemical; Materials Science, Textiles
122914 GA 904RU
122915 UT ISI:000227516200009
122916 ER
122917 
122918 PT J
122919 AU Zheng, CL
122920    Chen, LQ
122921 TI Solitons with fission and fusion behaviors in a variable coefficient
122922    Broer-Kaup system
122923 SO CHAOS SOLITONS & FRACTALS
122924 DT Article
122925 ID (2+1)-DIMENSIONAL INTEGRABLE SYSTEMS; LOCALIZED COHERENT STRUCTURES;
122926    KUPERSHMIDT EQUATION; EXCITATIONS
122927 AB Using an extended homogeneous balance approach and a linear variable
122928    separation method, a general variable separation excitation of the (2 +
122929    1)-dimensional variable coefficient Broer-Kaup (VCBK) system is
122930    derived. Based on the derived solution, we reveal soliton fission and
122931    fusion phenomena in the (2 + 1)-dimensional soliton system. (c) 2004
122932    Elsevier Ltd. All rights reserved.
122933 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
122934    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
122935 RP Zheng, CL, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R
122936    China.
122937 EM zjclzheng@yahoo.com.cn
122938 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V31, P125
122939    BOITI M, 1987, INVERSE PROBL, V3, P371
122940    CHEN CL, 2002, COMMUN THEOR PHYS, V38, P129
122941    KADOMTSEV BB, 1970, SOV PHYS DOKL, V15, P539
122942    LIN J, 2003, CHINESE PHYS, V12, P1049
122943    LOU SY, 1997, J MATH PHYS, V38, P6401
122944    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
122945    SERKIN VN, 2001, OPT COMMUN, V192, P237
122946    STOITCHEVA G, 2001, MATH COMPUT SIMULAT, V55, P621
122947    TANG XY, 2002, PHYS REV E, V66, P46601
122948    TANG XY, 2003, J MATH PHYS, V44, P4000
122949    WANG S, 2004, CHAOS SOLITON FRACT, V21, P231
122950    YING JP, 2001, COMMUN THEOR PHYS, V35, P405
122951    YING JP, 2001, Z NATURFORSCH A, V56, P619
122952    ZAKHAROV VE, 1968, J APPL MECH TECH PHY, V2, P190
122953    ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P705
122954    ZHANG JF, 2002, CHINESE PHYS, V12, P533
122955    ZHANG JL, 2003, J ATOM MOL PHYS, V20, P92
122956    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
122957    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
122958    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P783
122959    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
122960    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
122961 NR 23
122962 TC 6
122963 SN 0960-0779
122964 J9 CHAOS SOLITON FRACTAL
122965 JI Chaos Solitons Fractals
122966 PD JUN
122967 PY 2005
122968 VL 24
122969 IS 5
122970 BP 1347
122971 EP 1351
122972 PG 5
122973 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
122974 GA 905VE
122975 UT ISI:000227597900020
122976 ER
122977 
122978 PT J
122979 AU Tang, T
122980    Chen, XC
122981    Meng, XY
122982    Chen, H
122983    Ding, YP
122984 TI Synthesis of multiwalled carbon nanotubes by catalytic combustion of
122985    polypropylene
122986 SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
122987 DT Article
122988 DE clays; nanotubes; nickel; polymers synthetic; methods
122989 ID LAYERED SILICATE NANOCOMPOSITES; GRAPHITE NANOTUBES; PYROLYSIS;
122990    NANOSTRUCTURES; PRODUCTS; PLASTICS; MIXTURE; GROWTH; WASTE; LONG
122991 C1 Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China.
122992    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
122993 RP Tang, T, Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab
122994    Polymer Phys & Chem, Changchun 130022, Peoples R China.
122995 EM ttang@ciac.jl.cn
122996 CR ALEXANDRE M, 2000, MAT SCI ENG R, V28, P1
122997    AMELINCKX S, 1994, SCIENCE, V265, P635
122998    BERNHOLC J, 1997, CURR OPIN SOLID ST M, V2, P706
122999    BETHUNE DS, 1993, NATURE, V363, P605
123000    BHARADWAJ RK, 2001, MACROMOLECULES, V34, P9189
123001    BOCKHORN H, 1985, J ANAL APPL PYROL, V7, P427
123002    CASSELL AM, 1999, J PHYS CHEM B, V103, P6484
123003    CHE G, 1998, CHEM MATER, V10, P260
123004    COLLINS PG, 1997, SCIENCE, V278, P100
123005    DEAMORIM MTS, 1982, J ANAL APPL PYROL, V4, P73
123006    GENG JF, 2002, CHEM COMMUN     1121, P2666
123007    HOU HQ, 2003, CHEM MATER, V15, P3170
123008    HUANG SM, 2003, J AM CHEM SOC, V125, P5636
123009    HUCZKO A, 2003, J PHYS CHEM B, V107, P2519
123010    KONG J, 2000, SCIENCE, V287, P622
123011    KRIVORUCHKO OP, 2000, CARBON, V38, P1075
123012    KROTO HW, 1985, NATURE, V318, P162
123013    KUKOVITSKII EF, 1997, CHEM PHYS LETT, V266, P323
123014    LIJIMA S, 1991, NATURE, V354, P56
123015    LIU C, 1999, SCIENCE, V286, P1127
123016    LOVETT S, 1997, IND ENG CHEM RES, V36, P4436
123017    LYU SC, 2004, J PHYS CHEM B, V108, P2192
123018    MAKSIMOVA NI, 2000, J MOL CATAL A-CHEM, V158, P301
123019    MOLINER R, 1997, ENERG FUEL, V11, P1165
123020    RAO AM, 1997, SCIENCE, V275, P187
123021    RAY SS, 2003, PROG POLYM SCI, V28, P1539
123022    REN ZF, 1998, SCIENCE, V282, P1105
123023    THESS A, 1996, SCIENCE, V273, P483
123024    VANDERWAL RL, 2001, J PHYS CHEM B, V105, P10249
123025    WILLIAMS EA, 1997, J CHEM TECHNOL BIOT, V70, P9
123026    WONG HW, 2001, IND ENG CHEM RES, V40, P4716
123027    YUAN LM, 2001, CHEM PHYS LETT, V340, P237
123028    YUAN LM, 2001, CHEM PHYS LETT, V346, P23
123029    ZANETTI M, 2001, POLYMER, V42, P4501
123030    ZANETTI M, 2002, CHEM MATER, V14, P881
123031    ZHU HW, 2002, SCIENCE, V296, P884
123032 NR 36
123033 TC 2
123034 SN 1433-7851
123035 J9 ANGEW CHEM INT ED
123036 JI Angew. Chem.-Int. Edit.
123037 PD FEB 25
123038 PY 2005
123039 VL 44
123040 IS 10
123041 BP 1517
123042 EP 1520
123043 PG 4
123044 SC Chemistry, Multidisciplinary
123045 GA 904DE
123046 UT ISI:000227475500015
123047 ER
123048 
123049 PT J
123050 AU Sun, HY
123051    Zhou, ZN
123052    Ji, YH
123053 TI The role of voltage-gated Na+ channels in excitation-contraction
123054    coupling of rat heart determined by BmK I, an alpha-like scorpion
123055    neurotoxin
123056 SO TOXICOLOGY IN VITRO
123057 DT Article
123058 DE inotropism; voltage-gated Na+ channel; reverse-mode Na+-Ca (2+)
123059    exchanger; BmK I
123060 ID BUTHUS-MARTENSI KARSCH; PRIMARY SENSORY NEURONS; SODIUM-CHANNELS;
123061    VENTRICULAR MYOCYTES; SARCOPLASMIC-RETICULUM; NA+-CA2+ EXCHANGE;
123062    CARDIAC-CELLS; MOLECULAR-MECHANISMS; CA2+ RELEASE; TOXINS
123063 AB A mechanism underlying the increase in rat heart contractility
123064    modulated by BmK I, an alpha-like scorpion neurotoxin, was investigated
123065    using whole-cell patch-clamp and fluorescence digital imaging
123066    techniques. Results showed that (a) L-type Ca2+ current could not be
123067    modified by 500 nM BmK I; (b) The inactivation process of Na+ current
123068    was significantly delayed with no change of its amplitude; (c) The
123069    overall intracellular Na+ and Ca2+ concentration could be augmented in
123070    the presence of BmK I; (p < 0.05); (d) The increase of free
123071    intracellular Ca2+ concentration induced by BmK I was inhibited
123072    completely by 5mM NiCl2 (p < 0.05), an inhibitor of Na+-Ca2+ exchanger;
123073    (e) The spontaneous Ca2+ release induced by 10mM caffeine from
123074    sarcoplasmic reticulum could not be modulated by 500nM BmK I in the
123075    absence of external Ca2+. These results indicate that cardiac
123076    voltage-gated Na+ channels are also targets of BrnK I. Na+ accumulation
123077    through Na+ channels can trigger sarcoplasmic reticulum Ca2+ release in
123078    rat cardiac myocytes via reverse-mode Na+-Ca2+ exchanger. Furthermore,
123079    Ca2+ release from sarcoplasmic reticulum induced by BmK I most likely
123080    involves a Ca2+-induced release mechanism. (C) 2004 Elsevier Ltd. All
123081    rights reserved.
123082 C1 Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Physiol, Key Lab Neurobiol, Shanghai 200031, Peoples R China.
123083    Shanghai Jiao Tong Univ, Sch Pharm, Shanghai 200030, Peoples R China.
123084    Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China.
123085 RP Ji, YH, Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Physiol, Key Lab
123086    Neurobiol, 320 Yue Yang Rd, Shanghai 200031, Peoples R China.
123087 EM yhji@server.shcnc.ac.cn
123088 CR ALMEIDA AP, 1982, TOXICON, V20, P855
123089    BARNES S, 1988, J GEN PHYSIOL, V91, P421
123090    BENN SC, 2001, J NEUROSCI, V21, P6077
123091    BERS DM, 1988, J MOL CELL CARDIOL, V20, P405
123092    BEUCKELMANN DJ, 1988, J PHYSIOL-LONDON, V405, P233
123093    CARMELIET E, 1992, CARDIOVASC RES, V26, P433
123094    CATTERALL WA, 2000, NEURON, V26, P13
123095    CESTELE S, 1999, EUR J NEUROSCI, V11, P975
123096    CESTELE S, 2000, BIOCHIMIE, V82, P883
123097    CHEN B, 2001, NEUROTOXICOL TERATOL, V23, P675
123098    DECOSTERD I, 2002, PAIN, V96, P269
123099    DENAC H, 2000, N-S ARCH PHARMACOL, V362, P453
123100    GELLENS ME, 1992, P NATL ACAD SCI USA, V89, P554
123101    GOLD MS, 1999, P NATL ACAD SCI USA, V96, P7645
123102    GOLDIN AL, 2000, NEURON, V28, P365
123103    GOLDIN AL, 2001, ANNU REV PHYSIOL, V63, P871
123104    GORDON D, 1996, J BIOL CHEM, V271, P8034
123105    GORDON D, 1998, J TOXICOL-TOXIN REV, V17, P131
123106    GOUDET C, 2001, FEBS LETT, V495, P61
123107    HAN CL, 2002, BIOPHYS J, V82, P1483
123108    JI YH, 1996, TOXICON, V34, P987
123109    JOSEPHINE L, 2002, PAIN, V95, P143
123110    LEE D, 2000, J NEUROPHYSIOL, V83, P1181
123111    LEVI AJ, 1993, CARDIOVASC RES, V27, P1743
123112    LI YJ, 2000, J PEPT RES, V56, P195
123113    LIPP P, 1994, J PHYSIOL-LONDON, V474, P439
123114    LITWIN SE, 1998, BIOPHYS J, V75, P359
123115    MARCOTTE P, 1997, CIRC RES, V80, P363
123116    NUSS HB, 1992, AM J PHYSIOL 2, V263, H1161
123117    NUSS HB, 1993, CIRC RES, V73, P777
123118    RENAUD JF, 1986, EUR J PHARMACOL, V120, P161
123119    SATOH H, 1994, AM J PHYSIOL 2, V266, H568
123120    SHAM JSK, 1992, SCIENCE, V255, P850
123121    SIPIDO KR, 1997, CIRC RES, V81, P1034
123122    SONG LS, 1998, J PHYSIOL-LONDON, V512, P677
123123    SUN HY, 2003, ACTA PHYSL SINIC, V55, P530
123124    TAN ZY, 2001, NEUROPHARMACOLOGY, V40, P352
123125    TERAKAWA S, 1989, TOXICON, V27, P569
123126    TYRRELL L, 2001, J NEUROSCI, V21, P9629
123127    VARGAS O, 1987, EUR J BIOCHEM, V162, P589
123128    WANG GK, 1982, BIOPHYS J, V40, P175
123129    WASSERSTROM JA, 1996, J PHYSIOL-LONDON, V493, P529
123130 NR 42
123131 TC 1
123132 SN 0887-2333
123133 J9 TOXICOL VITRO
123134 JI Toxicol. Vitro
123135 PD MAR
123136 PY 2005
123137 VL 19
123138 IS 2
123139 BP 183
123140 EP 190
123141 PG 8
123142 SC Toxicology
123143 GA 902NR
123144 UT ISI:000227364300004
123145 ER
123146 
123147 PT J
123148 AU Qiu, HL
123149    Wang, AH
123150    You, JL
123151    Liu, XJ
123152    Chen, H
123153    Liu, ST
123154 TI High temperature Raman spectra and structure character study of BSO
123155    crystal
123156 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
123157 DT Article
123158 DE BSO crystal; high temperature Raman spectrum; vibration mode; high
123159    temperature structure
123160 ID BI12SIO20; BI12GEO20; MODES
123161 AB The structure character of BSO crystal at room temperature was
123162    generalized. The main Raman shifts of lattice vibration at room
123163    temperature were interpreted. The Raman spectra of BSO crystal were
123164    measured in a temperature range from 293 K to 1 123 K with high
123165    temperature Raman spectroscopy and time-resolved detection techniques.
123166    Temperature-dependence character of the Raman spectra of the crystal
123167    was investigated. The vibration mode of the longest bond Bi-O-(1) in
123168    crystal shifts from 542 cm(-1) to 512 cm(-1) with the temperature
123169    increasing from room temperature to 1 123 K. It can be attributed to
123170    the fact that oxygen atoms are electrostatic bond to Bi atoms. The
123171    intensity of 88 cm(-1) modes, which belongs to combination mode of
123172    bending and stretching in Bi3O4 unit, changes not so noticeably as
123173    other modes, and even the 58 cm(-1) mode of Bi atoms motions in crystal
123174    lattice decreases rapidly when the temperature is higher than 873 K,
123175    which indicates that the framework structure of the crystal is broken
123176    down at high temperature, while the Bi3O4 unit still exists.
123177 C1 Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Hefei 230031, Peoples R China.
123178    Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
123179 RP Qiu, HL, Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Hefei 230031,
123180    Peoples R China.
123181 CR BABONAS GA, 1982, OPT SPECTROSC, V53, P211
123182    STEUDNER R, 1985, J PHYS CHEM SOLIDS, V46, P803
123183    VENUGOPALAN S, 1972, PHYS REV B, V5, P4065
123184    WANG TJ, 1983, CHINESE LASER, V11, P483
123185    WOJDOWSKI W, 1985, PHYS STATUS SOLIDI B, V130, P121
123186    XU PC, 1996, RAMAN SPECTROSCOPY G
123187    ZARETSKII YG, 1983, OPT SPECTROSC, V54, P338
123188    ZHANG SA, 1987, J SYNTHETIC CRYSTAL, V16, P185
123189 NR 8
123190 TC 0
123191 SN 1000-0593
123192 J9 SPECTROSC SPECTR ANAL
123193 JI Spectrosc. Spectr. Anal.
123194 PD FEB
123195 PY 2005
123196 VL 25
123197 IS 2
123198 BP 222
123199 EP 225
123200 PG 4
123201 SC Spectroscopy
123202 GA 903WY
123203 UT ISI:000227457500018
123204 ER
123205 
123206 PT J
123207 AU Tan, XH
123208    Xu, H
123209    Wang, Q
123210    Hou, XL
123211    Dong, YD
123212 TI Structure, magnetic properties and crystalline behavior of bulk
123213    Nd60Fe20Al10-xCo10Bx amorphous alloys
123214 SO RARE METAL MATERIALS AND ENGINEERING
123215 DT Article
123216 DE bulk amorphous alloys; hard magnetic properties; crystalline behavior
123217 ID GLASS
123218 AB The structure and magnetic properties of bulk Nd60Fe20Al10-xCo10Bx (x =
123219    0, 2, 5) amorphous alloys were investigated by x-ray diffraction (XRD),
123220    differential scanning calorimetry (DSC) and the vibrating sample
123221    magnetometer (VSM). The results show that there is a wide exothermic
123222    reaction peak at 360degreesC to 475degreesC for Nd60Fe20Al10Co10 alloy
123223    in DSC measurements, while it disappeare after B was added. The as-cast
123224    Nd60Fe20Al10-xCo10Bx(x = 0, 2, 5) alloys show hard magnetic behaviorat
123225    room temperature. With increasing of B content, the intrinsic
123226    coercivity increases significantly while the saturation magnetization
123227    and remanence decrease monotonously. The crystalline behavior of
123228    Nd60Fe20Al10Co10 alloy has an obvious difference to alloys with B
123229    addition.
123230 C1 Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
123231 RP Tan, XH, Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
123232 EM tanxiaohua123@163.com
123233 CR FAN GJ, 2000, J MATER RES, V15, P1556
123234    INOUE A, 1996, MATER T JIM, V37, P99
123235    KONG HZ, 2000, J MAGN MAGN MATER, V217, P65
123236    KUMAR G, 2003, ACTA MATER, V51, P229
123237    LI Y, 1998, J MAGN MAGN MATER, V187, P273
123238    NGUYEN C, 2002, J MAGN MAGN MATER, V242, P1314
123239    SIRATORI K, 1990, J MAGN MAGN MATER, V83, P341
123240    WEI BC, 2002, ACTA MATER, V50, P4357
123241 NR 8
123242 TC 0
123243 SN 1002-185X
123244 J9 RARE METAL MAT ENG
123245 JI Rare Metal Mat. Eng.
123246 PD FEB
123247 PY 2005
123248 VL 34
123249 IS 2
123250 BP 263
123251 EP 265
123252 PG 3
123253 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
123254    Engineering
123255 GA 902OZ
123256 UT ISI:000227367700022
123257 ER
123258 
123259 PT J
123260 AU Yang, LT
123261    Ding, JY
123262    Zhang, CM
123263    Jia, JW
123264    Weng, HB
123265    Liu, WX
123266    Zhang, DB
123267 TI Estimating the copy number of transgenes in transformed rice by
123268    real-time quantitative PCR
123269 SO PLANT CELL REPORTS
123270 DT Article
123271 DE transgenic rice; TaqMan real-time PCR; GUS; HPT; copy number
123272 ID GENE; PLANTS; HYBRIDIZATION; ASSAY
123273 AB In transgenic plants, transgene copy number can greatly influence the
123274    expression level and genetic stability of the target gene, making
123275    estimation of transgene copy number an important area of genetically
123276    modified (GM) crop research. Transgene copy numbers are currently
123277    estimated by Southern analysis, which is laborious and time-consuming,
123278    requires relatively large amounts of plant materials and may involve
123279    hazardous radioisotopes. We report here the development of a sensitive,
123280    high-throughput real-time (RT)-PCR technique for estimating transgene
123281    copy number in GM rice. This system uses TaqMan quantitative RT-PCR and
123282    comparison to a novel rice endogenous reference gene coding for sucrose
123283    phosphate synthase (SPS) to determine the copy numbers of the exogenous
123284    beta-glucuronidase (GUS) and hygromycin phosphortransferase (HPT) genes
123285    in transgenic rice. The copy numbers of the GUS and HPT in primary rice
123286    transformants (T-0) were calculated by comparing quantitative PCR
123287    results of the GUS and HPT genes with those of the internal standard,
123288    SPS. With optimized PCR conditions, we achieved significantly accurate
123289    estimates of one, two, three and four transgene copies in the T-0
123290    transformants. Furthermore, our copy number estimations of both the GUS
123291    reporter gene and the HPT selective marker gene showed that
123292    rearrangements of the T-DNA occurred more frequently than is generally
123293    believed in transgenic rice.
123294 C1 Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R China.
123295    Nanjing Univ, Dept Biol Sci & Technol, Nanjing 210093, Peoples R China.
123296    Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China.
123297    Shanghai Acad Agr Sci, Agrobiotech Res Ctr, Key Lab Agr Genet & Breeding, Shanghai 201106, Peoples R China.
123298 RP Zhang, DB, Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, 800
123299    Dongchuan Rd, Shanghai 200240, Peoples R China.
123300 EM zdb3000@yahoo.com.cn
123301 CR 1994, FED REG, V59, P26700
123302    AHMED FE, 2002, TRENDS BIOTECHNOL, V20, P215
123303    ARMOUR JAL, 2000, NUCLEIC ACIDS RES, V28, P605
123304    BONFINI L, 2002, 20348EN EUR
123305    CALLAWAY AS, 2002, PLANT MOL BIOL REP, V20, P265
123306    CIRILLO C, 1999, PETRIA, V9, P344
123307    DEPRETER K, 2002, MODERN PATHOL, V15, P159
123308    DING JY, 2004, J AGR FOOD CHEM, V52, P3372
123309    EINSPANIER R, 2001, EUR FOOD RES TECHNOL, V213, P415
123310    FLAVELL RB, 1994, P NATL ACAD SCI USA, V91, P3490
123311    HOLLOX EJ, 2002, EXPERT REV MOL DIAGN, V2, P370
123312    INGHAM DJ, 2001, BIOTECHNIQUES, V31, P132
123313    KALLIONIEMI A, 1996, METHODS, V9, P113
123314    KOK EJ, 2003, TRENDS BIOTECHNOL, V21, P439
123315    LARRAMENDY ML, 1998, CANCER GENET CYTOGEN, V106, P62
123316    LI JF, 2002, P NATL ACAD SCI USA, V99, P10724
123317    LUCITO R, 2000, GENOME RES, V10, P1726
123318    MASON G, 2002, BMC BIOTECHNOL, V2, P20
123319    ROBERTS CS, 1998, ROCK FDN M INT PROGR, P15
123320    SAMBROOK J, 1989, MOL CLONING LAB MANU
123321    SONG P, 2002, PLANT CELL REP, V20, P948
123322    VAUCHERET H, 1998, PLANT J, V16, P651
123323    ZHANG YL, 2003, NUCLEIC ACIDS RES, V31
123324 NR 23
123325 TC 2
123326 SN 0721-7714
123327 J9 PLANT CELL REP
123328 JI Plant Cell Reports
123329 PD MAR
123330 PY 2005
123331 VL 23
123332 IS 10-11
123333 BP 759
123334 EP 763
123335 PG 5
123336 SC Plant Sciences
123337 GA 903QZ
123338 UT ISI:000227442000015
123339 ER
123340 
123341 PT J
123342 AU Hua, Q
123343    Zhang, YH
123344    Yan, YS
123345 TI On-line prediction of carbon equivalent on high-nickel austenitic
123346    ductile iron
123347 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
123348    MICROSTRUCTURE AND PROCESSING
123349 DT Article
123350 DE carbon equivalent; high-nickel ductile irons; on-line prediction;
123351    cooling curve
123352 AB In this paper, experiments have been made on high-nickel ductile iron
123353    for controlling the property by the computer-aided thermal analysis
123354    system. The experimental results have been analyzed with statistics and
123355    applied to on-line predicting and controlling carbon equivalent, which
123356    obtained satisfying result. The experiments show that the relationship
123357    between the carbon equivalent of high-nickel ductile iron and its
123358    liquidus temperature is linear, which can be expressed as: CEL =
123359    15.7826 - 0.0096575 x T-L. In order to ensure the tensile strength
123360    greater than 400 MPa with the probability up to 99%, the liquidus
123361    temperature of high-nickel austenitic ductile iron must be in the range
123362    of [ 1203-1226 degreesC]. (C) 2004 Elsevier B.V. All rights reserved.
123363 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
123364 RP Hua, Q, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R
123365    China.
123366 EM qhua@mail.shu.edu.cn
123367 CR BACKERUD SL, 1989, AFS T, V97, P459
123368    CHEN IG, 1984, AFS T, V92, P947
123369    CHEN K, 2000, APPL PROBABILITY STA, P360
123370    FRAS E, 1993, AFS T, V101, P505
123371    KARSAY I, 1961, AFS T, V69, P725
123372    SCHELLENG RD, 1960, AFS T, V68, P301
123373    UPADHYA KG, 1989, AFS T, V97, P61
123374    ZEJI S, 2003, FOUNDRY TECHNOL, V24, P91
123375    ZENG DW, 2002, MAT SCI ENG A-STRUCT, V333, P223
123376    ZHU P, 1995, AFS T, V103, P601
123377 NR 10
123378 TC 0
123379 SN 0921-5093
123380 J9 MATER SCI ENG A-STRUCT MATER
123381 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
123382 PD FEB 25
123383 PY 2005
123384 VL 393
123385 IS 1-2
123386 BP 310
123387 EP 314
123388 PG 5
123389 SC Materials Science, Multidisciplinary
123390 GA 902TE
123391 UT ISI:000227378600038
123392 ER
123393 
123394 PT J
123395 AU Fang, JP
123396    Zheng, CL
123397    Liu, Q
123398 TI Nonpropagating solitons in (2+1)-dimensional dispersive long-water wave
123399    system
123400 SO COMMUNICATIONS IN THEORETICAL PHYSICS
123401 DT Article
123402 DE extended mapping approach; DLW system; localized excitation
123403 ID 2 SPACE DIMENSIONS; LOCALIZED COHERENT STRUCTURES; EQUATIONS
123404 AB With the help of an extended mapping approach, a new type of variable
123405    separation excitation with three arbitrary functions of the
123406    (2+1)-dimensional dispersive long-water wave system (DLW) is derived.
123407    Based on the derived variable separation excitation, abundant
123408    non-propagating solitons such as dromion, ring, peakon, and compacton
123409    etc. are revealed by selecting appropriate functions in this paper.
123410 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
123411    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
123412 RP Zheng, CL, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R
123413    China.
123414 EM zjclzheng@yahoo.com.cn
123415 CR BOITI M, 1987, INVERSE PROBL, V3, P371
123416    LARRAZA A, 1984, J FLUID MECH, V148, P443
123417    LOU S, 1993, PHYS LETT A, V176, P96
123418    LOU SL, 1984, J PHYS A, V27, P3235
123419    LOU SY, 1989, J MATH PHYS, V30, P1614
123420    LOU SY, 1995, MATH METHOD APPL SCI, V18, P789
123421    LU Z, 2003, SOLITIONS FRACTALS, V19, P527
123422    MILES JW, 1984, J FLUID MECH, V148, P451
123423    PAQUIN G, 1990, PHYSICA D, V46, P122
123424    TAANG XY, 2002, PHYS REV E, V66
123425    TANG XY, 2003, J MATH PHYS, V44, P4000
123426    WU J, 1984, PHYS REV LETT, V52, P1421
123427    XU YG, 1990, CHINESE PHYS LETT, V12, P7
123428    YAN JR, 1993, EUROPHYS LETT, V23, P335
123429    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
123430    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
123431    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
123432    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
123433    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
123434 NR 19
123435 TC 1
123436 SN 0253-6102
123437 J9 COMMUN THEOR PHYS
123438 JI Commun. Theor. Phys.
123439 PD FEB 15
123440 PY 2005
123441 VL 43
123442 IS 2
123443 BP 245
123444 EP 250
123445 PG 6
123446 SC Physics, Multidisciplinary
123447 GA 903KI
123448 UT ISI:000227424300012
123449 ER
123450 
123451 PT J
123452 AU Ge, HX
123453    Dai, SQ
123454    Dong, LY
123455    Lei, L
123456 TI A modified sensitive driving cellular automaton model
123457 SO COMMUNICATIONS IN THEORETICAL PHYSICS
123458 DT Article
123459 DE traffic flow; cellular automaton model; sensitive behavior; variable
123460    security gap
123461 ID TRAFFIC FLOW; METASTABLE STATES; HIGHWAY; PHASE
123462 AB A modified cellular automaton model for traffic flow on highway is
123463    proposed with a novel concept about the variable security gap. The
123464    concept is first introduced into the original Nagel-Schreckenberg
123465    model, which is called the non-sensitive driving cellular automaton
123466    model. And then it is incorporated with a sensitive driving NaSch
123467    model, in which the randomization brake is arranged before the
123468    deterministic deceleration. A parameter related to the variable
123469    security gap is determined through simulation. Comparison of the
123470    simulation results indicates that the variable security gap has
123471    different influence on the two models. The fundamental diagram obtained
123472    by simulation with the modified sensitive driving NaSch model shows
123473    that the maximum How are in good agreement with the observed data,
123474    indicating that the presented model is more reasonable and realistic.
123475 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
123476 RP Ge, HX, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
123477    Peoples R China.
123478 EM ghxmocy@tom.com
123479 CR BARLOVIC R, 1998, EUR PHYS J B, V5, P793
123480    BENJAMIN SC, 1996, J PHYS A-MATH GEN, V29, P3119
123481    CHOWDHURY D, 2000, PHYS REP, V329, P199
123482    FUKUI M, 1997, J PHYS SOC JPN, V66, P385
123483    GE HX, 2004, J SHANGHAI U, P1
123484    HELBING D, 1996, PHYS REV E, V53, P2366
123485    HELBING D, 1998, PHYS REV LETT, V81, P3042
123486    KERNER BS, 1993, PHYS REV E, V48, P2335
123487    KERNER BS, 1995, PHYS REV E B, V51, P6243
123488    KNOSPE W, 2000, J PHYS A-MATH GEN, V33, L477
123489    LEE K, 2001, J PHYS SOC JPN, V70, P3507
123490    LI L, 2003, ACTA PHYS SIN-CH ED, V52, P2121
123491    LI XB, 2001, PHYS REV E 2, V64
123492    NAGATANI T, 1997, PHYSICA A, V237, P67
123493    NAGEL K, 1992, J PHYS I, V2, P2221
123494    NISHINARI K, 2000, J PHYS A-MATH GEN, V33, P7709
123495    SCHADSCHNEIDER A, 1997, ANN PHYS-LEIPZIG, V6, P541
123496    TAKAYASU M, 1993, FRACTALS, V1, P860
123497    WAGNER P, 1996, TRAFFIC GRANULAR FLO, P193
123498    WANG BH, 1998, ACTA PHYS SINICA, V47, P906
123499    YU X, 2001, ACTA PHYS SINI, V50, P444
123500    YU X, 2002, P 4 INT C NONL MECH, P919
123501 NR 22
123502 TC 0
123503 SN 0253-6102
123504 J9 COMMUN THEOR PHYS
123505 JI Commun. Theor. Phys.
123506 PD FEB 15
123507 PY 2005
123508 VL 43
123509 IS 2
123510 BP 321
123511 EP 324
123512 PG 4
123513 SC Physics, Multidisciplinary
123514 GA 903KI
123515 UT ISI:000227424300025
123516 ER
123517 
123518 PT J
123519 AU Jia, XS
123520    Zhang, YM
123521 TI Reductive cleavage of the carbon-sulfur bond by samarium/Cp2TiCl2
123522    system for the synthesis of dialkyl disulfides
123523 SO CHINESE JOURNAL OF CHEMISTRY
123524 DT Article
123525 DE carbon-sulfur bond; samarium/Cp2TiCl2; dialkyl disulfide
123526 ID DISELENIDES; DERIVATIVES; OXIDATION; EFFICIENT; SELENOLS; REAGENT;
123527    HALIDES; THIOLS
123528 AB Methods for the formation of sulfur-sulfur bond are indispensable tools
123529    in synthetic chemistry and biochemistry. Their importance stems from
123530    the existence of sulfur-sulfur bond in many molecules such as proteins,
123531    peptides, natural products and pharmacologically active compounds.' In
123532    addition, disulfides are useful synthetic intermediates in a variety of
123533    chemical transformations. (2) In recognition of their importance,
123534    various methods for the synthesis of disulfides have been reported, (3)
123535    for example the oxidation of thiols (3a), the reaction of alkyl
123536    bromides with the sodium hydroxide and sulfur, (3b) the reduction of
123537    sulfonic acids and sodium sulfortates, (3c) the reaction of sulfur,
123538    borohydride exchange resin with halides, (3g) the reaction of
123539    benzyltriethylammonium tetraco-sathioheptamolybdate with alkyl halides.
123540    (3h) Thus, most of the methods for the synthesis of disulfides usually
123541    require expensive, (3i) unstable and foul reagents, 3a strong base 3b
123542    or long reaction time.(3j) The reduction of sulfoxides with active
123543    halides 4 and reductive cleavage of sulfur-sulfur bond(5) using
123544    samarium/CP2TiCl2 system have been reported. Here, a mild and rapid
123545    method for the reductive cleavage of carbon-sulfur bond using
123546    samariUM/CP2TiCl2 system, which is a novel method for the formation of
123547    disulfides, is described. The carbon-sulfur bond in the
123548    alkylthiocyanates was reductively cleaved by samarium/Cp2TiCl2 system
123549    to give the corresponding dialkyl disulfides in moderate to good yields
123550    (Scheme 1).
123551 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
123552    Zhejiang Univ, Dept Chem, Hangzhou 310028, Zhejiang, Peoples R China.
123553 RP Jia, XS, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
123554 EM xsjia@staff.shu.edu.cn
123555 CR ANTEBI S, 1985, TETRAHEDRON LETT, V26, P2609
123556    BANDGAR BP, 2001, TETRAHEDRON LETT, V42, P6741
123557    BEZZI S, 1950, GAZZ CHIM ITAL, V80, P180
123558    BILLARD T, 1996, TETRAHEDRON LETT, V37, P6865
123559    BLUM SA, 2003, J ORG CHEM, V68, P150
123560    BUSTANJI Y, 2002, ANGEW CHEM INT EDIT, V41, P1546
123561    CHORBADZHIEV S, 1981, REV ROUM CHIM, V26, P1447
123562    DAVEY W, 1957, WEAR, V1, P291
123563    DECKERAND QW, 1957, J ORG CHEM, V22, P145
123564    FREEMAN F, 1993, REV HETEROATOM CHEM, V9, P1
123565    FUJIKI K, 2002, SYNTHESIS-STUTTG FEB, P343
123566    GHOSH S, 1996, TETRAHEDRON LETT, V37, P5769
123567    ITO S, 1993, CHEM PHARM BULL, V41, P1066
123568    JIA XS, 2003, J CHEM RES SYNOP, V9, P540
123569    KISHI Y, 1973, J AM CHEM SOC, V95, P6493
123570    KUTIL B, 187958, CS
123571    MCKILLOP A, 1990, TETRAHEDRON LETT, V31, P5007
123572    OAE S, 1982, SYNTHESIS-STUTTGART, P152
123573    OGAWA A, 1987, TETRAHEDRON LETT, V28, P3271
123574    OGURA F, 1982, B CHEM SOC JPN, V55, P641
123575    PAUL AJ, 1935, J AM CHEM SOC, V57, P198
123576    POLSHETTIWAR V, 2003, TETRAHEDRON LETT, V44, P887
123577    RAMESHA AR, 1992, SYNTHETIC COMMUN, V22, P3277
123578    SCHNAIBLE V, 2002, ANAL CHEM, V74, P2386
123579    SZILAGYI L, 2001, TETRAHEDRON LETT, V42, P3901
123580    TIAN XB, 2002, ORG LETT, V4, P4013
123581    TITSSKVORTSOVA IN, 1951, ZH OBSHCH KHIM, V21, P242
123582    VRUDHULA VM, 2002, BIOORG MED CHEM LETT, V12, P3591
123583    ZHANG YM, 1995, SYNTHETIC COMMUN, V25, P1825
123584 NR 29
123585 TC 0
123586 SN 1001-604X
123587 J9 CHINESE J CHEM
123588 JI Chin. J. Chem.
123589 PD MAR
123590 PY 2005
123591 VL 23
123592 IS 3
123593 BP 303
123594 EP 304
123595 PG 2
123596 SC Chemistry, Multidisciplinary
123597 GA 902JW
123598 UT ISI:000227352300015
123599 ER
123600 
123601 PT J
123602 AU Shi, XM
123603    Dai, SQ
123604 TI Intracellular solitary pulse calcium waves in frog sympathetic neurons
123605 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
123606 DT Article
123607 DE calcium oscillation; solitary pulse calcium wave; sympathetic neuron;
123608    ryanodine receptor
123609 ID OSCILLATIONS; RELEASE; MODEL
123610 AB In certain extracellular environments, there would appear a kind of
123611    solitary pulse calcium waves in Rana pipiens sympathetic neurons,
123612    propagating inwards along the radial direction from the plasma
123613    membrane. To gain a deeper insight into the waves, a model describing
123614    intracellular calcium waves in frog sympathetic neurons was
123615    established. In the piecewise linear approximation, the present model
123616    is identical to the Sneyd model. Thus, with Sheyd's method, analytical
123617    expressions for the wave speed and profiles of 1-D solitary pulse wave
123618    were obtained. A wave speed of 21.5 mum/s was deduced, which agrees
123619    rather well with experimental data.
123620 C1 Shanghai Univ, Sch Life Sci, Shanghai 200444, Peoples R China.
123621    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
123622 RP Shi, XM, Shanghai Univ, Sch Life Sci, Shanghai 200444, Peoples R China.
123623 EM xminshi@sohu.com
123624 CR CHOPRA GC, 1999, B MATH BIOL, V61, P273
123625    FRIEL DD, 1995, BIOPHYS J, V68, P1752
123626    GOLDBETER A, 1990, P NATL ACAD SCI USA, V87, P1461
123627    KEENER J, 1998, MATH PHYSL, P332
123628    MCDONOUGH SI, 2000, J NEUROSCI, V20, P9059
123629    MURRAY JD, 1993, MATH BIOL, P704
123630    SHI XM, 2003, J SHANGHAI U, V9, P365
123631    SHI XM, 2003, THESIS  SHANGHAI U
123632    SNEYD J, 1993, B MATH BIOL, V55, P315
123633 NR 9
123634 TC 0
123635 SN 0253-4827
123636 J9 APPL MATH MECH-ENGL ED
123637 JI Appl. Math. Mech.-Engl. Ed.
123638 PD FEB
123639 PY 2005
123640 VL 26
123641 IS 2
123642 BP 150
123643 EP 159
123644 PG 10
123645 SC Mathematics, Applied; Mechanics
123646 GA 903AP
123647 UT ISI:000227398100003
123648 ER
123649 
123650 PT J
123651 AU Yuan, XG
123652    Zhu, ZY
123653 TI Qualitative study of cavitated, bifurcation for a class of
123654    incompressible generalized neo-Hookean spheres
123655 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
123656 DT Article
123657 DE incompressible generalized neo-Hookean material; cavitated bifurcation;
123658    normal form; stability and catastrophe
123659 ID ELASTIC-MATERIALS; VOID NUCLEATION
123660 AB The problem of spherical cavitated bifurcation was examined for a class
123661    of incompressible generalized neo-Hookean materials, in which the
123662    materials may be viewed as the homogeneous incompressible isotropic
123663    neo-Hookean material with radial perturbations. The condition of void
123664    nucleation for this problem was obtained In contrast to the situation
123665    for a homogeneous isotropic neo-Hookean sphere, it is shown that not
123666    only there exists a secondary turning bifurcation point on the
123667    cavitated bifurcation solution which bifurcates locally to the left
123668    from trivial solution, and also the critical load is smaller than that
123669    for the material with no. perturbations, as the parameters belong to
123670    some regions. It is proved that the cavitated bifurcation equation is
123671    equivalent to a class of normal forms with single-sided constraints
123672    near the critical point by using singularity theory. The stability of
123673    solutions and the actual stable equilibrium state were discussed
123674    respectively by using the minimal potential energy principle.
123675 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Math, Shanghai 200072, Peoples R China.
123676    Yantai Univ, Dept Math & Informat Sci, Shandong 264005, Peoples R China.
123677 RP Yuan, XG, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Math,
123678    Shanghai 200072, Peoples R China.
123679 EM chjcheng@mail.shu.edu.cn
123680 CR BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
123681    CHOUWANG MSO, 1989, INT J SOLIDS STRUCT, V25, P1239
123682    CHUNG DT, 1987, INT J SOLIDS STRUCT, V23, P983
123683    GOLUBITSKY M, 1985, SINGULARITIES GROUPS, P463
123684    HORGAN CO, 1995, APPL MECH REV, V48, P471
123685    HOU HS, 1993, J APPL MECH-T ASME, V60, P1
123686    POLIGNONE DA, 1993, J ELASTICITY, V33, P27
123687    REN JS, 2001, J SHANGHAI U, V5, P177
123688    REN JS, 2002, ACTA MECH SOLIDA SIN, V15, P208
123689    REN JS, 2002, APPL MATH MECH-ENGL, V23, P881
123690    REN JS, 2002, J SHANGHAI U, V6, P185
123691    SHANG XC, 1996, ACTA MECH SINICA, V28, P751
123692    SHANG XC, 2001, INT J ENG SCI, V39, P1101
123693    YUAN XG, 2004, J SHANGHAI U, V8, P13
123694 NR 14
123695 TC 0
123696 SN 0253-4827
123697 J9 APPL MATH MECH-ENGL ED
123698 JI Appl. Math. Mech.-Engl. Ed.
123699 PD FEB
123700 PY 2005
123701 VL 26
123702 IS 2
123703 BP 185
123704 EP 194
123705 PG 10
123706 SC Mathematics, Applied; Mechanics
123707 GA 903AP
123708 UT ISI:000227398100007
123709 ER
123710 
123711 PT J
123712 AU Li, D
123713    Sun, XL
123714    McKinnon, K
123715 TI An exact solution method for reliability optimization in complex systems
123716 SO ANNALS OF OPERATIONS RESEARCH
123717 DT Article
123718 DE reliability optimization; complex system; global optimization;
123719    convexification method; mixed-integer nonlinear programming;
123720    branch-and-bound
123721 ID NONLINEAR KNAPSACK CLASS; SMART GREEDY PROCEDURE; GLOBAL OPTIMIZATION;
123722    ALGORITHM; CONVEXIFICATION; ALLOCATION; BRANCH
123723 AB Systems reliability plays an important role in systems design,
123724    operation and management. Systems reliability can be improved by adding
123725    redundant components or increasing the reliability levels of
123726    subsystems. Determination of the optimal amount of redundancy and
123727    reliability levels among various subsystems under limited resource
123728    constraints leads to a mixed-integer nonlinear programming problem. The
123729    continuous relaxation of this problem in a complex system is a
123730    nonconvex nonseparable optimization problem with certain monotone
123731    properties. In this paper, we propose a convexification method to solve
123732    this class of continuous relaxation problems. Combined with a
123733    branch-and-bound method, our solution scheme provides an efficient way
123734    to find an exact optimal solution to integer reliability optimization
123735    in complex systems.
123736 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China.
123737    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
123738    Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland.
123739 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Hong
123740    Kong, Hong Kong, Peoples R China.
123741 EM dli@se.cuhk.edu.hk
123742    xlsun@staff.shu.edu.cn
123743    ken@maths.ed.ac.uk
123744 CR ABRAHAM JA, 1979, IEEE T RELIAB, V28, P58
123745    AVRIEL M, 1976, NONLINEAR PROGRAMMIN
123746    BENSON HP, 1996, NAV RES LOG, V43, P765
123747    CHEN PC, 1981, OPER RES LETT, V7, P403
123748    FOX B, 1966, MANAGE SCI, V13, P210
123749    GEN M, 1997, GENETIC ALGORITHMS E
123750    GLOVER F, 1993, MODERN HEURISTIC TEC
123751    GUPTA OK, 1985, MANAGE SCI, V31, P1533
123752    HOFFMAN KL, 1981, MATH PROGRAM, V20, P22
123753    HORST R, 1988, OPER RES LETT, V7, P85
123754    HORST R, 1993, GLOBAL OPTIMIZATION
123755    KIM JH, 1993, IEEE T RELIAB, V42, P572
123756    KUO W, 2000, IEEE T RELIAB, V49, P176
123757    LI D, 1992, IEEE T RELIAB, V41, P83
123758    LI D, 1995, J MATH ANAL APPL, V191, P589
123759    LI D, 2001, ANN OPER RES, V105, P213
123760    MISRA KB, 1991, IEEE T RELIAB, V40, P81
123761    NAKAGAWA Y, 1978, IEEE T RELIAB, V27, P31
123762    NG KYK, 2001, IIE TRANS, V33, P1047
123763    OHTAGAKI H, 1995, MATH COMPUT MODEL, V22, P261
123764    OHTAGAKI H, 2000, MATH COMPUT MODEL, V31, P283
123765    PARDALOS PM, 1987, CONSTRAINED GLOBAL O
123766    PRASAD VR, 2000, IEEE T RELIAB, V49, P323
123767    RAVI V, 1997, IEEE T RELIAB, V46, P2323
123768    SNIEDOVICH M, 1990, AM J MATH MANAGM SCI, V10, P51
123769    SUN XL, 2001, J GLOBAL OPTIM, V21, P185
123770    TAWARMALANI M, 1999, GLOBAL OPTIMIZATION
123771    TILLMAN FA, 1980, OPTIMIZATION SYSTEM
123772    TZAFESTAS SG, 1980, INT J SYST SCI, V11, P455
123773    WU ZY, 2004, IN PRESS J GLOBAL OP
123774 NR 30
123775 TC 1
123776 SN 0254-5330
123777 J9 ANN OPER RES
123778 JI Ann. Oper. Res.
123779 PD JAN
123780 PY 2005
123781 VL 133
123782 IS 1-3
123783 BP 129
123784 EP 148
123785 PG 20
123786 SC Operations Research & Management Science
123787 GA 901TN
123788 UT ISI:000227304900008
123789 ER
123790 
123791 PT J
123792 AU Liu, BX
123793    Xu, DJ
123794 TI 2,2 '-Diamino-4,4 ',-bi-1,3-thiazolium (2R,3R)-tartrate
123795 SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE
123796 DT Article
123797 AB Crystals of the title chiral compound, C6H8N4S22+.C4H4O62-, were
123798    obtained from a solution containing diaminobithiazole (DABT) and
123799    racentic tartaric acid. The crystal structure consists of a protonated
123800    DABT dications (H(2)DABT) and (2R,3R)-tartrate dianions linked via
123801    hydrogen bonding. An overlapped arrangement and a centroid-to-centroid
123802    separation of 3.4620 (11) Angstrom between nearly parallel thiazole
123803    rings of adjacent H(2)DABT cations indicate the existence of pi-pi
123804    stacking in the crystal structure.
123805 C1 Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China.
123806    Shanghai Univ, Dept Chem, Shanghai 200041, Peoples R China.
123807 RP Xu, DJ, Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China.
123808 EM xudj@mail.hz.zj.cn
123809 CR *RIG CORP, 1995, ABSCOR
123810    *RIG CORP, 1998, PROCESS AUTO
123811    *RIG MSC, 2002, CRYSTALSTRUCTURE VER
123812    ALTOMARE A, 1993, J APPL CRYSTALLOGR, V26, P343
123813    ERLENMEYER H, 1948, HELV CHIM ACTA, V31, P206
123814    FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
123815    FARRUGIA LJ, 1999, J APPL CRYSTALLOGR, V32, P837
123816    FISHER LM, 1985, BIOCHEMISTRY-US, V24, P3199
123817    FLACK HD, 1983, ACTA CRYSTALLOGR A, V39, P876
123818    SHELDRICK GM, 1997, SHELXL97
123819 NR 10
123820 TC 1
123821 SN 1600-5368
123822 J9 ACTA CRYSTALLOGR E-STRUCT REP
123823 JI Acta Crystallogr. Sect. E.-Struct Rep. Online
123824 PD MAR
123825 PY 2005
123826 VL 61
123827 PN Part 3
123828 BP O753
123829 EP O755
123830 PG 3
123831 SC Crystallography
123832 GA 902ST
123833 UT ISI:000227377500182
123834 ER
123835 
123836 PT J
123837 AU Zheng, CL
123838    Fang, JP
123839    Chen, LQ
123840 TI New variable separation excitations of a (2+1)-dimensional
123841    Broer-Kaup-Kupershmidt system obtained by an extended mapping approach
123842 SO ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES
123843 DT Article
123844 DE extended mapping approach; (2+1)-dimensional BKK system; localized
123845    excitation
123846 ID SYMMETRY CONSTRAINTS; SOLITON SYSTEM; EQUATION
123847 AB Using an extended mapping approach, a new type of variable separation
123848    excitation with two arbitrary functions of the (2+1)-dimensional
123849    Broer-Kaup-Kupershmidt system (BKK) is derived. Based on this
123850    excitation, abundant propagating and non-propagating solitons, such as
123851    dromions, rings, peakons, compactons, etc. are found by selecting
123852    appropriate functions.
123853 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
123854    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
123855 RP Zheng, CL, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R
123856    China.
123857 EM zjclzheng@yahoo.com.cn
123858 CR BOITI M, 1987, INVERSE PROBL, V3, P37
123859    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
123860    CLERC M, 1999, PHYS REV LETT, V83, P3820
123861    DUROVSKY VG, 1994, J PHYS A, V27, P4619
123862    LARRAZA A, 1984, J FLUID MECH, V148, P443
123863    LORENZ EN, 1963, J ATMOS SCI, V20, P130
123864    LOU SY, 1989, J MATH PHYS, V30, P1614
123865    LOU SY, 1997, J MATH PHYS, V38, P6401
123866    LOU SY, 1998, COMMUN THEOR PHYS, V29, P145
123867    LU Z, 2003, CHAOS SOLITON FRACT, V19, P527
123868    ROSENAU P, 1993, PHYS REV LETT, V70, P564
123869    TANG XY, 2002, PHYS REV E, V66, P46601
123870    TANG XY, 2003, J MATH PHYS, V44, P4000
123871    WU J, 1984, PHYS REV LETT, V52, P1421
123872    XU YG, 1990, J CHIN PHYS LETT, V12, P7
123873    YAN JR, 1993, EUROPHYS LETT, V23, P335
123874    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
123875    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
123876    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P783
123877    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
123878    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
123879 NR 21
123880 TC 9
123881 SN 0932-0784
123882 J9 Z NATURFORSCH SECT A
123883 JI Z. Naturfors. Sect. A-J. Phys. Sci.
123884 PD DEC
123885 PY 2004
123886 VL 59
123887 IS 12
123888 BP 912
123889 EP 918
123890 PG 7
123891 SC Chemistry, Physical; Physics, Multidisciplinary
123892 GA 899ZO
123893 UT ISI:000227184700004
123894 ER
123895 
123896 PT J
123897 AU Zhang, JM
123898    Yang, W
123899    Wang, S
123900    He, P
123901    Zhu, SH
123902 TI Microwave-promoted one-pot three-component reaction to
123903    [60]Fulleropyrrolidine derivatives
123904 SO SYNTHETIC COMMUNICATIONS
123905 DT Article
123906 DE Fullerence C-60; fulleropyrrolidine; microwave irradiation; 1,3-dipolar
123907    cycloaddition
123908 ID FULLERENES; C-60
123909 AB Under microwave irradiation and solvent-free condition, one-pot
123910    three-component reaction of C-60, amino acid and aldehyde gave the
123911    corresponding [60]fulleropyrrolidine derivatives via dipolar [2 + 3]
123912    cycloaddition in moderate to good yields. Compared to the conventional
123913    thermal heating method, it provides a convenient and expeditious route
123914    to N-unsubstituted fulleropyrrolidines.
123915 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Key Lab Organofluorine, Shanghai 200032, Peoples R China.
123916    Shanghai Univ, Sch Sci, Dept Chem, Shanghai, Peoples R China.
123917 RP Zhu, SH, Chinese Acad Sci, Shanghai Inst Organ Chem, Key Lab
123918    Organofluorine, 345 Lingling Lu, Shanghai 200032, Peoples R China.
123919 EM zhusz@mail.sioc.ac.cn
123920 CR CRUZ P, 1997, TETRAHEDRON, V53, P2599
123921    DIEDERICH F, 1994, CHEM SOC REV, V23, P243
123922    GAN LB, 1996, J ORG CHEM, V61, P1954
123923    HIRSCH A, 1993, ANGEW CHEM INT EDIT, V32, P1138
123924    JENSEN AW, 1996, BIOORGAN MED CHEM, V4, P767
123925    LIDSTROM P, 2001, TETRAHEDRON, V57, P9225
123926    MAGGINI M, 1993, J AM CHEM SOC, V115, P9798
123927    MAGGINI M, 1994, TETRAHEDRON LETT, V35, P2985
123928    PRATO M, 1999, TOP CURR CHEM, V199, P173
123929    VARMA RS, 1999, GREEN CHEM, V1, P43
123930    WILSON SR, 1996, TETRAHEDRON LETT, V37, P775
123931    YADAV JS, 2002, TETRAHEDRON LETT, V43, P1905
123932    ZHANG JM, 2004, CHINESE J CHEM, V22, P1008
123933    ZHANG XJ, 1993, TETRAHEDRON LETT, V34, P8187
123934 NR 14
123935 TC 3
123936 SN 0039-7911
123937 J9 SYN COMMUN
123938 JI Synth. Commun.
123939 PY 2005
123940 VL 35
123941 IS 1
123942 BP 89
123943 EP 96
123944 PG 8
123945 SC Chemistry, Organic
123946 GA 900AY
123947 UT ISI:000227189000011
123948 ER
123949 
123950 PT J
123951 AU Feng, X
123952    Shi, LY
123953    Hang, JZ
123954    Zhang, JP
123955    Fang, JH
123956    Zhong, QD
123957 TI Low temperature synthesis of boron phosphide nanocrystals
123958 SO MATERIALS LETTERS
123959 DT Article
123960 DE boron phosphide; nanomaterials; X-ray techniques; transmission electron
123961    microscopy; semiconductors
123962 ID CHEMICAL-VAPOR-DEPOSITION; BP
123963 AB Nanocrystalline boron phosphide (BP) was successfully synthesized at
123964    low temperature (400 degreesC) by a simple reaction between PCl3 and
123965    NaBF4 using Na as reductant. X-ray powder diffraction patterns
123966    indicated that the resultant was cubic BP with a lattice constant
123967    a=4.533 Angstrom. Transmission electron microscopy revealed that the
123968    crystals were composed of spherical particles with the diameter of 80
123969    nm or so and lots of worm-like rods. The possible formation mechanism
123970    was also investigated. (C) 2004 Elsevier B.V. All tights reserved.
123971 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200436, Peoples R China.
123972    Shanghai Univ, Coll Sci, Shanghai 200436, Peoples R China.
123973    Shanghai Univ, Nano Sci & Technol Res Ctr, Shanghai 200436, Peoples R China.
123974 RP Feng, X, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200436, Peoples R
123975    China.
123976 EM fengx01@hotmail.com
123977 CR *AN CTR, 1985, XRD HDB CHEM
123978    ARCHER RJ, 1964, PHYS REV LETT, V12, P538
123979    GU YL, 2002, CHEM LETT       0705, P724
123980    GU YL, 2003, B CHEM SOC JPN, V76, P1469
123981    KUMASHIRO Y, 1990, J MATER RES, V5, P2993
123982    MIZUTANI T, 1977, JPN J APPL PHYS, V16, P1629
123983    MOTOJIMA S, 1979, J MATER SCI, V14, P496
123984    NIEMYSKI T, 1967, J PHYS CHEM SOLIDS, V1, P585
123985    SCHROTEN E, 1996, J APPL PHYS 1, V79, P4465
123986    SCHROTEN E, 1998, J APPL PHYS, V83, P1660
123987    SCHROTEN E, 1999, J ELECTROCHEM SOC, V46, P2045
123988    UDAGAWA T, 2003, J CERAM PROCESS RES, V4, P80
123989 NR 12
123990 TC 0
123991 SN 0167-577X
123992 J9 MATER LETT
123993 JI Mater. Lett.
123994 PD APR
123995 PY 2005
123996 VL 59
123997 IS 8-9
123998 BP 865
123999 EP 867
124000 PG 3
124001 SC Materials Science, Multidisciplinary; Physics, Applied
124002 GA 899SB
124003 UT ISI:000227164000001
124004 ER
124005 
124006 PT J
124007 AU Wang, F
124008    Li, MS
124009    Lu, YP
124010    Qi, YX
124011 TI A simple sol-gel technique for preparing hydroxyapatite nanopowders
124012 SO MATERIALS LETTERS
124013 DT Article
124014 DE biomaterial; HA; nanopowders; sol-gel
124015 ID HYDROTHERMAL SYNTHESIS; CALCIUM-PHOSPHATE; POWDERS; COATINGS
124016 AB HA powder was prepared using a sol-gel method with phosphoric pentoxide
124017    (P2O5) and calcium nitrate tetrahydrate (Ca(NO3)(2) (.) 4H(2)O). The
124018    effect of sintering temperatures on crystalline degree and composition
124019    of the HA phase, and also the effect of aging times on crystal size of
124020    the HA powder were studied using XRD and TEM. It was found that at
124021    sintering temperatures ranging from 600 to 900 degreesC, the dominant
124022    phase in the powders was HA with small amounts of calcium oxide and
124023    beta-tricalcium phosphate (beta-TCP) at 800 and 900 degreesC, and only
124024    HA phase was observed at 600 and 700 degreesC. 10-15 nm HA powders were
124025    obtained using this technique. This technique has an advantage over
124026    other sot-gel methods in more simple and shorter time because of no
124027    requiring pH value control and long hydrolysis time. (C) 2004 Elsevier
124028    B.V. All rights reserved.
124029 C1 Shandong Univ, Sch Mat Sci & Engn, Jinan 250061, Peoples R China.
124030    Shanghai Univ Sci & Technol, Sch Chem & Environm Engn, Jinan 250031, Peoples R China.
124031 RP Li, MS, Shandong Univ, Sch Mat Sci & Engn, 73 Jingshi Rd, Jinan 250061,
124032    Peoples R China.
124033 EM wf890916@163.com
124034 CR *JCPDS, 1994, JCPDS CARD NO 9 432
124035    ANEE TK, 2003, MATER CHEM PHYS, V80, P725
124036    BEZZI G, 2003, MATER CHEM PHYS, V78, P816
124037    BRNKER CJ, 1990, SOL GEL SCI
124038    CHAI CS, 1998, BIOMATERIALS, V19, P2291
124039    HUANG LY, 2000, J MATER SCI-MATER M, V11, P667
124040    KIM W, 2000, J MATER SCI, V35, P5401
124041    LAYROLLE P, 1998, J AM CERAM SOC, V81, P1421
124042    LI PJ, 1992, J AM CERAM SOC, V75, P2094
124043    LIM GK, 1999, J MATER CHEM, V9, P1635
124044    LOPATIN CM, 1998, THIN SOLID FILMS, V326, P227
124045    LOPEZMACIPE A, 1998, J MATER SYNTH PROC, V6, P121
124046    TAS AC, 2000, J EUR CERAM SOC, V20, P2389
124047    WENG WJ, 1998, BIOMATERIALS, V19, P125
124048    YOSHIMURA M, 1994, J MATER SCI, V29, P3399
124049 NR 15
124050 TC 0
124051 SN 0167-577X
124052 J9 MATER LETT
124053 JI Mater. Lett.
124054 PD APR
124055 PY 2005
124056 VL 59
124057 IS 8-9
124058 BP 916
124059 EP 919
124060 PG 4
124061 SC Materials Science, Multidisciplinary; Physics, Applied
124062 GA 899SB
124063 UT ISI:000227164000013
124064 ER
124065 
124066 PT J
124067 AU Li, JJ
124068    Cheng, CJ
124069 TI Differential quadrature method for nonlinear vibration of orthotropic
124070    plates with finite deformation and transverse shear effect
124071 SO JOURNAL OF SOUND AND VIBRATION
124072 DT Article
124073 ID RECTANGULAR-PLATES; ELEMENT METHOD; LAMINATED PLATES; COMPOSITE PLATES;
124074    BEAMS
124075 AB Based on the Reddy's theory of plates with the effect of higher-order
124076    shear deformations, the governing equations for nonlinear vibration of
124077    orthotropic plates with finite deformations are presented. The
124078    nonlinear free vibration is analyzed by the differential quadrature
124079    method. The differential quadrature approach suggested by Wang and Bert
124080    is extended to handle the multiple boundary conditions of the plate. A
124081    new technique is also further extended to simplify nonlinear
124082    computations and the harmonic balance method is used in deriving the
124083    equation of motion. The numerical convergence and comparison studies
124084    are carried out to validate the present solutions. The results show
124085    that the presented differential quadrature method is fairly reliable
124086    and valid. Influences of geometric and material parameters, transverse
124087    shear deformations and rotation inertia, as well as vibration
124088    amplitudes, on the nonlinear free vibration characteristics of
124089    orthotropic plates are studied. (C) 2004 Elsevier Ltd. All rights
124090    reserved.
124091 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
124092 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
124093    Shanghai 200072, Peoples R China.
124094 EM chjcheng@mail.shu.edu.cn
124095 CR BELLMAN R, 1971, J MATH ANAL APPL, V34, P235
124096    BERT CW, 1989, COMPUT MECH, V5, P217
124097    BERT CW, 1993, INT J SOLIDS STRUCT, V30, P1737
124098    BERT CW, 1996, APPL MECH REV, V49, P1
124099    CHEN LQ, 2001, NONLINEAR VIBRATION
124100    CHEN W, 2000, COMPUT STRUCT, V74, P65
124101    CHIA CY, 1980, NONLINEAR ANAL PLATE
124102    CHIA CY, 1988, APPL MECH REV, V41, P439
124103    LANCASTER P, 1982, THEORY MATRICES APPL
124104    LEE YS, 1996, COMPUT STRUCT, V61, P573
124105    LIU FL, 1999, J SOUND VIB, V225, P915
124106    LIU FL, 1999, J VIB ACOUST, V121, P204
124107    MEI C, 1985, AIAA J, V23, P1104
124108    REDDY JN, 1984, INT J SOLIDS STRUCT, V20, P881
124109    SATHYAMOORTHY M, 1987, APPLIED MECHANICS RE, V40, P1553
124110    SHIAU LC, 1997, J VIB ACOUST, V119, P635
124111    SINGH G, 1995, J SOUND VIB, V181, P315
124112    TENNETI R, 1994, ADV COMPOS MATER, V4, P145
124113    TENNETI R, 1994, J SOUND VIB, V176, P279
124114    WANG X, 1993, COMPUT STRUCT, V48, P473
124115    WANG X, 1993, J SOUND VIB, V162, P566
124116 NR 21
124117 TC 0
124118 SN 0022-460X
124119 J9 J SOUND VIB
124120 JI J. Sound Vibr.
124121 PD MAR 7
124122 PY 2005
124123 VL 281
124124 IS 1-2
124125 BP 295
124126 EP 309
124127 PG 15
124128 SC Engineering, Mechanical; Acoustics; Mechanics
124129 GA 899AY
124130 UT ISI:000227118500015
124131 ER
124132 
124133 PT J
124134 AU Cheng, XY
124135    Wu, QY
124136    Sun, YK
124137 TI Hydrogen permeation behavior in a Fe3Al-based alloy at high temperature
124138 SO JOURNAL OF ALLOYS AND COMPOUNDS
124139 DT Article
124140 DE iron alummides; hydrogen diffusivity; activation energy; gaseous
124141    permeation technique
124142 ID IRON ALUMINIDE; DIFFUSIVITY; TRANSPORT; FEAL; EMBRITTLEMENT; NICKEL;
124143    WATER
124144 AB The hydrogen permeation behavior in a Fe3Al-based alloy, with three
124145    types of heat treatments, was investigated by an ultrahigh vacuum
124146    gaseous permeation technique at the temperature range of
124147    240-320degreesC. A well-defined second stage is observed in hydrogen
124148    permeation curves of the Fe3Al alloy superimposed on the basic curves.
124149    On the basis of optical microstructures, determined permeabilities and
124150    diffusivities, corresponding activation energies, it is suggested that
124151    the two sigmoidal curves result from the ordered B-2 phase and
124152    disordered alpha-Fe phase in the Fe3Al alloy; the first stage of
124153    permeation reflects the hydrogen transport in matrix disordered
124154    alpha-Fe phase, while the second stage reflects the hydrogen transport
124155    in ordered B-2 phase. (C) 2004 Elsevier B.V. All rights reserved.
124156 C1 Shanghai Univ, Mat Res Inst, Shanghai 200072, Peoples R China.
124157    Inst Met Sci & Technol, Shenyang 110015, Peoples R China.
124158 RP Cheng, XY, Shanghai Univ, Mat Res Inst, Shanghai 200072, Peoples R
124159    China.
124160 EM hhtxy@online.sh.cn
124161 CR BALASUBRAMANIAM R, 2002, J ALLOY COMPD, V330, P506
124162    BANERJEE P, 1997, B MATER SCI, V20, P713
124163    CHENG XY, 1998, SCRIPTA MATER, V38, P1505
124164    CHENG XY, 2001, J MATER SCI TECHNOL, V17, P841
124165    CHIU H, 1996, SCRIPTA MATER, V34, P963
124166    DEVANATHAN MAV, 1962, P ROY SOC LOND A MAT, V270, P90
124167    DOSSANTOS DS, 2003, J ALLOY COMPD, V348, P241
124168    HOSADA H, 1997, JOM, V49, P56
124169    HUANG YD, 2002, INTERMETALLICS, V10, P473
124170    KASUL DB, 1994, METALL MATER TRANS A, V25, P1285
124171    LIU CT, 1989, SCRIPTA METALL, V23, P875
124172    LUU WC, 2001, CORROS SCI, V43, P2325
124173    OKI K, 1973, JPN J APPL PHYS, V12, P1522
124174    OKI K, 1973, T JAPAN I METALS, V14, P8
124175    PALUMBO G, 1991, SCRIPTA METALL MATER, V25, P679
124176    SUN XK, 1989, ACTA METALL, V37, P217
124177    SUN XK, 1989, MAT SCI ENG A-STRUCT, V114, P179
124178    TSURU T, 1982, SCRIPTA METALL, V16, P575
124179    VOLKL J, 1978, TOP APPL PHYS, V28, P321
124180    WAN X, 1994, J MATER SCI TECHNOL, V10, P39
124181    XU J, 1993, ACTA METALL MATER, V41, P1455
124182    YANG Y, 1995, SCRIPTA METALL MATER, V32, P1719
124183    ZHU YF, 1996, SCRIPTA MATER, V35, P1435
124184 NR 23
124185 TC 0
124186 SN 0925-8388
124187 J9 J ALLOYS COMPOUNDS
124188 JI J. Alloy. Compd.
124189 PD MAR 8
124190 PY 2005
124191 VL 389
124192 IS 1-2
124193 BP 198
124194 EP 203
124195 PG 6
124196 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
124197    Metallurgical Engineering
124198 GA 901AL
124199 UT ISI:000227255300031
124200 ER
124201 
124202 PT J
124203 AU Zhang, JC
124204    Li, PL
124205    Cao, SX
124206    Cao, GX
124207    Jing, C
124208 TI Distribution of substitution clusters, change of positron lifetime and
124209    superconductivity in magnetic ion Fe and Ni doping YBa(2)Cu3O(7-delta)
124210    systems
124211 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
124212 DT Article
124213 DE YBCO high-T-c superconductor; magnetic ion substitution; positron
124214    annihilation; simulated calculations
124215 ID BA-CU-O; CUPRATE SUPERCONDUCTORS; ZN-SUBSTITUTION; COPPER OXIDES;
124216    ANNIHILATION; YBA2CU3O7-DELTA; TRANSITION; OXYGEN; DIFFRACTION;
124217    RELAXATION
124218 AB To recognize the distributional characteristics of Fe and Ni doping and
124219    the fundamental effects of magnetic ions on superconductivity, the
124220    X-ray diffraction, positron annihilation technology and simulated
124221    calculations are utilized to investigate systemically YBa2Cu3-x(Fe,
124222    Ni)(x)O7-delta (x = 0.0 similar to 0.5). The results show that Fe and
124223    Ni doping form different kinds of ion clusters and enter the crystal
124224    lattice. When occupying Cu(2) sites in the CuO2 planes, ions gather
124225    into Double Square and/or other clusters, which results in a strong
124226    electronic localization and would directly influence the pairing and
124227    transportation of carriers, so the superconductivity is suppressed
124228    dramatically. While doping ions enter the Cu(1) sites through gathering
124229    Hexamer and/or other clusters, this induces the localization of holes
124230    and weakens the function of carrier reservoir, so carriers cannot be
124231    easily transferred to the CuO2 planes. However, in this case, the
124232    pairing and transportation of carriers are not affected directly, thus
124233    the superconductivity is suppressed weakly. Besides, the present
124234    results indicate that the superconductivity suppressed has no direct
124235    correlation with the magnetism of Fe and Ni ion itself.
124236 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
124237 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
124238 CR ABRIKOSOV A, 1961, SOV PHYS JETP, V12, P1234
124239    AXNAS J, 1996, PHYS REV B, V53, R3003
124240    BANERJEE T, 2000, SOLID STATE COMMUN, V114, P655
124241    BHARATHI A, 1989, J PHYS-CONDENS MAT, V1, P1467
124242    BORDET P, 1988, SOLID STATE COMMUN, V66, P435
124243    BRANDT W, 1967, POSITRON ANNIHILATIO
124244    BRANDT W, 1971, PHYS LETT          A, V35, P109
124245    BRIDGES F, 1990, PHYS REV B, V42, P2137
124246    BRINGLEY JF, 1988, PHYS REV B, V38, P2432
124247    CAPONE M, 2002, SCIENCE, V296, P2364
124248    CHAKRABORTY B, 1989, PHYS REV B, V39, P215
124249    DEUDAYAN D, 2000, PHYS REV B, V62, P14519
124250    FRANCOIS M, 1987, SOLID STATE COMMUN, V63, P1149
124251    FUKUZUMI Y, 1996, PHYS REV LETT, V76, P684
124252    GINSBERG DM, 1990, PHYS PROPERTIES HIGH
124253    GUO SQ, 2002, CHINESE PHYS, V11, P379
124254    GUO W, 2001, CHINESE PHYS LETT, V18, P582
124255    GUPTA RP, 1998, PHYSICA C, V305, P179
124256    HAGHIGHI H, 1990, J PHYS-CONDENS MAT, V2, P1911
124257    HORLAND RS, 1989, PHYS REV B, V39, P9017
124258    ISLAM MS, 1991, PHYS REV B, V44, P9492
124259    JEAN YC, 1988, PHYS REV LETT, V60, P1069
124260    JEAN YC, 1990, PHYS REV LETT, V64, P1593
124261    JENSEN KO, 1989, J PHYS-CONDENS MAT, V1, P3727
124262    JORGENSEN JD, 1991, PHYS TODAY, V44, P34
124263    KUO YK, 1997, PHYS REV B, V56, P6201
124264    LI PC, 2002, CHINESE PHYS, V11, P282
124265    MACDONALD AH, 2001, NATURE, V414, P409
124266    NACHUMI B, 1996, PHYS REV LETT, V77, P5421
124267    NAGEL C, 1999, PHYS REV B, V60, P9212
124268    SAARINEN K, 1999, PHYS REV LETT, V82, P1883
124269    SAITOVITCH B, 1988, PHYS REV B, V37, P7697
124270    SOMOZA A, 2000, PHYS REV B, V61, P14454
124271    STAAB TEM, 1999, PHYS REV LETT, V83, P5519
124272    TAKAGI H, 2000, PHYSICA C 1, V341, P3
124273    TAMAKI T, 1988, SOLID STATE COMMUN, V65, P43
124274    TARASCON JM, 1987, PHYS REV B, V36, P8393
124275    TARASCON JM, 1988, PHYS REV B, V37, P7458
124276    VONSTETTEN EC, 1988, PHYS REV LETT, V60, P2198
124277    XIAO G, 1987, PHYS REV B, V35, P8782
124278    ZHANG HB, 1993, PHYS REV LETT, V70, P1697
124279    ZHANG JC, 1995, PHYS LETT A, V201, P70
124280    ZHANG JC, 2002, PHYS REV B, V65
124281 NR 43
124282 TC 0
124283 SN 0217-9792
124284 J9 INT J MOD PHYS B
124285 JI Int. J. Mod. Phys. B
124286 PD DEC 10
124287 PY 2004
124288 VL 18
124289 IS 30
124290 BP 3887
124291 EP 3903
124292 PG 17
124293 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
124294 GA 899JI
124295 UT ISI:000227140300002
124296 ER
124297 
124298 PT S
124299 AU Bian, JJ
124300    Gao, HB
124301    Wang, XW
124302 TI Microwave dielectric properties of A-site modified Pb(Mg1/2W1/2)O-3
124303 SO HIGH-PERFORMANCE CERAMICS III, PTS 1 AND 2
124304 SE KEY ENGINEERING MATERIALS
124305 DT Article
124306 DE antiferroelectric ceramics; microwave dielectric properties
124307 AB The sintering behavior, microstructure and microwave dielectric
124308    properties of A-site modified Pb(Mg1/2W1/2)O-3 with Ca2+, Ba2+ and La3+
124309    were investigated in this paper. It is discovered that a series of
124310    single-phase perovskite type solid solutions with A-site vacancies were
124311    formed for Pb1-3/2xLax(Mg1/2W1/2)O-3 (0 less than or equal to x less
124312    than or equal to 2/3)). The solid solution took cubic perovskite type
124313    structure (Fm3m) with random distribution of A-site vacancies when 0 <
124314    x < 0.5, and tetragonal or orthorhombic structure with the ordering of
124315    A-site vacancies when 0.5 :5 x : 2/3. However, the solid solubility of
124316    Ba(Mg1/2W1/2)O-3 and Ca(Mg1/2W1/2)O-3 in Pb(Mg1/2W1/2)O-3 is limited to
124317    15 and 5 mol%, respectively, in spite of no structural difference
124318    between the end member. It was also found that the A-site substitution
124319    with Ca2+ Ba2+ and La3+ for Pb2+ has no influences on the degree of
124320    B-site ordering between M2+ and W6+. However, the antiferroelectric T-c
124321    decreases with increase in the content of A-site substitution. The
124322    dielectric constants and temperature coefficient of resonant frequency
124323    of La3+ modified Pb(Mg1/2W1/2)O-3 are much lower than that of Ca2+ and
124324    Ba2+ modified Pb(Mg1/2W1/2)O-3, and decrease with increasing La
124325    content. However, its Qxf values is much higher than that of Ca2+ and
124326    B2+ modified Pb((MgW1/2)-W-1/2)O-3, and increase with increase in La
124327    content. Relatively good combination microwave dielectric properties
124328    were obtained for Pb1-3/2xLax(Mg1/2W1/2)O-3 with x=0.56:
124329    epsilon(r)=28.7, Qxf=18098, and tau(f)=-5.8ppm/degreesC.
124330 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R China.
124331 RP Bian, JJ, Shanghai Univ, Dept Inorgan Mat, Shanghai 201800, Peoples R
124332    China.
124333 CR BABAKISHI KZ, 1992, J APPL CRYSTALLOGR, V25, P477
124334    BALDINOZZI G, 1993, SOLID STATE COMMUN, V86, P541
124335    CHO SY, 1999, J MATER RES, V14, P114
124336    KATO J, 1992, JPN J APPL PHYS 1, V31, P3144
124337    PENN SJ, 1997, J AM CERAM SOC, V80, P1885
124338    TORII Y, 1981, MAT RES B, V16, P1153
124339    YANG JH, 1994, FERROELECTRICS, V152, P243
124340    YASUDA N, 1986, J PHYS C SOLID STATE, V19, P1055
124341 NR 8
124342 TC 0
124343 SN 1013-9826
124344 J9 KEY ENG MAT
124345 PY 2005
124346 VL 280-283
124347 PN Part 1-2
124348 BP 1
124349 EP 4
124350 PG 4
124351 GA BBQ34
124352 UT ISI:000227051400001
124353 ER
124354 
124355 PT S
124356 AU Zhao, SC
124357    Zhang, L
124358    Li, GR
124359    Zheng, LY
124360    Ding, AL
124361 TI Dielectric and piezoelectric properties of Na0.42K0.08K0.08Bi0.5TiO3
124362    and Na0.45K0.05Bi0.5TiO3 ceramics
124363 SO HIGH-PERFORMANCE CERAMICS III, PTS 1 AND 2
124364 SE KEY ENGINEERING MATERIALS
124365 DT Article
124366 DE lead-free titanates; (Na, K, Bi) TiO3; piezoelectric properties;
124367    dielectric properties
124368 ID LEAD; SYSTEM
124369 AB Na0.42KD0.08Bi0.5TiO3 and Na0.45K0.05Bi0.5TiO3 ceramics were fabricated
124370    by the solid-state reaction. The structures were determined by X-ray
124371    diffraction. Dielectric, ferroelectric and piezoelectric properties of
124372    the ceramics were measured and discussed. The ceramics have a single
124373    perovskite phase with rhombohedral. symmetry at room temperature. The
124374    thermal variations of the permittivity follow the law 1/epsilon -
124375    1/epsilon(m) = C(T - T-m)(2) which is the character of typical relax
124376    ferroelectrics, when temperature is higher than the temperature of the
124377    maximum of dielectric constant (Tm). The depolarization. temperature
124378    (T-d) of spontaneous polarization is 215degreesC for
124379    Na0.45K0.05Bi0.5TiO3 and 152degreesC for Na0.42K0.08Bi0.5TiO3
124380    respectively. There exist two different dielectric behaviors of the
124381    Na0.42K0.08Bi0.5TiO3 ceramic, without and after poling.
124382    Na0.45K0.05Bi0.5TiO3 possesses relatively high k(t) and T-d. The use
124383    device application has been indicated.
124384 C1 Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
124385    Shanghai Univ, Shanghai 200436, Peoples R China.
124386 RP Li, GR, Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples
124387    R China.
124388 EM lzz@sunm.shcnc.ac.cn
124389 CR CHU BJ, 2002, J EUR CERAM SOC, V22, P2115
124390    ELKECHAI O, 1996, PHYS STATUS SOLIDI A, V157, P499
124391    NAGATA H, 1998, JPN J APPL PHYS 1, V37, P5311
124392    SAID S, 2001, J EUR CERAM SOC, V21, P1333
124393    SUCHANICZ J, 2003, MAT SCI ENG B-SOLID, V97, P154
124394    TAKANAKA T, 1990, FERROELECTRICS, V106, P175
124395    WANG XX, 2003, SOLID STATE COMMUN, V125, P395
124396 NR 7
124397 TC 1
124398 SN 1013-9826
124399 J9 KEY ENG MAT
124400 PY 2005
124401 VL 280-283
124402 PN Part 1-2
124403 BP 251
124404 EP 254
124405 PG 4
124406 GA BBQ34
124407 UT ISI:000227051400064
124408 ER
124409 
124410 PT J
124411 AU Li, XY
124412    Leng, GS
124413 TI The mixed volume of two finite vector sets
124414 SO DISCRETE & COMPUTATIONAL GEOMETRY
124415 DT Article
124416 ID HADAMARD INEQUALITY; SINE THEOREM; SIMPLICES; BODIES; DETERMINANTS
124417 AB We introduce the concept of the mixed volume of two finite vector sets
124418    in R-n. By employing the exterior differential, we prove a new and
124419    powerful inequality and establish a series of quantity relations
124420    associated with the mixed volume of two finite vector sets. As
124421    applications, we discuss some well-known results of simplices and the
124422    Hadamard inequality.
124423 C1 Hunan Normal Univ, Dept Math, Changsha 410081, Peoples R China.
124424    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
124425 RP Li, XY, Hunan Normal Univ, Dept Math, Changsha 410081, Peoples R China.
124426 EM lixy77@sohu.com
124427    lenggangsong@163.com
124428 CR BARTOS P, 1968, CAS PEST MAT, V93, P273
124429    BLUMENTHAL LM, 1953, THEORY APPL DISTANCE
124430    DIXON JD, 1984, CANAD MATH B, V27, P260
124431    ENGLE GM, 1976, LINEAR MULTILINEAR A, V4, P155
124432    ERIKSSON F, 1978, GEOM DEDICATA, V7, P71
124433    GARDNER RJ, 1994, T AM MATH SOC, V342, P435
124434    GARDNER RJ, 1995, GEOMETRIC TOMOGRAPHY
124435    GUO R, 1997, CHEM J CHINESE U, V18, P600
124436    HORN R, 1985, MATRIX ANAL
124437    JOHNSON CR, 1974, J RES NBS, V78, P167
124438    JOHNSON CR, 1985, LINEAR MULTILINEAR A, V18, P23
124439    LENG GS, 1997, ACTA MATH SINICA, V40, P14
124440    LENG GS, 1998, LINEAR ALGEBRA APPL, V278, P237
124441    LENG GS, 2000, DISCRETE MATH, V211, P111
124442    LENG GS, 2000, J MATH ANAL APPL, V248, P429
124443    LENG GS, 2002, SIAM J MATRIX ANAL A, V23, P990
124444    LUTWAK E, 1975, PAC J MATH, V58, P531
124445    LUTWAK E, 1986, T AM MATH SOC, V294, P487
124446    LUTWAK E, 1990, P LOND MATH SOC, V60, P365
124447    PEDOE D, 1942, MATH P CAMBRIDGE PHI, V38, P397
124448    PEDOE D, 1970, AM MATH MONTHLY, V77, P711
124449    REZNIKOV AG, 1995, OPER THEORY ADV APPL, V77, P139
124450    SCHNEIDER R, 1993, CONVEX BODIES BRUNNM
124451    VELJAN D, 1995, LINEAR ALGEBRA APPL, V219, P79
124452    WOLKOWICZ H, 1980, LINEAR ALGEBRA ITS A, V29, P471
124453    YANG DH, IN PRESS GEOMETRIC R
124454    YANG L, 1983, B AUST MATH SOC, V27, P203
124455    ZHANG GY, 1994, T AM MATH SOC, V345, P777
124456    ZHANG Y, 1992, J SYSTEM SCI MATH SC, V12, P371
124457 NR 29
124458 TC 0
124459 SN 0179-5376
124460 J9 DISCRETE COMPUT GEOM
124461 JI Discret. Comput. Geom.
124462 PD MAR
124463 PY 2005
124464 VL 33
124465 IS 3
124466 BP 403
124467 EP 421
124468 PG 19
124469 SC Computer Science, Theory & Methods; Mathematics
124470 GA 899MQ
124471 UT ISI:000227148900003
124472 ER
124473 
124474 PT J
124475 AU Zheng, CL
124476    Fang, JP
124477    Chen, LQ
124478 TI Localized excitations in (2+1)-dimensions obtained by a mapping approach
124479 SO CHINESE JOURNAL OF PHYSICS
124480 DT Article
124481 ID LONG-WAVE EQUATIONS; 2 SPACE DIMENSIONS; COHERENT SOLITON-STRUCTURES;
124482    FRACTAL BEHAVIORS; SYSTEM
124483 AB With the aid of an extended mapping approach, a new type of variable
124484    separation excitation with two arbitrary functions of the
124485    (2+1)-dimensional dispersive long-water wave system is derived. Based
124486    on the derived variable separation excitation, abundant propagating and
124487    non-propagating solitons such as dromion, ring, peakon, and compacton
124488    are revealed by selecting appropriate functions.
124489 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
124490    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
124491 RP Zheng, CL, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R
124492    China.
124493 CR BOITI M, 1987, INVERSE PROBL, V3, P371
124494    BOITI M, 1988, PHYS LETT A, V132, P432
124495    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
124496    CLERC M, 1999, PHYS REV LETT, V83, P3820
124497    LARRAZA A, 1984, J FLUID M ECH, V148, P43
124498    LORENZ EN, 1963, J ATMOS SCI, V20, P130
124499    LOU S, 1993, PHYS LETT A, V176, P96
124500    LOU SY, 1989, J MATH PHYS, V30, P1614
124501    LOU SY, 1994, J PHYS A-MATH GEN, V27, P3235
124502    LOU SY, 1995, MATH METHOD APPL SCI, V18, P789
124503    LU Z, 2003, CHAOS SOLITON FRACT, V19, P527
124504    MILES JW, 1984, J FLUID MECH, V148, P443
124505    PAQUIN G, 1990, PHYSICA D, V46, P122
124506    ROSENAU P, 1993, PHYS REV LETT, V70, P564
124507    TANG XY, 2002, PHYS REV E, V66, P46601
124508    TANG XY, 2003, J MATH PHYS, V44, P4000
124509    WU J, 1984, PHYS REV LETT, V52, P1421
124510    XU YG, 1990, CHINESE PHYS LETT, V12, P7
124511    YAN JR, 1993, EUROPHYS LETT, V23, P335
124512    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
124513    ZHENG CL, 2003, CHINESE J PHYS, V41, P442
124514    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
124515    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
124516    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
124517    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
124518 NR 25
124519 TC 1
124520 SN 0577-9073
124521 J9 CHIN J PHYS
124522 JI Chin. J. Phys.
124523 PD FEB
124524 PY 2005
124525 VL 43
124526 IS 1
124527 PN Part 1
124528 BP 17
124529 EP 25
124530 PG 9
124531 SC Physics, Multidisciplinary
124532 GA 899VK
124533 UT ISI:000227173600002
124534 ER
124535 
124536 PT S
124537 AU Chen, YL
124538    Sun, J
124539 TI Mechanism of crack extension in rock
124540 SO ADVANCES IN ENGINEERING PLASTICITY AND ITS APPLICATIONS,  PTS 1 AND 2
124541 SE KEY ENGINEERING MATERIALS
124542 DT Article
124543 DE crack; initiation and propagation; sandstone; creep
124544 AB The mechanism and criterion of crack initiation and propagation of
124545    rocks were investigated by many researchers. And the creep behaviour of
124546    rocks was also theoretically and experimentally studied by some
124547    scientists and engineers. The characteristics of crack initiation and
124548    propagation of rocks under creep condition, however, are very important
124549    for rock engineering and still not paid enough attention by
124550    researchers. In this paper, the criterion and mechanism of crack
124551    initiation and propagation under creep condition were investigated
124552    using specimens collected from sandstone rock formations outcropping in
124553    Emei Mountain, the Sichuan Province of China. Cuboid specimens under
124554    three point bending were used in this investigation. All specimens were
124555    classified into four sorts and used for Mode-I fracture or creep
124556    fracture tests. The experimental result shows that due to creep
124557    deformation, rock crack will inevitably initiate and propagate under a
124558    load of K-I, which is less than fracture toughness K-IC but not less
124559    than a constant (marked as K-IC2). K-IC2 indicates the ability of rock
124560    to resist crack initiation and propagation under creep conditions and
124561    is less than fracture toughness K-IC, it is defined as creep fracture
124562    toughness in this paper. K-IC2 should be considered as an important
124563    parameter on design and computation of rock engineering.
124564 C1 Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R China.
124565    Tongji Univ, Dept Geotech Engn, Shanghai 200092, Peoples R China.
124566 RP Chen, YL, Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R
124567    China.
124568 EM chenyouliang2001@yahoo.com.cn
124569    sunjunk@online.sh.cn
124570 CR HUNSCHE ND, 1998, TIME EFFECTS ROCK ME, P1
124571    SILBERSCHMIDT VG, 2000, ROCK MECH ROCK ENG, V33, P53
124572    YUAN LW, 1984, RHEOLOGY, P74
124573 NR 3
124574 TC 0
124575 SN 1013-9826
124576 J9 KEY ENG MAT
124577 PY 2004
124578 VL 274-276
124579 BP 157
124580 EP 162
124581 PG 6
124582 GA BBQ58
124583 UT ISI:000227161500024
124584 ER
124585 
124586 PT S
124587 AU Huang, J
124588    He, JM
124589    Zhang, JQ
124590 TI Viscoplastic flow of the MR fluid in a cylindrical valve
124591 SO ADVANCES IN ENGINEERING PLASTICITY AND ITS APPLICATIONS,  PTS 1 AND 2
124592 SE KEY ENGINEERING MATERIALS
124593 DT Article
124594 DE MR fluids; MR valve; viscoplastic flow; yield stress
124595 AB Bingham viscoplastic model is used to describe the constitutive
124596    behavior of Magnetorheological (MR) fluids subject to an applied
124597    magnetic field. Based on Navier-Stokes' equation, a theoretical
124598    analysis of the effect of the applied magnetic field on the
124599    viscoplastic flow in a cylindrical valve is presented. The expressions
124600    for the velocity in viscoplastic flow are derived. The results indicate
124601    that the volumetric flow rate can be continuously adjusted by an
124602    external magnetic field. With the increase of the applied magnetic
124603    field the yield boundary gets closer to the two cylindrical surfaces,
124604    and the restriction of flow is increased.
124605 C1 Chongqing Inst Technol, Sch Vehicle Engn, Chongqing 400050, Peoples R China.
124606    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
124607 RP Huang, J, Chongqing Inst Technol, Sch Vehicle Engn, Chongqing 400050,
124608    Peoples R China.
124609 EM jhuangcq@sohu.com
124610    hjm@cqit.edu.cn
124611    jqzhang@mail.shu.edu.cn
124612 CR ASHOUR O, 1996, J INTEL MAT SYST STR, V7, P123
124613    CARLSON JD, 1996, P 5 INT C ER FLUIDS, P20
124614    HUANG J, 2002, J MATER PROCESS TECH, V129, P552
124615    PINKUS O, 1980, THEORY HYDRODYNAMIC
124616 NR 4
124617 TC 0
124618 SN 1013-9826
124619 J9 KEY ENG MAT
124620 PY 2004
124621 VL 274-276
124622 BP 969
124623 EP 974
124624 PG 6
124625 GA BBQ58
124626 UT ISI:000227161500160
124627 ER
124628 
124629 PT J
124630 AU Li, L
124631    Wu, QS
124632    Ding, YP
124633    Li, P
124634 TI Simultaneously inducing synthesis of semiconductor selenium multi-armed
124635    nanorods and nanobars through bio-membrane bi-templates
124636 SO SCIENCE IN CHINA SERIES B-CHEMISTRY
124637 DT Article
124638 DE selenium; multi-armed nanorods; nanobars; bio-membrane; bi-templates
124639 ID NANOWIRES; NANOPARTICLES
124640 AB Multi-armed nanorods and nanobars of semiconductor selenium were
124641    simultaneously synthesized in the light of biomineralization process
124642    through bio-membrane bi-templates of rush at room temperature. The
124643    multi-armed nanorods are 60 nm in diameter and 1.5 mum in length; the
124644    nanobars are 150 nm in diameter and 1000-1100 nm in length. The XRD
124645    pattern indicates that these nanocrystals were crystallized in the
124646    hexagonal structure with lattice constants a 0.437 nm, c = 0.495 nm.
124647    The possible formation mechanism was investigated.
124648 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
124649    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
124650    Anhui Agr Univ, Dept Food, Hefei 230036, Peoples R China.
124651 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
124652 EM qswu@mail.tongji.edu.cn
124653 CR ABDELOUAS A, 2000, CHEM MATER, V12, P1510
124654    BAEUERLEIN E, 2003, ANGEW CHEM INT EDIT, V42, P614
124655    BEHRENS S, 2002, ADV MATER, V14, P1621
124656    COLVIN VL, 1992, J AM CHEM SOC, V114, P5221
124657    FRANKLIN K, 2001, J AM CHEM SOC, V123, P4360
124658    GATES B, 2000, J AM CHEM SOC, V122, P12582
124659    LI M, 1999, NATURE, V402, P393
124660    LI YD, 1999, INORG CHEM, V38, P4737
124661    LI Z, 2003, ANGEW CHEM INT EDIT, V42, P2306
124662    MANN S, 1995, J MATER CHEM, V5, P935
124663    PRIYABRATA M, 2001, ANGEW CHEM INT EDIT, V40, P3585
124664    RAO CNR, 2001, APPL PHYS LETT, V78, P1853
124665    WANG LJ, 1999, PROGR CHEM, V11, P119
124666    WU QS, 2000, CHEM J CHINESE U, V211, P1471
124667    XIA YN, 2003, ADV MATER, V15, P353
124668    XUN Y, 2003, J AM CHEM SOC, V125, P8094
124669 NR 16
124670 TC 0
124671 SN 1006-9291
124672 J9 SCI CHINA SER B
124673 JI Sci. China Ser. B-Chem.
124674 PD DEC
124675 PY 2004
124676 VL 47
124677 IS 6
124678 BP 507
124679 EP 511
124680 PG 5
124681 SC Chemistry, Multidisciplinary
124682 GA 897YD
124683 UT ISI:000227041900007
124684 ER
124685 
124686 PT J
124687 AU Wang, W
124688    Zhang, LS
124689    Xu, YF
124690 TI A revised conjugate gradient projection algorithm for inequality
124691    constrained optimizations
124692 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
124693 DT Article
124694 DE constrained optimization; conjugate gradient projection; revised
124695    direction; superlinear convergence
124696 ID SUPERLINEARLY CONVERGENT ALGORITHM; QP-FREE
124697 AB A revised conjugate gradient projection method for nonlinear inequality
124698    constrained optimization problems is proposed in the paper, since the
124699    search direction is the combination of the conjugate projection
124700    gradient and the quasi-Newton direction. It has two merits. The one is
124701    that the amount of computation is lower because the gradient matrix
124702    only needs to be computed one time at each iteration. The other is that
124703    the algorithm is of global convergence and locally superlinear
124704    convergence without strict complementary condition under some mild
124705    assumptions. In addition the search direction is explicit.
124706 C1 Tongji Univ, Dept Appl Math, Shanghai 200092, Peoples R China.
124707    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
124708    Fudan Univ, Sch Management, Shanghai 200433, Peoples R China.
124709 RP Wang, W, Tongji Univ, Dept Appl Math, Shanghai 200092, Peoples R China.
124710 CR BONNANS JF, 1995, SIAM J OPTIMIZ, V54, P792
124711    FACCHINEI F, 1995, J OPTIMIZ THEORY APP, V85, P265
124712    GAO ZY, 1997, SCI CHINA SER A, V27, P24
124713    HAN SP, 1976, MATHEMATICAL PROGRAM, V11, P263
124714    KLEIMMICHEL H, 1988, P 20 JAHR MATH OPT H, P53
124715    KLEINMICHEL H, 1992, J OPTIMIZ THEORY APP, V73, P465
124716    MAYNE DQ, 1982, MATH PROGRAM STUD, V16, P45
124717    POWELL MJD, 1978, NONLINEAR PROGRAMMIN, V3, P27
124718    PU DG, 2004, J COMPUT MATH, V22, P651
124719    SCHITTKOWSKI K, 1987, MORE TEST EXAMPLES N
124720    XU YF, 1998, THESIS CHINESE ACAD
124721    XU YF, 2001, ACTA MATH SCI, V21, P121
124722    YUAN Y, 2003, J COMPUT MATH, V21, P71
124723    ZHANG D, 2002, BIOGERONTOLOGY, V3, P61
124724 NR 14
124725 TC 0
124726 SN 0254-9409
124727 J9 J COMPUT MATH
124728 JI J. Comput. Math.
124729 PD MAR
124730 PY 2005
124731 VL 23
124732 IS 2
124733 BP 217
124734 EP 224
124735 PG 8
124736 SC Mathematics, Applied; Mathematics
124737 GA 898QP
124738 UT ISI:000227091600010
124739 ER
124740 
124741 PT J
124742 AU Wang, ZH
124743    Xu, S
124744 TI Analytic calculation of absorption efficiency for double-clad fibers
124745    using modal method
124746 SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES &
124747    REVIEW PAPERS
124748 DT Article
124749 DE pump absorption; double-clad fibers; modal method
124750 AB The absorption efficiency for circular or offset double-clad optical
124751    fibers is investigated with modal analysis method. First, calculate the
124752    number of all the propagating modes approximately using WKB method and
124753    derive the analytic formulas for calculating the number of propagating
124754    modes that can't be absorbed by active core. Then the absorption
124755    efficiency can be obtained analytically. Comparison of modal method
124756    with the ray optics method is made and the condition of using both
124757    methods is also discussed.
124758 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
124759 RP Wang, ZH, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
124760    Peoples R China.
124761 CR CHERNIKOV SV, 1997, OPT LETT, V22, P298
124762    DOYA V, 2001, OPT LETT, V26, P372
124763    GLOGE D, 1975, IEEE T           MTT, V23, P106
124764    LIU AP, 1996, OPT COMMUN, V132, P511
124765    MARCUSE D, 1974, THEORY DIELECTIC OPT
124766    MUENDEL MH, 1996, CLEO 96, P209
124767    WANG ZH, 2003, MICROW OPT TECHN LET, V37, P111
124768 NR 7
124769 TC 0
124770 SN 0021-4922
124771 J9 JPN J APPL PHYS PT 1
124772 JI Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap.
124773 PD JAN
124774 PY 2005
124775 VL 44
124776 IS 1A
124777 BP 174
124778 EP 176
124779 PG 3
124780 SC Physics, Applied
124781 GA 897IF
124782 UT ISI:000226996600036
124783 ER
124784 
124785 PT J
124786 AU Xia, TC
124787    Yu, FJ
124788    Chen, DG
124789 TI The multi-component generalized Wadati-Konono-Ichikawa (WKI) hierarchy
124790    and its multi-component integrable couplings system with two arbitrary
124791    functions
124792 SO CHAOS SOLITONS & FRACTALS
124793 DT Article
124794 ID COUPLED BURGERS HIERARCHY; BI-HAMILTONIAN STRUCTURE; SOLITON-EQUATIONS;
124795    TRANSFORMATION; EVOLUTION
124796 AB A new simple loop algebra (G) over tilde (M) is constructed, which is
124797    devoted to establishing an isospectral problem. By making use of Tu
124798    scheme, the multi-component WKI hierarchy is obtained. Furthermore, an
124799    expanding loop algebra (F) over tilde (M) of the loop algebra (G) over
124800    tilde (M) is presented. Based on (F) over tilde (M), the
124801    multi-component integrable couplings system with two arbitrary
124802    functions of the multi-component WKI hierarchy is worked out. How to
124803    design the isospectral problem of the multi-component hierarchy of
124804    equations is a technique and interesting topic. The method can be
124805    applied to other nonlinear evolution equations hierarchy. (C) 2004
124806    Elsevier Ltd. All rights reserved.
124807 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
124808    Shanghai Univ, Dept Math, Jinzhou 200436, Peoples R China.
124809 RP Xia, TC, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
124810 EM xiatc@yahoo.com.cn
124811    yufajun888@163.com
124812 CR ALBOWITZ MJ, 1991, SOLITONS NONLINEAR E
124813    FAN E, 2001, PHYSICA A, V301, P105
124814    FAN EG, 2000, J MATH PHYS, V41, P7769
124815    GUO F, 2002, J SYS SCI MATH SCI, V22, P36
124816    GUO FK, 2000, ACTA MATH APPL SIN, V23, P181
124817    GUO FK, 2003, J MATH PHYS, V44, P5793
124818    HIANG X, 2003, CHAOS SOLITON FRACT, V15, P475
124819    MA WX, 2002, CHINESE ANN MATH B, V23, P373
124820    NEWELL AC, 1985, SOLITON MATH PHYS
124821    TSUCHIDA T, 1999, J PHYS SOC JPN, V68, P2241
124822    TSUCHIDA T, 1999, PHYS LETT A, V257, P53
124823    TU GZ, 1989, ACTA MATH APPL SINIC, V5, P89
124824    TU GZ, 1989, J MATH PHYS, V30, P330
124825    WADATI M, 1972, J PHYS SOC JPN, V32, P1681
124826    WADATI M, 1973, J PHYS SOC JPN, V34, P1289
124827    WADATI M, 1975, PROG THEOR PHYS, V53, P419
124828    XIA TC, 2004, CHAOS SOLITON FRACT, V22, P939
124829    XIA TC, 2004, COMMUN THEOR PHYS, V42, P180
124830    XIA TC, 2004, COMMUN THEOR PHYS, V42, P494
124831    XIA TC, 2004, PHYSICA A, V343, P238
124832    XIA TC, 2005, CHAOS SOLITON FRACT, V23, P1033
124833    XIA TC, 2005, CHAOS SOLITON FRACT, V23, P1163
124834    XIA TC, 2005, CHAOS SOLITON FRACT, V23, P1911
124835    XIA TC, 2005, CHAOS SOLITON FRACT, V23, P451
124836    ZHANG DJ, 2002, J PHYS A-MATH GEN, V35, P7225
124837    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P305
124838 NR 26
124839 TC 0
124840 SN 0960-0779
124841 J9 CHAOS SOLITON FRACTAL
124842 JI Chaos Solitons Fractals
124843 PD MAY
124844 PY 2005
124845 VL 24
124846 IS 3
124847 BP 877
124848 EP 883
124849 PG 7
124850 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
124851 GA 897TD
124852 UT ISI:000227027200019
124853 ER
124854 
124855 PT J
124856 AU Zhang, NH
124857    Chen, LQ
124858 TI Nonlinear dynamical analysis of axially moving viscoelastic strings
124859 SO CHAOS SOLITONS & FRACTALS
124860 DT Article
124861 ID CHAOTIC RESPONSE; VIBRATION; BIFURCATION; WEB
124862 AB In this paper, nonlinear dynamical behaviors of axially moving
124863    viscoelastic strings are investigated. The one-term and the two-term
124864    Galerkin truncations using translating string eigenfunctions are
124865    respectively employed to reduce the partial-differential equation that
124866    governs the transverse motions of the string to a set of ordinary
124867    differential equations. The bifurcation diagrams are presented in the
124868    case that the amplitude of the periodic perturbation, or the dynamic
124869    viscosity is respectively varied while other parameters are fixed. The
124870    dynamical behaviors are numerically identified based on the Poincare
124871    maps. Numerical results show that regular and chaotic motions occur in
124872    the transverse vibration of the axially moving viscoelastic strings.
124873    (C) 2004 Elsevier Ltd. All rights reserved.
124874 C1 Shanghai Univ, Coll Sci, Dept Mech, Shanghai 200436, Peoples R China.
124875    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
124876 RP Chen, LQ, Shanghai Univ, Coll Sci, Dept Mech, Shanghai 200436, Peoples
124877    R China.
124878 EM lqchen@online.sh.cn
124879 CR CHEN LQ, IN PRESS ASME APPL M
124880    CHEN LQ, 2002, MECH RES COMMUN, V29, P81
124881    CHEN LQ, 2003, J SOUND VIB, V261, P764
124882    CHEN LQ, 2004, CHAOS SOLITON FRACT, V21, P349
124883    CHEN LQ, 2004, NONLINEAR DYNAM, V35, P347
124884    MARYNOWSKI K, 2002, INT J NONLINEAR MECH, V37, P1147
124885    MARYNOWSKI K, 2002, J THEORET APPL MECH, V40, P465
124886    MARYNOWSKI K, 2004, CHAOS SOLITON FRACT, V21, P481
124887    PELLICANO F, 2002, J SOUND VIB, V258, P31
124888    RAVINDRA B, 1998, ARCH APPL MECH, V68, P195
124889    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
124890    WICKERT JA, 1990, J APPL MECH-T ASME, V57, P738
124891    YANG XD, 2005, CHAOS SOLITON FRACT, V23, P249
124892    ZHANG L, 1999, J APPL MECH-T ASME, V66, P396
124893 NR 14
124894 TC 1
124895 SN 0960-0779
124896 J9 CHAOS SOLITON FRACTAL
124897 JI Chaos Solitons Fractals
124898 PD MAY
124899 PY 2005
124900 VL 24
124901 IS 4
124902 BP 1065
124903 EP 1074
124904 PG 10
124905 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
124906 GA 899CO
124907 UT ISI:000227122700015
124908 ER
124909 
124910 PT J
124911 AU Cao, GX
124912    Zhang, JC
124913    Cao, SX
124914    Jing, C
124915    Shen, XC
124916 TI Magnetization step and spin reorientation in Pr5/8Ca3/8MnO3 manganites
124917 SO APPLIED PHYSICS LETTERS
124918 DT Article
124919 ID COLOSSAL MAGNETORESISTANCE; DOPED MANGANITES; DOUBLE EXCHANGE; CHARGE;
124920    FIELD; TRANSITIONS
124921 AB The structural, magnetic, and transport properties of Pr5/8Ca3/8MnO3
124922    single crystals with a phase-separated characteristic were
124923    systematically studied. One steplike charge-ordered
124924    antiferromagnetic-ferromagnetic transition was found below 60 K when a
124925    magnetic field of only several teslas was applied, and the step in the
124926    M-H curve became ultrasharp below 4.2 K. Here, the given charge/orbital
124927    ordering and spin structure indicated that the energy difference
124928    between ferromagnetic and charge ordering was small for Pr5/8Ca3/8MnO3.
124929    According to the model of spin and orbital coupling, the steps should
124930    be the result of spin reorientation under the magnetic field. Above 10
124931    K, however, the step was not sharp, which was caused by thermal
124932    fluctuation and then affects the fluctuation rate of orbit. (C) 2005
124933    American Institute of Physics.
124934 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
124935 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
124936 EM jczhang@staff.shu.edu.cn
124937 CR ANDERSON PW, 1955, PHYS REV, V100, P675
124938    COX DE, 1998, PHYS REV B, V57, P3305
124939    DEAC IG, 2001, PHYS REV B, V63
124940    DEGENNES PG, 1960, PHYS REV, V118, P141
124941    DESSAU DS, 1999, COLOSSAL MAGNETORESI
124942    FRONTERA C, 2000, PHYS REV B, V62, P3381
124943    HARDY V, 2004, PHYS REV B, V69
124944    HEBERT S, 2002, J SOLID STATE CHEM, V165, P6
124945    HEBERT S, 2002, SOLID STATE COMMUN, V122, P335
124946    HOTTA T, 2000, PHYS REV B, V61, P11879
124947    KILIAN R, 1999, PHYS REV B, V60, P13458
124948    KOSHIBAE W, 1997, J PHYS SOC JPN, V66, P2985
124949    MAIGNAN A, 2002, J PHYS-CONDENS MAT, V14, P11809
124950    MILLIS AJ, 1996, PHYS REV LETT, V77, P175
124951    TOKUNAGA M, 1998, PHYS REV B, V57, P5259
124952    UEHARA M, 1999, NATURE, V399, P560
124953    VANDENBRINK J, 1999, PHYS REV LETT, V83, P5118
124954 NR 17
124955 TC 2
124956 SN 0003-6951
124957 J9 APPL PHYS LETT
124958 JI Appl. Phys. Lett.
124959 PD JAN 24
124960 PY 2005
124961 VL 86
124962 IS 4
124963 AR 042507
124964 DI ARTN 042507
124965 PG 3
124966 SC Physics, Applied
124967 GA 894AE
124968 UT ISI:000226761400052
124969 ER
124970 
124971 PT J
124972 AU Weng, XC
124973    Wu, H
124974    Ho, CT
124975 TI Potential use of spermine as a novel antioxidant
124976 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
124977 DT Meeting Abstract
124978 C1 Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China.
124979    Rutgers State Univ, Dept Food Sci, New Brunswick, NJ 08901 USA.
124980 EM weng_xinchu@sina.com
124981    houwu@eden.rutgers.edu
124982 NR 0
124983 TC 0
124984 SN 0065-7727
124985 J9 ABSTR PAP AMER CHEM SOC
124986 JI Abstr. Pap. Am. Chem. Soc.
124987 PD AUG 22
124988 PY 2004
124989 VL 228
124990 PN Part 1
124991 BP U59
124992 EP U59
124993 PG 1
124994 SC Chemistry, Multidisciplinary
124995 GA 851UZ
124996 UT ISI:000223712800205
124997 ER
124998 
124999 PT J
125000 AU Zhang, FW
125001    Zhang, QR
125002    Sun, YY
125003    Tao, K
125004 TI Influence in the absorption spectrum of PbWO4 crystal by K+ doping
125005 SO PHYSICA B-CONDENSED MATTER
125006 DT Article
125007 DE PWO; doping; computer simulation; GULP
125008 ID SINGLE-CRYSTALS; SIMULATION
125009 AB The positions of the impurity K ion in the crystal are simulated by
125010    computer technology. The various kinds of defects corresponding in the
125011    K:PbWO4 are calculated. The defect chemistry and the defect reactions
125012    with the different impurity concentration doping PWO crystal have been
125013    studied. The origin of the decrease of the 350nm absorption band of
125014    K:PbWO4 under low concentration is discussed, and the previous
125015    experimental results recur by computer simulation. The calculated
125016    results show that the 420 nm absorption band will be eliminated and the
125017    property of the light-induced refractive will be enhanced under the
125018    condition of heavily doped K:PbWO4. (C) 2004 Elsevier B.V. All rights
125019    reserved.
125020 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
125021 RP Zhang, FW, Shanghai Univ Sci & Technol, Coll Sci, Box 251,516 Jungong
125022    Rd, Shanghai 200093, Peoples R China.
125023 EM feiwu80@hotmail.com
125024 CR *ECAL CMS, 1997, TECHN DES REP EL CAL, P97
125025    ANNENKOV AN, 1998, CMS NOTE, P41
125026    BUSH TS, 1994, J MATER CHEM, V4, P831
125027    CATLOW CRA, 1989, J CHEM SOC FARAD T 2, V85, P335
125028    FANG SG, 1989, PHYS COLOUR CTR CRYS
125029    FEIWU Z, 2004, J U SHANGHAI SCI TEC, V26, P9
125030    GALE JD, 1996, GEN UTILITY LATTICE
125031    GALE JD, 1996, PHILOS MAG B, V73, P3
125032    GALE JD, 1997, J CHEM SOC FARADAY T, V93, P629
125033    HUANG YL, 2003, SOLID STATE COMMUN, V127, P1
125034    KOBAYASHI M, 1997, NUCL INSTRUM METH A, V399, P261
125035    KROGER FA, 1948, SOME ASPECTS LUMINES
125036    LECOQ P, 1995, NUCL INSTRUM METH A, V365, P291
125037    LIDUARD AB, 1989, J CHEM SOC F2, P341
125038    LIN Q, 2001, PRB, V63
125039    LIN QS, 2003, J PHYS-CONDENS MAT, V15, P1963
125040    MOREAU JM, 1996, J ALLOY COMPD, V238, P46
125041    MOTT NF, 1938, T FARADAY SOC, V34, P485
125042    NIKL M, 1996, PHYS STATUS SOLIDI B, V196, K7
125043    NIKL M, 1997, APPL PHYS LETT, V71, P3755
125044    NIKL M, 1997, J APPL PHYS, V82, P5758
125045    QIREN Z, 2004, CHINESE PHYS LETT, V21, P1131
125046    ZHANG Q, 2003, PRB, V68
125047 NR 23
125048 TC 2
125049 SN 0921-4526
125050 J9 PHYSICA B
125051 JI Physica B
125052 PD JAN 31
125053 PY 2005
125054 VL 355
125055 IS 1-4
125056 BP 427
125057 EP 431
125058 PG 5
125059 SC Physics, Condensed Matter
125060 GA 893QC
125061 UT ISI:000226733300055
125062 ER
125063 
125064 PT J
125065 AU Li, H
125066    An, BL
125067    Pan, QY
125068    Wang, YF
125069    Cheng, ZX
125070    Dong, XW
125071 TI Bright red luminescence from novel europium complex sensitized by
125072    dibenzamide
125073 SO JOURNAL OF RARE EARTHS
125074 DT Article
125075 DE dibenzamide; europium organic complex; luminescence; charge transfer;
125076    rare earths
125077 AB A novel europium complex, bi(dibenzamide) benzoate europium (III)
125078    (Eu-DBA-B), was. synthesized. The composition and photoluminescence
125079    properties of Eu-DBA-B were investigated. The results show that the
125080    europium complex is an electroneutral complex, and it emits very strong
125081    red luminescence from D-5(1)-->F-7(j) (j = 0, 1, 2, 3, 4) transitions.
125082 C1 Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200436, Peoples R China.
125083 RP An, BL, Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200436, Peoples R
125084    China.
125085 EM anbaolii@263.sina.com
125086 CR AN BL, 2002, J LUMIN, V99, P155
125087    ANBAOLI, 2004, CHEM PHYS LETT, V390, P345
125088    ARNAUD N, 2003, SPECTROCHIM ACTA A, V59, P1829
125089    FRIEND RH, 1999, NATURE, V397, P121
125090    KIDO J, 2002, CHEM REV, V102, P2357
125091    MELBY LR, 1964, J AM CHEM SOC, V86, P5117
125092    MOYNAGH J, 1999, NATURE, V400, P105
125093    PARK W, 2000, MAT SCI ENG B-SOLID, V78, P28
125094    PETER KHH, 1999, SCIENCE, V285, P233
125095    SADE GF, 2000, COORDIN CHEM REV, V196, P165
125096    SANO T, 2000, J MATER CHEM, V10, P157
125097    SHI HH, 1994, J ALLOY COMPD, V207, P29
125098    SLOOFF LH, 2000, OPT MATER, V14, P101
125099    TITHERLEY AW, 1904, J CHEM SOC 2, V85, P1673
125100 NR 14
125101 TC 0
125102 SN 1002-0721
125103 J9 J RARE EARTH
125104 JI J. Rare Earths
125105 PD DEC
125106 PY 2004
125107 VL 22
125108 SU Suppl. S
125109 BP 76
125110 EP 79
125111 PG 4
125112 SC Chemistry, Applied
125113 GA 894RE
125114 UT ISI:000226808500017
125115 ER
125116 
125117 PT J
125118 AU Xing, CH
125119    Zhai, QJ
125120 TI Heat transfer characteristic of molten pool for twin-roll strip casting
125121 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
125122 DT Article
125123 DE body-fitted coordinate; twin-roll strip casting; heat transfer; molten
125124    pool; temperature field
125125 ID FLOW
125126 AB Body-fitted coordinate transformation equation was deduced and used to
125127    generate the body-fitted grids of molten pool for twin-roll strip
125128    casting. The orthogonality of the grids on the boundary was modified by
125129    adjusting source item. The energy equation and the boundary conditions
125130    were transformed from physical space to computational space. The
125131    velocity field model proposed by Hirohiko Takuda was used to calculate
125132    the temperature field of molten steel, and the influence of technical
125133    factors was also discussed.
125134 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
125135 RP Xing, CH, Shanghai Univ, Shanghai 200072, Peoples R China.
125136 CR ABOUTALEBI MR, 1994, STEEL RES, V65, P225
125137    JIN ZM, 1998, ENERGY METALLURGICAL, V17, P34
125138    MIAO YC, 2000, STEEL ROLLING, V17, P11
125139    MIETTINEN J, 1997, METALL MATER TRANS B, V28, P281
125140    NAM H, 2000, ISIJ INT, V40, P886
125141    PATANKAR SV, 1980, NUMERICAL HEAT TRANS
125142    SHUAI SJ, 1997, J HUAZHONG U SCI TEC, V25, P69
125143    STREZOV L, 1998, ISIJ INT, V38, P959
125144    TAKUDA H, 1990, STEEL RES, V61, P312
125145    THOMAS PD, 1980, AIAA J, V18, P652
125146    THOMPSON JF, 1974, J COMPUT PHYS, V15, P299
125147    THOMPSON JF, 1982, NUMERICAL GRID GENER
125148    YANG HL, 1998, METALL MATER TRANS B, V29, P1345
125149 NR 13
125150 TC 0
125151 SN 1006-706X
125152 J9 J IRON STEEL RES INT
125153 JI J. Iron Steel Res. Int.
125154 PD NOV
125155 PY 2004
125156 VL 11
125157 IS 6
125158 BP 14
125159 EP 19
125160 PG 6
125161 SC Metallurgy & Metallurgical Engineering
125162 GA 894IT
125163 UT ISI:000226785400004
125164 ER
125165 
125166 PT J
125167 AU Fan, JH
125168    Chen, Y
125169    Li, RX
125170    Zhai, QJ
125171 TI Effects of pulse current on solidification structure of austenitic
125172    stainless steel
125173 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
125174 DT Article
125175 DE pulse current; austenitic stainless steel; solidification structure
125176 AB The 1Cr18Ni9Ti specimens were treated respectively with pulse current
125177    under 520 V and 2 600 V during solidification and the solidification
125178    structure was observed. The results showed that pulse current can
125179    refine solidification grains, cut primary dentrities remarkably and
125180    reduce second dentritic arm spacing. The mechanism and effect are
125181    changed with operation parameters.
125182 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
125183    Hebei Univ Sci & Technol, Shijiazhuang 050054, Peoples R China.
125184 RP Fan, JH, Shanghai Univ, Shanghai 200072, Peoples R China.
125185 CR BARNAK JP, 1995, SCRIPTA METALL MATER, V32, P879
125186    NAKADA M, 1990, ISIJ INT, V30, P27
125187    WANG JZ, 1998, RES TREATING TECHNOL
125188    YAN HC, 1997, ACTA METALL SIN, V33, P352
125189    ZI BT, 2000, SPECIAL CASTING NONF, P4
125190 NR 5
125191 TC 0
125192 SN 1006-706X
125193 J9 J IRON STEEL RES INT
125194 JI J. Iron Steel Res. Int.
125195 PD NOV
125196 PY 2004
125197 VL 11
125198 IS 6
125199 BP 37
125200 EP 39
125201 PG 3
125202 SC Metallurgy & Metallurgical Engineering
125203 GA 894IT
125204 UT ISI:000226785400009
125205 ER
125206 
125207 PT J
125208 AU Liu, TY
125209    Zhang, QR
125210    Zhuang, SL
125211 TI Study on the optical polarized properties for the PbWO4 crystal with a
125212    pair of V-Pb(2-)-V-O(2+)
125213 SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA
125214 DT Article
125215 DE PbWO4; electronic structure; optical properties; a pair of
125216    V-Pb(2-)-V-O(2+)
125217 ID LEAD TUNGSTATE CRYSTALS; ABSORPTION; ORIGIN; BAND
125218 AB The electronic structures, dielectric function, complex refractive
125219    index and absorption spectra of both the perfect PbWO4 Crystal and the
125220    crystal containing a pair of V-Pb(2-) -V-O(2+) have been calculated
125221    using LAPW + lo method with the lattice structure optimized. The
125222    results indicate that the optical properties of the PWO crystal exhibit
125223    anisotropy and its optical symmetry coincides with lattice structure
125224    geometry of the PWO crystal. The absorption spectrum of the PWO crystal
125225    containing a pair of V-Pb(2+)-V-O(2+) also does not occur in the
125226    visible and near-ultraviolet range. It reveals that the existence of
125227    the pair of V-Pb(2+)-V-O(2+) in PWO crystal has no visible effects on
125228    the optical properties of the PWO crystal. (C) 2004 Elsevier B.V. All
125229    rights reserved.
125230 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
125231 RP Liu, TY, Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
125232 EM liutyyxj@163.com
125233 CR ABRAHAM Y, 2000, PHYS REV B, V62, P3
125234    ABRAHAM YB, 2001, PHYS REV, V6424, P5109
125235    ANNENKOV A, 1998, PHYS STATUS SOLIDI A, V170, P47
125236    EPELBAUM BM, 1997, J CRYST GROWTH, V178, P426
125237    FENG XQ, 1997, J INORGANIC MAT, V12, P449
125238    GOUBIN F, 2004, J SOLID STATE CHEM, V177, P89
125239    GRIGORJEVA L, 2000, NUCL INSTRUM METH B, V166, P329
125240    KORZHIK MV, 1996, P INT C IN SCINT THE, P241
125241    LIAO JY, 1997, J INORGANIC MAT, V12, P286
125242    LIN QS, 2000, PHYS STATUS SOLIDI A, P181
125243    LIU T, UNPUB CHIN PHYS LETT
125244    LIU TY, 2004, CHINESE PHYS LETT, V21, P596
125245    LIU TY, 2004, SOLID STATE COMMUN, V132, P169
125246    MOREAU JM, 1996, J ALLOY COMPD, V238, P46
125247    MOREAU JM, 1999, J ALLOY COMPD, V284, P104
125248    NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311
125249    SHAO M, 2001, HIGH ENERG PHYS NUC, V25, P1
125250    SHARMA S, 1999, PHYS REV B, V60, P12
125251    ZHANG QR, 2003, PHYS REV B, V68
125252    ZHANG QR, 2004, CHINESE PHYS LETT, V21, P1131
125253    ZHANG Y, 1998, PHYS REV B, V57, P12738
125254 NR 21
125255 TC 2
125256 SN 0368-2048
125257 J9 J ELECTRON SPECTROSC RELAT PH
125258 JI J. Electron Spectrosc. Relat. Phenom.
125259 PD FEB
125260 PY 2005
125261 VL 142
125262 IS 2
125263 BP 139
125264 EP 143
125265 PG 5
125266 SC Spectroscopy
125267 GA 894AW
125268 UT ISI:000226763200008
125269 ER
125270 
125271 PT J
125272 AU Wang, X
125273    Zhang, JQ
125274    Guo, XM
125275 TI Two circular inclusions with inhomogeneously imperfect interfaces in
125276    plane elasticity
125277 SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
125278 DT Article
125279 DE two circular inclusions; imperfect interface; complex variable
125280    techniques
125281 ID BOUNDARY INTEGRAL METHOD; ARRAY FIBER COMPOSITES; ELLIPTIC INCLUSION;
125282    ANTIPLANE SHEAR; STRESS-ANALYSIS; FIELD
125283 AB This paper is concerned with the problem of two circular inclusions
125284    with circumferentially inhomogeneously imperfect interfaces embedded in
125285    an infinite matrix in plane elastostatics. Infinite series form
125286    solutions to this problem are derived by applying complex variable
125287    techniques. The numerical results demonstrate that the interface
125288    imperfection, interface inhomogeneity, and interaction among
125289    neighboring inclusions (fibers) will exert a significant influence on
125290    the stresses along the interfaces and average stresses within the
125291    inclusions. (C) 2004 Elsevier Ltd. All rights reserved.
125292 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
125293 RP Wang, X, Shanghai Univ, Shanghai Inst Appl Math & Mech, Yanchang Rd,
125294    Shanghai 200072, Peoples R China.
125295 EM xuwang@staff.shu.edu.cn
125296 CR ACHENBACH JD, 1990, J APPL MECH-T ASME, V57, P956
125297    BIGONI D, 1998, INT J SOLIDS STRUCT, V35, P3239
125298    CAO WJ, 1988, CONFORMAL MAPPING TH
125299    CHEN TY, 2001, INT J SOLIDS STRUCT, V38, P3081
125300    DVORAK GJ, 2001, J MECH PHYS SOLIDS, V49, P2517
125301    ENGLAND AH, 1971, COMPLEX VARIABLE MET
125302    GAO Z, 1995, ASME, V62, P860
125303    GULRAJANI SN, 1993, INT J SOLIDS STRUCT, V30, P2009
125304    KANAUN SK, 2001, J MECH PHYS SOLIDS, V49, P2339
125305    KATTIS MA, 1998, THEOR APPL FRACT MEC, V28, P213
125306    KOURIS D, 1993, J APPL MECH-T ASME, V60, P203
125307    LIU Y, 2001, INT J ENG SCI, V39, P2033
125308    MOGILEVSKAYA SG, 2002, INT J SOLIDS STRUCT, V39, P4723
125309    MOGILEVSKAYA SG, 2004, INT J SOLIDS STRUCT, V41, P1285
125310    MUSKHELISHVILI NI, 1953, SOME BASIC PROBLEMS
125311    PAN LY, 1998, COMPUT STRUCT, V66, P685
125312    RU CQ, 1997, P ROY SOC LOND A MAT, V453, P2551
125313    RU CQ, 1998, ASME, V65, P30
125314    SHEN H, 2001, INT J SOLIDS STRUCT, V38, P7587
125315    SHEN H, 2001, J ELASTICITY, V62, P25
125316    SUDAK LJ, 1999, J ELASTICITY, V55, P19
125317    TONG J, 2001, ACTA MECH, V146, P127
125318    WANG X, 2001, ACTA MECH SINICA, V33, P639
125319    WANG X, 2002, ACTA MECH, V158, P67
125320    ZHONG Z, 1997, J ELASTICITY, V46, P91
125321 NR 25
125322 TC 0
125323 SN 0020-7683
125324 J9 INT J SOLIDS STRUCT
125325 JI Int. J. Solids Struct.
125326 PD MAY
125327 PY 2005
125328 VL 42
125329 IS 9-10
125330 BP 2601
125331 EP 2623
125332 PG 23
125333 SC Mechanics
125334 GA 896QE
125335 UT ISI:000226947800008
125336 ER
125337 
125338 PT S
125339 AU Li, LX
125340    Fei, MR
125341    Zhou, XB
125342 TI Analysis on network-induced delays in networked learning based control
125343    systems
125344 SO COMPUTATIONAL AND INFORMATION SCIENCE, PROCEEDINGS
125345 SE LECTURE NOTES IN COMPUTER SCIENCE
125346 DT Article
125347 AB Local controller and remote learning device are connected through
125348    communication network in Networked Learning based Control Systems
125349    (NLCSs). Network-induced delays are inevitable during data
125350    transmission, and will deteriorate the real-time transmission of
125351    learning result from learning device to controller and even destabilize
125352    the entire system. This paper deals with the delays in NLCSs. The
125353    sources of delays are discussed and the possibility of reducing all
125354    delays into an equivalent delay is proposed. Finally, experimental
125355    measurements for that equivalent delay on Ethernet are conducted.
125356 C1 Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China.
125357 RP Li, LX, Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072,
125358    Peoples R China.
125359 EM lilix@sh163.net
125360 CR BAUER PH, 2001, P IASTED C MOD ID CO, P792
125361    FEI MR, 2003, P CIAC 2003 HONG KON
125362    LIAN FL, 2001, IEEE CONTR SYST MAG, V21, P66
125363    NILSSON J, 1998, THESIS ISRN
125364    ZHANG W, 2001, IEEE CONTR SYST MAG, V21, P84
125365 NR 5
125366 TC 0
125367 SN 0302-9743
125368 J9 LECT NOTE COMPUT SCI
125369 PY 2004
125370 VL 3314
125371 BP 310
125372 EP 315
125373 PG 6
125374 GA BBO38
125375 UT ISI:000226644400049
125376 ER
125377 
125378 PT S
125379 AU Feng, DQ
125380    Dong, LJ
125381    Fei, MR
125382    Chen, TJ
125383 TI Genetic algorithm based neuro-fuzzy network adaptive PID control and
125384    its applications
125385 SO COMPUTATIONAL AND INFORMATION SCIENCE, PROCEEDINGS
125386 SE LECTURE NOTES IN COMPUTER SCIENCE
125387 DT Article
125388 AB It is difficult to satisfy most of the performance targets by using the
125389    PID control law only, if the plants are the processes with uncertain
125390    time-delay, varying parameters and non-linearity. For this reason a
125391    genetic algorithm based neuro-fuzzy network adaptive PID controller is
125392    proposed in this paper. The neuro-fuzzy network is used to amend the
125393    parameters of the PID controller online, the global optimal parameters
125394    of the network are found with a high speed, and the improved genetic
125395    algorithm is introduced to overcome the local optimum defect of the BP
125396    algorithm. Finally, the simulation experiment of the control method on
125397    the tobacco-drying control process is performed. The simulation results
125398    demonstrate that this kind of control method is effective.
125399 C1 Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China.
125400    Zhengzhou Univ, Inst Informat & Control, Zhengzhou 450002, Peoples R China.
125401 RP Feng, DQ, Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072,
125402    Peoples R China.
125403 EM dqfeng@zzu.edu.cn
125404    dlj7905@zzu.edu.cn
125405    mrfei888@x263.net
125406    tchen@zzu.edu.cn
125407 CR BAKER Z, 1985, P 1 INT C GEN ALG L, P110
125408    CHEN G, 1996, GENETIC ALGORITHM AP
125409    CHEN J, 2001, TOBACCO DRYING INTEL, V6
125410    FENG D, 1998, FUZZY INTELLIGENCE C
125411    LI S, 1996, INTELLIGENCE CONTROL
125412 NR 5
125413 TC 0
125414 SN 0302-9743
125415 J9 LECT NOTE COMPUT SCI
125416 PY 2004
125417 VL 3314
125418 BP 330
125419 EP 335
125420 PG 6
125421 GA BBO38
125422 UT ISI:000226644400052
125423 ER
125424 
125425 PT J
125426 AU Chen, Y
125427    Qiu, XJ
125428    Li, RX
125429 TI A pseudo-spin model for the wall of cytoskeletal microtubule
125430 SO CHINESE PHYSICS
125431 DT Article
125432 DE cell microtubule; double-well potential; pseudo-spin hamiltonian;
125433    mean-field approximation
125434 ID ENERGY-TRANSFER; COHERENCE; MECHANISM
125435 AB A pseudo-spin model is intended to describe the physical dynamics of
125436    unbound electrons in the wall of cytoskeletal microtubule (MT). Due to
125437    the inherent symmetry of the structure and the electric properties in
125438    the MT, one may treat it as a one-dimensional ferroelectric system, and
125439    describe the nonlinear dynamics of dimer electric dipoles in one
125440    protofilament of the MT by virtue of the double-well potential.
125441    Consequently, the physical problem has been mapped onto the pseudo-spin
125442    system, and the mean-field approximation has been taken to get some
125443    physical results.
125444 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
125445    Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
125446    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
125447 RP Chen, Y, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
125448 EM siyuyingying@hotmail.com
125449 CR AMOS LA, 1974, J CELL SCI, V14, P523
125450    BLINC R, 1974, SOFT MODES FERROELEC, P132
125451    CHEN Y, 2003, ACTA PHYS SIN-CH ED, V52, P1554
125452    COLLINS MA, 1979, PHYS REV B, V19, P3630
125453    DAVYDOV AS, 1982, BIOL QUANTUM MECH IN, V109, P150
125454    DEL GE, 1986, NUCL PHYS B, V275, P185
125455    ENGELBORGHS Y, 1992, NANOBIOLOGY, V1, P97
125456    FROHLICH H, 1968, INT J QUANTUM CHEM, V2, P641
125457    FROHLICH H, 1980, ADV ELECTRON ELECTRO, V53, P85
125458    HAKEN H, 1976, QUANTUM FIELD THEORY, P142
125459    HAMEROFF SR, 1982, J THEOR BIOL, V98, P549
125460    JIBU M, 1994, BIOSYSTEMS, V32, P195
125461    MAVROMATOS NE, 1998, INT J MOD PHYS B, V12, P517
125462    MAVROMATOS NE, 1999, BIOELECTROCH BIOENER, V48, P273
125463    MAVROMATOS NE, 2002, INT J MOD PHYS B, V16, P3623
125464    NOGALES E, 1998, NATURE, V391, P199
125465    SATARIC M, 1990, J MOL ELECTRON, V6, P63
125466    SATARIC MV, 1993, PHYS REV E, V48, P589
125467 NR 18
125468 TC 0
125469 SN 1009-1963
125470 J9 CHIN PHYS
125471 JI Chin. Phys.
125472 PD FEB
125473 PY 2005
125474 VL 14
125475 IS 2
125476 BP 427
125477 EP 432
125478 PG 6
125479 SC Physics, Multidisciplinary
125480 GA 896LQ
125481 UT ISI:000226936000036
125482 ER
125483 
125484 PT J
125485 AU Huang, Y
125486    Pan, QY
125487    Cheng, ZX
125488    Zhang, W
125489    Xia, W
125490 TI Synthesis and photochroism of a novel organic-inorganic nanocomposite
125491    film entrapping tungstosilicate acid
125492 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
125493 DT Article
125494 DE organic-inorganic composite; self-assembly; sol-gel method;
125495    photochroism; tungstosilicate acid
125496 ID BEHAVIOR
125497 AB A novel photochromic organic-inorganic nanocomposite film was prepared
125498    through entrapping Keggin structure H4SiW12O40 into MAAM/VTEOS/TEOS
125499    matrix by combining supramolecular self-assembly technology with
125500    sol-gel process. The composite film was characterized by IR, XRD and
125501    TG-DSC, and its photochromic behavior and mechanism were also studied
125502    and discussed. The transparent film changed from colorless to dark-blue
125503    under UV irradiation and was measured by UV-Vis and ESR spectra. The
125504    results indicate that [SiW12O40](4-) anions maintain Keggin structure
125505    in the composite film and interacted strongly with -NH2 group of the
125506    matrix via hydrogen bond. After irradiation under UV fight, a hydrogen
125507    atom is transferred to a [SiW12O40](4-) anion, and a free radical is
125508    formed at the same time. The bleaching process is closely related to
125509    the presence of O-2, and the experiments show that the composite film
125510    has excellent photochromic properties, with a short response and
125511    bleaching time and good reversibility.
125512 C1 Shanghai Univ, Dept Chem, Coll Sci, Shanghai 200436, Peoples R China.
125513 RP Pan, QY, Shanghai Univ, Dept Chem, Coll Sci, Shanghai 200436, Peoples R
125514    China.
125515 EM qypan@staff.shu.edu.cn
125516 CR BI LH, 2001, CHEM J CHINESE U, V22, P883
125517    FENG W, 2001, CHEM J CHINESE U, V22, P830
125518    GAMELAS JAF, 2002, POLYHEDRON, V21, P2537
125519    GOMEZROMERO P, 1996, J PHYS CHEM-US, V100, P12448
125520    HILL CL, 1985, J AM CHEM SOC, V107, P5148
125521    KIM JD, 2003, ELECTROCHIM ACTA, V48, P3633
125522    MO YG, 1999, THIN SOLID FILMS, V355, P1
125523    RENNEKE RF, 1988, J AM CHEM SOC, V110, P5461
125524    SADAKANE M, 1998, CHEM REV, V98, P219
125525    UNOURA K, 1983, INORG CHEM, V22, P2963
125526    URSKA L, 2001, MONATSH CHEM, V132, P103
125527    VARGA GM, 1970, INORG CHEM, V9, P662
125528    YAMASE T, 1998, CHEM REV, V98, P307
125529    ZHANG HY, 2003, MATER LETT, V57, P1417
125530    ZHANG TR, 2002, CHEM J CHINESE U, V23, P1979
125531    ZHANG TR, 2002, CHEM J CHINESE U, V23, P297
125532 NR 16
125533 TC 0
125534 SN 0251-0790
125535 J9 CHEM J CHINESE UNIV-CHINESE
125536 JI Chem. J. Chin. Univ.-Chin.
125537 PD FEB
125538 PY 2005
125539 VL 26
125540 IS 2
125541 BP 204
125542 EP 208
125543 PG 5
125544 SC Chemistry, Multidisciplinary
125545 GA 896XH
125546 UT ISI:000226967200002
125547 ER
125548 
125549 PT J
125550 AU Xu, GQ
125551    Li, ZB
125552 TI Exact travelling wave solutions of the Whitham-Broer-Kaup and
125553    Broer-Kaup-Kupershmidt equations
125554 SO CHAOS SOLITONS & FRACTALS
125555 DT Article
125556 ID NONLINEAR EVOLUTION-EQUATIONS; ELLIPTIC FUNCTION EXPANSION; BACKLUND
125557    TRANSFORMATION; INVERSE METHOD; WATER
125558 AB In this paper, an interesting fact is found that the auxiliary equation
125559    method is also applicable to a coupled system of two different
125560    equations involving both even-order and odd-order partial derivative
125561    terms. Furthermore, singular travelling wave solutions can also be
125562    obtained by considering other types of exact solutions of auxiliary
125563    equation. The Whitham-Broer-Kaup and the (2 +1)-dimensional
125564    Broer-Kaup-Kupershmidt equations are chosen as examples to illustrate
125565    the effectiveness of the auxiliary equation method. (C) 2004 Elsevier
125566    Ltd. All rights reserved.
125567 C1 Shanghai Univ, Dept Informat Management, Coll Int Business & Management, Shanghai 201800, Peoples R China.
125568    E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China.
125569 RP Xu, GQ, Shanghai Univ, Dept Informat Management, Coll Int Business &
125570    Management, Shanghai 201800, Peoples R China.
125571 EM xuguiqiong@yahoo.com
125572 CR ABLOWITZ MJ, 1991, NONLINEAR EVOLUTION
125573    FAN EG, 2000, PHYS LETT A, V277, P212
125574    FENG X, 1996, PHYS LETT A, V213, P167
125575    FENG X, 2000, INT J THEOR PHYS, V39, P207
125576    FU ZT, 2001, PHYS LETT A, V290, P72
125577    GU CH, 1995, SOLITON THEORY ITS A
125578    HEREMAN W, 1990, J PHYS A-MATH GEN, V23, P4805
125579    HIROTA R, 1971, PHYS REV LETT, V27, P1192
125580    KONNO K, 1975, PROG THEOR PHYS, V53, P1652
125581    KUPERSHMIDT BA, 1985, COMMUN MATH PHYS, V99, P51
125582    LI DS, 2003, CHAOS SOLITON FRACT, V18, P193
125583    LI ZB, 1993, J PHYS A-MATH GEN, V26, P6027
125584    LIU SK, 2001, PHYS LETT A, V289, P69
125585    LIU YP, 2002, COMM PHYS COMMUN, V155, P65
125586    MALFLIET W, 1992, AM J PHYS, V60, P650
125587    RUAN HY, 1998, ACTA PHYS SIN-OV ED, V7, P241
125588    SIRENDAOREJI, 2003, PHYS LETT A, V309, P387
125589    SIRENDAOREJI, 2004, CHAOS SOLITONS FRACT, V19, P147
125590    WADATI M, 1975, PROG THEOR PHYS, V53, P419
125591    WANG ML, 1995, PHYS LETT A, V199, P169
125592    XU GQ, 2002, ACTA PHYS SIN-CH ED, V51, P1424
125593    YAN CT, 1996, PHYS LETT A, V224, P77
125594    YAN ZY, 2001, PHYS LETT A, V285, P355
125595    YAO RX, 2002, PHYS LETT A, V297, P196
125596    YING JP, 2001, Z NATURFORSCH A, V56, P619
125597    ZAKHAROV VE, 1968, J APPL MECH TECH PHY, V2, P190
125598 NR 26
125599 TC 3
125600 SN 0960-0779
125601 J9 CHAOS SOLITON FRACTAL
125602 JI Chaos Solitons Fractals
125603 PD APR
125604 PY 2005
125605 VL 24
125606 IS 2
125607 BP 549
125608 EP 556
125609 PG 8
125610 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
125611 GA 895IU
125612 UT ISI:000226855200015
125613 ER
125614 
125615 PT J
125616 AU Liu, JK
125617    Wu, QS
125618    Ding, YP
125619    Yi, Y
125620 TI Assembling synthesis of barium chromate nano-superstructures using
125621    eggshell membrane as template
125622 SO BULLETIN OF THE KOREAN CHEMICAL SOCIETY
125623 DT Article
125624 DE superstructure; nanomaterials; template; barium chromate
125625 ID MATRIX; NANOSTRUCTURES; LOCALIZATION; NANOCRYSTALS; NANOFIBERS;
125626    NUCLEATION; BACRO4; GROWTH
125627 AB The branch-like, feather-like BaCrO4 nano-superstructures were
125628    synthesized with bioactive eggshell membrane as directing and assembly
125629    template. Studies on the two products revealed that they formed through
125630    the self-assembly of nanoparticles, and that the optical properties of
125631    the products were different from BaCrO4 bulk materials.
125632 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
125633    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
125634 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
125635 EM qswu@mail.tongji.com.cn
125636 CR ADAMSKI T, 1961, NATURE, V190, P524
125637    AJIKUMAR PK, 2003, BIOMACROMOLECULES, V4, P1321
125638    FERNANDEZ MS, 2001, MATRIX BIOL, V19, P793
125639    GAO F, 2003, NANO LETT, V3, P85
125640    HINCKE MT, 2000, MATRIX BIOL, V19, P443
125641    KIM F, 2001, J AM CHEM SOC, V123, P4360
125642    LI M, 1999, NATURE, V402, P393
125643    LI M, 2000, LANGMUIR, V16, P7088
125644    PENG Q, 2002, INORG CHEM, V41, P5249
125645    PESIKA NS, 2003, ADV MATER, V15, P1289
125646    SHI HT, 2002, CHEM COMMUN, V16, P1704
125647    SHI HT, 2003, J AM CHEM SOC, V125, P3450
125648    SUN XM, 2003, J CHEM EUR, V9, P2229
125649    YANG D, 2002, ADV MATER, V14, P1543
125650    YU SH, 2002, CHEM-EUR J, V8, P2937
125651    YU SH, 2003, ADV MATER, V15, P133
125652    YU SH, 2003, NANO LETT, V3, P379
125653 NR 17
125654 TC 0
125655 SN 0253-2964
125656 J9 BULL KOR CHEM SOC
125657 JI Bull. Korean Chem. Soc.
125658 PD DEC 20
125659 PY 2004
125660 VL 25
125661 IS 12
125662 BP 1775
125663 EP 1778
125664 PG 4
125665 SC Chemistry, Multidisciplinary
125666 GA 895IQ
125667 UT ISI:000226854800005
125668 ER
125669 
125670 PT J
125671 AU Wang, LD
125672    Li, HQ
125673 TI Global stability of an epidemic model with nonlinear incidence rate and
125674    differential infectivity
125675 SO APPLIED MATHEMATICS AND COMPUTATION
125676 DT Article
125677 DE epidemic model; basic reproduction number; disease-free equilibrium;
125678    endemic equilibrium; stability
125679 ID DISEASES; TRANSMISSION
125680 AB This paper considers an SI1I2R epidemic model that incorporates two
125681    classes of infectious individuals with differential infectivity, and
125682    the incidence rate is nonlinear. The basic reproduction number R-0 is
125683    found. If R-0 less than or equal to 1, the disease-free equilibrium is
125684    globally asymptotically stable and the disease always dies out
125685    eventually. If R-0 > 1, a unique endemic equilibrium is locally
125686    asymptotically stable for general assumption. For a special case the
125687    global stability of the endemic equilibrium is proved. (C) 2004
125688    Elsevier Inc. All rights reserved.
125689 C1 Shanxi Univ Finance & Econ, Dept Appl Math, Taiyuan 030006, Shanxi, Peoples R China.
125690    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
125691    AF Engn Univ, Telecommun Engn Inst, Xian 710077, Shanxi, Peoples R China.
125692 RP Wang, LD, Shanxi Univ Finance & Econ, Dept Appl Math, Taiyuan 030006,
125693    Shanxi, Peoples R China.
125694 EM zhangsuo@public.ty.sx.cn
125695 CR ANDERSON RM, 1991, INFECTIOUS DIS HUMAN
125696    ESTEVA L, 1998, MATH BIOSCI, V150, P131
125697    ESTEVA L, 2001, J BIOL SYST, V9, P235
125698    HETHCOTE HW, 2000, SIAM REV, V42, P599
125699    HYMAN JM, 1999, MATH BIOSCI, V155, P77
125700    HYMAN JM, 2000, MATH BIOSCI, V167, P65
125701    LASALLE JP, 1976, REG C SER APPL MATH
125702    LI J, 2002, MATH COMPUT MODEL, V20, P1235
125703    MAY RM, 1979, NATURE, V280, P455
125704    MENALORCA J, 1992, J MATH BIOL, V30, P693
125705    WANG W, 2002, NONLINEAR ANAL-REAL, V3, P809
125706    WANG WD, 2002, APPL MATH LETT, V15, P423
125707 NR 12
125708 TC 0
125709 SN 0096-3003
125710 J9 APPL MATH COMPUT
125711 JI Appl. Math. Comput.
125712 PD FEB 25
125713 PY 2005
125714 VL 161
125715 IS 3
125716 BP 769
125717 EP 778
125718 PG 10
125719 SC Mathematics, Applied
125720 GA 895KI
125721 UT ISI:000226859800007
125722 ER
125723 
125724 PT J
125725 AU Chen, LQ
125726    Zhao, WJ
125727 TI A computation method for nonlinear vibration of axially accelerating
125728    viscoelastic strings
125729 SO APPLIED MATHEMATICS AND COMPUTATION
125730 DT Article
125731 AB A numerical algorithm is proposed for computing nonlinear vibration of
125732    axially accelerating viscoelastic strings. Based on independent
125733    functions, the variational principle is used to discretize the
125734    governing equation into a set of differential/algebraic equations.
125735    Numerical examples are presented. (C) 2004 Elsevier Inc. All rights
125736    reserved.
125737 C1 Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
125738    Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
125739    Univ Qingdao, Dept Math, Qingdao 266071, Peoples R China.
125740 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
125741 EM lqchen@mie.utoronto.ca
125742 CR BRENAN KE, 1996, SIAM
125743    CHEN LQ, IN PRESS APPL MATH C
125744    CHEN LQ, IN PRESS ASME APPL M
125745    CHEN LQ, IN PRESS J SOUND VIB
125746    CHEN LQ, IN PRESS NONLINEAR D
125747    CHEN LQ, 2004, J ENG MATH, V48, P171
125748    FUNG RF, 1997, J SOUND VIB, V201, P153
125749    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
125750 NR 8
125751 TC 2
125752 SN 0096-3003
125753 J9 APPL MATH COMPUT
125754 JI Appl. Math. Comput.
125755 PD MAR 4
125756 PY 2005
125757 VL 162
125758 IS 1
125759 BP 305
125760 EP 310
125761 PG 6
125762 SC Mathematics, Applied
125763 GA 895KJ
125764 UT ISI:000226859900025
125765 ER
125766 
125767 PT J
125768 AU Chen, LQ
125769    Cheng, CJ
125770 TI Instability of nonlinear viscoelastic plates
125771 SO APPLIED MATHEMATICS AND COMPUTATION
125772 DT Article
125773 ID DYNAMIC STABILITY; LYAPUNOV EXPONENTS
125774 AB This paper investigates the instability of an isotropic, homogeneous,
125775    simply supported rectangular plate subjected to a prescribed periodic
125776    in-plane load. The material is assumed to be viscoelastic and obey the
125777    Leaderman nonlinear constitutive relation. The equation of motion is
125778    derived as a nonlinear integro-partial-differential equation, and is
125779    simplified into a nonlinear integro-differential equation by the
125780    Galerkin method. The averaging method is developed to establish the
125781    condition of instability. Numerical results are presented to compare
125782    with the analytical ones. (C) 2004 Elsevier Inc. All rights reserved.
125783 C1 Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
125784    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
125785 RP Chen, LQ, Shanghai Univ, Dept Mech, Suit 1101,Bldg 2,555 Hu Tai Rd,
125786    Shanghai 200436, Peoples R China.
125787 EM lqchen@mie.utoronto.ca
125788 CR ABOUDI J, 1990, J SOUND VIB, V139, P459
125789    CEDERBAUM G, 1991, INT J SOLIDS STRUCT, V28, P317
125790    CEDERBAUM G, 1992, MECH STRUCT MACH, V20, P37
125791    CHENG CJ, 1998, ACTA MECH SINICA, V30, P690
125792    LEADERMAN H, 1962, T SOC RHEOL, V6, P361
125793    SMART J, 1972, J MECH PHYS SOLIDS, V20, P313
125794    TOUATI D, 1994, INT J SOLIDS STRUCT, V31, P2367
125795    TOUATI D, 1995, ACTA MECH, V113, P215
125796    ZHANG NH, 1998, P 3 INT C NONL MECH, P432
125797    ZHU YY, 1998, P 3 INT C NONL MECH, P445
125798 NR 10
125799 TC 0
125800 SN 0096-3003
125801 J9 APPL MATH COMPUT
125802 JI Appl. Math. Comput.
125803 PD MAR 25
125804 PY 2005
125805 VL 162
125806 IS 3
125807 BP 1453
125808 EP 1463
125809 PG 11
125810 SC Mathematics, Applied
125811 GA 895KL
125812 UT ISI:000226860100034
125813 ER
125814 
125815 PT J
125816 AU Dong, CH
125817 TI The quantum description of polarization states of light and its
125818    evolutions in the processes of interaction with atoms
125819 SO ACTA PHYSICA SINICA
125820 DT Article
125821 DE Stokes operators; Stokes parameters; polarizing quantum state; quantum
125822    fluctuation
125823 ID KERR-LIKE MEDIUM; 3-LEVEL ATOM; STOKES PARAMETERS; PHASE; FLUCTUATIONS;
125824    FIELD
125825 AB The quantum theory of polarizing light and the Stokes operators are
125826    applied to the study of the evolutions of polarization states of light
125827    in the processes of interaction with atoms in the case with or without
125828    Kerr medium. The non-classic behavior in the fluctuations of Stokes
125829    parameters for the polarizing light and their squeezing are
125830    investigated. The polarization ellipse, the degree of polarization of
125831    the field in quantum optics and the signal-to-noise ratio in the Stokes
125832    parameters are discussed. It is shown that the modulated oscillations
125833    appear in the evolutions of Stokes parameters and their fluctuations.
125834    These oscillations collapse and revive intermittently. The polarization
125835    ellipse does not vary in the interaction with atoms but the degree of
125836    polarization will oscillate. Kerr medium changes these oscillations
125837    distinctly.
125838 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
125839 RP Dong, CH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
125840 CR AGARWAL GS, 1989, PHYS REV A, V40, P5179
125841    ALODJANTS AP, 1999, J MOD OPTIC, V46, P475
125842    BARNETT SM, 1986, J PHYS A-MATH GEN, V19, P3849
125843    BOM M, 1980, PRINCIPLES OPTICS
125844    BUZEK V, 1990, OPT COMMUN, V78, P425
125845    GORA P, 1992, PHYS REV A, V45, P6816
125846    GRANGIER P, 1987, PHYS REV LETT, V59, P2152
125847    HANG CJ, 2002, ACTA PHYS SINICA, V51, P1978
125848    LAI ZJ, 2000, ACTA PHYS SIN-CH ED, V49, P1714
125849    LI WD, 2001, J MOD OPTIC, V48, P1357
125850    LUIS A, 2002, PHYS REV A, V66
125851    PEGG DT, 1989, PHYS REV A, V39, P1665
125852    SCHWINGER J, 1965, QUANTUM THEORY ANGUL, P229
125853    TANAS R, 1990, J MOD OPTIC, V37, P1935
125854    TANAS R, 1992, J MOD OPTIC, V39, P749
125855    TAO XY, 2000, ACTA PHYS SIN-CH ED, V49, P1464
125856    TU HT, 1993, J MOD OPTIC, V40, P57
125857 NR 17
125858 TC 0
125859 SN 1000-3290
125860 J9 ACTA PHYS SIN-CHINESE ED
125861 JI Acta Phys. Sin.
125862 PD FEB
125863 PY 2005
125864 VL 54
125865 IS 2
125866 BP 687
125867 EP 695
125868 PG 9
125869 SC Physics, Multidisciplinary
125870 GA 896ED
125871 UT ISI:000226916500034
125872 ER
125873 
125874 PT J
125875 AU Liu, TY
125876    Zhang, QR
125877    Zhuang, SL
125878 TI The colour centre model related to lead vacancy in PbWO4 crystal
125879 SO ACTA PHYSICA SINICA
125880 DT Article
125881 DE lead vacancy VPPb2-; PbWO4; geometry optimization; electronic
125882    structure; color centre
125883 ID SINGLE-CRYSTALS; TUNGSTATE CRYSTALS; ABSORPTION-BAND; ORIGIN; DEFECTS
125884 AB The local structure geometry around a lead vacancy V-Pb(2-) in PbWO4 is
125885    optimized using a plane-wave pseudo-potential formulation within the
125886    framework of local density approximation (LDA), with generalized
125887    gradient correction in the form of Perdew-Wang-91. The results of the
125888    lattice relaxation decrease the electrical negativity on V-Pb(2-) site
125889    and increase the electrical positivity on O2- site near by the
125890    V-Pb(2-). All of the electronic structures around V-Pb(2-) in PWO
125891    crystal are studied in the molecular-cluster model with the framework
125892    of the fully relativistic self-consistent Direc-Slater theory by using
125893    a numerically discrete variational (DV-Xalpha) method. By analyzing the
125894    electronic structures, we can reasonably believe that once V-Pb(2-) is
125895    formed in PWO crystal, O2- turns to be prior to trap holes to
125896    compensate the electrical negativity of V-Pb(2-). Pb2+ may never be the
125897    hole-trapper compensating V-Pb(2-), and Pb3+ and Pb4+ in PWO crystal
125898    may not actually exist. The possible defect micro-model caused by
125899    V-Pb(2-) in the as-grown PWO crystal is that each V-Pb(2-) creates a
125900    V-K(+) - V-F(-) aggregate color center.
125901 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
125902    Shanghai Univ Sci & Technol, Coll Opt & Elect Engn, Shanghai 200093, Peoples R China.
125903 RP Liu, TY, Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093,
125904    Peoples R China.
125905 EM liutyyxj@163.com
125906 CR ANNENKOV A, 1998, PHYS STATUS SOLIDI A, V170, P47
125907    ANNENKOV AN, 1996, PHYS STATUS SOLIDI A, V156, P493
125908    EPELBAUM BM, 1997, J CRYST GROWTH, V178, P426
125909    FANG SG, 1989, PHYS COLOUR CTR CRYS
125910    FENG XQ, 1997, J INORGANIC MAT, V12, P449
125911    KORZHIK MV, 1996, P INT C IN SCINT THE, P241
125912    LIAO JY, 1997, J INORGANIC MAT, V12, P286
125913    LIN QS, 2000, PHYS STATUS SOLIDI A, V181, R1
125914    LIN QS, 2001, SOLID STATE COMMUN, V118, P221
125915    MOREAU JM, 1996, J ALLOY COMPD, V238, P46
125916    MOREAU JM, 1999, J ALLOY COMPD, V284, P104
125917    NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311
125918    NIKL M, 1996, PHYS STATUS SOLIDI B, V196, K7
125919    NIKL M, 1997, J APPL PHYS, V82, P5758
125920    NIKL M, 1997, MATER SCI FORUM, V239, P271
125921    QI JL, 2000, NUCL TECHNOL, V23, P433
125922    WANG YX, 2004, ACTA PHYS SIN-CH ED, V53, P214
125923    WU L, 2003, CHINESE PHYS, V12, P6
125924    YAO MZ, 2002, ACTA PHYS SIN-CH ED, V51, P125
125925    YE XL, 1999, ACTA PHYS SIN-CH ED, V48, P1923
125926    ZHANG QR, 2003, PHYS REV B, V68
125927 NR 21
125928 TC 2
125929 SN 1000-3290
125930 J9 ACTA PHYS SIN-CHINESE ED
125931 JI Acta Phys. Sin.
125932 PD FEB
125933 PY 2005
125934 VL 54
125935 IS 2
125936 BP 863
125937 EP 867
125938 PG 5
125939 SC Physics, Multidisciplinary
125940 GA 896ED
125941 UT ISI:000226916500062
125942 ER
125943 
125944 PT J
125945 AU Kang, BJ
125946    Cao, SX
125947    Wang, XY
125948    Li, LW
125949    Li, WF
125950    Liu, F
125951 TI Study on magnetic transition behavior for (Pr1-yNdy)(2/3)Sr-1/3 MnO3
125952    system under superposed fields
125953 SO ACTA PHYSICA SINICA
125954 DT Article
125955 DE perovskite manganite; superposed field; magnetic properties
125956 ID COLOSSAL MAGNETORESISTANCE; PEROVSKITE; MANGANITES; SUBSTITUTION;
125957    RESISTANCE; LAMNO3
125958 AB The magnetic transition behaviors of (Pr1-yNdy)(2/3)Sr1/3MnO3 (y =
125959    2/8,4/8,6/8) polycrystalline samples under superposed magnetic fields
125960    (i.e., the superposed ac and dc magnetic field) were systematically
125961    studied at temperatures ranging from 4.2 to 300K. The results showed
125962    that the magnetization increases with the increase of magnetic field,
125963    and the real part of the ac susceptibility decreases as the superposed
125964    dc magnetic field increases. Under the superposed magnetic field, a
125965    characteristic sharp peak of the real part of the susceptibility
125966    appears near the magnetic transition temperature (Curie temperature).
125967    For the (Pr1-yNdy)(2/3)Sr/3MnO3 system, as the Nd content increases,
125968    the peak temperature of the relative variation of the real part of
125969    susceptibility (E-chi' = Deltachi'/chi'(dc)) decreases, in consistent
125970    with that of the magnetoresistivity of this system. The magnetic
125971    transition behaviors under superposed magnetic fields for the manganite
125972    systems are discussed.
125973 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
125974 RP Kang, BJ, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
125975 EM sxcao@mail.shu.edu.cn
125976 CR BOUJELBEN W, 2002, PHYSICA B, V321, P68
125977    CAI JW, 1997, APPL PHYS LETT, V71, P1727
125978    CAIGNAERT V, 1995, SOLID STATE COMMUN, V95, P357
125979    CHATTERJEE S, 2002, PHYS REV B, V66
125980    CHATTERJEE S, 2002, PHYS REV B, V66
125981    DAI DS, 1997, PROGR PHYSICS, V17, P201
125982    DETERESA JM, 1996, PHYS REV LETT, V76, P3392
125983    DHO J, 2002, PHYS REV LETT, V89, P27202
125984    FAN JY, 2003, PHYS REV B, V68
125985    HAJTMANEK J, 2002, PHYS REV B, V66
125986    HASANAIN SK, 2001, J MAGN MAGN MATER, V225, P322
125987    HONG CS, 2001, PHYS REV B, V63
125988    HWANG HY, 1995, PHYS REV LETT, V75, P914
125989    JIA YX, 1995, SOLID STATE COMMUN, V94, P917
125990    JONKER GH, 1950, PHYSICA, V16, P337
125991    JONKER GH, 1956, PHYSICA, V22, P707
125992    KOLESNIK S, 2001, J APPL PHYS 2, V89, P7407
125993    LI RW, 1999, ACTA PHYS SIN-CH E S, V48, S105
125994    LU Y, 2003, ACTA PHYS SIN-CH ED, V52, P1520
125995    LU Y, 2003, ACTA PHYS SIN-CH ED, V52, P2057
125996    PENA A, 2003, J SOLID STATE CHEM, V174, P52
125997    VANDERBEMDEN P, 2003, PHYS REV B, V68
125998    WHITE RM, 1970, QUANTUM THEORY MAGNE, P116
125999    WU J, 1999, ACTA PHYS SIN-CH ED, V48, P370
126000    WU SY, 2002, J PHYS-CONDENS MAT, V14, P12585
126001    XIONG CS, 2003, J PHYS-CONDENS MAT, V15, P7063
126002    YE SL, 2002, J MAGN MAGN MATER, V248, P26
126003    ZHAO JH, 2002, PHYS REV B, V66
126004 NR 28
126005 TC 0
126006 SN 1000-3290
126007 J9 ACTA PHYS SIN-CHINESE ED
126008 JI Acta Phys. Sin.
126009 PD FEB
126010 PY 2005
126011 VL 54
126012 IS 2
126013 BP 902
126014 EP 906
126015 PG 5
126016 SC Physics, Multidisciplinary
126017 GA 896ED
126018 UT ISI:000226916500069
126019 ER
126020 
126021 PT J
126022 AU Wu, YQ
126023    Jiang, GC
126024    You, JL
126025    Hou, HY
126026    Chen, H
126027 TI Raman scattering coefficients of symmetrical stretching modes of
126028    microstructural units in sodium silicate melts
126029 SO ACTA PHYSICA SINICA
126030 DT Article
126031 DE Raman scattering coefficient; Si-O tetrahedron; silicate melt; high
126032    temperature Raman spectra
126033 ID DISILICATE CRYSTAL; STRUCTURAL UNITS; TEMPERATURE; GLASS; SPECTRA;
126034    SPECTROSCOPY; LIQUID; AL
126035 AB Quantitative analysis of Raman spectra of vitreous or molten silicate
126036    is always one of the key subjects in some fields, e.g. materials
126037    science, geological physics, etc. But there are many difficulties with
126038    this analysis, one of which is the determination of Raman scattering
126039    coefficient. Not long ago, we developed a new method for the
126040    calculation of Raman spectrum of amorphous silicate. Essentially, this
126041    method combines the molecular dynamics simulation with wilson's GF
126042    matrix method, electro-optical parameter method and bond polarizability
126043    model. With this theoretical method, we have studied the Raman
126044    scattering coefficients of symmetrical stretching modes of Q(i) in
126045    sodium silicate melts, and concluded that these coefficients are
126046    independent of composition. Meanwhile, the five values of the
126047    coefficients are also given as follows: S-0 = 1, S-1 = 0.514, S-2 =
126048    0.242, S-3 = 0.090 and S-4 = 0.015. In order to apply these quantities
126049    to experiments, the Raman spectrum of sodium disilicate melt has been
126050    measured and its high-frequency envelope has been deconvolved into
126051    three Gaussian bands. Finally, the molar fractions of Q(i) were
126052    achieved by dividing the area fractions of the three Gaussian bands by
126053    corresponding scattering coefficients. Additionally, combining the
126054    results of theoretical calculation and quantitative analysis of
126055    experimental spectra, we found that the intensities of anti-symmetrical
126056    stretching modes of Q(0) and Q(2) in sodium silicate melts are so
126057    strong that they cannot be neglected in the deconvolution process.
126058 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
126059 RP Wu, YQ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
126060    China.
126061 EM yqwu@staff.shu.edu.cn
126062 CR BROWER SA, 1977, PHYS REV, V11, P3173
126063    DUER MJ, 1995, J NON-CRYST SOLIDS, V189, P107
126064    JIANG GC, 2000, SPECTROSC SPECT ANAL, V20, P206
126065    MACKWA H, 1991, J NONCRYST SOLIDS, V127, P53
126066    MCMILLAN P, 1984, AM MINERAL, V69, P622
126067    MCMILLAN PF, 1994, GEOCHIM COSMOCHIM AC, V58, P3653
126068    MYSEN BO, 1990, AM MINERAL, V75, P120
126069    MYSEN BO, 1994, CONTRIB MINERAL PETR, V117, P1
126070    SEN PN, 1977, PHYS REV B, V15, P4030
126071    STEBBINS JF, 1988, J NONCRYST SOLIDS, V106, P359
126072    WU YQ, 2001, T NONFERR METAL SOC, V11, P965
126073    WU YQ, 2002, CHINESE PHYS LETT, V19, P1880
126074    WU YQ, 2004, CHINESE J INORG CHEM, V20, P133
126075    WU YQ, 2004, J CHEM PHYS, V121, P7883
126076    XIANG J, 2003, ACTA PHYS SIN-CH ED, V52, P1474
126077    YANG WB, 2003, ACTA PHYS SINICA, V52, P141
126078    YOU JL, 2000, SPECTROSC SPECT ANAL, V20, P797
126079    YOU JL, 2001, J NON-CRYST SOLIDS, V282, P125
126080    ZOTOV N, 1999, PHYS REV B, V60, P6383
126081 NR 19
126082 TC 0
126083 SN 1000-3290
126084 J9 ACTA PHYS SIN-CHINESE ED
126085 JI Acta Phys. Sin.
126086 PD FEB
126087 PY 2005
126088 VL 54
126089 IS 2
126090 BP 961
126091 EP 966
126092 PG 6
126093 SC Physics, Multidisciplinary
126094 GA 896ED
126095 UT ISI:000226916500079
126096 ER
126097 
126098 PT J
126099 AU Yuan, XG
126100    Zhu, ZY
126101    Cheng, CJ
126102 TI Cavity formation and its vibration for a class of generalized
126103    incompressible hyper-elastic materials
126104 SO ACTA MECHANICA SOLIDA SINICA
126105 DT Article
126106 DE generalized incompressible neo-Hookean materials; analytic solution;
126107    motion equation of cavity; nonlinear periodic vibration
126108 ID HYPERELASTIC MATERIALS; BIFURCATION; CAVITATION
126109 AB The problem of radial symmetric motion for a solid sphere composed of a
126110    class of generalized incompressible neo-Hookean materials, subjected to
126111    a suddenly applied surface tensile dead load, is examined. The analytic
126112    solutions for this problem and the motion equation of cavity that
126113    describes cavity formation and growth with time are obtained. The
126114    effect of radial perturbation of the materials on cavity formation and
126115    its motion is discussed. The plane of the perturbation parameters of
126116    the materials is divided into four regions. The existential conditions
126117    and qualitative properties of solutions of the motion equation of the
126118    cavity are studied in different parameters' regions in detail. It is
126119    proved that the cavity motion with time is a nonlinear periodic
126120    vibration. The vibration center is then determined.
126121 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Coll Sci, Shanghai 200072, Peoples R China.
126122    Yantai Univ, Dept Math & Informat Sci, Yantai 264005, Peoples R China.
126123 RP Yuan, XG, Shanghai Univ, Shanghai Inst Appl Math & Mech, Coll Sci,
126124    Shanghai 200072, Peoples R China.
126125 CR BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
126126    CALDERER C, 1983, J ELASTICITY, V13, P17
126127    CHOUWANG MS, 1989, INT J ENG SCI, V27, P967
126128    GENT AN, 1958, P ROY SOC LOND A MAT, V249, P195
126129    HORGAN CO, 1995, APPL MECH REV, V48, P471
126130    POLIGNONE DA, 1993, J ELASTICITY, V33, P27
126131    REN JS, 2002, ACTA MECH SOLIDA SIN, V15, P208
126132    REN JS, 2002, APPL MATH MECH-ENGL, V23, P881
126133    SHANG XC, 1996, ACTA MECH SINICA, V28, P751
126134    SHANG XC, 2001, INT J ENG SCI, V39, P1101
126135    YUAN XG, 2004, ACTA MECH SOLIDA SIN, V17, P158
126136    YUAN XG, 2004, J SHANGHAI U, V8, P13
126137 NR 12
126138 TC 1
126139 SN 0894-9166
126140 J9 ACTA MECH SOLIDA SINICA
126141 JI Acta Mech. Solida Sin.
126142 PD DEC
126143 PY 2004
126144 VL 17
126145 IS 4
126146 BP 361
126147 EP 369
126148 PG 9
126149 SC Materials Science, Multidisciplinary; Mechanics
126150 GA 893TL
126151 UT ISI:000226742100011
126152 ER
126153 
126154 PT J
126155 AU Zhao, J
126156    Yuan, AB
126157    Song, WX
126158 TI Study of alkaline nano-composite polymer electrolytes
126159 SO ACTA CHIMICA SINICA
126160 DT Article
126161 DE alkaline polymer electrolyte; PEO; nano-additive; ionic conductivity;
126162    modification
126163 ID POLY(VINYL ALCOHOL)-KOH-H2O; POLY(ETHYLENE OXIDE); SECONDARY BATTERIES
126164 AB In order to enhance the ionic conductivity of polyethylene oxide
126165    (PEO)-KOH based polymer electrolytes, three types of ceramic
126166    nano-powders, i.e., TiO2, beta-Al2O3 and SiO2 were added to PEO-KOH
126167    complex respectively, and the corresponding alkaline polymer
126168    electrolytes containing nano-powders were prepared. The experimental
126169    results showed that the prepared polymer electrolytes exhibited a high
126170    ionic conductivity at room temperature, typically 10(-3) S(.)cm(-1) as
126171    measured by AC impedance method, and moreover good electrochemical
126172    stability. The potential stability window is of ca. 1.6 V on stainless
126173    steel blocking electrodes, as determined by cyclic voltammetry. The
126174    influence of the film composition such as KOH, H2O and nano-ceramic
126175    additives was investigated. The relationship between conductivity and
126176    temperature was also examined and explained.
126177 C1 Shanghai Univ, Dept Chem, Coll Sci, Shanghai 200436, Peoples R China.
126178 RP Yuan, AB, Shanghai Univ, Dept Chem, Coll Sci, Shanghai 200436, Peoples
126179    R China.
126180 EM abyuan@staff.shu.edu.cn
126181 CR ARMAND MB, 1979, FAST ION TRANSPORT S, P131
126182    FAUVARQUE JF, 1995, ELECTROCHIM ACTA, V40, P2449
126183    FENTON DE, 1973, POLYMER, V14, P589
126184    GUNOT S, 1998, ELECTROCHIM ACTA, V43, P1163
126185    LEWANDOWSKI A, 2000, SOLID STATE IONICS, V133, P265
126186    PALACIOS I, 2003, ELECTROCHIM ACTA, V48, P2195
126187    VASSAL N, 1999, J ELECTROCHEM SOC, V146, P20
126188    VASSAL N, 2000, ELECTROCHIM ACTA, V45, P1527
126189    WRIGHT PV, 1975, BRIT POLYM J, V7, P319
126190    YANG CC, 2002, J POWER SOURCES, V109, P22
126191    YANG CC, 2002, MATER LETT, V57, P873
126192    YANG CC, 2003, J POWER SOURCES, V122, P210
126193 NR 12
126194 TC 0
126195 SN 0567-7351
126196 J9 ACTA CHIM SIN
126197 JI Acta Chim. Sin.
126198 PD FEB 14
126199 PY 2005
126200 VL 63
126201 IS 3
126202 BP 219
126203 EP 222
126204 PG 4
126205 SC Chemistry, Multidisciplinary
126206 GA 895GA
126207 UT ISI:000226847700008
126208 ER
126209 
126210 PT J
126211 AU Zhuang, Y
126212    Huang, J
126213    Zhou, Z
126214    Ge, Y
126215    Fan, Y
126216    Qi, C
126217    Zhen, L
126218    Monchatre, E
126219    Edelman, L
126220    Zhang, X
126221 TI A novel blocking monoclonal antibody recognizing a distinct epitope of
126222    human CD40 molecule
126223 SO TISSUE ANTIGENS
126224 DT Article
126225 DE CD40; ELISA; monoclonal antibody; soluble CD40
126226 ID CD40-CD40 LIGAND INTERACTION; SOLUBLE CD40; CELL; ACCEPTANCE;
126227    PROLIFERATION; PATHWAY; DISEASE; MYELOMA; SERUM
126228 AB CD40, a member of the tumor necrosis factor receptor superfamily, is an
126229    important costimulatory molecule during the immune response. Here, we
126230    report a blocking mouse antihuman CD40 monoclonal antibody, mAb 3G3, of
126231    which the specificity was verified by flow cytometry and Western blot.
126232    It was shown by competition test that 3G3 bound to a different site
126233    (epitope) of CD40 from the reported CD40 mAbs, including clone mAb89,
126234    3B2, and 5C11. It was also found that mAb 3G3 could inhibit homotypic
126235    aggregation of Daudi cells induced by the agonistic anti-CD40 mAb 5C11.
126236    Furthermore, mAb 3G3 effectively inhibited the proliferation of
126237    peripheral blood mononuclear cells in mixed lymphocyte reaction assay.
126238    Finally, a sensitive and specific soluble CD40 (sCD40) ELISA kit was
126239    established by matching mAb 3G3 with 5C11, and it was found that the
126240    levels of sCD40 in sera from patients with immune disorders such as
126241    hyperthyroidism, chronic nephritis, and rheumatoid arthritis were
126242    obviously higher than those from normal individuals. Thus, this
126243    blocking anti-CD40 mAb provides a novel tool for the study of CD40.
126244 C1 Soochow Univ, Inst Biotechnol, Suzhou 215007, Peoples R China.
126245    Soochow Univ, Clin Immunol Res Lab Jiangsu, Suzhou 215007, Peoples R China.
126246    Soochow Univ 1, Affiliated Hosp, Suzhou, Peoples R China.
126247    Inst Pasteur, Lab Technol Cellaire Antitumorale, Paris, France.
126248    Shanghai Univ, Div Immunol, E Inst, Shanghai, Peoples R China.
126249 RP Zhang, X, Soochow Univ, Inst Biotechnol, 48 Renmin Rd, Suzhou 215007,
126250    Peoples R China.
126251 EM smbxuegz@public1.sz.js.cn
126252 CR CONTIN C, 2003, IMMUNOLOGY, V110, P131
126253    CONTIN C, 2003, J BIOL CHEM, V278, P32801
126254    DATTA SK, 1997, ARTHRITIS RHEUM, V40, P1735
126255    ELWOOD ET, 1998, TRANSPLANTATION, V65, P1422
126256    FAN Y, 2004, TISSUE ANTIGENS, V64, P257
126257    FULEIHAN R, 1993, CURR OPIN IMMUNOL, V5, P963
126258    GREWAL IS, 1996, IMMUNOL TODAY, V17, P410
126259    GROTH SFD, 1980, J IMMUNOL METHODS, V35, P1
126260    HAN SH, 1995, J IMMUNOL, V155, P556
126261    HESS S, 1996, J EXP MED, V183, P159
126262    KIRK AD, 1999, NAT MED, V5, P5686
126263    LARSEN CP, 1996, NATURE, V381, P434
126264    LARSEN CP, 1997, CURR OPIN IMMUNOL, V9, P641
126265    NISHIOKA Y, 1994, J IMMUNOL, V153, P1027
126266    PEARSON TC, 2002, TRANSPLANTATION, V74, P933
126267    ROUSSET F, 1991, J EXP MED, V173, P705
126268    SCHMILOVITZWEISS H, 2004, APOPTOSIS, V9, P205
126269    SCHONBECK U, 2001, CELL MOL LIFE SCI, V58, P4
126270    SCHWABE RF, 1999, CLIN EXP IMMUNOL, V117, P153
126271    STOUT RD, 1996, J IMMUNOL, V156, P8
126272    TONE M, 2001, P NATL ACAD SCI USA, V98, P1751
126273    ZHANG XG, 1994, BLOOD, V83, P3654
126274    ZHOU ZH, 1999, HYBRIDOMA, V18, P471
126275 NR 23
126276 TC 1
126277 SN 0001-2815
126278 J9 TISSUE ANTIGEN
126279 JI Tissue Antigens
126280 PD JAN
126281 PY 2005
126282 VL 65
126283 IS 1
126284 BP 81
126285 EP 87
126286 PG 7
126287 SC Cell Biology; Immunology; Pathology
126288 GA 890KZ
126289 UT ISI:000226511400004
126290 ER
126291 
126292 PT J
126293 AU Lu, BQ
126294    Murata, J
126295    Hirasawa, K
126296 TI A new learning method using prior information of neural networks
126297 SO SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES
126298 DT Article
126299 DE prior information; neural network learning; part parameter learning;
126300    exact mathematical structure
126301 ID ALGORITHMS; SYSTEMS
126302 AB In this paper, we present a new learning method using prior information
126303    for three-layered neural networks. Usually when neural networks are
126304    used for identification of systems, all of their weights are trained
126305    independently, without considering their interrelation of weight
126306    values. Thus the training results are not usually good. The reason for
126307    this is that each parameter has its influence on others during the
126308    learning. To overcome this problem, first, we give an exact
126309    mathematical equation that describes the relation between weight values
126310    given by a set of data conveying prior information. Then we present a
126311    new learning method that trains a part of the weights and calculates
126312    the others by using these exact mathematical equations. In almost all
126313    cases, this method keeps prior information given by a mathematical
126314    structure exactly during the learning. In addition, a learning method
126315    using prior information expressed by inequality is also presented. In
126316    any case, the degree of freedom of networks (the number of adjustable
126317    weights) is appropriately limited in order to speed up the learning and
126318    ensure small errors. Numerical computer simulation results are provided
126319    to support the present approaches.
126320 C1 Shanghai Univ, Dept Automat, Shanghai 200072, Peoples R China.
126321    Kyushu Univ, Grad Sch Informat Sci & Elect Engn, Dept Elect & Elect Syst Engn, Div Syst Control Engn,Higashi Ku, Fukuoka 8128581, Japan.
126322 RP Lu, BQ, Shanghai Univ, Dept Automat, Shanghai 200072, Peoples R China.
126323 EM bqlu@Mail.shu.edu.cn
126324 CR BORGHESE NA, 1995, NEURAL NETWORKS, V8, P39
126325    CARPENTER GA, 1992, IEEE T NEURAL NETWOR, V3, P698
126326    CHEN TP, 1995, IEEE T NEURAL NETWOR, V6, P904
126327    FARAG WA, 1998, IEEE T NEURAL NETWOR, V9, P756
126328    GOUTTE C, 1997, NEURAL NETWORKS, V10, P1053
126329    HASEGAWA A, 1996, NEURAL NETWORKS, V9, P345
126330    HWANG JN, 1997, IEEE T SIGNAL PROCES, V45, P553
126331    IGELNIK B, 1999, IEEE T NEURAL NETWOR, V10, P19
126332    JACK SN, 1994, IEEE T NEURAL NETWOR, V5, P753
126333    JUHAKARHUNEN JJ, 1995, NEURAL NETWORKS, V8, P549
126334    MACKAY DJC, 1992, NEURAL COMPUT, V4, P415
126335    MACKAY DJC, 1992, NEURAL COMPUT, V4, P448
126336    MOSTAGHIMI M, 1997, IEEE T SYST MAN CY A, V27, P506
126337    REED R, 1993, IEEE T NEURAL NETWOR, V4, P740
126338    RIDELLA S, 1999, IEEE T NEURAL NETWOR, V10, P31
126339    SAATY TL, 1964, NONLINEAR MATH
126340    VERMA B, 1997, IEEE T NEURAL NETWOR, V8, P1314
126341    WANG LP, 1997, IEEE T SYST MAN CY B, V27, P868
126342    WIILLIAMS PM, 1995, NEURAL COMPUT, V7, P117
126343    ZHANG YQ, 1998, IEEE T NEURAL NETWOR, V9, P83
126344 NR 20
126345 TC 0
126346 SN 1009-2757
126347 J9 SCI CHINA SER F
126348 JI Sci. China Ser. F-Inf. Sci.
126349 PD DEC
126350 PY 2004
126351 VL 47
126352 IS 6
126353 BP 793
126354 EP 814
126355 PG 22
126356 SC Computer Science, Information Systems
126357 GA 891MT
126358 UT ISI:000226585900010
126359 ER
126360 
126361 PT J
126362 AU Wang, ZY
126363    Zhou, BX
126364    Xu, H
126365    Ni, JS
126366 TI Research on the crystallization of melt-spinning nanocomposite rare
126367    earth permanent magnets
126368 SO RARE METAL MATERIALS AND ENGINEERING
126369 DT Review
126370 DE crystallization; nanocomposite magnets; alloy elements; annealing
126371    sequence
126372 ID AMORPHOUS PHASE; ALLOYS; FE; MICROSTRUCTURE; EVOLUTION; CR; ND; CO;
126373    SOLIDIFICATION; ENHANCEMENT
126374 AB The crystallization of amorphous alloys predestinates the
126375    microstructure and magnetic properties of the melt spun nanocomposite
126376    rare earth permanent magnets. Obeying the nucleation regularity, the
126377    model of the crystallization of amorphous alloys,namely, continually
126378    and explosively nucleation and growth. is put forward. The main factors
126379    affecting it were analyzed, such as melt-spun speed, the addition of
126380    alloys and the annealing sequence with or without the applied magnetic
126381    field, Especially, the re-distribution of the alloys during
126382    crystallization. On the bases, the ideas to gain ideal grain structure
126383    were discussed, for example, refining the grains by decomposition of
126384    metastable phase.
126385 C1 Shanghai Univ, Inst Mat Res, Shanghai 200072, Peoples R China.
126386 RP Wang, ZY, Shanghai Univ, Inst Mat Res, Shanghai 200072, Peoples R China.
126387 EM zhanyong@sina.com
126388 CR BAUER J, 1996, J APPL PHYS, V80, P1667
126389    BRANAGAN DJ, 1996, J ALLOY COMPD, V244, P40
126390    BRANAGAN DJ, 1996, J ALLOY COMPD, V245, P15
126391    CHANG WC, 2002, J APPL PHYS 3, V91, P8171
126392    CHIRIAC H, 1999, J MAGN MAGN MATER, V202, P22
126393    COEHOORN R, 1989, J MAGN MAGN MATER, V80, P101
126394    CROAT JJ, 1984, J APPL PHYS, V55, P2078
126395    CUI BZ, 2002, J APPL PHYS 3, V91, P7881
126396    GABAY AM, 1996, J ALLOY COMPD, V245, P119
126397    HIROSAWA S, 2002, J MAGN MAGN MATER, V239, P424
126398    HIROSAWA S, 2003, SCRIPTA MATER, V48, P839
126399    HONO K, 2002, PROG MATER SCI, V47, P621
126400    KOJIMA A, 2001, SCRIPTA MATER, V44, P1383
126401    LEWIS LH, 1998, J ALLOY COMPD, V270, P265
126402    LI SD, 2002, J PHYS D APPL PHYS, V35, P732
126403    OHKUBO T, 2001, SCRIPTA MATER, V44, P971
126404    PING DH, 1998, J APPL PHYS, V83, P7769
126405    PING DH, 1999, ACTA MATER, V47, P4641
126406    PING DH, 1999, IEEE MAG MAG J, V35, P3265
126407    PING DH, 2002, J MAGN MAGN MATER, V239, P437
126408    SANKARANARAYANAN VK, 2001, APPL SURF SCI, V182, P381
126409    SANO N, 1998, MAT SCI ENG A-STRUCT, V250, P146
126410    SKOMSKI R, 1994, J APPL PHYS 2, V76, P7059
126411    UEHARA M, 1998, J MAGN MAGN MATER 2, V177, P997
126412    UEHARA M, 1998, NANOSTRUCT MATER, V10, P151
126413    WANG ZC, 2002, J APPL PHYS 3, V91, P7884
126414    WANG ZC, 2002, J APPL PHYS, V91, P3769
126415    WANG ZC, 2003, SCRIPTA MATER, V48, P845
126416    WU YQ, 1999, IEEE T MAGN 2, V35, P3295
126417    WU YQ, 2001, SCRIPTA MATER, V44, P2399
126418    WU YQ, 2001, SCRIPTA MATER, V45, P355
126419    WU YQ, 2002, J APPL PHYS 3, V91, P8174
126420    XIONG XY, 2002, J APPL PHYS, V91, P9308
126421    YANG CJ, 1997, J MAGN MAGN MATER, V166, P243
126422    YANG S, 2002, J ALLOY COMPD, V343, P217
126423    ZHAO TM, 1999, J APPL PHYS, V85, P518
126424 NR 36
126425 TC 1
126426 SN 1002-185X
126427 J9 RARE METAL MAT ENG
126428 JI Rare Metal Mat. Eng.
126429 PD JAN
126430 PY 2005
126431 VL 34
126432 IS 1
126433 BP 1
126434 EP 6
126435 PG 6
126436 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
126437    Engineering
126438 GA 893QG
126439 UT ISI:000226733700001
126440 ER
126441 
126442 PT J
126443 AU Zhao, HF
126444    Zhu, LH
126445    Huang, QW
126446 TI Nanocrystalline WC-10%Co-0.8%VC cemented carbides prepared by spark
126447    plasma sintering
126448 SO RARE METAL MATERIALS AND ENGINEERING
126449 DT Article
126450 DE cemented carbide; nanometer; spark plasma sintering
126451 ID WC
126452 AB The densification mechanism of nanocrystalline WC-10%Co-0.8%VC cemented
126453    carbides prepared by spark plasma sintering (SPS.) was investigated
126454    Their microstructure and mechanical properties were compared with those
126455    of sample prepared by vacuum sintering. The evaporation-solidification,
126456    plastic fluxion and surface diffusion during SPS are enhanced by the
126457    application of a special DC pulse voltage, which accelerates
126458    densification at low temperature and restrains grain growth. The
126459    average grain size of WC prepared by SPS at 1200degreesC for 5 min. is
126460    less than 100 nm Compared with the vacuum sintered sample, spark plasma
126461    sintered samples have higher density and hardness. For example, the SPS
126462    sample prepared at 1300degreesC for 3 min has a relative density of
126463    97.7%; as compared with the 92.8%. t of t a sample vacuum sintered at
126464    the same temperature for 30 min Furthermore its HV30 increases by 16.4%
126465    When the SPS temperature decreases to 1200degreesC, HV30 and K-1C
126466    increase by 15.4% and 12.2%, respectively, in spite of relatively lower
126467    density.
126468 C1 Shanghai Univ, Sch Mat Sci & Engn, Dept Mat Engn, Shanghai 200072, Peoples R China.
126469    Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
126470 RP Zhao, HF, Shanghai Univ, Sch Mat Sci & Engn, Dept Mat Engn, Shanghai
126471    200072, Peoples R China.
126472 EM zhaohaifeng88888@sohu.com
126473 CR GILLE G, 2000, INT J REFRACT MET H, V18, P87
126474    HUANG PY, 1997, POWDER METALLURGY M
126475    LI W, 1999, J INORG MATER, V14, P985
126476    LI WX, 1998, VACUUM ELECT J, V1, P17
126477    MILMAN YV, 1999, INT J REFRACT MET H, V17, P39
126478    PORAT R, 1996, NANOSTRUCT MATER, V7, P429
126479    RAJENDRA K, 1999, INT J POWDER METAL J, V35, P27
126480    SATOSHI KS, 2001, J JAPAN SOC POWDER J, V49, P299
126481    YAMAZAKI K, 1996, J MATER PROCESS TECH, V56, P955
126482    YAO Z, 1998, MPR, V53, P26
126483    ZHANG J, 2000, CLIN J SPORT MED, V10, P15
126484    ZHU LH, 2004, RARE METAL MAT ENG, V33, P349
126485 NR 12
126486 TC 1
126487 SN 1002-185X
126488 J9 RARE METAL MAT ENG
126489 JI Rare Metal Mat. Eng.
126490 PD JAN
126491 PY 2005
126492 VL 34
126493 IS 1
126494 BP 82
126495 EP 85
126496 PG 4
126497 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
126498    Engineering
126499 GA 893QG
126500 UT ISI:000226733700018
126501 ER
126502 
126503 PT J
126504 AU Ning, W
126505    Chen, F
126506    Mao, BZ
126507    Li, Q
126508    Liu, ZX
126509    Guo, ZJ
126510    He, ZH
126511 TI N-acetylchitooligosaccharides elicit rice defence responses including
126512    hypersensitive response-like cell death, oxidative burst and defence
126513    gene expression
126514 SO PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY
126515 DT Article
126516 DE cell death; N-acetylchitooligosacchirides; defence activation;
126517    hypersensitive response; Oryza sativa; Magnaporthe grisea
126518 ID HIGH-AFFINITY BINDING; SYSTEMIC ACQUIRED-RESISTANCE; PHENYLALANINE
126519    AMMONIA-LYASE; DISEASE RESISTANCE; PLASMA-MEMBRANE; PHYTOALEXIN
126520    PRODUCTION; CHITIN OLIGOSACCHARIDES; MAGNAPORTHE-GRISEA; BIOTIC
126521    ELICITOR; NADPH OXIDASE
126522 AB Rice, a monocotyledonous model plant, can be used to dissect the
126523    molecular mechanism of plant defence activation in cereal crops. In the
126524    present work, we investigated acetylchitooligosaccharide (COS)-mediated
126525    defence activation in rice. COS strongly induced cell death and defence
126526    gene expression in rice suspension cells in a dose- and degree of
126527    polymerization-dependent manner. COS treatment could also induce
126528    risible cell death on rice leaves. Rapid production of H2O2 was
126529    observed preceding cell death in the COS-stimulated rice cells. The
126530    H2O2 generation and consequential cell death could be blocked by
126531    diphenylene iodonium, indicating that the COS-mediated oxidative burst
126532    depends on an NADPH oxidase. The rice defence-related genes, RCH10 and
126533    PAL were strongly induced by COS, and OsCatB was first repressed and
126534    when induced by COS. Consequentially, rice disease resistance was
126535    enhanced by COS against the blast fungus. Taken together, these results
126536    strongly suggested that COS activates the rice defence responses via a
126537    mechanism similar to the hypersensitive response involved in the
126538    plant-microbe interactions. Our study shows the feasibility of this
126539    system to dissect elicitor-mediated activation of non-specific defence
126540    in rice. (C) 2004 Elsevier Ltd. All fights reserved.
126541 C1 Chinese Acad Sci, Shanghai Inst Biol Sci, SHARF, Shanghai 200032, Peoples R China.
126542    Chinese Acad Sci, Shanghai Inst Biol Sci, Shanghai Inst Plant Physiol & Ecol, Natl Lab Plant Mol Genet, Shanghai 200032, Peoples R China.
126543    Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China.
126544    Zhejiang Univ, Inst Biotechnol, Hangzhou 310029, Peoples R China.
126545 RP He, ZH, Chinese Acad Sci, Shanghai Inst Biol Sci, SHARF, Shanghai
126546    200032, Peoples R China.
126547 EM zhe@iris.sipp.ac.cn
126548 CR ALVAREZ ME, 1998, CELL, V92, P773
126549    BARBER MS, 1989, PHYSIOL MOL PLANT P, V34, P3
126550    BAUREITHEL K, 1994, J BIOL CHEM, V269, P17931
126551    CHEN ZX, 1993, SCIENCE, V262, P1883
126552    DAY RB, 2001, PLANT PHYSIOL, V126, P1162
126553    DAY RB, 2003, BBA-GENE STRUCT EXPR, V1625, P261
126554    FELIX G, 1993, PLANT J, V4, P307
126555    GRANT M, 1999, CURR OPIN PLANT BIOL, V2, P312
126556    GREENBERG JT, 1994, CELL, V77, P551
126557    HADWIGER LA, 1994, MOL PLANT MICROBE IN, V7, P531
126558    HE ZH, 2000, MOL GEN GENET, V264, P2
126559    HE ZH, 2000, SCIENCE, V288, P2360
126560    INUI H, 1997, BIOSCI BIOTECH BIOCH, V61, P975
126561    ITO Y, 1997, PLANT J, V12, P347
126562    KELLER T, 1998, PLANT CELL, V10, P255
126563    KIKUYAMA M, 1997, PLANT CELL PHYSIOL, V38, P902
126564    KIM YS, 2000, PLANT PHYSIOL, V123, P905
126565    KUCHITSU K, 1993, PROTOPLASMA, V174, P79
126566    KUCHITSU K, 1995, PROTOPLASMA, V188, P138
126567    KUCHITSU K, 1997, PLANT CELL PHYSIOL, V38, P1012
126568    LAMB C, 1997, ANNU REV PLANT PHYS, V48, P251
126569    LEVINE A, 1994, CELL, V79, P583
126570    LOW PS, 1986, ARCH BIOCHEM BIOPHYS, V249, P472
126571    MINAMI E, 1996, PLANT CELL PHYSIOL, V37, P563
126572    MONTESANO M, 2003, MOL PLANT PATHOL, V4, P73
126573    MORRIS SW, 1998, MOL PLANT MICROBE IN, V11, P643
126574    MULLER J, 2000, PLANT PHYSIOL, V124, P733
126575    NAKASHITA H, 2002, PLANT CELL PHYSIOL, V43, P823
126576    NISHIZAWA Y, 1999, PLANT MOL BIOL, V39, P907
126577    NOJIRI H, 1996, PLANT PHYSIOL, V110, P387
126578    OKADA M, 2002, PLANT CELL PHYSIOL, V43, P505
126579    PETERHANSEL C, 1997, PLANT CELL, V9, P1397
126580    RAMONELL KM, 2002, MOL PLANT PATHOL, V3, P301
126581    REN YY, 1992, PLANT PHYSIOL, V99, P1169
126582    RICHTER TE, 2000, PLANT MOL BIOL, V42, P195
126583    RYALS JA, 1996, PLANT CELL, V8, P1809
126584    RYERSON DE, 1996, PLANT CELL, V8, P393
126585    SAGI M, 2001, PLANT PHYSIOL, V126, P1281
126586    SIMONPLAS F, 2002, PLANT J, V31, P137
126587    TADA Y, 2001, MOL PLANT MICROBE IN, V14, P477
126588    TAKAHASHI H, 1997, PLANT J, V11, P993
126589    THORDALCHRISTENSEN, 1997, PLANT J, V11, P1187
126590    TSUKADA K, 2002, PHYSIOL PLANTARUM, V116, P373
126591    VALENT B, 1991, GENETICS, V127, P87
126592    VANDER P, 1998, PLANT PHYSIOL, V118, P1353
126593    YAMADA A, 1993, BIOSCI BIOTECH BIOCH, V57, P405
126594    YAMAGUCHI T, 2000, PLANT CELL, V12, P817
126595    ZHANG K, 2004, INT J SOFTW ENG KNOW, V14, P1
126596    ZHU Q, 1991, MOL GEN GENET, V226, P289
126597    ZHU Q, 1995, PLANT MOL BIOL, V29, P535
126598 NR 50
126599 TC 0
126600 SN 0885-5765
126601 J9 PHYSIOL MOLEC PLANT PATHOL
126602 JI Physiol. Mol. Plant Pathol.
126603 PD MAY
126604 PY 2004
126605 VL 64
126606 IS 5
126607 BP 263
126608 EP 271
126609 PG 9
126610 SC Plant Sciences
126611 GA 893BY
126612 UT ISI:000226695500005
126613 ER
126614 
126615 PT J
126616 AU Wu, BF
126617    Xiao, E
126618    Hong, Y
126619 TI The spectral radius of trees on k pendant vertices
126620 SO LINEAR ALGEBRA AND ITS APPLICATIONS
126621 DT Article
126622 DE graph; tree; pendant vertex; spectral radius
126623 AB In this paper we consider the following problem: Of all trees of order
126624    n with k pendant vertices (n, k fixed), which achieves the maximal
126625    spectral radius?
126626    We show that the maximal spectral radius is obtained uniquely at
126627    T-n,T-k, where T-n,T-k is a tree obtained from a star K-1,K-k and k
126628    paths of almost equal lengths by joining each pendant vertex of K-1,K-k
126629    to an end vertex of one path. We also discuss the spectral radius of
126630    T-n,T-k and get some results. (C) 2004 Elsevier Inc. All rights
126631    reserved.
126632 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
126633    E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China.
126634 RP Wu, BF, Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples
126635    R China.
126636 EM wu_baofeng@yahoo.com.cn
126637    enry2000@163.net
126638    yhong@math.ecnu.edu.cn
126639 CR BERMAN A, 1979, NONNEGATIVE MATRICES
126640    CVETKOVIC D, 1997, EIGENSPACES GRAPHS
126641    GUO JM, 2001, LINEAR ALGEBRA APPL, V329, P1
126642    HOFMEISTER M, 1997, LINEAR ALGEBRA APPL, V260, P46
126643    LI Q, 1979, ACTA MATH APPL SINIC, V2, P167
126644    NEUMAIER A, 1982, LINEAR ALGEBRA APPL, V46, P9
126645    SCHWENK AJ, 1978, SELECTED TOPICS GRAP, P307
126646    XU GH, 1997, COMBINATORIES GRAPH
126647 NR 8
126648 TC 4
126649 SN 0024-3795
126650 J9 LINEAR ALGEBRA APPL
126651 JI Linear Alg. Appl.
126652 PD JAN 15
126653 PY 2005
126654 VL 395
126655 BP 343
126656 EP 349
126657 PG 7
126658 SC Mathematics, Applied
126659 GA 891XE
126660 UT ISI:000226613500020
126661 ER
126662 
126663 PT J
126664 AU Zhang, JC
126665    Zhang, YF
126666    Gao, SX
126667    Jing, C
126668 TI Effect of mean ion size and spatial spin disorders for
126669    (La1-xYx)(2/3)Ca1/3MnO3 manganites
126670 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
126671 DT Article
126672 DE ionic size; CMR; (La1-xYx)(2/3)Ca1/3MnO3; spatial-spin disorders
126673 ID DOPED MANGANESE PEROVSKITES; COLOSSAL MAGNETORESISTANCE; TEMPERATURE
126674    MAGNETORESISTANCE; TRANSPORT-PROPERTIES; DOUBLE EXCHANGE; FILMS; GLASS;
126675    RESISTIVITY; LAMNO3; STATE
126676 AB The structure and transport properties of perovskite
126677    (La1-xYx)(2/3)Ca1/3MnO3 (0 less than or equal to x less than or equal
126678    to 0.3) systems are systematically investigated. It is found that, all
126679    the specimens show a single-phase structure and reveal a direct
126680    relationship between the Curie temperature T-c and the average ionic
126681    radius <r(A)> of La site. With increasing Y3+ doped content, the
126682    metal-insulator transition temperature T-M1 (M-I) shifts to lower
126683    temperature. While the relevant resistivity peak pp is sharp increased,
126684    for the specimens with large doping content, x = 0.3: it has enhanced
126685    eight orders of magnitudes larger than the non-doped samples (x = 0.0).
126686    At high concentration area, that, is to say. when x > 0.1, magnetic
126687    studies show a gradual increase of antiferromagnetic interaction with
126688    an increase of x. ultimately leading to a spatial-spin disorders, that,
126689    is, spin-glass-like state for x = 0.2 and x = 0.3 compounds at about 35
126690    K. The results show that it, has connected a reduction of T-c and an
126691    increase in magnetoresistance with a decrease in the microstructural
126692    Mn-O-Mn bond angle.
126693 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
126694 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
126695 EM jczhang@staff.shu.edu.cn
126696 CR ANDERSON PW, 1955, PHYS REV, V100, P675
126697    BALCELLS LL, 1998, J PHYS-CONDENS MAT, V10, P1883
126698    CAI JW, 1997, APPL PHYS LETT, V71, P1727
126699    CHEN X, 1999, J APPL PHYS, V86, P4534
126700    COEY JMD, 1999, ADV PHYS, V48, P167
126701    DAI DS, 1997, PROGR PHYSICS, V17, P201
126702    DEGENNES PG, 1960, PHYS REV, V118, P141
126703    DETERESA JM, 1996, PHYS REV LETT, V76, P3392
126704    FONTCUBERTA J, 1996, PHYS REV LETT, V76, P1122
126705    GARCIAMUNOZ JL, 1997, PHYS REV B, V55, P668
126706    GONG GQ, 1995, APPL PHYS LETT, V67, P1783
126707    GOODENOUGH JB, 1997, J APPL PHYS 2B, V81, P5330
126708    HWANG HY, 1995, PHYS REV B, V52, P15046
126709    HWANG HY, 1995, PHYS REV LETT, V75, P914
126710    HWANG HY, 1996, PHYS REV LETT, V77, P2041
126711    JAIME M, 1999, PHYS REV B, V60, P1028
126712    JIN S, 1994, J APPL PHYS 2, V76, P6929
126713    JIN S, 1994, SCIENCE, V264, P413
126714    KHAZENI K, 1996, J PHYS-CONDENS MAT, V8, P7723
126715    LI XW, 1997, APPL PHYS LETT, V71, P1124
126716    MAHENDIRAN R, 1996, PHYS REV B, V53, P3348
126717    MILLIS AJ, 1996, PHYS REV LETT, V77, P175
126718    MOORJANI K, 1984, MAGNETIC GLASSES, V6, P181
126719    MOORJANI K, 1984, METHODS PHENOMENA, V6, P337
126720    MORGOWNIK AFJ, 1981, PHYS REV B, V24, P5277
126721    PRADHAN AK, 2000, APPL PHYS LETT, V76, P763
126722    RAVINDRANATH V, 2001, PHYS REV B, V63
126723    TERAI T, 1998, PHYS REV B, V58, P14908
126724    TOMIOKA Y, 1995, PHYS REV LETT, V74, P5108
126725    VOLHELMHOLT R, 1993, PHYS REV LETT, V71, P2331
126726    YUAN SL, 2000, APPL PHYS LETT, V77, P4398
126727    ZENER C, 1951, PHYS REV, V82, P403
126728 NR 32
126729 TC 1
126730 SN 0217-9792
126731 J9 INT J MOD PHYS B
126732 JI Int. J. Mod. Phys. B
126733 PD OCT 30
126734 PY 2004
126735 VL 18
126736 IS 26
126737 BP 3451
126738 EP 3464
126739 PG 14
126740 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
126741 GA 893OD
126742 UT ISI:000226728200008
126743 ER
126744 
126745 PT J
126746 AU Chou, KC
126747    Li, Q
126748    Lin, Q
126749    Jiang, LJ
126750    Xu, KD
126751 TI Kinetics of absorption and desorption of hydrogen in alloy powder
126752 SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
126753 DT Article
126754 DE hydrogen storage materials; hydrogen absorption/desorption;
126755    Mg1.95Ag0.05Ni and LaNiMg17 alloys
126756 ID HYDRIDING COMBUSTION SYNTHESIS; MG-NI ALLOYS; STORAGE PROPERTIES;
126757    SORPTION KINETICS
126758 AB A new model for predicting the reacted fraction of
126759    hydriding/dehydriding (H/D) in powder hydrogen storage materials has
126760    been developed, which offers an analytic form expressing the reacted
126761    fraction of hydrogen absorption/desorption (A/D) as a function of time,
126762    temperature and pressure explicitly. Therefore it is simple and
126763    practical. Besides, an important new concept, so called the
126764    "characteristic absorption/desorption time" has been introduced that
126765    greatly simplifies the formulae and offers some sigificant physical
126766    meaning that might be useful for theoretical discussion in future. The
126767    application of this new model to Mg1.95Ag0.05Ni and LaNiMg17 alloys
126768    indicates that this new model works very well. (C) 2004 International
126769    Association for Hydrogen Energy. Published by Elsevier Ltd. All rights
126770    reserved.
126771 C1 Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China.
126772    Shanghai Univ, Sch Mat Sci, Shanghai 200072, Peoples R China.
126773    Gen Res Inst NonFerrous Met, Beijing 100088, Peoples R China.
126774 RP Chou, KC, Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083,
126775    Peoples R China.
126776 EM kcc@public.bta.net.cn
126777 CR ALBERTY RA, 1987, PHYSL CHEM
126778    BARKHORDARIAN G, 2003, SCRIPTA MATER, V49, P213
126779    BOBET JL, 2002, J ALLOY COMPD, V336, P292
126780    DOUGLASS DL, 1975, MET T A, V6, P2179
126781    FANG SS, 1999, J ALLOY COMPD, V293, P10
126782    FERNANDEZ GE, 1998, INT J HYDROGEN ENERG, V23, P1193
126783    GERARD N, 1992, HYDROGEN INTERMETALL, V2, CH4
126784    HUOT J, 1999, J ALLOY COMPD, V293, P495
126785    KOHNO T, 2000, J ALLOY COMPD, V311, L5
126786    LI LQ, 2001, J ALLOY COMPD, V316, P118
126787    LI Q, 2004, J ALLOY COMPD, V373, P122
126788    LI QA, 2004, INT J HYDROGEN ENERG, V29, P843
126789    LIANG G, 2000, J ALLOY COMPD, V305, P239
126790    MARTIN M, 1996, J ALLOY COMPD, V238, P193
126791    MING L, 1999, J ALLOY COMPD, V283, P146
126792    YIN JT, 2001, MATER TRANS, V42, P712
126793 NR 16
126794 TC 5
126795 SN 0360-3199
126796 J9 INT J HYDROGEN ENERG
126797 JI Int. J. Hydrog. Energy
126798 PD MAR
126799 PY 2005
126800 VL 30
126801 IS 3
126802 BP 301
126803 EP 309
126804 PG 9
126805 SC Physics, Atomic, Molecular & Chemical; Energy & Fuels; Environmental
126806    Sciences
126807 GA 893BX
126808 UT ISI:000226695400011
126809 ER
126810 
126811 PT J
126812 AU Guo, JM
126813    Weng, XC
126814    Wu, H
126815    Li, QH
126816    Bi, KS
126817 TI Antioxidants from a Chinese medicinal herb - Psoralea corylifolia L.
126818 SO FOOD CHEMISTRY
126819 DT Article
126820 DE antioxidant activity; Psoralea corylifolia L.; bakuchiol; psoralen;
126821    isopsoralen; corylifolin; corylin; psoralidin
126822 ID SEEDS; FOOD
126823 AB The powder and extracts of Psoralea corylifolia L. were tested in lard
126824    at 100 degreesC by using the oxidative stability instrument (OSI) and
126825    were found to have strong antioxidant effects. Six compounds,
126826    bakuchiol, psoralen, isopsoralen, corylifolin, corylin and psoralidin
126827    were isolated from the herb and identified by UV, IR, Mass, H-1 and
126828    C-13 NMR spectra and melting point. Their antioxidant activities were
126829    investigated individually and compared with butylated hydroxytoluene
126830    (BHT) and alpha-tocopherol by the OSI at 100 degreesC. The results
126831    showed that bakuchiol, corylifolin, corylin and psoralidin had strong
126832    antioxidant activities, and especially psoralidin (stronger antioxidant
126833    property than BHT), but psoralen and isopsoralen had no antioxidant
126834    activities at 0.02% and 0.04% levels. The antioxidant activities of the
126835    compounds decrease in the following order: Psoralidin > BHT >
126836    alpha-tocopherol > bakuchiol > corylifolin > corylin > isopsoralen
126837    similar to psoralen. (C) 2004 Elsevier Ltd. All rights reserved.
126838 C1 Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China.
126839    Shenyang Pharmaceut Univ, Sch Pharm, Shenyang 110016, Peoples R China.
126840 RP Weng, XC, Shanghai Univ, Sch Life Sci, 99 Shangda Rd, Shanghai 200436,
126841    Peoples R China.
126842 EM weng_xinchu@sina.com
126843 CR AMES BN, 1983, SCIENCE, V221, P1256
126844    BAARDSETH P, 1989, FOOD ADDIT CONTAM, V6, P201
126845    DUAN S, 1998, FOOD CHEM, V61, P101
126846    EDWIN N, 1996, FOOD CHEMISTRY, V57, P51
126847    EDWIN NF, 1996, J AGR FOOD CHEM, V44, P131
126848    GRICE HC, 1986, FOOD CHEM TOXICOL, V24, P1127
126849    GU LW, 2001, FOOD CHEM, P299
126850    GUPTA S, 1990, PHYTOCHEMISTRY, V29, P2371
126851    ITO N, 1983, J NATL CANCER I, V70, P343
126852    ITO N, 1986, FOOD CHEM TOXICOL, V24, P1099
126853    KANNER J, 1991, J AGR FOOD CHEM, V39, P1017
126854    KHASTGIR HN, 1961, TETRAHEDRON, V14, P275
126855    KOTIYAL JP, 1992, B MEDICOETNOBOTANIC, V13, P209
126856    LABBE C, 1996, PHYTOCHEMISTRY, V62, P217
126857    MEHTA G, 1973, TETRAHEDRON, V29, P1119
126858    NAMIKI M, 1990, CRIT REV FOOD SCI, V29, P273
126859    PENG G, 1996, J CHINESE MED MAT, V19, P563
126860    SHAHIDI F, 1992, CRIT REV FOOD SCI, V32, P67
126861    TSUDA T, 1994, J AGR FOOD CHEM, V42, P248
126862    WALL ME, 1988, J NAT PRODUCTS, V51, P1148
126863    WANG DX, 1999, ELECTROPHORESIS, V20, P1895
126864    WANG W, 2000, FOOD CHEM, V71, P45
126865    WENG XC, 1993, J ZHENGZHOU GRAIN CO, V3, P20
126866    WICHI HP, 1988, FOOD CHEM TOXICOL, V26, P717
126867    ZHU DY, 1979, ACTA PHARMACOL SINIC, V14, P605
126868    ZHU YP, 1998, CHINESE MAT MED CHEM, P609
126869 NR 26
126870 TC 2
126871 SN 0308-8146
126872 J9 FOOD CHEM
126873 JI Food Chem.
126874 PD JUN
126875 PY 2005
126876 VL 91
126877 IS 2
126878 BP 287
126879 EP 292
126880 PG 6
126881 SC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics
126882 GA 891GV
126883 UT ISI:000226570200013
126884 ER
126885 
126886 PT J
126887 AU Ma, ZY
126888    Zhu, JM
126889    Zheng, CL
126890 TI Solitary wave and periodic wave solutions for the relativistic Toda
126891    lattices
126892 SO COMMUNICATIONS IN THEORETICAL PHYSICS
126893 DT Article
126894 DE tanh-method; solitary wave and periodic wave solutions;
126895    differential-difference equation; Toda lattice
126896 ID NOVIKOV-VESELOV EQUATION; DIFFERENCE EQUATIONS; COHERENT STRUCTURES;
126897    GENERAL-SOLUTION; SYSTEM; EXCITATIONS; SOLITONS; DROMION; PEAKON
126898 AB In this work, an adaptation of the tanh/tan-method that is discussed
126899    usually in the nonlinear partial differential equations is presented to
126900    solve nonlinear polynomial differential-difference equations. As a
126901    concrete example. several solitary wave and periodic wave solutions for
126902    the chain which is related to the relativistic Toda lattice are
126903    derived. Some systems of the differential-difference equations that can
126904    be solved using our-approach are listed and a discussion is given in
126905    conclusion.
126906 C1 Lishui Univ, Dept Math & Phys, Lishui 323000, Peoples R China.
126907    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
126908 RP Ma, ZY, Lishui Univ, Dept Math & Phys, Lishui 323000, Peoples R China.
126909 EM ma-zhengyi@163.com
126910 CR ABLOWITZ MJ, 1975, J MATH PHYS, V16, P598
126911    ABLOWITZ MJ, 1976, STUD APPL MATH, V55, P213
126912    ABLOWITZ MJ, 1977, STUD APPL MATH, V57, P1
126913    BALDWIN D, 2003, SI0312004 ARXIV NLIN
126914    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
126915    CARDNER CS, 1967, PHYS REV LETT, V19, P1095
126916    FAN EG, 2000, ACTA PHYS SIN-CH ED, V49, P1409
126917    FAN EG, 2002, PHYS LETT A, V295, P280
126918    FAN EG, 2002, PHYS LETT A, V305, P383
126919    FERMI E, 1965, COLLECTED PAPERS ENR, P978
126920    FU ZT, 2001, PHYS LETT A, V290, P72
126921    GU CH, 1987, LETT MATH PHYS, V13, P179
126922    HIROTA R, 1981, PHYS LETT A, V85, P407
126923    KAJIWARA K, 1991, J MATH PHYS, V32, P506
126924    LIU SK, 2001, ACTA PHYS SINICA, V51, P718
126925    LIU SK, 2001, PHYS LETT A, V289, P290
126926    LOU SY, 2000, PHYS LETT A, V277, P94
126927    LOU SY, 2002, PHYS SCRIPTA, V65, P7
126928    LU J, 2002, ACTA PHYS SINICA, V51, P1448
126929    PARKES EJ, 2002, PHYS LETT A, V280, P295
126930    SURIS YB, 1997, J PHYS A-MATH GEN, V30, P1745
126931    SURIS YB, 2001, MIURA TRANSFORMATION
126932    TANG XY, 2002, PHYS REV E, V66, P46601
126933    TODA M, 1981, THEORY NONLINEAR LAT
126934    VAKHNENKO VA, 1992, J PHYS A-MATH GEN, V25, P4181
126935    VAKHNENKO VO, 1998, NONLINEARITY, V11, P1457
126936    WAHLQUIST HD, 1971, PHYS LETT, V31, P1386
126937    WANG ML, 1995, PHYS LETT A, V199, P169
126938    XIA TC, 2001, CHINESE PHYS, V10, P694
126939    XU GQ, 2002, ACTA PHYS SIN-CH ED, V51, P946
126940    ZHANG JF, 2001, CHINESE PHYS, V10
126941    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P448
126942    ZHENG CL, 2002, ACTA PHYS SIN-CH ED, V51, P2426
126943    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
126944    ZHENG CL, 2002, COMMUN THEOR PHYS, V38, P653
126945    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
126946    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P783
126947    ZHENG CL, 2003, CHINESE PHYS, V12, P11
126948    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P261
126949    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P9
126950    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
126951    ZHENG Y, 2000, ACTA PHYS SINICA, V49, P1
126952 NR 42
126953 TC 0
126954 SN 0253-6102
126955 J9 COMMUN THEOR PHYS
126956 JI Commun. Theor. Phys.
126957 PD JAN 15
126958 PY 2005
126959 VL 43
126960 IS 1
126961 BP 27
126962 EP 30
126963 PG 4
126964 SC Physics, Multidisciplinary
126965 GA 891GC
126966 UT ISI:000226568300006
126967 ER
126968 
126969 PT J
126970 AU Liu, TY
126971    Zhang, QR
126972    Zhuang, SL
126973 TI First-principles studies on the electronic structures and optical
126974    properties for the PbWO4 crystal containing V-Pb(2-)
126975 SO CHINESE PHYSICS LETTERS
126976 DT Article
126977 ID LEAD TUNGSTATE CRYSTALS; SINGLE-CRYSTALS; ABSORPTION-BAND;
126978    COLOR-CENTERS; ORIGIN
126979 AB The electronic structures, dielectric functions, complex refractive
126980    indices and absorption spectra for a perfect PbWO4 (PWO) crystal and
126981    the PWO crystals containing lead vacancy V-Pb(2-), have been calculated
126982    using a full-potential (linearized) augmented plane-wave (LAPW) + local
126983    orbitals (LO) method with the lattice structure optimized. The peaks of
126984    the absorption spectra corresponding to the electronic transitions have
126985    been studied. The calculated results indicate that the absorption band
126986    of the perfect PWO crystal does not occur in the visible region.
126987    However, the PWO crystal containing has two additional absorption bands
126988    in this region. The two bands can be well decomposed into four
126989    gaussian-shape bands peaking at 350nm, 405nm, 550nm and 670nm,
126990    respectively, which coincide well with the 350nm, 420nm, 550nm and
126991    680nm absorption bands measured in PWO crystals. Therefore, it can be
126992    concluded that the 350nm, 420nm, 550nm and 680nm absorption bands are
126993    related to the existence of V-Pb(2-) in the PWO crystal.
126994 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
126995 RP Liu, TY, Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093,
126996    Peoples R China.
126997 EM liutyyxj@163.com
126998 CR ABRAHAM Y, 2000, PHYS REV B, V62, P1733
126999    ANNENKOV A, 1998, PHYS STATUS SOLIDI A, V170, P47
127000    EPELBAUM BM, 1997, J CRYST GROWTH, V178, P426
127001    FENG XQ, 1997, J INORGANIC MAT, V12, P449
127002    GOUBIN F, 2004, J SOLID STATE CHEM, V177, P89
127003    GRIGORJEVA L, 2000, NUCL INSTRUM METH B, P166
127004    GRIGORJEVA L, 2000, NUCL INSTRUM METHO B, V329
127005    KORZHIK MV, 1996, P INT C IN SCINT THE, P241
127006    LIAO JY, 1997, J INORGANIC MAT, V12, P286
127007    LIN QS, 2001, SOLID STATE COMMUN, V118, P221
127008    LIU TY, 2004, CHINESE PHYS LETT, V21, P1596
127009    LIU TY, 2004, SOLID STATE COMMUN, V132, P169
127010    MOREAU JM, 1996, J ALLOY COMPD, V238, P46
127011    MOREAU JM, 1999, J ALLOY COMPD, V284, P104
127012    NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311
127013    NIKL M, 1997, J APPL PHYS, V82, P5758
127014    NIKL M, 1997, MATER SCI FORUM, V239, P271
127015    SHAO M, 2001, HIGH ENERG PHYS NUC, V25, P1
127016    SHARMA S, 1999, PHYS REV B, V60, P8610
127017    YAO MZ, 2002, ACTA PHYS SINICA, V51, P1
127018    YE XL, 1999, ACTA PHYS SINICA, V48, P10
127019    ZHANG QR, 2003, PHYS REV B, V68
127020    ZHANG QR, 2004, CHINESE PHYS LETT, V21, P1131
127021    ZHANG Y, 1998, PHYS REV B, V57, P12738
127022 NR 24
127023 TC 1
127024 SN 0256-307X
127025 J9 CHIN PHYS LETT
127026 JI Chin. Phys. Lett.
127027 PD FEB
127028 PY 2005
127029 VL 22
127030 IS 2
127031 BP 442
127032 EP 445
127033 PG 4
127034 SC Physics, Multidisciplinary
127035 GA 892YL
127036 UT ISI:000226685800048
127037 ER
127038 
127039 PT J
127040 AU Li, XJ
127041    Hu, GH
127042    Zhou, ZW
127043 TI Variation of velocity profile of jet and its effect on interfacial
127044    stability
127045 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
127046 DT Article
127047 DE free jet; velocity profile; Chebyshev collocation method; interfacial
127048    stability
127049 ID VISCOUS-GAS; INSTABILITY; PIPE
127050 AB Linear stability theory is used to study a double fluid model for a
127051    liquid jet surrounded by a coaxial gas steam. Under the different
127052    pressure gradients for liquid and gas flow, the variation of the
127053    velocity profile in the model and the thickness of the shear layer were
127054    investigated. The effects of such variation on the interfacial
127055    stability were discussed with the application of Chebyshev spectral
127056    collocation method.
127057 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
127058 RP Zhou, ZW, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
127059    200072, Peoples R China.
127060 EM zhwzhou@yc.shu.edu.cn
127061 CR LIN SP, 1990, J FLUID MECH, V218, P641
127062    LIN SP, 1998, J FLUID MECH, V376, P37
127063    MA Z, 1999, APPL MATH MECH-ENGL, V20, P1061
127064    SU HR, 2004, APPL MATH MECH-ENGL, V25, P1323
127065    TAYLOR GI, 1965, SCI PAPERS GI TAYLOR, V3, P952
127066    XIANG XM, 2000, NUMERICAL ANAL SPECT
127067    ZHOU ZW, 1999, 4 INT C SPRAY FORM U, P35
127068 NR 7
127069 TC 0
127070 SN 0253-4827
127071 J9 APPL MATH MECH-ENGL ED
127072 JI Appl. Math. Mech.-Engl. Ed.
127073 PD JAN
127074 PY 2005
127075 VL 26
127076 IS 1
127077 BP 1
127078 EP 6
127079 PG 6
127080 SC Mathematics, Applied; Mechanics
127081 GA 893FC
127082 UT ISI:000226703700001
127083 ER
127084 
127085 PT J
127086 AU Li, MZ
127087    Song, J
127088 TI On the nonlinear Riemann problems for general first elliptic systems in
127089    the plane
127090 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
127091 DT Article
127092 DE Riemann problem; elliptic system; singular integral equation
127093 AB The nonlinear Riemann problem for general systems of the first-order
127094    linear and quasi-linear equations in the plane are considered. It
127095    translates them to singular integral equations and proves the existence
127096    of the solution by means of contract principle or general contract
127097    principle. The known results are generalized.
127098 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
127099    E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China.
127100 RP Li, MZ, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
127101 EM mzhli@public8.sta.net.cn
127102    songjie@ecust.edu.cn
127103 CR DZHURAEV A, 1992, COMPLEX VARIABLES, V18, P109
127104    HOU ZY, 1990, THEORY SINGULAR INTE
127105    LI MZ, 1990, THEORY BOUNDARY VALU
127106    LI MZ, 2002, CHINA ANN MATH A, V23, P13
127107    SONG J, 1997, MODERN MATH MECH, P533
127108    VEKUA IN, 1962, GEN ANAL FUNCTIONS
127109    WOLFERSDORF LV, 1984, MATH NACHR, V116, P89
127110 NR 7
127111 TC 0
127112 SN 0253-4827
127113 J9 APPL MATH MECH-ENGL ED
127114 JI Appl. Math. Mech.-Engl. Ed.
127115 PD JAN
127116 PY 2005
127117 VL 26
127118 IS 1
127119 BP 79
127120 EP 84
127121 PG 6
127122 SC Mathematics, Applied; Mechanics
127123 GA 893FC
127124 UT ISI:000226703700011
127125 ER
127126 
127127 PT J
127128 AU Xu, GQ
127129    Li, ZB
127130 TI Explicit solutions to the coupled KdV equations with variable
127131    coefficients
127132 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
127133 DT Article
127134 DE cn-function method; sn-function method; periodic wave-like solution;
127135    solitary wave-like solution; coupled KdV equations with variable
127136    coefficient
127137 ID SOLITARY WAVE SOLUTIONS; ELLIPTIC FUNCTION EXPANSION; NONLINEAR
127138    EVOLUTION
127139 AB By means of sn-function expansion method and cn-function expansion
127140    method, several kinds of explicit solutions to the coupled KdV
127141    equations with variable coefficients are obtained, which include three
127142    sets of periodic wave-like solutions. These solutions degenerate to
127143    solitary wave-like solutions at a certain limit. Some new solutions are
127144    presented.
127145 C1 Shanghai Univ, Dept Informat Adm, Shanghai 201800, Peoples R China.
127146    E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China.
127147 RP Xu, GQ, Shanghai Univ, Dept Informat Adm, Shanghai 201800, Peoples R
127148    China.
127149 EM xuguiqiong@yahoo.com
127150 CR FAN EG, 1998, PHYS LETT A, V246, P403
127151    FU ZT, 2001, PHYS LETT A, V290, P72
127152    HEREMAN W, 1986, J PHYS A-MATH GEN, V19, P607
127153    HU XB, 1999, PHYS LETT A, V262, P409
127154    LIU SK, 2002, ACTA PHYS SIN-CH ED, V51, P1923
127155    PARKES EJ, 2002, PHYS LETT A, V295, P280
127156    RUAN HY, 2000, ACTA PHYS SIN-CH ED, V49, P177
127157    WANG ML, 1995, PHYS LETT A, V199, P169
127158    WEN SC, 1997, SCI CHINA SER A, V27, P949
127159    XU GQ, 2002, ACTA PHYS SIN-CH ED, V51, P946
127160    YAN ZY, 2000, APPL MATH MECH, V21, P645
127161    ZHANG CC, 2002, J EUR CERAM SOC, V22, P61
127162    ZHANG JF, 2001, ACTA PHYS SIN-CH ED, V50, P1648
127163 NR 13
127164 TC 0
127165 SN 0253-4827
127166 J9 APPL MATH MECH-ENGL ED
127167 JI Appl. Math. Mech.-Engl. Ed.
127168 PD JAN
127169 PY 2005
127170 VL 26
127171 IS 1
127172 BP 101
127173 EP 107
127174 PG 7
127175 SC Mathematics, Applied; Mechanics
127176 GA 893FC
127177 UT ISI:000226703700014
127178 ER
127179 
127180 PT J
127181 AU Zuo, XP
127182    Ji, YH
127183 TI Molecular mechanism of scorpion neurotoxins acting on sodium channels
127184 SO MOLECULAR NEUROBIOLOGY
127185 DT Article
127186 DE scorpion toxin; voltage-gated sodium channel; selectivity; receptor
127187    site; phylogenetic tree
127188 ID ALPHA-LIKE TOXIN; ANDROCTONUS-AUSTRALIS-HECTOR;
127189    LEIURUS-QUINQUESTRIATUS-HEBRAEUS; DEPRESSANT INSECT TOXIN;
127190    BUTHUS-MARTENSII KARSCH; CENTRAL-NERVOUS-SYSTEM;
127191    CENTRUROIDES-SCULPTURATUS; NA+-CHANNELS; CRYSTAL-STRUCTURE;
127192    RECEPTOR-SITES
127193 AB Scorpion toxins that affect sodium channel gating traditionally are
127194    divided into alpha- and beta-classes. They show vast diversity in their
127195    selectivity for phyletic- or isoform-specific sodium channels. This
127196    article discusses the molecular mechanism of the selectivity. Moreover,
127197    a phylogenetic tree of scorpion toxins has been constructed, which,
127198    together with the worldwide distribution of toxins and the
127199    zoogeographic dispersion of the studied genera, offers an insight into
127200    the evolution of diverse scorpion toxins.
127201 C1 Chinese Acad Sci, Shanghai Inst Biol Sci, Key Lab Neurobiol, Inst Physiol, Shanghai, Peoples R China.
127202    Shanghai Univ, Sch Life Sci, Shanghai 200041, Peoples R China.
127203 RP Ji, YH, Chinese Acad Sci, Shanghai Inst Biol Sci, Key Lab Neurobiol,
127204    Inst Physiol, Shanghai, Peoples R China.
127205 EM yhji@server.shcnc.ac.cn
127206 CR BENZINGER GR, 1998, J BIOL CHEM, V273, P80
127207    BLUMENTHAL KM, 2003, CELL BIOCHEM BIOPHYS, V38, P215
127208    CEARD B, 2001, FEBS LETT, V494, P246
127209    CESTELE S, 1997, EUR J BIOCHEM, V243, P93
127210    CESTELE S, 1998, NEURON, V21, P919
127211    CESTELE S, 1999, EUR J NEUROSCI, V11, P975
127212    CESTELE S, 2000, BIOCHIMIE, V82, P883
127213    CHEN H, 2001, J GEN PHYSIOL, V117, P505
127214    CHEN HJ, 2002, EUR J NEUROSCI, V16, P767
127215    CHEN ZG, 2000, CHINESE CHEM LETT, V11, P439
127216    COHEN L, 2004, J BIOL CHEM, V279, P8206
127217    COOK WJ, 2002, PROTEIN SCI, V11, P479
127218    CORONA M, 2003, BBA-PROTEINS PROTEOM, V1649, P58
127219    COURAUD F, 1982, TOXICON, V20, P9
127220    DARBON H, 1991, BIOCHEMISTRY-US, V30, P1836
127221    DELIMA ME, 1989, INSECT BIOCHEM, V19, P413
127222    FET V, 2003, EUSCORPIUS, V4, P1
127223    FROY O, 1999, J BIOL CHEM, V274, P5769
127224    FROY O, 2003, TOXICON, V42, P549
127225    GILLES N, 1999, J NEUROSCI, V19, P8730
127226    GILLES N, 2000, EUR J NEUROSCI, V12, P2823
127227    GORDON D, 1984, BIOCHIM BIOPHYS ACTA, V778, P349
127228    GORDON D, 1987, P NATL ACAD SCI USA, V84, P8682
127229    GORDON D, 1992, BIOCHEMISTRY-US, V31, P7622
127230    GORDON D, 2002, PERSPECTIVES MOL TOX, P215
127231    GORDON D, 2003, EUR J BIOCHEM, V270, P2663
127232    GORDON D, 2003, TOXICON, V41, P125
127233    GOUDET C, 2002, TOXICON, V40, P1239
127234    HAMON A, 2002, EUR J BIOCHEM, V269, P3920
127235    HE XL, 1999, J MOL BIOL, V292, P125
127236    HE XL, 2000, ACTA CRYSTALLOGR D 1, V56, P25
127237    HOUSSET D, 1994, J MOL BIOL, V238, P88
127238    INCEOGLU AB, 2002, EUR J BIOCHEM, V269, P5369
127239    INCEOGLU B, 2001, EUR J BIOCHEM, V268, P5407
127240    JABLONSKY MJ, 1995, J MOL BIOL, V248, P449
127241    KRIMM I, 1999, J MOL BIOL, V285, P1749
127242    LANDON C, 1997, PROTEINS, V28, P360
127243    LEE WT, 1994, BIOCHEMISTRY-US, V33, P2468
127244    LEIPOLD E, 2004, MOL PHARMACOL, V65, P685
127245    LI HM, 1996, J MOL BIOL, V261, P415
127246    LI YJ, 2000, J NEUROSCI RES, V61, P541
127247    LI YJ, 2000, J PEPT RES, V56, P195
127248    LI YJ, 2000, NEUROSCI RES, V38, P257
127249    LOPREATO GF, 2001, P NATL ACAD SCI USA, V98, P7588
127250    LORET EP, 1991, BIOCHEMISTRY-US, V30, P633
127251    MARCOTTE P, 1997, CIRC RES, V80, P363
127252    MEVES H, 1984, J PHYSIOL-PARIS, V79, P185
127253    OLAMENDIPORTUGAL T, 2002, BIOCHEM BIOPH RES CO, V299, P562
127254    OREN DA, 1998, STRUCTURE, V6, P1095
127255    PINTAR A, 1999, J MOL BIOL, V287, P359
127256    POLIKARPOV I, 1999, J MOL BIOL, V290, P175
127257    POSSANI LD, 1999, EUR J BIOCHEM, V264, P287
127258    ROGERS JC, 1996, J BIOL CHEM, V271, P15950
127259    SHICHOR I, 2002, J NEUROSCI, V22, P4364
127260    SHUNYI Z, 2004, J MOL EVOL, V58, P143
127261    TEJEDOR FJ, 1988, P NATL ACAD SCI USA, V85, P8742
127262    THOMSEN WJ, 1989, P NATL ACAD SCI USA, V86, P10161
127263    TUGARINOV V, 1997, BIOCHEMISTRY-US, V36, P2414
127264    WANG CG, 2003, BIOCHEMISTRY-US, V42, P4699
127265    YE JG, 2000, FEBS LETT, V479, P136
127266    ZHAO B, 1992, PLATELETS, V3, P1
127267    ZLOTKIN E, 1985, ARCH BIOCHEM BIOPHYS, V240, P877
127268    ZLOTKIN E, 1991, BIOCHEMISTRY-US, V30, P4814
127269 NR 63
127270 TC 5
127271 SN 0893-7648
127272 J9 MOL NEUROBIOL
127273 JI Mol. Neurobiol.
127274 PD DEC
127275 PY 2004
127276 VL 30
127277 IS 3
127278 BP 265
127279 EP 278
127280 PG 14
127281 SC Neurosciences
127282 GA 889SW
127283 UT ISI:000226463900004
127284 ER
127285 
127286 PT J
127287 AU Zhang, YY
127288    Shen, XJ
127289    Chen, XY
127290 TI Model of polysilicon electro-thermal micro actuator and research of
127291    micro scale effect
127292 SO JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION
127293 DT Article
127294 DE MEMS; electro-thermal micro actuator; micro scale effect; thermal
127295    expansion coefficient
127296 ID CANTILEVER; BEAM; GEL
127297 AB A type of crank beam electro-thermal micro actuator was prescribed.
127298    Mechanical model of the actuator was established, and the static
127299    characteristic was analyzed. Comparing the theoretical analysis with
127300    experimental data, it is found that the thermodynamic character of
127301    material in micro actuator has a different variable regularity
127302    contrasted to that used in macro scale machines. It is the micro scale
127303    effect that results in the deviation between the simulating result and,
127304    experimental results. The thermodynamic expression of polysilicon,
127305    which was fitted by means of the experimental data concerned, was used
127306    to modify the mechanical model. The modified/model, in which the micro
127307    scale thermodynamic characteristic was considered, was more reasonable
127308    and could make the optimal design and control strategies analyzing the
127309    straight-line micro actuator more feasible.
127310 C1 Shanghai Univ, Sch Mech Engn & Automat, Shanghai 200072, Peoples R China.
127311 RP Zhang, YY, Shanghai Univ, Sch Mech Engn & Automat, Shanghai 200072,
127312    Peoples R China.
127313 CR BOCHOBZADEGANI O, 2002, SENSOR ACTUAT A-PHYS, V97, P563
127314    CHEN XY, 2001, P INT C MECH TRANSM, P292
127315    COMTOIS JH, 1997, SENSOR ACTUAT A-PHYS, V58, P19
127316    LEE KB, 1998, SENSOR ACTUAT A-PHYS, V70, P112
127317    LIU C, 1998, MECHATRONICS, V8, P613
127318    MATSUURA T, 2000, SENSOR ACTUAT A-PHYS, V83, P220
127319    MORITA T, 2003, SENSOR ACTUAT A-PHYS, V103, P291
127320    QUE L, 2001, J MICROELECTROMECH S, V10, P247
127321    REYNAERTS D, 1998, MECHATRONICS, V8, P635
127322    ROSSI C, 1999, SENSOR ACTUAT A-PHYS, V74, P211
127323    TABATA O, 2002, SENSOR ACTUAT A-PHYS, V95, P234
127324    TAMAGAWA H, 2000, MAT SCI ENG A-STRUCT, V285, P314
127325    XU W, 1996, PRECIS ENG, V19, P4
127326    YAO K, 2001, SENSOR ACTUAT A-PHYS, V89, P215
127327    ZOU QB, 1999, SENSOR ACTUAT A-PHYS, V78, P212
127328 NR 15
127329 TC 1
127330 SN 1000-2413
127331 J9 J WUHAN UNIV TECHNOL-MAT SCI
127332 JI J. Wuhan Univ. Technol.-Mat. Sci. Edit.
127333 PD NOV
127334 PY 2004
127335 VL 19
127336 SU Suppl. S
127337 BP 59
127338 EP 62
127339 PG 4
127340 SC Materials Science, Multidisciplinary
127341 GA 890PU
127342 UT ISI:000226524100018
127343 ER
127344 
127345 PT J
127346 AU Qiang, G
127347    Song, YF
127348    Qiao, HB
127349    Luo, WL
127350 TI The friction and wear properties of the spherical plain bearings with
127351    self-lubricating composite liner in oscillatory movement
127352 SO JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION
127353 DT Article
127354 DE spherical plain bearing; dry friction; self-lubricating liner; wear
127355    resistant composite; oscillatory tester
127356 AB A test method based on the condition simulation and a friction and wear
127357    test machine featuring in oscillatory movement were set up for
127358    self-lubricating spherical plain hearings (SPB). In the machine, the
127359    condition parameters such as load, angle and frequency of oscillation
127360    and number of test cycles call be properly controlled. The data
127361    relating to the tribological properties of the hearing, in terms of
127362    friction coefficient, linear wear amount, temperature near friction
127363    surface and applied load, can be monitored and recorded simultaneously
127364    during test process by a computerized measuring system of the machine.
127365    Efforts were made to improve the measurement technology of the friction
127366    coefficient in oscillating motion. In result, a well-designed bearing
127367    torque mechanism was developed, which could reveal the relation between
127368    the friction coefficient and the displacement of oscillating angle in
127369    any defined cycle while the curve of friction coefficient vs number of
127370    testing cycles was continuously plotted. The tribological properties
127371    and service life of four kinds of the bearings, i. e, the sample I - IV
127372    with different self-lubricating composite liners, including three kinds
127373    of polytetrafluoroethylene ( PTFE ) fiber weave / epoxy resin composite
127374    liners and a PTFE plastic / copper grid composite liner, were evaluated
127375    by testing, and the wear mechanisms of the liner materials were
127376    analyzed.
127377 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
127378    Shanghai Res Inst Mat, Shanghai, Peoples R China.
127379 RP Qiang, G, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
127380    China.
127381 CR DI BZ, 1999, BEARING, P25
127382    GUO Q, 1993, J SYNTHETIC LUBRICAT, V10, P213
127383    GUO Q, 1994, DEV SELFLUBRICATING
127384    GUO Q, 1996, PROG NAT SCI, V6, P593
127385    GUO Q, 1998, P 1 AS INT C TRIB BE, P443
127386    GUO Q, 2002, WEAR, V249, P924
127387    SLINEY HE, 1978, LUBR C ASLE ASME
127388    TEVRUZ T, 1991, WEAR, V230, P61
127389 NR 8
127390 TC 0
127391 SN 1000-2413
127392 J9 J WUHAN UNIV TECHNOL-MAT SCI
127393 JI J. Wuhan Univ. Technol.-Mat. Sci. Edit.
127394 PD NOV
127395 PY 2004
127396 VL 19
127397 SU Suppl. S
127398 BP 86
127399 EP 91
127400 PG 6
127401 SC Materials Science, Multidisciplinary
127402 GA 890PU
127403 UT ISI:000226524100026
127404 ER
127405 
127406 PT J
127407 AU Liang, XF
127408    Meng, ZY
127409    Wu, WB
127410 TI Effect of acceptor and donor dopants on the dielectric and tunable
127411    properties of barium strontium titanate
127412 SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
127413 DT Article
127414 ID PARAELECTRIC STATE; THIN-FILMS; CERAMICS; CAPACITORS; DEPENDENCE
127415 AB The effects of different concentrations of Mn2+, Mg2+, Al3+, Fe3+,
127416    La3+, and Nb5+ on the dielectric and tunable properties of
127417    Ba0.6Sr0.4TiO3 ceramics were investigated. It was found that doping in
127418    small amounts with acceptor ions such as Mg2+, Fe3+, and Al3+ could
127419    meliorate the dielectric properties clearly. Decrease of dielectric
127420    loss was attributed to the formation of compensating defects
127421    originating from acceptor substitution. It was concluded that the
127422    tunability was linked to both the dielectric constant and the grain
127423    size. A higher figure of merit was obtained by doping the ceramics with
127424    smaller ions of Al and Fe, compared to Ti.
127425 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
127426 RP Meng, ZY, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
127427    China.
127428 EM zymeng@guomai.sh.cn
127429 CR BATLLO F, 1990, FERROELECTRICS, V109, P113
127430    BUESSEM WR, 1966, J AM CERAM SOC, V49, P33
127431    BUSCAGLIA MT, 2001, J AM CERAM SOC, V84, P376
127432    CHANG W, 1998, MATER RES SOC S P, V541, P699
127433    COLE MW, 2000, IEEE ANT PROP SOC AP, V1, A384
127434    COLE MW, 2000, THIN SOLID FILMS, V374, P34
127435    DING YP, 2002, MATER CHEM PHYS, V75, P220
127436    ERKER EG, 2000, IEEE MICROW GUIDED W, V10, P10
127437    GARCIA S, 2001, J ELECTROCERAM, V6, P101
127438    GEYER RG, 1996, ISAF 96 P 10 IEEE IN, V2, P851
127439    HERNER SB, 1993, MATER LETT, V15, P317
127440    HOFMAN W, 1997, THIN SOLID FILMS, V305, P66
127441    ITOH T, 1993, JPN J APPL PHYS 1, V32, P4261
127442    KIM DW, 2002, J AM CERAM SOC, V85, P1169
127443    LI D, 2000, SOLID STATE SCI, V2, P507
127444    LIANG XF, 2003, J INORG MATER, V18, P1240
127445    LIANG XF, 2003, J MAT SCI ENG B, V99, P366
127446    LIOU JW, 1998, J PHYS CONDENS MATT, V10, P1773
127447    MICHIURA N, 1995, J AM CERAM SOC, V78, P1793
127448    MORRISON FD, 2001, J AM CERAM SOC, V84, P531
127449    OUTZOURHIT A, 1995, J MATER RES, V10, P1411
127450    TAKADA T, 1994, J AM CERAM SOC, V77, P1909
127451    WU L, 2000, J AM CERAM SOC, V83, P1713
127452    ZIMMERMANN F, 2001, J EUR CERAM SOC, V21, P2019
127453 NR 24
127454 TC 2
127455 SN 0002-7820
127456 J9 J AMER CERAM SOC
127457 JI J. Am. Ceram. Soc.
127458 PD DEC
127459 PY 2004
127460 VL 87
127461 IS 12
127462 BP 2218
127463 EP 2222
127464 PG 5
127465 SC Materials Science, Ceramics
127466 GA 889PJ
127467 UT ISI:000226454600010
127468 ER
127469 
127470 PT J
127471 AU Ding, YP
127472    Liu, WL
127473    Wu, QS
127474    Wang, XG
127475 TI Direct simultaneous determination of dihydroxybenzene isomers at
127476    C-nanotube-modified electrodes by derivative voltammetry
127477 SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY
127478 DT Article
127479 DE carbon nanotubes; modified electrode; dihydroxybenzenes; derivative
127480    voltammetry
127481 ID PERFORMANCE LIQUID-CHROMATOGRAPHY; GLASSY-CARBON ELECTRODE;
127482    PHARMACEUTICAL PREPARATIONS; CATECHOL DERIVATIVES; PHENOLIC-COMPOUNDS;
127483    BIOSENSOR; PHASE
127484 AB The voltammetric behavior of dihydroxybenzene isomers was studied with
127485    glassy carbon electrodes modified with multi-wall carbon nanotubes. In
127486    0.1 mol L-1 HAc + NaAc buffer solution (pH 5.5), the modified electrode
127487    showed a good electrocatalytic response towards dihydroxybenzenes. The
127488    peak currents increased significantly and their oxidation potentials
127489    shifted negatively. Through a derivative technique, the three oxidation
127490    peaks of dihydroxybenzene isomers can be separated, thus the method can
127491    be applied to direct simultaneous determination without previous
127492    separation. The linear calibration ranges were 2 x 10(-6)-1 X 10(-4)
127493    mol L-1 for hydroquinone and catechol, respectively, and 5 x 10(-6) to
127494    8 X 10(-5) mol L-1 for resorcinol, with detection limits of 6 x 10(-7),
127495    6 x 10(-7) and I X 10(-6) mol L-1, respectively. This method has been
127496    applied to the direct determination of dihydroxybenzene isomers in
127497    artificial wastewater, and the recovery was from 92% to 104%. (C) 2004
127498    Elsevier B.V. All rights reserved.
127499 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
127500    Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
127501 RP Ding, YP, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
127502 EM ypding@mail.shu.edu.cn
127503    qswu@mail.tongji.edu.cn
127504 CR AJAYAN PM, 1999, CHEM REV, V99, P1787
127505    ASAN A, 2003, J CHROMATOGR A, V988, P145
127506    CHEN GN, 2000, TALANTA, V53, P651
127507    CUI H, 1999, J CHROMATOGR A, V855, P171
127508    DECARVALHO RM, 2000, ANAL CHIM ACTA, V420, P109
127509    DEHEER WA, 1995, SCIENCE, V270, P1179
127510    FANG YZ, 1998, CHINESE J ANAL CHEM, V26, P694
127511    FUJINO K, 2003, J CHROMATOGR A, V1012, P169
127512    HIURA H, 1995, ADV MATER, V7, P275
127513    JIAO K, 2000, FRESEN J ANAL CHEM, V367, P667
127514    LI JN, 2001, ANALYST, V126, P2032
127515    LIJIMA S, 1991, NATURE, V354, P56
127516    LUO HX, 2001, ANAL CHEM, V73, P915
127517    MUSAMEH M, 2002, ELECTROCHEM COMMUN, V4, P743
127518    NAGARAJA P, 2001, J PHARMACEUT BIOMED, V25, P417
127519    NAGARAJA P, 2001, TALANTA, V55, P1039
127520    PENNER NA, 2001, J ANAL CHEM+, V56, P93
127521    SOTOMAYOR MDT, 2002, ANAL CHIM ACTA, V455, P215
127522    TSANG SC, 1994, NATURE, V372, P159
127523    VIEIRA IC, 2000, TALANTA, V52, P681
127524    WANG JX, 2001, ELECTROCHIM ACTA, V47, P651
127525    WU QS, 1997, CHIMIA, V51, P539
127526 NR 22
127527 TC 0
127528 SN 0022-0728
127529 J9 J ELECTROANAL CHEM
127530 JI J. Electroanal. Chem.
127531 PD FEB 1
127532 PY 2005
127533 VL 575
127534 IS 2
127535 BP 275
127536 EP 280
127537 PG 6
127538 SC Chemistry, Analytical; Electrochemistry
127539 GA 891CI
127540 UT ISI:000226558500013
127541 ER
127542 
127543 PT J
127544 AU Li, QA
127545    Chou, KC
127546    Xu, KD
127547    Lin, Q
127548    Jiang, LJ
127549    Zhan, F
127550 TI Determination and interpretation of the hydriding and dehydriding
127551    kinetics in mechanically alloyed LaNiMg17 composite
127552 SO JOURNAL OF ALLOYS AND COMPOUNDS
127553 DT Article
127554 DE hydrogen storage alloys; mechanical alloying; hydriding/dehydriding
127555    kinetics; model
127556 ID HYDROGEN STORAGE ALLOYS; COMBUSTION SYNTHESIS; MELT-SPUN; MG;
127557    ABSORPTION; DESORPTION; SYSTEM
127558 AB The hydriding/dehydriding (H/D) rates in the two-phase (alpha-beta)
127559    region of LaNiMg17 were determined and investigated at temperature
127560    ranges from 523 to 623 K under approximately isobaric condition. The
127561    obtained data of H/D rates indicated that the rate-controlling step was
127562    the hydrogen diffusion through the hydride phase. The new model
127563    developed by us has been used to these experiments, from which two
127564    formulae describing the H/D processes are obtained in an explicit
127565    analytic form. The corresponding activation energy is 71000 J/mole H-2
127566    for both processes. It can be seen that the theoretical calculation
127567    consists with the experimental data very well. (C) 2004 Elsevier B.V.
127568    All rights reserved.
127569 C1 Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China.
127570    Shanghai Univ, Shanghai 200072, Peoples R China.
127571    Gen Res Inst NonFerrous Met, Res Ctr Energy Mat & Technol, Beijing 100088, Peoples R China.
127572 RP Chou, KC, Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083,
127573    Peoples R China.
127574 EM kcc@public.bta.net.cn
127575 CR CAI GM, 2003, INT J HYDROGEN ENERG, V28, P509
127576    CHOU KC, IN PRESS INT J HYDRO
127577    DUTTA K, 1990, INT J HYDROGEN ENERG, V15, P341
127578    FERNANDEZ JF, 2002, J ALLOY COMPD, V340, P189
127579    LI Q, 2003, J ALLOY COMPD, V359, P128
127580    LI Q, 2003, J MATER SCI, V38, P1
127581    LI Q, 2003, J RARE EARTH, V21, P337
127582    LI Q, 2004, J ALLOY COMPD, V368, P101
127583    LI Q, 2004, J ALLOY COMPD, V373, P122
127584    LIANG G, 1998, J ALLOY COMPD, V268, P302
127585    MARTIN M, 1996, J ALLOY COMPD, V238, P193
127586    RUDMAN PS, 1983, J LESS-COMMON MET, V89, P93
127587    SPASSOV T, 1998, J ALLOY COMPD, V279, P279
127588    SPASSOV T, 1999, J ALLOY COMPD, V287, P243
127589    SPASSOV T, 2002, J ALLOY COMPD, V334, P219
127590    WANG CS, 1996, INT J HYDROGEN ENERG, V21, P471
127591    YIN JT, 2002, MATER TRANS, V43, P417
127592    ZENG K, 1999, INT J HYDROGEN ENERG, V24, P989
127593    ZHU M, 2002, J ALLOY COMPD, V330, P708
127594 NR 19
127595 TC 1
127596 SN 0925-8388
127597 J9 J ALLOYS COMPOUNDS
127598 JI J. Alloy. Compd.
127599 PD JAN 25
127600 PY 2005
127601 VL 387
127602 IS 1-2
127603 BP 86
127604 EP 89
127605 PG 4
127606 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
127607    Metallurgical Engineering
127608 GA 887BN
127609 UT ISI:000226277400021
127610 ER
127611 
127612 PT J
127613 AU Liu, CL
127614    Li, G
127615    Kuriyama, K
127616    Mizuta, Y
127617 TI Development of a computer program for inhomogeneous modeling using 3-D
127618    BEM with analytical integration and its application to rock slope
127619    stability evaluation
127620 SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES
127621 DT Article
127622 ID 3-DIMENSIONAL ELASTIC ANALYSIS; TRIANGULAR LEAF ELEMENTS
127623 C1 Sojo Univ, Fac Engn, Dept Civil Engn, Kumamoto 8600082, Japan.
127624    Shanghai Univ Sci & Technol, Shandong, Peoples R China.
127625    Yamaguchi Univ, Grad Sch Sci & Technol, Ube, Yamaguchi 7558611, Japan.
127626    Yamaguchi Univ, Fac Engn, Ube, Yamaguchi 7558611, Japan.
127627 RP Mizuta, Y, Sojo Univ, Fac Engn, Dept Civil Engn, Kumamoto 8600082,
127628    Japan.
127629 EM ymizuta@ce.sojo-u.ac.jp
127630 CR CORNET FH, 1984, J GEOPHYS RES, V89, P11527
127631    CROUCH SL, 1983, BOUNDARY ELEMENT MET
127632    HOCKING G, 1976, INT J ROCK MECH MIN, V13, P331
127633    KURIYAMA K, 1993, INT J ROCK MECH MIN, V30, P111
127634    KURIYAMA K, 1995, INT J ROCK MECH MIN, V32, P77
127635    LIU C, 1999, ANAL INTEGRATIONS 3, V115, P7198
127636    MIZUTA Y, 1999, 9 ISRM C PAR, P1163
127637    OTAKA N, 1994, P MMIJ AUSIMM JOINT, P305
127638 NR 8
127639 TC 0
127640 SN 1365-1609
127641 J9 INT J ROCK MECH MINING SCI
127642 JI Int. J. Rock Mech. Min. Sci.
127643 PD JAN
127644 PY 2005
127645 VL 42
127646 IS 1
127647 BP 137
127648 EP 144
127649 PG 8
127650 SC Engineering, Geological; Mining & Mineral Processing
127651 GA 888XP
127652 UT ISI:000226407800010
127653 ER
127654 
127655 PT J
127656 AU Wang, XH
127657    Wang, TJ
127658    Tang, JP
127659    Gu, F
127660 TI Thermal diffusion characteristics of atmosphere-particle two phase flow
127661    in dust storm
127662 SO HEAT AND MASS TRANSFER
127663 DT Article
127664 ID MODEL
127665 AB A model, coupling metrological dynamic model MM5 and dust transport
127666    model, is developed for the atmosphere-particle two phases flow of dust
127667    storm. The simulations of the dust storm events in north China with a
127668    geographic information database are performed using the model, and
127669    represent an overview of dust transport pathways and particles
127670    concentration distribution over the north China. The comparison between
127671    computations and practical observations shows that the simulations
127672    succeed in description of dust storm evolvement and particle transport
127673    behavior. Based on the computations and analysis, the characteristics
127674    of particle transport, especially well-concerning the factor of the
127675    particle thermal diffusion, are studied. A new definition of mass
127676    transfer Grd is put forward to discover the internal principle of
127677    particle thermal diffusion at various atmospheric layers. Several
127678    phenomena, such as thermal diffusion item QT-Grd distribution, and
127679    relationships, Particle Grd probability function, are obtained. The
127680    investigation indicates particle thermal diffusion can be not ignored
127681    in mesoscale atmospheric-particle multiphase flow.
127682 C1 SE Univ, Thermal Energy Engn Inst, Nanjing 210096, Peoples R China.
127683    Shanghai Univ Sci & Technol, Inst Particle & 2 Phase Measurement Technol, Shanghai 200093, Peoples R China.
127684    Nanjing Univ, Dept Atmosphere Sci, Nanjing 210093, Peoples R China.
127685 RP Gu, F, SE Univ, Thermal Energy Engn Inst, Nanjing 210096, Peoples R
127686    China.
127687 EM fangu@seu.edu.cn
127688 CR *NCAR, 2002, PENN STAT 5 GEN MES
127689    ALLEN T, 1981, PARTICLE SIZE MEASUR
127690    ANTHES R, 1994, DESCRIPTION PENN STA
127691    BIRD RB, 2002, TRANSPORT PHENOMENA
127692    BUTLER HJ, 1996, ENVIRON SOFTW, V11, P45
127693    CHEN W, 2002, ATMOS RES, V61, P75
127694    CHERNOVA EA, 1996, J AEROSOL SCI     S1, V27, S285
127695    EPSTEIN PS, 1924, PHYS REV, V23, P710
127696    GANOR E, 1996, J AEROSOL SCI, V27, P824
127697    GOMES L, 1993, ATMOS ENVIRON A-GEN, V27, P2539
127698    GOUDIE AS, 2001, EARTH-SCI REV, V56, P179
127699    KENNARD EH, 1938, KINETIC THEORY GASES, P327
127700    KNIGHT AW, 1995, CATENA, V24, P195
127701    MA CJ, 2001, ATMOS ENVIRON, V35, P2707
127702    REHEIS MC, 2002, GEOCHIM COSMOCHIM AC, V66, P1569
127703    SOO SL, 1989, PARTICULATES CONTINU
127704    TAHSIUNG L, 2001, ATMOS ENVIRON, V35, P5873
127705    TINDALE NW, 1999, DEEP-SEA RES PT II, V46, P1577
127706    WALDMANN L, 1966, AEROSOL SCI, CH6
127707    YAMARTINO RJ, 1992, ATMOS ENVIRON A-GEN, V26, P1493
127708    ZHANG D, 1999, AUTHOR ATMOS ENV, V33, P19
127709 NR 21
127710 TC 0
127711 SN 0947-7411
127712 J9 HEAT MASS TRANSFER
127713 JI Heat Mass Transf.
127714 PD FEB
127715 PY 2005
127716 VL 41
127717 IS 4
127718 BP 306
127719 EP 314
127720 PG 9
127721 SC Mechanics; Thermodynamics
127722 GA 888EO
127723 UT ISI:000226357200003
127724 ER
127725 
127726 PT J
127727 AU Dai, YM
127728    Wang, ZC
127729    Zhao, DY
127730    Song, XL
127731 TI A new high efficient and high accurate Obrechkoff four-step method for
127732    the periodic nonlinear undamped Duffing's equation
127733 SO COMPUTER PHYSICS COMMUNICATIONS
127734 DT Article
127735 DE Obrechkoff method; high-order derivative; multistep method;
127736    second-order initial value problem with periodic solutions; numerical
127737    solution to the Duffing equation
127738 ID INITIAL-VALUE-PROBLEMS; DIFFERENTIAL-EQUATIONS; NUMERICAL-INTEGRATION;
127739    STABLE METHODS
127740 AB Based on the idea of the previous Obrechkoff's two-step method, a new
127741    kind of four-step numerical method with free parameters is developed
127742    for the second order initial-value problems with oscillation solutions.
127743    By using high-order derivatives and apropos first-order derivative
127744    formula, the new method has greatly improved the accuracy of the
127745    numerical solution. Although this is a multistep method, it still has a
127746    remarkably wide interval of periodicity, H-0(2) similar to 16.33. The
127747    numerical test to the well known problem, the nonlinear undamped
127748    Duffing's equation forced by a harmonic function, shows that the new
127749    method gives the solution with four to five orders higher than those by
127750    the previous Obrechkoff's two-step method. The ultimate accuracy of the
127751    new method can reach about 5 x 10(-13), which is much better than the
127752    one the previous method could. Furthermore, the new method shows the
127753    great superiority in efficiency due to a reasonable arrangement of the
127754    structure. To finish the same computational task, the new method can
127755    take only about 20% CPU time consumed by the previous method. By using
127756    the new method, one can find a better 'exact' solution to this problem,
127757    reducing the error tolerance of the one widely used method (10(-11)),
127758    to below 10(-14). (C) 2004 Elsevier B.V. All rights reserved.
127759 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
127760 RP Wang, ZC, Shanghai Univ, Dept Phys, 99 ShangDa Rd, Shanghai 200436,
127761    Peoples R China.
127762 EM zc_wang89@hotmail.com
127763 CR ANANTHAKRISHNAI.U, 1982, J COMPUT APPL MATH, V8, P101
127764    ANANTHAKRISHNAI.U, 1987, MATH COMPUT, V49, P553
127765    CHAWLA MM, 1986, J COMPUT APPL MATH, V15, P213
127766    CHAWLA MM, 1996, NEURAL PARALLEL SCI, V4, P505
127767    GUCKENHEIMER J, 1983, NONLINEAR OSCILLATIO
127768    HAIRER E, 1979, NUMER MATH, V32, P373
127769    JAIN MK, 1988, BIT, V28, P302
127770    LAMBERT JD, 1976, J INST MATH APPL, V18, P189
127771    MICKENS RE, 1981, INTRO NONLINEAR OSCI
127772    NETA B, 2003, COMPUT MATH APPL, V45, P383
127773    RAPTIS AD, 1991, BIT, V31, P160
127774    SIMOS TE, 1993, P ROY SOC LOND A MAT, V6, P283
127775    VANDOOREN R, 1974, J COMPUT PHYS, V16, P186
127776    WANG Z, IN PRESS COMPUT PHYS
127777    WANG Z, 2003, J MODERN PHYS C, V14
127778    WANG Z, 2003, N MATH J CHIN U, V12, P146
127779 NR 16
127780 TC 5
127781 SN 0010-4655
127782 J9 COMPUT PHYS COMMUN
127783 JI Comput. Phys. Commun.
127784 PD JAN 15
127785 PY 2005
127786 VL 165
127787 IS 2
127788 BP 110
127789 EP 126
127790 PG 17
127791 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
127792 GA 888SU
127793 UT ISI:000226395300002
127794 ER
127795 
127796 PT J
127797 AU Tao, K
127798    Zhang, QR
127799    Liu, TY
127800    Zhang, FW
127801 TI Origin of the 420 nm absorption band and effect of doping fluorine in
127802    PbWO4 crystals
127803 SO CHINESE PHYSICS LETTERS
127804 DT Article
127805 ID LEAD TUNGSTATE CRYSTALS; SINGLE-CRYSTALS; CENTERS
127806 AB The electronic structures for three types of PbWO4 (PWO) crystals, the
127807    perfect, PWO, the PWO containing lead vacancy (PWO-V-Pb) and fluorine
127808    doped PWO crystal (F-:PWO), are systematically studied within the
127809    framework of density functional theory. The computational results show
127810    that the Pb 6s state situates below the valence band so that Pb2+ ions
127811    are unable to trap holes forming Pb3+ or Pb4+ to compensate for
127812    V-Pb(2-). The hole-trappers in PWO-V-Pb are O2- ions. Two of the
127813    longer-bond O2- ions share a hole forming O-2(3-), and four of the
127814    longer-bond oxygen ions trap two holes forming an associated color
127815    centre [O-2(3-) V-Pb-O-2(3-)] which may be the origin of the 420nm
127816    absorption band. It is also concluded that the doping of F- would
127817    reduce the band gap and F- ions substituting for O2- can effectively
127818    restrict the formation of [O-2(3-)-V-Pb-O-2(3-)] and weaken the 420 nm
127819    absorption band and hence enhance the scintillation property of PWO.
127820 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
127821 RP Tao, K, Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples
127822    R China.
127823 EM zhqrsys@163.com
127824 CR ABRAHAM YB, 2001, PHYS REV B, V64
127825    ANNENKOV A, 1998, PHYS STATUS SOLIDI A, V170, P47
127826    FANG SG, 1989, PHYS COLOR CTR CRYST, P136
127827    FENG XQ, 1997, J INORGANIC MAT, V12, P449
127828    GONZE X, 2002, COMP MATER SCI, V25, P478
127829    HIZHNYI YA, 2003, J LUMIN, V102, P688
127830    HUNAG HW, 2003, PHYS STATUS SOLIDI A, V196, R7
127831    LAGUTA VV, 1998, J PHYS-CONDENS MAT, V10, P7293
127832    LECOQ P, 1995, NUCL INSTRUM METH A, V365, P291
127833    LIN QS, 2001, SOLID STATE COMMUN, V118, P221
127834    LIU TY, 2001, PHYS STATUS SOLIDI A, V184, P341
127835    LIU TY, 2004, CHINESE PHYS LETT, V21, P1596
127836    LIU XC, 2002, PHYS STATUS SOLIDI A, V190, R1
127837    NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311
127838    NIKL M, 1996, PHYS STATUS SOLIDI B, V196, K7
127839    ZHANG QR, 2003, PHYS REV B, V68
127840    ZHANG QR, 2004, CHINESE PHYS LETT, V21, P1131
127841    ZHANG Y, 1998, PHYS REV B, V57, P12738
127842    ZHAO QZ, 2003, CHINESE PHYS LETT, V20, P1858
127843 NR 19
127844 TC 1
127845 SN 0256-307X
127846 J9 CHIN PHYS LETT
127847 JI Chin. Phys. Lett.
127848 PD JAN
127849 PY 2005
127850 VL 22
127851 IS 1
127852 BP 215
127853 EP 218
127854 PG 4
127855 SC Physics, Multidisciplinary
127856 GA 890IV
127857 UT ISI:000226505800061
127858 ER
127859 
127860 PT J
127861 AU Fu, JL
127862    Chen, LQ
127863    Bai, JH
127864 TI Localized Lie symmetries and conserved quantities for the
127865    finite-degree-of-freedom systems
127866 SO CHINESE PHYSICS
127867 DT Article
127868 DE localized Lie symmetry; infinite continuous group; conservation law;
127869    finite degree of freedom system
127870 ID NON-NOETHER SYMMETRIES
127871 AB This paper focuses on the study of localized Lie symmetries under the
127872    infinitesimal transformation of an infinite continuous group for the
127873    finite-degree-of-freedom systems. Based on an invariance of
127874    differential equation under an infinitesimal transformation, we present
127875    the localized Lie symmetries including direct and inverse problems for
127876    the finite degree-of-freedom mechanical systems. We also give the
127877    definitions, determining equations, structural equation and conserved
127878    laws of localized Lie symmetries, and further, the Lie symmetries under
127879    the infinitesimal transformation of a finite continuous group derived
127880    from localized Lie symmetry. Finally, an example is discussed to
127881    illustrate these results.
127882 C1 Zhejiang Univ Sci, Sch Nat Sci, Hangzhou 310018, Peoples R China.
127883    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
127884    Kaifeng Univ, Dept Math, Kaifeng 475000, Peoples R China.
127885 RP Fu, JL, Zhejiang Univ Sci, Sch Nat Sci, Hangzhou 310018, Peoples R
127886    China.
127887 EM sqfujingli@163.com
127888    lqchen@online.sh.cn
127889 CR ANDERSON JL, 1951, PHYS REV, V83, P1018
127890    AVRAMENKO AA, 2001, ACTA MECH, V151, P1
127891    BERGMANN PG, 1949, PHYS REV, V75, P680
127892    DROBAT S, 1958, ARCH RATIONAL MECHAN, V2, P293
127893    FANG JH, 2004, CHINESE PHYS, V13, P1620
127894    FU JL, 2000, ACTA MATH PHYS SIN, V20, P63
127895    FU JL, 2000, ACTA PHYS SIN-CH ED, V49, P1023
127896    FU JL, 2000, APPL MATH MECH-ENGL, V21, P549
127897    FU JL, 2003, PHYS LETT A, V317, P255
127898    FU JL, 2004, CHINESE PHYS, V13, P1611
127899    FU JL, 2004, CHINESE PHYS, V13, P1784
127900    FU JL, 2004, PHYS LETT A, V331, P138
127901    HILBERT D, 1924, MATH ANN, V92, P1
127902    LI ZP, 1987, INT J THEOR PHYS, V26, P853
127903    LI ZP, 1988, HIGH ENERG PHYS NUC, V12, P782
127904    LI ZP, 1993, CLASSICAL QUANTUM CO
127905    LI ZP, 1999, J PHYS A-MATH GEN, V32, P6391
127906    LIE S, 1893, THEORIE TRANSFORMATI
127907    LU ZP, 1986, ACTA PHYS SINICA, V35, P553
127908    LUTZKY M, 1979, J PHYS A, V12, P973
127909    MEI FX, 1998, ACTA MECH SINICA, V30, P468
127910    MEI FX, 1999, APPL LIE GROUPS LIE
127911    MEI FX, 2000, ACTA PHYS SIN-CH ED, V49, P1207
127912    MEI FX, 2000, ACTA PHYS SIN-CH ED, V49, P1901
127913    NOETHER E, 1918, NACH GES WISS GOTT K, V1, P235
127914    OLIVER PJ, 1985, APPL LIE GROUPS DIFF
127915    QIAO YF, 2001, ACTA PHYS SIN-CH ED, V50, P811
127916    SUNDERMEYER K, 1982, CONSTRAINED DYNAMICS
127917    ZHANG RC, 2000, CHINESE PHYS, V9, P801
127918    ZHANG Y, 2000, CHINESE PHYS, V9, P401
127919    ZHAO YY, 1993, ADV MECH, V23, P360
127920    ZHAO YY, 1994, ACTA MECH SINICA, V26, P380
127921 NR 32
127922 TC 1
127923 SN 1009-1963
127924 J9 CHIN PHYS
127925 JI Chin. Phys.
127926 PD JAN
127927 PY 2005
127928 VL 14
127929 IS 1
127930 BP 6
127931 EP 11
127932 PG 6
127933 SC Physics, Multidisciplinary
127934 GA 889WQ
127935 UT ISI:000226473900002
127936 ER
127937 
127938 PT J
127939 AU Jin, Z
127940    Shu, S
127941    Liu, ZR
127942 TI Periodic solutions of forced Lienard-type equations
127943 SO APPLIED MATHEMATICS AND COMPUTATION
127944 DT Article
127945 DE Lienard-type equations; Lienard system; periodic solutions; topological
127946    degree
127947 ID X+F(1)(X)X+F(2)(X)X(2)+G(X)=0
127948 AB Using Mawhin's coincidence degree theory and Brosuk's theorem, some new
127949    sufficient conditions of the existence of periodic solutions for the
127950    well-known forced Lienard-type equations x + f(1)(x)x + f(2)(x)x(2) +
127951    g(x) = e(t) are given. These new conditions are natural extension and
127952    generalization of the corresponding results already obtained results in
127953    the literature. (C) 2004 Elsevier Inc. All rights reserved.
127954 C1 Hebei Univ Technol, Dept Appl Math, Tianjin 300130, Peoples R China.
127955    Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
127956    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
127957 RP Jin, Z, Hebei Univ Technol, Dept Appl Math, Tianjin 300130, Peoples R
127958    China.
127959 EM zhoujinhut@163.com
127960 CR ANTOSIEWICZ HA, 1955, J LOND MATH SOC, V30, P64
127961    DEIMLING K, 1985, NONLINEAR FUNCTIONAL
127962    FREEDMAN HI, 1990, NONLINEAR ANAL-THEOR, V15, P333
127963    GAINES RE, 1977, COINCIDENCE DEGREE N
127964    GUIDORIZZI HL, 1993, J MATH ANAL APPL, V176, P11
127965    JIANG JF, 1993, ANN MAT PUR APPL, V165, P29
127966    JIANG JF, 1995, J MATH ANAL APPL, V194, P597
127967    OMARI P, 1987, J DIFFER EQUATIONS, V67, P278
127968    QIAN C, 1992, B LOND MATH SOC, V249, P281
127969    QIAN C, 1994, NONLINEAR ANAL, V24, P823
127970    SANSONE G, 1964, NONLINEAR DIFFERENTI
127971    ZHOU J, 1996, NONLINEAR ANAL, V27, P1463
127972    ZHOU J, 1999, ACTA MATH SINICA, V42, P571
127973    ZHOU J, 1999, SYST SCI MATH SCI, V12, P185
127974    ZHOU J, 2001, J MATH ANAL APPL, V256, P360
127975 NR 15
127976 TC 0
127977 SN 0096-3003
127978 J9 APPL MATH COMPUT
127979 JI Appl. Math. Comput.
127980 PD FEB 15
127981 PY 2005
127982 VL 161
127983 IS 2
127984 BP 655
127985 EP 666
127986 PG 12
127987 SC Mathematics, Applied
127988 GA 891CP
127989 UT ISI:000226559200024
127990 ER
127991 
127992 PT J
127993 AU Dong, N
127994    Lu, WC
127995    Chen, NY
127996    Zhu, YC
127997    Chen, KX
127998 TI Using support vector classification for SAR of fentanyl derivatives
127999 SO ACTA PHARMACOLOGICA SINICA
128000 DT Article
128001 DE structure-activity relationship; support vector machine; fentanyl
128002    derivatives; support vector classification
128003 ID MACHINES
128004 AB Aim: To discriminate between fentanyl derivatives with high and low
128005    activities. Methods: The support vector classification (SVC) method, a
128006    novel approach, was employed to investigate structure-activity
128007    relationship (SAR) of fentanyl derivatives based on the molecular
128008    descriptors, which were quantum parameters including DeltaE [energy
128009    difference between highest occupied molecular orbital energy (HOMO) and
128010    lowest empty molecular orbital energy (LUMO)], MR (molecular
128011    refractivity) and M-r (molecular weight). Results: By using
128012    leave-one-out cross-validation test, the accuracies of prediction for
128013    activities of fentanyl derivatives in SVC, principal component analysis
128014    (PCA), artificial neural network (ANN) and K-nearest neighbor (KNN)
128015    models were 93%, 86%, 57%, and 71%, respectively. The results indicated
128016    that the performance of the SVC model was better than those of PCA,
128017    ANN, and KNN models for this data. Conclusion: SVC can be used to
128018    investigate SAR of fentanyl derivatives and could be a promising tool
128019    in the field of SAR research.
128020 C1 Shanghai Univ, Sch Sci, Dept Chem, Lab Chem Data Min, Shanghai 200436, Peoples R China.
128021    Chinese Acad Sci, Shanghai Inst Mat Med, Shanghai 201203, Peoples R China.
128022 RP Lu, WC, Shanghai Univ, Sch Sci, Dept Chem, Lab Chem Data Min, Shanghai
128023    200436, Peoples R China.
128024 EM wclu@mail.shu.edu.cn
128025 CR BURBIDGE R, 2001, COMPUT CHEM, V26, P5
128026    CAI YD, 2003, PEPTIDES, V24, P629
128027    CAI YD, 2003, PEPTIDES, V24, P665
128028    CHEN NY, 2000, PATTERN RECOGNITION
128029    CHEN NY, 2002, COMPUT APPL CHEM, V19, P673
128030    DASH M, 1997, INTELLIGENT DATA ANA, V1, P131
128031    GERAK LR, 1999, PHARMACOL BIOCHEM BE, V64, P367
128032    LI GZ, 2002, COMPUT APPL CHEM, V19, P703
128033    LU WC, 2002, COMPUT APPL CHEM, V19, P697
128034    MADDOCKS I, 1992, AUST J HOSP PHARM, V22, P181
128035    TROTTER MWB, 2001, MEAS CONTROL-UK, V34, P235
128036    VAPNIK VN, 1998, STAT LEARNING THEORY
128037    WAN V, 2000, P IEEE SIGN PROC SOC, V2, P775
128038    ZHU YC, 1981, ACTA PHARMACOL SINIC, V16, P97
128039 NR 14
128040 TC 0
128041 SN 1671-4083
128042 J9 ACTA PHARMACOL SIN
128043 JI Acta Pharmacol. Sin.
128044 PD JAN
128045 PY 2005
128046 VL 26
128047 IS 1
128048 BP 107
128049 EP 112
128050 PG 6
128051 SC Chemistry, Multidisciplinary; Pharmacology & Pharmacy
128052 GA 889EP
128053 UT ISI:000226426600016
128054 ER
128055 
128056 PT J
128057 AU Shi, WJ
128058    Hua, ZZ
128059    Yang, Y
128060 TI Spectrophotometric determination of trace amount of iodide in foods.
128061 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
128062 DT Meeting Abstract
128063 C1 Shanghai Univ Sci & Technol, Coll Urban Construct, Shanghai 200093, Peoples R China.
128064 EM swj1957@msn.com
128065 NR 0
128066 TC 0
128067 SN 0065-7727
128068 J9 ABSTR PAP AMER CHEM SOC
128069 JI Abstr. Pap. Am. Chem. Soc.
128070 PD MAR 28
128071 PY 2004
128072 VL 227
128073 PN Part 1
128074 BP U37
128075 EP U37
128076 PG 1
128077 SC Chemistry, Multidisciplinary
128078 GA 851AJ
128079 UT ISI:000223655600067
128080 ER
128081 
128082 PT J
128083 AU Shi, WJ
128084 TI New synthesis method of sulfhydryl cotton fiber.
128085 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
128086 DT Meeting Abstract
128087 C1 Shanghai Univ Sci & Technol, Coll Urban Construct, Shanghai 200093, Peoples R China.
128088 EM swj1957@msn.com
128089 NR 0
128090 TC 0
128091 SN 0065-7727
128092 J9 ABSTR PAP AMER CHEM SOC
128093 JI Abstr. Pap. Am. Chem. Soc.
128094 PD MAR 28
128095 PY 2004
128096 VL 227
128097 PN Part 1
128098 BP U286
128099 EP U286
128100 PG 1
128101 SC Chemistry, Multidisciplinary
128102 GA 851AJ
128103 UT ISI:000223655601104
128104 ER
128105 
128106 PT J
128107 AU Ma, ZQ
128108    Zhang, Q
128109    Kido, Y
128110 TI Inspection of intermediate stress-induced electronic traps in Si/Al2O3
128111    system
128112 SO VACUUM
128113 DT Article
128114 DE silicon on sapphire; XPS; RBS; Raman spectrum; interface trap; film
128115    stress
128116 ID BURIED-OXIDE; SILICON; SAPPHIRE; OXYGEN; SI; GENERATION; SPECTROSCOPY;
128117    IMPLANTATION; SEPARATION; SUBSTRATE
128118 AB The physical characteristics of device-grade thin silicon film at (10
128119    0) grown on alpha-Al2O3 substrate using the chemical vapour deposition
128120    (CVD) technique has been studied in this paper. Its thickness,
128121    crystalline structure, elemental interdiffusion in the interface region
128122    and the quality were characterized by X-ray diffraction (XRD),
128123    Rutherford backscattering spectroscopy (RBS), core level X-ray
128124    photoelectron spectroscopy (XPS) and nuclear resonance reaction
128125    Al-27(p, gamma)Si-28, respectively. The results of stoichiometric
128126    defect profile and individual silicon suboxide (such as SiO, and Si2O3
128127    components with respect to the metallic Si element) formation in the
128128    intermediate region were observed. The deep traps located around E-c =
128129    0.26eV, in similar to500 nm thick n-type Si films, were attributed to
128130    the defects caused by the strain of the silicon lattice. Raman
128131    spectroscopy was used to evaluate the compressive stress in the Si
128132    film. (C) 2004 Elsevier Ltd. All rights reserved.
128133 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
128134    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
128135    Ritsumeikan Univ, Dept Phys, Shiga 52577, Japan.
128136 RP Ma, ZQ, Shanghai Univ, Dept Phys, Shangda Rd 99, Shanghai 200436,
128137    Peoples R China.
128138 EM zqma@mail.shu.edu.cn
128139 CR ADONIN AS, 2002, P SOC PHOTO-OPT INS, V4761, P13
128140    AMANO J, 1981, APPL PHYS LETT, V39, P163
128141    CHEN J, 2001, APPL PHYS LETT, V78, P73
128142    CRISTOLOVEANU S, 1987, REP PROG PHYS, V50, P327
128143    CZUBANOWSKI M, 2004, APPL PHYS LETT, V84, P350
128144    ISHIKAWA Y, 2002, APPL SURF SCI, V190, P11
128145    JOHNSON RA, 1998, IEEE T ELECTRON DEV, V45, P1047
128146    KIDO Y, 1983, PHYS REV B, V34, P73
128147    KIMURA T, 1998, JPN J APPL PHYS 1, V37, P1285
128148    LAGNADO I, 2001, MICROELECTRON ENG, V59, P455
128149    LIU KPH, 2003, J APPL PHYS, V93, P9012
128150    MA Z, 1990, CHINESE PHYS LETT, V7, P226
128151    MA ZQ, 1992, NUCL INSTRUM METH B, V71, P278
128152    MANASEVIT HM, 1964, J APPL PHYS, V35, P1349
128153    NAKASHIMA S, 1993, J MATER RES, V8, P523
128154    NAZAROV AN, 2003, J APPL PHYS, V94, P1823
128155    OGURA A, 1999, APPL PHYS LETT, V74, P2188
128156    ONO H, 2000, J APPL PHYS, V87, P7782
128157    SADANA DK, 1994, P IEEE INT SOI C, P6
128158    THURZO I, 1981, J PHYS D, V14, P1477
128159    USENKO AY, 2002, JPN J APPL PHYS 1, V41, P5021
128160    WEINSTEIN BA, 1975, PHYS REV           B, V12, P1172
128161    WETZEL M, 1998, UCSD C WIR COMM
128162 NR 23
128163 TC 0
128164 SN 0042-207X
128165 J9 VACUUM
128166 JI Vacuum
128167 PD DEC 17
128168 PY 2004
128169 VL 77
128170 IS 1
128171 BP 5
128172 EP 9
128173 PG 5
128174 SC Materials Science, Multidisciplinary; Physics, Applied
128175 GA 886YS
128176 UT ISI:000226269700002
128177 ER
128178 
128179 PT J
128180 AU Ge, HX
128181    Dai, SQ
128182    Dong, LY
128183    Xue, Y
128184 TI Stabilization effect of traffic flow in an extended car-following model
128185    based on an intelligent transportation system application
128186 SO PHYSICAL REVIEW E
128187 DT Article
128188 ID JAMMING TRANSITION; CONGESTION; SIMULATION; EQUATION; PHASE
128189 AB An extended car following model is proposed by incorporating an
128190    intelligent transportation system in traffic. The stability condition
128191    of this model is obtained by using the linear stability theory. The
128192    results show that anticipating the behavior of more vehicles ahead
128193    leads to the stabilization of traffic systems. The modified Korteweg-de
128194    Vries equation (the mKdV equation, for short) near the critical point
128195    is derived by applying the reductive perturbation method. The traffic
128196    jam could be thus described by the kink-antikink soliton solution for
128197    the mKdV equation. From the simulation of space-time evolution of the
128198    vehicle headway, it is shown that the traffic jam is suppressed
128199    efficiently with taking into account the information about the motion
128200    of more vehicles in front, and the analytical result is consonant with
128201    the simulation one.
128202 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
128203    Guangxi Univ, Dept Phys, Nanning 530004, Peoples R China.
128204 RP Ge, HX, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
128205    Peoples R China.
128206 CR BANDO M, 1994, JPN J IND APPL MATH, V11, P203
128207    BANDO M, 1995, PHYS REV E, V51, P1035
128208    CHOWDHURY D, 2000, PHYS REP, V329, P199
128209    CROSS MC, 1993, REV MOD PHYS, V65, P851
128210    DAI SQ, 1982, ADV MECH, V12, P2
128211    GE HX, 2004, J SHANGHAI U, V8, P1
128212    HASEBE K, 2003, PHYS REV E 2, V68
128213    HASEBE K, 2004, PHYS REV E 2, V69
128214    HELBING D, 1996, PHYS REV E, V53, P2366
128215    HELBING D, 1998, PHYS REV LETT, V81, P3042
128216    HELBING D, 2001, TRANSPORT RES B-METH, V35, P183
128217    KOMATSU TS, 1995, PHYS REV E B, V52, P5574
128218    KURTZE DA, 1995, PHYS REV E A, V52, P218
128219    LENZ H, 1999, EUR PHYS J B, V7, P331
128220    NAGATANI T, 1998, PHYS REV E, V58, P4271
128221    NAGATANI T, 1998, PHYSICA A, V261, P599
128222    NAGATANI T, 1999, PHYS REV E A, V60, P6395
128223    NAGATANI T, 1999, PHYSICA A, V265, P297
128224    NAGATANI T, 2000, PHYS REV E A, V61, P3564
128225    NAYFEH AH, 1981, INTRO PERTURBATION T
128226    NISHINARI K, 2000, J PHYS A-MATH GEN, V33, P7709
128227    WHITHAM GB, 1990, P ROY SOC LOND A MAT, V428, P49
128228    XUE Y, 2001, ACTA PHYS SINICA, V50, P444
128229    XUE Y, 2004, ACTA PHYS SINICA, V53, P25
128230 NR 24
128231 TC 5
128232 SN 1063-651X
128233 J9 PHYS REV E
128234 JI Phys. Rev. E
128235 PD DEC
128236 PY 2004
128237 VL 70
128238 IS 6
128239 PN Part 2
128240 AR 066134
128241 DI ARTN 066134
128242 PG 6
128243 SC Physics, Fluids & Plasmas; Physics, Mathematical
128244 GA 887IM
128245 UT ISI:000226299200041
128246 ER
128247 
128248 PT J
128249 AU Cao, XF
128250    Shi, YM
128251    Song, XL
128252    Zhou, SP
128253    Chen, H
128254 TI Spin-dependent Andreev reflection tunneling through a quantum dot with
128255    intradot spin-flip scattering
128256 SO PHYSICAL REVIEW B
128257 DT Article
128258 ID SUPERCONDUCTOR JUNCTIONS; SPECTROSCOPY; RELAXATION
128259 AB We study Andreev reflection tunneling through a ferromagnet-quantum
128260    dot-superconductor system. The intradot spin-flip interaction is
128261    considered. By using the nonequilibrium Green function method, an
128262    expression for the linear Andreev reflection conductance is derived at
128263    zero temperature. It is found that competition between the intradot
128264    spin-flip scattering and the tunneling coupling to the leads dominates
128265    the resonant behaviors of the Andreev reflection conductance versus the
128266    gate voltage. A weak spin-flip scattering leads to a single-peak
128267    resonance. However, with the spin-flip scattering strength increasing,
128268    the Andreev reflection conductance will develop into a double-peak
128269    resonance indicating a novel structure in the conductance tunneling
128270    spectrum. Besides, the influences of the spin-dependent tunneling
128271    couplings, the Fermi velocity matching condition, and the spin
128272    polarization of the ferromagnet on the conductance are examined in
128273    detail.
128274 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
128275    Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
128276 RP Cao, XF, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
128277 EM ymshi@mail.shu.edu.cn
128278 CR BLONDER GE, 1982, PHYS REV B, V25, P4515
128279    DEJONG MJM, 1995, PHYS REV LETT, V74, P1657
128280    DONG B, 2003, J PHYS-CONDENS MAT, V15, P8435
128281    FENG AF, 2003, PHYS REV B, V67
128282    GUERON S, 1999, PHYS REV LETT, V83, P4148
128283    KHAETSKII AV, 2000, PHYS REV B, V61, P12639
128284    KHAETSKII AV, 2001, PHYSICA E, V10, P27
128285    LOPEZ R, 2003, PHYS REV LETT, V90
128286    MA J, CONDMAT0309520
128287    MESERVEY R, 1994, PHYS REP, V238, P173
128288    MORPURGO AF, 1997, PHYS REV LETT, V79, P4010
128289    POIRIER W, 1997, PHYS REV LETT, V79, P2105
128290    PRINZ GA, 1998, SCIENCE, V282, P1660
128291    RUDZINSKI W, 2001, PHYS REV B, V64
128292    SOULEN RJ, 1998, SCIENCE, V282, P85
128293    SOUZA FM, CONDMAT0209263
128294    UPADHYAY SK, 1998, PHYS REV LETT, V81, P3247
128295    WOLF SA, 2001, SCIENCE, V294, P1488
128296    ZENG ZY, CONDMAT0110502
128297    ZHANG P, 2002, PHYS REV LETT, V89
128298    ZHU Y, 2001, PHYS REV B, V65
128299    ZHU Y, 2004, PHYS REV B, V69
128300    ZUTIC I, 1999, PHYS REV B, V60, P16322
128301    ZUTIC I, 1999, PHYS REV B, V60, P6320
128302    ZUTIC I, 2000, PHYS REV B, V61, P1555
128303 NR 25
128304 TC 2
128305 SN 1098-0121
128306 J9 PHYS REV B
128307 JI Phys. Rev. B
128308 PD DEC
128309 PY 2004
128310 VL 70
128311 IS 23
128312 AR 235341
128313 DI ARTN 235341
128314 PG 6
128315 SC Physics, Condensed Matter
128316 GA 884UL
128317 UT ISI:000226112100120
128318 ER
128319 
128320 PT J
128321 AU Li, LW
128322    Cao, SX
128323    Liu, F
128324    Li, WF
128325    Chi, CY
128326    Jing, C
128327    Zhang, JC
128328 TI Local electronic structure, O-T phase transition and oxygen content
128329    inY(0.8)Ca(0.2)Ba(2)CU(3)O(y) (y=6.84-6.32) high-T-c superconductors
128330 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
128331 DT Article
128332 DE high-T-c; superconductor; positron annihilation; O-T phase transition;
128333    electron structure
128334 ID POSITRON-LIFETIME; VACANCY PROPERTIES; YBA2CU3O7-DELTA; DENSITY;
128335    SUBSTITUTION; DEPENDENCE
128336 AB Y0.8Ca0.2Ba2Cu3Oy samples with large range of oxygen content, have been
128337    systematically studied by means of positron annihilation technology,
128338    transport property measurements and X-ray diffraction. The positron
128339    lifetime parameters have a strong dependence on oxygen content y, and
128340    show evident changes during orthorhombic-tetragonal phase transition (y
128341    = 6.50 +/- 0.05). The local electron density n(e) and vacancy
128342    concentration C-v are evaluated as a function of oxygen content. The
128343    correlations between local electronic structure, O-T phase transition
128344    and superconductivity are discussed. n(e) mainly has an effect on
128345    high-T-c superconductivity, no direct evidence shows that it is related
128346    to the O-T phase transition; and C,, is mainly caused by oxygen
128347    vacancy. The small increase of T-c with decreasing y around y similar
128348    to 6.80 is due to the charge carriers over-doping, which is confirmed
128349    by the change of n(e) in this work. (C) 2004 Elsevier B.V. All rights
128350    reserved.
128351 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
128352 RP Cao, SX, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
128353 EM sxcao@staff.shu.edu.cn
128354 CR AUGIERI A, 2004, PHYSICA C, V401, P320
128355    AWANA VPS, 1994, PHYS REV B, V50, P594
128356    BRANDT W, 1971, PHYS LETT          A, V35, P109
128357    CHAKRABORTY B, 1989, PHYS REV B, V39, P215
128358    FISHER B, 1993, PHYS REV B, V47, P6054
128359    GUPTA RP, 1977, PHYS REV LETT, V39, P1212
128360    GUPTA RP, 1998, PHYSICA C, V305, P179
128361    GUTH K, 2001, PHYS REV B, V64
128362    HATADA K, 1997, PHYSICA C 2, V282, P793
128363    HEJTMANEK J, 1996, PHYS REV B, V54, P16226
128364    HILGENKAMP H, 1999, PHYSICA C, V381, P7
128365    JEAN YC, 1990, PHYS REV LETT, V64, P1593
128366    JORGENSEN JD, 1987, PHYS REV B, V36, P5731
128367    JORGENSEN JD, 1991, PHYS TODAY, V44, P34
128368    LI PL, 2004, PHYS REV B, V69
128369    LORAM JW, 1997, PHYSICA C 3, V282, P1405
128370    TOKURA Y, 1988, PHYS REV B, V38, P6667
128371    VONSTETTEN EC, 1988, PHYS REV LETT, V60, P2198
128372    YAO X, 2002, PHYSICA C 1, V378, P107
128373    ZHANG JC, 1993, PHYS REV B, V48, P16830
128374    ZHANG JC, 1995, PHYS LETT A, V201, P70
128375    ZHANG JC, 1999, PHYS LETT A, V263, P452
128376 NR 22
128377 TC 1
128378 SN 0921-4534
128379 J9 PHYSICA C
128380 JI Physica C
128381 PD JAN 15
128382 PY 2005
128383 VL 418
128384 IS 1-2
128385 BP 43
128386 EP 48
128387 PG 6
128388 SC Physics, Applied
128389 GA 887NW
128390 UT ISI:000226313800007
128391 ER
128392 
128393 PT J
128394 AU Shen, J
128395    Zheng, G
128396    Sun, GQ
128397    Tu, QJ
128398 TI Fractal character of dynamic light scattering of particles
128399 SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION
128400 DT Article
128401 DE fractals; particle sizing; scattering
128402 AB Dynamic light scattering signals from particles, exhibit fractal
128403    characteristics. This feature can be used to determine the particle
128404    size. The use of the fractal dimension, as a quantitative method to
128405    analyze the properties of dynamic light scattering signals from
128406    submicron particles, is presented. The analysis is performed directly
128407    on the time-resolved scattered intensity, and the Box Dimensions of
128408    light scattering signals of particles with diameters 100, 200, 500 and
128409    1000 nm. The experimental results show that the fractal dimensions of
128410    light scattering signals correlate well with particle size. In the
128411    submicron size range, the smaller the particles, the larger their
128412    fractal dimensions. Compared with the PCS technique, only several
128413    hundreds of samples are required in the fractal method. Therefore, the
128414    data processing is easily accomplished. However, this method only
128415    provides the mean particle size, but not the particle size distribution.
128416 C1 Shandong Univ Technol, Coll Elect Engn, Shandong 255049, Peoples R China.
128417    Shanghai Univ Sci & Technol, Coll Opt & Elect Engn, Shanghai 200093, Peoples R China.
128418 RP Shen, J, Shandong Univ Technol, Coll Elect Engn, Shandong 255049,
128419    Peoples R China.
128420 EM shenjin62@hotmail.com
128421 CR FALCONER KJ, 1991, FRACTAL GEOMETRY MAT, P191
128422    PECORA R, 1985, DYNAMIC LIGHT SCATTE, P14
128423    PROVDER T, 1997, PROG ORG COAT, V32, P143
128424    ZHANG J, 1995, FRACTALS, P111
128425 NR 4
128426 TC 0
128427 SN 0934-0866
128428 J9 PART PART SYST CHARACT
128429 JI Part. Part. Syst. Charact.
128430 PD DEC
128431 PY 2004
128432 VL 21
128433 IS 5
128434 BP 411
128435 EP 414
128436 PG 4
128437 SC Engineering, Chemical; Materials Science, Characterization & Testing
128438 GA 887UD
128439 UT ISI:000226330100006
128440 ER
128441 
128442 PT J
128443 AU Liang, XL
128444    Zhong, SS
128445    Wei, W
128446 TI Design of a dual-polarized microstrip patch antenna with excellent
128447    polarization purity
128448 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
128449 DT Article
128450 DE microstrip patch antenna; dual-polarized; isolation; cross-polarization
128451 ID PLANAR ANTENNA; ARRAYS
128452 AB In this paper, the design of a broadband dual-polarized microstrip
128453    patch antenna with excellent polarization purity is investigated
128454    theoretically and experimentally. Based on cavity-model theoretical
128455    analysis, a test dual-polarized microstrip patch antenna fed by double
128456    slot-coupled feeds with a 180degrees phase shift and a coplanar
128457    microstrip,feed is presented. The simulated and measured results show
128458    that this antenna achieves a high isolation (< -41 dB) across the
128459    entire operating frequency and low cross-polarization level (< - 30
128460    dB). (C) 2005 Wiley Periodicals, Inc.
128461 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
128462 RP Liang, XL, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
128463    Peoples R China.
128464 CR ADRIAN A, 1987, ELECTRON LETT, V23, P1226
128465    CHIOU TW, 2002, IEEE T ANTENN PROPAG, V50, P399
128466    EDIMO M, 1992, ELECTRON LETT, V28, P1785
128467    GAO SC, 2003, IEEE T ANTENN PROPAG, V51, P441
128468    HABIB L, 1993, ELECTRON LETT, V29, P916
128469    KIM Y, 1999, ELECTRON LETT, V35, P1399
128470    TSAO CH, 1988, P IEEE ANT PROP S DI, P936
128471    WONG H, 2004, IEEE T ANTENN PROPAG, V52, P45
128472    WONG KL, 2002, IEEE T ANTENN PROPAG, V50, P346
128473    YAMAZAKI M, 1994, ELECTRON LETT, V30, P1814
128474    ZHONG SS, 1991, MICROSTRIP ANTENNA T
128475    ZHONG SS, 2002, IEEE T ANTENN PROPAG, V50, P1473
128476 NR 12
128477 TC 0
128478 SN 0895-2477
128479 J9 MICROWAVE OPT TECHNOL LETT
128480 JI Microw. Opt. Technol. Lett.
128481 PD FEB 20
128482 PY 2005
128483 VL 44
128484 IS 4
128485 BP 329
128486 EP 331
128487 PG 3
128488 SC Engineering, Electrical & Electronic; Optics
128489 GA 888CC
128490 UT ISI:000226350800008
128491 ER
128492 
128493 PT J
128494 AU Zhang, WH
128495    Luo, SJ
128496    Fang, F
128497    Chen, CS
128498    Hu, HW
128499    Jia, XS
128500    Zhai, HB
128501 TI Total synthesis of absinthin
128502 SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
128503 DT Article
128504 ID CONFIGURATION; SANTONIN; ALCOHOLS
128505 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Modern Synth Organ Chem, Shanghai 200032, Peoples R China.
128506    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Bioorgan & Nat Prod Chem, Shanghai 200032, Peoples R China.
128507    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
128508 RP Zhai, HB, Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Modern Synth
128509    Organ Chem, Shanghai 200032, Peoples R China.
128510 EM zhaih@mail.sioc.ac.cn
128511 CR ABE Y, 1956, J AM CHEM SOC, V78, P1422
128512    BARTON DHR, 1957, J CHEM SOC, P929
128513    BAZHENOVA ED, 1977, CHEM ABSTR 193909F, V87
128514    BAZHENOVA ED, 1977, MED ZH UZB, P47
128515    BEAUHAIRE J, 1980, TETRAHEDRON LETT, V21, P3191
128516    BLAY G, 2001, J ORG CHEM, V66, P7700
128517    BUDAVARI S, 1996, MERCK INDEX
128518    EVANS DA, 1974, ACCOUNTS CHEM RES, V7, P147
128519    HEROUT V, 1953, COLLECT CZECH CHEM C, V18, P854
128520    HEROUT V, 1954, COLLECT CZECH CHEM C, V19, P792
128521    KARIMOV Z, 1985, CHEM ABSTR 115241, V105
128522    KARIMOV Z, 1985, KRISTALLOGRAFIYA, V30, P682
128523    LAURIDSEN A, 1991, ACTA CHEM SCAND, V45, P56
128524    MARSHALL JA, 1978, J ORG CHEM, V43, P1086
128525    MUKAIYAMA T, 2003, J AM CHEM SOC, V125, P10538
128526    NOVOTNY L, 1960, COLLECT CZECH CHEM C, V25, P1492
128527    SHI YJ, 2003, TETRAHEDRON LETT, V44, P3609
128528    VOKAC K, 1968, TETRAHEDRON LETT, P3855
128529    YU CL, 1993, ZHONG YAO CI HAI, V1, P1751
128530 NR 19
128531 TC 2
128532 SN 0002-7863
128533 J9 J AM CHEM SOC
128534 JI J. Am. Chem. Soc.
128535 PD JAN 12
128536 PY 2005
128537 VL 127
128538 IS 1
128539 BP 18
128540 EP 19
128541 PG 2
128542 SC Chemistry, Multidisciplinary
128543 GA 886PN
128544 UT ISI:000226240900008
128545 ER
128546 
128547 PT J
128548 AU Zhang, ML
128549    Xia, YB
128550    Wang, LJ
128551    Gu, BB
128552    Su, QF
128553    Lou, YY
128554 TI Effects of the deposition conditions and annealing process on the
128555    electric properties of hot-filament CVD diamond films
128556 SO JOURNAL OF CRYSTAL GROWTH
128557 DT Article
128558 DE annealing process; chemical vapor deposited diamond films; deposition
128559    condition
128560 ID THIN-FILMS; PLASMA; RAMAN
128561 AB By using different deposition conditions, four CVD diamond films with
128562    different qualities and orientation were grown by the hot-filament CVD
128563    technique. The dielectric properties of these films before and after
128564    annealing were investigated in detail. A study of the relationship
128565    between the different deposition conditions and annealing process with
128566    respect to the dielectric properties was carried out. These CVD diamond
128567    films were also characterized with Raman spectroscopy, XRD and I-V
128568    characteristics. High-quality CVD diamond films were grown on Si
128569    substrate mechanically scratched with diamond powder. The annealing
128570    process reduces the hydrogen contamination of the films and therefore
128571    improves the film quality. CVD diamond films with good electric
128572    properties such as a resistivity of 1.2 x 10(11) Omegacm at a voltage
128573    of 50V, a dielectric constant of 5.73 and a dielectric loss of 0.02 at
128574    a frequency of 2 MHz were obtained (C) 2004 Elsevier B.V. All rights
128575    reserved.
128576 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
128577 RP Zhang, ML, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples
128578    R China.
128579 EM zhamilong@hotmail.com
128580 CR ADAMSCHIK M, 2001, DIAM RELAT MATER, V10, P1670
128581    CHAKRABARTI K, 1998, DIAM RELAT MATER, V7, P1227
128582    GARCIA I, 1997, DIAM RELAT MATER, V6, P1210
128583    JIN S, 1994, DIAM RELAT MATER, V3, P878
128584    KULKARNI AK, 1994, THIN SOLID FILMS, V253, P141
128585    KUO CT, 1996, THIN SOLID FILMS, V290, P254
128586    KUO CT, 2001, MATER CHEM PHYS, V72, P114
128587    LEGRICE YM, 1990, MATER RES SOC S P, V162, P219
128588    MARKS CM, 1993, J APPL PHYS, V73, P755
128589    PANDEY M, 2002, J ALLOY COMPD, V333, P260
128590    RAVI KV, 1993, MAT SCI ENG B-SOLID, V19, P203
128591    SHERMER JJ, 1994, DIAM RELAT MATER, V3, P408
128592    SILVEIRA M, 1993, DIAM RELAT MATER, V2, P1257
128593    SPEAR KE, 1989, J AM CERAM SOC, V72, P171
128594 NR 14
128595 TC 1
128596 SN 0022-0248
128597 J9 J CRYST GROWTH
128598 JI J. Cryst. Growth
128599 PD JAN 15
128600 PY 2005
128601 VL 274
128602 IS 1-2
128603 BP 21
128604 EP 27
128605 PG 7
128606 SC Crystallography
128607 GA 887YH
128608 UT ISI:000226340900004
128609 ER
128610 
128611 PT J
128612 AU Xia, TC
128613    Yu, FJ
128614    Chen, DY
128615    Zhang, Y
128616 TI Multi-component SC lax integrable hierarchy of soliton equations and
128617    its multi-component integrable coupling system with two arbitrary
128618    functions
128619 SO COMMUNICATIONS IN THEORETICAL PHYSICS
128620 DT Article
128621 DE loop algebra; multi-component SC hierarchy; multi-component integrable
128622    couplings system
128623 ID BI-HAMILTONIAN STRUCTURE; BURGERS HIERARCHY; TRANSFORMATION
128624 AB A new simple loop algebra (G) over bar (M) is constructed which is
128625    devoted to establishing an isospectral problem. By making use of
128626    generalized Tu scheme, the multi-component SC hierarchy is obtained.
128627    Furthermore, an expanding loop algebra (F) over bar (M) of the loop
128628    algebra (G) over bar (M) is presented. Based on (F) over bar (M), the
128629    multi-component integrable coupling system of the multi-component SC
128630    hierarchy of soliton equations is worked out. How to design isospectral
128631    problem of mulit-component hierarchy of soliton equations is a
128632    technique and interesting topic. The method can be applied to other
128633    nonlinear evolution equations hierarchy.
128634 C1 Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
128635    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
128636    Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China.
128637 RP Xia, TC, Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
128638 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
128639    FAN E, 2001, J PHYS A-MATH GEN, V34, P513
128640    FAN E, 2001, PHYSICA A, V301, P105
128641    FAN EG, 2000, J MATH PHYS, V41, P7769
128642    GUO F, 2002, J SYS SCI MATH SCI, V22, P36
128643    GUO FK, 2000, ACTA MATH APPL SIN, V23, P181
128644    GUO FK, 2003, J MATH PHYS, V44, P5793
128645    MA WX, 1999, J MATH PHYS, V40, P4419
128646    MA WX, 2002, CHINESE ANN MATH B, V23, P373
128647    NEWELL AC, 1985, SOLITION MATH PHYS
128648    SAHA M, 2000, CHAOS SOLITON FRACT, V11, P1183
128649    TSUCHIDA T, 1999, J PHYS SOC JPN, V68, P2241
128650    TSUCHIDA T, 1999, PHYS LETT A, V257, P53
128651    TU GZ, 1989, ACTA MATH APPL SINIC, V5, P89
128652    TU GZ, 1989, J MATH PHYS, V30, P330
128653    WADATI M, 1972, J PHYS SOC JPN, V32, P1681
128654    WADATI M, 1973, J PHYS SOC JPN, V34, P1289
128655    WADATI M, 1975, PROG THEOR PHYS, V53, P419
128656    XIA TC, 2004, CHAOS SOLITON FRACT, V22, P939
128657    XIA TC, 2004, COMMUN THEOR PHYS, V42, P180
128658    XIA TC, 2004, COMMUN THEOR PHYS, V42, P494
128659    XIA TC, 2004, PHYSICA A, V343, P238
128660    ZHANG DJ, 2002, J PHYS A-MATH GEN, V35, P7225
128661    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P305
128662 NR 24
128663 TC 1
128664 SN 0253-6102
128665 J9 COMMUN THEOR PHYS
128666 JI Commun. Theor. Phys.
128667 PD DEC 15
128668 PY 2004
128669 VL 42
128670 IS 6
128671 BP 807
128672 EP 810
128673 PG 4
128674 SC Physics, Multidisciplinary
128675 GA 884TY
128676 UT ISI:000226110700003
128677 ER
128678 
128679 PT J
128680 AU Xin, ZH
128681    Wei, GZ
128682    Liang, YQ
128683    Zhang, QI
128684 TI Study of properties of mixed ferro-ferrimagnetic ising compounds with
128685    (A(x)B(1-x))(y)C
128686 SO COMMUNICATIONS IN THEORETICAL PHYSICS
128687 DT Article
128688 DE mixed ferro-ferrimagnet; Ising model; phase diagram; internal energy;
128689    specific heat
128690 ID MEAN-FIELD ANALYSIS; MAGNETIC-PROPERTIES; PRUSSIAN BLUE; ALLOY
128691 AB The magnetic properties of the mixed ferro-ferrimagnetic compounds with
128692    (A(x)B(1-x))(y)C-z where A(z) B-z and C are three different magnetic
128693    ions and form three different sublattices, are studied by using the
128694    standard mean-field theory. The phase diagram which is related to
128695    experimental work of molecule-based ferro-ferrimagnet
128696    ((NixMn1-xII)-Mn-II)(1.5)[Cr-III(CN)(6)].zH(2)O is obtained. The
128697    magnetization curves(z) internal energy(z) and specific heat of the
128698    same mixed (A(x)B(1-x))(y)C system are also investigated.
128699 C1 Shanghai Univ, Coll Sci, Shanghai 200436, Peoples R China.
128700    NE Univ, Coll Sci, Shenyang 110006, Peoples R China.
128701    Acad Sinica, Int Ctr Mat Phys, Shenyang 110015, Peoples R China.
128702 RP Xin, ZH, Shanghai Univ, Coll Sci, Shanghai 200436, Peoples R China.
128703 CR ENTLEY WR, 1994, INORG CHEM, V33, P5165
128704    FERLAY S, 1995, NATURE, V378, P701
128705    JASCUR M, 1996, PHYS REV B, V54, P9232
128706    KANEYOSHI T, 1988, J APPL PHYS, V64, P2545
128707    KANEYOSHI T, 1991, J MAGN MAGN MATER, V98, P201
128708    KANEYOSHI T, 1995, J MAGN MAGN MATER 1, V140, P261
128709    LIU WM, 1999, PHYS REV B, V60, P12893
128710    LIU WM, 2002, PHYS REV B, V65
128711    MALLAH T, 1993, SCIENCE, V262, P1554
128712    MILLER JS, 1995, CHEM ENG NEWS, V73, P30
128713    OHKOSHI S, 1997, PHYS REV B, V56, P11642
128714    SATO O, 1996, SCIENCE, V271, P49
128715    WILLIAM RE, 1995, SCIENCE, V268, P397
128716 NR 13
128717 TC 0
128718 SN 0253-6102
128719 J9 COMMUN THEOR PHYS
128720 JI Commun. Theor. Phys.
128721 PD DEC 15
128722 PY 2004
128723 VL 42
128724 IS 6
128725 BP 831
128726 EP 834
128727 PG 4
128728 SC Physics, Multidisciplinary
128729 GA 884TY
128730 UT ISI:000226110700010
128731 ER
128732 
128733 PT J
128734 AU Chen, YL
128735    Cao, WG
128736    Ding, WY
128737    Sun, XH
128738 TI Study on the reaction of electron-deficient cyclopropane derivatives
128739    with arsonium ylides
128740 SO CHINESE JOURNAL OF CHEMISTRY
128741 DT Article
128742 DE cyclopropane derivative; arsonium ylide; weak nucleophile;
128743    stereoselectivity
128744 ID STEREOSELECTIVE SYNTHESIS
128745 AB The reaction of electron-deficient cyclopropane derivatives,
128746    cis-1-methoxycarbonyl-2-aryl-6,6-dimethyl-5,7-dioxospiro[2,5]octa-4,8-di
128747    ones with benzoylmethylenetriphenylarsorane (2) and
128748    methoxycarbonylmethylenetriphenylarsorane (4) was found to form
128749    cis,trans-1-methoxycarbonyl-2-aryl-3-benzoyl-7,7-dimethyl-6,8-dioxospiro
128750    [3,5]nona-5,9-dione (3a-3e) and
128751    trans,cis,trans-5-[2'-methoxycarbonyl-2'-(triphenylarsoranylidene)acetyl
128752    ]-6-oxo-3-aryl-tetrahydro-pyran-2,4-dicarboxylic acid dimethyl esters
128753    (5a-5c) respectively with high stereoselectivity. The possible reaction
128754    mechanisms for the formation of the different products were also
128755    proposed.
128756 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
128757    Chinese Acad Sci, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
128758 RP Chen, YL, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
128759 EM chenyali3@yahoo.com.cn
128760 CR CAO WG, 2000, SYNTHETIC COMMUN, V30, P4531
128761    CHEN YL, 2001, CHINESE J CHEM, V19, P901
128762    CHEN YL, 2001, SYNTHETIC COMMUN, V31, P3107
128763    CHEN YL, 2002, SYNTHETIC COMMUN, V32, P1953
128764    SUN RS, 2004, CHINESE J ORG CHEM, V12, P351
128765 NR 5
128766 TC 0
128767 SN 1001-604X
128768 J9 CHINESE J CHEM
128769 JI Chin. J. Chem.
128770 PD JAN
128771 PY 2005
128772 VL 23
128773 IS 1
128774 BP 81
128775 EP 84
128776 PG 4
128777 SC Chemistry, Multidisciplinary
128778 GA 887IP
128779 UT ISI:000226299500017
128780 ER
128781 
128782 PT J
128783 AU Yu, XL
128784    Zhang, BH
128785    Zhang, JQ
128786    Wang, ZP
128787 TI Analysis of 5-sodium sulfo bis-(hydroxyethyl) isophthalate by high
128788    performance liquid chromatography
128789 SO CHINESE JOURNAL OF ANALYTICAL CHEMISTRY
128790 DT Article
128791 DE high performance liquid chromatography; 5-sodium suflo
128792    bis-(hydroxyethyl) isophthalate); ester exchanging rate
128793 AB A method for determining the ester exchanging rate in the synthesis of
128794    5-sodium sulfo bis( Hydroxyethyl) isophthalate by high performance
128795    liquid chromatography ( HPLC) was developed. It was carried out on a
128796    Zorbax SB-C-18 column with diolde array detector at 230 nm, using
128797    methanol/water(21:79) as mobile phase at a flow rate of 1.0 mL/min.
128798    This method is specific, rapid and accurate.
128799 C1 Shanghai Univ, Coll Environm & Chem Engn, Shanghai 200072, Peoples R China.
128800 RP Zhang, BH, Shanghai Univ, Coll Environm & Chem Engn, Shanghai 200072,
128801    Peoples R China.
128802 CR JIANG Y, 1998, TEXTILE SCI RES, V1, P29
128803    LIAO Q, 1996, J BEIJING I CLOTHING, V16, P25
128804    WANG YJ, 2004, PROTEOMICS, V4, P20
128805    ZUO ZJ, 1999, SYNTHETIC TECHNOLOGY, V14, P5
128806 NR 4
128807 TC 0
128808 SN 0253-3820
128809 J9 CHINESE J ANAL CHEM
128810 JI Chin. J. Anal. Chem.
128811 PD DEC
128812 PY 2004
128813 VL 32
128814 IS 12
128815 BP 1653
128816 EP 1655
128817 PG 3
128818 SC Chemistry, Analytical
128819 GA 886RH
128820 UT ISI:000226245500022
128821 ER
128822 
128823 PT J
128824 AU Xia, TC
128825    Yu, FJ
128826    Chen, DY
128827 TI The multi-component Yang hierarchy and its multi-component integrable
128828    coupling system with two arbitrary functions
128829 SO CHAOS SOLITONS & FRACTALS
128830 DT Article
128831 ID BI-HAMILTONIAN STRUCTURE; EQUATIONS; TRANSFORMATION; GENERATE
128832 AB A new simple loop algebra (G) over tilde (M) is constructed, which is
128833    devoted to establishing an isospectral problem. By making use of Tu
128834    scheme, the multi-component Yang hierarchy is obtained. Furthermore, an
128835    expanding loop algrebra (F) over tilde (M) of the loop algebra (G) over
128836    tilde (M) is presented. Based on (F) over tilde (M), the
128837    multi-component integrable coupling system with two arbitrary functions
128838    of the multi-component Yang hierarchy is worked out. The method can be
128839    applied to other nonlinear evolution equations hierarchy. (C) 2004
128840    Elsevier Ltd. All rights reserved.
128841 C1 Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
128842    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
128843 RP Xia, TC, Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
128844 EM xiatc@yahoo.com.cn
128845    yufajun888@163.com
128846 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
128847    FAN E, 2001, PHYSICA A, V301, P105
128848    FAN EG, 2000, J MATH PHYS, V41, P7769
128849    GUO F, 2002, J SYS SCI MATH SCI, V22, P36
128850    GUO FK, 2000, ACTA MATH APPL SIN, V23, P181
128851    GUO FK, 2003, J MATH PHYS, V44, P5793
128852    HU XB, 1994, J PHYS A, V27, P2497
128853    HU XB, 1997, J PHYS A-MATH GEN, V30, P619
128854    MA WX, 2002, CHINESE ANN MATH B, V23, P373
128855    NEWELL AC, 1985, SOLITON MATH PHYS
128856    TSUCHIDA T, 1999, J PHYS SOC JPN, V68, P2241
128857    TSUCHIDA T, 1999, PHYS LETT A, V257, P53
128858    TU GZ, 1989, ACTA MATH APPL SINIC, V5, P89
128859    TU GZ, 1989, J MATH PHYS, V30, P330
128860    TU GZ, 1989, J PHYS A-MATH GEN, V22, P2375
128861    WADATI M, 1972, J PHYS SOC JPN, V32, P1681
128862    WADATI M, 1973, J PHYS SOC JPN, V34, P1289
128863    WADATI M, 1975, PROG THEOR PHYS, V53, P419
128864    XIA TC, 2004, CHAOS SOLITON FRACT, V22, P939
128865    XIA TC, 2004, COMMUN THEOR PHYS, V42, P180
128866    XIA TC, 2005, CHAOS SOLITON FRACT, V23, P1163
128867    XIA TC, 2005, CHAOS SOLITON FRACT, V23, P451
128868    XIAO TC, 2004, PHYSICA A, V343, P238
128869    XIAO TX, 2005, CHAOS SOLITON FRACT, V23, P1033
128870    YANG CN, 1987, COMMUN MATH PHYS, V112, P205
128871    ZHANG DJ, 2002, J PHYS A-MATH GEN, V35, P7225
128872    ZHANG YF, 2004, CHAOS SOLITON FRACT, V44, P305
128873 NR 27
128874 TC 1
128875 SN 0960-0779
128876 J9 CHAOS SOLITON FRACTAL
128877 JI Chaos Solitons Fractals
128878 PD APR
128879 PY 2005
128880 VL 24
128881 IS 1
128882 BP 235
128883 EP 240
128884 PG 6
128885 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
128886 GA 887XD
128887 UT ISI:000226337900028
128888 ER
128889 
128890 PT S
128891 AU Bao, HQ
128892    Zhang, ZY
128893 TI Motion objects segmentation using a new level set based method
128894 SO ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2004, PT 1,
128895    PROCEEDINGS
128896 SE LECTURE NOTES IN COMPUTER SCIENCE
128897 DT Article
128898 ID MOVING-OBJECTS
128899 AB Segmentation of moving object in a video sequence is one of the
128900    difficult problems in video processing. Moreover, multiple objects
128901    segmenting and extracting is more challenging task due to the
128902    complexity of multiple motion. This paper presents a novel multiple
128903    object segmentation approach based on spatial-temporal curve evolution.
128904    First, According to the characteristic of the intra-frame and
128905    inter-frame (spatial and temporal) information, a joint energy model is
128906    proposed with global and local features, thus, a curve evolution
128907    equation could be achieved based on the method of level set. Then,
128908    after an initial object model is achieved with a simplified method
128909    using the difference between two successive frames, multiple object are
128910    tracked and extracted with spatio-temporal curve evolution. Finally,
128911    while the occlusion is emerged due to multiple object overlapping
128912    motion, the covered/uncovered object could be segmented using motion
128913    field template matching. The experiment results show that the approach
128914    is effective.
128915 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
128916    Minist Educ, Key Lab Adv Display & Syst Applicat, Shanghai 200072, Peoples R China.
128917 RP Bao, HQ, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
128918    Peoples R China.
128919 EM bhq05@yahoo.com.cn
128920 CR CHANG AC, 1995, CURR OPIN CARDIOL, V10, P9
128921    MASOURI AR, 2002, IEEE T IP, V12, P1
128922    MECH R, 1998, SIGNAL PROCESS, V66, P203
128923    OSHER S, 1988, J COMPUT PHYS, V79, P12
128924    PARAGIOS N, 1997, P SIRS97 STOCKH SWED
128925    PARAGIOS N, 2000, IEEE T PATTERN ANAL, V22, P266
128926 NR 6
128927 TC 0
128928 SN 0302-9743
128929 J9 LECT NOTE COMPUT SCI
128930 PY 2004
128931 VL 3331
128932 BP 312
128933 EP 318
128934 PG 7
128935 GA BBL54
128936 UT ISI:000226023600039
128937 ER
128938 
128939 PT J
128940 AU Bai, YQ
128941    El Ghami, M
128942    Roos, C
128943 TI A comparative study of kernel functions for primal-dual interior-point
128944    algorithms in linear optimization
128945 SO SIAM JOURNAL ON OPTIMIZATION
128946 DT Article
128947 DE linear optimization; interior-point method; primal-dual method;
128948    large-update method; polynomial complexity
128949 ID SEMIDEFINITE OPTIMIZATION
128950 AB Recently, so-called self-regular barrier functions for primal-dual
128951    interior-point methods (IPMs) for linear optimization were introduced.
128952    Each such barrier function is determined by its (univariate)
128953    self-regular kernel function. We introduce a new class of kernel
128954    functions. The class is defined by some simple conditions on the kernel
128955    function and its derivatives. These properties enable us to derive many
128956    new and tight estimates that greatly simplify the analysis of IPMs
128957    based on these kernel functions. In both the algorithm and its analysis
128958    we use a single neighborhood of the central path; the neighborhood
128959    naturally depends on the kernel function. An important conclusion is
128960    that inverse functions of suitable restrictions of the kernel function
128961    and its first derivative more or less determine the behavior of the
128962    corresponding IPMs. Based on the new estimates we present a simple and
128963    unified computational scheme for the complexity analysis of kernel
128964    function in the new class. We apply this scheme to seven specific
128965    kernel functions. Some of these functions are self-regular, and others
128966    are not. One of the functions differs from the others, and from all
128967    self-regular functions, in the sense that its growth term is linear.
128968    Iteration bounds for both large- and small-update methods are derived.
128969    It is shown that small-update methods based on the new kernel functions
128970    all have the same complexity as the classical primal-dual IPM, namely,
128971    O(rootn log n/epsilon). For large- update methods the best obtained
128972    bound is O(rootn(log n) log n/epsilon), which until now has been the
128973    best known bound for such methods.
128974 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
128975    Delft Univ Technol, Fac Informat Technol & Syst, NL-2600 GA Delft, Netherlands.
128976 RP Bai, YQ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
128977 EM yqbai@staff.shu.edu.cn
128978    M.Elghami@ewi.tudelft.nl
128979    C.Roos@ewi.tudelft.nl
128980 CR ANDERSEN ED, 1996, INTERIOR POINT METHO, P189
128981    BAI YQ, 2002, IN PRESS P 9 AUSTR O
128982    BAI YQ, 2002, OPTIM METHOD SOFTW, V17, P985
128983    BAI YQ, 2003, SIAM J OPTIMIZ, V13, P766
128984    KARMARKAR N, 1984, COMBINATORICA, V4, P373
128985    MEGIDDO N, 1989, PROGR MATH PROGRAMMI, P131
128986    PENG J, 2000, ANN OPER RES, V99, P23
128987    PENG J, 2001, VYCHISL TEKHNOL, V6, P61
128988    PENG J, 2002, SELF REGULARITY NEW
128989    PENG JM, 2002, EUR J OPER RES, V143, P234
128990    PENG JM, 2002, MATH PROGRAM, V93, P129
128991    PENG JM, 2002, SIAM J OPTIMIZ, V13, P179
128992    RENEGAR J, 2001, MPS SIAM SER OPTIM, V3
128993    ROOS C, 1997, THEORY ALGORITHMS LI
128994    SONNEVEND G, 1986, LECT NOTES CONTR INF, V84, P866
128995    WRIGHT SJ, 1997, PRIMAL DUAL INTERIOR
128996    YE Y, 1997, INTERIOR POINT ALGOR
128997 NR 17
128998 TC 1
128999 SN 1052-6234
129000 J9 SIAM J OPTIMIZATION
129001 JI SIAM J. Optim.
129002 PY 2004
129003 VL 15
129004 IS 1
129005 BP 101
129006 EP 128
129007 PG 28
129008 SC Mathematics, Applied
129009 GA 883XI
129010 UT ISI:000226048600006
129011 ER
129012 
129013 PT J
129014 AU Yan, XN
129015    Yang, B
129016    Yu, BK
129017 TI Diffraction study of photorefractive hologram under ultrashort pulse
129018    readout
129019 SO OPTIK
129020 DT Article
129021 DE ultrashort pulse; diffraction efficiency; diffraction spectrum; total
129022    diffraction efficiency
129023 ID GRATING FORMATION
129024 AB Based on the diffraction efficiency equation of Kogelnik, the
129025    diffraction effect of a cw photorefractive hologram under ultrashort
129026    pulse illumination is theoretically analyzed. We find that the recorded
129027    grating has the function of filter to the incident pulse, the crystal
129028    width must be smaller and grating period must be larger. In this paper
129029    we also discuss the total diffraction efficiency of the hologram, and
129030    find that the total diffraction efficiency is functions of the crystal
129031    length, pulse duration and the grating period. The conclusion of our
129032    paper can be used in ultrashort pulse shaping application.
129033 C1 Shanghai Univ, Coll Sci, Phys Dept, Shanghai 200436, Peoples R China.
129034 RP Yan, XN, Shanghai Univ, Coll Sci, Phys Dept, Shanghai 200436, Peoples R
129035    China.
129036 EM xnyan@mail.shu.edu.cn
129037 CR DING Y, 2000, J OPT SOC AM B, V15, P2763
129038    KOGELNIK H, 1969, BELL SYST TECH J, V48, P2909
129039    OKAMURA H, 1997, J OPT SOC AM B, V14, P2650
129040    OKAMURA H, 2001, J OPT SOC AM B, V18, P960
129041    YAO XS, 1990, J OPT SOC AM B, V7, P2347
129042 NR 5
129043 TC 0
129044 SN 0030-4026
129045 J9 OPTIK
129046 JI Optik
129047 PY 2004
129048 VL 115
129049 IS 11
129050 BP 512
129051 EP 516
129052 PG 5
129053 SC Optics
129054 GA 885OM
129055 UT ISI:000226166800006
129056 ER
129057 
129058 PT J
129059 AU Wang, FG
129060    Liu, YQ
129061    Li, RY
129062    Yu, HL
129063    Lin, ZH
129064 TI An empirical correlation for EHD enhanced natural convection heat
129065    transfer along a plate surface
129066 SO JOURNAL OF ENHANCED HEAT TRANSFER
129067 DT Article
129068 AB The experiment of ether natural convection heat transfer, along a
129069    horizontal plate brass, was performed with an applied uniform electric
129070    field. A new empirical correlation was presented for predicating the
129071    extent of EHD enhancement of natural convection from heated horizontal
129072    plate. This correlation is applicable over a range of electric Rayleigh
129073    Numbers from 3 x 10(4) to 4 x 10(7) and heat fluxes from 0.5 kW/m(2) to
129074    3.5 kW/m(2). The error between the experimental data and calculated
129075    results is less than 20%. This correlation is suitable only for the
129076    liquid ether in some range of heat fluxes.
129077 C1 Shandong Univ Technol, Shandong Zibo 255049, Peoples R China.
129078    Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
129079 RP Wang, FG, Shandong Univ Technol, Shandong Zibo 255049, Peoples R China.
129080 EM wangfagang@hotmail.com
129081 CR *ASHRAE, 1993, ASHRAE HDB FUND
129082    AHSMANN G, 1950, APPL SCI RES A, V2, P235
129083    ALLEN PHG, 1995, HEAT RECOV SYST CHP, V15, P389
129084    HOLMAN JP, 1985, HEAT TRANSFER, P272
129085    JONES TB, 1978, ADV HEAT TRANSFER, V14, P107
129086    KRONIG R, 1947, APPL SCI RES A, V1, P35
129087    MELCHER JR, 1981, CONTINUUM ELECTROMEC, P3
129088    PASCUAL CC, 1999, J HEAT MASS TRANSFER, V43, P965
129089    RUTKOWSKI J, 1977, CRYOGENICS, V14, P242
129090    YAO YB, 1985, PHYS CHEM HDB
129091 NR 10
129092 TC 0
129093 SN 1065-5131
129094 J9 J ENHANC HEAT TRANSF
129095 JI J. Enhanc. Heat Transf.
129096 PD OCT-DEC
129097 PY 2004
129098 VL 11
129099 IS 4
129100 BP 249
129101 EP 255
129102 PG 7
129103 SC Engineering, Mechanical; Thermodynamics
129104 GA 883SR
129105 UT ISI:000226036500002
129106 ER
129107 
129108 PT J
129109 AU Yu, HL
129110    Li, RY
129111    Huang, X
129112    Chen, ZH
129113 TI EHD boiling heat transfer enhancement outside horizontal tubes
129114 SO JOURNAL OF ENHANCED HEAT TRANSFER
129115 DT Article
129116 DE EHD; boiling heat transfer enhancement; tubes
129117 ID ELECTRIC-FIELD; PART
129118 AB The application of the electrohydrodynamic (EHD) technique on boiling
129119    heat transfer enhancement outside a single tube and a tube bundle was
129120    investigated experimentally. A tube bundle with seven tubes and a
129121    single tube have been made as test sections. R11 and R123 were used as
129122    working fluids. The test tube was a smooth copper tube with 25 mm
129123    outside diameter (OD) and 400 mm length. Six copper wires, each with a
129124    diameter of 2 mm and located 5 mm. away from the heat transfer surface,
129125    served as the high-voltage electrodes. The electrodes were oriented at
129126    60degrees intervals. Comparison between the EHD enhancement factors of
129127    different test sections and different working fluids was conducted. The
129128    results show that the EHD enhancement factor of the single tube is
129129    greater than that of the tube bundle, R123 has a much better response
129130    to the EHD effect than R11, the EHD enhancement factor decreased with
129131    the heat flux, and the power consumption by EHD high voltage supplier
129132    is different for R11 and R123.
129133 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
129134 RP Li, RY, Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093,
129135    Peoples R China.
129136 EM lizhendk@online.sh.cn
129137 CR ALLEN PHG, 1995, HEAT RECOV SYST CHP, V15, P389
129138    BOCHIROL L, 1960, CR HEBD ACAD SCI, V250, P76
129139    CHEUNG KH, 1997, ASME J HEAT TRANSFER, V119, P332
129140    CHUBB LW, 1916, 100796, GB
129141    COOPER P, 1990, J HEAT TRANS-T ASME, V112, P458
129142    KARAYIANNIS TG, 1998, J ENHANC HEAT TRANSF, V5, P217
129143    KARAYIANNIS TG, 1998, J ENHANC HEAT TRANSF, V5, P231
129144    MARCO PD, 1993, J ENHANC HEAT TRANSF, V1, P99
129145    OGATA J, 1992, ASHRAE T, V98, P435
129146    OGATA J, 1993, INT J HEAT MASS TRAN, V36, P775
129147 NR 10
129148 TC 0
129149 SN 1065-5131
129150 J9 J ENHANC HEAT TRANSF
129151 JI J. Enhanc. Heat Transf.
129152 PD OCT-DEC
129153 PY 2004
129154 VL 11
129155 IS 4
129156 BP 291
129157 EP 297
129158 PG 7
129159 SC Engineering, Mechanical; Thermodynamics
129160 GA 883SR
129161 UT ISI:000226036500007
129162 ER
129163 
129164 PT J
129165 AU Huang, X
129166    Li, RY
129167    Yu, HL
129168 TI Enhancement of boiling heat transfer for R11 and R123 by appling
129169    uniform electric field
129170 SO JOURNAL OF ENHANCED HEAT TRANSFER
129171 DT Article
129172 DE boiling heat transfer enhancement; uniform electric field; EHD
129173 ID PART
129174 AB Electrohydrodynamic (EHD) heat transfer enhancement refers to a kind of
129175    heat transfer technique that can increase heat transfer efficiency
129176    greatly by coupling the flow and temperature field with a high-voltage,
129177    low-current electric field in a dielectric fluid medium. The
129178    experimental studies of EHD enhancement of boiling heat transfer with
129179    R11 and R123 in a uniform electric field are presented in this paper.
129180    The experiments were performed using a horizontal brass plate immersed
129181    in working fluid as the heat exchange surface. A brass mesh electrode
129182    was installed parallel above the plate in the test chamber in order to
129183    exert a uniform electric field on the fluid. The applied voltages
129184    varied from -25kV to +25kV for R11 and -20kV to +20kV for R123 in steps
129185    of 5 W. Relationships among high electric field voltage, heat flux,
129186    heat transfer coefficient, and enhancement ratio were obtained. The
129187    efficiency of EHD enhancement using positive and negative electric
129188    field was analyzed respectively. These results have laid a foundation
129189    for exploring the mechanism of EHD augmentation of boiling heat
129190    transfer.
129191 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
129192 RP Li, RY, Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093,
129193    Peoples R China.
129194 EM lizhendk@online.sh.cn
129195 CR ALLEN PHG, 1995, HEAT RECOV SYST CHP, V15, P389
129196    BOCHIROL L, 1960, CR HEBD ACAD SCI, V250, P76
129197    CHUBB LW, 1916, 100796, GB
129198    JONES TB, 1978, ADV HEAT TRANSFER, V14, P107
129199    KARAYIANNIS TG, 1998, APPL THERM ENG, V18, P809
129200    KARAYIANNIS TG, 1998, J ENHANC HEAT TRANSF, V5, P217
129201    KARAYIANNIS TG, 1998, J ENHANC HEAT TRANSF, V5, P231
129202    MARCO PD, 1993, J ENHANC HEAT TRANSF, V1, P99
129203    OGATA J, 1993, INT J HEAT MASS TRAN, V36, P775
129204    XU Y, 1996, THESIS S BANK U UK
129205 NR 10
129206 TC 0
129207 SN 1065-5131
129208 J9 J ENHANC HEAT TRANSF
129209 JI J. Enhanc. Heat Transf.
129210 PD OCT-DEC
129211 PY 2004
129212 VL 11
129213 IS 4
129214 BP 299
129215 EP 306
129216 PG 8
129217 SC Engineering, Mechanical; Thermodynamics
129218 GA 883SR
129219 UT ISI:000226036500008
129220 ER
129221 
129222 PT J
129223 AU Su, HR
129224    Hu, GH
129225    Zhou, ZW
129226 TI Pseudospectral analysis of the interfacial stability of free jets with
129227    different velocity profiles
129228 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
129229 DT Article
129230 DE free jet; Chebyshev pseudospectral method; interfacial stability
129231 ID LIQUID JET; CONVECTIVE INSTABILITY; ABSOLUTE; GAS
129232 AB A double fluid model for a liquid jet surrounded by a coaxial gas
129233    stream was constructed. The interfacial stability of the model was
129234    studied by Chebyshev pseudospectral method for different basic velocity
129235    profiles. The physical variables were mapped into computational space
129236    using a nonlinear coordinates transformation. The general eigenvalues
129237    of the dispersion relation obtained are solved by QZ method, and the
129238    basic characteristics and their dependence on the flow parameters are
129239    analyzed.
129240 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
129241 RP Zhou, ZW, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
129242    200072, Peoples R China.
129243 EM zhwzhou@yc.shu.edu.cn
129244 CR BOYD JP, 1989, CHEBYSHEV FOURIER SP
129245    CHANDRASEKHAR S, 1961, HYDRODYNAMIC HYDROMA
129246    LIN SP, 1989, PHYS FLUIDS A-FLUID, V1, P490
129247    LIN SP, 1998, J FLUID MECH, V376, P37
129248    PLATEAU J, 1873, MOL GAUTHIER VILLARS, V1, P2
129249    REYNOLDS AJ, 1962, J FLUID MECH, V14, P552
129250    SEVILLA A, 2002, PHYS FLUIDS, V14, P3028
129251    SHEN J, 1998, ACTA MECH, V130, P95
129252    SU HR, 2003, THESIS SHANGHAI U
129253    TAYLOR GI, 1965, GEN RIPPLES WIND BLO
129254    ZHOU ZW, 1992, PHYS FLUIDS A-FLUID, V4, P277
129255 NR 11
129256 TC 1
129257 SN 0253-4827
129258 J9 APPL MATH MECH-ENGL ED
129259 JI Appl. Math. Mech.-Engl. Ed.
129260 PD DEC
129261 PY 2004
129262 VL 25
129263 IS 12
129264 BP 1323
129265 EP 1332
129266 PG 10
129267 SC Mathematics, Applied; Mechanics
129268 GA 884RJ
129269 UT ISI:000226103300001
129270 ER
129271 
129272 PT J
129273 AU Zhang, GY
129274    Zhang, XL
129275    Cheng, Y
129276    Xue, LP
129277    Han, K
129278 TI Investigation on the diamagnetic Faraday rotation spectra in
129279    Pr-substituted yttrium iron garnet
129280 SO ACTA PHYSICA SINICA
129281 DT Article
129282 DE Pr : YIG crystal; single ion model; diamagnetic Faraday rotation
129283 AB By using the single particle model, the diamagnetic Faraday rotation
129284    (FR) spectra of pr(3+) ion in Pr:YIG crystal is presented based on the
129285    quantum theory. The linear dependence of lambdaF(0)(-1/2) on lambda(2)
129286    is calculated at 300 and 77K in the 1.05-1.3 micron wavelength range.
129287    It is found that the diamagnetic FR is 64% of paramagnetic FR at 77K
129288    and the two types of FR can be of more or less equal importance. The
129289    diamagnetic FR depends on the temperature and the exchange field for
129290    the ions with orbit single ground states derived from the crystal field.
129291 C1 China Univ Mining & Technol, Coll Sci, Xuzhou 221008, Peoples R China.
129292    Shanghai Univ Sci & Technol, Coll Med Mech, Shanghai 200093, Peoples R China.
129293 RP Zhang, GY, China Univ Mining & Technol, Coll Sci, Xuzhou 221008,
129294    Peoples R China.
129295 CR CROSSLEY WA, 1969, PHYS REV, V181, P896
129296    GUILLOT M, 1979, J PHYS, V40, P883
129297    KAMADA O, 2001, IEEE T MAGN 1, V37, P2013
129298    KIM HJ, 1999, IEEE T MAGN 1, V35, P3163
129299    LEYCURAS C, 1982, J APPL PHYS, V53, P8181
129300    NEKVASIL V, 1985, J PHYS C SOLID STATE, V18, P3551
129301    SINHA SP, 1983, SYSTEMATICS PROPERTI, P424
129302    XU Y, 1993, J PHYS-CONDENS MAT, V5, P8927
129303    YANG JH, 1993, CHINESE SCI BULL, V38, P1860
129304 NR 9
129305 TC 1
129306 SN 1000-3290
129307 J9 ACTA PHYS SIN-CHINESE ED
129308 JI Acta Phys. Sin.
129309 PD JAN
129310 PY 2005
129311 VL 54
129312 IS 1
129313 BP 407
129314 EP 410
129315 PG 4
129316 SC Physics, Multidisciplinary
129317 GA 883IP
129318 UT ISI:000226005100076
129319 ER
129320 
129321 PT J
129322 AU Zhu, WQ
129323    Zheng, XY
129324    Ding, BD
129325    Jiang, XY
129326    Zhang, ZL
129327    Xu, SH
129328 TI Exciplex emissions and properties in bilayer organic electroluminescent
129329    diodes
129330 SO ACTA CHIMICA SINICA
129331 DT Article
129332 DE organic electroluminescence; exciplex; color tuning; molecular structure
129333 ID WHITE-LIGHT EMISSION; DEVICES; INTERFACE; POLYMERS
129334 AB The bilayer organic electroluminescent diodes using two common aromatic
129335    diamines TPD (N, N'-diphenyl-N, N'-bis(3-methylphenyl)-1,
129336    1'-biphenyl-4,4'-diamine) and NPB (N, N'-bis(1-naphthyl)-N,
129337    N'-diphenyl-(1, 1'-biphenyl)-4,4'-diamine) as hole transporting
129338    materials (HTM) and BBOT
129339    (2,5-bis(5-tert-butyl-2-benzoxazolyl)-thiophene) as electron
129340    transporting material have been fabricated. Redshifted and broad
129341    electroluminescent spectra relative to the fluorescent spectra of
129342    constituent materials were obtained. This electroluminescence was
129343    originated mainly from exciplexes evidenced by photoluminescence
129344    measurements, and the type of which were interpreted as the complex
129345    formed by the interaction between the excited state of BBOT (BBOT*) and
129346    ground state of the HTM in terms of the energy level diagram of the
129347    bilayer devices. By comparing the molecular structures and energy
129348    levels of TPD and NPB, it is demonstrated that exciplex formation can
129349    more easily take place for a molecule with favorable geometry and
129350    orientation than the one with appropriate energy level.
129351 C1 Shanghai Univ, Dept Mat, Shanghai 201800, Peoples R China.
129352 RP Zhu, WQ, Shanghai Univ, Dept Mat, Shanghai 201800, Peoples R China.
129353 EM wqzhu@mail.shu.edu.en
129354 CR ADACHI C, 1990, APPL PHYS LETT, V56, P799
129355    BIRKS JB, 1970, PHOTOPHYSICS AROMATI, P420
129356    CHAO CI, 1998, APPL PHYS LETT, V73, P426
129357    GEBLER DD, 1997, APPL PHYS LETT, V70, P1644
129358    ITANO K, 1998, APPL PHYS LETT, V72, P636
129359    JENEKHE SA, 1994, SCIENCE, V265, P765
129360    KIDO J, 1995, APPL PHYS LETT, V67, P2281
129361    OGAWA H, 1998, APPL PHYS A-MATER, V67, P599
129362    TANG CW, 1987, APPL PHYS LETT, V51, P913
129363    THOMPSON J, 2001, APPL PHYS LETT, V79, P560
129364    TIAN WJ, 2001, SYNTHETIC MET, V121, P1725
129365    WANG JF, 1998, ADV MATER, V10, P230
129366 NR 12
129367 TC 0
129368 SN 0567-7351
129369 J9 ACTA CHIM SIN
129370 JI Acta Chim. Sin.
129371 PD DEC 28
129372 PY 2004
129373 VL 62
129374 IS 24
129375 BP 2421
129376 EP 2424
129377 PG 4
129378 SC Chemistry, Multidisciplinary
129379 GA 883BB
129380 UT ISI:000225983900010
129381 ER
129382 
129383 PT J
129384 AU Ren, ZJ
129385    Cao, WG
129386    Ding, WY
129387    Wen, S
129388 TI Solvent-free stereoselective synthesis of
129389    cis-1-carbomethoxy-2-aryl-3,3-dicyanocyclopropanes by grinding
129390 SO SYNTHETIC COMMUNICATIONS
129391 DT Article
129392 DE arsonium salt; cyclopropanation; grinding; solvent-free;
129393    stereoselective synthesis
129394 ID SOLID-STATE; CYCLOPROPANATION; ABSENCE
129395 AB The novel route of high stereoselective synthesis of
129396    cis-1-carbomethoxy-2-aryl-3,3-dicyanocyclopropanes by grinding is
129397    described. This process is simple. efficient, and environmentally
129398    benign.
129399 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
129400    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
129401 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
129402 EM renrui198229@hotmail.com
129403 CR ALEXANDER K, 2001, TETRAHEDRON LETT, V42, P6137
129404    ANASTAS PT, 1996, GREEN CHEM DESIGNING, V2, P1
129405    BRUNEL JM, 1999, J AM CHEM SOC, V121, P5807
129406    DAVIES HML, 1999, TETRAHEDRON LETT, V40, P5287
129407    DOYLE MP, 1998, TETRAHEDRON, V54, P7919
129408    FERGUSON G, 1988, J CHEM SOC P2, P1829
129409    HAN C, 2000, ORG LETT, V2, P1649
129410    HOW MLD, 2000, ORG LETT, V2, P823
129411    IM J, 1997, TETRAHEDRON LETT, V38, P451
129412    JERZY K, 2001, J ORG CHEM, V66, P8240
129413    MICHAIL NE, 2000, TETRAHEDRON LETT, V41, P4937
129414    REN ZJ, 2002, SYNTHETIC COMMUN, V32, P3143
129415    SCHMEYERS T, 1998, J CHEM SOC P2, P989
129416    STONE FGA, 1982, ADV ORGANOMETALLIC C, V20, P115
129417    TANAKA K, 1991, J ORG CHEM, V56, P4333
129418    TODA F, 1989, ANGEW CHEM INT EDIT, V28, P320
129419    TODA F, 1989, CHEM EXP, V4, P507
129420    TODA F, 1989, J ORG CHEM, V54, P3007
129421    TODA F, 1990, J CHEM SOC P1, P3207
129422    TODA F, 1998, J CHEM SOC PERK 1107, P3521
129423    WELTON T, 1999, CHEM REV, V99, P2071
129424    WONG HNC, 1989, CHEM REV, V89, P165
129425 NR 22
129426 TC 2
129427 SN 0039-7911
129428 J9 SYN COMMUN
129429 JI Synth. Commun.
129430 PY 2004
129431 VL 34
129432 IS 23
129433 BP 4395
129434 EP 4400
129435 PG 6
129436 SC Chemistry, Organic
129437 GA 880VX
129438 UT ISI:000225819000017
129439 ER
129440 
129441 PT J
129442 AU Liu, WB
129443    Ma, HP
129444    Tang, T
129445    Yan, NN
129446 TI A posteriori error estimates for discontinuous Galerkin time-stepping
129447    method for optimal control problems governed by parabolic equations
129448 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
129449 DT Article
129450 DE optimal control; a posteriori error analysis; finite element
129451    approximation; discontinuous Galerkin method
129452 ID BOUNDARY CONTROL-PROBLEMS; FINITE-ELEMENT METHODS;
129453    PARTIAL-DIFFERENTIAL-EQUATIONS; APPROXIMATION; CONVEX; OPTIMIZATION;
129454    CONVERGENCE
129455 AB In this paper, we examine the discontinuous Galerkin (DG) finite
129456    element approximation to convex distributed optimal control problems
129457    governed by linear parabolic equations, where the discontinuous finite
129458    element method is used for the time discretization and the conforming
129459    finite element method is used for the space discretization. We derive a
129460    posteriori error estimates for both the state and the control
129461    approximation, assuming only that the underlying mesh in space is
129462    nondegenerate. For problems with control constraints of obstacle type,
129463    which are the kind most frequently met in applications, further
129464    improved error estimates are obtained.
129465 C1 Xiangtan Univ, Dept Math, Xiangtan 411100, Peoples R China.
129466    Univ Kent, Inst Math & Stat, Canterbury CT2 7NF, Kent, England.
129467    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
129468    Hong Kong Baptist univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China.
129469    Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing, Peoples R China.
129470 RP Liu, WB, Xiangtan Univ, Dept Math, Xiangtan 411100, Peoples R China.
129471 EM W.B.Liu@ukc.ac.uk
129472    hpma@guomai.sh.cn
129473    ttang@math.hkbu.edu.hk
129474    yan@staff.iss.ac.cn
129475 CR AINSWORTH M, 1997, COMPUT METHOD APPL M, V142, P1
129476    ALOTTO P, 1996, IEEE T MAGN 1, V32, P2954
129477    ALT W, 1989, SIAM J CONTROL OPTIM, V27, P718
129478    BANICHUK NV, 1995, STRUCTURAL OPTIMISAT, V9, P45
129479    BANK RE, 1985, MATH COMPUT, V44, P283
129480    BECKER R, 1998, 9820 U HEID SFB 359
129481    BECKER R, 2000, SIAM J CONTROL OPTIM, V39, P113
129482    BOMAN M, 2000, POSTERIORI ERROR ANA
129483    CARSTENSEN C, 2000, E W J NUMERICAL ANAL, V8, P153
129484    CIARLET PG, 1978, FINITE ELEMENT METHO
129485    COCKBURN B, 2001, J SCI COMPUT, V16, P173
129486    ERIKSSON K, 1985, RAIRO-MATH MODEL NUM, V19, P611
129487    ERIKSSON K, 1991, SIAM J NUMER ANAL, V28, P43
129488    ERIKSSON K, 1995, SIAM J NUMER ANAL, V32, P706
129489    FALK RS, 1973, J MATH ANAL APPL, V44, P28
129490    FRENCH DA, 1991, NUMER FUNC ANAL OPT, V12, P299
129491    FRENCH DA, 2001, COMPUT METHODS APPL, V1, P18
129492    GEVECI T, 1979, RAIRO ANAL NUMER, V13, P313
129493    GUNZBURGER MD, 1991, RAIRO-MATH MODEL NUM, V25, P711
129494    HOU LS, 1995, NUMER MATH, V71, P289
129495    HOUSTON P, 1997, 9703 OXF U COMP LAB
129496    JOHNSON C, 1992, MATH MOD METH APPL S, V2, P483
129497    JOHNSON C, 1995, SIAM J NUMER ANAL, V32, P1058
129498    KNOWLES G, 1982, SIAM J CONTROL OPTIM, V20, P414
129499    KUFNER A, 1977, FUNCTION SPACES
129500    LASIECKA I, 1984, SIAM J CONTROL OPTIM, V22, P477
129501    LI R, 2002, SIAM J CONTROL OPTIM, V41, P1321
129502    LIONS JL, 1971, OPTIMAL CONTROL SYST
129503    LIONS JL, 1972, NONHOMOGENEOUS BOUND
129504    LIU WB, 1993, APPL MATH OPT, V27, P291
129505    LIU WB, 2001, ADV COMPUT MATH, V15, P285
129506    LIU WB, 2001, INT S NUM M, V138, P154
129507    LIU WB, 2001, NUMER FUNC ANAL OPT, V22, P953
129508    LIU WB, 2001, SIAM J NUMER ANAL, V39, P100
129509    LIU WB, 2001, SIAM J NUMER ANAL, V39, P73
129510    LIU WB, 2003, NUMER MATH, V93, P497
129511    MALANOWSKI K, 1982, APPL MATH OPT, V8, P69
129512    MAUTE K, 1998, STRUCT OPTIMIZATION, V15, P81
129513    MCKNIGHT RS, 1973, SIAM J CONTROL OPTIM, V11, P510
129514    NEITTAANMAKI P, 1994, OPTIMAL CONTROL NONL
129515    PIRONNEAU O, 1984, OPTIMAL SHAPE DESIGN
129516    SCHLEUPEN A, 2000, STRUCT MULTIDISCIP O, V19, P282
129517    TIBA D, 1995, LECT OPTIMAL CONTROL
129518    TIBA D, 1996, NUMER FUNC ANAL OPT, V17, P1005
129519    TROLTZSCH F, 1994, APPL MATH OPT, V29, P309
129520    VERFURTH R, 1996, REV POSTERIORI ERROR
129521 NR 46
129522 TC 0
129523 SN 0036-1429
129524 J9 SIAM J NUMER ANAL
129525 JI SIAM J. Numer. Anal.
129526 PY 2004
129527 VL 42
129528 IS 3
129529 BP 1032
129530 EP 1061
129531 PG 30
129532 SC Mathematics, Applied
129533 GA 881RQ
129534 UT ISI:000225887500008
129535 ER
129536 
129537 PT J
129538 AU Liu, TY
129539    Zhang, QR
129540    Zhuang, SL
129541 TI First principle studies on the electronic structures and absorption
129542    spectra under polarized light for the PbWO4 crystal with oxygen vacancy
129543 SO PHYSICS LETTERS A
129544 DT Article
129545 DE PbWO4; electronic structure; absorption spectra; oxygen vacancy
129546 ID LEAD TUNGSTATE CRYSTALS; ORIGIN; BAND
129547 AB The electronic structures and absorption spectra for the perfect PbWO4
129548    (PWO) crystal and the PWO crystal containing oxygen vacancy V-O(2+)
129549    have been studied by using full-potential (linearized) augmented
129550    plane-wave (LAPW) divided by local orbit, (lo) method with the lattice
129551    structure optimized. The calculated results indicate that the optical
129552    properties of the two types of PWO crystals are anisotropy and their
129553    optical symmetries correspond to their lattice structure geometries,
129554    respectively. The perfect PWO crystal has no absorption spectrum in the
129555    energy region of visible light. However. for the PWO crystal containing
129556    V-O(2+), there occurs an additional absorption spectrum in this region,
129557    which can be fit into two Gaussian-shape absorption spectra with peaks
129558    at 370 and 420 nm. These peaks are located at the experimentally
129559    observed position. As a conclusion. the 350 and 420 nm absorption
129560    spectra are related to the existence of V-O(2+) in the PWO crystal. (C)
129561    2004 Elsevier B.V All rights reserved.
129562 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
129563 RP Liu, TY, Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
129564 EM liutyyxj@163.com
129565 CR ABRAHAM Y, 2000, PHYS REV B, V62, P3
129566    ANNENKOV A, 1998, PHYS STATUS SOLIDI A, V170, P47
129567    BOHACEK P, 2004, IN PRESS NUCL METH A
129568    EPELBAUM BM, 1997, J CRYST GROWTH, V178, P426
129569    FENG XQ, 1997, J INORGANIC MAT, V12, P449
129570    GOUBIN F, 2004, J SOLID STATE CHEM, V177, P89
129571    GRIGORJEVA L, 2000, NUCL INSTRUM METH B, V166, P329
129572    KORZHIK MV, 1996, P INT C IN SCINT THE, P241
129573    LIAO JY, 1997, J INORGANIC MAT, V12, P286
129574    LIN QS, 2001, SOLID STATE COMMUN, V118, P221
129575    LIU TY, UNPUB CHIN PHYS LETT
129576    LIU TY, 2001, SOLID STATE COMMUN, V132, P169
129577    LIU TY, 2004, CHINESE PHYS LETT, V21, P596
129578    MOREAU JM, 1996, J ALLOY COMPD, V238, P46
129579    MOREAU JM, 1999, J ALLOY COMPD, V284, P104
129580    NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311
129581    SHARMA S, 1999, PHYS REV B, V60, P12
129582    YAO MZ, 2002, ACTA PHYS SINICA, V51, P1
129583    YE XL, 1999, ACTA PHYS SINICA, V48, P10
129584    ZHANG QR, 2003, PHYS REV B, V68
129585    ZHANG QR, 2004, CHINESE PHYS LETT, V21, P1131
129586    ZHANG Y, 1998, PHYS REV B, V57, P12738
129587 NR 22
129588 TC 4
129589 SN 0375-9601
129590 J9 PHYS LETT A
129591 JI Phys. Lett. A
129592 PD DEC 13
129593 PY 2004
129594 VL 333
129595 IS 5-6
129596 BP 473
129597 EP 477
129598 PG 5
129599 SC Physics, Multidisciplinary
129600 GA 879UK
129601 UT ISI:000225744200019
129602 ER
129603 
129604 PT J
129605 AU Yan, XN
129606    Jing, HM
129607 TI Theory of variable-angle switch by anisotropic diffraction in
129608    photorefractive LiNbO3 crystal
129609 SO OPTIK
129610 DT Article
129611 DE anisotropic diffraction; variable-angle switch; effective
129612    susceptibility; phase-matching condition
129613 AB Based on the anisotropic diffraction of photore-fractive LiNbO3
129614    crystal, we present the theoretical result of a variable-angle switch.
129615    The deflection angle of the proposed switch can be changed by changing
129616    value of writing angles of the grating, and the result shows that the
129617    deflection angle can change in the range of -1degrees to +1degrees. The
129618    proposed theory can be used in switching design.
129619 C1 Shanghai Univ, Coll Sci, Dept Phys, Shanghai 200436, Peoples R China.
129620    Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China.
129621 RP Yan, XN, Shanghai Univ, Coll Sci, Dept Phys, Shanghai 200436, Peoples R
129622    China.
129623 EM xnyan@mail.shu.edu.cn
129624 CR KENAN RP, 1974, APPL PHYS LETT, V24, P428
129625    LIU LR, 1992, J APPL PHYS, V72, P337
129626    TEMPLE DA, 1986, J OPT SOC AM B, V3, P337
129627    VOIT E, 1986, OPT LETT, V11, P309
129628    WILLIAM H, 1989, OPT LETT, V14, P224
129629    YAN XN, 1998, OPT COMMUN, V154, P87
129630 NR 6
129631 TC 0
129632 SN 0030-4026
129633 J9 OPTIK
129634 JI Optik
129635 PY 2004
129636 VL 115
129637 IS 10
129638 BP 455
129639 EP 458
129640 PG 4
129641 SC Optics
129642 GA 882WV
129643 UT ISI:000225972000005
129644 ER
129645 
129646 PT J
129647 AU Li, L
129648    Wu, QS
129649    Ding, YP
129650 TI Living bio-membrane bi-template route for simultaneous synthesis of
129651    lead selenide nanorods and nanotubes
129652 SO NANOTECHNOLOGY
129653 DT Article
129654 ID PBSE NANOWIRES; ZNS NANOWIRES; MINERALIZATION; NANOPARTICLES;
129655    TEMPERATURE; MEMBRANES; MAGNETISM
129656 AB In this paper, a novel method is reported by which semiconductor
129657    materials are synthesized via controlled organism membranes.
129658    Semiconductor lead selenide nanorods and nanotubes have been
129659    successfully prepared simultaneously through living bio-membrane
129660    bi-templates of the mungbean sprout. The lead selenide nanorods are
129661    approximately 45 nm in diameter, and up to 1100 nm in length; all of
129662    them are single crystalline in structure. Lead selenide nanotubes are
129663    50 nm in diameter, and up to 2000 nm in length, and are
129664    poly-crystalline in structure. The characteristics of the products are
129665    illustrated by various means, and their possible formation mechanism is
129666    explored.
129667 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
129668    Natl Ctr Nanosci & Nanotechnol, Beijing 100080, Peoples R China.
129669    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
129670 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
129671 EM qswu@mail.tongji.edu.cn
129672 CR ABDELOUAS A, 2000, CHEM MATER, V12, P1510
129673    ALIVISATOS AP, 1998, ADV MATER, V10, P1297
129674    BETHELL D, 1996, NATURE, V382, P581
129675    GATES B, 2002, ADV FUNCT MATER, V12, P219
129676    JIANG X, 2001, CHEM MATER, V13, P1213
129677    JIRAGE KB, 1997, SCIENCE, V278, P655
129678    LI XL, 1999, APPL PHYS LETT, V32, P4832
129679    LI YD, 2001, J AM CHEM SOC, V123, P9904
129680    LIFSHITZ E, 2003, NANO LETT, V3, P857
129681    LIU YF, 2003, EUR J INORG CHEM FEB, P644
129682    SHENTON W, 1999, ADV MATER, V11, P253
129683    STRELTSOV EA, 1998, ELECTROCHIM ACTA, V43, P869
129684    SUI YC, 2004, APPL PHYS LETT, V84, P1525
129685    THIAVILLE A, 1999, SCIENCE, V284, P1939
129686    WANG WH, 1998, ADV MATER, V10, P1479
129687    WANG X, 2002, ANGEW CHEM INT EDIT, V41, P4790
129688    WU QS, 2002, INORG CHEM COMMUN, V5, P671
129689    XIA YN, 2003, ADV MATER, V15, P353
129690    YANG D, 2003, J MATER CHEM, V13, P1119
129691    ZHU JJ, 2000, J PHYS CHEM B, V104, P7344
129692    ZHU JJ, 2002, LANGMUIR, V18, P3306
129693 NR 21
129694 TC 1
129695 SN 0957-4484
129696 J9 NANOTECHNOL
129697 JI Nanotechnology
129698 PD DEC
129699 PY 2004
129700 VL 15
129701 IS 12
129702 BP 1877
129703 EP 1881
129704 PG 5
129705 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary;
129706    Physics, Applied
129707 GA 881DI
129708 UT ISI:000225843200033
129709 ER
129710 
129711 PT J
129712 AU Shen, Y
129713    Gu, F
129714    Chen, JM
129715    Zhang, JC
129716    Xia, YB
129717 TI The influence of C-60 and C-60-toluene derivative on the
129718    photoconductivity of Fe-phthalocyanine-polystyrene
129719 SO MATERIALS LETTERS
129720 DT Article
129721 DE C-60; C-60-toluene derivative;
129722    Fe(III)--tertracarboxy-phthalocyanine-polystyrene [Fe-taPc-PS];
129723    photoconductivity
129724 ID POLYMERS
129725 AB The influence of the C-60 and C-60-toluene derivative on
129726    photoconductivity of the Fe(III)-
129727    -tertracarboxy-phthalocyanine-polystyrene [Fe-taPc-PS] is studied. The
129728    results show that the photoconductivity of C-60-toluene derivative
129729    doped Fe-taPc-PS/C-60/Fe-taPc-PS multilayer films have increased by one
129730    order of magnitude in several seconds. The charge-transfer complex
129731    (CTC) of C-60 and Fe-taPc-PS may be formed and the C-60-toluene can be
129732    used as a hole transporting material. (C) 2004 Elsevier B.V. All rights
129733    reserved.
129734 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
129735 RP Shen, Y, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
129736    China.
129737 EM yuesen@china.com
129738 CR ALLEMAND PM, 1991, SCIENCE, V253, P301
129739    CHEN HZ, 1993, J POLYM SCI POL CHEM, V31, P1165
129740    DAYIN L, 1993, J CHEM SOC CHEM COMM, P603
129741    HISATOMO Y, 1996, THIN SOLID FILMS, V278, P108
129742    KROTO HW, 1985, NATURE, V318, P162
129743    SHEN Y, 1999, ACTA CHIM SINICA, V57, P1034
129744    SHEN Y, 2003, MATER CHEM PHYS, V82, P401
129745    SHIRAI H, 1980, MAKROMOL CHEM      4, V181, P575
129746    SMILOWITZ L, 1993, PHYS REV B, V47, P13853
129747    YOSHINO K, 1993, SOLID STATE COMMUN, V85, P85
129748    YU C, 1996, J POLYLM SCI B, V34, P631
129749    ZHUDE X, 1995, J MATER SCI LETT, V14, P1030
129750 NR 12
129751 TC 0
129752 SN 0167-577X
129753 J9 MATER LETT
129754 JI Mater. Lett.
129755 PD FEB
129756 PY 2005
129757 VL 59
129758 IS 5
129759 BP 546
129760 EP 548
129761 PG 3
129762 SC Materials Science, Multidisciplinary; Physics, Applied
129763 GA 879WT
129764 UT ISI:000225750600002
129765 ER
129766 
129767 PT J
129768 AU Liu, ZY
129769    Zhang, GD
129770    Li, H
129771    Sun, JL
129772    Ren, MS
129773 TI Al infiltrated C-C hybrid composites
129774 SO MATERIALS & DESIGN
129775 DT Article
129776 DE metal matrix composites; thermal properties; mechanical properties
129777 AB Carbon-carbon reinforced aluminum composites with different content of
129778    pyrolytic carbon and carbon fibers were manufactured. Porous
129779    carbon-carbon preforms in sandwich structure are composed of
129780    unidirectional T300 carbon fibers and carbon felt encapsulated and
129781    connected by C-PY sheaths. The characterizations of C-C/Al composites
129782    were investigated. The obtained thermal conductivity (kappa) reaches
129783    128 W/m K and CTE of samples varies in a wide range. Mechanical
129784    properties are analyzed through three-point bending. The effects of
129785    graphitization are investigated. Graphitization of carbon-carbon
129786    preforms strengthens bonding between carbon fibers and CPY sheaths so
129787    that the characterizations of composites are changed. (C) 2004 Elsevier
129788    Ltd. All rights reserved.
129789 C1 Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200030, Peoples R China.
129790    Shanghai Univ, Composites Ctr, Shanghai 200072, Peoples R China.
129791 RP Liu, ZY, Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites,
129792    Shanghai 200030, Peoples R China.
129793 EM zhenyi_liu@hotmail.com
129794 CR GHOMASHCHI MR, 2000, J MATER PROCESS TECH, V101, P1
129795    KRISTEN KM, 1998, SAMPE S EXH, V3, P1362
129796    SHEEHAN JE, 1994, ANNU REV MATER SCI, V24, P19
129797    VIDALSETIF MH, 1999, MAT SCI ENG A-STRUCT, V272, P321
129798 NR 4
129799 TC 0
129800 SN 0261-3069
129801 J9 MATER DESIGN
129802 JI Mater. Des.
129803 PD FEB
129804 PY 2005
129805 VL 26
129806 IS 1
129807 BP 83
129808 EP 87
129809 PG 5
129810 SC Materials Science, Multidisciplinary
129811 GA 880NH
129812 UT ISI:000225796000013
129813 ER
129814 
129815 PT J
129816 AU Liu, YS
129817    Zhang, JC
129818    Yu, LM
129819    Jia, GQ
129820    Jing, C
129821    Cao, SX
129822 TI Magnetic and frequency properties for nanocrystalline Fe-Ni alloys
129823    prepared by high-energy milling method
129824 SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
129825 DT Article
129826 DE nanocrystalline Fe-Ni alloy; magnetism materials; frequency property;
129827    high-energy ball milling
129828 ID GRAIN-SIZE; CO; POWDERS; AL; PARTICLES; INVAR; PHASE; FE/CO; MN; CU
129829 AB Fe-based nano-crystalline soft magnetic alloy with Ni-doping was
129830    fabricated successfully by high-energy milling. It was proved that a
129831    Fe-Ni solid solution is formed and the evaluated average grain size is
129832    about 20 nm. The effect of doping Ni on the frequency properties was
129833    systematically investigated. From the magnetic measurement results, it
129834    can be concluded that, the nickel doped decreases the resonance
129835    frequency of Fe-Ni alloy, but Ni doping enhances the frequency
129836    stability. The corresponding value of initial permeability as a
129837    function of Ni doping concentration was given at 10 kHz and the result
129838    indicates that the peak value of initial permeability shifts to the
129839    region of low Ni concentration for the samples milled for 72 h. (C)
129840    2004 Elsevier B.V. All rights reserved.
129841 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
129842    Shanghai Univ, Ctr Nano Sci & Technol, Shanghai 200436, Peoples R China.
129843 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
129844 EM zjincang@online.sb.cn
129845 CR ASAKA K, 1999, MAT SCI ENG A-STRUCT, V273, P262
129846    CALKA A, 2002, NATURE, V419, P147
129847    COEY JMD, 2001, J ALLOY COMPD, V326, P2
129848    DEFU W, 1994, MAGNETIC PHYS
129849    DING J, 2002, J MAGN MAGN MATER, V247, P249
129850    ESCORIAL AG, 1991, MAT SCI ENG A-STRUCT, V134, P1394
129851    FADEEVA VI, 1996, MAT SCI ENG A-STRUCT, V206, P90
129852    FADEEVA VI, 2001, INORG MATER, V37, P190
129853    GUODONG L, 1999, CONT MAGNETISM, V187
129854    HERZER G, 1990, IEEE T MAGN, V26, P1397
129855    JARTYCH E, 1999, NANOSTRUCT MATER B, V12, P927
129856    JEN SU, 1999, J APPL PHYS, V85, P8217
129857    KALOSHKIN SD, 2001, J NON-CRYST SOLIDS, V287, P329
129858    KIM YD, 2000, MAT SCI ENG A-STRUCT, V291, P17
129859    LEE BH, 2003, MATER LETT, V57, P1103
129860    LI T, 1997, J PHYS-CONDENS MAT, V9, P1381
129861    LI XG, 1997, J MAGN MAGN MATER, V170, P339
129862    LINDEROTH S, 1994, J APPL PHYS, V75, P5869
129863    LIPINSKI S, 1995, J MAGN MAGN MATER 1, V140, P233
129864    LIU YS, 2004, J ALLOY COMPD, V377, P202
129865    MILHAM CD, 1994, J APPL PHYS, V75, P5659
129866    MURAYAMA M, 2002, SCIENCE, V295, P2433
129867    NASCIMENTO VP, 2001, J PHYS-CONDENS MAT, V13, P665
129868    PASSAMANI EC, 2002, J MATER SCI, V37, P819
129869    QIN W, 2001, J ALLOY COMPD, V322, P286
129870    ROCHMAN NT, 1999, J MATER PROCESS TECH, V89, P367
129871    SEDOV VL, 1998, J MAGN MAGN MATER, V183, P117
129872    SHIYUE X, 1998, J SHANGHAI U, V2, P301
129873    SHIYUE X, 2001, J SHANGHAI U, V5, P147
129874    SZABO S, 2000, J MAGN MAGN MATER, V215, P60
129875    ZHU LH, 2001, J MATER SCI, P5571
129876    ZHU M, 1998, J MATER SCI LETT, V17, P445
129877 NR 32
129878 TC 1
129879 SN 0304-8853
129880 J9 J MAGN MAGN MATER
129881 JI J. Magn. Magn. Mater.
129882 PD JAN 1
129883 PY 2005
129884 VL 285
129885 IS 1-2
129886 BP 138
129887 EP 144
129888 PG 7
129889 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
129890 GA 879WW
129891 UT ISI:000225750900018
129892 ER
129893 
129894 PT J
129895 AU Ouyang, ZG
129896    Zhou, SF
129897    Yin, FQ
129898 TI Oscillation for a class of odd-order delay parabolic differential
129899    equations
129900 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
129901 DT Article
129902 DE oscillation; odd order; delay parabolic differential equation;
129903    eventually positive solution
129904 AB Some sufficient conditions and some sufficient and necessary conditions
129905    are established for the oscillation of a class of odd-order delay
129906    parabolic differential equations of the form
129907    [GRAPHICS]
129908    where N is an odd integer, Omega is a bounded domain in R-M with a
129909    smooth boundary deltaOmega, and Delta is the Laplacian operation with
129910    three different boundary conditions. To some extent, our results
129911    extended and improved the oscillatory results of some references.
129912    Meanwhile, we corrected some mistakes in a main conclusion of
129913    reference. (C) 2004 Elsevier B.V. All rights reserved.
129914 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
129915    Nanhua Univ, Dept Math, Hengyang 421001, Peoples R China.
129916 RP Ouyang, ZG, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
129917 EM ouyanazigen@hotmail.com
129918    sfzhou@mail.shu.edu.cn
129919 CR BYKOV V, 1983, IZV AKAD NAUK KIRGIZ, V6, P3
129920    ELABBSY EM, 2000, ELECT J DIFFERENTIAL, V13, P1
129921    FU XL, 1995, J PARTIAL DIFF EQS, V8, P82
129922    KUBIACZYK I, 2002, J COMPUT APPL MATH, V147, P263
129923    KUSANO T, 1994, HIROSHIMA MATH J, V24, P123
129924    VLADIMIROV VS, 1981, EQUATIONS MATH PHYS
129925    YOSHIDA N, 1986, HIROSHIMA MATH J, V16, P305
129926    YOSHIDA N, 1987, B AUSTR MATH SOC, P36
129927 NR 8
129928 TC 0
129929 SN 0377-0427
129930 J9 J COMPUT APPL MATH
129931 JI J. Comput. Appl. Math.
129932 PD MAR 15
129933 PY 2005
129934 VL 175
129935 IS 2
129936 BP 305
129937 EP 319
129938 PG 15
129939 SC Mathematics, Applied
129940 GA 881WF
129941 UT ISI:000225899400007
129942 ER
129943 
129944 PT J
129945 AU Xiao, ZY
129946    Wang, ZH
129947 TI Novel bandpass filter configuration using coupled linear tapered line
129948    resonators
129949 SO INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES
129950 DT Article
129951 DE stripline filters; bandpass filters; multistepped resonators; linear
129952    tapered-line resonators
129953 AB A novel tapped bandpass filter composed of two-coupled linear
129954    tapered-line resonators (LTLRs) is proposed. Multistepped resonators
129955    are applied to analyzing LTLRs, which are difficult to analyze
129956    directly. Through this analysis method, fundamental characteristics of
129957    LTLRs and their filter design parameters can be easily derived. This
129958    new filter has insertion loss less than 0.6dB at 1.9 GHz, the return
129959    loss less than 18dB in the range 1.8-1.93GHz and 12.3% 3dB bandwidth.
129960    Experimental results of fabricated filter are in good agreement with
129961    the design results.
129962 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
129963 RP Xiao, ZY, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
129964    Peoples R China.
129965 CR CHANG HC, 1996, IEEE MTT-S, P619
129966    CRUTE JR, 2002, MICROW OPT TECHN LET, V34, P336
129967    ISHIZAKI T, 1991, IEICE T E, V74, P1556
129968    ISHIZAKI T, 1994, IEEE MTT S, P617
129969    ISHIZAKI T, 1996, IEICE T ELECTRON EC, V79, P671
129970    MATTHAEI GL, 1963, MICROWAVE J, V6, P82
129971    TSAI JT, 2000, MICROW OPT TECHN LET, V27, P105
129972 NR 7
129973 TC 0
129974 SN 0195-9271
129975 J9 INT J INFRAR MILLIM WAVE
129976 JI Int. J. Infrared Millimeter Waves
129977 PD DEC
129978 PY 2004
129979 VL 25
129980 IS 12
129981 BP 1811
129982 EP 1818
129983 PG 8
129984 SC Engineering, Electrical & Electronic; Physics, Applied; Optics
129985 GA 880IY
129986 UT ISI:000225784700011
129987 ER
129988 
129989 PT J
129990 AU Wang, RM
129991    Yang, HL
129992    Wang, HX
129993 TI On the distribution of surplus immediately after ruin under interest
129994    force and subexponential claims
129995 SO INSURANCE MATHEMATICS & ECONOMICS
129996 DT Article
129997 DE Surplus immediately after ruin; Laplace transform; integral equation;
129998    subexponential distribution; compound Poisson model
129999 AB The compound Poisson risk process with a constant interest force is an
130000    interesting stochastic model in risk theory. It provides a basic
130001    understanding about how investments will affect the ruin probability
130002    and related ruin functions. This paper considers the compound Poisson
130003    risk model with a constant interest force for an insurance portfolio
130004    and studies the distribution of the surplus immediately after ruin
130005    under the model. By using the techniques of Kalashnikov and
130006    Konstantinides [Kalashnikov, V, Konstantinides, D., 2000. Ruin under
130007    interest force and subexponential claims: a simple treatment. Insurance
130008    Math. Econ. 27, 145-149] and a formula obtained by Yang and Zhang
130009    [Yang, H.L., Zhang, L.H., 2001a. On the distribution of surplus
130010    immediately after ruin under interest force. Insurance Math. Econ. 29,
130011    247-255], we give asymptotic formulas of the low and upper bounds for
130012    the distribution of the surplus immediately after ruin under
130013    subexponential claims. To some extent, we can view our work here as the
130014    continuation of the recent important work of Kalashnikov and
130015    Konstantinides [Kalashnikov, V., Konstantinides, D., 2000. Ruin under
130016    interest force and subexponential claims: a simple treatment. Insurance
130017    Math. Econ. 27, 145-149], Yang and Zhang [Yang, H.L., Zhang, L.H.,
130018    2001a. On the distribution of surplus immediately after ruin under
130019    interest force. Insurance: Mathematics and Economics 29, 247-255] and
130020    Konstantinides et al. [Konstantinides, D., Tang, Q.H., Tsitsiashvili,
130021    G., 2002. Estimates for the ruin probability in the classical risk
130022    model with constant interest force in the presence of heavy tails.
130023    Insurance Math. Econ. 31, 447-460]. (C) 2004 Elsevier B.V All rights
130024    reserved.
130025 C1 E China Normal Univ, Dept Stat, Shanghai 200062, Peoples R China.
130026    Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China.
130027    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
130028 RP Wang, RM, E China Normal Univ, Dept Stat, Shanghai 200062, Peoples R
130029    China.
130030 EM rmwang@stat.ecnu.edu.cn
130031    hlyang@hkusua.hku.hk
130032    whx@citiz.net
130033 CR ASMUSSEN S, 1998, ANN APPL PROBAB, V8, P354
130034    CAI J, 2002, INSUR MATH ECON, V30, P389
130035    KALASHNIKOV V, 2000, INSUR MATH ECON, V27, P145
130036    KLUPPELBERG C, 1998, SCAND ACTUAR J, P49
130037    KONSTANTINIDES D, 2002, INSUR MATH ECON, V31, P447
130038    ROLSKI T, 1999, STOCHASTIC PROCESSES
130039    SUNDT B, 1995, INSUR MATH ECON, V16, P7
130040    SUNDT B, 1997, INSUR MATH ECON, V19, P85
130041    WILLMOT GE, 2001, LECT NOTES STAT, V156
130042    YANG HL, 2001, INSUR MATH ECON, V29, P247
130043    YANG HL, 2001, STAT PROBABIL LETT, V55, P329
130044    YANG SK, 1999, RELIAB ENG SYST SAFE, V66, P29
130045 NR 12
130046 TC 0
130047 SN 0167-6687
130048 J9 INSUR MATH ECON
130049 JI Insur. Math. Econ.
130050 PD DEC 6
130051 PY 2004
130052 VL 35
130053 IS 3
130054 BP 703
130055 EP 714
130056 PG 12
130057 SC Mathematics, Interdisciplinary Applications; Social Sciences,
130058    Mathematical Methods; Economics; Statistics & Probability
130059 GA 880TT
130060 UT ISI:000225813100013
130061 ER
130062 
130063 PT J
130064 AU Zhang, XP
130065    Wang, SZ
130066 TI Steganography using multiple-base notational system and human vision
130067    sensitivity
130068 SO IEEE SIGNAL PROCESSING LETTERS
130069 DT Article
130070 DE human vision system (HVS); information hiding; steganography
130071 ID IMAGES
130072 AB This letter proposes a novel steganographic scheme that employs human
130073    vision sensitivity to hide a large amount of secret bits into a still
130074    image with a high imperceptibility. In this method, data to be embedded
130075    are converted into a series of symbols in a notation system with
130076    multiple bases. The specific bases used are determined by the degree of
130077    local variation of the pixel magnitudes in the host image so that
130078    pixels in busy areas can potentially carry more hidden data.
130079    Experimental results are given to show the advantage of this adaptive
130080    technique.
130081 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
130082 RP Zhang, XP, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
130083    Peoples R China.
130084 EM xzhang@staff.shu.edu.cn
130085    shuowang@staff.shu.edu.cn
130086 CR KUTTER M, 2002, IEEE T IMAGE PROCESS, V11, P16
130087    MAYACHE A, 1998, P INT C IM PROC ICIP, V3, P409
130088    NODA H, 2002, IEEE SIGNAL PROC LET, V9, P410
130089    PETITCOLAS FAP, 1999, P IEEE, V87, P1062
130090    WANG HQ, 2004, COMMUN ACM, V47, P76
130091    WANG Z, 2002, IEEE SIGNAL PROC LET, V9, P81
130092    WU DC, 2003, PATTERN RECOGN LETT, V24, P1613
130093 NR 7
130094 TC 1
130095 SN 1070-9908
130096 J9 IEEE SIGNAL PROCESS LETT
130097 JI IEEE Signal Process. Lett.
130098 PD JAN
130099 PY 2005
130100 VL 12
130101 IS 1
130102 BP 67
130103 EP 70
130104 PG 4
130105 SC Engineering, Electrical & Electronic
130106 GA 881DA
130107 UT ISI:000225842400018
130108 ER
130109 
130110 PT S
130111 AU Liu, L
130112    Miao, HK
130113 TI A specification-based approach to testing polymorphic attributes
130114 SO FORMAL METHODS AND SOFTWARE ENGINEERING, PROCEEDINGS
130115 SE LECTURE NOTES IN COMPUTER SCIENCE
130116 DT Article
130117 AB The object-oriented features, such as aggregation, inheritance and
130118    polymorphism, facilitate software reuse and improve software quality.
130119    But those features also cause new problems that traditional testing
130120    techniques cannot resolve effectively. Existing researches on
130121    object-oriented software testing are mainly based on some graph
130122    representations and seldom consider the combinational effect of
130123    aggregation, inheritance and polymorphism. For some model-based
130124    specifications that do not include graph representations, it is
130125    difficult to use the graph based testing techniques to derive test
130126    cases. This paper provides an approach to deriving test cases for
130127    testing the combinational effect of aggregation, inheritance and
130128    polymorphism from a model-based class specification. This approach
130129    contains two techniques at intra-class and inter-class testing levels
130130    and is mechanized using the algorithms presented in this paper.
130131    Finally, through the experimental analysis, we present the
130132    effectiveness and applicability of our testing approach.
130133 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
130134 RP Liu, L, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R
130135    China.
130136 EM liuling@staff.shu.edu.cn
130137    hkmiao@mail.shu.edu.cn
130138 CR ALEXANDER RT, 2000, P INT S SOFTW REL EN, P8
130139    GALLAGHER L, 2002, UNPUB INTEGRATION TE
130140    HARROLD M, 1994, S FDN SOFTW ENG NEW, P200
130141    HARROLD MJ, 1992, P 14 INT C SOFTW ENG, P68
130142    LIU L, 2002, P C ENG COMPL COMP S, P153
130143    LU L, 2004, THESIS SHANGHAI U
130144    MARTENA V, 2002, P C ENG COMPL COMP S, P135
130145    MEI H, 1999, P INT S SOFTW REL EN, P73
130146    MURRAY L, 1997, AUSTR SOFTW ENG C AS, P80
130147    OFFUTT J, 2001, S SOFTW REL ENG HONG, P84
130148    OSTRAND TJ, 1988, COMMUN ACM, V31, P676
130149    SMITH G, 1992, THESIS U QUEENSLAND
130150    SMITH G, 2000, OBJECT Z SPECIFICATI
130151    STOCKS P, 1996, IEEE T SOFTWARE ENG, V22, P777
130152 NR 14
130153 TC 0
130154 SN 0302-9743
130155 J9 LECT NOTE COMPUT SCI
130156 PY 2004
130157 VL 3308
130158 BP 306
130159 EP 319
130160 PG 14
130161 GA BBI65
130162 UT ISI:000225639600024
130163 ER
130164 
130165 PT J
130166 AU Zhi, XL
130167    Rong, L
130168    Tong, WQ
130169 TI Improving grid service's QoS through self-configuring regulation
130170 SO ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
130171 DT Article
130172 DE grid service; QoS; improvement; regulation; self-configuring
130173 AB A new regulation based approach is proposed to improve grid resource
130174    services' quality of service (QoS). The main idea of regulation and
130175    some typical regulation algorithms are described. To automatically
130176    adapt a regulation system to the changing runtime environment, a
130177    self-configuring mechanism based on the computation of fitness is
130178    introduced. The goal of self-configuring regulation is to provide a
130179    virtual grid resource service with improved QoS to best satisfy users'
130180    requirements on the basis of resource services with lower QoS. (C) 2004
130181    Elsevier Ltd. All rights reserved.
130182 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
130183    Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China.
130184 RP Zhi, XL, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R
130185    China.
130186 EM xlzhi@mail.shu.edu.cn
130187    lu.rong@shrcwc.org
130188 CR *GLOB, 2004, GLOB TOOLK 3 2 1
130189    *IBM, 2003, IBM AUTONOMIC CO APR
130190    BRANDT S, 1998, P 19 IEEE REAL TIM S, P307
130191    CZAJKOWSKI K, 2004, WS RESOUCE FRAMEWORK
130192    FARKAS P, 2003, P 1 INT WORKSH C NUM, P9
130193    FOSTER I, 2002, OP GRID SERV INFR WG
130194    FOSTER I, 2004, GRID BLUEPRINT NEW C
130195    JANN J, 2003, IBM SYST J, V42, P29
130196    KANT L, 1998, P IEEE MIL COMM C MI, V2, P415
130197    LANFRANCHI G, 2003, IBM SYST J, V42, P119
130198    LEFF A, 2003, IEEE INTERNET COMPUT, V7, P44
130199    MATEESCU G, 2003, INT J HIGH PERFORM C, V17, P209
130200    ROY A, 1999, GRID RESOURCE MANAGE, P377
130201    TABB L, 2004, GRID COMPUTING FINAN
130202    WHISNANT K, 2003, IBM SYST J, V42, P45
130203    XU D, 2001, CLUSTER COMPUTING, V4, P95
130204    ZHANG H, 2003, NANO LETT, V3, P43
130205 NR 17
130206 TC 1
130207 SN 0952-1976
130208 J9 ENG APPL ARTIF INTELL
130209 JI Eng. Appl. Artif. Intell.
130210 PD OCT
130211 PY 2004
130212 VL 17
130213 IS 7
130214 BP 701
130215 EP 710
130216 PG 10
130217 SC Computer Science, Artificial Intelligence; Engineering, Electrical &
130218    Electronic; Engineering, Multidisciplinary; Automation & Control Systems
130219 GA 881NH
130220 UT ISI:000225873700002
130221 ER
130222 
130223 PT J
130224 AU Ni, J
130225    Ni, Y
130226    Wang, XH
130227    Xu, W
130228    Wang, Y
130229    Xiong, SD
130230 TI Application of a gene vaccine targeting HER-2/Neu in Immunocontraception
130231 SO DNA AND CELL BIOLOGY
130232 DT Article
130233 ID EPIDERMAL-GROWTH-FACTOR; ANTI-ERBB-2 MONOCLONAL-ANTIBODIES; MOUSE
130234    UTERUS; NEU ONCOGENE; EGF-RECEPTOR; DIFFERENTIAL EXPRESSION; SIGNALING
130235    NETWORK; MAMMARY-TUMORS; BREAST-CANCER; DNA VACCINES
130236 AB HER-2/neu was widely used as a target for tumor prevention and therapy
130237    because of its overexpression in many tumors. However, it also plays an
130238    important role in proliferation of endometrium, embryo implantation,
130239    and development. Here, HER-2/neu was used in immunocontraception. A
130240    gene vaccine encoding the extracellular domain of human HER-2/neu was
130241    constructed. After immunization, it especially elicited both humoral
130242    and cellular responses in mice. Embryo implantation was interfered by
130243    intravenous and intraluminal injection of anti-HER-2/neu serum or
130244    lymphocytes. Lower fertility was induced after vaccination when
130245    compared with the control groups, while injuries to the uterus and
130246    ovary were not observed. Our results suggested a new and impactful
130247    target for contraceptive vaccines development.
130248 C1 Fudan Univ, Shanghai Med Coll, Dept Immunol, Shanghai 200032, Peoples R China.
130249    Ctr Gene Immunizat & Vaccine Res, Shanghai, Peoples R China.
130250    Shanghai Univ, Div Immunol, E Inst, Shanghai, Peoples R China.
130251 RP Xiong, SD, Fudan Univ, Shanghai Med Coll, Dept Immunol, 138 Yixueyuan
130252    Rd, Shanghai 200032, Peoples R China.
130253 EM sdxiong@shmu.edu.cn
130254 CR BARBER MR, 2000, J REPROD IMMUNOL, V46, P103
130255    BARGMANN CI, 1986, NATURE, V319, P226
130256    CHEN Y, 1998, CANCER RES, V58, P1965
130257    CONCETTI A, 1996, CANCER IMMUNOL IMMUN, V43, P307
130258    COUSSENS L, 1985, SCIENCE, V230, P1132
130259    DAS SK, 1994, DEVELOPMENT, V120, P1071
130260    DAS SK, 1994, ENDOCRINOLOGY, V134, P971
130261    DELVES PJ, 2002, TRENDS IMMUNOL, V123, P213
130262    DEPOTTER CR, 1989, INT J CANCER, V44, P969
130263    DISIS ML, 1996, J IMMUNOL, V156, P3151
130264    DISIS ML, 1999, CLIN CANCER RES, V5, P1289
130265    DSOUZA B, 1994, P NATL ACAD SCI USA, V91, P7202
130266    EARP HS, 1995, BREAST CANCER RES TR, V35, P115
130267    ESSERMAN LJ, 1999, CANCER IMMUNOL IMMUN, V47, P337
130268    FINN CA, 1974, J REPROD FERTIL, V39, P195
130269    FOY TM, 2002, SEMIN ONCOL S11, V29, P53
130270    HALPERIN R, 2002, AM J REPROD IMMUNOL, V48, P291
130271    HANA V, 1994, ENDOCRINOLOGY, V135, P107
130272    HEHL EM, 2001, INT J CLIN PHARM TH, V39, P503
130273    HUNG MC, 1999, SEMIN ONCOL S12, V26, P51
130274    HYNES NE, 1994, BIOCHIM BIOPHYS ACTA, V1198, P165
130275    KLAPPER LN, 2000, ADV CANCER RES, V77, P25
130276    KNEZEVIC VR, 1994, J ANAT, V185, P181
130277    KOKAI Y, 1987, P NATL ACAD SCI USA, V84, P8498
130278    KRAUS MH, 1989, P NATL ACAD SCI USA, V86, P9193
130279    LI XH, 1998, CHIN J IMMUNOL, V14, P191
130280    LIM H, 1997, ENDOCRINOLOGY, V138, P1328
130281    MARTIN KL, 1998, HUM REPROD, V13, P1645
130282    MICHEL ML, 2001, INTERVIROLOGY, V44, P78
130283    NAGATA Y, 1997, J IMMUNOL, V159, P1336
130284    NIE GY, 1997, REPROD FERT DEVELOP, V9, P65
130285    PARIA BC, 1990, P NATL ACAD SCI USA, V87, P4756
130286    PARIA BC, 1993, P NATL ACAD SCI USA, V90, P55
130287    PARIA BC, 2001, P NATL ACAD SCI USA, V98, P1047
130288    PARIA BC, 2002, SCIENCE, V296, P2185
130289    PIECHOCKI MP, 2001, J IMMUNOL, V167, P3367
130290    PLOWMAN GD, 1990, P NATL ACAD SCI USA, V87, P4905
130291    PRESS MF, 1990, ONCOGENE, V5, P953
130292    PRESS MF, 1994, CANCER RES, V54, P5675
130293    PSYCHOYOS A, 1973, HDB PHYSL, P187
130294    REEKA N, 1998, HUM REPROD, V13, P2199
130295    STEWART CL, 1992, NATURE, V359, P76
130296    TAYLOR P, 1996, CANCER IMMUNOL IMMUN, V42, P179
130297    TZAHAR E, 1997, EMBO J, V16, P4938
130298    VENANZI FM, 1995, ANN NY ACAD SCI, V772, P274
130299    YIP YL, 2001, J IMMUNOL, V166, P5271
130300    YIP YL, 2002, CANCER IMMUNOL IMMUN, V50, P569
130301    ZHANG YJ, 2000, CHIN J CANC BIOTHER, V7, P15
130302 NR 48
130303 TC 0
130304 SN 1044-5498
130305 J9 DNA CELL BIOL
130306 JI DNA Cell Biol.
130307 PD DEC
130308 PY 2004
130309 VL 23
130310 IS 12
130311 BP 807
130312 EP 814
130313 PG 8
130314 SC Biochemistry & Molecular Biology; Cell Biology; Genetics & Heredity
130315 GA 880EZ
130316 UT ISI:000225773100002
130317 ER
130318 
130319 PT J
130320 AU Li, MS
130321    Tian, LJ
130322    Zhang, HB
130323 TI Explicit analysis of creating maximally entangled state in the Mott
130324    insulator state
130325 SO CHINESE PHYSICS LETTERS
130326 DT Article
130327 ID ATOMS
130328 AB We clarify the essence of the method proposed by You (Phys. Rev. Lett.
130329    90 (2004) 030402) to create the maximally entangled atomic N-GHZ state
130330    in the Mott insulator state. Based on the time-independent perturbation
130331    theory, we find that the validity of the method can be summarized as
130332    that the Hamiltonian governing the evolution is approximately
130333    equivalent to the type aJ(x)(2) + bJ(x), which is the well known form
130334    used to create the maximally entangled state.
130335 C1 Nankai Univ, Nankai Inst Math, Div Phys Theor, Tianjin 300071, Peoples R China.
130336    Nankai Univ, Liuhui Ctr Appl Math, Tianjin 300071, Peoples R China.
130337    Tianjin Univ, Liuhui Ctr Appl Math, Tianjin 300071, Peoples R China.
130338    Shanghai Univ, Coll Sci, Dept Phys, Shanghai 200436, Peoples R China.
130339    NE Normal Univ, Inst Theoret Phys, Changchun 130024, Peoples R China.
130340 RP Li, MS, Nankai Univ, Nankai Inst Math, Div Phys Theor, Tianjin 300071,
130341    Peoples R China.
130342 EM nklimit@eyou.com
130343 CR BIGELOW N, 2001, NATURE, V409, P27
130344    DUAN LM, 2000, PHYS REV LETT, V85, P3991
130345    DUAN LM, 2001, QUANTPH0107055
130346    FACCHI P, 2002, PHYS REV LETT, V89
130347    FACCHI P, 2002, QUANTPH0207030
130348    GREINER M, 2002, NATURE, V415, P39
130349    HELMERSON K, 2001, PHYS REV LETT, V87
130350    JAKSCH D, 1998, PHYS REV LETT, V81, P3108
130351    KITAGAWA M, 1993, PHYS REV A, V47, P5138
130352    LANDAU LD, 1977, QUANTUM MECH, P133
130353    MOLMER K, 1999, PHYS REV LETT, V82, P1835
130354    ORZEL C, 2001, SCIENCE, V291, P2386
130355    POULSEN UV, 2001, PHYS REV A, V64
130356    PU H, 2000, PHYS REV LETT, V85, P3987
130357    SACKETT CA, 2000, NATURE, V404, P256
130358    SOENSEN A, 2001, NATURE, V409, P63
130359    WINELAND DJ, 1992, PHYS REV A, V46, P6797
130360    YOU L, 2003, PHYS REV LETT, V90
130361    ZHANG M, 2003, PHYS REV LETT, V91
130362 NR 19
130363 TC 1
130364 SN 0256-307X
130365 J9 CHIN PHYS LETT
130366 JI Chin. Phys. Lett.
130367 PD DEC
130368 PY 2004
130369 VL 21
130370 IS 12
130371 BP 2347
130372 EP 2350
130373 PG 4
130374 SC Physics, Multidisciplinary
130375 GA 880IP
130376 UT ISI:000225782500008
130377 ER
130378 
130379 PT J
130380 AU Cai, DM
130381    Lin, KH
130382    Li, MZ
130383    Wen, JW
130384    Li, HY
130385    You, TP
130386 TI Synthesis of novel 1,3-dioxolane nucleoside analogues
130387 SO CHINESE JOURNAL OF CHEMISTRY
130388 DT Article
130389 DE nucleoside; 1,3-dioxolane; tiazofurin; ribavirin; imidazole
130390 ID ANTIVIRAL AGENT; INVITRO; HIV; INFECTIVITY; BREDININ; CYTIDINE
130391 AB Novel 1,3-dioxolane C-nucleoside analogues of tiazofurin
130392    2-(2-hydroxymethyl-1,3-dioxolan-4-yl)-1,3-thiazole-4-carboxamide as
130393    well as N-nucleoside analogues of substituted imidazoles
130394    1-(2-hydroxymethyl-1,3-dioxolan-4-yl)-4-nitroimidazole and
130395    1-(2-hydroxymethyl-1,3-dioxolan-4-yl)-4,5-dicyanoimidazole were
130396    synthesized from methyl acrylate through a multistep procedure. Their
130397    structures were confirmed by IR, H-1 NMR, C-13 NMR spectra and
130398    elemental analysis.
130399 C1 Univ Sci & Technol China, Dept Chem, Anhua 230026, Peoples R China.
130400    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
130401 RP You, TP, Univ Sci & Technol China, Dept Chem, Anhua 230026, Peoples R
130402    China.
130403 EM ytp@ustc.edu.cn
130404 CR BEACH JW, 1992, J ORG CHEM, V57, P2217
130405    BELLEAU B, 1993, BIOORG MED CHEM LETT, V3, P1723
130406    CHU CK, 1991, J ORG CHEM, V56, P6503
130407    COHEN J, 1997, SCIENCE, V276, P520
130408    GROVE KL, 1995, CANCER RES, V55, P3008
130409    GROVE KL, 1997, NUCLEOS NUCLEOT, V16, P1229
130410    JEONG LS, 1992, TETRAHEDRON LETT, V33, P595
130411    JEONG LS, 1993, J MED CHEM, V36, P2627
130412    KAMATA K, 1983, TRANSPLANTATION, V35, P144
130413    MINAKAWA N, 1991, J MED CHEM, V34, P778
130414    MITSUYA H, 1985, P NATL ACAD SCI USA, V82, P7096
130415    MITSUYA H, 1986, P NATL ACAD SCI USA, V83, P1911
130416    MIZUNO K, 1974, J ANTIBIOT, V27, P775
130417    PETERSON ML, 1991, J MED CHEM, V34, P2787
130418    RIDDLER SA, 1995, ANTIVIR RES, V27, P189
130419    SHAW E, 1958, J AM CHEM SOC, V80, P3899
130420    SMITH RA, 1980, ANNU REV PHARMACOL, V20, P259
130421    SOUDEYNS H, 1991, ANTIMICROB AGENTS CH, V35, P1386
130422    STRIVASTAVA PC, 1977, J MED CHEM, V20, P256
130423    STRIVASTAVA PC, 1983, J MED CHEM, V26, P445
130424 NR 20
130425 TC 0
130426 SN 1001-604X
130427 J9 CHINESE J CHEM
130428 JI Chin. J. Chem.
130429 PD DEC
130430 PY 2004
130431 VL 22
130432 IS 12
130433 BP 1425
130434 EP 1431
130435 PG 7
130436 SC Chemistry, Multidisciplinary
130437 GA 879NN
130438 UT ISI:000225724600009
130439 ER
130440 
130441 PT J
130442 AU Chang, TC
130443    Li, GQ
130444    Guo, XM
130445 TI Elastic axial buckling of carbon nanotubes via a molecular mechanics
130446    model
130447 SO CARBON
130448 DT Article
130449 DE carbon nanotubes; modeling; mechanical properties
130450 ID STRAIN; STIFFNESS
130451 AB Based on a molecular mechanics model, analytical solutions for the
130452    critical buckling strain of single-walled achiral carbon nanotubes
130453    under axial compression are obtained. The results show that zigzag
130454    tubes are more stable than armchair tubes with the same diameter.
130455    Comparison with the results given by continuum mechanics model shows
130456    that the continuum mechanics model underestimates the critical buckling
130457    strain for smaller tubes if a Young's modulus for larger tubes (or for
130458    graphene sheets) is adopted. The effect of intertube van der Waals
130459    interaction from the inner tube of multi-walled carbon nanotubes on the
130460    buckling of the outermost tube is also qualitatively discussed and it
130461    is found that the van der Waals interaction has little effect on the
130462    critical buckling strain for double-walled carbon nanotubes. (C) 2004
130463    Elsevier Ltd. All rights reserved.
130464 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
130465    Tongji Univ, Dept Civil Engn, Shanghai 200092, Peoples R China.
130466 RP Chang, TC, Shanghai Univ, Shanghai Inst Appl Math & Mech, 149 Yanchang
130467    Rd, Shanghai 200072, Peoples R China.
130468 EM tchang@staff.shu.edu.cn
130469 CR ALLINGER NL, 1977, J AM CHEM SOC, V99, P8127
130470    ARROYO M, 2003, PHYS REV LETT, V91
130471    BURKERT U, 1982, ACS MONOGRAPH, V177
130472    CHANG TC, 2003, J MECH PHYS SOLIDS, V51, P1059
130473    CHENG HM, 2002, CARBON NANOTUBES SYN, P203
130474    DAI HJ, 1996, NATURE, V384, P147
130475    DRESSELHAUS MS, 1996, SCI FULLERENES CARBO, P1
130476    GARG A, 1998, PHYS REV LETT, V81, P2260
130477    HAN Q, 2003, EUR J MECH A-SOLID, V22, P875
130478    HERNANDEZ E, 1998, PHYS REV LETT, V80, P4502
130479    IIJIMA S, 1996, J CHEM PHYS, V104, P2089
130480    LEACH AR, 1996, MOL MODELLING PRINCI, P131
130481    LI CY, 2003, INT J SOLIDS STRUCT, V40, P2487
130482    ODEGARD GM, 2002, COMPOS SCI TECHNOL, V62, P1869
130483    OZAKI T, 2000, PHYS REV LETT, V84, P1712
130484    PANTANO A, 2003, PHYS REV LETT, V91
130485    PONCHARAL P, 1999, SCIENCE, V283, P1513
130486    QIAN D, 2002, APPL MECH REV, V55, P495
130487    RU CQ, 2000, J APPL PHYS, V87, P7227
130488    RU CQ, 2000, PHYS REV B, V62, P9973
130489    RU CQ, 2001, J APPL PHYS, V89, P3426
130490    SANCHEZPORTAL D, 1999, PHYS REV B, V59, P12678
130491    SHEN HS, 2004, INT J SOLIDS STRUCT, V41, P2643
130492    SHEN LX, 2004, PHYS REV B, V69
130493    SRIVASTAVA D, 1997, P 1997 ACM IEEE C SU, P1
130494    TIMOSHENKO SP, 1961, THEORY ELASTIC STABI, P457
130495    VODENITCHAROVA T, 2003, PHYS REV B, V68
130496    WANG CY, 2003, INT J SOLIDS STRUCT, V40, P3893
130497    WHITE CT, 1993, PHYS REV B, V47, P5485
130498    YAKOBSON BI, 1996, PHYS REV LETT, V76, P2511
130499    ZHOU X, 2000, PHYS REV B, V62, P13692
130500 NR 31
130501 TC 2
130502 SN 0008-6223
130503 J9 CARBON
130504 JI Carbon
130505 PY 2005
130506 VL 43
130507 IS 2
130508 BP 287
130509 EP 294
130510 PG 8
130511 SC Chemistry, Physical; Materials Science, Multidisciplinary
130512 GA 881IK
130513 UT ISI:000225856400008
130514 ER
130515 
130516 PT J
130517 AU Xue, Y
130518    Chen, LQ
130519    Liu, YZ
130520 TI Special solutions of Kirchhoff equations and their Lyapunov stability
130521 SO ACTA PHYSICA SINICA
130522 DT Article
130523 DE super-thin elastic rod; Kirchhoff equation; special solution; Lyapunov
130524    stability
130525 ID DNA CONFIGURATIONS; EQUILIBRIUM STATE; ELASTIC STABILITY; SYSTEMS; MODEL
130526 AB The special solutions of the Kirchhoff equations, which are those
130527    relative to fixed coordinate system, principal coordinate system of a
130528    cross section of the rod, and Frenet coordinate system of the central
130529    line of the rod, respectively, are derived in this paper. Lyapunov
130530    stability of these solutions is discussed by use of theory on the
130531    first-approximation stability, and at the same time stability area in
130532    parameter's plane is given.
130533 C1 Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
130534    Shanghai Inst Technol, Sch Mech & Automat Engn, Shanghai 200233, Peoples R China.
130535    Shanghai Jiao Tong Univ, Dept Mech Engn, Shanghai 200030, Peoples R China.
130536 RP Xue, Y, Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples
130537    R China.
130538 CR 1979, HDB MATH, P97
130539    BENHAM CJ, 1979, BIOPOLYMERS, V18, P609
130540    CHEN ZD, 1994, THEORY LAGER DEFORMA
130541    COLEMAN BD, 2000, PHYS REV E, V61, P759
130542    FU JL, 2002, ACTA PHYS SIN-CH ED, V51, P2683
130543    FU JL, 2003, ACTA PHYS SIN-CH ED, V52, P256
130544    GORIELY A, 2000, PHYS REV E B, V61, P4508
130545    HUNT NG, 1991, J CHEM PHYS, V95, P9329
130546    LIU YZ, 2001, ADV DYNAMICS, P118
130547    LIU YZ, 2001, CIN Q MECH, V22, P147
130548    LIU YZ, 2002, J SHANGHAI JIAOTONG, V36, P1587
130549    LIU YZ, 2003, MECH PRACTICE, V25, P1
130550    LIU YZ, 2004, ACTA PHYS SIN-CH ED, V53, P2424
130551    LOVE AEH, 1927, TREATISE MATH THEORY
130552    MEI FX, 1997, STABILITY MOTION CON, P119
130553    MERGELL B, 2003, PHYS REV E, V68, P21911
130554    SCHLICK T, 1995, CURR OPIN STRUC BIOL, V5, P245
130555    TANAKA F, 1985, J CHEM PHYS, V83, P6017
130556    TOBIAS I, 2000, PHYS REV E, V61, P747
130557    VANDERHEIJDEN GHM, 1998, SIAM J APPL MATH, V59, P198
130558    VOLOGODSKII AV, 1979, NATURE, V280, P294
130559    WU DR, 1981, DIFFERENTIAL GEOMETR, P38
130560 NR 22
130561 TC 1
130562 SN 1000-3290
130563 J9 ACTA PHYS SIN-CHINESE ED
130564 JI Acta Phys. Sin.
130565 PD DEC
130566 PY 2004
130567 VL 53
130568 IS 12
130569 BP 4029
130570 EP 4036
130571 PG 8
130572 SC Physics, Multidisciplinary
130573 GA 880IU
130574 UT ISI:000225783100003
130575 ER
130576 
130577 PT J
130578 AU Chen, YH
130579    Xue, Y
130580 TI Effects of the stochastic delay probability on traffic flow
130581 SO ACTA PHYSICA SINICA
130582 DT Article
130583 DE traffic flow; cellular automaton model; fundamental diagram; traffic jam
130584 ID CELLULAR-AUTOMATON MODEL
130585 AB Considering the effects of different factors on the stochastic delay
130586    probability, we have classified the delay probability into three cases.
130587    The first case, corresponding to the deceleration state, has a large
130588    delay probability if anticipant velocity is larger than the gap between
130589    the successive cars. The second one, corresponding to the leader
130590    following stably, has an intermediate delay probability if the
130591    anticipant velocity is equal to the gap. The last is the one with
130592    acceleration with the minimum delay probability. The fundamental
130593    diagram obtained by the numerical simulation shows the different
130594    properties compared with that by the NaSch model, in which there exist
130595    two different jamming regions corresponding to the coexistent
130596    congestion and jamming with different properties of shock wave.
130597 C1 Guangxi Univ, Dept Phys, Nanning 530004, Peoples R China.
130598    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
130599 RP Chen, YH, Guangxi Univ, Dept Phys, Nanning 530004, Peoples R China.
130600 CR BARLOVIC R, 1998, EUR PHYS J B, V5, P793
130601    BENJAMIN SC, 1996, J PHYS A-MATH GEN, V29, P3119
130602    BIHAM O, 1992, PHYS REV A, V46, P6124
130603    DONG LY, 2002, APPL MATH MECH-ENGL, V23, P363
130604    HELBING D, 2001, REV MOD PHYS, V73, P1067
130605    ISHIBASHI Y, 1994, J PHYS SOC JPN, V63, P2882
130606    JOST D, 2002, THESIS ZURICH U ZURI
130607    KERNER BS, 1998, PHYS REV LETT, V81, P3797
130608    KERNER BS, 2001, NETW SPAT ECON, V1, P35
130609    NAGEL K, 1992, J PHYS I, V2, P2221
130610    NAGEL K, 1995, THESIS U COLOGNE COL
130611    TAKAYASU M, 1993, FRACTALS, V1, P860
130612    TAN HL, 2002, ACTA PHYS SIN-CH ED, V51, P2713
130613    TREITERER J, 1975, OHIO STATE TECHNICAL, V246, P94
130614    WAGNER P, 1996, TRAFFIC GRANULAR FLO
130615    XUE Y, 2001, ACTA PHYS SIN-CH ED, V50, P445
130616    ZHANG HM, 2001, NETW SPAT ECON, V1, P9
130617    ZHANG HM, 2003, TRANSPORT RES B-METH, V37, P561
130618 NR 18
130619 TC 1
130620 SN 1000-3290
130621 J9 ACTA PHYS SIN-CHINESE ED
130622 JI Acta Phys. Sin.
130623 PD DEC
130624 PY 2004
130625 VL 53
130626 IS 12
130627 BP 4145
130628 EP 4150
130629 PG 6
130630 SC Physics, Multidisciplinary
130631 GA 880IU
130632 UT ISI:000225783100021
130633 ER
130634 
130635 PT J
130636 AU Liang, RZ
130637    Li, YX
130638    Li, CY
130639    Chen, BH
130640 TI In-situ transient DRIFTS studies of the reaction pathway of n-butane
130641    selective oxidation over (VO)(2)P2O7 catalysts
130642 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
130643 DT Article
130644 DE n-butane; selective oxidation; maleic anhydride; reaction pathway;
130645    (VO)(2)P2O7 catalysts; in situ; transient; DRIFTS
130646 ID P-O CATALYSTS; MALEIC-ANHYDRIDE; INSITU FTIR; 1,3-BUTADIENE;
130647    ADSORPTION; FURAN; MECHANISM; 1-BUTENE; STATE
130648 AB The reaction pathway of n-butane selective oxidation to maleic
130649    anhydride (MA) over vanadium phosphorous oxide (VO)(2)P2O7 catalysts
130650    was systematically probed using in situ transient Diffuse Reflectance
130651    Infrared Fourier-Transform Spectroscopy (DRIFTS) in high
130652    temperature/high pressure chamber. The unsaturated and saturated
130653    noncyclic carbonyl species were determined to be intermediates in
130654    n-butane selective oxidation to MA. Furan was detected on the surface
130655    of the (VO)(2)P2O7 catalysts in 1-butene, 1, 3-butadiene selective
130656    oxidation. It was deduced that furan ring was cleaved to form
130657    unsaturated noncyclic carbonyl species before its conversion to MA.
130658    Based on these results and in comparison with the literature, a
130659    simplified scheme of the reaction network structure can be proposed for
130660    n-butane selective oxidation to maleic anhydride.
130661 C1 Beijing Univ Chem Technol, Key Lab Educ Minist Controlling Chem React, Beijing 100029, Peoples R China.
130662    Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072, Peoples R China.
130663 RP Liang, RZ, Beijing Univ Chem Technol, Key Lab Educ Minist Controlling
130664    Chem React, Beijing 100029, Peoples R China.
130665 CR BALIAMY LJ, 1980, INFRARED SPECTRA COM, V2
130666    BUSCA G, 1986, J AM CHEM SOC, V108, P46
130667    BUSCA G, 1989, J MOL CATAL, V55, P1
130668    CENTI G, 1984, J CATAL, V89, P44
130669    CENTI G, 1988, CHEM REV, V88, P55
130670    CONTRACTOR RM, 1999, CHEM ENG SCI, V54, P5627
130671    COULSTON GW, 1997, SCIENCE, V275, P191
130672    CREW WW, 1993, J AM CHEM SOC, V115, P729
130673    DAVYDOV AA, 1984, INFRARED SPECTROSCOP
130674    DO NT, 1988, APPL CATAL, V45, P9
130675    HUANG XF, 2001, IND ENG CHEM RES, V40, P768
130676    LIANG RZ, 2001, J MOL CATAL, V15, P86
130677    NAKANISHI K, 1977, INFRARED ABSORPTION
130678    PEKAR M, 1997, CHEM ENG SCI, V52, P2291
130679    POUCHERT CJ, 1989, ALDRICH LIB FTIR SPE, V3
130680    PUTTOCK SJ, 1986, J CHEM SOC FARADAY T, V182, P3013
130681    PUTTOCK SJ, 1986, J CHEM SOC FARADAY T, V182, P3033
130682    RAMSTETTER A, 1988, J CATAL, V109, P303
130683    TRIMM DL, 1980, DESIGN IND CATALYSTS
130684    WENIG RW, 1986, J PHYS CHEM-US, V90, P6480
130685    WENIG RW, 1987, J PHYS CHEM-US, V91, P1911
130686    WENIG RW, 1987, J PHYS CHEM-US, V91, P5674
130687    XUE ZY, 1999, J CATAL, V184, P87
130688 NR 23
130689 TC 0
130690 SN 1000-0593
130691 J9 SPECTROSC SPECTR ANAL
130692 JI Spectrosc. Spectr. Anal.
130693 PD NOV
130694 PY 2004
130695 VL 24
130696 IS 11
130697 BP 1309
130698 EP 1314
130699 PG 6
130700 SC Spectroscopy
130701 GA 878QM
130702 UT ISI:000225661600009
130703 ER
130704 
130705 PT J
130706 AU Fang, SS
130707    Xiao, XS
130708    Wang, Q
130709    Xia, L
130710    Dong, Y
130711 TI Relationship between supercooled liquid region and bond parameters of
130712    Pd-based bulk metallic glasses
130713 SO RARE METAL MATERIALS AND ENGINEERING
130714 DT Article
130715 DE bulk metallic glass; supercooled region; electronegativity difference;
130716    atomic size parameter; electron concentration
130717 ID AMORPHOUS-ALLOYS; FORMING ABILITY
130718 AB The regression analysis of the expression of supercooled liquid region
130719    DeltaT(x) for Pd-based bulk metallic glass was conducted by computer.
130720    It was obtained that the supercooled liquid region of Pd-based bulk
130721    metallic glass has close relation with their bond parameters, which can
130722    be expressed by the follow equation with a relative coefficient 97.2%:
130723    DeltaT(x) = 29.369 09+3 602.458 98(Deltax)(2)+9 992.767 58 delta(2) 213
130724    -3.958 97n(2/3), It can be seen from the equation that the values of
130725    DeltaT(x) increase with increasing the electronegativity and atomic
130726    size parameter difference of the alloys while they decrease very little
130727    with increasing electron density.
130728 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
130729 RP Fang, SS, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
130730 EM ssfang@eastday.com
130731 CR CHE YX, 1999, CHEM ELEMENTAL PERIO, P48
130732    FANG SS, 1999, J ALLOY COMPD, V293, P10
130733    FANG SS, 2002, INT J HYDROGEN ENERG, V27, P329
130734    GANG J, 1999, MATER SCI ENG, V17, P55
130735    HU X, 2003, ACTA MATER, V51, P561
130736    INOUE A, 1996, MATER T JIM, V37, P181
130737    INOUE A, 1997, MAT SCI ENG A-STRUCT, V226, P401
130738    INOUE A, 1997, MATER T JIM, V38, P175
130739    INOUE A, 2000, ACTA MATER, V48, P279
130740    KAWAMURA Y, 1998, SCRIPTA MATER, V39, P301
130741    LI Y, 1997, SCRIPTA MATER, V36, P783
130742    LU ZP, 2000, J NON-CRYST SOLIDS, V270, P103
130743    PAN ZL, 1984, CRYSTALLOGRAPHY MINE, P133
130744    QIN FX, 2003, ACTA METALL SIN, V39, P305
130745    WANG L, 2000, CHINESE SCI, V30, P176
130746    WANG WH, 1998, PHYSICS, V27, P398
130747    XIAO J, 2000, ENERGETICS MAT, P256
130748    ZHANG BW, 1981, ACTA METALL SIN, V17, P285
130749    ZHANG HF, 2001, ACTA METALL SIN, V37, P1131
130750 NR 19
130751 TC 0
130752 SN 1002-185X
130753 J9 RARE METAL MAT ENG
130754 JI Rare Metal Mat. Eng.
130755 PD NOV
130756 PY 2004
130757 VL 33
130758 IS 11
130759 BP 1132
130760 EP 1135
130761 PG 4
130762 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
130763    Engineering
130764 GA 877PL
130765 UT ISI:000225582400003
130766 ER
130767 
130768 PT J
130769 AU Huang, DB
130770 TI Global dynamics in the periodically forced Chen system
130771 SO PROGRESS OF THEORETICAL PHYSICS
130772 DT Article
130773 ID DIFFUSIONLESS LORENZ EQUATIONS; HAMILTONIAN-SYSTEMS; CHAOTIC ATTRACTOR;
130774    MELNIKOV THEORY; PERTURBATIONS; BIFURCATIONS; CONVECTION; ORBITS
130775 AB In this paper, we study qualitatively the global dynamics in the
130776    periodically forced Chen system. Firstly we develop the classical
130777    Melnikov method with the aid of the Fredholm alternative condition and
130778    first integral. Then we apply this method to prove rigorously that
130779    there exist periodic orbits and homoclinic chaos in the periodically
130780    forced Chen system with certain parametric conditions. The obtained
130781    results are in agreement with the numerical results found previously in
130782    the forced Lorenz system, which indicates the inherent connection
130783    between the Chen system and the Lorenz system.
130784 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
130785 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
130786 EM dbhuang@mail.shu.edu.cn
130787 CR ACKERHALT JR, 1985, PHYS REP, V128, P205
130788    AHLERS G, 1984, PHYS REV LETT, V53, P48
130789    AHLERS G, 1985, PHYS REV A, V32, P3493
130790    AIZAWA Y, 1982, PROG THEOR PHYS, V68, P1543
130791    AIZAWA Y, 1982, PROG THEOR PHYS, V68, P1864
130792    ARECCHI FT, 1982, PHYS REV LETT, V49, P1217
130793    BALASURIYA S, 2003, PHYSICA D, V176, P82
130794    CELIKOVSKY S, 2002, INT J BIFURCAT CHAOS, V12, P1789
130795    CHEN GR, 1999, INT J BIFURCAT CHAOS, V9, P1465
130796    DELSHAMS A, 2000, J NONLINEAR SCI, V10, P433
130797    GUCKENHEIMER J, 1983, NONLINEAR OSCILLATIO
130798    HUANG DB, 2003, PHYS LETT A, V309, P248
130799    KEENER JP, 1982, STUD APPL MATH, V67, P25
130800    SANDSTEDE B, 2000, NONLINEARITY, V13, P1357
130801    SPARROW C, 1982, LORENZ EQUATIONS BIF
130802    TUCKER W, 1999, CR ACAD SCI I-MATH, V328, P1197
130803    UETA T, 2000, INT J BIFURCAT CHAOS, V10, P1917
130804    UETA T, 2000, P IEEE INT S CIRC SY, V5, P505
130805    VANDERSCHRIER G, 2000, PHYSICA D, V141, P19
130806    WIGGINS S, 1988, GLOBAL BIFURCATION C
130807    WILKE C, 1989, PHYS LETT A, V136, P114
130808    YAGASAKI K, 1999, NONLINEARITY, V12, P799
130809    YU XH, 2000, INT J BIFURCAT CHAOS, V10, P1987
130810 NR 23
130811 TC 0
130812 SN 0033-068X
130813 J9 PROG THEOR PHYS KYOTO
130814 JI Prog. Theor. Phys.
130815 PD NOV
130816 PY 2004
130817 VL 112
130818 IS 5
130819 BP 785
130820 EP 796
130821 PG 12
130822 SC Physics, Multidisciplinary
130823 GA 878EC
130824 UT ISI:000225628400003
130825 ER
130826 
130827 PT J
130828 AU Peng, XF
130829    Zhong, SS
130830    Xu, SQ
130831    Wu, Q
130832 TI Compact dual-band GPS microstrip antenna
130833 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
130834 DT Article
130835 DE microstrip antenna; GPS; dual-band; circular polarization; miniature
130836 AB Recently, in order to satisfy the demand for precise and reliable
130837    global positioning system (GPS) applications, the dual-band circularly
130838    polarized (CP) antenna has been developed. This paper describes a new
130839    design of a probe-fed dual-band CP microstrip antenna with two
130840    corner-truncated square patches that overlap without an air gap.
130841    Compared with the conventional dual-band CP antenna with all air-gap
130842    layer between the two patches, the volume of this antenna is reduced
130843    and its fabrication is easier. Details of the proposed antenna design
130844    and experimental results are presented and discussed. The measured
130845    results confirm the validity of this design, which call meet the
130846    requirement of GPS application at 1575/1227-MHz frequencies. (C) 2004
130847    Wiley Periodicals, Inc.
130848 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
130849    Zhejiang Zhengyuan Elect Co Ltd, Jiaxing 314003, Peoples R China.
130850 RP Peng, XF, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
130851    Peoples R China.
130852 CR *TOK AM INC, 1997, MICROWAVE J, V40, P116
130853    BOCCIA L, 2001, IEEE APS BOSTON, P66
130854    JAN JY, 2000, MICROW OPT TECHN LET, V24, P354
130855    POZAR DM, 1997, IEEE T ANTENN PROPAG, V45, P1618
130856    SNDHA T, 2002, IEEE APS SAN ANTONIO, P68
130857    SU CM, 2002, MICROW OPT TECHN LET, V33, P238
130858    ZHONG SS, 2004, MICROW OPT TECHN LET, V46, P497
130859 NR 7
130860 TC 0
130861 SN 0895-2477
130862 J9 MICROWAVE OPT TECHNOL LETT
130863 JI Microw. Opt. Technol. Lett.
130864 PD JAN 5
130865 PY 2005
130866 VL 44
130867 IS 1
130868 BP 58
130869 EP 61
130870 PG 4
130871 SC Engineering, Electrical & Electronic; Optics
130872 GA 878NC
130873 UT ISI:000225652500018
130874 ER
130875 
130876 PT J
130877 AU Wang, W
130878    Zhong, SS
130879    Jin, J
130880    Liang, XL
130881 TI An untilted edge-slotted waveguide antenna array with very low
130882    cross-polarization
130883 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
130884 DT Article
130885 DE waveguide; slot; antenna
130886 AB A novel untilted edge-slotted waveguide antenna array with very low
130887    cross-polarization is presented, in which the radiating element is
130888    composed of an untilted narrow-wall slot and a pair of shaped irises
130889    that flank the slot in the waveguide. An array with 16 proposed
130890    elements for X-band application is designed and measured. The
130891    experimental results show that the antenna has an excellent
130892    cross-polarization level of < -40 dB and over 7% bandwidth of VSWR less
130893    than or equal to 1.5. (C) 2004 Wiley Periodicals, Inc.
130894 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
130895 RP Wang, W, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
130896    Peoples R China.
130897 CR HANSEN RC, 1998, PHASED ARRAY ANTENNA
130898    HASHEMIYEGANEH S, 1990, IEEE T ANTENN PROPAG, V38, P1737
130899    HIROKAWA J, 1997, IEEE T ANTENN PROPAG, V45, P1032
130900    JOHNSON RC, 1984, ANTENNA ENG HDB
130901    ZHONG SS, 1976, J XIDIAN U, V4, P165
130902 NR 5
130903 TC 1
130904 SN 0895-2477
130905 J9 MICROWAVE OPT TECHNOL LETT
130906 JI Microw. Opt. Technol. Lett.
130907 PD JAN 5
130908 PY 2005
130909 VL 44
130910 IS 1
130911 BP 91
130912 EP 93
130913 PG 3
130914 SC Engineering, Electrical & Electronic; Optics
130915 GA 878NC
130916 UT ISI:000225652500027
130917 ER
130918 
130919 PT J
130920 AU Wang, XC
130921    Feng, JY
130922    An, HR
130923    Sun, M
130924 TI Phosphate modified lanolin fatliquors produced by a sustained-release
130925    method
130926 SO JOURNAL OF THE SOCIETY OF LEATHER TECHNOLOGISTS AND CHEMISTS
130927 DT Article
130928 AB The synthesis of a phosphate modified lanolin fatliquor was made using
130929    ethanolamine via lanoline amidate reaction followed by the phosphate
130930    reaction by a sustained-release method using P2O5 dispersed in a
130931    solvent. The phosphate reaction confirmed that the best conditions were
130932    at 75degreesC for 2.5 hrs with a 3.0:1.0 molar ratio of hydroxy to
130933    P2O5. The result indicated that mole fraction of phosphoric acid
130934    monoester (MAP) made by the sustained-release method and the conversion
130935    of P2O5 increased by 12.3% and 5.7% respectively compared to the direct
130936    addition of P2O5 method. Phosphate fatliquor preparation by this method
130937    overcomes the odour problem of lanoline and is controllable. It is an
130938    eco-friendly reaction without wastage and is in accord with the demands
130939    of green production.
130940 C1 Shanghai Univ Sci & Technol, Coll Resource & Environm, Xiangtan 712081, Shaanxi Provinc, Peoples R China.
130941 RP An, HR, Shanghai Univ Sci & Technol, Coll Resource & Environm, Xiangtan
130942    712081, Shaanxi Provinc, Peoples R China.
130943 EM anhuaqing@163.com
130944 CR 738461996, GB
130945    LIU YS, 1990, CHINE LEATHER, V19, P5
130946    LOU LJ, 2001, IND LEATHER CHEM, V18, P40
130947    MA JZ, 2001, CHEM PRODUCTS LEATHE, P352
130948    SHEN YD, 1996, IND FINE CHEM, V13, P12
130949    SUN GL, 1999, SCI PERSONAL PRODUCT, V4, P13
130950    TANG YF, 1995, IND PETROLEUM NATURA, V24, P28
130951    VIJAYALAKS K, 1984, LEATHER SCI, V31, P1
130952    WANG NN, 2001, PART PART SYST CHAR, V18, P26
130953    WANG XC, 2002, CHINA LEATHER, V31, P23
130954    WEI SH, 1998, IND FINE CHEM, V15, P1
130955    ZHANG JB, 1999, PRINTING DYEING, V24, P39
130956    ZHOU FR, 2000, INVOLVEMENT IND FINE, V1, P13
130957 NR 13
130958 TC 0
130959 SN 0144-0322
130960 J9 J SOC LEATHER TECHNOL CHEM
130961 JI J. Soc. Leather Technol. Chem.
130962 PD NOV-DEC
130963 PY 2004
130964 VL 88
130965 IS 6
130966 BP 228
130967 EP 230
130968 PG 3
130969 SC Materials Science, Textiles
130970 GA 878KS
130971 UT ISI:000225646300002
130972 ER
130973 
130974 PT J
130975 AU Gracien, EB
130976    Zhou, RM
130977    Li, J
130978    Xin, LH
130979    Keto, T
130980 TI Synthesis of nanocomposite, (CdxZn1-x)S by gamma-irradiation in an
130981    aqueous system
130982 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
130983 DT Article
130984 ID ULTRAFINE PARTICLES; NANOCRYSTALS; ELECTROLUMINESCENCE; CHEMISTRY
130985 AB Gamma-irradiation has been applied to synthesize the nanocomposite
130986    semiconductor constituted of zinc and cadmium sulfide Cd1-xZnxS ultra
130987    fine particles at room temperature by utilizing homogeneous release of
130988    S2- ions from the decomposition of sodium thiosulfate. The structure,
130989    morphology, size and optical properties of that compound have been
130990    studied by X-ray powder diffraction (XRD), transmission electron
130991    microscopy (TEM) and ultraviolet-visible spectrometer (UV-visible). The
130992    product obtained from irradiated solutions containing zinc ions,
130993    cadmium ions and the sulfur source has been characterized as a
130994    composite of (CdxZn1-x)S, with spherical morphology and with a diameter
130995    of average size of about 5.3 nm. The possible mechanism of formation of
130996    the composite is proposed.
130997 C1 Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072, Peoples R China.
130998    China Univ Geosci, Sch Geophys & Geodetect, Wuhan 430074, Hubei Province, Peoples R China.
130999 RP Gracien, EB, Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072,
131000    Peoples R China.
131001 EM ekokob@yahoo.com
131002 CR ARTEMYEV MV, 1997, J APPL PHYS, V81, P6975
131003    ARTEMYEV MV, 1998, J CRYST GROWTH, V184, P374
131004    CORREADUARTE MA, 1998, CHEM PHYS LETT, V286, P497
131005    HINES MA, 1996, J PHYS CHEM-US, V100, P468
131006    HIRAI T, 1994, J CHEM ENG JPN, V27, P590
131007    HUANG JM, 1997, APPL PHYS LETT, V70, P2335
131008    MARTIN CR, 1998, ANAL CHEM, V70, A322
131009    NORRIS DJ, 1997, MOL ELECT, P281
131010    SATO H, 1997, IND ENG CHEM RES, V36, P92
131011    SOOKLAL K, 1996, J PHYS CHEM-US, V100, P4551
131012    WACHTMAN JB, 1993, CHARACTERIZATION MAT, P314
131013    WELLER H, 1993, ANGEW CHEM INT EDIT, V32, P41
131014 NR 12
131015 TC 0
131016 SN 0236-5731
131017 J9 J RADIOANAL NUCL CHEM
131018 JI J. Radioanal. Nucl. Chem.
131019 PY 2004
131020 VL 262
131021 IS 3
131022 BP 751
131023 EP 754
131024 PG 4
131025 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
131026    & Technology
131027 GA 877UN
131028 UT ISI:000225598900032
131029 ER
131030 
131031 PT J
131032 AU Zhang, ML
131033    Xia, YB
131034    Wang, LJ
131035    Gu, BB
131036 TI CVD diamond photoconductive devices for detection of x-rays
131037 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
131038 DT Article
131039 ID RADIATION
131040 AB Diamond is a very attractive material to realize radiation detectors
131041    due to its exceptional properties (thermal, mechanical, optical,
131042    electronic, etc). But, the detector performances are highly dependent
131043    on the film quality. In this work, two chemical vapour deposition (CVD)
131044    diamond films, differing in film quality, obtained by a hot-filament
131045    CVD technique were used to fabricate radiation detectors. The
131046    measurements of photocurrents and pulse height distributions (PHDs) of
131047    the two detectors were carried out using 5.9 keV x-rays from a Fe-55
131048    source. For the detector with a better film quality, the electrical
131049    contact is fine Ohmic for bias voltages up to 150 V, and a dark current
131050    of 23.3 nA and the photocurrent of 16.8 nA are obtained at an
131051    electrical field of 50 W cm(-1). The peak of the PHD is well separated
131052    from the noise, indicating a high counting efficiency and a high
131053    signal-to-noise ratio. After several minutes' stabilization, the
131054    time-dependent photocurrent reveals that the photocurrent increases and
131055    then levels off due to the polarization effect.
131056 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
131057 RP Zhang, ML, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples
131058    R China.
131059 EM zhamilong@hotmail.com
131060 CR BAUER C, 1996, NUCL INSTRUM METH A, V383, P64
131061    CHOI BK, 2003, DIAM RELAT MATER, V12, P696
131062    FRANKLIN M, 1992, NUCL INSTRUM METH A, V315, P39
131063    KANEKO J, 1999, NUCL INSTRUM METH A, V422, P211
131064    MANFREDOTTI C, 1996, PHYS STATUS SOLIDI A, V1234, P378
131065    SALVATORI S, 1997, DIAM RELAT MATER, V6, P361
131066    SOUW EK, 1997, NUCL INSTRUM METH A, V400, P69
131067    VATNITSKY S, 1993, PHYS MED BIOL, V38, P173
131068    ZHANG ML, 2004, SOLID STATE COMMUN, V130, P551
131069 NR 9
131070 TC 2
131071 SN 0022-3727
131072 J9 J PHYS-D-APPL PHYS
131073 JI J. Phys. D-Appl. Phys.
131074 PD NOV 21
131075 PY 2004
131076 VL 37
131077 IS 22
131078 BP 3198
131079 EP 3201
131080 PG 4
131081 SC Physics, Applied
131082 GA 877HE
131083 UT ISI:000225557800025
131084 ER
131085 
131086 PT J
131087 AU Jia, HZ
131088    Chen, GG
131089    Wang, WC
131090 TI Refractive index and absorption spectra changes induced by UV
131091    irradiation in lead silicate glasses
131092 SO JOURNAL OF NON-CRYSTALLINE SOLIDS
131093 DT Article
131094 ID OPTICAL WAVE-GUIDES; PHOTOSENSITIVITY; FIBERS; LASER
131095 AB The negative refractive index changes were obtained in lead silicate
131096    glasses with different lead concentrations (from 30 mo1% PbO to 50 mol%
131097    PbO) by irradiation with the frequency-quadrupled output of a
131098    Q-switched YAG laser (266 nm, 10 Hz repetition rate) at low energy
131099    density (50mJ/cm(2)). The largest refractive index change Deltan was
131100    -0.25 +/- 0.04 in lead silicate glasses with 50 mol% PbO. UV-visible
131101    absorption spectra of the lead silicate glass with 43 mo1% PbO were
131102    measured after exposure to the 266 nm laser beams with energy density
131103    from 50 mJ/cm(2) to 350 mJ/cm(2). The absorption coefficients in
131104    visible wavelength increased suddenly when the energy density of the
131105    laser beam was larger than a threshold value. This showed that the
131106    structural changes of lead silicate glasses were different after
131107    exposure to the 266 nm laser beam with different energy densities. (C)
131108    2004 Elsevier B.V. All rights reserved.
131109 C1 Shanghai Univ Sci & Technol, Opt & Elect Informat Engn Coll, Shanghai 200093, Peoples R China.
131110    Fudan Univ, Dept Opt Sci & Engn, State Key Lab Adv Photon Mat & Devices, Shanghai 200433, Peoples R China.
131111 RP Jia, HZ, Shanghai Univ Sci & Technol, Opt & Elect Informat Engn Coll,
131112    Shanghai 200093, Peoples R China.
131113 EM hzjia@usst.edu.cn
131114 CR ALBERT J, 1994, OPT LETT, V19, P387
131115    AUGUSTSSON T, 1998, J LIGHTWAVE TECHNOL, V16, P1517
131116    CHIODINI N, 2001, PHYS REV B, V64
131117    CONTARDI C, 2001, J NON-CRYST SOLIDS, V291, P113
131118    HAND DP, 1990, OPT LETT, V15, P102
131119    HILL KO, 1978, APPL PHYS LETT, V32, P647
131120    JIA HZ, 2003, J NON-CRYST SOLIDS, V319, P322
131121    LONG XC, 1999, APPL PHYS LETT, V74, P2110
131122    LONG XC, 1999, OPT LETT, V24, P1136
131123    OTHONOS A, 1997, REV SCI INSTRUM, V68, P4309
131124    OUELLETTE F, 1987, OPT LETT, V12, P847
131125 NR 11
131126 TC 0
131127 SN 0022-3093
131128 J9 J NON-CRYST SOLIDS
131129 JI J. Non-Cryst. Solids
131130 PD NOV 1
131131 PY 2004
131132 VL 347
131133 IS 1-3
131134 BP 220
131135 EP 223
131136 PG 4
131137 SC Materials Science, Ceramics; Materials Science, Multidisciplinary
131138 GA 877GJ
131139 UT ISI:000225555600030
131140 ER
131141 
131142 PT J
131143 AU Zhao, CJ
131144    Leng, GS
131145 TI Brunn-Minkowski inequality for mixed intersection bodies
131146 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
131147 DT Article
131148 DE dual mixed volumes; intersection bodies; mixed intersection bodies
131149 ID BUSEMANN-PETTY PROBLEM; CONVEX-BODIES; VOLUMES
131150 AB Dual of the Brumn-Minkowski inequality for mixed projection bodies are
131151    established for mixed intersection bodies. (C) 2004 Elsevier Inc. All
131152    rights reserved.
131153 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
131154    Binzhou Univ, Dept Math, Shandong 256600, Peoples R China.
131155 RP Zhao, CJ, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
131156 EM chjzhao@163.com
131157    lenggangsong@163.com
131158 CR FALLERT H, 1997, ADV MATH, V129, P301
131159    GARDNER RJ, 1994, ANN MATH, V140, P435
131160    GARDNER RJ, 1995, GEOMETRIC TOMOGRAPHY
131161    GARDNER RJ, 1999, ANN MATH, V149, P691
131162    GOODEY P, 1996, MATH Z, V222, P363
131163    LUTWAK E, 1975, PAC J MATH, V58, P531
131164    LUTWAK E, 1985, T AM MATH SOC, V287, P91
131165    LUTWAK E, 1986, T AM MATH SOC, V294, P487
131166    LUTWAK E, 1988, ADV MATH, V71, P232
131167    LUTWAK E, 1993, T AM MATH SOC, V339, P901
131168    ZHANG GY, 1994, T AM MATH SOC, V345, P777
131169    ZHANG GY, 1999, ANN MATH, V149, P535
131170 NR 12
131171 TC 1
131172 SN 0022-247X
131173 J9 J MATH ANAL APPL
131174 JI J. Math. Anal. Appl.
131175 PD JAN 1
131176 PY 2005
131177 VL 301
131178 IS 1
131179 BP 115
131180 EP 123
131181 PG 9
131182 SC Mathematics, Applied; Mathematics
131183 GA 878OY
131184 UT ISI:000225657400008
131185 ER
131186 
131187 PT J
131188 AU Li, WW
131189    Sang, WB
131190    Zhang, B
131191    Min, JH
131192    Yu, F
131193 TI Annealing high resistivity CdZnTe wafers under controlled Cd/Zn partial
131194    pressures
131195 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
131196 DT Article
131197 DE CdZnTe annealing; partial pressures over Cd1-xZnx; gamma-ray detector
131198 ID DETECTORS; CD1-XZNXTE; CRYSTALS
131199 AB In order to improve the performances of CdZnTe gamma-ray detector, it
131200    is key issue to get the crystal with high quality. Equilibrium partial
131201    pressures, p(Cd) and p(Zn), over Cd1-xZnx melt were estimated based on
131202    thermodynamic relationship and then Cd0.9Zn0.1Te wafers were annealed
131203    under controlled Cd/Zn partial pressures provided by Cd1-xZnx alloy
131204    reservoir. The experimental results show that when CdZnTe wafers are
131205    annealed under the equilibrium partial pressures provided by
131206    Cd0.99Zn0.01 alloy reservoir for 5 days or more at 1073 K, the
131207    resistivity of the wafer can be raised by 6 times and IR transmittance
131208    raised by 10% or more, the size and density of Te precipitates are
131209    greatly reduced. Moreover, losing of Zn from the surface can be
131210    avoided, which leads to improvement of the Zn radial distribution. In
131211    addition, the relationship between the electrical performances of the
131212    wafers and different controlled pressures is also discussed.
131213 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
131214    Shanghai Jiao Tong Univ, Inst Composite Mat, Shanghai 200030, Peoples R China.
131215 RP Li, WW, Shanghai Univ, Sch Mat Sci & Engn, Jiading Campus, Shanghai
131216    201800, Peoples R China.
131217 EM fangwanli@sohu.com
131218 CR BAVDAZ M, 2001, NUCL INSTRUM METH A, V458, P123
131219    BERTOLUCCI E, 2002, NUCL INSTRUM METH A, V487, P193
131220    CZOCK KH, 2001, NUCL INSTRUM METH A, V458, P175
131221    EISEN Y, 1998, J CRYST GROWTH, V184, P1302
131222    HAN MS, 1999, APPL SURF SCI, V148, P105
131223    HULTGREN R, 1963, SELECTED VALUES THER, P637
131224    KOYAMA A, 1999, J ELECTRON MATER, V28, P683
131225    LI B, 1997, J CRYST GROWTH, V181, P357
131226    LI YJ, 2002, J ELECTRON MATER, V31, P834
131227    SCHIEBER M, 2002, J CRYST GROWTH 3, V237, P2082
131228    SEN S, 1990, MATER RES SOC S P, V161, P3
131229    UMAY T, 2003, NUCL INSTRUMENTS MET, V497, P21
131230    VYDYANATH HR, 1993, J ELECTRON MATER, V22, P1067
131231    VYDYANATH HR, 1993, J ELECTRON MATER, V22, P1073
131232    YU TC, 1992, J PHASE EQUILIB, V476, P1351
131233    ZHU JQ, 1997, J CRYST GROWTH, V171, P204
131234 NR 16
131235 TC 1
131236 SN 1005-0302
131237 J9 J MATER SCI TECHNOL
131238 JI J. Mater. Sci. Technol.
131239 PD NOV
131240 PY 2004
131241 VL 20
131242 IS 6
131243 BP 703
131244 EP 706
131245 PG 4
131246 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
131247    Engineering
131248 GA 878CE
131249 UT ISI:000225623300018
131250 ER
131251 
131252 PT S
131253 AU Zhan, XD
131254    Miao, HK
131255 TI An approach to formalizing the semantics of UML statecharts
131256 SO CONCEPTUAL MODELING - ER 2004, PROCEEDINGS
131257 SE LECTURE NOTES IN COMPUTER SCIENCE
131258 DT Article
131259 AB UML is a language for specifying, visualizing and documenting
131260    object-oriented systems. However, UML statecharts lack precisely
131261    defined syntax and semantics. This paper provides a method of
131262    formalizing semantics of UML statecharts with Z. According to this
131263    precise semantics, UML statecharts are transformed into FREE (Flattened
131264    Regular Expression) state models. The hierarchical and concurrent
131265    structure of states is flattened in the resulting FREE state model. The
131266    model helps to determine whether the software design is consistent,
131267    unambiguous and complete. It is also beneficial to software testing.
131268 C1 Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200072, Peoples R China.
131269 RP Zhan, XD, Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200072, Peoples
131270    R China.
131271 EM xdzhan@mail.shu.edu.cn
131272    hkmiao@mail.shu.edu.cn
131273 CR *OMG, 2003, UML SPEC VERS 2 0
131274    BINDER RV, 2000, TESTING OBJECT ORIEN
131275    BOWEN JP, 1996, FORMAL SPECIFICATION
131276    BOWEN JP, 2000, SBUCISM0030 SCISM S
131277    HAREL D, 1987, P 2 IEEE S LOG COMP, P56
131278    HAREL D, 1996, ACM T SOFTW ENG METH, V5, P293
131279    HUIZING C, 1988, LECTURE NOTES COMPUT, V299, P271
131280    JACKY J, 1997, WAY Z PRACTICAL PROG
131281    JIN Y, 2002, P DIAGRAMS 2002
131282    KIM SK, 2002, LNCS, V2495
131283    KUSKE S, 2001, LNCS, V2185, P406
131284    LI LY, 2001, J SOFTWARE, V12, P1864
131285    MIAO HK, 2002, LECT NOTES COMPUT SC, V2495, P523
131286    MIKK E, 1997, 2 BCS FACS NO FORM M
131287    PNUELI, 1991, LECT NOTES COMPUTER, V298, P245
131288    USELTON AC, 1994, LECT NOTES COMPUT SC, V836, P2
131289    VANDERBEECK M, 2001, LNCS, V2185, P406
131290 NR 17
131291 TC 0
131292 SN 0302-9743
131293 J9 LECT NOTE COMPUT SCI
131294 PY 2004
131295 VL 3288
131296 BP 753
131297 EP 765
131298 PG 13
131299 GA BBF86
131300 UT ISI:000225289900056
131301 ER
131302 
131303 PT J
131304 AU Zhang, Y
131305    Chen, DY
131306 TI N-soliton-like solution of Ito equation
131307 SO COMMUNICATIONS IN THEORETICAL PHYSICS
131308 DT Article
131309 DE soliton-like solution; Ito equation; Hirota method
131310 ID DE VRIES EQUATION; MULTISOLITON SOLUTIONS
131311 AB By using the extended Hirota's method, the N-soliton-like solution of
131312    the Ito equation is obtained. Furthermore, we also investigate the
131313    soliton-like solution interaction and find singularity.
131314 C1 Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China.
131315    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
131316 RP Zhang, Y, Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R
131317    China.
131318 EM zy2836@163.com
131319 CR ABLOWITZ MJ, 1981, SOLITON INVERSE SCAT
131320    CHEN DY, 2002, J PHYS SOC JPN, V71, P2072
131321    CHEN DY, 2002, J PHYS SOC JPN, V71, P658
131322    DENG SF, 2001, J PHYS SOC JPN, V70, P3174
131323    HIROTA R, 1971, PHYS REV LETT, V27, P1192
131324    ITO M, 1980, J PHYS SOC JPN, V49, P771
131325    SATSUMA J, 1976, J PHYS SOC JPN, V40, P286
131326    WADATI M, 1982, J PHYS SOC JPN, V51, P2029
131327    ZHANG Y, 2003, J PHYS SOC JPN, V72, P763
131328 NR 9
131329 TC 0
131330 SN 0253-6102
131331 J9 COMMUN THEOR PHYS
131332 JI Commun. Theor. Phys.
131333 PD NOV 15
131334 PY 2004
131335 VL 42
131336 IS 5
131337 BP 641
131338 EP 644
131339 PG 4
131340 SC Physics, Multidisciplinary
131341 GA 878VC
131342 UT ISI:000225674200001
131343 ER
131344 
131345 PT J
131346 AU Li, DS
131347    Yu, ZS
131348    Zhang, HQ
131349 TI New soliton-like solutions to variable coefficients MKdV equation
131350 SO COMMUNICATIONS IN THEORETICAL PHYSICS
131351 DT Article
131352 DE projective Riccati equation method; variable coefficients MKdV
131353    equation; soliton-like solutions
131354 ID NONLINEAR EVOLUTION-EQUATIONS; TRAVELING-WAVE SOLUTIONS; TANH-FUNCTION
131355    METHOD; BACKLUND TRANSFORMATION; KDV EQUATION; SYSTEMS
131356 AB A further improved projective Riccati equation method is proposed. By
131357    applying it to solve the variable coefficients MKdV equation, we obtain
131358    many new-type soliton-like solutions to this equation.
131359 C1 Shenyang Normal Univ, Dept Math, Shenyang 110034, Peoples R China.
131360    Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China.
131361    Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
131362 RP Li, DS, Shenyang Normal Univ, Dept Math, Shenyang 110034, Peoples R
131363    China.
131364 EM lds_6638@163.com
131365 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
131366    BOUNTIS TC, 1986, J MATH PHYS, V27, P1215
131367    CONTE R, 1992, J PHYS A-MATH GEN, V25, P5609
131368    FAN EG, 2000, PHYS LETT A, V277, P212
131369    FAN EG, 2001, Z NATURFORSCH A, V56, P312
131370    FAN EG, 2003, CHAOS SOLITON FRACT, V16, P819
131371    FU ZT, 2004, CHAOS SOLITON FRACT, V20, P301
131372    GARDNER CS, 1967, PHYS REV LETT, V19, P1095
131373    GU CH, 1999, DARBOUZ TRANSFORMATI
131374    HIROTA R, 1971, PHYS REV LETT, V27, P1192
131375    LAMB GL, 1971, REV MOD PHYS, V43, P99
131376    LI DS, 2003, ACTA PHYS SIN-CH ED, V52, P1569
131377    LI ZB, 2002, COMPUT PHYS COMMUN, V148, P256
131378    LOU SY, 1992, ACTA PHYS SINICA, V41, P182
131379    MALFLIET W, 1992, AM J PHYS, V60, P650
131380    WADATI M, 1975, PROG THEOR PHYS, V53, P419
131381    WANG ML, 2002, PHYS LETT A, V303, P45
131382    WU WS, 1992, ADV COMP RES, V6, P103
131383    WU WS, 1992, P AS MATH C, P1
131384    YAN CT, 1996, PHYS LETT A, V224, P77
131385    YAN ZY, 2001, PHYS LETT A, V292, P100
131386    YAN ZY, 2003, CHAOS SOLITON FRACT, V16, P759
131387    ZHANG GX, 2000, SCI CHINA SER A, V30, P1103
131388 NR 23
131389 TC 0
131390 SN 0253-6102
131391 J9 COMMUN THEOR PHYS
131392 JI Commun. Theor. Phys.
131393 PD NOV 15
131394 PY 2004
131395 VL 42
131396 IS 5
131397 BP 649
131398 EP 654
131399 PG 6
131400 SC Physics, Multidisciplinary
131401 GA 878VC
131402 UT ISI:000225674200003
131403 ER
131404 
131405 PT J
131406 AU Zhu, JM
131407    Zheng, CL
131408    Ma, ZY
131409 TI A general mapping approach and new travelling wave solutions to the
131410    general variable coefficient KdV equation
131411 SO CHINESE PHYSICS
131412 DT Article
131413 DE generalized variable coefficient KdV equation; general mapping
131414    approach; travelling wave solution
131415 ID JACOBI ELLIPTIC FUNCTION; NONLINEAR EVOLUTION-EQUATIONS; FUNCTION
131416    EXPANSION METHOD; PERIODIC-SOLUTIONS; SERIES
131417 AB A general mapping deformation method is applied to a generalized
131418    variable coefficient KdV equation. Many new types of exact solutions,
131419    including solitary wave solutions, periodic wave solutions, Jacobian
131420    and Weierstrass doubly periodic wave solutions and other exact
131421    excitations are obtained by the use of a simple algebraic
131422    transformation relation between the generalized variable coefficient
131423    KdV equation and a generalized cubic nonlinear Klein-Gordon equation.
131424 C1 Lishui Coll, Dept Phys, Lishui 323000, Peoples R China.
131425    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
131426 RP Zhu, JM, Lishui Coll, Dept Phys, Lishui 323000, Peoples R China.
131427 EM lsxywlx@163.com
131428 CR FAN EG, 2000, PHYS LETT A, V277, P212
131429    FAN EG, 2003, CHAOS SOLITON FRACT, V16, P819
131430    FAN EG, 2003, J PHYS A-MATH GEN, V36, P7009
131431    GUO GP, 2002, ACTA PHYS SIN-CH ED, V51, P1159
131432    GUO GP, 2003, ACTA PHYS SIN-CH ED, V52, P2660
131433    HONG WY, 1999, PHYS LETT A, V257, P149
131434    LI DS, 2003, ACTA PHYS SINICA, V52, P1573
131435    LI HM, 2002, CHINESE PHYS LETT, V19, P745
131436    LIU SD, 2002, ACTA PHYS SIN-CH ED, V51, P718
131437    LIU SK, 2001, ACTA PHYS SIN-CH ED, V50, P2068
131438    LIU SK, 2002, ACTA PHYS SIN-CH ED, V51, P10
131439    LOU SY, 1989, J MATH PHYS, V30, P1614
131440    WANG ML, 2003, CHINESE PHYS, V12, P1341
131441    YAN ZY, 1999, ACTA PHYS SIN-CH ED, V48, P1957
131442    YAO RX, 2002, CHINESE PHYS, V11, P864
131443    ZHANG JF, 2001, ACTA PHYS SIN-CH ED, V50, P1648
131444    ZHANG JL, 2003, ACTA PHYS SINICA, V52, P1578
131445    ZHU JM, 2004, CHINESE PHYS, V13, P798
131446 NR 18
131447 TC 1
131448 SN 1009-1963
131449 J9 CHIN PHYS
131450 JI Chin. Phys.
131451 PD DEC
131452 PY 2004
131453 VL 13
131454 IS 12
131455 BP 2008
131456 EP 2012
131457 PG 5
131458 SC Physics, Multidisciplinary
131459 GA 877EI
131460 UT ISI:000225550200006
131461 ER
131462 
131463 PT J
131464 AU Zhang, HJ
131465    Xu, XQ
131466    Xu, F
131467    Hua, ZZ
131468 TI The comparison of two kinds of enzyme in rapid detection of pesticide
131469    residue
131470 SO CHINESE JOURNAL OF ANALYTICAL CHEMISTRY
131471 DT Article
131472 DE pesticide residue; fowl liver esterase; acetyl cholinesterase activity;
131473    general esterase activity
131474 ID ESTERASES
131475 AB Acetyl cholinesterase (AChE, C3389, type VI-S, from electric eel) and
131476    homogenate from fowl liver were used for pesticides detection. The
131477    inhibition of AChE activity and general esterase activity under
131478    different concentrations of dichlorvos, trichlorfon, malathion and
131479    carbaryl were compared. The results showed that the AChE activity in
131480    fowl liver was very low; the sensitivities to the four pesticides were
131481    similar in the two measuring systems and the detection limits of
131482    general esterase from fowl liver for the pesticide residues were lower
131483    than those of AChE (except for malathion). Simultaneously, the pH for
131484    determining the general esterase activity was optimized. It was
131485    manifested that the total esterase activity was high at pH 6.5 (40
131486    mmol/L citrate buffer).
131487 C1 Shanghai Univ Sci & Technol, Inst Food Sci & Engn, Shanghai 200093, Peoples R China.
131488 RP Xu, F, Shanghai Univ Sci & Technol, Inst Food Sci & Engn, Shanghai
131489    200093, Peoples R China.
131490 CR BAKER JE, 1998, INSECT BIOCHEM MOLEC, V28, P1039
131491    ELLMAN GL, 1961, BIOCHEM PHARMACOL, V7, P88
131492    FALLSCHEER HO, 1956, OFF AGR CHEM, P692
131493    FRANCOIS V, 1998, BIOSENS BIOELECTRON, V13, P157
131494    GUILBAULT GG, 1970, ENZYMATIC METHODS AN
131495    HUANG WF, 2000, J INSTRUMENTAL ANAL, V19, P87
131496    IVANOV AN, 2000, ANAL CHIM ACTA, V404, P55
131497    LI ZX, 1987, ACTA SCI CIRCUMSTANT, V74, P472
131498    VANASPEREN K, 1962, J INSECT PHYSIOL, V8, P401
131499    ZHU KY, 1996, PESTIC BIOCHEM PHYS, V55, P100
131500 NR 10
131501 TC 0
131502 SN 0253-3820
131503 J9 CHINESE J ANAL CHEM
131504 JI Chin. J. Anal. Chem.
131505 PD NOV
131506 PY 2004
131507 VL 32
131508 IS 11
131509 BP 1517
131510 EP 1520
131511 PG 4
131512 SC Chemistry, Analytical
131513 GA 877ZU
131514 UT ISI:000225615700025
131515 ER
131516 
131517 PT J
131518 AU Wang, ZJ
131519    Zhou, ZW
131520 TI On the receptivity of pipe poiseuille flow with a bump on the wall
131521    under the periodical pressure
131522 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
131523 DT Article
131524 DE poiseuille flow; bi-orthogonal; eigen-function; receptivity
131525 ID EXPANSIONS
131526 AB Asymptotic method was adopted to obtain a receptivity model for a pipe
131527    Poiseuille flow under periodical pressure, the wall of the pipe with a
131528    bump. Bi-orthogonal eigen-function systems and Chebyshev collocation
131529    method were used to resolve the problem. Various spatial modes and the
131530    receptivity coefficients were obtained. The results show that different
131531    modes dominate the flow in different stages, which is comparable with
131532    the phenomena observed in experiments.
131533 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
131534 RP Zhou, ZW, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
131535    200072, Peoples R China.
131536 EM wangzl_one@sina.com.cn
131537    zhwzhou@yc.shu.edu.cn
131538 CR HILL DC, 1995, J FLUID MECH, V292, P183
131539    LEITE RJ, 1959, J FLUID MECH, V5, P81
131540    REYNOLDS O, 1883, PHILOS T ROY SOC LON, V174, P935
131541    SALWEN H, 1979, B AM PHYS SOC, V24, P74
131542    SALWEN H, 1981, J FLUID MECH, V104, P445
131543    SCHENSTED IV, 1960, THESIS U MICHIGAN
131544    TATSUMI T, 1952, J PHYS SOC JPN, V7, P495
131545    TUMIN A, 1996, J FLUID MECH, V315, P119
131546    TUMIN AM, 1984, J APPL MECH TECH PHY, V25, P867
131547    WYGNANSKI IJ, 1973, J FLUID MECH, V59, P281
131548 NR 10
131549 TC 0
131550 SN 0253-4827
131551 J9 APPL MATH MECH-ENGL ED
131552 JI Appl. Math. Mech.-Engl. Ed.
131553 PD NOV
131554 PY 2004
131555 VL 25
131556 IS 11
131557 BP 1203
131558 EP 1214
131559 PG 12
131560 SC Mathematics, Applied; Mechanics
131561 GA 876NG
131562 UT ISI:000225503200001
131563 ER
131564 
131565 PT J
131566 AU Ren, JS
131567    Cheng, CJ
131568 TI Dynamical formation of cavity in a composed hyper-elastic sphere
131569 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
131570 DT Article
131571 DE composed incompressible hyper-elastic material; finite deformation
131572    dynamics; cavity formation; nonlinear periodic oscillation
131573 ID BIFURCATION; CAVITATION
131574 AB The dynamical formation of cavity in a hyper-elastic sphere composed of
131575    two materials with the incompressible strain energy function, subjected
131576    to a suddenly applied uniform radial tensile boundary dead-load, was
131577    studied following the theory of finite deformation dynamics. Besides a
131578    trivial solution corresponding to the homogeneous static state, a
131579    cavity forms at the center of the sphere when the tensile load is
131580    larger than its critical value. An exact differential relation between
131581    the cavity radius and the tensile land was obtained. It is proved that
131582    the evolution of cavity radius with time displays nonlinear periodic
131583    oscillations. The phase diagram for oscillation, the maximum amplitude,
131584    the approximate period and the critical load were all discussed.
131585 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
131586 RP Ren, JS, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
131587    200072, Peoples R China.
131588 EM jsren@mail.shu.edu.cn
131589    chjcheng@mail.shu.edu.cn
131590 CR BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
131591    CALDERER C, 1983, J ELASTICITY, V13, P17
131592    CHALTON DT, 1994, RUBBER CHEM TECHNOL, V67, P481
131593    CHOUWANG MS, 1989, INT J ENG SCI, V27, P967
131594    GENT AN, 1959, P ROY SOC LOND A MAT, V249, P195
131595    GUO ZH, 1963, ARCH MECH STOSOW, V15, P427
131596    HORGAN CO, 1995, APPL MECH REV, V48, P471
131597    KNOWLES JK, 1960, Q APPL MATH, V18, P71
131598    REN JS, 2002, ACTA MECH SOLIDA SIN, V15, P208
131599    REN JS, 2002, APPL MATH MECH-ENGL, V23, P881
131600    REN JS, 2003, ACTA MECH SINICA, V19, P320
131601    REN JS, 2003, APPL MATH MECH-ENGL, V24, P1009
131602 NR 12
131603 TC 0
131604 SN 0253-4827
131605 J9 APPL MATH MECH-ENGL ED
131606 JI Appl. Math. Mech.-Engl. Ed.
131607 PD NOV
131608 PY 2004
131609 VL 25
131610 IS 11
131611 BP 1220
131612 EP 1227
131613 PG 8
131614 SC Mathematics, Applied; Mechanics
131615 GA 876NG
131616 UT ISI:000225503200003
131617 ER
131618 
131619 PT J
131620 AU Yao, WJ
131621    Ye, ZM
131622 TI Analytical solution of bending-compression column using different
131623    tension-compression modulus
131624 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
131625 DT Article
131626 DE different modulus; analytical solution; neutral axis;
131627    bending-compression column
131628 ID ELEMENTS; PLATES
131629 AB Based on elastic theory of different tension-compression modulus, the
131630    analytical solution was deduced for bending-compression column subject
131631    to combined loadings by the flowing coordinate system and phased
131632    integration method. The formulations for the neutral axis, stress,
131633    strain and displacement were developed, the finite element program was
131634    compiled for calculation, and the comparison between the result of
131635    finite element and analytical solution were given too. Finally, compare
131636    and analyze the result of different modulus and the same modulus,
131637    obtain the difference of two theories in result, and propose the
131638    reasonable suggestion for the calculation of this structure.
131639 C1 Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R China.
131640    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
131641 RP Yao, WJ, Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R
131642    China.
131643 EM wjyao@staff.shu.edu.cn
131644 CR AMBARTSUMYAN SA, 1986, ELASTICITY THEORY DI
131645    LIU XB, 2000, J DALIAN U TECHNOLOG, V40, P527
131646    MEDRI G, 1982, T ASME, V26, P26
131647    PAPAZOGLOU JL, 1991, COMPOS STRUCT, V17, P1
131648    SRINIVASAN RS, 1989, COMPUT STRUCT, V31, P681
131649    SRINIVASAN RS, 1989, ENG STRUCT, V11, P195
131650    TSENG YP, 1995, COMPOS STRUCT, V30, P341
131651    TSENG YP, 1998, INT J SOLIDS STRUCT, V35, P2025
131652    YANG HT, 1992, J DALIAN U TECHNOLOG, V62, P35
131653    YE ZM, 1997, INT J NUMER METH ENG, V40, P2579
131654    YE ZM, 2001, COM2M C COMP MATH C, P2
131655    ZHANG YZ, 1989, J COMPUTED STRUCT, V6, P236
131656    ZINNO R, 2001, COMPOS STRUCT, V53, P381
131657 NR 13
131658 TC 1
131659 SN 0253-4827
131660 J9 APPL MATH MECH-ENGL ED
131661 JI Appl. Math. Mech.-Engl. Ed.
131662 PD SEP
131663 PY 2004
131664 VL 25
131665 IS 9
131666 BP 983
131667 EP 993
131668 PG 11
131669 SC Mathematics, Applied; Mechanics
131670 GA 877MM
131671 UT ISI:000225574700004
131672 ER
131673 
131674 PT J
131675 AU Wu, J
131676    Chen, LQ
131677 TI Steady-state responses and their stability of nonlinear vibration of an
131678    axially accelerating string
131679 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
131680 DT Article
131681 DE axially moving string; transverse vibration; geometric nonlinearity;
131682    method of multiple scale; steady-state response
131683 ID VISCOELASTIC MOVING BELTS; PART II
131684 AB The steady-state transverse vibration of an axially moving string with
131685    geometric nonlinearity was investigated. The transport speed was
131686    assumed to be a constant mean speed with small harmonic variations. The
131687    nonlinear partial-differential equation that governs the transverse
131688    vibration of the string was derived by use of the Hamilton principle.
131689    The method of multiple scales was applied directly to the equation. The
131690    solvability condition of eliminating the secular terms was established.
131691    Closed form solutions for the amplitude and the existence conditions of
131692    nontrivial steady-state response of the two-to-one parametric resonance
131693    were obtained. Some numerical examples showing effects of the mean
131694    transport speed, the amplitude and the frequency of speed variation
131695    were presented. The Liapunov linearized stability theory was employed
131696    to derive the instability conditions of the trivial solution and the
131697    nontrivial solutions for the two-to-one parametric resonance. Some
131698    numerical examples highlighting influences of the related parameters on
131699    the instability conditions were presented.
131700 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
131701    Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
131702 RP Wu, J, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
131703    Peoples R China.
131704 EM lqchen@online.sh.cn
131705 CR CHEN LQ, 2001, ADV MECH, V31, P535
131706    OZKAYA E, 2000, J SOUND VIB, V230, P729
131707    PAKDEMIRLI M, 1993, J SOUND VIB, V168, P371
131708    PAKDEMIRLI M, 1994, J SOUND VIB, V169, P179
131709    PAKDEMIRLI M, 1997, J SOUND VIB, V203, P815
131710    WICKERT JA, 1990, J APPL MECH-T ASME, V57, P738
131711    ZHANG L, 1998, J SOUND VIB, V216, P75
131712    ZHANG L, 1998, J SOUND VIB, V216, P93
131713    ZHANG L, 1999, J APPL MECH-T ASME, V66, P396
131714    ZHANG L, 1999, J APPL MECH-T ASME, V66, P403
131715 NR 10
131716 TC 0
131717 SN 0253-4827
131718 J9 APPL MATH MECH-ENGL ED
131719 JI Appl. Math. Mech.-Engl. Ed.
131720 PD SEP
131721 PY 2004
131722 VL 25
131723 IS 9
131724 BP 1001
131725 EP 1011
131726 PG 11
131727 SC Mathematics, Applied; Mechanics
131728 GA 877MM
131729 UT ISI:000225574700006
131730 ER
131731 
131732 PT S
131733 AU Sun, J
131734    Huang, CZ
131735    Liu, HL
131736    Wang, SL
131737 TI Effect of TiN addition on microstructure and mechanical properties of
131738    zirconia matrix ceramic tool material
131739 SO ADVANCES IN MATERIALS MANUFACTURING SCIENCE AND TECHNOLOGY
131740 SE MATERIALS SCIENCE FORUM
131741 DT Article
131742 DE 3Y-TZP; TiN; microstructure; mechanical properties
131743 ID COMPOSITES
131744 AB In this paper, 3mol% yttria-stabilized tetragonal zirconia polycrystal
131745    (3Y-TZP) and TiN/3Y-TZP(adding TiN particles to 3Y-TZP) composites were
131746    fabricated by hot-pressing technique. Phase composition, microstructure
131747    and mechanical properties of the composites were investigated. it is
131748    shown that the flexural strength, fracture toughness and Vickers
131749    hardness of TiN/3Y-TZP was significantly improved by the addition of
131750    TiN particles compared with 3Y-TZP. The flexural strength of ZYT2
131751    (20wt% TiN addition) is 1318 MPa. The fracture toughness of ZYT4 (40wt%
131752    TiN addition) is 16.8MPa(.)m(1/2). The toughening and strengthening
131753    mechanisms were analyzed. The XRD results show that the additing of TiN
131754    can hinder the transformation from tetragonal phase to monoclinic phase
131755    of 3Y-TZP during fabrication process.
131756 C1 Shandong Univ, Sch Mech Engn, Ctr Adv Jet Engn Technol, Jinan 250061, Peoples R China.
131757    Shanghai Univ Sci & Technol, Sch Power & Control, Qingdao 266510, Peoples R China.
131758 RP Sun, J, Shandong Univ, Sch Mech Engn, Ctr Adv Jet Engn Technol, Jinan
131759    250061, Peoples R China.
131760 EM sj2912@vip.sina.com
131761    chuanzhenh@sdu.edu.cn
131762    lh170@sdu.edu.cn
131763    suilw@sdu.edu.cn
131764 CR GLASS SJ, 1996, J AM CERAM SOC, V79, P2227
131765    LI JF, 1995, J AM CERAM SOC, V78, P1079
131766    MIKIO F, 1989, J AM CERAM SOC, V72, P236
131767    RAJENDRAN S, 1988, J MATER SCI, V23, P1805
131768    TAUKUMA K, 1988, ADV CERAMICS A, V24, P397
131769    TSUBAKINO H, 1991, J AM CERAM SOC, V74, P440
131770    WATANABE H, 1986, YOGYO-KYOKAI-SHI, V94, P255
131771 NR 7
131772 TC 0
131773 SN 0255-5476
131774 J9 MATER SCI FORUM
131775 PY 2004
131776 VL 471-472
131777 BP 321
131778 EP 325
131779 PG 5
131780 GA BBF53
131781 UT ISI:000225237800066
131782 ER
131783 
131784 PT S
131785 AU Wang, YG
131786    Zhou, Y
131787    Yang, J
131788    Wang, YQ
131789 TI JSEG based color separation of tongue image in traditional Chinese
131790    medicine
131791 SO PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS
131792 SE LECTURE NOTES IN COMPUTER SCIENCE
131793 DT Article
131794 AB The process of color separation of tongue image in traditional Chinese
131795    medicine (TCM) is decomposed into two steps: region partition and color
131796    classification. In the first step, a partition method based on JSEG is
131797    proposed to obtain homogenous regions in the tongue. In the second
131798    step, a priori template and some standard color patches are designed to
131799    assist the classification according to a priori knowledge from the TCM
131800    experts, where the nearest neighbour classifier is applied for color
131801    classification. The experimental results show that the proposed
131802    approach is greatly promising to computerized tongue diagnosis.
131803 C1 Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200030, Peoples R China.
131804    Shanghai Univ, Sch Basic Med, TCM, Shanghai 200032, Peoples R China.
131805 RP Wang, YG, Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit,
131806    Shanghai 200030, Peoples R China.
131807 EM yonggangwang@sjtu.edu.cn
131808    zhouyue@sjtu.edu.cn
131809    jieyang@sjtu.edu.cn
131810    wangyq@stcm.edu.cn
131811 CR CHIU CC, 2000, COMPUT METH PROG BIO, V61, P77
131812    DENG Y, 1999, P IEEE INT S CIRC SY, V4, P21
131813    DENG YN, 2001, IEEE T PATTERN ANAL, V23, P800
131814    DUDA RO, 2001, PATTERN CLASSIFICATI
131815    JANG JH, 2002, IEEE P 2 JOINT EMBS, V1, P1033
131816    WANG YG, 2001, THESIS BEIJING POLYT
131817    ZHAO ZX, 1999, 4 INT C EL MEAS INST, P830
131818 NR 7
131819 TC 0
131820 SN 0302-9743
131821 J9 LECT NOTE COMPUT SCI
131822 PY 2004
131823 VL 3287
131824 BP 503
131825 EP 508
131826 PG 6
131827 GA BBE01
131828 UT ISI:000225085900063
131829 ER
131830 
131831 PT J
131832 AU Liu, YS
131833    Zhang, JC
131834    Jia, GQ
131835    Zhang, XY
131836    Ren, ZM
131837    Li, X
131838    Jing, C
131839    Cao, SX
131840    Deng, K
131841 TI Magnetic anisotropy properties and spin reorientation for textured
131842    Bi-Mn alloys fabricated by a field-inducing technique
131843 SO PHYSICAL REVIEW B
131844 DT Article
131845 ID ELECTRONIC PHASE-TRANSITIONS; INTERMETALLIC COMPOUND; MANGANESE
131846    BISMUTHIDE; HIGH-TEMPERATURE; SOLIDIFICATION; TRANSFORMATIONS;
131847    DIFFRACTION
131848 AB By a magnetic-field-inducing technique, Bi-Mn alloys were fabricated
131849    with the textured structure and anisotropic characteristics. Magnetic
131850    properties of MnBi compound aligned in alloys with 6 wt % Mn have been
131851    investigated systematically. The saturation magnetization M-s decreases
131852    with the increase of temperature. At temperatures below 150 K, the
131853    coercive field H-c decreases with the increase of temperature, while
131854    the coercive field H-c increases with temperature above 150 K. In the
131855    range of temperature from 150 to 300 K, the remanent magnetization M-r
131856    and the M-r/M-s increase with the temperature, while below 150 K, the
131857    M-r and the M-r/M-s reach a constant value of nearly zero. The magnetic
131858    moments rotated from being parallel to the c axis toward the basal
131859    plane for MnBi (the low-temperature phase) at about 90 K. Most of all,
131860    under a dc magnetic field applied parallel to the c axis, the
131861    transition temperature of the spin reorientation decreases with the
131862    increase of magnetic field, and even decreases 30 K under 5 T. The
131863    mechanism of the spin-reorientation transition and the change of its
131864    transition temperature are discussed and explained by phenomenological
131865    theory.
131866 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
131867    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200436, Peoples R China.
131868 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
131869 EM jczhang@mail.shu.edu.cn
131870 CR ALBERT PA, 1961, J APPL PHYS, V32, S201
131871    AWAJI S, 2001, J CRYST GROWTH, V226, P83
131872    CHAIKIN PM, 1998, J PHYS-CONDENS MAT, V10, P11301
131873    CHEN T, 1974, IEEE T MAGN, V10, P581
131874    CHIKAZUMI SS, 1997, PHYS FERROMAGNETISM
131875    COEHOORN R, 1985, J PHYS F MET PHYS, V15, P2135
131876    DECARLO JL, 1984, METALL TRANS A, V15, P2155
131877    DEFU W, 1994, PHYS MAGNETISM
131878    DERANGO P, 1991, NATURE, V349, P770
131879    FERREIRA PJ, 1999, J MATER RES, V14, P2751
131880    GUO X, 1992, PHYS REV B, V46, P14578
131881    HARDER KU, 1998, J APPL PHYS, V84, P3625
131882    HIHARA T, 1970, J PHYS SOC JPN, V29, P343
131883    KOCH CC, 2000, MAT SCI ENG A-STRUCT, V287, P213
131884    LAKE B, 2002, NATURE, V415, P299
131885    LI BQ, 1998, JOM, V50
131886    LU XY, 2001, IEEE T APPL SUPERC 3, V11, P3553
131887    MA YW, 2000, SOLID STATE COMMUN, V113, P671
131888    MORIKAWA H, 1998, MATER T JIM, V39, P814
131889    RASTELLI E, 1995, Z PHYS B, V99, P61
131890    ROBERTS BW, 1956, PHYS REV, V104, P607
131891    SAHA S, 2002, J APPL PHYS 3, V91, P8525
131892    SCHNEIDER T, 1999, EUR PHYS J B, V8, P331
131893    SHIMAMOTO Y, 1998, J PHYS-CONDENS MAT, V10, P11289
131894    TAGAMI M, 1999, J CRYST GROWTH, V203, P594
131895    UJI S, 2001, NATURE, V410, P908
131896    VALKO L, 1994, IEEE T MAGN, V30, P1122
131897    WANG H, 2002, ACTA METALL SIN, V38, P41
131898    WANG H, 2002, CHINESE J NONFERROUS, V12, P556
131899    WESSEL S, 2000, EUR PHYS J B, V16, P393
131900    XU YQ, 2002, PHYS REV B, V66
131901    YANG JB, 2001, APPL PHYS LETT, V79, P1846
131902    YANG JB, 2002, J PHYS-CONDENS MAT, V14, P6509
131903    ZENER C, 1954, PHYS REV, V96, P1335
131904    ZI BT, 2000, ACTA PHYS SIN-CH ED, V49, P1010
131905 NR 35
131906 TC 2
131907 SN 1098-0121
131908 J9 PHYS REV B
131909 JI Phys. Rev. B
131910 PD NOV
131911 PY 2004
131912 VL 70
131913 IS 18
131914 AR 184424
131915 DI ARTN 184424
131916 PG 6
131917 SC Physics, Condensed Matter
131918 GA 876DX
131919 UT ISI:000225477300076
131920 ER
131921 
131922 PT J
131923 AU Bian, JJ
131924    Kim, D
131925    Hong, K
131926 TI Microwave dielectric properties of (Ca1-xZnx)(2)P2O7
131927 SO MATERIALS LETTERS
131928 DT Article
131929 DE mixed pyrophosphates; microwave dielectric properties
131930 AB The phase evolution, sintering behavior and microwave dielectric
131931    properties of mixed pyrophosphates (Ca1-xZnx)(2)P2O7 (X=0.1-0.9) were
131932    investigated in this paper. The results show that samples with
131933    x=0.1-0.4 exhibit mixture phases of CaZnP2O7 and beta-Ca2P2O7, and the
131934    samples with x=0.6-0.9 exhibit mixed phases of CaZnP2O7 and Zn2P2O7. A
131935    single-phase composition of CaZnP2O7 could be formed when x=0.5. The
131936    mixed pyrophosphates (Ca1 -xZnx)2P(2)O(7) (x=O. 1-0.9) exhibit low
131937    sintering temperature (less than or equal to 900 degreesC), low
131938    relative permittivity (<9), high Q x f value and negative temperature
131939    coefficient of resonant frequency. Maximum Q x f value of 63,130 GHz
131940    could be obtained for CaZnP2O7 sintered at 900 degreesC/2 h. Its
131941    dielectric constant and Tf value are 7.56 and -82 ppm/degreesC,
131942    respectively. (C) 2004 Elsevier B.V All rights reserved.
131943 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 200072, Peoples R China.
131944    Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151742, South Korea.
131945 RP Bian, JJ, Shanghai Univ, Dept Inorgan Mat, 149 Yanchang Rd, Shanghai
131946    200072, Peoples R China.
131947 EM jjbian1@sohu.com
131948 CR BIAN JJ, 2004, JPN J APPL PHYS.PT 1, V6, P3521
131949    CHO SY, 1999, J MATER RES, V14, P114
131950    DUBE DC, 1997, J AM CERAM SOC, V80, P1095
131951    HAKKI BW, 1960, IRE T MICROWAVE THEO, V8, P402
131952    MAADI AE, 1994, J ALLOY COMPD, V205, P243
131953    PENN SJ, 1997, J AM CERAM SOC, V80, P1885
131954 NR 6
131955 TC 0
131956 SN 0167-577X
131957 J9 MATER LETT
131958 JI Mater. Lett.
131959 PD JAN
131960 PY 2005
131961 VL 59
131962 IS 2-3
131963 BP 257
131964 EP 260
131965 PG 4
131966 SC Materials Science, Multidisciplinary; Physics, Applied
131967 GA 876LH
131968 UT ISI:000225497800027
131969 ER
131970 
131971 PT J
131972 AU Wu, DH
131973    Leng, GS
131974    Zhou, YG
131975 TI Inequalities for vertex distances of two simplices
131976 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
131977 DT Article
131978 DE simplices; mass-point system; vertex distances; inequality
131979 ID NEUBERG-PEDOE; SINE THEOREM
131980 AB We establish in this paper some inequalities for vertex distances of
131981    two simplices, and give some applications thereof. (C) 2004 Published
131982    by Elsevier Inc.
131983 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
131984 RP Leng, GS, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
131985 EM lenggangsong@chinaren.com
131986 CR CHEN J, 1999, J SICHUAN U, V36, P197
131987    GREGORAC RJ, 1996, J GEOM, V456, P45
131988    KLAMKIN MS, 1985, SIAM REV, V27, P576
131989    KORCHMAROS G, 1974, ATTI ACCAD LINCEI RE, V56, P876
131990    LENG G, IN PRESS ACTA MATH S
131991    LENG GS, 1997, ACTA MATH SINICA, V40, P14
131992    LENG GS, 1997, GEOM DEDICATA, V68, P43
131993    LENG GS, 1997, GEOMETRIAE DEDICATA, V66, P89
131994    LENG GS, 1998, LINEAR ALGEBRA APPL, V278, P237
131995    LENG GS, 1999, DISCRETE MATH, V202, P163
131996    LENG GS, 2000, J MATH ANAL APPL, V248, P429
131997    MITRINOVIC D, 1989, RECENT ADV GEOMETRIC
131998    MITRINOVIC DS, 1988, J MATH ANAL APPL, V129, P196
131999    PEDOE D, 1942, MATH P CAMBRIDGE PHI, V38, P397
132000    PEDOE D, 1970, AM MATH MONTHLY, V77, P711
132001    PEDOE D, 1976, U BEOGRAD PUBL EL MF, V544, P95
132002    SCHNEIDER R, 1993, CONVEX BRUNN MINKOWS
132003    VELJAN D, 1995, LINEAR ALGEBRA APPL, V219, P79
132004    YANG L, 1983, B AUST MATH SOC, V27, P203
132005    ZHANG JZ, 1981, J CHINA U SCI TECHNO, V11, P1
132006 NR 20
132007 TC 0
132008 SN 0022-247X
132009 J9 J MATH ANAL APPL
132010 JI J. Math. Anal. Appl.
132011 PD DEC 15
132012 PY 2004
132013 VL 300
132014 IS 2
132015 BP 265
132016 EP 272
132017 PG 8
132018 SC Mathematics, Applied; Mathematics
132019 GA 875JZ
132020 UT ISI:000225417700001
132021 ER
132022 
132023 PT J
132024 AU Lei, JX
132025 TI Prediction and control of wrinkle and fracture for stamping regular
132026    polygonal box
132027 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
132028 DT Article
132029 DE regular polygonal box stamped part; wrinkle; fracture; stamping
132030    criterion; prediction; control
132031 AB Based on the deformation characteristic of regular polygonal box
132032    stamped parts and the superfluous triangle material wrinkle model, the
132033    criterion of regular polygonal box stamped parts without wrinkle was
132034    deduced and used to predict and control the wrinkle limit. According to
132035    the fracture model, the criterion of regular polygonal box stamped
132036    parts without fracture was deduced and used to predict and control the
132037    fracture limit. Combining the criterion for stamping without wrinkle
132038    with that without fracture, the stamping criterion of regular polygonal
132039    box stamped parts was obtained to predict and control the stamping
132040    limit. Taken the stainless steel 0Cr18Ni9 (SUS304) sheet and the square
132041    box stamped part as examples, the limit diagram was given to predict
132042    and control the wrinkle, fracture and stamping limits. It is suitable
132043    for the deep drawing without flange, the deep drawing and stretching
132044    combined forming with flange and the rigid punch stretching of plane
132045    blank. The limit deep-drawing coefficient and the minimum deep-drawing
132046    coefficient can be determined, and the appropriate BHF (blank holder
132047    force) and the deep-drawing force can be chosen. These provide a
132048    reference for the technology planning, the die and mold design and the
132049    equipment determination, and a new criterion evaluating sheet stamping
132050    formability, which predicts and controls the stamping process, can be
132051    applied to the deep drawing under constant or variable BHF conditions.
132052 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
132053 RP Lei, JX, Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
132054 CR *CHIN MECH ENG SOC, 2002, FORG STAMP HDB
132055    LEI JX, 1998, J UNIV SCI TECHNOL B, V5, P237
132056    LEI JX, 1998, J UNIV SCI TECHNOL B, V5, P250
132057    LEI JX, 2002, J PLASTICITY ENG, V9, P39
132058    WANG XP, 1990, STAMPING HDB
132059 NR 5
132060 TC 0
132061 SN 1006-706X
132062 J9 J IRON STEEL RES INT
132063 JI J. Iron Steel Res. Int.
132064 PD SEP
132065 PY 2004
132066 VL 11
132067 IS 5
132068 BP 44
132069 EP 49
132070 PG 6
132071 SC Metallurgy & Metallurgical Engineering
132072 GA 876MZ
132073 UT ISI:000225502500010
132074 ER
132075 
132076 PT J
132077 AU Liu, XJ
132078    Huang, ZY
132079    Huang, LP
132080    Zhang, PZ
132081    Chen, XY
132082 TI Mechanical properties and microstructure of silicon nitride ceramics by
132083    pressureless sintering
132084 SO JOURNAL OF INORGANIC MATERIALS
132085 DT Article
132086 DE silicon nitride; pressless sintering; mechanical properties;
132087    microstructure
132088 ID SI3N4; YTTRIA; ADDITIVES
132089 AB The mechanical properties and microstructure of silicon nitride
132090    ceramics with MgOAl2O3-SiO2 as additives produced by pressless
132091    sintering were investigated by XRD, SEM, TEM, EDS, and HRTEM. The
132092    relationship among preparation processing, microstructure, and
132093    mechanical properties was emphatically discussed. Intensifying blend by
132094    planetary blender, silicon nitride ceramics sintered at 1780 degreesC
132095    for 3h has an uniform microstructure with bigger aspect ratio of
132096    elongated grains (diameter in 0.3 similar to 0.8mum, length in 3
132097    similar to 6mum, aspect ratio in 7 similar to 10), flexure strength of
132098    1.06GPa, HRA hardness of 92, H-v hardness of 14.2GPa, and fracture
132099    toughness of 6.6 MPa(.)m(0.5).
132100 C1 Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
132101    Shanghai Inst Mat, Shanghai 200437, Peoples R China.
132102    Shanghai Univ, Shanghai 200072, Peoples R China.
132103 RP Liu, XJ, Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050,
132104    Peoples R China.
132105 CR BISWAS SK, 2003, J AM CERAM SOC, V86, P212
132106    KIM HD, 2002, J AM CERAM SOC, V85, P245
132107    KNUTSONWEDEL EM, 1991, J MATER SCI, V26, P5575
132108    LAI KR, 1993, J AM CERAM SOC, V76, P91
132109    LEE DD, 1990, J AM CERAM SOC, V73, P767
132110    MITOMO M, 1992, J AM CERAM SOC, V75, P103
132111    ORDONEZ S, 1999, J MATER SCI, V34, P147
132112    PABLOS AD, 2001, J AM CERAM SOC, V84, P1033
132113    PAINTER GS, 2002, J AM CERAM SOC, V85, P65
132114    PEJRYD L, 1988, MAT SCI ENG A-STRUCT, V105, P169
132115    SUN EY, 1998, J AM CERAM SOC, V81, P2831
132116    YANG JF, 2000, J AM CERAM SOC, V83, P2094
132117 NR 12
132118 TC 0
132119 SN 1000-324X
132120 J9 J INORG MATER
132121 JI J. Inorg. Mater.
132122 PD NOV
132123 PY 2004
132124 VL 19
132125 IS 6
132126 BP 1282
132127 EP 1286
132128 PG 5
132129 SC Materials Science, Ceramics
132130 GA 875TG
132131 UT ISI:000225444000010
132132 ER
132133 
132134 PT J
132135 AU Fang, YK
132136    Sang, WB
132137    Min, JH
132138 TI Etching morphology and symmetry of TeO2 crystal
132139 SO JOURNAL OF INORGANIC MATERIALS
132140 DT Article
132141 DE TeO2 crystal; etching; dislocation; symmetry
132142 ID PARATELLURITE; GROWTH; ATTENUATION; GRADIENT
132143 AB The etching morphologies of TeO2 crystal on (110) and (001) faces were
132144    observed by means of chemical etching and analyzed with the theory of
132145    symmetry group. The morphologies of etch pits are very special compared
132146    with the tetragonal system crystal with 422 point group. The
132147    morphologies of etch pits by theoretical analysis are in conformity
132148    with the experiment. It shows that the patterns of etch pits consist of
132149    {110} planes. It is clear that the habitual plane of TeO2 crystal is
132150    {110} plane.
132151 C1 Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800, Peoples R China.
132152 RP Fang, YK, Shanghai Univ, Dept Elect Informat Mat, Shanghai 201800,
132153    Peoples R China.
132154 CR GRABMAIER JG, 1973, J CRYST GROWTH, V20, P82
132155    HOLOVEY VM, 1996, MATER SCI FORUM, V215, P119
132156    JANSZKY J, 1982, KRIST, V27, P152
132157    KALASHNIKOV AP, 1982, SOV PHYS DOKL, V27, P279
132158    KUMARAGURUBARAN S, 2000, J CRYST GROWTH, V211, P276
132159    OTSI L, 1985, ACTA PHYS HUNGARICA, V57, P295
132160    SMIRNOV YM, 1994, PHYS CRYSTALLIZATION, P24
132161    YASUTAKE K, 1991, PHYS STATUS SOLIDI A, V125, P489
132162 NR 8
132163 TC 0
132164 SN 1000-324X
132165 J9 J INORG MATER
132166 JI J. Inorg. Mater.
132167 PD NOV
132168 PY 2004
132169 VL 19
132170 IS 6
132171 BP 1419
132172 EP 1422
132173 PG 4
132174 SC Materials Science, Ceramics
132175 GA 875TG
132176 UT ISI:000225444000033
132177 ER
132178 
132179 PT J
132180 AU Xu, JQ
132181    Wang, HX
132182    Zhang, JR
132183    Shen, JN
132184 TI Preparation and gas-sensing properties of zinc oxide nano-powders by
132185    microwave hydrolysis
132186 SO JOURNAL OF INORGANIC MATERIALS
132187 DT Article
132188 DE microware hydrolysis; ZnO; nano-sized materials; gas-sensing
132189    properties; gas sensor
132190 AB ZnO nano-powders were prepared by using microwave hydrolysis and
132191    constant temperature hydrolysis methods, using Zn(CH3COO)(2)(.)2H(2)O
132192    as the starting material. In order to improve gas sensitivities, ZnO
132193    nano-powders doped with Pt of Pd were also prepared by using the
132194    microwave hydrolysis method. Their phase constitution and crystal
132195    structure were characterized by TEM and XRD analyses, and their gas
132196    sensitivities were measured. results show that the microwave hydrolysis
132197    method is better than the canstant temperature hydrolysis method, for
132198    obtaining ZnO nano-powders. The ZnO nanopowders prepared by using the
132199    two methods possess higher sensitivities to ethanol and gasoline, and
132200    the ZnO nanopowders doped with Pt or Pd can enhance their selectivities
132201    to ethonal and gasoline, respectively.
132202 C1 Shanghai Univ, Mat Inst, Shanghai 200072, Peoples R China.
132203    Zhengzhou Inst Light Ind, Coll Mat & Chem Engn, Zhengzhou 450002, Peoples R China.
132204    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab Performance Ceram & Superfine Micro, Shanghai 200050, Peoples R China.
132205 RP Xu, JQ, Shanghai Univ, Mat Inst, Shanghai 200072, Peoples R China.
132206 CR HAN XB, 1999, J INORG MATER, V14, P669
132207    KOUDELKA L, 1994, J MATER SCI, V29, P1497
132208    MEEK TT, 1988, 4784686, US
132209 NR 3
132210 TC 0
132211 SN 1000-324X
132212 J9 J INORG MATER
132213 JI J. Inorg. Mater.
132214 PD NOV
132215 PY 2004
132216 VL 19
132217 IS 6
132218 BP 1441
132219 EP 1445
132220 PG 5
132221 SC Materials Science, Ceramics
132222 GA 875TG
132223 UT ISI:000225444000038
132224 ER
132225 
132226 PT J
132227 AU Li, GZ
132228    Yang, J
132229    Song, HF
132230    Yang, SS
132231    Lu, WC
132232    Chen, NY
132233 TI Semiempirical quantum chemical method and artificial neural networks
132234    applied for lambda(max) computation of some azo dyes
132235 SO JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES
132236 DT Article
132237 AB The maximum absorption wavelengths of 31 azo dyes have been calculated
132238    by two comprehensive methods using the semiempirical quantum chemical
132239    method, PM3, and the weight decay based artificial neural network
132240    (WD-ANN) or the early stopping based artificial neural network
132241    (ES-ANN). The average absolute errors of WD-ANN and that of ES-ANN are
132242    10.07 nm and 12.40 nm, respectively. These results are much better than
132243    the results using ZINDO/S with the default value (0.585) only.
132244 C1 Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200030, Peoples R China.
132245    E China Univ Sci & Technol, Lab Chem Technol Fine Chem, Shanghai 200232, Peoples R China.
132246    Shanghai Univ, Lab Chem Data Min, Shanghai 200436, Peoples R China.
132247 RP Li, GZ, Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit,
132248    Shanghai 200030, Peoples R China.
132249 EM lgz@sjtu.eda.cn
132250 CR *HYP INC, HYP 7 0
132251    ADACHI M, 1991, DYES PIGMENTS, V17, P287
132252    DEMUT, 2001, NEURAL NETWORK TOOLB, P51
132253    DUDA RO, 2000, PATTERN CLASSIFICATI
132254    GRIFFITHS J, 1976, COLOR CONSTITUTION O
132255    LUZHKOV V, 1991, J AM CHEM SOC, V113, P4491
132256    MOODY JE, 1992, ADV NEURAL INFORMATI, V4, P847
132257    SONG HF, 2004, DYES PIGMENTS, V60, P111
132258    STAREV KK, 1995, J AM CHEM SOC, V117, P8684
132259    TETKO IV, 1995, J CHEM INF COMP SCI, V35, P826
132260    ZERNER MC, 1980, J AM CHEM SOC, V102, P589
132261    ZUPAN J, 1999, J NEURAL NETWORKS CH
132262 NR 12
132263 TC 2
132264 SN 0095-2338
132265 J9 J CHEM INFORM COMPUT SCI
132266 JI J. Chem. Inf. Comput. Sci.
132267 PD NOV-DEC
132268 PY 2004
132269 VL 44
132270 IS 6
132271 BP 2047
132272 EP 2050
132273 PG 4
132274 SC Chemistry, Multidisciplinary; Computer Science, Information Systems;
132275    Computer Science, Interdisciplinary Applications
132276 GA 875HQ
132277 UT ISI:000225411300018
132278 ER
132279 
132280 PT J
132281 AU Huang, SG
132282    Li, L
132283    Van der Biest, O
132284    Vleugels, J
132285 TI Thermodynamic assessment of the Co-V and Co-V-C system
132286 SO JOURNAL OF ALLOYS AND COMPOUNDS
132287 DT Article
132288 DE phase diagram calculation; Co-V-C; thermodynamics
132289 ID SIGMA-PHASE; VANADIUM; CARBIDE; ALLOYS
132290 AB The phase diagram of the Co-V system has been evaluated using
132291    thermodynamic models for the Gibbs energy of the individual phases
132292    including liquid, fcc, bcc, sigma, Co3M, and CoM3. The optimization is
132293    performed by coupling the experimental and thermo-chemical data with
132294    thermodynamic parameters. Combining the thermodynamic properties of the
132295    Co-C and V-C lower-order systems available in literature with the
132296    assessed Co-V system allowed to calculate the isothermal section at
132297    1300 and 1500degreesC and liquidus projection of the Co-V-C system. The
132298    lowest eutectic point is calculated at 1229degreesC with composition
132299    1.168 at.% C, 42.54 at.% V and the other eutectic reaction, liquid
132300    <----> fcc + VC + graphite, is at 1309degreesC at a composition of
132301    12.06 at.% C, 1.425 at.% V. (C) 2004 Elsevier B.V. All rights reserved.
132302 C1 Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Heverlee, Belgium.
132303    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
132304 RP Vleugels, J, Katholieke Univ Leuven, Dept Met & Mat Engn, Kasteelpk
132305    Arenberg 44, B-3001 Heverlee, Belgium.
132306 EM jozef.vleugels@mtm.kuleuven.ac.be
132307 CR ANDERSSON JO, 1987, CALPHAD, V11, P83
132308    CARLSON ON, 1985, B ALLOY PHASE DIAGRA, V6, P115
132309    CHO SA, 1997, INT J REFRACT MET H, V15, P205
132310    DINSDALE AT, 1991, CALPHAD, V15, P317
132311    GREENFIELD P, 1954, T AIME, V200, P253
132312    GUILLERMET AF, 1987, Z METALLKD, V78, P700
132313    HILLERT M, 2001, J ALLOY COMPD, V320, P161
132314    HUANG W, 1991, Z METALLKD, V82, P174
132315    KOSTER W, 1955, Z METALLKD, V46, P195
132316    LEE BJ, 1991, CALPHAD, V15, P283
132317    LIPATNIKOV VN, 1997, J ALLOY COMPD, V261, P192
132318    MUGGIANU YM, 1975, J CHIMIE PHYSIQUE, V72, P83
132319    NAGEL LJ, 1997, J PHASE EQUILIB, V18, P21
132320    OBBARD EG, 2001, INT J REFRACT MET H, V19, P349
132321    OHTANI H, 1984, T IRON STEEL I JPN, V24, P857
132322    SMITH JF, 1982, B ALLOY PHASE DIAGRA, V3, P342
132323    SMITH JF, 1989, PHASE DIAGRAM BINARY
132324    SMITH JF, 1991, J PHASE EQUILIB, V12, P324
132325    SPENCER PJ, 1976, J CHEM THERMODYN, V8, P551
132326    STUWE HP, 1959, T METALL SOC AIME, V215, P408
132327    SULLY AH, 1951, J I MET, V80, P173
132328    SUNDMAN B, 1985, CALPHAD, V9, P153
132329    UPADHYAYA A, 2001, MATER DESIGN, V22, P511
132330    WATSON A, 2001, J ALLOY COMPD, V320, P199
132331    ZEGLER ST, 1963, T TMS AIME, V227, P1407
132332 NR 25
132333 TC 1
132334 SN 0925-8388
132335 J9 J ALLOYS COMPOUNDS
132336 JI J. Alloy. Compd.
132337 PD DEC 28
132338 PY 2004
132339 VL 385
132340 IS 1-2
132341 BP 114
132342 EP 118
132343 PG 5
132344 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
132345    Metallurgical Engineering
132346 GA 874UU
132347 UT ISI:000225376500019
132348 ER
132349 
132350 PT J
132351 AU Cao, GX
132352    Zhang, JC
132353    Cao, SX
132354    Jing, C
132355    Shen, XC
132356 TI Study of positron lifetime and infrared spectroscopy for Pr-substituted
132357    YBa2Cu3O7-delta systems
132358 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
132359 DT Article
132360 DE positron annihilation; Pr-substituted; Y123 systems; Pr-Ba defects;
132361    oxygen vacancies
132362 ID HIGH-TC SUPERCONDUCTORS; NEUTRON-DIFFRACTION; FERMI-SURFACE;
132363    ANNIHILATION; Y1-XPRXBA2CU3O7-DELTA; PRBA2CU3O7; CRYSTAL; STATE;
132364    CONDUCTIVITY; LOCALIZATION
132365 AB The Pr-substituted YBa2Cu3O7-delta(Y123) superconducting systems with
132366    the content of 0.0-1.0 have been systematically studied by positron
132367    lifetime and infrared absorption experiments. The results show that the
132368    short lifetime tau(1) decreases as a function of Pr-substitution x
132369    below x = 0.6, but when above x = 0.6, it increases inversely. The long
132370    lifetime tau(2) decreases as a function of Pr-substituted x. Based on
132371    the present results, we discuss that Pr4+ substitutes on Ba2+ ion and
132372    forms Pr-Ba defects. The variation of tau(1) is caused by the oxygen
132373    vacancies and tau(2) is probably affected by the absence of Cu due to
132374    PrBa defects. The infrared absorption of Pr-substituted Y123 systems
132375    gives three variational modes, located at 560 cm(-1) (A(1)), 1435
132376    cm(-1) (A(2)) and 1631 cm(-1) (A(3)) respectively. Here the A3 mode
132377    shows that with Pr content increasing from x = 0.1 to 1.0, the infrared
132378    absorption decreases and the peak tends to broaden. So, combining with
132379    the results of the positron lifetime spectra, we can argue that there
132380    always exists portion of Pr-Ba defects in the Pr-substituted systems,
132381    and the Pr4+ substituted into Ba2+ is also increasing with the Pr
132382    content increasing. When the Pr content is 0.6, the systems have a
132383    metal-insulator transition and Pr-Ba defects begin to domain the
132384    samples' microstructure.
132385 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
132386 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
132387 EM jczhang@staff.shu.edu.cn
132388 CR ABDELRAZEK MM, 1999, INT J MOD PHYS B, V13, P3615
132389    BALOGH AG, 1988, PHYS REV B, V38, P2883
132390    BARBA D, 2001, PHYS REV B, V63
132391    BLACKSTEAD HA, 1995, PHYS LETT A, V207, P109
132392    BLACKSTEAD HA, 1995, PHYS REV B, V51, P11830
132393    BRANDT W, 1967, POSITRON ANNIHILATIO
132394    CHAKRABORTY B, 1989, PHYS REV B, V39, P215
132395    COOPER SL, 1992, PHYS REV B, V45, P2549
132396    DALICHAOUCH Y, 1988, SOLID STATE COMMUN, V65, P1001
132397    ERB A, 1997, I PHYS C SER, V58, P1109
132398    FEHRENBACHER R, 1995, PHYS REV LETT, V74, P1000
132399    FINCHER CR, 1991, PHYS REV LETT, V67, P2902
132400    FINK J, 1990, PHYS REV B, V42, P4823
132401    GREVIN B, 2000, PHYS REV B, V61, P4334
132402    GUILLAUME M, 1993, Z PHYS B, V90, P13
132403    GUO GY, 1990, PHYS REV B, V41, P6372
132404    GUPTA HC, 1989, PHYSICA C, V157, P257
132405    HAN ZP, 1991, PHYSICA C, V181, P355
132406    HAUTOJARRI P, 1979, POSITRON SOLIDS
132407    HOFFMANN L, 1993, PHYS REV LETT, V71, P4047
132408    ILIEV MN, 1988, PHYSICA C, V156, P193
132409    JEAN YC, 1987, PHYS REV B, V36, P3994
132410    JEAN YC, 1990, PHYS REV LETT, V64, P1593
132411    JINCANG Z, 2002, PHYS REV B, V65
132412    JUNG K, 1995, J APPL PHYS, V78, P5534
132413    KEBEDE A, 1989, PHYS REV B, V40, P4453
132414    LANZARA A, 2001, NATURE, V412, P510
132415    LEVIN GA, 1998, PHYS REV LETT, V80, P841
132416    LISTER SJS, 2001, PHYS REV LETT, V86, P5994
132417    LU X, 1992, PHYS REV B, V45, P7989
132418    MATSUDA A, 1988, PHYS REV B, V38, P2910
132419    MIZOKAWA T, 2000, PHYS REV LETT, V85, P4779
132420    NAGEL C, 1999, PHYS REV B, V60, P9212
132421    NAGOSHI M, 1992, PHYS REV B, V46, P8635
132422    NEUMEIER JJ, 1990, PHYSICA C, V166, P191
132423    PARK M, 1996, PHYSICA C, V259, P43
132424    SAPRIEL J, 1989, PHYS REV B, V39, P339
132425    SCHLESINGER Z, 1990, PHYS REV LETT, V65, P801
132426    SHUKLA A, 1995, PHYS REV B, V51, P6028
132427    SHUKLA A, 1999, PHYS REV B, V59, P12127
132428    SODERHOLM L, 1987, NATURE, V328, P604
132429    SOMOZA A, 2000, PHYS REV B, V61, P14454
132430    TAKENAKA K, 1992, PHYS REV B, V46, P5833
132431    USAGAWA T, 1998, APPL PHYS LETT, V72, P1772
132432    VEHANEN A, 1982, PHYS REV B, V25, P762
132433    VONSTETTEN EC, 1988, PHYS REV LETT, V60, P2198
132434    ZHANG JC, 1995, PHYS LETT A, V201, P70
132435    ZOU ZG, 1998, PHYS REV LETT, V80, P1074
132436 NR 48
132437 TC 0
132438 SN 0217-9792
132439 J9 INT J MOD PHYS B
132440 JI Int. J. Mod. Phys. B
132441 PD SEP 20
132442 PY 2004
132443 VL 18
132444 IS 22
132445 BP 3001
132446 EP 3014
132447 PG 14
132448 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
132449 GA 874SB
132450 UT ISI:000225369000003
132451 ER
132452 
132453 PT J
132454 AU Gao, Y
132455    Lygeros, J
132456    Quincampoix, M
132457    Seube, N
132458 TI On the control of uncertain impulsive systems: approximate
132459    stabilization and controlled invariance
132460 SO INTERNATIONAL JOURNAL OF CONTROL
132461 DT Article
132462 ID HYBRID DYNAMICAL-SYSTEMS; SWITCHED SYSTEMS; LINEAR-SYSTEMS;
132463    CONFLICT-RESOLUTION; LYAPUNOV FUNCTIONS; PREDICTIVE CONTROL; STATE
132464    CONSTRAINTS; DIFFERENTIAL GAME; STABILITY THEORY; ONE-TARGET
132465 AB The problems of stabilization and controlled invariance of a fairly
132466    wide class of uncertain hybrid systems is considered. Uncertainty
132467    enters in the form of a disturbance input that can affect both the
132468    continuous and the discrete dynamics. A method for designing piecewise
132469    constant, feedback controllers for this class of systems is developed.
132470    In the case of controlled invariance, the controller ensures that the
132471    state of the system remains arbitrarily close to a desired set over an
132472    arbitrarily long time horizon. In the case of stabilization, the
132473    controller ensures approximate exponential convergence of the runs of
132474    the closed loop system to the zero level set of a Lyapunov function.
132475 C1 Shanghai Univ Sci & Technol, Sch Management, Shanghai 200093, Peoples R China.
132476    Univ Patras, Dept Elect & Comp Engn, GR-26500 Patras, Greece.
132477    Univ Bretagne Occidentale, Dept Math, F-29285 Brest, France.
132478    ENSIETA, F-29806 Brest 9, France.
132479 RP Gao, Y, Shanghai Univ Sci & Technol, Sch Management, Shanghai 200093,
132480    Peoples R China.
132481 EM gaoyan1962@263.net
132482 CR ASARIN E, 2000, P IEEE, V88, P1011
132483    AUBIN JP, 1990, SET VALUED ANAL
132484    AUBIN JP, 1991, VIABILITY THEORY
132485    AUBIN JP, 2002, IEEE T AUTOMAT CONTR, V47, P2
132486    AXELSSON H, 2003, IFAC C AN DES HYBR S, P147
132487    BEMPORAD A, 2002, AUTOMATICA, V38, P3
132488    BITSORIS G, 1995, AUTOMATICA, V31, P217
132489    BLANCHINI F, 1999, AUTOMATICA, V35, P1747
132490    BRANICKY MS, 1998, IEEE T AUTOMAT CONTR, V43, P475
132491    CARDALIAGUET P, 1993, THESIS U PARIS 9 DAU
132492    CARDALIAGUET P, 1996, SIAM J CONTROL OPTIM, V34, P1441
132493    CARDALIAGUET P, 1997, APPL MATH OPT, V36, P125
132494    CARDALIAGUET P, 2001, SIAM J CONTROL OPTIM, V39, P1615
132495    CASTELAN EB, 1993, IEEE T AUTOMAT CONTR, V38, P1680
132496    CLARKE FH, 1998, NONSMOOTH ANAL CONTR
132497    CORLESS M, 1981, IEEE T AUTOMATIC CON, V25
132498    CRUCK E, 2002, J MATH ANAL APPL, V270, P636
132499    DECARLO RA, 2000, P IEEE, V88, P1069
132500    FILIPPOV AF, 1988, DIFFERENTIAL EQUATIO
132501    GABOR G, 2002, J DIFFER EQUATIONS, V185, P483
132502    GAO Y, 2003, IEEE C DEC CONTR MAU
132503    GAO Y, 2003, LECT NOTES COMPUT SC, V2623, P203
132504    GILBERT EG, 1991, IEEE T AUTOMAT CONTR, V36, P1008
132505    GUTMAN S, 1979, IEEE T AUTOMAT CONTR, V24, P437
132506    HSU A, 1994, DISCRETE EVENT DYN S, V2, P183
132507    HU B, 1999, SYST CONTROL LETT, V38, P197
132508    JOHANSSON KH, 1999, SYST CONTROL LETT, V38, P141
132509    JOHANSSON M, 1998, IEEE T AUTOMAT CONTR, V43, P555
132510    KERRIGAN EC, 2000, THESIS U CAMBRIDGE D
132511    KOKOTIVIC PK, 1996, ROBUST NONLINEAR CON
132512    KRASOVSKII NN, 1988, GAME THEORETICAL CON
132513    LAKSHMIKANTHAM V, 1990, PRACTICAL STABILITY
132514    LEE YI, 2000, IEEE T AUTOMAT CONTR, V45, P1765
132515    LIBERZON D, 1999, IEEE CONTR SYST MAG, V19, P59
132516    LIBERZON D, 1999, SYST CONTROL LETT, V37, P117
132517    LYGEROS J, 1998, IEEE T AUTOMAT CONTR, V43, P522
132518    LYGEROS J, 2002, IEEE DECIS CONTR P, P2427
132519    LYGEROS J, 2003, IEEE T AUTOMAT CONTR, V48, P2
132520    LYNCH N, 1996, LECT NOTES COMPUT SC, V1066, P496
132521    MACIEJOWSKI JM, 2002, PREDICTIVE CONTROL C
132522    MAYNE DQ, 2000, AUTOMATICA, V36, P789
132523    MAYNE DQ, 2001, EUR J CONTROL, V7, P87
132524    MICHEL AN, 1999, AUTOMATICA, V35, P371
132525    MORSE AS, 1995, TRENDS CONTROL EUROP, P69
132526    QUINCAMPOIX M, 1998, J MATH ANAL APPL, V218, P240
132527    SAVKIN AV, 1999, AUTOMATICA, V35, P69
132528    TOMLIN C, 1998, IEEE T AUTOMAT CONTR, V43, P509
132529    TOMLIN C, 2001, IEEE T INTELL TRANSP, V2, P110
132530    TOMLIN CJ, IN PRESS P IEEE
132531    TOMLIN CJ, 2000, P IEEE, V88, P949
132532    WICKS MA, 1998, EUROPEAN J CONTROL, V4, P140
132533    XU XP, 2000, INT J CONTROL, V73, P1261
132534    XU XP, 2004, LECT NOTES COMPUT SC, V2993, P615
132535    YE H, 1998, IEEE T AUTOMAT CONTR, V43, P461
132536    ZHANG J, 2001, INT J ROBUST NONLIN, V11, P435
132537 NR 55
132538 TC 2
132539 SN 0020-7179
132540 J9 INT J CONTR
132541 JI Int. J. Control
132542 PD NOV 10
132543 PY 2004
132544 VL 77
132545 IS 16
132546 BP 1393
132547 EP 1407
132548 PG 15
132549 SC Automation & Control Systems
132550 GA 876ZI
132551 UT ISI:000225537200003
132552 ER
132553 
132554 PT J
132555 AU Yan, JP
132556    Li, CP
132557 TI On synchronization of three chaotic systems
132558 SO CHAOS SOLITONS & FRACTALS
132559 DT Article
132560 ID CHENS SYSTEM
132561 AB In this paper, a simple but efficient method is applied to the
132562    synchronization of three chaotic systems, i.e., the chaotic Lorenz,
132563    Chua, and Chen systems. Numerical simulations show this method works
132564    very well. (C) 2004 Elsevier Ltd. All rights reserved.
132565 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
132566    Univ Pretoria, Dept Elect Engn & Comp Engn, ZA-0002 Pretoria, South Africa.
132567 RP Yan, JP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
132568 EM hnyanjianping@eyou.com
132569 CR BOCCALETTI S, 2002, PHYS REP, V366, P1
132570    CHEN GR, 1999, INT J BIFURCAT CHAOS, V9, P1465
132571    GUEMEZ J, 1995, PHYS REV E A, V52, R2145
132572    KAPITANIAK T, 1992, CHAOS SOLITON FRACT, V2, P519
132573    KAPITANIAK T, 1994, PHYS REV E, V50, P1642
132574    KAPITANIAK T, 1995, CHAOS SOLITON FRACT, V6, P237
132575    LI CP, 2003, INT J BIFURCAT CHAOS, V13, P1609
132576    LI CP, 2004, CHAOS SOLITON FRACT, V22, P443
132577    MADAN RK, 1993, CHUA CIRCUIT PARADIG
132578    PECORA LM, 1990, PHYS REV LETT, V64, P821
132579    SPARROW C, 1982, LORENZ EQUATIONS BIF
132580    STEFANSKI A, 2003, SOLITIONS FRACTALS, V40, P175
132581 NR 12
132582 TC 6
132583 SN 0960-0779
132584 J9 CHAOS SOLITON FRACTAL
132585 JI Chaos Solitons Fractals
132586 PD MAR
132587 PY 2005
132588 VL 23
132589 IS 5
132590 BP 1683
132591 EP 1688
132592 PG 6
132593 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
132594 GA 877BJ
132595 UT ISI:000225542500020
132596 ER
132597 
132598 PT J
132599 AU Zheng, CL
132600    Fang, JP
132601    Chen, LQ
132602 TI New variable separation excitations of (2+1)-dimensional dispersive
132603    long-water wave system obtained by an extended mapping approach
132604 SO CHAOS SOLITONS & FRACTALS
132605 DT Article
132606 ID 2 SPACE DIMENSIONS; LOCALIZED COHERENT STRUCTURES; SOLITON SYSTEM;
132607    EQUATIONS
132608 AB By means of an extended mapping approach, a new type of variable
132609    separation excitation with three arbitrary functions of the (2 +
132610    1)-dimensional dispersive long-water wave system (DLW) is derived.
132611    Based on the derived variable separation excitation, abundant localized
132612    structures such as dromion, ring, peakon and foldon etc. are
132613    re-revealed by selecting appropriate functions in this paper. (C) 2004
132614    Elsevier Ltd. All rights reserved.
132615 C1 Zhejiang Lishui Univ, Dept Phys, Zhejiang 323000, Peoples R China.
132616    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
132617 RP Zheng, CL, Zhejiang Lishui Univ, Dept Phys, Zhejiang 323000, Peoples R
132618    China.
132619 EM zjclzheng@yahoo.com.cn
132620 CR BOITI M, 1987, INVERSE PROBL, V3, P371
132621    LOU S, 1993, PHYS LETT A, V176, P96
132622    LOU SY, 1989, J MATH PHYS, V30, P1614
132623    LOU SY, 1994, J PHYS A-MATH GEN, V27, P3235
132624    LOU SY, 1995, MATH METHOD APPL SCI, V18, P789
132625    LU Z, 2003, SOLITIONS FRACTALS, V19, P527
132626    PAQUIN G, 1990, PHYSICA D, V46, P122
132627    TANG XY, 2002, PHYS REV E 2, V66
132628    TANG XY, 2003, J MATH PHYS, V44, P4000
132629    WU J, 1984, PHYS REV LETT, V52, P1421
132630    ZHANG JF, 2002, COMMUN THEOR PHYS, V37, P277
132631    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
132632    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
132633    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P783
132634    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
132635    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
132636 NR 16
132637 TC 10
132638 SN 0960-0779
132639 J9 CHAOS SOLITON FRACTAL
132640 JI Chaos Solitons Fractals
132641 PD MAR
132642 PY 2005
132643 VL 23
132644 IS 5
132645 BP 1741
132646 EP 1748
132647 PG 8
132648 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
132649 GA 877BJ
132650 UT ISI:000225542500025
132651 ER
132652 
132653 PT J
132654 AU Xia, TC
132655    You, FC
132656    Chen, DY
132657 TI A generalized AKNS hierarchy and its bi-Hamiltonian structures
132658 SO CHAOS SOLITONS & FRACTALS
132659 DT Article
132660 ID LAX INTEGRABLE HIERARCHY; NEWELL SPECTRAL PROBLEM; CONSTRAINED FLOWS;
132661    SYSTEM; NONLINEARIZATION; EQUATIONS; TRANSFORMATION; COUPLINGS
132662 AB First we construct a new isospectral problem with 8 potentials in the
132663    present paper. And then a new Lax pair is presented. By making use of
132664    Tu scheme, a class of new soliton hierarchy of equations is derived,
132665    which is integrable in the sense of Liouville and possesses
132666    bi-Hamiltonian structures. After making some reductions, the well-known
132667    AKNS hierarchy and other hierarchies of evolution equations are
132668    obtained. Finally, in order to illustrate that soliton hierarchy
132669    obtained in the paper possesses bi-Hamiltonian structures exactly, we
132670    prove that the linear combination of two-Hamiltonian operators admitted
132671    are also a Hamiltonian operator constantly. We point out that two
132672    Hamiltonian operators obtained of the system are directly derived from
132673    a recurrence relations, not from a recurrence operator. (C) 2004
132674    Elsevier Ltd. All rights reserved.
132675 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
132676    Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
132677 RP Xia, TC, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
132678 EM xiatc@yahoo.com.cn
132679 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
132680    CAO CW, 1990, SCI CHINA SER A, V33, P528
132681    FAN E, 2001, J PHYS A-MATH GEN, V34, P513
132682    FAN E, 2001, PHYSICA A, V301, P105
132683    FAN EG, 2000, J MATH PHYS, V41, P7769
132684    GENG XG, 1993, J MATH PHYS, V34, P805
132685    GUO F, 2002, J SYS SCI MATH SCI, V22, P36
132686    GUO FK, 2000, ACTA MATH APPL SIN, V23, P181
132687    KUNDU A, 1987, PHYSICA D, V25, P339
132688    MA W, 1992, CHINESE ANN MATH A, V13, P115
132689    MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
132690    MA WX, 1999, J MATH PHYS, V40, P4419
132691    NEWELL AC, 1985, SOLITON MATH PHYS
132692    QIAO ZJ, 1993, J PHYS A-MATH GEN, V26, P4407
132693    TSUCHIDA T, 1998, CHAOS SOLITON FRACT, V9, P869
132694    TU GZ, 1989, J MATH PHYS, V30, P330
132695    WADATI M, 1972, J PHYS SOC JPN, V32, P1681
132696    WADATI M, 1973, J PHYS SOC JPN, V34, P1289
132697    WADATI M, 1975, PROG THEOR PHYS, V53, P419
132698    XIA TC, 2004, CHAOS SOLITON FRACT, V22, P939
132699    XIA TC, 2004, COMMUN THEOR PHYS, V42, P180
132700    XIA TC, 2005, CHAOS SOLITON FRACT, V23, P451
132701    XU XX, 2003, CHAOS SOLITON FRACT, V15, P475
132702    YAN ZY, 2002, CHAOS SOLITON FRACT, V14, P441
132703    YAN ZY, 2003, CHAOS SOLITON FRACT, V15, P639
132704    ZENG YB, 1991, PHYS LETT A, V160, P541
132705    ZENG YB, 1996, J PHYS A-MATH GEN, V29, P5241
132706    ZHANG YF, 2003, CHAOS SOLITON FRACT, V18, P855
132707    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P305
132708    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P413
132709 NR 30
132710 TC 3
132711 SN 0960-0779
132712 J9 CHAOS SOLITON FRACTAL
132713 JI Chaos Solitons Fractals
132714 PD MAR
132715 PY 2005
132716 VL 23
132717 IS 5
132718 BP 1911
132719 EP 1919
132720 PG 9
132721 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
132722 GA 877BJ
132723 UT ISI:000225542500040
132724 ER
132725 
132726 EF
132727 FN ISI Export Format
132728 VR 1.0
132729 PT J
132730 AU Guo, XA
132731    Riebel, U
132732 TI Experimental study on particle size distribution and concentration
132733    using transmission fluctuation spectrometry with the autocorrelation
132734    technique
132735 SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION
132736 DT Article
132737 DE autocorrelation; extinction measurements; particle size analysis;
132738    transmission fluctuation spectrometry
132739 ID GAUSSIAN-BEAM; FUNDAMENTALS; EXTINCTION; SPHERES
132740 AB Based on the statistical characteristics of the transmission
132741    fluctuations in the particle suspension, transmission fluctuation
132742    spectrometry with autocorrelation (TFSAC) is described theoretically,
132743    with the assumptions of geometric ray propagation and completely
132744    absorbent particles in the suspension. The experiments presented here
132745    are realized in a focused Gaussian beam with the TFS-AC technique. The
132746    acquisition of transmission fluctuation signals is achieved by using a
132747    high-resolution digital oscilloscope. The transition function of TFS-AC
132748    is obtained by varying the autocorrelation time. With a modified
132749    iterative Chahine inversion algorithm, solving a linear equation
132750    retrieves information on the particle size distribution and particle
132751    concentration. Some experimental results on spherical and non-spherical
132752    particles are presented and discussed. The experiments cover a particle
132753    size range from 1 mu m to 1000 mu m and a particle concentration of up
132754    to 12 %.
132755 C1 Brandenburg Tech Univ Cottbus, Lehrstuhl Mech Verfahrenstech, D-03013 Cottbus, Germany.
132756 RP Guo, XA, Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
132757 EM xiaoai_guo@yahoo.com.cn
132758 CR BREITENSTEIN M, 1999, PART PART SYST CHAR, V16, P249
132759    BREITENSTEIN M, 2001, PART PART SYST CHAR, V18, P134
132760    FERRI F, 1995, APPL OPTICS, V34, P5829
132761    GUO X, 2004, PARTICLE SIZE ANAL T
132762    RIEBEL U, 1993, PART PART SYST CHAR, V10, P201
132763    RIEBEL U, 1994, PART PART SYST CHAR, V11, P212
132764    SHEN J, 2001, PART PART SYST CHAR, V18, P254
132765    SHEN J, 2003, THESIS COTTBUS
132766    SHEN JQ, 2003, PART PART SYST CHAR, V20, P250
132767    SHEN JQ, 2003, PART PART SYST CHAR, V20, P94
132768 NR 10
132769 TC 0
132770 SN 0934-0866
132771 J9 PART PART SYST CHARACT
132772 JI Part. Part. Syst. Charact.
132773 PD NOV
132774 PY 2005
132775 VL 22
132776 IS 3
132777 BP 161
132778 EP 171
132779 PG 11
132780 SC Engineering, Chemical; Materials Science, Characterization & Testing
132781 GA 992QK
132782 UT ISI:000233898700001
132783 ER
132784 
132785 PT J
132786 AU Dong, JP
132787    Xu, YJ
132788    Long, YC
132789 TI Preferred growth of siliceous MEL zeolite film on silicon wafer
132790 SO MICROPOROUS AND MESOPOROUS MATERIALS
132791 DT Article
132792 DE MEL zeolite; thin film; seeding; preferred growth; precursor layer
132793 ID SECONDARY GROWTH; SILICALITE-1 FILMS; MFI MEMBRANES; THIN-FILMS;
132794    IN-SITU; ORIENTATION; ZSM-11; PERVAPORATION; LAYERS
132795 AB Continuous and dense siliceous MEL type zeolite films were prepared by
132796    seeding methods on a silicon (100) substrate in the clear solution of
132797    TBAOH-TEOS-H2O. The effects of the precursor layer adsorbed on the
132798    substrate surface, the content of water in the reactant solution, the
132799    reaction period and the substrate position on the morphology and the
132800    orientation of MEL zeolite crystallites in the films were investigated.
132801    The zeolite films are composed of a monolayer of well-intergrowth
132802    zeolite crystallites grown preferentially along the (101) direction.
132803    The films less than 2 mu m in thickness are oriented, regardless of the
132804    wafer being covered with a precursor layer or not. The reaction period
132805    has an important effect on zeolite film orientation whether in the
132806    concentrate or in the dilute synthesis solution. The shorter reaction
132807    period is preferred. The oriented zeolite films grow either on the
132808    vertically placed substrates or on the horizontally placed substrates.
132809    (c) 2005 Elsevier Inc. All rights reserved.
132810 C1 Fudan Univ, Dept Chem, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China.
132811    Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
132812 RP Long, YC, Fudan Univ, Dept Chem, Shanghai Key Lab Mol Catalysis &
132813    Innovat Mat, Shanghai 200433, Peoples R China.
132814 EM yclong@fudan.edu.cn
132815 CR BEIN T, 1996, CHEM MATER, V8, P1636
132816    BIBBY DM, 1979, NATURE, V280, P664
132817    BONILLA G, 2001, MICROPOR MESOPOR MAT, V42, P191
132818    BOUDREAU LC, 1997, CHEM MATER, V9, P1705
132819    BOUDREAU LC, 1999, J MEMBRANE SCI, V152, P41
132820    CARO J, 2000, MICROPOR MESOPOR MAT, V38, P3
132821    DENEXTER MJ, 1997, ZEOLITES, V19, P13
132822    DONG JP, 2002, MICROPOR MESOPOR MAT, V57, P9
132823    FENG S, 1994, NATURE, V368, P834
132824    GOUZINIS A, 1998, CHEM MATER, V10, P2497
132825    HEDLUND J, 1997, CHEM COMMUN     0707, P1193
132826    HEDLUND J, 1997, STUD SURF SCI CA A-C, V105, P2203
132827    HEDLUND J, 1999, MICROPOR MESOPOR MAT, V28, P185
132828    KOKOTAILO GT, 1978, NATURE, V275, P119
132829    LAI SM, 2002, MICROPOR MESOPOR MAT, V54, P63
132830    LASSINANTTI M, 2000, MICROPOR MESOPOR MAT, V38, P25
132831    LI SG, 2002, AICHE J, V48, P269
132832    LOVALLO MC, 1996, CHEM MATER, V8, P1579
132833    LOVALLO MC, 1998, AICHE J, V44, P1903
132834    MINTOVA S, 1997, CHEM COMMUN     0107, P15
132835    NOACK M, 2000, MICROPOR MESOPOR MAT, V35, P253
132836    SANO T, 1992, P 9 INT ZEOL C MONTR, P239
132837    TAVOLARO A, 1999, ADV MATER, V11, P975
132838    VANDERDRIFT A, 1967, PHILIPS RES REP, V22, P267
132839    WANG ZB, 2001, CHEM MATER, V13, P1101
132840    WONG WC, 2001, J MEMBRANE SCI, V191, P143
132841    ZOVALLO MC, 1996, AICHE J, V42, P3020
132842 NR 27
132843 TC 0
132844 SN 1387-1811
132845 J9 MICROPOROUS MESOPOROUS MAT
132846 JI Microporous Mesoporous Mat.
132847 PD DEC 29
132848 PY 2005
132849 VL 87
132850 IS 1
132851 BP 59
132852 EP 66
132853 PG 8
132854 SC Chemistry, Applied; Chemistry, Physical; Materials Science,
132855    Multidisciplinary
132856 GA 993BO
132857 UT ISI:000233927900008
132858 ER
132859 
132860 PT J
132861 AU Dai, YM
132862    Wang, ZC
132863    Wu, DM
132864 TI A four-step trigonometric fitted P-stable Obrechkoff method for
132865    periodic initial-value problems
132866 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
132867 DT Article
132868 DE Obrechkoff method; P-stable; high-order derivative; first-order
132869    derivative formula; second-order initial value problem with periodic
132870    solutions
132871 ID DIMENSIONAL SCHRODINGER-EQUATION; MINIMAL PHASE-LAG;
132872    NUMERICAL-INTEGRATION; DIFFERENTIAL-EQUATIONS
132873 AB In this paper, we present a new P-stable Obrechkoff four-step method,
132874    which greatly improves the performance of our previous Obrechkoff
132875    four-step method and extends its application range. By trigonometric
132876    fitting, we extend the interval of periodicity of the previous
132877    four-step method from about H-2 similar to 16 to infinity and at the
132878    same time, we keep all its advantage in the accuracy and efficiency. We
132879    have tested the new method by four well-known problems, (1) the
132880    test-equation; (2) Stiefel and Bettis problem; (3) Duffing equation
132881    without damping; and (4) Bessel equation. The numerical results show
132882    that the new method is more accurate than any previous method. It also
132883    has great advantage in stability and efficiency. (c) 2005 Elsevier B.V.
132884    All rights reserved.
132885 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
132886 RP Wang, ZC, Shanghai Univ, Dept Phys, 99 ShangDa Rd, Shanghai 200436,
132887    Peoples R China.
132888 EM zc_wang89@hotmail.com
132889 CR ANANTHAKRISHNAI.U, 1982, J COMPUT APPL MATH, V8, P101
132890    ANANTHAKRISHNAI.U, 1987, MATH COMPUT, V49, P553
132891    DAI YM, 2005, COMPUT PHYS COMMUN, V165, P110
132892    HAIRER E, 1979, NUMER MATH, V32, P373
132893    NETA B, 2003, COMPUT MATH APPL, V45, P383
132894    OBRECHKOFF N, 1942, AKAD NAUK, V65, P191
132895    RAI AS, 1997, J COMPUT APPL MATH, V79, P167
132896    RAPTIS AD, 1991, BIT, V31, P160
132897    SIMOS TE, 1990, COMPUTING, V45, P175
132898    SIMOS TE, 1991, APPL NUMER MATH, V7, P201
132899    SIMOS TE, 1991, INT J COMPUT MATH, V39, P135
132900    SIMOS TE, 1992, J COMPUT APPL MATH, V39, P89
132901    SIMOS TE, 1993, P ROY SOC LOND A MAT, V6, P283
132902    STIEFEL E, 1969, NUMER MATH, V13, P154
132903    WANG Z, 2003, N MATH J CHIN U, V12, P146
132904    WANG Z, 2003, NUMER J MODERN PHYS, V14, P1087
132905    WANG ZC, 2004, COMPUT PHYS COMMUN, V160, P23
132906 NR 17
132907 TC 0
132908 SN 0377-0427
132909 J9 J COMPUT APPL MATH
132910 JI J. Comput. Appl. Math.
132911 PD MAR 15
132912 PY 2006
132913 VL 187
132914 IS 2
132915 BP 192
132916 EP 201
132917 PG 10
132918 SC Mathematics, Applied
132919 GA 993KK
132920 UT ISI:000233952800004
132921 ER
132922 
132923 PT J
132924 AU Li, ML
132925    Wu, MY
132926    Li, Y
132927    Cao, J
132928    Huang, LP
132929    Deng, QN
132930    Lin, XH
132931    Jiang, CJ
132932    Tong, WQ
132933    Gui, YD
132934    Zhou, AY
132935    Wu, XH
132936    Jiang, SI
132937 TI ShanghaiGrid: an Information Service Grid
132938 SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE
132939 DT Article
132940 DE ShanghaiGrid; information Grid; metropolitan-area information services;
132941    Information Service Grid Toolkit; Grid application
132942 ID PARALLEL TABU SEARCH; NETWORK
132943 AB The goal of the ShanghaiGrid is to provide information services to the
132944    people. It aims to construct a metropolitan-area information service
132945    infrastructure and establish an open standard for widespread
132946    upper-layer applications from both communities and the government. The
132947    Information Service Grid Toolkit and a typical application called the
132948    Traffic Information Grid are discussed in detail. Copyright (c) 2005
132949    John Wiley & Sons, Ltd.
132950 C1 Shanghai Jiao Tong Univ, Detp Comp Sci & Engn, Grid Comp Ctr, Shanghai 200030, Peoples R China.
132951    Soochow Univ, Comp Sci & technol Sch, Suzhou, Peoples R China.
132952    Tongji Univ, Shanghai 200092, Peoples R China.
132953    Shanghai Univ, Shanghai, Peoples R China.
132954    Shanghai Supercomp Ctr, Shanghai, Peoples R China.
132955    Fudan Univ, Shanghai 200433, Peoples R China.
132956    Shanghai Urban Transportat Informat Ctr, Shanghai, Peoples R China.
132957    E China Inst Comp Technol, Shanghai, Peoples R China.
132958 RP Wu, MY, Shanghai Jiao Tong Univ, Detp Comp Sci & Engn, Grid Comp Ctr,
132959    Shanghai 200030, Peoples R China.
132960 EM mwu@sjtu.edu.cn
132961 CR AMIN K, 2004, P 37 ANN HAW INT C S, P210
132962    BARMOUTA A, 2003, P 17 INT S PAR DISTR, P48
132963    BOX D, 2000, SIMPLE OBJECT ACCESS
132964    BUYYA R, 2004, P 1 IEEE INT WORKSH, P19
132965    CHEN SD, 2004, P 2004 IEEE INT C SE, P588
132966    CHRISTENSEN E, 2001, WEB SERVICES DESCRIP
132967    CZAJKOWSKI K, 2001, P 10 IEEE INT S HIGH, P181
132968    FOSTER I, 1997, INT J SUPERCOMPUT AP, V11, P115
132969    FOSTER I, 1998, GRID BLUEPRINT NEW C
132970    GENDREAU M, 1999, TRANSPORT SCI, V33, P381
132971    GENDREAU M, 2001, PARALLEL COMPUT, V27, P1641
132972    GRAHAM PJ, OGSA DAI MIN WORKSH
132973    HONG F, 2004, LECT NOTES COMPUT SC, V3207, P1096
132974    HRIBAR MR, 2001, PARALLEL COMPUT, V27, P1537
132975    LI BY, 2003, LECT NOTES COMPUTER, V3032, P786
132976    LI ML, 2003, LECT NOTES COMPUTER, V3032, P616
132977    LI Y, 2004, LECT NOTES COMPUT SC, V3222, P175
132978    LIN XH, 2004, P 2004 IEEE INT C SE, P588
132979    LIU HP, 2001, METEOROL Z, V10, P71
132980    MINERVA Y, 2003, P INT FOR DIG CIT CI, P43
132981    NOVOTNY J, 2001, P 10 INT S HIGH PERF, P104
132982    SINGH G, 2003, P ACM IEEE SUP 2003, P33
132983    STOCKINGER H, 2002, J CLUSTER COMPUTING, V5, P305
132984    STOICA I, 2003, IEEE ACM T NETWORK, V11, P17
132985    TANG FL, 2003, LECT NOTES COMPUTER, V3032, P108
132986    TANG FL, 2004, ENG APPL ARTIF INTEL, V17, P799
132987    WELCH V, 2003, P 12 IEEE INT S HIGH, P48
132988    WENG CL, 2003, LECT NOTES COMPUTER, V3032, P669
132989    XUE GT, 2004, P 2004 IEEE INT C SE, P527
132990    YU J, 2003, GRIDSTR20030 U MELB
132991    ZHANG ZH, 2003, LECT NOTES COMPUTER, V3032
132992 NR 31
132993 TC 0
132994 SN 1532-0626
132995 J9 CONCURR COMPUT-PRACT EXP
132996 JI Concurr. Comput.-Pract. Exp.
132997 PD JAN
132998 PY 2006
132999 VL 18
133000 IS 1
133001 BP 111
133002 EP 135
133003 PG 25
133004 SC Computer Science, Software Engineering; Computer Science, Theory &
133005    Methods
133006 GA 994FT
133007 UT ISI:000234017200004
133008 ER
133009 
133010 PT J
133011 AU Lu, WC
133012    Dong, N
133013    Naray-Szabo, G
133014 TI Predicting anti-HIV-1 activities of HEPT-analog compounds by using
133015    support vector classification
133016 SO QSAR & COMBINATORIAL SCIENCE
133017 DT Article
133018 DE HEPT-analogue compounds; structure-activity relationship; support
133019    vector machine; support vector classification; PM3
133020 ID MACHINES; PARAMETERS
133021 AB The support vector classification (SVC), as a novel approach, was
133022    employed to make a distinction within a class of non-nucleoside reverse
133023    transcriptase inhibitors. 1-[2-hydroxyethoxy) methyl]-6-(phenyl
133024    thio)-thymine (HEPT) derivatives with high anti-HIV-1 activities and
133025    those with low anti-HIV-1 activities were compared on the basis of the
133026    following molecular descriptors: net atomic charge on atom 4, molecular
133027    volume, partition coefficient, molecular refractivity, molecular
133028    polarisability and molecular weight. By using the SVC, a mathematical
133029    model was constructed, which can predict the anti-HIV-1 activities of
133030    the HEPT-analogue compounds, with an accuracy of 100% as calculated on
133031    the basis of the leave-one-out cross-validation (LOOCV) test. The
133032    results indicate that the performance of the SVC model exceeds that of
133033    the stepwise discriminant analysis (SDA) model, for which a prediction
133034    accuracy of 94% was reported.
133035 C1 Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200444, Peoples R China.
133036    Lorand Eotvos Univ, Dept Theoret Chem, H-1518 Budapest, Hungary.
133037    Lorand Eotvos Univ, Hungarian Acad Sci, Prot Modelling Grp, H-1518 Budapest, Hungary.
133038 RP Lu, WC, Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200444, Peoples R
133039    China.
133040 EM wclu@staff.shu.edu.cn
133041 CR *HYP INC, 2002, HYPERCHEM REL 7 0 WI
133042    ALVES CN, 2000, J MOL STRUC-THEOCHEM, V530, P39
133043    BURBIDGE R, 2001, COMPUT CHEM, V26, P5
133044    CAI YD, 2003, PEPTIDES, V24, P629
133045    CAI YD, 2003, PEPTIDES, V24, P665
133046    CHEN NY, 1999, PATTERN RECOGNITION
133047    CHEN NY, 2004, SUPPORT VECTOR MACHI
133048    GAYEN S, 2004, BIOORGAN MED CHEM, V12, P1493
133049    LI GZ, 2002, COMPUT APPL CHEM, V19, P703
133050    LU WC, 2002, COMPUT APPL CHEM, V19, P697
133051    STEWART JJP, 1989, J COMPUT CHEM, V10, P209
133052    TROTTER MWB, 2001, MEAS CONTROL-UK, V34, P235
133053    VAPNIK VN, 1998, STAT LEARNING THEORY
133054    WAN V, 2000, P IEEE SIGN PROC SOC, V2, P775
133055 NR 14
133056 TC 0
133057 SN 1611-020X
133058 J9 QSAR COMB SCI
133059 JI QSAR Comb. Sci.
133060 PD NOV
133061 PY 2005
133062 VL 24
133063 IS 9
133064 BP 1021
133065 EP 1025
133066 PG 5
133067 SC Chemistry, Medicinal; Chemistry, Multidisciplinary; Computer Science,
133068    Interdisciplinary Applications; Pharmacology & Pharmacy
133069 GA 990ZU
133070 UT ISI:000233782700001
133071 ER
133072 
133073 PT J
133074 AU Tang, LC
133075    Huang, JY
133076    Chang, CS
133077    Lee, MH
133078    Liu, LQ
133079 TI New infrared nonlinear optical crystal CsGeBr3: synthesis, structure
133080    and powder second-harmonic generation properties
133081 SO JOURNAL OF PHYSICS-CONDENSED MATTER
133082 DT Article
133083 ID EFFECTIVE IONIC-RADII; X-RAY; PHASE-TRANSFORMATIONS; IR REGION;
133084    AB-INITIO; CSGECL3; PRESSURE; DIFFRACTION; OXIDES; CSGEI3
133085 AB An innovative infrared nonlinear optical crystal CsGeBr3 was
133086    synthesized. Ab initio calculations on CsGeBr3 were also carried out in
133087    order to analyse the second-order nonlinear susceptibilities. From its
133088    powder x-ray diffraction pattern, this crystal was characterized as a
133089    rhombohedral structure with an (R3m, No 160) space group symmetry. The
133090    reflection powder second-harmonic generation (PSHG) measurement of CGBr
133091    showed that its nonlinear optical efficiency is 1.62 times larger than
133092    that of rhombohedral CsGeCl3 and is 9.63 times larger than that of
133093    KH2PO4 (KDP), and most important of all that CsGeBr3 is
133094    phase-matchable. The rescaled d(eff)((2)) of CGBr was about 2.45 times
133095    larger than that of rhombohedral CsGeCl3, and this trend was coincident
133096    with the ab initio calculation results. The infrared transparent
133097    spectrum of rhombohedral CsGeBr3 was extended to more than 22.5 mu m.
133098    The rhombohedral CsGeBr3 shows the potential in the realm of nonlinear
133099    optics and can be applied to the infrared region.
133100 C1 Natl Chiao Tung Univ, Dept Photon, Hsinchu 305, Taiwan.
133101    Natl Chiao Tung Univ, Inst Electroopt Engn, Hsinchu 305, Taiwan.
133102    Tamkang Univ, Dept Phys, Taipei 251, Taiwan.
133103    Shanghai Univ Sci & Technol, Coll Mat Sci & Engn, Shandong, Peoples R China.
133104 RP Tang, LC, Natl Chiao Tung Univ, Dept Photon, Hsinchu 305, Taiwan.
133105 EM newton4538.eo85g@nctu.edu.tw
133106    cschang@mail.nctu.edu.tw
133107 CR BOYD RW, 2003, NONLINEAR OPTICS
133108    BURLAND DM, 1994, CHEM REV, V94, P1
133109    BUTLER V, 1983, SOLID STATE IONICS, V8, P109
133110    CHAMPAGNE B, 2003, ADV CHEM PHYS, V126, P41
133111    CHEMLA DS, 1987, NONLINEAR OPTICAL PR
133112    CHEN WK, 2000, J PHYS CHEM SOLIDS, V61, P969
133113    CHRISTENSEN AN, 1965, ACTA CHEM SCAND, V19, P421
133114    DMITRIEV VG, 1999, HDB NONLINEAR OPTICA
133115    DOUGHERTY JP, 1976, J APPL CRYSTALLOGR, V9, P145
133116    EWBANK MD, 1997, CLEO 97, P462
133117    GALASSO FS, 1990, PEROVSKITES HIGH T S
133118    GOLDSCHMIDT VM, 1927, BER DTSCH CHEM GES 1, V60, P1263
133119    GOLDSCHMIDT VM, 1931, FORTSCHR MINERAL, V15, P73
133120    GU QT, 2000, J CRYST GROWTH, V212, P605
133121    GU QT, 2000, PROG CRYST GROWTH CH, V40, P89
133122    GU QT, 2001, J CRYST GROWTH, V225, P501
133123    HUANG JY, 2001, J PHYS-CONDENS MAT, V13, P10417
133124    KLEINMAN DA, 1962, PHYS REV, V126, P1977
133125    KRAUS W, 1996, J APPL CRYSTALLOGR 3, V29, P301
133126    KURTZ SK, 1968, J APPL PHYS, V39, P3798
133127    MONKHORST HJ, 1976, PHYS REV B, V13, P5188
133128    NYE JF, 1957, PHYS PROPERTIES CRYS
133129    PAYNE MC, 1992, REV MOD PHYS, V64, P1045
133130    PRASAD PN, 1991, INTRO NONLINEAR OPTI, CH6
133131    RASHKEEV SN, 1998, PHYS REV B, V57, P3905
133132    REN P, 2003, INORG CHEM, V42, P8
133133    SCHWARZ U, 1995, J SOLID STATE CHEM, V118, P20
133134    SCHWARZ U, 1996, PHYS REV B, V53, P12545
133135    SEGALL MD, 2002, J PHYS-CONDENS MAT, V14, P2717
133136    SEO DK, 1998, INORG CHEM, V37, P407
133137    SHANNON RD, 1969, ACTA CRYSTALLOGR B, V25, P925
133138    SHANNON RD, 1976, ACTA CRYSTALLOGR A, V32, P751
133139    SHEN YR, 2002, PRINCIPLES NONLINEAR
133140    TANANAEV IV, 1964, ZH NEORG KHIM, V9, P1570
133141    TANG LC, 2000, J PHYS-CONDENS MAT, V12, P9129
133142    TANG LC, 2003, J PHYS-CONDENS MAT, V15, P6043
133143    TEJUCA LG, 1989, ADV CATAL, V36, P237
133144    THIELE G, 1987, Z ANORG ALLG CHEM, V545, P148
133145    THIELE G, 1988, Z ANORG ALLG CHEM, V559, P7
133146    THOMAS NW, 1997, BRIT CERAM T, V96, P7
133147    YOKOKAWA H, 1992, SOLID STATE IONICS, V52, P43
133148    ZHANG J, 1995, THESIS WUHAN U
133149    ZHANG J, 1998, P SOC PHOTO-OPT INS, V3556, P1
133150 NR 43
133151 TC 0
133152 SN 0953-8984
133153 J9 J PHYS-CONDENS MATTER
133154 JI J. Phys.-Condes. Matter
133155 PD NOV 23
133156 PY 2005
133157 VL 17
133158 IS 46
133159 BP 7275
133160 EP 7286
133161 PG 12
133162 SC Physics, Condensed Matter
133163 GA 991AY
133164 UT ISI:000233785700016
133165 ER
133166 
133167 PT J
133168 AU Hao, HH
133169    Lu, LL
133170    Chen, DY
133171 TI Double Wronskian soliton solution for mixed AKNS system
133172 SO CHINESE PHYSICS LETTERS
133173 DT Article
133174 ID INTEGRABLE SYSTEMS; KORTEWEG-DEVRIES; WAVE EQUATIONS
133175 AB The Lax pair of the mixed Ablowitz-Kap-Newell-Segur (AKNS) system is
133176    obtained from compatibility condition. Hirota's bilinear form is
133177    derived by some dependent variable transformation. Moreover, by means
133178    of the Wronskian technique, the double Wronskian form of soliton
133179    solutions are found. Specially, the two-soliton solution is presented.
133180 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
133181 RP Hao, HH, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
133182 EM hao_haier@163.com
133183 CR BI JB, IN PRESS PHYSICA A
133184    CHEN DY, 1996, J MATH PHYS, V37, P5524
133185    FREEMAN NC, 1983, PHYS LETT A, V95, P1
133186    GARDNER CS, 1967, PHYS REV LETT, V19, P1095
133187    GU CH, 1992, LETT MATH PHYS, V26, P199
133188    HIROTA R, 1971, PHYS REV LETT, V27, P1192
133189    HUANG GX, 2003, CHINESE PHYS LETT, V20, P802
133190    LI Y, 1982, SCI CHINA SER A, V5, P385
133191    LIU SK, 2001, ACTA PHYS SIN-CH ED, V50, P2068
133192    LOU SY, 1999, J MATH PHYS, V40, P6491
133193    LOU SY, 2004, CHINESE PHYS LETT, V21, P1020
133194    NIMMO JJC, 1983, PHYS LETT A, V99, P279
133195    NIMMO JJC, 1984, J PHYS A-MATH GEN, V17, P1415
133196    URASBOEV GU, 2001, THEOR MATH PHYS+, V129, P1341
133197    ZHANG HY, 2003, CHINESE PHYS LETT, V20, P1234
133198    ZHANG JF, 2002, CHINESE PHYS, V11, P533
133199 NR 16
133200 TC 0
133201 SN 0256-307X
133202 J9 CHIN PHYS LETT
133203 JI Chin. Phys. Lett.
133204 PD DEC
133205 PY 2005
133206 VL 22
133207 IS 12
133208 BP 2987
133209 EP 2990
133210 PG 4
133211 SC Physics, Multidisciplinary
133212 GA 991GE
133213 UT ISI:000233799600001
133214 ER
133215 
133216 PT J
133217 AU Shi, XM
133218    Liu, ZR
133219 TI An intracellular calcium oscillations model including mitochondrial
133220    calcium cycling
133221 SO CHINESE PHYSICS LETTERS
133222 DT Article
133223 AB Calcium is a ubiquitous second messenger. Mitochondria contributes
133224    significantly to intracellular Ca2+ dynamics. The experiment of Kaftan
133225    et a]. [J. Biol. Chem. 275(2000) 25465] demonstrated that inhibiting
133226    mitochondrial Ca2+ uptake can reduce the frequency of cytosolic Ca2+
133227    concentration oscillations of gonadotropes. By considering the
133228    mitochondrial Ca2+ cycling we develop a three-variable model of
133229    intracellular Ca2+ oscillations based on the models of Atri et* a].
133230    [Biophys. J. 65 (1993) 1727] and Falcke et a]. [Biophys. J. 77 (1999)
133231    37]. The model reproduces the fact that mitochondrial Ca2+ Cycling
133232    increases the frequency of cytosolic Ca2+ oscillations, which accords
133233    with Kaftan's results. Moreover the model predicts that when the
133234    mitochondria overload with Ca2+, the CytoSoliC Ca2+ oscillations
133235    vanish, which may trigger apoptosis.
133236 C1 Shanghai Univ, Sch Life Sci, Shanghai 200444, Peoples R China.
133237    Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
133238 RP Shi, XM, Shanghai Univ, Sch Life Sci, Shanghai 200444, Peoples R China.
133239 EM xminshi@yahoo.com.cn
133240 CR ATRI A, 1993, BIOPHYS J, V65, P1727
133241    BABCOCK DF, 1997, J CELL BIOL, V136, P2675
133242    BERRIDGE MJ, 1998, NATURE, V395, P645
133243    BERRIDGE MJ, 2000, NAT REV MOL CELL BIO, V1, P11
133244    FALCKE M, 1999, BIOPHYS J, V77, P37
133245    FALCKE M, 1999, TRANSPORT STRUCTURE, P165
133246    JIA Y, 2004, CHINESE PHYS LETT, V21, P1666
133247    KAFTAN EJ, 2000, J BIOL CHEM, V275, P25465
133248    RIZZUTO R, 1993, SCIENCE, V262, P744
133249    SCHUSTER S, 2002, EUR J BIOCHEM, V269, P1333
133250    SHI XM, 2003, THESIS SHANGHAI U
133251    SUN DY, 2000, CELL SIGNAL TRANSDUC, P99
133252    YING YJ, 2003, CHINESE PHYS LETT, V20, P1168
133253 NR 13
133254 TC 0
133255 SN 0256-307X
133256 J9 CHIN PHYS LETT
133257 JI Chin. Phys. Lett.
133258 PD DEC
133259 PY 2005
133260 VL 22
133261 IS 12
133262 BP 3206
133263 EP 3209
133264 PG 4
133265 SC Physics, Multidisciplinary
133266 GA 991GE
133267 UT ISI:000233799600063
133268 ER
133269 
133270 PT J
133271 AU Mo, JQ
133272    Lin, YH
133273    Wang, H
133274 TI The homotopic mapping method for sea-air oscillator model of
133275    interdecadal climate fluctuations
133276 SO CHINESE PHYSICS
133277 DT Article
133278 DE nonlinear; homotopic mapping; El Nino-Southern oscillator model
133279 ID NONLINEAR EVOLUTION-EQUATIONS; VARIATIONAL ITERATION METHOD;
133280    COMPUTATIONAL STABILITY; PERTURBATIVE SOLUTION; ENSO MODEL; MECHANISM;
133281    TROPICS; OCEAN
133282 AB The El Nino/La Nina Southern Oscillation (ENSO) is an interannual
133283    phenomenon involved in the tropical Pacific ocean-atmosphere
133284    interactions. In this paper, a coupled system of sea-air oscillator
133285    model is studied. The aim is to create an asymptotic solving method of
133286    nonlinear equation for the ENSO model. And based on a class of
133287    oscillators of ENSO model, employing the method of homotopic mapping,
133288    the approximate solution of corresponding problem is studied. It is
133289    proven from the results that the homotopic method can be used for
133290    analysing the sea surface temperature anomaly in the equatorial eastern
133291    Pacific and the thermocline depth anomaly of the atmosphere-ocean
133292    oscillation for ENSO model.
133293 C1 Anhui Normal Univ, Wuhu 241000, Peoples R China.
133294    Shanghai Univ, Div Computat Sci, E Inst, Shanghai 200240, Peoples R China.
133295    Chinese Acad Sci, Inst Atmospher Phys, LASG, Beijing 100029, Peoples R China.
133296    Chinese Acad Meteorol Sci, Beijing 100081, Peoples R China.
133297 RP Mo, JQ, Anhui Normal Univ, Wuhu 241000, Peoples R China.
133298 EM mojiaqi@mail.ahnu.edu.cn
133299 CR ADAMS KL, 2003, J ENG MATH, V45, P197
133300    BELL DC, 2003, NONLINEAR ANAL-REAL, V3, P515
133301    BIONDI F, 2001, J CLIMATE, V14, P5
133302    DEJAGER EM, 1996, THEORY SINGULAR PERT
133303    FENG GL, 2002, ACTA PHYS SIN-CH ED, V51, P1181
133304    GU DF, 1997, SCIENCE, V275, P805
133305    HAN XL, 2004, ACTA PHYS SIN-CH ED, V53, P4061
133306    HAN XL, 2005, ACTA PHYS SIN-CH ED, V54, P2590
133307    HWANG S, 2004, J DIFFER EQUATIONS, V200, P191
133308    KUSHNIR Y, 2002, J CLIMATE, V15, P2233
133309    LIAO SJ, 2004, PERTURBATION INTRO H
133310    LIN WT, 2000, CHINESE SCI BULL, V45, P1358
133311    LIN WT, 2001, ACTA AERODYNAMICA SI, V19, P348
133312    LIN WT, 2002, ADV ATMOS SCI, V19, P699
133313    LIN WT, 2002, PROGR NATURAL SCI, V12, P1326
133314    LIN WT, 2004, CHINESE SCI BULL, V48, P5
133315    LIN YH, 1999, PROG NAT SCI, V9, P211
133316    LIN YH, 1999, PROG NAT SCI, V9, P532
133317    LIN YH, 2001, ACTA METEOROLOGICA S, V59, P1
133318    LIN YH, 2001, CHIN J ATMOS SCI, V25, P111
133319    LIU SK, 2002, CHIN PHYS SIN, V51, P11
133320    MCPHADEN MJ, 2002, NATURE, V415, P603
133321    MO JQ, 2003, PROG NAT SCI, V13, P768
133322    MO JQ, 2004, ACTA PHYS SIN-CH ED, V53, P3245
133323    MO JQ, 2004, ACTA PHYS SIN-CH ED, V53, P996
133324    MO JQ, 2004, PROG NAT SCI, V14, P1126
133325    MO JQ, 2004, PROG NAT SCI, V14, P550
133326    MO JQ, 2005, ACTA PHYS SIN-CH ED, V54, P1081
133327    MO JQ, 2005, ACTA PHYS SIN-CH ED, V54, P3967
133328    MO JQ, 2005, ACTA PHYS SIN-CH ED, V54, P3971
133329    MO JQ, 2005, ACTA PHYS SINICA, V54, P983
133330    MO JQ, 2005, CHINESE PHYS, V14, P869
133331    WANG CZ, 2001, ADV ATMOS SCI, V18, P674
133332    WU QK, 2005, ACTA PHYS SIN-CH ED, V54, P2510
133333 NR 34
133334 TC 1
133335 SN 1009-1963
133336 J9 CHIN PHYS
133337 JI Chin. Phys.
133338 PD DEC
133339 PY 2005
133340 VL 14
133341 IS 12
133342 BP 2387
133343 EP 2390
133344 PG 4
133345 SC Physics, Multidisciplinary
133346 GA 991TH
133347 UT ISI:000233836300002
133348 ER
133349 
133350 PT J
133351 AU Wu, XF
133352    Zhu, JM
133353    Ma, ZY
133354 TI Interaction between two folded solitary waves for a modified Broer-Kaup
133355    system
133356 SO CHINESE PHYSICS
133357 DT Article
133358 DE modified Broer-Kaup system; Backlund transformation;
133359    separation-of-variable method; folded localized excitations
133360 ID LOOP SOLITON; LOCALIZED EXCITATIONS; PAINLEVE ANALYSIS; EQUATION
133361 AB By means of a Painleve-Backlund transformation and a multi-linear
133362    separation-of-variable approach, abundant localized coherent
133363    excitations of a modified Broer-Kaup system are derived. There appear
133364    possible phase shifts for the interactions of the (2 + 1) -dimensional
133365    novel localized structures, which are discussed in this paper.
133366 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
133367    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
133368 RP Wu, XF, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
133369 EM xfwu66@163.com
133370 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V30, P1262
133371    BOITI M, 1988, PHYS REV LETT A, V102, P432
133372    BROER LJF, 1975, APPL SCI RES, V31, P377
133373    HUANG DJ, 2004, CHAOS SOLITON FRACT, V23, P601
133374    KAKUHATA H, 1999, J PHYS SOC JPN, V68, P757
133375    KAUP DJ, 1975, PROG THEOR PHYS, V54, P396
133376    LOU SY, 1997, J MATH PHYS, V38, P6401
133377    LOU SY, 1998, PHYS REV LETT, V80, P5027
133378    LOU SY, 2002, J MATH PHYS, V43, P4078
133379    LOU SY, 2003, J PHYS A-MATH GEN, V36, P3877
133380    MA ZY, 2004, CHINESE PHYS, V13, P1382
133381    MATSUTANI S, 1995, MOD PHYS LETT A, V10, P717
133382    MATSUTANI S, 2000, J GEOM PHYS, V43, P146
133383    MORRISON AJ, 1999, NONLINEARITY, V12, P1427
133384    RUAN HY, 2003, ACTA PHYS SIN-CH ED, V52, P1313
133385    SCHLEIF M, 1998, EUR PHYS J A, V1, P171
133386    TANG XY, 2002, PHYS REV E, V66, P46601
133387    TANG XY, 2003, J MATH PHYS, V44, P4040
133388    VAKHNENKO VA, 1992, J PHYS A-MATH GEN, V25, P4181
133389    XU CZ, 2004, ACTA PHYS SIN-CH ED, V53, P2407
133390    ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P2676
133391    ZHANG JF, 2002, CHINESE PHYS, V11, P533
133392    ZHANG SL, 2002, PHYS LETT A, V300, P40
133393    ZHENG CL, 2003, CHINESE PHYS, V12, P11
133394    ZHENG CL, 2003, CHINESE PHYS, V12, P472
133395    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P385
133396    ZHENG CL, 2004, CHINESE PHYS, V13, P592
133397    ZHU JM, 2004, ACTA PHYS SIN-CH ED, V53, P3248
133398 NR 28
133399 TC 0
133400 SN 1009-1963
133401 J9 CHIN PHYS
133402 JI Chin. Phys.
133403 PD DEC
133404 PY 2005
133405 VL 14
133406 IS 12
133407 BP 2395
133408 EP 2401
133409 PG 7
133410 SC Physics, Multidisciplinary
133411 GA 991TH
133412 UT ISI:000233836300004
133413 ER
133414 
133415 PT J
133416 AU Zha, XJ
133417    Zhu, SZ
133418    Yu, QQ
133419    Wang, Y
133420 TI Topology of toroidal helical fields in non-circular cross-sectional
133421    tokamaks
133422 SO CHINESE PHYSICS
133423 DT Article
133424 DE plasma equilibrium; magnetic island; stochasticity
133425 ID MAGNETIC-STRUCTURE; TRANSPORT; EDGE; FLUCTUATIONS; PLASMAS; CHAOS; HT-7
133426 AB The ordinary differential magnetic field line equations are solved
133427    numerically; the tokamak magnetic structure is studied on Hefei
133428    Tokamak-7 Upgrade (HT-7U) when the equilibrium field with a monotonic
133429    q-profile is perturbed by a helical magnetic field. We find that a
133430    single mode (m, n) helical perturbation can cause the formation of
133431    islands on rational surfaces with q = m/n and q = (m +/- 1, +/- 2, +/-
133432    3,...)/n due to the toroidicity and plasma shape (i.e. elongation and
133433    triangularity), while there are many undestroyed magnetic surfaces
133434    called Kolmogorov-Arnold-Moser (KAM) barriers on irrational surfaces.
133435    The islands on the same rational surface do not have the same size.
133436    When the ratio between the perturbing magnetic field B-r(r) and the
133437    toroidal magnetic field amplitude B(phi)0 is large enough, the magnetic
133438    island chains on different rational surfaces will overlap and chaotic
133439    orbits appear in the overlapping area, and the magnetic field becomes
133440    stochastic. It is remarkable that the stochastic layer appears first in
133441    the plasma edge region.
133442 C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key Lab High Field Laser Phys, Shanghai 201800, Peoples R China.
133443    Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China.
133444    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
133445 RP Zha, XJ, Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key Lab
133446    High Field Laser Phys, Shanghai 201800, Peoples R China.
133447 EM xjzha@siom.ac.cn
133448 CR ABDULLAEV SS, 2003, NUCL FUSION, V43, P299
133449    BALESCU R, 1998, PHYS REV E, V58, P951
133450    BICKERTON RJ, 1997, PLASMA PHYS CONTR F, V39, P339
133451    BOOZER AH, 1983, PHYS FLUIDS, V26, P1288
133452    CARDOZO NL, 2002, TRANS FUSION SCI TEC, V41, P163
133453    CONNOR JW, 1994, PLASMA PHYS, V36, P719
133454    DONNE AJH, 2005, PHYS REV LETT, V94
133455    EVANS TE, 2002, PHYS PLASMAS, V9, P4957
133456    FISCHER O, 2001, LRP, V693
133457    GAO Y, 2001, ACTA PHYS SIN-CH ED, V50, P1440
133458    GARCIA L, 2001, PHYS PLASMAS, V8, P4111
133459    LI W, 2001, ACTA PHYS SIN-CH ED, V50, P1434
133460    MONTEIRO LHA, 1994, PHYS LETT A, V193, P89
133461    PRESS WH, 1986, NUMERICAL RECIPES
133462    WAN YX, 2000, NUCL FUSION, V40, P1057
133463    WANG WH, 2001, ACTA PHYS SIN-CH ED, V50, P1956
133464    WANG WH, 2001, CHINESE PHYS, V10, P139
133465    ZHA XJ, 2002, CHIN J COMPUTATIONAL, V19, P413
133466    ZHA XJ, 2003, ACTA PHYS SINICA, V52, P1981
133467    ZHENG SB, 1995, ACTA PHYS SINICA, V44, P715
133468 NR 20
133469 TC 0
133470 SN 1009-1963
133471 J9 CHIN PHYS
133472 JI Chin. Phys.
133473 PD DEC
133474 PY 2005
133475 VL 14
133476 IS 12
133477 BP 2552
133478 EP 2559
133479 PG 8
133480 SC Physics, Multidisciplinary
133481 GA 991TH
133482 UT ISI:000233836300029
133483 ER
133484 
133485 PT J
133486 AU Yao, YR
133487    Zhang, LS
133488    Han, BS
133489 TI Newton method for solving a class of smooth convex programming
133490 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
133491 DT Article
133492 DE convex programming; Newton method; KKT multiplier
133493 AB An algorithm for solving a class of smooth convex programming is given.
133494    Using smooth exact multiplier penalty function, a smooth convex
133495    programming is minimized to a minimizing strongly convex function on
133496    the compact set was reduced. Then the strongly convex function with a
133497    Newton method on the given compact set was minimized.
133498 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
133499 RP Yao, YR, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
133500 EM yryao@staff.shu.edu.cn
133501 CR BAZARAA MS, 1993, NONLINEAR PROGR THEO, P504
133502    DIPILLO G, 1994, ALGORITHMS CONTINUOU, P209
133503    GULER O, 1993, COMPLEXITY NUMERICAL, P180
133504    SERGE L, 1983, REAL ANAL, P106
133505    WANG SG, 1994, INEQUALITY MATRIX TH, P129
133506    WILKINSON JH, 1965, ALGEBRAIC EIGENVALUE
133507    YU N, 1994, INTERIOR POINT POLYM, P50
133508 NR 7
133509 TC 0
133510 SN 0253-4827
133511 J9 APPL MATH MECH-ENGL ED
133512 JI Appl. Math. Mech.-Engl. Ed.
133513 PD NOV
133514 PY 2005
133515 VL 26
133516 IS 11
133517 BP 1491
133518 EP 1498
133519 PG 8
133520 SC Mathematics, Applied; Mechanics
133521 GA 990YP
133522 UT ISI:000233779600013
133523 ER
133524 
133525 PT J
133526 AU Fang, Q
133527    Xu, B
133528    Jiang, B
133529    Fu, HT
133530    Zhu, WQ
133531    Jiang, XY
133532    Zhang, ZL
133533 TI A novel fluorene derivative containing four triphenylamine groups:
133534    Highly thermostable blue emitter with hole-transporting ability for
133535    organic light-emitting diode (OLED)
133536 SO SYNTHETIC METALS
133537 DT Article
133538 DE organic light-emitting diode (OLED); triphenylamine derivatives;
133539    fluorene; blue electroluminescent materials; hole-transporting materials
133540 ID GLASSES; DEVICES
133541 AB Four triphenylammine groups-substituted fluorene with rather high glass
133542    transition temperature, T-g, of 165 degrees C, was prepared and
133543    employed together with TPD as a composite hole-transporting layer to
133544    give a device with very low turn-on voltage and high efficiency. When a
133545    hole block layer was fabricated, the new compound can be used as a
133546    light-emitting layer for OLED to give a device emitting blue color. (C)
133547    2005 Elsevier B.V. All rights reserved.
133548 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Shanghai 200032, Peoples R China.
133549    Shanghai Univ, Coll Mat, Shanghai 200436, Peoples R China.
133550 RP Fang, Q, Chinese Acad Sci, Shanghai Inst Organ Chem, 354 Fenglin Rd,
133551    Shanghai 200032, Peoples R China.
133552 EM qiangfang@yahoo.com
133553 CR ADACHI C, 1988, JPN J APPL PHYS, V27, P269
133554    ADACHI C, 1989, APPL PHYS LETT, V55, P1489
133555    BERNIUS MT, 2000, ADV MATER, V12, P1737
133556    HAN EM, 1996, J APPL PHYS, V80, P3297
133557    KOENE BE, 1998, CHEM MATER, V10, P2235
133558    KUWABARA Y, 1994, ADV MATER, V6, P667
133559    MI BX, 2003, CHEM MATER, V15, P3148
133560    NAITO K, 1993, J PHYS CHEM-US, V97, P6240
133561    OBRIEN DF, 1998, ADV MATER, V10, P1108
133562    POMMEREHNE J, 1995, ADV MATER, V7, P55
133563    SALBECK J, 1997, SYNTHETIC MET, V91, P209
133564    SCHMITZ C, 2001, ADV FUNCT MATER, V11, P41
133565    SHIROTA Y, 1989, CHEM LETT, P1145
133566    SHIROTA Y, 2000, J MATER CHEM, V10, P1
133567    STROHRIEGL P, 2002, ADV MATER, V14, P1439
133568    TOKITO S, 1929, APPL PHYS LETT, V70
133569    WU TY, 2003, J POLYM SCI POL CHEM, V41, P1444
133570 NR 17
133571 TC 0
133572 SN 0379-6779
133573 J9 SYNTHET METAL
133574 JI Synth. Met.
133575 PD OCT 15
133576 PY 2005
133577 VL 155
133578 IS 1
133579 BP 206
133580 EP 210
133581 PG 5
133582 SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
133583    Polymer Science
133584 GA 989DE
133585 UT ISI:000233652300035
133586 ER
133587 
133588 PT J
133589 AU Ren, ZJ
133590    Cao, WG
133591    Chen, J
133592    Wang, Y
133593    Ding, WY
133594 TI Stereoselective synthesis of
133595    cis-1-aryl-2-benzoyl-3,3-dicyanocyclopropanes in water
133596 SO SYNTHETIC COMMUNICATIONS
133597 DT Article
133598 DE arsonium salt; cis-cyclopropane; cyclopropanation; stereoselective
133599    synthesis; water
133600 ID KNOEVENAGEL CONDENSATION; ORGANIC-REACTIONS; DERIVATIVES; ALDEHYDES
133601 AB The highly stereoselective preparation of cis
133602    -1-aryl-2-benzoyl-3,3-dicyanocyclopropanes with arsonium salt and
133603    olefin in water is described. It is simple, efficient, and
133604    environmentally benign.
133605 C1 Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
133606    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
133607 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
133608 EM renruil98229@hotmail.com
133609 CR CAO WG, 2000, SYNTHETIC COMMUN, V30, P4523
133610    DING WY, 1996, CHEM RES CHINESE U, V12, P50
133611    FERGUSON G, 1988, J CHEM SOC P2, P1829
133612    GRIECO PA, 1998, ORGANIC SYNTHESIS WA
133613    GUNTHER H, 1980, NMR SPECTROSCOPY, P108
133614    LI CJ, 1993, CHEM REV, V93, P2023
133615    LI CJ, 1997, ORGANIC REACTIONS AQ
133616    LINDSTROM UM, 2002, CHEM REV, V102, P2751
133617    REN ZJ, 2002, SYNTHETIC COMMUN, V32, P1947
133618    REN ZJ, 2002, SYNTHETIC COMMUN, V32, P3143
133619    REN ZJ, 2004, SYNTHETIC COMMUN, V34, P3785
133620    STONE FGA, 1982, ADV ORGANOMETALLIC C, V20, P115
133621    WANG S, 2001, SYNTHETIC COMMUN, V31, P673
133622    WONG HNC, 1989, CHEM REV, V89, P165
133623    WURZ RP, 2002, ORG LETT, V4, P4531
133624 NR 15
133625 TC 0
133626 SN 0039-7911
133627 J9 SYN COMMUN
133628 JI Synth. Commun.
133629 PY 2005
133630 VL 35
133631 IS 24
133632 BP 3099
133633 EP 3104
133634 PG 6
133635 SC Chemistry, Organic
133636 GA 990BA
133637 UT ISI:000233717000003
133638 ER
133639 
133640 PT J
133641 AU Wu, DY
133642    Ren, ZJ
133643    Cao, WG
133644    Tong, WQ
133645 TI Solvent-free synthesis of 2-arylideneindan-1,3-diones in the presence
133646    of magnesium oxide or silica gel under grinding
133647 SO SYNTHETIC COMMUNICATIONS
133648 DT Article
133649 DE arylideneindan-1,3-dione; Knoevenagel condensation; magnesium oxide;
133650    silica gel; solvent-free reaction
133651 ID SOLID-STATE; ABSENCE
133652 AB The solvent-free synthesis of 2-arylideneindan-1,3-diones can be
133653    achieved in the presence of MgO or silica gel under grinding. This
133654    process is simple, efficient, and environmentally benign.
133655 C1 Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
133656    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Organomet Chem, Shanghai 200032, Peoples R China.
133657 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
133658 EM renrui198229@hotmail.com
133659 CR CLARK JH, 1998, CHEM COMMUN     0421, P853
133660    GAMAI RA, 2004, SYNTHETIC COMMUN, V34, P1819
133661    IM J, 1997, TETRAHEDRON LETT, V38, P451
133662    INAYAMA S, 1976, J MED CHEM, V19, P433
133663    KODOMARI M, 2004, SYNTHETIC COMMUN, V34, P1783
133664    LI JP, 2001, SYNTHETIC COMMUN, V31, P781
133665    LU YY, 2004, SYNTHETIC COMMUN, V34, P2047
133666    PETROW V, 1949, J CHEM SOC, P2134
133667    REN ZJ, 2002, SYNTHETIC COMMUN, V32, P3475
133668    REN ZJ, 2004, SYNTHETIC COMMUN, V34, P4395
133669    SCHMEYERS T, 1998, J CHEM SOC P2, P989
133670    SMINNOV EA, 1969, ZH OBSHCH KHIM, V39, P1373
133671    TANAKA K, 1991, J ORG CHEM, V56, P4333
133672    TANAKA K, 2000, CHEM REV, V100, P1025
133673    TODA F, 1989, ANGEW CHEM INT EDIT, V28, P329
133674    TODA F, 1989, CHEM EXP, V4, P507
133675    TODA F, 1990, J CHEM SOC P1, P3207
133676    TODA F, 1998, J CHEM SOC PERK 1107, P3521
133677    TROST BM, 1991, COMPREHENSIVE ORGANI, V2, P341
133678    XIAO JP, 2001, SYNTHETIC COMMUN, V31, P661
133679 NR 20
133680 TC 0
133681 SN 0039-7911
133682 J9 SYN COMMUN
133683 JI Synth. Commun.
133684 PY 2005
133685 VL 35
133686 IS 24
133687 BP 3157
133688 EP 3162
133689 PG 6
133690 SC Chemistry, Organic
133691 GA 990BA
133692 UT ISI:000233717000011
133693 ER
133694 
133695 PT J
133696 AU Lu, J
133697    Lin, M
133698    Zhuang, SL
133699 TI Analysis for the near infrared spectrum characteristic of tea based on
133700    orthogonal wavelet packet
133701 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
133702 DT Article
133703 DE orthogonal wavelet packet; near infrared spectnim; tea; Shannon entropy
133704 AB According to the high co-linearity and dimension in the near
133705    infrared(NIR) spectrum of tea, the present paper describes
133706    quantitatively the characteristic of tea NIR spectra with wavelet
133707    packet by introducing the retained energy and number of zeros, based on
133708    the decorrelation capacity of orthogonal wavelet packet. Results show
133709    that the energy retained is as high as 99.98% after compressing, while
133710    the percentage for number of zeros is 95.87%. It was concluded. that
133711    orthogonal wavelet packet has a good compressibility for NIR spectra,
133712    which has significance in storing, searching and processing the NIR
133713    spectrogram.
133714 C1 Shanghai Univ Sci & Technol, Coll Opt & Elect Engn, Shanghai 200093, Peoples R China.
133715    China Inst Metrol, Coll Metrol Technol & Engn, Hangzhou 310018, Peoples R China.
133716 RP Lu, J, Shanghai Univ Sci & Technol, Coll Opt & Elect Engn, Shanghai
133717    200093, Peoples R China.
133718 CR CHEN FS, 1998, WAVELET TRANSFORMATI
133719    DONOHO DL, 1995, IEEE T INFORM THEORY, V41, P613
133720    FAN Z, 1996, CHINESE J ELECTRON, V24, P78
133721    GAO L, 2004, SPECTROSC SPECT ANAL, V24, P106
133722    LI N, 2004, SPECTROSC SPECT ANAL, V24, P45
133723    LIANG YZ, 2000, HDB ANAL CHEM, V10
133724    LU WZ, 2000, MODERN ANAL TECHNIQU
133725    YANG FS, 2000, ENG ANAL APPL WAVELE
133726 NR 8
133727 TC 0
133728 SN 1000-0593
133729 J9 SPECTROSC SPECTR ANAL
133730 JI Spectrosc. Spectr. Anal.
133731 PD NOV
133732 PY 2005
133733 VL 25
133734 IS 11
133735 BP 1790
133736 EP 1792
133737 PG 3
133738 SC Spectroscopy
133739 GA 990NM
133740 UT ISI:000233750500013
133741 ER
133742 
133743 PT J
133744 AU Lu, BQ
133745    Xia, YB
133746    Qi, LJ
133747    You, JL
133748 TI Raman spectra study of thermal transformation of nephrite cat's eye
133749    from Sichuan province
133750 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
133751 DT Article
133752 DE nephrite cat's eye; tremolite; Raman spectrum; XRD; thermal
133753    transformation
133754 AB Raman spectrum and X-ray powder diffraction (XRD) were used to study
133755    the process and product of thermal transformation of nephrite cat's eye
133756    from Sichuan province. The results indicate that upon being heated till
133757    900 degrees C, tremolite in the nephrite cat's eye is dehydrated
133758    completely and the appearance of a new characteristic band near 671
133759    cm(-1) indicates the form of a new product. At 1000 degrees C, the
133760    intensity of band near 1014 cm(-1) rises obviously, and the weak bands
133761    near 573 cm(-1) and 934 cm(-1) present. Up to 1100 degrees C, the band
133762    near 1033 cm(-1) appears. All these evidences show that the final
133763    thermal transformation product is identified as Ca-Mg pyroxene which is
133764    similar to diopside both in structure and in composition. This
133765    conclusion is confirmed by XRD.
133766 C1 Shanghai Univ, Sch Mat & Engn, Shanghai 200072, Peoples R China.
133767    China Univ Geosci, Inst Geol, Wuhan 430074, Peoples R China.
133768 RP Lu, BQ, Shanghai Univ, Sch Mat & Engn, Shanghai 200072, Peoples R China.
133769 CR LU BQ, 2004, ACTA PETROLOGICA MIN, V23, P268
133770    MERNAGH TP, 1996, TERRA NOVA S2, V8, P9
133771    PENG MS, 1991, SPECTROSC SPECT ANAL, V11, P16
133772    SMITH DC, 1997, J RAMAN SPECTROSC, V28, P731
133773    WANG A, 1988, APPL SPECTROSC, V42, P1441
133774    WENG ZP, 2001, J SHANGHAI U, V7, P137
133775    XU J, 1996, ACTA GEOLOGICA TAIWA, V32, P11
133776    XU PC, 1996, RAMAN SPECTROSCOPY G, P53
133777    YOU JL, 2002, SPECTROSC SPECT ANAL, V22, P787
133778    ZHOU KC, 2003, J GEM GEMMOLOGY, V15, P38
133779 NR 10
133780 TC 0
133781 SN 1000-0593
133782 J9 SPECTROSC SPECTR ANAL
133783 JI Spectrosc. Spectr. Anal.
133784 PD NOV
133785 PY 2005
133786 VL 25
133787 IS 11
133788 BP 1824
133789 EP 1826
133790 PG 3
133791 SC Spectroscopy
133792 GA 990NM
133793 UT ISI:000233750500023
133794 ER
133795 
133796 PT J
133797 AU Zhen, QA
133798    Kale, GM
133799    Shi, G
133800    Li, R
133801    He, WM
133802    Liu, JQ
133803 TI Processing of dense nanocrystalline Bi2O3-Y2O3 solid electolyte
133804 SO SOLID STATE IONICS
133805 DT Article
133806 DE nanocrystalline; Bi2O3-Y2O3; solid electrolyte; pressureless reactive
133807    sintering; grain growth; microstructure; coprecipitation; reverse
133808    titration
133809 ID LOW-TEMPERATURE; ELECTROLYTES; CERAMICS
133810 AB Processing of nanocrystalline Bi2O3-Y2O3 solid electrolyte having high
133811    density has been investigated and reported in this paper. Nanopowders
133812    of mixed bismuth oxide and yttrium oxide (75 mol% Bi2O3 + 25 mol% Y2O3)
133813    have been prepared by reverse titration chemical coprecipitation from
133814    Bi3+ and Y3+ containing aqueous solution. The high density,
133815    nanocrystalline Bi2O3-Y2O3 solid electrolyte has been synthesized by
133816    pressureless reactive sintering. The XRD results of the formation of
133817    nano delta-Bi2O3 and its grain growth indicates that the solid solution
133818    reaction between Y2O3 and beta-Bi2O3 occurs essentially in the initial
133819    stage of sintering and the growth of nano delta-Bi2O3 crystallites
133820    obeys the parabolic rate law, expressed as (D - D-0)(2) = K(.)t, during
133821    sintering process. After sintering at 600 C for 2 h, the relative
133822    density of the samples has been found to be greater than 96%. The
133823    microstructure reveals that the nanocrystalline Bi2O3-Y2O3 solid
133824    electrolyte samples have dense equiaxed microstructure with few
133825    isolated pores and delta-Bi2O3 grains are less than 100 nm in diameter.
133826    (c) 2005 Elsevier B.V. All rights reserved.
133827 C1 Univ Leeds, Inst Mat Res, Leeds LS2 9JT, W Yorkshire, England.
133828    Shanghai Univ, Nanosci & Nanotechnol Res Ctr, Shanghai 200436, Peoples R China.
133829    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
133830 RP Kale, GM, Univ Leeds, Inst Mat Res, Leeds LS2 9JT, W Yorkshire, England.
133831 EM g.m.kale@leeds.ac.uk
133832 CR BATTLE PD, 1986, J SOLID STATE CHEM, V63, P8
133833    BHATTACHARYA AK, 1994, SOLID STATE COMMUN, V91, P357
133834    FERRARI A, 1995, P NANOSTRUCTURE MAT
133835    HE WM, 2003, J FUNCTIONAL MAT, V34, P702
133836    HIRANO T, 1999, IEEE T MAGN 2, V35, P3487
133837    JOSHI PC, 1992, J APPL PHYS, V72, P5827
133838    KALE GM, 2003, J MATER SCI, V38, P2393
133839    KALE GM, 2003, SOLID STATE IONICS, V161, P155
133840    KALE GM, 2005, UNPUB
133841    KARCH J, 1987, NATURE, V330, P556
133842    KHARTON VV, 1993, RUSS J ELECTROCHEM+, V29, P1297
133843    KINGERY WD, 1967, INTRO CERAMICS
133844    KRUIDHOF H, 1987, MATER RES BULL, V22, P1635
133845    LAWLESS WN, 1992, SOLID STATE IONICS, V52, P219
133846    LI WQ, 1999, ACTA CHIMI SIN, V57, P491
133847    LI X, 2005, SOLID STATE LETT, V8, H27
133848    POURBAIX M, 1966, ATLAS ELECTROCHEMICA
133849    SAMMES NM, 1999, J EUR CERAM SOC, V19, P1801
133850    STEPHEN H, 1963, SOLUBILITIES INORGAN, V1
133851    WACHSMAN ED, 1997, CERAMIC MEMBRANES, V1, P237
133852    WATANABE A, 1986, SOLID STATE IONICS, V21, P287
133853    ZENG Y, 2001, J MATER SCI, V36, P1271
133854 NR 22
133855 TC 0
133856 SN 0167-2738
133857 J9 SOLID STATE IONICS
133858 JI Solid State Ion.
133859 PD NOV 30
133860 PY 2005
133861 VL 176
133862 IS 37-38
133863 BP 2727
133864 EP 2733
133865 PG 7
133866 SC Chemistry, Physical; Physics, Condensed Matter
133867 GA 988PC
133868 UT ISI:000233612100007
133869 ER
133870 
133871 PT J
133872 AU Zhou, TS
133873    Li, CP
133874 TI Synchronization in fractional-order differential systems
133875 SO PHYSICA D-NONLINEAR PHENOMENA
133876 DT Article
133877 DE fractional differential equation; synchronization; mode decomposition
133878 ID ECHO WAVES; EQUATIONS; CHAOS; OREGONATORS; STABILITY
133879 AB An omega-symmetrically coupled system consisting of identical
133880    fractional-order differential systems including chaotic and non-chaotic
133881    systems is investigated in this paper. Such a coupled system has, in
133882    its synchronous state, a mode decomposition by which the linearized
133883    equation can be decomposed into motions transverse to and parallel to
133884    the synchronous manifold. Furthermore, the decomposition can induce a
133885    sufficient condition on synchronization of the overall system, which
133886    guarantees, if satisfied, that a group synchronization is achieved. Two
133887    typical numerical examples, fractional Brusselators and the fractional
133888    Rossler system, are used to verify the theoretical prediction. The
133889    theoretical analysis and numerical results show that the lower the
133890    order of the fractional system, the longer the time for achieving
133891    synchronization at a fixed coupling strength. (c) 2005 Elsevier B.V.
133892    All rights reserved.
133893 C1 Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China.
133894    Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
133895 RP Zhou, TS, Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China.
133896 EM mcszhtsh@zsu.edu.cn
133897 CR DAFTARDARGEJJI V, 2004, J MATH ANAL APPL, V293, P511
133898    DELBOSCO D, 1996, J MATH ANAL APPL, V204, P609
133899    DENG WH, 2005, J PHYS SOC JPN, V74, P1645
133900    DENG WH, 2005, PHYSICA A, V353, P61
133901    DIETHELM K, 2002, J MATH ANAL APPL, V265, P229
133902    DIETHELM K, 2002, NONLINEAR DYNAM, V29, P3
133903    DIETHELM K, 2004, NUMER ALGORITHMS, V36, P31
133904    HEAVISIDE O, 1971, ELECTROMAGNETIC THEO
133905    KOELLER RC, 1984, J APPL MECH, V51, P229
133906    LI CP, IN PRESS PHYSICA A, V360
133907    LI CP, 2004, CHAOS SOLITON FRACT, V22, P443
133908    LI CP, 2004, CHAOS, V14, P557
133909    LUBICH C, 1983, MATH COMPUT, V41, P87
133910    MATIGNON D, 1996, IMACS IEEE SMC, V2, P963
133911    MILLER RK, 1971, SIAM J MATH ANAL, V2, P242
133912    NICOLIS G, 1977, SELF ORG NONEQUILIBR
133913    NISHIMOTO K, 1984, FRACTIONAL CALCULUS
133914    PODLUBNY I, 1999, FRACTIONAL DIFFERENT
133915    ROSSLER OE, 1976, PHYS LETT A, V57, P397
133916    SUN HH, 1984, IEEE T AUTOMAT CONTR, V29, P441
133917    SUN HH, 1984, IEEE T BIO-MED ENG, V31, P664
133918    ZHANG ZF, 1985, THEORY DIFFERENTIAL
133919    ZHOU TS, 2001, PHYSICA D, V151, P199
133920    ZHOU TS, 2002, CHAOS SOLITON FRACT, V13, P621
133921    ZHOU TS, 2002, PHYS LETT A, V301, P231
133922    ZHOU TS, 2003, PHYS LETT A, V320, P116
133923    ZHOU TS, 2005, PHYS REV E 2, V71
133924 NR 27
133925 TC 0
133926 SN 0167-2789
133927 J9 PHYSICA D
133928 JI Physica D
133929 PD DEC 1
133930 PY 2005
133931 VL 212
133932 IS 1-2
133933 BP 111
133934 EP 125
133935 PG 15
133936 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
133937 GA 989OG
133938 UT ISI:000233682800007
133939 ER
133940 
133941 PT J
133942 AU Sha, YN
133943    Zhang, JC
133944    Cao, GX
133945    Yao, K
133946    Jing, C
133947    Cao, SX
133948 TI Multi-step magnetization induced by the field and thermal effect in the
133949    phase-separated Pr2/3Ca1/3MnO3 manganites
133950 SO MODERN PHYSICS LETTERS B
133951 DT Article
133952 DE CMR manganites; multi-step transition; charge order; phase separation
133953 ID ORBITALLY ORDERED MANGANITES; METAMAGNETIC TRANSITIONS; CHARGE; STATES;
133954    JUMPS
133955 AB The multi-step transition by the field inducement is reported in
133956    pristine Pr2/3Ca1/3-MnO3 manganites. This step effect shows a strong
133957    dependence on the temperature and field sweep rate, which is sensitive
133958    to thermal perturbation. The results prove that they axe related with
133959    the internal magnetic structure of phase-separated Pr2/3Ca1/3MnO3
133960    manganites in low temperatures, while the influence of sweep rate can
133961    be accounted for within a martensitic-like scenario.
133962 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
133963 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
133964 EM jczhang@staff.shu.edu.cn
133965 CR BALCELLS L, 1998, PHYS REV B, V58, P14697
133966    CAO GX, 2005, APPL PHYS LETT, V86
133967    FISHER LM, 2004, PHYS REV B, V70
133968    HARDY V, 2001, PHYS REV B, V64
133969    HARDY V, 2003, J APPL PHYS, V94, P5316
133970    HARDY V, 2003, J MAGN MAGN MATER, V264, P183
133971    HARDY V, 2004, PHYS REV B, V69
133972    HEBERT S, 2002, EUR PHYS J B, V29, P419
133973    HEBERT S, 2002, J SOLID STATE CHEM, V165, P6
133974    HEBERT S, 2002, SOLID STATE COMMUN, V122, P335
133975    KOSHIBAE W, 1997, J PHYS SOC JPN, V66, P2985
133976    KUSHAUER J, 1996, PHYS REV B, V53, P11647
133977    MAHENDIRAN R, 2002, PHYS REV LETT, V89
133978    MAIGNAN A, 2002, J PHYS-CONDENS MAT, V14, P11809
133979    MAIGNAN A, 2003, J APPL PHYS 2, V93, P7361
133980    PODZOROV V, 1994, PHYS REV LETT, V72, P1694
133981    RAMIREZ AP, 1996, PHYS REV LETT, V76, P3188
133982    UEHARA M, 2000, EUROPHYS LETT, V52, P674
133983    VANHUMBEECK J, 1991, J PHYS IV, V1, P189
133984    XIAO G, 1996, PHYS REV B, V54, P6073
133985 NR 20
133986 TC 0
133987 SN 0217-9849
133988 J9 MOD PHYS LETT B
133989 JI Mod. Phys. Lett. B
133990 PD OCT 30
133991 PY 2005
133992 VL 19
133993 IS 24
133994 BP 1223
133995 EP 1230
133996 PG 8
133997 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
133998 GA 989UO
133999 UT ISI:000233699600004
134000 ER
134001 
134002 PT J
134003 AU Su, QF
134004    Xia, YB
134005    Wang, LJ
134006    Liu, JM
134007    Ruan, JF
134008    Shi, WM
134009 TI Electrical properties of CVD diamond detector and detection for alpha
134010    particle
134011 SO MODERN PHYSICS LETTERS A
134012 DT Article
134013 DE diamond films; alpha particle detector; charge collected efficiency;
134014    energy resolution
134015 ID X-RAY; DEPOSITED DIAMOND; THIN-FILMS; RADIATION
134016 AB The outstanding properties of diamond make it an ideal material for
134017    radiation detectors especially in the high temperature, high radiation
134018    and corrosion environments. For this purpose, electrical and
134019    irradiation properties of high quality CVD diamond detector were
134020    investigated at room temperature under irradiation conditions. For
134021    freestanding diamond films, dark current was in the order of 10(-10) A
134022    and photocurrent was in the order of 10(-8) A by 5.9 keV X-ray
134023    irradiation from a Fe-55 source with the applied voltage of 40 V. Pulse
134024    height spectrum acquired using a Am-241 alpha particle source show a
134025    full-energy peak at 820 channel which corresponded to an average charge
134026    collection efficiency of approximately 40.5%. However, a good
134027    signal-to-noise ratio and an energy resolution of 1.33% for alpha
134028    particles detecting were also obtained.
134029 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
134030 RP Su, QF, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
134031    China.
134032 CR ADAM W, 2000, NUCL INSTRUM METH A, V453, P141
134033    BAUER C, 1995, NUCL INSTRUM METH A, V367, P207
134034    BERGONZO P, 2000, DIAM RELAT MATER, V9, P1003
134035    FANG ZJ, 2003, CARBON, V41, P967
134036    FRIEDL M, 1999, NUCL INSTRUM METH A, V435, P194
134037    HECHT K, 1932, Z PHYS, V77, P235
134038    ISBERG J, 2002, SCIENCE, V297, P1670
134039    KOZLOV SF, 1975, IEEE T NUCL SCI, V22, P160
134040    KULKARNI AK, 1995, THIN SOLID FILMS, V270, P189
134041    LANDSTRASS MI, 1989, APPL PHYS LETT, V55, P975
134042    MANFREDOTTI C, 1998, DIAM RELAT MATER, V7, P523
134043    MAY PW, 2000, PHILOS T ROY SOC A, V358, P473
134044    WANG LJ, 2000, DIAM RELAT MATER, V9, P1617
134045    ZHANG ML, 2004, SOLID STATE COMMUN, V130, P425
134046    ZHANG ML, 2005, J CRYST GROWTH, V274, P21
134047    ZHANG WJ, 1997, J APPL PHYS, V82, P1896
134048 NR 16
134049 TC 0
134050 SN 0217-7323
134051 J9 MOD PHYS LETT A
134052 JI Mod. Phys. Lett. A
134053 PD DEC 14
134054 PY 2005
134055 VL 20
134056 IS 38
134057 BP 2949
134058 EP 2956
134059 PG 8
134060 SC Physics, Mathematical; Physics, Nuclear; Physics, Particles & Fields
134061 GA 989UL
134062 UT ISI:000233699300006
134063 ER
134064 
134065 PT J
134066 AU Sun, DA
134067    Yao, YP
134068    Matsuoka, H
134069 TI Modification of critical state models by Mohr-Coulomb criterion
134070 SO MECHANICS RESEARCH COMMUNICATIONS
134071 DT Article
134072 DE anisotropy; constitutive relations; deformation; failure; soil
134073 AB In order to combine the Mohr-Coulomb criterion and the critical state
134074    models for soils, a transformed stress tensor based on the Mohr-Coulomb
134075    criterion is proposed. The new stress tensor is determined by a
134076    transformation that makes the Mohr-Coulomb criterion become a cone
134077    having an axis as the space diagonal in transformed principal stress
134078    space, and is applied to the Cam-clay and Sekiguchi-Ohta models, which
134079    are two typical isotropic and anisotropic hardening critical state
134080    models for soils, for improving modelling capability of describing soil
134081    behaviour in general stresses. The revised models give more accurately
134082    predicted results than the original ones. (c) 2005 Elsevier Ltd. All
134083    rights reserved.
134084 C1 Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R China.
134085    Beijing Univ Aeronaut & Astronaut, Dept Civil Engn, Beijing 100083, Peoples R China.
134086    Nagoya Inst Technol, Dept Civil Engn, Showa Ku, Nagoya, Aichi 4668555, Japan.
134087 RP Sun, DA, Shanghai Univ, Dept Civil Engn, 149 Yanchang Rd, Shanghai
134088    200072, Peoples R China.
134089 EM sundean@hotmail.com
134090 CR ARGYRIS JH, 1973, 2 INT C SMIRT BERL
134091    GUDEHUS G, 1973, ING ARCH, V42, P151
134092    ICHIHARA W, 1997, THESIS NAGOYA I TECH
134093    LADE PV, 1975, J GEOTECHNICAL ENGIN, V101, P1037
134094    MATSUOKA H, 1974, P JAPANESE SOC CIVIL, V232, P59
134095    NAKAI T, 1983, SOILS FOUND, V23, P87
134096    NAKAI T, 1986, SOILS FOUND, V26, P67
134097    NAYAK GC, 1972, ASCE, V98, P949
134098    OHTA H, 1985, SOILS FOUND, V25, P73
134099    ROSCOE KH, 1963, GEOTECHNIQUE, V13, P211
134100    ROSCOE KH, 1968, ENG PLASTICITY, P535
134101    SCHOFIELD AN, 1968, CRITICAL STATE SOIL
134102    SCHWER LE, 1994, INT J NUMER ANAL MET, V18, P657
134103    SEKIGUCHI H, 1977, P 9 ICSMFE SPEC SESS, V9, P229
134104    YAMADA Y, 1982, SOILS FDN, V22, P15
134105    YAO YP, 2000, J ENG MECH-ASCE, V126, P112
134106    ZIENKIEWICZ OC, 1975, GEOTECHNIQUE, V25, P671
134107    ZIENKIEWICZ OC, 1977, FINITE ELEMENTS GEOM, P179
134108 NR 18
134109 TC 0
134110 SN 0093-6413
134111 J9 MECH RES COMMUN
134112 JI Mech. Res. Commun.
134113 PD MAR-APR
134114 PY 2006
134115 VL 33
134116 IS 2
134117 BP 217
134118 EP 232
134119 PG 16
134120 SC Mechanics
134121 GA 989YT
134122 UT ISI:000233710800008
134123 ER
134124 
134125 PT J
134126 AU Zhang, DS
134127    Shi, LY
134128    Fang, JH
134129    Dai, K
134130 TI Removal of NaCl from saltwater solution using carbon
134131    nanotubes/activated carbon composite electrode
134132 SO MATERIALS LETTERS
134133 DT Article
134134 DE carbon nanotubes; activated carbon; NaCl; adsorption
134135 AB Removal of NaCl from saltwater solution and a recycling operation were
134136    carried out using a flow-through capacitor (FTC) with carbon nanotubes
134137    (CNTs)/activated carbon (AC) composite electrode. As a result, the
134138    content of CNTs had a great effect on the removal characteristics of
134139    composite electrodes. The removal characteristic of the composite
134140    electrode with 10% CNTs was the best of all, above 90% removal
134141    efficiency achieved, and the removal energy-consumption thereof could
134142    be reduced by about 67% compared with that of the AC electrode. The
134143    highly efficient regeneration of the composite electrode was easily
134144    achieved. Therefore it was efficient enough to remove NaCl from
134145    saltwater solution by this technique. (c) 2005 Elsevier B.V. All rights
134146    reserved.
134147 C1 Shanghai Univ, Sch Sci, Shanghai 200444, Peoples R China.
134148    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
134149 RP Shi, LY, Shanghai Univ, Sch Sci, Shanghai 200444, Peoples R China.
134150 EM sly0726@163.com
134151 CR ALDELMAN M, 1998, FILTR SEPARAT, V35, P345
134152    ANDELMAN M, 1995, 5415768, US
134153    ANDELMAN M, 2003, 5192432
134154    NISHINO A, 1996, J POWER SOURCES, V60, P137
134155    NOACK A, 2002, 1003457, DE
134156    ODA H, 2003, CARBON, V41, P1037
134157    SHI L, 2003, 1463927, CN
134158    ZHANG DS, 2005, J FUNCT MAT, V36, P282
134159 NR 8
134160 TC 0
134161 SN 0167-577X
134162 J9 MATER LETT
134163 JI Mater. Lett.
134164 PD FEB
134165 PY 2006
134166 VL 60
134167 IS 3
134168 BP 360
134169 EP 363
134170 PG 4
134171 SC Materials Science, Multidisciplinary; Physics, Applied
134172 GA 989ZN
134173 UT ISI:000233713000017
134174 ER
134175 
134176 PT J
134177 AU Liew, KM
134178    Cheng, YM
134179    Kitipornchai, S
134180 TI Boundary element-free method (BEFM) for two-dimensional elastodynamic
134181    analysis using Laplace transform
134182 SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
134183 DT Article
134184 DE moving least-squares approximation; improved moving least-squares
134185    approximation; weighted orthogonal function; boundary integral
134186    equation; meshless/mesh-free method; boundary element-free method;
134187    elastodynamics
134188 ID POINT INTERPOLATION METHOD; NODE METHOD; ELASTICITY PROBLEMS; LINEAR
134189    ELASTICITY; PLATES
134190 AB In this paper, we present a direct meshless method of boundary integral
134191    equation (BIE), known as the boundary element-free method (BEFM), for
134192    two-dimensional (2D) elastodynamic problems that combines the BIE
134193    method for 2D elastodynamics in the Laplace-transformed domain and the
134194    improved moving least-squares (IMLS) approximation. The formulae for
134195    the BEFM for 2D elastodynamic problems are given, and the numerical
134196    procedures are also shown. The BEFM is a direct numerical method, in
134197    which the basic unknown quantities are the real solutions of the nodal
134198    variables, and the boundary conditions can be implemented directly and
134199    easily that leads to a greater computational precision. For the purpose
134200    of demonstration, some selected numerical examples are solved using the
134201    BEFM. Copyright (c) 2005 John Wiley & Sons, Ltd.
134202 C1 City Univ Hong Kong, Dept Bldg & Construct, Kowloon, Hong Kong, Peoples R China.
134203    Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore.
134204    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
134205 RP Kitipornchai, S, City Univ Hong Kong, Dept Bldg & Construct, Tat Chee
134206    Ave, Kowloon, Hong Kong, Peoples R China.
134207 EM S.Kitipornchai@cityu.edu.hk
134208 CR ATLURI SN, 2002, MESHLESS LOCAL PETRO
134209    BELYTSCHKO T, 1996, COMPUTER METHODS APP, V136, P3
134210    BESKOS DE, 1997, APPL MECH REV, V50, P149
134211    CHATI MK, 1999, INT J NUMER METH ENG, V46, P1163
134212    CHATI MK, 2000, INT J NUMER METH ENG, V47, P1523
134213    CHENG YM, 1997, ACTA MECH SOLIDA SIN, V10, P246
134214    DURBIN F, 1974, COMPUT J, V17, P371
134215    ERINGEN AC, 1975, ELASTODYNAMICS, V2
134216    GU YT, 2002, COMPUT MECH, V28, P47
134217    GU YT, 2003, STRUCT ENG MECH, V15, P535
134218    KITIPORNCHAI S, 2005, COMPUT MECH, V36, P13
134219    KOTHNUR VS, 1999, INT J SOLIDS STRUCT, V36, P1129
134220    LANCASTER P, 1981, MATH COMPUT, V37, P141
134221    LIEW KM, IN PRESS INT J NUMER
134222    LIEW KM, 2003, INT J NUMER METH ENG, V56, P2331
134223    LIEW KM, 2003, INT J NUMER METH ENG, V57, P599
134224    LIEW KM, 2004, INT J NUMER METH ENG, V60, P1861
134225    LIEW KM, 2005, INT J NUMER METH ENG, V63, P1014
134226    MANOLIS GD, 1988, BOUNDARY ELEMENT MET
134227    MUKHERJEE YX, 1997, INT J NUMER METH ENG, V40, P797
134228    MURTI V, 1986, ENG FRACT MECH, V23, P585
134229    RADHED YF, 2002, COMPUT STRUCT, V80, P1351
134230    SELLOUNTOS EJ, 2001, 5 INT WORKSH MATH ME, P265
134231    SLADEK J, 2003, COMPUT STRUCT, V81, P1643
134232    SLADEK J, 2003, INT J NUMER METH ENG, V57, P235
134233    ZHU T, 1998, COMPUT MECH, V21, P223
134234 NR 26
134235 TC 0
134236 SN 0029-5981
134237 J9 INT J NUMER METHOD ENG
134238 JI Int. J. Numer. Methods Eng.
134239 PD NOV 28
134240 PY 2005
134241 VL 64
134242 IS 12
134243 BP 1610
134244 EP 1627
134245 PG 18
134246 SC Engineering, Multidisciplinary; Mathematics, Applied
134247 GA 990FM
134248 UT ISI:000233728600004
134249 ER
134250 
134251 PT J
134252 AU Wang, Y
134253    Zha, XJ
134254    Yan, JK
134255 TI Reflection and refraction of light at the interface of a uniaxial
134256    bicrystal
134257 SO EUROPHYSICS LETTERS
134258 DT Article
134259 ID NEGATIVE REFRACTION; INDEX
134260 AB This paper deals with a theoretical analysis of the reflection and
134261    refraction of light at the interface of a bicrystal by use of Maxwell's
134262    equations. For a general case, the formulas of Snell's Law and the four
134263    Fresnel coefficients for the reflection and refraction of extraordinary
134264    light at the interface of a uniaxial bicrystal are derived for the
134265    first time, as well as the Brewster angle value. The condition for
134266    total reflection is presented and the electromagnetic fields
134267    distributions at both sides of a bicrystal are presented when total
134268    reflection occurs.
134269 C1 Shanghai Univ, Dept Phys, Shanghai, Peoples R China.
134270    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key Lab High Field Laser Phys, Shanghai 201800, Peoples R China.
134271    Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
134272 RP Wang, Y, Shanghai Univ, Dept Phys, Shanghai, Peoples R China.
134273 EM yanwang@staff.shu.edu.cn
134274    xjzha@siom.ac.cn
134275    jkyan@mail.shu.edu.cn
134276 CR FANG N, 2005, SCIENCE, V308, P534
134277    FENG ZF, 2005, PHYS REV LETT, V94
134278    GRBIC A, 2004, PHYS REV LETT, V92
134279    KONG JA, 2002, ELECTROMAGNETIC WAVE
134280    KROWNE CM, 2003, PHYS REV LETT, V93
134281    LIH JS, 2005, EUROPHYS LETT, V69, P544
134282    PENDRY JB, 2000, PHYS REV LETT, V85, P3966
134283    SHELBY RA, 2001, SCIENCE, V292, P77
134284    ZHANG Y, 2003, PHYS REV LETT, V91
134285    ZHANG Y, 2005, MOD PHYS LETT B, V19, P21
134286 NR 10
134287 TC 0
134288 SN 0295-5075
134289 J9 EUROPHYS LETT
134290 JI Europhys. Lett.
134291 PD DEC
134292 PY 2005
134293 VL 72
134294 IS 5
134295 BP 830
134296 EP 836
134297 PG 7
134298 SC Physics, Multidisciplinary
134299 GA 989FQ
134300 UT ISI:000233658700022
134301 ER
134302 
134303 PT J
134304 AU Kang, LY
134305    Sohn, MY
134306    Kim, HK
134307 TI Bondage number of the discrete torus C-n x C-4
134308 SO DISCRETE MATHEMATICS
134309 DT Article
134310 DE graph; domination number; bondage number
134311 AB The bondage number b(G) of a graph G is the cardinality of a smallest
134312    set of edges whose removal from G results in a graph with a domination
134313    number greater than the domination number of G. In this paper, we show
134314    that the bondage number of the Cartesian product C-n x C-4 of two
134315    cycles C-n (n >= 4) and C4 is equal to 4, i.e., b(C-n x C-4) = 4 for
134316    any n >= 4. (c) 2005 Elsevier B.V. All rights reserved.
134317 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
134318    Changwon Natl Univ, Dept Appl Math, Chang Won 641773, South Korea.
134319    Catholic Univ Daegu, Dept Math, Kyongsan 712702, South Korea.
134320 RP Kang, LY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
134321 EM mysohn@changwon.ac.kr
134322 CR DUNBAR JE, 1998, DOMINATION GRAPHS AD, P471
134323    FINK JF, 1990, DISCRETE MATH, V86, P47
134324    HARTNELL BL, 1992, ARS COMBINATORIA, V33, P65
134325    HAYNES TW, 1998, DOMINATIONS GRAPHS A
134326    KLAVZAR S, 1995, DISCRETE APPL MATH, V59, P129
134327 NR 5
134328 TC 0
134329 SN 0012-365X
134330 J9 DISCRETE MATH
134331 JI Discret. Math.
134332 PD NOV 6
134333 PY 2005
134334 VL 303
134335 IS 1-3
134336 SI Sp. Iss. SI
134337 BP 80
134338 EP 86
134339 PG 7
134340 SC Mathematics
134341 GA 990AU
134342 UT ISI:000233716400008
134343 ER
134344 
134345 PT J
134346 AU Xia, TC
134347    You, FC
134348 TI Generalized multi-component TC hierarchy and its multi-component
134349    integrable coupling system
134350 SO COMMUNICATIONS IN THEORETICAL PHYSICS
134351 DT Article
134352 DE loop algebra; multi-component TC hierarchy; multi-component integrable
134353    coupling system
134354 ID BI-HAMILTONIAN STRUCTURE; LOOP ALGEBRA; SOLITON-EQUATIONS; CONSTRAINED
134355    FLOWS; BURGERS HIERARCHY; AKNS HIERARCHY; NONLINEARIZATION; EVOLUTION;
134356    MODELS; FAMILY
134357 AB A new W-dimensional Lie algebra X is constructed firstly. Then, the
134358    corresponding loop algebra X is produced, whose commutation operation
134359    defined by us is as simple and straightforward as that in the loop
134360    algebra A,. It follows that a general scheme for generating
134361    multi-component integrable hierarchy is proposed. By taking advantage
134362    of X, a new isospectral problem is established, and then well-known
134363    multi-component TC hierarchy is obtained. Finally, an expanding loop
134364    algebra F-M of the loop algebra X is presented. Based on the Pm, the
134365    multi-component integrable coupling system of the generalized
134366    multi-coinponent TC hierarchy has been worked out. The method in this
134367    paper can be applied to other nonlinear evolution equations
134368    hierarchies. It is easy to find that we can construct any
134369    finite-dimensional Lie algebra by this approach.
134370 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
134371 RP Xia, TC, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
134372 EM xiatc@yahoo.com.cn
134373    fcyou2008@yahoo.com.cn
134374 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
134375    CAO CW, 1990, SCI CHINA SER A, V33, P528
134376    FAN E, 2001, J PHYS A-MATH GEN, V34, P513
134377    FAN E, 2001, PHYSICA A, V301, P105
134378    FAN EG, 2000, J MATH PHYS, V41, P7769
134379    FUSSTEINER B, 1993, APPL ANAL GEOMETRIC, P125
134380    GUO FK, 2002, ACTA PHYS SIN-CH ED, V51, P951
134381    GUO FK, 2003, J MATH PHYS, V44, P5793
134382    GUOAND FK, 2003, J MATH PHYS, V44
134383    LI YS, 1999, SOLITON INTEGRABLE S
134384    LI YS, 2000, PHYS LETT A, V275, P60
134385    MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
134386    MA WX, 1999, J MATH PHYS, V40, P4419
134387    MA WX, 2002, CHINESE ANN MATH B, V23, P373
134388    NEWELL AC, 1985, SOLITON MATH PHYS
134389    TAM HW, 2005, CHAOS SOLITON FRACT, V23, P535
134390    TSUCHIDA T, 1996, J PHYS SOC JPN, V65, P3153
134391    TSUCHIDA T, 1998, J PHYS SOC JPN, V67, P1175
134392    TSUCHIDA T, 1999, J PHYS LETT A, V53, P257
134393    TSUCHIDA T, 1999, J PHYS SOC JPN, V69, P2241
134394    TU GZ, 1989, ACTA MATH APPL SINIC, V5, P89
134395    TU GZ, 1989, J MATH PHYS, V30, P330
134396    XIA TC, 2004, CHAOS SOLITON FRACT, V22, P939
134397    XIA TC, 2004, COMMUN THEOR PHYS, V42, P180
134398    XIA TC, 2004, COMMUN THEOR PHYS, V42, P494
134399    XIA TC, 2004, PHYSICA A, V343, P238
134400    XIA TC, 2005, CHAOS SOLITON FRACT, V23, P1033
134401    XIA TC, 2005, CHAOS SOLITON FRACT, V23, P1163
134402    XU XX, 2004, COMMUN THEOR PHYS, V41, P321
134403    XU XX, 2004, PHYS LETT A, V326, P199
134404    ZENG YB, 1991, PHYS LETT A, V160, P541
134405    ZENG YB, 1996, J PHYS A-MATH GEN, V29, P5241
134406    ZHANG DJ, 2002, J PHYS A-MATH GEN, V35, P7225
134407    ZHANG YF, 2003, ACTA PHYS SIN-CH ED, V52, P5
134408    ZHANG YF, 2003, ACTA PHYS SINICA, V53, P2190
134409    ZHANG YF, 2003, CHAOS SOLITON FRACT, V18, P855
134410    ZHANG YF, 2003, CHINESE PHYS, V12, P1194
134411    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P305
134412    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P413
134413 NR 39
134414 TC 0
134415 SN 0253-6102
134416 J9 COMMUN THEOR PHYS
134417 JI Commun. Theor. Phys.
134418 PD NOV 15
134419 PY 2005
134420 VL 44
134421 IS 5
134422 BP 793
134423 EP 798
134424 PG 6
134425 SC Physics, Multidisciplinary
134426 GA 989FA
134427 UT ISI:000233657100006
134428 ER
134429 
134430 PT J
134431 AU Su, LP
134432    Zhang, JP
134433    Xu, HB
134434    Wang, Y
134435    Chu, YW
134436    Liu, RZ
134437    Xiong, SD
134438 TI Differential expression of CXCR4 is associated with the metastatic
134439    potential of human non-small cell lung cancer cells
134440 SO CLINICAL CANCER RESEARCH
134441 DT Article
134442 ID CHEMOKINE RECEPTOR CXCR4; TUMOR PROGRESSION; FACTOR-I; MIGRATION;
134443    SYSTEM; CARCINOMA; INVOLVEMENT; PROGENITORS; FACTOR-1; AXIS
134444 AB Purpose: To evaluate the relation between CXCR4 expression and the
134445    presence of metastatic disease in human non -small cell lung cancer
134446    (NSCLC) patients and investigate whether modulation of CXCR4 expression
134447    could serve as a potential pathway in preventing metastasis of NSCLC.
134448    Experimental Design: CXCR4 expression in 36 patients with NSCLC and 10
134449    normal lung tissues was detected by real-time PCR and
134450    immunohistochemistry. CXCR4 expression in two human NSCLC clones (95C
134451    and 95D) with different metastatic potential was determined by
134452    real-time PCR and flow cytometry. 95C and 95D cells were transfected
134453    with the plasmid DNA containing CXCR4 coding gene or CXCR4 antisense
134454    nucleotide fragment, respectively, and the effects on in vitro cell
134455    migration, invasion, and adhesion and in vivo metastasis were measured.
134456    Results: Up-regulated expression of CXCR4 was detected in 34 tumors,
134457    which were further divided into 17 high expression cancers and 17 low
134458    expression cancers by their staining intensities. High CXCR4 tumors (13
134459    of 17) were more prone to clinical metastasis in comparison with low
134460    expression tumors. CXCR4 was differentially expressed in 95C and 95D
134461    cells with low or high metastatic potential, and the surface expression
134462    of CXCR4 were 50% up-regulated or down-regulated following the stable
134463    transfection. The metastatic potential of NSCLC in vitro, such as
134464    migration, invasion, and adhesion, were significantly enhanced or
134465    impaired. In addition, neutralizing the interactions of stromal cell -
134466    derived factor-1/CXCR4 in vitro with CXCR4-specific antibodies
134467    inhibited the CXCR4-dependent migration, invasion, and adhesion.
134468    Furthermore, s.c. inoculation of lung cancer cells with low expression
134469    of CXCR4 in nude mice showed 0- to 2-fold decrease in lung metastatic
134470    foci than that with high expression of CXCR4.
134471    Conclusions: Differential expression of CXCR4 is associated with the
134472    metastatic potential of human NSCLC, raising the possibility that
134473    blockade of CXCR4/stromal cell -derived factor-1 interaction may lead
134474    the way to design novel therapeutic tools for the treatment of
134475    metastatic NSCLC patients.
134476 C1 Fudan Univ, Shanghai Med Coll, Dept Immunol, Shanghai 200032, Peoples R China.
134477    Fudan Univ, Shanghai Med Coll, Key Lab Mol Med, Minist Educ, Shanghai 200032, Peoples R China.
134478    Shanghai Univ, Div Immunol, E Inst, Shanghai, Peoples R China.
134479 RP Xiong, SD, Fudan Univ, Shanghai Med Coll, Dept Immunol, 138 Yixueyuan
134480    Rd, Shanghai 200032, Peoples R China.
134481 EM sdxiongfd@126.com
134482 CR *MET GROUP, 2000, CORCHR DAT SYST REV
134483    AIUTI A, 1999, EUR J IMMUNOL, V29, P1823
134484    FENG Y, 1996, SCIENCE, V272, P872
134485    FIDLER IJ, 1990, CANCER RES, V50, P6130
134486    FIDLER IJ, 1999, CANCER CHEMOTH PHA S, V43, S3
134487    HE C, 2001, J CANCER RES CLIN, V127, P180
134488    HOOGEWERF AJ, 1997, BIOCHEMISTRY-US, V36, P13570
134489    HORIKAWA T, 2005, LARYNGOSCOPE, V115, P62
134490    INOUE K, 2000, CLIN CANCER RES, V6, P2104
134491    ITO S, 2001, INT J CANCER, V93, P212
134492    KATO M, 2003, BREAST CANCER RES, V5, R144
134493    KOSHIBA T, 2000, CLIN CANCER RES, V6, P3530
134494    LU XL, 1989, CHINESE J ONCOL, V11, P3
134495    MOHLE R, 1998, BLOOD, V91, P4523
134496    MULLER A, 2001, NATURE, V410, P50
134497    NAVOLOTSKI A, 1997, CANCER LETT, V118, P181
134498    OONAKAHARA K, 2004, AM J RESP CELL MOL, V30, P671
134499    PATEL DD, 2001, CLIN IMMUNOL, V99, P43
134500    PERISSINOTTO E, 2005, CLIN CANCER RES, V11, P490
134501    PHILLIPS RJ, 2003, AM J RESP CRIT CARE, V167, P1676
134502    ROBLEDO MM, 2001, J BIOL CHEM, V276, P45098
134503    ROLLINS BJ, 1997, BLOOD, V90, P909
134504    SCOTTON CJ, 2001, CANCER RES, V61, P4961
134505    SIEGEL G, 1998, MICROSC RES TECHNIQ, V43, P276
134506    STRIETER RM, 2001, NAT IMMUNOL, V2, P285
134507    SUN YX, 2003, J CELL BIOCHEM, V89, P462
134508    TAMAMURA H, 1998, BIOCHEM BIOPH RES CO, V253, P877
134509    WANG JF, 1998, BLOOD, V92, P756
134510    WANG JM, 1998, J IMMUNOL METHODS, V220, P1
134511    WANG N, 1982, CANCER RES, V42, P1046
134512    ZLOTNIK A, 2000, IMMUNITY, V12, P121
134513    ZLOTNIK A, 2004, SEMIN CANCER BIOL, V14, P181
134514 NR 32
134515 TC 0
134516 SN 1078-0432
134517 J9 CLIN CANCER RES
134518 JI Clin. Cancer Res.
134519 PD DEC 1
134520 PY 2005
134521 VL 11
134522 IS 23
134523 BP 8273
134524 EP 8280
134525 PG 8
134526 SC Oncology
134527 GA 989VF
134528 UT ISI:000233701300009
134529 ER
134530 
134531 PT J
134532 AU Zhou, J
134533    Chen, TP
134534    Xiang, L
134535 TI Chaotic Lag synchronization of coupled delayed neural networks and its
134536    applications in secure communication
134537 SO CIRCUITS SYSTEMS AND SIGNAL PROCESSING
134538 DT Article
134539 DE Lag synchronization; chaos; adaptive control; chaotic delayed Hopfied
134540    neural networks; secure communication
134541 ID SYSTEMS
134542 AB In this paper, the issues of lag synchronization of coupled chaotic
134543    delayed neural networks are investigated. By using the adaptive control
134544    with the linear feedback updated law, some simple yet generic criteria
134545    for determining the lag synchronization of coupled chaotic delayed
134546    neural networks are derived based on the invariance principle of
134547    functional differential equations. It is shown that the approaches
134548    developed here further extend the ideas and techniques presented in the
134549    literature, and they are also simple to implement in practice. By using
134550    the proposed lag synchronization technique of coupled chaotic delayed
134551    neural networks, an application toward a secure communication scheme
134552    with certain external random noises is also discussed. Furthermore, the
134553    numerical simulations demonstrate the effectiveness and feasibility of
134554    the proposed techniques. 34K23, 34K35, 92F05, 92B20.
134555 C1 Hebei Univ Technol, Dept Appl Math & Phys, Tianjin 300130, Peoples R China.
134556    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
134557    Fudan Univ, Inst Math, Lab Nonlinear Sci, Shanghai 200433, Peoples R China.
134558 RP Zhou, J, Hebei Univ Technol, Dept Appl Math & Phys, Tianjin 300130,
134559    Peoples R China.
134560 EM Jinzhou@fudan.edu.cn
134561    Tchen@fudan.edu.cn
134562    Xianglan.htu@eyou.com.cn
134563 CR CHEN G, 1998, CHAOS ORDER METHODOL
134564    CHEN GR, 2004, INT J BIFURCAT CHAOS, V14, P2229
134565    FIRE P, 2001, SCIENCE, V291, P1560
134566    HOPPENSTEADT FC, 2000, IEEE T NEURAL NETWOR, V11, P734
134567    HUANG DB, 2004, PHYS REV E, V69
134568    KUANG Y, 1993, DELAY DIFFERENTIAL E
134569    LI CD, 2004, PHYSICA D, V194, P187
134570    LU HT, 2002, PHYS LETT A, V298, P109
134571    LU WL, 2004, IEEE T CIRCUITS-I, V51, P2491
134572    PECORA LM, 1990, PHYS REV LETT, V64, P821
134573    PECORA LM, 1997, CHAOS, V7, P520
134574    PENG J, 2003, J COMPUT RES DEV, V40, P263
134575    PYRAGAS K, 1998, PHYS REV E A, V58, P3067
134576    SHAHVERDIEV EM, 2002, PHYS LETT A, V292, P320
134577    STEINMETZ PN, 2000, NATURE, V404, P187
134578    XIANG L, 2002, APPL MATH MECH-ENGL, V23, P1367
134579    ZHANG Y, 1997, IEEE INT C INTELL PR, V1, P521
134580    ZHOU J, 2004, LECT NOTES COMPUT SC, V3173, P144
134581    ZHOU J, 2004, NEURAL NETWORKS, V17, P87
134582    ZHOU J, 2005, IN PRESS DYNS DIS B, V11
134583    ZHOU J, 2005, LECT NOTES COMPUT SC, V3496, P308
134584    ZHOU X, 2000, ALGORITHMICA, V26, P3
134585 NR 22
134586 TC 0
134587 SN 0278-081X
134588 J9 CIRC SYST SIGNAL PROCESS
134589 JI Circuits Syst. Signal Process.
134590 PD SEP-OCT
134591 PY 2005
134592 VL 24
134593 IS 5
134594 BP 599
134595 EP 613
134596 PG 15
134597 SC Engineering, Electrical & Electronic
134598 GA 988GR
134599 UT ISI:000233581300011
134600 ER
134601 
134602 PT J
134603 AU Xing, HM
134604    Sun, L
134605    Chen, XG
134606 TI On a generalization of signed total dominating functions of graphs
134607 SO ARS COMBINATORIA
134608 DT Article
134609 AB Let G = (V, E) be a simple graph. For any real valued function f : V ->
134610    R, the weight of f is defined as f (V) = Sigma f (v), over all vertices
134611    V is an element of V. For positive integer k, a total k-subdominating
134612    function (TkSF) is a function of f : V -> {- 1, 1} such that f (N(v))
134613    >= 1 for at least k vertices v of G. The total k-subdomination number
134614    gamma(ks)(t) (G) of a graph G equals the minimum weight of a TkSF on G.
134615    In the special case where k = vertical bar V vertical bar,
134616    gamma(ks)(t), is the signed total domination number (5). We research
134617    total k-subdomination numbers of some graphs and obtain a few lower
134618    bounds of gamma(ks)(t)(G).
134619 C1 Langfang Teachers Coll, Dept Math, Hebei 065000, Peoples R China.
134620    Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China.
134621    Shanghai Univ Sci & Technol, Coll Info Sci & Engn, Tai An 271019, Peoples R China.
134622 RP Xing, HM, Langfang Teachers Coll, Dept Math, Hebei 065000, Peoples R
134623    China.
134624 EM huaming_xing@sohu.com
134625 CR BROERE I, 1995, DISCRETE MATH, V138, P125
134626    COCKAYNE EJ, 1980, NETWORKS, V10, P211
134627    COCKAYNE EJ, 1996, ARS COMBINATORIA, V43, P235
134628    HARRIS L, UNPUB DISCRETE APPL
134629    HATTINGH JH, 1998, DOMINATION GRAPHICS, CH4
134630    HENNING MA, IN PRESS DISCRETE MA
134631    ZELINKA B, 2001, CZECH MATH J, V51, P225
134632 NR 7
134633 TC 0
134634 SN 0381-7032
134635 J9 ARS COMB
134636 JI ARS Comb.
134637 PD OCT
134638 PY 2005
134639 VL 77
134640 BP 205
134641 EP 215
134642 PG 11
134643 SC Mathematics
134644 GA 988MH
134645 UT ISI:000233604800018
134646 ER
134647 
134648 PT J
134649 AU Cao, GX
134650    Zhang, JC
134651    Xu, Y
134652    Wang, SP
134653    Yu, J
134654    Cao, SX
134655    Jing, C
134656    Shen, XC
134657 TI Action of strong coupling on steplike magnetization and transport
134658    properties in phase-separated manganite
134659 SO APPLIED PHYSICS LETTERS
134660 DT Article
134661 ID COLOSSAL MAGNETORESISTANCE; FIELD; TRANSITIONS; COMPETITION; PHYSICS;
134662    OXIDES
134663 AB For phase-separated La0.275Pr0.35Ca0.375MnO3 manganite, a steplike
134664    charge-ordered antiferromagnetic-ferromagnetic transition was observed
134665    by field induction and accompanied by a sudden drop of resistivity. The
134666    results can be explained in terms of the spin reorientation in the
134667    antiferromagnetic (AFM) phase and simultaneous destruction of orbital
134668    ordering by a magnetic field. Combined with specific heat and
134669    magnetization measurements, the electronic state density at Fermi
134670    energy was greatly enhanced at 5 T, which shows the increase of carrier
134671    number due to delocalization effect, by analogy with the spin
134672    reorientation due to destruction of orbital ordering by magnetic field.
134673    The present results prove that the strong coupling among spin, charge,
134674    and orbital ordering would be the main cause of existing complex
134675    physical behavior at low temperature, which depends sensitively on the
134676    spin orientation of adjacent charge-ordered AFM domains and can be
134677    controlled by applied field. (c) 2005 Americian Institute of Physics.
134678 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
134679 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
134680 EM jczhang@staff.shu.edu.cn
134681 CR AHN KH, 2004, NATURE, V428, P401
134682    CAO GX, 2005, APPL PHYS LETT, V86
134683    CAO GX, 2005, PHYS REV B, V71
134684    DEAC IG, 2002, PHYS REV B, V65
134685    GHIVELDER L, 2005, PHYS REV B, V71
134686    GHOSH N, 2004, PHYS REV B, V70
134687    HARDY V, 2003, PHYS REV B, V67
134688    HEBERT S, 2002, J SOLID STATE CHEM, V165, P6
134689    HEBERT S, 2002, SOLID STATE COMMUN, V122, P335
134690    HOTTA T, 2000, PHYS REV B, V61, P11879
134691    KAWANO H, 1997, PHYS REV LETT, V78, P4253
134692    LEE HJ, 2002, PHYS REV B, V65
134693    LEVY P, 2000, PHYS REV B, V62, P6437
134694    MA YQ, 2004, PHYS REV B, V70
134695    MAIGNAN A, 2002, J PHYS CONDENS MATT, V14, P809
134696    MOREO A, 1999, SCIENCE, V283, P2034
134697    PARK SH, 1997, PHYS REV B, V56, P67
134698    ROY M, 1999, J PHYS-CONDENS MAT, V11, P4843
134699    SARMA DD, 2004, PHYS REV LETT, V93
134700    TOKER D, 2003, PHYS REV B, V68
134701    TOKUNAGA M, 1998, PHYS REV B, V57, P5259
134702    TOKURA Y, 2000, SCIENCE, V288, P462
134703    UEHARA M, 1999, NATURE, V399, P560
134704    VARELOGIANNIS G, 2000, PHYS REV LETT, V85, P4172
134705 NR 24
134706 TC 0
134707 SN 0003-6951
134708 J9 APPL PHYS LETT
134709 JI Appl. Phys. Lett.
134710 PD DEC 5
134711 PY 2005
134712 VL 87
134713 IS 23
134714 AR 232501
134715 DI ARTN 232501
134716 PG 3
134717 SC Physics, Applied
134718 GA 990DK
134719 UT ISI:000233723200050
134720 ER
134721 
134722 PT J
134723 AU Liu, BX
134724    Yu, JY
134725    Xu, DJ
134726 TI 2,2 '-Diamino-4,4 '-bi-1,3-thiazol-3,3 '-diium bis(2,2 '-diamino-4,4
134727    '-bi-1,3-thiazol-3-ium) tetrakis(2-nitrobenzoate)
134728 SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE
134729 DT Article
134730 AB The crystal structure of the title compound,
134731    C6H8N4S22+.-2C(6)H(7)N(4)S(2)(+.)4C(7)H(4)NO(4)(-), comprises
134732    diprotonated diaminobithiazole (DABT) dications located on inversion
134733    centers, monoprotonated DABT cations and nitrobenzoate anions. The
134734    relatively short C - N( amino) bond distances, ranging from 1.310 (2)
134735    to 1.350 (2) angstrom, indicate electron delocalization between the
134736    amino groups and thiazole rings. Intermolecular N - H (...) O and N - H
134737    (...) N hydrogen bonds stabilize the crystal packing.
134738 C1 Zhejiang Univ, Dept Chem, Hangzhou, Peoples R China.
134739    Shanghai Univ, Dept Chem, Shanghai, Peoples R China.
134740 RP Xu, DJ, Zhejiang Univ, Dept Chem, Hangzhou, Peoples R China.
134741 EM xudj@mail.hz.zj.cn
134742 CR *RIG CORP, 1998, PROCESS AUTO
134743    *RIG MSC, 2002, CRYST STRUCT VERS 3
134744    ALTOMARE A, 1993, J APPL CRYSTALLOGR, V26, P343
134745    FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
134746    FARRUGIA LJ, 1999, J APPL CRYSTALLOGR, V32, P837
134747    FISHER LM, 1985, BIOCHEMISTRY-US, V24, P3199
134748    HIGASHI T, 1995, ABSCOR
134749    LIU BX, 2005, ACTA CRYSTALLOGR E 3, V61, O753
134750    LIU JG, 2002, ACTA CRYSTALLOGR E 8, V58, O929
134751    LIU JG, 2003, ACTA CRYSTALLOGR E 3, V59, O312
134752    LIU JG, 2003, ACTA CRYSTALLOGR E 6, V59, O812
134753    SHELDRICK GM, 1997, SHELXL97
134754    SUN WL, 1997, J APPL POLYM SCI, V64, P2309
134755    WARING MJ, 1981, ANNU REV BIOCHEM, V50, P159
134756 NR 14
134757 TC 0
134758 SN 1600-5368
134759 J9 ACTA CRYSTALLOGR E-STRUCT REP
134760 JI Acta Crystallogr. Sect. E.-Struct Rep. Online
134761 PD DEC
134762 PY 2005
134763 VL 61
134764 PN Part 12
134765 BP O4119
134766 EP O4120
134767 PG 2
134768 SC Crystallography
134769 GA 989ER
134770 UT ISI:000233656200192
134771 ER
134772 
134773 PT J
134774 AU Bao, KY
134775    Wen, TQ
134776    Chen, FX
134777    Song, HS
134778    Zhao, CP
134779 TI Isolation of a gene greatly expressed in Kluyveromyces marxianus at
134780    high temperature
134781 SO WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY
134782 DT Article
134783 DE differential expression; differential display polymerase chain
134784    reaction; expressed sequence tag; Kluyveromyces marxianus;
134785    thermotolerance
134786 ID SACCHAROMYCES-CEREVISIAE; ETHANOL-PRODUCTION; THERMOTOLERANT; YEAST;
134787    TOLERANCE; IMB3
134788 AB This research provides insight into the expression of
134789    thermotolerance-related genes in Kluyveromyces marxianus by
134790    differential display polymerase chain reaction (DD-PCR) techniques.
134791    Fourteen differential expressed sequence tags (ESTs) were observed and
134792    one of them, SHWBY10 was confirmed to be positive by reverse Northern
134793    blot analysis. The sequence has the GenBank Accession ID No. CD374838.
134794    DNA sequencing showed that it encoded a 279 bp ORF containing 92 amino
134795    acids. Analysis of protein sequence indicated that it has significant
134796    sequence homology with a peroxisomal protein product (gi 50309315) from
134797    Kluyveromyces lactis. This discovery suggests this gene may be related
134798    to yeast thermotolerance.
134799 C1 Shanghai Univ, Sch Life Sci, Mol Biol Lab, Shanghai 200436, Peoples R China.
134800 RP Wen, TQ, Shanghai Univ, Sch Life Sci, Mol Biol Lab, Shanghai 200436,
134801    Peoples R China.
134802 EM tqwen@staff.shu.edu.cn
134803 CR BANAT IM, 1996, ACTA BIOTECHNOL, V16, P215
134804    DEMCHENKO LN, 1979, MICROBIOLOGY, V48, P730
134805    DUJON B, 2004, NATURE, V1430, P35
134806    GROSS C, 1998, YEAST, V14, P431
134807    KIRANSREE N, 1999, PROCESS BIOCHEM, V34, P115
134808    LOPEZHUERTAS E, 2000, EMBO J, V19, P6770
134809    SINGH D, 1998, BIOTECHNOL LETT, V20, P753
134810    SREE NK, 2000, BIORESOURCE TECHNOL, V72, P43
134811    SRIDHAR M, 2002, BIORESOURCE TECHNOL, V83, P199
134812    SWAN TM, 1998, FEMS MICROBIOL LETT, V169, P191
134813    TIEQIAO W, 1998, MYCOSYSTEMA, V17, P35
134814    WATSON K, 1990, ADV MICROB PHYSIOL, V31, P183
134815 NR 12
134816 TC 0
134817 SN 0959-3993
134818 J9 WORLD J MICROBIOL BIOTECHNOL
134819 JI World J. Microbiol. Biotechnol.
134820 PD OCT
134821 PY 2005
134822 VL 21
134823 IS 6-7
134824 BP 1083
134825 EP 1086
134826 PG 4
134827 SC Biotechnology & Applied Microbiology
134828 GA 985NT
134829 UT ISI:000233385500044
134830 ER
134831 
134832 PT J
134833 AU Yi, ZJ
134834    Liu, TY
134835    Zhang, QR
134836    Sun, YY
134837 TI First-principles study on the electronic structures and absorption
134838    spectra for Th4+ : PbWO4 crystal
134839 SO SOLID STATE COMMUNICATIONS
134840 DT Article
134841 DE PbWO4 crystal; electronic structures; lead vacancy; absorption spectra
134842 ID PBWO4 SCINTILLATING CRYSTALS; SINGLE-CRYSTALS; COLOR-CENTERS;
134843    IMPROVEMENT; ORIGIN; IONS; BAND
134844 AB The electronic structures and absorption spectra for Th4+: PbWO4 have
134845    been calculated using density functional theory code CASTEP with the
134846    lattice structure optimized. It is shown by calculation that the
134847    visible range absorptions of the lead vacancy contained PWO crystal can
134848    be completely quenched by the doping of Th4+. The quenching of the 330,
134849    360 and 420 nm absorption bands are discussed. (c) 2005 Elsevier Ltd,
134850    All rights reserved.
134851 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
134852 RP Yi, ZJ, Shanghai Univ Sci & Technol, Coll Sci, 516 Jungong Rd, Shanghai
134853    200093, Peoples R China.
134854 EM yzu_8147@yahoo.com.cn
134855 CR ABRAHAM Y, 2000, PHYS REV B, V62, P3
134856    FAN RC, 2001, SPECTROSCOPY SOLID
134857    FENG XQ, 1997, J INORGANIC MAT, V12, P449
134858    FENG XQ, 2002, ACTA PHYS SIN-CH ED, V51, P315
134859    FENG XQ, 2003, ACTA PHYS SINICA, V52, P2065
134860    GODBY RW, 1992, TOP APPL PHYS, V69, P51
134861    KOBAYASHI M, 1998, NUCL INSTRUM METH A, V404, P149
134862    KOBAYASHI M, 1999, NUCL INSTRUM METH A, V434, P412
134863    KOBAYASHI M, 2001, NUCL INSTRUM METH A, V465, P428
134864    KORZHIK MV, 1996, P INT C IN SCINT THE, P241
134865    LIU TY, 2001, PHYS STATUS SOLIDI A, V184
134866    LIU TY, 2005, SOLID STATE COMMUN, V135, P382
134867    NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311
134868    PAYNE MC, 1992, REV MOD PHYS, V64, P1045
134869    SEGALL MD, 2002, J PHYS-CONDENS MAT, V14, P2717
134870    TAO K, 2005, CHINESE PHYS LETT, V22, P215
134871    ZHANG QR, 2003, PHYS REV B, V68
134872    ZHANG QR, 2004, CHINESE PHYS LETT, V21, P1131
134873    ZHU WL, 2003, SOLID STATE COMMUN, V125, P253
134874 NR 19
134875 TC 0
134876 SN 0038-1098
134877 J9 SOLID STATE COMMUN
134878 JI Solid State Commun.
134879 PD DEC
134880 PY 2005
134881 VL 136
134882 IS 9-10
134883 BP 550
134884 EP 553
134885 PG 4
134886 SC Physics, Condensed Matter
134887 GA 987CJ
134888 UT ISI:000233495700013
134889 ER
134890 
134891 PT J
134892 AU Hu, GH
134893 TI Weakly nonlinear stability of ultra-thin slipping films
134894 SO PROGRESS IN NATURAL SCIENCE
134895 DT Article
134896 DE ultra-thin film; weakly nonlinear theory; hydrodynamic stability;
134897    rupture of thin film
134898 ID LIQUID-FILMS; RUPTURE; INSTABILITY; DYNAMICS
134899 AB A weakly nonlinear theory is presented to study the effects of slippage
134900    on the stability of the ultra-thin polymer films. The nonlinear
134901    mathematical model is constructed for perturbations of small finite
134902    amplitude based on hydrodynamic equations with the long wave
134903    approximation. Results reveal that the nonlinearity always accelerates
134904    the rupture of the films. The influences of the slip length, film
134905    thickness, and initial amplitude of perturbations on the rupture of the
134906    films are investigated.
134907 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
134908 RP Hu, GH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
134909    Peoples R China.
134910 EM ghhu@staff.shu.edu.cn
134911 CR BARRAT JL, 1999, PHYS REV LETT, V82, P4671
134912    ERNEUX T, 1993, PHYS FLUIDS A-FLUID, V5, P1117
134913    KARGUPTA K, 2004, LANGMUIR, V20, P244
134914    ORON A, 1997, REV MOD PHYS, V69, P931
134915    PRIEZJEV NV, 2004, PHYS REV LETT, V92
134916    REITER G, 1994, SCIENCE, V263, P1741
134917    SHARMA A, 1993, J COLLOID INTERF SCI, V161, P190
134918    SHARMA A, 1995, PHYS FLUIDS, V7, P1832
134919    SHARMA A, 1996, MACROMOLECULES, V29, P6959
134920    SHARMA A, 2003, APPL PHYS LETT, V83, P3549
134921    SHUGAI GA, 1998, EUR J MECH B-FLUID, V17, P371
134922    TELETZKE GF, 1988, REV PHYS APPL, V23, P989
134923    WILLIAMS MB, 1982, J COLLOID INTERF SCI, V90, P220
134924 NR 13
134925 TC 0
134926 SN 1002-0071
134927 J9 PROG NAT SCI
134928 JI Prog. Nat. Sci.
134929 PD SEP
134930 PY 2005
134931 VL 15
134932 IS 9
134933 BP 827
134934 EP 831
134935 PG 5
134936 SC Multidisciplinary Sciences
134937 GA 986XC
134938 UT ISI:000233482000009
134939 ER
134940 
134941 PT J
134942 AU Chen, QH
134943    Shi, DH
134944 TI Markov chains theory for scale-free networks
134945 SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
134946 DT Article
134947 DE scale-free networks; degree distribution; degree exponent; Markov chains
134948 ID WORLD-WIDE-WEB; COMPLEX NETWORKS; TOPOLOGY
134949 AB This paper proposes a Markov chain method to predict the growth
134950    dynamics of the individual nodes in scale-free networks, and uses this
134951    to calculate numerically the degree distribution. We first find that
134952    the degree evolution of a node in the BA model is a nonhomogeneous
134953    Markov chain. An efficient algorithm to calculate the degree
134954    distribution is developed by the theory of Markov chains. The numerical
134955    results for the BA model are consistent with those of the analytical
134956    approach. A directed network with the logarithmic growth is introduced.
134957    The algorithm is applied to calculate the degree distribution for the
134958    model. The numerical results show that the system self-organizes into a
134959    scale-free network. (c) 2005 Elsevier B.V. All rights reserved.
134960 C1 Fujian Normal Univ, Coll Math & Comp Sci, Fuzhou 350007, Peoples R China.
134961    Shanghai Univ, Coll Sci, Dept Math, Shanghai 200436, Peoples R China.
134962 RP Chen, QH, Fujian Normal Univ, Coll Math & Comp Sci, Fuzhou 350007,
134963    Peoples R China.
134964 EM qhdchen@yahoo.com.cn
134965    shidh2001@263.net
134966 CR ALBERT R, 1999, NATURE, V401, P130
134967    ALBERT R, 2000, NATURE, V406, P378
134968    ALBERT R, 2000, PHYS REV LETT, V85, P5234
134969    ALBERT R, 2002, REV MOD PHYS, V74, P47
134970    BARABASI AL, 1999, PHYSICA A, V272, P173
134971    BARABASI AL, 1999, SCIENCE, V286, P509
134972    BARABASI AL, 2000, PHYSICA A, V281, P69
134973    BIANCONI G, 2001, PHYS REV LETT, V86, P5632
134974    CHEN QH, 2004, PHYSICA A, V335, P240
134975    DOROGOVTSEV SN, 2000, PHYS REV E A, V62, P1842
134976    DOROGOVTSEV SN, 2000, PHYS REV LETT, V85, P4633
134977    DOROGOVTSEV SN, 2001, PHYS REV E 2, V63
134978    DOROGOVTSEV SN, 2001, PHYS REV E 2, V63
134979    DOROGOVTSEV SN, 2002, CONDMAT0204102
134980    ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
134981    JEONG H, 2000, NATURE, V407, P651
134982    JEONG H, 2001, NATURE, V411, P41
134983    KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
134984    NEWMAN MEJ, 2003, SIAM REV, V45, P167
134985    RAVASZ E, 2002, CONDMAT0206130
134986    ROSS SM, 1983, STOCHASTIC PROCESSES
134987    STROGATZ SH, 2001, NATURE, V410, P268
134988    WATTS DJ, 1998, NATURE, V393, P440
134989 NR 23
134990 TC 0
134991 SN 0378-4371
134992 J9 PHYSICA A
134993 JI Physica A
134994 PD JAN 15
134995 PY 2006
134996 VL 360
134997 IS 1
134998 BP 121
134999 EP 133
135000 PG 13
135001 SC Physics, Multidisciplinary
135002 GA 986WH
135003 UT ISI:000233479900009
135004 ER
135005 
135006 PT J
135007 AU Bian, JJ
135008    Kim, DW
135009    Hong, KS
135010 TI Glass-free LTCC microwave dielectric ceramics
135011 SO MATERIALS RESEARCH BULLETIN
135012 DT Article
135013 DE ceramics; dielectric properties
135014 AB The sintering behavior, microstructure and microwave dielectric
135015    properties of complex pyrophosphate compounds AMP(2)O(7) (A = Ca, Sr; M
135016    = Zn, Cu) were investigated in this paper. All compounds could be
135017    densified below the temperature of 950 degrees C without any glass
135018    addition, and exhibit low permittivity (epsilon(r) < 8), high Q x f
135019    value and negative temperature coefficient of resonant frequency. The Q
135020    x f value was discussed from the point of view of bond strength. The
135021    chemical compatibility with silver and copper was also investigated.
135022    All compounds seriously react with silver at similar to 700 degrees C.
135023    However SrZnP2O7 could be co-fired with copper in reduced atmosphere,
135024    The microwave dielectric properties of SrZnP2O7 sintered at 950 degrees
135025    C in reducing atmosphere are: epsilon(r) = 7.06, Q x f = 52781 GHz,
135026    tau(f) = -70 ppm/degrees C. In terms of its lower sintering
135027    temperature, chemical compatibility with copper and good microwave
135028    dielectric properties, SrZnP2O7 ceramic is very promising for low
135029    temperature co-fired ceramic (LTCC) applications. (C) 2005 Elsevier
135030    Ltd. All rights reserved.
135031 C1 Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151742, South Korea.
135032    Shanghai Univ, Dept Inorgan Mat, Shanghai 200072, Peoples R China.
135033 RP Bian, JJ, Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151742, South
135034    Korea.
135035 EM jjbian1@sohu.com
135036 CR *JCPS ICDD, 1998, PCPDFWIN VERS 2 01
135037    BIAN JJ, 2004, JPN J APPL PHYS.PT 1, V6, P3521
135038    DUBE DC, 1997, J AM CERAM SOC, V80, P1095
135039    HAKKI BW, 1960, IRE T MICROWAVE THEO, V8, P402
135040    KAGATA H, 1992, JPN J APPL PHYS 1, V31, P3152
135041    KIM DW, 2003, J EUR CERAM SOC, V23, P2597
135042    KIM HT, 1999, J AM CERAM SOC, V82, P3476
135043    MOQINE A, 1993, J SOLID STATE CHEM, V107, P368
135044    RIOU D, 1990, ACTA CRYSTALLOGR C, V46, P1191
135045    TEMPLETON A, 2000, J AM CERAM SOC, V83, P95
135046    VALANT M, 2001, J AM CERAM SOC, V84, P2900
135047    VALANT M, 2004, J EUR CERAM SOC, V24, P1715
135048 NR 12
135049 TC 0
135050 SN 0025-5408
135051 J9 MATER RES BULL
135052 JI Mater. Res. Bull.
135053 PD DEC 8
135054 PY 2005
135055 VL 40
135056 IS 12
135057 BP 2120
135058 EP 2129
135059 PG 10
135060 SC Materials Science, Multidisciplinary
135061 GA 987EZ
135062 UT ISI:000233502500011
135063 ER
135064 
135065 PT J
135066 AU Li, JL
135067    Jian, JB
135068 TI A superlinearly convergent SSLE algorithm for optimization problems
135069    with linear complementarity constraints
135070 SO JOURNAL OF GLOBAL OPTIMIZATION
135071 DT Article
135072 DE algorithm; complementarity constraints; global convergence; sequential
135073    systems of linear equations; superlinear convergence
135074 ID QUADRATIC-PROGRAMMING ALGORITHM; MATHEMATICAL PROGRAMS; GLOBALLY
135075    CONVERGENT; SYSTEMS
135076 AB In this paper we study a special kind of optimization problems with
135077    linear complementarity constraints. First, by a generalized
135078    complementarity function and perturbed technique, the discussed problem
135079    is transformed into a family of general nonlinear optimization problems
135080    containing parameters. And then, using a special penalty function as a
135081    merit function, we establish a sequential systems of linear equations
135082    (SSLE) algorithm. Three systems of equations solved at each iteration
135083    have the same coefficients. Under some suitable conditions, the
135084    algorithm is proved to possess not only global convergence, but also
135085    strong and superlinear convergence. At the end of the paper, some
135086    preliminary numerical experiments are reported.
135087 C1 Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Peoples R China.
135088    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
135089 RP Li, JL, Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Peoples
135090    R China.
135091 EM ljl123@gxu.edu.cn
135092    jianjb@gxu.edu.cn
135093 CR CHEN BT, 1993, SIAM J MATRIX ANAL A, V14, P1168
135094    FACCHINEI F, 1997, J OPTIMIZ THEORY APP, V92, P543
135095    FACCHINEI F, 1999, MATH PROGRAM, V85, P107
135096    FUKUSHIMA M, 1998, COMPUT OPTIM APPL, V10, P5
135097    GAO ZY, 1997, J OPTIMIZ THEORY APP, V95, P371
135098    GAO ZY, 1997, SCI CHINA SER A, V27, P24
135099    HAN SP, 1976, MATHEMATICAL PROGRAM, V11, P263
135100    JIAN JB, 2000, THESIS XIAN JIAOTONG
135101    JIAN JB, 2002, ACTA MATH SINICA, V45, P1137
135102    JIANG HY, 2000, SIAM J OPTIMIZ, V10, P779
135103    KANZOW C, 1996, SIAM J MATRIX ANAL A, V17, P851
135104    KOCVARA M, 1994, NUMER FUNC ANAL OPT, V15, P869
135105    KOCVARA M, 1995, P INT C COMPL PROBL, P148
135106    KOJIMA M, 1991, UNIFIED APPROACH INT
135107    LUO ZQ, 1996, MATH PROGRAMS EQUILI
135108    OUTRATA JV, 1998, NONSMOOTH APPROACH O
135109    PANIER ER, 1988, SIAM J CONTROL OPTIM, V26, P788
135110 NR 17
135111 TC 0
135112 SN 0925-5001
135113 J9 J GLOBAL OPTIM
135114 JI J. Glob. Optim.
135115 PD DEC
135116 PY 2005
135117 VL 33
135118 IS 4
135119 BP 477
135120 EP 510
135121 PG 34
135122 SC Mathematics, Applied; Operations Research & Management Science
135123 GA 987MI
135124 UT ISI:000233521600001
135125 ER
135126 
135127 PT J
135128 AU Zhou, J
135129    Liu, ZR
135130    Chen, GR
135131 TI Global dynamics of periodic delayed neural networks models
135132 SO DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES
135133    B-APPLICATIONS & ALGORITHMS
135134 DT Article
135135 DE periodic delayed recurrent neural networks; dynamic attractor; periodic
135136    solutions; stability; topological degree theory; Lyapunov functional
135137 ID EXPONENTIAL STABILITY; ENVIRONMENTS; NEURONS
135138 AB In this paper, without assuming the smoothness, rnonotonicity and
135139    boundedness of the activation functions, some new and simple sufficient
135140    conditions of the existence and global exponential stability of
135141    periodic attractors for a model of periodic delayed recurrent neural
135142    networks are obtained by utilizing topological degree theory and the
135143    Lyapunov functional methods, which are natural extension and
135144    generalization of the corresponding results existing in the literature.
135145 C1 Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
135146    Hebei Inst Technol, Dept Appl Math, Tianjin 300130, Peoples R China.
135147    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
135148    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.
135149 RP Zhou, J, Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
135150 CR CAO JD, 2000, PHYS LETT A, V270, P157
135151    CHUA LO, 1988, IEEE T CIRCUITS SYST, V35, P1257
135152    GAIN RE, 1977, COINCIDENCE DEGREE N
135153    GOPALSAMY K, 2002, IEEE T NEURAL NETWOR, V13, P551
135154    HALE JK, 1977, INTRO FUNCTIONAL DIF
135155    HOPFIELD JJ, 1984, P NATL ACAD SCI USA, V81, P3088
135156    HUANG H, 2002, PHYS LETT A, V298, P393
135157    MOHAMAD S, 2000, DISCRET CONTIN DYN S, V6, P841
135158    ZHANG Y, 2002, IEEE T CIRCUITS-I, V49, P256
135159    ZHOU J, 2004, NEURAL NETWORKS, V17, P87
135160 NR 10
135161 TC 0
135162 SN 1492-8760
135163 J9 DYN CONT DISCR IMP SYST SER B
135164 JI Dyn. Contin. Discret. Impuls. Syst. Ser. B-Appl. Algorithms
135165 PD OCT
135166 PY 2005
135167 VL 12
135168 IS 5-6
135169 BP 689
135170 EP 699
135171 PG 11
135172 SC Mathematics, Applied
135173 GA 987AY
135174 UT ISI:000233492000002
135175 ER
135176 
135177 PT J
135178 AU Zuo, JG
135179    Hua, TC
135180    Liu, BL
135181    Zhou, GY
135182 TI Thermal analysis of tertiary butyl alcohol/sucrose/water ternary system
135183 SO CRYOLETTERS
135184 DT Article
135185 DE freeze-drying; tertiary butyl alcohol (TBA); sucrose; glass transition;
135186    differential scanning calorimetry (DSC); annealing
135187 ID COSOLVENT SYSTEMS; MOLECULAR MOBILITY; CRYSTALLIZATION; ALCOHOL;
135188    LYOPHILIZATION; GLASS; TEMPERATURES
135189 AB The purpose of this work is to investigate the freezing properties of
135190    tertiary butyl alcohol (TBA)/sucrose/water ternary system. Differential
135191    scanning calorimetry (DSC) is employed to determine the glass
135192    transition temperature of the maximally freeze-concentrated solution
135193    T-g' and the crystallization (or devitrification) temperature T-r. DSC
135194    measurements show that the presence of sucrose hinders the
135195    crystallization of TBA during cooling. The residual TBA in the glassy
135196    state will cause a decrease in T-g' and will crystallize during
135197    heating. An increase in the the cooling rate causes a decrease in T-g'.
135198    For 10% TBA/10% sucrose/water ternary system, the critical heating rate
135199    is approximately 250 degrees C/min. Annealing treatment at temperatures
135200    below T-g causes the crystallization of TBA, which indicates that TBA
135201    molecules still have appreciable mobility even at temperatures below
135202    T-g'. When the ratio of TBA to sucrose is less than 0.2, TBA cannot
135203    crystallize during cooling.
135204 C1 Shanghai Univ Sci & Technol, Inst Cryomed & Food Freezing, Shanghai 200093, Peoples R China.
135205 RP Hua, TC, Shanghai Univ Sci & Technol, Inst Cryomed & Food Freezing, 516
135206    Jun Gong Rd, Shanghai 200093, Peoples R China.
135207 EM tchua@sh163.net
135208 CR ASO Y, 2000, J PHARM SCI, V89, P408
135209    CARPENTER JF, 1997, PHARMACEUT RES, V14, P969
135210    FOX KC, 1995, SCIENCE, V267, P1922
135211    FRANKS F, 1990, CRYOLETT, V11, P93
135212    FRANKS F, 1994, P I REFRIG, V91, P32
135213    HANCOCK BC, 1995, PHARMACEUT RES, V12, P799
135214    IZUTSU KI, 1994, PHARMACEUT RES, V11, P995
135215    KASRAIAN K, 1995, PHARM RES, V12, P484
135216    KASRAIAN K, 1995, PHARM RES, V12, P491
135217    KETT VL, 2004, CRYOLETTERS, V25, P389
135218    MILTON N, 1997, CRYO-LETT, V18, P335
135219    OESTERLE J, 1998, PHARM DEV TECHNOL, V3, P175
135220    OTT JB, 1979, J CHEM THERMODYN, V11, P739
135221    REY L, 2004, FREEZE DRYING LYOPHI, P385
135222    SEAGER H, 1985, J PARENTER SCI TECHN, V39, P161
135223    SEARLES JA, 2001, J PHARM SCI, V90, P872
135224    TEAGARDEN DL, 2002, EUR J PHARM SCI, V15, P115
135225    TELANG C, 2005, PHARM RES, V22, P153
135226    WITTAYAAREEKUL S, 1998, J PHARM SCI, V87, P491
135227    WITTAYAAREEKUL S, 2002, J PHARM SCI, V91, P1147
135228    YOSHIOKA M, 1994, J PHARM SCI, V83, P1700
135229 NR 21
135230 TC 0
135231 SN 0143-2044
135232 J9 CRYOLETTERS
135233 JI CryoLetters
135234 PD SEP-OCT
135235 PY 2005
135236 VL 26
135237 IS 5
135238 BP 289
135239 EP 296
135240 PG 8
135241 SC Biology; Physiology
135242 GA 986TJ
135243 UT ISI:000233472300003
135244 ER
135245 
135246 PT J
135247 AU Wang, X
135248    Cheng, QK
135249    Gao, C
135250    Yang, PF
135251    Hua, TC
135252    Deng, CL
135253    Yang, GH
135254    Cui, L
135255    Liu, W
135256    Cao, WL
135257    Zhao, TC
135258    Sun, FZ
135259 TI Water permeability parameters of dermal fibroblast employed in tissue
135260    engineering in subzero temperatures
135261 SO SCIENCE IN CHINA SERIES E-ENGINEERING & MATERIALS SCIENCE
135262 DT Article
135263 DE permeability characteristics; DSC; tissue engineered dermis; fibroblast
135264 AB Fibroblast is a crucial kind of cell in the construction of the tissue
135265    engineered dermal equivalent. In order to optimize the cryopreservation
135266    protocols of the tissue-engineered dermis, the characteristics of
135267    dermal fibroblast in subzero temperatures are required, which include
135268    the water permeability of the cell membrane and the apparent activation
135269    energy. Using the differential scanning calorimeter (DSC), the
135270    volumetric shrinkage during freezing of human dermal fibroblast
135271    suspensions was obtained at the cooling rate of 5 degrees C.min(-1) in
135272    the presence of extracellular ice. To ensure the presence of
135273    extracellular ice, a small quantity of ice nucleation bacteria (INA
135274    bacteria), pseudomonas syringae was added in the samples. And based on
135275    the Karlsson's model, a nonlinear-least-squares curve fitting technique
135276    was implemented to calculate the cryogenic parameters. At the reference
135277    temperature T-R (= 0 degrees C), the water permeability of membrane
135278    L-pg = 0.578 mu m.min(-1).atm(-1) and the apparent activation energy
135279    E-Lp = 308.8 kJ-mol(-1). These parameters were then used to simulate
135280    water transport of fibroblast during constant cooling at rates between
135281    0.01-50 degrees C.min(-1). The simulation results were analyzed to
135282    predict the amount of water left in the cell after dehydration and the
135283    "optimal cooling rate" for fibroblast cryopreservation. For the dermal
135284    fibroblast with DMEM solution, a cooling rate of 4.6 degrees C.min(-1)
135285    was optimal.
135286 C1 Shanghai Univ Sci & Technol, Inst Cryomed & Food Refrigerat, Shanghai 200093, Peoples R China.
135287    Shanghai Res & Dev Ctr Tissue Engn, Shanghai 200235, Peoples R China.
135288    Chinese Acad Agr Sci, Inst Plant Protect, Beijing 100094, Peoples R China.
135289 RP Hua, TC, Shanghai Univ Sci & Technol, Inst Cryomed & Food Refrigerat,
135290    Shanghai 200093, Peoples R China.
135291 EM tchua@sh163.net
135292 CR GARY B, 1995, CRYOBIOLOGY, V32, P114
135293    HUA TC, 1994, CRYOBIOMEDICAL TECHN
135294    KARLSSON JOM, 1993, BIOPHYS J, V65, P2524
135295    LEVIN RL, 1976, CRYOBIOLOGY, V13, P415
135296    MAZUR P, 1963, J GEN PHYSIOL, V47, P347
135297    MAZUR P, 1990, CELL BIOPHYS, V17, P53
135298    RAMACHANDRA VD, 1998, CRYOBIOLOGY, V36, P124
135299    RAMACHANDRA VD, 1998, CRYOBIOLOGY, V36, P124
135300    RAMACHANDRA VD, 1999, BIOL REFRIGERATION, V61, P746
135301    RAMACHANDRA VD, 1999, CRYOBIOLOGY, V38, P310
135302    WANG X, 2004, CHINESE J CELL BIOL, V26, P301
135303    YANG ZM, 2000, TISSUE ENG BASIC RES
135304 NR 12
135305 TC 0
135306 SN 1006-9321
135307 J9 SCI CHINA SER E
135308 JI Sci. China Ser. E-Eng. Mater. Sci.
135309 PD OCT
135310 PY 2005
135311 VL 48
135312 IS 5
135313 BP 530
135314 EP 537
135315 PG 8
135316 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary
135317 GA 985GP
135318 UT ISI:000233365700006
135319 ER
135320 
135321 PT J
135322 AU Li, CP
135323    Sun, WG
135324    Xu, DL
135325 TI Synchronization of complex dynamical networks with nonlinear
135326    inner-coupling functions and time delays
135327 SO PROGRESS OF THEORETICAL PHYSICS
135328 DT Article
135329 ID LIMIT-CYCLE OSCILLATORS; SYSTEMS; ARRAY; MAPS
135330 AB In this paper, we further study the complex dynamical networks with
135331    nonlinear inner-coupling functions and time delays. Several
135332    synchronization theorems are established for such networks. And two
135333    examples are numerically investigated. All involved numerical
135334    simulations are in line with the theoretical analyses.
135335 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
135336    Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore.
135337 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
135338 EM leecp@online.sh.cn
135339 CR EARL MG, 2003, PHYS REV E 2, V67
135340    HALE JK, 1993, INTRO FUNCTIONAL DIF
135341    KOLMANOVSKII VB, 1999, INTRO THEORY APPL FU
135342    LI CG, 2004, PHYSICA A, V343, P263
135343    LI CP, IN PRESS PHYSICA A
135344    LI CP, 2004, CHAOS, V14, P557
135345    LI CP, 2005, P 24 CHIN CONTR C GU, P202
135346    MA ZE, 2001, QUALITATIVITY STABIL
135347    MARTI AC, 2003, PHYS REV E 2, V67
135348    MARTI AC, 2004, PHYSICA A, V342, P344
135349    MASOLLER C, 2003, PHYSICA A, V325, P186
135350    NIEBUR E, 1991, PHYS REV LETT, V67, P2753
135351    SCHUSTER HG, 1989, PROG THEOR PHYS, V81, P939
135352    VIDYASAGAR F, 1978, NONLINEAR SYSTEMS AN
135353    WANG XF, 2002, IEEE T CIRCUITS-I, V49, P54
135354    WU CW, 1995, IEEE T CIRCUITS-I, V42, P430
135355 NR 16
135356 TC 0
135357 SN 0033-068X
135358 J9 PROG THEOR PHYS KYOTO
135359 JI Prog. Theor. Phys.
135360 PD OCT
135361 PY 2005
135362 VL 114
135363 IS 4
135364 BP 749
135365 EP 761
135366 PG 13
135367 SC Physics, Multidisciplinary
135368 GA 983JN
135369 UT ISI:000233227700003
135370 ER
135371 
135372 PT J
135373 AU Jie, Y
135374    Fang, YY
135375    Zhang, RJ
135376    Song, QF
135377 TI Fingerprint minutiae matching algorithm for real time system
135378 SO PATTERN RECOGNITION
135379 DT Article
135380 DE fingerprint; matching algorithm; minutiae; core
135381 AB Many fingerprint matching algorithms have been reported in articles in
135382    recent years. And people did fingerprint images matching through
135383    minutiae matching in most of the algorithms. In this paper, we proposed
135384    a new fingerprint minutiae matching algorithm, which is fast, accurate
135385    and suitable for the real time fingerprint identification system. In
135386    this algorithm we used the core point to determine the reference point
135387    and used a round bounding box for matching. Experiments done on a set
135388    of fingerprint images captured with a scanner showed that our algorithm
135389    is faster and more accurate than Xiping Luo's algorithm. (c) 2005
135390    Pattern Recognition Society. Published by Elsevier Ltd. All rights
135391    reserved.
135392 C1 Shanghai Univ Sci & Technol, Opt & Elect Informat Engn Coll, Shanghai 200093, Peoples R China.
135393    Shanghai Zhaohong Informat & Technol Co Ltd, Shanghai 200040, Peoples R China.
135394 RP Jie, Y, Shanghai Univ Sci & Technol, Opt & Elect Informat Engn Coll,
135395    Shanghai 200093, Peoples R China.
135396 EM yingj@msn.com
135397 CR CHANG SH, 1997, PATTERN RECOGN, V30, P311
135398    FARINA A, 1999, PATTERN RECOGN, V32, P877
135399    JAIN A, 1997, IEEE T PATTERN ANAL, V19, P302
135400    JAIN AK, 1999, IEEE T PATTERN ANAL, V21, P348
135401    LUO XP, 2000, 15 ICPR, V4, P833
135402    PRABHAKAR S, 2001, THESIS MICHIGAN STAT
135403 NR 6
135404 TC 0
135405 SN 0031-3203
135406 J9 PATT RECOG
135407 JI Pattern Recognit.
135408 PD JAN
135409 PY 2006
135410 VL 39
135411 IS 1
135412 BP 143
135413 EP 146
135414 PG 4
135415 SC Computer Science, Artificial Intelligence; Engineering, Electrical &
135416    Electronic
135417 GA 983HS
135418 UT ISI:000233222700015
135419 ER
135420 
135421 PT J
135422 AU Zhang, FW
135423    Zhang, QR
135424    Liu, TY
135425    Tao, K
135426 TI Computer simulation of the defect pair V-Pb-V-O in PbWO4 crystals
135427 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
135428    INTERACTIONS WITH MATERIALS AND ATOMS
135429 DT Article
135430 DE PbWO4; computer simulation; GULP; point defects; defect pair V
135431    ''(Pb)-V-O
135432 ID LEAD TUNGSTATE CRYSTALS; NM ABSORPTION-BAND; SINGLE-CRYSTALS;
135433    COLOR-CENTERS; ORIGIN; DAMAGE
135434 AB A computer simulation study has been performed to investigate the
135435    defects in PbWO4(PWO). The formation energies of isolated point defects
135436    V"(Pb), V-O and cluster defect V"(Pb)-V-O pair have been calculated. It
135437    is theoretically demonstrated that the most of V-O in the as-grown PWO
135438    crystal exists in the form of the vacancy pair V"(Pb)-V-O, which plays
135439    an important role in the formation and transformation process of light
135440    induced color centers in the PWO crystal. (c) 2005 Elsevier B.V. All
135441    rights reserved.
135442 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
135443 RP Zhang, FW, Swiss Fed Inst Technol, ETH Honggerberg, Crystallog Lab,
135444    Dept Mat, HCI G512, CH-8093 Zurich, Switzerland.
135445 EM feiwu.zhang@mat.ethz.ch
135446 CR ABRAHAM YB, 2001, PHYS REV B, V64
135447    ANNENKOV A, 1998, PHYS STATUS SOLIDI A, V170, P47
135448    ANNENKOV AN, 1998, CMS NOTE, P41
135449    BARISHEVSKI VG, 1992, NUCL INSTRUM METH A, V322, P231
135450    BORN M, 1923, ATOMTHEORIE FESTEN Z
135451    CATLOW CRA, 1989, J CHEM SOC FARAD T 2, V85, P335
135452    DICK BG, 1958, PHYS REV, V112, P90
135453    EPELBAUM BM, 1997, J CRYST GROWTH, V178, P426
135454    GALE JD, 1996, GEN UTILITY LATTICE
135455    GALE JD, 1996, PHILOS MAG B, V73, P3
135456    GALE JD, 1997, J CHEM SOC FARADAY T, V93, P629
135457    HAN BG, 1999, J APPL PHYS, V86, P3571
135458    ISLAM MS, 1998, J MATER CHEM, V8, P655
135459    KORZHIK MV, 1996, SCINT 96, P241
135460    LAGUTA VV, 1998, J PHYS-CONDENS MAT, V10, P7293
135461    LECOQ P, 1995, NUCL INSTRUM METH A, V365, P291
135462    LIAO JY, 1997, J INORGANIC MAT, V12, P286
135463    LIDIARD AB, 1989, J CHEM SOC FARAD T 2, V85, P341
135464    LIN QS, 2000, PHYS STATUS SOLIDI A, V181, R1
135465    LIN QS, 2001, PHYS REV B, V63
135466    LIN QS, 2001, SOLID STATE COMMUN, V118, P221
135467    LIU T, 2001, PHYS STATUS SOLIDI A, V184, P34
135468    MINERVINI L, 2000, J AM CERAM SOC, P83
135469    MOREAU JM, 1996, J ALLOY COMPD, V238, P46
135470    MOTT NF, 1938, T FARADAY SOC, V34, P485
135471    NIKL M, 1996, PHYS STATUS SOLIDI B, V196, K7
135472    NIKL M, 1997, J APPL PHYS, V82, P5758
135473    NIKL M, 1997, MATER SCI FORUM, V239, P271
135474    YIN Z, 1997, P SCINT 97 SHANGH CH, V4, P191
135475    ZHANG FW, 2005, PHYSICA B, V355, P427
135476    ZHANG Q, 2003, PHYS REV B, V68
135477    ZHANG QR, 2004, CHINESE PHYS LETT, V21, P1131
135478    ZHANG Y, 1998, PHYS REV B, V57, P12738
135479    ZHU RY, 1996, NUCL INSTRUM METH A, V376, P319
135480 NR 34
135481 TC 0
135482 SN 0168-583X
135483 J9 NUCL INSTRUM METH PHYS RES B
135484 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
135485 PD NOV
135486 PY 2005
135487 VL 240
135488 IS 3
135489 BP 675
135490 EP 680
135491 PG 6
135492 SC Physics, Atomic, Molecular & Chemical; Physics, Nuclear; Instruments &
135493    Instrumentation; Nuclear Science & Technology
135494 GA 984ZH
135495 UT ISI:000233345400010
135496 ER
135497 
135498 PT J
135499 AU Wang, ZC
135500 TI A new trigonometrically-fitting technique to construct a symmetric
135501    linear multi-step method for the numerical solution of an orbital
135502    problem
135503 SO NEW ASTRONOMY
135504 DT Article
135505 DE methods; numerical
135506 ID DIMENSIONAL SCHRODINGER-EQUATION; LONG-TERM INTEGRATION; FITTED
135507    METHODS; ORDER
135508 AB Some previous works show that the linear multi-step methods with the
135509    trigonometrically-fitting technique suffer from the numerical
135510    instability due to the parameters, so that these parameters must be
135511    converted into Taylor series. In this paper, we present a general way
135512    to construct the symmetric linear multi-step method for the approximate
135513    solution of orbital problem by using a new trigonometrically-fitting
135514    technique. By using the new technique, we can eliminate the parameter
135515    instability so that the Taylor series expansion is avoided and show
135516    that the new obtained method is P-stable. Comparing with the previous
135517    trigonometrically-fitting technique for the implicit eight-step method,
135518    new technique extends the interval of periodicity from H-0(2) similar
135519    to 5 to infinity and cuts the error constant nearly off 28%. By using a
135520    new efficient algorithm, we can cut off about one-fifth CPU time,
135521    because the first-stage and the iterative calculation can be completely
135522    avoided. Numerical results from the application to the well-known
135523    periodic orbital problems show that the new improved eight-step method
135524    is better than the previous eight-step method in accuracy and
135525    efficiency. (c) 2005 Elsevier B.V. All rights reserved.
135526 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
135527 RP Wang, ZC, Shanghai Univ, Dept Phys, 99 ShangDa Rd, Shanghai 200444,
135528    Peoples R China.
135529 EM zc_wang89@hotmail.com
135530 CR ARAKIDA H, 2000, ASTRON J, V120, P3333
135531    DAI Y, 2005, COMPUT PHYS COMMUN, V167, P110
135532    FRANCO JM, 1990, J COMPUT APPL MATH, V30, P1
135533    KONGUETSOF A, 2001, J COMPUT METH SCI EN, V1, P143
135534    LAMBERT JD, 1962, ZAMP, V13, P223
135535    LAMBERT JD, 1973, COMPUTATIONAL METHOD
135536    LAMBERT JD, 1976, J INST MATH APPL, V18, P189
135537    LYCHE T, 1972, NUMER MATH, V19, P65
135538    MILANI A, 1998, CELESTIAL MECH, V43, P1
135539    PSIHOYIOS G, 2003, NEW ASTRON, V8, P679
135540    QUINLAN GD, 1990, ASTRON J, V100, P1694
135541    QUINLAN GD, 1999, ARXIVASTROPH9901136
135542    SIMOS TE, 2002, NEW ASTRON, V7, P1
135543    SIMOS TE, 2003, NEW ASTRON, V8, P391
135544    SIMOS TE, 2003, NEWA, V9, P59
135545    SIMOS TE, 2004, NEW ASTRON, V9, P409
135546    STIEFEL E, 1969, NUMER MATH, V13, P154
135547    WANG ZC, 2003, INT J MOD PHYS C, V14, P1087
135548    WANG ZC, 2004, COMPUT PHYS COMMUN, V160, P23
135549 NR 19
135550 TC 0
135551 SN 1384-1076
135552 J9 NEW ASTRON
135553 JI New Astron.
135554 PD NOV
135555 PY 2005
135556 VL 11
135557 IS 2
135558 BP 90
135559 EP 102
135560 PG 13
135561 SC Astronomy & Astrophysics
135562 GA 984KE
135563 UT ISI:000233303000002
135564 ER
135565 
135566 PT J
135567 AU Liang, XL
135568    Zhong, SS
135569    Wang, W
135570 TI Dual-polarized corner-fed patch antenna array with high isolation
135571 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
135572 DT Article
135573 DE microstrip antenna array; dual-polarization; corner-fed; isolation
135574 AB A 16 x 1-element microstrip antenna array with dual-polarized stacked
135575    corner-fed square patches as its elements is presented. This linear
135576    array fed by the coplanar feed and the slot-coupled feed for dual
135577    polarization, respectively, together with the pair-wise anti-phase
135578    feeding technique, achieves measured port isolation better than 33 dB
135579    with the maximum reaching 43 dB in the bandwidth of 9.375-9.825 GHz.
135580    The measured bandwidths of VSWR <= 1.5 reach 15% and 13.5% for the two
135581    ports, respectively, and the measured gain is better than 16.7 dB in
135582    the operating bandwidth, which are suitable for synthetic aperture
135583    radar (SAR) application (c) 2005 Wiley Periodicals, Inc.
135584 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
135585 RP Liang, XL, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
135586    Peoples R China.
135587 CR CHAKRABARTY SB, 2002, MICROW OPT TECHN LET, V33, P52
135588    CUI JH, 2002, J APPL SCI, V20, P373
135589    DUTOLT LJ, 1987, IEEE AP S INT S LOS, P810
135590    GAO SC, 1998, MICROW OPT TECHN LET, V19, P214
135591    LEE B, 2001, IEE P-MICROW ANTEN P, V148, P334
135592    ROSTAN F, 1995, INT GEOSCI REMOTE SE, V3, P2277
135593    ZHONG SS, 2002, IEEE T ANTENN PROPAG, V50, P1473
135594 NR 7
135595 TC 0
135596 SN 0895-2477
135597 J9 MICROWAVE OPT TECHNOL LETT
135598 JI Microw. Opt. Technol. Lett.
135599 PD DEC 20
135600 PY 2005
135601 VL 47
135602 IS 6
135603 BP 520
135604 EP 522
135605 PG 3
135606 SC Engineering, Electrical & Electronic; Optics
135607 GA 983JX
135608 UT ISI:000233228800004
135609 ER
135610 
135611 PT J
135612 AU Zhang, N
135613    Geng, T
135614    Li, G
135615 TI Phase component study for Ag doped LaMnO3
135616 SO MATERIALS RESEARCH INNOVATIONS
135617 DT Article
135618 DE magnetic ordered materials; fine-particle systems; X-ray diffraction;
135619    phase analysis
135620 ID GIANT MAGNETORESISTANCE; ELECTRICAL-TRANSPORT; FILMS; MANGANITE;
135621    RESISTIVITY; PEROVSKITES
135622 C1 Nanjing Normal Univ, Inst Phys, Nanjing 210097, Peoples R China.
135623    Shanghai Univ Sci & Technol, Shanghai 200000, Peoples R China.
135624 RP Zhang, N, Nanjing Normal Univ, Inst Phys, Nanjing 210097, Peoples R
135625    China.
135626 CR CHAHARA K, 1993, APPL PHYS LETT, V63, P1990
135627    HAMAYA K, 2001, J APPL PHYS 1, V89, P6320
135628    HELMOLT RV, 1993, PHYS REV LETT, V71, P2331
135629    JIN S, 1994, SCIENCE, V264, P413
135630    JY G, 1998, APPL PHYS LETT, V72, P1113
135631    RAO GH, 1999, J PHYS-CONDENS MAT, V11, P1523
135632    RIVAS J, 2000, J MAGN MAGN MATER, V221, P57
135633    ROZENBERG E, 2000, J APPL PHYS, V88, P2578
135634    SANCHEZ RD, 1996, APPL PHYS LETT, V68, P134
135635    SCHIFFER P, 1995, PHYS REV LETT, V75, P3336
135636    SRINIVASAN G, 2001, APPL PHYS LETT, V79, P641
135637    SRINIVASAN G, 2002, APPL PHYS LETT, V80, P464
135638    TAO T, 2000, APPL PHYS LETT, V77, P723
135639    TODD NK, 1999, J APPL PHYS, V85, P7263
135640    URUSHIBARA A, 1995, PHYS REV B, V51, P14103
135641    VONHELMOLT R, 1993, PHYS REV LETT, V71, P2331
135642    ZENER C, 1951, PHYS REV, V82, P403
135643    ZHANG N, 1996, PHYS LETT A, V219, P319
135644    ZHANG N, 1997, PHYS REV B, V56, P8138
135645    ZHANG N, 1999, J VAC SCI TECHNOL B, V17, P1050
135646 NR 20
135647 TC 0
135648 SN 1432-8917
135649 J9 MATER RES INNOV
135650 JI Mater. Res. Innov.
135651 PD JUN
135652 PY 2005
135653 VL 9
135654 IS 2
135655 BP 47
135656 EP 49
135657 PG 3
135658 SC Materials Science, Multidisciplinary
135659 GA 977NI
135660 UT ISI:000232810100009
135661 ER
135662 
135663 PT J
135664 AU Liu, HW
135665    Guo, C
135666    Cheng, Y
135667    Liu, XF
135668    Shao, GJ
135669 TI Interfacial strength and structure of stainless steel-semi-solid
135670    aluminum alloy clad metal
135671 SO MATERIALS LETTERS
135672 DT Article
135673 DE semi-solid joining; interfacial shear strength; interfacial structure;
135674    non-equilibrium diffusion; compound fracture
135675 ID LIQUID ALUMINUM
135676 AB Interfacial strength and structure of stainless steel-semi-solid
135677    aluminum alloy clad metal are studied by means of the experimental and
135678    analytical methods. Using semi-solid joining technique, the bonding of
135679    stainless steel and semi-solid aluminum alloy is successfully realized.
135680    The relationship between interfacial shear strength with solid fraction
135681    of aluminum alloy is established. The interfacial structure of the
135682    bonding clad plate is studied by means of OM and SEM. It is shown that
135683    the best solid fraction of aluminum alloy is 30% and the maximum
135684    interfacial shear strength is 106.17 MPa. Solid phase and liquid phase
135685    are bonded with stainless steel by turns along the bonding interface,
135686    because of different diffusion ability of solid and liquid phase of
135687    aluminum alloy. There is a compound fracture combined plastic fracture
135688    and brittle fracture, and a new type of non-equilibrium diffusion
135689    interfacial structure is constructed in the interface. (c) 2005
135690    Elsevier B.V All rights reserved.
135691 C1 Xian Jiaotong Univ, Sch Mech Engn, Xian 710049, Peoples R China.
135692    Shanghai Univ, Shanghai Automobile Met Mat Res & Engn Ctr, Shanghai 200072, Peoples R China.
135693 RP Guo, C, Xian Jiaotong Univ, Sch Mech Engn, Xian 710049, Peoples R China.
135694 EM gch@mail.xjtu.edu.cn
135695 CR DYBKOV VI, 1990, J MATER SCI, V25, P3615
135696    KIUCHI M, 2003, J MATER PROCESS TECH, V140, P163
135697    MENDEZ PF, 2002, WELDING RES, V9
135698    NAIMON ER, 1981, WELD J, V11, P17
135699    THORU S, 2000, J JSTP, V41, P1221
135700    TOMIHARU O, 2002, DISSOLVE WELDING LIG, V40, P516
135701    WANG L, 1996, MECH SCI TECHNOLOGY, V7, P605
135702    XU DM, 1998, ACTA METALL SIN, V34, P678
135703    ZHANG P, 2000, T NONFERR METAL SOC, V10, P389
135704    ZHANG P, 2002, ACTA MAT COMPOSITE, V1, P46
135705 NR 10
135706 TC 0
135707 SN 0167-577X
135708 J9 MATER LETT
135709 JI Mater. Lett.
135710 PD JAN
135711 PY 2006
135712 VL 60
135713 IS 2
135714 BP 180
135715 EP 184
135716 PG 5
135717 SC Materials Science, Multidisciplinary; Physics, Applied
135718 GA 984UE
135719 UT ISI:000233329000009
135720 ER
135721 
135722 PT J
135723 AU Yang, XD
135724    Chen, LQ
135725 TI Stability in parametric resonance of axially accelerating beams
135726    constituted by Boltzmann's superposition principle
135727 SO JOURNAL OF SOUND AND VIBRATION
135728 DT Article
135729 ID VISCOELASTIC BEAM; VIBRATIONS; VELOCITY
135730 AB Stability in transverse parametric vibration of axially accelerating
135731    viscoelastic beams is investigated. The governing equation is derived
135732    from Newton's second law, Boltzmann's superposition principle, and the
135733    geometrical relation. When the axial speed is a constant mean speed
135734    with small harmonic variations, the governing equation can be treated
135735    as a continuous gyroscopic system with small periodically parametric
135736    excitations and a damping term. The method of multiple scales is
135737    applied directly to the governing equation without discretization. The
135738    stability conditions are obtained for combination and principal
135739    parametric resonance. Numerical examples demonstrate that the increase
135740    of the viscosity coefficient causes the lager instability threshold of
135741    speed fluctuation amplitude for given detuning parameter and smaller
135742    instability range of the detuning parameter for given speed fluctuation
135743    amplitude. The instability region is much bigger in lower order
135744    principal resonance than that in the higher order. (c) 2005 Elsevier
135745    Ltd. All rights reserved.
135746 C1 Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
135747    Shenyang Inst Aeronaut Engn, Dept Engn Mech, Shenyang 110034, Peoples R China.
135748 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
135749 EM lqchen@online.sh.cn
135750 CR ABRATE S, 1992, MECH MACH THEORY, V27, P645
135751    CHEN LQ, IN PRESS J SOUND VIB
135752    CHEN LQ, 2004, EUR J MECH A-SOLID, V23, P659
135753    OZ HR, 1998, J SOUND VIB, V215, P571
135754    OZ HR, 1999, J SOUND VIB, V227, P239
135755    OZ HR, 2001, J SOUND VIB, V239, P556
135756    OZKAYA E, 2000, J SOUND VIB, V234, P521
135757    OZKAYA E, 2002, J SOUND VIB, V252, P782
135758    PARKER RG, 2001, J APPL MECH-T ASME, V68, P49
135759    PASIN F, 1972, ING ARCH, V41, P387
135760    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
135761    WICKERT JA, 1990, J APPL MECH-T ASME, V57, P738
135762    YANG XD, IN PRESS APPL MATH M
135763    YANG XD, 2005, CHAOS SOLITON FRACT, V23, P249
135764 NR 14
135765 TC 0
135766 SN 0022-460X
135767 J9 J SOUND VIB
135768 JI J. Sound Vibr.
135769 PD JAN 3
135770 PY 2006
135771 VL 289
135772 IS 1-2
135773 BP 54
135774 EP 65
135775 PG 12
135776 SC Engineering, Mechanical; Acoustics; Mechanics
135777 GA 985RV
135778 UT ISI:000233396900003
135779 ER
135780 
135781 PT J
135782 AU Chen, TL
135783    Li, XM
135784    Wu, WB
135785    Yao, SD
135786    Wang, K
135787 TI All-epitaxial growth of single-crystalline Ba-0.Sr-6(0).4TiO3/Ir/MgO/Si
135788    heterostructures
135789 SO JOURNAL OF CRYSTAL GROWTH
135790 DT Article
135791 DE growth modes; reflection high energy electron diffraction; laser
135792    epitaxy; oxides; perovskites; dielectric materials
135793 ID THIN-FILMS; MGO FILMS; SI(100); BUFFER; LAYERS; PLD
135794 AB Crystalline quality of thin films can be mediated by their growth modes
135795    and crystallographic orientations. Normally, a growth mode of
135796    layer-by-layer can effectively suppress formations of defects (such as
135797    domain walls, grain boundaries, column-structures, dislocations, etc.)
135798    in thin films, reduce films' surface roughness, and consequently,
135799    promote films' crystallinity. Such a film grown by layer-by-layer
135800    growth mode may exhibit less defects and fiat surfaces, even presenting
135801    a single-crystalline nature (single domain). In this paper, we have
135802    characterized the crystallinity of pulsed-laser-deposited
135803    Ba0.6Sr0.4TiO3/Ir/MgO/Si heterostructures by X-ray diffraction, atomic
135804    force microscopy, reflection high-energy electron diffraction,
135805    Rutherford backscattering spectrometry and transmission electron
135806    microscopy. These investigations show that the heterostructures exhibit
135807    not only an epitaxial layer-by-layer growth mode but also a
135808    single-crystalline nature. This work demonstrates an effective way in
135809    monolithic integration of Ba0.6Sr0.4TiO3 with silicon for frequency
135810    agile devices. (c) 2005 Elsevier B.V. All rights reserved.
135811 C1 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
135812    Chinese Acad Sci, Grad Sch, Shanghai 200050, Peoples R China.
135813    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
135814    Peking Univ, Sch Phys, Dept Tech Phys, Beijing 100871, Peoples R China.
135815 RP Li, XM, Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High
135816    Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
135817 EM ctlj@mail.sic.ac.cn
135818    lixm@mail.sic.ac.cn
135819 CR CHEN TL, 2004, APPL PHYS A-MATER, V79, P1857
135820    CHEN TL, 2004, J CRYST GROWTH, V267, P80
135821    CHEN TL, 2004, J CRYST GROWTH, V270, P553
135822    CHEN TL, 2004, SOLID STATE COMMUN, V131, P523
135823    DOOLITTLE LR, 1985, NUCL INSTRUM METH B, V9, P334
135824    IM J, 2000, APPL PHYS LETT, V76, P625
135825    KOTECKI DE, 1997, INTEGR FERROELECTR, V16, P1
135826    MASUDA A, 1996, J CRYST GROWTH, V158, P84
135827    TAO K, 2003, J APPL PHYS, V94, P4042
135828    WAKIYA N, 2001, THIN SOLID FILMS, V384, P189
135829    YU T, 1999, APPL SURF SCI, V138, P605
135830 NR 11
135831 TC 0
135832 SN 0022-0248
135833 J9 J CRYST GROWTH
135834 JI J. Cryst. Growth
135835 PD NOV 15
135836 PY 2005
135837 VL 285
135838 IS 1-2
135839 BP 1
135840 EP 5
135841 PG 5
135842 SC Crystallography
135843 GA 982IY
135844 UT ISI:000233152500001
135845 ER
135846 
135847 PT J
135848 AU Lu, B
135849    Yu, BK
135850    Chen, B
135851    Yan, XN
135852    Qiu, JR
135853    Jiang, XW
135854    Zhu, CS
135855 TI Study of crystal formation in titanate glass irradiated by 800 nm
135856    femtosecond laser pulse
135857 SO JOURNAL OF CRYSTAL GROWTH
135858 DT Article
135859 DE anatase crystal; femtosecond laser; titanate glass; Raman spectra
135860 ID BARIUM ORTHOTITANATE; OPTICAL FIBER; FABRICATION; RAMAN
135861 AB The structure of the titanate glass is destroyed during irradiation by
135862    the femtosecond laser pulses, and (TiO6)(8-) and (TiO4)(4-) anion units
135863    are exsolved from the network of the titanate glass. These anion units
135864    are rearranged to form some crystals such as anatase and Ba2TiO4
135865    crystals. By Raman spectroscopy, it is found that these crystals have a
135866    strong dependence on the intensity of the femtosecond laser pulses. The
135867    relation between the generation of these crystals and space
135868    distribution of the femtosecond laser power intensity is qualitatively
135869    explained. (c) 2005 Elsevier B.V. All rights reserved.
135870 C1 Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
135871    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
135872 RP Lu, B, Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
135873 EM ib9901md@hotmail.com
135874 CR BESTT MF, 1982, J NONCRYST SOLIDS, V52, P357
135875    HILL KO, 1978, APPL PHYS LETT, V32, P647
135876    HSUANFU Y, 2000, J NONCRYST SOLIDS, V261, P260
135877    LEE SW, 1999, PHYS CHEM GLASSES, V40, P171
135878    MIAO L, 2004, J CRYST GROWTH, V264, P246
135879    MIURA K, 1997, APPL PHYS LETT, V71, P3329
135880    NASU H, 1997, J NON-CRYST SOLIDS, V217, P182
135881    OSTERBERG U, 1986, OPT LETT, V11, P516
135882    PETERS J, 1997, J NON-CRYST SOLIDS, V222, P113
135883    SONG XL, 1998, CHIN J LIGHT SCATT, V10, P30
135884    STRICKLER JH, 1991, OPT LETT, V16, P1780
135885    TARTE P, 1961, NATURE, V191, P1002
135886    VIVEKANANDAN K, 1997, MATER CHEM PHYS, V49, P204
135887    WIJZEN F, 1999, SPECTROCHIM ACTA A, V55, P325
135888    WILL M, 2000, OSA TRENDS OPTICS PH
135889    YANGQUING Z, 2002, SCI CHINA SER E, V45, P120
135890    YU B, 2004, J OPT SOC AM B, V21, P83
135891 NR 17
135892 TC 0
135893 SN 0022-0248
135894 J9 J CRYST GROWTH
135895 JI J. Cryst. Growth
135896 PD NOV 15
135897 PY 2005
135898 VL 285
135899 IS 1-2
135900 BP 76
135901 EP 80
135902 PG 5
135903 SC Crystallography
135904 GA 982IY
135905 UT ISI:000233152500011
135906 ER
135907 
135908 PT S
135909 AU Tong, WQ
135910    Luo, QH
135911    Yin, ZJ
135912    Zhi, XL
135913    Zong, YW
135914 TI Component-based integration towards a frequeney-regulating home
135915    appliance control system
135916 SO EMBEDDED SOFTWARE AND SYSTEMS
135917 SE LECTURE NOTES IN COMPUTER SCIENCE
135918 DT Article
135919 AB Conventional approaches to embedded software development are very
135920    costly, mainly because of their close reliance on application-dependant
135921    design, ad-hoc implementation, time-consuming performance tuning and
135922    verification. The resulting software is often hard to maintain, upgrade
135923    and customize. Component-based integration is an effective method to
135924    address the problem. As the result of our effort, an embedded software
135925    developing platform is constructed while developing an embedded control
135926    system for frequency-regulating home appliances. In this paper, the
135927    control system is described, and the developing platform is presented
135928    in detail, including an Application Component Library and a Fast
135929    Developing Tool. Component-based embedded software design and
135930    implementation are also put forward.
135931 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai, Peoples R China.
135932    Shanghai Software Technol Dev Ctr, Shanghai, Peoples R China.
135933 RP Tong, WQ, Shanghai Univ, Sch Engn & Comp Sci, Shanghai, Peoples R China.
135934 EM wqtong@mail.shu.edu.cn
135935    luoqinghui@qraduate.shu.edu.cn
135936 CR *E CHIN I COMP TEC, 2004, REW REF MAN
135937    BOOCH G, 1997, UNIFIED MODELING LAN
135938    GENSSLER T, 2002, COMPONENTS EMBEDDE J
135939    JENKO M, 2001, MICROPROCESS MICROSY, V25, P287
135940    YANG F, 1999, ACTA ELECT SINICA, V27, P68
135941 NR 5
135942 TC 0
135943 SN 0302-9743
135944 J9 LECT NOTE COMPUT SCI
135945 PY 2005
135946 VL 3605
135947 BP 118
135948 EP 123
135949 PG 6
135950 GA BDE41
135951 UT ISI:000233067600016
135952 ER
135953 
135954 PT S
135955 AU Chen, ZL
135956    Liu, W
135957    Tu, SL
135958    Du, W
135959 TI A cooperative web framework of Jini into OSGi-based open home gateway
135960 SO EMBEDDED SOFTWARE AND SYSTEMS
135961 SE LECTURE NOTES IN COMPUTER SCIENCE
135962 DT Article
135963 AB The administration of heterogeneous networks with many embedded
135964    equipments and mobile devices is a hard and time-consuming task.
135965    Today's methods only provide static configuration files and make the
135966    addition and removal of devices a manual chore. The Open Services
135967    Gateway Initiative (OSGi) specification defines a service-oriented
135968    framework for use in residential gateways. OSGi framework acts as a
135969    gateway from the Internet to consumer devices attached to the
135970    residence's home-area network. And Jini is an infrastructure for
135971    spontaneous and ad hoc service networks. It allows users to find
135972    services which consumer devices provide without prior knowledge of
135973    their network environments. The paper presents a cooperative web
135974    framework for the integration of Jini into OSGi open home gateway which
135975    can provide much easier, more intelligent and powerful home network
135976    control service. It can federate home-area network devices and services
135977    in secure ways by Internet. This paper puts forward relative design and
135978    reference implementation.
135979 C1 Fudan Univ, Dept Comp Sci & Engn, Shanghai 200433, Peoples R China.
135980    Shanghai Univ Sci & Technol, Coll Management, Shanghai 201800, Peoples R China.
135981 RP Chen, ZL, Fudan Univ, Dept Comp Sci & Engn, Shanghai 200433, Peoples R
135982    China.
135983 EM chenzl@fudan.edu.cn
135984    wliu@fudan.edu.cn
135985    sltu@fudan.edu..cn
135986 CR *SUN MICR, JIN SPEC
135987    BLAZE M, 1996, P IEEE S SECUR PRIV, P164
135988    BLAZE M, 1999, 2704 RFC IETF
135989    ELLISON C, 1999, 2693 RFC IETF
135990 NR 4
135991 TC 0
135992 SN 0302-9743
135993 J9 LECT NOTE COMPUT SCI
135994 PY 2005
135995 VL 3605
135996 BP 570
135997 EP 575
135998 PG 6
135999 GA BDE41
136000 UT ISI:000233067600083
136001 ER
136002 
136003 PT J
136004 AU Xu, D
136005    Liu, HJ
136006    Wang, YF
136007 TI BSS-HMM(3)s: An improved HMM method for identifying transcription
136008    factor binding sites
136009 SO DNA SEQUENCE
136010 DT Article
136011 DE gene expression; transcription factor binding sites; HMM; BSS-HMM(3)s
136012 ID DNA-BINDING; HOMEODOMAIN PROTEIN; IDENTIFICATION; SPECIFICITY
136013 AB Today, an important problem in molecular biology is the study of gene
136014    expression mechanism. The first step in determining differential gene
136015    expression is the binding of sequence specific transcription factors to
136016    regulatory regions of the genes. An important aspect to understand how
136017    a given transcription factor functions is to know the entire gamut of
136018    binding sites and potential target genes that the factor may regulate.
136019    In this paper, we presented an improved prediction method based on
136020    hidden Markov model (HMM) called BSS-HMM(3)s (binding site search based
136021    on third-order HMMs) for transcription factor binding sites. The
136022    results show that the predicted sensitivity and specificity of BSS-HMM
136023    3 s increased 11.95 and 12.97%, respectively, compared with Match(TM).
136024 C1 Shanghai Univ, Coll Sci, Dept Math, Shanghai 200444, Peoples R China.
136025 RP Wang, YF, Shanghai Univ, Coll Sci, Dept Math, 99 Shangda Rd, Shanghai
136026    200444, Peoples R China.
136027 EM yifei_wang@staff.shu.edu.cn
136028 CR BALDI P, 2001, BIOINFORMATICS MACHI, P145
136029    GEORGE C, 2002, STAT INFERENCE, P109
136030    HUANG H, 1995, PLANT MOL BIOL, V28, P549
136031    IKEDA K, 1995, EUR J BIOCHEM, V233, P73
136032    LU Q, 1994, MOL CELL BIOL, V14, P3938
136033    MAUHIN V, 1993, NUCLEIC ACIDS RES, V21, P3951
136034    MERTIN S, 1999, NUCLEIC ACIDS RES, V27, P1359
136035    PEREZSANCHEZ C, 2000, J BIOL CHEM, V275, P12909
136036    PETERSON RS, 1997, CELL GROWTH DIFFER, V8, P69
136037    QUANDT K, 1995, NUCLEIC ACIDS RES, V23, P4878
136038    ROGOZIN IB, 1999, GENE, V226, P129
136039    ROONEY RJ, 1990, MOL CELL BIOL, V10, P5138
136040    SANTORO IM, 1991, MOL CELL BIOL, V11, P1944
136041    SEAN RE, 1998, BIOINFORMATICS, V14, P755
136042    SHINOZAKI D, 2003, BIOINFORMATICS, V19, P206
136043    SINHA S, 2000, P INT C INT SYST MOL, V8, P344
136044    SINHA S, 2003, BIOINFORMATICS, V19, I292
136045    SOLOMON DLC, 1993, NUCLEIC ACIDS RES, V21, P5372
136046    STORMO GD, 2000, BIOINFORMATICS, V16, P16
136047    THAKURTA DG, 2001, BIOINFORMATICS, V17, P608
136048    WAGNER A, 1999, BIOINFORMATICS, V15, P776
136049    YADA T, 1999, BIOINFORMATICS, V15, P987
136050 NR 22
136051 TC 0
136052 SN 1042-5179
136053 J9 DNA SEQUENCE
136054 JI DNA Seq.
136055 PD DEC
136056 PY 2005
136057 VL 16
136058 IS 6
136059 BP 403
136060 EP 411
136061 PG 9
136062 SC Biotechnology & Applied Microbiology; Genetics & Heredity
136063 GA 984LC
136064 UT ISI:000233305400001
136065 ER
136066 
136067 PT J
136068 AU Hu, TJ
136069    Zhou, GY
136070    Gao, C
136071    Xu, Y
136072    Hua, ZZ
136073 TI Supercooling and hydration properties of polyalcohols aqueous solutions
136074    used as cryoprotectants
136075 SO CHINESE JOURNAL OF CHEMICAL PHYSICS
136076 DT Article
136077 DE polyalcohols; cryoprotectants; differential scanning calorimetry;
136078    supercooling; hydration
136079 ID ETHYLENE-GLYCOL; CRYSTALLIZATION; VITRIFICATION; NUCLEATION; SYSTEM
136080 AB A differential scanning calorimeter was used to study the thermal
136081    behaviors of polyalcohols aqueous solutions, such as supercooling
136082    degree of heterogeneous nucleating temperature, hydration properties.
136083    The experimental results show that the variation of supercooling and
136084    hydration behavior does not have obvious rules at the low
136085    concentrations. However, the supercooling degree and the content of
136086    unfrozen water increased with the solution concentration at the high
136087    concentrations. The difference of hydration properties shows the
136088    important effects of function groups (methyl groups and hydroxyl
136089    groups).
136090 C1 Shanghai Univ Sci & Technol, Inst Cryomed & Food Refrigerat, Shanghai 200093, Peoples R China.
136091 RP Hua, ZZ, Shanghai Univ Sci & Technol, Inst Cryomed & Food Refrigerat,
136092    Shanghai 200093, Peoples R China.
136093 EM tchua@sh163.net
136094 CR ANNE P, 2002, CRYOBIOLOGY, V44, P150
136095    BRIAN W, 1999, CRYOBIOLOGY, V39, P215
136096    BRONSHTEYN VL, 1995, CRYOBIOLOGY, V32, P1
136097    DEVISSER C, 1974, Z PHYS CHEM NEUE FOL, V92
136098    FAHY GM, 1987, CRYOBIOLOGY, V24, P196
136099    GAO C, 2004, ACTA PHYS-CHIM SIN, V20, P123
136100    GAO C, 2004, ACTA PHYS-CHIM SIN, V20, P701
136101    HUA ZZ, 1994, CRYOBIOLOGY CRYOMEDI
136102    JABRANE S, 1995, THERMOCHIM ACTA, V258, P33
136103    KRISTIANSEN E, 1999, J COMP PHYSIOL B, V169, P5
136104    MEHL P, 1985, CRYOLETT, V6, P343
136105    VIGIER G, 1987, CRYOBIOLOGY, V24, P345
136106 NR 12
136107 TC 0
136108 SN 1003-7713
136109 J9 CHIN J CHEM PHYS
136110 JI Chin. J. Chem. Phys.
136111 PD OCT
136112 PY 2005
136113 VL 18
136114 IS 5
136115 BP 845
136116 EP 848
136117 PG 4
136118 SC Physics, Atomic, Molecular & Chemical
136119 GA 983KZ
136120 UT ISI:000233231700038
136121 ER
136122 
136123 PT J
136124 AU Dai, K
136125    Shi, LY
136126    Zhang, DS
136127    Fang, JH
136128 TI NaCl adsorption in multi-walled carbon nanotube/active carbon
136129    combination electrode
136130 SO CHEMICAL ENGINEERING SCIENCE
136131 DT Article
136132 DE carbon nanotube; active carbon; salt water; desalination
136133 ID ELECTROCHEMICAL CAPACITORS
136134 AB In this paper, we proposed a new process for fabricating
136135    electrochemical double layer capacitors employing active carbon and
136136    multiwalled carbon nanotubes to adsorb Na+ and Cl- from NaCl solution.
136137    Due to their unique mesoporosity, active carbons have high ability to
136138    desalt NaCl solution. But they have many defects such as high
136139    electrical resistance, high-energy consumption and low intensity. Since
136140    carbon nanotube is a new material which has high intensity and low
136141    resistance, we can composite the merits of active carbon and carbon
136142    nanotube and develop carbon nanotube/active carbon materials
136143    combination electrode. It was tested that when carbon nanotube content
136144    in carbon materials is 10%, the characteristics of combination
136145    electrode is the best for us to desalt brackish water because of their
136146    high desalination characterization and low energy consumption. Though
136147    there are a few technical problems to be solved, our results show a
136148    promising technique for desalting salt water. (c) 2005 Elsevier Ltd.
136149    All rights reserved.
136150 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China.
136151    Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
136152    Shanghai Univ, Nanosci & Technol Ctr, Shanghai 200444, Peoples R China.
136153 RP Dai, K, Shanghai Univ, Sch Mat Sci & Engn, 99 Shangda Rd, Shanghai
136154    200444, Peoples R China.
136155 EM sly@snpc.org.cn
136156 CR CONWAY BE, 1997, J POWER SOURCES, V65, P53
136157    GHENCIU F, 2002, CURR OPIN SOLID ST M, V6, P389
136158    HAICHAO L, 2004, ELECTROCHIMA ACTA, V49, P3463
136159    HOU PX, 2002, CARBON, V40, P81
136160    JAYALAKSHMI M, 2004, ELECTROCHEM COMMUN, V6, P1119
136161    MICHAEL MS, 2004, J POWER SOURCES, V136, P250
136162    MOTOO T, 1997, J POWER SOURCES, V66, P186
136163    NISHINO A, 1988, TANSO, V132, P57
136164    PAULO L, 2004, J COLLOID INTERF SCI, V280, P149
136165    PENZA M, 2004, SENSOR ACTUAT B-CHEM, V100, P47
136166    ROBERTS D, 2003, ELECTROCHIMIA ACTA, V48, P3709
136167    SARANGI D, 2002, PHYSICA B, V323, P165
136168    TARASEVICH MR, 2003, ELECTROCHEM COMMUN, V5, P491
136169    WEI JM, 2000, APPL CATAL A-GEN, V196, P167
136170    ZHANHONG Y, 2003, MATER LETT, V57, P3160
136171    ZHENG JP, 2004, J POWER SOURCES, V137, P158
136172    ZHONGHUA H, 1999, MICROPOR MESOPOR MAT, V27, P11
136173 NR 17
136174 TC 0
136175 SN 0009-2509
136176 J9 CHEM ENG SCI
136177 JI Chem. Eng. Sci.
136178 PD JAN
136179 PY 2006
136180 VL 61
136181 IS 2
136182 BP 428
136183 EP 433
136184 PG 6
136185 SC Engineering, Chemical
136186 GA 983WC
136187 UT ISI:000233262000011
136188 ER
136189 
136190 PT J
136191 AU Chen, Y
136192    Qiu, XJ
136193    Dong, XL
136194 TI Pseudo-spin model for the microtubule wall in external field
136195 SO BIOSYSTEMS
136196 DT Article
136197 DE microtubule; double-well potential; pseudo-spin; external electric field
136198 ID CYTOSKELETAL MICROTUBULE; ENERGY-TRANSFER; EXCITATIONS; COHERENCE;
136199    MECHANISM
136200 AB Microtubules (MTs) in the cytoskeletons of eukaryotic cells provide a
136201    wide range of microskeletal and micromuscular functionalities. Some
136202    evidence has indicated that they can serve as a medium for
136203    intracellular signaling processing. In this paper, for the inherent
136204    symmetry structures and the electric properties of tubulin dimers, the
136205    microtubule (MT) is treated as a one-dimensional ferroelectric system.
136206    The nonlinear dynamics of the dimer electric dipoles is described by
136207    virtue of the double-well potential and the physical problem is further
136208    mapped onto the pseudo-spin system. In addition, the effect of the
136209    external electric field on the NIT has been taken into account. (c)
136210    2005 Elsevier Ireland Ltd. All rights reserved.
136211 C1 Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
136212    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
136213 RP Chen, Y, Chinese Acad Sci, Shanghai Inst Ceram, 1295 Dingxi Rd,
136214    Shanghai 200050, Peoples R China.
136215 EM siyuyingying@hotmail.com
136216 CR AMOS LA, 1974, J CELL SCI, V14, P523
136217    BLINC R, 1974, SOFT MODES FERROELEC, P132
136218    CHEN Y, 2003, ACTA PHYS SIN-CH ED, V52, P1554
136219    CHEN Y, 2004, CHINESE PHYS LETT, V21, P2313
136220    COLLINS MA, 1979, PHYS REV B, V19, P3630
136221    DAVYDOV AS, 1982, INT SERIES NAT PHILO, V109, P185
136222    DELGIUDICE E, 1986, NUCL PHYS B, V275, P185
136223    DUSTIN P, 1984, MICROTUBULES
136224    ENGELBORGHS Y, 1992, NANOBIOLOGY, V1, P97
136225    EVANS MG, 1949, BIOCHIM BIOPHYS ACTA, V3, P188
136226    FROHLICH H, 1968, INT J QUANTUM CHEM, V2, P641
136227    FROHLICH H, 1980, ADV ELECTRON ELECTRO, V53, P85
136228    GUTMANN F, 1968, NATURE, V219, P1359
136229    HAKEN H, 1976, QUANTUM FIELD THEORY, P198
136230    HAMEROFF S, 2002, BIOSYSTEMS, V64, P149
136231    HAMEROFF SR, 1982, J THEOR BIOL, V98, P549
136232    JIBU M, 1994, BIOSYSTEMS, V32, P195
136233    KARPLUS M, 1983, DYNAMICS PROTEINS EL, P263
136234    MAVROMATOS NE, 1998, INT J MOD PHYS B, V12, P517
136235    MAVROMATOS NE, 1999, BIOELECTROCH BIOENER, V48, P273
136236    MAVROMATOS NE, 2002, INT J MOD PHYS B, V16, P3623
136237    NOGALES E, 1998, NATURE, V391, P199
136238    POKORNY J, 1998, BIOELECTROCH BIOENER, V45, P239
136239    POKORNY J, 1999, BIOELECTROCH BIOENER, V48, P267
136240    RASMUSSEN S, 1990, PHYSICA D, V42, P428
136241    SATARIC M, 1990, J MOL ELECTRON, V6, P63
136242    SATARIC MV, 1993, PHYS REV E, V48, P589
136243    SATARIC MV, 1998, PHYS REV E B, V58, P6333
136244    SZENTGYORGYI A, 1941, NATURE, V148, P157
136245    SZENTGYORGYI A, 1957, BIOENERGETICS
136246    TUSZYNSKI JA, 1995, J THEOR BIOL, V174, P371
136247 NR 31
136248 TC 0
136249 SN 0303-2647
136250 J9 BIOSYSTEMS
136251 JI Biosystems
136252 PD NOV
136253 PY 2005
136254 VL 82
136255 IS 2
136256 BP 127
136257 EP 136
136258 PG 10
136259 SC Biology
136260 GA 985AB
136261 UT ISI:000233347400003
136262 ER
136263 
136264 PT J
136265 AU Gu, J
136266    Liang, JQ
136267 TI Energy spectrum analysis of donor-center quantum dots
136268 SO ACTA PHYSICA SINICA
136269 DT Article
136270 DE donor- center quantum dots; Gaussian potential; energy spectrum
136271 ID MAGNETIC-FIELDS; ELECTRON QUANTUM; STATES; TRANSITIONS; SINGLET; WELLS
136272 AB Within the effective mass approximation, the energy spectra of the
136273    donor- center quantum dot system in Gaussian confining potential are
136274    calculated by using the method of numerical matrix diagonalization. The
136275    results show that the property of the ground and low-lying states of
136276    the quantum dot is rather sensitive to the size and the strength of
136277    confinement
136278 C1 Shanghai Univ, Inst Theoret Phys, Taiyuan 030006, Peoples R China.
136279 RP Gu, J, Shanghai Univ, Inst Theoret Phys, Taiyuan 030006, Peoples R
136280    China.
136281 CR ADAMOWSKI J, 2000, PHYS REV B, V62, P4234
136282    DZYUBENKO AB, 1993, PHYS REV B, V48, P14690
136283    HOLMES S, 1992, PHYS REV LETT, V69, P2571
136284    JACAK L, 1998, QUANTUM DOTS
136285    JIANG ZX, 1997, PHYS REV B, V56, R1692
136286    LAMPERT MA, 1958, PHYS REV LETT, V1, P450
136287    LARSEN DM, 1992, PHYS REV B, V45, P3485
136288    LOK JGS, 1996, PHYS REV B, V53, P9554
136289    RUAN WY, 1996, J MATH PHYS, V37, P3760
136290    SHI JM, 1995, PHYS REV B, V51, P7714
136291    XIE WF, 1998, ACTA PHYS SINICA, V47, P102
136292    XIE WF, 1998, ACTA PHYS SINICA, V47, P107
136293    XIE WF, 1998, ACTA PHYS SINICA, V47, P478
136294    XIE WF, 1999, ACTA PHYS SINICA, V48, P53
136295    XIE WF, 1999, CHINESE PHYS LETT, V16, P53
136296    XIE WF, 1999, PHYS LETT A, V263, P127
136297    XIE WF, 2000, J PHYS-CONDENS MAT, V12, P3849
136298    XIE WF, 2000, SOLID STATE COMMUN, V115, P417
136299    XIE WF, 2002, PHYSICA B, V315, P117
136300    XIE WF, 2003, SOLID STATE COMMUN, V127, P401
136301    XIE WF, 2004, COMMUN THEOR PHYS, V42, P151
136302    XIE WF, 2004, SOLID STATE COMMUN, V131, P7
136303    ZHU JL, 1997, PHYS REV B, V55, P15819
136304 NR 23
136305 TC 0
136306 SN 1000-3290
136307 J9 ACTA PHYS SIN-CHINESE ED
136308 JI Acta Phys. Sin.
136309 PD NOV
136310 PY 2005
136311 VL 54
136312 IS 11
136313 BP 5335
136314 EP 5338
136315 PG 4
136316 SC Physics, Multidisciplinary
136317 GA 983HJ
136318 UT ISI:000233221800060
136319 ER
136320 
136321 PT J
136322 AU Chen, ZP
136323    Xue, YC
136324    Su, YL
136325    Gong, SC
136326    Zhang, JC
136327 TI Phase structures and local electron structures of Gd-doped
136328    YBa2Cu3O7-delta systems
136329 SO ACTA PHYSICA SINICA
136330 DT Article
136331 DE superconductivity; positron annihilation; phase structure; local
136332    electronic density
136333 ID OXYGEN-DEFICIENT YBA2CU3O7-DELTA; POSITRON-ANNIHILATION;
136334    SUPERCONDUCTING PROPERTIES; DEFECTS; YBCO; TRANSITION; FE
136335 AB The Gd substituted Y1-x, GdxBa2Cu3O7 - delta systems are studied
136336    systematically by positron annihilation and x-ray diffraction. The
136337    x-ray results show that the crystal parameters and crystal volume of
136338    the systems increase with the increase of Gd content. However, all the
136339    substituted samples maintain the single orthorhombic phase as
136340    YBa2Cu3O7-delta (YBCO) sample does. The positron annihilation results
136341    show that positron lifetimes depend on the Gd content strongly.
136342    According to the positron annihilation result, the local electronic
136343    density on Cu-O chain is calculated. The result shows the local
136344    electronic density decreases with the increase of the Gd content, while
136345    the T, increases with the decrease of the local electronic density. The
136346    relationship between the local electronic density and superconductivity
136347    is different from the substitution on Cu site, which may be one of the
136348    reasons why the mixed rare earth cuprate superconductor has a higher
136349    critical electric cur-rent density than the YBCO. These experimental
136350    results give the corresponding positron experiment data for the
136351    application of cuprate superconductors and study of the mechanism.
136352 C1 Zhengzhou Univ, Dept Technol & Phys, Zhengzhou 450002, Peoples R China.
136353    Shanghai Univ, Dept Phys, Shanghai 200463, Peoples R China.
136354 RP Chen, ZP, Zhengzhou Univ, Dept Technol & Phys, Zhengzhou 450002,
136355    Peoples R China.
136356 EM czhping@zzuli.edu.cn
136357 CR BHARATHI A, 1989, J PHYS-CONDENS MAT, V1, P1467
136358    BUCHNER B, 1990, SOLID STATE COMMUN, V73, P357
136359    CHAKRABORTY B, 1989, PHYS REV B, V39, P215
136360    CHEN ZP, 2001, ACTA PHYS SIN-CH ED, V50, P550
136361    CHEN ZP, 2002, ACTA PHYS SIN-CH ED, V51, P2150
136362    CHEN ZP, 2002, MATER LETT, V57, P374
136363    DONG C, 1999, J APPL CRYSTALLOGR, V32, P838
136364    HORLAND RS, 1989, PHYS REV B, V39, P9017
136365    JEAN YC, 1990, PHYS REV LETT, V64, P1593
136366    JIN S, 1991, PHYSICA C, V173, P75
136367    KWOK WK, 1988, PHYS REV B, V37, P106
136368    LI LW, IN PRESS ACTA PHYS S
136369    LI LW, 2005, PHYSICA C, V418, P43
136370    LI PL, 2004, ACTA PHYS SIN-CH ED, V53, P1223
136371    LI PL, 2004, PHYS REV B, V69
136372    LI Y, 1997, SCI CHINA SER A, V27, P667
136373    LIU LH, 2001, ACTA PHYS SIN-CH ED, V50, P769
136374    MOHAMMADIZADEH MR, 2004, EUROPEAN PHYSL J, V422, P321
136375    NISHCHENKO MM, 2002, THEORETICAL EXPT CHE, V38, P162
136376    POLITY A, 1999, PHYS REV B, V59, P10025
136377    SEEGER A, 1973, J PHYS F MET PHYS, V3, P248
136378    TARASCON JM, 1988, PHYS REV B, V37, P7458
136379    THOMAS J, 1988, SOLID STATE COMMUN, V65, P981
136380    UDAYAN D, 2000, PHYS REV B, V62, P14519
136381    VONSTETTEN EC, 1988, PHYS REV LETT, V60, P2198
136382    ZHANG JC, 1999, PHYS LETT A, V263, P452
136383 NR 26
136384 TC 0
136385 SN 1000-3290
136386 J9 ACTA PHYS SIN-CHINESE ED
136387 JI Acta Phys. Sin.
136388 PD NOV
136389 PY 2005
136390 VL 54
136391 IS 11
136392 BP 5382
136393 EP 5388
136394 PG 7
136395 SC Physics, Multidisciplinary
136396 GA 983HJ
136397 UT ISI:000233221800069
136398 ER
136399 
136400 PT J
136401 AU Zeng, ZJ
136402    Yang, QH
136403    Xu, J
136404 TI Spectroscopic characteristics of Cr3+: Al2O3 polycrystalline
136405    transparent alumina ceramics
136406 SO ACTA PHYSICA SINICA
136407 DT Article
136408 DE alumina; polycrystalline transparent ceramics; ion site; spectroscopic
136409    characteristics
136410 AB Spectral properties of transparent polycrystalline C3+ : Al2O3 ceramics
136411    were studied. The results indicated that the absorption peaks of
136412    polycrystalline Cr3+ : Al2O3 ceramics coincide with the absorption
136413    spectrum of a ruby single crystal. The crystal field and Racah
136414    parameters were calculated according to the Tanabe-Sugano energy level
136415    diagram and absorption spectra. The crystal field intensity of Cr3+ :
136416    Al2O3 polycrystalline ceramics is almost the same as that of Cr3(+) :
136417    Al2O3 single crystal, and the characteristics of the emission spectra
136418    still retains the R-line emission even as the Cr3+ concentration
136419    increases up to 0.8wt%. In particular, one 670nm emission peak of Cr3+
136420    was first found in the polycrystalline ceramics.
136421 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
136422    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
136423 RP Zeng, ZJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
136424    China.
136425 EM yangqiuhongcn@yahoo.com.cn
136426 CR BEALL GH, 1985, J NON-CRYST SOLIDS, V73, P413
136427    CAO GX, 2002, ACTA OPT SINICA, V22, P226
136428    CRONEMEYER DC, 1956, J OPT SOC AM, V56, P1703
136429    KENYON PT, 1982, IEEE J QUANTUM ELECT, V18, P1189
136430    LU J, 2000, APPL PHYS B-LASERS O, V71, P469
136431    MUROTANI H, 2000, JPN J APPL PHYS 1, V39, P2748
136432    NELSON DF, 1965, PHYS REV A, V137, P1117
136433    TANABE Y, 1954, J PHYS SOC JPN, V9, P753
136434 NR 8
136435 TC 0
136436 SN 1000-3290
136437 J9 ACTA PHYS SIN-CHINESE ED
136438 JI Acta Phys. Sin.
136439 PD NOV
136440 PY 2005
136441 VL 54
136442 IS 11
136443 BP 5445
136444 EP 5449
136445 PG 5
136446 SC Physics, Multidisciplinary
136447 GA 983HJ
136448 UT ISI:000233221800079
136449 ER
136450 
136451 PT J
136452 AU Yin, RH
136453    Dong, XM
136454    Wang, HJ
136455    Dai, YC
136456    Zhang, XS
136457    Qian, YH
136458 TI Study on the formation of poly (2-vinylpyridine) coatings
136459    electropolymerized on zinc-electroplated steel and its corrosion
136460    behavior
136461 SO ACTA METALLURGICA SINICA
136462 DT Article
136463 DE cyclic voltammetry; 2-vinylpyridine; EIS; anticorrosion property;
136464    chromating film
136465 ID ELECTROCHEMICAL SYNTHESIS; MILD-STEEL; COPOLYMERS; SALICYLATE
136466 AB The effects of sweep rate on the formation of poly (2-vinylpyridine,
136467    2-Vpy) coatings electropolymerized on zinc-electroplated steel have
136468    been investigated by cyclic voltammetry technique. The morphology and
136469    thickness of poly 2-Vpy coatings are evidently affected by the sweep
136470    rate, which suggests the best sweep rate is 0.05 V/s. The structure and
136471    doped ions ClO4- of poly 2-Vpy coatings have been investigated using
136472    reflection-absorption infrared spectroscopy. Corrosion behavior of
136473    chromating film and poly 2-Vpy coatings in 3.5%NaCl solution is studied
136474    by salt spray test, anodic polarization experiment and electrochemical
136475    impedance spectroscopy (EIS) method. Experimental results show that the
136476    anticorrosion property of poly 2-Vpy coating is better than that of
136477    chromating film because of its good shielding and inhibiting
136478    properties, and the anticorrosion mechanism of poly 2-Vpy coatings is
136479    discussed.
136480 C1 Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
136481    E China Univ Sci & Technol, Natl United Chem Engn Lab, Shanghai 200237, Peoples R China.
136482    Baoshan Steel Co, Ctr Tech, Shanghai 201900, Peoples R China.
136483 RP Yin, RH, Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
136484 EM yinrh@staff.shu.edu.cn
136485 CR CASCALHEIRA AC, 2003, ELECTROCHIM ACTA, V48, P2523
136486    GABASTON LI, 1999, POLYMER, V40, P4505
136487    ISAO S, 1992, J ELECTROCHEM SOC, V139, P3090
136488    JANDREY AC, 2004, THERMOCHIM ACTA, V424, P63
136489    JIANG YF, 2002, J FUNCT POLYM, V15, P473
136490    KINLEN PJ, 1997, SYNTHETIC MET, V85, P1327
136491    LACROIX JC, 2000, J ELECTROANAL CHEM, V481, P76
136492    LING X, 1997, J APPL ELECTROCHEM, V27, P1343
136493    LING X, 1998, MACROMOLECULES, V31, P9134
136494    RAJAGOPALAN R, 2002, ELECTROCHIM ACTA, V47, P1847
136495    TANTAVICHET N, 2001, J APPL ELECTROCHEM, V31, P281
136496    WATANABE J, 1999, J PHYS CHEM SOLIDS, V60, P1329
136497    YIN RH, 2004, ACTA METALL SIN, V40, P168
136498    ZHAO YP, 2004, ACTA METALL SIN, V17, P849
136499 NR 14
136500 TC 0
136501 SN 0412-1961
136502 J9 ACTA METALL SIN
136503 JI Acta Metall. Sin.
136504 PD OCT
136505 PY 2005
136506 VL 41
136507 IS 10
136508 BP 1111
136509 EP 1115
136510 PG 5
136511 SC Metallurgy & Metallurgical Engineering
136512 GA 983TT
136513 UT ISI:000233255700021
136514 ER
136515 
136516 PT J
136517 AU Zhang, JL
136518    Fang, SS
136519    Zhou, ZQ
136520    Lin, GW
136521    Ge, JS
136522    Feng, F
136523 TI Maximum solid solubility of transition metals in vanadium solvent
136524 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
136525 DT Article
136526 DE solid solubility; vanadium alloys; function Z(f); electronegativity
136527    difference; atomic size parameters; electron concentration
136528 ID ELECTROCHEMICAL PROPERTIES; ALLOYS; TI
136529 AB Maximum solid solubility (C-max) of different transition metals in
136530    metal solvent can be described by a semi-empirical equation using
136531    function Z(f) that contains electronegativity difference, atomic
136532    diameter and electron concentration. The relation between C-max and
136533    these parameters of transition metals in vanadium solvent was studied.
136534    It is shown that the relation of C-max and function Zf can be expressed
136535    as In C-max = Z(f) = 7.316 5 - 2.780 5 (Delta X)(2) - 71. 2788 delta(2)
136536    - 0.855 56n(2/3). The factor of atomic size parameter has the largest
136537    effect on the C-max of the V binary alloy; followed by the factor of
136538    electronegativity difference; the electrons concentration has the
136539    smallest effect among the three bond parameters. Function Z(f) is used
136540    for predicting the unknown C-max of the transition metals in vanadium
136541    solvent. The results are compared with Darken-Gurry theorem, which can
136542    be deduced by the obtained function Zf in this work.
136543 C1 Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072, Peoples R China.
136544    Univ Windsor, Dept Mech Automat & Mat Engn, Windsor, ON N9B 3P4, Canada.
136545 RP Zhou, ZQ, Shanghai Univ, Inst Hydrogen Storage Mat, Shanghai 200072,
136546    Peoples R China.
136547 EM zqzhou408@21cn.com
136548 CR AVASHIMA H, 2003, J ALLOY COMPD, V356, P405
136549    CHAI YJ, 2005, INT J HYDROGEN ENERG, V30, P279
136550    DARKEN LS, 1953, PHYSICAL CHEM METALS, P74
136551    FANG SS, 1999, J ALLOY COMPD, V293, P10
136552    FANG SS, 2002, INT J HYDROGEN ENERG, V27, P329
136553    GSCHNEIDNER KA, 1980, THEORY ALLOY PHASE F, P1
136554    KIM JH, 2003, J ALLOY COMPD, V348, P293
136555    LI R, 2004, J ALLOY COMPD, V373, P223
136556    MASSALSKI TB, 1996, BINARY ALLOY PHASE D
136557    UNO M, 2004, J ALLOY COMPD, V366, P213
136558    XIA J, 1985, ENERGETICS ALLOYS, P296
136559    ZHOU Z, 1993, NEW ENERGY SYSTEMS C, P79
136560    ZHOU Z, 1998, MAXIMUM SOLID SOLUBI, P37
136561    ZHOU ZQ, 2003, T NONFERR METAL SOC, V13, P1185
136562    ZHOU ZQ, 2003, T NONFERR METAL SOC, V13, P864
136563    ZHU YF, 2003, INT J HYDROGEN ENERG, V28, P389
136564 NR 16
136565 TC 0
136566 SN 1003-6326
136567 J9 TRANS NONFERROUS METAL SOC CH
136568 JI Trans. Nonferrous Met. Soc. China
136569 PD OCT
136570 PY 2005
136571 VL 15
136572 IS 5
136573 BP 1085
136574 EP 1088
136575 PG 4
136576 SC Metallurgy & Metallurgical Engineering
136577 GA 983ER
136578 UT ISI:000233214500023
136579 ER
136580 
136581 PT J
136582 AU Jiang, GC
136583    Wu, YQ
136584    You, JL
136585    Chen, H
136586    Xu, KD
136587 TI The investigation on the microstructure of metallurgical molten slags
136588    and the foundation of the primary cluster theory
136589 SO STEEL RESEARCH INTERNATIONAL
136590 DT Article
136591 DE high temperature Raman spectra; Si-O tetrahedra; SiOT model; CEMS model
136592 ID HIGH-TEMPERATURE; BOND POLARIZABILITY; PARAMETERS; SPECTROSCOPY;
136593    INTENSITIES; PRESSURE; GLASSES; MELTS
136594 AB This paper presents the characteristics of the properties of
136595    metallurgical molten slags based on the bond structure or the existence
136596    of certain ion clusters. Some experimental and theoretical approaches
136597    were adopted in the investigation. Two sets of high temperature Raman
136598    spectroscopy (HTRS) were established at Shanghai University; both can
136599    be successfully operated at 2000K or higher. One of them combines the
136600    accumulated time resolution together with the spatial resolution, and
136601    it is designed for both ultraviolet (UV) and visible (VIS) light. The
136602    SiOT model uses 5 kinds of Si-O tetrahedra (On) as microsturctural
136603    units. In this model, each sample contains 250000 or more tetrahedra.
136604    The calculation using a GF matrix and electro-optical parameter (EOP)
136605    methods were performed for every tetrahedron one by one to determine
136606    the partial Raman spectra Of On. Then the spectra were integrated to
136607    obtain an envelope of the sample. In addition to the SiOT model, a CEMS
136608    model was also developed to link the ion cluster structure and the
136609    thermodynamic properties at equilibrium (as mixing free energy).
136610 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai, Peoples R China.
136611 RP Jiang, GC, Shanghai Univ, Sch Mat Sci & Engn, Shanghai, Peoples R China.
136612 EM gcjiang@online.sh.cn
136613 CR ABBATE S, 1977, J CHEM PHYS, V67, P1519
136614    GO S, 1975, PHYS REV LETT, V34, P580
136615    GUHA S, 1996, PHYS REV B, V53, P13106
136616    GUSSONI M, 1976, J CHEM PHYS, V65, P3439
136617    GUYOT F, 1996, PHYS EARTH PLANET IN, V98, P17
136618    MCMILLAN PF, 1992, CHEM GEOL, V96, P351
136619    MYSEN BO, 1990, J GEOPHYS RES-SOLID, V95, P15733
136620    NIEMEIER D, 1996, PHYS CHEM MINER, V23, P284
136621    NOWACK N, 1992, P 4 INT C MOLT SLAGS, P34
136622    NOWACK N, 2001, J NON-CRYST SOLIDS, V282, P30
136623    SEETHARAMAN S, 2000, METALL MATER TRANS B, V31, P105
136624    STEBBINS JF, 1988, J NONCRYST SOLIDS, V106, P359
136625    WASEDA Y, 1984, NOVEL APPLICATION AN, P20
136626    WASEDA Y, 1995, Z NATURFORSCH A, V50, P770
136627    WILSON EB, 1955, MOL VIBRATIONS
136628    XU J, 1992, PHYS REV B, V46, P9213
136629 NR 16
136630 TC 0
136631 SN 1611-3683
136632 J9 STEEL RES INT
136633 JI Steel Res. Int.
136634 PD OCT
136635 PY 2005
136636 VL 76
136637 IS 10
136638 BP 746
136639 EP 751
136640 PG 6
136641 SC Metallurgy & Metallurgical Engineering
136642 GA 982YR
136643 UT ISI:000233198800017
136644 ER
136645 
136646 PT S
136647 AU Zhang, XP
136648    Wang, SZ
136649 TI Analysis of parity assignment steganography in palette images
136650 SO KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 3,
136651    PROCEEDINGS
136652 SE LECTURE NOTES IN ARTIFICIAL INTELLIGENCE
136653 DT Article
136654 ID STEGANALYSIS
136655 AB In parity assignment-based steganography for palette images, all colors
136656    in a host image are divided into two subsets, and each pixel is used to
136657    carry one secret bit. This paper describes an analytic method against
136658    the parity assignment-based steganographic techniques. By finding the
136659    rule of color modifications, a steganalyst can attempt to recover the
136660    original histogram in a way that is a reverse of data embedding.
136661    Because of the abnormal colors in the original image, an excessive
136662    operation will cause some negative values in the recovered histogram.
136663    This provides a clue for revealing the presence of secret message and
136664    estimating the length of embedded bit sequence.
136665 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
136666 RP Zhang, XP, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
136667    Peoples R China.
136668 EM xzhang@staff.shu.edu.cn
136669    shuowang@staff.shu.edu.cn
136670 CR FRIDRICH J, 1998, P IS T PICS C APR 19, P285
136671    FRIDRICH J, 2000, LECT NOTES COMPUT SC, V1768, P47
136672    FRIDRICH J, 2002, P SOC PHOTO-OPT INS, V4675, P1
136673    PETITCOLAS FAP, 1999, P IEEE, V87, P1062
136674    WANG HQ, 2004, COMMUN ACM, V47, P76
136675 NR 5
136676 TC 0
136677 SN 0302-9743
136678 J9 LECT NOTE ARTIF INTELL
136679 PY 2005
136680 VL 3683
136681 BP 1025
136682 EP 1031
136683 PG 7
136684 GA BDC79
136685 UT ISI:000232722500144
136686 ER
136687 
136688 PT S
136689 AU Zhang, XP
136690    Wang, SH
136691 TI Watermarking protocol compatible with secret algorithms for resisting
136692    invertibility attack
136693 SO KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 2,
136694    PROCEEDINGS
136695 SE LECTURE NOTES IN ARTIFICIAL INTELLIGENCE
136696 DT Article
136697 ID SCHEMES
136698 AB Invertibility attack is a hostile measure to breach watermarking
136699    systems. In this paper, a novel watermarking protocol using a one-way
136700    hash function and a check of random watermarks is proposed in order to
136701    combat invertibility attacks. The described technique can be used in
136702    conjunction with any watermarking algorithm, no matter it is kept
136703    secret or made public, without resorting to a third party jury as
136704    required by some previous approaches. By introducing a set of reference
136705    sequences, segmentation of the digital information and iterative
136706    computation of watermarks, the protocol is further enhanced so that it
136707    can resist more sophisticated types of attack based on forging an
136708    illegitimate detector.
136709 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
136710 RP Zhang, XP, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
136711    Peoples R China.
136712 EM xzhang@staff.shu.edu.cn
136713    shuowang@staff.shu.edu.cn
136714 CR CRAVER S, 1998, IEEE J SEL AREA COMM, V16, P573
136715    HARTUNG F, 1999, P IEEE, V87, P1079
136716    HWANG MS, 1999, IEEE T CONSUM ELECTR, V45, P286
136717    KATZENBEISSER S, 2002, P SOC PHOTO-OPT INS, V4675, P260
136718    LI QM, 2004, LECT NOTES COMPUT SC, V3200, P13
136719    PETITCOLAS FAP, 1999, P IEEE, V87, P1062
136720    SWANSON MD, 1998, SIGNAL PROCESS, V66, P337
136721    VOLOSHYNOVSKIY S, 2001, IEEE COMMUNICATI AUG, P118
136722    ZHANG XP, 2004, PATTERN RECOGN LETT, V25, P967
136723 NR 9
136724 TC 0
136725 SN 0302-9743
136726 J9 LECT NOTE ARTIF INTELL
136727 PY 2005
136728 VL 3682
136729 BP 1134
136730 EP 1144
136731 PG 11
136732 GA BDC78
136733 UT ISI:000232722200157
136734 ER
136735 
136736 PT J
136737 AU Guo, FK
136738    Zhang, YF
136739 TI The quadratic-form identity for constructing the Hamiltonian structure
136740    of integrable systems
136741 SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
136742 DT Article
136743 ID AKNS HIERARCHY; TRACE IDENTITY; WELL
136744 AB A usual loop algebra, not necessarily the matrix form of the loop
136745    algebra (A) over tilde (n-1), is also made use of for constructing
136746    linear isospectral problems, whose compatibility conditions exhibit a
136747    zero-curvature equation from which integrable systems are derived. In
136748    order to look for the Hamiltonian structure of such integrable systems,
136749    a quadratic-form identity is created in the present paper whose special
136750    case is just the trace identity; that is, when taking the loop algebra
136751    (A) over tilde (1), the quadratic-form identity presented in this paper
136752    is completely consistent with the trace identity.
136753 C1 Shanghai Univ Sci & Technol, Informat Sch, Qingdao 266510, Huangdao, Peoples R China.
136754    Liaoning Normal Univ, Sch Math, Dalian 116029, Peoples R China.
136755 RP Guo, FK, Shanghai Univ Sci & Technol, Informat Sch, Qingdao 266510,
136756    Huangdao, Peoples R China.
136757 EM mathzhang@126.com
136758 CR FUSSTEINER B, 1993, APPL ANAL GEOMETRIC, P125
136759    GUO FK, 2002, ACTA PHYS SIN-CH ED, V51, P951
136760    GUO FK, 2003, J MATH PHYS, V44, P5793
136761    GUO FK, 2004, CHAOS SOLITON FRACT, V19, P1207
136762    MA WX, 2000, METH APPL ANAL, V7, P21
136763    TU GZ, 1988, SCI SIN A, V12, P1243
136764    TU GZ, 1989, J MATH PHYS, V30, P330
136765    TU GZ, 1991, J MATH PHYS, V32, P1900
136766 NR 8
136767 TC 3
136768 SN 0305-4470
136769 J9 J PHYS-A-MATH GEN
136770 JI J. Phys. A-Math. Gen.
136771 PD OCT 7
136772 PY 2005
136773 VL 38
136774 IS 40
136775 BP 8537
136776 EP 8548
136777 PG 12
136778 SC Physics, Mathematical; Physics, Multidisciplinary
136779 GA 981TZ
136780 UT ISI:000233112200007
136781 ER
136782 
136783 PT J
136784 AU Sun, XL
136785    Wang, FL
136786    Li, D
136787 TI Exact algorithm for concave knapsack problems: Linear underestimation
136788    and partition method
136789 SO JOURNAL OF GLOBAL OPTIMIZATION
136790 DT Article
136791 DE concave knapsack problem; domain cut; domain partition; linear
136792    underestimation; nonlinear integer programming
136793 ID INTEGER MINIMIZATION; PROGRAMMING-PROBLEMS; POLYHEDRON; BRANCH
136794 AB Integer programming problems with a concave cost function are often
136795    encountered in optimization models involving economics of scale. In
136796    this paper, we propose an efficient exact algorithm for solving concave
136797    knapsack problems. The algorithm consists of an iterative process
136798    between finding lower and upper bounds by linearly underestimating the
136799    objective function and performing domain cut and partition by exploring
136800    the special structure of the problem. The lower bound is improved
136801    iteratively via cutting and partitioning the domain. This iteration
136802    process converges to the optimality in a finite number of steps.
136803    Promising computational results are reported for large-scale concave
136804    knapsack problems with up to 1200 integer variables. Comparison results
136805    with other existing methods in the literature are also presented.
136806 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
136807    Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
136808 RP Sun, XL, Shanghai Univ, Dept Math, 99 Shangda Rd, Shanghai 200444,
136809    Peoples R China.
136810 EM dli@se.cuhk.edu.hk
136811 CR BELLMAN R, 1962, APPL DYNAMIC PROGRAM
136812    BENSON HP, 1990, ANN OPER RES, V25, P243
136813    BENSON HP, 1990, NAV RES LOG, V37, P515
136814    BRETTHAUER KM, 1994, NAV RES LOG, V41, P435
136815    BRETTHAUER KM, 1995, OPER RES, V43, P670
136816    BRETTHAUER KM, 2002, COMPUT OPER RES, V29, P505
136817    BRETTHAUER KM, 2002, EUR J OPER RES, V138, P459
136818    CABOT AV, 1986, NAV RES LOG, V33, P559
136819    COOPER MW, 1981, MANAGE SCI, V27, P353
136820    DANTZIG G, 1957, OPER RES, V5, P266
136821    DJERDJOUR M, 1988, OPER RES LETT, V7, P253
136822    HOCHBAUM DS, 1995, OPER RES LETT, V17, P103
136823    HOST R, 1998, OR SPEKTRUM, V20, P47
136824    IBARAKI T, 1988, RESOURCE ALLOCATION
136825    KODIALAM MS, 1998, OPER RES, V46, P272
136826    MARSTEN RE, 1978, MATH PROGRAM, V14, P21
136827    MARTELLO S, 1990, KNAPSACK PROBLEMS AL
136828    MATHUR K, 1983, OPERATION RES LETT, V2, P55
136829    MATHUR K, 1986, OPER RES LETT, V5, P79
136830    MORIN TL, 1976, MANAGE SCI, V22, P1147
136831    MORIN TL, 1976, OPER RES, V24, P611
136832    PARDALOS PM, 1988, INT J COMPUT MATH, V24, P55
136833    PARDALOS PM, 1990, MATH PROGRAM, V46, P321
136834    ROSEN JJB, 1987, CONSTRAINED GLOBAL O
136835    SUN XL, 2002, OPTIMIZATION ENG, V3, P53
136836 NR 25
136837 TC 0
136838 SN 0925-5001
136839 J9 J GLOBAL OPTIM
136840 JI J. Glob. Optim.
136841 PD SEP
136842 PY 2005
136843 VL 33
136844 IS 1
136845 BP 15
136846 EP 30
136847 PG 16
136848 SC Mathematics, Applied; Operations Research & Management Science
136849 GA 983MT
136850 UT ISI:000233237200002
136851 ER
136852 
136853 PT J
136854 AU Qin, XL
136855    Gao, SX
136856    Yu, LM
136857    Zhang, JC
136858    Nishimura, K
136859    Mori, K
136860 TI XRD study of the Er1-xDyxNi2B2C system magnetic superconductors
136861 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
136862 DT Article
136863 DE XRD; Er1-xDyxNi2B2C; crystalline structure
136864 ID TRANSPORT; CRYSTAL
136865 AB The magnetic superconducting samples of the intermetallic
136866    Er1-xDyxNi2B2C system are prepared by the arc melting method. Powder
136867    XRD measurements are systematically conducted and analyzed. The change
136868    of microstructure reflects the contribution of the different magnetic
136869    moments and the ionic radius difference of Er and Dy to the crystal
136870    structure in the substitution of Er1-xDyxNi2B2C system. The element
136871    substitution of Dy for Er in the magnetic superconducting compound is
136872    verified commendably in microstructure level by the powder XRD
136873    experiment.
136874 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
136875    Toyama Univ, Fac Engn, Toyama 9308555, Japan.
136876 RP Qin, XL, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
136877 CR CAO SX, 2003, CHINESE LOW TEMP PHY, V25, P241
136878    CAVA RJ, 1994, NATURE, V367, P146
136879    CHOI CK, 1998, PHYS REV B, V57, P126
136880    LYNN JW, 1997, PHYS REV B, V55, P6584
136881    NAGARAJAN R, 1994, PHYS REV LETT, V72, P274
136882    RATHNAYAKA KDD, 1997, PHYS REV B, V55, P8506
136883    SONG KJ, 2003, PHYSICA C, V398, P107
136884 NR 7
136885 TC 0
136886 SN 0217-9792
136887 J9 INT J MOD PHYS B
136888 JI Int. J. Mod. Phys. B
136889 PD OCT 20
136890 PY 2005
136891 VL 19
136892 IS 26
136893 BP 3945
136894 EP 3950
136895 PG 6
136896 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
136897 GA 982PB
136898 UT ISI:000233173000004
136899 ER
136900 
136901 PT J
136902 AU Li, RC
136903 TI Joyce's aesthetic pursuit reflected in A Portrait of the Artist as a
136904    Young Man
136905 SO FOREIGN LITERATURE STUDIES
136906 DT Article
136907 DE Joyce; A Portrait of the Artist as a Young Man; aesthetic pursuit;
136908    impersonality
136909 AB Joyce's aesthetic pursuit reflected in A Portrait of the Artist as a
136910    Young Man can be summed up as follows: the principle of stasis; the
136911    nature of art; "impersonality" and "the author' s withdrawal from the
136912    novel"; three characteristics of the artistic beauty: "wholeness",
136913    "harmony", "radiance"; three forms of art: "the lyrical form", "the
136914    epical form", "the dramatic form". His theory of "impersonality", the
136915    core of his aesthetic theory, retorts and overturns the traditional
136916    theories, but is also his contribution to the theories of English
136917    modernist novels. Joyce's aesthetics not only inherits the quintessence
136918    of classical theories, but also transcends them. The modernity and the
136919    value of his aesthetics do lie in his transcendence.
136920 C1 Shanghai Univ, Sch Foreign Languages, Shanghai 200041, Peoples R China.
136921 RP Li, RC, Shanghai Univ, Sch Foreign Languages, Shanghai 200041, Peoples
136922    R China.
136923 CR BLOCK HM, 1962, CRITICISMS CRITIQUES
136924    CONNOLLY TE, 1962, CRITICISMS CRITIQUES
136925    ELLMAN R, 1983, J JOYCE
136926    JOYCE J, 1944, S HERO
136927    JOYCE J, 1959, CRITICAL WRITINGS J
136928    JOYCE J, 1977, PORTRAIT ARTIST YOUN
136929    LI WP, 2000, JOYCES AESTHETIC CON
136930    YIN QP, 2001, HIST CRITICISM BRIT
136931    ZHNAG LX, 1982, COLLECTION TRANSLATE
136932 NR 9
136933 TC 0
136934 SN 1003-7519
136935 J9 FOREIGN LIT STUD
136936 JI Foreign Lit. Stud.
136937 PD OCT
136938 PY 2005
136939 IS 5
136940 BP 91
136941 EP +
136942 PG 7
136943 GA 980WT
136944 UT ISI:000233049600016
136945 ER
136946 
136947 PT J
136948 AU Du, L
136949    Hu, QY
136950    Liu, LM
136951 TI A profit sharing scheme for a two-firm joint venture
136952 SO EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
136953 DT Article
136954 DE joint venture; profit sharing; technology; auction
136955 AB Consider the scenario when two firms are setting up a joint venture.
136956    One firm has a set of technologies and knowhow for a new product while
136957    the other contributes the necessary capital for setting up and running
136958    the venture. The key issue that the two firms face in negotiating the
136959    joint venture is to determine a fair value for the technologies and
136960    knowhow. This paper presents an approach by which each firm bids a
136961    price for the technology with an objective to maximize their own
136962    profits from the joint venture. Provided that their bids satisfy a
136963    cooperation condition, the two firms settle on a price using a simple
136964    valuation formula. We analyze the impact of various factors on the
136965    decision process and provide numerical results to illustrate the
136966    bidding strategies. We conclude that in order to maximize their
136967    profits, it is often more important for both firms to increase the
136968    chance of cooperation than to increase their own shares of the joint
136969    venture. (c) 2004 Published by Elsevier B.V.
136970 C1 Hong Kong Univ Sci & Technol, Dept Ind Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China.
136971    Shanghai Univ, Coll Int Business & Management, Shanghai 201800, Peoples R China.
136972    Xidian Univ, Sch Econ & Management, Xian 710071, Peoples R China.
136973 RP Liu, LM, Hong Kong Univ Sci & Technol, Dept Ind Engn & Engn Management,
136974    Clear Water Bay, Hong Kong, Hong Kong, Peoples R China.
136975 EM liulim@ust.hk
136976 CR BIGLAISER G, 1992, GAME ECON BEHAV, V4, P37
136977    CHE YK, 1999, RAND J ECON, V30, P84
136978    KLEINDORFER PR, 1990, EUROPEAN J OPERATION, V47
136979    LEE TK, 1985, MANAGE SCI, V31, P959
136980    MCAFEE RP, 1987, J ECON LIT, V25, P699
136981    NAIR SK, 1992, EUR J OPER RES, V63, P207
136982    SAMUELSON W, 1986, MANAGE SCI, V32, P1533
136983    SARIT K, 1996, ARTIF INTELL, P297
136984 NR 8
136985 TC 0
136986 SN 0377-2217
136987 J9 EUR J OPER RES
136988 JI Eur. J. Oper. Res.
136989 PD APR 1
136990 PY 2005
136991 VL 170
136992 IS 1
136993 BP 277
136994 EP 292
136995 PG 16
136996 SC Operations Research & Management Science
136997 GA 981TA
136998 UT ISI:000233109700019
136999 ER
137000 
137001 PT J
137002 AU Zhong, SS
137003    Wang, W
137004    Liang, XL
137005 TI Compact ridge waveguide slot antenna array fed by convex waveguide
137006    divider
137007 SO ELECTRONICS LETTERS
137008 DT Article
137009 ID PERFORMANCE
137010 AB A ridge waveguide longitudinal-slot antenna array with a compact
137011    transverse dimension is introduced. To broaden the bandwidth of the E
137012    array, it is divided into two sub-arrays fed by a novel compact convex
137013    waveguide divider. A 16-element uniform linear array at X-band was
137014    fabricated and measured to verify the validity of the design. The
137015    measured bandwidth of S-11 <= - 5 dB reaches 14.9% while the measured
137016    cross-polarisation level is less than -36 dB over the entire bandwidth.
137017 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
137018    E China Res Inst Elect Engn, Hefei 230031, Anhui, Peoples R China.
137019 RP Zhong, SS, Shanghai Univ, Sch Commun & Informat Engn, Box 151,149
137020    Yanchang Rd, Shanghai 200072, Peoples R China.
137021 EM sszhongf@163.com
137022 CR COETZEE JC, 1999, MICROW OPT TECHN LET, V22, P35
137023    FREZZA F, 1995, IEE P-MICROW ANTEN P, V42, P47
137024    GREEN J, 1990, IEEE T ANTENN PROPAG, V38, P1161
137025    HAMADALLAH M, 1989, IEEE T ANTENN PROPAG, V37, P817
137026    KIM DY, 1988, IEEE T ANTENN PROPAG, V36, P1531
137027    POZAR DM, 1998, MICROWAVE ENG
137028    STANGLE M, 2003, IEEE INT S PHAS ARR, P70
137029    WANG W, 2005, MICROW OPT TECHN LET, V44, P91
137030 NR 8
137031 TC 0
137032 SN 0013-5194
137033 J9 ELECTRON LETT
137034 JI Electron. Lett.
137035 PD OCT 13
137036 PY 2005
137037 VL 41
137038 IS 21
137039 BP 1151
137040 EP 1152
137041 PG 2
137042 SC Engineering, Electrical & Electronic
137043 GA 982SH
137044 UT ISI:000233181400005
137045 ER
137046 
137047 PT J
137048 AU Zhang, N
137049    Bao, JC
137050    Li, G
137051    Geng, T
137052    Chen, JK
137053 TI Intergranular tunnelling and field-induced percolation fluctuation of
137054    granular composites (La1-zAgzMnO3)/(MnO2/Mn2O3)
137055 SO CHINESE PHYSICS LETTERS
137056 DT Article
137057 ID GIANT NEGATIVE MAGNETORESISTANCE; ELECTRICAL-TRANSPORT; FILMS;
137058    MANGANITE; RESISTIVITY; BEHAVIOR; SYSTEM
137059 AB We investigate the giant magnetoresistance of composites
137060    (La1-zAgzMnO3)(1-y)(MnO2/Mn2O3)(y). The magnetoresistive property of
137061    the composites shows the characteristics of intergranular tunnelling. A
137062    conductivity leap has been observed around y = 0.7. The composite
137063    (La0.926Ag0.074MnO3)(0.698)(MnO2/Mn2O3)(0.302) has been found to show
137064    the greatest magnetoresistance in the samples. Its room-temperature MR
137065    ratio reaches 24% under a field of 1.8 T. These phenomena suggest a
137066    percolation transformation and a kind of field-induced fluctuation in
137067    percolation in the samples investigated.
137068 C1 Nanjing Normal Univ, Dept Phys, Nanjing 210097, Peoples R China.
137069    Nanjing Normal Univ, Dept Chem, Nanjing 210097, Peoples R China.
137070    Nanjing Normal Univ, Ctr Anal & Measurement, Nanjing 210097, Peoples R China.
137071    Shanghai Univ Sci & Technol, Dept Phys, Shanghai 200000, Peoples R China.
137072 RP Zhang, N, Nanjing Normal Univ, Dept Phys, Nanjing 210097, Peoples R
137073    China.
137074 EM zhangning@njnu.edu.cn
137075 CR BALCELLS L, 1999, APPL PHYS LETT, V74, P4014
137076    BERKOWITZ AE, 1993, J APPL PHYS, V73, P5320
137077    CHAHARA K, 1993, APPL PHYS LETT, V63, P1990
137078    CHEN XJ, 2003, PHYS REV B, V68
137079    CHIEN CL, 1993, J APPL PHYS, V73, P5309
137080    FITZPATRICK JP, 1974, PHYS LETT A, V47, P207
137081    HAMAYA K, 2001, J APPL PHYS 1, V89, P6320
137082    HSU JH, 2003, J APPL PHYS 3, V93, P7702
137083    HUANG BX, 2003, J PHYS D APPL PHYS, V36, P1923
137084    HUESO LE, 2001, J APPL PHYS, V89, P1746
137085    HWANG HY, 1996, PHYS REV LETT, V77, P2041
137086    JIN S, 1994, SCIENCE, V264, P413
137087    KINZEL W, 1983, PERCOLATION STRUCTUR
137088    LIU JM, 2001, APPL PHYS LETT, V78, P1110
137089    ROZENBERG E, 2000, J APPL PHYS, V88, P2578
137090    SANCHEZ RD, 1996, APPL PHYS LETT, V68, P134
137091    SANG H, 1995, APPL PHYS LETT, V67, P2017
137092    SRINIVASAN G, 2001, APPL PHYS LETT, V79, P641
137093    SRINIVASAN G, 2002, APPL PHYS LETT, V80, P464
137094    TAO T, 2000, APPL PHYS LETT, V77, P723
137095    VAZQUEZVAZQUEZ C, 1998, J MATER CHEM, V8, P991
137096    VOGEL AI, 1978, TXB QUANTITATIVE INO
137097    VONHELMOLT R, 1993, PHYS REV LETT, V71, P2331
137098    YE SL, 2002, J MAGN MAGN MATER, V248, P26
137099    ZENER C, 1951, PHYS REV, V82, P403
137100    ZHANG N, 1996, PHYS LETT A, V219, P319
137101    ZHANG N, 1997, PHYS REV B, V56, P8138
137102    ZHANG N, 1999, J VAC SCI TECHNOL B, V17, P1050
137103    ZHANG N, 2005, UNPUB PHYSICA B
137104 NR 29
137105 TC 0
137106 SN 0256-307X
137107 J9 CHIN PHYS LETT
137108 JI Chin. Phys. Lett.
137109 PD NOV
137110 PY 2005
137111 VL 22
137112 IS 11
137113 BP 2940
137114 EP 2943
137115 PG 4
137116 SC Physics, Multidisciplinary
137117 GA 982SB
137118 UT ISI:000233180800059
137119 ER
137120 
137121 PT J
137122 AU Wu, NC
137123    Xia, YB
137124    Tan, SH
137125    Wang, LJ
137126 TI Effect of gas pressure on nanocrystalline diamond films prepared by
137127    electron-assisted chemical vapour deposition
137128 SO CHINESE PHYSICS LETTERS
137129 DT Article
137130 ID HOT-FILAMENT CVD; HYDROGEN; BIAS; NUCLEATION; GROWTH; SYSTEM
137131 AB With use of electron-assisted chemical vapour deposition (EACVD)
137132    technology, nanocrystalline diamond films are successfully deposited on
137133    an alpha-SiC single phase ceramics substrate by means of reduction of
137134    the reactive gas pressure. The structure and surface morphology of the
137135    deposited films are characterized by Raman spectroscopy, x-ray
137136    diffraction (XRD), field emission scanning electron microscopy
137137    (FE-SEAT) and atomic force microscopy (AFM). The results examined by
137138    FE-SEM and AFM show that when the gas pressure was reduced to 0.5-1
137139    kPa, the surface grain size and surface roughness of the diamond film
137140    are decreased greatly to 18-32 nm and 34-58 nm respectively. The grain
137141    sizes estimated from full with at half maximum of (111) XRD peak by the
137142    Scherrer formula are 6-28 nm. However, too high secondary nucleation
137143    rate may result in pores and defects in the deposited films. Only at
137144    suitable gas pressure (I kPa) to deposit films can we obtain
137145    densification and better quality nanocrystalline films.
137146 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
137147    Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
137148 RP Wu, NC, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
137149    China.
137150 EM wunanchun@126.com
137151 CR BOLAND JJ, 1992, SURF SCI, V261, P17
137152    CHANG L, 2000, DIAM RELAT MATER, V9, P283
137153    CUI JB, 1996, APPL PHYS LETT, V69, P3507
137154    DONG LF, 2004, CHINESE PHYS, V13, P1597
137155    DUA AK, 2004, DIAM RELAT MATER, V13, P74
137156    GOEDEN C, 2002, APPL PHYS LETT, V81, P5027
137157    GRUEN DM, 1999, ANNU REV MATER SCI, V29, P211
137158    GU BB, 2004, CHINESE PHYS LETT, V21, P2051
137159    LEE ST, 1997, PHYS REV B, V55, P15937
137160    LI X, 1997, JPN J APPL PHYS 1, V36, P6295
137161    LIN T, 2000, APPL PHYS LETT, V77, P2692
137162    ONG TP, 1989, APPL PHYS LETT, V55, P2063
137163    SUN Z, 2000, DIAM RELAT MATER, V9, P1979
137164    WANG LJ, 2004, CHINESE PHYS LETT, V21, P1161
137165    WANG T, 2004, DIAM RELAT MATER, V13, P6
137166    ZHAO YM, 2004, CHINESE PHYS LETT, V21, P904
137167 NR 16
137168 TC 0
137169 SN 0256-307X
137170 J9 CHIN PHYS LETT
137171 JI Chin. Phys. Lett.
137172 PD NOV
137173 PY 2005
137174 VL 22
137175 IS 11
137176 BP 2969
137177 EP 2972
137178 PG 4
137179 SC Physics, Multidisciplinary
137180 GA 982SB
137181 UT ISI:000233180800068
137182 ER
137183 
137184 PT J
137185 AU Zhang, HF
137186    Wu, RX
137187    Fu, XC
137188 TI The emergence of chaos in complex dynamical networks
137189 SO CHAOS SOLITONS & FRACTALS
137190 DT Article
137191 ID SYNCHRONIZATION; SYSTEMS
137192 AB The emergence of chaos is an important issue in the study of coupled
137193    dynamical networks. In this paper, we. suppose that all nodes are
137194    non-chaotic before they are coupled together, however, the chaotic
137195    state will emerge without changing each node's parameter if these nodes
137196    are connected through a certain type of network. First we give a
137197    sufficient condition for the emergence of chaotic state, then such
137198    mergence in several types of networks are discussed. Moreover, we
137199    extend our results to a general case. Finally, we illustrate our
137200    results by some numerical examples. (c) 2005 Elsevier Ltd. All rights
137201    reserved.
137202 C1 Zhejiang Normal Univ, Coll Math & Phys, Jinhua 321004, Zhejiang, Peoples R China.
137203    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
137204 RP Fu, XC, Zhejiang Normal Univ, Coll Math & Phys, Jinhua 321004,
137205    Zhejiang, Peoples R China.
137206 EM hfzhang@graduate.shu.edu.cn
137207    rxwu@graduate.shu.edu.cn
137208    xcfu@staff.shu.edu.cn
137209 CR BARABASI AL, 1999, SCIENCE, V286, P509
137210    LI X, 2003, IEEE T CIRCUITS-I, V50, P1381
137211    LI X, 2004, PHYSICA A, V338, P367
137212    LU JH, 2002, CHAOS SOLITON FRACT, V14, P529
137213    LU JH, 2004, IEEE T CIRCUITS-I, V51, P787
137214    MORENO Y, 2002, EUR PHYS J B, V26, P521
137215    RANGARAJAN G, 2002, PHYS LETT A, V296, P204
137216    WANG XF, 2001, INT J BIFURCAT CHAOS, V12, P187
137217    WANG XF, 2002, IEEE T CIRCUITS-I, V49, P54
137218    WU CW, 1995, IEEE T CIRCUITS-I, V42, P430
137219 NR 10
137220 TC 0
137221 SN 0960-0779
137222 J9 CHAOS SOLITON FRACTAL
137223 JI Chaos Solitons Fractals
137224 PD APR
137225 PY 2006
137226 VL 28
137227 IS 2
137228 BP 472
137229 EP 479
137230 PG 8
137231 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
137232 GA 982HE
137233 UT ISI:000233147900022
137234 ER
137235 
137236 PT J
137237 AU Gu, YQ
137238    Shao, C
137239    Fu, XC
137240 TI Complete synchronization and stability of star-shaped complex networks
137241 SO CHAOS SOLITONS & FRACTALS
137242 DT Article
137243 ID COUPLED CHAOTIC SYSTEMS
137244 AB The synchronization of the tar-shaped networks are investigated using
137245    linear stability analysis. Three different cases of simple-center node
137246    or multi-center nodes with Logistic map couplings are discussed and the
137247    stability conditions for synchronization are given. The main results
137248    are illustrated via a network of eight nodes with four centers. (c)
137249    2005 Elsevier Ltd. All rights reserved.
137250 C1 Zhejiang Normal Univ, Coll Math & Phys, Jinhua 321004, Zhejiang, Peoples R China.
137251    Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
137252 RP Fu, XC, Zhejiang Normal Univ, Coll Math & Phys, Jinhua 321004,
137253    Zhejiang, Peoples R China.
137254 EM guyaqin@graduate.shu.edu.cn
137255    shaochun@graduate.shu.edu.cn
137256    xcfu@staff.shu.edu.cn
137257 CR AMRITKAR RE, 1991, PHYS REV A, V44, P3407
137258    BARAHONA M, 2002, PHYS REV LETT, V89
137259    CHENG CJ, 2005, CHAOS SOLITON FRACT, V24, P197
137260    FUJISAKA H, 1983, PROG THEOR PHYS, V69, P32
137261    GADE PM, 1996, PHYS REV E, V54, P64
137262    GADE PM, 2000, PHYS REV E A, V62, P6409
137263    HONG H, 2002, PHYS REV E 2, V65
137264    HU G, 1998, PHYS REV E, V58, P4400
137265    JALAN S, CD0307029
137266    JOST J, 2001, PHYS REV E, V65
137267    LU JH, 2002, CHAOS SOLITON FRACT, V14, P529
137268    RANGARAJAN G, 2002, PHYS LETT A, V296, P204
137269    SONIS M, 2002, PHYSICA D, V165, P12
137270    WANG XF, 2002, INT J BIFURCAT CHAOS, V12, P187
137271    YANG SS, 1998, CHAOS SOLITON FRACT, V9, P1703
137272    YANG XS, 2000, CHAOS SOLITON FRACT, V11, P1365
137273    YU YG, 2004, CHAOS SOLITON FRACT, V22, P189
137274    YU YG, 2005, CHAOS SOLITON FRACT, V24, P1233
137275 NR 18
137276 TC 0
137277 SN 0960-0779
137278 J9 CHAOS SOLITON FRACTAL
137279 JI Chaos Solitons Fractals
137280 PD APR
137281 PY 2006
137282 VL 28
137283 IS 2
137284 BP 480
137285 EP 488
137286 PG 9
137287 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
137288 GA 982HE
137289 UT ISI:000233147900023
137290 ER
137291 
137292 PT J
137293 AU Sun, P
137294    Andersson, C
137295    Wei, XC
137296    Cao, LQ
137297    Cheng, ZN
137298    Liu, JH
137299 TI Low cycle fatigue testing and simulation of Sn-8Zn-3Bi and Sn-37Pb
137300    solder joints
137301 SO SOLDERING & SURFACE MOUNT TECHNOLOGY
137302 DT Article
137303 DE fatigue; simulation; alloys; solder
137304 AB Purpose - Sn-Zn based lead free solders with a melting temperature
137305    around 199 degrees C are an attractive alternative to the conventional
137306    Sn-Pb solder and the addition of bismuth improves its wetability.
137307    Whilst lead-free soldering with Sn-8Zn-3Bi has already been used in the
137308    electronics assembly industry, it is necessary to study its low cycle
137309    fatigue properties since such data have not been reported up to now.
137310    Design/methodology/approach - In this study, displacement-control led
137311    low cycle fatigue testing of Sn-8Zn-3Bi and Sn-37Pb solder joints was
137312    done on lap shear samples. The test amplitude was varied whilst the
137313    frequency was kept constant at 0.2 Hz and failure was defined as a 50
137314    per cent load reduction. Finite element (FE) modelling was used for
137315    analysis and the results were compared to the experimental data.
137316    Findings - The microstructure of the Sn-8Zn-3Bi solder showed a mixed
137317    phase of small cellular-shaped and coarser needle-shaped areas. Au-Zn
137318    intermetallic compounds were observed near the interface from the
137319    SEM-EDS observation. The average lifetime for the Sn-8Zn-3Bi solder
137320    joints was 17 per cent longer compared to the Sn-37Pb solder joints.
137321    The cross section observation indicated that the fatigue cracks
137322    propagated along the interface between the solder bulk and the Au/Ni
137323    layer. The locations of maximum equivalent stress from the FE
137324    simulation were found to be at the two opposite corners of the solder
137325    joints, coinciding with the experimental observations of crack
137326    initiation.
137327    Originality/value - This is believed to be the first time, the low
137328    cycle fatigue properties of Sn-8Zn-3Bi solder have been reported.
137329 C1 Shanghai Univ, Sino Swedish Micosyst Integrat Technol Ctr, Shanghai, Peoples R China.
137330    Chalmers Univ Technol, Dept Microtechnol & Nanosci, SinoSwedish Microsyst Integrat Technol Ctr, Gothenburg, Sweden.
137331 RP Sun, P, Shanghai Univ, Sino Swedish Micosyst Integrat Technol Ctr,
137332    Shanghai, Peoples R China.
137333 EM psun@mail.shu.edu.cn
137334    cristina.andersson@mc2.chalmers.se
137335    wxc1028@mail.shu.edu.cn
137336    liqiang.cao@me.chalmers.se
137337    zncheng@mail.shu.edu.cn
137338    johan.liu@mc2.chalmers.se
137339 CR ABTEW M, 2000, MAT SCI ENG R, V27, P95
137340    ANDERSSON C, 2005, MAT SCI ENG A-STRUCT, V394, P20
137341    FUKADA Y, 2003, IEEE T COMPON PACK T, V26, P616
137342    KANCHANOMAI C, 2004, SCRIPTA MATER, V50, P83
137343    KIM KS, 2004, J ALLOY COMPD, V379, P314
137344    KIM KS, 2005, MICROELECTRON RELIAB, V45, P647
137345    KIM YS, 2003, J ALLOY COMPD, V352, P237
137346    PANG JHL, 2004, INT J FATIGUE, V26, P865
137347    SUN P, 2005, P 55 EL COMP TECHN C, P696
137348 NR 9
137349 TC 1
137350 SN 0954-0911
137351 J9 SOLDER SURF MT TECHNOL
137352 JI Solder. Surf. Mt. Technol.
137353 PY 2005
137354 VL 17
137355 IS 4
137356 BP 38
137357 EP 45
137358 PG 8
137359 SC Engineering, Electrical & Electronic; Engineering, Manufacturing;
137360    Materials Science, Multidisciplinary; Metallurgy & Metallurgical
137361    Engineering
137362 GA 980SS
137363 UT ISI:000233039100006
137364 ER
137365 
137366 PT J
137367 AU Gao, Y
137368 TI Representative of quasidifferentials and its formula for a
137369    quasidifferentiable function
137370 SO SET-VALUED ANALYSIS
137371 DT Article
137372 DE nonsmooth analysis; quasidifferential calculus; representative of
137373    quasidifferentials; nonsmooth optimization
137374 ID SETS
137375 AB The quasidifferential of a quasidifferentiable function in the sense of
137376    Demyanov and Rubinov is not uniquely defined. Xia proposed the notion
137377    of the kernelled quasidifferential, which is expected to be a
137378    representative for the equivalent class of quasidifferentials. In the
137379    2-dimensional case, the existence of the kernelled quasidifferential
137380    was shown. In this paper, the existence of the kernelled
137381    quasidifferential in the n-dimensional space (n > 2) is proved under
137382    the assumption that the Minkowski difference and the Demyanov
137383    difference of subdifferential and minus superdifferential coincide. In
137384    particular, given a quasidifferential, the kernelled quasidifferential
137385    can be formulated. Applications to two classes of generalized separable
137386    quasidifferentiable functions are developed.
137387 C1 Shanghai Univ Sci & Technol, Sch Management, Shanghai 200093, Peoples R China.
137388 RP Gao, Y, Shanghai Univ Sci & Technol, Sch Management, 516 Jungong Rd,
137389    Shanghai 200093, Peoples R China.
137390 EM gaoyan1962@263.net
137391 CR CLARKE FH, 1998, NONSMOOTH ANAL CONTR
137392    DEMYANOV VF, 1981, VESTNIK LENINGRAD U, V13, P183
137393    DENG MR, 1991, CHINESE J OPERATIONS, V10, P65
137394    DENYANOV VF, 1986, MATH PROGRAM STUD, V29, P74
137395    DENYANOV VF, 1995, CONSTRUCTIVE NONSMOO
137396    GAO Y, 2000, J OPTIMIZ THEORY APP, V104, P377
137397    GAO Y, 2001, J CONVEX ANAL, V8, P401
137398    GAO Y, 2002, NEW MINIMALITY CIRTE
137399    GRZYBOWSKI J, 1994, ARCH MATH, V63, P173
137400    HIRIARTURRUTY JB, 1993, CONVEX ANAL MINIMIZA
137401    PALLASCHKE D, 1991, B POLISH ACAD SCI MA, V39, P1
137402    RUBINOV AM, 1992, OPTIMIZATION, V23, P179
137403    RUBINOV AM, 2000, QUASIDIFFERENTIABILI, V43, P263
137404    XIA ZQ, 1987, WP8789 IIASA
137405    XIA ZQ, 1993, DEMONSTRATIO MATH, V26, P159
137406    ZHANG LW, 2001, J OPTIMIZ THEORY APP, V108, P439
137407    ZHANG LW, 2002, J CONVEX ANAL, V9, P139
137408 NR 17
137409 TC 0
137410 SN 0927-6947
137411 J9 SET-VALUED ANALYSIS
137412 JI Set-Valued Anal.
137413 PD DEC
137414 PY 2005
137415 VL 13
137416 IS 4
137417 BP 323
137418 EP 336
137419 PG 14
137420 SC Mathematics, Applied
137421 GA 980RZ
137422 UT ISI:000233037200001
137423 ER
137424 
137425 PT J
137426 AU Lu, DQ
137427    Chwang, AT
137428 TI Interfacial waves due to a singularity in a system of two semi-infinite
137429    fluids
137430 SO PHYSICS OF FLUIDS
137431 DT Article
137432 ID SHIP WAVES; FINITE DEPTH; FREE-SURFACE; VISCOUS-FLUID; WAKES; PATTERN
137433 AB The three-dimensional interfacial waves due to a fundamental
137434    singularity steadily moving in a system of two semi-infinite immiscible
137435    fluids of different densities are investigated analytically. The two
137436    fluids are assumed to be incompressible and homogenous. There are three
137437    systems to be considered: one with two inviscid fluids, one with an
137438    upper viscous and a lower inviscid fluid, and one with an upper
137439    inviscid and a lower viscous fluid. The Laplace equation is taken as
137440    the governing equation for inviscid flows while the steady Oseen
137441    equations are taken for viscous flows. The kinematic and dynamic
137442    conditions on the interface are linearized for small-amplitude waves.
137443    The singularity immersed above or beneath the interface is modeled as a
137444    simple source in the inviscid fluid while as an Oseenlet in the viscous
137445    fluid. Based on the integral solutions for the interfacial waves, the
137446    asymptotic representations of wave profiles in the far field are
137447    explicitly derived by means of Lighthill's two-stage scheme. An
137448    analytical solution is presented for the density ratio at which the
137449    maximum wave amplitude occurs. The effects of density ratio, immersion
137450    depth, and viscosity on wave patterns are analytically expressed. It is
137451    found that the wavelength of interfacial waves is elongated in
137452    comparison with that of free-surface waves in a single fluid. (c) 2005
137453    American Institute of Physics.
137454 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
137455    Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China.
137456 RP Chwang, AT, Univ Hong Kong, Dept Mech Engn, Pokfulam Rd, Hong Kong,
137457    Hong Kong, Peoples R China.
137458 EM dqlu@mail.shu.edu.cn
137459    atchwang@hkucc.hku.hk
137460 CR CHAN AT, 1996, PHYS FLUIDS, V8, P421
137461    CHAN AT, 1997, PHYS FLUIDS, V9, P940
137462    CHEN XB, 2001, J FLUID MECH, V445, P77
137463    CHEN XB, 2002, P 17 INT WORKSH WAT, P25
137464    CHUNG YK, 1991, J SHIP RES, V35, P191
137465    CHWANG AT, 1975, J FLUID MECH, V67, P787
137466    CRAPPER GD, 1964, P ROY SOC LOND A MAT, V282, P547
137467    CUMBERBATCH E, 1965, J FLUID MECH, V23, P471
137468    DUFFY DG, 1994, TRANSFORM METHODS SO, P117
137469    GANG W, 2005, ACTA MECH SINICA, V21, P24
137470    HE YS, 1991, APPL MATH MECH, V12, P131
137471    LIGHTHILL MJ, 1960, PHILOS T ROY SOC A, V252, P397
137472    LIU MJ, 2001, PHYS FLUIDS, V13, P3610
137473    LIU MJ, 2002, APPL MATH MECH-ENGL, V23, P1221
137474    LU DQ, 2003, J HYDRODYNAMICS B, V15, P10
137475    LU DQ, 2003, P 17 NAT C HYDR 6 NA, P283
137476    LU DQ, 2004, APPL MATH MECH-ENGL, V25, P647
137477    LU DQ, 2004, RECENT ADV FLUID MEC, P292
137478    LU DQ, 2005, J HYDRODYNAM, V17, P22
137479    LU DQ, 2005, PHYS REV E 2, V71
137480    LURYE JR, 1968, PHYS FLUIDS, V11, P261
137481    LURYE JR, 1973, PHYS FLUIDS, V16, P750
137482    MILGRAM JH, 1988, J SHIP RES, V32, P54
137483    NOBLESSE F, 1995, SHIP TECHNOL RES, V42, P167
137484    PALANIAPPAN D, 2000, ACTA MECH, V193, P1
137485    REED AM, 2002, ANNU REV FLUID MECH, V34, P469
137486    URSELL F, 1960, J FLUID MECH, V8, P418
137487    WEHAUSEN JV, 1960, ENCY PHYS, V3, P446
137488    WEN SL, 1969, INT J ENG SCI, V7, P53
137489    YEUNG RW, 1999, J ENG MATH, V35, P85
137490 NR 30
137491 TC 0
137492 SN 1070-6631
137493 J9 PHYS FLUIDS
137494 JI Phys. Fluids
137495 PD OCT
137496 PY 2005
137497 VL 17
137498 IS 10
137499 AR 102107
137500 DI ARTN 102107
137501 PG 9
137502 SC Physics, Fluids & Plasmas; Mechanics
137503 GA 979JW
137504 UT ISI:000232939200024
137505 ER
137506 
137507 PT J
137508 AU Xu, XM
137509    Ru, P
137510    Weber, HJ
137511 TI Triple-quark elastic scatterings and thermalization.
137512 SO PHYSICS LETTERS B
137513 DT Article
137514 DE triple-quark scattering; transport equation; thermalization
137515 AB Triple-quark elastic scattering amplitudes from perturbative QCD are
137516    first calculated and then used in a transport equation to study the
137517    thermalization of quark matter. By examining momentum isotropy to which
137518    the transport equation leads, we can determine thermalization time and
137519    offer an initial thermal quark distribution function. With an
137520    anisotropic initial quark distribution, which is relevant to quark
137521    matter initially created in a central Au-Au collision at root(S)NN =
137522    200 GeV, the transport equation gives a time of the order of 1.8 fm/c
137523    for quark matter itself to thermalize by the triple-quark scatterings.
137524    (c) 2005 Elsevier B.V. All rights reserved.
137525 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
137526    Chinese Acad Sci, Shanghai Inst Appl Phys, Div Nucl Phys, Shanghai 201800, Peoples R China.
137527    Wuhan Univ Sci & Technol, Dept Phys, Wuhan 430081, Peoples R China.
137528    Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA.
137529 RP Xu, XM, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
137530 EM xmxu@mail.shu.edu.cn
137531 CR ACKERMANN KH, 2001, PHYS REV LETT, V86, P402
137532    ADLER C, 2001, PHYS REV LETT, V87
137533    ADLER C, 2002, PHYS REV C, V66
137534    ADLER C, 2003, PHYS REV LETT, V90
137535    ADLER SS, NUCLEX0411040
137536    ADLER SS, 2003, PHYS REV LETT, V91
137537    BASS SA, 2003, PHYS LETT B, V551, P277
137538    BIRO TS, 1992, PHYS LETT B, V283, P171
137539    CHEN LW, 2004, PHYS REV C, V69
137540    COMBRIDGE BL, 1977, PHYS LETT B, V70, P234
137541    COOPER F, 2003, PHYS LETT B, V555, P181
137542    CUTLER R, 1978, PHYS REV D, V17, P196
137543    ESKOLA KJ, 1996, PHYS LETT B, V374, P20
137544    ESKOLA KJ, 2001, PHYS LETT B, V497, P39
137545    ESKOLA KJ, 2003, NUCL PHYS A, V715, C561
137546    ESKOLA KJ, 2003, PHYS LETT B, V566, P187
137547    GEIGER K, 1992, PHYS REV D, V46, P4965
137548    GEIGER K, 1992, PHYS REV D, V46, P4986
137549    GYULASSY M, 1994, COMPUT PHYS COMMUN, V83, P307
137550    GYULASSY M, 2001, NUCL PHYS B, V594, P371
137551    GYULASSY M, 2002, PHYS LETT B, V526, P301
137552    HEINZ U, 2002, P 18 WINT WORKSH NUC
137553    HIRANO T, 2002, PHYS REV C, V65
137554    HUOVINEN P, 2003, NUCL PHYS A, V715, C299
137555    LACEY RA, 2002, NUCL PHYS A, V698, C559
137556    LEVAI P, 1995, PHYS REV C, V51, P3326
137557    MOLNAR D, 2002, NUCL PHYS A, V697, P495
137558    MORITA K, 2002, PHYS REV C, V66
137559    SHURYAK EV, 2003, NUCL PHYS A, V715, C289
137560    SNELLINGS RJM, 2002, NUCL PHYS A, V698, C193
137561    TEANEY D, NUCLTH0110037
137562    WANG XN, 1991, PHYS REV D, V44, P3501
137563    WANG XN, 1997, PHYS REP, V280, P287
137564    XU XM, 1996, PHYS REV C, V53, P3051
137565    XU XM, 2004, NUCL PHYS A, V744, P347
137566    ZHANG B, 1998, PHYS REV C, V58, P1175
137567 NR 36
137568 TC 0
137569 SN 0370-2693
137570 J9 PHYS LETT B
137571 JI Phys. Lett. B
137572 PD NOV 24
137573 PY 2005
137574 VL 629
137575 IS 2-4
137576 BP 68
137577 EP 76
137578 PG 9
137579 SC Physics, Multidisciplinary
137580 GA 981BI
137581 UT ISI:000233061700003
137582 ER
137583 
137584 PT J
137585 AU Tao, K
137586    Zhang, QR
137587    Liu, TY
137588    Zhang, FW
137589 TI Ab initio lattice relaxation and compensation mechanism for the lightly
137590    fluorine doped PbWO4
137591 SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE
137592 DT Article
137593 ID LEAD TUNGSTATE CRYSTALS; SINGLE-CRYSTALS; ABSORPTION-BAND; ORIGIN
137594 AB The lattice structure of lightly F-doped PbWO4 (F- : PWO) crystal is
137595    optimized within the framework of density functional theory. The
137596    lattice relaxation results demonstrate that the F ion and two
137597    longer-bond O2- ions shift towards V-Pb(2-) while other O(2-)ions and
137598    cations Ph2+ and W6+ shift outwards. By analyzing the electronic
137599    structure of lightly F-:PWO crystals, the role of the F in F:PWO is
137600    revealed and it can also be concluded that the two longer-bond O2-
137601    could share a hole forming a diatomic molecular ion O-2(3-) Thus the
137602    V-Pb(2-) is completely compensated by a F ion and a diatomic molecular
137603    ion O-2(3-). Thus the doping of the F- ion could effectively restrict
137604    the formation of [O-2(3-)-V-Pb-O-2(3-)] and weaken the 420 nm
137605    absorption band and improve the scintillation property of the PWO. (c)
137606    2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
137607 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
137608 RP Tao, K, Shanghai Univ Sci & Technol, Coll Sci, 516 Jungong Rd, Shanghai
137609    200093, Peoples R China.
137610 EM taokun76@hotmail.com
137611 CR ABRAHAM YB, 2001, PHYS REV B, V64
137612    ANNENKOV A, 1998, PHYS STATUS SOLIDI A, V170, P47
137613    ANNENKOV AN, 1996, PHYS STATUS SOLIDI A, V156, P493
137614    EPELBAUM BM, 1997, J CRYST GROWTH, V178, P426
137615    FANG SG, 1998, PHYS COLOR CTR CRYST
137616    FENG XQ, 1997, J INORGANIC MAT, V12, P449
137617    GONZE X, 2002, COMP MATER SCI, V25, P478
137618    HAUNG HW, 2003, PHYS STATUS SOLIDI A, V196, R7
137619    HIZHNYI YA, 2003, J LUMIN, V102, P688
137620    KORZHIK MV, 1996, SCINT 95, V241
137621    LIAO JY, 1997, J INORGANIC MAT, V12, P286
137622    LIN QS, 2001, SOLID STATE COMMUN, V118, P221
137623    LIU XC, 2002, PHYS STATUS SOLIDI A, V190, R1
137624    MOREAU JM, 1996, J ALLOY COMPD, V238, P46
137625    NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311
137626    NIKL M, 1996, PHYS STATUS SOLIDI B, V196, K7
137627    TAO K, 2005, CHINESE PHYS LETT, V2, P215
137628    ZHANG Y, 1998, PHYS REV B, V57, P12738
137629 NR 18
137630 TC 0
137631 SN 0031-8965
137632 J9 PHYS STATUS SOLIDI A-APPL MAT
137633 JI Phys. Status Solidi A-Appl. Mat.
137634 PD OCT
137635 PY 2005
137636 VL 202
137637 IS 13
137638 BP 2413
137639 EP 2418
137640 PG 6
137641 SC Physics, Condensed Matter
137642 GA 979SG
137643 UT ISI:000232964500006
137644 ER
137645 
137646 PT J
137647 AU Chen, J
137648    Tan, ZY
137649    Zhao, R
137650    Feng, XH
137651    Shi, J
137652    Ji, YH
137653 TI The modulation effects of BmK I, an alpha-like scorpion neurotoxin, on
137654    voltage-gated Na+ currents in rat dorsal root ganglion neurons
137655 SO NEUROSCIENCE LETTERS
137656 DT Article
137657 DE sodium channel; subtype; scorpion toxin
137658 ID BUTHUS-MARTENSI KARSCH; SODIUM-CHANNEL; AUXILIARY SUBUNIT; VENOM;
137659    INJECTION; BINDING; TOXIN
137660 AB The present study investigated the effects of BmK I, a Na+ channel
137661    receptor site 3 modulator purified from the Buthus martensi Karsch
137662    (BmK) venom, on the voltage-gated sodium currents in dorsal root
137663    ganglion (DRG) neurons. Whole-cell patch-clamping was used to record
137664    the tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R)
137665    components of voltage-gated Na+ currents in small DRG neurons. It was
137666    found that the inhibitory effect of BmK I on open-state inactivation of
137667    TTX-S Na+ currents was stronger than that of TTX-R Na+ currents. In
137668    addition, BmK I exhibited a selective enhancing effect on
137669    voltage-dependent activation of TTX-S currents, and an opposite effect
137670    on time-dependent activation of TTX-S and TTX-R Na+ currents. The
137671    results suggested that the inhibitory effect of BmK I on open-state
137672    inactivation might contribute to the increase of peak TTX-S and TTX-R
137673    currents, and the enhancing effect of BmK I on time-dependent
137674    activation might also contribute to the increase of peak TTX-S
137675    currents. It was further suggested that a combined effect of BmK I
137676    including inhibiting the inactivation of TTX-S and TTX-R channels,
137677    accelerating activation and decreasing the activation threshold of
137678    TTX-S channels, might produce a hyperexcitability of small DRG neurons,
137679    and thus contribute to the BmK I-induced hyperalgesia. (C) 2005
137680    Elsevier Ireland Ltd. All rights reserved.
137681 C1 Shanghai Univ, Sch Life Sci, Shanghai 200444, Peoples R China.
137682    Chinese Acad Sci, Inst Biol Sci, Shanghai Inst Physiol, Grad Sch, Shanghai, Peoples R China.
137683    Yale Univ, Sch Med, Dept Anesthesiol, New Haven, CT 06510 USA.
137684 RP Ji, YH, Shanghai Univ, Sch Life Sci, Shang Da Rd 99, Shanghai 200444,
137685    Peoples R China.
137686 EM yhji@staff.shu.edu.cn
137687 CR BAI ZT, 2003, TOXICOL APPL PHARM, V192, P78
137688    BLACK JA, 1996, MOL BRAIN RES, V43, P117
137689    CESTELE S, 2000, BIOCHIMIE, V82, P883
137690    CHEN B, 2001, NEUROTOXICOL TERATOL, V23, P675
137691    GOUDET C, 2001, FEBS LETT, V495, P61
137692    HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85
137693    HODGKIN AL, 1952, J PHYSIOL, V117, P500
137694    JI YH, 1996, TOXICON, V34, P987
137695    KAYANO T, 1988, FEBS LETT, V228, P187
137696    LI YJ, 2000, J PEPT RES, V56, P195
137697    LIU LH, 2005, FASEB J, V19, P594
137698    MORGAN K, 2000, P NATL ACAD SCI USA, V97, P2308
137699    OGATA N, 1992, DEV BRAIN RES, V65, P93
137700    RENGANATHAN M, 2002, MOL BRAIN RES, V106, P70
137701    ROGERS JC, 1996, J BIOL CHEM, V271, P15950
137702    SAAB CY, 2002, NEUROSCI LETT, V331, P79
137703    SONG JH, 1997, J PHARMACOL EXP THER, V282, P707
137704    SUN HY, 2005, TOXICOL IN VITRO, V19, P183
137705    WAXMAN SG, 1999, P NATL ACAD SCI USA, V96, P7635
137706    YU FH, 2003, J NEUROSCI, V23, P7577
137707 NR 20
137708 TC 0
137709 SN 0304-3940
137710 J9 NEUROSCI LETT
137711 JI Neurosci. Lett.
137712 PD DEC 23
137713 PY 2005
137714 VL 390
137715 IS 2
137716 BP 66
137717 EP 71
137718 PG 6
137719 SC Neurosciences
137720 GA 980FK
137721 UT ISI:000232999400002
137722 ER
137723 
137724 PT J
137725 AU Xiao, JK
137726    Li, Y
137727 TI Analysis of method of lines for a novel open truncated circular-groove
137728    guide
137729 SO JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS
137730 DT Article
137731 AB Groove guide is a millimeter wave and sub-millimeter wave transmission
137732    line. It has some characteristics that are superior to the other
137733    transmission lines such as simple structure, easy manufacture for its
137734    large size, low loss, low dispersion and wide bandwidth etc., when
137735    operational frequency is higher than 100 GHz. The groove guide with
137736    arbitrary cross-section is analyzed by using the method of lines in
137737    this paper. The correctness of the analytic model for solving this
137738    guide is demonstrated. A novel truncated circular-groove guide is
137739    presented and its transmission characteristics are numerically
137740    calculated and analyzed. It can be consulted for theoretical
137741    researching of groove guide and disposing electromagnetic field
137742    boundary value problems. The analytic method in this paper has some
137743    virtues such as easy formulation, less computation and universal
137744    application etc.
137745 C1 Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
137746 RP Xiao, JK, Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
137747 CR CHOI YM, 1984, INFRARED MILLIMETER, V11, CH11
137748    CHOI YM, 1987, IEEE MTT S INT MICR, P165
137749    HONG W, 1993, PRINCIPLES APPL METH, P1
137750    HU C, 1995, INT J INFRARED MILLI, V16, P401
137751    SHI WM, 1996, INT J INFRARED MILLI, V17, P1957
137752    XU SJ, 1993, INT J INFRARED MILLI, V14, P1055
137753 NR 6
137754 TC 0
137755 SN 0920-5071
137756 J9 J ELECTROMAGNET WAVE APPLICAT
137757 JI J. Electromagn. Waves Appl.
137758 PY 2005
137759 VL 19
137760 IS 13
137761 BP 1795
137762 EP 1805
137763 PG 11
137764 SC Engineering, Electrical & Electronic; Physics, Applied; Physics,
137765    Mathematical
137766 GA 980BA
137767 UT ISI:000232987700008
137768 ER
137769 
137770 PT J
137771 AU Liu, JK
137772    Wu, QS
137773    Ding, YP
137774 TI Self-assembly and fluorescent modification of hydroxyapatite nanoribbon
137775    spherulites
137776 SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
137777 DT Article
137778 DE fluorescence; hydroxyapatite; nanostructures; self-assembly
137779 ID HOLLOW SPHERES; CALCIUM-PHOSPHATE; NANOBELTS; NANOSTRUCTURES;
137780    SUPERSTRUCTURES; TRANSFORMATION; ORGANIZATION; NANOSPHERES; NUCLEATION
137781 AB Hydroxyapatite nanoribbon spherulites have been successfully
137782    synthesized, with the bioactive eggshell membrane as directing template
137783    and in the presence of ethylenediamine, in a one-step reaction under
137784    mild conditions. The spherulites are about 2.5 mu m in diameter and the
137785    extended nanoribbon about 1.1 mu m long. The spherulites were modified
137786    with fluorescein to obtain a fluorescent probe material with strong
137787    luminescence. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim,
137788    Germany, 2005).
137789 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
137790    Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
137791 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
137792 EM qswu@mail.tongji.edu.cn
137793    ypding@mail.shu.edu.cn
137794 CR AJIKUMAR PK, 2003, BIOMACROMOLECULES, V4, P1321
137795    ANTONIETTI M, 1998, CHEM-EUR J, V4, P2493
137796    BOWDEN N, 1997, SCIENCE, V276, P233
137797    CAO XB, 2004, ADV MATER, V16, P649
137798    CARUSO F, 1998, SCIENCE, V282, P1111
137799    COLFEN H, 2003, ANGEW CHEM INT EDIT, V42, P2350
137800    DUAN HW, 2001, J AM CHEM SOC, V123, P12097
137801    EULISS LE, 2004, CHEM COMMUN, V15, P1736
137802    FLEMING MS, 2001, CHEM MATER, V13, P2210
137803    HIRAI T, 2000, LANGMUIR, V16, P955
137804    HUANG JX, 2000, ADV MATER, V12, P808
137805    JIANG Y, 2004, J PHYS CHEM B, V108, P784
137806    LI XL, 2003, CHEM-EUR J, V9, P2726
137807    LI YD, 2001, J AM CHEM SOC, V123, P9904
137808    LIU B, 2004, J AM CHEM SOC, V126, P8124
137809    LIU ZP, 2003, ADV MATER, V15, P936
137810    LOU XW, 2003, J AM CHEM SOC, V125, P2697
137811    LOVE JC, 2003, J AM CHEM SOC, V125, P12696
137812    MA C, 2004, J AM CHEM SOC, V126, P708
137813    MAITI A, 2003, NANO LETT, V3, P1025
137814    PACHOLSKI C, 2002, ANGEW CHEM INT EDIT, V41, P1188
137815    PAN ZW, 2001, SCIENCE, V291, P1947
137816    PARK S, 2004, SCIENCE, V303, P348
137817    PENG Q, 2003, ANGEW CHEM INT EDIT, V42, P3027
137818    RHEE SH, 1999, BIOMATERIALS, V20, P2155
137819    SHI HT, 2002, CHEM COMMUN, V16, P1704
137820    SHI HT, 2003, ADV MATER, V15, P1647
137821    SUN XM, 2004, ANGEW CHEM INT EDIT, V43, P597
137822    SUN YG, 2003, NANO LETT, V3, P675
137823    SWAMI A, 2003, CHEM MATER, V15, P17
137824    VELIKOV KP, 2002, SCIENCE, V296, P106
137825    WANG CF, 2004, CHEM COMMUN, V15, P1766
137826    WHITESIDES GM, 2002, SCIENCE, V295, P2418
137827    WU CZ, 2003, J PHYS CHEM B, V107, P13583
137828    YANG D, 2002, ADV MATER, V14, P1543
137829    YANG PD, 2003, NATURE, V425, P243
137830    YU SH, 2004, CRYST GROWTH DES, V4, P33
137831    YUAN JK, 2003, J AM CHEM SOC, V125, P4966
137832    ZHANG J, 2004, J PHYS CHEM B, V108, P7002
137833    ZHANG XT, 2004, CHEM COMMUN, V16, P1852
137834 NR 40
137835 TC 0
137836 SN 1434-1948
137837 J9 EUR J INORG CHEM
137838 JI Eur. J. Inorg. Chem.
137839 PD OCT 21
137840 PY 2005
137841 IS 20
137842 BP 4145
137843 EP 4149
137844 PG 5
137845 SC Chemistry, Inorganic & Nuclear
137846 GA 979RG
137847 UT ISI:000232961900021
137848 ER
137849 
137850 PT J
137851 AU Shi, ZJ
137852    Tang, XH
137853    Ni, HW
137854    Cao, WG
137855 TI Synthesis and characterization of two kinds of perfluromethylcoumarins
137856 SO CHINESE JOURNAL OF ANALYTICAL CHEMISTRY
137857 DT Article
137858 DE nuclear magnetic resonance; mass spectroscopy; infrared spectroscopy;
137859    Ethyl 4; 4; 4-trifluoroacetoacetate; m-substituted phenol
137860 AB Perfluromethylcoumarins was obtained by the reaction of m-substituted
137861    phenol and Ethyl 4, 4, 4-trifluoro-2-butynoate or Ethyl 4, 4,
137862    4-trifluoroacetoacetate. The products were analyzed by H-1 NMR C-13
137863    NMR, IR, MS and element analysis. The UV-visible spectra of these
137864    products were also studied.
137865 C1 Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
137866    Chinese Acad Sci, Shanghai Inst Organ Chem, Key Lab Organofluorine Chem, Shanghai 200032, Peoples R China.
137867 RP Shi, ZJ, Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
137868 CR DING WY, 1993, J CHEM SOC P1, P855
137869    ISSA Y, 1998, TETRAHEDRON LETT, V39, P2391
137870    JI XS, 1997, CHINESE J MAGNETIC R, V14, P185
137871    SHI ZJ, 2004, CHINESE J ANAL CHEM, V32, P161
137872    TANG XH, 2004, CHINESE J MAGNETIC R, V21, P354
137873 NR 5
137874 TC 0
137875 SN 0253-3820
137876 J9 CHINESE J ANAL CHEM
137877 JI Chin. J. Anal. Chem.
137878 PD OCT
137879 PY 2005
137880 VL 33
137881 IS 10
137882 BP 1452
137883 EP 1454
137884 PG 3
137885 SC Chemistry, Analytical
137886 GA 980XP
137887 UT ISI:000233051800024
137888 ER
137889 
137890 PT J
137891 AU Li, CZ
137892    Yang, J
137893    Yao, LX
137894    Lu, WC
137895    Chen, NY
137896 TI Study on sherds excavated in Laohudong Kiln by chemometrics method
137897 SO CHINESE JOURNAL OF ANALYTICAL CHEMISTRY
137898 DT Article
137899 DE ancient ceramic; support vector machine; Laohudong Kiln; handed down Ge
137900    Ware; Wansong Mountain
137901 AB Chemometrics methods such as support vector machine (SVM) algorithm and
137902    feature selection methods were applied to the study on sherds excavated
137903    at Laohudong Kiln in Hangzhou. As a new type of chemometrics method,
137904    SVM can effectively handle problems with small number of samples and
137905    many redundant and/or irrelevant features especially when combined with
137906    feature selection methods. Ancient ceramic can be distinguished by
137907    analytical chemistry methods of components measured. Now too few
137908    samples and too many chemical components are measured that they will
137909    make the chemometrics methods be overffiting and the model to
137910    distinguish the sherds be not confident. So SVM is combined with the
137911    backward search feature selection algorithm and other chemometrics
137912    methods like Fisher discrimination algorithm to treat the problems of
137913    place decision and period decision of sherds excavated in Laohudong
137914    Kiln and the handed down Ge Ware. Modeling results show that (1) sherds
137915    excavated in Laohudong Kiln is different from those in Jiaotanxia Kiln,
137916    (2) sherds collected in Wansong Mountain is from Laohudong Kiln, (3)
137917    the handed down Ge Ware might be the products in Yuan Dynasty. From
137918    these works, It is clear that combined with chemical analysis, SVM can
137919    be a new kind of useful chemometrics method to treat the problems of
137920    place decision. and period decision of ancient. ceramic. Keywords
137921    Ancient ceramic, support vector machine, Laohudong kiln, handed down Ge
137922    Ware, Wansong
137923 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
137924    Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China.
137925    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
137926 RP Li, CZ, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R
137927    China.
137928 CR CHEN NY, 2004, SUPPORT VECTOR MACHI, P74
137929    CRISTIANINI N, 2000, INTRO SUPPORT VECTOR, P93
137930    GUO JK, 1997, CHINESE CERAMIC SOC, V25, P614
137931    LI BP, 2003, CHINESE SCI BULL, V48, P659
137932    LI GZ, 2005, IN PRESS COMPUTERS B
137933    LI JZ, 2000, J BUILDING MAT, V3, P297
137934    LI JZ, 2003, J BUILDING MAT, V6, P118
137935    PUDIL P, 1994, PATTERN RECOGN LETT, V15, P1119
137936 NR 8
137937 TC 0
137938 SN 0253-3820
137939 J9 CHINESE J ANAL CHEM
137940 JI Chin. J. Anal. Chem.
137941 PD OCT
137942 PY 2005
137943 VL 33
137944 IS 10
137945 BP 1465
137946 EP 1468
137947 PG 4
137948 SC Chemistry, Analytical
137949 GA 980XP
137950 UT ISI:000233051800028
137951 ER
137952 
137953 PT J
137954 AU Guo, BY
137955    Wang, ZQ
137956    Wan, ZS
137957    Chu, DL
137958 TI Second order Jacobi approximation with applications to fourth-order
137959    differential equations
137960 SO APPLIED NUMERICAL MATHEMATICS
137961 DT Article
137962 DE second order Jacobi approximation; spectral method for fourth-order
137963    problems; convergence; numerical results
137964 ID FINITE-ELEMENT-METHOD; P-VERSION; HILBERT-SPACES
137965 AB Second order Jacobi approximation in non-uniformly weighted Sobolev
137966    space is investigated. Some approximation results on various orthogonal
137967    projections are established, which serve as the mathematical foundation
137968    of Jacobi spectral methods for differential equations of fourth order.
137969    Jacobi spectral schemes are provided for several model problems. The
137970    convergence is proved. Numerical results agree well with theoretical
137971    analysis and show the efficiency of this new approach. (c) 2005 IMACS.
137972    Published by Elsevier B.V. All rights reserved.
137973 C1 Shanghai Normal Univ, Dept Math, Div Comp Sci, E Inst, Shanghai 200234, Peoples R China.
137974    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
137975    Natl Univ Singapore, Dept Math, Singapore 117543, Singapore.
137976 RP Guo, BY, Shanghai Normal Univ, Dept Math, Div Comp Sci, E Inst,
137977    Shanghai 200234, Peoples R China.
137978 EM byguo@shnu.edu.cn
137979 CR BABUSKA I, 2000, NUMER MATH, V85, P219
137980    BABUSKA I, 2002, SIAM J NUMER ANAL, V39, P1512
137981    BEDHACHMI Z, 2001, SIAM J NUMER ANAL, V38, P1926
137982    BERGH J, 1976, INTERPOLATION SPACES
137983    BERNARDI C, 1997, HDBK NUM AN 2, V5, P209
137984    BERNARDI C, 1999, SERIES APPL MATH, V3
137985    BOYD JP, 1989, CHEBYSHEV FOURIER SP
137986    CANUTO C, 1988, SPECTRAL METHODS FLU
137987    EZZIRANI A, 1999, MATH COMPUT, V225, P217
137988    FUNARO D, 1992, POLYNOMIAL APPROXIMA
137989    GOTTLIEB D, 1977, NUMERICAL ANAL SPECT
137990    GUO BY, 1998, SPECTRAL METHODS THE
137991    GUO BY, 2000, J MATH ANAL APPL, V243, P373
137992    GUO BY, 2000, J SCI COMPUT, V15, P117
137993    GUO BY, 2000, SIAM J NUMER ANAL, V37, P621
137994    GUO BY, 2001, ADV COMPUT MATH, V14, P227
137995    GUO BY, 2002, INT J NUMER METH ENG, V53, P65
137996    GUO BY, 2004, J APPROX THEORY, V128, P1
137997    HARDY GH, 1952, INEQUALITIES
137998    JUNGHANNS VP, 1984, WISS SCHR TU K MARX, V26, P250
137999    KARNIADAKIS G, 1999, SPECTRAL HP ELEMENT
138000    KUFNER A, 1980, WEIGHTED SOBOLEV SPA
138001    LI H, 2001, THESIS SHANGHAI U SH
138002    LIONS JL, 1972, NONHOMOGENEOUS BOUND
138003    STEPHAN EP, 1989, MATH COMPUT, V52, P31
138004    WANG ZQ, 2002, J MATH ANAL APPL, V274, P374
138005 NR 26
138006 TC 0
138007 SN 0168-9274
138008 J9 APPL NUMER MATH
138009 JI Appl. Numer. Math.
138010 PD DEC
138011 PY 2005
138012 VL 55
138013 IS 4
138014 BP 480
138015 EP 502
138016 PG 23
138017 SC Mathematics, Applied
138018 GA 980BU
138019 UT ISI:000232989700008
138020 ER
138021 
138022 PT J
138023 AU Qiu, WD
138024 TI Converting normal DLP-based signatures into blind
138025 SO APPLIED MATHEMATICS AND COMPUTATION
138026 DT Article
138027 DE blind signature; discrete logarithm problem; electronic cash system
138028 ID CASH SYSTEMS; ANONYMITY
138029 AB Since the concept of blind signature was first introduced by Chaum,
138030    there are many applications of blind signatures. Especially, blind
138031    signatures have been applied widely in anonymous E-Cash systems. The
138032    most used blind signatures in E-Cash systems are based on discrete
138033    logarithm problem (DLP ill short).
138034    This paper investigates the method to construct DLP-based blind
138035    signatures and tries to generalize how can these blind signatures be
138036    utilized to build double-spending resistant anonymous E-Cash systems.
138037    (c) 2005 Elsevier Inc. All rights reserved.
138038 C1 Shanghai Univ, Sch Informat Secur Engn, Shanghai 200030, Peoples R China.
138039    Chinese Acad Sci, Grad Sch, State Key Lab Informat Secur, Natl Lab Modern Commun, Beijing 100864, Peoples R China.
138040 RP Qiu, WD, Shanghai Univ, Sch Informat Secur Engn, Shanghai 200030,
138041    Peoples R China.
138042 EM qiuwd@sjtu.edu.cn
138043 CR ABE M, 1996, LNCS, V1163, P244
138044    ABE M, 1997, P 1997 SCIS SCIS 97
138045    ABE M, 2000, LECT NOTES COMPUT SC, V1880, P271
138046    BRANDS S, 1993, LNCS, V773, P302
138047    BRICKELL E, 1995, P 6 ANN ACM SIAM S D, P457
138048    CAMENISCH J, 1994, LECT NOTES COMPUTER, V950, P428
138049    CAMENISCH J, 1996, ESORICS 96, P33
138050    CAMENISCH J, 1996, P 3 ACM C COMP COMM, P88
138051    CHAUM D, 1983, ADV CRYPTOLOGY CRYPT, V82, P199
138052    CHAUM D, 1993, ADV CRYPTOLOGY, V92, P1
138053    FRANKEL Y, 1996, LECT NOTES COMPUTER, V1163, P286
138054    GAUD M, 2003, LECT NOTES COMPUT SC, V2742, P34
138055    HORSTER P, 1994, TR946 U TECH CHEM ZW
138056    MAITLAND G, 2001, LNCS, V2229, P461
138057    MAITLAND G, 2002, LECT NOTES COMPUTER, V2274, P99
138058    NYBERG K, 1993, C COMP COMM SEC CCS, P58
138059    OKAMOTO T, 1993, LECT NOTES COMPUTER, V740, P31
138060    QIU WD, 2002, LECT NOTES COMPUT SC, V2433, P177
138061    STADLER M, 1995, LNCS, V921, P209
138062    TRAORE J, 1999, LECT NOTES COMPUT SC, V1587, P228
138063    TRAORE J, 2003, LECT NOTES COMPUTER, V2727, P237
138064    ZHANG FG, 2002, LECT NOTES COMPUT SC, V2501, P533
138065 NR 22
138066 TC 0
138067 SN 0096-3003
138068 J9 APPL MATH COMPUT
138069 JI Appl. Math. Comput.
138070 PD NOV 1
138071 PY 2005
138072 VL 170
138073 IS 1
138074 BP 657
138075 EP 665
138076 PG 9
138077 SC Mathematics, Applied
138078 GA 979TR
138079 UT ISI:000232968200049
138080 ER
138081 
138082 PT J
138083 AU Shi, CH
138084    Qiu, XJ
138085    An, WK
138086    Li, RX
138087 TI Influence of intense pulse laser on penetron-atomic ionization in
138088    muon-catalysed fusion
138089 SO ACTA PHYSICA SINICA
138090 DT Article
138091 DE muon; fusion; laser; ionization
138092 ID ABOVE-THRESHOLD IONIZATION; MULTIPHOTON IONIZATION; ELECTRON
138093    LOCALIZATION; SCHRODINGER-EQUATION; SPECTRAL METHOD; FIELD;
138094    AMPLIFICATION; RADIATION; PLASMA; XENON
138095 AB In this paper, the one-dimensional time-dependent Schrodinger equation
138096    is numerically solved; in muon-catalysed fusion, the influence of
138097    different laser intensities and wavelengths on the mu(3) He ionization
138098    is studied. Results show that the ionization probability is about 2.7
138099    percent when the magnitude of laser intensity is from 10(19) to loll
138100    W/cm(2), and can increase obviously when the laser intensity reaches
138101    3.0 x 10(24) W/cm(2). Furthermore, the ionization probability increases
138102    with the laser intensity and wavelength, that is, to enhance the
138103    efficiency of the muon-catalysed fusion.
138104 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
138105    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
138106    Hunan Inst Sci & Technol, Dept Phys, Yueyang 414000, Peoples R China.
138107 RP Shi, CH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
138108 EM shi-chunhua@163.com
138109    xjqiu@mail.shu.edu.cn
138110 CR *APPL ION BEAM PHY, 2001, APPL ION BEAM PHYS L, P2
138111    AGOSTINI P, 1979, PHYS REV LETT, V42, P1127
138112    ALVAREZ LW, 1957, PHYS REV, V105, P1127
138113    BUCKSBAUM PH, 1987, J OPT SOC AM B, V4, P760
138114    DAVIES BL, 1992, SOV J QUANTUM ELECTR, V22, P2899
138115    DUBEITIS A, 1992, OPT COMMUN, V88, P437
138116    FEIT MD, 1982, J COMPUT PHYS, V47, P412
138117    FRANK FC, 1947, NATURE, V160, P525
138118    FUKUSHIMA K, 1988, PHYS REV B, V38, P3028
138119    GIUSTI SA, 1995, J PHYS B ATOM MOL PH, V28, P309
138120    HE JT, 2003, PHYSICS, V18, P461
138121    HEATHER RW, 1991, PHYS REV A, V44, P7560
138122    HERMANN MR, 1988, PHYS REV A, V38, P6000
138123    HU CY, 1986, PHYS REV A, V34, P2536
138124    JAVANAINEN J, 1988, PHYS REV A, V38, P3430
138125    JOSHI C, 1995, PHYS TODAY, V1, P361
138126    KRAUSE JL, 1992, PHYS REV A, V45, P4998
138127    KRIVEC R, 1995, PHYS REV A, V52, P221
138128    KRUIT P, 1983, PHYS REV A, V28, P248
138129    LATINNE O, 1994, EUROPHYS LETT, V26, P333
138130    LING K, 1993, J PHYS B ATOM MOL PH, V26, P783
138131    MALKIN VM, 2000, PHYS REV LETT, V84, P1208
138132    MOUROU G, 1998, PHYS TODAY, V1, P22
138133    MULLER HG, 1983, J PHYS B-AT MOL OPT, V16, L679
138134    NEIL GR, 2003, NUCL INSTRUM METH A, V507, P537
138135    PARKER J, 1989, PHYS REV A, V40, P5651
138136    PERRY MD, 1994, SCIENCE, V264, P9170
138137    SEIDEMAN T, 1995, PHYS REV LETT, V75, P2819
138138    SHEN YR, 1984, PRINCIPLE NONLINEAR
138139    SHVETS G, 1998, PHYS REV LETT, V81, P4879
138140    SU Q, 1990, PHYS REV LETT, V64, P862
138141    SU Q, 1996, J PHYS B-AT MOL OPT, V29, P5755
138142    VERLUISE F, 2000, OPT LETT, V25, P575
138143    ZUO T, 1995, PHYS REV A, V52, R2511
138144 NR 34
138145 TC 0
138146 SN 1000-3290
138147 J9 ACTA PHYS SIN-CHINESE ED
138148 JI Acta Phys. Sin.
138149 PD SEP
138150 PY 2005
138151 VL 54
138152 IS 9
138153 BP 4087
138154 EP 4091
138155 PG 5
138156 SC Physics, Multidisciplinary
138157 GA 960DD
138158 UT ISI:000231569500023
138159 ER
138160 
138161 PT J
138162 AU Yu, JY
138163    Liu, BX
138164    Xu, DJ
138165 TI (2,2 '-Diamino-4,4 '-bi-1,3-thiazole-kappa N-2,N ')bis(glycinato-kappa
138166    N-2,O)cobalt(II) dihydrate
138167 SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE
138168 DT Article
138169 AB In the title compound, [Co(C2H4NO2)(2)(C6H6N2S)]center dot 2H(2)O, the
138170    Co-II ion ( site symmetry 2) is coordinated by an N, N-bidentate
138171    diaminobithiazole ligand and two N,O-bidentate glycinate anions in a
138172    distorted octahedral geometry. The five-membered Co-glycinate ring
138173    displays an envelope conformation. A network of O-H center dot center
138174    dot center dot O and N-H center dot center dot center dot O hydrogen
138175    bonds helps to consolidate the crystal packing.
138176 C1 Shanghai Univ, Dept Chem, Shanghai, Peoples R China.
138177    Zhejiang Univ, Dept Chem, Hangzhou, Peoples R China.
138178 RP Xu, DJ, Shanghai Univ, Dept Chem, Shanghai, Peoples R China.
138179 EM xudj@mail.hz.zj.cn
138180 CR *RIG CORP, 1998, PROC AUT
138181    *RIG MSC, 2002, CRYST STRUCT VERS 3
138182    ALTOMARE A, 1993, J APPL CRYSTALLOGR, V26, P343
138183    FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
138184    FARRUGIA LJ, 1999, J APPL CRYSTALLOGR, V32, P837
138185    HIGASHI T, 1995, ABSCOR
138186    LIU JG, 2001, ACTA CRYSTALLOGR C 4, V57, P354
138187    LIU JG, 2003, ACTA CRYSTALLOGR  10, V59, M886
138188    LIU JG, 2004, ACTA CRYSTALLOGR E 1, V60, M108
138189    SHELDRICK GM, 1997, SHELXL97
138190    SUN WL, 1997, J APPL POLYM SCI, V64, P2309
138191 NR 11
138192 TC 1
138193 SN 1600-5368
138194 J9 ACTA CRYSTALLOGR E-STRUCT REP
138195 JI Acta Crystallogr. Sect. E.-Struct Rep. Online
138196 PD NOV
138197 PY 2005
138198 VL 61
138199 PN Part 11
138200 BP M2232
138201 EP M2233
138202 PG 2
138203 SC Crystallography
138204 GA 979SP
138205 UT ISI:000232965400034
138206 ER
138207 
138208 PT J
138209 AU Liu, BX
138210    Yu, JY
138211    Xu, DJ
138212 TI catena-Poly[[chloro(2,2 '-diamino-4,4 '-bi-1,3-thiazole-kappa(2) N,N
138213    ')cadmium(II)]-mu-glycinato-kappa N-2,O : O ']
138214 SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE
138215 DT Article
138216 AB In the polymeric title complex, [Cd(C2H4NO2)Cl-(C6H6N4S2)](n), the
138217    glycinate anions bridge neighbouring Cd-II ions to form zigzag chains
138218    along the b axis direction. The Cd-II ion is coordinated by two
138219    glycinate ions (one O-monodentate and one N, O-bidentate), a Cl- ion
138220    and a bidentate diaminobithiazole ligand in a distorted octahedral
138221    geometry. Various N-(HO)-O-... and N-(HCl)-Cl-... hydrogen bonds
138222    between adjacent complex chains help to consolidate the crystal packing.
138223 C1 Zhejiang Univ, Dept Chem, Hangzhou, Peoples R China.
138224    Shanghai Univ, Dept Chem, Shanghai 200041, Peoples R China.
138225 RP Xu, DJ, Zhejiang Univ, Dept Chem, Hangzhou, Peoples R China.
138226 EM xudj@mail.hz.zj.cn
138227 CR *RIG CORP, 1998, PROCESS AUTO
138228    *RIG MSC, 2002, CRYST VERS 3 00
138229    ALTOMARE A, 1993, J APPL CRYSTALLOGR, V26, P343
138230    FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
138231    FARRUGIA LJ, 1999, J APPL CRYSTALLOGR, V32, P837
138232    FLACK HD, 1983, ACTA CRYSTALLOGR A, V39, P876
138233    HIGASHI T, 1995, ABSCOR
138234    LIU JG, 2001, ACTA CRYSTALLOGR C 4, V57, P354
138235    LIU JG, 2004, ACTA CRYSTALLOGR E 1, V60, M108
138236    LIU JG, 2005, J COORD CHEM, V58, P735
138237    LIU Q, 2004, SPECTROCHIM ACTA A, V60, P1453
138238    SHELDRICK GM, 1997, SHELXL97
138239 NR 12
138240 TC 1
138241 SN 1600-5368
138242 J9 ACTA CRYSTALLOGR E-STRUCT REP
138243 JI Acta Crystallogr. Sect. E.-Struct Rep. Online
138244 PD NOV
138245 PY 2005
138246 VL 61
138247 PN Part 11
138248 BP M2291
138249 EP M2293
138250 PG 3
138251 SC Crystallography
138252 GA 979SP
138253 UT ISI:000232965400056
138254 ER
138255 
138256 PT J
138257 AU Ren, ZJ
138258    Cao, WG
138259    Ding, WY
138260    Wang, Y
138261 TI One-pot method for stereoselective cyclopropanation of
138262    electron-deficient olefins with methyl bromoacetate and phenacyl
138263    bromide in the presence of triphenylarsine
138264 SO SYNTHESIS-STUTTGART
138265 DT Article
138266 DE one-pot; triphenylarsine; cyclopropanation; stereoselectivity; NaHCO3
138267 ID ASYMMETRIC CYCLOPROPANATION; DERIVATIVES; CATALYSTS
138268 AB A triphenylarsine-catalyzed one-pot procedure for the preparation of
138269    cis-cyclopropanes with acyclic electron-deficient olefins with
138270    carbonyl-stabilized arsonium ylides formed from methyl bromoacetate or
138271    phenacyl bromide in the presence of NaHCO3 has been achieved. This
138272    method is simple, high-yielding and cis-selective. The success of this
138273    method depends on the choice of base, solvent and temperature.
138274 C1 Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
138275    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
138276 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
138277 EM renrui198229@hotmail.com
138278 CR BRUNEL JM, 1999, J AM CHEM SOC, V121, P5807
138279    CALO V, 2000, TETRAHEDRON LETT, V41, P8977
138280    COREY EJ, 1962, J AM CHEM SOC, V84, P867
138281    DEMEIJERE A, 1997, HOUBENWEYL METHODS O, V17
138282    DEMEIJERE A, 2000, TOPICS CURRENT CHEM, V207
138283    DING WY, 1996, CHEM RES CHINESE U, V12, P50
138284    DOYLE MP, 1996, SYNLETT          JUL, P697
138285    GUNTHER H, 1980, NMR SPECTROSCOPY, P108
138286    GUNTHER H, 1980, NMR SPECTROSCOPY, P384
138287    GUSTAFSSON J, 1995, TETRAHEDRON, V51, P3865
138288    HALY B, 1996, SYNLETT          JUL, P687
138289    HU WH, 2002, ORG LETT, V4, P901
138290    HUANG LY, 2003, J ORG CHEM, V68, P8179
138291    HUANG YZ, 1982, ADV ORGANOMETALLIC C, V20, P115
138292    HUANG YZ, 1994, J CHEM SOC P1, P893
138293    IWASA S, 2001, CHEM COMMUN, P59
138294    KRYSIAK J, 2001, J ORG CHEM, V66, P8240
138295    LEBEL H, 2003, CHEM REV, V103, P977
138296    PU JQ, 2000, HECHENG HUAXUE, V8, P356
138297    REN ZJ, 2002, SYNTHETIC COMMUN, V32, P3143
138298    REN ZJ, 2004, SYNTHETIC COMMUN, V34, P3785
138299    TSUJI T, 1987, CHEM CYCLOPROPYL GRO
138300    WONG HNC, 1989, CHEM REV, V89, P165
138301 NR 23
138302 TC 0
138303 SN 0039-7881
138304 J9 SYNTHESIS-STUTTGART
138305 JI Synthesis
138306 PD OCT 17
138307 PY 2005
138308 IS 16
138309 BP 2718
138310 EP 2722
138311 PG 5
138312 SC Chemistry, Organic
138313 GA 977RU
138314 UT ISI:000232821700014
138315 ER
138316 
138317 PT J
138318 AU He, ZJ
138319    Long, JL
138320    Ma, YG
138321    Xu, XM
138322    Liu, B
138323 TI Hard photons from a chemically equilibrating quark-gluon plasma at
138324    finite baryon density
138325 SO PHYSICS LETTERS B
138326 DT Article
138327 DE hard photon; chemically equilibrating quark-gluon plasma; finite baryon
138328    density
138329 ID HEAVY-ION COLLISIONS; THERMAL PHOTONS; NONEQUILIBRIUM; GAS
138330 AB We study hard photon production in a chemically equilibrating
138331    quark-gluon plasma at finite baryon density, and find that the effect
138332    of the system evolution on the photon production and large contribution
138333    of the bremsstrahlung and Compton qg -> gamma q processes make the
138334    total photon yield as a strongly increasing function of the initial
138335    quark chemical potential. (c) 2005 Elsevier B.V. All rights reserved.
138336 C1 Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.
138337    CCAST, World Lab, Beijing 100080, Peoples R China.
138338    Chinese Acad Sci, Res Ctr Nucl Theory, Natl Lab Heavy Ion Accelerator, Inst Modern Phys, Lanzhou 730000, Peoples R China.
138339    Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
138340    Chinese Acad Sci, Inst High Energy Phys, Beijing 100039, Peoples R China.
138341 RP He, ZJ, Chinese Acad Sci, Shanghai Inst Appl Phys, POB 800-204,
138342    Shanghai 201800, Peoples R China.
138343 EM hezejun@sinap.ac.cn
138344 CR ARLEO F, HEPPH0311131
138345    ARNOLD P, 2001, J HIGH ENERGY PHYS
138346    ARNOLD P, 2001, J HIGH ENERGY PHYS
138347    BAIER R, 1992, Z PHYS C, V53, P433
138348    BASS SA, 2003, PHYS REV LETT, V91
138349    BIRO TS, 1993, PHYS REV C, V48, P1275
138350    DUMITRU A, 3191992 UFTP
138351    DUMITRU A, 1993, MOD PHYS LETT A, V8, P1291
138352    DUTTA D, 1999, PHYS REV C, V60
138353    ELLIOTT DM, 2000, NUCL PHYS A, V671, P583
138354    ESKOLA KJ, 1996, PHYS LETT B, V374, P20
138355    GEIGER K, 1993, PHYS REV D, V47, P4905
138356    GELIS F, 2004, J PHYS G NUCL PARTIC, V30, S1031
138357    HAMMON N, 2000, PHYS REV C, V61
138358    HE ZJ, 2003, PHYS REV C, V68
138359    HE ZJ, 2004, PHYS REV C, V69
138360    KAMPFER B, 1995, PHYS REV C, V52, P2704
138361    KAPUSTA J, 1991, PHYS REV D, V44, P2774
138362    LEVAI P, 1995, PHYS REV C, V51, P3326
138363    MAJUMDER A, 2001, PHYS REV D, V63
138364    MUSTAFA MG, 2000, PHYS REV C, V62
138365    NAGAMIYA S, 1992, NUCL PHYS A, V544, C5
138366    RUUSKANEN PV, 1992, NUCL PHYS A, V544, P169
138367    STRICKLAND M, 1994, PHYS LETT B, V331, P245
138368    TRAXLER CT, 1995, PHYS LETT B, V346, P329
138369    TRAXLER CT, 1996, PHYS REV C, V53, P1348
138370 NR 26
138371 TC 0
138372 SN 0370-2693
138373 J9 PHYS LETT B
138374 JI Phys. Lett. B
138375 PD NOV 3
138376 PY 2005
138377 VL 628
138378 IS 1-2
138379 BP 25
138380 EP 32
138381 PG 8
138382 SC Physics, Multidisciplinary
138383 GA 979OX
138384 UT ISI:000232955800004
138385 ER
138386 
138387 PT J
138388 AU Wang, X
138389 TI Interaction between an edge dislocation and a circular inclusion with
138390    an inhomogeneously imperfect interface
138391 SO MECHANICS RESEARCH COMMUNICATIONS
138392 DT Article
138393 DE inhomogeneously imperfect interface; edge dislocation; circular
138394    inclusion; complex variable method; conformal mapping
138395 ID COMPOSITE CYLINDER MODEL; ELLIPTIC INCLUSION; PLANE ELASTICITY;
138396    STRESS-ANALYSIS
138397 AB This research presents an analytical study of the interaction problem
138398    of an edge dislocation with a circular inclusion with a
138399    circumferentially inhomogeneously imperfect interface. The interface,
138400    which is modeled as a spring (interphase) layer with vanishing
138401    thickness, is characterized by that in which there is a displacement
138402    jump across the interface in the same direction as the corresponding
138403    tractions, and the same degree of imperfection is realized in both the
138404    normal and tangential directions. Furthermore, the interface parameter
138405    is nonuniform along the interface. In order to arrive at an elementary
138406    form solution, we introduce a conformal mapping function. Then the
138407    stress field as well as the Peach-Koehler force acting on the edge
138408    dislocation can be obtained from the derived complex potentials.
138409    Calculations demonstrate that the nonuniform interface parameter has a
138410    significant influence oil the stress field. (c) 2005 Elsevier Ltd. All
138411    rights reserved.
138412 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
138413 RP Wang, X, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
138414    200072, Peoples R China.
138415 EM xuwang@staff.shu.edu.cn
138416 CR ACHENBACH JD, 1990, J APPL MECH-T ASME, V57, P956
138417    DUNDURS J, 1964, J MECH PHYS SOLIDS, V12, P177
138418    FAN H, 2003, MECH MATER, V35, P943
138419    LIU Y, 2001, INT J ENG SCI, V39, P2033
138420    LUO HA, 1991, J APPL MECH-T ASME, V58, P75
138421    MUSKHELISHVILI NI, 1953, SOME BASIC PROBLEMS
138422    SHEN H, 2001, INT J SOLIDS STRUCT, V38, P7587
138423    SHEN H, 2001, J ELASTICITY, V62, P25
138424    SUDAK LJ, 1999, J ELASTICITY, V55, P19
138425    SUDAK LJ, 2003, MECH RES COMMUN, V30, P53
138426    WANG X, 2002, J APPL MECH-T ASME, V69, P527
138427 NR 11
138428 TC 0
138429 SN 0093-6413
138430 J9 MECH RES COMMUN
138431 JI Mech. Res. Commun.
138432 PD JAN-FEB
138433 PY 2006
138434 VL 33
138435 IS 1
138436 BP 17
138437 EP 25
138438 PG 9
138439 SC Mechanics
138440 GA 977OO
138441 UT ISI:000232813300003
138442 ER
138443 
138444 PT J
138445 AU Wang, WD
138446    Lu, FH
138447    Leng, GS
138448 TI A type of monotonicity on the L-p centroid body and L-p projection body
138449 SO MATHEMATICAL INEQUALITIES & APPLICATIONS
138450 DT Article
138451 DE L-p mixed volume; L-p dual mixed volume; L-p centroid body; L-p
138452    projection body; monotonicity; inequality
138453 ID DUAL MIXED VOLUMES; MINKOWSKI PROBLEM; BODIES; INEQUALITIES
138454 AB Associated with L-p centroid body and L-p projection body, Lutwak, Yang
138455    and Zhang recently made a series of studies. In this paper, associated
138456    with the L-p mixed volume and dual mixed volumes, we establish several
138457    inequalities for the monotonicity of L-p centroid body and L-p
138458    projection body.
138459 C1 Hubei Inst Natl, Dept Math, Hubei Enshi 445000, Peoples R China.
138460    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
138461 RP Wang, WD, Hubei Inst Natl, Dept Math, Hubei Enshi 445000, Peoples R
138462    China.
138463 EM gleng@mail.shu.edu.cn
138464 CR BOURGAIN J, 1988, LECT NOTES MATH, V1317, P250
138465    CAMPI S, 2002, ADV MATH, V167, P128
138466    GARDNER RJ, 1995, GEOMETRIC TOMOGRAPHY
138467    LUTWAK E, 1986, J DIFFER GEOM, V23, P1
138468    LUTWAK E, 1988, ADV MATH, V71, P232
138469    LUTWAK E, 1990, P LOND MATH SOC, V60, P365
138470    LUTWAK E, 1993, HDB CONVEX GEOMETRY, P151
138471    LUTWAK E, 1993, J DIFFER GEOM, V38, P131
138472    LUTWAK E, 1997, J DIFFER GEOM, V47, P1
138473    LUTWAK E, 2000, DUKE MATH J, V104, P375
138474    LUTWAK E, 2000, J DIFFER GEOM, V56, P111
138475    LUTWAK E, 2001, T AM MATH SOC, V353, P1767
138476    LUTWAK E, 2002, DUKE MATH J, V112, P59
138477    LUTWAK E, 2004, T AM MATH SOC, V356, P4359
138478    SCHNEIDER R, 1993, CONVEX BODIES BRUNNM
138479    ZHANG GY, 1994, T AM MATH SOC, V345, P777
138480 NR 16
138481 TC 0
138482 SN 1331-4343
138483 J9 MATH INEQUAL APPL
138484 JI Math. Inequal. Appl.
138485 PD OCT
138486 PY 2005
138487 VL 8
138488 IS 4
138489 BP 735
138490 EP 742
138491 PG 8
138492 SC Mathematics
138493 GA 978ZE
138494 UT ISI:000232910900018
138495 ER
138496 
138497 PT J
138498 AU Xie, YF
138499    Wang, XQ
138500    Chen, LD
138501    Li, XD
138502    Guo, HL
138503 TI Research on preparation of nano-grained cemented carbide by spark
138504    plasma sintering
138505 SO MATERIALS RESEARCH INNOVATIONS
138506 DT Article
138507 DE SPS; nano-grain cemented carbide; sintering
138508 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
138509    Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 2000050, Peoples R China.
138510 RP Xie, YF, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
138511    China.
138512 EM yingfangxie@163.com
138513 CR FU ZY, 2001, CHINESE J MAT RES, V15, P484
138514    GAO L, 1998, J INORG MATER, V13, P18
138515    HAN FL, 1994, METAL DIRECTORY, P1062
138516    HONG H, 2000, COLLECT SPARK SPS BA, B31
138517    JING SJ, 1978, NEW METAL PROCESSING
138518    LI W, 1999, J INORG MATER, V14, P985
138519    LIU JF, 2001, J CERAMICS, V22, P157
138520    PANG TT, 2001, J CERAMICS, V22, P129
138521    SHE ZH, 1998, CEMENTED CARBIDE, V15, P453
138522    XUO XY, 2001, POWDER METALLURGY IN, V11, P7
138523    YIN H, 1997, POWDER METALLURGY TE, V15, P299
138524    ZHANG DM, 1999, J WUHAN UNIV TECHNOL, V21, P15
138525    ZHANG JX, 2002, POWDER METALLURGY TE, V20, P129
138526 NR 13
138527 TC 0
138528 SN 1432-8917
138529 J9 MATER RES INNOV
138530 JI Mater. Res. Innov.
138531 PD SEP
138532 PY 2005
138533 VL 9
138534 IS 3
138535 BP 82
138536 EP 83
138537 PG 2
138538 SC Materials Science, Multidisciplinary
138539 GA 976QJ
138540 UT ISI:000232748000012
138541 ER
138542 
138543 PT J
138544 AU Liu, HT
138545    Sang, WB
138546    Min, JH
138547    Zhan, F
138548 TI Purification of Cd0.9Zn0.1Te by physical vapor transport method
138549 SO MATERIALS LETTERS
138550 DT Article
138551 DE SCDI physical vapor transport (PVT); purification; Cd(0.9)Zno(0.1)Te
138552 ID CADMIUM-ZINC TELLURIDE; CDZNTE
138553 AB In this experiment physical vapor transport (PVT) method had been
138554    successfully applied to purify Cd0.9Zn0.1Te, and the concentration of
138555    impurities, Ag, Cu, Al, Fe, Na, Au and Ni decreased remarkably. The
138556    determination of two main processing parameters, the source end
138557    temperature and temperature gradient, had a strong effect on
138558    purification time, the furnace capacity and the physical and chemical
138559    properties of the impurities. In this experiment the relationship
138560    between the vapor pressure of Ag, Cu, Al, Fe, Na, An and Ni and
138561    temperature were analyzed and the source end temperature was confirmed
138562    at 1173 K in the vacuum of 1.5 x 10(-2) Pa. The mechanism of PVT was
138563    discussed and the process of PVT can be described by W Palosz's
138564    thermochemical model [W. Palosz, S.L. Lehocaky, F. R. Szofran,
138565    Thermochemical model of physical vapor transport of cadmium-zinc
138566    telluride. Journal of Crystal Growth 148, 1995, 49-55]. The transport
138567    time dependence on gradient temperature was given. Considering
138568    purification time and the furnace capacity, temperature gradient of 13
138569    K/cm were chosen. (C) 2005 Elsevier B.V. All rights reserved.
138570 C1 Shanghai Univ, Sch Mat Sci & Engn, Dept Elect Informat Mat, Shanghai 200072, Peoples R China.
138571 RP Liu, HT, Shanghai Univ, Sch Mat Sci & Engn, Dept Elect Informat Mat,
138572    Shanghai 200072, Peoples R China.
138573 EM clinton_liu@126.com
138574 CR BREBRICK RF, 1969, SOLID STATE SCI, P1274
138575    GUO YM, 1999, TECHNIQUE SUPER PURI, P97
138576    GUSKOV VN, 2004, J ALLOY COMPD, V371, P118
138577    LIMOUSIN O, 2003, NUCL INSTRUM METH A, V504, P24
138578    MARBEUF A, 1985, J CRYST GROWTH, V72, P126
138579    PALOSZ W, 1995, J CRYST GROWTH, V148, P49
138580    PALOSZ W, 1995, J CRYST GROWTH, V148, P56
138581    PALOSZ W, 1996, J CRYST GROWTH, V169, P20
138582    SATO K, 1999, J CRYST GROWTH, V197, P413
138583    SCHLESINGER TE, 2001, MAT SCI ENG R, V32, P103
138584 NR 10
138585 TC 0
138586 SN 0167-577X
138587 J9 MATER LETT
138588 JI Mater. Lett.
138589 PD DEC
138590 PY 2005
138591 VL 59
138592 IS 29-30
138593 BP 3837
138594 EP 3840
138595 PG 4
138596 SC Materials Science, Multidisciplinary; Physics, Applied
138597 GA 978HS
138598 UT ISI:000232864800010
138599 ER
138600 
138601 PT J
138602 AU Zhang, DS
138603    Shi, LY
138604    Fang, JH
138605    Li, XK
138606    Dai, K
138607 TI Preparation and modification of carbon nanotubes
138608 SO MATERIALS LETTERS
138609 DT Article
138610 DE carbon nanotubes; preparation; modification; surface area
138611 ID PURIFICATION; CAPACITORS; HYDROCARBONS; ELECTRODES; HYDROGEN
138612 AB Carbon nanotubes (CNTs) were prepared by the catalytic decomposition of
138613    methane at 680 degrees C for 120 min, using nickel oxide-silica binary
138614    aerogels as the catalyst. The morphological structure of CNTs was
138615    investigated by transmission electron microscopy (TEM), X-ray
138616    Diffraction (XRD) and Raman spectroscopy. The results revealed that
138617    CNTs with diameter 40-60 nm showed high quality, uniform diameter and
138618    high length/diameter ratio, the wall structure of CNTs was similar with
138619    that of highly oriented pyrolytic graphite (HOPG), and some metal
138620    catalyst particles were encapsulated at the tip of CNTs. Different
138621    methods were compared to modify CNTs. Investigated by TEM, XRD, Raman
138622    spectroscopy and nitrogen adsorption/desorption for modified CNTs, it
138623    was confirmed that after modification treatment by immersion in diluted
138624    HNO3 solution with ultrasonic and then milling by ball at a high
138625    velocity, the metal catalyst particles at the tip of CNTs disappeared,
138626    the unique cylinder wall structure remained, the CNT length became
138627    short, the cap at the tip of nanotube was opened, and thus the internal
138628    surface area could be effectively used, leading to the increase of the
138629    specific surface area and pore volume. This technique is relatively
138630    simple and effective for modifying CNTs which can be scaled up for
138631    industrial applications. (C) 2005 Published by Elsevier B.V.
138632 C1 Shanghai Univ, Sch Sci, Shanghai 200444, Peoples R China.
138633    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
138634    Wuhan Univ Sci & Technol, Ctr Nanomat & Technol, Wuhan 430081, Peoples R China.
138635 RP Shi, LY, Shanghai Univ, Sch Sci, Shanghai 200444, Peoples R China.
138636 EM sly0726@163.com
138637 CR BANDOW S, 1998, APPL PHYS A-MATER, V67, P23
138638    CANTALINI C, 2004, J EUR CERAM SOC, V24, P1405
138639    CHEN JH, 2002, CARBON, V40, P1193
138640    CHENG HM, 1998, CHEM PHYS LETT, V289, P602
138641    COLOMER JF, 1999, SYNTHETIC MET, V103, P2482
138642    DILLON AC, 1997, NATURE, V386, P377
138643    FRACKOWIAK E, 2002, CHEM PHYS LETT, V361, P35
138644    FRACKOWIAK E, 2002, FUEL PROCESS TECHNOL, V77, P213
138645    HIURA H, 1993, CHEM PHYS LETT, V202, P509
138646    HOLZINGER M, 2000, APPL PHYS A-MATER, V70, P599
138647    JIANG Q, 2002, MATER LETT, V57, P988
138648    LAI HJ, 2001, MAT SCI ENG C-BIO S, V16, P23
138649    LIU F, 2003, CARBON, V41, P2527
138650    MA RZ, 1999, J POWER SOURCES, V84, P126
138651    NAKAYAMA Y, 2001, SYNTHETIC MET, V117, P207
138652    ODANI A, 2003, J POWER SOURCES, V119, P517
138653    SAITO T, 2002, PHYSICA B, V323, P280
138654    TSANG SC, 1994, NATURE, V372, P159
138655    YUDASAKA M, 1997, CHEM PHYS LETT, V278, P102
138656    ZHANG DS, 2004, IND MINER PROCESS, V33, P14
138657    ZHANG Y, 2000, CARBON, V38, P2055
138658 NR 21
138659 TC 0
138660 SN 0167-577X
138661 J9 MATER LETT
138662 JI Mater. Lett.
138663 PD DEC
138664 PY 2005
138665 VL 59
138666 IS 29-30
138667 BP 4044
138668 EP 4047
138669 PG 4
138670 SC Materials Science, Multidisciplinary; Physics, Applied
138671 GA 978HS
138672 UT ISI:000232864800057
138673 ER
138674 
138675 PT J
138676 AU Gao, YF
138677    Tao, J
138678    Li, MO
138679    Zhang, DQ
138680    Chi, HB
138681    Henegariu, O
138682    Kaech, SM
138683    Davis, RJ
138684    Flavell, RA
138685    Yin, ZN
138686 TI JNK1 is essential for CD8(+) T cell-mediated tumor immune surveillance
138687 SO JOURNAL OF IMMUNOLOGY
138688 DT Article
138689 ID NH2-TERMINAL KINASE (JNK)1; GAMMA GENE-EXPRESSION; INTERFERON-GAMMA;
138690    IFN-GAMMA; MAP KINASES; TRANSCRIPTION FACTOR; DIFFERENTIATION; MICE;
138691    ANTIGEN; IL-12
138692 AB JNK1 has divergent roles in regulating the effector functions of CD4(+)
138693    and CD8(+) T cells. However, the function of JNK1 in tumor immune
138694    surveillance is unknown. In this study, we show that similar to
138695    IFN-gamma(-/-) mice, JNK1(-/-) mice are highly susceptible to tumor
138696    development after inoculation of both melanoma cell line B16 and
138697    lymphoma cell line EL-4. Using T cell depletion and reconstitution
138698    approaches, we show that CD8(+) T cells, but not CD4(+) T cells, from
138699    JNK1(-/-) mice are responsible for tumor susceptibility. JNK1(-/-)
138700    CD8(+) T cells have an intrinsic defect in early IFN-gamma gene
138701    transcription and production after activation by either
138702    anti-CD3/anti-CD28 Abs or dendritic cells loaded with specific Ag in
138703    vitro. The impaired IFN-gamma production in JNK1(-/-) CD8(+) T cells is
138704    associated with reduced expression of both T-bet and Eomesodermin,
138705    indicating that JNK1 regulates the transcription program of CD8(+) T
138706    cells. Finally, JNK1(-/-) CD8(+) T cells showed reduced perforin
138707    expression and impaired CTL function. Taken together, our results
138708    demonstrate that JNK1 plays an important role in tumor immune
138709    surveillance through regulating the effector functions of CD8(+) T
138710    cells.
138711 C1 Yale Univ, Sch Med, Rheumatol Sect, Dept Med, New Haven, CT 06520 USA.
138712    Yale Univ, Sch Med, Immunobiol Sect, New Haven, CT 06520 USA.
138713    Univ Massachusetts, Sch Med, Worcester, MA 01605 USA.
138714    Shanghai Univ, Div Immunol, E Inst, Shanghai, Peoples R China.
138715 RP Yin, ZN, Yale Univ, Sch Med, Rheumatol Sect, Dept Med, Box
138716    208031,Anylan Ctr Bldg,Room S517,300 Cedar St, New Haven, CT 06520 USA.
138717 EM zhinan.yin@yale.edu
138718 CR ARBOUR N, 2002, J EXP MED, V195, P801
138719    BERARD F, 2000, J EXP MED, V192, P1535
138720    CHEN NY, 2001, CANCER RES, V61, P3908
138721    CONZE D, 2002, J EXP MED, V195, P811
138722    DAVIS RJ, 2000, CELL, V103, P239
138723    DOBRZANSKI MJ, 1999, J IMMUNOL, V162, P6671
138724    DONG C, 1998, SCIENCE, V282, P2092
138725    DONG C, 2002, ANNU REV IMMUNOL, V20, P55
138726    DUNN GP, 2004, IMMUNITY, V21, P137
138727    GAO YF, 2003, J EXP MED, V198, P433
138728    GIRARDI M, 2001, SCIENCE, V294, P605
138729    GROGAN JL, 2001, IMMUNITY, V14, P205
138730    HELMICH BK, 2001, J IMMUNOL, V166, P6500
138731    HOGQUIST KA, 1994, CELL, V76, P17
138732    IKEDA H, 2002, CYTOKINE GROWTH F R, V13, P95
138733    KAISHO T, 2001, J IMMUNOL, V166, P5688
138734    KAPLAN DH, 1998, P NATL ACAD SCI USA, V95, P7556
138735    KIANI A, 2001, BLOOD, V98, P1480
138736    LU HT, 1999, EMBO J, V18, P1845
138737    MATZINGER P, 1991, J IMMUNOL METHODS, V145, P185
138738    NAKAHIRA M, 2002, J IMMUNOL, V168, P1146
138739    NELSON D, 2000, J IMMUNOL, V165, P6123
138740    OSTRANDROSENBERG S, 2000, J IMMUNOL, V165, P6015
138741    PEARCE EL, 2003, SCIENCE, V302, P1041
138742    RINCON M, 1994, EMBO J, V13, P4370
138743    RINCON M, 2003, IMMUNOL REV, V192, P131
138744    SAD S, 1995, IMMUNITY, V2, P271
138745    SHANKARAN V, 2001, NATURE, V410, P1107
138746    SHE QB, 2002, CANCER RES, V62, P1343
138747    STREET SEA, 2001, BLOOD, V97, P192
138748    SULLIVAN BM, 2003, P NATL ACAD SCI USA, V100, P15818
138749    SZABO SJ, 2000, CELL, V100, P655
138750    VANSTIPDONK MJB, 2001, NAT IMMUNOL, V2, P423
138751    WANG XY, 2003, J ASIAN NAT PROD RES, V5, P1
138752    WILDE DB, 1983, J IMMUNOL, V131, P2178
138753    WONG P, 2003, IMMUNITY, V18, P499
138754    YANG DD, 1998, IMMUNITY, V9, P575
138755    YIN ZN, 2000, J IMMUNOL, V164, P3056
138756 NR 38
138757 TC 0
138758 SN 0022-1767
138759 J9 J IMMUNOL
138760 JI J. Immunol.
138761 PD NOV 1
138762 PY 2005
138763 VL 175
138764 IS 9
138765 BP 5783
138766 EP 5789
138767 PG 7
138768 SC Immunology
138769 GA 977EW
138770 UT ISI:000232786300032
138771 ER
138772 
138773 PT J
138774 AU Cheng, JR
138775    Meng, ZY
138776    Cross, LE
138777 TI High-field and high-T-c piezoelectric ceramics based on
138778    Bi(Ga,Fe)O-3-PbTiO3 crystalline solutions
138779 SO JOURNAL OF APPLIED PHYSICS
138780 DT Article
138781 ID MORPHOTROPIC PHASE-BOUNDARY; ELECTROMECHANICAL PROPERTIES; BIFEO3;
138782    STRESS
138783 AB The gallium-modified bismuth ferrite-lead titanate compositions of
138784    0.4Bi(Ga0.4Fe0.6)O-3-0.6PbTiO(3) (0.4BGF-0.6PT), has been investigated
138785    for the potential as a high-field and high-temperature piezoelectric
138786    ceramic. The crystalline solutions of 0.4BGF-0.6PT were fabricated by
138787    using the solid-state reaction method. X-ray diffraction analysis
138788    revealed that 0.4BGF-0.6PT has a tetragonal perovskite structure. The
138789    Curie temperature T-c of 0.4BGF-0.6PT was determined to be 540 degrees
138790    C. Our 0.4BGF-0.6PT ceramic specimens could withstand the electric
138791    field of >250 kV/cm, reflecting the excellent dielectric breakdown
138792    strength. The remanent polarization (Pr) and induced strain (epsilon)
138793    achieved were 30 mu C/cm(2) and 0.2%, respectively, revealing the
138794    strong ferroelectricity of 0.4BGF-0.6PT. The specimen could be poled
138795    into the piezoelectric state under a poling field of 240 kV/cm, giving
138796    a weak-field piezoelectric constant d(33) of 52 pC/N. (c) 2005 American
138797    Institute of Physics.
138798 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
138799    Penn State Univ, Mat Res Inst 187, University Pk, PA 16802 USA.
138800 RP Cheng, JR, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples
138801    R China.
138802 CR CHENG JR, 2003, J AM CERAM SOC, V86, P2111
138803    CHENG JR, 2003, J APPL PHYS, V94, P5153
138804    CHENG JR, 2003, J APPL PHYS, V94, P5188
138805    FISHER P, 1980, J PHYS C SOLID STATE, V13, P1931
138806    HERABUT A, 1997, J AM CERAM SOC, V80, P2954
138807    KUMAR MM, 2000, APPL PHYS LETT, V76, P2764
138808    POPOV YF, 2001, LOW TEMP PHYS+, V27, P478
138809    ROSSETTI GA, 1991, APPL PHYS LETT, V59, P2524
138810    SMOLENSKY GA, 1961, FIZ TVERD TELA, V2, P2651
138811    SUNDER VVSSS, 1995, J MATER RES, V10, P1301
138812    VIEHLAND D, 2004, J APPL PHYS, V95, P1969
138813 NR 11
138814 TC 1
138815 SN 0021-8979
138816 J9 J APPL PHYS
138817 JI J. Appl. Phys.
138818 PD OCT 15
138819 PY 2005
138820 VL 98
138821 IS 8
138822 AR 084102
138823 DI ARTN 084102
138824 PG 5
138825 SC Physics, Applied
138826 GA 979JF
138827 UT ISI:000232937500051
138828 ER
138829 
138830 PT J
138831 AU Wei, JH
138832    Hu, HT
138833 TI Mathematical modelling of molten steel flow in a whole degasser during
138834    RH refining process
138835 SO IRONMAKING & STEELMAKING
138836 DT Article
138837 DE RH refining process; flow of molten steel; two phase flow; gas holdup;
138838    circulation rate; mathematical modelling
138839 ID COPPER CONVERTER; HEAT-SOURCE; FLUID-FLOW; BUBBLES; LADLE; BATH;
138840    DECARBURIZATION; TURBULENCE; ORIFICES; TUYERE
138841 AB A three-dimensional mathematical model for molten steel flow in a whole
138842    degasser during the RH (Ruhrstahl-Heraeus) refining process is
138843    proposed. The model has been developed considering the physical
138844    characteristics of the process, particularly the behaviour of
138845    gas-liquid two phase flow in the up snorkel and the momentum exchange
138846    between the two phases. The fluid flow fields and gas holdups of liquid
138847    phases, among other parameters, in a 90 t RH degasser and a water model
138848    unit of one-fifth linear scale have been computed using this
138849    mathematical model. The results show that the flow pattern of molten
138850    steel in a whole RH degasser can be well represented by the
138851    mathematical model. Apart from the area close to the free surface and
138852    the zone between the two snorkels in the ladle, the molten steel in an
138853    RH degasser, especially in the vacuum vessel, is reasonably fully mixed
138854    during the refining process. However, there is a boundary layer between
138855    the descending liquid stream from the down snorkel and the surrounding
138856    liquid, which is typical liquid-liquid two phase flow, and the molten
138857    steel in the ladle is not perfectly mixed. The blown lifting gas
138858    ascends mostly near the up snorkel wall, which is more obvious under
138859    the conditions of an actual RH degasser, and the flow pattern of
138860    bubbles and molten steel in the up snorkel is closer to annular flow.
138861    Calculated circulation rates for the water model unit at various
138862    lifting gas rates are in good agreement with values determined by means
138863    of water modelling experiments.
138864 C1 Shanghai Univ, Coll Mat Sci & Engn, Dept Met Mat, Shanghai 200072, Peoples R China.
138865 RP Wei, JH, Shanghai Univ, Coll Mat Sci & Engn, Dept Met Mat, Shanghai
138866    200072, Peoples R China.
138867 EM jihew@hotmail.com
138868 CR *CHAM LTD, 2002, PHOENICS VER 3 5 ENC
138869    AJMANI SK, 2004, ISIJ INT, V44, P82
138870    CAI ZP, 1988, IRON STEEL, V23, P19
138871    CASTILLEJOS AH, 1987, METALL T B, V18, P659
138872    CHEN CL, 2001, T NONFERR METAL SOC, V11, P950
138873    DAVIDSON L, 1956, AICHE J, V2, P337
138874    DEBERTODANO ML, 1990, J FLUID ENG-T ASME, V112, P107
138875    FILHO GAV, 2001, ISS STEELM C P, V60, P661
138876    HANNA RK, 1994, IRONMAK STEELMAK, V21, P37
138877    HUANG HF, 2004, THESIS SHANGHAI U CH
138878    IGUCHI M, 1995, METALL MATER TRANS B, V26, P67
138879    ILEGBUSI OJ, 1990, ISIJ INT, V30, P731
138880    ILEGBUSI OJ, 1993, ISIJ INT, V33, P474
138881    ILEGBUSI OJ, 1998, METALL MATER TRANS B, V29, P211
138882    JIA B, 2000, J IRON STEEL RES I, P27
138883    KATO Y, 1993, ISIJ INT, V33, P1088
138884    KUO JT, 1988, INT J MULTIPHASE FLO, V14, P547
138885    LEIBSON I, 1956, AICHE J, V2, P296
138886    NAKANISHI K, 1975, IRONMAK STEELMAK, V2, P115
138887    NU NW, 2001, THESIS SHANGHAI U CH
138888    PARK YG, 2000, ISIJ INT, V40, P749
138889    SHIRABE K, 1983, T ISIJ, V23, P564
138890    SPALDING DB, 1980, RECENT ADV NUMERICAL, P139
138891    SVENDSEN HF, 1992, CHEM ENG SCI, V47, P3297
138892    SZATKOWSKI M, 1991, IRON STEELMAKER, P65
138893    THEMELIS NJ, 1969, T METALL SOC AIME, V245, P2425
138894    TILLIANDER A, 2004, ISIJ INT, V44, P326
138895    TSUJINO R, 1989, ISIJ INT, V29, P589
138896    TURKDOGAN ET, 1980, PHYS CHEM HIGH TEMPE
138897    TURKOGLU H, 1990, ISIJ INT, V30, P961
138898    WEI JH, 1993, SEM REACT ENG NONF M
138899    WEI JH, 2000, IRONMAK STEELMAK, V27, P294
138900    WEI JH, 2001, STEEL RES, V72, P161
138901    WEI JH, 2001, STEEL RES, V72, P168
138902    WEI JH, 2002, J SHANGHAI U, V2, P167
138903    WEI JH, 2002, STEEL RES, V73, P135
138904    WEI JH, 2002, STEEL RES, V73, P143
138905    ZHU MY, 2000, ACTA METALLURGICAL S, V36, P1176
138906 NR 38
138907 TC 0
138908 SN 0301-9233
138909 J9 IRONMAKING STEELMAKING
138910 JI Ironmak. Steelmak.
138911 PD OCT
138912 PY 2005
138913 VL 32
138914 IS 5
138915 BP 427
138916 EP 434
138917 PG 8
138918 SC Metallurgy & Metallurgical Engineering
138919 GA 977AU
138920 UT ISI:000232775600011
138921 ER
138922 
138923 PT J
138924 AU Liu, JH
138925    Cao, LQ
138926    Xie, M
138927    Goh, TN
138928    Tang, Y
138929 TI A general Weibull model for reliability analysis under different
138930    failure criteria - Application on anisotropic conductive adhesive
138931    joining technology
138932 SO IEEE TRANSACTIONS ON ELECTRONICS PACKAGING MANUFACTURING
138933 DT Article
138934 DE anisotropic conductive adhesive; failure criteria; flip-chip;
138935    reliability; Weibull model
138936 ID PARTICLES; JOINTS
138937 AB In this paper, a generic four-parameter model has been developed and
138938    applied to the anisotropic conductive adhesive (ACA) flip-chip joining
138939    technology for electronics packaging applications. The model can also
138940    be used to predict any minimum failure cycles if the maximum acceptable
138941    failure criterion (in this case, a preset electrical resistance value)
138942    is set. The original reliability testing from which the test data was
138943    obtained was carried out on flip-chip anisotropically conductive
138944    adhesive joints on an FR-4 substrate. In the study, nine types of ACA
138945    and one nonconductive film (NCF) were used. In total, nearly 1000
138946    single joints were subjected to reliability tests in terms of
138947    temperature cycling between -40 degrees C and 125 degrees C with a
138948    dwell time of 15 min and a ramp rate of 110 degrees C/min. The
138949    reliability was characterized by single contact resistance measured
138950    using the four-probe method during temperature cycling testing up to
138951    3000 cycles. A single Weibull model is used for two failure definitions
138952    defined as larger than 50 m Omega and larger than 100 m Omega
138953    respectively using the in situ electrical resistance measurement
138954    technique. The failure criteria are incorporated into this Weibull
138955    model. This paper shows the flexibility and usefulness of Weibull
138956    distribution in this type of applications.
138957 C1 Chalmers Univ Technol, Div Elect Prod, SE-41296 Gothenburg, Sweden.
138958    IVF, SE-43153 Molndal, Sweden.
138959    Shanghai Univ, Shanghai 200072, Peoples R China.
138960    Natl Univ Singapore, Dept Ind & Syst Engn, Singapore, Singapore.
138961 RP Liu, JH, Chalmers Univ Technol, Div Elect Prod, SE-41296 Gothenburg,
138962    Sweden.
138963 CR AMAGAI M, 1999, MICROELECTRON RELIAB, V39, P463
138964    GERKE RD, 1999, IEEE T COMPON PACK T, V22, P488
138965    ISHIBASHI K, 1996, IEEE T COMPON PACK B, V19, P752
138966    JIN SH, 1993, IEEE T COMPON HYBR, V16, P972
138967    JOYCE CF, 1991, IEEE T COMPON HYBR, V14, P124
138968    KIVILAHTI JK, 1999, CONDUCTIVE ADHESIVES, CH7
138969    LAI ZH, 1996, IEEE T COMPON PACK B, V19, P644
138970    LIU J, 1995, MATER TECHNOL, V10, P247
138971    LIU J, 1996, INT J ADHES ADHES, V16, P285
138972    LIU J, 1999, IEEE T COMPON PACK T, V22, P186
138973    PECHT MG, 1997, IEEE T COMPON PACK B, V20, P229
138974    SUMIKAWA M, 2001, IEEE T COMPON PACK T, V24, P293
138975    TAMAI T, 1996, IEEE T COMPON PACK A, V19, P329
138976    WANG XT, 1998, IEEE T COMPON PACK A, V21, P248
138977    WANG ZP, 1999, MICROELECTRON RELIAB, V39, P1351
138978    WEIBULL W, 1951, J APPL MECH, V18, P293
138979    WILLIAMS DJ, 1993, J ELECTRON MANUF, V3, P85
138980    WU S, 1999, CONDUCTIVE ADHESIVES, CH8
138981 NR 18
138982 TC 0
138983 SN 1521-334X
138984 J9 IEEE TRANS ELECTRON PACKAG MA
138985 JI IEEE Trans. Electron. Packag. Manuf.
138986 PD OCT
138987 PY 2005
138988 VL 28
138989 IS 4
138990 BP 322
138991 EP 327
138992 PG 6
138993 SC Engineering, Manufacturing
138994 GA 979LG
138995 UT ISI:000232942900006
138996 ER
138997 
138998 PT J
138999 AU Kitipornchai, S
139000    Liew, KM
139001    Cheng, Y
139002 TI A boundary element-free method (BEFM) for three-dimensional elasticity
139003    problems
139004 SO COMPUTATIONAL MECHANICS
139005 DT Article
139006 DE moving least-squares (MLS) approximation; improved moving least-squares
139007    (IMLS) approximation; weighted orthogonal function; weight function;
139008    compact support domain; boundary integral equation; meshless method;
139009    boundary element-free method (BEFM); elasticity
139010 ID POINT INTERPOLATION METHOD; MATERIAL INTERFACES; STRESS-ANALYSIS; FREE
139011    GALERKIN; NODE METHOD; SOLIDS; CRACKS
139012 AB This study combines the boundary integral equation (BIE) method and
139013    improved moving least-squares (IMLS) approximation to present a direct
139014    meshless boundary integral equation method, the boundary element-free
139015    method (BEFM) for three-dimensional elasticity. Based on the improved
139016    moving least-squares approximation and the boundary integral equation
139017    for three-dimensional elasticity, the formulae of the boundary
139018    element-free method are given, and the numerical procedure is also
139019    shown. Unlike other meshless boundary integral equation methods, the
139020    BEFM is a direct numerical method in which the basic unknown quantity
139021    is the real solution of the nodal variables, and the boundary
139022    conditions can be applied directly and easily, thus giving it a greater
139023    computational precision. Three selected numerical examples are
139024    presented to demonstrate the method.
139025 C1 City Univ Hong Kong, Dept Bldg & Construct, Kowloon, Hong Kong, Peoples R China.
139026    Nanyang Technol Univ, Nanyang Ctr Supercomp & Visualizat, Singapore 639798, Singapore.
139027    Nanyang Technol Univ, Sch Mech & Prod Engn, Singapore 639798, Singapore.
139028    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
139029 RP Kitipornchai, S, City Univ Hong Kong, Dept Bldg & Construct, Kowloon,
139030    Hong Kong, Peoples R China.
139031 CR BEER G, 1989, INT J NUMER METH ENG, V28, P1233
139032    BEER G, 1993, INT J NUMER METH ENG, V36, P3579
139033    BELYTSCHKO T, 1996, COMPUT METHOD APPL M, V139, P3
139034    CHATI MK, 1999, INT J NUMER METH ENG, V46, P1163
139035    CHATI MK, 2000, INT J NUMER METH ENG, V47, P1523
139036    GU YT, 2001, COMPUT METHOD APPL M, V190, P4405
139037    GU YT, 2002, COMPUT MECH, V28, P47
139038    GU YT, 2003, ENG ANAL BOUND ELEM, V27, P905
139039    GU YT, 2003, STRUCT ENG MECH, V15, P535
139040    LANCASTER P, 1981, MATH COMPUT, V37, P141
139041    LIEW KM, 2003, INT J NUMER METH ENG, V56, P2331
139042    LIEW KM, 2003, INT J NUMER METH ENG, V57, P599
139043    LIU GR, 2000, COMPUT MECH, V26, P166
139044    LIU GR, 2002, MESH FREE METHODS MO
139045    TABATABAISTOCKER B, 1998, COMMUN NUMER METH EN, V14, P355
139046    TIMOSHENKO SP, 1970, THEORY ELASTICITY
139047    ZHU T, 1998, COMPUT MECH, V21, P223
139048 NR 17
139049 TC 2
139050 SN 0178-7675
139051 J9 COMPUTATION MECH
139052 JI Comput. Mech.
139053 PD JUN
139054 PY 2005
139055 VL 36
139056 IS 1
139057 BP 13
139058 EP 20
139059 PG 8
139060 SC Mathematics, Applied; Mechanics
139061 GA 978CG
139062 UT ISI:000232849200002
139063 ER
139064 
139065 PT J
139066 AU Ma, H
139067    Qin, QH
139068 TI Boundary integral equation supported differential quadrature method to
139069    solve problems over general irregular geometries
139070 SO COMPUTATIONAL MECHANICS
139071 DT Article
139072 DE differential quadrature; boundary integral equation; irregular
139073    geometry; interpolation; fundamental solution
139074 ID DISTRIBUTED SYSTEM EQUATIONS; ELEMENT METHOD; NUMERICAL EVALUATION;
139075    VIBRATION ANALYSIS; INTERNAL CELLS; INSIGHTS; STRESS; PLATES; BEM
139076 AB Based on the interpolation technique with the aid of boundary integral
139077    equations, a new differential quadrature method has been developed (
139078    boundary integral equation supported differential quadrature method,
139079    BIE-DQM) to solve boundary value problems over generally irregular
139080    geometries. The quadrature rule of the BIE-DQM is that the first and
139081    the second derivatives of a function with respect to independent
139082    variables are approximated by a weighted linear combination of the
139083    function values at all discrete nodal points and the corresponding
139084    normal derivatives at all boundary points. Several numerical examples
139085    are considered to verify the feasibility and effectiveness of the
139086    proposed algorithm.
139087 C1 Shanghai Univ, Coll Sci, Dept Mech, Shanghai 200436, Peoples R China.
139088    Australian Natl Univ, Dept Engn, Canberra, ACT 0200, Australia.
139089 RP Ma, H, Shanghai Univ, Coll Sci, Dept Mech, Shanghai 200436, Peoples R
139090    China.
139091 EM hangma@staff.shu.edu.cn
139092    Qinghua.Qin@ANU.EDU.AU
139093 CR BELLMAN R, 1972, J COMPUT PHYS, V10, P40
139094    BERT CW, 1996, APPL MECH REV, V49, P1
139095    BREBBIA CA, 1984, BOUNDARY ELEMENT TEC
139096    CHEN WL, 2000, INT J SOLIDS STRUCT, V37, P627
139097    CHOI ST, 2002, J SOUND VIBRATION, V259, P525
139098    CIVAN F, 1994, COMPUT CHEM ENG, V18, P1005
139099    GAO XW, 2002, ENG ANAL BOUND ELEM, V26, P905
139100    GAO XW, 2002, J APPL MECH-T ASME, V69, P154
139101    GUIGGIANI M, 1992, ASME, V59, P604
139102    JANG SK, 1989, INT J NUMER METH ENG, V28, P561
139103    KARAMI G, 2003, J SOUND VIB, V263, P415
139104    MA H, 2002, COMPUT MECH, V29, P277
139105    MA H, 2002, ENG ANAL BOUND ELEM, V26, P329
139106    MALIK M, 1995, CHEM ENG SCI, V50, P531
139107    NOWAK AJ, 1994, MULTIPLE RECIPROCITY
139108    OCHIAI Y, 1995, ADV ENG SOFTW, V22, P113
139109    OCHIAI Y, 1995, J THERM STRESSES, V18, P603
139110    OCHIAI Y, 2001, INT J NUMER METH ENG, V50, P1877
139111    OCHIAI Y, 2003, ENG ANAL BOUND ELEM, V27, P241
139112    PARTRIDGE PW, 1992, DUAL RECIPROCITY BOU
139113    QUAN JR, 1989, COMPUT CHEM ENG, V13, P1017
139114    QUAN JR, 1989, COMPUT CHEM ENG, V13, P779
139115    TOMASIELLO S, 1998, J SOUND VIB, V218, P573
139116    WANG X, 1994, AIAA J, V32, P886
139117    WU L, 2002, COMPUT MECH, V29, P477
139118    ZONG Z, 2002, COMPUT MECH, V29, P382
139119 NR 26
139120 TC 0
139121 SN 0178-7675
139122 J9 COMPUTATION MECH
139123 JI Comput. Mech.
139124 PD JUN
139125 PY 2005
139126 VL 36
139127 IS 1
139128 BP 21
139129 EP 33
139130 PG 13
139131 SC Mathematics, Applied; Mechanics
139132 GA 978CG
139133 UT ISI:000232849200003
139134 ER
139135 
139136 PT J
139137 AU Su, XB
139138    Wei, G
139139    Dai, SQ
139140 TI Two-dimensional algebraic solitary wave and its vertical structure in
139141    stratified fluid
139142 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
139143 DT Article
139144 DE two-dimensional Benjamin-Ono equation; stratified fluid; eigenvalue;
139145    vertical structure
139146 ID INTERNAL WAVES; GREAT DEPTH
139147 AB The algebraic solitary wave and its associated eigenvalue problem in a
139148    deep stratified fluid with a free surface and a shallow upper layer
139149    were studied. And its vertical structure was examined. An exact
139150    solution for the derived 2D Benjamin-Ono equation was obtained, and
139151    physical explanation was given with the corresponding dispersion
139152    relation. As a special case, the vertical structure of the weakly
139153    nonlinear internal wave for the Holmboe density distribution was
139154    numerically investigated, and the propagating mechanism of the internal
139155    wave was studied by using the ray theory.
139156 C1 Shanghai Jiao Tong Univ, Sch Naval Architecture & Ocean Engn, Shanghai 200030, Peoples R China.
139157    PLA Univ Sci & Technol, Fac Sci, Nanjing 211101, Peoples R China.
139158    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
139159 RP Wei, G, Shanghai Jiao Tong Univ, Sch Naval Architecture & Ocean Engn,
139160    Shanghai 200030, Peoples R China.
139161 EM gwei@mail.shu.edu.cn
139162 CR ABLOWITZ MJ, 1980, STUD APPL MATH, V62, P249
139163    BENJAMIN TB, 1967, J FLUID MECH, V29, P559
139164    BROUTMAN D, 2004, ANNU REV FLUID MECH, V34, P559
139165    CHENG YL, 2001, P 5 NAT C HYDR 15 NA, P53
139166    DAI SQ, 1982, ADV MECH, V12, P2
139167    GRIMSHAW R, 1994, STUD APPL MATH, V92, P249
139168    GUO DR, 1965, METHODS MATH PHYS
139169    HAN XX, 1996, ANN MATH A, V17, P163
139170    KANTHA L, 2000, SMALL SCALE PROCESSE
139171    LI JC, 1998, ASYMPTOTIC METHODS M
139172    LIGHTHILL J, 1978, WAVES FLUID
139173    ONO H, 1975, J PHYS SOC JPN, V39, P1082
139174    SHEN GG, 1996, J HYDRODYNAMICS A, V11, P43
139175    TOMINAGA, 1984, OCEAN WAVES
139176    TSUJI H, 2001, FLUID DYN RES, V29, P251
139177    XU ZT, 1999, DYNAMICS INTERNAL WA
139178    YIH CS, 1983, FLUID MECH
139179    ZHANG HQ, 2001, APPL MATH MECH-ENGL, V22, P1127
139180    ZHANG LH, 1993, ACTA PHYS MATH SINIC, V13, P473
139181 NR 19
139182 TC 0
139183 SN 0253-4827
139184 J9 APPL MATH MECH-ENGL ED
139185 JI Appl. Math. Mech.-Engl. Ed.
139186 PD OCT
139187 PY 2005
139188 VL 26
139189 IS 10
139190 BP 1255
139191 EP 1265
139192 PG 11
139193 SC Mathematics, Applied; Mechanics
139194 GA 979HW
139195 UT ISI:000232934000002
139196 ER
139197 
139198 PT J
139199 AU Xu, GQ
139200    Li, ZB
139201 TI PDEPtest: a package for the Painleve test of nonlinear partial
139202    differential equations
139203 SO APPLIED MATHEMATICS AND COMPUTATION
139204 DT Article
139205 DE nonlinear partial differential equations; Painleve test; the WTC
139206    method; Kruskal's simplification; symbolic computation
139207 ID EVOLUTION-EQUATIONS; WAVE SOLUTIONS; UNIFIED APPROACH; INTEGRABILITY;
139208    SYMMETRIES; MAPLE
139209 AB The so-called WTC-Kruskal algorithm is presented in order to study the
139210    Painleve integrability of nonlinear partial differential equations,
139211    which combines the WTC method and Kruskal's simplification method.
139212    Based on the WTC, Kruskal and WTC-Kruskal algorithms, we give an
139213    implementation in Maple called PDEPtest. This package can handle
139214    nonlinear partial differential equations which can be transformed to
139215    polynomial ones, and its effectiveness is illustrated by applying it to
139216    a variety of equations. Some new results are reported. (c) 2004
139217    Elsevier Inc. All rights reserved.
139218 C1 Shanghai Univ, Coll Int Business & Management, Dept Informat Mangement, Shanghai 201800, Peoples R China.
139219    E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China.
139220 RP Xu, GQ, Shanghai Univ, Coll Int Business & Management, Dept Informat
139221    Mangement, Shanghai 201800, Peoples R China.
139222 EM xuguiqiong@yahoo.com
139223    yb01242103@student.ecnu.edu.cn
139224 CR ABLOWITZ MJ, 1999, SOLITONS NONLINEAR E
139225    AYSE KK, 2001, J PHSY SOC JPN, V70, P1165
139226    CHOWDHURY AR, 2000, PAINLEVE ANAL ITS AP
139227    CONTE R, 1989, PHYS LETT A, V140, P383
139228    CONTE R, 1993, PHYSICA D, V69, P33
139229    CONTE R, 1999, PAINLEVE PROPERTY ON
139230    DAS KP, 1989, J PLASMA PHYS, V41, P139
139231    ESTEVEZ PG, 1998, J NONLINEAR MATH PHY, V5, P82
139232    FOURSOV MV, 2000, J MATH PHYS, V41, P6173
139233    GENG XG, 2003, J PHYS A-MATH GEN, V36, P2289
139234    HEREMAN W, 1989, MACSYMA NEWSLETTER, V6, P11
139235    HEREMAN W, 1998, COMPUT PHYS COMMUN, V115, P428
139236    HLAVATY L, 1986, COMPUT PHYS COMMUN, V42, P427
139237    HU XB, 1999, PHYS LETT A, V262, P409
139238    JIMBO M, 1982, PHYS LETT A, V92, P59
139239    LOU SY, 2002, J MATH PHYS, V43, P4078
139240    NEWELL AC, 1987, PHYSICA D, V29, P1
139241    PARKES EJ, 2002, PHYS LETT A, V295, P280
139242    SCHEEN C, 1997, THEOR COMPUT SCI, V187, P87
139243    WEISS J, 1983, J MATH PHYS, V24, P522
139244    XIE FD, 2003, COMPUT PHYS COMMUN, V154, P197
139245    XU GQ, 2003, CHINESE PHYS LETT, V20, P975
139246    XU GQ, 2004, COMPUT PHYS COMMUN, V161, P65
139247    YAN ZY, 2001, PHYS LETT A, V292, P100
139248    YAN ZY, 2003, PHYS LETT A, V318, P78
139249 NR 25
139250 TC 1
139251 SN 0096-3003
139252 J9 APPL MATH COMPUT
139253 JI Appl. Math. Comput.
139254 PD OCT 15
139255 PY 2005
139256 VL 169
139257 IS 2
139258 BP 1364
139259 EP 1379
139260 PG 16
139261 SC Mathematics, Applied
139262 GA 977NX
139263 UT ISI:000232811600049
139264 ER
139265 
139266 PT S
139267 AU Liu, J
139268    Yao, JX
139269    Wu, GF
139270 TI Sentiment classification using Information Extraction technique
139271 SO ADVANCES IN INTELLIGENT DATA ANALYSIS VI, PROCEEDINGS
139272 SE LECTURE NOTES IN COMPUTER SCIENCE
139273 DT Article
139274 AB This paper explores the sentiment classification with Information
139275    Extraction (IE) approach. The IE approach here is required to detect
139276    the sentiment expressions on specific subject (person, product, company
139277    and so on) and then to evaluate the sentiment strength and/or the
139278    validation of them. Our method can be illustrated logically as: (1)
139279    From a given text, extract the sentiment expressions on the specific
139280    subjects and attach certain sentiment tag and weight to each of them;
139281    (2) Calculate the sentiment indicator for each sentiment genre by
139282    accumulating the weights of all the expression with the corresponding
139283    tag; (3) Given the indicators on different sentiment genres, use a
139284    classifier to predict the sentiment label of the given text. To extract
139285    expression robustly when encounter some complex linguistic phenomena
139286    (such as ellipsis, anaphora), a new parsing idea named super parsing is
139287    proposed. It enables some non-adjacent linguistic constituents to be
139288    merged to deduce a new one. As an incremental implementation of super
139289    parsing, a system named Approximate Text Analysis (ATA) is described in
139290    this paper. As for the classification task, two different classifiers
139291    are used: simple linear classifier (called SLC here) and SVM. The
139292    experiments show the reasonable performance of our approach.
139293 C1 Shanghai Univ, Dept Comp Sci, Shanghai 200072, Peoples R China.
139294 RP Liu, J, Shanghai Univ, Dept Comp Sci, 149 Yanchang Rd, Shanghai 200072,
139295    Peoples R China.
139296 EM liujian@mail.shu.edu.cn
139297    jianxin_yao@mail.shu.edu.cn
139298    gfwu@mail.shu.edu.cn
139299 CR BOSER BE, 1992, P 5 ANN ACM WORKSH C, P144
139300    COLLOBERT R, 2001, J MACH LEARN RES, V1, P143
139301    DAS S, 2001, AS PAC FIN ASS ANN C
139302    EIKVIL L, 1999, 945 NORW COMP CTR
139303    HEARST MA, 1992, TEXTBASED INTELLIGEN, P257
139304    HU M, 2004, P 19 NAT C ART INT A
139305    HU M, 2004, P ACM SIGKDD INT C K
139306    JOHNSON M, 1985, P 23 ACL M CHIC, P127
139307    KOBAYASHI N, 2004, P 1 INT JOINT C NAT, P584
139308    LIU J, 2005, 2005100235898, CN, APPL
139309    MUSLEA I, 1999, AAAI WORKSH MACH LEA
139310    NASUKAWA T, 2003, 2 INT C KNOWL CAPT K, P70
139311    PANG B, 2002, P C EMP METH NAT LAN, P79
139312    SACK W, 1995, P AAAI94 SEATTL WA, P1488
139313    SALTON G, 1975, COMMUN ACM, V18, P613
139314    SPERTUS E, 1997, P INN APPL ART INT I, P1058
139315    TATEMURA J, 2000, P 5 INT C INT US INT, P272
139316    TERVEEN L, 1997, COMMUN ACM, V40, P59
139317    TONG RM, 2001, SIGIR WORKSH OP TEXT
139318    TURNEY P, 2002, P 40 ANN M ASS COMP, P417
139319    YI J, 2003, 3 IEEE INT C DAT MIN
139320 NR 21
139321 TC 0
139322 SN 0302-9743
139323 J9 LECT NOTE COMPUT SCI
139324 PY 2005
139325 VL 3646
139326 BP 216
139327 EP 227
139328 PG 12
139329 GA BDA54
139330 UT ISI:000232273600020
139331 ER
139332 
139333 PT J
139334 AU Zuo, JG
139335    Hua, ZZ
139336    Liu, BL
139337    Zhou, GY
139338    Xu, Y
139339 TI Annealing properties of lyoprotectant solution
139340 SO ACTA PHYSICO-CHIMICA SINICA
139341 DT Article
139342 DE freeze-drying; tertiary butyl alcohol; sucrose; annealing; differential
139343    scanning calorimetry; glass transition; devitrification
139344 ID TERTIARY BUTYL ALCOHOL; COSOLVENT SYSTEMS; WATER; LYOPHILIZATION
139345 AB In order to examine the annealing behaviors of aqueous solutions of 10%
139346    tertiary butyl alcohol (TBA) and 10% sucrose in freeze-drying, a
139347    differential scanning calorimeter (DSC) has been employed to study
139348    freezing properties, annealing temperature, and annealing time. The
139349    experimental results show that when the solution is cooled, the
139350    existence of sucrose hinders the crystallization of TBA and the value
139351    of T-g' decreases from -32.5 degrees C to -42.0 degrees C, and TBA
139352    devitrifies at -30 degrees C when the solution is heated. When annealed
139353    at different temperatures around the devitrification peak, TBA all can
139354    crystallize completely and the value of T-g' increases from -42.0
139355    degrees C to -34.9 degrees C. Annealing time depends on annealing
139356    temperature. The closer the annealing temperature is to T-g', the
139357    longer the annealing time is. The devitrification will disappear after
139358    annealing at -37 degrees C for 20 min.
139359 C1 Shanghai Univ Sci & Technol, Inst Cryomed & Food Freezing, Shanghai 200093, Peoples R China.
139360 RP Hua, ZZ, Shanghai Univ Sci & Technol, Inst Cryomed & Food Freezing,
139361    Shanghai 200093, Peoples R China.
139362 EM tchua@sh163.net
139363 CR GAO C, 2004, ACTA PHYS-CHIM SIN, V20, P701
139364    HUA ZZ, 1994, CRYOBIOLOGY CRYOMEDI, P80
139365    KASRAIAN K, 1995, PHARM RES, V12, P484
139366    KASRAIAN K, 1995, PHARM RES, V12, P491
139367    MILTON N, 1997, CRYO-LETT, V18, P335
139368    REY L, 2004, FREEZE DRYING LYOPHI, P2
139369    SEARLES JA, 2001, J PHARM SCI, V90, P872
139370    VANDROOGE DI, 2004, J PHARM SCI-US, V93, P713
139371    WITTAYAAREEKUL S, 1998, J PHARM SCI, V87, P491
139372    WITTAYAAREEKUL S, 2002, J PHARM SCI, V91, P1147
139373    XIAO HH, 2004, CRYOLETTERS, V25, P111
139374    ZUO JG, 2005, CRYGOENICS, P48
139375 NR 12
139376 TC 0
139377 SN 1000-6818
139378 J9 ACTA PHYS-CHIM SIN
139379 JI Acta Phys.-Chim. Sin.
139380 PD OCT
139381 PY 2005
139382 VL 21
139383 IS 10
139384 BP 1178
139385 EP 1181
139386 PG 4
139387 SC Chemistry, Physical
139388 GA 977PA
139389 UT ISI:000232814500024
139390 ER
139391 
139392 PT J
139393 AU Yu, SH
139394    Xia, MC
139395    Xu, W
139396    Chu, YW
139397    Wang, Y
139398    Xiong, SD
139399 TI All-trans retinoic acid biases immune response induced by DNA vaccine
139400    in a Th2 direction
139401 SO VACCINE
139402 DT Article
139403 DE DNA vaccine; ATRA; immune response
139404 ID VITAMIN-A-DEFICIENCY; ANTIBODY-RESPONSE; IN-VITRO; TRANSCRIPTION
139405    FACTOR; VIRUS-INFECTION; IGG RESPONSES; BALB/C MICE; GATA-3; IL-5;
139406    LYMPHOCYTES
139407 AB Vitamin A deficiency diminishes Th2-mediated Ab responses. Providing
139408    Vitamin A or its active metabolites reverses this defect. All-trans
139409    retinoic acid (ATRA), an acid derivation of Vitamin A, regulates the
139410    balance of immune response induced by TR421-hCG beta DNA vaccine.
139411    Compared to DNA vaccine alone or treatment with vehicle, significantly
139412    higher level of antibody against the protein encoded by DNA vaccine was
139413    observed in mice 6 weeks after the first immunization. The IgG2a/IgG1
139414    ratio was lower in mice treated with ATRA. We also found that treatment
139415    with ATRA also diminishes specific cellular immune response induced by
139416    gene immunization by measuring the marker of cellular immune response.
139417    We conclude that ATRA biases the immune response to Th2 direction
139418    induced by DNA vaccine and acts as a candidate adjuvant and
139419    immunomodulatory molecule. (c) 2005 Elsevier Ltd. All rights reserved.
139420 C1 Fudan Univ, Shanghai Med Coll, Dept Immunol, Shanghai 200032, Peoples R China.
139421    Minist Educ, Key Lab Mol Med, Shanghai 200032, Peoples R China.
139422    Shanghai Univ, E Inst, Shanghai 200025, Peoples R China.
139423 RP Xiong, SD, Fudan Univ, Shanghai Med Coll, Dept Immunol, Shanghai
139424    200032, Peoples R China.
139425 EM sdxiong@shmu.edu.cn
139426 CR AHLERS JD, 1997, J IMMUNOL, V158, P3947
139427    BLOMHOFF HK, 1998, VITAMIN A HLTH DIS, P451
139428    BOONSTRA A, 2001, J IMMUNOL, V167, P4974
139429    CANTORNA MT, 1994, J IMMUNOL, V152, P1515
139430    CANTORNA MT, 1995, EUR J IMMUNOL, V25, P1673
139431    CARMAN JA, 1989, J IMMUNOL, V142, P388
139432    CARMAN JA, 1991, J IMMUNOL, V147, P1247
139433    CHUN TY, 1992, J NUTR, V122, P1062
139434    CUI DM, 2000, J NUTR, V130, P1132
139435    DONNELLY JJ, 1997, ANNU REV IMMUNOL, V15, P617
139436    FARRAR JD, 2001, J EXP MED, V193, P643
139437    FERBER IA, 1999, CLIN IMMUNOL, V91, P134
139438    FRANKENBURG S, 1998, CELL IMMUNOL, V185, P75
139439    KATHLEEN AH, 2002, J NUTR, V13, P3736
139440    MONTGOMERY DL, 1997, PHARMACOL THERAPEUT, V74, P195
139441    NIKAWA T, 2001, BIOCHEM BIOPH RES CO, V285, P546
139442    PASATIEMPO AMG, 1994, J INFECT DIS, V169, P441
139443    PIEDRAFITA FJ, 1999, HDB EXPT PHARM RETIN, P153
139444    RACKE MK, 1995, J IMMUNOL, V154, P450
139445    RENGARAJAN J, 2000, IMMUNOL TODAY, V21, P479
139446    ROSS AC, 1992, P SOC EXP BIOL MED, V200, P303
139447    ROSS AC, 1996, FASEB J, V10, P979
139448    SAMBROOK J, 1989, MOL CLONING LAB MANU
139449    SEMBA RD, 1998, NUTR REV, V56, P38
139450    SMITH SM, 1987, P NATL ACAD SCI USA, V84, P5878
139451    SOMMER A, 1993, J INFECT DIS, V167, P1003
139452    STEPHENSEN CB, 1996, J NUTR, V126, P94
139453    STEPHENSEN CB, 2002, J IMMUNOL, V168, P4495
139454    SZABO SJ, 2000, CELL, V100, P655
139455    TALWAR GP, 1990, CONTRACEPTION, V41, P301
139456    TALWAR GP, 1994, P NATL ACAD SCI USA, V91, P8532
139457    WHALEN RG, 1996, EMERG INFECT DIS, V2, P168
139458    WIEDERMANN U, 1993, IMMUNOLOGY, V80, P581
139459    YANG KJ, 2001, VACCINE, V19, P3285
139460    ZHANG DH, 1998, J IMMUNOL, V161, P3817
139461 NR 35
139462 TC 0
139463 SN 0264-410X
139464 J9 VACCINE
139465 JI Vaccine
139466 PD OCT 25
139467 PY 2005
139468 VL 23
139469 IS 44
139470 BP 5160
139471 EP 5167
139472 PG 8
139473 SC Medicine, Research & Experimental; Immunology; Veterinary Sciences
139474 GA 976KU
139475 UT ISI:000232733100005
139476 ER
139477 
139478 PT J
139479 AU Bi, XH
139480    Sheng, GY
139481    Liu, XH
139482    Li, C
139483    Fu, JM
139484 TI Molecular and carbon and hydrogen isotopic composition of n-alkanes in
139485    plant leaf waxes
139486 SO ORGANIC GEOCHEMISTRY
139487 DT Article
139488 ID ORGANIC-MATTER; D/H RATIOS; LIPID BIOSYNTHESIS; AEROSOLS;
139489    FRACTIONATION; SEDIMENTS; TERRESTRIAL; BIOMARKERS; VALUES; CHINA
139490 AB Molecular composition and compound-specific carbon and hydrogen stable
139491    isotope ratios of leaf wax n-alkanes are presented for 26 plant species
139492    operating C-3, C-4 and CAM photosynthetic pathways. In contrast to
139493    delta(13)C values, delta D values are not diagnostic discriminators for
139494    C-3, C-4 and CAM plants. D and delta(13)C values of n-alkanes from C-4
139495    plants seem to express an inverse linear relationship while Some C-3
139496    plants showed a positive relationship. The carbon and hydrocarbon
139497    isotopic correlation is dependent on plant types as well as
139498    photosynthetic pathways. However, our data imply that the combined use
139499    of carbon and hydrogen isotopic characterization may have superior
139500    diagnostic potential for source apportionment when compared with more
139501    limited isotopic approaches. (c) 2005 Elsevier Ltd. All rights reserved.
139502 C1 Chinese Acad Sci, Guangzhou Inst Geochem, Guangdong Key Lab Environm & Resources, State Key Lab Organ Geochem, Ghangzhou 510640, Peoples R China.
139503    Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072, Peoples R China.
139504 RP Fu, JM, Chinese Acad Sci, Guangzhou Inst Geochem, Guangdong Key Lab
139505    Environm & Resources, State Key Lab Organ Geochem, Ghangzhou 510640,
139506    Peoples R China.
139507 EM fujm@staff.shu.edu.cn
139508 CR BALL DJ, 1998, SPORTS EXERC INJURY, V4, P3
139509    BI XH, 2002, SCI TOTAL ENVIRON, V300, P213
139510    CHIKARAISHI Y, 2003, PHYTOCHEMISTRY, V63, P361
139511    CHIKARAISHI Y, 2004, PHYTOCHEMISTRY, V65, P323
139512    COLLISTER JW, 1994, ORG GEOCHEM, V21, P619
139513    CONTE MH, 2002, GLOBAL BIOGEOCHEM CY, V16
139514    CONTE MH, 2002, NATURE, V417, P639
139515    CONTE MH, 2003, OECOLOGIA, V135, P67
139516    DAWSON TE, 1993, GEOCHIM COSMOCHIM AC, V57, P3487
139517    ESTEP MF, 1980, GEOCHIM COSMOCHIM AC, V44, P1197
139518    FILLEY TR, 2001, ORG GEOCHEM, V32, P1153
139519    FU JM, 1990, ORG GEOCHEM, V16, P769
139520    GOGOU A, 1996, ORG GEOCHEM, V25, P79
139521    GUELZ PG, 1991, PHYTOCHEMISTRY, V30, P769
139522    HASSAN KM, 2001, CHEM GEOL, V175, P713
139523    HAYES JM, 1993, MAR GEOL, V113, P111
139524    KAVOURAS IG, 1998, ENVIRON SCI TECHNOL, V32, P1369
139525    LI MW, 2001, ORG GEOCHEM, V32, P1387
139526    LICHTFOUSE E, 1994, ORG GEOCHEM, V22, P1023
139527    LOCKHEART MJ, 1997, ORG GEOCHEM, V26, P137
139528    MAFFEI M, 1992, PHYTOCHEMISTRY, V31, P479
139529    MAZEAS L, 2002, ORG GEOCHEM, V33, P1259
139530    MCRAE C, 1999, ORG GEOCHEM, V30, P881
139531    OMALLEY VP, 1994, ORG GEOCHEM, V21, P809
139532    OMALLEY VP, 1997, ORG GEOCHEM, V27, P567
139533    OROUS DR, 2001, APPL GEOCHEM, V16, P1545
139534    OTIENO DO, 2005, IN PRESS J ARID ENV
139535    PIO C, 2001, ATMOS ENVIRON, V35, P389
139536    POND KL, 2002, ENVIRON SCI TECHNOL, V36, P724
139537    SAUER PE, 2001, GEOCHIM COSMOCHIM AC, V65, P213
139538    SCHIMMELMANN A, 2004, ORG GEOCHEM, V35, P1169
139539    SESSIONS AL, 1999, ORG GEOCHEM, V30, P1193
139540    SIMONEIT BRT, 1977, NATURE, V267, P682
139541    SIMONEIT BRT, 1990, CHEMOSPHERE, V21, P1285
139542    SIMONEIT BRT, 1997, ATMOS ENVIRON, V31, P2225
139543    STERNBERG LDL, 1988, NATURE, V333, P59
139544    SUN YG, 2000, ORG GEOCHEM, V31, P1349
139545    WANG Y, 2001, ORG GEOCHEM, V32, P991
139546    WARD JAM, 2000, ENVIRON SCI TECHNOL, V34, P4577
139547    XIE S, 2000, ORG GEOCHEM, V31, P1053
139548    XIONG XQ, 2000, ORG GEOCHEM, V31, P1441
139549    YAPP CJ, 1982, NATURE, V97, P636
139550 NR 42
139551 TC 2
139552 SN 0146-6380
139553 J9 ORG GEOCHEM
139554 JI Org. Geochem.
139555 PY 2005
139556 VL 36
139557 IS 10
139558 BP 1405
139559 EP 1417
139560 PG 13
139561 SC Geochemistry & Geophysics
139562 GA 976QQ
139563 UT ISI:000232748700006
139564 ER
139565 
139566 PT J
139567 AU Wang, LJ
139568    Lou, YY
139569    Su, QF
139570    Shi, WM
139571    Xia, YB
139572 TI CVD diamond alpha-particle detectors with different electrode geometry
139573 SO OPTICS EXPRESS
139574 DT Article
139575 ID RADIATION
139576 AB In this paper, two types of detectors, one with a coplanar and the
139577    other with a sandwich geometry using an identical CVD diamond film, are
139578    fabricated in order to investigate the effects of the film
139579    microstructure on the performance of diamond film alpha-particle
139580    detectors. An average charge collection efficiency of 42.9% for the
139581    coplanar structure and of 37.4% for the sandwich structure detectors is
139582    obtained, respectively. Raman scattering studies directly demonstrate
139583    that the different counts, collection efficiencies and photocurrents of
139584    the two types of detectors mainly result from the different
139585    micro-structural features between the final growth side and the
139586    nucleation side of the diamond film. Under a particle irradiation the
139587    detector with sandwich geometry has a similar trend on energy
139588    resolution with coplanar geometry under different applied electric
139589    field. A good energy resolution of 1.1% is obtained for both detectors.
139590    (c) 2005 Optical Society of America.
139591 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
139592 RP Wang, LJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
139593    China.
139594 EM ljwang@staff.shu.edu.cn
139595 CR ADAM W, 2000, NUCL INSTRUM METH A, V447, P244
139596    GIVARGIZOV EI, 1996, APPL SURF SCI, V94, P117
139597    KOZLOV SF, 1977, IEEE T NUCL SCI, V24, P235
139598    MARINELLI M, 2001, J APPL PHYS, V89, P1430
139599    NAVA F, 1979, IEEE T NUCL SCI, V26, P308
139600    VATNITSKY S, 1993, PHYS MED BIOL, V38, P173
139601    WANG LJ, 2003, J PHYS D APPL PHYS, V36, P2548
139602    ZHANG ML, 2005, J CRYST GROWTH, V274, P1
139603 NR 8
139604 TC 0
139605 SN 1094-4087
139606 J9 OPT EXPRESS
139607 JI Opt. Express
139608 PD OCT 17
139609 PY 2005
139610 VL 13
139611 IS 21
139612 BP 8612
139613 EP 8617
139614 PG 6
139615 SC Optics
139616 GA 975HK
139617 UT ISI:000232651400032
139618 ER
139619 
139620 PT J
139621 AU Guo, HW
139622    He, HT
139623    Yu, YJ
139624    Chen, MY
139625 TI Least-squares calibration method for fringe projection profilometry
139626 SO OPTICAL ENGINEERING
139627 DT Article
139628 DE three-dimensional measurement; fringe projection profilometry;
139629    calibration; least-squares estimation
139630 ID PHASE-MEASURING PROFILOMETRY; FOURIER-TRANSFORM PROFILOMETRY; MACHINE
139631    VISION METROLOGY; 3-D OBJECT SHAPES; AUTOMATIC-MEASUREMENT; SYSTEM
139632 AB This paper presents a novel calibration approach for determining the
139633    mapping relationship between the depth map and the phase difference in
139634    fringe projection profilometry. This approach is based on a simple
139635    nonlinear function, which is deduced by analyzing the geometry of
139636    measurement system and hence perfectly describes the mapping between
139637    the depth map and the phase-difference distribution. The calibration is
139638    implemented by translating a target plane to a sequence of given
139639    positions with known depths, and measuring its phase distributions. A
139640    least-squares estimation algorithm with linear computation is deduced
139641    to retrieve the related parameters and to reconstruct the mapping
139642    function. Both computer simulation and experiment are carried out to
139643    demonstrate the validity of this technique. (c) 2005 Society of
139644    Photo-Optical Instrumentation Engineers.
139645 C1 Shanghai Univ, Lab Appl Opt & Metrol, Shanghai 200072, Peoples R China.
139646 RP Guo, HW, Shanghai Univ, Lab Appl Opt & Metrol, Shanghai 200072, Peoples
139647    R China.
139648 EM hw-guo@yeah.net
139649 CR ASUNDI A, 1999, APPL OPTICS, V38, P3556
139650    GANOTRA D, 2002, OPT COMMUN, V209, P291
139651    HU QY, 2003, OPT ENG, V42, P487
139652    HUNG YY, 2000, OPT ENG, V39, P143
139653    LENZ RK, 1988, IEEE T PATTERN ANAL, V10, P713
139654    LIN JF, 1995, OPT ENG, V34, P3297
139655    LIU HY, 1999, P SOC PHOTO-OPT INS, V3782, P283
139656    PIRGA M, 1994, MEASUREMENT, V13, P191
139657    SITNIK R, 2002, OPT ENG, V41, P443
139658    SRINIVASAN V, 1984, APPL OPTICS, V23, P3105
139659    SRINIVASAN V, 1985, APPL OPTICS, V24, P185
139660    TAKEDA M, 1983, APPL OPTICS, V22, P3977
139661    TANG S, 1990, APPL OPTICS, V29, P3012
139662    TSAI RY, 1987, IEEE J ROBOTIC AUTOM, V3, P323
139663    WOMACK KH, 1984, OPT ENG, V23, P391
139664    ZHOU WS, 1994, J MOD OPTIC, V41, P89
139665 NR 16
139666 TC 0
139667 SN 0091-3286
139668 J9 OPT ENG
139669 JI Opt. Eng.
139670 PD MAR
139671 PY 2005
139672 VL 44
139673 IS 3
139674 AR 033603
139675 DI ARTN 033603
139676 PG 9
139677 SC Optics
139678 GA 974KK
139679 UT ISI:000232590100008
139680 ER
139681 
139682 PT J
139683 AU Peng, NS
139684    Yang, J
139685    Liu, Z
139686 TI Performance analysis for tracking of variable scale objects using
139687    mean-shift algorithm
139688 SO OPTICAL ENGINEERING
139689 DT Editorial Material
139690 DE mean-shift tracking; Bhaftacharyya coefficient; scaling problem
139691 AB Classic mean-shift trackers have no integrated scale adaptation, which
139692    limits their performance in tracking variable scale objects. By
139693    analyzing the similarity of object kernel histograms, we found that the
139694    changes of object scale and position within the fixed kernel make the
139695    Bhattacharyya coefficient monotonic decreasing. The work plays a
139696    guiding role in solving scaling problems within the mean-shift
139697    framework. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
139698 C1 Henan Univ Sci & Technol, Luoyang 471039, Peoples R China.
139699    Shanghai Jiao Tong Univ, Shanghai 200436, Peoples R China.
139700    Shanghai Univ, Shanghai 200436, Peoples R China.
139701 RP Peng, NS, Henan Univ Sci & Technol, Luoyang 471039, Peoples R China.
139702 CR BRADSKI GR, 1998, IEEE WORKSH APPL COM, P214
139703    COMANICIU D, 2003, IEEE T PATTERN ANAL, V5, P564
139704    FUKANAGA K, 1975, IEEE T INFORM THEORY, V21, P32
139705    PENG NS, 2004, LECT NOTES COMPUT  2, V3212, P581
139706    YILMAZ A, 2003, IMAGE VISION COMPUT, V21, P623
139707 NR 5
139708 TC 0
139709 SN 0091-3286
139710 J9 OPT ENG
139711 JI Opt. Eng.
139712 PD JUL
139713 PY 2005
139714 VL 44
139715 IS 7
139716 AR 070505
139717 DI ARTN 070505
139718 PG 3
139719 SC Optics
139720 GA 974KU
139721 UT ISI:000232591100006
139722 ER
139723 
139724 PT J
139725 AU Xu, H
139726    Tan, XH
139727    Bai, Q
139728    Wang, Q
139729    Dong, YD
139730 TI Influence of B substituting for Al on the structure and magnetic
139731    properties of the bulk Nd60Fe20Al10-xCo10Bx amorphous alloys
139732 SO JOURNAL OF MATERIALS SCIENCE
139733 DT Letter
139734 ID GLASS; ND60FE30AL10
139735 C1 Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
139736 RP Xu, H, Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
139737 EM hxu@mail.shu.edu.cn
139738 CR CHAU N, 2002, J MAGN MAGN MATER 2, V242, P1314
139739    DING J, 1999, APPL PHYS LETT, V75, P1763
139740    FAN GJ, 2000, J MATER RES, V15, P1556
139741    INOUE A, 1996, MATER T JIM, V37, P1731
139742    INOUE A, 1996, MATER T JIM, V37, P636
139743    INOUE A, 1996, MATER T JIM, V37, P99
139744    KONG HZ, 2000, J MAGN MAGN MATER, V217, P65
139745    SCHNEIDER S, 2002, APPL PHYS LETT, V80, P1749
139746    SIRATORI K, 1990, J MAGN MAGN MATER, V83, P341
139747    WEI BC, 2001, PHYS REV B, V64
139748    WEI BC, 2002, ACTA MATER, V50, P4357
139749 NR 11
139750 TC 0
139751 SN 0022-2461
139752 J9 J MATER SCI
139753 JI J. Mater. Sci.
139754 PD NOV
139755 PY 2005
139756 VL 40
139757 IS 21
139758 BP 5775
139759 EP 5777
139760 PG 3
139761 SC Materials Science, Multidisciplinary
139762 GA 975WS
139763 UT ISI:000232695400032
139764 ER
139765 
139766 PT J
139767 AU Xia, L
139768    Jo, CL
139769    Dong, YD
139770 TI Glass forming ability of hard magnetic Nd55Al20Fe25 bulk glassy alloy
139771    with distinct glass transition
139772 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
139773 DT Article
139774 DE metallic glass; glass-forming ability; microstructure; coercivity
139775 ID PRIMARY CRYSTALLIZATION; METALLIC GLASSES; AMORPHOUS-ALLOYS; PHASE;
139776    MICROSTRUCTURE
139777 AB Nd55Al20Fe25 bulk sample was prepared in the shape of rods 3 mm in
139778    diameter by suction casting. The sample exhibits typical amorphous
139779    characters in XRD pattern, distinct glass transition in DSC traces and
139780    hard magnetic properties. The distinct glass transition, which is
139781    invisible in DSC traces of previously reported Nd-Al-Fe ternary BMGs,
139782    allows us to investigate the glass forming ability (GFA) of
139783    Nd55Al20Fe25 alloy using the reduced glass transition temperature T-tau
139784    g and the recently defined parameter gamma. However, it is found that
139785    the obtained diameter of the Nd55Al20Fe25 glassy rod is much larger
139786    than the critical section thickness of the BMG predicted by either T-rg
139787    or gamma. The microstructure of Nd55Al20Fe25 as-cast rod was studied
139788    and the apparent GFA of the alloy was supposed to be enhanced by the
139789    metastable nano-precipitates dispersed within the glassy matrix.
139790 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
139791    Shanghai Univ, Ctr Microanal, Shanghai 200436, Peoples R China.
139792 RP Xia, L, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
139793 EM xialei@staff.shu.edu.cn
139794 CR BUSCH R, 1995, APPL PHYS LETT, V67, P1544
139795    DELAMARE J, 1994, J ALLOY COMPD, V216, P273
139796    FAN GJ, 2000, J MATER RES, V15, P1556
139797    FRANKWICZ PS, 1996, MATER LETT, V28, P77
139798    INOUE A, 1996, MATER T JIM, V37, P99
139799    INOUE A, 1998, METALL MATER TRANS A, V29, P1779
139800    LOFFLER JF, 2000, PHYS REV LETT, V85, P1990
139801    LU ZP, 2002, ACTA MATER, V50, P3501
139802    LU ZP, 2003, PHYS REV LETT, V91
139803    MEUNSHENKOV VP, 1998, P 10 INT S MAGN AN C, P97
139804    MIEDEMA AR, 1975, J LESS-COMMON MET, V41, P283
139805    SCHNEIDER S, 2002, APPL PHYS LETT, V80, P1749
139806    TAKEUCHI A, 2001, MATER TRANS, V42, P1435
139807    TURNBULL D, 1969, CONTEMP PHYS, V10, P473
139808    WANG XZ, 1999, J ALLOY COMPD, V290, P209
139809    WEI BC, 2002, ACTA MATER, V50, P4357
139810    XIA L, 2003, J PHYS D APPL PHYS, V36, P2954
139811    XIA L, 2003, J PHYS D APPL PHYS, V36, P775
139812    XIA L, 2003, J PHYS-CONDENS MAT, V15, P3531
139813    XING LQ, 2000, J APPL PHYS, V88, P3565
139814 NR 20
139815 TC 0
139816 SN 0217-9792
139817 J9 INT J MOD PHYS B
139818 JI Int. J. Mod. Phys. B
139819 PD SEP 10
139820 PY 2005
139821 VL 19
139822 IS 22
139823 BP 3493
139824 EP 3500
139825 PG 8
139826 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
139827 GA 976AL
139828 UT ISI:000232705100004
139829 ER
139830 
139831 PT J
139832 AU Wang, WD
139833    Leng, GS
139834 TI L-p-dual mixed quermassintegrals
139835 SO INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS
139836 DT Article
139837 DE L-p-harmonic radial combination; dual quermassintegrals; L-p-mixed
139838    quermassintegrals; L-p-dual mixed quermassintegrals; L-p-dual mixed
139839    volume
139840 ID VOLUMES
139841 AB Associated with the notions of L-p-harmonic radial combination and dual
139842    quermassintegrals, we give the "dual" of L-p-mixed quermassintegrals -
139843    the notion of L-p-dual mixed quermassintegrals, the L-p-dual mixed
139844    volume is its special case. Further, we prove an integral
139845    representation and inequalities for L-p-dual mixed quermassintegrals.
139846 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
139847    Hubei Inst Nationalities, Dept Math, Hubei Enshi 445000, Peoples R China.
139848 RP Wang, WD, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
139849 EM wangwd722@eyou.com
139850 CR FIREY WJ, 1961, CAN J MATH, V13, P444
139851    FIREY WJ, 1961, PAC J MATH, V11, P1263
139852    FIREY WJ, 1962, MATH SCAND, V10, P17
139853    GARDNER RJ, 1995, GEOMETRIC TOMOGRAPHY
139854    LUTWAK E, 1975, PAC J MATH, V58, P531
139855    LUTWAK E, 1993, J DIFFER GEOM, V38, P131
139856    LUTWAK E, 1996, ADV MATH, V118, P224
139857    SCHNEIDER R, 1993, CONVEX BODIES BRUNN
139858 NR 8
139859 TC 0
139860 SN 0019-5588
139861 J9 INDIAN J PURE APPL MATH
139862 JI Indian J. Pure Appl. Math.
139863 PD APR
139864 PY 2005
139865 VL 36
139866 IS 4
139867 BP 177
139868 EP 188
139869 PG 12
139870 SC Mathematics
139871 GA 975SN
139872 UT ISI:000232682300002
139873 ER
139874 
139875 PT J
139876 AU Li, CX
139877    Zhang, JY
139878 TI Evaluation of arbitrary integer based multiple tuned mass dampers for
139879    structures
139880 SO INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS
139881 DT Article
139882 DE base isolation; multiple tuned mass dampers (MTMD); structural control;
139883    structural isolation; tuned mass damper
139884 ID GROUND ACCELERATION; DYNAMIC CHARACTERISTICS; OSCILLATIONS;
139885    FREQUENCIES; PERFORMANCE; SYSTEM
139886 AB In contrast with the odd number based multiple tuned mass dampers
139887    (ON-MTMD) used conventionally, which is targeted at the central natural
139888    frequency, the arbitrary integer based multiple tuned mass dampers
139889    (AI-MTMD) is proposed for the convenient applications of MTMD by giving
139890    up the central natural frequency hypothesis. The total number of the
139891    TMD units constituting the AI-MTMD may be selected as an arbitrary
139892    integer according to the practical requirements. In terms of the
139893    dynamic magnification factors (DMF) of the AI-MTMD structure system,
139894    the criterion for evaluating the optimum parameters and effectiveness
139895    of the AI-MTMD is selected as the minimization of the minimum values of
139896    the maximum DMF of the structure with the AI-MTMD. Employing the
139897    maximum DMF of every mass block in the AI-MTMD, the stroke of the
139898    AI-MTMD is simultaneously evaluated. The results indicate that both the
139899    AI-MTMD and the ON-MTMD can practically render the same performance,
139900    thus demonstrating that the former can be more convenient in mitigating
139901    structural oscillations with respect to the ON-MTMD stuck to the
139902    central natural frequency hypothesis.
139903 C1 Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R China.
139904    Shanghai Jiao Tong Univ, Dept Civil Engn, Shanghai 200030, Peoples R China.
139905 RP Li, CX, Shanghai Univ, Dept Civil Engn, 149 Yanchang Rd, Shanghai
139906    200072, Peoples R China.
139907 EM li-chunxiang@vip.sina.com
139908 CR ABE M, 1994, EARTHQUAKE ENG STRUC, V23, P813
139909    ABE M, 1995, EARTHQUAKE ENG STRUC, V24, P247
139910    CHEN GD, 2001, J STRUCT ENG-ASCE, V127, P1054
139911    GU M, 2001, J WIND ENG IND AEROD, V89, P987
139912    JANGID RS, 1995, STRUCT ENG MECH, V3, P497
139913    JANGID RS, 1999, EARTHQUAKE ENG STRUC, V28, P1041
139914    KAMIYA K, 1992, P 3 INT C MOT VIBR C, V2, P322
139915    KAREEM A, 1995, J STRUCT ENG-ASCE, V121, P348
139916    LI CX, 2000, EARTHQUAKE ENG STRUC, V29, P1405
139917    LI CX, 2002, EARTHQUAKE ENG STRUC, V31, P897
139918    LI CX, 2002, J STRUCT ENG-ASCE, V128, P1362
139919    LI CX, 2003, EARTHQUAKE ENG STRUC, V32, P671
139920    LI CX, 2003, J STRUCT ENG-ASCE, V129, P972
139921    LI CX, 2004, ENG STRUCT, V26, P303
139922    PARK J, 2001, ENG STRUCT, V23, P802
139923    XU KM, 1992, EARTHQUAKE ENG STRUC, V21, P1059
139924    YAMAGUCHI H, 1993, EARTHQUAKE ENG STRUC, V22, P51
139925 NR 17
139926 TC 1
139927 SN 0219-4554
139928 J9 INT J STRUCT STAB DYN
139929 JI Int. J. Struct. Stab. Dyn.
139930 PD SEP
139931 PY 2005
139932 VL 5
139933 IS 3
139934 BP 475
139935 EP 488
139936 PG 14
139937 GA 975GA
139938 UT ISI:000232647800008
139939 ER
139940 
139941 PT J
139942 AU Yang, GH
139943    Yan, JJ
139944    Tian, LJ
139945    Duan, YS
139946 TI Topological aspects of entropy and phase transition of Kerr black holes
139947 SO COMMUNICATIONS IN THEORETICAL PHYSICS
139948 DT Article
139949 DE topological current; entropy; Kerr black hole; Euler characteristic;
139950    Killing vector field
139951 ID GRAND-CANONICAL ENSEMBLE; EXTREME STATE; THERMODYNAMICS;
139952    CLASSIFICATION; PARTICLE; AREA
139953 AB In the light of topological current and the relationship between the
139954    entropy and the Euler characteristic, the topological aspects of
139955    entropy and phase transition of Kerr black holes are studied. From
139956    Gauss-Bonnet-Chern theorem, it is shown that the entropy of Kerr black
139957    holes is determined by the singularities of the Killing vector field of
139958    spacetime. By calculating the Hopf indices and Brouwer degrees of the
139959    Killing vector field at the singularities, the entropy S = A/4 for
139960    nonextreme Kerr black holes and S = 0 for extreme ones are obtained,
139961    respectively. It is also discussed that, with the change of the ratio
139962    of mass to angular momentum for unit mass, the Euler characteristic and
139963    the entropy of Kerr black holes will change discontinuously when the
139964    singularities on Cauchy horizon merge with the singularities on event
139965    horizon, which will lead to the first-order phase transition of Kerr
139966    black holes.
139967 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
139968    Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China.
139969 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
139970 EM ghyang@mail.shu.edu.cn
139971 CR CAI RG, 2004, PHYS LETT B, V582, P237
139972    CHERN SS, 1944, ANN MATH, V45, P747
139973    CHERN SS, 1945, ANN MATH, V46, P674
139974    CHERN SS, 1959, LECT NOTES
139975    DUAN YS, 1993, J MATH PHYS, V34, P1149
139976    DUAN YS, 1997, HELV PHYS ACTA, V70, P565
139977    DUAN YS, 1998, NUCL PHYS B, V514, P705
139978    GELFAND IM, 1958, GEN FUNCTION
139979    GHOSH A, 1996, PHYS REV LETT, V77, P4848
139980    GHOSH A, 1997, PHYS REV LETT, V78, P1858
139981    GIBBONS GW, 1979, COMMUN MATH PHYS, V66, P291
139982    GIBBONS GW, 1995, PHYS REV D, V51, P2839
139983    HAWKING SW, 1975, COMMUN MATH PHYS, V43, P199
139984    HAWKING SW, 1995, PHYS REV D, V51, P4302
139985    HUANG CG, 2003, PHYS REV D, V68
139986    LIBERATI S, 1997, PHYS REV D, V56, P6458
139987    MA ZZ, 2003, PHYS REV D, V67
139988    PEER AW, 1998, CLASSICAL QUANT GRAV, V15, P3291
139989    SEN A, 1995, PHYS LETT A, V10, P2081
139990    STROMINGER A, 1996, PHYS LETT B, V379, P99
139991    TEITELBOIM C, 1995, PHYS REV D, V51, P4315
139992    WANG B, 1998, PHYS LETT B, V432, P69
139993    WANG B, 1998, PHYS REV D, V57, P5284
139994    WANG B, 1999, PHYS REV D, V59
139995    WANG B, 2000, PHYS REV D, V62
139996    YANG GH, 2001, GEN RELAT GRAVIT, V33, P1027
139997    YANG GH, 2001, MOD PHYS LETT A, V16, P1457
139998    YANG GH, 2002, INT J THEOR PHYS, V41, P953
139999    YORK JW, 1986, PHYS REV D, V33, P2092
140000    ZASLAVSKII OB, 1996, PHYS REV LETT, V76, P2211
140001 NR 30
140002 TC 0
140003 SN 0253-6102
140004 J9 COMMUN THEOR PHYS
140005 JI Commun. Theor. Phys.
140006 PD OCT 15
140007 PY 2005
140008 VL 44
140009 IS 4
140010 BP 631
140011 EP 637
140012 PG 7
140013 SC Physics, Multidisciplinary
140014 GA 976IB
140015 UT ISI:000232725700012
140016 ER
140017 
140018 PT J
140019 AU Yi, ZJ
140020    Liu, TY
140021    Zhang, QR
140022    Sun, YY
140023 TI Electronic structures of PbWO4 crystals containing F-type colour centres
140024 SO CHINESE PHYSICS LETTERS
140025 DT Article
140026 ID SINGLE-CRYSTALS; V-PB(2-)
140027 AB Electronic structures of PbWO4 Crystals Containing F-type colour
140028    centres with the lattice structure optimized are studied within the
140029    framework of the fully relativistic self-consistent Dirac-Slater
140030    theory, using a numerically discrete variational (DV-X alpha) method.
140031    The calculated results show that F and F+ centres have donor energy
140032    levels in the forbidden bands. Their optical transition energies are
140033    1.84 eV and 2.21 eV, respectively, which correspond to the 680 rim and
140034    550 nm absorption bands. It is predicted that the 680 nm and 550 nm
140035    absorption banas originate from the F and F+ centres in PbWO4 crystals.
140036 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
140037 RP Liu, TY, Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093,
140038    Peoples R China.
140039 EM liutyyxj@163.com
140040 CR AVERILL FW, 1973, J CHEM PHYS, V59, P6412
140041    BOHACEK P, 2005, NUCL INSTRUM METH A, V537, P86
140042    ELLIS DE, 1995, ELECT DENSITY FUNCTI, P263
140043    FANG SG, 1998, PHYS COLOUR CTR CRYS
140044    FENG XQ, 1997, J INORGANIC MAT, V12, P449
140045    LIU FX, 1999, NUCL INSTRUM METH A, V426, P464
140046    LIU TY, 2001, PHYS STATUS SOLIDI A, V184
140047    LIU TY, 2004, CHINESE PHYS LETT, V21, P1596
140048    LIU TY, 2005, CHINESE PHYS LETT, V22, P442
140049    MI XW, 2002, J U SHANGHAI SCI TEC, V24, P209
140050    MURK V, 1997, J PHYS-CONDENS MAT, V9, P249
140051    NIKL M, 1997, J APPL PHYS, V82, P5758
140052    VAN LW, 1975, PHYS STATUS SOLIDI A, V27, P565
140053    XU GX, 1999, FUNDAMENTAL THEORY A
140054    YE XL, 1999, ACTA PHYS SIN-CH ED, V48, P1923
140055    ZHANG QR, 2003, PHYS REV B, V68
140056 NR 16
140057 TC 1
140058 SN 0256-307X
140059 J9 CHIN PHYS LETT
140060 JI Chin. Phys. Lett.
140061 PD OCT
140062 PY 2005
140063 VL 22
140064 IS 10
140065 BP 2618
140066 EP 2621
140067 PG 4
140068 SC Physics, Multidisciplinary
140069 GA 974SW
140070 UT ISI:000232612700045
140071 ER
140072 
140073 PT J
140074 AU Dai, Y
140075    Yu, BK
140076    Lu, B
140077    Qiu, JR
140078    Yan, XN
140079    Jiang, XW
140080    Zhu, CS
140081 TI Thermal stress-induced birefringence in borate glass irradiated by
140082    femtosecond laser pulses
140083 SO CHINESE PHYSICS LETTERS
140084 DT Article
140085 ID WRITTEN WAVE-GUIDES; TRANSPARENT MATERIALS; FUSED-SILICA
140086 AB Thermal stress-induced birefringence in borate glass which has been
140087    irradiated by 800-nm femtosecond laser pulses is observed under
140088    cross-polarized light. Due to the high temperature and pressure formed
140089    in the focal volume, the material at the edge of the micro-modified
140090    region is compressed between the expanding region and the unheated one,
140091    then stress emerges. Raman spectroscopy is used to investigate the
140092    stress distribution in the micro-modified region and indicates the
140093    redistributions of density and refractive index by Raman peak shift. We
140094    suggest that this technique can develop waveguide polarizers and
140095    Fresnel zone plates in integrated optics.
140096 C1 Shanghai Univ, Coll Sci, Dept Phys, Shanghai 200444, Peoples R China.
140097    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
140098 RP Dai, Y, Shanghai Univ, Coll Sci, Dept Phys, Shanghai 200444, Peoples R
140099    China.
140100 EM yedai@126.com
140101 CR BHARDWAJ VR, 2004, OPT LETT, V29, P1312
140102    CERDEIRA F, 1972, PHYS REV B-SOLID ST, V5, P580
140103    CHAN JW, 2001, OPT LETT, V26, P1726
140104    DAVIS KM, 1996, OPT LETT, V21, P1729
140105    GLEZER EN, 1997, APPL PHYS LETT, V71, P882
140106    MIURA K, 1997, APPL PHYS LETT, V71, P3329
140107    NAKAYA T, 2004, CHINESE PHYS LETT, V21, P1061
140108    QIU JR, 2004, ANGEW CHEM INT EDIT, V43, P2230
140109    SCHAFFER CB, 2003, APPL PHYS A-MATER, V76, P351
140110    STRELTSOV AM, 2002, J OPT SOC AM B, V19, P2496
140111    YU B, 2004, J OPT SOC AM B, V21, P83
140112 NR 11
140113 TC 0
140114 SN 0256-307X
140115 J9 CHIN PHYS LETT
140116 JI Chin. Phys. Lett.
140117 PD OCT
140118 PY 2005
140119 VL 22
140120 IS 10
140121 BP 2626
140122 EP 2629
140123 PG 4
140124 SC Physics, Multidisciplinary
140125 GA 974SW
140126 UT ISI:000232612700047
140127 ER
140128 
140129 PT J
140130 AU Li, MX
140131    Shao, M
140132    Dai, H
140133    An, BL
140134    Lu, WC
140135    Zhu, Y
140136    Du, CX
140137 TI Synthesis and crystal structure of a novel copper (II) complex with
140138    acetylenedicarboxylate and 2, 2 '-bipyridine
140139 SO CHINESE CHEMICAL LETTERS
140140 DT Article
140141 DE copper complex; crystal structure; coordination polymer;
140142    acetylenedicarboxylate acid
140143 ID COORDINATION; ACID
140144 AB The title compound [Cu (ADC) (2, 2'-bipy)](n) (ADC = C-2 (COO)(2)(2-))
140145    was prepared and characterized by elemental analysis, IR spectroscopy,
140146    X-ray analysis, respectively. The analysis of the crystal structure
140147    reveals that the copper atom is five-coordinated with two nitrogen
140148    atoms of 2, 2'-bipy and three oxygen atoms of different
140149    acetylenedicarboxylate dianions. ADC as bridging ligands link the Cu
140150    (II) ions, forming coordination polymer structure.
140151 C1 Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
140152    Zhengzhou Univ, Dept Chem, Zhengzhou 450052, Peoples R China.
140153 RP Li, MX, Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
140154 EM mx_li@mail.shu.edu.cn
140155 CR BILLETTER H, 2003, ACTA CRYSTALLOGR C, V59, P130
140156    CHOI HJ, 1999, INORG CHEM, V38, P6309
140157    DEACON GB, 1980, COORDIN CHEM REV, V33, P227
140158    KONAR S, 2003, INORG CHEM, V42, P2545
140159    LI H, 1998, J AM CHEM SOC, V120, P8571
140160    LI MX, 1996, POLYHEDRON, V15, P535
140161    MARCH J, 1977, ADV ORG CHEM, P17
140162    MURO IG, 1998, INORG CHEM, V37, P3243
140163    PANTENBURG I, 2002, ACTA CRYSTALLOGR C, V58, P483
140164    PAVLISHCHUK VV, 2001, EUR J INORG CHEM JAN, P297
140165    RUIZPEREZ C, 2003, POLYHEDRON, V22, P2111
140166    SHI Q, 2001, POLYHEDRON, V20, P3287
140167    SKOULIKA S, 2003, CHEM MATER, V15, P4576
140168 NR 13
140169 TC 1
140170 SN 1001-8417
140171 J9 CHIN CHEM LETT
140172 JI Chin. Chem. Lett.
140173 PD OCT
140174 PY 2005
140175 VL 16
140176 IS 10
140177 BP 1405
140178 EP 1408
140179 PG 4
140180 SC Chemistry, Multidisciplinary
140181 GA 975CL
140182 UT ISI:000232638500037
140183 ER
140184 
140185 PT J
140186 AU Yin, RH
140187    Zeng, SH
140188    Cao, WM
140189    Dong, XM
140190 TI Structure and magnetic properties of electrodeposited Co/Pt multilayers
140191 SO ACTA CHIMICA SINICA
140192 DT Article
140193 DE electrocrystallization; multilayer; X-ray diffraction; hysteresis loop;
140194    perpendicular magnetic anisotropy
140195 ID LAYERED STRUCTURES; FILMS; ANISOTROPY
140196 AB The Co/Pt multilayers film was deposited on monocrystal Si(111) using
140197    electrocrystallization in boric acid system, in which
140198    Pt(NO2)(2)(NH3)(2) and CoSO4 were used as main salts. The cross section
140199    morphology of the multilayers was characterized by SEM method. The
140200    results showed that a periodically layered structure was obtained by
140201    electrodeposition. In Co/Pt interface, CoPt3 was found by middle angle
140202    X-ray diffraction method. The hysteresis loop of the multilayers was
140203    determined by PPMS method. The result showed that the coercivity of
140204    multilayers was about 165 Oe parallelly, and the coercivity in
140205    perpendicular increased with the content of Co, 396 Oe at a maximun.
140206    The Co/Pt multilayer with the easy-magnetization axis perpendicular to
140207    the face of layers was firstly prepared by electrocrystallization
140208    method.
140209 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200444, Peoples R China.
140210 RP Yin, RH, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200444, Peoples R
140211    China.
140212 EM yinrh@staff.shu.edu.cn
140213 CR CARCIA PF, 1988, J APPL PHYS, V63, P5066
140214    CHAPPERT C, 1986, J MAGN MAGN MATER, V54, P795
140215    FARROW RFC, 1992, B AM PHYS SOC, V37, P305
140216    GEORGESCU V, 1996, J MAGN MAGN MATER, V156, P27
140217    GURNEY PD, 1993, PLATINUM MET REV, V37, P130
140218    HASEEB ASMA, 1994, J ELECTROCHEM SOC, V141, P230
140219    HASIMOTO S, 1990, J MAGN MAGN MATER, V88, P21
140220    JYOKO Y, 1993, MAT T JIM, V10, P946
140221    JYOKO Y, 1996, J MAGN MAGN MATER, V156, P35
140222    JYOKO Y, 1999, J MAGN MAGN MATER, V198, P239
140223    LEE CH, 1991, J MAGN MAGN MATER, V93, P592
140224    LIN CJ, 1991, J MAGN MAGN MATER, V93, P194
140225    LULICA Z, 2003, ELECTROCHEM SOLID ST, V6, P153
140226    TAKAHASHI H, 1993, J MAGN MAGN MATER, V126, P282
140227    TSOUKATOS A, 1993, J MAGN MAGN MATER, V118, P387
140228    WELLER D, 1992, IEEE T MAGN, V28, P500
140229    YIN RH, 1998, ACTA METAL SINICA, V34, P892
140230    YIN RH, 1999, ACTA METAL SINICA, V35, P109
140231    ZEPER WB, 1989, J APPL PHYS, V65, P4971
140232    ZHANG P, 1996, CHIN J HEMATOL, V17, P58
140233    ZHOU J, 2000, THESIS CHINESE ACAD
140234 NR 21
140235 TC 0
140236 SN 0567-7351
140237 J9 ACTA CHIM SIN
140238 JI Acta Chim. Sin.
140239 PD OCT 28
140240 PY 2005
140241 VL 63
140242 IS 20
140243 BP 1871
140244 EP 1874
140245 PG 4
140246 SC Chemistry, Multidisciplinary
140247 GA 975EZ
140248 UT ISI:000232645100004
140249 ER
140250 
140251 PT J
140252 AU Ren, ZJ
140253    Cao, WG
140254    Tong, WQ
140255    Jin, Z
140256 TI Solvent-free, one-pot synthesis of pyrano[2,3-c]pyrazole derivatives in
140257    the presence of KF center dot 2H(2)O by grinding
140258 SO SYNTHETIC COMMUNICATIONS
140259 DT Article
140260 DE grinding; 4H-pyran; one-pot synthesis; potassium fluoride dihydrate;
140261    solvent-free
140262 ID SOLID-STATE; STEREOSELECTIVE-SYNTHESIS; AQUEOUS-MEDIA; ABSENCE
140263 AB A solvent-free, one-pot process for the preparation of 4H-pyrans in the
140264    presence of KF center dot 2H(2)O by grinding was achieved. Its
140265    advantages are easy workup, mild reaction conditions, high yields, and
140266    environmental friendliness.
140267 C1 Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
140268    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
140269 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
140270 EM renrui198229@hotmail.com
140271 CR BONSIGNORE L, 1993, EUR J MED CHEM, V28, P517
140272    CLARK JH, 1980, CHEM REV, V80, P429
140273    HYAMA T, 1987, 62181276, JAP
140274    IM J, 1997, TETRAHEDRON LETT, V38, P451
140275    JIN TS, 2004, SYNLETT         0403, P871
140276    KUTHAN J, 1995, ADV HETEROCYCLIC CHE
140277    LI JP, 2001, SYNTHETIC COMMUN, V31, P781
140278    NAIR V, 2002, TETRAHEDRON LETT, V43, P2293
140279    REN ZJ, 2002, SYNTHETIC COMMUN, V32, P3475
140280    REN ZJ, 2004, SYNTHETIC COMMUN, V34, P3785
140281    REN ZJ, 2004, SYNTHETIC COMMUN, V34, P4395
140282    SCHMEYERS T, 1998, J CHEM SOC P2, P989
140283    SHAWALI AS, 2002, J HETEROCYCLIC CHEM, V39, P45
140284    SHI DQ, 2004, SYNTHETIC COMMUN, V34, P4557
140285    TANAKA K, 1991, J ORG CHEM, V56, P4333
140286    TODA F, 1989, ANGEW CHEM, V101, P329
140287    TODA F, 1989, CHEM EXP, V4, P507
140288    TODA F, 1990, CHEM LETT, P373
140289    TODA F, 1990, J CHEM SOC P1, P3207
140290    TODA F, 1998, J CHEM SOC PERK 1107, P3521
140291    WITTE EC, 1986, 347985, DE
140292    XI CJ, 2005, ORG LETT, V7, P347
140293    XIAO JP, 2001, SYNTHETIC COMMUN, V31, P661
140294    ZHOU JF, 2002, SYNTHETIC COMMUN, V32, P3363
140295 NR 24
140296 TC 0
140297 SN 0039-7911
140298 J9 SYN COMMUN
140299 JI Synth. Commun.
140300 PY 2005
140301 VL 35
140302 IS 19
140303 BP 2509
140304 EP 2513
140305 PG 5
140306 SC Chemistry, Organic
140307 GA 972MJ
140308 UT ISI:000232457600004
140309 ER
140310 
140311 PT J
140312 AU He, HT
140313    Chen, MY
140314    Guo, HW
140315    Yu, YJ
140316 TI Novel multiview connection method based on virtual cylinder for 3-D
140317    surface measurement
140318 SO OPTICAL ENGINEERING
140319 DT Article
140320 DE 3-D measurement; surface measurement; multiview connection; virtual
140321    cylinder; coordinate transformation
140322 ID OVERLAP-SCANNING TECHNIQUE; PROFILOMETRY; OBJECTS; SHAPES
140323 AB In optical 3-D measurements, two steps are generally required to obtain
140324    the whole-body 3-D shapes of objects: measuring the 3-D shape from
140325    different views, and afterwards connecting them together. The multiview
140326    overlapping scanning connection technique in a cylindrical coordinate
140327    system is an effective method for measuring a surface with a rotation
140328    axis, e.g., a 360-deg shape. However, there are great difficulties in
140329    measuring a more complex surface, such as those with concavities or
140330    composed of several discontinuous patches, because a complex surface
140331    generally cannot be explicitly represented in cylindrical coordinates.
140332    To solve these problems, a novel multiview connection method based on
140333    virtual cylinders for measurement of 3-D surfaces is proposed. In a
140334    Cartesian coordinate system, the virtual cylinders are determined by
140335    least-squares fitting to the local overlapping surface patches. The
140336    error movements are obtained from a linear equation system based on the
140337    virtual cylinders. The connection of adjacent views is then performed
140338    by coordinate transformation in 3-D space. Both computer simulation and
140339    experimental results are presented to verify the effectiveness of the
140340    suggested method. (c) 2005 Society of Photo-Optical Instrumentation
140341    Engineers.
140342 C1 Shanghai Univ, Lab Appl Opt & Metrol, Shanghai 200072, Peoples R China.
140343 RP He, HT, Shanghai Univ, Lab Appl Opt & Metrol, Shanghai 200072, Peoples
140344    R China.
140345 EM hspear@eastday.com
140346 CR BEST PJ, 1992, IEEE T PATTERN ANAL, V14, P239
140347    CHEN F, 2000, OPT ENG, V39, P10
140348    CHEN MY, 1991, P SOC PHOTO-OPT INS, V1553, P626
140349    CHEN MY, 1996, P SOC PHOTO-OPT INS, V2861, P107
140350    CHEN MY, 2000, P SOC PHOTO-OPT  A&B, V4101, P193
140351    CHENG WM, 1993, OPT ENG, V32, P1947
140352    CHENG WM, 1996, P SOC PHOTO-OPT INS, V2860, P321
140353    GUO HW, 2003, OPT ENG, V42, P900
140354    JOST T, 2003, P 4 INT C 3D DIG IM, P427
140355    LI ST, 2002, ACTA AUTOMATIC SINA, V28, P310
140356    OTSUBO M, 1994, OPT ENG, V33, P608
140357    REICH C, 1998, P SOC PHOTO-OPT INS, V3520, P100
140358    SRINIVASAN V, 1984, APPL OPTICS, V23, P3105
140359    TAKEDA M, 1983, APPL OPTICS, V22, P3977
140360    ZHU X, 2000, FREE FORM SURFACE CU, P28
140361 NR 15
140362 TC 0
140363 SN 0091-3286
140364 J9 OPT ENG
140365 JI Opt. Eng.
140366 PD AUG
140367 PY 2005
140368 VL 44
140369 IS 8
140370 AR 083605
140371 DI ARTN 083605
140372 PG 8
140373 SC Optics
140374 GA 974MN
140375 UT ISI:000232596000011
140376 ER
140377 
140378 PT J
140379 AU Yue, RX
140380    Hickernell, FJ
140381 TI Strong tractability of integration using scrambled Niederreiter points
140382 SO MATHEMATICS OF COMPUTATION
140383 DT Article
140384 DE multivariate integration; quasi-Monte Carlo methods; nets and
140385    sequences; scrambling
140386 ID MONTE CARLO ALGORITHMS; MULTIVARIATE INTEGRATION; QUADRATURE; VARIANCE;
140387    NETS; DISCREPANCY; SEQUENCES
140388 AB We study the randomized worst-case error and the randomized error of
140389    scrambled quasi - Monte Carlo (QMC) quadrature as proposed by Owen. The
140390    function spaces considered in this article are the weighted Hilbert
140391    spaces generated by Haar-like wavelets and the weighted Sobolev-Hilbert
140392    spaces. Conditions are found under which multivariate integration is
140393    strongly tractable in the randomized worst-case setting and the
140394    randomized setting, respectively. The epsilon-exponents of strong
140395    tractability are found for the scrambled Niederreiter nets and
140396    sequences. The sufficient conditions for strong tractability for
140397    Sobolev spaces are more lenient for scrambled QMC quadratures than
140398    those for deterministic QMC net quadratures.
140399 C1 Shanghai Univ, E Inst, Div Sci Computat, Shanghai 200234, Peoples R China.
140400    Shanghai Normal Univ, Dept Appl Math, Shanghai, Peoples R China.
140401 RP Yue, RX, Shanghai Univ, E Inst, Div Sci Computat, 100 Guilin Rd,
140402    Shanghai 200234, Peoples R China.
140403 EM yue2@shnu.edu.cn
140404    fred@hkbu.edu.hk
140405 CR HEINRICH S, 2004, MATH COMPUT, V73, P259
140406    HICKERNELL FJ, 1996, ACM T MODELING COMPU, V6, P274
140407    HICKERNELL FJ, 1999, MATH COMPUT, V68, P767
140408    HICKERNELL FJ, 2000, ADV COMPUT MATH, V12, P25
140409    HICKERNELL FJ, 2000, SIAM J NUMER ANAL, V38, P1089
140410    HICKERNELL FJ, 2001, J COMPLEXITY, V17, P625
140411    HICKERNELL FJ, 2001, J COMPLEXITY, V17, P660
140412    HICKERNELL FJ, 2002, MATH COMPUT, V71, P1641
140413    KUO FY, 2004, IN PRESS J COMPLEXIT
140414    NIEDERREITER H, 1988, J NUMBER THEORY, V30, P51
140415    NIEDERREITER H, 1992, RANDOM NUMBER GENERA
140416    NIEDERREITER H, 2001, J COMPLEXITY, V17, P683
140417    OWEN AB, 1995, LECT NOTES STAT, V106, P299
140418    OWEN AB, 1997, ANN STAT, V25, P1541
140419    OWEN AB, 1997, SIAM J NUMER ANAL, V34, P1884
140420    OWEN AB, 1998, J COMPLEXITY, V14, P466
140421    SLOAN IH, 1998, J COMPLEXITY, V14, P1
140422    SLOAN IH, 2001, J COMPLEXITY, V17, P697
140423    SLOAN IH, 2004, MONTE CARLO QUASIMON, P407
140424    SOBOL IM, 1967, ZH VYCHISL MAT MAT F, V7, P784
140425    WAHBA G, 1990, SPLINE MODELS OBSERV
140426    WANG XQ, 2002, J COMPLEXITY, V18, P683
140427    WANG XQ, 2003, MATH COMPUT, V72, P823
140428    WOZNIAKOWSKI H, 2000, MONTE CARLO QUASIMON, P114
140429    YUE RX, 1999, STAT PROBABIL LETT, V44, P267
140430    YUE RX, 1999, STAT SINICA, V9, P451
140431    YUE RX, 2001, J COMPLEXITY, V17, P897
140432 NR 27
140433 TC 0
140434 SN 0025-5718
140435 J9 MATH COMPUT
140436 JI Math. Comput.
140437 PY 2005
140438 VL 74
140439 IS 252
140440 BP 1871
140441 EP 1893
140442 PG 23
140443 SC Mathematics, Applied
140444 GA 972ZX
140445 UT ISI:000232493700015
140446 ER
140447 
140448 PT J
140449 AU Wang, L
140450    Perevalov, VI
140451    Tashkun, SA
140452    Liu, AW
140453    Hu, SM
140454 TI Absorption spectra of (CO2)-C-12-O-16 and (CO2)-C-13-O-16 near 1.05 mu m
140455 SO JOURNAL OF MOLECULAR SPECTROSCOPY
140456 DT Article
140457 DE carbon dioxide; infrared; Fourier-transform spectroscopy; absolute line
140458    intensities; transition dipole moment; global modeling
140459 ID EFFECTIVE OPERATOR APPROACH; CW-CAVITY RINGDOWN; LINE-INTENSITIES;
140460    CARBON-DIOXIDE; SPECTROSCOPY; BANDS
140461 AB The absolute line intensities of the Fermi triad 2003i-00001 (i = 1, 2,
140462    3) of (CO2)-C-12-O-16 and (CO2)-C-13-O-16 isotopic species of carbon
140463    dioxide were retrieved from Fourier-transform spectra recorded at
140464    Doppler limited resolution in the region 9200-9700 cm(-1). The accuracy
140465    of the line intensity determination is estimated to be better than 15%
140466    for most lines. The vibrational transition dipole moments squared and
140467    Herman-Wallis coefficients have been determined. The global fittings of
140468    the observed line intensities within the framework of the effective
140469    operators method have been performed. The fitting results reproduce the
140470    data within experimental uncertainty. (c) 2005 Elsevier Inc. All rights
140471    reserved.
140472 C1 Shanghai Univ Sci & Technol, Shanghai Inst Adv Studies, Shanghai 201315, Peoples R China.
140473    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Phys Chem, Hefei 230026, Peoples R China.
140474    SB RAS, Inst Atmospher Opt, Lab Theoret Spect, Tomsk 634055, Russia.
140475 RP Hu, SM, Shanghai Univ Sci & Technol, Shanghai Inst Adv Studies,
140476    Shanghai 201315, Peoples R China.
140477 EM smhu@ustc.edu.cn
140478 CR BOESE RW, 1966, J QUANT SPECTROSC RA, V6, P717
140479    DING Y, 2002, J MOL SPECTROSC, V212, P219
140480    DING Y, 2004, J MOL SPECTROSC, V226, P146
140481    DING Y, 2005, J MOL SPECTROSC, V231, P117
140482    GAMACHE RR, 1990, J MOL SPECTROSC, V142, P205
140483    MAJCHEROVA Z, 2005, J MOL SPECTROSC, V230, P1
140484    MANDIN JY, 1977, J MOL SPECTROSC, V67, P304
140485    MANDIN JY, 2000, J QUANT SPECTROSC RA, V67, P429
140486    PEREVALOV VI, 1995, J MOL SPECTROSC, V171, P435
140487    ROTHMAN LS, 1992, J QUANT SPECTROSC RA, V48, P527
140488    ROTHMAN LS, 2003, J QUANT SPECTROSC RA, V82, P5
140489    TASHKUN SA, 1999, J QUANT SPECTROSC RA, V62, P571
140490    TASHKUN SA, 2003, J QUANT SPECTROSC RA, V82, P165
140491    TEFFO JL, 1998, J MOL SPECTROSC, V187, P28
140492 NR 14
140493 TC 0
140494 SN 0022-2852
140495 J9 J MOL SPECTROSC
140496 JI J. Mol. Spectrosc.
140497 PD OCT
140498 PY 2005
140499 VL 233
140500 IS 2
140501 BP 297
140502 EP 300
140503 PG 4
140504 SC Physics, Atomic, Molecular & Chemical; Spectroscopy
140505 GA 971TK
140506 UT ISI:000232407400018
140507 ER
140508 
140509 PT J
140510 AU Xiao, XS
140511    Wang, GM
140512    Fang, SS
140513    Hua, Q
140514    Gu, JZ
140515    Dong, YD
140516 TI Effect of thermo-mechanical histories on the microstructure and
140517    properties of Zr65Al10Ni10Cu15 metallic glassy plates
140518 SO JOURNAL OF MATERIALS SCIENCE
140519 DT Article
140520 ID DUCTILITY; ALLOY
140521 AB Effect of thermo-mechanical histories during hot rolling in the
140522    supercooled liquid region on the microstructure and properties of
140523    Zr65Al10Ni10Cu15 metallic glassy plates was investigated by X-ray
140524    diffraction (XRD), high-resolution transmission electron microscopy
140525    (HRTEM), differential scanning calorimetry (DSC), microhardness and
140526    electrical resistivity measurements. It was found that some nano-scale
140527    clusters and a few crystalline phases were dispersed in the amorphous
140528    matrix, which may depress the crystallization onset temperature (T-x).
140529    The microhardness increased while the electrical resistivity first
140530    increased and then decreased with hot rolling times. So, it is
140531    important for the working and forming of bulk metallic glasses in the
140532    supercooled liquid region to take the thermo-mechanical histories into
140533    account. (c) 2005 Springer Science + Business Media, Inc.
140534 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
140535 RP Xiao, XS, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
140536    China.
140537 EM xsxiao@mail.shu.edu.cn
140538 CR EKELUND S, 1927, JERNKONT ANN, V2, P39
140539    INOUE A, 1990, MATER T JIM, V31, P17
140540    KAWAMURA Y, 1998, ACTA METALL MATER, V46, P253
140541    PEKER A, 1993, APPL PHYS LETT, V63, P2342
140542    WANG TB, 1988, PLAST PROCESSING MET, P34
140543    XIAO XS, 2003, J ALLOY COMPD, V351, P324
140544    YOKOYAMA Y, 2001, MATER TRANS, V42, P623
140545    YOKOYAMA Y, 2003, J NON-CRYST SOLIDS, V316, P104
140546 NR 8
140547 TC 0
140548 SN 0022-2461
140549 J9 J MATER SCI
140550 JI J. Mater. Sci.
140551 PD OCT
140552 PY 2005
140553 VL 40
140554 IS 20
140555 BP 5435
140556 EP 5438
140557 PG 4
140558 SC Materials Science, Multidisciplinary
140559 GA 971RW
140560 UT ISI:000232403100016
140561 ER
140562 
140563 PT J
140564 AU Du, L
140565    Hu, QY
140566    Yue, WY
140567 TI Analysis and evaluation for optimal allocation in sequential Internet
140568    auction systems with reserve price
140569 SO DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES
140570    B-APPLICATIONS & ALGORITHMS
140571 DT Article
140572 DE Web services; Internet auction; Markov decision process; performance
140573    analysis; optimal allocation
140574 AB In this paper, we present a new performance model and an analysis for
140575    its optimal allocation in a sequential Internet auction system with a
140576    set reserve price. In the sequential Internet auction system, a seller
140577    wants to sell a given amount, of items through sequential auctions on
140578    the Internet. The seller has a reserve price for each item. For each
140579    auction, the seller should allocate a quantity of items from the total
140580    available items to be auctioned. The buyers arrive according to a
140581    Poisson process and bid honestly. We first, consider the model to be a
140582    Markov decision process and present its performance analysis. In the
140583    analysis, we show that the result is no difference whether the reserve
140584    price is or public. Then we show that in the monotonous properties of
140585    the optimal policy, a greater number of items will be allocated if
140586    there are more items held or there are fewer horizons remaining.
140587    Finally, numerical results are given.
140588 C1 Xidian Univ, Sch Econ & Management, Xian 710071, Peoples R China.
140589    Shanghai Univ, Coll Int Business & Management, Shanghai 201800, Peoples R China.
140590    Konan Univ, Dept Informat Sci & Syst Engn, Kobe, Hyogo 6588501, Japan.
140591 RP Du, L, Xidian Univ, Sch Econ & Management, Xian 710071, Peoples R China.
140592 EM journal@monotone.uwaterloo.ca
140593 CR BEAM C, 1996, 96WP1019 CITM
140594    HU Q, 2000, INTRO MARKOV DEICISI
140595    OCKENFELS A, 2002, ARTIFICIAL INTEL FAL, P79
140596    SEGEV A, 2001, INFORM TECH MANAGEME, V2, P121
140597    VULCANO G, 2002, MANAGE SCI, V38, P1388
140598    VULCANO G, 2002, MANUFACTURING SERVIC, V4, P7
140599    WILCOX RT, 2000, MARKET LETT, V11, P363
140600 NR 7
140601 TC 0
140602 SN 1492-8760
140603 J9 DYN CONT DISCR IMP SYST SER B
140604 JI Dyn. Contin. Discret. Impuls. Syst. Ser. B-Appl. Algorithms
140605 PD AUG
140606 PY 2005
140607 VL 12
140608 IS 4
140609 BP 617
140610 EP 631
140611 PG 15
140612 SC Mathematics, Applied
140613 GA 971ZU
140614 UT ISI:000232424400009
140615 ER
140616 
140617 PT J
140618 AU Yang, XH
140619    Wu, QS
140620    Li, L
140621    Ding, YP
140622    Zhang, GX
140623 TI Controlled synthesis of the semiconductor CdS quasi-nanospheres,
140624    nanoshuttles, nanowires and nanotubes by the reverse micelle systems
140625    with different surfactants
140626 SO COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS
140627 DT Article
140628 DE reverse micelles; microemulsion template; surfactant; CdS;
140629    quasi-nanospheres; nanoshuttles; nanowires; nanotubes
140630 ID NANOPARTICLES; ROUTE; MICROEMULSIONS; NANOBELTS; TEMPLATE; GROWTH; METAL
140631 AB A series of CdS nanomaterials with different morphologies and
140632    structures were self-assembled in a simple reverse micelle solvent
140633    system containing cyclohexane, aqueous solution, n-pentanol and
140634    surfactant. Cds quasi-nanospheres (i.d. 200-500nm), Cds nanoshuttles
140635    (i.d. 248 nm and length similar to 450 nm), Cds nanowires (i.d. similar
140636    to 46 nm and length 1.65-4.15 mu m) and Cds nanotubes (inner i.d. 25
140637    nm, outer i.d. 38 nm and length similar to 400nm long) were produced by
140638    employing the surfactant of Tween-80, Peregals, C12E9 and Triton X-100,
140639    respectively. The Cds nanomaterials were found to possess different
140640    optical properties from the bulk CdS when analyzed by photoluminescence
140641    and UV-visible spectroscopy. A mechanism involving the possible
140642    formation of nanomaterials based on surfactant microemulsion template
140643    was also proposed. (c) 2005 Elsevier B.V. All rights reserved.
140644 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
140645    Chizhou Teachers Coll, Dept Chem, Chizhou 247000, Anhui, Peoples R China.
140646    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
140647 RP Wu, QS, Tongji Univ, Dept Chem, 1239 Siping Rd, Shanghai 200092,
140648    Peoples R China.
140649 EM qswu@mail.tongji.edu.cn
140650 CR ADAMPENG Z, 2001, J AM CHEM SOC, V123, P183
140651    BARRELET CJ, 2003, J AM CHEM SOC, V125, P11498
140652    BERMAN A, 1999, ADV MATER, V11, P296
140653    CAO HQ, 2001, ADV MATER, V13, P1393
140654    CAO YC, 2004, J AM CHEM SOC, V126, P14336
140655    GAO T, 2004, J PHYS CHEM B, V108, P20045
140656    GE JP, 2004, ADV FUNCT MATER, V14, P157
140657    HENGLEIN A, 1989, CHEM REV, V89, P1861
140658    JUN YW, 2001, J AM CHEM SOC, V123, P5150
140659    LADE M, 2000, COLLOID SURFACE A, V163, P3
140660    LI YD, 1998, CHEM MATER, V10, P2301
140661    LI YD, 1999, INORG CHEM, V38, P4737
140662    REITER G, 1993, SCIENCE, V259, P1305
140663    ROSSETTI R, 1983, J CHEM PHYS, V79, P1086
140664    TAYLOR JR, 2000, ANAL CHEM, V72, P1979
140665    VIJAYA R, 2001, LANGMUIR, V17, P1406
140666    WANG CC, 2001, COLLOID SURFACE A, V189, P145
140667    WANG YW, 2002, CHEM MATER, V14, P1773
140668    WU J, 2002, J CRYST GROWTH, V235, P421
140669    WU QS, 2003, ACTA CHIM SINICA, V61, P1824
140670    ZHANG J, 2004, J PHYS CHEM B, V108, P7002
140671    ZHANG P, 2003, LANGMUIR, V19, P208
140672    ZHAO HY, 2001, LANGMUIR, V17, P8428
140673    ZHOU SM, 2003, EUR J INORG CHEM MAY, P1794
140674 NR 24
140675 TC 0
140676 SN 0927-7757
140677 J9 COLLOID SURFACE A
140678 JI Colloid Surf. A-Physicochem. Eng. Asp.
140679 PD AUG 15
140680 PY 2005
140681 VL 264
140682 IS 1-3
140683 BP 172
140684 EP 178
140685 PG 7
140686 SC Chemistry, Physical
140687 GA 970RK
140688 UT ISI:000232327100024
140689 ER
140690 
140691 PT J
140692 AU Dai, HJ
140693    Xu, GJ
140694    Thomas, JL
140695    Wang, ZG
140696    Jiang, RJ
140697    Fei, J
140698 TI Efficient and stable generation of transgenic silkworn Bombyx mori with
140699    the lepidopteran derived transposon piggyBac
140700 SO CHINESE SCIENCE BULLETIN
140701 DT Article
140702 DE Bombyx mori; genes transgene; piggyBac; screening marker
140703 ID YELLOW-FEVER MOSQUITO; DROSOPHILA-VIRILIS; GERMLINE TRANSFORMATION;
140704    GENETIC-TRANSFORMATION; AEDES-AEGYPTI; ELEMENT; VECTOR; INSECTS;
140705    MARINER; MARKER
140706 AB The piggyBac transposable element was successfully used for generation
140707    of the transgenic silkworm, Bombyx mori. The EGFP was adopted in this
140708    study as a screening marker in transgenic vector under the control of
140709    an artificial promoter containing Pax-6 binding sites that can drive
140710    eye-specific genes expression in various insect species including B.
140711    mori and Drosophila. 111 independent transgenic lines were obtained
140712    among 700 fertile G(0) moths. Most of the transgenic lines contained
140713    two or more chromosomal insertions of the EGFP marker, which were
140714    stably inherited over more than six generations during the time of this
140715    project. PiggyBac-mediated transposition was confirmed by identifying
140716    the characteristic TTAA duplication sequence at the insertion sites.
140717    The stable and high efficient transmission of a genetic marker into B.
140718    mori confirms the usage of this vector-marker system for industrial
140719    production and theoretical research.
140720 C1 Chinese Acad Sci, Shanghai Inst Biol Sci, Grad Sch, Chinese Acad Sci,Inst Plant Physiol & Ecol, Shanghai 200032, Peoples R China.
140721    Shanghai Res Ctr Model Org, Shanghai 201203, Peoples R China.
140722    Chinese Acad Sci, Model Org Res Ctr, Shanghai Inst Biol Sci, Shanghai 200031, Peoples R China.
140723    Shanghai Univ, Model Org Div, E Inst, Shanghai 200025, Peoples R China.
140724 RP Fei, J, Chinese Acad Sci, Shanghai Inst Biol Sci, Grad Sch, Chinese
140725    Acad Sci,Inst Plant Physiol & Ecol, Shanghai 200032, Peoples R China.
140726 EM jfei@sibs.ac.cn
140727 CR BERGHAMMER AJ, 1999, NATURE, V402, P370
140728    COATES CJ, 1998, P NATL ACAD SCI USA, V95, P3748
140729    FRASER MJ, 1995, VIROLOGY, V211, P397
140730    GOMEZ SP, 1997, INSECT MOL BIOL, V6, P165
140731    HANDLER AM, 1998, P NATL ACAD SCI USA, V95, P7520
140732    HARRIS AS, 2001, J PINEAL RES, V31, P199
140733    HEDIGER M, 2001, INSECT MOL BIOL, V10, P113
140734    HORN C, 2000, DEV GENES EVOL, V210, P630
140735    JASINSKIENE N, 1998, P NATL ACAD SCI USA, V95, P3743
140736    LOHE AR, 1996, GENETICS, V143, P365
140737    LOUKERIS TG, 1995, SCIENCE, V270, P2002
140738    LOZOVSKAYA ER, 1996, GENETICS, V142, P173
140739    MASAHIRO T, 2003, NAT BIOTECHNOL, V21, P52
140740    MIRKA U, 2002, DEV GENES EVOL, V212, P145
140741    OBROCHTA DA, 1996, INSECT BIOCHEM MOLEC, V26, P739
140742    RUBIN GM, 1982, SCIENCE, V218, P348
140743    SHENG GJ, 1997, GENE DEV, V11, P1122
140744    STEPHEN TT, 2004, NAT GENET, V36, P283
140745    TAMURA T, 2000, NAT BIOTECHNOL, V18, P81
140746    THOMAS JL, 2002, INSECT BIOCHEM MOLEC, V32, P247
140747    WANG HH, 1993, INSECT MOL BIOL, V1, P109
140748    XIA QY, 2004, SCIENCE, V306, P1937
140749 NR 22
140750 TC 0
140751 SN 1001-6538
140752 J9 CHIN SCI BULL
140753 JI Chin. Sci. Bull.
140754 PD AUG
140755 PY 2005
140756 VL 50
140757 IS 15
140758 BP 1617
140759 EP 1621
140760 PG 5
140761 SC Multidisciplinary Sciences
140762 GA 974RQ
140763 UT ISI:000232609500015
140764 ER
140765 
140766 PT J
140767 AU Zheng, CL
140768    Fang, JP
140769 TI New exact solutions and fractal patterns of generalized Broer-Kaup
140770    system via a mapping approach
140771 SO CHAOS SOLITONS & FRACTALS
140772 DT Article
140773 ID VARIABLE SEPARATION EXCITATIONS; LOCALIZED COHERENT STRUCTURES;
140774    NONLINEAR SCHRODINGER SYSTEM; DISPERSIVE WAVE SYSTEM; SIMILARITY
140775    REDUCTIONS; BOUSSINESQ EQUATION; SOLITON-SOLUTIONS; BEHAVIORS; CHAOS
140776 AB With the help of an extended mapping approach, a new type of variable
140777    separation solution with two arbitrary functions of the (2 +
140778    1)-dimensional generalized Broer-Kaup (GBK) system is derived. Based on
140779    the derived solitary wave excitation, we reveal some regular fractal
140780    and stochastic fractal patterns in the (2 + I)-dimensional GBK system.
140781    (c) 2005 Elsevier Ltd. All rights reserved.
140782 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Zhejiang, Peoples R China.
140783    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
140784 RP Zheng, CL, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Zhejiang,
140785    Peoples R China.
140786 EM zjclzheng@yahoo.com.cn
140787 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V31, P125
140788    BOITI M, 1987, INVERSE PROBL, V3, P371
140789    BROER LJF, 1975, APPL SCI RES, V31, P377
140790    CHEN CL, 2002, COMMUN THEOR PHYS, V38, P129
140791    CHEN HS, 2000, CHINESE PHYS LETT, V17, P85
140792    CLARKSON PA, 1989, J MATH PHYS, V30, P2201
140793    FAN EG, 2001, PHYS LETT A, V282, P18
140794    GEDALIN M, 1997, PHYS REV LETT, V78, P448
140795    GOLLUB JP, 2000, NATURE, V404, P710
140796    HUANG DJ, 2004, CHAOS SOLITON FRACT, V23, P601
140797    KADOMTSEV B, 1970, SOV PHYS DOKL, V35, P539
140798    KAUP DJ, 1975, PROG THEOR PHYS, V54, P396
140799    KIVSHAR YS, 1989, REV MOD PHYS, V61, P765
140800    LI B, 2003, Z NATURFORSCH A, V58, P464
140801    LOU SY, 1989, J MATH PHYS, V30, P1614
140802    LOU SY, 1990, PHYS LETT A, V151, P133
140803    LOU SY, 1997, J MATH PHYS, V38, P6401
140804    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
140805    LOUTSENKO I, 1997, PHYS REV LETT, V78, P3011
140806    STEGEMAN GI, 1999, SCIENCE, V286, P1518
140807    TANG XY, 2002, PHYS REV E, V66, P46601
140808    YING JP, 2001, Z NATURFORSCH A, V56, P619
140809    ZAKHAROV VE, 1968, J APPL MECH TECH PHY, V2, P190
140810    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P448
140811    ZHANG SL, 2002, PHYS LETT A, V300, P40
140812    ZHENG CL, 2002, ACTA PHYS SIN-CH ED, V51, P2426
140813    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
140814    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
140815    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P261
140816    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
140817    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P385
140818    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
140819    ZHENG CL, 2004, COMMUN THEOR PHYS, V41, P671
140820    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
140821    ZHENG CL, 2004, Z NATURFORSCH A, V59, P912
140822    ZHENG CL, 2005, CHAOS SOLITON FRACT, V23, P1741
140823    ZHENG CL, 2005, CHAOS SOLITON FRACT, V24, P1347
140824    ZHENG CL, 2005, CHAOS SOLITON FRACT, V26, P187
140825 NR 38
140826 TC 2
140827 SN 0960-0779
140828 J9 CHAOS SOLITON FRACTAL
140829 JI Chaos Solitons Fractals
140830 PD MAR
140831 PY 2006
140832 VL 27
140833 IS 5
140834 BP 1321
140835 EP 1327
140836 PG 7
140837 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
140838 GA 972LU
140839 UT ISI:000232456100020
140840 ER
140841 
140842 PT J
140843 AU Liu, H
140844    Lu, GZ
140845    Guo, YL
140846    Guo, Y
140847 TI Synthesis of TS-1 using amorphous SiO2 and its catalytic properties for
140848    hydroxylation of phenol in fixed-bed reactor
140849 SO APPLIED CATALYSIS A-GENERAL
140850 DT Article
140851 DE titanium silicalite-1; amorphous SiO2; hydroxylation of phenol;
140852    fixed-bed reactor
140853 ID TITANIUM SILICALITE-1; HYDROGEN-PEROXIDE; ZEOLITES; CRYSTALLIZATION;
140854    MEDIA
140855 AB Titanium silicalite-1 (TS-1) has been synthesized using amorphous SiO2
140856    as silicon source and tetrapropylammonium bromide (TPABr) as template.
140857    The effects of preparation parameters, such as silicon sources,
140858    crystallization temperature and time, aging time, H2O/SiO2, SiO2/ TiO2,
140859    TPABr/SiO2 and n-butylamine (NBA)/SiO2, and nonionic surfactants on the
140860    physicochemical and catalytic properties of TS-1 were investigated in
140861    detail. The TS-1 samples were characterized by XRD, FF-IR, UV-vis, SEM,
140862    ICP-AES and N-2 adsorption. In the fixed-bed reactor, the catalytic
140863    property of TS-1 for the phenol hydroxylation was tested. The studies
140864    show that the catalytic performance of TS-1 synthesized using amorphous
140865    SiO2 is close to that of the samples prepared with tetraethyl
140866    orthosilicalite (TEOS) for the phenol hydroxylation with H2O2. The
140867    crystallinity of the sample increases with an increase of the
140868    crystallization temperature, crystallization time, the ratio Of SiO2/
140869    TiO2, SiO2/H2O and NBA/SiO2. TS-1 with smaller crystals can be obtained
140870    by increasing aging time, H2O/SiO2 and NBA/SiO2, and using the nonionic
140871    surfactants. Moreover, adding the nonionic surfactants in the matrix
140872    gel can increase the amount of Ti incorporated in framework of zeolite
140873    and reduces the amount of TiO2 in an extra framework. (c) 2005 Elsevier
140874    B.V. All rights reserved.
140875 C1 E China Univ Sci & Technol, Res Inst Ind Catalysis, Adv Mat Lab, Shanghai 200237, Peoples R China.
140876    Shanghai Univ, Coll Environm & Chem Engn, Shanghai 200072, Peoples R China.
140877 RP Lu, GZ, E China Univ Sci & Technol, Res Inst Ind Catalysis, Adv Mat
140878    Lab, Shanghai 200237, Peoples R China.
140879 EM gzhlu@ecust.edu.cn
140880 CR ALLIAN M, 1995, STUD SURF SCI CATAL, V92, P239
140881    ASTORINO E, 1995, J CATAL, V157, P482
140882    CLERICI MG, 1991, APPL CATAL, V68, P394
140883    CLERICI MG, 1991, J CATAL, V129, P159
140884    ERNST S, 1987, ZEOLITES, V7, P458
140885    GONTIER S, 1996, ZEOLITES, V16, P184
140886    JORDA E, 1997, ZEOLITES, V19, P238
140887    KHOMANE RB, 2002, MATER CHEM PHYS, V76, P99
140888    LIU H, 2004, CATAL TODAY, V93, P351
140889    MARTENS JA, 1993, APPL CATAL A-GEN, V99, P71
140890    MASPERO F, 1994, J CATAL, V146, P476
140891    MILLINI R, 1992, J CATAL, V137, P497
140892    MULLER U, 1994, STUD SURF SCI CA A-C, V84, P203
140893    NOTARI B, 1993, CATAL TODAY, V18, P163
140894    REDDY JS, 1992, J MOL CATAL, V71, P373
140895    SHIBATA M, 1997, STUD SURF SCI CA A-C, V105, P245
140896    SHIBATA M, 1997, ZEOLITES, V19, P246
140897    THANGARAJ A, 1990, APPL CATAL, V57, L1
140898    TUEL A, 1996, ZEOLITES, V16, P108
140899    TVARUZKOVA Z, 1993, APPL CATAL A-GEN, V103, L1
140900    VANDERPOL AJHP, 1992, APPL CATAL A-GEN, V92, P113
140901    WANG XS, 1999, CATAL TODAY, V51, P177
140902    XIA QH, 1997, MATER CHEM PHYS, V47, P225
140903 NR 23
140904 TC 0
140905 SN 0926-860X
140906 J9 APPL CATAL A-GEN
140907 JI Appl. Catal. A-Gen.
140908 PD SEP 28
140909 PY 2005
140910 VL 293
140911 BP 153
140912 EP 161
140913 PG 9
140914 SC Chemistry, Physical; Environmental Sciences
140915 GA 972EF
140916 UT ISI:000232436200017
140917 ER
140918 
140919 PT J
140920 AU Wang, XW
140921    Shi, L
140922    Li, MX
140923    Ding, KL
140924 TI Heterogenization of Shibasaki's binol/la catalyst for enantioselective
140925    epoxidation of alpha,beta-unsaturated ketones with multitopic binol
140926    ligands: The impact of bridging spacers
140927 SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
140928 DT Article
140929 DE asymmetric catalysis; epoxidation; heterogeneous catalysis; ketones;
140930    lanthanum
140931 ID HETEROGENEOUS ASYMMETRIC HYDROGENATION; CARBOXYLIC-ACID IMIDAZOLIDES;
140932    CHIRAL LANTHANUM; SYNTHETIC ENZYMES; CINCHONA ALKALOIDS; ESTER
140933    SURROGATES; TRIPHASE SYSTEM; POLYAMINO-ACIDS; METAL-COMPLEXES; HYBRID
140934    SOLIDS
140935 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
140936    Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200436, Peoples R China.
140937 RP Ding, KL, Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab
140938    Organomet Chem, 345 Fenglin Rd, Shanghai 200032, Peoples R China.
140939 EM kding@mail.sioc.ac.cn
140940 CR ADGER MA, 1997, J CHEM SOC P1, P3501
140941    ARAI S, 1998, SYNLETT          NOV, P1201
140942    ARAI S, 1998, TETRAHEDRON LETT, V39, P7563
140943    ARAI S, 2002, TETRAHEDRON, V58, P1623
140944    ARAI T, 2002, TETRAHEDRON-ASYMMETR, V13, P2083
140945    ARAI T, 2003, ANGEW CHEM INT EDIT, V42, P2144
140946    ARAI T, 2003, ANGEW CHEM, V115, P2194
140947    BANFI S, 1984, TETRAHEDRON, V40, P5207
140948    BERGBREITER DE, 2002, CHEM REV, V102, P3345
140949    BOUGAUCHI M, 1997, J AM CHEM SOC, V119, P2329
140950    CHAUDARY BM, 2004, J AM CHEM SOC, V126, P3396
140951    CHEN RF, 2001, TETRAHEDRON, V57, P9837
140952    CHEN WP, 1998, TETRAHEDRON LETT, V39, P8495
140953    COLONNA S, 1983, TETRAHEDRON, V39, P1635
140954    COREY EJ, 1999, ORG LETT, V1, P1287
140955    DAI LX, 2004, ANGEW CHEM INT EDIT, V43, P5726
140956    DAI LX, 2004, ANGEW CHEM, V116, P5846
140957    DAIKAI K, 1998, TETRAHEDRON LETT, V39, P7321
140958    DAIKAI K, 2003, CHIRALITY, V15, P83
140959    DEVOS DE, 2000, CHIRAL CATALYST IMMO
140960    DEVOS DE, 2002, CHEM REV, V102, P3615
140961    ELSTON CL, 1997, ANGEW CHEM INT EDIT, V36, P410
140962    ELSTON CL, 1997, ANGEW CHEM, V109, P379
140963    ENDERS D, 1996, ANGEW CHEM INT EDIT, V35, P1725
140964    ENDERS D, 1996, ANGEW CHEM, V108, P1727
140965    ENDERS D, 1998, TETRAHEDRON-ASYMMETR, V9, P3959
140966    FAN QH, 2002, CHEM REV, V102, P3385
140967    GUO HC, 2004, TETRAHEDRON LETT, V45, P2009
140968    HU A, 2003, ANGEW CHEM INT EDIT, V42, P6000
140969    HU A, 2003, ANGEW CHEM, V115, P6182
140970    HU AG, 2003, J AM CHEM SOC, V125, P11490
140971    JAYAPRAKASH D, 2003, J MOL CATAL A-CHEM, V196, P145
140972    JAYAPRAKASH D, 2003, TETRAHEDRON-ASYMMETR, V14, P1587
140973    JULIA S, 1980, ANGEW CHEM INT EDIT, V19, P929
140974    JULIA S, 1980, ANGEW CHEM, V92, P968
140975    JULIA S, 1982, J CHEM SOC P1, P1317
140976    KINO R, 2004, ORG BIOMOL CHEM, V2, P1822
140977    KINOSHITA T, 2003, ANGEW CHEM INT EDIT, V42, P4680
140978    KINOSHITA T, 2003, ANGEW CHEM, V115, P4828
140979    KUMARASWAMY G, 2003, TETRAHEDRON-ASYMMETR, V14, P3797
140980    LEADBEATER NE, 2002, CHEM REV, V102, P3217
140981    LIANG YX, 2005, J AM CHEM SOC, V127, P7694
140982    LYGO B, 1998, TETRAHEDRON LETT, V39, P1599
140983    LYGO B, 1999, TETRAHEDRON, V55, P6289
140984    MACDONALD G, 1998, TETRAHEDRON LETT, V39, P5431
140985    MATSUNAGA S, 2002, ADV SYNTH CATAL, V344, P3
140986    MATSUNAGA S, 2004, J AM CHEM SOC, V126, P7559
140987    NEL RJJ, 1999, TETRAHEDRON, V55, P9727
140988    NEMOTO T, 2001, J AM CHEM SOC, V123, P2725
140989    NEMOTO T, 2001, J AM CHEM SOC, V123, P9474
140990    NEMOTO T, 2002, J SYN ORG CHEM JPN, V60, P94
140991    OHSHIMA T, 2003, TETRAHEDRON, V59, P10485
140992    PORTER MJ, 1999, BIOORGAN MED CHEM, V7, P2145
140993    PORTER MJ, 2000, CHEM COMMUN, P1215
140994    PU L, 1998, CHEM REV, V98, P2405
140995    SEKIGUTI T, 2003, ORG LETT, V5, P2647
140996    SEO JS, 2000, NATURE, V404, P982
140997    SHI Y, 2004, ACCOUNTS CHEM RES, V37, P488
140998    SONG CE, 2002, CHEM REV, V102, P3495
140999    TAKIZAWA S, 2003, ANGEW CHEM INT EDIT, V42, P5711
141000    TAKIZAWA S, 2003, ANGEW CHEM, V115, P5889
141001    WANG XS, 2005, CHEM-EUR J, V11, P4078
141002    WANG XW, 2004, J AM CHEM SOC, V126, P10524
141003    WATANABE S, 1998, J ORG CHEM, V63, P8090
141004    WATANABE S, 1998, TETRAHEDRON LETT, V39, P7353
141005    WU CD, 2005, J AM CHEM SOC, V127, P8940
141006    YAGHI OM, 2003, NATURE, V423, P705
141007    YANG D, 2004, ACCOUNTS CHEM RES, V37, P497
141008    YU HB, 1999, J ORG CHEM, V64, P8149
141009 NR 69
141010 TC 4
141011 SN 1433-7851
141012 J9 ANGEW CHEM INT ED
141013 JI Angew. Chem.-Int. Edit.
141014 PY 2005
141015 VL 44
141016 IS 39
141017 BP 6362
141018 EP 6366
141019 PG 5
141020 SC Chemistry, Multidisciplinary
141021 GA 974BI
141022 UT ISI:000232565900018
141023 ER
141024 
141025 PT J
141026 AU Cheng, YM
141027    Li, JH
141028 TI A meshless method with complex variables for elasticity
141029 SO ACTA PHYSICA SINICA
141030 DT Article
141031 DE moving least-square approximation; moving least-square approximation
141032    with complex variables; meshless method; elasticity; meshless method
141033    with complex variables
141034 ID FINITE-ELEMENT-METHOD; BOUNDARY NODE METHOD; COMPUTATIONAL MECHANICS
141035 AB The moving least-square approximation with complex variables (MLSCV) is
141036    developed on the basis of moving least-square approximation. The
141037    advantages of MLSCV are that the approximation function of a 2-D
141038    problem is formed with 1-D basis function, and the meshless method
141039    obtained has greater computational efficiency. A meshless method with
141040    complex variables for 2-D elasticity is then presented using MLSCV, and
141041    the formulae of the meshless method with complex variables are
141042    obtained. Compared with the conventional meshless method, the rneshless
141043    method with complex variables introduced in this paper has greater
141044    precision and computational efficiency. Some examples are given.
141045 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
141046    Xian Univ Technol, Dept Bldg Engn, Xian 710048, Peoples R China.
141047 RP Cheng, YM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
141048    200072, Peoples R China.
141049 EM ymcheng@sh163.net
141050    ymcheng@staff.shu.edu.cn
141051 CR ATLURI SN, 1998, COMPUT MECH, V22, P117
141052    BELYTSCHKO T, 1994, INT J NUMER METH ENG, V37, P229
141053    BELYTSCHKO T, 1996, COMPUT METHOD APPL M, V139, P3
141054    CAI Y, 2003, ACTA MECH SINICA, V35, P187
141055    CHENG Y, 2003, ACTA MECH SINICA, V35, P181
141056    DUARTE CA, 1996, COMPUT METHOD APPL M, V139, P237
141057    HAO S, 2002, INT J NUMER METH ENG, V53, P1937
141058    HON YC, 2003, INT J NUMER METH ENG, V56, P1931
141059    IDELSOHN SR, 2003, INT J NUMER METH ENG, V58, P893
141060    KOTHNUR VS, 1999, INT J SOLIDS STRUCT, V36, P1129
141061    KOU X, 2000, J HYDRAULIC ENG, V10, P28
141062    LI S, 2002, APPL MECH REV, V55, P1
141063    LI S, 2004, ACTA MECH SINICA, V36, P496
141064    LIU WK, 1995, INT J NUMER METH FL, V21, P901
141065    LIU WK, 1996, COMPUT METHOD APPL M, V139, P91
141066    LONG SY, 2000, ACTA MECH SINICA, V32, P566
141067    NAYROLES B, 1992, COMPUT MECH, V10, P307
141068    ONARTE E, 1996, INT J NUMER METH ENG, V39, P3839
141069    ZHANG JM, 2002, INT J NUMER METH ENG, V53, P751
141070    ZHANG X, 2003, ACTA MECH SINICA, V35, P425
141071    ZHANG XG, 2001, INT J NUMER METH ENG, V51, P1089
141072    ZHU T, 1998, COMPUT MECH, V21, P223
141073 NR 22
141074 TC 1
141075 SN 1000-3290
141076 J9 ACTA PHYS SIN-CHINESE ED
141077 JI Acta Phys. Sin.
141078 PD OCT
141079 PY 2005
141080 VL 54
141081 IS 10
141082 BP 4463
141083 EP 4471
141084 PG 9
141085 SC Physics, Multidisciplinary
141086 GA 972GU
141087 UT ISI:000232443100001
141088 ER
141089 
141090 PT J
141091 AU Zhao, CY
141092    Tan, WH
141093 TI Quantum fluctuation in the time-dependent linearly driven degenerate
141094    parametric amplification
141095 SO ACTA PHYSICA SINICA
141096 DT Article
141097 DE time-dependent linearly driven degenerate parametric amplification;
141098    Fokker-Planck equation; quantum fluctuation
141099 ID FOKKER-PLANCK EQUATION; STATE GENERATION; SQUEEZED-LIGHT; OSCILLATOR;
141100    SYSTEMS; OPTICS
141101 AB A systematic theory of quantum fluctuation in the time-dependent
141102    linearly driven parametric amplification is developed. At first, a
141103    time-dependent linearly driven Fokker-Planck equation for the
141104    degenerate optical parametric amplification system is deduced when the
141105    pump depletion is considered, and then the quantum fluctuation below or
141106    near the threshold is evaluated, which is in agreement with that
141107    obtained by the linear theory or perturbation expansion near the
141108    threshold. Above the threshold, the short-time behavior of our solution
141109    is close to the linearization approximation; however, with the increase
141110    of interaction time tau, the long-time behavior of our solution shows
141111    that the squeezing is quite different from the linear theory.
141112 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
141113 RP Zhao, CY, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
141114 CR BOURDURANT RS, 1984, PHYS REV A, V30, P343
141115    CHATURVEDI S, PHYS REV A, V65
141116    COLLETT MJ, 1985, PHYS REV A, V32, P2887
141117    DRUMMOND PD, 1980, J PHYS             A, V13, P2353
141118    DRUMMOND PD, 2002, PHYS REV A B, V65
141119    GAMAL M, 1999, CHINESE PHYS, V8, P754
141120    GARDINER CW, 1983, HDB STOCHASTIC METHO, P75
141121    GARDINER CW, 1985, PHYS REV A, V31, P3761
141122    KINSLER P, 1991, PHYS REV A, V43, P6194
141123    KUMAR P, 1984, PHYS REV A, V30, P1568
141124    LI XY, 2002, ACTA PHYS SIN-CH ED, V51, P966
141125    LI YM, 2003, ACTA PHYS SIN-CH ED, V52, P849
141126    LIU HJ, 2004, ACTA PHYS SIN-CH ED, V53, P105
141127    PLIMAK LI, 1994, PHYS REV A, V50, P2627
141128    TAN WH, 1987, OPT COMMUN, V64, P195
141129    WALL DF, 1996, QUANTUM OPT, P177
141130    WANG DL, 2000, ACTA PHYS SIN-CH ED, V49, P1484
141131    WOLINSKY M, 1985, OPT COMMUN, V55, P138
141132    WU LA, 1986, PHYS REV LETT, V57, P2520
141133    YURKE B, 1985, PHYS REV A, V32, P300
141134    ZHANG Y, 2000, PHYS REV A, V62
141135    ZHAO CY, 2003, ACTA PHYS SIN-CH ED, V52, P2694
141136    ZHENG SB, 2003, CHINESE PHYS, V12, P51
141137 NR 23
141138 TC 0
141139 SN 1000-3290
141140 J9 ACTA PHYS SIN-CHINESE ED
141141 JI Acta Phys. Sin.
141142 PD OCT
141143 PY 2005
141144 VL 54
141145 IS 10
141146 BP 4526
141147 EP 4531
141148 PG 6
141149 SC Physics, Multidisciplinary
141150 GA 972GU
141151 UT ISI:000232443100012
141152 ER
141153 
141154 PT J
141155 AU Ge, HX
141156    Zhu, HB
141157    Dai, SQ
141158 TI Cellular automaton traffic flow model considering intelligent
141159    transportation system
141160 SO ACTA PHYSICA SINICA
141161 DT Article
141162 DE traffic flow; intelligent transportation system (ITS); cellular
141163    automaton model; brake light; variable security gap
141164 AB A. novel cellular automaton model for traffic flow on highway is
141165    proposed considering Intelligent Transportation System (ITS). Based on
141166    the Nagel-Schreckenberg model (NS for short), it includes effective gap
141167    and brake light. Morvover, a novel concept about the variable security
141168    gap is introduced. The simulation shows that the road capacity of the
141169    modified ITS cellular automaton model is higher than the measured data
141170    on certain highway, further indicating the important role of ITS,
141171    enlarged traffic flow and suppressed traffic jam. The mixed traffic
141172    flow related to two different vehicles' velocity is studied. The
141173    simulation shows even few slow vehicles will lead to drastic decrease
141174    of traffic flow, which demonstrates the necessity to implement strictly
141175    special fast lane.
141176 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
141177    Ningbo Univ, Fac Architectural Civil Engn & Environm, Ningbo 315211, Peoples R China.
141178 RP Ge, HX, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
141179    Peoples R China.
141180 EM moey1109@163.com
141181 CR *OLSIM, ONL SIM INN CIT DUIS
141182    BARLOVIC R, 1998, EUR PHYS J B, V5, P793
141183    BENJAMIN SC, 1996, J PHYS A-MATH GEN, V29, P3119
141184    DAI SQ, 2004, TRAFFIC FLOW GRAND F, P66
141185    DONG LY, 2002, APPL MATH MECH, V23, P331
141186    GE HX, 2004, J SHANGHAI U, V8, P1
141187    KNOSPE W, 2000, J PHYS A, V33, P477
141188    KNOSPE W, 2002, PHYS REV E 2, V65
141189    KNOSPE W, 2004, PHYS REV E 2, V70
141190    LEI, 2003, ACTA PHYS SIN, V52, P2121
141191    LI ZM, 2000, TRAFFIC ENG
141192    NAGEL K, 1992, J PHYS I, V2, P2221
141193    NAGEL K, 1997, TRANSIMS TRAFFIC FLO
141194    TAKAYASU M, 1993, FRACTALS L, P860
141195    TAN HL, 2002, ACTA PHYS SIN-CH ED, V51, P2713
141196    WAGNER P, 1996, TRAFFIC GRANULAR FLO, P193
141197    WANG BH, 1998, ACTA PHYS SINICA, V47, P906
141198    WANG L, 1999, ACTA PHYS SIN-CH ED, V48, P808
141199    XUE Y, 2001, ACTA PHYS SIN-CH ED, V50, P445
141200    XUE Y, 2002, THESIS SHANGHAI U
141201 NR 20
141202 TC 1
141203 SN 1000-3290
141204 J9 ACTA PHYS SIN-CHINESE ED
141205 JI Acta Phys. Sin.
141206 PD OCT
141207 PY 2005
141208 VL 54
141209 IS 10
141210 BP 4621
141211 EP 4626
141212 PG 6
141213 SC Physics, Multidisciplinary
141214 GA 972GU
141215 UT ISI:000232443100027
141216 ER
141217 
141218 PT J
141219 AU Wang, XQ
141220    Xie, YF
141221    Guo, HL
141222 TI Research on preparation of nano-grained cemented carbide by spark
141223    plasma sintering
141224 SO RARE METAL MATERIALS AND ENGINEERING
141225 DT Article
141226 DE spark plasma sintering; nano-grained cemented carbide; sintering
141227    isostatic pressure
141228 AB 92WC-8Co powder mixtures with 33 nm WC grain were sintered by spark
141229    plasma sintering (SPS) and sintering isostatic pressure (SIP)
141230    respectively. The sample was. sintered to complete density by SPS at
141231    1100 degrees C for 5 min. The best result of sample with 175 nm WC
141232    grains and 942 MPa hardness was obtained by SPS at 1150 degrees C and
141233    under 4.5 kN for 5 min. SIP was carried out at 1380 degrees C under 5
141234    MPa for 30 min with a result of samples about 400 nm WC grains and 920
141235    MPa hardness. The results show that sintering time is largely
141236    shortened, WC grain growth is effectively retarded and microstructures
141237    are finely improved, which is very useful to get excellent mechanical
141238    properties.
141239 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
141240 RP Wang, XQ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
141241    China.
141242 EM xqwang@mail.shu.edu.cn
141243 CR CHA HH, 2000, BAS LECT 2000 TOK JA, B31
141244    CHA SI, 2003, MAT SCI ENG A-STRUCT, V351, P31
141245    FU ZY, 2001, CHINESE J MAT RES, V15, P484
141246    GAO L, 1998, J INORG MATER, V13, P18
141247    HAN FL, 1994, METAL DIRECTORY, P1062
141248    JING SJ, 1978, NEW METAL PROCESSING
141249    LI W, 1999, J INORG MATER, V14, P985
141250    LIU JF, 2001, J CERAMICS, V22, P157
141251    LUO XY, 2001, POWDER METALLURGY IN, V11, P7
141252    PANG TT, 2001, J CERAMICS, V22, P129
141253    SHE ZH, 1998, CEMENTED CARBIDE, V15, P49
141254    YIN H, 1997, POWDER METALLURGY TE, V15, P299
141255    ZHANG DM, 1999, J WUHAN UNIV TECHNOL, V21, P15
141256    ZHANG JX, 2002, POWDER METALLURGY TE, V20, P129
141257    ZHANG YM, 2003, BMC MOL BIOL, V4
141258 NR 15
141259 TC 0
141260 SN 1002-185X
141261 J9 RARE METAL MAT ENG
141262 JI Rare Metal Mat. Eng.
141263 PD SEP
141264 PY 2005
141265 VL 34
141266 SU Suppl. 2
141267 BP 108
141268 EP 111
141269 PG 4
141270 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
141271    Engineering
141272 GA 969CG
141273 UT ISI:000232210400027
141274 ER
141275 
141276 PT J
141277 AU Hu, XP
141278    Zhu, LH
141279    Huang, QW
141280 TI Study on the formation mechanism of WC by molten salt synthesis
141281 SO RARE METAL MATERIALS AND ENGINEERING
141282 DT Article
141283 DE WC; molten salt synthesis; solid state reaction; X-ray diffraction
141284 ID BRONZES
141285 AB WC was synthesized in molten NaCl salt under At atmosphere in this
141286    paper, using WO3 and graphite as raw materials. The formation mechanism
141287    of WC powder during molten salt synthesis was studied and compared with
141288    solid state reaction. The results show that in molten salt NaxWO3
141289    occurs at 900 degrees C due to the reaction Of WO3 and NaCl. At 1000
141290    degrees CNaxWO3 transforms into NaWO3, during which W is obtained. WC
141291    appears at 1050 degrees C. When the temperature increases to 1100
141292    degrees C, W is carburized by carbon completely and becomes WC. While
141293    for solid state reaction, WC forms in the following sequence: WO3->
141294    W18O49-> WO2-> W -> W2C -> WC. A small amount of WC is synthesized at
141295    1200 degrees C. It's obvious that MSS is superior in low temperature
141296    and high efficiency.
141297 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
141298    Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
141299 RP Hu, XP, Shanghai Univ, Shanghai 200072, Peoples R China.
141300 EM lhzhu@mail.shu.edu.cn
141301 CR BARTHA L, 1995, INT J REFRACT MET H, V13, P77
141302    CHANG ML, 1989, RARE METAL HARD ALLO, V99, P53
141303    CHEN SY, 1995, J CTR S U TECHNOLOGY, V26, P605
141304    DUAN SZ, 1990, MOLTEN SALT CHEM PRI, P25
141305    KOC R, 2000, J EUR CERAM SOC, V20, P1859
141306    KOCH CC, 1997, NANOSTRUCT MATER, V9, P13
141307    LEKSHMI IC, 2002, MATER RES BULL, V37, P1815
141308    LI XF, 2000, FOREIGN REFRACTORY M, V16, P23
141309    LOFBERG A, 2000, J CATAL, V189, P170
141310    WANNER S, 2000, APPL CATAL A-GEN, V203, P55
141311    YIH SWH, 1983, TUNGSTEN SOURCES MET, P338
141312 NR 11
141313 TC 0
141314 SN 1002-185X
141315 J9 RARE METAL MAT ENG
141316 JI Rare Metal Mat. Eng.
141317 PD SEP
141318 PY 2005
141319 VL 34
141320 SU Suppl. 2
141321 BP 231
141322 EP 233
141323 PG 3
141324 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
141325    Engineering
141326 GA 969CG
141327 UT ISI:000232210400058
141328 ER
141329 
141330 PT J
141331 AU He, Y
141332    Wang, JN
141333    Sang, WB
141334    Wu, RF
141335    Yan, LL
141336    Fang, YY
141337 TI Oriented growth of well-aligned ZNO nanowires by polymer self-assembling
141338 SO RARE METAL MATERIALS AND ENGINEERING
141339 DT Article
141340 DE ZnO nanowire; chemical synthesis; polymer complexzation; orientation
141341    growth
141342 ID NANORODS
141343 AB Well-aligned ZnO nanowires were self-assembling oriented grown on the
141344    (111) plane of silicon substrates via a novel process of polymer
141345    complexation-sintering by using polyvinyl alcohol (PVA) as
141346    self-assembling medium coordinated zinc metal salts into polymermetal
141347    complex, then sintered the complex at low temperature. The
141348    characterization results from FE-SEM and XRD indicated that the
141349    nanowires are hexagonal ZnO growing mostly orientatedly along the
141350    [0001] direction of ZnO with the wurzite structure, and the diameter of
141351    those nanowires varies from 20 nm to 80 nm and the length from 0.5 mu m
141352    to 1.5 mu m. The formation of well-aligned hexagonal ZnO nanowires is
141353    mainly due to the space confinement of polymer grid backbones.
141354 C1 Shanghai Univ, Sch Mat Sci & Engn, Dept Polymer Mat, Shanghai 200072, Peoples R China.
141355 RP He, Y, Shanghai Univ, Sch Mat Sci & Engn, Dept Polymer Mat, Shanghai
141356    200072, Peoples R China.
141357 EM yinghe@staff.shu.edu.cn
141358 CR FUJIMURA N, 1993, J CRYST GROWTH, V130, P269
141359    GUO L, 2002, J AM CHEM SOC, V124, P14864
141360    HUANG MH, 2001, SCIENCE, V292, P1897
141361    KIND H, 2002, ADV MATER, V14, P158
141362    VAYSSIERES L, 2003, ADV MATER, V15, P464
141363    WANG Z, 2002, APPL PHYS A-MATER, V74, P201
141364    WIERSMA D, 2000, NATURE, V406, P132
141365    WU JJ, 2002, ADV MATER, V14, P215
141366    XING YJ, 2003, APPL PHYS LETT, V83, P1689
141367 NR 9
141368 TC 0
141369 SN 1002-185X
141370 J9 RARE METAL MAT ENG
141371 JI Rare Metal Mat. Eng.
141372 PD SEP
141373 PY 2005
141374 VL 34
141375 SU Suppl. 2
141376 BP 292
141377 EP 295
141378 PG 4
141379 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
141380    Engineering
141381 GA 969CG
141382 UT ISI:000232210400072
141383 ER
141384 
141385 PT J
141386 AU Jin, M
141387    Shao, GJ
141388 TI Influence of dispersoid particles on heat-resistant property and grain
141389    growth in Al-Mg-Si alloys
141390 SO RARE METAL MATERIALS AND ENGINEERING
141391 DT Article
141392 DE heat-resistant property; Al3Zr; Al-Mg-Si alloy; zirconium
141393 ID COMMERCIAL ALUMINUM-ALLOYS; MECHANICAL-PROPERTIES; PRECIPITATION;
141394    ZIRCONIUM; ZR; MICROSTRUCTURE; STRENGTH; SC
141395 AB The heat-resistant property of 6082 Al-Mg-Si alloy added Zr has been
141396    studied by hardness measurement, isothermally hold for different time
141397    at 250 degrees C. The microstructures were observed by using TEM. The
141398    results showed the addition of Zr to 6082 Al-Mg-Si alloy restricted the
141399    decrease in hardness and improved the heat-resistant property of alloy.
141400    The heat-resistant property increment is mainly attributed to the
141401    inhibition effect of Al3Zr dispersoids on the movements of grain
141402    boundaries and dislocations and the precipitation strengthening of
141403    thermal stability of Al3Zr particles.
141404 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
141405 RP Jin, M, Shanghai Univ, Shanghai 200072, Peoples R China.
141406 EM jinman919@graduate.shu.edu.cn
141407 CR ASHBY MF, 1969, T METALL SOC AIME, V245, P413
141408    FULLER CB, 2002, MAT SCI ENG A-STRUCT, V338, P8
141409    HORNBOGEN E, 1993, ACTA METALL MATER, V41, P1
141410    MAN J, 2004, T MAT HEAT TREATM P, V25, P143
141411    MUKHOPADHYAY AK, 1990, SCRIPTA METALL MATER, V24, P307
141412    MUKHOPADHYAYA K, 1994, ACTA METALL MATER, V43, P3083
141413    MURAYAMA M, 1998, MAT SCI ENG A-STRUCT, V250, P127
141414    NES E, 1985, ACTA METALL, V33, P11
141415    ROBSON JD, 2001, ACTA MATER, V49, P599
141416    ROBSON JD, 2002, MAT SCI ENG A-STRUCT, V338, P219
141417    VETRANO JS, 1997, MAT SCI ENG A-STRUCT, V238, P101
141418    YIN ZM, 2000, MAT SCI ENG A-STRUCT, V280, P151
141419    YOSHIDA H, 1982, T I MET, V23, P620
141420 NR 13
141421 TC 0
141422 SN 1002-185X
141423 J9 RARE METAL MAT ENG
141424 JI Rare Metal Mat. Eng.
141425 PD SEP
141426 PY 2005
141427 VL 34
141428 SU Suppl. 2
141429 BP 380
141430 EP 383
141431 PG 4
141432 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
141433    Engineering
141434 GA 969CG
141435 UT ISI:000232210400094
141436 ER
141437 
141438 PT J
141439 AU Wang, NG
141440    Cheng, J
141441    Pyatakov, A
141442    Zvezdin, AK
141443    Li, JF
141444    Cross, LE
141445    Viehland, D
141446 TI Multiferroic properties of modified BiFeO3-PbTiO3-based ceramics:
141447    Random-field induced release of latent magnetization and polarization
141448 SO PHYSICAL REVIEW B
141449 DT Article
141450 ID MORPHOTROPIC PHASE-BOUNDARY; HIGH-TEMPERATURE; BISMUTH FERRITE; BIFEO3;
141451    TRANSITIONS; ANTIFERROMAGNETS; CRYSTAL; RELAXOR
141452 AB It has been found that aliovalent-substituted BiFeO3-PbTiO3-based
141453    polycrystalline materials have significantly enhanced multiferroic
141454    properties. Relative to unmodified BiFeO3, our results for modified
141455    BiFeO3-PbTiO3-based ceramics reveal: (i) a dramatic increase in the
141456    electric-field-induced polarization; and (ii) the establishment of a
141457    remanent magnetization. The results evidence the destruction of a
141458    space-modulated spin structure in bulk materials, via substituent
141459    effects, releasing a latent magnetization locked within the cycloid.
141460 C1 Virginia Tech, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA.
141461    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
141462    Moscow MV Lomonosov State Univ, MSU, Dept Phys, Moscow 119992, Russia.
141463    Russian Acad Sci, Inst Gen Phys, Moscow 119991, Russia.
141464    Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA.
141465 RP Wang, NG, Virginia Tech, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA.
141466 CR BUCCI JD, 1972, J APPL CRYSTALLOGR, V5, P187
141467    CHENG JR, 2003, J AM CERAM SOC, V86, P2111
141468    CHENG JR, 2003, J APPL PHYS, V94, P5188
141469    CHENG JR, 2003, MATER LETT, V57, P2090
141470    CROSS LE, 1987, FERROELECTRICS, V76, P249
141471    DAI XH, 1994, PHILOS MAG B, V70, P33
141472    EITEL RE, 2002, JPN J APPL PHYS 1, V41, P2099
141473    FEDULOV SA, 1962, KRISTALLOGRAFIYA, V7, P77
141474    FISCHER P, 1980, J PHYS C SOLID STATE, V13, P1931
141475    GABBASOVA ZV, 1991, PHYS LETT A, V158, P491
141476    HEMBERGER J, 2005, NATURE, V434, P364
141477    KADOMTSEVA AM, 1995, PHYSICA B, V211, P327
141478    KADOMTSEVA AM, 2004, JETP LETT+, V79, P571
141479    KISELEV SV, 1963, SOV PHYS DOKL, V7, P742
141480    KLEEMANN W, 1993, INT J MOD PHYS B, V7, P2469
141481    LI JF, 2004, APPL PHYS LETT, V84, P5261
141482    MICHEL C, 1969, SOLID STATE COMMUN, V7, P701
141483    POPOV YF, 1993, JETP LETT, V57, P69
141484    POPOV YF, 2001, LOW TEMP PHYS+, V27, P478
141485    POPOV YF, 2004, MAGNETOELECTRONIC PH
141486    ROGINSKAYA YE, 1966, SOV PHYS JETP, V23, P47
141487    RUETTE B, 2004, PHYS REV B, V69
141488    SALJE EHK, 1990, CAMBRIDGE U
141489    SMOLENSKII GA, 1963, SOV PHYS JETP, V16, P622
141490    SMOLENSKII GA, 1982, SOV PHYS USP, V25, P475
141491    SMOLENSKY GA, 1961, FIZ TVERD TELA, V2, P2651
141492    SOSNOWSKA I, 1982, J PHYS C SOLID STATE, V15, P4835
141493    SOSNOWSKA I, 1992, PHYSICA B A, V180, P117
141494    TEAGUE JR, 1970, SOLID STATE COMMUN, V8, P1073
141495    VENEVTSEV YN, 1960, SOV PHYS-CRYSTALLOGR, V4, P538
141496    WANG J, 2003, SCIENCE, V299, P1719
141497    ZALESSKII AV, 2000, JETP LETT+, V71, P465
141498    ZALESSKY AV, 2000, EUROPHYS LETT, V50, P547
141499 NR 33
141500 TC 3
141501 SN 1098-0121
141502 J9 PHYS REV B
141503 JI Phys. Rev. B
141504 PD SEP
141505 PY 2005
141506 VL 72
141507 IS 10
141508 AR 104434
141509 DI ARTN 104434
141510 PG 5
141511 SC Physics, Condensed Matter
141512 GA 969IW
141513 UT ISI:000232228800074
141514 ER
141515 
141516 PT J
141517 AU Ning, TK
141518    Chen, DYL
141519    Zhang, D
141520 TI Solutions to tau-equation hierarchy related to the AKNS spectral
141521    problem: Addendum to "The exact solutions for the nonisospectral AKNS
141522    hierarchy through the inverse scattering transform" - [Physica A 339
141523    (2004) 248-266]
141524 SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
141525 DT Article
141526 DE exact solution; tau equation; the AKNS hierarchy; the inverse
141527    scattering transform
141528 AB This paper is an addendum to (Physica A 339 (2004) 248-266): The exact
141529    solutions for the nonisospectral AKNS hierarchy through the inverse
141530    scattering transform. Exact solutions to T-equations related to the
141531    AKNS spectral problem are obtained via the inverse scattering
141532    transform. As reductions, tau-equation hierarchy corresponding to the
141533    mKdV system, the nonlinear Schrodinger system and sine-Gordon system
141534    are considered.
141535 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
141536    Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
141537 RP Zhang, D, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
141538 EM tkning@mail.shu.edu.cn
141539    dychen@mail.shu.edu.cn
141540    djzhang@mail.shu.edu.cn
141541 CR MA WX, 1990, J PHYS A-MATH GEN, V23, P2707
141542    NING TK, 2004, PHYSICA A, V339, P248
141543 NR 2
141544 TC 0
141545 SN 0378-4371
141546 J9 PHYSICA A
141547 JI Physica A
141548 PD NOV 15
141549 PY 2005
141550 VL 357
141551 IS 3-4
141552 BP 415
141553 EP 426
141554 PG 12
141555 SC Physics, Multidisciplinary
141556 GA 969LO
141557 UT ISI:000232235900004
141558 ER
141559 
141560 PT J
141561 AU Ge, HX
141562    Cheng, RJ
141563    Dai, SQ
141564 TI KdV and kink-antikink solitons in car-following models
141565 SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
141566 DT Article
141567 DE traffic flow; car-following models; KdV; kink-antikink soliton
141568 ID TRAFFIC FLOW; CONGESTION; TRANSITION; DYNAMICS; JAMS
141569 AB The jams in the congested traffic are related with various density
141570    waves, which might be governed by the nonlinear wave equations, such as
141571    the Korteweg-de-Vries (KdV) equation, the Burgers equation and the
141572    modified Korteweg-de-Vries (mKdV) equation. Three different versions of
141573    optimal velocity models are examined. The stability conditions of the
141574    models are obtained by using the linear stability theory. The KdV
141575    equation near the neutral stability line and the mKdV equation around
141576    the critical point are derived by applying the reductive perturbation
141577    method, respectively. The traffic jams could be thus described by the
141578    KdV and kink-antikink soliton solutions for the two kinds of equations.
141579    The general solutions are given for, which can lead to specific
141580    solutions in previous work. Moreover, they are applied to solve a new
141581    model-the full velocity difference model and the corresponding KdV and
141582    kink-antikink soliton solutions could be quickly obtained, which
141583    demonstrates the general solutions presented herein are useful. (c)
141584    2005 Elsevier B.V. All rights reserved.
141585 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
141586    Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China.
141587 RP Ge, HX, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
141588    Peoples R China.
141589 EM mocy1109@163.com
141590 CR BANDO M, 1995, PHYS REV E, V51, P1035
141591    DAI SQ, 1982, ADV MECH, V12, P2
141592    GE HX, 2004, PHYS REV E 2, V70
141593    HELBING D, 1998, PHYS REV E, V58, P133
141594    JIANG R, 2001, PHYS REV E 2, V64
141595    KERNER BS, 1993, PHYS REV E, V48, P2335
141596    KOMATSU TS, 1995, PHYS REV E B, V52, P5574
141597    KURTZE DA, 1995, PHYS REV E A, V52, P218
141598    MASAKUNI M, 1999, PHYS REV E, V60, P180
141599    NAGATANI T, 1998, J PHYS A-MATH GEN, V31, P5431
141600    NAGATANI T, 1998, PHYS REV E, V58, P4271
141601    NAGATANI T, 1999, PHYS REV E A, V60, P6395
141602    NAGATANI T, 2000, PHYS REV E A, V61, P3564
141603    NAGATANI T, 2002, REP PROG PHYS, V65, P1331
141604    NAYFEH AH, 1981, INTRO PERTURBATION T
141605    NEWELL GF, 1961, OPER RES, V9, P209
141606    TATSUMI T, 1972, J FLUID MECH, V55, P659
141607    WHITHAM GB, 1990, P ROY SOC LOND A MAT, V428, P49
141608 NR 18
141609 TC 0
141610 SN 0378-4371
141611 J9 PHYSICA A
141612 JI Physica A
141613 PD NOV 15
141614 PY 2005
141615 VL 357
141616 IS 3-4
141617 BP 466
141618 EP 476
141619 PG 11
141620 SC Physics, Multidisciplinary
141621 GA 969LO
141622 UT ISI:000232235900009
141623 ER
141624 
141625 PT J
141626 AU Su, QF
141627    Xia, YB
141628    Wang, LJ
141629    Yang, Y
141630    Shi, WM
141631 TI Energy resolution and counting properties of micro-strip gas counter
141632    for X-ray detecting
141633 SO MODERN PHYSICS LETTERS A
141634 DT Article
141635 DE X-ray detector; MSGC; CVD diamond film; energy resolution
141636 ID DIAMOND FILMS; CHAMBER
141637 AB A two-dimensional micro-strip Gas Chamber (MSGC) with a 20 x 20 mm(2)
141638    detection area had been developed. The MSGC had a thin diamond film of
141639    10 mu m deposited on a silicon wafer as substrate and lots of
141640    micro-strip anode and cathode electrodes made by multi-chip module
141641    technology. Energy resolution and pulse signal under 5.9 keV Fe-55
141642    X-rays were measured by a multi-channel energy spectrometer with
141643    different voltage under room temperature in atmospheric pressure.
141644    Results indicated high signal-to-noise ratio, count rate >= 10(3) Hz
141645    and stable gas gain of the MSGC were obtained. When Ar:CH4 = 90:10,
141646    drift voltage, cathode voltage and anode voltage was -1000 V, -650 V
141647    and 0 V, respectively. However, the energy resolution of 12.3% for 5.9
141648    keV Fe-55 X-rays was achieved. The effects of cathode voltage and drift
141649    voltage on energy resolution and count rate were also obtained.
141650 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
141651 RP Su, QF, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
141652    China.
141653 CR BAR SE, 1998, NUCL INSTRUM METH A, V405, P274
141654    BATEMAN JE, 2002, NUCL INSTRUM METH A, V484, P384
141655    BATEMAN JE, 2003, NUCL INSTRUM METH A, V513, P273
141656    GONON P, 1997, APPL PHYS LETT, V70, P2996
141657    ISBERG J, 2002, SCIENCE, V297, P1670
141658    KEY MJ, 2003, NUCL INSTRUM METH A, V496, P504
141659    MACK V, 1999, NUCL INSTRUM METH A, V423, P369
141660    MIYAMOTO J, 1999, NUCL PHYS B-PROC SUP, V78, P695
141661    OCHI A, 2002, NUCL INSTRUM METH A, V477, P48
141662    OED A, 1988, NUCL INSTRUM METH A, V263, P351
141663    SU QF, 2004, P SOC PHOTO-OPT INS, V5774, P389
141664    TAKAHASHI H, 2002, NUCL INSTRUM METH A, V477, P13
141665    TANIMORI T, 1999, NUCL INSTRUM METH A, V436, P188
141666    ZHUKOV V, 2001, NUCL INSTRUM METH A, V461, P118
141667 NR 14
141668 TC 0
141669 SN 0217-7323
141670 J9 MOD PHYS LETT A
141671 JI Mod. Phys. Lett. A
141672 PD SEP 21
141673 PY 2005
141674 VL 20
141675 IS 29
141676 BP 2253
141677 EP 2259
141678 PG 7
141679 SC Physics, Mathematical; Physics, Nuclear; Physics, Particles & Fields
141680 GA 971II
141681 UT ISI:000232377000006
141682 ER
141683 
141684 PT J
141685 AU Yang, JM
141686    Zhang, C
141687 TI Elasto-dynamics of internal gear planetary transmissions
141688 SO MECHANISM AND MACHINE THEORY
141689 DT Article
141690 DE internal-gear planetary transmission; elasto-dynamics; lower order
141691    harmonic resonance
141692 ID BEHAVIOR; DYNAMICS; SYSTEM; TRAINS; MODEL
141693 AB An internal gear planetary transmission is an innovative type of
141694    transmission with unique advantages over traditional gear
141695    transmissions. However severe vibration, premature fatigue of bearings,
141696    high level of noise and heat producing block its further application in
141697    industry. In this paper, an elasto-dynamic model is developed and
141698    computer simulation is carried out. This model considers the elasticity
141699    of bearings, shafts and gear meshes. The dynamic load of bearings and
141700    gears is calculated based on the simulation program and the results are
141701    analyzed. The result shows that the planetary bearings are in more
141702    severe load conditions compared with housing bearings. And parametric
141703    resonance will occur when input speed is close to 1/3, 1/6 and 1/9 of
141704    the mean primary frequency. (c) 2005 Elsevier Ltd. All rights reserved.
141705 C1 Shanghai Univ Sci & Technol, Sch Mech Engn, Shanghai 200093, Peoples R China.
141706    Tianjin Univ, Sch Mech Engn, Tianjin 300072, Peoples R China.
141707 RP Yang, JM, Shanghai Univ Sci & Technol, Sch Mech Engn, 516 Jungong Rd,
141708    Shanghai 200093, Peoples R China.
141709 EM jianming.y@163.com
141710 CR 85106692A, CN
141711    AUGUST R, 1986, ASME, V108, P348
141712    KAHRAMAN A, 1994, J MECH DESIGN, V116, P713
141713    KAHRAMAN A, 1994, J SOUND VIB, V173, P125
141714    KAHRAMAN A, 1994, MECH MACH THEORY, V29, P1151
141715    KAHRAMAN A, 2001, J MECH DESIGN, V123, P408
141716    LI HM, 2000, P 8 INT ASME POW TRA
141717    LIANG YS, 2000, MECH DESIGN, V17, P19
141718    LIN J, 1999, ASME, V121, P316
141719    MIDHA A, 1979, ASME, V101, P154
141720    PARKER RG, 2000, J MECH DESIGN, V122, P304
141721    SAADA A, 1995, J MECH DESIGN, V117, P241
141722    SUN T, 2003, MECH MACH THEORY, V38, P1371
141723    TIMOSHENKO SP, 1990, VIBRATION PROBLEMS E
141724    VELEX P, 1996, ASME, V118, P7
141725    WANG ST, 1997, J HARBIN I TECHNOLOG, V4, P43
141726    YANG JM, 2001, P INT C MECH TRANSM, P421
141727    YING HY, 1992, MECH TRANSMISSION, V16, P37
141728    ZHU CC, 1998, THESIS CHONGQING U
141729    ZHU CC, 2001, P INT C MECH TRANSM, P262
141730    ZHU J, 1998, J AUTOIMMUN, V11, P319
141731 NR 21
141732 TC 0
141733 SN 0094-114X
141734 J9 MECH MACH THEOR
141735 JI Mech. Mach. Theory
141736 PD OCT
141737 PY 2005
141738 VL 40
141739 IS 10
141740 BP 1107
141741 EP 1125
141742 PG 19
141743 SC Engineering, Mechanical
141744 GA 970XS
141745 UT ISI:000232346300002
141746 ER
141747 
141748 PT J
141749 AU Zhang, ML
141750    Xia, YB
141751    Wang, LJ
141752    Gu, BB
141753 TI Effects of the grain size of CVD diamond films on the detector
141754    performance
141755 SO JOURNAL OF MATERIALS SCIENCE
141756 DT Article
141757 ID CHEMICAL-VAPOR-DEPOSITION; X-RAY; RADIATION; POLYCRYSTALLINE; QUALITY
141758 AB Although the unique properties of CVD diamond films have made it a
141759    candidate material for radiation detectors, the detector performance is
141760    strongly dependent on the film quality. In this paper, three CVD
141761    diamond films with different grain size were grown by using a
141762    hot-filament chemical vapor deposition (HFCVD) technique and the ratio
141763    of the grain size to the film thickness is high to 50%. 5.9 keV Fe-55
141764    X-rays measured the photocurrents and the pulse height distributions
141765    (PHDs) of these CVD diamond detectors. The detector performance is
141766    improved with the grain size increasing. The dark-current of 16.0 nA
141767    and the photocurrent of 15.9 nA are obtained at an electrical field of
141768    50 kV(.)cm(-1) and the PHD peak is well separated from the noise
141769    pedestal. (c) 2005 Springer Science + Business Media, Inc.
141770 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
141771 RP Zhang, ML, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples
141772    R China.
141773 EM zhamilong@hotmail.com
141774 CR ADAM W, 2000, NUCL INSTRUM METH A, V447, P244
141775    BERGONZO P, 2001, DIAM RELAT MATER, V10, P631
141776    DONATO MG, 2001, DIAM RELAT MATER, V10, P1788
141777    FRIEDL M, 1999, NUCL INSTRUM METH A, V435, P194
141778    GIVARGIZOV EI, 1996, APPL SURF SCI, V94, P117
141779    KANEKO J, 1999, NUCL INSTRUM METH A, V422, P211
141780    KOZLOV SF, 1977, IEEE T NUCL SCI, V24, P235
141781    MANFREDOTTI C, 1996, PHYS STATUS SOLIDI A, V154, P327
141782    MARINELLI M, 2001, J APPL PHYS, V89, P1430
141783    MEIER D, 1999, NUCL INSTRUM METH A, V426, P173
141784    NAVA F, 1979, IEEE T NUCL SCI, V26, P308
141785    SALVATORI S, 1997, DIAM RELAT MATER, V6, P361
141786    TROMSON D, 2000, DIAM RELAT MATER, V9, P1850
141787    VATNITSKY S, 1993, PHYS MED BIOL, V38, P173
141788    ZHANG ML, 2004, J CRYST GROWTH, V274, P21
141789    ZHANG ML, 2004, PHYS LETT A, V332, P320
141790    ZHANG ML, 2004, SOLID STATE COMMUN, V130, P425
141791 NR 17
141792 TC 0
141793 SN 0022-2461
141794 J9 J MATER SCI
141795 JI J. Mater. Sci.
141796 PD OCT
141797 PY 2005
141798 VL 40
141799 IS 19
141800 BP 5269
141801 EP 5272
141802 PG 4
141803 SC Materials Science, Multidisciplinary
141804 GA 969XF
141805 UT ISI:000232268400022
141806 ER
141807 
141808 PT J
141809 AU Chen, TL
141810    Li, XM
141811    Wu, WB
141812 TI All-epitaxial growth of Ba0.6Sr0.4(Ti0.94Al0.06)O-3-Si heterostructures
141813    and their leakage current characteristics
141814 SO JOURNAL OF APPLIED PHYSICS
141815 DT Article
141816 ID THIN-FILMS; MGO FILMS; BA0.7SR0.3TIO3; CAPACITORS; ACCEPTOR; SI(100);
141817    BUFFER; LAYERS; PLD
141818 AB 6 at. % Al-doped Ba0.6Sr0.4TiO3 (BSTA) thin films were grown on
141819    Ir/MgO-buffered Si(001) substrates by in situ pulsed-laser deposition
141820    techniques. All-epitaxial growth of BSTA/Ir/MgO/Si(001)
141821    heterostructures with layer-by-layer mode was evidenced by in situ
141822    reflection high-energy electron-diffraction observation and x-ray
141823    diffraction. The epitaxy relationship was determined as: BSTA < 100
141824    >parallel to Ir < 100 > MgO < 100 >parallel to Si < 100 > (in-plane)
141825    and BSTA(001)parallel to Ir(001)MgO(001)parallel to Si(001)
141826    (out-of-plane). The BSTA thin films exhibit an extremely smooth surface
141827    with a roughness of RMS=0.89 nm. The largely reduced leakage current
141828    for BSTA thin films, which was dominated by the Schottky emission
141829    mechanism, might be attributed to combination effects of the
141830    crystal-structure-perfection and acceptor Al doping. Moreover, the BSTA
141831    thin films show good dielectric properties at low-frequency regime. (c)
141832    2005 American Institute of Physics.
141833 C1 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
141834    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
141835    Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China.
141836 RP Chen, TL, Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High
141837    Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
141838 EM lixm@mail.sic.ac.cn
141839 CR CHEN TL, 2004, APPL PHYS A-MATER, V79, P1857
141840    CHEN TL, 2004, J CRYST GROWTH, V267, P80
141841    CHEN TL, 2004, J CRYST GROWTH, V270, P553
141842    CHEN TL, 2004, SOLID STATE COMMUN, V131, P523
141843    COPEL M, 1997, APPL PHYS LETT, V70, P3227
141844    DIETZ GW, 1997, J APPL PHYS, V82, P2359
141845    IM J, 2000, APPL PHYS LETT, V76, P625
141846    KIM SS, 1999, APPL PHYS LETT, V75, P2554
141847    KOTECKI DE, 1997, INTEGR FERROELECTR, V16, P1
141848    LIANG XF, 2004, J AM CERAM SOC, V87, P2218
141849    MASUDA A, 1996, J CRYST GROWTH, V158, P84
141850    SHIMADA Y, 1996, JPN J APPL PHYS 1, V35, P140
141851    SZE SM, 1981, PHYS SEMICONDUCTOR D
141852    TAO K, 2003, J APPL PHYS, V94, P4042
141853    TU Y, 1999, APPL SURF SCI, V138, P605
141854    WAKIYA N, 2001, THIN SOLID FILMS, V384, P189
141855    WANG SY, 2004, APPL PHYS LETT, V84, P4116
141856 NR 17
141857 TC 0
141858 SN 0021-8979
141859 J9 J APPL PHYS
141860 JI J. Appl. Phys.
141861 PD SEP 15
141862 PY 2005
141863 VL 98
141864 IS 6
141865 AR 064109
141866 DI ARTN 064109
141867 PG 4
141868 SC Physics, Applied
141869 GA 969HU
141870 UT ISI:000232226000069
141871 ER
141872 
141873 PT J
141874 AU Shi, TL
141875    Li, YX
141876    Cai, YD
141877    Chou, KC
141878 TI Computational methods for protein-protein interaction and their
141879    application
141880 SO CURRENT PROTEIN & PEPTIDE SCIENCE
141881 DT Review
141882 ID FUNCTIONAL DOMAIN COMPOSITION; AMINO-ACID-COMPOSITION; CORONAVIRUS MAIN
141883    PROTEINASE; SUPPORT VECTOR MACHINES; GENOME EXPRESSION DATA; TERTIARY
141884    STRUCTURE; SACCHAROMYCES-CEREVISIAE; INTERACTION NETWORKS;
141885    SUBCELLULAR-LOCALIZATION; CAENORHABDITIS-ELEGANS
141886 AB Protein-protein interactions play a central role in numerous processes
141887    in cell and are one of the main research fields in current functional
141888    proteomics. The increase of finished genomic sequences has greatly
141889    stimulated the progress for detecting the functions of the genes and
141890    their encoded proteins. As complementary ways to the high through-put
141891    experimental methods, various methods of bioinformatics have been
141892    developed for the study of the protein-protein interaction. These
141893    methods range from the sequence homology-based to the genomic-context
141894    based. Recently, it tends to integrate the data from different methods
141895    to build the protein-protein interaction network, and to predict the
141896    protein function from the analysis of the network structure. Efforts
141897    are ongoing to improve these methods and to search for novel aspects in
141898    genomes that could be exploited for function prediction. This review
141899    highlights the recent advances of the bioinformatics methods in
141900    protein-protein interaction researches. In the end, the application of
141901    the protein-protein interaction has also been discussed.
141902 C1 UMIST, Dept Biomol Sci, Manchester M60 1QD, Lancs, England.
141903    Chinese Acad Sci, Shanghai Inst Biol Sci, Bioinformat Ctr, Shanghai 200031, Peoples R China.
141904    Shanghai Univ, Bioinformat Ctr, Shanghai 200444, Peoples R China.
141905    Shanghai Ctr Bioinformat Technol, Shanghai 200235, Peoples R China.
141906    Shandong Univ, Dept Chem, Shanghai 200444, Peoples R China.
141907    Gordon Life Sci Inst, San Diego, CA 92130 USA.
141908 RP Cai, YD, UMIST, Dept Biomol Sci, POB 88, Manchester M60 1QD, Lancs,
141909    England.
141910 EM y.cai@umist.ac.uk
141911 CR ADACHI N, 2002, CELL, V109, P807
141912    ALOY P, 2002, P NATL ACAD SCI USA, V99, P5896
141913    ALTSCHUL SF, 1990, J MOL BIOL, V215, P403
141914    ARCHAKOV AI, 2003, PROTEOMICS, V3, P380
141915    ATHENSTAEDT K, 1999, J BACTERIOL, V181, P6441
141916    BARABASI AL, 2004, NAT REV GENET, V5, P101
141917    BERMAN HM, 2000, NUCLEIC ACIDS RES, V28, P235
141918    BHATTACHARYA S, 2003, MICROB CELL FACT, V2, P3
141919    BLUMENTHAL T, 2002, NATURE, V417, P851
141920    BU DB, 2003, NUCLEIC ACIDS RES, V31, P2443
141921    CAI YD, 2003, BIOCHEM BIOPH RES CO, V305, P407
141922    CAI YD, 2003, BIOPHYS J, V84, P3257
141923    CAI YD, 2005, J PROTEOME RES, V4, P109
141924    CAI YD, 2005, J PROTEOME RES, V4, P967
141925    CHEN Y, 2003, CURR PROTEIN PEPT SC, V4, P159
141926    CHOU JJ, 1998, CELL, V94, P171
141927    CHOU JJ, 1999, CELL, V96, P615
141928    CHOU KC, 1995, FEBS LETT, V363, P123
141929    CHOU KC, 1997, FEBS LETT, V419, P49
141930    CHOU KC, 1998, PROTEIN ENG, V11, P523
141931    CHOU KC, 1998, PROTEINS, V31, P97
141932    CHOU KC, 1999, BIOCHEM BIOPH RES CO, V259, P420
141933    CHOU KC, 2000, FEBS LETT, V470, P249
141934    CHOU KC, 2002, BIOCHEM BIOPH RES CO, V292, P702
141935    CHOU KC, 2002, J BIOL CHEM, V277, P45765
141936    CHOU KC, 2003, BIOCHEM BIOPH RES CO, V308, P148
141937    CHOU KC, 2003, BIOCHEM BIOPH RES CO, V311, P743
141938    CHOU KC, 2004, BIOCHEM BIOPH RES CO, V316, P636
141939    CHOU KC, 2004, BIOCHEM BIOPH RES CO, V319, P433
141940    CHOU KC, 2004, BIOCHEM BIOPH RES CO, V321, P1007
141941    CHOU KC, 2004, BIOCHEM BIOPH RES CO, V325, P506
141942    CHOU KC, 2004, CURR MED CHEM, V11, P2105
141943    CHOU KC, 2004, J CELL BIOCHEM, V91, P1197
141944    CHOU KC, 2004, J PROTEOME RES, V3, P1069
141945    CHOU KC, 2004, J PROTEOME RES, V3, P1284
141946    CHOU KC, 2004, J PROTEOME RES, V3, P856
141947    CHOU KC, 2004, PROTEIN SCI, V13, P2857
141948    CHOU KC, 2005, J PROTEO RES
141949    CHOU KC, 2005, J PROTEO RES
141950    COHEN BA, 2000, NAT GENET, V26, P183
141951    DANDEKAR T, 1998, TRENDS BIOCHEM SCI, V23, P324
141952    DATE SV, 2004, NAT BIOTECHNOL, V9, P1055
141953    DENG MH, 2002, GENOME RES, V12, P1540
141954    DREWES G, 2003, CURR OPIN CELL BIOL, V15, P199
141955    DU QH, 2005, ANAL BIOCHEM, V337, P262
141956    EISENBERG D, 2000, NATURE, V405, P823
141957    ENRIGHT AJ, 1999, NATURE, V402, P86
141958    FRANZOT G, 2003, J STRUCT FUNCT GENOM, V4, P245
141959    FRASER HB, 2002, SCIENCE, V296, P750
141960    FREIBERG C, 2001, DRUG DISCOV TODAY S, V6, S72
141961    GE H, 2001, NAT GENET, V29, P482
141962    GIOT L, 2003, SCIENCE, V302, P1727
141963    GUNTHER C, 2001, WORKSH GEN INF, V12, P34
141964    HAZBUN TR, 2003, MOL CELL, V12, P1353
141965    HISHIGAKI H, 2001, YEAST, V18, P523
141966    HUYNEN M, 2000, GENOME RES, V10, P1204
141967    HUYNEN MA, 2003, CURR OPIN CELL BIOL, V15, P191
141968    ITO T, 2001, P NATL ACAD SCI USA, V98, P4569
141969    JANSEN R, 2002, GENOME RES, V12, P37
141970    KARAOZ U, 2004, P NATL ACAD SCI USA, V101, P2888
141971    KEMMEREN P, 2002, MOL CELL, V9, P1133
141972    KOONIN EV, 2002, NATURE, V420, P218
141973    KORBEL JO, 2004, NAT BIOTECHNOL, V7, P911
141974    LANDER ES, 2001, NATURE, V409, P860
141975    LAWRENCE JG, 2002, CELL, V110, P407
141976    LERCHER MJ, 2002, NAT GENET, V31, P180
141977    LERCHER MJ, 2003, GENOME RES, V13, P238
141978    LI SM, 2004, SCIENCE, V30, P540
141979    LU L, 2002, PROTEINS, V49, P350
141980    MARCOTTE EM, 1999, SCIENCE, V285, P751
141981    OVERBEEK R, 1999, P NATL ACAD SCI USA, V96, P2896
141982    PAZOS F, 2001, PROTEIN ENG, V14, P609
141983    PAZOS F, 2002, PROTEINS, V47, P219
141984    PEARSON WR, 1988, P NATL ACAD SCI USA, V85, P2444
141985    PELLEGRINI M, 1999, P NATL ACAD SCI USA, V96, P4285
141986    RHEE KY, 1999, P NATL ACAD SCI USA, V96, P14294
141987    RUETTINGER RT, 1989, J BIOL CHEM, V264, P10987
141988    SALWINSKI L, 2003, CURR OPIN STRUC BIOL, V13, P77
141989    SAMANTA MP, 2003, P NATL ACAD SCI USA, V100, P12579
141990    SCHWIKOWSKI B, 2000, NAT BIOTECHNOL, V18, P1257
141991    SIROIS S, 2004, J CHEM INF COMP SCI, V44, P1111
141992    SNEL B, 2004, NUCLEIC ACIDS RES, V32, P4725
141993    SPIRIN V, 2003, P NATL ACAD SCI USA, V100, P12123
141994    STEFAN W, 2004, GENOME RES, V14, P1310
141995    STRONG M, 2003, GENOME BIOL, V4
141996    SUN JC, 2005, BIOINFORMATICS
141997    SUN JC, 2005, IN PRESS CHINESE SCI
141998    TATUSOV RL, 1997, SCIENCE, V278, P631
141999    UETZ P, 2000, NATURE, V403, P623
142000    VALENCIA A, 2002, CURR OPIN STRUC BIOL, V12, P368
142001    VAZQUEZ A, 2003, NAT BIOTECHNOL, V21, P697
142002    VENTER JC, 2001, SCIENCE, V291, P1304
142003    VONMERING C, 2005, NUCL ACIDS RES, V33
142004    WILLIAMS EJB, 2004, GENOME RES, V14, P1060
142005    WOJCIK J, 2001, BIOINFORMATICS S1, V17, S296
142006    XENARIOS I, 2002, NUCLEIC ACIDS RES, V30, P303
142007    YAMADA M, 2003, J MOL MICROB BIOTECH, V6, P206
142008    ZHANG JW, 2002, PROTEINS, V48, P447
142009    ZHANG XP, 2004, J BIOL CHEM, V279, P22030
142010    ZHENG Y, 2002, GENOME BIOL, V3, P9
142011    ZHOU XH, 2002, P NATL ACAD SCI USA, V99, P12783
142012    ZHU H, 2001, SCIENCE, V293, P2101
142013 NR 102
142014 TC 0
142015 SN 1389-2037
142016 J9 CURR PROTEIN PEPT SCI
142017 JI Curr. Protein Pept. Sci.
142018 PD OCT
142019 PY 2005
142020 VL 6
142021 IS 5
142022 BP 443
142023 EP 449
142024 PG 7
142025 SC Biochemistry & Molecular Biology
142026 GA 971MJ
142027 UT ISI:000232388000006
142028 ER
142029 
142030 PT J
142031 AU Chen, J
142032    Liu, ZR
142033 TI Partial synchronization between different systems
142034 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
142035 DT Article
142036 DE chaos; chaos synchronization; partial synchronization
142037 ID NEURONS
142038 AB A new method for partial synchronization between different systems was
142039    obtained. The definition of partial synchronization under which the
142040    problem works is given. ne stability of the method is analyzed by the
142041    Liapunov function method and the condition of choosing the control term
142042    is derived. The reliability of this method is proved by some numerical
142043    examples, in which the dynamical behaviors of the synchronized systems
142044    are observed and it is found that whatever state the response system is
142045    partial synchronization can be always achieved by adding some proper
142046    control term.
142047 C1 Shanghai Jiao Tong Univ, Aetna Sch Management, Shanghai 200052, Peoples R China.
142048    Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
142049 RP Chen, J, Shanghai Jiao Tong Univ, Aetna Sch Management, Shanghai
142050    200052, Peoples R China.
142051 EM chenjunshu@163.com
142052 CR BAO SW, 2001, NATURE, V412, P79
142053    BRAMO MC, 2000, NATURE, V405, P685
142054    BROWN R, 2000, CHAOS, V10, P344
142055    CARROLL TL, 1991, IEEE T CIRCUITS SYST, V38, P453
142056    GLASS L, 2001, NATURE, V410, P277
142057    JENSEN RV, 1998, COMPUTATIONAL NEUROS, P403
142058    MAINEN ZF, 1995, SCIENCE, V268, P1503
142059    PECORA LM, 1990, PHYS REV LETT, V64, P821
142060    STEINMETZ PN, 2000, NATURE, V404, P187
142061    TANG DY, 1998, CHAOS, V8, P697
142062 NR 10
142063 TC 0
142064 SN 0253-4827
142065 J9 APPL MATH MECH-ENGL ED
142066 JI Appl. Math. Mech.-Engl. Ed.
142067 PD SEP
142068 PY 2005
142069 VL 26
142070 IS 9
142071 BP 1132
142072 EP 1137
142073 PG 6
142074 SC Mathematics, Applied; Mechanics
142075 GA 970XH
142076 UT ISI:000232345200005
142077 ER
142078 
142079 PT J
142080 AU Meng, ZH
142081    Zhang, JJ
142082 TI Nonlinear krylov subspace methods for solving nonsmooth equations
142083 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
142084 DT Article
142085 DE nonsmooth equations; Newton-FOM algorithm; Newton-GMRES algorithm
142086 ID B-DIFFERENTIABLE EQUATIONS; CONVERGENCE THEORY; LOCAL CONVERGENCE;
142087    NEWTON METHODS; ALGORITHMS
142088 AB Newton-FOM (Full Orthogonalization Method) algorithm and Newton-GMRES
142089    (Generalized Minimum Residual Method) algorithm for solving nonsmooth
142090    equations are presented. It is proved that these Krylov subspace
142091    algorithms have the locally quadratic convergence. Numerical
142092    experiments demonstrate the effectiveness of the algorithms.
142093 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
142094 RP Zhang, JJ, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
142095 EM jzhang@staff.shu.edu.cn
142096 CR BROWN PN, 1987, SIAM J NUMER ANAL, V24, P407
142097    BROWN PN, 1990, SIAM J SCI STAT COMP, V11, P450
142098    BROWN PN, 1994, SIAM J OPTIMIZ, V4, P297
142099    CLARKE FH, 1983, OPTIMIZATION NONSMOO, P69
142100    HARKER PT, 1990, MATH PROGRAM, V48, P339
142101    IP CM, 1992, MATH PROGRAM, V56, P71
142102    MARTINEZ JM, 1995, J COMPUT APPL MATH, V60, P127
142103    PANG JS, 1990, MATH OPER RES, V15, P311
142104    PANG JS, 1993, SIAM J OPTIMIZ, V3, P443
142105    QI L, 1993, MATH PROGRAM, V58, P353
142106    QI LQ, 1993, MATH OPER RES, V18, P227
142107 NR 11
142108 TC 0
142109 SN 0253-4827
142110 J9 APPL MATH MECH-ENGL ED
142111 JI Appl. Math. Mech.-Engl. Ed.
142112 PD SEP
142113 PY 2005
142114 VL 26
142115 IS 9
142116 BP 1172
142117 EP 1180
142118 PG 9
142119 SC Mathematics, Applied; Mechanics
142120 GA 970XH
142121 UT ISI:000232345200010
142122 ER
142123 
142124 PT J
142125 AU Liu, BX
142126    Yu, JY
142127    Xu, DJ
142128 TI Aqua(2,2 '-diamino-4,4 '-bi-1,3-thiazole-kappa N-2,N
142129    ')-(thiodiacetato-kappa O-3,S,O ')cobalt(II) dihydrate
142130 SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE
142131 DT Article
142132 AB The title Co-II complex, [Co(C6H6N4S2)(C4H4O4S)(H2O)]-2H(2)O, assumes a
142133    distorted octahedral coordination geometry formed by a
142134    diaminobithiazole (DABT) ligand, a thio-diacetate dianion (TDA) and a
142135    water molecule. The TDA dianion chelates to the Co-II atom with a
142136    facial configuration. Within the chelating DABT ligand, the two
142137    thiazole rings are twisted with respect to each other [ dihedral angle
142138    = 12.04 (9)degrees].
142139 C1 Zhejiang Univ, Dept Chem, Hangzhou, Peoples R China.
142140    Shanghai Univ, Dept Chem, Shanghai 200041, Peoples R China.
142141 RP Liu, BX, Zhejiang Univ, Dept Chem, Hangzhou, Peoples R China.
142142 EM r5744011@yahoo.com.cn
142143 CR *RIG CORP, 1998, PROCESS AUTO
142144    *RIG MSC, 2002, CRYST VERS 3 00
142145    ALTOMARE A, 1993, J APPL CRYSTALLOGR, V26, P343
142146    FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
142147    FARRUGIA LJ, 1999, J APPL CRYSTALLOGR, V32, P837
142148    FISHER LM, 1985, BIOCHEMISTRY-US, V24, P3199
142149    HIGASHI T, 1995, ABSCOR
142150    LIU JG, 2001, ACTA CRYSTALLOGR C 4, V57, P354
142151    LIU JG, 2003, J COORD CHEM, V56, P71
142152    PAN TT, 2005, ACTA CRYSTALLOGR E 8, V61, M1576
142153    SHELDRICK GM, 1997, SHELXL97
142154    SHEN YH, 2004, ACTA CRYSTALLOGR E 6, V60, M842
142155    WARING MJ, 1981, ANNU REV BIOCHEM, V50, P159
142156 NR 13
142157 TC 0
142158 SN 1600-5368
142159 J9 ACTA CRYSTALLOGR E-STRUCT REP
142160 JI Acta Crystallogr. Sect. E.-Struct Rep. Online
142161 PD OCT
142162 PY 2005
142163 VL 61
142164 PN Part 10
142165 BP M1978
142166 EP M1980
142167 PG 3
142168 SC Crystallography
142169 GA 970JI
142170 UT ISI:000232301100039
142171 ER
142172 
142173 PT J
142174 AU Liu, BX
142175    Xu, DJ
142176 TI A dimeric manganese(II) complex bridged by 4-aminobenzoate
142177 SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE
142178 DT Article
142179 AB The dimeric Mn-II title complex,
142180    di-mu-4-aminobenzoato-bis[(4-aminobenzoato)(
142181    2,2'-diamino-4,40-bithiazole) manganese(II)] dihydrate,
142182    [Mn-2(C6H6N4S2)(2)(C7H6NO2)(4)](.)2H(2)O, bridged by aminobenzoate
142183    anions, is located on an inversion center. Each Mn II atom is
142184    coordinated by one diaminobithiazole and three aminobenzoate ligands
142185    with a distorted octahedral geometry.
142186 C1 Zhejiang Univ, Dept Chem, Hangzhou, Peoples R China.
142187    Shanghai Univ, Dept Chem, Shanghai 200041, Peoples R China.
142188 RP Xu, DJ, Zhejiang Univ, Dept Chem, Hangzhou, Peoples R China.
142189 EM xudj@mail.hz.zj.cn
142190 CR *RIG MSC, 2002, CRYST VERS 3 00
142191    *RIG, 1998, PROCESS AUTO
142192    ALTOMARE A, 1993, J APPL CRYSTALLOGR, V26, P343
142193    FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
142194    FARRUGIA LJ, 1999, J APPL CRYSTALLOGR, V32, P837
142195    FU XD, 2005, ACTA CRYSTALLOGR E 9, V61, M1823
142196    HIGASHI T, 1995, ABSCOR
142197    LIU JG, 2005, J COORD CHEM, P735
142198    NIE JJ, 2001, J COORD CHEM, V53, P365
142199    SHELDRICK GM, 1997, SHELXL97
142200    SU JR, 2005, ACTA CRYSTALLOGR C 6, V61, M256
142201 NR 11
142202 TC 0
142203 SN 1600-5368
142204 J9 ACTA CRYSTALLOGR E-STRUCT REP
142205 JI Acta Crystallogr. Sect. E.-Struct Rep. Online
142206 PD OCT
142207 PY 2005
142208 VL 61
142209 PN Part 10
142210 BP M2011
142211 EP M2013
142212 PG 3
142213 SC Crystallography
142214 GA 970JI
142215 UT ISI:000232301100051
142216 ER
142217 
142218 PT J
142219 AU Li, DX
142220    Shen, YJ
142221    Xiao, Y
142222    Sun, L
142223    Wang, J
142224    Hua, ZZ
142225 TI Aquapentakis(1H-imidazole-kappa N-3)nickel(II) dibromosuccinate
142226 SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE
142227 DT Article
142228 AB The title compound, [ Ni( C3H4N2) 5( H2O)]( C4H2Br2O4), consists of
142229    Ni-II complex cations and dibromosuccinate anions. The Ni atom, water O
142230    atom and one imidazole N atom of the complex cation lie on a twofold
142231    axis. The anion lies on an inversion centre. The crystal packing is
142232    reinforced by O H (...) O and N - H (...) O hydrogen bonds, but there
142233    are no pi - pi stacking interactions even though the complex contains
142234    five aromatic imidazole rings. The compound is isostructural with its
142235    cobalt analogue.
142236 C1 Shanghai Univ Sci & Technol, Inst Biomed & Food Sci, Shanghai 210093, Peoples R China.
142237 RP Li, DX, Shanghai Univ Sci & Technol, Inst Biomed & Food Sci, Shanghai
142238    210093, Peoples R China.
142239 EM dxli75@sohu.com
142240 CR *BRUK, 1999, SADABS SAINT SMART
142241    DEISENHOFER J, 1989, EMBO J, V8, P2149
142242    FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
142243    FARRUGIA LJ, 1999, J APPL CRYSTALLOGR, V32, P837
142244    LI DX, 2004, ACTA CRYSTALLOGR  12, V60, M1892
142245    SHELDRICK GM, 1997, SHELXS97 SHELXL97
142246 NR 6
142247 TC 0
142248 SN 1600-5368
142249 J9 ACTA CRYSTALLOGR E-STRUCT REP
142250 JI Acta Crystallogr. Sect. E.-Struct Rep. Online
142251 PD OCT
142252 PY 2005
142253 VL 61
142254 PN Part 10
142255 BP M2145
142256 EP M2147
142257 PG 3
142258 SC Crystallography
142259 GA 970JI
142260 UT ISI:000232301100099
142261 ER
142262 
142263 PT J
142264 AU Yang, Y
142265    Jing, C
142266    Yang, JG
142267    Cao, SX
142268    Zhang, JC
142269 TI Electronic structure and magnetic properties of ordered Fe1-xNix and
142270    Fe1-xCox alloys
142271 SO PHYSICA B-CONDENSED MATTER
142272 DT Article
142273 DE LAPW; electronic structure; magnetic properties; ordered Fe1-xNix and
142274    Fe1-xCox alloys
142275 ID EPITAXIAL-GROWTH; BAND THEORY; FILMS; CO; FERROMAGNETISM; IRON; FECO;
142276    STABILIZATION; TRANSITION; CU(001)
142277 AB The electronic structure and magnetism of ordered Fe1-xNix and Fe1-xCox
142278    alloys were calculated by using the first-principles linearized
142279    augmented plane-wave (LAPW) method with the local spin density
142280    approximation (LSDA). The results indicate that the magnetic properties
142281    of both Fe1-xNix and Fe1-xCox are sensitive to their compositions as
142282    well as their structures. The FCC structured Fe1-xNix alloys with x =
142283    0, 0.5, 0.75, 1 are ferromagnetic ordered, while Fe1-xNix at x = 0.25
142284    is ferrimagnetic ordered. For both BCC and FCC structured Fe1-xCox
142285    alloys, however, they present ferromagnetic ordering in all
142286    compositions. With the increase of Fe compositions for Fe1-xCox, the
142287    average magnetic moments increase abruptly and then decrease smoothly,
142288    which is in good agreement with experimental results. (c) 2005 Elsevier
142289    B.V. All rights reserved.
142290 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
142291 RP Yang, Y, Shanghai Univ, Dept Phys, Shangda Rd 99, Shanghai 200444,
142292    Peoples R China.
142293 EM y-y8641@163.com
142294    cjing@staff.shu.edu.cn
142295 CR BOZORTH RM, 1951, FERROMAGNETISM, P15
142296    DANAN H, 1968, J APPL PHYS, V39, P669
142297    DANG MZ, 1996, PHYS REV B, V53, P2291
142298    DIFABRIZIO E, 1989, PHYS REV B, V40, P9502
142299    DITTSCHAR A, 1996, J APPL PHYS 2B, V79, P5618
142300    DOSTERNAK M, 1980, PHYS REV B, V21, P5601
142301    HEDIN L, 1971, J PHYS C SOLID STATE, V4, P2064
142302    JIN X, 1994, APPL PHYS LETT, V65, P3078
142303    JOHNSON DD, 1987, J APPL PHYS, V61, P3715
142304    KIM TH, 1997, J APPL PHYS 2B, V81, P4764
142305    KITTEL C, 1996, INTRO SOLID STATE PH, P23
142306    KULKOVA SE, 2002, PHYSICA B, V322, P236
142307    LI C, 1988, J MAGN MAGN MATER, V75, P53
142308    NAKAMURA Y, 1976, IEEE TRANS MAGN, V12, P278
142309    PRINZ GA, 1985, PHYS REV LETT, V54, P1051
142310    RICHTER R, 1988, J PHYS F MET PHYS, V18, P1813
142311    SCHULL CG, 1955, PHYS REV, V97, P304
142312    SCHWARZ K, 1982, PHYS REV B, V25, P3427
142313    SCHWARZ K, 1984, J PHYS F MET PHYS, V14, P2659
142314    SCHWARZACHER W, 1989, SOLID STATE COMMUN, V71, P563
142315    SERENA PA, 1994, PHYS REV B, V50, P944
142316    SHULL CG, 1955, PHYS REV, V97, P304
142317    SINGH DJ, 1993, PLANEWAVES PSEUDOPOT, P35
142318    TALMADGE JM, 2004, APPL PHYS LETT, V84, P4197
142319    WANG CS, 1985, PHYS REV LETT, V54, P1852
142320    WEINBERGER P, 2001, PHYS REV B, V63
142321    WILLIS RF, 1988, J APPL PHYS 3, V63, P4051
142322    WU RQ, 1992, J MAGN MAGN MATER, V116, P202
142323    ZHANG XG, 2004, PHYS REV B, V70
142324    ZHOU YM, 1997, J MAGN MAGN MATER, V167, P136
142325 NR 30
142326 TC 0
142327 SN 0921-4526
142328 J9 PHYSICA B
142329 JI Physica B
142330 PD OCT 1
142331 PY 2005
142332 VL 367
142333 IS 1-4
142334 BP 61
142335 EP 71
142336 PG 11
142337 SC Physics, Condensed Matter
142338 GA 967FD
142339 UT ISI:000232076000009
142340 ER
142341 
142342 PT J
142343 AU Liang, XL
142344    Zhong, SS
142345    Wang, W
142346 TI Design of a high isolation dual-polarized slot-coupled microstrip
142347    antenna
142348 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
142349 DT Article
142350 DE microstrip antenna; dual-polarization; isolation; cross-polarization
142351 ID APERTURE
142352 AB The design of a wideband dual-polarized slot-coupled stacked microstrip
142353    antenna with high isolation is introduced. The proposed stacked-patch
142354    antenna is excited by both open-ended and T-shaped microstrip lines via
142355    two H-shaped slots placed orthogonally so as to improve the isolation
142356    between the two polarization ports. The measured isolation is better
142357    than 40.5 dB over the bandwidth from 8.8 to 9.8 GHz with
142358    cross-polarization level of less than -28.5 dB. The measured VSWR <= 2
142359    bandwidths reach 20.7% and 19.1% for the two polarization ports,
142360    respectively. This antenna is suitable as an array element for
142361    spaceborne synthetic aperture radar (SAR) and active phased-radar
142362    applications. (c) 2005 Wiley Periodicals, Inc.
142363 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
142364 RP Liang, XL, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
142365    Peoples R China.
142366 CR ADRIAN A, 1987, ELECTRON LETT, V23, P1226
142367    CHAKRABARTY SB, 2000, IEEE ANT PROP S DIG, P2216
142368    GAO SC, 1998, MICROW OPT TECHN LET, V19, P214
142369    GAO SC, 2002, IEEE T VEH TECHNOL, V51, P17
142370    GAO SC, 2003, IEEE T ANTENN PROPAG, V51, P441
142371    LIANG XL, 2004, MICROW OPT TECHN LET, V42, P448
142372    PARKER GS, 1998, ELECTRON LETT, V34, P1043
142373    POZAR DM, 1995, MICROSTRIP ANTENNA A
142374 NR 8
142375 TC 0
142376 SN 0895-2477
142377 J9 MICROWAVE OPT TECHNOL LETT
142378 JI Microw. Opt. Technol. Lett.
142379 PD NOV 5
142380 PY 2005
142381 VL 47
142382 IS 3
142383 BP 212
142384 EP 215
142385 PG 4
142386 SC Engineering, Electrical & Electronic; Optics
142387 GA 967YZ
142388 UT ISI:000232128700004
142389 ER
142390 
142391 PT J
142392 AU Zhong, Q
142393    Rohwerder, M
142394    Shi, L
142395 TI The effect of ionic peneration on semiconducting behaviour of
142396    temporarily protective oil coating on the surface of AISI 304 stainless
142397    steel
142398 SO MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION
142399 DT Article
142400 ID WIRE-BEAM ELECTRODE; ORGANIC COATINGS; ELECTROCHEMICAL INHOMOGENEITY;
142401    PENETRATION; STEEL; CAPACITANCE; LAYER
142402 AB In this paper, the semiconducting behaviour of temporarily protective
142403    oil coatings on the surface of naked and prepassivated AISI 304
142404    stainless steel immersed in 3% aqueous NaCl solution was studied by
142405    utilizing potential-capacitance methode, Mott-Schottky analysis and
142406    impedance analysis. It was pointed out that the temporarily protective
142407    oil coating behaves as a semiconductor during its degradation. The
142408    ionic penetration and the substrate greatly affect the conduction
142409    behaviour of the oil coating. On the surface of naked AISI 304
142410    stainless steel, the oil coating behaves as a n-type semiconductor.
142411    With increasing immersion time, the donor density of the space charge
142412    layer in the temporarily protective oil coating increases from 10(19)
142413    to 10(25) m(-3). However, on the surface of the prepassivated substrate
142414    the space charge layer in the oil coating is significantly affected by
142415    the oxide on the steel electrode. In this case immersion time does not
142416    influence the density of charge carriers in the oil coating (10(21)
142417    m(-3)). Impedance analysis also verify above results.
142418 C1 Shanghai Univ Elect Power, Key Lab State Power Corp, Electrochem Res Grp, Shanghai 200090, Peoples R China.
142419    Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany.
142420    Shanghai Univ, Nano Sci & Technol Ctr, Shanghai 200436, Peoples R China.
142421 RP Zhong, Q, Shanghai Univ Elect Power, Key Lab State Power Corp,
142422    Electrochem Res Grp, Shanghai 200090, Peoples R China.
142423 EM qdzhong@hotmail.com
142424 CR CHENG YF, 1999, ELECTROCHIM ACTA, V44, P2947
142425    DAIKHIN LI, 2001, J ELECTROANAL CHEM, V500, P461
142426    KOLEK Z, 1997, PROG ORG COAT, V30, P287
142427    MISKOVICSTANKOV.VB, 1995, CORROS SCI, V37, P241
142428    SIMOES AMP, 1990, J ELECTROCHEM SOC, V137, P82
142429    STIMMING U, 1976, BER BUNSEN PHYS CHEM, V80, P1297
142430    TAN YJ, 1991, PROG ORG COAT, V19, P257
142431    TAN YJ, 1991, PROG ORG COAT, V19, P89
142432    TOPKAR A, 1995, THIN SOLID FILMS, V259, P259
142433    WU CL, 1995, PROG ORG COAT, V25, P379
142434    ZHONG QD, 1997, PROG ORG COAT, V30, P213
142435    ZHONG QD, 1997, PROG ORG COAT, V30, P279
142436    ZHONG QD, 2004, J ELECTROCHEM SOC, V15, B446
142437 NR 13
142438 TC 0
142439 SN 0947-5117
142440 J9 MATER CORROS
142441 JI Mater. Corros.
142442 PD SEP
142443 PY 2005
142444 VL 56
142445 IS 9
142446 BP 597
142447 EP 605
142448 PG 9
142449 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
142450    Engineering
142451 GA 968HE
142452 UT ISI:000232151700001
142453 ER
142454 
142455 PT J
142456 AU Deng, SF
142457    Zhang, DJ
142458    Chen, DY
142459 TI Exact solutions for the nonisospectral Kadomtshev-Petviashvili equation
142460 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
142461 DT Article
142462 DE nonisospectral KP equation; Hirota method; Wronskian technique
142463 ID LINEAR EVOLUTION-EQUATIONS; N-SOLITON SOLUTIONS; KORTEWEG-DEVRIES
142464 AB The nonisospectral Kadomtshev-Petviashvili (KP) equation is solved by
142465    the Hirota method and Wronskian technique. Exact solutions that possess
142466    soliton characters with nonisospectral properties are obtained. In
142467    addition, rational and mixed solutions are derived. We also obtain a
142468    new molecular equation that admits a solution in the Wronskian form.
142469 C1 Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
142470    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
142471 RP Deng, SF, Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
142472 EM sfangd@163.com
142473 CR CHEN DY, 2003, CHAOS SOLITON FRACT, V15, P761
142474    DENG SF, 2003, J PHYS SOC JPN, V72, P2184
142475    FREEMAN NC, 1983, PHYS LETT A, V95, P1
142476    FREEMAN NC, 1984, IMA J APPL MATH, V32, P125
142477    HIROTA R, 1971, PHYS REV LETT, V27, P1192
142478    HIROTA R, 1976, J PHYS SOC JPN, V41, P2141
142479    HIROTA R, 1980, DIRECT METHOD SOLITO
142480    HIROTA R, 1981, PHYS LETT A, V85, P407
142481    NIMMO JJC, 1984, J PHYS A-MATH GEN, V17, P1415
142482    SATSUMA J, 1979, J PHYS SOC JPN, V46, P359
142483 NR 10
142484 TC 1
142485 SN 0031-9015
142486 J9 J PHYS SOC JPN
142487 JI J. Phys. Soc. Jpn.
142488 PD SEP
142489 PY 2005
142490 VL 74
142491 IS 9
142492 BP 2383
142493 EP 2385
142494 PG 3
142495 SC Physics, Multidisciplinary
142496 GA 968WB
142497 UT ISI:000232192500001
142498 ER
142499 
142500 PT J
142501 AU Chen, YY
142502    Huang, ZM
142503    Wang, Q
142504    Li, CF
142505    Shi, JL
142506 TI Photon tunnelling in one-dimensional metamaterial photonic crystals
142507 SO JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS
142508 DT Article
142509 DE photon tunnelling; negative index materials; group delay time
142510 ID NEGATIVE REFRACTIVE-INDEX; PERFECT LENS; PHASE TIME; PERMITTIVITY;
142511    PERMEABILITY; WAVES; MEDIA
142512 AB Photon tunnelling in a metamaterial photonic crystal composed by
142513    positive index material (PIM) and negative index material (NIM) layers
142514    is discussed. First, a single period of this photonic crystal is
142515    considered as the barrier in a frustrated total internal reflection
142516    (FTIR) structure, and the transmittance, the post-tunnelling position
142517    shift and the group delay time of different frequency incident waves
142518    through the barrier are calculated. In the case of a barrier of more
142519    periods of photonic crystal, the transmittance and the group delay time
142520    also vary with layer number, which are analysed in detail.
142521 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
142522    Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
142523 RP Chen, YY, Shanghai Univ, Dept Commun Engn, 149 Yanchang Rd, Shanghai
142524    200072, Peoples R China.
142525 EM cyyuan@staff.shu.edu.cn
142526 CR AGRANOVICH VM, 2004, PHYS REV B, V69
142527    BERMAN PR, 2002, PHYS REV E 2, V66
142528    CENTINI M, 1999, PHYS REV E B, V60, P4891
142529    CHEN X, 2003, PHYS REV A, V68
142530    CUMMER SA, 2003, APPL PHYS LETT, V82, P2008
142531    FEISE MW, 2002, PHYS REV, V66, P35113
142532    FOTEINOPOULOU S, 2003, PHYS REV LETT, V90
142533    JAPHA Y, 1996, PHYS REV A, V53, P586
142534    KIM KY, 2004, PHYS REV E 2, V70
142535    LEE B, 1997, J OPT SOC AM B, V14, P777
142536    LI CF, 2000, PHYS LETT A, V275, P287
142537    LUO C, 2002, PHYS REV B, V65
142538    PENDRY JB, 1996, PHYS REV LETT, V76, P4773
142539    PENDRY JB, 1999, IEEE T MICROW THEORY, V47, P2075
142540    PENDRY JB, 2000, PHYS REV LETT, V85, P3966
142541    QING DK, 2004, APPL PHYS LETT, V84, P669
142542    QING DK, 2004, OPT LETT, V29, P872
142543    RAMAKRISHNA SA, 2002, J MOD OPTIC, V49, P1747
142544    RUPPIN R, 2000, PHYS LETT A, V277, P61
142545    SHELBY RA, 2001, APPL PHYS LETT, V78, P489
142546    SHELBY RA, 2001, SCIENCE, V292, P77
142547    SMITH DR, 2000, PHYS REV LETT, V84, P4184
142548    SMITH DR, 2000, PHYS REV LETT, V85, P2933
142549    SMITH DR, 2002, APPL PHYS LETT, V81, P2713
142550    STEINBERG AM, 1994, PHYS REV A, V49, P3283
142551    VESELAGO VG, 1968, SOV PHYS USP, V10, P509
142552    ZHANG ZM, 2002, APPL PHYS LETT, V80, P1097
142553    ZHAROV AA, 2003, PHYS REV LETT, V91
142554    ZIOLKOWSKI RW, 2001, PHYS REV E, V64, P56625
142555 NR 29
142556 TC 0
142557 SN 1464-4258
142558 J9 J OPT A-PURE APPL OPT
142559 JI J. Opt. A-Pure Appl. Opt.
142560 PD SEP
142561 PY 2005
142562 VL 7
142563 IS 9
142564 BP 519
142565 EP 524
142566 PG 6
142567 SC Optics
142568 GA 967HU
142569 UT ISI:000232083100012
142570 ER
142571 
142572 PT J
142573 AU Xiao, HT
142574    Yue, ZQ
142575    Tham, LG
142576    Lee, CF
142577 TI Analysis of elliptical cracks perpendicular to the interface of two
142578    joined transversely isotropic solids
142579 SO INTERNATIONAL JOURNAL OF FRACTURE
142580 DT Article
142581 DE bi-material solids; boundary element method; elliptical cracks;
142582    fundamental singular solution; stress intensity factors; transverse
142583    isotropy
142584 ID BOUNDARY-ELEMENT ANALYSIS; STRESS INTENSITY FACTOR; FORMULATION; BODIES
142585 AB This paper presents a boundary element analysis of elliptical cracks in
142586    two joined transversely isotropic solids. The boundary element method
142587    is developed by incorporating the fundamental singular solution for a
142588    concentrated point load in a transversely isotropic bi-material solid
142589    of infinite space into the conventional displacement boundary integral
142590    equations. The multi-region method is used to analyze the crack
142591    problems. The traction-singular elements are employed to capture the
142592    singularity around the crack front. The values of stress intensity
142593    factors (SIFs) are obtained by using crack opening displacements. The
142594    results of the proposed method compare well with the existing exact
142595    solutions for an elliptical crack parallel to the isotropic plane of a
142596    transversely isotropic solid of infinite extent. Elliptical cracks
142597    perpendicular to the interface of transversely isotropic bi-material
142598    solids of either infinite extent or occupying a cubic region are
142599    further examined in detail. The crack surfaces are subject to the
142600    uniform normal tractions. The stress intensity factor values of the
142601    elliptical cracks of the two types are analyzed and compared. Numerical
142602    results have shown that the stress intensity factors are strongly
142603    affected by the anisotropy and the combination of the two joined solids.
142604 C1 Univ Hong Kong, Dept Civil Engn, Hong Kong, Hong Kong, Peoples R China.
142605    Shanghai Univ Sci & Technol, Dept Engn Mech, Qingdao 266510, Peoples R China.
142606 RP Yue, ZQ, Univ Hong Kong, Dept Civil Engn, Pokfulam Rd, Hong Kong, Hong
142607    Kong, Peoples R China.
142608 EM yueqzq@hkucc.hku.hk
142609 CR ARIZA MP, 2004, INT J NUMER METH ENG, V60, P719
142610    HOEING A, 1978, INT J SOLIDS STRUCT, V14, P925
142611    IRWIN GR, 1962, J APPL MECH, V29, P651
142612    KASSIR MK, 1966, J APP MECH T ASME, V33, P601
142613    KASSIR MKI, 1975, MECH FRACTURE
142614    KOU CH, 1995, ASME, V62, P273
142615    LACHAT JC, 1976, INT J NUMER METH ENG, V10, P991
142616    LIN W, 1989, P ROY SOC LOND A MAT, V424, P307
142617    LUCHI ML, 1987, INT J NUMER METH ENG, V24, P2253
142618    NODA NA, 2003, MECH MATER, V11, P1059
142619    NODA NA, 2004, INT J FRACTURE, V127, P167
142620    PAN E, 2000, INT J NUMER METH ENG, V48, P211
142621    PAN YC, 1976, J APPL MECH, V43, P608
142622    SAEZ A, 1997, ENG ANAL BOUND ELEM, V20, P287
142623    SANFORD RJ, 2003, PRINCIPLES FRACTURE
142624    SIH GC, 1965, INTL J FRACTURE MECH, V1, P189
142625    TING TCT, 1996, ANISOTROPIC ELASTICI
142626    WEN PH, 1998, ENG FRACT MECH, V59, P563
142627    XIAO HT, 2005, MECH MATER, V37, P785
142628    YUE ZQ, 1995, INT J ENG SCI, V33, P351
142629    YUE ZQ, 2002, ENG ANAL BOUND ELEM, V26, P691
142630    YUE ZQ, 2003, INT J SOLIDS STRUCT, V40, P3273
142631    YUE ZQ, 2004, THEOR APPL FRACT MEC, V42, P227
142632    ZHANG ZG, 1989, ENG FRACT MECH, V34, P645
142633 NR 24
142634 TC 0
142635 SN 0376-9429
142636 J9 INT J FRACTURE
142637 JI Int. J. Fract.
142638 PD JUN
142639 PY 2005
142640 VL 133
142641 IS 4
142642 BP 329
142643 EP 354
142644 PG 26
142645 SC Mechanics
142646 GA 968CB
142647 UT ISI:000232138400002
142648 ER
142649 
142650 PT J
142651 AU Zhou, SF
142652    Jia, QL
142653    Yin, FQ
142654 TI Kolmogorov's epsilon-entropy of attractors for lattice systems
142655 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
142656 DT Article
142657 DE lattice system; Kolmogorov's epsilon-entropy; global attractor
142658 ID DYNAMICAL-SYSTEMS
142659 AB In this paper, by using the element decomposition and the covering
142660    property of a polyhedron by balls of radii epsilon in the finite
142661    dimensional space, we obtain an upper bound of the Kolmogorov's
142662    epsilon-entropy of the global attractors for the first- and
142663    second-order lattice systems.
142664 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
142665    Henan Univ Sci & Technol, Dept Math & Phys, Henan 471003, Peoples R China.
142666    Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
142667 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
142668 EM zhoushengfan@sohu.com
142669 CR BABIN AV, 1992, STUD MATH APPL, V25
142670    BATES PW, 2001, INT J BIFURCAT CHAOS, V11, P143
142671    CHATE H, 1997, PHYSICA D, V103, P1
142672    CHEPYZHOV VV, 1998, MAT SBORNIK, V189, P81
142673    HALE JK, 1988, ASYMPTOTIC BEHAV DIS
142674    KOLMOGOROV AN, 1961, AM MATH SOC TRANSL, V17, P277
142675    LORENZ G, 1996, GRUNDLEHREN MATH WIS, V304
142676    TEMAM R, 1988, INFINITE DIMENSIONAL
142677    ZHOU SF, 2002, NONLINEARITY, V15, P1079
142678    ZHOU SF, 2003, PHYSICA D, V178, P51
142679 NR 10
142680 TC 0
142681 SN 0218-1274
142682 J9 INT J BIFURCATION CHAOS
142683 JI Int. J. Bifurcation Chaos
142684 PD JUL
142685 PY 2005
142686 VL 15
142687 IS 7
142688 BP 2295
142689 EP 2301
142690 PG 7
142691 SC Mathematics, Applied; Multidisciplinary Sciences
142692 GA 967EF
142693 UT ISI:000232073600018
142694 ER
142695 
142696 PT J
142697 AU Niu, ZH
142698    Xiao, GZ
142699 TI Analysis of the linear complexity and its stability for 2p(n)-periodic
142700    binary sequences
142701 SO IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND
142702    COMPUTER SCIENCES
142703 DT Article
142704 DE stream ciphers; periodic sequences; linear complexity; k-error; linear
142705    complexity; polynomial weight
142706 AB The linear complexity and its stability of periodic sequences are of
142707    fundamental importance as measure indexes on the security of stream
142708    ciphers and the k-error linear complexity reveals the stability of,the
142709    linear complexity properly. The k-error linear complexity of periodic
142710    sequences is defined to be the smallest linear complexity that can be
142711    obtained by changing k or fewer bits of the sequence per period. For
142712    2p(n)-periodic binary sequences, where p is an odd prime and 2 is a
142713    primitive root modulo p(2), we present and prove the unique expression
142714    of the linear complexity. Moreover we show a relationship between the
142715    linear complexity and the minimum value k for which the k-error linear
142716    complexity is strictly less than the linear complexity.
142717 C1 Xidian Univ, ISN Natl Key Lab, Xian 710071, Peoples R China.
142718    Shanghai Univ, Sch Comp Technol & Sci, Shanghai 200072, Peoples R China.
142719 RP Niu, ZH, Xidian Univ, ISN Natl Key Lab, Xian 710071, Peoples R China.
142720 EM zhihua-niu@163.com
142721    gzxiao@xidian.edu.cn
142722 CR DING C, 1991, LECT NOTES COMPUT SC, V561
142723    KAIDA T, 2001, SEQUENCES THEIR APPL, P218
142724    KUROSAWA K, 2000, IEEE T INFORM THEORY, V46, P694
142725    MASSEY JL, 1969, IEEE T INFORM THEORY, V15, P122
142726    MCELIECE RJ, 1987, FINITE FIELDS COMPUT
142727    MEIDL W, 2004, DESIGN CODE CRYPTOGR, V33, P109
142728    MEIDL W, 2004, PROG COM SC, V23, P227
142729    ROSEN KH, 1988, ELEMENTARY NUMBER TH
142730    SHANKS D, 1978, SOLVED UNSOLVED PROB
142731    STAMP M, 1993, IEEE T INFORM THEORY, V39, P1398
142732 NR 10
142733 TC 0
142734 SN 0916-8508
142735 J9 IEICE TRANS FUND ELEC COM COM
142736 JI IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
142737 PD SEP
142738 PY 2005
142739 VL E88A
142740 IS 9
142741 BP 2412
142742 EP 2418
142743 PG 7
142744 SC Computer Science, Hardware & Architecture; Computer Science,
142745    Information Systems; Engineering, Electrical & Electronic
142746 GA 967GY
142747 UT ISI:000232080800020
142748 ER
142749 
142750 PT J
142751 AU Wang, ZC
142752 TI P-stable linear symmetric multistep methods for periodic initial-value
142753    problems
142754 SO COMPUTER PHYSICS COMMUNICATIONS
142755 DT Article
142756 DE multistep method; P-stable; second-order initial value problem with
142757    periodic solutions; numerical solution to the Duffing equation; Stiefel
142758    and Bettis problem
142759 ID DIMENSIONAL SCHRODINGER-EQUATION; MINIMAL PHASE-LAG;
142760    NUMERICAL-INTEGRATION; OBRECHKOFF; STABILIZATION; 1ST-ORDER; FORMULA
142761 AB In this paper we present a new kind of P-stable multistep methods for
142762    periodic initial-value problems. From the numerical results obtained by
142763    the new method to well-known periodic problems, show the superior
142764    efficiency, accuracy, stability of the method presented in this paper.
142765    (C) 2005 Elsevier B.V. All rights reserved.
142766 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
142767 RP Wang, ZC, Shanghai Univ, Dept Phys, 99 ShangDa Rd, Shanghai 200444,
142768    Peoples R China.
142769 EM zc_wang89@hotmail.com
142770 CR ALLISON AC, 1970, J COMPUT PHYS, V6, P378
142771    ANANTHAKRISHNAI.U, 1987, MATH COMPUT, V49, P553
142772    AVDELAS G, 1996, J COMPUT APPL MATH, V72, P345
142773    AVDELAS G, 2001, COMPUT CHEM, V25, P3
142774    CASH JR, 1981, NUMER MATH, V37, P355
142775    DAI Y, 2005, IN PRESS J COMPUT AP
142776    DAI YM, 2005, COMPUT PHYS COMMUN, V165, P110
142777    HAIRER E, 1979, NUMER MATH, V32, P373
142778    LAMBERT JD, 1976, J INST MATH APPL, V18, P189
142779    LANDAU L, 1974, QUANTUM MECH
142780    MICKENS RE, 1981, INTRO NONLINEAR OSCI
142781    NETA B, 2003, COMPUT MATH APPL, V45, P383
142782    PSIHOYIOS G, 2003, NEW ASTRON, V8, P679
142783    QUINLAN GD, 1990, ASTRON J, V100, P1694
142784    RAPTIS AD, 1991, BIT, V31, P160
142785    SIMOS TE, 1990, COMPUTING, V45, P175
142786    SIMOS TE, 1993, P ROY SOC LOND A MAT, V6, P283
142787    SIMOS TE, 1997, J COMPUT PHYS, V130, P123
142788    SIMOS TE, 1997, PHYS SCRIPTA, V55, P644
142789    SIMOS TE, 1999, COMPUT CHEM, V23, P513
142790    SIMOS TE, 2000, ATOMIC STRUCTURE COM, P38
142791    SIMOS TE, 2002, NUMERICAL METHODS 1D, V2, P170
142792    SIMOS TE, 2004, NUMERICAL METHODS CH, V2, P271
142793    STIEFEL E, 1969, NUMER MATH, V13, P154
142794    VANDOOREN R, 1974, J COMPUT PHYS, V16, P186
142795    WANG Z, 2003, N MATH J CHIN U, V12, P146
142796    WANG Z, 2005, IN PRESS P ROY SOC A
142797    WANG ZC, 2003, INT J MOD PHYS C, V14, P1087
142798    WANG ZC, 2004, COMPUT PHYS COMMUN, V160, P23
142799    WANG ZC, 2005, COMPUT PHYS COMMUN, V167, P1
142800    ZHAO D, 2005, IN PRESS INT J MOD C
142801    ZHAO DY, 2005, COMPUT PHYS COMMUN, V167, P65
142802 NR 32
142803 TC 1
142804 SN 0010-4655
142805 J9 COMPUT PHYS COMMUN
142806 JI Comput. Phys. Commun.
142807 PD OCT 1
142808 PY 2005
142809 VL 171
142810 IS 3
142811 BP 162
142812 EP 174
142813 PG 13
142814 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
142815 GA 968XX
142816 UT ISI:000232197700002
142817 ER
142818 
142819 PT J
142820 AU Huang, WH
142821    Liu, YL
142822    Zhang, JF
142823    Lai, XJ
142824 TI A new class of periodic solutions to (2+1)-dimensional KdV equations
142825 SO COMMUNICATIONS IN THEORETICAL PHYSICS
142826 DT Article
142827 DE (2+1)-dimensional KdV equation; linear superposition; periodic solution
142828 ID FUNCTION EXPANSION METHOD; NOVIKOV-VESELOV EQUATION; NONLINEAR
142829    EQUATIONS; LOCALIZED EXCITATIONS; WAVE SOLUTIONS; DIMENSIONS; SYSTEM
142830 AB We investigate a new class of periodic solutions to (2+1)-dimensional
142831    KdV equations, by both the linear superposition approach and the
142832    mapping deformation method. These new periodic solutions are suitable
142833    combinations of the periodic solutions to the (2+1)-dimensional KdV
142834    equations obtained by means of the Jacobian elliptic function method,
142835    but they possess different periods and velocities.
142836 C1 Huzhou Univ, Coll Sci, Dept Phys, Huzhou 313000, Peoples R China.
142837    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
142838    Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
142839 RP Huang, WH, Huzhou Univ, Coll Sci, Dept Phys, Huzhou 313000, Peoples R
142840    China.
142841 EM whhuang2002cn@yahoo.com.cn
142842 CR ABLOWITZ MJ, 1981, SOLITON INVERSE SCAT
142843    ALBER MS, 2001, INVERSE PROBL, V17, P1017
142844    BELOKOLOS E, 1994, ALGERO GENERICAL APP
142845    BOITI M, 1986, INVERSE PROBL, V2, P271
142846    CAO CW, 2002, J MATH PHYS, V43, P621
142847    COOPER F, 2002, J PHYS A-MATH GEN, V35, P10085
142848    ESTEVEZ PG, 1999, J MATH PHYS, V40, P1406
142849    FAN EG, 2002, PHYS LETT A, V305, P383
142850    HUANG WH, 2003, CHINESE PHYS, V12
142851    HUANG WH, 2004, Z NATURFORSCH A, V59, P250
142852    KHARE A, 2002, J MATH PHYS, V43, P3798
142853    KHARE A, 2002, PHYS REV LETT, V88
142854    LAI XJ, 2004, CHINESE J PHYS 1, V42, P361
142855    LI HM, 2002, COMMUN THEOR PHYS, V37, P561
142856    LIN J, 2002, Z NATURFORSCH A, V57, P929
142857    LIU SK, 2001, PHYS LETT A, V289, P69
142858    LOU SY, 1989, J MATH PHYS, V30, P1614
142859    LOU SY, 1995, J PHYS A-MATH GEN, V28, P7227
142860    LOU SY, 1997, J MATH PHYS, V38, P6401
142861    LOU SY, 1998, PHYS REV LETT, V80, P5027
142862    LOU SY, 2000, PHYS LETT A, V277, P94
142863    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
142864    MIURA MR, 1978, BACKLUND TRANSFORMAT
142865    NOVIKOV DP, 1999, SIBERIAN MATH J+, V40, P136
142866    TAM HW, 2000, J PHYS SOC JPN, V69, P45
142867    TANG XY, 2002, PHYS REV E 2, V66
142868    TANG XY, 2003, J MATH PHYS, V44, P4000
142869    WANG ML, 1995, PHYS LETT A, V199, P169
142870    WANG ML, 1996, PHYS LETT A, V216, P67
142871    ZHANG JF, 1999, CHINESE PHYS LETT, V16, P659
142872    ZHANG JF, 2004, J PHYS SOC JPN, V73, P1
142873    ZHU JM, 2004, CHINESE PHYS, V13, P798
142874 NR 32
142875 TC 0
142876 SN 0253-6102
142877 J9 COMMUN THEOR PHYS
142878 JI Commun. Theor. Phys.
142879 PD SEP 15
142880 PY 2005
142881 VL 44
142882 IS 3
142883 BP 401
142884 EP 406
142885 PG 6
142886 SC Physics, Multidisciplinary
142887 GA 967LY
142888 UT ISI:000232093900005
142889 ER
142890 
142891 PT J
142892 AU Xia, TC
142893    You, FC
142894    Chen, DY
142895 TI A generalized cubic Volterra lattice hierarchy and its integrable
142896    couplings system
142897 SO CHAOS SOLITONS & FRACTALS
142898 DT Article
142899 ID DIFFERENTIAL-DIFFERENCE EQUATIONS; COUPLED BURGERS HIERARCHY;
142900    BI-HAMILTONIAN STRUCTURE; LOOP ALGEBRA; EVOLUTION-EQUATIONS;
142901    CONSTRAINED FLOWS; SOLITON-EQUATIONS; TRACE IDENTITY; LAX PAIRS;
142902    NONLINEARIZATION
142903 AB In terms of properties of the known loop algebra (A) over tilde (1) and
142904    difference operators, a new algebraic system chi is constructed. By
142905    using the algebraic system chi, a discrete matrix spectral problem is
142906    introduced and a hierarchy of nonlinear lattice equations is derived.
142907    From the hierarchy the celebrated cubic Volterra lattice equation is
142908    engendered. We call the hierarchy a generalized cubic Volterra
142909    hierarchy. Then an extended algebraic system (chi) over tilde of chi is
142910    presented, from which the integrable couplings system of the
142911    generalized cubic Volterra lattice are obtained. (c) 2005 Elsevier Ltd.
142912    All rights reserved.
142913 C1 Bohai Univ, Dept Math, Jinzhou 121000, Liaoning Prov, Peoples R China.
142914    Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
142915    Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China.
142916 RP Xia, TC, Bohai Univ, Dept Math, Jinzhou 121000, Liaoning Prov, Peoples
142917    R China.
142918 EM xiatc@yahoo.com.cn
142919 CR ABLOWITZ MJ, 1975, J MATH PHYS, V16, P598
142920    ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
142921    BOGOYAVLENSKY OI, 1988, PHYS LETT A, V134, P34
142922    CAO CW, 1990, SCI CHINA SER A, V33, P528
142923    FAN E, 2001, J PHYS A-MATH GEN, V34, P513
142924    FAN E, 2001, PHYSICA A, V301, P105
142925    FAN EG, 2000, J MATH PHYS, V41, P7769
142926    FUCHSSTEINER B, 1993, APPL ANAL GEOMETRIC, P125
142927    GUO FK, 2003, J MATH PHYS, V44, P5793
142928    HU X, 1998, J MATH PHYS, V38, P4766
142929    HU XB, 2000, APPL MATH LETT, V13, P45
142930    HU XB, 2000, J PHYS SOC JPN, V69, P1042
142931    HU XB, 2000, PHYS LETT A, V276, P65
142932    HU XB, 2001, GLASGOW MATH J A, V43, P43
142933    KAC M, 1975, ADV MATH, V16, P160
142934    MA WX, 1992, CHIN J CONT MATH, V13, P79
142935    MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
142936    MA WX, 1999, J MATH PHYS, V40, P2400
142937    NEWELL AC, 1985, SOLITON MATH PHYS
142938    PROG Y, 1987, ITOH THEOR PHYS, V78, P507
142939    SURIS YB, 1997, J MATH PHYS, V38, P4179
142940    SURIS YB, 1997, SOLVINT970900514
142941    TAM H, 2005, CHAOS SOLITON FRACT, V23, P151
142942    TAM HW, 2003, J PHYS SOC JPN, V72, P265
142943    TU GZ, 1989, ACTA MATH APPL SINIC, V5, P89
142944    TU GZ, 1989, J MATH PHYS, V30, P330
142945    TU GZ, 1990, J PHYS A-MATH GEN, V23, P3903
142946    WADATI M, 1972, J PHYS SOC JPN, V32, P1681
142947    WADATI M, 1976, PROG THEOR PHYS SUPP, V59, P36
142948    XIA TC, 2004, CHAOS SOLITON FRACT, V22, P939
142949    XIA TC, 2004, COMMUN THEOR PHYS, V42, P180
142950    XIA TC, 2004, COMMUN THEOR PHYS, V42, P494
142951    XIA TC, 2004, PHYSICA A, V343, P238
142952    XIA TC, 2005, SOLITONS FRACTALS, V23, P1033
142953    XU XX, 2004, PHYS LETT A, V326, P199
142954    ZENG YB, 1991, PHYS LETT A, V160, P541
142955    ZENG YB, 1996, J PHYS A-MATH GEN, V29, P5241
142956    ZHANG DJ, 2002, J PHYS A-MATH GEN, V35, P7225
142957    ZHANG YF, 2002, J MATH PHYS, V43, P466
142958    ZHANG YF, 2003, ACTA PHYS SINICA, V53, P2190
142959    ZHANG YF, 2003, CHAOS SOLITON FRACT, V16, P263
142960    ZHANG YF, 2003, CHAOS SOLITON FRACT, V18, P855
142961    ZHANG YF, 2003, CHINESE PHYS, V12, P1194
142962    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P305
142963    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P413
142964 NR 45
142965 TC 0
142966 SN 0960-0779
142967 J9 CHAOS SOLITON FRACTAL
142968 JI Chaos Solitons Fractals
142969 PD JAN
142970 PY 2006
142971 VL 27
142972 IS 1
142973 BP 153
142974 EP 158
142975 PG 6
142976 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
142977 GA 967MG
142978 UT ISI:000232094700018
142979 ER
142980 
142981 PT J
142982 AU Chen, LQ
142983    Yang, XD
142984 TI Transverse nonlinear dynamics of axially accelerating viscoelastic
142985    beams based on 4-term Galerkin truncation
142986 SO CHAOS SOLITONS & FRACTALS
142987 DT Article
142988 ID MOVING BEAM; VIBRATIONS; SPEED; WEB
142989 AB This paper investigates bifurcation and chaos in transverse motion of
142990    axially accelerating viscoelastic beams. The Kelvin model is used to
142991    describe the viscoelastic property of the beam material, and the
142992    Lagrangian strain is used to account for geometric nonlinearity due to
142993    small but finite stretching of the beam. The transverse motion is
142994    governed by a nonlinear partial-differential equation. The Galerkin
142995    method is applied to truncate the partial-differential equation into a
142996    set of ordinary differential equations. When the Galerkin truncation is
142997    based on the eigenfunctions of a linear non-translating beam subjected
142998    to the same boundary constraints, a computation technique is proposed
142999    by regrouping nonlinear terms. The scheme can be easily implemented in
143000    practical computations. When the transport speed is assumed to be a
143001    constant mean speed with small harmonic variations, the Poincare map is
143002    numerically calculated based on 4-term Galerkin truncation to identify
143003    dynamical behaviors. The bifurcation diagrams are present for varying
143004    one of the following parameter: the axial speed fluctuation amplitude,
143005    the mean axial speed and the beam viscosity coefficient, while other
143006    parameters are unchanged. (c) 2005 Published by Elsevier Ltd.
143007 C1 Shanghai Univ, Dept Mech, Shanghai 200444, Peoples R China.
143008    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
143009    Shenyang Inst Aeronaut Engn, Dept Engn Mech, Shenyang 110034, Peoples R China.
143010 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200444, Peoples R China.
143011 EM lqchen@online.sh.cn
143012 CR ABRATE S, 1992, MECH MACH THEORY, V27, P645
143013    CHEN LQ, 2005, INT J SOLIDS STRUCT, V42, P37
143014    MARYNOWSKI K, 2002, INT J NONLINEAR MECH, V37, P1147
143015    MARYNOWSKI K, 2002, J THEORET APPL MECH, V40, P465
143016    MARYNOWSKI K, 2004, CHAOS SOLITON FRACT, V21, P481
143017    OZ HR, 2001, INT J NONLINEAR MECH, V36, P107
143018    PELLICANO F, 2000, J VIB ACOUST, V122, P21
143019    PELLICANO F, 2002, J SOUND VIB, V258, P31
143020    RAVINDRA B, 1998, ARCH APPL MECH, V68, P195
143021    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
143022    YANG XD, 2005, CHAOS SOLITON FRACT, V23, P249
143023 NR 11
143024 TC 0
143025 SN 0960-0779
143026 J9 CHAOS SOLITON FRACTAL
143027 JI Chaos Solitons Fractals
143028 PD FEB
143029 PY 2006
143030 VL 27
143031 IS 3
143032 BP 748
143033 EP 757
143034 PG 10
143035 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
143036 GA 968WN
143037 UT ISI:000232193700017
143038 ER
143039 
143040 PT J
143041 AU Wang, Q
143042    Pelletier, J
143043    Xu, H
143044    Xia, L
143045    Tan, X
143046    Dong, Y
143047 TI The dynamic shear response of the Zr base bulk metallic glass around
143048    the calorimetric glass transition temperature
143049 SO JOURNAL OF MATERIALS SCIENCE
143050 DT Article
143051 ID INTERNAL-FRICTION; LIQUIDS; ALLOYS; RELAXATIONS; FLOW; NI
143052 AB The dynamic shear response of a bulk Zr55Cu25Ni5Al10Nb5 metallic glass
143053    has been investigated in the vicinity of calorimetric glass transition
143054    temperature, T-g. Similar to other glass formers, the Zr base bulk
143055    metallic glass exhibits typical features of the dynamic glass
143056    transition. The intermediate fragility index, m, indicates that the Zr
143057    base alloy belongs to the category of relatively strong glass formers
143058    in the general classification scheme. On the other hand, the time
143059    temperature equivalence principle is found to be applicable for
143060    constructing the master curve of dynamic shear modulus as well as shear
143061    viscosity over the temperature range studied. Theses master functions
143062    can be fitted with phenomenological models, such as generalized Maxwell
143063    model, or a Kohlrausch-Williams-Watts ( KWW) relation, and therefore
143064    reflect a broad distribution of local structural relaxation time for
143065    dynamic glass transition in the Zr base bulk metallic glass. (c) 2005
143066    Springer Science + Business Media, Inc.
143067 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
143068    Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China.
143069    Inst Natl Sci Appl, GEMPPM, F-69621 Villeurbanne, France.
143070 RP Wang, Q, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
143071 EM wangqingfr@hotmail.com
143072 CR ANGELL CA, 1991, J NON-CRYST SOLIDS, V131, P13
143073    BOBROV OP, 2003, SCRIPTA MATER, V49, P255
143074    BOHMER R, 1992, PHYS REV B, V45, P10091
143075    BOHMER R, 1993, J CHEM PHYS, V99, P4201
143076    ETIENNE S, 1982, REV SCI INSTRUM, V53, P1261
143077    HAYS CC, 2000, MATER SCI FORUM 1&2, V343, P103
143078    HODGE IM, 1996, J NON-CRYST SOLIDS, V202, P164
143079    INOUE A, 1995, MATER T JIM, V36, P866
143080    JOHNSON WL, 1996, MATER SCI FORUM, V225, P35
143081    KATO H, 1998, APPL PHYS LETT, V73, P3665
143082    LEE ML, 2003, PHYS REV B, V67
143083    PEKER A, 1993, APPL PHYS LETT, V63, P2342
143084    PERERA DN, 1999, J PHYS D, V32, P2993
143085    PERERA DN, 1999, J PHYS-CONDENS MAT, V11, P3029
143086    PERERA DN, 2000, J PHYS D APPL PHYS, V33, P1937
143087    RAMBOUSKY R, 1996, Z PHYS B CON MAT, V99, P387
143088    SCHROTER K, 1998, EUR PHYS J B, V5, P1
143089    SCHROTER K, 2002, J NON-CRYST SOLIDS, V307, P270
143090    SUH D, 2002, ACTA MAT, V50, P537
143091    ZHANG B, 2002, J PHYS-CONDENS MAT, V14, P7461
143092    ZHANG T, 1991, MATER T JIM, V32, P1005
143093 NR 21
143094 TC 0
143095 SN 0022-2461
143096 J9 J MATER SCI
143097 JI J. Mater. Sci.
143098 PD SEP
143099 PY 2005
143100 VL 40
143101 IS 18
143102 BP 4795
143103 EP 4799
143104 PG 5
143105 SC Materials Science, Multidisciplinary
143106 GA 966YV
143107 UT ISI:000232059600011
143108 ER
143109 
143110 PT J
143111 AU Sun, MS
143112    Ding, WZ
143113    Lu, XG
143114 TI Nitrogen removal from molten steel under argon DC glow plasma
143115 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
143116 DT Article
143117 DE argon DC glow plasma; nitrogen removal; molten steel; kinetic
143118 ID ARC; IRON
143119 AB Under argon DC glow plasma, the nitrogen removal from molten steel was
143120    studied. The experimental result showed that nitrogen mass percent
143121    could be reduced to 0. 000 8%. The change of polarity had no impact on
143122    nitrogen removal when the nitrogen mass percent was low. The mechanism
143123    of denitrogenation of molten steel under.argon DC glow plasma was
143124    discussed.
143125 C1 Taiyuan Iron & Steel Grp Co, Taiyuan 030003, Peoples R China.
143126    Shanghai Univ, Shanghai 200072, Peoples R China.
143127 RP Sun, MS, Taiyuan Iron & Steel Grp Co, Taiyuan 030003, Peoples R China.
143128 EM sunmsh@etang.com
143129 CR FENG XH, 1998, TECHNOLOGY FINE TREA, P63
143130    FENG XH, 1998, TECHNOLOGY SEMICONDU, V23, P44
143131    FU J, 2001, PROCESS KINETICS STE
143132    KATZ JD, 1989, METALL TRANS B, V20, P175
143133    MIMURA K, 1999, J JPN I MET, V63, P1181
143134    QIAO ZY, 1999, COMPUTATION PHYS CHE
143135    QIU B, 1989, FERROALLOY, P23
143136    QIU B, 1989, FERROALLOY, P28
143137    SUN MS, 2002, J IRON STEEL RES, V14, P52
143138    TAKEDA K, 1978, T ISIJ, V18, P641
143139    ZHENG Q, 1998, RES FOAMING SLAG ELE
143140 NR 11
143141 TC 0
143142 SN 1006-706X
143143 J9 J IRON STEEL RES INT
143144 JI J. Iron Steel Res. Int.
143145 PD JUL
143146 PY 2005
143147 VL 12
143148 IS 4
143149 BP 6
143150 EP 8
143151 PG 3
143152 SC Metallurgy & Metallurgical Engineering
143153 GA 967BX
143154 UT ISI:000232067600002
143155 ER
143156 
143157 PT J
143158 AU He, YL
143159    Li, L
143160    Wollants, P
143161 TI Computer simulation of carbide transformation in die steel for plastic
143162 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
143163 DT Article
143164 DE Thermo-Calc software package; die steel for plastic; M7C3 carbide; TEM
143165    analysis
143166 ID THERMO-CALC; DISSOLUTION; PRECIPITATION; CEMENTITE; KINETICS; DICTRA
143167 AB Thermo-Calc software package (TCP + DICTRA) was used to simulate the
143168    carbide transformation process in die steel for plastic. Combined with
143169    TEM analysis, the calculated result confirms that the carbide in
143170    equilibrium state is M7C3 carbide. The dissolution of M7C3 carbide in
143171    steel is predicted by DICTRA program. It was shown that the temperature
143172    remarkably affects the dissolution process Of M7C3 carbide, but the
143173    influence of alloy elements such as manganese and molybdenum can be
143174    neglected in this steel.
143175 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
143176    Katholieke Univ Leuven, B-3001 Heverlee, Belgium.
143177 RP He, YL, Shanghai Univ, Shanghai 200072, Peoples R China.
143178 EM yanlinhe@163.com
143179 CR AGREN J, 1990, SCAND J METALL, V19, P2
143180    AGREN J, 1992, ISIJ INT, V32, P291
143181    ANDERSSON JO, 1992, J APPL PHYS, V72, P1350
143182    ANDERSSON JO, 2002, CALPHAD, V26, P273
143183    BJARBO A, 2001, METALL MATER TRANS A, V32, P19
143184    BORGENSTAM A, 2000, J PHASE EQUILIB, V21, P269
143185    GHOSH G, 2002, ACTA MATER, V50, P2099
143186    HILLERT M, 1985, METALL TRANS A, V16, P261
143187    LIU ZK, 1991, METALL TRANS A, V22, P1745
143188    ROBSON JD, 1996, CALPHAD, V20, P447
143189    SUNDMAN B, 1985, CALPHAD, V9, P153
143190    YAMASHITA T, 1999, J PHASE EQUILIB, V20, P231
143191 NR 12
143192 TC 0
143193 SN 1006-706X
143194 J9 J IRON STEEL RES INT
143195 JI J. Iron Steel Res. Int.
143196 PD JUL
143197 PY 2005
143198 VL 12
143199 IS 4
143200 BP 44
143201 EP 49
143202 PG 6
143203 SC Metallurgy & Metallurgical Engineering
143204 GA 967BX
143205 UT ISI:000232067600010
143206 ER
143207 
143208 PT J
143209 AU Zhang, JP
143210    Sun, ZM
143211    Shi, LY
143212    Jia, GL
143213    Xie, XF
143214    Rao, WW
143215    Zhu, YF
143216 TI Preparation of TiO2 film on stainless steel webnet and the degradation
143217    of formaldehyde
143218 SO JOURNAL OF INORGANIC MATERIALS
143219 DT Article
143220 DE sol-gel route; titanium dioxide films; formaldehyde; photocatalysis
143221 ID TITANIUM-DIOXIDE; PHOTOCATALYST
143222 AB Photocatalytic titanium dioxide films coated on stainless steel webnet
143223    were prepared by a sol-gel route. SEM, XRD and TG-DTA were employed to
143224    characterize the samples. The effects of the films prepared with
143225    different proceedings on photoactivity were investigated by
143226    formaldehyde photodegradation, such as the molecular weight of PEG, the
143227    amount of PEG, moisture content, the thickness of the films and the
143228    annealing temperatures. The formaldehyde photodegradation ratio can
143229    reach above 90% by the TiO2-based films. XRD patterns and SEM
143230    observation indicate that the TiO2 films with mesoporous structure are
143231    composed of mixed rutile and anatase crystals.
143232 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200444, Peoples R China.
143233    Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072, Peoples R China.
143234    Shanghai Univ, Res Ctr Nanosci & Nanotechnol, Shanghai 200444, Peoples R China.
143235    Tsing Hua Univ, Dept Chem, Beijing 100084, Peoples R China.
143236 RP Zhang, JP, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200444, Peoples
143237    R China.
143238 EM sly0726@163.com
143239 CR FURMAN P, 1997, J MATER SCI LETT, V16, P471
143240    JIN S, 2004, CHEM ENG J, V97, P203
143241    KOELSCH M, 2002, THIN SOLID FILMS, V403, P312
143242    NEGISHI N, 1998, J MATER SCI, V33, P5789
143243    NEGISHI N, 1998, J SOL-GEL SCI TECHN, V13, P691
143244    SHI LY, 1999, J INORG MATER, V14, P717
143245    SRIKANTH K, 2001, SOL ENERG MAT SOL C, V65, P171
143246    TAKEDA S, 2001, THIN SOLID FILMS, V392, P338
143247    TANADA S, 1999, J COLLOID INTERF SCI, V214, P106
143248    YANG JJ, 2000, J PHOTOCH PHOTOBIO A, V137, P197
143249    ZHANG L, 2003, APPL CATAL B-ENVIRON, V40, P287
143250 NR 11
143251 TC 0
143252 SN 1000-324X
143253 J9 J INORG MATER
143254 JI J. Inorg. Mater.
143255 PD SEP
143256 PY 2005
143257 VL 20
143258 IS 5
143259 BP 1243
143260 EP 1249
143261 PG 7
143262 SC Materials Science, Ceramics
143263 GA 966KZ
143264 UT ISI:000232020000036
143265 ER
143266 
143267 PT J
143268 AU Yuan, SJ
143269    Sui, YX
143270    Zhou, SM
143271 TI Isotropic ferromagnetic resonance field shift in as-prepared
143272    permalloy/FeMn bilayers
143273 SO EUROPEAN PHYSICAL JOURNAL B
143274 DT Article
143275 ID EXCHANGE BIAS; MAGNETIC-ANISOTROPY; THIN-FILMS; MULTILAYERS
143276 AB Exchange-coupled wedged-permalloy (Py)/FeMn bilayers are studied by
143277    ferromagnetic resonance (FMR) technique at room temperature. In
143278    comparison, Py single layer films were also made. For Py single layer
143279    films and Py/FeMn bilayers, only one uniform resonance peak was
143280    observed at high magnetic fields, indicating no interfacial diffusion
143281    at the Py/FeMn and Py/Cu interfaces. Negative isotropic in-plane
143282    resonance field does exist in Py/FeMn bilayers and its magnitude
143283    increases with decreasing Py layer thickness. In order to explain above
143284    phenomena, interfacial perpendicular anisotropy must be considered
143285    simultaneously, in addition to irreversible rotation of spins in FeMn
143286    layers. This is because the perpendicular resonance field of the
143287    bilayers is larger than that of Py single layer films.
143288 C1 Fudan Univ, Surface Phys Lab, State Key Lab, Shanghai 200433, Peoples R China.
143289    Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
143290    Nanjing Univ, Ctr Mat Anal & Measurements, Nanjing 210093, Peoples R China.
143291    Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
143292 RP Yuan, SJ, Fudan Univ, Surface Phys Lab, State Key Lab, Shanghai 200433,
143293    Peoples R China.
143294 EM shimingzhou@yahoo.com
143295 CR DIENY B, 1991, PHYS REV B, V43, P1297
143296    MCMICHAEL RD, 1998, PHYS REV B, V58, P8605
143297    MEIKLEJOHN WH, 1956, PHYS REV, V102, P1413
143298    MIZUKAMI S, 2001, JPN J APPL PHYS 1, V40, P580
143299    NAKAMURA K, 2004, PHYS REV B, V70
143300    NIKITENKO VI, 1998, PHYS REV B, V57, P8111
143301    NOGUES J, 1999, J MAGN MAGN MATER, V192, P203
143302    RUBINSTEIN M, 1999, J MAGN MAGN MATER, V195, P299
143303    STAMPS RL, 1996, PHYS REV B, V54, P4159
143304    STILES MD, 1999, PHYS REV B, V59, P3722
143305    STOECKLEIN W, 1988, PHYS REV B, V38, P6847
143306    XI HW, 2000, J APPL PHYS 1, V87, P4367
143307    YUAN SJ, 2004, APPL PHYS A, V79, P703
143308    ZHOU SM, 2003, APPL PHYS LETT, V83, P2013
143309    ZHOU SM, 2004, PHYS REV B, V69
143310 NR 15
143311 TC 1
143312 SN 1434-6028
143313 J9 EUR PHYS J B
143314 JI Eur. Phys. J. B
143315 PD APR
143316 PY 2005
143317 VL 44
143318 IS 4
143319 BP 557
143320 EP 562
143321 PG 6
143322 SC Physics, Condensed Matter
143323 GA 966NF
143324 UT ISI:000232026000018
143325 ER
143326 
143327 PT J
143328 AU Chen, X
143329    Li, CF
143330 TI The reflection and transmission group delay times in an asymmetric
143331    single quantum barrier
143332 SO EUROPEAN PHYSICAL JOURNAL B
143333 DT Article
143334 ID TUNNELING-TIME; TRAVERSAL TIME; ELECTRON; SCATTERING; STATES;
143335    CONDUCTORS; DENSITIES; PULSES; WELL
143336 AB The reflection and transmission group delay times are systematically
143337    investigated in an asymmetric single quantum barrier. It is reported
143338    that the reflection times in both evanescent and propagating cases can
143339    be either negative or positive, depending on the relative height of the
143340    potential energies on the two sides of the barrier. In the evanescent
143341    case where the energy of incident particles is less than the height of
143342    the barrier, the reflection and transmission times in the opaque limit
143343    are both independent of the barrier's thickness, showing
143344    superluminality. On the other hand, in the propagating case where the
143345    energy of incident particles is larger than the height of the barrier,
143346    the reflection and transmission times as the periodical function of the
143347    barrier's thickness can be greatly enhanced by the transmission
143348    resonance. It is also shown that the transmission time and the
143349    reflection times for the two propagation directions in the same
143350    asymmetric configuration satisfy the reciprocal relation, as
143351    consequence of time reversal invariance in quantum mechanics. These
143352    phenomena may lead to novel applications in electronic devices.
143353 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
143354    Acad Sinica, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt Technol, Xian 710068, Peoples R China.
143355 RP Li, CF, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200444,
143356    Peoples R China.
143357 EM xchen@graduate.shu.edu.cn
143358    cfli@staff.shu.edu.cn
143359 CR BALCOU P, 1997, PHYS REV LETT, V78, P851
143360    BANDOPADHYAY S, 2004, SOLID STATE COMMUN, V131, P447
143361    BANDOPADHYAY S, 2005, PHYS LETT A, V335, P266
143362    BERESFORD R, 1989, APPL PHYS LETT, V55, P1555
143363    BROWN ER, 1991, APPL PHYS LETT, V58, P2291
143364    BUTTIKER M, 1982, PHYS REV LETT, V49, P1739
143365    BUTTIKER M, 1983, PHYS REV B, V27, P6178
143366    BUTTIKER M, 1990, ELECT PROPERTIES MUL, P297
143367    BUTTIKER M, 1993, J PHYS-CONDENS MAT, V5, P9361
143368    BUTTIKER M, 1993, PHYS LETT A, V180, P364
143369    BUTTIKER M, 2002, PRAMANA-J PHYS, V58, P241
143370    BUTTIKER M, 2003, NATURE, V422, P271
143371    CHEN X, 2003, PHYS REV A, V68
143372    CHIAO RY, 1997, PROG OPTICS, V37, P345
143373    DRAGOMAN D, 1996, IEEE J QUANTUM ELECT, V32, P1150
143374    DRAGOMAN D, 1999, IEEE J QUANTUM ELECT, V35, P118
143375    DRAGOMAN D, 2003, J APPL PHYS 1, V93, P6133
143376    GARCIACALDERON G, 1989, SOLID STATE COMMUN, V71, P237
143377    GASPARIAN V, 1996, PHYS REV A, V54, P4022
143378    GROSSEL P, 2002, J PHYS A-MATH GEN, V35, P9787
143379    HAIBEL A, 2001, ANN PHYS-BERLIN, V10, P707
143380    HARTMAN TE, 1962, J APPL PHYS, V33, P3427
143381    HAUGE EH, 1987, PHYS REV B, V36, P4203
143382    HAUGE EH, 1989, REV MOD PHYS, V61, P917
143383    JAPHA Y, 1996, PHYS REV A, V53, P586
143384    LANDAUER R, 1989, NATURE, V341, P567
143385    LANDAUER R, 1994, REV MOD PHYS, V66, P217
143386    LEAVENS CR, 1989, PHYS REV B, V40, P5387
143387    LI CF, UNPUB OPT COMM
143388    LI CF, 2000, PHYS LETT A, V275, P287
143389    LONGHI S, 2001, PHYS REV E 2, V64
143390    LUNA E, 2003, APPL PHYS LETT, V83, P3111
143391    LUO H, 1993, PHYS REV LETT, V70, P1307
143392    MARTINEZ JC, 2003, PHYS SCRIPTA, V68, P108
143393    MARTINEZ JC, 2004, APPL PHYS LETT, V84, P1320
143394    MUGA JG, 2002, PHYS REV A, V66
143395    MUGA JG, 2002, TIME QUANTUM MECH
143396    NIMTZ G, 1994, J PHYS I, V4, P565
143397    NIMTZ G, 2003, PROG QUANT ELECTRON, V27, P417
143398    PARANJAPE VV, 1995, PHYS REV B, V52, P10740
143399    RANFAGNI A, 1991, APPL PHYS LETT, V58, P774
143400    SEKATSKII SK, 2001, PHYS REV B, V64
143401    SLIVKEN S, 2002, APPL PHYS LETT, V80, P4091
143402    SOLLI D, 2002, PHYS REV E, V66
143403    SPIELMANN C, 1994, PHYS REV LETT, V73, P2308
143404    STEINBERG AM, 1993, PHYS REV LETT, V71, P708
143405    STEINBERG AM, 1994, PHYS REV A, V49, P3283
143406    VETTER RM, 2001, PHYS REV E 2, V63
143407    VISSCHER EH, 1996, APPL PHYS LETT, V68, P2014
143408    WANG XH, 1998, EUR PHYS J B, V2, P121
143409    WIGNER EP, 1955, PHYS REV, V98, P145
143410    WINFUL HG, 2003, PHYS REV E 2, V68
143411    WINFUL HG, 2003, PHYS REV LETT, V90
143412    WINFUL HG, 2003, PHYS REV LETT, V91
143413 NR 54
143414 TC 0
143415 SN 1434-6028
143416 J9 EUR PHYS J B
143417 JI Eur. Phys. J. B
143418 PD AUG
143419 PY 2005
143420 VL 46
143421 IS 3
143422 BP 433
143423 EP 440
143424 PG 8
143425 SC Physics, Condensed Matter
143426 GA 966RX
143427 UT ISI:000232039900018
143428 ER
143429 
143430 PT J
143431 AU Wang, ZC
143432    Wang, Y
143433 TI A new kind of high-efficient and high-accurate P-stable Obrechkoff
143434    three-step method for periodic initial-value problems
143435 SO COMPUTER PHYSICS COMMUNICATIONS
143436 DT Article
143437 DE Obrechkoff method; trigonometric fitting; P-stable; high-order
143438    derivative; first-order derivative formula; second-order initial value
143439    problem with periodic solutions; numerical solution to the Duffing
143440    equation
143441 ID DIMENSIONAL SCHRODINGER-EQUATION; MINIMAL PHASE-LAG; 2ND-ORDER
143442    DIFFERENTIAL-EQUATIONS; NUMERICAL-INTEGRATION; HIGH-ORDER;
143443    STABILIZATION; FORMULAS
143444 AB In order to improve the efficiency and accuracy of the previous
143445    Obrechkoff method, in this paper we put forward a new kind of P-stable
143446    three-step Obrechkoff method of O(h(10)) for periodic initial-value
143447    problems. By using a new structure and an embedded high accurate
143448    first-order derivative formula, we can avoid time-consuming iterative
143449    calculation to obtain the high-order derivatives. By taking advantage
143450    of new trigonometrically-fitting scheme we can make both the main
143451    structure and the first-order derivative formula to be P-stable. We
143452    apply our new method to three periodic problems and compare it with the
143453    previous three Obrechkoff methods. Numerical results demonstrate that
143454    our new method is superior over the previous ones in accuracy,
143455    efficiency and stability. (C) 2005 Elsevier B.V. All rights reserved.
143456 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
143457 RP Wang, ZC, Shanghai Univ, Dept Phys, 99 ShangDa Rd, Shanghai 200444,
143458    Peoples R China.
143459 EM zc_wang89@hotmail.com
143460 CR ALLISON AC, 1970, J COMPUT PHYS, V6, P378
143461    ANANTHAKRISHNAI.U, 1982, J COMPUT APPL MATH, V8, P101
143462    ANANTHAKRISHNAI.U, 1987, MATH COMPUT, V49, P553
143463    BRUSA L, 1980, INT J NUMER METH ENG, V15, P685
143464    CASH JR, 1981, NUMER MATH, V37, P355
143465    CHAWLA MM, 1981, BIT, V21, P190
143466    CHAWLA MM, 1986, J COMPUT APPL MATH, V15, P213
143467    CHAWLA MM, 1986, J COMPUT APPL MATH, V15, P329
143468    CHAWLA MM, 1986, J COMPUT APPL MATH, V16, P233
143469    CHAWLA MM, 1987, J COMPUT APPL MATH, V17, P365
143470    CHAWLA MM, 1996, NEURAL PARALLEL SCI, V4, P505
143471    COLEMAN JP, 1989, IMA J NUMER ANAL, V9, P145
143472    GLADWELL I, 1983, INT J NUMER METH ENG, V19, P495
143473    HAIRER E, 1979, NUMER MATH, V32, P373
143474    JAIN MK, 1988, BIT, V28, P302
143475    LAMBERT JD, 1962, ZAMP, V13, P223
143476    LAMBERT JD, 1973, COMPUTATIONAL METHOD
143477    LAMBERT JD, 1976, J INST MATH APPL, V18, P189
143478    LANDAU L, 1974, QUANTUM MECH
143479    MICKENS RE, 1981, INTRO NONLINEAR OSCI
143480    NETA B, 2003, COMPUT MATH APPL, V45, P383
143481    OBRECHKOFF N, 1942, SPISANIE BULGAR AKAD, V65, P191
143482    RAI AS, 1997, J COMPUT APPL MATH, V79, P167
143483    RAPTIS AD, 1991, BIT, V31, P160
143484    SIMOS TE, 1990, COMPUTING, V45, P175
143485    SIMOS TE, 1991, APPL NUMER MATH, V7, P201
143486    SIMOS TE, 1991, INT J COMPUT MATH, V39, P135
143487    SIMOS TE, 1992, J COMPUT APPL MATH, V39, P89
143488    SIMOS TE, 1993, P ROY SOC LOND A MAT, V6, P283
143489    STIEFEL E, 1969, NUMER MATH, V13, P154
143490    THOMAS RM, 1984, BIT, V24, P225
143491    VANDERHOUWEN PJ, 1987, SIAM J NUMER ANAL, V24, P595
143492    VANDOOREN R, 1974, J COMPUT PHYS, V16, P186
143493    WANG Z, 2003, J CHIN U S146, V12
143494    WANG ZC, 2003, INT J MOD PHYS C, V14, P1087
143495    WANG ZC, 2004, COMPUT PHYS COMMUN, V160, P23
143496 NR 36
143497 TC 0
143498 SN 0010-4655
143499 J9 COMPUT PHYS COMMUN
143500 JI Comput. Phys. Commun.
143501 PD SEP 15
143502 PY 2005
143503 VL 171
143504 IS 2
143505 BP 79
143506 EP 92
143507 PG 14
143508 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
143509 GA 966UT
143510 UT ISI:000232048500001
143511 ER
143512 
143513 PT J
143514 AU Zhao, BT
143515 TI Experimental investigation of flow patterns in cyclones with
143516    conventional and symmetrical inlet geometries
143517 SO CHEMICAL ENGINEERING & TECHNOLOGY
143518 DT Article
143519 ID GAS CYCLONE; COLLECTION; SEPARATOR
143520 AB The gas flow patterns in two different cyclone separators with
143521    conventional and symmetrical inlet geometries are analyzed and
143522    compared. Based on the results of experimental investigations of
143523    tangential velocity, axial velocity and static pressure distribution in
143524    these separators, the similarities and differences between the flow
143525    patterns are discussed. Furthermore, the influence of the inlet
143526    geometry on the flow patterns as well as the mechanism of gas-particle
143527    separation and pressure drop are evaluated.
143528 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Inst Chem Proc Equipment, Shanghai 200093, Peoples R China.
143529 RP Zhao, BT, Shanghai Univ Sci & Technol, Coll Power Engn, Inst Chem Proc
143530    Equipment, 516 Jungong Rd, Shanghai 200093, Peoples R China.
143531 EM zhaobingtao@mail.dhu.edu.cn
143532 CR ALEXANDER RM, 1949, P AUSTRALAS I MIN M, V152, P202
143533    GARWOOD DR, 1993, FILT C HORSH UK
143534    HOFFMANN AC, 1996, CAN J CHEM ENG, V74, P464
143535    OBERMAIR S, 2003, POWDER TECHNOL, V138, P239
143536    PATTERSON PA, 1996, CAN J CHEM ENG, V74, P213
143537    PENG W, 2002, POWDER TECHNOL, V127, P212
143538    TERLINDEN AJ, 1949, P I MECH ENG, V160, P129
143539    WAKELIN R, 1992, THESIS U CANTERBURY
143540    WANG LZ, 2001, AEROSOL SCI TECH, V35, P909
143541    WIE Y, 1991, P INTERPEC BEIJ CHIN
143542    ZHAO BT, 2004, POWDER TECHNOL, V145, P47
143543    ZHOU LX, 1990, POWDER TECHNOL, V63, P45
143544 NR 12
143545 TC 0
143546 SN 0930-7516
143547 J9 CHEM ENG TECHNOL
143548 JI Chem. Eng. Technol.
143549 PD SEP
143550 PY 2005
143551 VL 28
143552 IS 9
143553 BP 969
143554 EP 972
143555 PG 4
143556 SC Engineering, Chemical
143557 GA 966XD
143558 UT ISI:000232055200001
143559 ER
143560 
143561 PT J
143562 AU Shang, B
143563    Wang, XY
143564    Yuan, JW
143565    Vabret, A
143566    Wu, XD
143567    Yang, RF
143568    Tian, L
143569    Ji, YY
143570    Deubel, V
143571    Sun, B
143572 TI Characterization and application of monoclonal antibodies against N
143573    protein of SARS-coronavirus
143574 SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
143575 DT Article
143576 DE severe acute respiratory syndrome; nucleocapsid protein; truncated N
143577    protein fragments; monoclonal antibody; B cell epitopernapping; human
143578    coronaviruses; diagnosis
143579 ID ACUTE RESPIRATORY SYNDROME; NUCLEOCAPSID PROTEIN; STRUCTURAL PROTEINS;
143580    ENZYME-IMMUNOASSAY
143581 AB Severe acute respiratory syndrome-coronavirus (SARS-CoV) causes an
143582    infectious disease through respiratory route. Diagnosing the disease
143583    effectively and accurately at early stage is essential for preventing
143584    the disease transmission and performing antiviral treatment. In this
143585    study, we raised monoclonal antibodies (mAbs) against the nucleocapsid
143586    (N) protein of SARS-CoV and mapped epitopes by using different
143587    truncated N protein fragments. The mapping of those epitopes was
143588    valuable for constructing pair-Abs used in serological diagnosis. The
143589    results showed that all of the six raised mAbs were divided into two
143590    groups recognizing the region of amino acids 249-317 (A group) or
143591    317-395 (B group). This region spanning amino acids 249-395 contains
143592    predominant B cell epitopes located at the C-terminus of N protein. One
143593    pair-Abs, consisting of N protein-specific rabbit polyclonal antibody
143594    and SARS-CoV N protein-specific mAb, was selected to construct a
143595    sandwich ELISA-kit. The kit was able to specifically detect SARS-CoV N
143596    proteins in serum samples. (c) 2005 Elsevier Inc. All rights reserved.
143597 C1 Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem & Cell Biol, Lab Mol Cell Biol, Shanghai 200031, Peoples R China.
143598    Acad Mil Med Sci, Inst Basic Med Sci, Inst Microbiol & Epidemiol, State Key Lab Pathogen & Biosecur, Beijing 100071, Peoples R China.
143599    CHU Caen, EA2128, UPRES, Lab Human & Mol Virol, F-14000 Caen, France.
143600    Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Pasteur Shanghai, Shanghai 200025, Peoples R China.
143601    Shanghai Univ, Immunol Div, E Inst, Shanghai 200041, Peoples R China.
143602 RP Sun, B, Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem & Cell
143603    Biol, Lab Mol Cell Biol, 320 Yue Yang Rd, Shanghai 200031, Peoples R
143604    China.
143605 EM bsun@sibs.ac.cn
143606 CR BEATTY JD, 1987, J IMMUNOL METHODS, V100, P173
143607    CHE XY, 2004, EMERG INFECT DIS, V10, P1947
143608    CHE XY, 2004, J CLIN MICROBIOL, V42, P2629
143609    CHEN ZL, 2004, CLIN CHEM, V50, P988
143610    HE R, 2003, BIOCHEM BIOPH RES CO, V11, P870
143611    KING B, 1982, J VIROL, V42, P700
143612    LAU YL, 2005, CURR OPIN IMMUNOL, V17, P404
143613    MARRA MA, 2003, SCIENCE, V300, P1399
143614    ROTA PA, 2003, SCIENCE, V300, P1394
143615    SIMMONS G, 2004, P NATL ACAD SCI USA, V101, P4240
143616    TAN YJ, 2004, CLIN DIAGN LAB IMMUN, V11, P362
143617    WEI L, 2005, FEBS LETT, V579, P2130
143618    WU HS, 2004, J BIOMED SCI, V11, P117
143619    WU XD, 2004, CELL RES, V14, P400
143620    YING L, 2004, CELL MOL IMMUNOL, V1, P137
143621    ZENG R, 2004, J PROTEOME RES, V3, P549
143622 NR 16
143623 TC 0
143624 SN 0006-291X
143625 J9 BIOCHEM BIOPHYS RES COMMUN
143626 JI Biochem. Biophys. Res. Commun.
143627 PD OCT 14
143628 PY 2005
143629 VL 336
143630 IS 1
143631 BP 110
143632 EP 117
143633 PG 8
143634 SC Biochemistry & Molecular Biology; Biophysics
143635 GA 965HP
143636 UT ISI:000231941500018
143637 ER
143638 
143639 PT J
143640 AU Yuan, JH
143641    Cheng, YM
143642    Zhang, ZH
143643 TI Spectral properties and crystal field parameters of the Cr3+ ions in
143644    Ca3Al2Ge3O12 germanate garnet
143645 SO ACTA PHYSICO-CHIMICA SINICA
143646 DT Article
143647 DE spectroscopy; Cr3+ doped calcium aluminium germanate garnet; broad-band
143648    emission; crystal; field parameter; tunable laser material
143649 ID UP-CONVERSION; LASER; CR-3
143650 AB In order to investigate the spectral properties of the Cr3+ in
143651    Ca3Al2Ge3O12 garnet, the polycrystal material Ca3Al2Ge3O12:Cr3+ was
143652    synthesized; its X-ray diffraction patterns, diffuse reflection
143653    spectra, excitation and emission spectra were measured. The spectral
143654    properties of the material were discussed and the crystal field
143655    strength (D-q / B), Stokes displacements(Delta E-s) along with
143656    Huang-Rhys factors(S) were calculated. Under the excitation of 450 nm
143657    light, the emission spectrum of Cr3+ in Ca3Al2Ge3O12 garnet at room
143658    temperature mainly consists of three broad bands with weak R line.
143659    Three broad bands correspond to T-4(1)-(4)A(2), T-4(2)-(4)A(2), and
143660    T-2(2)-(4)A(2) transitions of Cr3+ ions, respectively. The R line
143661    becomes stronger and sharper at low temperature of 30 K. The calculated
143662    results showed D-q / B=2.43, Delta E-s=1884 cm(-1) and S=5.21,
143663    indicating that Cr3+ ions in Ca3Al2Ge3O12 garnet locate at weaker
143664    crystal field strength and the coupling between the electrons and the
143665    phonons is strong. The results imply that Ca3Al2Ge3O12:Cr3+ would be a
143666    promising material for tunable laser.
143667 C1 Changsha Univ Sci & Technol, Dept Phys & Elect Sci, Changsha 410076, Peoples R China.
143668    Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
143669 RP Yuan, JH, Changsha Univ Sci & Technol, Dept Phys & Elect Sci, Changsha
143670    410076, Peoples R China.
143671 EM yuanjianhui2003@163.com
143672 CR CAVALLI E, 1996, OPT MATER, V6, P153
143673    CHEN W, 1993, OPT COMMUN, V104, P71
143674    CHRISTIANSEN HP, 1982, IEEE J QUANTUM ELECT, V18, P1197
143675    HOMMERICH U, 1995, PHYS REV B, V51, P12133
143676    HOMMERICH U, 1995, PHYS REV B, V51, P8595
143677    KENYON PT, 1982, IEEE J QUANTUM ELECT, V18, P1189
143678    ODONNELL KP, 1989, J LUMIN, V42, P365
143679    STRUVE B, 1985, APPL PHYS B-PHOTO, V36, P195
143680    TANABE Y, 1954, J PHYS SOC JPN, V9, P753
143681    TANG HG, 1986, ACTA OPTICA SINIA, V6, P155
143682    WALLING JC, 1980, IEEE J QUANTUM ELECT, V16, P1302
143683    WANG Y, 2003, LASER J, V24, P58
143684    YANKOV P, 1994, J PHYS D APPL PHYS, V27, P1118
143685    ZHANG X, 1997, J APPL PHYS, V82, P3987
143686    ZHANG XA, 1997, CHEM PHYS LETT, V273, P416
143687    ZHOU SH, 1993, OPT LETT, V18, P511
143688 NR 16
143689 TC 0
143690 SN 1000-6818
143691 J9 ACTA PHYS-CHIM SIN
143692 JI Acta Phys.-Chim. Sin.
143693 PD SEP
143694 PY 2005
143695 VL 21
143696 IS 9
143697 BP 1059
143698 EP 1062
143699 PG 4
143700 SC Chemistry, Physical
143701 GA 966AB
143702 UT ISI:000231990900023
143703 ER
143704 
143705 PT J
143706 AU Wang, H
143707    Ren, ZM
143708    Xu, KD
143709    Huang, H
143710    Wang, QL
143711    Yan, LG
143712 TI Solidification behaviors of Al3Ni precipitated phase in Al-Ni alloy
143713    under a high magnetic field
143714 SO RARE METAL MATERIALS AND ENGINEERING
143715 DT Article
143716 DE high magnetic field; orientation; laminated alignment structure; Al-Ni
143717    alloy; Al3Ni precipitated phase
143718 ID AL-AL3NI; ORIENTATION; COMPOSITES
143719 AB The solidification behaviors of nonferromagnetic Al3Ni precipitated
143720    phase in Al-8%Ni alloy with a high magnetic field applied have been
143721    studied experimentally. It is found that the magnetic field induces the
143722    crystals of Al3Ni phase to orient with their c-axes parallel to the
143723    field and the long axes of the crystals are perpendicular to their
143724    c-axes. There are several Al3Ni congregation planes parallel with each
143725    other, which are perpendicular to the field, that is, regular Al3Ni
143726    laminated alignment structure is formed in the alloy. In the planes,
143727    there are several big Al3Ni congregations, in the inner part of which
143728    there are aligned Al3Ni crystals.
143729 C1 Chinese Acad Sci, Inst Elect Engn, Ctr Appl Supercond, Beijing 100080, Peoples R China.
143730    Shanghai Univ, Shanghai 200072, Peoples R China.
143731 RP Wang, H, Chinese Acad Sci, Inst Elect Engn, Ctr Appl Supercond, Beijing
143732    100080, Peoples R China.
143733 CR ASAI S, 2004, MODEL SIMUL MATER SC, V12, R1
143734    FARAG MM, 1975, METALL T A, V6, P1009
143735    FARAG MM, 1976, METALL T A, V7, P215
143736    FERREIRA PJ, 1999, J MATER RES, V14, P2751
143737    GARMONG G, 1975, METALLURGICAL T A, V6, P1335
143738    GILLON P, 2000, MAT SCI ENG A-STRUCT, V287, P146
143739    GOTO S, 2000, KEY ENG MAT, V171, P161
143740    HUI W, 2003, EFFECTS HIGH MAGNETI
143741    KATSUKI A, 1996, CHEM LETT, P607
143742    MIKELSON AE, 1981, J CRYST GROWTH, V52, P524
143743    RANGO PD, 1991, NATURE, V349, P770
143744    STASSEN S, 1994, PHYSICA C 1, V235, P515
143745    TAHASHI M, 2000, MATER T JIM, V41, P985
143746    TOURNIER RF, 2001, J MAGN MAGN MATER, P226
143747    WANG H, 2001, MATER SCI ENG, V19, P119
143748    YU JQ, 1987, CONSTITUTION BINARY, P150
143749 NR 16
143750 TC 0
143751 SN 1002-185X
143752 J9 RARE METAL MAT ENG
143753 JI Rare Metal Mat. Eng.
143754 PD JUL
143755 PY 2005
143756 VL 34
143757 IS 7
143758 BP 1033
143759 EP 1035
143760 PG 3
143761 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
143762    Engineering
143763 GA 964GV
143764 UT ISI:000231868200007
143765 ER
143766 
143767 PT J
143768 AU Wang, W
143769    Ni, JS
143770    Zhou, XY
143771    Xu, H
143772    Zhou, BX
143773 TI Effect of Cr addition on crystallization behavior and magnetic
143774    properties of nanocomposite Nd2Fe14B/a-Fe alloys
143775 SO RARE METAL MATERIALS AND ENGINEERING
143776 DT Article
143777 DE nanocomposite; melt spinning; metastable phase; magnetic properties
143778 ID PERMANENT-MAGNETS
143779 AB The influence of Cr addition on the crystallization behavior and
143780    magnetic properties of melt-spun Nd11Fe72-xCo8V1.5CrxB7.5 (x=0,1)
143781    nanocomposite alloys have been studied. The results show that Cr
143782    addition can increase the forming temperature of alpha-Fe and Nd2Fe14B
143783    phases, decrease the Curie temperature of hard magnetic phase Nd2Fe14B.
143784    The magnetic properties of the bonded magnets are obviously improved by
143785    the Cr addition. The intrinsic coercivity (H-J(C)) and maximum magnetic
143786    energy product ((BH) (max)) are increased from 780 kA/m and 68 kJ/m(3)
143787    for x=0 to 903.5 kA/m and 71 kJ/m(3) for x=1, respectively. The
143788    addition of Cr element shows significant advantage in reducing grain
143789    size and increasing the intrinsic coercivity.
143790 C1 Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 200336, Peoples R China.
143791    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
143792 RP Wang, W, Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 200336, Peoples
143793    R China.
143794 CR CHANG WC, 1997, J APPL PHYS 2A, V81, P4453
143795    FISCHER R, 1995, J MAGN MAGN MATER, V150, P329
143796    HADJIPANAYIS GC, 1995, IEEE T MAGN 2, V31, P3596
143797    HIROSAWA S, 1996, MAT SCI ENG A-STRUCT, V217, P367
143798    JIANG S, 1993, THEORY FERROMAGNETIC, V1, P141
143799    KNELLER EF, 1991, IEEE T MAGN, V27, P3588
143800    LEINEWEBER T, 1997, J MAGN MAGN MATER, V176, P145
143801    LIU W, 2004, RARE METAL MAT ENG, V33, P646
143802    RAVE W, 1997, J MAGN MAGN MATER, V171, P69
143803    SCHRAEDER T, 1994, PIMA MAG, V76, P10
143804    YAMASAKI M, 2001, SCRIPTA MATER, V44, P1375
143805 NR 11
143806 TC 0
143807 SN 1002-185X
143808 J9 RARE METAL MAT ENG
143809 JI Rare Metal Mat. Eng.
143810 PD JUL
143811 PY 2005
143812 VL 34
143813 IS 7
143814 BP 1051
143815 EP 1054
143816 PG 4
143817 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
143818    Engineering
143819 GA 964GV
143820 UT ISI:000231868200012
143821 ER
143822 
143823 PT J
143824 AU Wang, Z
143825    Ni, JS
143826    Xu, H
143827    Zhou, BX
143828    Hou, XL
143829    Chen, G
143830    Yang, XL
143831 TI A study of two-phase nanocrystalline Nd10Fe75Co5Zr3Cr0.5B6.5 permanent
143832 SO RARE METAL MATERIALS AND ENGINEERING
143833 DT Article
143834 DE rare earths; nanocrystalline; bonded magnet; magnetic properties
143835 ID MAGNETS
143836 AB Nd10Fe75Co5Zr3Cr0.5B6.5 magnet was prepared by melt-spun and
143837    subsequently annealed. After treated at 710 degrees C for 4 min, the
143838    mean grain size of the ribbon was 50 nm similar to 60 nm. The excellent
143839    magnetic properties of the bonded magnet were achieved: B-r = 0.67 T,
143840    H-1(C)=707 kA(.)m(-1) and (BH)(max)=74 kJ(.)m(-3).
143841 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
143842    Eight Res Inst Nucl Ind, Shanghai 201800, Peoples R China.
143843 RP Wang, Z, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
143844 CR CHAN TW, 1997, INT J ARTIFICIAL INT, V8, P1
143845    JURCZYK M, 1998, J MAGN MAGN MATER, V185, P66
143846    KNELLER E, 1991, IEEE T MAGN, V27, P3589
143847    LIAO HC, 1999, RARE METAL MAT ENG, V28, P65
143848    LIU JF, 1996, J MAGN MAGN MATER, V157, P29
143849    RIEGER G, 1995, J MAGN MAGN MATER, V151, P193
143850    YONEYAMA T, 1990, IEEE T MAGN, V26, P1963
143851 NR 7
143852 TC 0
143853 SN 1002-185X
143854 J9 RARE METAL MAT ENG
143855 JI Rare Metal Mat. Eng.
143856 PD JUL
143857 PY 2005
143858 VL 34
143859 IS 7
143860 BP 1055
143861 EP 1057
143862 PG 3
143863 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
143864    Engineering
143865 GA 964GV
143866 UT ISI:000231868200013
143867 ER
143868 
143869 PT J
143870 AU Hou, XL
143871    Kong, JF
143872    Jin, HM
143873    Li, ZF
143874    Pang, W
143875 TI Microstructure evolution of hydrided and dehydrided Nd13Fe81.5B5.5
143876 SO RARE METAL MATERIALS AND ENGINEERING
143877 DT Article
143878 DE NdFeB alloy; materials of magnetic refrigeration; magnetocaloric
143879    effect; hydrided and dehydrided
143880 AB The alloy with chemical compositions of Nd13Fe81.5B5.5 has the function
143881    of hydrogen absorption in room temperature. When heated, its function
143882    of hydrogen absorbing is better. The results show that absorbing
143883    hydrogen for the nonheated Nd13Fe81.5B5.5 alloy occurs only in the
143884    crystal boundary of the rich Nd-phase accompanying the release of heat
143885    in process of absorbing hydrogen. When heated up, absorbing hydrogen
143886    for the alloy occurs not only in crystal boundary of rich Nd-phase but
143887    also in the crystal inner. After absorbing hydrogen, the main phases of
143888    the alloy are NdH2.9 and alpha-Fe with minor phases Fe2B and Fe2Nd
143889    accompanying the release of the mass heat. The hydrogen absorbing
143890    temperature for the alloy is 700 degrees C. Dehydriding occurs in the
143891    range of 730 degrees C similar to 800 degrees C. High quality of the
143892    hydride can be produced under the above-mentioned condition.
143893 C1 Shanghai Univ, Mat Res Inst, Shanghai 200072, Peoples R China.
143894    NW Inst Nonferrous Met Res, Xian 710016, Peoples R China.
143895 RP Hou, XL, Shanghai Univ, Mat Res Inst, Shanghai 200072, Peoples R China.
143896 CR BOOK D, 1992, IEEE T MAGN, V28, P21
143897    JEANNOT D, 1993, IEEE T MAGN, V29, P2770
143898    SHI YJ, 1999, RARE METAL MAT ENG, V28, P53
143899    YAMAMOTO H, 1987, IEEE T MAGN, V23, P2100
143900    ZHOU SZ, 1999, RARE EARTH PERMANENT, P336
143901 NR 5
143902 TC 0
143903 SN 1002-185X
143904 J9 RARE METAL MAT ENG
143905 JI Rare Metal Mat. Eng.
143906 PD JUL
143907 PY 2005
143908 VL 34
143909 IS 7
143910 BP 1058
143911 EP 1060
143912 PG 3
143913 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
143914    Engineering
143915 GA 964GV
143916 UT ISI:000231868200014
143917 ER
143918 
143919 PT J
143920 AU Chen, LQ
143921 TI Principal parametric resonance of axially accelerating viscoelastic
143922    strings with an integral constitutive law
143923 SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND
143924    ENGINEERING SCIENCES
143925 DT Article
143926 DE nonlinear parametric vibration; method of multiple scales; stability;
143927    axially moving string; viscoelasticity
143928 ID NONLINEAR VIBRATION; GEOMETRIC NONLINEARITY; TRANSVERSE VIBRATION;
143929    STABILITY; BELTS; OSCILLATION
143930 AB The steady-state transverse responses and the stability of an axially
143931    accelerating viscoelastic string are investigated. The governing
143932    equation is derived from the Eulerian equation of motion of a
143933    continuum, which leads to the Mote model for transverse motion. The
143934    Kirchhoff model is derived from the Mote model by replacing the tension
143935    with the averaged tension over the string. The method of multiple
143936    scales is applied to the two models in the case of principal parametric
143937    resonance. Closed-form expressions of the amplitudes and the existence
143938    conditions of steady-state periodical responses are presented. The
143939    Lyapunov linearized stability theory is employed to demonstrate that
143940    the first (second) non-trivial steady-state response is always stable
143941    (unstable). Numerical calculations show that the two models are
143942    qualitatively the same, but quantitatively different. Numerical results
143943    are also presented to highlight the effects of the mean axial speed,
143944    the axial-speed fluctuation amplitude, and the viscoelastic parameters.
143945 C1 Shanghai Univ, Dept Mech, Shanghai 200444, Peoples R China.
143946    Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
143947 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200444, Peoples R China.
143948 EM lqchen@online.sh.cn
143949 CR ABRATE S, 1992, MECH MACH THEORY, V27, P645
143950    ANDRIANOV IV, 2003, ASME, V56, P87
143951    CARTMELL MP, 2003, APPL MECH REV, V56, P455
143952    CHEN LQ, 2001, ADV MECH, V31, P535
143953    CHEN LQ, 2003, ACTA MECH, V162, P143
143954    CHEN LQ, 2003, INT J NONLINEAR SCI, V4, P169
143955    CHEN LQ, 2004, J ENG MATH, V48, P171
143956    CHEN LQ, 2004, J SOUND VIB, V278, P861
143957    CHEN LQ, 2004, NONLINEAR DYNAM, V35, P347
143958    CHEN LQ, 2005, APPL MATH COMPUT, V162, P305
143959    CHEN LQ, 2005, APPL MECH REV, V58, P91
143960    CHEN LQ, 2005, J ACOUST SOC AM, V117, P55
143961    CHRISTENSEN RM, 1982, THEORY VISCOELASTICI
143962    CHUNG J, 2001, J SOUND VIB, V240, P733
143963    FUNG RF, 1997, J SOUND VIB, V201, P153
143964    FUNG YC, 1995, FDN SOLID MECH
143965    KIRCHHOFF G, 1877, VORLESUNGEN MATH PHY
143966    KOIVUROVA H, 1999, J SOUND VIB, V225, P845
143967    MIRANKER WL, 1960, IBM J RES DEV, V4, P36
143968    MOON J, 1997, J SOUND VIB, V200, P419
143969    MOTE CD, 1966, J APPL MECH, V33, P463
143970    NAYFEH AH, 1979, NONLINEAR OSCILLATIO
143971    OZKAYA E, 2000, J SOUND VIB, V230, P729
143972    PAKDEMIRLI M, 1993, J SOUND VIB, V168, P371
143973    PAKDEMIRLI M, 1994, J SOUND VIB, V169, P179
143974    PAKDEMIRLI M, 1997, J SOUND VIB, V203, P815
143975    THURMAN AL, 1969, J APPLIED MECHANICS, V36, P83
143976    WASHIZU K, 1982, VARIATIONAL METHODS
143977    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
143978    WICKERT JA, 1990, J APPL MECH-T ASME, V57, P738
143979    ZHANG L, 1999, J APPL MECH-T ASME, V66, P396
143980    ZHANG L, 2002, INT J STRUCTURAL STA, V2, P265
143981 NR 32
143982 TC 0
143983 SN 1364-5021
143984 J9 PROC ROY SOC A-MATH PHYS ENG
143985 JI Proc. R. Soc.  A-Math. Phys. Eng. Sci.
143986 PD SEP 8
143987 PY 2005
143988 VL 461
143989 IS 2061
143990 BP 2701
143991 EP 2720
143992 PG 20
143993 SC Multidisciplinary Sciences
143994 GA 963IP
143995 UT ISI:000231798000003
143996 ER
143997 
143998 PT J
143999 AU An, BL
144000    Gong, ML
144001    Li, MX
144002    Zhang, JM
144003    Cheng, ZX
144004 TI Synthesis and luminescence of a novel conjugated europium complex with
144005    6-aniline carbonyl 2-pyridine carboxylic acid
144006 SO JOURNAL OF FLUORESCENCE
144007 DT Article
144008 DE Europium organic complex; luminescence; lifetime; absorption spectra
144009 ID BRIGHT LUMINESCENCE; QUANTUM EFFICIENCY; ENERGY-TRANSFER; POLYMERS;
144010    ELECTROLUMINESCENCE; FLUORESCENCE; EU(III)
144011 AB A novel organic ligand, 6-aniline carbonyl 2-pyridine carboxylic acid
144012    (HAP), and the corresponding europium complex, tris(6-aniline carbonyl
144013    2-pyridine carboxylato) europium (III) (Eu-AP) have been designed and
144014    synthesized. The results showed that Eu-AP was a conjugated complex,
144015    emitting strong red luminescence. The lifetimes of D-5(0) of Eu3+ in
144016    the complex were examined using time-resolved spectroscopic analysis,
144017    and the lifetime value was 0.55 +/- 0.01 ms for solid Eu(AP)(3).
144018    Thermogravimetric analysis showed that the europium complex had good
144019    thermal stability.
144020 C1 Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200444, Peoples R China.
144021    Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Ghangzhou 510275, Peoples R China.
144022 RP An, BL, Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200444, Peoples R
144023    China.
144024 EM blan@staff.shu.edu.cn
144025 CR AN BL, 2003, POLYHEDRON, V22, P2719
144026    AN BL, 2004, CHEM PHYS LETT, V385, P345
144027    AN DC, 1998, APPL PHYS LETT, V72, P2806
144028    CAO Y, 1999, NATURE, V397, P414
144029    CHEN GZ, 1990, FLUORESCENCE ANAL ME
144030    FRIEND RH, 1999, NATURE, V397, P121
144031    HASEGAWA Y, 2003, J PHYS CHEM A, V107, P1697
144032    HEMMILA I, 1995, J ALLOY COMPD, V225, P480
144033    HO PKH, 1999, SCIENCE, V285, P233
144034    KIDO J, 2002, CHEM REV, V102, P2357
144035    LESSMANN JJ, 2000, INORG CHEM, V39, P3114
144036    MCGEHEE MD, 1999, ADV MATER, V11, P1349
144037    MELBY LR, 1964, J AM CHEM SOC, V86, P5117
144038    MOYNAGH J, 1999, NATURE, V400, P105
144039    SANO T, 2000, J MATER CHEM, V10, P157
144040    SLOOFF LH, 2000, OPT MATER, V14, P101
144041    WEISSMAN SI, 1942, J CHEM PHYS, V10, P214
144042    YANG YS, 1994, J ALLOY COMPD, V207, P112
144043 NR 18
144044 TC 0
144045 SN 1053-0509
144046 J9 J FLUORESC
144047 JI J. Fluoresc.
144048 PD JUL
144049 PY 2005
144050 VL 15
144051 IS 4
144052 BP 613
144053 EP 617
144054 PG 5
144055 SC Chemistry, Analytical; Biochemical Research Methods
144056 GA 965HH
144057 UT ISI:000231940700017
144058 ER
144059 
144060 PT J
144061 AU Zhao, DY
144062    Wang, ZC
144063    Dai, YM
144064    Wang, Y
144065 TI A high-accurate and efficient Obrechkoff five-step method for undamped
144066    Duffing's equation
144067 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS C
144068 DT Article
144069 DE Obrechkoff method; high-order derivative; multistep method;
144070    second-order initial value problem with periodic solutions; numerical
144071    solution to the Duffing equation
144072 ID INITIAL-VALUE-PROBLEMS
144073 AB In this paper, we present a five-step Obrechkoff method to improve the
144074    previous two-step one for a second-order initial-value problem with the
144075    oscillatory solution. We use a special structure to construct the
144076    iterative formula, in which the higher-even-order derivatives are
144077    placed at central four nodes, and show there existence of periodic
144078    solutions in it with a remarkably wide interval of periodicity, H-0(2)
144079    similar to 16.28. By using a proper first-order derivative (1701))
144080    formula to make this five-step method to have two advantages (a) a very
144081    high accuracy since the local truncation error (LTE) of both the main
144082    structure and the FOD formula are the same as O(h(14)); (b) a high
144083    efficiency because it avoids solving a polynomial equation with
144084    degree-nine by Picard iterative. By applying the new method to the
144085    well-known problem, the nonlinear Duffing's equation without damping,
144086    we can show that our numerical solution is four to five orders higher
144087    than the one by the previous Obrechkoff two-step method and it takes
144088    only 25% of CPU time required by the previous method to fulfil the same
144089    task. By using the new method, a better "exact" solution is found by
144090    fitting, whose error tolerance is below 5 X 10(-15), than the one
144091    widely used in the lectures, whose error tolerance is below 10(-11).
144092 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
144093 RP Zhao, DY, Shanghai Univ, Dept Phys, 99 ShangDa Rd, Shanghai 200444,
144094    Peoples R China.
144095 CR ANANTHAKRISHNAI.U, 1982, J COMPUT APPL MATH, V8, P101
144096    ANANTHAKRISHNAI.U, 1987, MATH COMPUT, V49, P553
144097    CHAWLA MM, 1987, J COMPUT APPL MATH, V15, P213
144098    CHAWLA MM, 1996, NEURAL PARALLEL SCI, V4, P505
144099    GUCKENHEIMER J, 1983, NONLINEAR OSCILLATIO
144100    HAIRER E, 1979, NUMER MATH, V32, P373
144101    JAIN MK, 1988, BIT, V28, P302
144102    LAMBERT JD, 1976, J INST MATH APPL, V18, P189
144103    MICKENS RE, 1981, INTRO NONLINEAR OSCI
144104    NETA B, 2003, COMPUT MATH APPL, V45, P383
144105    SIMOS TE, 1993, P ROY SOC LOND A MAT, V6, P283
144106    VANDOOREN R, 1974, J COMPUT PHYS, V16, P186
144107 NR 12
144108 TC 0
144109 SN 0129-1831
144110 J9 INT J MOD PHYS C
144111 JI Int. J. Mod. Phys. C
144112 PD JUL
144113 PY 2005
144114 VL 16
144115 IS 7
144116 BP 1027
144117 EP 1041
144118 PG 15
144119 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
144120 GA 965CC
144121 UT ISI:000231926600003
144122 ER
144123 
144124 PT J
144125 AU Fung, RYK
144126    Chen, YZ
144127    Chen, L
144128    Tang, JF
144129 TI A fuzzy expected value-based goal programing model for product planning
144130    using quality function deployment
144131 SO ENGINEERING OPTIMIZATION
144132 DT Article
144133 DE product planning; quality function deployment; fuzzy linear regression;
144134    least squares regression
144135 ID CUSTOMER REQUIREMENTS; QFD; COEFFICIENTS
144136 AB Product planning is one of four important processes in new product
144137    development using quality function deployment (QFD), which is a widely
144138    used customer-driven approach. In this article, a hierarchical
144139    framework for product planning using QFD is developed. To tackle the
144140    fuzziness in functional relationships between customer requirements and
144141    engineering characteristics (ECs) in product planning, the least
144142    squares method is incorporated into fuzzy regression to investigate
144143    those functional relationships, by which a more central tendency can be
144144    obtained. Furthermore, a fuzzy expected value-based goal programming
144145    model is proposed to specify target values of ECs. Different from some
144146    fuzzy product planning approaches for QFD, the proposed programming
144147    model has unambiguous interpretations. An illustrated example of a
144148    quality improvement problem of emulsification dynamite-packing machine
144149    design is given to demonstrate the application and performance of the
144150    proposed approach.
144151 C1 City Univ Hong Kong, Dept Mfg Engn & Engn Management, Kong Loon, Hong Kong, Peoples R China.
144152    Shanghai Univ, Sch Mechatron Engn & Automat, Dept Precis Mech Engn, Shanghai 200072, Peoples R China.
144153    NE Univ Technol, Sch Informat Sci & Engn, Key Lab Proc Ind Automat MOE, Shenyang 110004, Liaoning, Peoples R China.
144154 RP Chen, YZ, City Univ Hong Kong, Dept Mfg Engn & Engn Management, Tat
144155    Chee Ave, Kong Loon, Hong Kong, Peoples R China.
144156 EM zhycyz@yahoo.com.cn
144157 CR AKAO Y, 1990, QUALITY FUNCTION DEP
144158    ARMACOST RL, 1994, IIE TRANS, V26, P72
144159    BAI H, 2003, INT J PROD RES, V41, P3861
144160    CHEN Y, 2004, INT J PROD RES, V42, P1009
144161    DOBOIS D, 1987, FUZZY SET SYST, V24, P279
144162    FUNG RYK, 1998, INT J PROD RES, V36, P13
144163    HAJIME Y, 2002, INT J PROD RES, V40, P1031
144164    HAUSER JR, 1988, HARVARD BUS REV, V66, P63
144165    ISHIBUCHI H, 2001, FUZZY SET SYST, V119, P273
144166    KIM KJ, 2000, EUR J OPER RES, V121, P504
144167    LIU BD, 2002, IEEE T FUZZY SYST, V10, P445
144168    PARK T, 1998, J OPERATIONS MANAGEM, V16, P469
144169    TANG JF, 2002, COMPUT OPER RES, V29, P1447
144170    WASSERMAN GS, 1993, IIE TRANS, V25, P59
144171    YAGER RR, 2002, FUZZY OPTIMIZATION D, V1, P13
144172    YEN KK, 1999, FUZZY SET SYST, V106, P167
144173    ZHOU M, 1998, COMPUT IND ENG, V35, P237
144174 NR 17
144175 TC 0
144176 SN 0305-215X
144177 J9 ENG OPTIMIZ
144178 JI Eng. Optimiz.
144179 PD SEP
144180 PY 2005
144181 VL 37
144182 IS 6
144183 BP 633
144184 EP 647
144185 PG 15
144186 SC Engineering, Multidisciplinary; Operations Research & Management Science
144187 GA 965WZ
144188 UT ISI:000231982900005
144189 ER
144190 
144191 PT J
144192 AU Hou, JM
144193    Tian, LJ
144194    Ge, ML
144195 TI Two-qubit quantum logic gate in molecular magnets
144196 SO CHINESE PHYSICS LETTERS
144197 DT Article
144198 ID COMPUTATION; DYNAMICS; DIMER
144199 AB We propose a scheme to realize a controlled-NOT quantum logic gate in a
144200    dimer of exchange coupled single-molecule magnets, [Mn-4](2). We chosen
144201    the ground state and the three low-lying excited states of a dimer in a
144202    finite longitudinal magnetic field as the quantum computing bases and
144203    introduced a pulsed transverse magnetic field with a special frequency.
144204    The pulsed transverse magnetic field induces the transitions between
144205    the quantum computing bases so as to realize a controlled-NOT quantum
144206    logic gate. The transition rates between a pair of the four quantum
144207    computing bases and between the quantum computing bases and excited
144208    states are evaluated and analysed.
144209 C1 SE Univ, Dept Phys, Nanjing 210096, Peoples R China.
144210    Nankai Univ, Nankai Inst Math, Div Theoret Phys, Tianjin 300071, Peoples R China.
144211    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
144212 RP Hou, JM, SE Univ, Dept Phys, Nanjing 210096, Peoples R China.
144213 EM jmhou@eyou.com
144214 CR AVERIN DV, 1998, SOLID STATE COMMUN, V105, P659
144215    BARENCO A, 1995, PHYS REV A, V52, P3457
144216    BARENCO A, 1995, PHYS REV LETT, V74, P4083
144217    BERMAN GP, 1997, PHYSICA B, V240, P61
144218    CIRAC JI, 1995, PHYS REV LETT, V74, P4901
144219    CORY DG, 1997, P NATL ACAD SCI USA, V94, P1634
144220    GERSHENFELD NA, 1996, PHYSCOMP96 P 4 WORKS, P136
144221    GROVER LK, 1997, PHYS REV LETT, V79, P325
144222    HILL S, 2003, SCIENCE, V302, P1015
144223    LEUENBERGER MN, 2001, NATURE, V410, P789
144224    LOSS D, 1998, PHYS REV A, V57, P120
144225    MAKHLIN Y, 2001, REV MOD PHYS, V73, P357
144226    MEIER F, 2003, PHYS REV B, V68
144227    MEIER F, 2003, PHYS REV LETT, V90
144228    SHOR PW, 1994, P 35 ANN S FDN COMP, P124
144229    TIRON R, 2003, PHYS REV LETT, V91
144230    WERNSDORFER W, 2002, NATURE, V416, P406
144231 NR 17
144232 TC 1
144233 SN 0256-307X
144234 J9 CHIN PHYS LETT
144235 JI Chin. Phys. Lett.
144236 PD SEP
144237 PY 2005
144238 VL 22
144239 IS 9
144240 BP 2147
144241 EP 2150
144242 PG 4
144243 SC Physics, Multidisciplinary
144244 GA 963PR
144245 UT ISI:000231816800002
144246 ER
144247 
144248 PT J
144249 AU Wang, YP
144250 TI Well-posedness of initial value problem for Euler equations of inviscid
144251    compressible adiabatic fluid
144252 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
144253 DT Article
144254 DE Euler equation; initial or boundary value problem; well-posedness;
144255    stratification theory
144256 AB The well-posedness of the initial value problem of the Euler equations
144257    was mainly discussed based on the stratification theory, and the
144258    necessary and sufficient conditions of well-posedness are presented for
144259    some representative initial or boundary value problem, thus the
144260    structure of solution space for local (exact) solution of the Euler
144261    equations is determined. Moreover the computation formulas of the
144262    analytical solution of the well-posed problem are also given.
144263 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
144264 RP Wang, YP, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
144265    200072, Peoples R China.
144266 EM eduwyp@eyou.com
144267 CR LANDAU L, 1971, MECANIQUE FLUIDES, P10
144268    LI DQ, 1997, PHYS PARTIAL DIFFERE, V1, P96
144269    SHEN Z, 2003, APPL MATH MECH-ENGL, V24, P545
144270    SHIH WH, 1992, SOLUTIONS ANAL QUELQ
144271    SHIH WH, 2001, FDN STRATIFICATION T
144272 NR 5
144273 TC 0
144274 SN 0253-4827
144275 J9 APPL MATH MECH-ENGL ED
144276 JI Appl. Math. Mech.-Engl. Ed.
144277 PD JUL
144278 PY 2005
144279 VL 26
144280 IS 7
144281 BP 865
144282 EP 871
144283 PG 7
144284 SC Mathematics, Applied; Mechanics
144285 GA 964GH
144286 UT ISI:000231866600006
144287 ER
144288 
144289 PT J
144290 AU Qian, SQ
144291    Wu, JS
144292 TI Sputter-deposited TiNiPd alloy films on Si wafer
144293 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
144294 DT Article
144295 DE TiNiPd; thin film; sputter deposition; crystallization; martensitic
144296    transformation; fracture morphology; nano-hardness
144297 ID MARTENSITIC-TRANSFORMATION; TI50NI50-XPDX ALLOYS; THIN-FILMS
144298 AB Amorphous thin films of Ti51.78Ni22.24Pd25.98 alloys were deposited
144299    onto n-type(100) Si wafer by radio frequency magnetron sputtering. From
144300    X-ray diffraction patterns, the crystallization temperature of thin
144301    film on Si wafer is found to be higher than 553.1 degrees C. The film
144302    heated at 750 degrees C for 1 h quite crystallizes along with some
144303    precipitation, but at 550 C it partially crystallizes. With heating for
144304    50 h at 450 degrees C before crystallization, the film will contain
144305    more B19' phases after succeeding heat-treatment at 650 degrees C, but
144306    less B19' phases after 750 degrees C treatment are found. The fracture
144307    morphology of the film heated at 550 degrees C shows a flat pattern
144308    with more steps, whereas that of the film preparing at 750 degrees C
144309    displays a well-defined fine granulation structure. 550 degrees
144310    C-heated film is harder than as-deposited film because of good cohesion
144311    between film and Si wafer.
144312 C1 Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China.
144313    Shanghai Univ Sci & Technol, Sch Mat Engn, Shanghai 200336, Peoples R China.
144314 RP Qian, SQ, Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030,
144315    Peoples R China.
144316 EM qsqli@online.sh.cn
144317 CR CHU JP, 2000, MAT SCI ENG A-STRUCT, V277, P11
144318    GADIEU F, 1975, IEEE T MAGN, V11, P227
144319    KOHL M, 1999, MAT SCI ENG A-STRUCT, V273, P784
144320    LO YC, 1990, SCRIPTA METALL MATER, V24, P1571
144321    LO YC, 1992, SCRIPTA METALL MATER, V27, P1097
144322    MATHEWS S, 1999, PHIL MAG LETT, V79, P265
144323    MATVEEVA NM, 1982, J PHYS-PARIS, V43, P249
144324    MIYAZAKI S, 1999, MAT SCI ENG A-STRUCT, V273, P106
144325    OHTA A, 2000, SENSOR ACTUAT A-PHYS, V86, P165
144326    OTSUKA K, 1999, INTERMETALLICS, V7, P511
144327    QUANDT E, 1996, SENSOR ACTUAT A-PHYS, V53, P434
144328    SAWAGUCHI T, 2002, MAT SCI ENG A-STRUCT, V332, P47
144329    TIAN QC, 2001, ACTA METALL SIN, V6, P658
144330    TIAN QC, 2001, Z METAKD, V5, P436
144331    WEN SL, 2002, J CHINESE ELECT MICR, V3, P294
144332    WU TB, 2001, CHINESE J NONFERROUS, V11, P272
144333 NR 16
144334 TC 0
144335 SN 1003-6326
144336 J9 TRANS NONFERROUS METAL SOC CH
144337 JI Trans. Nonferrous Met. Soc. China
144338 PD AUG
144339 PY 2005
144340 VL 15
144341 IS 4
144342 BP 868
144343 EP 872
144344 PG 5
144345 SC Metallurgy & Metallurgical Engineering
144346 GA 962GP
144347 UT ISI:000231719300028
144348 ER
144349 
144350 PT J
144351 AU Gao, C
144352    Zhou, GY
144353    Xu, Y
144354    Hua, TC
144355 TI Glass transition and enthalpy relaxation of ethylene glycol and its
144356    aqueous solution
144357 SO THERMOCHIMICA ACTA
144358 DT Article
144359 DE enthalpy relaxation; glass transition; ethylene glycol; differential
144360    scanning calorimetry; cryomicroscopy
144361 ID DIFFERENTIAL SCANNING CALORIMETRY; DIMETHYL-SULFOXIDE; SUCROSE
144362    SOLUTIONS; FROZEN SUCROSE; ICE CRYSTALS; GLYCEROL; VITRIFICATION;
144363    POLYALCOHOLS; PHASE; DSC
144364 AB Differential scanning calorimetry (DSC) and cryomicroscopy were
144365    employed to investigate the glass transition and enthalpy relaxation
144366    behaviors of ethylene glycol (EG)and its aqueous solution (50% EG) with
144367    different crystallization percent. Isothermal crystallization method
144368    was used in devitrification region to get different crystallinity after
144369    samples quenched below glass transition temperature. The DSC
144370    thermograms upon warming showed that the pure EG has a single glass
144371    transition, while the 50% EG solution has two if the solution
144372    crystallized partially. It is believed that the lower temperature
144373    transition represents the glass transition of bulk amorphous phase of
144374    EG aqueous solution glass state, while the higher one is related to ice
144375    inclusions, whose mobility is restricted by ice crystal.
144376    Cryomicroscopic observation indicated that the EG crystal has regular
144377    shape while the ice crystal in 50% EG aqueous solution glass matrix has
144378    no regular surface. Isothermal annealing experiments at temperatures
144379    lower than T-g were also conducted on these amorphous samples in DSC,
144380    and the results showed that both the two amorphous phases presented in
144381    50% EG experience enthalpy relaxation. The relaxation process of
144382    restricted amorphous phase is more sensitive to annealing temperature.
144383    (C) 2005 Elsevier B.V. All rights reserved.
144384 C1 Zhongyuan Inst Technol, Dept Energy & Environm Engn, Zhengzhou 450007, Peoples R China.
144385    Shanghai Univ Sci & Technol, Inst Cryomed & Food Refrigerat, Shanghai 200093, Peoples R China.
144386 RP Gao, C, Zhongyuan Inst Technol, Dept Energy & Environm Engn, Zhengzhou
144387    450007, Peoples R China.
144388 EM gao_cai@hotmail.com
144389 CR ABLETT S, 1992, J CHEM SOC FARADAY T, V88, P789
144390    ALBEROLA N, 1983, J PHYS CHEM-US, V87, P4264
144391    ALVES NM, 2002, POLYMER, V43, P4111
144392    ANGELL CA, 1982, J PHYS CHEM-US, V86, P3845
144393    BRONSHTEYN VL, 1995, CRYOBIOLOGY, V32, P1
144394    CHANG ZH, 1991, CRYOBIOLOGY, V28, P87
144395    CLAUDY P, 1997, THERMOCHIM ACTA, V293, P1
144396    FAHY GM, 1987, CRYOBIOLOGY, V24, P196
144397    GAO C, 2004, J PHYS CHEM SIN, V20, P123
144398    GOFF HD, 2003, THERMOCHIM ACTA, V399, P43
144399    HANCOCK BC, 2001, THERMOCHIM ACTA, V380, P95
144400    IZZARD MJ, 1996, J THERM ANAL CALORIM, V47, P1407
144401    LEMESTE ML, 1980, CRYOLETT, V9, P21
144402    LUYET B, 1968, BIODYNAMICA, V10, P1167
144403    MACFARLANE DR, 1987, CRYOBIOLOGY, V24, P181
144404    MEHL PM, 1996, THERMOCHIM ACTA, V272, P201
144405    MEHL PM, 1996, THERMOCHIM ACTA, V284, P191
144406    MURTHY SSN, 1997, J PHYS CHEM B, V101, P6043
144407    MURTHY SSN, 1998, CRYOBIOLOGY, V36, P84
144408    PIKAL MJ, 1999, FREEZE DRYING LYOPHI, P161
144409    PYNE A, 2003, THERMOCHIM ACTA, V405, P225
144410    RASMUSSEN PH, 1997, THERMOCHIM ACTA, V303, P23
144411    SHAW JM, 1997, CRYOBIOLOGY, V35, P219
144412    TAKEDA K, 1998, J NON-CRYST SOLIDS, V231, P273
144413    THOM F, 1986, CRYOLETT, V7, P311
144414 NR 25
144415 TC 0
144416 SN 0040-6031
144417 J9 THERMOCHIM ACTA
144418 JI Thermochim. Acta
144419 PD SEP 1
144420 PY 2005
144421 VL 435
144422 IS 1
144423 BP 38
144424 EP 43
144425 PG 6
144426 SC Chemistry, Analytical; Chemistry, Physical
144427 GA 963DN
144428 UT ISI:000231783600007
144429 ER
144430 
144431 PT J
144432 AU Yu, YX
144433    Wen, S
144434    Feng, YL
144435    Bi, XH
144436    Wang, XM
144437    Sheng, GY
144438    Fu, JM
144439 TI A novel method for the stable carbon isotope analysis of atmospheric
144440    formaldehyde by means of cysteamine derivatization
144441 SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY
144442 DT Letter
144443 ID NONMETHANE HYDROCARBONS; ORGANIC-COMPOUNDS; AIR; EXPOSURE; CHINA;
144444    COLLECTION; GUANGZHOU; EMISSIONS; LEUKEMIA; CANCER
144445 C1 Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Organ Geochem, Guangdong Key Lab Environm Resources Utilizat & P, Ghangzhou 510640, Peoples R China.
144446    Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072, Peoples R China.
144447 RP Fu, JM, Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Organ
144448    Geochem, Guangdong Key Lab Environm Resources Utilizat & P, Ghangzhou
144449    510640, Peoples R China.
144450 EM fujm@gig.ac.cn
144451 CR *US EPA, 1999, COMP METH 11A
144452    ABRAJANO TA, 1994, ORG GEOCHEM, V21, P611
144453    ANDRADE JB, 1992, ATMOS ENVIRON A-GEN, V26, P819
144454    BLAIR A, 1990, AM J IND MED, V17, P683
144455    BLAIR A, 1990, SCAND J WORK ENV HEA, V16, P381
144456    COLE P, 2004, REGUL TOXICOL PHARM, V40, P107
144457    COLLINS JJ, 2004, REGUL TOXICOL PHARM, V40, P81
144458    CONNY JM, 1996, ATMOS ENVIRON, V30, P621
144459    ERDEM N, 1996, TOXICOL LETT, V88, P74
144460    FENG YL, 2004, ATMOS ENVIRON, V38, P103
144461    FENG YL, 2005, ATMOS ENVIRON, V39, P1789
144462    GOLDMAN FH, 1943, IND ENG CHEM, V15, P377
144463    GRANBY K, 1997, ATMOS ENVIRON, V31, P1403
144464    GRIMALDI F, 1998, TOXICOL LETT S, V95, P222
144465    GRUTTER M, 2005, ATMOS ENVIRON, V39, P1027
144466    HAYASHI T, 1986, J ASSOC OFF ANA CHEM, V69, P101
144467    HUANG TC, 1998, J AGR FOOD CHEM, V46, P224
144468    JOHNSON BJ, 1990, ENVIRON SCI TECHNOL, V24, P898
144469    MELANDER L, 1980, REACTION RATES ISOTO
144470    MIYAKE T, 1993, J AGR FOOD CHEM, V41, P1968
144471    RAYNER AC, 1961, ANAL CHEM, V33, P627
144472    RIELEY G, 1994, ANALYST, V119, P915
144473    RUDOLPH J, 2002, ATMOS ENVIRON, V36, P1173
144474    SAITO T, 2002, J GEOPHYS RES, V107
144475    TANNER RL, 1996, J GEOPHYS RES-ATMOS, V101, P28961
144476    TODA K, 2005, ANAL CHIM ACTA, V531, P41
144477    WEN S, 2004, RAPID COMMUN MASS SP, V18, P2669
144478    WEN S, 2005, IN PRESS ENV SCI TEC, V39
144479    YASUHARA A, 1989, J ASSOC OFF ANA CHEM, V72, P899
144480    ZHANG JF, 1999, ENVIRON SCI TECHNOL, V33, P2311
144481    ZHONG WG, 2004, MUTAT RES-GEN TOX EN, V563, P13
144482    ZWANK L, 2003, ANAL CHEM, V75, P5575
144483 NR 32
144484 TC 1
144485 SN 0951-4198
144486 J9 RAPID COMMUN MASS SPECTROM
144487 JI Rapid Commun. Mass Spectrom.
144488 PY 2005
144489 VL 19
144490 IS 17
144491 BP 2469
144492 EP 2472
144493 PG 4
144494 SC Chemistry, Analytical; Spectroscopy
144495 GA 961IA
144496 UT ISI:000231654100014
144497 ER
144498 
144499 PT J
144500 AU Wang, Q
144501    Pelletier, JM
144502    Lu, J
144503    Dong, YD
144504 TI Study of internal friction behavior in a Zr base bulk amorphous alloy
144505    around the glass transition
144506 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
144507    MICROSTRUCTURE AND PROCESSING
144508 DT Article
144509 DE bulk metallic glass; internal friction; glass transition
144510 ID METALLIC-GLASS; MECHANICAL SPECTROSCOPY; STRUCTURAL RELAXATION;
144511    FREQUENCY-DEPENDENCE; SUPERCOOLED LIQUIDS; COOLING RATES; POLYMERS;
144512    MODULUS; MODEL; MICROSTRUCTURE
144513 AB In the present work, mechanical spectroscopy measurements have been
144514    performed over broad frequency and temperature regions on a bulk
144515    Zr55Cu25Ni5Al10Nb5 amorphous alloy. This alloy shows a distinct
144516    calorimetric glass transition and a high thermal stability with respect
144517    to crystallization. Dynamic mechanical analysis clearly demonstrates a
144518    main relaxation related to the glass transition, T-g. Frequency
144519    dependence of internal friction at temperatures in the vicinity of the
144520    glass transition temperature can be well described using a physical
144521    model, which can characterize the mechanical response of disordered
144522    condensed materials and especially the characteristic main relaxation
144523    time tau(mol). As a consequence, activation parameters for the dynamic
144524    glass transition of the amorphous alloy are determined through
144525    isothermal measurements of internal friction. Furthermore, the
144526    temperature dependence of the characteristic relaxation time is
144527    theoretically confirmed. There is also a good agreement between the
144528    well-known fragility parameter, m, and the parameter a of the physical
144529    model which characterizes the degree of deviation from the Arrhenius
144530    law of the tau(mol). (c) 2005 Elsevier B.V. All rights reserved.
144531 C1 Inst Natl Sci Appl, GEMPPM, F-69621 Villeurbanne, France.
144532    Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China.
144533    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
144534 RP Pelletier, JM, Inst Natl Sci Appl, GEMPPM, Bat B Pascal, F-69621
144535    Villeurbanne, France.
144536 EM jean-marc.pelletier@insa-lyon.fr
144537 CR ABOKI TAM, 2004, MAT SCI ENG A-STRUCT, V370, P330
144538    ADAM G, 1965, J CHEM PHYS, V43, P139
144539    ARGON AS, 1977, ACTA METALL, V25, P407
144540    BIRGE NO, 1985, PHYS REV LETT, V54, P2674
144541    BOBROV OP, 2003, SCRIPTA MATER, V49, P255
144542    BOHMER R, 1992, PHYS REV B, V45, P10091
144543    BOHMER R, 1993, J CHEM PHYS, V99, P4201
144544    BUSH R, 1998, ACTA MAT, V46, P4725
144545    BUSH R, 1998, APPL PHYS LETT, V72, P2695
144546    CAVAILLE JY, 1989, PHYS REV B, V39, P2411
144547    CAVAILLE JY, 1991, J NON-CRYST SOLIDS, V131, P935
144548    COHEN MH, 1959, J CHEM PHYS, V31, P1164
144549    DEBENEDETTI PG, 2001, NATURE, V410, P259
144550    DOEN B, 2000, J ALLOY COMPD, V310, P36
144551    DONZEL L, 1997, PHILOS MAG, V76, P953
144552    ETIENNE S, 1982, REV SCI INSTRUM, V53, P1261
144553    GADAUD P, 2003, J NON-CRYST SOLIDS, V316, P146
144554    GAUTHIER C, 2000, J NON-CRYST SOLIDS, V274, P181
144555    GOETZE W, 1992, REP PROG PHYS, V55
144556    GOETZE W, 1999, J PHYS-CONDENS MAT, V1, P11
144557    GRANATO AV, 1992, PHYS REV LETT, V68, P974
144558    GRANATO AV, 1994, J PHYS CHEM SOLIDS, V55, P931
144559    GREST GS, 1980, PHYS REV B, V21, P4113
144560    HIKI Y, 2003, J ALLOY COMPD, V35, P42
144561    HIKI Y, 2004, MAT SCI ENG A-STRUCT, V370, P302
144562    HU X, 2000, PHYS REV B, V62, P3169
144563    INOUE A, 1995, MATER T JIM, V36, P866
144564    JOHNSON WL, 1996, MATER SCI FORUM, V225, P35
144565    LEE ML, 2002, INTERMETALLICS, V10, P1061
144566    LEE ML, 2003, PHYS REV B, V67
144567    MENON N, 1995, PHYS REV LETT, V74, P1230
144568    MEZARD M, 1999, PHYS REV LETT, V82, P747
144569    MORITO N, 1984, ACTA METALL, V32, P603
144570    MYUNG WN, 1992, J NON-CRYST SOLIDS, V150, P406
144571    MYUNG WN, 1995, J NONCRYST SOLIDS, V192, P401
144572    NGAI KL, 1988, J CHEM PHYS, V88, P5086
144573    NGAI KL, 1998, PHYS REV E, V57, P7346
144574    PALMER RG, 1984, PHYS REV LETT, V53, P958
144575    PARISI G, 2000, J PHYS CONDENS MATT, V12, P6655
144576    PEKER A, 1993, APPL PHYS LETT, V63, P2342
144577    PELLETIER JM, 2000, J NON-CRYST SOLIDS, V274, P301
144578    PELLETIER JM, 2002, MAT SCI ENG A-STRUCT, V336, P190
144579    PERERA DN, 1999, J PHYS D APPL PHYS, V32, P2933
144580    PERERA DN, 1999, J PHYS-CONDENS MAT, V11, P3807
144581    PEREZ J, 1988, POLYM SCI SER B, V40, P102
144582    PEREZ J, 1990, J CHIM PHYS PCB, V87, P1923
144583    RAJAGOPAL AK, 1991, J NON-CRYST SOLIDS, V131, P282
144584    RAMBOUSKY R, 1996, Z PHYS B CON MAT, V99, P387
144585    RENDELL RW, 1987, MACROMOLECULES, V20, P2250
144586    SCARFONE R, 2000, J ALLOY COMPD, V310, P229
144587    SCHALLER R, 2001, MAT SCI FORUM, V366
144588    SCHROTER K, 1998, EUR PHYS J B, V5, P1
144589    SCHROTER K, 2002, J NON-CRYST SOLIDS, V307, P270
144590    SUH D, 2002, ACTA MAT, V50, P37
144591    TSANG KY, 1997, PHYS REV E, V54, P3067
144592    TSANG KY, 1997, PHYS REV E, V56, P17
144593    TURNBULL D, 1970, J CHEM PHYS, V52, P3038
144594    WANG Q, 2004, MAT SCI ENG A-STRUCT, V379, P197
144595    YUE LP, 1988, J NONCRYST SOLIDS, V105, P33
144596    ZHANG B, 2002, J PHYS-CONDENS MAT, V14, P7461
144597    ZHANG JX, 1989, J PHYS-CONDENS MAT, V1, P9717
144598    ZHANG T, 1991, MATER T JIM, V32, P1005
144599 NR 62
144600 TC 0
144601 SN 0921-5093
144602 J9 MATER SCI ENG A-STRUCT MATER
144603 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
144604 PD AUG 25
144605 PY 2005
144606 VL 403
144607 IS 1-2
144608 BP 328
144609 EP 333
144610 PG 6
144611 SC Materials Science, Multidisciplinary
144612 GA 961XK
144613 UT ISI:000231694900041
144614 ER
144615 
144616 PT J
144617 AU Ekoko, BG
144618    Zhou, RM
144619    Xin, LH
144620    Olukunle, FA
144621    Lobo, KK
144622 TI Synthesis of nanocrystalline zinc sulfide in a non-aqueous system by
144623    gamma-irradiation
144624 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
144625 DT Article
144626 ID ZNS NANOPARTICLES
144627 AB Gamma-irradiation has been applied to synthesize nanocrystalline ZnS
144628    with average size of 38 nm in a non-aqueous system at room temperature
144629    by utilizing homogeneous release of S2- ions from the decomposition of
144630    carbon disulfide under gamma-irradiation. The structure, morphology,
144631    size and optical properties have been studied by X-ray powder
144632    diffraction (XRD), transmission electron microscopy (TEM),
144633    ultraviolet-visible spectrometer (UV-visible). The product containing
144634    zinc ions and the sulfur source has been characterized as beta-ZnS,
144635    sphalerite phase, with spherical morphology and with a diameter average
144636    size of about 38 nm.The possible mechanism of formation of the product
144637    is suggested in accord with the experiment.
144638 C1 Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072, Peoples R China.
144639    Univ Kinshasa, Fac Sci, Dept Chim, Unite Chim Nucl & Radiochim, Kinshasa, Zaire.
144640 RP Ekoko, BG, Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072,
144641    Peoples R China.
144642 EM ekokob@yahoo.com
144643 CR CELIKKAYA A, 1990, J AM CERAM SOC, V73, P2360
144644    FENG Q, 1995, ORGANOMETALLICS, V14, P297
144645    GARLICK GFJ, 1949, J OPT SOC AM, V39, P935
144646    KLUG H, 1962, XRAY DIFFRACTION PRO, P125
144647    LENGGORO IW, 2000, J AEROSOL SCI, V31, P121
144648    LIVERI VT, 1999, APPL PHYS A-MATER, V69, P369
144649    NAKAOKA Y, 1997, LANGMUIR, V13, P708
144650    NORRIS DJ, 1997, MOL ELECT, P281
144651    ONE YA, 1995, ELECTROLUMINESCENT D, P3
144652    REBER JF, 1984, J PHYS CHEM-US, V88, P5903
144653    SOOKLAL K, 1996, J PHYS CHEM-US, V100, P4551
144654    WACHTMAN JB, 1993, CHARACTERIZATION MAT, P314
144655    WOODS RJ, 1994, APPL RAD CHEM RAD PR
144656    XU JF, 1998, APPL PHYS A-MATER, V66, P639
144657    YU SH, 1998, CHEM MATER, V10, P2309
144658    YU SH, 2002, ADV MATER, V14, P296
144659    ZHU Y, 2002, J APPL PHYS, V92, P6828
144660 NR 17
144661 TC 0
144662 SN 0236-5731
144663 J9 J RADIOANAL NUCL CHEM
144664 JI J. Radioanal. Nucl. Chem.
144665 PD JUN
144666 PY 2005
144667 VL 265
144668 IS 1
144669 BP 3
144670 EP 6
144671 PG 4
144672 SC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science
144673    & Technology
144674 GA 962VF
144675 UT ISI:000231760400001
144676 ER
144677 
144678 PT J
144679 AU Guo, BY
144680    Zhang, XY
144681 TI A new generalized Laguerre spectral approximation and its applications
144682 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
144683 DT Article
144684 DE new generalized Laguerre approximation; mixed spherical
144685    harmonic-generalized Laguerre spectral method
144686 ID PARTIAL-DIFFERENTIAL-EQUATIONS; PSEUDOSPECTRAL METHOD; UNBOUNDED-DOMAINS
144687 AB A new family of generalized Laguerre polynomials is introduced. Various
144688    orthogonal projections are investigated. Some approximation results are
144689    established. As an example of their important applications, the mixed
144690    spherical harmonic-generalized Laguerre approximation is developed. A
144691    mixed spectral scheme is proposed for a three-dimensional model
144692    problem. Its convergence is proved. Numerical results demonstrate the
144693    high accuracy of this new spectral method. (c) 2005 Elsevier B.V. All
144694    rights reserved.
144695 C1 Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China.
144696    Shanghai Univ, Div Computat Sci, E Inst, Shanghai, Peoples R China.
144697    Shanghai Maritime Univ, Dept Math, Shanghai 200135, Peoples R China.
144698 RP Guo, BY, Shanghai Normal Univ, Dept Math, Guilan Rd,100, Shanghai
144699    200234, Peoples R China.
144700 EM byguo@shnu.edu.cn
144701 CR BERGH J, 1976, INTERPOLATION SPACES
144702    COURANT R, 1953, METHODS MATH PHYSICS, V1
144703    FUNARO D, 1991, MATH COMPUT, V57, P597
144704    FUNARO D, 1992, POLYNOMIAL APPROXIMA
144705    GUO BY, 1995, MATH COMPUT, V64, P1067
144706    GUO BY, 1999, MATH COMPUT, V68, P1067
144707    GUO BY, 2000, ESAIM-MATH MODEL NUM, V34, P859
144708    GUO BY, 2000, NUMER MATH, V86, P635
144709    GUO BY, 2003, MATH COMPUT, V73, P95
144710    GUO BY, 2005, J COMPUT MATH, V23, P113
144711    MADAY Y, 1985, RECH AEROSPATIALE, V6, P13
144712    MASTROIANNI G, 1997, IMA J NUMER ANAL, V17, P621
144713    SHEN J, 2000, SIAM J NUMER ANAL, V38, P1113
144714    XU CL, 2002, J COMPUT MATH, V20, P413
144715 NR 14
144716 TC 0
144717 SN 0377-0427
144718 J9 J COMPUT APPL MATH
144719 JI J. Comput. Appl. Math.
144720 PD DEC 15
144721 PY 2005
144722 VL 184
144723 IS 2
144724 BP 382
144725 EP 403
144726 PG 22
144727 SC Mathematics, Applied
144728 GA 962NB
144729 UT ISI:000231738400003
144730 ER
144731 
144732 PT J
144733 AU Zhu, BH
144734    Zhou, SP
144735    Yang, G
144736    Zha, GQ
144737 TI Method for finding multi-soliton solutions of the stimulated Raman
144738    scattering equations
144739 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
144740 DT Article
144741 DE stimulated Raman scattering; Darboux transformation; Backlund
144742    transformation; soliton
144743 AB In this paper, we show that the Darboux transformation can be used to
144744    derive iterated Backlund transformations and construct exact
144745    multi-soliton solutions of the stimulated Raman scattering equations by
144746    converting the system to the Ablowitz-Kaup-Newell-Segur system.
144747 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
144748 RP Zhu, BH, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200444,
144749    Peoples R China.
144750 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V31, P125
144751    CARMAN RL, 1969, PHYS REV LETT, V23, P1327
144752    CARMAN RL, 1970, PHYS REV           A, V2, P60
144753    CARMAN RL, 1972, PHYS REV A, V5, P341
144754    CHEN HH, 1974, PHYS REV LETT, V33, P925
144755    CHU FYF, 1975, PHYS REV A, V12, P2065
144756    CHU FYF, 1976, LECT NOTES MATH, V515
144757    CHU YF, 1975, PHYS REV A, V12, P2060
144758    DRUHL K, 1983, PHYS REV LETT, V51, P1171
144759    FEYNMAN RP, 1957, J APPL PHYS, V28, P49
144760    HAGENLOCKER EE, 1969, PHYS REV, V154, P226
144761    LANDSBERG G, 1928, NATURWISSENSCHAFTEN, V16, P557
144762    MACK ME, 1970, APPL PHYS LETT, V16, P209
144763    RAMAN CV, 1928, NATURE, V121, P501
144764    RANGWALA AA, 1985, PHYS LETT A, V112, P188
144765    WANG CS, 1969, PHYS REV, V182, P482
144766    WOODBURY EJ, 1962, P IRE, V50, P2367
144767 NR 17
144768 TC 0
144769 SN 0217-9792
144770 J9 INT J MOD PHYS B
144771 JI Int. J. Mod. Phys. B
144772 PD JUL 30
144773 PY 2005
144774 VL 19
144775 IS 19
144776 BP 3185
144777 EP 3191
144778 PG 7
144779 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
144780 GA 961BN
144781 UT ISI:000231637000006
144782 ER
144783 
144784 PT S
144785 AU Huang, SG
144786    Li, L
144787    Vleugels, J
144788    Van der Biest, O
144789 TI Thermodynamics and microstructure of Co-V8C7 alloy
144790 SO FUNCTIONALLY GRADED MATERIALS VIII
144791 SE MATERIALS SCIENCE FORUM
144792 DT Article
144793 DE Co-V8C7; Co-V-C; phase diagram; thermodynamics
144794 ID C SYSTEM
144795 AB The thermodynamic properties of the Co-V-C and CO-V8C7 systems are of
144796    interest for superfine cemented carbide applications. The model
144797    parameters for the Gibbs energy of the individual phases have been
144798    evaluated using the CALPHAD method by combining the recently optimized
144799    phase diagram information of the V-C, Co-C and CON system. The
144800    isothermal sections of ternary system Co-V-C at 1400 degrees C and 1600
144801    degrees C, as well as the vertical section Of Co-V8C7 system were
144802    extrapolated. The calculated results, especially the liquid forming
144803    temperature Of CO-V8C7 system was validated with experiments by using
144804    differential scanning calorimetry (DSC) analysis. Through controlling
144805    the carbon activity, various vertical sections with different carbon
144806    activity in Co-V8C7 system are presented.
144807 C1 Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Heverlee, Belgium.
144808    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
144809 RP Huang, SG, Katholieke Univ Leuven, Dept Met & Mat Engn, Kasteelpk
144810    Arenberg 44, B-3001 Heverlee, Belgium.
144811 EM Shuigen.Huang@mtm.kuleuven.ac.be
144812    Liling@public6.sta.net.cn
144813    Jozef.Vieugels@mtm.kuleuven.ac.be
144814    Omer.VanderBiest@mtm.kuleuven.ac.be
144815 CR CHO SA, 1997, INT J REFRACT MET H, V15, P205
144816    DINSDALE AT, 1991, CALPHAD, V15, P317
144817    GUILLERMET AF, 1987, Z METALLKD, V78, P700
144818    HILLSON S, 2000, INT J OSTEOARCHAEOL, V10, P1
144819    HUANG S, 2005, IN PRESS J ALLOY COM, V385, P114
144820    HUANG W, 1991, Z METALLKD, V82, P174
144821    MUGGIANU YM, 1975, J CHIMIE PHYSIQUE, V72, P83
144822    SUNDMAN B, 1985, CALPHAD, V9, P153
144823    UPADHYAYA A, 2001, MATER DESIGN, V22, P511
144824 NR 9
144825 TC 0
144826 SN 0255-5476
144827 J9 MATER SCI FORUM
144828 PY 2005
144829 VL 492-493
144830 BP 523
144831 EP 528
144832 PG 6
144833 GA BCR97
144834 UT ISI:000230986100085
144835 ER
144836 
144837 PT S
144838 AU Huang, SG
144839    Li, L
144840    Vleugels, J
144841    Wang, PL
144842    Van der Biest, O
144843 TI Influence of Al2O3 addition on the microstructure and mechanical
144844    properties of pressureless sintered Ce-TZP
144845 SO FUNCTIONALLY GRADED MATERIALS VIII
144846 SE MATERIALS SCIENCE FORUM
144847 DT Article
144848 DE Al2O3; Ce-TZP; mechanical properties; microstructures
144849 ID ZIRCONIA ALUMINA COMPOSITES; FRACTURE-TOUGHNESS; PHASE-DIAGRAM;
144850    CERAMICS; SYSTEM; TRANSFORMATION; STRENGTH; HARDNESS
144851 AB Mixtures of 12 mol% CeO2-stabilised ZrO2 with 5 to 20 wt % Al2O3 were
144852    prepared and densified through pressureless sintering in air at 1450 C
144853    for 1 to 4 h. The influence of the Al2O3 content and sintering time on
144854    the phase constitution, microstructure and mechanical properties of the
144855    as-sintered composites were investigated. Fully dense Ce-TZP/Al2O3
144856    ceramics with a good combination of hardness and fracture toughness can
144857    be obtained by pressureless sintering in air for only 1 h. The addition
144858    of Al2O3 to Ce-TZP improves the mechanical properties and suppresses
144859    ZrO2 grain growth. The average ZrO2 grain size increases with
144860    increasing sintering time and decreasing Al2O3 content. This leads to
144861    an increase in toughness. An excellent fracture toughness of 14.3
144862    MPam(1/2) in combination with a Vickers hardness of 9.14 GPa was
144863    obtained for 12 mol CeO2-TZP with 5 wt % Al2O3, sintered for 4 h.
144864 C1 Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Louvain, Belgium.
144865    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
144866    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
144867 RP Huang, SG, Katholieke Univ Leuven, Dept Met & Mat Engn, Kasteelpk
144868    Arenberg 44, B-3001 Louvain, Belgium.
144869 EM Shuigen.Huang@mtm.kuleuven.ac.be
144870    Liling@public6.sta.net.cn
144871    Jozef.Vleugels@mtm.kuleuven.ac.be
144872    Plwang@sunm.shcnc.ac.cn
144873    Omer.VanderBiest@mtm.kuleuven.ac.be
144874 CR ANSTIS GR, 1981, J AM CERAM SOC, V64, P533
144875    BLEIER A, 1992, J AM CERAM SOC, V75, P2619
144876    CAWLEY JD, 1994, MAT SCI TECHNOLOGY S, V11, P101
144877    CUTLER RA, 1991, J AM CERAM SOC, V74, P179
144878    HANNINK RHJ, 2000, J AM CERAM SOC, V83, P461
144879    HAUSSNER K, 1989, J AM CERAM SOC, V72, P1044
144880    HAUSSNER KH, 1989, J EUROP CERAM SOC, V5, P193
144881    HIRANO M, 1991, BRIT CERAM TRANS J, V90, P48
144882    HIRANO M, 1992, J MATER SCI, V27, P3511
144883    HUANG SG, 2004, J MATER SCI TECHNOL, V20, P75
144884    LI L, 1996, J MATER SCI TECHNOL, V12, P159
144885    MARSHALL DB, 1991, J AM CERAM SOC, V74, P2979
144886    SATO T, 1985, AM CERAM SOC BULL, V64, P1382
144887    TANI E, 1983, J AM CERAM SOC, V66, P506
144888    THEUNISSEN GSAM, 1992, J EUR CERAM SOC, V9, P251
144889    YUAN ZX, 2000, MATER LETT, V46, P249
144890 NR 16
144891 TC 0
144892 SN 0255-5476
144893 J9 MATER SCI FORUM
144894 PY 2005
144895 VL 492-493
144896 BP 783
144897 EP 788
144898 PG 6
144899 GA BCR97
144900 UT ISI:000230986100127
144901 ER
144902 
144903 PT J
144904 AU Liu, ZR
144905    Zhang, G
144906    Ma, ZJ
144907 TI Several results to realize generalized synchronization in dynamical
144908    systems
144909 SO DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES
144910    B-APPLICATIONS & ALGORITHMS
144911 DT Article
144912 ID CHAOTIC SYSTEMS; PHASE SYNCHRONIZATION; OSCILLATORS
144913 AB In this paper, generalized synchronization between two coupled
144914    dynamical systems is discussed. By constructing appropriately coupling
144915    term, some sufficient conditions for determining the generalized
144916    synchronization between coupled systems are derived. The effectiveness
144917    of the sufficient conditions is illustrated by two examples.
144918 C1 Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
144919 RP Liu, ZR, Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
144920 EM zrongliu@online.sh.cn
144921    zg_1970@sina.com
144922    mzj1234402@sohu.com
144923 CR BOCCALETTI S, 2002, PHYS REP, V366, P1
144924    HUNT BR, 1997, PHYS REV E, V55, P4029
144925    KOCAREV L, 1996, PHYS REV LETT, V76, P1816
144926    PECORA LM, 1990, PHYS REV LETT, V64, P821
144927    PECORA LM, 1995, PHYS REV E A, V52, P3420
144928    ROSA E, 1998, PHYS REV LETT, V80, P1642
144929    ROSENBLUM MG, 1996, PHYS REV LETT, V76, P1804
144930    ROSENBLUM MG, 1997, PHYS REV LETT, V78, P4193
144931    RULKOV NF, 1995, PHYS REV E, V51, P980
144932    SPARROW C, 1982, LORENZ EQUATIONS BIF
144933 NR 10
144934 TC 0
144935 SN 1492-8760
144936 J9 DYN CONT DISCR IMP SYST SER B
144937 JI Dyn. Contin. Discret. Impuls. Syst. Ser. B-Appl. Algorithms
144938 PY 2005
144939 VL 2
144940 SI Sp. Iss. SI
144941 BP 790
144942 EP 794
144943 PG 5
144944 SC Mathematics, Applied
144945 GA 962FQ
144946 UT ISI:000231716800062
144947 ER
144948 
144949 PT J
144950 AU Zhang, ZC
144951    Cui, DL
144952 TI Reduction of nitrogen on gallium phosphide nanoparticles
144953 SO CHINESE JOURNAL OF CHEMISTRY
144954 DT Article
144955 DE nitrogen; ammonia; gallium phosphide; nanoparticle
144956 ID NANOCRYSTALS
144957 AB Under mild ambient conditions gallium phosphide (Gal?) nanoparticles
144958    were employed to carry out the reduction of nitrogen. By using
144959    Nessler's reagent ammonia was detected in the slurry where the
144960    aggregated Gal? particles were suspended in water and bubbled by pure
144961    nitrogen. Dependence of the concentration of ammonia upon bubbling
144962    time, velocity of the flow of nitrogen, and dosage of Gal? particles
144963    was investigated. In comparison with the original Gal? nanoparticles,
144964    the Raman scattering of the Gal? particles undergoing the process of
144965    nitrogen fixation reveals that two sharp lines at 138 and 182 cm(-1),
144966    respectively, emerged from the broad continuum around 100200 cm(-1).
144967    These two lines might be assigned to the translational motions of
144968    ammonia adsorbed on the surface of the GaP particles. An assessment of
144969    the infrared spectra of the two GaP particles led to the conclusion
144970    that the environment of the two H2O molecules was not identical.
144971    Analysis of the electron spin resonance results showed that the
144972    structure defect, gallium self-interstitial, was not involved in the
144973    nitrogen fixation of the Gal? nanoparticles.
144974 C1 Shanghai Univ, Sch Mat Sci & Technol, Shanghai 200072, Peoples R China.
144975    Shandong Univ, Inst Crystal Mat, Jinan 250100, Shandong, Peoples R China.
144976 RP Zhang, ZC, Shanghai Univ, Sch Mat Sci & Technol, Shanghai 200072,
144977    Peoples R China.
144978 EM zhczhang@mail.shu.edu.cn
144979 CR CUI DL, 2000, PROG CRYST GROWTH CH, V40, P145
144980    CUI DL, 2001, SCI CHINA SER B, V44, P627
144981    DICKSON CR, 1978, J AM CHEM SOC, V100, P8007
144982    ILIEVA D, 2001, J NON-CRYST SOLIDS, V283, P195
144983    JENKINS TE, 1984, J RAMAN SPECTROSC, V15, P308
144984    LEE KM, 1988, MATERIALS RES SOC S, V104, P449
144985    LI Q, 1983, CHEM LETT, P321
144986    PASQUIER B, 1990, J RAMAN SPECTROSC, V21, P465
144987    SCHRAUZER GN, 1977, J AM CHEM SOC, V99, P7189
144988    WALDRON RD, 1953, J AM CHEM SOC, V75, P6079
144989    ZHANG ZC, 2003, CHIN J MAGN RESON, V20, P335
144990 NR 11
144991 TC 0
144992 SN 1001-604X
144993 J9 CHINESE J CHEM
144994 JI Chin. J. Chem.
144995 PD SEP
144996 PY 2005
144997 VL 23
144998 IS 9
144999 BP 1213
145000 EP 1217
145001 PG 5
145002 SC Chemistry, Multidisciplinary
145003 GA 962IC
145004 UT ISI:000231723700016
145005 ER
145006 
145007 PT S
145008 AU Shao, JL
145009    Xu, D
145010    Wang, LZ
145011    Wang, YF
145012 TI Bayesian neural networks for prediction of protein secondary structure
145013 SO ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS
145014 SE LECTURE NOTES IN ARTIFICIAL INTELLIGENCE
145015 DT Article
145016 AB A novel approach is developed for Protein Secondary Structure
145017    Prediction based on Bayesian Neural Networks (BNN). BNN usually
145018    outperforms the traditional Back-Propagation Neural Networks (BPNN) due
145019    to its excellent ability to control the complexity of the model.
145020    Results indicates that BNN has an average overall three-state accuracy
145021    Q(3) increase 3.65% and 4.01% on the 4-fold cross- vali dati on data
145022    sets and TEST data set respectively, comparing with the traditional
145023    BPNN. Meanwhile, a so-called cross-validation choice of starting values
145024    is presented, which will shorten the bum-in phase during the MCMC
145025    (Markov Chain Monte Carlo) simulation substantially.
145026 C1 China Jiliang Univ, Coll Life Sci, Hangzhou 310018, Zhejiang, Peoples R China.
145027    Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
145028 RP Shao, JL, China Jiliang Univ, Coll Life Sci, Hangzhou 310018, Zhejiang,
145029    Peoples R China.
145030 EM Colin_shao@cjlu.edu.cn
145031    xstone@citiz.net
145032    wlzcim@163.com
145033    yifei_wang@staff.shu.edu.cn
145034 CR BROOKS SP, 1998, STAT COMPUT, V8, P319
145035    BUNTINE WL, 1991, COMPLEX SYSTEMS, V5, P603
145036    CUFF JA, 1999, PROTEINS, V34, P508
145037    FRISHMAN D, 1995, PROTEINS, V23, P566
145038    GUO J, 2004, PROTEINS, V54, P738
145039    MACKAY DJC, 1992, NEURAL COMPUT, V4, P448
145040    NEAL R, 1996, BAYESIAN LEARNING NE
145041    NEAL RM, 1998, LEARNING GRAPHICAL M, P205
145042    ROST B, 1994, PROTEINS, V19, P55
145043    SPIEGELHALTER DJ, 2002, J ROY STAT SOC B 4, V64, P583
145044 NR 10
145045 TC 0
145046 SN 0302-9743
145047 J9 LECT NOTE ARTIF INTELL
145048 PY 2005
145049 VL 3584
145050 BP 544
145051 EP 551
145052 PG 8
145053 GA BCR26
145054 UT ISI:000230895000065
145055 ER
145056 
145057 PT J
145058 AU Min, DC
145059 TI Awakening again: Travelling feminism in China in the 1980s
145060 SO WOMENS STUDIES INTERNATIONAL FORUM
145061 DT Article
145062 AB This article is concerned with why and how the ideas and knowledge of
145063    feminism and Women's Studies travel from 'here' (the West) to 'there'
145064    (China), and in what form they were received, understood and
145065    'localised' during the 1980s. In exploring such complex matters, I will
145066    start my 'journey' from the point of departure, at which the route of
145067    information on feminism and Women's Studies travelled. By taking up one
145068    of the major feminist works-Simone de Beauvoir's The Second Sex-that
145069    'travelled' to China I hope to illustrate that the intellectual history
145070    involved in this process was far more complex and ambiguous than
145071    assumed. Finally, I will look at the development of 'theorising theory'
145072    about women in China. (c) 2005 Elsevier Ltd. All rights reserved.
145073 C1 Shanghai Univ, Sch Social Sci, Shanghai 200430, Peoples R China.
145074 RP Min, DC, Shanghai Univ, Sch Social Sci, 99 Shang Da Rd, Shanghai
145075    200430, Peoples R China.
145076 CR BARLOW TE, 1994, ENG CHINA WOMEN CULT, P339
145077    BARLOW TE, 1997, POLITICS CULTURE SHA, P506
145078    BRAIDOTTI R, 2000, MAKING EUROPEAN WOME, P12
145079    CAI YP, 1999, ENGENDERING STUDY HI
145080    DAI JH, 1999, JUST MIRROR INTERVIE
145081    DEBEAUVOIR S, 1969, 2 SEX
145082    DELAURETIS T, 1986, TECHNOLOGIES GENDER
145083    DU FQ, 1996, J YUNNAN ACAD RES, V1, P57
145084    EAGLETON M, 1986, FEMINIST LITERARY TH
145085    FRIEDAN B, 1963, FEMININE MYSTIQUE
145086    GILBERT SM, 1979, MADWOMAN ATTIC WOMAN
145087    LI XJ, SIGNS, V20, P137
145088    LI XJ, 1988, EVES EXPLORATION THE
145089    LI XJ, 1994, ENGENDERING CHINA WO, P360
145090    LI XJ, 1994, WOMENS STUDIES WOMEN, P100
145091    LI XJ, 1995, WOMEN REPORT WOMENS
145092    LI XJ, 1999, DUSHU, V12, P98
145093    LI XJ, 2000, DUSHU, V6, P144
145094    LI XJ, 2003, DUSHU, V6, P19
145095    LIN C, 1997, TRANSITIONS ENV TRAN, P11
145096    LIN C, 1998, COMPANION FEMINIST P, P108
145097    LIN C, 2001, SIGNS, V26, P1281
145098    LIN SM, 1995, FEMINIST LITERARY CR
145099    LIU LH, 1993, GENDER POLITICS MODE, P33
145100    MENG Y, 1989, EMERGING HORIZON HIS
145101    MIN DC, 1991, INT WOMENS MOVEMENT
145102    MIN DC, 1997, M WOOLSTONECRAFT 200, P193
145103    MIN DC, 1999, INSIDE TRANSLATION M, P26
145104    MIN DC, 1999, WOMEN CHINA EC SOCIA, P211
145105    MIN DC, 2002, THESIS U MANCHESTER
145106    RONG WY, 1994, COLLECTION WOMENS ST, V2, P46
145107    STANLEY L, 1993, SOCIOLOGY, V27, P41
145108    TAN S, 1992, WOMEN STUD, V1, P1
145109    TIAN H, 1991, WOMEN STUD, V4, P7
145110    TONG SS, 1993, CHINESE WOMEN DEV ST, P13
145111    WAN SP, 1988, WOMENS STUDIES INT 5, V11, P455
145112    WANG Q, 1999, WOMENS CHINA EC SOCI, P19
145113    WANG Z, 1993, GENDER POLITICS MODE, P159
145114    WANG Z, 1997, J WOMENS HIST, V8, P126
145115    WOOLF V, 1929, ROOM 1S OWN
145116    XIE LH, 1995, REFLECTIONS RESONANC, P50
145117    YANG M, 1999, SPACES THEIR OWN WOM, P35
145118    ZHANG YM, 1991, WOMENS STUDIES CHINA, P118
145119 NR 43
145120 TC 0
145121 SN 0277-5395
145122 J9 WOMEN STUD INT FORUM
145123 JI Women Stud. Int. Forum
145124 PD JUL-AUG
145125 PY 2005
145126 VL 28
145127 IS 4
145128 BP 274
145129 EP 288
145130 PG 15
145131 SC Women's Studies
145132 GA 959CY
145133 UT ISI:000231495700002
145134 ER
145135 
145136 PT J
145137 AU Qiao, B
145138    Wu, J
145139    Chu, YW
145140    Wang, Y
145141    Wang, DP
145142    Wu, HS
145143    Xiong, SD
145144 TI Induction of systemic lupus erythematosus-like syndrome in syngeneic
145145    mice by immunization with activated lymphocyte-derived DNA
145146 SO RHEUMATOLOGY
145147 DT Article
145148 DE SLE; induced model; anti-dsDNA antibody; syndrome
145149 ID DOUBLE-STRANDED DNA; RHEUMATIC-DISEASES; IMMUNE DEPOSITS; PATHOGENIC
145150    ROLE; MAMMALIAN DNA; ANTIBODIES; AUTOANTIBODIES; HYPOMETHYLATION;
145151    AUTOIMMUNITY; METHYLATION
145152 AB Objectives. Systemic lupus erythematosus (SLE) is the prototype of
145153    autoimmune disease and the mechanisms underlying the disease have not
145154    yet been elucidated. Thus, animal models of SLE would facilitate
145155    investigation of pathogenetic mechanisms involved in the development of
145156    the disease. This study characterizes a murine model of SLE-like
145157    syndrome induced by syngeneic activated lymphocyte-derived DNA
145158    (referred to as ALD DNA).
145159    Methods. Normal BALB/c mice were immunized subcutaneously with highly
145160    purified ALD DNA. Anti-double-stranded DNA (anti-dsDNA) antibodies were
145161    determined by enzyme-linked immunosorbent assay. Other SLE-associated
145162    autoantibodies were examined by indirect immunofluorescence and
145163    anti-ENA (extractable nuclear antigen) profile assay. Pathological
145164    changes were analysed by light microscopy and electron microscopy.
145165    Kidney cryostat sections were viewed by immunofluorescence for the
145166    presence of glomerular IgG and C3 deposits. Proteinuria was measured by
145167    Coomassie brilliant blue assay.
145168    Results. High levels of anti-dsDNA antibodies and other autoantibodies
145169    frequently appearing in SLE were detectable in the sera of ALD
145170    DNA-immunized mice. Glomerulonephritis and glomerular deposition of IgG
145171    plus C3 were observed in the kidney sections. Moreover, proteinuria was
145172    seen in the immunized mice.
145173    Conclusions. SLE-like syndrome can be induced by ALD DNA in normal
145174    mice. This induced model may be useful for elucidating the mechanisms
145175    involved in autoimmunity to DNA and the development of SLE.
145176 C1 Fudan Univ, Shanghai Med Coll, Dept Immunol, Shanghai 200032, Peoples R China.
145177    Fudan Univ, Shanghai Med Coll, Minist Educ, Key Lab Mol Med, Shanghai 200032, Peoples R China.
145178    Shanghai Univ, E Inst, Div Immunol, Shanghai 200025, Peoples R China.
145179 RP Xiong, SD, Fudan Univ, Shanghai Med Coll, Dept Immunol, 138 Yixueyuan
145180    Rd, Shanghai 200032, Peoples R China.
145181 EM sdxiongfd@126.com
145182 CR ANDREWS BS, 1978, J EXP MED, V148, P1198
145183    AOTSUKA S, 1988, CLIN EXP IMMUNOL, V73, P436
145184    BIRD AP, 1987, TRENDS GENET, V3, P342
145185    CHEN G, 2002, J CHROMATOGR A, V954, P267
145186    DESAI DD, 1993, J IMMUNOL, V151, P1614
145187    ELKON KB, 2000, RHEUMATOLOGY, V2
145188    GILBERT D, 1995, MOL IMMUNOL, V32, P477
145189    KOFFLER D, 1967, J EXP MED, V126, P607
145190    KURODA Y, 2004, BIOMED PHARMACOTHER, V58, P325
145191    LEFKOWITH JB, 1996, ARTHRITIS RHEUM, V39, P894
145192    LI H, 2004, ACTA PHARMACOL SIN, V25, P807
145193    LU L, 1998, CHINESE MED J-PEKING, V111, P524
145194    MADAIO MP, 1987, J IMMUNOL, V138, P2883
145195    MARION TN, 1989, J IMMUNOL, V142, P4269
145196    MARION TN, 1990, J IMMUNOL, V145, P2322
145197    NARAYAN A, 1998, INT J CANCER, V77, P833
145198    PISETSKY DS, 2001, CLIN IMMUNOL, V100, P157
145199    PUTTERMAN C, 1998, J EXP MED, V188, P29
145200    QU GZ, 1999, MUTAT RES-FUND MOL M, V423, P91
145201    RICHARDSON B, 1990, ARTHRITIS RHEUM, V33, P1665
145202    RICHARDSON BC, 1993, EUR J IMMUNOL, V23, P1450
145203    SCHLOMCHIK M, 1990, J EXP MED, V171, P265
145204    STEINMAN CR, 1975, J CLIN INVEST, V56, P512
145205    STOLL ML, 2000, RHEUMATOLOGY, V39, P18
145206    SUZUKI N, 1993, J IMMUNOL, V151, P1128
145207    TAN EM, 1988, CLIN IMMUNOL IMMUNOP, V47, P121
145208    TEBBE B, 1997, LUPUS, V6, P96
145209    TILLMAN DM, 1992, J EXP MED, V176, P761
145210    TRAN TT, 2003, CLIN IMMUNOL, V109, P278
145211    VLAHAKOS D, 1992, J AM SOC NEPHROL, V2, P1345
145212    VONMUHLEN CA, 1995, SEMIN ARTHRITIS RHEU, V24, P323
145213    YUNG RL, 1994, LUPUS, V3, P487
145214 NR 32
145215 TC 1
145216 SN 1462-0324
145217 J9 RHEUMATOLOGY
145218 JI RHEUMATOLOGY
145219 PD SEP
145220 PY 2005
145221 VL 44
145222 IS 9
145223 BP 1108
145224 EP 1114
145225 PG 7
145226 SC Rheumatology
145227 GA 958UB
145228 UT ISI:000231472600006
145229 ER
145230 
145231 PT J
145232 AU Yu, WJ
145233    Chen, R
145234    Dong, LY
145235    Dai, SQ
145236 TI Centrifugal force model for pedestrian dynamics
145237 SO PHYSICAL REVIEW E
145238 DT Article
145239 ID CELLULAR-AUTOMATON MODELS; FLOW
145240 AB In this paper, a centrifugal force model is developed for pedestrian
145241    dynamics. The effects of both the headway and the relative velocity
145242    among pedestrians are taken into account, which can be expressed by a
145243    "centrifugal force" term in dynamic equation. The jamming probability
145244    due to the arching at exits for crowd flows is provided. A quantitative
145245    analysis of the crowd flowing out of a hall shows that the average
145246    leaving time T is a function of the exit width W in negative power. The
145247    related simulation indicates that the proposed model is able to
145248    reproduce the self-organization phenomena of lane formation for sparse
145249    flows.
145250 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
145251 RP Yu, WJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
145252    Peoples R China.
145253 CR *TRANSP RES BOARD, 1995, HIGHW CAP MAN, CH13
145254    BLUE V, 2000, TRANSPORT RES REC, V1710, P20
145255    BLUE VJ, 1999, P 14 INT S TRANSP TR, P235
145256    FUKUI M, 1999, J PHYS SOC JPN, V68, P2861
145257    FUKUI M, 1999, J PHYS SOC JPN, V68, P3738
145258    HANKIN BD, 1958, OPERATIONAL RES Q, V9, P81
145259    HELBING D, 1992, COMPLEX SYSTEMS, V6, P391
145260    HELBING D, 1995, PHYS REV E A, V51, P4282
145261    HELBING D, 1999, NEW J PHYS, V1, P1
145262    HELBING D, 2000, NATURE, V407, P487
145263    HELBING D, 2000, PHYS REV LETT, V84, P1240
145264    HENDERSON LF, 1971, NATURE, V229, P381
145265    HENDERSON LF, 1974, TRANSPN RES, V8, P509
145266    LIN CC, 1974, MATH APPL DETERMINIS, P199
145267    MINTZ A, 1951, J ABNORMAL SOCIAL PS, V46, P150
145268    NAVIN FPD, 1969, TRAFFIC ENG, V39, P30
145269    OEDING D, 1963, VERKEHRSBELASTUNG DI
145270    OKAZAKI S, 1979, T AIJ, V284, P101
145271    SCHADSCHNEIDER A, 2002, PEDESTRIAN EVACUATIO, P75
145272    SMITH RA, 1993, ENG CROWD SAFETY
145273    TAJIMA Y, 2001, PHYSICA A, V292, P545
145274    TEKNOMO K, 2000, P JAP SOC CIV ENG C
145275    TO K, 2001, PHYS REV LETT, V86, P71
145276    WANG BH, 2004, WORKSH THEOR PRACT T
145277    WEIDMANN U, 1993, TRANSPORTTECHNIK FUS, P87
145278 NR 25
145279 TC 0
145280 SN 1539-3755
145281 J9 PHYS REV E
145282 JI Phys. Rev. E
145283 PD AUG
145284 PY 2005
145285 VL 72
145286 IS 2
145287 PN Part 2
145288 AR 026112
145289 DI ARTN 026112
145290 PG 7
145291 SC Physics, Fluids & Plasmas; Physics, Mathematical
145292 GA 960BB
145293 UT ISI:000231564100026
145294 ER
145295 
145296 PT J
145297 AU Duan, WQ
145298    Chen, Z
145299    Liu, ZR
145300    Jin, W
145301 TI Efficient target strategies for contagion in scale-free networks
145302 SO PHYSICAL REVIEW E
145303 DT Article
145304 ID SMALL-WORLD NETWORKS; COMPLEX NETWORKS; WEB
145305 AB Organizations or individuals often have an incentive to target a
145306    certain number of agents to launch a contagion process effectively and
145307    efficiently, for example, sampling consumers in the diffusion of new
145308    products. We present an effective strategy for contagion in scale-free
145309    networks. The proposed strategy, hub strategy, calls for targeting
145310    mostly the highly connected nodes. The biased level implemented in this
145311    strategy characterizes its ability to identify hub nodes. We
145312    demonstrate that hub strategy can improve the contagion effects
145313    evidently. We find that biased level increases first with heterogeneity
145314    level of contagion network but decreases with that after a certain
145315    value, and decreases with initial adopter rate all the time. Moreover,
145316    degree correlations in contagion networks may reduce biased level.
145317 C1 Shanghai Jiao Tong Univ, Antai Sch Management, Shanghai 200052, Peoples R China.
145318    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
145319 RP Duan, WQ, Shanghai Jiao Tong Univ, Antai Sch Management, Shanghai
145320    200052, Peoples R China.
145321 CR ALBERT R, 2000, NATURE, V406, P378
145322    ANDERGASSEN R, 2003, UNPUB ECONOMIA
145323    ARENAS A, 2000, PHYS REV E A, V61, P3466
145324    COHEN R, 2003, PHYS REV LETT, V91
145325    DAVIS GF, 2003, STRATEGIC ORG, V1, P301
145326    ELGAZZAR AS, 2002, PHYSICA A, V303, P154
145327    ELGAZZAR AS, 2003, PHYSICA A, V324, P402
145328    GUARDIOLA X, 2002, PHYS REV E 2, V66
145329    LILJEROS F, 2001, NATURE, V411, P907
145330    LLAS M, 2003, PHYS REV E, V66
145331    MORRIS S, 2000, REV ECON STUD, V67, P57
145332    MOTTER AE, 2004, PHYS REV LETT, V93
145333    NEWMAN MEJ, 2002, PHYS REV LETT, V89
145334    NEWMAN MEJ, 2002, PHYS REV LETT, V89
145335    NEWMAN MEJ, 2003, SIAM REV, V45, P167
145336    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
145337    PASTORSATORRAS R, 2002, PHYS REV E 2A, V65
145338    PENNOCK DM, 2002, P NATL ACAD SCI USA, V99, P5207
145339    TANIZAWA T, 2005, PHYS REV E 2, V71
145340    VALENTE TW, 1999, ANN AAPSS        NOV, P566
145341    VAZQUEZ A, 2003, PHYS REV E 2, V67
145342    VIPAK J, 1995, J PROD INNOV MANAGE, V12, P124
145343    WATTS DJ, 1998, NATURE, V393, P440
145344    WATTS DJ, 2002, P NATL ACAD SCI USA, V99, P5766
145345    YANG S, 2003, J MARKETING RES, V40, P282
145346 NR 25
145347 TC 0
145348 SN 1539-3755
145349 J9 PHYS REV E
145350 JI Phys. Rev. E
145351 PD AUG
145352 PY 2005
145353 VL 72
145354 IS 2
145355 PN Part 2
145356 AR 026133
145357 DI ARTN 026133
145358 PG 5
145359 SC Physics, Fluids & Plasmas; Physics, Mathematical
145360 GA 960BB
145361 UT ISI:000231564100047
145362 ER
145363 
145364 PT J
145365 AU Shen, M
145366    Wang, Q
145367    Shi, JL
145368    Chen, YY
145369    Wang, XL
145370 TI Nonlocal incoherent white-light solitons in logarithmically nonlinear
145371    media
145372 SO PHYSICAL REVIEW E
145373 DT Article
145374 ID NEMATIC LIQUID-CRYSTALS; SPATIAL SOLITONS; MODULATIONAL INSTABILITY;
145375    PROPAGATION; BEAMS; DARK
145376 AB The propagation properties of white-light solitons in spatially
145377    nonlocal media with a logarithmically nonlinearity are investigated
145378    theoretically. The existence curve of the stationary nonlocal
145379    incoherent soliton is obtained and the coherence characteristics of the
145380    soliton are also described. The evolution behaviors of the nonlocal
145381    white-light soliton are discussed in detail by both approximate
145382    analytical solution and numerical simulation when the solitons undergo
145383    periodic oscillation.
145384 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
145385 RP Shen, M, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200444,
145386    Peoples R China.
145387 EM shenmingluck@graduate.shu.edu.cn
145388 CR ASSANTO G, 2003, IEEE J QUANTUM ELECT, V39, P13
145389    BANG O, 2002, PHYS REV E 2, V66
145390    BRAUN E, 1993, EUROPHYS LETT, V23, P239
145391    BRIEDIS D, 2005, OPT EXPRESS, V13, P435
145392    BULJAN H, 2002, PHYS REV E, V66
145393    BULJAN H, 2003, PHYS REV E 2, V68
145394    BULJAN H, 2004, J OPT SOC AM B, V21, P397
145395    CARVALHO MI, 1999, PHYS REV E B, V59, P1193
145396    CHEN YY, 2002, ACTA PHYS SIN-CH ED, V51, P559
145397    CHRISTODOULIDES DN, 1997, OPT LETT, V22, P1080
145398    CHRISTODOULIDES DN, 1997, PHYS REV LETT, V78, P646
145399    CHRISTODOULIDES DN, 1998, PHYS REV LETT, V80, P2310
145400    CONTI C, 2003, PHYS REV LETT, V91
145401    CONTI C, 2004, PHYS REV LETT, V92
145402    DESYATNIKOV AS, 2005, OPT LETT, V30, P869
145403    FRATALOCCHI A, 2004, OPT LETT, V29, P1530
145404    GUO Q, 2004, PHYS REV E, V69
145405    HUTSEBAUT X, 2004, OPT COMMUN, V233, P211
145406    KARTASHOV YV, 2004, PHYS REV LETT, V93
145407    KIVSHAR YS, 2003, OPTICAL SOLITONS FIB
145408    KRISTIAN M, 2004, OPT LETT, V29, P280
145409    KROLIKOWSKI W, 2000, PHYS REV E, V61, P3122
145410    KROLIKOWSKI W, 2001, PHYS REV E 2, V63
145411    KROLIKOWSKI W, 2001, PHYS REV E 2, V64
145412    KROLIKOWSKI W, 2004, J OPT B-QUANTUM S O, V6, S288
145413    KROLIKOWSKI W, 2004, PHYS REV E 2, V70
145414    MANDEL L, 1995, OPTICAL COHERENCE QU
145415    MITCHELL DJ, 1999, J OPT SOC AM B, V16, P236
145416    MITCHELL M, 1996, PHYS REV LETT, V77, P490
145417    MITCHELL M, 1997, NATURE, V387, P880
145418    MITCHELL M, 1997, PHYS REV LETT, V79, P4990
145419    NIKOLOV NI, 2003, PHYS REV E 2, V68
145420    NIKOLOV NI, 2004, OPT LETT, V29, P286
145421    PECCIANTI M, 2001, OPT LETT, V26, P1791
145422    PECCIANTI M, 2002, OPT LETT, V27, P1460
145423    PECCIANTI M, 2002, PHYS REV E, V65
145424    PECCIANTI M, 2003, PHYS REV E, V68
145425    PECCIANTI M, 2004, NATURE, V432, P733
145426    PECCIANTI M, 2005, OPT LETT, V30, P415
145427    PONOMARENKO SA, 2001, PHYS REV E 2, V64
145428    SCHWARTZ T, 2004, PHYS REV LETT, V93
145429    SEARS SM, 2002, PHYS REV E 2B, V65
145430    SNYDER AW, 1996, J OPT SOC AM B, V13, P1146
145431    SNYDER AW, 1997, SCIENCE, V276, P1538
145432    WEI Q, 2003, ACTA PHYS SIN-CH ED, V52, P1645
145433    WYLLER J, 2002, PHYS REV E, V66
145434    YAKIMENKO AI, UNPUB
145435 NR 47
145436 TC 0
145437 SN 1539-3755
145438 J9 PHYS REV E
145439 JI Phys. Rev. E
145440 PD AUG
145441 PY 2005
145442 VL 72
145443 IS 2
145444 PN Part 2
145445 AR 026604
145446 DI ARTN 026604
145447 PG 10
145448 SC Physics, Fluids & Plasmas; Physics, Mathematical
145449 GA 960BB
145450 UT ISI:000231564100109
145451 ER
145452 
145453 PT J
145454 AU Zhang, JC
145455    Xu, Y
145456    Cao, SX
145457    Cao, GX
145458    Zhang, YF
145459    Jing, C
145460 TI Kondo-like transport and its correlation with the spin-glass phase in
145461    perovskite manganites
145462 SO PHYSICAL REVIEW B
145463 DT Article
145464 ID MAGNETORESISTANCE; RESISTIVITY; SYSTEMS; FILMS; CA
145465 AB A Kondo-like transport was observed in a metal-semiconductor transition
145466    (MSC) at low temperatures in the ferromagnetic metallic phase of the
145467    perovskite manganites. Experimental data can be best fitted in the
145468    framework of Kondo scattering, electron-electron (e-e), and
145469    electron-phonon (e-p) interaction. The results show that this behavior
145470    depends strongly on the content of the spin-glass phase and can be
145471    tuned with an applied magnetic field, which can be explained by the
145472    spin disorder scattering of electrons and/or antiferromagnetic cluster
145473    on a nanoscale and/or microscale, the interaction and strong
145474    correlation between electrons, and antiferromagnetic background. For
145475    the undoped samples, the MSC transition means the existence of
145476    intrinsic spin disorder with magnetic inhomogeneity. It is important
145477    that the present results give a direct evidence of Kondo scattering in
145478    ferromagnetic metallic manganites and prove that Kondo anomaly appears
145479    not only in metals containing small amounts of magnetic impurities but
145480    also in ferromagnetic conducting compounds containing spin-disorder
145481    clusters. This could be a general characteristic of the strongly
145482    correlated electron systems.
145483 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
145484 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
145485 EM jczhang@staff.shu.edu.cn
145486 CR AHN KH, 2004, NATURE, V428, P401
145487    BURGY J, 2001, PHYS REV LETT, V87
145488    CHAKRABORTY S, 1996, PHYS REV B, V53, P6235
145489    COLEMAN P, CONDMAT0206003
145490    CRONENWETT SM, 1998, SCIENCE, V281, P540
145491    DETERESA JM, 1996, PHYS REV LETT, V76, P3392
145492    GOLDHABERGORDON D, 1998, NATURE, V391, P156
145493    HWANG HY, 1995, PHYS REV LETT, V75, P914
145494    JIN S, 1994, SCIENCE, V264, P413
145495    KONDO J, 1969, SOLID STATE PHYS, V23, P183
145496    KUMAR D, 2002, PHYS REV B, V65
145497    LEE PA, 1985, REV MOD PHYS, V57, P287
145498    MAHENDIRAN R, 2002, PHYS REV LETT, V89
145499    MAJUMDAR AK, 2004, PHYS REV B, V69
145500    MILLIS AJ, 1998, NATURE, V392, P147
145501    MORGOWNIK AFJ, 1981, PHYS REV B, V24, P5277
145502    NATH TK, 1997, PHYS REV B, V55, P5554
145503    PASUPATHY AN, 2004, SCIENCE, V306, P86
145504    PETROV DK, 1999, APPL PHYS LETT, V75, P995
145505    RAMIREZ AP, 1997, J PHYS-CONDENS MAT, V9, P8171
145506    SASAKI S, 2000, NATURE, V405, P764
145507    SINGH S, 2003, PHYS REV B, V38
145508    SINGH SK, 1996, APPL PHYS LETT, V69, P263
145509    SYSKAKIS E, 2003, J PHYS-CONDENS MAT, V15, P7735
145510    TIWARI A, 1999, SOLID STATE COMMUN, V111, P33
145511    VANDERWIEL WG, 2000, SCIENCE, V289, P2105
145512    ZHANG JC, 2004, INT J MOD PHYS B, V18, P3451
145513 NR 27
145514 TC 1
145515 SN 1098-0121
145516 J9 PHYS REV B
145517 JI Phys. Rev. B
145518 PD AUG
145519 PY 2005
145520 VL 72
145521 IS 5
145522 AR 054410
145523 DI ARTN 054410
145524 PG 6
145525 SC Physics, Condensed Matter
145526 GA 960BD
145527 UT ISI:000231564300086
145528 ER
145529 
145530 PT J
145531 AU Chang, TC
145532    Guo, WL
145533    Guo, XM
145534 TI Buckling of multiwalled carbon nanotubes under axial compression and
145535    bending via a molecular mechanics model
145536 SO PHYSICAL REVIEW B
145537 DT Article
145538 ID ELASTIC MEDIUM; LARGE-STRAIN; SINGLE; DEFORMATION; RESONANCES;
145539    STIFFNESS; WALL
145540 AB Based on a molecular mechanics model, analytical solutions are obtained
145541    for the critical buckling strain of multiwalled carbon nanotubes
145542    (MWNT's) under axial compression and bending. We show that only part of
145543    the outer layers buckles first while the remaining inner part remains
145544    stable in a very thick MWNT, which is quite different from the initial
145545    buckling mode of a relatively thin MWNT in which all individual tubes
145546    buckle simultaneously. Such a difference in the initial buckling modes
145547    results in quite different size effects on the critical buckling strain
145548    of thin and thick MWNT's. For instance, inserting more inner individual
145549    tubes may increase the critical buckling strain of a thin MWNT, but
145550    cannot increase the critical buckling strain of a thick tube. The
145551    effects of tube size on the initial buckling wavelength are also
145552    examined, and it is shown that the initial buckling wavelength is
145553    weakly dependent on the thickness of the MWNT.
145554 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
145555    Nanjing Univ Aeronaut & Astronaut, Inst Nano Sci, Nanjing 210016, Peoples R China.
145556    Tongji Univ, Dept Civil Engn, Shanghai 200092, Peoples R China.
145557 RP Chang, TC, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
145558    200072, Peoples R China.
145559 EM tchang@staff.shu.edu.cn
145560 CR ALLINGER NL, 1977, J AM CHEM SOC, V99, P8127
145561    ARROYO M, 2003, PHYS REV LETT, V91
145562    BOWER C, 1999, APPL PHYS LETT, V74, P3317
145563    CHANG TC, 2003, J MECH PHYS SOLIDS, V51, P1059
145564    CHANG TC, 2005, CARBON, V43, P287
145565    CHENG HM, 2002, CARBON NANOTUBES SYN
145566    DAI HJ, 1996, NATURE, V384, P147
145567    DRESSELHAUS MS, 1996, SCI FULLERENES CARBO
145568    FALVO MR, 1997, NATURE, V389, P582
145569    GARG A, 1998, PHYS REV LETT, V81, P2260
145570    GIRIFALCO LA, 1956, J CHEM PHYS, V25, P693
145571    GIRIFALCO LA, 1991, J PHYS CHEM-US, V95, P5370
145572    HAN Q, 2003, EUR J MECH A-SOLID, V22, P875
145573    HE XQ, 2005, J MECH PHYS SOLIDS, V53, P303
145574    IIJIMA S, 1996, J CHEM PHYS, V104, P2089
145575    LEACH AR, 1996, MOL MODELING PRINCIP
145576    LI CY, 2004, MECH MATER, V36, P1047
145577    LIEW KM, 2004, PHYS REV B, V69
145578    LIU JZ, 2001, PHYS REV LETT, V86, P4843
145579    LIU JZ, 2003, PHYS REV B, V67
145580    LOURIE O, 1998, PHYS REV LETT, V81, P1638
145581    OGATA S, 2003, PHYS REV B, V68
145582    OZAKI T, 2000, PHYS REV LETT, V84, P1712
145583    PANTANO A, 2003, PHYS REV LETT, V91
145584    PANTANO A, 2004, J ENG MATER-T ASME, V126, P279
145585    PANTANO A, 2004, J MECH PHYS SOLIDS, V52, P789
145586    PONCHARAL P, 1999, SCIENCE, V283, P1513
145587    POSTMA HWC, 2001, SCIENCE, V293, P76
145588    QIAN D, 2002, APPL MECH REV, V55, P495
145589    QIAN D, 2004, COMPUT METHOD APPL M, V193, P1603
145590    QIAN H, 2005, INT J SOLIDS STRUCT, V42, P5426
145591    RECHEFORT A, 1999, PHYS REV B, V60, P13824
145592    RU CQ, 2000, PHYS REV B, V62, P9973
145593    RU CQ, 2001, J APPL PHYS, V89, P3426
145594    RU CQ, 2001, J MECH PHYS SOLIDS, V49, P1265
145595    SHEN HS, 2004, INT J SOLIDS STRUCT, V41, P2643
145596    SHIBUTANI Y, 2004, MODEL SIMUL MATER SC, V12, P599
145597    SHIBUTANI Y, 2004, PHYS REV LETT, V12, P599
145598    SMALLEY RE, 1998, SOLID STATE COMMUN, V107, P597
145599    SRIVASTAVA D, 1997, MOL DYNAMICS SIMULAT
145600    TIMOSHENKO SP, 1961, THEORY ELASTIC STABI
145601    TOMBLER TW, 2000, NATURE, V405, P769
145602    WANG CY, 2003, INT J SOLIDS STRUCT, V40, P3893
145603    WANG CY, 2004, ASME, V71, P622
145604    WANG X, 2004, INT J SOLIDS STRUCT, V41, P6429
145605    WHITE CT, 1993, PHYS REV B, V47, P5485
145606    WONG EW, 1997, SCIENCE, V277, P1971
145607    XIAO T, 2004, J APPL PHYS, V95, P8145
145608    YAKOBSON BI, 1996, PHYS REV LETT, V76, P2511
145609    YAKOBSON BI, 1997, AM SCI, V85, P324
145610    YU MF, 2000, SCIENCE, V287, P63
145611 NR 51
145612 TC 4
145613 SN 1098-0121
145614 J9 PHYS REV B
145615 JI Phys. Rev. B
145616 PD AUG
145617 PY 2005
145618 VL 72
145619 IS 6
145620 AR 064101
145621 DI ARTN 064101
145622 PG 11
145623 SC Physics, Condensed Matter
145624 GA 960BE
145625 UT ISI:000231564400031
145626 ER
145627 
145628 PT J
145629 AU Yang, B
145630    Yan, X
145631    Yu, BK
145632 TI Theoretical study on grating formation in photovoltaic photorefractive
145633    LiNbO3 crystal with short light pulses
145634 SO OPTICAL AND QUANTUM ELECTRONICS
145635 DT Article
145636 DE instantaneous approximation; photorefractive effect; photovoltaic
145637    effect; quasi-cw approximation; space charge field; time constants
145638 ID LITHIUM-NIOBATE
145639 AB Based on Valley's quasi-cw approximation, the grating formation in
145640    materials exhibiting bulk photovoltaic effect on illumination with
145641    short light pulses (such as ns pulses) is investigated. We give the
145642    expression of the space-charge field, and find that it has two time
145643    constants. When considering and not considering the photovoltaic
145644    effect, the diagrams of two time constants as a function of irradiance
145645    in units of 1/(s tau(R)) are the same. The energy required to erase a
145646    grating to 1/e of its initial value is also studied in the two cases.
145647    The two results are also the same.
145648 C1 Shanghai Univ, Coll Sci, Dept Phys, Shanghai 200444, Peoples R China.
145649 RP Yang, B, Shanghai Univ, Coll Sci, Dept Phys, Shanghai 200444, Peoples R
145650    China.
145651 EM internet@ruyi.com
145652 CR CHEN CT, 1979, APPL PHYS LETT, V34, P321
145653    GUNTER P, 1988, PHOTOREFRACTIVE MAT, V1, P19
145654    LIU B, 1998, APPL OPTICS, V37, P2170
145655    OKAMURA H, 1997, J OPT SOC AM B, V14, P860
145656    OKAMURA H, 2001, J OPT SOC AM B, V18, P960
145657    VALLEY GC, 1983, IEE J QUANTUM ELECT, V19, P11
145658    YAO XS, 1990, J OPT SOC AM B, V7, P2347
145659 NR 7
145660 TC 0
145661 SN 0306-8919
145662 J9 OPT QUANT ELECTRON
145663 JI Opt. Quantum Electron.
145664 PD JUN
145665 PY 2005
145666 VL 37
145667 IS 8
145668 BP 723
145669 EP 733
145670 PG 11
145671 SC Engineering, Electrical & Electronic; Optics
145672 GA 958OE
145673 UT ISI:000231456800002
145674 ER
145675 
145676 PT J
145677 AU He, Y
145678    Sang, WB
145679    Wang, JA
145680    Wu, RF
145681    Min, JH
145682 TI Vertically well-aligned ZnO nanowires generated with self-assembling
145683    polymers
145684 SO MATERIALS CHEMISTRY AND PHYSICS
145685 DT Article
145686 DE ZnO nanowire; chemical synthesis; polymer complexation; orientation
145687    growth
145688 ID FABRICATION; DEPOSITION; TEMPLATE
145689 AB Vertically well-aligned ZnO nanowires were prepared on the (111) plane
145690    of silicon substrates by using polyvinyl alcohol (PVA) as
145691    self-assembling complex polymer. A polymer solution containing ligands
145692    Zn2+ via complexing the homogenous polar radicals hydroxy groups (-OH)
145693    in polymers with Zn2+ ions in semiconductor metal salts was distributed
145694    evenly on Si substrates by coating. Then, Zn2+ transforms into ZnO
145695    quantum nanospots by chemical transformation and thermal hydrolysis.
145696    All the polymers were removed after chemical oxdization and only the
145697    carbonized grid backbones remained that confine the ZnO nanowire's
145698    diameter and enhance the absorption and diffusion of ZnO at the tips of
145699    nanowires during growth. The ZnO nanowires have been characterized by
145700    FE-SEM and XRD. The results indicated that the nanowires are hexagonal
145701    ZnO and the diameter of ZnO semiconductor nanowires varies from 20 to
145702    80 nm and the length up to about I mu m. A polymer localized ZnO growth
145703    model is proposed, which well explains the growth behavior of ZnO
145704    nanowires. (c) 2005 Elsevier B.V All rights reserved.
145705 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
145706 RP He, Y, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
145707    China.
145708 EM yinghe@staff.shu.edu.cn
145709 CR FUJIMURA N, 1993, J CRYST GROWTH, V130, P269
145710    HUANG MH, 2001, SCIENCE, V292, P1897
145711    KIND H, 2002, ADV MATER, V14, P158
145712    KOVTYUKHOVA NI, 2002, MAT SCI ENG C-BIO S, V19, P255
145713    PAN ZW, 2001, SCIENCE, V291, P1947
145714    RYU YR, 2000, J CRYST GROWTH, V219, P419
145715    SUN XM, 2002, MATER CHEM PHYS, V78, P99
145716    WANG Z, 2002, APPL PHYS A-MATER, V74, P201
145717    WIERSMA D, 2000, NATURE, V406, P132
145718    WU JJ, 2002, ADV MATER, V14, P215
145719    ZHENG MJ, 2002, CHEM PHYS LETT, V363, P123
145720 NR 11
145721 TC 0
145722 SN 0254-0584
145723 J9 MATER CHEM PHYS
145724 JI Mater. Chem. Phys.
145725 PD NOV 15
145726 PY 2005
145727 VL 94
145728 IS 1
145729 BP 29
145730 EP 33
145731 PG 5
145732 SC Materials Science, Multidisciplinary
145733 GA 960LO
145734 UT ISI:000231592300005
145735 ER
145736 
145737 PT J
145738 AU Feng, X
145739    Shi, LY
145740 TI Novel chemical metathesis route to prepare TiCN nanocrystallites at low
145741    temperature
145742 SO MATERIALS CHEMISTRY AND PHYSICS
145743 DT Article
145744 DE chemical synthesis; nanostructures; ceramic; X-ray photoemission
145745    spectroscopy
145746 ID TITANIUM CARBONITRIDE; CARBOTHERMAL REDUCTION; THIN-FILMS; C-N;
145747    POWDERS; TIO2; MECHANISM; COATINGS; CARBIDE; CERMETS
145748 AB Nanocrystalline titanium carbonitride (TiCN) was successfully
145749    synthesized at low temperature (420 degrees C) via a chemical
145750    metathesis route using the source materials of TiCl4, CCl4 and NaN3,
145751    which are readily attainable. X-ray powder diffraction (XRD) indicated
145752    that the product was cubic TiCN with a lattice constant a = 4.244
145753    angstrom. Transmission electron microscopy revealed that the crystals
145754    were composed of spherical particles with an average diameter of 13 nm.
145755    X-ray photoemission spectra analysed that the atomic ratio was in good
145756    agreement with the TiC0.2N0.8 stoichiometry. (c) 2005 Published by
145757    Elsevier B.V.
145758 C1 Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
145759    Shandong Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
145760    Shanghai Univ, Nano Sci & Technol Res Ctr, Shanghai 200444, Peoples R China.
145761 RP Feng, X, Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
145762 EM fengx01@hotmail.com
145763 CR BERGER LM, 1999, INT J REFRACT MET H, V17, P235
145764    BROOKES KJA, 1992, INT CARBIDE DATA
145765    BURROW BJ, 1986, J VAC SCI TECHNOL A, V4, P2463
145766    ESLAMLOOGRAMI M, 1994, J MATER RES, V9, P431
145767    ETTMAYER P, 1995, INT J REFRACT MET H, V13, P343
145768    GALUSKA AA, 1988, J VAC SCI TECHNOL A, V6, P110
145769    GILLAN EG, 2001, J MATER CHEM, V11, P1951
145770    GORETZKI H, 1989, FRESEN Z ANAL CHEM, V333, P451
145771    GUEMMAZ M, 1997, APPL PHYS A-MATER, V64, P407
145772    HOLZSCHUH H, 2002, INT J REFRACT MET H, V20, P143
145773    IHARA H, 1973, JPN J APPL PHYS, V12, P1462
145774    JHA A, 1999, J MATER SCI, V34, P307
145775    KERR A, 1999, NANOSTRUCT MATER, V11, P233
145776    KOC R, 1997, J MATER SCI, V32, P3101
145777    KUO DH, 2002, APPL SURF SCI, V199, P278
145778    LICHTENBERGER O, 2003, MATER CHEM PHYS, V81, P195
145779    MAATSUMURA Y, 1993, SURF COAT TECH, V60, P489
145780    NARULA CK, 1995, CERAMIC PRECURSOR TE, P235
145781    PASTOR H, 1988, MAT SCI ENG A-STRUCT, V401, P105
145782    RAMQVIST L, 1969, J PHYS CHEM SOLIDS, V30, P1835
145783    RIE KT, 1999, SURF COAT TECH, V112, P226
145784    SHAVIV R, 1996, MAT SCI ENG A-STRUCT, V209, P345
145785    WEIMER AW, 1997, CARBIDE NITRIDE BORI
145786    XIANG JH, 2000, J EUR CERAM SOC, V20, P933
145787    YOSHIMURA M, 1987, J MATER SCI LETT, V6, P1463
145788    ZHANG SY, 1993, MAT SCI ENG A-STRUCT, V163, P141
145789 NR 26
145790 TC 1
145791 SN 0254-0584
145792 J9 MATER CHEM PHYS
145793 JI Mater. Chem. Phys.
145794 PD NOV 15
145795 PY 2005
145796 VL 94
145797 IS 1
145798 BP 58
145799 EP 61
145800 PG 4
145801 SC Materials Science, Multidisciplinary
145802 GA 960LO
145803 UT ISI:000231592300010
145804 ER
145805 
145806 PT J
145807 AU Guo, HM
145808    Chen, JB
145809    Li, XN
145810    Zhuang, SL
145811 TI Diffraction characteristics with various polarizations of overlapping
145812    holographic gratings in a uniaxial crystal
145813 SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND
145814    VISION
145815 DT Article
145816 ID LITHIUM-NIOBATE; BRAGG-DIFFRACTION; THICK GRATINGS; BEAMS
145817 AB By the Riemann method, a coupled wave model is derived for the
145818    ordinary-to-ordinary (00) and extraordinary-to-extraordinary (EE) Bragg
145819    diffraction of a Gaussian beam by overlapping holographic gratings in a
145820    uniaxial crystal. The computer simulation is used to discuss the
145821    relations among the diffraction efficiency, the index modulation, the
145822    wavelength sensitivity, the angular sensitivity, and the the widths of
145823    the recording and reading beams. The characteristics of EE and 00
145824    diffraction in a uniaxial crystal are found to be remarkably different.
145825    The simulation shows that EE diffraction may exhibit far higher
145826    diffraction efficiency than does 00 diffraction for very low index
145827    modulation with the same hologram size, for example, nearly 90% when
145828    the size is 8.2 x 10(-5). (c) 2005 Optical Society of America.
145829 C1 Shanghai Univ Sci & Technol, Shanghai Key Lab Contemporary Opt Syst, Coll Opt & Elect, Shanghai 200093, Peoples R China.
145830 RP Zhuang, SL, Shanghai Univ Sci & Technol, Shanghai Key Lab Contemporary
145831    Opt Syst, Coll Opt & Elect, 516 Jungong Rd, Shanghai 200093, Peoples R
145832    China.
145833 EM ghanming@vip.sina.com
145834    slzhuangx@yahoo.com.cn
145835 CR BENLARBI B, 1982, APPL PHYS B, V28, P383
145836    BENLARBI B, 1982, APPL PHYS B, V28, P63
145837    BREER S, 1998, APPL PHYS B-LASERS O, V66, P339
145838    GLYTSIS EN, 1987, J OPT SOC AM A, V4, P2061
145839    GUO D, 1978, MATH METHOD PHYS, P428
145840    HEANUE JF, 1996, OPT LETT, V21, P1615
145841    JAREM JM, 1996, J OPT SOC AM A, V13, P819
145842    KENAN RP, 1978, IEEE J QUANTUM ELECT, V14, P924
145843    KOGELNIK H, 1969, BELL SYST TECH J, V48, P2909
145844    LIU S, 1992, PHOTOREFRACTIVE NONL, P136
145845    MOHARAM MG, 1979, J OPT SOC AM, V70, P437
145846    MOHARAM MG, 1981, J OPT SOC AM, V71, P811
145847    MULLER R, 1994, J PHYS D APPL PHYS, V27, P241
145848    PEITHMANN K, 1999, ADV PHOTOREFRACTIVE, V27, P50
145849    SOLYMAR L, 1977, OPT QUANT ELECTRON, V9, P437
145850    TARN CW, 1998, OPT ENG, V37, P229
145851    YARIV A, 1996, J OPT SOC AM B, V13, P2513
145852 NR 17
145853 TC 0
145854 SN 1084-7529
145855 J9 J OPT SOC AM A-OPT IMAGE SCI
145856 JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis.
145857 PD SEP
145858 PY 2005
145859 VL 22
145860 IS 9
145861 BP 1834
145862 EP 1843
145863 PG 10
145864 SC Optics
145865 GA 959UI
145866 UT ISI:000231544400014
145867 ER
145868 
145869 PT J
145870 AU Ren, TB
145871    Ren, J
145872    Jia, XZ
145873    Pan, KF
145874 TI The bone formation in vitro and mandibular defect repair using PLGA
145875    porous scaffolds
145876 SO JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
145877 DT Article
145878 DE poly(D,L-lactide-co-glycolide); mesenchymal stem cells; bone tissue
145879    engineering; mandibular defect
145880 ID MESENCHYMAL STEM-CELLS; POLY(DL-LACTIC-CO-GLYCOLIC ACID) FOAMS;
145881    BIODEGRADABLE POLYMER SCAFFOLDS; TISSUE-ENGINEERED BONE;
145882    TRANSPLANTATION; DEXAMETHASONE; DEGRADATION; FABRICATION; DELIVERY;
145883    SPONGES
145884 AB Highly porous scaffolds of poly(lactide-co-gtycolide) (PLGA) were
145885    prepared by solution-casting/ saltleaching method. The in vitro
145886    degradation behavior of PLGA scaffold was investigated by measuring the
145887    change of normalized weight, water absorption, pH, and molecular weight
145888    during degradation period. Mesenchymal stem cells (MSCs) were seeded
145889    and cultured in three-dimensional PLGA scaffolds to fabricate in vitro
145890    tissue engineering bone, which was investigated by cell morphology,
145891    cell number and deposition of mineralized matrix. The proliferation of
145892    seeded MSCs and their differentiated function were demonstrated by
145893    experimental results. To compare the reconstructive functions of
145894    different groups, mandibular defect repair of rabbit was made with
145895    PLGA/MSCs tissue engineering bone, control PLGA scaffold, and blank
145896    group without scaffold. Histopathologic methods were used to estimate
145897    the reconstructive functions. The result suggests that it is feasible
145898    to regenerate bone tissue in vitro using PLGA foams with pore size
145899    ranging from 100-250 mu m as scaffolding for the transplantation of
145900    MSCs, and the PLGA/MSCs tissue engineering bone can greatly promote
145901    cell growth and have better healing functions for mandibular defect
145902    repair. The defect can be completely recuperated after 3 months with
145903    PLGA/MSCs tissue engineering bone, and the contrastive experiments show
145904    that the defects could not be repaired with blank PLGA scaffold.
145905    PLGA/MSCs tissue engineering bone has great potential as appropriate
145906    replacement for successful repair of bone defect. (c) 2005 Wiley
145907    Periodicals, Inc.
145908 C1 Tongji Univ, Sch Mat Sci & Engn, Inst Nano & Biopolymer Mat, Shanghai 200092, Peoples R China.
145909    Shanghai Univ, Sch Stomatol, Shanghai 200072, Peoples R China.
145910 RP Ren, J, Tongji Univ, Sch Mat Sci & Engn, Inst Nano & Biopolymer Mat,
145911    Shanghai 200092, Peoples R China.
145912 EM renjie@mail.tongji.edu.cn
145913 CR AMIN SFE, 2003, BIOMATERIALS, V24, P1213
145914    CIMA LG, 1991, J BIOMECH ENG-T ASME, V113, P143
145915    DUNEAS N, 1998, GROWTH FACTORS, V15, P259
145916    FRAJ R, 2002, BIOCHEM BIOPH RES CO, V292, P1
145917    GOEPFERICH A, 1996, BIOMATERIALS, V17, P103
145918    HOLY CE, 1999, BIOMATERIALS, V20, P1177
145919    ISHAUG SL, 1997, J BIOMED MATER RES, V36, P17
145920    ISHAUGRILEY SL, 1997, J BIOMED MATER RES, V36, P1
145921    JAISWAL N, 1997, J CELL BIOCHEM, V64, P295
145922    KIM H, 2003, BIOMATERIALS, V24, P4671
145923    LAMIABLE D, 1986, J CHROMATOGR, V378, P486
145924    LANGER R, 1993, SCIENCE, V260, P920
145925    LINCOFF AM, 1997, J AM COLL CARDIOL, V29, P808
145926    LU L, 2000, BIOMATERIALS, V21, P1837
145927    MEYER U, 2003, INT CONGR SER, V1256, P726
145928    MIKOS AG, 1993, BIOTECHNOL BIOENG, V42, P716
145929    MOONEY DJ, 1995, J BIOMED MATER RES, V29, P959
145930    MOONEY DJ, 1997, J BIOMED MATER RES, V37, P413
145931    NAKAMURA T, 1989, J BIOMED MATER RES, V23, P1115
145932    PETITE H, 2000, NAT BIOTECHNOL, V18, P959
145933    PITTENGER MF, 1999, SCIENCE, V284, P143
145934    SAKAI T, 1996, J CHROMATOGR B, V685, P196
145935    SCHORTINGHUIS J, 2003, ARCH ORAL BIOL, V48, P155
145936    SCHRIER JA, 1999, PHARM DEV TECHNOL, V4, P611
145937    SINGH L, 2004, BIOMATERIALS, V25, P2611
145938    SOLCHAGA LA, 1999, CELL TRANSPLANT, V8, P511
145939    TERAI H, 2002, MAT SCI ENG C-BIO S, V20, P3
145940    THOMSON RC, 1995, J BIOMAT SCI-POLYM E, V7, P23
145941    WAN C, 2002, CHIN J TRAUMATOL, V5, P374
145942 NR 29
145943 TC 0
145944 SN 1549-3296
145945 J9 J BIOMED MATER RES PART A
145946 JI J. Biomed. Mater. Res. Part A
145947 PD SEP 15
145948 PY 2005
145949 VL 74A
145950 IS 4
145951 BP 562
145952 EP 569
145953 PG 8
145954 SC Engineering, Biomedical; Materials Science, Biomaterials
145955 GA 959JC
145956 UT ISI:000231513000007
145957 ER
145958 
145959 PT J
145960 AU Fang, JP
145961    Zheng, CL
145962    Zhu, HP
145963    Ren, QB
145964    Chen, LQ
145965 TI New family of exact solutions and chaotic soltions of generalized
145966    Breor-Kaup system in (2+1)-dimensions via an extended mapping approach
145967 SO COMMUNICATIONS IN THEORETICAL PHYSICS
145968 DT Article
145969 DE extended mapping approach; GBK system; exact solution; chaotic soliton
145970 ID LOCALIZED COHERENT STRUCTURES; VARIABLE SEPARATION EXCITATIONS;
145971    NONLINEAR SCHRODINGER SYSTEM; WATER-WAVE SYSTEM; SIMILARITY REDUCTIONS;
145972    BOUSSINESQ EQUATION; BEHAVIORS
145973 AB Starting from an extended mapping approach, a new type of variable
145974    separation solution with arbitrary functions of generalized
145975    (2+1)-dimensional Broer-Kaup system (GBK) system is derived. Then based
145976    on the derived solitary wave solution, we obtain some specific chaotic
145977    solitons to the (2+1)-dimensional GBK system.
145978 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
145979    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
145980 RP Zheng, CL, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R
145981    China.
145982 EM zjclzheng@yahoo.com.cn
145983 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V31, P125
145984    BOITI M, 1987, INVERSE PROBL, V3, P371
145985    BROER LJF, 1975, APPL SCI RES, V31, P377
145986    CHEN CL, 2002, COMMUN THEOR PHYS, V38, P129
145987    CLARKSON PA, 1989, J MATH PHYS, V30, P2201
145988    FAN EG, 2001, PHYS LETT A, V282, P18
145989    HUANG DJ, 2004, CHAOS SOLITON FRACT, V23, P601
145990    KADOMTSEV B, 1970, SOV PHYS DOKL, V35, P539
145991    KAUP DJ, 1975, PROG THEOR PHYS, V54, P396
145992    LI B, 2003, Z NATURFORSCH A, V58, P464
145993    LOU SY, 1989, J MATH PHYS, V30, P1614
145994    LOU SY, 1990, PHYS LETT A, V151, P133
145995    LOU SY, 1997, J MATH PHYS, V38, P6401
145996    LOU SY, 2002, CHINESE PHYS LETT, V19, P769
145997    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
145998    SACHDEV PL, 1994, CHAOS SOLITON FRACT, V4, P2015
145999    TANG XY, 2002, PHYS REV E, V66, P46601
146000    YING JP, 2001, Z NATURFORSCH A, V56, P619
146001    ZAKHAROV VE, 1968, J APPL MECH TECH PHY, V2, P190
146002    ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P705
146003    ZHANG SL, 2002, PHYS LETT A, V300, P40
146004    ZHENG CL, 2002, ACTA PHYS SIN-CH ED, V51, P2426
146005    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P261
146006    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
146007    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P385
146008    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
146009    ZHENG CL, 2004, COMMUN THEOR PHYS, V41, P671
146010    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
146011    ZHENG CL, 2004, Z NATURFORSCH A, V59, P912
146012    ZHENG CL, 2005, CHAOS SOLITON FRACT, V23, P1741
146013    ZHENG CL, 2005, CHAOS SOLITON FRACT, V24, P1347
146014 NR 31
146015 TC 0
146016 SN 0253-6102
146017 J9 COMMUN THEOR PHYS
146018 JI Commun. Theor. Phys.
146019 PD AUG 15
146020 PY 2005
146021 VL 44
146022 IS 2
146023 BP 203
146024 EP 208
146025 PG 6
146026 SC Physics, Multidisciplinary
146027 GA 960TN
146028 UT ISI:000231616200003
146029 ER
146030 
146031 PT J
146032 AU Yang, GH
146033    Zhang, H
146034    Tian, LJ
146035    Wang, YS
146036    Duan, YS
146037 TI Effect of disclination lines on free energy of nematic liquid crystals
146038 SO COMMUNICATIONS IN THEORETICAL PHYSICS
146039 DT Article
146040 DE director field; disclination line; free energy; saddle-splay;
146041    bifurcation
146042 ID CONDENSED MATTER PHYSICS; SPACE-TIME DEFECTS; EARLY UNIVERSE; ORDERED
146043    MEDIA; CONFIGURATIONS; BIFURCATION; TOPOLOGY; SYSTEMS
146044 AB In the light of phi-mapping method and topological current theory, the
146045    effect of disclination lines on the density of nematic liquid crystals
146046    is studied. It is pointed out that the total Frank free energy density
146047    can be divided into two parts, One is the distorted energy density of
146048    director field around the disclination lines. The other is the
146049    saddle-splay energy density, which is shown to be centralized at the
146050    disclination lines and to be topologically quantized in the unit of k
146051    pi/2 when the Jacobian determinant of the director field does not
146052    vanish at the singularities of the director field. The topological
146053    quantum numbers are determined by the Hopf indices and Brouwer degrees
146054    of the director held at the disclination lines, i.e., the disclination
146055    strengthes. When the Jacobian determinant vanishes, the generation,
146056    annihilation, intersection, splitting and merging processes of the
146057    saddle-splay energy density are detailed in the neighborhoods of the
146058    limit points and bifurcation points, respectively. It is shown that the
146059    disclination line with high topological quantum number is unstable and
146060    will evolve to the low topological quantum number states through the
146061    splitting process.
146062 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
146063    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
146064    Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China.
146065 RP Yang, GH, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
146066 EM ghyang@mail.shu.edu.cn
146067 CR ANDERSON PW, 1984, BASIC NOTIONS CONDEN
146068    BRAY AJ, 1994, ADV PHYS, V43, P375
146069    BRAY AJ, 1997, PHYS REV E A, V55, P5297
146070    DAFERMOS CM, 1970, Q J MECH APPL MATH S, V23, P49
146071    DEGENNES PG, 1970, LECT NOTES
146072    DEGENNES PG, 1974, PHYS LIQUID CRYSTALS
146073    DUAN YS, 1984, SLACPUB3301
146074    DUAN YS, 1997, GEN RELAT GRAVIT, V29, P715
146075    DUAN YS, 1997, HELV PHYS ACTA, V70, P565
146076    FINBELSTEIN D, 1966, J MATH PHYS, V7, P1218
146077    FRANK FC, 1958, DISCUSS FARADAY SOC, P19
146078    FRIEDEL J, 1964, DISLOCATIONS
146079    HOLZ A, 1992, PHYSICA A, V182, P240
146080    KLEMAN M, 1972, LIQUID CRYSTALLINE S
146081    KLEMAN M, 1973, PHILOS MAG, V27, P1057
146082    KLEMAN M, 1977, J PHYSIQUE LETT, V38, L195
146083    KLEMAN M, 1983, POINTS LINES WALLS L
146084    KURIK MV, 1988, SOV PHYS USP, V31, P196
146085    KURIK MV, 1988, USP FIZ NAUK, V154, P281
146086    LUBENSKY TC, 1997, SOLID STATE COMMUN, V102, P187
146087    MAZENKO GF, CONDMAT9808223
146088    MERMIN ND, 1979, REV MOD PHYS, V51, P591
146089    MICHEL L, 1980, REV MOD PHYS, V52, P617
146090    NABARRO FRN, 1967, THEORY CRYSTAL DISLO
146091    NYE JF, 1974, P ROY SOC LOND A MAT, V336, P165
146092    ROGULA D, 1976, TRENDS APPL PURE MAT
146093    SHANKAR R, 1977, J PHYSIQUE, V38, P1405
146094    TOULOUSE G, 1976, J PHYSIQUE LETT, V37, P149
146095    TREBIN HR, 1982, ADV PHYS, V31, P195
146096    VOLOVIK GE, 1976, JETP LETT, V24, P561
146097    VOLOVIK GE, 1977, SOV PHYS JETP, V45, P1186
146098    VOLOVIK GE, 1977, ZH EKSP TEOR FIZ, V46, P401
146099    YANG GH, 2002, COMMUN THEOR PHYS, V37, P513
146100    YANG GH, 2004, COMMUN THEOR PHYS, V42, P185
146101 NR 34
146102 TC 0
146103 SN 0253-6102
146104 J9 COMMUN THEOR PHYS
146105 JI Commun. Theor. Phys.
146106 PD AUG 15
146107 PY 2005
146108 VL 44
146109 IS 2
146110 BP 213
146111 EP 222
146112 PG 10
146113 SC Physics, Multidisciplinary
146114 GA 960TN
146115 UT ISI:000231616200005
146116 ER
146117 
146118 PT J
146119 AU Zhou, HY
146120    Gu, SW
146121    Shi, YM
146122 TI Electronic and shallow impurity states in semiconductor
146123    heterostructures under an applied electric field
146124 SO COMMUNICATIONS IN THEORETICAL PHYSICS
146125 DT Article
146126 DE heterostructures; electric field; impurity states
146127 ID QUANTUM WELL STRUCTURES; HYDROGENIC IMPURITIES; CORNER; WIRES
146128 AB With the use of variational method to solve the effective mass
146129    equation, we have studied the electronic and shallow impurity states in
146130    semiconductor heterostructures under an applied electric field. The
146131    electron energy levels are calculated exactly and the impurity binding
146132    energies are calculated with the variational approach. It is found that
146133    the behaviors of electronic and shallow impurity states in
146134    heterostructures under an applied electric field are analogous to that
146135    of quantum wells. Our results show that with the increasing strength of
146136    electric field, the electron confinement energies increase, and the
146137    impurity binding energy increases also when the impurity is on the
146138    surface, while the impurity binding energy increases at first, to a
146139    peak value, then decreases to a value which is related to the impurity
146140    position when the impurity is away from the surface. In the absence of
146141    electric field, the result tends to the Levine's ground state energy
146142    (-1/4 effective Rydberg) when the impurity is on the surface, and the
146143    ground impurity binding energy tends to that in the bulk when the
146144    impurity is far away from the surface. The dependence of the impurity
146145    binding energy on the impurity position for different electric field is
146146    also discussed.
146147 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
146148    Shanghai Jiao Tong Univ, Dept Appl Phys, Shanghai 200030, Peoples R China.
146149 RP Zhou, HY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
146150 CR AMRANI BE, 2001, PHYS STATUS SOLIDI B, V226, P393
146151    BASTARD G, 1981, PHYS REV B, V24, P4714
146152    BEHAM E, 2001, APPL PHYS LETT, V79, P2808
146153    BRANIS SV, 1993, PHYS REV B, V47, P1316
146154    BROWN JW, 1986, J APPL PHYS, V59, P1179
146155    DENG ZY, 1994, J PHYS-CONDENS MAT, V6, P9729
146156    DENG ZY, 1998, J PHYS-CONDENS MAT, V10, P2983
146157    FUJIWARA K, 1989, PHYS REV B, V40, P9698
146158    GEROHONI D, 1990, PHYS REV LETT, V65, P1631
146159    GREENE RL, 1985, SOLID STATE COMMUN, V53, P1103
146160    HANSON R, 2003, PHYS REV LETT, V91
146161    LANDAU LD, 1977, QUANTUM MECH
146162    LEE WW, 1989, PHYS REV B, V40, P3352
146163    LI SS, 1994, J SEMICONDUCTORS, V15, P223
146164    LOZANOCETINA JC, 1998, PHYS STATUS SOLIDI B, V210, P717
146165    MADUENO AC, 2001, J APPL PHYS, V90, P2333
146166    OLIVEIRA LE, 2001, PHYSICA B, V302, P72
146167    STOPA M, 1989, PHYS REV B, V40, P8466
146168    TANAKA M, 1989, APPL PHYS LETT, V54, P1326
146169    TSUCHIYA M, 1989, PHYS REV LETT, V62, P466
146170    WEISBUCH C, 1980, J VAC SCI TECHNOL, V17, P1128
146171    ZHOU HY, 1997, J PHYS-CONDENS MAT, V9, P1241
146172 NR 22
146173 TC 0
146174 SN 0253-6102
146175 J9 COMMUN THEOR PHYS
146176 JI Commun. Theor. Phys.
146177 PD AUG 15
146178 PY 2005
146179 VL 44
146180 IS 2
146181 BP 375
146182 EP 380
146183 PG 6
146184 SC Physics, Multidisciplinary
146185 GA 960TN
146186 UT ISI:000231616200037
146187 ER
146188 
146189 PT J
146190 AU Yuan, SF
146191    Leng, GS
146192 TI Inequalities for mixed intersection bodies
146193 SO CHINESE ANNALS OF MATHEMATICS SERIES B
146194 DT Article
146195 DE star body; mixed intersection body; dual mixed volume; spherical radon
146196    transform
146197 ID BUSEMANN-PETTY PROBLEM; PROJECTION BODIES; CONVEX-BODIES; VOLUMES
146198 AB In this paper, some properties of mixed intersection bodies are given,
146199    and inequalities from the dual Brunn-Minkowski theory (such as the dual
146200    Minkowski inequality, the dual Aleksandrov-Fenchel inequalities and the
146201    dual Brunn-Minkowski inequalities) are established for mixed
146202    intersection bodies.
146203 C1 Shaoxing Univ, Shangyu Coll, Dept Math, Zhejiang 312300, Peoples R China.
146204    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200444, Peoples R China.
146205    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
146206 RP Yuan, SF, Shaoxing Univ, Shangyu Coll, Dept Math, Zhejiang 312300,
146207    Peoples R China.
146208 EM yuanshufeng2003@163.com
146209    gleng@mail.shu.edu.cn
146210 CR BOLKER ED, 1969, T AM MATH SOC, V145, P323
146211    BOURGAIN J, 1988, LECT NOTES MATH, V1317, P250
146212    BUSEMANN H, 1949, P NATL ACAD SCI USA, V35, P27
146213    GARDNER RJ, 1994, ANN MATH, V140, P435
146214    GARDNER RJ, 1994, T AM MATH SOC, V342, P435
146215    GARDNER RJ, 1995, GEOMETRIC TOMOGRAPHY
146216    GARDNER RJ, 1999, ANN MATH, V149, P691
146217    GARDNER RJ, 2003, ADV APPL MATH, V30, P397
146218    HARDY GH, 1959, INEQUALITIES
146219    KOLDOBSKY A, 1997, CR ACAD SCI I-MATH, V325, P1181
146220    KOLDOBSKY A, 1998, AM J MATH, V120, P827
146221    LEICHTWEISS K, 1998, AFFINE GEOMETRY CONV
146222    LTUWAK E, 1990, GEOM DEDI, V33, P51
146223    LUTWAK E, 1985, T AM MATH SOC, V287, P91
146224    LUTWAK E, 1988, ADV MATH, V71, P232
146225    LUTWAK E, 1991, J MATH ANAL APPL, V159, P18
146226    LUTWAK E, 1993, T AM MATH SOC, V339, P901
146227    MEYER M, 1990, ARCH MATH, V55, P82
146228    PETTY CM, 1967, P COLL CONV COP 1965, P234
146229    ROGERS CA, 1965, PORT MATH, V24, P99
146230    SCHNEIDER R, 1993, CONVEX BODIES BRUNN
146231    SCHNIEDERJANS DG, 2001, ADV MATH PR, V6, P71
146232    STRICHARTZ RS, 1981, DUKE MATH J, V48, P699
146233    THOMPSON AC, 1996, MINKOWSKI GEOMETRY
146234    WAWRZYNCZYK A, 1984, GROUP REPRESENTATION
146235    ZHANG GY, 1994, ANN MATH, V140, P331
146236    ZHANG GY, 1994, T AM MATH SOC, V345, P777
146237    ZHANG GY, 1999, ANN MATH, V149, P535
146238 NR 28
146239 TC 0
146240 SN 0252-9599
146241 J9 CHIN ANN MATH SER B
146242 JI Chin. Ann. Math. Ser. B
146243 PD JUL
146244 PY 2005
146245 VL 26
146246 IS 3
146247 BP 423
146248 EP 436
146249 PG 14
146250 SC Mathematics
146251 GA 959XW
146252 UT ISI:000231553800009
146253 ER
146254 
146255 PT J
146256 AU Wu, ZY
146257    Bai, FS
146258    Zhang, LS
146259 TI Monotonization in global optimization
146260 SO CHINESE ANNALS OF MATHEMATICS SERIES B
146261 DT Article
146262 DE global optimization; monotone programming problem; monotonization
146263 ID CONVEXIFICATION; CONCAVIFICATION
146264 AB A general monotonization method is proposed for converting a
146265    constrained programming problem with non-monotone objective function
146266    and monotone constraint functions into a monotone programming problem.
146267    An equivalent monotone programming problem with only inequality
146268    constraints is obtained via this monotonization method. Then the
146269    existing convexification and concavefication methods can be used to
146270    convert the monotone programming problem into an equivalent
146271    better-structured optimization problem.
146272 C1 Chongqing Normal Univ, Dept Math, Chongqing 400047, Peoples R China.
146273    Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China.
146274    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
146275 RP Wu, ZY, Chongqing Normal Univ, Dept Math, Chongqing 400047, Peoples R
146276    China.
146277 EM zhiyouwu@263.net
146278    fsbai@fudan.edu.cn
146279 CR BAZARAA MS, 1993, NONLINEAR PROGRAMMIN
146280    BENSON HP, 1996, NAV RES LOG, V43, P765
146281    BERTSEKAS DP, 1999, NONLINEAR PROGRAMMIN
146282    HOFFMAN KL, 1981, MATH PROGRAM, V20, P22
146283    HORST R, 1990, NAV RES LOG, V37, P433
146284    HORST R, 1995, INTRO GLOBAL OPTIMIZ
146285    LI D, 2001, ANN OPER RES, V105, P213
146286    PARDALOS PM, 1987, CONSTRAINED GLOBAL O
146287    PARDALOS PM, 2002, J COMPUT APPL MATH, V124, P209
146288    SUN XL, 2001, J GLOBAL OPTIM, V21, P185
146289    TUY H, 1998, CONVEX ANAL GLOBAL O
146290    WU ZY, 2005, J GLOBAL OPTIM, V31, P45
146291    ZHANG LS, 2002, CHIN ANN MATH A, V23, P537
146292 NR 13
146293 TC 0
146294 SN 0252-9599
146295 J9 CHIN ANN MATH SER B
146296 JI Chin. Ann. Math. Ser. B
146297 PD JUL
146298 PY 2005
146299 VL 26
146300 IS 3
146301 BP 475
146302 EP 490
146303 PG 16
146304 SC Mathematics
146305 GA 959XW
146306 UT ISI:000231553800013
146307 ER
146308 
146309 PT J
146310 AU Yuan, XG
146311    Zhu, ZY
146312    Cheng, CJ
146313 TI Qualitative analysis of dynamical behavior for an imperfect
146314    incompressible neo-Hookean spherical shell
146315 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
146316 DT Article
146317 DE imperfect incompressible neo-Hookean material; dynamical behavior;
146318    critical value; nonlinear periodic oscillation
146319 ID HYPER-ELASTIC MATERIALS; HYPERELASTIC MATERIALS; CAVITATED BIFURCATION
146320 AB The radial symmetric motion problem was examined for a spherical shell
146321    composed of a class of imperfect incompressible hyper-elastic
146322    materials, in which the materials may be viewed as the homogeneous
146323    incompressible isotropic neo-Hookean material with radial
146324    perturbations. A second-order nonlinear ordinary differential equation
146325    that describes the radial motion of the inner surface of the shell was
146326    obtained. And the first integral of the equation was then carried out.
146327    Via analyzing the dynamical properties of the solution of the
146328    differential equation, the effects of the prescribed imperfection
146329    parameter of the material and the ratio of the inner and the outer
146330    radii of the underformed shell on the motion of the inner surface of
146331    the shell were discussed, and the corresponding numerical examples
146332    were. carried out simultaneously. In particular, for some given
146333    parameters, it was proved that, there exists a positive critical value,
146334    and the motion of the inner surface with respect to time will present a
146335    nonlinear periodic oscillation as the difference between the inner and
146336    the outer presses does not exceed the critical value; However, as the
146337    difference exceeds the critical value, the motion of the inner surface
146338    with respect to time will increase infinitely. That is to say, the
146339    shell will be destroyed ultimately.
146340 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
146341    Yantai Univ, Dept Math & Informat Sci, Yantai 264005, Shandong Prov, Peoples R China.
146342 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
146343    200072, Peoples R China.
146344 EM chjcheng@yc.shu.edu.cn
146345 CR BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
146346    CALDERER C, 1983, J ELASTICITY, V13, P17
146347    GUO ZH, 1963, ARCH MECH STOSOW, V15, P427
146348    HORGAN CO, 1995, APPL MECH REV, V48, P471
146349    KNOWLES JK, 1960, Q APPL MATH, V18, P71
146350    KNOWLES JK, 1962, J APPL MECH, V29, P283
146351    POLIGNONE DA, 1993, J ELASTICITY, V33, P27
146352    REN JS, 2002, APPL MATH MECH-ENGL, V23, P881
146353    REN JS, 2002, J ENG MATH, V44, P245
146354    SHANG XC, 2001, INT J ENG SCI, V39, P1101
146355    YUAN XG, 2004, ACTA MECH SOLIDA SIN, V17, P158
146356    YUAN XG, 2004, ACTA MECH SOLIDA SIN, V17, P361
146357    YUAN XG, 2004, J SHANGHAI U, V8, P13
146358 NR 13
146359 TC 0
146360 SN 0253-4827
146361 J9 APPL MATH MECH-ENGL ED
146362 JI Appl. Math. Mech.-Engl. Ed.
146363 PD AUG
146364 PY 2005
146365 VL 26
146366 IS 8
146367 BP 973
146368 EP 981
146369 PG 9
146370 SC Mathematics, Applied; Mechanics
146371 GA 960IG
146372 UT ISI:000231583200002
146373 ER
146374 
146375 PT J
146376 AU Yang, XD
146377    Chen, LQ
146378 TI Dynamic stability of axially moving viscoelastic beams with pulsating
146379    speed
146380 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
146381 DT Article
146382 DE subharmonic resonance; averaging method; stability of vibration;
146383    axially moving beam
146384 ID VIBRATIONS; VELOCITY
146385 AB Parametric vibration of an axially moving, elastic, tensioned beam with
146386    pulsating speed was investigated in the vicinity of subharmonic and
146387    combination resonance. The method of averaging was used to yield a set
146388    of autonomous equations when the parametric excitation frequency is
146389    twice or the combination of the natural frequencies. Instability
146390    boundaries were presented in the plane of parametric frequency and
146391    amplitude. The analytical results were 7 numerically verified. The
146392    effects of the viscoelastic damping, steady speed and tension on the
146393    instability boundaries were numerically demonstrated. It is found that
146394    the viscoelastic damping decreases the instability regions and the
146395    steady speed and the tension make the instability region drift along
146396    the frequency axis.
146397 C1 Shenyang Inst Aeronaut Engn, Dept Engn Mech, Shenyang 110034, Peoples R China.
146398    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
146399    Shanghai Univ, Dept Mech, Shanghai 200444, Peoples R China.
146400 RP Yang, XD, Shenyang Inst Aeronaut Engn, Dept Engn Mech, Shenyang 110034,
146401    Peoples R China.
146402 EM jxdyang@161.com
146403 CR ARIARATNAM ST, 1986, J SOUND VIB, V107, P215
146404    ASOKANTHAN S, 1994, ASME, V116, P275
146405    OZ HR, 1998, J SOUND VIB, V215, P571
146406    OZ HR, 1999, J SOUND VIB, V227, P239
146407    OZ HR, 2001, J SOUND VIB, V239, P556
146408    OZKAYA E, 2000, J SOUND VIB, V234, P521
146409    PELLICANO F, 2000, J VIB ACOUST, V122, P21
146410    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
146411    WICKERT JA, 1990, ASME J APPL MECH, V57, P267
146412 NR 9
146413 TC 1
146414 SN 0253-4827
146415 J9 APPL MATH MECH-ENGL ED
146416 JI Appl. Math. Mech.-Engl. Ed.
146417 PD AUG
146418 PY 2005
146419 VL 26
146420 IS 8
146421 BP 989
146422 EP 995
146423 PG 7
146424 SC Mathematics, Applied; Mechanics
146425 GA 960IG
146426 UT ISI:000231583200004
146427 ER
146428 
146429 PT J
146430 AU Sun, XL
146431    Li, D
146432    McKinnon, KIM
146433 TI On saddle points of augmented Lagrangians for constrained nonconvex
146434    optimization
146435 SO SIAM JOURNAL ON OPTIMIZATION
146436 DT Article
146437 DE nonconvex optimization; constrained global optimization; saddle point
146438    and duality; augmented Lagrangian functions
146439 ID ZERO DUALITY GAP; GLOBAL OPTIMIZATION; CONVEXIFICATION; CONVERGENCE;
146440    EXISTENCE
146441 AB We present in this paper new results on the existence of saddle points
146442    of augmented Lagrangian functions for constrained nonconvex
146443    optimization. Four classes of augmented Lagrangian functions are
146444    considered: the essentially quadratic augmented Lagrangian, the
146445    exponential-type augmented Lagrangian, the modified barrier augmented
146446    Lagrangian, and the penalized exponential-type augmented Lagrangian. We
146447    first show that under second-order sufficiency conditions, all these
146448    augmented Lagrangian functions possess local saddle points. We then
146449    prove that global saddle points of these augmented Lagrangian functions
146450    exist under certain mild additional conditions. The results obtained in
146451    this paper provide a theoretical foundation for the use of augmented
146452    Lagrangians in constrained global optimization. Our findings also give
146453    new insights to the role played by augmented Lagrangians in local
146454    duality theory of constrained nonconvex optimization.
146455 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
146456    Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
146457    Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland.
146458 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management,
146459    Shatin, Hong Kong, Peoples R China.
146460 EM xlsun@staff.shu.edu.cn
146461    dli@se.cuhk.edu.hk
146462    ken@maths.ed.ac.uk
146463 CR BENTAL A, 1997, SIAM J OPTIMIZ, V7, P347
146464    BERTSEKAS DP, 1982, CONSTRAINED OPTIMIZA
146465    HESTENES MR, 1969, J OPTIMIZATION THEOR, V4, P303
146466    HORST R, 1993, GLOBAL OPTIMIZATION
146467    HORST R, 2000, NONCONVEX OPTIM, V48
146468    HUANG XX, 2003, MATH OPER RES, V28, P524
146469    KARLIN S, 1959, MATH METHODS THEORY, V1
146470    KORT BW, 1972, P IEEE C DEC CONTR N, P162
146471    LI D, 1995, J OPTIMIZ THEORY APP, V85, P309
146472    LI D, 1997, NONLINEAR ANAL-THEOR, V30, P4339
146473    LI D, 2001, J GLOBAL OPTIM, V21, P39
146474    LI D, 2001, NONLINEAR ANAL-THE 8, V47, P5611
146475    MANGASARIAN OL, 1994, CLASSICS APPL MATH, V10
146476    MINOUX M, 1986, MATH PROGRAMMING THE
146477    NGUYEN VH, 1979, J OPTIMIZATION THEOR, V27, P495
146478    POLYAK R, 1992, MATH PROGRAM, V54, P177
146479    POLYAK R, 2004, J OPTIMIZ THEORY APP, V122, P111
146480    POWELL MJD, 1969, OPTIMIZATION, P283
146481    ROCKAFELLAR RT, 1974, SIAM J CONT, V12, P268
146482    ROCKAFELLAR RT, 1993, SIAM REV, V35, P183
146483    ROCKAFELLAR RT, 1998, VARIATIONAL ANAL
146484    ROSEN JB, 1987, LECT NOTES COMPUT SC, V268
146485    RUBINOV AM, 2002, MATH OPER RES, V27, P775
146486    RUBINOV AM, 2003, LAGRANGE TYPE FUNCTI
146487    SUN XL, 1999, J OPTIMIZ THEORY APP, V102, P385
146488    SUN XL, 2001, J GLOBAL OPTIM, V21, P185
146489    THATCH PT, 1990, NAVAL RES LOGIST, V37, P473
146490    TSENG P, 1993, MATH PROGRAM, V60, P1
146491    TUY H, 2000, SIAM J OPTIMIZ, V11, P464
146492 NR 29
146493 TC 0
146494 SN 1052-6234
146495 J9 SIAM J OPTIMIZATION
146496 JI SIAM J. Optim.
146497 PY 2005
146498 VL 15
146499 IS 4
146500 BP 1128
146501 EP 1146
146502 PG 19
146503 SC Mathematics, Applied
146504 GA 957GK
146505 UT ISI:000231357600010
146506 ER
146507 
146508 PT J
146509 AU Hu, GH
146510 TI Linear stability of ultrathin slipping films with insoluble surfactant
146511 SO PHYSICS OF FLUIDS
146512 DT Article
146513 ID THIN LIQUID-FILMS; INSTABILITY; MORPHOLOGY; INTERFACE; EVOLUTION;
146514    DYNAMICS; RUPTURE
146515 AB To study the dewetting process of ultrathin slipping films, the
146516    stability characteristics of the surfactant-covered ultrathin films
146517    with slippage are analyzed with linear theory. A set of nonlinear
146518    equations for the film thickness and the concentration of surfactant is
146519    derived based on lubrication approximation for Newtonian viscous fluid.
146520    Results show slippage can always enhance the development of
146521    perturbations, and reduce the number density of holes when rupture
146522    occurs. A prominent characteristic of the stability is that two
146523    branches of solutions are found in the dispersion relation. This might
146524    lead to an inflexion in the growth rate curve of the most unstable
146525    modes, and a cusp point in the corresponding wave number curve for
146526    infinite slippage, which indicates that the slip has a profound effect
146527    on the linear stability of the films. The influences of the Marangoni
146528    number M, equilibrium distance l(c), and the base concentration of
146529    surfactant Gamma(0) on the linear stability are also discussed for
146530    different slip lengths in the present study.
146531 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
146532 RP Hu, GH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Yanchang Rd 149,
146533    Shanghai 200072, Peoples R China.
146534 EM ghhu@staff.shu.edu.cn
146535 CR AFSARSIDDIQUI AB, 2003, ADV COLLOID INTERFAC, V106, P183
146536    BARRAT JL, 1999, PHYS REV LETT, V82, P4671
146537    JENSEN OE, 1992, J FLUID MECH, V240, P259
146538    KARGUPTA K, 2004, LANGMUIR, V20, P244
146539    ORON A, 1997, REV MOD PHYS, V69, P931
146540    PRIEZJEV NV, 2004, PHYS REV LETT, V92
146541    REITER G, 1994, SCIENCE, V263, P174
146542    SHARMA A, 1993, LANGMUIR, V9, P861
146543    SHARMA A, 1996, MACROMOLECULES, V29, P6959
146544    SHARMA A, 2003, APPL PHYS LETT, V83, P3549
146545    SOUZA ER, 1998, PHYS FLUIDS, V10, P1804
146546    STONE HA, 1990, PHYS FLUIDS A-FLUID, V2, P111
146547    WARNER MRE, 2002, PHYS FLUIDS, V14, P4040
146548    ZHANG YL, 2003, J COLLOID INTERF SCI, V264, P160
146549 NR 14
146550 TC 0
146551 SN 1070-6631
146552 J9 PHYS FLUIDS
146553 JI Phys. Fluids
146554 PD AUG
146555 PY 2005
146556 VL 17
146557 IS 8
146558 AR 088105
146559 DI ARTN 088105
146560 PG 4
146561 SC Physics, Fluids & Plasmas; Mechanics
146562 GA 957RW
146563 UT ISI:000231392000047
146564 ER
146565 
146566 PT J
146567 AU Shen, G
146568    Jiang, DM
146569    Lin, F
146570    Shi, WZ
146571    Ma, XM
146572    Cao, SX
146573    Zhang, JC
146574 TI Glassy magnetism in mechanically alloyed FexCr90-xMn10 (x=18 and 35)
146575 SO PHYSICA B-CONDENSED MATTER
146576 DT Article
146577 DE mechanical alloying; Fe-CrMn alloys; re-entrant spin glass
146578 ID NEUTRON POWDER-DIFFRACTION; GIANT MAGNETORESISTANCE; CRFEMN ALLOYS;
146579    SPIN-GLASS; MOSSBAUER
146580 AB X-ray diffraction (XRD), Fe-57 Mossbauer and magnetic measurements were
146581    performed on mechanically alloyed FexCr90-xMn10 (x = 18 and 35) alloys.
146582    XRD and Fe-57 Mossbauer spectra show the systems are non-magnetic BCC
146583    phase. The irreversibility between field-cooled and zero-field-cooled
146584    magnetization curves at relative high temperature is due to the
146585    blocking of some single particles. A correlation between the Fe
146586    concentration and T-max of ZFC curves can be explained by the fine
146587    Fe-rich clusters which are embedded in a paramagnetic solid solution.
146588    The Fe35Cr55Mn10 alloy exhibits two type of blocking/freezing in an
146589    ensemble of nanoparticles. With the decreasing of temperature, the
146590    Fe18Cr72Mn10 alloy shows spin-glass-like behavior and the Fe35Cr55Mn10
146591    alloy goes through two magnetic transitions from paramagnetic phase to
146592    ferromagnetic phase and then to re-entrant spin-glass state. (c) 2005
146593    Elsevier B.V. All rights reserved.
146594 C1 E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China.
146595    Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Peoples R China.
146596    Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
146597 RP Ma, XM, E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R
146598    China.
146599 EM shenganghey@163.com
146600    xmma@phy.ecnu.edu.cn
146601 CR ACET M, 1989, PHYSICA B, V161, P63
146602    BELLOUARD C, 2000, MATER SCI FORUM 1&2, V343, P819
146603    BERKOWITZ AE, 1992, PHYS REV LETT, V68, P3745
146604    DAS A, 1999, J PHYS-CONDENS MAT, V11, P5209
146605    DETORO JA, 2001, PHYS REV B, V64
146606    DETORO JA, 2004, J MAGN MAGN MATER 2, V272, P1340
146607    DORMANN JL, 1992, STUDIES MAGNETIC PRO
146608    GALKIN VY, 1996, J MAGN MAGN MATER, V159, L23
146609    GALKIN VY, 1997, PHYSICA B, V237, P443
146610    LECAER G, 1996, PHYS REV B, V54, P12775
146611    LEMOINE C, 1999, J MAGN MAGN MATER, V203, P184
146612    MIRABEAU I, 1990, PHYS REV B, V41, P11405
146613    RICO MM, 2002, PHYS STATUS SOLIDI A, V189, P811
146614    RIETVELD HM, 1967, ACTA CRYSTALLOGR, V22, P151
146615    RODRIGUEZCARVAJ.J, 1993, PHYSICA B, V192, P55
146616    SHEN G, 2004, PHYSICA B, V351, P96
146617    SZYMANSKI K, 2001, J MAGN MAGN MATER, V236, P56
146618    XU WM, 1997, J MAGN MAGN MATER, V172, P183
146619    YERMAKOV AY, 2002, MATER SCI FORUM, V386, P455
146620 NR 19
146621 TC 0
146622 SN 0921-4526
146623 J9 PHYSICA B
146624 JI Physica B
146625 PD SEP 1
146626 PY 2005
146627 VL 366
146628 IS 1-4
146629 BP 162
146630 EP 167
146631 PG 6
146632 SC Physics, Condensed Matter
146633 GA 957UA
146634 UT ISI:000231397600020
146635 ER
146636 
146637 PT J
146638 AU Ye, W
146639    Cai, GL
146640    Zhuang, ZY
146641    Jia, XS
146642    Zhai, HB
146643 TI One-step assembly of functionalized gamma-butyrolactones from benzoins
146644    or benzaldehydes via an N-heterocyclic carbene-mediated tandem reaction
146645 SO ORGANIC LETTERS
146646 DT Article
146647 ID INTRAMOLECULAR STETTER REACTIONS; MULTICOMPONENT REACTIONS;
146648    NUCLEOPHILIC CARBENES; CARBON-MONOXIDE; THIAZOLIUM; CONDENSATION;
146649    ALDEHYDES; CATALYSTS; KETONES; SALTS
146650 AB We describe here a direct, efficient, one-step construction of
146651    gamma,gamma-difunctionalized gamma-butyrolactones from benzoins or
146652    benzaldehydes via a tandem reaction promoted by 1,3-dimethyl
146653    imidazolin-2-ylidene, an N-heterocyclic carbene (NHC).
146654 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Shanghai 200032, Peoples R China.
146655    Inst Chem Def, Analyt Ctr, Beijing 102205, Peoples R China.
146656    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
146657 RP Zhai, HB, Chinese Acad Sci, Shanghai Inst Organ Chem, Shanghai 200032,
146658    Peoples R China.
146659 EM zhaih@mail.sioc.ac.cn
146660 CR ARDUENGO AJ, 1991, J AM CHEM SOC, V113, P361
146661    ARDUENGO AJ, 1992, J AM CHEM SOC, V114, P5530
146662    BARRETT AGM, 2004, ORG LETT, V6, P3377
146663    BURSTEIN C, 2004, ANGEW CHEM INT EDIT, V43, P6205
146664    CESAR V, 2004, CHEM SOC REV, V33, P619
146665    CHATANI N, 1999, J AM CHEM SOC, V121, P7160
146666    CIGANEK E, 1995, SYNTHESIS-STUTTG OCT, P1311
146667    DVORAK CA, 1998, TETRAHEDRON LETT, V39, P2925
146668    ENDERS D, 2002, ANGEW CHEM INT EDIT, V41, P1743
146669    ENDERS D, 2004, ACCOUNTS CHEM RES, V37, P534
146670    GRASA GA, 2003, J ORG CHEM, V68, P2812
146671    HERRMANN WA, 2002, ANGEW CHEM INT EDIT, V41, P1290
146672    KANO T, 2005, ORG LETT, V7, P1347
146673    KERR MS, 2002, J AM CHEM SOC, V124, P10298
146674    KERR MS, 2003, SYNLETT         0929, P1934
146675    KERR MS, 2004, J AM CHEM SOC, V126, P8876
146676    KNIGHT RL, 1998, J CHEM SOC PERK 0621, P1891
146677    LINGHU X, 2003, ANGEW CHEM INT EDIT, V42, P2534
146678    MA C, 2005, ORG LETT, V7, P1343
146679    MATTSON AE, 2004, J AM CHEM SOC, V126, P2314
146680    NAIR V, 2003, ORG LETT, V5, P665
146681    NAIR V, 2004, ANGEW CHEM INT EDIT, V43, P5130
146682    NAIR V, 2005, ORG LETT, V7, P2297
146683    NYCE GW, 2002, ORG LETT, V4, P3587
146684    PESCH J, 2004, EUR J ORG CHEM  0426, P2025
146685    SINGH R, 2004, J ORG CHEM, V69, P209
146686    TOBISU M, 2000, J AM CHEM SOC, V122, P12663
146687 NR 27
146688 TC 3
146689 SN 1523-7060
146690 J9 ORG LETT
146691 JI Org. Lett.
146692 PD AUG 18
146693 PY 2005
146694 VL 7
146695 IS 17
146696 BP 3769
146697 EP 3771
146698 PG 3
146699 SC Chemistry, Organic
146700 GA 956IW
146701 UT ISI:000231294400043
146702 ER
146703 
146704 PT J
146705 AU Zhang, HB
146706    Chen, LQ
146707 TI Connection of first integrals with particular solutions of the
146708    nonsimultaneous variational equations for nonholonomic systems
146709 SO MECHANICS RESEARCH COMMUNICATIONS
146710 DT Article
146711 DE analytical mechanical; nonholonomic system; first integral;
146712    nonsimultaneous variational equation
146713 AB In this paper, the nonsimultaneous variational equations of the
146714    nonholonomic mechanical systems are presented, and their solutions are
146715    studied. It is proven that, under some conditions, a particular
146716    solution of the nonsimultaneous variational equations can be obtained
146717    by using a first integral. At the end of the paper, an example is given
146718    to illustrate the applications of the results. (C) 2005 Elsevier Ltd.
146719    All rights reserved.
146720 C1 Chaohu Coll, Dept Phys, Chaohu 238000, Peoples R China.
146721    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
146722    Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
146723 RP Zhang, HB, Chaohu Coll, Dept Phys, Chaohu 238000, Peoples R China.
146724 EM hbzhang2002@eyou.com
146725 CR ARNOLD VI, 1978, MATH METHODS CLASSIC
146726    JACKSON EA, 1989, PERSPECTIVES NONLINE, V1
146727    JURDJEVIC V, 1997, GEOMETRIC CONTROL TH
146728    LANCZOS C, 1970, VARIATIONAL PRINCIPL
146729    MEI FX, 1985, FDN MECH NONHOLONOMI
146730    MEI FX, 1991, ACTA MECH SINICA, V23, P366
146731    MEI FX, 1999, CHINESE SCI BULL, V44, P2262
146732    VUJANOVIC B, 1978, INT J NONLINEAR MECH, V13, P185
146733    WHITTAKER ET, 1952, TREASTISE ANAL DYNAM
146734 NR 9
146735 TC 0
146736 SN 0093-6413
146737 J9 MECH RES COMMUN
146738 JI Mech. Res. Commun.
146739 PD NOV-DEC
146740 PY 2005
146741 VL 32
146742 IS 6
146743 BP 628
146744 EP 635
146745 PG 8
146746 SC Mechanics
146747 GA 956KA
146748 UT ISI:000231297400002
146749 ER
146750 
146751 PT J
146752 AU Peng, LM
146753    Mao, XM
146754    Xu, KD
146755    Ding, WJ
146756 TI Property and thermal stability of in situ composite Cu-Cr alloy contact
146757    cable
146758 SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
146759 DT Article
146760 DE in situ composite; Cu-Cr alloy; thermal stability; M index
146761 AB The in situ composite Cu-Cr alloy, a new type of potential electric
146762    material that can be used for contact cables, is reported in this
146763    paper. The combination property and thermal stability of the in situ
146764    composite Cu-Cr alloy were investigated. Experimental results showed
146765    that the in situ composite Cu-Cr alloy has not only high room
146766    temperature properties, including ultimate tensile strength Orb,
146767    elongation rate 5, relative conductivity sigma(r), and combination
146768    property that is scaled by M index (sigma(b)(2)kappa(r)), but also
146769    excellent thermal stability of these properties. At room temperature,
146770    the combination property of in situ composite Cu-Cr could be up to 18.3
146771    x 10(6) MPa2%, which is higher than those of commonly used copper
146772    contact cables all over the world. After being heated for 3 h at 500
146773    degrees C, the combination property of the in situ composite Cu-Cr
146774    alloy only decreased 3%. In this paper, the relationship between
146775    thermal stability and strengthening mechanism of in situ composite
146776    alloy was analyzed. (c) 2004 Elsevier B.V. All rights reserved.
146777 C1 Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composite, Shanghai 200030, Peoples R China.
146778    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
146779 RP Peng, LM, Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composite,
146780    Shanghai 200030, Peoples R China.
146781 EM plm616@mail.sjtu.edu.cn
146782 CR KIM ST, 1995, J MATER ENG PERFORM, V4, P573
146783    NAGASAWA H, 1990, FUJIKURA TECH REV, V20, P7
146784    PENG LM, 2000, RARE METAL MAT ENG, V29, P307
146785    WAN CK, 1992, MAT REV, V2, P23
146786    WEN HQ, 1995, FUNCT MAT, V26, P553
146787    WEN HQ, 1998, P 3 PAC RIM INT C AD, P137
146788    WEN HQ, 1998, RARE METALS, V17, P23
146789    WU NP, 1993, ELECT MAT, P24
146790 NR 8
146791 TC 0
146792 SN 0924-0136
146793 J9 J MATER PROCESS TECHNOL
146794 JI J. Mater. Process. Technol.
146795 PD AUG 1
146796 PY 2005
146797 VL 166
146798 IS 2
146799 BP 193
146800 EP 198
146801 PG 6
146802 SC Engineering, Industrial; Engineering, Manufacturing; Materials Science,
146803    Multidisciplinary
146804 GA 957LW
146805 UT ISI:000231372300005
146806 ER
146807 
146808 PT J
146809 AU Lei, D
146810    Wu, Z
146811 TI Tabu search approach based on a similarity coefficient for cell
146812    formation in generalized group technology
146813 SO INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
146814 DT Article
146815 DE tabu search; similarity coefficient; cell formation; group technology
146816 ID ALTERNATIVE PROCESS PLANS; CLUSTERING-ALGORITHM; MANUFACTURING SYSTEMS;
146817    GENETIC ALGORITHM; DESIGN; ROUTES
146818 AB Both a similarity coefficient method ( SCM)- based algorithm and meta-
146819    heuristics have been widely applied to various cell formation problems;
146820    however, few studies have explored the combination of the two methods.
146821    This paper addresses a hybrid algorithm, in which, based on the initial
146822    solution produced by a new SCM- based hierarchical clustering method, a
146823    fast and effective tabu search approach is presented to solve cell
146824    formation in group technology ( GT). The proposed algorithm is applied
146825    to several problems from literature and a group of the randomly
146826    generated instances with alternative process plans and compared with
146827    simulated annealing ( SA) and other TS; the results demonstrate that
146828    the proposed algorithm is available and efficient for cell formation in
146829    generalized GT.
146830 C1 Shanghai Univ, Inst Automat, Shanghai 200030, Peoples R China.
146831 RP Lei, D, Shanghai Univ, Inst Automat, 1954 Huashan Rd, Shanghai 200030,
146832    Peoples R China.
146833 EM dmlei@sjtu.edu.cn
146834 CR ADENSODIAZ B, 2001, COMPUT IND ENG, V41, P227
146835    BALAKRISHNAN J, 1996, PROD PLAN CONTROL, V7, P11
146836    BROWN EC, 2001, INT J PROD RES, V39, P3651
146837    CAUX C, 2000, INT J PROD ECON, V64, P279
146838    DIMOPOULOS C, 2001, INT J PROD RES, V39, P1
146839    GLOVER F, 1986, COMPUT OPER RES, V13, P533
146840    GUPTA T, 1990, INT J PROD RES, V28, P1247
146841    HWANG H, 1996, COMPUT IND ENG, V30, P423
146842    JACCARD P, 1908, B SOCIETE VAUDOISE S, V44, P223
146843    KING JR, 1980, INT J PROD RES, V18, P213
146844    KUMAR KR, 1986, EUR J OPER RES, V24, P387
146845    KUSIAK A, 1987, INT J PROD RES, V25, P561
146846    KUSIAK A, 1987, J MANUF SYST, V6, P117
146847    MCAULEY J, 1972, PRODUCTION ENG, V51, P53
146848    MOON YB, 1992, J MANUF SYST, V11, P149
146849    NAGI R, 1990, INT J PROD RES, V28, P2243
146850    ONWUBOLU GC, 2000, PROD PLAN CONTROL, V11, P153
146851    RAJAGOPALAN R, 1975, INT J PROD RES, V13, P567
146852    SEIFODDINI H, 1986, IIE TRANS, V18, P271
146853    SEIFODDINI HK, 1989, COMPUT IND ENG, V16, P419
146854    SHAFER SM, 1993, INT J PROD RES, V31, P1315
146855    SOFIANOPOULOU S, 1999, INT J PROD RES, V37, P707
146856    SRINIVASAN G, 1990, INT J PROD RES, V28, P145
146857    SRINIVASAN G, 1991, INT J PROD RES, V29, P463
146858    SRINIVASAN G, 1994, INT J PROD RES, V32, P2149
146859    SUN D, 1995, COMPUT IND ENG, V28, P485
146860    WON Y, 1997, COMPUT IND ENG, V32, P207
146861    YIN Y, 2002, INT J PROD RES, V40, P885
146862    ZHAO CW, 2000, INT J PROD RES, V38, P385
146863    ZOLFAGHARI S, 2002, INT J PROD RES, V40, P2141
146864 NR 30
146865 TC 1
146866 SN 0020-7543
146867 J9 INT J PROD RES
146868 JI Int. J. Prod. Res.
146869 PD OCT 1
146870 PY 2005
146871 VL 43
146872 IS 19
146873 BP 4035
146874 EP 4047
146875 PG 13
146876 SC Engineering, Industrial; Engineering, Manufacturing; Operations
146877    Research & Management Science
146878 GA 957SS
146879 UT ISI:000231394200004
146880 ER
146881 
146882 PT J
146883 AU Yu, SW
146884    Liao, HB
146885    Wen, WJ
146886    Wong, GKL
146887 TI Nonlinear optical properties of Au : TiO2 multilayer composite fields
146888 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
146889 DT Article
146890 DE metal particles; nonlinearity
146891 AB Au:TiO2 multilayer composite films were prepared by the method of
146892    alternating multitarget magnetron sputtering technique. Samples were
146893    annealed afterwards. The surface plasmon resonances of the annealed
146894    films are around 700nm. TEM pictures showed the remained layered
146895    structure with grown gold particles between the layers. The values of
146896    chi((3)) measured by degenerated four wave mixing (DFWM) are in the
146897    order of 10(-7) esu which are one order larger than the previous work.
146898    The figure of merit (FOM), chi((3))/alpha, is in the order of 10(-12)
146899    esu cm. The great improvement of chi((3)) is assumed to be the result
146900    from the enhancement of field localization caused by the
146901    metallic/dielectric host multilayer structure.
146902 C1 Shanghai Univ, Dept Elect Informat Mat, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
146903    Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China.
146904    Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China.
146905 RP Yu, SW, Shanghai Univ, Dept Elect Informat Mat, Sch Mat Sci & Engn, 149
146906    Yanchang Rd, Shanghai 200072, Peoples R China.
146907 EM yusw@staff.shu.edu.cn
146908 CR ASPNES DE, 1982, AM J PHYS, V50, P704
146909    FLYTZANIS C, 1991, PROGR OPT, V29, P322
146910    FUKUMI K, 1991, JPN J APPL PHYS, V30, P742
146911    LEE M, 1992, THIN SOLID FILMS
146912    LIAO HB, 1998, APPL PHYS LETT, V72, P1817
146913    MATSUOKA J, 1992, J CERAM SOC JPN, V100, P599
146914    RICHARD D, 1985, OPT LETT, V10, P511
146915    SHEN YR, 1984, PRINCIPLES NONLINEAR
146916    SUTHERLAND RL, 1996, HDB NONLINEAR OPTICS
146917    TANAHASHI I, 1996, J APPL PHYS, V79, P1244
146918 NR 10
146919 TC 0
146920 SN 0217-9792
146921 J9 INT J MOD PHYS B
146922 JI Int. J. Mod. Phys. B
146923 PD JUL 10
146924 PY 2005
146925 VL 19
146926 IS 15-17
146927 PN Part 1
146928 BP 2616
146929 EP 2620
146930 PG 5
146931 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
146932 GA 955OZ
146933 UT ISI:000231237000052
146934 ER
146935 
146936 PT J
146937 AU Zhang, JC
146938    Ni, QL
146939    Shen, YU
146940    Zhou, XA
146941    Jiang, SY
146942    Yue, LM
146943 TI Analysis of characteristics of ordered mesoporous assembled with Fe, Bi
146944    and B
146945 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
146946 DT Article
146947 DE mesoporous assemble; SiO2 composites; magnetic properties; bronsted
146948    acid sites
146949 AB Ordered SiO2 mesoporous materials called SBA were prepared by
146950    hydrothermal or sol-gel method through using the surfactants as the
146951    template, such as cetytrimethylammonium bromide or triblock copolymer.
146952    SBA assembled with some different elements and compounds, including Fe,
146953    Bi, and B or Fe2O3, B2O3 and others by dipping or adding of chelating
146954    or coupling agents were prepared to form some composites, which
146955    characterized by wide or small angle X-ray diffraction, infrared
146956    spectra, N-2 static and kinetic adsorption, high resolution
146957    transmission electron microscopy and magnetic intensity instrument,
146958    respectively. The assembled alpha-Fe or alpha- Fe2O3 under different
146959    conditions possessed lower magnetic coercive force (Hc), for instance
146960    the latter was about 87-117(Hc -10(3)/4 pi A*m(-1)-Os), but specific
146961    saturation magnetization (sigma s-A*m(2)*kg(-1)) increase by 75.4% as
146962    compared with the conventional alpha- Fe2O3(17650s) particles. However,
146963    the properties of the composites assembled with alpha- Fe was different
146964    from alpha-Fe2O3 as mentioned-above. And the relationship between os or
146965    Os and structure for the assembled systems was discussed. After
146966    introduced B and Bi to the mesoporous materials, the composites showed
146967    not only existence of Bronsted acid sites for 13, but also improvement
146968    of the hydrothermal stability and enhance of the long-range order
146969    magnitude.
146970 C1 Shanghai Univ, Coll Mat Sci & Engn, Shanghai 200072, Peoples R China.
146971    Shanghai Univ, Coll Sci, Shanghai 200072, Peoples R China.
146972 RP Zhang, JC, Shanghai Univ, Coll Mat Sci & Engn, Shanghai 200072, Peoples
146973    R China.
146974 EM jchzhang@mail.shu.edu.cn
146975 CR EDLER KJ, 1995, J CHEM SOC CHEM COMM, P155
146976    MACLACHLAN MJ, 1999, NATURE, V397, P681
146977    PETKOV N, 2003, MAT SCI ENG C-BIO S, V23, P827
146978    TRONG OD, 1996, J PHYS CHEM-US, V100, P6743
146979 NR 4
146980 TC 0
146981 SN 0217-9792
146982 J9 INT J MOD PHYS B
146983 JI Int. J. Mod. Phys. B
146984 PD JUL 10
146985 PY 2005
146986 VL 19
146987 IS 15-17
146988 PN Part 2
146989 BP 2780
146990 EP 2785
146991 PG 6
146992 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
146993 GA 955PE
146994 UT ISI:000231237600029
146995 ER
146996 
146997 PT J
146998 AU Shan, S
146999 TI On the generalized Zipf distribution. Part I
147000 SO INFORMATION PROCESSING & MANAGEMENT
147001 DT Article
147002 ID SKEW DISTRIBUTION; MODEL
147003 AB This article is concerned with a class of informetric distribution, a
147004    family of skew distributions found to describe a wide range of
147005    phenomena both within or outside of information sciences and referred
147006    to as being of Zipf-type. A generalization of Zipf distribution (a
147007    size-frequency form of the Zipf's law), named the generalized Zipf
147008    distribution, is introduced. Two main characterizations of the
147009    generalized Zipf distribution are obtained based on the proportionate
147010    hazard rate and truncated moments. Finally, some asymptotic properties
147011    of the generalized Zipf distribution are investigated. (c) 2005
147012    Elsevier Ltd. All rights reserved.
147013 C1 Shanghai Univ, Informat Res Ctr, Shanghai, Peoples R China.
147014    Shanghai Univ, Dept Management & Informat Engn, Shanghai, Peoples R China.
147015 RP Shan, S, Shanghai Univ, Informat Res Ctr, Shanghai, Peoples R China.
147016 EM rita_kaoru_chen@163.com
147017 CR BURR IW, 1942, ANN MATH STAT, V13, P215
147018    EGGHE L, 1990, INTRO INFORMETRICS
147019    EGGHE L, 1992, INFORM PROCESS MANAG, V28, P35
147020    ETO H, 1983, SCIENTOMETRICS, V5, P219
147021    FELLER W, 1978, INTRO PROBABILITY TH, V2
147022    GLANZEL W, 1984, Z WAHRSCHEINLICHKEIT, V66, P173
147023    HILL M, 1975, J AM STAT ASSOC, V70, P1017
147024    IJIRI Y, 1977, SKEW DISTRIBUTIONS S
147025    IRWIN JO, 1975, J ROYAL STATISTI A 1, V138, P18
147026    KLAMBAUER G, 1975, MATH ANAL
147027    MANDELBROT B, 1960, INT ECON REV, V1, P79
147028    MANDELBROT B, 1961, STRUCTURE LANGUAGE M, P129
147029    PENNOCK DM, 2002, P NATL ACAD SCI USA, V99, P5207
147030    PRICE DJD, 1976, J AM SOC INFORM SCI, V27, P292
147031    ROUSSEAU R, 1995, INFORMATION PROCESSI, V28, P45
147032    ROUSSEAU R, 1997, CYBERMETRICS, V1, P1
147033    RUDIN W, 1976, PRINCIPLES MATH ANAL
147034    SCHUBERT A, 1984, SCIENTOMETRICS, V6, P149
147035    SIBUYA M, 1979, ANN I STAT MATH, V31, P373
147036    SIMON HA, 1955, BIOMETRIKA, V42, P425
147037    SINGH ABZ, 1974, ECONOMETRICA, V44, P963
147038    TIROLE J, 1988, THEORY IND OR
147039    ZIPF GK, 1949, HUMAN BEHAV PRINCIPL
147040 NR 23
147041 TC 0
147042 SN 0306-4573
147043 J9 INFORM PROCESS MANAGE
147044 JI Inf. Process. Manage.
147045 PD DEC
147046 PY 2005
147047 VL 41
147048 IS 6
147049 BP 1369
147050 EP 1386
147051 PG 18
147052 SC Computer Science, Information Systems; Information Science & Library
147053    Science
147054 GA 956XE
147055 UT ISI:000231332600005
147056 ER
147057 
147058 PT J
147059 AU Cai, XS
147060    Li, JF
147061    Xin, OY
147062    Zhao, ZJ
147063    Su, MX
147064 TI In-line measurement of pneumatically conveyed particles by a light
147065    transmission fluctuation method
147066 SO FLOW MEASUREMENT AND INSTRUMENTATION
147067 DT Article
147068 DE particle sizing; in-line measurement; pneumatically conveyed particles;
147069    light transmission fluctuation
147070 AB An optical method for particle sizing in two-phase flow, the so-called
147071    light transmission fluctuation method, is presented in this paper. On
147072    the basis of this method, a novel optical instrument capable of in-line
147073    measurement of pneumatically conveyed particles is introduced. Quite a
147074    few medium-term tests validate the reliability and the applicability of
147075    this technique. Some measurement results are shown and discussed,
147076    concerning real-time in-line continuous monitoring of pulverized coal
147077    flow at coal-fired power plants and relevant laboratory experiments.
147078    (c) 2005 Elsevier Ltd. All rights reserved.
147079 C1 Shanghai Univ Sci & Technol, Inst Particle & Two Phase Flow Measurement Techno, Shanghai 201800, Peoples R China.
147080 RP Cai, XS, Shanghai Univ Sci & Technol, Inst Particle & Two Phase Flow
147081    Measurement Techno, Shanghai 201800, Peoples R China.
147082 EM caixs@public.sta.net.cn
147083 CR CAI X, 2003, P 4 ASME JSME JOINT
147084    CAI X, 2004, CHINA PARTICUOL, V2, P89
147085    EARLEY D, 2000, ELECT POWER 2000
147086    GREGORY J, 1985, J COLLOID INTERF SCI, V105, P357
147087    LAUX S, 2001, POWER GEN EUROPE 200
147088    LU W, 2004, 4 INT S MEAS TECHN M
147089    SHIFRIIN KS, 1971, C R USSR ACAD SCI, V199, P589
147090    SHIFRIN KS, 1988, PHYS OPTICS OCEAN WA
147091    TEIPEL U, 2002, CHEM ENG TECHNOL, V25, P13
147092    VANDEHULST HC, 1957, LIGHT SCATTERING SMA
147093    YAN Y, 1996, MEAS SCI TECHNOL, V7, P1687
147094    YAN Y, 2001, POWDER HANDLING PROC, V13, P343
147095    YAN Y, 2004, 4 INT S MEAS TECHN M
147096    ZADIRAKA AJ, 1996, ISA CLEV S JUN 3 5 O
147097    ZHOU H, 2004, 4 INT S MEAS TECHN M
147098 NR 15
147099 TC 0
147100 SN 0955-5986
147101 J9 FLOW MEAS INSTRUM
147102 JI Flow Meas. Instrum.
147103 PD OCT
147104 PY 2005
147105 VL 16
147106 IS 5
147107 BP 315
147108 EP 320
147109 PG 6
147110 SC Engineering, Mechanical; Instruments & Instrumentation
147111 GA 957VU
147112 UT ISI:000231402200007
147113 ER
147114 
147115 PT J
147116 AU Ouyang, Z
147117    Zhou, SF
147118    Yin, FQ
147119 TI Oscillation for a class of neutral parabolic differential equations
147120 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
147121 DT Article
147122 DE oscillation; neutral; parabolic; differential equation; eventually
147123    positive solution
147124 AB Some sufficient conditions are established for the oscillation of a
147125    class of neutral parabolic differential equations of the form,
147126    partial derivative N(u(x, t) - Sigma(k=1)(r) lambda(k)u (x, t -
147127    rho(k)))/partial derivative t(N) -a(t)Delta + Sigma(i=1)(n) p(i) (x, t)
147128    u(x, t - sigma(i)) - Sigma(j=1)(m) q(j) (x, t) u (x, t - tau(j))
147129    +h(t) f(u(x, t - r1), ..., u(x, t - r(1))) = 0, (x, t) is an element of
147130    Omega x [t0, + infinity) equivalent to G, t(0) is an element of R+,
147131    where N is an odd number, Omega is a bounded domain in R-M with a
147132    smooth boundary partial derivative Omega, and Delta is the Laplacian
147133    operation with three different boundary conditions. We obtained some
147134    new oscillatory conditions for the odd-order neutral parabolic
147135    differential equation. To some extent, our results are new oscillatory
147136    conditions, and extended some oscillatory results of some references.
147137    (c) 2005 Elsevier Ltd. All rights reserved.
147138 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
147139    Nanhua Univ, Dept Math, Hengyang 421001, Peoples R China.
147140    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
147141 RP Ouyang, Z, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
147142 EM Ouyangzigen@hotmail.com
147143 CR BYKOV V, 1983, IZV AKAD NAUK KIRGIZ, V6, P3
147144    ELABBSY EM, 2000, ELECT J DIFFERENTIAL, V13, P1
147145    FU XL, 1995, J PARTIAL DIFF EQS, V8, P82
147146    GYORI I, 1991, OSCILLATION THEORY D
147147    KUBIACZYK I, 2002, J COMPUT APPL MATH, V147, P263
147148    KUSANO T, 1994, HIROSHIMA MATH J, V24, P123
147149    OUYANG Z, IN PRESS J COMPL APP
147150    OUYANG Z, 2004, APPL MATH LETT, V17, P159
147151    VLADIMIROV VS, 1981, EQUATIONS MATH PHYS
147152    YOSHIDA N, 1986, HIROSHIMA MATH J, V16, P305
147153    YOSHIDA N, 1987, B AUSTRAL MATH SOC, V36
147154 NR 11
147155 TC 0
147156 SN 0898-1221
147157 J9 COMPUT MATH APPL
147158 JI Comput. Math. Appl.
147159 PD JUL
147160 PY 2005
147161 VL 50
147162 IS 1-2
147163 BP 145
147164 EP 155
147165 PG 11
147166 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
147167 GA 956DL
147168 UT ISI:000231279000012
147169 ER
147170 
147171 PT J
147172 AU Zhang, BQ
147173    Hu, SJ
147174    Qiu, LH
147175    Shan, QX
147176    Sun, J
147177    Xia, Q
147178    Bian, K
147179 TI Diphasic effects of Astragalus membranaceus Bunge (Leguminosae) on
147180    vascular tone in rat thoracic aorta
147181 SO BIOLOGICAL & PHARMACEUTICAL BULLETIN
147182 DT Article
147183 DE Astragalus membranuceus; nitric oxide; calcium ion; thoracic aorta;
147184    vasomotion
147185 ID NITRIC-OXIDE; CONTRACTION
147186 AB This study was designed to investigate the effects of the aqueous
147187    ethanol extract of Astragalus membranaceus BUNGE (Leguminosae) on rat
147188    thoracic aorta. Isometric tension was recorded in response to drugs in
147189    organ bath. In endothelium-intact aortic rings, A. membranaceus extract
147190    induced a significant dose-dependent relaxation of the rings
147191    precontracted by phenylephrine, which could be inhibited by
147192    preincubation with L-N(omega)-nitro-arginine methyl ester or
147193    methylthioninium chloride. In endothelium-denuded ones, the extract
147194    could dose-dependently relax the rings contracted by phenylephrine, not
147195    by KCl; and it could also attenuate contractile response to
147196    phenylephrine, not to caffeine or phorbol-12,13-diacetate in Ca2+-free
147197    medium; but it failed to affect the CaCl2-induced enhancement of
147198    contractile response to phenylephrine in Ca2+-free medium. These
147199    results indicate that nitric oxide signaling and Ca2+-handling pathway
147200    are involved in the A. membranaceus extract-induced vasodilatation.
147201 C1 Zhejiang Univ, Coll Med, Affiliated Hosp 1, Dept Cardiol, Hangzhou 310003, Zhejiang, Peoples R China.
147202    Zhejiang Univ, Coll Med, Dept Physiol, Hangzhou 310031, Zhejiang, Peoples R China.
147203    Univ Texas, Sch Med, Dept Integrat Biol & Pharmacol, Houston, TX 77030 USA.
147204    Shanghai Univ, E Inst, Div Nitr Oxide & Inflammatory Med, Shanghai 201203, Peoples R China.
147205 RP Hu, SJ, Zhejiang Univ, Coll Med, Affiliated Hosp 1, Dept Cardiol, 79
147206    Qingchun St, Hangzhou 310003, Zhejiang, Peoples R China.
147207 EM s0hu0001@hotmail.com
147208 CR CHEN ZK, 2003, CHIN J CHIN MAT MED, V28, P155
147209    CHEN ZK, 2003, CHIN J LAB DIAGN, V7, P403
147210    CHEN ZK, 2003, TRADIT CHIN DRUG RES, V14, P372
147211    CHEW DKW, 2003, HYPERTENSION 2, V42, P818
147212    GU Y, 2001, CHIN ARCH TRADIT CHI, V19, P324
147213    GUO ZG, 1980, J TRADIT CHIN MED, V21, P73
147214    HE L, 2003, ACAD J HUNAN TRADIT, V23, P4
147215    HUANG Y, 1997, LIFE SCI, V60, P1749
147216    HUANG ZQ, 1995, CHIN J INTEGRATED TR, V15, P328
147217    JIA SQ, 1994, TIANJIN PHARM, V6, P24
147218    JIAO Y, 1999, CIN J INTEGRATED TRA, V19, P356
147219    KARAKI H, 1997, PHARMACOL REV, V49, P157
147220    KO WH, 2000, EUR J PHARMACOL, V399, P187
147221    KOBAYASHI S, 1991, AM J PHYSIOL 1, V260, C364
147222    MARTIN E, 2000, SEMIN PERINATOL, V24, P2
147223    MONCADA S, 1991, PHARMACOL REV, V43, P109
147224    SONG DJ, 1989, CHIN TRADIT HERB DRU, V20, P25
147225    TODA S, 1999, J ETHNOPHARMACOL, V68, P331
147226    WANG CH, 1996, SHANDONG J TRADIT CH, V15, P351
147227    WANG KH, 1996, FOREIGN MED SCI TCM, V18, P38
147228    ZHA YZ, 2000, J TRADIT CHIM MED, V41, P329
147229    ZHAO CL, 1998, TRADIT CHIN MED RES, V14, P25
147230    ZIMMERMANN M, 2002, ACTA NEUROCHIR, V144, P1213
147231 NR 23
147232 TC 1
147233 SN 0918-6158
147234 J9 BIOL PHARM BULL
147235 JI Biol. Pharm. Bull.
147236 PD AUG
147237 PY 2005
147238 VL 28
147239 IS 8
147240 BP 1450
147241 EP 1454
147242 PG 5
147243 SC Pharmacology & Pharmacy
147244 GA 957BE
147245 UT ISI:000231343500021
147246 ER
147247 
147248 PT J
147249 AU Chen, YJ
147250    Cheng, TCE
147251    Ng, CT
147252    Shan, EF
147253 TI Note on domination and minus domination numbers in cubic graphs
147254 SO APPLIED MATHEMATICS LETTERS
147255 DT Article
147256 DE domination number; minus domination number; cubic graphs
147257 AB Let G = (V, E) be a graph. A subset S of V is called a dominating set
147258    if each vertex of V - S has at least one neighbor in S. The domination
147259    number gamma (G) equals the minimum cardinality of a dominating set in
147260    G. A minus dominating function on G is a function f : V -> {-1, 0, 1}
147261    such that f(N[v]) = Sigma(u is an element of N[v]) f(u) >= 1 for each v
147262    is an element of V, where N[v] is the closed neighborhood of v. The
147263    minus domination number of G is gamma(-)(G) = min{Sigma(v is an element
147264    of V) f(v) vertical bar f is a minus dominating function on G). It was
147265    incorrectly shown in [X. Yang, Q. Hou, X. Huang, H. Xuan, The
147266    difference between the domination number and minus domination number of
147267    a cubic graph, Applied Mathematics Letters 16 (2003) 1089-1093] that
147268    there is an infinite family of cubic graphs in which the difference
147269    gamma - gamma(-) can be made arbitrary large. This note corrects the
147270    mistakes in the proof and poses a new problem on the upper bound for
147271    gamma - gamma(-) in cubic graphs. (c) 2005 Elsevier Ltd. All rights
147272    reserved.
147273 C1 Hong Kong Polytech Univ, Dept Logist, Kowloon, Hong Kong, Peoples R China.
147274    Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China.
147275    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
147276 RP Chen, YJ, Hong Kong Polytech Univ, Dept Logist, Kowloon, Hong Kong,
147277    Peoples R China.
147278 EM yaojunc@nju.edu.cn
147279 CR DUNBAR J, 1996, DISCRETE MATH, V149, P311
147280    DUNBAR J, 1999, DISCRETE MATH, V199, P35
147281    HENNING MA, 1996, DISCRETE MATH, V158, P87
147282    REED BA, 1993, PATHS STARS NUMBER 3
147283    REED BA, 1996, COMB PROBAB COMPUT, V5, P277
147284    YANG XF, 2003, APPL MATH LETT, V16, P1089
147285    ZELINKA B, 1996, DISCRETE MATH, V158, P249
147286 NR 7
147287 TC 0
147288 SN 0893-9659
147289 J9 APPL MATH LETT
147290 JI Appl. Math. Lett.
147291 PD SEP
147292 PY 2005
147293 VL 18
147294 IS 9
147295 BP 1062
147296 EP 1067
147297 PG 6
147298 SC Mathematics, Applied
147299 GA 957YJ
147300 UT ISI:000231409100014
147301 ER
147302 
147303 PT J
147304 AU Gao, C
147305    Zhou, GY
147306 TI Phenomenological study of structure relaxation of glycerol aqueous glass
147307 SO ACTA PHYSICO-CHIMICA SINICA
147308 DT Article
147309 DE structure relaxation; glycerol; aqueous solutions; differential
147310    scanning calorimetry (DSC)
147311 ID ADAM-GIBBS FORMULATION; ENTHALPY RELAXATION; DIMETHYL-SULFOXIDE;
147312    TEMPERATURE-DEPENDENCE; FICTIVE TEMPERATURE; FORMING LIQUIDS;
147313    HEAT-CAPACITY; CRYSTALLIZATION; TRANSITION; ICE
147314 AB In order to examine the effects of water contents on structure
147315    relaxation parameters of glycerol aqueous glasses, heat capacity and
147316    glass transition temperature of five aqueous solutions (60%, 70%, 80%,
147317    90%, and 100%) were determined using the differential scanning
147318    calorimetry (DSC). Structure relaxation behaviors of glycerol aqueous
147319    glasses were investigated in the term of Tool-Narayanaswamy-Monihan
147320    (TNM) model parameters. The structure relaxation time was found to
147321    decrease as the water content increased. Curve-fitting results
147322    indicated that the apparent activation energy and non-exponential
147323    parameter decreased while non-linear parameter and pre-exponential
147324    parameter increased as the water content increased.
147325 C1 Zhongyuan Inst Technol, Dept Energy & Environm Engn, Zhengzhou 450007, Peoples R China.
147326    Shanghai Univ Sci & Technol, Inst Cryomed & Food Refrigerat, Shanghai 200093, Peoples R China.
147327 RP Gao, C, Zhongyuan Inst Technol, Dept Energy & Environm Engn, Zhengzhou
147328    450007, Peoples R China.
147329 EM gao_cai@hotmail.com
147330 CR ADAM G, 1965, J CHEM PHYS, V43, P139
147331    ANGELL CA, 1997, J RES NATL INST STAN, V102, P171
147332    CHANG ZH, 1991, CRYOBIOLOGY, V28, P87
147333    CLAUDY P, 1997, THERMOCHIM ACTA, V293, P1
147334    CORTES P, 1998, J POLYM SCI POL PHYS, V36, P113
147335    FRANKS F, 2003, BIOPHYS CHEM, V105, P251
147336    GAO C, IN PRESS Z CHINESE J
147337    GAO C, 2004, ACTA PHYS-CHIM SIN, V20, P701
147338    GAO C, 2004, Z ACTA PHYS CHIM SIN, V20, P123
147339    GARDON R, 1970, J AM CERAM SOC, V53, P380
147340    HEY JM, 1996, CRYOBIOLOGY, V33, P205
147341    HEY JM, 1997, J NON-CRYST SOLIDS, V211, P262
147342    HEY JM, 1998, CRYOBIOLOGY, V37, P119
147343    HODGE IM, 1986, MACROMOLECULES, V19, P936
147344    HODGE IM, 1991, J NON-CRYST SOLIDS, V131, P435
147345    HODGE IM, 1994, J NONCRYST SOLIDS, V169, P211
147346    HUA ZZ, 1994, CRYOBIOLOGY CRYOMEDI
147347    HUANG J, 1992, J NON-CRYST SOLIDS, V139, P239
147348    MEHL PM, 1996, THERMOCHIM ACTA, V272, P201
147349    MOYNIHAN CT, 1976, J AM CERAM SOC, V59, P12
147350    MOYNIHAN CT, 1991, J NON-CRYST SOLIDS, V131, P420
147351    NARAYANASWAMY OS, 1970, J AM CERAM SOC, V53, P491
147352    NARAYANASWAMY OS, 1971, J AM CERAM SOC, V54, P491
147353    SHERER GW, 1986, RELAXATION GLASS COM, P130
147354    SIMATOS D, 1995, FOOD PRESERVATION MO, P188
147355    SIMON SL, 1997, J CHEM PHYS, V107, P8678
147356    SOKOLOV AP, 1996, SCIENCE, V273, P1675
147357    TOOL AQ, 1946, J AM CERAM SOC, V29, P240
147358    VIGIER G, 1987, CRYOBIOLOGY, V24, P345
147359    WUNGTANAGORN R, 2001, THERMOCHIM ACTA, V369, P95
147360    YAMAMURO O, 1998, J NON-CRYST SOLIDS, V235, P517
147361 NR 31
147362 TC 0
147363 SN 1000-6818
147364 J9 ACTA PHYS-CHIM SIN
147365 JI Acta Phys.-Chim. Sin.
147366 PD AUG
147367 PY 2005
147368 VL 21
147369 IS 8
147370 BP 909
147371 EP 914
147372 PG 6
147373 SC Chemistry, Physical
147374 GA 956IR
147375 UT ISI:000231293900018
147376 ER
147377 
147378 PT J
147379 AU Sun, DM
147380    Wu, QS
147381    Zhu, Y
147382    Ding, YP
147383 TI Biomimetic self-assembly synthesis of ZnS chain-like nanospheres with
147384    supported liquid membrane
147385 SO ACTA CHIMICA SINICA
147386 DT Article
147387 DE supported liquid membrane; biomimetic; zinc sulfide; nano-sphere;
147388    chain-like
147389 ID CRYSTAL NUCLEATION; CALCIUM-CARBONATE; NANOSTRUCTURES; NANOPARTICLES;
147390    TEMPLATE; MICROSPHERES; MONOLAYERS; NANOWIRES; NANOTUBES; NANORODS
147391 AB A novel synthesis method of ZnS chain-like nanospheres by supported
147392    liquid membrane system has been investigated. The system, with
147393    o-phenanthroline as a mobile carrier, can selectively transport zinc
147394    ions to the other side of the membrane. Nucleation process was under
147395    the control of SLM template effect by directionally combining anion,
147396    local super saturation solution and the interfacial microenvironment.
147397    XRD and TEM data indicated that the crystal has cubic structure of
147398    blende with cell constant of a=0.5390 nm in the range of 250 similar to
147399    300 nm. In addition, the morphological formation mechanism and
147400    luminescence properties of ZnS have been discussed.
147401 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
147402    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
147403 RP Sun, DM, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
147404 EM qswu@mail.tongji.edu.cn
147405 CR AIZENBERG J, 1999, NATURE, V398, P495
147406    ALIVISATOS AP, 1996, J PHYS CHEM-US, V100, P13226
147407    BAYBURT TH, 2002, NANO LETTERS, V2, P853
147408    CEPAK VM, 1999, CHEM MATER, V11, P1363
147409    CHEN SH, 2002, NANO LETT, V2, P1003
147410    CHEN XJ, 2003, INORG CHEM, V42, P3100
147411    FENG L, 2002, ANGEW CHEM INT EDIT, V41, P1221
147412    LIANG HJ, 2003, J AM CHEM SOC, V125, P11786
147413    LIU L, 2004, AUST J CHEM, V57, P219
147414    MA YR, 2003, LANGMUIR, V19, P4040
147415    MANN S, 1988, NATURE, V334, P692
147416    NAKA K, 2001, CHEM MATER, V13, P3245
147417    PAN ZW, 2001, J PHYS CHEM B, V105, P2507
147418    PENG Q, 2003, ANGEW CHEM INT EDIT, V42, P3027
147419    PORRATA P, 2002, CHEM MATER, V14, P4378
147420    REDDY S, 2003, B MATER SCI, V26, P283
147421    TANG ZY, 2002, SCIENCE, V297, P237
147422    WANG TX, 2002, LANGMUIR, V18, P8655
147423    WEI GD, 2003, CHEM MATER, V15, P4436
147424    WU QS, 2003, ACTA CHIM SINICA, V61, P1824
147425    WU QS, 2004, CRYST GROWTH DES, V4, P717
147426    YANAGISHITA T, 2004, LANGMUIR, V20, P554
147427    YIN JL, 2003, MATER LETT, V57, P3859
147428    ZHANG WH, 2001, CHEM MATER, V13, P648
147429    ZHANG ZL, 2003, INORG CHEM COMMUN, V6, P1393
147430 NR 25
147431 TC 0
147432 SN 0567-7351
147433 J9 ACTA CHIM SIN
147434 JI Acta Chim. Sin.
147435 PD AUG 28
147436 PY 2005
147437 VL 63
147438 IS 16
147439 BP 1479
147440 EP 1482
147441 PG 4
147442 SC Chemistry, Multidisciplinary
147443 GA 957YI
147444 UT ISI:000231409000003
147445 ER
147446 
147447 PT J
147448 AU Gu, ZT
147449    Yin, JL
147450    Liang, PH
147451    Gan, FX
147452 TI Temperature characteristics of optical parameters of phthalocyanine LB
147453    films and spin-coated films
147454 SO OPTICAL MATERIALS
147455 DT Article
147456 DE phthalocyanine; LB film; spin-coating; optical properties
147457 ID THIN-FILMS
147458 AB The LB films and spin-coated films of tetra-neopentoxy phthalocyanine
147459    zinc (TNPPcZn) were prepared and annealed at different temperatures.
147460    Their refractive index (n) and extinction coefficient (k) were measured
147461    by p-polarized reflectance. The similar value of n and k, as well as
147462    similar changing tendency of it and k at varied annealing temperatures,
147463    was found between LB films and spin-coated films. In addition, the
147464    absorption curves of TNPPcZn LB films and spin-coated films in visible
147465    range at different annealing temperature were investigated. The results
147466    indicate that the changing tendency of the extinction coefficient of
147467    two kinds of TNPPcZn films obtained from two methods mentioned above
147468    were coincident. When the annealing temperature increased to 150
147469    degrees C, the monomers of TNPPcZn films transformed to aggregates,
147470    n(f) and k(f) of the films increased. Further, n(f) and k(f) decreased
147471    as aggregates changed back to monomers again at the annealing
147472    temperature of 300 degrees C. The experimental results coincide well
147473    with the theoretical analysis. (C) 2004 Elsevier B.V. All rights
147474    reserved.
147475 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
147476    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
147477 RP Gu, ZT, Shanghai Univ Sci & Technol, Coll Sci, POB 249,516 Jun Gong Rd,
147478    Shanghai 200093, Peoples R China.
147479 EM zhengtiangu@yahoo.com.cn
147480 CR BADER G, 1998, APPL OPTICS, V37, P1146
147481    BRYANT GC, 1994, THIN SOLID FILMS, V243, P316
147482    COLLINS RA, 1993, THIN SOLID FILMS, V229, P113
147483    DJURISIC AB, 2002, OPT COMMUN, V205, P155
147484    DUGOILLE B, 1994, APPL OPTICS, V33, P5853
147485    GAN FX, 1992, P SOC PHOTO-OPT INS, V2053, P95
147486    GU ZT, 2000, MEAS SCI TECHNOL, V12, P56
147487    KAJIHARA K, 1996, JPN J APPL PHYS 1, V35, P6110
147488    LUO T, 1992, OPT MATER, V1, P267
147489    MARTENSSON J, 1991, THIN SOLID FILMS, V205, P252
147490    YING JL, 1999, ACTA OPIT SIN, V19, P528
147491 NR 11
147492 TC 0
147493 SN 0925-3467
147494 J9 OPT MATER
147495 JI Opt. Mater.
147496 PD SEP
147497 PY 2005
147498 VL 27
147499 IS 10
147500 BP 1618
147501 EP 1622
147502 PG 5
147503 SC Materials Science, Multidisciplinary; Optics
147504 GA 955TO
147505 UT ISI:000231250700014
147506 ER
147507 
147508 PT J
147509 AU Andrae, ASG
147510    Andersson, DR
147511    Liu, JH
147512 TI Significance of intermediate production processes in life cycle
147513    assessment of electronic products assessed using a generic compact model
147514 SO JOURNAL OF CLEANER PRODUCTION
147515 DT Article
147516 DE data collection model; electronic products; global warming potential;
147517    intermediate upstream processes; life cycle assessment; life cycle
147518    inventory
147519 AB In this paper a generic model for life cycle inventory (LCI) data
147520    collection is presented and applied to a product system of a Digital
147521    System Telephone (DST). It is shown that the intermediate unit
147522    processes (IUPs) are of global warming importance. Compared to earlier
147523    efforts in the field of environmental life cycle assessment of
147524    electronic products, this model enables a more partitioned LCA result,
147525    with respect to both components and processes. In our model the
147526    components are first divided into main groups and then into sub-groups.
147527    This division results in process modules for unit processes, some of
147528    which are similar to the ongoing components, thus, reducing the
147529    computational effort. The model is demonstrated for a "cradle-to-gate"
147530    calculation focusing on greenhouse gas emissions. Using scenario
147531    analysis for integrated circuits and printed wiring boards, the
147532    possible contribution from IUPs was analysed. (c) 2005 Elsevier Ltd.
147533    All rights reserved.
147534 C1 Chalmers Univ Technol, Dept Microtechnol & Nanosci, S-43153 Molndal, Sweden.
147535    Chalmers Univ Technol, SMIT Ctr, S-43153 Molndal, Sweden.
147536    IVF, Ind Res & Dev Corp, SE-43153 Molndal, Sweden.
147537    Shanghai Univ, SMIT Ctr, Shanghai 200072, Peoples R China.
147538 RP Andrae, ASG, Chalmers Univ Technol, Dept Microtechnol & Nanosci,
147539    S-43153 Molndal, Sweden.
147540 EM anders.andrae@mc2.chalmers.se
147541 CR 1998, CONFIDENTIAL IND SOU
147542    2000, CONFIDENTIAL IND SOU
147543    *DAN ENV PROT AG, 2004, 960 DAN ENV PROT AG
147544    *EL, DES GUID EC DES EL E
147545    *ENV CAN, 2000, EPA ONT CAN, P3
147546    *ETH, LCI DAT 1996 SIL MET
147547    *ISO, 1998, 140411998 ISO, P2
147548    *NORD PORT, FDN EC
147549    ANDRAE A, 2001, P 1 INT C DES MAN SU, P241
147550    ANDRAE ASG, 2001, J ELECTRON MANUF, V10, P147
147551    ANDRAE ASG, 2004, INT J LIFE CYCLE ASS, V9, P45
147552    DOKA G, 2001, P ENV IMP TEL SYST S, P9
147553    GOEDKOOP M, ECOINDICATOR 99 DAMA
147554    HERRMANN C, 2000, P 2000 IEEE INT S EL, P124
147555    LINHER O, 2001, P IPP GREEN PAP LAUN
147556    LIU J, 2001, SOLDER SURF MT TECH, V13, P39
147557    MALMODIN J, 2001, P 2 INT S ENV CONSC, P328
147558    MUELLER KG, 2001, P IEEE INT S EL ENV, P245
147559    MURPHY CF, 2003, P 2003 IEEE INT S EL, P276
147560    POLLOCK D, 1996, P 1996 IEEE INT S EL, P154
147561    SATAKE K, 1998, P IEEE INT S EL ENV, P176
147562    SCHELLER H, 1999, LIFE CYCLE ASSESSMEN, P124
147563    SCHISCHKE K, 2001, P 2001 IEEE INT S EL, P145
147564    SPIELMANN M, 2001, P ENV IMP TEL SYST S
147565    SUH S, 2004, ENVIRON SCI TECHNOL, V38, P657
147566    TAIARIOL F, 2001, P 2001 IEEE INT S EL, P128
147567    UENO T, 1999, J CYCLES WASTE MANAG, V1, P25
147568    VANDERWEL H, 1997, P CARTS 97 EUR PASS, P147
147569    WARBURG N, 2003, P APEX TECHN C AN CA, P10
147570    WILLIAMS E, 2004, ENVIRON SCI TECHNOL, V38, P6166
147571 NR 30
147572 TC 0
147573 SN 0959-6526
147574 J9 J CLEAN PROD
147575 JI J. Clean Prod.
147576 PY 2005
147577 VL 13
147578 IS 13-14
147579 BP 1269
147580 EP 1279
147581 PG 11
147582 SC Engineering, Environmental; Environmental Sciences
147583 GA 954EO
147584 UT ISI:000231137100007
147585 ER
147586 
147587 PT J
147588 AU Wen, S
147589    Feng, YL
147590    Yu, YX
147591    Bi, XH
147592    Wang, XM
147593    Sheng, GY
147594    Fu, JM
147595    Peng, PA
147596 TI Development of a compound-specific isotope analysis method for
147597    atmospheric formaldehyde and acetaldehyde
147598 SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
147599 DT Article
147600 ID ORGANIC-COMPOUNDS; CARBONYL-COMPOUNDS; NONMETHANE HYDROCARBONS;
147601    FATTY-ACIDS; CHINA; CHEMISTRY; GUANGZHOU; AREA; AIR
147602 AB A novel method determining compound-specific carbon isotopic
147603    compositions for atmospheric formaldehyde and acetaldehyde in ppb or
147604    sub-ppb levels by gas chromatography/combustion/isotope ratio mass
147605    spectrometry (GC/C/IRMS) is presented. Atmospheric carbonyls are
147606    collected using the conventional 2,4-dinitrophenylhydrazine (DNPH)
147607    derivatization method, and their delta(13)C values are calculated based
147608    on stoichiometric mass balance after measuring the carbon isotopic
147609    compositions of the carbonyl-DNPH derivatives and DNPH, respectively.
147610    Using formaldehyde, acetaldehyde, and DNPH standards with their
147611    delta(13)C values predetermined, the delta(13)C fractionation is
147612    evaluated for derivatization processes both in solutions and in
147613    simulation experiment of atmospheric sampling. In these two
147614    derivatization systems, through reduplicate 613 C analysis' good
147615    reproducibility of the derivertization process is found with an average
147616    error of less than 0.5 parts per thousand, and the differences between
147617    the predicted and the measured delta(13)C values range from -0.18 to
147618    0.49 parts per thousand, indicating that the derivatization process
147619    introduces no isotopic fractionation for both formaldehyde and
147620    acetaldehyde. Thus, the delta(13)C values of the original underivatized
147621    carbonyls can be accurately calculated through mass balance equation.
147622    Using the method developed, preliminary tests of atmospheric
147623    formaldehyde and acetaldehyde at two urban sites were conducted and
147624    revealed significant differences of their isotopic compositions,
147625    implying possible application of the method in helping us understand
147626    the primary emission, secondary formation, or removal processes of
147627    carbonyls in the atmosphere.
147628 C1 Chinese Acad Sci, State Key Lab Organ Geochem, Guangdong Key Lab Environm Resources Utilizat & P, Guangzhou Inst Geochem, Guangzhou 510640, Peoples R China.
147629    Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072, Peoples R China.
147630 RP Fu, JM, Chinese Acad Sci, State Key Lab Organ Geochem, Guangdong Key
147631    Lab Environm Resources Utilizat & P, Guangzhou Inst Geochem, Guangzhou
147632    510640, Peoples R China.
147633 EM fujm@gig.ac.cn
147634 CR ABRAJANO TA, 1994, ORG GEOCHEM, V21, P611
147635    ATKINSON R, 1990, ATMOS ENVIRON A-GEN, V24, P1
147636    CARTER WPL, 1990, ATMOS ENVIRON A-GEN, V24, P481
147637    CARTER WPL, 1995, ATMOS ENVIRON, V29, P2513
147638    CONNY JM, 1996, ATMOS ENVIRON, V30, P621
147639    FENG YL, 2004, ATMOS ENVIRON, V38, P103
147640    FENG YL, 2005, ATMOS ENVIRON, V39, P1789
147641    GROSJEAN E, 1997, ENVIRON SCI TECHNOL, V31, P2421
147642    HO KF, 2002, ATMOS ENVIRON, V36, P1259
147643    HU JF, 2002, ORG GEOCHEM, V33, P1197
147644    JIA GD, 2003, MAR CHEM, V82, P47
147645    JOHNSON BJ, 1990, ENVIRON SCI TECHNOL, V24, P898
147646    LU H, 2003, ORG GEOCHEM, V34, P745
147647    MCKEEN SA, 1997, J GEOPHYS RES-ATMOS, V102, P6467
147648    MELANDER L, 1980, REACTION RATES ISOTO
147649    POSSANZINI M, 1996, ATMOS ENVIRON, V30, P3757
147650    RIELEY G, 1994, ANALYST, V119, P915
147651    RUDOLPH J, 2002, ATMOS ENVIRON, V36, P1173
147652    SAITO T, 2002, J GEOPHYS RES, V107
147653    SATSUMABAYASHI H, 1995, ATMOS ENVIRON, V29, P255
147654    SIRJU AP, 1995, ENVIRON SCI TECHNOL, V29, P384
147655    STONE T, 1989, EOS T, V70, P1017
147656    SUMNER AL, 2001, J GEOPHYS RES-ATMOS, V106, P24387
147657    UCHIYAMA S, 2003, J CHROMATOGR A, V996, P95
147658    YU JZ, 1997, ATMOS ENVIRON, V31, P2261
147659 NR 25
147660 TC 3
147661 SN 0013-936X
147662 J9 ENVIRON SCI TECHNOL
147663 JI Environ. Sci. Technol.
147664 PD AUG 15
147665 PY 2005
147666 VL 39
147667 IS 16
147668 BP 6202
147669 EP 6207
147670 PG 6
147671 SC Engineering, Environmental; Environmental Sciences
147672 GA 955CR
147673 UT ISI:000231203100042
147674 ER
147675 
147676 PT J
147677 AU Zeng, XY
147678    Sheng, GY
147679    Xiong, Y
147680    Fu, JM
147681 TI Determination of polycyclic musks in sewage sludge from Guangdong,
147682    China using GC-EI-MS
147683 SO CHEMOSPHERE
147684 DT Article
147685 DE polycyclic musks; sewage sludge; wastewater treatment plant;
147686    quantification; GC; GC-EI-MS; Guangdong; China
147687 ID MASS-SPECTROMETRIC DETECTION; SOLID-PHASE MICROEXTRACTION; HUMAN
147688    ADIPOSE-TISSUE; AMINO METABOLITES; QUANTITATIVE-DETERMINATION;
147689    ORGANOCHLORINE PESTICIDES; FRAGRANCE MATERIALS; PARTICULATE MATTER;
147690    WASTE-WATER; GERMANY
147691 AB Polycyclic musks [Cashmeran (DPMI), Celestolide (ADBI), Phantolide
147692    (AHMI), Traseolide (ATII), Tonalide (AHTN) and Galaxolide (HHCB)] were
147693    Soxhlet extracted, separated and analyzed in sewage sludge from six
147694    different wastewater treatment plants from Guangdong, China, using GC
147695    and GC-EI-MS. DPMI, ADBI, HHCB, AHTN were found in all samples, and
147696    ATII was not found in any sample. AHMI was detected in five out of six
147697    samples. HHCB and AHTN were the two major polycyclic musks found in
147698    highest concentrations in sludge. The sludge from municipal wastewater
147699    treatment plants contained HHCB, AHTN and DPMI at concentrations
147700    between 5.416 and 21.214, 0.715 and 6.195 and 0.599 and 2.870 mg/kg
147701    (dry), respectively. The highest concentration was found in sludge from
147702    one cosmetic plant at 703.681 mg HHCB/kg (dry). The results indicate
147703    that there are two sources of polycyclic musks: domestic sewage and
147704    industrial wastewater. (C) 2005 Published by Elsevier Ltd.
147705 C1 Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Organ Geochem, Guangdong Key Lab Environm & Resources, Guangzhou 510640, Guangdong Prov, Peoples R China.
147706    Chinese Acad Sci, Grad Sch, Beijing 100864, Peoples R China.
147707    Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072, Peoples R China.
147708 RP Fu, JM, Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Organ
147709    Geochem, Guangdong Key Lab Environm & Resources, Guangzhou 510640,
147710    Guangdong Prov, Peoples R China.
147711 EM fujm@staff.shu.edu.cn
147712 CR BERSET JD, 1999, J CHROMATOGR A, V852, P545
147713    BERSET JD, 2000, ANAL CHEM, V72, P2124
147714    BESTER K, 1998, WATER RES, V32, P1857
147715    CARMEN GJ, 2002, J CHROMATOGR A, V963, P277
147716    DRAISCI R, 1998, J CHROMATOGR A, V814, P187
147717    DSIKOWITZKY L, 2002, ORG GEOCHEM, V33, P1747
147718    FORD RA, 1999, TOXICOL LETT, V111, P133
147719    FROMME H, 2001, WATER RES, V35, P121
147720    HEBERER T, 2002, ACTA HYDROCH HYDROB, V30, P227
147721    HERREN D, 2000, CHEMOSPHERE, V40, P565
147722    KALLENBORN R, 1999, J CHROMATOGR A, V846, P295
147723    KUPPER T, 2004, CHEMOSPHERE, V54, P1111
147724    LLOMPART M, 2003, J CHROMATOGR A, V999, P185
147725    MULLER S, 1996, CHEMOSPHERE, V33, P17
147726    PECK AM, 2004, ENVIRON SCI TECHNOL, V38, P367
147727    RICKING M, 2003, MAR POLLUT BULL, V46, P410
147728    RIMKUS GG, 1996, CHEMOSPHERE, V33, P2033
147729    RIMKUS GG, 1999, TOXICOL LETT, V111, P5
147730    SIMONICH SL, 2000, ENVIRON SCI TECHNOL, V34, P959
147731    SIMONICH SL, 2002, ENVIRON SCI TECHNOL, V36, P2839
147732    STEVENS JL, 2003, ENVIRON SCI TECHNOL, V37, P462
147733    TAS JW, 1997, CHEMOSPHERE, V35, P2973
147734    WINKLER M, 1998, CHEMOSPHERE, V37, P1139
147735    WINKLER M, 2000, J CHROMATOGR A, V903, P203
147736 NR 24
147737 TC 1
147738 SN 0045-6535
147739 J9 CHEMOSPHERE
147740 JI Chemosphere
147741 PD AUG
147742 PY 2005
147743 VL 60
147744 IS 6
147745 BP 817
147746 EP 823
147747 PG 7
147748 SC Environmental Sciences
147749 GA 954PF
147750 UT ISI:000231166300013
147751 ER
147752 
147753 PT J
147754 AU Chang, ZT
147755    Song, XJ
147756    Munn, R
147757    Marosszeky, M
147758 TI Using limestone aggregates and different cements for enhancing
147759    resistance of concrete to sulphuric acid attack
147760 SO CEMENT AND CONCRETE RESEARCH
147761 DT Article
147762 DE sulphuric acid attack; concrete; fly ash; silica fume; slag; limestone
147763    aggregates; silicious aggregates
147764 ID CORROSION
147765 AB A research program was undertaken to improve concrete's resistance
147766    against sulphuric acid attack. Six concretes were investigated, four
147767    using calcareous limestone aggregates and two using silicious
147768    aggregates. Cements used in these concretes included a portland cement,
147769    a binary cement containing ground granulated blast furnace slag, and
147770    two ternary cements containing slag and silica fume or fly ash and
147771    silica fume. All the concretes had the same water/cement ratio of 0.4,
147772    with compressive strengths in the range of 45 MPa and 58 MPa at the age
147773    of 28 days. In the experiment, concrete cylinders were immersed in 1%
147774    sulphuric acid solution and they were periodically examined for
147775    appearance, measured for mass change and tested in compression up to
147776    168 days. The concrete using limestone aggregates and the ternary
147777    cement containing silica fume and fly ash performed the best. (c) 2005
147778    Elsevier Ltd. All rights reserved.
147779 C1 Univ New S Wales, Sch Civil & Environm Engn, ACCI, Sydney, NSW 2052, Australia.
147780    Shanghai Univ Sci & Technol, Dept Civil Engn, Shanghai 271019, Peoples R China.
147781 RP Chang, ZT, Univ New S Wales, Sch Civil & Environm Engn, ACCI, Sydney,
147782    NSW 2052, Australia.
147783 EM z.chang@unsw.edu.au
147784 CR *ASTM, 1994, C26782 ASTM
147785    *AUSTR STAND, 1999, 10129 AS
147786    ATTIGOBE EK, 1988, ACI MATER J, V85, P481
147787    BARNARD JL, 1967, 250 CSIR
147788    CABALLERO CE, 2000, CORROS REV, V18, P105
147789    DURNING TA, 1991, CONCRETE INT, V13, P42
147790    FATTUHI NI, 1988, ACI MATER J, V85, P512
147791    HARRISON WH, 1987, CONCRETE, V21, P18
147792    HEWLETT PC, 1998, LEAS CHEM CEMENT CON, P759
147793    HUGHES BP, 1978, MAGAZINE CONCRETE RE, V30, P11
147794    JEYAPALAN JK, 1992, ASTM STP, V1137, P273
147795    KAZUYUKI T, 1994, CEMENT CONCRETE RES, V24, P361
147796    MCGOVERN MS, 1999, ABERDEENS CONCRETE C, V44, P53
147797    MEHTA PK, 1985, CEMENT CONCRETE RES, V15, P969
147798    MEYER AH, 1970, P ASCE, V96, P1167
147799    MORI T, 1992, WATER RES, V26, P29
147800    SAND W, 1984, ENVIRON TECHNOL LETT, V5, P517
147801    SARICIMEN H, 1987, DURABILITY BUILD MAT, V5, P145
147802    SARKAR SL, CONCRETE DURABILITY, P1357
147803    STEWART WF, 1999, J INFRASTRUCTURE SYS, V5, P150
147804    TAMIMI AK, 1997, MATER STRUCT, V30, P188
147805    THISTELTHWAYTE DKB, 1972, CONTROL SULPHIDES SE
147806 NR 22
147807 TC 0
147808 SN 0008-8846
147809 J9 CEM CONCR RES
147810 JI Cem. Concr. Res.
147811 PD AUG
147812 PY 2005
147813 VL 35
147814 IS 8
147815 BP 1486
147816 EP 1494
147817 PG 9
147818 SC Materials Science, Multidisciplinary; Construction & Building Technology
147819 GA 954YZ
147820 UT ISI:000231192700005
147821 ER
147822 
147823 PT J
147824 AU Shi, WJ
147825    Zhu, XX
147826    Yang, Y
147827    Li, L
147828 TI Study on the synthetic polymers as cellulosic film-strengthening aids
147829 SO CELLULOSE CHEMISTRY AND TECHNOLOGY
147830 DT Article
147831 DE synthetic polymers; cellulosic film; strengthening agent; PVA; PMA-Co-BA
147832 AB Polyvinyl acetate (PVA) and methyl acrylate-butyl acrylate copolymer
147833    (PMA-Co-BA) were used as cellulose ester membrane strengthening aids.
147834    The effect of the synthetic and applied methods for polymers as
147835    additives on films strength was studied. The results showed that, when
147836    5 % PMA-Co-BA was used, the tearing strength of cellulose ester
147837    membrane increased by 192 %, and tensile strength by 42.3 %.
147838 C1 Shanghai Univ Sci & Technol, Coll Urban Construct, Shanghai 200093, Peoples R China.
147839 RP Shi, WJ, Shanghai Univ Sci & Technol, Coll Urban Construct, 516 Jun
147840    Gong Rd, Shanghai 200093, Peoples R China.
147841 CR GB130221991
147842    GBT165781996
147843    WANG JW, 1993, 205 ACS NAT M DENV C
147844 NR 3
147845 TC 0
147846 SN 0576-9787
147847 J9 CELL CHEM TECHNOL
147848 JI Cell Chem. Technol.
147849 PD MAY-AUG
147850 PY 2005
147851 VL 39
147852 IS 3-4
147853 BP 253
147854 EP 260
147855 PG 8
147856 SC Materials Science, Paper & Wood
147857 GA 954YO
147858 UT ISI:000231191600009
147859 ER
147860 
147861 PT J
147862 AU Wang, QW
147863 TI A system of four matrix equations over von Neumann regular rings and
147864    its applications
147865 SO ACTA MATHEMATICA SINICA-ENGLISH SERIES
147866 DT Article
147867 DE von Neumann regular ring; system of matrix equations; perselfconjugate
147868    matrix; centrosymmetric matrix; bisymmetric matrix
147869 ID LINEAR MATRIX EQUATION; CENTROSYMMETRIC MATRICES; SYMMETRIC-SOLUTIONS;
147870    EIGENVECTORS; EIGENVALUES
147871 AB We consider the system of four linear matrix equations A(1)X= C-1, XB2
147872    = C-2, A(3)XB(3) = C-3 and A(4)XB(4) = C-4 over R, an arbitrary von
147873    Neumann regular ring with identity. A necessary and sufficient
147874    condition for the existence and the expression of the general solution
147875    to the system are derived. As applications, necessary and sufficient
147876    conditions are given for the system of matrix equations A(1)X = C-1 and
147877    A(3)X = C-3 to have a bisymmetric solution, the system of matrix
147878    equations A(1)X = C-1 and A(3)XB(3) = C-3 to have a perselfconjugate
147879    solution over R with an involution and char R not equal 2,
147880    respectively. The representations of such solutions are also presented.
147881    Moreover, some auxiliary results on other systems over R are obtained.
147882    The previous known results on some systems of matrix equations are
147883    special cases of the new results.
147884 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
147885 RP Wang, QW, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
147886 EM wqw858@yahoo.com.cn
147887 CR AITKEN AC, 1939, DETERMINANTS MATRICE
147888    ANDREW AL, 1998, SIAM REV, V40, P697
147889    BHIMASANKARAM P, 1976, SANKHYA A, V38, P404
147890    CANTONI A, 1976, LINEAR ALGEBRA APPL, V13, P275
147891    CHU KWE, 1989, LINEAR ALGEBRA APPL, V119, P35
147892    DAI H, 1990, LINEAR ALGEBRA APPL, V131, P1
147893    DATTA L, 1989, CIRC SYST SIGNAL PR, V8, P71
147894    DON FJH, 1987, LINEAR ALGEBRA APPL, V93, P1
147895    HELL RD, 1990, SIAM J MATRIX ANAL A, V11, P128
147896    HELL RD, 1990, SIAM J MATRIX ANAL A, V11, P173
147897    KHATRI CG, 1976, SIAM J APPL MATH, V31, P578
147898    LEE A, 1980, LINEAR ALGEBRA ITS A, V29, P205
147899    MAGNUS JR, 1980, SIAM J ALGEBRAIC DIS, V1, P422
147900    MELMAN A, 2000, LINEAR ALGEBRA APPL, V320, P193
147901    PRESSMAN IS, 1998, LINEAR ALGEBRA APPL, V284, P239
147902    RUSSELL M, 1997, SIAM REV, V39, P313
147903    TAO D, 2002, SIAM J MATRIX ANAL A, V23, P885
147904    VETTER WJ, 1975, LINEAR ALGEBRA APPL, V9, P181
147905    WANG QW, 2002, LINEAR ALGEBRA APPL, V353, P169
147906    WANG QW, 2002, MATH SCI RES J, V6, P333
147907    WANG QW, 2004, ACTA MATH SINICA, V47, P27
147908    WANG QW, 2004, LINEAR ALGEBRA APPL, V384, P43
147909    WANG QW, 2004, SE ASIAN B MATH, V27, P929
147910    WEAVER JR, 1985, AM MATH MON, V92, P711
147911 NR 24
147912 TC 0
147913 SN 1439-8516
147914 J9 ACTA MATH SIN-ENGLISH SERIES
147915 JI Acta. Math. Sin.-English Ser.
147916 PD APR
147917 PY 2005
147918 VL 21
147919 IS 2
147920 BP 323
147921 EP 334
147922 PG 12
147923 SC Mathematics, Applied; Mathematics
147924 GA 924LA
147925 UT ISI:000228979100010
147926 ER
147927 
147928 PT J
147929 AU Shen, JQ
147930    Riebel, U
147931    Guo, X
147932 TI Measurements of particle-size distribution and concentration by
147933    transmission fluctuation spectrometry with temporal correlation
147934 SO OPTICS LETTERS
147935 DT Article
147936 ID GAUSSIAN-BEAM; FUNDAMENTALS; EXTINCTION
147937 AB A new method of transmission fluctuation spectrometry with signal
147938    correlation was recently developed for particle-size analysis, whereby
147939    both particle-size distribution and particle concentration can be
147940    measured simultaneously. The measurements were realized with temporal
147941    correlation of the transmission fluctuation signals of a focused
147942    Gaussian beam. (c) 2005 Optical Society of America.
147943 C1 Shanghai Univ Sci & Technol, Inst Sci, Shanghai 200093, Peoples R China.
147944    Tech Univ Cottbus, Chair Mech Proc Engn, D-03046 Cottbus, Germany.
147945 RP Shen, JQ, Shanghai Univ Sci & Technol, Inst Sci, Shanghai 200093,
147946    Peoples R China.
147947 EM shenjq@online.sh.cn
147948 CR BREITENSTEIN M, 1999, PART PART SYST CHAR, V16, P249
147949    BREITENSTEIN M, 2001, PART PART SYST CHAR, V18, P134
147950    FERRI F, 1995, APPL OPTICS, V34, P5829
147951    RIEBEL U, 1994, PART PART SYST CHAR, V11, P212
147952    SHEN J, 2003, THESIS CUVILLIER VER
147953    SHEN JQ, 2003, PART PART SYST CHAR, V20, P250
147954    SHEN JQ, 2003, PART PART SYST CHAR, V20, P94
147955    SHEN JQ, 2005, PART PART SYST CHAR, V22, P24
147956 NR 8
147957 TC 0
147958 SN 0146-9592
147959 J9 OPTICS LETTERS
147960 JI Opt. Lett.
147961 PD AUG 15
147962 PY 2005
147963 VL 30
147964 IS 16
147965 BP 2098
147966 EP 2100
147967 PG 3
147968 SC Optics
147969 GA 953JO
147970 UT ISI:000231072700016
147971 ER
147972 
147973 PT S
147974 AU Zeng, YW
147975    Peng, LM
147976    Mao, XM
147977    Zeng, XQ
147978    Ding, WJ
147979 TI A new low GWP protective atmosphere containing HFC-152a for molten
147980    magnesium against ignition
147981 SO MAGNESIUM - SCIENCE, TECHNOLOGY AND APPLICATIONS
147982 SE MATERIALS SCIENCE FORUM
147983 DT Article
147984 DE protective atmosphere; SF6; HFC-152a
147985 AB Sulphur hexafluoride (SF6) is widely used by the magnesium industry as
147986    a protective atmosphere. It has been demonstrated that SF6 prevents
147987    molten magnesium from further oxidation by reacting with magnesium to
147988    make the surface film on the magnesium melt denser. However, due to its
147989    high greenhouse effect (GWP=23900), the alternatives of SF6 must be
147990    sought. In this paper, 1,1-difluoroethane (commercially named
147991    HFC-152a), whose GWP value is only 140 and far lower than that of SF6,
147992    was tested to check its capacity of ignition-proof and
147993    further-oxidation-proof. Similar to SF6, the melt's surface film formed
147994    in the protective atmosphere containing HFC-152a has a shiny metallic
147995    appearance. The surface film's microstructure has been characterized
147996    with X-ray diffraction (XRD) and scanning electron microscopy (SEM).
147997    XRD's results showed that the film contains only MgO and MgF2 phases
147998    while SEM showed their morphologies are uniform.
147999 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
148000    Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China.
148001 RP Zeng, YW, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
148002    China.
148003 EM zengyiwen@126.com
148004    plm616@sjtu.edu.cn
148005    xmmao@public6.sta.net.cn
148006    xgzeng@sjtu.edu.cn
148007 CR AARSTAD K, 2003, P MAGN TECHN, P5
148008    BURGESS DR, 1996, PROG ENERG COMBUST, V21, P453
148009    CASHION SP, 1998, THESIS U QUEENSLAND
148010    COULING SL, 1977, LIGHT MET AGE, P12
148011    KING JF, 2003, MAGNESIUM ELEKT SWIN, P10
148012    LI LH, 2003, ENV REGRIGENTS FLUOR
148013    PETTERSEN G, 2002, MAT SCI ENG A-STRUCT, V332, P285
148014    RICKETTS NJ, 2001, P MAGN TECHN 2001 HR, P31
148015 NR 8
148016 TC 0
148017 SN 0255-5476
148018 J9 MATER SCI FORUM
148019 PY 2005
148020 VL 488-489
148021 BP 73
148022 EP 76
148023 PG 4
148024 GA BCO26
148025 UT ISI:000230390900015
148026 ER
148027 
148028 PT J
148029 AU Chen, LQ
148030    Zhao, WJ
148031 TI A conserved quantity and the stability of axially moving nonlinear beams
148032 SO JOURNAL OF SOUND AND VIBRATION
148033 DT Article
148034 ID TRAVELING BEAM; ENERGETICS; VIBRATION; DYNAMICS; CONTINUA
148035 AB Free nonlinear transverse vibration is investigated for an axially
148036    moving beam modeled by an integro-partial-differential equation. Based
148037    on the equation, a conserved quantity is defined and confirmed for
148038    axially moving beams with pinned or clamped ends. The conserved
148039    quantity is applied to demonstrate the Lyapunov stability of the
148040    straight equilibrium configuration in transverse nonlinear of beam with
148041    a low axial speed. (c) 2005 Elsevier Ltd. All rights reserved.
148042 C1 Shanghai Jiao Tong Univ, Dept Mech Engn, Shanghai 200030, Peoples R China.
148043    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
148044 RP Chen, LQ, Shanghai Jiao Tong Univ, Dept Mech Engn, Shanghai 200030,
148045    Peoples R China.
148046 EM lqchen@online.sh.cn
148047 CR ABRATE S, 1992, MECH MACH THEORY, V27, P645
148048    BARAKAT R, 1968, J ACOUST SOC AM, V43, P533
148049    CHAKRABORTY G, 1999, INT J NONLINEAR MECH, V34, P655
148050    CHAKRABORTY G, 2000, J SOUND VIB, V236, P277
148051    CHEN LQ, 2004, J VIB ACOUST, V126, P452
148052    CHEN LQ, 2005, J ACOUST SOC AM, V117, P55
148053    LEE SY, 1997, J SOUND VIB, V204, P735
148054    OZ HR, 2001, INT J NONLINEAR MECH, V36, P107
148055    PELLICANO F, 1997, INT J NONLINEAR MECH, V32, P691
148056    PELLICANO F, 2000, J VIB ACOUST, V122, P21
148057    PELLICANO F, 2002, J SOUND VIB, V258, P31
148058    RENSHAW AA, 1998, J VIB ACOUST, V120, P634
148059    TABARROK B, 1974, J FRANKLIN I, V297, P201
148060    THURMAN AL, 1969, J APPLIED MECHANICS, V36, P83
148061    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
148062    WICKERT JA, 1989, J ACOUST SOC AM, V85, P1365
148063    WICKERT JA, 1992, INT J NONLINEAR MECH, V27, P503
148064    ZHU WD, 2000, J VIB ACOUST, V122, P295
148065 NR 18
148066 TC 0
148067 SN 0022-460X
148068 J9 J SOUND VIB
148069 JI J. Sound Vibr.
148070 PD SEP 6
148071 PY 2005
148072 VL 286
148073 IS 3
148074 BP 663
148075 EP 668
148076 PG 6
148077 SC Engineering, Mechanical; Acoustics; Mechanics
148078 GA 952AX
148079 UT ISI:000230974800014
148080 ER
148081 
148082 PT J
148083 AU Feng, XF
148084    Tian, ZF
148085    Dai, SQ
148086 TI Numerical solution of the incompressible Navier-Stokes equations with
148087    exponential type schemes
148088 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
148089 DT Article
148090 DE exponential type; Navier-Stokes equations; driven cavity; velocity
148091    profile
148092 ID DRIVEN-CAVITY PROBLEM; FLOW; SIMULATION
148093 AB A new exponential type finite-difference scheme of second-order
148094    accuracy for solving the unsteady incompressible Navier-Stokes equation
148095    is presented. The driven flow in a square cavity is used as the model
148096    problem. Numerical results for various Reynolds numbers are given, and
148097    are in good agreement with those presented by Ghia et al. ( Ghia, U.,
148098    Ghia, K. N. and Shin, C. T., 1982, High-Resolutions for incompressible
148099    flow using the Navier-Stokes equations and a multi-grid method. Journal
148100    of Computational Physics, 48, 387-411.).
148101 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
148102    Ningxia Univ, Sch Math & Comp Sci, Yinchuan 750021, Peoples R China.
148103 RP Feng, XF, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
148104    200072, Peoples R China.
148105 EM xiufang-feng@yahoo.com.cn
148106 CR AUTERI F, 2002, J COMPUT PHYS, V183, P1
148107    BARRAGY E, 1997, COMPUT FLUIDS, V26, P453
148108    EVANS DJ, 1983, INT J COMPUT MATH, V14, P325
148109    EVANS DJ, 1983, INT J COMPUT MATH, V14, P73
148110    FENG XF, 2002, J NINGXIA U NATURAL, V23, P210
148111    GE YB, 2003, THESIS U SHANGHAI SC
148112    GHIA U, 1982, J COMPUT PHYS, V48, P387
148113    GUO DX, 2000, APPL NUMER MATH, V35, P307
148114    GUPTA MM, 1991, J COMPUT PHYS, V93, P343
148115    GUSTAFSON K, 1995, MATH COMPUT MODEL, V22, P57
148116    HOU SL, 1995, J COMPUT PHYS, V118, P329
148117    KIM J, 1985, J COMPUT PHYS, V59, P308
148118    LIU CH, 2001, COMPUT METHOD APPL M, V190, P4301
148119    LU JF, 1994, J NUMER METH COMP AP, V15, P284
148120    MEI R, 1986, COMPUT FLUIDS, V14, P239
148121    NATARAJAN R, 1992, J COMPUT PHYS, V100, P384
148122    PEACEMAN DW, 1955, J SOC IND APPL MATH, V3, P28
148123    SOH WY, 1988, J COMPUT PHYS, V79, P113
148124    TIAN ZF, 2000, J ENG MATH, V17, P65
148125    ZHANG J, 2003, COMPUT MATH APPL, V45, P43
148126 NR 20
148127 TC 0
148128 SN 0020-7160
148129 J9 INT J COMPUT MATH
148130 JI Int. J. Comput. Math.
148131 PD SEP
148132 PY 2005
148133 VL 82
148134 IS 9
148135 BP 1167
148136 EP 1176
148137 PG 10
148138 SC Mathematics, Applied
148139 GA 954NV
148140 UT ISI:000231162700011
148141 ER
148142 
148143 PT J
148144 AU Xu, HB
148145    Xu, W
148146    Chu, YW
148147    Wang, Y
148148    Xiong, SD
148149 TI Single B or T-cell epitope-based DNA vaccine using modified vector
148150    induces specific immune response against hepadnavirus
148151 SO IMMUNOLOGY LETTERS
148152 DT Article
148153 DE DNA vaccine; T-cell epitope; B-cell epitope; hepadnavirus
148154 ID PLASMACYTOID DENDRITIC CELLS; CPG OLIGODEOXYNUCLEOTIDES INDUCE;
148155    PRE-S-PROTEIN; IMMUNOSTIMULATORY DNA; LYMPHOCYTE-RESPONSES;
148156    CARCINOEMBRYONIC ANTIGEN; MULTIPLE-EPITOPES; EARLY GENE; VIRUS;
148157    IMMUNIZATION
148158 AB Epitope-based DNA vaccine is an effective and powerful approach against
148159    a variety of pathogens or tumors. In present study, we reconstructed a
148160    vector that could effectively express short B and T-cell epitope of
148161    duck/hepatitis B virus, and investigated the role of the epitope-based
148162    DNA vaccination. The pUC19 was modified by inserting the compact
148163    transient framework (CTF), including HCMV IE1 promoter, enhancer, Kozak
148164    sequence, dual stop codon and 3' terminal bovine growth hormone
148165    terminal signal and so on. This modified vector was designated pEC(K)
148166    and supposed to effectively express short peptide. A well-defined
148167    single B-cell and T-cell epitope encoding gene of duck/hepatitis B
148168    virus has been synthesized as candidate epitope and cloned into pEC(K)
148169    plasmid, respectively. Transfection of the recombinant DNA into C2C12
148170    cell showed that modified plasmid could effectively express both the
148171    single B-cell and T-cell short epitope in the culture supernatant as
148172    confirmed by dot immunoblot assay (DIA). The recombinant single B and
148173    T-cell epitope-based DNA vaccine was administrated to C57BL/6 mice and
148174    could greatly induce specific humoral and CTL response. In addition,
148175    the specific antibody against B epitope could specifically bind to the
148176    DHBV particles. This report demonstrated that single epitope-based DNA
148177    vaccine using modified plasmid vector pECK could induce effective
148178    specific immune responses and could be of great use for DNA vaccines.
148179    (c) 2005 Elsevier B.V. All rights reserved.
148180 C1 Fudan Univ, Shanghai Med Coll, Dept Immunol, Shanghai 200032, Peoples R China.
148181    Fudan Univ, Shanghai Med Coll, Minist Educ, Key Lab Mol Med, Shanghai 200032, Peoples R China.
148182    Shanghai Univ, Div Immunol, E Inst, Shanghai 200025, Peoples R China.
148183 RP Xiong, SD, Fudan Univ, Shanghai Med Coll, Dept Immunol, Shanghai
148184    200032, Peoples R China.
148185 EM sdxiongfd@126.com
148186 CR AUTRAN B, 2004, SCIENCE, V305, P205
148187    BAZHAN SI, 2004, VACCINE, V22, P1672
148188    BERZOFSKY JA, 2004, J CLIN INVEST, V113, P1515
148189    CHAKRABARTI R, 2004, VACCINE, V22, P1199
148190    CHAPMAN BS, 1991, NUCLEIC ACIDS RES, V19, P3979
148191    CHASSOT S, 1993, VIROLOGY, V192, P217
148192    CONRY RM, 2002, CLIN CANCER RES, V8, P2782
148193    DIKOPOULOS N, 2004, HEPATOLOGY, V40, P300
148194    GURUNATHAN S, 2000, ANNU REV IMMUNOL, V18, P927
148195    HINODA K, 2004, VACCINE, V22, P3676
148196    HUBERT FX, 2004, J IMMUNOL, V172, P7485
148197    JAKOB T, 1998, J IMMUNOL, V161, P3042
148198    KOCK J, 1993, J VIROL, V67, P4867
148199    KRIEG AM, 1995, NATURE, V374, P546
148200    LIPFORD GB, 1997, EUR J IMMUNOL, V27, P2340
148201    LIPFORD GB, 1997, EUR J IMMUNOL, V27, P3420
148202    LOI PK, 1997, PEPTIDES, V18, P749
148203    MANCINIBOURGINE M, 2004, HEPATOLOGY, V40, P874
148204    MOSEMAN EA, 2004, J IMMUNOL, V173, P4433
148205    POECK H, 2004, BLOOD, V103, P3058
148206    RODRIGUEZ F, 1998, J VIROL, V72, P5174
148207    ROSSET MB, 2004, J IMMUNOL, V172, P5168
148208    SATO Y, 1996, SCIENCE, V273, P352
148209    SONG K, 2000, GENE THER, V7, P481
148210    SUBBRAMANIAN RA, 2003, J VIROL, V77, P10113
148211    TAKESHITA S, 2000, CELL IMMUNOL, V206, P101
148212    TUTTLEMAN JS, 1986, J VIROL, V58, P17
148213    ULMER JB, 1993, SCIENCE, V259, P1745
148214    VIGLIANTI GA, 2003, IMMUNITY, V19, P837
148215    VOLLMER J, 2004, IMMUNOLOGY, V113, P212
148216    WEN YM, 1990, CHIN J VIROL, V6, P145
148217    WEN YM, 1990, J GEN VIROL, V71, P2467
148218    WEN YM, 1994, J GEN VIROL 2, V75, P335
148219    WILSON CC, 2003, J IMMUNOL, V171, P5611
148220    YE M, 2004, J VIROL, V78, P11233
148221    YUASA S, 1991, VIROLOGY, V181, P14
148222    ZHANG HY, 2003, VACCINE, V21, P4704
148223    ZHANG W, 1988, CHIN J MICROBIOL IMM, V3, P258
148224 NR 38
148225 TC 0
148226 SN 0165-2478
148227 J9 IMMUNOL LETT
148228 JI Immunol. Lett.
148229 PD JUL 15
148230 PY 2005
148231 VL 99
148232 IS 2
148233 BP 186
148234 EP 192
148235 PG 7
148236 SC Immunology
148237 GA 952AB
148238 UT ISI:000230972400007
148239 ER
148240 
148241 PT J
148242 AU Lv, S
148243    Zhang, JP
148244    Wu, J
148245    Zheng, XJ
148246    Chu, YW
148247    Xiong, SD
148248 TI Origin and anti-tumor effects of anti-dsDNA autoantibodies in cancer
148249    patients and tumor-bearing mice
148250 SO IMMUNOLOGY LETTERS
148251 DT Article
148252 DE anti-dsDNA autoantibodies; tumor functional affinity; systemic lupus
148253    erythematosus (SLE); apoptosis; DNA
148254 ID SYSTEMIC-LUPUS-ERYTHEMATOSUS; DOUBLE-STRANDED DNA; ANTINUCLEAR
148255    AUTOANTIBODIES; FUNCTIONAL AFFINITY; ANTIBODIES; CELLS; IMMUNIZATION;
148256    PENETRATION; EXPRESSION; INDUCTION
148257 AB In the present investigation, we detected anti-dsDNA autoantibodies in
148258    cancer patients and modeled the production of anti-dsDNA autoantibodies
148259    by inoculating tumors in BALB/c mice. Moreover, induction of anti-dsDNA
148260    autoantibodies by immunization with inactivated tumor cells and their
148261    DNA indicated that DNA of tumor cells was probably the primary antigen,
148262    which was supported by the significantly increasing levels of sera free
148263    DNA in cancer patients and tumor-bearing mice. cELISA and indirect
148264    immunofluorescence assay showed that the anti-dsDNA autoantibodies
148265    could bind to the Surface components of tumor cells. In vitro assay
148266    showed that immunosera at week 6 from immunized mice displayed
148267    significant cytotoxicity to tumor cells compared to that of negative
148268    control, but no cytotoxicity mediated by immunosera at week 22 was
148269    observed. In addition, by flow cytometry and electrophoresis of
148270    fragmented DNA, the cytotoxicity might probably be mediated by
148271    apoptosis. Our data also showed that the ability of the anti-dsDNA
148272    autoantibodies to induce apoptosis of SP2/0 and Wehi 164 cells was
148273    significantly correlated (r= 0.990, p < 0.01 and r= 0.901, p < 0.05)
148274    with their functional affinity. In vivo, the growth of solid tumors was
148275    significantly inhibited in the immunized mice inoculated directly with
148276    SP2/0 and Wehi 164 cells, or in the naive mice which were inoculated
148277    with SP2/0 cells preincubated with immunosera containing anti-dsDNA
148278    autoantibodies. In conclusion, we demonstrated the origin of anti-dsDNA
148279    autoantibodies in cancer patients and tumor-bearing mice. And our data
148280    also showed that these autoantibodies revealed anti-tumor effect by
148281    inducing apoptosis. (c) 2005 Published by Elsevier B.V.
148282 C1 Fudan Univ, Shanghai Med Coll, Dept Immunol, Shanghai 200032, Peoples R China.
148283    Fudan Univ, Shanghai Med Coll, Minist Educ, Key Lab Mol Med, Shanghai 200032, Peoples R China.
148284    Shanghai Univ, E Inst, Div Immunol, Shanghai 200025, Peoples R China.
148285 RP Xiong, SD, Fudan Univ, Shanghai Med Coll, Dept Immunol, 138 Yixueyuan
148286    Rd, Shanghai 200032, Peoples R China.
148287 EM sdxiongfd@126.com
148288 CR ALARCONSEGOVIA D, 1996, IMMUNOL TODAY, V17, P163
148289    ALBERDI F, 2001, CLIN IMMUNOL, V98, P293
148290    BLAES F, 2000, ANN THORAC SURG, V69, P254
148291    BLATT NB, 1999, PHARMACOL THERAPEUT, V83, P125
148292    CERUTTI ML, 2001, J BIOL CHEM, V276, P12769
148293    COHEN BE, 1990, FEBS LETT, V259, P286
148294    DAVIS DW, 2000, J EXP MED, V192, P857
148295    DEVEY ME, 1988, J AUTOIMMUN, V1, P483
148296    DEVEY ME, 1988, J IMMUNOL METHODS, V106, P119
148297    DUBROVSKAYA VV, 2003, BIOCHEMISTRY-MOSCOW+, V68, P1081
148298    HALE GM, 1986, SCAND J RHEUMATOL, V15, P243
148299    HANAHAN D, 2000, CELL, V100, P57
148300    IAKOUBOV L, 1995, IMMUNOL LETT, V47, P147
148301    IMRAN A, 2003, INDIAN J MED SCI, V57, P113
148302    JANG YJ, 2003, CELL MOL LIFE SCI, V60, P309
148303    KOMATSU N, 2003, J BIOL CHEM, V278, P6411
148304    KOZYR AV, 2002, IMMUNOL LETT, V80, P41
148305    LIDER O, 1987, P NATL ACAD SCI USA, V84, P4577
148306    LU L, 1998, CHINESE MED J-PEKING, V111, P524
148307    MOENS U, 1995, P NATL ACAD SCI USA, V92, P12393
148308    NICOLETTI I, 1991, J IMMUNOL METHODS, V139, P271
148309    PISETSKY DS, 2001, CLIN IMMUNOL, V100, P157
148310    RAHMAN A, 2002, LUPUS, V11, P776
148311    RAHMAN MAA, 1998, J AUTOIMMUN, V11, P661
148312    REKVIG OP, 1989, IMMUNOL INVEST, V18, P657
148313    REKVIG OP, 2003, ARTHRITIS RHEUM, V48, P300
148314    RUIZARGUELLES A, 1998, J AUTOIMMUN, V11, P547
148315    SANCHEZ B, 1993, HUM ANTIBODIES HYBRI, V4, P198
148316    SHARMA A, 2001, J AUTOIMMUN, V16, P479
148317    SHUSTER AM, 1992, SCIENCE, V256, P665
148318    SUNDAR K, 2000, FASEB J, V15, A1085
148319    SYRIGOS KN, 2000, ANTICANCER RES, V20, P4351
148320    TORCHILIN VP, 2001, TRENDS IMMUNOL, V22, P424
148321    TRAN TT, 2003, CLIN IMMUNOL, V109, P278
148322    TURNBULL AR, 1978, BRIT J CANCER, V38, P461
148323    VERTHELYI D, 2002, J IMMUNOL, V168, P1659
148324 NR 36
148325 TC 0
148326 SN 0165-2478
148327 J9 IMMUNOL LETT
148328 JI Immunol. Lett.
148329 PD JUL 15
148330 PY 2005
148331 VL 99
148332 IS 2
148333 BP 217
148334 EP 227
148335 PG 11
148336 SC Immunology
148337 GA 952AB
148338 UT ISI:000230972400011
148339 ER
148340 
148341 PT J
148342 AU Wang, Y
148343    Yu, XL
148344    Yin, ST
148345 TI Study on the morphology of lithium formate monohydrate (HCOOLi center
148346    dot H2O) crystal by the Periodic Bond Chain theory
148347 SO CRYSTAL RESEARCH AND TECHNOLOGY
148348 DT Article
148349 DE LFM crystal; morphology; PBC theory; surface anisotropy factor
148350 ID HABIT CONTROLLING FACTOR; ATTACHMENT ENERGY
148351 AB The theoretical growth morphology of Lithium Formate Monohydrate (LFM)
148352    had been derived by means of the Periodic Bond Chain (PBC) theory and
148353    compared to that of synthetic crystals. From this derivation, the
148354    surface anisotropy factors (xi hkl) for the different faces were
148355    obtained. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
148356 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
148357    Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China.
148358    Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Hefei 230031, Peoples R China.
148359 RP Wang, Y, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
148360 EM yanwang@mail.shu.edu.cn
148361 CR BENNEMA P, 1973, CRYSTAL GROWTH INTRO
148362    GRIMBERGEN RFP, 1998, ACTA CRYSTALLOGR A 4, V54, P491
148363    HARTMAN P, 1955, ACTA CRYSTALLOGR, V8, P49
148364    HARTMAN P, 1955, ACTA CRYSTALLOGR, V8, P521
148365    HARTMAN P, 1980, J CRYST GROWTH, V49, P145
148366    HARTMAN P, 1980, J CRYST GROWTH, V49, P157
148367    HARTMAN P, 1987, MORPHOLOGY CRYSTALS, CH1
148368    JACKSON KA, 1958, LIQUID METALS SOLIDI
148369    STROM CS, 1997, J CRYST GROWTH, V159, P173
148370    SZEWCZYK J, 1982, J CRYST GROWTH, V14, P60
148371    THOMAS JO, 1975, ACTA CRYSTALLOGR B, V31, P1946
148372 NR 11
148373 TC 0
148374 SN 0232-1300
148375 J9 CRYST RES TECH
148376 JI Cryst. Res. Technol.
148377 PD AUG
148378 PY 2005
148379 VL 40
148380 IS 8
148381 BP 768
148382 EP 772
148383 PG 5
148384 SC Crystallography
148385 GA 952YC
148386 UT ISI:000231041200008
148387 ER
148388 
148389 PT J
148390 AU Duan, WQ
148391    Chen, Z
148392    Liu, ZR
148393 TI Phase transition dynamics of collective decision in scale-free networks
148394 SO CHINESE PHYSICS LETTERS
148395 DT Article
148396 ID SYSTEM; MODEL
148397 AB A strategic collective decision model is introduced to investigate the
148398    role of decision transmission mechanism and interaction networks in
148399    determining the collective decision dynamics. Assuming that agents are
148400    located in a scale-free network and their decisions are interdependent
148401    of each other. In our model, it is found that the effective decision
148402    transmission rate (lambda) over bar exists a threshold (lambda) over
148403    bar (c) = 1, which marks the transition between the two regimes, i.e.
148404    the decision spreading and the decision disappearing in the population.
148405    Furthermore, (lambda) over bar is mainly determined by the decision
148406    transmission mechanism and interaction network's topology.
148407 C1 Shanghai Jiao Tong Univ, Sch Management, Shanghai 200052, Peoples R China.
148408    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
148409 RP Duan, WQ, Shanghai Jiao Tong Univ, Sch Management, Shanghai 200052,
148410    Peoples R China.
148411 EM wenqiduan@126.com
148412 CR ADAMIC LA, 2000, SCIENCE, V287, P2115
148413    BOGUNA M, 2003, PHYS REV LETT, V90
148414    CHI LP, 2003, CHINESE PHYS LETT, V20, P1393
148415    CRUCITTI P, 2003, ARXIVCONDMAT0309141
148416    DAVIS GF, 2003, STRATEGIC ORG, V1, P301
148417    EGUILUZ VM, 2002, PHYS REV LETT, V89
148418    JOO J, 2004, PHYS REV E 2, V69
148419    MORENO Y, 2002, CONDMATY0209474
148420    MORRIS S, 2000, REV ECON STUD, V67, P57
148421    MOTTER AE, 2002, PHYS REV E 2, V66
148422    MOTTER AE, 2004, ARXIVCONDMAT0401074
148423    OLINKY R, 2004, PHYS REV E, V70
148424    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
148425    PASTORSATORRAS R, 2002, PHYS REV E 2A, V65
148426    SACHTJEN ML, 2000, PHYS REV E A, V61, P4877
148427    SZAB G, 2004, PHYS REV E, V67
148428    TANIZAWA T, 1920, ARXIVCONDMAT0406567
148429    WANG WN, 2004, CHINESE PHYS LETT, V21, P243
148430    WATTS DJ, 2002, P NATL ACAD SCI USA, V99, P5766
148431    YANG CB, 2004, CHINESE PHYS LETT, V21, P215
148432    YANG WS, CHIN PHYS LETT, V20, P1659
148433    ZHOU T, 2005, CHINESE PHYS LETT, V22, P1072
148434 NR 22
148435 TC 2
148436 SN 0256-307X
148437 J9 CHIN PHYS LETT
148438 JI Chin. Phys. Lett.
148439 PD AUG
148440 PY 2005
148441 VL 22
148442 IS 8
148443 BP 2137
148444 EP 2139
148445 PG 3
148446 SC Physics, Multidisciplinary
148447 GA 953AY
148448 UT ISI:000231049100087
148449 ER
148450 
148451 PT J
148452 AU Xia, GD
148453    Zhou, SM
148454    Zhang, JJ
148455    Zhao, ZW
148456    Zhou, GQ
148457    Xu, J
148458 TI Structure and luminescent properties of Y3Al5O12 : Eu3+ nano-phosphor
148459    by gel combustion synthesis
148460 SO CHINESE JOURNAL OF INORGANIC CHEMISTRY
148461 DT Article
148462 DE sol-gel; combustion; luminescence; YAG : Eu
148463 ID YTTRIUM-ALUMINUM-GARNET; YAG; NANOCRYSTALS; POWDERS; SIZE; ION
148464 AB Y3AlO12:Eu nanophosphors were synthesized by a gel combustion method.
148465    The structure of phosphors was characterized by XRD and FFIR. YAG phase
148466    came to occur when YAG:Eu precursors were sintered at 800 degrees C,
148467    although the phase was mainly amorphous. The organic groups pyrolyzed
148468    completely and pure YAG phase was obtained in the samples sintered at
148469    900 degrees C. In the formation of YAG phase, no intermediate phases
148470    such as YAP and YAM were detected. Both D-5(0) -> F-7(1), orange and
148471    D-5(0) -> F-7(2) red emission could be observed for all the sintered
148472    samples. However, the emission of amorphous samples was greatly
148473    different from that of crystalline ones. The former was mainly D-5(0)
148474    -> F-7(2), red emission, but the latter was D-5(0) -> F-7(1), orange
148475    emission. As sintering temperature rises, the ratio of orange to red
148476    for phosphors increases. Eu could be doped up to 8% in YAG host
148477    lattice, and fluorescence quenching was absent. It indicated that the
148478    gel combustion synthesis method can increase emission intensity and
148479    quenching concentration due to a good distribution of Eu3+ activators
148480    in Y3Al5O12 matrix.
148481 C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
148482    Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China.
148483    Shanghai Univ, Testing & Anal Ctr, Shanghai 200436, Peoples R China.
148484 RP Zhou, SM, Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai
148485    201800, Peoples R China.
148486 EM zhousm@mail.siom.ac.cn
148487 CR APTE P, 1992, J MATER RES, V7, P706
148488    DHANARAJ J, 2004, CHEM PHYS LETT, V387, P23
148489    GUO XZ, 2004, J MATER CHEM, V14, P1288
148490    HRENIAK D, 2002, J ALLOY COMPD, V341, P183
148491    JIA CJ, 2004, APPL PHYS LETT, V84, P5305
148492    KAKADE MB, 2003, J ALLOY COMPD, V350, P123
148493    LI YX, 2003, CHINESE J INORG CHEM, V19, P1169
148494    LU CH, 2004, J EUR CERAM SOC, V24, P3723
148495    MCKITTRICK J, 1994, MATER RES SOC S P, V348, P519
148496    NELSON JA, 2003, CHEM MATER, V15, P688
148497    SHI SK, 2001, J ALLOY COMPD, V327, P82
148498    SHI SK, 2002, CHIN J INORG CHEM, V18, P431
148499    SUN ZH, 2004, J ALLOY COMPD, V379, L1
148500    TANNER PA, 2003, PHYS STATUS SOLIDI, V2, P403
148501    WEN L, 2004, J EUR CERAM SOC, V24, P2681
148502    YAN CH, 2003, APPL PHYS LETT, V82, P3511
148503    YAN QZ, 2005, ACTA PHYS-CHIM SIN, V21, P57
148504    ZHANG XD, 2004, J ALLOY COMPD, V372, P300
148505    ZHOU Y, 2004, J ALLOY COMPD, V375, P93
148506    ZHOU YH, 2002, OPT MATER, V20, P13
148507    ZYCH E, 2003, J PHYS-CONDENS MAT, V15, P5145
148508 NR 21
148509 TC 0
148510 SN 1001-4861
148511 J9 CHIN J INORG CHEM
148512 JI Chin. J. Inorg. Chem.
148513 PD AUG
148514 PY 2005
148515 VL 21
148516 IS 8
148517 BP 1203
148518 EP 1207
148519 PG 5
148520 SC Chemistry, Inorganic & Nuclear
148521 GA 952EL
148522 UT ISI:000230985100018
148523 ER
148524 
148525 PT J
148526 AU Chen, XB
148527    Hu, XJ
148528    Sun, YF
148529    Chen, JC
148530    Zhu, RR
148531    Sang, YK
148532    Liao, DZ
148533    Zhu, SJ
148534 TI Magnetic and catalytic properties of new Schiff base dinuclear complexes
148535 SO CHINESE JOURNAL OF INORGANIC CHEMISTRY
148536 DT Article
148537 DE Schiff base; dinuclear complexes; magnetic exchange; catalysis;
148538    synergism
148539 ID SPECTRAL CHARACTER; MONOOXYGENATION; CYCLOHEXANE; OXIDATION;
148540    METALLOPORPHYRINS; EPOXIDATION; MECHANISM; PHIO
148541 AB This paper reports the catalytic properties of "porphyrin-like" Schiff
148542    base mononuclear complexes MH2L {M=Mn(II), Fe(III)Cl, Cr(III)Cl,
148543    Cu(II), Co(II), Ni(II), Zn(II); L=bis[N, N'-ethylene-2,
148544    2'-(phenylmethylene)bis(3,4-dimethylpyrrole-5-aldimino)]} and dinuclear
148545    complexes MnML [M=Mn(II), Fe(III)Cl, Cr(III)Cl, Cu(III), Co(II),
148546    Ni(II), Zn(II)] for cyelohexane monooxygenation with PhIO and magnetic
148547    properties of the dinuclear complexes. The magnetic investigations (4
148548    similar to 300 K) of the dinuclear complexes revealed that their
148549    antiferromagnetic spin exchange with J ranged from -10.49 to -0.482
148550    cm(-1) except MnZnL and antiferromagnetle spin exchange decreased in
148551    the following order: Mn-II-Cu-II > Mn-II-Ni-II > Mn-II-Mn-II >
148552    Mn-II-Fe-III > Mn-II- Co-III > Mn-II-Cr-III. The results of catalyzed
148553    oxidation of cyclohexane indicated that the catalytic property of the
148554    dinuclear complex was better than that of the corresponding mononuclear
148555    complex. It was found that there was the synergism decreased in the
148556    order: Mn-Fe > Mn-Cr > Mn-Cu > Mn-Mn > Mn-Co > Mn-Ni > Mn-Zn. It seems
148557    that this synergism increases with the increase of the number of
148558    unpaired d electrons and the magnetic exchange between the two metals
148559    in these dinuclear complexes.
148560 C1 Shanghai Normal Univ, Coll Biotechnol & Environm Sci, Shanghai 200234, Peoples R China.
148561    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
148562    Nankai Univ, Dept Chem, Tianjin 300071, Peoples R China.
148563 RP Chen, XB, Shanghai Normal Univ, Coll Biotechnol & Environm Sci,
148564    Shanghai 200234, Peoples R China.
148565 EM xbchen@shtu.edu.cn
148566 CR BENELLI C, 1984, INORG CHEM, V23, P3074
148567    CHEN XB, 1995, CHEM J CHINESE U, V16, P1051
148568    CHEN XB, 1998, CHEM J CHINESE U, V19, P1065
148569    CHEN XB, 1998, CHEM J CHINESE U, V19, P385
148570    CHEN XB, 1999, CHEM J CHINESE U, V20, P1238
148571    CHEN XB, 2000, ACTA CHIM SINICA, V58, P971
148572    CHEN XB, 2000, CHEM J CHINESE U, V21, P1684
148573    CHEN XB, 2001, CHEM J CHINESE U, V22, P569
148574    CHEN XB, 2002, CHEM J CHINESE U, V23, P1291
148575    CHEN XB, 2002, CHINESE J ORG CHEM, V22, P145
148576    CHEN XB, 2003, CHEM J CHINESE U, V24, P1435
148577    GUO CC, 2000, J MOL CATAL A-CHEM, V157, P31
148578    HAY PJ, 1975, J AM CHEM SOC, V97, P4884
148579    JOSIE H, 1991, J CHEM EDUC, V68, P59
148580    LUCAS HJ, 1955, ORGANIC SYTHESES, V3, P482
148581    MANSUY D, 1993, COORDIN CHEM REV, V125, P129
148582    MEUNIER B, 1992, CHEM REV, V92, P1411
148583    PUNNIYAMURTHY T, 1996, PURE APPL CHEM, V68, P619
148584    RONCO S, 1990, INORG CHEM, V29, P3961
148585    SIDDALL TL, 1983, J CHEM SOC CHEM COMM, P1185
148586    SMEGAL JA, 1983, J AM CHEM SOC, V105, P3515
148587    SRINIVASAN K, 1986, J AM CHEM SOC, V108, P2309
148588 NR 22
148589 TC 0
148590 SN 1001-4861
148591 J9 CHIN J INORG CHEM
148592 JI Chin. J. Inorg. Chem.
148593 PD AUG
148594 PY 2005
148595 VL 21
148596 IS 8
148597 BP 1208
148598 EP 1212
148599 PG 5
148600 SC Chemistry, Inorganic & Nuclear
148601 GA 952EL
148602 UT ISI:000230985100019
148603 ER
148604 
148605 PT J
148606 AU Guo, HW
148607    Chen, MY
148608 TI Least-squares algorithm for phase-stepping interferometry with an
148609    unknown relative step
148610 SO APPLIED OPTICS
148611 DT Article
148612 ID SHIFTING INTERFEROMETRY; FRINGE PATTERNS; EXTRACTION
148613 AB A pointwise least-squares phase-stepping algorithm with an unknown
148614    relative phase step is proposed. In phase-stepping interferometry the
148615    recorded temporal intensity sequence is a discrete sinusoidal signal
148616    biased by a direct-current component. Its value at a certain time can
148617    be predicted from its three past samples by use of a recursive formula.
148618    Based on this linear prediction property, an unbiased least-squares
148619    estimator is deduced to determine the relative phase step from a
148620    sequence of intensity values, and the result is used to evaluate the
148621    phase value. The validity and performance of this algorithm are
148622    verified by computer simulations. (c) 2005 Optical Society of America.
148623 C1 Shanghai Univ, Lab Appl Opt & Metrol, Shanghai 20072, Peoples R China.
148624 RP Guo, HW, Shanghai Univ, Lab Appl Opt & Metrol, Shanghai 20072, Peoples
148625    R China.
148626 EM hw-guo@yeah.net
148627 CR CAI LZ, 2003, OPT LETT, V28, P1808
148628    CARRE P, 1966, METROLOGIA, V2, P13
148629    CHEN MY, 2000, APPL OPTICS, V39, P3894
148630    CREATH K, 1993, INTERFEROGRAM ANAL, P94
148631    DELEGA XC, 1996, APPL OPTICS, V35, P5115
148632    DOBROIU A, 2002, APPL OPTICS, V41, P2435
148633    FARRELL CT, 1992, MEAS SCI TECHNOL, V3, P953
148634    GONZALEZ RC, 2001, DIGITAL IMAGE PROCES
148635    GREIVENKAMP JE, 1984, OPT ENG, V23, P350
148636    HO HC, 2004, IEEE T SIGNAL PROCES, V52, P1128
148637    KONG IB, 1995, OPT ENG, V34, P183
148638    KREIS TM, 1993, OPT LASER ENG, V19, P221
148639    LADAK HM, 2000, APPL OPTICS, V39, P3266
148640    LAI G, 1991, J OPT SOC AM A, V8, P822
148641    LARKIN KG, 2001, OPT EXPRESS, V9, P236
148642    MORGAN CJ, 1982, OPT LETT, V7, P368
148643    OKADA K, 1991, OPT COMMUN, V84, P118
148644    SOTOILOV G, 1997, OPT LASER ENG, V28, P61
148645    WANG ZY, 2004, OPT LETT, V29, P1671
148646    WEI CL, 1999, OPT ENG, V38, P1357
148647 NR 20
148648 TC 0
148649 SN 0003-6935
148650 J9 APPL OPT
148651 JI Appl. Optics
148652 PD AUG 10
148653 PY 2005
148654 VL 44
148655 IS 23
148656 BP 4854
148657 EP 4859
148658 PG 6
148659 SC Optics
148660 GA 952YP
148661 UT ISI:000231042700007
148662 ER
148663 
148664 PT J
148665 AU Li, X
148666    Ren, ZM
148667    Yu, JB
148668    Wang, H
148669    Deng, K
148670 TI Solidification structure of primary MnBi phase in Bi-Mn alloy under
148671    high magnetic field
148672 SO ACTA METALLURGICA SINICA
148673 DT Article
148674 DE Bi-Mn alloy; high magnetic field; easy magnetization axis; MnBi phase;
148675    alignment
148676 ID CRYSTALLIZATION
148677 AB The influence of high intensity magnetic field on the solidified
148678    structure and behavior of Bi-6%Mn alloy has been investigated
148679    experimentally. The morphology of primary MnBi phase in the alloy
148680    cooled to 360 degrees C from melt and hemi-melt above Curie temperature
148681    at 10 T magnetic field was blade-like and its short axis is the easy
148682    magnetization. Under high intensity magnetic field, the easy
148683    magnetization axis turned to the direction of magnetic field and
148684    aggregated along the direction of magnetic field, and finally formed
148685    lath-like structure. The solidified microstructure of Bi-Mn alloy under
148686    magnetic field was discussed on the base of magnetization and crystal
148687    growth theory.
148688 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
148689 RP Ren, ZM, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R
148690    China.
148691 EM zmrenb@163.com
148692 CR DECARLO JL, 1984, METALL TRANS A, V15, P2155
148693    FARRELL DE, 1987, PHYS REV B, V36, P4025
148694    FENG D, 1998, PHYSICS METAL, V4, P460
148695    GUO X, 1991, J APPL PHYS 2B, V69, P6067
148696    KATSUKI A, 1996, CHEM LETT, P607
148697    MIKELSON AE, 1981, J CRYST GROWTH, V52, P524
148698    MOFFATT WG, 1984, HDB BINARY PHASE DIA, V11, P83
148699    RANGO PD, 1991, NATURE, V349, P770
148700    SASSA K, 1997, J JPN I MET, V61, P1283
148701    SHETTY MN, 1987, J MATER SCI, V22, P1908
148702    WAN DF, 1987, PHYSICS MAGNETISM, P8
148703    WANG H, 2002, ACTA METALL SIN, V38, P41
148704 NR 12
148705 TC 0
148706 SN 0412-1961
148707 J9 ACTA METALL SIN
148708 JI Acta Metall. Sin.
148709 PD JUL
148710 PY 2005
148711 VL 41
148712 IS 7
148713 BP 685
148714 EP 690
148715 PG 6
148716 SC Metallurgy & Metallurgical Engineering
148717 GA 952VG
148718 UT ISI:000231033000003
148719 ER
148720 
148721 PT J
148722 AU Li, XY
148723    Leng, GS
148724 TI Some inequalities about dual mixed volumes of star bodies
148725 SO ACTA MATHEMATICA SCIENTIA
148726 DT Article
148727 DE Brunn-Minkowski theory; star bodies; dual mixed volumes;
148728    Aleksandrov-Fenchel inequality
148729 ID INTERSECTION BODIES; QUERMASSINTEGRALS; ALEKSANDROV
148730 AB The authors establish some inequalities about the dual mixed volumes of
148731    star bodies in R-n. These inequalities are the analogue in the
148732    Brunn-Minkowski theory of the inequalities of Marcus-Lopes and
148733    Bergstrom about symmetric functions of positive reals.
148734 C1 Hunan Normal Univ, Dept Math, Changsha 410081, Peoples R China.
148735    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
148736 RP Li, XY, Hunan Normal Univ, Dept Math, Changsha 410081, Peoples R China.
148737 EM lixy77@sohu.com
148738 CR BALL K, 1991, T AM MATH SOC, V327, P891
148739    BERGSTROM H, 1952, TRIANGLE INEQUALITY
148740    FAN K, 1955, P CAMBRIDGE PHIL SOC, V51, P414
148741    FRADELIZI M, 2003, ISRAEL J MATH, V135, P157
148742    GARDNER RJ, 1994, T AM MATH SOC, V342, P435
148743    GARDNER RJ, 1999, J MATH ANAL APPL, V231, P568
148744    GE X, 2004, ACTA MATH SCI B, V24, P608
148745    GIANNOPOULOS A, 2002, P AM MATH SOC, V130, P2403
148746    KLAIN DA, 1996, ADV MATH, V121, P80
148747    LENG GS, 2001, SCI CHINA SER A, V44, P837
148748    LUTWAK E, 1975, PAC J MATH, V58, P531
148749    LUTWAK E, 1988, ADV MATH, V71, P232
148750    LUTWAK E, 1990, P LOND MATH SOC, V60, P365
148751    SCHNEIDER R, 1993, CONVEX BODIES BRUNN
148752    STANLEY RP, 1981, J COMB THEORY A, V31, P56
148753    ZHANG GY, 1994, ANN MATH, V140, P331
148754    ZHANG GY, 1994, T AM MATH SOC, V345, P777
148755 NR 17
148756 TC 0
148757 SN 0252-9602
148758 J9 ACTA MATH SCI
148759 JI Acta Math. Sci.
148760 PD JUL
148761 PY 2005
148762 VL 25
148763 IS 3
148764 BP 505
148765 EP 510
148766 PG 6
148767 SC Mathematics
148768 GA 952EH
148769 UT ISI:000230984700013
148770 ER
148771 
148772 PT J
148773 AU Liu, TY
148774    Shen, JQ
148775    Zhang, QR
148776 TI First-principles study on the electronic structures and absorption
148777    spectra for the PbWO4 crystal with lead vacancy
148778 SO SOLID STATE COMMUNICATIONS
148779 DT Article
148780 DE PbWO4 crystal; electronic structures; absorption spectra; lead vacancy
148781 ID BAND; ORIGIN
148782 AB The electronic structures and absorption spectra for the perfect PbWO4
148783    (PWO) crystal and the crystal containing lead vacancy V-Pb(2-) have
148784    been calculated using density functional theory code CASTEP with the
148785    lattice structure optimized. The calculated absorption spectra of the
148786    PWO crystal containing v(Pb)(2-) exhibit seven absorption bands peaking
148787    at 1.72 eV (720 nm), 2.16 eV (570 nm), 2.81 eV (440 nm), 3.01 eV (4 10
148788    nm), 3.36 eV (365 nm), 3.70 eV (335 nm) and 4.0 eV (3 10 turn), which
148789    are very close to the experimental values. It predicts that the 330,
148790    360, 420, 500-750 nm absorption bands are related to the existence of
148791    V-Pb(2-) in the PWO crystal. (c) 2005 Elsevier Ltd. All rights reserved.
148792 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
148793 RP Liu, TY, Shanghai Univ Sci & Technol, Coll Sci, 516 JunGon Rd, Shanghai
148794    200093, Peoples R China.
148795 EM liutyyxj@163.corn
148796 CR ABRAHAM Y, 2000, PHYS REV B, V62, P3
148797    EPELBAUM BM, 1997, J CRYST GROWTH, V178, P426
148798    FAN RC, 2001, SPECTROSCOPY SOLID M
148799    FENG XQ, 1997, J INORGANIC MAT, V12, P449
148800    GODBY RW, 1992, TOP APPL PHYS, V69, P51
148801    GRIGORJEVA L, 2000, NUCL INSTRUM METH B, V166, P329
148802    KORZHIK MV, 1996, P INT C IN SCINT THE, P241
148803    LIAO JY, 1997, J INORGANIC MAT, V12, P286
148804    LIN QS, 2001, SOLID STATE COMMUN, V118, P221
148805    LIU TY, 2004, PHYS LETT A, V333, P473
148806    LIU TY, 2004, SOLID STATE COMMUN, V132, P169
148807    MOREAU JM, 1996, J ALLOY COMPD, V238, P46
148808    MOREAU JM, 1999, J ALLOY COMPD, V284, P104
148809    NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311
148810    PAYNE MC, 1992, REV MOD PHYS, V64, P1045
148811    SEGALL MD, 2002, J PHYS-CONDENS MAT, V14, P2717
148812    WAN JF, 2005, PHYSICA B, V355, P172
148813    YANG XP, 2004, PHYS REV B, V69
148814    YE XL, 1999, ACTA PHYS SINICA, V48, P10
148815    ZHANG QR, 2003, PHYS REV B, V68
148816    ZHANG QR, 2004, CHINESE PHYS LETT, V21, P1131
148817    ZHANG Y, 1998, PHYS REV B, V57, P12738
148818 NR 22
148819 TC 1
148820 SN 0038-1098
148821 J9 SOLID STATE COMMUN
148822 JI Solid State Commun.
148823 PD AUG
148824 PY 2005
148825 VL 135
148826 IS 6
148827 BP 382
148828 EP 385
148829 PG 4
148830 SC Physics, Condensed Matter
148831 GA 951MF
148832 UT ISI:000230933900009
148833 ER
148834 
148835 PT J
148836 AU Zhang, AL
148837 TI Regge-trajectory analysis of D-SJ(star)(2317)(+/-), D-SJ(2460)(+/-) and
148838    D-SJ(2632)(+) mesons
148839 SO PHYSICAL REVIEW D
148840 DT Article
148841 ID HEAVY-QUARK SYMMETRY; LIGHT MESONS; RADIAL EXCITATION; WILSON LOOP;
148842    SPECTRUM; MODEL; QCD; SELEX; D-SJ(+)(2632); RESONANCES
148843 AB Status of investigations of the new observed charmed strange mesons
148844    D-SJ(star)(2317)(+/-), D-SJ(2460)(+/-) and D-SJ(2632)(+) is simply
148845    reviewed. A systemic classification to these states with Regge
148846    trajectories (RTs) was made. We found that D-SJ(star)(2317)(+/-) and
148847    D-SJ(2460)(+/-) are reasonable to be arranged as (0(+),1(+)) states,
148848    but D-SJ(2632)(+) seems not possible to be an orbital excited tensor
148849    particle. As a byproduct, the nonstrange charmed mesons including
148850    D-1'(2427) and D-star(2637)(+) were analyzed also.
148851 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
148852 RP Zhang, AL, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
148853 CR ABE K, 2004, PHYS REV D, V69
148854    ABREU P, 1998, PHYS LETT B, V426, P231
148855    ANISOVICH AV, 2000, PHYS REV D, V62
148856    AUBERT B, 2003, PHYS REV LETT, V90
148857    AUBERT B, 2004, PHYS REV D, V69
148858    BADALIAN AM, 2002, PHYS REV D, V66
148859    BADALIAN AM, 2002, PHYS REV D, V66
148860    BALI GS, 2003, PHYS REV D, V68
148861    BARDEEN WA, 1994, PHYS REV D, V49, P409
148862    BARDEEN WA, 2003, PHYS REV D, V68
148863    BARNES T, 2003, PHYS REV D, V68
148864    BARNES T, 2004, PHYS LETT B, V600, P223
148865    BESSON D, 2003, PHYS REV D, V68
148866    BEVEREN E, 2003, PHYS REV LETT, V91
148867    BEVEREN E, 2004, EUR PHYS J C, V32, P493
148868    BEVEREN E, 2004, PHYS REV LETT, V93
148869    BRISUDOVA MM, 2000, PHYS REV D, V61
148870    BRISUDOVA MM, 2003, PHYS REV D, V67
148871    BROUDER T, 2004, PHYS LETT B, V578, P365
148872    BURAKOVSKY L, 1997, PHYS REV D, V56, P7124
148873    BURAKOVSKY L, 1998, PHYS REV D, V58
148874    CAHN RN, 2003, PHYS REV D, V68
148875    CALDERINI G, HEPEX0405081 BABAR C
148876    CASALBUONI R, 1992, PHYS LETT B, V292, P371
148877    CASALBUONI R, 1993, PHYS LETT B, V299, P139
148878    CHAO KT, 2004, PHYS LETT B, V599, P43
148879    CHEN YQ, 2004, PHYS REV LETT, V93
148880    CHEW GF, 1962, PHYS REV LETT, V8, P41
148881    COLANGELO P, 2003, PHYS LETT B, V570, P180
148882    COLANGELO P, 2004, MOD PHYS LETT A, V19, P2083
148883    DAI YB, 2003, PHYS REV D, V68
148884    DATTA A, 2003, PHYS LETT B, V567, P273
148885    DEANDREA A, 1998, PHYS REV D, V58
148886    DEFAZIO F, HEPPH0407296
148887    DOUGALL A, 2003, PHYS LETT B, V569, P41
148888    EBERT D, 1995, NUCL PHYS B, V434, P619
148889    EBERT D, 1996, PHYS LETT B, V388, P154
148890    EBERT D, 1998, PHYS REV D, V57, P5663
148891    EBERT G, 1999, PHYS REV D, V59
148892    EIDELMAN S, 2004, PHYS LETT B, V592, P1
148893    EVDOKIMOV AV, 2004, PHYS REV LETT, V93
148894    FILIPPONI S, 1998, PHYS REV D, V58
148895    FILIPPONI S, 1998, PHYS REV LETT, V80, P1838
148896    FIORE R, 2004, PHYS REV D, V70
148897    GODFREY S, 1985, PHYS REV D, V32, P189
148898    GODFREY S, 1991, PHYS REV D, V43, P1679
148899    HEIN J, 2000, PHYS REV D, V62
148900    HIORTH A, 2002, PHYS REV D, V66
148901    INOPIN A, 2001, PHYS REV D, V63
148902    ISGUR N, 1998, PHYS REV D, V57, P4041
148903    KAIDALOV AB, 2000, PHYS ATOM NUCL+, V63, P1428
148904    KALASHNIKOVA YS, 2000, PHYS LETT B, V492, P91
148905    KALASHNIKOVA YS, 2001, PHYS REV D, V64
148906    KALASHNIKOVA YS, 2002, PHYS LETT B, V530, P117
148907    KOLOMEITSEV EE, 2004, PHYS LETT B, V582, P39
148908    KROKOVNY P, 2003, PHYS REV LETT, V91
148909    LEWIS R, 2000, PHYS REV D, V62
148910    LIU YR, 2004, PHYS REV D, V70
148911    MAIANI L, 2004, PHYS REV D, V70
148912    MELIKHOV D, 1999, PHYS LETT B, V446, P336
148913    MEYER HB, 2003, NUCL PHYS B, V668, P111
148914    MIKAMI Y, 2004, PHYS REV LETT, V92
148915    NICOLESCU B, HEPPH0407088
148916    NOWAK MA, 1993, PHYS REV D, V48, P4370
148917    NOWAK MA, 2005, INT J MOD PHYS A, V20, P229
148918    PAGE PR, 1999, PHYS REV D, V60
148919    SADZIKOWSKI M, 2004, PHYS LETT B, V579, P39
148920    SIMONOV YA, 1989, PHYS LETT B, V228, P413
148921    SIMONOV YA, 2003, PHYS ATOM NUCL+, V66, P2038
148922    SZCZEPANIAK AP, 2003, PHYS LETT B, V567, P23
148923    TANG A, 2000, PHYS REV D, V62
148924    TERASAKI K, 2003, PHYS REV D, V68
148925    VAANDERING E, HEPEX0406044 FOCUS C
148926    YUFRYAKOV Y, HEPPH9510358
148927    ZAYAS LAP, 2004, NUCL PHYS B, V682, P3
148928 NR 75
148929 TC 2
148930 SN 1550-7998
148931 J9 PHYS REV D
148932 JI Phys. Rev. D
148933 PD JUL
148934 PY 2005
148935 VL 72
148936 IS 1
148937 AR 017902
148938 DI ARTN 017902
148939 PG 4
148940 SC Physics, Particles & Fields
148941 GA 950WM
148942 UT ISI:000230889400067
148943 ER
148944 
148945 PT J
148946 AU Hu, ZB
148947    Ma, HX
148948    Lu, DR
148949    Zhou, JN
148950    Chen, YJ
148951    Xu, L
148952    Zhu, JF
148953    Huo, X
148954    Qian, J
148955    Wei, QY
148956    Shen, HB
148957 TI A promoter polymorphism (-77T > C) of DNA repair gene XRCC1 is
148958    associated with risk of lung cancer in relation to tobacco smoking
148959 SO PHARMACOGENETICS AND GENOMICS
148960 DT Article
148961 DE lung cancer; polymorphisms; promoter; XRCC1
148962 ID IONIZING-RADIATION SENSITIVITY; ACID SUBSTITUTION VARIANTS; CHINESE
148963    POPULATION; P53 MUTATIONS; ADDUCTS; FREQUENCY; CELLS; XPD; ALLELE; ERCC2
148964 AB X-ray repair cross complementing group 1 (XRCC1) is one of the major
148965    DNA repair proteins involved in the base-excision repair pathway.
148966    Functional Polymorphisms in the XRCC1 gene may lead to decreased DNA
148967    repair capacity and thus confer inherited predisposition to cancer
148968    risk. In this case-control study of 710 patients with incident lung
148969    cancer and 710 cancer-free controls who were frequency matched on age,
148970    sex and residential area, we genotyped a novel T > C transition at the
148971    promoter region (-77T > C) of XRCC1 and other two common non-synonymous
148972    polymorphisms (Arg194Trp and Arg399Gln) to determine their associations
148973    with risk of lung cancer. We found that compared with the -77TT
148974    wild-type homozygote, the variant genotypes were associated with
148975    significantly increased risk of lung cancer [adjusted odds ratio
148976    (OR)=1.51; 95% confidence interval (CI)=1.17-1.94 for -77TC; OR=2.98;
148977    95% CI=0.93-9.59 for -77CC; and OR 1.55; 95% CI=1.21-1.98 for
148978    -77TC/CC]. By contrast, no significant associations were observed
148979    between the other two exonic variants (Arg194Trp and Arg399Gln) and
148980    lung cancer risk. Furthermore, we observed a 9.82-fold increased risk
148981    (95% CI=5.66-17.02) for heavy smokers carrying the -77C variant
148982    (-77TC/CC) and a 4.07-fold increased risk (95% CI=2.85-5.81) for heavy
148983    smokers not carrying the variant. However, the interaction between the
148984    -77T > C variant and cumulative smoking was not statistically
148985    significant (P=0.1560). These findings indicate that: the new XRCC1
148986    -77T > C polymorphism may contribute to the aetiology of lung cancer.
148987    Further functional studies are warranted to elucidate the underlying
148988    molecular mechanisms of the association.
148989 C1 Nanjing Med Univ, Sch Publ Hlth, Dept Epidemiol & Biostat, Nanjing 210029, Peoples R China.
148990    Shanghai Univ, Inst Genet, Shanghai, Peoples R China.
148991    Jiangsu Canc Hosp, Dept Thorac Surg, Nanjing, Peoples R China.
148992    Nanjing Med Univ, Affiliated Hosp 1, Dept Thorac & Cardiac Surg, Nanjing, Peoples R China.
148993    Univ Texas, MD Anderson Canc Ctr, Dept Epidemiol, Houston, TX 77030 USA.
148994 RP Shen, HB, Nanjing Med Univ, Sch Publ Hlth, Dept Epidemiol & Biostat,
148995    140 Hanzhong Rd, Nanjing 210029, Peoples R China.
148996 EM hbshen@njmu.edu.cn
148997 CR CALDECOTT KW, 1995, NUCLEIC ACIDS RES, V23, P4836
148998    CASSE C, 2003, MUTAT RES-FUND MOL M, V528, P19
148999    CHEN SQ, 2002, CARCINOGENESIS, V23, P1321
149000    DAVIDBEABES GL, 2001, LUNG CANCER-J IASLC, V34, P333
149001    DIANOV GL, 1999, J BIOL CHEM, V274, P13741
149002    DIVINE KK, 2001, MUTAT RES-DNA REPAIR, V461, P273
149003    DUELL EJ, 2000, CARCINOGENESIS, V21, P965
149004    FAN JS, 2004, NUCLEIC ACIDS RES, V32, P2193
149005    GOODE EL, 2002, CANCER EPIDEM BIOMAR, V11, P1513
149006    HSIEH LL, 2003, CANCER EPIDEM BIOMAR, V12, P439
149007    HU JJ, 2001, CARCINOGENESIS, V22, P917
149008    HU JJ, 2002, ENVIRON MOL MUTAGEN, V39, P208
149009    LUNN RM, 1999, CANCER RES, V59, P2557
149010    MATULLO G, 2001, CARCINOGENESIS, V22, P1437
149011    MATULLO G, 2001, INT J CANCER, V92, P562
149012    MISRA RR, 2003, CANCER LETT, V191, P171
149013    PARK JY, 2002, CANCER EPIDEM BIOMAR, V11, P23
149014    RAO B, 2004, CANCER RES, V64, P4878
149015    RATNASINGHE D, 2001, CANCER EPIDEM BIOMAR, V10, P119
149016    SHEN HB, 2000, INT J CANCER, V88, P601
149017    SHEN MR, 1998, CANCER RES, V58, P604
149018    SHIELDS PG, 2000, J CLIN ONCOL, V18, P2309
149019    STEPHENS M, 2003, AM J HUM GENET, V73, P1162
149020    THOMPSON LH, 2000, MUTAT RES-DNA REPAIR, V459, P1
149021    WEI QY, 1996, CANCER RES, V56, P4103
149022    WEI QY, 2000, J NATL CANCER I, V92, P1764
149023    ZHOU W, 2003, CANCER EPIDEM BIOMAR, V12, P359
149024 NR 27
149025 TC 1
149026 SN 1744-6872
149027 J9 PHARMACOGENET GENOMICS
149028 JI Pharmacogenet. Genomics
149029 PD JUL
149030 PY 2005
149031 VL 15
149032 IS 7
149033 BP 457
149034 EP 463
149035 PG 7
149036 GA 949PE
149037 UT ISI:000230799800003
149038 ER
149039 
149040 PT J
149041 AU Huang, SG
149042    Vleugels, J
149043    Li, L
149044    Van der Biest, O
149045    Wang, PL
149046 TI Composition design and mechanical properties of mixed (Ce,Y)-TZP
149047    ceramics obtained from coated starting powders
149048 SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
149049 DT Article
149050 DE ZrO2; sintering; microstructure; mechanical properties; thermodynamics;
149051    TZP; coatings
149052 ID ZIRCONIA ALUMINA COMPOSITES; FRACTURE-TOUGHNESS; GRAIN-SIZE; VICKERS
149053    HARDNESS; PHASE-DIAGRAM; TZP CERAMICS; ZRO2 POWDER; SYSTEM; CERIA;
149054    MICROSTRUCTURE
149055 AB The microstructure and mechanical properties of a selection of ceramics
149056    with compositions in the low ceria and yttria corner of the
149057    ZrO2-CeO2-Y2O3 system were investigated and evaluated. The calculated
149058    isothermal section of the ZrO2-CeO2-Y2O3 system at 1450 degrees C was
149059    used to define the CeO2 content range of interest resulting in an
149060    optimum amount of tetragonal ZrO2 phase for TZP ceramics with an
149061    overall yttria content of 2 and 1 mol%. Pure monoclinic ZrO2 starting
149062    powder was coated with the appropriate amount of yttria and ceria
149063    stabiliser by means of a suspension coating technique and pressureless
149064    sintered in air at 1450 degrees C. The indentation toughness and
149065    Vickers hardness were evaluated as a function of the sintering time,
149066    grain-size and stabiliser content. An excellent fracture toughness of
149067    13-15 MPa m(1/2) was obtained for ZrO2 ceramics with 1 mol% Y2O3 + 4
149068    mol% CeO2, sintered for 1-4h at 1450 degrees C. (c) 2004 Elsevier Ltd.
149069    All rights reserved.
149070 C1 Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Louvain, Belgium.
149071    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
149072    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
149073 RP Vleugels, J, Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001
149074    Louvain, Belgium.
149075 EM jozef.vleugels@mtm.kuleuven.ac.be
149076 CR ANSTIS GR, 1981, J AM CERAM SOC, V64, P533
149077    ANTHONY GE, 1990, J AM CERAM SOC, V73, P187
149078    BOUTZ MMR, 1994, J EUR CERAM SOC, V13, P89
149079    DUH JG, 1988, J AM CERAM SOC, V71, P813
149080    GRITZNER G, 1993, J EUR CERAM SOC, V12, P461
149081    HANNINK RHJ, 2000, J AM CERAM SOC, V83, P461
149082    HIRANO M, 1991, J MATER SCI, V26, P5047
149083    HIRANO M, 1992, J MATER SCI, V27, P3511
149084    LANGE FF, 1986, J AM CERAM SOC, V69, P240
149085    LI L, 1996, J MATER SCI TECHNOL, V12, P159
149086    LI L, 2001, J EUR CERAM SOC, V21, P2903
149087    LIN JD, 1998, J AM CERAM SOC, V81, P853
149088    MENDELSON MI, 1969, J AM CERAM SOC, V52, P443
149089    SUNDMAN B, 1985, CALPHAD, V9, P153
149090    TSUKUMA K, 1985, J MATER SCI, V20, P1178
149091    VLEUGELS J, 2002, J EUR CERAM SOC, V22, P873
149092    WANG J, 1989, BRIT CERAM TRANS J, V88, P1
149093    WANG J, 1992, J MATER SCI, V27, P5348
149094    YUAN ZX, 2000, J MATER SCI LETT, V19, P359
149095    YUAN ZX, 2000, MATER LETT, V46, P249
149096    ZHANG YL, 2003, J EUR CERAM SOC, V23, P685
149097 NR 21
149098 TC 1
149099 SN 0955-2219
149100 J9 J EUR CERAM SOC
149101 JI J. European Ceram. Soc.
149102 PD AUG
149103 PY 2005
149104 VL 25
149105 IS 13
149106 BP 3109
149107 EP 3115
149108 PG 7
149109 SC Materials Science, Ceramics
149110 GA 950VG
149111 UT ISI:000230885700003
149112 ER
149113 
149114 PT J
149115 AU Dong, YH
149116    Lu, XY
149117 TI Direct numerical simulation of stably and unstably stratified turbulent
149118    open channel flows
149119 SO ACTA MECHANICA
149120 DT Article
149121 ID LARGE-EDDY SIMULATION; FREE-SURFACE TURBULENCE; PASSIVE SCALAR;
149122    MASS-TRANSFER; BOUNDARY-LAYERS; INTERFACE; TRANSPORT; HEAT; WALL;
149123    TEMPERATURE
149124 AB Direct numerical simulation of stably and unstably stratified turbulent
149125    open channel flow is performed. The three-dimensional Navier-Stokes and
149126    enegy equations under the Boussinesq approximation are numerically
149127    solved using a fractional-step method based on high-order accurate
149128    spatial schemes. The objective of this study is to reveal the effects
149129    of thermally stable and unstable stratification on the characteristics
149130    of turbulent flow and heat transfer and on turbulence structures near
149131    the free surface of open channel flow. Here, fully developed weakly
149132    stratified turbulent open channel flows are calculated for the
149133    Richardson number ranging from 20 (stably stratified flow) to 0
149134    (unstratified flow) and to -10 (unstably stratified flow), the Reynolds
149135    number 180 based on the wall friction velocity and the channel depth,
149136    and the Prandtl number 1. To elucidate the turbulent flow and heat
149137    transfer behaviors, typical quantities including the mean velocity,
149138    temperature and their fluctuations, turbulent heat fluxes, and the
149139    structures of velocity and temperature fluctuations are analyzed.
149140 C1 Univ Sci & Technol China, Dept Modern Mech, Hefei 230026, Anhui, Peoples R China.
149141    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
149142 RP Lu, XY, Univ Sci & Technol China, Dept Modern Mech, Hefei 230026,
149143    Anhui, Peoples R China.
149144 EM xlu@ustc.edu.cn
149145 CR ARMENIO V, 2002, J FLUID MECH, V459, P1
149146    ARYA SPS, 1975, J FLUID MECH, V68, P321
149147    DONG YH, 2003, INT J HEAT MASS TRAN, V46, P1529
149148    DONG YH, 2004, INT J HEAT MASS TRAN, V47, P2109
149149    GARG RP, 2001, PHYS FLUIDS, V12, P2569
149150    GERZ T, 1989, J FLUID MECH, V200, P563
149151    HANDLER RA, 1999, PHYS FLUIDS, V11, P2607
149152    HANDLER RA, 2003, INT J HEAT MASS TRAN, V46, P2219
149153    HINZE JO, 1975, TURBULENCE
149154    HOLT SE, 1992, J FLUID MECH, V237, P499
149155    KADER BA, 1972, INT J HEAT MASS TRAN, V15, P2329
149156    KADER BA, 1981, INT J HEAT MASS TRAN, V24, P1541
149157    KAYS WM, 1987, CONVECTIVE HEAT MASS
149158    KOMORI S, 1983, J FLUID MECH, V130, P13
149159    KOMORI S, 1989, J FLUID MECH, V203, P103
149160    KOMORI S, 1993, J FLUID MECH, V249, P161
149161    KOMORI S, 1993, PHYS FLUIDS A-FLUID, V5, P115
149162    KUMAR S, 1998, PHYS FLUIDS, V10, P437
149163    LAM K, 1992, PHYS FLUIDS A-FLUID, V4, P306
149164    LIU NS, 2004, INT J NUMER METH FL, V45, P1317
149165    LOMBARDI P, 1996, PHYS FLUIDS, V8, P1643
149166    NAGAOSA R, 1997, AICHE J, V43, P2393
149167    NAGAOSA R, 1999, PHYS FLUIDS, V11, P1581
149168    NAKAGAWA H, 1981, J FLUID MECH, V104, P1
149169    PAN Y, 1995, PHYS FLUIDS, V7, P1649
149170    PEROT B, 1995, J FLUID MECH, V295, P199
149171    RAI MM, 1991, J COMPUT PHYS, V96, P15
149172    RASHIDI M, 1988, PHYS FLUIDS, V31, P2491
149173    RASHIDI M, 1991, INT J HEAT MASS TRAN, V34, P1799
149174    RASHIDI M, 1997, PHYS FLUIDS, V9, P3485
149175    SHEN L, 1999, J FLUID MECH, V386, P167
149176    SHEN L, 2001, PHYS FLUIDS, V13, P913
149177    VERZICCO R, 1996, J COMPUT PHYS, V123, P402
149178    WANG L, 2002, COMP FLUIDS, V34, P23
149179    WANG L, 2004, INT J HEAT MASS TRAN, V47, P2161
149180 NR 35
149181 TC 1
149182 SN 0001-5970
149183 J9 ACTA MECH
149184 JI Acta Mech.
149185 PY 2005
149186 VL 177
149187 IS 1-4
149188 BP 115
149189 EP 136
149190 PG 22
149191 SC Mechanics
149192 GA 949PM
149193 UT ISI:000230800600009
149194 ER
149195 
149196 PT J
149197 AU Chen, FX
149198    Guo, QG
149199    Yang, Y
149200    Song, HS
149201    Wen, TQ
149202 TI Inhibition of AF116909 gene expression enhances the differentiation of
149203    neural stem cells
149204 SO NEUROLOGICAL RESEARCH
149205 DT Article
149206 DE RNA interference; neural stem cells; small hairpin RNA; differentiation
149207    of NSCs
149208 ID CENTRAL-NERVOUS-SYSTEM; DOUBLE-STRANDED-RNA; INTERFERENCE; ELEGANS;
149209    NEURONS
149210 AB Objectives: Neural stem cells (NSCs) are self-renewed, pluripotent
149211    cells that can differentiate into neurons, astrocytes and
149212    oligodendrocytes. Such multipotency that allows production of specific
149213    types of nerve cells for basic research and therapeutic purposes
149214    depends on how these cells are directed in their differentiation. Here,
149215    we investigate the function of the AF116909 gene in the differentiation
149216    of NSC.
149217    Methods: NSC culture was isolated from the striatum corpora of
149218    embryonic brain tissues in a 14-day pregnant rat. A constructed RNAi
149219    (RNA-mediated interference) vector was transfected to knock down the
149220    expression of this gene. Afterwards, RT-PC7 was lied to examine the
149221    presence of endogenous AF116909 mRNA and the effect of RNA interrerence.
149222    Results: After the knockdown of this gene, we detected that the
149223    differentiation rate of cells was enhanced to 80% on the 11th day in
149224    comparison with 12% in the control cells transfected with the
149225    expression vector alone.
149226    Discussion: These findings suggest that AF116909 functions in
149227    inhibiting the differentiation of NSCs, and AF116909 gene-targeting by
149228    RNAi provides a useful method to study the differentiation mechanisms
149229    of NSCs.
149230 C1 Shanghai Univ, Sch Life Sci, Shanghai 200444, Peoples R China.
149231 RP Chen, FX, Shanghai Univ, Sch Life Sci, 99 Shangda Rd, Shanghai 200444,
149232    Peoples R China.
149233 EM chenfuxue@staff.shu.edu.cn
149234 CR AARUM J, 2003, P NATL ACAD SCI USA, V100, P15983
149235    ARSENIJEVIC Y, 2003, MOL NEUROBIOL, V27, P73
149236    BASS BL, 2001, NATURE, V411, P428
149237    ELBASHIR SM, 2001, GENE DEV, V15, P188
149238    ELBASHIR SM, 2001, NATURE, V411, P494
149239    FIRE A, 1998, NATURE, V391, P806
149240    FLAX JD, 1998, NAT BIOTECHNOL, V16, P1033
149241    GITILIN L, 2002, NATURE, V20, P500
149242    HAMMOND SM, 2000, NATURE, V404, P293
149243    KARSTEN SL, 2003, DEV BIOL, V261, P165
149244    KENNERDELL JR, 1998, CELL, V95, P1017
149245    KORHONEN L, 2003, J NEUROSCI RES, V71, P769
149246    MARX J, 2000, SCIENCE, V288, P1370
149247    MCKAY R, 1997, SCIENCE, V276, P66
149248    OKANO H, 2002, J NEUROSCI RES, V69, P698
149249    OUREDNIK V, 2001, SCIENCE, V293, P1820
149250    RIETZE RL, 2001, NATURE, V412, P736
149251    SHARP PA, 2001, GENE DEV, V15, P485
149252    TABARA H, 1998, SCIENCE, V282, P430
149253    WACHS FP, 2003, LAB INVEST, V83, P949
149254    WEN T, 2002, NEUROSCI LETT, V329, P101
149255    WESTERLUND U, 2003, EXP CELL RES, V289, P378
149256    YANG SC, 2001, MOL CELL BIOL, V21, P7807
149257    ZHOU Y, 2002, NUCLEIC ACIDS RES, V30, P1664
149258 NR 24
149259 TC 1
149260 SN 0161-6412
149261 J9 NEUROL RES
149262 JI Neurol. Res.
149263 PD JUL
149264 PY 2005
149265 VL 27
149266 IS 5
149267 BP 557
149268 EP 561
149269 PG 5
149270 SC Clinical Neurology; Neurosciences
149271 GA 948VP
149272 UT ISI:000230744100017
149273 ER
149274 
149275 PT J
149276 AU Li, XY
149277    Leng, GS
149278    Tang, LH
149279 TI Inequalities for a simplex and any point
149280 SO MATHEMATICAL INEQUALITIES & APPLICATIONS
149281 DT Article
149282 DE simplex; moment of inertia; mass-point system; volume inequality
149283 ID NEUBERG-PEDOE; SIMPLICES
149284 AB By applying an analytic inequality and the polar moment of inertia
149285    inequality in El, we establish some inequalities for the volume, facet
149286    areas and distances between any point of E-n and vertices of an
149287    n-simplex.
149288 C1 Hunan Normal Univ, Dept Math, Changsha 410081, Peoples R China.
149289    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
149290    E China Normal Univ, Shanghai 200062, Peoples R China.
149291 RP Li, XY, Hunan Normal Univ, Dept Math, Changsha 410081, Peoples R China.
149292 EM lixy77@sohu.com
149293    gleng@mail.shu.edu.cn
149294 CR ALI MM, 1970, PAC J MATH, V33, P1
149295    CHEN J, 1999, J SICHUAN U, V36, P197
149296    FEJES L, 1965, REGULARE FIGUREN
149297    GERBER L, 1975, PAC J MATH, V56, P97
149298    HUANG Y, 1999, J YANAN U, V18, P19
149299    KLAMKIN MS, 1975, MATH MAG, V48, P44
149300    KLAMKIN MS, 1978, SIAM REV, V20, P400
149301    LENG GS, IN PRESS J MATH ANAL
149302    LENG GS, 1997, ACTA MATH SINICA, V40, P14
149303    LENG GS, 1999, DISCRETE MATH, V202, P163
149304    MITRINOVIC DS, 1988, J MATH ANAL APPL, V129, P196
149305    MITRINOVIC DS, 1989, RECENT ADV GEOMETRIC
149306    PEDOE D, 1942, P CAMB PHILOS SOC 4, V38, P397
149307    PETTY CM, 1955, MONATSH MATH, V59, P320
149308    SHI H, 2000, B CHINESE INEQUALITI, V26, P6
149309    SLEPIAN D, 1969, PAC J MATH, V31, P795
149310    VELJAN D, 1995, LINEAR ALGEBRA APPL, V219, P79
149311    XU T, 2001, B CHINESE INEQUALITI, V29, P11
149312    YANG L, 1983, B AUST MATH SOC, V27, P203
149313    ZHANG JZ, 1981, J CHINA U SCI TECHNO, V11, P1
149314 NR 20
149315 TC 0
149316 SN 1331-4343
149317 J9 MATH INEQUAL APPL
149318 JI Math. Inequal. Appl.
149319 PD JUL
149320 PY 2005
149321 VL 8
149322 IS 3
149323 BP 547
149324 EP 557
149325 PG 11
149326 SC Mathematics
149327 GA 949DF
149328 UT ISI:000230764400016
149329 ER
149330 
149331 PT J
149332 AU Qian, H
149333    Xu, KY
149334    Ru, CQ
149335 TI Curvature effects on axially compressed buckling of a small-diameter
149336    double-walled carbon nanotube
149337 SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
149338 DT Article
149339 DE carbon nanotube; buckling; curvature effects; van der Waals forces
149340 ID STRAIN
149341 AB The curvature effects of interlayer van der Waals (vdW) forces on
149342    axially compressed buckling of a double-walled carbon nanotube (DWNT)
149343    of diameter down to 0.7 nm are studied. Unlike most existing models
149344    which assume that the interlayer vdW pressure at a point between the
149345    inner and outer tubes depends merely on the change of the interlayer
149346    spacing at that point, the present model considers the dependence of
149347    the interlayer vdW pressure on the change of the curvatures of the
149348    inner and outer tubes at that point. A simple expression is derived for
149349    the curvature-dependence of the interlayer vdW pressure in which the
149350    curvature coefficient is determined. Based on this model, an explicit
149351    formula is obtained for the axial buckling strain. It is shown that
149352    neglecting the curvature effect alone leads to an under-estimate of the
149353    critical buckling strain with a relative error up to -7%, while taking
149354    the average radius of two tubes as the representative radius and the
149355    curvature effect leads to an over-estimate of the critical buckling
149356    strain with a relative error up to 20% when the inner radius downs to
149357    0.35 nm. Therefore, the curvature effects play a significant role in
149358    axially compressed buckling problems only for DWNTs of very small
149359    radii. In addition, our results show that the effect of the vdW
149360    interaction pressure prior to buckling of DWNTs under pure axial stress
149361    is small enough and can be negligible whether the vdW interaction
149362    curvature effects are neglected or not. (c) 2005 Elsevier Ltd. All
149363    rights reserved.
149364 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200444, Peoples R China.
149365 RP Xu, KY, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, 99
149366    Shangda Rd, Shanghai 200444, Peoples R China.
149367 EM kyxu@staff.shu.edu.cn
149368 CR BALL P, 2001, NATURE, V414, P142
149369    BAUGHMAN RH, 2002, SCIENCE, V297, P787
149370    CALLADINE CR, 1983, THEORY SHELL STRUCTU
149371    FALVO MR, 1997, NATURE, V389, P582
149372    FENG JT, 2004, INT J STRUCTURAL STA, V4, P515
149373    HE XQ, 2005, J MECH PHYS SOLIDS, V53, P303
149374    KIANG CH, 1998, PHYS REV LETT, V81, P1869
149375    PONCHARAL P, 1999, SCIENCE, V283, P1513
149376    QIAN D, 2002, APPL MECH REV, V55, P495
149377    RU CQ, 2000, J APPL PHYS, V87, P7227
149378    RU CQ, 2000, PHYS REV B, V62, P9973
149379    RU CQ, 2001, J APPL PHYS, V89, P3426
149380    RU CQ, 2001, J MECH PHYS SOLIDS, V49, P1265
149381    RU CQ, 2004, ENCY NANOSCIENCE NAN, V2, P731
149382    TANG DS, 2000, J PHYS CHEM SOLIDS, V61, P1175
149383    TIMOSHENKO SP, 1961, THEORY ELASTIC STABI
149384    TREACY MMJ, 1996, NATURE, V381, P678
149385    WANG CY, 2003, INT J SOLIDS STRUCT, V40, P3893
149386    WANG CY, 2004, J APPL MECH-T ASME, V71, P622
149387    WONG EW, 1997, SCIENCE, V277, P1971
149388    YAKOBSON BI, 1996, PHYS REV LETT, V76, P2511
149389 NR 21
149390 TC 1
149391 SN 0020-7683
149392 J9 INT J SOLIDS STRUCT
149393 JI Int. J. Solids Struct.
149394 PD OCT
149395 PY 2005
149396 VL 42
149397 IS 20
149398 BP 5426
149399 EP 5440
149400 PG 15
149401 SC Mechanics
149402 GA 948HT
149403 UT ISI:000230707400008
149404 ER
149405 
149406 PT J
149407 AU Li, Q
149408    Xu, KD
149409    Chou, KC
149410    Lin, Q
149411    Zhang, JY
149412    Lu, XG
149413 TI Investigation of the hydriding kinetic mechanism in the
149414    MgH2/Cr2O3-nanocomposite
149415 SO INTERMETALLICS
149416 DT Article
149417 DE composites; hydrogen storage; diffusion
149418 ID HYDROGEN DESORPTION-KINETICS; NANOCRYSTALLINE MG; COMBUSTION SYNTHESIS;
149419    STORAGE PROPERTIES; SYSTEM; ABSORPTION; COMPOSITE; SORPTION; ALLOYS
149420 AB A kinetic analysis was done in the nano-MgH2 and
149421    MgH2/MexOy-nanocomposite (MexOy = V2O5, Cr2O3 and Fe3O4) using a new
149422    kinetic model proposed recently in our group. The summarized data of
149423    hydriding rate are very well fitted using the new model, and it
149424    indicates that the rate-controlling step is the hydrogen diffusion
149425    through the hydride phase. Compared with the characteristic absorption
149426    time of these nano-MgH2 and MgH2/MexOy-nanocomposite, the difference in
149427    the kinetic property was investigated in an explicit analytic form and
149428    the order of reaction rate and the optimal amount of oxide catalyst
149429    Cr2O3 can be determined exactly. These facts support that our model is
149430    reasonable in the nano-MgH2 and MgH2/MexOy-nanocomposite system. (c)
149431    2005 Elsevier Ltd. All rights reserved.
149432 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
149433    Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China.
149434 RP Li, Q, Shanghai Univ, Sch Mat Sci & Engn, 275 Mailbox,149 Yanchang Rd,
149435    Shanghai 200072, Peoples R China.
149436 EM lq75@263.net
149437 CR BARKHORDARIAN G, 2003, SCRIPTA MATER, V49, P213
149438    BERNHARDT B, 2002, THERMOCHIM ACTA, V382, P249
149439    CHOU KC, 2005, INT J HYDROGEN ENERG, V30, P301
149440    IMAMURA H, 1996, J ALLOY COMPD, V232, P218
149441    KHRUSSANOVA M, 1991, MAT RES B, V26, P1291
149442    LI L, 2002, INTERMETALLICS, V10, P927
149443    LI Q, 2004, INTERMETALLICS, V12, P1293
149444    LI Q, 2004, J MATER RES, V19, P2871
149445    LIANG G, 2000, J ALLOY COMPD, V305, P239
149446    MUNGOLE MN, 1998, INT J HYDROGEN ENERG, V23, P349
149447    OELERICH W, 2001, J ALLOY COMPD, V315, P237
149448    OELERICH W, 2001, J ALLOY COMPD, V322, L5
149449    SONG MY, 1997, J MATER SCI LETT, V16, P1774
149450    TERZIEVA M, 1995, INT J HYDROGEN ENERG, V20, P53
149451    WANG P, 2000, J ALLOY COMPD, V297, P240
149452    WANG P, 2000, J ALLOY COMPD, V313, P218
149453    YANG J, 2000, MATER LETT, V43, P234
149454 NR 17
149455 TC 0
149456 SN 0966-9795
149457 J9 INTERMETALLICS
149458 JI Intermetallics
149459 PD NOV
149460 PY 2005
149461 VL 13
149462 IS 11
149463 BP 1190
149464 EP 1194
149465 PG 5
149466 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
149467    Metallurgical Engineering
149468 GA 946YE
149469 UT ISI:000230608400008
149470 ER
149471 
149472 PT S
149473 AU Xu, GQ
149474    Li, ZB
149475 TI The painleve test of nonlinear partial differential equations and its
149476    implementation using maple
149477 SO COMPUTER ALGEBRA AND GEOMETRIC ALGEBRA WITH APPLICATIONS
149478 SE LECTURE NOTES IN COMPUTER SCIENCE
149479 DT Article
149480 ID EVOLUTION-EQUATIONS; UNIFIED APPROACH; 2+1 DIMENSIONS; WAVE SOLUTIONS;
149481    INTEGRABILITY
149482 AB The so-called WTC-Kruskal algorithm is presented in order to study the
149483    Painleve integrability of nonlinear partial differential equations,
149484    which combines the WTC algorithm and Kruskal's simplification
149485    algorithm. Based on the WTC, Kruskal and WTC-Kruskal algorithms, we
149486    give an implementation in Maple called PDEPtest. The applications of
149487    PDEPtest to several nonlinear partial differential equations are also
149488    presented and some new results are reported.
149489 C1 Shanghai Univ Sci & Technol, Coll Int Business & Management, Dept Informat Management, Shanghai 201800, Peoples R China.
149490    E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China.
149491 RP Xu, GQ, Shanghai Univ Sci & Technol, Coll Int Business & Management,
149492    Dept Informat Management, Shanghai 201800, Peoples R China.
149493 EM xuguiqiong@yahoo.com
149494    xugq@staff.shu.edu.cn
149495 CR ABLOWITZ MJ, 1999, NONLINEAR EVOLUTION
149496    AYSE KK, 2001, J PHSY SOC JPN, V70, P1165
149497    BALDWIN D, 2004, CRM P LECT SERIES, V39, P17
149498    CHOWDHURY AR, 2000, PAINLEVE ANAL ITS AP
149499    CONTE R, 1989, PHYS LETT A, V140, P383
149500    CONTE R, 1993, PHYSICA D, V69, P33
149501    CONTE R, 1999, PAINLEVE PROPERTY ON
149502    DAS KP, 1989, J PLASMA PHYS, V41, P139
149503    ESTEVEZ PG, 1998, J NONLINEAR MATH PHY, V5, P82
149504    ESTEVEZ PG, 2001, INVERSE PROBL, V17, P1043
149505    GENG XG, 2003, J PHYS A-MATH GEN, V36, P2289
149506    HEREMAN W, 1989, MACSYMA NEWSLETTER, V6, P11
149507    HEREMAN W, 1998, COMPUT PHYS COMMUN, V115, P428
149508    HIROTA R, 1980, SOLITONS
149509    HLAVATY L, 1986, COMPUT PHYS COMMUN, V42, P427
149510    JIMBO M, 1982, PHYS LETT A, V92, P59
149511    LOU SY, 2002, J MATH PHYS, V43, P4078
149512    MACCARI A, 1998, J MATH PHYS, V39, P6547
149513    NEWELL AC, 1987, PHYSICA D, V29, P1
149514    PARKES EJ, 2002, PHYS LETT A, V295, P280
149515    SCHEEN C, 1997, THEOR COMPUT SCI, V187, P87
149516    WEISS J, 1983, J MATH PHYS, V24, P522
149517    XIE FD, 2003, COMPUT PHYS COMMUN, V154, P197
149518    XU GQ, 2003, CHINESE PHYS LETT, V20, P975
149519    XU GQ, 2004, COMPUT PHYS COMMUN, V161, P65
149520    YAN ZY, 2003, PHYS LETT A, V318, P78
149521 NR 26
149522 TC 0
149523 SN 0302-9743
149524 J9 LECT NOTE COMPUT SCI
149525 PY 2005
149526 VL 3519
149527 BP 179
149528 EP 190
149529 PG 12
149530 GA BCO03
149531 UT ISI:000230362900015
149532 ER
149533 
149534 PT J
149535 AU Ming, K
149536    Hu, X
149537    Dong, YS
149538    Li, GY
149539    Gu, MY
149540 TI A study on interfacial phase of Ti-Si-N composite films
149541 SO ACTA PHYSICA SINICA
149542 DT Article
149543 DE Ti-Si-N composite films; interfacial phase; microstructure;
149544    superhardness effect
149545 ID MECHANICAL-PROPERTIES; MICROSTRUCTURE; SUPERHARDNESS; MULTILAYERS;
149546    COATINGS; GROWTH
149547 AB To reveal the interfacial phase structure and its effect on mechanical
149548    properties of Ti-Si-N composite films, x-ray diffractometry,
149549    high-resolution transmission electron microscopy, Auger electron
149550    spectroscopy, and microhardness tester were employed to investigate the
149551    interfacial phase structure and mechanical properties of magnetron
149552    sputtered Ti-Si-N composite films. A series of TiN/Si3N4 multilayered
149553    films in nanometer scale were also prepared and characterized for
149554    comparison. The results indicated that Ti-Si-N composite films formed a
149555    structure of nanocrystalline TiN surrounded by Si3N4 interfacial phase.
149556    In the Ti-Si-N composite film with lower silicon content, the Si3N4
149557    interfacial phase with a thickness of less than 1 nm crystallized and
149558    formed a coherent interface with TiN nanocrystals, leading to an
149559    enhancement in the hardness of the film. Whereas, in the composite film
149560    of larger silicon content, Si3N4 phase existed as amorphous and
149561    resulted in a decrease in hardness. Our research indicated that the
149562    crystallization of Si3N4 interfacial phase was essential to obtain a
149563    high hardness in the Ti-Si-N composite films, and the strengthening
149564    mechanism of the composite films appeared to be the same as TiN/Si3N4
149565    multilayered films.
149566 C1 Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200030, Peoples R China.
149567    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
149568 RP Ming, K, Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites,
149569    Shanghai 200030, Peoples R China.
149570 CR ANDSON PM, 1995, NANOSTRUCT MATER, V5, P349
149571    CHU X, 1995, MATER RES SOC SYMP P, V382, P291
149572    HU XP, 2002, J VAC SCI TECHNOL A, V20, P1921
149573    HU XP, 2005, J VAC SCI TECHNOL A, V23, P114
149574    KOEHLER JS, 1970, PHYS REV B, V2, P547
149575    LAO JJ, 2004, ACTA PHYS SIN-CH ED, V53, P1961
149576    NOSE M, 2002, J VAC SCI TECHNOL A, V20, P823
149577    SANBASIVAN S, 1994, J MATER RES, V9, P2362
149578    VEPREK S, 1995, APPL PHYS LETT, V66, P2640
149579    VEPREK S, 1996, J VAC SCI TECHNOL A, V14, P46
149580    VEPREK S, 1996, SURF COAT TECH, V394, P86
149581    VEPREK S, 1998, THIN SOLID FILMS, V317, P449
149582    VEPREK S, 2000, SURF COAT TECH, V133, P152
149583    WEI L, 2005, ACTA PHYS SIN-CH ED, V54, P1742
149584    WU DW, 1999, ACTA PHYS SIN-CH ED, V48, P904
149585    WU ML, 1997, J VAC SCI TECHNOL  1, V15, P946
149586    ZHANG CH, 2004, ACTA PHYS SIN-CH ED, V53, P182
149587 NR 17
149588 TC 0
149589 SN 1000-3290
149590 J9 ACTA PHYS SIN-CHINESE ED
149591 JI Acta Phys. Sin.
149592 PD AUG
149593 PY 2005
149594 VL 54
149595 IS 8
149596 BP 3774
149597 EP 3779
149598 PG 6
149599 SC Physics, Multidisciplinary
149600 GA 948SQ
149601 UT ISI:000230736400054
149602 ER
149603 
149604 PT J
149605 AU Yu, TY
149606    Zhang, QR
149607    Zhuang, SL
149608 TI Optical polarized properties for the PbWO4 crystal containing lead
149609    vacancy
149610 SO ACTA PHYSICA SINICA
149611 DT Article
149612 DE PbWO4 crystal; electronic structures; optical properties; lead vacancy
149613 ID NM ABSORPTION-BAND; TUNGSTATE CRYSTALS; ORIGIN; MODEL
149614 AB The electronic structure, dielectric functions, complex refractive
149615    indices and absorption spectra for the polarized light from the perfect
149616    PbWO4(PWO) crystal and the PWO crystal containing V-Pb(2-) have been
149617    calculated using LAPW + LDA method with lattice structure optimized.
149618    The peaks of the absorption spectra corresponding to the electronic
149619    transitions have been studied. The optical properties of PWO crystal
149620    containing V-Pb(2-) are anisotropic. It may be caused by the anisotropy
149621    of lattice structure of the PWO crystal. Our calculated results
149622    indicate that the perfect PWO crystal does not have absorption band in
149623    the visible and near-ultraviolet region, but the PWO. crystal
149624    containing V-Pb(2-) has absorption bands in visible and
149625    near-ultraviolet region. The absorption bands can be well decomposed
149626    into four Gaussian-shape bands peaking at about 350, 405, 550 and 670
149627    nm. It predicates that these absorption bands are related to the
149628    existence of the V-Pb(2-) in the PWO crystal.
149629 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
149630    Shanghai Univ Sci & Technol, Coll Opt & Elect Engn, Shanghai 200093, Peoples R China.
149631 RP Zhang, QR, Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093,
149632    Peoples R China.
149633 EM zhqrsys@163.com
149634 CR ANNENKOV A, 1998, PHYS STATUS SOLIDI A, V170, P47
149635    FAN RC, 2001, SPECTROSCOPY SOLID
149636    FENG XQ, 1997, J INORGANIC MAT, V12, P449
149637    FENG XQ, 2002, ACTA PHYS SINICA, V51, P2
149638    GOUBIN F, 2004, J SOLID STATE CHEM, V177, P89
149639    HIZHNYI YA, 2003, J LUMIN, V102, P688
149640    KORZHIK MV, 1996, P INT C IN SCINT THE, P241
149641    LIAO JY, 1997, J INORGANIC MAT, V12, P286
149642    LIU TY, 2001, PHYS STATUS SOLIDI A, V184, P341
149643    LIU TY, 2004, CHINESE PHYS LETT, V21, P1596
149644    LIU TY, 2004, SOLID STATE COMMUN, V132, P169
149645    LIU TY, 2005, ACTA PHYS SIN-CH ED, V54, P863
149646    LIU TY, 2005, CHINESE PHYS, V14, P1142
149647    MOREAU JM, 1999, J ALLOY COMPD, V284, P104
149648    NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311
149649    WANG YX, 2004, ACTA PHYS SIN-CH ED, V53, P214
149650    WU L, 2003, CHINESE PHYS, V12, P6
149651    YAO MZ, 2002, ACTA PHYS SIN-CH ED, V51, P125
149652    YAO MZ, 2003, ACTA PHYS SIN-CH ED, V52, P459
149653    YE XL, 1999, ACTA PHYS SINICA, V48, P10
149654    ZHANG QR, 2003, PHYS REV B, V68
149655    ZHANG QR, 2004, CHINESE PHYS LETT, V21, P1131
149656    ZHANG Y, 1998, PHYS REV B, V57, P12738
149657 NR 23
149658 TC 0
149659 SN 1000-3290
149660 J9 ACTA PHYS SIN-CHINESE ED
149661 JI Acta Phys. Sin.
149662 PD AUG
149663 PY 2005
149664 VL 54
149665 IS 8
149666 BP 3780
149667 EP 3786
149668 PG 7
149669 SC Physics, Multidisciplinary
149670 GA 948SQ
149671 UT ISI:000230736400055
149672 ER
149673 
149674 PT J
149675 AU Li, LW
149676    Cao, SX
149677    Li, WF
149678    Fen, L
149679    Chi, CY
149680    Jing, C
149681    Zhang, JC
149682 TI Effect of oxygen content on carrier localization and ion-cluster effect
149683    for the Fe-doped YBCO system
149684 SO ACTA PHYSICA SINICA
149685 DT Article
149686 DE oxygen content; Hall coefficient; carrier localization; ion-cluster
149687    effect
149688 ID HIGH-PRESSURE; THIN-FILMS; SUPERCONDUCTIVITY; TEMPERATURE;
149689    YBA2CU3O7-DELTA; PEROVSKITE; CO
149690 AB The oxygen content, Hall coefficient and super-conductivity are
149691    systematically studied on YBa2 Cu3-x Fe-x O-y ( X = 0. 0, 0. 1, 0. 2)
149692    and YBa2 Cu-2.8 Fe-0.2 O-y ( y = 7.05-6.53) systems. The results show
149693    that oxygen content has a great influence on the transport and transfer
149694    of carriers and the superconductivity of the samples, the suppression
149695    of T-c caused by Cu ( 1) site substitution could be weakened by the
149696    increase of oxygen content to some extent. The carrier (holes) density
149697    in CuO2 plane plays a key role in affecting the superconductivity.
149698    Based on the charge transfer model, and considering the carrier
149699    localization and ion-cluster effect resulting from Fe substitution on
149700    Cu( 1) site, we have discussed the change of carrier density caused by
149701    the oxygen content and Fe doping concentration. It proves that with the
149702    increase of Fe doping concentration or the decrease of oxygen content
149703    (for the same doping concentration), the efficient oxygen vacancy
149704    increases, which enhances the ion-cluster effect and the carrier
149705    localization effect, resulting in the decrease of carrier density that
149706    participats in superconducting transport in the CuO2 plane, and
149707    accordingly, the decrease of T-c.
149708 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
149709 RP Cao, SX, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
149710 EM sxcao@staff.shu.edu.cn
149711 CR CARRINGTON A, 1992, PHYS REV LETT, V69, P2855
149712    CARRINGTON A, 1993, PHYS REV B, V48, P13051
149713    DONALD M, 1990, PHYS PROPERTIES HIGH, V2, P459
149714    GUO SQ, 2002, CHINESE PHYS, V11, P379
149715    ISLAM MS, 1991, PHYS REV B, V44, P9492
149716    JORGENSEN JD, 1987, PHYS REV B, V36, P5731
149717    JORGENSEN JD, 1991, PHYS TODAY, V44, P34
149718    KALLIAS G, 1993, PHYS REV B, V48, P15992
149719    LI PL, 2004, PHYS REV B, V69
149720    LIU LH, 2001, ACTA PHYS SIN-CH ED, V50, P769
149721    LIU YH, 2004, PHYSICA C, V411, P47
149722    MORR DK, 2003, PHYS REV LETT, V90
149723    NAROZHNYI VN, 1996, PHYS REV B, V53, P5836
149724    NEIMAN RL, 1994, PHYS REV B, V50, P16028
149725    REN ZA, 2004, PHYS REV B, V69
149726    SYDOW JP, 1998, APPL PHYS LETT, V72, P3512
149727    TARASCON JM, 1988, PHYS REV B, V37, P7458
149728    TOKURA Y, 1988, PHYS REV B, V38, P7156
149729    XIAO G, 1988, PHYS REV LETT, V60, P1446
149730    YU HC, 2004, PHYSICA C, V411, P94
149731    ZHANG JC, 1995, ACTA PHYS SINICA, V44, P929
149732    ZHANG JC, 2002, PHYS REV B, V65
149733    ZHAO YL, 2002, ACTA PHYS SIN-CH ED, V51, P1836
149734 NR 23
149735 TC 0
149736 SN 1000-3290
149737 J9 ACTA PHYS SIN-CHINESE ED
149738 JI Acta Phys. Sin.
149739 PD AUG
149740 PY 2005
149741 VL 54
149742 IS 8
149743 BP 3839
149744 EP 3844
149745 PG 6
149746 SC Physics, Multidisciplinary
149747 GA 948SQ
149748 UT ISI:000230736400064
149749 ER
149750 
149751 PT J
149752 AU Liu, TY
149753    Zhang, QR
149754    Zhuang, SL
149755 TI Study on the electronic structures and absorption spectra for the PbWO4
149756    crystal with the defect [V-O(2+)-V-Pb(2-)-V-O(2+)](2+)
149757 SO PHYSICS LETTERS A
149758 DT Article
149759 DE PbWO4 crystal; electronic structures; absorption spectra; point defect
149760 ID LEAD TUNGSTATE CRYSTALS; BAND; VACANCY; ORIGIN; LIGHT; PAIR
149761 AB The electronic structures and absorption spectra for the perfect PbWO4
149762    (PWO) crystal and the crystal containing aggregated defect
149763    [V-O(2+)-V-Pb(2-)-V-O(2+)](2+) have been calculated using density
149764    functional theory code CASTEP with the lattice structure optimized. The
149765    calculated absorption spectra of the PWO crystal containing the
149766    aggregated defect [V-O(2+)-V-Pb(2-)-V-O(2+)](2+) exhibit three
149767    absorption bands peaking at 1.68 eV (740 nm), 2.25 eV (560 nm), 2.50 eV
149768    (470 nm). It predicts that the 450-750 nm absorption bands are related
149769    to the existence of the aggregated defect
149770    [V-O(2+)-V-Pb(2-)-V-O(2+)](2+) in the PWO crystal. (c) 2005 Elsevier
149771    B.V. All rights reserved.
149772 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
149773 RP Liu, TY, Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
149774 EM liutyyxj@163.com
149775 CR ABRAHAM Y, 2000, PHYS REV B, V62, P1733
149776    ABRAHAM YB, 2001, PHYS REV B, V64
149777    ANNENKOV A, 1998, PHYS STATUS SOLIDI A, V170, P47
149778    ANNENKOV AA, 2002, NUCL INSTRUM METH A, V490, P30
149779    EPELBAUM BM, 1997, J CRYST GROWTH, V178, P426
149780    FAN TY, 2001, SPECTROSCOPY SOLID
149781    FENG XQ, 1997, J INORGANIC MAT, V12, P449
149782    GODBY RW, 1992, TOP APPL PHYS, V69, P51
149783    GRIGORJEVA L, 2000, NUCL INSTRUM METH B, V166, P329
149784    KORZHIK MV, 1996, P INT C IN SCINT THE, P241
149785    LAGUTA VV, 2003, PHYS REV B, V67
149786    LIAO JY, 1997, J INORGANIC MAT, V12, P286
149787    LIAO QS, 2001, SOLID STATE COMMUN, V118, P221
149788    LIN QS, 2001, SOLID STATE COMMUN, V118, P221
149789    LIU TY, 2001, PHYS STATUS SOLIDI A, V184, P341
149790    LIU TY, 2004, PHYS LETT A, V333, P473
149791    LIU TY, 2004, SOLID STATE COMMUN, V132, P169
149792    LIU TY, 2005, J ELECTRON SPECTROSC, V142, P139
149793    MOREAU JM, 1996, J ALLOY COMPD, V238, P46
149794    MOREAU JM, 1999, J ALLOY COMPD, V284, P104
149795    NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311
149796    NIKL M, 1997, J APPL PHYS, V82, P1
149797    NIKL M, 2000, PHYS STATUS SOLIDI A, V178, P595
149798    PAYNE MC, 1992, REV MOD PHYS, V64, P1045
149799    SEGALL MD, 2002, J PHYS-CONDENS MAT, V14, P2717
149800    WAN JF, 2005, PHYSICA B, V355, P172
149801    YANG XP, 2004, PHYS REV B, V69
149802    ZHANG QR, 2003, PHYS REV B, V68
149803 NR 28
149804 TC 1
149805 SN 0375-9601
149806 J9 PHYS LETT A
149807 JI Phys. Lett. A
149808 PD AUG 1
149809 PY 2005
149810 VL 343
149811 IS 1-3
149812 BP 238
149813 EP 242
149814 PG 5
149815 SC Physics, Multidisciplinary
149816 GA 946QH
149817 UT ISI:000230586700033
149818 ER
149819 
149820 PT J
149821 AU Sun, Y
149822    Yang, ZY
149823    Gao, XS
149824    Li, QY
149825    Zhang, QQ
149826    Xu, ZK
149827 TI Expression of foreign genes in Dunaliella by electroporation
149828 SO MOLECULAR BIOTECHNOLOGY
149829 DT Article
149830 DE Dunaliella salina; electroporation; ble gene; zeocin; episomal DNA
149831 ID CHLAMYDOMONAS-REINHARDTII; NUCLEAR TRANSFORMATION; PHLEOMYCIN
149832    RESISTANCE; ALGA DUNALIELLA; DNA; SALINA; BLE
149833 AB An electroporation procedure has been described for introducing plasmid
149834    DNA into Dunaliella salina cells. By this procedure, a bulk of plasmid
149835    DNA was delivered into the cells and retained for at least 3 d. Reverse
149836    transcriptase polymerase chain reaction (RT-PCR) and sequencing
149837    analyses indicated that the transcription and pre-mRNA splicing of ble
149838    gene (contributing the Zeocin resistance) were detected in the cells as
149839    early as I h after the electroporation. Individual colonies could
149840    retain the resistance to 10 mg/L Zeocin for at least 6 mo. Subsequent
149841    Southern blot analysis showed the existence of introduced plasmid DNA
149842    inside these colonies. However, most of the cells (approx 90%) lost the
149843    resistance in the presence of 5 mg/L Zeocin during subculturing, which
149844    was consistent with the observations of both rearranged and episomal
149845    plasmid DNA existed in the cells. Nevertheless, the electroporation
149846    procedure allows introducing a gene of interest and studying its
149847    expression and function in D. salina cells.
149848 C1 Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Plant Physiol & Ecol, Shanghai 200032, Peoples R China.
149849    Shanghai Univ, Sch Life Sci, Shanghai 200444, Peoples R China.
149850 RP Xu, ZK, Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Plant Physiol &
149851    Ecol, 345 Lingling Lu, Shanghai 200032, Peoples R China.
149852 EM zkxu@staff.shu.edu.cn
149853 CR BENAMOTZ A, 1992, DUNALIELLA PHYSL BIO, P205
149854    BROWN SJ, 1999, EVOL DEV, V1, P11
149855    COWAN AK, 1992, J EXP BOT, V43, P1535
149856    DAY A, 1990, PHYSIOL PLANTARUM, V78, P254
149857    DROCOURT D, 1990, NUCLEIC ACIDS RES, V18, P4009
149858    GENG DG, 2003, J APPL PHYCOL, V15, P451
149859    HARRIS EH, 2001, ANNU REV PLANT PHYS, V52, P363
149860    JIN ES, 2001, BBA-BIOENERGETICS, V1506, P244
149861    KATZ A, 2001, BBA-BIOENERGETICS, V1504, P423
149862    KINDLE KL, 1989, J CELL BIOL, V109, P2589
149863    KINDLE KL, 1990, P NATL ACAD SCI USA, V87, P1228
149864    LEE MGS, 1995, NUCLEIC ACIDS RES, V23, P4893
149865    LUMBRERAS V, 1998, PLANT J, V14, P441
149866    PAPADOPOULOU B, 1994, MOL BIOCHEM PARASIT, V39, P925
149867    PASION SG, 1994, J CELL SCI 12, V107, P3515
149868    PORATH JB, 1997, PHYCOLOGIA S, V36, P89
149869    ROCHAIX JD, 1982, NATURE, V296, P70
149870    SAMBROOK J, 1989, MOL CLONING LAB MANU
149871    SHIMOGAWARA K, 1998, GENETICS, V148, P1821
149872    STEVENS DR, 1996, MOL GEN GENET, V251, P23
149873    TANG DKH, 1995, BIOCHEM MOL BIOL INT, V36, P1025
149874    TOYOMIZU M, 2001, J APPL PHYCOL, V8, P303
149875    YANG ZY, 2000, SUCCESSFUL CULTURE D
149876 NR 23
149877 TC 1
149878 SN 1073-6085
149879 J9 MOL BIOTECHNOL
149880 JI Mol. Biotechnol.
149881 PD JUL
149882 PY 2005
149883 VL 30
149884 IS 3
149885 BP 185
149886 EP 192
149887 PG 8
149888 SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology
149889 GA 946BP
149890 UT ISI:000230547300001
149891 ER
149892 
149893 PT J
149894 AU Wen, TQ
149895    Li, HL
149896    Song, HS
149897    Chen, FX
149898    Zhao, CP
149899    Lu, W
149900    Bao, KY
149901    Jin, Y
149902 TI Down-regulation of specific gene expression by double-strand RNA
149903    induces neural stem cell differentiation in vitro
149904 SO MOLECULAR AND CELLULAR BIOCHEMISTRY
149905 DT Article
149906 DE differentiation; double-strand RNA (dsRNA); neural stem cells; RNA
149907    interference (RNAi); reverse transcript PCR (RT-PCR)
149908 ID EYE REGENERATION; INTERFERENCE; DEMONSTRATE; DEGRADATION; ASTROCYTES;
149909    ELEGANS; NETWORK; NEURONS; VIRUS; RAT
149910 AB In the postgenomic era the elucidation of the physiological function of
149911    genes has become the rate-limiting step in the quest to understand the
149912    development and function of living organisms. Double-stranded RNA
149913    (dsRNA) interferes with gene expression in various species, a
149914    phenomenon known as RNA interference (RNAi). We show here that RNAi is
149915    also effective in modifying gene expression in neural stem cell
149916    differentiation. The progenitor cells were obtained from E14 mouse
149917    embryonic forebrain and maintained using N-2 medium containing basic
149918    fibroblast growth factor (bFGF), epidermal growth factor (EGF) and
149919    B27.A gene (NM017084.1) was previously discovered and validated to
149920    express obviously differently between differentiated and
149921    undifferentiated neural stem cells in our laboratory. Here we report a
149922    long double-stranded RNA to knock out or knock down this gene. The
149923    results demonstrated that following RNAi inhibition of expression of
149924    the NM017084.1 gene, the differentiation of neural stem cells is
149925    accelerated. Thus the NM017084.1 gene may play a pivotal role in the
149926    process of differentiation of neural stem cells.
149927 C1 Shanghai Univ, Sch Life Sci, Lab Neural Mol Biol, Shanghai, Peoples R China.
149928 RP Wen, TQ, Shanghai Univ, Sch Life Sci, Lab Neural Mol Biol, Shanghai,
149929    Peoples R China.
149930 EM tqwen@staff.shu.edu.cn
149931 CR BILLY E, 2001, P NATL ACAD SCI USA, V98, P14428
149932    BUENO D, 2002, DEV BIOL, V252, P188
149933    CAO MM, 2004, J VIROL METHODS, V119, P189
149934    CHU RY, 2004, MOL CELL BIOL, V24, P6288
149935    DALMAY T, 2000, CELL, V101, P543
149936    ELBASHIR SM, 2001, NATURE, V411, P494
149937    FIRE A, 1998, NATURE, V391, P806
149938    FIRE A, 1999, TRENDS GENET, V15, P358
149939    GROSS CG, 2000, NAT REV NEUROSCI, V1, P67
149940    HUSSEIN AS, 2002, MOL BIOCHEM PARASIT, V122, P91
149941    HUTVAGNER G, 2002, CURR OPIN GENET DEV, V12, P225
149942    KENNERDELL JR, 1998, CELL, V95, P1017
149943    KETTING RF, 1999, CELL, V99, P133
149944    MARX J, 2000, SCIENCE, V288, P1370
149945    MCROBERT L, 2002, MOL BIOCHEM PARASIT, V119, P273
149946    MORRISON SJ, 1997, CELL, V88, P287
149947    MOURRAIN P, 2000, CELL, V101, P533
149948    NGO H, 1998, P NATL ACAD SCI USA, V95, P14687
149949    PALMER TD, 1997, MOL CELL NEUROSCI, V8, P389
149950    PINEDA D, 2000, P NATL ACAD SCI USA, V97, P4525
149951    PINEDA D, 2002, DEVELOPMENT, V129, P1423
149952    REYNOLDS BA, 1992, J NEUROSCI, V12, P4565
149953    REYNOLDS BA, 1992, SCIENCE, V255, P1707
149954    REYNOLDS BA, 1996, DEV BIOL, V175, P1
149955    SANCHEZALVARADO A, 1999, P NATL ACAD SCI USA, V96, P5049
149956    SHARP PA, 2001, GENE DEV, V15, P485
149957    SVOBODA P, 2000, DEVELOPMENT, V127, P4147
149958    TUSCHL T, 1999, GENE DEV, V13, P3191
149959    VESCOVI AL, 1993, NEURON, V11, P951
149960    WEN TQ, 2002, CELL MOL NEUROBIOL, V22, P407
149961    WIANNY F, 2000, NAT CELL BIOL, V2, P70
149962    YANG SC, 2001, MOL CELL BIOL, V21, P7807
149963 NR 32
149964 TC 0
149965 SN 0300-8177
149966 J9 MOL CELL BIOCHEM
149967 JI Mol. Cell. Biochem.
149968 PD JUL
149969 PY 2005
149970 VL 275
149971 IS 1-2
149972 BP 215
149973 EP 221
149974 PG 7
149975 SC Cell Biology
149976 GA 946IU
149977 UT ISI:000230566400023
149978 ER
149979 
149980 PT J
149981 AU Li, Q
149982    Jiang, LJ
149983    Chou, KC
149984    Lin, Q
149985    Zhan, F
149986    Xu, KD
149987    Lu, XG
149988    Zhang, JY
149989 TI Effect of hydrogen pressure on hydriding kinetics in the Mg2-xAgxNi-H
149990    (x=0.05, 0.1) system
149991 SO JOURNAL OF ALLOYS AND COMPOUNDS
149992 DT Article
149993 DE hydrogen absorbing materials; gas-solid reactions; kinetics
149994 ID DEHYDRIDING KINETICS; DESORPTION-KINETICS; ALLOY; STORAGE;
149995    NANOCOMPOSITE; ABSORPTION
149996 AB The aim of this paper is to study the effect of the initial hydrogen
149997    pressure on hydriding kinetics in the two-phase region (alpha-beta) of
149998    the ternary alloy Mg2-xAgxNi (x=0.05, 0.1). The experiments were
149999    carefully performed by a volumetric technique under initial hydrogen
150000    pressures ranging from 0.298 to 1.203 MPa at 553 K. The experimental
150001    investigation suggests that an increase of the initial hydrogen
150002    pressure results in an acceleration of hydriding reacted fraction. A
150003    new kinetic model developed in our laboratory recently was successfully
150004    applied to this system and the rate-controlling step in the hydriding
150005    process was hydrogen diffusion in the beta phase. Our study further
150006    revealed that a higher content of silver in the Mg2-xAgxNi alloys leads
150007    to a faster rate of hydriding; the hydriding kinetics Of Mg2Ni could be
150008    improved by a partial substitution of Ag for Mg. (c) 2005 Elsevier B.V.
150009    All rights reserved.
150010 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
150011    Gen Res Inst NonFerrous Met, Res Ctr Energy Mat & Technol, Beijing 100088, Peoples R China.
150012    Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China.
150013 RP Li, Q, Shanghai Univ, Sch Mat Sci & Engn, 275 Mailbox,149 Yanchang Rd,
150014    Shanghai 200072, Peoples R China.
150015 EM lq75@263.net
150016 CR AKIYAMA T, 1997, J ALLOY COMPD, V252, P1
150017    BARKHORDARIAN G, 2003, SCRIPTA MATER, V49, P213
150018    CHOU KC, 2005, INT J HYDROGEN ENERG, V30, P301
150019    DEHOUCHE Z, 1999, J ALLOY COMPD, V288, P269
150020    FUKAI Y, 1995, J ALLOY COMPD, V231, P35
150021    GOLTSOV VA, 1999, INT J HYDROGEN ENERG, V24, P913
150022    GOLTSOV VA, 2001, DONETSK CORAL GABLES, P367
150023    LI Q, 2003, J ALLOY COMPD, V359, P128
150024    LI Q, 2003, J NONFERROUS MET, V8, P864
150025    LI Q, 2004, J MATER SCI, V39, P61
150026    LI QA, 2005, J ALLOY COMPD, V387, P86
150027    LIANG G, 2000, J ALLOY COMPD, V305, P239
150028    MARTIN M, 1996, J ALLOY COMPD, V238, P193
150029    SATO T, 2003, J ALLOY COMPD, V356, P494
150030    SONG MY, 1999, J ALLOY COMPD, V282, P243
150031    SONG MY, 2003, INT J HYDROGEN ENERG, V28, P403
150032    WANG LB, 2002, J ALLOY COMPD, V336, P297
150033    YU ZX, 2002, MAT SCI ENG A-STRUCT, V335, P43
150034 NR 18
150035 TC 0
150036 SN 0925-8388
150037 J9 J ALLOYS COMPOUNDS
150038 JI J. Alloy. Compd.
150039 PD AUG 16
150040 PY 2005
150041 VL 399
150042 IS 1-2
150043 BP 101
150044 EP 105
150045 PG 5
150046 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
150047    Metallurgical Engineering
150048 GA 947AO
150049 UT ISI:000230614600019
150050 ER
150051 
150052 PT J
150053 AU Gu, GD
150054 TI Restarted GMRES augmented with harmonic Ritz vectors for shifted linear
150055    systems
150056 SO INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
150057 DT Article
150058 DE shifted linear systems; augmented GMRES method; harmonic Ritz vector;
150059    restarting
150060 ID KRYLOV SUBSPACE METHODS; RIGHT-HAND SIDES; EIGENVALUE PROBLEMS; ARNOLDI
150061    METHODS; ALGORITHM; EQUATIONS
150062 AB Frommer and Glassner [Frommer, A. and Glassner, U., 1998, Restarted
150063    GMRES for shifted linear systems, SIAM Journal on Scientific Computing,
150064    19,15-26.] develop a variant of the restarted GM RES method for shifted
150065    linear systems at the expense of only one matrix-vector multiplication
150066    per iteration. However, restarting slows down the convergence, even
150067    stagnation. We present a variant of the restarted GMRES augmented with
150068    some approximate eigenvectors for the shifted systems. The convergence
150069    can be much faster at little extra expense. Numerical experiments show
150070    its efficiency.
150071 C1 Shanghai Univ, Dept Math Appl, Shanghai 200433, Peoples R China.
150072 RP Gu, GD, Shanghai Univ, Dept Math Appl, Shanghai 200433, Peoples R China.
150073 EM guiding@online.sh.cn
150074 CR CHAPMAN A, 1997, NUMER LINEAR ALGEBR, V4, P43
150075    DATTA BN, 1991, LINEAR ALGEBRA APPL, V154, P225
150076    ERHEL J, 1996, J COMPUT APPL MATH, V69, P303
150077    FERIANI A, 2000, COMPUT METHOD APPL M, V190, P1719
150078    FREUD S, 1993, OEUVRES COMPLETES, V10, P1
150079    FROMMER A, 1995, INT J MOD PHYS C, V6, P627
150080    FROMMER A, 1998, SIAM J SCI COMPUT, V19, P15
150081    GU G, 2003, INT J COMPUT MATH, V80, P1039
150082    GU GD, 1999, LINEAR ALGEBRA APPL, V299, P1
150083    GU GD, 2002, INT J COMPUT MATH, V79, P307
150084    LECALVEZ C, 1999, NUMER ALGORITHMS, V21, P261
150085    MORGAN RB, 1995, SIAM J MATRIX ANAL A, V16, P1154
150086    MORGAN RB, 1998, NUMER LINEAR ALGEBR, V5, P33
150087    MORGAN RB, 2000, SIAM J MATRIX ANAL A, V21, P1112
150088    PAIGE CC, 1995, NUMER LINEAR ALGEBR, V2, P115
150089    SAAD Y, 1996, ITERATIVE METHODS SP
150090    SAAD Y, 1997, SIAM J MATRIX ANAL A, V18, P435
150091    SIMONCINI V, 2000, SIAM J MATRIX ANAL A, V22, P430
150092    SIMONCINI V, 2003, BIT, V43, P459
150093    SLEIJPEN GLG, 1996, SIAM J MATRIX ANAL A, V17, P401
150094    SWEET R, 1988, SIAM J SCI STAT COMP, V9, P89
150095 NR 21
150096 TC 0
150097 SN 0020-7160
150098 J9 INT J COMPUT MATH
150099 JI Int. J. Comput. Math.
150100 PD JUL
150101 PY 2005
150102 VL 82
150103 IS 7
150104 BP 837
150105 EP 849
150106 PG 13
150107 SC Mathematics, Applied
150108 GA 946PT
150109 UT ISI:000230585200006
150110 ER
150111 
150112 PT J
150113 AU Xu, XM
150114 TI Thermalization of quark matter produced at the highest energy of a
150115    relativistic heavy-ion collider
150116 SO CHINESE PHYSICS LETTERS
150117 DT Article
150118 ID ULTRARELATIVISTIC NUCLEAR COLLISIONS; PLASMA; DEPENDENCE; LHC
150119 AB Thermalization of quark matter is studied via a transport equation,
150120    which includes triple-quark elastic scattering amplitudes calculated in
150121    perturbative QCD. The triple-quark scatterings are demonstrated to be
150122    important for an anisotropic initial quark distribution produced in
150123    central Au-Au collisions at root SNN = 200 GeV. By examining momentum
150124    isotropy to which the transport equation leads, we can determine a
150125    thermalization time of 2.2 fm/c for quark matter itself to thermalize
150126    by the two-quark and the triple-quark elastic scatterings. Meanwhile,
150127    an initial thermal quark distribution function is obtained.
150128 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
150129    Chinese Acad Sci, Shanghai Inst Appl Phys, Div Nucl Phys, Shanghai 201800, Peoples R China.
150130 RP Xu, XM, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
150131 EM xmxucaod@sh.cnuninet.net
150132 CR ACKERMANN KH, 2001, PHYS REV LETT, V86, P402
150133    ADLER C, 2001, PHYS REV LETT, V87
150134    ADLER C, 2002, PHYS REV C, V66
150135    ADLER C, 2003, PHYS REV LETT, V90
150136    ADLER SS, NUCLEX0411040 PHENIX
150137    ADLER SS, 2003, PHYS REV LETT, V91
150138    CHEN LW, 2004, PHYS REV C, V69
150139    COMBRIDGE BL, 1977, PHYS LETT B, V70, P234
150140    COOPER F, 2003, PHYS LETT B, V555, P181
150141    CUTLER R, 1978, PHYS REV D, V17, P196
150142    ESKOLA KJ, 2001, PHYS LETT B, V497, P39
150143    ESKOLA KJ, 2003, NUCL PHYS A, V715, C561
150144    ESKOLA KJ, 2003, PHYS LETT B, V566, P187
150145    GEIGER K, 1992, PHYS REV D, V46, P4965
150146    GEIGER K, 1992, PHYS REV D, V46, P4986
150147    GYULASSY M, 2001, NUCL PHYS B, V594, P371
150148    GYULASSY M, 2002, PHYS LETT B, V526, P301
150149    HEINZ H, 2002, P 18 WINT WORKSH NUC
150150    HIRANO T, 2002, PHYS REV C, V65
150151    HUOVINEN P, 2003, NUCL PHYS A, V715, C299
150152    LACEY RA, 2002, NUCL PHYS A, V698, P559
150153    LEVAI P, 1995, PHYS REV C, V51, P3326
150154    MORITA K, 2002, PHYS REV C, V66
150155    NAYAK GC, 2001, NUCL PHYS A, V687, P457
150156    SHURYAK EV, 2003, NUCL PHYS A, V715, P289
150157    SNELLINGS RJM, 2002, NUCL PHYS A, V698, P193
150158    TEANEY D, NUCLTH0110037
150159    XU XM, 1999, NUCL PHYS A, V658, P165
150160    XU XM, 2004, NUCL PHYS A, V744, P347
150161 NR 29
150162 TC 0
150163 SN 0256-307X
150164 J9 CHIN PHYS LETT
150165 JI Chin. Phys. Lett.
150166 PD JUL
150167 PY 2005
150168 VL 22
150169 IS 7
150170 BP 1631
150171 EP 1633
150172 PG 3
150173 SC Physics, Multidisciplinary
150174 GA 945UY
150175 UT ISI:000230529000020
150176 ER
150177 
150178 PT J
150179 AU Xu, YP
150180    Gu, ZT
150181    Chen, JB
150182 TI Long-period fibre grating thin film sensors based on cladding mode
150183    coupling
150184 SO CHINESE PHYSICS LETTERS
150185 DT Article
150186 ID SENSITIVITY
150187 AB Based on a method of rigorous vector-field analysis, a numerical model
150188    of triple-clad long-period fibre grating is established. The vector
150189    components of the electric field for the HE,, cladding mode are plotted
150190    to study the field distribution of the cladding mode. The local
150191    intensity curves of the first six l = 1 cladding modes are also given.
150192    It is found that the low-order HE modes have a larger proportion of
150193    intensity localized in the core than the low-order EH modes, just like
150194    the double-clad LPFG. Further, the coupling constant between the core
150195    mode and the cladding mode is analysed. The results show that the
150196    coupling constant of the low-order HE increases monotonously when the
150197    mode number becomes larger, and it varies monotonously with the film
150198    thickness except for a certain specific region.
150199 C1 Univ Shanghai Sci & Technol, Coll Opt & Elect Informat Engn, Shanghai 200093, Peoples R China.
150200    Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
150201 RP Gu, ZT, Univ Shanghai Sci & Technol, Coll Opt & Elect Informat Engn,
150202    Shanghai 200093, Peoples R China.
150203 EM zhengtiangu@163.com
150204 CR ALLSOP T, 2001, OPT COMMUN, V191, P181
150205    CHARLES T, 1992, OPTICAL FIBRE WAVEGU
150206    CHONG JH, 2004, OPT COMMUN, V229, P65
150207    FALCIAI R, 2001, SENSOR ACTUAT B-CHEM, V74, P74
150208    LIU ZX, 2004, CHINESE PHYS LETT, V21, P1549
150209    NICHOLAS DR, 2002, OPT LETT, V27, P686
150210    SHU XW, 1999, OPT COMMUN, V171, P65
150211    TURAN E, 1997, J OPT SOC AM A, V14, P1760
150212    VENGSARKAR AM, 1995, C OPT FIB COMM SAN D
150213 NR 9
150214 TC 0
150215 SN 0256-307X
150216 J9 CHIN PHYS LETT
150217 JI Chin. Phys. Lett.
150218 PD JUL
150219 PY 2005
150220 VL 22
150221 IS 7
150222 BP 1702
150223 EP 1705
150224 PG 4
150225 SC Physics, Multidisciplinary
150226 GA 945UY
150227 UT ISI:000230529000039
150228 ER
150229 
150230 PT J
150231 AU Feng, X
150232    Shi, LY
150233 TI Facile synthesis of nanocrystalline titanium carbonitride via a
150234    chemical metathesis route
150235 SO CHEMISTRY LETTERS
150236 DT Article
150237 ID CARBOTHERMAL REDUCTION; C-N; POWDERS; TIO2; MECHANISM; COATINGS; TIN
150238 AB Nanocrystalline titanium carbonitride (TiCN) was successfully
150239    synthesized at low temperature (450 degrees C) via a chemical
150240    metathesis route using the readily attainable TiCl4, CaC2 and NaN3 as
150241    source materials. X-ray powder diffraction indicated that the product
150242    was cubic TiCN with a lattice constant a = 4.252 angstrom. Transmission
150243    electron microscopy revealed that the crystals were composed of
150244    spherical particles with the diameter of 66 nm. X-ray photoemission
150245    spectra analysed that the atomic ratio was good agreement with the
150246    TiC0.4N0.6 stoichiometry. The possible formation mechanism was
150247    investigated.
150248 C1 Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
150249    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
150250    Shanghai Univ, Nano Sci & Technol Res Ctr, Shanghai 200444, Peoples R China.
150251 RP Shi, LY, Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
150252 CR BERGER LM, 1999, INT J REFRACT MET H, V17, P235
150253    ESLAMLOOGRAMI M, 1994, J MATER RES, V9, P431
150254    ETTMAYER P, 1995, INT J REFRACT MET H, V13, P343
150255    GUEMMAZ M, 1997, APPL PHYS A-MATER, V64, P407
150256    HOLZSCHUH H, 2002, INT J REFRACT MET H, V20, P143
150257    JHA A, 1999, J MATER SCI, V34, P307
150258    KERR A, 1999, NANOSTRUCT MATER, V11, P233
150259    KOC R, 1997, J MATER SCI, V32, P3101
150260    KUO DH, 2002, APPL SURF SCI, V199, P278
150261    LICHTENBERGER O, 2003, MATER CHEM PHYS, V81, P195
150262    PASTOR H, 1988, MAT SCI ENG A-STRUCT, V401, P105
150263    RIE KT, 1999, SURF COAT TECH, V112, P226
150264    SHAVIV R, 1996, MAT SCI ENG A-STRUCT, V209, P345
150265    SHEN GZ, 2002, MATER RES BULL, V37, P1207
150266    WEIMER AW, 1997, CARBIDE NITRIDE BORI
150267    XIANG JH, 2000, J EUR CERAM SOC, V20, P933
150268    YOSHIMURA M, 1987, J MATER SCI LETT, V6, P1463
150269 NR 17
150270 TC 0
150271 SN 0366-7022
150272 J9 CHEM LETT
150273 JI Chem. Lett.
150274 PD JUL 5
150275 PY 2005
150276 VL 34
150277 IS 7
150278 BP 1002
150279 EP 1003
150280 PG 2
150281 SC Chemistry, Multidisciplinary
150282 GA 946DA
150283 UT ISI:000230551200057
150284 ER
150285 
150286 PT S
150287 AU Liu, Y
150288    Li, Y
150289    Li, GZ
150290    Zhang, BF
150291    Wu, GF
150292 TI Constructive ensemble of RBF neural networks and its application to
150293    earthquake prediction
150294 SO ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 1, PROCEEDINGS
150295 SE LECTURE NOTES IN COMPUTER SCIENCE
150296 DT Article
150297 AB Neural networks ensemble is a hot topic in machine learning community,
150298    which can significantly improve the generalization ability of single
150299    neural networks. However, the design of ensemble architecture still
150300    relies on either a tedious trial-and-error process or the experts'
150301    experience. Tbs paper proposes a novel method called CERNN
150302    (Constructive Ensemble of RBF Neural Networks), in which the number of
150303    individuals, the number of hidden nodes and training epoch of each
150304    individual are determined automatically. The generalization performance
150305    of CERNN can be improved by using different training subsets and
150306    individuals with different architectures. Experiments on UCI datasets
150307    demonstrate that CERNN is effective to release the user from the
150308    tedious trialand-error process, so is it when applied to earthquake
150309    prediction.
150310 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
150311 RP Liu, Y, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R
150312    China.
150313 EM yliu@staff.shu.edu.cn
150314 CR BLAKE CL, 1998, UCI REPOSITORY MACHI
150315    DIETTERICH TG, 2000, P 1 INT WORKSH MULT, P1
150316    EFRON B, 1993, INTRO BOOTSTRAP
150317    GUTTA S, 1996, P IEEE INT C NEUR NE, P1017
150318    HAN J, 2000, DATA MINING CONCEPTS
150319    HANSEN LK, 1990, IEEE T PATTERN ANAL, V12, P993
150320    ISLAM M, 2003, IEEE T NEURAL NETWOR, V14, P820
150321    LIU Y, 2004, P ISNN 04, P962
150322    MEI S, 1993, INTRO EARTHQUAKE PRE
150323    MOODEY J, 1989, NEURAL COMPUT, V1, P1281
150324    WANG W, 1999, EARTHQUAKE, V19, P118
150325    WANG Z, 2004, P IDEAL 04, P572
150326    ZHANG Z, 1990, CHINA EARTHQUAKE CAS
150327 NR 13
150328 TC 0
150329 SN 0302-9743
150330 J9 LECT NOTE COMPUT SCI
150331 PY 2005
150332 VL 3496
150333 BP 532
150334 EP 537
150335 PG 6
150336 GA BCN38
150337 UT ISI:000230166900085
150338 ER
150339 
150340 PT S
150341 AU Fan, J
150342    Wu, GF
150343 TI A foremost-policy reinforcement learning based ART2 neural network and
150344    its learning algorithm
150345 SO ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 1, PROCEEDINGS
150346 SE LECTURE NOTES IN COMPUTER SCIENCE
150347 DT Article
150348 AB This paper proposes a Foremost-Policy Reinforcement Learning based ART2
150349    neural network (FPRL-ART2) and its learning algorithm. For real time
150350    learning, we select the first awarded behavior based on current state
150351    in the Foremost-Policy Reinforcement Learning (FPRL) in stead of the
150352    optimal behavior in 1-step Q-Learning. The paper also gives the
150353    algorithm of FPRL and integrates it with ART2 neural network. ART2 is
150354    used for storing the classified pattern and the stored weights of
150355    classified pattern is increased or decreased by reinforcement learning.
150356    FPRL-ART2 is successfully used in collision avoidance of mobile robot
150357    and the simulation experiment indicates that collision times between
150358    robot and obstacle are decreased effectively. FPRL-ART2 makes favorable
150359    effect against collision avoidance.
150360 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai, Peoples R China.
150361 RP Fan, J, Shanghai Univ, Sch Engn & Comp Sci, Shanghai, Peoples R China.
150362 EM jfan@mail.shu.edu.cn
150363    gfwu@staff.shu.edu.cn
150364 CR CHEN CT, 1997, P IEEE INT C ROB AUT, P2007
150365    FAN J, 2004, LECT NOTES COMPUT SC, V3174, P35
150366    WHITEHEAD SD, 1990, P 5 IEEE INT S SEPT, V2, P1289
150367    XIAO NF, 2002, IEEE ICIT BANGK THAI, V2, P1096
150368    YANG SX, 2000, P IEEE RSJ INT C INT, P239
150369 NR 5
150370 TC 0
150371 SN 0302-9743
150372 J9 LECT NOTE COMPUT SCI
150373 PY 2005
150374 VL 3496
150375 BP 634
150376 EP 639
150377 PG 6
150378 GA BCN38
150379 UT ISI:000230166900101
150380 ER
150381 
150382 PT S
150383 AU Gu, SS
150384 TI An improved transiently chaotic neural network for solving the
150385    K-coloring problem
150386 SO ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 1, PROCEEDINGS
150387 SE LECTURE NOTES IN COMPUTER SCIENCE
150388 DT Article
150389 AB This paper applies a new version of the transiently chaotic neural
150390    network (TCNN), the speedy convergent chaotic neural network (SCCNN),
150391    to solve the k-coloring problem, a classic NP-complete graph
150392    optimization problem, which has many real-world applications. From
150393    analyzing the chaotic states of its computational energy, we reach the
150394    conclusion that, like the TCNN, the SCCNN can avoid getting stuck in
150395    local minima and thus yield excellent solutions, which overcome the
150396    disadvantage of the Hopfield neural network (HNN). In addition, the
150397    experimental results verify that the SCCNN converges more quickly than
150398    the TCNN does in solving the k-coloring problem, which leads it to be a
150399    practical algorithm like the HNN. Therefore, the SCCNN not only adopts
150400    the advantages of the HNN as well as the TCNN but also avoids their
150401    drawbacks, thus provides an effective and efficient approach to solve
150402    the k-coloring problem.
150403 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
150404 RP Gu, SS, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R
150405    China.
150406 EM gushenshen@163.com
150407 CR BERGER MO, 1994, P INT C NEUR NETW, V7, P4514
150408    CHEN LN, 1995, NEURAL NETWORKS, V8, P915
150409    GAREY MR, 1979, COMPUTERS INTRACTABI
150410    GU SS, 2004, LECT NOTES ARTIF INT, V3060, P391
150411    HOPFIELD JJ, 1985, BIOL CYBERN, V52, P141
150412    KANG B, 2004, P 2004 IEEE INT C CO, V2, P1057
150413    TAKEFUJI Y, 1991, IEEE T CIRCUITS SYST, V38, P326
150414    XIE CQ, 2003, J SHANGHAI JIAOTANG, V37, P36
150415 NR 8
150416 TC 0
150417 SN 0302-9743
150418 J9 LECT NOTE COMPUT SCI
150419 PY 2005
150420 VL 3496
150421 BP 750
150422 EP 755
150423 PG 6
150424 GA BCN38
150425 UT ISI:000230166900120
150426 ER
150427 
150428 PT J
150429 AU Zhang, YW
150430    Ding, WZ
150431    Lu, XG
150432    Guo, SQ
150433    Xu, KD
150434 TI Reduction of TiO2 with hydrogen cold plasma in DC pulsed glow discharge
150435 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
150436 DT Article
150437 DE hydrogen; cold plasma; reduction; TiO2; pulsed glow discharge
150438 ID AR-H2
150439 AB The reduction of TiO2 to Ti2O3 with hydrogen cold plasma generated by a
150440    DC pulsed glow discharge was realized under 2 500 Pa at 1 233 K. Only a
150441    little of Ti10O19 and Ti9O17 was detected for using molecular hydrogen.
150442    Enhancement effects of hydrogen cold plasma on the reduction were
150443    discussed in terms of thermodynamic coupling, kinetics and plasma
150444    sheath. The exited hydrogen species are considered more effective
150445    reducing agents. It is instructive to reduce refractory oxides with
150446    plasma hydrogen at the reduced temperature.
150447 C1 Shanghai Univ, Shanghai Key Lab Modern Met & Mat Proc, Shanghai 200072, Peoples R China.
150448 RP Ding, WZ, Shanghai Univ, Shanghai Key Lab Modern Met & Mat Proc,
150449    Shanghai 200072, Peoples R China.
150450 EM wzhding@public7.sta.net.cn
150451 CR ALEMANY C, 2002, SOL ENERG MAT SOL C, V72, P41
150452    BELMONTE T, 2002, J VAC SCI TECHNOL A, V20, P1347
150453    BIRAT JP, 1999, REV METALL CIT, P1203
150454    BULLARD DE, 1997, METALL MATER TRANS B, V28, P1069
150455    DEMBOVSKY V, 1998, J MATER PROCESS TECH, V78, P34
150456    DIETMAR V, 1989, STEEL RES, V60, P177
150457    FLAMM DL, 1989, INTRO PLASMA CHEM, P115
150458    HIDEO S, 2002, ELECT ENG PLASMA, P34
150459    HUCZKO A, 1988, METALLURGICAL T B, V19, P927
150460    KITAMURA T, 1993, ISIJ INT, V33, P1150
150461    KOJI K, 1984, T ISIJ, V24, P7
150462    MOHAI I, 2001, PLASMA CHEM PLASMA P, V21, P547
150463    PALMER RA, 2002, PLASMA CHEM PLASMA P, V22, P335
150464    POLAK LS, 1998, PLASMA CHEM
150465    ROBINO CV, 1996, METALL MATER TRANS B, V27, P65
150466    ROINE A, 1999, OUTOKUMPU HSC CHEM W
150467    WATANABE T, 1999, THIN SOLID FILMS, V345, P161
150468    XU KD, 1999, XIANGSH SCI M CTR 12, P31
150469    ZHANG YW, 2004, CHINESE J NONFERROUS, V14, P315
150470 NR 19
150471 TC 0
150472 SN 1003-6326
150473 J9 TRANS NONFERROUS METAL SOC CH
150474 JI Trans. Nonferrous Met. Soc. China
150475 PD JUN
150476 PY 2005
150477 VL 15
150478 IS 3
150479 BP 594
150480 EP 599
150481 PG 6
150482 SC Metallurgy & Metallurgical Engineering
150483 GA 944SN
150484 UT ISI:000230449600021
150485 ER
150486 
150487 PT J
150488 AU Ma, HP
150489    Sun, WW
150490    Tang, T
150491 TI Hermite spectral methods with a time-dependent scaling for parabolic
150492    equations in unbounded domains
150493 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
150494 DT Article
150495 DE Hermite spectral method; time-dependent scaling; stability; convergence
150496 ID PARTIAL-DIFFERENTIAL-EQUATIONS; LEGENDRE-PETROV-GALERKIN;
150497    LAGUERRE-POLYNOMIALS; APPROXIMATION; INTERVAL
150498 AB Hermite spectral methods are investigated for linear diffusion
150499    equations and nonlinear convection-diffusion equations in unbounded
150500    domains. When the solution domain is unbounded, the diffusion operator
150501    no longer has a compact resolvent, which makes the Hermite spectral
150502    methods unstable. To overcome this difficulty, a time-dependent scaling
150503    factor is employed in the Hermite expansions, which yields a positive
150504    bilinear form. As a consequence, stability and spectral convergence can
150505    be established for this approach. The present method plays a similar
150506    role in the stability of the similarity transformation technique
150507    proposed by Funaro and Kavian [Math. Comp., 57 (1991), pp. 597-619].
150508    However, since coordinate transformations are not required, the present
150509    approach is more efficient and is easier to implement. In fact, with
150510    the time-dependent scaling the resulting discretization system is of
150511    the same form as that associated with the classical (straightforward
150512    but unstable) Hermite spectral method. Numerical experiments are
150513    carried out to support the theoretical stability and convergence
150514    results.
150515 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
150516    City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China.
150517    Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China.
150518    Chinese Acad Sci, Inst Computat Math, Beijing 100080, Peoples R China.
150519 RP Ma, HP, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
150520 EM hpma@mail.shu.edu.cn
150521    maweiw@math.cityu.edu.hk
150522    ttang@math.hkbu.edu.hk
150523 CR ADZIC N, 1992, B AUSTR MATH SOC, V45, P267
150524    BERNARDI C, 1997, HDBK NUM AN 2, V5, P209
150525    BOYD JP, 1987, J COMPUT PHYS, V69, P112
150526    COULAUD O, 1990, COMPUT METHOD APPL M, V80, P451
150527    FOK JCM, 2002, MATH COMPUT, V71, P1497
150528    FUNARO D, 1991, MATH COMPUT, V57, P597
150529    GUO BY, 1999, MATH COMPUT, V68, P1067
150530    GUO BY, 2000, ESAIM-MATH MODEL NUM, V34, P859
150531    GUO BY, 2000, J SCI COMPUT, V15, P117
150532    GUO BY, 2000, NUMER MATH, V86, P635
150533    IRANZO V, 1992, COMPUT METHOD APPL M, V98, P105
150534    KHABIBRAKHMANOV IK, 1998, COMPUT MATH APPL, V36, P65
150535    LIU Y, 1994, J COMPUT PHYS, V111, P373
150536    MA HP, 2000, SIAM J NUMER ANAL, V38, P1425
150537    MA HP, 2001, SIAM J NUMER ANAL, V39, P1380
150538    MADAY Y, 1985, RECH AEROSPATIALE, P353
150539    MADAY Y, 1989, SIAM J NUMER ANAL, V26, P854
150540    MASTROIANNI G, 1997, IMA J NUMER ANAL, V17, P621
150541    MUCKENHOUPT B, 1970, T AM MATH SOC, V147, P433
150542    SCHUMER JW, 1998, J COMPUT PHYS, V144, P626
150543    SHEN J, 2000, SIAM J NUMER ANAL, V38, P1113
150544    TANG T, 1993, SIAM J SCI COMPUT, V14, P594
150545    THANGAVELU S, 1990, REV MAT IBEROAM, V6, P61
150546    THANNGAVELU S, 1993, LECT HERMITE LAGUERR
150547    WEIDEMAN JAC, 1992, NUMER MATH, V61, P409
150548 NR 25
150549 TC 0
150550 SN 0036-1429
150551 J9 SIAM J NUMER ANAL
150552 JI SIAM J. Numer. Anal.
150553 PY 2005
150554 VL 43
150555 IS 1
150556 BP 58
150557 EP 75
150558 PG 18
150559 SC Mathematics, Applied
150560 GA 945KY
150561 UT ISI:000230502600004
150562 ER
150563 
150564 PT J
150565 AU He, BW
150566    Leng, GS
150567 TI Isotropic bodies and Bourgain's problem
150568 SO SCIENCE IN CHINA SERIES A-MATHEMATICS
150569 DT Article
150570 DE convex body; isotropic body; isotropic constant; Bourgain's problem;
150571    spherical section function
150572 ID CONVEX-BODIES
150573 AB Let K subset of R-n be a convex body of volume 1 whose barycenter is at
150574    the origin, L-K be the isotropic constant of K. Finding the least upper
150575    bound of L-K, being called Bourgain's problem, is a well known open
150576    problem in the local theory of Banach space. The best estimate known
150577    today is L-K < cn(1/4)log n, recently shown by Bourgain, for an
150578    arbitrary convex body in any finite dimension. Utilizing the method of
150579    spherical section function, it is proven that if K is a convex body
150580    with volume 1 and r(1)B(2)(n) subset of K subset of r(2)B(2)(n), (r1 >=
150581    1/2, r(2) <= root n-/2), then (1)/(root 2 pi e) <= L-K <= (1)/(2 root
150582    3), and find the conditions with equality Further, the geometric
150583    characteristic of isotropic bodies is shown.
150584 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
150585 RP He, BW, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
150586 EM hebinwu@163.com
150587 CR BALL K, 1991, LECT NOTES MATH, V1470, P36
150588    BALL K, 1997, ELEMENTARY INTRO MOD, V31
150589    BLASCHKE W, 1917, LEIPZ BER, V69, P436
150590    BLASCHKE W, 1918, BER VERH SACHS AK MP, V70, P72
150591    BOURGAIN J, 1991, LECT NOTES MATH, V1469, P127
150592    BOURGAIN J, 2003, CR MATH, V336, P331
150593    BREHM U, 2002, MATH Z, V240, P37
150594    DAR S, 1995, OPERATOR THEORY ADV, V77, P61
150595    GARDNER RJ, 1995, GEOMETRIC TOMOGRAPHY
150596    GIANNOPOULOS AA, 2000, ISRAEL J MATH, V117, P29
150597    JOHN F, 1937, DUKE MATH J, V3, P355
150598    JOHN F, 1948, EXTREMUM PROBLEMS IN, P187
150599    LEICHTWEISS K, 1998, AFFINE GEOMETRY CONV
150600    LINDENSTRAUSS J, 1993, LOCAL THEORY NORMED
150601    LUTWAK E, 2000, DUKE MATH J, V104, P375
150602    MILMAN VD, 1989, LECT NOTES MATH, V1376, P64
150603    REN DL, 1988, INTRO INREGRAL GEOME
150604    SCHNEIDER R, 1983, ZONOIDS RELATED TOPI, P296
150605    SCHNEIDER R, 1993, BRUNN MINKOWSKI THEO
150606 NR 19
150607 TC 0
150608 SN 1006-9283
150609 J9 SCI CHINA SER A
150610 JI Sci. China Ser. A-Math.
150611 PD MAY
150612 PY 2005
150613 VL 48
150614 IS 5
150615 BP 666
150616 EP 679
150617 PG 14
150618 SC Mathematics, Applied; Mathematics
150619 GA 945AK
150620 UT ISI:000230472500008
150621 ER
150622 
150623 PT J
150624 AU Xie, CL
150625    Yang, AL
150626 TI Nozzle flow modeled for rotary drillbit design
150627 SO OIL & GAS JOURNAL
150628 DT Article
150629 C1 Shanghai Univ, Coll Power Engn, Shanghai, Peoples R China.
150630 RP Xie, CL, Shanghai Univ, Coll Power Engn, Shanghai, Peoples R China.
150631 EM xcl_usst@yahoo.com
150632    alyang@usst.edu.cn
150633 CR CHEN J, 1996, FLOW THEORY DRILL LI
150634    LIU G, 1979, BASIC AERODYNAMICS T
150635    LIU X, 1988, PRINCIPLE DRILL PROC
150636    PAN W, 1988, THESIS TSINGHUA U
150637    SHEN S, 1998, PETROLEUM MACHINERY, V6, P57
150638    XIE C, 2002, THESIS U SHANGHAI SC, P30
150639 NR 6
150640 TC 0
150641 SN 0030-1388
150642 J9 OIL GAS J
150643 JI Oil Gas J.
150644 PD JUN 24
150645 PY 2005
150646 VL 103
150647 IS 24
150648 BP 42
150649 EP 44
150650 PG 3
150651 SC Engineering, Petroleum; Energy & Fuels
150652 GA 943KI
150653 UT ISI:000230352000019
150654 ER
150655 
150656 PT J
150657 AU Yang, TC
150658    Yu, H
150659    Fei, M
150660    Li, LX
150661 TI Networked control systems: a historical review and current research
150662    topics
150663 SO MEASUREMENT & CONTROL
150664 DT Review
150665 ID STABILIZATION; STABILITY
150666 C1 Univ Sussex, Dept Engn & Design, Brighton BN1 9RH, E Sussex, England.
150667    Staffordshire Univ, Fac Comp Engn & Technol, Stoke On Trent ST4 2DE, Staffs, England.
150668    Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200041, Peoples R China.
150669 RP Yang, TC, Univ Sussex, Dept Engn & Design, Brighton BN1 9RH, E Sussex,
150670    England.
150671 CR FUTURE DIRECTIONS DY
150672    AMIN M, 2002, IEEE CONTROL SYS FEB
150673    ANTSAKLIS P, 2004, IEEE T AUT CONTR SEP, V49
150674    BABAK AS, 2003, P 2003 IEEE C DEC CO
150675    BHOWMIK S, 2004, IEEE T POW SYST FEB, V19
150676    BRANICKY MS, 2002, P IEEE C DEC CONTR L
150677    BUSHNELL LG, 2001, IEEE CONTROL SYS FEB, V21
150678    CERVIN A, 2002, P 2 WORKSH REAL TIM
150679    CERVIN A, 2003, THESIS LUND I TECHNO
150680    CERVIN, 2003, IEEE CONTROL SYS JUN, P16
150681    CHEN Z, 2004, IEEE C SYST MAN CYB
150682    GUAN L, 2004, P 5 INF WORKSH RES S
150683    ISHII H, 2002, AUTOMATICA, V38, P1745
150684    ISHII H, 2002, IEEE T AUTOMAT CONTR, V47, P1962
150685    ISHII H, 2003, AUTOMATICA, V39, P1793
150686    LIAN FL, 2001, INT MECH ENG C EXP N
150687    LIU GP, 2004, P CONTR 2004 U BATH
150688    LOW SH, 2002, IEEE CONTROL SYS FEB
150689    MURRAY RM, 2003, IEEE CONTROL SYS APR
150690    NILSON J, 1998, THESIS LUND I TECHNO
150691    SILJAK D, 1991, DECENTRALIZED CONTRO
150692    SILVIUIULIAN N, 2002, AUTOMATICA, V38, P885
150693    WALSH GC, 2001, IEEE CONTROL SYS FEB
150694    WALSH GC, 2002, IEEE T CONTR SYST T, V10, P438
150695    WANG SH, 1973, IEEE T AUTOMAT CONTR, V18, P473
150696    YANG SH, 2004, P CONTR 2004 U BATH
150697    YANG TC, 1997, INV SEM ORG NAT GRID
150698    YANG TC, 1998, CHQ169732GSI
150699    YANG TC, 1999, P IFAC 14 WORLD C, L, P211
150700    YU J, 2004, IEEE C SYST MAN CYB
150701    YU X, 2004, IEEE T POWER SYSTEMS, V19
150702    ZHANG W, 2001, IEEE CONTR SYST MAG, V21, P84
150703 NR 32
150704 TC 0
150705 SN 0020-2940
150706 J9 MEASUREMENT CONTROL
150707 JI Meas. Control
150708 PD FEB
150709 PY 2005
150710 VL 38
150711 IS 1
150712 BP 12
150713 EP 16
150714 PG 5
150715 SC Automation & Control Systems; Instruments & Instrumentation
150716 GA 945GA
150717 UT ISI:000230489800002
150718 ER
150719 
150720 PT J
150721 AU Zhao, CJ
150722    Pecaric, J
150723    Leng, GS
150724 TI On dual Brunn-Minkowski inequalities
150725 SO MATHEMATICAL INEQUALITIES & APPLICATIONS
150726 DT Article
150727 DE dual Brunn-Minkowski inequality; the radial Minkowski linear
150728    combination; the Blaschke linear combination
150729 ID MIXED VOLUMES; BODIES
150730 AB The main purpose of this paper is first to improve two classical dual
150731    Brunn-Minkowski inequalities, then we generalize another dual
150732    Brunn-Minkowski inequality from generic volume to Quermassintegral.
150733 C1 China Inst Metrol, Coll Sci, Dept Informat & Math Sci, Hangzhou 310018, Peoples R China.
150734    Univ Zagreb, Fac Text Technol, Zagreb 10000, Croatia.
150735    Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
150736 RP Zhao, CJ, China Inst Metrol, Coll Sci, Dept Informat & Math Sci,
150737    Hangzhou 310018, Peoples R China.
150738 EM chjzhao@163.com
150739    pecaric@hazu.hr
150740 CR BALL K, 1989, LECT NOTES MATH, V1376, P251
150741    BALL K, 1991, J LOND MATH SOC, V44, P351
150742    BALL K, 1991, T AM MATH SOC, V327, P891
150743    BOURGAIN J, 1988, LECT NOTES MATH, V1317, P250
150744    GARDNER RJ, 1994, ANN MATH, V140, P435
150745    GARDNER RJ, 1995, GEOMETRIC TOMOGRAPHY
150746    LENG GS, 2004, IN PRESS INEQUALITIE
150747    LUTWAK E, 1975, PAC J MATH, V58, P531
150748    LUTWAK E, 1985, T AM MATH SOC, V287, P92
150749    LUTWAK E, 1988, ADV MATH, V71, P232
150750    LUTWAK E, 1990, P LOND MATH SOC, V60, P365
150751    SCHNEIDER R, 1993, CONVEX BODIES BRUNN
150752    ZHAO CJ, 2003, INVERSE DISPERSE CON, V46, P1248
150753 NR 13
150754 TC 0
150755 SN 1331-4343
150756 J9 MATH INEQUAL APPL
150757 JI Math. Inequal. Appl.
150758 PD APR
150759 PY 2005
150760 VL 8
150761 IS 2
150762 BP 357
150763 EP 363
150764 PG 7
150765 SC Mathematics
150766 GA 943SJ
150767 UT ISI:000230374300018
150768 ER
150769 
150770 PT J
150771 AU Zheng, YH
150772    Hua, TC
150773    Xu, F
150774 TI A novel thermal biosensor based on enzyme reaction for pesticides
150775    measurement
150776 SO JOURNAL OF ENVIRONMENTAL SCIENCES-CHINA
150777 DT Article
150778 DE thermal biosensor; pesticides residue; thermoelectric module; flow
150779    injection analysis(FIA)
150780 ID ORGANOPHOSPHORUS; PRINCIPLES; THERMISTOR
150781 AB A novel thermal biosensor based on enzyme reaction for pesticides
150782    detection has been developed. This biosensor is a flow injection
150783    analysis system and consists of two channels with enzyme reaction
150784    column and identical reference column, which is set for eliminating the
150785    unspecific heat. The enzyme reaction takes place in the enzyme reaction
150786    column at a constant temperature(40 degrees C) realized by a
150787    thermoelectric thermostat. Thermosensor based on the thermoelectric
150788    module containing 127 serial BiTe-thermocouples is used to monitor the
150789    temperature difference between two effluents from enzyme reaction
150790    column and reference column. The ability of this biosensor to detect
150791    pesticides is demonstrated by the decreased degree of the hydrolytic
150792    heat in two types of thermosensor mode. The hydrolytic reaction is
150793    inhibited by 36% at 1 mg/L DDVP and 50 % at 10 mg/L DDVP when
150794    cell-typed thermosensor is used. The percent inhibition is 30% at I
150795    mg/L DDVP and 42% at 10 mg/L DDVP in tube-typed thermosensor mode. The
150796    detection for real sample shows that this biosensor can be used for
150797    detection of organophosphate pesticides residue.
150798 C1 Shanghai Univ Sci & Technol, Inst Food Sci & Engn, Shanghai 200093, Peoples R China.
150799    Qingdao Univ, Coll Electromech Engn, Qingdao 266071, Peoples R China.
150800 RP Hua, TC, Shanghai Univ Sci & Technol, Inst Food Sci & Engn, Shanghai
150801    200093, Peoples R China.
150802 EM tchua@sh163.net
150803 CR ABAD JM, 1998, ANAL CHEM, V70, P2848
150804    ASPEREN KV, 1962, J INSECT PHYSIOL, P6401
150805    BATAILLARD P, 1993, TRAC-TREND ANAL CHEM, V12, P387
150806    BERNABEI M, 1991, ANAL LETT, V24, P1317
150807    BOUBLIK Y, 2002, PROTEIN ENG, V15, P43
150808    CHEPALAMADUGU S, 1992, CRIT REV BIOTECHNOL, V12, P357
150809    DANIELSSON B, 1996, HDB CHEM BIOL SENSOR, V20, P495
150810    DONARSKI WJ, 1989, BIOCHEMISTRY-US, V28, P4650
150811    ELYAMANI H, 1988, SENSOR ACTUATOR, V15, P193
150812    GALGANI F, 1989, ENVIRON TECHNOL LETT, V10, P311
150813    HOEBEL W, 1992, FRESEN J ANAL CHEM, V343, P101
150814    HUA TC, 2002, 012538876, CN
150815    KIBA N, 1984, TALANTA, V31, P131
150816    LEONGONZALEZ MF, 1991, CHROMATOGRAPHIA, V534, P47
150817    MARTY JL, 1995, TRAC-TREND ANAL CHEM, V14, P329
150818    MATTIASSON B, 1976, ANAL LETT, V9, P867
150819    MOSBACH K, 1974, BIOCHIM BIOPHYS ACTA, V364, P140
150820    PYLYPIW HM, 1993, J AOAC INT, V76, P1369
150821    RAMANATHAN K, 2001, BIOSENS BIOELECTRON, V16, P417
150822    ROTH M, 1972, CLIN CHEM, V18, P739
150823    RUZICKA J, 1988, FLOW INJECTION ANAL
150824    SATICH K, 1992, ANAL BIOCHEM, V200, P187
150825    XIE B, 1992, SENSOR ACTUAT B-CHEM, V6, P127
150826    XIE B, 1995, ANALYST, V120, P155
150827    ZHANG JY, 2004, INT J CIRC THEOR APP, V32, P11
150828    ZHAO XI, 2004, CHINESE J FOOD SCI, V25, P127
150829 NR 26
150830 TC 0
150831 SN 1001-0742
150832 J9 J ENVIRON SCI-CHINA
150833 JI J. Environ. Sci.
150834 PY 2005
150835 VL 17
150836 IS 4
150837 BP 615
150838 EP 619
150839 PG 5
150840 SC Environmental Sciences
150841 GA 944NP
150842 UT ISI:000230436100018
150843 ER
150844 
150845 PT J
150846 AU Ye, L
150847    Li, XY
150848    Chen, Y
150849    Sun, HT
150850    Wang, WQ
150851    Su, TW
150852    Jiang, L
150853    Cui, B
150854    Ning, G
150855 TI Autosomal dominant neurohypophyseal diabetes insipidus with linkage to
150856    chromosome 20p13 but without mutations in the AVP-NPII gene
150857 SO JOURNAL OF CLINICAL ENDOCRINOLOGY AND METABOLISM
150858 DT Article
150859 ID NEUROPHYSIN-II GENE; ARGININE-VASOPRESSIN; MOLECULAR ANALYSIS; MISSENSE
150860    MUTATION; EXPRESSION; IDENTIFICATION; HYPOTHALAMUS; SECRETION;
150861    PRECURSOR; OXYTOCIN
150862 AB Context: Autosomal dominant neurohypophyseal diabetes insipidus (ADNDI)
150863    has been known as a rare disorder transmitted as an autosomal dominant
150864    trait, characterized by polyuria and polydipsia, and caused by
150865    deficient neurosecretion of arginine vasopressin precursor (AVP-NPII).
150866    We reported an ADNDI family with linkage to chromosome 20p13 but
150867    without mutations in the AVP-NPII gene.
150868    Objective: The objective of this study was to identify the
150869    corresponding locus responsible for ADNDI in a family without AVP-NPII
150870    gene mutations.
150871    Subjects and Methods: Two families with ADNDI were diagnosed by water
150872    deprivation test. The AVP-NPII gene was amplified by PCR and sequenced.
150873    A genomewide scan was performed in one family using 400 microsatellite
150874    markers covering 22 autosomes.
150875    Results: A 3-bp deletion (1827-1829delAGG) of AVP-NPII gene was
150876    identified in the affected individuals in one family. Although no
150877    mutations could be detected in the coding, the promoter, and intronic
150878    regions of AVP-NPII gene in the other family, a maximum LOD score of
150879    1.202999 (theta = 0.00) was obtained at marker D20S889 by genomewide
150880    scan, and a 7-cM interval on chromosome 20p13 was defined by fine
150881    mapping with markers D20S199-D20S849. Furthermore, the intragenic
150882    region that regulates AVP-NPII and oxytocin expression as an enhancer
150883    element and the UBCE7IP5 gene that participates in prohormone
150884    degradation were sequenced. No alterations could be detected either.
150885    Conclusion: The corresponding locus responsible for ADNDI is possibly
150886    heterogeneous regarding the slightly different clinical features in
150887    these two families.
150888 C1 Shanghai Med Univ 2, Clin Ctr Endocrine & Metab Dis, Shanghai 200025, Peoples R China.
150889    Shanghai Med Univ 2, Inst Endocine & Metab Dis, Ruijin Hosp, Shanghai 200025, Peoples R China.
150890    Shanghai Univ, E Inst, Div Endocrine & Metab Dis, Shanghai 200025, Peoples R China.
150891 RP Ning, G, Shanghai Med Univ 2, Ruijin Hosp, Dept Endocrinol & Metab,
150892    Shanghai 200025, Peoples R China.
150893 EM guangning@medmail.com.cn
150894 CR BULLMANN C, 2002, EXP CLIN ENDOCR DIAB, V110, P134
150895    CHEN LQ, 1991, P NATL ACAD SCI USA, V88, P4240
150896    DIMEGLIO LA, 2001, MOL GENET METAB, V72, P39
150897    ELIAS PC, 2003, CLIN ENDOCRINOL, V59, P511
150898    FELIG LAP, 2001, FROHMAN ENDOCRINOLOG, P228
150899    FIELDS RL, 2003, J NEUROSCI, V23, P7801
150900    GABREELS BATF, 1998, J CLIN ENDOCR METAB, V83, P591
150901    ISHIZAKI S, 2002, ENDOCRINOLOGY, V143, P1589
150902    JACKSON L, 1998, WILLIAMS TXB ENDOCRI, P362
150903    KUWAHARA S, 2003, J NEUROSCI, V23, P10231
150904    MAHONEY CP, 2002, J CLIN ENDOCR METAB, V87, P870
150905    NIJENHUIS M, 2000, MOL CELL ENDOCRINOL, V167, P55
150906    PRINGA E, 2001, J BIOL CHEM, V276, P19617
150907    REPASKE DR, 1990, J CLIN ENDOCR METAB, V70, P752
150908    REPASKE DR, 1997, J CLIN ENDOCR METAB, V82, P51
150909    RITTIG S, 1996, AM J HUM GENET, V58, P107
150910    RITTIG S, 2002, J CLIN ENDOCR METAB, V87, P3351
150911    ROBERTSON GL, 1995, ENDOCRIN METAB CLIN, V24, P549
150912    ROSSI NF, 2004, AM J PHYSIOL-ENDOC M, V286, E535
150913    RUTISHAUSER J, 2002, EUR J ENDOCRINOL, V146, P649
150914    VACHER CM, 2003, J NEUROSCI RES, V71, P791
150915    VENTURA RR, 2002, BRAZ J MED BIOL RES, V35, P1101
150916    WOLF MTF, 2003, HORM RES, V60, P143
150917    YUASA H, 1993, J CLIN ENDOCR METAB, V77, P600
150918 NR 24
150919 TC 0
150920 SN 0021-972X
150921 J9 J CLIN ENDOCRINOL METAB
150922 JI J. Clin. Endocrinol. Metab.
150923 PD JUL
150924 PY 2005
150925 VL 90
150926 IS 7
150927 BP 4388
150928 EP 4393
150929 PG 6
150930 SC Endocrinology & Metabolism
150931 GA 943FT
150932 UT ISI:000230339100090
150933 ER
150934 
150935 PT J
150936 AU Wang, ZC
150937    Chen, QM
150938 TI A trigonometrically-fitted one-step method with multi-derivative for
150939    the numerical solution to the one-dimensional Schrodinger equation
150940 SO COMPUTER PHYSICS COMMUNICATIONS
150941 DT Article
150942 DE Schrodinger equation; single-step method; Obrechkoff method; numerov
150943    method; P-stable
150944 ID INITIAL-VALUE-PROBLEMS; FITTING METHODS; INTEGRATION; ORDER; FORMULA
150945 AB In this paper we present a new multi-derivative or Obrechkoff one-step
150946    method for the numerical solution to an one-dimensional Schrodinger
150947    equation. By using trigonometrically- fitting method (TFM), we overcome
150948    the traditional Obrechkoff one-step method (or called as the non-TFM)
150949    for its poor-accuracy in the resonant state. In order to demonstrate
150950    the excellent performance for the resonant state, we consider only the
150951    simplest TFM, of which the local truncation error (LTE) is of O(h(7)),
150952    a little higher than the one of the traditional Numerov method of
150953    O(h(6)), and only the first- and second-order derivatives of the
150954    potential function are needed. In the new method, in order to solve two
150955    unknowns, wave function and its first-order derivative, we use a pair
150956    of two symmetrically linear-independent one-step difference equations.
150957    By applying it to the well-known Woods-Saxon's potential problem, we
150958    find that the TFM can surpass the non-TFM by five orders for the
150959    highest resonant state, and surpass Numerov method by eight orders. On
150960    the other hand, because of the small error constant, the accuracy
150961    improvement to the ground state is also remarkable, and the numerical
150962    result obtained by TFM can be four to five orders higher than the one
150963    by Numerov method. (c) 2005 Elsevier B.V. All rights reserved.
150964 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
150965    Shanghai Inst Technol, Sch Mech & Automat Engn, Shanghai 200235, Peoples R China.
150966 RP Wang, ZC, Shanghai Univ, Dept Phys, 99 ShangDa Rd, Shanghai 200444,
150967    Peoples R China.
150968 EM zc_wang89@hotmail.com
150969 CR ALLISON AC, 1970, J COMPUT PHYS, V6, P378
150970    ALLISON AC, 1991, J COMPUT PHYS, V97, P240
150971    AVDELAS G, 1996, COMPUT MATH APPL, V31, P85
150972    BLATT JM, 1967, J COMP PHYSIOL, V1, P382
150973    CASH JR, 1984, COMPUT PHYS COMMUN, V33, P299
150974    COOLEY JW, 1961, MATH COMPUT, V15, P363
150975    DAI YM, 2005, COMPUT PHYS COMMUN, V165, P110
150976    HERZBERG G, 1950, SPECTRA DIATOMIC MOL
150977    IXARU LG, 1980, COMPUT PHYS COMMUN, V19, P23
150978    LAMBERT JD, 1962, ZAMP, V13, P223
150979    LAMBERT JD, 1973, COMPUTATIONAL METHOD
150980    LAMBERT JD, 1976, J INST MATH APPL, V18, P189
150981    LANDAU L, 1974, QUANTUM MECH
150982    OBRECHKOFF N, 1942, SPISANIE BULGAR AKAD, V65, P191
150983    RAPTIS AD, 1978, COMPUT PHYS COMMUN, V14, P1
150984    RAPTIS AD, 1982, COMPUTING, V28, P373
150985    RAPTIS AD, 1985, COMPUT PHYS COMMUN, V36, P113
150986    RAPTIS AD, 1987, COMPUT PHYS COMMUN, V44, P95
150987    SIMOS TE, 1993, P ROY SOC LOND A MAT, V441, P283
150988    SIMOS TE, 1999, J COMPUT PHYS, V148, P305
150989    WANG Z, 2003, J MODERN PHYS C, V14, P1087
150990    WANG Z, 2003, N MATH J CHIN U, V12, P146
150991    WANG Z, 2005, IN PRESS P ROY SOC L
150992    WANG ZC, 2004, COMPUT PHYS COMMUN, V160, P23
150993    WANG ZC, 2005, COMPUT PHYS COMMUN, V167, P1
150994    WILLIAMS PS, 2000, INT J MOD PHYS C, V11, P785
150995    ZHAO DY, 2005, COMPUT PHYS COMMUN, V167, P65
150996 NR 27
150997 TC 1
150998 SN 0010-4655
150999 J9 COMPUT PHYS COMMUN
151000 JI Comput. Phys. Commun.
151001 PD JUL 15
151002 PY 2005
151003 VL 170
151004 IS 1
151005 BP 49
151006 EP 64
151007 PG 16
151008 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
151009 GA 944TA
151010 UT ISI:000230450900005
151011 ER
151012 
151013 PT J
151014 AU Hu, XF
151015    Zhu, Y
151016    Shen, MN
151017 TI Grain-size evidence for multiple origins of the reticulate red clay in
151018    southern China
151019 SO CHINESE SCIENCE BULLETIN
151020 DT Article
151021 DE reticulate red clay; grain-size distribution; aeolian characteristics;
151022    quartz; Quaternary environment
151023 ID LOESS; QUARTZ; EARTH
151024 AB Grain-size distributions of the reticulate red clay in Xuancheng, Anhui
151025    Province, and Jiujiang, Taihe and Ganzhou, Jiangxi Province, are
151026    analyzed. The results are as follows: (1) Generally fine and uniform,
151027    grain-size characteristics of the reticulate red clay in Xuancheng and
151028    Jiujiang are much similar, with no > 2 mm gravels, 0.30% and 1.14% of >
151029    63 mu m fraction on average, respectively, and 34.65% and 37.20% of
151030    10-50 mu m fraction, which is apparently accumulated. The patterns of
151031    the grain-size distribution curves of the uppermost yellow-brown earth
151032    of the profiles in the two areas much resemble those of the loess in
151033    northern China and the Xiashu loess in southeastern China, while the
151034    patterns of the other layers also apparently show some attributes
151035    inherited from the above. The grain-size distribution patterns of the
151036    quartz separated from the whole profiles in the areas are almost
151037    identical, which could also be compared with those of the loess and the
151038    Xiashu loess. All the features above reveal aeolian characteristics of
151039    the reticulated red clay in these two areas. (2) The reticulate red
151040    clay in Taihe and Ganzhou is much coarser than that in Xuancheng and
151041    Jiujiang, with high content of > 63 mu m fraction and relatively low
151042    content of 10-50 mu m fraction. The variations in grain-size
151043    distributions of the profiles are also observed. The grain-size
151044    distribution patterns of both the original samples and the quartz of
151045    the red clay could hardly be compared with those of the loess and the
151046    Xiashu loess. All the features above reveal their alluvial or diluvial
151047    origins. (3) The multiple origins of the reticulate red clay in the
151048    areas reflect the diversity and complexity of the Quaternary
151049    environment in southern China. The existence of the reticulate red clay
151050    with aeolian characteristics brings forth objective evidence for the
151051    occurrence of large-scale dust deposition in southern China during the
151052    Quaternary glacial periods. Further investigation and study on the
151053    regional distribution of this kind of the red clay will be conducive to
151054    revealing the southern border of the large-scale dust deposition in
151055    southern China during the Quaternary glacial periods.
151056 C1 Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072, Peoples R China.
151057    E China Normal Univ, Dept Geog, Shanghai 200062, Peoples R China.
151058 RP Hu, XF, Shanghai Univ, Dept Environm Sci & Engn, Shanghai 200072,
151059    Peoples R China.
151060 EM xfhu@staff.shu.edu.cn
151061 CR FANG HQ, 1961, ACTA GEOL SINICA, V41, P354
151062    GONG ZT, 2000, PEDOSPHERE, V10, P125
151063    HU XF, 1998, PEDOSPHERE, V8, P267
151064    HU XF, 1999, PEDOSPHERE, V9, P311
151065    HU XF, 2001, ACTA PEDOLOGICA SINI, V38, P1
151066    HU XF, 2003, CHINESE SCI BULL, V48, P1251
151067    HU XF, 2004, QUATERNARY SCI, V24, P160
151068    JIANG F, 1997, J GEOMECH, V3, P27
151069    LI JJ, 1983, SCI CHINA SER B, V13, P734
151070    LI XS, 1997, MARINE GEOLOGY QUATE, V17, P73
151071    LI YY, 1965, GEOLOGICAL REV, V23, P144
151072    LIU LW, 2000, MARINE GEOLOGY QUATE, V20, P37
151073    LIU LW, 2000, QUATERNARY SCI, V20, P464
151074    LIU TS, 1985, LOESS ENV, P1
151075    QIAO YS, 2003, CHINESE SCI BULL, V48, P2088
151076    SUN YB, 2000, CHINESE SCI BULL, V45, P2296
151077    SUN YB, 2001, ROCK MINERAL ANAL, V20, P23
151078    XI CF, 1965, CHINESE QUATERNARY S, V4, P42
151079    XIAO J, 1995, QUATERNARY RES, V43, P22
151080    XIONG SF, 1999, CHINESE SCI BULL, V44, P1690
151081    XIONG SF, 2002, J QUATERNARY SCI, V17, P181
151082    XU X, 1984, S QUAT GLAC QUAT GEO, V1, P104
151083    YANG D, 1991, MARINE GEOLOGY QUATE, V11, P97
151084    YANG DY, 1991, QUATERNARY SCI, P354
151085    YANG H, 1995, ACTA PEDOLOGICA SI S, V32, P177
151086    YANG H, 1995, ACTA PEDOLOGICA SI S, V32, P195
151087    YANG H, 1996, ACTA PEDOLOGICA SINI, V33, P293
151088    YU ZJ, 1996, GEOLOGY ANHUI, V6, P48
151089    YUAN GD, 1990, ACTA PEDOLOGICA SINI, V27, P54
151090    ZHAO QC, 1991, PEDOSPHERE, V1, P117
151091    ZHAO QG, 1995, QUATERNARY SCI, V2, P107
151092    ZHU JJ, 1988, GEOGRAPHICAL RES, V7, P12
151093    ZHU XM, 1948, J SOIL SCI SOC CHINA, V1, P51
151094    ZHU XM, 1993, QUATERNARY SCI, P75
151095    ZHU ZY, 1991, QUATERNARY SCI, P18
151096    ZHU ZY, 1995, Q SCI, P267
151097 NR 36
151098 TC 0
151099 SN 1001-6538
151100 J9 CHIN SCI BULL
151101 JI Chin. Sci. Bull.
151102 PD MAY
151103 PY 2005
151104 VL 50
151105 IS 9
151106 BP 910
151107 EP 918
151108 PG 9
151109 SC Multidisciplinary Sciences
151110 GA 945BF
151111 UT ISI:000230474700013
151112 ER
151113 
151114 PT J
151115 AU Guan, WB
151116    Gao, YL
151117    Zhai, QJ
151118    Xu, KD
151119 TI DSC study on the undercooling of droplet solidification of metal melt
151120 SO CHINESE SCIENCE BULLETIN
151121 DT Article
151122 DE DSC; cooling rate; undercooling; droplet solidification
151123 ID ELECTROMAGNETIC-LEVITATION; NUCLEATION; ALLOYS
151124 AB In this paper, the influence of cooling rate on the undercooling of
151125    droplet solidification of metal melt has been investigated by employing
151126    the differential scanning calorimetry (DSC) method. The effect of
151127    cooling rate on the undercooling as well as its change tendency is
151128    analyzed theoretically. It is shown that the undercooling degree
151129    increases whereas the change rate of undercooling decreases with
151130    increasing cooling rate. Moreover, the change tendency approaches zero
151131    when the cooling rate exceedingly increased, indicating that an
151132    extremum of undercooling exists with increasing cooling rate.
151133 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
151134 RP Zhai, QJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
151135    China.
151136 EM qjzhai@staff.shu.edu.cn
151137 CR CAO CD, 2001, J ALLOY COMPD, V325, P113
151138    GUAN WB, 2005, IN PRESS MAT LETT
151139    JIAN ZY, 2000, SCI CHINA SER E, V43, P113
151140    KIM YS, 2003, J ALLOY COMPD, V237, P237
151141    LI Q, 2004, SCI CHINA SER G, V34, P241
151142    LIU RP, 2001, ACTA MATER, V49, P439
151143    LIU XR, 2002, SCRIPTA MATER, V46, P13
151144    LIU Y, 2001, SCI TECHNOL ADV MAT, V2, P181
151145    MIZOGUCHI T, 1997, MAT SCI ENG A-STRUCT, V226, P813
151146    MUELLER BA, 1987, METALL TRANS A, V18, P1143
151147    OJHA SN, 2001, MAT SCI ENG A-STRUCT, V304, P114
151148    WANG WM, 1999, CHIN J MAT RES, V13, P58
151149 NR 12
151150 TC 0
151151 SN 1001-6538
151152 J9 CHIN SCI BULL
151153 JI Chin. Sci. Bull.
151154 PD MAY
151155 PY 2005
151156 VL 50
151157 IS 9
151158 BP 929
151159 EP 931
151160 PG 3
151161 SC Multidisciplinary Sciences
151162 GA 945BF
151163 UT ISI:000230474700016
151164 ER
151165 
151166 PT J
151167 AU Cai, G
151168    Zhou, GY
151169    Yi, X
151170    Hu, TJ
151171    Hua, ZZ
151172 TI Glass transition and structure relaxation parameters of glycerol/water
151173    mixtures with high concentrations: a DSC study
151174 SO CHINESE JOURNAL OF CHEMICAL PHYSICS
151175 DT Article
151176 DE glass transition; glycerol; DSC; plasticization constant; specific
151177    heat; activation energy; fragility
151178 ID ENTHALPY RELAXATION; AQUEOUS-SOLUTIONS; DIMETHYL-SULFOXIDE; FICTIVE
151179    TEMPERATURE; LIQUIDS; CRYSTALLIZATION; FRAGILITY; POLYMERS; ICE;
151180    EQUATION
151181 AB In order to examine the effects of water contents and heating/cooling
151182    rates on the glass transition and the structure relaxation parameters
151183    of glycerol/water mixtures, five aqueous solutions (60%, 70%, 80%, 90%
151184    and 100%) were investigated using the differential scanning
151185    calorimetry. Four scanning rates (10, 15, 20, 25 K/min) were used to
151186    obtain the glass transition parameters. The fitting results of
151187    plasticization constants indicated that Gordon-Taylor relationship
151188    could not be used effectively without considering scanning rates and
151189    that point on calorimetric step was chosen as the glass transition
151190    temperature. The specific heat changes during glass transition
151191    processes were relative not only to water content but also to heating
151192    rates. With the increasing of water contents in glycerol aqueous
151193    solutions, the structure relaxation activation energies and dynamic
151194    fragilities were decreased. Since the thermodynamic fragilities were
151195    increased with the increasing of water content, so the dynamic
151196    fragility and thermodynamic fragility were changed inversely if the
151197    water contents were changed in glycerol/water mixtures.
151198 C1 Shanghai Univ Sci & Technol, Inst Cryomed & Food Refrigerat, Shanghai 200093, Peoples R China.
151199 RP Hua, ZZ, Shanghai Univ Sci & Technol, Inst Cryomed & Food Refrigerat,
151200    Shanghai 200093, Peoples R China.
151201 EM tchua@sh163.net
151202 CR *PERK ELM, 2002, PYR SOFTW 5 02 US MA
151203    ANGELL CA, 1982, J PHYS CHEM-US, V86, P3845
151204    ANGELL CA, 1988, J PHYS CHEM SOLIDS, V49, P863
151205    ANGELL CA, 1991, J NON-CRYST SOLIDS, V131, P13
151206    ANGELL CA, 1995, SCIENCE, V267, P1924
151207    ANGELL CA, 1997, J RES NATL INST STAN, V102, P171
151208    ANGELL CA, 1997, POLYMER, V38, P6261
151209    BOHMER R, 1993, J CHEM PHYS, V99, P4201
151210    CLAUDY P, 1997, THERMOCHIM ACTA, V293, P1
151211    GAO C, 2004, ACTA PHYS-CHIM SIN, V20, P123
151212    GAO C, 2004, ACTA PHYS-CHIM SIN, V20, P701
151213    GORDON M, 1952, J APPL CHEM-USSR, V2, P493
151214    HEY JM, 1996, CRYOBIOLOGY, V33, P205
151215    HEY JM, 1997, J NON-CRYST SOLIDS, V211, P262
151216    HEY JM, 1998, CRYOBIOLOGY, V37, P119
151217    HODGE IM, 1991, J NON-CRYST SOLIDS, V131, P435
151218    HODGE IM, 1994, J NONCRYST SOLIDS, V169, P211
151219    HUA ZZ, 1994, CRYOBIOLOGY CRYOMEDI
151220    HUANG DH, 2001, J CHEM PHYS, V114, P5621
151221    IIJIMA T, 1998, CRYOBIOLOGY, V36, P165
151222    JABRANE S, 1996, THERMOCHIM ACTA, V290, P31
151223    JOHARI GP, 1987, NATURE, V330, P552
151224    MEHL PM, 1996, P 11 C THERM AN CAL, P119
151225    MEHL PM, 1996, THERMOCHIM ACTA, V272, P201
151226    MEHL PM, 1998, THERMOCHIM ACTA, V324, P215
151227    MOYNIHAN CT, 1976, J AM CERAM SOC, V59, P12
151228    MOYNIHAN CT, 1993, J NON-CRYST SOLIDS, V160, P52
151229    PIKAL MJ, 1999, FREEZE DRYING PHARM
151230    ROLAND CM, 1999, J CHEM PHYS, V111, P5593
151231    SIMATOS D, 1995, FOOD PRESERVATION MO
151232    VIGIER G, 1987, CRYOBIOLOGY, V24, P345
151233 NR 31
151234 TC 0
151235 SN 1003-7713
151236 J9 CHIN J CHEM PHYS
151237 JI Chin. J. Chem. Phys.
151238 PD JUN
151239 PY 2005
151240 VL 18
151241 IS 3
151242 BP 457
151243 EP 462
151244 PG 6
151245 SC Physics, Atomic, Molecular & Chemical
151246 GA 943CT
151247 UT ISI:000230330400032
151248 ER
151249 
151250 PT J
151251 AU Luo, RZ
151252    Sun, SJ
151253 TI Semi-on-line scheduling problem for maximizing the minimum machine
151254    completion time on three special uniform machines
151255 SO ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH
151256 DT Article
151257 DE scheduling; semi-on-line; competitive ratio
151258 ID IDENTICAL MACHINES; ONLINE
151259 AB In this paper, we investigate a semi-on-line version for a special case
151260    of three machines M-1, M-2, M-3 where the processing time of the
151261    largest job is known in advance. A speed s(i)(s(1) = s(2) = 1, 1 <=
151262    s(3) = s) is associated with machine M-i. Our goal is to maximize the
151263    C-min - the minimum workload of three machines. We give a C-min3
151264    algorithm and prove its competitive ratio is max {2, 3s+2/2+s} and the
151265    algorithm is the best possible for 1 <= s <= 2. We also claim the
151266    competitive ratio of algorithm C-min3 is tight.
151267 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
151268 RP Luo, RZ, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
151269 EM luo-rz@eyou.com
151270    sun_sj@eyou.com
151271 CR AZAR Y, 1997, LECT NOTES COMPUTER, V1284, P23
151272    CSIRIK J, 1992, OPER RES LETT, V11, P281
151273    DEUERMEYER BL, 1982, SIAM J ALGEBRAIC DIS, V3, P190
151274    EPSTEIN L, 2002, P 3 ARACNE, P39
151275    GAREY MR, 1979, COMPUTERS INTRACTABI
151276    HE Y, 1999, COMPUTING, V62, P179
151277    HE Y, 2000, COMPUT MATH APPL, V39, P117
151278    HE Y, 2001, ACTA MATH APPL SINIC, V17, P107
151279    HE Y, 2002, J COMB OPTIM, V6, P199
151280    HE Y, 2003, ASIA PAC J OPER RES, V20, P31
151281    LUO RZ, J SYSTEMS SCI COMPLE
151282    WOEGINGER GJ, 1997, OPER RES LETT, V20, P149
151283 NR 12
151284 TC 0
151285 SN 0217-5959
151286 J9 ASIA PAC J OPER RES
151287 JI Asia Pac. J. Oper. Res.
151288 PD JUN
151289 PY 2005
151290 VL 22
151291 IS 2
151292 BP 229
151293 EP 237
151294 PG 9
151295 SC Operations Research & Management Science
151296 GA 944PK
151297 UT ISI:000230441000006
151298 ER
151299 
151300 PT J
151301 AU Tang, ZY
151302    Yu, R
151303    Lu, YR
151304    Parlow, AF
151305    Liu, JL
151306 TI Age-dependent onset of liver-specific IGF-I gene deficiency and its
151307    persistence in old age: implications for postnatal growth and insulin
151308    resistance in LID mice
151309 SO AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM
151310 DT Article
151311 DE Cre recombinase; sexual dimorphism; pancreatic islets; insulin-like
151312    growth factor I; liver-specific insulin-like growth factor I gene
151313    deficiency
151314 ID TRANSGENIC MICE; RECEPTOR GENE; DEVELOPMENTAL REGULATION; HORMONE
151315    SECRETION; NEONATAL GROWTH; MILK-BORNE; RAT; EXPRESSION; PROTEIN; MOUSE
151316 AB To explore the limitations of the liver-specific IGF-I gene-deficient
151317    (LID) model and to further evaluate the role of endocrine IGF-I in
151318    early postnatal life and old age, we have studied these mice during the
151319    prepubertal period (from birth to 3 wk of age) and when they are 2 yr
151320    old. During the first 2 wk of life, IGF-I gene deficiency and the
151321    resulting reduction in serum IGF-I levels in LID mice did not reach
151322    sufficiently low levels when mice experience the most rapid and growth
151323    hormone (GH)-independent growth. It suggests that the role of
151324    liver-derived IGF-I in prepubertal, GH-independent postnatal growth
151325    cannot be established. From our previous studies, liver IGF-I mRNA
151326    level was abolished in adult LID mice, which causes elevated GH level,
151327    insulin resistance, pancreatic islet enlargement, and hyperinsulinemia.
151328    Interestingly in 2-yr-old LID mice, although liver IGF-I mRNA and serum
151329    IGF-I levels were still suppressed, serum insulin and GH levels had
151330    returned to normal. Compared with same-sex control littermates, aged
151331    male LID mice had significantly reduced body weight and fat mass and
151332    exhibited normal insulin sensitivity. On the other hand, aged female
151333    LID mice exhibited normal weight and marginal resistance to insulin
151334    actions. The pancreatic islet percentage (reflecting islet cell mass)
151335    was also restored to normal levels in aged LID mice. Thus, although the
151336    IGF-I gene deficiency is well maintained into old age, the insulin
151337    sensitivity, islet enlargement, and hyperinsulinemia that occurred in
151338    young adult mice have been mostly restored to normal levels, further
151339    supporting the age-dependent and sexual dimorphic features of the LID
151340    mice.
151341 C1 McGill Univ, Ctr Hlth, Dept Med, Fraser Labs Diabet Res, Montreal, PQ, Canada.
151342    Shanghai Univ, E Inst, Endocrine & Metab Div, Shanghai Clin Ctr Endocrine & Metab Dis, Shanghai, Peoples R China.
151343    Harbor Univ Calif Los Angeles Med Ctr, Natl Hormone & Peptide Program, Torrance, CA USA.
151344 RP Liu, JL, Royal Victoria Hosp, Fraser Labs, M3-15,687 Pine Ave W,
151345    Montreal, PQ H3A 1A1, Canada.
151346 EM jun-li.liu@mcgill.ca
151347 CR BAYNE ML, 1990, J BIOL CHEM, V265, P15648
151348    BURRIN DG, 1997, J ANIM SCI, V75, P2739
151349    BURRIN DG, 1997, J NUTR S5, V127, S975
151350    CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P159
151351    CLARK RG, 1986, J ENDOCRINOL, V111, P27
151352    CLARK RG, 1987, J ENDOCRINOL, V114, P399
151353    DUGUAY SJ, 1995, J BIOL CHEM, V270, P17566
151354    DUGUAY SJ, 1997, J BIOL CHEM, V272, P6663
151355    EDEN S, 1979, ENDOCRINOLOGY, V105, P555
151356    HALL LJ, 1992, DNA CELL BIOL, V11, P301
151357    HSU SM, 1981, J HISTOCHEM CYTOCHEM, V29, P577
151358    LEROITH D, 1997, NEW ENGL J MED, V336, P633
151359    LEROITH D, 2001, ENDOCR REV, V22, P53
151360    LI YL, 2003, ENDOCRINOLOGY, V144, P3505
151361    LIN XY, 2004, J CLIN INVEST, V114, P908
151362    LIU JL, 1998, MOL ENDOCRINOL, V12, P1452
151363    LIU JL, 1999, ENDOCRINOLOGY, V140, P5178
151364    LIU JL, 2000, ENDOCRINOLOGY, V141, P4436
151365    LIU JL, 2004, AM J PHYSIOL-ENDOC M, V287, E405
151366    LIU JP, 1993, CELL, V75, P59
151367    MIAO DS, 2001, ENDOCRINOLOGY, V142, P926
151368    NEUENSCHWANDER S, 1996, J CLIN INVEST, V97, P2225
151369    PENNISI PA, 2004, ENDOCRINOLOGY, V145, P4748
151370    PHILIPPS AF, 1997, AM J PHYSIOL, V272, P1532
151371    POWELLBRAXTON L, 1993, GENE DEV, V7, P2609
151372    RAJKUMAR K, 1999, J ENDOCRINOL, V162, P457
151373    SALTIEL AR, 2000, J CLIN INVEST, V106, P163
151374    SELLEM CH, 1984, DEV BIOL, V102, P51
151375    SHOBA L, 1999, MOL CELL ENDOCRINOL, V152, P125
151376    SJOGREN K, 1999, P NATL ACAD SCI USA, V96, P7088
151377    SJOGREN K, 2001, DIABETES, V50, P1539
151378    TANNENBAUM GS, 1976, ENDOCRINOLOGY, V98, P562
151379    TILGHMAN SM, 1982, P NATL ACAD SCI USA, V79, P5254
151380    VASAVADA RC, 1996, J BIOL CHEM, V271, P1200
151381    WALLENIUS K, 2001, ENDOCRINOLOGY, V142, P4762
151382    WERNER H, 1989, P NATL ACAD SCI USA, V86, P7451
151383    YAKAR S, 1999, P NATL ACAD SCI USA, V96, P7324
151384    YAKAR S, 2001, DIABETES, V50, P1110
151385    YAKAR S, 2004, J CLIN INVEST, V113, P96
151386    YU R, 2003, MOL CELL ENDOCRINOL, V204, P31
151387    ZHOU YH, 1997, P NATL ACAD SCI USA, V94, P13215
151388 NR 41
151389 TC 0
151390 SN 0193-1849
151391 J9 AMER J PHYSIOL-ENDOCRINOL MET
151392 JI Am. J. Physiol.-Endocrinol. Metab.
151393 PD AUG
151394 PY 2005
151395 VL 289
151396 IS 2
151397 BP E288
151398 EP E295
151399 PG 8
151400 SC Endocrinology & Metabolism; Physiology
151401 GA 945CA
151402 UT ISI:000230477700015
151403 ER
151404 
151405 PT J
151406 AU Zheng, Y
151407    Liu, GL
151408    Wu, XJ
151409 TI Hybrid design methods of cascade profile based on variational principles
151410 SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY
151411 DT Article
151412 DE aerodynamics; turbines
151413 AB Purpose - Provides two hybrid methods for the aerodynamic design of
151414    cascade profiles, of which the design constraints are the combination
151415    of aerodynamic and geometric conditions.
151416    Design/methodology/approach - In the first method, the design constrain
151417    is composed of the velocity (or pressure) distribution on part of the
151418    blade surface and the geometry of the rest part. In the second method,
151419    the aerodynamic load distribution, i.e. the pressure difference between
151420    the suction and pressure surfaces, and the blade thickness distribution
151421    are employed as the design constrain. These constraints, together with
151422    all the other boundary conditions, are involved in the stationary
151423    conditions of a variational principle. The solution domain, i.e. the
151424    blade-to-blade passage, is transformed into a square in the image
151425    plane, while the blade contour is projected to a straight line; thus,
151426    the difficulty caused by the unknown geometry of profile is avoided.
151427    Finite element method is employed to produce the calculation code.
151428    Findings - Applications show the accuracy and the flexibility of the
151429    two methods, which can satisfy the different needs from blade design.
151430    Finally, the possibility of combining the hybrid methods with the
151431    through-flow method is discussed, which would develop the present
151432    methods to three-dimensional design of cascades.
151433    Research limitations/implications - The design methods are limited to
151434    frictionless flow.
151435    Practical implications - A design software of cascade profiles based on
151436    this method has been developed, and will be provided to the engineering
151437    users for cascade design.
151438    Originality/value - The hybrid methods developed in this paper can
151439    satisfy the demands from different aspects of engineering designs:
151440    aerodynamics, strength, manufacture, strength, manufacture, etc.
151441 C1 Shanghai Univ Sci & Technol, Shanghai 201800, Peoples R China.
151442 RP Zheng, Y, Shanghai Univ Sci & Technol, Shanghai 201800, Peoples R China.
151443 CR HORLOCK JK, 1958, AXIAL FLOW COMPRESSO
151444    LIU GI, 1986, J ENG GAS TURB POWER, V108, P254
151445    LIU GL, 1980, SCI SINICA, V23, P1339
151446    LIU GL, 1981, CHINESE J ENG THERMO, V2, P24
151447    LIU GL, 1982, CHINESE J ENG THERMO, V3, P138
151448    LIU GL, 1986, CHINESE J ENG THERMO, V7, P329
151449    YAO Z, 1989, J ACTA AERODYNAMICS, V7, P313
151450    YAO Z, 2003, APPL MATH MECH-ENGL, V24, P886
151451    YAO Z, 2004, J ACTA AERODYNAMICS, V22, P259
151452 NR 9
151453 TC 0
151454 SN 0002-2667
151455 J9 AIRCRAFT ENG AEROSP TECHNOL
151456 JI Aircr. Eng. Aerosp. Technol.
151457 PY 2005
151458 VL 77
151459 IS 3
151460 BP 228
151461 EP 235
151462 PG 8
151463 SC Engineering, Aerospace
151464 GA 944FP
151465 UT ISI:000230412300005
151466 ER
151467 
151468 PT J
151469 AU Zhu, WQ
151470    Zheng, XY
151471    Jiang, XY
151472    Zhang, ZL
151473    Xu, SH
151474    Zhang, BW
151475 TI Exciplex emissions from organic electroluminescent devices containing
151476    pyrazoline derivates
151477 SO ACTA CHIMICA SINICA
151478 DT Article
151479 DE electroluminescence; exciplex; mixed emissive layer; color tuning
151480 ID WHITE-LIGHT EMISSION; COLOR
151481 AB The bilayer organic electroluminescent diodes using two novel
151482    pyrazoline derivatives as hole transporting materials (HTM) and BBOT
151483    [2,5-bis(5-tert-butyl-2-benzoxazolyl)thiophene] as electron
151484    transporting material have been constructed, in which the
151485    electroluminescent spectra were red-shifted and broadened relative to
151486    the fluorescent spectra of constituent materials. Formation of
151487    exciplexes at the interfaces of the pyrazoline derivatives and BBOT
151488    layers were determined by photoluminescence spectral studies on the
151489    HTM/BBOT bilayers and HTM : BBOT mixed evaporated films as well as
151490    electroluminescence measurements. The type of exciplexes formed by the
151491    interaction between the excited state of MOT (BBOT) and ground state of
151492    the HTM were confirmed in light of the energy level diagram of these
151493    bilayer devices. The maximum luminance and efficiency of the HTM : BBOT
151494    mixed emissive layer devices in which the interface of exciplex
151495    formation was enlarged, have been improved by about a factor of 2 in
151496    comparing with the corresponding bilayer devices.
151497 C1 Shanghai Univ, Dept Mat, Shanghai 201800, Peoples R China.
151498    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
151499    Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100101, Peoples R China.
151500 RP Zhu, WQ, Shanghai Univ, Dept Mat, Jiading Campus, Shanghai 201800,
151501    Peoples R China.
151502 EM wqzhu@mailshu.edu.cn
151503 CR ADACHI C, 1990, APPL PHYS LETT, V56, P799
151504    CHAO CI, 1998, APPL PHYS LETT, V73, P426
151505    COCCHI M, 2002, APPL PHYS LETT, V80, P2401
151506    DING BD, 2003, CHIN J LUMIN, V24, P606
151507    GEBLER DD, 1997, APPL PHYS LETT, V70, P1644
151508    KALINOWSKI J, 1996, P SOC PHOTO-OPT INS, V2780, P293
151509    KIDO J, 1995, APPL PHYS LETT, V67, P2281
151510    OGAWA H, 1998, APPL PHYS A-MATER, V67, P599
151511    THOMPSON J, 2001, APPL PHYS LETT, V79, P560
151512    TIAN WJ, 2001, SYNTHETIC MET, V121, P1725
151513    WANG JF, 1998, ADV MATER, V10, P230
151514    WU F, 2000, CHEM J CHINESE U, V21, P1851
151515    ZHANG XH, 2000, ACTA CHIM SINICA, V58, P293
151516    ZHANG XH, 2000, PHOTOGRAPHIC SCI PHO, V18, P160
151517 NR 14
151518 TC 0
151519 SN 0567-7351
151520 J9 ACTA CHIM SIN
151521 JI Acta Chim. Sin.
151522 PD JUL 14
151523 PY 2005
151524 VL 63
151525 IS 13
151526 BP 1182
151527 EP 1186
151528 PG 5
151529 SC Chemistry, Multidisciplinary
151530 GA 944PU
151531 UT ISI:000230442000005
151532 ER
151533 
151534 PT J
151535 AU Zhang, ML
151536    Gu, BB
151537    Wang, LJ
151538    Xia, YB
151539 TI Preparation and characterization of (100)-textured diamond films
151540    obtained by hot-filament CVD
151541 SO VACUUM
151542 DT Article
151543 DE (100)-textured diamond film; hot-filament CVD; Raman spectroscopy;
151544    thermally stimulated current
151545 ID CHEMICAL VAPOR-DEPOSITION; FLAME DEPOSITION; THIN-FILMS; GAS-PHASE;
151546    GROWTH; TEXTURE; PLASMA; MORPHOLOGY
151547 AB (100)-textured chemival vapor deposited (CVD) diamond films were
151548    deposited on both ultrasonically roughened and manually scratched
151549    silicon substrates using hot-filament chemical vapor deposition
151550    (HFCVD). Scanning electron microscopy (SEM), Raman spectroscopy, X-ray
151551    diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and
151552    thermally stimulated current (TSC) were used to characterize the
151553    structure, morphology, residual stress. impurities and/or defects and
151554    other properties of CVD diamond films. The results indicate that manual
151555    scratching results in (100) texturing of the diamond films and these
151556    have improved properties due to larger grain size. fewer grain
151557    boundaries, increased fraction of diamond components and lower residual
151558    stress. The TSC results suggest two possible electronic conduction
151559    mechanisms corresponding to an activation energy E, of about 1,68 eV in
151560    the high-temperature region (T > 500 K) and about 0.31 eV in the
151561    low-temperature region (T < 500 K). respectively. (c) 2005 Elsevier
151562    Ltd. All rights reserved.
151563 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
151564 RP Zhang, ML, Shanghai Univ, Sch Mat Sci & Engn, 149,Yanchang Rd, Shanghai
151565    200072, Peoples R China.
151566 EM zhamilong@hotmail.com
151567 CR DUBRAY JJ, 1991, DIAMOND DIAMOND LIKE
151568    JANSEN F, 1990, J VAC SCI TECHNOL A, V8, P3785
151569    KAMO M, 1983, J CRYST GROWTH, V62, P642
151570    KHOMICH AV, 2001, DIAM RELAT MATER, V10, P546
151571    KUO CT, 1996, THIN SOLID FILMS, V290, P254
151572    LEGRICE YM, 1990, MATER RES SOC S P, V162, P219
151573    LIJIMA S, 1990, APPL PHYS LETT, V57, P2646
151574    LOCHER R, 1994, APPL PHYS LETT, V65, P34
151575    MARINELLI M, 1994, APPL PHYS LETT, V65, P2839
151576    MATSUMOTO S, 1982, J MATER SCI, V17, P3106
151577    RAWLES RE, 1996, APPL PHYS LETT, V69, P4032
151578    SATO Y, 1989, SURF COAT TECH, V39, P183
151579    SAWABE A, 1986, THIN SOLID FILMS, V137, P89
151580    SCHERMER JJ, 1994, DIAM RELAT MATER, V3, P408
151581    SCHERMER JJ, 1995, DIAM RELAT MATER, V4, P1113
151582    SCHERMER JJ, 2002, J CRYST GROWTH, V243, P302
151583    SHARDA T, 1998, J APPL PHYS, V83, P1120
151584    SILVEIRA M, 1993, DIAM RELAT MATER, V2, P1257
151585    SPEAR KE, 1989, J AM CERAM SOC, V72, P171
151586    TRAVAAIROLDI VJ, 1995, DIAM RELAT MATER, V4, P1255
151587    WILD C, 1994, DIAM RELAT MATER, V3, P373
151588    YUGO S, 1991, APPL PHYS LETT, V58, P1036
151589    ZHANG GF, 2003, APPL SURF SCI, V207, P121
151590 NR 23
151591 TC 0
151592 SN 0042-207X
151593 J9 VACUUM
151594 JI Vacuum
151595 PD JUL 8
151596 PY 2005
151597 VL 79
151598 IS 1-2
151599 BP 84
151600 EP 89
151601 PG 6
151602 SC Materials Science, Multidisciplinary; Physics, Applied
151603 GA 942CS
151604 UT ISI:000230261100012
151605 ER
151606 
151607 PT J
151608 AU Zhang, ML
151609    Xia, YB
151610    Wang, LJ
151611    Gu, BB
151612 TI CVD diamond devices for charged particle detection
151613 SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY
151614 DT Article
151615 ID RADIATION DETECTORS; ALPHA-RADIATION; FILMS; IRRADIATION
151616 AB A (100)-oriented chemical vapour deposited (CVD) diamond film was grown
151617    by using a hot-filament chemical vapour deposition technique and then
151618    fabricated as an alpha particle detector. The current characteristics
151619    indicate a fine Ohmic contact for bias voltage up to 150 V. The dark
151620    current and the net current induced by alpha particles of similar to
151621    16.0 nA and similar to 6.9 nA, respectively, are achieved at 100 V. The
151622    net current initially increases linearly with voltage and irradiation
151623    time, and then levels off, due to the 'polarization' effect. After
151624    irradiation, the dark current increases due to the release of captured
151625    carriers in shallow energy levels. The response of the CVD diamond
151626    detector to 5.5 MeV a particles demonstrates clearly that the
151627    'polarization' and 'priming' effects intensively affect the detector
151628    performance. By pre-irradiating the detector with particles, the charge
151629    collection efficiency is dramatically improved from 19.38% to 36.91%
151630    due to the 'priming' effect of the deep traps.
151631 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
151632 RP Zhang, ML, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples
151633    R China.
151634 EM zhamilong@hotmail.com
151635 CR ADAM W, 1999, NUCL INSTRUM METH A, V434, P131
151636    AVILA O, 1995, RADIAT PROT DOSIM, V58, P61
151637    BERGONZO P, 2002, NUCL INSTRUM METH A, V476, P694
151638    BORCHELT F, 1995, NUCL INSTRUM METH A, V354, P318
151639    CAMPBELL B, 2002, NUCL INSTRUM METH A, V476, P680
151640    FOULON F, 1994, IEEE T NUCL SCI, V41, P927
151641    HECHT K, 1932, Z PHYS, V77, P235
151642    KANG MS, 2001, THIN SOLID FILMS, V398, P175
151643    KANIA DR, 1990, J APPL PHYS, V68, P124
151644    KEDDY RJ, 1993, RADIAT PHYS CHEM, V41, P767
151645    PINI S, 2003, NUCL INSTRUM METH A, V514, P135
151646    PLANO MA, 1994, APPL PHYS LETT, V64, P193
151647    SOUW EK, 1997, NUCL INSTRUM METH A, V400, P69
151648    SPIELMAN RB, 1995, REV SCI INSTRUM, V66, P867
151649    TROMSON D, 2000, DIAM RELAT MATER, V9, P1850
151650    VAITKUS R, 1993, APPL PHYS LETT, V62, P2384
151651    ZHANG ML, 2004, J PHYS D APPL PHYS, V37, P3198
151652    ZHANG ML, 2004, SOLID STATE COMMUN, V130, P551
151653 NR 18
151654 TC 0
151655 SN 0268-1242
151656 J9 SEMICOND SCI TECHNOL
151657 JI Semicond. Sci. Technol.
151658 PD JUN
151659 PY 2005
151660 VL 20
151661 IS 6
151662 BP 555
151663 EP 558
151664 PG 4
151665 SC Engineering, Electrical & Electronic; Materials Science,
151666    Multidisciplinary; Physics, Condensed Matter
151667 GA 942CO
151668 UT ISI:000230260700014
151669 ER
151670 
151671 PT J
151672 AU Zhang, YF
151673 TI A multi-component matrix loop algebra and a unified expression of the
151674    multi-component AKNS hierarchy and the multi-component BPT hierarchy
151675 SO PHYSICS LETTERS A
151676 DT Article
151677 DE Lie algebra; multi-component integrable hierarchy; Hamiltonian structure
151678 ID BI-HAMILTONIAN STRUCTURE; INTEGRABLE SYSTEMS; EQUATIONS; COUPLINGS;
151679    GENERATE
151680 AB A set of multi-component matrix Lie algebra is constructed, which is
151681    devote to obtaining a new loop algebra A(M-1). It follows that an
151682    isospectral problem is established. By making use of Tu scheme, a
151683    Liouville integrable multi-component hierarchy of soliton equations is
151684    generated, which possesses the bi-Hamiltonian structures. As its
151685    reduction cases, the multi-component AKNS hierarchy and the formalism
151686    of the multi-component BPT hierarchy are given, respectively. (c) 2005
151687    Elsevier B.V. All rights reserved.
151688 C1 Liaoning Normal Univ, Sch Math, Dalian 116029, Peoples R China.
151689    Shanghai Univ Sci & Technol, Inst Math, Informat Sch, Qingdao 266510, Peoples R China.
151690 RP Zhang, YF, Liaoning Normal Univ, Sch Math, Dalian 116029, Peoples R
151691    China.
151692 EM zhang_yfshandong@163.com
151693 CR FAN EG, 2000, J MATH PHYS, V41, P7769
151694    FAN EG, 2002, PHYSICA A, V301, P105
151695    GUO F, 2002, J SYS SCI MATH SCI, V22, P36
151696    GUO FK, 2000, ACTA MATH APPL SIN, V23, P181
151697    GUO FK, 2003, J MATH PHYS, V44, P5793
151698    HU XB, 1994, J PHYS A, V27, P2497
151699    HU XB, 1997, J PHYS A-MATH GEN, V30, P619
151700    MA WX, 1992, CHIN J CONT MATH, V13, P79
151701    MA WX, 2002, CHINESE ANN MATH B, V23, P373
151702    TSUCHIDA T, 1999, PHYS LETT A, V257, P53
151703    TU G, 1989, J MATH PHYS, V33, P330
151704    ZHANG YF, 2002, J MATH PHYS, V43, P466
151705    ZHANG YF, 2003, CHAOS SOLITON FRACT, V16, P263
151706    ZHANG YF, 2003, PHYS LETT A, V317, P280
151707 NR 14
151708 TC 3
151709 SN 0375-9601
151710 J9 PHYS LETT A
151711 JI Phys. Lett. A
151712 PD JUL 4
151713 PY 2005
151714 VL 342
151715 IS 1-2
151716 BP 82
151717 EP 89
151718 PG 8
151719 SC Physics, Multidisciplinary
151720 GA 941XS
151721 UT ISI:000230248100011
151722 ER
151723 
151724 PT J
151725 AU Ge, HX
151726    Dai, SQ
151727    Xue, Y
151728    Dong, LY
151729 TI Stabilization analysis and modified Korteweg-de Vries equation in a
151730    cooperative driving system
151731 SO PHYSICAL REVIEW E
151732 DT Article
151733 ID JAMMING TRANSITION; TRAFFIC MODEL; LATTICE MODELS; FLOW; PHASE;
151734    CONGESTION; SIMULATION; JAMS
151735 AB Two lattice traffic models are proposed by incorporating a cooperative
151736    driving system. The lattice versions of the hydrodynamic model of
151737    traffic flow are described by the differential-difference equation and
151738    difference-difference equation, respectively. The stability conditions
151739    for the two models are obtained using the linear stability theory. The
151740    results show that considering more than one site ahead in vehicle
151741    motion leads to the stabilization of the system. The modified
151742    Korteweg-de Vries equation (the mKdV equation, for short) near the
151743    critical point is derived by using the reductive perturbation method to
151744    show the traffic jam which is proved to be described by kink-anti-kink
151745    soliton solutions obtained from the mKdV equations.
151746 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
151747    Guangxi Univ, Dept Phys, Nanning 530004, Peoples R China.
151748 RP Ge, HX, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
151749    Peoples R China.
151750 CR BANDO M, 1994, JPN J IND APPL MATH, V11, P203
151751    BANDO M, 1995, PHYS REV E, V51, P1035
151752    CHOWDHURY D, 2000, PHYS REP, V329, P199
151753    CROSS MC, 1993, REV MOD PHYS, V65, P851
151754    DAI SQ, 1982, ADV MECH, V12, P2
151755    GE HX, 2004, PHYS REV E 2, V70
151756    HASEBE K, 2004, PHYS REV E 2, V69
151757    HASEBE K, 2004, PHYS REV E, V68
151758    HELBING D, 1996, PHYS REV E, V53, P2366
151759    HELBING D, 1998, PHYS REV LETT, V81, P3042
151760    HELBING D, 2001, TRANSPORT RES B-METH, V35, P183
151761    ISHIBASHI Y, 1996, J PHYS SOC JPN, V65, P2793
151762    KEMER BS, 1994, PHYS REV E, V50, P54
151763    KERNER BS, 1996, PHYS REV E, V53, P1297
151764    KERNER BS, 1997, PHYS REV E, V56, P4200
151765    KNOSPE W, 2002, PHYS REV E 2, V65
151766    KOMATSU TS, 1995, PHYS REV E B, V52, P5574
151767    KURTZE DA, 1995, PHYS REV E A, V52, P218
151768    LENZ H, 1999, EUR PHYS J B, V7, P331
151769    NAGATANI T, 1998, PHYS REV E, V58, P4271
151770    NAGATANI T, 1998, PHYSICA A, V261, P599
151771    NAGATANI T, 1999, PHYS REV E A, V60, P6395
151772    NAGATANI T, 1999, PHYSICA A, V264, P581
151773    NAGATANI T, 1999, PHYSICA A, V265, P297
151774    NAYFEH AH, 1981, INTRO PERTURBATION T, P7
151775    NISHINARI K, 2000, J PHYS A-MATH GEN, V33, P7709
151776    YU X, 2004, ACTA PHYS SIN-CH ED, V53, P25
151777 NR 27
151778 TC 1
151779 SN 1539-3755
151780 J9 PHYS REV E
151781 JI Phys. Rev. E
151782 PD JUN
151783 PY 2005
151784 VL 71
151785 IS 6
151786 PN Part 2
151787 AR 066119
151788 DI ARTN 066119
151789 PG 7
151790 SC Physics, Fluids & Plasmas; Physics, Mathematical
151791 GA 942IB
151792 UT ISI:000230275000035
151793 ER
151794 
151795 PT J
151796 AU Lu, DQ
151797    Chwang, AT
151798 TI Unsteady free-surface waves due to a submerged body moving in a viscous
151799    fluid
151800 SO PHYSICAL REVIEW E
151801 DT Article
151802 ID SHIP WAVES; SINGULARITY METHOD; FLOW; BODIES; DEPTH; WAKE
151803 AB Unsteady viscous free-surface waves generated by a three-dimensional
151804    submerged body moving in an incompressible fluid of infinite depth are
151805    investigated analytically. It is assumed that the body experiences a
151806    Heaviside step change in velocity at the initial instant. Two
151807    categories of the velocity change, (i) from zero to a constant and (ii)
151808    from a constant to zero, will be analyzed. The flow is assumed to be
151809    laminar and the submerged body is mathematically represented by an
151810    Oseenlet. The Green functions for the unbounded unsteady Oseen flows
151811    are derived. The solutions in closed integral form for the wave
151812    profiles are given. By employing Lighthill's two-stage scheme, the
151813    asymptotic representations of free-surface waves in the far wake for
151814    large Reynolds numbers are derived. It is shown that the effects of
151815    viscosity and submergence depth on the free-surface wave profiles are
151816    respectively expressed by the exponential decay factors. Furthermore,
151817    the unsteady wave system due to the suddenly starting body consists of
151818    two families of steady-state waves and two families of nonstationary
151819    waves, which are confined within a finite region. As time increases,
151820    the waves move away from the body and the finite region extends to an
151821    infinite V-shaped region. It is found that the nonstationary waves are
151822    the transient response to the suddenly started motion of the body. The
151823    waves due to a suddenly stopping body consist of a transient component
151824    only, which vanish as time approaches infinity.
151825 C1 Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China.
151826    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
151827 RP Chwang, AT, Univ Hong Kong, Dept Mech Engn, Pokfulam Rd, Hong Kong,
151828    Hong Kong, Peoples R China.
151829 EM atchwang@hkucc.hku.hk
151830 CR AMMICHT E, 1979, J ENG MATH, V13, P327
151831    BRARD R, 1970, J SHIP RES, V14, P207
151832    CHAN AT, 1996, PHYS FLUIDS, V8, P421
151833    CHAN AT, 1997, PHYS FLUIDS, V9, P940
151834    CHAN AT, 2000, P I MECH ENG C-J MEC, V214, P175
151835    CHUNG YK, 1991, J SHIP RES, V35, P191
151836    CHWANG AT, 1975, J FLUID MECH, V67, P787
151837    CLAUSER FH, 1983, PHYS FLUIDS, V26, P2787
151838    CUMBERBATCH E, 1965, J FLUID MECH, V23, P471
151839    DABROS T, 1985, J FLUID MECH, V156, P1
151840    DUGAN JP, 1969, PHYS FLUIDS, V12, P1
151841    LIGHTHILL MJ, 1960, PHILOS T ROY SOC A, V252, P397
151842    LIU MJ, 2001, PHYS FLUIDS, V13, P3610
151843    LIU MJ, 2002, APPL MATH MECH-ENGL, V23, P1221
151844    LU DQ, P 2 INT C AS PAC COA, P1
151845    LU DQ, 2001, P 1 AS PAC COAST ENG, P334
151846    LU DQ, 2002, THESIS U HONG KONG
151847    LU DQ, 2003, J HYDRODYNAMICS B, V15, P10
151848    LU DQ, 2004, APPL MATH MECH-ENGL, V25, P647
151849    LU DQ, 2004, J SHIP MECH, V8, P8
151850    LU DQ, 2005, J HYDRODYNAM, V17, P22
151851    LURYE JR, 1968, PHYS FLUIDS, V10, P261
151852    LURYE JR, 1973, PHYS FLUIDS, V16, P750
151853    MAXEY MR, 1983, PHYS FLUIDS, V26, P883
151854    NOBLESSE F, 1995, SHIP TECHNOL RES, V42, P167
151855    POZRIKIDIS C, 1989, PHYS FLUIDS A-FLUID, V1, P1508
151856    PRICE WG, 1992, P ROY SOC LOND A MAT, V438, P447
151857    SHU JJ, 1999, P 8 AS C FLUID MECH, P321
151858    SHU JJ, 2000, P 14 ENG MECH C AUST
151859    SHU JJ, 2001, PHYS REV E 1, V63
151860    TYVAND PA, 1998, FREE SURFACE FLOWS V, R9
151861    WEHAUSEN JV, 1960, ENCY PHYS, V9, P483
151862    WU TY, 1958, 858 CALT
151863 NR 33
151864 TC 1
151865 SN 1539-3755
151866 J9 PHYS REV E
151867 JI Phys. Rev. E
151868 PD JUN
151869 PY 2005
151870 VL 71
151871 IS 6
151872 PN Part 2
151873 AR 066303
151874 DI ARTN 066303
151875 PG 8
151876 SC Physics, Fluids & Plasmas; Physics, Mathematical
151877 GA 942IB
151878 UT ISI:000230275000066
151879 ER
151880 
151881 PT J
151882 AU Cui, W
151883    Chau, KT
151884    Jiang, JZ
151885    Fan, Y
151886 TI Design of a novel phase-decoupling permanent magnet brushless ac motor
151887 SO JOURNAL OF APPLIED PHYSICS
151888 DT Article
151889 ID ELECTRIC VEHICLES; MACHINES; DRIVE
151890 AB This paper presents a phase-decoupling permanent magnet brushless ac
151891    motor which can offer better controllability, faster response, and
151892    smoother torque than its counterparts. The key is due to its different
151893    motor configuration and simple scalar control. The motor configuration
151894    is so unique that it inherently offers the features of phase
151895    decoupling, flux focusing, and flux shaping, hence achieving
151896    independent phase control, fast response, and smooth torque. The scalar
151897    control is fundamentally different from the complicated vector control.
151898    It can achieve direct torque control through independent control of the
151899    phase currents. The proposed motor is prototyped and experimentally
151900    verified. (c) 2005 American Institute of Physics.
151901 C1 Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China.
151902    Shanghai Univ, Dept Automat, Shanghai, Peoples R China.
151903 RP Cui, W, Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong,
151904    Peoples R China.
151905 CR CHAN CC, 1996, IEEE T VEH TECHNOL, V45, P180
151906    CHAU KT, 2003, IEEE T MAGN 2, V39, P3001
151907    CHENG M, 2001, IEEE T MAGN 2, V37, P3012
151908    GAN JY, 2000, IEEE T MAGN 2, V36, P3810
151909    JAHNS TM, 1994, P IEEE, V82, P1241
151910    ZHU ZQ, 2003, IEEE T MAGN 2, V39, P3238
151911 NR 6
151912 TC 0
151913 SN 0021-8979
151914 J9 J APPL PHYS
151915 JI J. Appl. Phys.
151916 PD MAY 15
151917 PY 2005
151918 VL 97
151919 IS 10
151920 PN Part 3
151921 AR 10Q515
151922 DI ARTN 10Q515
151923 PG 3
151924 SC Physics, Applied
151925 GA 940TQ
151926 UT ISI:000230168500290
151927 ER
151928 
151929 PT J
151930 AU Xu, GQ
151931    Li, ZB
151932 TI On the Painleve integrability, periodic wave solutions and soliton
151933    solutions of generalized coupled higher-order nonlinear Schrodinger
151934    equations
151935 SO CHAOS SOLITONS & FRACTALS
151936 DT Article
151937 ID ELLIPTIC FUNCTION EXPANSION; PARTIAL-DIFFERENTIAL-EQUATIONS;
151938    EVOLUTION-EQUATIONS; PROPAGATION; LATTICE
151939 AB It is proven that generalized coupled higher-order nonlinear
151940    Schrodinger equations possess the Painleve property for two particular
151941    choices of parameters, using the Weiss-Tabor-Carnevale method and
151942    Kruskal's simplification. Abundant families of periodic wave solutions
151943    are obtained by using the Jacobi elliptic function expansion method
151944    with the assistance of symbolic manipulation system, Maple. It is also
151945    shown that these solutions exactly degenerate to bright soliton, dark
151946    soliton and mixed dark and bright soliton solutions with physical
151947    interests. (c) 2005 Elsevier Ltd. All rights reserved.
151948 C1 Shanghai Univ, Dept Informat Management, Coll Int Business & Management, Shanghai 201800, Peoples R China.
151949    E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China.
151950 RP Xu, GQ, Shanghai Univ, Dept Informat Management, Coll Int Business &
151951    Management, Shanghai 201800, Peoples R China.
151952 EM xugq@staff.shu.edu.cn
151953 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
151954    ADDULLAEV F, 1993, OPTICAL SOLITONS
151955    CHEN Y, 1998, OPT COMMUN, V50, P381
151956    FAN EG, 2000, PHYS LETT A, V277, P212
151957    FAN EG, 2002, J PHYS A-MATH GEN, V35, P6853
151958    FU ZT, 2001, PHYS LETT A, V290, P72
151959    HEREMAN W, 1990, J PHYS A-MATH GEN, V23, P4805
151960    HIROTA R, 1971, PHYS REV LETT, V27, P1192
151961    HIROTA R, 1981, PHYS LETT A, V85, P407
151962    HISAKADO M, 1994, J PHYS SOC JPN, V63, P2887
151963    HISAKADO M, 1994, J PHYS SOC JPN, V63, P3962
151964    JIMBO M, 1982, PHYS LETT A, V92, P59
151965    KNONO K, 1975, PROG THEOR PHYS, V53, P1652
151966    LI ZB, 1993, J PHYS A-MATH GEN, V26, P6027
151967    LI ZB, 2002, COMP PHYS COMMUN, V155, P65
151968    LIU SK, 2001, PHYS LETT A, V289, P69
151969    LIU SK, 2002, ACTA PHYS SIN-CH ED, V51, P1923
151970    MALFLIET W, 1992, AM J PHYS, V60, P650
151971    MATVEEV VA, 1991, DARBOUX TRANSFORMATI
151972    PARK QH, 1999, PHYS REV E B, V59, P2373
151973    PORUBOV AV, 1999, WAVE MOTION, V29, P97
151974    SAHADEVAN R, 1986, J PHYS A-MATH GEN, V19, P1783
151975    SAKOVICH SY, 2000, J PHYS A-MATH GEN, V33, P7217
151976    TASGAL RS, 1992, J MATH PHYS, V33, P1208
151977    VINOJ MN, 2000, PHYS REV E B, V62, P8719
151978    WADATI M, 1975, J PHYS SOC JPN, V38, P673
151979    WADATI M, 1975, J PHYS SOC JPN, V38, P681
151980    WADATI M, 1975, PROG THEOR PHYS, V53, P419
151981    WANG ML, 1995, PHYS LETT A, V199, P169
151982    WEISS J, 1983, J MATH PHYS, V24, P522
151983    XU GQ, 2002, ACTA PHYS SIN-CH ED, V51, P1424
151984    XU GQ, 2003, ACTA PHYS SIN-CH ED, V52, P1848
151985    XU GQ, 2004, COMPUT PHYS COMMUN, V161, P65
151986    XU GQ, 2005, APPL MATH MECH, V26, P92
151987    XU GQ, 2005, COMMUN THEOR PHYS, V43, P385
151988    YAN ZY, 2002, COMMUN THEOR PHYS, V38, P141
151989    YAO RX, 2002, PHYS LETT A, V297, P196
151990 NR 37
151991 TC 0
151992 SN 0960-0779
151993 J9 CHAOS SOLITON FRACTAL
151994 JI Chaos Solitons Fractals
151995 PD DEC
151996 PY 2005
151997 VL 26
151998 IS 5
151999 BP 1363
152000 EP 1375
152001 PG 13
152002 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
152003 GA 943CX
152004 UT ISI:000230330800012
152005 ER
152006 
152007 PT J
152008 AU Li, GH
152009 TI Synchronization of chaotic systems with parameter driven by a chaotic
152010    signal
152011 SO CHAOS SOLITONS & FRACTALS
152012 DT Article
152013 ID GENERALIZED SYNCHRONIZATION; OSCILLATORS
152014 AB Chaos control with driving parameter scheme in uncoupled identical
152015    chaotic oscillators is presented. By driving the parameter of chaotic
152016    systems using external chaotic signal, synchronization and
152017    anti-synchronization can be implemented. Numerical simulations show
152018    that either synchronization or anti-synchronization can appear
152019    depending significantly on initial condition and on driving strength.
152020    The proposed method is particularly suited for a variety of chaotic
152021    systems, which cannot couple with each other in engineering. (c) 2005
152022    Elsevier Ltd. All rights reserved.
152023 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
152024 RP Li, GH, Shanghai Univ, Dept Commun Engn, Yanchang Rd 149, Shanghai
152025    200072, Peoples R China.
152026 EM ghlee@shl63.net
152027 CR CARROLL TL, 1996, PHYS REV E, V54, P4676
152028    CHEN GR, 2003, CHAOS SOLITON FRACT, V15, P311
152029    DAI D, 2001, PHYS LETT A, V288, P23
152030    KIM CM, 2003, PHYS LETT A, V320, P39
152031    KOCAREV L, 1996, PHYS REV LETT, V76, P1816
152032    PECORA LM, 1990, PHYS REV LETT, V64, P821
152033    ROSENBLUM MG, 1996, PHYS REV LETT, V76, P1804
152034    YANG SP, 2001, ACTA PHYS SIN-CH ED, V50, P619
152035    YANG SS, 1998, CHAOS SOLITON FRACT, V9, P1703
152036 NR 9
152037 TC 0
152038 SN 0960-0779
152039 J9 CHAOS SOLITON FRACTAL
152040 JI Chaos Solitons Fractals
152041 PD DEC
152042 PY 2005
152043 VL 26
152044 IS 5
152045 BP 1485
152046 EP 1489
152047 PG 5
152048 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
152049 GA 943CX
152050 UT ISI:000230330800025
152051 ER
152052 
152053 PT J
152054 AU Zhang, P
152055    Dai, SQ
152056    Liu, RX
152057 TI Description and weno numerical approximation to nonlinear waves of a
152058    multi-class traffic flow LWR model
152059 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
152060 DT Article
152061 DE hyperbolicity; characteristic; traffic wave; WENO scheme
152062 ID SCHEMES
152063 AB A strict proof of the hyperbolicity of the multi-class LWR
152064    (Lighthill-Whitham-Richards) traffic flow model, as well as the
152065    descriptions on those nonlinear waves characterized in the traffic flow
152066    problems were given. They were mainly about the monotonicity of
152067    densities across shocks and in rarefactions. As the system had no
152068    characteristic decomposition explicitly, a high resolution and higher
152069    order accuracy WENO(weighted essentially non-oscillatory) scheme was
152070    introduced to the numerical simulation, which coincides with the
152071    analytical description.
152072 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
152073    Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China.
152074 RP Zhang, P, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
152075    200072, Peoples R China.
152076 EM pengzhang@ustc.edu.cn
152077 CR DAI SQ, 1997, J NATURE, V11, P196
152078    HARTEN A, 1987, J COMPUT PHYS, V71, P2
152079    HELBING D, 2001, REV MOD PHYS, V73, P1067
152080    JIANG GS, 1996, J COMPUT PHYS, V126, P202
152081    LAX PD, 1971, NONLINEAR FUNCTIONAL
152082    LAX PD, 1973, HYPERBOLIC SYSTEMS C
152083    LIGHTHILL MH, 1955, P ROY SOC LOND A MAT, V22, P317
152084    LIU XD, 1994, J COMPUT PHYS, V115, P200
152085    RICHARDS PI, 1956, OPER RES, V4, P42
152086    SHU CW, 1987, MATH COMPUT, V49, P105
152087    SHU CW, 1988, SIAM J SCI STAT COMP, V9, P1073
152088    SHU CW, 1997, LECT NOTES MATH ESSE, V1697, P329
152089    TORO EF, 1999, RIEMANN SOLVERS NUME
152090    WHITHAM GB, 1974, LINEAR NONLINEAR WAV
152091    WONG GCK, 2002, TRANSPORT RES A-POL, V36, P827
152092 NR 15
152093 TC 0
152094 SN 0253-4827
152095 J9 APPL MATH MECH-ENGL ED
152096 JI Appl. Math. Mech.-Engl. Ed.
152097 PD JUN
152098 PY 2005
152099 VL 26
152100 IS 6
152101 BP 691
152102 EP 699
152103 PG 9
152104 SC Mathematics, Applied; Mechanics
152105 GA 941VO
152106 UT ISI:000230242500002
152107 ER
152108 
152109 PT J
152110 AU Hu, YJ
152111    Cheng, CJ
152112    Yang, X
152113 TI Nonlinear dynamical characteristics of piles under horizontal vibration
152114 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
152115 DT Article
152116 DE system of pile-soil interaction; nonlinear visco-elasticity half-space;
152117    continuum mechanics; parameter study; dynamical stiffness
152118 AB The pile-soil system is regarded as a visco-elastic half-space embedded
152119    pile. Based on the method of continuum mechanics, a nonlinear
152120    mathematical model of pile-soil interaction was established-a coupling
152121    nonlinear boundary value problem. Under the case of horizontal
152122    vibration, the nonlinearly dynamical characteristics of pile applying
152123    the axis force were studied in horizontal direction in frequency
152124    domain. The effects of parameters, especially the axis force on the
152125    stiffness were studied in detail. The numerical results suggest that it
152126    is possible that the pile applying an axis force will lose its
152127    stability. So, the effect of the axis force on the pile is considered.
152128 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech, Shanghai 200072, Peoples R China.
152129 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Mech,
152130    Shanghai 200072, Peoples R China.
152131 EM chjcheng@staff.shu.edu.cn
152132 CR ANESTISE S, 1985, J GEOTECHNICAL ENG, V112, P363
152133    ANGELIDES DC, 1981, J GEOTECH ENG DIV AS, V107, P1443
152134    CHENG CJ, 1996, THEORY ELASTICITY
152135    NOVAK M, 1974, CANADIAN GEOTECHNICA, V11, P574
152136    NOVAK M, 1977, EARTHQ ENG STRUCT D, V5, P249
152137    NOVAK M, 1977, EARTHQ ENG STRUCT D, V5, P263
152138    NOVAK M, 1990, J GEOTECH ENG-ASCE, V116, P1008
152139    XIAO Y, 2000, INT C THEOR APPL MEC, P72
152140 NR 8
152141 TC 0
152142 SN 0253-4827
152143 J9 APPL MATH MECH-ENGL ED
152144 JI Appl. Math. Mech.-Engl. Ed.
152145 PD JUN
152146 PY 2005
152147 VL 26
152148 IS 6
152149 BP 700
152150 EP 708
152151 PG 9
152152 SC Mathematics, Applied; Mechanics
152153 GA 941VO
152154 UT ISI:000230242500003
152155 ER
152156 
152157 PT J
152158 AU Fang, JP
152159    Zheng, CL
152160    Zhu, JM
152161 TI New variable separation excitations, rectangle-like solitons and
152162    fractal solitons in the Boiti-Leon-Pempinelli system
152163 SO ACTA PHYSICA SINICA
152164 DT Article
152165 DE Boiti-Leon-Pempinelli system; extended Riccati mapping approach;
152166    rectangle-like soliton; fractal soliton
152167 ID EQUATION
152168 AB Using an extended Riccati mapping approach, we obtain a new type of
152169    varable separation solutions for the ( 2 + 1)-dimensional
152170    Boiti-Leon-Pempinelli system. Based on the derived solutions, two new
152171    kinds of soliton excitations, i.e. rectangle-like soliton and fractal
152172    soliton are constructed in this paper.
152173 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
152174    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
152175 RP Fang, JP, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R
152176    China.
152177 CR BOITI M, 1987, INVERSE PROBL, V3, P293
152178    BOITI M, 1989, PHYS REV LETT, V63, P1329
152179    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
152180    DEBIN H, 2003, PHYS LETT A, V314, P51
152181    FAN EG, 1998, ACTA PHYS SINICA, V7, P649
152182    FANG JP, 2004, COMMUN THEOR PHYS, V42, P175
152183    FOKAS AS, 1995, PHYSICA D, V87, P145
152184    FOKAS AS, 1998, PHYS LETT A, V132, P432
152185    LOU SY, 1998, PHYS REV LETT, V80, P5027
152186    LOU SY, 2003, J PHYS A-MATH GEN, V36, P3877
152187    LU ZS, 2004, CHAOS SOLITON FRACT, V19, P527
152188    MATRASULOV DU, 2003, J PHYS A-MATH GEN, V36, P10227
152189    RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P586
152190    TANG XY, 2002, PHYS REV E, V66, P46601
152191    ZHANG JF, 2004, COMMUN THEOR PHYS, V41, P655
152192    ZHENG CL, 2003, CHINESE PHYS, V12, P11
152193    ZHENG CL, 2003, CHINESE PHYS, V12, P472
152194    ZHENG CL, 2004, CHINESE PHYS, V13, P592
152195 NR 18
152196 TC 1
152197 SN 1000-3290
152198 J9 ACTA PHYS SIN-CHINESE ED
152199 JI Acta Phys. Sin.
152200 PD JUL
152201 PY 2005
152202 VL 54
152203 IS 7
152204 BP 2990
152205 EP 2995
152206 PG 6
152207 SC Physics, Multidisciplinary
152208 GA 941RK
152209 UT ISI:000230231700005
152210 ER
152211 
152212 PT J
152213 AU Wang, S
152214    He, P
152215    Zhang, JM
152216    Jiang, H
152217    Zhu, SZ
152218 TI Novel and efficient synthesis of water-soluble [60]fullerenol by
152219    solvent-free reaction
152220 SO SYNTHETIC COMMUNICATIONS
152221 DT Article
152222 DE fullerene; fullerenol; H2O2; sodium hydroxide; solvent-free reaction
152223 ID POLYHYDROXYLATED C-60; FULLERENOL; PRECURSORS; FULLEROLS; CHEMISTRY
152224 AB Water-soluble fullerenol was conveniently synthesized via the direct
152225    solvent-free reaction of fullerene with a mixture of H2O2 and NaOH
152226    under grinding conditions in air at room temperature. This practical
152227    method provides a novel and efficient access to water-soluble
152228    fullerenol in excellent yield.
152229 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Key Lab Organofluorine Chem, Shanghai 200032, Peoples R China.
152230    Shanghai Univ, Sch Sci, Dept Chem, Shanghai, Peoples R China.
152231 RP Zhu, SZ, Chinese Acad Sci, Shanghai Inst Organ Chem, Key Lab
152232    Organofluorine Chem, 354 Fenglin Lu, Shanghai 200032, Peoples R China.
152233 EM zhusz@mail.sioc.ac.cn
152234 CR CHEN Y, 2001, J PHYS CHEM SOLIDS, V62, P999
152235    CHIANG LY, 1992, J AM CHEM SOC, V114, P10154
152236    CHIANG LY, 1992, J CHEM SOC CHEM COMM, P1791
152237    CHIANG LY, 1993, J AM CHEM SOC, V115, P5453
152238    CHIANG LY, 1994, J ORG CHEM, V59, P3960
152239    CHIANG LY, 1995, J CHEM SOC CHEM 0621, P1283
152240    CHIANG LY, 1996, TETRAHEDRON, V52, P4963
152241    DESIRAJU GR, 1987, ORGANIC SOLID STATE, P179
152242    LI J, 1993, J CHEM SOC CHEM COMM, P1784
152243    LI XL, 1998, JOU JI HUA XUE, V18, P20
152244    LU LH, 1998, BRIT J PHARMACOL, V123, P1097
152245    NAIM A, 1992, TETRAHEDRON LETT, V33, P7097
152246    RASMUSSEN MO, 1997, SYNTHETIC COMMUN, V27, P4027
152247    SCHNEIDER NS, 1994, J CHEM SOC CHEM COMM, P463
152248    SINGH NB, 1994, TETRAHEDRON, V50, P6441
152249    SUN DY, 1996, CHEM J CHINESE U, V1, P19
152250    TODA F, 1993, SYNLETT, P303
152251    TSAI MC, 1997, J PHARM PHARMACOL, V49, P438
152252    WANG T, 1992, ACTA ACAD MED TERT, V14, P18
152253    ZHANG JM, 2004, CHINESE J CHEM, V22, P1008
152254    ZHANG P, 2003, SYNTHETIC COMMUN, V33, P2469
152255 NR 21
152256 TC 0
152257 SN 0039-7911
152258 J9 SYN COMMUN
152259 JI Synth. Commun.
152260 PY 2005
152261 VL 35
152262 IS 13
152263 BP 1803
152264 EP 1808
152265 PG 6
152266 SC Chemistry, Organic
152267 GA 939YC
152268 UT ISI:000230107700011
152269 ER
152270 
152271 PT J
152272 AU Wang, ZC
152273    Zhao, DY
152274    Dai, YM
152275    Wu, DM
152276 TI An improved trigonometrically fitted P-stable Obrechkoff method for
152277    periodic initial-value problems
152278 SO PROCEEDINGS OF THE ROYAL SOCIETY  A-MATHEMATICAL PHYSICAL AND
152279    ENGINEERING SCIENCES
152280 DT Article
152281 DE Obrechkoff method high-order derivative; first-order derivative
152282    formula; second-order initial value problem with periodic solutions;
152283    numerical solution to the Duffing equation
152284 ID DIMENSIONAL SCHRODINGER-EQUATION; MINIMAL PHASE-LAG; 2ND-ORDER
152285    DIFFERENTIAL-EQUATIONS; NUMERICAL-INTEGRATION; MULTISTEP METHODS;
152286    ORBITAL PROBLEMS; HIGH-ORDER; STABILIZATION; FORMULAS
152287 AB In this paper we present an improved P-stable trigonometrically fitted
152288    Obrechkoff method with phase-lag (frequency distortion) infinity.
152289    Compared with the previous P-stable trigonometrically fitted Obrechkoff
152290    method developed by Simos, our new method is simpler in structure and
152291    more stable in computation. We have also improved the accuracy of the
152292    first-order derivative formula. From the numerical illustration
152293    presented, we can show that the new method is much more accurate than
152294    the previous methods.
152295 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
152296 RP Wang, ZC, Shanghai Univ, Dept Phys, 99 ShangDa Rd, Shanghai 200436,
152297    Peoples R China.
152298 EM huilan@public.sta.net.cn
152299 CR ALLISON AC, 1970, J COMPUT PHYS, V6, P378
152300    ANANTHAKRISHNAI.U, 1982, J COMPUT APPL MATH, V8, P101
152301    ANANTHAKRISHNAI.U, 1987, MATH COMPUT, V49, P553
152302    CASH JR, 1981, NUMER MATH, V37, P355
152303    CHAWLA MM, 1981, BIT, V21, P190
152304    CHAWLA MM, 1984, J COMPUT APPL MATH, V11, P277
152305    CHAWLA MM, 1986, J COMPUT APPL MATH, V15, P213
152306    CHAWLA MM, 1986, J COMPUT APPL MATH, V15, P327
152307    CHAWLA MM, 1986, J COMPUT APPL MATH, V16, P233
152308    CHAWLA MM, 1987, J COMPUT APPL MATH, V17, P365
152309    GAUTSCHI W, 1961, NUMER MATH, V3, P381
152310    GLADWELL I, 1983, INT J NUMER METH ENG, V19, P495
152311    HAIRER E, 1979, NUMER MATH, V32, P373
152312    JAIN MK, 1988, BIT, V28, P302
152313    LAMBERT JD, 1976, J INST MATH APPL, V18, P189
152314    LANDAU L, 1974, QUANTUM MECH
152315    MICKENS RE, 1981, INTRO NONLINEAR OSCI
152316    NETA B, 2003, COMPUT MATH APPL, V45, P383
152317    OBRECHKOFF N, 1942, SPISANIE BULGAR AKAD, V65, P191
152318    RAI AS, 1997, J COMPUT APPL MATH, V79, P167
152319    SIMOS TE, 1990, COMPUTING, V45, P175
152320    SIMOS TE, 1991, APPL NUMER MATH, V7, P201
152321    SIMOS TE, 1991, INT J COMPUT MATH, V39, P135
152322    SIMOS TE, 1992, J COMPUT APPL MATH, V39, P89
152323    SIMOS TE, 1993, P ROY SOC LOND A MAT, V441, P283
152324    SIMOS TE, 2003, PHYS LETT A, V315, P437
152325    SIMOS TE, 2004, NEW ASTRON, V9, P59
152326    STIEFEL E, 1969, NUMER MATH, V13, P154
152327    THOMAS RM, 1984, BIT, V24, P225
152328    VANDOOREN R, 1974, J COMPUT PHYS, V16, P186
152329    WANG Z, 2003, N MATH J CHIN U, V12, P146
152330    WANG ZC, 2003, INT J MOD PHYS C, V14, P1087
152331    WANG ZC, 2004, COMPUT PHYS COMMUN, V160, P23
152332 NR 33
152333 TC 1
152334 SN 1364-5021
152335 J9 PROC ROY SOC A-MATH PHYS ENG
152336 JI Proc. R. Soc.  A-Math. Phys. Eng. Sci.
152337 PD JUN 8
152338 PY 2005
152339 VL 461
152340 IS 2058
152341 BP 1639
152342 EP 1658
152343 PG 20
152344 SC Multidisciplinary Sciences
152345 GA 941GK
152346 UT ISI:000230203100003
152347 ER
152348 
152349 PT J
152350 AU Yao, FW
152351    Zhong, SS
152352    Wang, W
152353    Liang, XL
152354 TI Wideband slot antenna with a novel microstrip feed
152355 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
152356 DT Article
152357 DE slot antenna; microstrip; wideband
152358 ID GROUND PLANE; STUB
152359 AB A novel slot antenna of large bandwidth and small size, which is fed by
152360    a fan-shaped microstrip feed with a straight stub, is introduced. The
152361    effect of the fan feed on the impedance characteristics is investigated
152362    theoretically and experimentally. Good agreement between the
152363    theoretical and experimental results is obtained. Its measured VSWR <=
152364    2 bandwidth reaches approximately 114%, covering 1.55-5.66 GHz. The
152365    measured standing-wave ratio curves and radiation patterns of the
152366    antenna at f = 2 GHz and at f = 5 GHz are both presented. (c) 2005
152367    Wiley Periodicals, Inc.
152368 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
152369 RP Yao, FW, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
152370    Peoples R China.
152371 CR ABDELNASSER A, 2003, IEEE RADAR C, P79
152372    ATWATER HA, 1985, MICROWAVE J, V28, P149
152373    BOOKER HG, 1946, J IEE LONDON 3A, V93, P620
152374    COLLIN RE, 1972, IEEE T MICROW THEORY, V20, P760
152375    JANG YW, 2002, MICROW OPT TECHN LET, V32, P278
152376    JANG YW, 2003, MICROW OPT TECHN LET, V36, P61
152377    JANG YW, 2004, MICROW OPT TECHN LET, V41, P161
152378    NIU JW, 2004, MICROW OPT TECHN LET, V41, P218
152379 NR 8
152380 TC 0
152381 SN 0895-2477
152382 J9 MICROWAVE OPT TECHNOL LETT
152383 JI Microw. Opt. Technol. Lett.
152384 PD AUG 5
152385 PY 2005
152386 VL 46
152387 IS 3
152388 BP 275
152389 EP 278
152390 PG 4
152391 SC Engineering, Electrical & Electronic; Optics
152392 GA 940WW
152393 UT ISI:000230177600023
152394 ER
152395 
152396 PT J
152397 AU He, Y
152398    Sang, WB
152399    Wang, J
152400    Wu, RF
152401    Min, JH
152402 TI Polymer-assisted complexing controlled orientation growth of ZnO
152403    nanorods
152404 SO JOURNAL OF NANOPARTICLE RESEARCH
152405 DT Article
152406 DE ZnO nanorod; polymer complexzation; self-assembling; orientation
152407    growth; composite material
152408 ID OPTICAL-PROPERTIES; FILMS; FABRICATION; TEMPLATE; ARRAYS; LASER
152409 AB The growth of the oriented zinc oxide (ZnO) nanorods on silicon
152410    substrates based on a simple novel chemical transformation and thermal
152411    hydrolysis by using polyvinyl alcohol (PVA) as self-assembling complex
152412    polymer was introduced in this paper. All the polymers were removed
152413    after chemical oxidation and only the carbonized grid backbones
152414    remained that confines the ZnO nanorod's diameter and enhance the
152415    absorption and diffusion of ZnO at the tips of the nanorods during
152416    growth. The ZnO nanorods are investigated by FTIR, XRD and FE-SEM. The
152417    results indicated that these nanorods have fine hexagonal wurtzite
152418    crystal structure and their diameter varies from 20 to 90 nm and the
152419    length up to about 1 mu m. A polymer-localized ZnO growth model is
152420    proposed, which well explains the growth behavior of ZnO nanorods.
152421 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
152422 RP He, Y, Shanghai Univ, Sch Mat Sci & Engn, 149 Yanchang Rd, Shanghai
152423    200072, Peoples R China.
152424 EM yhe@mail.shu.edu.cn
152425 CR CHEN SJ, 2003, J CRYST GROWTH, V254, P86
152426    CHOY JH, 2003, ADV MATER, V15, P1911
152427    FUJIMURA N, 1993, J CRYST GROWTH, V130, P269
152428    HAGA K, 2003, THIN SOLID FILMS, V433, P131
152429    HUANG MH, 2001, SCIENCE, V292, P1897
152430    JIU J, 2003, MATER CHEM PHYS, V81, P93
152431    KIND H, 2002, ADV MATER, V14, P158
152432    NYQUIST RA, 1997, HDB INFRARED RAMAN S
152433    RYU YR, 2000, J CRYST GROWTH, V219, P419
152434    WANG Z, 2002, APPL PHYS A-MATER, V74, P201
152435    WIERSMA D, 2000, NATURE, V406, P132
152436    XING YJ, 2003, APPL PHYS LETT, V83, P1689
152437    ZHENG MJ, 2002, CHEM PHYS LETT, V363, P123
152438 NR 13
152439 TC 0
152440 SN 1388-0764
152441 J9 J NANOPART RES
152442 JI J. Nanopart. Res.
152443 PD JUN
152444 PY 2005
152445 VL 7
152446 IS 2
152447 BP 307
152448 EP 311
152449 PG 5
152450 SC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
152451 GA 940JX
152452 UT ISI:000230141900018
152453 ER
152454 
152455 PT J
152456 AU Zhang, BN
152457    Zhang, JQ
152458 TI Electromechanical interaction behaviors of piezoelectric sensor and
152459    actuator on elastic substrate
152460 SO JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES
152461 DT Article
152462 DE piezoelectric-elastic; sensor; actuator; size effect; interaction
152463    behaviors
152464 ID LAYER; CRACK; MODEL
152465 AB In this article, the model and the algorithm developed in our previous
152466    work are used to investigate the thickness effect and the length effect
152467    of the piezoelectric patch and the influence of the substrate material
152468    properties on the responses of the piezoelectric-elastic structure. For
152469    an actuator-substrate structure, a thicker piezoelectric patch may be
152470    preferable in decreasing the stress concentration. Longer the
152471    piezoelectric patch, lower the interfacial normal stress. The
152472    interfacial stresses will go up with the increase of the stiffness of
152473    the host materials. For a sensor system, the strain transfer from
152474    substrate to sensor will decrease with the increase of the thickness of
152475    the piezoelectric sensor patch. The output voltage of the piezoelectric
152476    sensor rises with the increase of both the thickness and the length. A
152477    harder host material can make higher output voltage under the same
152478    strain.
152479 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
152480    Chongqing Jiaotong Univ, Coll Comp & Informat, Chongqing 400074, Peoples R China.
152481 RP Zhang, JQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
152482    200072, Peoples R China.
152483 EM jqzhang@mail.shu.edu.cn
152484 CR GONG X, 1996, J MECH PHYS SOLIDS, V44, P751
152485    GRANGER R, 2000, J INTEL MAT SYST STR, V11, P225
152486    KEKANA M, 2003, INT J SOLIDS STRUCT, V40, P715
152487    KWON JH, 2000, EUR J MECH A-SOLID, V19, P979
152488    LIU M, 2003, J MECH PHYS SOLIDS, V51, P921
152489    PAL PF, 2000, J INTEL MAT SYST STR, V11, P642
152490    QI H, 2001, ACTA MECH SINICA, V17, P59
152491    TIAN WY, 2000, INT J SOLIDS STRUCT, V37, P7743
152492    WANG BL, 2001, ENG FRACT MECH, V68, P1003
152493    WANG BL, 2002, INT J ENG SCI, V40, P1697
152494    WANG BT, 2000, J INTEL MAT SYST STR, V11, P713
152495    WANG XD, 2000, INT J SOLIDS STRUCT, V37, P3231
152496    YU N, 1999, COMPOS PART B-ENG, V30, P709
152497    ZHANG BN, 2003, INT J SOLIDS STRUCT, V40, P6799
152498    ZHANG BN, 2004, ACTA MECH, V170, P163
152499    ZHANG JQ, 2003, INT J SOLIDS STRUCT, V40, P6781
152500 NR 16
152501 TC 0
152502 SN 1045-389X
152503 J9 J INTEL MAT SYST STRUCT
152504 JI J. Intell. Mater. Syst. Struct.
152505 PD JUL-AUG
152506 PY 2005
152507 VL 16
152508 IS 7-8
152509 BP 589
152510 EP 595
152511 PG 7
152512 SC Materials Science, Multidisciplinary
152513 GA 939RC
152514 UT ISI:000230089100006
152515 ER
152516 
152517 PT J
152518 AU Xu, HB
152519    Xu, W
152520    Chu, YW
152521    Gong, YP
152522    Jiang, ZG
152523    Xiong, SD
152524 TI Involvement of up-regulated CXC chemokine ligand 16/scavenger receptor
152525    that binds phosphatidylserine and oxidized lipoprotein in
152526    endotoxin-induced lethal liver injury via regulation of T-cell
152527    recruitment and adhesion
152528 SO INFECTION AND IMMUNITY
152529 DT Article
152530 ID INDUCED FULMINANT-HEPATITIS; GAMMA-DEFICIENT MICE; FAS-LIGAND;
152531    TNF-ALPHA; PROPIONIBACTERIUM-ACNES; ENDOTHELIAL-CELLS; IL-18
152532    PRODUCTION; CALMETTE-GUERIN; MURINE MODEL; PIVOTAL ROLE
152533 AB A marine model of endotoxin-induced lethal liver injury induced by
152534    Mycobacterium bovis BCG plus lipopolysaccharide (LPS) has been widely
152535    accepted and used. It has been reported that T cells play an important
152536    role in the pathogenesis of liver damage in this model. However, the
152537    precise mechanisms involved in regulation of the trafficking of
152538    effector T cells need to be elucidated. In the present study, we first
152539    reported that CXCL16/ SR-PSOX (CXC chemokine ligand 16/scavenger
152540    receptor that binds phosphatidylserine and oxidized lipoprotein), a
152541    chemokine containing both membrane-anchored and soluble forms, was
152542    strongly up-regulated and predominantly distributed in the vascular
152543    endothelium in the injured liver tissue in the model. The secretory and
152544    membrane-anchored CXCL16/SR-PSOX functioned as a chemokine and an
152545    adhesive molecule, respectively, to attract T cells to a tumor necrosis
152546    factor alpha-activated endothelial cell line (SVEC) in vitro. To
152547    further identify the pathophysiological roles of CXCL16/SR-PSOX in the
152548    liver injury, the anti-CXCL16 antibody was administered to the
152549    BCG-primed mice before LPS challenge in vivo. Significant protection
152550    effects were observed with 70 % of mice regarding lethality, the
152551    massive necrosis in the liver was reduced, and the intrahepatic
152552    infiltrating T cells were significantly inhibited. Taken together,
152553    these findings strongly suggest that functional CXCL16/SR-PSOX, as both
152554    a chemokine and an adhesion molecule, may be involved in the
152555    pathogenesis of the endotoxin-induced lethal liver injury via
152556    recruitment and adhesion of activated T cells to the vascular
152557    endothelium.
152558 C1 Fudan Univ, Shanghai Med Coll, Dept Immunol, Shanghai 200032, Peoples R China.
152559    Fudan Univ, Shanghai Med Coll, Key Lab Mol Med Minist Educ, Shanghai 200032, Peoples R China.
152560    Shanghai Univ, E Inst, Div Immunol, Shanghai 200032, Peoples R China.
152561 RP Xiong, SD, Fudan Univ, Shanghai Med Coll, Dept Immunol, 138 Yi Xue Yuan
152562    Rd, Shanghai 200032, Peoples R China.
152563 EM sdxiongfd@126.com
152564 CR ADAMS DH, 1994, HEPATOLOGY, V19, P588
152565    AGACE WW, 2000, CURR OPIN CELL BIOL, V12, P563
152566    BAZAN JF, 1997, NATURE, V385, P640
152567    BONDER CS, 2004, J IMMUNOL, V172, P45
152568    CINES DB, 1998, BLOOD, V91, P3527
152569    COHEN J, 2002, NATURE, V420, P885
152570    DECLERCK LS, 1994, J IMMUNOL METHODS, V172, P115
152571    DONG H, 2002, BIOCHEM BIOPH RES CO, V298, P675
152572    DUMOULIN FL, 2000, J IMMUNOL METHODS, V241, P109
152573    DUNNE JL, 2003, J IMMUNOL, V171, P6105
152574    EMOTO M, 2003, J IMMUNOL, V171, P584
152575    FAOUZI S, 2001, J BIOL CHEM, V276, P49077
152576    FERLUGA J, 1981, AM J PATHOL, V105, P82
152577    FUJIOKA N, 1995, J LEUKOCYTE BIOL, V58, P90
152578    GUNZER M, 2001, J IMMUNOL METHODS, V258, P55
152579    HEYDTMANN M, 2002, GUT, V50, P102
152580    JAESCHKE H, 1991, AM J PHYSIOL, V261, P1051
152581    JOHNSTON B, 2003, J IMMUNOL, V171, P2960
152582    KAJDACSYBALLA A, 1996, SHOCK, V5, P357
152583    KAMIYASU M, 1997, CLIN IMMUNOL IMMUNOP, V83, P302
152584    KIM CC, 2001, MRS INTERNET J N S R, V6
152585    KOBAYASHI S, 1999, HEPATOLOGY, V29, P1752
152586    KONDO T, 1997, NAT MED, V3, P409
152587    LALOR PF, 2002, IMMUNOL CELL BIOL, V80, P52
152588    LI XK, 2001, TRANSPLANTATION, V71, P503
152589    LOWIN B, 1994, NATURE, V370, P650
152590    LUSCINSKAS FW, 1996, ANNU REV MED, V47, P413
152591    MARRA F, 1998, AM J PATHOL, V152, P423
152592    MATLOUBIAN M, 2000, NAT IMMUNOL, V1, P298
152593    MATSUI K, 1997, J IMMUNOL, V159, P97
152594    MIZOGUCHI Y, 1988, BIOCHEM BIOPH RES CO, V155, P1305
152595    MOCHIDA S, 1996, HEPATOLOGY, V23, P320
152596    NAGAKAWA J, 1990, GASTROENTEROLOGY, V99, P758
152597    NAKAYAMA T, 2002, J VIROL, V76, P3072
152598    NAKAYAMA T, 2003, J IMMUNOL, V170, P1136
152599    NISHIMURA T, 1999, J IMMUNOL, V162, P6503
152600    OGASAWARA J, 1993, NATURE, V364, P806
152601    RAETZ CRH, 1990, ANNU REV BIOCHEM, V59, P129
152602    RYO K, 2000, AM J GASTROENTEROL, V95, P2047
152603    SCAPINI P, 2000, IMMUNOL REV, V177, P195
152604    SEINO KI, 1997, GASTROENTEROLOGY, V113, P1315
152605    SHANDS JW, 1972, AM J PATHOL, V67, P23
152606    SHIMAOKA T, 2004, J LEUKOCYTE BIOL, V75, P267
152607    SHIMIZU Y, 2002, HEPATOLOGY, V35, P805
152608    SONG EW, 2003, NAT MED, V9, P347
152609    TAKEDA K, 2000, P NATL ACAD SCI USA, V97, P5498
152610    TANAKA J, 1996, IEEE ELECTR INSUL M, V12, P8
152611    TANAKA Y, 1995, J IMMUNOL METHODS, V182, P21
152612    TSUJI H, 1997, INFECT IMMUN, V65, P1892
152613    TSUJI H, 1999, J IMMUNOL, V162, P1049
152614    TSUTSUI H, 1996, J IMMUNOL, V157, P3967
152615    TSUTSUI H, 1997, J IMMUNOL, V159, P3961
152616    ULMER AJ, 2000, TOXICOLOGY, V152, P37
152617    WAGNER JG, 1999, J LEUKOCYTE BIOL, V66, P10
152618    WATANABE H, 1992, J IMMUNOL METHODS, V146, P145
152619    WILBANKS A, 2001, J IMMUNOL, V166, P5145
152620    YAJIMA T, 2004, INFECT IMMUN, V72, P3855
152621    YAMAUCHI R, 2004, ARTERIOSCL THROM VAS, V24, P282
152622    YONEYAMA H, 1998, J CLIN INVEST, V102, P1933
152623    YONEYAMA H, 2002, J EXP MED, V195, P1257
152624    YOONG KF, 1998, J IMMUNOL, V160, P3978
152625 NR 61
152626 TC 0
152627 SN 0019-9567
152628 J9 INFEC IMMUNITY
152629 JI Infect. Immun.
152630 PD JUL
152631 PY 2005
152632 VL 73
152633 IS 7
152634 BP 4007
152635 EP 4016
152636 PG 10
152637 SC Immunology; Infectious Diseases
152638 GA 940NL
152639 UT ISI:000230151100022
152640 ER
152641 
152642 PT J
152643 AU Zhao, QH
152644    Lin, HX
152645    Han, N
152646    Chen, MQ
152647    Yang, MF
152648 TI Synthesis and crystal structure of
152649    9-pyridyl-1,8-dioxo-2,3,4,5,6,7-hexahydtoxanthene
152650 SO CHINESE JOURNAL OF STRUCTURAL CHEMISTRY
152651 DT Article
152652 DE crystal structure; xathene; preparation
152653 ID DERIVATIVES
152654 AB 9-Pyridyl-1,8-dioxo-2,3,4,5,6,7-hexahydroxanthene 3 (C18H17NO3) was
152655    prepared by the reaction of 4-pyridinecarboxaldehyde and
152656    1,3-cyclohexanedione using Nafion-H as catalyst. The crystal and
152657    molecular structures were studied. The crystal is of orthorhombic,
152658    space group Pbcn with a = 20.369(4), b = 14.528(2), c = 9.747(17)
152659    angstrom, V = 2884.3(9) angstrom(3), D-c = 1.360 g/cm(3), Z = 8, F(000)
152660    = 1248 and p(MoK alpha) = 0.093 mm(-1). The final R = 0.0395, wR 0.1087
152661    for 1458 observed reflections (I > 2 sigma(I)), and R = 0.1032, wR =
152662    0.1340 for all 2580 reflections. The outer rings of the xanthene groups
152663    adopt an almost ideal envelope conformation, and the heterocyclic
152664    central ring exhibits a distorted boat conformation. The pyridyl group
152665    is rotated with respect to the xanthene system by 87 degrees.
152666 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
152667    Fudan Univ, Res Ctr Anal & Measurement, Shanghai 200433, Peoples R China.
152668 RP Lin, HX, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
152669 EM linhaixia@online.sh.cn
152670 CR DESIRAJU GR, 1991, ACCOUNTS CHEM RES, V24, P290
152671    JONES G, 1967, ORG REACTIONS, V15, P204
152672    KESTEN SJ, 1992, J MED CHEM, V35, P3429
152673    MARCO BA, 1999, J CHEM CRYSTALLOGR, V7, P759
152674    NAGARAJAN K, 1988, EUROP J MEDNL CHEM, V23, P189
152675    NAGARAJAN K, 1992, INDIAN J CHEM B, V31, P73
152676    NAMGOONG SK, 2000, B KOR CHEM SOC, V21, P264
152677    ORLEWSKA C, 2001, POL J CHEM, V75, P1237
152678    PATAI S, 1960, J CHEM SOC, P2020
152679    TU SJ, 2001, CHINESE J STRUC CHEM, V1, P53
152680    TU SJ, 2002, SYNTHETIC COMMUN, V19, P3063
152681    VAUGHAN K, 2004, CAN J CHEM, V82, P448
152682 NR 12
152683 TC 0
152684 SN 0254-5861
152685 J9 CHIN J STRUCT CHEM
152686 JI Chin. J. Struct. Chem.
152687 PY 2005
152688 VL 24
152689 IS 6
152690 BP 701
152691 EP 705
152692 PG 5
152693 SC Chemistry, Inorganic & Nuclear; Crystallography
152694 GA 939VY
152695 UT ISI:000230101800017
152696 ER
152697 
152698 PT J
152699 AU Li, X
152700    Ren, ZM
152701    Deng, K
152702    Zhuang, YQ
152703    Xu, KD
152704 TI Effect of high vertical magnetic field on directional solidification
152705    structure of eutectic MnBi/Bi
152706 SO ACTA METALLURGICA SINICA
152707 DT Article
152708 DE high magnetic field; MnBi/Bi eutectic; directional solidification
152709 ID BI-MN ALLOY; PHASE
152710 AB Effect of high vertical magnetic field on the directional
152711    solidification structure of eutectic MnBi/Bi has been investigated. It
152712    has been found that high magnetic field has enhanced the formation of
152713    MnBi fiber and make the directional solidification structure of
152714    eutectic MnBi/Bi. more regular; with the increase of the intensity of
152715    the magnetic field, the average spacing and diameters of MnBi fibers
152716    increase at same growth rate; magnetic field makes the morphology of
152717    MnBi phase change and enhances the faceted growth character of MnBi
152718    phase.
152719 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
152720 RP Ren, ZM, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R
152721    China.
152722 EM zmrenb@online.sh.cn
152723 CR CHEN T, 1974, J APPL PHYS, V45, P2358
152724    DECARLO JL, 1984, METALL TRANS A, V15, P2155
152725    ELLOIT R, 1983, EUTECTIC SOLIDIFICAT, P165
152726    FENG D, 1998, PHYSICS METAL, V4, P460
152727    GABER FE, 1986, J CRYST GROWTH, V78, P159
152728    GUO X, 1991, J APPL PHYS 2B, V69, P6067
152729    LI X, 2004, ACTA METALL SIN, V40, P40
152730    NOTIS MR, 1979, IEEE T MAGN, V3, P957
152731    PIRICH RG, 1982, MAT PROCESSING REDUC, P593
152732    PIRICH RG, 1984, METALL TRANS A, V15, P2139
152733    SAVAS MA, 1986, J CRYST GROWTH, V76, P880
152734    WANG H, 2002, ACTA METALL SIN, V38, P41
152735    YASUDA H, 2003, MATER TRANS, V44, P2207
152736    YU JS, 1992, PANAMER MATH J, V2, P59
152737 NR 14
152738 TC 0
152739 SN 0412-1961
152740 J9 ACTA METALL SIN
152741 JI Acta Metall. Sin.
152742 PD JUN
152743 PY 2005
152744 VL 41
152745 IS 6
152746 BP 588
152747 EP 592
152748 PG 5
152749 SC Metallurgy & Metallurgical Engineering
152750 GA 941UD
152751 UT ISI:000230238800006
152752 ER
152753 
152754 PT J
152755 AU Shi, IJ
152756    Yu, Y
152757 TI Determination of nitrite by J-acid spectrophotometry.
152758 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
152759 DT Meeting Abstract
152760 C1 Shanghai Univ Sci & Technol, Coll Urban Construct, Shanghai 200093, Peoples R China.
152761 EM shiwjusst@msn.com
152762 NR 0
152763 TC 0
152764 SN 0065-7727
152765 J9 ABSTR PAP AMER CHEM SOC
152766 JI Abstr. Pap. Am. Chem. Soc.
152767 PD MAR 13
152768 PY 2005
152769 VL 229
152770 PN Part 1
152771 BP U55
152772 EP U55
152773 PG 1
152774 SC Chemistry, Multidisciplinary
152775 GA 913TZ
152776 UT ISI:000228177700176
152777 ER
152778 
152779 PT J
152780 AU Shi, WJ
152781    Wen, HF
152782    Wang, LS
152783    Yang, Y
152784    Yu, Y
152785 TI Studies on the preparation and properties of cotton cellulose xanthate.
152786 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
152787 DT Meeting Abstract
152788 C1 Shanghai Univ Sci & Technol, Coll Urban Construct, Shanghai 200093, Peoples R China.
152789    E China Normal Univ, Dept Chem, Shanghai, Peoples R China.
152790 EM shiwjusst@msn.com
152791 NR 0
152792 TC 0
152793 SN 0065-7727
152794 J9 ABSTR PAP AMER CHEM SOC
152795 JI Abstr. Pap. Am. Chem. Soc.
152796 PD MAR 13
152797 PY 2005
152798 VL 229
152799 PN Part 1
152800 BP U287
152801 EP U287
152802 PG 1
152803 SC Chemistry, Multidisciplinary
152804 GA 913TZ
152805 UT ISI:000228177701600
152806 ER
152807 
152808 PT J
152809 AU Shi, WJ
152810    Chan, FS
152811    Zhang, DF
152812    Yang, Y
152813 TI Removal of heavy metals from wastewater using cotton cellulose xanthate.
152814 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
152815 DT Meeting Abstract
152816 C1 Shanghai Univ Sci & Technol, Coll Urban Construct, Shanghai 200093, Peoples R China.
152817    Bemidji State Univ, Ctr Environm Earth & Space Studies, Bemidji, MN USA.
152818 EM shiwjusst@msn.com
152819 NR 0
152820 TC 0
152821 SN 0065-7727
152822 J9 ABSTR PAP AMER CHEM SOC
152823 JI Abstr. Pap. Am. Chem. Soc.
152824 PD MAR 13
152825 PY 2005
152826 VL 229
152827 PN Part 1
152828 BP U287
152829 EP U288
152830 PG 2
152831 SC Chemistry, Multidisciplinary
152832 GA 913TZ
152833 UT ISI:000228177701601
152834 ER
152835 
152836 PT J
152837 AU Chen, CF
152838    Shi, WJ
152839    Zhuang, QJ
152840 TI Teaching-experiment design of treatment of oil-contaminated wastewater
152841    with improved powdered cinder
152842 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
152843 DT Meeting Abstract
152844 C1 Shanghai Univ Sci & Technol, Coll Mech Engn, Shanghai 200093, Peoples R China.
152845    Shanghai Univ Sci & Technol, Coll Urban Construct, Shanghai 200093, Peoples R China.
152846    Shanghai Jiao Tong Univ, Coll Life Sci & Biotechnol, Shanghai, Peoples R China.
152847 EM shiwjusst@msn.com
152848 NR 0
152849 TC 0
152850 SN 0065-7727
152851 J9 ABSTR PAP AMER CHEM SOC
152852 JI Abstr. Pap. Am. Chem. Soc.
152853 PD MAR 13
152854 PY 2005
152855 VL 229
152856 PN Part 1
152857 BP U352
152858 EP U352
152859 PG 1
152860 SC Chemistry, Multidisciplinary
152861 GA 913TZ
152862 UT ISI:000228177702092
152863 ER
152864 
152865 PT J
152866 AU Shi, WJ
152867    Wen, HF
152868    Chen, CL
152869 TI New method to treat cationic byes-containing wastewater.
152870 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
152871 DT Meeting Abstract
152872 C1 Shanghai Univ, Coll Urban Construct, Shanghai 200093, Peoples R China.
152873    Shanghai Univ, Coll Mech Engn, Shanghai 200093, Peoples R China.
152874 EM shiwjusst@msn.com
152875 NR 0
152876 TC 0
152877 SN 0065-7727
152878 J9 ABSTR PAP AMER CHEM SOC
152879 JI Abstr. Pap. Am. Chem. Soc.
152880 PD MAR 13
152881 PY 2005
152882 VL 229
152883 PN Part 1
152884 BP U915
152885 EP U915
152886 PG 1
152887 SC Chemistry, Multidisciplinary
152888 GA 913TZ
152889 UT ISI:000228177706482
152890 ER
152891 
152892 PT J
152893 AU Chen, FX
152894    Xie, J
152895    Li, NL
152896    Zhou, Y
152897    Xin, LJ
152898    Chou, KY
152899 TI Novel SLA-DQ alleles and their recombinant molecules in xenogeneic
152900    stimulation of human T cells
152901 SO TRANSPLANT IMMUNOLOGY
152902 DT Article
152903 DE MHC-DQ; swine leukocyte antigens (SLA); xenotransplantation; Chinese
152904    miniature pig; lymphoproliferation to xenoantigens
152905 ID MAJOR HISTOCOMPATIBILITY COMPLEX; RECOGNITION; SWINE; PIGS
152906 AB MHC class II antigens DR and DQ are essential for graft rejection both
152907    in allo- and xeno-transplantation. The antigens, especially the DQA and
152908    DQB gene-coencoded DQ molecules, are also involved in transplantation
152909    tolerance induced by activation of regulatory T cells. Here we report
152910    six novel DQ alleles from three properly inbred Chinese pig strains Gz,
152911    Bin and Yn. In our study, cDNA of swine leukocyte antigen (SLA)-DQA and
152912    -DQB were amplified by RT-PCR and sequenced for each strain. The
152913    ORF-containing SLA-DQA and -DQB genes are composed of 768 (or 765) and
152914    786 nucleotides, encoding antigen molecules of 255 (or 254) and 261
152915    amino acid residues, respectively. Sequences of both SLA-DQA and -DQB
152916    alleles showed disparities when compared either among the three pig
152917    strains or with available SLA data, which allows our novel alleles
152918    receiving their accession numbers AY102473-AY102478 from GenBank. The
152919    sequence analysis further revealed a phylogenic connection of our
152920    SLA-DQ alleles with SLA-DQ(c) haplotype. In addition, the homologies of
152921    MHC DQ or DQ-like molecules between Chinese pigs (SLA) and human (HLA)
152922    are higher than those between pigs and mice (H-2). By co-transfection
152923    of Bm pig DQA and DQB genes into L929 cells, the Bm-DQ
152924    heterodimer-expressed cells could effectively stimulate the human
152925    lymphoproliferation in presence of human APCs with a mean stimulation
152926    index (SI) 9.9 +/- 1.4. This functional assay indicated that our
152927    recombinant DQ antigens are capable of initiating human
152928    lymphoproliferation in a xeno-MLR. (c) 2005 Elsevier B.V. All rights
152929    reserved.
152930 C1 Shanghai Med Univ 2, Shanghai Inst Immunol, Shanghai 200025, Peoples R China.
152931    Shanghai Univ, E Inst, Div Immunol, Shanghai 200025, Peoples R China.
152932    Tongji Univ, Oriental Hosp, Shanghai 200120, Peoples R China.
152933 RP Chou, KY, Shanghai Med Univ 2, Shanghai Inst Immunol, 280 S Chongqing
152934    Rd, Shanghai 200025, Peoples R China.
152935 EM my@shsmu.edu.cn
152936 CR AUCHINCLOSS H, 1998, ANNU REV IMMUNOL, V16, P433
152937    BATTEN P, 1995, J IMMUNOL, V155, P1057
152938    BHATTI FNK, 1999, TRANSPLANT P, V31, P958
152939    BRAVERY CA, 1995, TRANSPLANTATION, V60, P1024
152940    CHARDON P, 1999, IMMUNOL REV, V167, P179
152941    DONNELLY CE, 1997, CELL IMMUNOL, V175, P171
152942    HIRSCH F, 1992, J IMMUNOL, V149, P841
152943    LAI LX, 2002, SCIENCE, V295, P1089
152944    LIGAN JS, 2000, CURR OPIN IMMUNOL, V12, P563
152945    SCHMOECKEL M, 1997, J HEART LUNG TRANSPL, V16, P758
152946    SUN YP, 1992, CHIN J IMMUNOL, V8, P283
152947    VELTEN F, 1998, TISSUE ANTIGENS, V51, P183
152948    XIE J, 2000, SHANGHAI J IMMUNOL, V20, P136
152949    YAMADA K, 1995, J IMMUNOL, V155, P5249
152950 NR 14
152951 TC 1
152952 SN 0966-3274
152953 J9 TRANSPL IMMUNOL
152954 JI Transpl. Immunol.
152955 PD JUN
152956 PY 2005
152957 VL 14
152958 IS 2
152959 BP 83
152960 EP 89
152961 PG 7
152962 SC Immunology; Transplantation
152963 GA 939CU
152964 UT ISI:000230050700003
152965 ER
152966 
152967 PT J
152968 AU Su, QF
152969    Lu, JF
152970    Wang, LJ
152971    Liu, JM
152972    Ruan, JF
152973    Cui, JT
152974    Shi, WM
152975    Xia, YB
152976 TI Electrical properties of [100]-oriented CVD diamond film
152977 SO SOLID-STATE ELECTRONICS
152978 DT Article
152979 DE diamond films; HFCVD; [100]-oriented growth; electrical properties
152980 ID CHEMICAL-VAPOR-DEPOSITION; ORIENTED DIAMOND; THIN-FILMS; NUCLEATION;
152981    BIAS; SILICON; ENHANCEMENT; DETECTORS; SURFACES; GROWTH
152982 AB We reported the growth and its electrical properties of [100]-oriented
152983    diamond film using alcohol and hydrogen by HFCVD. SEM and Raman
152984    measurements indicated that high quality polycrystalline diamond films
152985    with [100]-faced structure were obtained. Dark current-voltage (I V),
152986    capacitance-frequency (C F), capacitance-voltage (C-V) and photocurrent
152987    under steady-state 55 Fe 5.9 keV X-ray excitation of freestanding
152988    diamond film were investigated at room temperature. Results indicated
152989    that after post-annealing for [10 0]-oriented diamond films dark
152990    current was in the order of 10(-10) A and the photocurrent was of in
152991    the order 10(-8) A by X-ray irradiation with the applied voltage of 40
152992    V, capacitance and dielectric loss were very small with the value of 2
152993    pF and 2 x 10(-3) with the bias voltage of 0.05 V, respectively, and
152994    almost had no variation with the change of frequency in high
152995    frequencies from 100 kHz to 10 MHz. (c) 2005 Elsevier Ltd. All rights
152996    reserved.
152997 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
152998    Tongji Univ, Inst Sci & Technol Informat, Shanghai 200092, Peoples R China.
152999 RP Su, QF, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
153000    China.
153001 EM qfsu@163.com
153002 CR ALVAREZ J, 2001, DIAM RELAT MATER, V10, P588
153003    BARANAUSKAS V, 2000, J APPL PHYS, V88, P1650
153004    FAN QH, 2000, DIAM RELAT MATER, V9, P1739
153005    GRONING O, 2001, SOLID STATE ELECTRON, V45, P929
153006    ISBERG J, 2002, SCIENCE, V297, P1670
153007    JANISCHOWSKY K, 2003, DIAM RELAT MATER, V12, P336
153008    KULKARNI AK, 1995, THIN SOLID FILMS, V270, P189
153009    LANDSTRASS MI, 1989, APPL PHYS LETT, V55, P975
153010    LIU JJ, 2001, SOLID STATE ELECTRON, V45, P915
153011    LOOI HJ, 2000, DIAM RELAT MATER, V9, P975
153012    MANFREDOTTI C, 1998, DIAM RELAT MATER, V7, P523
153013    RUAN J, 1993, APPL PHYS LETT, V62, P1379
153014    SHAH SI, 1992, APPL PHYS LETT, V61, P3113
153015    TITUS E, 2002, DIAM RELAT MATER, V11, P1403
153016    WANG LJ, 2003, J PHYS D APPL PHYS, V36, P2548
153017    WOLTER SD, 1996, APPL PHYS LETT, V68, P3558
153018    XIA YB, 2000, DIAM RELAT MATER, V9, P1636
153019    ZHANG WJ, 1996, APPL PHYS LETT, V68, P2195
153020    ZHANG WJ, 1997, J APPL PHYS, V82, P1896
153021 NR 19
153022 TC 1
153023 SN 0038-1101
153024 J9 SOLID STATE ELECTRON
153025 JI Solid-State Electron.
153026 PD JUN
153027 PY 2005
153028 VL 49
153029 IS 6
153030 BP 1044
153031 EP 1048
153032 PG 5
153033 SC Engineering, Electrical & Electronic; Physics, Applied; Physics,
153034    Condensed Matter
153035 GA 937ED
153036 UT ISI:000229906500027
153037 ER
153038 
153039 PT J
153040 AU Cao, GX
153041    Zhang, JC
153042    Cao, SX
153043    Jing, C
153044    Shen, XC
153045 TI Magnetization step, history-dependence, and possible spin quantum
153046    transition in Pr5/8Ca3/8MnO3 manganites
153047 SO PHYSICAL REVIEW B
153048 DT Article
153049 ID METAL-INSULATOR-TRANSITION; PHASE-SEPARATION; COLOSSAL
153050    MAGNETORESISTANCE; ORDERED MANGANITES; DOPED MANGANITES; DOUBLE
153051    EXCHANGE; FIELD; CHARGE; PR1-XCAXMNO3; PEROVSKITES
153052 AB In order to clarify the physical mechanism of magnetization step in
153053    strong correlation manganites with a phase separation, one
153054    Pr5/8Ca3/8MnO3 single crystal was successfully grown by the optical
153055    floating-zone method and investigated systematically on its structural,
153056    magnetic, and transport properties. One steplike charge ordered
153057    antiferromagnetic-ferromagnetic transition was proved below 60K as an
153058    applied magnetic field is only several T, and the step in the M-H curve
153059    became ultrasharp below 4.2 K. A history-dependent magnetization effect
153060    was also observed. Here, the given charge/orbital ordering and spin
153061    structure indicated that the energy difference between ferromagnetic
153062    and charge ordering phases was small for Pr5/8Ca3/8MnO3. According to
153063    the model of spin and orbital coupling, the steps should be the result
153064    of spin reorientation under the magnetic field. Meanwhile, the two
153065    sharp step transitions appeared in the different field-cooled (FQ
153066    conditions at T =2.0 K, which shows a possible existence of spin
153067    quantum transition. The observed history-dependent magnetization
153068    reflected the existence of d(x)(-y)(2)(2) orbital ordering state within
153069    the FM state. The correlation between the magnetic structure and the
153070    mechanism was also discussed.
153071 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
153072 RP Cao, GX, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
153073 CR ANDERSON PW, 1955, PHYS REV, V100, P675
153074    ASAKA T, 2002, PHYS REV LETT, V88
153075    ASAMITSU A, 1997, NATURE, V388, P50
153076    BALKE GR, 2002, PHYS REV B, V66
153077    COX DE, 1998, PHYS REV B, V57, P3305
153078    DAI P, 1996, PHYS REV B, V54, P3694
153079    DEGENNES PG, 1960, PHYS REV, V118, P141
153080    FRONTERA C, 2000, PHYS REV B, V62, P3381
153081    GOODENOUGH JB, 1955, PHYS REV, V100, P564
153082    GORDON I, 2001, PHYS REV B, V64
153083    HARDY V, 2003, J MAGN MAGN MATER, V264, P183
153084    HARDY V, 2004, PHYS REV B, V69
153085    HEBERT S, 2002, J SOLID STATE CHEM, V165, P6
153086    HEBERT S, 2002, SOLID STATE COMMUN, V122, P335
153087    HOTTA T, 2000, PHYS REV B, V61, P11879
153088    JIRAK Z, 1985, J MAGN MAGN MATER, V53, P153
153089    KAWANO H, 1997, PHYS REV LETT, V78, P4253
153090    KAWANOFUKURKAWA H, 2003, PHYS REV B, V67, P17442
153091    KILIAN R, 1999, PHYS REV B, V60, P13458
153092    KONISHI Y, 1998, APPL PHYS LETT, V73, P3004
153093    KOSHIBAE Y, 1997, J PHYS SOC JPN, V10, P2985
153094    KUWAHARA H, 1995, SCIENCE, V270, P961
153095    LEVY P, 2000, PHYS REV B, V62, P6437
153096    MAHENDIRAN R, 2002, PHYS REV LETT, V89
153097    MAIGNAN A, 2002, J PHYS-CONDENS MAT, V14, P11809
153098    MILLIS AJ, 1996, PHYS REV LETT, V77, P175
153099    MOREO A, 1999, SCIENCE, V283, P2034
153100    OKIMOTO Y, 1999, PHYS REV B, V59, P7401
153101    POLLERT E, 1982, J PHYS CHEM SOLIDS, V43, P1137
153102    SOLOVYEV I, 1996, PHYS REV LETT, V76, P4825
153103    TOKUNAGA M, 1998, PHYS REV B, V57, P5259
153104    TOMIOKA Y, 1996, PHYS REV B, V53, R1689
153105    UEHARA M, 1999, NATURE, V399, P560
153106    VANDENBRINK J, 1999, PHYS REV LETT, V83, P5118
153107    VANDERBEMDEN P, 2003, PHYS REV B, V68
153108    XIAO G, 1996, PHYS REV B, V54, P6073
153109    YAMADA S, 2000, J PHYS SOC JPN, V69, P1278
153110    YUNOKI S, 1998, PHYS REV LETT, V81, P5612
153111    ZHAO JH, 1999, PHYS REV B, V59, P8391
153112 NR 39
153113 TC 3
153114 SN 1098-0121
153115 J9 PHYS REV B
153116 JI Phys. Rev. B
153117 PD MAY
153118 PY 2005
153119 VL 71
153120 IS 17
153121 AR 174414
153122 DI ARTN 174414
153123 PG 9
153124 SC Physics, Condensed Matter
153125 GA 937OI
153126 UT ISI:000229935000062
153127 ER
153128 
153129 PT J
153130 AU Deng, WH
153131    Li, CP
153132 TI Chaos synchronization of the fractional Lu system
153133 SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
153134 DT Article
153135 DE synchronization; fractional order; Lu system
153136 ID CHENS SYSTEM; ATTRACTOR; ORDER
153137 AB Chaos synchronization of the fractional Lu system is theoretically and
153138    numerically studied by two methods. The suitable conditions for
153139    achieving synchronization of this fractional differential system are
153140    derived by using the Laplace transform theory. Numerical simulations
153141    coincide with the theoretical analysis. (c) 2005 Elsevier B.V. All
153142    rights reserved.
153143 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
153144    Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China.
153145    Univ Pretoria, Dept Elect Elect & Comp Engn, ZA-0002 Pretoria, South Africa.
153146 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
153147 EM leecp@online.sh.cn
153148 CR ARENA P, 1997, P ECCTD TU BUD BUD S, P1259
153149    BOCCALETTI S, 2002, PHYS REP, V366, P1
153150    BUTZER PL, 2000, INTRO FRACTIONAL CAL
153151    CAPUTO M, 1967, GEOPHYS J ROY ASTRON, V13, P529
153152    CHEN GR, 1999, INT J BIFURCAT CHAOS, V9, P1465
153153    DIETHELM K, 2004, NUMER ALGORITHMS, V36, P31
153154    HARTLEY TT, 1995, IEEE T CIRCUITS-I, V42, P485
153155    KENNETH SM, 1993, INTRO FRACTIONAL CAL
153156    LI CG, 2003, PHYS REV E 2, V68
153157    LI CP, UNPUB PHYS A
153158    LI CP, 2003, INT J BIFURCAT CHAOS, V13, P1609
153159    LI CP, 2004, CHAOS SOLITON FRACT, V22, P443
153160    LORENZ EN, 1963, J ATMOS SCI, V20, P130
153161    LU JH, 2002, INT J BIFURCAT CHAOS, V12, P659
153162    MUTH EJ, 1977, TRANSFORM METHODS AP
153163    OUSTLAOUP A, 1983, SYSTEMS ASSERVIS ORD
153164    PECORA LM, 1990, PHYS REV LETT, V64, P821
153165    PIKOVSKY A, 2001, SYNCHRONIZATION UNIT
153166    ROSS B, 1974, LECT NOTES MATH
153167    VANECEK A, 1996, CONTROL SYSTEMS LINE
153168    YAN JP, 2005, CHAOS SOLITON FRACT, V23, P1683
153169 NR 21
153170 TC 6
153171 SN 0378-4371
153172 J9 PHYSICA A
153173 JI Physica A
153174 PD AUG 1
153175 PY 2005
153176 VL 353
153177 BP 61
153178 EP 72
153179 PG 12
153180 SC Physics, Multidisciplinary
153181 GA 937HM
153182 UT ISI:000229915200006
153183 ER
153184 
153185 PT J
153186 AU Shen, JQ
153187    Riebel, U
153188 TI Transmission fluctuation spectrometry in concentrated suspensions. Part
153189    three: Measurements
153190 SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION
153191 DT Article
153192 DE high concentration measurement; particle size analysis; transmission
153193    fluctuation spectrometry
153194 ID STERICALLY INTERACTING SYSTEMS; SIZE ANALYSIS; MONODISPERSE SPHERES;
153195    GAUSSIAN-BEAM; FUNDAMENTALS; EXTINCTION
153196 AB The theory of transmission fluctuation spectrometry (TFS) was developed
153197    for particle size analysis in flowing particle suspensions, whereby the
153198    statistical transmission fluctuations are used to extract the particle
153199    size distribution (PSD) and particle concentration. In the previous
153200    parts of this publication high concentration effects on TFS were
153201    investigated theoretically and by simulation. This work presents a
153202    study on TFS measurements in concentrated suspensions. By introducing
153203    an empirical correction to include the high concentration effects front
153204    both the monolayer structure and particle overlapping in the inversion
153205    algorithm, it is possible to obtain the particle size distribution and
153206    particle concentration over broad ranges of particle sizes and
153207    concentrations.
153208 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
153209    Brandenburg Tech Univ, Lehrstuhl Mech Verfahrenstechnik, D-03013 Cottbus, Germany.
153210 RP Shen, JQ, Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
153211 EM shenjq@online.sh.cn
153212 CR BREITENSTEIN M, 1999, PART PART SYST CHAR, V16, P249
153213    BREITENSTEIN M, 2001, PART PART SYST CHAR, V18, P134
153214    FELLER U, 1998, P 7 EUR S PART CHAR, P367
153215    FERRI F, 1995, APPL OPTICS, V34, P5829
153216    GREGORY J, 1985, J COLLOID INTERF SCI, V105, P357
153217    KRAUTER U, 1995, PART PART SYST CHAR, V12, P132
153218    RIEBEL U, 1994, PART PART SYST CHAR, V11, P212
153219    RIEBEL U, 2004, PART PART SYST CHAR, V21, P440
153220    SHEN J, 2001, PART PART SYST CHAR, V18, P254
153221    SHEN J, 2003, THESIS BTU COTTBUS
153222    SHEN J, 2004, PART PART SYST CHAR, V21, P429
153223    SHEN JQ, 2003, PART PART SYST CHAR, V20, P250
153224    SHEN JQ, 2003, PART PART SYST CHAR, V20, P94
153225 NR 13
153226 TC 0
153227 SN 0934-0866
153228 J9 PART PART SYST CHARACT
153229 JI Part. Part. Syst. Charact.
153230 PD MAY
153231 PY 2005
153232 VL 22
153233 IS 1
153234 BP 14
153235 EP 23
153236 PG 10
153237 SC Engineering, Chemical; Materials Science, Characterization & Testing
153238 GA 937IB
153239 UT ISI:000229916700002
153240 ER
153241 
153242 PT J
153243 AU Shen, JQ
153244    Riebel, U
153245    Guo, X
153246 TI Transmission fluctuation spectrometry with spatial correlation
153247 SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION
153248 DT Article
153249 DE expectancy of the transmission product (ETP); particle size analysis;
153250    transmission fluctuation spectrometry with spatial correlation (TFS-SC)
153251 ID PARTICLE-SIZE ANALYSIS; GAUSSIAN-BEAM; FUNDAMENTALS
153252 AB Transmission fluctuation spectrometry (TFS) is being developed as a new
153253    method of particle size analysis. In the early approaches, the particle
153254    suspension was illuminated by one beam with finite beam diameter and
153255    the transmission signals underwent a process with variable spatial
153256    and/or temporal averaging and a subsequent nonlinear operation. The
153257    transmission fluctuations were obtained as a spectrum which included
153258    the information on particle size distribution and particle
153259    concentration. A new approach presented here employs two narrow
153260    parallel beams. While changing the beam separation, the transmission
153261    fluctuations of these two beams are expressed in terms of the
153262    expectancy of the transmission product (ETP). The analytical expression
153263    of the ETP through a monolayer is derived and the ETP of a
153264    3-dimensional suspension is formulated based on the layer model. The
153265    deviation between the transition functions of 3-dimensional suspensions
153266    and monolayers is found to be affected by effects from particle
153267    overlapping and monolayer structure.
153268 C1 Brandenburg Tech Univ Cottbus, Lehrstuhl Mech Verfahrenstech, D-03013 Cottbus, Germany.
153269    Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
153270 RP Shen, JQ, Brandenburg Tech Univ Cottbus, Lehrstuhl Mech Verfahrenstech,
153271    D-03013 Cottbus, Germany.
153272 EM shenjq@online.sh.cn
153273 CR BREITENSTEIN M, 1998, 7 EUR S PART CHAR 10, P377
153274    BREITENSTEIN M, 1999, PART PART SYST CHAR, V16, P249
153275    BREITENSTEIN M, 2000, THESIS TU COTTBUS
153276    BREITENSTEIN M, 2001, PART PART SYST CHAR, V18, P134
153277    KRAUTER U, 1995, THESIS TU KARLSRUHE
153278    RIEBEL U, 1994, PART PART SYST CHAR, V11, P212
153279    RIEBEL U, 2003, GEMEINSAME SITZUNG G
153280    RIEBEL U, 2004, PART PART SYST CHAR, V21, P440
153281    RIPOLL MS, 1995, MOL PHYS, V85, P423
153282    SHEN J, IN PRESS PART PART S
153283    SHEN JQ, 2003, PART PART SYST CHAR, V20, P250
153284    SHEN JQ, 2003, PART PART SYST CHAR, V20, P94
153285 NR 12
153286 TC 1
153287 SN 0934-0866
153288 J9 PART PART SYST CHARACT
153289 JI Part. Part. Syst. Charact.
153290 PD MAY
153291 PY 2005
153292 VL 22
153293 IS 1
153294 BP 24
153295 EP 37
153296 PG 14
153297 SC Engineering, Chemical; Materials Science, Characterization & Testing
153298 GA 937IB
153299 UT ISI:000229916700003
153300 ER
153301 
153302 PT J
153303 AU Chen, J
153304    Yang, LM
153305    Liu, YF
153306    Ding, GW
153307    Pei, Y
153308    Li, J
153309    Hua, GF
153310    Huang, J
153311 TI Preparation and characterization of magnetic targeted drug
153312    controlled-release hydrogel microspheres
153313 SO MACROMOLECULAR SYMPOSIA
153314 DT Article
153315 DE bleomycin; hydrogel; magnetic particle; microsphere; PVP; VX2
153316 ID PARTICLES
153317 AB Magnetic targeted drug controlled release hydrogel microspheres were
153318    prepared by a radiation technique. Ferric oxide granules (size around
153319    50 nm) were used as the core for magnetic target. The PVP ferrogels
153320    (ferromagnetic nanoparticles in hydrogel microsphere) were obtained by
153321    irradiating an emulsion of Poly (N-vinylpyrrolidone) PVP/ferromagnetic
153322    granule with cobalt 60 gamma-ray. The morphology of the PVP ferrogel
153323    was studied by both optical and electronic microscopy, respectively. A
153324    broad-spectrum anticancer drug, Bleomycin A5 Hydrochloride (BLM), was
153325    immobilized in the ferrogel and the release property of the drug in
153326    vitro was studied. The function of targeting and anti-cancer was
153327    studied on the New Zealand)White rabbits, based on the implantation of
153328    experimental VX2 squamous cell carcinoma in the auricles of the rabbits.
153329 C1 Shanghai Univ, Dept Chem Engn & Technol, Shanghai 201800, Peoples R China.
153330    Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R China.
153331    Tongji Univ, Tongji Hosp, Shanghai 200065, Peoples R China.
153332 RP Chen, J, Shanghai Univ, Dept Chem Engn & Technol, Jiading Campus,
153333    Shanghai 201800, Peoples R China.
153334 CR CAMMAS S, 1997, J CONTROL RELEASE, V48, P157
153335    GOMEZLOPERA SA, 2001, J COLLOID INTERF SCI, V240, P40
153336    HUA GF, 2003, P 3 NAT WORKSH MACR, P260
153337    IANNONE A, 1991, MAGNET RESON MED, V22, P435
153338    MULER RH, 1996, INT J PHARM, V138, P85
153339    RITA C, 1999, EUROPEAN J PHARM BIO, V47, P153
153340    SERSHEN S, 2002, ADV DRUG DELIVER REV, V54, P1225
153341    SHENOY DB, 2002, J MICROENCAPSUL, V19, P523
153342    TEIXEIRA AV, 2003, COMPOS SCI TECHNOL, V63, P1105
153343    TOROK G, 2000, PHYSICA B, V276, P396
153344    VANES RJJ, 2001, INT J ORAL MAX SURG, V30, P407
153345    ZRINYI M, 1996, J CHEM PHYS, V104, P8750
153346 NR 12
153347 TC 1
153348 SN 1022-1360
153349 J9 MACROMOL SYMPOSIA
153350 JI Macromol. Symp.
153351 PD MAY
153352 PY 2005
153353 VL 225
153354 BP 71
153355 EP 80
153356 PG 10
153357 SC Polymer Science
153358 GA 939EI
153359 UT ISI:000230054800007
153360 ER
153361 
153362 PT J
153363 AU Yang, LM
153364    Shi, LL
153365    Chen, J
153366    Pei, Y
153367    Zhu, F
153368    Xia, YB
153369 TI Preparation and characterization of pH-sensitive hydrogel film of
153370    chitosan/poly(acrylic acid) copolymer
153371 SO MACROMOLECULAR SYMPOSIA
153372 DT Article
153373 DE chitosan; hydrogel; pH-sensitivity; poly(acrylic acid)
153374 ID POLY(ACRYLIC ACID); SWELLING BEHAVIOR; BLEND FILM; CHITOSAN; WATER;
153375    POLYMERIZATION; COMPLEXES; MEMBRANES; RELEASE
153376 AB A hydrogel film of chitosan/poly(acrylic acid) (CS/PAAc) copolymer with
153377    the property of pH sensitivity, was prepared by irradiating the
153378    chitosan film, which was then swelled by aqueous AAc solutions of
153379    different concentrations. The effects of the feed ratio of chitosan and
153380    AAc on the properties of the hydrogels, such as swelling ratio and
153381    pH-sensitivity, were determined. Fourier transform infrared (FT-IR)
153382    spectroscopy was applied in the attenuated total reflectance (ATR) mode
153383    for analyzing the structure change of the hydrogels after the treatment
153384    in buffer solutions of different pHs.
153385 C1 Shanghai Univ, Dept Chem Engn & Technol, Shanghai 201800, Peoples R China.
153386    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
153387 RP Yang, LM, Shanghai Univ, Dept Chem Engn & Technol, Jiading Campus,
153388    Shanghai 201800, Peoples R China.
153389 CR AHN JS, 2001, BIOMATERIALS, V22, P923
153390    AHN JS, 2002, BIOMATERIALS, V23, P1411
153391    DELATORRE PM, 2003, BIOMATERIALS, V24, P1499
153392    FANG Y, 2000, J PHOTOCH PHOTOBIO A, V135, P141
153393    HU Y, 2002, BIOMATERIALS, V23, P3193
153394    JIN JJ, 1994, REACT POLYM, V23, P95
153395    KIM SJ, 2003, REACT FUNCT POLYM, V55, P53
153396    KWEON HY, 2001, POLYMER, V42, P6651
153397    LI Z, 2002, POLYMER, V43, P1541
153398    NAM SY, 1997, J MEMBRANE SCI, V135, P161
153399    PARK SY, 2001, MATER RES BULL, V36, P511
153400    PENICHE C, 1999, BIOMATERIALS, V20, P1869
153401    PUTTIPIPATKHACHORN, 2001, J CONTROL RELEASE, V75, P143
153402    QU X, 2000, POLYMER, V41, P4589
153403    REMUNANLOPEZ C, 1997, J CONTROL RELEASE, V44, P215
153404    RUEDA DR, 1999, CARBOHYD POLYM, V40, P49
153405 NR 16
153406 TC 0
153407 SN 1022-1360
153408 J9 MACROMOL SYMPOSIA
153409 JI Macromol. Symp.
153410 PD MAY
153411 PY 2005
153412 VL 225
153413 BP 95
153414 EP 102
153415 PG 8
153416 SC Polymer Science
153417 GA 939EI
153418 UT ISI:000230054800009
153419 ER
153420 
153421 PT J
153422 AU Chen, J
153423    Pei, Y
153424    Yang, LM
153425    Shi, LL
153426    Luo, HJ
153427 TI Synthesis and properties of poly(N-isopropylacrylamide-co-acrylamide)
153428    hydrogels
153429 SO MACROMOLECULAR SYMPOSIA
153430 DT Article
153431 DE hydrogel; ionic strength; LCST; pH-sensitive;
153432    Poly(N-isopropylacrylamide-co-acrylamide)
153433 ID PHASE-TRANSITIONS; LCST; GELS
153434 AB Poly (N-isopropylacrylamide-co-acrylamide) [Poly(NIPAAm-co-AAm)] with
153435    different feed ratios were obtained by radiation polymerization using
153436    Co-60 gamma-rays. Swelling equilibrium data in various media: deionized
153437    water, aqueous NaCl solutions and different pH buffer solutions, were
153438    determined. It appeared that the lower critical transition temperature
153439    (LCST) of the hydrogels increased with an increasing acrylamide content
153440    and decreased with increasing ionic strength. Moreover, LCST was
153441    affected by pH.
153442 C1 Shanghai Univ, Sch Environm & Chem Engn, Dept Chem Engn & Technol, Shanghai 201800, Peoples R China.
153443 RP Chen, J, Shanghai Univ, Sch Environm & Chem Engn, Dept Chem Engn &
153444    Technol, Shanghai 201800, Peoples R China.
153445 CR DONG LC, 1990, THESIS U WASHINGTON
153446    HIROKAWA Y, 1984, J CHEM PHYS, V81, P6379
153447    HIROTSU S, 1987, J CHEM PHYS, V87, P1392
153448    LIU XH, 2002, ACTA POLYM SIN, V3, P358
153449    PARK TG, 1993, MACROMOLECULES, V26, P5045
153450    PEI Y, 2004, J BIOMAT SCI-POLYM E, V15, P585
153451    PU HT, 1997, J POLYM MAT SCI ENG, V13, P79
153452    SCHILD HG, 1990, J PHYS CHEM-US, V94, P4352
153453    TANAKA T, 1980, PHYS REV LETT, V45, P1636
153454    WINNIK FM, 1990, MACROMOLECULES, V23, P233
153455    WU MH, 1999, THESIS CHINESE ACAD
153456    ZENG F, 1999, SCI CHINA SER B, V29, P426
153457    ZHANG XZ, 2000, CHEM J CHINESE U, V21, P1309
153458 NR 13
153459 TC 0
153460 SN 1022-1360
153461 J9 MACROMOL SYMPOSIA
153462 JI Macromol. Symp.
153463 PD MAY
153464 PY 2005
153465 VL 225
153466 BP 103
153467 EP 111
153468 PG 9
153469 SC Polymer Science
153470 GA 939EI
153471 UT ISI:000230054800010
153472 ER
153473 
153474 PT J
153475 AU Deng, WH
153476    Li, CP
153477 TI Synchronization of chaotic fractional Chen system
153478 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
153479 DT Article
153480 DE synchronization; fractional order; Chen's system
153481 ID HOPF-BIFURCATION; ORDER
153482 AB In this paper, chaos synchronization for Chen's system with a
153483    fractional order (or called "the fractional Chen system") is
153484    considered. The condition for achieving synchronization of Chen's
153485    system is analyzed on the basis of the Laplace transform theory.
153486    Numerical simulations affirm the theoretical analysis, which also
153487    provides a new synchronization method for other chaotic systems with
153488    some fractional orders.
153489 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
153490    Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China.
153491 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
153492 EM leecp@online.sh.cn
153493 CR ARENA P, 1997, P ECCTD TU BUD BUD S, P1259
153494    BOCCALETTI S, 2002, PHYS REP, V366, P1
153495    BUTZER PL, 2000, INTRO FRACTIONAL CAL
153496    CAPUTO M, 1967, GEOPHYS J ROY ASTRON, V13, P529
153497    CHEN GR, 1999, INT J BIFURCAT CHAOS, V9, P1465
153498    DENG WH, 2005, PHYSICA A, V353, P61
153499    DIETHELM K, 2004, NUMER ALGORITHMS, V36, P31
153500    FUJISAKA H, 1983, PROG THEOR PHYS, V69, P32
153501    HARTLEY TT, 1995, IEEE T CIRCUITS-I, V42, P485
153502    KAPITANIAK T, 1994, PHYS REV E, V50, P1642
153503    KENNETH SM, 1993, INTRO FRACTIONAL CAL
153504    KENNETH SM, 1993, INTRO FRACTIONAL CAL, P70
153505    LI CP, 2003, INT J BIFURCAT CHAOS, V13, P1609
153506    LI CP, 2004, CHAOS SOLITON FRACT, V22, P443
153507    LIAO XF, 2005, CHAOS SOLITON FRACT, V25, P197
153508    MUTH EJ, 1977, TRANSFORM METHODS AP
153509    OUSTLAOUP A, 1983, SYSTEMS ASSERVIS ORD
153510    PECORA LM, 1990, PHYS REV LETT, V64, P821
153511    PIKOVSKY A, 2001, SYNCHRONIZATION UNIT
153512    ROSS B, 1974, LECT NOTES MATH
153513    YAN JP, 2005, CHAOS SOLITON FRACT, V23, P1683
153514    YAN JP, 2005, CHAOS SOLITON FRACT, V26, P1119
153515 NR 22
153516 TC 4
153517 SN 0031-9015
153518 J9 J PHYS SOC JPN
153519 JI J. Phys. Soc. Jpn.
153520 PD JUN
153521 PY 2005
153522 VL 74
153523 IS 6
153524 BP 1645
153525 EP 1648
153526 PG 4
153527 SC Physics, Multidisciplinary
153528 GA 938YN
153529 UT ISI:000230039400001
153530 ER
153531 
153532 PT J
153533 AU Guo, XY
153534    Shum, KP
153535 TI Finite p-nilpotent groups with some subgroups c-supplemented
153536 SO JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY
153537 DT Article
153538 ID MINIMAL SUBGROUPS; ODD ORDER; NORMALITY
153539 AB A subgroup H of a finite group G is said to be c-supplemented in G if
153540    there exists a subgroup K of G such that G = H K and H boolean AND K is
153541    contained in core(G) (H). In this paper some results for finite
153542    p-nilpotent groups are given based on some subgroups of P
153543    c-supplemented in G, where p is a prime factor of the order of G and P
153544    is a Sylow p-subgroup of G. We also give some applications of these
153545    results.
153546 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
153547    Chinese Univ Hong Kong, Fac Sci, Shatin, Hong Kong, Peoples R China.
153548 RP Guo, XY, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
153549 EM xyguo@staff.shu.edu.cn
153550    kpshum@math.cuhk.edu.hk
153551 CR ARAD Z, 1984, J ALGEBRA, V86, P522
153552    ASAAD M, 1996, COMMUN ALGEBRA, V24, P2771
153553    BALLESTERBOLINC.A, 1989, ISRAEL J MATH, V67, P312
153554    BALLESTERBOLINCHES, 2000, GLASGOW MATH J 3, V42, P383
153555    BUCKLEY J, 1970, MATH Z, V116, P15
153556    DOERK K, 1992, FINITE SOLVABLE GROU
153557    DORNHOFF L, 1967, MATH Z, V100, P226
153558    FEIT W, 1963, PAC J MATH, V13, P775
153559    GROSS F, 1987, B LOND MATH SOC, V19, P311
153560    LI DY, 1998, COMMUN ALGEBRA, V26, P1913
153561    LI DY, 2000, J PURE APPL ALGEBRA, V150, P53
153562    ROBINSON DJS, 1993, COURSE THEORY GROUPS
153563    SRINIVASAN S, 1980, ISRAEL J MATH, V35, P210
153564    WALL G, 1982, ISRAEL J MATH, V43, P166
153565 NR 14
153566 TC 0
153567 SN 1446-7887
153568 J9 J AUST MATH SOC
153569 JI J. Aust. Math. Soc.
153570 PD JUN
153571 PY 2005
153572 VL 78
153573 PN Part 3
153574 BP 429
153575 EP 439
153576 PG 11
153577 SC Mathematics
153578 GA 939TX
153579 UT ISI:000230096400009
153580 ER
153581 
153582 PT J
153583 AU Xu, JQ
153584    Chen, YP
153585    Li, YD
153586    Shen, JN
153587 TI Gas sensing properties of ZnO nanorods prepared by hydrothermal method
153588 SO JOURNAL OF MATERIALS SCIENCE
153589 DT Article
153590 ID VAPOR-DEPOSITION; ROOM-TEMPERATURE; NANOWIRES; SENSORS; ARRAYS
153591 AB ZnO nanorods are prepared by a hydrothermal process with
153592    cetyltrimethylammonium bromide ( CTAB) and zinc powder at 182 degrees
153593    C. The samples are characterized by X-ray diffraction (XRD), scanning
153594    electron microscopy (SEM), and transmission electron microscopy (TEM).
153595    The gas sensing properties of the materials have been investigated. The
153596    results indicate that the as-prepared ZnO nanorods are uniform with
153597    diameters of 40 - 80 nm and lengths about 1 mu m, the relatively high
153598    sensitivity and stability of these sensors made from ZnO nanorods
153599    demonstrate the potential for developing a new class of stable and very
153600    sensitive sensors. (C) 2005 Springer Science + Business Media, Inc.
153601 C1 Zhengzhou Univ Light Ind, Coll Mat & Chem Engn, Zhengzhou 450002, Peoples R China.
153602    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
153603    Tsing Hua Univ, Dept Chem, Beijing 100084, Peoples R China.
153604 RP Xu, JQ, Zhengzhou Univ Light Ind, Coll Mat & Chem Engn, Zhengzhou
153605    450002, Peoples R China.
153606 EM xujiaqiang@zzuli.edu.cn
153607 CR GAO PX, 2003, NANO LETT, V3, P1315
153608    HU JT, 1999, ACCOUNTS CHEM RES, V32, P435
153609    HUANG MH, 2001, SCIENCE, V292, P1897
153610    KOLMAKOV A, 2003, ADV MATER, V15, P997
153611    KONG YC, 2001, APPL PHYS LETT, V78, P407
153612    LAW M, 2002, ANGEW CHEM INT EDIT, V41, P2405
153613    LI C, 2003, APPL PHYS LETT, V82, P1613
153614    LI ZQ, 2003, INORG CHEM, V42, P8105
153615    LIU B, 2003, J AM CHEM SOC, V125, P4430
153616    PARK WI, 2003, APPL PHYS LETT, V82, P4358
153617    SIYAMA T, 1962, ANAL CHEM, V34, P1502
153618    SUN XM, 2002, MATER CHEM PHYS, V78, P99
153619    TOMCHENKO AA, 2003, SENSOR ACTUAT B-CHEM, V93, P126
153620    WANG ZL, 2000, ADV MATER, V12, P1295
153621    WU JJ, 2002, ADV MATER, V14, P215
153622    XIA YN, 2003, ADV MATER, V15, P353
153623    XU JQ, 1992, J RARE EARTH, V10, P125
153624    XU JQ, 2000, SENSOR ACTUAT B-CHEM, V66, P277
153625    YAMAZOE N, 2003, CATAL SURV ASIA, V1, P63
153626    ZHENG MJ, 2002, CHEM PHYS LETT, V363, P123
153627 NR 20
153628 TC 0
153629 SN 0022-2461
153630 J9 J MATER SCI
153631 JI J. Mater. Sci.
153632 PD JUN
153633 PY 2005
153634 VL 40
153635 IS 11
153636 BP 2919
153637 EP 2921
153638 PG 3
153639 SC Materials Science, Multidisciplinary
153640 GA 936TN
153641 UT ISI:000229878400023
153642 ER
153643 
153644 PT J
153645 AU He, J
153646    Liu, W
153647    Zhu, LH
153648    Huang, QW
153649 TI Phase transformation behaviors of aluminum hydroxides to alpha alumina
153650    in air and molten salt
153651 SO JOURNAL OF MATERIALS SCIENCE
153652 DT Letter
153653 ID POWDERS; SEEDS
153654 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
153655    China Aluminium Co Ltd, Zhongzhou Branch, Jiaozuo 454174, Henan, Peoples R China.
153656    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
153657 RP Zhu, LH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
153658    China.
153659 EM lhzhu@mail.shu.edu.cn
153660 CR ARENDT RH, 1979, MATER RES BULL, V14, P703
153661    BURKIN AR, 1987, PRODUCTION ALUMINUM, P43
153662    DORRE E, 1984, ALUMINA PROCESSING P, P216
153663    DYNYS FW, 1982, J AM CERAM SOC, V65, P442
153664    KUMAGAI M, 1984, J AM CERAM SOC, V67, P230
153665    LI JG, 2000, ACTA MATER, V48, P3103
153666    NORDAHL CS, 2002, J EUR CERAM SOC, V22, P415
153667    PANCHULA ML, 1997, NANOSTRUCT MATER, V9, P161
153668    XIE ZP, 2003, MATER DESIGN, V24, P209
153669    YOON KH, 1998, J MATER SCI, V33, P2922
153670    YOSHIZAWA Y, 2004, J EUR CERAM SOC, V24, P325
153671 NR 11
153672 TC 0
153673 SN 0022-2461
153674 J9 J MATER SCI
153675 JI J. Mater. Sci.
153676 PD JUN
153677 PY 2005
153678 VL 40
153679 IS 12
153680 BP 3259
153681 EP 3261
153682 PG 3
153683 SC Materials Science, Multidisciplinary
153684 GA 938AQ
153685 UT ISI:000229972700034
153686 ER
153687 
153688 PT J
153689 AU Li, Q
153690    Lin, Q
153691    Chou, KC
153692    Jiang, LJ
153693    Xu, KD
153694 TI A mathematical calculation of the hydriding characteristics of
153695    Mg(2-x)A(x)Ni(1-y)B(y) alloy systems
153696 SO JOURNAL OF ALLOYS AND COMPOUNDS
153697 DT Article
153698 DE hydrogen storage materials; Mg(2-x)A(x)Ni(1-y)B(y) alloy; enthalpy of
153699    formation; hydrogen storage capacity; atomic parameters
153700 ID PRESSURE-COMPOSITION ISOTHERMS; HYDROGEN STORAGE PROPERTIES; EXTENDED
153701    MIEDEMA MODEL; ELECTROCHEMICAL PROPERTIES; MG2NI; HEAT; SUBSTITUTION;
153702    ABSORPTION; MN
153703 AB Two semi-empirical models have been presented by the stepwise
153704    regression method and atomic parameters for the formation enthalpy
153705    (Delta H) in the hydriding process and the hydrogen storage capacity
153706    (C) Of Mg(2-x)A(x)Ni(1-y)B(y) alloy systems. The main factors
153707    influencing Delta H and C are given and we illustrate the relationship
153708    between the macroscopic characteristics and atomic structure. In
153709    general a decrease in Delta X-2 and an increase in (e/a)(2/3) as well
153710    as T will result in an increase of p(eq) and Delta H. On the other
153711    hand, when Delta X-2 and T increase but (e/a)(2/3) and Z/R decrease, C
153712    will increase. The calculated results by the models presented in this
153713    paper are in good agreement with our experimental data, the calculated
153714    Delta H and C values were within 6.5 U mol(-1) H and 0.5 mass% H. (c)
153715    2005 Elsevier B.V. All rights reserved.
153716 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
153717    Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China.
153718    Gen Res Inst NonFerrous Met, Beijing 100088, Peoples R China.
153719 RP Chou, KC, Shanghai Univ, Sch Mat Sci & Engn, 275 Mail Box,149 Yanchang
153720    Rd, Shanghai 200072, Peoples R China.
153721 EM kcc@public.bta.net.cn
153722 CR AKIBA E, 1982, J LESS-COMMON MET, V83, L43
153723    BIRIS A, 1982, P 3 INT C HYDR MAT P, P383
153724    DARNAUDERY JP, 1983, INT J HYDROGEN ENERG, V8, P705
153725    DARNAUDERY JP, 1983, J LESS-COMMON MET, V92, P199
153726    FANG SS, 1999, J ALLOY COMPD, V293, P10
153727    GASIOROWSKI A, 2004, J ALLOY COMPD, V364, P283
153728    GONCALVES AP, 1996, PHYSICA B, V228, P289
153729    GRIESSEN R, 1984, PHYS REV B, V30, P4372
153730    GUTHRIE SE, 1998, MATER RES SOC SYMP P, V513, P93
153731    HIRATA T, 1983, J LESS-COMMON MET, V89, P85
153732    KUJI T, 2002, J ALLOY COMPD, V330, P590
153733    LI LQ, 2001, J ALLOY COMPD, V316, P118
153734    LI Q, 2003, J ALLOY COMPD, V359, P128
153735    LI Q, 2004, P 2 INT HYDR EN FOR, P623
153736    LI Q, 2004, THESIS USTB
153737    LIANG G, 1999, J ALLOY COMPD, V282, P286
153738    LIN Q, 2000, SOLID STATE IONICS, V136, P663
153739    LUPU D, 1982, INT J HYDROGEN ENERG, V7, P783
153740    MIEDEMA AR, 1973, J LESS-COMMON MET, V32, P117
153741    MIEDEMA AR, 1975, J LESS-COMMON MET, V41, P283
153742    NIU H, 2002, INT J HYDROGEN ENERG, V27, P69
153743    SHILOV AL, 1987, J LESS-COMMON MET, V128, P1
153744    XIAO J, 1985, ENERGY ALLOYS, P256
153745    YANG HB, 2002, J ALLOY COMPD, V330, P640
153746    YUAN HT, 1997, J ALLOY COMPD, V260, P256
153747    ZHANG BW, 2002, PHYSICA B, V315, P123
153748    ZHANG Y, 2000, CHIN J NONFERROUS ME, V10, P882
153749    ZHANG YS, 1998, J ALLOY COMPD, V269, P278
153750    ZHOU Z, 1993, NEW ENERGY SYSTEMS C, P79
153751 NR 29
153752 TC 0
153753 SN 0925-8388
153754 J9 J ALLOYS COMPOUNDS
153755 JI J. Alloy. Compd.
153756 PD JUL 19
153757 PY 2005
153758 VL 397
153759 IS 1-2
153760 BP 68
153761 EP 73
153762 PG 6
153763 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
153764    Metallurgical Engineering
153765 GA 939JE
153766 UT ISI:000230067900015
153767 ER
153768 
153769 PT J
153770 AU Yang, HX
153771    Xu, XX
153772 TI Integrable expanding models for discrete systems application: Coupled
153773    toda and relativistic toda lattice
153774 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
153775 DT Article
153776 DE integrable expanding model; Toda lattice; relativistic Toda lattice;
153777    Lax pairs
153778 ID EQUATIONS; HIERARCHY; EVOLUTION
153779 AB A direct method for constructing integrable expanding models for
153780    lattice soliton hierarchies is developed through enlarging associated
153781    Lax pairs. As illustrated by examples, the integrable expanding models
153782    for Toda and relativistic Toda lattice hierarchies are investigated.
153783 C1 Taishan Coll, Dept Informat Sci & Technol, Tai An 271021, Peoples R China.
153784    Shanghai Univ Sci & Technol, Coll Sci, Qingdao 266510, Peoples R China.
153785 RP Yang, HX, Taishan Coll, Dept Informat Sci & Technol, Tai An 271021,
153786    Peoples R China.
153787 EM hxiang_yang@yahoo.com.cn
153788 CR ABLOWITZ MJ, 1975, J MATH PHYS, V16, P598
153789    BLASZAK M, 1994, J MATH PHYS, V35, P4661
153790    DAI HH, 2003, J PHYS SOC JPN, V72, P3063
153791    FERMI E, 1965, COLLECTED WORKS ENRI, V2, P978
153792    FUCHSSTEINER B, 1993, APPL ANAL GEOMETRIC, P125
153793    GUO FK, 2002, ACTA PHYS SIN-CH ED, V51, P951
153794    LAKSHMANAN M, 1985, J MATH PHYS, V26, P1189
153795    LAX PD, 1968, COMMUN PUR APPL MATH, V21, P467
153796    MA WX, INTEGRABLE COUPLINGS
153797    MA WX, 2003, PHYS LETT A, V316, P72
153798    MA WX, 2004, INT J THEOR PHYS, V43, P219
153799    MA WX, 2004, J PHYS A, V37, P132
153800    SURIS YB, 1993, PHYS LETT A, V180, P419
153801    TU GZ, 1990, J PHYS A-MATH GEN, V23, P3903
153802    XU XX, 2004, COMMUN THEOR PHYS, V41, P321
153803    ZHU Z, 2004, J PHYS SOC JPN, V71, P1864
153804 NR 16
153805 TC 1
153806 SN 0217-9792
153807 J9 INT J MOD PHYS B
153808 JI Int. J. Mod. Phys. B
153809 PD MAY 20
153810 PY 2005
153811 VL 19
153812 IS 13
153813 BP 2121
153814 EP 2128
153815 PG 8
153816 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
153817 GA 939UM
153818 UT ISI:000230097900002
153819 ER
153820 
153821 PT J
153822 AU Ma, ZY
153823    Zheng, CL
153824 TI Fission and fusion of localized coherent structures for a higher-order
153825    Broer-Kaup system
153826 SO COMMUNICATIONS IN THEORETICAL PHYSICS
153827 DT Article
153828 DE higher-order Broer-Kaup system; variable separation approach; Backlund
153829    transformation; soliton fission; soliton fusion
153830 ID SOLITON FISSION; EQUATION; EXCITATIONS; COMPACTON; PEAKON
153831 AB Starting from a Backlund transformation and taking a special ansatz for
153832    the function f, we can obtain a much more general expression of
153833    solution that includes some variable separated functions for the
153834    higher-order Broer-Kaup system. From this expression, we investigate
153835    the interactions of localized coherent structures such as the
153836    multi-solitonic excitations and find the novel phenomenon that their
153837    interactions have non-elastic behavior because the fission/fusion may
153838    occur after the interaction of each localized coherent structure.
153839 C1 Zhejiang Lishui Univ, Dept Math, Lishui 323000, Peoples R China.
153840    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
153841 RP Ma, ZY, Zhejiang Lishui Univ, Dept Math, Lishui 323000, Peoples R China.
153842 EM ma-zhengyi@163.com
153843 CR FANG JP, 2005, CHINESE PHYS, V14, P669
153844    LIN J, 2003, CHINESE PHYS, V12, P1049
153845    LIN J, 2003, PHYS LETT A, V313, P93
153846    LIN J, 2004, CHAOS SOLITON FRACT, V19, P189
153847    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
153848    ONO H, 1994, J PHYS SOC JPN, V63, P40
153849    SERKIN VN, 2001, OPT COMMUN, V192, P237
153850    STOITCHEVA G, 2001, MATH COMPUT SIMULAT, V55, P621
153851    TANG XY, 2002, J PHYS A, V35, P4078
153852    TANG XY, 2002, PHYS REV E, V66, P46601
153853    TANG XY, 2003, J MATH PHYS, V44, P4000
153854    WANG S, 2004, CHAOS SOLITON FRACT, V21, P231
153855    YING JP, 2001, COMMUN THEOR PHYS, V35, P405
153856    ZHANG JF, 2002, CHINESE PHYS, V11, P533
153857    ZHANG JF, 2004, COMMUN THEOR PHYS, V41, P7
153858    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P783
153859    ZHENG CL, 2003, CHINESE PHYS, V12, P472
153860 NR 17
153861 TC 1
153862 SN 0253-6102
153863 J9 COMMUN THEOR PHYS
153864 JI Commun. Theor. Phys.
153865 PD JUN 15
153866 PY 2005
153867 VL 43
153868 IS 6
153869 BP 993
153870 EP 997
153871 PG 5
153872 SC Physics, Multidisciplinary
153873 GA 939IA
153874 UT ISI:000230064700007
153875 ER
153876 
153877 PT J
153878 AU Zheng, CL
153879 TI Variable, separation solutions of generalized Broer-Kaup system via a
153880    projective method
153881 SO COMMUNICATIONS IN THEORETICAL PHYSICS
153882 DT Article
153883 DE extended projective method; (2+1)-dimensional GBK system; exact
153884    solution; localized excitation
153885 ID LOCALIZED COHERENT STRUCTURES; (2+1)-DIMENSIONAL INTEGRABLE SYSTEMS;
153886    SOLITON-STRUCTURES; WAVE EQUATION; EXCITATIONS
153887 AB Using an extended projective method, anew type of variable separation
153888    solution with two arbitrary functions of the (2+1)-dimensional
153889    generalized Broer-Kaup system (GBK) is derived. Based on the derived
153890    variable separation solution, some special localized coherent soliton
153891    excitations with or without elastic behaviors such as dromions,
153892    peakons, and foldons etc. are revealed by selecting appropriate
153893    functions in this paper.
153894 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
153895    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
153896 RP Zheng, CL, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R
153897    China.
153898 EM zjclzheng@yahoo.cn
153899 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V31, P125
153900    BOITI M, 1987, INVERSE PROBL, V3, P371
153901    BOITI M, 1988, PHYS LETT A, V132, P432
153902    BROER LJF, 1975, APPL SCI RES, V31, P377
153903    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
153904    CHEN CL, 2002, COMMUN THEOR PHYS, V38, P129
153905    CLERC M, 1999, PHYS REV LETT, V83, P3820
153906    HUANG DJ, 2004, CHAOS SOLITON FRACT, V23, P601
153907    KADOMTSEV BB, 1970, SOV PHYS DOKL, V15, P539
153908    KAUP DJ, 1975, PROG THEOR PHYS, V54, P396
153909    LORENZ EN, 1963, J ATMOS SCI, V20, P130
153910    LOU SY, 1989, J MATH PHYS, V30, P1614
153911    LOU SY, 1997, J MATH PHYS, V38, P6401
153912    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
153913    LU Z, 2003, CHAOS SOLITON FRACT, V19, P527
153914    ROSENAU P, 1993, PHYS REV LETT, V70, P564
153915    TANG XY, 2002, PHYS REV E 2, V66
153916    TANG XY, 2003, J MATH PHYS, V44, P4000
153917    YING JP, 2001, Z NATURFORSCH A, V56, P619
153918    ZAKHAROV VE, 1968, J APPL MECH TECH PHY, V2, P190
153919    ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P705
153920    ZHANG JF, 2003, PHYS LETT A, V313, P401
153921    ZHANG SL, 2002, PHYS LETT A, V300, P40
153922    ZHENG CL, 2002, ACTA PHYS SIN-CH ED, V51, P2426
153923    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
153924    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
153925    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P9
153926    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
153927    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
153928    ZHENG CL, 2004, COMMUN THEOR PHYS, V41, P391
153929    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
153930    ZHENG CL, 2005, SOLITONS FRACTALS, V23, P1741
153931 NR 32
153932 TC 1
153933 SN 0253-6102
153934 J9 COMMUN THEOR PHYS
153935 JI Commun. Theor. Phys.
153936 PD JUN 15
153937 PY 2005
153938 VL 43
153939 IS 6
153940 BP 1061
153941 EP 1067
153942 PG 7
153943 SC Physics, Multidisciplinary
153944 GA 939IA
153945 UT ISI:000230064700022
153946 ER
153947 
153948 PT J
153949 AU Yin, JB
153950    Chen, HD
153951    Luo, K
153952    Zhuang, XL
153953    Chen, XS
153954    Cao, T
153955 TI Preparation and properties of biodegradable microspheres containing
153956    5-fluorouracil
153957 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
153958 DT Letter
153959 DE 5-fluorouracil; poly (lactic acide) (PLA); poly(lactic
153960    acid)-polyethylene glycol (PLA-PEG); microspheres; nano-silica;
153961    controlled drug-release
153962 ID CONTROLLED-RELEASE
153963 AB Microspheres containing an antimetabolite drug 5-Fluorouracil were
153964    prepared from poly(lactic acide) (PLA) or poly (lactic
153965    acid)-polyethylene glycol (PLA-PEG) as the carrier by using a
153966    water-in-oil-in-water emulsion solvent evaporation technique. The
153967    conditions of the microspheres preparation such as Poly- mer
153968    concentration in organic solvent, relative molecular weight of PLA-PEG
153969    and PLA/PEG mass ratio were discussed. The surface morphology and the
153970    size of the microspheres were observed by SEM. The drug content of
153971    microspheres was examined by TGA and the drug release in vitro was
153972    evaluated. According to the results, the drug content increased with
153973    the nano-silica used. The highest drug content in this study was 39.9%.
153974    The drug-release kinetics satisfied the requirements of controlled
153975    drug-release.
153976 C1 Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R China.
153977    Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China.
153978 RP Chen, XS, Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R
153979    China.
153980 EM xschen@ciac.jl.cn
153981 CR FOURNIER E, 2004, EUR J PHARM BIOPHARM, V57, P189
153982    FU YJ, 2002, COLLOID SURFACE B, V25, P269
153983    HAZRATI AM, 1989, P INT S CONTR REL BI, V16, P79
153984    MENG FT, 2004, COLLOID SURFACE B, V33, P177
153985    PINEDO HM, 1988, J CLIN ONCOL, V6, P1653
153986    RUAN G, 2003, BIOMATERIALS, V24, P5037
153987    TAKAO M, 2000, COLLOID SURFACE B, V17, P153
153988    XIONG SB, 2003, CHINESE J PHARMACEUT, V34, P330
153989    YANG YN, 2004, CHEM J CHINESE U, V25, P162
153990    ZHANG WG, 1996, ACAD J 2 MILITARY ME, V17, P395
153991    ZHUO RX, 1997, CHEM J CHINESE U, V18, P1207
153992    ZINUTTI C, 1994, J MICROENCAPSUL, V11, P555
153993 NR 12
153994 TC 0
153995 SN 0251-0790
153996 J9 CHEM J CHINESE UNIV-CHINESE
153997 JI Chem. J. Chin. Univ.-Chin.
153998 PD JUL 10
153999 PY 2005
154000 VL 26
154001 IS 6
154002 BP 1174
154003 EP 1176
154004 PG 3
154005 SC Chemistry, Multidisciplinary
154006 GA 939KV
154007 UT ISI:000230072500047
154008 ER
154009 
154010 PT J
154011 AU Yao, YQ
154012 TI New type of exact solutions of nonlinear evolution equations via the
154013    new Sine-Poisson equation expansion method
154014 SO CHAOS SOLITONS & FRACTALS
154015 DT Article
154016 ID BREAKING SOLITON EQUATION; SYMBOLIC COMPUTATION; WAVE SOLUTIONS
154017 AB In this paper, based on the well-known Sine-Poisson equation, a new
154018    Sine-Poisson equation expansion method with constant coefficients or
154019    variable coefficients is presented, which can be used to construct more
154020    new exact solutions of nonlinear evolution equations in mathematical
154021    physics. The KdV-mKdV equation and the typical breaking soliton
154022    equation are chosen to illustrate our method such that many types of
154023    new exact solutions are obtained, which include exponential solutions,
154024    kink-shaped solutions, singular solutions and soliton-like solutions.
154025    (c) 2005 Elsevier Ltd. All rights reserved.
154026 C1 Shanghai Univ, Coll Sci, Shanghai 200436, Peoples R China.
154027 RP Yao, YQ, Shanghai Univ, Coll Sci, Shanghai 200436, Peoples R China.
154028 EM yyqinw@126.com
154029 CR CALOGERO F, 1977, NUOVO CIMENTO B, V39
154030    HIROTA R, 1971, PHYS REV LETT, V27, P1192
154031    KHATER AH, 2002, J COMPUT APPL MATH, V140, P435
154032    LI BA, 2003, CHAOS SOLITON FRACT, V17, P885
154033    MALFLIET W, 2003, MATH COMPUT SIMULAT, V62, P101
154034    MEI JQ, 2004, CHAOS SOLITON FRACT, V20, P771
154035    TIAN B, 1997, INT J ENG SCI, V35, P1081
154036    YAN ZY, 1999, ACTA PHYS SIN-OV ED, V8, P889
154037    YAN ZY, 2001, PHYS LETT A, V285, P355
154038    YAN ZY, 2003, J PHYS A-MATH GEN, V36, P1961
154039 NR 10
154040 TC 0
154041 SN 0960-0779
154042 J9 CHAOS SOLITON FRACTAL
154043 JI Chaos Solitons Fractals
154044 PD NOV
154045 PY 2005
154046 VL 26
154047 IS 4
154048 BP 1081
154049 EP 1086
154050 PG 6
154051 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
154052 GA 936RZ
154053 UT ISI:000229874400007
154054 ER
154055 
154056 PT J
154057 AU Yao, YQ
154058    Zhang, YF
154059 TI The multi-component WKI hierarchy
154060 SO CHAOS SOLITONS & FRACTALS
154061 DT Article
154062 ID INTEGRABLE SYSTEMS; HAMILTONIAN-STRUCTURE
154063 AB Firstly a new loop algebra (G) over tilde (M) with 3M dimensions is
154064    constructed, which is devoted to establishing a new isospectral
154065    problem. Then the multi-component WKI hierarchy of soliton equations is
154066    obtained. (c) 2005 Elsevier Ltd. All rights reserved.
154067 C1 Shandong Univ Sci & Technol, Informat Sch, Tai An 271019, Peoples R China.
154068    Shanghai Univ, Coll Sci, Shanghai 200436, Peoples R China.
154069    Liaoning Normal Univ, Sch Math, Dalian 166000, Peoples R China.
154070 RP Yao, YQ, Shandong Univ Sci & Technol, Informat Sch, Tai An 271019,
154071    Peoples R China.
154072 EM yyqin_78@163.com
154073 CR GU Z, 1993, ACTA MATH SIC, V3, P366
154074    GUO F, 1999, ACTA MATH PHYS SINIC, V19, P507
154075    GUO FK, 2003, J MATH PHYS, V44, P5793
154076    TSUCHIDA T, 1999, J PHYS SOC JPN, V68, P2241
154077    TSUCHIDA T, 1999, PHYS LETT A, V257, P53
154078    TU GZ, 1989, J MATH PHYS, V30, P330
154079    ZHAN YF, 2003, MATH PRACT THEORY, V33, P109
154080    ZHANG YF, 2003, PHYS LETT A, V317, P280
154081    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P305
154082 NR 9
154083 TC 0
154084 SN 0960-0779
154085 J9 CHAOS SOLITON FRACTAL
154086 JI Chaos Solitons Fractals
154087 PD NOV
154088 PY 2005
154089 VL 26
154090 IS 4
154091 BP 1087
154092 EP 1089
154093 PG 3
154094 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
154095 GA 936RZ
154096 UT ISI:000229874400008
154097 ER
154098 
154099 PT J
154100 AU Yan, HP
154101    Li, CP
154102 TI Generalized projective synchronization of a unified chaotic system
154103 SO CHAOS SOLITONS & FRACTALS
154104 DT Article
154105 ID DISCRETE-TIME-SYSTEMS; CHENS SYSTEM
154106 AB In the present paper, a simple but efficient control technique of the
154107    generalized projective synchronization is applied to a unified chaotic
154108    system. Numerical simulations show that this method works very well,
154109    which can also be applied to other chaotic systems. (c) 2005 Elsevier
154110    Ltd. All rights reserved.
154111 C1 Hunan Univ Sci & Engn, Dept Math, Hunan 425006, Peoples R China.
154112    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
154113    Univ Pretoria, Dept Elect Engn & Comp Engn, ZA-0002 Pretoria, South Africa.
154114 RP Yan, HP, Hunan Univ Sci & Engn, Dept Math, Hunan 425006, Peoples R
154115    China.
154116 EM hnyanjianping@eyou.com
154117 CR ABARBANEL HDI, 1996, PHYS REV E A, V53, P4528
154118    AFRAIMOVICH VS, 1986, IZV VUZ RADIOFIZ+, V29, P1050
154119    CHEE CY, 2003, PHYS LETT A, V318, P112
154120    CHEN GR, 1999, INT J BIFURCAT CHAOS, V9, P1465
154121    GONZALEZMIRANDA JM, 1996, PHYS REV E A, V53, R5
154122    KAPITANIAK T, 1992, CHAOS SOLITON FRACT, V2, P519
154123    KAPITANIAK T, 1994, PHYS REV E, V50, P1642
154124    KOCAREV L, 1996, PHYS REV LETT, V76, P1816
154125    LI CP, 2003, INT J BIFURCAT CHAOS, V13, P1609
154126    LI CP, 2004, CHAOS SOLITON FRACT, V22, P443
154127    LI CP, 2004, CHAOS, V14
154128    LI CP, 2004, CHAOS, V14, P343
154129    LI Z, 1990, PHYS LETT A, V282, P175
154130    LORENZ EN, 1963, J ATMOS SCI, V20, P130
154131    LU J, 2002, PHYS LETT A, V305, P365
154132    LU JA, 2002, CHINESE PHYS LETT, V19, P632
154133    LU JH, 2002, INT J BIFURCAT CHAOS, V12, P2917
154134    MAINIERI R, 1999, PHYS REV LETT, V82, P3042
154135    PECORA LM, 1990, PHYS REV LETT, V64, P821
154136    RULKOV NF, 1995, PHYS REV E, V51, P980
154137    STEFANSKI A, 2003, CHAOS SOLITON FRACT, V40, P175
154138    TAO CH, 2003, ACTA PHYS SIN-CH ED, V52, P281
154139    XU DL, 2001, CHAOS, V11, P439
154140    XU DL, 2002, INT J BIFURCAT CHAOS, V12, P1395
154141    XU DL, 2002, PHYS LETT A, V305, P167
154142    XU DL, 2002, PHYS REV E 2, V66
154143    XU DL, 2004, CHAOS SOLITON FRACT, V22, P175
154144    YAN JP, UNPUB J SHANGHAI U
154145    YAN JP, 2005, CHAOS SOLITON FRACT, V23, P1683
154146 NR 29
154147 TC 0
154148 SN 0960-0779
154149 J9 CHAOS SOLITON FRACTAL
154150 JI Chaos Solitons Fractals
154151 PD NOV
154152 PY 2005
154153 VL 26
154154 IS 4
154155 BP 1119
154156 EP 1124
154157 PG 6
154158 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
154159 GA 936RZ
154160 UT ISI:000229874400012
154161 ER
154162 
154163 PT J
154164 AU Luo, H
154165    Zhuang, RK
154166    Guo, XM
154167 TI Oscillation criteria for second order nonlinear differential equation
154168    with damping
154169 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
154170 DT Article
154171 DE second order nonlinear differential equation with damping; oscillation;
154172    Riccati transformation; integral averaging technique
154173 AB By the generalized Riccati transformation and the integral averaging
154174    technique, some. sufficient conditions of oscillation of. the solutions
154175    for second. order nonlinear differential equations with damping were
154176    discussed. Some sufficient oscillation criteria for previous equations
154177    were built up. Some oscillation criteria have been expanded and
154178    strengthened in some other known results.
154179 C1 Huizhou Coll, Dept Math, Huizhou 516015, Guangdong, Peoples R China.
154180    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
154181 RP Luo, H, Huizhou Coll, Dept Math, Huizhou 516015, Guangdong, Peoples R
154182    China.
154183 EM zclh@hzu.edu.cn
154184 CR HARTMAN P, 1952, AM J MATH, V74, P389
154185    KAMENEV IV, 1978, MAT ZAMETKI, V23, P249
154186    KIRANE M, 2000, J MATH ANAL APPL, V250, P118
154187    LI HJ, 1995, J MATH ANAL APPL, V194, P217
154188    LI WT, 1999, INDIAN J PURE AP MAT, V30, P1017
154189    PHILOS CG, 1989, ARCH MATH, V53, P489
154190    WANG QR, 2001, ACTA MATH SINICA, V44, P371
154191    WONG JSW, 1968, FUNKCIAL EKVAC, V11, P207
154192    YAN JR, 1986, P AM MATH SOC, V98, P276
154193 NR 9
154194 TC 0
154195 SN 0253-4827
154196 J9 APPL MATH MECH-ENGL ED
154197 JI Appl. Math. Mech.-Engl. Ed.
154198 PD APR
154199 PY 2005
154200 VL 26
154201 IS 4
154202 BP 441
154203 EP 448
154204 PG 8
154205 SC Mathematics, Applied; Mechanics
154206 GA 938OJ
154207 UT ISI:000230012400004
154208 ER
154209 
154210 PT J
154211 AU Andre, C
154212    Ping, L
154213    Thomassin, M
154214    Robert, JF
154215    Guillaume, YC
154216 TI Modelling of the association mechanism of a series of rodenticide
154217    molecules with lipid membrane investigated by computational chemistry
154218    and biochromatography
154219 SO ANALYTICA CHIMICA ACTA
154220 DT Article
154221 DE biochromatography; IAM surface; rodenticide; polar retention effect;
154222    hydrophobic effect; computational chemistry
154223 ID BLOOD-BRAIN-BARRIER; HUMIC-ACID; CHROMATOGRAPHY; PENETRATION;
154224    HYDROPHOBICITY; BRODIFACOUM; CHOLESTEROL; ADSORPTION; RETENTION;
154225    SURFACES
154226 AB The increase of pest rodents population in urban and rural areas is
154227    tackled by dissemination of baits poisoned with anticoagulant
154228    compounds. In order to modelize the cell membrane transport of these
154229    rodenticides, which have toxic effect on human keratynocytes and break
154230    the vitamin K cycle, a new general model based on the perturbation
154231    method was developed to describe the association process between these
154232    rodenticide and an immobilized artificial membrane (IAM). The
154233    thermodynamic functions of the rodenticide transfer from the bulk
154234    solvent to the IAM surface were also determined. The variation plots of
154235    the solute transfer data versus the salt concentration (x) in the bulk
154236    solvent allow to demonstrate hat the rolenticides-IAM surface
154237    association mechanism was governed by both the hydrophobic effect and
154238    the van der Waals interactions/hydrogen bonds between the rodenticide
154239    polar groups with the polar headgroups of phospholipid monolayers
154240    (polar retention effect). This result was also corroborated by a
154241    comparison of the number of water molecules surrounded the rodenticide
154242    in the medium (obtained by computational chemistry) and the number of
154243    water molecule release at the IAM-rodenticide interface (obtained
154244    thanks to the Tanford's equation). (c) 2005 Elsevier B.V. All rights
154245    reserved.
154246 C1 Univ Franche Comte, Fac Med & Pharm, Chim Analyt Lab, F-25030 Besancon, France.
154247    Shanghai Univ, Shanghai 200041, Peoples R China.
154248 RP Guillaume, YC, Univ Franche Comte, Fac Med & Pharm, Chim Analyt Lab, Pl
154249    St Jacques, F-25030 Besancon, France.
154250 EM yves.guillaume@univ-comte.fr
154251 CR ANDRE C, 2004, CHROMATOGPAPHIA, V59, P419
154252    ANDRE C, 2004, J CHROMATOGR B, V813, P295
154253    BEVINGTON PR, 1969, DATA REDUCTION ERROR
154254    BLUMEL C, 1999, J CHROMATOGR A, V865
154255    BRAUN W, 1996, COMPUTER SIMULATION
154256    CALDWELL GW, 1998, J CHROMATOGR A, V800
154257    CHIO CT, 1989, REACTIONS MOVEMENT O, V22
154258    CHIOU CT, 1985, ORG GEOCHEM, V8, P9
154259    CLAPO CE, 1996, J ENVIRON QUAL, V26, P1277
154260    DACK MR, 1969, J CHEM SOC REV, V4, P211
154261    DIMITROV OA, 1998, J STEROID BIOCHEM, V66, P55
154262    DOHERTY PJ, 1969, WEED RES, V9, P20
154263    DUCARME A, 1998, EUR J MED CHEM, V33, P215
154264    EISENHABER F, 1995, J COMPUT CHEM, V16, P273
154265    HA H, 1992, J MOL BIOL, V228, P252
154266    HUI CH, 1996, FORENSIC SCI INT, V78, P13
154267    HYGNSTROM SE, 2001, CONTROLLING HOUSE MI
154268    KRUG RR, 1980, IND ENG CHEM FUND, V19, P50
154269    KRUSE JA, 1992, ANN EMERG MED, V21, P331
154270    LAOR Y, 1998, WATER RES, V32, P1923
154271    LI J, 1994, J CHROMATOGR, V12, P105
154272    LISELLA FS, 1970, J ENV HLTH, V33, P231
154273    MELANDER W, 1986, HIGH PERFORMANCE LIQ, V23
154274    NASAL A, 1995, J CHROMATOGR A, V692, P83
154275    OKAMURA E, 1999, J PHYS CHEM B, V103, P3505
154276    ONG S, 1995, ANAL CHEM, V67, P755
154277    ONG SW, 1994, ANAL CHEM, V66, P782
154278    ONG SW, 1996, J CHROMATOGR A, V728, P113
154279    PARSONS BJ, 1996, AUST NZ J PUBL HEAL, V20, P488
154280    PIDGEON C, 1989, ANAL BIOCHEM, V176, P36
154281    RANATUNGA R, 2002, J CHROMATOGR A, V946, P47
154282    REICHEL A, 1998, PHARMACEUT RES, V15, P1270
154283    ROWE ES, 1998, BIOCHEMISTRY-US, V37, P2430
154284    SALMINEN T, 1997, J PHARMACEUT BIOMED, V15, P469
154285    SIDOROVA NY, 1996, P NATL ACAD SCI USA, V93, P12272
154286    STEWART BH, 1998, PHARMACEUT RES, V15, P1401
154287    TANFORD C, 1969, J MOL BIOL, V39, P539
154288    TANFORD C, 1973, HYDROPHOBIC EFFECT
154289    TOMLIN C, 2001, PESTICIDE MANUAL
154290    WALLIN R, 1986, BIOCHEM J, V236, P685
154291    WEITZEL JN, 1990, BLOOD, V76, P2555
154292    WONG PTT, 1989, BIOCHIM BIOPHYS ACTA, V980, P37
154293    WU SL, 1986, J CHROMATOGR, V359, P3
154294 NR 43
154295 TC 0
154296 SN 0003-2670
154297 J9 ANAL CHIM ACTA
154298 JI Anal. Chim. Acta
154299 PD JUN 29
154300 PY 2005
154301 VL 542
154302 IS 2
154303 BP 199
154304 EP 206
154305 PG 8
154306 SC Chemistry, Analytical
154307 GA 936XR
154308 UT ISI:000229889400010
154309 ER
154310 
154311 PT J
154312 AU He, Y
154313    Wang, JA
154314    Sang, WB
154315    Wu, RF
154316    Yan, LL
154317    Fang, YY
154318 TI ZnO nanowire self-assembling generated via polymer and the formation
154319    mechanism
154320 SO ACTA CHIMICA SINICA
154321 DT Article
154322 DE ZnO nanowire; self-assembling; polymer induced; oriented growth;
154323    coordinate complexation
154324 ID OPTICAL-PROPERTIES; NANORODS; GROWTH; FABRICATION; DEPOSITION; ARRAYS
154325 AB A novel process was reported for preparing zinc oxide (ZnO) nanowires
154326    almost vertically well-aligned on various planes of silicon substrates
154327    by using polyvinyl alcohol (PVA) as self-assembling complex polymer to
154328    control nucleation and crystal growth via polymer complexation and
154329    low-temperature oxidizing-sintering. Highly regular Zn(OH)(2) nanodots
154330    on the Si substrate were, first synthesized via complexing the
154331    homogeneous polar hydroxy groups -OH on PVA side-chains with Zn2+ ions
154332    in zinc salt solution when the pH value of the solution was adjusted to
154333    8.5 +/- 0.1 by addition of a concentrated aqueous ammonia. Then the
154334    synthesized Zn(OH)(2) nanodots decomposed into ZnO nanodots at about
154335    125 V by thermal hydrolysis. Subsequently the ZnO nanodots grew
154336    gradually up into the well-oriented ZnO nanowires on the substrate at
154337    sintering temperature of 420 degrees C. In the early stage of
154338    sintering, the carbonized PVA grid backbones were formed, which
154339    confined the ZnO nanowire ' s diameter and enhanced the absorption of
154340    ZnO at the tips of nanowires. At the presence of carbonized PVA, part
154341    of ZnO reduced to Zn through carbothermal reduction and in oxygen Zn
154342    was further oxidized to ZnO, forming the catalytically active site at
154343    the tips of nanowires. All the polymers were removed after sintering.
154344    The analytical results of FE-SEM, TEM, HR-TEM and XRD indicated that
154345    the ZnO nanowires are evenly distributed on Si substrate and possess a
154346    hexagonal wurtzite structure with preferred orientation along the [000
154347    1] direction of ZnO, and their diameter varies from 20 to 80 nm and the
154348    length from 0.5 to several mu m. A polymer-controlled crystallization
154349    and morphogenesis by polymer grid backbone localization model was
154350    proposed to explain the growth behavior of ZnO nanowires.
154351 C1 Shanghai Univ, Sch Mat Sci & Engn, Dept Polymer Mat, Shanghai 200072, Peoples R China.
154352    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
154353    Shanghai Univ, Sch Mat Sci & Engn, Dept Elect Informat Mat, Shanghai 200072, Peoples R China.
154354 RP He, Y, Shanghai Univ, Sch Mat Sci & Engn, Dept Polymer Mat, Shanghai
154355    200072, Peoples R China.
154356 EM yinghe@staff.shu.edu.cn
154357 CR GUO L, 2002, J AM CHEM SOC, V124, P14864
154358    HUANG MH, 2001, SCIENCE, V292, P1897
154359    LIU CH, 2003, ADV MATER, V15, P838
154360    MATSUO T, 1962, MAKROMOL CHEM, V55, P150
154361    RYU YR, 2000, J CRYST GROWTH, V219, P419
154362    VAYSSIERES L, 2003, ADV MATER, V15, P464
154363    WANG Z, 2002, APPL PHYS A-MATER, V74, P201
154364    WU JJ, 2002, ADV MATER, V14, P215
154365    XING YJ, 2003, APPL PHYS LETT, V83, P1689
154366    ZHENG MJ, 2002, CHEM PHYS LETT, V363, P123
154367 NR 10
154368 TC 0
154369 SN 0567-7351
154370 J9 ACTA CHIM SIN
154371 JI Acta Chim. Sin.
154372 PD JUN 28
154373 PY 2005
154374 VL 63
154375 IS 12
154376 BP 1037
154377 EP 1041
154378 PG 5
154379 SC Chemistry, Multidisciplinary
154380 GA 938CO
154381 UT ISI:000229977700001
154382 ER
154383 
154384 PT J
154385 AU Ma, CA
154386    Zhang, WM
154387    Li, GH
154388    Zheng, YF
154389    Zhou, BX
154390    Cheng, DH
154391 TI Preparation of hollow global tungsten carbide (WC) catalysts with
154392    meso-porosity and its characterization
154393 SO ACTA CHIMICA SINICA
154394 DT Article
154395 DE meso-porosity; hollow globe; tungsten carbide; characterization
154396 ID TRANSITION-METAL CARBIDES; TEMPERATURE-PROGRAMMED REACTION; SOLID-STATE
154397    METATHESIS; REDUCTION; CARBURIZATION; MIXTURES; CARBON; MO2C; GAS
154398 AB Hollow global tungsten carbide (WC) catalysts with meso-porosity were
154399    prepared by spray drying sphere miniaturation-gas-solid reaction, using
154400    ammonium metatungstate as precursors, carbon monoxide as deoxidizing
154401    gas and carbon dioxide as carrier gas. The samples were characterized
154402    by XRD, SEM, EDS and TG-DTA, respectively. XRD and EDS results show
154403    that the sample took pure WC phase, with a ratio of W/C near 1. TG-DTA
154404    results show that the sample is stable in the air under 400 degrees C.
154405    SEM images indicate that the morphology of the sample is hollow globe
154406    with meso-porosity on the surface. The hollow globe was constituted by
154407    a lot of puncheons, with a length of 100 similar to 800 nm and a width
154408    of 50 similar to 150 nm. The joint between two puncheons lies on tips
154409    or tip and the surface of puncheon. Puncheons were surrounded by
154410    cavities. The cavity connects with each other, with different shapes
154411    and a size of 0 similar to 200 nm.
154412 C1 Zhejiang Univ Technol, Breeding Base State Key Lab Green Chem Synth Tech, Hangzhou 310014, Peoples R China.
154413    Zhejiang Univ Technol, Res Ctr Nano Sci & Technol, Hangzhou 310014, Peoples R China.
154414    Zhejiang Univ Technol, Sch Chem Engn & Mat Sci, Hangzhou 310014, Peoples R China.
154415    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
154416 RP Ma, CA, Zhejiang Univ Technol, Breeding Base State Key Lab Green Chem
154417    Synth Tech, Hangzhou 310014, Peoples R China.
154418 EM science@zjut.edu.cn
154419 CR BAIKALOVA YV, 2000, J ALLOY COMPD, V297, P87
154420    BOHM H, 1970, NATURE, V227, P484
154421    CHOI S, 1997, MATER RES SOC S P, V454, P41
154422    CLARIDGE JB, 2000, CHEM MATER, V12, P132
154423    CURRY KE, 1994, CATAL TODAY, V21, P171
154424    GIRAUDON JM, 2000, J SOLID STATE CHEM, V145, P412
154425    JOHNSON C, 2001, CHEM MATER, V13, P3876
154426    KIC R, 2000, J EUR CERAM SOC, V20, P1859
154427    LECLERCQ G, 1996, J CATAL, V158, P142
154428    LEVY RB, 1973, SCIENCE, V181, P547
154429    LOFBERG A, 2000, J CATAL, V189, P170
154430    MA CA, 1990, ACTA PHYS-CHIM SIN, V6, P622
154431    MEDEIROS FFP, 2001, MAT SCI ENG A-STRUCT, V315, P58
154432    MORENOCASTILLA C, 2001, LANGMUIR, V17, P1752
154433    NARTOWSKI AM, 1999, J MATER CHEM, V9, P1275
154434    NARTOWSKI AM, 2001, J MATER CHEM, V11, P3116
154435    NELSON JA, 2002, CHEM MATER, V14, P1639
154436    OYAMA ST, 1997, CHEM LETT, P949
154437    RIBEIRO FH, 1991, J CATAL, V130, P498
154438    WANG GJ, 2001, J QINGDAO U, V16, P51
154439    WANNER S, 2000, APPL CATAL A-GEN, V203, P55
154440    XIAO TC, 2002, PHYS CHEM CHEM PHYS, V4, P3522
154441    XUE HX, 2003, ACTA CHIM SINICA, V61, P208
154442    YAMADA K, 2000, J ALLOY COMPD, V305, P253
154443    YORK APE, 1997, STUD SURF SCI CATAL, V110, P711
154444    YORK APE, 2000, STUD SURF SCI CATA B, V130, P989
154445    ZENG D, 1993, CHEM MATER, V5, P681
154446    ZHANG YF, 2004, ACTA CHIM SINICA, V62, P1041
154447    ZHU LZ, 1999, CHIN J APPL CHEM, V16, P52
154448 NR 29
154449 TC 1
154450 SN 0567-7351
154451 J9 ACTA CHIM SIN
154452 JI Acta Chim. Sin.
154453 PD JUN 28
154454 PY 2005
154455 VL 63
154456 IS 12
154457 BP 1151
154458 EP 1154
154459 PG 4
154460 SC Chemistry, Multidisciplinary
154461 GA 938CO
154462 UT ISI:000229977700021
154463 ER
154464 
154465 PT J
154466 AU Lu, ZM
154467    Liu, YL
154468 TI The generation of lump solitons by a bottom topography in a
154469    surface-tension dominated flow
154470 SO ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES
154471 DT Article
154472 DE Kadomtsev-Petviashvili-I equation; lump soliton; bottom topography
154473 ID KADOMTSEV-PETVIASHVILI EQUATION
154474 AB The generation of lump solitons by a three-dimensional bottom
154475    topography is numerically investigated by use of a forced
154476    Kadomtsev-Petviashvili-I (KP-I) equation. The numerical method is based
154477    on the third order Runge-Kutta method and the Crank-Nicolson scheme.
154478    The main result is the pairwise periodic generation of two pairs of
154479    lump-type solitons downstream of the obstacle. The pair with the
154480    smaller amplitude is generated with a longer period and moves in a
154481    larger angle with respect to the positive x-axis than the one with the
154482    larger amplitude. Furthermore, the effects of the detuning parameter on
154483    the generation and evolution of lumps are studied. Finally the waves
154484    propagating upstream of the obstacle are also briefly investigated.
154485 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
154486 RP Lu, ZM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
154487    Peoples R China.
154488 EM zmlu@staff.shu.edu.cn
154489 CR ABLOWITZ MJ, 1997, PHYS REV LETT, V78, P570
154490    ALBOWITZ MJ, 1991, SOLITONS NONLINEAR E
154491    BERGER KM, 2000, SIAM J APPL MATH, V61, P731
154492    GORSHKOV KA, 1993, SOV PHYS JETP, V77, P237
154493    LU ZM, 2004, WAVE MOTION, V40, P123
154494    MANAKOV SV, 1977, PHYS LETT A, V63, P205
154495    PELINOVSKII DE, 1993, JETP LETT, V57, P24
154496 NR 7
154497 TC 0
154498 SN 0932-0784
154499 J9 Z NATURFORSCH SECT A
154500 JI Z. Naturfors. Sect. A-J. Phys. Sci.
154501 PD MAY
154502 PY 2005
154503 VL 60
154504 IS 5
154505 BP 328
154506 EP 334
154507 PG 7
154508 SC Chemistry, Physical; Physics, Multidisciplinary
154509 GA 935KD
154510 UT ISI:000229779400004
154511 ER
154512 
154513 PT J
154514 AU Sang, WB
154515    Wang, KS
154516    Min, JH
154517    Teng, JY
154518    Zhang, Q
154519    Qian, YB
154520 TI A novel two-step chemical passivation process for CdZnTe detectors
154521 SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY
154522 DT Article
154523 ID GAMMA-RAY DETECTORS; SURFACE PASSIVATION; CDTE; INDUSTRIAL
154524 AB The spectrum resolution of cadmium zinc telluride (CZT) room
154525    temperature nuclear radiation detectors is often limited by the
154526    presence of conducting surface species that increase the surface
154527    leakage current. Surface passivation plays a dominant role in reducing
154528    the surface leakage current and therefore decreasing the noise and
154529    improving the spectral energy resolution of the detectors. In this
154530    paper, a novel two-step chemical passivation process for CZT detectors,
154531    in which the mixed solution of bromine-methanol and lactic acid in
154532    ethylene glycol (BMLB) treated CZT wafer was first etched by using a
154533    KOH aqueous solution, and then by using a NH4F/H2O2 mixed solution, is
154534    presented. The Auger electron spectroscopy (AES) and atomic force
154535    microscopy (AFM) results show that the first-step KOH process consumed
154536    the Te-rich layer caused by BMLB and left a more stoichiometric surface
154537    and the second-step NH4F/H2O2 process oxidized the elemental
154538    constituents of the CZT surface obtained by the KOH etching and formed
154539    an oxide layer on the surface. The I-V characteristics show that the
154540    novel process leads to a lower surface leakage current compared to the
154541    processing by using either a KOH or NH4F/H2O2 agent. The results
154542    indicate that this two-step passivation process has a promising
154543    potential in the fabrication of CZT detectors.
154544 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200436, Peoples R China.
154545 RP Sang, WB, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200436, Peoples R
154546    China.
154547 CR ARLT R, 1996, NUCL INSTRUM METH A, V380, P455
154548    CHATTOPADHYAY K, 2000, J ELECTRON MATER, V29, P708
154549    CHEN KT, 1997, J VAC SCI TECHNOL  1, V15, P850
154550    EISEN Y, 1996, NUCL INSTRUM METH A, V380, P431
154551    EISEN Y, 1999, NUCL INSTRUM METH A, V428, P158
154552    ILLER A, 1998, CRYST RES TECHNOL, V33, P401
154553    LUKE PN, 1994, APPL PHYS LETT, V65, P2884
154554    LUKE PN, 1996, IEEE T NUCL SCI 2, V43, P1481
154555    MESCHER MJ, 1999, J ELECTRON MATER, V28, P700
154556    NIEMELA A, 1994, IEEE T NUCL SCI, V41, P1054
154557    ROSSI M, 1996, NUCL INSTRUM METH A, V380, P419
154558    SANG WB, 2000, J CRYST GROWTH, V214, P30
154559    WRIGHT GW, 1999, P SOC PHOTO-OPT INS, V3768, P481
154560    WRIGHT GW, 2000, P SOC PHOTO-OPT INS, V4141, P324
154561 NR 14
154562 TC 0
154563 SN 0268-1242
154564 J9 SEMICOND SCI TECHNOL
154565 JI Semicond. Sci. Technol.
154566 PD MAY
154567 PY 2005
154568 VL 20
154569 IS 5
154570 BP 343
154571 EP 346
154572 PG 4
154573 SC Engineering, Electrical & Electronic; Materials Science,
154574    Multidisciplinary; Physics, Condensed Matter
154575 GA 935QX
154576 UT ISI:000229797900006
154577 ER
154578 
154579 PT J
154580 AU Shang, YL
154581    Zhang, LS
154582 TI A filled function method for finding a global minimizer on global
154583    integer optimization
154584 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
154585 DT Article
154586 DE integer programming; local minimizer; global minimizer; filled
154587    function; global optimization
154588 ID TUNNELING ALGORITHM; VARIABLES
154589 AB The paper gives a definition of the filled function for nonlinear
154590    integer programming. This definition is modified from that of the
154591    global convexized filled function for continuous global optimization. A
154592    filled function with only one parameter which satisfies this definition
154593    is presented. We also discuss the properties of the proposed function
154594    and give a filled function method to solve the nonlinear integer
154595    programming problem. The implementation of the algorithm on several
154596    test problems is reported with satisfactory numerical results. (c) 2004
154597    Elsevier B.V. All rights reserved.
154598 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
154599    Henan Univ Sci & Technol, Dept Math, Luoyang 471003, Peoples R China.
154600 RP Shang, YL, Shanghai Univ, Dept Math, 99 Shang Da Rd, Shanghai 200436,
154601    Peoples R China.
154602 EM ylshang@mail.shu.edu.cn
154603 CR DIXON LCW, 1976, OPTIMIZATION ACTION, P398
154604    GE R, 1989, APPL MATH COMPUT, V34, P39
154605    GE R, 1990, MATH PROGRAM, V46, P191
154606    GE RP, 1987, J OPTIMIZ THEORY APP, V54, P241
154607    GE RP, 1990, APPL MATH COMPUT, V35, P131
154608    LEVY AV, 1985, SIAM J SCI STAT COMP, V6, P15
154609    LIU X, 2001, J COMPUT APPL MATH, V137, P62
154610    LUCIDI S, 2002, J GLOBAL OPTIM, V24, P219
154611    OBLOW EM, 2001, J GLOBAL OPTIM, V20, P195
154612    PARDALOS PM, 2000, J COMPUT APPL MATH, V124, P209
154613    ZHANG LS, 1998, OR T, V2, P59
154614    ZHANG LS, 2004, J GLOBAL OPTIM, V28, P17
154615    ZHU WX, 1997, OR T, V1, P72
154616    ZHU WX, 2000, CHINESE ACTA MATH AP, V23, P481
154617    ZHU WX, 2003, OPTIMIZATION LINE
154618 NR 15
154619 TC 0
154620 SN 0377-0427
154621 J9 J COMPUT APPL MATH
154622 JI J. Comput. Appl. Math.
154623 PD SEP 1
154624 PY 2005
154625 VL 181
154626 IS 1
154627 BP 200
154628 EP 210
154629 PG 11
154630 SC Mathematics, Applied
154631 GA 935TE
154632 UT ISI:000229805500014
154633 ER
154634 
154635 PT J
154636 AU Guo, BY
154637    Zhang, XY
154638 TI A new generalized Laguerre spectral approximation and its applications
154639 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
154640 DT Article
154641 DE new generalized Laguerre approximation; mixed spherical
154642    harmonic-generalized Laguerre spectral method
154643 ID UNBOUNDED-DOMAINS; EQUATIONS
154644 AB A new family of generalized Laguerre polynomials is introduced. Various
154645    orthogonal projections are investigated. Some approximation results are
154646    established. As an example of their important applications, the mixed
154647    spherical harmonic-generalized Laguerre approximation is developed. A
154648    mixed spectral scheme is proposed for a three-dimensional model
154649    problem. Its convergence is proved. Numerical results demonstrate the
154650    high accuracy of this new spectral method. (c) 2004 Elsevier B.V. All
154651    rights reserved.
154652 C1 Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China.
154653    Shanghai Univ, E Inst, Div Computat Sci, Shanghai, Peoples R China.
154654    Shanghai Maritime Univ, Dept Math, Shanghai 200135, Peoples R China.
154655 RP Guo, BY, Shanghai Normal Univ, Dept Math, Guilin Rd 100, Shanghai
154656    200234, Peoples R China.
154657 EM byguo@shnu.edu.cn
154658 CR BENYU G, IN PRESS J COMP MATH
154659    BENYU G, 1995, MATH COMPUT, V64, P1067
154660    BENYU G, 1999, MATH COMPUT, V68, P1067
154661    BENYU G, 2000, N2AN MATH MODEL NUME, V34, P859
154662    BENYU G, 2000, NUMER MATH, V86, P635
154663    BENYU G, 2003, MATH COMPUT, V73, P95
154664    BERGH J, 1976, INTERPOLATION SPACES
154665    CHENGLONG X, 2002, J COMPUT MATH, V20, P413
154666    COUANT R, 1953, METHODS MATH PHYS, V1
154667    FUNARO D, 1991, MATH COMPUT, V57, P597
154668    FUNARO D, 1992, POLYNOMIAL APPROXIMA
154669    MADAY Y, 1985, RECH AEROSPATIALE, V6, P13
154670    MASTROIANNI G, 1997, IMA J NUMER ANAL, V17, P621
154671    SHEN J, 2000, SIAM J NUMER ANAL, V38, P1113
154672 NR 14
154673 TC 1
154674 SN 0377-0427
154675 J9 J COMPUT APPL MATH
154676 JI J. Comput. Appl. Math.
154677 PD SEP 15
154678 PY 2005
154679 VL 181
154680 IS 2
154681 BP 342
154682 EP 363
154683 PG 22
154684 SC Mathematics, Applied
154685 GA 935WG
154686 UT ISI:000229813500010
154687 ER
154688 
154689 PT J
154690 AU Xiong, HK
154691    Zou, JN
154692    Yu, SY
154693    Sun, J
154694 TI Network TV broadcasting with multi-programs on application-oriented QoS
154695 SO IEICE TRANSACTIONS ON COMMUNICATIONS
154696 DT Article
154697 DE application-oriented QoS; network TV variable bit-rate
154698 ID BIT ALLOCATION; VIDEO
154699 AB This paper introduces the design procedure of the contrived network TV
154700    broadcasting transcoder/encoder system, especially develops a new
154701    variable bit-rate (VBR) coding bit allocation strategy with a
154702    constraint channel bandwidth and consistent picture quality for
154703    multiple parallel video sequences broadcasting, which accommodates the
154704    complicated video sources with different frame rates and GOP
154705    structures, and combines the buffer control and the optimized
154706    macroblock (MB) coding mode selection. The proposed strategy absorbs
154707    several reasonable metrics in a hierarchical structure, and provides
154708    flexibility and promotion for resource allocation in multi-access
154709    scenario. Experimental results demon strate the effect of the proposed
154710    scheme.
154711 C1 Shanghai Jiao Tong Univ, Inst Image Commun & Informat Proc, Shanghai 200030, Peoples R China.
154712    Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
154713 RP Xiong, HK, Shanghai Jiao Tong Univ, Inst Image Commun & Informat Proc,
154714    Huashan Ave 1954, Shanghai 200030, Peoples R China.
154715 EM xionghongkai@sjtu.edu.cn
154716 CR *MOV PICT EXP GROU, 1993, JTC1SC29WG11N0400 IS
154717    HANG HM, 1997, IEEE T CIRC SYST VID, V7, P287
154718    NASIOPOULOS P, 2002, IEEE T BROADCAST, V48, P207
154719    SORIAL H, 2000, 2000 IEEE INT S CIRC, V2, P9
154720    VETRO A, 1999, IEEE T CIRC SYST VID, V9, P186
154721    WANG LM, 1999, IEEE T CIRC SYST VID, V9, P949
154722    WU DP, 2001, IEEE T CIRC SYST VID, V11, P282
154723    XIN J, 2001, 2001 IEEE INT C MULT, V1, P119
154724    XIONG HK, 2002, IEEE T CONSUM ELECTR, V48, P898
154725 NR 9
154726 TC 0
154727 SN 0916-8516
154728 J9 IEICE TRANS COMMUN
154729 JI IEICE Trans. Commun.
154730 PD JUN
154731 PY 2005
154732 VL E88B
154733 IS 6
154734 BP 2688
154735 EP 2692
154736 PG 5
154737 SC Engineering, Electrical & Electronic; Telecommunications
154738 GA 935ZZ
154739 UT ISI:000229823300065
154740 ER
154741 
154742 PT J
154743 AU Zhang, W
154744    Daichin
154745    Lee, SJ
154746 TI PIV measurements of the near-wake behind a sinusoidal cylinder
154747 SO EXPERIMENTS IN FLUIDS
154748 DT Article
154749 ID BLUFF-BODY; WAVY CYLINDER; VORTICES; REDUCTION; DRAG
154750 AB The three-dimensional near-wake structures behind a sinusoidal cylinder
154751    have been investigated using a particle image velocimetry (PIV)
154752    measurement technique at Re=3,000. The mean velocity fields and spatial
154753    distributions of ensemble-averaged turbulence statistics for flows
154754    around the sinusoidal and corresponding smooth cylinders were compared.
154755    The near-wake behind the sinusoidal cylinder exhibited pronounced
154756    spanwise periodic variations in the flow structure. Well-organized
154757    streamwise vortices with alternating positive and negative vorticity
154758    were observed along the span of the sinusoidal cylinder. They suppress
154759    the formation of the large-scale spanwise vortices and decrease the
154760    overall turbulent kinetic energy in the near-wake of the sinusoidal
154761    cylinder. The sinusoidal surface geometry significantly modifies the
154762    near-wake structure and strongly controls the three-dimensional
154763    vortices formed in the near-wake.
154764 C1 Pohang Univ Sci & Technol, Dept Mech Engn, Pohang 3191188, Kyong Buk, South Korea.
154765    Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
154766 RP Lee, SJ, Pohang Univ Sci & Technol, Dept Mech Engn, Pohang 3191188,
154767    Kyong Buk, South Korea.
154768 EM sjlee@postech.ac.kr
154769 CR AHMED A, 1992, PHYS FLUIDS A-FLUID, V4, P1959
154770    AHMED A, 1993, AIAA J, V31, P559
154771    BEARMAN PW, 1998, J FLUID STRUCT, V12, P123
154772    BREDE M, 1996, PHYS FLUIDS, V8, P2117
154773    LAM K, 2004, J FLUID STRUCT, V19, P815
154774    LAM KM, 2003, P 6 PAC RIM INT WORK, P25
154775    LIN JC, 1995, J FLUID STRUCT, V9, P231
154776    NGUYEN AT, 2004, THESIS POSTECH KOREA
154777    OWEN JC, 2001, J FLUID STRUCT, V15, P597
154778    WANG FH, 2004, FLOW MEAS INSTRUM, V15, P105
154779    WILLIAMSON CHK, 1996, ANNU REV FLUID MECH, V28, P477
154780    WU J, 1994, J FLUID STRUCT, V8, P621
154781    WU J, 1996, J FLUID ENG-T ASME, V118, P531
154782 NR 13
154783 TC 0
154784 SN 0723-4864
154785 J9 EXP FLUID
154786 JI Exp. Fluids
154787 PD JUN
154788 PY 2005
154789 VL 38
154790 IS 6
154791 BP 824
154792 EP 832
154793 PG 9
154794 SC Engineering, Mechanical; Mechanics
154795 GA 934VC
154796 UT ISI:000229736000014
154797 ER
154798 
154799 PT S
154800 AU Peng, DL
154801    Huang, S
154802    Wang, XL
154803    Zhou, AY
154804 TI Concept-based retrieval of alternate Web services
154805 SO DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PROCEEDINGS
154806 SE LECTURE NOTES IN COMPUTER SCIENCE
154807 DT Article
154808 ID CONCEPT LATTICES
154809 AB Web services have attracted much attention in recent years with the
154810    development of e-commercial technologies over the Internet. Although
154811    there are some standards and protocols for web service technologies,
154812    such as WSDL, UDDI and SOAP, the core technologies underlying Web
154813    services need further study in order to make these technologies
154814    practical and flexible. Efficient services management is the main task
154815    for services execution and services composition and there is no good
154816    solution until now. In this paper, we present a concept-based method
154817    for services management, which is efficient for services selection and
154818    alternative. Our method takes advantage of lattice and retrieves the
154819    optimal alternates for a given Web service efficiently by employing
154820    formal concept analysis and concept lattice. Compared with the former
154821    methods, this method is more efficient and accurate because the
154822    underlying semantics of Web services and users' requirements are
154823    exploited during the processing of retrieval. Experimental results also
154824    verify the efficiency and scalability of our approach.
154825 C1 Fudan Univ, Dept Comp Sci & Engn, Shanghai 200433, Peoples R China.
154826    Shanghai Univ Sci & Technol, Coll Comp Engn, Shanghai 200093, Peoples R China.
154827 RP Peng, DL, Fudan Univ, Dept Comp Sci & Engn, Shanghai 200433, Peoples R
154828    China.
154829 EM dlpeng@fudan.edu.cn
154830    shhuang@fudan.edu.cn
154831    wxling@fudan.edu.cn
154832    ayzhou@fudan.edu.cn
154833 CR BELLWOOD T, UNIVERSAL DESCRIPTIO
154834    BOOTH D, 2004, WEB SERVICES ARCHITE
154835    CHAPPELL D, 2002, JAVA WEB SERVICE, P22
154836    CHRISTENSEN E, WEB SERVICE DESCRIPT
154837    DON X, 2004, P 30 VLDB C TOR CAN
154838    GANTER B, 1999, FORMAL CONCEPT ANAL
154839    GODIN R, 1995, COMPUT INTELL, V11, P246
154840    GUDGIN M, SIMPLE OBJECT ACCESS
154841    KOICS L, 2002, P IEEE INT C SYST MA
154842    KOVACS I, 2001, P 2 ISHR COMP IN BUD
154843    LIU W, 2002, P 5 INT C ALG ARCH P
154844    SALTON G, 1975, J AM SOC INFORM SCI, P13
154845    WANG Y, 2003, P 4 INT C WEB INF SY
154846    WILLE R, 1982, ORDERED SETS, P445
154847    WILLE R, 1992, COMPUT MATH APPL, V23, P493
154848    ZHUGE H, 2004, J SYST SOFTWARE, P106
154849 NR 16
154850 TC 0
154851 SN 0302-9743
154852 J9 LECT NOTE COMPUT SCI
154853 PY 2005
154854 VL 3453
154855 BP 359
154856 EP 371
154857 PG 13
154858 GA BCG53
154859 UT ISI:000229213600030
154860 ER
154861 
154862 PT J
154863 AU Fu, GC
154864    Dong, C
154865    Li, MX
154866    Guo, J
154867    Yang, LH
154868 TI Structural, transport and magnetic properties of KxCoO2 (x=0.36)
154869 SO CHINESE PHYSICS LETTERS
154870 DT Article
154871 ID PHASE; SUPERCONDUCTIVITY
154872 AB Layered potassium cobaltate KxCoO2 with x = 0.36 has been successfully
154873    synthesized in KOH fluxes at 480 degrees C, and its hydrated form
154874    K-0.36 CoO2 center dot yH(2)O (y <= 0.8) has been obtained by
154875    intercalation with water. The diffraction peaks of K0.36CoO2 can be
154876    indexed by an orthorhombic cell similar to Na0.5CoO2, and K0.36CoO2
154877    center dot 0.8H2O is isostructural with its sodium analog, monolayer
154878    hydrate Na(x)CoO(2)center dot yH(2)O. While the samples KxCoO2 and
154879    K(0.36)CoO(2)yH(2)O (y < 0.8) show semiconductor behaviour, a
154880    metal-insulator transition around 30 K was observed in the sample
154881    KxCoO2 center dot 0.8H(2)O. Both the samples show complicated magnetic
154882    behaviour, and they are primarily paramagnetic in the range from 5 K to
154883    300 K with a spin-glass-like transition around 56 K.
154884 C1 Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Natl Lab Supercond, Beijing 10080, Peoples R China.
154885    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
154886 RP Dong, C, Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Natl
154887    Lab Supercond, Beijing 10080, Peoples R China.
154888 EM chengdon@aphy.iphy.ac.cn
154889 CR BUTEL M, 1999, SOLID STATE IONICS, V122, P271
154890    DONG C, 1999, J APPL CRYSTALLOGR, V32, P838
154891    HUANG Q, 2004, J PHYS-CONDENS MAT, V16, P5803
154892    LUO JL, 2004, PHYS REV LETT, V93
154893    MOTOHASHI T, 2003, PHYS REV B, V67, P64406
154894    PRABHAKARN D, CONDMAT0312943
154895    SCHAAK RE, 2003, NATURE, V424, P527
154896    SHANNON RD, 1976, ACTA CRYSTALLOGR A, V32, P751
154897    SHIN N, 1996, J PHYS SOC JPN, V65, P358
154898    TAKADA K, 2003, NATURE, V422, P53
154899    TAKADA K, 2004, J SOLID STATE CHEM, V177, P372
154900    YANG HX, CONDMAT0409308
154901    ZANDBERGEN HW, 2004, PHYS REV B, V70
154902 NR 13
154903 TC 1
154904 SN 0256-307X
154905 J9 CHIN PHYS LETT
154906 JI Chin. Phys. Lett.
154907 PD JUN
154908 PY 2005
154909 VL 22
154910 IS 6
154911 BP 1478
154912 EP 1480
154913 PG 3
154914 SC Physics, Multidisciplinary
154915 GA 934WB
154916 UT ISI:000229738700050
154917 ER
154918 
154919 PT J
154920 AU Zheng, CL
154921    Chen, LQ
154922 TI New localized excitations in a (2+1)-dimensional generalized
154923    Nozhnik-Novikov-Veselov system
154924 SO CHINESE JOURNAL OF PHYSICS
154925 DT Article
154926 ID COHERENT SOLITON-STRUCTURES; EQUATION; SCATTERING; TRANSFORM
154927 AB Using an extended homogeneous balance approach and a multilinear
154928    variable separation method, we obtain a new general variable separation
154929    excitation for the (2+1)-dimensional generalized
154930    Nozhnik-Novikov-Veselov(GNNV) system. Based on the derived solution,
154931    two new types of localized excitations, i.e., a bell-like loop soliton
154932    and a peak-like loop soliton, are constructed and some evolutional
154933    properties of these novel semifolded localized structures axe briefly
154934    discussed.
154935 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
154936    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
154937 RP Zheng, CL, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R
154938    China.
154939 EM zjclzheng@yahoo.com.cn
154940 CR BOITI M, 1986, INVERSE PROBL, V2, P271
154941    BOITI M, 1988, PHYS LETT A, V132, P432
154942    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
154943    FOKAS AS, 1989, PHYS REV LETT, V63, P1329
154944    HU XB, 1991, J PHYS A, V24, P1331
154945    HU XB, 1991, J PHYS A-MATH GEN, V24, P1979
154946    HUANG WH, 2004, COMMUN THEOR PHYS, V42, P4
154947    LOU SY, 1998, PHYS REV LETT, V80, P5027
154948    LOU SY, 2000, CHINESE PHYS LETT, V17, P781
154949    NIZHNIK LP, 1980, SOV PHYS DOKL, V25, P706
154950    NOVIKOV SP, 1986, PHYSICA D, V18, P267
154951    OHTA Y, 1992, J PHYS SOC JPN, V61, P3928
154952    RADHA R, 1994, J MATH PHYS, V35, P4746
154953    TAGAMI Y, 1989, PHYS LETT A, V141, P116
154954    TANG XY, 2002, PHYS REV E, V66, P46601
154955    TANG XY, 2003, J MATH PHYS, V44, P4000
154956    VESELOV AP, 1984, SOV MATH DOKL, V30, P88
154957    ZHANG JF, 2002, CHINESE PHYS, V11, P651
154958    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
154959    ZHENG CL, 2003, CHINESE J PHYS, V41, P442
154960    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P783
154961    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
154962 NR 22
154963 TC 0
154964 SN 0577-9073
154965 J9 CHIN J PHYS
154966 JI Chin. J. Phys.
154967 PD JUN
154968 PY 2005
154969 VL 43
154970 IS 3
154971 PN Part 1
154972 BP 393
154973 EP 399
154974 PG 7
154975 SC Physics, Multidisciplinary
154976 GA 934RT
154977 UT ISI:000229726700001
154978 ER
154979 
154980 PT J
154981 AU Cao, SX
154982    Li, LW
154983    Liu, F
154984    Li, WF
154985    Chi, CY
154986    Jing, C
154987    Zhang, JC
154988 TI Structure and charge transfer correlated with oxygen content for a
154989    Y0.8Ca0.2Ba2Cu3Oy, (y=6.84-6.32) system: a positron study
154990 SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY
154991 DT Article
154992 ID VACANCY PROPERTIES; ELECTRON-STRUCTURE; SUPERCONDUCTIVITY; YBA2CU3O7-X;
154993    LIFETIME; DENSITY
154994 AB The structure and charge transfer correlated with oxygen content are
154995    studied by measuring the positron lifetime parameters of the
154996    Y0.8Ca0.2Ba2Cu3Oy system with a large range of oxygen content (y =
154997    6.84-6.32). The local electron density n(e) is evaluated from the
154998    positron lifetime data. The positron lifetime parameters show a clear
154999    change around y = 6.50 where the compounds undergo the
155000    orthorhombic-tetragonal phase transition. The effect of ne and oxygen
155001    content on the structure, charge transfer and superconductivity are
155002    discussed. With the decrease of oxygen content y, O(4) tends to the
155003    Cu(1) site, causing carrier localization, and accordingly, the decrease
155004    of n(e). This would prove that the localized carriers (electrons and
155005    holes) in the Cu-O chain region have great influence on the
155006    superconductivity by affecting the charge transfer between the
155007    reservoir layers and the conducting layers. The positron annihilation
155008    mechanism and its relation with superconductivity are also discussed.
155009 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
155010 RP Cao, SX, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
155011 EM sxcao@staff.shu.edu.cn
155012 CR AWANA VPS, 1994, PHYS REV B, V50, P594
155013    BRANDT W, 1967, POSITRON ANNIHILATIO, V155
155014    BRANDT W, 1971, PHYS LETT          A, V35, P109
155015    CHAKRABORTY B, 1989, PHYS REV B, V39, P215
155016    FISHER B, 1993, PHYS REV B, V47, P6054
155017    HATADA K, 1997, PHYSICA C 2, V282, P793
155018    HEJTMANEK J, 1996, PHYS REV B, V54, P16226
155019    JEAN YC, 1990, PHYS REV LETT, V64, P1593
155020    JENSEN KO, 1989, J PHYS-CONDENS MAT, V1, P3727
155021    JORGENSEN JD, 1987, PHYS REV B, V36, P5731
155022    JORGENSEN JD, 1991, PHYS TODAY, V44, P34
155023    LI PL, 2004, PHYS REV B, V69
155024    LORAM JW, 1997, PHYSICA C 3, V282, P1405
155025    MICELI PF, 1988, PHYS REV B B, V37, P5932
155026    TOKURA Y, 1988, PHYS REV B, V38, P6667
155027    VONSTETTEN EC, 1988, PHYS REV LETT, V60, P2198
155028    ZHANG JC, 1993, PHYS REV B, V48, P16830
155029    ZHANG JC, 1995, PHYS LETT A, V201, P70
155030    ZHANG JC, 1999, PHYS LETT A, V263, P452
155031    ZHANG JC, 2002, PHYS REV B, V65
155032 NR 20
155033 TC 1
155034 SN 0953-2048
155035 J9 SUPERCONDUCT SCI TECHNOL
155036 JI Supercond. Sci. Technol.
155037 PD MAY
155038 PY 2005
155039 VL 18
155040 IS 5
155041 BP 606
155042 EP 610
155043 PG 5
155044 SC Physics, Applied; Physics, Condensed Matter
155045 GA 931VJ
155046 UT ISI:000229513300007
155047 ER
155048 
155049 PT J
155050 AU Shi, WJ
155051    Xu, F
155052    Yu, Y
155053 TI Study and spectrophotometric determination of trace silver with
155054    Iodide-Victoria pure blue BO system
155055 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
155056 DT Article
155057 DE naphthyl diphenymethane; silver; spectrophotometry
155058 ID EXTRACTION; DYES
155059 AB Analytical properties and spectra of naphthyl diphenymethane basic dyes
155060    and associated complexes of dye with [AgI2](-) was studied. A new
155061    method for the spectrophotometric determination of trace amount of
155062    silver was developed. The method was based on the Victoria Pure Blue BO
155063    reacted with [AgI2](-) to form blue associated complex in the buffer
155064    medium of H3PO4-NaH2PO4. The spectrophotometric measurements were
155065    directly carried out at 574 mn, the apparent molar absorptivity of
155066    associated complex was 7.25 X 10(4) L center dot mol(-1) center dot
155067    cm(-1). The Beer's law was obeyed in the range of 4-250 mu g center dot
155068    L-1. The recoveries were in the range of 97.0% - 98.3%. RSD was 2.7%.
155069    The method has been used to determination of trace silver in river
155070    water with satisfactory results.
155071 C1 Shanghai Univ Sci & Technol, Coll Urban Construct, Shanghai 200093, Peoples R China.
155072 RP Shi, WJ, Shanghai Univ Sci & Technol, Coll Urban Construct, Shanghai
155073    200093, Peoples R China.
155074 CR 1997, ENV CHEM, P10
155075    BAI X, 2004, SPECTROSC SPECT ANAL, V24, P125
155076    CONSTANTINESCU C, 1975, REV ROUM CHIM, V20, P985
155077    SHI WJ, 2003, ABSTR PAP AM SOC 1, V226
155078    WANG L, 2004, SPECTROSC SPECT ANAL, V24, P187
155079    XU H, 2002, CHEM J CHINESE U, V23, P216
155080    ZHOU CS, 2001, CHEM SEPARATION CONC, P311
155081 NR 7
155082 TC 0
155083 SN 1000-0593
155084 J9 SPECTROSC SPECTR ANAL
155085 JI Spectrosc. Spectr. Anal.
155086 PD MAY
155087 PY 2005
155088 VL 25
155089 IS 5
155090 BP 765
155091 EP 767
155092 PG 3
155093 SC Spectroscopy
155094 GA 932QE
155095 UT ISI:000229567600034
155096 ER
155097 
155098 PT J
155099 AU Zhang, JF
155100    Lai, XJ
155101 TI An alternative construction of linear superposition periodic solutions
155102    to nonlinear equations
155103 SO PHYSICS LETTERS A
155104 DT Article
155105 DE periodic solution; linear superposition method; mapping deformation
155106    method
155107 AB An alternative derivation of linear superposition periodic solutions
155108    for Korteweg-de Vries equation and Kadomtsev-Petviashivili equation is
155109    presented. These new solutions are the suitable combinations of the
155110    known periodic solutions to these two equations obtained by means of
155111    Jacobian elliptic function method, and they exists with different
155112    periods and velocities. (c) 2005 Elsevier B.V. All rights reserved.
155113 C1 Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
155114    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
155115 RP Zhang, JF, Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004,
155116    Peoples R China.
155117 EM jfzhang2002@yahoo.com.cn
155118 CR COOPER F, 2002, J PHYS A-MATH GEN, V35, P10085
155119    FAN EG, 2002, PHYS LETT A, V305, P383
155120    KHARE A, 2002, J MATH PHYS, V43, P3798
155121    KHARE A, 2002, PHYS REV LETT, V88
155122    LIU SK, 2001, PHYS LETT A, V289, P69
155123    LOU SY, 1989, J MATH PHYS, V30, P1614
155124    LOU SY, 1998, PHYS REV LETT, V80, P5027
155125    YAN ZY, 2003, CHAOS SOLITON FRACT, V18, P299
155126 NR 8
155127 TC 0
155128 SN 0375-9601
155129 J9 PHYS LETT A
155130 JI Phys. Lett. A
155131 PD JUN 6
155132 PY 2005
155133 VL 340
155134 IS 1-4
155135 BP 188
155136 EP 193
155137 PG 6
155138 SC Physics, Multidisciplinary
155139 GA 933SN
155140 UT ISI:000229653300024
155141 ER
155142 
155143 PT J
155144 AU Dong, CH
155145 TI Higher-order fluctuations and squeezing of supercurrents in mesoscopic
155146    Josephson junction with light in thermal states and squeezed coherent
155147    states
155148 SO PHYSICS LETTERS A
155149 DT Article
155150 DE Josephson effect; supercurrent; squeezing of supercurrent; squeezed
155151    coherent state; displaced thermal state; squeezed thermal state
155152 ID JAYNES-CUMMINGS MODEL; NONCLASSICAL MICROWAVES; ELECTROMAGNETIC-FIELDS;
155153    NUMBER STATES; CAVITY FIELDS; 3-LEVEL ATOM; GENERATION; PHASE
155154 AB The supercurrents and their even order fluctuations in the mesoscopic
155155    Josephson junction in the presence of the light in thermal states
155156    (including displaced thermal states and squeezed thermal states) and
155157    squeezed coherent states are studied. The definition of even order
155158    squeezing of the supercurrent is introduced in this Letter. The
155159    supercurrents and their fluctuations exhibit oscillations with
155160    modulated frequency for displaced thermal states, modulated amplitude
155161    for squeezed thermal states, and modulated both frequency and amplitude
155162    for squeezed coherent states. Quantization of light field leads up to
155163    the fundamental quantum fluctuations of the supercurrents. With
155164    appropriate parameters of the field, the supercurrents can be squeezed
155165    to 2nd-and higher-order. In thermal states, raising temperature will
155166    reduce the supercurrents and increase their fluctuations. Deepening the
155167    squeezing degree of the field will weaken the squeezing degree of the
155168    supercurrent. (c) 2005 Elsevier B.V. All rights reserved.
155169 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
155170 RP Dong, CH, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
155171 EM chdong@staff.shu.edu.cn
155172 CR AN NB, 2001, PHYS LETT A, V284, P72
155173    ASHRAF MM, 1992, PHYS REV A, V45, P8121
155174    DEOLIVEIRA FAM, 1990, PHYS REV A, V41, P2645
155175    DODONOV VV, 2002, J OPT B-QUANTUM S O, V4, R1
155176    DU SD, 1993, PHYS REV A, V48, P2198
155177    GERRY C, 1987, PHYS REV A, V35, P4440
155178    HONG CK, 1985, PHYS REV A, V32, P974
155179    IMAMOGLU A, 1992, PHYS REV B, V46, P15982
155180    JOSEPHSON BD, 1964, REV MOD PHYS, V36, P216
155181    KASTNER MA, 1992, REV MOD PHYS, V64, P849
155182    KIM MS, 1989, PHYS REV A, V40, P2494
155183    KOZIEROWSKI M, 2001, J MOD OPTIC, V48, P773
155184    LI WD, 2001, J MOD OPTIC, V48, P1357
155185    LI XS, 1989, PHYS REV A, V40, P228
155186    LOUDON R, 1987, J MOD OPTIC, V34, P709
155187    SCHON G, 1990, PHYS REP, V198, P237
155188    SHAO B, 1998, PHYS LETT A, V242, P105
155189    SHAO B, 2000, PHYS LETT A, V277, P339
155190    SHORE BW, 1993, J MOD OPTIC, V40, P1195
155191    VOURDAS A, 1994, PHYS REV B, V49, P12040
155192    VOURDAS A, 1996, Z PHYS B CON MAT, V100, P455
155193    VOURDAS A, 1997, Z PHYS B CON MAT, V102, P43
155194    WALLS DF, 1994, QUANTUM OPTICS
155195    YURKE B, 1988, PHYS REV LETT, V60, P764
155196    ZOU J, 1997, PHYS LETT A, V231, P123
155197    ZOU J, 1997, PHYS REV B, V56, P14116
155198    ZOU J, 1999, PHYS LETT A, V256, P375
155199 NR 27
155200 TC 0
155201 SN 0375-9601
155202 J9 PHYS LETT A
155203 JI Phys. Lett. A
155204 PD JUN 6
155205 PY 2005
155206 VL 340
155207 IS 1-4
155208 BP 326
155209 EP 336
155210 PG 11
155211 SC Physics, Multidisciplinary
155212 GA 933SN
155213 UT ISI:000229653300044
155214 ER
155215 
155216 PT J
155217 AU Zheng, CL
155218    Chen, LQ
155219    Zhang, JF
155220 TI Peakon, compacton and loop excitations with periodic behavior in KdV
155221    type models related to Schrodinger system
155222 SO PHYSICS LETTERS A
155223 DT Article
155224 DE KdV type system; variable separation approach; soliton; periodic
155225    behavior
155226 ID MULTISCALE REDUCTION; VAKHNENKO EQUATION; SOLITON SOLUTION;
155227    INTEGRABILITY; PDES; SETS
155228 AB In this Letter, the linear variable separation approach is successfully
155229    extended to (1 + 1)-dimensional Korteweg-de Vries (KdV) type models
155230    related to Schrodinger system. Some significant types of solitons such
155231    as compacton, peakon and loop solutions with periodic behavior are
155232    simultaneously derived from the (1 + 1)-dimensional soliton system by
155233    entrancing appropriate piecewise smooth functions and multivalued
155234    functions. (c) 2005 Elsevier B.V. All rights reserved.
155235 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
155236    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
155237    Zhejiang Normal Univ, Inst Nonlinear Phys, Jinan 321004, Peoples R China.
155238 RP Zheng, CL, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R
155239    China.
155240 EM zjclzheng@yahoo.com.cn
155241 CR CALOGERO F, 2000, J MATH PHYS, V41, P6399
155242    CALOGERO F, 2001, J MATH PHYS, V42, P2635
155243    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
155244    HIROTA R, 1971, PHYS REV LETT, V27, P1192
155245    KONNO K, 1981, J PHYS SOC JPN, V50, P1025
155246    KRAENKEL RA, 1999, PHYS LETT A, V260, P218
155247    LOU SY, 1993, PHYS LETT A, V175, P23
155248    LOU SY, 1998, PHYS REV LETT, V80, P5027
155249    LOU SY, 1999, PHYS LETT A, V262, P344
155250    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
155251    MORRISON AJ, 1999, NONLINEARITY, V12, P1427
155252    NIMMO JJC, 1992, PHYS LETT A, V168, P113
155253    ROSENAU P, 1993, PHYS REV LETT, V70, P564
155254    ROSENAU P, 1994, PHYS REV LETT, V73, P1737
155255    TANG XY, 2002, PHYS REV E 2, V66
155256    TANG XY, 2003, J MATH PHYS, V44, P4000
155257    VAKHNENKO VO, 1998, NONLINEARITY, V11, P1457
155258    VEROSKY JM, 1991, J MATH PHYS, V32, P1733
155259    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
155260    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
155261    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P783
155262    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
155263    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
155264 NR 23
155265 TC 2
155266 SN 0375-9601
155267 J9 PHYS LETT A
155268 JI Phys. Lett. A
155269 PD JUN 13
155270 PY 2005
155271 VL 340
155272 IS 5-6
155273 BP 397
155274 EP 402
155275 PG 6
155276 SC Physics, Multidisciplinary
155277 GA 933SR
155278 UT ISI:000229653700006
155279 ER
155280 
155281 PT J
155282 AU Liu, WQ
155283    Li, QA
155284    Zhou, BX
155285    Yan, QS
155286    Yao, MY
155287 TI Effect of heat treatment on the microstructure and corrosion resistance
155288    of a Zr-Sn-Nb-Fe-Cr alloy
155289 SO JOURNAL OF NUCLEAR MATERIALS
155290 DT Article
155291 AB Zr-Sn-Nb-Fe-Cr zirconium alloy specimens treated in different ways were
155292    exposed to 0.01 M LiOH aqueous solution at 350 degrees C, 16.8 MPa. The
155293    microstructures of these specimens were investigated by transmission
155294    electron microscopy (TEM). It is found that the specimen treated by 800
155295    degrees C/500 degrees C had best corrosion resistance among all the
155296    specimens. TEM analysis of this specimen showed that, in addition to
155297    Zr(Fe, Cr)(2), there existed Zr-Nb-Fe type precipitates containing much
155298    more Nb element, which reduced niobium content in alpha Zr solid
155299    solution and, therefore, resulted in an improvement in the corrosion
155300    resistance of Zr-Sn-Nb-Fe-Cr zirconium alloy. (c) 2005 Elsevier B.V.
155301    All rights reserved.
155302 C1 Shanghai Univ, Instrumental Anal & Res Ctr, Shanghai 200444, Peoples R China.
155303 RP Liu, WQ, Shanghai Univ, Instrumental Anal & Res Ctr, POB 129, Shanghai
155304    200444, Peoples R China.
155305 EM wqliu@staff.shu.edu.cn
155306 CR BAEK JH, 2000, J NUCL MATER, V280, P235
155307    CHARQUET D, 1989, ASTM STP, V1023, P405
155308    COMSTOCK RJ, 1996, ASTM STP, V1295, P710
155309    GARZAROLLI F, 1989, ASTM STP, V1023, P202
155310    ISOBE T, 1991, ASTM STP, V1132, P346
155311    KIM YS, 2000, J NUCL MATER, V279, P335
155312    LI Q, 2002, RARE METAL MAT ENG, V31, P389
155313    LIU WQ, 2003, NUCL POWER NUCL, V24, P33
155314    MARDON JP, 2000, AM SOC TEST MATER, V1354, P505
155315    NIKULINA AV, 1996, ASTM STP, V1295, P785
155316    RUDLING P, 1989, ASTM STP, V1023, P213
155317    THORVALDSSON T, 1989, ASTM STP, V1023, P128
155318    ZHAO WJ, 2002, J CHIN SOC CORROS PR, V22, P124
155319    ZHOU BX, 1996, CNIC01074 SINRE0066
155320 NR 14
155321 TC 0
155322 SN 0022-3115
155323 J9 J NUCL MATER
155324 JI J. Nucl. Mater.
155325 PD MAY 15
155326 PY 2005
155327 VL 341
155328 IS 2-3
155329 BP 97
155330 EP 102
155331 PG 6
155332 SC Materials Science, Multidisciplinary; Mining & Mineral Processing;
155333    Nuclear Science & Technology
155334 GA 934DH
155335 UT ISI:000229686600001
155336 ER
155337 
155338 PT J
155339 AU Liu, JK
155340    Wu, QS
155341    Ding, YP
155342 TI Morphologies-controlled synthesis of CaWO4 crystals by a novel
155343    supramolecular template method
155344 SO JOURNAL OF CRYSTAL GROWTH
155345 DT Article
155346 DE supramolecules; template; synthesis; crystal
155347 ID GROWTH; MICROCRYSTAL; SCHEELITE; SURFACE; PBWO4
155348 AB The paper provides a novel method of using biomembrane/organic-addition
155349    supramolecular templates to control morphologies and sizes of CaWO4
155350    crystals. The method can be applied for the controlled synthesis of
155351    other inorganic crystals. (c) 2005 Elsevier B.V. All rights reserved.
155352 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
155353    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
155354 RP Wu, QS, Tongji Univ, Dept Chem, 1239 Siping Rd, Shanghai 200092,
155355    Peoples R China.
155356 EM qswu@mail.tongji.edu.cn
155357 CR AJIKUMAR PK, 2003, BIOMACROMOLECULES, V4, P1321
155358    CHO W, 1995, APPL PHYS LETT, V66, P1026
155359    COOPER TG, 2003, SURF SCI, V531, P159
155360    FAURE N, 1996, APPL PHYS B-LASERS O, V63, P593
155361    FERNANDEZ MS, 2001, MATRIX BIOL, V19, P79
155362    GAO PX, 2004, J PHYS CHEM B, V108, P7534
155363    GUO XM, 1999, IMAGING SCI J, V47, P29
155364    HU XL, 2004, LANGMUIR, V20, P1521
155365    KAMINSKII AA, 1999, APPL OPTICS, V38, P4533
155366    KIM DS, 1996, J MOL CATAL A-CHEM, V106, P93
155367    KOEPKE C, 1993, J LUMIN, V54, P345
155368    LI M, 1999, NATURE, V402, P393
155369    LIU ZP, 2004, LANGMUIR, V20, P214
155370    PENG Q, 2003, ANGEW CHEM INT EDIT, V42, P3027
155371    SHI HT, 2003, J AM CHEM SOC, V125, P3450
155372    SINELNIKOV BM, 1996, INORG MATER+, V32, P999
155373    SUN XM, 2003, J CHEM EUR, V9, P2229
155374    WANG BG, 1998, J INORG MATER, V13, P648
155375    WANG X, 2002, J AM CHEM SOC, V124, P2880
155376    WU QS, 2004, CRYST DES GROWTH, V4, P1028
155377    XIE B, 2002, J CRYST GROWTH, V235, P283
155378    YU SH, 2002, CHEM-EUR J, V8, P2937
155379    YU SH, 2003, NANO LETT, V3, P379
155380    ZHANG ZL, 2003, INORG CHEM COMMUN, V6, P1393
155381 NR 24
155382 TC 1
155383 SN 0022-0248
155384 J9 J CRYST GROWTH
155385 JI J. Cryst. Growth
155386 PD JUN 1
155387 PY 2005
155388 VL 279
155389 IS 3-4
155390 BP 410
155391 EP 414
155392 PG 5
155393 SC Crystallography
155394 GA 934DD
155395 UT ISI:000229686200024
155396 ER
155397 
155398 PT J
155399 AU Ding, XH
155400    Yamazaki, K
155401 TI Adaptive growth technique of stiffener layout pattern for plate and
155402    shell structures to achieve minimum compliance
155403 SO ENGINEERING OPTIMIZATION
155404 DT Article
155405 DE structural optimization; plates; shells; stiffener layout; minimum
155406    compliance
155407 ID TOPOLOGY OPTIMIZATION; OPTIMAL-DESIGN; TREE
155408 AB A new and effective generation method for the stiffener layout pattern
155409    for plate and shell structures to achieve minimum compliance, the
155410    so-called adaptive growth technique, is suggested in this paper. The
155411    method is based on the adaptive growth rule of branch systems in nature
155412    that branches grow and branch off automatically towards such directions
155413    that can improve the global functional performance, such as the maximum
155414    absorption of sunlight or water. It is expected that a plate or shell
155415    structure can achieve good mechanical performance if the stiffeners
155416    extend by obeying a similar adaptive growing and branching rule as
155417    branch systems in nature. The stiffeners, starting from the so-called
155418    seeds, grow and branch off towards the direction with the maximum
155419    effectiveness of the global mechanical performance, which is dependent
155420    on the design sensitivity of the current structure. During the growth
155421    process, the volume increment is controlled so as to make it possible
155422    to create new branches and to eliminate degenerate branches. The
155423    validity and effectiveness of the suggested method are confirmed by
155424    some typical stiffener layout design problems.
155425 C1 Kanazawa Univ, Dept Human & Mech Syst Engn, Kanazawa, Ishikawa 9208667, Japan.
155426    Shanghai Univ Sci & Technol, Sch Mech Engn, Shanghai 200093, Peoples R China.
155427 RP Yamazaki, K, Kanazawa Univ, Dept Human & Mech Syst Engn, Kodatsuno
155428    2-40-20, Kanazawa, Ishikawa 9208667, Japan.
155429 EM yamazaki@t.kanazawa-u.ac.jp
155430 CR BENDSOE MP, 1988, COMPUT METHOD APPL M, V71, P197
155431    CHENG KT, 1981, INT J SOLIDS STRUCT, V17, P305
155432    CHENG KT, 1982, INT J SOLIDS STRUCT, V18, P153
155433    FISHER JB, 1977, BOT GAZ, V138, P377
155434    HASSANI B, 1999, HOMOGENIZATION STRUC
155435    HONDA H, 1971, J THEOR BIOL, V31, P331
155436    KROG LA, 1999, COMPUT STRUCT, V72, P535
155437    LAM YC, 2003, STRUCT MULTIDISCIP O, V25, P35
155438    LUO J, 1998, STRUCT OPTIMIZATION, V16, P280
155439    ODA J, 1998, T JPN SOC MECH ENG A, V64, P236
155440    ODA J, 1999, JSME INT J A-SOLID M, V42, P348
155441    OLHOFF N, 1998, STRUCT OPTIMIZATION, V16, P1
155442    SCHREINER W, 2000, SFI S SCI C, P145
155443    TAKANASHI S, 1999, EUR RESPIR J, V14, P309
155444    YAMAZAKI K, 1988, T JPN SOC MECH ENG A, V54, P1165
155445 NR 15
155446 TC 0
155447 SN 0305-215X
155448 J9 ENG OPTIMIZ
155449 JI Eng. Optimiz.
155450 PD APR
155451 PY 2005
155452 VL 37
155453 IS 3
155454 BP 259
155455 EP 276
155456 PG 18
155457 SC Engineering, Multidisciplinary; Operations Research & Management Science
155458 GA 933HT
155459 UT ISI:000229620200003
155460 ER
155461 
155462 PT J
155463 AU Tang, T
155464    Chen, XC
155465    Chen, H
155466    Meng, XY
155467    Jiang, ZW
155468    Bi, WG
155469 TI Catalyzing carbonization of polypropylene itself by supported nickel
155470    catalyst during combustion of polypropylene/clay nanocomposite for
155471    improving fire retardancy
155472 SO CHEMISTRY OF MATERIALS
155473 DT Article
155474 ID LAYERED-SILICATE NANOCOMPOSITES; FLAMMABILITY PROPERTIES; POLYMER
155475 C1 Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China.
155476    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
155477 RP Tang, T, Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab
155478    Polymer Phys & Chem, Changchun 130022, Peoples R China.
155479 EM ttang@ciac.jl.cn
155480 CR ALEXANDRE M, 2000, MAT SCI ENG R, V28, P1
155481    BARTHOLMAI M, 2004, POLYM ADVAN TECHNOL, V15, P355
155482    BEYER G, 2001, FIRE MATER, V25, P193
155483    BOCKHORN H, 1985, J ANAL APPL PYROL, V8, P427
155484    BOURBIGOT S, 2004, POLYM DEGRAD STABIL, V84, P483
155485    GILMAN JW, 1997, SAMPE J, V33, P40
155486    GILMAN JW, 2000, CHEM MATER, V12, P1866
155487    GILMAN JW, 2000, POLYM CLAY NANOCOMPO
155488    KASHIWAGI T, 2004, POLYMER, V45, P4227
155489    LEWIN M, 2003, FIRE MATER, V27, P1
155490    TANG T, 2005, ANGEW CHEM INT EDIT, V44, P1517
155491    WAGENKNECHT U, 2003, MACROMOL SYMP, V194, P207
155492    XIE RC, 2001, J APPL POLYM SCI, V80, P1181
155493    ZANETTI M, 2001, MACROMOL RAPID COMM, V22, P176
155494    ZANETTI M, 2001, POLYM DEGRAD STABIL, V74, P414
155495    ZANETTI M, 2002, CHEM MATER, V14, P189
155496    ZANETTI M, 2002, CHEM MATER, V14, P881
155497    ZHU J, 2001, CHEM MATER, V13, P3774
155498    ZHU J, 2001, CHEM MATER, V13, P4649
155499 NR 19
155500 TC 0
155501 SN 0897-4756
155502 J9 CHEM MATER
155503 JI Chem. Mat.
155504 PD MAY 31
155505 PY 2005
155506 VL 17
155507 IS 11
155508 BP 2799
155509 EP 2802
155510 PG 4
155511 SC Chemistry, Physical; Materials Science, Multidisciplinary
155512 GA 933TO
155513 UT ISI:000229656000005
155514 ER
155515 
155516 PT J
155517 AU Xia, TC
155518    You, FC
155519 TI The multi-component TA hierarchy and its multi-component integrable
155520    couplings system with six arbitrary functions
155521 SO CHAOS SOLITONS & FRACTALS
155522 DT Article
155523 ID COUPLED BURGERS HIERARCHY; BI-HAMILTONIAN STRUCTURE; SOLITON-EQUATIONS;
155524    LOOP ALGEBRA; CONSTRAINED FLOWS; AKNS HIERARCHY; NONLINEARIZATION;
155525    EVOLUTION; MODELS; FAMILY
155526 AB A new simple 3M dimensional loop algebra (X) over tilde is produced,
155527    whose commutation operation defined by us as simple and straightforward
155528    as that in the loop algebra (A) over tilde (1). It follows that a
155529    general scheme for generating multi-component integrable hierarchy is
155530    proposed. By taking advantage of (X) over tilde, a new isospectral
155531    problem is established, and then by making use of the Tu scheme the
155532    well-known multi-component TA hierarchy is obtained. Finally, an
155533    expanding loop algebra (F) over tilde (M) of the loop algebra (X) over
155534    tilde is presented, based on the (F) over tilde (M), the
155535    multi-component integrable couplings system of the multi-component TA
155536    hierarchy with six arbitrary functions are worked out. The method in
155537    this paper can be applied to other nonlinear evolution equations
155538    hierarchies. It is easy to find that we can construct any
155539    finite-dimensional Lie algebra by this approach in this paper. (c) 2005
155540    Elsevier Ltd. All rights reserved.
155541 C1 Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China.
155542    Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
155543    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
155544 RP Xia, TC, Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China.
155545 EM xiatc@yahoo.com.cn
155546    fcyou2008@yahoo.com.cn
155547 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
155548    CAO CW, 1990, SCI CHINA SER A, V33, P528
155549    FAN E, 2001, J PHYS A-MATH GEN, V34, P513
155550    FAN E, 2001, PHYSICA A, V301, P105
155551    FAN EG, 2000, J MATH PHYS, V41, P7769
155552    FUSSTEINER B, 1993, APPL ANAL GEOMETRIC, P125
155553    GUO FK, 2002, ACTA PHYS SIN-CH ED, V51, P951
155554    GUO FK, 2003, J MATH PHYS, V44, P5793
155555    LI Y, 1999, SOLITON INTEGRABLE S
155556    LI YS, 2000, PHYS LETT A, V275, P60
155557    MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
155558    MA WX, 1999, J MATH PHYS, V40, P4419
155559    MA WX, 2002, CHINESE ANN MATH B, V23, P373
155560    NEWELL AC, 1985, SOLITON MATH PHYS
155561    TSUCHIDA T, 1996, J PHYS SOC JPN, V65, P3153
155562    TSUCHIDA T, 1998, J PHYS SOC JPN, V67, P1175
155563    TSUCHIDA T, 1999, J PHYS SOC JPN, V69, P2241
155564    TSUCHIDA T, 1999, PHYS LETT A, V53, P257
155565    TU GZ, 1989, ACTA MATH APPL SINIC, V5, P89
155566    TU GZ, 1989, J MATH PHYS, V30, P330
155567    XIA TC, 2004, CHAOS SOLITON FRACT, V22, P939
155568    XIA TC, 2004, COMMUN THEOR PHYS, V42, P180
155569    XIA TC, 2004, COMMUN THEOR PHYS, V42, P494
155570    XIA TC, 2004, PHYSICA A, V343, P238
155571    XIA TC, 2005, CHAOS SOLITON FRACT, V23, P1033
155572    XIA TC, 2005, CHAOS SOLITON FRACT, V23, P1163
155573    XU XX, 2004, COMMUN THEOR PHYS, V41, P321
155574    XU XX, 2004, PHYS LETT A, V326, P199
155575    ZENG YB, 1991, PHYS LETT A, V160, P541
155576    ZENG YB, 1996, J PHYS A-MATH GEN, V29, P5241
155577    ZHANG DJ, 2002, J PHYS A-MATH GEN, V35, P7225
155578    ZHANG YF, 2003, ACTA PHYS SIN-CH ED, V52, P5
155579    ZHANG YF, 2003, ACTA PHYS SINICA, V53, P2190
155580    ZHANG YF, 2003, CHAOS SOLITON FRACT, V18, P855
155581    ZHANG YF, 2003, CHINESE PHYS, V12, P1194
155582    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P305
155583    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P413
155584 NR 37
155585 TC 0
155586 SN 0960-0779
155587 J9 CHAOS SOLITON FRACTAL
155588 JI Chaos Solitons Fractals
155589 PD OCT
155590 PY 2005
155591 VL 26
155592 IS 2
155593 BP 605
155594 EP 613
155595 PG 9
155596 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
155597 GA 933SW
155598 UT ISI:000229654200033
155599 ER
155600 
155601 PT J
155602 AU Xia, TC
155603    Chen, XH
155604    Chen, DY
155605 TI Darboux transformation and soliton-like solutions of nonlinear
155606    Schrodinger equations
155607 SO CHAOS SOLITONS & FRACTALS
155608 DT Article
155609 ID SYSTEMS; HIERARCHY
155610 AB In this Letter, a systematic method is presented to construct c the
155611    Darboux transformation with multi-parameters for the coupled nonlinear
155612    Schrodinger equations, from which the solutions of Schrodinger
155613    equations are reduced to solving a linear algebraic system and a
155614    constraint differential equation. With the aid of symbolic computation,
155615    new soliton-like solutions for the nonlinear Schrodinger equations are
155616    obtained by using its Darboux transformation. (c) 2005 Elsevier Ltd.
155617    All rights reserved.
155618 C1 Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China.
155619    Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
155620    Anshan Univ Sci & Technol, Dept Math, Anshan 114007, Peoples R China.
155621    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
155622 RP Xia, TC, Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China.
155623 EM xiatc@yahoo.com.cn
155624 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
155625    CHEN HH, 1979, PHYS SCR, V20, P490
155626    CIESLINSKI J, 1995, J MATH PHYS, V36, P1567
155627    CLARKSON PA, 1990, J PHYS A-MATH GEN, V23, P4269
155628    CLARKSON PA, 2003, J PHYS A, P20
155629    ESTEVEZ PG, 1999, J MATH PHYS, V40, P1406
155630    FAN EG, 2000, J MATH PHYS, V41, P2058
155631    FAN EG, 2000, J PHYS A-MATH GEN, V33, P6925
155632    GERDJIKOV VS, 1983, BULG J PHYS, V10, P130
155633    GU CH, 1986, LETT MATH PHYS, V11, P325
155634    GU CH, 1994, LETT MATH PHYS, V19, P9
155635    JOHNSON RS, 1977, P ROY SOC LOND A MAT, V357, P131
155636    KAKEI S, 1995, J PHYS SOC JPN, V64, P1519
155637    KAUP DJ, 1978, J MATH PHYS, V19, P798
155638    KODAMA Y, 1985, J START PHYS, V39, P957
155639    KUNDU A, 1984, J MATH PHYS, V25, P3433
155640    KUNDU A, 1987, PHYSICA D, V25, P399
155641    LEVI D, 1988, INVERSE PROBL, V4, P165
155642    TU GZ, 1990, RES REPORTS PHYSICS, P2
155643    WADATI M, 1983, J PHYS SOC JPN, V52, P1519
155644    ZENG YB, 1994, PHYSICA D, V73, P171
155645    ZHOU ZX, 1998, LETT MATH PHYS, V32, P1
155646 NR 22
155647 TC 0
155648 SN 0960-0779
155649 J9 CHAOS SOLITON FRACTAL
155650 JI Chaos Solitons Fractals
155651 PD NOV
155652 PY 2005
155653 VL 26
155654 IS 3
155655 BP 889
155656 EP 896
155657 PG 8
155658 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
155659 GA 934UQ
155660 UT ISI:000229734700024
155661 ER
155662 
155663 PT J
155664 AU Sun, YP
155665    Bi, JB
155666    Chen, DY
155667 TI N-soliton solutions and double Wronskian solution of the
155668    non-isospectral AKNS equation
155669 SO CHAOS SOLITONS & FRACTALS
155670 DT Article
155671 ID BACKLUND TRANSFORMATION; MULTISOLITON SOLUTIONS; KORTEWEG-DEVRIES
155672 AB The bilinear equation of the non-isospectral AKNS equation is derived.
155673    The N-soliton solutions and the double Wronskian solution are obtained
155674    through the Hirota method and the Wronskian technique, respectively. A
155675    non-isospectral Schrodinger equation and its multi-soliton solutions
155676    are given by reducing. (c) 2005 Elsevier Ltd. All rights reserved.
155677 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
155678 RP Sun, YP, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
155679 EM yepsun@163.com
155680 CR ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
155681    CHEN DY, 1996, J MATH PHYS, V37, P5524
155682    CHEN DY, 2002, J PHYS SOC JPN, V71, P658
155683    DENG SF, 2001, J PHYS SOC JPN, V70, P3174
155684    FREEMAN NC, 1983, PHYS LETT A, V95, P1
155685    GARDNER CS, 1967, PHYS REV LETT, V19, P1095
155686    HIROTA R, 1971, PHYS REV LETT, V27, P1192
155687    MATVEEV VB, 1991, DARBOUX TRANSFORMATI
155688    NIMMO JJC, 1983, PHYS LETT A, V95, P4
155689    NIMMO JJC, 1983, PHYS LETT A, V99, P279
155690    WADATI M, 1975, PROG THEOR PHYS, V53, P419
155691    WADATI M, 1979, J PHYS SOC JPN, V46, P1965
155692    ZHANG DJ, 2002, J PHYS SOC JPN, V71, P2649
155693 NR 13
155694 TC 1
155695 SN 0960-0779
155696 J9 CHAOS SOLITON FRACTAL
155697 JI Chaos Solitons Fractals
155698 PD NOV
155699 PY 2005
155700 VL 26
155701 IS 3
155702 BP 905
155703 EP 912
155704 PG 8
155705 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
155706 GA 934UQ
155707 UT ISI:000229734700026
155708 ER
155709 
155710 PT J
155711 AU Zhang, HB
155712    Chen, LQ
155713    Liu, RW
155714    Gu, SL
155715 TI The generalized Hojman's theorem
155716 SO ACTA PHYSICA SINICA
155717 DT Article
155718 DE dynamical system; generalization Hojman's theorem; Lie symmetry;
155719    conserved quantity
155720 ID CONSERVED QUANTITIES; FORM INVARIANCE; LIE SYMMETRY; SYSTEMS;
155721    EQUATIONS; LAW
155722 AB A new conservation theorem is studied, the conserved quantity is only
155723    constructed in terms of the infinitesimal generators tau ( t, q, q) and
155724    xi, ( t, q, q) of Lie symmetry of the dynamical equations. Three
155725    special cases are discussed, where the Hojman conserved quantity can be
155726    deduced as a corollary of this general conservation theorem at tau( t,
155727    q, q) = 0, and the Lutzky conserved quantity can be derived by using
155728    this general conservation theorem at tau = tau ( t, q) and xi(s) =
155729    xi(s) ( t, q). Moreover, a condition is presented to exclude trivial
155730    conserved quantities. Finally, two examples to illustrate the
155731    application of the results are given.
155732 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
155733    Chaohu Coll, Dept Phys, Chaohu 238000, Peoples R China.
155734    Shaoguan Univ, Dept Phys, Shaoguan 512005, Peoples R China.
155735 RP Zhang, HB, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
155736    200072, Peoples R China.
155737 CR FU JL, 2004, CHINESE PHYS, V13, P287
155738    GONZALEZGASCON F, 1994, J PHYS A-MATH GEN, V27, L59
155739    HOJMAN SA, 1992, J PHYS A, V25, P291
155740    LUO SK, 2004, ACTA PHYS SIN-CH ED, V53, P666
155741    LUTZKY M, 1979, J PHYS A, V12, P973
155742    LUTZKY M, 1979, PHYS LETT A, V75, P8
155743    LUTZKY M, 1995, J PHYS A-MATH GEN, V28, L637
155744    MEI FX, 2000, J BEIJING I TECHNOL, V9, P120
155745    MEI FX, 2001, CHINESE PHYS, V10, P177
155746    MEI FX, 2001, J BEIJING I TECHNOL, V10, P138
155747    MEI FX, 2002, CHINESE SCI BULL, V47, P1544
155748    MEI FX, 2003, ACTA PHYS SIN-CH ED, V52, P1048
155749    MEI FX, 2004, J DYN CONTROL, V2, P28
155750    NOETHER AE, 1918, NACHR AKAD WISS GO 2, P235
155751    PILLAY T, 1996, J PHYS A-MATH GEN, V29, P6999
155752    WANG SY, 2001, CHINESE PHYS, V10, P373
155753    WANG SY, 2002, CHINESE PHYS, V11, P5
155754    ZHANG HB, 2005, J PHYS SOC JPN, V74, P905
155755    ZHANG RC, 2001, THESIS BEIJING I TEC
155756    ZHANG Y, 2002, ACTA PHYS SIN-CH ED, V51, P461
155757 NR 20
155758 TC 3
155759 SN 1000-3290
155760 J9 ACTA PHYS SIN-CHINESE ED
155761 JI Acta Phys. Sin.
155762 PD JUN
155763 PY 2005
155764 VL 54
155765 IS 6
155766 BP 2489
155767 EP 2493
155768 PG 5
155769 SC Physics, Multidisciplinary
155770 GA 934CO
155771 UT ISI:000229684700007
155772 ER
155773 
155774 PT J
155775 AU Zhao, CY
155776    Tan, WH
155777 TI The solution of phase-mismatched Fokker-Planck equation and its
155778    application in the QPM device
155779 SO ACTA PHYSICA SINICA
155780 DT Article
155781 DE degenerate parametric amplification; phase-mismatched Fokker-Planck
155782    equation; QPM technique
155783 ID PARAMETRIC AMPLIFICATION; GENERATION; LIGHT
155784 AB A new analytical solution for the phase-mismatched Fokker-Planck
155785    equation of degenerate parametric amplification, and its application in
155786    evaluation of the amplitude quantum fluctuation after passing through
155787    the quasi-phase-matching(QPM) device is presented. The calculated
155788    results for QPM device, agree with that of the Langevin equation in the
155789    case of no loss k = 0, and give a general solution for k not equal 0,
155790    from which we can derive the influence of squeezing on the loss
155791    coefficient k.
155792 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
155793 RP Zhao, CY, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
155794 CR ARMSTRONG JA, 1962, PHYS REV, V127, P1918
155795    BENCHEIKH K, 1995, J OPT SOC AM B, V12, P847
155796    BOYD RW, 1992, NONLINEAR OPTICS, P75
155797    CHICKARMANE VS, 1998, OPT LETT, V23, P1132
155798    FEJER MM, 1992, IEEE J QUANTUM ELECT, V28, P2631
155799    LI YM, 2002, CHINESE PHYS, V11, P790
155800    LONGHI S, 2002, PHYS REV A, V66
155801    NOIRIE L, 1997, J OPT SOC AM B, V14, P1
155802    SHEN YR, 1984, PRINCIPLES NONLINEAR, P127
155803    TAN WH, 1987, OPT COMMUN, V64, P196
155804    TAN WH, 1988, ACTA PHYS SINICA, V37, P396
155805    YAO JH, 1999, CHIN J QUANT ELECT, V16, P289
155806    ZHAO CY, 2003, ACTA PHYS SIN-CH ED, V52, P2694
155807    ZHU S, 1997, SCIENCE, V278, P843
155808 NR 14
155809 TC 0
155810 SN 1000-3290
155811 J9 ACTA PHYS SIN-CHINESE ED
155812 JI Acta Phys. Sin.
155813 PD JUN
155814 PY 2005
155815 VL 54
155816 IS 6
155817 BP 2723
155818 EP 2730
155819 PG 8
155820 SC Physics, Multidisciplinary
155821 GA 934CO
155822 UT ISI:000229684700047
155823 ER
155824 
155825 PT J
155826 AU Fang, JP
155827    Ren, QB
155828    Zheng, CL
155829 TI New exact solutions and fractal localized structures for the
155830    (2+1)-dimensional Boiti-Leon-Pempinelli system
155831 SO ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES
155832 DT Article
155833 DE extended mapping approach; Boiti-Leon-Pempinelli system; fractal soliton
155834 ID VARIABLE SEPARATION EXCITATIONS; NONLINEAR SCHRODINGER SYSTEM; EXTENDED
155835    MAPPING APPROACH; DISPERSIVE WAVE SYSTEM; SIMILARITY REDUCTIONS;
155836    BOUSSINESQ EQUATION; COHERENT STRUCTURES; SOLITON-SOLUTIONS; CHAOS
155837 AB In this work, a novel phenomenon that localized coherent structures of
155838    a (2+1)-dimensional physical model possess fractal properties is
155839    discussed. To clarify this interesting phenomenon, we take the
155840    (2+1)-dimensional Boiti-Leon-Pempinelli (BLP) system as a concrete
155841    example. First, with the help of an extended mapping approach, a new
155842    type of variable separation solution with two arbitrary functions is
155843    derived. Based on the derived solitary wave excitation, we reveal some
155844    special regular fractal and stochastic fractal solitons in the
155845    (2+1)-dimensional BLP system.
155846 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
155847    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
155848 RP Zheng, CL, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R
155849    China.
155850 EM zjclzheng@yahoo.com.cn
155851 CR BOITI M, 1987, INVERSE PROBL, V3, P37
155852    CHEN HS, 2000, CHINESE PHYS LETT, V17, P85
155853    CLARKSON PA, 1989, J MATH PHYS, V30, P2201
155854    FAN EG, 2001, PHYS LETT A, V282, P18
155855    GARAGASH TI, 1994, THEOR MATH PHYS, V100, P1075
155856    GEDALIN M, 1997, PHYS REV LETT, V78, P448
155857    GOLLUB JP, 2000, NATURE, V404, P710
155858    KIVSHAR YS, 1989, REV MOD PHYS, V61, P765
155859    LI B, 2003, Z NATURFORSCH A, V58, P464
155860    LOU SY, 1989, J MATH PHYS, V30, P1614
155861    LOU SY, 1990, PHYS LETT A, V151, P133
155862    LOU SY, 1997, J MATH PHYS, V38, P6401
155863    LOU SY, 2002, CHINESE PHYS LETT, V19, P769
155864    LOUTSENKO I, 1997, PHYS REV LETT, V78, P3011
155865    LU ZS, 2004, CHAOS SOLITON FRACT, V19, P527
155866    STEGEMAN GI, 1999, SCIENCE, V286, P1518
155867    TANG XY, 2002, PHYS REV E, V66, P46601
155868    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P448
155869    ZHENG CL, 2002, ACTA PHYS SIN-CH ED, V51, P2426
155870    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
155871    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
155872    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P261
155873    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
155874    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P385
155875    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
155876    ZHENG CL, 2004, COMMUN THEOR PHYS, V41, P671
155877    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
155878    ZHENG CL, 2004, Z NATURFORSCH A, V59, P912
155879    ZHENG CL, 2005, CHAOS SOLITON FRACT, V23, P1741
155880 NR 29
155881 TC 4
155882 SN 0932-0784
155883 J9 Z NATURFORSCH SECT A
155884 JI Z. Naturfors. Sect. A-J. Phys. Sci.
155885 PD APR
155886 PY 2005
155887 VL 60
155888 IS 4
155889 BP 245
155890 EP 251
155891 PG 7
155892 SC Chemistry, Physical; Physics, Multidisciplinary
155893 GA 930RE
155894 UT ISI:000229433100005
155895 ER
155896 
155897 PT J
155898 AU Wei, JH
155899    Zhu, HL
155900    Yan, SL
155901    Wang, XC
155902    Ma, JC
155903    Shi, GM
155904    Jiang, QY
155905    Chi, HB
155906    Che, LB
155907    Zhang, K
155908 TI Preliminary investigation of fluid mixing characteristics during side
155909    and top combined blowing AOD refining process of stainless steel
155910 SO STEEL RESEARCH INTERNATIONAL
155911 DT Article
155912 DE stainless steel; AOD refining; side and top combined blowing; mixing
155913    characteristics; water modelling
155914 ID GAS-FLOW PROPERTIES; HEAT-SOURCE; CONVERTER; TUYERE; LANCE; MODEL
155915 AB The fluid mixing characteristics in the bath during the side and top
155916    combined blowing AOD (argon-oxygen decarburization) refining process of
155917    stainless steel were preliminarily investigated on a water model unit
155918    of a 120 t AOD converter. The geometric similarity ratio between the
155919    model and its prototype (including the side tuyeres and the top lances)
155920    was 1:4. On the basis of the theoretical calculations for the
155921    parameters of the gas streams in the side tuyeres and the top lances,
155922    the gas blowing rates used for the model were more reasonably
155923    determined. The influence of the tuyere number and position
155924    arrangement, and the gas flow rates for side and top blowing on the
155925    characteristics was examined. The results demonstrated that the liquid
155926    in the bath underwent vigorous circulatory motion during gas blowing,
155927    without obvious dead zone in the bath, resulting in a high mixing
155928    effectiveness. The gas flow rate of the main tuyere had a governing
155929    role on the characteristics, a suitable increase in the gas flow rate
155930    of the subtuyere could improve mixing efficiency, and the gas jet from
155931    the top lance made the mixing time prolong. Corresponding to the oxygen
155932    top blowing rate specified by the technology, a roughly equivalent and
155933    good mixing effectiveness could be reached by using six side tuyeres
155934    with an angle of 27 degrees between each tuyere, and five side tuyeres
155935    with an angular separation of 22.5 or 27 degrees between each tuyere.
155936    The relationships of the mixing time with the gas blowing rates of
155937    main-tuyeres and sub-tuyeres and top lance, the angle between each
155938    tuyere, and the tuyere number were evaluated.
155939 C1 Shanghai Univ, Dept Met Mat, Coll Mat Sci & Engn, Shanghai 200072, Peoples R China.
155940    Shanghai Iron & Steel Co Ltd 1, Bao Steel Grp Corp, Shanghai, Peoples R China.
155941 RP Wei, JH, Shanghai Univ, Dept Met Mat, Coll Mat Sci & Engn, 149 Yan
155942    Chang Rd, Shanghai 200072, Peoples R China.
155943 EM jihew@hotmail.com
155944 CR FABRITIUS T, 2001, SCAND J METALL, V30, P57
155945    FABRITIUS TMJ, 2001, STEEL RES, V72, P237
155946    FABRITIUS TMJ, 2003, ISIJ INT, V43, P1177
155947    GORGES H, 1978, 3 INT IR STEEL C P A, P161
155948    SHU JH, 2004, THESIS SHANGHAI U
155949    TOHGE T, 1984, 4 PROC TECHN C P ISS, P129
155950    WEI JH, 1999, IRONMAK STEELMAK, V26, P363
155951    WEI JH, 2000, IRONMAK STEELMAK, V27, P294
155952    WEI JH, 2001, STEEL RES, V72, P161
155953    WEI JH, 2001, STEEL RES, V72, P168
155954    WEI JH, 2002, METALL MATER TRANS B, V33, P111
155955    WEI JH, 2002, METALL MATER TRANS B, V33, P121
155956 NR 12
155957 TC 0
155958 SN 1611-3683
155959 J9 STEEL RES INT
155960 JI Steel Res. Int.
155961 PD MAY
155962 PY 2005
155963 VL 76
155964 IS 5
155965 BP 362
155966 EP 371
155967 PG 10
155968 SC Metallurgy & Metallurgical Engineering
155969 GA 932GJ
155970 UT ISI:000229541900004
155971 ER
155972 
155973 PT J
155974 AU Huang, S
155975    Li, L
155976    Van der Biest, O
155977    Vleugels, J
155978 TI Influence of the oxygen partial pressure on the reduction of CeO2 and
155979    CeO2-ZrO2 ceramics
155980 SO SOLID STATE SCIENCES
155981 DT Article
155982 DE CeO2-ZrO2-CeO1.5; thermodynamics; CezZr1-zO2-x; ceria reduction;
155983    catalyst
155984 ID STORAGE CAPACITY; THERMODYNAMIC ASSESSMENT; STRUCTURAL-PROPERTIES;
155985    SOLID-SOLUTIONS; PHASE-DIAGRAM; SYSTEM; OXIDE; CERIA; ENHANCEMENT;
155986    PREDICTION
155987 AB Based on recent thermodynamic estimations on the CeO2-CeO1.5, CeO2-ZrO2
155988    and CeO1.5-ZrO2 systems, isothermal sections of the ternary
155989    CeO2-ZrO2-CeO1.5 system are calculated in the 1300-1700 degrees C
155990    region. Additionally, the complex relation between the
155991    nonstoichiometry, gamma, in CeO2-y, the composition of the CeO2-ZrO2
155992    solid solution and the oxygen partial pressure (PO2) for different ZrO2
155993    containing solid solutions CezZr1-zO2-x (with z = 0.2, 0.5, 0.8) are
155994    evaluated from 600 to 900 degrees C. The relation between the degree of
155995    Ce+4 to Ce+3 reduction under different PO2 in the fluorite CeO2-y and
155996    CezZr1-zO2-x, solid solutions at different temperatures can be used as
155997    a guide in the development of functional ceramics or assist in
155998    explaining their performance as function of the operating atmosphere
155999    and temperature. (c) 2005 Elsevier SAS. All rights reserved.
156000 C1 Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Heverlee, Belgium.
156001    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
156002 RP Vleugels, J, Katholieke Univ Leuven, Dept Met & Mat Engn, Kasteekpk
156003    Arenberg 44, B-3001 Heverlee, Belgium.
156004 EM jozef.vleugels@mtm.kuleuven.ac.be
156005 CR CAMPSERVEUX J, 1978, J SOLID STATE CHEM, V23, P73
156006    CHO BK, 1991, J CATAL, V131, P74
156007    DELEITENBURG C, 1996, APPL CATAL B-ENVIRON, V11, L29
156008    DU Y, 1991, J AM CERAM SOC, V74, P1569
156009    DU Y, 1991, J AM CERAM SOC, V74, P2107
156010    FORNASIERO P, 1995, J CATAL, V151, P168
156011    FORNASIERO P, 1996, J CATAL, V164, P173
156012    GUILLERMET AF, 1981, METALL T B, V12, P745
156013    HILLERT M, 1975, METALL T B, V6, P37
156014    HUANG S, 2002, J MATER SCI TECHNOL, V16, P422
156015    HUANG SG, 2002, J MATER SCI TECHNOL, V18, P325
156016    HUANG SG, 2003, J EUR CERAM SOC, V23, P99
156017    INABA H, 1996, SOLID STATE IONICS, V83, P1
156018    IZU N, 2001, SCI TECHNOL ADV MAT, V2, P397
156019    KASPAR J, 1999, CATAL TODAY, V50, P285
156020    KASPAR J, 2003, INORG CHIM ACTA, V349, P217
156021    KAUFMAN L, 1978, CALPHAD, V2, P35
156022    LI L, 1996, J MATER SCI TECHNOL, V12, P159
156023    LI L, 2001, J EUR CERAM SOC, V21, P2903
156024    LI L, 2001, J MATER SCI TECHNOL, V17, P529
156025    LINDEMER TB, 1986, J AM CERAM SOC, V69, P867
156026    MAMONTOV E, 2000, J PHYS CHEM B, V104, P11110
156027    MUROTA T, 1993, J ALLOY COMPD, V193, P298
156028    SUNDMAN B, 1985, CALPHAD, V9, P153
156029    TROVARELLI A, 2001, J ALLOY COMPD, V323, P584
156030    VLEUGELS J, 2004, SCRIPTA MATER, V50, P679
156031    ZHU WZ, 2003, MAT SCI ENG A-STRUCT, V362, P228
156032 NR 27
156033 TC 1
156034 SN 1293-2558
156035 J9 SOLID STATE SCI
156036 JI Solid State Sci.
156037 PD MAY
156038 PY 2005
156039 VL 7
156040 IS 5
156041 BP 539
156042 EP 544
156043 PG 6
156044 SC Chemistry, Inorganic & Nuclear; Chemistry, Physical; Physics, Condensed
156045    Matter
156046 GA 930NB
156047 UT ISI:000229421600007
156048 ER
156049 
156050 PT J
156051 AU Guan, XH
156052    Li, GH
156053    Ma, ZW
156054 TI A novel low-pass filter using defected ground structures
156055 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
156056 DT Article
156057 DE defected ground structure; equivalent circuit; optimization; low-pass
156058    filter
156059 ID DESIGN; LINE
156060 AB In this paper, an equivalent-circuit model of a defected ground
156061    structure (DGS) is applied to explain the characteristics of the DGS.
156062    The parameters of the circuit model are extracted from the
156063    EM-simulation results. A novel three-pole lowpass filter is proposed
156064    and optimized by using the defected ground structures. It is
156065    demonstrated that the filter can provide a sharp rate of attenuation in
156066    the stop-band, as predicted. To further verify this method, the filter
156067    with DGS is fabricated on a 30 x 30 mm(2) substrate. A comparison
156068    between the simulation and the measurement confirms the effectiveness
156069    of the proposed schemes. (c) 2005 Wiley Periodicals, Inc.
156070 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
156071 RP Guan, XH, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
156072    Peoples R China.
156073 CR AHN D, 2001, IEEE T MICROW THEORY, V49, P86
156074    HONG JS, 2000, MICRO STRIP FILTERS
156075    KIM CS, 2000, IEEE MICROW GUIDED W, V10, P131
156076    LIM JS, 2002, ELECTRON LETT, V38, P1357
156077    LIM JS, 2002, IEEE MTT-S, P1153
156078    PARK JS, 2002, IEEE T MICROW THEORY, V50, P2037
156079    YUN JS, 2000, IEEE MTT-S, P327
156080 NR 7
156081 TC 0
156082 SN 0895-2477
156083 J9 MICROWAVE OPT TECHNOL LETT
156084 JI Microw. Opt. Technol. Lett.
156085 PD JUL 5
156086 PY 2005
156087 VL 46
156088 IS 1
156089 BP 17
156090 EP 20
156091 PG 4
156092 SC Engineering, Electrical & Electronic; Optics
156093 GA 931DU
156094 UT ISI:000229466800006
156095 ER
156096 
156097 PT J
156098 AU Wang, WX
156099    Ji, YH
156100 TI Scorpion venom induces glioma cell apoptosis in vivo and inhibits
156101    glioma tumor growth in vitro
156102 SO JOURNAL OF NEURO-ONCOLOGY
156103 DT Article
156104 DE apoptosis; BmK venom; channels; glioma; tumor inhibition
156105 ID BUTHUS-MARTENSI KARSCH; GATED SODIUM-CHANNELS; K+ CHANNEL; POTASSIUM
156106    CHANNELS; POSSIBLE MECHANISM; NA+ CHANNELS; BRAIN-TUMORS; BK CHANNELS;
156107    BMK; RAT
156108 AB Malignant gliomas are the main brain tumors notoriously resistant to
156109    currently available therapies, since they fail to undergo apoptosis
156110    upon anticancer treatment. Recent progress on enhanced studies of ion
156111    channels involved in glioma cells shed new light on the investigation
156112    of glioma cell growth and proliferation. Here we report BmK scorpion
156113    venom, a rich resource of various ion channels blockers/modulators,
156114    induces cell death of cultured malignant glioma U251-MG cells in vitro
156115    specifically at a dose of 10 mg/ml while shows no effect on human
156116    hepatocellular carcinoma cells and Chinese hamster ovary cells. The
156117    glioma cell death was then determined as apoptosis using
156118    4,6-diamidino-2-phenylindole staining and fluorescence-activated cell
156119    sorting analysis. After incubation with BmK venom for 32 and 40 h,
156120    36.20% and 63.08% of U251-MG cells showed apoptosis. Furthermore, BmK
156121    venom could significantly inhibit the tumor growth in vitro, which was
156122    assessed using U251-MG tumor xenografts on severe combined
156123    immunodeficiency mice. The tumor volume of the BmK venom treated mice
156124    is nearly 1/8 of that of control after 21 days, and the tumor weight is
156125    less than half of that of control. That BmK venom induces apoptosis and
156126    inhibits growth of glioma may result from the inhibition and/or
156127    modulation of various ion channels in glioma cells.
156128 C1 Chinese Acad Sci, Inst Physiol, Shanghai Inst Biol Sci, Shanghai 200031, Peoples R China.
156129    Shanghai Univ, Sch Life Sci, Shanghai, Peoples R China.
156130    Chinese Acad Sci, Grad Sch, Beijing 100864, Peoples R China.
156131 RP Ji, YH, Chinese Acad Sci, Inst Physiol, Shanghai Inst Biol Sci, 320
156132    Yueyang Rd, Shanghai 200031, Peoples R China.
156133 EM yhji@-server.shcnc.ac.cn
156134 CR BASRAI D, 2002, NEUROREPORT, V13, P403
156135    BORDEY A, 2000, J MEMBRANE BIOL, V176, P31
156136    BURTON EC, 2000, CURR TREAT OPTIONS O, V1, P459
156137    CHEN B, 2001, NEUROTOXICOL TERATOL, V23, P675
156138    CHEN B, 2002, TOXICON, V40, P527
156139    CHIN LS, 1997, J NEUROSCI RES, V48, P122
156140    DEBIN JA, 1993, AM J PHYSIOL, V264, C361
156141    DUBOIS JM, 1993, PROG BIOPHYS MOL BIO, V59, P1
156142    GOUDET C, 2002, TOXICON, V40, P1239
156143    HAWKINS CJ, 2004, VITAM HORM, V67, P427
156144    JI YH, 2002, EUR J PHARMACOL, V454, P25
156145    JI YH, 2003, J NEUROCHEM, V84, P325
156146    KLEIHUES P, 2002, J NEUROPATH EXP NEUR, V61, P215
156147    KOEGEL H, 2003, J BIOL CHEM, V278, P3323
156148    KRAFT R, 2003, PFLUG ARCH EUR J PHY, V446, P248
156149    LAWS ER, 1993, CA-CANCER J CLIN, V43, P263
156150    LI YJ, 2000, J NEUROSCI RES, V61, P541
156151    LI YJ, 2000, J PEPT RES, V56, P195
156152    LIU XJ, 2002, J NEUROSCI, V22, P1840
156153    MEI YA, 2000, BRAIN RES, V873, P46
156154    OLSEN ML, 2003, J NEUROSCI, V23, P5572
156155    OLSEN ML, 2004, GLIA, V46, P63
156156    PREUSSAT K, 2003, NEUROSCI LETT, V346, P33
156157    RANSOM CB, 2001, J NEUROPHYSIOL, V85, P790
156158    RANSOM CB, 2001, J NEUROSCI, V21, P7674
156159    SCHREY M, 2002, NEUROREPORT, V13, P2493
156160    SONTHEIMER H, 2003, TRENDS NEUROSCI, V26, P543
156161    SONTHEIMER H, 2004, MOL NEUROBIOL, V29, P61
156162    SOROCEANU L, 1999, J NEUROSCI, V19, P5942
156163    TAN ZY, 2001, NEUROPHARMACOLOGY, V40, P352
156164    TONG QC, 2000, REGUL PEPTIDES, V90, P85
156165    ZHANG XY, 2002, BRAIN RES BULL, V58, P27
156166 NR 32
156167 TC 0
156168 SN 0167-594X
156169 J9 J NEURO-ONCOL
156170 JI J. Neuro-Oncol.
156171 PD MAY
156172 PY 2005
156173 VL 73
156174 IS 1
156175 BP 1
156176 EP 7
156177 PG 7
156178 SC Clinical Neurology; Oncology
156179 GA 932UE
156180 UT ISI:000229578200001
156181 ER
156182 
156183 PT J
156184 AU Li, QS
156185    Liu, LQ
156186    Zhai, QJ
156187 TI Analysis of graphite morphology of gray cast iron in pulse magnetic
156188    field
156189 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
156190 DT Article
156191 DE pulse magnetic field; gray cast iron; graphite morphology;
156192    solidification
156193 AB By self-made pulse electrical source and strong magnetic field
156194    solidification tester, the effect of strong pulse magnetic field on
156195    graphite morphology and solidification structure of gray cast iron was
156196    studied. The results show that the structure is remarkably refined
156197    after treated by pulse magnetic field, and the width of graphite flakes
156198    is decreased while the length is increased after a slight decrease. The
156199    solidification temperature and eutectic temperature are increased and
156200    the undercooling degree of eutectic transformation is decreased by
156201    magnetic field.
156202 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
156203    Taiyuan Heavy Mech Inst, Taiyuan 030024, Peoples R China.
156204 RP Li, QS, Shanghai Univ, Shanghai 200072, Peoples R China.
156205 EM qjzhai@mail.shu.edu.cn
156206 CR ASAI S, 1989, ISIJ INT, V29, P981
156207    BASSYOUNI TA, 1983, LIGHT METAL, V33, P733
156208    GE FD, 1989, CHINESE J MECH ENG, V25, P1
156209    HAUS HA, 1992, ELECTROMAGNETIC FIEL
156210    NING ZL, 1997, CHINESE J NONFERROUS, V7, P129
156211    PURCELL EM, 1979, BERKELEY PHYS COURSE, V2
156212    VIVES C, 1996, METALL MATER TRANS B, V27, P445
156213    XING SM, 1998, SPECIAL CASTING NONF, P37
156214    ZI BT, 2000, ACTA PHYS SIN-CH ED, V49, P1010
156215 NR 9
156216 TC 0
156217 SN 1006-706X
156218 J9 J IRON STEEL RES INT
156219 JI J. Iron Steel Res. Int.
156220 PD MAR
156221 PY 2005
156222 VL 12
156223 IS 2
156224 BP 45
156225 EP 48
156226 PG 4
156227 SC Metallurgy & Metallurgical Engineering
156228 GA 931MO
156229 UT ISI:000229489600008
156230 ER
156231 
156232 PT J
156233 AU Qian, GG
156234    Zhang, HH
156235    Zhang, XL
156236    Chui, PC
156237 TI Modification of MSW fly ash by anionic chelating surfactant
156238 SO JOURNAL OF HAZARDOUS MATERIALS
156239 DT Article
156240 DE MSW fly ash; surface modification; anionic chelating surfactant; heavy
156241    metals
156242 ID STABILIZATION; WOLLASTONITE; INCINERATOR; COMPOSITES; TOXICITY; BEHAVIOR
156243 AB This paper elucidates a study on the re-utilization and stabilization
156244    of municipal solid waste (MSW) fly ash in producing a high value-added
156245    product by the surface modification of anionic chelating surfactant on
156246    the particles. After modification, MSW fly ash can be expected using as
156247    a filler of ultra-high molecular weight polymers. The effects of
156248    anionic chelating surfactants (ACS) on surface modification of MSW fly
156249    ash and fixing capacity for heavy metals were explored. Meanwhile, the
156250    interaction mechanism between surfactants and MSW fly ash was
156251    suggested. The results showed that anionic chelating surfactants can be
156252    used to effectively modify MSW fly ash particles and achieve a high
156253    active ratio. At the same time, they also exhibited a strong fixing
156254    capacity for heavy metals. Of the two modified MSW fly ash,
156255    ED3A-modified MSW fly ash has a much higher active ratio than
156256    MAP-modified MSW fly ash at over 95%, although its fixing capacity for
156257    heavy metals was a shade lower than MAP-modified MSW fly ash. &COPY;
156258    2005 Elsevier B.V. All rights reserved.
156259 C1 Shanghai Univ, Coll Environm Engn, Shanghai 200072, Peoples R China.
156260    Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 2263, Singapore.
156261 RP Qian, GG, Shanghai Univ, Coll Environm Engn, Shanghai 200072, Peoples R
156262    China.
156263 EM grqian@mail.shu.edu.cn
156264 CR *US EPA, 1986, 1311 US EPA
156265    AKTAS Z, 2000, FUEL PROCESS TECHNOL, V62, P1
156266    AMMANN AA, 2002, J CHROMATOGR A, V947, P205
156267    CRANNELL BS, 2000, WASTE MANAGE, V20, P135
156268    FERRIRA C, 2003, WEAR, V255, P734
156269    GAUTHIER D, 1999, CHEM ENG J, V74, P181
156270    JUNG CH, 2004, WASTE MANAGE, V24, P381
156271    KYUNGJIN H, 2000, J HAZARD MATER, V75, P57
156272    MARCUS Y, 1978, EQUILIBRIUM CONSTANT
156273    MIZUTANI S, 1996, WASTE MANAGE, V16, P537
156274    OSAKO M, 2004, CHEMOSPHERE, V54, P105
156275    POON CS, 1997, WASTE MANAGE, V17, P15
156276    RAO KH, 1998, COLLOID SURFACE A, V133, P107
156277    SECO JI, 2003, ECOTOX ENVIRON SAFE, V56, P339
156278    SUN Y, 2003, NEW SURFACE ACTIVE A
156279    TONG J, 2003, WEAR 1, V255, P734
156280    WANG YM, 2001, J HAZARD MATER, V88, P63
156281    WU W, 2003, POWDER TECHNOL, V137, P41
156282    XIAO J, 2002, APPL PRINCIPLE SURFA
156283    ZANA R, 2002, J COLLOID INTERF SCI, V248, P203
156284    ZHAO YC, 2002, J HAZARD MATER, V95, P47
156285 NR 21
156286 TC 0
156287 SN 0304-3894
156288 J9 J HAZARD MATER
156289 JI J. Hazard. Mater.
156290 PD MAY 20
156291 PY 2005
156292 VL 121
156293 IS 1-3
156294 BP 251
156295 EP 258
156296 PG 8
156297 SC Engineering, Civil; Engineering, Environmental; Environmental Sciences
156298 GA 932LZ
156299 UT ISI:000229556500030
156300 ER
156301 
156302 PT J
156303 AU Huang, S
156304    Vleugels, J
156305    Li, L
156306    Van der Biest, O
156307 TI Experimental investigation and thermodynamic assessment of the V-W-C
156308    system
156309 SO JOURNAL OF ALLOYS AND COMPOUNDS
156310 DT Article
156311 DE V-W-C; phase diagram; carbides; thermodynamics; interaction couple
156312 ID PHASE-DIAGRAMS
156313 AB Phase equilibrium information of the V-C, W-C and V-W systems are
156314    reviewed and the V-W phase diagram was optimized by the substitutional
156315    solution model for liquid and bcc phases. A set of self-consistent
156316    thermodynamic parameters on the interaction of W and V atoms in the fcc
156317    (V,W)C and hcp (VW)(2)C phases was established by CALPHAD techniques.
156318    The calculated isothermal section at 1500&DEG; C was consistent with
156319    the available experimental literature data of the V-W-C system. To
156320    validate the thermodynamic calculations, V8C7/WC interaction couples
156321    were annealed at 1400&DEG; C for 196 h and WC powder mixtures with 20,
156322    40 and 70 wt.% V8C7 were sintered at 1400&DEG; C for 15 h. The obtained
156323    materials were investigated by scanning electron microscopy (SEM),
156324    electron probe microanalysis (EPMA) and X-ray diffraction (XRD). The
156325    composition of the single phase fcc (VW)C reaction product in the
156326    interaction couple and the constituent phases of the sintered materials
156327    were consistent with the calculated phase diagram at 1400 &DEG; C.
156328    &COPY; 2004 Elsevier B.V. All rights reserved.
156329 C1 Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Heverlee, Belgium.
156330    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
156331 RP Vleugels, J, Katholieke Univ Leuven, Dept Met & Mat Engn, Kasteelpk
156332    Arenberg 44, B-3001 Heverlee, Belgium.
156333 EM jozef.vleugels@mtm.kuleuven.ac.be
156334 CR ARENAS F, 1999, INT J REFRACT MET H, V17, P91
156335    CARLSON ON, 1985, B ALLOY PHASE DIAGRA, V6, P115
156336    CUI YW, 1999, Z METALLKD, V90, P233
156337    DINSDALE AT, 1991, CALPHAD, V15, P317
156338    EGAMI A, 1993, P 13 INT PLANS SEM R, V3, P639
156339    GUSTAFSON P, 1986, MATER SCI TECH SER, V2, P653
156340    HILLERT M, 2001, J ALLOY COMPD, V320, P161
156341    HUANG W, 1991, Z METALLKD, V82, P174
156342    KAUFMAN L, 1978, CALPHAD, V2, P295
156343    KODENTSOV AA, 2001, J ALLOY COMPD, V320, P207
156344    LAVERGNE O, 2002, ACTA MATER, V50, P1683
156345    LEE BJ, 1991, CALPHAD, V15, P283
156346    LIPATNIKOV VN, 1997, J ALLOY COMPD, V261, P192
156347    LUYCKX S, 2001, MATER DESIGN, V22, P507
156348    NAIDU SV, 1989, PHASE DIAGRAM BINARY, P313
156349    RUDY E, 1962, MONATSH CHEM, V93, P693
156350    RUDY E, 1967, J AM CERAM SOC, V50, P272
156351    RUDY E, 1967, PLANSEEBER PULVERMET, V15, P174
156352    RUDY E, 1973, J LESS-COMMON MET, V33, P245
156353    SUNDMAN B, 1985, CALPHAD, V9, P153
156354    TANIUCHI T, 1997, P 14 INT PLANS SEM, V2, P644
156355    UHRENIUS B, 1984, CALPHAD, V8, P101
156356 NR 22
156357 TC 1
156358 SN 0925-8388
156359 J9 J ALLOYS COMPOUNDS
156360 JI J. Alloy. Compd.
156361 PD MAY 31
156362 PY 2005
156363 VL 395
156364 IS 1-2
156365 BP 68
156366 EP 74
156367 PG 7
156368 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
156369    Metallurgical Engineering
156370 GA 930IZ
156371 UT ISI:000229410600014
156372 ER
156373 
156374 PT J
156375 AU Li, MC
156376    Luo, SZ
156377    Wu, PF
156378    Shena, JN
156379 TI Photocathodic protection effect of TiO2 films for carbon steel in 3%
156380    NaCl solutions.
156381 SO ELECTROCHIMICA ACTA
156382 DT Article
156383 DE titanium dioxide; photocathodic protection effect; EIS; corrosion;
156384    anodization
156385 ID ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; ANODIC OXIDE-FILMS; CORROSION
156386    PROTECTION; TITANIUM-DIOXIDE; ELECTRODES; GROWTH; BREAKDOWN; COATINGS;
156387    SYSTEM; ACID
156388 AB Titanium dioxide (TiO2) films were prepared by anodization of titanium
156389    foils at different voltages in dilute NaOH solutions and characterized
156390    by XRD and scanning electron microscopy (SEM) techniques. The thin TiO2
156391    films are mainly composed of anatase phase in the form of
156392    nano-crystallites. The photoelectrochemical behavior and photocathodic
156393    protection effect, for these films were also investigated in 3% NaCl
156394    solutions by using electrochemical measurement techniques and coupling
156395    test. The tremendous decrease of film resistance and open circuit
156396    potential of each TiO2 film takes place under ultraviolet (UV)
156397    illumination. TiO2 film formed at 120 V can serve as photoanode and
156398    supply a protective photocurrent about 8 8 &mu; A/cm(2) to carbon
156399    steel, when it is connected to carbon steel in test solution with an
156400    area ratio of 2:1. But TiO2 films can accelerate the corrosion of
156401    carbon steel in the dark. In addition, electrochemical impedance
156402    spectroscopy (EIS) characteristics and coupling behaviors for TiO2
156403    films were discussed in detail. &COPY; 2005 Elsevier Ltd. All rights
156404    reserved.
156405 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
156406    Chinese Acad Sci, Inst Met Res, State Key Lab Corros & Protect, Shenyang 110016, Peoples R China.
156407 RP Li, MC, Shanghai Univ, Inst Mat, POB 269,149 Yanchang Rd, Shanghai
156408    200072, Peoples R China.
156409 EM mouchengli@yahoo.com.cn
156410 CR ARSOV LD, 1991, J ELECTROCHEM SOC, V138, P2964
156411    BEERMANN N, 2002, J PHOTOCH PHOTOBIO A, V152, P213
156412    BIRCH JR, 2000, CORROSION, V56, P1233
156413    BISQUERT J, 2000, J PHYS CHEM B, V104, P2287
156414    BOUKAMP BA, 1989, P 9 EUR CORR C UTR N, V1
156415    BYRNE JA, 2002, J PHOTOCH PHOTOBIO A, V148, P365
156416    DYER CK, 1978, J ELECTROCHEM SOC, V125, P1032
156417    EPPLER AA, 2002, PHYSICA E, V14, P197
156418    HU SX, 2000, HDB CATHODIC PROTECT
156419    HUANG J, 1997, ZAIRYO TO KANKYO, V46, P651
156420    HUANG J, 1998, ZAIRYO TO KANKYO, V47, P193
156421    IMOKAWA T, 1994, ZAIRYO TO KANKYO, V43, P482
156422    JONES DA, 1984, CORROSION, V40, P181
156423    KONISHI T, 1995, ZAIRYO KANKYO, V44, P534
156424    KONISHI T, 1997, ZAIRYO TO KANKYO, V46, P709
156425    LI MC, 2001, B ELECTROCHEM, V17, P299
156426    LI MC, 2003, ELECTROCHIM ACTA, V48, P1735
156427    MANSFELD F, 1995, J APPL ELECTROCHEM, V25, P187
156428    OHKO Y, 2001, J ELECTROCHEM SOC, V148, P24
156429    OHKO Y, 2002, ELECTROCHEM SOLID ST, V5, P9
156430    PANG M, 2001, CORROSION, V57, P523
156431    PARK H, 2002, J PHYS CHEM B, V106, P4775
156432    PARK JR, 1983, CORROS SCI, V23, P295
156433    RAMMELT U, 1987, CORROS SCI, V27, P373
156434    SCLAFANI A, 1996, J PHYS CHEM-US, V100, P13655
156435    SUBASRI R, 2003, ELECTROCHEM COMMUN, V5, P897
156436    SUL YT, 2001, MED ENG PHYS, V23, P329
156437    TATSUMA T, 2001, CHEM MATER, V13, P2838
156438    VANMAEKELBERGH D, 1997, ELECTROCHIM ACTA, V42, P1121
156439    WU XJ, 1999, J ELECTROCHEM SOC, V146, P1847
156440    YAHALOM J, 1970, ELECTROCHIM ACTA, V15, P1429
156441    YUAN J, 1994, ZAIRYOU TO KANKYOU, V43, P433
156442    YUAN J, 1995, ZAIRYO TO KANKYO, V44, P627
156443    YUAN JN, 1995, J ELECTROCHEM SOC, V142, P3444
156444 NR 34
156445 TC 0
156446 SN 0013-4686
156447 J9 ELECTROCHIM ACTA
156448 JI Electrochim. Acta
156449 PD MAY 30
156450 PY 2005
156451 VL 50
156452 IS 16-17
156453 BP 3401
156454 EP 3406
156455 PG 6
156456 SC Electrochemistry
156457 GA 932RF
156458 UT ISI:000229570300026
156459 ER
156460 
156461 PT J
156462 AU Huang, WH
156463    Zhang, JF
156464    Ge, WK
156465 TI Applications of extended mapping deformation method in two
156466    (3+1)-dimensional nonlinear models
156467 SO COMMUNICATIONS IN THEORETICAL PHYSICS
156468 DT Article
156469 DE (3+1)-dimensional JM equation; (3+1)-dimensional KP equation;
156470    travelling wave solution
156471 ID TRAVELING-WAVE SOLUTIONS; PARTIAL-DIFFERENTIAL-EQUATIONS; PAINLEVE
156472    INTEGRABLE MODELS; NOVIKOV-VESELOV EQUATION; (2+1)-DIMENSIONAL
156473    BOUSSINESQ EQUATION; KADOMTSEV-PETVIASHVILI EQUATION; MULTISOLITON
156474    SOLUTIONS; EVOLUTION-EQUATIONS; TRANSFORMATION; EXPANSION
156475 AB Based on the extended mapping deformation method and symbolic
156476    computation, many exact travelling wave solutions are found for the
156477    (3+1)-dimensional JM equation and the (3+1)-dimensional KP equation.
156478    The obtained solutions include solitary solution, periodic wave
156479    solution, rational travelling wave solution, and Jacobian and
156480    Weierstrass function solution, etc.
156481 C1 Huzhou Univ, Coll Sci, Huzhou 313000, Peoples R China.
156482    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
156483    Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
156484 RP Huang, WH, Huzhou Univ, Coll Sci, Huzhou 313000, Peoples R China.
156485 CR BAI CL, 2004, COMMUN THEOR PHYS, V41, P15
156486    CHEN Y, 2004, COMMUN THEOR PHYS, V41, P1
156487    DORREN HJS, 1998, J MATH PHYS, V39, P3711
156488    ELWAKIL SA, 2002, PHYS LETT A, V299, P179
156489    ELWAKIL SA, 2002, Z NATURFORSCH, V58, P39
156490    FAN EG, 2003, CHAOS SOLITON FRACT, V15, P559
156491    FAN EG, 2003, J PHYS A-MATH GEN, V36, P7009
156492    FU ZT, 2004, COMMUN THEOR PHYS, V41, P25
156493    FU ZT, 2004, COMMUN THEOR PHYS, V41, P527
156494    HUANG WH, 2003, CHINESE PHYS, V12
156495    HUANG WH, 2003, COMMUN THEOR PHYS, V40, P262
156496    HUANG WH, 2004, Z NATURFORSCH A, V59, P250
156497    JIMBO M, 1983, PUBL RES I MATH SCI, V19, P943
156498    LI B, 2003, Z NATURFORSCH A, V58, P511
156499    LI HM, 2002, CHINESE PHYS LETT, V19, P745
156500    LI HM, 2002, CHINESE PHYS, V11, P1111
156501    LI HM, 2002, COMMUN THEOR PHYS, V37, P561
156502    LI HM, 2004, COMMUN THEOR PHYS, V41, P829
156503    LIAN ZJ, 2004, CHINESE PHYS LETT, V21, P219
156504    LIN J, 2002, COMMUN THEOR PHYS, V37, P265
156505    LOU SY, 1998, J MATH PHYS, V39, P5364
156506    LOU SY, 2000, CHINESE PHYS LETT, V17, P781
156507    MURRAY JD, 1989, MATH BIOL
156508    RUAN HY, 1999, J PHYS A-MATH GEN, V32, P2719
156509    RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P577
156510    SCOTT AC, 1999, NONLINEAR SCI EMERGE
156511    SIRENDAORIJI, 2002, PHYS LETT A, V298, P133
156512    SIRENDAORIJI, 2003, PHYS LETT A, V309, P387
156513    WHITHAM GB, 1974, LINEAR NONLINEAR WAV
156514    XUAN HN, 2003, Z NATURFORSCH A, V58, P167
156515    YAN ZY, 2003, COMMUN THEOR PHYS, V38, P144
156516    ZHANG JF, 2001, COMMUN THEOR PHYS, V36, P523
156517    ZHANG JF, 2002, CHINESE PHYS, V11, P425
156518    ZHANG JF, 2002, CHINESE PHYS, V11, P533
156519    ZHENG CL, 2004, COMMUN THEOR PHYS, V41, P671
156520    ZHU JM, 2004, CHINESE PHYS, V13, P798
156521 NR 36
156522 TC 0
156523 SN 0253-6102
156524 J9 COMMUN THEOR PHYS
156525 JI Commun. Theor. Phys.
156526 PD MAY 15
156527 PY 2005
156528 VL 43
156529 IS 5
156530 BP 775
156531 EP 780
156532 PG 6
156533 SC Physics, Multidisciplinary
156534 GA 930WY
156535 UT ISI:000229449000002
156536 ER
156537 
156538 PT J
156539 AU Zheng, CL
156540    Zhang, JF
156541    Xu, CZ
156542    Chen, LQ
156543 TI Solitons with periodic behavior in Korteweg-de Vries type models
156544    related to Schrodinger system
156545 SO COMMUNICATIONS IN THEORETICAL PHYSICS
156546 DT Article
156547 DE KdV type system; variable separation approach; soliton; periodic
156548    behavior
156549 ID LOCALIZED COHERENT STRUCTURES; VARIABLE SEPARATION APPROACH; MULTISCALE
156550    REDUCTION; VAKHNENKO EQUATION; EXCITATIONS; COMPACTONS; PDES; WAVE
156551 AB The linear variable separation approach is successfully extended to
156552    (1+1)-dimensional Korteweg-de Vries (KdV) type models related to
156553    Schrodinger system. Some significant types of solitons such as
156554    compacton, peakon, and coop solutions with periodic behavior are
156555    simultaneously derived from the (1+1)-dimensional soliton system by
156556    entrancing appropriate piecewise smooth functions and multivalued
156557    functions.
156558 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
156559    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
156560    Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China.
156561 RP Zheng, CL, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R
156562    China.
156563 EM zjclzheng@yahoo.com.cn
156564 CR CALOGERO F, 2000, J MATH PHYS, V41, P6399
156565    CALOGERO F, 2001, J MATH PHYS, V42, P2635
156566    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
156567    HIROTA R, 1971, PHYS REV LETT, V27, P1192
156568    KONNO K, 1981, J PHYS SOC JPN, V50, P1025
156569    KRAENKEL RA, 1999, PHYS LETT A, V260, P218
156570    LOU SY, 1993, PHYS LETT A, V175, P23
156571    LOU SY, 1998, PHYS REV LETT, V80, P5027
156572    LOU SY, 1999, PHYS LETT A, V262, P3449
156573    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
156574    MORRISON AJ, 1999, NONLINEARITY, V12, P1427
156575    NIMMO JJC, 1992, PHYS LETT A, V168, P113
156576    ROSENAU P, 1993, PHYS REV LETT, V70, P564
156577    ROSENAU P, 1994, PHYS REV LETT, V73, P1737
156578    TANG XY, 2002, PHYS REV E, V66, P46601
156579    TANG XY, 2003, J MATH PHYS, V44, P4000
156580    VAKHNENKO VO, 1998, NONLINEARITY, V11, P1457
156581    VEROSKY JM, 1991, J MATH PHYS, V32, P1733
156582    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
156583    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
156584    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P783
156585    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
156586    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
156587    ZHENG CL, 2004, COMMUN THEOR PHYS, V41, P391
156588    ZHENG CL, 2004, COMMUN THEOR PHYS, V41, P513
156589    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
156590 NR 26
156591 TC 2
156592 SN 0253-6102
156593 J9 COMMUN THEOR PHYS
156594 JI Commun. Theor. Phys.
156595 PD MAY 15
156596 PY 2005
156597 VL 43
156598 IS 5
156599 BP 850
156600 EP 854
156601 PG 5
156602 SC Physics, Multidisciplinary
156603 GA 930WY
156604 UT ISI:000229449000019
156605 ER
156606 
156607 PT J
156608 AU Zhang, HB
156609    Chen, LQ
156610    Liu, RW
156611 TI The discrete variational principle in Hamiltonian formalism and first
156612    integrals
156613 SO CHINESE PHYSICS
156614 DT Article
156615 DE discrete mechanics; Hamiltonian system; Noether's theorem; first
156616    integral
156617 ID MATRIX POLYNOMIALS; SYSTEMS; FACTORIZATION; MECHANICS; VERSIONS; TIME
156618 AB The aim of this paper is to show that first integrals of discrete
156619    equation of motion for Hamiltonian systems can be determined explicitly
156620    by investigating the invariance properties of the discrete Lagrangian
156621    in phase space. The result obtained is a discrete analog of the theorem
156622    of Noether in the calculus of variations.
156623 C1 Chaohu Coll, Dept Phys, Chaohu 238000, Peoples R China.
156624    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
156625 RP Zhang, HB, Chaohu Coll, Dept Phys, Chaohu 238000, Peoples R China.
156626 CR CHEN B, 1987, ANAL DYNAMICS
156627    FENG K, 1985, P 1984 BEIJ S DIFF G
156628    GUO HY, 2001, COMMUN THEOR PHYS, V35, P703
156629    GUO HY, 2001, COMMUN THEOR PHYS, V37, P1
156630    GUO HY, 2003, J MATH PHYS, V44, P5978
156631    LEE TD, 1983, LECT GIV INT SCH SUB
156632    LEE TD, 1983, PHYS LETT B, V122, P217
156633    LEE TD, 1987, J STAT PHYS, V46, P843
156634    MARSDEN JE, 2001, ACT NUMERIC, V10, P357
156635    MEI FX, 1991, ADV ANAL MECH
156636    MILLER KS, 1968, LINEAR DIFFERENCE EQ
156637    MOSER J, 1991, COMMUN MATH PHYS, V139, P217
156638    SANZSERNA JM, 1994, NUMERICAL HAMILTONIA
156639    VESELOV AP, 1988, FUNCT ANAL APPL+, V22, P83
156640    VESELOV AP, 1991, FUNCT ANAL APPL, V25, P112
156641    ZHANG HB, 2005, CHINESE PHYS, V14, P238
156642    ZHANG HB, 2005, CHINESE PHYS, V14, P888
156643 NR 17
156644 TC 2
156645 SN 1009-1963
156646 J9 CHIN PHYS
156647 JI Chin. Phys.
156648 PD JUN
156649 PY 2005
156650 VL 14
156651 IS 6
156652 BP 1063
156653 EP 1068
156654 PG 6
156655 SC Physics, Multidisciplinary
156656 GA 931NG
156657 UT ISI:000229491400001
156658 ER
156659 
156660 PT J
156661 AU Lu, TY
156662    Zhang, QR
156663    Zhuang, SL
156664 TI Optical polarized properties related to the oxygen vacancy defect in
156665    the PbWO4 crystal
156666 SO CHINESE PHYSICS
156667 DT Article
156668 DE PbWO4 crystal; electronic structure; optical properties; oxygen vacancy
156669 ID NM ABSORPTION-BAND; ORIGIN; MODEL
156670 AB The electronic structures, dielectric functions, complex refractive
156671    index and absorption spectra for the PbWO4 (PWO) crystal with and
156672    without oxygen vacancy V-O(2+) have been calculated using the
156673    full-potential (linearized) augmented planewave (FP-LAPW)+local
156674    orbitals (LO) method with the lattice structure optimized. The
156675    calculated results indicate that the optical properties of the PWO
156676    crystal show anisotropy and its optical symmetry coincides with the
156677    lattice structure geometry of the PWO crystal. The calculated
156678    absorption spectra indicate that the stoichiometric PWO crystal does
156679    not display absorption band in the visible and near-ultraviolet range.
156680    However, in this range, the absorption V-O(2+) spectra of the PWO
156681    crystal containing. exhibit two peaks at 3.35eV (370nm) and 2.95eV
156682    (420nm), respectively. It is revealed that the 350nm and 420nm
156683    absorption bands are related to the existence of V-O(2+) in the PWO
156684    crystal.
156685 C1 Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
156686 RP Lu, TY, Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
156687 EM liutyyxj@163.com
156688 CR ABRAHAM Y, 2000, PHYS REV B, V62, P3
156689    BOHACEK P, 2005, NUCL INSTRUM METH A, V537, P86
156690    FAN RC, 2001, SPECTROSCOPY SOLID
156691    FENG XQ, 1997, J INORGANIC MAT, V12, P449
156692    FENG XQ, 2002, ACTA PHYS SINICA, V51, P2315
156693    GOUBIN F, 2004, J SOLID STATE CHEM, V177, P89
156694    KORZHIK MV, 1996, P INT C IN SCINT THE, P241
156695    LIAO JY, 1997, J INORGANIC MAT, V12, P286
156696    LIU TY, IN PRESS ACTA PHYS S
156697    LIU TY, 2001, PHYS STATUS SOLIDI A, V184, P341
156698    LIU TY, 2004, CHINESE PHYS LETT, V21, P1596
156699    LIU TY, 2005, ACTA PHYS SIN-CH ED, V54, P863
156700    LIU TY, 2005, J ELECTRON SPECTROSC, V142, P139
156701    MOREAU JM, 1996, J ALLOY COMPD, V238, P46
156702    MOREAU JM, 1999, J ALLOY COMPD, V284, P104
156703    NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311
156704    SANGEETA S, 1999, PHYS REV B, V60, P12
156705    SHAO M, 2001, HIGH ENERG PHYS NUC, V25, P50
156706    YAO MZ, 2002, ACTA PHYS SINICA, V51, P126
156707    YE XL, 1999, ACTA PHYS SINICA, V48, P10
156708    ZHANG QR, 2003, PHYS REV B, V6806, P4101
156709    ZHANG QR, 2004, CHINESE PHYS LETT, V21, P1131
156710    ZHANG Y, 1998, PHYS REV B, V57, P12738
156711 NR 23
156712 TC 0
156713 SN 1009-1963
156714 J9 CHIN PHYS
156715 JI Chin. Phys.
156716 PD JUN
156717 PY 2005
156718 VL 14
156719 IS 6
156720 BP 1142
156721 EP 1146
156722 PG 5
156723 SC Physics, Multidisciplinary
156724 GA 931NG
156725 UT ISI:000229491400015
156726 ER
156727 
156728 PT J
156729 AU Liu, WF
156730    Gong, ZB
156731    Wang, QQ
156732 TI Investigation on Kane dynamic equations based on screw theory for
156733    open-chain manipulators
156734 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
156735 DT Article
156736 DE screw theory; partial velocity twist; open-chain manipulator; Kane
156737    dynamic equation
156738 AB First, screw theory, product of exponential formulas and Jacobian
156739    matrix are introduced. Then definitions are given about active force
156740    wrench, inertial force wrench, partial velocity twist, generalized
156741    active force, and generalized inertial force according to screw theory.
156742    After that Kane dynamic equations based on screw theory for open-chain
156743    manipulators have been derived. Later on how to compute the partial
156744    velocity twist by geometrical method is illustrated. Finally the
156745    correctness of conclusions is verified by example.
156746 C1 Zhengzhou Univ, Coll Mech Engn, Zhengzhou 450002, Peoples R China.
156747    Shanghai Univ, Sch Electromech Engn & Automat, Shanghai 200072, Peoples R China.
156748 RP Liu, WF, Zhengzhou Univ, Coll Mech Engn, Zhengzhou 450002, Peoples R
156749    China.
156750 EM liuwufa@zzu.edu.cn
156751 CR BROCKETT RW, 1993, IEEE INT C ROB AUT, P637
156752    CHEN WL, 1991, ANAL MECH
156753    GONG ZB, 1995, MECH DESIGN ROBOTS, P132
156754    GREENWOOD DT, 1982, CLASSICAL DYNAMICS
156755    MURRAY RM, 1998, MATH INTRO ROBOTIC M, P11
156756    PARK FC, 1994, IEEE T AUTOMAT CONTR, V39, P643
156757 NR 6
156758 TC 0
156759 SN 0253-4827
156760 J9 APPL MATH MECH-ENGL ED
156761 JI Appl. Math. Mech.-Engl. Ed.
156762 PD MAY
156763 PY 2005
156764 VL 26
156765 IS 5
156766 BP 627
156767 EP 635
156768 PG 9
156769 SC Mathematics, Applied; Mechanics
156770 GA 932NO
156771 UT ISI:000229560600011
156772 ER
156773 
156774 PT J
156775 AU Zhang, ML
156776    Xia, YB
156777    Wang, LJ
156778    Gu, BB
156779 TI Effects of microstructure of films on CVD diamond X-ray detectors
156780 SO SENSORS AND ACTUATORS A-PHYSICAL
156781 DT Article
156782 DE CVD diamond film; X-ray detector; photocurrent; pulse height
156783    distribution; microstructure
156784 ID RADIATION; QUALITY
156785 AB Although the unique properties of chemical vapor deposition (CVD)
156786    diamond films have made it a candidate material for radiation
156787    detectors, the polycrystalline nature of the films has severely limited
156788    the development of CVD diamond detectors. In this work, three CVD
156789    diamond films with different microstructure were grown by using a
156790    hot-filament chemical vapor deposition (HFCVD) technique and were
156791    fabricated as CVD diamond detectors. The electric contact is good ohmic
156792    for bias voltage up to 150 V. 5.9 keV Fe-55 X-ray was used to measure
156793    the photocurrent and the pulse height distribution (PHD). For the
156794    detector based on the best quality film, the dark-current of 16.0 nA
156795    and the net photocurrent of 15.9 nA are obtained at an electric field
156796    of 50 kV cm(-1). The PHD peak is well separated from the noise
156797    pedestal, indicating a high counting efficiency and a low detection
156798    limit. (c) 2004 Elsevier B.V All rights reserved.
156799 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
156800 RP Zhang, ML, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples
156801    R China.
156802 EM zhamilong@hotmail.com
156803 CR ADAM W, 2000, NUCL INSTRUM METH A, V447, P244
156804    DONATO MG, 2001, DIAM RELAT MATER, V10, P1788
156805    FRIEDL M, 1999, NUCL INSTRUM METH A, V435, P194
156806    KANEKO JH, 2004, NEW DIAM FRONT C TEC, V14, P299
156807    KOZLOV SF, 1977, IEEE T NUCL SCI, V24, P235
156808    MANFREDOTTI C, 1996, PHYS STATUS SOLIDI A, V154, P327
156809    NAVA F, 1979, IEEE T NUCL SCI, V26, P308
156810    SALVATORI S, 1997, DIAM RELAT MATER, V6, P361
156811    SU W, 1985, PHYS B C, V139, P654
156812    VATNITSKY S, 1993, PHYS MED BIOL, V38, P173
156813    ZHANG ML, 2004, J CRYST GROWTH, V274, P21
156814    ZHANG ML, 2004, PHYS LETT A, V332, P320
156815    ZHANG ML, 2004, SOLID STATE COMMUN, V130, P425
156816 NR 13
156817 TC 0
156818 SN 0924-4247
156819 J9 SENSOR ACTUATOR A-PHYS
156820 JI Sens. Actuator A-Phys.
156821 PD MAY 17
156822 PY 2005
156823 VL 120
156824 IS 2
156825 BP 349
156826 EP 353
156827 PG 5
156828 SC Engineering, Electrical & Electronic; Instruments & Instrumentation
156829 GA 928UW
156830 UT ISI:000229298200007
156831 ER
156832 
156833 PT J
156834 AU Chen, LQ
156835    Yang, XD
156836 TI Stability in parametric resonance of axially moving viscoelastic beams
156837    with time-dependent speed
156838 SO JOURNAL OF SOUND AND VIBRATION
156839 DT Article
156840 ID VIBRATIONS; VELOCITY; TENSION; WEB
156841 AB Stability in transverse parametric vibration of axially accelerating
156842    viscoelastic beams is investigated. The governing equation is derived
156843    from Newton's second law, the Kelvin constitution relation, and the
156844    geometrical relation. When the axial speed is a constant mean speed
156845    with small harmonic variations, the governing equation can be regarded
156846    as a continuous gyroscopic system under small periodically parametric
156847    excitations and a damping term. The method of multiple scales is
156848    applied directly to the governing equation without discretization. The
156849    stability conditions are obtained for combination and principal
156850    parametric resonance. Numerical examples are presented for beams with
156851    simple supports and fixed supports, respectively, to demonstrate the
156852    effect of viscoelasticity on the stability boundaries in both cases.
156853    (c) 2004 Elsevier Ltd. All rights reserved.
156854 C1 Shanghai Jiao Tong Univ, Dept Mech Engn, Shanghai 200030, Peoples R China.
156855    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
156856 RP Chen, LQ, Shanghai Jiao Tong Univ, Dept Mech Engn, Shanghai 200030,
156857    Peoples R China.
156858 EM lqchen@online.sh.cn
156859 CR ABRATE S, 1992, MECH MACH THEORY, V27, P645
156860    CHEN LQ, 2004, EUR J MECH A-SOLID, V23, P659
156861    MARYNOWSKI K, 2002, INT J NONLINEAR MECH, V37, P1147
156862    MARYNOWSKI K, 2002, J THEORET APPL MECH, V40, P465
156863    MARYNOWSKI K, 2004, CHAOS SOLITON FRACT, V21, P481
156864    OZ HR, 1998, J SOUND VIB, V215, P571
156865    OZ HR, 1999, J SOUND VIB, V227, P239
156866    OZ HR, 2001, J SOUND VIB, V239, P556
156867    OZKAYA E, 2000, J SOUND VIB, V234, P521
156868    OZKAYA E, 2002, J SOUND VIB, V254, P782
156869    PARKER RG, 2001, J APPL MECH-T ASME, V68, P49
156870    PASIN F, 1972, ING ARCH, V41, P387
156871    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
156872    WICKERT JA, 1990, J APPL MECH-T ASME, V57, P738
156873    YANG XD, IN PRESS APPL MATH M
156874    YANG XD, 2005, CHAOS SOLITON FRACT, V23, P249
156875 NR 16
156876 TC 0
156877 SN 0022-460X
156878 J9 J SOUND VIB
156879 JI J. Sound Vibr.
156880 PD JUN 21
156881 PY 2005
156882 VL 284
156883 IS 3-5
156884 BP 879
156885 EP 891
156886 PG 13
156887 SC Engineering, Mechanical; Acoustics; Mechanics
156888 GA 930FG
156889 UT ISI:000229400600018
156890 ER
156891 
156892 PT J
156893 AU Cao, MS
156894    Ren, QW
156895    Wang, HH
156896 TI A method of detecting seismic singularities using combined wavelet with
156897    fractal
156898 SO CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION
156899 DT Article
156900 DE seismic wave; frequency and time-ordered non-decimated wavelet packet
156901    transform; correlation dimension; profile fractal dimension spectrum;
156902    singularity detection
156903 ID DIMENSION
156904 AB A new method of utilizing combined wavelet with fractal to detect
156905    seismic singularities is proposed aiming at improving the detecting
156906    precision. Firstly the fractal property of seismic wave is
156907    comprehensively investigated based on its power spectrum density
156908    analysis, and the conclusion is made that seismic wave is of
156909    self-affine fractal property only in several higher frequency bands.
156910    This not only provides the theoretic foundation for reasonably applying
156911    fractal into seismic wave analysis, but also reveals the shortage of
156912    employing single integrated fractal dimension to detect seismic
156913    singularities. Secondly an algorithm of frequency and time-ordered
156914    non-decimated wavelet packet transform is put forward to produce
156915    excellent platform for fractal analysis of seismic wave. On the basis
156916    of the above two aspects, a wavelet-fractal based method for detecting
156917    seismic singularities is developed, which consists of three successive
156918    steps: seismic wave is decomposed into multi-scale coefficient
156919    sequences, and then fractal-parameter space of seismic profile is
156920    constructed depending on the correlation dimension analysis of
156921    effective scale coefficient sequences; in the end, singular parameters
156922    are identified and they indicate the seismic singularities. An
156923    engineering example shows that the proposed method outperforms the
156924    existing wavelet and fractal concerned methods in rationality and
156925    practicability, so it provides a new approach for parameterized
156926    accurate seismic geophysical prospecting.
156927 C1 Hohai Univ, Coll Civil Engn, Nanjing 210098, Peoples R China.
156928    Shandong Agr Univ, Coll Water Conservancy & Civil Engn, Tai An 271018, Peoples R China.
156929    Shanghai Univ Sci & Technol, Coll Geoinformat Sci & Engn, Tai An 271019, Peoples R China.
156930 RP Cao, MS, Hohai Univ, Coll Civil Engn, Nanjing 210098, Peoples R China.
156931 EM cmszhy@sohu.com
156932 CR BOSCHETTI F, 1996, GEOPHYSICS, V61, P1095
156933    CHANG X, 1998, CHINESE J GEOPHYSICS, V41, P826
156934    CHANG X, 2002, CHINESE J GEOPHYS-CH, V45, P839
156935    COIFMAN RR, 1992, WAVELETS THEIR APPL, P153
156936    LI QZ, 1996, OIL GEOPHYS PROSPECT, V61, P136
156937    LI SX, 1995, CHINESE J GEOPHYS, V38, P93
156938    LI SX, 2000, CHINESE J GEOPHYS-CH, V43, P97
156939    LIU F, 2001, PROGR NATURAL SCI, V11, P621
156940    NASON GP, 2001, SANKHYA SER B, V63, P199
156941    PESQUET JC, 1996, IEEE T SIGNAL PROCES, V44, P1964
156942    THEILER J, 1986, PHYS REV A, V34, P2427
156943    TURCOTTE DL, 1997, FRACTALS CHAOS GEOLO
156944    WANG FQ, 1994, PHYSICS, V23, P539
156945    ZENG JG, 1995, OIL GEOPHYS PROSPECT, V30, P743
156946 NR 14
156947 TC 0
156948 SN 0001-5733
156949 J9 CHINESE J GEOPHYS-CHINESE ED
156950 JI Chinese J. Geophys.-Chinese Ed.
156951 PD MAY
156952 PY 2005
156953 VL 48
156954 IS 3
156955 BP 672
156956 EP 679
156957 PG 8
156958 SC Geochemistry & Geophysics
156959 GA 930FQ
156960 UT ISI:000229401600027
156961 ER
156962 
156963 PT J
156964 AU Guo, RW
156965    Huang, DB
156966    Zhang, LZ
156967 TI Chaotic synchronization based on Lie derivative method
156968 SO CHAOS SOLITONS & FRACTALS
156969 DT Article
156970 ID DYNAMICAL-SYSTEMS; ACTIVE CONTROL
156971 AB In this paper, based on the idea of Lie derivative, we develop a method
156972    to synchronize two identical chaotic systems. In comparison with the
156973    previous methods such as active control, the present control scheme is
156974    simple, and therefore it is easily implemented in practice. The
156975    synchronization of two identical Lorenz systems are used to illustrate
156976    the effectiveness of the proposed method. (c) 2005 Elsevier Ltd. All
156977    rights reserved.
156978 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
156979    Shandong Inst Light Ind, Dept Math & Phys, Jinan 200100, Peoples R China.
156980    Tianjin Polytech Univ, Dept Math, Tianjin 300160, Peoples R China.
156981 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
156982 EM dbhuang@staff.shu.edu.cn
156983 CR BAI EW, 1997, CHAOS SOLITON FRACT, V8, P51
156984    BAI EW, 2000, CHAOS SOLITON FRACT, V11, P1041
156985    BOCCALETTI S, 2001, PHYS REV E 2, V63
156986    BOCCALETTI S, 2002, PHYS REP, V366, P1
156987    BROWN R, 2000, CHAOS, V10, P344
156988    DEBIN H, 2004, PHYS REV E, V69
156989    FEMAT R, 2002, CHAOS, V12, P1027
156990    HUANG DB, 2004, CHAOS, V14, P152
156991    KOCAREV L, 1996, PHYS REV LETT, V76, P1816
156992    KOCAREV L, 1998, CHAOS SOLITON FRACT, V9, P1359
156993    PECORA LM, 1990, PHYS REV LETT, V64, P821
156994    STELIANA C, 2003, CHAOS SOLITON FRACT, V15, P507
156995 NR 12
156996 TC 0
156997 SN 0960-0779
156998 J9 CHAOS SOLITON FRACTAL
156999 JI Chaos Solitons Fractals
157000 PD SEP
157001 PY 2005
157002 VL 25
157003 IS 5
157004 BP 1255
157005 EP 1259
157006 PG 5
157007 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
157008 GA 929NL
157009 UT ISI:000229352700031
157010 ER
157011 
157012 PT J
157013 AU Li, GH
157014 TI Synchronization and anti-synchronization of Colpitts oscillators using
157015    active control
157016 SO CHAOS SOLITONS & FRACTALS
157017 DT Article
157018 ID SYSTEMS; CHAOS
157019 AB With a simple piecewise-linear mode, this paper describes the nonlinear
157020    dynamics and its control of the Colpitts oscillator. An active control
157021    method is applied to guiding the design of the controllers to
157022    synchronize and anti-synchronize two identical Colpitts oscillators.
157023    And a sufficient condition is drawn for the stability of the error
157024    dynamics. Finally, numerical simulations show the effectiveness of the
157025    proposed control strategy. (c) 2005 Elsevier Ltd. All rights reserved.
157026 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
157027 RP Li, GH, Shanghai Univ, Dept Commun Engn, Yangchang Rd 149, Shanghai
157028    200072, Peoples R China.
157029 EM ghlee@sh163.net
157030 CR BAI EW, 1997, CHAOS SOLITON FRACT, V8, P51
157031    CENYS A, 1998, P INT S NONL THEOR I, V2, P519
157032    CENYS A, 2003, CHAOS SOLITON FRACT, V17, P349
157033    KENNEDY MP, 1994, IEEE T CIRCUITS-I, V41, P771
157034    KENNEDY MP, 1995, IEEE T CIRCUITS-I, V42, P376
157035    MAGGIO GM, 1999, IEEE T CIRCUITS-I, V46, P1118
157036    MYKOLAITIS G, 2004, ELECTRON LETT, V40, P91
157037    PECORA LM, 1990, PHYS REV LETT, V64, P821
157038    TAMASEVICIUS A, 2001, ELECTRON LETT, V37, P549
157039    WEGENER C, 1995, P NDES 95, P255
157040 NR 10
157041 TC 1
157042 SN 0960-0779
157043 J9 CHAOS SOLITON FRACTAL
157044 JI Chaos Solitons Fractals
157045 PD OCT
157046 PY 2005
157047 VL 26
157048 IS 1
157049 BP 87
157050 EP 93
157051 PG 7
157052 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
157053 GA 929NO
157054 UT ISI:000229353000012
157055 ER
157056 
157057 PT J
157058 AU Zheng, CL
157059    Zhu, HP
157060    Chen, LQ
157061 TI Exact solution and semifolded structures of generalized Broer-Kaup
157062    system in (2+1)-dimensions
157063 SO CHAOS SOLITONS & FRACTALS
157064 DT Article
157065 ID LOCALIZED COHERENT STRUCTURES; WATER-WAVE SYSTEM; INTEGRABLE SYSTEMS;
157066    PAINLEVE ANALYSIS; SOLITON SYSTEM; EQUATION; EXCITATIONS
157067 AB Starting from a special Painleve-Bdcklund transformation, the nonlinear
157068    generalized Broer-Kaup(GBK) system in (2+1)-dimensions is reduced to a
157069    linear system. Then by means of the linear superposition theorem, a
157070    general variable separation excitation to the generalized Broer-Kaup
157071    system is obtained. Finally, based on the derived solution, a new type
157072    of localized structure, i.e., semifolded localized coherent structure
157073    is constructed and some evolution properties of the novel semifolded
157074    localized structure are briefly discussed. (c) 2005 Elsevier Ltd. All
157075    rights reserved.
157076 C1 Zhejian Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
157077    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
157078 RP Zheng, CL, Zhejian Lishui Univ, Dept Phys, Lishui 323000, Peoples R
157079    China.
157080 EM zjclzheng@yahoo.com.cn
157081 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V31, P125
157082    BOITI M, 1987, INVERSE PROBL, V3, P371
157083    BOITI M, 1988, PHYS LETT A, V132, P432
157084    BROER LJF, 1975, APPL SCI RES, V31, P377
157085    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
157086    CHEN CL, 2002, COMMUN THEOR PHYS, V38, P129
157087    FOKAS AS, 1989, PHYS REV LETT, V63, P1329
157088    HUANG DJ, 2004, CHAOS SOLITON FRACT, V23, P601
157089    KADOMTSEV BB, 1970, SOV PHYS DOKL, V15, P539
157090    KAUP DJ, 1975, PROG THEOR PHYS, V54, P396
157091    LOU SY, 1997, J MATH PHYS, V38, P6401
157092    LOU SY, 1998, PHYS REV LETT, V80, P5027
157093    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
157094    ROSENAU P, 1993, PHYS REV LETT, V70, P564
157095    TANG XY, 2002, PHYS REV E, V66, P46601
157096    TANG XY, 2003, J MATH PHYS, V44, P4000
157097    YING JP, 2001, Z NATURFORSCH A, V56, P619
157098    ZAKHAROV VE, 1968, J APPL MECH TECH PHY, V2, P190
157099    ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P705
157100    ZHANG JF, 2003, PHYS LETT A, V313, P401
157101    ZHANG SL, 2002, PHYS LETT A, V300, P40
157102    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
157103    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
157104    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P783
157105    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
157106    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
157107    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
157108    ZHENG CL, 2005, CHAOS SOLITON FRACT, V23, P1741
157109 NR 28
157110 TC 2
157111 SN 0960-0779
157112 J9 CHAOS SOLITON FRACTAL
157113 JI Chaos Solitons Fractals
157114 PD OCT
157115 PY 2005
157116 VL 26
157117 IS 1
157118 BP 187
157119 EP 194
157120 PG 8
157121 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
157122 GA 929NO
157123 UT ISI:000229353000022
157124 ER
157125 
157126 PT S
157127 AU Chen, SP
157128    Shi, B
157129 TI P2P-based web text information retrieval
157130 SO WEB TECHNOLOGIES RESEARCH AND DEVELOPMENT -  APWEB 2005
157131 SE LECTURE NOTES IN COMPUTER SCIENCE
157132 DT Article
157133 AB This paper proposes a query routing infrastructure that aims at the
157134    Wet) text information retrieval. The routing information is distributed
157135    in each query routing node, and needs no central infrastructure, so it
157136    can be used in large distributed system to determine which node need to
157137    be queried to achieve the function of query routing in semantic
157138    network. At the same time, this paper proposes the concept of
157139    preference circle, which organizes Web text data sources efficiently,
157140    so querying the information for routing become simpler and easier for
157141    maintenance, which improves the efficiency of query routing. In
157142    addition, we demonstrate the advantages of our system in work load
157143    balancing and the completeness of result of query etc.
157144 C1 Fudan Univ, Dept Informat Sci & Engn, Shanghai 200433, Peoples R China.
157145    Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
157146 RP Chen, SP, Fudan Univ, Dept Informat Sci & Engn, Shanghai 200433,
157147    Peoples R China.
157148 EM chensp@usst.edu.cn
157149    bshi@fudan.edu.cn
157150 CR GALANIS L, 2003, P 29 VLDB C BERL GER
157151    RATNASAMY S, P 2001 C APPL TECHN
157152    STOICA I, 2001, P SIGCOMM
157153    YU C, 2001, 1 ACM IEEE CS JOINT
157154    YU C, 2003, P 29 VLDB C BERL GER
157155 NR 5
157156 TC 0
157157 SN 0302-9743
157158 J9 LECT NOTE COMPUT SCI
157159 PY 2005
157160 VL 3399
157161 BP 247
157162 EP 252
157163 PG 6
157164 GA BCD84
157165 UT ISI:000228780500025
157166 ER
157167 
157168 PT S
157169 AU Li, ML
157170    Wu, MY
157171    Li, Y
157172    Huang, LP
157173    Deng, QN
157174    Cao, J
157175    Xue, GT
157176    Weng, CL
157177    Lin, XH
157178    Lu, XD
157179    Jiang, CJ
157180    Tong, WQ
157181    Gui, YD
157182    Zhou, AY
157183    Wu, XH
157184    Jiang, S
157185 TI ShanghaiGrid: A Grid prototype for metropolis information services
157186 SO WEB TECHNOLOGIES RESEARCH AND DEVELOPMENT -  APWEB 2005
157187 SE LECTURE NOTES IN COMPUTER SCIENCE
157188 DT Article
157189 AB The goal of ShanghaiGrid is providing information services to the
157190    people. It aims at constructing a metropolitan-area information service
157191    infrastructure and establishing an open standard for widespread
157192    upper-layer applications from both communities and the government. A
157193    typical application named as Traffic Information Grid is discussed in
157194    detail.
157195 C1 Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200030, Peoples R China.
157196    Tongji Univ, Shanghai 200092, Peoples R China.
157197    Shanghai Univ, Shanghai, Peoples R China.
157198    Shanghai Supercomp Ctr, Shanghai, Peoples R China.
157199    Fudan Univ, Shanghai 200433, Peoples R China.
157200    Shanghai Urban Transportat Informat Ctr, Shanghai, Peoples R China.
157201    E China Inst Comp Technol, Shanghai, Peoples R China.
157202 RP Li, ML, Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200030,
157203    Peoples R China.
157204 EM li-ml@cs.sjtu.edu.cn
157205    wu-my@cs.sjtu.edu.cn
157206    liying@cs.sjtu.edu.cn
157207 NR 0
157208 TC 1
157209 SN 0302-9743
157210 J9 LECT NOTE COMPUT SCI
157211 PY 2005
157212 VL 3399
157213 BP 1033
157214 EP 1036
157215 PG 4
157216 GA BCD84
157217 UT ISI:000228780500100
157218 ER
157219 
157220 PT J
157221 AU Hu, J
157222    Sun, SJ
157223    Hu, GH
157224    Yin, XY
157225 TI Secondary instabilities of linearly heated falling films
157226 SO PROGRESS IN NATURAL SCIENCE
157227 DT Article
157228 DE linearly heated falling film; secondary instability; Floquet theorem
157229 ID LONG-WAVE INSTABILITIES; LIQUID-FILMS; EVOLUTION
157230 AB Secondary instabilities of linearly heated falling films are studied
157231    through three steps. Firstly, the analysis of the primary linear
157232    instability on Miladinova's tong wave equation of the linearly heated
157233    film is performed. Secondly, the similar Landau equation is derived
157234    through weak nonlinear theory, and a two-dimensional nonlinear
157235    saturation solution of primary instability is obtained within the weak
157236    nonlinear domain. Thirdly, the secondary (three-dimensional)
157237    instability of the two-dimensional wave is studied by the Floquet
157238    theorem. Our secondary instability analysis shows that the Marangoni
157239    number has destabilization effect on the secondary instability.
157240 C1 Univ Sci & Technol China, Dept Modern Mech, Hefei 230027, Peoples R China.
157241    Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
157242 RP Hu, J, Univ Sci & Technol China, Dept Modern Mech, Hefei 230027,
157243    Peoples R China.
157244 EM hucom@mail.ustc.edu
157245 CR BENNEY DJ, 1966, J MATH PHYS, V45, P150
157246    BOYD JP, 1999, CHEBYSHEV FOURIER SP
157247    CHANG HC, 1989, PHYS FLUIDS A-FLUID, V1, P1314
157248    CHANG HC, 1994, ANNU REV FLUID MECH, V26, P103
157249    GJEVIK B, 1970, PHYS FLUIDS, V13, P1918
157250    HERBERT T, 1983, PHYS FLUIDS, V26, P871
157251    JOO SW, 1991, J FLUID MECH, V230, P117
157252    JOO SW, 1992, J FLUID MECH, V242, P529
157253    KALITZOVAKURTEV.P, 2000, J THEOR APPL MECH, V30, P12
157254    KAPITSA PL, 1948, ZH EKSP TEOR FIZ, V18, P3
157255    KAPITZA PL, 1949, ZH EKSP TEOR FIZ, V19, P105
157256    LIN SP, 1974, J FLUID MECH, V63, P417
157257    MILADINOVA S, 2002, J FLUID MECH, V453, P153
157258    ORON A, 1997, REV MOD PHYS, V69, P931
157259    ORSZAG SA, 1983, J FLUID MECH, V128, P347
157260    ROSKES GJ, 1970, PHYS FLUIDS, V13, P1440
157261 NR 16
157262 TC 0
157263 SN 1002-0071
157264 J9 PROG NAT SCI
157265 JI Prog. Nat. Sci.
157266 PD MAR
157267 PY 2005
157268 VL 15
157269 IS 3
157270 BP 205
157271 EP 212
157272 PG 8
157273 SC Multidisciplinary Sciences
157274 GA 926YC
157275 UT ISI:000229158600003
157276 ER
157277 
157278 PT J
157279 AU Chen, XC
157280    Ding, YP
157281    Tang, T
157282 TI Synergistic effect of nickel formate on the thermal and flame-retardant
157283    properties of polypropylene
157284 SO POLYMER INTERNATIONAL
157285 DT Article
157286 DE polypropylene; nickel formate; intumescent flame-retardant (IFR);
157287    synergism
157288 AB Nickel formate was used as a catalyst to improve the flame-retardancy
157289    of intumescent systems based on ammonium polyphosphate (APP) and
157290    pentaerythritol (petol) in polypropylene (PP). Limited oxygen index
157291    (LOI), X-ray diffraction (XRD) and thermogravimetric analysis (TGA)
157292    were used to characterize the fire-retardancy and thermal stability of
157293    the PP system and the microstructure of the burned residue. The
157294    catalytic effect was shown in an increase in LOI, and a change in the
157295    residue microstructure and the thermal stability of the PP system. LOI
157296    increased with the concentration of the catalyst in the range 0.1-5 wt%
157297    of the composition until a maximum was reached. At higher concentration
157298    of the catalyst a decrease in the LOI was observed. (c) 2005 Society of
157299    Chemical Industry.
157300 C1 Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China.
157301    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
157302 RP Tang, T, Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab
157303    Polymer Phys & Chem, Changchun 130022, Peoples R China.
157304 EM ttang@ciac.jl.cn
157305 CR BALJINDER KK, 1996, POLYM DEGRAD STABIL, V54, P289
157306    BERLIN AI, 1998, FIRE RETARDANCY POLY, P104
157307    CAMINO G, 2000, FIRE RETARDANCY POLY, P217
157308    HORACEK H, 1996, POLYM DEGRAD STABIL, V54, P205
157309    LEVCHIK SV, 1992, POLYM DEGRAD STABIL, V36, P229
157310    LEWIN M, 2003, POLYM ADVAN TECHNOL, V14, P3
157311    XIA B, 2001, J AM CERAM SOC, V84, P1
157312 NR 7
157313 TC 0
157314 SN 0959-8103
157315 J9 POLYM INT
157316 JI Polym. Int.
157317 PD JUN
157318 PY 2005
157319 VL 54
157320 IS 6
157321 BP 904
157322 EP 908
157323 PG 5
157324 SC Polymer Science
157325 GA 927UK
157326 UT ISI:000229225800008
157327 ER
157328 
157329 PT J
157330 AU Shi, DH
157331    Chen, QH
157332    Liu, LM
157333 TI Markov chain-based numerical method for degree distributions of growing
157334    networks
157335 SO PHYSICAL REVIEW E
157336 DT Article
157337 ID COMPLEX NETWORKS; INTERNET; TOPOLOGY
157338 AB In this paper, we establish a relation between growing networks and
157339    Markov chains, and propose a computational approach for network degree
157340    distributions. Using the Barabasi-Albert model as an example, we first
157341    show that the degree evolution of a node in a growing network follows a
157342    nonhomogeneous Markov chain. Exploring the special structure of these
157343    Markov chains, we develop an efficient algorithm to compute the degree
157344    distribution numerically with a computation complexity of O(t(2)),
157345    where t is the number of time steps. We use three examples to
157346    demonstrate the computation procedure and compare the results with
157347    those from existing methods.
157348 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
157349    Hong Kong Univ Sci & Technol, Dept Ind Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China.
157350    Fujian Normal Univ, Coll Math & Comp Sci, Fuzhou 350007, Peoples R China.
157351 RP Shi, DH, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
157352 EM liulim@ust.hk
157353 CR ALBERT R, 1999, NATURE, V401, P130
157354    ALBERT R, 2000, NATURE, V406, P378
157355    ALBERT R, 2000, PHYS REV LETT, V85, P5234
157356    ALBERT R, 2002, REV MOD PHYS, V74, P47
157357    BARABASI AL, 1999, PHYSICA A, V272, P173
157358    BARABASI AL, 1999, SCIENCE, V286, P509
157359    BIANCONI G, 2001, PHYS REV LETT, V86, P5632
157360    CHEN QH, 2004, PHYSICA A, V335, P240
157361    DOROGOVTSEV SN, 2000, PHYS REV E A, V62, P1842
157362    DOROGOVTSEV SN, 2000, PHYS REV LETT, V85, P4633
157363    DOROGOVTSEV SN, 2001, PHYS REV E 2, V63
157364    ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
157365    FALOUTSOS M, 1999, COMP COMM R, V29, P251
157366    JEONG H, 2000, NATURE, V407, P651
157367    JEONG H, 2001, NATURE, V411, P41
157368    KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
157369    MILGRAM S, 1967, PSYCHOL TODAY, V2, P60
157370    RAVASZ E, CONDMAT0206130
157371    ROSS SM, 1983, STOCHASTIC PROCESSES
157372    SHI D, 1996, MATRIX ANAL METHODS, P207
157373    STROGATZ SH, 2001, NATURE, V410, P268
157374    WATTS DJ, 1998, NATURE, V393, P440
157375 NR 22
157376 TC 0
157377 SN 1063-651X
157378 J9 PHYS REV E
157379 JI Phys. Rev. E
157380 PD MAR
157381 PY 2005
157382 VL 71
157383 IS 3
157384 PN Part 2
157385 AR 036140
157386 DI ARTN 036140
157387 PG 9
157388 SC Physics, Fluids & Plasmas; Physics, Mathematical
157389 GA 922EC
157390 UT ISI:000228818200050
157391 ER
157392 
157393 PT J
157394 AU Huang, DB
157395 TI Simple adaptive-feedback controller for identical chaos synchronization
157396 SO PHYSICAL REVIEW E
157397 DT Article
157398 ID CONDITIONAL LYAPUNOV EXPONENTS; INVARIANT-MANIFOLDS; SYSTEMS;
157399    OSCILLATORS; STABILITY
157400 AB Based on the invariance principle of differential equations, a simple
157401    adaptive-feedback scheme is proposed to strictly synchronize almost all
157402    chaotic systems. Unlike the usual linear feedback, the variable
157403    feedback strength is automatically adapted to completely synchronize
157404    two almost arbitrary identical chaotic systems, so this scheme is
157405    analytical, and simple to implement in practice. Moreover, it is quite
157406    robust against the effect of noise. The famous Lorenz and Rossler
157407    hyperchaos systems are used as illustrative examples.
157408 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
157409 RP Huang, DB, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
157410 EM dbhuang@staff.shu.edu.cn
157411 CR ASHWIN P, 1994, PHYS LETT A, V193, P126
157412    BARRETO E, 2000, PHYS REV LETT, V84, P1689
157413    BOCCALETTI S, 2002, PHYS REP, V366, P1
157414    BROWN R, 1997, CHAOS, V7, P395
157415    BROWN R, 1997, PHYS REV LETT, V78, P4189
157416    CUOMO KM, 1993, PHYS REV LETT, V71, P65
157417    GAUTHIER DJ, 1996, PHYS REV LETT, V77, P1751
157418    GROSU I, 1997, PHYS REV E B, V56, P3709
157419    HUANG DB, 2004, CHAOS, V14, P152
157420    HUANG DB, 2004, PHYS REV E 2, V69
157421    HUANG DB, 2004, PHYS REV LETT, V93
157422    JOSIC K, 1998, PHYS REV LETT, V80, P3053
157423    KOCAREV L, 1995, PHYS REV LETT, V74, P5028
157424    LASALLE J, 1960, IRE T CIRCUIT THEORY, V7, P520
157425    LASALLE JP, 1960, P NATL ACAD SCI USA, V46, P363
157426    MORGUL O, 1999, PHYS REV LETT, V82, P77
157427    OTT E, 1990, PHYS REV LETT, V64, P1196
157428    PARLITZ U, 1996, PHYS REV LETT, V76, P1232
157429    PARLITZ U, 1997, CHAOS, V7
157430    PARLITZ U, 2003, CHAOS, V13
157431    PECORA LM, 1990, PHYS REV LETT, V64, P821
157432    PECORA LM, 1991, PHYS REV A, V44, P2374
157433    ROSENBLUM MG, 2004, PHYS REV LETT, V92
157434    RULKOV NF, 2001, PHYS REV LETT, V86, P183
157435    SHUAI JW, 1997, PHYS REV E, V56, P2272
157436    VENKATARAMANI SC, 1996, PHYS REV E, V54, P1346
157437    VENKATARAMANI SC, 1996, PHYS REV LETT, V77, P5361
157438    ZHOU CS, 1998, PHYS REV E, V58, P5188
157439    ZHOU CS, 2000, PHYSICA D, V135, P1
157440 NR 29
157441 TC 3
157442 SN 1063-651X
157443 J9 PHYS REV E
157444 JI Phys. Rev. E
157445 PD MAR
157446 PY 2005
157447 VL 71
157448 IS 3
157449 PN Part 2
157450 AR 037203
157451 DI ARTN 037203
157452 PG 4
157453 SC Physics, Fluids & Plasmas; Physics, Mathematical
157454 GA 922EC
157455 UT ISI:000228818200164
157456 ER
157457 
157458 PT J
157459 AU Yu, SW
157460    Liao, HB
157461    Wen, WJ
157462    Wong, GKL
157463 TI Au/TiO2/SiO2 sandwich multilayer composite films with large nonlinear
157464    optical susceptibility
157465 SO OPTICAL MATERIALS
157466 DT Article
157467 DE metal particles; nonlinearity; size
157468 AB Au/TiO2/SiO2 sandwich composite multilayer films were deposited by
157469    alternating multitarget magnetron sputtering technique. Annealing
157470    process was performed for as-growth. Au particles appeared between the
157471    layers and grew with the increasing of the annealing temperature. The
157472    surface plasmon resonance of the annealed films is around 570-590nm.
157473    The third-order nonlinear susceptibility was measured with the backward
157474    degenerate four wave mixing (DFWM) scheme at a 532nm wavelength. The
157475    calculated values of divided by((3)) at 532nm of the composite films
157476    are larger than 1.02 x 10(-6)esu. We assume the multilayer sandwich
157477    topology of the Au/TiO2/SiO2 composite films has greatly enhanced the
157478    local field factor f and caused a larger divided by((3)) which is even
157479    not measured at the wavelength near the surface plasmon resonance of
157480    the composite materials. (c) 2004 Elsevier B.V. All rights reserved.
157481 C1 Shanghai Univ, Sch Mat Sci & Engn, Dept Elect Informat Mat, Shanghai 200072, Peoples R China.
157482    Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China.
157483    Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China.
157484 RP Yu, SW, Shanghai Univ, Sch Mat Sci & Engn, Dept Elect Informat Mat, 149
157485    Yanchang Rd, Shanghai 200072, Peoples R China.
157486 EM yusw@staff.shu.edu.cn
157487 CR FUKUMI K, 1991, JPN J APPL PHYS, V30, L742
157488    LEE M, 1992, THIN SOLID FILMS
157489    LIAO HB, 1997, APPL PHYS LETT, V70, P1
157490    LIAO HB, 1998, APPL PHYS LETT, V72, P1817
157491    MAGRUDER RH, 1993, APPL PHYS LETT, V62, P1730
157492    MATSUOKA J, 1992, J CERAM SOC JPN, V100, P599
157493    PUECH K, 1995, OPT LETT, V20, P1613
157494    RICHARD D, 1985, OPT LETT, V10, P511
157495    TAKEDA Y, 1993, APPL PHYS LETT, V63, P3420
157496    TANAHASHI I, 1996, J APPL PHYS, V79, P1244
157497 NR 10
157498 TC 1
157499 SN 0925-3467
157500 J9 OPT MATER
157501 JI Opt. Mater.
157502 PD MAY
157503 PY 2005
157504 VL 27
157505 IS 8
157506 BP 1433
157507 EP 1437
157508 PG 5
157509 SC Materials Science, Multidisciplinary; Optics
157510 GA 927MA
157511 UT ISI:000229196800019
157512 ER
157513 
157514 PT J
157515 AU Zhang, YJ
157516    Li, Y
157517 TI Parallel PBG microstrip line
157518 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
157519 DT Article
157520 DE PBG; microstrip line
157521 AB A novel photonic bandgap (PBG) microstrip line is proposed for 50 Omega
157522    conventional microstrip line. The proposed structure is fabricated with
157523    a periodic rectangle etched on the edge of the conductor line, and a
157524    flat and low-rippled passband is obtained. The characteristics of the
157525    novel PBG microstrip line are improved, as compared those of the
157526    conventional PBG microstrip line with holes etched in the conductor
157527    line or in the ground plane. The width of the stopband or passband can
157528    be changed according to the requirements. The measurement data of this
157529    novel PBG microstrip line agree well with the simulations. (c) 2005
157530    Wiley Periodicals, Inc.
157531 C1 Shanghai Univ, Sch Sci, Shanghai, Peoples R China.
157532    Zhengzhou Univ, Coll Informat Engn, Zhengzhou, Peoples R China.
157533 RP Zhang, YJ, Shanghai Univ, Sch Sci, Shanghai, Peoples R China.
157534 CR ELLIS TJ, 1996, IEEE MTT S INT MICR, V14, P1157
157535    RADISIC V, 1998, IEEE MICROW GUIDED W, V8, P69
157536    XUE Q, 2000, IEEE MICROW GUIDED W, V10, P403
157537 NR 3
157538 TC 0
157539 SN 0895-2477
157540 J9 MICROWAVE OPT TECHNOL LETT
157541 JI Microw. Opt. Technol. Lett.
157542 PD JUN 20
157543 PY 2005
157544 VL 45
157545 IS 6
157546 BP 548
157547 EP 550
157548 PG 3
157549 SC Engineering, Electrical & Electronic; Optics
157550 GA 927CN
157551 UT ISI:000229170100023
157552 ER
157553 
157554 PT J
157555 AU Dai, K
157556    Shi, LY
157557    Fang, JH
157558    Zhang, DS
157559    Yu, BK
157560 TI NaCl adsorption in multi-walled carbon nanotubes
157561 SO MATERIALS LETTERS
157562 DT Article
157563 DE carbon nanotubes; NaCl; adsorption
157564 ID DOUBLE-LAYER; CAPACITORS; STORAGE
157565 AB Three kinds of multi-walled carbon nanotube electrodes were fabricated
157566    in electrochemical double layer capacitors to adsorb Na+ and Cl- from
157567    NaCl solution. The amount of ions adsorbed by electrodes depends on the
157568    specific surface area, pore specific volume. The specific NaCl
157569    adsorption was investigated, it was found that purified carbon nanotube
157570    electrode after carbonization is the best NaCl adsorption electrode
157571    with the largest specific surface area and pore specific volume, the
157572    percentage of NaCl desorption is nearly 90%, and the regeneration
157573    property of the electrode was also studied in this paper. &COPY; 2005
157574    Elsevier B.V. All rights reserved.
157575 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200436, Peoples R China.
157576    Shanghai Univ, NanoSci & Technol Ctr, Shanghai 200436, Peoples R China.
157577 RP Dai, K, Shanghai Univ, Sch Mat Sci & Engn, 99 Shangda Rd, Shanghai
157578    200436, Peoples R China.
157579 EM daikai940@163.com
157580 CR ARULEPP M, 2004, J POWER SOURCES, V133, P320
157581    DARKRIM FL, 2002, INT J HYDROGEN ENERG, V27, P193
157582    EBBESEN TW, 1996, NATURE, V382, P54
157583    FAWCETT WR, 1998, ELECTROCHIM ACTA, V44, P881
157584    FRACKOWIAK E, 2001, CARBON, V39, P937
157585    GRUJICIC M, 2002, APPL SURF SCI, V199, P90
157586    HENDERSON D, 2001, J MOL LIQ, V92, P29
157587    HOU PX, 2002, CARBON, V40, P81
157588    KOTZ R, 2000, ELECTROCHIM ACTA, V45, P2483
157589    KUMAR TP, 2004, ELECTROCHEM COMMUN, V6, P520
157590    LIJIMA S, 1991, NATURE, V354, P56
157591    LOZANO P, 2004, J COLLOID INTERF SCI, V280, P149
157592    NISHINO A, 1988, TANSO, V132, P57
157593    PENZA M, 2004, SENSOR ACTUAT B-CHEM, V100, P47
157594    SARANGI D, 2002, PHYSICA B, V323, P165
157595    WORASUWANNARAK N, 2003, CARBON, V41, P933
157596    ZHANHONG Y, 2003, MATER LETT, V57, P3160
157597 NR 17
157598 TC 0
157599 SN 0167-577X
157600 J9 MATER LETT
157601 JI Mater. Lett.
157602 PD JUL
157603 PY 2005
157604 VL 59
157605 IS 16
157606 BP 1989
157607 EP 1992
157608 PG 4
157609 SC Materials Science, Multidisciplinary; Physics, Applied
157610 GA 926DR
157611 UT ISI:000229103600005
157612 ER
157613 
157614 PT J
157615 AU Ge, XS
157616    Chen, LQ
157617    Liu, YZ
157618 TI Motion planning of a nonholonomic multibody system using genetic
157619    algorithm
157620 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
157621 DT Article
157622 DE multibody system; nonholonomic; motion planning; genetic algorithm
157623 ID RIGID BODIES
157624 AB The motion planning of a nonholonomic multibody system is investigated.
157625    Nonholonomicity arises in many mechanical systems Subject to
157626    nonintegrable velocity constraints or nonintegrable conservation laws.
157627    When the total angular momentum is zero, the control problern of system
157628    can be converted to the motion planning problem for a driftless control
157629    system. In this paper, an optimal control approach is proposed for the
157630    discussed problem. To connect the initial and final configurations and
157631    to generate a feasible trajectory for a nonholonomic system, the
157632    genetic algorithm is used to optimize the performance of motion
157633    planning. The feasible trajectory and its control inputs are searched
157634    through a genetic algorithm. The effectiveness of the genetic algorithm
157635    is demonstrated by numerical simulation.
157636 C1 Beijing Inst Machinery, Basic Sci Courses Dept, Beijing 100085, Peoples R China.
157637    Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
157638    Shanghai Jiao Tong Univ, Dept Mech Engn, Shanghai 200030, Peoples R China.
157639 RP Ge, XS, Beijing Inst Machinery, Basic Sci Courses Dept, Beijing 100085,
157640    Peoples R China.
157641 EM gebim@vip.sina.com
157642    lqchen@online.sh.cn
157643    liuyzhc@online.sh.cn
157644 CR FERNANDES C, 1994, IEEE T AUTOMAT CONTR, V39, P450
157645    GE XS, 1998, ACTA MECH SOLIDA SIN, V11, P351
157646    GE XS, 2003, INT J NONLINEAR SCI, V4, P279
157647    GOLDBERG DE, 1989, GENETIC ALGORITHMS S
157648    GOLDBERG DE, 1991, COMPLEX SYSTEMS, V5, P139
157649    ISIDORI A, 1989, NONLINEAR CONTROL SY
157650    LAFFERRIERE G, 1991, P IEEE INT C ROB AUT, P1148
157651    LAUMOND JP, 1991, P INT C ADV ROB, P1033
157652    LI ZX, 1990, IEEE T ROBOTIC AUTOM, V6, P62
157653    LYULINA IA, 2004, INT J NONLINEAR SCI, V5, P79
157654    MAGINI M, 2004, INT J NONLINEAR SCI, V5, P275
157655    MURRAY RM, 1993, IEEE T AUTOMAT CONTR, V38, P700
157656    MURRAY RM, 1994, MATH INTRO ROBOTIC M
157657    NAKAMURA Y, 1990, P 1990 IEEE ROB AUT, P1764
157658    OSMAN MS, 2004, INT J NONLINEAR SCI, V5, P371
157659    SOPHIANOPOULOS DS, 2004, INT J NONLINEAR SCI, V5, P67
157660    TSUCHIYA K, 2002, J GUID CONTROL DYNAM, V25, P285
157661    WALSH GC, 1995, IEEE T ROBOTIC AUTOM, V11, P139
157662    ZHAO WJ, 2002, INT J NONLINEAR SCI, V3, P129
157663    ZHOU J, 2004, INT J NONLINEAR SCI, V5, P393
157664 NR 20
157665 TC 0
157666 SN 1565-1339
157667 J9 INT J NONLINEAR SCI NUMER SIM
157668 JI Int. J. Nonlinear Sci. Numer. Simul.
157669 PY 2005
157670 VL 6
157671 IS 2
157672 BP 113
157673 EP 120
157674 PG 8
157675 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
157676    Mathematical; Mechanics
157677 GA 926MD
157678 UT ISI:000229126400005
157679 ER
157680 
157681 PT J
157682 AU Zhang, YL
157683    Yu, JY
157684    Hou, DX
157685    Zhang, SQ
157686    Wu, H
157687 TI Study on properties of Electrorheological fluid and its application in
157688    machining vibration control
157689 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
157690 DT Article
157691 ID VISCOELASTIC RESPONSE; DEPENDENCE; SYSTEM; DAMPER
157692 AB The better mechanical properties of Electrorheological fluid (ERF) are
157693    critical for its engineering application. In this paper, the effects of
157694    electric field strength and circumstance temperature on steady flow
157695    characteristic of ERF are analyzed; the effects of electric field
157696    strength, vibration amplitude, vibration frequency and circumstance
157697    temperature on ERF's dynamic mechanical properties are investigated
157698    using orthogonal tests. In addition, the ERF damper of lathe tool slide
157699    worked on shear-mode is developed; the turning experiments with the
157700    damper are performed in order to validate the suppressive effect of
157701    vibration. The experimental results demonstrate that ERF dampers can
157702    decrease the machining vibration response effectively.
157703 C1 Shanghai Univ Sci & Technol, Sch Mech Engn, Shanghai 200093, Peoples R China.
157704    Jilin Univ, Sch Mech Sci & Engn, Changchun 130025, Peoples R China.
157705    Nanyang Technol Univ, Singapore 2263, Singapore.
157706 RP Zhang, YL, Shanghai Univ Sci & Technol, Sch Mech Engn, Shanghai 200093,
157707    Peoples R China.
157708 CR AOYAMA T, 1997, ANN CIRP, V46, P309
157709    EHRGOTT RC, 1994, J VIB ACOUST, V116, P53
157710    HASHIZUME H, 2000, JSME INT J C-MECH SY, V43, P183
157711    JORDAN TC, 1992, J RHEOL, V36, P441
157712    LOU Z, 1993, 931403 SAE, V1, P334
157713    MCLEISH TCB, 1991, J RHEOL, V35, P427
157714    PEEL DJ, 1996, SMART MATER STRUCT, V5, P591
157715    PETEK NK, 1992, 920275 SAE, V6, P350
157716    STEVENS NG, 1987, J APPL MECH-T ASME, V54, P456
157717    YAO GZ, 2000, J VIB ACOUST, V122, P7
157718 NR 10
157719 TC 0
157720 SN 0217-9792
157721 J9 INT J MOD PHYS B
157722 JI Int. J. Mod. Phys. B
157723 PD APR 10
157724 PY 2005
157725 VL 19
157726 IS 7-9
157727 PN Part 2 Sp. Iss. SI
157728 BP 1710
157729 EP 1716
157730 PG 7
157731 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
157732 GA 928DS
157733 UT ISI:000229251900037
157734 ER
157735 
157736 PT J
157737 AU Zhang, AL
157738    Steele, TG
157739 TI Analysis of J(PC)=1(-+) exotic hybrid eta pi, eta 'pi decays
157740 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
157741 DT Article
157742 DE hybrids; sum rules; decay
157743 ID 18 GEV/C; MESON PRODUCTION; QCD; HADRONS; PHYSICS; MODEL; STATE
157744 AB Investigations of the mass and decays of the J(PC) = 1(-+) hybrid are
157745    reviewed, including calculation of the &pi;(1)(1(-+)) &RARR; &eta;&pi;,
157746    &eta;'&pi; decay widths within the QCD sum rules technique. In this
157747    calculation, the recently-proposed &eta;, &eta;' quark mixing scheme is
157748    employed. The results indicate that the decay width &UGamma;(&pi; 1
157749    &RARR; &eta;&pi;) &AP; 250 MeV is large compared with the decay width
157750    &UGamma;(&pi; 1 &RARR; &eta;'&pi;) &AP; 20 MeV. Inspired by these
157751    results, some phenomenological approaches are suggested to gain an
157752    understanding of the underlying mechanism of &eta;&pi; and &eta;'&pi;
157753    hybrid decays.
157754 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
157755    Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada.
157756 RP Zhang, AL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
157757 CR ABELE A, 1998, PHYS LETT B, V423, P175
157758    ADAMS GS, 1998, PHYS REV LETT, V81, P5760
157759    ALOISIO A, 2002, PHYS LETT B, V451, P45
157760    AUBERT B, 2003, PHYS REV LETT, V90
157761    BAI JZ, 1998, PHYS REV D, V58
157762    BAI JZ, 2003, PHYS REV LETT, V91
157763    BERNARD C, 1997, PHYS REV D, V56, P7039
157764    BERNARD C, 2003, NUCL PHYS B-PROC SUP, V119, P260
157765    BERNARD C, 2003, PHYS REV D, V68
157766    CHANOWITZ M, 1983, NUCL PHYS B, V222, P211
157767    CHETYRKIN K, 2000, PHYS LETT B, V485, P145
157768    CHODOS A, 1974, PHYS REV D, V9, P3471
157769    CLOSE FE, 1995, NUCL PHYS B, V443, P233
157770    EIDELMAN S, 2004, PHYS LETT B, V592, P1
157771    FELDMANN T, 1998, PHYS REV D, V58
157772    GOVAERTS J, 1987, NUCL PHYS B, V284, P674
157773    ISGUR N, 1985, PHYS REV D, V31, P2910
157774    IVANOV EI, 2001, PHYS REV LETT, V86, P3977
157775    JIN HY, 2003, PHYS REV D, V67
157776    NAKANO T, 2003, PHYS REV LETT, V91
157777    PAGE PR, 1999, PHYS REV D, V59
157778    SHIFMAN MA, 1979, NUCL PHYS B, V147, P385
157779    THOMPSON DR, 1997, PHYS REV LETT, V79, P1630
157780    ZHANG AL, 2002, PHYS REV D, V65
157781    ZHANG AL, 2003, PHYS REV D, V67
157782 NR 25
157783 TC 0
157784 SN 0217-751X
157785 J9 INT J MOD PHYS A
157786 JI Int. J. Mod. Phys. A
157787 PD APR 10
157788 PY 2005
157789 VL 20
157790 IS 8-9
157791 BP 1973
157792 EP 1976
157793 PG 4
157794 SC Physics, Nuclear; Physics, Particles & Fields
157795 GA 925XA
157796 UT ISI:000229085600083
157797 ER
157798 
157799 PT J
157800 AU Liu, WQ
157801    Zhou, BX
157802    Li, Q
157803    Yao, MY
157804 TI Detrimental role of LiOH on the oxide film formed on Zircaloy-4
157805 SO CORROSION SCIENCE
157806 DT Article
157807 DE Zircaloy-4; X-ray diffraction; SIMS; corrosion resistance
157808 ID LITHIUM HYDROXIDE; ZIRCONIUM ALLOYS; BORIC-ACID; CORROSION;
157809    DEGRADATION; OXIDATION; CHEMISTRY; HYDROGEN; ZR-2.5NB; WATER
157810 AB To understand the degradation behavior of Zircaloy-4 corroded in LiOH
157811    aqueous solution, X-ray diffraction was performed to analyze the
157812    crystal structure of Zircaloy-4 oxide formed in three different media.
157813    Second ion mass spectrometry (SIMS) was utilized to measure the
157814    penetration of Li+ and OH-into the oxide film when Zircaloy-4 is
157815    exposed in LiOH aqueous solution. It was found that the SIMS depth
157816    profile of OH- in the oxide film is in accord with that of Li+, which
157817    indicates that there exists OH- in the oxide film. Based on the
157818    results, it is put forward that OH- diffuses faster than O-2 in the
157819    oxide films, which can enhance the corrosion rate of Zircaloy-4 and the
157820    transformation from tetragonal zirconia (t-ZrO2) to monoclinic zirconia
157821    (m-ZrO2,). OH- plays a detrimental role on the oxide film formed on
157822    Zircaloy-4. (c) 2004 Elsevier Ltd. All rights reserved.
157823 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
157824 RP Liu, WQ, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
157825 EM wqliu@staff.shu.edu.cn
157826 CR BEIE HJ, 1994, AM SOC TEST MATER, V1245, P615
157827    BLAT M, 2000, AM SOC TEST MATER, V1354, P563
157828    COX B, 1995, J NUCL MATER, V224, P169
157829    GODLEWSKI J, 2000, AM SOC TEST MATER, V1354, P877
157830    HILLNER E, 1961, WAPDTM307 BETT AT PO
157831    KIM YS, 1999, J NUCL MATER, V270, P165
157832    LI ZK, 2001, RARE METAL MAT ENG, V30, P68
157833    LIU WQ, 2002, THESIS SHANGHAI U SH, P52
157834    PECHEUR D, 1996, ASTM STP, V1295, P94
157835    PECHEUR D, 2000, AM SOC TEST MATER, V1354, P793
157836    RAMASUBRAMANIAN N, 1994, AM SOC TEST MATER, V1245, P378
157837    SAARIO T, 1993, IAEA TECHN COMM M IN
157838    SATO T, 1985, J MATER SCI, V20, P3988
157839    URBANIC VF, 2000, AM SOC TEST MATER, V1354, P641
157840    WADMAN B, 1994, AM SOC TEST MATER, V1245, P579
157841    XUE XY, 1996, RARE METAL MAT ENG, V25, P33
157842    YANG FL, 1999, RARE METALS, V23, P236
157843    YOSHIMURA M, 1987, J MATER SCI LETT, V6, P465
157844    ZHOU BX, 2000, NUCL POWER ENG, V21, P439
157845 NR 19
157846 TC 0
157847 SN 0010-938X
157848 J9 CORROS SCI
157849 JI Corrosion Sci.
157850 PD JUL
157851 PY 2005
157852 VL 47
157853 IS 7
157854 BP 1855
157855 EP 1860
157856 PG 6
157857 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
157858    Engineering
157859 GA 927NN
157860 UT ISI:000229200700018
157861 ER
157862 
157863 PT J
157864 AU Ng, CK
157865    Zhang, LS
157866    Li, D
157867    Tian, WW
157868 TI Discrete filled function method for discrete global optimization
157869 SO COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
157870 DT Article
157871 DE nonlinear integer programming; quadratic integer programming; linear
157872    integer programming; discrete global optimization; discrete filled
157873    function method
157874 ID INTEGER PROGRAMMING-PROBLEMS; CONTROLLED RANDOM SEARCH; POWER
157875    LAGRANGIAN METHOD; SOLVING INTEGER; ALGORITHM; MINIMIZATION; VARIABLES;
157876    BRANCH; MINIMA
157877 AB A discrete filled function method is developed in this paper to solve
157878    discrete global optimization problems over "strictly pathwise connected
157879    domains." Theoretical properties of the proposed discrete filled
157880    function are investigated and a solution algorithm is proposed.
157881    Numerical experiments reported in this paper on several test problems
157882    with up to 200 variables have demonstrated the applicability and
157883    efficiency of the proposed method.
157884 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
157885    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
157886 RP Ng, CK, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management,
157887    Shatin, Hong Kong, Peoples R China.
157888 EM ckng@se.cuhk.edu.hk
157889    dli@se.cuhk.edu.hk
157890    wwtian@guomai.sh.cn
157891 CR BECK A, 2000, SIAM J OPTIMIZ, V11, P179
157892    CONLEY W, 1980, COMPUTER OPTIMIZATIO
157893    COOPER MW, 1981, MANAGE SCI, V27, P353
157894    COOPER MW, 1983, NAV RES LOG, V29, P585
157895    DIXON LCW, 1976, OPTIMIZATION ACTION, P398
157896    FISHER ML, 1981, MANAGE SCI, V27, P1
157897    GE R, 1989, APPL MATH COMPUT, V34, P39
157898    GE R, 1990, MATH PROGRAM, V46, P191
157899    GE RP, 1987, J OPTIMIZ THEORY APP, V54, P241
157900    GEOFFRION AM, 1974, MATHEMATICAL PROGRAM, V2, P82
157901    GOLDSTEIN AA, 1971, MATH COMPUT, V25, P569
157902    GUPTA OK, 1985, MANAGE SCI, V31, P1533
157903    HAN QM, 2001, APPL MATH COMPUT, V119, P217
157904    HOCK W, 1981, TEST EXAMPLES NONLIN
157905    KORNER F, 1988, BIT, V28, P701
157906    LEVY AV, 1985, SIAM J SCI STAT COMP, V6, P15
157907    LI D, 2000, ANN OPER RES, V98, P151
157908    LI D, 2000, J GLOBAL OPTIM, V18, P235
157909    LITINETSKI VV, 1998, ENG OPTIMIZ, V30, P125
157910    LIU X, 2001, J GLOBAL OPTIM, V19, P151
157911    LUUS R, 1973, AICHE J, V19, P760
157912    MOHAN C, 1999, COMPUT OPTIM APPL, V14, P103
157913    MORE JJ, 1981, ACM T MATH SOFTWARE, V7, P17
157914    PRICE WL, 1983, J OPTIMIZ THEORY APP, V40, P333
157915    SCHITTKOWSKI K, 1987, MORE TEST EXAMPLES N
157916    SUN XL, 2000, MATH OPER RES, V25, P625
157917    XU Z, 2001, J GLOBAL OPTIM, V20, P49
157918    YANG XQ, 2001, LOCAL GLOBAL OPTIMIZ
157919    ZHANG LS, 1999, J COMPUT MATH, V17, P179
157920    ZHANG LS, 2004, J GLOBAL OPTIM, V28, P17
157921    ZHENG Q, 1995, J GLOBAL OPTIM, V7, P421
157922    ZHU WX, 1998, APPL MATH COMPUT, V93, P183
157923 NR 32
157924 TC 0
157925 SN 0926-6003
157926 J9 COMPUT OPTIM APPL
157927 JI Comput. Optim. Appl.
157928 PD MAY
157929 PY 2005
157930 VL 31
157931 IS 1
157932 BP 87
157933 EP 115
157934 PG 29
157935 SC Mathematics, Applied; Operations Research & Management Science
157936 GA 927RM
157937 UT ISI:000229218200005
157938 ER
157939 
157940 PT J
157941 AU An, WK
157942    Qiu, XJ
157943    Shi, CH
157944    Zhu, ZY
157945 TI Dependence of the average Lorentz factor on temperature in relativistic
157946    plasmas
157947 SO CHINESE PHYSICS LETTERS
157948 DT Article
157949 ID HOT PLASMA; PHYSICS; ELECTRONS
157950 AB For the relativistic plasma, how to fix the Lorentz factors of the
157951    particles is an important but difficult problem. We resolve this
157952    problem by demonstrating the exact relation between the average Lorentz
157953    factor and temperature in relativistic plasmas. A rather simple
157954    relation is also obtained for the ultra-relativistic case.
157955 C1 Shanghai Univ, Sch Sci, Dept Phys, Shanghai 200436, Peoples R China.
157956    Hunan Inst Sci & Technol, Dept Phys, Yueyang 414000, Peoples R China.
157957    Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
157958 RP An, WK, Shanghai Univ, Sch Sci, Dept Phys, Shanghai 200436, Peoples R
157959    China.
157960 EM anweike@yahoo.com.cn
157961 CR ABRAMOWITZ M, 1964, HDB MATH FUNCTIONS
157962    ADAN JC, 2001, PHYS PLASMAS, V8, P1664
157963    BERGMAN J, 2001, PHYS PLASMAS 1, V8, P1482
157964    CAI HB, 2004, CHINESE PHYS LETT, V21, P891
157965    DEUTSCH C, 1996, PHYS REV LETT, V77, P2483
157966    GROOT SR, 1980, RELATIVISTIC KINETIC
157967    MA JY, 2003, CHINESE PHYS LETT, V20, P1306
157968    MA JY, 2004, CHINESE PHYS, V13, P376
157969    MALKA G, 1996, PHYS REV LETT, V77, P75
157970    MORA P, 2001, PLASMA PHYS CONT 12A, V43, A31
157971    OVCHINNIKOV KN, 1996, PLASMA PHYS REP, V22, P395
157972    PEGORARO F, 1984, PHYS FLUIDS, V27, P1665
157973    QUESNEL B, 1997, PHYS REV LETT, V78, P2132
157974    UMSTADTER D, 2001, PHYS PLASMAS 2, V8, P1774
157975 NR 14
157976 TC 0
157977 SN 0256-307X
157978 J9 CHIN PHYS LETT
157979 JI Chin. Phys. Lett.
157980 PD MAY
157981 PY 2005
157982 VL 22
157983 IS 5
157984 BP 1176
157985 EP 1178
157986 PG 3
157987 SC Physics, Multidisciplinary
157988 GA 927OF
157989 UT ISI:000229202500042
157990 ER
157991 
157992 PT J
157993 AU Zhang, ML
157994    Xia, YB
157995    Wang, LJ
157996    Gu, BB
157997 TI Characterization of defects in chemical vapour deposited diamonds
157998 SO CHINESE PHYSICS LETTERS
157999 DT Article
158000 ID CVD-DIAMOND; X-RAY; DETECTORS; CENTERS; VACANCY; FILMS
158001 AB Room-temperature Raman and PL spectra, photocurrent (PC) and thermally
158002    stimulated current (TSC) were measured to investigate the mid-gap
158003    defects in diamonds grown by using a hot-filament chemical vapour
158004    deposition (CVD) technique. The [Si-V](0) centres caused by the Si-C
158005    bonds in diamond grains and at grain boundaries are located at 1.68eV.
158006    We firstly detect the level 1.55eV by using PL and it is tentatively
158007    attributed to the zero-phonon luminescence line or vibronic band of the
158008    [Si-V](0) induced by the Si-O bonds. The 2.7-3.2eV and 1.9-2.1 eV PC
158009    peaks were detected and discussed. The [N-V] complex may be attributed
158010    to these defect levels. Some shallow energy levels lower than 1.0eV
158011    were also observed in the CVD diamond.
158012 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
158013 RP Zhang, ML, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples
158014    R China.
158015 EM zhamilong@hotmail.com
158016 CR GARRIDO JA, 2002, DIAM RELAT MATER, V11, P347
158017    GU BB, 2004, CHINESE PHYS LETT, V21, P2051
158018    IAKOUBOVSKII K, 2000, DIAM RELAT MATER, V9, P1349
158019    IAKOUBOVSKII K, 2000, J PHYS-CONDENS MAT, V12, P189
158020    KUPRIYANOV IN, 2000, J PHYS-CONDENS MAT, V12, P7843
158021    LOWTHER JE, 1993, PHYS REV B, V48, P11592
158022    MUTO Y, 1991, APPL PHYS LETT, V59, P843
158023    NEBEL CE, 2003, SEMICOND SCI TECH S, V18, S1
158024    ZHANG ML, 2004, J CRYST GROWTH, V274, P21
158025    ZHANG ML, 2004, J PHYS D APPL PHYS, V37, P3198
158026    ZHANG ML, 2004, PHYS LETT A, V332, P320
158027    ZHANG ML, 2004, SOLID STATE COMMUN, V130, P425
158028 NR 12
158029 TC 0
158030 SN 0256-307X
158031 J9 CHIN PHYS LETT
158032 JI Chin. Phys. Lett.
158033 PD MAY
158034 PY 2005
158035 VL 22
158036 IS 5
158037 BP 1264
158038 EP 1266
158039 PG 3
158040 SC Physics, Multidisciplinary
158041 GA 927OF
158042 UT ISI:000229202500067
158043 ER
158044 
158045 PT J
158046 AU Liu, H
158047    Lu, GZ
158048    Guo, YL
158049    Guo, Y
158050    Wang, JS
158051 TI Deactivation and regeneration of TS-1/diatomite catalyst for
158052    hydroxylation of phenol in fixed-bed reactor
158053 SO CHEMICAL ENGINEERING JOURNAL
158054 DT Article
158055 DE TS-1/diatomite; deactivation; regeneration; hydroxylation of phenol;
158056    fixed-bed reactor
158057 ID TITANIUM SILICALITE; HYDROGEN-PEROXIDE; CYCLOHEXANONE; AMMOXIMATION;
158058    OXIDATION; PROPYLENE; SURFACE; TS-1
158059 AB The performance of the TS-1/diatomite catalyst for hydroxylation of
158060    phenol was investigated in the fixed-bed reactor. The results show that
158061    the activity and the selectivity to product of the TS-1/diatomite
158062    catalyst decrease simultaneously with an increase of the reaction time,
158063    which indicates that the TS-1/diatomite catalyst has deactivated
158064    gradually during the reaction. The deactivated catalyst was
158065    characterized by XRD, UV-vis, FT-IR, N-2 adsorption and
158066    thermogravimetric analysis techniques. It was found that the
158067    crystallinity of TS-1/diatomite catalyst decreased slightly, but the
158068    structure of TS-1 zeolite and the content of titanium in the framework
158069    were unchanged. Compared with the fresh catalyst, the channels of the
158070    TS-1/diatomite catalyst were blocked by the organic byproducts, to
158071    result in the obvious decrease in the surface area and pore volume of
158072    the deactivated catalyst. The deposited byproducts inside the channels
158073    of TS-1/diatomite can be removed by calcining at 550 degrees C or
158074    refluxing with dilute hydrogen peroxide, which makes the performance of
158075    the deactivated catalyst recover completely. (c) 2005 Elsevier B.V. All
158076    rights reserved.
158077 C1 E China Univ Sci & Technol, Lab Adv Mat, Res Inst Ind Catalysis, Shanghai 200237, Peoples R China.
158078    Shanghai Univ, Coll Environm & Chem Engn, Shanghai 200072, Peoples R China.
158079 RP Liu, H, E China Univ Sci & Technol, Lab Adv Mat, Res Inst Ind
158080    Catalysis, Shanghai 200237, Peoples R China.
158081 EM gzhlu@ecust.edu.cn
158082 CR CHEN XH, 2001, CHIN J FUEL CHEM TEC, V29, P426
158083    CLERICI MG, 1991, APPL CATAL, V68, P394
158084    CLERICI MG, 1991, J CATAL, V129, P159
158085    HUYBRECHTS DRC, 1992, J MOL CATAL, V71, P129
158086    LI G, 2001, MATER CHEM PHYS, V71, P195
158087    LI P, 2000, ACTA CHIM SINICA, V58, P204
158088    LIU H, 2004, CHINESE J CATAL+, V25, P49
158089    MARTENS JA, 1993, APPL CATAL A-GEN, V99, P71
158090    MASPERO F, 1994, J CATAL, V146, P476
158091    REDDY JS, 1992, J MOL CATAL, V71, P373
158092    SING KSW, 1985, PURE APPL CHEM, V57, P603
158093    THIELE GF, 1997, J MOL CATAL A-CHEM, V117, P351
158094    TUEL A, 1991, J MOL CATAL, V68, P45
158095    TVARUZKOVA Z, 1993, APPL CATAL A-GEN, V103, L1
158096 NR 14
158097 TC 2
158098 SN 1385-8947
158099 J9 CHEM ENG J
158100 JI Chem. Eng. J.
158101 PD APR 15
158102 PY 2005
158103 VL 108
158104 IS 3
158105 BP 187
158106 EP 192
158107 PG 6
158108 SC Engineering, Chemical
158109 GA 927EH
158110 UT ISI:000229174700001
158111 ER
158112 
158113 PT J
158114 AU Wang, QM
158115    Ding, YP
158116    Chen, QM
158117    Zhao, MH
158118    Cheng, JR
158119 TI Crystalline orientation dependence of nanomechanical properties of
158120    Pb(Zr0.52Ti0.48)O-3 thin films
158121 SO APPLIED PHYSICS LETTERS
158122 DT Article
158123 ID ELECTRICAL-PROPERTIES; POLARIZATION; TEMPERATURE
158124 AB It has been recognized that the control of crystalline orientation and
158125    thickness of Pb(Zr0.52Ti0.48)O-3 (PZT) thin-films is very critical in
158126    the fabrication of piezoelectric thin-film devices with desirable
158127    dielectric and electromechanical properties. Here, we present our
158128    recent studies on the fabrication of PZT films with (001), (111), and
158129    random crystalline orientations onto platinized silicon substrates and
158130    the crystalline orientation dependence of the nanomechanical
158131    properties. A 1.0-&mu; m PZT film with a strong (100) orientation is
158132    deposited by a 2-methoxyethanol- (2-MOE)-based sol-gel precursor
158133    solution, while random orientation is obtained by acetic acid-based
158134    sol-gel precursor. Rapid thermal annealing of 2-MOE sol-gel-based PZT
158135    films leads to strong (111) orientation. All PZT films show similar
158136    hysteresis behavior and large remnant polarizations; however, the
158137    nanomechanical test using AFM and nanoindentation indicates distinct
158138    values of Young's modulus for PZT films with different orientations.
158139    &COPY; 2005 American Institute of Physics.
158140 C1 Univ Pittsburgh, Dept Engn Mech, Pittsburgh, PA 15261 USA.
158141    Shanghai Univ, Dept Mat Sci & Engn, Shanghai, Peoples R China.
158142 RP Wang, QM, Univ Pittsburgh, Dept Engn Mech, Pittsburgh, PA 15261 USA.
158143 EM qmwang@engr.pitt.edu
158144 CR BROOKS RL, 1994, AFRICAN AM L POLICY, V1, P9
158145    CATTAN E, 1997, APPL PHYS LETT, V70, P1718
158146    CHEN HD, 1996, J AM CERAM SOC, V79, P2189
158147    CHEN SY, 1994, J AM CERAM SOC, V77, P2337
158148    CROSS LE, 1997, ENCY APPL PHYS, V21, P429
158149    FANG TH, 2003, J PHYS-CONDENS MAT, V15, P5253
158150    FU DS, 2002, APPL PHYS LETT, V80, P3572
158151    GONG W, 2004, J EUR CERAM SOC, V24, P2977
158152    LEDERMANN N, 2003, SENSOR ACTUAT A-PHYS, V105, P162
158153    LEE CK, 1996, IEEE T ULTRASON FERR, V43, P553
158154    LIN Y, 1998, APPL PHYS LETT, V73, P2781
158155    LUGINBUHL P, 1996, SENSOR ACTUAT A-PHYS, V54, P530
158156    MORIOKA H, 2003, APPL PHYS LETT, V82, P4761
158157    POLLA DL, 1996, MRS BULL, V21, P59
158158    TANG XG, 2004, J CRYST GROWTH, V267, P15
158159    WANG QM, 2004, SENSOR ACTUAT A-PHYS, V113, P1
158160    WANG YK, 2002, APPL PHYS LETT, V80, P3790
158161    XU BM, 1999, APPL PHYS LETT, V74, P3549
158162    YI G, 1988, J APPL PHYS, V64, P2717
158163    ZHENG XJ, 2003, ACTA MATER, V51, P3985
158164 NR 20
158165 TC 1
158166 SN 0003-6951
158167 J9 APPL PHYS LETT
158168 JI Appl. Phys. Lett.
158169 PD APR 18
158170 PY 2005
158171 VL 86
158172 IS 16
158173 AR 162903
158174 DI ARTN 162903
158175 PG 3
158176 SC Physics, Applied
158177 GA 925GD
158178 UT ISI:000229040300054
158179 ER
158180 
158181 PT J
158182 AU Jiang, JB
158183    Qiu, X
158184    Lu, ZM
158185    Liu, YL
158186 TI Orthogonal wavelet analysis of counter gradient transport phenomena in
158187    turbulent asymmetric channel flow
158188 SO ACTA MECHANICA SINICA
158189 DT Article
158190 DE turbulent counter gradient transport (CGT); wavelet analysis;
158191    turbulence structure
158192 AB In this paper four families of orthogonal wavelets are applied to
158193    analyze the turbulent counter gradient transport phenomena in fully
158194    developed asymmetric channel flows. The results show that: (1) In the
158195    instance of counter gradient transport, the principal scale of the
158196    coherent structure is responsible for the strong local counter. radient
158197    transport; (2) Counter gradient transport phenomena have a strong
158198    effect on the intermittency of turbulence; (3) Non-Gaussian part of the
158199    principal coherent structure is essential for counter gradient
158200    transport phenomena.
158201 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
158202 RP Liu, YL, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
158203    200072, Peoples R China.
158204 EM ylliu@staff.shu.edu.cn
158205 CR ESKINAZI S, 1956, J AERONAUT SCI, V23, P23
158206    ESKINAZI S, 1969, PHYS FLUIDS, V12, P1988
158207    FARGE M, 1992, ANNU REV FLUID MECH, V232, P469
158208    FARGE M, 1996, P IEEE, V84, P639
158209    FRISH UD, 1995, TURBULENCE
158210    HUDGINS L, 1993, PHYS REV LETT, V71, P3279
158211    JIANG JB, 2000, ADV MECH, V30, P1
158212    JIANG N, 1997, ACTA MECH SINICA, V29, P406
158213    KOLMOGOROV AN, 1941, DOKL AKAD NAUK SSSR, V30, P301
158214    LI L, 2001, ACTA MECH SINICA, V33, P153
158215    LIANDRAT J, 1990, EUR J MECH B-FLUID, V9, P1
158216    LU ZM, 2001, ACTA MECH SINICA, V17, P125
158217    MENEVEAU C, 1991, J FLUID MECH, V232, P569
158218    MOURI H, 1999, J FLUID MECH, V389, P229
158219    ONORATO M, 2000, PHYS REV E, V61, P1447
158220    ROBINSON SK, 1991, ANNU REV FLUID MECH, V23, P601
158221    ROSE HA, 1977, J FLUID MECH, V81, P719
158222    SHE ZS, 1994, PHYS REV LETT, V72, P336
158223    SZILAGYI J, 1999, ADV WATER RESOUR, V22, P561
158224    YAMADA M, 1990, PROG THEOR PHYS, V83, P819
158225 NR 20
158226 TC 0
158227 SN 0567-7718
158228 J9 ACTA MECH SINICA
158229 JI Acta Mech. Sin.
158230 PD APR
158231 PY 2005
158232 VL 21
158233 IS 2
158234 BP 133
158235 EP 141
158236 PG 9
158237 SC Engineering, Mechanical; Mechanics
158238 GA 926DM
158239 UT ISI:000229103100005
158240 ER
158241 
158242 PT J
158243 AU He, YL
158244    Li, L
158245    Gao, W
158246    Wang, QL
158247    Wu, XC
158248 TI Computer aided design of free-machinability prehardened mold steel for
158249    plastic
158250 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
158251 DT Article
158252 DE prehardened mold steel for plastic; machinability; Thermo-Calc software
158253    package; non-metallic inclusion
158254 ID THERMO-CALC; INCLUSIONS; SPEED
158255 AB In order to improve the machinability but not to impair other
158256    properties of the prehardened mold steel for plastic, the composition
158257    was designed by application of Thermo-Calc software package to regulate
158258    the type of nonmetallic inclusion formed in the steel. The regulated
158259    non-metallic inclusion type was also observed by SEM and EDX. Then the
158260    machinability assessment of the steel with designed composition under
158261    different conditions was studied by the measurement of tool wear amount
158262    and cutting force. The results show that the composition of free
158263    cutting elements adding to mold steel for plastic can be optimized to
158264    obtain proper type of non-metallic inclusion in the aid of Thermo-Calc,
158265    compared with the large volume fraction of soft inclusion which is
158266    needed for promoting ductile fracture at low cutting speeds, the proper
158267    type of inclusion at high cutting speeds is glassy oxide inclusion. All
158268    those can be obtained in the present work.
158269 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
158270    Shanghai Baoshan Steel Grp Co, Shanghai Steel Co Ltd 5, Shanghai 200940, Peoples R China.
158271 RP He, YL, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
158272    China.
158273 EM ylhe@mail.shu.edu.cn
158274 CR ANDERSSON JO, 2002, CALPHAD, V26, P273
158275    BLAIS C, 1997, MATER CHARACT, V38, P25
158276    CICUTTI CE, 1997, IRONMAK STEELMAK, V24, P155
158277    GAYE H, 1984, P 2 INT S MET SLAGS, P357
158278    GAYE H, 1990, SCANDINAVIAN J METAL, V19, P137
158279    GAYE H, 2001, HIGH TEMP MAT PR-ISR, V20, P285
158280    GAYE H, 2001, STEEL RES, P446
158281    HOLAPPA L, 2003, IRONMAK STEELMAK, V30, P111
158282    JANSSON B, 1993, THERMOCHIM ACTA, V214, P93
158283    NG EG, 2002, J MANUF SCI E-T ASME, V124, P588
158284    PRESERN V, 1991, STEEL RES, V62, P289
158285    QI HS, 1996, WEAR, V198, P192
158286    RUBYMEYER F, 2000, SCAND J METALL, V29, P206
158287    SUBRAMANIAN SV, 1998, CIM BULL, V91, P107
158288    SUNDMAN B, 1985, CALPHAD, V9, P153
158289    SUNDMAN B, 1991, SCAND J METALL, V20, P79
158290    TAO JG, 1993, RES IRON STEEL, V71, P20
158291    TOMITA Y, 1994, J MATER SCI, V29, P2873
158292    TRENT EM, 2000, METAL CUTTING, P186
158293    VAINOLA RV, 1995, J MATER PROCESS TECH, V53, P453
158294    VLEUGELS J, 1999, WEAR, V225, P285
158295    YAMASHITA T, 1999, J PHASE EQUILIB, V20, P231
158296 NR 22
158297 TC 0
158298 SN 1003-6326
158299 J9 TRANS NONFERROUS METAL SOC CH
158300 JI Trans. Nonferrous Met. Soc. China
158301 PD APR
158302 PY 2005
158303 VL 15
158304 IS 2
158305 BP 437
158306 EP 442
158307 PG 6
158308 SC Metallurgy & Metallurgical Engineering
158309 GA 924CQ
158310 UT ISI:000228956700050
158311 ER
158312 
158313 PT J
158314 AU Wang, JA
158315    Zhou, BX
158316    Li, Q
158317    Zhu, YL
158318    Sun, HD
158319 TI AlN plus MnS inclusions in oriented electrical steels
158320 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
158321 DT Article
158322 DE oriented electrical steels; field emission-scanning electron microscopy
158323    (FE-SEM); inclusions
158324 ID LOW-CARBON STEEL; PRECIPITATION KINETICS; TEXTURE DEVELOPMENT;
158325    SILICON-IRON; MORPHOLOGY; ALUMINUM; AIN
158326 AB Field emission-scanning electron microscopy (FE-SEM) technique was
158327    employed to observe the shape, size and distribution of AIN+MnS
158328    inclusions in oriented electrical steels. Specimens used for FE-SEM
158329    observation were deeply electrolytic etched at room temperature in
158330    non-aqueous acetylacetone(AA) solution. The results indicate that the
158331    FE-SEM technique has obvious advantage in specimen preparation.
158332    Therefore, it can be easily used to identify the AIN+MnS inclusions and
158333    even copper nano-particles in oriented electrical steels with the same
158334    analysis accuracy as that by TEM. This technique is a good substitute
158335    for TEM and the associated specimen preparation in the observation of
158336    inclusions in electrical steels. It will be a powerful technique for
158337    routine analysis in the production of grain oriented electrical steels.
158338 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
158339    Baoshan Iron & Steel Co Ltd, Ctr Res & Dev, Shanghai 201900, Peoples R China.
158340 RP Wang, JA, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
158341    China.
158342 EM jawang@staff.shu.edu.cn
158343 CR *RES GROUP SIL IR, 1977, ACTA METALLURGICA SI, V13, P80
158344    FIEDLER HC, 1977, METALL T A, V8, P1307
158345    GARBARZ B, 2003, MATER CHEM PHYS, V81, P486
158346    KANG YL, 2003, MAT SCI ENG A-STRUCT, V351, P265
158347    KUROSAWA F, 1979, J JAPAN I METALS, V43, P1068
158348    NAKAYAMA T, 2000, J MAGN MAGN MATER, V213, P87
158349    PARK JY, 2002, ACTA MATER, V50, P1825
158350    PETROVIC DS, 2003, VACUUM, V71, P33
158351    RODRIGUES VA, 1998, J PHYS IV, V8, P527
158352    SAKAI T, 1979, J APPL PHYS, V50, P2369
158353    SENNOUR M, 2003, ACTA MATER, V51, P943
158354    SHEN TH, 1986, METALL T A, V17, P1347
158355    TAGUCHI SA, 1966, 3287183, US
158356    YOSHITOMI Y, 1993, MATER SCI FORUM, V113, P281
158357    ZAVERYUKHA A, 2003, MAT SCI ENG A-STRUCT, V345, P23
158358 NR 15
158359 TC 0
158360 SN 1003-6326
158361 J9 TRANS NONFERROUS METAL SOC CH
158362 JI Trans. Nonferrous Met. Soc. China
158363 PD APR
158364 PY 2005
158365 VL 15
158366 IS 2
158367 BP 460
158368 EP 463
158369 PG 4
158370 SC Metallurgy & Metallurgical Engineering
158371 GA 924CQ
158372 UT ISI:000228956700055
158373 ER
158374 
158375 PT J
158376 AU Li, Z
158377    Jiao, Z
158378    Wu, MH
158379    Wang, DQ
158380    Wang, YL
158381    Gu, JZ
158382 TI Study of sol-gel-prepared NiO thin film
158383 SO RARE METAL MATERIALS AND ENGINEERING
158384 DT Article
158385 DE NiO; thin film; sol-gel technique; electrochromism
158386 AB NiO thin film was prepared by the sol-gel technique and analyzed by
158387    thermogravimetry, X-ray diffractometry and X-ray photoelectron
158388    spectroscopy. The electrochromic characteristics were studied by
158389    ultraviolet spectroscopy. The experiment results showed that the
158390    sol-gel process with dip-coating deposition is an effective way to make
158391    NiO thin films. The thin film composition depends strongly on the heat
158392    treatment temperature, and the electrochromism efficiency of the films
158393    prepared at 450&DEG; C is optimum.
158394 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
158395 RP Li, Z, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
158396    Peoples R China.
158397 CR AGARWAL V, 1996, ELECTROCHEMS SOC, V143, P239
158398    FERREIRA FF, 1996, SOLID STATE IONICS 2, V86, P971
158399    OZER N, 1996, P 5 WORLD C CHEM ENG, P933
158400    SCARMINIO J, 1992, J MATER SCI LETT, V562, P11
158401    SURCA A, 1996, J ELECTROANAL CHEM, V408, P83
158402 NR 5
158403 TC 0
158404 SN 1002-185X
158405 J9 RARE METAL MAT ENG
158406 JI Rare Metal Mat. Eng.
158407 PD DEC
158408 PY 2004
158409 VL 33
158410 SU Suppl. 3
158411 BP 108
158412 EP 110
158413 PG 3
158414 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
158415    Engineering
158416 GA 925AT
158417 UT ISI:000229024600030
158418 ER
158419 
158420 PT J
158421 AU Liu, WP
158422    Zhou, BX
158423    Li, Q
158424    Yao, MY
158425 TI Effect of different kinds of media on oxide of Zircaloy-4
158426 SO RARE METAL MATERIALS AND ENGINEERING
158427 DT Article
158428 DE Zircaloy-4; corrosion resistance; XRD; SIMS
158429 ID PHASE-TRANSFORMATION; STABILIZED ZIRCONIA; DEGRADATION; WATER
158430 AB In order to understand the degradation behavior of Zircaloy-4 corroded
158431    in LiOH aqueous solution, three groups of Zr-4 powder specimens are
158432    exposed in 500&DEG; C air, 500&DEG; C superheated steam, and 0.1 mol/L
158433    LiOH aqueous solution at 350&DEG; C respectively, till the thickness of
158434    the oxide film is about 1.5 &mu; m. XRD is performed on the specimens
158435    to distinguish the oxide crystal structure. A Zr-4 plate specimen is
158436    exposed in 0.04 mol/L LiOH solution at 350&DEG; C for 2 d, then SIMS is
158437    carried out to obtain the Li+ and OH- profiles in the oxide film. Based
158438    on the results, it is put forward that OH- diffuses faster than O-2
158439    does in the oxide film and can enhance the transformation from t-ZrO2
158440    to m-ZrO2, which quickens the corrosion rate of Zircalor-4.
158441 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
158442 RP Liu, WP, Shanghai Univ, Shanghai 200072, Peoples R China.
158443 EM wqliu@mail.shu.edu.cn
158444 CR COX B, 1995, J NUCL MATER, V224, P169
158445    HILLNER E, 1962, WAPDTM307 BETT AT PO
158446    KIM YS, 1999, J NUCL MATER, V270, P165
158447    LI ZK, 2001, RARE METAL MAT ENG, V30, P68
158448    LIU WQ, 2002, EFFECT ALLOY ELEMENT
158449    OSKARSSON M, 2001, J NUCL MATER, V295, P126
158450    PECHEUR D, 2000, ZIRCONIUM NUCL IND, P793
158451    RAMASUBRAMANIAN N, 1994, ZIRCONIUM NUCL IND, P378
158452    SAARIO T, 2003, IAEA TECHN COMM M IN
158453    SATO T, 1985, J MATER SCI, V20, P3988
158454    XU XY, 1996, RARE METAL MAT ENG, V25, P33
158455    YANG FL, 1999, CHINESE J RARE MET, V23, P236
158456    YOSHIMURA M, 1987, J MATER SCI LETT, V6, P465
158457    ZHOU BX, 2000, NUCL POWER ENG, V21, P439
158458 NR 14
158459 TC 0
158460 SN 1002-185X
158461 J9 RARE METAL MAT ENG
158462 JI Rare Metal Mat. Eng.
158463 PD APR
158464 PY 2005
158465 VL 34
158466 IS 4
158467 BP 562
158468 EP 564
158469 PG 3
158470 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
158471    Engineering
158472 GA 923ZM
158473 UT ISI:000228948100012
158474 ER
158475 
158476 PT J
158477 AU Hong, J
158478    Li, NL
158479    Zhang, XJ
158480    Zheng, B
158481    Zhang, JWZ
158482 TI Induction of CD4(+)CD25(+) regulatory T cells by copolymer-I through
158483    activation of transcription factor Foxp3
158484 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
158485    AMERICA
158486 DT Article
158487 DE IFN-gamma; multiple sclerosis
158488 ID MYELIN BASIC-PROTEIN; EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS;
158489    RELAPSING MULTIPLE-SCLEROSIS; GLATIRAMER ACETATE; SYNTHETIC
158490    COPOLYMER-1; DISEASE; LINES; MECHANISMS; REACTIVITY; SCURFIN
158491 AB Copolymerd (COP-1) has unique immune regulatory properties and is a
158492    treatment option for multiple sclerosis (MS). This study revealed that
158493    CON induced the conversion of peripheral CD4(+)CD25(-) to CD4(+)CD25(+)
158494    regulatory T cells through the activation of transcription factor
158495    Foxp3. CON treatment led to a significant increase in Foxp3 expression
158496    in CD4(+) T cells in MS patients whose Foxp3 expression was reduced at
158497    baseline. CD4(+)CD25(+) T cell lines generated by CON expressed high
158498    levels of Foxp3 that correlated with an increased regulatory potential.
158499    Furthermore, we demonstrated that the induction of Foxp3 in CD4(+) T
158500    cells by CON was mediated through its ability to produce IFN-&gamma;
158501    and, to a lesser degree, TGF-&beta; 1, as shown by antibody blocking
158502    and direct cytokine induction of Foxp3 expression in T cells. It was
158503    evident that in vitro treatment and administration with CON
158504    significantly raised the level of Foxp3 expression in CD4(+) T cells
158505    and promoted conversion of CD4(+)CD25(+) regulatory T cells in
158506    wild-type 136 mice but not in IFN-&gamma; knockout mice. This study
158507    provides evidence for the role and mechanism of action of CON in the
158508    induction of CD4(+)CD25(+) regulatory T cells in general and its
158509    relevance to the treatment of MS.
158510 C1 Baylor Coll Med, Dept Neurol, Houston, TX 77030 USA.
158511    Baylor Coll Med, Dept Immunol, Houston, TX 77030 USA.
158512    Chinese Acad Sci, Shanghai Inst Biol Sci, Shanghai Inst Immunol, Shanghai 200025, Peoples R China.
158513    Chinese Acad Sci, Inst Hlth Sci, Joint Immunol Lab, Shanghai 200025, Peoples R China.
158514    Shanghai Med Univ 2, Shanghai 200025, Peoples R China.
158515    Shanghai Univ, E Inst, Shanghai 200025, Peoples R China.
158516 RP Zhang, JWZ, Baylor Coll Med, Dept Neurol, 6501 Fannin St,NB302,
158517    Houston, TX 77030 USA.
158518 EM jzang@bcm.tmc.edu
158519 CR AHARONI R, 1998, J NEUROIMMUNOL, V91, P135
158520    BARTH H, 2002, J NEUROIMMUNOL, V133, P175
158521    BENNUN A, 1996, J NEUROL S1, V243, S14
158522    BORNSTEIN MB, 1987, NEW ENGL J MED, V317, P408
158523    BROD SA, 1997, INT J NEUROSCI, V90, P187
158524    BRUNKOW ME, 2001, NAT GENET, V27, P68
158525    CHEN M, 2001, MULT SCLER, V7, P209
158526    CHEN WJ, 2003, J EXP MED, V198, P1875
158527    COMI G, 2001, ANN NEUROL, V49, P290
158528    DHIBJALBUT S, 2003, J NEUROIMMUNOL, V140, P163
158529    DUDA PW, 2000, J CLIN INVEST, V105, P967
158530    FANTINI MC, 2004, J IMMUNOL, V172, P5149
158531    FARINA C, 2001, BRAIN 4, V124, P705
158532    FONTENOT JD, 2003, NAT IMMUNOL, V4, P330
158533    FRIDKISHARELI M, 1994, P NATL ACAD SCI USA, V91, P4872
158534    FRIDKISHARELI M, 1999, J IMMUNOL, V162, P4697
158535    GRAN B, 2000, NEUROLOGY, V55, P1704
158536    HONG J, 2004, J NEUROIMMUNOL, V152, P126
158537    HORI S, 2003, SCIENCE, V299, P1057
158538    KHATTRI R, 2003, NAT IMMUNOL, V4, P337
158539    KUKREJA A, 2002, J CLIN INVEST, V109, P131
158540    LAFAILLE JJ, 1997, J EXP MED, V186, P307
158541    LANDO Z, 1979, J IMMUNOL, V123, P2156
158542    MILLER A, 1998, J NEUROIMMUNOL, V92, P113
158543    MOREAU T, 1996, BRAIN 1, V119, P225
158544    MUSETTE P, 1996, RES IMMUNOL, V147, P435
158545    NEUHAUS O, 2000, P NATL ACAD SCI USA, V97, P7452
158546    NEUHAUS O, 2001, NEUROLOGY, V56, P702
158547    NISHIBORI T, 2004, J EXP MED, V199, P25
158548    RACKE MK, 1992, J NEUROIMMUNOL, V37, P75
158549    SCHUBERT LA, 2001, J BIOL CHEM, V276, P37672
158550    TEITELBAUM D, 1992, P NATL ACAD SCI USA, V89, P137
158551    TEITELBAUM D, 1996, J NEUROIMMUNOL, V64, P209
158552    VIGLIETTA V, 2004, J EXP MED, V199, P971
158553    WAISMAN A, 1996, NAT MED, V2, P899
158554    WALKER MR, 2003, J CLIN INVEST, V112, P1437
158555    ZANG Y, 2003, J NEUROIMMUNOL, V137, P144
158556    ZHANG J, 2005, ANNU REV MED, V56, P237
158557    ZIEMSSEN T, 2002, BRAIN 11, V125, P2381
158558 NR 39
158559 TC 8
158560 SN 0027-8424
158561 J9 PROC NAT ACAD SCI USA
158562 JI Proc. Natl. Acad. Sci. U. S. A.
158563 PD MAY 3
158564 PY 2005
158565 VL 102
158566 IS 18
158567 BP 6449
158568 EP 6454
158569 PG 6
158570 SC Multidisciplinary Sciences
158571 GA 923OE
158572 UT ISI:000228918400038
158573 ER
158574 
158575 PT J
158576 AU Daichin
158577    Lee, SJ
158578 TI Experimental analysis of flow fields inside intake heads of a vacuum
158579    cleaner
158580 SO JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
158581 DT Article
158582 DE vacuum cleaner; intake head; flow structure; suction efficiency
158583 AB The flow structure inside the intake head greatly affects the working
158584    efficiency of a vacuum cleaner such as suction power and aero-acoustic
158585    noise. In this study, the flow inside intake heads of a vacuum cleaner
158586    was investigated using qualitative flow visualization and quantitative
158587    PIV (Particle Image Velocimetry) techniques. The aerodynamic power,
158588    suction efficiency and noise level of the intake heads were also
158589    measured. In order to improve the performance of the vacuum cleaner,
158590    inner structure of the flow paths of the intake head, such as trench
158591    height and shape of connection chamber were modified. The flow
158592    structures of modified intake heads were compared with that of the
158593    original intake head. The aero-acoustic noise caused by flow separation
158594    was reduced and the suction efficiency was also changed due to flow
158595    path modification of intake head. In this paper, the variations of flow
158596    fields for different intake heads are presented and discussed together
158597    with results of aerodynamic power, suction efficiency and noise level.
158598 C1 Pohang Univ Sci & Technol, Dept Mech Engn, Pohang 790784, South Korea.
158599    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
158600 RP Lee, SJ, Pohang Univ Sci & Technol, Dept Mech Engn, Pohang 790784,
158601    South Korea.
158602 EM sjlee@postech.ac.kr
158603 CR BENTOUATI S, 1999, P 9 INT C EL MACH DR, P118
158604    BRUNGART TA, 2001, NOISE CONTROL ENG J, V49, P73
158605    OMORI M, 1997, JAPAN TAPPI J, V51, P76
158606    PARK CW, IN PRESS KSME INT J
158607    RAFFEL M, 1998, PARTICLE IMAGE VELOC
158608    SARBU M, 1996, NOISE VIBRATION WORL, V27, P10
158609    TUNCAY RN, 2001, P IEEE INT C EL MACH, P926
158610 NR 7
158611 TC 0
158612 SN 1738-494X
158613 J9 J MECH SCI TECHNOL
158614 JI J. Mech. Sci. Technol.
158615 PD MAR
158616 PY 2005
158617 VL 19
158618 IS 3
158619 BP 894
158620 EP 904
158621 PG 11
158622 SC Engineering, Mechanical
158623 GA 925WF
158624 UT ISI:000229083300017
158625 ER
158626 
158627 PT J
158628 AU Zhang, HB
158629    Chen, LQ
158630    Liu, RW
158631 TI Discrete variational principle and the first integrals of the
158632    conservative holonomic systems in event space
158633 SO CHINESE PHYSICS
158634 DT Article
158635 DE event space; discrete mechanics; conservative holonomic system;
158636    Noether's theorem; first integral
158637 AB It is shown in this paper that first integrals of discrete equation of
158638    motion for the conservative holonomic systems can be determined
158639    explicitly by investigating the invariance properties of the discrete
158640    Lagrangian in event space. The result obtained is a discrete analogue
158641    of Noether's theorem in the calculus of variations. Two examples are
158642    given to illustrate the applications of the result.
158643 C1 Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China.
158644    Anhui Chaohu Coll, Dept Phys, Chaohu 238000, Peoples R China.
158645    Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
158646 RP Zhang, HB, Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072,
158647    Peoples R China.
158648 EM hbzhang2002@eyou.com
158649 CR CADZOW JA, 1970, INT J CONTROL, V11, P393
158650    LOGAN JD, 1973, AEQUAT MATH, V9, P210
158651    MAEDA S, 1981, MATH JPN, V26, P85
158652    MARSDEN JE, 2001, ACT NUMERIC, V10, P357
158653    MEI FX, 1990, ACTA MECH SINICA, V6, P160
158654    MEI FX, 2000, ASME, V53, P283
158655    MILLER KS, 1968, LINEAR DIFFERENCE EQ
158656    SYNGE JL, 1960, CLASSICAL DYNAMICS
158657    ZHANG HB, 2005, CHINESE PHYS, V14, P238
158658 NR 9
158659 TC 2
158660 SN 1009-1963
158661 J9 CHIN PHYS
158662 JI Chin. Phys.
158663 PD MAY
158664 PY 2005
158665 VL 14
158666 IS 5
158667 BP 888
158668 EP 892
158669 PG 5
158670 SC Physics, Multidisciplinary
158671 GA 925QE
158672 UT ISI:000229066900005
158673 ER
158674 
158675 PT J
158676 AU Chi, CY
158677    Zhang, JC
158678    Li, LW
158679    Liu, F
158680    Li, WF
158681    Jing, C
158682    Cao, SX
158683    Miryala, M
158684    Yao, X
158685 TI Flux jumps in textured (Nd0.33Eu0.33Gd0.33) Ba2CU3O7-delta
158686    superconductor with high content Gd-211 phase
158687 SO ACTA PHYSICA SINICA
158688 DT Article
158689 DE (Nd-0.33 Eu0.33Gd0.33) Ba2Cu3O1-delta superconductor; oxygen-controlled
158690    melt growth method; flux jump
158691 ID STABILITY; CREEP; (ND; EU
158692 AB Flux jumps behavior in textured (Nd0.33Eu0.33Gd0.33)Ba2CU3O7-&delta;
158693    (with high content of Gd-211 phase) have been studied. With the
158694    magnetic field parallel to the c axis, partial flux jumps have been
158695    observed in the temperature range 2-3 K, and there were no jumps found
158696    above 5 K. When ab plane is parallel to the field direction, no flux
158697    jumps have been observed in the whole temperature range (from 2 K to
158698    T-c). The anisotropic flux instability may be due to the anisotropic
158699    pinning force and geometrical demagnetization factor. As the
158700    temperature increases, the number of flux jumps is decreased, and the
158701    third quadrant of M(H) curve is the most flux instability quadrant.
158702    Finally we have studied the magnetic field sweep rate dependence of
158703    flux jump, and discussed the influence of flux creep on flux jump.
158704 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
158705 RP Chi, CY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
158706 EM jczhang@staff.shu.edu.cn
158707 CR AWAJI S, 2004, SUPERCOND SCI TECH S, V17, S6
158708    JIRSA M, 2001, SUPERCOND SCI TECH, V14, P50
158709    KOBLISCHKA MR, 1998, APPL PHYS LETT, V73, P2351
158710    MCHENRY ME, 1992, PHYSICA C, V190, P403
158711    MINTS RG, 1981, REV MOD PHYS, V53, P551
158712    MINTS RG, 1996, PHYS REV B, V53, P12311
158713    MULLER KH, 1994, PHYS REV B, V49, P1294
158714    MURALIDHAR M, 1997, SUPERCOND SCI TECH, V10, P663
158715    MURALIDHAR M, 1998, SUPERCOND SCI TECH, V11, P1349
158716    NABIALEK A, 2003, PHYS REV B, V67
158717    PRADHAN AK, 2000, SUPERCOND SCI TECH, V13, P761
158718    WIPF SL, 1965, PHYS LETT, V16, P106
158719    WIPF SL, 1991, CRYOGENICS, V31, P936
158720    XING YT, 2000, PHYSICA C, V337, P200
158721 NR 14
158722 TC 0
158723 SN 1000-3290
158724 J9 ACTA PHYS SIN-CHINESE ED
158725 JI Acta Phys. Sin.
158726 PD MAY
158727 PY 2005
158728 VL 54
158729 IS 5
158730 BP 2307
158731 EP 2312
158732 PG 6
158733 SC Physics, Multidisciplinary
158734 GA 925JR
158735 UT ISI:000229049900062
158736 ER
158737 
158738 PT J
158739 AU Yang, X
158740 TI Gurtin-type variational principles for dynamics of a non-local thermal
158741    equilibrium saturated porous medium
158742 SO ACTA MECHANICA SOLIDA SINICA
158743 DT Article
158744 DE non-local thermal equilibrium; thermal-mechanical coupling;
158745    mathematical model; variational principle; porous media theory
158746 ID WAVE-PROPAGATION; CONSOLIDATION; EQUATIONS; BEHAVIOR
158747 AB Based on the porous media theory and by taking into account the effects
158748    of the pore fluid viscidity, energy exchanges due to the additional
158749    thermal conduction and convection between solid and fluid phases, a
158750    mathematical model for the dynamic-thermo-hydro-mechanical coupling of
158751    a non-local thermal equilibrium fluid-saturated porous medium, in which
158752    the two constituents are assumed to be incompressible and immiscible,
158753    is established under the assumption of small deformation of the solid
158754    phase, small velocity of the fluid phase and small temperature changes
158755    of the two constituents. The mathematical model of a local thermal
158756    equilibrium fluid-saturated porous medium can be obtained directly from
158757    the above one. Several Gurtin-type variational principles, especially
158758    Hu-Washizu type variational principles, for the initial boundary value
158759    problems of dynamic and quasi-static responses are presented. It should
158760    be pointed out that these variational principles can be degenerated
158761    easily into the case of isothermal incompressible fluid-saturated
158762    elastic porous media, which have been discussed previously.
158763 C1 Shanghai Univ, Dept Mech, Inst Appl Math & Mech, Shanghai 200444, Peoples R China.
158764 RP Yang, X, Shanghai Univ, Dept Mech, Inst Appl Math & Mech, Shanghai
158765    200444, Peoples R China.
158766 EM xyang@staff.shu.edu.cn
158767 CR ABOUSTIT BL, 1985, INT J NUMER ANAL MET, V9, P49
158768    BIOT MA, 1956, J ACOUST SOC AM, V28, P168
158769    BREUER S, 1999, TRANSPORT POROUS MED, V34, P285
158770    DEBOER R, 2000, APPL MECH REV, V53, P323
158771    DEBOER R, 2000, THEORY POROUS MEDIA
158772    DERSKI W, 1979, ARCH MECH, V31, P303
158773    EDELMAN I, 2002, CONTINUUM MECH THERM, V14, P25
158774    EHLERS W, 2000, GRANUL MATTER, V2, P153
158775    GAJO A, 2002, INT J PLASTICITY, V18, P313
158776    GREEN AE, 1966, INT J ENG SCI, V4, P483
158777    HUANG NC, 1990, INT J NUMER ANAL MET, V14, P1
158778    LEE CK, 1997, ADV WATER RESOUR, V20, P127
158779    PAPASTAVROU A, 1997, MECH COHES-FRICT MAT, V2, P185
158780    PECKER C, 1973, ACTA MECH, V16, P45
158781    SCHIFFMAN RL, 1971, ENV GEOPHYSICAL HEAT, P78
158782    SHI ZF, 1999, APPL MATH MECH, V20, P249
158783    YANG X, 2003, ACTA MECH SOLIDA SIN, V16, P24
158784    YANG X, 2003, J LANZHOU U, V39, P24
158785    ZHANG HW, 1996, INT J NUMER ANAL MET, V19, P851
158786 NR 19
158787 TC 0
158788 SN 0894-9166
158789 J9 ACTA MECH SOLIDA SINICA
158790 JI Acta Mech. Solida Sin.
158791 PD MAR
158792 PY 2005
158793 VL 18
158794 IS 1
158795 BP 37
158796 EP 45
158797 PG 9
158798 SC Materials Science, Multidisciplinary; Mechanics
158799 GA 924MS
158800 UT ISI:000228983500005
158801 ER
158802 
158803 PT J
158804 AU Wang, X
158805 TI Green functions for a decagonal quasicrystalline material with a
158806    parabolic boundary
158807 SO ACTA MECHANICA SOLIDA SINICA
158808 DT Article
158809 DE decagonal quasicrystal; parabola; Green function; conformal mapping
158810 ID CRACK
158811 AB This investigation presents the Green functions for a decagonal
158812    quasicrystalline material with a parabolic boundary subject to a line
158813    force and a line dislocation by means of the complex variable method.
158814    The surface Green functions are treated as a special case, and the
158815    explicit expressions of displacements and hoop stress at the parabolic
158816    boundary are also given. Finally, the stresses and displacements
158817    induced by a phonon line force acting at the origin of the lower
158818    half-space are presented.
158819 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
158820 RP Wang, X, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
158821    200072, Peoples R China.
158822 CR HU YT, 1996, APPL MATH MECH, V17, P393
158823    ING TCT, 1996, ANISOTROIPIC ELASTIC
158824    SHECHTMAN D, 1984, PHYS REV LETT, V53, P1951
158825    TING TCT, 2001, J APPL MECH-T ASME, V68, P537
158826    WANG X, 2003, ACTA MECH SOLIDA SIN, V16, P8
158827    WANG X, 2004, INT J ENG SCI, V42, P521
158828 NR 6
158829 TC 0
158830 SN 0894-9166
158831 J9 ACTA MECH SOLIDA SINICA
158832 JI Acta Mech. Solida Sin.
158833 PD MAR
158834 PY 2005
158835 VL 18
158836 IS 1
158837 BP 57
158838 EP 62
158839 PG 6
158840 SC Materials Science, Multidisciplinary; Mechanics
158841 GA 924MS
158842 UT ISI:000228983500008
158843 ER
158844 
158845 PT J
158846 AU Zhu, WQ
158847    Wu, YZ
158848    Zheng, XY
158849    Jiang, XY
158850    Zhang, ZL
158851    Sun, RG
158852    Xu, SH
158853 TI Multiple emissions in organic electroluminescent device using a mixed
158854    layer as an emitter
158855 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
158856 DT Article
158857 DE electroluminescence; monomer emission; exciplex; electroplex
158858 ID WHITE-LIGHT; EXCIPLEX; POLYMERS; DIODE; COLOR
158859 AB A organic electroluminescent device has been fabricated by using a
158860    mixed layre as an emitter. The configuration of the device is
158861    ITO/TPD/TPD: PBD(equimole)/PBD/Al, in which TPD (N, N'-diphenyl-N,
158862    N'-bis(3-methylphenyl)-1, 1'-biphenyl-4, 4'-diamine) and
158863    PBD(2-(4'-biphenyl)-5-(4"-tert-butylphenyl)-1, 3, 4-oxadiazole) are
158864    used as hole transport material and electron transport material,
158865    respectively. Broad and red-shifted electroluminescent spectra related
158866    to the fluorescence of constituent materials were observed. It is
158867    suggested that the monomer, exciplex and electroplex emissions are
158868    simultaneously involved in EL spectra by comparison of the EL with the
158869    PL spectra and decomposition of the EL spectrum. The type of exciplex
158870    is the interaction between the excited state TPD(TPD*) and PBD in the
158871    ground state, and the type of electroplex is a (D+ - A(-)) * complex by
158872    cross-recombination of hole on the charged hole transport molecule(D+)
158873    and electron on the charged electron transport molecule(A(-)). All
158874    types of excited states show different formation mechanisms and
158875    recombination processes under electric field. The change of emission
158876    strengths from monomer and excited complexes lead to a blue-shift of
158877    the emissive spectra with an increasing electric field. The maximum
158878    luminance and external quantum efficiency of this device are 240 cd (.)
158879    (cm(2))(-1) and 0.49%, respectively. The emissions from exciplex or
158880    electroplex fort-nation. at the organic solid interface generally
158881    present a broad and red-shifted emissive band, providing an effective
158882    method for tuning of emission color in organic electroluminescent
158883    devices.
158884 C1 Shanghai Univ, Dept Mat, Shanghai 201800, Peoples R China.
158885 RP Zhu, WQ, Shanghai Univ, Dept Mat, Jiading Campus, Shanghai 201800,
158886    Peoples R China.
158887 CR BERGGREN M, 1994, J APPL PHYS, V76, P7530
158888    CAO H, 2000, APPL SURF SCI, V161, P443
158889    CHAO CI, 1998, APPL PHYS LETT, V73, P426
158890    COCCHI M, 2002, APPL PHYS LETT, V80, P2401
158891    GRANLUND T, 1997, J APPL PHYS, V81, P8097
158892    JENEKHE SA, 1994, SCIENCE, V265, P765
158893    OGAWA H, 1998, APPL PHYS A-MATER, V67, P599
158894    WANG JF, 1998, ADV MATER, V10, P230
158895 NR 8
158896 TC 0
158897 SN 1000-0593
158898 J9 SPECTROSC SPECTR ANAL
158899 JI Spectrosc. Spectr. Anal.
158900 PD APR
158901 PY 2005
158902 VL 25
158903 IS 4
158904 BP 509
158905 EP 511
158906 PG 3
158907 SC Spectroscopy
158908 GA 923XT
158909 UT ISI:000228943600009
158910 ER
158911 
158912 PT J
158913 AU Qiu, HL
158914    Wang, AH
158915    You, JL
158916    Chen, H
158917    Yin, ST
158918 TI Structure analysis on growth solid-liquid boundary layer of BSO crystal
158919    at real time
158920 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
158921 DT Article
158922 DE real time; solid-liquid boundary layer; structure; micro high
158923    temperature Raman spectrum; BSO crystal
158924 ID BI12SIO20; BI12GEO20; MODES
158925 AB The micro Raman spectra of solid-liquid boundary layer, the melts and
158926    crystal side, were measured at real time, concerning BSO crystal grown
158927    with zone-melting method. The structure characters in boundary layer,
158928    melts and crystal were analyzed. The process, of which the growth unit
158929    structure changed while they transited from melts through boundary
158930    layer to crystal lattice, was analyzed. The results show that, there
158931    exists Bi-3 O-4 and [SiO4] bonding structure in the melts of BSO
158932    crystal. While in the solid-liquid boundary layer, the Bi3O4 molecular
158933    units converge into [BiO7] octahedron monomer of polymer in form, the
158934    monomer or the polymer converge with the [SiO4] structure units, then
158935    all these converged structure enter into crystal lattice sites.
158936 C1 Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Hefei 230031, Peoples R China.
158937    Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
158938 RP Qiu, HL, Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Hefei 230031,
158939    Peoples R China.
158940 CR BABONAS GA, 1982, OPT SPECTROSC, V53, P211
158941    QIU HL, 2002, J SYNTHETIC CRYSTALS, V31, P555
158942    STEUDNER R, 1985, J PHYS CHEM SOLIDS, V46, P803
158943    VENUGOPALAN S, 1972, PHYS REV B, V5, P4065
158944    WANG JY, 2001, CRYSTAL MIROTOPOGRAP
158945    WANG TJ, 1983, CHINESE LASER, V11, P483
158946    WOJDOWSKI W, 1985, PHYS STATUS SOLIDI B, V130, P121
158947    YOU JL, 1999, OPTICAL INSTRUMENT, V21, P21
158948    ZARETSKII YG, 1983, OPT SPECTROSC, V54, P338
158949 NR 9
158950 TC 0
158951 SN 1000-0593
158952 J9 SPECTROSC SPECTR ANAL
158953 JI Spectrosc. Spectr. Anal.
158954 PD APR
158955 PY 2005
158956 VL 25
158957 IS 4
158958 BP 529
158959 EP 531
158960 PG 3
158961 SC Spectroscopy
158962 GA 923XT
158963 UT ISI:000228943600014
158964 ER
158965 
158966 PT J
158967 AU Su, J
158968    Yu, XL
158969    You, JL
158970    Yin, ST
158971 TI Raman spectroscopy studies on the aqueous solutions of sodium formate
158972    and lithium formate
158973 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
158974 DT Article
158975 DE sodium formate; lithium formate; solution structure; Raman spectroscopy
158976 ID BOUNDARY-LAYERS; SPECTRUM; CRYSTAL; RATIOS; WATER; ION
158977 AB The structures of the aqueous solutions of sodium formate and lithium
158978    formate are studied according to the growth conditions of the crystals
158979    under different supersaturations and temperatures by Raman
158980    spectroscopy. The effects of temperature, concentration,
158981    supersaturation and cation on the structures of solutions and the
158982    structure difference between lithium formate solution and lithium
158983    formate monohydrate crystal are analyzed. The result shows that the
158984    concentration, temperature and supersaturation effect the structures of
158985    the solutions slightly and the cation effects the frequency of the
158986    bands greatly.
158987 C1 Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Hefei 230031, Peoples R China.
158988    Shandong Univ, Inst Crystal Mat, Jian 200500, Peoples R China.
158989    Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
158990 RP Su, J, Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Hefei 230031,
158991    Peoples R China.
158992 CR AGARWAL A, 1983, CAN J CHEM, V61, P2282
158993    BARTHOLOMEW RJ, 1993, CAN J CHEM, V71, P1728
158994    CERRETA MK, 1987, J CRYST GROWTH, V84, P577
158995    CHANG TG, 1973, J PHYS CHEM-US, V77, P52
158996    CHEN JZ, 1995, J FUZHOU U, V23, P88
158997    DAVIS AR, 1973, J PHYS CHEM-US, V77, P1315
158998    ITO K, 1981, AUST J CHEM, V34, P170
158999    JAMES DW, 1982, J RAMAN SPECTROSC, V13, P115
159000    KAMEDA Y, 1996, B CHEM SOC JPN, V69, P1495
159001    LIU XJ, 2003, SPECTROSC SPECT ANAL, V23, P484
159002    REMKO M, 1997, MOL PHYS, V91, P929
159003    RUSLI IT, 1989, J CRYST GROWTH, V97, P345
159004    SPINNER E, 1967, J CHEM SOC B, P879
159005    SPINNER E, 1985, AUST J CHEM, V38, P47
159006    WANG Y, 2000, J SYNTHETIC CRYSTAL, V29, P188
159007    YU XL, 1994, CRYST RES TECHNOL, V29, P229
159008    YU XL, 2000, 98110030, ZL
159009    YU XL, 2001, PRICM JAPAN, P2403
159010    YU XL, 2001, SCI CHINA SER E, V44, P265
159011 NR 19
159012 TC 0
159013 SN 1000-0593
159014 J9 SPECTROSC SPECTR ANAL
159015 JI Spectrosc. Spectr. Anal.
159016 PD APR
159017 PY 2005
159018 VL 25
159019 IS 4
159020 BP 532
159021 EP 536
159022 PG 5
159023 SC Spectroscopy
159024 GA 923XT
159025 UT ISI:000228943600015
159026 ER
159027 
159028 PT J
159029 AU Niu, YP
159030    Li, RX
159031    Gong, SQ
159032 TI High efficiency four-wave mixing induced by double-dark resonances in a
159033    five-level tripod system
159034 SO PHYSICAL REVIEW A
159035 DT Article
159036 ID ELECTROMAGNETICALLY INDUCED TRANSPARENCY; QUANTUM INTERFERENCE;
159037    DESTRUCTIVE INTERFERENCE; ATOMIC-HYDROGEN; LIGHT; GENERATION;
159038    COHERENCE; STORAGE; VAPOR
159039 AB A five-level tripod scheme is proposed for obtaining a high efficiency
159040    four-wave-mixing (FWM) process. The existence of double-dark resonances
159041    leads to a strong modification of the absorption and dispersion
159042    properties against a pump wave at two transparency windows. We show
159043    that both of them can be used to open the four-wave mixing channel and
159044    produce efficient mixing waves. In particular, higher FWM efficiency is
159045    always produced at the transparent window corresponding to the
159046    relatively weak-coupling field. By manipulating the intensity of the
159047    two coupling fields, the conversion efficiency of FWM can be controlled.
159048 C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key Lab High Field Laser Phys, Shanghai 201800, Peoples R China.
159049    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
159050 RP Gong, SQ, Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key
159051    Lab High Field Laser Phys, Shanghai 201800, Peoples R China.
159052 EM sqgong@mail.siom.ac.cn
159053 CR BOLLER KJ, 1991, PHYS REV LETT, V66, P2593
159054    DENG L, 2002, PHYS REV LETT, V88
159055    DENG L, 2003, PHYS REV A, V68
159056    DENG L, 2003, PHYS REV LETT, V91
159057    DENG L, 2004, OPT COMMUN, V242, P641
159058    DORMAN C, 1999, PHYS REV A, V61
159059    FIELD JE, 1991, PHYS REV LETT, V67, P3062
159060    FRY ES, 2000, OPT COMMUN, V179, P499
159061    GOREN C, 2004, PHYS REV A, V69
159062    HAKUTA K, 1991, PHYS REV LETT, V66, P596
159063    HARRIS SE, 1990, PHYS REV LETT, V64, P1107
159064    HARRIS SE, 1998, PHYS REV LETT, V81, P3611
159065    HAU LV, 1999, NATURE, V397, P594
159066    JAIN M, 1995, PHYS REV LETT, V75, P4385
159067    JIN SQ, 2004, PHYS REV A, V69
159068    LIU C, 2001, NATURE, V409, P490
159069    LUKIN MD, 1998, PHYS REV LETT, V81, P2675
159070    LUKIN MD, 1999, PHYS REV A, V60, P3225
159071    MERRIAM AJ, 2000, PHYS REV LETT, V84, P5308
159072    MULCHAN N, 2000, J OPT SOC AM B, V17, P820
159073    NIU YP, 2004, PHYS REV A, V70
159074    PASPALAKIS E, 2002, J OPT B-QUANTUM S O, V4, S372
159075    PETCH JC, 1996, PHYS REV A, V53, P543
159076    PHILLIPS DF, 2001, PHYS REV LETT, V86, P783
159077    WASIK G, 2001, PHYS REV A, V64
159078    WU Y, 2004, OPT LETT, V28, P631
159079    WU Y, 2004, OPT LETT, V29, P2294
159080    WU Y, 2004, PHYS REV A, V70
159081    YELIN SF, 2003, PHYS REV A, V68
159082    ZHANG GZ, 1993, PHYS REV LETT, V71, P3099
159083    ZHU YF, 2004, J OPT SOC AM B, V21, P806
159084    ZIBROV AS, 2002, PHYS REV A, V65
159085 NR 32
159086 TC 10
159087 SN 1050-2947
159088 J9 PHYS REV A
159089 JI Phys. Rev. A
159090 PD APR
159091 PY 2005
159092 VL 71
159093 IS 4
159094 AR 043819
159095 DI ARTN 043819
159096 PG 5
159097 SC Physics, Atomic, Molecular & Chemical; Optics
159098 GA 921GR
159099 UT ISI:000228752700121
159100 ER
159101 
159102 PT J
159103 AU Wang, X
159104    Zhang, JQ
159105 TI A steady line heat source in a decagonal quasicrystalline half-space
159106 SO MECHANICS RESEARCH COMMUNICATIONS
159107 DT Article
159108 DE decagonal quasicrystal; half-space; heat source; complex variable method
159109 ID CRACK
159110 AB The problem of a steady line heat source within a decagonal
159111    quasicrystalline half-space, in which the boundary is traction-free, is
159112    investigated in detail by applying the complex variable technique. The
159113    line heat source is infinitely long in the period direction, then the
159114    plane strain condition prevails. The four complex stress functions are
159115    derived. It is found that the determination of the complex stress
159116    functions is independent of the thermal boundary conditions. The stress
159117    fields induced by the heat source are explicitly given based on the
159118    complex stress functions. Furthermore, we consider, both qualitatively
159119    and quantitatively, the distribution of sigma(11) on the boundary gamma
159120    = 0 of the half-space to demonstrate the influence of the phonon-phason
159121    coupling constant R on the stress field. (c) 2005 Elsevier Ltd. All
159122    rights reserved.
159123 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
159124 RP Wang, X, Shanghai Univ, Shanghai Inst Appl Math & Mech, Yanchang Rd,
159125    Shanghai 200072, Peoples R China.
159126 EM xuwang@staff.shu.edu.cn
159127 CR HU CZ, 1997, PROG PHYS, V17, P345
159128    LI XF, 1999, PHILOS MAG A, V79, P1943
159129    MUSKHELISHVILI NI, 1953, SOME BASIC PROBLEMS
159130    SHECHTMAN D, 1984, PHYS REV LETT, V53, P1951
159131    WANG A, 2003, ACTA MECH SINICA, V35, P690
159132    WANG HG, 1988, GEN THEORY THERMOELA
159133    WANG X, 2003, ACTA MECH SOLIDA SIN, V16, P8
159134    WANG X, 2004, INT J ENG SCI, V42, P521
159135 NR 8
159136 TC 0
159137 SN 0093-6413
159138 J9 MECH RES COMMUN
159139 JI Mech. Res. Commun.
159140 PD JUL-AUG
159141 PY 2005
159142 VL 32
159143 IS 4
159144 BP 420
159145 EP 428
159146 PG 9
159147 SC Mechanics
159148 GA 921WT
159149 UT ISI:000228797000007
159150 ER
159151 
159152 PT J
159153 AU Huang, QW
159154    Zhu, LH
159155 TI High-temperature strength and toughness behaviors for reaction-bonded
159156    SiC ceramics below 1400 degrees C
159157 SO MATERIALS LETTERS
159158 DT Article
159159 DE reaction-bonded SiC ceramics; high-temperature strength and toughness
159160 ID SILICONIZED SILICON-CARBIDE; CREEP; MICROSTRUCTURE; MECHANISMS;
159161    OXIDATION; KINETICS
159162 AB High-temperature strength and toughness behaviors of reaction-bonded
159163    SiC ceramics with 12 and 26 vol.% of free Si were investigated. The
159164    flexural strength and fracture toughness started to increase at 1000
159165    degrees C and reached a maximum at 1300 degrees and 1330 degrees C
159166    before a sharp drop, respectively. The transition from transgranular to
159167    intergranular fracture is considered to lead to the slight increase of
159168    strength and toughness from room temperature to 1000 degrees C, while
159169    the plastic deformation of free Si contributes to the great increase
159170    above 1000 degrees C. However, too high a temperature will result in
159171    the extreme softening of free Si and therefore decrease strength and
159172    toughness. (c) 2005 Elsevier B.V. All rights reserved.
159173 C1 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance & Superfine Micros, Shanghai 200050, Peoples R China.
159174    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
159175 RP Huang, QW, Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High
159176    Performance & Superfine Micros, Shanghai 200050, Peoples R China.
159177 EM huangqw@mail.sic.ac.cn
159178 CR CARTER CH, 1984, J AM CERAM SOC, V67, P409
159179    CARTER CH, 1984, J AM CERAM SOC, V67, P732
159180    CHAKRABARTI OP, 1994, CERAM INT, V20, P283
159181    CHAKRABARTI OP, 2001, CERAM INT, V27, P559
159182    CHU MC, 2004, MATER LETT, V58, P1313
159183    DAPKUNAS SJ, 1988, AM CERAM SOC B, V67, P388
159184    FERNANDEZ JM, 2000, SER MAT, V43, P813
159185    FERNANDEZ JM, 2002, J EUR CERAM SOC, V22, P2719
159186    FERNANDEZ JM, 2003, ACTA MATER, V51, P3259
159187    HOCKEY BJ, 1992, J AM CERAM SOC, V75, P1822
159188    HOZER L, 1995, MAT SCI ENG A-STRUCT, V195, P131
159189    HUANG QW, 2001, J MATER PROCESS TECH, V110, P142
159190    KIM HW, 1999, J AM CERAM SOC, V82, P1601
159191    MUNOZ A, 1998, J EUR CERAM SOC, V18, P65
159192    NESS JN, 1986, J MATER SCI, V21, P1377
159193    PAIK U, 2002, MAT SCI ENG A-STRUCT, V334, P267
159194    PEARSON GL, 1957, ACTA METALL, V5, P191
159195    SINGH M, 1994, J MATER RES, V9, P1701
159196    STROCK HB, 1992, SPECTRUM MAT MANUFAC, V35, P1
159197    WIEDERHORN SM, 1988, J AM CERAM SOC, V71, P602
159198    WIEDERHORN SM, 1999, J EUR CERAM SOC, V19, P2273
159199 NR 21
159200 TC 0
159201 SN 0167-577X
159202 J9 MATER LETT
159203 JI Mater. Lett.
159204 PD JUN
159205 PY 2005
159206 VL 59
159207 IS 14-15
159208 BP 1732
159209 EP 1735
159210 PG 4
159211 SC Materials Science, Multidisciplinary; Physics, Applied
159212 GA 921WU
159213 UT ISI:000228797100006
159214 ER
159215 
159216 PT J
159217 AU Guo, GY
159218    Chen, YL
159219 TI A nearly pure monoclinic nanocrystalline zirconia
159220 SO JOURNAL OF SOLID STATE CHEMISTRY
159221 DT Article
159222 DE nanocrystalline zirconia; crystallization; thermal behavior; monoclinic
159223    structure
159224 ID AQUEOUS SALT-SOLUTIONS; X-RAY-DIFFRACTION; PHASE-TRANSFORMATION;
159225    TETRAGONAL ZIRCONIA; STRUCTURAL ASPECTS; HYDROUS-ZIRCONIA; ZROCL2
159226    SOLUTIONS; ZRO2 POWDER; CRYSTALLIZATION; HYDROLYSIS
159227 AB Generally, monoclinic zirconia is considered to be much more difficult
159228    to prepare at low temperatures and particularly in a pure state. The
159229    present work is the first example that shows that the hydrous zirconia
159230    formed by precipitation can yield a nearly pure nanocrystalline
159231    monoclinic zirconia at a temperature as low as 320 &DEG; C. The
159232    crystallite size of the monoclinic zirconia produced in the present
159233    work is around 15nm, and it does not change appreciably as calcination
159234    temperature is increased from 320 to or above 400 &DEG; C. Such a small
159235    monoclinic crystallite arises from some of the chemical and physical
159236    factors built into the solution-gelationxerogel process such as acidic
159237    preparation-pH, rapid precipitation, and moderate aging time and drying
159238    temperature, which result in a structure different from those of the
159239    existing zirconium hydroxides. In addition, the hydrous zirconia
159240    exhibits a unique thermal behavior in two respects: first, a sudden
159241    weight drop in the region of exothermic peak of the thermogravimetric
159242    curve is seen, suggesting that the main decomposition of the hydrous
159243    zirconia occurs in this region; second, there is an endothermic peak at
159244    high temperature in the differential thermal analysis curve, indicating
159245    the presence of coordinated water in the hydrous zirconia. &COPY; 2005
159246    Elsevier Inc. All rights reserved.
159247 C1 Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Div 540, Shanghai 200030, Peoples R China.
159248    Shanghai Univ, Coll Chem & Chem Engn, Shanghai 200072, Peoples R China.
159249 RP Guo, GY, Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Div 540, 1954
159250    Hua Shan Rd, Shanghai 200030, Peoples R China.
159251 EM guo_gongyi@hotmail.com
159252 CR ADAIR JH, 1988, CERAM T CERAM POWDER, V1, P135
159253    AFANASIEV P, 1999, TOP CATAL, V8, P147
159254    BLEIER A, 1986, MATER RES SOC S P, V73, P71
159255    BLESA MA, 1985, J MATER SCI, V20, P4601
159256    BLUMENTHAL WB, 1958, CHEM BEHAV ZIRCONIUM, P181
159257    CHANG HL, 2003, MICROPOR MESOPOR MAT, V59, P29
159258    CHRASKA T, 2000, MAT SCI ENG A-STRUCT, V286, P169
159259    CHRISTENSEN A, 1998, PHYS REV B, V58, P8050
159260    CLEARFIELD A, 1964, INORG CHEM, V3, P146
159261    CLEARFIELD A, 1964, REV PURE APPL CHEM, V14, P91
159262    CLEARFIELD A, 1990, J MATER RES, V5, P161
159263    DAVIS BH, 1984, J AM CERAM SOC, V67, P168
159264    DENKEWICZ RP, 1990, J MATER RES, V5, P2698
159265    GARVIE RC, 1965, J PHYS CHEM-US, V69, P1238
159266    HOFMANN A, 2004, J PHYS CHEM B, V108, P14652
159267    HU MZC, 1999, J AM CERAM SOC, V82, P2313
159268    JAKUBUS P, 2003, J THERM ANAL CALORIM, V72, P299
159269    JONES SL, 1988, J AM CERAM SOC, V71, P190
159270    LEE K, 1999, J AM CERAM SOC, V82, P338
159271    MAMOTT GT, 1991, J MATER SCI, V26, P4054
159272    MATSUI K, 1997, J AM CERAM SOC, V80, P1949
159273    MATTA J, 1999, PHYS CHEM CHEM PHYS, V1, P4975
159274    MOON YT, 1995, J AM CERAM SOC, V78, P2690
159275    MORGAN PED, 1984, J AM CERAM SOC, V67, C204
159276    MOTTET B, 1992, J AM CERAM SOC, V75, P2515
159277    MURASE Y, 1983, J AM CERAM SOC, V66, P196
159278    POWERS DA, 1973, INORG CHEM, V12, P2721
159279    SATO T, 2002, J THERM ANAL CALORIM, V69, P255
159280    SERGENT N, 2000, CHEM MATER, V12, P3830
159281    SRINIVASAN R, 1986, J MATER RES, V1, P583
159282    SRINIVASAN R, 1988, J MATER RES, V3, P787
159283    SRINIVASAN R, 1990, J AM CERAM SOC, V73, P3528
159284    SRINIVASAN R, 1992, CATAL LETT, V14, P165
159285    SRINIVASAN R, 1993, CHEM MATER, V5, P27
159286    STEFANIC G, 1998, J PHYS CHEM SOLIDS, V59, P879
159287    TANI E, 1981, J AM CERAM SOC, V64, C181
159288    TANI E, 1983, J AM CERAM SOC, V66, P11
159289    TORRESGARCIA E, 2001, J MATER RES, V16, P2209
159290    TOSAN JL, 1993, EUR J SOL STATE INOR, V30, P179
159291    TSUKADA T, 1995, SCIENCE TECHNOLOGY A, P123
159292    TURRILLAS X, 1995, RADIAT PHYS CHEM, V45, P491
159293    WHITNEY ED, 1970, J AM CERAM SOC, V53, P697
159294    XIE SB, 2000, CHEM MATER, V12, P2442
159295    YAMAGUCHI T, 1994, CATAL TODAY, V20, P199
159296    ZAITSEV LM, 1966, ZH NEORG KHIM+, V11, P1684
159297 NR 45
159298 TC 0
159299 SN 0022-4596
159300 J9 J SOLID STATE CHEM
159301 JI J. Solid State Chem.
159302 PD MAY
159303 PY 2005
159304 VL 178
159305 IS 5
159306 BP 1675
159307 EP 1682
159308 PG 8
159309 SC Chemistry, Inorganic & Nuclear; Chemistry, Physical
159310 GA 923UM
159311 UT ISI:000228934800045
159312 ER
159313 
159314 PT J
159315 AU Xu, SY
159316    Zhang, JC
159317    Zhong, MJ
159318    Liu, YS
159319    Zhang, ZM
159320    Chen, HD
159321    He, ZM
159322 TI Preparation and magnetic properties for supersaturated Fe-C solid
159323    solution with nanocrystalline structure
159324 SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
159325 DT Article
159326 DE Fe-C alloy; mechanical alloying; magnetic materials; nanostructural
159327    system
159328 ID AMORPHOUS-ALLOYS; CURIE-TEMPERATURE; NI; MICROSTRUCTURE; FERROMAGNETS;
159329    METALLOIDS; DEPENDENCE; MOSSBAUER; GLASSES; POWDERS
159330 AB The supersaturated solid solutions Fe1-xCx (0 <= x <= 0.9) have been
159331    prepared by mechanical alloying process. The nanocrystalline phase was
159332    formed for 0 <= x <= 0.67 and the large grain phase for 0.75 <= x <=
159333    0.9. The large fraction of graphite volume puts off the formation of
159334    nanocrystalline phase for high carbon content. In the large grain
159335    phase, magnetization follows the simple magnetic dilution and the
159336    coercivity H-C is mainly due to the dissolution of carbon in the grain
159337    boundaries. In the nanocrystalline phase, the alloying effect of carbon
159338    is revealed by a distinct reduction of average magnetic moment. The
159339    increasing lattice constant with increasing carbon content is observed
159340    for x <= 0.5, which suggests that the high carbon concentration
159341    enhances the diffusion of carbon into the Fe lattice. It is observed
159342    the dependence of grain size on the coercivity H,. The decrease in the
159343    mean moment per Fe atom is probably linear with the increasing carbon
159344    content for nanocrystalline phase x <= 0.5. The solubility limit of
159345    carbon in alpha-Fe extended by nanocrystalline phase formation is also
159346    discussed in this paper. (c) 2004 Elsevier B.V. All rights reserved.
159347 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
159348 RP Xu, SY, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200436,
159349    Peoples R China.
159350 EM xushiyue@online.sh.cn
159351    jczhang@staff.shu.edu.cn
159352 CR BAKKER H, 1995, PROG MATER SCI, V39, P159
159353    COWLAM N, 1985, J PHYS F MET PHYS, V15, P1109
159354    DING J, 2001, J ALLOY COMPD, V314, P262
159355    ECKERT J, 1993, J APPL PHYS, V73, P2794
159356    FAISKA EJ, 1967, T METALL SOC AIME, V239, P1818
159357    FDEZGUBIEDA ML, 2001, PHYS REV B, V62, P5746
159358    GARCIAARRIBAS A, 1995, PHYS REV B, V52, P12805
159359    HALL WH, 1950, J I MET, V75, P1127
159360    HASEGAWA R, 1991, J MAGN MAGN MATER, V100, P1
159361    HERZER G, 1990, IEEE T MAGN, V26, P1397
159362    HERZER G, 1991, MAT SCI ENG A-STRUCT, V133, P1
159363    HULLER K, 1985, J MAGN MAGN MATER, V53, P103
159364    JARTYCH E, 2000, J MAGN MAGN MATER, V208, P221
159365    JOHOSONM WL, 1986, PROG MATER SCI, V30, P81
159366    KAZAMA NS, 1980, J MAGN MAGN MATER, V15, P1331
159367    KRONMULLER H, 1981, J APPL PHYS, V52, P1859
159368    KUHRT C, 1992, J APPL PHYS, V71, P1896
159369    KUHRT C, 1993, J APPL PHYS 2B, V73, P6588
159370    LECAER G, 1990, J MATER SCI, V25, P4726
159371    LUBORSKY FE, 1978, J MAGN MAGN MATER, V7, P143
159372    LUBORSKY FE, 1980, J PHYS F MET PHYS, V10, P959
159373    OHANDLEY RC, 1978, PHYS STATUS SOLIDI A, V45, P607
159374    ROCHMAN NT, 1999, J MATER PROCESS TECH, V89, P367
159375    SALIMON AI, 1999, MAT SCI ENG A-STRUCT, V271, P196
159376    SHIMADA Y, 1976, J APPL PHYS, V47, P4156
159377    SOSTARICH M, 1990, J APPL PHYS 2B, V67, P5793
159378    SURYANARAYANA C, 2001, PROG MATER SCI, V46, P1
159379    SUZUKI K, 1998, PHYS REV B, V58, P2730
159380    TANAKA T, 1991, J LESS-COMMON MET, V171, P237
159381    TANAKA T, 1995, MATER T JIM, V36, P276
159382    TOKUMITSU K, 2001, MATER SCI FORUM, V360, P183
159383    ZHOU TJ, 1996, J MAGN MAGN MATER, V164, P219
159384 NR 32
159385 TC 1
159386 SN 0304-8853
159387 J9 J MAGN MAGN MATER
159388 JI J. Magn. Magn. Mater.
159389 PD APR
159390 PY 2005
159391 VL 292
159392 BP 126
159393 EP 134
159394 PG 9
159395 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
159396 GA 922KY
159397 UT ISI:000228838000017
159398 ER
159399 
159400 PT J
159401 AU Wu, ZY
159402    Bai, FS
159403    Zhang, LS
159404 TI Convexification and concavification for a general class of global
159405    optimization problems
159406 SO JOURNAL OF GLOBAL OPTIMIZATION
159407 DT Article
159408 DE concave minimization; DC programming; global optimization; monotone
159409    programming; reverse convex programming
159410 ID NONCONVEX OPTIMIZATION
159411 AB A kind of general convexification and concavification methods is
159412    proposed for solving some classes of global optimization problems with
159413    certain monotone properties. It is shown that these minimization
159414    problems can be transformed into equivalent concave minimization
159415    problem or reverse convex programming problem or canonical D.C.
159416    programming problem by using the proposed convexification and
159417    concavification schemes. The existing algorithms then can be used to
159418    find the global solutions of the transformed problems.
159419 C1 Chongqing Normal Univ, Dept Math & Comp Sci, Chongqing 400047, Peoples R China.
159420    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
159421    Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
159422 RP Wu, ZY, Chongqing Normal Univ, Dept Math & Comp Sci, Chongqing 400047,
159423    Peoples R China.
159424 EM zhiyouwu@263.net
159425    fsbai@fundan.edu.cn
159426 CR BENSON HP, 1996, NAV RES LOG, V43, P765
159427    HOFFMAN KL, 1981, MATH PROGRAM, V20, P22
159428    HORST R, 1990, NAV RES LOG, V37, P433
159429    HORST R, 1996, INTRO GLOBAL OPTIMIZ
159430    LI D, 1995, J OPTIMIZ THEORY APP, V85, P309
159431    LI D, 1996, J OPTIMIZ THEORY APP, V88, P177
159432    LI D, 2000, J OPTIMIZ THEORY APP, V104, P109
159433    LI D, 2001, ANN OPER RES, V105, P213
159434    MORDECAI A, 1976, NONLINEAR PROGRAMMIN
159435    PARDALOS PM, 1987, CONSTRAINED GLOBAL O
159436    SUN XL, 2001, J GLOBAL OPTIM, V21, P185
159437    TUY H, 1998, CONVEX ANAL GLOBAL O
159438 NR 12
159439 TC 2
159440 SN 0925-5001
159441 J9 J GLOBAL OPTIM
159442 JI J. Glob. Optim.
159443 PD JAN
159444 PY 2005
159445 VL 31
159446 IS 1
159447 BP 45
159448 EP 60
159449 PG 16
159450 SC Mathematics, Applied; Operations Research & Management Science
159451 GA 922RE
159452 UT ISI:000228854700003
159453 ER
159454 
159455 PT J
159456 AU Yuan, XG
159457    Zhu, ZY
159458    Cheng, CJ
159459 TI Study on cavitated bifurcation problems for spheres composed of
159460    hyper-elastic materials
159461 SO JOURNAL OF ENGINEERING MATHEMATICS
159462 DT Article
159463 DE cavitated bifurcation; critical dead load and stretch; hyper-elastic
159464    material; secondary bifurcation point; singularity theory
159465 ID VOID NUCLEATION; HYPERELASTIC MATERIAL; ISOTROPIC ELASTICITY; EQUATION
159466    REDUCTIONS; FINITE ELASTICITY; GROWTH; DEFORMATIONS; TRANSFORMATIONS;
159467    STABILITY; STRESS
159468 AB In this paper, spherical cavitated bifurcation problems are examined
159469    for incompressible hyper-elastic materials and compressible
159470    hyper-elastic materials, respectively. For incompressible hyper-elastic
159471    materials, a cavitated bifurcation equation that describes cavity
159472    formation and growth for a solid sphere, composed of a class of
159473    transversely isotropic incompressible hyper-elastic materials, is
159474    obtained. Some qualitative properties of the solutions of the cavitated
159475    bifurcation equation are discussed in the different regions of the
159476    plane partitioned by material parameters indicating the degree of
159477    radial anisotropy in detail. It is shown that the cavitated bifurcation
159478    equation is equivalent, by use of singularity theory, to a class of
159479    normal forms with single-sided constraint conditions at the critical
159480    point. Stability and catastrophe of the solutions of the cavitated
159481    bifurcation equation are discussed by using the minimal
159482    potential-energy principle. For compressible hyper-elastic materials, a
159483    group of parameter-type solutions for the cavitated deformation for a
159484    solid sphere, composed of a class of isotropic compressible
159485    hyper-elastic materials, is obtained. Stability of the solutions is
159486    also discussed.
159487 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Math, Dept Mech, Shanghai 200072, Peoples R China.
159488    Yantai Univ, Dept Math & Informat Sci, Yantai 264005, Peoples R China.
159489 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Math,
159490    Dept Mech, Shanghai 200072, Peoples R China.
159491 EM chjcheng@yc.shu.edu.cn
159492 CR ARRIGO DJ, 1996, MATH MECH SOLIDS, V1, P177
159493    BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
159494    BEAHAN P, 1976, J MATER SCI, V11, P1209
159495    BIWA S, 1994, J APPL MECH-T ASME, V61, P395
159496    BIWA S, 1995, INT J NONLINEAR MECH, V30, P899
159497    CARROLL MM, 1988, J ELASTICITY, V20, P65
159498    CHOUWANG MSO, 1989, INT J SOLIDS STRUCT, V25, P1239
159499    CHUNG DT, 1987, INT J SOLIDS STRUCT, V23, P983
159500    ERICKSEN JL, 1955, J MATH PHYS, V34, P126
159501    GENT AN, 1958, P ROY SOC LOND A MAT, V249, P195
159502    GOLUBITSKY M, 1985, SINGULARITIES GROUPS, V1
159503    HILL JM, 1995, IMA J APPL MATH, V54, P109
159504    HILL JM, 1996, MATH MECH SOLIDS, V1, P155
159505    HORGAN CO, 1986, J ELASTICITY, V16, P189
159506    HORGAN CO, 1992, INT J SOLIDS STRUCT, V29, P279
159507    HORGAN CO, 1995, APPL MECH REV, V48, P471
159508    KAKAVAS PA, 2002, INT J SOLIDS STRUCT, V39, P783
159509    LAZZERI A, 1993, J MATER SCI, V28, P6799
159510    LEI HC, 1996, J ENG MATH, V30, P693
159511    MURPHY JG, 1997, INT J SOLIDS STRUCT, V34, P3859
159512    OBERTH AE, 1965, T SOC RHEOL, V9, P165
159513    OGDEN RW, 1972, P ROY SOC LOND A MAT, V326, P565
159514    OGDEN RW, 1984, NONLINEAR ELASTIC DE
159515    POLIGNONE DA, 1993, INT J SOLIDS STRUCT, V30, P3321
159516    POLIGNONE DA, 1993, J ELASTICITY, V33, P27
159517    REN JS, 2002, ACTA MECH SOLIDA SIN, V15, P208
159518    REN JS, 2002, APPL MATH MECH-ENGL, V23, P881
159519    REN JS, 2002, J ENG MATH, V44, P245
159520    REN JS, 2002, J SHANGHAI U, V6, P185
159521    RIVLIN RS, 1974, Q APPL MATH, V32, P265
159522    SHANG XC, 1996, ACTA MECH SINICA, V28, P751
159523    SHANG XC, 2001, INT J ENG SCI, V39, P1101
159524    SIVALOGANATHAN J, 1986, MATH PROC CAMBRIDGE, V99, P589
159525    VARGA OH, 1966, STRESS STRAIN BEHAV
159526 NR 34
159527 TC 1
159528 SN 0022-0833
159529 J9 J ENG MATH
159530 JI J. Eng. Math.
159531 PD JAN
159532 PY 2005
159533 VL 51
159534 IS 1
159535 BP 15
159536 EP 34
159537 PG 20
159538 SC Engineering, Multidisciplinary; Mathematics, Applied
159539 GA 922BL
159540 UT ISI:000228810600002
159541 ER
159542 
159543 PT J
159544 AU Zheng, CL
159545    Fang, JP
159546    Chen, LQ
159547 TI Soliton fission and fusion in (2+1)-dimensional Boiti-Leon-Pempinelli
159548    system
159549 SO COMMUNICATIONS IN THEORETICAL PHYSICS
159550 DT Article
159551 DE variable separation approach; BLP system; soliton fission; soliton
159552    fusion
159553 ID LOCALIZED COHERENT STRUCTURES; VARIABLE SEPARATION APPROACH;
159554    NEWELL-SEGUR SYSTEM; INTEGRABLE SYSTEMS; WAVE SYSTEM; EQUATION;
159555    EXCITATIONS; PEAKON
159556 AB By means of a special Painleve-Bicklund transformation and a
159557    multilinear variable separation approach, an exact solution with
159558    arbitrary functions of the (2+1)-dimensional Boiti-Leon Pempinelli
159559    system (BLP) is derived. Based on the derived variable separation
159560    solution, we obtain some special soliton fission and fusion solutions
159561    for the higher dimensional BLP system.
159562 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
159563    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
159564 RP Zheng, CL, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R
159565    China.
159566 EM zjclzheng@yahoo.com.cn
159567 CR BOITI M, 1987, INVERSE PROBL, V3, P37
159568    CLERC M, 1999, PHYS REV LETT, V83, P3820
159569    GARAGASH TI, 1994, THEOR MATH PHYS, V100, P1075
159570    LIN J, 2003, CHINESE PHYS, V12, P1049
159571    LIN J, 2003, PHYS LETT A, V313, P93
159572    LORENZ EN, 1963, J ATMOS SCI, V20, P130
159573    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
159574    LOU SY, 2000, PHYS LETT A, V277, P94
159575    LOU SY, 2002, J MATH PHYS, V43, P4078
159576    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
159577    LOU SY, 2002, MOD PHYS LETT B, V16, P1075
159578    LU ZS, 2004, CHAOS SOLITON FRACT, V19, P527
159579    ONO H, 1994, J PHYS SOC JPN, V63, P40
159580    SERKIN VN, 2001, OPT COMMUN, V192, P237
159581    STOITCHEVA G, 2001, MATH COMPUT SIMULAT, V55, P621
159582    TANG XY, 2002, PHYS REV E, V66, P46601
159583    TANG XY, 2003, J MATH PHYS, V44, P4000
159584    WANG S, 2004, CHAOS SOLITON FRACT, V21, P231
159585    YING JP, 2001, COMMUN THEOR PHYS, V35, P405
159586    ZHANG JF, 2003, CHINESE PHYS, V12, P533
159587    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
159588    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
159589    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P783
159590    ZHENG CL, 2003, CHINESE PHYS, V12, P472
159591    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P261
159592    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
159593    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
159594    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
159595 NR 28
159596 TC 0
159597 SN 0253-6102
159598 J9 COMMUN THEOR PHYS
159599 JI Commun. Theor. Phys.
159600 PD APR 15
159601 PY 2005
159602 VL 43
159603 IS 4
159604 BP 681
159605 EP 686
159606 PG 6
159607 SC Physics, Multidisciplinary
159608 GA 922GU
159609 UT ISI:000228825600021
159610 ER
159611 
159612 PT J
159613 AU Peng, RD
159614    Hao, J
159615 TI Recent development in the synthesis of fluorinated-amino acids and
159616    their derivatives
159617 SO CHINESE JOURNAL OF ORGANIC CHEMISTRY
159618 DT Article
159619 DE fluorinated beta-amino acid; building block; synthesis; development;
159620    bioactivity
159621 ID SOLID-PHASE SYNTHESIS; <1,3>-PROTON SHIFT REACTION; PARTIALLY-MODIFIED
159622    RETRO; KETO CARBOXYLIC ESTERS; STEREOSELECTIVE-SYNTHESIS;
159623    ASYMMETRIC-SYNTHESIS; BIOMIMETIC TRANSAMINATION; DIASTEREOSELECTIVE
159624    SYNTHESIS; PRACTICAL SYNTHESIS; ALPHA,ALPHA-DIFLUORO-BETA-AMINO ACIDS
159625 AB Fluorinated &SZLIG;-amino acids and their derivatives with specific
159626    bioactivities have been attracting great attention. This review briefly
159627    summarized the recent development in the methodologies for the
159628    synthesis of biologically important fluorinated &SZLIG;-amino acids and
159629    their derivatives with classification by the ways of the direct and
159630    indirect fluorination respectively.
159631 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
159632    Chinese Acad Sci, Shanghai Inst Organ Chem, Key Lab Organofluorine Chem, Shanghai 200032, Peoples R China.
159633 RP Peng, RD, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
159634 EM jhao@mail.shu.edu.cn
159635 CR ABOUABDELLAH A, 1996, SYNLETT          APR, P399
159636    ABOUABDELLAH A, 1997, J ORG CHEM, V62, P8826
159637    ABOUABDELLAH A, 1999, ACS SYM SER, V746, P84
159638    ARAKI K, 1991, TETRAHEDRON LETT, V32, P5461
159639    ARNONE A, 1998, TETRAHEDRON, V54, P11841
159640    BEGUE JP, 1996, ACS SYM SER, V639, P59
159641    BEVILACQUA PF, 1984, J ORG CHEM, V49, P1430
159642    BRAVO P, 1994, TETRAHEDRON-ASYMMETR, V5, P987
159643    CARDILLO G, 1996, CHEM SOC REV, P117
159644    CEN WB, 1995, J FLUORINE CHEM, V73, P161
159645    CHEGUILLAUME A, 2003, TETRAHEDRON LETT, V44, P2375
159646    CHEN QY, 1999, DEV CHINESE ORGANOFL, P1
159647    COLE DC, 1994, TETRAHEDRON, V50, P9517
159648    CROUSSE B, 2001, SYNLETT          MAY, P679
159649    DAVIS FA, 1994, TETRAHEDRON-ASYMMETR, V5, P955
159650    DAVOLI P, 1999, TETRAHEDRON-ASYMMETR, V10, P2361
159651    DOUCET C, 1997, TETRAHEDRON-ASYMMETR, V8, P739
159652    FILLER R, 1983, BIOMEDICINAL ASPECTS
159653    FILLER R, 1999, ACS SYM SER, V746, P1
159654    FOKINA NA, 2001, J FLUORINE CHEM, V111, P69
159655    FUJISAWA T, 1992, TETRAHEDRON LETT, V33, P7903
159656    FUSTERO S, 1997, TETRAHEDRON LETT, V38, P6771
159657    FUSTERO S, 1999, ORG LETT, V1, P977
159658    FUSTERO S, 2001, TETRAHEDRON, V57, P6475
159659    FUSTERO S, 2002, J ORG CHEM, V67, P4667
159660    FUSTERO S, 2003, ORG LETT, V5, P2523
159661    GEOR GI, 1995, TAXANE ANTICANCER AG
159662    GONG YF, 2001, J FLUORINE CHEM, V111, P77
159663    ISHIHARA T, 1996, TETRAHEDRON, V52, P255
159664    JIANG ZX, 2003, J ORG CHEM, V68, P7544
159665    JIANG ZX, 2004, THESIS SHANGHAI
159666    KANEKO S, 1993, J ORG CHEM, V58, P2302
159667    KATRITZKY AR, 1998, TETRAHEDRON LETT, V39, P7063
159668    KIRK KL, 1996, ACS SYM SER, V639, P1
159669    KUKHAR VP, 1995, FLUORINE CONTAINING
159670    LEBOUVIER N, 2002, TETRAHEDRON LETT, V43, P2827
159671    LIU M, 2002, TETRAHEDRON, V58, P7991
159672    MA ZH, 2002, CHINESE J ORG CHEM, V22, P807
159673    MARCOTTE S, 1999, J ORG CHEM, V64, P8461
159674    OJIMA I, 1989, J ORG CHEM, V54, P4511
159675    OJIMA I, 1996, ACS SYM SER, V639, P228
159676    OJIMA I, 1997, BIOORG MED CHEM LETT, V7, P133
159677    OJIMA I, 1997, CHIRALITY, V9, P487
159678    OJIMA I, 1999, ACS SYM SER, V746, P158
159679    PERBONI A, 1993, RECENT ADV CHEM ANTI, P21
159680    QIU XL, 2002, J CHEM SOC PERK T 1, P2052
159681    QIU XL, 2002, J ORG CHEM, V67, P7162
159682    QIU XL, 2003, J ORG CHEM, V68, P3614
159683    QIU XL, 2004, TETRAHEDRON, V60, P5201
159684    QIU XL, 2004, TETRAHEDRON, V60, P6711
159685    SERGEEVA NN, 2001, J FLUORINE CHEM, V111, P41
159686    SERGEEVA NN, 2001, SYNTHESIS-STUTTG FEB, P281
159687    SERGEEVA NN, 2002, SYNTHESIS-STUTTG DEC, P2579
159688    SOLOSHONOK V, 1999, ACS SYM SER, V746, P74
159689    SOLOSHONOK VA, 1993, TETRAHEDRON LETT, V34, P3621
159690    SOLOSHONOK VA, 1994, TETRAHEDRON LETT, V35, P5063
159691    SOLOSHONOK VA, 1994, TETRAHEDRON-ASYMMETR, V5, P1119
159692    SOLOSHONOK VA, 1994, TETRAHEDRON-ASYMMETR, V5, P1225
159693    SOLOSHONOK VA, 1996, TETRAHEDRON, V52, P14701
159694    SOLOSHONOK VA, 1996, TETRAHEDRON, V52, P6953
159695    SOLOSHONOK VA, 1997, J ORG CHEM, V62, P7538
159696    SOLOSHONOK VA, 1997, TETRAHEDRON, V53, P8307
159697    SOLOSHONOK VA, 1998, J ORG CHEM, V63, P1878
159698    SOLOSHONOK VA, 2000, ENATIOCONTROLLED SYN
159699    SOLOSHONOK VA, 2002, TETRAHEDRON LETT, V43, P5445
159700    SOMEKH L, 1992, J AM CHEM SOC, V104, P5836
159701    STANFORTH SP, 2001, TETRAHEDRON, V57, P1833
159702    TAKAYA J, 2000, ORG LETT, V2, P1577
159703    TAMURA K, 1993, J ORG CHEM, V58, P32
159704    TEUTSCH G, 1984, TETRAHEDRON LETT, V25, P1561
159705    TSUKAMOTO T, 1993, J CHEM SOC P1, P1177
159706    UNEYAMA K, 1998, TETRAHEDRON LETT, V39, P4079
159707    UNEYAMA K, 1999, J FLUORINE CHEM, V97, P11
159708    UNEYAMA K, 2001, J ORG CHEM, V66, P1026
159709    VERAAYOSO Y, 2001, TETRAHEDRON-ASYMMETR, V12, P2031
159710    VIDAL A, 2001, J ORG CHEM, V66, P8268
159711    VOLONTERIO A, 2000, ORG LETT, V2, P1827
159712    VOLONTERIO A, 2000, TETRAHEDRON LETT, V41, P6517
159713    VOLONTERIO A, 2001, TETRAHEDRON LETT, V42, P3134
159714    VOLONTERIO A, 2003, TETRAHEDRON LETT, V44, P7019
159715    WANG Y, 2002, THESIS SHANGHAI
159716    WELCH JT, 1993, J ORG CHEM, V58, P2454
159717    WOLLMANN T, 1993, RECENT ADV CHEM ANTI, P50
159718    ZHAO G, 2002, DEV STRATEGY ORGANIC, P149
159719    ZHU SZ, 2003, TETRAHEDRON, V59, P4389
159720 NR 85
159721 TC 0
159722 SN 0253-2786
159723 J9 CHINESE J ORG CHEM
159724 JI Chin. J. Org. Chem.
159725 PD MAY
159726 PY 2005
159727 VL 25
159728 IS 5
159729 BP 485
159730 EP 495
159731 PG 11
159732 SC Chemistry, Organic
159733 GA 922PN
159734 UT ISI:000228850100001
159735 ER
159736 
159737 PT J
159738 AU Shi, DH
159739    Guo, JL
159740    Liu, LM
159741 TI On the SPH-distribution class
159742 SO ACTA MATHEMATICA SCIENTIA
159743 DT Article
159744 DE phase type distribution; absorbing Markov chain; operator theory;
159745    SPH-distribution; properties
159746 ID PHASE-TYPE DISTRIBUTIONS; TIME
159747 AB Following up Neuts' idea, the SPH-distribution class associated with
159748    bounded Q matrices for infinite Markov chains is defined. The main
159749    result in this paper is to characterize the SPH class through the
159750    derivatives of the distribution functions. Based on the
159751    characterization theorem, closure properties, the expansion, uniform
159752    approximation, and the matrix representations of the SPH class are also
159753    discussed by the derivatives of the distribution functions at origin.
159754 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
159755    Shanghai Univ Sci & Technol, Coll Management, Shanghai 200093, Peoples R China.
159756    Hong Kong Univ Sci & Technol, Dept Ind Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China.
159757 RP Shi, DH, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
159758 CR ASMUSSEN S, 1987, APPL PROBABILITY QUE
159759    ASSAF D, 1984, OPER RES, V32, P688
159760    BOTTA RF, 1986, QUEUEING SYST, V1, P169
159761    BOTTA RF, 1987, COMMUN STATIST STOCH, V3, P115
159762    CHAU KL, 1992, J MULTICULTURAL SOCI, V1, P1
159763    COMMAULT C, 1993, STOCH MODELS, V8, P421
159764    COX DR, 1955, P CAMBRIDGE PHILOS S, V51, P313
159765    ESARY JD, 1973, ANN PROBAB, V1, P627
159766    GUO DJ, 1985, NONLINEAR FUNCTIONAL
159767    HE SW, 1989, INTRO STOCHASTIC PRO
159768    JENSEN A, 1954, DISTRIBUTION MODEL A
159769    KLEINROCK L, 1976, QUEUEING SYSTEM I
159770    LUCHAK G, 1956, OPER RES, V4, P711
159771    MAIER BS, 1991, STOCH MODELS, V7, P573
159772    MAIER RS, 1992, J APPL PROBAB, V29, P92
159773    NEUTS MF, 1975, LIBER AMICORUM PROF, P173
159774    NEUTS MF, 1981, MATRIX GEOMETRIC SOL
159775    NEUTS MF, 1989, STRUCTURED STOCHASTI
159776    OCINNEIDE CA, 1989, STOCH MODELS, V5, P245
159777    OCINNEIDE CA, 1990, STOCH MODELS, V6, P1
159778    OTT TJ, 1989, ADV APPL PROBAB, V19, P240
159779    SCHASSBERGER R, 1970, ANN MATH STAT, V41, P182
159780    SENGUPTA B, 1989, ADV APPL PROBAB, V21, P159
159781    SHANTHIKUMAR JG, 1985, NAV RES LOG, V32, P119
159782    SHI D, 1996, MATRIX ANAL METHODS, P207
159783    SHI DH, 1985, ACTA MATH APPL SINIC, V8, P101
159784    SHI DH, 1994, CHIN J APPL PROB STA, V10, P84
159785 NR 27
159786 TC 0
159787 SN 0252-9602
159788 J9 ACTA MATH SCI
159789 JI Acta Math. Sci.
159790 PD APR
159791 PY 2005
159792 VL 25
159793 IS 2
159794 BP 201
159795 EP 214
159796 PG 14
159797 SC Mathematics
159798 GA 922EJ
159799 UT ISI:000228818900002
159800 ER
159801 
159802 PT J
159803 AU Cao, SX
159804    Kang, BJ
159805    Wang, XY
159806    Zhang, JC
159807    Cao, GX
159808    Yu, LM
159809    Jing, C
159810 TI Lattice effect and magnetic transition behaviors of
159811    (Pr,Nd)(0.67)Sr0.33MnO3 under superposed fields
159812 SO SOLID STATE COMMUNICATIONS
159813 DT Article
159814 DE CMR; lattice effect; magnetic transition; magnetic susceptibility
159815 ID COLOSSAL MAGNETORESISTANCE; PEROVSKITE MANGANITES; RESISTANCE; LAMNO3
159816 AB The lattice effect and magnetic transition behaviors of
159817    (Pr1-yNdv)(0.67)Sr0.33MnO3 (y=0, 1/4, 2/4, 3/4, 1) samples under
159818    superposed magnetic fields (i.e. the superposed AC and DC magnetic
159819    field) were systematically studied in the temperature range from 4.2 to
159820    330 K. The results show that the magnetic transition temperature (Curie
159821    temperature, T-C) of (Pr1-y Nd-y)(0.67)Sr0.33MnO3 shifts to a lower
159822    temperature as Nd substitutes for Pr, which is related to the degree of
159823    lattice distortion. The magnetization of samples increases with the
159824    increase in applied magnetic field and the in-phase-part of the AC
159825    susceptibility decreases as the superposed DC magnetic field increases.
159826    Under superposed magnetic fields, a characteristic sharp peak of the
159827    in-phase part of the susceptibility appears near T-C. For the
159828    (Pr1-yNdy)(2/3)Sr1/3MnO3 system, as the Nd content increases, the peak
159829    temperature of the relative variation for the in-phase part of magnetic
159830    susceptibility (E chi'=Delta chi'/chi'(dc)) decreases, in consistent
159831    with that of the magnetoresistivity of this system. The magnetic
159832    transition behaviors under superposed magnetic fields for the manganite
159833    systems are discussed. (c) 2005 Elsevier Ltd. All rights reserved.
159834 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
159835    Chinese Inst Metrol, Dept Phys, Hangzhou 310018, Peoples R China.
159836 RP Cao, SX, Shanghai Univ, Dept Phys, Shangda Rd 99, Shanghai 200444,
159837    Peoples R China.
159838 EM sxcao@staff.shu.edu.cn
159839 CR BOUJELBEN W, 2002, PHYSICA B, V321, P68
159840    CAI JW, 1997, APPL PHYS LETT, V71, P1727
159841    CAIGNAERT V, 1995, SOLID STATE COMMUN, V95, P357
159842    CHATTERJEE S, 2002, PHYS REV B, V66
159843    DAI DS, 1997, PROGR PHYSICS, V17, P201
159844    DETERESA JM, 1996, PHYS REV LETT, V76, P3392
159845    DHO J, 2002, PHYS REV LETT, V89, P27202
159846    FAN JY, 2003, PHYS REV B, V68
159847    HASANAIN SK, 2001, J MAGN MAGN MATER, V225, P322
159848    HEJTMANEK J, 2002, PHYS REV B, V66
159849    HONG CS, 2001, PHYS REV B, V63
159850    HWANG HY, 1995, PHYS REV LETT, V75, P914
159851    JONKER GH, 1950, PHYSICA, V16, P337
159852    KOLESNIK S, 2001, J APPL PHYS 2, V89, P7407
159853    PENA A, 2003, J SOLID STATE CHEM, V174, P52
159854    TOKURA Y, 1999, J MAGN MAGN MATER, V200, P1
159855    TOMIOKA Y, 1997, APPL PHYS LETT, V70, P3609
159856    VANDERBEMDEN P, 2003, PHYS REV B, V68
159857    WU SY, 2002, J PHYS-CONDENS MAT, V14, P12585
159858    XIONG CS, 2003, J PHYS-CONDENS MAT, V15, P7063
159859    YE SL, 2002, J MAGN MAGN MATER, V248, P26
159860    ZHAO JH, 2002, PHYS REV B, V66
159861 NR 22
159862 TC 0
159863 SN 0038-1098
159864 J9 SOLID STATE COMMUN
159865 JI Solid State Commun.
159866 PD APR
159867 PY 2005
159868 VL 134
159869 IS 4
159870 BP 265
159871 EP 270
159872 PG 6
159873 SC Physics, Condensed Matter
159874 GA 919ME
159875 UT ISI:000228621300007
159876 ER
159877 
159878 PT J
159879 AU Xu, JZ
159880 TI Training translators in China
159881 SO META
159882 DT Article
159883 DE translation training; China; interpretation; translator accreditation
159884    tests
159885 AB Translation training in China has a long history, but it is only in the
159886    last two decades that translation training has been developing
159887    increasingly fast. This article firstly reviews the history of
159888    translation training in China, then examines its present practice such
159889    as training program, training materials, training methods,
159890    interpretation training, advanced translation training, and Translator
159891    Accreditation Tests, and finally makes suggestions for improvement of
159892    training translators in China.
159893 C1 Shanghai Univ Sci & Technol, Shaanxi, Peoples R China.
159894 RP Xu, JZ, Shanghai Univ Sci & Technol, Shaanxi, Peoples R China.
159895 EM xujianzhong2003@yahoo.com.cn
159896 CR *STAT GEN ADM QUAL, 2003, SPEC TRANS SERV 1
159897    BAO CY, 2003, CHINESE TRANSLATORS, V2, P48
159898    CAI JG, 2003, CHINESE TRANSLATORS, V1, P63
159899    CAI XH, 2001, CHINESE TRANSLATORS, V2, P26
159900    CHEN J, 2002, CHINESE TRANSLATORS, V1, P51
159901    CHEN J, 2003, CHINESE TRANSLATORS, V1, P67
159902    CHEN KQ, 2002, FOREIGN LANGUAGES TH, V7, P42
159903    CHEN ZD, 2003, SHANGHAI J TRANSLATO, V1, P29
159904    DU YH, 2002, CHINESE SCI TECHNOLO, V4, P36
159905    FAN SY, 2000, CHINESE TRANSLATORS, V1, P64
159906    FAN ZY, 1994, APPL THEORY TRANASLA
159907    FANG JZ, 2002, CHINESE SCI TECHNOLO, V2, P22
159908    FENG SJ, 1995, PRACTICAL ENGLISH CH
159909    FENG YH, 2001, CHINESE TRANSLATORS, V2, P37
159910    GUO YD, 1995, COMMERCIAL ENGLISH C
159911    HAN ZY, 2002, CHINESE SCI TECHNOLO, V2, P25
159912    HAN ZY, 2002, CHINESE SCI TECHNOLO, V2, P33
159913    HU QP, 2004, CHINESE SCI TECHNOLO, V1, P44
159914    HUANG Z, 2003, SHANGHAI J TRANSLATO, V4, P10
159915    HUANG Z, 2003, SHANGHAI J TRANSLATO, V4, P25
159916    HUANG ZL, 2000, STUDY TRANSLATION VA
159917    KE P, 1993, ENGLISH CHINESE CHIN
159918    KE P, 2002, CHINESE TRANSLATORS, V4, P59
159919    KE P, 2002, CHINESE TRANSLATORS, V5, P52
159920    KE P, 2002, CHINESE TRANSLATORS, V6, P45
159921    LI NQ, 2002, CHINA INTERPRETATION
159922    LI YX, 2003, CHINESE TRANSLATORS, V4, P58
159923    LIN BC, 2000, SHANGHAI J TRANSLATO, V2, P34
159924    LIN YR, 1999, INTREPRETING TOMORRO
159925    LIU B, 2003, CHINESE SCI TECHNOLO, V3, P31
159926    LIU HP, 2001, INTREPRETATION SKILL
159927    LIU HP, 2003, CHINESE TRANSLATORS, V3, P32
159928    LIU JC, 2003, SHANGHAI J TRANSLATO, V3, P52
159929    LU DY, 1958, ENGLISH CHINESE TRAN
159930    LU SY, 2000, CHINESE TRANSLATORS, V1, P41
159931    LUO XM, 2002, CHINESE TRANSLATORS, V4, P56
159932    MA ZY, 1998, BRIEF HIST TRANSLATI
159933    MENG Z, 2003, SHANGHAI J TRANSLATO, V1, P43
159934    MU L, 1999, TRANSLATION TEACHING
159935    REN XP, 2004, CHINESE TRANSLATORS, V1, P61
159936    TAN BZ, 1997, MODERN ENGLISH TRANS
159937    TIAN Y, 2002, SHANGHAI J TRANSLATO, V3, P30
159938    WANG DW, 1997, SHANGHAI J TRANSLATO, V4, P17
159939    WANG FX, 1992, CHINESE ENGLISH INTE
159940    WANG LD, 2000, CHINESE TRANSLATORS, V5, P34
159941    WANG LD, 2001, CHINESE TRANSLATORS, V2, P19
159942    WANG LD, 2003, CHINESE TRANSLATORS, V6, P51
159943    WANG SH, 2001, CHINESE TRANSLATORS, V5, P36
159944    WANG XX, 2004, CHINESE SCI TECHNOLO, V1, P19
159945    WU B, 1995, COURSE ORAL INTERPRE
159946    XU JZ, 2000, TRANSLATIO, V4, P384
159947    XU JZ, 2002, INTRO ENTERPRISE TRA
159948    XU LN, 1997, SHANGHAI J TRANSLATO, V4, P30
159949    XU YN, 2000, CHINESE TRANSLATORS, V3, P35
159950    YAN LL, 2000, CHINESE SCI TECHNOLO, V1, P32
159951    YANG L, 1993, COURSE ENGLISH CHINE
159952    YANG L, 2001, CHINESE TRANSLATORS, V5, P3
159953    YANG M, 2001, SHANGHAI J TRANSLATO, V3, P32
159954    ZENG XH, 2002, NAT MATER, V1, P35
159955    ZHANG BJ, 2003, CHINESE TRANSLATORS, V3, P37
159956    ZHANG JL, 2003, SHANGHAI J TRANSLATO, V1, P33
159957    ZHANG L, 2000, SHANGHAI J TRANSLATO, V3, P46
159958    ZHANG LL, 1996, PRACTICAL ENGLISH CH
159959    ZHANG MF, 2001, ENGLISH CHINESE TRAN
159960    ZHANG PJ, 1980, COURSEBOOK ENGLISH C
159961    ZHONG WH, 2001, CHINESE TRANSLATORS, V2, P30
159962    ZHONG WH, 2001, CHINESE TRANSLATORS, V5, P39
159963    ZHONG WH, 2003, CHINESE TRANSLATORS, V4, P63
159964 NR 68
159965 TC 0
159966 SN 0026-0452
159967 J9 META
159968 JI Meta
159969 PD MAR
159970 PY 2005
159971 VL 50
159972 IS 1
159973 BP 231
159974 EP 249
159975 PG 19
159976 SC Language & Linguistics Theory
159977 GA 918ZT
159978 UT ISI:000228588800021
159979 ER
159980 
159981 PT J
159982 AU Wang, S
159983    Zhang, JM
159984    Song, LP
159985    Jiang, H
159986    Zhu, SZ
159987 TI One-pot three-component reaction of C-60, amino acid and fluorinted
159988    benzaldehyde to C-60-pyrrolidine derivatives
159989 SO JOURNAL OF FLUORINE CHEMISTRY
159990 DT Article
159991 DE C-60; amino acid; fluorinated benzaldehyde; 1,3-dipolar cycloaddition;
159992    C-60-pyrrolidines
159993 ID FULLERENE; BUCKMINSTERFULLERENE; FULLEROPYRROLIDINE
159994 AB A series of fluorinated 2,5-disubstituted C-60-pyrrolidine derivatives
159995    were synthesized via one-pot three-component reaction of C-60, amino
159996    acid and fluorinated benzaldehyde under reflux in toluene or microwave
159997    irradiation. The cis- and trans-isomers could be isolated by
159998    chromatography and fully confirmed by H-1 NMR. (c) 2005 Elsevier B.V.
159999    All rights reserved.
160000 C1 Shanghai Univ, Dept Chem, Sch Sci, Shanghai 200436, Peoples R China.
160001    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organofluorine Chem, Shanghai 200032, Peoples R China.
160002 RP Zhang, JM, Shanghai Univ, Dept Chem, Sch Sci, 99 Shangda Rd, Shanghai
160003    200436, Peoples R China.
160004 EM zhusz@mail.sioc.ac.cn
160005 CR CURZ P, 1997, TETRAHEDRON, V53, P2599
160006    JENSEN AW, 1996, BIOORGAN MED CHEM, V4, P767
160007    LANGA F, 2000, CARBON, V38, P1641
160008    MAGGINI M, 1993, J AM CHEM SOC, V115, P9798
160009    MUTHU S, 1994, TETRAHEDRON LETT, V35, P1763
160010    ORTIZ AD, 1995, J ORG CHEM, V60, P4160
160011    PRATO M, 1999, TOP CURR CHEM, V199, P173
160012    SHU LH, 1995, TETRAHEDRON LETT, V36, P3871
160013    TAN XF, 1998, TETRAHEDRON LETT, V39, P4187
160014    WANG YL, 2002, SYNTHESIS-STUTTG SEP, P1813
160015    WILSON SR, 1996, TETRAHEDRON LETT, V37, P775
160016    WUDL F, 1992, ACCOUNTS CHEM RES, V25, P157
160017    ZHANG JM, 2004, TETRAHEDRON LETT, V45, P5771
160018    ZHANG JM, 2005, SYNTHETIC COMMUN, V35, P89
160019    ZHANG S, 2002, J ORG CHEM, V67, P883
160020 NR 15
160021 TC 0
160022 SN 0022-1139
160023 J9 J FLUORINE CHEM
160024 JI J. Fluor. Chem.
160025 PD MAR
160026 PY 2005
160027 VL 126
160028 IS 3
160029 BP 349
160030 EP 353
160031 PG 5
160032 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
160033 GA 919QC
160034 UT ISI:000228631600012
160035 ER
160036 
160037 PT J
160038 AU Zhang, ML
160039    Xia, YB
160040    Wang, LJ
160041    Gu, BB
160042 TI Effects of the film microstructures on CVD diamond radiation detectors
160043 SO JOURNAL OF CRYSTAL GROWTH
160044 DT Article
160045 DE film microstructure; photocurrent; chemical vapor deposition diamond
160046    film; radiation detector
160047 ID CHEMICAL-VAPOR-DEPOSITION; PARTICLE DETECTORS; X-RAY; QUALITY
160048 AB The polycrystalline nature of the films has limited the improvement of
160049    CVD diamond radiation detectors. In this work, three CVD diamond films
160050    with different microstructures were grown by a hot-filament chemical
160051    vapor deposition (HFCVD) technique and were fabricated as CVD diamond
160052    radiation detectors. The photocurrents and the pulse height
160053    distributions (PHDs) obtained by the detectors were measured by using
160054    5.9 keV 55 Fe X-rays. The dark-current of 16.0 nA and the photocurrent
160055    of 15.9 nA are achieved at a bias voltage of 100 V. The PHD peak is
160056    well separated from the noise and a better energy resolution of 21.2%
160057    is obtained due to the high ratio of grain size to the film thickness.
160058    The time-dependent photocurrent initially increases rapidly and then
160059    levels off due to the 'polarization' effect. (c) 2005 Elsevier B.V. All
160060    rights reserved.
160061 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
160062 RP Zhang, ML, Shanghai Univ, Sch Mat Sci & Engn, 149 Yanhang Rd, Shanghai
160063    200072, Peoples R China.
160064 EM zhamilong@hotmail.com
160065 CR BERGONZO P, 2001, DIAM RELAT MATER, V10, P631
160066    DONATO MG, 2001, DIAM RELAT MATER, V10, P1788
160067    FRIEDL M, 1999, NUCL INSTRUM METH A, V435, P194
160068    JANY C, 2000, DIAM RELAT MATER, V9, P1086
160069    KANEKO J, 1999, NUCL INSTRUM METH A, V422, P211
160070    KOZLOV SF, 1975, IEEE T NUCL SCI, V22, P160
160071    KOZLOV SF, 1988, CARBON, V26, P345
160072    MANFREDOTTI C, 1996, APPL RES, V1234, P378
160073    MARINELLI M, 2001, DIAM RELAT MATER, V10, P645
160074    MARINELLI M, 2001, J APPL PHYS, V89, P1430
160075    MEIER D, 1999, NUCL INSTRUM METH A, V426, P173
160076    NAVA F, 1979, IEEE T NUCL SCI, V26, P308
160077    SALVATORI S, 1997, DIAM RELAT MATER, V6, P361
160078    SOUW EK, 1997, NUCL INSTRUM METH A, V400, P69
160079    TROMSON D, 2000, DIAM RELAT MATER, V9, P1850
160080    VATNITSKY S, 1993, PHYS MED BIOL, V38, P173
160081    VATNITSKY SM, 1993, RADIAT PROT DOSIM, V47, P515
160082    ZHANG ML, 2004, J CRYST GROWTH, V274, P21
160083    ZHANG ML, 2004, PHYS LETT A, V332, P320
160084    ZHANG ML, 2004, SOLID STATE COMMUN, V130, P425
160085 NR 20
160086 TC 0
160087 SN 0022-0248
160088 J9 J CRYST GROWTH
160089 JI J. Cryst. Growth
160090 PD APR 15
160091 PY 2005
160092 VL 277
160093 IS 1-4
160094 BP 382
160095 EP 387
160096 PG 6
160097 SC Crystallography
160098 GA 921AZ
160099 UT ISI:000228737900060
160100 ER
160101 
160102 PT J
160103 AU Lu, HQ
160104 TI Phantom cosmology with a nonlinear Born-Infeld type scalar field
160105 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS D
160106 DT Article
160107 DE dark energy; Born-Infeld type scalar field; phantom cosmology
160108 ID HIGH-REDSHIFT SUPERNOVAE; ENERGY COMPONENT; CONSTRAINTS; EQUATION; STATE
160109 AB Recent many physicists suggest that the dark energy in the universe
160110    might result from the Born-Infeld (B-I) type scalar field of string
160111    theory. The universe of B-I type scalar field with potential can
160112    undergo a phase of accelerating expansion. The corresponding equation
160113    of state parameter lies in the range of -1 < omega < -1/3. The equation
160114    of state parameter of B-I type scalar field without potential lies in
160115    the range of 0 <= omega <= 1. We find that weak energy condition and
160116    strong energy condition are violated for phantom B-I type scalar field.
160117    The equation of state parameter lies in the range of omega < -1.
160118 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
160119 RP Lu, HQ, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
160120 EM alberthq_lu@hotmail.com
160121 CR BENAOUM HB, HEPTH0205140
160122    BENNETT CL, ASTROPH0302207
160123    BENTO MC, HEPTH020812
160124    BORN M, 1934, PROC R SOC LON SER-A, V144, P425
160125    CALDWELL RR, 1998, PHYS REV LETT, V80, P1582
160126    CALDWELL RR, 2002, PHYS LETT B, V545, P23
160127    CARROLL SM, ASTROTH0301273
160128    CHEN B, HEPTH0209222
160129    CHIBA T, ASTROPH0206298
160130    CLINE JM, HEPTH0207156
160131    DEBERNARDIS P, ASTROPH0105296
160132    DEOLIVEIRA HP, 1995, J MATH PHYS, V36, P2988
160133    DIAMANDIS GA, HEPTH0107124
160134    DIAMANDIS GA, HEPTH0203241
160135    FARAONI V, 2002, INT J MOD PHYS D, V11, P471
160136    FEINSTEIN A, HEPTH0304069
160137    FELDER G, HEPTH0208019
160138    FELDER G, 2002, JHEP, V209, P26
160139    FRIEMAN JA, 1998, PHYS REV D, V57, P4642
160140    FROLOV A, HEPTH0204187
160141    GAROUSI MR, HEPTH0209068
160142    GIBBONS G, HEPTH0209034
160143    GIBBONS GW, HEPTH0302199
160144    GIBBONS GW, HEPTH031117
160145    HALVERSON NW, 2002, ASTROPHYS J 1, V568, P38
160146    HAO JG, 2002, HEPTH0305207
160147    HAO JG, 2002, PHYS REV D, V66
160148    ISHIDA L, HEPTH0206102
160149    KIN C, HEPTH0301142
160150    KOFMAN L, HEPTH020512
160151    LEBLOND F, HEPTH0305059
160152    LEE AT, ASTROPH0104460
160153    LEE H, HEPTH0210221
160154    LI XZ, 2003, PHYS REV D, V67
160155    LU HQ, 1999, INT J MOD PHYS D, V8, P625
160156    LU HQ, 2003, INT J THEOR PHYS, V42, P837
160157    LUSON J, HEPTH0209255
160158    MEHEN T, HEPTH0206212
160159    MELHIORI A, ASTROPH0211522
160160    MOELLER N, 2002, J HIGH ENERGY PHYS
160161    MUKHOPADHYAY P, HEPTH020814
160162    MUKOHYAMA S, HEPTH0208094
160163    MUKOHYAMA S, 2002, PHYS REV D, V66
160164    NETTERFIELD CB, ASTROPH0104460
160165    NOJIRI S, HEPTH0304131
160166    NOJIRI S, HEPTH0306212
160167    OKUNDA T, HEPTH0208196
160168    PADMANABHAN T, 2002, PHYS REV D, V66
160169    PERLMUTTER S, 1999, ASTROPHYS J 1, V517, P565
160170    PIAO YS, HEPPH0207143
160171    SAMI H, HEPTH0301140
160172    SAMI M, 2003, PHYS REV D, V67
160173    SEN A, HEPTH0203211
160174    SEN A, HEPTH0204143
160175    SEN A, HEPTH0207105
160176    SEN A, HEPTH0209122
160177    SHCULZ E, 2001, PHYS REV D, V64
160178    SHIU G, 2002, PHYS LETT B, V541, P6
160179    SPERGEL DN, ASTROPH0302209
160180    STACHOWIAK T, HEPTH0307128
160181    STOMPOR R, ASTROPH0105062
160182 NR 61
160183 TC 3
160184 SN 0218-2718
160185 J9 INT J MOD PHYS D
160186 JI Int. J. Mod. Phys. D
160187 PD FEB
160188 PY 2005
160189 VL 14
160190 IS 2
160191 BP 355
160192 EP 362
160193 PG 8
160194 SC Astronomy & Astrophysics
160195 GA 920YR
160196 UT ISI:000228731900010
160197 ER
160198 
160199 PT J
160200 AU Huang, J
160201    Zhang, JQ
160202    Liu, JN
160203 TI Effect of magnetic field on properties of MR fluids
160204 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
160205 DT Article
160206 DE MR fluids; magnetic field; yield stress
160207 ID STRESS
160208 AB The yield stress is one of the most important parameters that
160209    characterize viscoplastic properties of magnetorheological (MR) fluids.
160210    Based on the microstructure of magnetic-chain a theoretical model is
160211    developed to analyze the effect of the applied magnetic field on the
160212    yield stress. It has been shown that, the values of the yield stress
160213    calculated by the model agree well with the experimental data.
160214 C1 Chongqing Inst Technol, Chongqing 400050, Peoples R China.
160215    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
160216    Chongqing Univ, Chongqing 630044, Peoples R China.
160217 RP Huang, J, Chongqing Inst Technol, Chongqing 400050, Peoples R China.
160218 EM jhuangcq@sohu.com
160219    jqzhang@mail.shuy.edu.cn
160220    ljn@cqu.edu.cn
160221 CR GINDER JM, 1994, APPL PHYS LETT, V65, P3410
160222    HUANG J, 2002, J MATER PROCESS TECH, V129, P559
160223    LEMAIRE E, 1991, J PHYS D APPL PHYS, V24, P1473
160224    ROSENSWEIG RE, 1995, J RHEOL, V39, P179
160225 NR 4
160226 TC 0
160227 SN 0217-9792
160228 J9 INT J MOD PHYS B
160229 JI Int. J. Mod. Phys. B
160230 PD JAN 30
160231 PY 2005
160232 VL 19
160233 IS 1-3
160234 PN Part 2
160235 BP 597
160236 EP 601
160237 PG 5
160238 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
160239 GA 919RO
160240 UT ISI:000228635500053
160241 ER
160242 
160243 PT J
160244 AU Sun, W
160245    Nie, H
160246    Li, N
160247    Zang, YCQ
160248    Zhang, D
160249    Feng, G
160250    Ni, L
160251    Xu, R
160252    Prasad, S
160253    Robinson, RR
160254    Ho, W
160255    Sercarz, E
160256    Zhang, JZ
160257 TI Skewed T-cell receptor BV14 and BV16 expression and shared CDR3
160258    sequence and common sequence motifs in synovial T cells of rheumatoid
160259    arthritis
160260 SO GENES AND IMMUNITY
160261 DT Article
160262 DE complementarity-determining region; human leukocyte antigens;
160263    rheumatoid arthritis; synovial T cells; T-cell receptor
160264 ID MYELIN BASIC-PROTEIN; PEPTIDE VACCINATION; MULTIPLE-SCLEROSIS; FLUID
160265    LYMPHOCYTES; GENE USAGE; PERSISTENCE; DOMINANT; CLONES; TRANSCRIPTS;
160266    SPECIFICITY
160267 AB T-lymphocytes play an important role in rheumatoid arthritis ( RA). In
160268    this study, we evaluated the hypothesis that common T-cell receptor
160269    (TCR) structural features may exist among infiltrating T cells of
160270    different RA patients, if the TCR repertoire is shaped by interaction
160271    with common self or microbial antigens in the context of susceptible
160272    HLA genes in RA. Synovial lesion tissue (ST), synovial fluid ( SF) and
160273    blood specimens from RA patients and controls were analyzed for TCR V
160274    gene repertoire by real-time PCR. There was highly skewed BV14 and BV16
160275    usage in synovial T cells of RA as opposed to those of controls, which
160276    was accompanied with a trend for correlation between skewed BV16 and
160277    DRB1* 0405. Immunoscope analysis of the V - D - J region of ST-derived
160278    T cells demonstrated oligoclonal and polyclonal expansion of BV14(+)
160279    and BV16(+) T cells. Detailed characterization using specific BV and BJ
160280    primers further revealed common clonotypes combining the same
160281    BV14/BV16, BJ and CDR3 length. DNA cloning and sequence analysis of the
160282    clonotypes confirmed identical CDR3 sequences and common CDR3 sequence
160283    motifs among different RA patients. The findings are important in the
160284    understanding of BV gene skewing and CDR3 structural characteristics
160285    among synovial infiltrating T cells of RA.
160286 C1 Baylor Coll Med, Dept Immunol, Houston, TX 77030 USA.
160287    Shanghai Inst Biol Sci, Hlth Sci Ctr, Joint Immunol Lab, Shanghai, Peoples R China.
160288    Shanghai Inst Biol Sci, Shanghai Inst Immunol, Shanghai, Peoples R China.
160289    Shanghai Med Univ 2, Shanghai, Peoples R China.
160290    Shanghai Univ, E Inst, Shanghai, Peoples R China.
160291    Guanghua Rheumatol Hosp, Shanghai, Peoples R China.
160292    Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China.
160293    Torrey Pines Inst Mol Studies, San Diego, CA USA.
160294 RP Zhang, JZ, Baylor Coll Med, Dept Immunol, 1 Baylor Plaza,Mail Stn
160295    NB302, Houston, TX 77030 USA.
160296 EM jzang@bcm.tmc.edu
160297 CR ALAM A, 1995, HUM IMMUNOL, V42, P331
160298    ALAM A, 1996, J IMMUNOL, V156, P3480
160299    BERNER B, 2000, J RHEUMATOL, V27, P1128
160300    COHEN ES, 2003, IMMUNOLOGY, V109, P8
160301    DAVEY MP, 1997, HUM IMMUNOL, V55, P11
160302    DAVIS LS, 2001, ARTHRITIS RES, V3, P54
160303    DEVEREUX D, 1991, INT IMMUNOL, V3, P635
160304    DOLHAIN RJE, 1996, ARTHRITIS RHEUM, V12, P1961
160305    EVEN J, 1995, RES IMMUNOL, V146, P65
160306    FELDMANN M, 1996, ANNU REV IMMUNOL, V14, P397
160307    FRIES JF, 2002, ARTHRITIS RHEUM, V46, P2320
160308    GONZALEZQUINTIAL R, 1996, J CLIN INVEST, V97, P1335
160309    GORONZY JJ, 1994, J CLIN INVEST, V94, P2068
160310    HOLOSHITZ J, 1986, LANCET, V2, P305
160311    HONG J, 1999, J IMMUNOL, V163, P3530
160312    JENKINS RN, 1993, J CLIN INVEST, V92, P2688
160313    KERLANCANDON S, 2001, CLIN EXP IMMUNOL, V124, P142
160314    LEE DM, 2001, LANCET, V358, P903
160315    LI YX, 1994, J CLIN INVEST, V94, P2525
160316    LIPSKY PE, 1998, IMMUNOLOGIST, V6, P121
160317    LONDEI M, 1989, P NATL ACAD SCI USA, V86, P636
160318    MACGREGOR A, 1995, J RHEUMATOL, V22, P1032
160319    MIMA T, 1999, BIOCHEM BIOPH RES CO, V263, P172
160320    MORELAND LW, 1996, J RHEUMATOL, V23, P1353
160321    MORELAND LW, 1998, ARTHRITIS RHEUM, V41, P1919
160322    OKSENBERG JR, 1993, NATURE, V362, P68
160323    PALIARD X, 1991, SCIENCE, V253, P325
160324    POPE RM, 1989, ARTHRITIS RHEUM, V32, P1371
160325    RES PCM, 1994, HUM IMMUNOL, V40, P291
160326    STRUYK L, 1993, HUM IMMUNOL, V37, P237
160327    TANG JM, 2001, HUM IMMUNOL, V62, P269
160328    VANDERBORGHT A, 2000, RHEUMATOLOGY, V39, P1189
160329    WAGNER UG, 1998, P NATL ACAD SCI USA, V95, P14447
160330    WILLIAMS WV, 1992, J CLIN INVEST, V90, P326
160331    ZAGON G, 1994, ARTHRITIS RHEUM, V37, P1431
160332 NR 35
160333 TC 0
160334 SN 1466-4879
160335 J9 GENES IMMUN
160336 JI Genes Immun.
160337 PD MAY
160338 PY 2005
160339 VL 6
160340 IS 3
160341 BP 248
160342 EP 261
160343 PG 14
160344 SC Genetics & Heredity; Immunology
160345 GA 920LW
160346 UT ISI:000228691900011
160347 ER
160348 
160349 PT J
160350 AU Liu, JK
160351    Wu, QS
160352    Ding, YP
160353 TI Controlled synthesis of different morphologies of BaWO4 crystals
160354    through biomembrane/organic-addition supramolecule templates
160355 SO CRYSTAL GROWTH & DESIGN
160356 DT Article
160357 ID REVERSE MICELLES; BARIUM TUNGSTATE; NANORODS; GROWTH
160358 AB By the employment of supramolecule templates composed of biomembrane
160359    and organic reagents, control over the morphologies and sizes of BaWO4
160360    crystals has been successfully achieved, and a series of flower-like,
160361    sphere-like, fasciculus-like, and other morphologies of BaWO4 were
160362    obtained at room temperature. Most of the morphologies are reported for
160363    the first time. Furthermore, the control rule of supramolecule
160364    templates was also discussed. This method may satisfy the requirements
160365    of materials of various morphologies and sizes by using different
160366    supramolecule templates, and provide significant theoretical reference
160367    to the controlled synthesis of other crystals.
160368 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
160369    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
160370 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
160371 EM qswu@mail.tongji.edu.cn
160372 CR AJIKUMAR PK, 2003, BIOMACROMOLECULES, V4, P1321
160373    BASEIVE TT, 2000, OPT MATER, V15, P205
160374    BLASSE G, 1974, PHYS STATUS SOLIDI A, V25, P163
160375    BLASSE G, 1981, J SOLID STATE CHEM, V36, P124
160376    CHAUHAN AK, 2003, J CRYST GROWTH, V254, P418
160377    CHO WS, 1997, JPN J APPL PHYS 1, V36, P1216
160378    FERNANDEZ MS, 2001, MATRIX BIOL, V19, P793
160379    FUJITA T, 1974, MATER RES B, V9, P141
160380    HU XL, 2004, LANGMUIR, V20, P1521
160381    JAYARAMAN A, 1983, PHYS REV B, V28, P4774
160382    KIMA JS, 2001, J EUR CERAM SOC, V21, P2599
160383    KWAN S, 2001, CHEM COMMUN, P447
160384    LI M, 1999, NATURE, V402, P393
160385    LIAO HW, 2000, CHEM MATER, V12, P2819
160386    NISHIGAKI S, 1988, AM CERAM SOC BULL, V71, C11
160387    PENG Q, 2003, ANGEW CHEM INT EDIT, V42, P3027
160388    RAUTARAY D, 2003, J AM CHEM SOC, V125, P14656
160389    RAUTARAY D, 2004, CHEM MATER, V16, P1356
160390    ROY BN, 1981, CRYST RES TECHNOL, V16, P1267
160391    SHI HT, 2002, CHEM COMMUN     0821, P1704
160392    SHI HT, 2003, J AM CHEM SOC, V125, P3450
160393    SUN XM, 2003, CHEM-EUR J, V9, P2229
160394    TIAN ZRR, 2002, J AM CHEM SOC, V124, P12954
160395    XIE B, 2002, J CRYST GROWTH, V235, P283
160396    YU SH, 2002, CHEM-EUR J, V8, P2937
160397    YU SH, 2003, NANO LETT, V3, P379
160398 NR 26
160399 TC 3
160400 SN 1528-7483
160401 J9 CRYST GROWTH DES
160402 JI Cryst. Growth Des.
160403 PD MAR-APR
160404 PY 2005
160405 VL 5
160406 IS 2
160407 BP 445
160408 EP 449
160409 PG 5
160410 SC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary;
160411    Crystallography
160412 GA 903GW
160413 UT ISI:000227414900011
160414 ER
160415 
160416 PT J
160417 AU Cao, GX
160418    Zhang, JC
160419    Sha, YN
160420    Yao, K
160421    Cao, SX
160422    Jing, C
160423    Shen, XC
160424 TI Reentrant spin glass behaviour and CE-type antiferromagnetic phase in
160425    half doping (La,Pr)(1/2)Ca-1/2 MnO3 manganites
160426 SO CHINESE PHYSICS LETTERS
160427 DT Article
160428 ID COLOSSAL MAGNETORESISTANCE; MAGNETIC-PROPERTIES; TRANSITION;
160429    LA0.5CA0.5MNO3; PEROVSKITE; SEPARATION
160430 AB The reentrant spin glass behaviour was observed in half doping
160431    (La,Pr)(1/2)Ca1/2MnO3 manganites with a CE-type antiferromagnetic
160432    structure. It shows sequential multiple magnetic transitions from the
160433    paramagnetic to the ferromagnetic, antiferromagnetic, spin glass (SG)
160434    transitions, which reflects the complex magnetic interaction in the
160435    ground state of manganites. This can be explained by the competition
160436    interaction between the ferromagnetic and the CE-type antiferromagnetic
160437    matrix, and the disorder due to the tolerance factor t and A-cation
160438    size variance sigma(2). The results reveals the coexistence of
160439    ferromagnetic clusters and SG clusters in the background of the
160440    antiferromagnetic matrix in the ground state of half doping (Pr,
160441    La)(1/2)Ca1/2MnO3 systems.
160442 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
160443 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
160444 EM jczhang@staff.shu.edu.cn
160445 CR CUI YJ, 2004, CHINESE PHYS LETT, V21, P540
160446    DETERESA JM, 1996, PHYS REV LETT, V76, P3392
160447    DHO J, 2002, PHYS REV LETT, V89, P27202
160448    DHO JG, 2003, PHYS REV B, V67
160449    ELLIOT S, 1998, PHYS CHEM SOLIDS, CHR6
160450    GORDON I, 2001, PHYS REV B, V64
160451    KIMURA T, 1999, PHYS REV LETT, V83, P3940
160452    LEVY P, 2000, PHYS REV B, V62, P6437
160453    LIU Y, 2003, CHINESE PHYS LETT, V20, P1603
160454    LOUDON JC, 2002, NATURE, V420, P797
160455    MYDOSH JA, 1993, SPIN GLASSES EXPT IN
160456    SHENG L, 1997, PHYS REV LETT, V79, P1710
160457    SUDYOADSUK T, 2004, J PHYS-CONDENS MAT, V16, P3691
160458    TERAI T, 1998, PHYS REV B, V58, P14908
160459    TERAI T, 2000, PHYS REV B, V61, P3488
160460    YANG HP, 2003, CHINESE PHYS LETT, V20, P729
160461    YUAN SL, 2002, CHINESE PHYS LETT, V19, P1675
160462 NR 17
160463 TC 0
160464 SN 0256-307X
160465 J9 CHIN PHYS LETT
160466 JI Chin. Phys. Lett.
160467 PD MAR
160468 PY 2005
160469 VL 22
160470 IS 3
160471 BP 682
160472 EP 685
160473 PG 4
160474 SC Physics, Multidisciplinary
160475 GA 907IV
160476 UT ISI:000227711200045
160477 ER
160478 
160479 PT J
160480 AU Ning, TK
160481    Zhang, DJ
160482    Chen, DY
160483    Deng, SF
160484 TI Exact solutions and conservation laws for a nonisospectral sine-Gordon
160485    equation
160486 SO CHAOS SOLITONS & FRACTALS
160487 DT Article
160488 ID SELF-CONSISTENT SOURCES; N-SOLITON SOLUTIONS; MULTIPLE COLLISIONS;
160489    KORTEWEG-DEVRIES
160490 AB A bilinear form of a nonisospectral sine-Gordon equation is given.
160491    Exact solutions are further obtained through the Hirota method and
160492    Wronskian technique, respectively. Some nonisospectral characteristics
160493    of the obtained solutions, such as the time-dependent shape,
160494    time-dependent speed and some non-propagating solitary waves, are
160495    discussed. The conservation laws are derived. (c) 2005 Elsevier Ltd.
160496    All rights reserved.
160497 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
160498    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
160499    Fudan Univ, Dept Math, Shanghai 200433, Peoples R China.
160500 RP Ning, TK, Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093,
160501    Peoples R China.
160502 EM tkning@mail.shu.edu.cn
160503    djzhang@mail.shu.edu.cn
160504 CR CHAN WL, 1989, J MATH PHYS, V30, P2521
160505    CHEN HH, 1976, PHYS REV LETT, V37, P693
160506    FREEMAN NC, 1983, PHYS LETT A, V95, P1
160507    GUPTA MR, 1979, PHYS LETT A, V72, P420
160508    HIROTA R, 1971, PHYS REV LETT, V27, P1192
160509    HIROTA R, 1972, J PHYS SOC JPN, V33, P1459
160510    HIROTA R, 1976, J PHYS SOC JPN, V41, P2141
160511    NEWELL AC, 1978, P ROY SOC LOND A MAT, V365, P283
160512    NING TK, 2004, CHAOS SOLITON FRACT, V166, P395
160513    TIAN C, 1990, NONLINEAR PHYS RES R, P35
160514    WADATI M, 1975, PROG THEOR PHYS, V53, P419
160515    WEI R, 1989, P 3 AS PAC PHYS C SI, V2, P871
160516    WU J, 1984, PHYS REV LETT, V52, P1421
160517    ZHANG DJ, 2002, CHAOS SOLITON FRACT, V14, P573
160518    ZHANG DJ, 2002, J PHYS SOC JPN, V71, P2649
160519    ZHANG DJ, 2003, J PHYS A, V36, P1
160520    ZHANG DJ, 2003, PHYSICA A, V321, P467
160521 NR 17
160522 TC 0
160523 SN 0960-0779
160524 J9 CHAOS SOLITON FRACTAL
160525 JI Chaos Solitons Fractals
160526 PD AUG
160527 PY 2005
160528 VL 25
160529 IS 3
160530 BP 611
160531 EP 620
160532 PG 10
160533 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
160534 GA 919GO
160535 UT ISI:000228606600014
160536 ER
160537 
160538 PT J
160539 AU Gang, W
160540    Lu, DQ
160541    Dai, SQ
160542 TI Waves induced by a submerged moving dipole in a two-layer fluid of
160543    finite depth
160544 SO ACTA MECHANICA SINICA
160545 DT Article
160546 DE divergence field; internal wave; small density difference; Green's
160547    function; the method of stationary phase
160548 ID SYNTHETIC APERTURE RADAR; SHIP WAVES; STRATIFIED FLUID; OCEAN; REAL
160549 AB The waves induced by a moving dipole in a twofluid system are
160550    analytically and experimentally investigated. The velocity potential of
160551    a dipole moving horizontally in the lower layer of a two-layer fluid
160552    with finite depth is derived by superposing Green's functions of
160553    sources (or sinks). The far-field waves are studied by using the method
160554    of stationary phase. The effects of two resulting modes, i.e. the
160555    surface and internal-wave modes, on both the surface divergence field
160556    and the interfacial elevation are analyzed. A laboratory study on the
160557    internal waves generated by a moving sphere in a two-layer fluid is
160558    conducted in a towing tank under the same conditions as in the
160559    theoretical approach. The qualitative consistency between the present
160560    theory and the laboratory study is examined and confirmed.
160561 C1 Shanghai Jiao Tong Univ, Sch Naval Architecture & Ocean Engn, Shanghai 200030, Peoples R China.
160562    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
160563 RP Gang, W, Shanghai Jiao Tong Univ, Sch Naval Architecture & Ocean Engn,
160564    Shanghai 200030, Peoples R China.
160565 EM gwei@mail.shu.edu.cn
160566    dqiu@mail.shu.edu.cn
160567    shqdai@mail.shu.edu.cn
160568 CR ALPERS W, 1984, J GEOPHYS RES, V89, P10529
160569    ALPERS WR, 1981, J GEOPHYS RES, V86, P6481
160570    CRAPPER GD, 1967, J FLUID MECH, V29, P667
160571    EKMAN VW, 1904, SCI RESULTS, P1
160572    GANG W, 2003, APPL MATH MECH, V24, P20
160573    GILREATH HE, 1985, AIAA J, V23, P693
160574    GUO HD, 2001, THEORY APPL RADAR OB
160575    HUDIMAC AA, 1961, J FLUID MECH, V11, P229
160576    KALLEN E, 1987, J FLUID MECH, V182, P111
160577    KELLER JB, 1970, PHYS FLUIDS, V13, P1425
160578    LAMB H, 1932, HYDRODYNAMICS
160579    LI JC, 1998, PERTURBATION METHODS
160580    MENG JM, 2001, J HYDRODYNAMICS B, V13, P88
160581    MILOH T, 1993, J OFFSHORE MECH ARCT, V115, P105
160582    MOTYGIN OV, 1997, J ENG MATH, V32, P53
160583    PHILLIPS OM, 1977, DYNAMICS UPPER OCEAN
160584    RADKO T, 2001, J SHIP RES, V45, P1
160585    SHARMAN RD, 1983, J ATMOS SCI, V40, P396
160586    STEFANICK T, 1988, SCI AM, V258, P41
160587    STEWART RH, 1985, METHODS SATELLITE OC
160588    TERKRIKOROV AM, 2002, PMM-J APPL MATH MEC+, V66, P59
160589    WU TY, 2001, ADV MECH, V31, P327
160590    YEUNG RW, 1999, J ENG MATH, V35, P85
160591    YIH CS, 1989, Q APPL MATH, V47, P17
160592 NR 24
160593 TC 1
160594 SN 0567-7718
160595 J9 ACTA MECH SINICA
160596 JI Acta Mech. Sin.
160597 PD FEB
160598 PY 2005
160599 VL 21
160600 IS 1
160601 BP 24
160602 EP 31
160603 PG 8
160604 SC Engineering, Mechanical; Mechanics
160605 GA 919ZN
160606 UT ISI:000228656600003
160607 ER
160608 
160609 PT J
160610 AU Qian, XS
160611    Xu, CL
160612    Jiang, LS
160613    Bian, BJ
160614 TI Convergence of the binomial tree method for American options in a
160615    jump-diffusion model
160616 SO SIAM JOURNAL ON NUMERICAL ANALYSIS
160617 DT Article
160618 DE binomial tree method; explicit difference method; American option;
160619    jump-diffusion model; integrodifferential equation; viscosity solution
160620 ID VISCOSITY SOLUTIONS; EQUATIONS
160621 AB The paper studies the binomial tree method for American options in a
160622    jump-diffusion model. We employ the theory of viscosity solution to
160623    show uniform convergence of the binomial tree method for American
160624    options. We also prove existence and convergence of the optimal
160625    exercise boundary in the binomial tree approximation. In addition, the
160626    terminal value of the optimal exercise boundary is given for American
160627    options in jump-diffusion models.
160628 C1 Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China.
160629    Tongji Univ, Dept Appl Math, Shanghai 200092, Peoples R China.
160630    Shanghai Univ, E Inst, Div Computat Sci, Shanghai 200436, Peoples R China.
160631 RP Qian, XS, Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China.
160632 EM qian@yzu.edu.cn
160633    clxu601@online.sh.cn
160634    jianglsk@online.sh.cn
160635    bianbj@263.net
160636 CR ALVAREZ O, 1996, ANN I H POINCARE-AN, V13, P293
160637    AMIN KI, 1993, J FINANC, V48, P1833
160638    BARLES G, 1995, MATH MOD METH APPL S, V5, P125
160639    COX JC, 1979, J FINANC ECON, V7, P229
160640    CRANDALL MG, 1992, B AM MATH SOC, V27, P1
160641    HARRISON JM, 1979, J ECON THEORY, V20, P381
160642    JIANG L, 1999, PARTIAL DIFFERENTIAL, P106
160643    LAMBERTON D, 1993, MATH FINANC, V3, P179
160644    PHAM H, 1997, APPL MATH OPT, V35, P145
160645    XU CL, 2003, J COMPUT APPL MATH, V156, P23
160646 NR 10
160647 TC 0
160648 SN 0036-1429
160649 J9 SIAM J NUMER ANAL
160650 JI SIAM J. Numer. Anal.
160651 PY 2005
160652 VL 42
160653 IS 5
160654 BP 1899
160655 EP 1913
160656 PG 15
160657 SC Mathematics, Applied
160658 GA 917QF
160659 UT ISI:000228477700007
160660 ER
160661 
160662 PT S
160663 AU Song, YP
160664    Mao, XM
160665    Dong, QM
160666    Li, BZ
160667    Liang, HY
160668 TI Effects of the rotating speed of centrifugal machine on the gradient
160669    structure and properties of heavy cross-sectional WCP/Fe-C composites
160670 SO PRICM 5: THE FIFTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED
160671    MATERIALS AND PROCESSING, PTS 1-5
160672 SE MATERIALS SCIENCE FORUM
160673 DT Article
160674 DE centrifugal casting; mold rotating speed; heavy cross-sectional
160675    WCp/Fe-C composites; gradient microstructure; mechanical property
160676 ID FUNCTIONALLY GRADED MATERIAL
160677 AB Effects of the mold rotating speeds on the gradient microstructure and
160678    properties of heavy cross-sectional WCp/Fe-C composites made in a
160679    self-made centrifugal machine have been investigated with SEM, EDS etc.
160680    The results show the ring sample of WCp/Fe-C composites made in a
160681    centrifugal machine was free of any defects. And the transition layer
160682    between the working layer of WCp/Fe-C composites and matrix Fe-C alloy
160683    core was also perfect. The experimental results also show that the
160684    WCp-radius-directional distribution in the composites was a continuous
160685    component gradient one, which was changed with the various mold
160686    rotating speeds. At 1000 rpm the volume fractions of the WC particle
160687    from outer layer to inner layer were about 70 vol% to 50 vol% and, at
160688    1400 rpm the volume fractions were about 80 vol% to 65 vol%
160689    respectively. The hardness and impact toughness of the working layer of
160690    WCp/Fe-C composites were changed with increasing of the mold rotating
160691    speeds respectively. Finally, the mechanism of the effects of the mold
160692    rotating speeds was discussed in the paper.
160693 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
160694    Henan Univ Sci & Technol, Mat Sci & Eng Coll, Luoyang 471003, Peoples R China.
160695 RP Song, YP, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
160696    China.
160697 EM sypei@mail.haust.edu.cn
160698    xmmao@sh163.net
160699    dqm@mail.haust.edu.cn
160700    lbz@mail.haust.edu.cn
160701    lhy0351@163.com
160702 CR FUKUI Y, 1991, JSME INT J III-VIB C, V34, P144
160703    FUKUI Y, 1996, METALL MATER TRANS A, V27, P4145
160704    HIRAI T, 1996, MAT SCI TECHNOLOGY B, V17, P293
160705    HO S, 1996, METALL MATER TRANS A, V27, P3241
160706    ICHINO K, 1997, 37 KAW STEEL, P13
160707    MATSUDA K, 2001, CERAM TRANS, V114, P491
160708    MIYAMOTO Y, 1999, FUNCTIONALLY GRADED
160709    MORTENSEN A, 1995, INT MATER REV, V40, P239
160710    MORTENSEN SS, 1998, FUNDAMENTALS FUNCTIO
160711    WATANABE Y, 1998, COMPOS PART A-APPL S, V29, P595
160712    WATANABE Y, 2000, ALUMINUM T, V2, P195
160713 NR 11
160714 TC 0
160715 SN 0255-5476
160716 J9 MATER SCI FORUM
160717 PY 2005
160718 VL 475-479
160719 PN Part 1-5
160720 BP 1517
160721 EP 1520
160722 PG 4
160723 GA BBR99
160724 UT ISI:000227494701152
160725 ER
160726 
160727 PT S
160728 AU Ni, JS
160729    Wang, Z
160730    Xu, H
160731    Wu, YS
160732    Zhou, BX
160733    Hou, XL
160734    Li, Y
160735 TI Study on two-phase nanocrystalline Nd2Fe14B/alpha-Fe bonded magnet
160736 SO PRICM 5: THE FIFTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED
160737    MATERIALS AND PROCESSING, PTS 1-5
160738 SE MATERIALS SCIENCE FORUM
160739 DT Article
160740 DE rare earths; Nd-Fe-B; bonded magnet; two-phase nanocrystalline
160741 AB Two-phase nanocrystalline ribbons were prepared by melt-spun and
160742    subsequent heat treatment. Excellent magnetic properties of the bonded
160743    magnet were achieved as follows: B-r = 0.67 T, H-j(c) = 664.3 kA center
160744    dot m(-1), (BH)(max) = 75.0 kJ center dot m(-3). The mean grain size of
160745    the ribbons heat-treated at 710 degrees C/4 min is about 50 nm. After
160746    heat-treated the ribbons at 750 degrees C/4 min, the mean grain size is
160747    about 100 nm.
160748 C1 Shanghai Univ, Res Ctr Nanosci & Nanotechnol, Inst Mat, Shanghai 200072, Peoples R China.
160749 RP Ni, JS, Shanghai Univ, Res Ctr Nanosci & Nanotechnol, Inst Mat,
160750    Shanghai 200072, Peoples R China.
160751 EM nijiansen@163.com
160752 CR CHANG WC, 1997, J APPL PHYS, V81, P44
160753    KNELLER EF, 1991, IEEE T MAGN, V27, P3588
160754    NI JS, 2003, J RARE EARTH, V21, P401
160755    YONEYAMA T, 1990, IEEE T MAGN, V26, P1963
160756 NR 4
160757 TC 0
160758 SN 0255-5476
160759 J9 MATER SCI FORUM
160760 PY 2005
160761 VL 475-479
160762 PN Part 1-5
160763 BP 2165
160764 EP 2168
160765 PG 4
160766 GA BBR99
160767 UT ISI:000227494702119
160768 ER
160769 
160770 PT S
160771 AU Xu, H
160772    Tan, XH
160773    Qi, NN
160774    Wang, Q
160775    Dong, YD
160776 TI Investigation of the bulk Nd60-xDyxFe30Al10 (x=0,2,5) amorphous alloys
160777 SO PRICM 5: THE FIFTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED
160778    MATERIALS AND PROCESSING, PTS 1-5
160779 SE MATERIALS SCIENCE FORUM
160780 DT Article
160781 DE bulk amorphous alloys; microstructure; hard magnetic properties;
160782    Nd-based alloys
160783 ID SUPERCOOLED LIQUID REGION; HARD MAGNETIC-PROPERTIES; GLASS
160784 AB The glass-forming ability, thermal stability and magnetic properties of
160785    the Nd60-xDyxFe30Al10 (x=0, 2, 5) bulk amorphous alloys were
160786    investigated by x-ray diffraction (XRD), differential scanning
160787    calorimetry (DSC), scanning electron microscope (SEM) and the vibrating
160788    sample magnetometer (VSM). The results show that the glass forming
160789    ability of the Nd60-xDyxFe30Al10 (x=0, 2, 5) alloys decrease with
160790    increasing Dy content. The as-cast Nd60-xDyxFe30Al10 (x=0, 2, 5) alloys
160791    show hard magnetic behavior at room temperature. With increasing Dy
160792    content, the intrinsic coercivity of the alloys increase significantly
160793    while the saturation magnetization and remanence of the alloys decrease
160794    monotonously. With increasing annealed temperature, the intrinsic
160795    coercivity of the Nd55Fe30Al10Dy5 alloy decreased significantly, while
160796    the saturation magnetization and remanence decrease monotonously. The
160797    Nd55Fe30Al10Dy5 alloy shows soft magnetic behavior after annealed at
160798    773K for 30 min.
160799 C1 Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
160800 RP Xu, H, Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
160801 EM hxu@mail.shu.edu.cn
160802 CR DING J, 1999, APPL PHYS LETT, V75, P1763
160803    HE Y, 1994, PHIL MAG LETT, V70, P371
160804    INOUE A, 1988, JPN J APPL PHYS 2, V27, L2248
160805    INOUE A, 1989, MATER T JIM, V30, P965
160806    INOUE A, 1996, MATER T JIM, V37, P181
160807    INOUE A, 1996, MATER T JIM, V37, P99
160808    INOUE A, 1997, MAT SCI ENG A-STRUCT, V226, P357
160809    PEKER A, 1993, APPL PHYS LETT, V63, P2342
160810    SCHNEIDER S, 2002, APPL PHYS LETT, V80, P1749
160811    SIRATORI K, 1990, J MAGN MAGN MATER, V83, P341
160812    WEI BC, 2001, PHYS REV B, V64
160813    ZHANG BG, 2000, COMPUT MATH APPL, V39, P1
160814    ZHANG W, 2000, MATER T JIM, V41, P696
160815 NR 13
160816 TC 0
160817 SN 0255-5476
160818 J9 MATER SCI FORUM
160819 PY 2005
160820 VL 475-479
160821 PN Part 1-5
160822 BP 3393
160823 EP 3396
160824 PG 4
160825 GA BBR99
160826 UT ISI:000227494704012
160827 ER
160828 
160829 PT S
160830 AU Wang, HB
160831    Wang, XY
160832    Zhang, JH
160833    Hsu, TY
160834 TI Grain growth and mechanical properties of nanograined bulk Fe-25Ni alloy
160835 SO PRICM 5: THE FIFTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED
160836    MATERIALS AND PROCESSING, PTS 1-5
160837 SE MATERIALS SCIENCE FORUM
160838 DT Article
160839 DE grain growth; nanograined alloy; microindentation; phase transformations
160840 ID METALS
160841 AB The grain growth and mechanical properties of nanograined bulk
160842    Fe-25at%Ni alloy prepared by an inert gas condensation and in-situ warm
160843    consolidation technique were investigated. About 43% high temperature
160844    face-centered-cubic (FCC) phase and 57% low temperature
160845    body-centered-cubic (BCC) phase were observed in the sample at room
160846    temperature, which was significantly different from that of the
160847    corresponding conventional coarse-grained alloy. The in-situ X-ray
160848    diffraction results show that the start and the finish temperature of
160849    BCC to FCC phase transformation are 450 degrees C and 600 degrees C,
160850    respectively. The isothermal grain growth exponent n from D-1/n -
160851    D-0(1/n) = k't for nanograined single FCC phase Fe-25at%Ni alloy is
160852    0.38 at 750 degrees C. The 0 mechanical properties changing with the
160853    grain size were studied by means of microindentation test.
160854 C1 Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China.
160855    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
160856 RP Wang, HB, Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030,
160857    Peoples R China.
160858 EM jihua@sjtu.edu.cn
160859 CR ATKINSON HV, 1988, ACTA METALL, V36, P469
160860    DIVINSKI SV, 2002, Z METALLKD, V93, P256
160861    GLEITER H, 1989, PROG MATER SCI, V33, P223
160862    GLEITER H, 2000, ACTA MAT, V45, P1
160863    GUNTHER B, 1992, SCRIPTA METALL MATER, V27, P833
160864    KAJIWARA S, 1991, PHILOS MAG A, V63, P625
160865    KAUFMAN L, 1956, T AIME, V206, P1393
160866    MALOW TR, 1997, ACTA MATER, V45, P2177
160867    RONG YH, 2001, P 4 PAC RIM C ADV MA, V1, P147
160868    WANG H, 2004, IN PRESS MAT SCI E A
160869    WANG HB, 2003, NANOTECHNOLOGY, V14, P696
160870    ZHAO M, 2003, J ALLOY COMPD, V361, P160
160871 NR 12
160872 TC 0
160873 SN 0255-5476
160874 J9 MATER SCI FORUM
160875 PY 2005
160876 VL 475-479
160877 PN Part 1-5
160878 BP 3459
160879 EP 3462
160880 PG 4
160881 GA BBR99
160882 UT ISI:000227494704026
160883 ER
160884 
160885 PT S
160886 AU Wu, XC
160887    Peng, WY
160888    Min, YA
160889 TI Study on thermal fatigue behavior of boride layer of H13 steel
160890 SO PRICM 5: THE FIFTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED
160891    MATERIALS AND PROCESSING, PTS 1-5
160892 SE MATERIALS SCIENCE FORUM
160893 DT Article
160894 DE boride layer; H13 steel; thermal fatigue behavior
160895 AB With the Uddeholm self-restricted thermal fatigue method, the
160896    transformation of phase constitutions and morphology of boride layer
160897    after 3000 cycles of thermal fatigue test was studied by XRD and SEM
160898    and the surface residual stress in the process of thermal fatigue test
160899    was researched by X-ray Stress Analyzer; the formation of the heat
160900    checking of boride layer was also analyzed. The results show that with
160901    the high strength and excellent thermal stability of boride layer,
160902    morphology of heat checking alters. Therefore, boronizing treatment of
160903    H13 steel improves its thermal fatigue behavior.
160904 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
160905 RP Wu, XC, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
160906    China.
160907 EM wuxc@mail.shu.edu.cn
160908 CR HAN D, 1983, HARDNESSMETALS THEIR
160909    PENG W, 2002, THESIS SHANGHAI U
160910    PENG W, 2003, J SHANGHAI U, V7, P87
160911    WANG YC, 1997, SURF COAT TECH, V94, P60
160912    WANG Z, 1980, CHEM HEAT TREATMENTS
160913    WU YD, 1989, MAT MECH ENG, V75, P49
160914 NR 6
160915 TC 0
160916 SN 0255-5476
160917 J9 MATER SCI FORUM
160918 PY 2005
160919 VL 475-479
160920 PN Part 1-5
160921 BP 249
160922 EP 252
160923 PG 4
160924 GA BBR99
160925 UT ISI:000227494709054
160926 ER
160927 
160928 PT S
160929 AU Zhou, CD
160930    Fan, JF
160931    Le, HR
160932    Jiang, GC
160933    Zhang, JG
160934 TI An investigation of a nitrogen enhanced steel processed by explosive
160935    powder compaction
160936 SO PRICM 5: THE FIFTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED
160937    MATERIALS AND PROCESSING, PTS 1-5
160938 SE MATERIALS SCIENCE FORUM
160939 DT Article
160940 DE explosive powder compaction; high nitrogen steel; structural steel;
160941    microstructure
160942 AB A structural steel, 35CrMoV steel, has been attempted firstly by
160943    explosive powder compaction followed by sintering (EPC-sintering). The
160944    nitrogen content of the steel was 0.15wt%, which was accordant with the
160945    definition of high nitrogen steel (NNS). The final density of the
160946    EPC-sintering steel was only about 6.9g/cm(3), which indicated that the
160947    processing parameters must be modulated further. In the sample of this
160948    steel, some radial cracks were found around the center of the
160949    cross-section of the steel, resulting in no mechanical tests carrying
160950    out. Observing the majority of the rim region of the sample of this
160951    steel, the microstructures were very tight, suggesting that it was
160952    possible and successful to manufacture HNS through EPC-sintering. The
160953    characteristics of the EPC-sintering high nitrogen 35CrMoV steel were
160954    that the cementites in the pearlites were found to be extremely fine.
160955    There were many (Cr,MO)(23)(C,N)(6) carbonitrides precipitates in the
160956    matrix. Some precipitates were round and others were needle-like. Some
160957    were distributing orderly in matrix and crossing over the dislocations.
160958    The dislocation density in the EPC-sintering steel remained high.
160959 C1 Baosteel Tech Ctr, Shanghai 20190, Peoples R China.
160960    Shanghai Univ, Shanghai Enhanced Lab Ferromet, Shanghai 200072, Peoples R China.
160961 RP Zhou, CD, Baosteel Tech Ctr, Shanghai 20190, Peoples R China.
160962 EM zhoucd@baosteel.com
160963    bfanjf@baosteel.com
160964    lehr@baosteel.com
160965    qcjiang@online.sh.cn
160966    jgzhangi@public9.sta.net.cn
160967 CR CAMBRONERO LEG, 1996, MAT SCI ENG A-STRUCT, V207, P36
160968    MAMALIS AG, 1996, J MATER PROCESS TECH, V57, P112
160969    QI ZF, 1992, PRINCIPLES METAL HEA, P46
160970    RAWERS J, 1996, ISIJ INT, V36, P947
160971    RAWERS JC, 1996, NANOSTRUCT MATER, V7, P25
160972    SPEIDEL M, 1988, P INT C HIGH NITR ST, P92
160973    ZHANG GY, 2000, MAT MECH ENG, V24, P20
160974 NR 7
160975 TC 0
160976 SN 0255-5476
160977 J9 MATER SCI FORUM
160978 PY 2005
160979 VL 475-479
160980 PN Part 1-5
160981 BP 265
160982 EP 268
160983 PG 4
160984 GA BBR99
160985 UT ISI:000227494709058
160986 ER
160987 
160988 PT S
160989 AU Mao, XM
160990    Ouyang, ZY
160991    Zhang, JL
160992 TI A low environmental load modifying and refining treatment of casting
160993 SO PRICM 5: THE FIFTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED
160994    MATERIALS AND PROCESSING, PTS 1-5
160995 SE MATERIALS SCIENCE FORUM
160996 DT Article
160997 DE Rare Earth elements; casting Al alloys; modify; refine; purify;
160998    environmental pollution
160999 AB Melt treatment is one of the most important processes in the production
161000    of casting Al alloys. It is also a source of environmental pollution. A
161001    green and effective melt treatment with low environmental load (EI),
161002    which added with RE (Rare Earth) elements, was investigated in the
161003    paper. The research results show that this new treatment can modify,
161004    refine and purify the casting Al alloys simultaneously. Compared with
161005    the conventional treatment, the process is simplified, the metallurgic
161006    quality and mechanical properties are improved, and the environmental
161007    pollution which existed in the conventional treatment is solved
161008    thoroughly, so represented its wide applicative values.
161009 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
161010 RP Mao, XM, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
161011    China.
161012 EM xmmao@sh163.net
161013    zhiyin0617@sina.com.cn
161014    jinlongzhang@shu.edu.cn
161015 CR ALEFELD G, 1978, J HYDROGEN METALS, V2
161016    GU XL, 1998, MODIFICATION EUTECTI, P1
161017    JIN M, 1994, FERROUS METALS APPL, P34
161018    LU HH, 1997, FOUNDRY, P44
161019    MAO XM, 2002, CHINESE J NONFERROUS, P43
161020    TANG DG, 2000, P 2 CHIN INT DIE CAS, P116
161021    YANG ZYO, 2003, SPECIAL CASTING NONF, P22
161022    YU JQ, 1987, COLLECTION BINARY ST
161023    ZHANG ZH, 1999, FOUNDRY, P5
161024 NR 9
161025 TC 0
161026 SN 0255-5476
161027 J9 MATER SCI FORUM
161028 PY 2005
161029 VL 475-479
161030 PN Part 1-5
161031 BP 429
161032 EP 432
161033 PG 4
161034 GA BBR99
161035 UT ISI:000227494709098
161036 ER
161037 
161038 PT J
161039 AU Zhu, BH
161040    Zhou, SP
161041    Zha, GQ
161042    Yang, K
161043 TI Charge distributions due to paramagnetism and diamagnetism in thin
161044    mesoscopic superconducting rings
161045 SO PHYSICS LETTERS A
161046 DT Article
161047 DE vortex charge; mesoscopic superconductor
161048 ID DISKS; VORTICES
161049 AB The charge distribution in a thin mesoscopic superconducting ring is
161050    investigated by the phenomenological Ginzburg-Landau theory.
161051    Considering a ring in a giant vortex state, we find that the charge
161052    near the inner radius may change its sign from negative to positive
161053    with increasing the applied field. It is also found that the charge
161054    distributions are due to the competition between the paramagnetic
161055    Meissner effect and the diamagnetic Meissner effect. (c) 2005 Elsevier
161056    B.V. All rights reserved.
161057 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
161058 RP Zhu, BH, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200444,
161059    Peoples R China.
161060 EM ehoab@citiz.net
161061 CR BAELUS BJ, 2000, PHYS REV B, V61, P9734
161062    BLATTER G, 1996, PHYS REV LETT, V77, P566
161063    CHEN Y, 2002, PHYS REV LETT, V89
161064    DEGENNES PG, 1966, SUPERCONDUCTIVITY ME
161065    DEO PS, 1999, PHYS REV B, V59, P6039
161066    GEIM AK, 2000, NATURE, V407, P55
161067    KHOMSKII DI, 1995, PHYS REV LETT, V75, P1384
161068    KOLACEK J, 2001, PHYS REV LETT, V86, P312
161069    KUMAGAI K, 2001, PHYS REV B, V63
161070    MACHIDA M, 2003, PHYS REV LETT, V90
161071    MEYERS C, 2003, PHYS REV B, V68
161072    MOSHCHALKOV VV, 1997, PHYS REV B, V55, P11793
161073    PALACIOS JJ, 2000, PHYS REV LETT, V84, P1796
161074    SCHWEIGERT VA, 1998, PHYS REV B, V57, P13817
161075    SIMANEK E, 2002, PHYS REV B, V65
161076    YAMPOLSKII SV, 2000, PHYS REV B, V62, P9663
161077    YAMPOLSKII SV, 2001, PHYS REV B, V64
161078    ZHARKOV GF, 2001, PHYS REV B, V63
161079    ZHOU SP, UNPUB
161080 NR 19
161081 TC 2
161082 SN 0375-9601
161083 J9 PHYS LETT A
161084 JI Phys. Lett. A
161085 PD MAY 2
161086 PY 2005
161087 VL 338
161088 IS 3-5
161089 BP 420
161090 EP 424
161091 PG 5
161092 SC Physics, Multidisciplinary
161093 GA 919DH
161094 UT ISI:000228598000036
161095 ER
161096 
161097 PT J
161098 AU Xu, JS
161099    Xu, CL
161100    Xu, DM
161101    Yang, XX
161102 TI Diode large-signal characteristics measurement for high-power rectennas
161103 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
161104 DT Article
161105 DE microwave diode; rectenne; rectifying circuit; rectifying efficiency
161106 AB In this paper, an Agilent 8722ES Network Analyzer with option 085 is
161107    configured to directly measure the diode large-signal characteristics.
161108    A set of smart microstrip calibration standards corresponding to this
161109    measurement system is also designed. Using the measured nonlinear
161110    equivalent-circuit parameters of the diode, a matching circuit is
161111    designed to improve the power conversion efficiency from RF to DC, at
161112    an input power level of 90 mw and 200 Omega load, and a maximum
161113    conversion efficiency of 70% was achieved at frequency of 9.75 GHz. (c)
161114    2005 Wiley Periodicals, Inc.
161115 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
161116 RP Xu, JS, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
161117    Peoples R China.
161118 CR EPP LW, 2000, IEEE T MICROW THEORY, V48, P111
161119    MCSPADDEN JO, 1992, IEEE T MICROW THEORY, V40, P2359
161120    ROE JM, 1970, IEEE T MICROW THEORY, V18, P638
161121    STEER MB, 1991, IEEE MTT S BOST MA, P173
161122    STRASSNER B, 2000, 35 INT EN CONV ENG C, P1458
161123 NR 5
161124 TC 0
161125 SN 0895-2477
161126 J9 MICROWAVE OPT TECHNOL LETT
161127 JI Microw. Opt. Technol. Lett.
161128 PD MAY 5
161129 PY 2005
161130 VL 45
161131 IS 3
161132 BP 249
161133 EP 251
161134 PG 3
161135 SC Engineering, Electrical & Electronic; Optics
161136 GA 918AO
161137 UT ISI:000228510700021
161138 ER
161139 
161140 PT J
161141 AU Li, L
161142    Wu, QS
161143    Ding, YP
161144    Wang, PM
161145 TI Control synthesis of semiconductor ZnSe quasi-nanospheres by reverse
161146    micelles soft template
161147 SO MATERIALS LETTERS
161148 DT Article
161149 DE ZnSe; nanospheres; semiconductor; reverse micelles; template
161150 ID MICROEMULSIONS; NANOPARTICLES; NANOCRYSTALS; NANOWIRES
161151 AB Semiconductor ZnSe quasi-nanospheres have been successfully prepared by
161152    the reaction between Zn2+ and Se2- under the induction of reverse
161153    micelles soft template. The products were characterized by X-ray
161154    diffraction, transmission electron microscopy and photoluminescence.
161155    XRD and TEM revealed that the products were spherical and homogeneous
161156    with cubic structure, which ranged from 200 nm to 300 nm in diameter.
161157    The corresponding photoluminescence peaks showed a red shift compared
161158    to bulk ZnSe. The possible formation mechanism was investigated. (c)
161159    2005 Elsevier B.V All rights reserved.
161160 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
161161    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
161162    Tongji Univ, Sch Mat Sci & Engn, Shanghai 200092, Peoples R China.
161163 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
161164 EM qswu@mail.tongji.edu.cn
161165 CR ALIVISATOS AP, 1996, SCIENCE, V271, P933
161166    BHASKAR S, 1999, J APPL PHYS, V85, P439
161167    GAN LH, 1998, ACTA PHYS-CHIM SIN, V14, P97
161168    HINES MA, 1998, J PHYS CHEM B, V102, P3655
161169    HU Y, 2003, ADV MATER, V15, P726
161170    LANDFESTER K, 2002, ADV MATER, V14, P651
161171    LUO H, 1995, SEMICOND SCI TECH, V10, P1041
161172    MICHAEL H, 1999, ANGEW CHEM, V38, P1962
161173    PIERO M, 2003, APPL ORGANOMET CHEM, V17, P711
161174    QI P, 2003, ANGEW CHEM, V42, P3027
161175    QUINLAN FT, 2000, LANGMUIR, V16, P4049
161176    REITER G, 1993, SCIENCE, V259, P1305
161177    SERP P, 2001, CARBON, V39, P615
161178    SHI HT, 2003, ADV MATER, V15, P1647
161179    TAYLOR JR, 2000, ANAL CHEM, V72, P1979
161180    WALSH D, 1994, SCIENCE, V264, P1576
161181    WANG W, 2003, J PHYS CHEM B, V107, P3400
161182    WU JS, 2002, ADV MATER, V14, P1847
161183    WU QS, 2002, INORG CHEM COMMUN, V5, P671
161184    ZHENG NW, 2000, CHEM LETT       0605, P638
161185    ZIMMERMAN JL, 2001, LETTERS, V12, P731
161186 NR 21
161187 TC 1
161188 SN 0167-577X
161189 J9 MATER LETT
161190 JI Mater. Lett.
161191 PD JUN
161192 PY 2005
161193 VL 59
161194 IS 13
161195 BP 1623
161196 EP 1626
161197 PG 4
161198 SC Materials Science, Multidisciplinary; Physics, Applied
161199 GA 918JU
161200 UT ISI:000228538900005
161201 ER
161202 
161203 PT J
161204 AU Guan, WB
161205    Gao, YL
161206    Zhai, QH
161207    Xu, KD
161208 TI Undercooling of droplet solidification for molten pure aluminum
161209 SO MATERIALS LETTERS
161210 DT Article
161211 DE droplet solidification; droplet size; cooling rate; undercooling
161212 ID EVOLUTION; ALLOY
161213 AB The effects of droplet size and cooling rate on the undercooling of
161214    droplet solidification were investigated in the present paper, and the
161215    relation between the droplet size and cooling rate versus the
161216    undercooling was obtained by DSC. It is shown that the undercooling
161217    increases with the decrease of droplet size and increase of cooling
161218    rate. Moreover, it is interesting to find that the undercooling and its
161219    change rate increase significantly with the droplet size below 20 mu m
161220    on condition that the cooling rate remains unchanged. Additionally, it
161221    is a novelty that the change trend of undercooling decreases with the
161222    increasing cooling rate. (c) 2005 Elsevier B.V. All rights reserved.
161223 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
161224 RP Zhai, QH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
161225    China.
161226 EM qjzhai@staff.shu.edu.en
161227 CR CAO CD, 2000, MAT SCI ENG A-STRUCT, V283, P86
161228    GUO XF, 1998, CHINESE J MAT RES, V12, P380
161229    GUO XF, 2000, ACTA METALLURGICA SI, V36, P351
161230    LIU YZ, 2001, SCI TECHNOL ADV MAT, V2, P182
161231    LU XY, 2001, MAT SCI ENG A-STRUCT, V313, P198
161232    MIZOGUCHI T, 1997, MAT SCI ENG A-STRUCT, V226, P814
161233    MULLER BA, 1987, PHYS METALLURGY MAT, V18, P1145
161234    PARK JC, 2001, MAT SCI ENG A-STRUCT, V304, P226
161235    PEREPEZKO JH, 2002, MAT SCI ENG A-STRUCT, V326, P147
161236    PU J, 2003, CHINESE J NONFERROUS, V8, P837
161237    WITTMANN K, 1996, ACTA ASTRONAUT, V38, P63
161238    YAO WJ, 2003, J ALLOY COMPD, V348, P88
161239    ZHANG XZ, 1998, MATER SCI ENG, V247, P220
161240 NR 13
161241 TC 0
161242 SN 0167-577X
161243 J9 MATER LETT
161244 JI Mater. Lett.
161245 PD JUN
161246 PY 2005
161247 VL 59
161248 IS 13
161249 BP 1701
161250 EP 1704
161251 PG 4
161252 SC Materials Science, Multidisciplinary; Physics, Applied
161253 GA 918JU
161254 UT ISI:000228538900023
161255 ER
161256 
161257 PT J
161258 AU Yang, SS
161259    Lu, WC
161260    Chen, NY
161261    Hu, QN
161262 TI Support vector regression based QSPR for the prediction of some
161263    physicochemical properties of alkyl benzenes
161264 SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
161265 DT Article
161266 DE support vector regression; topological index; quantitative
161267    structure-property relationship; alkyl benzene
161268 ID DESCRIPTORS; MACHINES
161269 AB Physicochemical properties of alkyl benzenes are essential to separate
161270    pure component from alkyl benzene mixture. Support vector regression
161271    (SVR), a novel powerful machine learning technology based on
161272    statistical learning theory (SLT), integrated with topological indices
161273    was applied to the prediction of five physicochemical properties of
161274    alkyl benzenes including the normal boiling point (bp), enthalpy of
161275    vaporization at the boiling point (H-vb), critical temperature (T-c),
161276    critical pressure (P-c), and critical volume (V-c). In a benchmark
161277    test, SVR models for bp, Hvb, Tc, Pc, and V. were compared with several
161278    modeling techniques currently used in this field. The prediction
161279    accuracy of the model was discussed on the basis of the leave-one-out
161280    cross-validation. The results show that the prediction accuracy of SVR
161281    model was higher than those of back propagation artificial neural
161282    network (BP ANN) and partial least squares (PLS) methods. (c) 2004
161283    Elsevier B.V. All rights reserved.
161284 C1 Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200436, Peoples R China.
161285    Cent S Univ Technol, Coll Chem & Chem Engn, Res Ctr Modernizat Chinese Herb Med, Changsha 410083, Peoples R China.
161286 RP Lu, WC, Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200436, Peoples R
161287    China.
161288 EM wclu@mail.shu.edu.cn
161289 CR BROWN RD, 1997, J CHEM INF COMP SCI, V37, P1
161290    BURBIDGE R, 2001, COMPUT CHEM, V26, P5
161291    BVASAK SC, 1999, TOPOLOGICAL INDICES
161292    CAI YD, 2003, PEPTIDES, V24, P629
161293    CHEN JW, 2003, COMPUT BIOL CHEM, V27, P165
161294    CHEN NY, 2002, APPL APPL CHEM, V19, P673
161295    CORTES C, 1995, MACH LEARN, V20, P273
161296    FIRPO M, 2000, J MOL STRUC-THEOCHEM, V501, P419
161297    HU QN, 2003, COMPUT APPL CHEM, V20, P386
161298    LI GZ, 2002, COMPUT APPL CHEM, V19, P703
161299    LU HZ, 1982, HDB FUNADAMENTAL DAT
161300    LU WC, 2002, COMPUT APPL CHEM, V19, P697
161301    MA PS, 1993, HDB FUNDAMENTAL DATA
161302    MRACEC M, 1996, THEOCHEM-J MOL STRUC, V367, P139
161303    RIBEIRO FAD, 2003, J MOL STRUC-THEOCHEM, V663, P109
161304    STEPHENSON RM, 1987, HDB THERMODYNAMICS O
161305    TROTTER MWB, 2001, MEAS CONTROL-UK, V34, P235
161306    VAPNIK VN, 1998, STAT LEARNING THEORY
161307    YAO XJ, 2002, COMPUT CHEM, V26, P159
161308    ZHAO H, 2004, ACTA CHIM SINICA, V62, P649
161309 NR 20
161310 TC 1
161311 SN 0166-1280
161312 J9 J MOL STRUC-THEOCHEM
161313 JI Theochem-J. Mol. Struct.
161314 PD APR 14
161315 PY 2005
161316 VL 719
161317 IS 1-3
161318 BP 119
161319 EP 127
161320 PG 9
161321 SC Chemistry, Physical
161322 GA 918FL
161323 UT ISI:000228527600017
161324 ER
161325 
161326 PT J
161327 AU Xia, TC
161328    Fan, EG
161329 TI The multicomponent generalized Kaup-Newell hierarchy and its
161330    multicomponent integrable couplings system with two arbitrary functions
161331 SO JOURNAL OF MATHEMATICAL PHYSICS
161332 DT Article
161333 ID COUPLED BURGERS HIERARCHY; BI-HAMILTONIAN STRUCTURE; SOLITON-EQUATIONS;
161334    TRANSFORMATION
161335 AB We devise a new simple loop algebra G(M) and an isospectral problem. By
161336    making use of the Tu scheme, the multicomponent generalized Kaup-Newell
161337    hierarchy is obtained. Furthermore, an expanding loop algebra F-M of
161338    the loop algebra G(M) is presented. Based on F-M, the multicomponent
161339    integrable couplings system with two arbitrary functions of the
161340    multicomponent generalized Kaup-Newell hierarchy are worked out. The
161341    method can be applied to other nonlinear evolution equations hierarchy.
161342    (C) 2005 American Institute of Physics.
161343 C1 Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China.
161344    Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
161345    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
161346    Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
161347 RP Xia, TC, Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China.
161348 EM xiatc@yahoo.com.cn
161349    faneg@fudan.edu.cn
161350 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
161351    DAI HH, 2004, CHAOS SOLITON FRACT, V22, P93
161352    FAN E, 2001, J PHYS A-MATH GEN, V34, P513
161353    FAN E, 2001, PHYSICA A, V301, P105
161354    FAN EG, 2000, J MATH PHYS, V41, P7769
161355    GUO F, 2002, J SYS SCI MATH SCI, V22, P36
161356    GUO FK, 2000, ACTA MATH APPL SIN, V23, P181
161357    GUO FK, 2003, J MATH PHYS, V44, P5793
161358    MA WX, 2002, CHINESE ANN MATH B, V23, P373
161359    NEWELL AC, 1985, SOLITON MATH PHYS
161360    TSUCHIDA T, 1999, J PHYS SOC JPN, V68, P2241
161361    TSUCHIDA T, 1999, PHYS LETT A, V257, P53
161362    TU GZ, 1989, ACTA MATH APPL SINIC, V5, P89
161363    TU GZ, 1989, J MATH PHYS, V30, P330
161364    WADATI M, 1972, J PHYS SOC JPN, V32, P1681
161365    WADATI M, 1973, J PHYS SOC JPN, V34, P1289
161366    WADATI M, 1975, PROG THEOR PHYS, V53, P419
161367    XIA TC, 2004, CHAOS SOLITON FRACT, V22, P939
161368    XIA TC, 2004, COMMUN THEOR PHYS, V42, P180
161369    XIA TC, 2004, COMMUN THEOR PHYS, V42, P494
161370    XIA TC, 2004, PHYSICA A, V343, P238
161371    XIA TC, 2005, CHAOS SOLITON FRACT, V23, P451
161372    ZHANG DJ, 2002, J PHYS A-MATH GEN, V35, P7225
161373    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P305
161374 NR 24
161375 TC 0
161376 SN 0022-2488
161377 J9 J MATH PHYS-NY
161378 JI J. Math. Phys.
161379 PD APR
161380 PY 2005
161381 VL 46
161382 IS 4
161383 AR 043510
161384 DI ARTN 043510
161385 PG 8
161386 SC Physics, Mathematical
161387 GA 917RS
161388 UT ISI:000228487500046
161389 ER
161390 
161391 PT J
161392 AU Liu, YQ
161393    Li, RY
161394    Wang, FG
161395    Yu, HL
161396 TI The effect of electrode polarity on EHD enhancement of boiling heat
161397    transfer in a vertical tube
161398 SO EXPERIMENTAL THERMAL AND FLUID SCIENCE
161399 DT Article
161400 DE electrohydrodynamics; electrode polarity; heat transfer enhancement;
161401    boiling heat transfer
161402 ID FIELD; AUGMENTATION; BEHAVIOR; BUNDLE
161403 AB The effect of the electrode polarity on EHD enhancement of boiling heat
161404    transfer for R-123 in a vertical tube was investigated experimentally
161405    by using a concentric wire/cylinder test section. Either positive or
161406    negative high voltage was applied to the cylindrical brass electrode,
161407    with the stainless steel tube grounded. It was demonstrated that the
161408    positive high voltage gave much greater enhancements and require lower
161409    average electric field strength to obtain a maximum enhancement factor
161410    than the negative high voltage. A maximum enhancement factor of 2.1 for
161411    the positive polarity was obtained at the heat flux of 1.5 kW/m(2) with
161412    an average electric field strength of 1333 Mm. The electric field
161413    breakdown strength for both polarities was also tested. The results
161414    showed that the breakdown strength of negative polarity was slightly
161415    higher than that of positive polarity. The experimental phenomena were
161416    discussed. (c) 2004 Elsevier Inc. All rights reserved.
161417 C1 Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
161418 RP Li, RY, Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093,
161419    Peoples R China.
161420 EM lizhendk@online.sh.cn
161421 CR CHEUNG KH, 1995, ASHRAE T, V101, P1
161422    CHEUNG KH, 1997, T ASME, V199, P332
161423    COOPER P, 1990, J HEAT TRANS-T ASME, V112, P458
161424    DARABI J, 2000, J ENHANC HEAT TRANSF, V7, P347
161425    JONES TB, 1978, ADV HEAT TRANSFER, V14, P107
161426    KARAYIANNIS TG, 1998, APPL THERM ENG, V18, P809
161427    KWEON YC, 2000, INT J MULTIPHAS FLOW, V26, P1351
161428    LIU YQ, 2002, TECHNOL CHINA, V24, P130
161429    NAVE SE, 1996, INT J HEAT FLUID FL, V17, P403
161430    OGATA J, 1992, ASHRAE T, V98, P435
161431    OGATA J, 1993, INT J HEAT MASS TRAN, V36, P783
161432    OHADI MM, 1992, ASHRAE T, V98, P427
161433    PANOFSKY W, 1962, CLASSICAL ELECT MAGN, P107
161434    PASCHKEWITZ JS, 2000, J ENHANC HEAT TRANSF, V7, P371
161435    POHL HA, 1951, J APPL PHYS, V22, P869
161436    SINGH A, 1992, ASHRAE T, V98, P818
161437    ZAHN M, 1998, IEEE T DIELECT EL IN, V5, P627
161438 NR 17
161439 TC 0
161440 SN 0894-1777
161441 J9 EXP THERM FLUID SCI
161442 JI Exp. Therm. Fluid Sci.
161443 PD JUN
161444 PY 2005
161445 VL 29
161446 IS 5
161447 BP 601
161448 EP 608
161449 PG 8
161450 SC Engineering, Mechanical; Physics, Fluids & Plasmas; Thermodynamics
161451 GA 918IX
161452 UT ISI:000228536600006
161453 ER
161454 
161455 PT J
161456 AU Wang, QW
161457 TI Bisymmetric and centrosymmetric solutions to systems of real quaternion
161458    matrix equations
161459 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
161460 DT Article
161461 DE system of quaternion matrix equations; inner inverse of a matrix;
161462    reflexive inverse of a matrix; centrosymmetric matrix; bisymmetric
161463    matrix
161464 ID EIGENVECTORS; EIGENVALUES
161465 AB In this paper we consider bisymmetric and centrosymmetric solutions to
161466    certain matrix equations over the real quaternion algebra H. Necessary
161467    and sufficient conditions are obtained for the matrix equation AX = C
161468    and the following systems
161469    A1X = C-1, A(1)x = C-1,
161470    XB3 = C-3, A(2)X = C-2,
161471    to have bisymmetric solutions, and the system
161472    A(1)X = C-1,
161473    A(3)XB(3) = C-3,
161474    to have centrosymmetric solutions. The expressions of such solutions of
161475    the matrix and the systems mentioned above are also given. Moreover a
161476    criterion for a quaternion matrix to be bisymmetric is established and
161477    some auxiliary results on other sets over H are also mentioned. (c)
161478    2005 Elsevier Ltd. All rights reserved.
161479 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
161480 RP Wang, QW, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
161481 EM wqw858@yahoo.com.cn
161482 CR AITKEN C, 1939, DETERMINANTS MATRICE
161483    ANDREW AL, 1998, SIAM REV, V40, P697
161484    CANTONI A, 1976, LINEAR ALGEBRA APPL, V13, P275
161485    DAI H, 1990, LINEAR ALGEBRA APPL, V131, P1
161486    DATTA L, 1989, CIRC SYST SIGNAL PR, V8, P71
161487    HELL RD, 1990, SIAM J MATRIX ANAL A, V11, P128
161488    HELL RD, 1990, SIAM J MATRIX ANAL A, V11, P173
161489    HENK DJ, 1987, LINEAR ALGEBRA APPL, V93, P1
161490    KHATRI CG, 1976, SIAM J APPL MATH, V31, P578
161491    LEE A, 1980, LINEAR ALGEBRA ITS A, V29, P205
161492    MAGNUS JR, 1980, SIAM J ALGEBRAIC DIS, V1, P422
161493    MELMAN A, 2000, LINEAR ALGEBRA APPL, V320, P193
161494    NAVARRA A, 2001, COMPUT MATH APPL, V41, P929
161495    PRESSMAN IS, 1998, LINEAR ALGEBRA APPL, V284, P239
161496    REID RM, 1997, SIAM REV, V39, P313
161497    VETTER WJ, 1975, LINEAR ALGEBRA APPL, V9, P181
161498    WANG QW, 2002, LINEAR ALGEBRA APPL, V353, P169
161499    WANG QW, 2004, LINEAR ALGEBRA APPL, V384, P43
161500    WANG QW, 2005, COMPUT MATH APPL, V49, P665
161501    WEAVER JR, 1985, AM MATH MON, V92, P711
161502 NR 20
161503 TC 0
161504 SN 0898-1221
161505 J9 COMPUT MATH APPL
161506 JI Comput. Math. Appl.
161507 PD APR-MAY
161508 PY 2005
161509 VL 49
161510 IS 5-6
161511 BP 641
161512 EP 650
161513 PG 10
161514 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
161515 GA 918KO
161516 UT ISI:000228540900001
161517 ER
161518 
161519 PT J
161520 AU Wang, QW
161521 TI The general solution to a system of real quaternion matrix equations
161522 SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
161523 DT Article
161524 DE real quaternion algebra; quaternion matrix equation; system of
161525    quaternion matrix equations; inner inverse of a matrix; reflexive
161526    inverse of a matrix
161527 ID CENTROSYMMETRIC MATRICES; COMMON SOLUTION; EIGENVECTORS; EIGENVALUES;
161528    PAIR
161529 AB In this paper, we consider the system of matrix equations, A(1)X = C-1,
161530    A(2)X = C-2, A(3)XB(3) = C-3, and A(4)XB(4) = C-4, over the real
161531    quaternion algebra H. A necessary and sufficient condition for the
161532    existence and the expression of the general solution to the system are
161533    given. As particular cases, the corresponding results on other systems
161534    over H are also obtained. (c) 2005 Elsevier Ltd. All rights reserved.
161535 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
161536 RP Wang, QW, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
161537 EM wqw858@yahoo.com.cn
161538 CR ADLER SL, 1994, QUATERNIONIC QUANTUM
161539    AITKEN AC, 1939, DETERMINANTS MATRICE
161540    ANDREW AL, 1998, SIAM REV, V40, P697
161541    BHIMASANKARAM P, 1976, SANKHYA A, V38, P404
161542    CANTONI A, 1976, LINEAR ALGEBRA APPL, V13, P275
161543    DATTA L, 1989, CIRC SYST SIGNAL PR, V8, P71
161544    LEE A, 1980, LINEAR ALGEBRA ITS A, V29, P205
161545    MELMAN A, 2000, LINEAR ALGEBRA APPL, V320, P193
161546    MITRA SK, 1973, P CAMBRIDGE PHILOS S, V74, P213
161547    MITRA SK, 1990, LINEAR ALGEBRA APPL, V131, P97
161548    NAVARRA A, 2001, COMPUT MATH APPL, V41, P929
161549    OZGULER AB, 1991, LINEAR ALGEBRA APPL, V144, P85
161550    PRESSMAN IS, 1998, LINEAR ALGEBRA APPL, V284, P239
161551    REZON A, 1992, J MATH PHYS SCI, V33, P3098
161552    SHINOZAKI N, 1974, KEIO ENG REP, V27, P141
161553    SHUAI JW, 1995, ACTA COMPUT SINICA, V18, P372
161554    TIAN YG, 2000, LINEAR MULTILINEAR A, V48, P123
161555    VANDERWOUDE JW, 1987, SYST CONTROL LETT, V9, P7
161556    VANDERWOULDE J, 1987, THESIS TU EINDHOVEN
161557    WANG QW, 1996, ACTA MATH SINICA, V39, P396
161558    WANG QW, 2002, LINEAR ALGEBRA APPL, V353, P169
161559    WANG QW, 2004, LINEAR ALGEBRA APPL, V384, P43
161560    WEAVER JR, 1985, AM MATH MON, V92, P711
161561    ZHANG F, 1993, THESIS U CALIFORNIA
161562    ZHANG F, 1995, J MATH PHYS SCI, V29, P235
161563    ZHANG FZ, 1997, LINEAR ALGEBRA APPL, V251, P21
161564 NR 26
161565 TC 1
161566 SN 0898-1221
161567 J9 COMPUT MATH APPL
161568 JI Comput. Math. Appl.
161569 PD APR-MAY
161570 PY 2005
161571 VL 49
161572 IS 5-6
161573 BP 665
161574 EP 675
161575 PG 11
161576 SC Computer Science, Interdisciplinary Applications; Mathematics, Applied
161577 GA 918KO
161578 UT ISI:000228540900003
161579 ER
161580 
161581 PT J
161582 AU Li, S
161583    Cheng, Y
161584    Wu, YF
161585 TI Numerical manifold method based on the method of weighted residuals
161586 SO COMPUTATIONAL MECHANICS
161587 DT Article
161588 DE numerical manifold method; method of weighted residuals; Galerkin
161589    method; manifold element; finite covers
161590 AB Usually, the governing equations of the numerical manifold method (NMM)
161591    are derived from the minimum potential energy principle. For many
161592    applied problems it is difficult to derive in general outset the
161593    functional forms of the governing equations. This obviously strongly
161594    restricts the implementation of the minimum potential energy principle
161595    or other variational principles in NMM. In fact, the governing
161596    equations of NMM can be derived from a more general method of weighted
161597    residuals. By choosing suitable weight functions, the derivation of the
161598    governing equations of the NMM from the weighted residual method leads
161599    to the same result as that derived from the minimum potential energy
161600    principle. This is demonstrated in the paper by deriving the governing
161601    equations of the NMM for linear elasticity problems, and also for
161602    Laplace's equation for which the governing equations of the NMM cannot
161603    be derived from the minimum potential energy principle. The performance
161604    of the method is illustrated by three numerical examples.
161605 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
161606    City Univ Hong Kong, Dept Bldg & Construct, Hong Kong, Hong Kong, Peoples R China.
161607 RP Cheng, Y, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
161608    200072, Peoples R China.
161609 EM shuchenli@eyou.com
161610    ymcheng@sh163.net
161611    yfwu00@cityu.edu.hk
161612 CR BELYTSCHKO T, 1994, INT J NUMER METH ENG, V37, P229
161613    CHENGYU K, 2001, THESIS PITTSBURGH
161614    EWALDS H, 1989, FRACTURE MECH
161615    GUANQI C, 1998, INT J NUMER METH ENG, V43, P685
161616    JEENSHANG L, 2003, COMPUT METH APPL MEC, V192, P1515
161617    KENJIRO T, 2003, INT J NUMER METH ENG, V58, P1321
161618    SHI G, 1992, P 33 US S ROCK MECH, P639
161619    SHI GH, 1996, P 1 INT FOR DISC DEF, P52
161620    SHI GH, 1997, P 2 INT C AN DISC DE, P1
161621    SHI GH, 1998, THESIS U CALIFORNIA
161622    SMITH IM, 1998, PROGRAMMING FINITE E
161623    XING J, 1997, DEV BOUNDARY ELEMENT
161624    XU CD, 1987, WMR SOLID MECH
161625    YAWJENG C, 2002, INT J FRACTURE, V114, P327
161626    YUMIN C, 1996, J TONGJI U, V24, P726
161627    ZIENKIEWICZ OC, 1977, FINITE ELEMENT METHO
161628 NR 16
161629 TC 0
161630 SN 0178-7675
161631 J9 COMPUTATION MECH
161632 JI Comput. Mech.
161633 PD MAY
161634 PY 2005
161635 VL 35
161636 IS 6
161637 BP 470
161638 EP 480
161639 PG 11
161640 SC Mathematics, Applied; Mechanics
161641 GA 917XS
161642 UT ISI:000228503200008
161643 ER
161644 
161645 PT J
161646 AU Zheng, CL
161647    Fang, JP
161648    Chen, LQ
161649 TI Bell-like and peak-like loop solitons in (2+1)-dimensional
161650    Boiti-Leon-Pempinelli system
161651 SO ACTA PHYSICA SINICA
161652 DT Article
161653 DE Boiti-Leon-Pempinelli system; multilinear variable separation approach;
161654    bell-like loop soliton; peak-like loop soliton
161655 ID VARIABLE SEPARATION APPROACH; LOCALIZED EXCITATIONS; COHERENT
161656    STRUCTURES; GORDON EQUATION
161657 AB In this work, starting from a Painleve-Backlund transformation and a
161658    multilinear variable separation approach, a general variable separation
161659    excitation of the three-dimensional Boiti-Leon-Pempinelli system is
161660    derived first. Then based on the derived excitation, we can construct
161661    many localized structures like peakons and compactons etc. Meanwhile,
161662    two new types of solitary waves, i.e., a bell-like loop soliton and a
161663    peak-like loop soliton are constructed and their evolution properties
161664    of the novel localized structures are briefly discussed.
161665 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
161666    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
161667 RP Zheng, CL, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R
161668    China.
161669 CR BOITI M, 1987, INVERSE PROBL, V3, P37
161670    BOITI M, 1988, PHYS LETT A, V132, P432
161671    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
161672    DEBIN H, 2003, PHYS LETT A, V314, P51
161673    FOKAS AS, 1989, PHYS REV LETT, V63, P1329
161674    FOKAS AS, 1995, PHYSICA D, V87, P145
161675    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
161676    LOU SY, 1998, PHYS REV LETT, V80, P5027
161677    LOU SY, 2001, J PHYS A-MATH GEN, V34, P305
161678    LU ZS, 2004, CHAOS SOLITON FRACT, V19, P527
161679    MATRASULOV DU, 2003, J PHYS A-MATH GEN, V36, P10227
161680    TANG XY, 2002, PHYS REV E, V66, P46601
161681    TANG XY, 2003, J MATH PHYS, V44, P4000
161682    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
161683    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
161684    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P783
161685    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
161686    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
161687 NR 18
161688 TC 5
161689 SN 1000-3290
161690 J9 ACTA PHYS SIN-CHINESE ED
161691 JI Acta Phys. Sin.
161692 PD APR
161693 PY 2005
161694 VL 54
161695 IS 4
161696 BP 1468
161697 EP 1475
161698 PG 8
161699 SC Physics, Multidisciplinary
161700 GA 918AN
161701 UT ISI:000228510600004
161702 ER
161703 
161704 PT J
161705 AU Xue, Y
161706    Dong, LY
161707    Li, L
161708    Dai, SQ
161709 TI Effects of changing orders in the update rules on traffic flow
161710 SO PHYSICAL REVIEW E
161711 DT Article
161712 ID STATISTICAL PHYSICS; CELLULAR-AUTOMATA; SYSTEMS; MODELS
161713 AB Based on the Nagel-Schreckenberg (NaSch) model of traffic flow, we
161714    study the effects of the orders of the evolutive rule on traffic flow.
161715    It has been found from simulation that the cellular automaton (CA)
161716    traffic model is very sensitively dependent on the orders of the
161717    evolutive rule. Changing the evolutive steps of the NaSch model will
161718    result in two modified models, called the SDNaSch model and the
161719    noise-first model, with different fundamental diagrams and jamming
161720    states. We analyze the mechanism of these two different traffic models
161721    and corresponding traffic behaviors in detail and compare the two
161722    modified model with the NaSch model. It is concluded that the order
161723    arrangement of the stochastic delay and deterministic deceleration
161724    indeed has remarkable effects on traffic flow.
161725 C1 Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China.
161726    Guangxi Univ, Coll Phys Engn & Technol, Nanjing 530004, Peoples R China.
161727    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
161728    Beijing Normal Univ, Lab Computat & Simulat Phys, Beijing 100875, Peoples R China.
161729 RP Xue, Y, Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China.
161730 EM yuxuegxu@gxu.edu.cn
161731 CR BARLOVIC R, 1998, EUR PHYS J B, V5, P793
161732    BENJAMIN SC, 1996, J PHYS A-MATH GEN, V29, P3119
161733    CHOWDHURY D, 2000, PHYS REP, V329, P199
161734    DAGANZO CF, 2002, TRANSPORT RES B-METH, V36, P131
161735    HELBING D, 2001, REV MOD PHYS, V73, P1067
161736    HUANG DW, 2003, PHYS REV E 2, V68
161737    KERNER BS, 1998, PHYS REV LETT, V81, P3797
161738    KERNER BS, 2001, NETW SPAT ECON, V1, P35
161739    KERNER BS, 2002, J PHYS A, V35, P997
161740    NAGATANI T, 2002, REP PROG PHYS, V65, P1331
161741    NAGEL K, 1992, J PHYS I, V2, P2221
161742    NAGEL K, 1995, THESIS U COLOGNE COL
161743    SCHADSCHNEIDER A, 2002, PHYSICA A, V313, P153
161744    SCHREKENBERG M, 1995, PHYS REV E A, V51, P2939
161745    TAKAYASU M, 1993, FRACTALS, V1, P860
161746    WAGNER P, 1996, TRAFFIC GRANULAR FLO, P139
161747 NR 16
161748 TC 0
161749 SN 1063-651X
161750 J9 PHYS REV E
161751 JI Phys. Rev. E
161752 PD FEB
161753 PY 2005
161754 VL 71
161755 IS 2
161756 PN Part 2
161757 AR 026123
161758 DI ARTN 026123
161759 PG 6
161760 SC Physics, Fluids & Plasmas; Physics, Mathematical
161761 GA 914RV
161762 UT ISI:000228246200032
161763 ER
161764 
161765 PT J
161766 AU Shen, Y
161767    Xia, YB
161768    Gu, F
161769    Zhang, JC
161770 TI The influence of the diamond-like carbon film on photoconductivity of
161771    the copper phthalocyanine/azo-polymer films
161772 SO MATERIALS CHEMISTRY AND PHYSICS
161773 DT Article
161774 DE diamond-like carbon (DLC) film; azo-polymer; CuPc; photoconductivity
161775 AB The influence of the diamond-like carbon (DLC) thin film on
161776    photoconductivity of the copper phthalocyanine (CuPc) multilayer films
161777    is studied. The results show that the layer of diamond-like carbon can
161778    be used as a passivation film to reduce the influence of environment.
161779    The reasons of the changed photoconductivity of azo-polymer/CuPc/DLC
161780    multilayer films are discussed. (c) 2005 Elsevier B.V. All rights
161781    reserved.
161782 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
161783 RP Shen, Y, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
161784    China.
161785 EM yuesen@china.com
161786 CR ALLEMAND PM, 1991, SCIENCE, V253, P301
161787    CHEN Y, 1996, J POLYM SCI POL PHYS, V34, P631
161788    FAN YM, 2001, SOLID STATE COMMUN, V120, P435
161789    HISATOMO Y, 1996, THIN SOLID FILMS, V278, P108
161790    SHEN Y, 2003, MATER CHEM PHYS, V82, P401
161791    SMILOWITZ L, 1993, PHYS REV B, V47, P13853
161792    XU ZD, 1995, J MATER SCI LETT, V14, P1030
161793    YOSHINO K, 1993, SOLID STATE COMMUN, V85, P85
161794    ZHANG ML, 2003, DIAM RELAT MATER, V12, P1544
161795    ZHOU XQ, 2002, MATER CHEM PHYS, V73, P70
161796 NR 10
161797 TC 0
161798 SN 0254-0584
161799 J9 MATER CHEM PHYS
161800 JI Mater. Chem. Phys.
161801 PD JUN 15
161802 PY 2005
161803 VL 91
161804 IS 2-3
161805 BP 468
161806 EP 470
161807 PG 3
161808 SC Materials Science, Multidisciplinary
161809 GA 917DM
161810 UT ISI:000228436200038
161811 ER
161812 
161813 PT J
161814 AU Tan, XH
161815    Xu, H
161816    Li, QA
161817    Qi, NN
161818    Ni, JS
161819    Dong, YD
161820 TI Influence of Zr additions on microstructure and magnetic properties of
161821    nanocomposite Nd10.5Fe78-xCo5ZrxB6.5 (x=0 similar to 5) alloys
161822 SO JOURNAL OF RARE EARTHS
161823 DT Article
161824 DE materials science; nanocomposite alloy; grain size; magnetic
161825    properties; rare earths
161826 ID PERMANENT-MAGNETS
161827 AB The influence of Zr addition on the microstructure and magnetic
161828    properties of nanocomposite Nd-10.5 Fe78-x Co5ZrxB6.5 (x = 0 similar to
161829    5) alloys was investigated. It was found that the intrinsic coercivity
161830    could be significantly improved by the addition of 2% (atom fraction)
161831    Zr. The presence of small amount of amorphous phase is responsible for
161832    the low Intrinsic coercivity for Zr-free alloy. The small amount
161833    addition of Zr may suppress the growth of grains of alpha-Fe and
161834    Nd2Fe14B phases. The more homogeneous microstructure with an average
161835    grain size of 20 nm can be obtained for Nd-10.5 Fe-76 Co5Zr2B6.5 alloy.
161836 C1 Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
161837 RP Tan, XH, Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
161838 EM tanxiaohua123@163.com
161839 CR CHANG WC, 1996, J APPL PHYS 2A, V79, P4843
161840    CHEN ZM, 1999, J APPL PHYS 2B, V85, P5908
161841    FISCHER R, 1999, J MAGN MAGN MATER, P35
161842    HADJIPANAYIS GC, 1999, J MAGN MAGN MATER, V200, P373
161843    KNELLER EF, 1991, IEEE T MAGN, V27, P3588
161844    LU JS, 1990, METAL MAT QUANTITATI, P659
161845    SCHREFL T, 1994, PHYS REV B, V49, P6100
161846 NR 7
161847 TC 1
161848 SN 1002-0721
161849 J9 J RARE EARTH
161850 JI J. Rare Earths
161851 PD FEB
161852 PY 2005
161853 VL 23
161854 IS 1
161855 BP 24
161856 EP 26
161857 PG 3
161858 SC Chemistry, Applied
161859 GA 915WN
161860 UT ISI:000228342200006
161861 ER
161862 
161863 PT J
161864 AU Yao, K
161865    Imai, YS
161866    Shi, LY
161867    Dong, AM
161868    Adachi, Y
161869    Nishikubo, K
161870    Abe, E
161871    Tateyama, H
161872 TI The functional layered organosilica materials prepared with anion
161873    surfactant templates
161874 SO JOURNAL OF COLLOID AND INTERFACE SCIENCE
161875 DT Article
161876 DE layered organosilica; organosilane; ionic interaction; sodium dodecyl
161877    sulfate; intercalation
161878 ID MESOPOROUS MOLECULAR-SIEVES; HYDROTALCITE CRYSTAL; COLLOIDAL CLAY;
161879    ORGANIC GROUPS; SILICA; ADSORPTION; MONOLAYERS; COMPLEXES; PARTICLES;
161880    CHEMISTRY
161881 AB A novel strategy for the synthesis of layered organosilica is
161882    demonstrated. The ionic interaction between the anionic group of a
161883    surfactant (sodium dodecyl sulfate) and the cationic organic group of
161884    an organosilane (3-aminopropyltrimethoxysilane, ATMS) under acidic
161885    conditions was utilized to create a layered organosilica at room
161886    temperature. The inorganic part of the organosilica layer was an Si-O
161887    hexagonal sheet, and organofunctional groups were alternately arranged
161888    on both sides of the sheet. The layered structure of the ATMS
161889    organosilica was retained after the removal of the surfactant with
161890    chloride anion. The properties of the layered ATMS organosilica were
161891    investigated. The layered ATMS-Cl organosilica is stable and possesses
161892    a definite layer structure in water or ethanol. Various kinds of anions
161893    can be intercalated in the interlayer space of the layered ATMS
161894    organosilicas and the layer was expanded dependent on the intercalated
161895    anions. The structure of the layered ATMS organosilica was well
161896    retained during the intercalation processes. (c) 2004 Published by
161897    Elsevier Inc.
161898 C1 Shanghai Univ, Coll Sci, Shanghai 2004436, Peoples R China.
161899    AIST, Natl Inst Adv Ind Sci & Technol, Tosu, Saga 8410052, Japan.
161900 RP Yao, K, Shanghai Univ, Coll Sci, Shanghai 2004436, Peoples R China.
161901 EM yao850618jp@yahoo.co.jp
161902 CR ASEFA T, 1999, NATURE, V402, P867
161903    BAGSHAW SA, 1995, SCIENCE, V269, P1242
161904    BECK JS, 1992, J AM CHEM SOC, V114, P10834
161905    BROWN G, 1961, XRAY IDENTIFICATION, P475
161906    BURKETT SL, 1996, CHEM COMMUN     0607, P1367
161907    BURKETT SL, 1997, CHEM MATER, V9, P1071
161908    CHOY JH, 2000, ANGEW CHEM INT EDIT, V39, P4042
161909    DEJUAN F, 2000, ADV MATER, V12, P430
161910    DFONSECA MG, 1999, CHEM SOC DA, P3687
161911    FENG X, 1997, SCIENCE, V276, P923
161912    FITCH A, 1988, J PHYS CHEM-US, V92, P6665
161913    FONSECA MG, 1999, LANGMUIR, V15, P5048
161914    FOWLER CE, 1997, CHEM COMMUN     0921, P1769
161915    GIANNELIS EP, 1988, J AM CHEM SOC, V110, P3880
161916    GRIM RE, 1978, BENTONITES GEOLOGY M, CH4
161917    GUAN S, 2000, J AM CHEM SOC, V122, P5660
161918    HUO QS, 1994, CHEM MATER, V6, P1176
161919    HUO QS, 1994, NATURE, V378, P317
161920    HUO QS, 1995, SCIENCE, V268, P1324
161921    HUO QS, 1996, CHEM MATER, V8, P1147
161922    INAGAKI S, 1993, J CHEM SOC CHEM COMM, P680
161923    INAGAKI S, 1999, J AM CHEM SOC, V121, P9611
161924    JONES CW, 1998, NATURE, V393, P52
161925    JOSHI V, 1989, J AM CHEM SOC, V111, P5604
161926    KANEKO Y, 2003, J MATER CHEM, V13, P2058
161927    KIM YI, 1991, J AM CHEM SOC, V113, P9561
161928    KIMURA T, 1999, LANGMUIR, V15, P2794
161929    KRESGE CT, 1992, NATURE, V359, P710
161930    LIM MH, 1997, J AM CHEM SOC, V119, P4090
161931    LIM MH, 1998, CHEM MATER, V10, P467
161932    MACQUARRIE DJ, 1996, CHEM COMMUN     0821, P1961
161933    MIYAMOTO N, 2001, J AM CHEM SOC, V123, P6949
161934    MONNIER A, 1993, SCIENCE, V261, P1299
161935    OGAWA M, 1995, CHEM REV, V95, P399
161936    PARIKH AN, 1997, J AM CHEM SOC, V119, P3135
161937    SANCHEZ C, 1994, NEW J CHEM, V18, P1007
161938    STEIN A, 2000, ADV MATER, V12, P1403
161939    TANEV PT, 1995, SCIENCE, V267, P865
161940    VILLEMURE G, 1990, J ELECTROANAL CH INF, V283, P403
161941    YAMAGISHI A, 1981, J AM CHEM SOC, V103, P4640
161942    YAMAGISHI A, 1982, J PHYS CHEM-US, V86, P2472
161943    YANAGISAWA T, 1990, B CHEM SOC JPN, V63, P988
161944    YAO K, 1998, J ELECTROANAL CHEM, V458, P249
161945    YAO K, 1998, LANGMUIR, V14, P2410
161946    YAO K, 1998, LANGMUIR, V14, P2890
161947    YAO K, 2001, J ELECTROANAL CHEM, V510, P144
161948    YAO K, 2002, COLLOID SURFACE A, V201, P63
161949    YAO K, 2003, CHEM SOC JAP 83 SPRI, V1, P101
161950    YAO K, 2003, LANGMUIR, V19, P321
161951    ZHAO DY, 1998, SCIENCE, V279, P548
161952 NR 50
161953 TC 0
161954 SN 0021-9797
161955 J9 J COLLOID INTERFACE SCI
161956 JI J. Colloid Interface Sci.
161957 PD MAY 1
161958 PY 2005
161959 VL 285
161960 IS 1
161961 BP 259
161962 EP 266
161963 PG 8
161964 SC Chemistry, Physical
161965 GA 917CY
161966 UT ISI:000228434800034
161967 ER
161968 
161969 PT J
161970 AU Zhao, JQ
161971    Ying, Z
161972 TI Applying prospective memory in emergency treatment
161973 SO INTERNATIONAL JOURNAL OF PSYCHOLOGY
161974 DT Meeting Abstract
161975 C1 Shanghai Univ, Shanghai, Peoples R China.
161976    E China Normal Univ, Shanghai, Peoples R China.
161977 NR 0
161978 TC 0
161979 SN 0020-7594
161980 J9 INT J PSYCHOL
161981 JI Int. J. Psychol.
161982 PD OCT-DEC
161983 PY 2004
161984 VL 39
161985 IS 5-6
161986 SU Suppl. S
161987 BP 471
161988 EP 471
161989 PG 1
161990 SC Psychology, Multidisciplinary
161991 GA 884WS
161992 UT ISI:000226118004273
161993 ER
161994 
161995 PT J
161996 AU Yang, XJ
161997    Kong, KQ
161998    Liu, JH
161999 TI The relationship of feelings of academic success with personality,
162000    self-esteem, psychological health and positive behavior
162001 SO INTERNATIONAL JOURNAL OF PSYCHOLOGY
162002 DT Meeting Abstract
162003 C1 Shanghai Univ, Sch Social Sci, Shanghai, Peoples R China.
162004    E China Normal Univ, Shanghai, Peoples R China.
162005    8 Middle Sch, Shanghai, Peoples R China.
162006 NR 0
162007 TC 0
162008 SN 0020-7594
162009 J9 INT J PSYCHOL
162010 JI Int. J. Psychol.
162011 PD OCT-DEC
162012 PY 2004
162013 VL 39
162014 IS 5-6
162015 SU Suppl. S
162016 BP 531
162017 EP 531
162018 PG 1
162019 SC Psychology, Multidisciplinary
162020 GA 884WS
162021 UT ISI:000226118004808
162022 ER
162023 
162024 PT J
162025 AU Lu, W
162026    Wu, XD
162027    De Shi, M
162028    Yang, RF
162029    He, YY
162030    Bian, C
162031    Shi, TL
162032    Yang, S
162033    Zhu, XL
162034    Jiang, WH
162035    Li, YX
162036    Yan, LC
162037    Ji, YY
162038    Lin, Y
162039    Lin, GM
162040    Tian, L
162041    Wang, J
162042    Wang, HX
162043    Xie, YH
162044    Pei, G
162045    Wu, JR
162046    Sun, B
162047 TI Synthetic peptides derived from SARS coronavirus S protein with
162048    diagnostic and therapeutic potential
162049 SO FEBS LETTERS
162050 DT Article
162051 DE severe acute respiratory syndrome coronavirus; spike protein; synthetic
162052    peptide; syncytia formation and disease prevention
162053 ID ACUTE RESPIRATORY SYNDROME; SPIKE PROTEIN; IDENTIFICATION; INFECTION;
162054    SEQUENCE
162055 AB The spike (S) protein of severe acute respiratory syndrome coronavirus
162056    (SARS-CoV) is an important viral structural protein. Based on
162057    bioinformaties analysis, 10 antigenic peptides derived from the S
162058    protein sequence were selected and synthesized. The antigenicity and
162059    immunoreactivity of all the peptides were tested in vivo and in vitro.
162060    Four peptides (P6, P8, P9 and P10) which contain B cell epitopes of the
162061    S protein were identified, and P8 peptide was confirmed in vivo to have
162062    a potential in serological diagnosis. By using a syncytia formation
162063    model, we tested the neutralization ability of all 10 peptides and
162064    their corresponding antibodies. It is interesting to find that P8 and
162065    P9 peptides inhibited syncytia formation, suggesting that the P8 and P9
162066    spanning regions may provide a good target for anti-SARS-CoV drug
162067    design. Our data suggest that we have identified peptides derived from
162068    the S protein of SARS-CoV, which are useful for SARS treatment and
162069    diagnosis. (c) 2005 Federation of European Biochemical Societies.
162070    Published by Elsevier B.V. All rights reserved.
162071 C1 Chinese Acad Sci, Shanghai Inst Biol Sci, Mol Cell Biol Lab, Grad Sch, Shanghai 200031, Peoples R China.
162072    Bioinformat Ctr, Shanghai 200031, Peoples R China.
162073    Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Plant Physiol & Ecol, Grad Sch, Shanghai 200031, Peoples R China.
162074    Acad Mil Med Sci, Inst Basic Med Sci, Inst Microbiol & Epidemiol, Beijing 100071, Peoples R China.
162075    Shanghai Univ, Div Immunol, E Inst, Shanghai, Peoples R China.
162076 RP Wu, JR, Chinese Acad Sci, Shanghai Inst Biol Sci, Mol Cell Biol Lab,
162077    Grad Sch, Shanghai 200031, Peoples R China.
162078 EM wujr@sibs.ac.cn
162079    bsun@sibs.ac.cn
162080 CR BOSCH BJ, 2004, P NATL ACAD SCI USA, V101, P8455
162081    DROSTEN C, 2003, NEW ENGL J MED, V348, P1967
162082    HO TY, 2004, BIOCHEM BIOPH RES CO, V313, P938
162083    IJAZ MK, 1995, VACCINE, V13, P331
162084    KSIAZEK TG, 2003, NEW ENGL J MED, V348, P1947
162085    LIN Y, 2003, CELL RES, V13, P141
162086    MARRA MA, 2003, SCIENCE, V300, P1399
162087    POON LLM, 2003, J CLIN VIROL, V28, P233
162088    QIN E, 2003, CHINESE SCI BULL, V48, P941
162089    STAVRINIDES J, 2004, J VIROL, V78, P76
162090    SUI JH, 2004, P NATL ACAD SCI USA, V101, P2536
162091    TAOUJI S, 2004, VACCINE, V22, P1114
162092    WANG, 2004, CLIN CHEM, V49, P1989
162093    WENHUI L, 2003, NATURE, V426, P450
162094    WONG SK, 2004, J BIOL CHEM, V279, P3197
162095    WU, 2003, J NEUROIMMUNOL, V137, P145
162096    WU, 2004, CELL RES, V14, P400
162097    XIAO XD, 2003, BIOCHEM BIOPH RES CO, V312, P1159
162098    ZENG R, 2004, J MOL BIOL, V341, P271
162099 NR 19
162100 TC 2
162101 SN 0014-5793
162102 J9 FEBS LETT
162103 JI FEBS Lett.
162104 PD APR 11
162105 PY 2005
162106 VL 579
162107 IS 10
162108 BP 2130
162109 EP 2136
162110 PG 7
162111 SC Biochemistry & Molecular Biology; Biophysics; Cell Biology
162112 GA 915NK
162113 UT ISI:000228310700019
162114 ER
162115 
162116 PT J
162117 AU Zhao, DY
162118    Wang, ZC
162119    Dai, YM
162120 TI Importance of the first-order derivative formula in the Obrechkoff
162121    method
162122 SO COMPUTER PHYSICS COMMUNICATIONS
162123 DT Article
162124 DE Obrechkoff method; multi-step; high-order derivative; first-order
162125    derivative; accuracy
162126 ID 2ND-ORDER DIFFERENTIAL-EQUATIONS; INITIAL-VALUE PROBLEMS; STABLE
162127    METHODS; ORDER
162128 AB In this paper we present a delicately designed numerical experiment to
162129    explore the relationship between the accuracy of the first-order
162130    derivative (FOD) formula and the one of the main structure in an
162131    Obrechkoff method. We choose three two-step P-stable Obrechkoff methods
162132    as the main structure, which are available from the previous published
162133    literature, their local truncation error (LTE(h)) ranging from
162134    0(h(8)y(n)((8))) to O(h(12)y(n)((12))), and six FOD formulas, of which
162135    the former five ones have the similar structures and the sixth is the
162136    'exact' value of the FOD, their LTE(h) arranged from O(h(4)y(n)((5)))
162137    to O(h(13)y(n)((14))) (we will use O(y(n)((m))) to represent the order
162138    of a LTE(h)). as the main ingredients for our numerical experiment. We
162139    survey the numerical results by integrating the Duffing equation
162140    without damping and compare them with the 'exact' solution, and find
162141    out how its numerical accuracy is affected by a FOD formula. The
162142    experiment shows that a high accurate FOD formula can greatly improve
162143    the numerical accuracy of an Obrechkoff method for a given main
162144    structure, and the error in the numerical solution decreases with the
162145    order of the LTE(h) of a FOD formula, only when the order of LTE(h) of
162146    the FOD formula is equal to or higher than the one of the main
162147    structure, the accuracy of the Obrechkoff method is no longer affected
162148    by the approximation of the FOD formula. (c) 2005 Elsevier B.V. All
162149    rights reserved.
162150 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
162151 RP Wang, ZC, Shanghai Univ, Dept Phys, 99 ShangDa Rd, Shanghai 200436,
162152    Peoples R China.
162153 EM zc_wang89@hotmail.com
162154 CR ANANTHAKRISHNAI.U, 1982, J COMPUT APPL MATH, V8, P101
162155    ANANTHAKRISHNAI.U, 1987, MATH COMPUT, V49, P553
162156    CHAWLA MM, 1986, J COMPUT APPL MATH, V15, P213
162157    CHAWLA MM, 1996, NEURAL PARALLEL SCI, V4, P505
162158    DAI Y, 2004, IN PRESS COMPUT PHYS
162159    HAIRER E, 1979, NUMER MATH, V32, P373
162160    JAIN MK, 1988, BIT, V28, P302
162161    LAMBERT JD, 1962, ZAMP, V13, P223
162162    NETA B, 2003, COMPUT MATH APPL, V45, P383
162163    OBRECHKOFF N, 1942, BULGAR AKAD NAUK, V65, P191
162164    RAI AS, 1997, J COMPUT APPL MATH, V79, P167
162165    SIMOS TE, 1993, P ROY SOC LOND A MAT, V6, P283
162166    VANDOOREN R, 1974, J COMPUT PHYS, V16, P186
162167    WANG Z, 2003, INT J MORDERN PHYS C, V14
162168    WANG Z, 2003, N MATH J CHIN U, V12, P146
162169    WANG ZC, 2004, COMPUT PHYS COMMUN, V160, P23
162170 NR 16
162171 TC 4
162172 SN 0010-4655
162173 J9 COMPUT PHYS COMMUN
162174 JI Comput. Phys. Commun.
162175 PD APR 15
162176 PY 2005
162177 VL 167
162178 IS 2
162179 BP 65
162180 EP 75
162181 PG 11
162182 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
162183 GA 916YA
162184 UT ISI:000228421500001
162185 ER
162186 
162187 PT J
162188 AU Chen, TL
162189    Li, XM
162190    Wu, WB
162191    Yu, WD
162192    Gao, XD
162193    Zhang, X
162194 TI Electrical conduction transition and largely reduced leakage current in
162195    aluminum-doped barium strontium titanate thin films heteroepitaxially
162196    grown on Ir/MgO/Si(100)
162197 SO APPLIED PHYSICS LETTERS
162198 DT Article
162199 ID BA0.7SR0.3TIO3; CAPACITORS; MECHANISM
162200 AB Ba0.6Sr0.4Ti1-xAlxO3 (BSTA, x=0, 3 at. %, 6 at. %) thin films have been
162201    prepared on Ir/MgO-buffered silicon substrates by pulsed-laser
162202    deposition. All-epitaxial growth of BSTA/Ir/MgO/Si heterostructures has
162203    been evidenced by x-ray diffraction and reflection high-energy electron
162204    diffraction. A large reduction in the leakage current density of BSTA
162205    thin films was observed by aluminum doping. For 3 at. % Al-doped BSTA
162206    thin films, the dominant conduction mechanism shows
162207    space-charge-limited current behavior at a low electric field, where
162208    the trap-filled limit field is determined as E-TFL = 10 KV/cm, while at
162209    a high electric field the Poole-Frenkel emission is operative. In
162210    contrast, the conduction mechanism for 6 at. % Al-doped BSTA thin film
162211    is dominated by field-enhanced Schottky emission. (C) 2005 American
162212    Institute of Physics.
162213 C1 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
162214    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
162215 RP Chen, TL, Chinese Acad Sci, Grad Sch, Beijing 100864, Peoples R China.
162216 EM lixm@mail.sic.ac.cn
162217 CR CHANG ST, 2002, APPL PHYS LETT, V80, P655
162218    CHEN TL, 2004, J CRYST GROWTH, V267, P80
162219    COPEL M, 1997, APPL PHYS LETT, V70, P3227
162220    DIETZ GW, 1997, J APPL PHYS, V82, P2359
162221    FOX GR, 1993, J APPL PHYS, V74, P1949
162222    HSU WY, 1995, APPL PHYS LETT, V66, P2975
162223    IM J, 2000, APPL PHYS LETT, V76, P625
162224    KIM SS, 1999, APPL PHYS LETT, V75, P2554
162225    KOTECKI DE, 1997, INTEGR FERROELECTR, V16, P1
162226    LI P, 1991, PHYS REV B, V43, P14261
162227    PENG CJ, 1995, J MATER RES, V10, P708
162228    SZE SM, 1981, PHYS SEMICONDUCTOR D
162229    TAO K, 2003, J APPL PHYS, V94, P4042
162230    WANG SY, 2004, APPL PHYS LETT, V84, P4116
162231    ZAFAR S, 1998, APPL PHYS LETT, V73, P3533
162232 NR 15
162233 TC 4
162234 SN 0003-6951
162235 J9 APPL PHYS LETT
162236 JI Appl. Phys. Lett.
162237 PD MAR 28
162238 PY 2005
162239 VL 86
162240 IS 13
162241 AR 132902
162242 DI ARTN 132902
162243 PG 3
162244 SC Physics, Applied
162245 GA 916YL
162246 UT ISI:000228422600057
162247 ER
162248 
162249 PT J
162250 AU Xu, W
162251    Chu, YW
162252    Zhang, RH
162253    Xu, HB
162254    Wang, Y
162255    Xiong, SD
162256 TI Endoplasmic reticulum targeting sequence enhances HBV-specific
162257    cytotoxic T lymphocytes induced by a CTL epitope-based DNA vaccine
162258 SO VIROLOGY
162259 DT Article
162260 DE epitope; DNA vaccine; hepatitis B virus; CTL; endoplasmic reticulum
162261    targeting sequence
162262 ID B-VIRUS-INFECTION; CLASS-I MOLECULES; HEPATITIS-B; CELL RESPONSES;
162263    ANTIGEN PRESENTATION; SURFACE-ANTIGEN; VIRAL CONTROL; LIVER-DAMAGE;
162264    PEPTIDES; IMMUNIZATION
162265 AB CD8(+) T cells play a critical role in protective immunity against
162266    Hepatitis B Virus (HBV). Epitope-based DNA vaccines expressing
162267    HBV-dominant CTL epitopes can be used as candidate vaccines capable of
162268    inducing cytotoxic T Lymphocytes (CTL) responses. A plasmid DNA
162269    encoding a CTL epitope of HBV core antigen, HBc(18-27), was
162270    constructed. Intramuscular immunization of C57BL/6 mice with this DNA
162271    vaccine resulted in successful induction of HBV-specific CTL responses.
162272    In order to promote transportation of the peptide into endoplasmic
162273    reticulum (ER) to bind to MHC class I molecules for optimal class I
162274    antigen presentation, an ER targeting sequence (ERTS) was fused with
162275    the C18-27 encoding gene. ERTS fusion significantly enhanced specific
162276    CD8(+) T cell responses in terms of CTL cytolysis as well as IFN-gamma
162277    secretion. This enhancement was correlated with promoted epitope
162278    presentation on target cell surface. We report here an enhanced
162279    immunogenicity of an epitope-based DNA vaccine using an ER targeting
162280    signal sequence, which has significant implications for future design
162281    of therapeutic HBV vaccine. (c) 2005 Elsevier Inc. All rights reserved.
162282 C1 Fudan Univ, Shanghai Med Coll, Dept Immunol, Shanghai 200032, Peoples R China.
162283    Shanghai Univ, Inst E, Div Immunol, Shanghai, Peoples R China.
162284    Fudan Univ, Shanghai Med Coll, Minist Educ, Key Lab Mol Med, Shanghai 200032, Peoples R China.
162285 RP Xiong, SD, Fudan Univ, Shanghai Med Coll, Dept Immunol, Shanghai
162286    200032, Peoples R China.
162287 EM sdxiongfd@126.com
162288 CR ANDERSEN MH, 2001, CANCER RES, V61, P869
162289    ANDERSON K, 1991, J EXP MED, V174, P489
162290    BACIK I, 1994, J IMMUNOL, V152, P381
162291    BAIRD M, 2004, SCAND J IMMUNOL, V60, P363
162292    BERTOLETTI A, 1997, HEPATOLOGY, V26, P1027
162293    BERTOLETTI A, 2000, CURR OPIN IMMUNOL, V12, P403
162294    BERTOLETTI A, 2003, ANTIVIR RES, V60, P61
162295    BOCHER WO, 2001, EUR J IMMUNOL, V31, P2071
162296    CHARINI WA, 2001, J IMMUNOL, V167, P4996
162297    CHEN WN, 1999, BIOCHEM BIOPH RES CO, V262, P757
162298    CHIKH GG, 2001, J IMMUNOL, V167, P6462
162299    CIERNIK F, 1996, J IMMUNOL, V156, P2369
162300    DAVIS HL, 1999, MICROBES INFECT, V1, P7
162301    DEHAAN L, 2002, INFECT IMMUN, V70, P3249
162302    ENGELHARD VH, 1994, CURR OPIN IMMUNOL, V6, P13
162303    GOULDER PJR, 2000, J VIROL, V74, P5679
162304    GROMME M, 2002, MOL IMMUNOL, V39, P181
162305    GUIDOTTI LG, 1999, SCIENCE, V284, P825
162306    KLENERMAN P, 1998, NATURE, V394, P482
162307    KUHOBER A, 1996, J IMMUNOL, V156, P3687
162308    KWISSA M, 2000, J MOL MED-JMM, V78, P495
162309    LEE RS, 1998, EUR J IMMUNOL, V28, P2726
162310    LEE YS, 2001, IMMUNOL LETT, V78, P13
162311    LEIFERT JA, 2004, IMMUNOL REV, V199, P40
162312    LINDINGER P, 2003, VACCINE, V21, P4285
162313    LIVINGSTON BD, 2001, VACCINE, V19, P4652
162314    LOI PK, 1997, PEPTIDES, V18, P749
162315    MAINI MK, 2000, EUR J IMMUNOL, V30, P3067
162316    MAINI MK, 2000, J EXP MED, V191, P1269
162317    MELIEF CJM, 2002, IMMUNOL REV, V188, P177
162318    MISSALE G, 1993, J EXP MED, V177, P751
162319    MORON G, 2004, TRENDS IMMUNOL, V25, P92
162320    NAGATA T, 2004, DNA CELL BIOL, V23, P93
162321    NAKAMURA Y, 2003, INFECT IMMUN, V71, P1748
162322    PETROVSKY N, 2004, IMMUNOL CELL BIOL, V82, P488
162323    PLANK C, 1994, J BIOL CHEM, V269, P12918
162324    RESTIFO NP, 1995, J IMMUNOL, V154, P4414
162325    RICE J, 1999, VACCINE, V17, P3030
162326    RIMMELZWAAN GF, 2004, VIRUS RES, V103, P97
162327    RODRIGUEZ F, 1998, J VIROL, V72, P5174
162328    SCHIRMBECK R, 1998, EUR J IMMUNOL, V28, P4149
162329    SETTE A, 2003, CURR OPIN IMMUNOL, V15, P461
162330    SHANKAR P, 2001, VACCINE, V20, P744
162331    SUBBRAMANIAN RA, 2003, J VIROL, V77, P10113
162332    TAKADA A, 2003, REV MED VIROL, V13, P387
162333    THERMET A, 2003, VACCINE, V21, P659
162334    THERMET A, 2004, J VIROL, V78, P1945
162335    WEBSTER G, 2001, MOL IMMUNOL, V38, P467
162336    WU YQ, 1997, J IMMUNOL, V159, P6037
162337    ZHONG WM, 2003, J BIOL CHEM, V278, P45135
162338    ZWAVELING S, 2002, J IMMUNOL, V169, P350
162339 NR 51
162340 TC 0
162341 SN 0042-6822
162342 J9 VIROLOGY
162343 JI Virology
162344 PD APR 10
162345 PY 2005
162346 VL 334
162347 IS 2
162348 BP 255
162349 EP 263
162350 PG 9
162351 SC Virology
162352 GA 912WW
162353 UT ISI:000228111600012
162354 ER
162355 
162356 PT J
162357 AU Jin, Y
162358    He, HC
162359    Al, LR
162360 TI Lane of parallel through carry in ternary optical adder
162361 SO SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES
162362 DT Article
162363 DE optical computer; ternary; adder; through carry lane
162364 AB At the present 50 to 100 microseconds are necessary for a liquid
162365    crystal to change its state from opacity to clarity; 1.14X10(-5)
162366    microseconds are however proved to be enough for light to pass through
162367    a clarity liquid crystal device. Rooted from this great difference in
162368    time, an optical adder was constructed with parallel through carry
162369    lanes (PTCL) composed of liquid crystals. Because all carries in PTCL
162370    process in parallel, the carry delay in the ternary optical computer's
162371    adder is avoided. Eliminating the carry delay in adder of ternary
162372    optical computer by physical means, the PTCL is also applicable for
162373    other types of optical adders. Moreover a light diagram of the adder
162374    and one PTCL structure are provided.
162375 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
162376    Northwestern Polytech Univ, Coll Comp Sci & Engn, Xian 710072, Peoples R China.
162377 RP Jin, Y, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R
162378    China.
162379 EM yijin@nwpu.edu.cn
162380 CR CHERRI AK, 1998, APPL OPTICS, V37, P2153
162381    IFTEKHARUDDIN KM, 2000, OPT LASER TECHNOL, V32, P413
162382    JIN Y, 2002, COMPUTER ENG APPL S, V38, P34
162383    JIN Y, 2003, 1 INT M APPL PHYS BA
162384    JIN Y, 2003, SCI CHINA SER E, V33, P111
162385    JIN Y, 2003, SCI CHINA SER F, V46, P145
162386    LI GQ, 1995, OPTICS T, V15, P580
162387    LI XM, 1999, SEMICONDUCTOR PHOTOE, V20, P1
162388    LIU YZ, 2000, LIQUID CRYSTAL DISPL, P56
162389    QIAN F, 1999, OPT LASER TECHNOL, P403
162390    QIAN G, 2001, MICROELECTRONICS COM, P33
162391    SHEN XJ, 2000, OPTICAL TECHNOLOGY, V26, P62
162392    SOTO H, 1999, P C LAS EL CLEO PAC, V3, P888
162393    WANG L, 2002, MICROELECTRONICS, V32, P195
162394    XING YH, 2001, PRACTICAL TUTORIAL C, P73
162395    YU FH, 1995, PHOTONS T, V24, P212
162396    ZENG PY, 1998, MICROELECTRONICS, V28, P396
162397 NR 17
162398 TC 0
162399 SN 1009-2757
162400 J9 SCI CHINA SER F
162401 JI Sci. China Ser. F-Inf. Sci.
162402 PD FEB
162403 PY 2005
162404 VL 48
162405 IS 1
162406 BP 107
162407 EP 116
162408 PG 10
162409 SC Computer Science, Information Systems
162410 GA 914JL
162411 UT ISI:000228223600008
162412 ER
162413 
162414 PT J
162415 AU Bhat, S
162416    Tang, L
162417    Krueger, A
162418    Smith, C
162419    Ford, S
162420    Dickey, L
162421    Petracek, M
162422 TI The Fed-1 (CAUU)(4) element is a 5 ' UTR dark-responsive mRNA
162423    instability element that functions independently of dark-induced
162424    polyribosome dissociation
162425 SO PLANT MOLECULAR BIOLOGY
162426 DT Article
162427 DE light regulation; mRNA half-life; photosynthesis; post-transcriptional
162428 ID 5' UNTRANSLATED REGION; GENE-EXPRESSION; LIGHT REGULATION; CODING
162429    REGION; STABILITY; TRANSLATION; TRANSCRIPT; SEQUENCES; ABUNDANCE;
162430    TOBACCO
162431 AB Darkness rapidly induces a decline in the stability and translation of
162432    the pea Ferredoxin-1 (Fed-1) mRNA in transgenic tobacco. Direct
162433    half-life measurement showed that mutation of the (CAUU)(4) stabilizes
162434    Fed-1 mRNA in the dark. ( CAUU) 1, a feature more common in plant 50
162435    UTRs than ( CAUU) 4, confers slight light-responsive mRNA accumulation.
162436    At least three but less than 11 CAUU repeats near the 50 end of the 5'
162437    UTR are required for full light-responsive accumulation. Furthermore,
162438    26 nt of the 5' UTR, including the (CAUU)(4) repeat, is sufficient to
162439    confer a significant similar to 2.5-fold increase in light-regulated
162440    mRNA accumulation when fused to the 50 end of a heterologous plant
162441    mRNA. A mutation of the ( CAUU) 4 repeat that compromises
162442    light-regulated mRNA stability changes in vitro the accessibility of
162443    the region to ribonuclease V-1 and ribonuclease A suggesting the
162444    geometry formed by the repeat may be important for instability.
162445    Finally, dark-induced Fed-1 mRNA instability occurs even when most of
162446    the mRNA is retained on polyribosomes, and thus is likely an
162447    independent event regulated by darkness.
162448 C1 Oklahoma State Univ, Dept Biochem & Mol Biol, Stillwater, OK 74078 USA.
162449    Shanghai Univ, Coll Life Sci, Shanghai 200436, Peoples R China.
162450    Biolex, Raleigh, NC 27695 USA.
162451    Biolex, Pittsboro, NC 27312 USA.
162452 RP Petracek, M, Oklahoma State Univ, Dept Biochem & Mol Biol, 246 Noble
162453    Res Ctr, Stillwater, OK 74078 USA.
162454 EM petracek@biochem.okstate.edu
162455 CR ANDERSON MB, 1999, PLANT CELL, V11, P1579
162456    BAGINSKY S, 2002, NUCLEIC ACIDS RES, V30, P4527
162457    CHAN MT, 1998, PLANT J, V15, P685
162458    CHEN CY, 2001, CELL, V107, P451
162459    DEMARIA CT, 1996, J BIOL CHEM, V271, P12179
162460    DICKEY LF, 1992, EMBO J, V11, P2311
162461    DICKEY LF, 1994, PLANT CELL, V6, P1171
162462    DICKEY LF, 1998, PLANT CELL, V10, P475
162463    DRAPIER D, 2002, PLANT J, V31, P687
162464    EIBL C, 1999, PLANT J, V19, P333
162465    ELLIOTT RC, 1989, PLANT CELL, V1, P691
162466    FOLTA KM, 2003, PLANT MOL BIOL, V51, P609
162467    GATZ C, 1995, METHOD CELL BIOL, V50, P411
162468    GIL P, 1996, EMBO J, V15, P1678
162469    GUTIERREZ RA, 1999, TRENDS PLANT SCI, V4, P429
162470    HANSEN ER, 2001, PLANT PHYSIOL, V125, P770
162471    HELLIWELL CA, 1997, PLANT J, V12, P499
162472    HENICS T, 1999, J BIOL CHEM, V274, P17318
162473    HIGGS DC, 1994, PLANT CELL, V6, P1007
162474    HIGGS DC, 1999, MOL CELL BIOL, V19, P8479
162475    JEFFERSON RA, 1987, EMBO J, V6, P3901
162476    JEFFERSON RA, 1987, PLANT MOL BIOL REP, V5, P387
162477    KOZIEL MG, 1996, PLANT MOL BIOL, V32, P393
162478    LEMM I, 2002, MOL CELL BIOL, V22, P3959
162479    LING J, 2000, PLANT CELL, V12, P1213
162480    LOWMAN HB, 1986, J BIOL CHEM, V261, P5396
162481    MAQUAT LE, 2004, NAT REV MOL CELL BIO, V5, P89
162482    OHMETAKAGI M, 1993, P NATL ACAD SCI USA, V90, P11811
162483    PEREZAMADOR MA, 2001, PLANT CELL, V13, P2703
162484    PETRACEK ME, 1997, PLANT CELL, V9, P2291
162485    PETRACEK ME, 1998, P NATL ACAD SCI USA, V95, P9009
162486    PETRACEK ME, 2000, GENETIC ENG, P1
162487    PETRACEK ME, 2000, PLANT J, V21, P563
162488    SARKAR B, 2003, MOL CELL BIOL, V23, P6685
162489    SOUKUP GA, 1999, RNA, V5, P1308
162490    SULLIVAN JA, 2002, PLANT J, V32, P763
162491    TANG L, 2003, PLANT PHYSIOL, V133, P1979
162492    VANHOOF A, 1996, PLANT J, V10, P415
162493    VANHOOF A, 1997, PLANT MOL BIOL, V35, P383
162494    WEINMANN P, 1994, PLANT J, V5, P559
162495    ZOU Z, 2003, MOL GENET GENOMICS
162496    ZUKER M, 1999, NATO ASI SERIES
162497 NR 42
162498 TC 0
162499 SN 0167-4412
162500 J9 PLANT MOL BIOL
162501 JI Plant Mol.Biol.
162502 PD NOV
162503 PY 2004
162504 VL 56
162505 IS 5
162506 BP 761
162507 EP 773
162508 PG 13
162509 SC Biochemistry & Molecular Biology; Plant Sciences
162510 GA 913ZA
162511 UT ISI:000228193000006
162512 ER
162513 
162514 PT J
162515 AU Ji, PY
162516    Zhou, H
162517    Lu, HQ
162518 TI Gravitational Faraday effect induced by high-power lasers
162519 SO MODERN PHYSICS LETTERS A
162520 DT Article
162521 DE curved spacetime; Faraday effect
162522 AB Gravitational field produced by high-power laser is calculated
162523    according to the linearized Einstein field equation in weak field
162524    approximation. Gravitational Faraday effect of electromagnetic wave
162525    propagating in the above gravitational field is studied and the
162526    rotation angle of polarization plane of electromagnetic wave is
162527    derived. The result is discussed and estimated in the condition of
162528    present experimental facility.
162529 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
162530 RP Ji, PY, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
162531 EM pyji@staff.shu.edu.cn
162532 CR BALAKIN AB, 2002, CLASSICAL QUANT GRAV, V19, P4897
162533    JI PY, 1998, INT J THEOR PHYS, V37, P1779
162534    KOPEIKIN SM, 2002, PHYS REV D, V65
162535    MISNER CW, 1973, GRAVITATION
162536    NOURIZONOZ M, 1999, PHYS REV D, V60
162537    SCULLY MO, 1978, PHYS REV D, V19, P3582
162538    SKROTSKII GV, 1957, DOKL AKAD NAUK SSSR, V114, P73
162539 NR 7
162540 TC 0
162541 SN 0217-7323
162542 J9 MOD PHYS LETT A
162543 JI Mod. Phys. Lett. A
162544 PD MAR 14
162545 PY 2005
162546 VL 20
162547 IS 8
162548 BP 597
162549 EP 603
162550 PG 7
162551 SC Physics, Mathematical; Physics, Nuclear; Physics, Particles & Fields
162552 GA 913ON
162553 UT ISI:000228162800004
162554 ER
162555 
162556 PT J
162557 AU Jiang, EX
162558 TI Perturbation in eigenvalues of a symmetric tridiagonal matrix
162559 SO LINEAR ALGEBRA AND ITS APPLICATIONS
162560 DT Article
162561 DE symmetric tridiagonal matrix; eigenvalue; eigenvector; QR algorithm; QL
162562    algorithm; perturbation bound
162563 ID MULTISHIFT QR ALGORITHM
162564 AB We study the eigenvalue perturbations of an n x n real unreduced
162565    symmetric tridiagonal matrix T when one of the off-diagonal element is
162566    replaced by zero. We provide both the lower and upper perturbation
162567    bounds for every eigenvalue of T. The bounds are described by the jth
162568    off-diagonal element (the one that is replaced), and the eigenvalues
162569    and eigenvectors of the leading j x j and trailing (n - j) x (n - j)
162570    principal submatrices of T. We also provide several simpler
162571    perturbation bounds that are easy to estimate in practice. Numerical
162572    examples show that the bounds predict the perturbations well. They are
162573    sharper than whose classical results only related to the off-diagonal
162574    element, especially for extreme eigenvalues. The bounds can also be
162575    incorporated with numerical methods, such as the QL(QR) algorithm and
162576    the divide-conquer algorithm, to estimates the errors of computed
162577    eigenvalues, (c) 2004 Elsevier Inc. All rights reserved.
162578 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
162579 RP Jiang, EX, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
162580 EM ejiang@fudan.edu.cn
162581 CR BRAMAN K, 2002, SIAM J MATRIX ANAL A, V23, P929
162582    BRAMAN K, 2002, SIAM J MATRIX ANAL A, V23, P948
162583    GOLUB GH, 1996, MATRIX COMPUTATIONS
162584    HAGER WW, 1982, LINEAR ALGEBRA APPL, V42, P39
162585    JIANG B, 1999, COMP EXPTL METHODS, V1, P101
162586    JIANG EX, 1984, SYMMETRIC MATRIX COM
162587    JIANG EX, 1987, J COMPUT MATH, V5, P144
162588    JIANG EX, 1992, LINEAR ALGEBRA APPL, V171, P121
162589    KAHAN W, 1966, CS42 STNF U COMP SCI
162590    LIU XG, 1997, J COMPUT MATH, V4, P345
162591    PAIGE CC, 1974, LINEAR ALGEBRA APPL, V8, P1
162592    PARLETT BN, 1980, SYMMETRIC EIGENVALUE
162593    STEWART GW, 1990, MATRIX PERTURBATION
162594    WEYL H, 1912, MATH ANN, V71, P441
162595    WILKINSON JH, 1965, ALGEBRAIC EIGENVALUE
162596 NR 15
162597 TC 0
162598 SN 0024-3795
162599 J9 LINEAR ALGEBRA APPL
162600 JI Linear Alg. Appl.
162601 PD APR 1
162602 PY 2005
162603 VL 399
162604 SI Sp. Iss. SI
162605 BP 91
162606 EP 107
162607 PG 17
162608 SC Mathematics, Applied
162609 GA 913CG
162610 UT ISI:000228127400007
162611 ER
162612 
162613 PT J
162614 AU Wu, ZY
162615    Zhang, LS
162616    Teo, KL
162617    Bai, FS
162618 TI New modified function method for global optimization
162619 SO JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
162620 DT Article
162621 DE modified functions; global optimization methods; local minima; global
162622    minima
162623 ID CONVEXIZED FILLED FUNCTIONS; VARIABLES
162624 AB In this paper, a class of global optimization problems is considered.
162625    Corresponding to each local minimizer obtained, we introduced a new
162626    modified function and construct a corresponding optimization subproblem
162627    with one constraint. Then, by applying a local search method to the
162628    one-constraint optimization subproblem and using the local minimizer as
162629    the starting point, we obtain a better local optimal solution. This
162630    process is continued iteratively. A termination rule is obtained which
162631    can serve as stopping criterion for the iterating process. To
162632    demonstrate the efficiency of the proposed approach, numerical examples
162633    are solved.
162634 C1 Chongqing Normal Univ, Dept Math, Chongqing, Peoples R China.
162635    Shanghai Univ, Dept Math, Shanghai, Peoples R China.
162636    Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China.
162637 RP Wu, ZY, Chongqing Normal Univ, Dept Math, Chongqing, Peoples R China.
162638 CR DIXON LCM, 1978, GLOBAL OPTIMIZATION, V2
162639    GE R, 1990, MATH PROGRAM, V46, P191
162640    GE RP, 1987, J OPTIMIZ THEORY APP, V54, P241
162641    GE RP, 1990, APPL MATH COMPUT, V35, P131
162642    HIMMELBLAU DM, 1972, APPL NONLINEAR PROGR
162643    KANZOW C, 2000, J GLOBAL OPTIM, V16, P1
162644    LIU X, 2001, J GLOBAL OPTIM, V19, P151
162645    LUCIDI S, 2002, J GLOBAL OPTIM, V24, P219
162646    PARDALOS PM, 2000, J COMPUT APPL MATH, V124, P209
162647    RASTRIGIN L, 1994, SYSTEMS EXTERNAL CON
162648    XU Z, 2001, J GLOBAL OPTIM, V20, P49
162649 NR 11
162650 TC 0
162651 SN 0022-3239
162652 J9 J OPTIMIZ THEOR APPL
162653 JI J. Optim. Theory Appl.
162654 PD APR
162655 PY 2005
162656 VL 125
162657 IS 1
162658 BP 181
162659 EP 203
162660 PG 23
162661 SC Mathematics, Applied; Operations Research & Management Science
162662 GA 913UA
162663 UT ISI:000228177800009
162664 ER
162665 
162666 PT J
162667 AU Li, D
162668    Wu, ZY
162669    Lee, HWJ
162670    Yang, XM
162671    Zhang, LS
162672 TI Hidden convex minimization
162673 SO JOURNAL OF GLOBAL OPTIMIZATION
162674 DT Article
162675 DE convexification; convex optimization; global optimization; hidden
162676    convex optimization; nonconvex optimization
162677 ID GLOBAL OPTIMIZATION; CONVEXIFICATION
162678 AB A class of nonconvex minimization problems can be classified as hidden
162679    convex minimization problems. A nonconvex minimization problem is
162680    called a hidden convex minimization problem if there exists an
162681    equivalent transformation such that the equivalent transformation of it
162682    is a convex minimization problem. Sufficient conditions that are
162683    independent of transformations are derived in this paper for
162684    identifying such a class of seemingly nonconvex minimization problems
162685    that are equivalent to convex minimization problems. Thus, a global
162686    optimality can be achieved for this class of hidden convex optimization
162687    problems by using local search methods. The results presented in this
162688    paper extend the reach of convex minimization by identifying its
162689    equivalent with a nonconvex representation.
162690 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
162691    Chongqing Normal Univ, Dept Math & Comp Sci, Chongqing 400047, Peoples R China.
162692    Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
162693    Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China.
162694 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management,
162695    Shatin, Hong Kong, Peoples R China.
162696 EM dli@se.cuhk.edu.hk
162697 CR AVRIEL M, 1988, GEN CONCAVITY
162698    BENTAL A, 1996, MATH PROGRAM, V72, P51
162699    CRAVEN BD, 1977, B AUSTRALIAN MATH SO, V16, P325
162700    HORST R, 1984, EUR J OPER RES, V15, P382
162701    LI D, 2001, ANN OPER RES, V105, P213
162702    MANGASARIAN OL, 1994, NONLINEAR PROGRAMMIN
162703    SCHAIBLE S, 1981, GEN CONCAVITY OPTIMI
162704    SUN XL, 2001, J GLOBAL OPTIM, V21, P185
162705    WU ZY, 2003, THESIS SHANGHAI U SH
162706 NR 9
162707 TC 0
162708 SN 0925-5001
162709 J9 J GLOBAL OPTIM
162710 JI J. Glob. Optim.
162711 PD FEB
162712 PY 2005
162713 VL 31
162714 IS 2
162715 BP 211
162716 EP 233
162717 PG 23
162718 SC Mathematics, Applied; Operations Research & Management Science
162719 GA 913SP
162720 UT ISI:000228173700003
162721 ER
162722 
162723 PT J
162724 AU Xu, GW
162725    Nie, H
162726    Li, NL
162727    Zheng, WX
162728    Zhang, DQ
162729    Feng, GZ
162730    Ni, LQ
162731    Xu, R
162732    Hong, J
162733    Zhang, JWZ
162734 TI Role of osteopontin in amplification and perpetuation of rheumatoid
162735    synovitis
162736 SO JOURNAL OF CLINICAL INVESTIGATION
162737 DT Article
162738 ID CELL-MEDIATED-IMMUNITY; ARTHRITIS; INTERLEUKIN-10; DISEASE;
162739    PROLIFERATION; METHOTREXATE; INFLIXIMAB; EXPRESSION; CYTOKINE; ANTIBODY
162740 AB Osteopontin (OPN) is an extracellular matrix protein of pleiotropic
162741    properties and has been recently recognized as a potential inflammatory
162742    cytokine. In this study, we demonstrate, for the first time to our
162743    knowledge, that overexpression of OPN in synovial T cells is associated
162744    with local inflammatory milieu and that OPN acts as an important
162745    mediator in amplification and perpetuation of rheumatoid synovitis. The
162746    study revealed that mRNA expression of OPN was highly elevated in
162747    CD4(+) synovial T cells derived from patients with RA, which correlated
162748    with increased OPN concentrations in synovial fluid (SF). The pattern
162749    of OPN overexpression was confined to rheumatoid synovium. and
162750    correlated with coexpression of selected OPN receptors in synovial T
162751    cells, including integrins alpha v and beta 1 and CD44. RA-derived SF
162752    stimulated the expression of OPN in T cells, which was attributable to
162753    IL-10 present in SF and abrogated by anti-IL-10 antibody. Among the
162754    more than 300 autoimmune and inflammatory response genes examined, OPN
162755    selectively induced the expression of proinflammatory cytokines and
162756    chemokines known to promote migration and recruitment of inflammatory
162757    cells. Furthermore, it was evident that OPN activated transcription
162758    factor NF-KB in mononuclear cells. The study has important implications
162759    for understanding the role of OPN in rheumatoid synovitis and other
162760    inflammatory conditions.
162761 C1 Baylor Coll Med, Dept Immunol, Houston, TX 77030 USA.
162762    Baylor Coll Med, Dept Neurol, Houston, TX 77030 USA.
162763    Guanghua Rheumatol Hosp, Shanghai, Peoples R China.
162764    Shanghai Univ, E Inst, Shanghai, Peoples R China.
162765    Chinese Acad Sci, Shanghai Inst Biol Sci, Shanghai, Peoples R China.
162766    Shanghai Med Univ 2, Shanghai Inst Immunol, Shanghai, Peoples R China.
162767    Shanghai Med Univ 2, Joint Immunol Lab, Hlth Sci Ctr, Shanghai, Peoples R China.
162768 RP Zhang, JWZ, Baylor Coll Med, Dept Immunol, Mail Stn NB302,1 Baylor
162769    Plaza, Houston, TX 77030 USA.
162770 EM jzhang@bcm.tmc.edu
162771 CR ASADULLAH K, 2003, PHARMACOL REV, V55, P241
162772    ASHKAR S, 2000, SCIENCE, V287, P860
162773    CHABAS D, 2001, SCIENCE, V294, P1731
162774    CHOY EHS, 2001, NEW ENGL J MED, V344, P907
162775    CUSH JJ, 1995, ARTHRITIS RHEUM, V38, P96
162776    DEVEREUX D, 1991, INT IMMUNOL, V3, P635
162777    FURUZAWACARBALLEDA, 1999, SCAND J IMMUNOL, V50, P215
162778    GRAVALLESE EM, 2003, J CLIN INVEST, V112, P147
162779    ISODA K, 2003, CIRCULATION, V107, P679
162780    JOHNSON BA, 1993, ARTHRITIS RHEUM, V36, P137
162781    KNIGHT JA, 2000, ANN CLIN LAB SCI, V30, P145
162782    LIPSKY PE, 2000, NEW ENGL J MED, V343, P1594
162783    LONDEI M, 1989, P NATL ACAD SCI USA, V86, P636
162784    MAINI R, 1999, LANCET, V354, P1932
162785    MULLERLADNER U, 2002, CURR RHEUMATOL REP, V4, P201
162786    NAKAYAMADA S, 2003, ARTHRITIS RHEUM, V48, P1239
162787    OHSHIMA S, 2002, J RHEUMATOL, V29, P2061
162788    OREGAN AW, 2000, IMMUNOL TODAY, V21, P475
162789    PETROW PK, 2000, ARTHRITIS RHEUM, V43, P1597
162790    POPE RM, 1989, ARTHRITIS RHEUM, V32, P1371
162791    RANKIN ECC, 1995, BRIT J RHEUMATOL, V34, P334
162792    RES PCM, 1994, HUM IMMUNOL, V40, P291
162793    RICHMOND A, 2002, NAT REV IMMUNOL, V2, P664
162794    SHANAHAN JC, 2002, CLIN IMMUNOL 1, V103, P231
162795    STCLAIR EW, 2000, CURR DIRECT AUTOIMMU, V2, P126
162796    SZEKANECZ Z, 2003, SEMIN IMMUNOL, V15, P15
162797    VOGT MHJ, 2003, ANN NEUROL, V53, P819
162798    WALSH DA, 1998, AM J PATHOL, V152, P691
162799    YAMAMOTO N, 2003, J CLIN INVEST, V112, P181
162800 NR 29
162801 TC 4
162802 SN 0021-9738
162803 J9 J CLIN INVEST
162804 JI J. Clin. Invest.
162805 PD APR
162806 PY 2005
162807 VL 115
162808 IS 4
162809 BP 1060
162810 EP 1067
162811 PG 8
162812 SC Medicine, Research & Experimental
162813 GA 913IU
162814 UT ISI:000228145700038
162815 ER
162816 
162817 PT J
162818 AU Wang, ZC
162819 TI A new effective algorithm for the resonant state of a Schrodinger
162820    equation
162821 SO COMPUTER PHYSICS COMMUNICATIONS
162822 DT Article
162823 DE numerov method; trigonometric fitting; P-stable; high-oscillatory
162824    solution; Schrodinger equation
162825 ID NUMERICAL-SOLUTION; FITTING METHODS; INTEGRATION; FORMULA
162826 AB In this paper we present a new effective algorithm for the Schrodinger
162827    equation. This new method differs from the original Numerov method only
162828    in one simple coefficient, by which we can extend the interval of
162829    periodicity from 6 to infinity and obtain an embedded correct factor to
162830    improve the accuracy. We compare the new method with the original
162831    Numerov method by the well-known problem of Woods-Saxon potential. The
162832    numerical results show that the new method has great advantage in
162833    accuracy over the original. Particularly for the resonant state, the
162834    accuracy is improved with four orders overall, and even six to seven
162835    orders for the highest oscillatory solution. Surely, this method will
162836    replace the original Numerov method and be widely used in various area.
162837    (c) 2004 Elsevier B.V. All rights reserved.
162838 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
162839 RP Wang, ZC, Shanghai Univ, Dept Phys, 99 ShangDa Rd, Shanghai 200436,
162840    Peoples R China.
162841 EM zc_wang89@hotmail.com
162842 CR ALLISON AC, 1970, J COMPUT PHYS, V6, P378
162843    ALLISON AC, 1991, J COMPUT PHYS, V97, P240
162844    AVDELAS G, 1996, COMPUT MATH APPL, V31, P85
162845    BLATT JM, 1967, J COMP PHYSIOL, V1, P382
162846    CASH JR, 1984, COMPUT PHYS COMMUN, V33, P299
162847    COOLEY JW, 1961, MATH COMPUT, V15, P363
162848    HERZBERG G, 1950, SPECTRA DIATOMIC MOL
162849    IXARU LG, 1980, COMPUT PHYS COMMUN, V19, P23
162850    LAMBERT JD, 1976, J INST MATH APPL, V18, P189
162851    RAPTIS AD, 1978, COMPUT PHYS COMMUN, V14, P1
162852    RAPTIS AD, 1982, COMPUTING, V28, P373
162853    RAPTIS AD, 1985, COMPUT PHYS COMMUN, V36, P113
162854    RAPTIS AD, 1987, COMPUT PHYS COMMUN, V44, P95
162855    SIMOS TE, 1999, J COMPUT PHYS, V148, P305
162856    WANG Z, 2003, J CHIN U S, V12, P146
162857    WANG ZC, 2003, INT J MOD PHYS C, V14, P1087
162858    WANG ZC, 2004, COMPUT PHYS COMMUN, V160, P23
162859    WILLIAMS PS, 2000, INT J MOD PHYS C, V11, P785
162860 NR 18
162861 TC 3
162862 SN 0010-4655
162863 J9 COMPUT PHYS COMMUN
162864 JI Comput. Phys. Commun.
162865 PD APR 1
162866 PY 2005
162867 VL 167
162868 IS 1
162869 BP 1
162870 EP 6
162871 PG 6
162872 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
162873 GA 913KG
162874 UT ISI:000228149900001
162875 ER
162876 
162877 PT J
162878 AU Xu, GQ
162879    Li, ZB
162880 TI Applications of Jacobi elliptic function expansion method for nonlinear
162881    differential-difference equations
162882 SO COMMUNICATIONS IN THEORETICAL PHYSICS
162883 DT Article
162884 DE nonlinear differential-difference equation; Jacobi elliptic function;
162885    periodic wave solution
162886 ID TRAVELING-WAVE SOLUTIONS; MODIFIED KDV EQUATION; EVOLUTION-EQUATIONS;
162887    ALGEBRAIC-METHOD; PERIODIC-SOLUTIONS; DISCRETE
162888 AB The Jacobi elliptic function expansion method is extended to derive the
162889    explicit periodic wave solutions for nonlinear differential-difference
162890    equations. Three well-known examples are chosen to illustrate the,
162891    application of the Jacobi elliptic function expansion method. As a
162892    result, three types of periodic wave solutions including Jacobi
162893    elliptic sine function, Jacobi elliptic cosine function and the third
162894    elliptic function solutions are obtained. It is shown that the shock
162895    wave solutions and solitary wave solutions can be obtained at their
162896    limit condition.
162897 C1 Shanghai Univ, Dept Informat Management, Shanghai 201800, Peoples R China.
162898    E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China.
162899 RP Xu, GQ, Shanghai Univ, Dept Informat Management, Shanghai 201800,
162900    Peoples R China.
162901 EM xuguiqiong@yahoo.com
162902    lizb@cs.ecnu.edu.cn
162903 CR ABLOWITZ MJ, 1977, SIAM REV, V19, P663
162904    ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
162905    BALDWIN D, 2004, COMPUT PHYS COMMUN, V162, P203
162906    CHEN HT, 2003, CHAOS SOLITON FRACT, V15, P585
162907    CHEN LL, 1999, ACTA PHYS SIN-CH ED, V48, P2149
162908    FAN EG, 2000, PHYS LETT A, V277, P212
162909    FAN EG, 2002, J PHYS A-MATH GEN, V35, P6853
162910    FAN EG, 2003, CHAOS SOLITON FRACT, V15, P567
162911    FAN EG, 2003, J PHYS A-MATH GEN, V36, P7009
162912    FENG X, 1996, PHYS LETT A, V213, P167
162913    FENG X, 2000, INT J THEOR PHYS, V39, P207
162914    FU ZT, 2001, PHYS LETT A, V290, P72
162915    GU CH, 1995, SOLITON THEORY ITS A
162916    HEREMAN W, 1990, J PHYS A-MATH GEN, V23, P4805
162917    HIROTA R, 1971, PHYS REV LETT, V27, P1192
162918    HIROTA R, 2000, CRM P LECT NOTES, V25, P217
162919    LI ZB, 1993, J PHYS A-MATH GEN, V26, P6027
162920    LIU SK, 2001, PHYS LETT A, V289, P69
162921    LIU SK, 2002, ACTA PHYS SIN-CH ED, V51, P10
162922    LIU SK, 2002, ACTA PHYS SIN-CH ED, V51, P1923
162923    MALFLIET W, 1992, AM J PHYS, V60, P650
162924    MARUNO KI, 2003, PHYS LETT A, V311, P214
162925    WADATI M, 1975, PROG THEOR PHYS, V53, P419
162926    WANG ML, 1995, PHYS LETT A, V199, P169
162927    XU GQ, 2002, ACTA PHYS SIN-CH ED, V51, P1424
162928    XU GQ, 2003, CHINESE J PHYS, V41, P232
162929    XU GQ, 2003, COMMUN THEOR PHYS, V39, P39
162930    YAN ZY, 2002, COMMUN THEOR PHYS, V38, P141
162931    YAN ZY, 2002, COMMUN THEOR PHYS, V38, P400
162932    YAN ZY, 2003, COMMUN THEOR PHYS, V39, P144
162933    YAO RX, 2002, PHYS LETT A, V297, P196
162934 NR 31
162935 TC 1
162936 SN 0253-6102
162937 J9 COMMUN THEOR PHYS
162938 JI Commun. Theor. Phys.
162939 PD MAR 15
162940 PY 2005
162941 VL 43
162942 IS 3
162943 BP 385
162944 EP 388
162945 PG 4
162946 SC Physics, Multidisciplinary
162947 GA 913KC
162948 UT ISI:000228149400001
162949 ER
162950 
162951 PT J
162952 AU Fang, JP
162953    Zheng, CL
162954 TI New exact excitations and soliton fission and fusion for the
162955    (2+1)-dimensional Broer-Kaup-Kupershmidt system
162956 SO CHINESE PHYSICS
162957 DT Article
162958 DE extended mapping approach; BKK system; exact solution; soliton fission;
162959    soliton fusion
162960 ID LOCALIZED COHERENT STRUCTURES; SIMILARITY REDUCTIONS; INTEGRABLE
162961    SYSTEMS; EQUATION
162962 AB With the help of an extended mapping approach, a series of new types of
162963    exact excitations with two arbitrary functions of the (2+1)-dimensional
162964    Broer-Kaup-Kupershmidt (BKK) system is derived. Based on the derived
162965    solitary wave excitation, some specific soliton fission and fusion
162966    solutions of the higher-dimensional BKK system are also obtained.
162967 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
162968    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
162969 RP Fang, JP, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R
162970    China.
162971 EM zjlsfjp@yahoo.com.cn
162972 CR BOITI M, 1987, INVERSE PROBL, V3, P37
162973    CHEN CL, 2002, COMMUN THEOR PHYS, V38, P129
162974    CLARKSON PA, 1989, J MATH PHYS, V30, P2201
162975    DUROVSKY VG, 1994, J PHYS A, V27, P4619
162976    LI HM, 2003, COMMUN THEOR PHYS, V39, P513
162977    LIN J, 2003, CHINESE PHYS, V12, P1049
162978    LOU SY, 1989, J MATH PHYS, V30, P1614
162979    LOU SY, 1997, J MATH PHYS, V38, P6401
162980    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
162981    LU Z, 2003, CHAOS SOLITON FRACT, V19, P527
162982    ONO H, 1994, J PHYS SOC JPN, V63, P40
162983    SERKIN VN, 2001, OPT COMMUN, V192, P237
162984    STOITCHEVA G, 2001, MATH COMPUT SIMULAT, V55, P621
162985    TANG XY, 2002, PHYS REV E, V66, P46601
162986    TANG XY, 2003, J MATH PHYS, V44, P4000
162987    WANG S, 2004, CHAOS SOLITON FRACT, V21, P231
162988    YING JP, 2001, COMMUN THEOR PHYS, V35, P405
162989    YING JP, 2001, Z NATURFORSCH A, V56, P619
162990    ZAKHAROV VE, 1998, APPL MECH TECH PHYS, V9, P190
162991    ZHANG JF, 2002, ACTA PHYS SIN-CH ED, V51, P705
162992    ZHANG JF, 2002, CHINESE PHYS, V11, P533
162993    ZHENG CL, 2002, ACTA PHYS SIN-CH ED, V51, P2426
162994    ZHENG CL, 2003, CHINESE PHYS LETT, V6, P783
162995    ZHENG CL, 2003, CHINESE PHYS, V12, P472
162996 NR 24
162997 TC 1
162998 SN 1009-1963
162999 J9 CHIN PHYS
163000 JI Chin. Phys.
163001 PD APR
163002 PY 2005
163003 VL 14
163004 IS 4
163005 BP 669
163006 EP 675
163007 PG 7
163008 SC Physics, Multidisciplinary
163009 GA 913JX
163010 UT ISI:000228148900006
163011 ER
163012 
163013 PT J
163014 AU Zheng, CL
163015    Fang, JP
163016    Chen, LQ
163017 TI Localized excitations with and without propagating properties in
163018    (2+1)-dimensions obtained by a mapping approach
163019 SO CHINESE PHYSICS
163020 DT Article
163021 DE extended mapping approach; modified dispersive water-wave system;
163022    nonpropagating soliton; propagating soliton
163023 ID COHERENT SOLITON-STRUCTURES; NEWELL-SEGUR SYSTEM; EQUATION
163024 AB By means of an extended mapping approach, a new type of
163025    variable-separation excitation is derived with two arbitrary functions
163026    in a (2+1)-dimensional modified dispersive water-wave system. Based on
163027    the derived variable-separation excitation, abundant nonpropagating and
163028    propagating solitons such as dromions, rings, peakons and compactons
163029    are revealed by selecting appropriate functions in this paper.
163030 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
163031    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
163032 RP Zheng, CL, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R
163033    China.
163034 EM zjclzheng@yahoo.com.cn
163035 CR BOITI M, 1987, INVERSE PROBL, V3, P37
163036    BOITI M, 1988, PHYS LETT A, V132, P432
163037    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
163038    DUROVSKY VG, 1994, J PHYS A, V27, P4619
163039    LARRAZA A, 1984, J FLUID MECH, V148, P443
163040    LORENZ EN, 1963, J ATMOS SCI, V20, P130
163041    LOU SY, 1989, J MATH PHYS, V30, P1614
163042    LOU SY, 1997, J MATH PHYS, V38, P6401
163043    LU Z, 2003, CHAOS SOLITON FRACT, V19, P527
163044    TANG XY, 2002, PHYS REV E, V66, P46601
163045    TANG XY, 2003, J MATH PHYS, V44, P4000
163046    WU J, 1984, PHYS REV LETT, V52, P1421
163047    XU YG, 1990, CHINESE PHYS LETT, V12, P7
163048    YAN JR, 1993, EUROPHYS LETT, V23, P335
163049    ZHENG CL, 2002, ACTA PHYS SIN-CH ED, V51, P2426
163050    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
163051    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
163052    ZHENG CL, 2003, CHINESE PHYS, V12, P11
163053    ZHENG CL, 2003, CHINESE PHYS, V12, P472
163054    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
163055    ZHENG CL, 2004, CHINESE PHYS, V13, P592
163056    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
163057 NR 22
163058 TC 5
163059 SN 1009-1963
163060 J9 CHIN PHYS
163061 JI Chin. Phys.
163062 PD APR
163063 PY 2005
163064 VL 14
163065 IS 4
163066 BP 676
163067 EP 682
163068 PG 7
163069 SC Physics, Multidisciplinary
163070 GA 913JX
163071 UT ISI:000228148900007
163072 ER
163073 
163074 PT J
163075 AU Chen, F
163076    Zhang, LS
163077 TI Semi-definite relaxation algorithm for single machine scheduling with
163078    controllable processing times
163079 SO CHINESE ANNALS OF MATHEMATICS SERIES B
163080 DT Article
163081 DE scheduling with controllable times; semi-definite programming;
163082    approximation algorithm
163083 ID IMPROVED APPROXIMATION ALGORITHMS; COMBINATORIAL OPTIMIZATION; CUT
163084 AB The authors present a semi-definite relaxation algorithm for the
163085    scheduling problem with controllable times on a single machine. Their
163086    approach shows how to relate this problem with the maximum vertex-cover
163087    problem with kernel constraints (MKVC). The established relationship
163088    enables to transfer the approximate solutions of MKVC into the
163089    approximate solutions for the scheduling problem. Then, they show how
163090    to obtain an integer approximate solution for MKVC based on the
163091    semi-definite relaxation and randomized rounding technique.
163092 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
163093    Shanghai Jiao Tong Univ, Dept Ind Engn & Management, Shanghai 200030, Peoples R China.
163094 RP Chen, F, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
163095 EM fchen@sjtu.edu.cn
163096 CR ALIZADEH F, 1995, SIAM J OPTIMIZ, V5, P13
163097    FRIEZE A, 1997, ALGORITHMICA, V18, P67
163098    GOEMANS MX, 1995, J ACM, V42, P1115
163099    GOEMANS MX, 1997, MATH PROGRAM, V79, P143
163100    GROTSCHEL M, 1988, GEOMETRIC ALGORITHMS, V2
163101    HOOGEVEEN JA, SCHEDULING CONTROLLA
163102    HUANG SL, 1999, ADV ECOL SCI, V2, P15
163103    MATUURA S, 2001, 0935 APPROXIMATION R
163104    MOTWANI R, 1995, RANDOMIZED ALGORITHM
163105    NESTEROV Y, 1998, OPTIM METHOD SOFTW, V9, P141
163106    PETRANK E, 1994, COMPUT COMPLEX, V4, P133
163107    SKUTELLA M, 1998, P 39 ANN IEEE S FDN, P472
163108    VICKSON RG, 1980, OPS RES, V28, P1155
163109    XU DC, 2003, ACTA MATH SINICA, V46, P1047
163110    YE YY, 1999, MATH PROGRAM, V84, P219
163111    ZHANG F, 2001, OPER RES LETT, V29, P41
163112    ZWICK U, 2000, 69978 TEL AVIV
163113 NR 17
163114 TC 0
163115 SN 0252-9599
163116 J9 CHIN ANN MATH SER B
163117 JI Chin. Ann. Math. Ser. B
163118 PD JAN
163119 PY 2005
163120 VL 26
163121 IS 1
163122 BP 153
163123 EP 158
163124 PG 6
163125 SC Mathematics
163126 GA 913JY
163127 UT ISI:000228149000013
163128 ER
163129 
163130 PT J
163131 AU Liu, JK
163132    Wu, QS
163133    Ding, YP
163134 TI Assembling synthesis of BaSO4 biomimetic nano-superstructures through
163135    eggshell membrane template
163136 SO CHEMICAL RESEARCH IN CHINESE UNIVERSITIES
163137 DT Article
163138 DE nanomaterials; superstructure; barium sulphate; biomimetic
163139 ID NANOCRYSTALS; MINERALIZATION; NANOPARTICLES; MORPHOLOGY; PATTERN; GROWTH
163140 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
163141    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
163142 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
163143 EM qswu@mail.tongji.edu.cn
163144 CR AJIKUMAR PK, 2003, BIOMACROMOLECULES, V4, P1321
163145    ARCHIBALD DD, 1993, NATURE, V364, P430
163146    FERNANDEZ MS, 2001, MATRIX BIOL, V19, P793
163147    LEE SM, 2002, J AM CHEM SOC, V124, P11244
163148    LU QY, 2002, ANGEW CHEM INT EDIT, V41, P1932
163149    PENG Q, 2002, INORG CHEM, V41, P5249
163150    RAUTARAY D, 2003, LANGMUIR, V19, P888
163151    REES GD, 1999, LANGMUIR, V15, P1993
163152    SHI HT, 2003, J AM CHEM SOC, V125, P3450
163153    SU XG, 2003, CHEM RES CHINESE U, V19, P269
163154    SUN XM, 2004, ANGEW CHEM INT EDIT, V43, P597
163155    WEI JJ, 2004, CHEM RES CHINESE U, V20, P73
163156    YU SH, 2002, CHEM-EUR J, V8, P2937
163157    YU SH, 2003, NANO LETT, V3, P379
163158    ZHANG ZL, 2003, INORG CHEM COMMUN, V6, P1393
163159 NR 15
163160 TC 0
163161 SN 1005-9040
163162 J9 CHEM RES CHINESE UNIV
163163 JI Chem. Res. Chin. Univ.
163164 PD MAR
163165 PY 2005
163166 VL 21
163167 IS 2
163168 BP 243
163169 EP 245
163170 PG 3
163171 SC Chemistry, Multidisciplinary
163172 GA 914YG
163173 UT ISI:000228263400030
163174 ER
163175 
163176 PT J
163177 AU Wang, X
163178 TI An electric point charge moving along the poling direction of a
163179    transversely isotropic piezoelectric solid
163180 SO ARCHIVE OF APPLIED MECHANICS
163181 DT Article
163182 DE moving electric point charge; piezoelectric solid; transversely
163183    isotropic; general solution
163184 ID CRACK; CERAMICS
163185 AB The problem of an electric point charge moving constantly along the
163186    poling direction of a transversely isotropic piezoelectric solid is
163187    considered in a moving coordinate system, which moves together with the
163188    electric point charge. A general solution in the moving coordinate
163189    system is given, and all the field components, such as displacements,
163190    electric potential, stresses and electric displacements, can be
163191    concisely expressed in terms of four quasi-harmonic functions. We also
163192    present two examples to demonstrate the effect of the moving velocity
163193    on the values of lambda(i). Once the general solution is given, the
163194    axisymmetric problem of a moving electric point charge can be easily
163195    solved. The explicit expressions of all the field components caused by
163196    the moving electric charge are presented, and the effect of the moving
163197    velocity on these field components is numerically investigated.
163198 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
163199 RP Wang, X, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
163200    200072, Peoples R China.
163201 EM xuwang@staff.shu.edu.cn
163202 CR DING HJ, 1996, INT J SOLIDS STRUCT, V33, P2283
163203    DING HJ, 1997, TRANSVERSELY ISOTROP
163204    MA XK, 1997, ELECTROMAGNETIC THEO
163205    PAK YE, 1990, J APPL MECH-T ASME, V57, P863
163206    PAN E, 2001, ASME, V68, P608
163207    REDDY JN, 2001, J APPL MECH-T ASME, V68, P234
163208    RU CQ, 2000, P ROY SOC LOND A MAT, V456, P1051
163209    SUO Z, 1992, J MECH PHYS SOLIDS, V40, P739
163210    WANG B, 1992, INT J SOLIDS STRUCT, V29, P293
163211    WANG X, 2003, INT J SOLIDS STRUCT, V40, P2381
163212    WANG ZK, 1995, ENG FRACT MECH, V51, P447
163213    ZHAO MH, 1997, THEOR APPL FRACT MEC, V26, P129
163214 NR 12
163215 TC 0
163216 SN 0939-1533
163217 J9 ARCH APPL MECH
163218 JI Arch. Appl. Mech.
163219 PD APR
163220 PY 2005
163221 VL 74
163222 IS 7
163223 BP 509
163224 EP 516
163225 PG 8
163226 SC Mechanics
163227 GA 913UI
163228 UT ISI:000228178700005
163229 ER
163230 
163231 PT J
163232 AU Jiang, JB
163233    Qiu, Y
163234    Lu, ZM
163235    Liu, YL
163236 TI Scaling exponents in fully developed asymmetric channel flow
163237 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
163238 DT Article
163239 DE turbulent counter-gradient-transport(CGT); scaling exponent; wavelet
163240    analysis
163241 ID TURBULENCE; LAWS
163242 AB Wavelet analysis is applied to study the global and local scaling
163243    exponents in fully developed asymmetric channel flow. Global exponents
163244    are calculated by orthogonal wavelets and Extended Scaling Similarity
163245    (ESS). The results show that the flow in an asymmetric channel flow
163246    exhibits different characteristics of intermittency from that in a
163247    symmetric flow. It is also shown that the intermittency property of the
163248    streamwise fluctuations is different from that of vertical
163249    fluctuations, and the intermittency does not decay with the increase of
163250    the distance from the wall. In addition, the Continuous Wavelet
163251    Transform(CWT) method is found to be unreliable to calculate the local
163252    scaling components. Finally, it is pointed out that the existence and
163253    the significance of negative local scaling components need further
163254    study.
163255 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
163256 RP Liu, YL, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
163257    200072, Peoples R China.
163258 EM ylliu@yc.shu.edu.cn
163259 CR BACRY E, 1990, TURBULENCE COHERENT, P203
163260    BENZI R, 1993, PHYS REV E, V48, P29
163261    BI WT, 2001, EXPT MEASUREMENT FLU, V15, P71
163262    CAMUSSI R, 1996, PHYS FLUIDS, V8, P1181
163263    CANUS C, 1998, P INT WAV C, P281
163264    FARGE M, 1992, ANNU REV FLUID MECH, V232, P469
163265    FRISCH U, 1995, TURBULENCE
163266    JAFFARD S, 2000, ANN APPL PROBAB, V10, P313
163267    JIANG N, 1997, EXPT MEASUREMENTS FL, V11, P12
163268    KATUL G, 2001, PHYS FLUIDS, V13, P241
163269    KOLWANKAR KM, 2002, J FOURIER ANAL APPL, V8, P319
163270    LI L, 2001, ACTA MECH SINICA, V33, P153
163271    LI L, 2001, ACTA MECH SINICA, V33, P433
163272    LU ZM, 2001, ACTA MECH SINICA, V17, P125
163273    MOURI H, 1999, J FLUID MECH, V389, P229
163274    NAN J, 1998, ACTA MECH SINICA, V29, P406
163275    ONORATO M, 2000, PHYS REV E, V61, P1447
163276    SHE ZS, 1994, PHYS REV LETT, V72, P336
163277    VEHEL JL, 1996, IEEE DSP WORKSH LOEN
163278    YAMADA M, 1990, PROG THEOR PHYS, V83, P819
163279 NR 20
163280 TC 0
163281 SN 0253-4827
163282 J9 APPL MATH MECH-ENGL ED
163283 JI Appl. Math. Mech.-Engl. Ed.
163284 PD MAR
163285 PY 2005
163286 VL 26
163287 IS 3
163288 BP 292
163289 EP 298
163290 PG 7
163291 SC Mathematics, Applied; Mechanics
163292 GA 913PN
163293 UT ISI:000228165400003
163294 ER
163295 
163296 PT J
163297 AU Zhou, J
163298    Liu, ZR
163299    Xiang, L
163300 TI Global dynamics of delayed bidirectional associative memory (BAM)
163301    neural networks
163302 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
163303 DT Article
163304 DE bidirectional associative memory (BAM); neural network; global
163305    exponential stability; Liapunov function
163306 ID STABILITY; SYNCHRONIZATION; TIME
163307 AB Without assuming the smoothness, monotonicity and boundedness of the
163308    activation functions, some novel criteria on the existence and global
163309    exponential stability of equilibrium point for delayed bidirectional
163310    associative memory (BAM) neural networks are established by applying
163311    the Liapunov functional methods and matrix-algebraic techniques. It is
163312    shown that the new conditions presented in terms of a nonsingular M
163313    matrix described by the networks parameters, the connection matrix and
163314    the Lipschitz constant of the activation functions, are not only simple
163315    and practical, but also easier to check and less conservative than
163316    those imposed by similar results in recent literature.
163317 C1 Hebei Univ Technol, Inst Appl Math, Tianjin 300130, Peoples R China.
163318    Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
163319    Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
163320    Hebei Univ Technol, Dept Phys, Tianjin 300130, Peoples R China.
163321 RP Zhou, J, Hebei Univ Technol, Inst Appl Math, Tianjin 300130, Peoples R
163322    China.
163323 EM jinzhou@fudan.edu.cn
163324 CR CHEN GR, 2004, INT J BIFURCAT CHAOS, V14, P2229
163325    GOPALSAMY K, 1994, IEEE T NEURAL NETWOR, V5, P998
163326    HALE JK, 1977, INTRO FUNCTIONAL DIF
163327    KENNEDY MP, 1988, IEEE T CIRCUITS SYST, V35, P554
163328    KOSKO B, 1988, IEEE T SYST MAN CYB, V18, P49
163329    KOSKO B, 1990, IEEE T NEURAL NETWOR, V1, P1
163330    KOSKO B, 1991, IEEE T AUTOMAT CONTR, V36, P785
163331    LIAO X, 2001, INT J BIFURCAT CHAOS, V11, P1835
163332    LIAO XF, 2002, INT J CIRC THEOR APP, V30, P519
163333    MAUNDY B, 1990, IEEE T CIRCUITS SYST, V37, P1568
163334    MOHAMAD S, 2001, PHYSICA D, V159, P233
163335    MORITA M, 1993, NEURAL NETWORKS, V6, P115
163336    XIANG L, 2002, APPL MATH MECH-ENGL, V23, P1367
163337    YOSHIZAWA S, 1993, NEURAL NETWORKS, V6, P167
163338    ZHOU J, 2004, LECT NOTES COMPUT SC, V3173, P144
163339    ZHOU J, 2004, NEURAL NETWORKS, V16, P87
163340 NR 16
163341 TC 1
163342 SN 0253-4827
163343 J9 APPL MATH MECH-ENGL ED
163344 JI Appl. Math. Mech.-Engl. Ed.
163345 PD MAR
163346 PY 2005
163347 VL 26
163348 IS 3
163349 BP 327
163350 EP 335
163351 PG 9
163352 SC Mathematics, Applied; Mechanics
163353 GA 913PN
163354 UT ISI:000228165400008
163355 ER
163356 
163357 PT J
163358 AU Gao, YL
163359    Xu, CX
163360    Wang, YJ
163361    Zhang, LS
163362 TI A new two-level linear relaxed bound method for geometric programming
163363    problems
163364 SO APPLIED MATHEMATICS AND COMPUTATION
163365 DT Article
163366 DE geometric programs; global optimization; linearization technique;
163367    branch-and-bound method; relaxed approximation
163368 ID GLOBAL OPTIMIZATION; NONCONVEX NLPS; ALGORITHM; BRANCH; MINIMIZATION
163369 AB In this paper a new two-level linear relaxed bound method is proposed
163370    for solving the global solution of geometric programming problems, and
163371    its convergent properties is proved, and a numerical example is used to
163372    illustrate the effectiveness of the presented algorithm. The bound
163373    technique in this algorithm is different from the other ones. The
163374    two-level relaxed linear programming problems of geometric programming
163375    problems are given without additional new variables and constraints by
163376    making use of the linear approximation of power functions and the new
163377    formulas for product to be unequal with sum. (c) 2004 Elsevier Inc. All
163378    rights reserved.
163379 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
163380    NW Secondly Natl Coll, Dept Informat & Comp Sci, Yinchuan 750021, Peoples R China.
163381    Xian Jiaotong Univ, Sch Sci, Xian 710049, Peoples R China.
163382 RP Gao, YL, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
163383 EM gaoyuelin@263.net
163384 CR ALKHAYYAL FA, 1983, MATH OPER RES, V8, P273
163385    BENSON HP, 1997, J OPTIMIZ THEORY APP, V94, P487
163386    BENSON HP, 1999, J GLOBAL OPTIM, V15, P315
163387    COLE F, 1980, EUROPEAN J OPERATION, V5, P26
163388    COLE F, 1985, J OPTIMIZ THEORY APP, V47, P159
163389    FLOUDAS CA, 1990, COMPUT CHEM ENG, V14, P1397
163390    HANSEN P, 1992, J GLOBAL OPTIM, V2, P41
163391    HANSEN P, 1993, J GLOBAL OPTIM, V3, P421
163392    JAUMARD B, 1997, J GLOBAL OPTIM, V10, P229
163393    KONNO H, 1988, J OPER RES SOC JPN, V32, P142
163394    KONNO H, 1990, ANN OPER RES, V25, P147
163395    KUNO T, 1993, J GLOBAL OPTIM, V3, P325
163396    MCCRMICK GP, 1976, MATH PROGRAM, V10, P147
163397    RYOO HS, 1995, COMPUT CHEM ENG, V19, P551
163398    SCHAIBLE S, 1995, J OPTIMIZ THEORY APP, V87, P441
163399    SHERALI HD, 1992, J GLOBAL OPTIM, V2, P101
163400    SHERALI HD, 1992, J GLOBAL OPTIM, V2, P379
163401    SHERALI HD, 1995, J GLOBAL OPTIM, V7, P1
163402    SHERALI HD, 1997, J GLOBAL OPTIM, V10, P381
163403    SHERALI HD, 1998, J GLOBAL OPTIM, V12, P267
163404    ZAMORA JM, 1999, J GLOBAL OPTIM, V14, P217
163405 NR 21
163406 TC 0
163407 SN 0096-3003
163408 J9 APPL MATH COMPUT
163409 JI Appl. Math. Comput.
163410 PD MAY 5
163411 PY 2005
163412 VL 164
163413 IS 1
163414 BP 117
163415 EP 131
163416 PG 15
163417 SC Mathematics, Applied
163418 GA 914IR
163419 UT ISI:000228221600008
163420 ER
163421 
163422 PT J
163423 AU Sun, QX
163424    Zhong, YB
163425    Ren, ZM
163426    Lou, L
163427    Deng, K
163428    Xu, KD
163429 TI Effect of electromagnetic field on the behavior and distribution of the
163430    particles in front of metallic solidification interface
163431 SO ACTA METALLURGICA SINICA
163432 DT Article
163433 DE electromagnetic field; behavior of the particle; solidifying interface;
163434    distribution of the particle; Al-Si alloy
163435 ID SOLID-LIQUID INTERFACE; ENGULFMENT
163436 AB The quantitative relationship between the nonmetallic particle's
163437    redistribution in metal and electromagnetic force (EMF) was developed
163438    during the process of unidirectional solidification in electromagnetic
163439    field. It was pointed theoretically that controlling the cycle of the
163440    electromagnetic field and the solidified parameters could produce a new
163441    composite material in which the content of the particles is a function
163442    of the unidistance from the growing interface. Experimental results
163443    show that by applying periodical electromagnetic force to the
163444    unidirectionally solidified hypereutectic Al-19%Si alloy, the primary
163445    silicon-rich particles distributed layer by layer, and the surface
163446    hardness fluctuated periodically. Through adjusting the frequency of
163447    the electromagnetic force and the rate of the solidifying interface,
163448    the width between the two adjacent layers could be changed freely.
163449 C1 Shanghai Univ, Shanghai Enhanced Lab Modern Met & Mat Proc, Shanghai 200072, Peoples R China.
163450 RP Zhong, YB, Shanghai Univ, Shanghai Enhanced Lab Modern Met & Mat Proc,
163451    Shanghai 200072, Peoples R China.
163452 EM yunboz@263.net
163453 CR BOLLING GF, 1971, J CRYST GROWTH, V10, P56
163454    CISSE J, 1971, J CRYST GROWTH, V10, P67
163455    GARVIN JW, 2003, J CRYST GROWTH, V252, P451
163456    HADJI L, 2003, SCRIPTA MATER, V48, P665
163457    HAN Q, 1995, ISIJ INT, V35, P693
163458    HAN QY, 1996, ACTA METALL SIN, V32, P363
163459    KOLIN A, 1953, SCIENCE, V117, P134
163460    KORBER C, 1985, J CRYST GROWTH, V72, P649
163461    LEENOV D, 1954, J CHEM PHYS, V22, P683
163462    LI QC, 1982, THEORY CAST FORMING, P89
163463    MARTY P, 1982, P S IUTAM MET SOC LO, P245
163464    OMENYI SN, 1976, J APPL PHYS, V47, P3956
163465    SHANGGUAN D, 1992, METALL TRANS A, V23, P669
163466    STEFANESCU DM, 1988, METALL T A, V19, P2847
163467    TANIGUCHI S, 1994, INT S EL PROC MAT NA, P429
163468    UHLMANN DR, 1964, J APPL PHYS, V35, P2986
163469    WU SS, 1998, SPEC FDN NONFERROUS, P34
163470    ZHONG YB, 2003, ACTA METALL SIN, V39, P1269
163471    ZHONG YB, 2003, P 4 INT C EL PROC MA, P404
163472 NR 19
163473 TC 0
163474 SN 0412-1961
163475 J9 ACTA METALL SIN
163476 JI Acta Metall. Sin.
163477 PD MAR 11
163478 PY 2005
163479 VL 41
163480 IS 3
163481 BP 321
163482 EP 325
163483 PG 5
163484 SC Metallurgy & Metallurgical Engineering
163485 GA 912VK
163486 UT ISI:000228107800020
163487 ER
163488 
163489 PT J
163490 AU Zheng, XY
163491    Wu, YZ
163492    Sun, RG
163493    Zhu, WQ
163494    Jiang, XY
163495    Zhang, ZL
163496    Xu, SH
163497 TI Efficiency improvement of organic light-emitting diodes using
163498    8-hydroxy-quinolinato lithium as an electron injection layer
163499 SO THIN SOLID FILMS
163500 DT Article
163501 DE organic light-emitting diode; efficiency; improvement;
163502    8-hydroxy-quinolinato lithium
163503 ID CHARGE INJECTION; ALUMINUM; DEVICES; CATHODE; INTERFACES
163504 AB Organic light-emitting diodes (OLEDs) using
163505    tris-(8-hydroxy-quinolinato) aluminum (Alq(3)) as an emitter,
163506    8-hydroxy-quinolinato lithium (Liq) as an electron injection layer,
163507    were prepared. Experimental results show that the efficiency of device
163508    with Liq is three times higher than that without Liq. The device using
163509    Liq as an injection layer is less sensitive in efficiency to the Liq
163510    thickness than that using LiF. In addition to the Alq3 based devices,
163511    Liq is also very effective as an electron injection layer for
163512    4,4'-bis(2,2-diphenylvinyl)-1,1'-biphenyl based blue OLED and poly
163513    (2-methoxy,5-(2-ethyl-hexyloxy)-1,4-phenylenevinylene) based orange
163514    polymer OLED. (c) 2004 Elsevier B.V. All rights reserved.
163515 C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Sci Res Management Div, Shanghai 201800, Peoples R China.
163516    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
163517 RP Zheng, XY, Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Sci Res
163518    Management Div, Shanghai 201800, Peoples R China.
163519 EM xyzheng@mail.siom.ac.cn
163520 CR CAMPBELL IH, 1997, APPL PHYS LETT, V71, P3528
163521    CAO Y, 2000, J APPL PHYS, V88, P3618
163522    DAVIDS PS, 1996, APPL PHYS LETT, V69, P2270
163523    ENDO J, 1999, P INT C ADV TECHN PO, P124
163524    HE P, 2003, APPL PHYS LETT, V82, P3218
163525    HUNG LS, 1997, APPL PHYS LETT, V70, P152
163526    JABBOUR GE, 1998, APPL PHYS LETT, V73, P1185
163527    LE QT, 2000, J APPL PHYS, V87, P375
163528    LIU ZG, 2002, SYNTHETIC MET, V128, P211
163529    MORI T, 1998, APPL PHYS LETT, V73, P2763
163530    PARKER ID, 1994, J APPL PHYS, V75, P1656
163531    SCHMITZ C, 2001, P SOC PHOTO-OPT INS, V4105, P193
163532    SHAHEEN SE, 1998, J APPL PHYS, V84, P2324
163533    STAMPOR W, 1997, APPL PHYS LETT, V70, P1935
163534    TANG CW, 1987, APPL PHYS LETT, V51, P913
163535    YANG XH, 2001, APPL PHYS LETT, V79, P563
163536 NR 16
163537 TC 1
163538 SN 0040-6090
163539 J9 THIN SOLID FILMS
163540 JI Thin Solid Films
163541 PD MAY 1
163542 PY 2005
163543 VL 478
163544 IS 1-2
163545 BP 252
163546 EP 255
163547 PG 4
163548 SC Materials Science, Multidisciplinary; Physics, Applied; Physics,
163549    Condensed Matter
163550 GA 911XJ
163551 UT ISI:000228039800041
163552 ER
163553 
163554 PT J
163555 AU Bian, JJ
163556    Kim, D
163557    Hong, KS
163558 TI Microwave dielectric properties of (Zn1-xMnx)(2)P2O7
163559 SO JOURNAL OF MATERIALS SCIENCE
163560 DT Letter
163561 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 200072, Peoples R China.
163562    Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151742, South Korea.
163563 RP Bian, JJ, Shanghai Univ, Dept Inorgan Mat, 149 YanChang Rd,Zhabei Dist,
163564    Shanghai 200072, Peoples R China.
163565 CR BIAN JJ, IN PRESS JPN J APPL
163566    CHO SY, 1999, J MATER RES, V14, P114
163567    DUBE DC, 1997, J AM CERAM SOC, V80, P1095
163568    HAKKI BW, 1960, IRE T MICROWAVE THEO, V8, P402
163569    MAADI AE, 1994, J ALLOY COMPD, V205, P243
163570    PENN SJ, 1997, J AM CERAM SOC, V80, P1885
163571    TEMPLETON A, 2000, J AM CERAM SOC, V83, P95
163572 NR 7
163573 TC 0
163574 SN 0022-2461
163575 J9 J MATER SCI
163576 JI J. Mater. Sci.
163577 PD APR
163578 PY 2005
163579 VL 40
163580 IS 7
163581 BP 1801
163582 EP 1803
163583 PG 3
163584 SC Materials Science, Multidisciplinary
163585 GA 910UC
163586 UT ISI:000227956700037
163587 ER
163588 
163589 PT J
163590 AU Lu, BQ
163591    Xia, YB
163592    Qi, LJ
163593 TI Infrared absorption spectra of serpentine cat's eye and the mechanism
163594    of it's thermotransformation
163595 SO JOURNAL OF INORGANIC MATERIALS
163596 DT Article
163597 DE serpentine cat's eye; forsterite; enstatite; thermotransformation
163598 AB DTA, IR and XRD were used to study the characteristics of serpentine
163599    cat's eye from Sichuan province at different temperatures. Also, the
163600    thermotransformation products and mechanism of Sichuan serpentine cat's
163601    eye were discussed. Finally, the mechanism of thermotransformation of
163602    chrysotile cat's eye was proposed. The results show that when heated up
163603    to 700 degrees C, the serpentine cat's eye completely dehydrates and
163604    partly transforms into crystalline forsterite and non-crystalline
163605    enstatite. At 800 degrees C, crystalline enstatite is formed. Heated
163606    above 800 to 1100 degrees C, the amount of crystalline forsterite and
163607    enstatite increases gradually: Up to 1100 degrees C, the degree of
163608    crystalline order of enstatite is improved. During
163609    thermotransformation, no SiO2 phase is formed.
163610 C1 Shanghai Univ, Sch Mat & Engn, Shanghai 200072, Peoples R China.
163611    Chinas Geol Univ, Wuhan 430074, Peoples R China.
163612 RP Lu, BQ, Shanghai Univ, Sch Mat & Engn, Shanghai 200072, Peoples R China.
163613 EM lubaoqi@hotmail.com
163614 CR BALAN E, 2002, AM MINERAL, V87, P1286
163615    BRINDLEY GW, 1990, MINERAL MAG, V75, P189
163616    SOMA Y, 1997, CLAY SCI, V16, P251
163617 NR 3
163618 TC 0
163619 SN 1000-324X
163620 J9 J INORG MATER
163621 JI J. Inorg. Mater.
163622 PD MAR
163623 PY 2005
163624 VL 20
163625 IS 2
163626 BP 285
163627 EP 290
163628 PG 6
163629 SC Materials Science, Ceramics
163630 GA 910MA
163631 UT ISI:000227934300005
163632 ER
163633 
163634 PT J
163635 AU Zhen, Q
163636    He, WM
163637    Liu, JQ
163638    Pan, QY
163639 TI Preparation process of nanocrystalline Bi2O3-Y2O3 fast ionic conductor
163640 SO JOURNAL OF INORGANIC MATERIALS
163641 DT Article
163642 DE coprecipitation method; pressureless reactive sintering;
163643    nanocrystalline Bi2O3-Y2O3 fast ionic conductor; technique optimization
163644 ID CERAMICS; PARTICLES
163645 AB With nanometer (75mol%Bi2O3+25mol%Y2O3) powder prepared by
163646    coprecipitation as raw material, the nanocrystalline Bi2O3-Y2O3 fast
163647    ionic conductor was fabricated through pressureless reactive sintering
163648    technique. The study results on formation law of highly conductive
163649    phase (nano delta-Bi2O3) in the sintering process show that the solid
163650    solution reaction happens at the early stage of sintering process, and
163651    the grain growth accords with the rule of para-curve equation (D -
163652    D-0)(2) = K (.) t. The optimizing domain of sintering technique
163653    parameters forming delta-Bi2O3 was optimized by the pattern recognition
163654    technique, that is Y > -1.846X + 3.433 (X = 0.0059T + 0.0101t, Y =
163655    -0.0059T + 0.0101t, where T is sintering temperature, t is sintering
163656    time). At the pressureless reactive sintering conditions of T = 600
163657    degrees C, t=2h, the nanocrystalline Bi2O3-Y2O3 fast ionic conductor
163658    can reach to a relative density of higher than 96%, and its
163659    microstructure is compact and homogeneous with few remaining pores or
163660    cracks, its average grain size is less than 100 nm.
163661 C1 Shanghai Univ, Coll Mat Sci & Engn, Shanghai 200072, Peoples R China.
163662    Shanghai Univ, Nanosci & Nanotechnol Res Ctr, Shanghai 200436, Peoples R China.
163663    Shanghai Univ, Coll Sci, Shanghai 200436, Peoples R China.
163664 RP Zhen, Q, Shanghai Univ, Coll Mat Sci & Engn, Shanghai 200072, Peoples R
163665    China.
163666 EM zhenqiang@263.net
163667 CR BHATTACHARYA AK, 1994, SOLID STATE COMMUN, V91, P357
163668    HIRANO T, 1999, IEEE T MAGN 2, V35, P3487
163669    JOSHI PC, 1992, J APPL PHYS, V72, P5827
163670    KINGERY WD, 1967, INTRO CERAMICS, P458
163671    KRUIDHOF H, 1987, MATER RES BULL, V22, P1635
163672    LARKER HT, 1999, J EUR CERAM SOC, V19, P2367
163673    LI W, 2001, J CHINESE CERAMIC SO, V29, P84
163674    MAYO MJ, 1996, INT MATER REV, V41, P85
163675    NISHIMURA T, 1995, J MATER SCI LETT, V14, P1046
163676    ZENG Y, 2001, J MATER SCI, V36, P1271
163677 NR 10
163678 TC 0
163679 SN 1000-324X
163680 J9 J INORG MATER
163681 JI J. Inorg. Mater.
163682 PD MAR
163683 PY 2005
163684 VL 20
163685 IS 2
163686 BP 393
163687 EP 400
163688 PG 8
163689 SC Materials Science, Ceramics
163690 GA 910MA
163691 UT ISI:000227934300021
163692 ER
163693 
163694 PT J
163695 AU Xu, F
163696    Hua, TC
163697    Sun, DW
163698    Xiao, JJ
163699    Zhao, XL
163700 TI Enzyme activity of wheat esterase as affected by various
163701    cryopreservation conditions
163702 SO JOURNAL OF FOOD ENGINEERING
163703 DT Article
163704 DE wheat esterase; preservation; cooling procedure; cryoprotectant;
163705    pretreatment
163706 ID ACETYLCHOLINESTERASE; BIOSENSOR; ORGANOPHOSPHATE; INSECTICIDES;
163707    PESTICIDES
163708 AB Seven cryoprotectants (polyethyleneglycol, sucrose, glycerol,
163709    ethyleneglycol, NaCl, Me2SO and sodium acetate anhydrous) for
163710    preserving the wheat esterase were studied and sodium acetate anhydrous
163711    (SAA) was chosen as the most effective cryoprotectant. The effects of
163712    pretreatment conditions (temperature and time), SAA concentration and
163713    the cooling procedures on the recovery ratio of enzyme activity were
163714    investigated. The study indicated that the effects of cooling procedure
163715    and pretreatment temperature on the recovery ratio of enzyme activity
163716    were significant and a suitable cooling procedure and lower
163717    pretreatment temperature should be chosen in order to preserve the
163718    enzyme activity of wheat esterase. (c) 2004 Elsevier Ltd. All rights
163719    reserved.
163720 C1 Shanghai Univ Sci & Technol, Inst Food Sci & Engn, Shanghai 200093, Peoples R China.
163721    Natl Univ Ireland, Univ Coll Dublin, FRCFT Grp, Dept Biosyst Engn, Dublin 2, Ireland.
163722 RP Hua, TC, Shanghai Univ Sci & Technol, Inst Food Sci & Engn, Shanghai
163723    200093, Peoples R China.
163724 EM tchua@sh163.net
163725    dawen.sun@ucd.ie
163726 CR ASPEREN VK, 1962, J INSECT PHYSL, V8, P401
163727    BAKER JE, 1998, INSECT BIOCHEM MOLEC, V28, P1039
163728    CUMMINS I, 2001, PHYSIOL PLANTARUM, V113, P477
163729    GUILBAULT GG, 1970, ENZYMATIC METHODS AN
163730    NEUFELD T, 2000, BIOSENS BIOELECTRON, V15, P323
163731    POGACNIK L, 2003, BIOSENS BIOELECTRON, V18, P1
163732    RODRIGUES TC, 2001, ANAL SCI, V17, P629
163733    SCHULZE H, 2002, ANAL BIOANAL CHEM, V372, P268
163734    SCHULZE H, 2003, BIOSENS BIOELECTRON, V18, P201
163735    SEGURO K, 1990, CRYOBIOLOGY, V27, P70
163736    VILLATTE F, 1998, BIOSENS BIOELECTRON, V13, P157
163737    XIAO J, 2002, THESIS U SHANGHAI SC
163738 NR 12
163739 TC 0
163740 SN 0260-8774
163741 J9 J FOOD ENG
163742 JI J. Food Eng.
163743 PD JUL
163744 PY 2005
163745 VL 69
163746 IS 1
163747 BP 17
163748 EP 22
163749 PG 6
163750 SC Engineering, Chemical; Food Science & Technology
163751 GA 910WU
163752 UT ISI:000227963700003
163753 ER
163754 
163755 PT J
163756 AU Adeleke, OF
163757    Zhou, RM
163758    Zu, JH
163759    Ekoko, BG
163760 TI Effect of electron beam irradiation on the degradation of
163761    monochlorophenols in aqueous solution
163762 SO JOURNAL OF ENVIRONMENTAL SCIENCES-CHINA
163763 DT Article
163764 DE electron beam; monochlorophenols; degradation; deaeration
163765 ID RADIATION; WATER; 2,4-DICHLOROPHENOL; DETOXIFICATION; DECOMPOSITION
163766 AB Electron beam was successfully used for the degradation of
163767    2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) in aqueous solutions in
163768    this research. The effect of radiation dose on substrate degradation
163769    and dechlorination of solutions with concentration of 50 mg/L was
163770    investigated. The effect of initial concentration, pH and presence of
163771    oxygen was also investigated. The concentration of 2-CP and 4-CP
163772    remaining in solution after irradiation were measured by HPLC. The
163773    results showed that increased radiation dose led to increased
163774    degradation of the chlorophenols and increased CI- yield. Deaeration
163775    was also found to significantly increase the rate of degradation of
163776    chlorophenols in water while degradation and dechlorination under
163777    alkaline condition was lower than at low to neutral pH.
163778 C1 Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072, Peoples R China.
163779    Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
163780 RP Adeleke, OF, Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072,
163781    Peoples R China.
163782 EM kadeleke@yahoo.com
163783 CR COOPER WJ, 1992, J ENV SCI HLTH A, V27, P219
163784    GEHRINGER P, 1998, ENV APPL IONIZING RA, CH20
163785    GETOFF N, 1988, RADIAT PHYS CHEM, V31, P121
163786    GETOFF N, 1996, RADIAT PHYS CHEM, V47, P581
163787    HE YK, 2002, RADIAT PHYS CHEM, V65, P565
163788    JAUREGUI O, 2001, ENV ANAL, P3
163789    LIN KJ, 1995, APPL RADIAT ISOTOPES, V46, P1307
163790    NICKELSEN MG, 1992, ENVIRON SCI TECHNOL, V26, P144
163791    SAMPA MHO, 1998, RADIAT PHYS CHEM, V52, P365
163792    SCHMID S, 1997, RADIAT PHYS CHEM, V50, P493
163793    SONG W, 2001, J NANJING U, V37, P730
163794    SONG WH, 2002, RADIAT PHYS CHEM, V65, P559
163795    TROJANOWICZ M, 2002, RADIAT PHYS CHEM, V65, P357
163796    ZELE SR, 1998, ENV APPL IONIZING RA, CH25
163797    ZHANG Z, 1994, WATER SUPPLY ENG, P624
163798    ZONA R, 1999, WATER RES, V33, P1314
163799 NR 16
163800 TC 0
163801 SN 1001-0742
163802 J9 J ENVIRON SCI-CHINA
163803 JI J. Environ. Sci.
163804 PY 2005
163805 VL 17
163806 IS 2
163807 BP 301
163808 EP 304
163809 PG 4
163810 SC Environmental Sciences
163811 GA 911ZH
163812 UT ISI:000228046400028
163813 ER
163814 
163815 PT J
163816 AU Xu, FY
163817    Xiao, JK
163818 TI Analysis of the method of lines for H-waveguide with multichip
163819    dielectric
163820 SO JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS
163821 DT Article
163822 AB An analytic model for solving H-waveguide filled in multichip
163823    dielectric is established by using the method of lines in this paper.
163824    The characteristic equations of H-guide under different mode are
163825    obtained. Some dispersion and cut-off characteristics of H-guides with
163826    double and four dielectric strips are numerically calculated and some
163827    valuable results are got. The correctness of this model is verified.
163828    Difficulty on disposing of electromagnetic boundary value problem in
163829    regular guide filled in non-uniform dielectric is overcome by using the
163830    model. The application scope of the method of lines is developed as
163831    well. This is of important values in study and application of H-guide
163832    filled in multichip dielectric as well as disposing of electromagnetic
163833    boundary value problem with non-uniform dielectric.
163834 C1 Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China.
163835    Shanghai Univ, Coll Sci, Shanghai 200436, Peoples R China.
163836 RP Xu, FY, Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples
163837    R China.
163838 CR CONLON RFB, 1966, P I ELECTR ENG, V133, P1311
163839    HONG W, 1987, ELECT SCI T, V9, P309
163840    LI BH, 1990, MILLIMETER WAVES TEC, P116
163841    SCHULZ U, 1980, AEU-ARCH ELEKTRON UB, V34, P169
163842    TISCHER FJ, 1970, IEEE T MICROW THEORY, V18, P9
163843    WORM SB, 1984, IEEE T MICROW THEORY, V32, P191
163844    XU FY, 1996, INT J INFRARED MILLI, V17, P1789
163845    XU FY, 2004, J ELECTROMAGNET WAVE, V18, P233
163846    ZHAO KY, 1996, INT J INFRARED MILLI, V17, P212
163847 NR 9
163848 TC 0
163849 SN 0920-5071
163850 J9 J ELECTROMAGNET WAVE APPLICAT
163851 JI J. Electromagn. Waves Appl.
163852 PY 2005
163853 VL 19
163854 IS 5
163855 BP 591
163856 EP 604
163857 PG 14
163858 SC Engineering, Electrical & Electronic; Physics, Applied; Physics,
163859    Mathematical
163860 GA 911SD
163861 UT ISI:000228024000002
163862 ER
163863 
163864 PT J
163865 AU Tong, CL
163866    Cheng, J
163867    Yamamoto, M
163868 TI Reconstruction of convection coefficients of an elliptic equation in
163869    the plane by Dirichlet to Neumann map
163870 SO SCIENCE IN CHINA SERIES A-MATHEMATICS
163871 DT Article
163872 DE inverse problems; Dirichlet to Neumann map; reconstruction; inverse
163873    scattering; elliptic system
163874 ID INVERSE SCATTERING TRANSFORM; STEWARTSON-II EQUATIONS; BOUNDARY
163875    MEASUREMENTS; DETERMINING CONDUCTIVITY; UNIQUENESS
163876 AB The inverse problem of determining two convection coefficients of an
163877    elliptic partial differential equation by Dirichlet to Neumann map is
163878    discussed. It is well known that this is a severely ill-posed problem
163879    with high nonlinearity. By the inverse scattering technique for first
163880    order elliptic system in the plane and the theory of generalized
163881    analytic functions, we give a constructive method for this inverse
163882    problem.
163883 C1 Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
163884    Shanghai Univ, E Inst, Div Computat Sci, Shanghai 200433, Peoples R China.
163885    Univ Tokyo, Dept Math Sci, Tokyo 1538914, Japan.
163886 RP Cheng, J, Fudan Univ, Inst Math, Shanghai 200433, Peoples R China.
163887 EM tongchongliang@hotmail.com
163888    jcheng@fudan.edu.cn
163889    myama@ms.u-tokyo.ac.jp
163890 CR BARCELO JA, 2001, J DIFFER EQUATIONS, V173, P231
163891    BEALS R, 1988, NONLINEAR EVOLUTION, P15
163892    BROWN RM, 1997, COMMUN PART DIFF EQ, V22, P1009
163893    CALDERON AP, 1980, SEM NUM AN ITS APPL, P65
163894    CHEN YS, 2000, J INF SCI ENG, V16, P25
163895    CHENG J, 2001, COMM KOREAN MATH SOC, V16, P405
163896    CHENG J, 2004, SIAM J MATH ANAL, V35, P1371
163897    ISAKOV V, 1998, INVERSE PROBLEMS PAR
163898    KOHN R, 1984, COMMUN PUR APPL MATH, V37, P289
163899    KOHN RV, 1985, COMMUN PUR APPL MATH, V38, P643
163900    KUNDSEN K, 2001, RECONSTRUCTION LESS
163901    NACHMAN AI, 1988, ANN MATH, V128, P531
163902    NACHMAN AI, 1995, ANN MATH, V142, P71
163903    NAKAMURA G, 1995, MATH ANN, V303, P377
163904    SUNG LY, 1994, J MATH ANAL APPL, V183, P121
163905    SUNG LY, 1994, J MATH ANAL APPL, V183, P289
163906    SUNG LY, 1994, J MATH ANAL APPL, V183, P477
163907    SYLVESTER J, 1987, ANN MATH, V125, P153
163908    TAMASAN A, IN PRESS INVERSE PRO
163909    VEKUA IN, 1962, GEN ANAL FUNCTIONS
163910 NR 20
163911 TC 0
163912 SN 1006-9283
163913 J9 SCI CHINA SER A
163914 JI Sci. China Ser. A-Math.
163915 PD JAN
163916 PY 2005
163917 VL 48
163918 IS 1
163919 BP 40
163920 EP 56
163921 PG 17
163922 SC Mathematics, Applied; Mathematics
163923 GA 908KT
163924 UT ISI:000227786600003
163925 ER
163926 
163927 PT J
163928 AU Wang, W
163929    Zhong, SS
163930    Qi, MQ
163931    Liang, XL
163932 TI Broadband ridged-waveguide slot-antenna array fed by a back-to-back
163933    ridged waveguide
163934 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
163935 DT Article
163936 DE ridged waveguides; antenna arrays; slot arrays
163937 AB A symmetric rectangular single-ridged waveguide (SRSRW)
163938    longitudinal-slot antenna array fed by four-way SRSRW power divider is
163939    presented. The measured results are compared with the calculated ones,
163940    showing good agreement. The array has a compact transverse dimension
163941    and achieves a wide bandwidth. (c) 2005 Wiley Periodicals, Inc.
163942 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
163943    E China Res Inst Elect & Engn, Hefei 230031, Anhui, Peoples R China.
163944 RP Wang, W, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
163945    Peoples R China.
163946 CR FREZZA F, 1995, IEE P-MICROW ANTEN P, V142, P47
163947    GREEN J, 1990, IEEE T ANTENN PROPAG, V38, P1161
163948    HAMADALLAH M, 1989, IEEE T ANTENN PROPAG, V37, P817
163949    HANSEN RC, 1998, PHASED ARRAY ANTENNA
163950    KIM DY, 1988, IEEE T ANTENN PROPAG, V36, P1531
163951 NR 5
163952 TC 0
163953 SN 0895-2477
163954 J9 MICROWAVE OPT TECHNOL LETT
163955 JI Microw. Opt. Technol. Lett.
163956 PD APR 20
163957 PY 2005
163958 VL 45
163959 IS 2
163960 BP 102
163961 EP 104
163962 PG 3
163963 SC Engineering, Electrical & Electronic; Optics
163964 GA 910DG
163965 UT ISI:000227909900003
163966 ER
163967 
163968 PT J
163969 AU Zhang, HB
163970    Chen, LQ
163971 TI The unified form of Hojman's conservation law and Lutzky's conservation
163972    law
163973 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
163974 DT Article
163975 DE second-order differential equation; Lie symmetry; Hojman's conservation
163976    law; Lutzky's conservation law
163977 ID NONHOLONOMIC SYSTEMS; LIE SYMMETRY; INVARIANCE; QUANTITIES; EQUATIONS;
163978    THEOREM
163979 AB In this paper, a unified form of Hojman's conservation law and Lutzky's
163980    one is derived. The conserved quantity is constructed in terms of a
163981    symmetry transformation vector of the equation of motion only. The
163982    Hojman's conservation law and the Lutzky's one may be regarded as two
163983    special cases of this unified form. A condition is deduced to exclude
163984    trivial conserved quantities. Two simple examples are presented to
163985    illustrate the applications of the results.
163986 C1 Anhui Chaohu Coll, Dept Phys, Chaohu 238000, Peoples R China.
163987    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
163988    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
163989 RP Zhang, HB, Anhui Chaohu Coll, Dept Phys, Chaohu 238000, Peoples R China.
163990 EM hbzhang2002@eyou.com
163991 CR BLUMAN GW, 1974, SIMILARITY METHODS D
163992    BLUMAN GW, 1989, SYMMETRIES DIFFERENT
163993    COHEN A, 1931, INTRO LIE THEORY ONE
163994    FU JL, 2003, PHYS LETT A, V317, P255
163995    GONALEZGASCON F, 1994, J PHYS A, V27, L59
163996    HOJMAN SA, 1992, J PHYS A, V25, P291
163997    LUTZKY M, 1979, PHYS LETT A, V72, P86
163998    LUTZKY M, 1979, PHYS LETT A, V75, P8
163999    LUTZKY M, 1995, J PHYS A-MATH GEN, V28, L637
164000    LUTZKY M, 2002, J PHYS A, V47, P1544
164001    MEI FX, 2000, J BEIJING I TECHNOL, V9, P120
164002    MEI FX, 2001, CHINESE PHYS, V10, P177
164003    MEI FX, 2001, J BEIJING I TECHNOL, V10, P138
164004    MEI FX, 2002, CHINESE SCI BULL, V47, P1544
164005    MEI FX, 2003, ACTA PHYS SIN-CH ED, V52, P1048
164006    MEI FX, 2004, J DYN CONTROL, V2, P28
164007    NOETHER AE, 1918, NACHR KGL GES WISS G, V2, P235
164008    OLVER PJ, 1993, APPL LIE GROUPS DIFF
164009    PILLAY T, 1996, J PHYS A-MATH GEN, V29, P6999
164010    SARLET W, 1981, SIAM REV, V23, P467
164011    WANG SY, 2001, CHINESE PHYS, V10, P373
164012    WANG SY, 2002, CHINESE PHYS, V11, P5
164013    ZHANG HB, 2004, ACTA MECH SINICA, V36, P254
164014    ZHANG HB, 2004, COMMUN THEOR PHYS, V42, P321
164015 NR 24
164016 TC 2
164017 SN 0031-9015
164018 J9 J PHYS SOC JPN
164019 JI J. Phys. Soc. Jpn.
164020 PD MAR
164021 PY 2005
164022 VL 74
164023 IS 3
164024 BP 905
164025 EP 909
164026 PG 5
164027 SC Physics, Multidisciplinary
164028 GA 909WO
164029 UT ISI:000227891600021
164030 ER
164031 
164032 PT J
164033 AU Huang, QW
164034    Zhu, LH
164035    Xu, J
164036    Wang, PL
164037    Gu, H
164038    Cheng, YB
164039 TI Effect of V2O5 on sintering behaviour, microstructure and dielectric
164040    properties of textured Sr0.4Ba0.6Nb2O6 ceramics
164041 SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
164042 DT Article
164043 DE (SrBa)Nb2O6; additives; sintering; microstructure; dielectric properties
164044 ID STRONTIUM-BARIUM-NIOBATE; TEMPLATED GRAIN-GROWTH; SR0.53BA0.47NB2O6
164045    CERAMICS; PHOTOREFRACTIVE PROPERTIES; ELECTRICAL-PROPERTIES; CRYSTAL
164046    STRUCTURES; SR1-XBAXNB2O6; FABRICATION; PHASE
164047 AB The acicular Sr0.39Ba0.48K0.32Nb2O6 single crystal particles were first
164048    prepared by the reaction of SrCO3, BaCO3 and Nb2O5 in molten K2SO4 at
164049    1300 degrees C for 3 h. By using these single crystal particles as
164050    seeds and V2O5 as additives, textured Sr0.4Ba0.6Nb2O6 (SBN40) ceramics
164051    were obtained. The effect of V2O5 on sintering behaviour,
164052    microstructure and dielectric properties of textured SBN40 ceramics was
164053    investigated. The experimental results show that the addition of V2O5
164054    can accelerate the densification rate of the material and encourage the
164055    texture of SBN40 ceramics, which further improves the anisotropy in
164056    dielectric properties between different directions of textured SBN40
164057    ceramics. (c) 2004 Elsevier Ltd. All rights reserved.
164058 C1 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
164059    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
164060    Monash Univ, Sch Phys & Mat Engn, Clayton, Vic 3800, Australia.
164061 RP Huang, QW, Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High
164062    Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
164063 EM huangqw@mail.sic.ac.cn
164064 CR ANTISIGIN VD, 1981, FERROELECTRICS, V38, P761
164065    DURAN C, 2000, J AM CERAM SOC, V83, P2203
164066    DURAN C, 2002, J MATER RES, V17, P2399
164067    GLASS AM, 1969, J APPL PHYS, V40, P4699
164068    HUANG QW, 2002, MATER LETT, V56, P915
164069    JAMIESON PB, 1968, J CHEM PHYS, V48, P5048
164070    LEE SI, 1988, FERROELECTRICS, V87, P209
164071    LENZO PV, 1967, APPL PHYS LETT, V11, P23
164072    LOTGERING FK, 1959, J INORG NUCL CHEM, V9, P113
164073    MORENOGOBBI A, 2000, J ALLOY COMPD, V310, P29
164074    MURTY SN, 1994, FERROELECTRICS, V158, P325
164075    NEURGAONKAR RR, 1980, MATER RES BULL, V15, P1235
164076    NEURGAONKAR RR, 1986, J OPT SOC AM B, V3, P274
164077    NEURGAONKAR RR, 1987, OPT ENG, V26, P392
164078    NEURGAONKAR RR, 1988, FERROELECTRICS, V87, P167
164079    NISHIWAKI S, 1996, J CERAM SOC JPN, V104, P413
164080    UMAKANTHAM K, 1987, J MATER SCI LETT, V6, P565
164081    VANDAMME NS, 1991, J AM CERAM SOC, V74, P1785
164082    WOIKE T, 2001, APPL PHYS B-LASERS O, V72, P661
164083 NR 19
164084 TC 0
164085 SN 0955-2219
164086 J9 J EUR CERAM SOC
164087 JI J. European Ceram. Soc.
164088 PD MAR
164089 PY 2005
164090 VL 25
164091 IS 6
164092 BP 957
164093 EP 962
164094 PG 6
164095 SC Materials Science, Ceramics
164096 GA 908XB
164097 UT ISI:000227822400023
164098 ER
164099 
164100 PT J
164101 AU Lin, HX
164102    Jiang, Y
164103    Chen, JM
164104    Chen, JK
164105    Chen, MQ
164106 TI Synthesis and crystal structure of 2-debenzoyl and 4-deacetyl
164107    1-deoxybaccatin VI derivatives
164108 SO JOURNAL OF MOLECULAR STRUCTURE
164109 DT Article
164110 DE 1-deoxybaccatin VI derivatives; synthesis; crystal structure;
164111    conformation; hydrogen bond
164112 ID BIOLOGICAL EVALUATION; BETA-TUBULIN; TAXOL; ANALOGS; CONFORMATION
164113 AB Two novel 4-deacetyl and 2,4-deacyl 1-deoxybaccatin VI derivatives were
164114    prepared from 1-deoxybaccatin VI. Their structures were elucidated
164115    using extensive spectroscopic techniques (IR, 1HNMR, DEPT, COSY, HMQC
164116    and MS). In addition, the conformations for these compounds were
164117    obtained by X-ray diffraction methods. Comparisons to 1-deoxybaccatin
164118    VI and paclitaxel identify relative differences principally in the
164119    cyclohexenyl ring (A ring). Conformational analysis showed that removal
164120    of 4-acetyl or 2,4-diacyl moiety has a decisive influence on the
164121    conformation of the A ring. (c) 2004 Elsevier B.V. All rights reserved.
164122 C1 Fudan Univ, Dept Environm Sci & Engn, Shanghai 200433, Peoples R China.
164123    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
164124    Fudan Univ, Sch Life Sci, Inst Biodivers, Minist Key Lab Biodivers Sci & Ecol Engn, Shanghai 200433, Peoples R China.
164125    Fudan Univ, Res Ctr Anal & Measurement, Shanghai 200433, Peoples R China.
164126 RP Chen, JM, Fudan Univ, Dept Environm Sci & Engn, Shanghai 200433,
164127    Peoples R China.
164128 EM jmchen@fudan.ac.cn
164129 CR CHAUDHARY AG, 1994, J AM CHEM SOC, V116, P4097
164130    CHEN SH, 1993, TETRAHEDRON LETT, V34, P3205
164131    DATTA A, 1994, J MED CHEM, V37, P4258
164132    GABETTA B, 1995, J NAT PROD, V58, P1508
164133    GANESH T, 2004, P NATL ACAD SCI USA, V101, P10006
164134    GEORG GI, 1995, TAXOL SCI APPL, P317
164135    GUENARD D, 2000, BIOORGAN MED CHEM, V8, P145
164136    HARPER JK, 2001, ACTA CRYSTALLOGR C 1, V57, P64
164137    HE LF, 2000, BIOCHEMISTRY-US, V39, P3972
164138    KINGSTON DGI, 1999, J ORG CHEM, V64, P1814
164139    LI YK, 2000, BIOCHEMISTRY-US, V39, P281
164140    LIN HX, 2004, CHINESE J CHEM, V22, P751
164141    MASTROPAOLO D, 1995, P NATL ACAD SCI USA, V92, P6920
164142    METAFERIA BB, 2001, ORG LETT, V3, P2461
164143    NICOLAOU KC, 1995, J AM CHEM SOC, V117, P2409
164144    NOGALES E, 1998, NATURE, V391, P199
164145    OJIAM I, 1997, J AM CHEM SOC, V40, P279
164146    SCHIFF PB, 1979, NATURE, V277, P665
164147    SNYDER JP, 2001, P NATL ACAD SCI USA, V98, P5312
164148    THAYER AM, 2000, CHEM ENG NEWS, V78, P20
164149    VERWEIJ J, 1994, ANN ONCOL, V5, P495
164150    WU N, 1998, ACTA PHARMACOL SINIC, V33, P759
164151 NR 22
164152 TC 0
164153 SN 0022-2860
164154 J9 J MOL STRUCT
164155 JI J. Mol. Struct.
164156 PD MAR 14
164157 PY 2005
164158 VL 738
164159 IS 1-3
164160 BP 59
164161 EP 65
164162 PG 7
164163 SC Chemistry, Physical
164164 GA 907UW
164165 UT ISI:000227744500009
164166 ER
164167 
164168 PT J
164169 AU Li, GH
164170 TI An active control synchronization for two modified Chua circuits
164171 SO CHINESE PHYSICS
164172 DT Article
164173 DE chaos; synchronization; modified Chua circuit; active control; state
164174    observer
164175 ID NONFEEDBACK METHODS; CHAOS; SYSTEMS
164176 AB From modern control theory, an active control method to synchronize two
164177    modified Chua circuits with each other, which exhibit chaos, is
164178    presented. Some sufficient conditions of linear stability of the
164179    chaotic synchronization are obtained from rigorous mathematic
164180    justification. On the basis of the state-observer, the controller is
164181    analytically deduced using the active control. It is shown that this
164182    technique can be applied to achieve synchronization of the two systems
164183    with each other, whether they are identical or not. Finally, numerical
164184    simulations show the effectiveness of the proposed control scheme.
164185 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
164186 RP Li, GH, Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R
164187    China.
164188 EM ghlee@sh163.net
164189 CR BAI EW, 1997, CHAOS SOLITON FRACT, V8, P51
164190    CUOMO KM, 1993, PHYS REV LETT, V71, P65
164191    GE SS, 2000, IEEE T CIRCUITS-I, V47, P1397
164192    HARTLEY TT, 1993, J CIRCUIT SYST COMP, V3, P173
164193    HWANG CC, 1996, PHYSICA D, V92, P95
164194    MORGUL O, 1999, PHYS REV LETT, V82, P77
164195    OTT E, 1990, PHYS REV LETT, V64, P1196
164196    PECORA LM, 1990, PHYS REV LETT, V64, P821
164197    RAJASEKAR S, 1997, CHAOS SOLITON FRACT, V8, P1545
164198    RAMESH M, 1999, CHAOS SOLITON FRACT, V10, P1473
164199    SAITO T, 1995, IEEE T CIRCUITS-I, V42, P168
164200    YASSEN MT, 2002, APPL MATH COMPUT, V135, P113
164201 NR 12
164202 TC 1
164203 SN 1009-1963
164204 J9 CHIN PHYS
164205 JI Chin. Phys.
164206 PD MAR
164207 PY 2005
164208 VL 14
164209 IS 3
164210 BP 472
164211 EP 475
164212 PG 4
164213 SC Physics, Multidisciplinary
164214 GA 908OZ
164215 UT ISI:000227798000007
164216 ER
164217 
164218 PT J
164219 AU Ma, HL
164220 TI Measurement of hyperfine structure and isotope shifts in the 580.56nm
164221    line of Nd-142-145,146,148,150(+)
164222 SO CHINESE PHYSICS
164223 DT Article
164224 DE isotope shifts; hyperfine structure; fast-ion-beam laser spectroscopy;
164225    hyperfine coupling constants
164226 ID NEODYMIUM; SPECTROSCOPY; TRANSITIONS
164227 AB Isotope shifts and hyperfine spectrum of singly ionized neodymium ion
164228    was measured by collinear fast-ion-beam. laser spectroscopy. The
164229    hyperfine A constants and B constants are obtained for the
164230    (23230)degrees(912) level and 4f(4)5d K-6(9/2) level, respectively. The
164231    optical isotope shifts between seven isotopes in the 580.56 nm of
164232    Nd-142-145,146,148,150(+) line are determined. The configuration
164233    admixtures for (23230)degrees(9/2) level were quantitatively analysed
164234    to be 4f(4)6p, 4f(3)5d(2), and 4f(3)5d6p with mixing coefficients of
164235    67%, 5%, and 28%, respectively.
164236 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
164237 RP Ma, HL, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
164238 EM hl-ma@mail.shu.edu.cn
164239 CR AHMAD SA, 1981, SPECTROCHIM ACTA B, V36, P943
164240    BLAISE J, 1984, PHYS SCR, V29, P119
164241    DENHARTOG EA, 2001, J OPT SOC AM B, V18, P861
164242    EMERY GT, 1996, ATOMIC MOL OPTICAL P, P198
164243    HOHLE C, 1982, Z PHYS A, V304, P279
164244    KING WH, 1973, Z PHYS, V265, P207
164245    KOLACHEVSKII NN, 2001, OPT SPECTROSC+, V90, P164
164246    KROGER S, 2002, PHYS SCRIPTA, V65, P56
164247    LAWLER JE, 2001, ASTROPHYS J SUPPL S, V137, P351
164248    MA HL, 2002, CHINESE PHYS, V11, P905
164249    REHSE SJ, 2001, J OPT SOC AM B, V18, P855
164250    VILLEMOES P, 1995, PHYS REV A, V51, P2838
164251 NR 12
164252 TC 0
164253 SN 1009-1963
164254 J9 CHIN PHYS
164255 JI Chin. Phys.
164256 PD MAR
164257 PY 2005
164258 VL 14
164259 IS 3
164260 BP 511
164261 EP 515
164262 PG 5
164263 SC Physics, Multidisciplinary
164264 GA 908OZ
164265 UT ISI:000227798000014
164266 ER
164267 
164268 PT J
164269 AU Liu, L
164270    Wu, QS
164271    Ding, YP
164272    Liu, HJ
164273 TI Assembling synthesis of ZnSe orthohexagonal slices through emulsion
164274    liquid membrane system of gas-liquid transport
164275 SO CHINESE CHEMICAL LETTERS
164276 DT Article
164277 DE ZnSe; emulsion liquid membrane; orthohexagonal slices; self-assembly
164278 ID NANOSHEET CRYSTALLITES; OPTICAL-PROPERTIES; CDSE; NANOPARTICLES;
164279    NANOCRYSTALS; ORGANIZATION; PARTICLES; CHEMISTRY
164280 AB Orthohexagonal slices assembled by ZnSe quantum dots were synthesized
164281    through emulsion liquid membrane system. These orthohexagonal slices
164282    were 1.5-3.5 mu m in side length and were self-assembled by ZnSe
164283    quantum dots of 2-3 nm. It was proposed the surfactant molecules on
164284    ZnSe quantum dots played a key role in the self-assembly process.
164285 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
164286    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
164287 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
164288 EM qswu@mail.tongji.edu.cn
164289 CR ALIVISATOS AP, 1996, J PHYS CHEM-US, V100, P13226
164290    HAO EC, 1999, CHEM MATER, V11, P3096
164291    HIRAI T, 2002, CHEM MATER, V14, P3576
164292    KAGAN CR, 1996, PHYS REV LETT, V76, P1517
164293    KRESGE CT, 1992, NATURE, V359, P710
164294    LI M, 1999, NATURE, V402, P393
164295    MANN S, 1995, J MATER CHEM, V5, P935
164296    PENG Q, 2001, INORG CHEM, V40, P3840
164297    RINGSDORF H, 1988, ANGEW CHEM INT EDIT, V27, P113
164298    SASAKI T, 1997, J PHYS CHEM B, V101, P10159
164299    SASAKI T, 2001, J PHYS CHEM B, V105, P6116
164300    WU QS, 2000, J MEMBRANE SCI, V172, P199
164301    YANG D, 2002, ADV MATER, V14, P1543
164302    YU SH, 2002, ADV MATER, V14, P296
164303    ZHAN JH, 2003, ADV MATER, V15, P621
164304    ZHAO DY, 1998, SCIENCE, V279, P548
164305 NR 16
164306 TC 0
164307 SN 1001-8417
164308 J9 CHIN CHEM LETT
164309 JI Chin. Chem. Lett.
164310 PD MAR
164311 PY 2005
164312 VL 16
164313 IS 3
164314 BP 375
164315 EP 378
164316 PG 4
164317 SC Chemistry, Multidisciplinary
164318 GA 908PS
164319 UT ISI:000227800300029
164320 ER
164321 
164322 PT J
164323 AU Huang, XL
164324    Liu, P
164325    Wang, BS
164326 TI Evaluation of Pa-233 decay data
164327 SO APPLIED RADIATION AND ISOTOPES
164328 DT Article
164329 DE protactinium-233; decay; half-life; emission probabilities; internal
164330    conversion coefficients
164331 ID PHOTON-EMISSION PROBABILITIES; NP-237; STANDARDIZATION; EQUILIBRIUM;
164332    U-233; RAYS
164333 AB An evaluation of the complete scheme and data for Pa-233 decay,
164334    including results of the recent measurements, is presented. Several
164335    data evaluation procedures were used in the analysis of the half-life
164336    data. The half-life has been determined to be 26.971 +/- 0.013 days.
164337    All the gamma-ray emission probabilities ever published have been
164338    examined, and the gamma-ray emission probability for the reference
164339    312-keV gamma line is recommended as 38.35 +/- 0.28%. The calculated
164340    internal conversion coefficients and their uncertainties have been used
164341    to obtain the complete decay intensity balance. Other decay
164342    characteristics have been calculated using the ENSDF analysis program.
164343    Finally, a new Pa-233 decay scheme has been built. (c) 2004 Elsevier
164344    Ltd. All rights reserved.
164345 C1 China Nucl Data Ctr, China Inst Atom Energy, Beijing 102413, Peoples R China.
164346    Shanghai Univ, Dept Phys, Shanghai 201800, Peoples R China.
164347 RP Huang, XL, China Nucl Data Ctr, China Inst Atom Energy, POB 275-41,
164348    Beijing 102413, Peoples R China.
164349 EM huangxl@iris.ciae.ac.cn
164350 CR AKOVALI YA, 1990, NUCL DATA SHEETS, V59, P263
164351    ALBRIDGE RG, 1961, NUCL PHYS, V27, P529
164352    AUDI G, 2003, NUCL PHYS A, V729, P337
164353    BORNER HG, 1979, NUCL INSTRUM METHODS, V166, P251
164354    GEHRKE RJ, 1979, NUCL SCI ENG, V70, P298
164355    GROSSE AV, 1941, PHYS REV, V59, P322
164356    JAMES MF, 1992, NUCL INSTRUM METH A, V313, P277
164357    JONES RT, 1986, NUCL SCI ENG, V93, P171
164358    KOUASSI MC, 1990, J PHYS G, V16, P1881
164359    KRANE KS, 1986, NUCL PHYS A, V459, P1
164360    LUCA A, 2000, APPL RADIAT ISOTOPES, V52, P481
164361    LUCA A, 2002, APPL RADIAT ISOTOPES, V56, P173
164362    MCISAAC LD, 1956, NUCLEONICS, V14, P65
164363    RAJPUT MU, 1992, NUCL INSTRUM METH A, V312, P289
164364    SCHOTZIG U, 2000, APPL RADIAT ISOTOPES, V52, P883
164365    SHCHUKIN G, 2004, APPL RADIAT ISOTOPES, V60, P239
164366    USMAN K, 2000, APPL RADIAT ISOTOPES, V52, P585
164367    VALKEAPAA T, 1973, PHYS FENN, V9, P43
164368    VANINBROUKX R, 1984, INT J APPL RADIAT IS, V35, P905
164369    VONEGIDY T, 1971, Z NATURFORSCH A, V26, P1092
164370    WOODS SA, 1988, NUCL INSTRUM METH A, V264, P333
164371    WOODS SA, 2000, APPL RADIAT ISOTOPES, V52, P475
164372    WRIGHT HW, 1957, NUCL SCI ENG, V2, P427
164373    ZIJP WL, 1985, ECN179
164374 NR 24
164375 TC 1
164376 SN 0969-8043
164377 J9 APPL RADIAT ISOTOPES
164378 JI Appl. Radiat. Isot.
164379 PD MAY
164380 PY 2005
164381 VL 62
164382 IS 5
164383 BP 797
164384 EP 804
164385 PG 8
164386 SC Chemistry, Inorganic & Nuclear; Radiology, Nuclear Medicine & Medical
164387    Imaging; Nuclear Science & Technology
164388 GA 910JC
164389 UT ISI:000227926300016
164390 ER
164391 
164392 PT J
164393 AU Jia, GQ
164394    Zhang, JC
164395    Liu, YS
164396    Zhang, XY
164397 TI Effect of induced magnetic field on microstructure and magnetic
164398    properties of Bi-Mn alloy
164399 SO ACTA PHYSICA SINICA
164400 DT Article
164401 DE magnetic field inducement; Bi-Mn alloy; MnBi phase; directional
164402    alignment
164403 ID TEMPERATURE DEPENDENCE; MANGANESE BISMUTHIDE; ELECTRONIC-STRUCTURE;
164404    NEUTRON DIFFRACTION; SOLIDIFICATION; ANISOTROPY; PHASE;
164405    CRYSTALLIZATION; TRANSFORMATION; RESONANCE
164406 AB The Bi-Mn wt6% alloys were solidified from semi-solid state in a
164407    magnetic field. The microstructure and magnetic properties have been
164408    studied systematically. The results show that the samples were of a
164409    eutectic structure of double phases and have large anisotropy. It was
164410    shown that the alignment of MnBi crystals occurred along the induced,
164411    field. With increasing induced magnetic field, the remanence(M-r)
164412    increased gradually, which shows that the higher the induced magnetic
164413    field, the better the alignment. The spin reorientation temperature
164414    (T-SR) for MnBi alloys increases with increasing induced magnetic
164415    field. The effects of the induced field on the microstructure and the
164416    magnetic properties of Bi-Mn wt6% alloys were also discussed.
164417 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
164418    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200436, Peoples R China.
164419 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
164420 EM jczhang@mail.shu.edu.cn
164421 CR ALBERT PA, 1961, J APPL PHYS, V32, S201
164422    ANDRESEN AF, 1967, ACTA CHEM SCAND, V21, P1543
164423    BEAUGNON E, 1991, NATURE, V349, P470
164424    BRAITHWAITE D, 1991, NATURE, V354, P134
164425    BROOKS JS, 1998, J PHYS CHEM SOLIDS, V59, P569
164426    CHEN D, 1964, J APPL PHYS, V35, P1024
164427    CHEN T, 1974, IEEE T MAGN, V10, P581
164428    CHEN T, 1974, J APPL PHYS, V45, P2358
164429    CHIKAZUMI S, 1955, J PHYS SOC JPN, V10, P842
164430    CHIKAZUMI S, 1956, J PHYS SOC JPN, V11, P551
164431    COEHOORN R, 1985, J PHYS F MET PHYS, V15, P2135
164432    DERANGO P, 1991, NATURE, V349, P770
164433    DILLINGER JF, 1935, PHYSICS, V6, P279
164434    GUILLAUD C, 1951, J PHYS RADIUM, V12, P143
164435    GUO X, 1992, PHYS REV B, V46, P14578
164436    HEIKES RR, 1955, PHYS REV, V99, P446
164437    HIHARA T, 1970, J PHYS SOC JPN, V29, P343
164438    KELSALL GA, 1934, PHYSICS, V5, P169
164439    LEGRAND B, 1998, J ALLOY COMPD, V275, P660
164440    LEGRAND BA, 1997, J MAGN MAGN MATER, V173, P20
164441    MIKELSON AE, 1981, J CRYST GROWTH, V52, P524
164442    NEEL L, 1954, J PHYS RADIUM, V15, P225
164443    PENG ZZ, 2002, CHINESE PHYS, V11, P95
164444    ROBERTS BW, 1956, PHYS REV, V104, P607
164445    SAVITSKY EM, 1981, J CRYST GROWTH, V52, P519
164446    UNGER WK, 1972, J APPL PHYS, V43, P2875
164447    WABG JL, 1998, ACTA PHYS SINICA, V47, P910
164448    WANG H, 2002, ACTA METALL SIN, V38, P41
164449    WANG W, 2002, ACTA PHYS SIN-CH ED, V51, P2846
164450    YANG D, 1999, ACTA PHYS SIN-CH E S, V48, S80
164451    YANG JB, 2002, J PHYS-CONDENS MAT, V14, P6509
164452    YOSHIDA H, 2001, J ALLOY COMPD, V317, P297
164453    ZHANG LG, 1998, ACTA PHYS SINICA, V47, P817
164454 NR 33
164455 TC 0
164456 SN 1000-3290
164457 J9 ACTA PHYS SIN-CHINESE ED
164458 JI Acta Phys. Sin.
164459 PD MAR
164460 PY 2005
164461 VL 54
164462 IS 3
164463 BP 1126
164464 EP 1131
164465 PG 6
164466 SC Physics, Multidisciplinary
164467 GA 908KQ
164468 UT ISI:000227786300022
164469 ER
164470 
164471 EF
164472 FN ISI Export Format
164473 VR 1.0
164474 PT J
164475 AU Xu, JQ
164476    Wang, XH
164477    Shen, JN
164478 TI Hydrothermal synthesis of In2O3 for detecting H2S in air
164479 SO SENSORS AND ACTUATORS B-CHEMICAL
164480 DT Article
164481 DE hydrothermal reaction; indium oxide; nanomaterial; gas sensor
164482 ID GAS-SENSING PROPERTIES; SOL-GEL METHOD; THIN-FILM; INDIUM; OXIDE;
164483    SENSOR; ITO
164484 AB Nanocrystalline In2O3 gas sensing material was prepared by sintering a
164485    precursor In(OH)(3) at 600 degrees C which was hydrothermally
164486    synthesized at 250 degrees C for 24 h by using InCl(3)(.)4H(2)O as a
164487    starting material. The nanopowder was characterized by X-ray
164488    diffraction (XRD), transmission electron microscopy (TEM),
164489    thermogravimetry-differential scanning calorimetry (TG-DSC) and X-ray
164490    photoelectron spectrometer (XPS). The results indicated that the
164491    precursor of indium oxide was cubic indium hydroxide with range size of
164492    50-80 nm, and indium oxide was composed of In and O. Gas sensing
164493    properties of the sensors were tested by mixing a gas in air at static
164494    state, the tested results showed that the sensor based on In2O3
164495    nanocrystals had satisfying H2S gas sensing properties at rather low
164496    temperature. (c) 2005 Elsevier B.V. All rights reserved.
164497 C1 Zhengzhou Univ Light Ind, Coll Mat & Chem Engn, Zhengzhou 450002, Henan, Peoples R China.
164498    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
164499 RP Xu, JQ, Zhengzhou Univ Light Ind, Coll Mat & Chem Engn, Zhengzhou
164500    450002, Henan, Peoples R China.
164501 EM xujiaqiang@zzuli.edu.cn
164502 CR ALI EB, 2002, MATER CHEM PHYS, V73, P78
164503    BELYSHEVA TV, 2001, J ANAL CHEM+, V56, P676
164504    CHUNG WY, 2001, J MATER SCI-MATER EL, V12, P591
164505    EPIFANI M, 2003, J SOL-GEL SCI TECHN, V26, P741
164506    GAGAOUDAKIS E, 2001, SENSOR ACTUAT B-CHEM, V80, P155
164507    GURLO A, 2003, CHEM MATER, V15, P4377
164508    HU JQ, 2003, SENSOR ACTUAT B-CHEM, V93, P175
164509    JIAO Z, 2003, SENSOR ACTUAT B-CHEM, V94, P216
164510    LAO JY, 2004, ADV MATER, V16, P65
164511    LI YB, 2003, ADV MATER, V15, P581
164512    SHUKLA S, 2004, SENSOR ACTUAT B-CHEM, V97, P256
164513    TANG SC, 2003, J MATER PROCESS TECH, V137, P82
164514    XU JQ, 1999, J CHINESE CERAMIC SO, V27, P591
164515    YAMAZOE N, 2003, CATAL SURV ASIA, V7, P63
164516    YU DB, 2003, ADV FUNCT MATER, V13, P497
164517    ZHAN ZL, 2003, CHIN J T TECHNOL, V22, P31
164518    ZHAN ZL, 2003, CHIN J TRAN TECHNOL, V22, P1
164519    ZHAN ZL, 2004, J COLLOID INTERF SCI, V271, P366
164520    ZHU HL, 2004, SEMICOND SCI TECH, V19, P1020
164521 NR 19
164522 TC 0
164523 SN 0925-4005
164524 J9 SENSOR ACTUATOR B-CHEM
164525 JI Sens. Actuator B-Chem.
164526 PD JUN 26
164527 PY 2006
164528 VL 115
164529 IS 2
164530 BP 642
164531 EP 646
164532 PG 5
164533 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
164534 GA 045RY
164535 UT ISI:000237761000012
164536 ER
164537 
164538 PT J
164539 AU Chen, X
164540    Li, CF
164541    Ban, Y
164542 TI Novel displacement in transmission through a two-dimensional
164543    semiconductor barrier
164544 SO PHYSICS LETTERS A
164545 DT Article
164546 DE lateral displacement; ballistic electron beam; resonance enhancement
164547 ID ELECTRON-WAVE-OPTICS; TUNNELING TIME; HETEROSTRUCTURE; GUIDES;
164548    INTERFERENCE
164549 AB The lateral displacement of electron beams transmitting through a
164550    two-dimensional semiconductor barrier is quite different from the
164551    prediction from Snell's law for electron waves. It is shown that the
164552    displacement can be greatly enhanced by transmission resonance when the
164553    incidence angle is less than but close to the critical angle for total
164554    reflection. The displacement depends not only on the barrier's
164555    thickness but also on the incidence angle and the incidence energy. The
164556    influence of electron's effective mass is also discussed. Theoretical
164557    results of the stationary-phase approach are confirmed by numerical
164558    simulations for a Gaussian-shaped incident beam. These phenomena may
164559    lead to novel applications in quantum electronic devices. (c) 2006
164560    Elsevier B.V. All rights reserved.
164561 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
164562    Acad Sinica, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt Technol, Xian 710068, Peoples R China.
164563 RP Chen, X, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200444,
164564    Peoples R China.
164565 EM xchen@graduate.shu.edu.cn
164566 CR BOHM D, 1951, QUANTUM THEORY, P257
164567    DATTA S, 1996, ELECT TRANSPORT MESO, P276
164568    DEBRAY P, 2000, PHYS REV B, V61, P10950
164569    DRAGOMAN D, 1999, PROG QUANT ELECTRON, V23, P131
164570    FURUYA K, 2003, PHYS REV LETT, V91
164571    GAYLORD TK, 1989, J APPL PHYS, V65, P814
164572    GAYLORD TK, 1991, P IEEE, V79, P1159
164573    GAYLORD TK, 1991, P IEEE, V79, P1159
164574    GOOS F, 1947, ANN PHYSIK, V1, P333
164575    GOOS F, 1949, ANN PHYS-LEIPZIG, V5, P251
164576    JI Y, 2003, NATURE, V422, P415
164577    JONES GM, 2005, APPL PHYS LETT, V86
164578    KANAN AM, 1994, J APPL PHYS, V74, P370
164579    KANAN AM, 1994, J APPL PHYS, V75, P351
164580    LEE B, 1993, SUPERLATTICE MICROST, V14, P295
164581    LIANG WJ, 2001, NATURE, V411, P665
164582    PARANJAPE VV, 1995, PHYS REV B, V52, P10740
164583    PARK KW, 1995, PHYS REV B, V51, P13805
164584    SPECTOR J, 1990, APPL PHYS LETT, V56, P1290
164585    SPECTOR J, 1990, APPL PHYS LETT, V56, P2433
164586    SPECTOR J, 1991, APPL PHYS LETT, V58, P263
164587    TAKAGAKI Y, 1994, PHYS REV B, V49, P1782
164588    WHITE CT, 2001, NATURE, V411, P649
164589    WILSON DW, 1991, APPL PHYS LETT, V59, P1855
164590    WILSON DW, 1993, IEEE J QUANTUM ELECT, V29, P1364
164591 NR 25
164592 TC 0
164593 SN 0375-9601
164594 J9 PHYS LETT A
164595 JI Phys. Lett. A
164596 PD MAY 22
164597 PY 2006
164598 VL 354
164599 IS 1-2
164600 BP 161
164601 EP 165
164602 PG 5
164603 SC Physics, Multidisciplinary
164604 GA 044QE
164605 UT ISI:000237686500025
164606 ER
164607 
164608 PT J
164609 AU Chen, Y
164610    Qiu, XJ
164611    Dong, XL
164612 TI A theory for cell microtubule wall in external field and pseudo-spin
164613    wave excitation
164614 SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
164615 DT Article
164616 DE microtubule; double-well potential; pseudo-spin; external electric
164617    field; random phase approximation
164618 ID ENERGY-TRANSFER; MECHANISM; MODEL
164619 AB The cytoskeleton of eukaryotic cells contains networks of protein
164620    polymers called microtubules (MTs), which provide a wide range of
164621    microskeletal and micromuscular functionalities. Evidences from a
164622    number of directions suggest that they can also serve as a medium for
164623    intracellular signal processing. For the inherent symmetry structures
164624    and the electric properties of the microtubule (MT), we treat the NIT
164625    wall as a one-dimension ferroelectric system and describe the nonlinear
164626    dynamics of the dimer electric dipoles with the double-well potential,
164627    and then map the physical problems onto the pseudo-spin system. By
164628    using the random phase approximation, the effect from the external
164629    electric field has been taken into account. We have developed an
164630    expression for the Hamiltonian in the pseudo-spin system and obtained
164631    the coupled motion equations for the disturbed pseudo-spin wave, and
164632    there appears to be a transverse collective excitation with an
164633    intrinsic frequency. (c) 2005 Elsevier B.V. All rights reserved.
164634 C1 Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
164635    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
164636 RP Chen, Y, Chinese Acad Sci, Shanghai Inst Ceram, 1295 Dingxi Rd,
164637    Shanghai 200050, Peoples R China.
164638 EM siyuyingying@hotmail.com
164639 CR AMOS LA, 1974, J CELL SCI, V14, P523
164640    BLINC R, 1974, SOFT MODES FERROELEC, P132
164641    CHEN Y, 2003, ACTA PHYS SIN-CH ED, V52, P1554
164642    COLLINS MA, 1979, PHYS REV B, V19, P3630
164643    DELGIUDICE E, 1986, NUCL PHYS B, V275, P185
164644    DOMBECK DA, 2003, P NATL ACAD SCI USA, V100, P7081
164645    ENGELBORGHS Y, 1992, NANOBIOLOGY, V1, P97
164646    FROHLICH H, 1980, ADV ELECTRON ELECTRO, V53, P85
164647    HAKEN H, 1976, QUANTUM FIELD THEORY, P198
164648    HAMEROFF SR, 1982, J THEOR BIOL, V98, P549
164649    JIBU M, 1994, BIOSYSTEMS, V32, P195
164650    KARPLUS M, 1983, DYNAMICS PROTEINS EL, P263
164651    MAVROMATOS NE, 1998, INT J MOD PHYS B, V12, P517
164652    MAVROMATOS NE, 2002, INT J MOD PHYS B, V16, P3623
164653    NOGALES E, 1998, NATURE, V391, P199
164654    POKORNY J, 1998, BIOELECTROCH BIOENER, V45, P239
164655    POKORNY J, 1999, BIOELECTROCH BIOENER, V48, P267
164656    RASMUSSEN S, 1990, PHYSICA D, V42, P428
164657    SATARIC M, 1990, J MOL ELECTRON, V6, P63
164658    SATARIC MV, 1993, PHYS REV E, V48, P589
164659 NR 20
164660 TC 0
164661 SN 0378-4371
164662 J9 PHYSICA A
164663 JI Physica A
164664 PD JUN 15
164665 PY 2006
164666 VL 365
164667 IS 2
164668 BP 463
164669 EP 472
164670 PG 10
164671 SC Physics, Multidisciplinary
164672 GA 044QS
164673 UT ISI:000237687900015
164674 ER
164675 
164676 PT J
164677 AU Ge, HX
164678    Dai, SQ
164679    Dong, LY
164680 TI An extended car-following model based on intelligent transportation
164681    system application
164682 SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
164683 DT Article
164684 DE traffic flow; intelligent transportation system; density waves
164685 ID TRAFFIC FLOW; JAMMING TRANSITION; JAMS
164686 AB The jams in the congested traffic reveal various density waves. Some of
164687    them are described by the nonlinear wave equations: the
164688    Korteweg-de-Vries (KdV) equation, the Burgers equation and the modified
164689    KdV equation. An extended car following model are proposed in previous
164690    work, and the kink-antikink solution has been obtained from the mKdV
164691    equation. We continue to derive the KdV equation near the neutral
164692    stability line by applying the reductive perturbation method. The
164693    traffic jam could be thus described by the soliton solution, and the
164694    analysis result is consistent with the previous one. From the numerical
164695    simulations results, the soliton waves are found, and traffic jam is
164696    suppressed efficiently as encounter big disturbances. (c) 2005 Elsevier
164697    B.V. All rights reserved.
164698 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
164699    Ningbo Univ, Fac Sci, Ningbo 315211, Peoples R China.
164700 RP Dai, SQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
164701    200072, Peoples R China.
164702 EM sqdai@126.com
164703 CR DAI SQ, 1982, ADV MECH, V12, P2
164704    GE HX, 2004, PHYS REV E 2, V70
164705    GE HX, 2005, IN PRESS PHYS A
164706    GE HX, 2005, PHYS REV E 2, V71
164707    KERNER BS, 1993, PHYS REV E, V48, P2335
164708    KOMATSU TS, 1995, PHYS REV E B, V52, P5574
164709    KURTZE DA, 1995, PHYS REV E A, V52, P218
164710    LIU ZZ, 2003, PHYS REV E 2, V67
164711    MASAKUNI M, 1999, PHYS REV E, V60, P180
164712    NAGATANI T, 1998, PHYS REV E, V58, P4271
164713    NAGATANI T, 1999, PHYS REV E A, V60, P6395
164714    NAGATANI T, 1999, PHYSICA A, V271, P200
164715    NAGATANI T, 2002, REP PROG PHYS, V65, P1331
164716    NAYFEH AH, 1981, INTRO PERTURBATION T
164717 NR 14
164718 TC 0
164719 SN 0378-4371
164720 J9 PHYSICA A
164721 JI Physica A
164722 PD JUN 15
164723 PY 2006
164724 VL 365
164725 IS 2
164726 BP 543
164727 EP 548
164728 PG 6
164729 SC Physics, Multidisciplinary
164730 GA 044QS
164731 UT ISI:000237687900023
164732 ER
164733 
164734 PT J
164735 AU Zhang, DS
164736    Luo, M
164737    Arola, DD
164738 TI Displacement/strain measurements using an optical microscope and
164739    digital image correlation
164740 SO OPTICAL ENGINEERING
164741 DT Article
164742 DE digital image correlation; lens aberration; light microscope
164743 AB We conduct displacement/strain measurements on the microscale using
164744    light microscopy and digital image correlation (DIC). Errors in the
164745    measurements attributed to the optical arrangement and aberration
164746    induced at high magnification are identified using a warping function.
164747    Coefficients of the warping function are determined using a simple
164748    technique that employs a precisely made orthogonal cross-grating plate.
164749    By acquiring images of the grating and identifying the nodes using
164750    subpixel techniques, a relationship between the object and the image
164751    planes is established. Thus, the displacement/strain derived by means
164752    of DIC is corrected by converting the displacement components in the
164753    image plane to the coordinate system existing on the object's surface.
164754    The approach is validated through a determination of the elastic
164755    properties of common metals; errors in estimation of the elastic
164756    modulus were within 4%. Although surface preparation generally plays a
164757    critical role in successful application of DIC, it is found to be of
164758    minimal importance under high magnification. Instead, the natural
164759    surface texture can be used with adjustment of the light incident
164760    angle. Results of the study show that DIC is a powerful tool in
164761    performing displacement/ strain measurements on the microscale using a
164762    light microscope provided that an adequate correction is employed for
164763    image distortion. (c) 2006 Society of Photo-Optical Instrumentation
164764    Engineers.
164765 C1 Shanghai Univ, Dept Mech, Shanghai 200444, Peoples R China.
164766    Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
164767    Univ Maryland Baltimore Cty, Dept Mech Engn, Baltimore, MD 21250 USA.
164768 RP Zhang, DS, Shanghai Univ, Dept Mech, Shanghai 200444, Peoples R China.
164769 EM donzhang@staff.shu.edu.cn
164770 CR CARDARELLI F, 1999, MAT HDB CONCISE DESK
164771    DOWLING NE, 1998, MECH BEHAV MAT
164772    FAUGERAS O, 1993, 3 DIMENSIONAL COMPUT
164773    LU H, 1997, EXP MECH, V37, P433
164774    SCHREIER HW, 2004, EXP MECH, V44, P278
164775    SUTTON MA, 1993, AMD AM SOC MECH ENG, V176, P123
164776    SUTTON MA, 2000, P INT C TRENDS OPT N, P571
164777    TONG SY, 1997, SURF REV LETT, V4, P459
164778    TSAI RY, 1987, IEEE J ROBOTIC AUTOM, V3, P8323
164779    YU Q, 1996, P IEEE INT C SYST MA, V1, P484
164780    ZHANG D, 1999, EXP MECH, V39, P62
164781    ZHANG D, 2004, J MATER SCI, V39, P4495
164782    ZHAO WZ, 1996, J APPL POLYM SCI, V60, P1083
164783 NR 13
164784 TC 0
164785 SN 0091-3286
164786 J9 OPT ENG
164787 JI Opt. Eng.
164788 PD MAR
164789 PY 2006
164790 VL 45
164791 IS 3
164792 AR 033605
164793 DI ARTN 033605
164794 PG 9
164795 SC Optics
164796 GA 043SL
164797 UT ISI:000237621800012
164798 ER
164799 
164800 PT J
164801 AU Zhang, J
164802    Liu, L
164803 TI Novel Mach-Zehnder interferometer structure for tunable optical
164804    interleaver
164805 SO OPTICAL ENGINEERING
164806 DT Article
164807 DE optical interleaver; dense wavelength; division multiplexing (DWDM);
164808    Mach-Zehnder interferometer; center-frequency tunability
164809 ID FLAT-PASSBAND; FILTER; MULTIPLEXERS; DESIGN
164810 AB A novel optical interleaver scheme based on nested optical glass pairs
164811    is proposed. The assembly of pairs behaves as a cascaded Mach-Zehnder
164812    interferometer. The interleaver, with simple structure, low cost, and
164813    compact size, can be easily implemented with inexpensive material and
164814    mature preparation technology. Small channel spacing (<= 50 GHz), high
164815    isolation (<-30 dB), a wide, flat passband and stop band (> 2/11
164816    period), and center-frequency tunability can be obtained
164817    simultaneously. An optimum design of a 50-GHz tunable interleaver based
164818    on this structure is given as an example. Its environmental temperature
164819    sensitivity and fabrication tolerance are also analyzed. (c) 2006
164820    Society of Photo-Optical Instrumentation Engineers.
164821 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
164822    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
164823 RP Zhang, J, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
164824    Peoples R China.
164825 EM juanzhang_zj@hotmail.com
164826 CR CARLSEN WJ, 1987, ELECTRON LETT, V23, P106
164827    CHIBA T, 2001, OPT FIB COMM C WB5 O
164828    DINGEL BB, 1999, J LIGHTWAVE TECHNOL, V17, P1461
164829    HUANG D, 2001, OPT FIB COMM C WDD80
164830    LIANG F, 2002, P SOC PHOTO-OPT INS, V4906, P442
164831    LOH WH, 1999, OPT LETT, V24, P1457
164832    LU S, 2004, CHIN OPT LETT, V2, P314
164833    OGUMA M, 2000, ELECTRON LETT, V36, P1299
164834    OGUMA M, 2002, IEEE PHOTONIC TECH L, V14, P328
164835    PAEK EG, 1997, OPT LETT, V22, P1195
164836    SHINE B, 2000, LIGHTWAVE, V8, P140
164837    XU X, 2005, 6871022, US
164838    ZHANG J, 2003, J MOD OPTIC, V50, P2031
164839    ZHANG J, 2003, OPT EXPRESS, V11, P2217
164840    ZHANG Z, 1994, BRAIN TOPOGRAPHY, V6, P283
164841 NR 15
164842 TC 0
164843 SN 0091-3286
164844 J9 OPT ENG
164845 JI Opt. Eng.
164846 PD APR
164847 PY 2006
164848 VL 45
164849 IS 4
164850 AR 045003
164851 DI ARTN 045003
164852 PG 7
164853 SC Optics
164854 GA 043SP
164855 UT ISI:000237622200029
164856 ER
164857 
164858 PT J
164859 AU Xia, L
164860    Fang, SS
164861    Jo, CL
164862    Dong, YD
164863 TI Glass forming ability and microstructure of hard magnetic Nd60Al20Fe20
164864    glass forming alloy
164865 SO INTERMETALLICS
164866 DT Article
164867 DE glasses, metallic; magnetic properties; microstructure
164868 ID BULK METALLIC-GLASS; PRIMARY CRYSTALLIZATION; AMORPHOUS-ALLOYS; PHASE
164869 AB Glass forming ability (GFA), magnetic properties and microstructure of
164870    Nd60Al20Fe20 as-cast rod were investigated and further compared with
164871    Nd60Al10Fe30 glass forming alloy. The rod prepared by suction casting
164872    with a diameter of 3 mm exhibits the typical amorphous nature in XRD
164873    pattern, distinct glass transition in DSC traces and hard magnetic
164874    properties. It is found that the diameter of cast Nd60Al20Fe20 glassy
164875    rod is much larger than the critical section thickness (Z(c)) of bulk
164876    metallic glass (BMG) predicted from DSC measurements. A few
164877    nano-crystalline particles with the structure and composition similar
164878    to A(x) phase in Nd-Fe alloys were found embedded randomly in amorphous
164879    matrix and could be the origin of hard magnetic properties of the
164880    as-cast rods. The GFA of the alloy appears to be enhanced by the
164881    precipitation of metastable nanoparticles with small positive forming
164882    enthalpy and the real Z(c) of the alloy could be less than 1 mm
164883    predicted by parameter gamma. (c) 2006 Elsevier Ltd. All rights
164884    reserved.
164885 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
164886    Shanghai Univ, Ctr Microanal, Shanghai 200072, Peoples R China.
164887 RP Xia, L, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
164888 EM xialei@staff.shu.edu.cn
164889 CR BUSCH R, 1995, APPL PHYS LETT, V67, P1544
164890    DELAMARE J, 1994, J ALLOY COMPD, V216, P273
164891    FAN GJ, 2000, J MATER RES, V15, P1556
164892    FRANKWICZ PS, 1996, MATER LETT, V28, P77
164893    INOUE A, 1996, MATER T JIM, V37, P99
164894    INOUE A, 1998, METALL MATER TRANS A, V29, P1779
164895    LOFFLER JF, 2000, PHYS REV LETT, V85, P1990
164896    LU ZP, 2002, ACTA MATER, V50, P3501
164897    LU ZP, 2003, PHYS REV LETT, V91
164898    MENUSHENKOV VP, 1998, P 10 INT S MAGN AN C, P97
164899    MIEDEMA AR, 1975, J LESS-COMMON MET, V41, P283
164900    SCHNEIDER S, 2002, APPL PHYS LETT, V80, P1749
164901    TAKEUCHI A, 2001, MATER TRANS, V42, P1435
164902    TURNBULL D, 1969, CONTEMP PHYS, V10, P473
164903    WANG XZ, 1999, J ALLOY COMPD, V290, P209
164904    WEI BC, 2002, ACTA MATER, V50, P4357
164905    XIA L, 2003, J PHYS D APPL PHYS, V36, P2954
164906    XIA L, 2003, J PHYS D APPL PHYS, V36, P775
164907    XIA L, 2003, J PHYS-CONDENS MAT, V15, P3531
164908    XING LQ, 2000, J APPL PHYS, V88, P3565
164909 NR 20
164910 TC 0
164911 SN 0966-9795
164912 J9 INTERMETALLICS
164913 JI Intermetallics
164914 PD AUG-SEP
164915 PY 2006
164916 VL 14
164917 IS 8-9
164918 SI Sp. Iss. SI
164919 BP 1098
164920 EP 1101
164921 PG 4
164922 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
164923    Metallurgical Engineering
164924 GA 045VK
164925 UT ISI:000237770600045
164926 ER
164927 
164928 PT J
164929 AU Xu, JQ
164930    Wang, XH
164931    Li, C
164932 TI Electrochemical-deposited In2O3 nanocrystals for H2S detecting in air
164933 SO ELECTROCHEMICAL AND SOLID STATE LETTERS
164934 DT Article
164935 ID INDIUM OXIDE; GAS SENSOR; THIN-FILM; ITO
164936 AB In2O3 gas sensing material was synthesized by a one step
164937    electrochemical-deposition process with 3.0 V working voltage and 40
164938    A/m(2) current density using indium salt as a raw material. The crystal
164939    structure and morphology of In2O3 nanocrystals were characterized by
164940    X-ray diffraction, transmission electron microscopy, and X-ray
164941    photoelectron spectrometer. The results indicated that the structure of
164942    In2O3 without being treated was cubic structure In2O3 nanocrystals with
164943    mean grain size of 20 nm, and roundness morphology. Gas sensitivities
164944    of In2O3-based gas sensors to different kinds of gases were tested by
164945    mixing gas in air at steady state. The results indicated that the
164946    sensors showed fast response to 50 ppm H2S in air, the gas response is
164947    149 times, response time is 2 s, and the relationship between response
164948    and H2S concentration is correlated linearly in a log-log scale. (c)
164949    2006 The Electrochemical Society.
164950 C1 Zhengzhou Univ Light Ind, Coll Mat & Chem Engn, Zhengzhou 450002, Henan, Peoples R China.
164951    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
164952 RP Xu, JQ, Zhengzhou Univ Light Ind, Coll Mat & Chem Engn, Zhengzhou
164953    450002, Henan, Peoples R China.
164954 EM xujiaqiang@zzuli.edu.cn
164955 CR ALI EB, 2002, MATER CHEM PHYS, V73, P78
164956    GAGAOUDAKIS E, 2001, SENSOR ACTUAT B-CHEM, V80, P155
164957    HAO Y, 2003, MAT PROTECTION, V36, P42
164958    HU JQ, 2003, SENSOR ACTUAT B-CHEM, V93, P175
164959    JIAO Z, 2003, SENSOR ACTUAT B-CHEM, V94, P216
164960    KIM ST, 2004, SENSOR ACTUAT B-CHEM, V102, P253
164961    LAO JY, 2004, ADV MATER, V16, P65
164962    LI YB, 2003, ADV MATER, V15, P581
164963    PRASAD KR, 2004, CHEM MATER, V16, P1845
164964    SHUKLA S, 2004, SENSOR ACTUAT B-CHEM, V97, P256
164965    TANG SC, 2003, J MATER PROCESS TECH, V137, P82
164966    XU JQ, 1992, CHIN J INORG MAT, V7, P32
164967    XU JQ, 1999, J CHINESE CERAMIC SO, V27, P591
164968    XU JQ, 2005, J CHIN CERAM SOC, V33, P832
164969    XU JQ, 2006, SENSOR ACTUAT B-CHEM, V113, P526
164970    YAMAZOE N, 2003, CATAL SURV ASIA, V7, P63
164971    YANG HM, 2004, SCRIPTA MATER, V50, P413
164972    ZHAN ZL, 2004, J COLLOID INTERF SCI, V271, P366
164973    ZHANG ZY, 2004, SENSOR ACTUAT B-CHEM, V102, P155
164974 NR 19
164975 TC 0
164976 SN 1099-0062
164977 J9 ELECTROCHEM SOLID STATE LETT
164978 JI Electrochem. Solid State Lett.
164979 PY 2006
164980 VL 9
164981 IS 7
164982 BP H53
164983 EP H56
164984 PG 4
164985 SC Materials Science, Multidisciplinary; Electrochemistry
164986 GA 044OP
164987 UT ISI:000237682300036
164988 ER
164989 
164990 PT J
164991 AU Lin, KH
164992    Zeng, QB
164993    Li, MX
164994    Pan, QY
164995    Song, MP
164996    Wu, YJ
164997 TI Synthesis of a polymer(fiber)-supported chiral amino alcohol and its
164998    application to enantioselective addition of diethylzinc to benzaldehyde
164999 SO CHINESE JOURNAL OF ORGANIC CHEMISTRY
165000 DT Article
165001 DE polymer(fiber)-supported chiral amino alcohol; diethylzinc;
165002    benzaldehyde; enantioselective addition
165003 ID ASYMMETRIC CATALYSIS; AROMATIC-ALDEHYDES; POLYMER FIBERS; LIGANDS;
165004    DIALKYLZINCS; COMPLEXES; REAGENTS
165005 AB A polymer(fiber)-supported chiral amino alcohol was synthesized and
165006    applied to the enantioselective addition of diethylzinc to
165007    benzaldehyde. Compared with the resin-supported chiral amino alcohol in
165008    the same reactive time, the fiber-supported amino alcohol could
165009    increase the yield and ee value by 34% and 9% respectively. This
165010    fiber-supported catalyst could be recycled more than 5 times. The
165011    reason why catalytic property was dropped down in recycle was proved to
165012    be the loss of catalyst by the analysis of their SEM photographs.
165013 C1 Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
165014    Zhengzhou Univ, Dept Chem, Zhengzhou 450052, Peoples R China.
165015 RP Lin, KH, Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
165016 EM khlin@sohu.com
165017 CR ANYANWU UK, 2003, TETRAHEDRON LETT, V44, P6445
165018    BURGUETE MI, 2002, ORG LETT, V4, P3947
165019    DANGEL BD, 2000, ORG LETT, V2, P3003
165020    DEGNI S, 2001, ORG LETT, V3, P2551
165021    DEGNI S, 2004, TETRAHEDRON-ASYMMETR, V15, P231
165022    DEGNI S, 2005, REACT FUNCT POLYM, V62, P231
165023    DONG C, 2000, TETRAHEDRON-ASYMMETR, V11, P2449
165024    EDWARDS CW, 2003, TETRAHEDRON, V59, P5823
165025    ELMOUALIJ N, 1995, EUR POLYM J, V31, P193
165026    FAN QH, 2001, TETRAHEDRON LETT, V42, P9047
165027    FAN QH, 2002, CHEM REV, V102, P3385
165028    HOLTE P, 1999, ORG LETT, V1, P1095
165029    HU QS, 2001, TETRAHEDRON LETT, V42, P7725
165030    ITSUNO S, 1987, J ORG CHEM, V52, P4140
165031    KANTH JVB, 1993, TETRAHEDRON, V49, P5127
165032    LESMA G, 2003, TETRAHEDRON-ASYMMETR, V14, P2453
165033    LIPSHUTZ BH, 2000, TETRAHEDRON LETT, V41, P9515
165034    SHAIKH NS, 2002, TETRAHEDRON LETT, V43, P5587
165035    SOAI K, 1987, J CHEM SOC CHEM COMM, P1690
165036    SOAI K, 1988, J ORG CHEM, V53, P927
165037    WATANABE M, 1994, J CHEM SOC P1, P837
165038    YANG XW, 2000, J ORG CHEM, V65, P295
165039    YANG XW, 2000, TETRAHEDRON, V56, P3511
165040 NR 23
165041 TC 0
165042 SN 0253-2786
165043 J9 CHINESE J ORG CHEM
165044 JI Chin. J. Org. Chem.
165045 PD MAY
165046 PY 2006
165047 VL 26
165048 IS 5
165049 BP 718
165050 EP 722
165051 PG 5
165052 SC Chemistry, Organic
165053 GA 044PE
165054 UT ISI:000237683900023
165055 ER
165056 
165057 PT J
165058 AU Xu, GQ
165059 TI An elliptic equation method and its applications in nonlinear evolution
165060    equations
165061 SO CHAOS SOLITONS & FRACTALS
165062 DT Article
165063 ID TRAVELING-WAVE SOLUTIONS; PARTIAL-DIFFERENTIAL-EQUATIONS; BACKLUND
165064    TRANSFORMATION; INVERSE METHOD; SOLITONS; SERIES; MAPLE
165065 AB An elliptic equation method is presented for constructing new types of
165066    elliptic function solutions of nonlinear evolution equations. The key
165067    idea of this method is to use solutions of an elliptic equation
165068    involving four real distinct roots to construct solutions of nonlinear
165069    evolution equations. The (3+1)-dimensional modified KdV-ZK equation and
165070    Whitham-Broer-Kaup equation are chosen to illustrate the application of
165071    the elliptic equation method. Consequently, new elliptic function
165072    solutions of rational forms are derived that are not obtained by the
165073    previously known methods. (c) 2005 Elsevier Ltd. All rights reserved.
165074 C1 Shanghai Univ, Coll Int Business & Management, Dept Informat Management, Shanghai 201800, Peoples R China.
165075 RP Xu, GQ, Shanghai Univ, Coll Int Business & Management, Dept Informat
165076    Management, Shanghai 201800, Peoples R China.
165077 EM xugq@staff.shu.edu.cn
165078 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
165079    DAS KP, 1989, J PLASMA PHYS, V41, P139
165080    FAN EG, 2000, PHYS LETT A, V277, P212
165081    FAN EG, 2002, J PHYS A-MATH GEN, V35, P6853
165082    FAN EG, 2003, CHAOS SOLITON FRACT, V16, P819
165083    FU ZT, 2002, PHYS LETT A, V299, P507
165084    GU CH, 1995, SOLITON THEORY ITS A
165085    HEREMAN W, 1990, J PHYS A-MATH GEN, V23, P4805
165086    HIROTA R, 1971, PHYS REV LETT, V27, P1192
165087    KONNO K, 1975, PROG THEOR PHYS, V53, P1652
165088    KUPERSHMIDT BA, 1985, COMMUN MATH PHYS, V99, P51
165089    LI ZB, 1993, J PHYS A-MATH GEN, V26, P6027
165090    LI ZB, 2004, COMPUT PHYS COMMUN, V163, P191
165091    WADATI M, 1975, PROG THEOR PHYS, V53, P419
165092    WANG ML, 1995, PHYS LETT A, V199, P169
165093    WEISS J, 1983, J MATH PHYS, V24, P522
165094    XU GQ, 2002, ACTA PHYS SIN-CH ED, V51, P1424
165095    XU GQ, 2003, COMMUN THEOR PHYS, V39, P39
165096    XU GQ, 2004, COMPUT PHYS COMMUN, V161, P65
165097    XU GQ, 2005, CHAOS SOLITON FRACT, V24, P549
165098    YAN CT, 1996, PHYS LETT A, V224, P77
165099    YAN ZY, 2003, J PHYS A-MATH GEN, V36, P1961
165100    YAN ZY, 2004, CHAOS SOLITON FRACT, V21, P1013
165101    YAO RX, 2002, PHYS LETT A, V297, P196
165102 NR 24
165103 TC 0
165104 SN 0960-0779
165105 J9 CHAOS SOLITON FRACTAL
165106 JI Chaos Solitons Fractals
165107 PD AUG
165108 PY 2006
165109 VL 29
165110 IS 4
165111 BP 942
165112 EP 947
165113 PG 6
165114 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
165115 GA 045SV
165116 UT ISI:000237763400018
165117 ER
165118 
165119 PT J
165120 AU Sun, YP
165121    Chen, DY
165122 TI A Liouville integrable hierarchy, symmetry constraint, new
165123    finite-dimensional integrable systems, involutive solution and
165124    expanding integrable models
165125 SO CHAOS SOLITONS & FRACTALS
165126 DT Article
165127 ID BI-HAMILTONIAN STRUCTURE; NONLINEAR EVOLUTION-EQUATIONS; KONNO-ICHIKAWA
165128    HIERARCHY; BINARY NONLINEARIZATION; TRANSFORMATION
165129 AB A new spectral problem and the associated integrable hierarchy of
165130    nonlinear evolution equations are presented in this paper. It is shown
165131    that the hierarchy is completely integrable in the Liouville sense and
165132    possesses bi-Hamiltonian structure. An explicit symmetry constraint is
165133    proposed for the Lax pairs and the adjoint Lax pairs of the hierarchy.
165134    Moreover, the corresponding Lax pairs and adjoint Lax pairs are
165135    nonlinearized into a hierarchy of commutative, new finite-dimensional
165136    completely integrable Hamiltonian systems in the Liouville sense.
165137    Further, an involutive representation of solution of each equation in
165138    the hierarchy is given. Finally, expanding integrable models of the
165139    hierarchy are constructed by using a new Loop algebra. (c) 2005
165140    Elsevier Ltd. All rights reserved.
165141 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
165142 RP Sun, YP, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
165143 EM yepsun@163.com
165144 CR ABLOWITZ MJ, 1991, SOLITON NONLINEAR EV
165145    CAO CW, 1990, SCI CHINA SER A, V33, P528
165146    CHEN DY, 1987, J PHYS A-MATH GEN, V20, P313
165147    CHEN DY, 2003, CHAOS SOLITON FRACT, V15, P761
165148    FAN EG, 2000, J MATH PHYS, V41, P7769
165149    GENG XG, 1993, J MATH PHYS, V34, P805
165150    HU XB, 1992, J PHYS A, V25, P231
165151    ICHIKAWA YH, 1981, J PHYS SOC JPN, V50, P1799
165152    MA WX, 1994, PHYS LETT A, V185, P277
165153    MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
165154    MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
165155    MA WX, 2000, METH APPL ANAL, V7, P21
165156    QIAO ZJ, 1993, J PHYS A-MATH GEN, V26, P4407
165157    TSUCHIDA T, 1998, CHAOS SOLITON FRACT, V9, P869
165158    TU GZ, 1989, J MATH PHYS, V30, P330
165159    WADATI M, 1972, J PHYS SOC JPN, V32, P1681
165160    WADATI M, 1973, J PHYS SOC JPN, V34, P1289
165161    WADATI M, 1975, PROG THEOR PHYS, V53, P419
165162    WADATI M, 1979, J PHYS SOC JPN, V46, P1965
165163    WADATI M, 1979, J PHYS SOC JPN, V47, P1698
165164    XIA TC, 2004, CHAOS SOLITON FRACT, V22, P939
165165    XU XX, 1995, CHINESE PHYS LETT, V12, P513
165166    XU XX, 2002, PHYS LETT A, V301, P250
165167    XU XX, 2003, CHAOS SOLITON FRACT, V15, P475
165168    YAN ZY, 2002, CHAOS SOLITON FRACT, V14, P45
165169    ZENG YB, 2002, J PHYS A, V35, P7225
165170    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P413
165171 NR 27
165172 TC 0
165173 SN 0960-0779
165174 J9 CHAOS SOLITON FRACTAL
165175 JI Chaos Solitons Fractals
165176 PD AUG
165177 PY 2006
165178 VL 29
165179 IS 4
165180 BP 978
165181 EP 987
165182 PG 10
165183 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
165184 GA 045SV
165185 UT ISI:000237763400021
165186 ER
165187 
165188 PT J
165189 AU Zhou, GY
165190    Hu, TJ
165191    Gao, C
165192    Hua, ZZ
165193 TI The influcence of alcohol cryoprotectants on eutectic crystallization
165194    of NaCl aqueous solutions studied by DSC
165195 SO ACTA PHYSICO-CHIMICA SINICA
165196 DT Article
165197 DE alcohol cryoprotective agent; differential scanning calorimetry;
165198    eutectic crystallization; NaCl; dimethyl sulfoxide
165199 ID DIFFERENTIAL SCANNING CALORIMETRY; BEHAVIOR
165200 AB In order to investigate the effect of cryoprotective agent (CPA) on the
165201    eutectic crystallization of salt solution, differential scanning
165202    calorimetry (DSC) is used to study the eutectic phenomena of NaCl
165203    aqueous solutions with different concentrations of glycerol, ethylene
165204    glycol, 1,2-propylene glycol, 1,3-propylene glycol, and dimethyl
165205    sulfoxide. It is found that the eutectic crystallization is a
165206    super-cooling and random process. Cryoprotective agent can restrain the
165207    eutectic crystallization of NaCl aqueous solutions. The higher the
165208    concentration of cryoprotective agents, the less the enthalpy of
165209    eutectic crystallization and the bigger the capability of restraining
165210    the eutectic crystallization. The restraining effects of cryoprotective
165211    agents on eutectic crystallization are different. The best is glycerol
165212    and then is ethylene glycol, 1,2-propylene glycol, and 1,3-propylene
165213    glycol, respectively. The restraining capability of alcohols is largely
165214    determined by the ratio of molecular weight to number of hydroxyl
165215    group, and affected by the number of methyl group as well. The
165216    capability of dimethyl sulfoxide to restrain the eutectic phenomena of
165217    NaCl aqueous solutions is similar to that of ethylene glycol. It is
165218    also found that the glass transition and devitrification phenomena take
165219    place during the heating process.
165220 C1 Shanghai Univ Sci & Technol, Inst Cryomed & Food Refrigerat, Shanghai 200093, Peoples R China.
165221 RP Zhou, GY, Shanghai Univ Sci & Technol, Inst Cryomed & Food Refrigerat,
165222    Shanghai 200093, Peoples R China.
165223 EM efly_snow@163.com
165224 CR CHEN N, 2005, THERMOCHIM ACTA, V431, P106
165225    COCKS FH, 1974, CRYOBIOLOGY, V11, P340
165226    COCKS FH, 1975, J APPL PHYS, V46, P3444
165227    DEVISSER C, 1978, J CHEM SOC FARAD T 1, V74, P1159
165228    ECHLIN P, 1992, LOW TEMPERATURE MICR, P141
165229    GAO C, 2004, ACTA PHYS-CHIM SIN, V20, P123
165230    GAO C, 2004, ACTA PHYS-CHIM SIN, V20, P701
165231    GAO C, 2004, THESIS SHANGHAI U SC
165232    GREAVES RIN, 1965, CRYOBIOLOGY, S253
165233    HAN B, 2002, ASME 2002 INT MECH E, P32564
165234    HUA ZZ, 1994, CRYOBIOLOGY CRYOMEDI, P149
165235    IZUTSU K, 1995, CHEM PHARM BULL, V43, P1804
165236    KRISTIANSEN J, 1992, CRYOBIOLOGY, V29, P575
165237    MACFARLANE DR, 1987, CRYOBIOLOGY, V24, P181
165238    MERYMAN HT, 1966, CRYOBIOLOGY, P1
165239    NICOLAJSEN H, 1994, CRYOBIOLOGY, V31, P199
165240    ONEILL MJ, 1964, ANAL CHEM, V36, P1238
165241    RASMUSSEN PH, 1997, THERMOCHIM ACTA, V303, P23
165242    SHACKELFORD JF, 2004, INTRO MAT SCI ENG, P304
165243    SPENCER JN, 1981, J PHYS CHEM-US, V85, P1236
165244    WILSON PW, 1999, BIOPHYS J, V77, P2850
165245 NR 21
165246 TC 0
165247 SN 1000-6818
165248 J9 ACTA PHYS-CHIM SIN
165249 JI Acta Phys.-Chim. Sin.
165250 PD MAY
165251 PY 2006
165252 VL 22
165253 IS 5
165254 BP 638
165255 EP 643
165256 PG 6
165257 SC Chemistry, Physical
165258 GA 044YH
165259 UT ISI:000237709200024
165260 ER
165261 
165262 PT J
165263 AU Xu, JQ
165264    Jia, XH
165265    Lou, XD
165266    Shen, JN
165267 TI One-step hydrothermal synthesis and gas sensing property of ZnSnO3
165268    microparticles
165269 SO SOLID-STATE ELECTRONICS
165270 DT Article
165271 DE hydrothermal synthesis; ZnSnO3; gas sensor; perovskite
165272 AB The paper reports the preparation and gas sensing characteristic of
165273    ZnSnO3. The perovskite structure ZnSnO3 was prepared by hydrothermal
165274    process directly. Its crystal structure and ceramic microstructure were
165275    characterized by X-ray diffraction (XRD) and transmission electron
165276    microscopy (TEM) and scanning electron microscopy (SEM). Its grain size
165277    is about 500 nm, and homogeneous as well as monodispersive in shape.
165278    Furthermore, the gas sensing properties of the materials were tested in
165279    static state. It is found that the sensors have good sensitivity and
165280    selectivity to H2S. (c) 2006 Elsevier Ltd. All rights reserved.
165281 C1 Coll Mat & Chem Engn, Zhengzhou Inst Light Ind, Dept Chem Engn, Zhengzhou 450002, Henan, Peoples R China.
165282    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
165283    Henan Normal Univ, Coll Chem & Environm Sci, Xinxiang 453007, Henan, Peoples R China.
165284 RP Xu, JQ, Coll Mat & Chem Engn, Zhengzhou Inst Light Ind, Dept Chem Engn,
165285    Zhengzhou 450002, Henan, Peoples R China.
165286 EM xujiaqiang@zzuli.edu.cn
165287 CR AGUAS MD, 2002, J MATER SCI, V37, P375
165288    CHEN D, 2000, SOLID STATE COMMUN, V113, P363
165289    INAGAKI M, 1985, ANORG Z ALLG CHEM, V527, P193
165290    KOVACHEVA D, 1998, SOLID STATE IONICS, V109, P327
165291    LIU HL, 1999, FUNCT MAT, V30, P549
165292    MATIJEVIC E, 1998, J EUR CERAM SOC, V18, P1357
165293    RAMAMURTHY P, 1971, CAN J CHEM, V49, P2813
165294    SHEN YS, 1993, SENSOR ACTUAT B-CHEM, V12, P5
165295    WANG ZC, 2004, J CHIN CERAM SOC, V32, P1555
165296    WU XH, 2002, MATER CHEM PHYS, V77, P588
165297    WU XH, 2002, SOLID STATE ELECTRON, V46, P715
165298    ZHANG TS, 1995, MATER LETT, V23, P69
165299 NR 12
165300 TC 0
165301 SN 0038-1101
165302 J9 SOLID STATE ELECTRON
165303 JI Solid-State Electron.
165304 PD MAR
165305 PY 2006
165306 VL 50
165307 IS 3
165308 BP 504
165309 EP 507
165310 PG 4
165311 SC Engineering, Electrical & Electronic; Physics, Applied; Physics,
165312    Condensed Matter
165313 GA 043QN
165314 UT ISI:000237616500033
165315 ER
165316 
165317 PT J
165318 AU Sun, P
165319    Andersson, C
165320    Wei, XC
165321    Cheng, ZN
165322    Shangguan, D
165323    Liu, J
165324 TI Coffin-Manson constant determination for a Sn-8Zn-3Bi lead-free solder
165325    joint
165326 SO SOLDERING & SURFACE MOUNT TECHNOLOGY
165327 DT Article
165328 DE finite element analysis; fatigue; joining materials; simulation; solders
165329 ID LOW-CYCLE FATIGUE; BEHAVIOR
165330 AB Purpose - To determine the Coffin-Manson (CM) equation constants for
165331    fatigue life estimation of Sn-8Zn-3Bi solder joints, since Sn-8Zn-3Bi
165332    solder has a melting temperature of around 199 degrees C which is close
165333    to that of the conventional Sn-Pb solder which has previously been used
165334    in the electronics assembly industry.
165335    Design/methodology/approach - Three dimensional finite element (FE)
165336    simulation analysis was used for comparison with the experimentally
165337    measured data and to determine the CM constants. Low cycle fatigue
165338    tests and FE simulations were carried out for these lead-free solder
165339    joints, and eutectic Sn-37Pb solder was used as a reference.
165340    Findings - The CM equation for Sn-8Zn-3Bi solder joints was fitted to
165341    the lifetimes measured and the shear strains simulated. The constants
165342    were determined to be 0.0294 for C, the proportional constant, and for
165343    the fatigue exponent, beta, -2.833.
165344    Originality/value - The CM equation can now be used to predict the
165345    reliability of Sn-8Zn-3Bi solder joints in electronics assembly and the
165346    knowledge base for the properties of the Sn-Zn solder system has been
165347    increased.
165348 C1 Shanghai Univ, SMIT Ctr, Chinese Minist Educ, Key State Lab New Displays & Syst Integrat, Shanghai, Peoples R China.
165349    Chalmers Univ Technol, SMIT Ctr, Dept Microtechnol & Nanosci, S-41296 Gothenburg, Sweden.
165350    Flextron Int, San Jose, CA USA.
165351 RP Sun, P, Shanghai Univ, SMIT Ctr, Chinese Minist Educ, Key State Lab New
165352    Displays & Syst Integrat, Shanghai, Peoples R China.
165353 EM psun@mail.shu.edu.cn
165354    cristina.andersson@mc2.chalmers.se
165355    wxc1028@mail.shu.edu.cn
165356    zncheng@mail.shu.edu.cn
165357    johan.liu@mc2.chalmers.se
165358 CR ABTEW M, 2000, MAT SCI ENG R, V27, P95
165359    ANDERSSON C, 2005, MAT SCI ENG A-STRUCT, V394, P20
165360    DATE M, 2004, SCRIPTA MATER, V51, P641
165361    FUKADA Y, 2003, IEEE T COMPON PACK T, V26, P616
165362    KANCHANOMAI C, 2002, J ELECTRON MATER, V31, P142
165363    KANCHANOMAI C, 2002, J ELECTRON MATER, V31, P456
165364    KIM YS, 2003, J ALLOY COMPD, V352, P237
165365    LAU JH, 1991, SOLDER JOINT RELIABI, P413
165366    MCCORMACK M, 1995, P 1995 IEEE INT S EL, P171
165367    PANG JHL, 2004, INT J FATIGUE, V26, P865
165368    PANG JHL, 2004, THIN SOLID FILMS, V462, P408
165369    SUN P, 2005, P 55 EL COMP TECHN C, P696
165370    SUN P, 2005, SOLDER SURF MT TECH, V17, P38
165371 NR 13
165372 TC 0
165373 SN 0954-0911
165374 J9 SOLDER SURF MT TECHNOL
165375 JI Solder. Surf. Mt. Technol.
165376 PY 2006
165377 VL 18
165378 IS 2
165379 BP 4
165380 EP 11
165381 PG 8
165382 SC Engineering, Electrical & Electronic; Engineering, Manufacturing;
165383    Materials Science, Multidisciplinary; Metallurgy & Metallurgical
165384    Engineering
165385 GA 042WN
165386 UT ISI:000237561400002
165387 ER
165388 
165389 PT J
165390 AU Yao, SD
165391    Shen, JN
165392    Sun, J
165393 TI The evaluation method and analysis of the degradation mechanism of an
165394    IrO2-Ta2O5 coated titanium oxide anode
165395 SO RARE METAL MATERIALS AND ENGINEERING
165396 DT Article
165397 DE titanium anodes; surface morphology; standard accelerated lifetime
165398    test; failure mechanism; iridium oxide (IrO2); tantalum pentoxide
165399    (Ta2O5)
165400 ID LONG SERVICE LIFE; OXYGEN-EVOLVING ELECTRODES; DEACTIVATION; ACID
165401 AB The IrO2-Ta2O5 coated titanium anodes were made with platinum (Pt)
165402    surface modification (SM) and special surface treatment (SST), the
165403    sublayer between the titanium and the electrocatalytic layer has very
165404    long accelerated lifetime at the flat stage in cell voltage vs. time
165405    curve. The morphology was investigated in details before and after
165406    accelerated lifetime test. The failure mechanism of oxide anodes has
165407    demonstrated that electrochemical oxygen evolution process, referred to
165408    as electrochemical dissolving, was just like stormy waves corroding
165409    bank in lake occurring layer by layer. The electrolysis factors
165410    affecting the accelerated lifetime of dimensionally stable anode (DSA)
165411    such as electrolyte composition, temperature and electrical densities
165412    were discussed. The experimental method and setup for standard
165413    accelerated lifetime test were discussed in the paper. As the result,
165414    optimal electrolysis conditions were derived as follows: 0.5 mol H2SO4
165415    solution; 323 K electrolyte temperature; 4 A(.)cm(-2) current density.
165416 C1 Shanghai Univ, Dept Mat Sci & Engn, Electrochem Lab, Shanghai 200072, Peoples R China.
165417    Beijing Inst Met Equipment Res, Beijing 100029, Peoples R China.
165418 RP Yao, SD, Shanghai Univ, Dept Mat Sci & Engn, Electrochem Lab, Shanghai
165419    200072, Peoples R China.
165420 CR BEER HB, 1980, J ELECTROCHEM SOC, V127, C303
165421    BOCK C, 2000, J APPL ELECTROCHEM, V30, P523
165422    CARDARELLI F, 1998, J APPL ELECTROCHEM, V28, P245
165423    COMNINELLIS C, 1991, J APPL ELECTROCHEM, V21, P335
165424    HU JM, 2002, CORROS SCI, V44, P1655
165425    KAMEGAYA Y, 1995, ELECTROCHIM ACTA, V40, P889
165426    KULANDAISAMY S, 1997, J APPL ELECTROCHEM, V27, P579
165427    MORIMITSU M, 2000, J APPL ELECTROCHEM, V30, P511
165428    MRAZ R, 1994, J APPL ELECTROCHEM, V24, P1262
165429    TRASATTI S, 1991, ELECTROCHIM ACTA, V36, P225
165430    TRASATTI S, 1994, ELECTROCHEMISTRY NOV, P207
165431    TRASATTI S, 2000, ELECTROCHIM ACTA, V45, P2377
165432    XU LK, 2003, CORROS SCI, V45, P2729
165433 NR 13
165434 TC 0
165435 SN 1002-185X
165436 J9 RARE METAL MAT ENG
165437 JI Rare Metal Mat. Eng.
165438 PD FEB
165439 PY 2006
165440 VL 35
165441 SU Suppl. 1
165442 BP 285
165443 EP 288
165444 PG 4
165445 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
165446    Engineering
165447 GA 041FY
165448 UT ISI:000237440700070
165449 ER
165450 
165451 PT J
165452 AU Sun, YY
165453    Zhang, QR
165454    Liu, TY
165455    Yi, ZJ
165456 TI First principle studies on the electronic structures of raspite- and
165457    scheelite-structured PbWO4 and raspite with V-o(2+)
165458 SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
165459 DT Article
165460 ID SINGLE-CRYSTALS; ABSORPTION-SPECTRA; COLOR-CENTERS; DEFECT; CAWO4
165461 AB We present first-principle calculations on the electronic structures of
165462    perfect raspite- and scheelite-structured PbWO4 (PWO). The results
165463    indicate that profiles of the electronic structures for the two types
165464    of PWO are similar to each other and the bandgap of RSP is 1.1 eV
165465    smaller than that of SSP. This bandgap difference between the two types
165466    of PWO is induced by the different coordination of W. The electronic
165467    structure of raspite-structured PWO containing oxygen vacancies V-O(2+)
165468    is also calculated. An additional energy level occurs in the forbidden
165469    band, which would induce an absorption peaking at 620 nm in the yellow
165470    region. Compared to the absorption spectra of scheelite-structured PWO
165471    with V-O(2+), it is concluded that in PWO crystals the different ligand
165472    field around V-O(2+) would not greatly affect the absorption band
165473    related to V-O(2+). (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
165474 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
165475 RP Sun, YY, Shanghai Univ Sci & Technol, Coll Sci, Box 251,516 Jungong Rd,
165476    Shanghai 200093, Peoples R China.
165477 EM yuanyuan99@163.com
165478 CR ALOV DC, 1996, P INT C IN SCINT THE, P267
165479    BOHACEK P, 2005, NUCL INSTRUM METH A, V537, P86
165480    FENG XQ, 1997, J INORGANIC MAT, V12, P449
165481    FUJITA T, 1977, ACTA CRYSTALLOGR B, V33, P162
165482    HIZHNYI YA, 2003, J LUMIN, V102, P688
165483    ITOH M, 2000, J LUMIN, V87, P1243
165484    ITOH M, 2000, PHYS REV B, V62, P12825
165485    KOBAYASHI M, 2005, NUCL INSTRUM METH A, V537, P312
165486    LIU FX, 1999, NUCL INSTRUM METH A, V426, P464
165487    LIU TY, 2004, PHYS LETT A, V333, P473
165488    LIU TY, 2005, PHYS LETT A, V343, P238
165489    MOREAU JM, 1996, J ALLOY COMPD, V238, P46
165490    MURK V, 1997, J PHYS-CONDENS MAT, V9, P249
165491    NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311
165492    NIKL M, 1997, J APPL PHYS, V82, P5758
165493    PERDEW JP, 1996, PHYS REV LETT, V77, P3865
165494    YI ZJ, 2005, CHINESE PHYS LETT, V22, P2618
165495    YONAS YB, 2001, PHYS REV B, V64
165496    ZHANG FW, 2005, PHYSICA B, V355, P427
165497    ZHANG Y, 1998, PHYS REV B, V57, P12738
165498 NR 20
165499 TC 0
165500 SN 0370-1972
165501 J9 PHYS STATUS SOLIDI B-BASIC SO
165502 JI Phys. Status Solidi B-Basic Solid State Phys.
165503 PD MAY
165504 PY 2006
165505 VL 243
165506 IS 6
165507 BP 1248
165508 EP 1252
165509 PG 5
165510 SC Physics, Condensed Matter
165511 GA 042WE
165512 UT ISI:000237560500015
165513 ER
165514 
165515 PT J
165516 AU Xia, L
165517    Ding, D
165518    Shan, ST
165519    Dong, YD
165520 TI The glass forming ability of Cu-rich Cu-Hf binary alloys
165521 SO JOURNAL OF PHYSICS-CONDENSED MATTER
165522 DT Article
165523 ID BULK METALLIC GLASSES; TRANSITION; SYSTEMS; NI
165524 AB We studied the glass forming ability (GFA) of Cu-rich Cu-Hf binary
165525    alloys and found that some of the alloys can be prepared as bulk
165526    metallic glasses with maximum diameter up to 2 mm by a conventional
165527    Cu-mould casting. The best glass former within the compositional range
165528    studied is off-eutectic Cu65Hf35 alloy, which is markedly different
165529    from the prediction from the multicomponent and deep eutectic rules.
165530    The GFA, thermal stability, kinetics of the glass transition and
165531    crystallization for Cu65Hf35 glassy rods were studied. The glass
165532    formation mechanism for binary Cu-Hf alloys was investigated from the
165533    thermodynamic point of view. It is suggested that the better GFA of
165534    offeutectic Cu65Hf35 alloy could be due to its higher value of the
165535    parameter gamma*, which is defined as the ratio between the driving
165536    force for glass formation and the resistance of glass formation to
165537    crystallization.
165538 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
165539    Shanghai Univ, Ctr Adv Microanal, Shanghai 200444, Peoples R China.
165540 RP Xia, L, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
165541 EM xialei@staff.shu.edu.cn
165542 CR COHEN MH, 1961, NATURE, V189, P131
165543    DEBOER FR, 1988, COHESION METALS TRAN
165544    DELAMARE J, 1994, J ALLOY COMPD, V216, P273
165545    FECHT HJ, 1995, MATER T JIM, V36, P777
165546    FRIEDEL J, 1954, ADV PHYS, V3, P446
165547    GREER AL, 1995, SCIENCE, V267, P1947
165548    INOUE A, 1998, MATER SCI FORUM 2, V269, P855
165549    JOHNSON WL, 1999, MRS BULL, V24, P42
165550    KISSINGER HE, 1956, J RES NAT BUR STAND, V57, P217
165551    LU ZP, 2002, ACTA MATER, V50, P3501
165552    LU ZP, 2003, PHYS REV LETT, V91
165553    MASSALSKI TB, 1990, BINARY ALLOY PHASE D
165554    MURTY BS, 1992, MAT SCI ENG A-STRUCT, V149, P231
165555    SHINDO T, 2002, MATER TRANS, V43, P2502
165556    TAKEUCHI A, 2001, MATER TRANS, V42, P1435
165557    TANG MB, 2004, CHINESE PHYS LETT, V21, P901
165558    TURNBULL D, 1969, CONTEMP PHYS, V10, P473
165559    WANG D, 2004, APPL PHYS LETT, V84, P4029
165560    WANG WH, 2004, MAT SCI ENG R, V44, P45
165561    XIA L, 2006, J APPL PHYS, V99
165562    XU DH, 2004, ACTA MATER, V52, P2621
165563    ZHUANG YX, 1999, APPL PHYS LETT, V75, P2392
165564 NR 22
165565 TC 0
165566 SN 0953-8984
165567 J9 J PHYS-CONDENS MATTER
165568 JI J. Phys.-Condes. Matter
165569 PD APR 19
165570 PY 2006
165571 VL 18
165572 IS 15
165573 BP 3543
165574 EP 3548
165575 PG 6
165576 SC Physics, Condensed Matter
165577 GA 040WA
165578 UT ISI:000237410400007
165579 ER
165580 
165581 PT J
165582 AU Wang, JA
165583    Zhou, BX
165584    Yao, MY
165585    Li, Q
165586    Chen, WJ
165587 TI Formation and control of sharp {100}<021> texture in electrical steel
165588 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
165589 DT Article
165590 DE {100}<021> texture; electrical steel; recrystallization; grain growth
165591 ID SECONDARY RECRYSTALLIZATION; SILICON; SHEETS
165592 AB The formation and control of sharp {100}<021> texture in electrical
165593    steels were experimentally investigated and the main influencing
165594    factors were discussed. The steels of a base composition of Fe-3.2%Si
165595    with a certain amount of carbon and manganese were employed to obtain
165596    {100}<021> texture through one stage cold rolling and annealing. The
165597    results indicated that by careful control of the amount of alloying
165598    elements and the annealing temperature, a relatively sharp {100}<021>
165599    texture in fairly thick sheets is obtained. After primary
165600    recrystallization, a weak component of {100}<021> and strong component
165601    of (447)<18 11 4> texture, which constitute Sigma 9 coincidence site
165602    lattice boundaries with a common <011> axis for 39 degrees difference,
165603    are presented. This special grain boundary promotes the growth of
165604    (100)<021> grains in addition to the lower surface energy of (100)
165605    grains during see ondary recrystallization.
165606 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
165607 RP Wang, JA, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
165608 EM jawang@staff.shu.edu.cn
165609 CR ASSMUS F, 1957, Z METALLKD, V48, P344
165610    BARRETT CS, 1966, STRUCTURE METALS
165611    DETERT K, 1959, ACTA METALL, V7, P589
165612    RANDLE V, 1996, ROLE COINCIDENCE SIT
165613    SADAYORI T, 1982, KAWASAKI STEEL GIHO, V21, P239
165614    TAKASHIMA M, 2001, RECRYSTALLIZATION GR, P1215
165615    TOMIDA T, 1995, ISIJ INT, V35, P548
165616    TOMIDA T, 1996, J MATER ENG PERFORM, V5, P316
165617    WALTER JL, 1960, T AIME, V218, P914
165618    WIENER GW, 1964, J APPL PHYS, V35, P856
165619 NR 10
165620 TC 0
165621 SN 1006-706X
165622 J9 J IRON STEEL RES INT
165623 JI J. Iron Steel Res. Int.
165624 PD MAR
165625 PY 2006
165626 VL 13
165627 IS 2
165628 BP 54
165629 EP 58
165630 PG 5
165631 SC Metallurgy & Metallurgical Engineering
165632 GA 042OW
165633 UT ISI:000237538800014
165634 ER
165635 
165636 PT J
165637 AU Zhang, YB
165638    Zhu, HM
165639    Zhou, SP
165640    Ding, SY
165641    Lin, ZW
165642    Zhu, JG
165643 TI Uniform MgB2 thin films grown on Si(111) and Al2O3(0001) substrates
165644    prepared by e-beam evaporation and in situ annealing methods
165645 SO JOURNAL OF APPLIED PHYSICS
165646 DT Article
165647 ID MAGNESIUM DIBORIDE; DEPOSITION
165648 AB MgB2 superconducting thin films on Si(111) and Al2O3(0001) substrates
165649    were prepared by high vacuum e-beam evaporation and two-step in situ
165650    annealing techniques. The precursor films [B(100 angstrom)/Mg(151
165651    angstrom)](6)/Al2O3 (or Si) were deposited at room temperature and
165652    1x10(-7) mbar of background vacuum, then annealed in situ at 630
165653    degrees C for 30 min in an argon atmosphere of 150 Pa. The atomic force
165654    microscopy image showed that the films were uniform with grain sizes of
165655    about 100 nm. An extremely sharp superconducting transition with a
165656    width of 0.1 K and a zero-resistance temperature of 30.3 K was
165657    obtained, indicating a film of high uniformity and purity in its phase
165658    with perfect connection between the MgB2 grains. (C) 2006 American
165659    Institute of Physics.
165660 C1 Shanghai Univ, Sch Sci, Dept Phys, Shanghai 200444, Peoples R China.
165661    Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.
165662    Univ Technol Sydney, Fac Engn, Broadway, NSW 2007, Australia.
165663 RP Zhang, YB, Shanghai Univ, Sch Sci, Dept Phys, Shanghai 200444, Peoples
165664    R China.
165665 EM zyb_shu@staff.shu.edu.cn
165666    syding@nju.edu.cn
165667    jacklin@eng.uts.edu.au
165668 CR BLANK DHA, 2001, APPL PHYS LETT, V79, P394
165669    CHEANGWONG JC, 2003, SUPERCOND SCI TECH, V16, P879
165670    FAN ZY, 2001, APPL PHYS LETT, V79, P87
165671    FENG QR, 2004, PHYSICA C, V411, P41
165672    JERGEL M, 2003, PHYSICA C, V383, P287
165673    MOON SH, 2001, APPL PHYS LETT, V79, P2429
165674    NAGAMATSU J, 2001, NATURE, V410, P63
165675    NAITO M, 2004, SUPERCOND SCI TECH, V17, R1
165676    ROGAI R, 2003, INT J MOD PHYS B 2, V17, P703
165677    XI XX, 2003, J SUPERCOND, V16, P801
165678    YATES KA, 2005, APPL PHYS LETT, V86
165679    ZHAI HY, 2001, APPL PHYS LETT, V79, P2603
165680    ZHU HM, 2004, CRYOGENICS SUPERCOND, V32, P51
165681 NR 13
165682 TC 0
165683 SN 0021-8979
165684 J9 J APPL PHYS
165685 JI J. Appl. Phys.
165686 PD APR 15
165687 PY 2006
165688 VL 99
165689 IS 8
165690 AR 08M512
165691 DI ARTN 08M512
165692 PG 3
165693 SC Physics, Applied
165694 GA 040TV
165695 UT ISI:000237404200554
165696 ER
165697 
165698 PT J
165699 AU Chau, KT
165700    Cui, W
165701    Jiang, JZ
165702    Wang, Z
165703 TI Design of permanent magnet brushless motors with asymmetric air gap for
165704    electric vehicles
165705 SO JOURNAL OF APPLIED PHYSICS
165706 DT Article
165707 ID DRIVE
165708 AB This paper proposes a cost-effective approach to design permanent
165709    magnet brushless dc motors for electric vehicles. The key is to shape
165710    the pole arc in such a way that the air gap length is at a maximum at
165711    the leading edge of each rotor pole arc and at a minimum at the
165712    trailing edge of the same pole arc, hence resulting in an asymmetric
165713    air gap. Thus, for a specified rotational direction, the distortion of
165714    air gap flux density and hence the torque ripple can be significantly
165715    suppressed. Also, with the use of advanced conduction angle control,
165716    the motor can achieve a wide speed range. The proposed motor drive is
165717    designed and implemented for a low-voltage battery-powered electric
165718    motorcycle. (C) 2006 American Institute of Physics.
165719 C1 Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China.
165720    Shanghai Univ, Dept Automat, Shanghai 200072, Peoples R China.
165721 RP Chau, KT, Univ Hong Kong, Dept Elect & Elect Engn, Pok Fu Lam Rd, Hong
165722    Kong, Hong Kong, Peoples R China.
165723 EM ktchau@eee.hku.hk
165724 CR CHAN CC, 1996, IEEE T IND ELECTRON, V43, P331
165725    CHAN CC, 1996, IEEE T VEH TECHNOL, V45, P180
165726    CUI W, 2005, J APPL PHYS, V97, P1
165727    GAN JY, 2000, IEEE T MAGN 2, V36, P3810
165728    JAHNS TM, 1994, P IEEE, V82, P1241
165729 NR 5
165730 TC 0
165731 SN 0021-8979
165732 J9 J APPL PHYS
165733 JI J. Appl. Phys.
165734 PD APR 15
165735 PY 2006
165736 VL 99
165737 IS 8
165738 AR 08R322
165739 DI ARTN 08R322
165740 PG 3
165741 SC Physics, Applied
165742 GA 040TV
165743 UT ISI:000237404200740
165744 ER
165745 
165746 PT J
165747 AU Liang, XL
165748    Zhong, SS
165749    Wang, W
165750 TI Elliptical planar monopole antenna with extremely wide bandwidth
165751 SO ELECTRONICS LETTERS
165752 DT Article
165753 AB A planar monopole antenna with an extremely wide bandwidth is
165754    introduced, which is composed of an elliptical monopole patch and a
165755    trapeziform ground plane, both printed on the same side of a substrate,
165756    and is fed by a tapered CPW feeder in the middle of the ground plane.
165757    The simulated and experimental results demonstrate that this antenna
165758    achieves a ratio impedance bandwidth of 21.6:1 for VSWR <= 2, and
165759    exhibits a nearly omnidirectional radiation pattern, while its area is
165760    only about 0. 19 lambda(1) x 0. 16 lambda(1) where lambda(1) is the
165761    wavelength of the lowest operating frequency.
165762 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
165763    E China Res Inst Elect Engn, Hefei 230031, Peoples R China.
165764 RP Liang, XL, Shanghai Univ, Box 151,149 Yanchang Rd, Shanghai 200072,
165765    Peoples R China.
165766 EM xililiang@163.com
165767 CR HUANG CY, 2005, ELECTRON LETT, V41, P296
165768    LIANG XL, 2006, ELECTRON LETT, V42, P71
165769    STUTZMAN WL, 1998, ANTENNA THEORY DESIG
165770    SUH SY, 2004, IEEE T ANTENN PROPAG, V52, P1361
165771    YING J, 2004, IEE P-MICROW ANTEN P, V151, P486
165772 NR 5
165773 TC 0
165774 SN 0013-5194
165775 J9 ELECTRON LETT
165776 JI Electron. Lett.
165777 PD APR 13
165778 PY 2006
165779 VL 42
165780 IS 8
165781 BP 441
165782 EP 442
165783 PG 2
165784 SC Engineering, Electrical & Electronic
165785 GA 042DC
165786 UT ISI:000237506600005
165787 ER
165788 
165789 PT J
165790 AU Yang, B
165791    Chen, Z
165792    Liu, ZR
165793    Duan, NQ
165794 TI Research on structural evolution and pattern emergence of
165795    socio-economic complex networks based on individual choices
165796 SO DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES
165797    B-APPLICATIONS & ALGORITHMS
165798 DT Article
165799 DE complex network; individual choice; evolution; pattern; emergence
165800 AB In this paper, we are concerned with the effects of individual
165801    behaviors at a microscopic level on the structures of complex networks
165802    at a macroscopic level in terms of the different micro features between
165803    socio-economic complex networks and other networks. We start with a
165804    random network and show the evolving process of topological structure
165805    of this network. A main conclusion is that agents' individually
165806    choosing behaviors lead to the dynamical evolution of a complex
165807    network, which follows the spontaneous emergence of some common
165808    structural features including small-world effect and power-law
165809    distribution of node degrees. We aim to understand how the dynamical
165810    processes taking place on a network shape the network topology from the
165811    viewpoint of socio-economic research.
165812 C1 Shanghai Jiao Tong Univ, Dept Management Sci & Engn, Shanghai 200052, Peoples R China.
165813    Shanghai Univ, Dept Math, Shanghai 200072, Peoples R China.
165814 RP Yang, B, Shanghai Jiao Tong Univ, Dept Management Sci & Engn, Shanghai
165815    200052, Peoples R China.
165816 CR ALBERT R, 2002, REV MOD PHYS, V74, P47
165817    AMARAL LAN, 2004, EUR PHYS J B, V38, P143
165818    BATTISTON S, 2003, PHYSICA A, V322, P567
165819    COWAN R, 2004, J ECON DYN CONTROL, V28, P1557
165820    EHRHARDT G, 2004, EMERGENCE RESILIENCE
165821    GRANOVETTER MS, 1973, AM J SOCIOL, V78, P1360
165822    HARHOFF D, 2005, PROFITING VOLUNTARY
165823    JACKSON MO, 2002, J ECON THEORY, V106, P265
165824    JACKSON MO, 2004, STRATEGIC FORMATION
165825    JOHNSON C, 2000, REV EC DESIGN, V5, P273
165826    LIBENNOWELL D, 2003, P 1I INT C INF KNOWL, P556
165827    NEWMAN MEJ, 2002, SIAM REV, V45, P167
165828    STROGATZ SH, 2001, NATURE, V410, P268
165829    WILHITE A, 2002, COMPUTATIONAL EC, V18, P49
165830 NR 14
165831 TC 0
165832 SN 1492-8760
165833 J9 DYN CONT DISCR IMP SYST SER B
165834 JI Dyn. Contin. Discret. Impuls. Syst. Ser. B-Appl. Algorithms
165835 PD JUN
165836 PY 2006
165837 VL 13
165838 IS 3-4
165839 BP 387
165840 EP 394
165841 PG 8
165842 SC Mathematics, Applied
165843 GA 041ZE
165844 UT ISI:000237495400008
165845 ER
165846 
165847 PT J
165848 AU Wan, YS
165849    Chen, Z
165850    Liu, ZR
165851 TI Modeling the two-power-law degree distribution of banking networks
165852 SO DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES
165853    B-APPLICATIONS & ALGORITHMS
165854 DT Article
165855 DE interbank market; complex network; interbank lending and borrowing;
165856    network growth; two-power-law degree distribution
165857 ID WEB
165858 AB Most of the social-economic systems are showing basic features of
165859    complex network structures. The banking network, which is formed by
165860    interbank credit lines, is just one of them. The empirical research on
165861    the structural features of the banking systems has shown that, a
165862    two-power-law degree distribution has been observed in these banking
165863    networks. But, to our knowledge, the features of these two-power-law
165864    degree distribution are still not illuminated by theoretical analysis.
165865    Based on the analysis of the structural features of banking networks,
165866    such as hierarchy and community, and the analysis of the interbank
165867    liability features, we present a model of network growth and
165868    theoretically explain the phenomenon of the two-power-law degree
165869    distribution in banking networks. We also show that this two-power-law
165870    degree distribution is a critical phenomenon.
165871 C1 Shanghai Jiao Tong Univ, Antai Sch Management, Shanghai 200052, Peoples R China.
165872    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
165873 RP Wan, YS, Shanghai Jiao Tong Univ, Antai Sch Management, Shanghai
165874    200052, Peoples R China.
165875 EM wanyangsong@163.com
165876 CR BARABASI AL, 1999, SCIENCE, V286, P509
165877    BOGUNA M, 2004, PHYS REV E 2, V70
165878    BOSS M, 2004, QUANT FINANC, V4, P677
165879    DOROGOVTSEV SN, 2001, P ROY SOC LOND B BIO, V268, P2603
165880    DOROGOVTSEV SN, 2002, ARXIVCONDMAT0204102
165881    FERRER R, 2001, P ROY SOC LOND B BIO, V268, P2261
165882    GARLASCHELLI D, 2004, PHYS REV LETT, V93
165883    GOH KI, 2002, PHYS REV LETT, V88
165884    GUIMERA R, 2005, NATURE, V433, P895
165885    GUIMERA R, 2005, SCIENCE, V308, P697
165886    LI L, 2005, ARXIVCONDMAT0501169
165887    LI X, 2003, PHYSICA A, V328, P287
165888    RESENDISANTONIO O, 2004, PHYSICA A, V342, P551
165889    SOUMA W, 2003, PHYSICA A, V324, P396
165890    TANAKA R, 2005, PHYS REV LETT, V94
165891    UZZI B, 2005, AM J SOCIOLOGY
165892 NR 16
165893 TC 0
165894 SN 1492-8760
165895 J9 DYN CONT DISCR IMP SYST SER B
165896 JI Dyn. Contin. Discret. Impuls. Syst. Ser. B-Appl. Algorithms
165897 PD JUN
165898 PY 2006
165899 VL 13
165900 IS 3-4
165901 BP 441
165902 EP 449
165903 PG 9
165904 SC Mathematics, Applied
165905 GA 041ZE
165906 UT ISI:000237495400014
165907 ER
165908 
165909 PT J
165910 AU Gu, JL
165911    Bai, YQ
165912 TI A note on mean-field theory for scale-free random networks
165913 SO DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES
165914    B-APPLICATIONS & ALGORITHMS
165915 DT Article
165916 DE BA model; Poisson model; G growth model; complex network; degree
165917    distribution; renewal process
165918 ID COMPLEX NETWORKS
165919 AB Usually, the BA model describes the growth and preferential attachment
165920    of scale-free networks. In this paper we present the G growth model and
165921    the Poisson model in order to describe real networks more precisely
165922    than the BA model. We recognize that the vertices arrival process is a
165923    renewal process. By using the renewal process theory and continuum
165924    theory, we calculate the degree distribution and stationary average
165925    degree distribution of the models. The consequences are that the
165926    stationary average degree distributions of these models are independent
165927    of the arrival process of vertices of the networks and the degree
165928    distributions are dependent on the arrival process. The advantage of
165929    our results is more accurate than that reported in [1, 2, 3].
165930    Furthermore, the flaw of analysis in [1, 2, 3] is modified in this
165931    paper.
165932 C1 Shanghai Univ Sci & Technol, Coll Management, Shanghai 200093, Peoples R China.
165933    Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
165934 RP Gu, JL, Shanghai Univ Sci & Technol, Coll Management, Shanghai 200093,
165935    Peoples R China.
165936 EM phd5816@163.com
165937    yqbai@staff.shu.edu.cn
165938 CR ALBERT R, 2002, REV MOD PHYS, V74, P47
165939    BARABASI AL, 1999, PHYSICA A, V272, P173
165940    BARABASI AL, 1999, SCIENCE, V286, P509
165941    BARABASI AL, 2002, PHYSICA A, V311, P590
165942    DOROGOVTSEV SN, 2000, PHYS REV LETT, V85, P4633
165943    NEWMAN MEJ, 2003, SIAM REV, V45, P167
165944    ROSS SM, 1983, STOCHASTIC PROCESSES
165945 NR 7
165946 TC 0
165947 SN 1492-8760
165948 J9 DYN CONT DISCR IMP SYST SER B
165949 JI Dyn. Contin. Discret. Impuls. Syst. Ser. B-Appl. Algorithms
165950 PD JUN
165951 PY 2006
165952 VL 13
165953 IS 3-4
165954 BP 523
165955 EP 531
165956 PG 9
165957 SC Mathematics, Applied
165958 GA 041ZE
165959 UT ISI:000237495400023
165960 ER
165961 
165962 PT J
165963 AU Li, L
165964    Yaping, D
165965    Qingsheng, W
165966 TI Simultaneously inducing synthesis of semiconductor CdS nanotubes and
165967    nanospheres through living bio-membrane bi-template
165968 SO CHINESE SCIENCE BULLETIN
165969 DT Article
165970 DE cadmium sulfide; nanotube; nanosphere; living bio-membrane; bi-template
165971 ID NANOCRYSTALS; NANOPARTICLES
165972 AB Semiconductor CdS nanotubes with a small ratio of length to diameter
165973    and nanospheres were simultaneously synthesized in the light of
165974    biomineralization process through living bio-membrane bi-template of
165975    mungbean sprouts at room temperature. The outside diameter of the
165976    nanotube is 220-240 nm and the inner diameter is 200-220 nm, the length
165977    is up to 600-700 nm and the ratio of length to diameter is 2:1. The
165978    nanoshpheres are 25 nm in diameter and well distributed. The XRD
165979    pattern indicates that these nanocrystals were crystallized in the
165980    cubic structure with lattice a = 5.818 angstrom. The optical properties
165981    of the products are illustrated.
165982 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
165983    Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
165984 RP Yaping, D, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
165985 EM wdingyp@sina.com
165986    qswu@mail.tongji.edu.cn
165987 CR BAEUERLEIN E, 2003, ANGEW CHEM INT EDIT, V42, P614
165988    BARRELET CJ, 2003, J AM CHEM SOC, V125, P11498
165989    CAO HQ, 2001, ADV MATER, V13, P1395
165990    CAO YC, 2004, J AM CHEM SOC, V126, P14336
165991    GAO F, 2002, CHEM PHYS LETT, V360, P585
165992    LI M, 1999, NATURE, V402, P393
165993    LI YD, 1999, INORG CHEM, V38, P4737
165994    MANN S, 1995, J MATER CHEM, V5, P935
165995    PEDONE L, 2005, J COLLOID INTERF SCI, V284, P495
165996    PENG TY, 2003, CHEM PHYS LETT, V379, P432
165997    PENG XG, 2000, NATURE, V404, P59
165998    WU QS, 2003, ACTA CHIM SINICA, V61, P1824
165999    ZHANG H, 2004, J CRYST GROWTH, V263, P372
166000    ZHANG P, 2003, J COLLOID INTERF SCI, V266, P457
166001    ZHOU SM, 2003, EUR J INORG CHEM MAY, P1794
166002 NR 15
166003 TC 0
166004 SN 1001-6538
166005 J9 CHIN SCI BULL
166006 JI Chin. Sci. Bull.
166007 PD APR
166008 PY 2006
166009 VL 51
166010 IS 7
166011 BP 791
166012 EP 795
166013 PG 5
166014 SC Multidisciplinary Sciences
166015 GA 041YM
166016 UT ISI:000237493500005
166017 ER
166018 
166019 PT J
166020 AU Liu, ZR
166021    Luo, JG
166022 TI Realization of complete synchronization between different systems by
166023    using structure adaptation
166024 SO CHINESE PHYSICS LETTERS
166025 DT Article
166026 ID CHAOTIC SYNCHRONIZATION; DYNAMICAL-SYSTEMS
166027 AB We study the complete synchronization between different systems. Based
166028    on our new idea about structure adaptation, a new synchronized method,
166029    i.e. the structure adaptive method, is proposed. We believe that this
166030    self-adaptive mechanism correctly represents essential characteristics
166031    of self-adaptation in complex systems. We also show that this method is
166032    reasonable both from the coupling viewpoint in physics and from the
166033    controller design viewpoint in control theory.
166034 C1 Shanghai Univ, Ctr Nonlinear Sci, Shanghai 200444, Peoples R China.
166035    Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
166036 RP Liu, ZR, Shanghai Univ, Ctr Nonlinear Sci, Shanghai 200444, Peoples R
166037    China.
166038 EM zrongliu@online.sh.cn
166039 CR AGIZA HN, 2001, PHYS LETT A, V278, P191
166040    BOCCALETTI S, 2002, PHYS REP, V366, P1
166041    BROWN R, 2000, CHAOS, V10, P344
166042    FEMAT R, 1999, PHYS LETT A, V262, P50
166043    IMAI Y, 2003, OPT COMMUN, V217, P415
166044    LIU ZR, 2004, ZIRAN, V26
166045    LUO JG, 2006, UNPUB CHAOS SOLITONS
166046    MOEZ F, 2003, PHYS LETT A, V309, P53
166047    PECORA LM, 1990, PHYS REV LETT, V64, P821
166048    TANG DY, 1998, CHAOS, V8, P697
166049    VAIDYA PG, 2003, CHAOS SOLITON FRACT, V17, P433
166050    WANG JG, 2005, CHINESE PHYS LETT, V22, P2508
166051    YUE D, 2000, CHAOS SOLITON FRACT, V11, P1231
166052 NR 13
166053 TC 0
166054 SN 0256-307X
166055 J9 CHIN PHYS LETT
166056 JI Chin. Phys. Lett.
166057 PD MAY
166058 PY 2006
166059 VL 23
166060 IS 5
166061 BP 1118
166062 EP 1121
166063 PG 4
166064 SC Physics, Multidisciplinary
166065 GA 042TF
166066 UT ISI:000237551700015
166067 ER
166068 
166069 PT J
166070 AU Li, YQ
166071    Xu, XM
166072 TI Cross sections for pi pi <-> pp and pi pi <->omega omega reactions
166073 SO CHINESE PHYSICS LETTERS
166074 DT Article
166075 ID QUARK POTENTIAL MODEL; HEAVY-ION COLLISIONS; NUCLEUS-NUCLEUS
166076    COLLISIONS; PI-PI SCATTERING; GLUON PLASMA; GEV-C; COLLABORATION;
166077    PERSPECTIVE; MATTER
166078 AB To study chemical equilibrium of hadronic matter created in
166079    relativistic heavy ion collisions, phase shifts for the I = 2 pi pi
166080    elastic scattering and cross sections for the I = 2and0 pi pi <-> pp
166081    and I = 0 pi pi <-> omega omega reactions are calculated with the prior
166082    and post forms. While the post-prior equivalence holds for the elastic
166083    scattering, the post-prior discrepancy of the inelastic scatterings
166084    relies on the spin-dependent terms of quark-antiquark potential.
166085 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
166086 RP Li, YQ, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
166087 EM yuqilishu@graduate.shu.edu.cn
166088 CR ADAMS J, 2005, NUCL PHYS A, V757, P102
166089    ADCOX K, 2005, NUCL PHYS A, V757, P184
166090    ARSENE I, 2005, NUCL PHYS A, V757, P1
166091    BACK BB, 2005, NUCL PHYS A, V757, P28
166092    BARNES T, 1992, PHYS REV D, V46, P131
166093    BARNES T, 1992, PHYS REV D, V46, P4868
166094    BARNES T, 2001, PHYS REV C, V63
166095    BASS SA, 1998, PROG PART NUCL PHYS, V41, P255
166096    BUCHMULLER W, 1981, PHYS REV D, V24, P132
166097    COLTON E, 1971, PHYS REV D, V3, P2028
166098    DUMITRU A, 1999, PHYS LETT B, V460, P411
166099    DURUSOY NB, 1973, PHYS LETT B, V45, P517
166100    HOOGLAND W, 1977, NUCL PHYS B, V126, P109
166101    LI BA, 1995, PHYS REV C, V52, P2037
166102    LIN ZW, 2005, PHYS REV C, V72
166103    LOSTY MJ, 1974, NUCL PHYS B, V69, P185
166104    SORGE H, 1995, PHYS REV C, V52, P3291
166105    WONG CY, 2001, PHYS REV C, V63
166106    XU XM, 2002, NUCL PHYS A, V697, P825
166107    XU XM, 2003, NUCL PHYS A, V713, P470
166108    ZHAO GQ, 1998, PHYS REV D, V58
166109 NR 21
166110 TC 0
166111 SN 0256-307X
166112 J9 CHIN PHYS LETT
166113 JI Chin. Phys. Lett.
166114 PD MAY
166115 PY 2006
166116 VL 23
166117 IS 5
166118 BP 1132
166119 EP 1135
166120 PG 4
166121 SC Physics, Multidisciplinary
166122 GA 042TF
166123 UT ISI:000237551700019
166124 ER
166125 
166126 PT J
166127 AU Wang, XP
166128    Wang, LJ
166129    Zhang, BL
166130    Yao, N
166131    Zang, QR
166132    Chen, J
166133    Duan, XC
166134 TI An effective method for improvement of field electron emission site
166135    density and uniformity of amorphous carbon thin films
166136 SO CHINESE PHYSICS LETTERS
166137 DT Article
166138 ID DIAMOND-LIKE CARBON; DEPOSITED DIAMOND; COLD-CATHODE
166139 AB Amorphous carbon films are deposited on the Mo film/ceramic substrates,
166140    which are pretreated by a laser spattering chiselling technique (2
166141    line/mm), by using the microwave chemical vapour deposition technique.
166142    The films are characterized by x-ray diffraction, Raman spectrum,
166143    optical microscopy, and scanning electron microscopy. The experimental
166144    result indicates that the laser spattering chiselling pretreated
166145    techniques can essentially improve the field emission uniformity and
166146    the emission site density of the amorphous carbon thin film devices so
166147    that its emission site density can reach the level of actual
166148    application (undistinguishable by naked eye) from a broad
166149    well-proportioned emission area of 50mm X 50mm. This kind of device can
166150    show various digits and words clearly. The lowest turn-on field below 1
166151    V/m, the emission current density over 5.0 +/- 0.1 mA/cm(2), and the
166152    highest luminance 1.0 x 10(3) cd/m(2) are obtained. Meanwhile, the role
166153    of the laser spattering chiselling techniques in improving the field
166154    emission properties of the amorphous carbon film are explained.
166155 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
166156    Zhengzhou Univ, Dept Phys, Zhengzhou 450052, Peoples R China.
166157 RP Wang, XP, Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093,
166158    Peoples R China.
166159 EM wxpchina@sohu.com
166160 CR CHAI Y, 2005, CHINESE PHYS LETT, V22, P911
166161    CHUANG FY, 1996, APPL PHYS LETT, V69, P3504
166162    GEIS MW, 1991, IEEE ELECTR DEVICE L, V12, P456
166163    GUPTA S, 2002, DIAM RELAT MATER, V11, P799
166164    HART A, 1999, APPL PHYS LETT, V74, P1594
166165    HYUNCHUL S, 1996, MATER RES SOC S P, V416, P455
166166    LEEA KY, 2002, VACUUM, V66, P239
166167    LI YJ, 1997, J PHYS D APPL PHYS, V30, P2271
166168    OKANO K, 1997, APPL PHYS LETT, V70, P2201
166169    OKPALUGO TIT, 2004, DIAM RELAT MATER, V13, P1549
166170    ROBERTSON J, 1997, MATER RES SOC SYMP P, V471, P217
166171    ROBERTSON J, 1998, MATER RES SOC SYMP P, V498, P197
166172    STARYGA E, 2005, DIAM RELAT MATER, V14, P23
166173    TALIN AA, 1996, APPL PHYS LETT, V69, P3842
166174    WANG XP, 1998, CHIN J LUMIN, V3, P267
166175    WANG XP, 1998, CHINESE PHYS LETT, V15, P611
166176    ZHAO YM, 2004, CHINESE PHYS LETT, V21, P904
166177    ZHU Q, 1995, APPL PHYS LETT, V8, P1157
166178    ZHU W, 1996, J VAC SCI TECHNOL B, V14, P2011
166179 NR 19
166180 TC 0
166181 SN 0256-307X
166182 J9 CHIN PHYS LETT
166183 JI Chin. Phys. Lett.
166184 PD MAY
166185 PY 2006
166186 VL 23
166187 IS 5
166188 BP 1314
166189 EP 1316
166190 PG 3
166191 SC Physics, Multidisciplinary
166192 GA 042TF
166193 UT ISI:000237551700069
166194 ER
166195 
166196 PT J
166197 AU Duan, WQ
166198    Chen, Z
166199    Liu, ZR
166200 TI Epidemic spreading in contact networks based on exposure level
166201 SO CHINESE PHYSICS LETTERS
166202 DT Article
166203 ID SCALE-FREE NETWORKS; COMPLEX NETWORKS; DYNAMICS; OUTBREAKS; VIRUSES
166204 AB Most epidemic models for the spread of diseases in contact networks
166205    take the assumption of the infected probability of a susceptible agent
166206    dependent on its absolute number of infectious neighbours. We introduce
166207    a new epidemic model in which the infected probability of a susceptible
166208    agent in contact networks depends not on its degree but on its exposure
166209    level. We find that effective average infection rate lambda (i.e., the
166210    average number of infections produced by a single contact between
166211    infected individuals and susceptible individuals) has an epidemic
166212    threshold lambda(c) = 1, which is related to recovery rate, epidemic
166213    mechanisms and topology of contact network. Furthermore, we show the
166214    dominating importance of epidemic mechanisms in determining epidemic
166215    patterns and discussed the implications of our model for infection
166216    control policy.
166217 C1 Shanghai Jiao Tong Univ, Sch Management, Shanghai 200052, Peoples R China.
166218    Shanghai Univ, Dept Math, Shanghai 201800, Peoples R China.
166219 RP Duan, WQ, Shanghai Jiao Tong Univ, Sch Management, Shanghai 200052,
166220    Peoples R China.
166221 EM wenqiduan@126.com
166222 CR ANDERSON RM, 1992, INFECT DIS HUMANS
166223    BALKHY HH, 2004, J TRAVEL MED, V11, P82
166224    BALTHROP J, 2004, SCIENCE, V304, P527
166225    BARABASI AL, 1999, SCIENCE, V286, P509
166226    BARTHELEMY M, 2004, PHYS REV LETT, V92
166227    BARTHELEMY M, 2005, J THEOR BIOL, V235, P275
166228    BOGUNA M, 2003, PHYS REV LETT, V90
166229    COHEN R, 2003, PHYS REV LETT, V91
166230    DEZSO Z, 2002, PHYS REV E, V65
166231    DIEKMANN O, 2000, MATH EPIDEMIOLOGY IN
166232    DODDS PS, 2004, J THEOR BIOL
166233    DUAN WQ, 2005, CHINESE PHYS LETT, V22, P2137
166234    EGUILUZ VM, 2002, PHYS REV LETT, V89
166235    ERDOS P, 1959, PUBL MATH-DEBRECEN, V6, P290
166236    FERGUSON NM, 2003, NATURE, V425, P681
166237    JOO J, 2004, PHYS REV E 2, V69
166238    LLOYD AL, 2001, SCIENCE, V292, P1316
166239    MAY RM, 2001, PHYS REV E 2, V64
166240    MEDLEY GF, 2001, NAT MED, V7, P619
166241    NEWMAN MEJ, 2002, PHYS REV E 2, V66
166242    NEWMAN MEJ, 2003, SIAM REV, V45, P167
166243    OLINKY R, 2004, PHYS REV E, V70
166244    PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
166245    PASTORSATORRAS R, 2002, PHYS REV E 2A, V65
166246    RILEY S, 2003, SCIENCE, V300, P1961
166247    STROGATZ SH, 2001, NATURE, V410, P268
166248    VALDISERRI RO, 2003, NAT MED, V9, P881
166249    VAZQUEZ A, 2003, PHYS REV E 2, V67
166250    WATTS DJ, 1998, NATURE, V393, P440
166251    YAN G, 2005, CHINESE PHYS LETT, V22, P510
166252 NR 30
166253 TC 0
166254 SN 0256-307X
166255 J9 CHIN PHYS LETT
166256 JI Chin. Phys. Lett.
166257 PD MAY
166258 PY 2006
166259 VL 23
166260 IS 5
166261 BP 1347
166262 EP 1350
166263 PG 4
166264 SC Physics, Multidisciplinary
166265 GA 042TF
166266 UT ISI:000237551700078
166267 ER
166268 
166269 PT J
166270 AU Liu, X
166271    Lu, WC
166272    Jin, SL
166273    Li, YW
166274    Chen, NY
166275 TI Support vector regression applied to materials optimization of sialon
166276    ceramics
166277 SO CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS
166278 DT Article
166279 DE support vector regression; mixture of kernels; materials optimization
166280 ID ARTIFICIAL NEURAL-NETWORKS
166281 AB Partial Least Squares (PLS) and Back Propagation Artificial Neural
166282    Network (BP-ANN) are widely known machine learning techniques for
166283    materials optimization, whereas Support Vector Machine (SVM) is seldom
166284    used in materials science. In this paper, Support Vector Regression
166285    (SVR), a machine learning technology based on statistical learning
166286    theory (SLT), was applied to predict the cold modulus of sialon ceramic
166287    with satisfactory results. In a benchmark test, the performances of SVR
166288    were compared with those of PLS and BP-ANN. The prediction accuracies
166289    of the different models were discussed on the basis of the
166290    leave-one-out cross-validation. The results showed that the prediction
166291    accuracy of SVR model was higher than those of BP-ANN and PLS models.
166292    (c) 2005 Elsevier B.V. All rights reserved.
166293 C1 Shanghai Univ, Coll Sci, Dept Chem, Lab Chem Data Min, Shanghai 200444, Peoples R China.
166294    Wuhan Univ Sci & Technol, Hubei Prov Key Lab High Temp Ceram & Refractories, Wuhan 430081, Peoples R China.
166295 RP Lu, WC, Shanghai Univ, Coll Sci, Dept Chem, Lab Chem Data Min, Shanghai
166296    200444, Peoples R China.
166297 CR AMENDOLIA SR, 2003, CHEMOMETR INTELL LAB, V69, P13
166298    BAKSHI BR, 1998, J ALLOY COMPD, V279, P39
166299    BELOUSOV AI, 2002, CHEMOMETR INTELL LAB, V64, P15
166300    CEHN NY, 1999, LAB INFORM MANAGEMEN, V45, P329
166301    CHEN NY, 2004, SUPPORT VECTOR MACHI
166302    HOLDEN SB, 1996, 9 ANN ACM WORKSH COM
166303    KANG DS, 1996, J CHINESE RARE EARTH, V14, P365
166304    KEARNS M, 1997, P 10 ANN C COMP LEAR, P152
166305    KUDYBAJANSEN AA, 2001, J EUR CERAM SOC, V21, P2153
166306    LI YW, 2001, P 44 INT C REFR 26 2, P26
166307    LU WC, 2002, COMPUT APPL CHEM, V19, P697
166308    MACKENZIE KJD, 2003, J EUR CERAM SOC, V23, P1069
166309    SMITS GF, 2002, IJCNN 02 P 2002 INT, P2785
166310    SMOLA AJ, 1998, NCTR98030 U LOND ROY
166311    VAPNIK V, 1998, STAT LEARNING THEORY
166312    VERIKAS A, 2003, CHEMOMETR INTELL LAB, V67, P187
166313    WOLD S, 2001, CHEMOMETR INTELL LAB, V58, P109
166314    ZHANG Z, 2003, COMPOS SCI TECHNOL, V63, P2029
166315 NR 18
166316 TC 0
166317 SN 0169-7439
166318 J9 CHEMOMETR INTELL LAB SYST
166319 JI Chemometrics Intell. Lab. Syst.
166320 PD MAY 26
166321 PY 2006
166322 VL 82
166323 IS 1-2
166324 SI Sp. Iss. SI
166325 BP 8
166326 EP 14
166327 PG 7
166328 SC Chemistry, Analytical; Computer Science, Artificial Intelligence;
166329    Automation & Control Systems; Instruments & Instrumentation
166330 GA 043GL
166331 UT ISI:000237588100003
166332 ER
166333 
166334 PT J
166335 AU Wang, LD
166336    Li, JQ
166337 TI Qualitative analysis of an SEIS epidemic model with nonlinear incidence
166338    rate
166339 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
166340 DT Article
166341 DE epidemic model; equilibrium; stability; persistence
166342 ID BEHAVIOR
166343 AB By means of limit theory and Fonda's theorem, an SEIS epidemic model
166344    with constant recruitment and the disease-related rate is considered.
166345    The incidence term is of the nonlinear form, and the basic reproduction
166346    number is found. If the basic reproduction number is less than one,
166347    there exists only the disease-free equilibrium, which is globally
166348    asymptotically stable, and the disease dies out eventually. If the
166349    basic reproduction number is greater than one, besides the unstable
166350    disease-free equilibrium, there exists also a unique endemic
166351    equilibrium, which is locally asymptotically stable, and the disease is
166352    uniformly persistent.
166353 C1 AF Engn Univ, Dept Appl Math & Phys, Xian 710051, Peoples R China.
166354    Shanxi Univ Finance & Econ, Dept Appl Math, Taiyuan 030006, Peoples R China.
166355    Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
166356 RP Li, JQ, AF Engn Univ, Dept Appl Math & Phys, Xian 710051, Peoples R
166357    China.
166358 EM jianq_li@263.net
166359 CR CAPASSO V, 1978, MATH BIOSCI, V42, P327
166360    DERRICK WR, 1993, J MATH BIOL, V31, P495
166361    FONDA A, 1988, P AM MATH SOC, V104, P111
166362    HETHCOTE HW, 2000, SIAM REV, V42, P599
166363    LI J, 2002, MATH COMPUT MODEL, V20, P1235
166364    LIU WM, 1986, J MATH BIOL, V23, P187
166365    LIU WM, 1987, J MATH BIOL, V25, P359
166366    RUAN SG, 2003, J DIFFER EQUATIONS, V188, P135
166367    THIEME HR, 1993, SIAM J MATH ANAL, V24, P407
166368    WANG M, 2002, NONLINEAR ANAL-REAL, V3, P809
166369    WANG WD, 2002, APPL MATH LETT, V15, P423
166370 NR 11
166371 TC 0
166372 SN 0253-4827
166373 J9 APPL MATH MECH-ENGL ED
166374 JI Appl. Math. Mech.-Engl. Ed.
166375 PD MAY
166376 PY 2006
166377 VL 27
166378 IS 5
166379 BP 667
166380 EP 672
166381 PG 6
166382 SC Mathematics, Applied; Mechanics
166383 GA 044IL
166384 UT ISI:000237665500013
166385 ER
166386 
166387 PT J
166388 AU Zhang, GY
166389    Cheng, Y
166390    Zhang, XL
166391    Xia, T
166392    Xue, LP
166393 TI Effect of Pb, Ga doping on magneto-optical propertics of Ce : YIG
166394    crystal
166395 SO ACTA PHYSICA SINICA
166396 DT Article
166397 DE PbGaCe : YIG crystal; crystal field; superexchange interaction;
166398    magneto-optical effect
166399 ID YTTRIUM-IRON-GARNET; FARADAY-ROTATION
166400 AB The effects of Pb, Ga doping on the crystal field, superexchange
166401    interaction and magneto-optical effect of Ce:YIG crystal are studied
166402    based on the quantum theory. It is found that when the molecular
166403    concentration of Ga doping is 12%, the molecular field on the Ce3+ ion
166404    is reduced by 51 % and the difference of occupation probability between
166405    the two lowest energy levels of the Ce3+ is reduced by 49%. The Ga
166406    doping affects the crystal field and molecular field at the same time,
166407    while the Pb doping affects the crystal field only.
166408 C1 China Univ Min & Technol, Coll Sci, Xuzhou 221008, Peoples R China.
166409    Shanghai Univ Sci & Technol, Coll Med Mech, Shanghai 200093, Peoples R China.
166410 RP Zhang, GY, China Univ Min & Technol, Coll Sci, Xuzhou 221008, Peoples R
166411    China.
166412 EM zhang57168@sina.com.cn
166413 CR ABULAFYA G, 1972, SOLID STATE COMMUN, V11, P629
166414    CROSSLEY WA, 1969, PHYS REV, V181, P896
166415    GOMI M, 1990, IEEE T J MAGN JPN, V5, P294
166416    KAMADA O, 2001, IEEE T MAGN 1, V37, P2013
166417    KUCERA M, 1991, J MAGN MAGN MATER, V101, P242
166418    LUO GQ, 2001, MAGNETOOPTICS
166419    XU Y, 1993, J PHYS-CONDENS MAT, V5, P8927
166420    YANG GL, 1994, J NANJING U, V30, P429
166421    ZHANG GY, 1994, ACTA PHYS SINICA, V3, P608
166422    ZHANG GY, 2005, ACTA PHYS SIN-CH ED, V54, P407
166423 NR 10
166424 TC 0
166425 SN 1000-3290
166426 J9 ACTA PHYS SIN-CHINESE ED
166427 JI Acta Phys. Sin.
166428 PD MAY
166429 PY 2006
166430 VL 55
166431 IS 5
166432 BP 2601
166433 EP 2605
166434 PG 5
166435 SC Physics, Multidisciplinary
166436 GA 042IR
166437 UT ISI:000237522000084
166438 ER
166439 
166440 PT J
166441 AU Wang, SL
166442    Li, SJ
166443    Du, YC
166444    Xu, B
166445    Li, LQ
166446    Zhu, Y
166447 TI Nanostructural evolution of Zn by dry roller vibration milling at room
166448    temperature
166449 SO PROGRESS IN NATURAL SCIENCE
166450 DT Article
166451 DE nanoparticles; nanostructures; vibration milling
166452 ID PARTICLES
166453 AB It remains open to date to produce stable nanostructures of single
166454    element by dry mechanical method at room temperature on a large scale.
166455    Here we report nanostructural evolution of zinc by dry roller vibration
166456    milling at room temperature, which leads to structurally near perfect
166457    zinc flakes sized 3-5 out in diameter. The synthesized nanostructures
166458    are single crystalline, transparent, uniform, randomly oriented, almost
166459    equiaxed, and mostly free from defects. The evolution seems to open a
166460    way to optimize zinc nanostructures by the mechanical method, offer
166461    valuable references to prepare nanostructures of other metals
166462    optimally, and shed light on how to lower the size limit by mechanical
166463    milling. Single elemental metal nanostructures with excellent
166464    properties give rise to new opportunities in scientific research and
166465    development of nanotechnology.
166466 C1 Shanghai Univ Sci & Technol, Dept Power Engn, Shanghai 200093, Peoples R China.
166467    Shanghai Univ Sci & Technol, Dept Med Apparatus, Shanghai 200093, Peoples R China.
166468 RP Wang, SL, Shanghai Univ Sci & Technol, Dept Power Engn, Shanghai
166469    200093, Peoples R China.
166470 EM wangshul@online.sh.cn
166471 CR BILGILI E, 2004, CHINA PARTICUOLOGY, V2, P93
166472    JETTE ER, 1935, J CHEM PHYS, V3, P605
166473    KENDALL K, 1978, NATURE, V272, P710
166474    MENDE S, 2003, POWDER TECHNOL, V132, P64
166475    MURAYAMA M, 2002, SCIENCE, V295, P2433
166476    OVIDKO IA, 2002, SCIENCE, V295, P2386
166477    PAN ZW, 2001, SCIENCE, V291, P1947
166478    SCHIOTZ J, 1998, NATURE, V391, P561
166479    SCHIOTZ J, 2003, SCIENCE, V301, P1357
166480    STRAZISAR J, 1996, INT J MINER PROCESS, V44, P673
166481    SWYGENHOVEN HV, 2002, SCIENCE, V296, P66
166482    WANG SL, 2002, PROG NAT SCI, V12, P336
166483    WANG SL, 2003, 991120, CN
166484    WEN SB, 1988, POWDER TECHNOL, V55, P11
166485 NR 14
166486 TC 0
166487 SN 1002-0071
166488 J9 PROG NAT SCI
166489 JI Prog. Nat. Sci.
166490 PD APR
166491 PY 2006
166492 VL 16
166493 IS 4
166494 BP 441
166495 EP 444
166496 PG 4
166497 SC Multidisciplinary Sciences
166498 GA 041CF
166499 UT ISI:000237430000017
166500 ER
166501 
166502 PT J
166503 AU Shen, JQ
166504    Riebel, U
166505    Guo, XA
166506 TI Scattering and transmission by a monolayer of spheres: A study on the
166507    monolayer structure
166508 SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION
166509 DT Article
166510 DE monolayer structure; scattering; transmission
166511 AB The angular distribution of scattered light and the transmission of
166512    radiation through a monolayer of monodisperse spherical particles at
166513    variable particle concentration are studied. The scattering of light by
166514    a single particle is calculated with the classical Lorentz-Mie theory.
166515    For a monolayer of mono-dispersed spherical particles, if the monolayer
166516    density is less than 0.5 and the particle size parameter is larger than
166517    5, effects from multiple scattering and dependent scattering can be
166518    excluded so that only steric interactions are considered. It is found
166519    that the scattering pattern, especially in the forward and backward
166520    directions, and the transmission are strongly dependent on the
166521    monolayer density.
166522 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
166523    Brandenburg Tech Univ Cottbus, Chair Particle Technol, D-03013 Cottbus, Germany.
166524 RP Shen, JQ, Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093,
166525    Peoples R China.
166526 EM shenjq@online.sh.cn
166527    sekretariat@mvt.tu-cottbus.de
166528    sekretaria@mvt.tu-cottbus.de
166529 CR HONG KM, 1988, J OPT SOC AM A, V5, P237
166530    KAUTER U, 1995, PART PART SYST CHAR, V12, P132
166531    LOIKO V, 1995, PARTEC 95 4 INT C OP, P335
166532    LYBOVTZEVA YS, 1982, IZV AN USSR FAO, V18, P922
166533    PERCUS JK, 1958, PHYS REV, V110, P1
166534    RIEBEL U, 1992, PARTICLE SIZE ANAL
166535    RIEBEL U, 1994, PART PART SYST CHAR, V11, P212
166536    RIPOLL MS, 1995, MOL PHYS, V85, P423
166537    SHEN J, 2003, THESIS
166538    SHEN J, 2004, CHINA PARTICUOLOGY, V2, P248
166539    TSANG L, 2001, SCATTERING ELECTROMA, P453
166540    VANDEHULST HC, 1957, LIGHT SCATTERING SMA
166541 NR 12
166542 TC 0
166543 SN 0934-0866
166544 J9 PART PART SYST CHARACT
166545 JI Part. Part. Syst. Charact.
166546 PD APR
166547 PY 2006
166548 VL 22
166549 IS 5
166550 BP 320
166551 EP 328
166552 PG 9
166553 SC Engineering, Chemical; Materials Science, Characterization & Testing
166554 GA 040RP
166555 UT ISI:000237398400004
166556 ER
166557 
166558 PT J
166559 AU Sun, YP
166560    Chen, DY
166561    Xu, XX
166562 TI Positive and negative hierarchies of nonlinear integrable lattice
166563    models and three integrable coupling systems associated with a discrete
166564    spectral problem
166565 SO NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
166566 DT Article
166567 DE nonlinear integrable lattice models; discrete Hamiltonian structure;
166568    zero curvature representation; integrable coupling
166569 ID DIFFERENTIAL-DIFFERENCE EQUATIONS; SOLITON-EQUATIONS; SYMPLECTIC MAP;
166570    CONSERVATION-LAWS; MASTER-SYMMETRIES; TRANSFORMATION
166571 AB Positive and negative hierarchies of nonlinear integrable lattice
166572    models are derived from a discrete spectral problem. The two lattice
166573    hierarchies are proved to have discrete zero curvature representations
166574    associated with a discrete spectral problem, which also shows that the
166575    positive and negative hierarchies correspond to positive and negative
166576    power expansions of Lax operators with respect to the spectral
166577    parameter, respectively. Moreover, the integrable lattice models in the
166578    positive hierarchy are of polynomial type, and the integrable lattice
166579    models in the negative hierarchy are of rational type. Further, we
166580    construct three integrable coupling systems of the positive hierarchy
166581    through enlarging Lax pair method. (c) 2005 Elsevier Ltd. All rights
166582    reserved.
166583 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
166584    Shandong Univ Sci & Technol, Coll Sci, Qingdao 266510, Peoples R China.
166585 RP Sun, YP, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
166586 EM yepsun@163.com
166587 CR ABLOWITZ MJ, 1975, J MATH PHYS, V16, P598
166588    BOGOYAVLENSKY OI, 1988, PHYS LETT A, V134, P34
166589    FUCHSSTEINER B, 1993, COUPLING COMPLETELY, P125
166590    GARDNER CS, 1967, PHYS REV LETT, V19, P1095
166591    MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
166592    MA WX, 1999, J MATH PHYS, V40, P2400
166593    MA WX, 2003, PHYS LETT A, V316, P72
166594    MA WX, 2004, INT J THEOR PHYS, V43, P219
166595    MARVEEV VB, 1991, DARBOUX TRANSFORMATI
166596    NARITA K, 2002, J PHYS SOC JPN, V71, P2401
166597    OEVEL W, 1989, PROG THEOR PHYS, V81, P294
166598    OHTA Y, 1991, J PHYS SOC JPN, V60, P2059
166599    TU GZ, 1990, J PHYS A-MATH GEN, V23, P3903
166600    WADATI M, 1975, PROG THEOR PHYS, V53, P419
166601    WADATI M, 1979, J PHYS SOC JPN, V46, P1965
166602    WU YT, 1996, J MATH PHYS, V37, P2338
166603    WU YT, 1998, J PHYS A-MATH GEN, V31, L677
166604    XU XX, 2002, COMMUN THEOR PHYS, V38, P523
166605    XU XX, 2003, ACTA MATH SCI A, V23, P298
166606    XU XX, 2004, COMMUN THEOR PHYS, V41, P321
166607    XU XX, 2005, NONLINEAR ANAL-THEOR, V61, P1225
166608    ZHANG DJ, 2002, CHAOS SOLITON FRACT, V14, P573
166609    ZHANG DJ, 2002, J PHYS A-MATH GEN, V35, P7225
166610    ZHANG HW, 1991, J MATH PHYS, V32, P1908
166611 NR 24
166612 TC 0
166613 SN 0362-546X
166614 J9 NONLINEAR ANAL-THEOR METH APP
166615 JI Nonlinear Anal.-Theory Methods Appl.
166616 PD JUN 1
166617 PY 2006
166618 VL 64
166619 IS 11
166620 BP 2604
166621 EP 2618
166622 PG 15
166623 SC Mathematics, Applied; Mathematics
166624 GA 039IN
166625 UT ISI:000237299300017
166626 ER
166627 
166628 PT J
166629 AU Wu, NC
166630    Xia, YB
166631    Tan, SH
166632    Wang, LJ
166633    Cui, JT
166634 TI Si/nanocrystalline diamond film heterojunction diodes preparation
166635 SO JOURNAL OF RARE EARTHS
166636 DT Article
166637 DE nanocrystalline diamond film; p-n heterojunction diode; rectification
166638    characterization; EACVD
166639 AB With electron assisted hot filament chemical vapor deposition
166640    technology, nanocrystalline diamond films were deposited on polished
166641    n-( 100)Si wafer surface. The deposited Films were characterized and
166642    observed by Raman spectrum, X-ray diffraction, semiconductor
166643    characterization system and Hall effective measurement system. The
166644    results show that with EA-HFCVD, not only an undoped nanocrystalline
166645    diamond films with high-conductivity (p-type semiconducting) but also a
166646    p-n heterojunction diode between the nanocrystalline diamond films and
166647    n-Si substrate is fabricated successfully. The p-n heterojunction has
166648    smaller forward resistance and bigger positive resistance. The p-n
166649    junction effective is evident.
166650 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
166651    Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
166652 RP Xia, YB, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
166653    China.
166654 EM ybxia@staff.shu.edu.cn
166655 CR DONG LF, 2004, CHINESE PHYS, V13, P1597
166656    GARRIDO JA, 2005, PHYS REV B, V71
166657    GROT SA, 1990, IEEE ELECTR DEVICE L, V11, P100
166658    LANDSTRASS MI, 1989, APPL PHYS LETT, V55, P1391
166659    YAGYU H, 1996, THIN SOLID FILMS, V281, P271
166660 NR 5
166661 TC 0
166662 SN 1002-0721
166663 J9 J RARE EARTH
166664 JI J. Rare Earths
166665 PD MAR
166666 PY 2006
166667 VL 24
166668 SI Sp. Iss. SI
166669 BP 45
166670 EP 48
166671 PG 4
166672 SC Chemistry, Applied
166673 GA 039TY
166674 UT ISI:000237331400014
166675 ER
166676 
166677 PT J
166678 AU Wu, NC
166679    Xia, YB
166680    Tan, SH
166681    Wang, LJ
166682 TI Nanocrystalline diamond films deposited by electron assisted hot
166683    filament chemical vapor deposition
166684 SO JOURNAL OF RARE EARTHS
166685 DT Article
166686 DE nanocrystalline diamond film; surface roughness; resistivity; EACVD
166687 ID HYDROGEN
166688 AB Nanocrystalline diamond films were deposited on polished Si wafer
166689    surface with electron assisted hot filament chemical vapor deposition
166690    at 1 kPa gas pressure, the deposited films were characterized and
166691    observed by Raman spectrum, X-ray diffraction, atomic force microscopy
166692    and semiconductor characterization system. The results show that when 8
166693    A bias current is applied for 5 h, the surface roughness decreases to
166694    28.5 nm. After 6 and 8 A bias current are applied for 1 h, and the
166695    nanocrystalline films deposition continue for 4 It with 0 A bias
166696    current at I kPa gas pressure. The nanocrystalline diamond films with
166697    0.5 x 10(9) and 1 x 10(10) Omega(.)cm resistivity respectively are
166698    obtained. It is demonstrated that electron bombardment plays an
166699    important role of nucleation to deposit diamond films with smooth
166700    surface and high resistivity.
166701 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
166702    Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
166703 RP Xia, YB, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
166704    China.
166705 EM ybxia@staff.shu.edu.cn
166706 CR DONG LF, 2004, CHINESE PHYS, V13, P1597
166707    GOEDEN C, 2002, APPL PHYS LETT, V81, P5027
166708    GRUEN DM, 1999, ANNU REV MATER SCI, V29, P211
166709    SAITOH H, 1993, J APPL PHYS, V74, P7002
166710 NR 4
166711 TC 0
166712 SN 1002-0721
166713 J9 J RARE EARTH
166714 JI J. Rare Earths
166715 PD MAR
166716 PY 2006
166717 VL 24
166718 SI Sp. Iss. SI
166719 BP 107
166720 EP 110
166721 PG 4
166722 SC Chemistry, Applied
166723 GA 039TY
166724 UT ISI:000237331400030
166725 ER
166726 
166727 PT J
166728 AU Zhou, SF
166729    Shi, W
166730 TI Attractors and dimension of dissipative lattice systems
166731 SO JOURNAL OF DIFFERENTIAL EQUATIONS
166732 DT Article
166733 ID DYNAMICAL-SYSTEMS; PATTERN-FORMATION; TRAVELING WAVES; NAGUMO EQUATION;
166734    SPATIAL CHAOS; ENTROPY; DOMAIN
166735 AB In this paper, by using the argument in [Q.F Ma, S.H. Wang, C.K. Zhong,
166736    Necessary and sufficient conditions for the existence of global
166737    attractor for semigroup and application, Indiana Univ. Math. J., 51(6)
166738    (2002), 1541-1559.], we prove that the condition given in [S. Zhou,
166739    Attractors and approximations for lattice dynamical systems, J.
166740    Differential Equations 200 (2004) 342-368.] for the existence of a
166741    global attractor for the semigroup associated with general lattice
166742    systems on a discrete Hilbert space is a sufficient and necessary
166743    condition. As an application, we consider the existence of a global
166744    attractor for a second-order lattice system in a discrete weighted
166745    space containing all bounded sequences. Finally, we show that the
166746    global attractor for first-order and partly dissipative lattice systems
166747    corresponding to (partly dissipative) reaction-diffusion equations and
166748    second-order dissipative lattice systems corresponding to the strongly
166749    damped wave equations have finite fractal dimension if the derivative
166750    of the nonlinear term is small at the origin. (c) 2005 Elsevier Inc.
166751    All rights reserved.
166752 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
166753 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
166754 EM sfzhou@mail.shu.edu.cn
166755 CR AFRAIMOVICH V, 1993, NONLINEARITY, V6, P429
166756    AFRAIMOVICH VS, 1994, INT J BIFURCAT CHAOS, V4, P631
166757    AFRAIMOVICH VS, 1995, JAPAN J IND APPL MAT, V12, P1
166758    BATES PW, 2001, INT J BIFURCAT CHAOS, V11, P143
166759    BELL J, 1984, Q APPL MATH, V42, P1
166760    BEYN PJ, 2003, J DYN DIFFERENTIAL E, V15, P485
166761    BUNIMOVICH LA, 1988, NONLINEARITY, V1, P491
166762    CAHN JW, 1960, ACTA METALL, V8, P554
166763    CHATE H, 1997, PHYSICA D, V103, P1
166764    CHOW SN, 1995, IEEE T CIRCUITS-I, V42, P746
166765    CHOW SN, 1995, SIAM J APPL MATH, V55, P1764
166766    CHUA LO, 1993, IEEE T CIRCUITS-I, V40, P147
166767    CHUESHOV I, 2004, J DYN DIFFERENTIAL E, V16, P477
166768    DOGARU R, 1998, INT J BIFURCAT CHAOS, V8, P211
166769    ERNEUX T, 1993, PHYSICA D, V67, P237
166770    FABINY L, 1993, PHYS REV A, P479
166771    FOIAS C, 1996, INDIANA U MATH J, V45, P603
166772    JIA QL, 2003, J MATH PHYS, V44, P5804
166773    JIANG MH, 1999, J STAT PHYS, V95, P791
166774    KANEKO K, 1993, THEORY APPL COUPLED
166775    KANEKO K, 1993, THEORY APPL COYUPLED
166776    LI XJ, 2005, J COMPUT APPL MATH, V177, P159
166777    MA QF, 2002, INDIANA U MATH J, V51, P1541
166778    MALLETPARET J, 1995, IEEE T CIRCUITS-I, V42, P752
166779    PECORA LM, 1990, PHYS REV LETT, V64, P821
166780    TEMAM R, 1997, INFINITE DIMENSIONAL
166781    ZELIK SV, 2001, MATH NACHR, V232, P129
166782    ZHOU SF, 2002, NONLINEARITY, V15, P1079
166783    ZHOU SF, 2003, PHYSICA D, V178, P51
166784    ZHOU SF, 2004, J DIFFER EQUATIONS, V200, P342
166785 NR 30
166786 TC 0
166787 SN 0022-0396
166788 J9 J DIFFERENTIAL EQUATIONS
166789 JI J. Differ. Equ.
166790 PD MAY 1
166791 PY 2006
166792 VL 224
166793 IS 1
166794 BP 172
166795 EP 204
166796 PG 33
166797 SC Mathematics
166798 GA 040GA
166799 UT ISI:000237365800006
166800 ER
166801 
166802 PT J
166803 AU Fang, W
166804    Lu, HQ
166805    Huang, ZG
166806    Zhang, KF
166807 TI The evolution of the universe with the B-I type phantom scalar field
166808 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS D
166809 DT Article
166810 DE dark energy; Born-Infeld type scalar field; attractor solution; phantom
166811    cosmology
166812 ID COSMOLOGICAL CONSEQUENCES; ENERGY COMPONENT; DARK ENERGY; QUINTESSENCE;
166813    EQUATION; MATTER; STATE
166814 AB We consider the phantom cosmology with a Lagrangian L = 1/eta [1- root
166815    1 + eta g (mu nu) phi, mu phi, nu] - u(phi) originated from the
166816    nonlinear Born-Infeld type scalar field. This cosmological model can
166817    explain the accelerating expansion of the universe with the equation of
166818    state parameter w <= -1. We get a sufficient condition for an arbitrary
166819    potential that admits a late time attractor solution: the value of
166820    potential u(X-c) at the critical point (X-c, 0) should be maximum and
166821    greater than zero. We study a specific potential with the form of
166822    u(phi) = V-0 (1 + phi/phi(0)) e(-phi/phi(0)) via phase plane analysis
166823    and compute the cosmological evolution by numerical analysis in detail.
166824    The results show that the phantom field survives till today (to account
166825    for the present observed accelerating expansion) without interfering
166826    with the nucleosynthesis of the standard model (the density parameter
166827    Omega(phi) similar or equal to 10(-12) at the equipartition epoch), and
166828    also avoid the future collapse of the universe.
166829 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
166830 RP Fang, W, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
166831 EM fangwei@graduate.shu.edu.cn
166832    alberthq_lu@staff.shu.edu.cn
166833 CR AGUIRREGABIRIA JM, 2004, PHYS REV D, V70
166834    BENAOUM HB, HEPTH0205140
166835    BENNETT CL, ASTROPH0302207
166836    BENTO MC, HEPTH020812
166837    BILIC N, 2002, PHYS LETT B, V535, P17
166838    BORN M, 1934, PROC R SOC LON SER-A, V144, P425
166839    BRUNIER T, GRQC0408080
166840    CALDWELL RR, 1998, PHYS REV LETT, V80, P1582
166841    CALDWELL RR, 2002, PHYS LETT B, V545, P23
166842    CALDWELL RR, 2003, PHYS REV LETT, V91
166843    CARROLL SM, ASTROPH0301273
166844    CARROLL SM, 2003, PHYS REV D, V68
166845    CARROLL SM, 2003, PHYS REV D, V68, P23509
166846    CHEN B, HEPTH0209222
166847    CHIBA T, ASTROPH0206298
166848    CHIBA T, 2000, PHYS REV D, V62
166849    CHIMENTO LP, 2004, PHYS REV D, V7
166850    CLINE JM, HEPTH0207156
166851    DABROWSKI MP, HEPTH0307128
166852    DABROWSKI MP, 2003, PHYS REV D, V68
166853    DEBERNARDIS P, ASTROPH0105296
166854    DEOLIVEIRA HP, 1995, J MATH PHYS, V36, P2988
166855    DIAMANDIS GA, HEPTH0107124
166856    DIAMANDIS GA, HEPTH0203241
166857    ERICKSON JK, 2002, PHYS REV LETT, V88
166858    FARAONI V, 2002, INT J MOD PHYS D, V11, P471
166859    FEINSTEIN A, HEPTH0304069
166860    FELDER G, HEPTH0208019
166861    FELDER G, 2002, JHEP, V209, P26
166862    FROLOV A, HEPTH0204187
166863    GAROUSI MR, HEPTH0209068
166864    GIBBONS G, HEPTH0209034
166865    GIBBONS GW, HEPTH0301299
166866    GIBBONS GW, HEPTH0302199
166867    GIBBONS GW, HEPTH031117
166868    HALVERSON NW, 2002, ASTROPHYS J 1, V568, P38
166869    HAO JG, HEPTH0305207
166870    HAO JG, 2002, PHYS REV D, V66
166871    HAO JG, 2003, PHYS REV D, V68
166872    HEISENBERG W, 1939, Z PHYS, V113, P61
166873    HEISENBERG W, 1949, Z PHYS, V126, P519
166874    HEISENBERG W, 1952, Z PHYS, V133, P79
166875    ISHIDA L, HEPTH0206102
166876    KAMENSHCHIK A, 2001, PHYS LETT B, V511, P265
166877    KIN C, HEPTH0301142
166878    KOFMAN L, HEPTH020512
166879    KUTASOV D, 2000, J HIGH ENERGY PHYS
166880    LEBLOND F, HEPTH0305059
166881    LEE AT, ASTROPH0105062
166882    LEE H, HEPTH0210221
166883    LI K, 1993, PHYS REV D, V48, P853
166884    LI XZ, 2002, CLASSICAL QUANT GRAV, V19, P6049
166885    LI XZ, 2003, PHYS REV D, V67
166886    LIU DJ, 2003, PHYS REV D, V68
166887    LU HQ, 1999, INT J MOD PHYS D, V8, P625
166888    LU HQ, 2005, INT J MOD PHYS D, V14, P355
166889    LUSON J, HEPTH0209255
166890    MACORRA A, ASTROPH0212302
166891    MCINNES B, HEPTH0112066
166892    MEHEN T, HEPTH0206212
166893    MELCHIORRI A, ASTROPH0406652
166894    MELHIORI A, ASTROPH0211522
166895    MOELLER N, 2002, J HIGH ENERGY PHYS
166896    MUKHOPADHYAY P, HEPTH020814
166897    MUKOHYAMA S, HEPTH0208094
166898    MUKOHYAMA S, 2002, PHYS REV D, V66
166899    NETTERFIELD CB, ASTROPH0104460
166900    NOJIRI S, HEPTH0304131
166901    NOJIRI S, HEPTH0306212
166902    OKUNDA T, HEPTH0208196
166903    ONEMLI VK, GRQC0204065
166904    ONEMLI VK, GRQC0406098
166905    PADMANABHAN T, 2002, PHYS REV D, V66
166906    PERLMUTTER S, 1999, ASTROPHYS J 1, V517, P565
166907    PIAO YS, HEPPH0207143
166908    PICON CA, 1999, PHYS LETT B, V458, P209
166909    PICON CA, 2000, PHYS REV LETT, V85, P4438
166910    RATRA B, 1988, PHYS REV D, V37, P3406
166911    SAMI M, HEPTH0301140
166912    SAMI M, 2003, PHYS REV D, V67
166913    SAMI M, 2004, MOD PHYS LETT A, V19, P1509
166914    SCHULZ E, 2001, PHYS REV D, V64
166915    SEN A, HEPTH0203211
166916    SEN A, HEPTH0204143
166917    SEN A, HEPTH0207105
166918    SEN A, HEPTH0209122
166919    SHIU G, 2002, PHYS LETT B, V541, P6
166920    SINGH P, 2003, PHYS REV D, V68
166921    SPERGEL DN, ASTROPH0302209
166922    STEINHARDT PJ, 1999, PHYS REV LETT, V82, P896
166923    STOMPOR R, ASTROPH0105062
166924    TANIUTI T, 1958, PROG THEOR PHYS SUPP, V9, P69
166925    TONRY JL, ASTROPH0305008
166926    WITTEN E, 1992, PHYS REV D, V46, P5467
166927    WITTEN E, 1993, PHYS REV D, V47, P3405
166928 NR 95
166929 TC 0
166930 SN 0218-2718
166931 J9 INT J MOD PHYS D
166932 JI Int. J. Mod. Phys. D
166933 PD FEB
166934 PY 2006
166935 VL 15
166936 IS 2
166937 BP 199
166938 EP 214
166939 PG 16
166940 SC Astronomy & Astrophysics
166941 GA 041SG
166942 UT ISI:000237475400006
166943 ER
166944 
166945 PT J
166946 AU Zhao, HJ
166947    Li, MX
166948    Shao, M
166949    Liu, HJ
166950 TI Aqua(L-aspartato-kappa(2) N, O)(2,2 '-bipyridine-kappa N-2,
166951    N)copper(II) pentahydrate
166952 SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE
166953 DT Article
166954 ID TRIHYDRATE; COMPLEX; ACID
166955 AB In the title compound, [Cu(C4H5NO4)(C10H8N2)(H2O)]center dot 5H(2)O,
166956    the Cu-II atom is coordinated by an N,O-bidentate L-aspartate dianion,
166957    a bipyridine ligand and a water molecule in a distorted
166958    square-pyramidal geometry. Intermolecular hydrogen bonds involving the
166959    non-coordinated water molecules help to consolidate the crystal packing.
166960 C1 Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200444, Peoples R China.
166961    Shanghai Univ, Res Ctr Anal & Measurement, Shanghai 200444, Peoples R China.
166962 RP Li, MX, Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200444, Peoples R
166963    China.
166964 EM mx_li@mail.shu.edu.cn
166965 CR *BRUK AXS INC, 2000, APEX2 SAINT
166966    ANTOLINI L, 1983, INORG CHEM, V22, P141
166967    BRONDINO CD, 1995, INORG CHIM ACTA, V228, P261
166968    CASELLATO U, 1991, J CHEM SOC DA, P23
166969    HU ZQ, 2004, CHINESE J STRUC CHEM, V23, P38
166970    MA LF, 2004, CHINESE J INORG CHEM, V20, P1429
166971    SHELDRICK GM, 1996, SADABS
166972    SHELDRICK GM, 1997, SHELXS97 SHELXL97
166973    SHELDRICK GM, 2000, SHELXTL VERS 6 1
166974 NR 9
166975 TC 0
166976 SN 1600-5368
166977 J9 ACTA CRYSTALLOGR E-STRUCT REP
166978 JI Acta Crystallogr. Sect. E.-Struct Rep. Online
166979 PD MAY
166980 PY 2006
166981 VL 62
166982 PN Part 5
166983 BP M965
166984 EP M967
166985 PG 3
166986 SC Crystallography
166987 GA 038QE
166988 UT ISI:000237237000019
166989 ER
166990 
166991 PT J
166992 AU Qiu, L
166993    Wang, L
166994    Zhao, YM
166995 TI 2-Hydroxy-2 ',4,4 '-trimethoxybenzophenone
166996 SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE
166997 DT Article
166998 AB In the crystal structure, the title compound, C16H16O5, forms an
166999    intramolecular O-H center dot center dot center dot O hydrogen bond and
167000    two short intermolecular C-H center dot center dot center dot O
167001    contacts.
167002 C1 Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200444, Peoples R China.
167003    Xinyang Vocat & Technol Inst, Dept Biol & Chem, Henan 464000, Peoples R China.
167004    Jiangsu Univ, Coll Chem & Chem Engn, Zhenjiang 212013, Peoples R China.
167005 RP Zhao, YM, Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200444, Peoples
167006    R China.
167007 EM zhaoym86@163.com
167008 CR *BRUK, 2000, SMART SAINT SADABS S
167009    HOSLER JF, 1960, 2928878, US
167010    KUMAGAI S, 1990, 02180909, JP
167011    MULHOLLAND BM, 1999, 953595, EP, APPL
167012    PRESTON PN, 1983, J CHEM SOC CHEM COMM, P89
167013    SCHLEMPER EO, 1982, ACTA CRYSTALLOGR B, V38, P554
167014    SUZUKI T, 2005, TOXICOL APPL PHARM, V203, P9
167015 NR 7
167016 TC 0
167017 SN 1600-5368
167018 J9 ACTA CRYSTALLOGR E-STRUCT REP
167019 JI Acta Crystallogr. Sect. E.-Struct Rep. Online
167020 PD MAY
167021 PY 2006
167022 VL 62
167023 PN Part 5
167024 BP O1980
167025 EP O1981
167026 PG 2
167027 SC Crystallography
167028 GA 038QE
167029 UT ISI:000237237000231
167030 ER
167031 
167032 PT J
167033 AU Xia, S
167034    Zhou, BX
167035    Chen, WJ
167036    Wang, WG
167037 TI Effects of strain and annealing processes on the distribution of Sigma
167038    3 boundaries in a Ni-based superalloy
167039 SO SCRIPTA MATERIALIA
167040 DT Article
167041 DE annealing twinning; grain boundary; coincidence lattice; alloy 690
167042 ID CHARACTER-DISTRIBUTION; INTERGRANULAR CORROSION; GRAIN-BOUNDARIES;
167043    MICROSTRUCTURE; OPTIMIZATION; ALLOY
167044 AB The effects of thermomechanical treatments on the distributions of D
167045    boundaries in Alloy 690(Ni-30Cr-10Fe, wt.%) were investigated. With 5%
167046    cold rolling and annealed at 1100 degrees C for 5 min, almost all the
167047    Sigma 3 boundaries were parts of clusters, but with 50% cold rolling
167048    and annealed under the same condition, almost no clusters existed. (c)
167049    2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights
167050    reserved.
167051 C1 Shanghai Univ, Sch Mat Sci & Engn, Inst Mat, Shanghai 200072, Peoples R China.
167052    Shandong Univ Technol, Sch Mech Engn, Shandong 255049, Peoples R China.
167053 RP Xia, S, Shanghai Univ, Sch Mat Sci & Engn, Inst Mat, Shanghai 200072,
167054    Peoples R China.
167055 EM xiashuang14@sohu.com
167056 CR DAVIES P, 2002, J MATER SCI, V37, P4203
167057    GERTSMAN VY, 1994, ACTA METALL MATER, V42, P1785
167058    GERTSMAN VY, 2003, INTERFACE SCI, V11, P403
167059    KING WE, 1998, SCRIPTA MATER, V38, P449
167060    KOPEZKY CV, 1991, ACTA METALL MATER, V39, P1603
167061    KRONBERG ML, 1949, T AIME, V185, P501
167062    LEE DS, 2003, MAT SCI ENG A-STRUCT, V354, P106
167063    LIN P, 1995, SCRIPTA METALL MATER, V33, P1387
167064    PALUMBO G, 1998, SCRIPTA MATER, V38, P1685
167065    PALUMBO G, 1999, MRS BULL, V24, P27
167066    RANDLE V, 2002, ULTRAMICROSCOPY, V90, P153
167067    RANDLE V, 2005, J MATER SCI, V40, P3243
167068    SCHUH CA, 2005, J MATER SCI, V40, P847
167069    SHIMADA M, 2002, ACTA MATER, V50, P2331
167070    SPIGARELLI S, 2003, MAT SCI ENG A-STRUCT, V352, P93
167071    THUVANDER M, 2000, MAT SCI ENG A-STRUCT, V281, P96
167072 NR 16
167073 TC 0
167074 SN 1359-6462
167075 J9 SCRIPTA MATER
167076 JI Scr. Mater.
167077 PD JUN
167078 PY 2006
167079 VL 54
167080 IS 12
167081 BP 2019
167082 EP 2022
167083 PG 4
167084 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
167085    Engineering
167086 GA 037QW
167087 UT ISI:000237163000008
167088 ER
167089 
167090 PT J
167091 AU Zhu, P
167092    Gu, GB
167093    Qu, ZP
167094    Huang, YF
167095    Yao, WX
167096 TI The pilot test of Pt-Pd and Pt-Rh feeds extracted and separated with a
167097    new sulfoxide extractant
167098 SO RARE METALS
167099 DT Article
167100 DE solvent extraction; pilot test; sulfoxide; platinum group metals
167101 ID OTMSO
167102 AB Platinum, palladium and rhodium of the raw feeds extracted and
167103    separated with a new sulfoxide extractant (MSO) were studied in the
167104    paper. The pilot test results showed that the percentage extractions
167105    are more than 99% for platinum and palladium in Pt-Pd feed, and the
167106    percentage strippings are 100% and 99.2% with HCl and ammonia,
167107    respectively. The ratio of palladium to platinum is 0.0016 in stripping
167108    platinum solution, and the ratio of platinum to palladium is 0.0020 in
167109    stripping palladium solution. The percentage extraction of platinum is
167110    99% in Pt-Rh feed, and the percentage stripping is 100%. The ratio of
167111    rhodium to platinum is 0.0002 in stripping platinum solution.
167112    Therefore, platinum, palladium, and rhodium feeds are separated
167113    effectively with MSO.
167114 C1 Shanghai Univ, Coll Environm Sci & Engn, Shanghai 200072, Peoples R China.
167115    S China Univ Technol, Dept Appl Chem, Ghangzhou 510640, Peoples R China.
167116    Minist Internal Trade, Inst Mat Reutilizat, Xuzhou 221006, Peoples R China.
167117 RP Zhu, P, Shanghai Univ, Coll Environm Sci & Engn, Shanghai 200072,
167118    Peoples R China.
167119 EM xhnzp@staff.shu.edu.cn
167120 CR LI YL, 2003, J S CHINA U TECHNOL, V31, P31
167121    LIU SJ, 2001, MINING METALLURGY PL, P363
167122    QIAN HF, 2001, ADV SCI TECHNOL, V8, P33
167123    WANG JD, 2001, SOLVENT EXTRACTION H, P608
167124    WU SP, 2004, RARE METAL MAT ENG, V33, P957
167125    WU SP, 2004, RARE METALS, V23, P97
167126    ZHANG BL, 1998, J SHANXI NORM U, V26, P70
167127    ZHU P, 2003, PRECIOUS MET, V24, P21
167128    ZHU P, 2003, SEPARATION RECOVERY, P44
167129 NR 9
167130 TC 0
167131 SN 1001-0521
167132 J9 RARE METALS
167133 JI Rare Metals
167134 PD APR
167135 PY 2006
167136 VL 25
167137 IS 2
167138 BP 99
167139 EP 105
167140 PG 7
167141 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
167142    Engineering
167143 GA 038YZ
167144 UT ISI:000237267100001
167145 ER
167146 
167147 PT J
167148 AU Hou, JM
167149    Tian, LJ
167150    Jin, S
167151 TI Dark states and coherent control of spin states in molecular magnets
167152 SO PHYSICAL REVIEW B
167153 DT Article
167154 ID ELECTROMAGNETICALLY INDUCED TRANSPARENCY; ATOMIC VAPOR; LIGHT; STORAGE;
167155    SLOW
167156 AB We propose a scheme to realize the coherent control of spin states of
167157    the molecule magnet, Ni-4. We introduce transverse magnetic fields with
167158    special frequencies. When the frequencies of transverse magnetic fields
167159    match in some conditions, we obtain dark states in Ni-4 molecules.
167160    Through adjusting the magnitude of the magnetic fields, we can obtain
167161    any arbitrary superposition of the two ground spin states of Ni-4
167162    molecules.
167163 C1 Southeast Univ, Dept Phys, Nanjing 210096, Peoples R China.
167164    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
167165    Beihang Univ, Dept Phys, Sch Sci, Beijing 100083, Peoples R China.
167166 RP Hou, JM, Southeast Univ, Dept Phys, Nanjing 210096, Peoples R China.
167167 EM jmhou@eyou.com
167168 CR ARIMONDO E, 1996, PROG OPTICS, V35, P257
167169    BERGMANN K, 1998, REV MOD PHYS, V70, P1003
167170    BUDKER D, 1999, PHYS REV LETT, V83, P1767
167171    DELBARCO E, 2004, PHYS REV LETT, V93
167172    FLEISCHHAUER M, 2000, PHYS REV LETT, V84, P5094
167173    HARRIS SE, 1997, PHYS TODAY, V50, P36
167174    HAU LV, 1999, NATURE, V397, P594
167175    HOU JM, 2005, CHINESE PHYS LETT, V22, P2147
167176    HUSS AF, 2002, J MOD OPTIC, V49, P141
167177    KOCHAROVSKAYA O, 1992, PHYS REP, V219, P175
167178    LIU C, 2001, NATURE, V409, P490
167179    LUKIN MD, 2001, NATURE, V413, P273
167180    MARANGOS JP, 1998, J MOD OPTIC, V45, P471
167181    MATSKO AB, 2001, ADV ATOM MOL OPT PHY, V46, P191
167182    MESSIAH A, 1962, QUANTUM MECH
167183    NEUENBERGER MN, 2001, NATURE, V410, P789
167184    PARK K, 2005, J APPL PHYS, V97, P522
167185    PHILLIPS DF, 2001, PHYS REV LETT, V86, P783
167186    SCULLY MO, 1997, QUANTUM OPTICS
167187    TERMIKAELYAN ML, 1997, PHYS-USP, V40, P1195
167188    TURUKHIN AV, 2002, PHYS REV LETT, V88
167189    VITANOV NV, 2001, ADV ATOM MOL OPT PHY, V46, P57
167190    YANG EC, 2003, POLYHEDRON, V22, P1727
167191 NR 23
167192 TC 0
167193 SN 1098-0121
167194 J9 PHYS REV B
167195 JI Phys. Rev. B
167196 PD APR
167197 PY 2006
167198 VL 73
167199 IS 13
167200 AR 134425
167201 DI ARTN 134425
167202 PG 5
167203 SC Physics, Condensed Matter
167204 GA 037NN
167205 UT ISI:000237153800079
167206 ER
167207 
167208 PT J
167209 AU Yuan, J
167210    Yuan, SF
167211    Leng, GS
167212 TI Inequalities for dual harmonic quermassintegrals
167213 SO JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY
167214 DT Article
167215 DE convex body; star body; dual harmonic quermassintegrals; the
167216    Brunn-Minkowski inequality; the Blaschke-Santalo inequality
167217 ID MIXED VOLUMES
167218 AB In this paper, we study the properties of the dual harmonic
167219    quermassintegrals systematically and establish some inequalities for
167220    the dual harmonic quermassintegrals, such as the Minkowski inequality,
167221    the Brunn-Minkowski inequality, the Blaschke-Santalo inequality and the
167222    Bieberbach inequality.
167223 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
167224 RP Yuan, J, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
167225 EM yuanjun@graduate.shu.edu.cn
167226    yuanshufeng2003@163.com
167227    gleng@staff.shu.edu.cn
167228 CR BIEBERBACH L, 1915, JAHRESBER D M V, V24, P247
167229    BLASCHKE W, 1917, BER VERH SACHS AK MP, V69, P412
167230    BONNESEN T, 1934, THEORIE KONVEXEN KOR
167231    GARDNER RJ, 1995, GEOMETRIC TOMOGRAPHY
167232    HADWIGER H, 1958, AM MATH MONTHLY, V65, P300
167233    KLAIN DA, 1996, ADV MATH, V121, P80
167234    LEICHTWEISS K, 1980, KONVEXE MENGEN
167235    LUTWAK E, 1975, MATH P CAMBRIGDE PHI, V78, P493
167236    LUTWAK E, 1975, PAC J MATH, V58, P531
167237    LUTWAK E, 1979, ANN MAT PUR APPL, V119, P139
167238    LUTWAK E, 1984, P AM MATH SOC, V90, P415
167239    LUTWAK E, 1988, ADV MATH, V71, P232
167240    LUTWAK E, 1988, MATH ANN, V280, P165
167241    MARIA M, 1999, J MATH ANAL APPL, V232, P45
167242    SANTALO LA, 1949, PORT MATH, V8, P155
167243    SANTALO LA, 1976, INTEGRAL GEOMETRY GE
167244    SCHNEIDER R, 1993, CONVEX BODIES BRUNNM
167245    URYSOHN P, 1924, REC MATH SOC MATH MO, V8, P477
167246    ZHANG GY, 1999, T AM MATH SOC, V351, P985
167247 NR 19
167248 TC 0
167249 SN 0304-9914
167250 J9 J KOREAN MATH SOC
167251 JI J. Korean. Math. Soc.
167252 PD MAY
167253 PY 2006
167254 VL 43
167255 IS 3
167256 BP 593
167257 EP 607
167258 PG 15
167259 SC Mathematics, Applied; Mathematics
167260 GA 039RQ
167261 UT ISI:000237324900009
167262 ER
167263 
167264 PT J
167265 AU Yu, WY
167266    Wu, DH
167267 TI The monotony properties of generalized projection bodies, intersection
167268    bodies and centroid bodies
167269 SO JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY
167270 DT Article
167271 DE projection bodies; intersection bodies; centroid bodies;
167272    quermassintegrals; dual quermassintegrals; monotony properties.
167273 ID DUAL MIXED VOLUMES; BUSEMANN-PETTY PROBLEM; INEQUALITIES
167274 AB In this paper, we established the monotony properties of generalized
167275    projection bodies Pi K-i, intersection bodies IiK and centroid bodies
167276    Gamma K-i.
167277 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
167278 RP Yu, WY, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
167279 EM yu_wuyang@163.com
167280 CR CHAKERIAN GD, 1997, T AM MATH SOC, V349, P1811
167281    GARDNER RJ, 1994, ANN MATH, V140, P435
167282    GARDNER RJ, 1994, T AM MATH SOC, V342, P435
167283    GARDNER RJ, 1995, ENCY MATH ITS APPL, V58
167284    HARDY GH, 1952, INEQUALITIES
167285    HELGASON S, 1999, PROGR MATH, V5
167286    LEICHTWEISS K, 1980, KONVEXE MENGEN
167287    LUTWAK E, 1975, PAC J MATH, V58, P531
167288    LUTWAK E, 1985, T AM MATH SOC, V287, P91
167289    LUTWAK E, 1988, ADV MATH, V71, P232
167290    LUTWAK E, 1990, GEOM DEDICATA, V33, P51
167291    LUTWAK E, 1990, P LOND MATH SOC, V60, P365
167292    LUTWAK E, 1993, J DIFFER GEOM, V38, P131
167293    LUTWAK E, 1997, J DIFFER GEOM, V47, P1
167294    PETTY CM, 1961, PAC J MATH, V11, P1535
167295    PETTY CM, 1967, P COLL CONV COP 1965, P234
167296    RUDIN W, 1976, PRINCIPLES MATH ANAL
167297    SCHNEIDER R, 1967, MATH Z, V101, P71
167298    SCHNEIDER R, 1993, ENCY MATH ITS APPL, V44
167299    SHEPHARD GC, 1964, ISRAEL J MATH, V2, P229
167300    ZHANG GY, 1994, T AM MATH SOC, V345, P777
167301    ZHANG GY, 1996, AM J MATH, V118, P319
167302    ZHANG GY, 1999, ANN MATH, V149, P535
167303    ZHANG GY, 1999, T AM MATH SOC, V351, P985
167304 NR 24
167305 TC 0
167306 SN 0304-9914
167307 J9 J KOREAN MATH SOC
167308 JI J. Korean. Math. Soc.
167309 PD MAY
167310 PY 2006
167311 VL 43
167312 IS 3
167313 BP 609
167314 EP 622
167315 PG 14
167316 SC Mathematics, Applied; Mathematics
167317 GA 039RQ
167318 UT ISI:000237324900010
167319 ER
167320 
167321 PT J
167322 AU Li, X
167323    Ren, ZM
167324    Fautrelle, Y
167325 TI Effect of a vertical magnetic field on the dendrite morphology during
167326    Bridgman crystal growth of Al-4.5 wt% Cu
167327 SO JOURNAL OF CRYSTAL GROWTH
167328 DT Article
167329 DE Bridgman growth; high magnetic field; dendrite growth; Al-4.5wt%Cu alloy
167330 ID SOLIDIFICATION; ALLOYS; PHASE
167331 AB The effect of a vertical high magnetic field (up to 10T) on the
167332    dendrite morphology has been investigated during Bridgman growth of
167333    Al-4.5 wt%Cu alloys experimentally. It is found that the field causes
167334    disorder in dendrites and their tilt in orientation. Along with the
167335    increase of the magnetic field and decrease of the growth velocity, the
167336    dendrites became broken and orientated in < 111 > along the direction
167337    of solidification instead of < 100 >. The field also enlarged the
167338    primary dendrite spacing and promoted the branching of the dendrites to
167339    form high-order arms. Above phenomena are attributed to the
167340    thermoelectromagnetic convection effect and orientation caused by the
167341    high magnetic field. (c) 2006 Elsevier B.V. All rights reserved.
167342 C1 ENSHMG, EPM Madylam, St Martin Dheres, France.
167343    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
167344 RP Li, X, ENSHMG, EPM Madylam, BP 38402, St Martin Dheres, France.
167345 EM xi@hmg.inpg.fr
167346 CR ALBOUSSIERE T, 1991, CR ACAD SCI II-MEC P, V313, P749
167347    ASAI S, 2000, SCI TECHNOL ADV MAT, V1, P199
167348    CHEN WP, 1999, J CRYST GROWTH, V204, P69
167349    CROLL A, 1998, J CRYST GROWTH, V183, P554
167350    GORBUNOV LA, 1987, MAGNETOHYDRODYNAMICS, V23, P404
167351    LAKAR O, 1994, THESI INPG FRANCE
167352    LU XY, 2002, PHYSICA C, V382, P27
167353    MOREAU R, 1991, MAT SCI PARIS, V313, P749
167354    RANGO PD, 1991, NATURE, V349, P770
167355    WANG H, 2002, ACTA METALL SIN, V38, P41
167356    YASUDA H, 2003, MATER TRANS, V44, P2550
167357    YOUDELIS WV, 1966, CAN J PHYS, V44, P139
167358    ZHONG QC, 1994, METALLOGRAPHY HEAT T, P10
167359 NR 13
167360 TC 0
167361 SN 0022-0248
167362 J9 J CRYST GROWTH
167363 JI J. Cryst. Growth
167364 PD MAY 1
167365 PY 2006
167366 VL 290
167367 IS 2
167368 BP 571
167369 EP 575
167370 PG 5
167371 SC Crystallography
167372 GA 037OM
167373 UT ISI:000237156400046
167374 ER
167375 
167376 PT J
167377 AU Guan, XH
167378    Ma, ZW
167379    Cai, P
167380    Kobayashi, Y
167381    Anada, T
167382    Hagiwara, G
167383 TI Synthesizing microstrip dual-band bandpass filters using frequency
167384    transformation and circuit conversion technique
167385 SO IEICE TRANSACTIONS ON ELECTRONICS
167386 DT Article
167387 DE admittance inverter; dual-band filter frequency transformation;
167388    microstrip line
167389 ID DESIGN; GHZ
167390 AB A novel method is proposed to synthesize dual-band bandpass filters
167391    (BPFs) from a prototype lowpass filter. By implementing successive
167392    frequency transformations and circuit conversions, a new filter
167393    topology is obtained which consists of only admittance inverters and
167394    series or shunt resonators, and is thereby easy to be realized by using
167395    conventional distributed elements. A microstrip dual-band BPI" with
167396    central frequencies of 1.8 GHz and 2.4 GHz is designed and fabricated
167397    using microstrip lines and stubs. The simulated and measured results
167398    show a good agreement and validate thereby the proposed theory.
167399 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
167400    Saitama Univ, Dept Elect & Elect Syst, Urawa, Saitama 3388570, Japan.
167401    Kanagawa Univ, High Tech Res Ctr, Yokohama, Kanagawa 2218686, Japan.
167402 RP Ma, ZW, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
167403    Peoples R China.
167404 EM ma@ees.saitai-na-u.ac.jp
167405 CR 2004, SONN SUIT VER 9 52
167406    CHANG SF, 2004, ELECTRON LETT, V40, P38
167407    GUAN X, 2005, 2005 AS PAC MICR C P, P2294
167408    HASHEMI H, 2002, IEEE T MICROW THEO 2, V50, P288
167409    HSU MH, 2005, IEICE T ELECTRON EC, V88, P47
167410    KUO JT, 2004, 2004 AS PAC MICR C P, P246
167411    KUO YL, 2003, IEEE T ANTENN PROPAG, V51, P2187
167412    LEE HM, 2005, 2005 IEEE MTT S INT, P2191
167413    MA Z, 2005, 35 EUR MICR C P OCT, P1255
167414    MATTHAEI G, 1980, MICROWAVE FILTER IMP
167415    MIYAKE H, 1997, 1997 INT MICR S DIG, P789
167416    QUENDO C, 2003, 2003 IEEE MTT S INT, P1093
167417    TSAI LC, 2004, IEEE T MICROW THEORY, V52, P1111
167418    UCHIDA H, 2004, IEEE T MICROW THEORY, V52, P2550
167419    WADA K, 2000, IEICE T ELECTRON EC, V83, P1763
167420    YIM HYA, 2005, 2005 IEEE MTT S INT, P2187
167421 NR 16
167422 TC 0
167423 SN 0916-8524
167424 J9 IEICE TRANS ELECTRON
167425 JI IEICE Trans. Electron.
167426 PD APR
167427 PY 2006
167428 VL E89C
167429 IS 4
167430 BP 495
167431 EP 502
167432 PG 8
167433 SC Engineering, Electrical & Electronic
167434 GA 038FG
167435 UT ISI:000237203600008
167436 ER
167437 
167438 PT J
167439 AU Hu, WL
167440    Ma, ZW
167441    Kobayashi, Y
167442    Anada, T
167443    Hagiwara, G
167444 TI Dual-mode bandpass filters using microstrip slotted equilateral
167445    triangular patch resonators
167446 SO IEICE TRANSACTIONS ON ELECTRONICS
167447 DT Article
167448 DE dual-mode filter; microstrip filter; size-reduction; triangular patch
167449    resonator
167450 ID DEGENERATE MODES; LOOP RESONATOR; SIZE
167451 AB Two compact and low loss dual-mode filters are proposed by using
167452    degenerate modes of slotted triangular microstrip patch resonators. The
167453    geometrical size and radiation loss of the triangular patch are reduced
167454    simultaneously by loading both horizontal and vertical slots. The
167455    resonant frequencies of two degenerate modes can be easily controlled
167456    by varying the dimensions and positions of the slots. A two-pole
167457    dualmode filter operating at 3.94 GHz with a fractional bandwidth of
167458    4.3% is designed, fabricated, and measured. The measured results verify
167459    well the theoretical predictions.
167460 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
167461    Saitama Univ, Dept Elect & Elect Syst, Urawa, Saitama 3388570, Japan.
167462    Kanagawa Univ, High Tech Res Ctr, Yokohama, Kanagawa 2218686, Japan.
167463 RP Ma, ZW, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
167464    Peoples R China.
167465 EM ma@ees.saitama-u.ac.jp
167466 CR 2004, SONNET SUITE VER 9 5
167467    GORUR A, 2004, IEEE T MICROW THEORY, V52, P671
167468    HELSZAJN J, 1978, IEEE T MICROW THEORY, V26, P95
167469    HONG JS, 1995, IEEE MICROW GUIDED W, V5, P371
167470    HONG JS, 2000, IEEE MTT-S, P331
167471    HONG JS, 2004, IEEE T MICROW THEORY, V52, P1237
167472    HONG JS, 2005, IEEE MTT S MICR S WE
167473    HSIEH LH, 2001, ELECTRON LETT, V37, P1070
167474    TAN BT, 2002, IEEE MICROW WIREL CO, V12, P252
167475    WOLFF I, 1972, ELECTRON LETT, V8, P302
167476    ZHU L, 1999, IEEE T MICROW THEORY, V47, P650
167477 NR 11
167478 TC 0
167479 SN 0916-8524
167480 J9 IEICE TRANS ELECTRON
167481 JI IEICE Trans. Electron.
167482 PD APR
167483 PY 2006
167484 VL E89C
167485 IS 4
167486 BP 503
167487 EP 508
167488 PG 6
167489 SC Engineering, Electrical & Electronic
167490 GA 038FG
167491 UT ISI:000237203600009
167492 ER
167493 
167494 PT J
167495 AU Fan, JY
167496    Pan, JY
167497 TI Convergence properties of a self-adaptive Levenberg-Marquardt algorithm
167498    under local error bound condition
167499 SO COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
167500 DT Article
167501 DE singular nonlinear equations; Levenberg-Marquardt method; trust region
167502    method
167503 ID NONLINEAR EQUATIONS
167504 AB We propose a new self-adaptive Levenberg-Marquardt algorithm for the
167505    system of nonlinear equations F(x) = 0. The Levenberg-Marquardt
167506    parameter is chosen as the product of parallel to F-k parallel to delta
167507    with delta being a positive constant, and some function of the ratio
167508    between the actual reduction and predicted reduction of the merit
167509    function. Under the local error bound condition which is weaker than
167510    the nonsingularity, we show that the Levenberg-Marquardt method
167511    converges superlinearly to the solution for delta is an element of (0,
167512    1), while quadratically for delta is an element of [1, 2]. Numerical
167513    results show that the new algorithm performs very well for the
167514    nonlinear equations with high rank deficiency.
167515 C1 Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China.
167516    Shanghai Univ, SJTU, E Inst, Div Computat Sci, Shanghai 200041, Peoples R China.
167517    E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China.
167518 RP Fan, JY, Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R
167519    China.
167520 CR DAN H, 2002, OPTIM METHOD SOFTW, V17, P605
167521    FAN JY, 2003, J COMPUT MATH, V21, P625
167522    FAN JY, 2005, COMPUTING, V74, P23
167523    HEI L, 2000, SELF ADAPTIVE TRUST
167524    LEVENBERG K, 1944, QUART APPL MATH, V2, P164
167525    MARQUARDT DW, 1963, J SOC IND APPL MATH, V11, P441
167526    MORE JJ, 1977, LECT NOTES MATH, V630, P105
167527    MORE JJ, 1981, ACM T MATH SOFTWARE, V7, P17
167528    MORE JJ, 1983, MATH PROGRAMMING STA, P258
167529    NOCEDAL J, 1998, ADV NONLINEAR PROGRA, P153
167530    POWELL MJD, 1975, NONLINEAR PROGRAMMIN, V2, P1
167531    SCHNABEL RB, 1984, SIAM J NUMER ANAL, V21, P815
167532    STEWART GW, 1990, MATRIX PERTURBATION
167533    YAMAOKA Y, 2001, APPL ORGANOMET CHEM, V15, P239
167534    YUAN Y, 1994, CONT MATH, V163, P205
167535    YUAN YX, 1998, INFORMATION, V1, P7
167536    YUAN YX, 2000, ICM99 P 4 INT C IND, P271
167537 NR 17
167538 TC 0
167539 SN 0926-6003
167540 J9 COMPUT OPTIM APPL
167541 JI Comput. Optim. Appl.
167542 PD MAY
167543 PY 2006
167544 VL 34
167545 IS 1
167546 BP 47
167547 EP 62
167548 PG 16
167549 SC Mathematics, Applied; Operations Research & Management Science
167550 GA 039WR
167551 UT ISI:000237339300003
167552 ER
167553 
167554 PT J
167555 AU Xia, L
167556    Fang, SS
167557    Wang, Q
167558    Dong, YD
167559    Liu, CT
167560 TI Thermodynamic modeling of glass formation in metallic glasses
167561 SO APPLIED PHYSICS LETTERS
167562 DT Article
167563 ID BULK AMORPHOUS-ALLOYS; CU-ZR; MECHANICAL-PROPERTIES; FORMING ABILITY;
167564    NI; STABILIZATION; SYSTEMS; PHASE
167565 AB In the study of metallic glasses, it is vitally important for us to
167566    understand glass formation and glass forming ability (GFA). This letter
167567    presents a thermodynamic model for evaluating glass formation in
167568    metallic glasses. An expression has been derived from considering both
167569    the stability of amorphous phases and the resistance to the formation
167570    of crystalline intermetallic phases. This equation is very useful for
167571    identifying alloy compositions with good GFA in binary and other alloy
167572    systems. The prediction of this equation has been verified by the
167573    experimental study of glass formation and glass forming ability in the
167574    Zr-Cu system. (c) 2006 American Institute of Physics.
167575 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
167576    Shanghai Univ, Ctr Adv Microanal, Shanghai 200072, Peoples R China.
167577    Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
167578 RP Xia, L, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
167579 EM liuct@ornl.gov
167580 CR BAKKER H, 1998, ENTHALPIES ALLOYS MI
167581    CHEN HS, 1973, ACTA METALL, V21, P395
167582    COHEN MH, 1961, NATURE, V189, P131
167583    DEBOER FR, 1988, COHESION METALS TRAN
167584    DELAMARE J, 1994, J ALLOY COMPD, V216, P273
167585    ESHELBY JD, 1954, J APPL PHYS, V25, P255
167586    ESHELBY JD, 1956, SOLID STATE PHYS, V3, P79
167587    FECHT HJ, 1995, MATER T JIM, V36, P777
167588    FRIEDEL J, 1954, ADV PHYS, V3, P446
167589    GREER AL, 1995, SCIENCE, V267, P1947
167590    INOUE A, 1998, MATER SCI FORUM 2, V269, P855
167591    INOUE A, 2000, ACTA MATER, V48, P279
167592    INOUE A, 2004, MATER TRANS, V45, P584
167593    JOHNSON WL, 1999, MRS BULL, V24, P42
167594    LEONHARDT M, 1999, ACTA MATER, V47, P2961
167595    LU ZP, 2002, ACTA MATER, V50, P3501
167596    LU ZP, 2003, PHYS REV LETT, V91
167597    MIEDEMA AR, 1975, J LESS-COMMON MET, V41, P283
167598    MURTY BS, 1992, MAT SCI ENG A-STRUCT, V149, P231
167599    NAGENDRA N, 2000, ACTA MATER, V48, P2603
167600    SCHROERS J, 2000, APPL PHYS LETT, V76, P2343
167601    SHEN TD, 1999, APPL PHYS LETT, V75, P49
167602    SHINDO T, 2002, MATER TRANS, V43, P2502
167603    TAKEUCHI A, 2000, MATER T JIM, V41, P1372
167604    TAKEUCHI A, 2001, MATER TRANS, V42, P1435
167605    TANG MB, 2004, CHINESE PHYS LETT, V21, P901
167606    TURNBULL D, 1969, CONTEMP PHYS, V10, P473
167607    WANG D, 2004, APPL PHYS LETT, V84, P4029
167608    XU DH, 2004, ACTA MATER, V52, P2621
167609 NR 29
167610 TC 0
167611 SN 0003-6951
167612 J9 APPL PHYS LETT
167613 JI Appl. Phys. Lett.
167614 PD APR 24
167615 PY 2006
167616 VL 88
167617 IS 17
167618 AR 171905
167619 DI ARTN 171905
167620 PG 3
167621 SC Physics, Applied
167622 GA 037HB
167623 UT ISI:000237136600020
167624 ER
167625 
167626 PT J
167627 AU Cao, SX
167628    Kang, BJ
167629    Zhang, JC
167630    Yuan, SJ
167631 TI Orbital-order-induced magnetic anisotropy and intrinsic phase
167632    separation of the Pr0.50+XSr0.50-XMnO3 single crystals
167633 SO APPLIED PHYSICS LETTERS
167634 DT Article
167635 ID FIELD
167636 AB Magnetization and torque magnetization measurements, together with the
167637    results of electron paramagnetic resonance experiment, were conducted
167638    on the Pr0.50+xSr0.50-xMnO3 single crystals. Orbital-order-induced
167639    strong magnetic anisotropy is found in the ferromagnetic (FM) state. It
167640    is observed by torque magnetization that magnetic anisotropy exists
167641    even in the paramagnetic (PM) and antiferromagnetic (AFM) states,
167642    indicating existence of the FM cluster in the A-type AFM state below
167643    the FM-AFM transition temperature and the PM state far above the Curie
167644    temperature. The results prove that the interplay of spin and orbital
167645    results in intrinsic phase separation in the manganite systems. (c)
167646    2006 American Institute of Physics.
167647 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
167648 RP Cao, SX, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
167649 EM sxcao@staff.shu.edu.cn
167650 CR ANGAPPANE S, 2004, PHYS REV B, V69
167651    ARGYRIOU DN, 1996, J SOLID STATE CHEM, V124, P381
167652    DAGTTO E, 2001, PHYS REP, V344, P1
167653    HEJTMANEK J, 2002, PHYS REV B, V66
167654    KAWAOFURUKAWA H, 2002, PHYS REV B, V67
167655    KUWAHARA H, 1995, SCIENCE, V270, P961
167656    MAEZONO R, 2000, PHYS REV B, V61, P1189
167657    POLLERT E, 2002, J MAGN MAGN MATER, V246, P290
167658    TOMIOKA Y, 1995, PHYS REV LETT, V74, P5108
167659    YOSHIZAWA H, 1998, PHYS REV B, V58, R571
167660 NR 10
167661 TC 0
167662 SN 0003-6951
167663 J9 APPL PHYS LETT
167664 JI Appl. Phys. Lett.
167665 PD APR 24
167666 PY 2006
167667 VL 88
167668 IS 17
167669 AR 172503
167670 DI ARTN 172503
167671 PG 3
167672 SC Physics, Applied
167673 GA 037HB
167674 UT ISI:000237136600048
167675 ER
167676 
167677 PT J
167678 AU Wang, XR
167679    Sun, RG
167680    Wang, CS
167681    Mo, YJ
167682 TI Surface enhanced Raman scattering spectra of carbozole and azobenzene
167683    disperse red polymer
167684 SO SPECTROSCOPY AND SPECTRAL ANALYSIS
167685 DT Article
167686 DE azobenzene polymer; resonance Raman scattering; surface enhanced
167687    resonance Raman scattering
167688 ID POLARIZATION HOLOGRAPHY; PHOTOINDUCED BIREFRINGENCE; SILVER ELECTRODE;
167689    PYRIDINE
167690 AB Surface enhanced resonance Raman scattering (SERRS) was employed to
167691    study the molecule alignment of carbozole and azobenzene disperse red
167692    polymer on the surface of rough silver thin film. According to the
167693    selection rule of optical transitions and experiment results, it was
167694    found that the surface geometry of carbozole and azobenzene disperse
167695    red polymer was: this was physical adsorption between the carbazole
167696    group, which is from the monomer of carbazole and nitro-group which is
167697    from the monomer of azobenzene on the surface of rough silver film, and
167698    there is almost no interaction between the principal chain and the
167699    substrate because of the distance. This geometrical configuration of
167700    CAP on the surface of the substrate was proposed to damage the
167701    stabilities and efficiency of azobenzene derivatives based optical
167702    storage devices.
167703 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
167704    Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China.
167705    Henan Univ, Dept Phys, Kaifeng 475001, Peoples R China.
167706 RP Sun, RG, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
167707    China.
167708 CR ALBRECHT MG, 1977, J AM CHEM SOC, V99, P5215
167709    DOLLISH FR, 1980, CHARACTERISTIC RAMAN
167710    GU RA, 2002, CHEM J CHINESE U, V23, P1960
167711    JEANMAIRE DL, 1977, J ELECTROANAL CH INF, V84, P1
167712    MO YJ, 1984, SOLID STATE COMMUN, V50, P829
167713    TODOROV T, 1984, APPL OPTICS, V23, P4309
167714    TODOROV T, 1984, APPL OPTICS, V23, P4588
167715    TODOROV T, 1985, APPL OPTICS, V24, P785
167716    WANG CS, 1999, APPL PHYS LETT, V74, P19
167717 NR 9
167718 TC 0
167719 SN 1000-0593
167720 J9 SPECTROSC SPECTR ANAL
167721 JI Spectrosc. Spectr. Anal.
167722 PD APR
167723 PY 2006
167724 VL 26
167725 IS 4
167726 BP 649
167727 EP 652
167728 PG 4
167729 SC Spectroscopy
167730 GA 037RB
167731 UT ISI:000237163500016
167732 ER
167733 
167734 PT J
167735 AU Liu, F
167736    Cao, SX
167737    Zhang, JC
167738    Li, LW
167739    Chi, CY
167740 TI Effect on superconductivity of high valence ions V4+ and Ni3+
167741    substitution for Cu site in Pr1.85Ce0.15CuO4-delta system
167742 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
167743 DT Article
167744 DE electron-doped superconductor; element substitution; high-T-c
167745    superconductivity
167746 ID HIGH-TEMPERATURE SUPERCONDUCTORS; ND1.85CE0.15CUO4; STATE; ZN
167747 AB Effects of high valence ions V4+ and Ni3+ substitution oil
167748    superconductivity are studied systematically for the electron-doped
167749    superconducting Pr1.85Ce0.15CuO4-delta (PCCO) system. The results
167750    indicate that very small amount of V4+ substitution (x <= 0.04) for
167751    Cu2+ site improves the superconductivity, but further substitution (x
167752    >= 0.06) will depress the superconductivity. Contrasting with V4+, Ni3+
167753    substitution shows a strong suppression on superconductivity, even for
167754    extremely small amount substitution of 0.01. Both the change of lattice
167755    parameters and the similar 3d electron structure of V4+ ion to the Cu2+
167756    ion support the improvement of superconductivity while x <= 0.04 in the
167757    V-substituted PCCO system. The results of Hall effect indicate that
167758    high valence ion substitution for Cu2+ increase the carrier
167759    concentration, which is also one reason for the improvement of
167760    superconductivity of V4+ substitution PCCO. (c) 2006 Elsevier B.V. All
167761    rights reserved.
167762 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
167763 RP Cao, SX, Shanghai Univ, Dept Phys, Shangda Rd,99, Shanghai 200444,
167764    Peoples R China.
167765 EM sxcao@staff.shu.edu.cn
167766 CR BRINKMANN M, 1995, PHYS REV LETT, V74, P4927
167767    BRINKMANN M, 1996, PHYS REV B, V54, P6680
167768    CONCEICAO A, 2000, PHYSICA C, V333, P170
167769    DAGAN Y, 2004, PHYS REV LETT, V92
167770    HILSCHER G, 1991, SUPERCOND SCI TECH, V4, S79
167771    IKEGAWA S, 1991, PHYS REV B, V43, P2885
167772    IMADA M, 1998, REV MOD PHYS 1, V70, P1039
167773    JAYARAM B, 1995, PHYS REV B, V52, P3742
167774    KANG HJ, 2003, NATURE, V423, P522
167775    KANG HJ, 2005, PHYS REV B, V71
167776    KIM JS, 1993, PHYSICA C, V209, P381
167777    KUKLEWICZ CE, 1995, PHYSICA C, V253, P308
167778    MANG PK, 2004, PHYS REV B, V70
167779    MATSUURA M, 2003, PHYS REV B, V68
167780    TIMUSK T, 1999, REP PROG PHYS, V62, P61
167781    WANG E, 1990, PHYS REV B, V41, P6582
167782    WESTERHOLT K, 1994, J LOW TEMP PHYS, V95, P123
167783    WOODS SI, 2002, PHYS REV B, V66
167784    XIAO G, 1990, PHYS REV B, V42, P8752
167785 NR 19
167786 TC 0
167787 SN 0921-4534
167788 J9 PHYSICA C
167789 JI Physica C
167790 PD APR 15
167791 PY 2006
167792 VL 436
167793 IS 2
167794 BP 81
167795 EP 85
167796 PG 5
167797 SC Physics, Applied
167798 GA 036GR
167799 UT ISI:000237060100006
167800 ER
167801 
167802 PT J
167803 AU Bi, JB
167804    Sun, YP
167805    Chen, DY
167806 TI Soliton solutions to the 3rd nonisospectral AKNS system
167807 SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
167808 DT Article
167809 DE nonisospectral AKNS equation; nonisospectral MKdV equation; Wronskian
167810    technique
167811 ID KADOMTSEV-PETVIASHVILI EQUATIONS; KORTEWEG-DEVRIES;
167812    EVOLUTION-EQUATIONS; WRONSKIAN TECHNIQUE; TRANSFORM
167813 AB Bilinear form of the nonisospectral AKNS equation is given. The
167814    N-soliton solutions and double Wronskian solution are obtained through
167815    Hirota's direct method and Wronskian technique, respectively. The
167816    nonisospectral MKdV equation and its multi-soliton solutions are
167817    presented by reducing. (c) 2005 Elsevier B.V. All rights reserved.
167818 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
167819 RP Bi, JB, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
167820 EM bijinbo@163.com
167821 CR CALOGERO F, 1978, LETT NUOVO CIMENTO, V22, P131
167822    CHAN WL, 1989, J MATH PHYS, V30, P2521
167823    CHEN DG, 1991, J PHYS A-MATH GEN, V24, P377
167824    FREEMAN NC, 1983, P ROY SOC LOND A MAT, V389, P319
167825    FREEMAN NC, 1983, PHYS LETT A, V95, P1
167826    GUPTA MR, 1979, PHYS LETT A, V72, P420
167827    HIROTA R, 1971, PHYS REV LETT, V27, P1192
167828    HIROTA R, 1976, J PHYS SOC JPN, V41, P2141
167829    MA WX, 1992, J MATH PHYS, V33, P2464
167830    NIMMO JJC, 1984, J PHYS A-MATH GEN, V17, P1415
167831    NING TK, 2004, PHYSICA A, V339, P248
167832    TIAN C, 1990, RES REPORTS PHYS, P35
167833    ZHANG Y, 2004, PHYSICA A, V339, P228
167834 NR 13
167835 TC 0
167836 SN 0378-4371
167837 J9 PHYSICA A
167838 JI Physica A
167839 PD MAY 15
167840 PY 2006
167841 VL 364
167842 BP 157
167843 EP 169
167844 PG 13
167845 SC Physics, Multidisciplinary
167846 GA 035KQ
167847 UT ISI:000237000300013
167848 ER
167849 
167850 PT J
167851 AU Wu, TC
167852    Qiu, XJ
167853    Zhu, ZY
167854 TI Energy deposition of relativistic electrons in a hot super-compressed
167855    plasma
167856 SO JOURNAL OF PLASMA PHYSICS
167857 DT Letter
167858 ID COLLECTIVE OSCILLATION; PULSES
167859 AB The relativistic modified formula. for the energy loss of the
167860    relativistic electron began Clue to binary electron-electron collisions
167861    is obtained. Another important energy loss mechanism, the excitation of
167862    Langmuir collective plasma oscillation, is also treated within the
167863    relativistic framework. Then the relevant physics parameters in the
167864    fast-ignitor scenario, including the continuous winded range, the
167865    maximum penetration depth and the stopping time, have been calculated.
167866    The results obtained axe much better than those from non-relativistic
167867    cases and even partially relativistic modified theories. Thus, we
167868    re-examine theoretically, the possibility of igniting hot spots in a.
167869    super-compressed deuterium-tritium plasma.
167870 C1 Shanghai Univ, Sch Sci, Dept Phys, Shanghai 200436, Peoples R China.
167871    Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
167872 RP Wu, TC, Shanghai Univ, Sch Sci, Dept Phys, Shanghai 200436, Peoples R
167873    China.
167874 EM wu-tongchen@yahoo.com.cn
167875 CR BAROV N, 2004, PHYS REV SPEC TOP-AC, V7
167876    BLANCHOT N, 1995, OPT LETT, V20, P395
167877    DEUTSCH C, 1996, PHYS REV LETT, V77, P2483
167878    DEUTSCH C, 2000, PHYS REV LETT, V85, P1140
167879    HEMMER PC, 1968, PHYS REV, V168, P294
167880    HUBBELL HH, 1982, PHYS REV A, V26, P2460
167881    MA JY, 2003, CHINESE PHYS LETT, V20, P1306
167882    MA JY, 2004, CHINESE PHYS, V13, P373
167883    MACCHI A, 2001, PHYS REV LETT, V87
167884    MOLLER C, 1932, ANN PHYS-BERLIN, V14, P531
167885    NARDI E, 1978, PHYS REV A, V18, P1246
167886    NUCKOLLS JH, 1972, NATURE, V239, P129
167887    ROUYER C, 1996, J OPT SOC AM B, V13, P55
167888    SLUTZ SA, 2004, PHYS PLASMAS, V11, P3483
167889    SPITKOVSKY A, 2000, AIP C P, V569, P183
167890    TABAK M, 1994, PHYS PLASMAS, V1, P1626
167891 NR 16
167892 TC 0
167893 SN 0022-3778
167894 J9 J PLASMA PHYS
167895 JI J. Plasma Phys.
167896 PD APR
167897 PY 2006
167898 VL 72
167899 PN Part 2
167900 BP 153
167901 EP 158
167902 PG 6
167903 SC Physics, Fluids & Plasmas
167904 GA 035MO
167905 UT ISI:000237005600003
167906 ER
167907 
167908 PT J
167909 AU Zhao, CY
167910    Tan, WH
167911 TI Quantum travelling-wave analysis of a quasi-phase-matched parametric
167912    amplifier
167913 SO JOURNAL OF MODERN OPTICS
167914 DT Article
167915 ID FOKKER-PLANCK EQUATION; GENERATION; AMPLIFICATION; LIGHT
167916 AB The paper describes a phase-mismatched Fokker-Planck equation
167917    formulation for parametric amplification in periodically inverted
167918    nonlinear media. An analytical solution of the phase-mismatched
167919    Fokker-Planck equation and the amplitude quantum fluctuation after
167920    passing through the quasi-phase-matched (QPM) device are obtained. The
167921    calculated results for the QPM device conform to that of the Langevin
167922    equation in the case of no loss k = 0, and give a general solution for
167923    k not equal 0. From this one can derive knowledge of the dependence of
167924    squeezing on the loss coefficient k and make a comparison between the
167925    QPM device and a phase matched device at the threshold k = epsilon(0).
167926 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
167927 RP Zhao, CY, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
167928 EM zchy49@sohu.com
167929 CR ARMSTRONG JA, 1962, PHYS REV, V127, P1918
167930    BENCHEIKH K, 1995, J OPT SOC AM B, V12, P847
167931    CAVES CM, 1987, J OPT SOC AM B, V4, P1535
167932    CHICKARMANE VS, 1998, OPT LETT, V23, P1132
167933    DRUMMOND PD, 1987, J OPT SOC AM B, V4, P1565
167934    FEJER MM, 1992, IEEE J QUANTUM ELECT, V28, P2631
167935    HAKEN H, 1970, LIGH MATTER IC ENCY, V25
167936    LI YM, 2002, CHINESE PHYS, V11, P790
167937    LONGHI S, 2002, PHYS REV A, V66
167938    NOIRIE L, 1997, J OPT SOC AM B, V14, P1
167939    SHEN YR, 1984, PRINCIPLES NONLINEAR
167940    TAN WH, 1987, OPT COMMUN, V64, P195
167941    TAN WH, 1988, ACTA PHYS SINICA, V37, P396
167942    WALLS DF, 1994, QUANTUM OPTICS
167943    WOLINSKY M, 1985, OPT COMMUN, V55, P138
167944    ZHAO CY, 2003, ACTA PHYS SIN-CH ED, V52, P2694
167945    ZHU S, 1997, SCIENCE, V278, P843
167946 NR 17
167947 TC 0
167948 SN 0950-0340
167949 J9 J MOD OPTIC
167950 JI J. Mod. Opt.
167951 PD MAY 20
167952 PY 2006
167953 VL 53
167954 IS 8
167955 BP 1069
167956 EP 1081
167957 PG 13
167958 SC Optics
167959 GA 036IU
167960 UT ISI:000237065600005
167961 ER
167962 
167963 PT J
167964 AU Xu, SY
167965    Zhong, MJ
167966    Yu, LM
167967    Chen, HD
167968    He, ZM
167969    Zhang, JC
167970 TI Effect of carbon content on structure and magnetic properties for (Fe,
167971    Ni)(1-x)C-x by mechanical alloying
167972 SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
167973 DT Article
167974 DE mechanical alloying; magnetic materials; nanostructural system;
167975    magnetization
167976 ID AMORPHOUS-ALLOYS; CURIE-TEMPERATURE; METALLOID ALLOYS; FE; MOMENTS; NI;
167977    CO; DEPENDENCE; SYMMETRY
167978 AB FCC (Fe55Ni45)(1-x)C-x supersaturated solid solution was prepared in a
167979    wide concentration range (0 <= x <= 0.9) by mechanical alloying of
167980    nanocrystalline Fe55Ni45 with graphite. The lattice constant of
167981    Fe55Ni45 increases linearly with increasing carbon content up to x =
167982    0.25. At the same time, it is found that the magnetic moment per metal
167983    atom (Fe, Ni) decreases linearly with increasing carbon content for 0
167984    <= x <= 0.25 with a slope of 1.2 mu(B)/at. For high carbon content, x
167985    >= 0.5, it is observed that the decrease of lattice constant and
167986    increase of moment per metal atom (Fe, Ni) with increasing C content,
167987    indicates that the dissolution of carbon is hindered by the high-volume
167988    fraction of graphite in the initial powder mixture. The complete
167989    amorphization of x = 0.5 does not occur after the extended ball
167990    milling. The alloying effect of carbon on the magnetization is compared
167991    with other metalloid B, P, and Si in Fe- and Ni-based binary system.
167992    (C) 2005 Elsevier B.V. All rights reserved.
167993 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
167994 RP Xu, SY, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
167995 EM xushiyue@online.sh.cn
167996    jczhang@mail.shu.edu.cn
167997 CR ALBERT PA, 1967, J APPL PHYS, V38, P1258
167998    BAKKER H, 1998, T TECH PUBLICATION
167999    BECKER JJ, 1977, IEEE T MAGN, V13, P988
168000    BUSCHOW KHJ, 1981, J APPL PHYS, V52, P3557
168001    CORB BW, 1983, PHYS REV B, V27, P636
168002    CORB BW, 1985, PHYS REV B, V31, P2521
168003    DING J, 2001, J ALLOY COMPD, V314, P262
168004    FUKAMICHI K, 1979, IEEE T MAGN, V15, P1404
168005    HALL WH, 1950, J I MET, V75, P1127
168006    HULLER K, 1985, J MAGN MAGN MATER, V53, P103
168007    KAUL SN, 1982, PHYS REV B, V25, P5863
168008    KAZAMA NS, 1980, J MAGN MAGN MATER, V15, P1331
168009    LUBORSKY FE, 1978, J MAGN MAGN MATER, V7, P143
168010    LUBORSKY FE, 1980, J PHYS F MET PHYS, V10, P959
168011    MALOZEMOFF AP, 1984, PHYS REV B, V29, P1620
168012    MIEDEMA AR, 1973, J LESS-COMMON MET, V32, P117
168013    OHANDLEY RC, 1987, J APPL PHYS, V62, P15
168014    RAY R, 1978, SOLID STATE COMMUN, V27, P471
168015    ROCHMAN NT, 1999, J MATER PROCESS TECH, V89, P367
168016    SCHULTZ L, 1988, MATER SCI ENG, V97, P15
168017    SHIMADA Y, 1976, J APPL PHYS, V47, P4156
168018    STEIN F, 1992, J MAGN MAGN MATER, V117, P45
168019    SURYANARAYANA C, 2001, PROG MATER SCI, V46, P1
168020    TANAKA T, 1991, J LESS-COMMON MET, V171, P237
168021    WILLIAMS AR, 1983, IEEE T MAGN, V19, P1983
168022    XU SY, 2005, J MAGN MAGN MATER, V292, P126
168023 NR 26
168024 TC 0
168025 SN 0304-8853
168026 J9 J MAGN MAGN MATER
168027 JI J. Magn. Magn. Mater.
168028 PD AUG
168029 PY 2006
168030 VL 303
168031 IS 1
168032 BP 73
168033 EP 78
168034 PG 6
168035 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
168036 GA 037TG
168037 UT ISI:000237169400013
168038 ER
168039 
168040 PT J
168041 AU Su, QF
168042    Xia, YB
168043    Wang, LJ
168044    Liu, JM
168045    Shi, WM
168046 TI Studies on infrared spectroscopic ellipsometry of different oriented
168047    CVD diamond films
168048 SO JOURNAL OF INFRARED AND MILLIMETER WAVES
168049 DT Article
168050 DE CVD diamond film; infrared spectroscopic ellipsometry; refractive
168051    index; extinction coefficient
168052 ID CONSTANTS; SURFACE
168053 AB Optical properties of different oriented diamond films obtained by hot
168054    filament chemical vapor deposition ( HF-CVD) were measured by using
168055    infrared spectroscopic ellipsometry in the wavelength range of 2.5
168056    similar to 12.5 mu m. The measured results indicate that (001)-oriented
168057    diamond film is optical thin-film in high quality and almost entire
168058    transparent in the whole infrared region. Refractive index and
168059    extinction coefficient of (001) -oriented diamond film are 2.391 and in
168060    the order of 10(-5), respectively. For the (111)-oriented one,
168061    refractive index and extinction coefficient have a little variation
168062    with the wavelength change and are not as good as that of
168063    (001)-oriented one. However, the dielectric constant calculated for
168064    both films show that (001)-oriented film with a value of 5.83 is much
168065    better than that of (111)-oriented one.
168066 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
168067 RP Su, QF, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
168068    China.
168069 CR BRUGGEMAN DAG, 1935, ANN PHYS-BERLIN, V24, P636
168070    COMFORT JC, 1987, ANN SIM S NEW YORK, P185
168071    FANG ZJ, 2003, CARBON, V41, P967
168072    FERRIEU F, 1990, J APPL PHYS, V68, P5810
168073    HU ZG, 2004, J INFRARED MILLIM W, V23, P47
168074    HUANG ZM, 1999, J INFRARED MILLIM W, V18, P23
168075    JU JH, 2002, J INFRARED MILLIM W, V21, P238
168076    KUMAGAI N, 2004, DIAM RELAT MATER, V13, P2092
168077    MCGEOCH SP, 1999, DIAM RELAT MATER, V8, P916
168078    QIU DJ, 2002, J INFRARED MILLIM W, V21, P167
168079    SU QF, 2005, SOLID STATE ELECTRON, V49, P1044
168080    XIA YB, 2000, J CRYST GROWTH, V213, P328
168081    YIN Z, 1990, PHYS REV B, V42, P3658
168082    YIN Z, 1996, DIAM RELAT MATER, V5, P1490
168083    ZHANG WJ, 1997, J APPL PHYS, V82, P1896
168084 NR 15
168085 TC 0
168086 SN 1001-9014
168087 J9 J INFRARED MILIM WAVES
168088 JI J. Infrared Millim. Waves
168089 PD APR
168090 PY 2006
168091 VL 25
168092 IS 2
168093 BP 86
168094 EP 89
168095 PG 4
168096 SC Optics
168097 GA 038JU
168098 UT ISI:000237216600002
168099 ER
168100 
168101 PT J
168102 AU Li, DX
168103    Sun, YX
168104    Liu, SL
168105    Hua, ZZ
168106 TI Synthesis, characterization and crystal structure of copper(I)
168107    tetra(phenyl thiourea) chloride
168108 SO JOURNAL OF COORDINATION CHEMISTRY
168109 DT Article
168110 DE supermolecular complex; phenyl thiourea; crystal structure; bioactivity
168111 AB The title compound C28H32N8S4ClCu has been synthesized, crystallized
168112    and characterized by density measurement, element analysis and IR
168113    spectra. Its crystal structure has been determined by X-ray diffraction
168114    methods. The most interesting structure feature of the complex is that
168115    the dihedral angle between the thiourea framework and the benzene ring
168116    is 52.03(22)degrees, the minimal value in the literature. All four
168117    bonds around Cu(I) are equivalent, but the six S-Cu-S angles are
168118    non-equivalent.
168119 C1 Shanghai Univ Sci & Technol, Inst Cryogenics & Food Sci, Shanghai 210093, Peoples R China.
168120    Qufu Normal Univ, Coll Chem Sci, Qufu 273165, Peoples R China.
168121    Fudan Univ, Coll Med, Dept Biochem, Shanghai 200032, Peoples R China.
168122 RP Li, DX, Shanghai Univ Sci & Technol, Inst Cryogenics & Food Sci,
168123    Shanghai 210093, Peoples R China.
168124 EM dxli75@sohu.com
168125 CR DCRUZ OJ, 2000, BIOL REPROD, V63, P196
168126    JINLING W, 1991, CHINESE J ORG CHEM, V11, P388
168127    LUDOVICI DW, 2001, BIOORG MED CHEM LETT, V11, P2225
168128    MAO C, 1999, BIOORG MED CHEM LETT, V9, P1593
168129    NARY E, 2000, IMMUNOPHARMACOLOGY, V47, P25
168130    SHAMIM A, 1999, TALANTA, V48, P63
168131    SHELDRICK GM, 1996, SAINT V4 SOFTWARE RE
168132    SHELDRICK GM, 1997, SHELXL97
168133    WILSON AJ, 1992, INT TABLE XRAY CRYST, C
168134    ZHIHUA M, 1993, CHIN J STRUC CHEM, V12, P197
168135 NR 10
168136 TC 0
168137 SN 0095-8972
168138 J9 J COORD CHEM
168139 JI J. Coord. Chem.
168140 PD MAR
168141 PY 2006
168142 VL 59
168143 IS 4
168144 BP 403
168145 EP 408
168146 PG 6
168147 SC Chemistry, Inorganic & Nuclear
168148 GA 037RV
168149 UT ISI:000237165600006
168150 ER
168151 
168152 PT J
168153 AU Chen, HX
168154    Shi, FJ
168155    Guo, JH
168156 TI Numerical research on the three dimensional unsteady flow within the
168157    vortex pump
168158 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
168159 DT Article
168160 DE vortex pump; unsteady internal flow; turbulence
168161 AB Based on the standard k - epsilon turbulent model and the
168162    Reynolds-Averaged Navier-Stokes equations, the finite volume method and
168163    the SIMPLE algorithm were adopted to carry out the three-dimensional
168164    numerical simulation of the internal unsteady flow within a vortex pump
168165    in the double reference frames. According to the results of the
168166    numerical simulation, the internal unsteady flow in the vortex pump was
168167    analyzed. The calculated results of the blade surface pressure of the
168168    impeller and performance prediction of the pump were compared with the
168169    experimental data to prove the feasibility of the calculation method.
168170    It is very useful to the internal flow pattern analysis, performance
168171    prediction, efficiency enhancement and optimum design of the vortex
168172    pump.
168173 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
168174 RP Chen, HX, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
168175    200072, Peoples R China.
168176 EM chenhx@staff.shu.edu.cn
168177 CR AOKI M, 1982, JSME, V48, P1292
168178    AOKI M, 1982, JSME, V48, P1300
168179    AOKI M, 1982, JSME, V48, P1963
168180    AOKI M, 1982, JSME, V48, P1969
168181    CHEN HX, 1993, T CHINESE SOC AGR MA, V24, P24
168182    CHEN HX, 1996, T CHINESE SOC AGR MA, V27, P49
168183    GUAN XF, 1995, TECHNICAL MANUAL MOD
168184    JUN F, 1987, THESIS BEIJING AGR E
168185    OHBA H, 1978, JSME, V44, P1311
168186    OHBA H, 1982, JSME, V48, P1945
168187    OHBA H, 1982, JSME, V48, P1953
168188    PATANKAR SV, 1972, INT J HEAT MASS TRAN, V15, P1787
168189    PATANKER SV, 1980, NUMERICAL HEAT TRANS
168190    SCHIVLEY GP, 1970, T ASME, V92, P889
168191    SHI XG, 1994, TURBULENCE, P84
168192    WEN DS, 1990, ENG FLUID MECH
168193 NR 16
168194 TC 0
168195 SN 0334-0082
168196 J9 INT J TURBO JET ENGINES
168197 JI Int. J. Turbo. Jet-Engines
168198 PY 2006
168199 VL 23
168200 IS 1
168201 BP 27
168202 EP 35
168203 PG 9
168204 SC Engineering, Aerospace
168205 GA 037BH
168206 UT ISI:000237121200003
168207 ER
168208 
168209 PT J
168210 AU Wu, ZC
168211 TI Variational principle for 3-D steady rotational flow in rotor using two
168212    stream functions
168213 SO INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES
168214 DT Article
168215 DE variational theory; 3-D transonic steady; compressible flow; stream
168216    function
168217 AB Two special stream functions are introduced for three dimensional
168218    inviscid compressible rotational flows, and variational principles for
168219    potential flow, Beltrami flow, and rotational flow are established,
168220    where the two stream functions are independent variations.
168221 C1 Shanghai Inst Technol, Dept Environm & Energy Engn, Shanghai 200235, Peoples R China.
168222    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
168223 RP Wu, ZC, Shanghai Inst Technol, Dept Environm & Energy Engn, 121 Caobao
168224    Rd, Shanghai 200235, Peoples R China.
168225 EM shwzc@sohu.com
168226 CR DULIKRAVICH GS, 1992, J AIRCRAFT, V29, P1020
168227    HAFEZ MM, 1983, AIAA J, V21, P327
168228    LIU GL, 1993, ACTA MECH, V97, P229
168229    LIU HM, 2004, COMPUT CHEM ENG, V28, P1549
168230    LIU HM, 2005, CHAOS SOLITON FRACT, V23, P573
168231    NOOR AK, 1984, UNIFICATION FINITE E, P275
168232    SIENIUTYCZ S, 2005, VARIATIONAL EXTREMUM, P75
168233    WU CH, 1952, 2604 NACA TN
168234    ZHANG J, 2005, CHAOS SOLITON FRACT, V24, P309
168235 NR 9
168236 TC 0
168237 SN 0334-0082
168238 J9 INT J TURBO JET ENGINES
168239 JI Int. J. Turbo. Jet-Engines
168240 PY 2006
168241 VL 23
168242 IS 1
168243 BP 37
168244 EP 42
168245 PG 6
168246 SC Engineering, Aerospace
168247 GA 037BH
168248 UT ISI:000237121200004
168249 ER
168250 
168251 PT J
168252 AU Yao, ZH
168253    Fei, MR
168254    Qu, BD
168255    Kong, HN
168256 TI Evolving neural networks for forecasting and early warning red tide and
168257    blue-green alga disaster
168258 SO DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES
168259    A-MATHEMATICAL ANALYSIS
168260 DT Article
168261 DE neural network; genetic algorithm; forecast; red tide; blue-green alga
168262 ID AIR
168263 AB Multi-layer feed-forward neural network (MNN) was chosen to be
168264    examined. An improved genetic algorithm (IGA) was proposed and
168265    introduced for designing the high-lever architecture and learning
168266    weight value of an MNN model for forecasting and early warning red tide
168267    in ocean and blue-green alga in lakes and reservoirs in the southeast
168268    of china. The experiment results show that the IGA has a better
168269    performance than ordinary genetic algorithm (CA), and the MNN models
168270    based oil IGA is effective.
168271 C1 Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China.
168272    Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200030, Peoples R China.
168273    So Yangtze Univ, Control Sci & Engn Res Ctr, Wuxi 214122, Peoples R China.
168274    Shanghai Jiao Tong Univ, Environm Sch, Shanghai, Peoples R China.
168275 RP Yao, ZH, Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072,
168276    Peoples R China.
168277 EM yaozh@sjtu.edu.cn
168278 CR BLANCO A, 2003, INT J APPROX REASON, V123, P67
168279    ENGOZINER S, 1995, IEEE T NEURAL NETWOR, V6, P31
168280    GARDNER MW, 1999, ATMOS ENVIRON, V33, P709
168281    HOLLAND JH, 1975, ADAPTATION NATURAL A
168282    KOLEHMAINEN M, 2001, ATMOS ENVIRON, V35, P815
168283    NAG PK, 1998, SEMICONDUCTOR INT, V21, P163
168284    NISHINA S, 2004, NEURAL NETWORKS, V17, P159
168285    PAN YY, 2004, P 2004 CHIN CONTR DE, P545
168286    SMITH AE, 1997, ENG ECON, V42, P137
168287    STEFANOS K, 1989, IEEE T CS, V36, P1092
168288    YAO X, 1999, P IEEE, V87, P1423
168289    YAO ZH, 1999, J SHANGHAI JIAOTONG, V33, P1533
168290 NR 12
168291 TC 0
168292 SN 1201-3390
168293 J9 DYN CONT DISCR IMP SYST SER A
168294 JI Dyn. Contin. Discret. Impuls. Syst. Ser. A-Math Anal.
168295 PD FEB
168296 PY 2006
168297 VL 13
168298 PN Part 1 Suppl. S
168299 BP 241
168300 EP 247
168301 PG 7
168302 SC Mathematics, Applied
168303 GA 035GT
168304 UT ISI:000236989500032
168305 ER
168306 
168307 PT J
168308 AU Xu, MH
168309    Ran, F
168310    Chen, ZJ
168311 TI The scanning methodology research based on space-time mapping
168312    optimization
168313 SO DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES
168314    A-MATHEMATICAL ANALYSIS
168315 DT Article
168316 DE scanning; space-time mapping optimization; sub-partition; time
168317    redundancy; pulse width modulation
168318 AB According to the imaging mechanism analysis of gray scales display and
168319    time redundancy in the imaging process, this paper put forward a
168320    proposition of the space-time mapping optimization frame of gray scale
168321    image in FPD system, and proposed a novel scanning method based on
168322    sub-partitions of space-time mapping plane. This proposition
168323    fundamentally accounts for the theoretical problem of the relationship
168324    between display gray scale and frame scanning frequency. Comparing with
168325    traditional scanning method, the scanning availability increases
168326    apparently, and the objective of the highest articulation and
168327    resolution can be easily realized in FPD system with large size display
168328    using the proposed method.
168329 C1 Shanghai Univ, Sch Mech Engn & Automat, Shanghai 200041, Peoples R China.
168330    Shanghai Univ, Microelect Res & Dev Ctr, Shanghai 200072, Peoples R China.
168331 RP Xu, MH, Shanghai Univ, Sch Mech Engn & Automat, Shanghai 200041,
168332    Peoples R China.
168333 EM mhxu@staff.shu.edu.cn
168334 CR HU SY, 2001, J ZIBO U, V3
168335    KIM JS, 2003, SIDI003, P450
168336    PARK CH, 2001, IEEE T ELECTRON DEV, V48, P1082
168337    PRACHE O, 2001, DISPLAYS, V22, P49
168338    PRIBAT D, 2001, THIN SOLID FILMS, V383, P25
168339    YOO JY, 2001, SID, P798
168340 NR 6
168341 TC 0
168342 SN 1201-3390
168343 J9 DYN CONT DISCR IMP SYST SER A
168344 JI Dyn. Contin. Discret. Impuls. Syst. Ser. A-Math Anal.
168345 PD FEB
168346 PY 2006
168347 VL 13
168348 PN Part 3 Suppl. S
168349 BP 1093
168350 EP 1101
168351 PG 9
168352 SC Mathematics, Applied
168353 GA 035GZ
168354 UT ISI:000236990100005
168355 ER
168356 
168357 PT J
168358 AU Yu, FQ
168359    Cao, JL
168360 TI Filtering for Chirp impulse noise based on fractional Fourier domain
168361 SO DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES
168362    A-MATHEMATICAL ANALYSIS
168363 DT Article
168364 DE fractional Fourier transform; time-varying filtering; impulse Chirp
168365    noise; tune-frequency analysis
168366 ID TRANSFORM; CONVOLUTION
168367 AB Because of the time-varing frequency characteristic of Chirp impulse
168368    noise, the filter in common Fourier transform domain couldn't eliminate
168369    effectively the interference. In this paper, the concept of the
168370    filtering in fractional Fourier domain is introduced. And the
168371    convolution and the correlation in fractional Fourier transform domain
168372    are also proposed, which are basis on time-varying filtering in
168373    fractional Fourier domain. The simulation results have shown that the
168374    time-varying filtering for Chirp impulse noise based on fractional
168375    Fourier domain excelled to that of the traditional frequency domain
168376    filtering.
168377 C1 Jiangnan Univ, Sch Commun & Control Engn, Jiangsu 214122, Wuxi, Peoples R China.
168378    Shanghai Univ, Sch machine Elect & Automat, Shanghai 200072, Peoples R China.
168379 RP Yu, FQ, Jiangnan Univ, Sch Commun & Control Engn, Jiangsu 214122, Wuxi,
168380    Peoples R China.
168381 EM yufengqin@china.com
168382 CR AKAY O, 2000, UNITARY HERMITIAN FR
168383    AKAY O, 2001, IEEE T SIGNAL PROCES, V49, P979
168384    COHEN L, 1989, P IEEE, V77, P41
168385    HALDUN M, 1994, J OPT SOC AM A, V11, P547
168386    MCBRIDE AC, 1987, IMA J APPL MATH, V39, P159
168387    NAMIAS V, 1980, J I MATH APPL, V25, P241
168388    OZAKTAS HM, 2001, FRACTIONAL FOURIER T
168389    QIAN S, 1993, IEEE T SIGNAL PROCES, V41, P2429
168390    VETTERLI M, 1992, IEEE T SIGNAL PROCES, V40, P2207
168391    ZAYED AI, 1998, IEEE SIGNAL PROC LET, V5, P101
168392 NR 10
168393 TC 0
168394 SN 1201-3390
168395 J9 DYN CONT DISCR IMP SYST SER A
168396 JI Dyn. Contin. Discret. Impuls. Syst. Ser. A-Math Anal.
168397 PD FEB
168398 PY 2006
168399 VL 13
168400 PN Part 4 Suppl. S
168401 BP 1813
168402 EP 1820
168403 PG 8
168404 SC Mathematics, Applied
168405 GA 035HE
168406 UT ISI:000236990600029
168407 ER
168408 
168409 PT J
168410 AU Sun, J
168411    Shen, JN
168412    Yao, SD
168413 TI Study on preparation and electrocatalytic activities of the modified
168414    Ti/TiO2 electrodes by doping noble metal
168415 SO ACTA CHIMICA SINICA
168416 DT Article
168417 DE titanium anode; electrocatalytic; doping; microporous film; secondary
168418    ion mass spectrometry
168419 ID ANODIC-OXIDATION; TITANIUM
168420 AB A two-step procedure was used for the preparation of the modified
168421    Ti/TiO2-Pt/Ir anodes: anodisation of the titanium substrate to form a
168422    microporous oxide film with subsequent doping Pt or Ir by cathodic
168423    deposition of an oxygen evolution reaction (OER) electrocatalyser. The
168424    characterization of the modified films was carried out by X-ray and
168425    SEM. In the case of Ti/TiO2-Pt, Pt is deposited preferentially within
168426    some of the micropores of the TiO2 film. Ir however, is distributed
168427    preferentially across the surface of the oxide film. The difference is
168428    thought to result from the position of the metal deposition potential
168429    with respect to the flat band potential of n-TiO2. Composition profile
168430    of different elements in thin film Ti/TiO2-(Pt/Ir) anodes was carried
168431    out by SIMS, and the TiO2 film thickness is obtained, ca. 750 rim.
168432    According to the results obtained by means of stationary
168433    current-potential curves and impedance spectra, Pt/Ir doping has
168434    improved the electrocatalytic activities.
168435 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
168436    Beijing Inst Met Equipment Res, Beijing 100029, Peoples R China.
168437 RP Sun, J, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
168438 EM sun-juan@163.com
168439 CR DEMUSSY JPG, 2003, ACTA ELECTROCHEM, V48, P1133
168440    DEMUSSY JPG, 2003, THESIS LIBRE BRUXELL
168441    LI MC, 1986, J CHIN SOC CORROS PR, V3, P211
168442    MACHE E, 2000, ACTA ELECTROCHEM, V46, P629
168443    MARCHENOIR JC, 1980, THIN SOLID FILMS, V66, P357
168444    SATO N, 1998, ELECTROCHEMISTRY MET, CH8
168445    SERRUYS Y, 1993, SURF SCI, V282, P279
168446    VOIGT O, 1999, ELECTROCHIM ACTA, V44, P3731
168447    WANG HS, 1994, ACTA CHIM SINICA, V52, P1053
168448    YANG H, 2000, CHEM J CHINESE U, V21, P1283
168449    ZHU DB, 2002, CHEM J CHINESE U, V23, P678
168450    ZHU DB, 2004, ACTA PHYS-CHIM SIN, V20, P182
168451    ZOU Z, 2001, CHIN J NONFER MET, V11, P91
168452 NR 13
168453 TC 0
168454 SN 0567-7351
168455 J9 ACTA CHIM SIN
168456 JI Acta Chim. Sin.
168457 PD APR 14
168458 PY 2006
168459 VL 64
168460 IS 7
168461 BP 647
168462 EP 651
168463 PG 5
168464 SC Chemistry, Multidisciplinary
168465 GA 036FP
168466 UT ISI:000237056800010
168467 ER
168468 
168469 PT J
168470 AU Yang, XL
168471    Chu, YW
168472    Wang, Y
168473    Guo, Q
168474    Xiong, SD
168475 TI Vaccination with IFN-inducible T cell alpha chemoattractant (ITAC)
168476    gene-modified tumor cell attenuates disseminated metastases of
168477    circulating tumor cells
168478 SO VACCINE
168479 DT Article
168480 DE ITAC; anti-tumor immunity; 4T1
168481 ID COMPLEX CLASS-II; CHEMOKINE RECEPTOR CXCR3; DIFFERENTIAL EXPRESSION;
168482    BREAST-CANCER; CXCL11; IMMUNOTHERAPY; ACTIVATION; LIGANDS; MODEL;
168483    INFLAMMATION
168484 AB Immunotherapeutic strategies for metastatic diseases are being
168485    developed. IFN-inducible T cell a chemoattractant (ITAC) has been
168486    demonstrated to be able to induce Th1-type immune response. However,
168487    the effects of ITAC on the tumor metastasis have not been fully
168488    understood. In the present study, the ITAC-modified tumor cell vaccine
168489    in inhibiting the disseminated pulmonary metastasis was evaluated.
168490    ITAC-modified tumor cell vaccine 4T1-ITAC was developed by stably
168491    transfecting 4T1 cells with pcDNA3-ITAC piasmid. Mice were vaccinated
168492    with 4T1-ITAC. Mice vaccinated with 4T1-pcDNA3 and 4T1 were used as
168493    controls. Specific cellular immune responses against 4T1 were tested by
168494    in vitro proliferation, cytokine production and cytotoxic assay. The
168495    number of clonogenic metastatic tumor cells and metastatic forci on the
168496    surface of lung were counted by histological examination. Results
168497    showed that a significant enhancement of proliferative and cytotoxic
168498    activities accompanied with increased IFN-gamma and TNF-alpha
168499    production as well as decreased IL-4 production were obtained from the
168500    mice vaccinated with 4T1-ITAC. The number of clonogenic metastatic
168501    tumor cells in the mice vaccinated with 4T1-ITAC cells reduced markedly
168502    and no visible metastasis was found in the lungs of the 4T1-ITAC
168503    vaccinated mice. Consequently, the survival rate was dramatically
168504    increased in these mice. Taken together, our results demonstrated that
168505    ITAC-modified tumor cell vaccine can enhance the anti-tumor immunity
168506    and reduce the incidence of disseminated metastasis. (c) 2005 Elsevier
168507    Ltd. All rights reserved.
168508 C1 Fudan Univ, Shanghai Med Coll, Dept Immunol, Shanghai 200032, Peoples R China.
168509    Fudan Univ, Shanghai Med Coll, Ctr Gene Immunizat & Vaccine Res, Shanghai 200032, Peoples R China.
168510    Fudan Univ, Inst Immunobiol, Shanghai 200032, Peoples R China.
168511    Shanghai Univ, Div Immunol, E Inst, Shanghai 200025, Peoples R China.
168512 RP Xiong, SD, Fudan Univ, Shanghai Med Coll, Dept Immunol, 138 Yixueyuan
168513    Rd, Shanghai 200032, Peoples R China.
168514 EM sdxiongfd@126.com
168515 CR BONECCHI R, 1998, J EXP MED, V187, P129
168516    CLARKLEWIS I, 2003, J BIOL CHEM, V278, P289
168517    COLVIN RA, 2004, J BIOL CHEM, V279, P30219
168518    DAMBROSIO D, 2002, J IMMUNOL, V169, P2303
168519    DEMARIA S, 2005, CLIN CANCER RES, V11, P728
168520    DISSANAYAKE SK, 2004, CANCER RES, V64, P1867
168521    DUFOUR JH, 2002, J IMMUNOL, V168, P3195
168522    FLIER J, 2001, J PATHOL, V194, P398
168523    HUANG H, 2002, CELL IMMUNOL, V217, P12
168524    KAO J, 2003, CIRCULATION, V107, P1958
168525    LECOEUR H, 2001, J IMMUNOL METHODS, V253, P177
168526    LODE HN, 1998, P NATL ACAD SCI USA, V95, P2475
168527    LUDWIG A, 2002, J LEUKOCYTE BIOL, V72, P183
168528    MARTINELLI R, 2001, J BIOL CHEM, V276, P42957
168529    MCCOLL SR, 2004, LAB INVEST, V84, P1418
168530    MEYER M, 2001, EUR J IMMUNOL, V31, P2521
168531    MITSUHASHI M, 2004, J LEUKOCYTE BIOL, V76, P322
168532    MULLINS IM, 2004, CANCER RES, V64, P7697
168533    NANKI T, 2000, J IMMUNOL, V164, P5010
168534    OGASAWARA K, 2002, GENES CELLS, V7, P309
168535    PERTL U, 2001, J IMMUNOL, V166, P6944
168536    PULASKI BA, 1998, CANCER RES, V58, P1486
168537    PULASKI BA, 2000, CANCER RES, V60, P2710
168538    SAUTY A, 2001, J IMMUNOL, V167, P7084
168539    STEINBERG T, 2005, VACCINE, V23, P1149
168540    WHITING D, 2004, J IMMUNOL, V172, P7417
168541    WIDNEY DP, 2000, J IMMUNOL, V164, P6322
168542    XANTHOU G, 2003, EUR J IMMUNOL, V33, P2241
168543    XIE JH, 2003, J LEUKOCYTE BIOL, V73, P771
168544    YU P, 2003, J EXP MED, V197, P985
168545    ZOU WP, 2000, J IMMUNOL, V165, P4388
168546 NR 31
168547 TC 0
168548 SN 0264-410X
168549 J9 VACCINE
168550 JI Vaccine
168551 PD APR 5
168552 PY 2006
168553 VL 24
168554 IS 15
168555 BP 2966
168556 EP 2974
168557 PG 9
168558 SC Medicine, Research & Experimental; Immunology; Veterinary Sciences
168559 GA 034LY
168560 UT ISI:000236931700031
168561 ER
168562 
168563 PT J
168564 AU Liu, YS
168565    Zhang, JC
168566    Cao, SX
168567    Jia, GQ
168568    Zhang, XY
168569    Ren, ZM
168570    Li, X
168571    Jing, C
168572    Deng, K
168573 TI Effect of magnetic field on the Tc and magnetic properties for the
168574    aligned MnBi compound
168575 SO SOLID STATE COMMUNICATIONS
168576 DT Article
168577 DE magnetic-field-induced transition; MnBi compound; aligned;
168578    spin-reorientation; magnetic properties
168579 ID STRUCTURAL PHASE-TRANSITION; INTERMETALLIC COMPOUND;
168580    ELECTRONIC-STRUCTURE; SINGLE-CRYSTAL; TRANSFORMATION; SOLIDIFICATION;
168581    DIFFRACTION
168582 AB In the compound MnBi, a first-order transition from the paramagnetic to
168583    the ferromagnetic state can be triggered by an applied magnetic field
168584    and the Curie temperature increases nearly linearly with an increase in
168585    magnetic field by similar to 2 K/T. Under a field of 10 T, T-C
168586    increases by 20 and 22 K during heating and cooling, respectively.
168587    Under certain conditions a reversible magnetic field or temperature
168588    induced transition between the paramagnetic and ferromagnetic states
168589    can occur. A magnetic and crystallographic H-T phase diagram for MnBi
168590    is given. Magnetic properties of MnBi compound aligned in a Bi matrix
168591    have been investigated. In the low temperature phase MnBi, a
168592    spin-reorientation takes place during which the magnetic moments rotate
168593    from being parallel to the c-axis towards the basal plane at similar to
168594    90 K. A measuring Dc magnetic field applied parallel to the c-axis of
168595    MnBi suppresses partly the spin-reorientation transition.
168596    Interestingly, the fabricated magnetic field increases the temperature
168597    of spin., and the change in magnetization for MnBi. For the sample
168598    solidified under 0.5 T, the change in magnetization is similar to 70%
168599    reorientation transition and T-s is similar to 91 K. (c) 2006 Elsevier
168600    Ltd. All rights reserved.
168601 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
168602    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200444, Peoples R China.
168603    Shanghai Univ Elect Power, Dept Math & Phys, Shanghai 200090, Peoples R China.
168604 RP Zhang, JC, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200444,
168605    Peoples R China.
168606 EM czhang@staff.shu.edu.cn
168607 CR ALBERT PA, 1961, J APPL PHYS, V32, S201
168608    ASAMITSU A, 1995, NATURE, V373, P407
168609    BEAN CP, 1962, PHYS REV, V126, P104
168610    CHEN T, 1974, IEEE T MAGN, V10, P581
168611    COEHOORN R, 1985, J PHYS F MET PHYS, V15, P2135
168612    DEBLOIS RW, 1963, PHYS REV, V130, P1347
168613    GUILLAUD C, 1951, J PHYS RADIUM, V12, P492
168614    GUO X, 1992, PHYS REV B, V46, P14578
168615    HARDER KU, 1998, J APPL PHYS, V84, P3625
168616    HEIKES RR, 1955, PHYS REV, V99, P446
168617    HUBER EE, 1964, PHYS REV, V135, A1033
168618    KIDO G, 1987, J MAGN MAGN MATER, V70, P207
168619    KOMATSUBARA T, 1965, J PHYS SOC JPN, V20, P2036
168620    LAKE B, 2002, NATURE, V415, P299
168621    LEVIN EM, 2002, PHYS REV B, V65
168622    LI BQ, 1998, JOM E, V50
168623    LU XY, 2001, IEEE T APPL SUPERC 3, V11, P3553
168624    MA YW, 2000, SOLID STATE COMMUN, V113, P671
168625    POOLE PH, 1997, SCIENCE, V275, P322
168626    ROBERTS BW, 1956, PHYS REV, V104, P607
168627    SAHA S, 2002, J APPL PHYS 3, V91, P8525
168628    SHIMAMOTO Y, 1998, J PHYS-CONDENS MAT, V10, P11289
168629    SMART JS, 1953, PHYS REV, V90, P55
168630    UJI S, 2001, NATURE, V410, P908
168631    WESSEL S, 2000, EUR PHYS J B, V16, P393
168632    XU YQ, 2002, PHYS REV B, V66
168633    YANG JB, 2001, APPL PHYS LETT, V79, P1846
168634    YANG JB, 2002, J PHYS-CONDENS MAT, V14, P6509
168635    YOSHIDA H, 2001, J ALLOY COMPD, V317, P297
168636 NR 29
168637 TC 0
168638 SN 0038-1098
168639 J9 SOLID STATE COMMUN
168640 JI Solid State Commun.
168641 PY 2006
168642 VL 138
168643 IS 2
168644 BP 104
168645 EP 109
168646 PG 6
168647 SC Physics, Condensed Matter
168648 GA 035QU
168649 UT ISI:000237017300012
168650 ER
168651 
168652 PT J
168653 AU Zhou, GP
168654    Cai, YD
168655 TI Predicting protease types by hybridizing gene ontology and pseudo amino
168656    acid composition
168657 SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
168658 DT Article
168659 DE gene ontology; pseudo amino acid composition; hybrid space; NN
168660    predictor; InterPro database; proteases
168661 ID FUNCTIONAL DOMAIN COMPOSITION; RECOGNITION SEQUENCE PEPTIDES; HIV-1
168662    REVERSE-TRANSCRIPTASE; STRUCTURAL CLASS PREDICTION; CORONAVIRUS MAIN
168663    PROTEINASE; SUPPORT VECTOR MACHINES; SUBCELLULAR LOCATION; TERTIARY
168664    STRUCTURE; CHEMICAL-MODIFICATION; MEMBRANE-STRUCTURE
168665 AB Proteases play a vitally important role in regulating most
168666    physiological processes. Different types of proteases perform different
168667    functions with different biological processes. Therefore, it is highly
168668    desired to develop a fast and reliable means to identify the types of
168669    proteases according to their sequences, or even just identify whether
168670    they are proteases or nonproteases. The avalanche of protein sequences
168671    generated in the postgenomic era has made such a challenge become even
168672    more critical and urgent. By hybridizing the gene ontology approach and
168673    pseudo amino acid composition approach, a powerful predictor called
168674    GO-PseAA predictor was introduced to address the problems. To avoid
168675    redundancy and bias, demonstrations were performed on a dataset where
168676    none of proteins has >= 25% sequence identity to any other. The overall
168677    success rates thus obtained by the jackknife cross-validation test in
168678    identifying protease and nonprotease was 91.82%, and that in
168679    identifying the protease type was 85.49% among the folowing five types:
168680    (1) aspartic, (2) cysteine, (3) metallo, serine, and (5) threonine. The
168681    high jackknife success rates yielded for such a stringent dataset
168682    indicate the GO-PseAA predictor is very powerful and might become a
168683    useful tool in bioinformatics and proteomics.
168684 C1 Harvard Univ, Sch Med, Vasc Biol Res Ctr, Beth Israel Deaconess Med Ctr, Boston, MA 02115 USA.
168685    Shanghai Univ, Coll Sci, Dept Chem, Shanghai, Peoples R China.
168686    Univ Manchester Sci & Technol, Dept Biomed Sci, Manchester, Lancs, England.
168687 RP Zhou, GP, Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Div Mol
168688    & Vasc Med, 330 Brookline Ave,E-RW 759, Boston, MA 02115 USA.
168689 EM gzhou@bidmc.harvard.edu
168690 CR ALTHAUS IW, 1993, BIOCHEMISTRY-US, V32, P6548
168691    ALTHAUS IW, 1993, J BIOL CHEM, V268, P14875
168692    ALTHAUS IW, 1993, J BIOL CHEM, V268, P6119
168693    APWEILER R, 2001, NUCLEIC ACIDS RES, V29, P37
168694    CAI YD, 2003, BIOCHEM BIOPH RES CO, V305, P407
168695    CHOU JJ, 1993, J PROTEIN CHEM, V12, P291
168696    CHOU JJ, 1998, CELL, V94, P171
168697    CHOU KC, 1993, J BIOL CHEM, V268, P16938
168698    CHOU KC, 1994, ANAL BIOCHEM, V221, P217
168699    CHOU KC, 1994, J BIOL CHEM, V269, P22014
168700    CHOU KC, 1995, CRIT REV BIOCHEM MOL, V30, P275
168701    CHOU KC, 1995, PROTEINS, V21, P319
168702    CHOU KC, 1996, ANAL BIOCHEM, V233, P1
168703    CHOU KC, 1997, FEBS LETT, V419, P49
168704    CHOU KC, 2000, FEBS LETT, V470, P249
168705    CHOU KC, 2001, PROTEINS, V43, P246
168706    CHOU KC, 2002, BIOCHEM BIOPH RES CO, V292, P702
168707    CHOU KC, 2002, J BIOL CHEM, V277, P45765
168708    CHOU KC, 2003, BIOCHEM BIOPH RES CO, V308, P148
168709    CHOU KC, 2004, BIOCHEM BIOPH RES CO, V321, P1007
168710    CHOU KC, 2004, CURR MED CHEM, V11, P2105
168711    CHOU KC, 2004, J CELL BIOCHEM, V91, P1197
168712    CHOU KC, 2004, PROTEIN SCI, V13, P2857
168713    CHOU KC, 2005, BIOCHEM BIOPH RES CO, V327, P845
168714    CHOU KC, 2005, BIOINFORMATICS, V21, P10
168715    CHOU KC, 2005, CURR PROTEIN PEPT SC, V6, P423
168716    CHOU KC, 2005, J PROTEOME RES, V4, P1413
168717    DU QH, 2005, ANAL BIOCHEM, V337, P262
168718    DU QS, 2004, PEPTIDES, V25, P1857
168719    DU QS, 2005, MED CHEM, V1, P209
168720    FENG KY, 2005, BIOCHEM BIOPH RES CO, V334, P213
168721    FENG ZP, 2001, BIOPOLYMERS, V58, P491
168722    FRIEDMAN JH, 1975, IEEE T COMPUT, V24, P1000
168723    GAN YR, 2005, IN PRESS PEPTIDES
168724    GAO Y, 2005, AMINO ACIDS, V28, P373
168725    LUO RY, 2002, EUR J BIOCHEM, V269, P4219
168726    PAN YX, 2003, J PROTEIN CHEM, V22, P395
168727    PIGEON RP, 1994, MOL MICROBIOL, V14, P871
168728    POORMAN RA, 1991, J BIOL CHEM, V266, P14554
168729    SHEN HB, 2005, BIOCHEM BIOPH RES CO, V334, P288
168730    SHEN HB, 2005, BIOCHEM BIOPH RES CO, V334, P577
168731    SIROIS S, 2004, J CHEM INF COMP SCI, V44, P1111
168732    WANG GL, 2003, BIOINFORMATICS, V19, P1589
168733    WANG M, 2004, PROTEIN ENG DES SEL, V17, P509
168734    WANG M, 2005, J THEOR BIOL, V232, P7
168735    XIAO X, 2005, AMINO ACIDS
168736    XIAO X, 2005, AMINO ACIDS, V28, P57
168737    ZHOU GP, 1998, J PROTEIN CHEM, V17, P729
168738    ZHOU GP, 2001, PROTEINS, V44, P57
168739    ZHOU GP, 2003, GLYCOBIOLOGY, V13, P51
168740    ZHOU GP, 2003, PROTEINS, V50, P44
168741    ZHOU GP, 2005, CURR PROTEIN PEPT SC, V6, P399
168742    ZHOU GP, 2005, GLYCOBIOLOGY, V15, P347
168743 NR 53
168744 TC 0
168745 SN 0887-3585
168746 J9 PROTEINS
168747 JI Proteins
168748 PD MAY 15
168749 PY 2006
168750 VL 63
168751 IS 3
168752 BP 681
168753 EP 684
168754 PG 4
168755 SC Biochemistry & Molecular Biology; Genetics & Heredity
168756 GA 034QR
168757 UT ISI:000236946200025
168758 ER
168759 
168760 PT J
168761 AU Jin, Y
168762    He, HC
168763    Lu, YT
168764 TI Ternary optical computer architecture
168765 SO PHYSICA SCRIPTA
168766 DT Article
168767 AB A fire-new way to construct an optical computer is put forward in this
168768    paper. Distinguished from others, the optical computer in this study
168769    expresses information by two polarized states with orthogonal vibration
168770    directions and no-intensity of light, therefore it was named ternary
168771    optical computer. Constituting its general architecture by the good
168772    combination of electric control and optical calculation, the ternary
168773    optical computer employs optical fiber ring as register, semiconductor
168774    memory as ternary cell, and liquid crystal as modulator and adder.
168775    Meanwhile, an electronic computer group produces signals to control
168776    every part of the ternary optical computer. The superiority of this
168777    novel ternary optical computer was also introduced in this paper.
168778 C1 Shanghai Univ, Sch Comp Sci & Technol, Shanghai 200072, Peoples R China.
168779    Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian 710072, Peoples R China.
168780 RP Jin, Y, Shanghai Univ, Sch Comp Sci & Technol, Shanghai 200072, Peoples
168781    R China.
168782 EM yijin@nwpu.edu.cn
168783 CR FERINGA BL, 2002, APPL PHYS A-MATER, V75, P301
168784    JIN Y, 2001, FUT TEL C 2001, P368
168785    JIN Y, 2003, SCI CHINA SER F, V46, P145
168786    KWIAT PG, 2000, J MOD OPTIC, V47, P257
168787    SHEN XJ, 2000, OPTICAL TECHNOLOGY, V26, P62
168788    ZIAVRAS SG, 2000, FUTURE GENER COMP SY, V17, P315
168789 NR 6
168790 TC 0
168791 SN 0031-8949
168792 J9 PHYS SCR
168793 JI Phys. Scr.
168794 PY 2005
168795 VL T118
168796 BP 98
168797 EP 101
168798 PG 4
168799 SC Physics, Multidisciplinary
168800 GA 034DQ
168801 UT ISI:000236906800026
168802 ER
168803 
168804 PT J
168805 AU Zhang, DS
168806    Shi, LY
168807    Fang, JH
168808    Dai, K
168809    Li, XK
168810 TI Preparation and desalination performance of multiwall carbon nanotubes
168811 SO MATERIALS CHEMISTRY AND PHYSICS
168812 DT Article
168813 DE multiwall carbon nanotubes; preparation; desalination; surface area
168814 ID HYDROCARBONS; NANOFIBERS; CAPACITORS; RAMAN
168815 AB Multiwall carbon nanotubes (MWCNTs) were prepared by catalytic
168816    decomposition of methane at 680-700 degrees C, using nickel
168817    oxide-silica binary aerogels as the catalyst. The morphological
168818    structure of MWCNTs was investigated by transmission electron
168819    microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. The
168820    results revealed that MWCNTs had a diameter of 40-60 nm, with high
168821    quality and high length/diameter ratio, and some metal catalyst
168822    particles were encapsulated at the tip of nanotubes. Using MWCNTs as
168823    the electrodes of flow-through capacitor (FTC), desalination
168824    performance was investigated. The results showed that modification
168825    methods had great effect on desalination performance of MWCNTs. The
168826    removal amount of NaCl was generally dependent on the surface area and
168827    pore volume of MWCNTs. After modification in diluted HNO3 solution with
168828    ultrasonic and then hall milling, the metal catalyst particles at the
168829    tip of nanotubes disappeared, the nanotube length became short, the cap
168830    at the tip of nanotubes was opened, the internal surface area could be
168831    effectively used, leading to increasing the specific surface area and
168832    pore volume for MWCNTs, and thus, the desalination performance thereof
168833    was the best of all. (c) 2005 Elsevier B.V. All rights reserved.
168834 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
168835    Shanghai Univ, Sch Sci, Shanghai 200444, Peoples R China.
168836    Wuhan Univ Sci & Technol, Ctr Nanomat & Technol, Wuhan 430081, Peoples R China.
168837 RP Shi, LY, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
168838    China.
168839 EM sly0726@163.com
168840 CR ANDELMAN M, 1993, 5192432, US
168841    CANTALINI C, 2004, J EUR CERAM SOC, V24, P1405
168842    CHEN JH, 2002, CARBON, V40, P1193
168843    CHENG HM, 1998, CHEM PHYS LETT, V289, P602
168844    DEMIRCIOGLU M, 2003, DESALINATION, V153, P329
168845    ELSAYED YM, 1999, DESALINATION, V125, P251
168846    FRACKOWIAK E, 2002, CHEM PHYS LETT, V361, P35
168847    FRACKOWIAK E, 2002, FUEL PROCESS TECHNOL, V77, P213
168848    GRUNDISCH A, 2001, DESALINATION, V138, P223
168849    HIURA H, 1993, CHEM PHYS LETT, V202, P509
168850    LAI HJ, 2001, MAT SCI ENG C-BIO S, V16, P23
168851    LIU YL, 2004, J MATER SCI, V39, P1091
168852    NAKAYAMA Y, 2001, SYNTHETIC MET, V117, P207
168853    NISHINO A, 1996, J POWER SOURCES, V60, P137
168854    ODANI A, 2003, J POWER SOURCES, V119, P517
168855    REDDY BC, 1997, DESALINATION, V113, P27
168856    SEMIAT R, 2001, DESALINATION, V140, P27
168857    SHI L, 2003, 1463927, CN
168858    SIMONYAN VV, 2002, J ALLOY COMPD, V330, P659
168859    YUDASAKA M, 1997, CHEM PHYS LETT, V278, P102
168860    ZHANG DS, 2004, IND MINER PROCESS, V33, P14
168861    ZHANG DS, 2005, J FUNCT MAT, V36, P282
168862 NR 22
168863 TC 0
168864 SN 0254-0584
168865 J9 MATER CHEM PHYS
168866 JI Mater. Chem. Phys.
168867 PD JUN 10
168868 PY 2006
168869 VL 97
168870 IS 2-3
168871 BP 415
168872 EP 419
168873 PG 5
168874 SC Materials Science, Multidisciplinary
168875 GA 034IN
168876 UT ISI:000236922600037
168877 ER
168878 
168879 PT J
168880 AU Huang, Y
168881    Pan, QY
168882    Dong, XW
168883    Cheng, ZX
168884 TI Synthesis and photochromism of a novel organic-inorganic hybrid film
168885    embedded with polyoxomatalates
168886 SO MATERIALS CHEMISTRY AND PHYSICS
168887 DT Article
168888 DE organic-inorganic; self-assemble; sol-gel; photochromic;
168889    polyoxometalates
168890 AB Tungstosilicates (SiWA), acting as target molecules, were entrapped
168891    into MAAM/VTEOS/TEOS hybrid matrix by combining self-assembly technique
168892    and sol-gel process. The hybrid film was obtained by spin coating
168893    process and was characterized by IR, XRD and TG-DSC. Its photochromic
168894    behavior and mechanism were also studied by UV-vis and ESR
168895    spectrometries. The results show that SiWA still maintain Keggin
168896    structure in the matrix, interacted with -NH2 group of matrix through
168897    hydrogen bond. After UV irradiation, W6+ is reduced to W5+ due to
168898    ligand-to-metal charge transfer (LMCT) and a free radical is formed at
168899    the same time. The decoloration process is closely related to the
168900    presence of 0,. The hybrid film exhibits an excellent photochromism,
168901    mechanical strength and thermodynamic stability. (c) 2005 Elsevier B.V.
168902    All rights reserved.
168903 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
168904 RP Pan, QY, Shanghai Univ, Dept Chem, 99 Shang Da Rd, Shanghai 200436,
168905    Peoples R China.
168906 EM qypan@mail.shu.edu.cn
168907 CR ATTANASIO D, 1994, ADV MATER, V6, P145
168908    BOUSSEKSOU A, 2003, J MATER CHEM, V13, P2069
168909    FENG W, 2002, J SOLID STATE CHEM, V169, P1
168910    GAMELAS JAF, 2002, POLYHEDRON, V21, P2537
168911    GOMEZROMERO P, 1996, J PHYS CHEM-US, V100, P12448
168912    JUDEINSTEIN P, 1997, ADV MATER OPT ELECTR, V7, P123
168913    JUDENSTEIN P, 1991, CHEM MATER, V4, P4
168914    MO YG, 1999, THIN SOLID FILMS, V355, P1
168915    NITANDA J, 1992, J MATER SCI-MATER M, V3, P137
168916    OUBAHA M, 2003, J NON-CRYST SOLIDS, V318, P305
168917    PAPACONSTANTINO.E, 1989, CHEM SOC REV, V18, P1
168918    POPALL M, 1998, ELECTROCHIM ACTA, V43, P1155
168919    POPE MT, 1983, HETEROPOLY ISOPOLYOX
168920    SADAKANE M, 1998, CHEM REV, V98, P219
168921    SANCHEZ C, 2003, ADV MAT, V15
168922    SARTORI G, 2004, J CATAL, V222, P410
168923    STANGAR UL, 2001, MONATSH CHEM, V132, P103
168924    UNOURA K, INORG CHEM, V22
168925    VARGA GM, 1970, INORG CHEM, V9, P662
168926    WEI F, 2002, THIN SOLID FILM, V402, P237
168927    WIZEL S, 1998, J MATER RES, V13, P211
168928    YAMASE T, 1998, CHEM REV, V98, P307
168929    ZHANG HY, 2003, MATER LETT, V57, P1417
168930    ZHANG L, 2001, J MOL STRUCT, V597, P83
168931    ZHANG TR, 2002, CHEM J CHINESE U, V23, P1979
168932    ZHANG TR, 2002, MATER CHEM PHYS, V78, P380
168933    ZHAO L, 2003, MATER LETT, V57, P2116
168934 NR 27
168935 TC 0
168936 SN 0254-0584
168937 J9 MATER CHEM PHYS
168938 JI Mater. Chem. Phys.
168939 PD JUN 10
168940 PY 2006
168941 VL 97
168942 IS 2-3
168943 BP 431
168944 EP 436
168945 PG 6
168946 SC Materials Science, Multidisciplinary
168947 GA 034IN
168948 UT ISI:000236922600040
168949 ER
168950 
168951 PT J
168952 AU Chen, Y
168953    Wu, QS
168954    Ding, YP
168955 TI Synthesis and properties of nanoparticles-assembled ZnS-microspheres
168956    and CdS-nanoshuttles through hydrothermal reaction of simultaneous
168957    solvent-oxidation-hydrolysis
168958 SO KOVOVE MATERIALY-METALLIC MATERIALS
168959 DT Article
168960 DE solvent-oxidation-hydrolysis; hydrothermal; nanoparticles;
168961    nanoshuttles; microspheres; ZnS; CdS
168962 ID SEMICONDUCTOR QUANTUM DOTS; LIGHT-EMITTING-DIODES; NANOCRYSTALS;
168963    PARTICLES; POLYMER
168964 AB A new kind of reaction based on a simultaneous
168965    solvent-oxidation-hydrolysis process was first developed to synthesize
168966    ZnS and CdS. ZnS microspheres and CdS nanoshuttles assembled with
168967    nanoparticles were obtained through this method. The products were
168968    characterized by XRD, ED, TEM, UV-VIS and PL. The results indicated
168969    that ZnS and CdS nanoparticles with 15-20 nm diameters could
168970    self-assemble into 1.2 mu m-diameter microspheres and about 40 x 100 nm
168971    nanoshuttles, respectively. In addition, the formation mechanism of the
168972    products was explored.
168973 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
168974    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
168975 RP Wu, QS, Tongji Univ, Dept Chem, 1239 Siping Rd, Shanghai 200092,
168976    Peoples R China.
168977 EM qswu@mail.tongji.edu.cn
168978 CR BRUCHEZ M, 1998, SCIENCE, V281, P2013
168979    CHAN WCW, 1998, SCIENCE, V281, P2016
168980    CHEN YF, 2002, ANAL CHEM, V74, P5132
168981    COLVIN VL, 1994, NATURE, V370, P354
168982    ELSAYED MA, 2004, ACCOUNTS CHEM RES, V37, P326
168983    HOFFMAN AJ, 1992, J PHYS CHEM-US, V96, P5546
168984    LEMON BI, 2000, J AM CHEM SOC, V122, P12886
168985    LI YD, 1999, INORG CHEM, V38, P1382
168986    MANDAL S, 2004, J PHYS CHEM B, V108, P7126
168987    METCALF HC, 1982, MODERN CHEM, P54
168988    MIKULEC FV, 2000, J AM CHEM SOC, V122, P2532
168989    MIYAMOTO M, 2004, PHYS STAT SOL C, V1, P783
168990    NAIR PS, 2003, POLYHEDRON, V22, P3129
168991    PARHAK S, 2001, J AM CHEM SOC, V123, P4103
168992    PENG Q, 2003, ANGEW CHEM INT EDIT, V42, P3027
168993    QUINLAN FT, 2000, LANGMUIR, V16, P4049
168994    SAMIA ACS, 2003, J AM CHEM SOC, V125, P15736
168995    SCHLAMP MC, 1997, J APPL PHYS, V82, P5837
168996    TRINDADE T, 1997, CHEM MATER, V9, P523
168997    TRINDADE T, 2001, CHEM MATER, V13, P3843
168998    WANG Y, 2004, J NANOPART RES, V6, P253
168999    WELLER H, 1993, ADV MATER, V5, P88
169000    WYRWA D, 2002, NANO LETTERS, V2, P419
169001    ZHU JJ, 2000, J PHYS CHEM B, V104, P7344
169002 NR 24
169003 TC 0
169004 SN 0023-432X
169005 J9 KOVOVE MATER-METAL MATER
169006 JI Kov. Mater.-Met. Mater.
169007 PY 2006
169008 VL 44
169009 IS 1
169010 BP 19
169011 EP 24
169012 PG 6
169013 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
169014    Engineering
169015 GA 034CT
169016 UT ISI:000236903100003
169017 ER
169018 
169019 PT J
169020 AU Pei, GQ
169021    Xia, CT
169022    Cao, SX
169023    Zhang, JG
169024    Wu, F
169025    Xu, J
169026 TI Synthesis and magnetic properties of Ni-doped zinc oxide powders
169027 SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
169028 DT Article
169029 DE magnetic semiconductors; ZnNiO; magnetic properties; combustion method
169030 ID AB-INITIO; SEMICONDUCTORS; ZNO; SPINTRONICS; FILMS
169031 AB Polycrystalline Zn1-xNixO diluted magnetic semiconductors have been
169032    successfully synthesized by an auto-combustion method. X-ray
169033    diffraction measurements indicated that the 5 at% Ni-cloped ZnO had the
169034    pure wurtzite structure. Refinements of cell parameters from powder
169035    diffraction data revealed that the cell parameters of Zn0.95Ni0.05O
169036    were a little bit larger than ZnO. Transmission electron microscopy
169037    observation showed that the as-synthesized powders were of the size
169038    similar to 60 nm. Magnetic investigations showed that the
169039    nanocystalline Zn0.95Ni0.05O possessed room temperature ferromagnetisin
169040    with the saturation magnetic moment of 0.1 emu/g (0.29 mu(B)/Ni2+). (c)
169041    2005 Elsevier B.V. All rights reserved.
169042 C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
169043    Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China.
169044    Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
169045 RP Pei, GQ, Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai
169046    201800, Peoples R China.
169047 EM gqpei@126.com
169048    Xia_CT@siom.ac.cn
169049 CR DASSARMA S, 2001, AM SCI, V89, P516
169050    DEKA S, 2004, CHEM MATER, V16, P1168
169051    DESOUSA VC, 2000, CERAM INT, V26, P561
169052    DIETL T, 2002, SEMICOND SCI TECH, V17, P377
169053    HOLLAND TJB, 1997, MINERAL MAG, V61, P65
169054    JEONG YH, 2004, J MAGN MAGN MATER 3, V272, P1976
169055    JIN ZW, 2001, APPL PHYS LETT, V78, P3824
169056    KITTILSTVED KR, 2005, PHYS REV LETT, V94
169057    RADOVANOVIC PV, 2003, PHYS REV LETT, V91
169058    SATO K, 2002, PHYS STATUS SOLIDI B, V229, P673
169059    SATO K, 2002, SEMICOND SCI TECH, V17, P367
169060    SCHWARTZ DA, 2003, J AM CHEM SOC, V125, P13205
169061    UEDA K, 2001, APPL PHYS LETT, V79, P988
169062    USPENSKII Y, 2003, J MAGN MAGN MATER, V258, P248
169063 NR 14
169064 TC 0
169065 SN 0304-8853
169066 J9 J MAGN MAGN MATER
169067 JI J. Magn. Magn. Mater.
169068 PD JUL
169069 PY 2006
169070 VL 302
169071 IS 2
169072 BP 340
169073 EP 342
169074 PG 3
169075 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
169076 GA 035NV
169077 UT ISI:000237009000014
169078 ER
169079 
169080 PT J
169081 AU Zhao, JW
169082    Song, LP
169083    Wang, YK
169084    Zhu, SZ
169085 TI Synthesis of nickel-salicylideneimines complexes and catalyzing
169086    cross-coupling reaction of aryl halides and Grignard reagents
169087 SO JOURNAL OF FLUORINE CHEMISTRY
169088 DT Article
169089 DE cross-coupling; Ni complex; Grignard reagents; aryl halide;
169090    perfluorobiphenyl; catalyst
169091 ID ORGANIC HALIDES; BOND FORMATION; CHLORIDE; BIARYLS
169092 AB A series of nickel-salicylideneimines complexes were prepared in wild
169093    way and these complexes were stable to air and moisture. The
169094    nickel-salicylideneimines complexes exhibited good activity in
169095    catalyzing Grignard reagents with aryl halids to biphenyl derivatives
169096    and the more fluorine atoms contained by N-substituted benzene moiety
169097    could function the better activity. (c) 2006 Elsevier B.V. All rights
169098    reserved.
169099 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Key Lab Organofluorine Chem, Shanghai 200032, Peoples R China.
169100    Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200436, Peoples R China.
169101    Ningbo Sci & Technol Bur, Ningbo 315001, Peoples R China.
169102 RP Zhu, SZ, Chinese Acad Sci, Shanghai Inst Organ Chem, Key Lab
169103    Organofluorine Chem, 345 Lingling Lu, Shanghai 200032, Peoples R China.
169104 EM zhusz@mail.sioc.ac.cn
169105 CR BOHN VPW, 2000, ANGEW CHEM INT EDIT, V39, P1602
169106    CHAO CS, 1983, J ORG CHEM, V48, P4904
169107    HASSAN J, 2002, CHEM REV, V102, P1359
169108    HAYASHI T, 1984, J AM CHEM SOC, V106, P158
169109    IKOMA Y, 1990, SYNTHESIS-STUTTGART, P147
169110    KUMADA M, 1980, PURE APPL CHEM, V52, P669
169111    LI GY, 2002, J ORGANOMET CHEM, V653, P63
169112    NEGISHI E, 1977, J ORG CHEM, V42, P1821
169113    SEKIYA A, 1977, J ORGANOMET CHEM, V125, P279
169114    SONG LP, 2005, CHINESE J CHEM, V61, P669
169115    TERAO Y, 2003, J ORG CHEM, V68, P5236
169116    WANG JP, 1995, TETRAHEDRON LETT, V36, P2571
169117    YAMADA S, 1969, B CHEM SOC JPN, V42, P131
169118    YAULADA L, 1997, J MOL CATAL A-CHEM, V120, P13
169119 NR 14
169120 TC 0
169121 SN 0022-1139
169122 J9 J FLUORINE CHEM
169123 JI J. Fluor. Chem.
169124 PD MAR
169125 PY 2006
169126 VL 127
169127 IS 3
169128 BP 405
169129 EP 408
169130 PG 4
169131 SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
169132 GA 034JW
169133 UT ISI:000236926300014
169134 ER
169135 
169136 PT J
169137 AU Jia, XS
169138    Wang, HL
169139    Huang, C
169140    Kong, LL
169141    Zhang, WH
169142 TI A fast and simple method for the acylation of alcohols with acid
169143    chlorides promoted by metallic samarium
169144 SO JOURNAL OF CHEMICAL RESEARCH-S
169145 DT Article
169146 DE samarium; acylation; alcohol; acid chloride
169147 ID CATALYSTS; REAGENT; ESTERS; SMI2; MILD
169148 AB Acylation of primary, secondary, allyl and benzyl alcohols with acid
169149    chlorides promoted by samarium metal under neutral condition gave
169150    carboxylic acid esters in good to excellent yields. Acylation of a
169151    tertiary alcohol did not occur under the same reaction conditions.
169152 C1 Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
169153 RP Jia, XS, Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
169154 EM xsjla@mail.shu.edu.cn
169155 CR ADDY JK, 1964, J CHEM SOC, P2473
169156    ALLEN CFH, 1943, ORG SYNTH, V2, P156
169157    BAKER R, ORG SYN COLL, V3
169158    BERGMANN ED, 1957, J AM CHEM SOC, V79, P4174
169159    DORRIS TB, 1938, J AM CHEM SOC, V60, P358
169160    ELIEL EL, 1952, J AM CHEM SOC, V74, P547
169161    GAJARE AS, 1998, SYNTHETIC COMMUN, V28, P25
169162    GHATAK A, 2000, TETRAHEDRON LETT, V41, P3793
169163    GIRARD P, 1980, J AM CHEM SOC, V102, P2693
169164    GREENE TW, 1991, PROTECTIVE GROUPS OR
169165    ISHII Y, 1997, REV HETEROATOM CHEM, V17, P109
169166    KLEMM LH, 1964, TETRAHEDRON, V20, P871
169167    KRIEF A, 1999, CHEM REV, V99, P745
169168    LIU YJ, 2004, TETRAHEDRON, V60, P4867
169169    MARZIEH S, 2003, J CHEM RES S, P172
169170    MEYER G, 1970, B SOC CHIM FR, P730
169171    MOLANDER GA, 1996, CHEM REV, V96, P307
169172    MUKAIYAMA N, 1976, CHEM LETT, P13
169173    NEWMAN MS, 1961, J ORG CHEM, V26, P4306
169174    NISHIYAMA Y, 2000, J SYN ORG CHEM JPN, V58, P129
169175    OHSHIMA M, 1963, NIPPON KAGAKU ZASSHI, V84, P177
169176    PAGNI RM, 1988, J ORG CHEM, V53, P4477
169177    POST HW, 1936, J ORG CHEM, V3, P231
169178    REISHAKHRIT LS, 1982, J GEN CHEM USSR, V52, P829
169179    RIDEAL RAE, 1926, J AM CHEM SOC, V48, P1758
169180    RUEGGEBERG WHC, 1945, J AM CHEM SOC, V67, P2154
169181    SANO T, 1999, SYNTHESIS-STUTTG JUL, P1141
169182    SMITH GG, 1963, J ORG CHEM, P3496
169183    SUBHASH C, 1981, SYNTHESIS-STUTTGART, P142
169184    YADAV JS, 1998, SYNTHETIC COMMUN, V28, P2337
169185 NR 30
169186 TC 0
169187 SN 0308-2342
169188 J9 J CHEM RES-S
169189 JI J. Chem. Res.-S
169190 PD FEB
169191 PY 2006
169192 IS 2
169193 BP 135
169194 EP 138
169195 PG 4
169196 SC Chemistry, Multidisciplinary
169197 GA 033ZT
169198 UT ISI:000236894300019
169199 ER
169200 
169201 PT J
169202 AU Ye, JF
169203    Zheng, CL
169204    Xie, LS
169205 TI Exact solutions and localized excitations of general
169206    Nizhnik-Novikov-Veselov system in (2+1)-dimensions via a projective
169207    approach
169208 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
169209 DT Article
169210 DE projective approach; GNNV system; exact solution; localized excitation
169211 ID VARIABLE SEPARATION EXCITATIONS; EXTENDED MAPPING APPROACH; BROER-KAUP
169212    SYSTEM; GORDON EQUATION; SOLITONS; WAVE
169213 AB Starting from an extended projective approach, a new type of variable
169214    separation solution with two arbitrary functions to the
169215    (2+1)-dimensional general Nizhnik-Novikov-Veselov (GNNV) system is
169216    derived. Based on the derived variable separation, some single valued
169217    and multiple valued localized coherent soliton excitations such as
169218    dromions, peakons, compactons, foldons with novel evolutional
169219    properties are revealed by introducing appropriate initial conditions.
169220 C1 Lishui Univ, Coll Phys & Math, Lishui 323000, Zhejiang, Peoples R China.
169221    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
169222    Coll Lishui Profess Technol, Dept Informat Engn, Lishui 323000, Peoples R China.
169223 RP Zheng, CL, Lishui Univ, Coll Phys & Math, Lishui 323000, Zhejiang,
169224    Peoples R China.
169225 EM zjclzheng@yahoo.com.cn
169226 CR BOITI M, 1987, INVERSE PROBL, V3, P37
169227    BOITI M, 1988, PHYS LETT A, V132, P432
169228    CAMASSA R, 1993, PHYS REV LETT, V71, P1661
169229    DEBIN H, 2003, PHYS LETT A, V314, P51
169230    FOKAS AS, 1995, PHYSICA D, V87, P145
169231    HU HC, 2004, CHAOS SOLITON FRACT, V22, P327
169232    LOU SY, 1989, J MATH PHYS, V30, P1614
169233    MATRASULOV DU, 2003, J PHYS A-MATH GEN, V36, P10227
169234    REN YJ, 2006, CHAOS SOLITON FRACT, V27, P959
169235    ROSENAU P, 1993, PHYS REV LETT, V70, P564
169236    TANG XY, 2003, J MATH PHYS, V44, P4000
169237    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
169238    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
169239    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
169240    ZHENG CL, 2004, COMMUN THEOR PHYS, V41, P391
169241    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
169242    ZHENG CL, 2004, Z NATURFORSCH A, V59, P912
169243    ZHENG CL, 2005, CHAOS SOLITON FRACT, V23, P1741
169244    ZHENG CL, 2005, CHAOS SOLITON FRACT, V24, P1347
169245    ZHENG CL, 2005, CHAOS SOLITON FRACT, V26, P189
169246    ZHENG CL, 2006, CHAOS SOLITON FRACT, V27, P1321
169247 NR 21
169248 TC 0
169249 SN 1565-1339
169250 J9 INT J NONLINEAR SCI NUMER SIM
169251 JI Int. J. Nonlinear Sci. Numer. Simul.
169252 PY 2006
169253 VL 7
169254 IS 2
169255 BP 203
169256 EP 208
169257 PG 6
169258 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
169259    Mathematical; Mechanics
169260 GA 034WC
169261 UT ISI:000236960300015
169262 ER
169263 
169264 PT J
169265 AU Yao, WJ
169266    Zhang, CH
169267    Jiang, XF
169268 TI Nonlinear mechanical behavior of combined members with different moduli
169269 SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
169270 DT Article
169271 DE combined members; stress analysis
169272 ID COMPOSITE; PARTICLE; PLATES; DAMAGE
169273 AB The classic single-modulus material model for tension expression cannot
169274    satisfactorily describe the behavior of many materials with different
169275    moduli in engineering, especially the composites developed in recent
169276    years where the modulus ratio of tension to compression comes to four
169277    or more. Based on this fact, a strategy program code is designed in
169278    this paper for the structure constructed by combined members with
169279    materials with different moduli. Numerical verification is successfully
169280    made, and comparison between the present theory and the classical one
169281    is made and discussed. In addition, it is suggested that, for some of
169282    the structures with large magnitude of internal force, the modulus
169283    ratio of tension to compression should be modified to improve the
169284    stress distribution of the combined members and optimize the structures.
169285 C1 Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R China.
169286    Xiamen Univ, Dept Civil Engn, Xiamen 361005, Peoples R China.
169287 RP Yao, WJ, Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R
169288    China.
169289 EM Wjyao@staff.shu.edu.cn
169290 CR AMBARTSUMYAN SA, 1986, ELASTICITY THEORY DI
169291    ANDRIANOV IV, 2004, INT J NONLINEAR SCI, V5, P23
169292    CAI WZ, 2005, INT J NONLINEAR SCI, V6, P409
169293    CHEN LH, 2005, INT J NONLINEAR SCI, V6, P55
169294    GU BH, 2005, INT J NONLINEAR SCI, V6, P215
169295    LING Z, 2004, INT J NONLINEAR SCI, V5, P217
169296    LIU XL, 2004, INT J NONLINEAR SCI, V5, P616
169297    MEDRI GA, 1982, J ENG MATH TECHNOLOG, V26, P26
169298    PAPAZOGLOU JL, 1991, COMPOS STRUCT, V17, P1
169299    PATEL BP, 2005, J SOUND VIBRATION VO, V23, P167
169300    RAFFAELE Z, 2001, COMPOS STRUCT, V53, P381
169301    SHEN LX, 2003, INT J SOLIDS STRUCT, V40, P1393
169302    TSENG YP, 1995, COMPOS STRUCT, V30, P341
169303    TSENG YP, 1998, INT J SOLIDS STRUCT, V35, P2025
169304    WU XF, 2004, INT J NONLINEAR SCI, V5, P341
169305    WU XF, 2004, INT J NONLINEAR SCI, V5, P347
169306    YAO WJ, 2004, APPL MATH MECH, V25, P901
169307    YE ZM, 1997, INT J NUMER METH ENG, V40, P2579
169308    ZHENG YF, 2005, INT J NONLINEAR SCI, V6, P87
169309 NR 19
169310 TC 0
169311 SN 1565-1339
169312 J9 INT J NONLINEAR SCI NUMER SIM
169313 JI Int. J. Nonlinear Sci. Numer. Simul.
169314 PY 2006
169315 VL 7
169316 IS 2
169317 BP 233
169318 EP 238
169319 PG 6
169320 SC Engineering, Multidisciplinary; Mathematics, Applied; Physics,
169321    Mathematical; Mechanics
169322 GA 034WC
169323 UT ISI:000236960300021
169324 ER
169325 
169326 PT J
169327 AU Chen, YZ
169328    Chen, L
169329 TI A non-linear possibilistic regression approach to model functional
169330    relationships in product planning
169331 SO INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
169332 DT Article
169333 DE house of quality; non-linear programming; possibilistic regression;
169334    product planning; quality function deployment; triangular fuzzy number
169335 ID QUALITY FUNCTION DEPLOYMENT; QFD; REQUIREMENTS; SYSTEM
169336 AB Product planning is one of four important processes in new product
169337    development (NPD) using quality function deployment (QFD). In order to
169338    model the process of product planning, the first problem to be solved
169339    is how to incorporate both qualitative and quantitative information
169340    regarding relationships between customer requirements and engineering
169341    characteristics, as well as among engineering characteristics, into the
169342    problem formulation. The inherent fuzziness of functional relationships
169343    in product planning makes the use of possibilistic regression
169344    justifiable. However, when linear programming in possibilistic
169345    regression analysis is used, some coefficients tend to become crisp
169346    because of the characteristic of linear programming. To tackle the
169347    problem, a non-linear programming based possibilistic regression
169348    approach is proposed, by which more diverse spread coefficients can be
169349    obtained than from a linear programming approach. An emulsification
169350    dynamite packing-machine design is used to illustrate the performance
169351    of the proposed approach.
169352 C1 Shanghai Univ, Dept Precis Mech Engn, Sch Mechatron Engn & Automat, Shanghai 200041, Peoples R China.
169353 RP Chen, L, Shanghai Univ, Dept Precis Mech Engn, Sch Mechatron Engn &
169354    Automat, Shanghai 200041, Peoples R China.
169355 EM zhycyz@yahoo.com.cn
169356 CR AKAO Y, 1990, QUALITY FUNCTION DEP
169357    CHEN Y, 2004, INT J PROD RES, V42, P1009
169358    FUNG RYK, 1998, INT J PROD RES, V36, P13
169359    HAUSER JR, 1988, HARVARD BUS REV, V66, P63
169360    KIM KJ, 2000, EUR J OPER RES, V121, P504
169361    MOSKOWITZ H, 1997, COMPUT IND ENG, V32, P641
169362    PARK T, 1998, J OPERATIONS MANAGEM, V16, P469
169363    TANAKA H, 1988, FUZZY SETS SYSTEMS, V27, P275
169364    TANG JF, 2002, COMPUT OPER RES, V29, P1447
169365    WASSERMAN GS, 1993, IIE TRANS, V25, P59
169366    YANG MS, 2003, FUZZY SET SYST, V135, P305
169367    YEN KK, 1999, FUZZY SET SYST, V106, P167
169368    ZHOU M, 1998, COMPUT IND ENG, V35, P237
169369 NR 13
169370 TC 0
169371 SN 0268-3768
169372 J9 INT J ADV MANUF TECHNOL
169373 JI Int. J. Adv. Manuf. Technol.
169374 PD MAY
169375 PY 2006
169376 VL 28
169377 IS 11-12
169378 BP 1175
169379 EP 1181
169380 PG 7
169381 SC Engineering, Manufacturing; Automation & Control Systems
169382 GA 035BK
169383 UT ISI:000236974600018
169384 ER
169385 
169386 PT J
169387 AU Cheng, JR
169388    He, L
169389    Yu, SW
169390    Meng, ZY
169391 TI Detection of residual stresses in Pb(Zr0.53Ti0.47)O-3 thin films
169392    prepared on LaNiO3 buffered metal substrates with Raman spectroscopy
169393 SO APPLIED PHYSICS LETTERS
169394 DT Article
169395 ID PBTIO3; TITANATE; LAYERS; MODES
169396 AB Sol-gel derived Pb(Zr0.53Ti0.47)O-3 (PZT) thin films have been prepared
169397    on LaNiO3 buffered Si, Ti, NiCr, and stainless steel. Raman scattering
169398    was carried out on both PZT thin films and powders. Compared with PZT
169399    powders, notable shifts of Raman modes to the lower frequency were
169400    observed in the spectra of PZT thin films on metal substrates, whereas
169401    to a higher frequency for PZT on Si. The correlation between Raman
169402    shifts and thermal stresses agrees well with the Curie-Weiss law, which
169403    indicates that the Raman scattering technique provides an effective way
169404    to estimate the magnitude and types of residual stresses in the film.
169405 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 20072, Peoples R China.
169406 RP Cheng, JR, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 20072, Peoples R
169407    China.
169408 EM jrcheng@staff.shu.edu.cn
169409 CR ASHCROFT NW, 1976, SOLIDS STATE PHYS, CH24
169410    BEGG BD, 1996, J AM CERAM SOC, V79, P2666
169411    BURNS G, 1970, PHYS REV LETT, V25, P167
169412    DESU SB, 1994, PHYS STATUS SOLIDI A, V141, P119
169413    FREIRE JD, 1988, PHYS REV B, V37, P2074
169414    FU DS, 2000, J PHYS-CONDENS MAT, V12, P399
169415    GARINO TJ, 1992, MATER RES SOC S P, V243, P341
169416    GEIST DE, 1995, ADV XRAY ANAL, V38, P471
169417    HE L, 2004, P SOC PHOTO-OPT INS, V5774, P246
169418    HE Q, 1999, PHYSICA C, V314, P105
169419    HOFFMAN DW, 1983, THIN SOLID FILMS, V107, P353
169420    LEWIS DB, 1997, SURF COAT TECH, V90, P164
169421    MENG JF, 1997, PHYS STATUS SOLIDI A, V164, P851
169422    OHRING M, 1991, MAT SCI THIN FILMS, CH9
169423 NR 14
169424 TC 0
169425 SN 0003-6951
169426 J9 APPL PHYS LETT
169427 JI Appl. Phys. Lett.
169428 PD APR 10
169429 PY 2006
169430 VL 88
169431 IS 15
169432 AR 152906
169433 DI ARTN 152906
169434 PG 3
169435 SC Physics, Applied
169436 GA 032TA
169437 UT ISI:000236796400061
169438 ER
169439 
169440 PT J
169441 AU Zou, LE
169442    Chen, BX
169443    Chen, L
169444    Yuan, YF
169445    Hamanaka, M
169446    Iso, M
169447 TI Fabrication of an As2S8 stripe waveguide with an optical stopping
169448    effect by exposure to ultraviolet irradiation
169449 SO APPLIED PHYSICS LETTERS
169450 DT Article
169451 ID CHALCOGENIDE-GLASS-FIBERS
169452 AB Amorphous As2S8 chalcogenide glass is shown to undergo changes in the
169453    refractive index upon exposure to ultraviolet light. This phenomenon is
169454    employed to fabricate an As2S8 stripe waveguide, which is shown to be
169455    an effective guided mode device with a useful switching functionality
169456    based on the photo-optical effect. (c) 2006 American Institute of
169457    Physics.
169458 C1 Tokyo Univ Agr & Technol, Dept Chem Engn, Tokyo 1848588, Japan.
169459    Hosei Univ, Dept Mat Chem Engn, Tokyo 1848584, Japan.
169460    Shanghai Univ Sci & Technol, Coll Opt & Elect Informat Engn, Shanghai 200093, Peoples R China.
169461 RP Iso, M, Tokyo Univ Agr & Technol, Dept Chem Engn, Tokyo 1848588, Japan.
169462 EM isomamor@cc.tuat.ac.jp
169463 CR ASOBE M, 1992, APPL PHYS LETT, V60, P1153
169464    ASOBE M, 1995, J APPL PHYS, V77, P1518
169465    ASOBE M, 1997, OPT FIBER TECHNOL, V3, P142
169466    GUPTA PK, 1996, J NON-CRYST SOLIDS, V195, P158
169467    KANBARA H, 1997, APPL PHYS LETT, V70, P925
169468    KIKUSHI M, 1976, P 6 INT C AM LIQ SEM, P35
169469    LIANG DB, 2002, OPTOELECTRON TECHNOL, V15, P19
169470    LIU QM, 2000, ACTA PHYS SIN-CH ED, V49, P1726
169471    LONG CH, 2004, ACTA OPT SINICA, V24, P442
169472    LYUBIN VM, 1991, J NON-CRYST SOLIDS, V135, P37
169473    SHI CZ, 2002, ACTA OPT SINICA, V22, P535
169474    SPALTER S, 2000, OPT FIB COMM C MARCH, V3, P137
169475    TANAKA K, 2004, J NON-CRYST SOLIDS, V338, P534
169476    ULRICH R, 1973, APPL OPTICS, V12, P2901
169477 NR 14
169478 TC 0
169479 SN 0003-6951
169480 J9 APPL PHYS LETT
169481 JI Appl. Phys. Lett.
169482 PD APR 10
169483 PY 2006
169484 VL 88
169485 IS 15
169486 AR 153510
169487 DI ARTN 153510
169488 PG 3
169489 SC Physics, Applied
169490 GA 032TA
169491 UT ISI:000236796400101
169492 ER
169493 
169494 PT J
169495 AU Cheng, CJ
169496    Mei, B
169497 TI Dynamical formation of cavity for composed thermal hyperelastic spheres
169498    in nonuniform temperature fields
169499 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
169500 DT Article
169501 DE composed thermal-hyperelastic sphere; non-uniform temperature field;
169502    dynamical formation and growth of cavity; nonlinear periodic vibration;
169503    influence of temperature
169504 ID CAVITATION
169505 AB Dynamical formation and growth of cavity in a sphere composed of two
169506    incompressible thermal-hyperelastic Gent-Thomas materials were
169507    discussed under the case of a non-uniform temperature field and the
169508    surface dead loading. The mathematical model was first presented based
169509    on the dynamical theory of finite deformations. An exact differential
169510    relation between the void radius and surface load was obtained by using
169511    the variable transformation method. By numerical computation, critical
169512    loads and cavitation growth curves were obtained for different
169513    temperatures. The influence of the temperature and material parameters
169514    of the composed sphere on the void formation and growth was considered
169515    and compared with those for static analysis. The results show that the
169516    cavity occurs suddenly with a finite radius and its evolvement with
169517    time displays a non-linear periodic vibration and that the critical
169518    load decreases with the increase of temperature and also the dynamical
169519    critical load is lower than the static critical load under the same
169520    conditions.
169521 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
169522    Shanghai Univ, Dept Mech, Shanghai 200444, Peoples R China.
169523 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
169524    200072, Peoples R China.
169525 EM chjcheng@mail.shu.edu.cn
169526 CR BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
169527    CALDERER C, 1983, J ELASTICITY, V13, P17
169528    CASEY J, 1999, FINITE THERMOELASTIC
169529    CHOUWANG MS, 1989, INT J ENG SCI, V27, P967
169530    ERINGEN AC, 1980, MECH CONTINUA
169531    GENT AN, 1958, P ROY SOC LOND A MAT, V249, P195
169532    GUO ZH, 1963, ARCH MECH STOSOW, V15, P427
169533    HORGAN CO, 1986, J ELASTICITY, V16, P189
169534    HORGAN CO, 1995, APPL MECH REV, V48, P471
169535    KNOWLES JK, 1962, J APPL MECH, V29, P283
169536    NICHOLSON DW, 1996, ACTA MECH, V116, P15
169537    NICHOLSON W, 1990, RUBBER CHEM TECHNOL, V63, P358
169538    REN JS, 2003, ACTA MECH SINICA, V19, P320
169539    REN JS, 2004, ACTA MECH SOLIDA SIN, V25, P42
169540    WILLIAMS ML, 1965, INT J FRACTURE MECH, V1, P64
169541    ZHU ZX, 1994, INSTABILITY MAT STRU
169542 NR 16
169543 TC 0
169544 SN 0253-4827
169545 J9 APPL MATH MECH-ENGL ED
169546 JI Appl. Math. Mech.-Engl. Ed.
169547 PD APR
169548 PY 2006
169549 VL 27
169550 IS 4
169551 BP 443
169552 EP 452
169553 PG 10
169554 SC Mathematics, Applied; Mechanics
169555 GA 034BL
169556 UT ISI:000236899300003
169557 ER
169558 
169559 PT J
169560 AU Huang, YD
169561    Wu, WQ
169562 TI Numerical study of particle distribution in wake of liquid-particle
169563    flows past a circular cylinder using discrete vortex method
169564 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
169565 DT Article
169566 DE liquid-particle; high Reynolds number; discrete vortex method (DVM);
169567    wake vortex; particle dispersion
169568 AB Particle-laden water flows past a circular cylinder were numerically
169569    investigated. The discrete vortex method (DVM) was employed to evaluate
169570    the unsteady water flow fields and a Lagrangian approach was applied
169571    for tracking individual solid particles. A dispersion function was
169572    defined to represent the dispersion scale of the particle. The wake
169573    vortex patterns, the distributions and the time series of dispersion
169574    functions of particles with different Stokes numbers were obtained.
169575    Numerical results show that the particle distribution in the wake of
169576    the circular cylinder is closely related to the particle's Stokes
169577    number and the structure of wake vortices: (1) the intermediate sized
169578    particles with Stokes numbers, St, of 0.25, 1.0 and 4.0 can not enter
169579    the vortex cores and concentrate near the peripheries of the vortex
169580    structures, (2) in the circular cylinder wake, the dispersion intensity
169581    of particles decreases as St is increased from 0.25 to 4.0.
169582 C1 Shanghai Univ Sci & Technol, Dept Environm Engn, Shanghai 200093, Peoples R China.
169583 RP Huang, YD, Shanghai Univ Sci & Technol, Dept Environm Engn, Shanghai
169584    200093, Peoples R China.
169585 EM huangyuandong@tsinghua.org.cn
169586 CR CHORIN AJ, 1973, J FLUID MECH, V57, P785
169587    DAVID ES, 1996, J FLUID ENG, V118, P4
169588    GRANT G, 1975, J AIRCRAFT, V12, P471
169589    HUANG YD, 2002, ADV WATER SCI, V13, P1
169590    ISHII R, 1989, J FLUID MECH, V203, P475
169591    LING W, 1998, J FLUID MECH, V358, P61
169592    NARAYANAN C, 2002, POWDER TECHNOL, V125, P122
169593    SISTO F, 1989, AIAA J, V27, P462
169594    TOMOMI U, 2000, P 1 AS PART TECHN S
169595    WU WQ, 1987, P 5 INT C NUM METH L, P1686
169596 NR 10
169597 TC 0
169598 SN 0253-4827
169599 J9 APPL MATH MECH-ENGL ED
169600 JI Appl. Math. Mech.-Engl. Ed.
169601 PD APR
169602 PY 2006
169603 VL 27
169604 IS 4
169605 BP 535
169606 EP 542
169607 PG 8
169608 SC Mathematics, Applied; Mechanics
169609 GA 034BL
169610 UT ISI:000236899300014
169611 ER
169612 
169613 PT J
169614 AU Chen, WH
169615    Han, YH
169616    Wang, Q
169617    Miao, XW
169618    Ou, L
169619    Shao, XX
169620 TI cDNA cloning of two novel T-superfamily conotoxins from Conus leopardus
169621 SO ACTA BIOCHIMICA ET BIOPHYSICA SINICA
169622 DT Article
169623 DE Conus leopardus; T-superfamily; conotoxin; cDNA cloning
169624 ID NICOTINIC ACETYLCHOLINE-RECEPTOR; CYSTEINE PATTERN; ALPHA-CONOTOXINS;
169625    VENOM PEPTIDES; A-SUPERFAMILY; CHANNEL; MARMOREUS; TEXTILE; UNIQUE;
169626    TOOLS
169627 AB The full-length cDNAs of two novel T-superfamily conotoxins, Lp5.1 and
169628    Lp5.2, were cloned from a vermivorous cone snail Conus leopardus using
169629    3'/5'-rapid amplification of cDNA ends. The cDNA of Lp5.1 encodes a
169630    precursor of 65 residues, including a 22-residue signal peptide, a
169631    28-residue propeptide and a 15-residue mature peptide. Lp5.1 is
169632    processed at the common signal site -X-Arg-immediately before the
169633    mature peptide sequences. In the case of Lp5.2, the precursor includes
169634    a 25-residue signal peptide and a 43-residue sequence comprising the
169635    propeptide and mature peptide, which is probably cleaved to yield a
169636    29-residue propeptide and a 14-residue mature toxin. Although these two
169637    conotoxins share a similar signal sequence and a conserved disulfide
169638    pattern with the known T-superfamily, the pro-region and mature
169639    peptides are of low identity, especially Lp5.2 with an identity as low
169640    as 10.7% compared with the reference Mr5.1a. The elucidated cDNAs of
169641    these two toxins will facilitate a better understanding of the species
169642    distribution, the sequence diversity of T-superfamily conotoxins, the
169643    special gene structure and the evolution of these peptides.
169644 C1 Tongji Univ, Inst Prot Res, Shanghai 200092, Peoples R China.
169645    E China Univ Sci & Technol, Bioengn Inst, Shanghai 200237, Peoples R China.
169646    Chinese Acad Sci, Shanghai Inst Biochem Sci, Inst Biochem & Cell Biol, Shanghai 200031, Peoples R China.
169647    Shanghai Univ, Sch Life Sci, Dept Biol Engn, Shanghai 200436, Peoples R China.
169648 RP Shao, XX, Tongji Univ, Inst Prot Res, Shanghai 200092, Peoples R China.
169649 EM shxx@sibs.ac.cn
169650 CR BALAJI RA, 2000, J BIOL CHEM, V275, P39516
169651    BUCZEK O, 2005, CELL MOL LIFE SCI, V62, P3067
169652    BUSH KA, 1999, BIOCHEMISTRY-US, V38, P14660
169653    DUTTON JL, 2001, CURR MED CHEM, V8, P327
169654    ESPIRITU DJD, 2001, TOXICON, V39, P1899
169655    FAN CX, 2003, J BIOL CHEM, V278, P12624
169656    HAN YH, 2005, TOXICON, V45, P481
169657    HANSSON K, 2004, BIOCHEM BIOPH RES CO, V319, P1081
169658    MCINTOSH JM, 2000, J BIOL CHEM, V275, P32391
169659    NICKE A, 2004, EUR J BIOCHEM, V271, P2305
169660    OLIVERA BM, 1997, MOL BIOL CELL, V8, P2101
169661    OLIVERA BM, 2001, TOXICON, V39, P7
169662    RIGBY AC, 1999, P NATL ACAD SCI USA, V96, P5758
169663    SANTOS AD, 2004, J BIOL CHEM, V279, P17596
169664    SHARPE IA, 2001, NAT NEUROSCI, V4, P902
169665    SHARPE IA, 2003, J BIOL CHEM, V278, P40317
169666    SHON KJ, 1997, BIOCHEMISTRY-US, V36, P9581
169667    SHON KJ, 1998, J BIOL CHEM, V273, P33
169668    WALKER CS, 1999, J BIOL CHEM, V274, P30664
169669    WANG CZ, 2003, TOXICON, V42, P613
169670 NR 20
169671 TC 0
169672 SN 1672-9145
169673 J9 ACTA BIOCHIM BIOPHYS SINICA
169674 JI Acta Biochim. Biophys. Sin.
169675 PD APR
169676 PY 2006
169677 VL 38
169678 IS 4
169679 BP 287
169680 EP 291
169681 PG 5
169682 SC Biochemistry & Molecular Biology; Biophysics
169683 GA 034ES
169684 UT ISI:000236911900010
169685 ER
169686 
169687 PT J
169688 AU Su, QF
169689    Liu, JM
169690    Wang, LJ
169691    Shi, WM
169692    Xia, YB
169693 TI Effects of activated hydrogen etching on surface roughness and optical
169694    properties of diamond films
169695 SO SCRIPTA MATERIALIA
169696 DT Article
169697 DE CVD; hydrogen ion etching; thin films; optical properties
169698 ID ION-BOMBARDMENT; THIN-FILMS; GROWTH
169699 AB The surface roughness and optical properties of diamond films untreated
169700    and treated by activated hydrogen have been investigated. After
169701    hydrogen ion treatment the surface of the film is modified effectively.
169702    Optical properties of the treated film are better than those of the
169703    untreated one. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd.
169704    All rights reserved.
169705 C1 Shanghai Univ, Sch Mat Sci & Engn, Dept Elect Informat Mat, Shanghai 200072, Peoples R China.
169706 RP Xia, YB, Shanghai Univ, Sch Mat Sci & Engn, Dept Elect Informat Mat,
169707    149 Yanchang Rd, Shanghai 200072, Peoples R China.
169708 EM ybxia@mail.shu.edu.cn
169709 CR DORE P, 1998, APPL OPTICS, V37, P5731
169710    GERBI JE, 2003, APPL PHYS LETT, V83, P2001
169711    GLOOR S, 1999, APPL SURF SCI, V138, P135
169712    JIANG X, 1998, PHYS REV B, V58, P7064
169713    JIANG X, 1999, APPL PHYS LETT, V75, P3935
169714    KOHN E, 2001, J PHYS D APPL PHYS, V34, R77
169715    MALSHE AP, 1999, DIAM RELAT MATER, V8, P1198
169716    MARDARE D, 1999, MAT SCI ENG B-SOLID, V68, P42
169717    MAY PW, 2000, PHILOS T ROY SOC A, V358, P473
169718    MCGEOCH SP, 1999, DIAM RELAT MATER, V8, P916
169719    MOLLIS S, 2003, J GEN INTERN MED S1, V18, P117
169720    OZKAN AM, 1997, DIAM RELAT MATER, V6, P1789
169721    SAHLI S, 1996, APPL PHYS LETT, V69, P2051
169722    SHIM JY, 2001, DIAM RELAT MATER, V10, P847
169723    SINGH RK, 1996, APPL PHYS LETT, V69, P2181
169724    SPEAR KE, 1989, J AM CERAM SOC, V72, P171
169725    WERNER M, 1998, REP PROG PHYS, V61, P1665
169726    XIA YB, 2000, J CRYST GROWTH, V213, P328
169727    YIN Z, 1997, DIAM RELAT MATER, V6, P153
169728 NR 19
169729 TC 0
169730 SN 1359-6462
169731 J9 SCRIPTA MATER
169732 JI Scr. Mater.
169733 PD JUN
169734 PY 2006
169735 VL 54
169736 IS 11
169737 BP 1871
169738 EP 1874
169739 PG 4
169740 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
169741    Engineering
169742 GA 031JI
169743 UT ISI:000236700300008
169744 ER
169745 
169746 PT J
169747 AU Wen, S
169748    Yu, YX
169749    Guo, SJ
169750    Feng, YL
169751    Sheng, GY
169752    Wang, XM
169753    Bi, XH
169754    Fu, JM
169755    Jia, WL
169756 TI Improvement of 2,4-dinitrophenylhydrazine derivatization method for
169757    carbon isotope analysis of atmospheric acetone
169758 SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY
169759 DT Article
169760 ID UPPER TROPOSPHERE; NONMETHANE HYDROCARBONS; HYDROGEN RADICALS;
169761    ORGANIC-COMPOUNDS; ODD-HYDROGEN; FORMALDEHYDE; GUANGZHOU; SINKS; CHINA;
169762    FATE
169763 AB Through simulation experiments of atmospheric sampling, a method via
169764    2,4-dinitrophenylhydrazine (DNPH) derivatization was developed to
169765    measure the carbon isotopic composition of atmospheric acetone. Using
169766    acetone and a DNPH reagent of known carbon isotopic compositions, the
169767    simulation experiments were performed to show that no carbon isotope
169768    fractionation occurred during the processes: the differences between
169769    the predicted and measured data of acetone-DNPH derivatives were all
169770    less than 0.5 parts per thousand. The results permitted the calculation
169771    of the carbon isotopic compositions of atmospheric acetone using a mass
169772    balance equation. In this method, the atmospheric acetone was collected
169773    by a DNPH-coated silica cartridge, washed out as acetone-DNPH
169774    derivatives, and then analyzed by gas chromatography/combustion/isotope
169775    ratio mass spectrometry (GC/C/IRMS). Using this method, the first
169776    available delta C-13 data of atmospheric acetone are presented.
169777    Copyright (c) 2006 John Wiley & Sons, Ltd.
169778 C1 Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072, Peoples R China.
169779    Chinese Acad Sci, State Key Lab Organ Geochem, Guangdong Key Lab Environm Resources Utilizat & P, Guangzhou Inst Geochem, Guangzhou 510640, Peoples R China.
169780 RP Fu, JM, Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072,
169781    Peoples R China.
169782 EM fujm@gig.ac.cn
169783 CR ABRAJANO TA, 1994, ORG GEOCHEM, V21, P611
169784    ATKINSON R, 2000, ATMOS ENVIRON, V34, P2063
169785    CHATFIELD RB, 1987, J GEOPHYS RES-ATMOSP, V92, P4208
169786    COLLINS WJ, 1999, J GEOPHYS RES-ATMOS, V104, P26927
169787    CONNY JM, 1996, ATMOS ENVIRON, V30, P621
169788    FENG YL, 2004, ATMOS ENVIRON, V38, P103
169789    FENG YL, 2005, ATMOS ENVIRON, V39, P1789
169790    HO KF, 2002, ATMOS ENVIRON, V36, P1259
169791    MCKEEN SA, 1997, GEOPHYS RES LETT, V24, P3177
169792    MELANDER L, 1980, REACTION RATES ISOTO
169793    RIELEY G, 1994, ANALYST, V119, P915
169794    RUDOLPH J, 2002, ATMOS ENVIRON, V36, P1173
169795    SAITO T, 2002, J GEOPHYS RES, V107
169796    SINGH H, 2000, J GEOPHYS RES-ATMOS, V105, P3795
169797    SINGH H, 2001, NATURE, V410, P1078
169798    SINGH HB, 1994, J GEOPHYS RES, V99, P1805
169799    SINGH HB, 1995, NATURE, V378, P50
169800    SIRJU AP, 1995, ENVIRON SCI TECHNOL, V29, P384
169801    WEN S, 2004, RAPID COMMUN MASS SP, V18, P2669
169802    WEN S, 2005, ENVIRON SCI TECHNOL, V39, P6202
169803    WENNBERG PO, 1998, SCIENCE, V279, P49
169804 NR 21
169805 TC 0
169806 SN 0951-4198
169807 J9 RAPID COMMUN MASS SPECTROM
169808 JI Rapid Commun. Mass Spectrom.
169809 PY 2006
169810 VL 20
169811 IS 8
169812 BP 1322
169813 EP 1326
169814 PG 5
169815 SC Chemistry, Analytical; Spectroscopy
169816 GA 033MV
169817 UT ISI:000236852800022
169818 ER
169819 
169820 PT J
169821 AU Wang, X
169822 TI The general solution of one-dimensional hexagonal quasicrystal
169823 SO MECHANICS RESEARCH COMMUNICATIONS
169824 DT Article
169825 DE 1D hexagonal quasicrystal; general solution; dynamic problem;
169826    displacement function
169827 ID CRACK
169828 AB A general solution is given for three-dimensional dynamic problems in
169829    1D hexagonal quasicrystalline material with Laue class 6/m(h)mm. In the
169830    general solution, the phonon and phason displacements and stresses are
169831    controlled by two displacement functions Psi and F, which satisfy a
169832    second-order partial differential equation, and a sixth-order partial
169833    differential equation, respectively. The general solution for static
169834    equilibrium problems is treated as a special case. (C) 2005 Elsevier
169835    Ltd. Ali rights reserved.
169836 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
169837 RP Wang, X, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
169838    200072, Peoples R China.
169839 EM xuwang@staff.shu.edu.cn
169840 CR FAN TY, 2000, ADV MECH, V30, P161
169841    HU HC, 1953, ACTA PHYS SINICA, V9, P130
169842    LI XF, 1999, PHILOS MAG A, V79, P1943
169843    SHECHTMAN D, 1984, PHYS REV LETT, V53, P1951
169844    WANG RH, 1997, J PHYS-CONDENS MAT, V9, P2411
169845    WANG X, 2004, INT J ENG SCI, V42, P521
169846 NR 6
169847 TC 0
169848 SN 0093-6413
169849 J9 MECH RES COMMUN
169850 JI Mech. Res. Commun.
169851 PD JUL-AUG
169852 PY 2006
169853 VL 33
169854 IS 4
169855 BP 576
169856 EP 580
169857 PG 5
169858 SC Mechanics
169859 GA 033HL
169860 UT ISI:000236837700015
169861 ER
169862 
169863 PT J
169864 AU Lu, H
169865    Lin, HX
169866    Jiang, H
169867    Zhou, XT
169868    Wu, BL
169869    Chen, JM
169870 TI Synthesis and antitumor activity of 20-O-linked succinate-based
169871    camptothecin ester derivatives
169872 SO LETTERS IN DRUG DESIGN & DISCOVERY
169873 DT Article
169874 DE camptothecin; ester; succinate; prodrug; antitumor
169875 ID MAMMALIAN TOPOISOMERASE-I; ENZYME PRODRUG THERAPY; POLYETHYLENE-GLYCOL;
169876    DELIVERY-SYSTEMS; AMINO-ACID; VITRO; PACLITAXEL; PDEPT;
169877    PHARMACOKINETICS; BIODISTRIBUTION
169878 AB A series of new 20-O-linked succinate-based camptothecin ester
169879    derivatives were synthesized and their cytotoxicities were tested on
169880    five human cancer cell lines by MTT assay. All the derivatives showed
169881    moderate antitumor activity in vitro, and they were 20-to-several
169882    thousand-fold less toxic than their parent drug.
169883 C1 Fudan Univ, Dept Environm Sci & Engn, Shanghai 200433, Peoples R China.
169884    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
169885 RP Chen, JM, Fudan Univ, Dept Environm Sci & Engn, 220 Handan Rd, Shanghai
169886    200433, Peoples R China.
169887 EM jmchen@fudan.edu.cn
169888 CR BURKE TG, 1994, J MED CHEM, V37, P40
169889    CAIOLFA VR, 2000, J CONTROL RELEASE, V65, P105
169890    CAO ZS, 1998, J MED CHEM, V41, P31
169891    CERUTI M, 2000, J CONTROL RELEASE, V63, P141
169892    CONOVER CD, 1998, CANCER CHEMOTH PHARM, V42, P407
169893    CONOVER CD, 1999, ANTI-CANCER DRUG DES, V14, P499
169894    COVEY JM, 1989, CANCER RES, V49, P5016
169895    DEGROOT FMH, 2002, BIOORG MED CHEM LETT, V12, P2371
169896    DHAON MK, 1982, J ORG CHEM, V47, P1962
169897    DOSIO F, 1997, J CONTROL RELEASE, V47, P293
169898    DUNCAN R, 2001, J CONTROL RELEASE, V74, P135
169899    FASSBERG J, 1992, J PHARM SCI, V81, P676
169900    GIOVANELLA BC, 1991, CANCER RES, V51, P3052
169901    GREENWALD RB, 1998, BIOORGAN MED CHEM, V6, P551
169902    HERTZBERG RP, 1989, J MED CHEM, V32, P715
169903    HSIANG YH, 1985, J BIOL CHEM, V260, P14873
169904    HSIANG YH, 1989, CANCER RES, V49, P4385
169905    JAXEL C, 1989, CANCER RES, V49, P1465
169906    LERCHEN HG, 2000, J PRAKT CHEM, V342, P753
169907    PARANJPE PV, 2004, J CONTROL RELEASE, V100, P275
169908    PASSAH N, 2004, BIOORGAN MED CHEM, V12, P1859
169909    RICE A, 2005, J MED CHEM, V48, P832
169910    SAFAVY A, 2004, BIOCONJUGATE CHEM, V15, P1264
169911    SATCHI R, 2001, BRIT J CANCER, V85, P1070
169912    SATCHIFAINARO R, 2003, BIOCONJUGATE CHEM, V14, P797
169913    VISHNUVAJJALA BR, 1986, PHARM RES, V3, P225
169914    WALL ME, 1966, J AM CHEM SOC, V88, P3888
169915    WANG CY, 2004, BIOORGAN MED CHEM, V12, P3657
169916    YANG LX, 2002, BIOORG MED CHEM LETT, V12, P1241
169917 NR 29
169918 TC 0
169919 SN 1570-1808
169920 J9 LETT DRUG DES DISCOV
169921 JI Lett. Drug Des. Discov.
169922 PD MAR
169923 PY 2006
169924 VL 3
169925 IS 2
169926 BP 83
169927 EP 86
169928 PG 4
169929 GA 033JK
169930 UT ISI:000236843000003
169931 ER
169932 
169933 PT J
169934 AU Yao, MY
169935    Zhou, BX
169936    Li, Q
169937    Liu, WQ
169938    Chu, YL
169939 TI The effect of alloying modifications on hydrogen uptake of
169940    zirconium-alloy welding specimens during corrosion tests
169941 SO JOURNAL OF NUCLEAR MATERIALS
169942 DT Article
169943 ID NB; OXIDATION; ZR-2.5NB; PICKUP; IMPACT; ZR
169944 AB The hydrogen uptake behavior during corrosion tests for electron beam
169945    welding specimens made out of Zircaloy-4 and zirconium alloys with
169946    different compositions was investigated. Results showed that the
169947    hydrogen uptake in the specimens after corrosion tests increased with
169948    increasing Cr content in the molten zone. This indicated that Cr
169949    element significantly affected the hydrogen uptake behavior. Fe and Cr
169950    have a low solubility in alpha-Zr and exist mainly in the form of
169951    Zr(Fe,Cr)(2) precipitates, which is extremely reactive with hydrogen in
169952    its metallic state. It is concluded that the presence of Zr(Fe,Cr)(2)
169953    second phase particles (SPPs) is responsible for the increase in the
169954    amount of hydrogen uptake in the molten zone of the welding samples
169955    after corrosion, as Zr(Fe,Cr)(2) SPPs embedded in a-Zr matrix and
169956    exposed at the metal/oxide interface could act as a preferred path for
169957    hydrogen uptake. (c) 2006 Elsevier B.V. All rights reserved.
169958 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
169959    Shanghai Univ, Key Lab Adv Microanal, Shanghai 200444, Peoples R China.
169960 RP Yao, MY, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
169961 EM yaomeiyi@staff.shu.edu.cn
169962 CR BARBERIS P, 2002, AM SOC TEST MATER, V1423, P33
169963    CHOO KN, 1994, J NUCL MATER, V209, P226
169964    COX B, 1965, 2519 AECL
169965    FORSTER JS, 1992, NUCL INSTRUM METH B, V64, P403
169966    HARADA M, 1991, ASTM STP, V1132, P368
169967    KASS S, 1962, ASM T Q, V56, P77
169968    KASS S, 1973, WAPDTM972
169969    KHATAMIAN D, 1993, Z PHYS CHEM, V181, P435
169970    LELIEVRE G, 1998, J ALLOY COMPD, V268, P308
169971    MCDONALD SG, 1982, ASTM STP, V754, P412
169972    PECHEUR D, 1994, AM SOC TEST MATER, V1245, P687
169973    PERRYMAN ECW, 1978, NUCL ENERGY, V17, P95
169974    PLOC RA, 2002, AM SOC TEST MATER, V1423, P297
169975    SHALTIEL D, 1977, J LESS-COMMON MET, V53, P117
169976    SIMPSON CJ, 1974, J NUCL MATER, V52, P289
169977    TAGSTROM P, 2002, AM SOC TEST MATER, V1423, P96
169978    YAO MY, 2004, NUCL POWER ENG, V25, P147
169979    ZHOU BX, 1988, CHINESE J NUCL SCI E, V8, P130
169980    ZHOU BX, 1996, CNIC01074
169981    ZHOU BX, 1997, BIOMATERIALS ECOMATE, P183
169982    ZHOU BX, 2000, J NUCL POWER ENG, V21, P339
169983    ZHOU BX, 2003, NUCL POWER ENG, V24, P236
169984 NR 22
169985 TC 0
169986 SN 0022-3115
169987 J9 J NUCL MATER
169988 JI J. Nucl. Mater.
169989 PD APR 15
169990 PY 2006
169991 VL 350
169992 IS 2
169993 BP 195
169994 EP 201
169995 PG 7
169996 SC Materials Science, Multidisciplinary; Mining & Mineral Processing;
169997    Nuclear Science & Technology
169998 GA 032OW
169999 UT ISI:000236785000012
170000 ER
170001 
170002 PT J
170003 AU Xu, GQ
170004    Ma, HL
170005    Zhong, MJ
170006    Zhou, T
170007    Yue, YZ
170008    He, ZM
170009 TI Influence of pH on characteristics of BaFe12O19 powder prepared by
170010    sol-gel auto-combustion
170011 SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
170012 DT Article
170013 DE barium hexaferrite; sol-gel auto-combustion; pH; magnetic properties
170014 ID BARIUM FERRITE; MAGNETIC-PROPERTIES; HEXAFERRITE; PARTICLES;
170015    COPRECIPITATION; COMPOSITE; MEDIA; GLASS
170016 AB BaFe12O19 powders with nanocrystalline sizes were produced by sol-gel
170017    auto-combustion. Fe3+ and Ba2+ in a molar ratio of 11.5, were chelated
170018    by citric acid ions at different pH. After dehydration, auto-combustion
170019    and calcinations, BaFe12O19 powders were formed. TG/DSC indicated the
170020    action to form BaFe12O19 first occurred at about 800. XRD patterns of
170021    the annealed powders showed that the well-crystalline powder was
170022    produced when pH = 10. In addition, the data from XRD showed the
170023    lattice parameters a and c. and the unit-cell volume V had a little
170024    decrease and the density went up with the increasing pH. The data from
170025    PPMS exhibited that pH in the starting solution had an important
170026    influence on magnetic properties. In this case, BaFe12O19 powder, of
170027    maximum magnetization M(3 T) approximate to 60 A m(2)/kg, the remanent
170028    magnetization M-r approximate to 33 A m(2)/kg and the intrinsic
170029    coercive H-c approximate to 432 kA/m, was produced under the molar
170030    ratio of citric acid to the metal nitrate of 1.5 when pH = 10. (c) 2005
170031    Elsevier B.V. All rights reserved.
170032 C1 Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
170033 RP Xu, GQ, Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
170034 EM icexgq2003@163.com
170035 CR BARB D, 1986, J MATER SCI, V21, P1118
170036    CHO HS, 1999, IEEE T MAGN 1, V35, P3151
170037    FUJIWARA T, 1985, IEEE T MAGN, V21, P1480
170038    IMAMURA M, 1986, IEEE T MAGN, V22, P1185
170039    JACOBO SE, 1997, J MATER SCI, V32, P1025
170040    KUBO O, 1982, IEEE T MAGN, V18, P1122
170041    LIU XY, 1998, J MAGN MAGN MATER, V184, P344
170042    LUCCHINI E, 1983, J MATER SCI, V18, P1331
170043    MALI A, 2004, CERAM INT, V30, P1979
170044    ROOS W, 1980, J AM CERAM SOC, V63, P601
170045    RUAN SP, 2000, J MAGN MAGN MATER, V212, P175
170046    SHIRK BT, 1970, J AM CERAM SOC, V53, P192
170047    STABLIN H, 1982, FERROMAGNETIC MAT, V3, CH7
170048    SUGIMOTO S, 1999, IEEE T MAGN 1, V35, P3154
170049    SURIG C, 1994, IEEE T MAGN 1, V30, P4092
170050    YAMAMORI K, 1986, IEEE T MAGN, V22, P1188
170051    YU HF, 2003, J MAGN MAGN MATER, V260, P455
170052    YUE ZX, 2004, J MAGN MAGN MATER, V270, P216
170053    ZHANG D, 2000, ELECT COMPONENT MAT, V19, P17
170054    ZHENG ZY, 1989, J MAGN MAGN MATER, V78, P73
170055    ZHONG W, 1997, J MAGN MAGN MATER, V168, P196
170056 NR 21
170057 TC 0
170058 SN 0304-8853
170059 J9 J MAGN MAGN MATER
170060 JI J. Magn. Magn. Mater.
170061 PD JUN
170062 PY 2006
170063 VL 301
170064 IS 2
170065 BP 383
170066 EP 388
170067 PG 6
170068 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
170069 GA 031DA
170070 UT ISI:000236683100016
170071 ER
170072 
170073 PT J
170074 AU Hu, HJ
170075    Zhu, WP
170076    Liu, H
170077    Zhao, JJ
170078 TI Investigation on fracture performance of aqueous polymer isocyanates in
170079    terms of energy release rate
170080 SO JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY
170081 DT Article
170082 DE aqueous polymer isocyanates; adhesive; energy release rate
170083 ID ADHESIVELY-BONDED JOINTS; CRACK-GROWTH; WOOD; FILMS
170084 AB In order to investigate the fracture performance of aqueous polymer
170085    isocyanates (APIs), an analytical expression for the energy release
170086    rate of adhesively-bonded three-point bending specimens has been
170087    derived from linear elastic fracture mechanics (LEFM) and the energy
170088    release rates of nine API samples are evaluated. Experimental results
170089    show that a proper loading of polymeric
170090    diphenylmethane-4,4'-diisocyanate (p-MDI) as cross-linker can improve
170091    the resistance of aqueous polymer latex adhesive layer to cracking.
170092    Excess cross-linker cannot maintain such an effect of strengthening and
170093    may decrease considerably the energy release rate of API polymer. When
170094    the loading of polyisocyanate is less than the critical value, the
170095    polymer cross-linked by aqueous emulsified p-MDI has a higher
170096    resistance to cracking. In contrast, polymers modified by p-MDI blended
170097    with an organic solvent have much better performance.
170098 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
170099    Shanghai Univ, Coll Environm & Chem Engn, Shanghai 200072, Peoples R China.
170100    Heibei N Univ, Dept Base Courses, Zhangjiakou 075100, Peoples R China.
170101 RP Hu, HJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
170102    Peoples R China.
170103 EM huhongjiu@163.corn
170104 CR ALFREDSSON KS, 2004, INT J SOLIDS STRUCT, V41, P4787
170105    BOUCHET J, 2001, J ADHES SCI TECHNOL, V15, P321
170106    CHENG YS, 1999, ENG FRACT MECH, V64, P117
170107    CURLEY AJ, 2000, INT J FRACTURE, V103, P41
170108    GARDNER DJ, 1994, FOREST PROD J, V44, P62
170109    HODZIC A, 2000, POLYMER, V41, P6895
170110    HUANG LY, 2003, WEAR, V254, P1032
170111    HUANG SJ, 2004, J ADHES SCI TECHNOL, V18, P833
170112    KILMER WR, 1998, WOOD FIBER SCI, V30, P175
170113    MADHUSUDHANA KS, 2002, ENG FRACT MECH, V69, P865
170114    MIYAZAKI J, 2002, MOKUZAI GAKKAISHI, V48, P184
170115    MOTOTANI Y, 1996, MOKUZAI GAKKAISHI, V42, P140
170116    PAGEL H, 1981, ADHES AGE, V24, P34
170117    PRADHAN SC, 1995, INT J ADHES ADHES, V15, P33
170118    QIAO LJ, 2000, PIGMENT RESIN TECHNO, V29, P229
170119    REEDY ED, 2000, INT J SOLIDS STRUCT, V37, P2429
170120    VICK CB, 1993, INT J ADHES ADHES, V13, P139
170121    VRAZEL M, 2004, FOREST PROD J, V54, P66
170122    WANG MJ, 2004, J MECH PHYS SOLIDS, V52, P2329
170123    WILLIAMS JG, 2005, J ADHES SCI TECHNOL, V19, P257
170124 NR 20
170125 TC 0
170126 SN 0169-4243
170127 J9 J ADHES SCI TECHNOL
170128 JI J. Adhes. Sci. Technol.
170129 PY 2006
170130 VL 20
170131 IS 2-3
170132 BP 161
170133 EP 174
170134 PG 14
170135 SC Engineering, Chemical; Materials Science, Multidisciplinary; Mechanics
170136 GA 030YI
170137 UT ISI:000236670900005
170138 ER
170139 
170140 PT J
170141 AU Li, CP
170142    Deng, WH
170143 TI Chaos synchronization of fractional-order differential systems
170144 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
170145 DT Article
170146 DE synchronization; fractional order; Duffing system; Lorenz system;
170147    Rossler system
170148 ID CHENS SYSTEM
170149 AB Chaos synchronization of the Duffing, Lorenz and Rossler systems with
170150    fractional orders are studied theoretically and numerically. Three
170151    methods are applied in this paper: combination of active-passive
170152    decomposition (APD) and one-way coupling methods, Pecora-Carroll
170153    method, bidirectional coupling method. The sufficient conditions of
170154    achieving synchronization between two identical fractional systems are
170155    derived by using the Laplace transform theory. Numerical simulations
170156    demonstrate the effectiveness of the proposed synchronization schemes
170157    for these fractional systems.
170158 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
170159    Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China.
170160 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
170161 EM leecp@online.sh.cn
170162    dengwh@lzu.edu.cn
170163 CR BOCCALETTI S, 2002, PHYS REP, V366, P1
170164    BUTZER PL, 2000, INTRO FRACTIONAL CAL
170165    CAPUTO M, 1967, GEOPHYS J ROY ASTRON, V13, P529
170166    CHEN GR, 1999, INT J BIFURCAT CHAOS, V9, P1465
170167    DENG WH, 2005, J PHYS SOC JPN, V74, P1645
170168    DENG WH, 2005, PHYSICA A, V353, P61
170169    DIETHELM K, 2004, NUMER ALGORITHMS, V36, P31
170170    GRIGORENKO I, 2003, PHYS REV LETT, V91
170171    HARTLEY TT, 1995, IEEE T CIRCUITS-I, V42, P485
170172    HILFER R, 2001, APPL FRACTIONAL CALC
170173    KENNETH SM, 1993, INTRO FRACTIONAL CAL
170174    LI CG, 2004, PHYSICA A, V341, P55
170175    LI CP, 2003, INT J BIFURCAT CHAOS, V13, P1609
170176    LI CP, 2004, CHAOS SOLITON FRACT, V22, P443
170177    LI CP, 2006, PHYSICA A, V360, P171
170178    MATIGNON D, 1996, COMPUTATIONAL ENG SY, V2, P963
170179    MUTH EJ, 1977, TRANSFORM METHODS AP
170180    OUSTLAOUP A, 1983, SYSTEMS ASSERVIS ORD
170181    ROSS B, 1974, LECT NOTES MATH, V457
170182    SEYDEL R, 1994, PRACTICAL BIFURCATIO
170183    YAN JP, 2005, CHAOS SOLITON FRACT, V23, P1683
170184 NR 21
170185 TC 0
170186 SN 0217-9792
170187 J9 INT J MOD PHYS B
170188 JI Int. J. Mod. Phys. B
170189 PD MAR 20
170190 PY 2006
170191 VL 20
170192 IS 7
170193 BP 791
170194 EP 803
170195 PG 13
170196 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
170197 GA 031ZS
170198 UT ISI:000236744300003
170199 ER
170200 
170201 PT J
170202 AU Sun, YP
170203    Chen, DY
170204 TI Integrable couplings and new exact solutions for the nonisospectral
170205    AKNS equation
170206 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
170207 DT Article
170208 DE integrable coupling; nonisospectral AKNS equation; exact solution;
170209    Hirota method
170210 ID SOLITONS
170211 AB In this paper, we derive nonisospectral AKNS equations from the AKNS
170212    spectral problem. By using a new Loop algebra (A) over tilde2, their
170213    integrable couplings are constructed. Moreover, bilinear forms of the
170214    nonisospectral AKNS equation are given. New exact solutions are
170215    obtained through the Hirota method. Some nonisospectral characteristics
170216    of the obtained solutions are discussed.
170217 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
170218 RP Sun, YP, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
170219 EM yepsun@163.com
170220 CR ABLOWITZ MJ, 1973, PHYS REV LETT, V31, P125
170221    CHAN WL, 1989, J MATH PHYS, V30, P2521
170222    CHEN HH, 1976, PHYS REV LETT, V37, P693
170223    GUO FK, 2003, J MATH PHYS, V44, P5793
170224    GUPTA MR, 1979, PHYS LETT A, V72, P420
170225    HIROTA R, 1971, PHYS REV LETT, V27, P1192
170226    HIROTA R, 1976, J PHYS SOC JPN, V41, P2141
170227    MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
170228    NING TK, 2004, CHAOS SOLITON FRACT, V16, P395
170229    PICKERING A, 1993, J PHYS A-MATH GEN, V26, P4395
170230    SUN YP, 2005, CHAOS SOLITON FRACT, V26, P905
170231    TIAN C, 1990, NONLINEAR PHYS RES R, P35
170232    WADATI M, 1975, PROG THEOR PHYS, V53, P419
170233    ZHANG DJ, 2003, J PHYS A, V36, P1
170234 NR 14
170235 TC 0
170236 SN 0217-9792
170237 J9 INT J MOD PHYS B
170238 JI Int. J. Mod. Phys. B
170239 PD MAR 30
170240 PY 2006
170241 VL 20
170242 IS 8
170243 BP 925
170244 EP 935
170245 PG 11
170246 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
170247 GA 031ZT
170248 UT ISI:000236744400003
170249 ER
170250 
170251 PT J
170252 AU Deng, WH
170253    Wu, YJ
170254    Li, CP
170255 TI Stability analysis of differential equations with time-dependent delay
170256 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
170257 DT Article
170258 DE differential equation; time-dependent delay; internal stability;
170259    Liapunov stability
170260 ID BIFURCATION
170261 AB In this Letter, we study the stability of differential equations with
170262    time-dependeut delay. Several theorems are established for stability on
170263    a finite time interval, called "interval stability" for simplicity, and
170264    Liapunov stability. These theorems are applied to the generalized
170265    Gauss-type predator-prey models, and satisfactory results are obtained.
170266 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
170267    Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China.
170268    Univ Pretoria, Dept Elect Elect & Comp Engn, ZA-0002 Pretoria, South Africa.
170269 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
170270 CR BAER SM, 1989, SIAM J APPL MATH, V49, P55
170271    CAHLON B, 1997, EUR J APPL MATH, V8, P199
170272    CAHLON B, 1998, J MATH ANAL APPL, V223, P288
170273    CHEN J, 2002, CHAOS SOLITON FRACT, V14, P1433
170274    CHICONE C, 2001, PHYS LETT A, V285, P17
170275    CHICONE C, 2003, J DIFFER EQUATIONS, V190, P364
170276    FAVINI A, 2003, J DIFFER EQUATIONS, V192, P93
170277    GOPALSAMY K, 1992, STABILITY OSCILLATIO
170278    HUA CC, 2000, ACTA PHYS SIN-CH ED, V49, P733
170279    HUA CC, 2001, INT J BIFURCAT CHAOS, V11, P3153
170280    LIN KJ, 1996, J CONT SYST TECHNOL, V4, P127
170281    MARTIN A, 2001, J MATH BIOL, V43, P247
170282    MAY R, 1973, ECOLOGY, V4, P215
170283    RYABOV YA, 1960, AUTOMAT REM CONTR, V21, P507
170284    TANG XH, 2004, J MATH ANAL APPL, V289, P367
170285    YANG K, 1993, DELAY DIFFERENTIAL
170286 NR 16
170287 TC 0
170288 SN 0218-1274
170289 J9 INT J BIFURCATION CHAOS
170290 JI Int. J. Bifurcation Chaos
170291 PD FEB
170292 PY 2006
170293 VL 16
170294 IS 2
170295 BP 465
170296 EP 472
170297 PG 8
170298 SC Mathematics, Applied; Multidisciplinary Sciences
170299 GA 033SE
170300 UT ISI:000236868700016
170301 ER
170302 
170303 PT J
170304 AU Li, MX
170305    Dai, H
170306    Shao, M
170307    Shi, L
170308    Lin, KH
170309    Cheng, ZX
170310    Weng, LH
170311 TI Synthesis, crystal structures, thermal analysis and magnetic property
170312    of mono- and bi-nuclear 1,1-cyclobutanedicarboxylate copper complexes
170313 SO CHINESE JOURNAL OF CHEMISTRY
170314 DT Article
170315 DE copper complex; 1,1-cyclobutanedicarboxylate; crystal structure;
170316    thermal analysis; magnetic property
170317 ID HYDROTHERMAL SYNTHESIS; TETRANUCLEAR; FRAMEWORK
170318 AB Two new copper complexes, [Cu(cbdc)(phen)(H2O)]center dot 2H(2)O
170319    (1)and[CU2(cbdc)(phen)(2)(H2O)(2)](CIo(4))(2)-H2O (2)
170320    (cbdc=1,1-cyclobutanedicarboxylate and phen=1,10-phenanthroline), were
170321    synthesized by reaction of cbdc with CU(CI04)2 and phen in ethanol
170322    aqueous solution. Complex 1 crystallizes in monoclinic system with
170323    space group 3 P2(1)/c and a=0.9428(4) mn, b=1.2183(5) nm, c=1.6265(7)
170324    nm, ss=102.418(5)degrees, V=1.8246(13) nm, Z=4, R=0.0445, wR(2)=0.0947.
170325    The structure of 1 is discretely mononuclear, which is packed by
170326    pi(...)pi interaction forming a 3D supramolecular structure where Cu(H)
170327    ion is five-coordinated and has square-pyramidal coordination geometry.
170328    Its thermal decomposition procedure detail was studied by thermal
170329    analysis TG-DSC. Complex 2 belongs to monoclinic system with space
170330    group P2(1)/c and a=0.8897(3) nm, b=1.9130(8) nm, c=1.9936(8) nm,
170331    P=99.04(2)degrees ,V=3.351(2) nm(3), Z=4, R=0.0540, wR(2)=0.1102. The
170332    structure of 2 is a discrete binucleus, where Cu(1) is four-coordinated
170333    by phen and cbdc in a square-planar geometry while Cu(2) is
170334    five-coordinated by phen, one O of cbdc and two H2O, which can be best
170335    described as distorted trigonal-bipyramidal geometry. Cu(1) and Cu(2)
170336    are linked by carboxytic group of cbdc in a bidentate bridging fashion.
170337    Variable-temperature magnetic susceptibilities of 2 in 2--300 K showed
170338    that its magnetic behavior obeyed Curie law.
170339 C1 Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200444, Peoples R China.
170340    Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China.
170341 RP Li, MX, Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200444, Peoples R
170342    China.
170343 EM mx_li@mail.shu.edu.cn
170344 CR ANG SG, 2004, INORG CHEM COMMUN, V7, P795
170345    BARMAN RK, 2002, POLYHEDRON, V21, P1189
170346    BI WH, 2004, CHINESE J CHEM, V22, P271
170347    CHOI HJ, 1999, INORG CHEM, V38, P6309
170348    DEACON GB, 1980, COORDIN CHEM REV, V33, P227
170349    HAGRMAN PJ, 1999, ANGEW CHEM INT EDIT, V38, P2638
170350    LI H, 1998, J AM CHEM SOC, V120, P8571
170351    LI MX, 1996, POLYHEDRON, V15, P535
170352    LI MX, 2005, CHINESE CHEM LETT, V16, P1405
170353    LI YG, 2003, EUR J INORG CHE 0725, P2567
170354    MELNIK M, 1981, COORDIN CHEM REV, V36, P1
170355    SHAO M, 2005, CHEM RES APPL, V17, P197
170356    SHEN HY, 2000, INORG CHEM COMMUN, V3, P497
170357    SUN DF, 2003, CHINESE J CHEM, V21, P405
170358 NR 14
170359 TC 0
170360 SN 1001-604X
170361 J9 CHINESE J CHEM
170362 JI Chin. J. Chem.
170363 PD APR
170364 PY 2006
170365 VL 24
170366 IS 4
170367 BP 487
170368 EP 492
170369 PG 6
170370 SC Chemistry, Multidisciplinary
170371 GA 033IC
170372 UT ISI:000236839500008
170373 ER
170374 
170375 PT J
170376 AU Zhuang, ZH
170377    Sun, L
170378    Kong, L
170379    Hu, JH
170380    Yu, MC
170381    Reinach, P
170382    Zang, JW
170383    Ge, BX
170384 TI Drosophila TAB2 is required for the immune activation of JNK and
170385    NF-kappaB
170386 SO CELLULAR SIGNALLING
170387 DT Article
170388 DE Drosophila TAB2
170389 ID BETA SIGNAL-TRANSDUCTION; B KINASE COMPLEX; HOST-DEFENSE; TAK1 MAPKKK;
170390    PATHWAY; PROTEIN; IL-1; MELANOGASTER; TRAF6; IMD
170391 AB The TAK1 plays a pivotal role in the innate immune response of
170392    Drosophila by controlling the activation of JNK and NF-kappaB.
170393    Activation of TAK1 in mammals is mediated by two TAK1-binding proteins,
170394    TAB I and TAB2, but the role of the TAB proteins in the immune response
170395    of Drosophila has not yet been established. Here, we report the
170396    identification of a TAB2-like protein in Drosophila called dTAB2. dTAB2
170397    can interact with dTAK1, and stimulate the activation of the JNK and
170398    NF-kB signaling pathway. Furthermore, we have found that silencing of
170399    dTAB2 expression by dsRNAi inhibits JNK activation by peptidoglycans
170400    (PGN), but not by NaCl or sorbitol. In addition, suppression of dTAB2
170401    blocked PGN-induced expression of antibacterial peptide genes, a
170402    function normally mediated by the activation of NF-kappaB signaling
170403    pathway. No significant effect on p38 activation by dTAB2 was found.
170404    These results suggest that dTAB2 is specifically required for
170405    PGN-induced activation of JNK and NF-kappaB signaling pathways, (c)
170406    2005 Elsevier Inc. All rights reserved.
170407 C1 Shanghai Med Univ 2, Joint Immunol Lab, Hlth Sci Ctr, Shanghai, Peoples R China.
170408    Shanghai Med Univ 2, Shanghai Inst Immunol, Shanghai, Peoples R China.
170409    Chinese Acad Sci, Shanghai Inst Biol Sci, Shanghai, Peoples R China.
170410    Shanghai Univ, E Inst, Shanghai 200025, Peoples R China.
170411    SUNY Coll Optometry, Dept Biol Sci, New York, NY 10036 USA.
170412 RP Ge, BX, Shanghai Med Univ 2, Joint Immunol Lab, Hlth Sci Ctr, Shanghai,
170413    Peoples R China.
170414 EM gebaoxue@sibs.ac.cn
170415 CR CHA GH, 2003, MOL CELL BIOL, V23, P7982
170416    CHEN W, 2002, J BIOL CHEM, V277, P49105
170417    CHEUNG PCF, 2004, BIOCHEM J 1, V378, P27
170418    DENG L, 2000, CELL, V103, P351
170419    GE BX, 2002, SCIENCE, V295, P1291
170420    GE BX, 2003, J BIOL CHEM, V278, P2286
170421    HETRU C, 2003, J INFECT DIS S2, V187, S327
170422    HOFFMANN JA, 2003, NATURE, V426, P33
170423    HULTMARK D, 2003, CURR OPIN IMMUNOL, V15, P12
170424    IMLER JL, 2004, J ENDOTOXIN RES, V10, P241
170425    ISHITANI T, 2003, EMBO J, V22, P6277
170426    JIN G, 2004, P NATL ACAD SCI USA, V101, P2028
170427    KANAYAMA A, 2004, MOL CELL, V15, P535
170428    KANEKO T, 2004, IMMUNITY, V20, P637
170429    LECLERC V, 2004, IMMUNOL REV, V198, P59
170430    LEMAITRE B, 1995, P NATL ACAD SCI USA, V92, P9465
170431    LEMAITRE B, 1996, CELL, V86, P973
170432    LEMAITRE B, 1997, P NATL ACAD SCI USA, V94, P14614
170433    LEULIER F, 2003, NAT IMMUNOL, V4, P478
170434    NINOMIYATSUJI J, 1999, NATURE, V398, P252
170435    QIAN YC, 2001, J BIOL CHEM, V276, P41661
170436    SAMAKOVLIS C, 1992, BIOCHEM BIOPH RES CO, V188, P1169
170437    SANJO H, 2003, MOL CELL BIOL, V23, P1231
170438    SHIBUYA H, 1996, SCIENCE, V272, P1179
170439    SILVERMAN N, 2000, GENE DEV, V14, P2461
170440    SILVERMAN N, 2001, GENE DEV, V15, P2321
170441    SILVERMAN N, 2003, J BIOL CHEM, V278, P48928
170442    TAKAESU G, 2000, MOL CELL, V5, P649
170443    TAKAESU G, 2001, MOL CELL BIOL, V21, P2475
170444    TAKAESU G, 2003, J MOL BIOL, V326, P105
170445    TANJI T, 2005, TRENDS IMMUNOL, V26, P193
170446    VIDAL S, 2001, GENE DEV, V15, P1900
170447    WANG C, 2001, NATURE, V412, P346
170448    WORBY CA, 2001, SCI STKE
170449    YAMAGUCHI K, 1995, SCIENCE, V270, P2008
170450    ZHUANG ZH, IN PRESS CELL SIGNAL
170451 NR 36
170452 TC 0
170453 SN 0898-6568
170454 J9 CELL SIGNAL
170455 JI Cell. Signal.
170456 PD JUL
170457 PY 2006
170458 VL 18
170459 IS 7
170460 BP 964
170461 EP 970
170462 PG 7
170463 SC Cell Biology
170464 GA 032EN
170465 UT ISI:000236756800005
170466 ER
170467 
170468 PT J
170469 AU Chu, Y
170470    Xia, M
170471    Lin, Y
170472    Li, A
170473    Wang, Y
170474    Liu, R
170475    Xiong, S
170476 TI Th2-dominated antitumor immunity induced by DNA immunization with the
170477    genes coding for a basal core peptide PDTRP and GM-CSF
170478 SO CANCER GENE THERAPY
170479 DT Article
170480 DE mucin1; gamma 1neo-PDTRP/GM-CSF; gene immunization; Th2 type
170481 ID COLONY-STIMULATING FACTOR; SOMATIC TRANSGENE IMMUNIZATION; DENDRITIC
170482    CELLS; IN-VIVO; OVARIAN-CANCER; T-CELLS; TRANSCRIPTION FACTOR; LINEAGE
170483    COMMITMENT; MUC1 GENE; ANTIBODIES
170484 AB Our previous study showed that DNA vaccination with a plasmid vector
170485    encoding a core peptide of mucin1 (PDTRP) provided modest protection
170486    against challenge with tumor cells that expressed mucin1 protein. We
170487    report here that a DNA vaccine comprising a modified PDTRP plasmid and
170488    GM-CSF coding sequence at the C-terminus induced better protection
170489    against tumor challenge. The increased protection was directly
170490    correlated with a stronger PDTRP-specific immune response induced by
170491    the GM-CSF fusion plasmid. The plasmid encoding GM-CSF and the target
170492    PDTRP antigen induced a greater PDTRP-specific Th proliferation,
170493    antibodies, and cytotoxicity. Interestingly, the modified plasmid
170494    vaccine predominantely enhanced the type 2 immune responses manifested
170495    by an increased IgG1 to IgG2a antibody ratio and a greater induction of
170496    GATA-3 and IL-4 mRNA than that of T-bet and IFN-gamma mRNA in spleen
170497    cells from vaccinated mice. In addition, protection against tumor
170498    challenge in vaccinated mice showed that there was no significant
170499    change in mice survival after in vivo CD8+CTL depletion, indicating
170500    that antitumor immunity augmented by plasmid encoding GM-CSF and target
170501    PDTRP gene vaccine was dominated by Th2 immune response.
170502 C1 Fudan Univ, Shanghai Med Coll, Dept Immunol, Minist Educ,Key Lab Mol Med, Shanghai 200032, Peoples R China.
170503    Shanghai Univ, Inst E, Div Immunol, Shanghai, Peoples R China.
170504 RP Xiong, S, Fudan Univ, Shanghai Med Coll, Dept Immunol, Minist Educ,Key
170505    Lab Mol Med, 138 Yixue Yuan Rd, Shanghai 200032, Peoples R China.
170506 EM sdxiongfd@126.com
170507 CR BARND DL, 1989, P NATL ACAD SCI USA, V86, P7159
170508    BORRELLO I, 2002, CYTOKINE GROWTH F R, V13, P185
170509    BURCHELL J, 1987, CANCER RES, V47, P5476
170510    BURCHELL J, 1993, EPITHELIAL CELL BIOL, V2, P155
170511    CHOW YH, 1998, J IMMUNOL, V160, P1320
170512    CRAMER DW, 2005, CANCER EPIDEM BIOMAR, V14, P1125
170513    DING L, 1993, CANCER IMMUNOL IMMUN, V36, P9
170514    DRANOFF G, 1993, P NATL ACAD SCI USA, V90, P3539
170515    FINN OJ, 1995, IMMUNOL REV, V145, P61
170516    FYNAN EF, 1993, P NATL ACAD SCI USA, V90, P11478
170517    GERLONI M, 1997, DNA CELL BIOL, V16, P611
170518    GERLONI M, 1998, EUR J IMMUNOL, V28, P1832
170519    GERLONI M, 1998, EUR J IMMUNOL, V28, P516
170520    GERLONI M, 2000, P NATL ACAD SCI USA, V97, P13269
170521    GERLONI M, 2004, P NATL ACAD SCI USA, V101, P3892
170522    INABA K, 1992, J EXP MED, V176, P1693
170523    KARSTEN U, 2004, GLYCOBIOLOGY, V14, P681
170524    KONTANI K, 2002, CANCER GENE THER, V9, P330
170525    KUSAKABE K, 2000, J IMMUNOL, V164, P3102
170526    LEE GR, 2001, IMMUNITY, V14, P447
170527    LIU HM, 1998, BLOOD, V92, P3730
170528    LOBELL A, 2003, J IMMUNOL, V170, P1806
170529    MALDONADOLOPEZ R, 1999, J EXP MED, V189, P587
170530    MARAVEYAS A, 1994, CANCER S, V73, P1067
170531    MORRISON SL, 1985, SCIENCE, V229, P1202
170532    MURPHY KM, 2002, NAT REV IMMUNOL, V2, P933
170533    NICHOLSON S, 2004, CANCER IMMUNOL IMMUN, V53, P809
170534    OKADA E, 1997, J IMMUNOL, V159, P3638
170535    PARDOLL DM, 1995, ANNU REV IMMUNOL, V13, P399
170536    PU OY, 2002, J MED VIROL, V66, P320
170537    PULENDRAN B, 1999, P NATL ACAD SCI USA, V96, P1036
170538    PULLEN GR, 1986, J IMMUNOL METHODS, V86, P83
170539    RIETHMULLER G, 1994, LANCET, V343, P1177
170540    RITZ SA, 2004, CLIN EXP IMMUNOL, V138, P213
170541    SHEN Y, 2004, J VIROL, V78, P12548
170542    SIN JI, 1998, EUR J IMMUNOL, V28, P3530
170543    SOLLAZZO M, 1989, EUR J IMMUNOL, V19, P453
170544    SPICER AP, 1995, J BIOL CHEM, V270, P30093
170545    SZABO SJ, 2000, CELL, V100, P655
170546    SZABO SJ, 2002, SCIENCE, V295, P338
170547    TAYLORPAPADIMITRIOU J, 1999, BBA-MOL BASIS DIS, V1455, P301
170548    THIENES CP, 1997, J IMMUNOL, V158, P5874
170549    ULMER JB, 1993, SCIENCE, V259, P1745
170550    WANG B, 1995, HUM GENE THER, V6, P407
170551    XIA MC, 2004, CHIN J CANC BIOTHER, V11, P170
170552    YE M, 2004, J VIROL, V78, P11233
170553    ZANETTI M, 1992, NATURE, V355, P476
170554    ZHU JF, 2004, NAT IMMUNOL, V5, P1157
170555 NR 48
170556 TC 0
170557 SN 0929-1903
170558 J9 CANCER GENE THERAPY
170559 JI Cancer Gene Ther.
170560 PD MAY
170561 PY 2006
170562 VL 13
170563 IS 5
170564 BP 510
170565 EP 519
170566 PG 10
170567 SC Medicine, Research & Experimental; Biotechnology & Applied
170568    Microbiology; Genetics & Heredity; Oncology
170569 GA 032WZ
170570 UT ISI:000236808400008
170571 ER
170572 
170573 PT J
170574 AU Yang, XH
170575    Wu, QS
170576    Ding, YP
170577    Liu, JK
170578 TI Synthesis and optical properties of the semiconductor lead sulfide
170579    nanobelts
170580 SO BULLETIN OF THE KOREAN CHEMICAL SOCIETY
170581 DT Article
170582 DE reverse micelles; controlled synthesis; PbS; nanobelt
170583 ID THERMAL EVAPORATION; ZNS NANOBELTS; PBS; NANORODS; GROWTH;
170584    NANOSTRUCTURES; NANOPARTICLES; TRANSPORT; NETWORKS; ARRAYS
170585 AB The semiconductor PbS nanobelts (width 50-120 nm and length over 3 mu
170586    m) were self-assembled in a simple reverse micelle solvent system
170587    containig the surfactant of polyoxyethylene (9) dodecy ether (C12E9).
170588    The nanobelts synthesized were found to possess cube galena
170589    poly-crystal structure with high purity when analyzed by ED and X-ray
170590    diffraction. Significant "blue shift" from bulk material was observed
170591    on the PbS nanobelts using photoluminescence and UV-Vis spectroscopy. A
170592    mechanism involving the possible formation of nanobelts based oil
170593    surfactant template was also proposed.
170594 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
170595    Chizhou Teacher Coll, Dept Chem, Chizhou 247000, Anhui, Peoples R China.
170596    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
170597    E China Univ Sci & Technol, Dept Chem, Shanghai 200237, Peoples R China.
170598 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
170599 EM qswu@mail.tongji.edu.cn
170600 CR CHEN YJ, 2004, APPL PHYS LETT, V85, P5682
170601    DAI ZR, 2003, ADV FUNCT MATER, V13, P9
170602    DAVEN R, 1969, INFRARED PHYS, V9, P141
170603    GAO T, 2004, J PHYS CHEM B, V108, P5
170604    GE JP, 2005, CHEM-EUR J, V11, P1889
170605    HU PA, 2004, J PHYS CHEM B, V108, P936
170606    KUANG DB, 2003, ADV MATER, V15, P1747
170607    LEONTIDIS E, 2003, NANO LETT, V3, P569
170608    LI YJ, 2004, NANOTECHNOLOGY, V15, P581
170609    LIANG CH, 2004, J PHYS CHEM B, V108, P9728
170610    LIU J, 1996, ADV COLLOID INTERFAC, V69, P131
170611    MA BC, 2003, ADV MATER, V15, P228
170612    MACHOL JL, 1993, PHYS REV B, V48, P2819
170613    PAN ZW, 2001, SCIENCE, V291, P1947
170614    WANG SH, 2000, LANGMUIR, V16, P389
170615    WINIARZ JG, 2002, J PHYS CHEM B, V106, P967
170616    YU DB, 2003, J CRYST GROWTH, V249, P195
170617    ZENG ZH, 1999, CHEM MATER, V11, P3365
170618    ZHANG J, 2004, J PHYS CHEM B, V108, P7002
170619    ZHANG M, 2004, J CRYST GROWTH, V268, P215
170620    ZHANG NW, 2000, CHEM LETT, V6, P638
170621    ZHANG WR, 1997, SURFACTANT ANHE, P106
170622    ZHOU SM, 2005, J SOLID STATE CHEM, V178, P399
170623    ZHOU Y, 2002, LANGMUIR, V18, P5287
170624 NR 24
170625 TC 0
170626 SN 0253-2964
170627 J9 BULL KOR CHEM SOC
170628 JI Bull. Korean Chem. Soc.
170629 PD MAR 20
170630 PY 2006
170631 VL 27
170632 IS 3
170633 BP 377
170634 EP 380
170635 PG 4
170636 SC Chemistry, Multidisciplinary
170637 GA 033HV
170638 UT ISI:000236838700009
170639 ER
170640 
170641 PT J
170642 AU Zhao, CJ
170643    Josip, P
170644    Leng, GS
170645 TI Inverses of some new inequalities similar to Hilbert's inequalities
170646 SO TAIWANESE JOURNAL OF MATHEMATICS
170647 DT Article
170648 DE Hilbert's inequality; holder integral inequality; Jensen's inequality
170649 AB In the present paper we first establish inverse versions of some new
170650    inequalities similar to Hilbert's inequality involving series of
170651    nonnegative terms. Then, the integral analogues of our main results are
170652    also given. Our Theorems provide new estimates on these types of
170653    inequalities.
170654 C1 China Jiliang Univ, Coll Sci, Dept Informat & Math Sci, Hangzhou 310018, Peoples R China.
170655    Univ Zagreb, Fac Text Technol, Zagreb 10000, Croatia.
170656    Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
170657 RP Zhao, CJ, China Jiliang Univ, Coll Sci, Dept Informat & Math Sci,
170658    Hangzhou 310018, Peoples R China.
170659 EM chjzhao@163.com
170660    lenggangsong@163.com
170661 CR BECKENBACH EF, 1961, INEQUALITIES
170662    GAO MZ, 1998, P AM MATH SOC, V126, P751
170663    HANDLEY GD, 2000, TAMKANG J MATH, V31, P311
170664    HANDLEY GD, 2001, J MATH ANAL APPL, V257, P238
170665    HARDY GH, 1934, LITTLEWOOD POLYA
170666    KUANG JC, 1999, J MATH ANAL APPL, V235, P608
170667    PACHPATTE BG, 1998, J MATH ANAL APPL, V226, P166
170668    YANG BC, 2000, J MATH ANAL APPL, V248, P29
170669    ZHAO CJ, 2000, J MATH, V20, P413
170670    ZHAO CJ, 2001, J MATH ANAL APPL, V262, P411
170671    ZHAO CJ, 2003, ACTA MATH SINICA, V46, P1111
170672 NR 11
170673 TC 0
170674 SN 1027-5487
170675 J9 TAIWAN J MATH
170676 JI Taiwan. J. Math.
170677 PD MAR
170678 PY 2006
170679 VL 10
170680 IS 3
170681 BP 699
170682 EP 712
170683 PG 14
170684 SC Mathematics
170685 GA 029BG
170686 UT ISI:000236532200009
170687 ER
170688 
170689 PT J
170690 AU Chen, H
170691    Li, HQ
170692    Sun, YZ
170693    Li, M
170694 TI Microstructure and properties of coatings with rare earth formed by
170695    DC-plasma jet surface metallurgy
170696 SO SURFACE & COATINGS TECHNOLOGY
170697 DT Article
170698 DE rare earth; microstructure; wear resistance; DC-plasma jet surface
170699    metallurgy
170700 AB A new method of surface modification, DC-plasma jet surface metallurgy,
170701    is proposed in order to improve wear resistance of materials. This
170702    paper reports on all experiment, in which some metallurgical coatings
170703    of iron-based alloy with different contents of La2O3 and CeO2 were
170704    prepared oil AIS11020 steel using a homemade DC-plasma jet surface
170705    metallurgy equipment. A scanning electron microscope (SEM), energy
170706    dispersive X-ray (EDX) microanalysis and X-ray diffraction analysis
170707    (XRD) were employed to observe the microstructure and analyzed the
170708    chemical compositions of coatings. The effect of RE oxide (La2O3 and
170709    CeO2) on microstructure and properties of coatings was investigated.
170710    The result shows that addition of a proper amount of RE oxide (La2O3
170711    and CeCO2) can refine and purify the microstructure, significantly
170712    increase microhardness and enhance the wear resistance. (c) 2005
170713    Elsevier B.V. All rights reserved.
170714 C1 Shanghai Univ Sci & Technol, Sch Mat Sci, Qingdao 266510, Peoples R China.
170715    Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China.
170716 RP Chen, H, Shanghai Univ Sci & Technol, Sch Mat Sci, Qingdao 266510,
170717    Peoples R China.
170718 EM chenhao_168168@163.com
170719 CR LI HQ, 2004, 14 IFHTSE C, P952
170720    LI M, 2004, 14 IFHTSE C, P23
170721    LI Q, 1995, J CHIN RARE EARTH SO, V13, P280
170722    LI Q, 2001, SURF COAT TECH, V137, P122
170723    LIAN YF, 1995, WEAR 1, V181, P436
170724    SHANG L, 1995, J RARE METALS, V19, P132
170725    SHEN YF, 1997, J RARE EARTH, P344
170726    SHENG D, 1995, CHIN RARE EARTHS, V16, P36
170727    SUN YX, 1995, SURF ENG, V3, P43
170728    WANG W, 1990, J CHIN RARE EARTH SO, V8, P252
170729    ZHANG MQ, 2000, HEAT TREAT MET, P32
170730 NR 11
170731 TC 0
170732 SN 0257-8972
170733 J9 SURF COAT TECH
170734 JI Surf. Coat. Technol.
170735 PD APR 27
170736 PY 2006
170737 VL 200
170738 IS 16-17
170739 BP 4741
170740 EP 4745
170741 PG 5
170742 SC Materials Science, Coatings & Films
170743 GA 029UQ
170744 UT ISI:000236590300011
170745 ER
170746 
170747 PT J
170748 AU Jia, SJ
170749    Jiang, PK
170750    Zhang, ZC
170751    Wang, ZG
170752 TI Effect of carbon-black treatment by radiation emulsion polymerization
170753    on temperature dependence of resistivity of carbon-black-filled polymer
170754    blends
170755 SO RADIATION PHYSICS AND CHEMISTRY
170756 DT Article
170757 DE low-density-polyethylene(LDPE); carbon black(CB); positive temperature
170758    coefficient; negative temperature coefficient; irradiation
170759 ID ELECTRICAL-CONDUCTIVITY; MECHANICAL PROPERTY; COMPOSITES; COEFFICIENT;
170760    BEHAVIOR; IRRADIATION; MORPHOLOGY; FIBER; VAPOR
170761 AB High dispersibility and stability of carbon black particles in
170762    low-density-polyethylene (LDPE) matrix were obtained by radiation
170763    emulsion polymerization on carbon particles surface, and electrical
170764    resistivities of its simple were examined. First carbon particles
170765    treatment on radiation emulsion polymerization on surface were
170766    synthesized by the reaction with a polymer-emulsion systems containing
170767    reactive group in the molecular unit, carbon particles and emulsifier.
170768    Then, the carbon particles treatment on radiation emulsion
170769    polymerization on surface was dispersed into LDPE, and its composites
170770    were prepared for electrical measurements. The effect of radiation
170771    crosslinking of the composite on the Positive temperature coefficient
170772    (PTC) and negative temperature coefficient (NTC) phenomenon was
170773    investigated. The experimental results showed that PTC and NTC effects
170774    of the composites were obviously influenced by the irradiation dose.
170775    Various microstructure-exploring means were used to study the
170776    conductive composite, such as scanning electron microscopy (SEM), X-ray
170777    diffraction (XRD) and transmission electron microscopy (TEM). (c) 2005
170778    Elsevier Ltd. All rights reserved.
170779 C1 Shanghai Univ, Dept Chem Engn, Shanghai 201800, Peoples R China.
170780    Univ Sci & Technol China, Dept Polymer Sci & Engn, Anhua 230026, Peoples R China.
170781    Shanghai Jiao Tong Univ, Dept Polymer Engn & Sci, Key Lab Insulat & Thermal Aging Shanghai, Shanghai 200240, Peoples R China.
170782 RP Jia, SJ, Shanghai Univ, Dept Chem Engn, Chengzhong Rd 20, Shanghai
170783    201800, Peoples R China.
170784 EM jiashaojin2@yahoo.com.cn
170785 CR ANDO N, 1998, THIN SOLID FILMS, V334, P182
170786    BEAUCAGE G, 1999, J POLYM SCI POL PHYS, V37, P1105
170787    CHEN JH, 2002, POLYMER, V43, P2201
170788    CHEN JH, 2003, POLYMER, V44, P3201
170789    FAN YM, 2002, CHINESE J POLYM SCI, V20, P243
170790    GE XW, 1998, POLYMER, V39, P1917
170791    GUBBELS F, 1994, MACROMOLECULES, V27, P1972
170792    GUOZHANG W, 1999, MACROMOLECULES, V32, P3534
170793    HIRANO S, 1998, APPL PHYS LETT, V73, P25
170794    HIRANO S, 2000, POLYMER, V41, P4559
170795    JIA WT, 1996, J APPL POLYM SCI, V60, P2317
170796    JIA WT, 1997, J APPL POLYM SCI, V66, P1885
170797    KAZUMI M, 1996, THIN SOLID FILMS, V273, P128
170798    LEE MG, 2001, RADIAT PHYS CHEM, V61, P75
170799    MEYER J, 1973, POLYM ENG SCI, V13, P6
170800    NARKIS M, 1978, J APPL POLYM SCI, V22, P1163
170801    TANG H, 1994, J APPL POLYM SCI, V51, P1159
170802    TANG H, 1997, EUR POLYM J, V33, P1383
170803    THONGRUANG W, 2002, POLYMER, V43, P2279
170804    THONGRUANG W, 2002, POLYMER, V43, P3717
170805    WESSLING B, 1991, POLYM ENG SCI, V31, P1200
170806    YANG GC, 1997, POLYM COMPOSITE, V18, P484
170807    YI XS, 2000, J APPL POLYM SCI, V77, P494
170808    YU G, 1998, J APPL POLYM SCI, V70, P559
170809    YU G, 1999, COMPOS INTERFACE, V6, P275
170810    YU G, 1999, POLYM ENG SCI, V39, P1678
170811    ZHANG GX, 2004, RADIAT PHYS CHEM, V71, P273
170812 NR 27
170813 TC 0
170814 SN 0969-806X
170815 J9 RADIAT PHYS CHEM
170816 JI Radiat. Phys. Chem.
170817 PD APR
170818 PY 2006
170819 VL 75
170820 IS 4
170821 BP 524
170822 EP 531
170823 PG 8
170824 SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Nuclear
170825    Science & Technology
170826 GA 028YU
170827 UT ISI:000236525500008
170828 ER
170829 
170830 PT J
170831 AU Zha, GQ
170832    Zhou, SP
170833    Zhu, BH
170834 TI Superconducting properties of thin mesoscopic rings with enhanced
170835    surface superconductivity
170836 SO PHYSICAL REVIEW B
170837 DT Article
170838 ID DISKS; PARAMAGNETISM
170839 AB The superconducting state of a thin mesoscopic superconducting ring
170840    surrounded by a medium which enhanced its superconductivity near the
170841    boundary is investigated by the phenomenological Ginzburg-Landau
170842    theory. The free energy, the Cooper-pair density, and the current
170843    density as well as the H-T phase diagram are investigated for a ring
170844    with different surface enhancement or for different rings with the same
170845    surface enhancement. It is also found that the stable multivortex state
170846    can occur in the small ring that we studied if the enhanced surface
170847    superconductivity is stronger, and the stable (1:L-2) and (2:L-2)
170848    states can exist as the ground states with increasing the inner radius.
170849 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
170850 RP Zha, GQ, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200444,
170851    Peoples R China.
170852 CR BAELUS BJ, 2000, PHYS REV B, V61, P9734
170853    BAELUS BJ, 2001, PHYS REV B, V63
170854    BAELUS BJ, 2002, PHYS REV B, V65
170855    DEGENNES PG, 1994, SUPERCONDUCITIVITY M
170856    LITTLE WA, 1962, PHYS REV LETT, V9, P9
170857    PALACIOS JJ, 1998, PHYS REV B, V58, R5948
170858    PALACIOS JJ, 1998, PHYSICA B, V256, P610
170859    PALACIOS JJ, 2000, PHYS REV LETT, V84, P1796
170860    PARKS RD, 1964, PHYS REV A-GEN PHYS, V133, A97
170861    SCHWEIGERT VA, 1998, PHYS REV LETT, V81, P2783
170862    SCHWEIGERT VA, 1999, PHYS REV LETT, V83, P2409
170863    YAMPOLSKII SV, 2000, PHYS REV B, V62, P9663
170864    ZHU BH, 2005, PHYS LETT A, V338, P420
170865 NR 13
170866 TC 0
170867 SN 1098-0121
170868 J9 PHYS REV B
170869 JI Phys. Rev. B
170870 PD MAR
170871 PY 2006
170872 VL 73
170873 IS 9
170874 AR 092512
170875 DI ARTN 092512
170876 PG 4
170877 SC Physics, Condensed Matter
170878 GA 028DM
170879 UT ISI:000236467100040
170880 ER
170881 
170882 PT J
170883 AU Zha, GQ
170884    Zhou, SP
170885    Zhu, BH
170886    Shi, YM
170887 TI Charge distribution in thin mesoscopic superconducting rings with
170888    enhanced surface superconductivity
170889 SO PHYSICAL REVIEW B
170890 DT Article
170891 ID PHASE-TRANSITIONS; MAGNETIC-FIELD; DISKS; VORTICES; PARAMAGNETISM;
170892    PENETRATION; STATES; KIND
170893 AB The charge distribution in a thin mesoscopic superconducting ring with
170894    enhanced surface superconductivity (of a negative surface extrapolation
170895    length b) is investigated by the phenomenological Ginzburg-Landau
170896    theory. The nature of charge distribution is considerably influenced by
170897    the extrapolation length b, the inner and outer radius, and the applied
170898    magnetic field. We find a complete negative charge distribution besides
170899    the conventional charge distributions of charging vortex states in the
170900    Meissner state and the giant vortex state. In addition, one type of
170901    charge distribution that only exists in a giant vortex state can also
170902    be found in the Meissner state for a ring with a small inner radius.
170903    For the multivortex state, we find that the stable multivortex state
170904    can exist in small mesoscopic superconducting rings that we studied.
170905    The charge distributions for different kinds of multivortex states are
170906    given.
170907 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
170908 RP Zha, GQ, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200444,
170909    Peoples R China.
170910 CR BAELUS BJ, 2000, PHYS REV B, V61, P9734
170911    BAELUS BJ, 2001, PHYS REV B, V63
170912    BAELUS BJ, 2002, PHYS REV B, V65
170913    BLATTER G, 1996, PHYS REV LETT, V77, P566
170914    CHEN Y, 2002, PHYS REV LETT, V89
170915    DEGENNES PG, 1964, REV MOD PHYS, V36, P45
170916    DEGENNES PG, 1994, SUPERCONDUCTIVITY ME
170917    GEIM AK, 1997, APPL PHYS LETT, V71, P2379
170918    GEIM AK, 1997, NATURE, V390, P259
170919    GEIM AK, 2000, NATURE, V407, P55
170920    GEIM AK, 2000, PHYS REV LETT, V85, P1528
170921    GURITANU V, 2004, PHYS REV B, V70
170922    HAYASHI N, 1998, PHYS REV LETT, V80, P2921
170923    JAKEMAN E, 1967, P PHYS SOC LOND, V91, P422
170924    KHOMSKII DI, 1995, PHYS REV LETT, V75, P1384
170925    KOLACEK J, 2001, PHYS REV LETT, V86, P312
170926    KUMAGAI K, 2001, PHYS REV B, V63
170927    LIPAVSKY P, 2002, PHYS REV B, V66
170928    MACHIDA M, 2002, PHYSICA C 1, V378, P443
170929    MACHIDA M, 2003, PHYS REV LETT, V90
170930    MOSHCHALKOV VV, 1997, PHYS REV B, V55, P11793
170931    PALACIOS JJ, 1998, PHYS REV B, V58, P5948
170932    PALACIOS JJ, 1998, PHYSICA B, V256, P610
170933    PALACIOS JJ, 2000, PHYS REV LETT, V84, P1796
170934    POGOSOV WV, 2002, PHYS REV B, V65
170935    POGOSOV WV, 2002, PHYSICA C, V356, P225
170936    SCHWEIGERT VA, 1998, PHYS REV B, V57, P13817
170937    SCHWEIGERT VA, 1998, PHYS REV LETT, V81, P2783
170938    SCHWEIGERT VA, 1999, PHYS REV LETT, V83, P2409
170939    SIMANEK E, 2002, PHYS REV B, V65
170940    YAMPOLSKII SV, 2000, PHYS REV B, V62, P9663
170941    YAMPOLSKII SV, 2001, PHYS REV B, V64
170942    ZHARKOV GF, 2000, PHYS REV B, V61, P12293
170943    ZHARKOV GF, 2001, PHYS REV B, V63
170944    ZHU BH, 2005, PHYS LETT A, V338, P420
170945 NR 35
170946 TC 0
170947 SN 1098-0121
170948 J9 PHYS REV B
170949 JI Phys. Rev. B
170950 PD MAR
170951 PY 2006
170952 VL 73
170953 IS 10
170954 AR 104508
170955 DI ARTN 104508
170956 PG 13
170957 SC Physics, Condensed Matter
170958 GA 028DN
170959 UT ISI:000236467200110
170960 ER
170961 
170962 PT J
170963 AU Xie, YF
170964    Wang, YQ
170965    Chen, LD
170966    Li, YD
170967    Guo, HL
170968 TI Preparation of superfine-cemented carbide by spark plasma sintering
170969 SO JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION
170970 DT Article
170971 DE spark plasma sintering; cemented carbide; superfine grain; sintering
170972    mechanism
170973 AB 92 WC-8 Co powder mixture with superfine-tungsten, carbide was
170974    respectively sintered by spark plasma sintering(SPS) and sintering
170975    isostatic pressure (SIP). Complete dense samples with. 200 nm WC grains
170976    and 94.2HRA hardness were prepared by spark plasma sintering at 1 150
170977    degrees C and under 4.5 kN for 5 minutes. SIP was carried out at 1 400
170978    degrees C for 30 minutes with a result of 300 - 400 nm WC grains and 93
170979    HRA hardness. Me results show that sintering temperature is greatly
170980    decreased by SPS, sintering time 5 largely shortened and WC grain.
170981    growth 5 effectively retarded. Micropores and drawbacks in
170982    superfine-cemented carbide made by SPS are greatly declined, which is
170983    very useful to improving mechanical properties.
170984 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
170985    Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China.
170986 RP Wang, YQ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
170987    China.
170988 EM yingfangxie@163.com
170989    xqwang@mail.shu.edu.cn
170990 CR CHA SI, 2003, MAT SCI ENG A-STRUCT, V351, P31
170991    FU ZY, 2001, CHINESE J MAT RES, V15, P484
170992    GAO L, 1998, J INORG MATER, V13, P18
170993    HAN FL, 1994, METAL DIRECTORY
170994    HONG H, 2000, COLLECT SPARK SPS BA, B31
170995    LI GH, 2003, J WUHAN UNIV TECHNOL, V18, P82
170996    LI W, 1999, J INORG MATER, V14, P985
170997    LIU JF, 2001, J CERAMICS, V22, P157
170998    LUO XY, 2001, POWDER METALLURGY IN, V11, P7
170999    PANG TT, 2001, J CERAMICS, V22, P129
171000    SHANGJIE J, 1978, NEW METAL PROCESSING
171001    SHE ZH, 1998, CEMENTED CARBIDE, V15, P49
171002    YIN H, 1997, POWDER METALLURGY TE, V15, P299
171003    ZHANG DM, 1999, J WUHAN UNIV TECHNOL, V21, P15
171004    ZHANG DM, 2002, J WUHAN UNIV TECHNOL, V17, P30
171005    ZHANG JX, 2002, POWDER METALLURGY TE, V20, P129
171006 NR 16
171007 TC 0
171008 SN 1000-2413
171009 J9 J WUHAN UNIV TECHNOL-MAT SCI
171010 JI J. Wuhan Univ. Technol.-Mat. Sci. Edit.
171011 PD MAR
171012 PY 2006
171013 VL 21
171014 IS 1
171015 BP 42
171016 EP 45
171017 PG 4
171018 SC Materials Science, Multidisciplinary
171019 GA 030UW
171020 UT ISI:000236661500012
171021 ER
171022 
171023 PT J
171024 AU Hu, XB
171025    Zhang, M
171026    Wu, XC
171027    Li, L
171028 TI Simulations of coarsening behavior for M23C6 carbides in AISI H13 steel
171029 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
171030 DT Article
171031 DE DICTRA simulation; carbides coarsening; AISI H13 steel; interfacial
171032    energy
171033 ID WORK TOOL STEEL; LOW-CYCLE FATIGUE; CHROMIUM STEEL; TEMPERATURE
171034 AB Based on the local equilibrium assumption, coarsening behavior of M23C6
171035    carbide at 700 degrees C in H13 steel was simulated by DICTRA software.
171036    The results from the calculations were compared with transmission
171037    electron microscopy (TEM) observations. The results show the
171038    interfacial energy for M23C6 in H13 steel at 700 degrees C is thus
171039    probably 0.7 J(.)m(-2), which fits the experiments well. The influence
171040    of composition and temperature on the coarsening rate was also
171041    investigated by simulations. Simulations show a decrease in the
171042    coarsening rate when V/Mo ratio is increased, while the coarsening rate
171043    increases with increasing temperature.
171044 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
171045    Hubei Univ Technol, Sch Mech Engn, Wuhan 430068, Peoples R China.
171046 RP Hu, XB, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
171047    China.
171048 EM huxbshu@163.com
171049 CR *TCFE, 1998, SE11347 AB TCFE, P1
171050    AGREN J, 1992, ISIJ INT, V32, P291
171051    ANDERSSON JO, 1992, J APPL PHYS, V72, P1350
171052    AYROSTKOV A, 1997, ACTA MAT, V1, P31
171053    BJARBO A, 2001, METALL MATER TRANS A, V32, P19
171054    BORGENSTAM A, 2000, J PHASE EQUILIB, V21, P269
171055    CALISKANOGLU D, 2002, P 6 INT TOOL C US TO, P591
171056    DOBRZANSKI LA, 2001, J MATER PROCESS TECH, V113, P527
171057    ELIAS CN, 1992, MAT SCI TECHNOL, V9, P785
171058    ENGSTRM A, 1998, SE11347 AB, P1
171059    FUCHS KD, 2002, P ITC 6 KARLST, P15
171060    GUSTAFSON A, 2000, MAT SCI ENG A-STRUCT, V287, P52
171061    GUSTAFSON A, 2002, MAT SCI ENG A-STRUCT, V333, P279
171062    HE YL, 2003, T MAT HEAT TRATMENT, V24, P73
171063    HU X, 2004, J STEEL RELATED MAT, V4, P301
171064    KROUPA A, 1997, ACTA MAT, V1, P39
171065    LIFTSHITZ IM, 1959, SOV PHYS JETP, V35, P331
171066    LIFTSHITZ IM, 1961, J PHYS CHEM SOLIDS, V19, P35
171067    MEBARKI N, 2002, P 6 INT TOOL C US TO, P617
171068    MONTGOMERY JS, 1987, C P INNOVATIONS ULTR
171069    PERSSON A, 2004, INT J FATIGUE, V26, P1095
171070    RAABE D, 1998, COMP MATER SCI, P231
171071    ROMIG AD, 1981, MET T A, V12, P243
171072    SJOSTROM J, 2004, J MATER PROCESS TE 1, V153, P1089
171073    SUNDMAN B, 1994, SE10044 ROYAL I TECH
171074    TSUJII N, 1995, ISIJ INT, V35, P920
171075    TSUJII N, 1996, J MATER SCI LETT, V15, P1251
171076    WAGNER C, 1961, Z ELEKTROCHEM, V65, P581
171077 NR 28
171078 TC 0
171079 SN 1005-0302
171080 J9 J MATER SCI TECHNOL
171081 JI J. Mater. Sci. Technol.
171082 PD MAR
171083 PY 2006
171084 VL 22
171085 IS 2
171086 BP 153
171087 EP 158
171088 PG 6
171089 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
171090    Engineering
171091 GA 029UN
171092 UT ISI:000236590000003
171093 ER
171094 
171095 PT J
171096 AU Jiang, SY
171097    Zhang, JC
171098    Gu, F
171099    Shen, Y
171100    Wang, H
171101 TI Crystallization kinetics of nanophase glass-ceramics as magnetic disk
171102    substrate
171103 SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
171104 DT Article
171105 DE glass-ceramics; kinetics; disk substrate
171106 ID PHASE-CHANGE; GROWTH
171107 AB Glass-ceramics containing beta-quartz as a main crystal phase based on
171108    the system Of SiO2-Al2O3-Li2O-K2O-MgO-ZnO were investigated for the
171109    application to magnetic storage substrate for higher storage capacity.
171110    Parent glasses were prepared, then nucleated and crystallized at
171111    certain temperatures for 3 similar to 4 h. The crystallization kinetics
171112    of glass-ceramics was also studied. The grain size was estimated by
171113    Scherrer formula and image treatment of transmission electron
171114    microscopy (TEM). The results showed that the Avrami exponent was
171115    determined to be 3.88, the activation energy 189.3 +/- 7 kJ/mol and the
171116    grain size 30 similar to 60 nm. A detailed microstructure of the
171117    glass-ceramics, including grain distribution and the morphology of
171118    nano-crystalline was characterized by TEM, X-ray diffraction (XRD),
171119    differential scanning calorimeter (DSC), differential thermal analysis
171120    (DTA). The relationship between microstructure and mechanical
171121    proper-ties was also discussed.
171122 C1 Shanghai Univ, Coll Mat Sci & Engn, Shanghai 200072, Peoples R China.
171123 RP Zhang, JC, Shanghai Univ, Coll Mat Sci & Engn, Shanghai 200072, Peoples
171124    R China.
171125 EM jchzhang@mail.shu.edu.cn
171126 CR ALTON J, 2002, CHEM ENG SCI, V57, P2503
171127    AUGIS JA, 1978, J THERM ANAL, V13, P283
171128    AVRAMI M, 1939, J CHEM PHYS, V7, P1103
171129    AVRAMI M, 1940, J CHEM PHYS, V8, P212
171130    AVRAMI M, 1941, J CHEM PHYS, V9, P177
171131    BHUSHAN B, 1995, WEAR, V190, P44
171132    CAHN JW, 1956, ACTA METALL, V4, P449
171133    CAHN JW, 1956, ACTA METALL, V4, P572
171134    CHENG KG, 2001, J MATER SCI, V36, P1043
171135    GRONG O, 2000, ACTA MATER, V48, P445
171136    HOLAND W, 1997, J NON-CRYST SOLIDS, V219, P192
171137    KHURSHUDOV A, 2001, WEAR 2, V250, P1124
171138    KISSINGER HE, 1956, J RES NAT BUR STAND, V57, P217
171139    KOGA N, 2000, J THERM ANAL CALORIM, V60, P667
171140    OVECOGLU ML, 1997, J EUR CERAM SOC, V17, P957
171141    PARK YJ, 2002, CERAM INT, V28, P669
171142    PEITL O, 2004, MAT SCI ENG A-STRUCT, V372, P245
171143    PEREZMAQUEDA LA, 2003, J NON-CRYST SOLIDS, V320, P84
171144    POON CY, 1995, WEAR, V190, P89
171145    SOHN SB, 2000, J MATER SCI, V35, P4815
171146    WANG CC, 2002, INT J MACH TOOL MANU, V42, P979
171147 NR 21
171148 TC 0
171149 SN 1005-0302
171150 J9 J MATER SCI TECHNOL
171151 JI J. Mater. Sci. Technol.
171152 PD MAR
171153 PY 2006
171154 VL 22
171155 IS 2
171156 BP 211
171157 EP 214
171158 PG 4
171159 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
171160    Engineering
171161 GA 029UN
171162 UT ISI:000236590000014
171163 ER
171164 
171165 PT J
171166 AU Su, QF
171167    Xia, YB
171168    Wang, LJ
171169    Shi, WM
171170 TI Improvement smoothness of CVD diamond by composite polishing
171171 SO JOURNAL OF INORGANIC MATERIALS
171172 DT Article
171173 DE CVD diamond films; composite polishing; surface roughness
171174 ID CHEMICAL-VAPOR-DEPOSITION; ELECTRICAL-PROPERTIES; FILMS
171175 AB Diamond films prepared by hot filament chemical vapor deposition (CVD)
171176    were polished by a composite technique of laser polishing and hot
171177    chemical polishing. The surface morphology and microstructure of the
171178    films were characterized by X-ray diffraction (XRD), Raman, scan
171179    electron microscopes (SEM) and atomic force microscopes (AFM). The
171180    measurement results of the diamond films before and after composite
171181    polishing show that the diamond films are high quality (111)-oriented
171182    polycrystalline diamond films. The roughness of the diamond films is
171183    decreased obviously and is in the order of 100 nm after polishing. The
171184    microstructure of the diamond films can't be changed by composite
171185    polishing. All the results obtained indicate that the composite
171186    polishing technique is an effective way for diamond surface disposal.
171187 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
171188 RP Su, QF, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
171189    China.
171190 CR ANGUS JC, 1992, THIN SOLID FILMS, V216, P126
171191    CHOI SK, 1996, THIN SOLID FILMS, V279, P110
171192    MALSHE AP, 1999, DIAM RELAT MATER, V8, P1198
171193    PIMENOV SM, 1999, APPL PHYS A-MATER, V69, P81
171194    SU QF, 2004, P SOC PHOTO-OPT INS, V5774, P389
171195    TOKAREV VN, 1995, DIAM RELAT MATER, V4, P169
171196    WANG LJ, 2000, DIAM RELAT MATER, V9, P1617
171197    WANG LJ, 2003, J PHYS D APPL PHYS, V36, P2548
171198    WANG LJ, 2004, J INORG MATER, V19, P902
171199    WANG ZM, 2002, J INORG MATER, V17, P765
171200    XIA YB, 2000, J CRYST GROWTH, V213, P328
171201 NR 11
171202 TC 0
171203 SN 1000-324X
171204 J9 J INORG MATER
171205 JI J. Inorg. Mater.
171206 PD MAR
171207 PY 2006
171208 VL 21
171209 IS 2
171210 BP 499
171211 EP 502
171212 PG 4
171213 SC Materials Science, Ceramics
171214 GA 030PW
171215 UT ISI:000236647800039
171216 ER
171217 
171218 PT J
171219 AU Yang, XD
171220    Chen, LQ
171221 TI Dynamic stability of an axially accelerating viscoelastic beam with two
171222    fixed supports
171223 SO INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS
171224 DT Article
171225 DE axially accelerating beam; stability; viscoelastic beam; Galerkin
171226    truncation; averaging method
171227 ID VIBRATIONS; VELOCITY; SPEED
171228 AB The dynamic stability of an axially accelerating viscoelastic beam with
171229    two fixed supports is investigated. The Kelvin model is used for the
171230    constitutive law of the beam. A small simple harmonic is allowed to
171231    fluctuate about the constant mean speed applied to the beam, and the
171232    governing equation is truncated using the Galerkin method based on the
171233    eigenfunctions of the stationary beam. The averaged equations are
171234    derived for the cases of subharmonic and combination resonance.
171235    Finally, numerical examples are presented to demonstrate the effects of
171236    the viscosity coefficient, the mean axial speed and the beam bending
171237    stiffness on the stability boundaries.
171238 C1 Shanghai Univ, Dept Mech, Shanghai 200444, Peoples R China.
171239    Shenyang Inst Aeronaut Engn, Dept Engn Mech, Shenyang 110034, Peoples R China.
171240    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
171241 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200444, Peoples R China.
171242 EM lqchen@staff.shu.edu.cn
171243 CR ABRATE S, 1992, MECH MACH THEORY, V27, P645
171244    ARIARATNAM ST, 1986, J SOUND VIB, V107, P215
171245    CHEN LQ, 2004, EUR J MECH A-SOLID, V23, P659
171246    MEIROVITCH L, 2001, FUNDAMENTALS VIBRATI
171247    OZ HR, 1998, J SOUND VIB, V215, P571
171248    OZ HR, 1999, J SOUND VIB, V227, P239
171249    OZ HR, 2001, J SOUND VIB, V239, P556
171250    OZKAYA E, 2000, J SOUND VIB, V234, P521
171251    OZKAYA E, 2002, J SOUND VIB, V254, P782
171252    PARKER RG, 2001, J APPL MECH-T ASME, V68, P49
171253    PASIN F, 1972, ING ARCH, V41, P387
171254    WICKERT JA, 1988, SHOCK VIBRATION DIGE, V20, P3
171255    WICKERT JA, 1990, J APPL MECH-T ASME, V57, P738
171256    YANG XD, 2005, APPL MATH MECH-ENGL, V26, P989
171257    YANG XD, 2005, CHAOS SOLITON FRACT, V23, P249
171258 NR 15
171259 TC 0
171260 SN 0219-4554
171261 J9 INT J STRUCT STAB DYN
171262 JI Int. J. Struct. Stab. Dyn.
171263 PD MAR
171264 PY 2006
171265 VL 6
171266 IS 1
171267 BP 31
171268 EP 42
171269 PG 12
171270 GA 031AJ
171271 UT ISI:000236676200002
171272 ER
171273 
171274 PT J
171275 AU Han, BK
171276    Li, CX
171277 TI Evaluation of multiple dual tuned mass dampers for structures under
171278    harmonic ground acceleration
171279 SO INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS
171280 DT Article
171281 DE damping; dual tuned mass dampers (DTMD); ground acceleration; multiple
171282    tuned mass dampers (MTMD); multiple dual tuned mass dampers (MDTMD);
171283    vibration control
171284 ID DYNAMIC CHARACTERISTICS; PERFORMANCE; SYSTEM; OSCILLATIONS;
171285    FREQUENCIES; PARAMETERS; BRIDGES; DESIGN
171286 AB The multiple dual tuned mass dampers, referred to as the MDTMD,
171287    consisting of several units of dual tuned mass dampers (DTMD) are
171288    proposed for the first time herein, aimed at the effectiveness and
171289    robustness of the system for suppressing the undesirable vibrations of
171290    structures under the ground acceleration. The total number of dampers
171291    can be arbitrary and their natural frequencies are uniformly
171292    distributed. Ten typical types of the MDTMD can be devised by varying
171293    the system parameters. Employing the criteria chosen for optimum
171294    searching, parametric studies were carried out to evaluate the
171295    performance of the MDTMD of Type I-1 for its convenience in
171296    manufacturing, in which the larger mass blocks (LMBs) are assumed to
171297    have identical stiffness, but unequal masses, and the smaller mass
171298    blocks (SMBs) have identical stiffness and damping coefficient, but
171299    unequal masses and damping ratios. By adopting the maximum dynamic
171300    magnification factor (DMF) for each LMB and SMB used in estimating the
171301    stroke, an evaluation is also made for the stroke of the MDTMD. The
171302    numerical results indicate that the MDTMD (I-1) can provide better
171303    effectiveness and higher robustness in comparison with the dual tuned
171304    mass dampers (DTMD) and other MTMD systems of similar complexities.
171305    However, the stroke of the MDTMD is greater than that of the DTMD and
171306    the stroke of each SMB in the MDTMD is larger than that of the mass
171307    blocks (MBs) in the arbitrary integer and odd number based MTMD.
171308 C1 Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R China.
171309    Tongji Univ, Sch Civil Engn, Shanghai 200092, Peoples R China.
171310 RP Li, CX, Shanghai Univ, Dept Civil Engn, No 149 Yan Chang Rd, Shanghai
171311    200072, Peoples R China.
171312 EM li-chunxiang@vip.sina.com
171313 CR ABE M, 1994, EARTHQUAKE ENG STRUC, V23, P813
171314    ABE M, 1995, EARTHQUAKE ENG STRUC, V24, P247
171315    BAKRE SV, 2004, INT J STRUCT STAB DY, V4, P527
171316    CHEN GD, 2001, J STRUCT ENG-ASCE, V127, P1054
171317    GU M, 2001, J WIND ENG IND AEROD, V89, P987
171318    JANGID RS, 1995, STRUCT ENG MECH, V3, P497
171319    JANGID RS, 1999, EARTHQUAKE ENG STRUC, V28, P1041
171320    JOSHI AS, 1997, J SOUND VIB, V202, P657
171321    KAMIYA K, 1996, P 3 INT C MOT VIBR C, V2, P322
171322    KAREEM A, 1995, J STRUCT ENG-ASCE, V121, P348
171323    KWON SD, 2004, J WIND ENG IND AEROD, V92, P919
171324    LI CX, 2000, EARTHQUAKE ENG STRUC, V29, P1405
171325    LI CX, 2002, EARTHQUAKE ENG STRUC, V31, P897
171326    LI CX, 2002, J STRUCT ENG-ASCE, V128, P1362
171327    LI CX, 2003, EARTHQUAKE ENG STRUC, V32, P671
171328    LI CX, 2004, J EARTHQ ENG, V8, P89
171329    LI CX, 2005, INT J STRUCT STAB DY, V5, P475
171330    LIN CC, 2005, J BRIDGE ENG, V10, P398
171331    PARK J, 2001, ENG STRUCT, V23, P802
171332    WANG JF, 2005, INT J SOLIDS STRUCT, V42, P5536
171333    XU KM, 1992, EARTHQUAKE ENG STRUC, V21, P1059
171334    YAMAGUCHI H, 1993, EARTHQUAKE ENG STRUC, V22, P51
171335    YAU JD, 2004, ENG STRUCT, V26, P1795
171336    YAU JD, 2004, FINITE ELEM ANAL DES, V40, P341
171337 NR 24
171338 TC 0
171339 SN 0219-4554
171340 J9 INT J STRUCT STAB DYN
171341 JI Int. J. Struct. Stab. Dyn.
171342 PD MAR
171343 PY 2006
171344 VL 6
171345 IS 1
171346 BP 59
171347 EP 75
171348 PG 17
171349 GA 031AJ
171350 UT ISI:000236676200004
171351 ER
171352 
171353 PT J
171354 AU Huang, YR
171355    Yanga, JS
171356    Zhang, KM
171357 TI A note on Ramsey numbers with two parameters
171358 SO EUROPEAN JOURNAL OF COMBINATORICS
171359 DT Article
171360 AB The Ramsey number R(G(1), G(2)) is the smallest integer p such that for
171361    any graph G on p vertices either G contains G(1) or (G) over bar
171362    contains G(2), where (G) over bar denotes the complement of G. In this
171363    paper, some new bounds with two parameters for the Ramsey number
171364    R(G(1), G(2)), under some assumptions, are obtained. Especially, we
171365    prove that R(K-6 - e. K-6) <= 116 and R(K-6 - e, K-7) <= 202, these
171366    improve the two upper bounds for the classical Ramsey number in [S.P.
171367    Radziszowski, Small Ramsey number, Electron. J. Combin. DS1 (2002)
171368    1-36]. (c) 2006 Published by Elsevier Ltd.
171369 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
171370    Nanjing Univ, Dept Math, Nanjing 210008, Peoples R China.
171371 RP Huang, YR, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
171372 EM yrhuang119@sina.com.cn
171373 CR GOODMAN AW, 1959, AM MATH MONTHLY, V66, P778
171374    HUANG YR, 1998, EUROPEAN J COMBIN, V19, P391
171375    RADZISZOWSKI SP, 2002, ELECTRON J COMB, V1, P1
171376 NR 3
171377 TC 0
171378 SN 0195-6698
171379 J9 EUR J COMBINATORIC
171380 JI Eur. J. Comb.
171381 PD MAY
171382 PY 2006
171383 VL 27
171384 IS 4
171385 BP 574
171386 EP 576
171387 PG 3
171388 SC Mathematics
171389 GA 030NF
171390 UT ISI:000236640700008
171391 ER
171392 
171393 PT J
171394 AU Dou, SX
171395    Yeoh, WK
171396    Shcherbakova, O
171397    Weyler, D
171398    Li, Y
171399    Ren, ZM
171400    Munroe, P
171401    Chen, SK
171402    Tan, KS
171403    Glowacki, BA
171404    MacManus-Driscoll, JL
171405 TI Alignment of carbon nanotube additives for improved performance of
171406    magnesium diboride superconductors
171407 SO ADVANCED MATERIALS
171408 DT Article
171409 ID CRITICAL-CURRENT DENSITY; MGB2 SUPERCONDUCTOR; DOPED MGB2; COMPOSITES;
171410    ENHANCEMENT; ROUTE; FIELD
171411 AB A method for aligning carbon nanotubes (CNTs) in CNT-MgB2
171412    superconductor composite wires through a readily scalable drawing
171413    technique is described. The aligned CNT-doped MgB2 wires show an
171414    enhancement in magnetic critical current density by more than an order
171415    of magnitude in high magnetic fields compared to undoped wires. The
171416    arrows in the figure indicate CNTs in the composite.
171417 C1 Univ Wollongong, Inst Supercond & Elect Mat, Wollongong, NSW 2522, Australia.
171418    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
171419    Univ New S Wales, Electron Microscope Unit, Sydney, NSW 2000, Australia.
171420    Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England.
171421 RP Dou, SX, Univ Wollongong, Inst Supercond & Elect Mat, Northfields Ave,
171422    Wollongong, NSW 2522, Australia.
171423 EM shi_dou@uow.edu.au
171424 CR BAUGHMAN RH, 2002, SCIENCE, V297, P787
171425    BRACCINI V, 2004, PHYS REV B, V71
171426    CHOI ES, 2003, J APPL PHYS, V94, P6034
171427    DOU SX, 2002, APPL PHYS LETT, V81, P3419
171428    DOU SX, 2003, APPL PHYS LETT, V83, P4996
171429    DOU SX, 2003, IEEE T APPL SUPERC 3, V13, P3199
171430    DOU SX, 2004, J APPL PHYS, V96, P7549
171431    FOSSHEIM K, 1995, PHYSICA C, V248, P195
171432    FRANK S, 1998, SCIENCE, V280, P1744
171433    GUREVICH A, 2003, PHYS REV B, V67
171434    HORVAT J, 2004, APPL PHYS LETT, V84, P3109
171435    KIM P, 2001, PHYS REV LETT, V87
171436    KUMAKURA H, 2004, APPL PHYS LETT, V84, P3669
171437    LARBALESTIER DC, 2001, NATURE, V410, P186
171438    LI YL, 2004, SCIENCE, V304, P276
171439    MATSUMOTO A, 2003, SUPERCOND SCI TECH, V16, P926
171440    NAGAMATSU J, 2001, NATURE, V410, P63
171441    QIN MJ, 2004, PHYS REV B, V69
171442    SOLTANIAN S, 2001, PHYSICA C, V361, P84
171443    SUMPTION MD, 2005, APPL PHYS LETT, V86
171444    TREACY MMJ, 1996, NATURE, V381, P678
171445    WANG J, 2002, APPL PHYS LETT, V81, P2026
171446    WEI BQ, 2001, APPL PHYS LETT, V79, P1172
171447    WILKE RHT, 2004, PHYS REV LETT, V92
171448    YANG PD, 1996, SCIENCE, V273, P1836
171449    YANG PD, 1997, APPL PHYS LETT, V70, P3158
171450    YANG PD, 1997, J MATER RES, V12, P2981
171451    YEOH WK, 2004, SUPERCOND SCI TECH, V17, S572
171452 NR 28
171453 TC 0
171454 SN 0935-9648
171455 J9 ADVAN MATER
171456 JI Adv. Mater.
171457 PD MAR 17
171458 PY 2006
171459 VL 18
171460 IS 6
171461 BP 785
171462 EP +
171463 PG 5
171464 SC Materials Science, Multidisciplinary
171465 GA 029ZU
171466 UT ISI:000236603700019
171467 ER
171468 
171469 PT J
171470 AU Lei, L
171471    Dong, LY
171472    Song, T
171473    Dai, SQ
171474 TI Study on the traffic flow of weaving section in elevated road system
171475    with cellular automaton model
171476 SO ACTA PHYSICA SINICA
171477 DT Article
171478 DE traffic flow; cellular automaton model; elevated road; weaving section
171479 AB The weaving sections often turn into the bottleneck on the elevated
171480    roads. On the basis of the NS cellular automaton traffic model I the
171481    weaving section with one-lane main road was simulated and analyzed. For
171482    the free traffic flow, weaving almost has no influence on the system,
171483    even with increased weaving length. On the other hand, when the traffic
171484    flow is in congested state, weaving conflicts have negative effects on
171485    the system. The traffic condition will be improved with the increase of
171486    weaving length. Our simulation results suggest that the length of
171487    weaving sections need not to be inappropriately increased, and a proper
171488    moderate value should be chosen to get an optimal traffic condition.
171489 C1 Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Peoples R China.
171490    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
171491 RP Lei, L, Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Peoples R
171492    China.
171493 CR AWAD WH, 2004, APPL SOFT COMPUT, V4, P395
171494    CHEN JC, 2000, J HIGHWAY TRANSPORTA, V17, P46
171495    CHEN WX, 2001, CHIN J CHEM PHYS, V14, P88
171496    DONG LY, 2002, APPL MATH MECH-ENGL, V23, P363
171497    GE HX, 2004, J SHANGHAI U, V8, P1
171498    KUANG H, 2004, ACTA PHYS SIN-CH ED, V53, P2894
171499    LEI L, 2003, ACTA PHYS SINICA, V52, P2121
171500    MASOUD O, 2001, IEEE T INTELL TRANSP, V2, P18
171501    NAGEL K, 1992, J PHYS I, V2, P2221
171502    PONLATHEP L, 2003, T RES B, V37, P459
171503    SUN LJ, 2001, P 2000 SHANGH INT S, P19
171504    TAN HL, 2002, ACTA PHYS SIN-CH ED, V51, P2713
171505    TAN HL, 2003, ACTA PHYS SIN-CH ED, V52, P1127
171506    THOMAS FG, 2004, T RES A, V38, P35
171507    XUE Y, 2001, ACTA PHYS SIN-CH ED, V50, P445
171508    ZHENG RS, 2005, ACTA PHYS SIN-CH ED, V54, P3516
171509 NR 16
171510 TC 0
171511 SN 1000-3290
171512 J9 ACTA PHYS SIN-CHINESE ED
171513 JI Acta Phys. Sin.
171514 PD APR
171515 PY 2006
171516 VL 55
171517 IS 4
171518 BP 1711
171519 EP 1717
171520 PG 7
171521 SC Physics, Multidisciplinary
171522 GA 029OB
171523 UT ISI:000236571600028
171524 ER
171525 
171526 PT J
171527 AU Zou, LE
171528    Chen, BX
171529    Chen, L
171530    Yuan, YF
171531    Hamanaka, H
171532    Iso, M
171533 TI Optical-stopping effect of As2S8 channel waveguide fabricated by method
171534    of photoinduced refractive index changes
171535 SO ACTA PHYSICA SINICA
171536 DT Article
171537 DE optical waveguide technique; As2S8; channel waveguide; optical-stopping
171538    effect; irradiation technique
171539 ID CHALCOGENIDE GLASSES; FIBERS
171540 AB The photorefractive phenomenon of As2S8 film is reported in this paper.
171541    An ultraviolet irradiation technique is presented and applied
171542    successfully to As2S8 channel waveguide preparation on the basis of
171543    analyzing these experimental data. This channel waveguide of As2S8
171544    displays good characteristics of a waveguide using a guided mode
171545    excitation. It is found that the optical stopping effect of As2S8
171546    channel waveguide has the rotential application owing to its switching
171547    function with the photo-optical effect.
171548 C1 Shanghai Univ Sci & Technol, Coll Opt & Electron Informat Engn, Shanghai 200093, Peoples R China.
171549    Hosei Univ, Dept Mat Chem Engn, Tokyo 1848584, Japan.
171550    Tokyo Univ Agr & Technol, Dept Chem Engn, Tokyo 1848588, Japan.
171551 RP Zou, LE, Shanghai Univ Sci & Technol, Coll Opt & Electron Informat
171552    Engn, Shanghai 200093, Peoples R China.
171553 CR BALAN V, 2003, J NON-CRYST SOLIDS, V326, P455
171554    CHEN YX, 1999, ACTA PHYS SIN-CH ED, V48, P775
171555    GUPTA PK, 1996, J NON-CRYST SOLIDS, V195, P158
171556    KANBARA H, 1997, APPL PHYS LETT, V70, P925
171557    KIKUSHI M, 1976, P 6 INT C AM LIQ SEM, P35
171558    LIANG DB, 2002, OPTOELECTRON TECHNOL, V15, P19
171559    LIU JW, 2005, ACTA PHYS SIN-CH ED, V54, P6
171560    LIU QM, 2000, ACTA PHYS SIN-CH ED, V49, P1726
171561    LONG CH, 2002, SEMICOND OPTOELECTRO, V23, P333
171562    LONG CH, 2004, ACTA OPT SINICA, V24, P442
171563    LYUBIN VM, 1991, J NON-CRYST SOLIDS, V135, P37
171564    SAITOH A, 2002, J NON-CRYST SOLIDS B, V299, P983
171565    SHI CZ, 2001, LASER J, V22, P1
171566    SHI CZ, 2002, ACTA OPT SINICA, V22, P535
171567    TANAKA K, 1985, B FACULTY ENGIN HOKK, V125, P9
171568    TANAKA K, 1987, SOLID PHYS, V22, P445
171569    ULRICH R, 1973, APPL OPTICS, V12, P2901
171570    WAGNER T, 2003, J NON-CRYST SOLIDS, V326, P500
171571    YU BL, 2000, ACTA PHYS SIN-CH ED, V49, P324
171572    ZHAO JM, 2004, ACTA PHYS SIN-CH ED, V53, P1023
171573 NR 20
171574 TC 0
171575 SN 1000-3290
171576 J9 ACTA PHYS SIN-CHINESE ED
171577 JI Acta Phys. Sin.
171578 PD APR
171579 PY 2006
171580 VL 55
171581 IS 4
171582 BP 1868
171583 EP 1872
171584 PG 5
171585 SC Physics, Multidisciplinary
171586 GA 029OB
171587 UT ISI:000236571600054
171588 ER
171589 
171590 PT J
171591 AU Yu, J
171592    Zhang, JC
171593    Cao, GX
171594    Wang, SP
171595    Jing, C
171596    Cao, SX
171597 TI Reentering spin glass behavior and charge ordering in phase separation
171598    Nd0.5Ca0.5MnO3 system
171599 SO ACTA PHYSICA SINICA
171600 DT Article
171601 DE colossal magnetoresistance; spin glass; negative magnetization; charge
171602    ordering
171603 ID GIANT MAGNETORESISTANCE; TRANSPORT-PROPERTIES; MAGNETIC-PROPERTIES;
171604    DOUBLE EXCHANGE; FILMS; LA1-XCAXMNO3; DIFFRACTION; MANGANITES
171605 AB Half-doped manganese oxides are very important on clarifying physical
171606    mechanism of strong correlation electron system and colossal
171607    magnetoresistance (CMR) effect due to their rich physical content. The
171608    structure, electrical and magnetic transport properties of
171609    Nd0.5Ca0.5MnO3 manganite was systemically studied. The results show
171610    that Nd0.5Ca0.5MnO3 compound displays the O'-orthorhombic structure and
171611    indicate the existence of the typical Jahn-Teller distortion under 300
171612    K. The transport properties show that the system undergoes paramagnetic
171613    insulator-ferromagnetic metal transition under a magnetic field of 8 T
171614    and is accompanied by CMR effect. Meanwhile, it is found that the
171615    temperature of antiferromagnetic transition and charge ordering is
171616    around 150 and 240 K, respectively. There appears a typical reentrant
171617    spin glass behavior around 41 K and the negative magnetization is also
171618    observed in the compound. All these phenomena indicate that there exist
171619    several complex magnetic interactions in the ground state of this
171620    half-doped Nd0.5Ca0.5MnO3 compound at low temperature. The present
171621    results provide experimental data for strongly electronic correlated
171622    system of manganites.
171623 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
171624 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
171625 EM jczhang@staff.shu.edu.cn
171626 CR ANDERSON PW, 1955, PHYS REV, V100, P675
171627    BAIBICH MN, 1988, PHYS REV LETT, V61, P2472
171628    ELBIO D, 2001, PHYS REP, V344, P1
171629    GOODENOUGH JB, 1955, PHYS REV, V100, P564
171630    HYLTON TL, 1993, SCIENCE, V261, P1021
171631    JIN S, 1994, SCIENCE, V264, P413
171632    KAWANO H, 1996, PHYS REV B, V53, P2202
171633    KIMURA T, 1999, PHYS REV LETT, V83, P3188
171634    KOU ZQ, 2005, CHINESE PHYS, V14, P398
171635    LIU K, 1996, PHYS REV B, V54, P3007
171636    LOPEZ J, 2003, J APPL PHYS, V94, P4395
171637    MA X, 2005, CHINESE PHYS, V14, P192
171638    MOSES D, 1987, PHYS REV LETT, V58, P2710
171639    MYDOSH JA, 1993, SPIN GLASS EXPT INTR
171640    RAMIREZ AP, 1996, PHYS REV LETT, V76, P3188
171641    SCHIFFER P, 1995, PHYS REV LETT, V75, P3336
171642    TOKURA Y, 1999, J MAGN MAGN MATER, V200, P1
171643    TOMIOKA Y, 1996, PHYS REV B, V53, R1689
171644    VONHELMOLT R, 1993, PHYS REV LETT, V71, P2331
171645    WOLLAN EO, 1955, PHYS REV, V100, P545
171646    XIAO CT, 2003, ACTA PHYS SIN-CH ED, V52, P1245
171647    XU MX, 1998, ACTA PHYS SINICA, V47, P1007
171648    ZENER C, 1951, PHYS REV, V82, P403
171649 NR 23
171650 TC 0
171651 SN 1000-3290
171652 J9 ACTA PHYS SIN-CHINESE ED
171653 JI Acta Phys. Sin.
171654 PD APR
171655 PY 2006
171656 VL 55
171657 IS 4
171658 BP 1914
171659 EP 1920
171660 PG 7
171661 SC Physics, Multidisciplinary
171662 GA 029OB
171663 UT ISI:000236571600061
171664 ER
171665 
171666 PT J
171667 AU Wei, FX
171668    Cao, J
171669    Zhang, XB
171670    Liu, X
171671    Jiang, XY
171672    Zhang, ZL
171673    Zhu, WQ
171674    Xu, SH
171675 TI Blue and white organic light emitting diodes based on a new stilbene
171676    derivative dopant
171677 SO ACTA PHYSICA SINICA
171678 DT Article
171679 DE organic electroluminescence; blue dopant; blue electroluminescent
171680    devices; white electroluminescent devices
171681 ID ELECTROLUMINESCENCE; LAYER
171682 AB In this paper the electroluminescene of highly efficient blue dopant
171683    EBDP was investigated. The blue and white organic light emitting diodes
171684    with the structure: indium-tin oxide (ITO)/ copper phthalocyanine
171685    (CuPc)/N, N '-bis-(1-naphenyl)-N, N '-biphenyl-1, 1 '-biphenyl-4-4
171686    '-diamine (NPB)/2-t-butyl-9, 10-di-(2-naphthyl) anthracene (TBADN) :
171687    EBDP/tris (8-hydroxyquinoline) aluminum(Alq(3))/LiF/Al and
171688    ITO/CuPc/NPB/TBADN:EBDP:
171689    4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4
171690    H-pyran/Alq(3)/LiF/Al were studied by using EBDP as blue dopant. For
171691    the blue device, the maximum luminance was 26961 cd/m(2), and its
171692    maximum efficiency was 8.29 cd/A. The luminance at a current density 20
171693    mA/cm(2) was 1597 cd/m(2). For the white device, the maximum luminance
171694    32291 cd/m(2) and maximum efficiency 8.31 cd/A, the luminance of 1413
171695    cd/m(2) at a current density 20 mA/cm(2) were obtained. The slow
171696    decrease of efficiency with the increase of current density indicates
171697    weak exciton-exciton annihilation, which results from the large steric
171698    hindrance due to a non-planar structure of the fluorescence dye EBDP.
171699 C1 Shanghai Univ, Inst Mat Sci & Engn, Shanghai 201800, Peoples R China.
171700 RP Wei, FX, Shanghai Univ, Inst Mat Sci & Engn, Shanghai 201800, Peoples R
171701    China.
171702 CR CHEUN CH, 2002, APPL PHYS LETT, V81, P4499
171703    HOSOKAWA C, 1993, APPL PHYS LETT, V63, P1322
171704    HOSOKAWA C, 1995, APPL PHYS LETT, V67, P3583
171705    JIANG XY, 2002, SYNTHETIC MET, V129, P9
171706    PFEIFFER M, 2003, ORG ELECTRON, V4, P89
171707    SHI JM, 2002, APPL PHYS LETT, V80, P3201
171708    SUN SJ, 2004, ACTA PHYS SIN-CH ED, V53, P3934
171709    WU XM, 2002, CHIN J LUMIN, V23, P595
171710    XIONG ZH, 2003, ACTA PHYS SIN-CH ED, V52, P1222
171711    ZHOU X, 2001, APPL PHYS LETT, V78, P410
171712 NR 10
171713 TC 0
171714 SN 1000-3290
171715 J9 ACTA PHYS SIN-CHINESE ED
171716 JI Acta Phys. Sin.
171717 PD APR
171718 PY 2006
171719 VL 55
171720 IS 4
171721 BP 2008
171722 EP 2013
171723 PG 6
171724 SC Physics, Multidisciplinary
171725 GA 029OB
171726 UT ISI:000236571600077
171727 ER
171728 
171729 PT J
171730 AU Tang, W
171731    Zhou, R
171732    Yang, Y
171733    Li, YC
171734    Yang, YF
171735    Zuo, JP
171736 TI Suppression of (5R)-5-hydroxytriptolide (LLDT-8) on allograft rejection
171737    in full MHC-mismatched mouse cardiac transplantation
171738 SO TRANSPLANTATION
171739 DT Article
171740 DE (5R)-5-hydroxytriptolide; cardiac transplantation; chemokine;
171741    immunosuppression
171742 ID WILFORDII HOOK F; RECEPTOR-GENE-EXPRESSION; VERSUS-HOST-DISEASE;
171743    TRIPTERYGIUM-WILFORDII; LYMPHOPROLIFERATIVE DISORDERS;
171744    RENAL-TRANSPLANTATION; ORGAN-TRANSPLANTATION; PERIPHERAL TOLERANCE;
171745    T-CELLS; TRIPTOLIDE
171746 AB Background. (5R)-5-hydroxytriptolide (LLDT-8) is a new Compound derived
171747    from triptolide, which is the major immunosuppressive fraction of
171748    Tripterygium wilfordii Hook. F(TWHF). Studies in vitro and in vivo have
171749    demonstrated that LLDT-8 had potent immunosuppressive activities. Here
171750    we tested LLDT-8 in major histocompatibility complex (MHC)-mismatched
171751    cardiac transplantation and investigated the mechanisms underlying the
171752    prevention of transplant rejection.
171753    Methods. LLDT-8 was administered orally to recipients in Balb/c to
171754    C57BL/6 murine cardiac transplantation model. Allograft survival after
171755    transplantation was recorded in recipients. The T cell immunity and
171756    cytokine production were observed. Histological analysis was performed.
171757    The chemokine and its receptor were analyzed by reverse
171758    transcriptase-polymerase chain reaction on cardiac graft RNA.
171759    Results. LLDT-8 administered orally significantly induced the survival
171760    prolongation of allogeneic cardiac graft. Histological results showed
171761    that LLDT-8 well preserved myocardium and significantly reduced
171762    infiltration of the graft with inflammatory cells. LLDT-8 decreased
171763    IL-2 production in recipient splenocytes stimulated by concanavalin A
171764    (ConA) ex vivo. LLDT-8 significantly inhibited the immunoreactivity of
171765    recipient to specific donor alloantigens, but preserved immunity to
171766    third-part), alloantigens and mitogen. However, the flow cytometry
171767    analysis of the proportion of CD4(+), CD8(+) T cell subgroup in
171768    recipient spleens showed LLDT-8 had a normalizing effect on the splenic
171769    lymphocytes Population. LLDT-8 decreased CC chemokine receptor 5 (CCR5)
171770    and their ligands macrophage inflammatory protein 1 alpha (MIP-1 alpha)
171771    and beta (MIP-1 beta) mRNA expressions in allografts.
171772    Conclusion. The results Outline the great potential of LLDT-8 as a
171773    therapeutic tool in transplant rejection.
171774 C1 Chinese Acad Sci, Shanghai Inst Mat Med, Lab Immunopharmacol,Grad Sch, Shanghai Inst Biol Sci,State Key Lab Drug Res, Shanghai 201203, Peoples R China.
171775    Shanghai Univ, Lab Immunol & Virol, Shanghai, Peoples R China.
171776    Chinese Acad Sci, Shanghai Inst Mat Med, Chem Lab, Shanghai 200031, Peoples R China.
171777 RP Zuo, JP, Chinese Acad Sci, Shanghai Inst Mat Med, Lab
171778    Immunopharmacol,Grad Sch, Shanghai Inst Biol Sci,State Key Lab Drug
171779    Res, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China.
171780 EM jpzuo@mail.shcnc.ac.cn
171781 CR ABEHSIRAAMAR O, 1992, J IMMUNOL, V148, P3820
171782    ASANO K, 1998, IMMUNOPHARMACOLOGY, V39, P117
171783    BABANY G, 1988, J PHARMACOL EXP THER, V244, P259
171784    BILLINGHAM ME, 1990, PATHOLOGY ORGAN TRAN, P133
171785    BOUBENIDER S, 1997, J NEPHROL, V10, P136
171786    CANAFAX DM, 1987, PHARMACOTHERAPY, V7, S20
171787    CARPENTER CB, 1995, KIDNEY INT S, V50, S40
171788    CHEN BJ, 2001, LEUKEMIA LYMPHOMA, V42, P253
171789    DALLMAN MJ, 1993, CURR OPIN IMMUNOL, V5, P788
171790    DENTON MD, 1999, LANCET, V353, P1083
171791    ELSAWY T, 2002, CURR OPIN IMMUNOL, V14, P562
171792    FAHMY NM, 2003, TRANSPLANTATION, V75, P2044
171793    FIDLER JM, 2002, TRANSPLANTATION, V74, P445
171794    FISHMAN MA, 1994, J THEOR BIOL, V170, P25
171795    FULMER RI, 1963, AM J ANAT, V113, P273
171796    GAO W, 2001, TRANSPLANTATION, V72, P1199
171797    GU WZ, 1998, INT J IMMUNOPHARMACO, V20, P389
171798    GUO JL, 1981, CHINESE MED J, V94, P405
171799    HALL BM, 1991, TRANSPLANTATION, V51, P1141
171800    HIKIM APS, 2000, J ANDROL, V21, P431
171801    HORIGUCHI K, 2002, J HEART LUNG TRANSPL, V21, P1090
171802    JUDD KP, 1971, TRANSPLANTATION, V11, P298
171803    KAHAN BD, 1989, NEW ENGL J MED, V321, P1725
171804    KRAMS SM, 1992, TRANSPLANTATION, V53, P151
171805    KRIEGER NR, 2004, PEDIATR TRANSPLANT, V8, P594
171806    LAKE KD, 1995, J ANTIMICROB CHEMOTH, V36, P11
171807    LEBLOND V, 1995, J CLIN ONCOL, V13, P961
171808    LINDHOLM A, 1990, BRIT J CLIN PHARMACO, V30, P443
171809    LUE YH, 1998, J ANDROL, V19, P479
171810    MATAS AJ, 1994, TRANSPLANTATION, V57, P857
171811    MATAS AJ, 2000, TRANSPLANTATION, V69, P54
171812    MOSMANN TR, 1988, IMMUNOL TODAY, V9, P306
171813    MOSMANN TR, 1996, IMMUNOL TODAY, V17, P138
171814    NICKERSON PW, 1994, KIDNEY INT S, V44, S40
171815    NIKOLOVA Z, 2001, TRANSPLANTATION, V72, P168
171816    PAUL WE, 1994, CELL, V76, P241
171817    POSTON RS, 2004, J INTENSIVE CARE MED, V19, P3
171818    QIN WH, 1983, J TRAD CHIN MED, V3, P131
171819    RAMGOLAM V, 2000, ANN ACAD MED SINGAP, V29, P11
171820    ROSENBERG AS, 1992, ANNU REV IMMUNOL, V10, P333
171821    SUTHANTHIRAN M, 1994, NEW ENGL J MED, V331, P365
171822    TAKEUCHI T, 1992, TRANSPLANTATION, V53, P1281
171823    TANG W, 2005, INT IMMUNOPHARMACOL, V5, P1904
171824    TAO XL, 2000, RHEUM DIS CLIN N AM, V26, P29
171825    WALDMANN TA, 1998, CURR OPIN IMMUNOL, V10, P507
171826    WHITING D, 2004, J IMMUNOL, V172, P7417
171827    WOOD KJ, 1993, EUR J IMMUNOGENET, V20, P439
171828    ZHOU R, 2005, INT IMMUNOPHARMACOL, V5, P1895
171829    ZHOU R, 2006, J PHARMACOL EXP THER, V316, P121
171830 NR 49
171831 TC 0
171832 SN 0041-1337
171833 J9 TRANSPLANTATION
171834 JI Transplantation
171835 PD MAR 27
171836 PY 2006
171837 VL 81
171838 IS 6
171839 BP 927
171840 EP 933
171841 PG 7
171842 SC Immunology; Surgery; Transplantation
171843 GA 027UK
171844 UT ISI:000236440900019
171845 ER
171846 
171847 PT J
171848 AU Hong, J
171849    Zang, YCQ
171850    Nie, H
171851    Zhang, JZ
171852 TI CD4(+) regulatory T cell responses induced by T cell vaccination in
171853    patients with multiple sclerosis
171854 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
171855    AMERICA
171856 DT Article
171857 DE Foxp3; myelin basic protein
171858 ID MYELIN BASIC-PROTEIN; EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS;
171859    ADJUVANT ARTHRITIS; IDENTIFICATION; PEPTIDE; TREGS
171860 AB Immunization with irradiated autologous T cells (T cell vaccination) is
171861    shown to induce regulatory T cell responses that are poorly understood.
171862    In this study, CD4(+) regulatory T cell lines were generated from
171863    patients with multiple sclerosis that received immunization with
171864    irradiated autologous myelin basic protein-reactive T cells. The
171865    resulting CD4(+) regulatory T cell lines had marked inhibition on
171866    autologous myelin basic protein-reactive T cells and displayed two
171867    distinctive patterns distinguishable by the expression of transcription
171868    factor Foxp3 and cytokine profile. The majority of the T cell lines had
171869    high Foxp3 expression and secreted both IFN-gamma and IL-10 as compared
171870    with the other pattern characteristic of low Foxp3 expression and
171871    predominant production of IL-10 but not IFN-gamma. CD4(+) regulatory T
171872    cell lines of both patterns expressed CD25 and reacted with activated
171873    autologous T cells but not resting T cells, irrespective of antigen
171874    specificity of the target T cells. It was evident that they recognized
171875    preferentially a synthetic peptide corresponding to residues 61-73 of
171876    the IL-2 receptor a chain. T cell vaccination correlated with increased
171877    Foxp3 expression and T cell reactivity to peptide 61-73. The findings
171878    have important implications in the understanding of the role of CD4(+)
171879    regulatory T cell response induced by T cell vaccination.
171880 C1 Baylor Coll Med, Dept Neurol, Houston, TX 77030 USA.
171881    Shanghai Jiao Tong Univ, Chinese Acad Sci, Sch Med, Shanghai Inst Biol Sci,Inst Hlth Sci,Joint Immuno, Shanghai 200025, Peoples R China.
171882    Shanghai Jiao Tong Univ, Chinese Acad Sci, Sch Med, Shanghai Inst Biol Sci,Shanghai Inst Immunol, Shanghai 200025, Peoples R China.
171883    Shanghai Univ, E Inst, Shanghai 200025, Peoples R China.
171884 RP Zhang, JZ, Baylor Coll Med, Dept Neurol, Stn NB302, Houston, TX 77030
171885    USA.
171886 EM jzang@bcm.tmc.edu
171887 CR ACHIRON A, 2004, CLIN IMMUNOL, V113, P155
171888    BENNUN A, 1981, NATURE, V292, P60
171889    BUENAFE AC, 2004, J NEUROSCI RES, V76, P129
171890    COHEN IR, 2004, J CLIN INVEST, V114, P1227
171891    CORREALE J, 2000, J NEUROIMMUNOL, V107, P130
171892    ENGELHARD VH, 1994, ANNU REV IMMUNOL, V12, P181
171893    HUAN J, 2005, J NEUROSCI RES, V81, P45
171894    KUMAR V, 2001, TRENDS IMMUNOL, V22, P539
171895    KUMAR V, 2004, J CLIN INVEST, V114, P1222
171896    LIDER O, 1989, J AUTOIMMUN, V2, P87
171897    LOHSE AW, 1989, SCIENCE, V244, P820
171898    MADAER R, 1995, LANCET, V346, P807
171899    MANICI S, 1999, J EXP MED, V189, P871
171900    MIMRAN A, 2004, J CLIN INVEST, V113, P924
171901    MOR F, 1996, J IMMUNOL, V157, P4855
171902    QUINTANA FJ, 2003, J IMMUNOL, V171, P3533
171903    SCHROERS R, 2002, CANCER RES, V62, P2600
171904    VANDERAA A, 2003, CLIN EXP IMMUNOL, V131, P155
171905    VIGLIETTA V, 2004, J EXP MED, V199, P971
171906    ZANG YCQ, 2000, EUR J IMMUNOL, V30, P908
171907    ZANG YCQ, 2000, J IMMUNOL, V164, P4011
171908    ZANG YCQ, 2003, INT IMMUNOL, V15, P1073
171909    ZHANG J, 2002, EXPERT REV VACCINES, V1, P285
171910    ZHANG JW, 1993, SCIENCE, V261, P1451
171911    ZHANG JW, 1995, J IMMUNOL, V155, P5868
171912    ZHANG JZ, 2002, J NEUROL, V249, P212
171913 NR 26
171914 TC 0
171915 SN 0027-8424
171916 J9 PROC NAT ACAD SCI USA
171917 JI Proc. Natl. Acad. Sci. U. S. A.
171918 PD MAR 28
171919 PY 2006
171920 VL 103
171921 IS 13
171922 BP 5024
171923 EP 5029
171924 PG 6
171925 SC Multidisciplinary Sciences
171926 GA 028FO
171927 UT ISI:000236472500043
171928 ER
171929 
171930 PT J
171931 AU An, WK
171932    Qiu, XJ
171933    Jiang, Y
171934    Zhu, ZY
171935 TI Behavior of Coulomb-hydrodynamic explosion of deuterium clusters
171936 SO MODERN PHYSICS LETTERS B
171937 DT Article
171938 DE deuterium cluster; laser pulse; cluster explosion
171939 ID RARE-GAS CLUSTERS; ATOMIC CLUSTERS; NUCLEAR-FUSION; LASER FIELDS;
171940    IONIZATION; DYNAMICS
171941 AB Considering the Coulomb-hydrodynamic explosion induced by the
171942    interaction of a deuterium cluster target with ultra-intensity
171943    femtosecond laser, the mechanism which generates energetic deuterium
171944    nuclei for the fusion has been analyzed. The formulas for expansions of
171945    the deuterium ion cluster, which are driven by the Coulomb-hydrodynamic
171946    explosion, are proposed. Hence the kinetic energies of deuterium nuclei
171947    and the expansion time of deuterium ion cluster have been estimated.
171948 C1 Hunan Inst Sci & Technol, Dept Phys, Yueyang 414000, Peoples R China.
171949    Shanghai Univ, Sch Sci, Dept Phys, Shanghai 200436, Peoples R China.
171950    Chinese Acad Sci, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China.
171951 RP An, WK, Hunan Inst Sci & Technol, Dept Phys, Yueyang 414000, Peoples R
171952    China.
171953 EM anweike12@163.com
171954 CR AUGST S, 1989, PHYS REV LETT, V63, P2212
171955    DITMIRE T, 1997, NATURE, V386, P54
171956    DITMIRE T, 1997, PHYS REV LETT, V78, P2732
171957    DITMIRE T, 1999, NATURE, V398, P489
171958    DOBOSZ S, 1997, PHYS REV A, V56, P2526
171959    KOLLER L, 1999, PHYS REV LETT, V82, P3783
171960    LAST I, 1997, J CHEM PHYS, V107, P6685
171961    LAST I, 1998, J PHYS CHEM A, V102, P9655
171962    LEZIUS M, 1998, PHYS REV LETT, V80, P261
171963    MORSE PM, 1968, THEORETICAL ACOUSTIC
171964    SCHLIPPER R, 1998, PHYS REV LETT, V80, P1194
171965    SHAV YL, 1996, PHYS REV LETT, V77, P3343
171966    SPITZER L, 1967, PHYS FULLY IONIZED G
171967    SWRAND E, 2000, PHYS REV LETT, V85, P2296
171968    ZWEIBACK J, 2000, PHYS REV LETT, V84, P2634
171969 NR 15
171970 TC 0
171971 SN 0217-9849
171972 J9 MOD PHYS LETT B
171973 JI Mod. Phys. Lett. B
171974 PD MAR 10
171975 PY 2006
171976 VL 20
171977 IS 6
171978 BP 289
171979 EP 294
171980 PG 6
171981 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
171982 GA 027JS
171983 UT ISI:000236412300003
171984 ER
171985 
171986 PT J
171987 AU Jing, C
171988    Yang, Y
171989    Cao, SX
171990    Zhang, JC
171991 TI Electronic structure and magnetism of Mn1-xPdx alloys
171992 SO MODERN PHYSICS LETTERS B
171993 DT Article
171994 DE LAPW; electronic structure; magnetism; Mn1-xPdx alloys
171995 ID EPITAXIAL-GROWTH; PDMN ALLOYS; FERROMAGNETISM; MAGNETIZATION;
171996    TEMPERATURE; BILAYERS; MNPD3; BCC; MN
171997 AB An ab initio linearized augmented plane-wave method has been employed
171998    to calculate the electronic and magnetic structures of both
171999    face-centered-cubic and body-centered-cubic Mn1-xPdx alloys with x = 0,
172000    0.25, 0.5, 0.75 and 1, respectively. The calculated result for fcc
172001    Mn1-xPdx alloys at different concentrations shows that fcc Mn1-xPdx
172002    alloys with x = 0.5, 0.75 is ferromagnetic ordering. With low Pd
172003    concentration and pure Mn, it presents ferrimagnetic and anti fer
172004    romagnetic ordering, respectively. As expected, pure Pd is paramagnetic
172005    ordering. For bcc Mn1-xPdx alloys with x = 0, 0.5 and 0.75, the
172006    calculated result indicates that these alloys are ferromagnetic. For
172007    the Nin-rich alloy and pure Pd, however, it presents ferrimagnetic and
172008    paramagnetic ordering, respectively.
172009 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
172010 RP Jing, C, Shanghai Univ, Dept Phys, Shangda Rd 99, Shanghai 200436,
172011    Peoples R China.
172012 EM cjing@staff.shu.edu.cn
172013 CR BLOMQVIST P, 2004, J APPL PHYS, V95, P8019
172014    BLOMQVIST P, 2004, J MAGN MAGN MATER 2, V272, P1237
172015    CABLE JW, 1962, PHYS REV, V128, P2118
172016    CHENG N, 2001, J APPL PHYS 2, V89, P6597
172017    FRY JL, 1987, PHYS REV B, V36, P868
172018    FUSTER G, 1988, PHYS REV B, V38, P423
172019    HEDIN L, 1971, J PHYS C SOLID STATE, V4, P2064
172020    HO SC, 1982, J APPL PHYS, V53, P2235
172021    JIN X, 1994, APPL PHYS LETT, V65, P3078
172022    JING C, 2003, PHYS REV B, V68
172023    MORRUZZI VL, 1989, PHYS REV B, V39, P471
172024    NAUTIYAL T, 1989, J PHYS-CONDENS MAT, V1, P2211
172025    PARRA RE, 1991, J APPL PHYS 2B, V69, P6138
172026    PARRA RE, 1996, J APPL PHYS 2A, V79, P5242
172027    RAO CN, 1964, CAN J PHYS, V42, P1336
172028    RASHID MH, 1984, J APPL PHYS, V55, P1735
172029    ROOS BFP, 1999, J MAGN MAGN MATER, V198, P725
172030    STAR WM, 1975, PHYS REV B, V12, P2690
172031    THOMPSON JR, 1981, J APPL PHYS, V52, P1782
172032 NR 19
172033 TC 0
172034 SN 0217-9849
172035 J9 MOD PHYS LETT B
172036 JI Mod. Phys. Lett. B
172037 PD MAR 10
172038 PY 2006
172039 VL 20
172040 IS 6
172041 BP 305
172042 EP 314
172043 PG 10
172044 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
172045 GA 027JS
172046 UT ISI:000236412300005
172047 ER
172048 
172049 PT J
172050 AU Yang, QH
172051    Zeng, ZJ
172052    Xu, J
172053    Zhang, HW
172054    Ding, J
172055 TI Effect of La2O3 on microstructure and transmittance of transparent
172056    alumina ceramics
172057 SO JOURNAL OF RARE EARTHS
172058 DT Article
172059 DE inorganic nonmetallic material; alumina; transparent ceramics;
172060    microstructure; La2O3; rare earths
172061 ID AL2O3 CERAMICS
172062 AB Optically transparent alumina ceramics were fabricated by conventional
172063    process and sintered without pressure in H-2 atmosphere. The results
172064    indicate that relative densities of alumina specimens increase to
172065    theoretical densities (T. D.) with increasing content of La2O3. With
172066    increasing holding time during sintering, much less pores and larger
172067    grains were found in the sintered alumina samples. Higher transmittance
172068    was achieved in alumina codoped with MgO and La2O3 as compared with
172069    that doped with MgO only. The total-transmittance of alumina sample is
172070    up to 86% at a wavelength range of 300 - 800 nm.
172071 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
172072    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
172073 RP Yang, QH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
172074    China.
172075 EM yangqiuhongcn@yahoo.com.cn
172076 CR BERRY KA, 1986, J AM CERAM SOC, V69, P143
172077    CHENG JP, 2002, MATER LETT, V56, P587
172078    LI Y, 1995, CHINESE PHYS LETT, V12, P393
172079    LU K, 2000, APPL PHYS, V71, P469
172080    MOULTON PF, 1986, J OPT SOC AM B, V3, P125
172081    MUROTANI H, 2000, JPN J APPL PHYS 1, V39, P2748
172082    SHAW NJ, 1986, J AM CERAM SOC, V69, P107
172083    SU CH, 1998, J CHINESE CERAMICS S, V26, P802
172084    VYDRIK GA, 1987, TRANSPARENT CERAMICS, P22
172085    YAMMAMOTO N, 1972, AM CERAM SOC B, V51, P326
172086    YANG QH, 2004, J FUNC MAT DEV, V10, P299
172087 NR 11
172088 TC 0
172089 SN 1002-0721
172090 J9 J RARE EARTH
172091 JI J. Rare Earths
172092 PD FEB
172093 PY 2006
172094 VL 24
172095 IS 1
172096 BP 72
172097 EP 75
172098 PG 4
172099 SC Chemistry, Applied
172100 GA 027RW
172101 UT ISI:000236434100014
172102 ER
172103 
172104 PT J
172105 AU Chen, SL
172106    Zhang, JY
172107    Lu, XG
172108    Chou, KC
172109    Chang, YA
172110 TI Application of Graham scan algorithm in binary phase diagram calculation
172111 SO JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION
172112 DT Article
172113 DE binary system; computational studies; phase diagram; thermodynamic
172114    stability
172115 ID PANDAT
172116 AB Graham scan, a computational geometric algorithm for finding a
172117    two-dimensional convex hull, is introduced to calculate binary phase
172118    diagrams. This algorithm is modified and applied to find the convex
172119    hull of discrete points in the space of Gibbs energy vs mol fraction.
172120    The modified Graham scan algorithm has a very low computational cost,
172121    which improves efficiency in binary phase diagram calculation.
172122 C1 CompuTherm LLC, Madison, WI 53719 USA.
172123    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
172124    Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA.
172125 RP Chen, SL, CompuTherm LLC, 437 S Yellowstone Dr, Madison, WI 53719 USA.
172126 EM chen@chorus.net
172127 CR CHEN SL, 1993, CALPHAD, V17, P237
172128    CHEN SL, 1993, CALPHAD, V17, P297
172129    CHEN SL, 2002, CALPHAD, V26, P175
172130    CHEN SL, 2003, JOM-J MIN MET MAT S, V55, P48
172131    CORMEN TH, 1989, INTRO ALGORITHMS
172132    GRAHAM RL, 1972, INFORM PROCESS LETT, V1, P132
172133    LASZLO MJ, 1996, COMPUTATIONAL GEOMET
172134    OROURKE J, 1993, COMPUTATIONAL GEOMET
172135    PREPARATA FP, 1988, COMPUTATIONAL GEOMET
172136 NR 9
172137 TC 0
172138 SN 1547-7037
172139 J9 J PHASE EQUILIB DIFFUS
172140 JI J. Phase Equilib. Diffus.
172141 PD APR
172142 PY 2006
172143 VL 27
172144 IS 2
172145 BP 121
172146 EP 125
172147 PG 5
172148 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
172149    Metallurgical Engineering
172150 GA 027QM
172151 UT ISI:000236430200002
172152 ER
172153 
172154 PT J
172155 AU Yu, LM
172156    Cao, SX
172157    Liu, YS
172158    Wang, JJ
172159    Jing, C
172160    Zhang, JC
172161 TI Thermal and structural analysis on the nanocrystalline NiCuZn ferrite
172162    synthesis in different atmospheres
172163 SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
172164 DT Article
172165 DE thermal analysis; magnetic materials; sol-gel method; auto-combustion
172166 ID CITRATE PRECURSOR METHOD; NICKEL-ZINC FERRITES; MAGNETIC-PROPERTIES;
172167    NIZN FERRITES; INITIAL PERMEABILITY; AUTO-COMBUSTION; POWDERS
172168 AB The formation mechanisms of nanocrystalline Ni0.35Zn0.57Cu0.11Fe1.97O4
172169    (NCZF) ferrite prepared by sol-gel combustion method were investigated
172170    via thermal analysis (thermogravimetry (TG) and differential
172171    thermogravimetry (DTG)) techniques. The thermal decompositions in the
172172    air and nitrogen atmospheres were studied in the temperature range from
172173    20 to 700 degrees C, respectively. The structure and magnetic
172174    properties were studied by X-ray diffraction (XRD) and vibrating sample
172175    magnetometer (VSM) techniques. The results show that the thermal
172176    decomposition of the gel can be classified into two parts: below 222
172177    degrees C, it experiences a similar reaction as that of nitrifying
172178    substances decomposition. Above 222 degrees C, with hydroxyl water
172179    slowly deprived from goethite or lepidocrocite, a solid-to-solid
172180    reaction process is carried on in forming nanocrystalline powder. This
172181    reaction process is faster in flowing air than in flowing nitrogen
172182    atmosphere. A complete spinel construction of NiCuZn ferrite
172183    nanocrystalline may form at the temperature 481 degrees C in flowing
172184    air. The powder obtained in flowing nitrogen atmosphere presented a
172185    larger saturation magnetization, which is described as the
172186    contributions of some magnetite and Fe-N compounds. (c) 2005 Elsevier
172187    B.V. All rights reserved.
172188 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
172189 RP Yu, LM, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
172190 EM lmyu@mail.shu.edu.cn
172191 CR ALBUQUERQUE AS, 2000, J APPL PHYS 1, V87, P4352
172192    DIAS A, 1997, J PHYS CHEM SOLIDS, V58, P543
172193    HAN DH, 1994, J MAGN MAGN MATER, V136, P176
172194    KIM CS, 1999, J APPL PHYS 2A, V85, P5223
172195    MARCILLY C, 1970, J AM CERAM SOC, V53, P56
172196    SHAHEEN WM, 2002, THERMOCHIM ACTA, V381, P153
172197    TAO Z, 2002, J FINE CHEM, V19, P707
172198    VERMA A, 1999, J MAGN MAGN MATER, V192, P271
172199    VERMA A, 1999, MAT SCI ENG B-SOLID, V60, P156
172200    VERMA A, 2000, J MAGN MAGN MATER, V208, P13
172201    VERMA A, 2000, J MAGN MAGN MATER, V210, P274
172202    WU KH, 2004, J MAGN MAGN MATER, V269, P150
172203    YU LM, 2005, J MAGN MAGN MATER, V288, P54
172204    YUE ZX, 1999, MAT SCI ENG B-SOLID, V64, P68
172205    YUE ZX, 2004, J MAGN MAGN MATER, V270, P216
172206    ZHANG HG, 2000, J MAGN MAGN MATER, V213, P304
172207    ZHENHAI L, 2000, ANAL CHEM HDB, V8, P268
172208 NR 17
172209 TC 0
172210 SN 0304-8853
172211 J9 J MAGN MAGN MATER
172212 JI J. Magn. Magn. Mater.
172213 PD JUN
172214 PY 2006
172215 VL 301
172216 IS 1
172217 BP 100
172218 EP 106
172219 PG 7
172220 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
172221 GA 028HM
172222 UT ISI:000236477800014
172223 ER
172224 
172225 PT J
172226 AU Cao, GX
172227    Zhang, JC
172228    Wang, SP
172229    Yu, J
172230    Jing, C
172231    Cao, SX
172232    Shen, XC
172233 TI Reentrant spin glass behavior in CE-type AFM Pr0.5Ca0.5MnO3 manganite
172234 SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
172235 DT Article
172236 DE reentrant spin glass; half-doping CMR system; FM cluster; phase
172237    separation
172238 ID PHASE-SEPARATION; MAGNETIC-PROPERTIES; COLOSSAL MAGNETORESISTANCE;
172239    FERROMAGNETIC PHASE; LA0.5CA0.5MNO3; TRANSITION; STATE
172240 AB The magnetic and transport properties of Pr0.5Ca0.5MnO3 with a CE-type
172241    antiferromagnetic structure were systematically investigated. A
172242    distinctive sequence of multiple magnetic transitions is found:
172243    paramagnetic (PM)-ferromagnetic (FM)-antiferromagnetic (AFM)-spin glass
172244    (SG) transitions. The results show that the low-temperature SG state is
172245    different from a conventional SG but has a reentrant character. The
172246    reentrant SG behavior accompanied with colossal magnetoresistance might
172247    be due to the competing interaction between FM and the CE-type AFM
172248    matrix. Also, this phase may be related to the disorder due to the
172249    variance of tolerance factor I and characteristic parameter sigma(2)
172250    (reflecting A-site cation size variance). Meanwhile, this kind of
172251    reentrant SG state exists in most manganites and it shows a complex
172252    magnetic ground state. The present experimental data establishes that
172253    Pr0.5Ca0.5MnO3 compound shows the coexistence of FM clusters and SG
172254    clusters in the background of an AFM matrix. Here, all the rich variety
172255    of phases can be explained by the bandgap modified locally by strain
172256    within each grain. At the same time, the present results indicate also
172257    that Pr0.5Ca0.5MnO3 has a ground state, which shows the presence of
172258    some FM clusters in the background of the remaining region in a spin
172259    frozen state. The RSG phenomena should be a universal characteristic of
172260    manganites with CE-type AFM structure and it is very sensitive to the
172261    subtle disorder. (c) 2005 Elsevier B.V. All rights reserved.
172262 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
172263 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
172264 EM jczhang@staff.shu.edu.cn
172265 CR CAMPBELL IA, 1983, PHYS REV LETT, V50, P1615
172266    CHEN CH, 1996, PHYS REV LETT, V76, P4042
172267    DETERESA JM, 1996, PHYS REV LETT, V76, P3392
172268    DHO J, 2002, PHYS REV LETT, V89, P27202
172269    DHO JG, 2003, PHYS REV B, V67
172270    ELLIOT S, 1996, PHYS CHEM SOLIDS, CH6
172271    HERVIEU M, 1999, PHYS REV B, V60, P726
172272    HWANG HY, 1995, PHYS REV LETT, V75, P914
172273    JONASON K, 1996, PHYS REV LETT, V77, P2562
172274    KAJIMOTO R, 2004, PHYS REV B, V69
172275    KIMURA T, 1999, PHYS REV LETT, V83, P3940
172276    LEVY P, 2000, PHYS REV B, V62, P6437
172277    LOUDON JC, 2002, NATURE, V420, P797
172278    MAIGNAN A, 1997, Z PHYS B CON MAT, V104, P21
172279    MITRA C, 1999, J MAGN MAGN MATER, V192, P130
172280    MOREO A, 1999, SCIENCE, V283, P2034
172281    MYDOSH JA, 1993, SPIN GLASSES EXPT IN
172282    SHENG L, 1997, PHYS REV LETT, V79, P1710
172283    SUDYOADSUK T, 2004, J PHYS-CONDENS MAT, V16, P3691
172284    TERAI T, 1998, PHYS REV B, V58, P14908
172285    TERAI T, 2000, PHYS REV B, V61, P3488
172286    UEHARA M, 1999, NATURE, V399, P560
172287 NR 22
172288 TC 0
172289 SN 0304-8853
172290 J9 J MAGN MAGN MATER
172291 JI J. Magn. Magn. Mater.
172292 PD JUN
172293 PY 2006
172294 VL 301
172295 IS 1
172296 BP 147
172297 EP 154
172298 PG 8
172299 SC Materials Science, Multidisciplinary; Physics, Condensed Matter
172300 GA 028HM
172301 UT ISI:000236477800020
172302 ER
172303 
172304 PT J
172305 AU Liu, WN
172306    Xiao, JK
172307    Zhang, S
172308    Li, Y
172309 TI A novel PBG planar inverted-F antenna for wearable system
172310 SO JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS
172311 DT Article
172312 ID PIFA
172313 AB In this paper, a novel PBG planar inverted-F antenna (PIFA) is
172314    presented. The PBG structure which is stuck on the back of the Teflon
172315    substrate (epsilon(r) = 2.65) can suppress the surface waves
172316    effectively, the simulated impedance bandwidth of the novel PBG PIFA is
172317    27.5% (1.984 GHz-2.621 GHz), increased 2.1% than that of the regular
172318    PIFA, and the resonant frequency is decreased at the same time. It can
172319    be proved that the size of the antenna is reduced 10.6%. The measured
172320    impedance bandwidth is 40%, and it shows that the novel PBG PIFA is
172321    more effective and useful. The simulated radiation patterns at the two
172322    principle planes of the novel PBG PIFA are narrower than that of the
172323    regular PIFA, so the performance of the antenna is improved. The novel
172324    PBG PIFA can be applied in some wireless communication systems such as
172325    the WLAN2.4 and Bluetooth wireless technology system etc.
172326 C1 Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
172327 RP Liu, WN, Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
172328 CR ABBOUD F, 1988, P I ELECT ENG H, V135, P323
172329    ARKKO AT, 2001, IEE 11 INT C ANT PRO, V2, P651
172330    CARVER KR, 1981, IEEE T ANTENN PROPAG, V29, P1
172331    DOU WP, 2000, MICROW OPT TECHN LET, V27, P58
172332    GONZALO R, 1999, IEEE T MICROW THEORY, V47, P2131
172333    IKONEN P, 2005, MICROW OPT TECHN LET, V46, P205
172334    JAMES JR, 1981, IEEE ELECTROMAGNETIC, V12
172335    PUES HF, 1989, IEEE T ANTENN PROPAG, V37, P1345
172336    QIAN Y, 2000, AP2000 MILL C ANT PR
172337    ROWELL CR, 1997, IEEE T ANTENN PROPAG, V45, P837
172338    YANG FP, 1999, IEEE T MTT, V47
172339 NR 11
172340 TC 0
172341 SN 0920-5071
172342 J9 J ELECTROMAGNET WAVE APPLICAT
172343 JI J. Electromagn. Waves Appl.
172344 PY 2006
172345 VL 20
172346 IS 5
172347 BP 615
172348 EP 622
172349 PG 8
172350 SC Engineering, Electrical & Electronic; Physics, Applied; Physics,
172351    Mathematical
172352 GA 028CC
172353 UT ISI:000236462200004
172354 ER
172355 
172356 PT J
172357 AU Xu, KY
172358    Guo, XN
172359    Ru, CQ
172360 TI Vibration of a double-walled carbon nanotube aroused by nonlinear
172361    intertube van der Waals forces
172362 SO JOURNAL OF APPLIED PHYSICS
172363 DT Article
172364 ID MECHANICS; FRICTION
172365 AB Vibration of a double-walled carbon nanotube aroused by nonlinear
172366    interlayer van der Waals (vdW) forces is studied. The interlayer vdW
172367    forces as a nonlinear function are described by the interlayer spacing.
172368    The inner and outer carbon nanotubes are modeled as two individual
172369    elastic beams. Detailed results are demonstrated for double-walled
172370    carbon nanotubes (DWCNTs) with an aspect ratios of 10 and 20, based on
172371    the simply supported, fixed, or free end conditions, respectively.
172372    Harmonic balance method is used to analyze the relation between the
172373    amplitudes of deflection and the frequencies of coaxial and noncoaxial
172374    free vibrations. Our results indicate that the nonlinear factors of vdW
172375    forces have little effect on the coaxial free vibration, and that the
172376    deflection amplitudes increase rapidly with the increasing frequency,
172377    which are almost the same with those of the linear free vibration. On
172378    the other hand, the nonlinear factors of vdW forces have a great effect
172379    on noncoaxial free vibration. The relation between the deflection
172380    amplitudes and the frequencies shows nonlinear trend, which indicates
172381    that the aspect ratio and end condition almost have no affect on the
172382    noncoaxial amplitudes of DWCNTs.
172383 C1 Shanghai Univ, Dept Mech, Shanghai Inst Appl Math & Mech, Shanghai 200444, Peoples R China.
172384    Univ Alberta, Dept Mech Engn, Edmonton, AB T6G 2G8, Canada.
172385 RP Xu, KY, Shanghai Univ, Dept Mech, Shanghai Inst Appl Math & Mech, 99
172386    Shangda Rd, Shanghai 200444, Peoples R China.
172387 EM kyxu@staff.shu.edu.cn
172388 CR AHLSKOG M, 2001, J LOW TEMP PHYS, V124, P335
172389    BISHOP RED, 1979, MECH VIBRATION
172390    CUMINGS J, 2000, SCIENCE, V289, P602
172391    DAI HJ, 1996, NATURE, V384, P147
172392    DEQUESNES M, 2002, NANOTECHNOLOGY, V13, P120
172393    HARIK VM, 2001, SOLID STATE COMMUN, V120, P331
172394    ISHIKAWA M, 2002, APPL SURF SCI, V188, P456
172395    KIM P, 1999, SCIENCE, V286, P2148
172396    LI CY, 2004, APPL PHYS LETT, V84, P121
172397    LIU YZ, 2001, NONLINEAR VIBRATIONS
172398    PONCHARAL P, 1999, SCIENCE, V283, P1513
172399    POSTMA HWC, 2001, SCIENCE, V293, P76
172400    QIAN D, 2002, APPL MECH REV, V55, P495
172401    ROSCHIER L, 2001, APPL PHYS LETT, V78, P3295
172402    RU CQ, 2000, PHYS REV B, V62, P16962
172403    RU CQ, 2004, ENCY NANOSCIENCE NAN, V2, P731
172404    RUECKES T, 2000, SCIENCE, V289, P94
172405    SNOW ES, 2002, APPL PHYS LETT, V80, P2002
172406    THOSTENSON ET, 2001, COMPOS SCI TECHNOL, V61, P1899
172407    TREACY MMJ, 1996, NATURE, V381, P678
172408    WONG EW, 1997, SCIENCE, V277, P1971
172409    YOON J, 2002, PHYS REV B, V66
172410    YOON J, 2005, J APPL MECH-T ASME, V72, P10
172411    ZHAO Y, 2003, PHYS REV LETT, V91
172412 NR 24
172413 TC 0
172414 SN 0021-8979
172415 J9 J APPL PHYS
172416 JI J. Appl. Phys.
172417 PD MAR 15
172418 PY 2006
172419 VL 99
172420 IS 6
172421 AR 064303
172422 DI ARTN 064303
172423 PG 7
172424 SC Physics, Applied
172425 GA 028CR
172426 UT ISI:000236464400054
172427 ER
172428 
172429 PT J
172430 AU Li, Q
172431    Chou, KC
172432    Xu, KD
172433    Jiang, LJ
172434    Lin, Q
172435    Lin, GW
172436    Lu, XG
172437    Zhang, JY
172438 TI Hydrogen absorption and desorption characteristics in the
172439    La0.5Ni1.5Mg17 prepared by hydriding combustion synthesis
172440 SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
172441 DT Article
172442 DE Mg-based hydrogen storage alloys; hydriding combustion synthesis; H/D
172443    kinetics; La0.5Ni1.5Mg17 alloy
172444 ID MAGNESIUM; KINETICS; STORAGE; ALLOYS; MG; COMPOSITES
172445 AB The La0.5Ni1.5Mg17 alloy prepared by hydriding combustion synthesis
172446    (HCS) was investigated by an isovolumetric method and X-ray diffraction
172447    and this alloy has a large hydrogen storage capacity with good
172448    hydriding/dehydriding (H/D) kinetics. The kinetics of hydrogen
172449    absorption/desorption (A/D) in the two-phase (alpha-beta) region has
172450    been studied between 523 and 573 K under approximately isobaric
172451    conditions and the experimental data were analyzed to find the kinetics
172452    mechanisms for both the H/D processes. It is shown that the
172453    rate-controlling step of the H/D processes is the diffusion of
172454    hydrogen, due to the good agreement between the experimental results
172455    and calculated curves using a simple new kinetic model. The activation
172456    energies are calculated to be 86.8 kJ/mol H-2 for absorption and 84.9
172457    kJ/mol H-2 for desorption, which were much smaller than that of MgH2,
172458    and can be attributed to the La and Ni additions. (c) 2005
172459    International Association for Hydrogen Energy. Published by Elsevier
172460    Ltd. All rights reserved.
172461 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
172462    Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China.
172463    Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China.
172464 RP Li, Q, Shanghai Univ, Sch Mat Sci & Engn, 275 Mailbox,148 Yanchang Rd,
172465    Shanghai 200072, Peoples R China.
172466 EM lq75@263.net
172467 CR CHOU KC, 2005, INT J HYDROGEN ENERG, V30, P301
172468    FERNANDEZ JF, 2002, J ALLOY COMPD, V340, P189
172469    HUOT J, 1999, J ALLOY COMPD, V293, P495
172470    IMAMURA H, 1995, J ALLOY COMPD, V231, P810
172471    JACOBSON N, 2002, COMP MATER SCI, V24, P273
172472    KURUSSANOVA M, 1988, J MATER SCI, V23, P2247
172473    LI Q, 2003, J ALLOY COMPD, V359, P128
172474    LI Q, 2004, J ALLOY COMPD, V368, P101
172475    LI Q, 2004, J MATER SCI, V39, P61
172476    LIANG G, 2000, J ALLOY COMPD, V297, P261
172477    LIANG G, 2000, J ALLOY COMPD, V305, P239
172478    LIANG GX, 1995, J ALLOY COMPD, V223, P111
172479    PAL K, 1997, INT J HYDROGEN ENERG, V22, P903
172480    SPASSOV T, 2002, J ALLOY COMPD, V334, P219
172481    TERZIEVA M, 1995, INT J HYDROGEN ENERG, V20, P53
172482    TSUSHIO Y, 1999, J ALLOY COMPD, V285, P298
172483    YIN JT, 2001, MATER TRANS, V42, P712
172484    ZALUSKA A, 1999, J ALLOY COMPD, V288, P217
172485    ZHU M, 2002, J ALLOY COMPD, V330, P708
172486 NR 19
172487 TC 0
172488 SN 0360-3199
172489 J9 INT J HYDROGEN ENERG
172490 JI Int. J. Hydrog. Energy
172491 PD MAR
172492 PY 2006
172493 VL 31
172494 IS 4
172495 BP 497
172496 EP 503
172497 PG 7
172498 SC Physics, Atomic, Molecular & Chemical; Energy & Fuels; Environmental
172499    Sciences
172500 GA 028RU
172501 UT ISI:000236507000008
172502 ER
172503 
172504 PT J
172505 AU Fei, MR
172506    Yi, J
172507    Hu, HS
172508 TI Robust stability analysis of an uncertain nonlinear networked control
172509    system category
172510 SO INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS
172511 DT Article
172512 DE networked control system; nonlinear controlled object; robust
172513    asymptotic stability; uncertain network-induced delay
172514 ID DELAY
172515 AB In the networked control system (NCS), the uncertain network-induced
172516    delay and nonlinear controlled object are the main problems, because
172517    they can degrade the performance of the control system and even
172518    destabilize it. In this paper, a class of uncertain and nonlinear
172519    networked control systems is discussed and its sufficient condition for
172520    the robust asymptotic stability is presented. Further, the maximum
172521    network-induced delay that insures the system stability is obtained.
172522    The Lyapunov and LMI theorems are employed to investigate the problem.
172523    The result of an illustrative example shows that the robust stability
172524    analysis is sufficient.
172525 C1 Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China.
172526    Univ Essex, Dept Comp Sci, Colchester CO4 3SQ, Essex, England.
172527 RP Fei, MR, Shanghai Univ, Sch Mechatron Engn & Automat, 149 Yanchang Rd,
172528    Shanghai 200072, Peoples R China.
172529 EM mrfei@staff.shu.edu.cn
172530    ggdyj@tom.com
172531    hhu@essex.ac.uk
172532 CR BRANICKY MS, 1997, P IEEE C DEC CONTR S, P120
172533    BRANICKY MS, 2000, P AMER CONTR CONF, P2352
172534    FENG YK, 2001, MACROMOL BIOSCI, V1, P66
172535    KIM DS, 2001, P IFAC NTCC      NOV, P77
172536    KIM DS, 2003, CONTROL ENG PRACT, V11, P1301
172537    LIN H, 2003, P 42 IEEE C DEC CONT
172538    MEI S, 2003, MODERN ROBUST CONTRO
172539    PARK HS, 2002, IEEE T CONTR SYST T, V10, P318
172540    WALSH GC, 2002, IEEE T CONTR SYST T, V10, P438
172541    YI J, 2004, P WCICA
172542    ZHANG JZ, 2001, MAT SCI ENG B-SOLID, V84, P200
172543    ZHANG W, 2001, P ALL C COMM CONTR C
172544 NR 12
172545 TC 0
172546 SN 1598-6446
172547 J9 INT J CONTROL AUTOM SYST
172548 JI Int. J. Control  Autom. Syst.
172549 PD APR
172550 PY 2006
172551 VL 4
172552 IS 2
172553 BP 172
172554 EP 177
172555 PG 6
172556 SC Automation & Control Systems
172557 GA 027EU
172558 UT ISI:000236397500006
172559 ER
172560 
172561 PT J
172562 AU Wang, HX
172563    Wu, H
172564    Ho, CT
172565    Weng, XC
172566 TI Cocoa butter equivalent from enzymatic interesterification of tea seed
172567    oil and fatty acid methyl esters
172568 SO FOOD CHEMISTRY
172569 DT Article
172570 ID CANDIDA-RUGOSA; LIPASE; IMMOBILIZATION
172571 AB Cocoa butter equivalent (CBE) was prepared by interesterification of
172572    tea seed oil, methyl palmitate and methyl stearate with lipase. The
172573    lipase was immobilized on macroporous resin selected from eight
172574    carriers. The rate of reaction of lipase immobilized on macroporous
172575    resin was 6.9 times higher than that of the free enzyme. After
172576    repeating application five times, 83.50% activity, of the immobilized
172577    lipase, was retained. Factors such as reaction time, temperature, water
172578    content, enzyme load and substrate ratio were studied. Three major
172579    acyls (palmitoyl, oleoyl and stearoyl) in triacylglycerols of the
172580    product were similar to those of cocoa butter. The melting range and
172581    dilatation-temperature curves of the prepared CBE were close to that of
172582    the cocoa butter. (c) 2005 Elsevier Ltd. All rights reserved.
172583 C1 Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China.
172584    Rutgers State Univ, Dept Food Sci, New Brunswick, NJ 08901 USA.
172585 RP Weng, XC, Shanghai Univ, Sch Life Sci, 99 Shangda Rd, Shanghai 200436,
172586    Peoples R China.
172587 EM weng_xinchu@sina.com
172588 CR BAGI K, 1999, BIOTECHNOL TECH, V13, P309
172589    GODERIS HL, 1990, BIOTECHNOL BIOENG, V130, P256
172590    GULAY B, 2002, J FOOD ENG, V52, P367
172591    HAN GQ, 1995, FAT OIL CHEM, P333
172592    MOJOVIC L, 1998, APPL MICROBIOL BIOT, V50, P676
172593    MORENO JM, 1997, ENZYME MICROB TECH, V21, P552
172594    PAQUOT C, 1979, STANDARD METHODS ANA, P44
172595    RONALD LB, 1961, 2975060, US
172596    SONNTAG NOV, 1979, BAILEYS IND OIL FAT, V1, P406
172597    TANAKA Y, 1987, 4705692, US
172598    ZORICA K, 1998, ENZYME MICROB TECHNO, V22, P275
172599 NR 11
172600 TC 0
172601 SN 0308-8146
172602 J9 FOOD CHEM
172603 JI Food Chem.
172604 PD AUG
172605 PY 2006
172606 VL 97
172607 IS 4
172608 BP 661
172609 EP 665
172610 PG 5
172611 SC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics
172612 GA 026TN
172613 UT ISI:000236365300013
172614 ER
172615 
172616 PT J
172617 AU Xia, TC
172618    You, FC
172619 TI A generalized MKdV hierarchy, tri-Hamiltonian structure, higher-order
172620    binary constrained flows and its integrable couplings system
172621 SO CHAOS SOLITONS & FRACTALS
172622 DT Article
172623 ID AKNS HIERARCHY; PERTURBATION EQUATIONS; EVOLUTION-EQUATIONS;
172624    LIE-ALGEBRAS; FACTORIZATION; SYMMETRIES
172625 AB A subalgebra of higher-dimension loop algebra 42 is constructed, from
172626    which a new 3 x 3 isospectral problem is designed. By making use of
172627    Tu's scheme, an integrable Hamiltonian hierarchy of equations in the
172628    sense of Liouville is obtained, which possesses tri-Hamiltonian
172629    structure. As reduction cases of the hierarchy presented in this paper,
172630    the generalized MKdV equation is engendered. By establishing binary
172631    symmetric constraints, three constrained flows of the hierarchy are
172632    presented, which are then reduced to Hamiltonian systems. Finally, an
172633    integrable coupling system is obtained by constructing a high-dimension
172634    loop algebra. (c) 2005 Elsevier Ltd. All rights reserved.
172635 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
172636    Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China.
172637 RP Xia, TC, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
172638 EM xiatc@yahoo.com.cn
172639    fcyou2008@yahoo.com.cn
172640 CR CAO CW, 1990, SCI CHINA SER A, V33, P528
172641    FAN EG, 2000, J MATH PHYS, V41, P7769
172642    GELFAND IM, 1981, FUNCT ANAL APPL, V15, P173
172643    GU CH, 1990, SOLITON THEORY ITS A
172644    GUO F, 2002, J SYS SCI MATH SCI, V22, P36
172645    GUO FK, 1997, ACTA MATH SINICA, V40, P801
172646    GUO FK, 2002, ACTA PHYS SIN-CH ED, V51, P951
172647    HU XB, 1994, J PHYS A, V27, P2497
172648    LAKSHMANAN M, 1985, J MATH PHYS, V26, P1189
172649    LI YS, 2000, PHYS LETT A, V272, P245
172650    MA WX, 1990, J PHYS A-MATH GEN, V23, P2707
172651    MA WX, 1994, PHYS LETT A, V185, P277
172652    MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
172653    MA WX, 1996, PHYS LETT A, V213, P49
172654    MAGRI F, 1978, J MATH PHYS, V19, P1156
172655    MAGRI F, 1980, LECT NOTES PHYS, V120
172656    NATKU Y, 1987, J MATH PHYS, V28, P2579
172657    OLVER PJ, 1986, APPL LIE GROUPS DIFF
172658    TU GZ, 1989, J MATH PHYS, V30, P330
172659    WADATI M, 1973, J PHYS SOC JPN, V34, P1289
172660    XIA TC, 2005, CHAOS SOLITON FRACT, V23, P1911
172661    ZENG YB, 1991, PHYS LETT A, V160, P541
172662    ZENG YB, 1994, PHYSICA D, V73, P171
172663    ZENG YB, 1997, J PHYS A-MATH GEN, V30, P3719
172664    ZHANG YF, 2002, J MATH PHYS, V43, P466
172665    ZHANG YF, 2002, PHYS LETT A, V299, P543
172666    ZHOU ZX, 2002, J PHYS SOC JPN, V71, P1857
172667 NR 27
172668 TC 0
172669 SN 0960-0779
172670 J9 CHAOS SOLITON FRACTAL
172671 JI Chaos Solitons Fractals
172672 PD MAY
172673 PY 2006
172674 VL 28
172675 IS 4
172676 BP 938
172677 EP 948
172678 PG 11
172679 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
172680 GA 028JT
172681 UT ISI:000236484200011
172682 ER
172683 
172684 PT J
172685 AU Chen, LQ
172686    Chen, H
172687    Zu, JW
172688 TI Equilibrium and bifurcation of varying cross-section microcantilevers
172689    subject to the atomic force
172690 SO CHAOS SOLITONS & FRACTALS
172691 DT Article
172692 ID MICROSCOPE CANTILEVERS
172693 AB This paper treats a microcantilever with varying cross-section subject
172694    to interatomic force derived from the Lennard-Jones potential. Such a
172695    microcantilever may be used in the atomic force microscope. The
172696    equilibrium configurations are calculated via the Bernoulli-Euler beam
172697    theory. The effect of the microcantilever length and its working
172698    distance from the sample on the number and the stability of the
172699    equilibrium configurations are analyzed via the Lagrange-Dirichlet
172700    theorem. (c) 2005 Published by Elsevier Ltd.
172701 C1 Shanghai Univ, Dept Mech, Shanghai 200444, Peoples R China.
172702    Shanghai Inst Appl Math & Mech, Shanghai 200070, Peoples R China.
172703    Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada.
172704 RP Chen, LQ, Shanghai Univ, Dept Mech, Shanghai 200444, Peoples R China.
172705 EM lqchen@staff.shu.edu.cn
172706 CR BINNIG G, 1986, PHYS REV LETT, V56, P930
172707    ISRAELACHVILI JN, 1985, INTERMOLECULAR SURFA
172708    MORITA S, 2002, NONCONTACT ATOMIC FO
172709    RUTZEL S, 2003, P ROY SOC LOND A MAT, V459, P1925
172710    SADER JE, 1995, REV SCI INSTRUM, V66, P4583
172711    SADER JE, 2003, REV SCI INSTRUM, V74, P2438
172712    SADER JE, 2004, REV SCI INSTRUM, V75, P878
172713    ZU JW, 2004, INT C MEMS NANO SMAR
172714 NR 8
172715 TC 0
172716 SN 0960-0779
172717 J9 CHAOS SOLITON FRACTAL
172718 JI Chaos Solitons Fractals
172719 PD JUN
172720 PY 2006
172721 VL 28
172722 IS 5
172723 BP 1159
172724 EP 1164
172725 PG 6
172726 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
172727 GA 027ZY
172728 UT ISI:000236456200006
172729 ER
172730 
172731 PT J
172732 AU Huang, WH
172733 TI A polynomial expansion method and its application in the coupled
172734    Zakharov-Kuznetsov equations
172735 SO CHAOS SOLITONS & FRACTALS
172736 DT Article
172737 ID SOLITARY WAVE SOLUTIONS; TANH-FUNCTION METHOD; NONLINEAR
172738    EVOLUTION-EQUATIONS; KDV-BURGERS EQUATION; SOLITONS; SYSTEMS
172739 AB A polynomial expansion method is presented to solve nonlinear evolution
172740    equations. Applying this method, the coupled Zakharov-Kuznetsov
172741    equations in fluid system are studied and many exact travelling wave
172742    solutions are obtained. These solutions include solitary wave
172743    solutions, periodic solutions and rational type solutions. (c) 2005
172744    Elsevier Ltd. All rights reserved.
172745 C1 Huzhou Univ, Coll Sci, Huzhou 313000, Peoples R China.
172746    Shanghai Univ, Shaghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
172747 RP Huang, WH, Huzhou Univ, Coll Sci, Huzhou 313000, Peoples R China.
172748 EM whhuanghz@hutc.zj.cn
172749 CR 1997, COMPUT MATH APPL, V33, P115
172750    DUFFY BR, 1996, PHYS LETT A, V214, P271
172751    ELWAKIL SA, 2002, PHYS LETT A, V299, P179
172752    ELWAKIL SA, 2003, Z NATURFORSCH A, V58, P39
172753    FAN EG, 1998, PHYS LETT A, V246, P403
172754    FAN EG, 2000, PHYS LETT A, V277, P212
172755    FAN EG, 2001, PHYS LETT A, V282, P18
172756    FAN EG, 2001, PHYS LETT A, V291, P376
172757    FAN EG, 2001, Z NATURFORSCH A, V56, P312
172758    FAN EG, 2002, Z NATURFORSCH A, V57, P692
172759    GOTTWALD G, 1997, PHYS LETT A, V227, P47
172760    GOTTWALD G, 1998, PHYS LETT A, V248, P208
172761    LI ZB, 1997, ACTA MATH SINICA, V17, P81
172762    MALFLIET W, 1992, AM J PHYS, V60, P650
172763    PARKES EJ, 1994, J PHYS A, V27, P497
172764    PARKES EJ, 1996, COMPUT PHYS COMMUN, V98, P288
172765    PARKES EJ, 1997, PHYS LETT A, V229, P217
172766    SRIENDAOREJI, 2004, CHAOS SOLITON FRACTA, V19, P147
172767    TIAN B, 1996, COMPUT PHYS COMMUN, V95, P139
172768    ZHANG D, 2005, CHAOS SOLITON FRACT, V25, P1155
172769 NR 20
172770 TC 0
172771 SN 0960-0779
172772 J9 CHAOS SOLITON FRACTAL
172773 JI Chaos Solitons Fractals
172774 PD JUL
172775 PY 2006
172776 VL 29
172777 IS 2
172778 BP 365
172779 EP 371
172780 PG 7
172781 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
172782 GA 028JV
172783 UT ISI:000236484400013
172784 ER
172785 
172786 PT J
172787 AU Li, GH
172788 TI Projective synchronization of chaotic system using backstepping control
172789 SO CHAOS SOLITONS & FRACTALS
172790 DT Article
172791 ID DESIGN
172792 AB An effective backstepping design is applied to projective
172793    synchronization in a general class of the so-called strict-feedback
172794    chaotic systems. Only one controller is required via backstepping
172795    design technique that recursively interlaces the choice of a Lyapunov
172796    function with the design of feedback control. Moreover, dead-beat
172797    synchronization in finite time can be achieved. This control method
172798    also allows us to arbitrarily amplify or reduce the scale of the
172799    dynamics of the slave system through a control. The chaotic Henon
172800    system is taken as an example to illustrate the effectiveness of the
172801    proposed approach. (c) 2005 Elsevier Ltd. All rights reserved.
172802 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
172803 RP Li, GH, Shanghai Univ, Dept Commun Engn, Yanchang Rd 149, Shanghai
172804    200072, Peoples R China.
172805 EM ghlee@sh163.net
172806 CR ANISHCHENKO VS, 1992, INT J BIFURCAT CHAOS, V2, P633
172807    KOCAREV L, 1996, PHYS REV LETT, V76, P1816
172808    LU JG, 2001, IEEE T CIRCUITS-I, V48, P1359
172809    MAINIERI R, 1999, PHYS REV LETT, V82, P3042
172810    OTT E, 1990, PHYS REV LETT, V64, P1196
172811    ROSENBLUM MG, 1996, PHYS REV LETT, V76, P1804
172812    TAHERION S, 1999, PHYS REV E, V59, P6247
172813    TAN XH, 2003, CHAOS SOLITON FRACT, V16, P37
172814    WANG C, 2001, CHAOS SOLITON FRACT, V12, P1199
172815    WEN GL, 2005, CHAOS SOLITON FRACT, V26, P71
172816    ZHANG YP, 2004, PHYS LETT A, V330, P442
172817 NR 11
172818 TC 0
172819 SN 0960-0779
172820 J9 CHAOS SOLITON FRACTAL
172821 JI Chaos Solitons Fractals
172822 PD JUL
172823 PY 2006
172824 VL 29
172825 IS 2
172826 BP 490
172827 EP 494
172828 PG 5
172829 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
172830 GA 028JV
172831 UT ISI:000236484400028
172832 ER
172833 
172834 PT J
172835 AU Li, GH
172836    Zhou, SP
172837 TI An observer-based anti-synchronization
172838 SO CHAOS SOLITONS & FRACTALS
172839 DT Article
172840 ID CHAOTIC SYSTEMS; GENERALIZED SYNCHRONIZATION
172841 AB Anti-synchronization is characterized by the phenomenon that the state
172842    vectors of synchronized systems have the same absolute values but
172843    opposite signs. By means of techniques from the classic state observer,
172844    an anti-phase synchronization of a class of chaotic systems is
172845    investigated in this Letter. Compared with other strategies, the
172846    technique presented here is rather simple and the convergence rate can
172847    be determined by adjusting the eigenvalues through the pole placement
172848    technique. Numerical simulations are provided to verify the
172849    effectiveness of the proposed methods. (c) 2005 Elsevier Ltd. All
172850    rights reserved.
172851 C1 Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China.
172852    Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
172853 RP Li, GH, Shanghai Univ, Dept Commun Engn, Yanchang Rd 149, Shanghai
172854    200072, Peoples R China.
172855 EM ghlee@sh163.net
172856 CR FEKI M, 2003, CHAOS SOLITON FRACT, V15, P831
172857    KOCAREV L, 1996, PHYS REV LETT, V76, P1816
172858    LI GH, 2005, CHAOS SOLITON FRACT, V26, P87
172859    MICHAEL GR, 1996, PHYS REV LETT, V76, P1804
172860    MORGUL O, 1996, PHYS REV E, V54, P4803
172861    OTT E, 1990, PHYS REV LETT, V64, P1196
172862    PECORA LM, 1990, PHYS REV LETT, V64, P821
172863    TAHERION S, 1999, PHYS REV E, V59, P6247
172864    WANG J, 2005, CHAOS SOLITON FRACT, V23, P1013
172865    WEN GL, 2005, CHAOS SOLITON FRACT, V26, P71
172866    YANG SS, 1998, CHAOS SOLITON FRACT, V9, P1703
172867    ZHANG YP, 2004, PHYS LETT A, V330, P442
172868 NR 12
172869 TC 0
172870 SN 0960-0779
172871 J9 CHAOS SOLITON FRACTAL
172872 JI Chaos Solitons Fractals
172873 PD JUL
172874 PY 2006
172875 VL 29
172876 IS 2
172877 BP 495
172878 EP 498
172879 PG 4
172880 SC Mathematics, Applied; Physics, Mathematical; Physics, Multidisciplinary
172881 GA 028JV
172882 UT ISI:000236484400029
172883 ER
172884 
172885 PT J
172886 AU Cheng, CJ
172887    Sheng, DF
172888    Li, JJ
172889 TI Quasi-static analysis for viscoelastic Timoshenko beams with damage
172890 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
172891 DT Article
172892 DE viscoelastic solids with damage; Timosenko beam; quasi-static response
172893 ID DYNAMIC-ANALYSIS
172894 AB Based on convolution-type constitutive equations for linear
172895    viscoelastic materials with damage and the hypotheses of Timoshenko
172896    beams, the equations governing quasi-static and dynamical behavior of
172897    Timoshenko beams with damage were first derived. The quasi-static
172898    behavior of the viscoelastic Timoshenko beam under step loading was
172899    analyzed and the analytical solution was obtained in the Laplace
172900    transformation domain. The deflection and damage curves at different
172901    time were obtained by using the numerical inverse transform and the
172902    influences of material parameters on the quasi-static behavior of the
172903    beam were investigated in detail.
172904 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
172905    Shanghai Univ, Dept Mech, Shanghai 200444, Peoples R China.
172906    Fujian Univ Technol, Dept Electromech & Automat Engn, Fuzhou 350014, Fujian Province, Peoples R China.
172907 RP Cheng, CJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
172908    200072, Peoples R China.
172909 EM chjcheng@mail.shu.edu.cn
172910 CR AKOZ Y, 1999, INT J NUMER METH ENG, V44, P1909
172911    ARGYRIS J, 1996, CHAOS SOLITON FRACT, V7, P151
172912    CHEN LQ, 2000, APPL MATH MECH-ENGL, V21, P995
172913    CHENG CJ, 1998, INT J SOLIDS STRUCT, V35, P4491
172914    CHRISTENSEN RM, 1990, THEORY VISCOELASTICI
172915    COWIN SC, 1983, J ELASTICITY, V13, P125
172916    MILLER MK, 1966, SIAM J NUMER ANAL, V3, P624
172917    SHENG DF, 2003, CHINESE Q MECH, V24, P30
172918    YANG TQ, 1990, THEORY VISCOELASTICI
172919    ZHU ZY, 2002, APPL MATH MECH-ENGL, V23, P1
172920 NR 10
172921 TC 0
172922 SN 0253-4827
172923 J9 APPL MATH MECH-ENGL ED
172924 JI Appl. Math. Mech.-Engl. Ed.
172925 PD MAR
172926 PY 2006
172927 VL 27
172928 IS 3
172929 BP 295
172930 EP 304
172931 PG 10
172932 SC Mathematics, Applied; Mechanics
172933 GA 027GV
172934 UT ISI:000236403900003
172935 ER
172936 
172937 PT J
172938 AU Shen, C
172939    Wang, YP
172940    Shi, WH
172941 TI Stability of system of two-dimensional non-hydrostatic revolving fluids
172942 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
172943 DT Article
172944 DE Boussinesq equations; stability; initial or boundary value problem;
172945    stratification
172946 ID FRONTOGENESIS
172947 AB Applying the theory of stratification, it is proved that the system of
172948    the two-dimensional non-hydrostatic revolving fluids is unstable in the
172949    two-order continuous function class. The construction of solution space
172950    is given and the solution approach is offered. The sufficient and
172951    necessary conditions of the existence of formal solutions are expressed
172952    for some typical initial and boundary value problems and the
172953    calculating formulae to formal solutions are presented in detail.
172954 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
172955    Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
172956 RP Shen, C, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
172957    200072, Peoples R China.
172958 EM shenchun3641@sina.com
172959 CR CHEN DD, 2002, CHINESE J ATMOSPHERI, V26, P293
172960    CHEN DD, 2004, APPL MATH MECH-ENGL, V25, P288
172961    HOSKINS BJ, 1972, J ATMOS SCI, V29, P11
172962    JI ZZ, 2003, CHINESE J COMPUTATIO, V20, P311
172963    SHEN C, 2005, J SHANGHAI U, V9, P114
172964    SHI WH, 2001, THEORY STRATIFICATIO, P10
172965    SIMPSON JE, 1989, J FLUID MECH, V202, P1
172966    WANG XB, 1998, SCI METEOROLOGICA SI, V18, P305
172967    XIAO QN, 1997, SCI ATMOSPHERICA SIN, V21, P283
172968 NR 9
172969 TC 0
172970 SN 0253-4827
172971 J9 APPL MATH MECH-ENGL ED
172972 JI Appl. Math. Mech.-Engl. Ed.
172973 PD MAR
172974 PY 2006
172975 VL 27
172976 IS 3
172977 BP 317
172978 EP 325
172979 PG 9
172980 SC Mathematics, Applied; Mechanics
172981 GA 027GV
172982 UT ISI:000236403900006
172983 ER
172984 
172985 PT J
172986 AU Fan, JY
172987    Wang, DZ
172988    Zhang, Y
172989 TI Large-scale vortical structures produced by an impinging density jet in
172990    shallow crossflow
172991 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
172992 DT Article
172993 DE impinging jet; crossflow; large-scale vortical structure; concentration
172994    distribution
172995 AB The large-scale vortical structures produced by an impinging density
172996    jet in shallow crossflow were numerically investigated in detail using
172997    RNG turbulence model. The scales, formation mechanism and evolution
172998    feature of the upstream wall vortex in relation to stagnation point and
172999    the Scarf vortex in near field were analyzed. The computed
173000    characteristic scales of the upstream vortex show distinguished
173001    three-dimensionality and vary with the velocity ratio and the water
173002    depth. The Scarf vortex in the near field plays an important role in
173003    the lateral concentration distributions of the impinging jet in
173004    crossflow. When the velocity ratio is relatively small, there exists a
173005    distinct lateral high concentration aggregation zone at the lateral
173006    edge between the bottom layer wall jet and the ambient crossflow, which
173007    is dominated by the Scarf vortex in the near field.
173008 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
173009    Shanghai Univ, SMIT Ctr, Shanghai 200072, Peoples R China.
173010    Chalmers Univ Technol, Dept Appl Mech, SE-41296 Gothenburg, Sweden.
173011 RP Fan, JY, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
173012    200072, Peoples R China.
173013 EM jyfan@staff.shu.edu.cn
173014 CR BARATA JMM, 1996, AIAA J, V34, P2523
173015    CORTELEZZI L, 2001, J FLUID MECH, V446, P347
173016    FAN JY, 2004, J HYDRODYNAMICS B, V16, P737
173017    FRIC TF, 1994, J FLUID MECH, V279, P1
173018    SMITH SH, 1998, J FLUID MECH, V357, P83
173019    ZHANG Y, 2002, APPL MATH MECH-ENGL, V23, P1429
173020 NR 6
173021 TC 0
173022 SN 0253-4827
173023 J9 APPL MATH MECH-ENGL ED
173024 JI Appl. Math. Mech.-Engl. Ed.
173025 PD MAR
173026 PY 2006
173027 VL 27
173028 IS 3
173029 BP 363
173030 EP 369
173031 PG 7
173032 SC Mathematics, Applied; Mechanics
173033 GA 027GV
173034 UT ISI:000236403900012
173035 ER
173036 
173037 PT J
173038 AU Yang, XD
173039    Chen, LQ
173040 TI Free non-linear vibration of axially moving beams with fixed ends
173041 SO ACTA MECHANICA SOLIDA SINICA
173042 DT Article
173043 DE non-linear vibration; axially moving beam; perturbation methods
173044 ID OSCILLATION; VELOCITY
173045 AB The free non-linear vibration of axially moving, elastic, and tensioned
173046    beams on fixed supports is investigated in this paper. Two types of
173047    non-linearity, namely, the differential type and integro-differential
173048    type, are analyzed. Approximate solutions are sought using the method
173049    of multiple scales. The contribution of non-linearity to the response
173050    increases with the axial speed, and grows most rapidly near the
173051    critical speed. It has been found that the differential type
173052    non-linearity is stronger than the integro-differential type
173053    non-linearity by analyzing the non-linear effects on natural
173054    frequencies.
173055 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
173056    Shanghai Univ, Dept Mech, Shanghai 200444, Peoples R China.
173057 RP Chen, LQ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
173058    200072, Peoples R China.
173059 EM lqchen@staff.shu.edu.cn
173060 CR MOTE CD, 1966, J APPL MECH, V33, P463
173061    NAYFEH AH, 1981, INTRO PERTURBATION T
173062    OZ HR, 1999, J SOUND VIB, V227, P239
173063    OZ HR, 2001, J SOUND VIB, V239, P556
173064    OZKAYA E, 2000, J SOUND VIB, V234, P521
173065    PAKDEMIRLI M, 1995, J SOUND VIB, V186, P837
173066    PAKDEMIRLI M, 1997, J SOUND VIB, V203, P815
173067    THURMAN AL, 1969, J APPLIED MECHANICS, V36, P83
173068    WICKERT JA, 1990, J APPL MECH-T ASME, V57, P738
173069    WICKERT JA, 1991, APPL MECH REV, V44, P279
173070    WICKERT JA, 1992, INT J NONLINEAR MECH, V27, P503
173071 NR 11
173072 TC 1
173073 SN 0894-9166
173074 J9 ACTA MECH SOLIDA SINICA
173075 JI Acta Mech. Solida Sin.
173076 PD SEP
173077 PY 2005
173078 VL 18
173079 IS 3
173080 BP 242
173081 EP 247
173082 PG 6
173083 SC Materials Science, Multidisciplinary; Mechanics
173084 GA 028RB
173085 UT ISI:000236504800007
173086 ER
173087 
173088 PT J
173089 AU Guo, HM
173090    Chen, JB
173091    Zhuang, SL
173092 TI Vector plane wave spectrum of an arbitrary polarized electromagnetic
173093    wave
173094 SO OPTICS EXPRESS
173095 DT Article
173096 ID MAXWELLS EQUATIONS; BEAMS; APPROXIMATION; AZIMUTHAL
173097 AB By using the method of modal expansions of the independent transverse
173098    fields, a formula of vector plane wave spectrum ( VPWS) of an arbitrary
173099    polarized electromagnetic wave in a homogenous medium is derived. In
173100    this formula VPWS is composed of TM- and TE- mode plane wave spectrum,
173101    where the amplitude and unit polarized direction of every plane wave
173102    are separable, which has more obviously physical meaning and is more
173103    convenient to apply in some cases compared to previous formula of VPWS.
173104    As an example, the formula of VPWS is applied to the well- known
173105    radially and azimuthally polarized beam. In addition, vector Fourier-
173106    Bessel transform pairs of an arbitrary polarized electromagnetic wave
173107    with circular symmetry are also derived. (c) 2006 Optical Society of
173108    America.
173109 C1 Shanghai Univ Sci & Technol, Coll Opt & Elect, Shanghai Key Lab Contemporary Opt Syst, Shanghai 200093, Peoples R China.
173110 RP Zhuang, SL, Shanghai Univ Sci & Technol, Coll Opt & Elect, Shanghai Key
173111    Lab Contemporary Opt Syst, 516 Jungong Rd, Shanghai 200093, Peoples R
173112    China.
173113 EM ghanming@vip.sina.com
173114    slzhuangx@yahoo.com.cn
173115 CR CIATTONI A, 2000, OPT COMMUN, V177, P9
173116    DAVIS LW, 1979, PHYS REV A, V19, P1177
173117    DOICU A, 1997, OPT COMMUN, V136, P114
173118    FELSEN LB, 1994, RADIATION SCATTERING, P183
173119    JORDAN RH, 1994, OPT LETT, V19, P427
173120    KIM HC, 1999, OPT COMMUN, V169, P9
173121    MARTINEZHERRERO R, 2001, J OPT SOC AM A, V18, P1678
173122    MORSE PM, 1953, METHODS THEORETICAL, P21
173123    ORON R, 2000, APPL PHYS LETT, V77, P3322
173124    RICHARDS B, 1959, P R SOC LONDON SER A, V253, P358
173125    SESHADRI SR, 1998, J OPT SOC AM A, V15, P2712
173126    VARGA P, 1996, OPT LETT, V21, P1523
173127    VARGA P, 1998, OPT COMMUN, V152, P108
173128    YOUNGWORTH KS, 2000, OPT EXPRESS, V7, P77
173129 NR 14
173130 TC 0
173131 SN 1094-4087
173132 J9 OPT EXPRESS
173133 JI Opt. Express
173134 PD MAR 20
173135 PY 2006
173136 VL 14
173137 IS 6
173138 BP 2095
173139 EP 2100
173140 PG 6
173141 SC Optics
173142 GA 024NR
173143 UT ISI:000236202800006
173144 ER
173145 
173146 PT J
173147 AU Xia, L
173148    Dong, YD
173149 TI Kinetics and thermal stability of Nd55Al20Fe25 bulk metallic glass
173150 SO MODERN PHYSICS LETTERS B
173151 DT Article
173152 DE bulk metallic glass; kinetics; thermal stability
173153 ID HARD MAGNETIC-PROPERTIES; AMORPHOUS-ALLOYS; FE; TRANSITION;
173154    CRYSTALLIZATION; TEMPERATURE; SOLIDS
173155 AB In this work, we studied the thermal stability and kinetics of
173156    Nd55Al20Fe25 bulk metallic glass (BMG) with distinct glass transition
173157    and multistage crystallizations. The kinetics of glass transition and
173158    crystallizations were investigated using the Kissinger method and the
173159    ideal glass transition temperature of the alloy was obtained via
173160    Lasoka's equation. The thermal stability of the BIMG was investigated
173161    by means of continuous transformation diagrams obtained from the
173162    extension of Kissinger analysis. It is suggested that the stability
173163    limit of the supercooled liquid, i.e. Kauzmann temperature, could also
173164    be regarded as the long-term stability criteria of the BMG.
173165 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
173166    Shanghai Univ, Ctr Adv Microanal, Shanghai 200444, Peoples R China.
173167 RP Xia, L, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
173168 EM xialei@staff.shu.edu.cn
173169 CR BUSCH R, 1995, J APPL PHYS, V77, P4093
173170    CROAT JJ, 1982, J APPL PHYS, V53, P3161
173171    ELLIOT SR, 1990, PHYSICS AMORPHOUS MA, P139
173172    FECHT HJ, 1995, MATER T JIM, V36, P777
173173    HAY CC, 2000, PHYS REV LETT, V84, P2901
173174    HWANG CH, 1985, SCRIPTA METALL, V19, P1403
173175    INOUE A, 1996, MATER T JIM, V37, P99
173176    INOUE A, 1998, METALL MATER TRANS A, V29, P1779
173177    KAUZMANN W, 1948, CHEM REV, V43, P219
173178    KISSINGER HE, 1956, J RES NAT BUR STAND, V57, P217
173179    LASOCKA M, 1976, MATER SCI ENG, V23, P173
173180    LOUZGUINE DV, 2002, APPL PHYS LETT, V81, P2561
173181    LOUZGUINE DV, 2002, SCRIPTA MATER, V47, P887
173182    OKAMOTO PR, 1999, SOLID STATE PHYS, V52, P1
173183    SCHNEIDER S, 2002, APPL PHYS LETT, V80, P1749
173184    WANG XZ, 1999, J ALLOY COMPD, V290, P209
173185    WEI BC, 2002, ACTA MATER, V50, P4357
173186    WILDE G, 1997, MAT SCI ENG A-STRUCT, V226, P434
173187    XIA L, 2003, J PHYS D APPL PHYS, V36, P2954
173188    XIA L, 2004, J MATER RES, V19, P1307
173189    XING LQ, 2000, J APPL PHYS, V88, P3565
173190    ZHU J, 1997, APPL PHYS LETT, V70, P1709
173191 NR 22
173192 TC 0
173193 SN 0217-9849
173194 J9 MOD PHYS LETT B
173195 JI Mod. Phys. Lett. B
173196 PD FEB 20
173197 PY 2006
173198 VL 20
173199 IS 5
173200 BP 225
173201 EP 232
173202 PG 8
173203 SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
173204 GA 026CW
173205 UT ISI:000236315300003
173206 ER
173207 
173208 PT J
173209 AU Qian, GG
173210    Cao, YL
173211    Chui, P
173212    Tay, J
173213 TI Utilization of MSWI fly ash for stabilization/solidification of
173214    industrial waste sludge
173215 SO JOURNAL OF HAZARDOUS MATERIALS
173216 DT Article
173217 DE MSWI fly ash; heavy metals; sludge; stabilization/solidification;
173218    co-disposal
173219 ID SOLIDIFICATION/STABILIZATION; STABILIZATION; ETTRINGITE; HYDROXIDE;
173220    CHLORIDE; PHASES; BINDER
173221 AB This work investigated the potential for utilization of MSWI
173222    incineration fly ash as solidification binder to treat heavy
173223    metals-bearing industrial waste sludge. In the study, Municipal Solid
173224    Waste Incineration (MSWI) fly ash was used along with ordinary Portland
173225    cement to immobilize three different types of industrial sludge while
173226    MSWI incineration fly ash was stabilized at the same time. The results
173227    showed that the matrixes with heavy metals-bearing sludge and MSWI fly
173228    ash have a strong fixing capacity for heavy metals: Zn, Pb, Cu, Ni and
173229    Mn. Specimens with only 5-15% cement content was observed to be
173230    sufficient to achieve the target compressive strength of 0.3 MPa
173231    required for landfill disposal. An optimum mix comprising 45% fly ash,
173232    5% cement and 50% of the industrial sludge could provide the required
173233    solidification and stabilization. Addition of MSWI can improve the
173234    strength of matrix. Meanwhile, the main hydration products of new S/S
173235    matrix are ettringite AFt, Friedel's salt and C-S-H. These hydration
173236    products play an important role in the fixing of heavy metals. The
173237    co-disposal of MSWI fly ash with heavy metals-bearing sludge can
173238    minimize the enlargement of the landfill volume and stabilize the heavy
173239    metals effectively. (c) 2005 Elsevier B.V. All rights reserved.
173240 C1 Shanghai Univ, Coll Environm Engn, Shanghai 200072, Peoples R China.
173241    Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore, Singapore.
173242 RP Qian, GG, Shanghai Univ, Coll Environm Engn, 149 Yanchang Rd, Shanghai
173243    200072, Peoples R China.
173244 EM grqian@staff.shu.edu.cn
173245 CR *USEPA, 1311 USEPA
173246    ALBINO V, 1996, WASTE MANAGE RES, V14, P29
173247    ANDRES A, 1998, J HAZARD MATER, V57, P155
173248    AUBERT JE, 2004, CEMENT CONCRETE RES, V34, P957
173249    AUER S, 1994, J SOLID STATE CHEM, V109, P187
173250    AUER S, 1995, CEMENT CONCRETE RES, V25, P1347
173251    BIRMINYAURI UA, 1998, CEMENT CONCRETE RES, V28, P1713
173252    CONNER JR, 1990, CHEM FIXATION SOLIDI
173253    CSIZMADIA J, 2001, CEMENT CONCRETE RES, V31, P577
173254    GLASSER FP, 1993, CHEM MICROSTRUCTURE, P1
173255    GLASSER FP, 1999, CEMENT CONCRETE RES, V29, P861
173256    GREGA MD, 2001, HAZARDOUS WASTE MANA
173257    GURJAR BR, 2001, SLUDGE TREAT DISPOSA
173258    KLEMM WA, 2002, FIXATION HEAVY METAL
173259    LI XD, 2001, J HAZARD MATER, V82, P215
173260    MINOCHA AK, 2003, CONSTR BUILD MATER, V17, P77
173261    MYNENI SCB, 1998, GEOCHIM COSMOCHIM AC, V62, P3499
173262    NIE YF, 2002, ENG NOTEBOOK 3 KINDS
173263    PEREIRA CF, 2001, J HAZARD MATER, V82, P183
173264    REMOND S, 2002, CEMENT CONCRETE RES, V32, P565
173265    SECO JI, 2003, ECOTOX ENVIRON SAFE, V56, P339
173266    SINGH M, 1999, CEMENT CONCRETE RES, V29, P309
173267    STOCH A, 1999, J MOL STRUCT, V511, P319
173268    VEMPATI RK, 1995, WASTE MANAGE, V15, P433
173269    YOUSUF M, 1998, SCI TOTAL ENVIRON, V224, P57
173270    ZHANG M, 2003, ENVIRON SCI TECHNOL, V37, P2947
173271    ZHAO YC, 2002, J HAZARD MATER, V95, P47
173272 NR 27
173273 TC 0
173274 SN 0304-3894
173275 J9 J HAZARD MATER
173276 JI J. Hazard. Mater.
173277 PD FEB 28
173278 PY 2006
173279 VL 129
173280 IS 1-3
173281 BP 274
173282 EP 281
173283 PG 8
173284 SC Engineering, Civil; Engineering, Environmental; Environmental Sciences
173285 GA 025WY
173286 UT ISI:000236299100036
173287 ER
173288 
173289 PT J
173290 AU Xiao, JK
173291    Li, Y
173292 TI Analysis for transmission characteristics of similar rectangular guide
173293    filled with arbitrarily-shaped inhomogeneous dielectric
173294 SO JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS
173295 DT Article
173296 ID LINES
173297 AB In this paper, an analytic model for analyzing similar rectangular
173298    guide filled with axbitrarily-shaped inhomogeneous dielectric by using
173299    the method of lines is presented, and characteristic equations of
173300    different mode axe obtained. Rectangular guide partially filled with
173301    1-D inhomogeneous dielectric slab is exemplified, its dispersion and
173302    cut-off characteristics are numerically calculated and analyzed, and
173303    the correctness of the analytic model is demonstrated as well. The
173304    analytic method in this paper has virtues such as easy formulation,
173305    less computation and so on, and it can be extensively applied for
173306    analyzing guide filled with inhomogeneous dielectric problems.
173307 C1 Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
173308 RP Xiao, JK, Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
173309 CR ALU A, 2003, IEEE T ANTENN PROPAG, V51, P1582
173310    HAN T, 1990, PRINCIPLES MICROWAVE, P171
173311    HONG W, 1993, PRINCIPLES APPL METH
173312    KREMER D, 1994, ELECTRON LETT, V30, P1088
173313    KREMER D, 1997, IEEE T MICROW THEO 1, V45, P2152
173314    WORM SB, 1990, IEEE T MICROW THEORY, V38, P1510
173315 NR 6
173316 TC 0
173317 SN 0920-5071
173318 J9 J ELECTROMAGNET WAVE APPLICAT
173319 JI J. Electromagn. Waves Appl.
173320 PY 2006
173321 VL 20
173322 IS 3
173323 BP 331
173324 EP 340
173325 PG 10
173326 SC Engineering, Electrical & Electronic; Physics, Applied; Physics,
173327    Mathematical
173328 GA 025AK
173329 UT ISI:000236237500005
173330 ER
173331 
173332 PT J
173333 AU Xiao, JK
173334    Ji, WS
173335    Zhang, S
173336    Li, Y
173337 TI A field theoretical method for analyzing microwave cavity with
173338    arbitrary cross-section
173339 SO JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS
173340 DT Article
173341 ID MICROSTRIP BANDPASS-FILTERS; PLANAR WAVE-GUIDES; LINES; FREQUENCIES;
173342    DESIGN
173343 AB In this paper a microwave cavity with an arbitrary cross-section is
173344    analyzed using the method of lines, and the correctness of the analytic
173345    method is demonstrated. A novel truncated circular microwave cavity is
173346    presented and its electromagnetic field distribution and resonances are
173347    calculated and analyzed. The analytic model in this paper has some
173348    advantages including less computational quantity, easy formulation, and
173349    extensive application. It can be used for researching electromagnetic
173350    field boundary value problems.
173351 C1 Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
173352    Lanzhou Teachers Coll, Inst Elect Informat Sci & Technol, Lanzhou 730070, Peoples R China.
173353    Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
173354 RP Xiao, JK, Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
173355 CR ALU A, 2003, IEEE T ANTENN PROPAG, V51, P1582
173356    CHEN MY, 1989, ELECTROMAGNETIC FIEL
173357    HONG JS, 1999, IEEE T MICROW THEO 2, V47, P1848
173358    HONG JS, 2000, IEEE T MICROW THEO 1, V48, P1098
173359    HSIEH LH, 2003, IEEE T MICROW THEO 1, V51, P1141
173360    KREMER D, 1997, IEEE T MICROW THEO 1, V45, P2152
173361    SCHULZ U, 1980, AEU-ARCH ELEKTRON UB, V34, P169
173362    WORM SB, 1984, IEEE T MICROW THEORY, V32, P191
173363    WORM SB, 1990, IEEE T MICROW THEORY, V38, P1510
173364 NR 9
173365 TC 0
173366 SN 0920-5071
173367 J9 J ELECTROMAGNET WAVE APPLICAT
173368 JI J. Electromagn. Waves Appl.
173369 PY 2006
173370 VL 20
173371 IS 4
173372 BP 435
173373 EP 446
173374 PG 12
173375 SC Engineering, Electrical & Electronic; Physics, Applied; Physics,
173376    Mathematical
173377 GA 025AL
173378 UT ISI:000236237600002
173379 ER
173380 
173381 PT J
173382 AU Wang, Q
173383    Pelletier, JM
173384    Xia, L
173385    Xu, H
173386    Dong, YD
173387 TI The viscoelastic properties of bulk Zr55Cu25Ni5Al10Nb5 metallic glass
173388 SO JOURNAL OF ALLOYS AND COMPOUNDS
173389 DT Article
173390 DE bulk metallic glass; viscoelasticity; relaxation; fragility index
173391 ID INTERNAL-FRICTION; FREQUENCY-DEPENDENCE; AMORPHOUS-ALLOYS; COOLING
173392    RATES; TRANSITION; RELAXATION; POLYMERS; LIQUIDS; MODULUS; NI
173393 AB In this work, we have investigated the dynamic shear modulus of the
173394    bulk Zr55Cu25Ni5Al10Nb5 metallic glasses over large temperature and
173395    frequency ranges. Like in other conventional glass forming systems. a
173396    distinct alpha relaxation with typical kinetic features is
173397    experimentally detected. Therefore, the fragility parameter, m, which
173398    is estimated from the activation energy for viscoelastic deformation,
173399    indicates that the Zr base bulk amorphous alloy is a relatively strong
173400    liquid. On the other hand. during the main mechanical relaxation, the
173401    frequency dependence of dynamic shear modulus of the Zr base bulk
173402    amorphous alloy follows the biparabolic equation derived from a
173403    physical model, which can characterize the atomic mobility and
173404    mechanical response of disordered condensed materials. (c) 2005
173405    Elsevier B.V. All rights reserved.
173406 C1 Inst Natl Sci Appl, GEMPPM, F-69621 Villeurbanne, France.
173407    Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China.
173408    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
173409 RP Pelletier, JM, Inst Natl Sci Appl, GEMPPM, Bat B Pascal, F-69621
173410    Villeurbanne, France.
173411 EM jean-marc.pelletier@insa-lyon.fr
173412 CR ADAM G, 1965, J CHEM PHYS, V43, P139
173413    BIRGE NO, 1985, PHYS REV LETT, V54, P2674
173414    BOBROV OP, 2003, SCRIPTA MATER, V49, P255
173415    BOHMER R, 1993, J CHEM PHYS, V99, P420
173416    BUSH R, 1998, ACTA MAT, V46, P4725
173417    BUSH R, 1998, APPL PHYS LETT, V72, P2695
173418    CAVAILLE JY, 1989, PHYS REV B, V39, P2411
173419    CAVAILLE JY, 1991, J NON-CRYST SOLIDS, V131, P935
173420    COHEN MH, 1959, J CHEM PHYS, V31, P1164
173421    DEBENEDETTI PG, 2001, NATURE, V410, P259
173422    ETIENNE S, 1982, REV SCI INSTRUM, V53, P1261
173423    GAUTHIER C, 2000, J NON-CRYST SOLIDS, V274, P181
173424    GOETZE W, 1992, REP PROG PHYS, V55
173425    GOETZE W, 1999, J PHYS-CONDENS MAT, V1, P11
173426    GREST GS, 1980, PHYS REV B, V21, P4113
173427    HU X, 2000, PHYS REV B, V62, P3169
173428    INOUE A, 1995, MATER T JIM, V36, P866
173429    JOHNSON WL, 1996, MATER SCI FORUM, V225, P35
173430    LEE ML, 2002, INTERMETALLICS, V10, P1061
173431    LEE ML, 2003, PHYS REV B, V67
173432    MENON N, 1995, PHYS REV LETT, V74, P1230
173433    MEZARD M, 1999, PHYS REV LETT, V82, P747
173434    NGAI KL, 1998, PHYS REV E, V57, P7346
173435    PARISI G, 2000, J PHYS CONDENS MATT, V12, P6655
173436    PEKER A, 1993, APPL PHYS LETT, V63, P2342
173437    PELLETIER JM, 2002, MAT SCI ENG A-STRUCT, V336, P190
173438    PERERA DN, 1999, J PHYS D APPL PHYS, V32, P2933
173439    PERERA DN, 2000, J PHYS D APPL PHYS, V33, P1937
173440    PEREZ J, 1988, POLYM SCI SER B, V40, P102
173441    PEREZ J, 1990, J CHIM PHYS PCB, V87, P1923
173442    SCHROTER K, 1998, EUR PHYS J B, V5, P1
173443    SCHROTER K, 2002, J NON-CRYST SOLIDS, V307, P270
173444    SUH D, 2002, ACTA MAT, V50, P537
173445    TSANG KY, 1997, PHYS REV E, V54, P3067
173446    TSANG KY, 1997, PHYS REV E, V56, P17
173447    TURNBULL D, 1970, J CHEM PHYS, V52, P3038
173448    YUE LP, 1988, J NONCRYST SOLIDS, V105, P33
173449    ZHANG B, 2002, J PHYS-CONDENS MAT, V14, P7461
173450    ZHANG T, 1991, MATER T JIM, V32, P1005
173451 NR 39
173452 TC 0
173453 SN 0925-8388
173454 J9 J ALLOYS COMPOUNDS
173455 JI J. Alloy. Compd.
173456 PD MAR 9
173457 PY 2006
173458 VL 413
173459 IS 1-2
173460 BP 181
173461 EP 187
173462 PG 7
173463 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
173464    Metallurgical Engineering
173465 GA 026BY
173466 UT ISI:000236312900029
173467 ER
173468 
173469 PT J
173470 AU Chu, XT
173471    Ye, ZM
173472    Li, LY
173473    Kettle, R
173474 TI Local and distortional buckling of cold-formed zed-section beams under
173475    uniformly distributed transverse loads
173476 SO INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES
173477 DT Article
173478 DE cold-formed section; finite strip analysis; local buckling;
173479    distortional buckling; stress gradient
173480 ID PURLINS; BEHAVIOR
173481 AB This paper presents a numerical investigation on the local and
173482    distortional buckling behaviour of cold-formed steel zed-section beams
173483    subjected to uniformly distributed transverse loads. The analysis is
173484    performed using a semi-analytical finite strip method. The beams
173485    investigated include both detached sections and restrained sections.
173486    The results obtained from the present study highlight the differences
173487    in the local and distortional buckling behaviours of the thin-walled
173488    sections between pure bending and the uniformly distributed loading.
173489    (c) 2005 Elsevier Ltd. All rights reserved.
173490 C1 Auckland Univ Technol, Sch Engn, Engn Res Inst, Auckland 1020, New Zealand.
173491    Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R China.
173492    Aston Univ, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands, England.
173493 RP Chu, XT, Auckland Univ Technol, Sch Engn, Engn Res Inst, Auckland 1020,
173494    New Zealand.
173495 CR BORESI AP, 2002, APPROXIMATE SOLUTION
173496    CAMOTIM D, 2004, INT WORKSH ADV FUT T, P137
173497    CHU XT, 2004, J APPL MECH-T ASME, V71, P742
173498    CHU XT, 2004, J CONSTR STEEL RES, V60, P1159
173499    CHU XT, 2004, THIN WALL STRUCT, P265
173500    CHU XT, 2005, THIN WALL STRUCT, V43, P531
173501    CHU XT, 2005, THIN WALL STRUCT, V43, P800
173502    HANCOCK GJ, 1981, STEEL CONSTRUCTION, V15, P2
173503    HANCOCK GJ, 2003, J CONSTR STEEL RES, V59, P473
173504    LI LY, 2004, THIN WALL STRUCT, V42, P995
173505    RHODES J, 1993, SCI PUBLICATION, V89
173506    SCHAFER BW, 1997, THESIS CORNELL U
173507    SCHAFER BW, 1999, ICSAS 99 4 INT C LIG, P89
173508    SCHAFER BW, 2003, P ADV STRUCT C ASSCC, P56
173509    VONKARMAN T, 1932, T ASME, V54, P54
173510    WINTER G, 1968, 8 C INT ASS BRIDG ST, P101
173511    YE ZM, 2002, THIN WALL STRUCT, V40, P853
173512    YE ZM, 2004, COMPUT STRUCT, V82, P731
173513 NR 18
173514 TC 0
173515 SN 0020-7403
173516 J9 INT J MECH SCI
173517 JI Int. J. Mech. Sci.
173518 PD APR
173519 PY 2006
173520 VL 48
173521 IS 4
173522 BP 378
173523 EP 388
173524 PG 11
173525 SC Engineering, Mechanical; Mechanics
173526 GA 025XU
173527 UT ISI:000236301700002
173528 ER
173529 
173530 PT J
173531 AU Liu, ZR
173532    Chung, KW
173533 TI Hybrid control of bifurcation in continuous nonlinear dynamical systems
173534 SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
173535 DT Article
173536 DE hybrid control; Hopf bifurcation; Poincare bifurcation; chaos
173537 ID HOPF-BIFURCATION; CHAOTIC DYNAMICS; FEEDBACK-CONTROL; PERTURBATIONS
173538 AB In this paper, a new hybrid control strategy is proposed, in which
173539    state feedback and parameter perturbation are used to control the
173540    bifurcations of continuous dynamical systems. The hybrid control can be
173541    applied to any component of a several dimensional dynamical system and
173542    is still effective even when the system becomes chaotic. Our results
173543    show, that various bifurcations, such as Hopf bifurcation and Poincare
173544    bifurcation, can be controlled by means of this method.
173545 C1 City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China.
173546    Shanghai Univ, Ctr Nonlinear Sci, Shanghai 200436, Peoples R China.
173547    Shanghai Jiao Tong Univ, Aetna Sch Management, Shanghai 200052, Peoples R China.
173548 RP Liu, ZR, City Univ Hong Kong, Dept Math, Tat Chee Ave, Kowloon, Hong
173549    Kong, Peoples R China.
173550 EM makchung@citya.edu.hk
173551 CR ABED FH, 1994, PHYSICA D, V74, P154
173552    BRAIMAN Y, 1991, PHYS REV LETT, V66, P2545
173553    CHEN GR, 1993, IEEE T CIRCUITS-I, V40, P591
173554    CHEN GR, 1997, CHAOS SOLITON FRACT, V8, P1461
173555    CHEN GR, 1998, CHAOS ORDER METHODOL
173556    CHEN GR, 1999, IEEE T CIRCUITS-I, V46, P767
173557    CHUNG KW, 2003, J SOUND VIB, V267, P787
173558    KHIBNIK AI, 1993, CHUAS CIRCUIT PARADI, P145
173559    LIMA R, 1990, PHYS REV A, V41, P726
173560    LUO XS, 1999, ACTA PHYS SIN-OV ED, V8, P895
173561    LUO XS, 2003, CHAOS SOLITON FRACT, V18, P775
173562    NAYFEH AH, 1990, MECH RES COMMUN, V17, P191
173563    OTT E, 1990, PHYS REV LETT, V64, P1196
173564    PYRAGAS K, 1992, PHYS LETT A, V170, P421
173565    RAJASEKAR S, 1997, CHAOS SOLITON FRACT, V8, P1545
173566    RAND RH, 1989, MECH RES COMMUN, V16, P117
173567    YANG L, 2000, PHYS REV LETT, V84, P67
173568    YANG L, 2002, INT J BIFURCAT CHAOS, V12, P1121
173569 NR 18
173570 TC 0
173571 SN 0218-1274
173572 J9 INT J BIFURCATION CHAOS
173573 JI Int. J. Bifurcation Chaos
173574 PD DEC
173575 PY 2005
173576 VL 15
173577 IS 12
173578 BP 3895
173579 EP 3903
173580 PG 9
173581 SC Mathematics, Applied; Multidisciplinary Sciences
173582 GA 025UY
173583 UT ISI:000236293600005
173584 ER
173585 
173586 PT J
173587 AU Guo, XP
173588    Yang, GK
173589    Wu, ZM
173590    Huang, ZH
173591 TI A hybrid fine-timed multi-objective memetic algorithm
173592 SO IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND
173593    COMPUTER SCIENCES
173594 DT Article
173595 DE hybrid; fine-tuned; memetic algorithm; multi-objective optimization;
173596    multi-objective 0/1 knapsack problem
173597 ID GENETIC LOCAL SEARCH; EVOLUTIONARY ALGORITHMS; OPTIMIZATION; BALANCE
173598 AB In this paper, we propose a hybrid fine-tuned multiobjective memetic
173599    algorithm hybridizing different solution fitness evaluation methods for
173600    global exploitation and exploration. To search across all regions in
173601    objective space, the algorithm uses a widely diversified set of weights
173602    at each generation, and employs a simulated annealing to optimize each
173603    utility function. For broader exploration, a grid-based technique is
173604    adopted to discover the missing nondominated regions on existing
173605    tradeoff surface, and a Pareto-based local perturbation is performed to
173606    reproduce incrementing solutions trying to fill up the discontinuous
173607    areas. Additional advanced feature is that the procedure is made
173608    dynamic and adaptive to the online optimization conditions based on a
173609    function of improvement ratio to obtain better stability and
173610    convergence of the algorithm. Effectiveness of our approach is shown by
173611    applying it to multi-objective 0/1 knapsack problem (MOKP).
173612 C1 Shanghai Univ, Dept Automat, Shanghai 200041, Peoples R China.
173613 RP Guo, XP, Shanghai Univ, Dept Automat, Shanghai 200041, Peoples R China.
173614 EM gxp@sjtu.edu.cn
173615 CR BOSMAN PAN, 2003, IEEE T EVOLUT COMPUT, V7, P174
173616    DEB K, 2002, IEEE T EVOLUT COMPUT, V6, P182
173617    FIELDSEND JE, 2003, IEEE T EVOLUT COMPUT, V7, P305
173618    ISHIBUCHI H, 1996, P 3 IEEE INT C EV CO, P119
173619    ISHIBUCHI H, 1998, IEEE T SYST MAN CY C, V28, P392
173620    ISHIBUCHI H, 2003, IEEE T EVOLUT COMPUT, V7, P204
173621    JASZKIEWICZ A, 2002, EUR J OPER RES, V137, P50
173622    JASZKIEWICZ A, 2002, IEEE T EVOLUT COMPUT, V6, P402
173623    KNOWLES J, 1999, P 1999 C EV COMP PIS, P98
173624    KNOWLES JD, 2000, P 2000 C EV COMP, P325
173625    TAN KC, 2001, IEEE T EVOLUT COMPUT, V5, P565
173626    ULUNGU EL, 1999, J MULTICRITERIA DECI, V8, P221
173627    YANG SM, 2005, APPL MATH COMPUT, P1
173628    YEN GG, 2003, IEEE T EVOLUT COMPUT, V7, P253
173629    ZITZLER E, 1999, IEEE T EVOLUT COMPUT, V3, P257
173630    ZITZLER E, 2001, 103 TIK
173631 NR 16
173632 TC 0
173633 SN 0916-8508
173634 J9 IEICE TRANS FUND ELEC COM COM
173635 JI IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
173636 PD MAR
173637 PY 2006
173638 VL E89A
173639 IS 3
173640 BP 790
173641 EP 797
173642 PG 8
173643 SC Computer Science, Hardware & Architecture; Computer Science,
173644    Information Systems; Engineering, Electrical & Electronic
173645 GA 025TO
173646 UT ISI:000236290000020
173647 ER
173648 
173649 PT J
173650 AU Zou, JN
173651    Xiong, HK
173652    Lin, RJ
173653 TI A priority-based packet scheduling architecture for integrated services
173654    networks
173655 SO IEICE TRANSACTIONS ON COMMUNICATIONS
173656 DT Article
173657 DE QoS; priority; packet scheduling; sorted-priority; frame-based
173658 AB To simultaneously support guaranteed real-time services and best-effort
173659    service, a Priority-based Scheduling Architecture (PSA) designed for
173660    high-speed switches is proposed. PSA divides packet scheduling into
173661    high-priority phase and low-priority phase. In the high-priority phase,
173662    an improved sorted-priority algorithm is presented. It introduces a new
173663    constraint into the scheduling discipline to overcome bandwidth
173664    pre-emption. Meanwhile, the virtual time function with a control factor
173665    a is employed. Both computer simulation results and theoretic analysis
173666    show that the PSA mechanism has excellent performance in terms of the
173667    implementation complexity, fairness and delay properties.
173668 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
173669    Shanghai Jiao Tong Univ, Inst Image Commun & Informat Proc, Shanghai 200030, Peoples R China.
173670 RP Zou, JN, Shanghai Univ, Sch Commun & Informat Engn, 179 Yanchang Ave,
173671    Shanghai 200072, Peoples R China.
173672 EM zoujn@graduate.shu.edu.cn
173673 CR BENNETT JCR, 1996, P IEEE INFOCOM 96 SA, P120
173674    BENNETT JCR, 1997, IEEE ACM T NETWORK, V5, P675
173675    CHUANXIONG G, 2001, P ACM SIGCOMM 01, P211
173676    PAREKH AK, 1993, IEEE ACM T NETWORK, V1, P344
173677    SHREEDHAR M, 1996, IEEE ACM T NETWORK, V4, P375
173678    STILIADIS D, 1996, THESIS U CALIFORNIA
173679    ZHANG Y, 1991, RANDOM STRUCT ALGOR, V2, P101
173680 NR 7
173681 TC 0
173682 SN 0916-8516
173683 J9 IEICE TRANS COMMUN
173684 JI IEICE Trans. Commun.
173685 PD MAR
173686 PY 2006
173687 VL E89B
173688 IS 3
173689 BP 704
173690 EP 708
173691 PG 5
173692 SC Engineering, Electrical & Electronic; Telecommunications
173693 GA 025TX
173694 UT ISI:000236290900010
173695 ER
173696 
173697 PT J
173698 AU Yao, YQ
173699    Chen, DY
173700 TI A new loop algebra and its corresponding multi-component integrable
173701    hierarchy
173702 SO COMMUNICATIONS IN THEORETICAL PHYSICS
173703 DT Article
173704 DE cycled numbers; loop algebra; multi-component integrable hierarchy
173705 ID HAMILTONIAN-STRUCTURE
173706 AB A type of new loop algebra (G) over tilde (M) is constructed by making
173707    use of the concept of cycled numbers. As its application, an
173708    isospectral problem is designed and a new multi-component integrable
173709    hierarchy with multi-potential functions is worked out, which can be
173710    reduced to the famous KN hierarchy.
173711 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
173712 RP Yao, YQ, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
173713 CR FAN E, 2001, PHYSICA A, V301, P105
173714    GUO FK, 2000, ACTA MATH APPL SIN, V22, P181
173715    GUO FK, 2003, J MATH PHYS, V44, P5793
173716    GUO FK, 2004, APPL MATH J CHINES A, V19, P41
173717    GUO FK, 2004, CHAOS SOLITON FRACT, V22, P1063
173718    MA WX, 1993, ACTA MATH APPL SINIC, V9, P92
173719    TSLUCHIDA T, 1999, J PHYS SOC JPN, V69, P2241
173720    TSLUCHIDA T, 1999, PHYS LETT A, V257, P53
173721    TU GZ, 1989, J MATH PHYS, V30, P330
173722    ZHANG YF, 2003, PHYS LETT A, V317, P280
173723 NR 10
173724 TC 0
173725 SN 0253-6102
173726 J9 COMMUN THEOR PHYS
173727 JI Commun. Theor. Phys.
173728 PD MAR 15
173729 PY 2006
173730 VL 45
173731 IS 3
173732 BP 385
173733 EP 388
173734 PG 4
173735 SC Physics, Multidisciplinary
173736 GA 026CS
173737 UT ISI:000236314900001
173738 ER
173739 
173740 PT J
173741 AU Bi, JB
173742    Sun, YP
173743    Chen, DY
173744 TI Soliton solutions for nonisospectral AKNS equation by Hirota's method
173745 SO COMMUNICATIONS IN THEORETICAL PHYSICS
173746 DT Article
173747 DE nonisospectral AKNS equation; soliton solutions; Hirota's method
173748 AB Bilinear form of the nonisospectral AKNS equation is given. The
173749    N-soliton solutions are obtained through Hirota's method.
173750 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
173751 RP Bi, JB, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
173752 EM bijinbo@163.com
173753 CR CALOGERO F, 1978, LETT NUOVO CIMENTO, V22, P131
173754    CHAN WL, 1989, J MATH PHYS, V30, P2521
173755    GUPTA MR, 1979, PHYS LETT A, V72, P420
173756    HIROTA R, 1971, PHYS REV LETT, V27, P1192
173757    HIROTA R, 1976, J PHYS SOC JPN, V41, P2141
173758    TIAN C, 1990, RES REPORTS PHYS, P35
173759 NR 6
173760 TC 0
173761 SN 0253-6102
173762 J9 COMMUN THEOR PHYS
173763 JI Commun. Theor. Phys.
173764 PD MAR 15
173765 PY 2006
173766 VL 45
173767 IS 3
173768 BP 398
173769 EP 400
173770 PG 3
173771 SC Physics, Multidisciplinary
173772 GA 026CS
173773 UT ISI:000236314900004
173774 ER
173775 
173776 PT J
173777 AU Sun, YP
173778    Chen, DY
173779    Xu, XX
173780 TI A hierarchy of integrable lattice soliton equations and new integrable
173781    symplectic map
173782 SO COMMUNICATIONS IN THEORETICAL PHYSICS
173783 DT Article
173784 DE lattice soliton equation; discrete Hamiltonian structure; integrable
173785    symplectic map
173786 ID DIFFERENTIAL-DIFFERENCE EQUATIONS; EVOLUTION-EQUATIONS; BINARY
173787    NONLINEARIZATION; SYMMETRY CONSTRAINT; MASTER-SYMMETRIES; SYSTEMS
173788 AB Starting from a discrete spectral problem, a hierarchy of integrable
173789    lattice soliton equations is derived. It is shown that the hierarchy is
173790    completely integrable in the Liouville sense and possesses discrete
173791    bi-Hamiltonian structure. A new integrable symplectic map and
173792    finite-dimensional integrable systems are given by nonlinearization
173793    method. The binary Bargmann constraint gives rise to a Backlund
173794    transformation for the resulting integrable lattice equations. At last,
173795    conservation laws of the hierarchy are presented.
173796 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
173797    Shanghai Univ Sci & Technol, Coll Sci, Qingdao 266510, Peoples R China.
173798 RP Sun, YP, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
173799 CR ABLOWITZ MJ, 1975, J MATH PHYS, V16, P598
173800    BOGOYAVLENSKY OI, 1988, PHYS LETT A, V134, P34
173801    BRUSCHI M, 1991, PHYSICA D, V49, P273
173802    CAO CW, 1990, NONLINEAR PHYSICS RE, P68
173803    CAO CW, 1990, SCI CHINA SER A, V33, P528
173804    CAO CW, 1999, J PHYS A-MATH GEN, V32, P8059
173805    CHEN DY, 1987, J PHYS A-MATH GEN, V20, P313
173806    CHEN DY, 2003, CHAOS SOLITON FRACT, V15, P761
173807    LI YS, 2000, SOLITONS FRACTALS, V11, P697
173808    MA WX, 1994, PHYS LETT A, V185, P277
173809    MA WX, 1996, IL NUOVO CIMENTO B, V111, P1135
173810    MA WX, 1997, CHINESE ANN MATH B, V18, P79
173811    MA WX, 1999, J MATH PHYS, V40, P2400
173812    MA WX, 1999, P AARMS CRM WORKSH B
173813    NARITA K, 2002, J PHYS SOC JPN, V71, P2401
173814    OEVEL W, 1989, PROG THEOR PHYS, V81, P294
173815    OHTA Y, 1990, J PHYS A, V23, P3903
173816    OHTA Y, 1991, J PHYS SOC JPN, V60, P2059
173817    WADATI M, 1979, J PHYS SOC JPN, V47, P1698
173818    WU YT, 1996, J MATH PHYS, V37, P2338
173819    WU YT, 1998, J PHYS A-MATH GEN, V31, L677
173820    XU XX, 1995, CHINESE PHYS LETT, V12, P513
173821    XU XX, 2002, COMMUN THEOR PHYS, V38, P523
173822    XU XX, 2002, PHYS LETT A, V301, P250
173823    XU XX, 2003, ACTA MATH SCI A, V23, P298
173824    XU XX, 2004, COMMUN THEOR PHYS, V41, P321
173825    XU XX, 2005, NONLINEAR ANAL-THEOR, V61, P1225
173826    ZENG YB, 1995, J PHYS A-MATH GEN, V28, P113
173827    ZENG YB, 1997, ANN MATH B, V18, P457
173828    ZHANG DJ, 2002, CHAOS SOLITON FRACT, V14, P573
173829    ZHANG DJ, 2002, J PHYS A-MATH GEN, V35, P7225
173830    ZHANG HW, 1991, J MATH PHYS, V32, P1908
173831    ZHOU RG, 2000, PHYS LETT A, V269, P103
173832 NR 33
173833 TC 0
173834 SN 0253-6102
173835 J9 COMMUN THEOR PHYS
173836 JI Commun. Theor. Phys.
173837 PD MAR 15
173838 PY 2006
173839 VL 45
173840 IS 3
173841 BP 405
173842 EP 410
173843 PG 6
173844 SC Physics, Multidisciplinary
173845 GA 026CS
173846 UT ISI:000236314900006
173847 ER
173848 
173849 PT J
173850 AU Zhu, HP
173851    Zheng, CL
173852    Fang, JP
173853 TI Explicit and exact solutions to N-order Schrodinger system via an
173854    extended mapping approach
173855 SO COMMUNICATIONS IN THEORETICAL PHYSICS
173856 DT Article
173857 DE extended mapping approach; Schrodinger equation; exact solution
173858 ID VARIABLE SEPARATION EXCITATIONS; COHERENT SOLITON-STRUCTURES;
173859    BROER-KAUP SYSTEM; MULTISCALE REDUCTION; BOUSSINESQ EQUATION; MODELS;
173860    PDES
173861 AB In this paper, we extend the mapping approach to the N-order
173862    Schrodinger equation. In terms of the extended mapping approach, new
173863    families of variable separation solutions with some arbitrary functions
173864    are derived.
173865 C1 Zheijiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
173866    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
173867 RP Zheng, CL, Zheijiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R
173868    China.
173869 EM zclzheng@yahoo.com.cn
173870 CR CALOGERO F, 2000, J MATH PHYS, V41, P6399
173871    CALOGERO F, 2001, J MATH PHYS, V42, P2635
173872    FANG JP, 2005, Z NATURFORSCH A, V60, P245
173873    GARDNER CS, 1967, PHYS REV LETT, V19, P1095
173874    HIROTA R, 1971, PHYS REV LETT, V27, P1192
173875    LOU SY, 1990, PHYS LETT A, V151, P133
173876    LOU SY, 1993, PHYS LETT A, V175, P23
173877    LOU SY, 1998, PHYS REV LETT, V80, P5027
173878    LOU SY, 1999, CHINESE PHYS LETT, V16, P659
173879    LOU SY, 2001, COMMUN THEOR PHYS, V35, P589
173880    MA YL, 2005, PHYS REV A, V71
173881    MATVEEV VB, DARBOUX TRANSFORMATI
173882    NIMMO JJC, 1992, PHYS LETT A, V168, P113
173883    TANG XY, 2002, PHYS REV E, V66, P46601
173884    VEROSKY JM, 1991, J MATH PHYS, V32, P1733
173885    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P9
173886    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
173887    ZHENG CL, 2004, COMMUN THEOR PHYS, V41, P671
173888    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
173889    ZHENG CL, 2004, Z NATURFORSCH A, V59, P912
173890    ZHENG CL, 2005, CHAOS SOLITON FRACT, V23, P1741
173891    ZHENG CL, 2005, CHAOS SOLITON FRACT, V24, P1347
173892    ZHENG CL, 2005, CHAOS SOLITON FRACT, V26, P187
173893    ZHENG CL, 2005, PHYS LETT A, V340, P397
173894 NR 24
173895 TC 0
173896 SN 0253-6102
173897 J9 COMMUN THEOR PHYS
173898 JI Commun. Theor. Phys.
173899 PD MAR 15
173900 PY 2006
173901 VL 45
173902 IS 3
173903 BP 483
173904 EP 486
173905 PG 4
173906 SC Physics, Multidisciplinary
173907 GA 026CS
173908 UT ISI:000236314900021
173909 ER
173910 
173911 PT J
173912 AU Li, GJ
173913    Yan, SF
173914    Zhou, EL
173915    Chen, YM
173916 TI Preparation of magnetic and conductive NiZn ferrite-polyaniline
173917    nanocomposites with core-shell structure
173918 SO COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS
173919 DT Article
173920 DE crystallites; crystal structure; X-ray diffraction; nanomaterials
173921 ID NANOPARTICLES; COMPOSITE; OXIDE; MICROSPHERES
173922 AB Magnetic and conductive NiZn ferrite-polyaniline nanocomposites with
173923    novel core-shell structure have been fabricated by microemulsion
173924    process. The samples were characterized by XRD, TEM, SEM, IR, UV-vis,
173925    voltage/current detector and SQUID magnetometry. The core-shell
173926    structure of nanocomposites was observed by TEM. The changes of the
173927    magnetic and conductive properties after polyaniline coating were
173928    investigated. (c) 2006 Elsevier B.V. All rights reserved.
173929 C1 Donghua Univ, State Key Lab Chem Fibers & Polymer Mat, Shanghai 200051, Peoples R China.
173930    Shanghai Univ, Sch Mat Sci & Engn, Dept Polymer Mat, Shanghai 201800, Peoples R China.
173931    Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China.
173932 RP Li, GJ, Donghua Univ, State Key Lab Chem Fibers & Polymer Mat, Shanghai
173933    200051, Peoples R China.
173934 EM lgj@mail.dhu.edu.cn
173935 CR DENG JG, 2003, SYNTHETIC MET, V139, P295
173936    DHANABALAN A, 1999, J MATER SCI LETT, V18, P603
173937    GRASSET F, 2002, LANGMUIR, V18, P8209
173938    HE YJ, 2005, MATER CHEM PHYS, V92, P134
173939    KALININA O, 1999, MACROMOLECULES, V32, P4122
173940    KAWAGUCHI H, 2000, PROG POLYM SCI, V25, P1171
173941    KLUG HP, 1954, XRAY DIFFRACTION PRO
173942    LYON JL, 2004, NANO LETT, V4, P719
173943    MARCHESSAULT RH, 1992, POLYMER, V33, P4024
173944    PEDRO GR, 2001, ADV MATER, V13, P163
173945    TAGO T, 2002, J AM CERAM SOC, V85, P2188
173946    WAN MX, 1997, J POLYM SCI POL CHEM, V35, P2129
173947    WAN MX, 1998, J POLYM SCI POL CHEM, V36, P2749
173948    XIA HS, 2002, CHEM MATER, V14, P2158
173949    YAVUZ O, 2005, J MATER CHEM, V15, P810
173950    ZINS D, 1999, J MOL LIQ, V83, P217
173951    ZIOLO RF, 1992, SCIENCE, V257, P219
173952 NR 17
173953 TC 0
173954 SN 0927-7757
173955 J9 COLLOID SURFACE A
173956 JI Colloid Surf. A-Physicochem. Eng. Asp.
173957 PD MAR 15
173958 PY 2006
173959 VL 276
173960 IS 1-3
173961 BP 40
173962 EP 44
173963 PG 5
173964 SC Chemistry, Physical
173965 GA 024YA
173966 UT ISI:000236231300007
173967 ER
173968 
173969 PT J
173970 AU Zhang, JC
173971    Zhang, ZQ
173972    Xu, Y
173973    Jing, C
173974    Cao, SX
173975    Zhao, Y
173976 TI Low temperature transport behavior and Kondo scattering in dilute
173977    Mn-doped Na gamma Co1-xMnxO2
173978 SO APPLIED PHYSICS LETTERS
173979 DT Article
173980 ID NAXCO2O4; NACO2O4
173981 AB We studied the low temperature transport behavior and its dependence on
173982    applied magnetic field for dilute Mn-doped Na gamma Co1-xMnxO2 (x=0,
173983    0.03, 0.07, 0.1). Strikingly, a resistivity minimum was discovered for
173984    all the doped samples at low temperatures and was weakly dependent on
173985    the external magnetic field. Combining with the susceptibility
173986    measurements, the results prove the coexistence of Kondo scattering and
173987    possibly enhanced electron-electron (e-e) interaction induced by dilute
173988    Mn doping. This signature of e-e interaction may reflect a typical
173989    characteristic of strong correlation systems.
173990 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
173991    Tsing Hua Univ, Dept Phys, Beijing 100084, Peoples R China.
173992 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
173993 EM jczhang@staff.shu.edu.cn
173994 CR BAYRAKCI SP, 2004, PHYS REV B, V69
173995    BOOTHROYD AT, 2004, PHYS REV LETT, V92
173996    FOO ML, 2004, PHYS REV LETT, V92
173997    JANSEN M, 1974, Z ANORG ALLG CHEM, V408, P104
173998    KAWATA T, 1999, PHYS REV B, V60, P10584
173999    KONDO J, 1964, PROG THEOR PHYS, V32, P37
174000    LEE KW, 2005, PHYS REV LETT, V94
174001    LUO JL, 2004, PHYS REV LETT, V93
174002    MENDELS P, 2005, PHYS REV LETT, V94
174003    MOTOHASHI T, 2001, APPL PHYS LETT, V79, P1480
174004    ONG NP, 2004, SCIENCE, V305, P52
174005    PASUPATHY AN, 2004, SCIENCE, V306, P86
174006    SCHAAK RE, 2003, NATURE, V424, P527
174007    TAKADA K, 2003, NATURE, V6, P53
174008    TAKEUCHI T, 2002, PHYSICA B, V312, P719
174009    TERASAKI I, 1997, PHYS REV B, V56, P12685
174010    TERASAKI I, 2003, PHYSICA B, V328, P63
174011    TERASAKI L, 2002, PHYS REV B, V65
174012    WANG YY, 2003, NATURE, V423, P425
174013    YANG HD, 2005, PHYS REV B, V71
174014    ZHANG JC, 2005, PHYS REV B, V72
174015    ZHANG WY, 2004, J PHYS-CONDENS MAT, V16, P4935
174016 NR 22
174017 TC 0
174018 SN 0003-6951
174019 J9 APPL PHYS LETT
174020 JI Appl. Phys. Lett.
174021 PD MAR 20
174022 PY 2006
174023 VL 88
174024 IS 12
174025 AR 122102
174026 DI ARTN 122102
174027 PG 3
174028 SC Physics, Applied
174029 GA 025FG
174030 UT ISI:000236250100062
174031 ER
174032 
174033 PT J
174034 AU Fu, GC
174035    Li, MX
174036    Dong, C
174037    Guo, J
174038    Yang, LH
174039 TI Structural, transport and magnetic properties of KxCoO2 center dot
174040    yH(2)O(x < 0.2,y <= 0.8)
174041 SO ACTA PHYSICA SINICA
174042 DT Article
174043 DE KxCoO2; crystal structure; spin glass; magnetic properties
174044 ID PHASE; SUPERCONDUCTIVITY
174045 AB Layered potassium cobaltate K0.36CoO2 has been successfully synthesized
174046    from KOH fluxes at 480 degrees C. The K0.36CoO2 sample can be oxidized
174047    and intercalated with water by treatment in KMnO4 and K2S2O8 solutions.
174048    K0.12CoO2 center dot 0.8H(2)O and K0.16CoO2 center dot 0.6H(2)O have
174049    been obtained after the KMnO4 and K2S2O8 treatment, respectively. The
174050    diffraction peaks of K0.12CoO2 center dot 0.8H(2)O and K0.16CoO2 center
174051    dot 0.6H(2)O can be well indexed by a hexagonal cell similar to the
174052    monolayer hydrate NaxCoO2 center dot yH(2)O. Afterdehydration, the
174053    major phases have an orthorhombic structure similar to Na0.5CoO2 and
174054    show semiconductor behavior. Both K0.12CoO2 center dot 0.8H(2)O and
174055    K0.16CoO2 center dot 0.6H(2)O are primarily paramagnetic and show
174056    metallic behavior. K0.16CoO2 center dot 0.6H(2)O has a spin-glass-like
174057    transition or other magnetic fluctuations around 56 K. The
174058    spin-glass-like transition or the regions of magnetic phase separation
174059    are reduced in K0.12CoO2 center dot 0.8H(2)O due to the increasing of
174060    the intercalated water. We also discussed similarities and differences
174061    between the structural and physical properties of KxCoO2 and NaxCoO2.
174062 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
174063    Chinese Acad Sci, Inst Phys, Natl Lab Superconduct, Beijing 100080, Peoples R China.
174064 RP Fu, GC, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
174065 EM chengdon@aphy.iphy.ac.cn
174066 CR BUTEL M, 1999, SOLID STATE IONICS, V122, P271
174067    DONG C, 1999, J APPL CRYSTALLOGR, V32, P838
174068    FOO ML, 2004, PHYS REV LETT, V92
174069    FU GC, 2005, CHINESE PHYS LETT, V22, P1478
174070    HUANG Q, 2004, J PHYS-CONDENS MAT, V16, P5803
174071    LIU CJ, 2004, PHYSICA C, V416, P43
174072    LUO JL, 2004, PHYS REV LETT, V93
174073    SCHAAK RE, 2003, NATURE, V424, P527
174074    SHIN N, 1996, J PHYS SOC JPN, V65, P358
174075    TAKADA K, 2003, NATURE, V422, P53
174076    TAKADA K, 2004, J SOLID STATE CHEM, V177, P372
174077 NR 11
174078 TC 0
174079 SN 1000-3290
174080 J9 ACTA PHYS SIN-CHINESE ED
174081 JI Acta Phys. Sin.
174082 PD DEC
174083 PY 2005
174084 VL 54
174085 IS 12
174086 BP 5713
174087 EP 5716
174088 PG 4
174089 SC Physics, Multidisciplinary
174090 GA 997PQ
174091 UT ISI:000234259300037
174092 ER
174093 
174094 PT J
174095 AU Ma, ZY
174096    Hua, GS
174097    Zheng, CL
174098 TI Multisoliton excitations for the Kadomtsev-Petviashvili equation
174099 SO ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES
174100 DT Article
174101 DE Kadomtsev-Petviashvili equation; variable separation approach; Backlund
174102    transformation; annihilation
174103 ID VARIABLE SEPARATION APPROACH; BROER-KAUP SYSTEM; (2+1)-DIMENSIONAL KDV
174104    EQUATION; LOCALIZED COHERENT STRUCTURES; KORTEWEG-DEVRIES EQUATION;
174105    SOLITON SOLUTION; PAINLEVE INTEGRABILITY; BURGERS-EQUATION;
174106    WAVE-EQUATION; LONG
174107 AB By means of the standard truncated Painleve expansion and a special
174108    Backlund trans format ion, some exact multisoliton solutions are
174109    derived for the Kadomtsev-Petviashvili equation. The evolution
174110    properties of the multisoliton excitations are investigated and some
174111    novel features or interesting behaviors Lire revealed. The results show
174112    that four straight-line solitons are annihilated or produced with the
174113    time increases. which is very similar to the completely nonelastic
174114    collision among electrons and positrons.
174115 C1 Lishui Univ, Coll Sci, Zhejiang 232000, Lishui, Peoples R China.
174116    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
174117 RP Ma, ZY, Lishui Univ, Coll Sci, Zhejiang 232000, Lishui, Peoples R China.
174118 EM mazhengyi_77@yahoo.com.cn
174119 CR BOITI M, 1987, INVERSE PROBL, V3, P371
174120    BOITI M, 1988, PHYS LETT A, V132, P432
174121    DENG SF, 2005, CHAOS SOLITON FRACT, V25, P475
174122    FANG JP, 2005, COMMUN THEOR PHYS, V43, P245
174123    FREEMAN NC, 1983, PHYS LETT A, V95, P1
174124    HIROTA R, 1980, DIRECT METHODS SOLIT
174125    HUANG WH, 2002, CHINESE PHYS, V11, P1101
174126    KADOMTSEV BB, 1970, SOV PHYS DOKL, V15, P539
174127    LIN J, 2002, Z NATURFORSCH A, V57, P929
174128    LIN J, 2004, CHAOS SOLITON FRACT, V19, P189
174129    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
174130    LOU SY, 2000, PHYS LETT A, V277, P94
174131    LOU SY, 2001, J PHYS A, V34, P237
174132    LOU SY, 2002, J MATH PHYS, V43, P4078
174133    LOU SY, 2002, J PHYS A-MATH GEN, V35, P10619
174134    MA ZY, 2004, CHINESE PHYS, V13, P1382
174135    MA ZY, 2005, COMMUN THEOR PHYS, V43, P993
174136    MACCARI A, 1997, J MATH PHYS, V38, P4151
174137    OIKAWA M, 1989, J PHYS SOC JPN, V58, P4416
174138    RUAN HY, 2001, ACTA PHYS SIN-CH ED, V50, P586
174139    SATSUMA J, 1976, J PHYS SOC JPN, V40, P286
174140    TANG XY, 2002, COMMUN THEOR PHYS, V38, P1
174141    TANG XY, 2002, PHYS REV E, V66, P46601
174142    UTHAYAKUMAR A, 1999, CHAOS SOLITON FRACT, V10, P1513
174143    WADATI M, 1980, J PHYS SOC JPN, V48, P312
174144    WANG S, 2004, CHAOS SOLITON FRACT, V21, P231
174145    YING JP, 2003, CHINESE PHYS LETT, V20, P1448
174146    ZAKHAROV VE, 1974, FUNC ANAL APPLIC, V8, P226
174147    ZAKHAROV VE, 1979, SOV SCI REV PHYS REV, V1, P133
174148    ZHANG JF, 2001, COMMUN THEOR PHYS, V35, P267
174149    ZHANG JF, 2003, Z NATURFORSCH A, V58, P280
174150    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P261
174151    ZHENG CL, 2004, COMMUN THEOR PHYS, V41, P391
174152    ZHENG CL, 2004, COMMUN THEOR PHYS, V41, P903
174153    ZHENG CL, 2005, CHAOS SOLITON FRACT, V24, P1347
174154 NR 35
174155 TC 0
174156 SN 0932-0784
174157 J9 Z NATURFORSCH SECT A
174158 JI Z. Naturfors. Sect. A-J. Phys. Sci.
174159 PD JAN-FEB
174160 PY 2006
174161 VL 61
174162 IS 1-2
174163 BP 32
174164 EP 38
174165 PG 7
174166 SC Chemistry, Physical; Physics, Multidisciplinary
174167 GA 023SC
174168 UT ISI:000236145500005
174169 ER
174170 
174171 PT J
174172 AU Zhu, HP
174173    Zheng, CL
174174    Fang, JP
174175 TI Bell-like and peak-like loop solitons in (2+1)-dimensional dispersive
174176    long water-wave system
174177 SO ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES
174178 DT Article
174179 DE extended mapping approach; dispersive long water-wave system (DLW);
174180    bell-like loop solitons; peak-like loop solitons
174181 ID VARIABLE SEPARATION EXCITATIONS; LOCALIZED COHERENT STRUCTURES;
174182    EXTENDED MAPPING APPROACH; LEON-PEMPINELLI SYSTEM; 2 SPACE DIMENSIONS;
174183    BROER-KAUP SYSTEM; SCHRODINGER SYSTEM; EQUATIONS; MODELS
174184 AB Starting from an extended mapping approach, a new type of variable
174185    separation solution with arbitrary functions of the (2+1)-dimensional
174186    dispersive long water-wave (DLW) system is derived. Then based on the
174187    derived solution, we reveal some new types of loop solitons such as
174188    bell-like loop solitons and peak-like loop solitons in the
174189    (2+1)-dimensional DLW system.
174190 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Zhejiang, Peoples R China.
174191    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
174192 RP Zheng, CL, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Zhejiang,
174193    Peoples R China.
174194 EM zjclzheng@yahoo.com.cn
174195 CR BOITI M, 1987, INVERSE PROBL, V3, P371
174196    BOITI M, 1988, PHYS LETT A, V132, P432
174197    FANG JP, 2005, CHINESE PHYS, V14, P13
174198    FANG JP, 2005, Z NATURFORSCH A, V60, P245
174199    LOU SY, 1993, PHYS LETT A, V76, P96
174200    LOU SY, 1994, J PHYS A-MATH GEN, V27, P3235
174201    LOU SY, 1995, MATH METHOD APPL SCI, V18, P789
174202    LOU SY, 1997, J MATH PHYS, V38, P6401
174203    LOU SY, 1998, PHYS REV LETT, V80, P5027
174204    PAQUIN G, 1990, PHYSICA D, V46, P122
174205    TANG XY, 2002, PHYS REV E 2, V66
174206    TANG XY, 2003, J MATH PHYS, V44, P4000
174207    ZHANG JF, 2002, COMMUN THEOR PHYS, V37, P277
174208    ZHENG CL, 2002, ACTA PHYS SIN-CH ED, V51, P2426
174209    ZHENG CL, 2002, CHINESE PHYS LETT, V19, P1399
174210    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
174211    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P783
174212    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
174213    ZHENG CL, 2004, CHINESE PHYS, V13, P592
174214    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
174215    ZHENG CL, 2004, Z NATURFORSCH A, V59, P912
174216    ZHENG CL, 2005, ACTA PHYS SIN-CH ED, V54, P1468
174217    ZHENG CL, 2005, CHAOS SOLITON FRACT, V23, P1741
174218    ZHENG CL, 2005, CHAOS SOLITON FRACT, V24, P1347
174219    ZHENG CL, 2005, CHINESE PHYS, V14, P676
174220    ZHENG CL, 2005, PHYS LETT A, V340, P397
174221    ZHENG CL, 2006, CHAOS SOLITON FRACT, V27, P1321
174222 NR 27
174223 TC 0
174224 SN 0932-0784
174225 J9 Z NATURFORSCH SECT A
174226 JI Z. Naturfors. Sect. A-J. Phys. Sci.
174227 PD JAN-FEB
174228 PY 2006
174229 VL 61
174230 IS 1-2
174231 BP 39
174232 EP 44
174233 PG 6
174234 SC Chemistry, Physical; Physics, Multidisciplinary
174235 GA 023SC
174236 UT ISI:000236145500006
174237 ER
174238 
174239 PT J
174240 AU Wei, JH
174241    Hu, HT
174242 TI Mathematical modelling of molten steel flow process in a whole RH
174243    degasser during the vacuum circulation refining process: Application of
174244    the model and results
174245 SO STEEL RESEARCH INTERNATIONAL
174246 DT Article
174247 ID DECARBURIZATION
174248 AB A three-dimensional mathematical model for the molten steel flow during
174249    the RH refining process has been applied to the circulatory flow
174250    processes in both a practical RH degasser and its water model unit. The
174251    model was presented earlier [1] and one of its characteristics is that
174252    ladle, snorkels and vacuum vessel are regarded as a whole. Using this
174253    model, the fluid flow field and the gas holdups of liquid phases and
174254    others have been computed respectively for a 90 t RH degasser and its
174255    water model unit with a 1/5 linear scale. The results show that the
174256    mathematical model can properly describe the flow pattern of molten
174257    steel during the refining process in an RH degasser. Except in the area
174258    close to the liquid's free surface and in the zone between the two
174259    snorkels in the ladle, a strong mixing of the molten steel occurs,
174260    especially in the vacuum vessel. However, there is a boundary layer
174261    between the descending liquid stream from the down-snorkel and its
174262    surrounding liquid, which is a typical liquid-liquid two-phase flow,
174263    and the molten steel in the ladle is not in a perfect mixing state. The
174264    lifting gas blown is ascending mostly near the up-snorkel wall, which
174265    is more obvious under the conditions of a practical RH degasser, and
174266    the flow pattern of the bubbles and molten steel in the up-snorkel is
174267    closer to an annular flow. The calculated circulation rates for the
174268    water model unit at different lifting gas rates are in good agreement
174269    with experimentally determined values.
174270 C1 Shanghai Univ, Coll Mat Sci & Engn, Dept Met Mat, Shanghai 200072, Peoples R China.
174271 RP Wei, JH, Shanghai Univ, Coll Mat Sci & Engn, Dept Met Mat, 149 Yan
174272    Chang Rd, Shanghai 200072, Peoples R China.
174273 EM jihew@hotmail.com
174274 CR AJMANI SK, 2004, ISIJ INT, V44, P82
174275    FILHO GAV, 2001, 2001 STEELM C P, P661
174276    HANNO PM, 1994, UROL CLIN N AM, V21, P1
174277    HUANG HF, 2004, THESIS SHANGHAI U
174278    ILEGBUSI OJ, 1990, ISIJ INT, V30, P731
174279    JIAO B, 2000, J IRON STEEL RES, P27
174280    KATO Y, 1993, ISIJ INT, V33, P1088
174281    PARK YG, 2000, ISIJ INT, V40, P749
174282    SHIRABE K, 1983, T ISIJ, V23, P564
174283    SZATKOWSKI M, 1991, IRON STEELMAKER, P65
174284    WEI JH, 2002, STEEL RES, V73, P135
174285    WEI JH, 2002, STEEL RES, V73, P143
174286    WEI JH, 2006, STEEL RES INT, V77, P32
174287    YU NW, 2001, THESIS SHANGHAI U
174288    ZHU MY, 2000, ACTA METALLURGICAL S, V36, P1176
174289 NR 15
174290 TC 0
174291 SN 1611-3683
174292 J9 STEEL RES INT
174293 JI Steel Res. Int.
174294 PD FEB
174295 PY 2006
174296 VL 77
174297 IS 2
174298 BP 91
174299 EP 96
174300 PG 6
174301 SC Metallurgy & Metallurgical Engineering
174302 GA 023RJ
174303 UT ISI:000236143600003
174304 ER
174305 
174306 PT J
174307 AU Cheng, YM
174308    Li, JH
174309 TI A complex variable meshless method for fracture problems
174310 SO SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY
174311 DT Article
174312 DE moving least-square approximation; complex variable moving least-square
174313    approximation; meshless method; complex variable meshless method;
174314    fracture
174315 ID FINITE-ELEMENT-METHOD; BOUNDARY NODE METHOD; COMPUTATIONAL MECHANICS
174316 AB Based on the moving least-square (MLS) approximation, the complex
174317    variable moving least-square approximation (CVMLS) is discussed in this
174318    paper. The complex variable moving least-square approximation cannot
174319    form ill-conditioned equations, and has greater precision and
174320    computational efficiency. Using the analytical solution near the tip of
174321    a crack, the trial functions in the complex variable moving
174322    least-square approximation are extended, and the corresponding
174323    approximation function is obtained. And from the minimum potential
174324    energy principle, a complex variable meshless method for fracture
174325    problems is presented, and the formulae of the complex variable
174326    meshless method are obtained. The complex variable meshless method in
174327    this paper has greater precision and computational efficiency than the
174328    conventional meshless method. Some examples are given.
174329 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
174330    Xian Univ Technol, Dept Bldg Engn, Xian 710048, Peoples R China.
174331 RP Cheng, YM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
174332    200072, Peoples R China.
174333 EM ymcheng@sh163.net
174334 CR ATLURI SN, 1998, COMPUT MECH, V22, P117
174335    BELYTSCHKO T, 1994, INT J NUMER METH ENG, V37, P229
174336    BELYTSCHKO T, 1996, COMPUT METHOD APPL M, V139, P3
174337    CAI Y, 2003, ACTA MECH SINICA, V35, P187
174338    CHEN W, 2000, NEW RBF COLLOCATION, V1
174339    CHENG Y, 2003, ACTA MECH SINICA, V35, P181
174340    DUARTE CA, 1995, 9505 U TEX AUST I CO
174341    HAO S, 2002, INT J NUMER METH ENG, V53, P1937
174342    IDELSOHN SR, 2003, INT J NUMER METH ENG, V58, P893
174343    KOTHNUR VS, 1999, INT J SOLIDS STRUCT, V36, P1129
174344    LI S, 2002, APPL MECH REV, V55, P1
174345    LI S, 2004, ACTA MECH SINICA, V36, P496
174346    LIU WK, 1995, INT J NUMER METH FL, V21, P901
174347    LIU WK, 1996, COMPUT METHOD APPL M, V139, P91
174348    LONG SY, 2000, ACTA MECH SINICA, V32, P566
174349    NAYROLES B, 1992, COMPUT MECH, V10, P307
174350    ONARTE E, 1996, INT J NUMER METH ENG, V39, P3839
174351    ZHANG JM, 2002, INT J NUMER METH ENG, V53, P751
174352    ZHANG X, 2003, ACTA MECH SINICA, V35, P425
174353    ZHANG XG, 2001, INT J NUMER METH ENG, V51, P1089
174354    ZHU T, 1998, COMPUT MECH, V21, P223
174355 NR 21
174356 TC 0
174357 SN 1672-1799
174358 J9 SCI CHINA SER G
174359 JI Sci. China Ser. G-Phys. Mech. Astron.
174360 PD FEB
174361 PY 2006
174362 VL 49
174363 IS 1
174364 BP 46
174365 EP 59
174366 PG 14
174367 SC Physics, Multidisciplinary
174368 GA 023WM
174369 UT ISI:000236156900003
174370 ER
174371 
174372 PT J
174373 AU Tang, XY
174374    Liang, ZF
174375 TI Variable separation solutions for the (3+1)-dimensional Jimbo-Miwa
174376    equation
174377 SO PHYSICS LETTERS A
174378 DT Article
174379 ID NONLINEAR EVOLUTION-EQUATIONS; LOCALIZED EXCITATIONS; SYSTEM;
174380    DEFORMATION; SOLITONS
174381 AB Two types of variable separation solutions, obtained by the
174382    multi-linear variable separation approach, for the (3 + 1)-dimensional
174383    Jimbo-Miwa equation are presented in this Letter. Some two-dimensional
174384    arbitrary functions are included in the solutions which lead to some
174385    interesting (3 + 1)-dimensional structures. (c) 2005 Elsevier B.V. All
174386    rights reserved.
174387 C1 Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China.
174388    Shanghai Univ Sci & Technol, Power Engn Coll, Shanghai 200093, Peoples R China.
174389 RP Tang, XY, Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples
174390    R China.
174391 EM xytang@sjtu.edu.cn
174392 CR DORRIZZI B, 1986, J MATH PHYS, V27, P2848
174393    FAN EG, 2003, J PHYS A-MATH GEN, V36, P7009
174394    HU HC, 2004, CHAOS SOLITON FRACT, V22, P327
174395    HU HC, 2004, PHYS LETT, V21, P2073
174396    JIMBO M, 1983, PUBL RES I MATH SCI, V19, P943
174397    LIN J, 2003, PHYS LETT A, V313, P93
174398    LIU XQ, 2004, APPL MATH COMPUT, V158, P177
174399    LOU SY, 1995, J MATH PHYS, V36, P3492
174400    LOU SY, 1996, J PHYS A-MATH GEN, V29, P4209
174401    LOU SY, 2000, Z NATURFORSCH A, V55, P867
174402    LOU SY, 2002, CHINESE PHYS LETT, V19, P769
174403    LOU SY, 2003, J PHYS A-MATH GEN, V36, P3877
174404    LOU SY, 2004, CHINESE PHYS LETT, V21, P1020
174405    MA HC, 2005, PHYS LETT, V22, P554
174406    RUBIN J, 1990, J MATH PHYS, V31, P2085
174407    TANG XY, 2002, COMMUN THEOR PHYS, V37, P139
174408    TANG XY, 2002, PHYS REV E 2, V66
174409    TANG XY, 2003, CHINESE PHYS LETT, V3, P335
174410    TANG XY, 2003, COMMUN THEOR PHYS, V39, P6
174411    TANG XY, 2003, J MATH PHYS, V44, P4000
174412    YING JP, 2003, CHINESE PHYS LETT, V20, P1448
174413    YU J, 2000, SCI CHINA SER A, V43, P655
174414    ZHANG JF, 2002, CHINESE PHYS, V11, P425
174415    ZHANG SL, 2002, PHYS LETT A, V300, P40
174416    ZHENG CL, 2005, CHAOS SOLITON FRACT, V23, P1741
174417 NR 25
174418 TC 0
174419 SN 0375-9601
174420 J9 PHYS LETT A
174421 JI Phys. Lett. A
174422 PD MAR 13
174423 PY 2006
174424 VL 351
174425 IS 6
174426 BP 398
174427 EP 402
174428 PG 5
174429 SC Physics, Multidisciplinary
174430 GA 021SP
174431 UT ISI:000236006100006
174432 ER
174433 
174434 PT J
174435 AU Hu, HC
174436    Tong, B
174437    Lou, SY
174438 TI Nonsingular positon and complexiton solutions for the coupled KdV system
174439 SO PHYSICS LETTERS A
174440 DT Article
174441 ID KORTEWEG-DEVRIES EQUATION; DE-VRIES EQUATION; SOLITARY WAVES;
174442    CLASSIFICATION; SYMMETRIES; HIERARCHY
174443 AB Taking the coupled KdV system as a simple example, analytical and
174444    nonsingular complexiton solutions are firstly discovered in this Letter
174445    for integrable systems. Additionally, the analytical and nonsingular
174446    positon-negaton interaction solutions are also firstly found for
174447    S-integrable model. The new analytical positon, negaton and complexiton
174448    solutions of the coupled KdV system are given out both analytically and
174449    graphically by means of the iterative Darboux transformations. (c) 2005
174450    Elsevier B.V. All rights reserved.
174451 C1 Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China.
174452    Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
174453    Ningbo Univ, Dept Phys, Ningbo 315211, Peoples R China.
174454 RP Lou, SY, Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R
174455    China.
174456 EM sylou@mail.sjtu.edu.cn
174457 CR ABLOWITZ MJ, 1979, PHYS LETT A, V72, P277
174458    AIRAULT H, 1977, COMMUN PUR APPL MATH, V30, P95
174459    BRAZHNYI VA, 2005, PHYS REV E 2, V72
174460    CHEN Y, 2005, PHYS LETT A, V347, P215
174461    DODD R, 1982, PHYS LETT A, V89, P168
174462    DRINFELD VG, 1985, J SOVIET MATH, V30, P1975
174463    FOURSOV MV, 2000, INVERSE PROBL, V16, P259
174464    FUCHSSTEINER B, 1982, PROG THEOR PHYS, V68, P1082
174465    GEAR JA, 1984, STUD APPL MATH, V70, P235
174466    GEAR JA, 1985, STUD APPL MATH, V72, P95
174467    HIROTA R, 1981, PHYS LETT A, V85, P407
174468    HU HC, 2003, CHAOS SOLITON FRACT, V17, P921
174469    HU HC, 2004, CHAOS SOLITON FRACT, V22, P327
174470    HU HC, 2005, PHYS LETT A, V341, P422
174471    ITO M, 1982, PHYS LETT A, V91, P335
174472    KRUSKAL MD, 1974, LECTURES APPLIED MAT, V15, P61
174473    LIAN ZJ, 2005, IN PRESS NONLINEAR A
174474    LOU SY, NLINSI0508029
174475    LOU SY, 1994, J MATH PHYS, V35, P2390
174476    LOU SY, 2000, PHYS LETT A, V277, P94
174477    LOU SY, 2005, PHYS REV E 2, V71
174478    MA WX, 2002, PHYS LETT A, V301, P35
174479    MA WX, 2004, PHYSICA A, V343, P219
174480    MA WX, 2005, T AM MATH SOC, V357, P1753
174481    MAGRI F, 1978, J MATH PHYS, V19, P1156
174482    MATVEEV VB, 1991, DARBOUX TRANSFORMATI
174483    MATVEEV VB, 1992, PHYS LETT A, V166, P205
174484    MATVEEV VB, 1992, PHYS LETT A, V166, P209
174485    MATVEEV VB, 1992, PHYS LETT A, V168, P463
174486    MATVEEV VB, 1994, J MATH PHYS, V35, P2955
174487    MIURA RM, 1968, J MATH PHYS, V9, P1204
174488    NUTKU Y, 1990, NUOVO CIMENTO B, V105, P1381
174489    RASINARIU C, 1996, J PHYS A-MATH GEN, V29, P1803
174490    SATSUMA J, 1982, J PHYS SOC JPN, V51, P3390
174491    SOKOLOV VV, 1994, THEOR MATH PHYS, V100, P959
174492    SOKOLOV VV, 2001, J PHYS A-MATH GEN, V34, P11139
174493    TANG XY, 2002, PHYS REV E 2, V66
174494    XU GQ, 2004, COMPUT PHYS COMMUN, V161, P65
174495    ZAKHAROV VE, 1971, FUNCT ANAL APPL, V5, P280
174496    ZHARKOV AY, 1993, J SYMB COMPUT, V15, P85
174497 NR 40
174498 TC 0
174499 SN 0375-9601
174500 J9 PHYS LETT A
174501 JI Phys. Lett. A
174502 PD MAR 13
174503 PY 2006
174504 VL 351
174505 IS 6
174506 BP 403
174507 EP 412
174508 PG 10
174509 SC Physics, Multidisciplinary
174510 GA 021SP
174511 UT ISI:000236006100007
174512 ER
174513 
174514 PT J
174515 AU Chen, ZP
174516    Zhang, JC
174517    Su, YL
174518    Xue, YC
174519    Cao, SX
174520 TI Effect of rare-earth ion size on local electron structure in
174521    RBa2Cu3O7-delta (R = Tm, Dy, Gd, Eu, Nd and Y) superconductors: A
174522    positron study
174523 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
174524 DT Article
174525 DE high-Tc superconductivity; rare-earth ionic size; local electron
174526    density; positron annihilation; orhtorhombic distortion
174527 ID VACANCY PROPERTIES; LIFETIME; TEMPERATURE; DEPENDENCE; DEFECTS;
174528    ANNIHILATION; YBA2CU3O7; CERAMICS; RADIUS
174529 AB The effects of rarc-earth ionic size on the local electron structure,
174530    lattice parameters and superconductivity have been investigated by
174531    positron annihilation technique (PAT) and related experiments for
174532    RBa2Cu3O7-delta (R = Tm, Dy, Gd, Eu, Nd and Y) superconductors. The
174533    local electron density ne is evaluated as a function of the rare-earth
174534    radius. The results show that both the bulk-lifetime tau(B) and the
174535    defect lifetime tau(2) increase with increasing rare-earth ionic
174536    radius, while the local electron density n(e) decrease with increasing
174537    rare-earth ionic radius. These results prove that the changes of n(e),
174538    the degree of orthorhombic distortion and the coupling between the Cu-O
174539    chains and the CuO2 planes all have an effect on the superconductivity
174540    of RBa2Cu3O7-delta systems. (c) 2005 Elsevier B.V. All rights reserved.
174541 C1 Zhengzhou Univ Light Ind, Dept Technol & Phys, Zhengzhou 450002, Henan, Peoples R China.
174542    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
174543 RP Chen, ZP, Zhengzhou Univ Light Ind, Dept Technol & Phys, 5 Dongfeng Rd,
174544    Zhengzhou 450002, Henan, Peoples R China.
174545 EM czhping@zzuli.edu.cn
174546 CR BERGERSEN B, 1969, SOLID STATE COMMUN, V7, P1203
174547    BRANDT W, 1967, POSITRON ANNIHILATIO
174548    BRANDT W, 1971, PHYS LETT          A, V35, P109
174549    BUCHNER B, 1990, SOLID STATE COMMUN, V73, P357
174550    CHEN ZP, 2002, MATER LETT, V57, P374
174551    DE UY, 2000, PHYS REV B, V62, P14519
174552    GINSBERG DM, 1990, PHYSICAL PROPERTIES, P324
174553    HAUTOJARRI P, 1979, POSITRON SOLIDS
174554    JEAN YC, 1988, PHYS REV LETT, V60, P1069
174555    JORGENSEN JD, 1991, PHYS TODAY, V44, P34
174556    KISTENMACHER TJ, 1988, SOLID STATE COMMUN, V65, P981
174557    NAROZHNYI VN, 1996, PHYS REV B, V53, P5856
174558    POLITY A, 1999, PHYS REV B, V59, P10025
174559    SOMOZA A, 2000, PHYS REV B, V61, P14454
174560    VONSTETTEN EC, 1988, PHYS REV LETT, V60, P2198
174561    WEST RN, 1973, ADV PHYS, V22, P263
174562    ZHANG JC, 1993, PHYS REV B, V48, P16830
174563    ZHANG JC, 1995, PHYS LETT A, V201, P70
174564    ZHANG QR, 1993, CHIN SCI A, V23, P409
174565    ZHAO Y, 1990, PROG PHYS, V10, P421
174566 NR 20
174567 TC 0
174568 SN 0921-4534
174569 J9 PHYSICA C
174570 JI Physica C
174571 PD FEB 15
174572 PY 2006
174573 VL 434
174574 IS 2
174575 BP 161
174576 EP 166
174577 PG 6
174578 SC Physics, Applied
174579 GA 023YT
174580 UT ISI:000236162800008
174581 ER
174582 
174583 PT J
174584 AU Chen, YN
174585    Li, KC
174586    Li, Z
174587    Shang, GW
174588    Liu, DN
174589    Lu, ZM
174590    Zhang, JW
174591    Ji, YH
174592    Gao, GD
174593    Chen, J
174594 TI Effects of bee venom peptidergic components on rat pain-related
174595    behaviors and inflammation
174596 SO NEUROSCIENCE
174597 DT Article
174598 DE peptidergic biotoxins; local inflammation; ongoing pain; thermal and
174599    mechanical hypersensitivity; TRPV1
174600 ID DYNAMIC-RANGE NEURONS; SUBCUTANEOUS INJECTION; RECEPTOR ANTAGONIST;
174601    CONSCIOUS RAT; DORSAL-HORN; MELITTIN; HYPERALGESIA; CAPSAICIN;
174602    RESPONSES; NOCICEPTION
174603 AB To identify the active components of honeybee venom in production of
174604    inflammation and pain-related behaviors, five major peptidergic
174605    subfractions were separated, purified and identified from the whole
174606    honeybee venom. Among them, four active peptidergic components were
174607    characterized as apamin, mast-cell degranulating peptide (MCDP),
174608    phospholipase A(2) (PLA(2))-related peptide and melittin, respectively.
174609    All five subfractions were effective in production of local
174610    inflammatory responses (paw edema) in rats although the efficacies were
174611    different. Among the five identified subfractions, only MCDP,
174612    PLA(2)-related peptide and melittin were able to produce ongoing
174613    pain-related behaviors shown as paw flinches, while only apamin and
174614    melittin were potent to produce both thermal and mechanical
174615    hypersensitivity. As shown in our previous report, melittin was the
174616    most potent polypeptide in production of local inflammation as well as
174617    ongoing pain and hypersensitivity. To further explore the peripheral
174618    mechanisms underlying melittin-induced nociception and
174619    hypersensitivity, a single dose of capsazepine, a blocker of thermal
174620    nociceptor transient receptor potential vanilloid receptor 1, was
174621    treated s.c. prior to or after melittin administration. The results
174622    showed that both pre- and post-treatment of capsazepine could
174623    significantly prevent and suppress the melittin-induced ongoing
174624    nociceptive responses and thermal hypersensitivity, but were without
174625    influencing mechanical hypersensitivity. The present results suggest
174626    that the naturally occurring peptidergic substances of the whole
174627    honeybee venom have various pharmacological potencies to produce local
174628    inflammation, nociception and pain hypersensitivity in mammals, and
174629    among the five identified reverse-phase high pressure liquid
174630    chromatography subfractions (four polypeptides), melittin, a
174631    polypeptide occupying over 50% of the whole honeybee venom, plays a
174632    central role in production of local inflammation, nociception and
174633    hyperalgesia or allodynia following the experimental honeybee's sting.
174634    Peripheral transient receptor potential vanilloid receptor 1 is likely
174635    to be involved in melittin-produced ongoing pain and heat hyperalgesia,
174636    but not mechanical hyperalgesia, in rats. (c) 2005 Published by
174637    Elsevier Ltd on behalf of IBRO.
174638 C1 Fourth Mil Med Univ, Inst Funct Brain Disorders, Xian 710038, Peoples R China.
174639    Fourth Mil Med Univ, Inst Biomed Sci Pain, Tangdu Hosp, Xian 710038, Peoples R China.
174640    Capital Univ Med Sci, Inst Biomed Sci Pain, Beijing 100054, Peoples R China.
174641    Shanghai Univ, Sch Life Sci, Shanghai 200444, Peoples R China.
174642 RP Gao, GD, Fourth Mil Med Univ, Inst Funct Brain Disorders, 1 Xinsi Rd,
174643    Xian 710038, Peoples R China.
174644 EM gguodong@fmmu.edu.cn
174645    junchen@fmmu.edu.cn
174646 CR BREITHAUPT H, 1968, N-S ARCH PHARMACOL, V261, P252
174647    CHEN HS, 2000, EUR J PAIN-LONDON, V4, P389
174648    CHEN J, 1998, EUR J PAIN-LONDON, V2, P359
174649    CHEN J, 1999, BRAIN RES, V844, P98
174650    CHEN J, 1999, PAIN, V83, P67
174651    CHEN J, 2001, PAIN, V91, P367
174652    CHEN J, 2003, EXPT PATHOLOGICAL PA, P77
174653    CHEN J, 2005, 11 WORLD C PAIN AUST, P403
174654    FISCHER FG, 1961, BIOCHEM Z, V335, P51
174655    GAULDIE J, 1978, EUR J BIOCHEM, V83, P405
174656    GUSHCHIN IS, 1977, B EKSP BIOL MED, V87, P78
174657    HABERMANN E, 1965, BIOCHEM Z, V343, P192
174658    HABERMANN E, 1972, SCIENCE, V177, P314
174659    HUGUES M, 1982, P NATL ACAD SCI USA, V79, P1308
174660    JI YH, 1996, TOXICON, V34, P987
174661    JULIUS D, 2001, NATURE, V413, P203
174662    JULIUS D, 2006, WALL MELZACKS TXB PA, P35
174663    KOYAMA N, 2000, PAIN, V84, P133
174664    KWAK JY, 1998, NEUROSCIENCE, V86, P619
174665    KWON YB, 2001, AM J CHINESE MED, V29, P187
174666    KWON YB, 2001, NEUROSCI LETT, V308, P133
174667    KWON YB, 2002, LIFE SCI, V71, P191
174668    LARIVIERE WR, 1996, PAIN, V66, P271
174669    LARIVIERE WR, 2002, PAIN, V97, P75
174670    LARIVIERE WR, 2005, ACTA PHYSL SIN, V57, P278
174671    LEE JH, 2001, J VET MED SCI, V63, P251
174672    LI KC, 2004, NEUROSCIENCE, V126, P753
174673    MINTON SA, 1974, VENOM DIS
174674    SHIN HK, 2004, NEUROREPORT, V15, P1745
174675    SUMIKURA H, 2003, NEUROSCI LETT, V337, P147
174676    TU AT, 1977, VENOMS CHEM MOL BIOL
174677    VALENTIN E, 2000, J BIOL CHEM, V275, P7492
174678    YE JG, 2000, FEBS LETT, V479, P136
174679    YOU HJ, 1999, EUR J PAIN-LONDON, V3, P177
174680    YOU HJ, 2002, BRAIN RES BULL, V58, P561
174681    ZALUZEC EJ, 1995, PROTEIN EXPRES PURIF, V6, P109
174682    ZHENG JH, 2002, J COMPUT NEUROSCI, V13, P23
174683    ZIMMERMANN M, 1983, PAIN, V16, P109
174684 NR 38
174685 TC 0
174686 SN 0306-4522
174687 J9 NEUROSCIENCE
174688 JI Neuroscience
174689 PY 2006
174690 VL 138
174691 IS 2
174692 BP 631
174693 EP 640
174694 PG 10
174695 SC Neurosciences
174696 GA 022HL
174697 UT ISI:000236046100024
174698 ER
174699 
174700 PT J
174701 AU Zhang, JX
174702    Xu, N
174703    Ge, HH
174704    Wei, ZF
174705    Yan, LC
174706 TI Determining optimum cathodic protection potential for brass
174707 SO MATERIALS PERFORMANCE
174708 DT Article
174709 ID CALCAREOUS DEPOSITS; ELECTROCHEMICAL-BEHAVIOR; ARTIFICIAL SEAWATER;
174710    CORROSION; CACO3
174711 AB The use of electrochemical impedance spectroscopy (EIS) to investigate
174712    corrosion protection was illustrated for cathodic protection (CP) of
174713    brass in artificial freshwater. Based on the results, the optimum
174714    protection potential of brass under CP was determined. EIS and optical
174715    microscopy were performed to characterize the surface of test
174716    electrodes at different stages during the test. The results show that
174717    EIS is an effective method to determine the optimum protection
174718    potential of brass.
174719 C1 Shanghai Univ, Shanghai 200041, Peoples R China.
174720 RP Zhang, JX, Shanghai Univ, Shanghai 200041, Peoples R China.
174721 CR BARCHICHE C, 2003, ELECTROCHIM ACTA, V48, P1645
174722    BARCHICHE C, 2004, ELECTROCHIM ACTA, V49, P2833
174723    DAN WT, 2002, CORROSION 2002
174724    DESLOUIS C, 2000, ELECTROCHIM ACTA, V45, P1837
174725    DINNAPPA RK, 1987, CORROS SCI, V27, P349
174726    ELSHERIF RM, 2004, ELECTROCHIM ACTA, V49, P5139
174727    GILBERT PT, 1995, CORROSION METAL ENV
174728    HABIB K, 1998, CORROS SCI, V40, P1435
174729    HODGKIESS T, 2003, DESALINATION, V158, P23
174730    KEAR G, 2005, CORROS SCI, V47, P1694
174731    MANSFELD F, 1990, ELECTROCHIM ACTA, V35, P1533
174732    QUARTARONE G, 1998, CORROSION, V54, P606
174733    RAVICHANDRAN R, 2005, APPL SURF SCI, V241, P449
174734    SHREIR LL, 1990, DESIGN OPERATIONAL G
174735    XU LK, 2003, CORROS SCI, V45, P2729
174736    ZHANG JX, 2005, IN PRESS CORROSION P, V26
174737 NR 16
174738 TC 0
174739 SN 0094-1492
174740 J9 MATER PERFORM
174741 JI Mater. Perform.
174742 PD MAR
174743 PY 2006
174744 VL 45
174745 IS 3
174746 BP 20
174747 EP 25
174748 PG 6
174749 SC Materials Science, Characterization & Testing
174750 GA 022QZ
174751 UT ISI:000236072100010
174752 ER
174753 
174754 PT J
174755 AU Liao, QQ
174756    Wu, YP
174757    Zhou, GD
174758 TI Case history - Evaluation of the scale and inhibition effect of a water
174759    stabilizer
174760 SO MATERIALS PERFORMANCE
174761 DT Article
174762 AB The complex effect of a water stabilizer on copper, iron, and zinc ions
174763    was tested by spectrophotometry, and its corrosion inhibition on copper
174764    alloy tubes was measured using electrochemical methods. The results
174765    showed that the water stabilizer not only had a strong antiscaling
174766    effect on Ca2+ and Mg2+, but also had certain complex effects on Cu2+
174767    and Zn2+ under conventionally used concentration. The water stabilizer
174768    provided insufficient corrosion inhibition on copper tubes at the usual
174769    concentration.
174770 C1 Shanghai Univ, Shanghai 200041, Peoples R China.
174771 RP Liao, QQ, Shanghai Univ, Shanghai 200041, Peoples R China.
174772 CR *THERM POW RES I, 1995, STAND COLL WAT VAP T, P172
174773    *THERM POW RES I, 1995, STAND COLL WAT VAP T, P196
174774    *THERM POW RES I, 1995, STAND COLL WAT VAP T, P71
174775    YU ZH, 2000, CHINA ELECT POWER, V33, P31
174776 NR 4
174777 TC 0
174778 SN 0094-1492
174779 J9 MATER PERFORM
174780 JI Mater. Perform.
174781 PD MAR
174782 PY 2006
174783 VL 45
174784 IS 3
174785 BP 42
174786 EP 45
174787 PG 4
174788 SC Materials Science, Characterization & Testing
174789 GA 022QZ
174790 UT ISI:000236072100019
174791 ER
174792 
174793 PT J
174794 AU Yang, QH
174795    Kim, ES
174796    Xu, J
174797 TI Effect of La3+ on microwave dielectric properties of (Pb0.45Ca0.55)
174798    (Fe0.5Nb0.5)O-3 ceramics
174799 SO JOURNAL OF RARE EARTHS
174800 DT Article
174801 DE (Pb0.45Ca0.55)(Fe0.5Nb0.5)O-3; microwave dielectric properties; oxygen
174802    vacancy; A-site substitution; rare earths
174803 ID FREQUENCIES
174804 AB In this work, microwave dielectric properties of A-site substitution by
174805    La3+ in (Pb0.45Ca0.55) (Fe0.5Nb0.5) 03 system were investigated.
174806    Microwave dielectric properties of A-site charge unbalance substitution
174807    of [(Pb0.45Ca0.55)(1-x) La-x] (Fe0.5Nb0.5)O-3(+) (P45CLFN) were
174808    improved because the solid solution of small amount of surplus La3+
174809    with (Pb, Ca)(2+) could eliminate oxygen vacancies, and the formation
174810    of secondary phase (pyrochlore) was also caused by surplus La3+. The
174811    decreasing of dielectric constant with the increase of La3+ content is
174812    due to the formation of pyrochlore. The grain size is changed slightly
174813    and Q(f) values (7000 similar to 7300 GHz) are almost unchanged at x =
174814    0.02 similar to 0.10, but the temperature coefficient of resonant
174815    frequency (TCF) are increased and changed from negative to positive.
174816    TCF is zero at x 0.075 with Q(f) = 7267 GHz and K = 89. TCF of all
174817    specimens are within +/- 5 x 10(-6)degrees C-1.
174818 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
174819    Kyonggi Univ, Dept Mat Engn, Suwon, South Korea.
174820    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
174821 RP Yang, QH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
174822    China.
174823 EM yangqiuhongen@yahoo.com
174824 CR FERREIRA VM, 1995, J MATER RES, V10, P2301
174825    KAGATA H, 1993, JPN J APPL PHYS 1, V32, P4332
174826    KATO J, 1991, JPN J APPL PHYS PT 1, V30, P2343
174827    KATO J, 1992, JPN J APPL PHYS 1, V31, P3144
174828    KUCHEIKO S, 1997, J AM CERAM SOC, V80, P2937
174829    MICHIURA N, 1995, J AM CERAM SOC, V78, P793
174830    PLOURDE JK, 1981, IEEE T MICROW THEORY, V29, P754
174831    RAO TS, 1990, FERROELECTRICS, V102, P155
174832 NR 8
174833 TC 0
174834 SN 1002-0721
174835 J9 J RARE EARTH
174836 JI J. Rare Earths
174837 PD DEC
174838 PY 2005
174839 VL 23
174840 SU Suppl. S
174841 BP 145
174842 EP 147
174843 PG 3
174844 SC Chemistry, Applied
174845 GA 022YY
174846 UT ISI:000236093300038
174847 ER
174848 
174849 PT J
174850 AU Wang, ZY
174851    Xu, H
174852    Ni, JS
174853    Jin, HM
174854    Zhou, BX
174855 TI Texture evolution in nanocomposite Nd2Fe14B/alpha-Fe magnets prepared
174856    by direct melt spinning
174857 SO JOURNAL OF RARE EARTHS
174858 DT Article
174859 DE nanocomposite magnet; Nd2Fe14B/alpha-Fe; melt spinning; anisotropic
174860    magnets; rare earths
174861 ID ND2FE14B/FE3B MAGNET; FIELD TREATMENT
174862 AB Texture evolution in nanocomposite Nd(2)Fel(4)B/alpha-Fe magnets
174863    prepared by direct melt spinning was investigated. The free surface and
174864    wheel-contacted surface exhibit different texture direction.
174865    Modification of composition not only enhances magnetic properties, but
174866    also changes texture direction of the ribbon. Low temperature heat
174867    treatment can increase the magnetic properties to some extent, and high
174868    temperature annealing decreases the magnetic properties. Both low and
174869    high temperature heat treatment have effects on grain orientation, but
174870    the difference still exists between the two surfaces of the ribbon. So
174871    it is infeasibility to prepare anisotropic Nd2Fe14B/alpha-Fe
174872    nanocomposite magnets by direct melt spinning.
174873 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
174874 RP Ni, JS, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
174875 EM nijiansen@163.com
174876 CR BAO XQ, 2003, J CHINESE RARE EARTH, V21, P27
174877    CHEN Y, 2003, J TSINGHUA U SCI TEC, V43, P1301
174878    GAO YH, 1999, J IRON STEEL RES INT, V6, P36
174879    JI QG, 2005, J MAGN MAGN MATER, V288, P84
174880    JIANG ZL, 2004, J RARE EARTH, V22, P227
174881    TAN XH, 2005, J RARE EARTH, V23, P24
174882    YANG CJ, 1996, IEEE T MAGN 2, V32, P4428
174883    YANG CJ, 1997, J MAGN MAGN MATER, V166, P243
174884    YANG CJ, 1997, J MAGN MAGN MATER, V168, P278
174885    ZHAO TM, 1999, J APPL PHYS, V85, P518
174886 NR 10
174887 TC 0
174888 SN 1002-0721
174889 J9 J RARE EARTH
174890 JI J. Rare Earths
174891 PD DEC
174892 PY 2005
174893 VL 23
174894 SU Suppl. S
174895 BP 298
174896 EP 301
174897 PG 4
174898 SC Chemistry, Applied
174899 GA 022YY
174900 UT ISI:000236093300078
174901 ER
174902 
174903 PT J
174904 AU Liu, XZ
174905    Sang, WB
174906    Chen, J
174907    Mao, L
174908 TI Synthesis and properties of La and Sb mped SnO2 conductive nanopartides
174909 SO JOURNAL OF RARE EARTHS
174910 DT Article
174911 DE conductive nanoparticles; doping; chemical synthesis; coprecipitation;
174912    spectra; rare earths
174913 AB La and Sb doped SnO2 conductive nanoparticles were prepared by the
174914    coprecipitation method with SnCl4 - 5H(2)O, SbCl3 and La2O3 as the raw
174915    materials. Thermal behavior, crystal phase, and structure of the
174916    prepared conductive nanoparticles were characterized by TG/DSC/DTG,
174917    FTIR, XRD and TEM techniques, respectively. The resistivity of the
174918    prepared conductive nanoparticles is 2.5 Omega(-)cm. TG/DSC/DTG curves
174919    show that the precursors lose weight completely before 750 degrees C.
174920    FTIR spectrum show that the vibration peak are wide peak in 718 - 615
174921    cm(-1), and the La and Sb doped SnO2 conductive nanoparticles have
174922    intense absorption in 4000 - 2000 cm(-1). X-ray powder diffraction
174923    pattern of the conductive nanoparticles indicates that the Sb-doping in
174924    SnO2 is replacement doping and La3+ combines with Sn4+ and O2- form
174925    La2Sn2O7. TME shows that the particles are weakly agglomerated, and the
174926    size of the particles calcined at 1000 degrees C ranged about 20 - 30
174927    nm.
174928 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200436, Peoples R China.
174929    Shanghai Inst Technol, Dept Chem Engn, Shanghai 200235, Peoples R China.
174930    Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China.
174931 RP Liu, XZ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200436, Peoples R
174932    China.
174933 EM liuxiaozhen3373@vip.sina.com
174934 CR CRNJAKOREL Z, 1992, J MATER SCI, V27, P313
174935    DUSASTRE V, 1998, J PHYS CHEM B, V102, P6732
174936    LIU XZ, 2004, 200410053276, CN
174937    LIU XZ, 2004, 2004100532777, CN
174938    LIU XZ, 2005, CHINESE J SPECTROSCO, V22, P397
174939    ROCKENBERGER J, 2000, J CHEM PHYS, V112, P4296
174940    ZHANG JP, 2003, ACTA CHIM SINICA, V61, P1965
174941    ZHANG JR, 2003, CHEM J CHINESE U, V24, P1544
174942 NR 8
174943 TC 0
174944 SN 1002-0721
174945 J9 J RARE EARTH
174946 JI J. Rare Earths
174947 PD DEC
174948 PY 2005
174949 VL 23
174950 SU Suppl. S
174951 BP 302
174952 EP 305
174953 PG 4
174954 SC Chemistry, Applied
174955 GA 022YY
174956 UT ISI:000236093300079
174957 ER
174958 
174959 PT J
174960 AU Wang, W
174961    Ni, JS
174962    Xu, H
174963    Zhou, BX
174964    Li, Q
174965    Wang, ZY
174966 TI Crystallization behavior and magnetic properties of nanocomposite NdFeB
174967    alloys
174968 SO JOURNAL OF RARE EARTHS
174969 DT Article
174970 DE nanocomposite; melt spinning; metastable phase; magnetic properties;
174971    rare earths
174972 ID MICROSTRUCTURE; CR
174973 AB The influence of Cr substitution on the crystallization behavior and
174974    magnetic properties of melt-spun Nd11Fe72 - x Co8V1.5CrxB7.5(x = 0, 1)
174975    nanocomposite alloys was studied. The annealed samples consist of a
174976    mixture of Nd2Fe14B and alpha-Fe phases. Presence of grains of the
174977    metastable Nd2Fe23B3 phase was revealed in the Cr-containing
174978    Nd11Fe71Co8V1.5 Cr1B7.5 sample. The magnetic properties of the bonded
174979    magnets are obviously improved by the Cr substitution. The intrinsic
174980    coercivity (H-J(c)) and maximum magnetic energy product ((BH)(max)) are
174981    increased from 780 kA center dot m(-1) and 68 kJ center dot m(-3) for x
174982    = 0 to 903.5 kA center dot m(-1) and 71 kJ center dot m(-1) for x = 1,
174983    respectively. The addition of Cr element shows significant advantage in
174984    reducing grain size and increasing intrinsic coercivity.
174985 C1 Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 200336, Peoples R China.
174986    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
174987 RP Wang, W, Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 200336, Peoples
174988    R China.
174989 EM wangwei200l73@sina.com
174990 CR BETANCOURT I, 2003, J MAGN MAGN MATER, V261, P328
174991    CHANG WC, 1997, J APPL PHYS 2A, V81, P4453
174992    COEHOORN R, 1990, J MAGN MAGN MATER, V83, P228
174993    GEORGE CH, 1999, J MAGN MAGN MATER, V200, P373
174994    JAKUBOWICZ J, 2003, J ALLOY COMPD, V349, P311
174995    JURCZYK M, 1998, J MAGN MAGN MATER, V185, P66
174996    KNELLER EF, 1991, IEEE T MAGN, V27, P3588
174997    LEWIS LH, 1998, J ALLOY COMPD, V270, P265
174998    PING DH, 2002, J MAGN MAGN MATER, V239, P437
174999    WANG W, 2004, J RARE EARTH, V22, P505
175000    XIAO QF, 2001, J MAGN MAGN MATER, V223, P215
175001    ZHANG ZD, 2000, J PHYS D APPL PHYS, V33, R217
175002 NR 12
175003 TC 0
175004 SN 1002-0721
175005 J9 J RARE EARTH
175006 JI J. Rare Earths
175007 PD DEC
175008 PY 2005
175009 VL 23
175010 SU Suppl. S
175011 BP 313
175012 EP 316
175013 PG 4
175014 SC Chemistry, Applied
175015 GA 022YY
175016 UT ISI:000236093300082
175017 ER
175018 
175019 PT J
175020 AU Lu, YM
175021    Liang, Y
175022    Yang, XX
175023    Chen, HH
175024    Zhao, JT
175025 TI Syntheses and crystal structure characterizations of new rare earth
175026    nickel bismuth compounds RENiBi2 (RE = La, Pr, Nd and Sm)
175027 SO JOURNAL OF RARE EARTHS
175028 DT Article
175029 DE intermetallics; nickel; bismuth; rare earths
175030 ID DY; GD; HO
175031 AB The title new compounds with chemical formula RNiBi2 were synthesized
175032    by arc melting method followed by annealing. The crystal structures
175033    refined using Rietveld method and X-ray powder diffraction data show to
175034    be isotypic to CaMnBi2 structure type with space group P4/nmm (No.
175035    129). The unit cell parameters are LaNiBi2: a = 0.454238(2) nm, c =
175036    0.96845(3) nm, V = 0.199822(3) nm(3); PrNiBi2: a = 0.452714(7) nm, c =
175037    0.95754(4) nm, V = 0.196248(1) nm(3); NdNiBi2: a = 0.452435(2) nm, c =
175038    0.95530(3) nm, V = 0.195516(2) nm(3); SmNiBi2: a = 0.450073(5) nm, c =
175039    0.94292(3) nm, V = 0. 191003(1) nm(3); respectively, showing lanthanide
175040    contraction. The structure was characterized by layers of edge-shearing
175041    NiBi4 tetrahedron and covalently bonded Bi square net separated by rare
175042    earth atoms.
175043 C1 Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
175044    Shanghai Univ, Coll Sci, Shanghai 200436, Peoples R China.
175045 RP Zhao, JT, Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High
175046    Performance Ceram & Superfine, Shanghai 200050, Peoples R China.
175047 EM jtzhao@mail.sic.ac.cn
175048 CR LANGES HDB CHEM
175049    AKSELRUD LG, 1989, 12 EUR CRYST M MOSC, V3, P155
175050    BRECHTEL E, 1980, Z NATURFORSCH B, V35, P1
175051    DONG C, 1999, J APPL CRYSTALLOGR, V32, P838
175052    FERGUSON MJ, 1997, J ALLOY COMPD, V249, P191
175053    HOHNKE D, 1969, J LESS-COMMON MET, V17, P291
175054    LU YM, 2004, J RARE EARTH, V22, P746
175055    PARK JG, 2002, PHYSICA B, V312, P475
175056    TANG XF, 2000, ACTA PHYS SIN-CH ED, V49, P2437
175057    ZENG LM, 2002, J ALLOY COMPD, V343, P122
175058    ZHAO JT, 1999, J RARE EARTH, V17, P228
175059 NR 11
175060 TC 0
175061 SN 1002-0721
175062 J9 J RARE EARTH
175063 JI J. Rare Earths
175064 PD DEC
175065 PY 2005
175066 VL 23
175067 SU Suppl. S
175068 BP 336
175069 EP 338
175070 PG 3
175071 SC Chemistry, Applied
175072 GA 022YY
175073 UT ISI:000236093300088
175074 ER
175075 
175076 PT J
175077 AU Wang, YQ
175078    Li, J
175079    Tian, R
175080    Fang, SS
175081    Xiao, XS
175082 TI Bulk metallic glasses in Sm-Cu-Ni-Al alloy systems
175083 SO JOURNAL OF RARE EARTHS
175084 DT Article
175085 DE Sm-based; bulk metallic glasses; glass-forming ability; thermal
175086    stability
175087 ID SUPERCOOLED LIQUID REGION; THERMAL-STABILITY; FORMING ABILITY;
175088    AMORPHOUS-ALLOYS; PHASE-FORMATION; CRYSTALLIZATION; OXYGEN; TM; CO
175089 AB A new series of Sm-Cu-Ni-Al bulk metallic glasses were prepared by
175090    suction casting. Their glass-forming ability and thermal stability were
175091    investigated by X-ray diffraction (XRD) and differential scanning
175092    calorimetry (DSC). The results of DSC indicate that the alloy
175093    components strongly affect the widths of supercooled liquid region
175094    (Delta T-x + T-x - T-g(onset)).The widths of supercooled liquid region
175095    for Sm70-xCuxNi10Al20(x = 12.5, 15.0, 17.5), SM65-x Cu15NixAl20 (x = 8,
175096    10, 12) and Sm75-xCu15Ni10Alx(x = 15, 20, 25) increase first and then
175097    decrease with the increase of x atomic fraction. And Sm55Cu15Ni10Al20
175098    alloy was found to be with the largest width and it can be cast into
175099    bulk metallic glass with up to 3 mm in diameter. The glass-forming
175100    ability of the alloys was explained in terms of Miedema's theory,
175101    electronegativity difference and atomic size parameter of the amorphous
175102    alloys.
175103 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
175104 RP Xiao, XS, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
175105    China.
175106 EM xsxiao@mail.shu.edu.cn
175107 CR BAKKER H, 1998, ENTHALPIES ALLOYS, P1
175108    CHOIYIM H, 2003, APPL PHYS LETT, V82, P1030
175109    ECKERT J, 1998, MATER T JIM, V39, P623
175110    FAN GJ, 2000, ACTA MATER, V48, P3823
175111    FANG SS, 1999, J ALLOY COMPD, V293, P10
175112    FANG SS, 2003, J NON-CRYST SOLIDS, V321, P120
175113    GEBERT A, 1998, ACTA MATER, V46, P5475
175114    INOUE A, 1990, MATER T JIM, V31, P425
175115    INOUE A, 1997, MAT SCI ENG A-STRUCT, V226, P393
175116    INOUE A, 1997, MATER T JIM, V38, P175
175117    INOUE A, 2003, APPL PHYS LETT, V83, P2351
175118    JOHNSON WL, 1996, MATER SCI FORUM, V225, P35
175119    PEKER A, 1993, APPL PHYS LETT, V63, P2342
175120    PONNAMBALAM V, 2004, J MATER RES, V19, P3046
175121    XIAO XS, 2004, J ALLOY COMPD, V376, P145
175122    ZHAO ZF, 2004, ACTA PHYS SIN-CH ED, V53, P850
175123 NR 16
175124 TC 0
175125 SN 1002-0721
175126 J9 J RARE EARTH
175127 JI J. Rare Earths
175128 PD DEC
175129 PY 2005
175130 VL 23
175131 SU Suppl. S
175132 BP 415
175133 EP 418
175134 PG 4
175135 SC Chemistry, Applied
175136 GA 022YY
175137 UT ISI:000236093300106
175138 ER
175139 
175140 PT J
175141 AU Zhao, CJ
175142    Leng, GS
175143 TI On polars of mixed projection bodies
175144 SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
175145 DT Article
175146 DE mixed volumes; mixed projection bodies; polars of mixed projection
175147    bodies
175148 ID MINIMAL VOLUME-PRODUCT; CONVEX-BODIES; INTERSECTION BODIES;
175149    INEQUALITIES; QUERMASSINTEGRALS; ZONOIDS; WIDTH
175150 AB Recently, Lutwak established general Minkowski inequality,
175151    Brunn-Minkowski inequality and Aleksandrov-Fenchel inequality for mixed
175152    projection bodies. In this paper, following Lutwak, we established
175153    their polar forms. As applications, we prove some interrelated results.
175154    (c) 2005 Elsevier Inc. All rights reserved.
175155 C1 Coll Sci, China Inst Metrol, Dept Informat & Math Sci, Hangzhou 310018, Peoples R China.
175156    Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
175157 RP Zhao, CJ, Coll Sci, China Inst Metrol, Dept Informat & Math Sci,
175158    Hangzhou 310018, Peoples R China.
175159 EM chjzhao@163.com
175160    lenggangsong@163.com
175161 CR ALEXANDER K, 1998, AM J MATH, V120, P827
175162    ALEXANDER R, 1988, GEOM DEDICATA, V28, P199
175163    BALL K, 1991, T AM MATH SOC, V327, P891
175164    BETKE U, 1983, J LOND MATH SOC, V27, P525
175165    BLASCHKE W, 1936, VORLESUNGEN INTEGRAL, V1
175166    BLASCHKE W, 1937, VORLESUNGEN INTEGRAL, V2
175167    BOLKER ED, 1969, T AM MATH SOC, V145, P323
175168    BONNESEN T, 1934, THEORIE KONVEXEN KOR
175169    BOURGAIN J, 1988, LECT NOTES MATH, V1317, P250
175170    BRANNEN NS, 1996, MATHEMATIKA 2, V43, P255
175171    CHAKERIAN GD, 1967, T AM MATH SOC, V129, P26
175172    CHAKERIAN GD, 1997, T AM MATH SOC, V349, P1811
175173    GARDNER RJ, 1998, AM J MATH, V120, P505
175174    GOODEY P, 1993, HDB CONVEX GEOMETRY, P1297
175175    GORDON Y, 1988, P AM MATH SOC, V104, P273
175176    GRINBERG E, 1999, P LOND MATH SOC 1, V78, P77
175177    HARDY GH, 1934, INEQUALITIES
175178    LUTWAK E, 1975, P AM MATH SOC, V53, P435
175179    LUTWAK E, 1975, PAC J MATH, V58, P531
175180    LUTWAK E, 1985, T AM MATH SOC, V285, P91
175181    LUTWAK E, 1988, ADV MATH, V71, P232
175182    LUTWAK E, 1990, GEOM DEDICATA, V33, P51
175183    LUTWAK E, 1990, P LOND MATH SOC, V60, P365
175184    LUTWAK E, 1993, T AM MATH SOC, V339, P901
175185    MARTINI H, 1984, BEITRAGE ALGEBRA GEO, V18, P75
175186    MONIKA L, 2002, ADV MATH, V172, P158
175187    REISNER S, 1986, MATH Z, V192, P339
175188    ROGERS CA, 1965, PORT MATH, V24, P99
175189    SCHNEIDER R, 1982, B LOND MATH SOC, V14, P549
175190    SCHNEIDER R, 1983, ZONOIDS RELATED TOPI, P296
175191    SCHNEIDER R, 1993, CONVEX BODIES BRUNNM
175192    STANLEY RP, 1981, J COMB THEORY A, V31, P56
175193    VITALE RA, 1991, ANN APPL PROBAB, V1, P293
175194    WITSENHAUSEN HS, 1978, MATHEMATIKA, V25, P13
175195    ZHAO CJ, 2005, J MATH ANAL APPL, V301, P115
175196    ZHAO CJ, 2005, P INDIAN AS-MATH SCI, V115, P79
175197 NR 36
175198 TC 0
175199 SN 0022-247X
175200 J9 J MATH ANAL APPL
175201 JI J. Math. Anal. Appl.
175202 PD APR 15
175203 PY 2006
175204 VL 316
175205 IS 2
175206 BP 664
175207 EP 678
175208 PG 15
175209 SC Mathematics, Applied; Mathematics
175210 GA 022TL
175211 UT ISI:000236078700022
175212 ER
175213 
175214 PT J
175215 AU Wang, B
175216    Zhang, JY
175217    Fan, JF
175218    Zhao, SL
175219    Fang, Y
175220    An, SL
175221 TI Water modeling of twin-roll strip casting
175222 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
175223 DT Article
175224 DE twin roll strip casting; level fluctuation; water modeling
175225 ID QUALITY
175226 AB Twin-roll strip casting is regarded as a prospective technology of near
175227    net shape continuous casting. The fluid flow field and level
175228    fluctuation in the pool have a strong influence not only on composition
175229    and temperature homogeneity of pool, but also on the strip quality. A 1
175230    : 1 water model of a twin-roll strip caster was set up based on the
175231    criteria of Froude number and Reynold number similarity. The level
175232    fluctuation was measured. The influence of pool depth, casting speed
175233    and feeding system configuration on level fluctuation in the pool was
175234    studied. The experimental results provided a basis for the optimization
175235    of feeding system and process parameters.
175236 C1 Univ Sci & Technol Beijing, Sch Met & Ecol Engn, Beijing 100083, Peoples R China.
175237    Inner Mongolia Univ Sci & Technol, Mat & Met Sch, Baotou 014010, Inner Mongolia, Peoples R China.
175238    Shanghai Univ, Coll Mat Sci & Engn, Shanghai 200072, Peoples R China.
175239    Baoshan Iron & Steel Co Ltd, Res Inst, Shanghai 201900, Peoples R China.
175240 RP Wang, B, Univ Sci & Technol Beijing, Sch Met & Ecol Engn, Beijing
175241    100083, Peoples R China.
175242 EM wangbo1974@263.net
175243 CR BOUCHARD D, 1999, STEELMAKING C P, P427
175244    COOK R, 1995, J MATER PROCESS TECH, V55, P76
175245    MIYAKE S, 1991, ISIJ INT, V31, P689
175246    MOON HK, 2002, P 60 EL FURN P WARR, P499
175247    YASUNAKA H, 1995, ISIJ INT, V35, P784
175248 NR 5
175249 TC 0
175250 SN 1006-706X
175251 J9 J IRON STEEL RES INT
175252 JI J. Iron Steel Res. Int.
175253 PD JAN
175254 PY 2006
175255 VL 13
175256 IS 1
175257 BP 14
175258 EP 17
175259 PG 4
175260 SC Metallurgy & Metallurgical Engineering
175261 GA 021TP
175262 UT ISI:000236009000004
175263 ER
175264 
175265 PT J
175266 AU Min, YA
175267    Wu, XC
175268    Wang, R
175269    Li, L
175270    Xu, LP
175271 TI Prediction and analysis on oxidation of H13 hot work steel
175272 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
175273 DT Article
175274 DE oxidation; hot work steel; surface treatment; die casting
175275 ID HIGH-TEMPERATURE OXIDATION; OXYGEN
175276 AB The understanding of oxidation behaviors on H13 steel was helpful to
175277    improve the service life and performance of hot work moulds and dies.
175278    Thermal-Calc Software was performed to calculate the oxidation phases
175279    on H13 steel along with different partial oxygen pressures in the
175280    interesting temperature range of 500 - 700 degrees C. In this range H13
175281    steel samples were treated respectively in different atmosphere
175282    including flowing water vapor (0.2 MPa), normal pressure air (0.1 MPa)
175283    and low pressure air (0.001 MPa). The different oxidation films were
175284    detected with optical microscopy and X-ray diffraction. The
175285    microstructures and phase constitutions of the films formed in low
175286    pressure air were similar to those of the films formed in water vapor,
175287    and obviously different to those of the films formed in normal pressure
175288    air. The oxidation mechanisms of H13 steel in different atmosphere were
175289    also discussed.
175290 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
175291 RP Min, YA, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
175292    China.
175293 EM mya@staff.shu.edu.cn
175294 CR ATKINSON A, 1988, MATER SCI TECH SER, V4, P1046
175295    BOGGS WE, 1967, J ELECTROCHEM SOC, V114, P32
175296    CHEN Y, 2001, J INFRARED MILLIM W, V20, P53
175297    FRASER DT, 2001, EC SURFACE TREATMENT, V33, P13
175298    JAHEDI MZ, 2000, DIE CASTING ENG, V44, P33
175299    KLARENFJORD B, 1998, P INT C TOOL STEEL D, P3
175300    MITTERER C, 2000, SURF COAT TECH, V125, P233
175301    NICHOLAS C, 1987, OXID MET, V28, P237
175302    SIMMS NJ, 1987, OXID MET, V27, P283
175303    SONG SH, 2003, J MATER SCI, V38, P499
175304    SUNDQVIST YM, 1994, TRIBOLOGICAL ASPECTS
175305    WAANDERS FB, 2000, SCRIPTA MATER, V42, P997
175306 NR 12
175307 TC 0
175308 SN 1006-706X
175309 J9 J IRON STEEL RES INT
175310 JI J. Iron Steel Res. Int.
175311 PD JAN
175312 PY 2006
175313 VL 13
175314 IS 1
175315 BP 44
175316 EP 49
175317 PG 6
175318 SC Metallurgy & Metallurgical Engineering
175319 GA 021TP
175320 UT ISI:000236009000011
175321 ER
175322 
175323 PT J
175324 AU Ren, ZJ
175325    Cao, WG
175326    Chen, J
175327    Wang, Y
175328    Ding, WY
175329 TI A novel synthesis of 5-aryl-3-phenylpyrazole from
175330    2-aryl-3-benzoyl-1,1-cyclopropanedicarbonitrile and hydrazine
175331 SO JOURNAL OF HETEROCYCLIC CHEMISTRY
175332 DT Article
175333 ID REGIOSELECTIVE SYNTHESIS; ORGANIC-SYNTHESIS; PYRAZOLES; DERIVATIVES;
175334    AGENTS
175335 AB A new process for synthesis of 5-aryl-3-phenylpyrazole is achieved. The
175336    regioselective ring-opening reaction of
175337    2-aryl-3-benzoyl-1,1-cyclopropanedicarbonitrile with hydrazine plays a
175338    crucial role in the described process.
175339 C1 Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
175340    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Organomet Chem, Shanghai 200032, Peoples R China.
175341 RP Ren, ZJ, Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
175342 EM renrui198229@hotmail.com
175343 CR AGGARWAL VK, 2003, J ORG CHEM, V68, P5381
175344    ALMIRANTE N, 1999, SYNLETT          MAR, P299
175345    AZARIFAR D, 2004, SYNTHESIS-STUTT 0803, P1744
175346    BOURRAIN S, 2004, SYNLETT         0403, P795
175347    BRATUSEK U, 1998, J HETEROCYCLIC CHEM, V35, P1281
175348    CAO WG, 2000, SYNTHETIC COMMUN, V30, P4531
175349    CHEN YL, 2001, SYNTHETIC COMMUN, V31, P3112
175350    ELGUERO J, 1984, COMPREHENSIVE HETERO, V5, P277
175351    ELGUERO J, 1996, COMPREHENSIVE HETERO, V3, P1
175352    GROSCHE P, 1999, SYNTHESIS-STUTTG NOV, P1961
175353    GROTJAHN DB, 2002, J ORG CHEM, V67, P9200
175354    HANZLOWSKY A, 2003, J HETEROCYCLIC CHEM, V40, P487
175355    HARRIS DJ, 1974, CAN J CHEM, V51, P2805
175356    HUANG YR, 2000, ORG LETT, V2, P2833
175357    KEES KL, 1996, J MED CHEM, V39, P3920
175358    KOST AN, 1966, ADV HETEROCYCLIC CHE, V6, P347
175359    LOMBARDINO JG, 1981, J MED CHEM, V24, P830
175360    MARZINZIK AL, 1998, J ORG CHEM, V63, P723
175361    NEUBAUER A, 1972, TETRAHEDRON, V28, P3241
175362    PADWA A, 1984, 1 3 DIPOLARCYCLOADDI, V1, P1
175363    RAMALINGAM K, 1977, J MED CHEM, V20, P847
175364    REN ZJ, 2004, SYNTHETIC COMMUN, V34, P3785
175365    WIDMAN O, 1916, CHEM BER, V49, P477
175366    WONG HNC, 1989, CHEM REV, V89, P165
175367 NR 24
175368 TC 0
175369 SN 0022-152X
175370 J9 J HETEROCYCL CHEM
175371 JI J. Heterocycl. Chem.
175372 PD MAR-APR
175373 PY 2006
175374 VL 43
175375 IS 2
175376 BP 495
175377 EP 497
175378 PG 3
175379 SC Chemistry, Organic
175380 GA 022ZL
175381 UT ISI:000236094600037
175382 ER
175383 
175384 PT J
175385 AU Yi, ZJ
175386    Liu, TY
175387    Zhang, QR
175388    Sun, YY
175389 TI First-principles study on the origin of optical transitions to be
175390    associated with F colour centers for PbWO4 crystals
175391 SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA
175392 DT Article
175393 DE PbWO4 crystal; F; F+ color centers; DV-X alpha; absorption spectra
175394 ID SINGLE-CRYSTALS; BAND
175395 AB The electronic structures of PbWO4 crystals containing F type color
175396    centers with the lattice structure optimized are studied within the
175397    framework of the fully relativistic self-consistent Direc-Slater
175398    theory, using a numerically discrete variational (DV-X alpha) method.
175399    The calculated results show that F and F+ centers have donor energy
175400    level in forbidden band. Their optical transition energy are 1.84 eV,
175401    2.21 eV, respectively, which corresponds to the 680 nm, 550 nm
175402    absorption bands. It predicts that the 680 nm, 550 nm absorption bands
175403    originate form the F and P centers in PbW04 crystals. (c) 2005 Elsevier
175404    B.V. All rights reserved.
175405 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
175406 RP Liu, TY, Shanghai Univ Sci & Technol, Coll Sci, 516 JunGon Rd, Shanghai
175407    200093, Peoples R China.
175408 EM liutyyxj@163.com
175409 CR AVERILL FW, 1973, J CHEM PHYS, V59, P6412
175410    ELLIS DE, 1995, ELECT DENSITY FUNCTI, P263
175411    FANG SG, 1998, PHYS COLOR CTR CRYST
175412    FENG XQ, 1997, J INORGANIC MAT, V12, P449
175413    LIU FX, 1999, NUCL INSTRUM METH A, V426, P464
175414    LIU TY, 2001, PHYS STATUS SOLIDI A, V184, P341
175415    LIU TY, 2004, CHINESE PHYS LETT, V21, P1596
175416    MI XW, 2002, J U SHANGHAI SCI TEC, V24, P209
175417    MURK V, 1997, J PHYS-CONDENS MAT, V9, P249
175418    NIKL M, 1996, PHYS STATUS SOLIDI B, V195, P311
175419    NIKL M, 1997, J APPL PHYS, V82, P5758
175420    TONG HY, 2000, ACTA PHYS SIN-CH ED, V49, P1545
175421    VAN LW, 1975, PHYS STATUS SOLIDI A, V27, P565
175422    XU GX, 1999, FUNDAMENTAL THEORY A, P1075
175423    ZHANG QR, 2003, PHYS REV B, V68
175424 NR 15
175425 TC 0
175426 SN 0368-2048
175427 J9 J ELECTRON SPECTROSC RELAT PH
175428 JI J. Electron Spectrosc. Relat. Phenom.
175429 PD APR
175430 PY 2006
175431 VL 151
175432 IS 2
175433 BP 140
175434 EP 143
175435 PG 4
175436 SC Spectroscopy
175437 GA 022LJ
175438 UT ISI:000236057000008
175439 ER
175440 
175441 PT J
175442 AU Zhang, X
175443    Gao, H
175444    Zhang, C
175445 TI Global asymptotic stabilization of feedforward nonlinear systems with a
175446    delay in the input
175447 SO INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE
175448 DT Article
175449 DE feedforward nonlinear systems; time-delay systems; state feedback;
175450    Lyapunov-Krasovskii functionals ( LKF); linear matrix inequality
175451 ID OUTPUT-FEEDBACK
175452 AB In this paper, by constructing appropriate Lyapunov-Krasovskii
175453    functionals (LKF) and applying the model transformation of time-delay
175454    systems, a design scheme of state feedback controller for a class of
175455    feedforward nonlinear systems with a delay in the input is proposed.
175456    The designed controllers have a very simple structure and do not
175457    involve any saturation or recursive computation, which is widely
175458    applied in designing a controller of feedforward nonlinear systems.
175459    Using the transformation of coordinates and the property of Hurwitz
175460    polynomial, the problem of designing controller can be converted into
175461    the problem of finding a parameter, which can be solved by solving the
175462    optimization problem with linear matrix inequalities (LMIs)
175463    constraints. A simulation example is given to show the effectiveness of
175464    the proposed design procedure.
175465 C1 Shandong Inst Architecture & Engn, Dept Math & Phys, Jinan 250101, Peoples R China.
175466    Shanghai Univ Sci & Technol, Coll Informat & Elect Engn, Qingdao 266510, Peoples R China.
175467    Shandong Univ, Sch Control Sci & Engn, Jinan 250100, Peoples R China.
175468 RP Zhang, X, Shandong Inst Architecture & Engn, Dept Math & Phys, Jinan
175469    250101, Peoples R China.
175470 EM zhangxianfu@sdai.edu.cn
175471 CR CHEN J, 2001, SPECIAL MATRICES
175472    CHOI HL, 2005, IEEE T AUTOMAT CONTR, V50, P255
175473    GUO Y, 2002, SYST CONTROL LETT, V45, P35
175474    HALE JK, 1993, INTRO FUNCTIONAL DIF
175475    ISIDORI A, 1999, NONLINEAR CONTROL SY, V2
175476    MAZENC F, 2003, IEEE T AUTOMAT CONTR, V48, P57
175477    MAZENC F, 2003, P 42 IEEE C DEC CONT, P4020
175478    PRALY L, 2003, IEEE T AUTOMAT CONTR, V48, P1103
175479    QIAN C, 1999, P IFAC WORLD C BEIJ, E, P309
175480    QIAN CJ, 2002, IEEE T AUTOMAT CONTR, V47, P1710
175481    SEPULCHRE R, 1997, CONSTRUCTIVE NONLINE
175482    XU SY, 2002, INT J CONTROL, V75, P766
175483    XUDONG Y, 2003, AUTOMATICA, V39, P141
175484 NR 13
175485 TC 0
175486 SN 0020-7721
175487 J9 INT J SYST SCI
175488 JI Int. J. Syst. Sci.
175489 PD FEB 20
175490 PY 2006
175491 VL 37
175492 IS 3
175493 BP 141
175494 EP 148
175495 PG 8
175496 SC Computer Science, Theory & Methods; Automation & Control Systems;
175497    Operations Research & Management Science
175498 GA 022SR
175499 UT ISI:000236076600001
175500 ER
175501 
175502 PT J
175503 AU Zhou, J
175504    Chen, TP
175505 TI Synchronization in general complex delayed dynamical networks
175506 SO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS
175507 DT Article
175508 DE chaos synchronization; chaotic Duffing oscillator; complex networks;
175509    exponential stability; scale-free network; small-world network; time
175510    delays
175511 ID NEURAL-NETWORKS; CHAOTIC SYSTEMS; COUPLING DELAYS; STABILITY; MODEL
175512 AB This paper investigates synchronization dynamics of a general model of
175513    complex delayed networks as well as the effects of time delays. Some
175514    simple yet generic criteria ensuring delay-independent and
175515    delay-dependent synchronization are derived, which are less
175516    conservative than those reported so far in the literature. Moreover, a
175517    scale "v" denoted by a function of the smallest and the second largest
175518    eigenvalues of coupling matrix is presented to analyze the effects of
175519    time delays on synchronization of the networks. Furthermore, various
175520    kinds of coupling schemes, including small-world networks and
175521    scale-free networks, are studied. It is shown that, if the coupling
175522    delays are less than a positive threshold, then the network will be
175523    synchronized. On the other hand, with the increase of the coupling
175524    delays, the synchronizability of the network will be restrained and
175525    even eventually desynchronized. The results are illustrated by a
175526    prototype composed of the chaotic Duffing oscillators. Numerical
175527    simulations are also given to verify theoretical results.
175528 C1 Fudan Univ, Inst Math, Minist Educ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China.
175529    Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
175530    Hebei Univ Technol, Dept Appl Math, Tianjin 300130, Peoples R China.
175531    Fudan Univ, Inst Math, Lab Nonlinear Sci, Shanghai 200433, Peoples R China.
175532 RP Zhou, J, Fudan Univ, Inst Math, Minist Educ, Key Lab Math Nonlinear
175533    Sci, Shanghai 200433, Peoples R China.
175534 EM jinzhou@fudan.edu.cn
175535    tcben@fudan.edu.cn
175536 CR ALBERT R, 2000, NATURE, V406, P378
175537    ALBERT R, 2002, REV MOD PHYS, V74, P47
175538    ALMAAS E, 2002, PHYS REV LETT, V88
175539    BARABASI AL, 2000, SCIENCE, V287, P2115
175540    BARABSI AL, 1999, SCIENCE, V285, P509
175541    BARAHONA M, 2002, PHYS REV LETT, V89
175542    BELYKH VN, 2004, PHYSICA D, V195, P159
175543    BERMAN A, 1970, NONNEGATIVE MATRICES
175544    CHEN G, 1998, CHAOS ORDER METHODOL
175545    CHEN WY, 2004, WOMEN HEALTH ISS, V14, P7
175546    FRADKOV AL, 1995, INTRO CONTROL OSCILL
175547    GOPALSAMY K, 1992, STABILITY OSCILLATIO
175548    GUCKENHEIMER J, 1983, NONLINEAR OSCILLATIO
175549    HALE JK, 1977, INTRO FUNCTIONAL DIF
175550    HALE JK, 1977, THEORY FUNCTIONAL DI
175551    HONG H, 2002, PHYS REV E, V65
175552    LI CG, 2004, PHYSICA A, V335, P359
175553    LI CG, 2004, PHYSICA A, V335, P365
175554    LI CG, 2004, PHYSICA A, V343, P263
175555    LI X, 2003, IEEE T CIRCUITS-I, V50, P1381
175556    LU JH, 2004, IEEE T CIRCUITS-I, V51, P787
175557    LU JH, 2004, PHYSICA A, V334, P281
175558    LU JH, 2005, IEEE T AUTOMAT CONTR, V50, P841
175559    LU WL, 2004, IEEE T CIRCUITS-I, V51, P2491
175560    LU WL, 2004, PHYSICA D, V198, P148
175561    LU WL, 2006, PHYSICA D, V213, P214
175562    MANRUBIA SC, 1999, PHYS REV E A, V60, P1579
175563    NEWMAN MEJ, 1999, PHYS LETT A, V263, P341
175564    NEWMAN MEJ, 2003, SIAM REV, V45, P167
175565    PECORA LM, 1990, PHYS REV LETT, V64, P8
175566    PECORA LM, 1997, CHAOS, V7, P520
175567    PECORA LM, 1998, PHYS REV LETT, V80, P2109
175568    POGROMSKY A, 2001, IEEE T CIRCUITS-I, V48, P152
175569    PYRAGAS K, 1998, PHYS REV E A, V58, P3067
175570    RANGARAJAN G, 2002, PHYS LETT A, V296, P204
175571    STROGATZ SH, 2001, NATURE, V410, P268
175572    THOMAS M, 2001, LECT NOTES CONTROL I, V269
175573    WANG XF, 2002, IEEE T CIRCUITS-I, V49, P54
175574    WANG XF, 2002, INT J BIFURCAT CHAOS, V12, P187
175575    WANG XF, 2002, INT J BIFURCAT CHAOS, V12, P885
175576    WATTS DJ, 1998, NATURE, V393, P440
175577    WU CW, 1995, IEEE T CIRCUITS-I, V42, P430
175578    WU CW, 2002, SYNCHRONIZATION COUP
175579    YANG XS, 2001, PHYS REV E, V63
175580    ZHOU J, 2004, LECT NOTES COMPUT SC, V3173, P144
175581    ZHOU J, 2004, NEURAL NETWORKS, V17, P87
175582 NR 46
175583 TC 0
175584 SN 1057-7122
175585 J9 IEEE TRANS CIRCUIT SYST-I
175586 JI IEEE Trans. Circuits Syst. I-Regul. Pap.
175587 PD MAR
175588 PY 2006
175589 VL 53
175590 IS 3
175591 BP 733
175592 EP 744
175593 PG 12
175594 SC Engineering, Electrical & Electronic
175595 GA 022KO
175596 UT ISI:000236054900024
175597 ER
175598 
175599 PT J
175600 AU Guan, XH
175601    Ma, ZW
175602    Cai, P
175603    Kobayashi, Y
175604    Anada, T
175605    Hagiwara, G
175606 TI Synthesis of dual-band bandpass filters using successive frequency
175607    transformations and circuit conversions
175608 SO IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS
175609 DT Article
175610 DE admittance inverter; dual-band filter; frequency transformation;
175611    microstrip line
175612 AB A novel method is proposed to synthesize dual-band bandpass filters
175613    (BPFs) from a prototype low-pass filter. By implementing successive
175614    frequency transformations and circuit conversions, a new filter
175615    topology is obtained which consists of only admittance inverters and
175616    series resonators, and is thereby easy to be realized by using
175617    conventional distributed elements. A dual-band BPF with center
175618    frequencies of 1.8 GHz and 2.4 GHz is designed and fabricated using
175619    microstrip lines and stubs. The simulated and measured results show a
175620    good agreement and validate the proposed theory.
175621 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
175622    Saitama Univ, Dept Elect & Elect Syst, Urawa, Saitama 3388570, Japan.
175623    Kanagawa Univ, High Tech Res Ctr, Kanagawa 528520, Japan.
175624    Link Circuit Inc, Kawaguchi 3330844, Japan.
175625 RP Guan, XH, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
175626    Peoples R China.
175627 EM xue-huiguan@yahoo.com.cn
175628    ma@ees.saitama-u.ac.jp
175629 CR *SONN SOFTW INC, 2004, SONN SUIT
175630    CHANG SF, 2004, ELECTRON LETT, V40, P38
175631    HASHEMI H, 2002, IEEE T MICROW THEO 2, V50, P288
175632    KUO YL, 2003, IEEE T ANTENN PROPAG, V51, P2187
175633    MA Z, 2005, P 35 EUR MICR C OCT, P1255
175634    MATTHAEI G, 1980, MICROWAVE FILTER IMP
175635    MIYAKE H, 1997, IEEE MTT-S, P789
175636    TSAI LC, 2004, IEEE T MICROW THEORY, V52, P1111
175637    UICHIDA H, 2004, IEEE T MICROW THEORY, V52, P2550
175638 NR 9
175639 TC 0
175640 SN 1531-1309
175641 J9 IEEE MICROW WIREL COMPON LETT
175642 JI IEEE Microw. Wirel. Compon. Lett.
175643 PD MAR
175644 PY 2006
175645 VL 16
175646 IS 3
175647 BP 110
175648 EP 112
175649 PG 3
175650 SC Engineering, Electrical & Electronic
175651 GA 023KA
175652 UT ISI:000236124400004
175653 ER
175654 
175655 PT J
175656 AU Du, G
175657 TI Eye location method based on symmetry analysis and high-order fractal
175658    feature
175659 SO IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING
175660 DT Article
175661 ID LACUNARITY ESTIMATION METHOD; DEFORMABLE TEMPLATES; IMAGE
175662 AB A method for eye location in human facial images based on symmetry
175663    analysis and the lacunarity, which is a high-order fractal feature, is
175664    proposed. First, the valley field algorithm is applied to the facial
175665    image and the eye candidates are identified. Then, principal component
175666    analysis is used to detect the symmetry axis of the human face. The eye
175667    candidates are grouped to form eye-pair candidates, and the whole image
175668    is rotated around the symmetry axis. Finally, a novel approach to
175669    estimate lacunarity value is proposed to describe accurately the local
175670    structure of eye regions. By comparing the lacunarity values of two eye
175671    regions within each eye-pair candidate, the eye-pair candidate with
175672    minimum lacunarity value difference is identified as the true one.
175673    Numerical experiments demonstrate the effectiveness and reliability of
175674    this method.
175675 C1 Shanghai Univ, Sch Comp & Informat Engn, Shanghai, Peoples R China.
175676 RP Du, G, Shanghai Univ, Sch Comp & Informat Engn, Shanghai, Peoples R
175677    China.
175678 EM du_gan2002@yahoo.com
175679 CR CHENG SC, 2003, IEEE T INF TECHNOL B, V7, P163
175680    DONG P, 2000, INT J REMOTE SENS, V21, P3369
175681    DU G, 2002, IEEE T GEOSCI REMOTE, V40, P2687
175682    FENG GC, 2001, PATTERN RECOGN, V34, P1033
175683    HUANG J, 2000, IEEE T EVOLUT COMPUT, V4, P73
175684    JESORSKY O, 2001, LECT NOTES COMPUT SC, V2091, P90
175685    LIN KH, 2001, IEE P-VIS IMAGE SIGN, V148, P413
175686    LU CY, 1998, P SIGN PROC BEIJ CHI
175687    LU CY, 1999, ACTA ELECT SINICA, V27, P25
175688    MA Y, 2004, IEEE INT C AUT FAC G, P339
175689    MANDELBROT BB, 1977, FRACTALS FORM CHANCE
175690    MARAGOS P, 1987, OPT ENG, V26, P623
175691    PLOTNICK RE, 1996, PHYS REV E B, V53, P5461
175692    REISFELD D, 1992, P 11 INT C PATT REC, P117
175693    TAO L, 2002, IEEE INT S CIRCUITS, P26
175694    XIE X, 1994, PATTERN RECOGN, V27, P791
175695    YU M, 2000, P ICSP, P1419
175696    YUILLE AL, 1991, J COGNITIVE NEUROSCI, V3, P59
175697 NR 18
175698 TC 0
175699 SN 1350-245X
175700 J9 IEE PROC-VIS IMAGE SIGNAL PRO
175701 JI IEE Proc.-Vis. Image Signal Process.
175702 PD FEB
175703 PY 2006
175704 VL 153
175705 IS 1
175706 BP 11
175707 EP 16
175708 PG 6
175709 SC Engineering, Electrical & Electronic
175710 GA 023JN
175711 UT ISI:000236123000002
175712 ER
175713 
175714 PT J
175715 AU Yuan, AB
175716    Zhao, J
175717 TI Composite alkaline polymer electrolytes and its application to
175718    nickel-metal hydride batteries
175719 SO ELECTROCHIMICA ACTA
175720 DT Article
175721 DE alkaline polymer electrolyte; ionic conductivity; PEO; PVA;
175722    nano-additives
175723 ID SECONDARY BATTERIES; POLY(VINYL ALCOHOL)-KOH-H2O; POLY(ETHYLENE OXIDE);
175724    CONDUCTIVITY; CELLS
175725 AB In order to enhance the ionic conductivity of polyethylene oxide
175726    (PEO)-KOH based alkaline polymer electrolytes, three types of
175727    nanopowders, i.e., TiO2, beta-Al2O3 and SiO2 were added to PEO-KOH
175728    complex, respectively, and the corresponding composite alkaline polymer
175729    electrolytes were prepared. The experimental results showed that the
175730    prepared polymer electrolytes exhibited higher ionic conductivities at
175731    room temperature, typically 10(-3) S cm(-1) as measured by ac impedance
175732    method, and good electrochemical stability. The electrochemical
175733    stability window of ca. 1.6 V was determined by cyclic voltammetry with
175734    stainless steel blocking electrodes. The influence of the film
175735    composition such as KOH, H2O and nano-additives on ion conductivity was
175736    investigated and explained. The temperature dependence of conductivity
175737    was also determined. In addition, polyvinyl alcohol (PVA)-sodium
175738    carboxymethyl cellulose (CMC)-KOH alkaline polymer electrolytes were
175739    obtained using solvent casting method. The properties of the polymer
175740    electrolytes were characterized by ac impedance, cyclic voltammetry and
175741    differential thermal analysis methods. The ionic conductivity of the
175742    prepared PVA-CMC-KOH-H2O electrolytes can reach the order of 10(-2) S
175743    cm(-1). The effect of CMC addition on the alkaline polymer electrolytes
175744    was also explained. The experimental results demonstrated that the
175745    PVA-CMC-KOH-H2O polymer electrolyte could be used in Ni/MH battery. (c)
175746    2005 Elsevier Ltd. All rights reserved.
175747 C1 Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200444, Peoples R China.
175748 RP Yuan, AB, Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200444, Peoples
175749    R China.
175750 EM abyuan@staff.shu.edu.cn
175751 CR ARMAND MB, 1979, FAST ION TRANSPORT S, V131
175752    FAUVARQUE JF, 1995, ELECTROCHIM ACTA, V40, P2449
175753    FENTON DE, 1973, POLYMER, V14, P589
175754    GUINOT S, 1998, ELECTROCHIM ACTA, V43, P1163
175755    LEWANDOWSKI A, 2000, SOLID STATE IONICS, V133, P265
175756    LIAO CS, 2004, ELECTROCHIM ACTA, V49, P4993
175757    MISHRA R, 1999, EUR POLYM J, V35, P1883
175758    MOHAMAD AA, 2002, J ALLOY COMPD, V337, P208
175759    MOHAMAD AA, 2003, SOLID STATE IONICS, V156, P171
175760    PALACIOS I, 2003, ELECTROCHIM ACTA, V48, P2195
175761    VASSAL N, 1999, J ELECTROCHEM SOC, V146, P20
175762    VASSAL N, 2000, ELECTROCHIM ACTA, V45, P1527
175763    WRIGHT PV, 1975, BRIT POLYM J, V7, P319
175764    YANG CC, 2002, J POWER SOURCES, V109, P22
175765    YANG CC, 2002, J POWER SOURCES, V112, P497
175766    YANG CC, 2002, MATER LETT, V57, P873
175767    YANG CC, 2003, J POWER SOURCES, V122, P210
175768    YANG CC, 2003, MATER LETT, V58, P33
175769    YANG KX, 2002, J MAGN MAT DEVICES, V33, P40
175770    ZHANG GQ, 2003, SOLID STATE IONICS, V160, P155
175771 NR 20
175772 TC 0
175773 SN 0013-4686
175774 J9 ELECTROCHIM ACTA
175775 JI Electrochim. Acta
175776 PD FEB 25
175777 PY 2006
175778 VL 51
175779 IS 12
175780 BP 2454
175781 EP 2462
175782 PG 9
175783 SC Electrochemistry
175784 GA 021XQ
175785 UT ISI:000236019600009
175786 ER
175787 
175788 PT J
175789 AU Wu, DM
175790    Wang, ZC
175791 TI A mathernatica program for the approximate analytical solution to a
175792    nonlinear undamped Duffing equation by a new approximate approach
175793 SO COMPUTER PHYSICS COMMUNICATIONS
175794 DT Article
175795 DE undamped Duffing equation; approximate analytical solution; nonlinear
175796    second-order ordinary differential equation; high-accurate methods;
175797    nonlinear oscillator; harmonic balance method
175798 ID INITIAL-VALUE PROBLEMS; NUMERICAL-INTEGRATION; OBRECHKOFF; OSCILLATORS;
175799    1ST-ORDER
175800 AB According to Mickens [R.E. Mickens, Comments on a Generalized
175801    Galerkin's method for non-linear oscillators, J. Sound Vib. 118 (1987)
175802    563], the general HB (harmonic balance) method is an approximation to
175803    the convergent Fourier series representation of the periodic solution
175804    of a nonlinear oscillator and not an approximation to an expansion in
175805    terms of a small parameter. Consequently, for a nonlinear undamped
175806    Duffing equation with a driving force B cos(omega x), to find a
175807    periodic solution when the fundamental frequency is identical to omega,
175808    the corresponding Fourier series can be written as
175809    y(x) = Sigma(m)(n=1)a(n) cos[(2n - 1)omega x].
175810    How to calculate the coefficients of the Fourier series efficiently
175811    with a computer program is still an open problem. For HB method, by
175812    substituting approximation y(x) into force equation, expanding the
175813    resulting expression into a trigonometric series, then letting the
175814    coefficients of the resulting lowest-order harmonic be zero, one can
175815    obtain approximate coefficients of approximation (x) [R.E. Mickens,
175816    Comments on a Generalized Galerkin's method for non-linear oscillators,
175817    J. Sound Vib. 118 (1987) 563]. But for nonlinear differential equations
175818    such as Duffing equation, it is very difficult to construct
175819    higher-order analytical approximations, because the HB method requires
175820    solving a set of algebraic equations for a large number of unknowns
175821    with very complex nonlinearities. To overcome the difficulty, forty
175822    years ago, Urabe derived a computational method for Duffing equation
175823    based on Galerkin procedure [M. Urabe, A. Reiter, Numerical computation
175824    of nonlinear forced oscillations by Galerkin's procedure, J. Math,
175825    Anal. Appl. 14 (1966) 107-140]. Dooren obtained an approximate solution
175826    of the Duffing oscillator with a special set of parameters by using
175827    Urabe's method [R. van Dooren, Stabilization of Cowell's classic finite
175828    difference method for numerical integration, J. Comput. Phys. 16 (1974)
175829    186-192].
175830    In this paper, in the frame of the general HB method, we present a new
175831    iteration algorithm to calculate the coefficients of the Fourier
175832    series. By using this new method, the iteration procedure starts with a
175833    (x) cos(cox) + b(x) sin(cox), and the accuracy may be improved
175834    gradually by determining new coefficients a(1), a(2).... will be
175835    produced automatically in an one-by-one manner. In all the stage of
175836    calculation, we need only to solve a cubic equation. Using this new
175837    algorithm, we develop a Mathematica program, which demonstrates
175838    following main advantages over the previous HB method: (1) it avoids
175839    solving a set of associate nonlinear equations; (2) it is easier to be
175840    implemented into a computer program, and produces a highly accurate
175841    solution with analytical expression efficiently. It is interesting to
175842    find that, generally, for a given set of parameters, a nonlinear
175843    Duffing equation can have three independent oscillation modes. For some
175844    sets of the parameters, it can have two modes with complex displacement
175845    and one with real displacement. But in some cases, it can have three
175846    modes, all of them having real displacement. Therefore, we can divide
175847    the parameters into two classes, according to the solution property:
175848    there is only one mode with real displacement and there are three modes
175849    with real displacement. This program should be useful to Study the
175850    dynamically periodic behavior of a Duffing oscillator and can provide
175851    an approximate analytical solution with high-accuracy for testing the
175852    error behavior of newly developed numerical methods with a wide range
175853    of parameters.
175854    Program summary
175855    Title of program: AnalyDuffing.nb
175856    Catalogue identifier: ADWR_v1_0
175857    Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADWR_v1_0
175858    Program obtainable from: CPC Program Library, Queen's University of
175859    Belfast, N. Ireland
175860    Licensing provisions: none
175861    Computer for which the program is designed and others on which it has
175862    been tested: the program has been designed for a microcomputer and been
175863    tested on the microcomputer.
175864    Computers: IBM PC
175865    Installations: the address(es) of your computer(s)
175866    Operating systems under which the program has been tested: Windows XP
175867    Programming language used: Software Mathematica 4.2, 5.0 and 5.1
175868    No. of lines in distributed program, including test data, etc.: 23 663
175869    No. of bytes in distributed program, including test data, etc.: 152 321
175870    Distribution formal: tar.gz
175871    Memory required to execute with typical data: 51712 Bytes
175872    No. of bits in a word:
175873    No. of processors used: 1
175874    Has the code been vectorized?: no
175875    Peripherals used: no
175876    Program Library subprograms used: no
175877    Nature of physical problem: To find an approximate solution with
175878    analytical expressions for the undamped nonlinear Duffing equation with
175879    periodic driving force when the fundamental frequency is identical to
175880    the driving force.
175881    Method of solution: In the frame of the general HB method, by using a
175882    new iteration algorithm to calculate the coefficients of the Fourier
175883    series, we can obtain an approximate analytical solution with
175884    high-accuracy efficiently.
175885    Restrictions on the complexity of the problem: For problems, which have
175886    a large driving frequency, the convergence may be a little slow,
175887    because more iterative times are needed.
175888    Typical running time: several seconds
175889    Unusual features of the program: For an undamped Duffing equation, it
175890    can provide all the solutions or the oscillation modes with real
175891    displacement for any interesting parameters, for the required accuracy,
175892    efficiently. The program can be used to study the dynamically periodic
175893    behavior of a nonlinear oscillator, and can provide a high-accurate
175894    approximate analytical solution for developing high-accurate numerical
175895    method. (c) 2005 Published by Elsevier B.V.
175896 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
175897 RP Wang, ZC, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200436,
175898    Peoples R China.
175899 EM zc_wang89@hotmail.com
175900 CR ANANTHAKRISHNAI.U, 1982, J COMPUT APPL MATH, V8, P101
175901    ANANTHAKRISHNAI.U, 1987, MATH COMPUT, V49, P553
175902    CHAWLA MM, 1986, J COMPUT APPL MATH, V15, P213
175903    CHEN G, 1987, J SOUND VIB, V112, P503
175904    DAI YM, 2005, COMPUT PHYS COMMUN, V165, P110
175905    GUCKENHEIMER J, 1983, NONLINEAR OSCILLATIO
175906    HAIRER E, 1987, NUMER MATH, V32, P503
175907    JAIN MK, 1988, BIT, V28, P302
175908    MICKENS RE, 1981, INTRO NONLINEAR OSCI
175909    MICKENS RE, 1986, J SOUND VIB, V111, P515
175910    MICKENS RE, 1987, J SOUND VIB, V118, P563
175911    NETA B, 2003, COMPUT MATH APPL, V45, P383
175912    RAPTIS AD, 1991, BIT, V31, P160
175913    SIMOS TE, 1993, P ROY SOC LOND A MAT, V6, P283
175914    URABE M, 1965, ARCH RATIONAL MECH A, V20, P120
175915    URABE M, 1966, J MATH ANAL APPL, V14, P107
175916    VANDOOREN R, 1974, J COMPUT PHYS, V16, P186
175917    WANG Z, 2004, P ROY SOC LONDON A
175918    ZHAO DY, 2005, COMPUT PHYS COMMUN, V167, P65
175919 NR 19
175920 TC 0
175921 SN 0010-4655
175922 J9 COMPUT PHYS COMMUN
175923 JI Comput. Phys. Commun.
175924 PD MAR 15
175925 PY 2006
175926 VL 174
175927 IS 6
175928 BP 447
175929 EP 463
175930 PG 17
175931 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
175932 GA 022MU
175933 UT ISI:000236060700003
175934 ER
175935 
175936 PT J
175937 AU Gu, YJ
175938    Wu, HK
175939    Ma, XY
175940    Zhou, HH
175941    Wei, Q
175942    Chang, WB
175943 TI Study on LiNi1-xCoxO2 structure
175944 SO CHINESE JOURNAL OF INORGANIC CHEMISTRY
175945 DT Article
175946 DE layered Li(Ni1-xCox)O-2; the ordering of Ni2+ in Li+ sites; Ni-O
175947    octahedron
175948 ID ELECTRODE MATERIALS; SUBSTITUTION; BEHAVIOR; LINIO2
175949 AB LiNi1-xCoxO2 with X=0.1, 0.2, 0.3, 0.5 and 1 were prepared by
175950    co-precipitation of mixed solution of Ni-and Co-salt in NaOH. The
175951    structure of LiNi1-xCoxO2 was analyzed by XRD. The results show that
175952    the unit cell constants a and c decrease as the Co content increases.
175953    Although the change of unit cell constants can reflect the substitution
175954    of Co ions with Ni ions in the lab, the splits of the pairs of (006),
175955    (102) and (108), (110) in the XRD pattern can not reflect the presence
175956    of Ni2+ in the lithium site.
175957 C1 Shanghai Univ Sci & Technol, Coll Mat Sci & Engn, Shandong 266510, Peoples R China.
175958    Qingdao Auema Co Ltd, New Energy Mat R&D Ctr, Shandong 266510, Peoples R China.
175959    Shandong Univ Sci & Engn, Shandong 266510, Peoples R China.
175960    Datong Cement Co Ltd, Shanxi 037044, Peoples R China.
175961    Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China.
175962 RP Gu, YJ, Shanghai Univ Sci & Technol, Coll Mat Sci & Engn, Shandong
175963    266510, Peoples R China.
175964 EM guyijie@sdust.edu.cn
175965 CR BANOV B, 1995, J POWER SOURCES, V54, P268
175966    CHO J, 1999, J ELECTROCHEM SOC, V146, P3571
175967    DELMAS C, 1999, ELECTROCHIM ACTA, V45, P243
175968    LEE KK, 2000, J ELECTROCHEM SOC, V147, P1709
175969    PARDO G, 2000, SOLID STATE IONICS, V138, P19
175970    POUILLERIE C, 2001, J POWER SOURCES, V96, P293
175971    ROUGIER A, 1995, SOLID STATE COMMUN, V94, P123
175972    ROUGIER A, 1996, SOLID STATE IONICS, V90, P83
175973    SAADOUNE I, 1996, J MATER CHEM, V6, P193
175974    WANG GX, 2000, J POWER SOURCES, V85, P279
175975    ZHECHEVA E, 1993, SOLID STATE IONICS, V66, P143
175976 NR 11
175977 TC 0
175978 SN 1001-4861
175979 J9 CHIN J INORG CHEM
175980 JI Chin. J. Inorg. Chem.
175981 PD MAR
175982 PY 2006
175983 VL 22
175984 IS 3
175985 BP 494
175986 EP 497
175987 PG 4
175988 SC Chemistry, Inorganic & Nuclear
175989 GA 022ZR
175990 UT ISI:000236095200020
175991 ER
175992 
175993 PT J
175994 AU Liu, Q
175995    Babajide, AE
175996    Zhu, P
175997    Zou, LP
175998 TI Removal of xylene from waste gases using biotrickling filters
175999 SO CHEMICAL ENGINEERING & TECHNOLOGY
176000 DT Article
176001 ID BIOFILTER; BIOFILTRATION; MEDIA; BTEX
176002 AB Two identical laboratory-scale biotrickling filters, filled with
176003    different ceramic materials, were operated in order to investigate the
176004    removal of xylene from a waste gas stream. The biotrickling filter
176005    columns were seeded with pure bacteria identified as Bacillus firmus,
176006    which can utilize xylene as the sole carbon and energy source. The
176007    purification performance of the biotrickling filters was examined for
176008    xylene inlet concentrations C-g <= 3000 mg/m(3) at different gas flow
176009    rates of 0.2 m(3)/h, 0.6 m(3)/h, and 1 m(3)/h, which correspond to gas
176010    empty bed residence times (EBRTs) of 84.8 s, 28.3 s, and 17.0 s,
176011    respectively. Both biofilters displayed a removal efficiency of no less
176012    than 95% with the inlet xylene less than 3000 mg/m(3) at the EBRTs of
176013    84.8 and 28.3 s. When EBRT decreased to 1.7.0 s, the biofilter filled
176014    with ceramic particle type 2 had a better performance. The flow rate of
176015    trickling liquid has little effect on the removal efficiencies of the
176016    two filters. In the case of uneven distribution of trickling liquid in
176017    the packing materials, the performance of the biofilter can be improved
176018    by increasing the nitrogen nutrient supplement. Biomass quantity
176019    decreases as the depth of packing material increases in both
176020    biofilters, but the biofilter filled with ceramic particle type 1 had
176021    more alive bacteria per unit mass of packing material than the other.
176022 C1 Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072, Peoples R China.
176023 RP Liu, Q, Shanghai Univ, Sch Environm & Chem Engn, 149 Yanchang Rd,
176024    Shanghai 200072, Peoples R China.
176025 EM qliu@staff.shu.edu.cn
176026 CR BIBEAU L, 2000, WATER AIR SOIL POLL, V118, P377
176027    CORSI RL, 1995, ENVIRON PROG, V14, P151
176028    DEVINNY JS, 1999, BIOFILTRATION AIR PO
176029    EDWARDS FG, 1996, WATER SCI TECHNOL, V34, P565
176030    EVANS GM, 2003, ENV BIOTECHNOLOGY TH
176031    JORIO H, 1998, J CHEM TECHNOL BIOT, V73, P183
176032    KENNES C, 1996, J CHEM TECHNOL BIOT, V66, P300
176033    KRAILAS S, 2002, BIOCHEM ENG J, V10, P103
176034    MALLAKIN A, 1996, J IND MICROBIOL, V16, P309
176035    MORGANSAGERUME F, 2001, J ENV ENG, V27, P388
176036    NGUYEN HD, 1997, J ENVIRON ENG-ASCE, V123, P615
176037    SMITH FL, 1994, P WAT ENV FED 67 ANN, V11, P553
176038    SONG JH, 2000, BIOTECHNOL BIOENG, V68, P509
176039    WRENN BA, 1996, CAN J MICROBIOL, V42, P252
176040 NR 14
176041 TC 0
176042 SN 0930-7516
176043 J9 CHEM ENG TECHNOL
176044 JI Chem. Eng. Technol.
176045 PD MAR
176046 PY 2006
176047 VL 29
176048 IS 3
176049 BP 320
176050 EP 325
176051 PG 6
176052 SC Engineering, Chemical
176053 GA 022KZ
176054 UT ISI:000236056000004
176055 ER
176056 
176057 PT J
176058 AU Saeki, M
176059    Irie, Y
176060    Ni, L
176061    Yoshida, M
176062    Itsuki, Y
176063    Kamisaki, Y
176064 TI Monad, a WD40 repeat protein, promotes apoptosis induced by TNF-alpha
176065 SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
176066 DT Article
176067 DE WD40; apoptosis; caspase; TNF-alpha; monad; Apaf-1; testis; HEK293;
176068    NF-kappa B
176069 ID BETA-SUBUNIT; CYTOCHROME-C; SACCHAROMYCES-CEREVISIAE;
176070    CRYSTAL-STRUCTURE; CELL-DEATH; ACTIVATION; CASPASE-3; COMPLEX;
176071    REPRESSION; RECEPTOR
176072 AB WD40 repeat proteins have a wide range of diverse biological functions
176073    including signal transduction, cell cycle regulation, RNA splicing, and
176074    transcription. Here we report the identification and characterization
176075    of a novel human WD40 repeat protein, Monad. Monad is unique, since it
176076    contains only two WD40 repeats. Monad is widely expressed in human
176077    tissues with the highest expression in testis. Overexpression of Monad
176078    in HEK293 cells potentiated apoptosis and caspase-3 activation induced
176079    by tumor necrosis factor-alpha and cycloheximide. These results raise
176080    the possibility that Monad may function as a novel modulator of
176081    apoptosis pathway. (c) 2006 Elsevier Inc. All rights reserved.
176082 C1 Osaka Univ, Grad Sch Dent, Dept Pharmacol, Suita, Osaka, Japan.
176083    Osaka Univ, Sch Med, Dept Pharmacol, Suita, Osaka, Japan.
176084    Shanghai Univ, E Inst, Div Nitr Oxide & Inflammatory Med, Shanghai, Peoples R China.
176085 RP Saeki, M, Osaka Univ, Grad Sch Dent, Dept Pharmacol, 2-2 Yamadaoka,
176086    Suita, Osaka, Japan.
176087 EM msaeki@dent.osaka-u.ac.jp
176088 CR CAIN K, 1999, J BIOL CHEM, V274, P22686
176089    FONG HKW, 1986, P NATL ACAD SCI USA, V83, P2162
176090    KELEHER CA, 1992, CELL, V68, P709
176091    KOMACHI K, 1997, MOL CELL BIOL, V17, P6023
176092    KUROSU K, 2004, NEUROCHEM INT, V44, P199
176093    LAMBRIGHT DG, 1996, NATURE, V379, P311
176094    LI P, 1997, CELL, V91, P479
176095    LIU ZG, 1996, CELL, V87, P400
176096    MUKAI Y, 1991, MOL CELL BIOL, V11, P3773
176097    NEER EJ, 1994, NATURE, V371, P297
176098    PAROUSH Z, 1994, CELL, V79, P805
176099    RON D, 1994, P NATL ACAD SCI USA, V91, P839
176100    SAEKI M, 2002, J CELL BIOCHEM, V84, P708
176101    SMITH TF, 1999, TRENDS BIOCHEM SCI, V24, P181
176102    SONDEK J, 1996, NATURE, V379, P369
176103    SRINIVASULA SM, 1998, MOL CELL, V1, P949
176104    TAKAGAKI Y, 1992, J BIOL CHEM, V267, P23471
176105    VANDERVOORN L, 1992, FEBS LETT, V307, P131
176106    WALL MA, 1995, CELL, V83, P1047
176107    WHITEWAY M, 1989, CELL, V56, P467
176108    WILLIAMS FE, 1990, MOL CELL BIOL, V10, P6500
176109    YUAN JY, 1990, DEV BIOL, V138, P33
176110    ZOU H, 1997, CELL, V90, P405
176111 NR 23
176112 TC 0
176113 SN 0006-291X
176114 J9 BIOCHEM BIOPHYS RES COMMUN
176115 JI Biochem. Biophys. Res. Commun.
176116 PD APR 7
176117 PY 2006
176118 VL 342
176119 IS 2
176120 BP 568
176121 EP 572
176122 PG 5
176123 SC Biochemistry & Molecular Biology; Biophysics
176124 GA 021VR
176125 UT ISI:000236014500027
176126 ER
176127 
176128 PT J
176129 AU Cai, JM
176130    Yao, FS
176131    Yi, WM
176132    He, F
176133 TI New temperature integral approximation for nonisothermal kinetics
176134 SO AICHE JOURNAL
176135 DT Article
176136 DE nonisothermal thermal analysis; temperature integral; pattern search
176137    method; approximation
176138 ID THERMOGRAVIMETRIC DATA; FORMULA
176139 AB A new approximation for the temperature integral has been obtained by
176140    using Pattern Search method. The corresponding equation for the
176141    evaluation of kinetic parameters is presented, which can be put in the
176142    form
176143    ln[8(alpha)/T-2] = ln[AR/beta E E+ 0.66691RT/2.64943RT] - E/RT
176144    The validity of the new temperature integral approximation has been
176145    tested by numerical calculation. Its deviation from the values
176146    calculated by numerical integrating was discussed. Compared with
176147    several published approximate formulas, this new one is much superior
176148    to all other approximations, and is the most suitable solution for the
176149    evaluation of kinetic parameters from nonisothermal kinetic analysis.
176150    (c) 2006 American Institute of Chemical Engineers.
176151 C1 Shandong Univ Technol, Sch Light Ind & Agr Engn, Zibo 255049, Peoples R China.
176152    Shanghai Univ Sci & Technol, Coll Power Engn, Shanghai 200093, Peoples R China.
176153 RP He, F, Shandong Univ Technol, Sch Light Ind & Agr Engn, Zibo 255049,
176154    Peoples R China.
176155 EM hefang_sdut@163.com
176156 CR AGRAWAL RK, 1987, AICHE J, V33, P1212
176157    COATS AW, 1964, NATURE, V201, P68
176158    FLYNN JH, 1997, THERMOCHIM ACTA, V300, P83
176159    GORBACHEV VM, 1975, J THERM ANAL, V8, P349
176160    HEAL GR, 1999, THERMOCHIM ACTA, V340, P69
176161    LEE TV, 1984, AICHE J, V30, P517
176162    LEWIS RM, 2000, J COMPUT APPL MATH, V124, P191
176163    LI CH, 1985, AICHE J, V31, P1037
176164    LYON RE, 1997, THERMOCHIM ACTA, V297, P117
176165    ORFAO JJM, 2002, THERMOCHIM ACTA, V390, P195
176166    ORTEGA A, 1996, THERMOCHIM ACTA, V282, P29
176167    PEREZMAQUEDA LA, 2000, J THERM ANAL CALORIM, V60, P909
176168    QUANYIN R, 1995, J THERM ANAL, V44, P1147
176169    RONGZU H, 2001, THERMAL ANAL KINETIC
176170    STARINK MJ, 1996, THERMOCHIM ACTA, V288, P97
176171    WANJUN T, 2003, J THERM ANAL CALORIM, V74, P309
176172    ZHIMING G, 2001, THERMOCHIM ACTA, V369, P137
176173 NR 17
176174 TC 0
176175 SN 0001-1541
176176 J9 AICHE J
176177 JI AICHE J.
176178 PD APR
176179 PY 2006
176180 VL 52
176181 IS 4
176182 BP 1554
176183 EP 1557
176184 PG 4
176185 SC Engineering, Chemical
176186 GA 023VY
176187 UT ISI:000236155500026
176188 ER
176189 
176190 PT J
176191 AU Wen, Y
176192    Shi, LY
176193    Fang, JH
176194    Cao, WM
176195 TI Research on electrocatalytic degradation of active red dye by
176196    compressed nanotube electrodes
176197 SO ACTA CHIMICA SINICA
176198 DT Article
176199 DE carbon nanotube; electrocatalytic; dye
176200 ID CARBON NANOTUBES
176201 AB Carbon nanotubes were processed by circumfluence with concentrated
176202    nitric acid, high-temperature calcination and milling with high speed
176203    after calcination, respectively. The specific surface area was tested
176204    by the low-temperature nitrogen adsorption method. The morphologies of
176205    such carbon nanotubes before and after treatment were characterized by
176206    transmission electron microscopy while infrared spectra were used to
176207    analyze the change of surface functional group. The content of
176208    amorphous carbon and graphite carbon was determined by Raman spectrum.
176209    The carbon nanotubes before and after treatment were made into
176210    electrocatalytic anode to degrade active red X-3B simulated wastewater.
176211    The experimental results indicated that the stability and
176212    electrocatalytic degradation efficiency of the electrodes made of
176213    carbon nanotubes after treatment were obviously improved. The process
176214    of milling with high speed after calcination was considered the best
176215    pre-treatment.
176216 C1 Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
176217 RP Wen, Y, Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
176218 EM sly0726@163.com
176219 CR FEDERICA V, 2004, SENSOR ACTUAT B-CHEM, V100, P117
176220    HINO S, 2001, SYNTHETIC MET, V121, P1213
176221    JIANG Q, 2004, ACTA CHIM SINICA, V62, P829
176222    LI LQ, 2003, ACTA CHIM SINICA, V61, P931
176223    LIJIMA S, 1991, NATURE, V354, P56
176224    LIU LY, 2004, SENSOR ACTUAT A-PHYS, V116, P394
176225    MARCO P, 2000, WATER RES, V34, P2601
176226    MASAYUKI Y, 2005, J ELECTROANAL CHEM, V579, P83
176227    SHAO J, 2000, CHIN ENV SCI, V20, P61
176228    ZHANG DS, 2005, J FUNCT MAT, V36, P282
176229 NR 10
176230 TC 0
176231 SN 0567-7351
176232 J9 ACTA CHIM SIN
176233 JI Acta Chim. Sin.
176234 PD MAR 14
176235 PY 2006
176236 VL 64
176237 IS 5
176238 BP 439
176239 EP 443
176240 PG 5
176241 SC Chemistry, Multidisciplinary
176242 GA 024IP
176243 UT ISI:000236189000015
176244 ER
176245 
176246 PT J
176247 AU Zhang, BW
176248    Ren, ZM
176249    Wu, JX
176250 TI Continuous electromagnetic separation of inclusion from aluminum melt
176251    using alternating current
176252 SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
176253 DT Article
176254 DE aluminum melt; alternating current; flow field; concentration field;
176255    inclusion; electromagnetic separation
176256 ID MAGNETIC-FIELD; PARTICLES
176257 AB A novel scheme about the continuous electromagnetic purification of
176258    aluminum melt was put forward based on the utilization of a square
176259    separation pipe and a 50 Hz alternating current to produce
176260    electromagnetic force. It is experimentally found that with electrical
176261    current of 400 A/cm(2), it takes only 10 s to remove 95% inclusion from
176262    aluminum melt. Comprehensive numerical simulations were carried out to
176263    investigate the dynamics mechanisms behind the process. The results
176264    show that the removal of inclusion is attributed to the cooperative
176265    effects of electromagnetic buoyancy and the secondary flow induced by
176266    the rotational electromagnetic force, and the removal efficient
176267    increases with the size of inclusion and the electrical current
176268    imposed. Theoretical predictions on the distribution and removal
176269    efficiency of inclusion were supported by the experiments.
176270 C1 Huazhong Univ Sci & Technol, State Key Lab Plast Forming Simulat & Die & Moul, Wuhan 430074, Peoples R China.
176271    Shanghai Univ, Shanghai Enhanced Lab Met, Shanghai 200072, Peoples R China.
176272 RP Zhang, BW, Huazhong Univ Sci & Technol, State Key Lab Plast Forming
176273    Simulat & Die & Moul, Wuhan 430074, Peoples R China.
176274 EM bang1973@sina.com
176275 CR CREPEAU PN, 1997, MOD CAST, V87, P39
176276    ELKADDAH N, 1995, JOM-J MIN MET MAT S, V47, P46
176277    FAN MW, 1988, INTEGRAL EQUATION ME, P58
176278    LEENOV D, 1954, J CHEM PHYS, V22, P683
176279    LI K, 2002, T NONFERR METAL SOC, V12, P1107
176280    LI K, 2004, T NONFERR METAL SOC, V14, P82
176281    PARK JP, 1994, TETSU TO HAGANE, V80, P31
176282    SHU D, 1999, METALL MATER TRANS A, V30, P2979
176283    TANIGUCHI S, 1994, ISIJ INT, V34, P722
176284    WU JX, 2004, CHINESE J NONFERROUS, V14, P354
176285    YAMAO F, 1997, TETSU TO HAGANE, V83, P30
176286    ZHANG BW, 2002, ACTA METALL SIN, V15, P416
176287    ZHANG BW, 2002, COMPUT PHYS, V19, P527
176288    ZHANG BW, 2004, ACTA METALL SIN, V40, P623
176289    ZHONG YB, 2000, T NONFERR METAL SOC, V10, P240
176290 NR 15
176291 TC 0
176292 SN 1003-6326
176293 J9 TRANS NONFERROUS METAL SOC CH
176294 JI Trans. Nonferrous Met. Soc. China
176295 PD FEB
176296 PY 2006
176297 VL 16
176298 IS 1
176299 BP 33
176300 EP 38
176301 PG 6
176302 SC Metallurgy & Metallurgical Engineering
176303 GA 020LR
176304 UT ISI:000235911400006
176305 ER
176306 
176307 PT J
176308 AU Geng, T
176309    Zhang, N
176310 TI Electronic structure of the perovskite oxides La1-xSrxMnO3
176311 SO PHYSICS LETTERS A
176312 DT Article
176313 DE electronic structures; LSDA; La1-xSrxMnO3; Mn-O bond length; c/a ratio,
176314    and half-metal state
176315 ID LOCAL LATTICE-DISTORTIONS; DOUBLE-EXCHANGE; MANGANITE PEROVSKITES; SPIN
176316    POLARIZATION; SPECTROSCOPY; FERROMAGNETS
176317 AB The electronic structures of perovskite oxides La1-xSrxMnO3 are studied
176318    with local spin-density approximation (LSDA). Results show that the
176319    lowest energy is obtained when the Mn-O bond length is 1.95 angstrom
176320    with ideal cubic crystal structure. This value of Mn-O bond length is
176321    consistent with the experimental data. Considering a proper tetragonal
176322    distortion of the crystal, the total energy of system becomes lower. A
176323    half-metal state can be got both for the undistorted structure (Mn-O
176324    bond lengths are 1.95-2.10 angstrom) and the distorted structure. It is
176325    suggested that the effect of Jahn-Teller distortion is not the main
176326    reason of formation of half-metal state. However, the electronic
176327    properties are very sensitive to the c/a ratio. Along with the increase
176328    of c/a ratio, system transforms from metal to half metal and further
176329    the insulator. (c) 2005 Elsevier B.V. All rights reserved.
176330 C1 Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China.
176331    Nanjing Normal Univ, Sch Phys Sci & Technol, Nanjing 2120097, Peoples R China.
176332 RP Geng, T, Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093,
176333    Peoples R China.
176334 EM max_geng@yahoo.com.cn
176335 CR ANDERSON PW, 1955, PHYS REV, V100, P675
176336    BANACH G, 2004, PHYS REV B, V69
176337    COHN JL, 1997, PHYS REV B, V56, R8495
176338    DEBOER PK, 1997, SOLID STATE COMMUN, V102, P621
176339    DEGROOT RA, 1983, PHYS REV LETT, V50, P2024
176340    FERRARI V, 2003, PHYS REV LETT, V91
176341    HU WY, 2000, PHYS REV B, V61, P1223
176342    HWANG HY, 1996, PHYS REV LETT, V77, P2041
176343    JONKER GH, 1950, PHYSICA, V16, P337
176344    KONISHI Y, 1999, J PHYS SOC JPN, V68, P3790
176345    LOUCA D, 1999, PHYS REV B, V59, P6193
176346    MAZIN II, 1999, PHYS REV LETT, V83, P1427
176347    MILLIS AJ, 1995, PHYS REV LETT, V74, P5144
176348    MOREO A, 1999, SCIENCE, V283, P2034
176349    NEUMEIER JJ, 1995, PHYS REV B, V52, P7006
176350    OKIMOTO Y, 1995, PHYS REV LETT, V75, P109
176351    PARK JH, 1998, NATURE, V392, P794
176352    PAYNE MC, 1992, REV MOD PHYS, V64, P1045
176353    SAITOH T, 1995, PHYS REV B, V51, P13942
176354    SATPATHY S, 1996, PHYS REV LETT, V76, P960
176355    SEGALL MD, 2002, J PHYS-CONDENS MAT, V14, P2717
176356    SHI M, 2005, PHYS REV B, V70
176357    SINGH DJ, 1998, J APPL PHYS 2, V83, P7354
176358    SINGH DJ, 1998, PHYS REV B, V57, P88
176359    SOLOVYEV I, 1996, PHYS REV B, V53, P7158
176360    SUBIAS G, 1997, PHYS REV B, V56, P8183
176361    URUSHIBARA A, 1995, PHYS REV B, V51, P14103
176362    ZENER C, 1951, PHYS REV, V82, P403
176363 NR 28
176364 TC 0
176365 SN 0375-9601
176366 J9 PHYS LETT A
176367 JI Phys. Lett. A
176368 PD MAR 6
176369 PY 2006
176370 VL 351
176371 IS 4-5
176372 BP 314
176373 EP 318
176374 PG 5
176375 SC Physics, Multidisciplinary
176376 GA 021SN
176377 UT ISI:000236005900020
176378 ER
176379 
176380 PT J
176381 AU Liu, H
176382    Lu, GZ
176383    Guo, YL
176384    Guo, Y
176385    Wang, JS
176386 TI Synthesis of framework-substituted Fe-HMS and its catalytic performance
176387    for phenol hydroxylation
176388 SO NANOTECHNOLOGY
176389 DT Article
176390 ID MESOPOROUS MOLECULAR-SIEVES; TITANIUM SILICALITE-1; SILICAS; IRON;
176391    ZEOLITES; BENZENE; FEZSM-5; SIZE; PORE; TS-2
176392 AB The iron-incorporated mesoporous silica material Fe-HMS was
176393    successfully synthesized at ambient temperature by using dodecylamine
176394    as the template agent, and it was characterized by XRD, SEM, FT-IR,
176395    UV-vis, ESR and N-2 adsorption measurements. Its catalytic performance
176396    was studied for phenol hydroxylation with H2O2 in a fixed-bed reactor.
176397    The results show that Fe3+ ions have been successfully incorporated
176398    into the framework of HMS, and Fe-HMS has a uniform mesoporous
176399    structure with about 2.7 nm pore diameter. After Fe-HMS is calcined,
176400    most of the Fe3+ ions remain in the tetrahedral coordinated framework,
176401    and only a small part of Fe species migrate to the extraframework.
176402    Fe-HMS has high catalytic activity and very high selectivity to
176403    dihydroxybenzene for the hydroxylation of phenol. Over the Fe-HMS
176404    catalyst, the product distribution of phenol hydroxylation is different
176405    from that over the microporous TS-1 zeolite. The solvents have great
176406    influence on the catalytic activity of Fe-HMS, and water is the best
176407    solvent.
176408 C1 E China Univ Sci & Technol, Res Inst Ind Catalysis, Lab Adv Mat, Shanghai 2000237, Peoples R China.
176409    Shanghai Univ, Coll Environm & Chem Engn, Shanghai 200072, Peoples R China.
176410 RP Lu, GZ, E China Univ Sci & Technol, Res Inst Ind Catalysis, Lab Adv
176411    Mat, Shanghai 2000237, Peoples R China.
176412 EM gzhlu@ecust.edu.cn
176413 CR ABDELFATTAH TM, 1996, CHEM COMMUN     0307, P665
176414    AHN WS, 1999, APPL CATAL A-GEN, V181, P39
176415    ASTORINO E, 1995, J CATAL, V157, P482
176416    BACHARI K, 2004, J CATAL, V221, P55
176417    BAGSHAW SA, 1995, SCIENCE, V269, P1242
176418    CHAUDHARI K, 1999, J CATAL, V183, P281
176419    ECHCHAHED B, 1997, CHEM MATER, V9, P1716
176420    GONTIER S, 1995, ZEOLITES, V15, P601
176421    HE NY, 1997, STUD SURF SCI CA A-C, V105, P85
176422    HEIJBOER WM, 2004, J PHYS CHEM B, V108, P10002
176423    HUYBRECHTS DRC, 1992, J MOL CATAL, V71, P129
176424    INUI T, 1993, J CATAL, V139, P482
176425    KE YY, 1998, J E CHINA U SCI TECH, V24, P116
176426    KRESGE CT, 1992, NATURE, V359, P10
176427    LIN S, 2000, J MOL CATAL A-CHEM, V156, P113
176428    LIU H, 2005, CHEM ENG J, V108, P187
176429    MARIA DA, 1996, J PHYS CHEM-US, V100, P2178
176430    PANOV GI, 1998, CATAL TODAY, V41, P365
176431    PANOV GI, 2000, CATTECH, V4, P18
176432    PAULY TR, 2001, CHEM MATER, V13, P987
176433    PEREZRAMIREZ J, 2002, J CATAL, V207, P113
176434    RATNASAMY P, 1991, CATAL TODAY, V9, P341
176435    REDDY JS, 1992, J MOL CATAL, V71, P373
176436    REDDY JS, 1992, ZEOLITES, V12, P95
176437    RENZO FD, 1999, MICROPOR MESOPOR MAT, V28, P437
176438    SAYARI A, 1996, CHEM MATER, V8, P1840
176439    TUEL A, 1991, J MOL CATAL, V68, P45
176440    TUEL A, 1998, J CHEM SOC FARADAY T, V94, P3501
176441    TUEL A, 1999, MICROPOR MESOPOR MAT, V27, P151
176442    VANDERPOL AJHP, 1992, APPL CATAL A-GEN, V92, P113
176443    WILKENHONER U, 2001, J CATAL, V203, P201
176444    XIONG CR, 2000, CATAL LETT, V69, P231
176445    YANG RT, 1997, J CATAL, V172, P488
176446    YUE YH, 1998, APPL CATAL A-GEN, V175, P131
176447    ZHANG WZ, 1996, CHEM COMMUN     0421, P979
176448 NR 35
176449 TC 0
176450 SN 0957-4484
176451 J9 NANOTECHNOL
176452 JI Nanotechnology
176453 PD FEB 28
176454 PY 2006
176455 VL 17
176456 IS 4
176457 BP 997
176458 EP 1003
176459 PG 7
176460 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary;
176461    Physics, Applied
176462 GA 020GL
176463 UT ISI:000235896600026
176464 ER
176465 
176466 PT J
176467 AU Lou, J
176468    Ruggeri, T
176469    Tebaldi, C
176470 TI Modeling cancer in HIV-1 infected individuals: Equilibria, cycles and
176471    chaotic behavior
176472 SO MATHEMATICAL BIOSCIENCES AND ENGINEERING
176473 DT Article
176474 DE HIV-1 infection; cancer; steady state; stability; Hopf bifurcation;
176475    chaos
176476 ID HUMAN-IMMUNODEFICIENCY-VIRUS; HIV-1 INFECTION; T-CELLS; TRANSMISSION;
176477    DELAY; LAV
176478 AB For HIV-infected individuals, cancer remains a significant burden.
176479    Gaining insight into the epidemiology and mechanisms that underlie
176480    AIDS-related cancers can provide us with a better understanding of
176481    cancer immunity and viral oncogenesis. In this paper, an HIV-1
176482    dynamical model incorporating the AIDS-related cancer cells was
176483    studied. The model consists of three components, cancer cells, healthy
176484    CD4+ T lymphocytes and infected CD4+ T lymphocytes, and can have six
176485    steady states. We discuss the existence, the stability properties and
176486    the biological meanings of these steady states, in particular for the
176487    positive one: cancer-HIV-healthy cells steady state. We find conditions
176488    for Hopf bifurcation of the positive steady state, leading to periodic
176489    solutions, sequences of period doubling bifurcations and appearance of
176490    chaos. Further, chaos and periodic behavior alternate. Our results are
176491    consistent with some clinical and experimental observations.
176492 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
176493    Univ Bologna, Dept Math, I-40123 Bologna, Italy.
176494    Univ Bologna, Res Ctr Appl Math, CIRAM, I-40123 Bologna, Italy.
176495    Politecn Turin, Dept Math, I-10129 Turin, Italy.
176496 RP Lou, J, Shanghai Univ, Dept Math, 99 Shangda Rd, Shanghai 200444,
176497    Peoples R China.
176498 EM jie.lou@126.com
176499    ruggeri@ciram.unibo.it
176500    claudio.tebaldi@polito.it
176501 CR ANDERSON RM, 1989, CELL CELL SIGNALLING, P335
176502    BOSHOFF C, 2002, NAT REV CANCER, V2, P373
176503    BURNET FM, 1971, TRANSPLANT REV, V7
176504    CALLAWAY DS, 2002, B MATH BIOL, V64, P29
176505    CRANAGE MP, 1997, VIROLOGY, V229, P143
176506    CULSHAW RV, 2000, MATH BIOSCI, V165, P27
176507    DIEGEL ML, 1993, AIDS RES HUM RETROV, V9, P465
176508    FEIGENBAUM MJ, 1978, J STAT PHYS, V19, P25
176509    FRANCESCHINI V, 1979, J STAT PHYS, V21, P707
176510    GATTI RA, 1973, BLOOD, V41, P771
176511    GROSS L, 1943, CANCER RES, V3, P326
176512    GUPTA P, 1989, J VIROL, V63, P2361
176513    KIRSCHNER D, 1997, J MATH BIOL, V35, P775
176514    KLATZMANN D, 1984, NATURE, V312, P767
176515    KLATZMANN D, 1984, SCIENCE, V225, P59
176516    KLEIN G, 1956, NATURE, V178, P1389
176517    LAYNE SP, 1990, NATURE, V346, P277
176518    LEFEVER R, 1984, NONLINEAR ELECTRODYN, P287
176519    LEVY JA, 1999, HIV PATHOGENESIS AID, P239
176520    LOU J, 2004, J BIOL SYST, V12, P73
176521    PEARCEPRATT R, 1993, BIOL REPROD, V48, P431
176522    PERELSON AS, 1993, MATH BIOSCI, V114, P81
176523    QI AS, 1998, NONLINEAR MEDELS IMM
176524    ROSENBERG YJ, 1999, SEMIN IMMUNOL, V11, P139
176525    SCHRIER RD, 1993, J VIROL, V67, P5713
176526    SPOUGE JL, 1996, MATH BIOSCI, V138, P1
176527    STRAUS DJ, 2001, HIV ASS LYMPHOMAS, V16, P260
176528 NR 27
176529 TC 0
176530 SN 1547-1063
176531 J9 MATH BIOSCI ENG
176532 JI Math. Biosci. Eng.
176533 PD APR
176534 PY 2006
176535 VL 3
176536 IS 2
176537 BP 313
176538 EP 324
176539 PG 12
176540 GA 021IX
176541 UT ISI:000235978000003
176542 ER
176543 
176544 PT J
176545 AU Zhen, Q
176546    Dong, LY
176547    Shi, G
176548    Li, R
176549    He, WM
176550    Liu, JQ
176551 TI Pressureless reactive sintering mechanism of nanocrystalline Bi2O3-Y2O3
176552    solid electrolyte
176553 SO JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
176554 DT Article
176555 DE nanocrystalline bismuth oxide-yttrium oxide; solid electrolyte;
176556    pressureless reactive sintering process; crystal grain growth; phase
176557    transformation
176558 ID TEMPERATURE
176559 AB The nanocrystalline BiO3-Y2O3 Solid electrolyte material was
176560    synthesized by pressureless reactive sintering process with Bi2O3 and
176561    Y2O3 nano mixed powder as raw materials, which was prepared by a
176562    chemical coprecipitation process. The study on the behavior of nano
176563    delta-Bi2O3 formation and its grain growth showed that the solid
176564    solution reaction of Y2O3, and beta-Bi2O3 to form delta-Bi2O3 occurs
176565    mainly in the initial stage of sintering process, and nano delta-Bi2O3
176566    crystal grains grow approximately following the rule of paracurve
176567    ((D-D-0)(2) = K(.)t) during sintering process. After sintered at 600
176568    degrees C for 2 h, the samples could reach above 96% in relative
176569    density and have dense microstructure with few remaining pores, the
176570    delta-Bi2O3 grains are less than 100 nm in size.
176571 C1 Shanghai Univ, Sch Mat Sci & Engn, NanoSci & Nanotechnol Res Ctr, Shanghai 200444, Peoples R China.
176572    Railway Worker Coll Qiqihar, Qiqihar 161002, Peoples R China.
176573    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
176574 RP Zhen, Q, Shanghai Univ, Sch Mat Sci & Engn, NanoSci & Nanotechnol Res
176575    Ctr, Shanghai 200444, Peoples R China.
176576 EM zhenqiang@263.net
176577 CR BATTLE PD, 1986, J SOLID STATE CHEM, V63, P8
176578    FERRARI A, 1995, P NAN MAT COAT 9K AT
176579    HE WM, 2003, J FUNCTIONAL MAT, V34, P702
176580    HE WM, 2004, J FUNCTIONAL MAT, V35, P722
176581    KARCH J, 1987, NATURE, V330, P556
176582    KINGERY KD, 1967, INTRO CERAMICS
176583    LAWLESS WN, 1992, SOLID STATE IONICS, V52, P219
176584    SHUK P, 1996, SOLID STATE IONICS, V89, P179
176585    WATANABE A, 1986, SOLID STATE IONICS, V21, P287
176586 NR 9
176587 TC 0
176588 SN 1005-8850
176589 J9 J UNIV SCI TECHNOL BEIJING
176590 JI J. Univ. Sci. Technol. Beijing
176591 PD FEB
176592 PY 2006
176593 VL 13
176594 IS 1
176595 BP 87
176596 EP 91
176597 PG 5
176598 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
176599    Engineering; Mining & Mineral Processing
176600 GA 020OQ
176601 UT ISI:000235919600018
176602 ER
176603 
176604 PT J
176605 AU Guo, BY
176606    Wang, LL
176607 TI Modified Laguerre pseudospectral method refined by multidomain Legendre
176608    pseudospectral approximation
176609 SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
176610 DT Article
176611 DE modified Laguerre pseudospectral method; multidomain Legendre
176612    approximation; differential equations on the half-line
176613 ID PARTIAL-DIFFERENTIAL-EQUATIONS; SPECTRAL METHODS; INTERPOLATION;
176614    DOMAINS; SPACES
176615 AB A modified Laguerre pseudospectral method is proposed for differential
176616    equations on the half-line. The numerical solutions are refined by
176617    multidomain Legendre pseudospectral approximation. Numerical results
176618    show the spectral accuracy of this approach. Some approximation results
176619    on the modified Laguerre and Legendre interpolations are established.
176620    The convergence of proposed method is proved. (c) 2005 Elsevier B.V.
176621    All rights reserved.
176622 C1 Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China.
176623    Shanghai Univ, Div Computat Sci Einst, Shanghai, Peoples R China.
176624 RP Guo, BY, Shanghai Normal Univ, Dept Math, Guilin Rd,100, Shanghai
176625    200234, Peoples R China.
176626 EM byguo@shnu.edu.cn
176627 CR BABUSKA I, 2001, SIAM J NUMER ANAL, V39, P1512
176628    BERNARDI C, 1997, HDBK NUM AN 2, V5, P209
176629    COULAUD O, 1990, COMPUT METHOD APPL M, V80, P451
176630    FUNARO D, 1991, ORTHOGONAL POLYNOMIA, P263
176631    GUO BY, 2000, J MATH ANAL APPL, V243, P373
176632    GUO BY, 2000, NUMER MATH, V86, P635
176633    GUO BY, 2001, ADV COMPUT MATH, V14, P227
176634    MA HP, UNPUB MULTIDOMAIN LE
176635    MADAY Y, 1985, RECH AEROSPATIALE, P353
176636    MASTROIANNI G, 2001, ACTA MATH HUNG, V91, P27
176637    SHEN J, 2000, SIAM J NUMER ANAL, V38, P1113
176638    SZEGO G, 1959, ORTHOGONAL POLYNOMIA
176639    WANG LL, IN PRESS ADV COMPUT
176640    XU CL, 2002, J COMPUT MATH, V20, P413
176641 NR 14
176642 TC 0
176643 SN 0377-0427
176644 J9 J COMPUT APPL MATH
176645 JI J. Comput. Appl. Math.
176646 PD JUN 1
176647 PY 2006
176648 VL 190
176649 IS 1-2
176650 BP 304
176651 EP 324
176652 PG 21
176653 SC Mathematics, Applied
176654 GA 019QG
176655 UT ISI:000235851200021
176656 ER
176657 
176658 PT J
176659 AU Chen, JY
176660    Zhang, H
176661    Zheng, HF
176662    Zhu, M
176663    Zeng, YS
176664 TI In situ visualization of transformation of organic matter in water at
176665    high pressures and temperatures
176666 SO JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS
176667 DT Article
176668 DE in situ; visualization; organic matter; transformation; high-pressure
176669    and -temperature water
176670 ID SUPERCRITICAL WATER; RAMAN-SPECTROSCOPY; MOLECULAR CLUSTERS;
176671    CHEMICAL-REACTIONS; PHASE-EQUILIBRIA; MODEL COMPOUNDS; DECOMPOSITION;
176672    POLYETHYLENE; CONVERSION; BEHAVIOR
176673 AB Water of high pressure and temperature is attracting attention for its
176674    unique properties and here an in situ observational technique has been
176675    developed to study organic matter transformations in H-P and -T
176676    (high-pressure and -temperature) water. Three samples of different kind
176677    involving aromatic organic compound, polymer, and natural biomass
176678    behave greatly different. Anthracene dissolves in water at the
176679    temperature of 325 degrees C and corresponding pressure of 315.9 MPa
176680    and remains stable till the highest temperature of 420 degrees C of
176681    this work. Polystyrene and rice straw hydrolyze in the form of
176682    heterogeneous phases in H-P and -T water. Polystyrene melts to form
176683    non-soluble liquid spherule before hydrolysis, whereas rice straw
176684    hydrolyzes directly from non-soluble solid. The light organic molecules
176685    produced from hydrolysis dissolve in water at high temperatures and
176686    separate out during cooling. The study is helpful to understand
176687    reaction mechanism and process of hydrolysis of biomass and polymer in
176688    H-P and -T water. (c) 2005 Elsevier B.V. All rights reserved.
176689 C1 Shanghai Univ, Sch Environm & Chem Engn, Shanghai 201800, Peoples R China.
176690    Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA.
176691    Chinese Acad Sci, Grad Sch, Guangzhou Inst Geochem, Ghangzhou 510640, Peoples R China.
176692    Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China.
176693 RP Chen, JY, Shanghai Univ, Sch Environm & Chem Engn, Shanghai 201800,
176694    Peoples R China.
176695 EM j.chen@gl.ciw.edu
176696 CR AKIYA N, 2002, CHEM REV, V102, P2725
176697    ARITA T, 2003, TETRAHEDRON LETT, V44, P1083
176698    BELSKY AJ, 1998, J PHYS CHEM A, V102, P4509
176699    BROOKES A, 1997, SPECTROCHIM ACTA A, V53, P2303
176700    CAREY DM, 1998, APPL SPECTROSC, V52, P958
176701    CHEN JY, 2003, APPL SPECTROSC, V57, P1295
176702    CHENG LM, 2004, FUEL PROCESS TECHNOL, V85, P921
176703    CHURAKOV SV, 1999, J STRUCT CHEM+, V40, P548
176704    EDERER HJ, 1999, J SUPERCRIT FLUID, V15, P191
176705    FANG Z, 1999, J SUPERCRIT FLUID, V15, P229
176706    FANG Z, 2000, J SUPERCRIT FLUID, V16, P207
176707    FENG W, 2004, CHEM ENG J, V98, P105
176708    FENG W, 2004, CHEM ENG PROCESS, V43, P1459
176709    GOTO M, 2004, BIORESOURCE TECHNOL, V93, P279
176710    GUARDIA E, 2004, PHYS REV E, V69, P11502
176711    IKUSHIMA Y, 1998, J CHEM PHYS, V108, P5855
176712    KALINICHEV AG, 1999, CHEM PHYS LETT, V302, P411
176713    KALINICHEV AG, 2001, FLUID PHASE EQUILIBR, V183, P271
176714    KIM IC, 2004, CHEM ENG PROCESS, V43, P997
176715    MENG LH, 2004, POLYM DEGRAD STABIL, V83, P389
176716    SASAKI M, 2004, AICHE J, V50, P192
176717    SATO T, 2003, J ANAL APPL PYROL, V70, P735
176718    SATO T, 2004, CHEM ENG SCI, V59, P1247
176719    SAVAGE PE, 1995, AICHE J, V41, P1723
176720    SAVAGE PE, 1999, CHEM REV, V99, P603
176721    SHAW RW, 1991, CHEM ENG NEWS, V69, P26
176722    SHEN AH, 1992, HIGH PRESSURE RES AP, P61
176723    SHIBASAKI Y, 2004, POLYM DEGRAD STABIL, V83, P481
176724    SHINOHARA H, 1998, J MOL STRUCT, V442, P221
176725    SONG CC, 2004, ENERG FUEL, V18, P90
176726    SU XL, 2004, FUEL PROCESS TECHNOL, V85, P1249
176727    SUGIMOTO K, 2004, J SUPERCRIT FLUID, V32, P293
176728    TUCKER SC, 1999, CHEM REV, V99, P391
176729    YOSHIDA H, 2004, J CHEM ENG JPN, V37, P253
176730    YOSHIDA T, 2004, BIOMASS BIOENERG, V26, P71
176731    YOSHII N, 1999, B CHEM SOC JPN, V72, P151
176732 NR 36
176733 TC 0
176734 SN 0165-2370
176735 J9 J ANAL APPL PYROL
176736 JI J. Anal. Appl. Pyrolysis
176737 PD JUN
176738 PY 2006
176739 VL 76
176740 IS 1-2
176741 BP 260
176742 EP 264
176743 PG 5
176744 SC Chemistry, Analytical; Spectroscopy
176745 GA 021TF
176746 UT ISI:000236007900037
176747 ER
176748 
176749 PT J
176750 AU Yan, F
176751    Guan, XL
176752    He, XF
176753    Fan, S
176754 TI Modification project of the terminal electrode of the HI-13 tandem
176755    accelerator
176756 SO HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION
176757 DT Article
176758 DE terminal electrode; electrostatic field; equi-potential ring
176759 AB To improve the configuration of the terminal electrostatic field by
176760    modifying the shape of the terminal electrode, a calculation of the
176761    surface electrostatic field distributing for several possible shapes
176762    was done using Poisson code, and provide the optimum modification
176763    constructions.
176764 C1 China Inst Atom Energy, Beijing 102413, Peoples R China.
176765    Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
176766 RP Yan, F, China Inst Atom Energy, Beijing 102413, Peoples R China.
176767 EM yf991@iris.ciae.ac.cn
176768 CR LI T, 1995, ATOMIC ENERGY SCI TE, V27, P396
176769    YANG BF, 2003, ATOMIC ENERGY SCI TE, V37, P513
176770    ZHANG GL, 1996, ATOMIC ENERGY SCI TE, V30, P207
176771 NR 3
176772 TC 0
176773 SN 0254-3052
176774 J9 HIGH ENERGY PHYS NUCL PHYS-CH
176775 JI High Energy Phys. Nucl. Phys.-Chin. Ed.
176776 PD FEB
176777 PY 2006
176778 VL 30
176779 SU Suppl. 1
176780 BP 111
176781 EP 113
176782 PG 3
176783 SC Physics, Nuclear; Physics, Particles & Fields
176784 GA 020ZC
176785 UT ISI:000235951000036
176786 ER
176787 
176788 PT J
176789 AU Zhang, JP
176790    Wang, Y
176791    Chu, YW
176792    Su, LP
176793    Gong, YP
176794    Zhang, RH
176795    Xiong, SD
176796 TI Agrin is involved in lymphocytes activation that is mediated by
176797    alpha-dystroglycan
176798 SO FASEB JOURNAL
176799 DT Article
176800 DE agrin; alpha-dystroglycan; immunological synapse; lymphocyte activation
176801 ID IMMUNOLOGICAL SYNAPSE FORMATION; T-CELL-ACTIVATION;
176802    DYSTROPHIN-ASSOCIATED GLYCOPROTEINS; TORPEDO ELECTRIC ORGAN;
176803    BETA-DYSTROGLYCAN; ACETYLCHOLINE-RECEPTORS; EXTRACELLULAR-MATRIX;
176804    MUTANT MICE; COSTIMULATION; IDENTIFICATION
176805 AB It is well established that agrin, an extracellular matrix protein,
176806    plays a crucial role in the formation of neuromuscular junctions.
176807    Recent evidence indicates that agrin also contributes to immunological
176808    synapse formation. However, little is known about how agrin induces the
176809    activation of lymphocytes and whose receptors mediate its regulatory
176810    effects on these cells. In the present study, agrin was detected in
176811    lymphocytes. Up-regulation of agrin expression was involved in
176812    lymphocyte activation whereas down-regulation of its expression led to
176813    inhibition of both antigen-specific and nonspecific lymphocyte
176814    activation, indicating an intrinsic role for agrin in the activation of
176815    lymphocytes. Unexpectedly, unlike that found in muscle cells where
176816    there is coexpression of muscle-specific kinase (MuSK) and
176817    alpha-dystroglycan receptors for agrin, only alpha-dystroglycan could
176818    be detected in lymphocytes. Confocal examination showed that
176819    alpha-dystroglycan colocalized with agrin in forming the immunological
176820    synapse. Down-regulation of alpha-dystroglycan expression inhibited
176821    lymphocyte activation even in the presence of agrin. However, agrin
176822    involved in down-regulation of alpha-dystroglycan receptors did not
176823    increase the inhibitory effect on lymphocytes activation. The
176824    anti-alpha-dystroglycan antibody also induced lymphocytes activation.
176825    Taken together, these findings strongly indicate that agrin and
176826    alpha-dystroglycan mediate lymphocyte activation. Furthermore,
176827    agrin-involved lymphocyte activation is mediated by
176828    alpha-dystroglycan.-Zhang, J., Wang, Y., Chu, Y., Su, L., Gong, Y.,
176829    Zhang, R., Xiong, S. Agrin is involved in lymphocytes activation that
176830    is mediated by alpha-dystroglycan.
176831 C1 Fudan Univ, Shanghai Med Coll, Dept Immunol, Shanghai 200032, Peoples R China.
176832    Fudan Univ, Shanghai Med Coll, Key Lab Mol Med, Minist Educ, Shanghai 200032, Peoples R China.
176833    Shanghai Univ, Div Immunol, E Inst, Shanghai, Peoples R China.
176834 RP Xiong, SD, Fudan Univ, Shanghai Med Coll, Dept Immunol, 138 Yixueyuan
176835    Rd, Shanghai 200032, Peoples R China.
176836 EM sdxiongfd@126.com
176837 CR ANDRES PG, 2004, J IMMUNOL, V172, P5880
176838    BEZAKOVA G, 2003, NAT REV MOL CELL BIO, V4, P295
176839    BOWE MA, 1994, NEURON, V12, P1173
176840    BROMLEY SK, 2001, ANNU REV IMMUNOL, V19, P375
176841    BROMLEY SK, 2001, NAT IMMUNOL, V2, P1159
176842    BROMLEY SK, 2002, IMMUNOLOGY, V106, P289
176843    CAMPANELLI JT, 1994, CELL, V77, P663
176844    COTE PD, 1999, NAT GENET, V23, P338
176845    DECHIARA TM, 1996, CELL, V85, P501
176846    DUSTIN ML, 2000, NAT IMMUNOL, V1, P23
176847    FRIEDL P, 2002, IMMUNOL REV, V186, P83
176848    FRIEDL P, 2004, TRENDS CELL BIOL, V14, P557
176849    GAUTAM M, 1996, CELL, V85, P525
176850    GEE SH, 1994, CELL, V77, P675
176851    GINGRAS J, 2002, J CELL BIOL, V158, P1109
176852    GODFREY EW, 1984, J CELL BIOL, V99, P615
176853    GRAKOUI A, 1999, SCIENCE, V285, P221
176854    HAILMAN E, 2002, IMMUNITY, V16, P839
176855    HERBST R, 2002, DEVELOPMENT, V129, P5449
176856    HUPPA JB, 2003, NAT REV IMMUNOL, V3, P973
176857    IBRAGHIMOVBESKR.O, 1992, NATURE, V355, P696
176858    IBRAGHIMOVBESKR.O, 1993, HUM MOL GENET, V2, P1651
176859    ILSLEY JL, 2001, CELL SIGNAL, V13, P625
176860    INABA K, 1992, J EXP MED, V176, P1693
176861    JACOBSON C, 1998, J NEUROSCI, V18, P6340
176862    JAMES M, 2000, J CELL SCI, V113, P1717
176863    KAHL J, 2003, J NEUROSCI, V23, P392
176864    KHAN AA, 2001, SCIENCE, V292, P1681
176865    KIEFER F, 2002, TRANSPL IMMUNOL, V9, P69
176866    KROGSGAARD M, 2003, SEMIN IMMUNOL, V15, P307
176867    LEE KH, 2002, SCIENCE, V295, P1539
176868    MALDONADO RA, 2004, NATURE, V431, P527
176869    MICELI MC, 2001, SEMIN IMMUNOL, V13, P115
176870    NITKIN RM, 1987, J CELL BIOL, V105, P2471
176871    OPENSHAW P, 1995, J EXP MED, V182, P1357
176872    PAUL WE, 1994, CELL, V76, P241
176873    PHILLIPS WD, 1995, CLIN EXP PHARMACOL P, V22, P961
176874    RICHIE LI, 2002, IMMUNITY, V16, P595
176875    SALGADO FJ, 2003, J BIOL CHEM, V278, P24849
176876    SAMBROOK J, MOL CLONING LAB MANU
176877    SAMSTAG Y, 2003, J LEUKOCYTE BIOL, V73, P30
176878    SCHWARTZ JCD, 2002, NAT IMMUNOL, V3, P427
176879    SCIANDRA F, 2001, EUR J BIOCHEM, V268, P4590
176880    SHAW AS, 2001, NAT IMMUNOL, V2, P575
176881    TSENG SY, 2002, CURR OPIN CELL BIOL, V14, P575
176882    WALLACE BG, 1989, J NEUROSCI, V9, P1294
176883    WANG DH, 2004, MOL CELL BIOL, V24, P164
176884    WETZEL SA, 2002, J IMMUNOL, V169, P6092
176885    WULFING C, 2002, NAT IMMUNOL, V3, P42
176886 NR 49
176887 TC 0
176888 SN 0892-6638
176889 J9 FASEB J
176890 JI Faseb J.
176891 PD JAN
176892 PY 2006
176893 VL 20
176894 IS 1
176895 BP 50
176896 EP 58
176897 PG 9
176898 SC Biochemistry & Molecular Biology; Biology; Cell Biology
176899 GA 021PU
176900 UT ISI:000235996000044
176901 ER
176902 
176903 PT J
176904 AU Wang, XG
176905    Wu, QS
176906    Ding, YP
176907 TI Direct simultaneous determination of alpha- and beta-naphthol isomers
176908    at GC-electrode modified with CNTs network joined by Pt nanoparticles
176909    through derivative voltammetry
176910 SO ELECTROANALYSIS
176911 DT Article
176912 DE modified electrode; naphthol isomers; simultaneous determination
176913 ID POLYCYCLIC AROMATIC-HYDROCARBONS; CARBON NANOTUBES; PLATINUM
176914    NANOPARTICLES; LIQUID-CHROMATOGRAPHY; 1-NAPHTHOL; 2-NAPHTHOL; URINE;
176915    WATER
176916 AB The semi-derivative technique was adopted to improve the resolution and
176917    surfactant was added to sample solution to enhance the sensitivity,
176918    alpha- and beta-naphthol isomers could be determined directly and
176919    simultaneously at glassy carbon electrode modified with carbon
176920    nanotubes network joined by Pt nanoparticles. In 0.1 mol L-1 HAc-NaAc
176921    buffer solution (pH 5.8) the linear calibration ranges were 1.0 x
176922    10(-6) to 8.0 X 10(-4) mol L-1 for both alpha- and beta-naphthols, with
176923    detection limits of 5.0 X 10(-7) for alpha- and 6.0 x 10(-7) mol L-1
176924    for beta-naphthol. The amount of naphthol isomers in artificial
176925    wastewater has been tested with above method, and the recovery was from
176926    98% to 103%.
176927 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
176928    Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
176929 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
176930 EM qswu@mail.tongji.edu.cn
176931    ypding@mail.shu.ee.cn
176932 CR BO T, 1995, ACTA CHIM SINICA, V53, P805
176933    CHEN WX, 2003, CHEM J CHINESE U, V24, P2285
176934    FU XY, 2002, ACTA CHIM SINICA, V60, P1324
176935    HRAPOVIC S, 2004, ANAL CHEM, V76, P1083
176936    JANSEN EHJM, 1995, CLIN CHEM, V41, P1905
176937    LI YQ, 1994, TALANTA, V41, P695
176938    LOPEZ MH, 1999, TALANTA, V49, P679
176939    MASSEY KA, 1995, TALANTA, V42, P1457
176940    PREUSS R, 2004, J CHROMATOGR B, V801, P307
176941    REVILLA AL, 1996, J CHROMATOGR A, V745, P225
176942    SMITH CJ, 2002, J CHROMATOGR B, V778, P157
176943    TSANG SC, 1994, NATURE, V372, P159
176944    WANG JX, 2004, ELECTROANAL, V16, P140
176945    ZHAO Q, 2002, ELECTROANAL, V14, P1609
176946 NR 14
176947 TC 0
176948 SN 1040-0397
176949 J9 ELECTROANAL
176950 JI Electroanalysis
176951 PD MAR
176952 PY 2006
176953 VL 18
176954 IS 5
176955 BP 517
176956 EP 520
176957 PG 4
176958 SC Chemistry, Analytical
176959 GA 021LC
176960 UT ISI:000235983700013
176961 ER
176962 
176963 PT J
176964 AU Yan, Y
176965    Wu, QS
176966    Li, L
176967    Ding, YP
176968 TI Simultaneous synthesis of dendritic superstructural and fractal
176969    crystals of BaCrO4 by vegetal Bi-templates
176970 SO CRYSTAL GROWTH & DESIGN
176971 DT Article
176972 ID TOBACCO-MOSAIC-VIRUS; HYDROTHERMAL SYNTHESIS; SHAPE EVOLUTION; BARIUM
176973    CHROMATE; NANOPARTICLES; MORPHOGENESIS; LUMINESCENCE; NANOSTRUCTURES;
176974    ZEOLITIZATION; NANORODS
176975 AB Two novel dendritic superstructural and fractal BaCrO4 crystals were
176976    simultaneously synthesized in the same reaction system via facile
176977    vegetal bi-templates, mung bean sprouts (MBS). The two dendritic
176978    crystals in different shapes were grown on the outer surface and the
176979    inner stem wall of NIBS. The two BaCrO4 dendrites are characterized by
176980    scanning electron microscopy (SEM), X-ray diffraction (XRD), and
176981    photoluminescence (PL). The luminescent property indicates that the
176982    products have a broad emission band peak may have applications in an
176983    electronic light device. A presumable mechanism is also given.
176984 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
176985    Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
176986 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
176987 EM qswu@mail.tongji.edu.cn
176988 CR ANDERSON MW, 2000, ANGEW CHEM INT EDIT, V39, P2707
176989    BLASSE G, 1980, STRUCT BOND, V42, P1
176990    CHEN SH, 2002, NANO LETT, V2, P1003
176991    CHENG Y, 2005, J PHYS CHEM B, V109, P794
176992    COLFEN H, 2003, ANGEW CHEM INT EDIT, V42, P2350
176993    DALHOEVEN GAM, 1980, CHEM PHYS LETT, V76, P27
176994    DUJARDIN E, 2003, NANO LETT, V3, P413
176995    ECONOMY J, 1965, J CATAL, V4, P446
176996    FOWLER CE, 2001, ADV MATER, V13, P1266
176997    JANG J, 2004, LANGMUIR, V20, P8419
176998    JIANG CL, 2005, J PHYS CHEM B, V109, P1361
176999    KROGER N, 2000, P NATL ACAD SCI USA, V97, P14133
177000    KROGER N, 2002, SCIENCE, V298, P584
177001    KUANG DB, 2003, ADV MATER, V20, P1747
177002    LI CM, 2002, CRYST GROWTH DES, V2, P387
177003    LI L, 2004, NANOTECHNOLOGY, V15, P1877
177004    LIANG P, 2004, LANGMUIR, V20, P10444
177005    MA YR, 2004, CRYST GROWTH DES, V4, P351
177006    MANN S, 1988, NATURE, V332, P119
177007    MILLER RM, 1986, J LUMIN, V36, P143
177008    MOORE DF, 2004, J AM CHEM SOC, V126, P14372
177009    POULSEN N, 2003, P NATL ACAD SCI USA, V100, P12075
177010    PUNTES VF, 2001, SCIENCE, V291, P2115
177011    SANDHAGE KH, 2002, ADV MATER, V14, P429
177012    SHENTON W, 1999, ADV MATER, V11, P253
177013    SHI HT, 2003, ADV MATER, V15, P1647
177014    SPEK AL, 1996, J LUMIN, V69, P319
177015    STOILOVA D, 2005, J MOL STRUCT, V738, P211
177016    SUN YG, 2000, SCIENCE, V298, P2176
177017    VALTCHEV V, 2003, ANGEW CHEM INT EDIT, V42, P2782
177018    VICSEK T, 1992, FRACTAL GROWTH PHENO
177019    WANG DB, 2003, CRYST GROWTH DES, V3, P717
177020    WANG JW, 2004, MATER CHEM PHYS, V87, P420
177021    WANG YJ, 2002, J MATER CHEM, V12, P1812
177022    XIA YN, 2003, ADV MATER, V15, P353
177023    YANG D, 2002, ADV MATER, V14, P1543
177024    YANG PD, 1996, SCIENCE, V273, P1836
177025    YIN JA, 2003, CHEM PHYS LETT, V378, P24
177026    YU JC, 2004, J PHYS CHEM B, V18, P64
177027    YU SH, 2002, CHEM-EUR J, V8, P2937
177028    ZHANG J, 2004, CRYST GROWTH DES, V4, P309
177029    ZHANG Y, 2003, J PHYS CHEM B, V107, P8289
177030    ZHOU GJ, 2005, MAT SCI ENG B-SOLID, V116, P71
177031    ZHOU Y, 1999, ADV MATER, V11, P850
177032 NR 44
177033 TC 0
177034 SN 1528-7483
177035 J9 CRYST GROWTH DES
177036 JI Cryst. Growth Des.
177037 PD MAR
177038 PY 2006
177039 VL 6
177040 IS 3
177041 BP 769
177042 EP 773
177043 PG 5
177044 SC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary;
177045    Crystallography
177046 GA 019YM
177047 UT ISI:000235874600023
177048 ER
177049 
177050 PT J
177051 AU Jo, CL
177052    Xia, L
177053    Ding, D
177054    Dong, YD
177055 TI Glass formation ability and kinetics of the Gd55Al20Ni25 bulk metallic
177056    glass
177057 SO CHINESE PHYSICS LETTERS
177058 DT Article
177059 ID TEMPERATURE MAGNETIC REFRIGERATION; AMORPHOUS-ALLOYS; TRANSITION
177060    TEMPERATURE; FORMING ABILITY; CRYSTALLIZATION; GADOLINIUM; FE
177061 AB We report a new bulk glass-fornling alloy Gd55Al20Ni25. The bulk sample
177062    of the alloy is prepared in the shape of rods in diameter 2 mm by
177063    suction casting. The rod exhibits typical amorphous characteristics in
177064    the x-ray diffraction pattern, paramagnetic property at 300 K, distinct
177065    glass transition and multi-step crystallization behaviour in
177066    differential scanning calorimetry traces. The glass formation ability
177067    of the alloy is investigated by using the reduced glass transition
177068    temperature T-rg and the parameter gamma. Kinetics of glass transition
177069    and primary crystallization is also studied. The fragility parameter m
177070    obtained from the Vogel-Fulcher-Tammann dependence of glass transition
177071    temperature T-g on 1n phi (phi is the heating rate) classifies the bulk
177072    metallic glasses into the intermediate category according to Angell's
177073    classification.
177074 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
177075    Shanghai Univ, Ctr Adv Microanal, Shanghai 200444, Peoples R China.
177076 RP Xia, L, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
177077 EM xialei@staff.shu.edu.cn
177078 CR ANGELL CA, 1995, SCIENCE, V267, P1924
177079    BENFORD SM, 1981, J APPL PHYS, V52, P2110
177080    BOHMER R, 1993, J CHEM PHYS, V99, P4201
177081    BORREGO JM, 2002, J APPL PHYS, V92, P6607
177082    BRUNING R, 1992, PHYS REV B, V46, P11318
177083    FECHT HJ, 1995, MATER T JIM, V36, P777
177084    GAO MC, 2003, J ALLOY COMPD, V353, P114
177085    GREER AL, 1995, SCIENCE, V267, P1947
177086    HASHIMOTO T, 1987, J APPL PHYS, V62, P3873
177087    HE Y, 1994, PHIL MAG LETT, V70, P371
177088    INOUE A, 1996, MATER T JIM, V37, P99
177089    INOUE A, 1998, METALL MATER TRANS A, V29, P1779
177090    JOHNSON WL, 1999, MRS BULL, V24, P42
177091    KISSINGER HE, 1956, J RES NAT BUR STAND, V57, P217
177092    KORTE BJ, 1998, J APPL PHYS, V84, P5677
177093    LASOCKA M, 1976, MATER SCI ENG, V23, P173
177094    LI S, 2005, J NON-CRYST SOLIDS, V351, P2568
177095    LU ZP, 2002, ACTA MATER, V50, P3501
177096    LU ZP, 2003, PHYS REV LETT, V91
177097    MITROVIC N, 2001, APPL PHYS LETT, V78, P2145
177098    PERERA DN, 1999, J PHYS-CONDENS MAT, V11, P3807
177099    PROVENZANO V, 2004, NATURE, V429, P853
177100    SI L, 2002, APPL PHYS A-MATER, V75, P535
177101    TAKEYA H, 1994, APPL PHYS LETT, V64, P2739
177102    TANG MB, 2004, CHINESE PHYS LETT, V21, P901
177103    TURNBULL D, 1969, CONTEMP PHYS, V10, P473
177104    YU BF, 2003, INT J REFRIG, V26, P622
177105    ZHAO ZF, 2003, APPL PHYS LETT, V82, P4699
177106    ZHU AW, 2004, SCRIPTA MATER, V50, P1451
177107    ZHUANG YX, 2000, J APPL PHYS, V87, P8209
177108    ZIMM CB, 1992, ADV CRYOG ENG B, V37, P883
177109 NR 31
177110 TC 0
177111 SN 0256-307X
177112 J9 CHIN PHYS LETT
177113 JI Chin. Phys. Lett.
177114 PD MAR
177115 PY 2006
177116 VL 23
177117 IS 3
177118 BP 672
177119 EP 674
177120 PG 3
177121 SC Physics, Multidisciplinary
177122 GA 020RU
177123 UT ISI:000235928800041
177124 ER
177125 
177126 PT J
177127 AU Huang, H
177128 TI Generalized mean-flow theory of wave-current-bottom interactions
177129 SO CHINA OCEAN ENGINEERING
177130 DT Article
177131 DE mean-flow equations; wave action; large-scale slowly varying currents;
177132    wave-current-bottom interactions; dissipative dynamical system
177133 ID WATER-WAVES; EQUATION
177134 AB The interaction between waves, currents and bottoms in estuarine and
177135    coastal regions is ubiquitious, in particular the dynamic mechanism of
177136    waves on large-scale slowly varying currents. The wave action concept
177137    may be extended and applicated to the study of the mechanism.
177138    Considering the effects of moving bottoms and starting from the
177139    Navier-Stokes equation of motion of a viscous fluid including the
177140    Coriolis force, a generalized mean-flow model theory for the nearshore
177141    region, that is, a set of mean-flow equations and their generalized
177142    wave action equation involving the three new kinds of actions termed
177143    respectively as the current wave action, the bottom wave action and the
177144    dissipative wave action which can be applied to arbitrary depth over
177145    moving bottoms and ambient currents with a typical vertical structure,
177146    is developed by vertical integration and time-averaging over a wave
177147    period, thus extending the classical concept, wave action, from the
177148    ideal averaged flow conservative system to the real averaged flow
177149    dissipative dynamical system, and having a large range of application.
177150 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
177151 RP Huang, H, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
177152    200072, Peoples R China.
177153 EM hhuang@staff.shu.edu.cn
177154 CR ANDREWS DG, 1978, J FLUID MECH, V89, P609
177155    ATHANASSOULIS GA, 1999, J FLUID MECH, V389, P275
177156    BERKHOFF JCW, 1972, P 13 C COAST ENG VAN, V2, P471
177157    BRETHERTHON FP, 1968, P ROY SOC LOND A MAT, V302, P529
177158    CHRISTOFFERSEN JB, 1980, APPL OCEAN RES, V2, P179
177159    DING PX, 1999, CHINESE SCI BULL, V44, P1814
177160    DINGEMANS MW, 1997, WATER WAVE PROPAGATI
177161    FENG SZ, 1992, CIRCULATION PHYS SHA
177162    GRIMSHAW R, 1984, ANNU REV FLUID MECH, V16, P11
177163    HUANG H, 2003, ACTA MECH SINICA, V35, P461
177164    HUANG H, 2005, CHINESE J THEORETICA, V37, P627
177165    KIRBY JT, 1984, J GEOPHYS RES-OCEANS, V89, P745
177166    MEI CC, 1989, APPL DYNAMICS OCEAN
177167    PEREGRINE DH, 1976, ADV APPL MECH, V16, P9
177168    PHILLIPS OM, 1977, DYNAMICS OCEAN
177169    PORTER D, 2003, J FLUID MECH, V494, P51
177170    PRIGOGINE I, 1996, END CERTAINTY TIME C
177171    SALMAN R, 1998, LECT GEOPHYS FLUID D
177172    SUO YH, 2004, CHINA OCEAN ENG, V18, P163
177173    WHITHAM GB, 1999, LINEAR NONLINEAR WAV
177174    ZUO QH, 2003, CHINA OCEAN ENG, V17, P247
177175 NR 21
177176 TC 0
177177 SN 0890-5487
177178 J9 CHINA OCEAN ENG
177179 JI China Ocean Eng.
177180 PY 2006
177181 VL 20
177182 IS 1
177183 BP 165
177184 EP 172
177185 PG 8
177186 SC Engineering, Civil; Engineering, Mechanical; Engineering, Ocean; Water
177187    Resources
177188 GA 019YG
177189 UT ISI:000235874000014
177190 ER
177191 
177192 PT J
177193 AU Qin, LH
177194    Kong, L
177195    Shi, GJ
177196    Wang, ZT
177197    Ge, BX
177198 TI Andrographolide inhibits the production of TNF-alpha and interleukin-12
177199    in lipopolysaccharide-stimulated macrophages: Role of mitogen-activated
177200    protein kinases
177201 SO BIOLOGICAL & PHARMACEUTICAL BULLETIN
177202 DT Article
177203 DE andrographolide; macrophage; TNF-alpha; IL-12; MAPKs; ERK1/2
177204 ID TUMOR-NECROSIS-FACTOR; NITRIC-OXIDE SYNTHASE; KAPPA-B; DITERPENOID
177205    CONSTITUENTS; IL-12 PRODUCTION; PANICULATA; MICE; LPS; PHOSPHORYLATION;
177206    BIOSYNTHESIS
177207 AB Andrographolide has been reported to possess a variety of
177208    pharmacological activities. In this study, we have investigated the
177209    effect of andrographolide on the production of TNF-alpha and IL-12
177210    (Interleukin-12) in murine peritoneal macrophages. Andrographolide
177211    decreased TNF-alpha IL-12a and IL-12b at mRNA level, and reduced the
177212    production of TNF-a and IL-12p79 proteins in a concentration-dependent
177213    manner. Furthermore, we have found that addition of andrographolide
177214    inhibited the activation of ERK1/2 MAP kinase, but not that of JNK, p38
177215    or NF-kappa B. These results suggested that andrographolide inhibit
177216    LPS-induced production of TNF-a via suppression of the ERK1/2 signaling
177217    pathway.
177218 C1 Shanghai Med Univ 2, Joint Immunol Lab, Hlth Sci Ctr, Shanghai 200025, Peoples R China.
177219    Shanghai Med Univ 2, Shanghai Inst Immunol, Shanghai 200025, Peoples R China.
177220    Chinese Acad Sci, Shanghai Inst Biol Sci, Shanghai 200025, Peoples R China.
177221    Shanghai Univ, E Inst, Shanghai 200025, Peoples R China.
177222    Shanghai Univ Tradit Chinese Med, Inst Chinese Mat Med, Shanghai 201203, Peoples R China.
177223 RP Ge, BX, Shanghai Med Univ 2, Joint Immunol Lab, Hlth Sci Ctr, 225 S
177224    Chongqing Rd, Shanghai 200025, Peoples R China.
177225 EM gebaoxue@sibs.ac.cn
177226 CR AMROYAN E, 1999, PHYTOMEDICINE, V6, P27
177227    BAEUERLE PA, 1988, SCIENCE, V242, P540
177228    BASAK A, 1999, BIOCHEM J 1, V338, P107
177229    CHIOU WF, 2000, BRIT J PHARMACOL, V129, P1553
177230    DUMITRU CD, 2000, CELL, V103, P1071
177231    FENG GJ, 1999, J IMMUNOL, V163, P6403
177232    FINCO TS, 1995, IMMUNITY, V3, P263
177233    GOZALBES R, 1999, ENVIRON RES, V10, P27
177234    HANDA SS, 1990, INDIAN J MED RES-B, V92, P276
177235    KANG BY, 2005, CELL SIGNAL, V17, P665
177236    KAPIL A, 1993, BIOCHEM PHARMACOL, V46, P182
177237    KIM CS, 2003, CELL SIGNAL, V15, P299
177238    KONTOYIANNIS D, 1999, IMMUNITY, V10, P387
177239    KOTLYAROV A, 1999, NAT CELL BIOL, V1, P94
177240    LASALA A, 2005, J IMMUNOL, V175, P2994
177241    LOCKSLEY RM, 2001, CELL, V104, P487
177242    LU XJ, 1981, ACTA PHARMACOL SINIC, V16, P182
177243    MA XJ, 1997, J BIOL CHEM, V272, P10389
177244    PASPARAKIS M, 1996, J EXP MED, V184, P1397
177245    PFEFFER K, 1993, CELL, V73, P457
177246    PURI A, 1993, J NAT PRODUCTS, V56, P995
177247    SIRIPONG P, 1992, J SCI SOC THAILAND, V18, P187
177248    TRACEY KJ, 1991, CIRC SHOCK, V35, P123
177249    TRINCHIERI G, 2003, NAT REV IMMUNOL, V2, P133
177250    TSAI HR, 2004, EUR J PHARMACOL, V498, P45
177251    VARFOLOMEEV EE, 2004, CELL, V116, P491
177252    VISEN PKS, 1993, J ETHNOPHARMACOL, V40, P131
177253    XIA YF, 2004, J IMMUNOL, V173, P4207
177254    XU HP, 2005, J BIOL CHEM, V280, P20879
177255 NR 29
177256 TC 0
177257 SN 0918-6158
177258 J9 BIOL PHARM BULL
177259 JI Biol. Pharm. Bull.
177260 PD FEB
177261 PY 2006
177262 VL 29
177263 IS 2
177264 BP 220
177265 EP 224
177266 PG 5
177267 SC Pharmacology & Pharmacy
177268 GA 019QE
177269 UT ISI:000235851000006
177270 ER
177271 
177272 PT S
177273 AU Song, JN
177274    Tong, WQ
177275    Zhi, XL
177276 TI ServiceBSP model with QoS considerations in grids
177277 SO ADVANCED WEB AND NETWORK TECHNOLOGIES, AND APPLICATIONS, PROCEEDINGS
177278 SE LECTURE NOTES IN COMPUTER SCIENCE
177279 DT Article
177280 AB Grid computing is the cutting-edge computing technology which is
177281    promising to aggregate large-scale and geographically-distributed
177282    computing resources for next generation of computing. Though the Grid
177283    computing is popular in today's IT infrastructure, the concrete
177284    service-oriented Grid environment (system) is difficult to develop.
177285    Quality of Grid Services (QoGS) shields the heterogeneity of available
177286    resources. Such a QoGS requires interoperability between Grid resources
177287    and a consistent developer's interface, which must be specified by
177288    feasible and applicable virtual organizations (VO). In addition, an
177289    economic model of Grid community may also be considered. With the
177290    consideration of the behaviors and characteristics of such desirable
177291    Grid systems, an architecture and model of service-based BSP or
177292    ServiceBSP (service-based Bulk-Synchronous Parallelism) is proposed, at
177293    the aim at establishing a high interoperation and high quality
177294    cooperation between each Grid service, while developing an efficient
177295    mechanism to evaluate the performances of Grid applications.
177296 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
177297    Zhejiang Normal Univ, Sch Informat Sci & Engn, Jinhua 321004, Peoples R China.
177298 RP Song, JN, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples
177299    R China.
177300 EM songjiong_cs@163.com
177301    wqtong@mail.shu.edu.cn
177302    xlzhi@mail.shu.edu.cn
177303 CR CZAJKOWSKI K, 2004, WS RESOURCE FRAMEWOR
177304    DAVIES EK, 2002, J COMPUT CHEM, V23, P1544
177305    FARKAS P, 2003, P 1 INT WORKSH C NUM, V2, P9
177306    FOSTER I, 2001, INT J HIGH PERFORM C, V15, P200
177307    FOSTER I, 2002, PHYSL GRID OPEN GRID
177308    GOUX JP, 2001, CLUSTER COMPUTING, V4, P63
177309    MARTIN JMR, 2004, COMMUNICATION PROCES, P219
177310    SKILLICORN D, 1997, SCI PROG, V6, P249
177311    TONG WQ, 2003, LECT NOTES COMPUTER, V2658, P225
177312    VALIANT LG, 1990, COMMUN ACM, V33, P103
177313    VASILEV V, 2003, PARALLEL PROCESSING, V13, P329
177314    WILLIAMS TL, 2000, LECT NOTES COMPUT SC, V1800, P102
177315    ZHI XL, 2004, ENG APPL ARTIF INTEL, V17, P701
177316 NR 13
177317 TC 0
177318 SN 0302-9743
177319 J9 LECT NOTE COMPUT SCI
177320 PY 2006
177321 VL 3842
177322 BP 827
177323 EP 834
177324 PG 8
177325 GA BDV63
177326 UT ISI:000235659100113
177327 ER
177328 
177329 PT J
177330 AU Yang, QH
177331    Xu, J
177332    Su, LB
177333    Zhang, HW
177334 TI Spectroscopic characteristics of transparent Yb : Y2-2xLa2xO3 laser
177335    ceramics
177336 SO ACTA PHYSICA SINICA
177337 DT Article
177338 DE yttrium lanthanum oxide; laser ceramics; low-temperature sintering;
177339    spectral property
177340 AB It was first reported the spectral properties of a low-temperature
177341    sintered transparent Yb: Y2-2x La-2x O-3 laser ceramics. Yb: Y2-2x
177342    La-2x O-3 laser ceramics have broad absorption band and large
177343    absorption cross- section of 4.0 x 10(-20) cm(2) at wavelengths 977nm
177344    of the highest absorption peak. Its fluorescence lifetime is 1.1 ms,
177345    and the emission cross-sections are 1.0 x 10(-20) cm(2) and 0.7 x
177346    10(-20) cm(2) at wavelengths 1033nm and 1077nm, respectively. All the
177347    optical properties are similar to those of single crystals.
177348 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
177349    Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China.
177350 RP Yang, QH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
177351    China.
177352 EM yangqiuhongcn@yahoo.com.cn
177353 CR KRUPKE WF, 2000, IEEE J SEL TOP QUANT, V6, P1287
177354    MOULTON PF, 1986, J OPT SOC AM B, V3, P125
177355    SAITO N, 1998, J AM CERAM SOC, V81, P2023
177356    SUMIDA DS, 1998, P SOC PHOTOOPT INSTR, V100, P3265
177357    TAKAICHI K, 2004, APPL PHYS LETT, V84, P317
177358    WEN L, 2003, J CHIN REAR EARTH SO, V12, P166
177359    YANG QH, 200510023376, CN, APPL
177360 NR 7
177361 TC 0
177362 SN 1000-3290
177363 J9 ACTA PHYS SIN-CHINESE ED
177364 JI Acta Phys. Sin.
177365 PD MAR
177366 PY 2006
177367 VL 55
177368 IS 3
177369 BP 1207
177370 EP 1210
177371 PG 4
177372 SC Physics, Multidisciplinary
177373 GA 020ON
177374 UT ISI:000235919300035
177375 ER
177376 
177377 PT J
177378 AU Xia, SA
177379    Zhou, BX
177380    Chen, WJ
177381    Wang, WG
177382 TI Evolution of grain boundary character distributions in Pb alloy during
177383    high temperature annealing
177384 SO ACTA METALLURGICA SINICA
177385 DT Article
177386 DE Pb alloy; grain boundary character distribution; thermomechanical
177387    treatment
177388 ID INTERGRANULAR CORROSION; OPTIMIZATION
177389 AB Grain boundary character distributions (GBCD) in Pb alloy after
177390    thermomechanical treatments were analyzed by electron back scatter
177391    diffraction (EBSD) and orientation imaging microscopy (OIM). The
177392    frequencies of low Sigma coincidence site lattice (CSL) grain
177393    boundaries in Pb-alloy can be enhanced to more than 70% after proper
177394    cold rolling combined with annealing at high temperature (0.9T(m)) for
177395    a very short period of time. Together with Sigma(1) boundaries, the
177396    Sigma(3) boundaries appeared during recovering. The development of
177397    Sigma(3) boundaries in the primary stage of recrystallization is the
177398    main reason for enhancing the frequencies of low Sigma CSL grain
177399    boundaries. Triple junctions contained three CSL grain boundaries could
177400    be easily found in the OIM map of the specimen with high frequencies of
177401    low Sigma CSL grain boundaries, and there are specific orientation
177402    relationships among the grains assembled by the triple junctions.
177403 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
177404    Shandong Univ Technol, Sch Mech Engn, Zibo 255049, Peoples R China.
177405 RP Xia, SA, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
177406 EM xiashuang14@sohu.com
177407 CR KING WE, 1998, SCRIPTA MATER, V38, P449
177408    LEE DS, 2003, MAT SCI ENG A-STRUCT, V345, P106
177409    LEHOCKEY EM, 1997, MAT SCI ENG A-STRUCT, V237, P168
177410    LEHOCKEY EM, 1997, SCRIPTA MATER, V36, P1211
177411    LEHOCKEY EM, 1998, SCRIPTA MATER, V39, P353
177412    LEHOCKEY EM, 2004, CORROS SCI, V46, P2383
177413    LIN P, 1995, SCRIPTA METALL MATER, V33, P1387
177414    MYKURA H, 1980, GRAIN BOUNDARY STRUC, P79
177415    PALUMBO G, 1998, SCRIPTA MATER, V38, P1685
177416    PALUMBO G, 1999, MRS BULL, V24, P27
177417    RANDLE V, 1996, ROLE COINCIDENCE SIT, P2
177418    SHIMADA M, 2002, ACTA MATER, V50, P2331
177419    SPIGARELLI S, 2003, MAT SCI ENG A-STRUCT, V352, P93
177420    WATANABE T, 1984, RES MECH, V11, P47
177421 NR 14
177422 TC 0
177423 SN 0412-1961
177424 J9 ACTA METALL SIN
177425 JI Acta Metall. Sin.
177426 PD FEB 11
177427 PY 2006
177428 VL 42
177429 IS 2
177430 BP 129
177431 EP 133
177432 PG 5
177433 SC Metallurgy & Metallurgical Engineering
177434 GA 020RW
177435 UT ISI:000235929000004
177436 ER
177437 
177438 PT J
177439 AU Li, F
177440    Chen, YX
177441    Wan, XJ
177442    Wang, QJ
177443    Liu, YY
177444 TI Effects of hydrogen on the microstructure and high temperature
177445    mechanical properties of Ti-60 alloy
177446 SO ACTA METALLURGICA SINICA
177447 DT Article
177448 DE Ti-60 alloy; hydrogen; transformation temperature; yield strength
177449 AB The volume fraction of primary alpha-phase, the (alpha+beta)->beta
177450    transformation temperature and high temperature yield strength of Ti-60
177451    alloy are continuously decreased with increasing hydrogen content in
177452    the alloy. The minimum yield strength of the alloy at high temperature
177453    occurs at the hydrogen concentration corresponding to the
177454    (alpha+beta)->beta transition and then increases due to the hardening
177455    effect of hydrogen addition on the beta-phase. The relationship between
177456    hydrogen concentration and transformation temperature can be expressed
177457    as: t((alpha+beta)->beta)(degrees C)=815+210exp(-3(H)). Tensile at 900
177458    degrees C will make the yield strength reduce about 70% for the alloy
177459    containing 0.3% hydrogen.
177460 C1 Shanghai Univ, Inst Sci Mat, Shanghai 200072, Peoples R China.
177461    Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China.
177462 RP Chen, YX, Shanghai Univ, Inst Sci Mat, Shanghai 200072, Peoples R China.
177463 EM yxchen@staff.shu.edu.cn
177464 CR COSTA JE, 1987, METALL TRANS A, V18, P1421
177465    FANG TY, 1998, MATER CHEM PHYS, V56, P35
177466    HAN MC, 1999, AEROSP MAT TECHNOL, P23
177467    HOU HL, 2003, CHIN J NONFERROUS, V13, P533
177468    ILYIN AA, 1996, TITANIUM 95 SCI TE C, P2462
177469    KERR WR, 1980, TITANIUM 80 SCI TECH, P2477
177470    LAI ZH, 1991, P 7 NAT C TIT TIT AL, P266
177471    MURZINOVA MA, 2002, INT J HYDROGEN ENERG, V27, P775
177472    SENKOV ON, 1996, METALL MATER TRANS A, V27, P1869
177473    SENKOV ON, 1999, INT J HYDROGEN ENERG, V24, P565
177474    YANG K, 1993, SCRIPTA METALL MATER, V28, P71
177475 NR 11
177476 TC 0
177477 SN 0412-1961
177478 J9 ACTA METALL SIN
177479 JI Acta Metall. Sin.
177480 PD FEB 11
177481 PY 2006
177482 VL 42
177483 IS 2
177484 BP 143
177485 EP 146
177486 PG 4
177487 SC Metallurgy & Metallurgical Engineering
177488 GA 020RW
177489 UT ISI:000235929000007
177490 ER
177491 
177492 PT J
177493 AU Li, X
177494    Ren, ZM
177495    Sun, YH
177496    Wang, J
177497    Yu, JB
177498    Ren, WL
177499 TI Effect of high longitudinal magnetic field on the microstructure of
177500    directionally solidified Al-4.5% Cu alloy
177501 SO ACTA METALLURGICA SINICA
177502 DT Article
177503 DE Al-4.5%Cu alloy; directional solidification; high magnetic field;
177504    dendritic growth
177505 ID MACROSEGREGATION; CONVECTION; FILMS
177506 AB An investigation of the microstructure of directionally solidified
177507    hypoeutectic Al-4.5%Cu (mass fraction) alloys under a longitudinal
177508    magnetic field of 10 T showed that the field has a great influence on
177509    the dendritic arrays. The field caused severe distortion of the
177510    dendritic array morphology in the mushy zone and the directional
177511    dendrites disappeared below the eutectic isotherm at lower growth speed
177512    of R=5 mu m/s, opposed to the well-aligned dendritic crystals in the
177513    absence of the field. At the growth speed of R=50 mu m/s and a
177514    temperature gradient of 38 K/cm in the liquid, the alignment structure
177515    formed and the crystal < 111 > direction turned to the direction of the
177516    magnetic field, opposed to the dendrite growth along the crystal < 100
177517    > direction. It has also been found that the field caused the increase
177518    of primary dendrite arm spacing at the growth speed of R=100 mu m/s.
177519    Above phenomena are analyzed on the base of theories of the TEMHD and
177520    crystal magnetic anisotropy.
177521 C1 Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R China.
177522 RP Ren, ZM, Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200072, Peoples R
177523    China.
177524 EM zmren@mail.shu.edu.cn
177525 CR BOETTINGER WJ, 1981, METALL T A A, V12, P321
177526    CALLEN HB, 1948, PHYS REV, V73, P1349
177527    CUI ZQ, 1994, METALLURGY HEAT TRAN, P10
177528    FANG QQ, 1998, J MAGN MAGN MATER, V188, P241
177529    KATSUKI A, 1996, CHEM LETT, P607
177530    LEHMANN P, 1998, ACTA MATER, V46, P4067
177531    MA JP, 2004, PROG NAT SCI, V14, P837
177532    SHERCLIFF JA, 1979, J FLUID MECH, V91, P231
177533    TAHASHI M, 2002, MATER TRANS, V43, P2813
177534    TEWARI SN, 1994, METALL MATER TRANS A, V25, P1535
177535    WU Q, 2004, PROG NAT SCI, V14, P830
177536 NR 11
177537 TC 0
177538 SN 0412-1961
177539 J9 ACTA METALL SIN
177540 JI Acta Metall. Sin.
177541 PD FEB 11
177542 PY 2006
177543 VL 42
177544 IS 2
177545 BP 147
177546 EP 152
177547 PG 6
177548 SC Metallurgy & Metallurgical Engineering
177549 GA 020RW
177550 UT ISI:000235929000008
177551 ER
177552 
177553 PT J
177554 AU Silber-Li, ZH
177555    Cui, HH
177556    Tan, YP
177557    Tabeling, P
177558 TI Flow characteristics of liquid with pressure-dependent viscosities in
177559    microtubes
177560 SO ACTA MECHANICA SINICA
177561 DT Article
177562 DE microfluidic; liquid; microtubc; viscosity
177563 ID MICROCHANNELS; LAMINAR
177564 AB It is obvious that the pressure gradient alone, the axial direction in
177565    a pipe flow keeps constant according to the Haoen-Poiseuille equation.
177566    However, recent experiments indicated that the distribution of the
177567    pressure seemed no longer linear for liquid flows in microtubes driven
177568    by high pressure (1-30MPa). Based on H-P equation with slip boundary
177569    condition and Bridgman's relation of viscosity vs. static pressure, the
177570    nonlinear distribution of pressure along the axial direction is
177571    analyzed in this paper. The revised standard Poiseuille number with the
177572    effect of pressure-dependent viscosity taken into account agrees well
177573    with the experimental results. Therefore, the dependence of the
177574    viscosity on the pressure is one of the dominating, factors under high
177575    driven pressure, and is represented by an important property
177576    coefficient et of the liquid.
177577 C1 Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R China.
177578    Shanghai Univ, SIAMM, Shanghai 200072, Peoples R China.
177579    ESPCI, MMN, F-75231 Paris, France.
177580 RP Silber-Li, ZH, Chinese Acad Sci, Inst Mech, LNM, Beijing 100080,
177581    Peoples R China.
177582 EM lili@imech.ac.cn
177583 CR BRIDGMAN PW, 1952, PHYS HIGH PRESSURE
177584    CHOI CH, 2003, PHYS FLUIDS, V15, P2898
177585    CUI HH, 2004, PHYS FLUIDS, V16, P1803
177586    JUDY J, 2002, INT J HEAT MASS TRAN, V45, P3477
177587    LI ZH, 2002, ACTA MECH SINICA, V3, P432
177588    LI ZH, 2002, INT J NONLINEAR SCI, V3, P577
177589    PAPAUTSKY I, 1999, SENSOR ACTUAT A-PHYS, V73, P101
177590    PFAHLER J, 1991, ASME DSC, V32, P49
177591    SHARP KV, 2004, EXP FLUIDS, V36, P741
177592    TRETHEWAY DC, 2002, PHYS FLUIDS, V14, P9
177593    WHITE FM, 1991, VISCOUS FLUID FLOW
177594 NR 11
177595 TC 0
177596 SN 0567-7718
177597 J9 ACTA MECH SINICA
177598 JI Acta Mech. Sin.
177599 PD FEB
177600 PY 2006
177601 VL 22
177602 IS 1
177603 BP 17
177604 EP 21
177605 PG 5
177606 SC Engineering, Mechanical; Mechanics
177607 GA 021FV
177608 UT ISI:000235970000003
177609 ER
177610 
177611 PT J
177612 AU Tsirlin, AM
177613    Kan, NM
177614    Trushkov, VV
177615 TI Thermodynamic analysis and evaluation of the feasibility range of a
177616    chemical reactor
177617 SO THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING
177618 DT Article
177619 AB The conditions of minimal irreversibility of finite-time processes
177620    performed in chemical reactors to a given conversion are determined.
177621    The estimated entropy production allows one to find the feasibility
177622    range of a chemical reactor.
177623 C1 Russian Acad Sci, Inst Program Syst, Pereslavl Zalesskii 152020, Yaroslavl Oblas, Russia.
177624    Shanghai Univ, Shanghai, Peoples R China.
177625 RP Tsirlin, AM, Russian Acad Sci, Inst Program Syst, Ul Sovetskaya 2,
177626    Pereslavl Zalesskii 152020, Yaroslavl Oblas, Russia.
177627 EM tsirlin@sarc.botik.ru
177628 CR AMELKIN SA, 1998, IZV ROSS AKAD NAUK E, P118
177629    AMELKIN SA, 1999, IVZ ROSS AKAD NAUK E, P152
177630    ANDRESEN B, 1983, FINITE TIME THERMODY, P189
177631    NOVIKOV II, 1957, ATOM ENERGY, V3, P409
177632    ORLOV VN, 1985, AVTOMAT TELEMEKH, V5, P7
177633    ORLOV VN, 1986, 10 VSES SOV PROBL UP, P187
177634    PRIGOGINE I, 1954, CHEM THERMODYNAMICS
177635    SALAMON P, 1981, J CHEM PHYS, V74, P3546
177636    TSIRLIN AM, 1998, PHYS REV E, V58, P215
177637    TSIRLIN AM, 2003, METODY OPTIMIZATSII
177638 NR 10
177639 TC 0
177640 SN 0040-5795
177641 J9 THEOR FOUND CHEM ENGINEERING
177642 JI Theor. Found. Chem. Eng.
177643 PD JAN-FEB
177644 PY 2006
177645 VL 40
177646 IS 1
177647 BP 32
177648 EP 37
177649 PG 6
177650 SC Engineering, Chemical
177651 GA 017NM
177652 UT ISI:000235700300005
177653 ER
177654 
177655 PT J
177656 AU Ma, ZQ
177657    Li, W
177658    Wang, DM
177659    Zhao, ZX
177660    Wang, Y
177661    Yang, WJ
177662    Zhao, WG
177663 TI Argon ion-dissipated energy on atomic driving in zinc-VIA films growth
177664 SO SOLID STATE COMMUNICATIONS
177665 DT Article
177666 DE semiconductors; zinc compounds; epitaxy; energy dissipation
177667 ID GREEN LIGHT EMITTERS; CLUSTER BEAM EPITAXY; ZNTE FILMS
177668 AB Under an assumption of rectilinear trajectories for the projectile into
177669    a solid surface, a distinct expression for the 'energy window' of the
177670    driving atoms in a monolayer has been drawn for different ion-target
177671    systems, in which the atomic displacements take place primarily in the
177672    surface layer, while the subsurface layer is kept undamaged. This
177673    approach of determining the appropriate energy interval to enhance the
177674    mobility of adatom is applied to ion-assisted growth of zinc sulfide
177675    (ZnS), zinc selenide (ZnSe), and zinc telluride (ZnTe) epitaxial
177676    layers, respectively. The calculating results are in good agreement
177677    with the experimental observation of ZnTe semiconductor materials in
177678    the energetic cluster beam. (c) 2006 Elsevier Ltd. All rights reserved.
177679 C1 Shanghai Univ, Dept Phys, Microelect Lab, Shanghai 200444, Peoples R China.
177680 RP Ma, ZQ, Shanghai Univ, Dept Phys, Microelect Lab, Shang Da Rd 99,
177681    Shanghai 200444, Peoples R China.
177682 EM zqma@mail.shu.edu.cn
177683 CR *US NBS, 1964, US NBS MON, V25, P358
177684    BUNNIK BS, 2002, NUCL INSTRUM METH B, V187, P57
177685    CHU TL, 1992, J APPL PHYS, V71, P3865
177686    FENG JY, 1996, THIN SOLID FILMS, V274, P46
177687    FENG JY, 1998, J CRYST GROWTH, V187, P387
177688    FUYAT S, 1953, 593 US NBS
177689    GUHA S, 1993, APPL PHYS LETT, V63, P3107
177690    HAASE MA, 1991, APPL PHYS LETT, V59, P1272
177691    ISHIBASHI A, 1996, J CRYST GROWTH, V159, P555
177692    KALBITZER S, 1976, Z PHYS A ATOMS NUCL, V278, P223
177693    MA ZQ, 1999, APPL SURF SCI, V137, P184
177694    MA ZQ, 2000, THIN SOLID FILMS, V359, P288
177695    MCMURDIE H, 1986, POWDER DIFFR, V1, P345
177696    PETROV I, 2003, J VAC SCI TECHNOL  S, V21, S117
177697    REINHOLD B, 1999, PHYS B, V273, P856
177698    RICOLLEAU C, 1998, THIN SOLID FILMS, V336, P213
177699    VAVILOV VS, 1997, PHYS-USP, V40, P387
177700    WHERRETT BS, 1996, J CRYST GROWTH, V159, P766
177701    YING F, 1996, APPL PHYS LETT, V69, P3007
177702 NR 19
177703 TC 0
177704 SN 0038-1098
177705 J9 SOLID STATE COMMUN
177706 JI Solid State Commun.
177707 PD FEB
177708 PY 2006
177709 VL 137
177710 IS 8
177711 BP 413
177712 EP 416
177713 PG 4
177714 SC Physics, Condensed Matter
177715 GA 018FK
177716 UT ISI:000235749300003
177717 ER
177718 
177719 PT J
177720 AU Zhu, P
177721    Gu, GB
177722 TI Kinetics of stripping of gold loaded in DBC organic phase by sodium
177723    sulfite
177724 SO RARE METALS
177725 DT Article
177726 DE kinetics; stripping; gold; Lewis cell
177727 AB The kinetics of stripping of gold loaded in dibutyl carbito (DBC)
177728    organic phase by sodium sulfite was investigated in a Lewis cell. After
177729    the stirring speed reached 400 r-min(-1), the reaction of gold
177730    stripping conformed with the pseudo-first-order reaction. The stripping
177731    rate of gold was in direct proportion to interfacial area,
177732    concentration of sodium sulfite and reaction temperature. The
177733    experimental results showed that the process of stripping gold was
177734    controlled by interfacial chemical reaction, and its activation energy
177735    was 36.06 kJ.mol(-1). The kinetics equation was put forward for gold
177736    stripping by sodium sulfite.
177737 C1 Shanghai Univ, Coll Environm Sci & Engn, Shanghai 200072, Peoples R China.
177738    S China Univ Technol, Dept Appl Chem, Ghangzhou 510640, Peoples R China.
177739 RP Zhu, P, Shanghai Univ, Coll Environm Sci & Engn, Shanghai 200072,
177740    Peoples R China.
177741 EM xhnzp@staff.shu.edu.cn
177742 CR FU JS, 1990, E CHINA CHEM TECHNOL, V16, P509
177743    GAO ZL, 1991, SOLVENT EXTRACTION C
177744    JIANG JZ, 2003, HYDROMETALLURGY, V70, P73
177745    LIU SJ, 2001, MINING METALLURGY PL
177746 NR 4
177747 TC 0
177748 SN 1001-0521
177749 J9 RARE METALS
177750 JI Rare Metals
177751 PD FEB
177752 PY 2006
177753 VL 25
177754 IS 1
177755 BP 1
177756 EP 6
177757 PG 6
177758 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
177759    Engineering
177760 GA 019FZ
177761 UT ISI:000235822300001
177762 ER
177763 
177764 PT J
177765 AU Zhang, HH
177766    Duan, HL
177767    Shao, GJ
177768    Xu, LP
177769    Yin, JL
177770    Yan, B
177771 TI Modification mechanism of cerium on the Al-18Si alloy
177772 SO RARE METALS
177773 DT Article
177774 DE metal material; modification mechanism; thermodynamics analysis; rare
177775    earth element; hypereutectic Al-Si alloy
177776 ID AL-SI ALLOYS; RARE-EARTH; LA
177777 AB The effect of the rare earth cerium (Ce) on the hypereutectic Al-Si
177778    alloy under different casting states have been studied by optical
177779    microscope and quantitative image analysis. It is found that the size
177780    and the quantity of primary silicon in castings decrease with the
177781    increase of added Ce in the melt. Meanwhile primary silicon changes
177782    from branched shape to fine facetted shape. Although the modification
177783    on eutectic silicon in castings also improves with the increase of
177784    added Ce in the melt, the effect of modification on eutectic silicon
177785    away from primary silicon is more obvious than that on eutectic silicon
177786    close to primary silicon. The modification mechanism was analyzed in
177787    detail by means of scanning electron microscope equipped with energy
177788    dispersive analysis of X-ray and thermodynamics analysis, which
177789    included the analysis on the change in standard Gibbs energy of
177790    reaction and reaction equilibrium.
177791 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
177792    Tongji Univ, Sch Mat Sci & Engn, Shanghai 200092, Peoples R China.
177793 RP Zhang, HH, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples
177794    R China.
177795 EM hhzhang@mail.shu.edu.cn
177796 CR BELOV VD, 1994, LITEINOE PROIZVOD, V4, P11
177797    CHANG JY, 1998, J MATER SCI, V33, P5015
177798    CHANG JY, 1998, SCRIPTA MATER, V39, P307
177799    GRIFFITHS WD, 1990, LIGHT MET, P1047
177800    JIRATTITICHAROE.W, 2004, SOL PROC MICR S, P269
177801    NAFISI S, 2004, TMS LIGHT MET, P851
177802    SUN BD, 1999, J SHANGHAI JIAOTONG, V33, P795
177803    WU SS, 2003, T NONFERR METAL SOC, V13, P1285
177804    XIAN ZH, 1995, LIGHT MET, P995
177805    XIAO JM, 1985, ENERGY ALLOYS, P120
177806    YE DL, 2002, PRACTICAL DATA MANUA, P2
177807    YI HK, 2002, Z METALLKD, V93, P1237
177808    ZHANG D, 2003, T NONFERR METAL SOC, V13, P541
177809 NR 13
177810 TC 0
177811 SN 1001-0521
177812 J9 RARE METALS
177813 JI Rare Metals
177814 PD FEB
177815 PY 2006
177816 VL 25
177817 IS 1
177818 BP 11
177819 EP 15
177820 PG 5
177821 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
177822    Engineering
177823 GA 019FZ
177824 UT ISI:000235822300003
177825 ER
177826 
177827 PT J
177828 AU Li, YP
177829 TI Large-time behaviour of the solutions for a multidimensional
177830    non-isentropic hydrodynamic model for semiconductors
177831 SO PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY
177832 DT Article
177833 DE large-time behaviour; smooth solutions; multidimensional;
177834    non-isentropic hydrodynamic model; semiconductors
177835 ID GLOBAL SMOOTH SOLUTIONS; EULER-POISSON SYSTEM; WEAK SOLUTIONS;
177836    ASYMPTOTIC-BEHAVIOR; ENERGY-TRANSPORT; RELAXATION; EXISTENCE
177837 AB We investigate the multidimensional non-isentropic Euler-Poisson (or
177838    full hydrodynamic) model for semiconductors, which contain an
177839    energy-conserved equation with non-zero thermal conductivity
177840    coefficient. We first discuss existence and uniqueness of the
177841    non-constant stationary solutions to the corresponding drift-diffusion
177842    equations. Then we establish the global existence of smooth solutions
177843    to the Cauchy problem with initial data, which are close to the
177844    stationary solutions. We find that these smooth solutions tend to the
177845    stationary solutions exponentially fast as t --> +infinity.
177846 C1 Xianning Coll, Dept Math, Xianning, Peoples R China.
177847    Shanghai Univ, Dept Math, Shanghai, Peoples R China.
177848 RP Li, YP, Xianning Coll, Dept Math, Xianning, Peoples R China.
177849 EM yepinglee197211@yahoo.com.cn
177850 CR ALI G, 1996, Z ANGEW MATH MECH S2, V76, P301
177851    ALI G, 2000, SIAM J MATH ANAL, V32, P572
177852    ALI G, 2003, J DIFFER EQUATIONS, V190, P663
177853    ANILE AM, 1992, CONTINUUM MECH THERM, V4, P187
177854    ANILE AM, 1995, PHYS REV B, V51, P16728
177855    ANILE AM, 1995, PITMAN RES NOTES MAT, V340
177856    DEGOND P, 1990, APPL MATH LETT, V3, P25
177857    DEGOND P, 1997, CR ACAD SCI I-MATH, V324, P867
177858    FANG WF, 1997, NONLINEAR ANAL-THEOR, V28, P947
177859    GAMBA IM, 1992, COMMUN PART DIFF EQ, V17, P553
177860    GASSER I, 1999, Q APPL MATH, V57, P269
177861    GUO Y, 1998, COMMUN MATH PHYS, V195, P249
177862    HSIAO L, 2001, J DIFFER EQUATIONS, V170, P472
177863    HSIAO L, 2002, MATH MOD METH APPL S, V12, P777
177864    HSIAO L, 2003, J DIFFER EQUATIONS, V192, P111
177865    JOCHMANN F, 1993, MATH MOD METH APPL S, V3, P759
177866    JUNGEL A, 2001, PROGR NONLINEAR DIFF, V41
177867    LUO T, 1998, SIAM J APPL MATH, V59, P810
177868    MAJDA A, 1984, APPL MATH SCI, V53
177869    MARCATI P, 1995, ARCH RATION MECH AN, V129, P129
177870    MARKOWICH PA, 1990, SEMICONDUCTORS EQUAT
177871    MARKOWICH PA, 1991, Z ANGEW MATH PHYS, V62, P389
177872    MATSUMURA A, 1980, J MATH KYOTO U, V20, P67
177873    NIRENBERG L, 1959, ANN SCUOLA NORM SUP, V13, P115
177874    POUPAUD F, 1995, J DIFFER EQUATIONS, V123, P93
177875    STEIN EM, 1970, SINGULAR INTEGRALS D
177876    ZHANG B, 1993, COMMUN MATH PHYS, V157, P1
177877 NR 27
177878 TC 0
177879 SN 0013-0915
177880 J9 PROC EDINBURGH MATH SOC
177881 JI Proc. Edinb. Math. Soc.
177882 PD FEB
177883 PY 2006
177884 VL 49
177885 PN Part 1
177886 BP 145
177887 EP 172
177888 PG 28
177889 SC Mathematics
177890 GA 019XU
177891 UT ISI:000235872500011
177892 ER
177893 
177894 PT J
177895 AU Huang, YD
177896    Wu, WQ
177897    Zhang, HW
177898 TI Numerical study of particle dispersion in the wake of gas-particle
177899    flows past a circular cylinder using discrete vortex method
177900 SO POWDER TECHNOLOGY
177901 DT Article
177902 DE gas-particle; discrete vortex method; wake vortex; particle
177903    distribution; dispersion intensity
177904 ID SIMULATION
177905 AB A numerical investigation on the particle dispersion in the wake of
177906    particle-laden gas flows past a circular cylinder at Reynolds number of
177907    10(5) is presented. In the numerical method, the Discrete Vortex Method
177908    with the diffusion velocity model is employed to calculate the unsteady
177909    gas flow fields and a Lagrangian approach is applied to track
177910    individual particles. A dispersion function is defined to represent the
177911    dispersion scale of the particle. The distributions of gas velocities
177912    and vortex blobs, the trajectories and dispersion functions as well as
177913    distributions for particles with various Stokes numbers ranging from
177914    0.01 to 1000 are obtained. The numerical results show that: (1) very
177915    small sized particles with St = 0.01 can distribute both in the vortex
177916    core and around the vortex periphery, whereas intermediate sized
177917    particles with St = 1.0, 10 are distributed around the vortex
177918    periphery, and very large sized particles with St = 1000 do not feel
177919    the gas flow; (2) only at small Stokes number (St = 0.01, 0.1) the
177920    particles do not impact with the cylinder; (3) the particle's
177921    dispersion intensity decreases precipitously as St is increased from
177922    0.01 to 10. (c) 2005 Elsevier B.V. All rights reserved.
177923 C1 Shanghai Univ Sci & Technol, Dept Environm Engn, Shanghai 200093, Peoples R China.
177924    Tsing Hua Univ, Sch Civil Engn, Beijing 100084, Peoples R China.
177925 RP Huang, YD, Shanghai Univ Sci & Technol, Dept Environm Engn, Shanghai
177926    200093, Peoples R China.
177927 EM hyd1119@tom.com
177928 CR CHORIN AJ, 1973, J FLUID MECH, V57, P785
177929    GRANT G, 1975, J AIRCRAFT, V12, P471
177930    LAITONE JA, 1981, J APPL MECH, V48, P465
177931    LING W, 1998, J FLUID MECH, V358, P61
177932    NARAYANAN C, 2002, POWDER TECHNOL, V125, P122
177933    OGAMI Y, 1991, COMPUT FLUIDS, V19, P433
177934    SISTO F, 1989, AIAA J, V27, P462
177935    STOCK DE, 1996, J FLUID ENG-T ASME, V118, P4
177936    UCHIYAMA T, 2005, POWDER TECHNOL, V149, P112
177937    WU WQ, 1987, NUMERICAL METHODS LA, V5, P1686
177938    WU WQ, 1999, P INT GAS TURB C KOB, P497
177939 NR 11
177940 TC 0
177941 SN 0032-5910
177942 J9 POWDER TECHNOL
177943 JI Powder Technol.
177944 PD FEB 16
177945 PY 2006
177946 VL 162
177947 IS 1
177948 BP 73
177949 EP 81
177950 PG 9
177951 SC Engineering, Chemical
177952 GA 017DW
177953 UT ISI:000235675300009
177954 ER
177955 
177956 PT J
177957 AU Ou, ZH
177958    Dai, SQ
177959    Dong, LY
177960    Wu, Z
177961    Tao, MD
177962 TI New equilibrium function of traffic flow
177963 SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
177964 DT Article
177965 DE equilibrium function; flow-density relationship; traffic flow
177966 ID SPEED-DENSITY RELATIONSHIP; MODEL; SIMULATION; STABILITY; FORM
177967 AB Using nonlinear stability theory in macroscopic traffic flow model, we
177968    proposed a new equilibrium function starting from the existing
177969    equilibrium functions. The kinematic wave velocity at jam density
177970    yielded by this equilibrium function is consistent with the empirical
177971    value, and this equilibrium function is related to the critical
177972    stability in higher density interval. (c) 2006 Elsevier B.V. All rights
177973    reserved.
177974 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
177975    Fudan Univ, Dept Mech & Engn Sci, Shanghai 200433, Peoples R China.
177976 RP Ou, ZH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
177977    Peoples R China.
177978 EM ouzhonghui@vip.sina.com
177979 CR BANDO M, 1995, J PHYS I, V5, P1389
177980    DELCASTILLO JM, 1995, TRANSPORT RES B-METH, V29, P373
177981    DELCASTILLO JM, 1995, TRANSPORT RES B-METH, V29, P391
177982    GREENSHIELD BD, 1935, HIGHWAY RES BOARD P, V14, P448
177983    HELBING D, 2002, MATH COMPUT MODEL, V35, P517
177984    HITHAM GB, 1974, LINEAR NONLINEAR WAV
177985    JIANG R, 2002, TRANSPORT RES B-METH, V36, P405
177986    KERNER BS, 1993, PHYS REV E, V48, P2335
177987    KERNER BS, 1996, PHYS REV E, V53, P1297
177988    KERNER BS, 1996, PHYS REV E, V53, P4275
177989    KNOSPE W, 2002, J PHYS A-MATH GEN, V35, P3369
177990    LEE HY, 1998, PHYS REV LETT, V81, P1130
177991    MICHELL AJ, 1993, CELL CHEM TECHNOL, V27, P3
177992    OU ZH, 2005, PHYSICA A, V351, P620
177993    PAYNE HJ, 1971, MATH MODELS PUBLIC S, V1, P51
177994    PAYNE HJ, 1979, TRANSPORT RES REC, V722, P68
177995    PIPES LA, 1967, TRANSPORT RES, V1, P21
177996    TREIBER M, 1999, PHYS REV E A, V59, P239
177997    XUE Y, 2002, THESIS SHAGHAI U, P39
177998    XUE Y, 2003, PHYS REV E 2, V68
177999    YI JG, 2003, TRANSPORT RES B-METH, V37, P661
178000    ZHANG HM, 1998, TRANSPORT RES B-METH, V32, P485
178001    ZHANG HM, 1999, TRANSPORT RES B-METH, V33, P399
178002    ZHANG HM, 2002, TRANSPORT RES B-METH, V36, P275
178003 NR 24
178004 TC 0
178005 SN 0378-4371
178006 J9 PHYSICA A
178007 JI Physica A
178008 PD APR 1
178009 PY 2006
178010 VL 362
178011 IS 2
178012 BP 525
178013 EP 531
178014 PG 7
178015 SC Physics, Multidisciplinary
178016 GA 019PE
178017 UT ISI:000235848400027
178018 ER
178019 
178020 PT J
178021 AU Dou, YP
178022 TI Asymptotic stability of viscous shock wave profiles for viscous
178023    conservation laws
178024 SO NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
178025 DT Article
178026 DE asymptotic stability; viscous conservation laws; viscous shock wave;
178027    perturbation
178028 AB This paper is concerned with the asymptotic stability of travelling
178029    wave solution to the two-dimensional steady isentropic irrotational
178030    flow with artificial viscosity. We prove that there exists a unique
178031    travelling wave solution up to a shift to the system if the end states
178032    satisfy both the Rankine-Hugoniot condition and Lax's shock condition,
178033    and that the travelling wave solution is stable if the initial
178034    disturbance is small. (c) 2005 Elsevier Ltd. All rights reserved.
178035 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
178036 RP Dou, YP, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
178037 EM dyp59@163.com
178038 CR DOU YP, 2005, NONLINEAR ANAL-THEOR, V61, P115
178039    GOODMAN J, 1986, ARCH RATION MECH AN, V95, P325
178040    ILIN AM, 1960, MAT SBORNIK, V51, P191
178041    KAWASHIMA S, 1985, COMMUN MATH PHYS, V101, P97
178042    MATSUMURA A, 1986, JAPAN J APPL MATH, V3, P1
178043 NR 5
178044 TC 0
178045 SN 0362-546X
178046 J9 NONLINEAR ANAL-THEOR METH APP
178047 JI Nonlinear Anal.-Theory Methods Appl.
178048 PD APR 1
178049 PY 2006
178050 VL 64
178051 IS 7
178052 BP 1401
178053 EP 1414
178054 PG 14
178055 SC Mathematics, Applied; Mathematics
178056 GA 017LF
178057 UT ISI:000235694400001
178058 ER
178059 
178060 PT J
178061 AU Yang, Y
178062    Ren, WW
178063    Chen, FX
178064 TI Knockdown of Stat3 in C17.2 neural stem cells facilitates the
178065    generation of neurons: a possibility of transplantation with a low
178066    level of oncogene
178067 SO NEUROREPORT
178068 DT Article
178069 DE cell transplantation; differentiation; neural stem cells; RNAi; Stat3
178070 ID CENTRAL-NERVOUS-SYSTEM; DIFFERENTIATION; BRAIN; ACTIVATION; EXPRESSION;
178071    RENEWAL; FAMILY
178072 AB This study investigates the role of a low level of Stat3 in the C17.2
178073    neural stem cells, which are popular stem cell candidates for
178074    transplantation research. The results reveal that C17.2 neural stem
178075    cells will undergo increased differentiation into neurons without
178076    generating glia after knockdown of Stat3 expression via an interfering
178077    RNA expression plasmid. As constitutively activated Stat3 is considered
178078    to be an oncogene, this study raises the possibility of stem cell
178079    transplantation with a low level of Stat3 to reduce the oncogenesis and
178080    facilitate the generation of neurons.
178081 C1 Shanghai Univ, Sch Life Sci, Lab Neural Mol Biol, Shanghai 200444, Peoples R China.
178082 RP Chen, FX, Shanghai Univ, Sch Life Sci, Lab Neural Mol Biol, 99 ShangDa
178083    Rd, Shanghai 200444, Peoples R China.
178084 EM chenfuxue@staff.shu.edu.cn
178085 CR ARENAS E, 2002, BRAIN RES BULL, V57, P795
178086    BEACHY PA, 2004, NATURE, V432, P324
178087    BOWMAN T, 2000, ONCOGENE, V19, P2474
178088    BROMBERG JF, 1999, CELL, V98, P295
178089    CHEN FX, 2005, NEUROL RES, V27, P557
178090    CHOW SY, 2000, BRAIN RES, V874, P87
178091    DARNELL JE, 1997, SCIENCE, V277, P1630
178092    GAGE FH, 2000, SCIENCE, V287, P1433
178093    GALDERISI U, 2006, CELL DEATH DIFFER, V13, P5
178094    IHLE JN, 2001, CURR OPIN CELL BIOL, V13, P211
178095    JOHE KK, 1996, GENE DEV, V10, P3129
178096    KONNIKOVA L, 2003, BMC CANCER, V3
178097    LEVY DE, 2002, J CLIN INVEST, V109, P1143
178098    MATSUDA T, 1999, EMBO J, V18, P4261
178099    MCKAY R, 1997, SCIENCE, V276, P66
178100    NIWA H, 1998, GENE DEV, V12, P2048
178101    SAMBROOK J, 2001, MOL CLONING LAB MANU
178102    SNYDER EY, 1992, CELL, V68, P33
178103    SNYDER EY, 1995, NATURE, V374, P367
178104    TAKEDA K, 2000, CYTOKINE GROWTH F R, V11, P199
178105    VALKLINGBEEK ME, 2004, CELL, V118, P409
178106    WILLIAMS JG, 2000, CURR OPIN GENET DEV, V10, P503
178107    WINKLER C, 1998, MOL CELL NEUROSCI, V11, P99
178108    YOON K, 2005, NAT NEUROSCI, V8, P709
178109 NR 24
178110 TC 0
178111 SN 0959-4965
178112 J9 NEUROREPORT
178113 JI Neuroreport
178114 PD FEB 27
178115 PY 2006
178116 VL 17
178117 IS 3
178118 BP 235
178119 EP 238
178120 PG 4
178121 SC Neurosciences
178122 GA 019KF
178123 UT ISI:000235833300002
178124 ER
178125 
178126 PT J
178127 AU Zhang, JW
178128    Zhong, SS
178129    Wu, Q
178130 TI Large-bandwidth patch antenna with ridge-shaped ground plate
178131 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
178132 DT Article
178133 DE microstrip antenna; bandnidth; wide beam; feeding
178134 ID MICROSTRIP ANTENNA; BAND
178135 AB A large-bandwidth patch antenna with a ridge-shaped ground plate is
178136    introduced. The patch with an air substrate is excited by a coaxial
178137    probe which is stretched from the top of a ridge-shaped ground plate;
178138    thus, the probe inductance is reduced and broadband operation is
178139    obtained. Its measured impedance bandwidth of VSWR <= 2 reaches about
178140    90%, covering 1.75-4.62 GHZ. Moreover, the proposed antenna has
178141    wide-beam characteristics. The design and the simulated and measured
178142    results of the proposed antenna are presented and discussed. (c) 2006
178143    Wiley Periodicals, Inc.
178144 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
178145 RP Zhang, JW, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
178146    Peoples R China.
178147 CR HERSCOVICI N, 2003, IEEE T ANTENN PROPAG, V51, P1277
178148    HUYNH T, 1995, ELECTRON LETT, V31, P1310
178149    LAI HW, 2003, ELECTRON LETT, V39, P641
178150    MAK CL, 2000, IEEE T ANTENN PROPAG, V48, P777
178151    WONG KL, 1997, ELECTRON LETT, V33, P2085
178152    WONG KL, 2001, IEEE T ANTENN PROPAG, V49, P1345
178153    WONG KL, 2002, IEEE T ANTENN PROPAG, V2, P526
178154 NR 7
178155 TC 0
178156 SN 0895-2477
178157 J9 MICROWAVE OPT TECHNOL LETT
178158 JI Microw. Opt. Technol. Lett.
178159 PD MAR
178160 PY 2006
178161 VL 48
178162 IS 3
178163 BP 487
178164 EP 488
178165 PG 2
178166 SC Engineering, Electrical & Electronic; Optics
178167 GA 017GF
178168 UT ISI:000235681400021
178169 ER
178170 
178171 PT J
178172 AU Zhang, HH
178173    Tang, X
178174    Shao, GJ
178175    Xu, LP
178176 TI Microstructure and mechanical properties of purity aluminum refined
178177    with salt containing Ti and B elements
178178 SO JSME INTERNATIONAL JOURNAL SERIES A-SOLID MECHANICS AND MATERIAL
178179    ENGINEERING
178180 DT Article
178181 DE purity aluminum; structure and mechanical properties; heterogeneous
178182    nuclei; refining mechanism
178183 ID GRAIN-REFINEMENT; MASTER ALLOY; EFFICIENCY; PARTICLES
178184 AB The microstructure and mechanical properties of purity aluminum refined
178185    with salt containing Ti and B elements have been studied in detail with
178186    Optical Microscope and MTS (Mechanical Testing and Simulation). The
178187    salt containing weight ratio of 22.2 Ti: I B has the most refining
178188    effect on the purity aluminum with the finest structure and the best
178189    mechanical properties, meanwhile it also possesses the advantages of
178190    short reacting time (within 5 minutes) and long fading time (more than
178191    20 hours). The refining effect of the salt increases with the content
178192    of Ti and B in the melting and the refining mechanism is mainly
178193    contributed to the heterogeneous nuclei of more fine TiAl3 particles
178194    dispersed in the melting, which come from the reaction between the salt
178195    and aluminum. Purity B contained salt has little or no directly
178196    refining effect, However, B contained salt has indirect refining effect
178197    on the purity aluminum when it is added simultaneously with Ti
178198    contained salt, this may be due to that the dispersive and fine boride
178199    (TiB2) could be taken as the heterogeneous nuclei for TiAl3 particle,
178200    and then prevents the coarsening of the TiAl3 particle.
178201 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
178202 RP Zhang, HH, Shanghai Univ, Sch Mat Sci & Engn, Box 15,149 Yanchang Rd,
178203    Shanghai 200072, Peoples R China.
178204 EM hhzhang@mail.shu.edu.cn
178205 CR FU GS, 2003, J RARE EARTH, V21, P571
178206    HU XZ, 2004, FOUNDRY, V53, P534
178207    HU XZ, 2004, J CHINESE RARE EARTH, V22, P247
178208    KENICHI Y, 2000, MATER SCI FORUM, V331, P391
178209    LEE CT, 2002, MAT SCI ENG A-STRUCT, V325, P242
178210    LI PJ, 2003, MATER LETT, V57, P3694
178211    LIMMANEEVICHITR C, 2003, MAT SCI ENG A-STRUCT, V349, P197
178212    LIMMANEEVICHITR C, 2003, MAT SCI ENG A-STRUCT, V355, P174
178213    MOHANTY PS, 1995, ACTA METALL MATER, V43, P2001
178214    MOHANTY PS, 1995, METALL MATER TRANS B, V26, P103
178215    QUESTED TE, 2002, MATER SCI FORUM, V396, P53
178216    TANG X, 2004, HEAT TREATMENT, V19, P12
178217    VENKATESWARLU K, 2001, MAT SCI ENG A-STRUCT, V301, P180
178218    VENKATESWARLU K, 2003, MAT SCI ENG A-STRUCT, V351, P237
178219    VENKATESWARLU K, 2004, MAT SCI ENG A-STRUCT, V364, P75
178220    ZHANG H, 2006, UNPUB J MAT PROCESSI
178221    ZHANG SH, 2005, J CENTRAL S U, V36, P386
178222 NR 17
178223 TC 0
178224 SN 1344-7912
178225 J9 JSME INT J A-SOLID MECH MAT E
178226 JI JSME Int. J. Ser. A-Solid Mech. Mat. Eng.
178227 PD JAN
178228 PY 2006
178229 VL 49
178230 IS 1
178231 BP 95
178232 EP 99
178233 PG 5
178234 SC Engineering, Mechanical; Materials Science, Multidisciplinary
178235 GA 018BS
178236 UT ISI:000235738400018
178237 ER
178238 
178239 PT J
178240 AU Lou, SY
178241    Tong, B
178242    Hu, HC
178243    Tang, XY
178244 TI Coupled KdV equations derived from two-layer fluids
178245 SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
178246 DT Article
178247 ID PARTIAL-DIFFERENTIAL-EQUATIONS; INTEGRABLE SYSTEMS; PAINLEVE PROPERTY;
178248    SOLITARY WAVES; EXPANSION
178249 AB Some types of coupled Korteweg de-Vries (KdV) equations are derived
178250    from a two-layer fluid system. In the derivation procedure, an
178251    unreasonable y-average trick (usually adopted in the literature) is
178252    removed. The derived models are classified by means of the Painleve
178253    test. Three types of tau-function and multiple soliton solutions of the
178254    models are explicitly given via the exact solutions of the usual KdV
178255    equation. It is also discovered that a non-Painleve integrable coupled
178256    KdV system can have multiple soliton solutions.
178257 C1 Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China.
178258    Ningbo Univ, Ctr Nonlinear Sci, Ningbo 315211, Peoples R China.
178259    Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China.
178260 RP Lou, SY, Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R
178261    China.
178262 CR ABLOWITZ MJ, 1991, LECT NOTES SERIES, V149
178263    CHEN CL, 2000, PHYS REV, V66
178264    CHEN CL, 2003, CHAOS SOLITON FRACT, V16, P27
178265    CHEN Y, 2005, CHAOS SOLITON FRACT, V26, P231
178266    CONTE R, 1989, PHYS LETT A, V140, P383
178267    GEAR JA, 1984, STUD APPL MATH, V70, P235
178268    GEAR JA, 1985, STUD APPL MATH, V72, P95
178269    HUANG F, 2005, IN PRESS J ATMOS SCI
178270    JIMBO M, 1982, PHYS LETT A, V92, P59
178271    KIVSHAR YS, 1989, REV MOD PHYS, V61, P763
178272    LOU SY, 1989, J MATH PHYS, V30, P1614
178273    LOU SY, 1989, PHYS LETT A, V140, P33
178274    LOU SY, 1990, PHYS LETT A, V146, P45
178275    LOU SY, 1993, COMMUN THEOR PHYS, V19, P247
178276    LOU SY, 1998, Z NATURFORSCH A, V53, P251
178277    LOU SY, 1999, J PHYS A-MATH GEN, V32, P4521
178278    LOU SY, 2005, NLINPS0509039
178279    LOU SY, 2005, PHYS REV E 2, V71
178280    PEDLOSKY J, 1979, GEOPHYS FLUIDS DYNAM
178281    RAMANI A, 1989, PHYS REP, V180, P159
178282    REX DF, 1950, TELLUS, V2, P196
178283    REX DF, 1950, TELLUS, V2, P275
178284    WANG Q, CHAOS SOLITONS FRACT, V25, P1019
178285    WEISS J, 1983, J MATH PHYS, V24, P522
178286    XU GQ, 2004, COMPUT PHYS COMMUN, V161, P65
178287    ZAKHAROV VE, 1980, THEORY SOLITONS
178288    ZAKHAROV VE, 1984, THEORY SOLITONS
178289 NR 27
178290 TC 0
178291 SN 0305-4470
178292 J9 J PHYS-A-MATH GEN
178293 JI J. Phys. A-Math. Gen.
178294 PD JAN 20
178295 PY 2006
178296 VL 39
178297 IS 3
178298 BP 513
178299 EP 527
178300 PG 15
178301 SC Physics, Mathematical; Physics, Multidisciplinary
178302 GA 017RW
178303 UT ISI:000235712000006
178304 ER
178305 
178306 PT J
178307 AU Ou, ZH
178308    Dai, SQ
178309    Dong, LY
178310 TI Density waves in the full velocity difference model
178311 SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
178312 DT Article
178313 ID TRAFFIC FLOW; JAMMING TRANSITION; JAMS; SOLITON; PHASE; CONGESTION;
178314    EQUATION; DYNAMICS
178315 AB Density waves are investigated in the full velocity difference model
178316    (FVDM) analytically and numerically. By the use of nonlinear analysis,
178317    the Burgers, Korteweg-de Vries (KdV) and Modified KdV equations are
178318    derived for the triangular shock wave, the soliton wave and the
178319    kink-antikink wave, respectively, appearing in the stable region out of
178320    the coexisting curve, near the spinodal line, and in the unstable
178321    region within the spinodal line. It is shown, numerically, that the
178322    triangular shock wave and the soliton wave are determined by the
178323    initial perturbation configuration and different initial perturbations
178324    will produce different waveforms in the stable region or near the
178325    spinodal line.
178326 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
178327 RP Ou, ZH, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
178328    Peoples R China.
178329 EM ouzhonghui@vip.sina.com
178330 CR BANDO M, 1994, JPN J IND APPL MATH, V11, P203
178331    BANDO M, 1995, J PHYS I, V5, P10389
178332    BANDO M, 1995, PHYS REV E, V51, P1035
178333    CROSS MC, 1993, REV MOD PHYS, V65, P851
178334    HELBING D, 1998, PHYS REV E, V58, P133
178335    JIANG R, 2001, PHYS REV E 2, V64
178336    KERNER BS, 1993, PHYS REV E, V48, P2335
178337    KERNER BS, 1994, PHYS REV E, V50, P54
178338    KERNER BS, 1995, PHYS REV E B, V51, P6243
178339    KERNER BS, 1996, PHYS REV E, V53, P1297
178340    KERNER BS, 2002, MATH COMPUT MODEL, V35, P481
178341    KOMATSU TS, 1995, PHYS REV E B, V52, P5574
178342    KURTZE DA, 1995, PHYS REV E A, V52, P218
178343    MURAMATSU M, 1999, PHYS REV E, V60, P180
178344    NAGATANI T, 1998, J PHYS A-MATH GEN, V31, P5431
178345    NAGATANI T, 1998, PHYS REV E, V57, P6415
178346    NAGATANI T, 1998, PHYS REV E, V58, P4271
178347    NAGATANI T, 1998, PHYSICA A, V261, P599
178348    NAGATANI T, 2000, PHYS REV E A, V61, P3564
178349    NAGATANI T, 2002, REP PROG PHYS, V65, P1331
178350    NAGEL K, 1992, J PHYS I, V2, P2221
178351    TATSUMI T, 1972, J FLUID MECH, V55, P659
178352 NR 22
178353 TC 0
178354 SN 0305-4470
178355 J9 J PHYS-A-MATH GEN
178356 JI J. Phys. A-Math. Gen.
178357 PD FEB 10
178358 PY 2006
178359 VL 39
178360 IS 6
178361 BP 1251
178362 EP 1263
178363 PG 13
178364 SC Physics, Mathematical; Physics, Multidisciplinary
178365 GA 019EI
178366 UT ISI:000235818000004
178367 ER
178368 
178369 PT J
178370 AU Yuan, XG
178371    Zhu, ZY
178372    Zhang, RJ
178373 TI Cavity formation and singular periodic oscillations in isotropic
178374    incompressible hyperelastic materials
178375 SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS
178376 DT Article
178377 DE incompressible hyperelastic material; motion equation of cavity;
178378    periodic step loads; non-linear periodic oscillation; classical (or
178379    generalized) periodic solution
178380 ID HYPER-ELASTIC MATERIALS; CAVITATION; BIFURCATION; NUCLEATION; SPHERES;
178381    GROWTH
178382 AB In this paper, a dynamical problem is considered for an incompressible
178383    hyperelastic solid sphere composed of the classical isotropic
178384    neo-Hookean material, where the sphere is subjected to a class of
178385    periodic step radial tensile loads on its surface. A second-order
178386    non-linear ordinary differential equation that describes cavity
178387    formation and motion is proposed. The qualitative properties of the
178388    solutions of the equation are examined. Correspondingly, under a
178389    prescribed constant dead-load, it is proved that a cavity forms in the
178390    sphere as the dead-load exceeds a certain critical value and the motion
178391    of the formed cavity presents a class of singular periodic
178392    oscillations. Under periodic step loads, the existence conditions for
178393    periodic oscillation of the formed cavity are determined by using the
178394    phase diagrams of the motion equation of cavity. In each section,
178395    numerical examples are also carried out. (c) 2005 Elsevier Ltd. All
178396    fights reserved.
178397 C1 Yantai Univ, Dept Math & Informat Sci, Shandong 264005, Peoples R China.
178398    Shanghai Univ, Shanghai Inst Appl Math & Mech, Dept Math, Shanghai 200072, Peoples R China.
178399    Tongji Univ, Minist Educ, Key Lab Solid Mech, Shanghai 200092, Peoples R China.
178400 RP Yuan, XG, Yantai Univ, Dept Math & Informat Sci, Shandong 264005,
178401    Peoples R China.
178402 EM yxg1971@163.com
178403 CR BALL JM, 1982, PHILOS T ROY SOC A, V306, P557
178404    CHOUWANG MS, 1989, INT J ENG SCI, V27, P967
178405    CHOUWANG MSO, 1989, INT J SOLIDS STRUCT, V25, P1239
178406    GENT AN, 1958, P ROY SOC LOND A MAT, V249, P195
178407    GENT AN, 1990, RUBBER CHEM TECHNOL, V63, G49
178408    HORGAN CO, 1995, APPL MECH REV, V48, P471
178409    POLIGNONE DA, 1993, J ELASTICITY, V33, P27
178410    REN JS, 2002, APPL MATH MECH-ENGL, V23, P881
178411    REN JS, 2002, J ENG MATH, V44, P245
178412    SHANG XC, 2001, INT J ENG SCI, V39, P1101
178413    YUAN XG, 2004, ACTA MECH SOLIDA SIN, V17, P158
178414    YUAN XG, 2005, J ENG MATH, V51, P15
178415 NR 12
178416 TC 0
178417 SN 0020-7462
178418 J9 INT J NON-LINEAR MECH
178419 JI Int. J. Non-Linear Mech.
178420 PD MAR
178421 PY 2006
178422 VL 41
178423 IS 2
178424 BP 294
178425 EP 303
178426 PG 10
178427 SC Mechanics
178428 GA 019PG
178429 UT ISI:000235848600012
178430 ER
178431 
178432 PT J
178433 AU Shi, YM
178434    Zhou, SP
178435    Cao, XF
178436    Huang, H
178437    Chen, H
178438 TI Spin-polarized Andreev reflection tunneling through a precessing
178439    magnetic spin
178440 SO EUROPHYSICS LETTERS
178441 DT Article
178442 ID MAGNETORESISTANCE; SPINTRONICS; RESONANCE; STM
178443 AB We study theoretically the spin-polarized Andreev reflection tunneling
178444    through a local precessing magnetic spin weakly coupled to a
178445    ferromagnet and to a superconductor. The linear Andreev reflection
178446    conductance is obtained at zero temperature by using a nonequilibrium
178447    Green function approach. It shows that the spin-exchange interaction on
178448    the local spin-site can result in two spin-coherent states, from which
178449    the Andreev reflection conductance resonance with either a double peak
178450    or a single peak is developed. We find that the spin-orbit interaction
178451    in the barrier between the local spin-site and the
178452    ferromagnet-electrode leads only to a conductance oscillation with base
178453    frequency twice the Larmor frequency, 2 omega(L), and a variable
178454    amplitude with equilibrium chemical potential and spin-flip tunneling
178455    coupling.
178456 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
178457    Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
178458 RP Shi, YM, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
178459 CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472
178460    BALATSKY AV, 2002, PHYS REV B, V66
178461    BALATSKY AV, 2002, QUANTUM INF PROCESS, V1, P355
178462    BARNAS J, 1990, PHYS REV B, V42, P8110
178463    DEJONG MJM, 1995, PHYS REV LETT, V74, P1657
178464    DURKAN C, 2002, APPL PHYS LETT, V80, P458
178465    FENG JF, 2003, PHYS REV B, V67
178466    MANASSEN Y, 1997, J MAGN RESON, V126, P133
178467    MANASSEN Y, 2000, PHYS REV B, V61, P16223
178468    MANOHARAN H, 2002, NATURE, V403, P512
178469    PRINZ GA, 1998, SCIENCE, V282, P1660
178470    SOULEN RJ, 1998, SCIENCE, V282, P85
178471    SUN QF, 2001, PHYS REV LETT, V87
178472    WOLF SA, 2001, SCIENCE, V294, P1488
178473    ZHU JX, 2002, PHYS REV LETT, V89
178474    ZUTIC I, 1999, PHYS REV B, V60, P16322
178475    ZUTIC I, 2004, REV MOD PHYS, V76, P323
178476 NR 17
178477 TC 0
178478 SN 0295-5075
178479 J9 EUROPHYS LETT
178480 JI Europhys. Lett.
178481 PD MAR
178482 PY 2006
178483 VL 73
178484 IS 6
178485 BP 941
178486 EP 947
178487 PG 7
178488 SC Physics, Multidisciplinary
178489 GA 018PU
178490 UT ISI:000235778100020
178491 ER
178492 
178493 PT J
178494 AU Yang, YJ
178495    Shang, YL
178496 TI A new filled function method for unconstrained global optimization
178497 SO APPLIED MATHEMATICS AND COMPUTATION
178498 DT Article
178499 DE filled function; unconstrained global optimization; global minimizer
178500 ID TUNNELING ALGORITHM
178501 AB In this paper, a new definition of the filled function is given, it is
178502    different from the primary definition which was given by Ge in paper
178503    [R.P. Ge, A filled function method for finding a global minimzer of a
178504    function of several variables, Math. Program. 46 (1990) 191-204]. Based
178505    on the definition, a new filled function is proposed, and it has better
178506    properties. An algorithm for unconstrained global optimization is
178507    developed from the new filled function. The implementation of the
178508    algorithm on several test problems is reported with satisfactory
178509    numerical results. (c) 2005 Elsevier Inc. All rights reserved.
178510 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
178511    Henan Univ Sci & Technol, Dept Math, Luoyang 471003, Peoples R China.
178512 RP Yang, YJ, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
178513 EM yjyang@mail.shu.edu.cn
178514 CR CETIN BC, 1993, J OPTIMIZ THEORY APP, V77, P97
178515    GE R, 1990, MATH PROGRAM, V46, P191
178516    GE RP, 1990, APPL MATH COMPUT, V35, P131
178517    HAN QM, 2001, APPL MATH COMPUT, V119, P217
178518    HORST R, 2000, INTRO GLOBAL OPTIMIZ
178519    LEVY AV, 1985, SIAM J SCI STAT COMP, V6, P15
178520    YAO Y, 1989, IEEE T SYST MAN CYB, V19, P1222
178521 NR 7
178522 TC 0
178523 SN 0096-3003
178524 J9 APPL MATH COMPUT
178525 JI Appl. Math. Comput.
178526 PD FEB 1
178527 PY 2006
178528 VL 173
178529 IS 1
178530 BP 501
178531 EP 512
178532 PG 12
178533 SC Mathematics, Applied
178534 GA 018KJ
178535 UT ISI:000235762800036
178536 ER
178537 
178538 PT J
178539 AU Li, X
178540    Ren, ZM
178541    Wang, LL
178542    Yu, JB
178543    Deng, K
178544    Xu, KD
178545 TI Effect of high magnetic field on phase morpholgy and transformation in
178546    Bi-6%Mn alloys
178547 SO ACTA METALLURGICA SINICA
178548 DT Article
178549 DE high magnetic field; Bi-Mn alloy; ferromagnetic phase; paramagnetic
178550    phase
178551 ID BI-MN; SOLIDIFICATION; YBA2CU3O7-DELTA; TEMPERATURE; GRAINS
178552 AB Under no magnetic field applied on Bi-6%Mg alloy the peritectic
178553    transformation from paramagnetic Mn1.08Bi phase to ferromagnetic MnBi
178554    phase happens at 340 degrees C during cooling process, while the
178555    bulk-like Mn1.08Bi phase changes to plate-like MnBi phase. The above
178556    phenomena took place at 360-370 degrees C under 10 T magnetic field.
178557    The transformed MnBi grains broake up and divided into small crystals,
178558    and the divided crystals aligned and aggregated along the direction of
178559    the magnetic field. Based on the theory of magnetic field inducing
178560    stress, the above phase transformation and the morphology change of
178561    MnBi phase have been analyzed.
178562 C1 Shanghai Univ, Coll Mat Engn, Shanghai 200072, Peoples R China.
178563 RP Ren, ZM, Shanghai Univ, Coll Mat Engn, Shanghai 200072, Peoples R China.
178564 EM zmrenb@163.com
178565 CR BRAITHWAITE D, 1991, NATURE, V354, P134
178566    CHEN K, 1989, APPL PHYS LETT, V55, P289
178567    DECARLO JL, 1984, METALL TRANS A, V15, P2155
178568    DERANGO P, 1991, NATURE, V349, P770
178569    FARRELL DE, 1987, PHYS REV B, V36, P4025
178570    GUO X, 1990, J MATER RES, V5, P2646
178571    GUO X, 1991, J APPL PHYS 2B, V69, P6067
178572    LI X, 2005, CHIN J NONFERR MET, V15, P397
178573    LIU Y, 2004, THESIS SHANGHAI I CE
178574    MOFFATT WG, 1984, HDB BINARY PHASE DIA
178575    OSTERTAG CP, 1988, CERAMIC SUPERCOND, V2, P232
178576    SHETTY MN, 1987, J MATER SCI, V22, P19089
178577    SUGIYAMA T, 1998, MAT T JIM, V39, P814
178578    TKACZYK JE, 1990, J MATER RES, V5, P1368
178579    WANG H, 2002, ACTA METALL SIN, V38, P41
178580    YASUDA H, 2003, MATER TRANS, V44, P2207
178581 NR 16
178582 TC 0
178583 SN 0412-1961
178584 J9 ACTA METALL SIN
178585 JI Acta Metall. Sin.
178586 PD JAN
178587 PY 2006
178588 VL 42
178589 IS 1
178590 BP 77
178591 EP 82
178592 PG 6
178593 SC Metallurgy & Metallurgical Engineering
178594 GA 017IR
178595 UT ISI:000235687800014
178596 ER
178597 
178598 PT J
178599 AU Zhang, NH
178600    Wang, ML
178601 TI A mathematical model of thermoviscoelastic FGM thin plates and Ritz
178602    approximate solutions
178603 SO ACTA MECHANICA
178604 DT Article
178605 ID NONHOMOGENEOUS VISCOELASTIC BODY; FUNCTIONALLY GRADED PLATES;
178606    VARIATIONAL-PRINCIPLES; PERTURBED MOTION; CYLINDRICAL-SHELLS; III
178607    FRACTURE; CRACK; VIBRATION; LAYERS; TIME
178608 AB According to the constitutive relation of linear thermoviscoelasticity,
178609    a mathematical model of viscoelastic FGM thin plates under thermal
178610    loads is set up with the help of Laplace transformation method and the
178611    introduction of ``structural functions'' and ``thermal functions''. The
178612    corresponding simplified Gurtin's type variational principle of FGM
178613    thin plates is presented by means of convolution bilinear forms. By
178614    combining the Ritz method in the spatial domain and the Legendre
178615    interpolation method in the temporal domain, the influence of
178616    temperature variation and effects of graded parameters on the
178617    quasi-static responses of the FGM plate are investigated.
178618 C1 Shanghai Univ, Coll Sci, Dept Mech, Shanghai 200444, Peoples R China.
178619    Shandong Inst Light Ind, Jinan 250100, Peoples R China.
178620 RP Zhang, NH, Shanghai Univ, Coll Sci, Dept Mech, Shanghai 200444, Peoples
178621    R China.
178622 EM nhzhang@staff.shu.edu.cn
178623 CR ALEX R, 1996, ENG FRACT MECH, V55, P727
178624    ALTAY GA, 2000, ACTA MECH, V143, P91
178625    BRILLA J, 1981, J THERM STRESSES, V4, P479
178626    CHENG CJ, 1998, INT J SOLIDS STRUCT, V35, P4491
178627    CHENG CJ, 2002, ACTA MECH SOLIDA SIN, V23, P190
178628    CHIEN WZ, 1980, VARIATIONAL METHODS
178629    CHRISTENSEN RM, 1982, THEORY VISCOELASTICI
178630    DALLASTA A, 1993, INT J SOLIDS STRUCT, V30, P325
178631    DALLASTA A, 1994, INT J SOLIDS STRUCT, V31, P247
178632    ESLAMI MR, 1999, J THERM STRESSES, V22, P527
178633    FUNG TC, 2001, COMPUT METH APPL MEC, V191, P1311
178634    HAN X, 2002, MECH RES COMMUN, V29, P327
178635    HE XQ, 2002, INT J NUMER METH ENG, V54, P853
178636    HERRMANN JM, 1990, ACTA MECH, V85, P235
178637    HERRMANN JM, 1994, ACTA MECH, V106, P41
178638    JAVAHERI R, 2002, AIAA J, V40, P162
178639    KOIZUMI M, 1993, CERAMIC T, V34, P3
178640    LEITMAN JM, 1973, HDB PHYSIK, V6, P10
178641    LOY CT, 1999, INT J MECH SCI, V41, P309
178642    LUO E, 1990, ACTA MECH SINICA, V22, P484
178643    OBATA Y, 1996, ARCH APPL MECH, V66, P581
178644    OTHMAN MIA, 2005, ACTA MECH, V174, P129
178645    PAULINO GH, 2001, ASME, V68, P129
178646    PAULINO GH, 2001, ASME, V68, P284
178647    PAULINO GH, 2001, INT J FRACTURE, V111, P283
178648    PAULINO GH, 2003, ASME, V70, P359
178649    PRAVEEN GN, 1998, INT J SOLIDS STRUCT, V35, P4457
178650    REDDY JN, 1976, INT J SOLIDS STRUCT, V12, P227
178651    REDDY JN, 2000, INT J NUMER METH ENG, V47, P663
178652    SCHOVANEC L, 1987, ACTA MECH, V67, P61
178653    SCHOVANEC L, 1987, ENG FRACT MECH, V28, P445
178654    SHEN HS, 2004, ADV MECH, V34, P53
178655    SHENG DF, 2004, APPL MATH MECH-ENGL, V25, P381
178656    WILLIAMSON RL, 1993, J APPL PHYS, V74, P1310
178657    WOO J, 2001, INT J SOLIDS STRUCT, V38, P7409
178658    YAMANOUSHI M, 1990, P 1 INT S FUNCT GRAD
178659    YANG J, 2003, J SOUND VIB, V261, P871
178660    YANG YY, 2000, INT J SOLIDS STRUCT, V37, P7593
178661    ZHANG NH, 1999, ACTA MECH SOLIDA SIN, V12, P121
178662 NR 39
178663 TC 0
178664 SN 0001-5970
178665 J9 ACTA MECH
178666 JI Acta Mech.
178667 PD FEB
178668 PY 2006
178669 VL 181
178670 IS 3-4
178671 BP 153
178672 EP 167
178673 PG 15
178674 SC Mechanics
178675 GA 017TE
178676 UT ISI:000235715400003
178677 ER
178678 
178679 PT J
178680 AU Li, XF
178681    Song, LP
178682    Xin, CH
178683    Zhao, JW
178684    Zhu, SZ
178685 TI Study on the reactions of ethyl 4,4,4-trifluoro-3-oxobutanoate with
178686    arylidenemalononitriles
178687 SO TETRAHEDRON
178688 DT Article
178689 DE ethyl 4,4,4-trifluoro-3-oxobutanoate; arylidenemalononitriles;
178690    heterocycles; X-ray diffraction analysis
178691 ID BENZYLIDENEMALONONITRILES
178692 AB In the presence of a catalytic amount of NEt3, ethyl
178693    4,4,4-trifluoro-3-oxobutanoate 1 reacted readily with
178694    arylidenemalononitriles 2 in ethanol at room temperature. It gave two
178695    products 2-trifluoromethyl-3,4-dihydro-2H-pyran derivatives 3 and
178696    2-(trifluoromethyl)piperidine derivatives 4, the ratio of 3 and 4 was
178697    depended on the substrates 2 and reaction solvents. Reflux of the
178698    ethanol solution of 4 with a catalytic amount of NEt3 afforded
178699    2-trifluoromethyl-1,4,5,6-tetrahydropyridine derivatives 5 in moderate
178700    to good yields. The structures of new compounds 3, 4 and 5 were
178701    determined by spectral methods, microanalysis and X-ray diffraction
178702    analysis. A possible reaction mechanism for the formation of 3, 4 and 5
178703    was presented. (c) 2005 Elsevier Ltd. All rights reserved.
178704 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200444, Peoples R China.
178705    Chinese Acad Sci, Shanghai Inst Organ Chem, Shanghai 200032, Peoples R China.
178706 RP Zhu, SZ, Shanghai Univ, Sch Sci, Dept Chem, 99,Shangda Rd, Shanghai
178707    200444, Peoples R China.
178708 EM zhusz@mail.sioc.ac.cn
178709 CR BANKS RE, 1994, ORGANOFLUORINE CHEM
178710    BEGUE JP, 1993, J CHEM SOC P1, P2787
178711    BERGMANN ED, 1959, ORG REACTIONS, V10, P416
178712    BLOXHAM J, 1994, HETEROCYCLES, V38, P399
178713    HIYAMA T, 2000, ORGANOFLUORINE COMPO
178714    LEMEK T, 2003, J ORG CHEM, V68, P6880
178715    LIEBMAN JF, 1988, FLUORINE CONTAINING
178716    MAGGI R, 2004, TETRAHEDRON LETT, V45, P2297
178717    MARULL M, 2003, EUR J ORG CHEM   APR, P1576
178718    SONG LP, 2001, J FLUORINE CHEM, V111, P201
178719    VENKATI M, 2005, INDIAN J CHEM B, P618
178720    VOLOCHNYUK DM, 2003, SYNTHESIS-STUTTG JUL, P1531
178721    WANG YL, 2003, ORG LETT, V5, P745
178722    WELCH JT, 1991, FLUORINE BIOORGANIC
178723 NR 14
178724 TC 0
178725 SN 0040-4020
178726 J9 TETRAHEDRON
178727 JI Tetrahedron
178728 PD MAR 6
178729 PY 2006
178730 VL 62
178731 IS 10
178732 BP 2255
178733 EP 2263
178734 PG 9
178735 SC Chemistry, Organic
178736 GA 015VR
178737 UT ISI:000235579800013
178738 ER
178739 
178740 PT J
178741 AU Wei, JH
178742    Hu, HT
178743 TI Mathematical modelling of molten steel flow process in a whole RH
178744    degasser during the vacuum circulation refining process: Mathematical
178745    model of the flow
178746 SO STEEL RESEARCH INTERNATIONAL
178747 DT Article
178748 DE RH refining process; flow of molten steel; two-phase flow; gas holdup;
178749    circulation rate; gas-liquid two-fluid model; mathematical modeling
178750 ID COPPER CONVERTER; GAS INJECTION; HEAT-SOURCE; FLUID-FLOW; LIQUID;
178751    BUBBLES; LADLE; BATH; DECARBURIZATION; TURBULENCE
178752 AB A three-dimensional mathematical model for the molten steel flow in a
178753    degasser during the RH refining process has been proposed and
178754    developed. The physical characteristics of the process, particularly
178755    the behaviour of gas-liquid two-phase flow in the up-snorkel and the
178756    momentum exchange between the two phases are considered. The ladle,
178757    snorkels and vacuum vessel are regarded as a whole in the model, and
178758    the gas-liquid two-phase flow is treated and described on the basis of
178759    the two-fluid model and using the especially modified two-equation K-S
178760    model. The details of the model are presented.
178761 C1 Shanghai Univ, Coll Mat Sci & Engn, Dept Met Mat, Shanghai 200072, Peoples R China.
178762 RP Wei, JH, Shanghai Univ, Coll Mat Sci & Engn, Dept Met Mat, 149 Yan
178763    Chang Rd, Shanghai 200072, Peoples R China.
178764 EM jihew@hotmail.com
178765 CR *CHAM LTD, 2002, PHOENICS VER 3 5 ENC
178766    ABDULMOUT H, 2002, INT J FLUID DYNAMICS, V6, P1
178767    AJMANI SK, 2004, ISIJ INT, V44, P82
178768    BAI H, 2001, METALL MATER TRANS B, V32, P1143
178769    CAI ZP, 1988, IRON STEEL, V23, P19
178770    CASTILLEJOS AH, 1987, METALL T B, V18, P659
178771    CHEN CL, 2001, T NONFERR METAL SOC, V11, P950
178772    DAVIDSON L, 1956, AICHE J, V2, P337
178773    DEBERTODANO ML, 1990, J FLUID ENG-T ASME, V112, P107
178774    FILHO GAV, 2001 STEELM C P, P661
178775    HUANG HF, 2004, THESIS SHANGHAI U
178776    IGUCHI M, 1995, METALL MATER TRANS B, V26, P67
178777    ILEGBUSI OJ, 1990, ISIJ INT, V30, P731
178778    ILEGBUSI OJ, 1993, ISIJ INT, V33, P474
178779    ILEGBUSI OJ, 1998, METALL MATER TRANS B, V29, P211
178780    JIAO B, 2000, J IRON STEEL RES, P27
178781    JOHANSEN ST, 1996, LIGHT METALS 1996, P1027
178782    JOHANSEN ST, 1997, LIGHT MET, P663
178783    KATO Y, 1993, ISIJ INT, V33, P1088
178784    KREPPER E, 2005, NUCL ENG DES, V235, P597
178785    KUO JT, 1988, INT J MULTIPHASE FLO, V14, P547
178786    LEIBSON I, 1956, A I CH E J       SEP, P296
178787    NAKANISHI K, 1975, IRONMAK STEELMAK, V2, P115
178788    PARK YG, 2000, ISIJ INT, V40, P749
178789    SHIRABE K, 1983, T ISIJ, V23, P564
178790    SPALDING DB, 1980, RECENT ADV NUMERICAL, P139
178791    SUZUKI T, 2003, NUCL ENG DES, V220, P207
178792    SVENDSEN HF, 1992, CHEM ENG SCI, V47, P3297
178793    SZATKOWSKI M, 1991, IRON STEELMAKER, P65
178794    THEMELIS NJ, 1969, T METALL SOC AIME, V245, P2425
178795    TILLIANDER A, 2004, ISIJ INT, V44, P326
178796    TSUJINO R, 1989, ISIJ INT, V29, P589
178797    TURKDOGEN ET, 1980, PHYS CHEM HIGH TEMPE
178798    TURKOGLU H, 1990, ISIJ INT, V30, P961
178799    WANGJIRANIRAN W, 2005, EXP THERM FLUID SCI, V29, P315
178800    WEI JH, 1993, SEM REACT ENG NONF M
178801    WEI JH, 2000, IRONMAK STEELMAK, V27, P294
178802    WEI JH, 2001, STEEL RES, V72, P161
178803    WEI JH, 2001, STEEL RES, V72, P168
178804    WEI JH, 2002, J SHANGHAI U, V2, P167
178805    WEI JH, 2002, STEEL RES, V73, P135
178806    WEI JH, 2002, STEEL RES, V73, P143
178807    WEI JH, 2006, IN PRESS STEEL RES I, V77
178808    YU NW, 2001, THESIS SHANGHAI U
178809    ZHU MY, 2000, ACTA METALLURGICAL S, V36, P1176
178810 NR 45
178811 TC 1
178812 SN 1611-3683
178813 J9 STEEL RES INT
178814 JI Steel Res. Int.
178815 PD JAN
178816 PY 2006
178817 VL 77
178818 IS 1
178819 BP 32
178820 EP 36
178821 PG 5
178822 SC Metallurgy & Metallurgical Engineering
178823 GA 016EX
178824 UT ISI:000235604600006
178825 ER
178826 
178827 PT J
178828 AU Gu, TH
178829    Lu, WC
178830    Bao, XH
178831    Chen, NY
178832 TI Using support vector regression for the prediction of the band gap and
178833    melting point of binary and ternary compound semiconductors
178834 SO SOLID STATE SCIENCES
178835 DT Article
178836 DE semiconductor; band gap; melting point; support vector regression;
178837    atomic parameters
178838 ID MACHINES
178839 AB In this work, atomic parameters support vector regression (APSVR) was
178840    proposed to predict the band gap and melting point of III-V, II-VI
178841    binary and I-III-VI2, II-IV-V-2 ternary compound semiconductors. The
178842    predicted results of APSVR were in good agreement with the experimental
178843    ones. The prediction accuracies of different models were discussed on
178844    the basis of their mean error functions (MEF) in the leave-one-out
178845    cross-validation. It was found that the performance of APSVR model
178846    outperformed those of back propagation-artificial neural network
178847    (BP-ANN), multiple linear regression (MLR) and partial least squares
178848    regression (PLSR) methods. (c) 2005 Elsevier SAS. All rights reserved.
178849 C1 Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200444, Peoples R China.
178850 RP Lu, WC, Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200444, Peoples R
178851    China.
178852 EM wclu@staff.shu.edu.cn
178853 CR ABRIKOSOV NK, 1969, SEMICONDUCTING 2 6 4
178854    BOCA R, 1997, SEMICONDUCTORS MAT
178855    BURBIDGE R, 2001, COMPUT CHEM, V26, P5
178856    CAI YD, 2003, PEPTIDES, V24, P629
178857    CAI YD, 2003, PEPTIDES, V24, P665
178858    CHEN NY, 1976, APPOL BOND PARAMETER
178859    CHEN NY, 1999, J ALLOY COMPD, V289, P120
178860    CHEN NY, 2000, PATTERN RECOGNITION
178861    CHEN NY, 2004, SUPPORT VECTOR MACHI
178862    GUYON I, 2002, MACH LEARN, V46, P389
178863    HADAMARD J, 1923, LECT CAUCHYS PROBLEM
178864    MATSUSHITA H, 1991, JPN J APPL PHYS PT 1, V30, P1181
178865    MOOSER E, 1956, PHYS REV, V101, P1608
178866    OTFRIED M, 1996, SEMICONDUCTORS BASIC
178867    PAULING LC, 1960, NATURE CHEM BOND
178868    PLATT J, SEQUENTIAL MINIMAL O
178869    SHIZHONG Y, 1986, APPL SEMICONDUCTOR M
178870    TROTTER MWB, 2001, MEAS CONTROL-UK, V34, P235
178871    VAPNIK VN, 1998, STAST LEARNING THEOR
178872    ZHANG ZC, 1998, MAT SCI ENG B-SOLID, V54, P149
178873    ZUNGER A, 1987, APPL PHYS LETT, V50, P164
178874 NR 21
178875 TC 0
178876 SN 1293-2558
178877 J9 SOLID STATE SCI
178878 JI Solid State Sci.
178879 PD FEB
178880 PY 2006
178881 VL 8
178882 IS 2
178883 BP 129
178884 EP 136
178885 PG 8
178886 SC Chemistry, Inorganic & Nuclear; Chemistry, Physical; Physics, Condensed
178887    Matter
178888 GA 015ZW
178889 UT ISI:000235591300002
178890 ER
178891 
178892 PT J
178893 AU Ma, WX
178894    Xu, XX
178895    Zhang, YF
178896 TI Semi-direct sums of Lie algebras and continuous integrable couplings
178897 SO PHYSICS LETTERS A
178898 DT Article
178899 DE semi-direct sums of Lie algebras; zero curvature equations; integrable
178900    couplings; symmetries
178901 ID PERTURBATION EQUATIONS; SPECTRAL PROBLEMS; KDV SYSTEMS; HIERARCHY;
178902    NONLINEARIZATION; REPRESENTATIONS
178903 AB A relation between semi-direct sums of Lie algebras and integrable
178904    couplings of continuous soliton equations is presented, and
178905    correspondingly, a feasible way to construct integrable couplings is
178906    furnished. A direct application to the AKNS spectral problem leads to a
178907    novel hierarchy of integrable couplings of the AKNS hierarchy of
178908    soliton equations. It is also indicated that the study of integrable
178909    couplings using semi-direct sums of Lie algebras is an important step
178910    towards complete classification of integrable systems. (c) 2005
178911    Elsevier B.V. All rights reserved.
178912 C1 Univ S Florida, Dept Math, Tampa, FL 33620 USA.
178913    Shanghai Univ Sci & Technol, Coll Sci, Qingdao 266510, Peoples R China.
178914    Liaoning Normal Univ, Sch Math, Dalian 116029, Peoples R China.
178915 RP Ma, WX, Univ S Florida, Dept Math, Tampa, FL 33620 USA.
178916 EM mawx@math.usf.edu
178917    xu_xixiang@sohu.com
178918    zhang_yfshandong@163.com
178919 CR ABLOWITZ MJ, 1992, STUD APPL MATH, V13, P115
178920    FAN E, 2005, CHAOS SOLITON FRACT, V25, P425
178921    FRAPPAT L, 2000, DICT LIE ALGEBRAS SU
178922    GUO FK, 2003, J MATH PHYS, V44, P5793
178923    MA WX, 1992, J MATH PHYS, V33, P2464
178924    MA WX, 1993, J PHYS A-MATH GEN, V26, P2573
178925    MA WX, 1994, PHYS LETT A, V185, P277
178926    MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
178927    MA WX, 1996, PHYS LETT A, V213, P49
178928    MA WX, 2000, METH APPL ANAL, V7, P21
178929    MA WX, 2001, PHYSICA A, V296, P60
178930    MA WX, 2002, J MATH PHYS, V43, P1408
178931    MA WX, 2003, PHYS LETT A, V316, P72
178932    MA WX, 2005, J MATH PHYS, V46
178933    OLVER PJ, 1986, GRADUATE TEXTS MATH, V107
178934    SAKOVICH SY, 1998, J NONLINEAR MATH PHY, V5, P230
178935    SAKOVICH SY, 1999, J NONLINEAR MATH PHY, V6, P255
178936    TU GZ, 1989, J PHYS A-MATH GEN, V22, P2375
178937    XU XX, 2003, CHAOS SOLITON FRACT, V15, P475
178938    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P305
178939 NR 20
178940 TC 0
178941 SN 0375-9601
178942 J9 PHYS LETT A
178943 JI Phys. Lett. A
178944 PD FEB 27
178945 PY 2006
178946 VL 351
178947 IS 3
178948 BP 125
178949 EP 130
178950 PG 6
178951 SC Physics, Multidisciplinary
178952 GA 015QT
178953 UT ISI:000235566600002
178954 ER
178955 
178956 PT J
178957 AU Li, CP
178958    Sun, WG
178959    Kurths, J
178960 TI Synchronization of complex dynamical networks with time delays
178961 SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
178962 DT Article
178963 DE synchronization; complex dynamical networks; time delay
178964 ID SYSTEMS; ARRAY; MAPS
178965 AB In the present paper, two kinds of dynamical complex networks are
178966    considered. The first is that elements of every node have different
178967    time delays but all nodes in Such networks have the same time-delay
178968    vector. The second is that different nodes have different time-delay
178969    vectors, and the elements of each node also have different time delays.
178970    Corresponding synchronization theorems are established. Numerical
178971    examples show the efficiency of the derived theorems. (c) 2005 Elsevier
178972    B.V. All rights reserved.
178973 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
178974    Univ Potsdam, Inst Phys, D-14415 Potsdam, Germany.
178975 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
178976 EM leecp@online.sh.cn
178977    qdswg@eyou.com
178978    juergen@agnld.uni-potsdam.de
178979 CR ALBERT R, 2002, REV MOD PHYS, V74, P47
178980    BARABASI AL, 1999, SCIENCE, V286, P509
178981    DENG WH, 2006, IN PRESS INT J BIFUR, V16
178982    ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
178983    HALE JK, 1993, INTRO FUNCTIONAL DIF
178984    LI CG, 2004, PHYSICA A, V343, P263
178985    LI CP, 2004, CHAOS, V14, P557
178986    LI CP, 2005, 24 CHIN CONTR C GUAN, P202
178987    LI CP, 2005, IN PRESS 2 CHIN AC F
178988    LI CP, 2005, IN PRESS PROG THEOR, V114
178989    LI X, 2004, IEEE T CIRCUITS-I, V51, P2074
178990    LU JH, 2004, IEEE T CIRCUITS-I, V51, P787
178991    MARTI AC, 2003, PHYS REV E 2, V67
178992    MARTI AC, 2004, PHYSICA A, V342, P344
178993    MASOLLER C, 2003, PHYSICA A, V325, P186
178994    VIDYASAGAR F, 1978, NONLINEAR SYSTEMS AN
178995    WANG XF, 2002, IEEE T CIRCUITS-I, V49, P54
178996    WANG XF, 2002, INT J BIFURCAT CHAOS, V12, P187
178997    WATTS DJ, 1998, NATURE, V393, P440
178998    WATTS DJ, 1999, SMALL WORLDS DYNAMIC
178999    WU CW, 1995, IEEE T CIRCUITS-I, V42, P430
179000 NR 21
179001 TC 0
179002 SN 0378-4371
179003 J9 PHYSICA A
179004 JI Physica A
179005 PD FEB 15
179006 PY 2006
179007 VL 361
179008 IS 1
179009 BP 24
179010 EP 34
179011 PG 11
179012 SC Physics, Multidisciplinary
179013 GA 015DX
179014 UT ISI:000235533200003
179015 ER
179016 
179017 PT J
179018 AU Li, CF
179019    Zhu, QB
179020    Nimtz, G
179021    Chen, X
179022    Zhang, Y
179023 TI Experimental observation of negative lateral displacements of microwave
179024    beams transmitting through dielectric slabs
179025 SO OPTICS COMMUNICATIONS
179026 DT Article
179027 DE negative lateral displacements; thin slab of optically denser medium;
179028    Snell's law
179029 ID REFLECTION
179030 AB It was theoretically predicted that when a beam of light travels
179031    through a thin slab of optically denser medium in the air, the emerging
179032    beam from the slab will suffer a lateral displacement that is different
179033    from the prediction of geometrical optics, that is, the Snell's law of
179034    refraction and can be zero and negative as well as positive. These
179035    phenomena have been directly observed in microwave experiments in which
179036    large angles of incidence are chosen for the purpose of obtaining
179037    negative lateral displacements. (C) 2005 Elsevier B.V. All rights
179038    reserved.
179039 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
179040    Acad Sinica, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt Technol, Xian 710068, Peoples R China.
179041    Univ Cologne, Inst Phys 2, D-50937 Cologne, Germany.
179042 RP Li, CF, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200444,
179043    Peoples R China.
179044 EM cfli@staff.shu.edu.cn
179045 CR ARTMANN K, 1948, ANN PHYS, V2, P87
179046    CHEN X, 2004, PHYS REV E 2, V69
179047    COWAN JJ, 1977, J OPT SOC AM, V67, P1307
179048    HSUE CW, 1985, J OPT SOC AM A, V2, P978
179049    KONG JA, 2002, MICROW OPT TECHN LET, V33, P136
179050    LI CF, 2003, PHYS REV LETT, V91
179051    LI CF, 2004, PHYS REV E, V69
179052    MOLLER KD, 1988, OPTICS
179053    READ LAA, 1978, J OPT SOC AM, V68, P319
179054    READ LAA, 1979, CAN J PHYS, V57, P1409
179055    SHELBY RA, 2001, SCIENCE, V292, P77
179056    STEINBERG AM, 1994, PHYS REV A, V49, P3283
179057 NR 12
179058 TC 0
179059 SN 0030-4018
179060 J9 OPT COMMUN
179061 JI Opt. Commun.
179062 PD MAR 15
179063 PY 2006
179064 VL 259
179065 IS 2
179066 BP 470
179067 EP 473
179068 PG 4
179069 SC Optics
179070 GA 016TK
179071 UT ISI:000235643100012
179072 ER
179073 
179074 PT J
179075 AU Bian, JJ
179076    Yan, K
179077    Gao, HB
179078 TI Effect of TiO2 addition on the microwave dielectric properties of
179079    La-2/3(Mg1/2W1/2)O-3
179080 SO MATERIALS CHEMISTRY AND PHYSICS
179081 DT Article
179082 DE TiO2 modified La-2/3(Mg1/2W1/2)O-3; microwave dielectric properties
179083 ID CERAMICS; RESONATORS
179084 AB Effects of TiO2 addition on the sinterability, microstructure and
179085    microwave dielectric properties were investigated in this paper. The
179086    addition of TiO2 increased the sintering temperature slightly. Addition
179087    of TiO2 successfully lowered the temperature coefficient of resonant
179088    frequency to less than 10 ppm degrees C-1 when 2.0 mol% TiO2 was added,
179089    and decreased the Q x f value from 32,500 to 14,800 GHz at the same
179090    time, but did not significantly affect the dielectric constant (22-24
179091    at 6 GHz). Those changes seemed to be attributed to the chemical
179092    reaction between TiO2 and La-2/3(Mg1/2W1/2)O-3 (LMW) during sintering
179093    and inhomogeneous multiphase existed as the TiO2 addition amount
179094    increased. (c) 2005 Elsevier B.V. All rights reserved.
179095 C1 Shanghai Univ, Dept Inorgan Mat, Shanghai 20072, Peoples R China.
179096 RP Bian, JJ, Shanghai Univ, Dept Inorgan Mat, 149 Yanchang Rd, Shanghai
179097    20072, Peoples R China.
179098 EM jjbian1@sohu.com
179099 CR BIAN JJ, 2004, MATER RES BULL, V39, P2127
179100    DUBE DC, 1997, J AM CERAM SOC, V80, P1095
179101    FERREIRA VM, 1997, J MATER RES, V12, P3293
179102    HAKKI BW, 1960, IRE T MICROWAVE THEO, V8, P402
179103    HEIAO YC, 1988, MATER RES BULL, V23, P1687
179104    PLOURDE JK, 1975, J AM CERAM SOC, V58, P418
179105    RICHTMYER RD, 1939, J APPL PHYS, V10, P391
179106    TORRI Y, 1981, MAT RES B, V16, P1153
179107    WAKINO K, 1989, FERROELECTRICS, V91, P68
179108    WERSING W, 1996, CURR OPIN SOLID ST M, V1, P715
179109 NR 10
179110 TC 0
179111 SN 0254-0584
179112 J9 MATER CHEM PHYS
179113 JI Mater. Chem. Phys.
179114 PD APR 10
179115 PY 2006
179116 VL 96
179117 IS 2-3
179118 BP 349
179119 EP 352
179120 PG 4
179121 SC Materials Science, Multidisciplinary
179122 GA 016UD
179123 UT ISI:000235645000027
179124 ER
179125 
179126 PT J
179127 AU Sun, YZ
179128    Zhang, Z
179129    Kitipornchai, S
179130    Liew, KM
179131 TI Analyzing the interaction between collinear interfacial cracks by an
179132    efficient boundary element-free method
179133 SO INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE
179134 DT Article
179135 DE interface crack; boundary integral equation; moving least-squares
179136    approximation; meshless method; boundary element-free method; stress
179137    intensity factor
179138 ID STRESS INTENSITY FACTORS; DISSIMILAR MEDIA; NODE METHOD; INTEGRALS;
179139    ELASTICITY
179140 AB A new traction boundary integral equation is presented for analyzing
179141    the interaction effect of any number of collinear interface cracks in a
179142    two-dimensional bimaterial. The dislocation densities on every crack
179143    surface are expressed in the products of the characteristic terms and
179144    the weight functions, and the unknown weight functions are approximated
179145    using the moving least-squares technique based on the constructed
179146    orthogonal basis functions. An efficient numerical integral method is
179147    employed to evaluate the Cauchy principal integrals that appear in the
179148    meshless method. The boundary element-free method is established, and a
179149    series of numerical results is presented. The interaction between the
179150    collinear interfacial cracks is analyzed. (c) 2005 Elsevier Ltd. All
179151    rights reserved.
179152 C1 City Univ Hong Kong, Dept Bldg & Construct, Kowloon, Hong Kong, Peoples R China.
179153    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
179154 RP Liew, KM, City Univ Hong Kong, Dept Bldg & Construct, Tat Chee Ave,
179155    Kowloon, Hong Kong, Peoples R China.
179156 EM kmliew@cityu.edu.hk
179157 CR BELYTSCHKO T, 1996, COMPUT METHOD APPL M, V139, P3
179158    BROBERG KB, 1999, CRACKS FRACTURE
179159    CHAU KT, 1999, INT J SOLIDS STRUCT, V36, P2041
179160    CHEN MC, 1999, J APPL MECH-T ASME, V66, P885
179161    COMNINOU M, 1977, J APPL MECH, V44, P631
179162    DELVES LM, 1968, J COMPUT, V10, P389
179163    ELLIOTT D, 1979, MATH COMPUT, V33, P301
179164    ENGLAND AH, 1965, J APPL MECH, V32, P400
179165    ERDOGAN F, 1965, J APPL MECH, V32, P403
179166    HONG HK, 1988, J ENG MECH-ASCE, V114, P180
179167    KITIPORNCHAI S, 2005, COMPUT MECH, V36, P13
179168    KOTHNUR VS, 1999, INT J SOLIDS STRUCT, V36, P1129
179169    MUKHERJEE YX, 1997, INT J NUMER METH ENG, V40, P797
179170    MURAKAMI Y, 1987, STRESS INTENSITY FAC, V1
179171    NODA NA, 1997, INT J FRACTURE, V84, P117
179172    NODA NA, 2003, INT J SOLIDS STRUCT, V40, P6577
179173    POLYANIN AD, 1998, HDB INTEGRAL EQUATIO
179174    PORTELA A, 1992, INT J NUMER METH ENG, V33, P1269
179175    RICE JR, 1965, J APPL MECH E, V32, P418
179176    RICE JR, 1988, J APPL MECH, V55, P98
179177    SHIFRIN EI, 1989, INT J FRACTURE, V94, P201
179178    STARK VJE, 1971, AIAA J, V9, P1854
179179    TADA H, 2000, STRESS ANAL CRACKS H
179180    TAN CL, 1990, ENG FRACT MECH, V36, P919
179181    TORINO GM, 1982, J COMPUT, V29, P337
179182    WANG YB, 1997, INT J FRACTURE, V89, P1
179183    WANG ZW, 2001, CHINA SURFACTANT DET, V31, P14
179184    WILLIAMS ML, 1959, B SEISMOL SOC AM, V49, P199
179185    YUKKI R, 1989, ENG FRACT MECH, V34, P179
179186 NR 29
179187 TC 0
179188 SN 0020-7225
179189 J9 INT J ENG SCI
179190 JI Int. J. Eng. Sci.
179191 PD JAN
179192 PY 2006
179193 VL 44
179194 IS 1-2
179195 BP 37
179196 EP 48
179197 PG 12
179198 SC Engineering, Multidisciplinary
179199 GA 016PJ
179200 UT ISI:000235631900004
179201 ER
179202 
179203 PT J
179204 AU Zhang, XP
179205    Wang, SZ
179206 TI Dynamical running coding in digital steganography
179207 SO IEEE SIGNAL PROCESSING LETTERS
179208 DT Article
179209 DE encoding; information hiding; steganography
179210 ID STEGANALYSIS; IMAGES
179211 AB A novel coding method for digital steganography is described, in which
179212    the amount of bit alterations introduced into a cover medium is
179213    significantly reduced, leading to less distortion and enhanced security
179214    against steganalysis. Unlike other block-based stego-coding approaches,
179215    the proposed method works in a running manner. In this way, each secret
179216    bit is represented by a series of consecutive cover bits, and flipping
179217    of one cover bit can be used to insert several secret bits. Theoretical
179218    analysis shows that, by reducing host alterations and inducing less
179219    distortion, the running coding has advantages over a previous technique.
179220 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
179221 RP Zhang, XP, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
179222    Peoples R China.
179223 EM xzhang@staff.shu.edu.cn
179224    shuowang@staff.shu.edu.cn
179225 CR DIJK M, 2001, P 22 S INF THEOR BEN, P147
179226    FRIDRICH J, 2002, P SOC PHOTO-OPT INS, V4675, P1
179227    KER AD, 2005, IEEE SIGNAL PROC LET, V12, P441
179228    SALLEE P, 2004, LECT NOTES COMPUT SC, V2939, P154
179229    TSENG YC, 2002, IEEE T COMMUN, V50, P1227
179230    WANG HQ, 2004, COMMUN ACM, V47, P76
179231    WESTFELD A, 2001, LNCS, V2137, P289
179232    ZHANG XP, 2003, LECT NOTES COMPUT SC, V2776, P395
179233    ZHANG XP, 2004, PATTERN RECOGN LETT, V25, P331
179234 NR 9
179235 TC 0
179236 SN 1070-9908
179237 J9 IEEE SIGNAL PROCESS LETT
179238 JI IEEE Signal Process. Lett.
179239 PD MAR
179240 PY 2006
179241 VL 13
179242 IS 3
179243 BP 165
179244 EP 168
179245 PG 4
179246 SC Engineering, Electrical & Electronic
179247 GA 016JE
179248 UT ISI:000235615700013
179249 ER
179250 
179251 PT J
179252 AU Li, GZ
179253    Yang, J
179254    Ye, CZ
179255    Geng, DY
179256 TI Degree prediction of malignancy in brain glioma using support vector
179257    machines
179258 SO COMPUTERS IN BIOLOGY AND MEDICINE
179259 DT Article
179260 DE support vector machines; feature selection; brain glioma; degree of
179261    malignancy; floating search method
179262 ID FEATURE-SELECTION; GLIOBLASTOMA; TUMORS
179263 AB The degree of malignancy in brain glioma needs to be assessed by MRI
179264    findings and clinical data before operations. There have been previous
179265    attempts to solve this problem with a fuzzy rule extraction algorithm
179266    based on fuzzy min-max neural networks. We utilize support vector
179267    machines with floating search method to select relevant features and to
179268    predict the degree of malignancy. Computation results show that the
179269    feature subset selected by our techniques can yield better
179270    classification performance. In contrast with the base line method,
179271    which generated two rules and obtained 83.21% accuracy on the whole
179272    data set, our method generates one rule to yield 88.21% accuracy. (C)
179273    2005 Elsevier Ltd. All rights reserved.
179274 C1 Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China.
179275    Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200030, Peoples R China.
179276    Fudan Univ, Hua Shan Hosp, Med Ctr, Shanghai 200040, Peoples R China.
179277 RP Li, GZ, Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R
179278    China.
179279 EM gzli@staff.shu.edu.cn
179280    jieyang@sjtu.edu.cn
179281    ye2002@sina.com
179282    gengdy@163.com
179283 CR ARLE JE, 1997, J NEUROSURG, V86, P755
179284    BOSER B, 1992, P 5 ANN WORKSH COMP, V5, P144
179285    BREDEL M, 1999, BRAIN RES REV, V29, P232
179286    CHOW KL, 2000, AM J NEURORADIOL, V21, P471
179287    CRISTIANINI N, 2000, INTRO SUPPORT VECTOR
179288    DEMUTH H, 2001, NEURAL NETWORK TOOLB
179289    ELNAQA I, 2002, P IEEE INT S BIOM IM, P201
179290    FORESEE FD, 1997, P 1997 INT JOINT C N, P1930
179291    GINSBERG LE, 1998, SURG NEUROL, V49, P436
179292    GUYON I, 2002, MACH LEARN, V46, P389
179293    GUYON I, 2003, J MACHINE LEARNING R, V3, P1157
179294    JAIN A, 1997, IEEE T PATTERN ANAL, V19, P153
179295    JOACHIMS T, 1998, P EUR C MACH LEARN E
179296    KARUSH W, 1939, THESIS U CHICAGO
179297    KOHAVI R, 1997, ARTIF INTELL, V97, P273
179298    KUHN HW, 1951, P 2 BERK S MATH STAT, P481
179299    LECUN Y, 1995, P INT C ART NEUR NET, V2, P53
179300    LOPEZGONZALEZ MA, 2000, SURG NEUROL, V53, P157
179301    PAULO JG, 2000, ARTIFICIAL NEURAL NE
179302    PONTIL M, 1998, IEEE T PATTERN ANAL, V20, P637
179303    PUDIL P, 1994, PATTERN RECOGN LETT, V15, P1119
179304    ROJOALVAREZ JL, 2002, IEEE ENG MED BIOL, V21, P27
179305    RUPING S, 2000, LEHRSTUHL INFORM, V8
179306    VAPNIK V, 1995, NATURE STAT LEARNING
179307    WANG CC, 2000, SURG NEUROL, V53, P41
179308    YE CZ, 2002, MED BIOL ENG COMPUT, V40, P145
179309    ZHOU ZH, 2003, IEEE T INF TECHNOL B, V7, P37
179310 NR 27
179311 TC 0
179312 SN 0010-4825
179313 J9 COMPUT BIOL MED
179314 JI Comput. Biol. Med.
179315 PD MAR
179316 PY 2006
179317 VL 36
179318 IS 3
179319 BP 313
179320 EP 325
179321 PG 13
179322 SC Computer Science, Interdisciplinary Applications; Engineering,
179323    Biomedical; Biology
179324 GA 017KU
179325 UT ISI:000235693300008
179326 ER
179327 
179328 PT J
179329 AU Liu, H
179330    Lu, GZ
179331    Guo, YL
179332    Guo, Y
179333    Wang, JS
179334 TI Chemical kinetics of hydroxylation of phenol catalyzed by
179335    TS-1/diatomite in fixed-bed reactor
179336 SO CHEMICAL ENGINEERING JOURNAL
179337 DT Article
179338 DE TS-1/diatomite catalyst; hydroxylation of phenol; chemical kinetics;
179339    reaction mechanism; fixed-bed reactor
179340 ID TITANIUM SILICALITE-1; HYDROGEN-PEROXIDE; EPOXIDATION; OXIDATION;
179341    ZEOLITES; SORPTION; BENZENE; TS-1
179342 AB The chemical kinetics of hydroxylation of phenol with 30% H2O2 over the
179343    TS-1/diatomite catalyst in a fixed-bed reactor system was studied at
179344    50-90 degrees C. The rate of hydroxylation of phenol was found to
179345    increase with increase in temperature, phenol and hydrogen peroxide
179346    concentrations. Simultaneously, the rate of decomposition of hydrogen
179347    peroxide also increased with increase in temperature and hydrogen
179348    peroxide concentration. Based on our analysis, the consuming rate of
179349    phenol, formation rate of catechol and hydroquinone and the rate of
179350    decomposition of hydrogen peroxide can be described as: r(p) = 7.18 x
179351    10(3) e(-(42.0/RT))C(P)(1.06)C(H2O2)(0.34), r(CAT) =3 92 x 10(3)
179352    e(-(42.1/RT))C(P)(1.09)C(H2O2)(0.33), r(HQ) = 3.13 x 10(3)
179353    e(-(41.9/RT))C(P)(1.04)CH(2O2)(0.35) and r(H2O2) = 1.75 x 10(7)
179354    e-C-(57.8/RT)(H2O2)0.75, respectively. Based on the Eley-Rideal
179355    mechanism for an adsorption of single molecule, the reaction kinetic
179356    model of hydroxylation of phenol has been fou nded, that is r = (k
179357    K1CH2O2 C-P)/(1 + K1CH2O2 + K-2 C-P + K-3 C-Prod), which is in
179358    agreement wi th the experimental data. (c) 2005 Elsevier B.V. All
179359    rights reserved.
179360 C1 E China Univ Sci & Technol, Lab Adv Mat, Res Inst Ind Catalysis, Shanghai 200237, Peoples R China.
179361    Shanghai Univ, Coll Environm & Chem Engn, Shanghai 200072, Peoples R China.
179362 RP Lu, GZ, E China Univ Sci & Technol, Lab Adv Mat, Res Inst Ind
179363    Catalysis, Shanghai 200237, Peoples R China.
179364 EM gzhlu@ecust.edu.cn
179365 CR ATOGUCHI T, 2001, J MOL CATAL A-CHEM, V176, P173
179366    CLERICI MG, 1993, J CATAL, V140, P71
179367    GAO HX, 1996, APPL CATAL A-GEN, V138, P27
179368    GHIACI M, 2004, SEP PURIF TECHNOL, V40, P217
179369    HUYBRECHTS DRC, 1992, J MOL CATAL, V71, P129
179370    KHOMANE RB, 2002, MATER CHEM PHYS, V76, P99
179371    KLEMM E, 1998, MICROPOR MESOPOR MAT, V26, P11
179372    LIU H, 2005, CHEM ENG J, V108, P187
179373    LIU LG, 2001, LIBR COLLECT ACQUIS, V25, P49
179374    MARTENS JA, 1993, APPL CATAL A-GEN, V99, P71
179375    MASPERO F, 1994, J CATAL, V146, P476
179376    REDDY JS, 1992, J MOL CATAL, V71, P373
179377    THANGARAJ A, 1991, J CATAL, V131, P294
179378    TUEL A, 1996, ZEOLITES, V16, P108
179379    WILKENHONER U, 2001, J CATAL, V203, P201
179380    XUE J, 2000, J CHEM IND ENG, V51, P204
179381 NR 16
179382 TC 0
179383 SN 1385-8947
179384 J9 CHEM ENG J
179385 JI Chem. Eng. J.
179386 PD MAR 1
179387 PY 2006
179388 VL 116
179389 IS 3
179390 BP 179
179391 EP 186
179392 PG 8
179393 SC Engineering, Chemical
179394 GA 016TV
179395 UT ISI:000235644200004
179396 ER
179397 
179398 PT J
179399 AU Hu, HJ
179400    Guo, XM
179401    Li, PN
179402    Xie, YJ
179403    Li, J
179404 TI A new cyclic J-integral for low-cycle fatigue crack growth
179405 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
179406 DT Article
179407 DE cyclic J-integral; low-cycle fatigue; constitutive equation; numerical
179408    evaluation; fatigue retardation
179409 ID PROPAGATION
179410 AB The constitutive equation under the low-cycle fatigue (LCF) was
179411    discussed, and a two-dimensional (2-D) model for simulating fatigue
179412    crack extension was put forward in order to propose a new cyclic
179413    J-integral. The definition, primary characteristics, physical
179414    interpretations and numerical evaluation of the new parameter were
179415    investigated in detail. Moreover, the new cyclic J-integral for LCF
179416    behaviors was validated by the compact tension (CT) specimens. Results
179417    show that the calculated values of the new parameter can correlate well
179418    with LCF crack growth rate, during constant-amplitude loading. In
179419    addition, the phenomenon of fatigue retardation was explained through
179420    the viewpoint of energy based on the concept of the new parameter.
179421 C1 Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
179422    E China Univ Sci & Technol, Coll Mech Engn, Shanghai 200237, Peoples R China.
179423 RP Hu, HJ, Shanghai Univ, Inst Appl Math & Mech, Shanghai 200072, Peoples
179424    R China.
179425 EM huhongjiu@163.com
179426 CR ANDERSON TL, 2000, FRACTURE MECH FUNDAM
179427    BROSE WR, 1979, ASTM STP, V668, P720
179428    CHEN XD, 2003, J EXP MEDH, V18, P520
179429    CHOW CL, 1991, ENG FRACT MECH, V39, P1
179430    DOWLING NE, 1976, ASTM STP, V590, P82
179431    HU HJ, 1998, J MECH STRENGHT, V20, P257
179432    KUMAR V, 1981, ENG APPROACH ELASTIC
179433    LEI YB, 1993, THESIS E CHINA U SCI
179434    MIURA N, 1996, J PRESS VESS T ASME, V323, P249
179435    OWEN DRJ, 1983, ENG FRACTURE MECH NA
179436    PARIS PC, 1963, J BASIC ENG, V85, P528
179437    RICE JR, 1968, J APPL MECH, V35, P379
179438    SKALLERUD B, 2001, FATIGUE FRACT ENG M, V24, P81
179439    TANAKA K, 1983, INT J FRACTURE, V22, P91
179440    TANAKA K, 1996, ENG FRACT MECH, V55, P751
179441    WEICK M, 2003, INT J FATIGUE, V25, P1117
179442    WUTHRICH C, 1982, INT J FRACTURE, V20, R35
179443 NR 17
179444 TC 0
179445 SN 0253-4827
179446 J9 APPL MATH MECH-ENGL ED
179447 JI Appl. Math. Mech.-Engl. Ed.
179448 PD FEB
179449 PY 2006
179450 VL 27
179451 IS 2
179452 BP 149
179453 EP 160
179454 PG 12
179455 SC Mathematics, Applied; Mechanics
179456 GA 015LT
179457 UT ISI:000235553600002
179458 ER
179459 
179460 PT J
179461 AU Du, XW
179462    Zhang, LS
179463    Gao, YL
179464 TI A class of augmented Lagrangians for equality constraints in nonlinear
179465    programming problems
179466 SO APPLIED MATHEMATICS AND COMPUTATION
179467 DT Article
179468 DE optimization; nonlinear programming; constrained optimization;
179469    augmented Lagrangian functions; augmented Lagrangian functions of Di
179470    Pillo and Grippo
179471 ID OPTIMIZATION PROBLEMS; MULTIPLIER METHODS; PENALTY
179472 AB In this paper a class of augmented Lagrangians is considered, for
179473    solving equality constrained nonlinear optimization problems via
179474    unconstrained minimization techniques. This class of augmented
179475    Lagrangians is obtained by multiplying the penalty term on the first
179476    order necessary optimality condition in a class of augmented
179477    Lagrangians of Di Pillo and Grippo by a penalty parameter. Under
179478    suitable assumptions, the exactly corresponding relationship is
179479    established between the solution of the original constrained problem
179480    and the unconstrained minimization of this class of augmented
179481    Lagrangians on the product space of problem variables and multipliers
179482    for sufficiently large but finite values of penalty parameters.
179483    Therefore, a solution of the original constrained problem and the
179484    corresponding values of the Lagrange multipliers can be found by
179485    performing a single unconstrained minimization of an augmented
179486    Lagrangian on the product space of problem variables and multipliers.
179487    In particular, for quadratic programming problerns with equality
179488    constraints,. the optimizer is obtained by minimizing a quadratic
179489    function on the expanded space. (c) 2005 Elsevier Inc. All rights
179490    reserved.
179491 C1 Henan Polytech Univ, Dept Appl Math, Jiaozuo 454010, Peoples R China.
179492    Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
179493    NW Secondly Natl Coll, Dept Informat & Computat Sci, Yinchuan 750021, Peoples R China.
179494 RP Du, XW, Henan Polytech Univ, Dept Appl Math, Jiaozuo 454010, Peoples R
179495    China.
179496 EM duxuewu@hpu.edu.cn
179497 CR BERTSEKAS DP, 1976, AUTOMATICA, V12, P133
179498    BERTSEKAS DP, 1976, SIAM J CONTROL OPTIM, V14, P216
179499    BERTSEKAS DP, 1982, CONSTRAINED OPTIMIZA
179500    BERTSEKAS DP, 1999, NONLINEAR PROGRAMMIN
179501    BOUKARI D, 1995, OPTIMIZATION, V32, P301
179502    CONTALDI G, 1994, 0194 DIS U ROM SAP
179503    DIPILLO G, 1979, SIAM J CONTROL OPTIM, V17, P618
179504    DIPILLO G, 1982, J OPTIMIZATION THEOR, V36, P495
179505    DIPILLO G, 1994, ALGORITHMS CONTINUOU, P1
179506    DIPILLO G, 1996, NONLINEAR OPTIMIZATI, P85
179507    DIPILLO G, 2001, SIAM J OPTIMIZ, V12, P376
179508    FLETCHER R, 1973, MATH PROGRAM, V5, P129
179509    GILL PE, 1974, NUMERICAL METHODS CO, P219
179510    GLAD T, 1979, MATH PROGRAM, V17, P140
179511    HESTENES MR, 1969, J OPTIMIZATION THEOR, V4, P303
179512    HESTENES MR, 1975, OPTIMIZATION THEORY
179513    LUCIDI S, 1988, JOTA, V58, P259
179514    MIELE A, 1972, J OPTIMIZATION THEOR, V10, P1
179515    MUKAI H, 1975, MATH PROGRAM, V9, P336
179516    POWELL MJD, 1969, OPTIMIZATION, P283
179517    ROCKAFELLAR RT, 1973, 5 IFIP C OPT TECHN 1, P418
179518    ROCKAFELLAR RT, 1973, J OPTIMIZATION THEOR, V12, P555
179519    ROCKAFELLAR RT, 1974, SIAM J CONT, V12, P268
179520    ROCKAFELLAR RT, 1976, MATH OPER RES, V1, P97
179521    WIERZBICKI AP, 1976, RECERCHE AUTOMATICA, V7, P34
179522    YEVTUSHENKO Y, 1990, USSR COMP MATH MATH, V30, P31
179523 NR 26
179524 TC 0
179525 SN 0096-3003
179526 J9 APPL MATH COMPUT
179527 JI Appl. Math. Comput.
179528 PD JAN 1
179529 PY 2006
179530 VL 172
179531 IS 1
179532 BP 644
179533 EP 663
179534 PG 20
179535 SC Mathematics, Applied
179536 GA 014WM
179537 UT ISI:000235511200048
179538 ER
179539 
179540 PT J
179541 AU Yu, YK
179542    Wen, S
179543    Feng, YL
179544    Bi, XH
179545    Wang, XM
179546    Peng, PA
179547    Sheng, GY
179548    Fu, JM
179549 TI Development of a compound-specific carbon isotope analysis method for
179550    atmospheric formaldehyde via NaHSO3 and cysteamine derivatization
179551 SO ANALYTICAL CHEMISTRY
179552 DT Article
179553 ID ORGANIC-COMPOUNDS; GAS-PHASE; AIR; RATIOS; CHINA; HYDROCARBONS;
179554    ACETALDEHYDE; COLLECTION; GUANGZHOU; EMISSIONS
179555 AB A novel method has been developed for the compound-specific carbon
179556    isotope analysis of atmospheric formaldehyde using gas
179557    chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS).
179558    The method allows the determination of the delta C-13 value for
179559    atmospheric formaldehyde at nanogram levels with higher precision and
179560    lower detection limit. In the present work, atmospheric formaldehyde
179561    was collected using NaHSO3-coated Sep-Pak silica gel cartridges, washed
179562    out by water, then derivatized by cysteamine of known delta C-13 value,
179563    and the delta C-13 value of its derivative (thiazotidine) determined by
179564    GC/C/IRMS. Finally, the delta C-13 value of atmospheric formaldehyde
179565    could be calculated by a simple mass balance equation between
179566    formaldehyde, cysteamine, and thiazolidine. Using three formaldehydes
179567    with different delta C-13 values, calibration experiments were carried
179568    out over large ranges of formaldehyde concentrations. The carbon
179569    isotope analysis method achieved excellent reproducibility and high
179570    accuracy. There was no carbon isotopic fractionation throughout the
179571    derivatization processes. The differences in the carbon isotopic
179572    compositions of thiazolidine between the measured and predicted values
179573    were always < 0.5 parts per thousand, within the specifications of the
179574    GC/C/IRMS system. The present method was also compared with the
179575    previous 2,4-dinitrophenylhydrazine derivatization method, and this
179576    method could be performed with lower analytical error and detection
179577    limit. Using this method, four 6-h ambient atmospheric formaldehyde
179578    samples were consecutively collected from 8 to 9 March 2005. The
179579    results showed that the delta C-13 values of atmospheric formaldehyde
179580    were different during the daytime and nighttime. This method proved.
179581    suitable for the routine operation and may provide additional insight
179582    on sources and sinks of atmospheric formaldehyde.
179583 C1 Shanghai Univ, Sch Environm & Chem Engn, Res Inst Environm Pollut & Hlth, Shanghai 200072, Peoples R China.
179584    Chinese Acad Sci, State Key Lab Organ Geochem, Guangdong Key Lab Environm Resources Utilizat & P, Guangzhou Inst Geochem, Ghangzhou 510640, Peoples R China.
179585 RP Fu, JM, Shanghai Univ, Sch Environm & Chem Engn, Res Inst Environm
179586    Pollut & Hlth, Shanghai 200072, Peoples R China.
179587 EM fujm@gig.ac.cn
179588 CR *US EPA, 1999, TO11A US EPA
179589    ABRAJANO TA, 1994, ORG GEOCHEM, V21, P611
179590    ANDRADE JB, 1992, ATMOS ENVIRON A-GEN, V26, P819
179591    CARLIER P, 1986, ATMOS ENVIRON, V20, P2079
179592    CHRISTENSEN CS, 2000, ATMOS ENVIRON, V34, P287
179593    FELTHAM EJ, 2000, SPECTROCHIM ACTA A, V56, P2605
179594    FENG YL, 2004, ATMOS ENVIRON, V38, P103
179595    FENG YL, 2005, ATMOS ENVIRON, V39, P1789
179596    GOLDMAN FH, 1943, IND ENG CHEM, V15, P377
179597    GRUTTER M, 2005, ATMOS ENVIRON, V39, P1027
179598    GRUTTER M, 2005, ATMOS ENVIRON, V39, P1027
179599    HAYASHI T, 1986, J ASSOC OFF ANA CHEM, V69, P101
179600    HUANG TC, 1998, J AGR FOOD CHEM, V46, P224
179601    IANNONE R, 2003, GEOPHYS RES LETT, V30
179602    JIA GD, 2003, MAR CHEM, V82, P47
179603    JOHNSON BJ, 1990, ENVIRON SCI TECHNOL, V24, P898
179604    LOWE DC, 1994, J GEOPHYS RES-ATMOS, V99, P16913
179605    MELANDER L, 1980, REACTION RATES ISOTO
179606    MIYAKE T, 1993, J AGR FOOD CHEM, V41, P1968
179607    MOOK WG, 1983, J GEOPHYS RES, V88, P10915
179608    MULLER K, 2002, CHEMOSPHERE, V49, P1247
179609    RAYNER AC, 1961, ANAL CHEM, V33, P627
179610    RIELEY G, 1994, ANALYST, V119, P915
179611    RUDOLPH J, 2002, ATMOS ENVIRON, V36, P1173
179612    SAITO T, 2002, J GEOPHYS RES, V107
179613    TAGUCHI T, 1959, J AM CHEM SOC, V81, P4322
179614    TAKEKAWA H, 2003, ATMOS ENVIRON, V37, P3413
179615    TANNER RL, 1996, J GEOPHYS RES-ATMOS, V101, P28961
179616    WEN S, 2004, RAPID COMMUN MASS SP, V18, P2669
179617    WEN S, 2005, ENVIRON SCI TECHNOL, V39, P6202
179618    YASUHARA A, 1989, J ASSOC OFF ANA CHEM, V72, P899
179619    YU YX, 2005, RAPID COMMUN MASS SP, V19, P2469
179620    YU YX, 2005, THESIS GRADUATE SCH, P41
179621    ZWANK L, 2003, ANAL CHEM, V75, P5575
179622 NR 34
179623 TC 0
179624 SN 0003-2700
179625 J9 ANAL CHEM
179626 JI Anal. Chem.
179627 PD FEB 15
179628 PY 2006
179629 VL 78
179630 IS 4
179631 BP 1206
179632 EP 1211
179633 PG 6
179634 SC Chemistry, Analytical
179635 GA 015TQ
179636 UT ISI:000235574300028
179637 ER
179638 
179639 PT J
179640 AU Xu, KX
179641    Qiu, JH
179642    Shi, LY
179643 TI Non-power-law I-V characteristics in Ca-doped polycrystalline
179644    Y1-xCaxBa2Cu3O7-delta
179645 SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY
179646 DT Article
179647 ID GRAIN-BOUNDARIES; SUPERCONDUCTORS; YBA2CU3O7-DELTA; BICRYSTALS;
179648    MISORIENTATION; TRANSPORT; ENHANCEMENT; TRANSITION; DENSITY; FILMS
179649 AB Experiments reveal that there is a non-ohmic dissipation behaviour in
179650    the Ca-doped polycrystalline Y1-xCaxBa2Cu3O7-delta even at temperature
179651    T = 20 K. This non-ohmic dissipation seems to come from the vortex
179652    excitation along the grain boundaries and appears in anomalous I-V
179653    characteristics with a non-power-law behaviour at temperatures below 60
179654    K, and then with a power-law behaviour as the temperature approaches
179655    T-c. This abnormal behaviour cannot be explained by the thermal flux
179656    creep model. We suppose that a giant flux motion along the grain
179657    boundaries might be responsible for this anomalous non-ohmic
179658    dissipation behaviour. A modified I-V relation was worked out based on
179659    Larkin's collective pinning model, and the analytical I-V curves were
179660    found to be coincident with the experimental curves quite well. This
179661    confirmed that the vortex excitation process along the grain boundaries
179662    in Ca-doped polycrystalline Y1-xCaxBa2Cu3O7-delta might be described
179663    with a modified collective pinning model.
179664 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
179665    Shanghai Univ, Sch Sci, Shanghai 200444, Peoples R China.
179666    Shanghai Univ, NanoSci & NanoTechnol Res Ctr, Shanghai 200444, Peoples R China.
179667 RP Xu, KX, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
179668 EM kxxu@staff.shu.edu.cn
179669 CR CAI XY, 1998, PHYS REV B, V57, P10951
179670    DIAZ A, 1998, PHYS REV B, V58, P2960
179671    DIMOS D, 1990, PHYS REV B, V41, P4038
179672    DUBSON MA, 1988, PHYS REV LETT, V60, P1061
179673    FIELD MB, 1997, PHYSICA C, V280, P221
179674    GRAY KE, 1998, PHYS REV B, V58, P9543
179675    GRAY KE, 2000, PHYSICA C 3, V341, P1397
179676    GUBSER DU, 1979, AIP C P, V58
179677    HAGEN CW, 1989, PHYS REV LETT, V62, P2857
179678    HAMMERL G, 2000, NATURE, V407, P162
179679    HEINIG NF, 1996, APPL PHYS LETT, V69, P577
179680    HEINIG NF, 1999, PHYS REV B, V60, P1409
179681    HILGENKAMP H, 2002, REV MOD PHYS, V74, P496
179682    HOGG MJ, 2001, APPL PHYS LETT, V78, P1433
179683    KIM D, 2000, PHYS REV B, V62, P12505
179684    KLIE RF, 2005, NATURE, V435, P475
179685    RANSLEY JHT, 2004, PHYS REV B, V70
179686    REDWING RD, 1999, APPL PHYS LETT, V75, P3171
179687    SCHOFIELD MA, 2004, PHYS REV LETT, V92
179688    TINKHAM M, 1995, INTRO SUPERCONDUCTIV, P363
179689    VANDERBEEK CJ, 1992, PHYSICA C, V197, P320
179690    VEREBELYI DT, 1999, IEEE T APPL SUPERC 2, V9, P2655
179691    VEREBELYI DT, 2000, APPL PHYS LETT, V76, P1755
179692    ZELDOV E, 1989, PHYS REV LETT, V62, P3093
179693    ZHAO YE, 2004, PHYSICA C, V415, P197
179694 NR 25
179695 TC 0
179696 SN 0953-2048
179697 J9 SUPERCONDUCT SCI TECHNOL
179698 JI Supercond. Sci. Technol.
179699 PD FEB
179700 PY 2006
179701 VL 19
179702 IS 2
179703 BP 178
179704 EP 183
179705 PG 6
179706 SC Physics, Applied; Physics, Condensed Matter
179707 GA 013SU
179708 UT ISI:000235430600007
179709 ER
179710 
179711 PT J
179712 AU Chou, KC
179713    Cai, YD
179714 TI Predicting protein-protein interactions from sequences in a
179715    hybridization space
179716 SO JOURNAL OF PROTEOME RESEARCH
179717 DT Article
179718 DE genomic scale; gene ontology; pseudo-amino acid composition; ISort
179719    predictor; GO-PseAA fusion classifier; network biology; yeast
179720 ID AMINO-ACID-COMPOSITION; SUBCELLULAR LOCATION PREDICTION; STRUCTURAL
179721    CLASS PREDICTION; SECONDARY STRUCTURE-CONTENT; CLASSIFIER
179722 AB To understand the networks in living cells, it is indispensably
179723    important to identify protein-protein interactions on a genomic scale.
179724    Unfortunately, it is both time-consuming and expensive to do so solely
179725    based on experiments due to the nature of the problem whose complexity
179726    is obviously overwhelming, just like the fact that "life is
179727    complicated". Therefore, developing computational techniques for
179728    predicting protein-protein interactions would be of significant value
179729    in this regard. By fusing the approach based on the gene ontology and
179730    the approach of pseudo-amino acid composition, a predictor called
179731    "GO-PseAA" predictor was established to deal with this problem. As a
179732    showcase, prediction was performed on 6323 protein pairs from yeast. To
179733    avoid redundancy and homology bias, none of the protein pairs
179734    investigated has >= 40% sequence identity with any other. The overall
179735    success rate obtained by jackknife cross-validation was 81.6%,
179736    indicating the GO-PseAA predictor is very promising for predicting
179737    protein-protein interactions from protein sequences, and might become a
179738    useful vehicle for studying the network biology in the postgenomic era.
179739 C1 Gordon Life Sci Inst, San Diego, CA 92130 USA.
179740    Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200436, Peoples R China.
179741    UMIST, Dept Biomol Sci, Manchester M60 1QD, Lancs, England.
179742 RP Chou, KC, Gordon Life Sci Inst, 13784 Torrey Del Mar, San Diego, CA
179743    92130 USA.
179744 EM kchou@san.rr.com
179745 CR APWEILER R, 2001, NUCLEIC ACIDS RES, V29, P37
179746    ASHBURNER M, 2000, NAT GENET, V25, P25
179747    CHOU JJ, 1999, CELL, V96, P615
179748    CHOU KC, 1994, J BIOL CHEM, V269, P22014
179749    CHOU KC, 1995, CRIT REV BIOCHEM MOL, V30, P275
179750    CHOU KC, 1995, PROTEINS, V21, P319
179751    CHOU KC, 1999, J PROTEIN CHEM, V18, P473
179752    CHOU KC, 1999, PROTEIN ENG, V12, P107
179753    CHOU KC, 2001, PROTEINS, V43, P246
179754    CHOU KC, 2002, J BIOL CHEM, V277, P45765
179755    FENG KY, 2005, BIOCHEM BIOPH RES CO, V334, P213
179756    FENG ZP, 2001, BIOPOLYMERS, V58, P491
179757    GAO Y, 2005, AMINO ACIDS, V28, P373
179758    HOPP TP, 1981, P NATL ACAD SCI USA, V78, P3824
179759    HUA SJ, 2001, BIOINFORMATICS, V17, P721
179760    LIU H, 2005, BIOCHEM BIOPH RES CO, V336, P737
179761    LIU WM, 1999, PROTEIN ENG, V12, P1041
179762    LUO RY, 2002, EUR J BIOCHEM, V269, P4219
179763    OXENOID K, 2005, P NATL ACAD SCI USA, V102, P10870
179764    PAN YX, 2003, J PROTEIN CHEM, V22, P395
179765    SHEN HB, 2005, BIOCHEM BIOPH RES CO, V334, P288
179766    SHEN HB, 2005, BIOCHEM BIOPH RES CO, V334, P577
179767    TANFORD C, 1962, J AM CHEM SOC, V84, P4240
179768    VONMERING C, 2002, NUCLEIC ACIDS RES, V33, D433
179769    WANG M, 2005, J THEOR BIOL, V232, P7
179770    XIAO X, 2005, AMINO ACIDS
179771    XIAO X, 2005, AMINO ACIDS, V28, P57
179772    YUAN Z, 1999, FEBS LETT, V451, P23
179773    ZHOU GP, 1998, J PROTEIN CHEM, V17, P729
179774    ZHOU GP, 2001, PROTEINS, V44, P57
179775    ZHOU GP, 2003, PROTEINS, V50, P44
179776 NR 31
179777 TC 0
179778 SN 1535-3893
179779 J9 J PROTEOME RES
179780 JI J. Proteome Res.
179781 PD FEB
179782 PY 2006
179783 VL 5
179784 IS 2
179785 BP 316
179786 EP 322
179787 PG 7
179788 SC Biochemical Research Methods
179789 GA 012DE
179790 UT ISI:000235317600012
179791 ER
179792 
179793 PT J
179794 AU Xu, JQ
179795    Chen, YP
179796    Shen, JN
179797 TI Solvothermal preparation and gas sensing properties of ZnO whiskers
179798 SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
179799 DT Article
179800 DE zinc oxide; whiskers; gas sensors; solvothermal; microemulsion
179801 ID VAPOR-DEPOSITION; ROOM-TEMPERATURE; NANOWIRE; NANORODS; SENSORS;
179802    FABRICATION; ARRAYS
179803 AB ZnO whiskers were prepared by a solvothermal process with
179804    Zn(OH)(4)(2-), cetyltrimethylammonium bromide (CTAB), n-amyl alcohol
179805    and n-hexane at 140 degrees C. The influence of preparation condition
179806    on the morphology of the resultant sample was investigated through
179807    change zinc salts, co-surfactants, surfactants, reaction temperature,
179808    and reaction time. Experimental results revealed that the morphology of
179809    as-obtained ZnO was affected strongly by the zinc salts and
179810    surfactants. The samples were characterized by X-ray diffraction (XRD),
179811    scanning electron microscopy (SEM), transmission electron microscopy
179812    (TEM), and electron diffraction (ED). Results showed that ZnO whiskers
179813    had the diameters of 100-500 nm, the lengths of several mu m, and grown
179814    along orientation of [0001]. The gas sensitivities of the as-prepared
179815    ZnO whiskers were detected. The results revealed that the ZnO whiskers
179816    had excellent potential application for gas sensor.
179817 C1 Zhengzhou Univ Light Ind, Coll Mat & Chem Engn, Zhengzhou 450002, Peoples R China.
179818    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
179819 RP Xu, JQ, Zhengzhou Univ Light Ind, Coll Mat & Chem Engn, Zhengzhou
179820    450002, Peoples R China.
179821 CR GAO PX, 2003, NANO LETT, V3, P1315
179822    HUANG MH, 2001, SCIENCE, V292, P1897
179823    KOLMAKOV A, 2003, ADV MATER, V15, P997
179824    KONG YC, 2001, APPL PHYS LETT, V78, P407
179825    LAW M, 2002, ANGEW CHEM INT EDIT, V41, P2405
179826    LI C, 2003, APPL PHYS LETT, V82, P1613
179827    LI Q, 2003, CHEM PHYS LETT, V375, P525
179828    LI ZQ, 2003, INORG CHEM, V42, P8105
179829    LIU B, 2003, J AM CHEM SOC, V125, P4430
179830    PAN ZW, 2001, SCIENCE, V291, P1947
179831    PARK WI, 2003, APPL PHYS LETT, V82, P4358
179832    RAO BB, 2000, MATER CHEM PHYS, V64, P62
179833    SHI QF, 2003, SOLID STATE LETT E, V6, P35
179834    SIYAMA T, 1962, ANAL CHEM, V34, P1502
179835    SUN XM, 2002, MATER CHEM PHYS, V78, P99
179836    TOMCHENKO AA, 2003, SENSOR ACTUAT B-CHEM, V93, P126
179837    WAN Q, 2004, APPL PHYS LETT, V84, P3654
179838    WU JJ, 2002, ADV MATER, V14, P215
179839    XU J, 1998, J INORG CHEM, V14, P355
179840    YAMAZOE N, 2003, CATAL SURV ASIA, V1, P63
179841    ZHENG MJ, 2002, CHEM PHYS LETT, V363, P123
179842 NR 21
179843 TC 0
179844 SN 1533-4880
179845 J9 J NANOSCI NANOTECHNOL
179846 JI J. Nanosci. Nanotechnol.
179847 PD JAN
179848 PY 2006
179849 VL 6
179850 IS 1
179851 BP 248
179852 EP 253
179853 PG 6
179854 SC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
179855 GA 012FM
179856 UT ISI:000235323600042
179857 ER
179858 
179859 PT J
179860 AU Zhang, DS
179861    Shi, LY
179862    Fang, JH
179863    Dai, K
179864    Zhang, LY
179865 TI Effect of moulding techniques on electro-adsorption desalination of
179866    carbon nanotube electrodes
179867 SO JOURNAL OF INORGANIC MATERIALS
179868 DT Article
179869 DE carbon nanotubes; electrode; moulding; desalination
179870 ID DOUBLE-LAYER CAPACITORS; ACTIVATED CARBONS
179871 AB The carbon nanotube electrodes with different kinds and quantities of
179872    binders, using methods such as press molding at room-temperature and
179873    hot-press molding combined with carbonization, were moulded. The
179874    charge-discharge tests of the electrodes were performed in saltwater by
179875    the DC-5 battery testing instrument, and the specific
179876    electro-adsorption capacitance and equivalent resistance were compared.
179877    The results are as follows: the electrodes can be molded at
179878    room-temperature with 10% polytetrafluoroethylene (PTFE) or 15%
179879    polyvinylidene fluoride (PVDF) and at high temperature with 20%
179880    phenolic resin (PR), and the specific electro-adsorption capacitance
179881    decreases and the equivalent resistance increases with the increasing
179882    content of the binders. The surface structure, morphology, specific
179883    electro-adsorption capacitance, equivalent resistance and
179884    hydrophilicity of the electrodes were investigated, and the
179885    electro-adsorption desalination performances were compared. The results
179886    show that the electrode hot-pressed with 20% PR, after carbonization,
179887    with high specific surface area, many pores, good hydrophilicity, high
179888    specific electro-adsorption capacitance and low equivalent resistance,
179889    has the best electro-adsorption desalination performance.
179890 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China.
179891    Shanghai Univ, Coll Sci, Shanghai 2000444, Peoples R China.
179892    Shanghai Univ, Res Ctr Nanosci & Nanotechnol, Shanghai 2000444, Peoples R China.
179893 RP Zhang, DS, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples
179894    R China.
179895 EM sly0726@163.com
179896 CR ANDELMAN M, 1993, 5192432, US
179897    CANTALINI C, 2004, J EUR CERAM SOC, V24, P1405
179898    CHEN JH, 2002, CARBON, V40, P1193
179899    DEMIRCIOGLU M, 2003, DESALINATION, V153, P329
179900    DEYANG Q, 1998, J POWER SOURCES, P99
179901    GAMBY J, 2001, J POWER SOURCES, V101, P109
179902    LI CS, 2004, MATER LETT, V58, P3774
179903    NAKAMURA M, 1996, J POWER SOURCES, V60, P225
179904    NISHINO A, 1988, TANSO, V132, P57
179905    ODA H, 2003, CARBON, V41, P1037
179906    ODANI A, 2003, J POWER SOURCES, V119, P517
179907    OTOWA T, 1996, 5538611, US
179908    SEMIAT R, 2001, DESALINATION, V140, P27
179909    WANG DZ, 2001, J INORG MATER, V16, P672
179910 NR 14
179911 TC 0
179912 SN 1000-324X
179913 J9 J INORG MATER
179914 JI J. Inorg. Mater.
179915 PD JAN
179916 PY 2006
179917 VL 21
179918 IS 1
179919 BP 87
179920 EP 93
179921 PG 7
179922 SC Materials Science, Ceramics
179923 GA 013PI
179924 UT ISI:000235420900015
179925 ER
179926 
179927 PT J
179928 AU Li, L
179929    Pan, QY
179930    Cheng, ZX
179931    Dong, XN
179932    Chen, HH
179933 TI NH3 sensing properties of CNT-WO3 sensors
179934 SO JOURNAL OF INORGANIC MATERIALS
179935 DT Article
179936 DE carbon nanotube; WO3; gas sensitivity; NH3
179937 ID CARBON NANOTUBES
179938 AB CNT-WO3 indirectly heated gas sensors were fabricated with carbon
179939    nanotubes as the dopant. The as-grown carbon nanotube was purified by
179940    mixed acid oxidation process and WO3 nanopowders were prepared by a
179941    chemical precipitation method. FT-IR, TEM, TG-DSC and XRD were
179942    introduced to characterize them. The gas sensitive performance of the
179943    made sensors was measured at room temperature. The experimental results
179944    show the gas sensitivity of the carbon nanotube-doped sensor is far
179945    higher than that of a pure WO3 sensor and the 0.8wt% carbon
179946    nanotube-doped sensor has the highest sensitivity. In addition, the
179947    carbon nanotube-doped sensor is superior for its lowest detectable
179948    concentration, wide detectable range and excellent gas selectivity. It
179949    is an ideal NH3 sensor.
179950 C1 Shanghai Univ, Dept Chem, Sch Sci, Shanghai 200436, Peoples R China.
179951 RP Li, L, Shanghai Univ, Dept Chem, Sch Sci, Shanghai 200436, Peoples R
179952    China.
179953 EM qypan@staff.shu.edu.cn
179954 CR CANTALINI C, 2004, J EUR CERAM SOC, V24, P1405
179955    JANG YT, 2004, SENSOR ACTUAT B-CHEM, V99, P118
179956    KONG J, 2000, SCIENCE, V287, P622
179957    VARGHESE OK, 2001, SENSOR ACTUAT B-CHEM, V81, P32
179958    WANG SG, 2004, DIAM RELAT MATER, V13, P1327
179959    WEI BY, 2004, SENSOR ACTUAT B-CHEM, V101, P81
179960    WONG YM, 2003, SENSOR ACTUAT B-CHEM, V93, P327
179961 NR 7
179962 TC 0
179963 SN 1000-324X
179964 J9 J INORG MATER
179965 JI J. Inorg. Mater.
179966 PD JAN
179967 PY 2006
179968 VL 21
179969 IS 1
179970 BP 151
179971 EP 156
179972 PG 6
179973 SC Materials Science, Ceramics
179974 GA 013PI
179975 UT ISI:000235420900025
179976 ER
179977 
179978 PT J
179979 AU Li, MM
179980    Shang, YL
179981    Zhang, LS
179982 TI A new filled function method for integer programming
179983 SO JOURNAL OF COMPUTATIONAL MATHEMATICS
179984 DT Article
179985 DE global minimization; integer programming; filled function method
179986 ID ALGORITHM
179987 AB The Filled Function Method is a class of effective algorithms for
179988    continuous global optimization. In this paper, a new filled function
179989    method is introduced and used to solve integer programming. Firstly,
179990    some basic definitions of discrete optimization are given. Then an
179991    algorithm and the implementation of this algorithm on several test
179992    problems are showed. The computational results show the algorithm is
179993    effective.
179994 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
179995    Shanghai Univ Engn Sci, Dept Math, Shanghai 200336, Peoples R China.
179996    Henan Univ Sci & Technol, Dept Math, Luoyang 471003, Peoples R China.
179997 RP Li, MM, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
179998 CR BERTOCCHI BM, 1992, COMPUTING, V48, P259
179999    CONLEY W, 1980, COMPUTER OPTIMIZATIO
180000    GE R, 1989, APPL MATH COMPUT, V34, P39
180001    GE R, 1990, MATH PROGRAM, V46, P191
180002    GIRLICH E, 1981, NICHTLINEARE DISCRET
180003    JEROSLOW RG, 1973, OPER RES, V21, P221
180004    MILLER BL, 1971, SIAM J APPL MATH, V21
180005    TIAN WW, 2004, J COMPUT MATH, V22, P69
180006    VASSILEV V, 1994, EUR J OPER RES, V74, P170
180007    ZANAKIS SH, 1989, EUR J OPER RES, V43, P88
180008    ZHENG Q, 1994, TESTING INTEGRAL GLO
180009 NR 11
180010 TC 0
180011 SN 0254-9409
180012 J9 J COMPUT MATH
180013 JI J. Comput. Math.
180014 PD JAN
180015 PY 2006
180016 VL 24
180017 IS 1
180018 BP 25
180019 EP 32
180020 PG 8
180021 SC Mathematics, Applied; Mathematics
180022 GA 013FP
180023 UT ISI:000235395500004
180024 ER
180025 
180026 PT J
180027 AU Zu, JH
180028    Yu, CH
180029    Wu, MH
180030    Jiao, Z
180031    Zhang, JQ
180032    Liu, XW
180033 TI Radiation-induced grafting of acrylic acid and sodium styrene sulfonate
180034    onto high-density polyethylene membranes. II. Thermal and chemical
180035    properties
180036 SO JOURNAL OF APPLIED POLYMER SCIENCE
180037 DT Article
180038 DE radiation-induced grafting; acrylic acid; sodium styrene sulfonate;
180039    high-density polyethylene membranes
180040 ID FILMS; FIBERS
180041 AB Strong acid cation-exchange membranes were obtained by
180042    radiation-induced grafting of acrylic acid and sodium styrene sulfonate
180043    onto high-density polyethylene (HDPE). Thermal and chemical properties
180044    of the cation-exchange membranes were investigated. The effectiveness
180045    of -SO3Na containing membranes was conformed in inducing high
180046    resistance to oxidative degradation. The char residue of the grafted
180047    HDPE is greater than that of ungrafted HDPE. It shows that the branch
180048    chains, including -SO3Na and -COOH groups, give catalytic impetus to
180049    the charring. The crystallinity of the grafted membranes was decreased
180050    when increasing the grafting yield. It was assumed that the decreased
180051    crystallinity was due to collective effects of the inherent
180052    crystallinity dilution by the amorphous grafted chains and the crystal
180053    distortion of the HDPE component. (c) 2006 Wiley Periodicals, Inc.
180054 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
180055 RP Zu, JH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
180056    Peoples R China.
180057 EM zujianhua1999@163.com
180058 CR ALBRIGHT RL, 1987, ENCY POLYM SCI ENG, V8
180059    GUPTA B, 1993, ANGEW MAKROMOL CHEM, V210, P151
180060    GUPTA B, 1994, J APPL POLYM SCI, V51, P1659
180061    GUPTA B, 2001, J APPL POLYM SCI, V82, P2629
180062    ISHIGAKI I, 1982, J APPL POLYM SCI, V27, P1033
180063    JIANHUA Z, IN PRESS J APPL POLY
180064    MADORSKY SL, 1949, J RES NATL BUR STAND, V42, P499
180065    MADORSKY SL, 1954, J RES NBS, V53, P361
180066    MUKHERJEE AK, 1985, J APPL POLYM SCI, V30, P2253
180067    SHKOLNIK S, 1982, J APPL POLYM SCI, V27, P2189
180068    WHEATON RM, 1981, ENCY CHEM TECHNOLOGY, V13
180069    ZEVIN L, 1982, POLYMER, V23, P601
180070 NR 12
180071 TC 0
180072 SN 0021-8995
180073 J9 J APPL POLYM SCI
180074 JI J. Appl. Polym. Sci.
180075 PD MAR 15
180076 PY 2006
180077 VL 99
180078 IS 6
180079 BP 3396
180080 EP 3400
180081 PG 5
180082 SC Polymer Science
180083 GA 012MO
180084 UT ISI:000235343500069
180085 ER
180086 
180087 PT J
180088 AU Zu, JH
180089    Wu, MH
180090    Zhang, JQ
180091    Yu, CH
180092    Liu, XW
180093    Tong, L
180094 TI Radiation-induced grafting of acrylic acid and sodium styrene sulfonate
180095    onto high-density polyethylene membranes. I. Effect of grafting
180096    conditions
180097 SO JOURNAL OF APPLIED POLYMER SCIENCE
180098 DT Article
180099 DE radiation-induced grafting; acrylic acid; sodium styrene sulfonate;
180100    high-density polyethylene
180101 ID PRE-IRRADIATION METHOD; MONOMERS; COPOLYMERIZATION; POLYMERIZATION;
180102    FILMS
180103 AB Radiation-induced grafting of sodium styrene sulfonate and acrylic acid
180104    onto high-density polyethylene (HDPE) membranes was studied by the
180105    preirradiation technique. Grafting was carried out using an electronic
180106    beam from a 2-MeV accelerator at room temperature. The effects of the
180107    type of solvent, inhibitor concentration, preirradiation atmosphere,
180108    monomer concentration, and storage time of preirradiated HDPE membranes
180109    on the grafting yield were investigated. Easy control over the grafting
180110    yield was achieved by proper selection of the reaction conditions. IR
180111    spectroscopy analysis of the grafted membrane confirmed the existence
180112    of sulfonate and carboxylic acid groups in the grafted membranes. (c)
180113    2006 Wiley Periodicals, Inc.
180114 C1 Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
180115 RP Zu, JH, Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800,
180116    Peoples R China.
180117 EM zujianhua1999@163.com
180118 CR AYDINLI B, 2001, RADIAT PHYS CHEM, V60, P237
180119    CHAPIRO A, 1962, HIGH POLYM RAD CHEM, V15
180120    GHOSH P, 1998, POLYMER, V39, P193
180121    GUPTA B, 1996, J MEMBRANE SCI, V118, P231
180122    HEGAZY ESA, 1999, NUCL INSTRUM METH B, V151, P386
180123    ISHIGAKI I, 1982, J APPL POLYM SCI, V27, P1033
180124    ISHIGAKI I, 1982, J APPL POLYM SCI, V27, P1043
180125    KAUR I, 1997, DESALINATION, V110, P129
180126    NASEF MM, 2000, POLYM DEGRAD STABIL, V70, P497
180127    SARA D, 1997, SOLID STATE IONICS, V97, P299
180128    SHKOLNIK S, 1982, J APPL POLYM SCI, V27, P2189
180129    TAHER NH, 1998, RADIAT PHYS CHEM, V53, P437
180130 NR 12
180131 TC 0
180132 SN 0021-8995
180133 J9 J APPL POLYM SCI
180134 JI J. Appl. Polym. Sci.
180135 PD MAR 15
180136 PY 2006
180137 VL 99
180138 IS 6
180139 BP 3401
180140 EP 3405
180141 PG 5
180142 SC Polymer Science
180143 GA 012MO
180144 UT ISI:000235343500070
180145 ER
180146 
180147 PT J
180148 AU Chen, LG
180149    Mai, BX
180150    Bi, XH
180151    Chen, SJ
180152    Wang, XM
180153    Ran, Y
180154    Luo, XJ
180155    Sheng, GY
180156    Fu, JM
180157    Zeng, EY
180158 TI Concentration levels, compositional profiles, and gas-particle
180159    partitioning of polybrominated diphenyl ethers in the atmosphere of an
180160    urban city in South China
180161 SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
180162 DT Article
180163 ID POLYCYCLIC AROMATIC-HYDROCARBONS; BROMINATED FLAME RETARDANTS;
180164    ORGANIC-COMPOUNDS; POLYCHLORINATED-BIPHENYLS; DECABROMODIPHENYL ETHER;
180165    ABSORPTION-MODEL; VAPOR-PRESSURES; AIR; PAHS; PCBS
180166 AB Air samples were collected in June of 2004 from four sites in the city
180167    of Guangzhou, a typical urban center in South China, to determine the
180168    levels, compositional profiles, and gas-particle distribution of 11
180169    polybrominated diphenyl ether (PBDE) congeners (BDE-28, -47, -66, -100,
180170    -99, -85, -154, -153, -138, -183, and -209). The arithmetic mean
180171    atmospheric concentrations of Sigma PBDEs (sum of all target PBDE
180172    congeners except for BDE-209) in samples from the urban and city
180173    background sites were comparable to or slightly higher than those from
180174    other places around the world. The arithmetic mean atmospheric
180175    concentrations of BDE-209, however, were higher than those in North
180176    America and Europe, and similar to the values from Japan. Congener
180177    compositions were dominated by BDE-209 in all (> 70%) but an industrial
180178    site, with an average abundance of 48% for BDE-209. The PBDE patterns
180179    were generally similar to that in the technical penta-BDE mixture,
180180    Bromkal 70-5DE. Partitioning of PBDEs between the gas and particle
180181    phases (K-p) was well correlated with the subcooled liquid vapor
180182    pressure (P-L(degrees)) for all of the samples, but the relationship
180183    differed between samples from different sites. The measured fractions
180184    of PBDEs in the particulate phase were compared to the predictions from
180185    the Junge-Pankow adsorption and KOA-based absorption models. The
180186    results indicated that the KOA-based model worked better than the
180187    Junge-Pankow model that tended to overestimate the particulate
180188    fractions for most PBDE congeners.
180189 C1 Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Organ Geochem, Ghangzhou 510640, Peoples R China.
180190    Chinese Acad Sci, Guangzhou Inst Geochem, Guangdong Key Lab Environm Protect & Resource Uti, Ghangzhou 510640, Peoples R China.
180191    Shanghai Univ, Sch Environm & Chem Engn, Inst Environm Pollut & Hlth, Shanghai 200072, Peoples R China.
180192    Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China.
180193 RP Mai, BX, Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Organ
180194    Geochem, Ghangzhou 510640, Peoples R China.
180195 EM nancymai@gig.ac.cn
180196 CR ALAEE M, 2000, 48 AM SOC MASS SPECT
180197    BERGMAN A, 1999, ORGANOHALOGEN COMPD, V43, P89
180198    BEZARESCRUZ J, 2004, ENVIRON SCI TECHNOL, V38, P4149
180199    BIDLEMAN TF, 1988, ENVIRON SCI TECHNOL, V22, P361
180200    COTHAM WE, 1995, ENVIRON SCI TECHNOL, V29, P2782
180201    DACHS J, 2000, ENVIRON SCI TECHNOL, V34, P3690
180202    GOSS KU, 1998, ENVIRON SCI TECHNOL, V32, P2025
180203    GUSTAFSON KE, 1997, ENVIRON SCI TECHNOL, V31, P140
180204    HALE RC, 2001, NATURE, V412, P140
180205    HARNER T, 1998, ENVIRON SCI TECHNOL, V32, P1494
180206    HARNER T, 2002, J CHEM ENG DATA, V47, P228
180207    HARRAD S, 2004, ENVIRON SCI TECHNOL, V38, P2345
180208    HAYAKAWA K, 2004, CHEMOSPHERE, V57, P343
180209    HELM PA, 2005, SCI TOTAL ENVIRON, V342, P161
180210    HITES RA, 2004, ENVIRON SCI TECHNOL, V38, P945
180211    HOH E, 2005, ENVIRON SCI TECHNOL, V39, P7794
180212    JAWARD FM, 2004, ENVIRON SCI TECHNOL, V38, P2523
180213    JAWARD FM, 2004, ENVIRON SCI TECHNOL, V38, P34
180214    LEE RGM, 1999, ENVIRON SCI TECHNOL, V33, P3596
180215    LEE RGM, 2002, ORGANOHALOGEN COMPD, V58, P193
180216    LOHMANN R, 2000, ENVIRON SCI TECHNOL, V34, P4943
180217    MAI BX, 2005, ENVIRON SCI TECHNOL, V39, P3521
180218    MANDALAKIS M, 2002, ATMOS ENVIRON, V36, P4023
180219    OHTA S, 2002, ORGANOHALOGEN COMPD, V57, P57
180220    PANKOW JF, 1987, ATMOS ENVIRON, V21, P2275
180221    PANKOW JF, 1991, ATMOS ENVIRON A-GEN, V25, P2241
180222    PANKOW JF, 1992, ATMOS ENVIRON A-GEN, V26, P1071
180223    PANKOW JF, 1994, ATMOS ENVIRON, V28, P185
180224    PANKOW JF, 1994, ATMOS ENVIRON, V28, P189
180225    PETTERSSONJULANDER A, 2004, J ENVIRON MONITOR, V6, P874
180226    POZO K, 2004, ENVIRON SCI TECHNOL, V39, P6529
180227    RAYNE S, 2002, ENVIRON TOXICOL CHEM, V21, P2292
180228    SHOEIB M, 2004, ENVIRON SCI TECHNOL, V38, P1313
180229    SIMCIK MF, 1998, ENVIRON SCI TECHNOL, V32, P251
180230    SJODIN A, 1998, J CHROMATOGR A, V822, P83
180231    SJODIN A, 2001, ENVIRON SCI TECHNOL, V35, P448
180232    SODERSTROM G, 2004, ENVIRON SCI TECHNOL, V38, P127
180233    STRANDBERG B, 2001, ENVIRON SCI TECHNOL, V35, P1078
180234    TERSCHURE AFH, 2004, ENVIRON SCI TECHNOL, V38, P1282
180235    TITTLEMIER SA, 2002, ENVIRON TOXICOL CHEM, V21, P1804
180236    WANG XM, 2005, ENVIRON SCI TECHNOL, V39, P7803
180237    WATANABE I, 1995, ORGANOHALOGEN COMPOU, V24, P337
180238    WIJESEKERA R, 2002, ORGANOHALOGEN COMPD, V55, P239
180239    WONG A, 2001, J CHEM ENG DATA, V46, P239
180240 NR 44
180241 TC 0
180242 SN 0013-936X
180243 J9 ENVIRON SCI TECHNOL
180244 JI Environ. Sci. Technol.
180245 PD FEB 15
180246 PY 2006
180247 VL 40
180248 IS 4
180249 BP 1190
180250 EP 1196
180251 PG 7
180252 SC Engineering, Environmental; Environmental Sciences
180253 GA 014KK
180254 UT ISI:000235478700019
180255 ER
180256 
180257 PT J
180258 AU Liang, XL
180259    Zhong, SS
180260    Wang, W
180261    Yao, FW
180262 TI Printed annular monopole antenna for ultra-wideband applications
180263 SO ELECTRONICS LETTERS
180264 DT Article
180265 AB A novel printed monopole antenna for ultra-wideband applications is
180266    introduced, which consists of an annular monopole patch and a
180267    trapeziform ground plane with a tapered CPW feeder in the middle. The
180268    simulated and experimental results demonstrate that this antenna
180269    achieves a ratio impedance bandwidth of more than 10:1 for VSWR <= 2,
180270    and exhibits the nearly omnidirectional radiation pattern with a simple
180271    structure.
180272 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
180273    E China Res Inst Elect Engn, Hefei 230031, Anhui, Peoples R China.
180274 RP Liang, XL, Shanghai Univ, Sch Commun & Informat Engn, Box 151,149
180275    Yanchang Rd, Shanghai 200072, Peoples R China.
180276 EM x.chen@elec.qmul.ac.uk
180277 CR AGRAWALL NP, 1998, IEEE T ANTENN PROPAG, V46, P294
180278    HUANG CY, 2005, ELECTRON LETT, V41, P296
180279    STUTZMAN WL, 1998, ANTENNA THEORY DESIG
180280    WANG W, 2004, MICROW OPT TECHN LET, V43, P50
180281    WONG KL, 2005, IEEE T ANTENN PROPAG, V53, P1262
180282 NR 5
180283 TC 1
180284 SN 0013-5194
180285 J9 ELECTRON LETT
180286 JI Electron. Lett.
180287 PD JAN 19
180288 PY 2006
180289 VL 42
180290 IS 2
180291 BP 71
180292 EP 72
180293 PG 2
180294 SC Engineering, Electrical & Electronic
180295 GA 013DT
180296 UT ISI:000235390500005
180297 ER
180298 
180299 PT J
180300 AU Liu, HJ
180301    Xu, D
180302    Shao, JL
180303    Wang, YF
180304 TI An RNA folding algorithm including pseudoknots based on dynamic
180305    weighted matching
180306 SO COMPUTATIONAL BIOLOGY AND CHEMISTRY
180307 DT Article
180308 DE RNA secondary structure; pseudoknots; dynamic weighted matching
180309 ID GENETIC ALGORITHM; PREDICTION; MODELS
180310 AB On the basis of maximum weighted matching (MWM) algorithm, we
180311    introduced a dynamic weight related with stem length and used a
180312    recursive algorithm to predict RNA secondary structures by searching
180313    the stem structure with maximum weight summation step-by-step. This
180314    algorithm not only avoids the complicated free energy calculation, but
180315    also it could attain higher prediction accuracy. Moreover, our
180316    algorithm can predict most types of potential pseudoknots in the RNA
180317    structure. (C) 2005 Elsevier Ltd. All rights reserved.
180318 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
180319    China Jiliang Univ, Coll Life Sci, Hangzhou 310018, Peoples R China.
180320 RP Wang, YF, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
180321 EM yifei_wang@staff.shu.edu.cn
180322 CR BALDI P, 2000, BIOINFORMATICS, V16, P412
180323    CARY R, 1995, P INT C INTELL SYST, V3, P75
180324    EDDY SR, 1994, NUCLEIC ACIDS RES, V22, P2079
180325    LYNGSO RB, 2000, J COMPUT BIOL, V7, P409
180326    RIVAS E, 1999, J MOL BIOL, V285, P2053
180327    RUAN JH, 2004, BIOINFORMATICS, V20, P58
180328    SCHMITZ M, 1996, J MOL BIOL, V255, P254
180329    SHAPIRO BA, 1997, COMPUT APPL BIOSCI, V13, P459
180330    TABASKA JE, 1998, BIOINFORMATICS, V14, P691
180331    VANBATENBURG FHD, 1995, J THEOR BIOL, V174, P269
180332    ZUKER M, 1981, NUCLEIC ACIDS RES, V9, P133
180333 NR 11
180334 TC 0
180335 SN 1476-9271
180336 J9 COMPUT BIOL CHEM
180337 JI Comput. Biol. Chem.
180338 PD FEB
180339 PY 2006
180340 VL 30
180341 IS 1
180342 BP 72
180343 EP 76
180344 PG 5
180345 SC Computer Science, Interdisciplinary Applications; Biology
180346 GA 014GO
180347 UT ISI:000235467800009
180348 ER
180349 
180350 PT J
180351 AU Zhuang, ZY
180352    Zhang, WH
180353    Jia, XS
180354    Zhai, HB
180355 TI Application of titanocene monochloride to organic synthesis
180356 SO CHINESE JOURNAL OF ORGANIC CHEMISTRY
180357 DT Review
180358 DE titanocene monochloride; organic synthesis; application
180359 ID FREE-RADICAL REACTIONS; CP2TICL-MEDIATED SELECTIVE REDUCTION; CATALYZED
180360    PINACOL COUPLINGS; ELECTRON-TRANSFER REACTIONS; TUNGSTEN CARBENE
180361    COMPLEXES; BUFFERED PROTIC CONDITIONS; DICHLORIDE-INDIUM SYSTEM;
180362    BETA-HYDROXY KETONES; ALPHA,BETA-EPOXY KETONES; CARBONYL-COMPOUNDS
180363 AB The synthetic transformations mediated by titanocene monochloride in
180364    the latest several years are reviewed. They involve mainly reductive
180365    ring opening of epoxides, other reductions, Refomatsky reactions,
180366    pinacol coupling, radical addition to unsaturated metal carbenes, and
180367    reactions of preparing glycols and C-glycosides.
180368 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
180369    Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Modern Synthet Organ Chem, Shanghai 200032, Peoples R China.
180370 RP Zhuang, ZY, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
180371 EM xsjia@mail.shu.edu.cn
180372 CR BARDEN MC, 1996, J AM CHEM SOC, V118, P5484
180373    BARLUENGA J, 1988, CHEM REV, V88, P487
180374    BARRERO AF, 2001, J ORG CHEM, V66, P4047
180375    BARRERO AF, 2003, TETRAHEDRON LETT, V44, P1079
180376    BECKWITH AL, 1987, TETRAHEDRON, V37, P3073
180377    BEREN JG, 1989, SYNTHESIS-STUTTGART, P305
180378    BERMEJO F, 2004, J ORG CHEM, V69, P5275
180379    BIRMINGHAM JM, 1955, NATURWISSENSCHAFTEN, V42, P96
180380    BOLDRINI GP, 1983, J ORG CHEM, V48, P4108
180381    BOOMA C, 1993, J CHEM SOC PERK T 1, P393
180382    CASEY CP, 1974, J ORGANOMET CHEM, V77, P345
180383    CASEY CP, 1977, INORG CHEM, V16, P391
180384    CAVALLARO CL, 1995, J ORG CHEM, V60, P7055
180385    CAVALLARO CL, 1995, J ORG CHEM, V60, P7055
180386    CAVALLARO CL, 1995, J ORG CHEM, V60, P7057
180387    CHAKRABORTY TK, 1997, J CHEM SOC PERK 0507, P1257
180388    CHAKRABORTY TK, 1998, TETRAHEDRON LETT, V39, P101
180389    CHAKRABORTY TK, 2001, J INDIAN CHEM SOC, V78, P45
180390    CHAKRABORTY TK, 2002, TETRAHEDRON LETT, V43, P2313
180391    COUTTS RSP, 1973, J ORGANOMET CHEM, V47, P375
180392    CSUK R, 1986, J CHEM SOC CHEM COMM, P1149
180393    CURRAN DP, 1988, SYNTHESIS-STUTTGART, P489
180394    DANISHEFSKY SJ, 1993, SCIENCE, V260, P1307
180395    DING Y, 1992, J CHEM SOC CHEM COMM, P941
180396    DING Y, 1992, TETRAHEDRON LETT, V33, P8117
180397    DING Y, 1997, TETRAHEDRON, V53, P2899
180398    DOTZ KH, 2000, TETRAHEDRON, V56, P8291
180399    DUNLAP MS, 1999, SYNTHETIC COMMUN, V29, P1097
180400    DUNLAP MS, 1999, SYNTHETIC COMMUN, V29, P1097
180401    ENEMAERKE RJ, 2004, J AM CHEM SOC, V126, P7853
180402    ENGMAN L, 1994, J ORG CHEM, V59, P5179
180403    FAULKNER DJ, 1994, NAT PROD REP, V11, P355
180404    FISCHER EO, 1977, J ORGANOMET CHEM, V131, P57
180405    FUSE S, 2004, TETRAHEDRON LETT, V45, P1961
180406    GANSAUER A, 1997, CHEM COMMUN     0307, P457
180407    GANSAUER A, 1997, SYNLETT          APR, P363
180408    GANSAUER A, 1998, ANGEW CHEM INT EDIT, V37, P101
180409    GANSAUER A, 1998, CHEM COMMUN     1007, P2143
180410    GANSAUER A, 1998, EUR J ORG CHEM   NOV, P2673
180411    GANSAUER A, 1998, EUR J ORG CHEM   SEP, P1923
180412    GANSAUER A, 1998, J AM CHEM SOC, V120, P12849
180413    GANSAUER A, 1998, J ORG CHEM, V63, P2070
180414    GANSAUER A, 1998, SYNLETT          AUG, P801
180415    GANSAUER A, 2000, CHEM REV, V100, P2771
180416    GANSAUER A, 2000, CHEM REV, V100, P2788
180417    GANSAUER A, 2001, CHEM REV, V100, P2781
180418    GANSAUER A, 2001, SYNTHESIS-STUTTG DEC, P2500
180419    GANSAUER A, 2002, ADV SYNTH CATAL, V344, P465
180420    GANSAUER A, 2002, TETRAHEDRON, V58, P7017
180421    GIESE B, 1981, ANGEW CHEM INT EDIT, V20, P967
180422    GIESE B, 1983, ANGEW CHEM, V95, P771
180423    GIESE B, 1985, ANGEW CHEM INT EDIT, V24, P553
180424    GIESE B, 1986, RADICALS ORGANIC SYN
180425    GIESE B, 1989, ANGEW CHEM INT EDIT, V28, P969
180426    GIOVANNI P, 1989, TETRAHEDRON, V45, P7411
180427    GOLD HJ, 1999, SYNLETT          JAN, P159
180428    HALCOMB RL, 1989, J AM CHEM SOC, V111, P6661
180429    HANDA Y, 1987, TETRAHEDRON LETT, V28, P5717
180430    HARDOUIN C, 2001, J ORG CHEM, V66, P1046
180431    HARDOUIN C, 2001, J ORG CHEM, V66, P1046
180432    HASEGAWA E, 1992, J ORG CHEM, V57, P5352
180433    HASEGAWA E, 1996, TETRAHEDRON LETT, V37, P7079
180434    HASEGAWA E, 1997, J ORG CHEM, V62, P2396
180435    HEDENSTROM E, 2000, J CHEM SOC P1, P1513
180436    HIRAO T, 1998, TETRAHEDRON LETT, V39, P5247
180437    HUANG Y, 1996, SYNTHETIC COMMUN, V26, P2911
180438    HUANG Y, 1997, SYNTHETIC COMMUN, V27, P1059
180439    IQBAL J, 1994, CHEM REV, V94, P519
180440    IRELAND RE, 1993, J AM CHEM SOC, V115, P7166
180441    JIA XS, 2003, J CHEM RES-S     SEP, P540
180442    LI JJ, 2000, TETRAHEDRON, V57, P1
180443    LI JJ, 2001, TETRAHEDRON, V57, P1
180444    LI TJ, 1981, J ORG CHEM, V46, P4323
180445    LIU KKC, 1994, J ORG CHEM, V59, P1895
180446    LIU Y, 1994, J ORG CHEM, V59, P940
180447    MACOMBER DW, 1991, ORGANOMETALLICS, V10, P737
180448    MCCHESNEY JD, 1985, J ORG CHEM, V50, P3473
180449    MCVINISH LM, 1994, TETRAHEDRON LETT, V35, P923
180450    MERLIC CA, 1991, J AM CHEM SOC, V113, P9855
180451    MERLIC CA, 1993, TETRAHEDRON LETT, V34, P227
180452    MIYASHITA M, 1997, TETRAHEDRON, V53, P12469
180453    MOISAN L, 2002, TETRAHEDRON LETT, V43, P2013
180454    MOLANDER GA, 1986, J ORG CHEM, V51, P2596
180455    MOMURA R, 1996, J AM CHEM SOC, V118, P11666
180456    MORENO MJSM, 1993, TETRAHEDRON LETT, V34, P353
180457    MURPHY PJ, 1987, TETRAHEDRON LETT, V28, P2037
180458    NELSEN TR, 1975, J ORG CHEM, V40, P3159
180459    ORSINI F, 1997, J ORG CHEM, V62, P1159
180460    OSUKA A, 1984, CHEM LETT, P271
180461    PARKER KA, 1994, J AM CHEM SOC, V116, P11149
180462    PARRISH JD, 2002, ORG LETT, V4, P1439
180463    PARRISH JD, 2003, ORG LETT, V5, P3615
180464    POLLON JHP, 1989, SYNTHESIS-STUTTG OCT, P758
180465    PORTER NA, 1991, ACCOUNTS CHEM RES, V24, P296
180466    RAJANBABU TV, 1989, J AM CHEM SOC, V111, P4525
180467    RAJANBABU TV, 1991, ACCOUNTS CHEM RES, V24, P139
180468    RAJANBABU TV, 1994, J AM CHEM SOC, V116, P986
180469    RAJANBABU TV, 1994, J AM CHEM SOC, V116, P986
180470    RATHKE MW, 1970, J ORG CHEM, V35, P3966
180471    ROTH W, 1963, METHODS CARBOHYD CHE, V2, P405
180472    SANTANIELLO E, 1977, SYNTHESIS-STUTTGART, P698
180473    SANTOYOGONZALEZ F, 1994, TETRAHEDRON, V50, P2877
180474    SHIBATA I, 2002, ORG LETT, V4, P301
180475    SHIMIZU T, 2002, TETRAHEDRON LETT, V43, P1039
180476    SHINADA H, 1995, CHEM LETT, P671
180477    SHLOMO A, 1986, ORGANOMETALLICS, V27, P3791
180478    SKYDSTRUP T, 1999, TETRAHEDRON LETT, V40, P6087
180479    SKYDSTRUP T, 2000, TETRAHEDRON LETT, V41, P8645
180480    SO JH, 1988, J ORG CHEM, V53, P5871
180481    SOMSAK L, 1993, J CARBOHYD CHEM, V12, P679
180482    SPENCER RP, 1996, TETRAHEDRON LETT, V37, P4357
180483    SPENCER RP, 1996, TETRAHEDRON LETT, V37, P4360
180484    SPENCER RP, 1997, J ORG CHEM, V62, P4204
180485    SPENCER RP, 1999, J ORG CHEM, V64, P3987
180486    SPENCER RP, 2000, TETRAHEDRON, V56, P2103
180487    TANAKA K, 1991, J ORG CHEM, V56, P4333
180488    TORRI S, 1997, J ORG CHEM, V62, P2396
180489    TOSHIMA K, 1993, CHEM REV, V93, P1503
180490    TUFARIELLO JJ, 1973, J ORG CHEM, V40, P3159
180491    WANG SLB, 1990, J AM CHEM SOC, V112, P4550
180492    YOO BW, 2002, SYNTHETIC COMMUN, V32, P2489
180493    YOO BW, 2002, SYNTHETIC COMMUN, V32, P63
180494    ZHANG YM, 1995, SYNTHETIC COMMUN, V25, P1825
180495    ZHANG YM, 1995, SYNTHETIC COMMUN, V25, P1825
180496    ZHAO G, 2001, J FLUORINE CHEM, V111, P217
180497    ZHAO ZB, 2001, SYNTHETIC COMMUN, V31, P2089
180498 NR 126
180499 TC 0
180500 SN 0253-2786
180501 J9 CHINESE J ORG CHEM
180502 JI Chin. J. Org. Chem.
180503 PD FEB
180504 PY 2006
180505 VL 26
180506 IS 2
180507 BP 145
180508 EP 157
180509 PG 13
180510 SC Chemistry, Organic
180511 GA 013MB
180512 UT ISI:000235412300001
180513 ER
180514 
180515 PT J
180516 AU Wang, S
180517    Jiang, H
180518    Song, LP
180519    Zhang, JM
180520 TI Progress in the synthesis of heterocycle-fused C-60-fullerene
180521    derivatives
180522 SO CHINESE JOURNAL OF ORGANIC CHEMISTRY
180523 DT Article
180524 DE C-60; heterocycle; synthesis
180525 ID DIELS-ALDER REACTION; 1,3-DIPOLAR CYCLOADDITION REACTION; SOLUBLE
180526    FULLERENE DERIVATIVES; ACTIVE METHYLENE-COMPOUNDS; SOLVENT-FREE
180527    REACTIONS; AMINO-ACID ESTERS; AZOMETHINE YLIDES; BUCKMINSTERFULLERENE
180528    C-60; MICROWAVE IRRADIATION; LIPID-PEROXIDATION
180529 AB This review deals with the recent progress in the study on preparing
180530    the three-, five-, six- and seven-membered heterocycle-fused
180531    C-60-fullerene derivatives via the cycloaddition reactions.
180532 C1 Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
180533 RP Wang, S, Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
180534 EM jmzhang@public6.sta.net.cn
180535 CR AKASAKA T, 1993, J AM CHEM SOC, V115, P10366
180536    AKSAKA T, 1993, J AM CHEM SOC, V115, P1605
180537    AVERDUNG J, 1994, CHEM BER, V127, P787
180538    AVERDUNG J, 1995, TETRAHEDRON LETT, V36, P2957
180539    AVERDUNG J, 1996, TETRAHEDRON, V52, P5407
180540    BANKS MR, 1994, TETRAHEDRON LETT, V35, P9067
180541    BANKS MR, 1995, J CHEM SOC CHEM COMM, P1171
180542    BANKS MR, 1995, J CHEM SOC CHEM COMM, P885
180543    BARTOSZEK M, 1996, SYNTHETIC MET, V77, P93
180544    BENSASSON RV, 2000, FREE RADICAL BIO MED, V29, P26
180545    BERNSTEIN R, 1998, TETRAHEDRON LETT, V39, P7051
180546    BOSI S, 2004, J MED CHEM, V47, P6711
180547    CAPACCIO M, 2005, BIOCONJUGATE CHEM, V16, P241
180548    CREEGAN KM, 1992, J AM CHEM SOC, V114, P1103
180549    CRUZ P, 1997, TETRAHEDRON, V53, P2599
180550    CRUZ P, 1999, TETRAHEDRON LETT, V40, P1587
180551    CRUZ P, 1999, TETRAHEDRON LETT, V40, P4889
180552    DA RT, 1999, CHEM COMMUN, P663
180553    DUCZEK W, 1995, TETRAHEDRON LETT, V36, P2457
180554    DUGAN LL, 1997, P NATL ACAD SCI USA, V94, P9434
180555    DUGAN LL, 2001, PARKINSONISM RELAT D, V7, P243
180556    ECKERT JF, 2002, CHEM COMMUN, P712
180557    FONG R, 1999, ORG LETT, V1, P729
180558    GAN LB, 1996, J ORG CHEM, P1423
180559    GROSSER T, 1995, ANGEW CHEM INT EDIT, V34, P1343
180560    HAMANO T, 1995, J CHEM SOC CHEM 0807, P1537
180561    HSU HC, 2000, J CARDIOVASC PHARM, V36, P423
180562    HUO YP, 2004, CHINESE J ORG CHEM, V24, P1191
180563    ILLESCAS BM, 2003, TETRAHEDRON, V59, P6569
180564    IRNGARTINGER H, 1999, TETRAHEDRON, V55, P10753
180565    ISHIDA H, 1999, TETRAHEDRON LETT, V40, P1543
180566    ISHIDA T, 1994, CHEM LETT, P561
180567    IYODA M, 1995, CHEM LETT, P1133
180568    JAGEROVIC N, 1996, J CHEM SOC PERK 0321, P499
180569    JENSEN W, 1996, BIOORGAN MED CHEM, V4, P767
180570    KAMPE KD, 1993, ANGEW CHEM INT EDIT, V32, P1174
180571    KOMATSU K, 1999, FULLERENE SCI TECHN, V7, P609
180572    KOMORI A, 1996, TETRAHEDRON LETT, V37, P4031
180573    KRABTSCHMER W, 1990, NATURE, V347, P354
180574    KROTO HW, 1985, NATURE, V318, P162
180575    KUWASHIMA SY, 1994, TETRAHEDRON LETT, V35, P4371
180576    LANGA F, 2000, CARBON, V38, P1641
180577    LAWSON GE, 1995, J CHEM SOC CHEM COMM, P2225
180578    LI K, 2004, J AM CHEM SOC, V126, P3388
180579    LI X, 2001, CHEM J CHINESE U, V22, P515
180580    LIOU KF, 1996, CHEM COMMUN     0621, P1423
180581    MA SL, 2001, ACTA CHIM SINICA, V59, P1344
180582    MAGGINI M, 1993, J AM CHEM SOC, V115, P9798
180583    MASHINO T, 2003, BIOORGAN MED CHEM, V11, P1433
180584    MATSUBARA Y, 1995, J ORG CHEM, V60, P5372
180585    MEIER MS, 1993, J ORG CHEM, V58, P4524
180586    MEIER MS, 1996, TETRAHEDRON, V52, P5043
180587    MORTON JR, 1998, ACCOUNTS CHEM RES, V31, P63
180588    NAIR V, 1999, TETRAHEDRON LETT, V40, P5087
180589    OHNO M, 1993, CHEM LETT, P1833
180590    OHNO M, 1995, J CHEM SOC CHEM COMM, P565
180591    OHNO M, 1995, TETRAHEDRON LETT, V36, P6899
180592    OHNO M, 1996, CHEM COMMUN     0207, P291
180593    OHNO M, 1996, TETRAHEDRON LETT, V37, P9211
180594    OVCHARENKO AA, 1997, TETRAHEDRON LETT, V38, P6933
180595    PRATO M, 1996, SYNTHETIC MET, V77, P89
180596    SCHICK G, 1998, TETRAHEDRON, V54, P4283
180597    SCHUSTER DI, 2004, J AM CHEM SOC, V126, P7257
180598    SHEN CKF, 1995, TETRAHEDRON LETT, V36, P5383
180599    SHU LH, 1995, TETRAHEDRON LETT, V36, P3871
180600    SUAREZ M, 2003, TETRAHEDRON, V59, P9179
180601    WANG GW, 2003, TETRAHEDRON LETT, V44, P4407
180602    WANG GW, 2003, TETRAHEDRON, V59, P55
180603    WANG GW, 2004, TETRAHEDRON, V60, P3921
180604    WANG IC, 1999, J MED CHEM, V42, P4614
180605    WEISMAN RB, 2001, J AM CHEM SOC, V123, P9720
180606    WU SH, 1998, J CHEM SOC PERK 0521, P1733
180607    YAN MD, 1994, J ORG CHEM, V59, P5951
180608    YANG W, 2004, CHINESE J ORG CHEM, V24, P231
180609    ZHANG JM, 2005, SYNTHETIC COMMUN, V35, P89
180610    ZHANG TH, 2004, ORG BIOMOL CHEM, V2, P1698
180611    ZHANG X, 2004, J ORG CHEM, V69, P5800
180612    ZHANG XJ, 1993, TETRAHEDRON LETT, V34, P8187
180613    ZHANG XJ, 1995, J AM CHEM SOC, V117, P4271
180614    ZHENG LP, 2004, ACTA CHIM SINICA, V62, P88
180615 NR 80
180616 TC 0
180617 SN 0253-2786
180618 J9 CHINESE J ORG CHEM
180619 JI Chin. J. Org. Chem.
180620 PD FEB
180621 PY 2006
180622 VL 26
180623 IS 2
180624 BP 168
180625 EP 180
180626 PG 13
180627 SC Chemistry, Organic
180628 GA 013MB
180629 UT ISI:000235412300003
180630 ER
180631 
180632 PT J
180633 AU Cao, T
180634    Yin, JB
180635    Luo, K
180636    Chen, HD
180637    Chen, XS
180638 TI Synthesis and characterization of poly-L-glutamic acid with a high
180639    molecular weight
180640 SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
180641 DT Article
180642 DE L-glutamic acid; gamma-benzyl L-glutamate; poly(gamma-benzyl
180643    L-glutamate); poly-L-glutamic acid
180644 ID POLYMERIZATION
180645 AB Poly-L-glutamic acid with a high molecular weight was prepared by
180646    chemical synthesis. The structures of PBLG and PLGA were confirmed by
180647    FTIR and H-1 NMR spectroscopies and their molecular weights were
180648    measured by GPC and viscosity measurements. The results show that the
180649    average molecular weight of poly-L-glutamic acid is about 7 x 10(4) -
180650    35 x 10(4). Furthermore, when the anhydride-initiator malar ratio
180651    n(A)/n(I)> 50, the average molecular weight was independent of the
180652    amount of triethylamine initiator.
180653 C1 Shanghai Univ, Dept Polymer, Shanghai 201800, Peoples R China.
180654    Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China.
180655 RP Yin, JB, Shanghai Univ, Dept Polymer, Shanghai 201800, Peoples R China.
180656 EM jbyin@staff.shu.edu.cn
180657    xschen@ciac.jl.cn
180658 CR BLOUT ER, 1956, J AM CHEM SOC, V78, P941
180659    DALY WH, 1988, TETRAHEDRON LETT, V29, P5859
180660    GOODMAN M, 1966, J AM CHEM SOC, V88, P3627
180661    HE B, 2003, POLYMER, V44, P989
180662    HE MJ, 1983, POLYM PHYS, P105
180663    IWATA H, 1998, BIOMATERIALS, V19, P1869
180664    KATCHALSKI E, 1951, ADV PROTEIN CHEM, V6, P123
180665    KRICHELDORF HR, 1987, A AMINO ACID N CARBO
180666    LEUCHS H, 1906, CHEM BER, V39, P857
180667    PAN CY, 1997, POLYM CHEM, P245
180668    PEGGION E, 1966, J AM CHEM SOC, V88, P3630
180669    WANG D, 1997, MACROMOLECULES, V30, P5688
180670 NR 12
180671 TC 0
180672 SN 0251-0790
180673 J9 CHEM J CHINESE UNIV-CHINESE
180674 JI Chem. J. Chin. Univ.-Chin.
180675 PD FEB 10
180676 PY 2006
180677 VL 27
180678 IS 2
180679 BP 369
180680 EP 371
180681 PG 3
180682 SC Chemistry, Multidisciplinary
180683 GA 013MV
180684 UT ISI:000235414300040
180685 ER
180686 
180687 PT J
180688 AU Yin, JB
180689    Luo, K
180690    Chen, XS
180691    Khutoryanskiy, VV
180692 TI Miscibility studies of the blends of chitosan with some cellulose ethers
180693 SO CARBOHYDRATE POLYMERS
180694 DT Article
180695 DE chitosan; cellulose ethers; blends; miscibility; hydrophilic films
180696 ID POLYMER BLENDS; ACID)
180697 AB The polymeric films have been prepared based on blends of chitosan with
180698    two cellulose ethers-hydroxypropylmethylcellulose and methylcellulose
180699    by casting from acetic acid solutions. The films were transparent and
180700    brittle in a dry state but an immersion of the samples in deionized
180701    water for over 24 h leads to their disintegration or partial
180702    dissolution. The miscibility of the polymers in the blends has been
180703    assessed by infrared spectroscopy, wide-angle X-ray diffraction,
180704    scanning electron microscopy and thermal gravimetric analysis. It was
180705    shown that although weak hydrogen bonding exists between the polymer
180706    functional groups the blends are not fully miscible in a dry state. (c)
180707    2005 Elsevier Ltd. All rights reserved.
180708 C1 Shanghai Univ, Dept Polymer Mat, Shanghai 201800, Peoples R China.
180709    Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China.
180710    Univ Reading, Sch Pharm, Reading RG6 6AD, Berks, England.
180711 RP Yin, JB, Shanghai Univ, Dept Polymer Mat, 20 Chengzhong St, Shanghai
180712    201800, Peoples R China.
180713 EM jbyin@staff.shu.edu.cn
180714    v.khutoryanskiy@reading.ac.uk
180715 CR AMIJI MM, 1995, BIOMATERIALS, V16, P593
180716    BO YJ, 2001, EURAS CHEM TECHNOL J, V3, P191
180717    COLEMAN MM, 1995, PROG POLYM SCI, V20, P1
180718    HE Y, 2004, PROG POLYM SCI, V29, P1021
180719    JIANG M, 1999, ADV POLYM SCI, V146, P121
180720    KHUTORYANSKIY VV, 2003, POLYM INT, V52, P62
180721    KHUTORYANSKIY VV, 2004, POLYM INT, V53, P307
180722    LIANG CY, 1959, J POLYM SCI, V39, P269
180723    MUCHA M, 2005, THERMOCHIM ACTA, V427, P69
180724    NURKEEVA ZS, IN PRESS CARBOHYDRAT, V62, P80
180725    PAWLAK A, 2003, THERMOCHIM ACTA, V396, P153
180726    RITTHIDEJ GC, 2002, INT J PHARM, V232, P11
180727    SAKURAI K, 2000, POLYMER, V41, P7051
180728    SUTO S, 1996, J APPL POLYM SCI, V61, P2273
180729    TWU YK, 2003, CARBOHYD POLYM, V54, P425
180730    WANJUN T, 2005, POLYM DEGRADATION ST, V87, P389
180731    WU YB, 2004, CARBOHYD POLYM, V57, P435
180732    XU YX, 2005, IND CROP PROD, V21, P185
180733 NR 18
180734 TC 0
180735 SN 0144-8617
180736 J9 CARBOHYD POLYM
180737 JI Carbohydr. Polym.
180738 PD FEB 3
180739 PY 2006
180740 VL 63
180741 IS 2
180742 BP 238
180743 EP 244
180744 PG 7
180745 SC Chemistry, Applied; Chemistry, Organic; Polymer Science
180746 GA 012RY
180747 UT ISI:000235358200011
180748 ER
180749 
180750 PT J
180751 AU Mo, JQ
180752    Wang, H
180753    Lin, WT
180754 TI Approximate analytic solution of land-air couplind dynamical system
180755 SO ACTA PHYSICA SINICA
180756 DT Article
180757 DE nonlinear; land-air coupling; dynamical system; homotopic mapping
180758 ID PARTIAL-DIFFERENTIAL-EQUATIONS; NONLINEAR EVOLUTION-EQUATIONS;
180759    VARIATIONAL ITERATION METHOD; HOMOTOPIC SOLVING METHOD; COMPUTATIONAL
180760    STABILITY; PERTURBATIVE SOLUTION; OSCILLATOR MECHANISM; ENSO MODEL;
180761    PACIFIC; LAYERS
180762 AB Atmospheric physics deals with very complicated natural phenomena.
180763    Basic models have to be implemented for the sea-air and land-air
180764    oscillators and then solve them using the approximate method. In this
180765    paper, a class of nonlinear coupling system for land-air oscillator
180766    model is studied. Using the homotopic mapping method, it is translated
180767    into solving linear problems, and the approximate expressions for the
180768    original nonlinear problem are obtained.
180769 C1 Anhui Normal Univ, Wuhan, Peoples R China.
180770    Shanghai Univ, Div Computat Sci, E Inst, Shanghai 200240, Peoples R China.
180771    Chinese Acad Meteorol Sci, Beijing 100081, Peoples R China.
180772    Chinese Acad Sci, Inst Atmospher Sci, LASG, Beijing 100029, Peoples R China.
180773 RP Mo, JQ, Anhui Normal Univ, Wuhan, Peoples R China.
180774 EM mojiaqi@mail.ahnu.edu.cn
180775 CR AKHMETOV DR, 2003, ASYMPTOTIC ANAL, V35, P65
180776    BELL DC, 2003, NONLINEAR ANAL-REAL, V3, P515
180777    DEJAGER EM, 1996, THEORY SINGULAR PERT
180778    FAN XG, 1999, ACTA METEOROLOGICA S, V57, P190
180779    GU DF, 1997, SCIENCE, V275, P805
180780    HAMOUDA M, 2003, APPL ANAL, V81, P837
180781    HAN HL, 2004, ACTA PHYS SINICA, V53, P4061
180782    HAN HL, 2005, ACTA PHYS SINICA, V54, P2510
180783    HE JH, 2002, APPROXIMATE ANAL MET
180784    HSU CS, 1980, ASME J APPLIED MECHA, V47, P931
180785    HWANG S, 2004, J DIFFER EQUATIONS, V200, P191
180786    LIAO SJ, 2004, BEYOND PERTURBATION
180787    LIN WT, 2000, CHINESE SCI BULL, V45, P1358
180788    LIN WT, 2001, ACTA AERODYNAMICA SI, V19, P348
180789    LIN WT, 2002, ADV ATMOS SCI, V19, P699
180790    LIN WT, 2002, PROGR NATURAL SCI, V12, P1326
180791    LIN WT, 2004, CHINESE SCI BULL, V48, P5
180792    MARQUES I, 2005, NONLINEAR ANAL-THEOR, V61, P21
180793    MCPHADEN MJ, 2002, NATURE, V415, P603
180794    MO JQ, 2004, ACTA PHYS SIN-CH ED, V53, P3245
180795    MO JQ, 2004, ACTA PHYS SIN-CH ED, V53, P996
180796    MO JQ, 2004, PROG NAT SCI, V14, P1126
180797    MO JQ, 2004, PROG NAT SCI, V14, P550
180798    MO JQ, 2005, ACTA PHYS SIN-CH ED, V54, P1081
180799    MO JQ, 2005, ACTA PHYS SIN-CH ED, V54, P3967
180800    MO JQ, 2005, ACTA PHYS SIN-CH ED, V54, P3971
180801    MO JQ, 2005, ACTA PHYS SIN-CH ED, V54, P993
180802    MO JQ, 2005, CHINESE PHYS, V14, P875
180803    OUYANG C, 2004, ACTA PHYS SINICA, V53, P1900
180804    PERJAN A, 2003, BULETINUL ACAD DE SU, V42, P95
180805    SHUKLA J, 1981, J ATMOS SCI, V38, P2547
180806    WU QK, 2005, ACTA PHYS SINICA, V54, P2590
180807    YU JJ, 2004, ACTA PHYS SIN-CH ED, V53, P3701
180808    ZHANG F, 2004, J DIFFER EQUATIONS, V205, P77
180809 NR 34
180810 TC 0
180811 SN 1000-3290
180812 J9 ACTA PHYS SIN-CHINESE ED
180813 JI Acta Phys. Sin.
180814 PD FEB
180815 PY 2006
180816 VL 55
180817 IS 2
180818 BP 485
180819 EP 489
180820 PG 5
180821 SC Physics, Multidisciplinary
180822 GA 013QE
180823 UT ISI:000235423300001
180824 ER
180825 
180826 PT J
180827 AU Tang, RR
180828 TI Analysis of evolution and life-time of the plasma channel produced by
180829    ultra-stort ultra-high power laser pulse
180830 SO ACTA PHYSICA SINICA
180831 DT Article
180832 DE density; laser pulse; plasma channel; perturbation
180833 ID HOMOTOPIC SOLVING METHOD; SEA-AIR OSCILLATOR; MECHANISM; MODEL
180834 AB Using the perturbed theory, the plasma channel produced by ultra-short
180835    ultra-high power laser pulses is considered. Under the actions of
180836    recombination, attachment and detachment, the perturbed asymptotic
180837    expressions of the density of each kind of charged panicles in the
180838    course of evolution of the plasma channel are obtained. The influence
180839    of each action on the evolution and life-time of the channel is
180840    discussed.
180841 C1 Huzhou Teachers Coll, Fac Sci, Huzhou 313000, Peoples R China.
180842    Shanghai Univ, E Inst, Div Computat Sci, Shanghai 200240, Peoples R China.
180843 RP Tang, RR, Huzhou Teachers Coll, Fac Sci, Huzhou 313000, Peoples R China.
180844 EM rrtang@hutc.zj.cn
180845 CR CHENG CF, 2004, ACTA PHYS SIN-CH ED, V53, P1826
180846    HAN XL, 2004, ACTA PHYS SIN-CH ED, V53, P4061
180847    JONES DJ, 2000, SCIENCE, V288, P635
180848    LU X, 2004, ACTA PHYS SIN-CH ED, V53, P3404
180849    MLEJNEK M, 1999, PHYS REV LETT, V83, P2938
180850    MO JQ, 2004, ACTA PHYS SIN-CH ED, V53, P3245
180851    MO JQ, 2004, ACTA PHYS SIN-CH ED, V53, P996
180852    MO JQ, 2004, APPL MATH J CHINESE, V19, P57
180853    MO JQ, 2005, ACTA PHYS SIN-CH ED, V54, P1081
180854    MO JQ, 2005, ACTA PHYS SIN-CH ED, V54, P993
180855    MO JQ, 2005, CHINESE PHYS, V14, P875
180856    SPRANGLE P, 2002, PHYS REV E 2, V66
180857    TANG RR, 2004, ANN DIFF EQS, V20, P407
180858    TANG RR, 2005, ADV MATH, V34, P233
180859    TANG RR, 2005, ADV MATH, V34, P497
180860    TZORTZAKIS S, 2000, OPT COMMUN, V181, P123
180861    TZORTZAKIS S, 2001, PHYS REV LETT, V86, P5470
180862    YANG H, 2002, PHYS REV E 2, V65
180863    ZHAO XM, 1995, IEEE J QUANTUM ELECT, V31, P599
180864    ZHENG ZM, 2003, ACTA PHYS SINICA, V52, P125
180865 NR 20
180866 TC 0
180867 SN 1000-3290
180868 J9 ACTA PHYS SIN-CHINESE ED
180869 JI Acta Phys. Sin.
180870 PD FEB
180871 PY 2006
180872 VL 55
180873 IS 2
180874 BP 494
180875 EP 498
180876 PG 5
180877 SC Physics, Multidisciplinary
180878 GA 013QE
180879 UT ISI:000235423300003
180880 ER
180881 
180882 PT J
180883 AU Yuan, SJ
180884    Zhou, SM
180885    Mu, L
180886 TI Ferromagnetic resonance study of Ni nanowire arrays
180887 SO ACTA PHYSICA SINICA
180888 DT Article
180889 DE nanowires; ferromagnetic resonance; dipolar interactions; anodic
180890    alumina template
180891 ID MAGNETIC-PROPERTIES; ANODIC ALUMINA; NICKEL NANOWIRES; FABRICATION;
180892    ANISOTROPY; WIRES
180893 AB Arrays of Ni nanowires were electrode posited into anodic alumina oxide
180894    templates with various pore diameters and porosity. The magnetization
180895    behavior of the Ni nanowire arrays was investigated with ferromagnetic
180896    resonance techniques and the vibrating sample magnetometer. Both
180897    ferromagnetic resonance spectra and hysteresis loops show that there is
180898    a strong dipolar interaction between the nanowires. The easy axis of
180899    magnetization is mainly a result of a competition of shape anisotropy
180900    and dipolar interaction. With increasing array density, the dipolar
180901    interactions increase and the easy axis is tuned from parallel to
180902    perpendicular to the wire axis.
180903 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
180904    Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
180905    Fudan Univ, State Key Lab Appl Surface, Shanghai 200433, Peoples R China.
180906    Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China.
180907    Nanjing Univ, State Key Lab Solid State Microstruct, Nanjing 210093, Peoples R China.
180908 RP Yuan, SJ, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
180909 EM shujuanyuan@staff.shu.edu.cn
180910 CR DUBOIS S, 2000, PHYS REV B, V61, P14315
180911    EBELS U, 2001, PHYS REV B, V64
180912    ENCINASOROPESA A, 2001, J APPL PHYS 2, V89, P6704
180913    ENCINASOROPESA A, 2001, PHYS REV B, V63
180914    GRIMSDITCH M, 1999, J APPL PHYS 2B, V85, P5901
180915    HEINRICH B, 1993, ADV PHYS, V42, P523
180916    HERTEL R, 2001, J APPL PHYS, V90, P5752
180917    JESSENSKY O, 1998, APPL PHYS LETT, V72, P1173
180918    LIU K, 1995, PHYS REV B, V51, P7381
180919    MASUDA H, 1995, SCIENCE, V268, P1466
180920    MATHIEU C, 1998, PHYS REV LETT, V81, P3968
180921    QING DH, 2001, ACTA PHYS SIN-CH ED, V50, P144
180922    ROSS CA, 2002, PHYS REV B, V65
180923    SKOMSKI R, 2000, PHYS REV B, V62, P3900
180924    SOROP TG, 2003, PHYS REV B, V67
180925    STRIJKERS GJ, 1999, J APPL PHYS, V86, P5141
180926    SUN L, 2001, APPL PHYS LETT, V79, P4429
180927    TAYAOKA A, 1996, J APPL PHYS 2B, V79, P6016
180928    WHITNEY TM, 1993, SCIENCE, V261, P1316
180929    YU DL, 2005, ACTA PHYS SIN-CH ED, V54, P930
180930    ZHAN QF, 2004, APPL PHYS LETT, V85, P4690
180931    ZHENG M, 2000, PHYS REV B, V62, P12282
180932 NR 22
180933 TC 0
180934 SN 1000-3290
180935 J9 ACTA PHYS SIN-CHINESE ED
180936 JI Acta Phys. Sin.
180937 PD FEB
180938 PY 2006
180939 VL 55
180940 IS 2
180941 BP 891
180942 EP 896
180943 PG 6
180944 SC Physics, Multidisciplinary
180945 GA 013QE
180946 UT ISI:000235423300074
180947 ER
180948 
180949 PT J
180950 AU Tong, YW
180951    Zhang, YW
180952    He, L
180953    Li, HQ
180954    Chen, H
180955 TI The band structure in microwave frequency for quasi-1-D coaxial
180956    photonic crystals
180957 SO ACTA PHYSICA SINICA
180958 DT Article
180959 DE coaxial photonic crystals; coaxial; band gap; transmission matrix
180960 ID TRANSMISSION
180961 AB A quasi-one-dimensional coaxial photonic crystal has been assembled
180962    from a series of "tee", "female" and "male" connectors. With the vector
180963    network analyzer the transmission coefficient and the phase information
180964    has been measured for different structures. The energy band structure
180965    has also been calculated with the method of transmission matrix under
180966    Bloch periodicity boundary condition. The experimental results agree
180967    well with the calculated results.
180968 C1 Tongji Univ, Pohl Inst Solid State Phys, Shanghai 200092, Peoples R China.
180969    Tongji Univ, Sch Elect & Informat Engn, Shanghai 200092, Peoples R China.
180970    Shanghai Univ Sci & Technol, Shanghai 200093, Peoples R China.
180971 RP Zhang, YW, Tongji Univ, Pohl Inst Solid State Phys, Shanghai 200092,
180972    Peoples R China.
180973 EM yewenzhang@online.sh.cn
180974 CR ANTONIADES MA, 2003, IEEE ANTENNAS WIRELE, V2, P103
180975    COLLIN RE, 1966, FDN MICROWAVE ENG
180976    DOBRZYNSKI L, 1998, PHYS REV B, V57, P9388
180977    DOBRZYNSKI L, 2003, PHYS REV E 2, V67
180978    DU GQ, 2004, ACTA PHYS SIN-CH ED, V53, P1095
180979    ELEFTHERIADES GV, 2002, IEEE T MICROW THEORY, V50, P2702
180980    GRBIC A, 2002, J APPL PHYS, V92, P5930
180981    HACHE A, 2002, APPL PHYS LETT, V80, P518
180982    HACHE A, 2002, PHYS REV E 2B, V65
180983    HACHE A, 2004, AM J PHYS, V72, P916
180984    MEHMET FY, 2004, PHYS REV LETT, V92
180985    PRADHAN RD, 1999, PHYS REV B, V60, P2410
180986    SAJEEV J, 1987, PHYS REV LETT, V58, P2486
180987    VASSEUR JO, 1997, PHYS REV B, V55, P10434
180988    WANG H, 2001, ACTA PHYS SINICA, V50, P2175
180989    YABLONOVITCH E, 1987, PHYS REV LETT, V58, P2059
180990 NR 16
180991 TC 0
180992 SN 1000-3290
180993 J9 ACTA PHYS SIN-CHINESE ED
180994 JI Acta Phys. Sin.
180995 PD FEB
180996 PY 2006
180997 VL 55
180998 IS 2
180999 BP 935
181000 EP 940
181001 PG 6
181002 SC Physics, Multidisciplinary
181003 GA 013QE
181004 UT ISI:000235423300082
181005 ER
181006 
181007 PT J
181008 AU Hsing, YT
181009 TI Brokering power and property in China's townships
181010 SO PACIFIC REVIEW
181011 DT Article
181012 DE land; local government; township; decentralisation; power process;
181013    property rights
181014 ID STATE
181015 AB This paper concerns the process of power at the periphery of state
181016    bureaucracy with a focus oil township governments and their land
181017    development projects in the last two decades. I argue that townships at
181018    the bottom of the state bureaucracy operate like power brokers between
181019    the state and the village. When dealing with the formal party-state
181020    system above them, the township's delegated power is highly uncertain.
181021    Townships choose to maneuver in the unspecified legal and
181022    administrative zone to bypass the scrutiny of the Supervising
181023    government. When it comes to the village below them, the township's
181024    power is under-defined, and therefore can be stretched to intensify and
181025    centralize the grips over village resources and land. In both cases,
181026    township officials strategize to maximize their control of village land
181027    and profit from the booming land-lease market in China's fast
181028    industrializing and urbanizing areas. Townships' land deals reflect the
181029    general power process of decentralization. Their brokerage of power
181030    corresponds directly with that of property rights in post-reform China.
181031 C1 Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA.
181032    Shanghai Univ, E Inst, Sociol Div, Shanghai, Peoples R China.
181033 RP Hsing, YT, Univ Calif Berkeley, Dept Geog, 507 McCore Hall, Berkeley,
181034    CA 94720 USA.
181035 EM yhsing@berkeley.edu
181036 CR BAUM R, 1999, PARADOX CHINAS POST, P333
181037    CHUNG JH, 2004, CHINA Q, V180, P945
181038    CORRIGAN P, 1985, GREAT ARCH ENGLISH S
181039    CRZYMALABUSSE A, 2002, POLIT SOC, V30, P529
181040    DESOUSA S, 1977, LAW SOC REV, V12, P5
181041    DUARA P, 1988, CULTURE POWER STATE
181042    EDIN M, 2003, CHINA Q, V173, P35
181043    FOUCAULT M, 1982, M FOUCAULT STRUCTURA, P221
181044    HO P, 2001, CHINA Q, V166, P394
181045    HU YF, 2002, CAIJING         0805
181046    HUANG P, 2003, EC OBSERVER     0811
181047    JACOBS H, 1998, WHO OWNS AM SOCIAL C
181048    LI LC, 1998, CENTRAL PROVINCES CH
181049    LI LC, 2005, J CONTEMP ASIA, V1, P87
181050    LIN GCS, 2002, CITIES, V19, P299
181051    LIN GCS, 2005, ANN ASSOC AM GEOGR, V95, P411
181052    LIN MY, 2004, TURANG, V26, P27
181053    LIU SD, 2000, ZHONGGUO XIANGZHEN Z, P117
181054    MA LJC, 2005, POLIT GEOGR, V24, P477
181055    MA R, 2000, ZHONGGUO XIANGZHEN Z, P1
181056    MONTINOLA G, 1997, J ECON PERSPECT, V11, P82
181057    OBRIEN K, 1999, COMP POLIT, V99, P167
181058    OI JC, 1992, WORLD POLIT, V45, P99
181059    REN BY, 2002, ZHONGGUIO NONGCUN YA, P20
181060    SCOTT J, 1998, SEEING LIKE STATE HO
181061    SINGER J, 2000, ENTITLEMENT PARADOXE
181062    SUN LP, 2000, TSINGHUA SHEHUIXUE P, P21
181063    TONG ZH, 2002, ZHONGGUIO NONGCUN YA, P46
181064    TSUI KY, 2004, CHINA Q, V177, P71
181065    VERDERY K, 1999, UNCERTAIN TRANSITION, P53
181066    WANK D, 1998, COMMODIFYING COMMUNI
181067    WU A, 2000, CAIJING         0805
181068    WU FL, 1998, URBAN STUD, V35, P259
181069    WU LC, 2002, ZHONGGUIO NONGCUN YA, P64
181070    XIE W, 2004, XINGJING BAO
181071    XU H, 2004, ZHJONGGUO NONGMIN TU
181072    YANG LP, 2005, 21 CENTURY BUSI 0714
181073    YANG YR, 2004, ZHONGGUO DALU YANJIU, V47, P111
181074    ZHANG FQ, 2004, CHINA Q, V180, P1050
181075    ZHANG L, 1998, CHINA Q, V154, P330
181076    ZHOU YX, 2003, CHINA Q, V173, P176
181077    ZHU DL, 2003, SHEHUI BIANQIAN ZHON
181078    ZWEIG D, 1992, BUREAUCRACY POLITICS, P334
181079 NR 43
181080 TC 0
181081 SN 0951-2748
181082 J9 PAC REV
181083 JI Pac. Rev.
181084 PD MAR
181085 PY 2006
181086 VL 19
181087 IS 1
181088 BP 103
181089 EP 124
181090 PG 22
181091 SC Area Studies
181092 GA 011PJ
181093 UT ISI:000235280300006
181094 ER
181095 
181096 PT J
181097 AU Ren, WW
181098    Guo, QG
181099    Yang, Y
181100    Chen, FX
181101 TI bFGF and heparin but not laminin are necessary factors in the mediums
181102    that affect NSCs differentiation into cholinergic neurons
181103 SO NEUROLOGICAL RESEARCH
181104 DT Article
181105 DE neural stem cells; differentiate; ChAT; cholinergic neuron
181106 ID STEM-CELLS; PROGENITOR CELLS; NEURAL STEM; TRANSPLANTATION; EXPRESS;
181107    BRAIN; CNS
181108 AB Objectives: Neural stem cells (NSCs) are self-renewed, pluripotent
181109    cells that can differentiate into neurons, astrocytes and
181110    oligodendrocytes. Cholinergic neurons are an important kind of neurons
181111    that play an essential role in the treatment of Parkinsonism and
181112    epilepsy. We are interested in how different mediums affect NSCs
181113    differentiation into cholinergic neurons.
181114    Methods: NSCs were isolated from the striatum corpora of embryonic
181115    brain in a 14-day pregnant rat. Cells were cultured in basic mediums
181116    [F12/DMEM (1:1) including 1% B27 (v/v) and 20 ng/ml EGF] but with
181117    different combinations of three supplements: bFGF (20 ng/ml), heparin
181118    (5 mg/ml) and laminin (1 mg/ml). After 7 days culturing, cells were
181119    immunized with choline acetyltransferase (ChAT), a marker enzyme of
181120    cholinergic neuron.
181121    Results: We found ChAT could not be detected in the basic mediums with
181122    only one supplement. Then, we tested the combination of two out of
181123    three. We found that ChAT positive cells could only be detected in the
181124    medium with bFGF and heparin (FH). However, when we added the laminin
181125    into the FH, more ChAT positive cells appeared.
181126    Discussion: This finding suggests that bFGF and heparin are essential
181127    in the mediums that affect NSCs differentiation into cholinergic
181128    neurons, and laminin is an important positive factor in this process.
181129 C1 Shanghai Univ, Sch Life Sci, Shanghai 200444, Peoples R China.
181130 RP Chen, FX, Shanghai Univ, Sch Life Sci, 99 Shangda Rd, Shanghai 200444,
181131    Peoples R China.
181132 EM fxchen@mail.shu.edu.cn
181133 CR FLAX JD, 1998, NAT BIOTECHNOL, V16, P1033
181134    FRICKER RA, 1999, J NEUROSCI, V19, P5990
181135    GAGE FH, 1995, ANNU REV NEUROSCI, V18, P159
181136    HARTIKKA J, 1988, J NEUROSCI RES, V21, P352
181137    KAN MK, 1993, SCIENCE, V259, P1918
181138    LENDAHL U, 1990, CELL, V60, P585
181139    MCKAY R, 1997, SCIENCE, V276, P66
181140    PINCUS DW, 1998, NEUROSURGERY, V42, P858
181141    SHEEN VL, 1999, EXP NEUROL, V158, P47
181142    SHIHABUDDIN LS, 1999, ARCH NEUROL-CHICAGO, V56, P29
181143    SHIHABUDDIN LS, 2000, J NEUROSCI, V20, P8727
181144    SUHONEN JO, 1996, NATURE, V383, P624
181145    ZHANG SC, 2001, NAT BIOTECHNOL, V19, P1129
181146 NR 13
181147 TC 0
181148 SN 0161-6412
181149 J9 NEUROL RES
181150 JI Neurol. Res.
181151 PD JAN
181152 PY 2006
181153 VL 28
181154 IS 1
181155 BP 87
181156 EP 90
181157 PG 4
181158 SC Clinical Neurology; Neurosciences
181159 GA 009ZB
181160 UT ISI:000235151100015
181161 ER
181162 
181163 PT J
181164 AU Li, D
181165    Sun, XL
181166    Wang, J
181167 TI Optimal lot solution to cardinality constrained mean-variance
181168    formulation for portfolio selection
181169 SO MATHEMATICAL FINANCE
181170 DT Article
181171 DE portfolio selection; mean-variance formulation; concave transaction
181172    costs; cardinality constraint; nonlinear integer programming
181173 ID MINIMUM TRANSACTION LOTS; POWER LAGRANGIAN METHOD;
181174    PROGRAMMING-PROBLEMS; OPTIMIZATION MODEL; COSTS; RULE
181175 AB The pioneering work of the mean-variance formulation proposed by
181176    Markowitz in the 1950s has provided a scientific foundation for modern
181177    portfolio selection. Although the trade practice often confines
181178    portfolio selection with certain discrete features, the existing theory
181179    and solution methodologies of portfolio selection have been primarily
181180    developed for the continuous solution of the portfolio policy that
181181    could be far away from the real integer optimum. We consider in this
181182    paper an exact solution algorithm in obtaining an optimal lot solution
181183    to cardinality constrained mean-variance formulation for portfolio
181184    selection under concave transaction costs. Specifically, a convergent
181185    Lagrangian and contour-domain cut method is proposed for solving this
181186    class of discrete-feature constrained portfolio selection problems by
181187    exploiting some prominent features of the mean-variance formulation and
181188    the portfolio model under consideration. Computational results are
181189    reported using data from the Hong Kong stock market.
181190 C1 Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China.
181191    Shanghai Univ, Shanghai 200041, Peoples R China.
181192 RP Li, D, Chinese Univ Hong Kong, Dept Syst Engn & Engn Management,
181193    Shatin, Hong Kong, Peoples R China.
181194 EM dli@se.cuhk.edu.hk
181195 CR BAWA VS, 1975, J FINANC ECON, V2, P95
181196    BIENSTOCK D, 1996, MATH PROGRAM, V74, P121
181197    CHANG TJ, 2000, COMPUT OPER RES, V27, P1271
181198    CHIODI L, 2003, ANN OPER RES, V124, P245
181199    CRAMA Y, 2003, EUR J OPER RES, V150, P546
181200    FEINSTEIN CD, 1993, MANAGE SCI, V39, P1552
181201    FISHER ML, 1981, MANAGE SCI, V27, P1
181202    GEOFFRION AM, 1974, MATHEMATICAL PROGRAM, V2, P82
181203    JOBT NJ, 2001, QUANT FINANC, V1, P1
181204    KELLERER H, 2000, ANN OPER RES, V99, P287
181205    KONNO H, 1991, MANAGE SCI, V37, P519
181206    KONNO H, 2001, MATH PROGRAM, V89, P233
181207    LI D, 1998, DYN CONTIN DISCRET I, V4, P585
181208    LI D, 2000, ANN OPER RES, V98, P151
181209    LI D, 2000, J GLOBAL OPTIM, V18, P235
181210    LI D, 2000, MATH FINANC, V10, P387
181211    LI D, 2005, IN PRESS NONLINEAR I
181212    MANSINI R, 1999, EUR J OPER RES, V114, P219
181213    MANSINI R, 2002, 20020730 U BRESC DEP
181214    MANSINI R, 2003, IMA J MANAGEMENT MAT, V14, P187
181215    MARKOWITZ HM, 1956, NAV RES LOG, V3, P111
181216    MARKOWITZ HM, 1959, PORTFOLIO SELECTION
181217    MARKOWITZ HM, 1989, MEAN VARIANCE ANAL P
181218    MERTON RC, 1972, J FINANCIAL QUANTITA, V7, P1851
181219    OGRYCZAK W, 2000, ANN OPER RES, V97, P143
181220    PARKER RG, 1988, DISCRETE OPTIMIZATIO
181221    ROCKAFELLAR RT, 2002, J BANK FINANC, V26, P1443
181222    ROY AD, 1952, ECONOMETRICA, V20, P431
181223    SHAPIRO JF, 1979, ANN DISCRETE MATH, V5, P113
181224    SUN XL, 2000, MATH OPER RES, V25, P625
181225    SYAM SS, 1998, EUR J OPER RES, V108, P196
181226    YITZHAKI S, 1982, AM ECON REV, V72, P178
181227    YOUNG MR, 1998, MANAGE SCI, V44, P673
181228    ZHOU XY, 2000, APPL MATH OPT, V42, P19
181229 NR 34
181230 TC 0
181231 SN 0960-1627
181232 J9 MATH FINANC
181233 JI Math. Financ.
181234 PD JAN
181235 PY 2006
181236 VL 16
181237 IS 1
181238 BP 83
181239 EP 101
181240 PG 19
181241 SC Business, Finance; Mathematics, Interdisciplinary Applications; Social
181242    Sciences, Mathematical Methods; Economics
181243 GA 009TM
181244 UT ISI:000235136300006
181245 ER
181246 
181247 PT J
181248 AU Chen, H
181249    Liu, SP
181250    Chen, L
181251    Huang, JH
181252    Xiang, SM
181253 TI Expression of HBcAg mutant with long internal deletion in Saccharomyces
181254    cerevisiae and observation of its self-assembly particles by atomic
181255    force microscopy (AFM)
181256 SO INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
181257 DT Article
181258 DE Delta rHBcAg self-assembly; Saccharomyces cerevisiae; Delta rHBcAg
181259    (core) particles; atomic force microscopy; polymorphism
181260 ID HEPATITIS-B-VIRUS; CORE NUCLEOTIDE-SEQUENCE; ESCHERICHIA-COLI;
181261    ELECTRON-MICROSCOPY; GENE-MUTATIONS; ANTIGEN; PROTEIN; PURIFICATION;
181262    INFECTION; CORRELATE
181263 AB An internally truncated C gene of adr hepatitis B virus core antigen
181264    with long internal deletion (aa81-aa116) (Delta HBcAg with 36aa
181265    truncation) was expressed in Saccharomyces cerevisiae and the products
181266    (Delta rHBcAg) were purified from a crude lysate of the yeast by three
181267    steps: Sephrose CL-4B chromatography, sucrose step-gradient
181268    ultracentrifugation and CsCl-isopycnic ultracentrifugation. Results of
181269    ELISA test and density analysis of CsCl-isopycnic ultracentrifugation
181270    indicated that the purified products (Delta rHBcAg protein) with HBeAg
181271    antigenicity mainly located at the densities of 1.23 g ml(-1).
181272    Observation and analysis of the purified Delta rHBcAg products by AFM
181273    indicated that the Delta rHBcAg (core) protein produced in S.
181274    cerevisiae could self-assemble into three or more size classes of core
181275    particles which exhibited a polymorphous distribution of Delta rHBcAg
181276    (core) particles. These different size classes of core particles mainly
181277    centred oil the range whose mean diameter was from 10 nm to 48 nm,
181278    especially on the position of 11 nm, 15.6 nm and the range from 27 nm
181279    to 41 nm, respectively. Furthermore, the most number of core particles
181280    mainly centred on the range whose mean diameter was from 27 nm to 41
181281    nm. These results above indicated that the truncated internal long
181282    fragment (aa81-aa116) probably had no effect on self-assembly of the
181283    HBcAg core particles which implied the internal length fragment
181284    (aa81-aa116) was not the sole domain for self-assembly of HBcAg dimer
181285    or the truncated HBcAg protein Subunit formed the fresh interactive
181286    domain with each other. These initial results above by AFM analysis
181287    were very important for further research on the self-assembly,
181288    ultrastructure, subunit interaction and core internal deletion mutant
181289    (CIDM) function of HBcAg core particles. (c) 2005 Elsevier B.V. All
181290    rights reserved.
181291 C1 Shanghai Univ, Sch Life Sci, Shanghai 200444, Peoples R China.
181292    Shanghai Jiao Tong Univ, Coll Life Sci & Biotechnol, Shanghai 200030, Peoples R China.
181293    Shanghai Generun BioTech Co Ltd, Shanghai 200233, Peoples R China.
181294 RP Chen, H, Univ Alberta, Fac Med, Dept Biochem, Lab 347, Edmonton, AB T6G
181295    2H7, Canada.
181296 EM hengc@ualberta.ca
181297 CR AKARCA US, 1995, HEPATOLOGY, V22, P50
181298    CHEN H, 2004, MICRON, V35, P311
181299    COHEN BJ, 1982, NATURE, V296, P677
181300    CROWTHER RA, 1994, CELL, V77, P943
181301    EHATA T, 1992, J CLIN INVEST, V89, P332
181302    EHATA T, 1993, J CLIN INVEST, V91, P1206
181303    FUJIYAMA A, 1983, NUCLEIC ACIDS RES, V11, P4601
181304    GRAY AH, 1997, J VIRAL HEPATITIS, V4, P371
181305    HOSONO S, 1995, VIROLOGY, V212, P151
181306    KENNEY JM, 1995, STRUCTURE, V3, P1009
181307    KONIG S, 1998, J VIROL, V72, P4997
181308    KOSCHEL M, 1999, J VIROL, V73, P2153
181309    KOSCHEL M, 2000, J VIROL, V74, P1
181310    KUZNETSOV YG, 2001, J GEN VIROL 9, V82, P2025
181311    MILICH DR, 1997, J VIROL, V71, P2192
181312    MILICH DR, 1997, P NATL ACAD SCI USA, V94, P14648
181313    NAITO M, 1997, RES VIROLOGY, V148, P299
181314    NASSAL M, 1993, TRENDS MICROBIOL, V1, P221
181315    ONODERA S, 1982, J MED VIROL, V10, P147
181316    PASEK M, 1979, NATURE, V282, P575
181317    SALFELD J, 1989, J VIROL, V63, P798
181318    SAMBROOK J, 1989, MOL CLONING LAB MANU
181319    SEIFER M, 1995, INTERVIROLOGY, V38, P47
181320    TAKAYUKI I, 1988, J BIOTECHNOL, V8, P149
181321    TOWBIN H, 1979, P NATL ACAD SCI USA, V76, P4350
181322    WINGFIELD PT, 1995, BIOCHEMISTRY-US, V34, P4919
181323    WIZEMANN H, 1999, J VIROL METHODS, V77, P189
181324    WYNNE SA, 1999, MOL CELL, V3, P771
181325    YANG WG, 1994, J VIROL, V68, P338
181326    YUAN TTT, 1998, J VIROL, V72, P2168
181327    YUAN TTT, 1998, J VIROL, V72, P578
181328    ZHOU SL, 1992, J VIROL, V66, P5393
181329 NR 32
181330 TC 0
181331 SN 0141-8130
181332 J9 INT J BIOL MACROMOL
181333 JI Int. J. Biol. Macromol.
181334 PD DEC 30
181335 PY 2005
181336 VL 37
181337 IS 5
181338 BP 239
181339 EP 248
181340 PG 10
181341 SC Biochemistry & Molecular Biology
181342 GA 011LK
181343 UT ISI:000235269500004
181344 ER
181345 
181346 PT J
181347 AU Liew, KM
181348    Cheng, YM
181349    Kitipornchai, S
181350 TI Boundary element-free method (BEFM) and its application to
181351    two-dimensional elasticity problems
181352 SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
181353 DT Article
181354 DE moving least-square approximation (MLS); improved moving least-square
181355    approximation (IMLS); weighted orthogonal function; weight function;
181356    domain of influence; boundary integral equation; meshless method;
181357    boundary element-free method (BEFM)
181358 ID NODE METHOD; MATERIAL INTERFACES; CRACKS; PLATES
181359 AB In this Study, we first discuss the moving least-square approximation
181360    (MLS) method. In some cases, the MLS may form an ill-conditioned system
181361    of equations so that the Solution cannot be correctly obtained. Hence,
181362    in this paper, we propose an improved moving least-square approximation
181363    (IMLS) method. In the IMLS method, the orthogonal function system with
181364    a weight function is used as the basis function. The IMLS has higher
181365    computational efficiency and precision than the MLS, and will not lead
181366    to an ill-conditioned system of equations. Combining the boundary
181367    integral equation (BIE) method and the IMLS approximation method, a
181368    direct meshless BIE method, the boundary element-free method (BEFM),
181369    for two-dimensional elasticity is presented. Compared to other meshless
181370    BIE methods, BEFM is a direct numerical method in which the basic
181371    unknown quantity is the real solution of the nodal variables, and the
181372    boundary conditions can be applied easily; hence, it has higher
181373    computational precision. For demonstration purpose, selected numerical
181374    examples are given. Copyright (c) 2005 John Wiley & Sons, Ltd.
181375 C1 City Univ Hong Kong, Dept Bldg & Construct, Kowloon, Hong Kong, Peoples R China.
181376    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
181377 RP Kitipornchai, S, City Univ Hong Kong, Dept Bldg & Construct, Kowloon,
181378    Hong Kong, Peoples R China.
181379 EM S.Kitipornchai@cityu.edu.hk
181380 CR BEER G, 1989, INT J NUMER METH ENG, V28, P1233
181381    BEER G, 1993, INT J NUMER METH ENG, V36, P3579
181382    BELYTSCHKO T, 1996, COMPUT METHOD APPL M, V139, P3
181383    BROEK D, 1982, ELEMENTARY FRACTURE
181384    CHATI MK, 1999, INT J NUMER METH ENG, V46, P1163
181385    CHATI MK, 2000, INT J NUMER METH ENG, V47, P1523
181386    GU YT, 2001, COMPUT METHOD APPL M, V190, P4405
181387    LANCASTER P, 1981, MATH COMPUT, V37, P141
181388    LIEW KM, 2003, INT J NUMER METH ENG, V56, P2331
181389    LIEW KM, 2003, INT J NUMER METH ENG, V57, P599
181390    LIEW KM, 2004, INT J NUMER METH ENG, V60, P1861
181391    LIEW KM, 2005, INT J NUMER METH ENG, V63, P1014
181392    MUKHERJEE YX, 1997, INT J NUMER METH ENG, V40, P797
181393    TABATABAISTOCKER B, 1998, COMMUN NUMER METH EN, V14, P355
181394    TIMOSHENKO SP, 1970, THEORY ELASTICITY
181395    ZHU T, 1998, COMPUT MECH, V21, P223
181396 NR 16
181397 TC 0
181398 SN 0029-5981
181399 J9 INT J NUMER METHOD ENG
181400 JI Int. J. Numer. Methods Eng.
181401 PD FEB 19
181402 PY 2006
181403 VL 65
181404 IS 8
181405 BP 1310
181406 EP 1332
181407 PG 23
181408 SC Engineering, Multidisciplinary; Mathematics, Applied
181409 GA 012EF
181410 UT ISI:000235320300007
181411 ER
181412 
181413 PT J
181414 AU Zhang, P
181415    Wong, SC
181416    Dai, SQ
181417 TI Characteristic parameters of a wide cluster in a higher-order traffic
181418    flow model
181419 SO CHINESE PHYSICS LETTERS
181420 DT Article
181421 AB Nonlinear weak solution theory is applied to determine the parameters
181422    of a wide cluster in an "anisotropic" higher-order traffic flow model.
181423    These parameters are the maximal and minimal densities and the
181424    travelling wave speed in the solution structure. Numerical experiments
181425    show that the convergent simulation results are in good agreement with
181426    those obtained from the analytical expressions.
181427 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
181428    Univ Hong Kong, Dept Civil Engn, Hong Kong, Hong Kong, Peoples R China.
181429 RP Wong, SC, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
181430    200072, Peoples R China.
181431 EM hhecwsc@hkucc.hku.hk
181432 CR AW A, 2000, SIAM J APPL MATH, V60, P916
181433    DAGANZO CF, 1995, TRANSPORT RES B-METH, V29, P277
181434    HELBING D, 2001, REV MOD PHYS, V73, P1067
181435    JIANG R, 2002, TRANSPORT RES B-METH, V36, P405
181436    JIN WL, 2003, TRANSPORT RES B-METH, V37, P207
181437    KERNER BS, 1993, PHYS REV E, V48, P2335
181438    KERNER BS, 1994, PHYS REV E, V50, P54
181439    KERNER BS, 1997, PHYS REV LETT, V79, P4030
181440    LEVEQUE RJ, 2002, FINITE VOLUME METHOD
181441    LI T, 2005, COMMUN MATH SCI, V3, P101
181442    LI T, 2005, PHYSICA D, V207, P41
181443    PAYNE HJ, 1971, MATH MODELS PUBLIC S, V1, P51
181444    WHITHAM GB, 1974, LINEAR NONLINEAR WAV
181445    WONG GCK, 2002, TRANSPORT RES A-POL, V36, P827
181446    WONG SC, 2002, TRANSPORT RES B-METH, V36, P683
181447    XUE Y, 2003, PHYS REV E 2, V68
181448    ZHANG HM, 2002, TRANSPORT RES B-METH, V36, P275
181449    ZHANG P, IN PRESS EUR J APPL
181450    ZHANG P, 2003, J COMPUT APPL MATH, V156, P1
181451    ZHANG P, 2003, NUMER METH PART D E, V21, P80
181452    ZHANG P, 2005, PHYS REV E 2, V71
181453    ZHANG P, 2006, J COMPUT PHYS, V212, P739
181454 NR 22
181455 TC 0
181456 SN 0256-307X
181457 J9 CHIN PHYS LETT
181458 JI Chin. Phys. Lett.
181459 PD FEB
181460 PY 2006
181461 VL 23
181462 IS 2
181463 BP 516
181464 EP 519
181465 PG 4
181466 SC Physics, Multidisciplinary
181467 GA 011GC
181468 UT ISI:000235255200067
181469 ER
181470 
181471 PT J
181472 AU Zheng, SW
181473    Tang, YF
181474    Fu, JL
181475 TI Non-Noether symmetries and Lutzky conservative quantities of
181476    nonholonomic nonconservative dynamical systems
181477 SO CHINESE PHYSICS
181478 DT Article
181479 DE conserved quantity; non-Noether symmetry; nonholonomic nonconservative
181480    system; infinitesimal transformation
181481 ID VELOCITY-DEPENDENT SYMMETRIES; MECHANICAL SYSTEMS; LIE SYMMETRIES;
181482    INVARIANTS
181483 AB Non-Noether symmetries and conservative quantities of nonholonomic
181484    nonconservative dynamical systems are investigated in this paper. Based
181485    on the relationships among motion, nonconservative forces, nonholonomic
181486    constrained forces and Lagrangian, non-Noether symmetries and Lutzky
181487    conservative quantities are presented for nonholonomic nonconservative
181488    dynamical systems. The relation between non-Noether symmetry and
181489    Noether symmetry is discussed and it is further shown that non-Noether
181490    conservative quantities can be obtained by a complete set of Noether
181491    invariants. Finally, an example is given to illustrate these results.
181492 C1 Shangqiu Teachers Coll, Dept Phys, Shangqiu 476000, Peoples R China.
181493    Chinese Acad Sci, State Key Lab Sci & Engn Comp, Beijing 100080, Peoples R China.
181494    Zhejiang Sci & Technol Univ, Dept Phys, Hangzhou 310018, Peoples R China.
181495    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
181496 RP Fu, JL, Shangqiu Teachers Coll, Dept Phys, Shangqiu 476000, Peoples R
181497    China.
181498 EM sqfujingli@163.com
181499 CR CHEN XW, 2003, CHINESE PHYS, V12, P1349
181500    CICOGNA G, 1992, NUOVO CIMENTO B, V107, P1085
181501    FANG JH, 2005, ACTA PHYS SIN-CH ED, V54, P500
181502    FU JL, 2003, PHYS LETT A, V317, P255
181503    FU JL, 2004, CHINESE PHYS, V13, P287
181504    GUO YX, 2001, CHINESE PHYS, V9, P801
181505    HOJMAN SA, 1992, J PHYS A, V25, P291
181506    LIU RW, 2004, CHINESE PHYS, V13, P1615
181507    LUO SK, 2005, CHINESE PHYS, V14, P656
181508    LUTZKY M, 1978, J PHYS A, V11, P249
181509    LUTZKY M, 1979, PHYS LETT A, V72, P86
181510    LUTZKY M, 1995, J PHYS A, V28, P637
181511    LUTZKY M, 1998, INT J NONLINEAR MECH, V33, P393
181512    MEI FX, 1999, APPL LIE GROUPS LIE, P151
181513    MEI FX, 2004, SYMMETRIES CONSERVED
181514    NOETHER AE, 1918, NACHR KGL GES WISS G, V2, P235
181515    QIAO YF, 2005, CHINESE PHYS, V14, P828
181516    XU XJ, 2005, CHINESE PHYS, V14, P1287
181517    ZHANG HB, 2002, CHINESE PHYS, V11, P1
181518    ZHANG HB, 2005, ACTA PHYS SIN-CH ED, V54, P2489
181519    ZHANG HB, 2005, CHINESE PHYS, V14, P238
181520    ZHANG Y, 2003, CHINESE PHYS, V12, P1048
181521 NR 22
181522 TC 0
181523 SN 1009-1963
181524 J9 CHIN PHYS
181525 JI Chin. Phys.
181526 PD FEB
181527 PY 2006
181528 VL 15
181529 IS 2
181530 BP 243
181531 EP 248
181532 PG 6
181533 SC Physics, Multidisciplinary
181534 GA 010WJ
181535 UT ISI:000235228300001
181536 ER
181537 
181538 PT J
181539 AU Liu, RW
181540    Zhang, HB
181541    Chen, LQ
181542 TI Variational principle and dynamical equations of discrete
181543    nonconservative holonomic systems
181544 SO CHINESE PHYSICS
181545 DT Article
181546 DE discrete mechanics; variational principle; dynamical equation
181547 ID 1ST INTEGRALS; TIME MECHANICS
181548 AB By analogue with the methods and processes in continuous mechanics, a
181549    Lagrangian formulation and a Hamiltonian formulation of discrete
181550    mechanics are obtained. The dynamical equations including
181551    Euler-Lagrange equations and Hamilton's canonical equations of the
181552    discrete nonconservative holonomic systems are derived on a discrete
181553    variational principle. Some illustrative examples are also given.
181554 C1 Shaoguan Univ, Dept Phys, Shaoguan 512005, Peoples R China.
181555    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
181556 RP Liu, RW, Shaoguan Univ, Dept Phys, Shaoguan 512005, Peoples R China.
181557 EM lrw@sgu.edu.cn
181558 CR CADZOW JA, 1970, INT J CONTROL, V11, P393
181559    IKEDA M, 1978, MATH JAPONICA, V23, P231
181560    JAROSZKIEWICZ G, 1997, J PHYS A-MATH GEN, V30, P3115
181561    JAROSZKIEWICZ G, 1997, J PHYS A-MATH GEN, V30, P3145
181562    LEE TD, 1983, PHYS LETT B, V122, P217
181563    LOGAN JD, 1973, AEQUAT MATH, V9, P210
181564    MARSDEN JE, 2001, ACT NUMERIC, V10, P357
181565    MEI FX, 1991, ADV ANAL MECH
181566    ZHANG HB, 2005, CHINESE PHYS, V14, P1063
181567    ZHANG HB, 2005, CHINESE PHYS, V14, P238
181568    ZHANG HB, 2005, CHINESE PHYS, V14, P888
181569 NR 11
181570 TC 0
181571 SN 1009-1963
181572 J9 CHIN PHYS
181573 JI Chin. Phys.
181574 PD FEB
181575 PY 2006
181576 VL 15
181577 IS 2
181578 BP 249
181579 EP 252
181580 PG 4
181581 SC Physics, Multidisciplinary
181582 GA 010WJ
181583 UT ISI:000235228300002
181584 ER
181585 
181586 PT J
181587 AU Huang, XW
181588    Shi, PF
181589 TI Studies on electrochemical property of LiFePO4/C as cathode material
181590    for lithium ion batteries
181591 SO CHEMICAL RESEARCH IN CHINESE UNIVERSITIES
181592 DT Article
181593 DE olivine; lithium ion battery; carbon-coated LiFePO4
181594 AB LiFePO4/C samples were prepared at different temperatures by adding
181595    sugar to the synthetic precursor. The samples were characterized by
181596    X-ray diffraction (XRD). Their crystal phases show an olivine
181597    structure. Only the sample obtained at 700 degrees C has a larger
181598    discharge capacity, which has good electrochemical properties: its
181599    discharge specific capacity is 120.3 mAh/g at a current of 0. 05 mA,
181600    and its capacity fade is very low after 20 cycles. It is demonstrated
181601    that the best synthetic temperature should be 700 degrees C.
181602 C1 Harbin Inst Technol, Fac Appl Chem, Harbin 150001, Peoples R China.
181603    Shanghai Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266510, Peoples R China.
181604 RP Huang, XW, Harbin Inst Technol, Fac Appl Chem, Harbin 150001, Peoples R
181605    China.
181606 EM hxw009@sina.com
181607 CR CHUNG SY, 2002, NAT MATER, V1, P123
181608    HUANG H, 2001, ELECTROCHEM SOLID ST, V4, P170
181609    LARCHER D, 1997, J ELECTROCHEM SOC, V144, P408
181610    MEGAHED S, 1995, J POWER SOURCES, V54, P155
181611    PADHI AK, 1997, J ELECTROCHEM SOC, V144, P1188
181612    TARASCON JM, 1995, J POWER SOURCES, V54, P103
181613    YAMADA A, 2001, J ELECTROCHEM SOC, V148, A224
181614 NR 7
181615 TC 0
181616 SN 1005-9040
181617 J9 CHEM RES CHINESE UNIV
181618 JI Chem. Res. Chin. Univ.
181619 PD JAN
181620 PY 2006
181621 VL 22
181622 IS 1
181623 BP 73
181624 EP 75
181625 PG 3
181626 SC Chemistry, Multidisciplinary
181627 GA 010IN
181628 UT ISI:000235181400018
181629 ER
181630 
181631 PT J
181632 AU Luo, J
181633    Zhai, QJ
181634    Zhao, P
181635    Qin, XB
181636 TI The structure of liquid Fe-C alloy near the melting point
181637 SO CANADIAN METALLURGICAL QUARTERLY
181638 DT Article
181639 ID MEDIUM-RANGE ORDER; DIFFRACTION; INTENSITIES; GLASSES
181640 AB The structure of liquid Fe-C alloy near the melting point has been
181641    studied at three different temperatures (1540, 1560 and 1580 degrees
181642    C). It is shown that the structural correlation length (or the cluster
181643    size), coordination number, distance between the nearest neighbour
181644    atoms and number of atoms in a cluster all decrease with increasing
181645    temperature. Small prepeaks before the first main peak were found in
181646    the structure factors of liquid alloy and the prepeaks became slightly
181647    obscure as the temperature increased. In general, the presence of the
181648    prepeaks corresponds to a medium range order structure. The prepeaks
181649    fade away with increasing temperature implying that the degree of
181650    superheat contributes to the disappearance of the medium range order.
181651 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
181652    Univ Sci & Technol Beijing, Beijing 100083, Peoples R China.
181653    Cent Iron & Steel Res Inst, Beijing 100081, Peoples R China.
181654    Shandong Univ, Jinan 250061, Peoples R China.
181655 RP Luo, J, Shanghai Univ, Shanghai 200072, Peoples R China.
181656 CR ASHCROFT NW, 1967, PHYS REV, V159, P500
181657    BORJESSON L, 1989, PHYS REV B, V39, P3404
181658    CERVINKA L, 1998, J NONCRYST SOLIDS, V232, P1
181659    CROMER DT, 1967, J CHEM PHYS, V47, P1892
181660    ILINSKII A, 2001, MAT SCI ENG A-STRUCT, V325, P98
181661    KROGHMOE J, 1956, ACTA CRYSTALLOGR, V9, P951
181662    LUO J, 2002, THESIS U SCI TECH BE, P23
181663    MARET M, 1989, J PHYS-PARIS, V50, P295
181664    NORMAN N, 1957, ACTA CRYSTALLOGR, V10, P370
181665    QIN JY, 1998, CHINESE SCI BULL, V43, P1445
181666    QIN JY, 1998, J PHYS-CONDENS MAT, V10, P1211
181667    QIN JY, 1998, SCI CHINA SER E, V28, P97
181668    QIN JY, 1998, SCI CHINA SER E, V41, P182
181669    SOKOLOV AP, 1992, PHYS REV LETT, V69, P1540
181670    VATEVA E, 1995, J NONCRYST SOLIDS, V192, P145
181671    WASEDA Y, 1980, STRUCTURE NONCRYSTAL, P27
181672    WASEDA Y, 1995, JPN J APPL PHYS PT 1, V34, P4124
181673    ZHANG L, 2000, J NON-CRYST SOLIDS, V262, P169
181674 NR 18
181675 TC 0
181676 SN 0008-4433
181677 J9 CAN METALL QUART
181678 JI Can. Metall. Q.
181679 PD APR
181680 PY 2004
181681 VL 43
181682 IS 2
181683 BP 177
181684 EP 181
181685 PG 5
181686 SC Metallurgy & Metallurgical Engineering
181687 GA 011TS
181688 UT ISI:000235291800005
181689 ER
181690 
181691 PT J
181692 AU Zhang, YJ
181693    Shen, JN
181694 TI The crystallization heat-treatment of the TiO2 photocatalytic nanofilm
181695 SO RARE METAL MATERIALS AND ENGINEERING
181696 DT Article
181697 DE TiO2 photocatalytic nanofilm; crystallization heat-treatment; anatase;
181698    photocatalytic activity
181699 ID TITANIUM; FILM
181700 AB The TiO2 photocatalytic nanofilms were isothermally annealed at 400
181701    degrees C similar to 800 degrees C for I h or 2 h respectively so as to
181702    diminish amorphous body and improve photocatalytic activity.
181703    Photocurrent density and microstructure characteristics of both
181704    as-prepared samples and heat-treated ones were investigated. The
181705    results show that heat-treatments lead to amorphous crystallization,
181706    grain growth and increase of photocurrent density of the films. With
181707    the rise of annealing temperature, the transformation of Amorphous ->
181708    Anatase -> Rutile occurs in the TiO2 films. Among them, the film
181709    annealed at 600 degrees C for I h get the (anatase+rutile) mixcrystal
181710    structure. Its photocurrent density is highest i.e. I-UV=41.2 A/m(2)
181711    and photocatalytic activity is best.
181712 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
181713 RP Zhang, YJ, Shanghai Univ, Shanghai 200072, Peoples R China.
181714 EM yjzhang@imr.ac.cn
181715 CR ANPO M, 1987, CHEM EXPRESS, V2, P193
181716    DEVI LG, 1999, J PHOTOCH PHOTOBIO A, V121, P141
181717    HOU YQ, 2003, APPL SURF SCI, V218, P97
181718    LIAO DL, 2003, FINE CHEM, V20, P134
181719    SHEN JN, 2004, RARE METAL MAT ENG, V33, P1076
181720    SONG JJ, 2002, J CHINESE T CORROSIO, V22, P98
181721    XIAO MQ, 2004, STUDY ABSORPTION SPE, P37
181722    YU JG, 2000, J INORG MATER, V15, P347
181723    ZHANG QH, 2000, APPL CATAL B-ENVIRON, V26, P207
181724    ZHANG YJ, 2004, P 04 NAN C SHANGH 20, P493
181725 NR 10
181726 TC 0
181727 SN 1002-185X
181728 J9 RARE METAL MAT ENG
181729 JI Rare Metal Mat. Eng.
181730 PD JAN
181731 PY 2006
181732 VL 35
181733 IS 1
181734 BP 92
181735 EP 95
181736 PG 4
181737 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
181738    Engineering
181739 GA 009NF
181740 UT ISI:000235118100024
181741 ER
181742 
181743 PT J
181744 AU Li, CF
181745    Spieker, H
181746 TI Resonance-enhanced group delay times in an asymmetric single quantum
181747    barrier
181748 SO OPTICS COMMUNICATIONS
181749 DT Article
181750 DE group delay time; resonance; quantum barrier; quantum well; quasibound
181751    state; waveguide
181752 ID TUNNELING TIMES; TRAVERSAL TIME; REFLECTION TIMES; TRANSMISSION;
181753    ELECTRON; SCATTERING; PULSES; ENERGY; WELL
181754 AB It is shown that transmission and reflection group delay times in an
181755    asymmetric single quantum barrier are greatly enhanced by the
181756    transmission resonance when the energy of incident particles is larger
181757    than the height of the barrier. The resonant transmission group delay
181758    is of the order of the quasibound state lifetime in the barrier region.
181759    The reflection group delay can be either positive or negative,
181760    depending on the relative height of the potential energies on the two
181761    sides of the barrier. Its magnitude is much larger than the quasibound
181762    state lifetime. These predictions have been observed in microwave
181763    experiments. (c) 2005 Elsevier B.V. All rights reserved.
181764 C1 Tech Univ Carolo Wilhelmina Braunschweig, Inst Electromagnet Compatibil, D-38106 Braunschweig, Germany.
181765    Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
181766    Acad Sinica, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt Technol, Xian 710068, Peoples R China.
181767 RP Spieker, H, Tech Univ Carolo Wilhelmina Braunschweig, Inst
181768    Electromagnet Compatibil, Schleinitzstr 23, D-38106 Braunschweig,
181769    Germany.
181770 EM cfli@staff.shu.edu.cn
181771    h.spieker@tu-bs.de
181772 CR BALCOU P, 1997, PHYS REV LETT, V78, P851
181773    BROWN ER, 1991, APPL PHYS LETT, V58, P2291
181774    BUTTIKER M, 1982, PHYS REV LETT, V49, P1739
181775    BUTTIKER M, 1983, PHYS REV B, V27, P6178
181776    BUTTIKER M, 1990, ELECT PROPERTIES MUL, P297
181777    BUTTIKER M, 2003, NATURE, V422, P271
181778    CHEN X, 2003, PHYS REV A, V68
181779    CHIAO RY, 1997, PROG OPTICS, V37, P345
181780    DOGARIU A, 2001, OPT EXPRESS, V8, P344
181781    DRAGOMAN D, 2003, J APPL PHYS 1, V93, P6133
181782    GROSSEL P, 2002, J PHYS A-MATH GEN, V35, P9787
181783    HAIBEL A, 2001, ANN PHYS-BERLIN, V10, P707
181784    HARTMAN TE, 1962, J APPL PHYS, V33, P3427
181785    HAUGE EH, 1987, PHYS REV B, V36, P4203
181786    HAUGE EH, 1989, REV MOD PHYS, V61, P917
181787    JAPHA Y, 1996, PHYS REV A, V53, P586
181788    LANDAUER R, 1989, NATURE, V341, P567
181789    LANDAUER R, 1994, REV MOD PHYS, V66, P217
181790    LEAVENS CR, 1989, PHYS REV B, V40, P5387
181791    LI CF, 2000, PHYS LETT A, V275, P287
181792    LONGHI S, 2001, PHYS REV E 2, V64
181793    LUNA E, 2003, APPL PHYS LETT, V83, P3111
181794    LUO H, 1993, PHYS REV LETT, V70, P1307
181795    MARTINEZ JC, 2003, PHYS SCRIPTA, V68, P108
181796    MARTINEZ JC, 2004, APPL PHYS LETT, V84, P1320
181797    MUGA JG, 2002, PHYS REV A, V66
181798    NIMTZ G, 1994, J PHYS I, V4, P565
181799    NIMTZ G, 1997, PROG QUANT ELECTRON, V21, P81
181800    NIMTZ G, 2003, PROG QUANT ELECTRON, V27, P417
181801    PARANJAPE VV, 1995, PHYS REV B, V52, P10740
181802    RANFAGNI A, 1991, APPL PHYS LETT, V58, P774
181803    RICCO B, 1984, PHYS REV B, V29, P1970
181804    SEKATSKII SK, 2001, PHYS REV B, V64
181805    SLIVKEN S, 2002, APPL PHYS LETT, V80, P4091
181806    SPIELMANN C, 1994, PHYS REV LETT, V73, P2308
181807    STEINBERG AM, 1993, PHYS REV LETT, V71, P708
181808    STEINBERG AM, 1994, PHYS REV A, V49, P3283
181809    VETTER RM, 2001, PHYS REV E 2, V63
181810    VISSCHER EH, 1996, APPL PHYS LETT, V68, P2014
181811    WIGNER EP, 1955, PHYS REV, V98, P145
181812    WINFUL HG, 2003, PHYS REV E 2, V68
181813    WINFUL HG, 2003, PHYS REV LETT, V90
181814    WINFUL HG, 2003, PHYS REV LETT, V91
181815 NR 43
181816 TC 0
181817 SN 0030-4018
181818 J9 OPT COMMUN
181819 JI Opt. Commun.
181820 PD MAR 1
181821 PY 2006
181822 VL 259
181823 IS 1
181824 BP 158
181825 EP 163
181826 PG 6
181827 SC Optics
181828 GA 008UY
181829 UT ISI:000235067400027
181830 ER
181831 
181832 PT J
181833 AU Wang, WH
181834    Chang, A
181835    Zhang, LZ
181836    Lu, DQ
181837 TI Unicyclic Huckel molecular graphs with minimal energy
181838 SO JOURNAL OF MATHEMATICAL CHEMISTRY
181839 DT Article
181840 DE Huckel molecular graphs; perfect matching; Kekule structure; capped
181841    graph; energy
181842 ID PI-ELECTRON ENERGY; ACYCLIC CONJUGATED MOLECULES; HEXAGONAL CHAINS;
181843    RADIALENES; SYSTEMS
181844 AB The minimal energy of unicyclic Hackel molecular graphs with Kekule
181845    structures, i.e., unicyclic graphs with perfect matchings, of which all
181846    vertices have degrees less than four in graph theory, is investigated.
181847    The set of these graphs is denoted by H-n(l), such that for any graph
181848    in H-n(l), n is the number of vertices of the graph and 1 the number of
181849    vertices of the cycle contained in the graph. For a given n(n >= 6),
181850    the graphs with minimal energy of H-n(l) have been discussed.
181851 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
181852    Fuzhou Univ, Dept Math, Fujian 350002, Peoples R China.
181853    Zhangzhou Teachers Coll, Dept Comp Sci, Fujian 365002, Peoples R China.
181854    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
181855 RP Wang, WH, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
181856 EM whwang@mail.shu.edu.cn
181857 CR AIHARA J, 1980, B CHEM SOC JPN, V53, P1751
181858    CVETKOVIC DM, 1980, SPECTRA GRAPHS THEOR
181859    DIAS JR, 2004, CROAT CHEM ACTA, V77, P325
181860    GUTMAN I, 1972, CROAT CHEM ACTA, V44, P501
181861    GUTMAN I, 1977, THEOR CHIM ACTA, V45, P79
181862    GUTMAN I, 1980, J PHYS SCI, V35, P453
181863    GUTMAN I, 1986, MATH CONCEPTS ORGANI
181864    GUTMAN I, 2001, MATCH COMMUN MATH CO, V43, P17
181865    HOU YP, 2001, J MATH CHEM, V29, P163
181866    HOU YP, 2001, LINEAR MULTILINEAR A, V49, P347
181867    LI H, 1999, J MATH CHEM, V25, P145
181868    RADA J, 2005, DISCRETE APPL MATH, V145, P437
181869    ZHANG F, 1999, DISCRETE APPL MATH, V92, P71
181870    ZHANG FJ, 2001, CHEM PHYS LETT, V337, P125
181871    ZHANG FJ, 2001, CHEM PHYS LETT, V337, P131
181872 NR 15
181873 TC 0
181874 SN 0259-9791
181875 J9 J MATH CHEM
181876 JI J. Math. Chem.
181877 PD JAN
181878 PY 2006
181879 VL 39
181880 IS 1
181881 BP 231
181882 EP 241
181883 PG 11
181884 SC Chemistry, Multidisciplinary; Mathematics, Interdisciplinary
181885    Applications
181886 GA 008YE
181887 UT ISI:000235077500014
181888 ER
181889 
181890 PT J
181891 AU Xia, L
181892    Li, WH
181893    Fang, SS
181894    Wei, BC
181895    Dong, YD
181896 TI Binary Ni-Nb bulk metallic glasses
181897 SO JOURNAL OF APPLIED PHYSICS
181898 DT Article
181899 ID FORMING ABILITY; CU; ALLOYS; SYSTEMS
181900 AB We studied the glass forming ability of Ni-Nb binary alloys and found
181901    that some of the alloys can be prepared into bulk metallic glasses by a
181902    conventional Cu-mold casting. The best glass former within the
181903    compositional range studied is off-eutectic Ni62Nb38 alloy, which is
181904    markedly different from those predicted by the multicomponent and deep
181905    eutectic rules. The glass formation mechanism for binary Ni-Nb alloys
181906    was studied from the thermodynamic point of view and a parameter gamma*
181907    was proposed to approach the ability of glass formation against
181908    crystallization. (c) 2006 American Institute of Physics.
181909 C1 Shanghai Univ, Ctr Adv Microanal, Shanghai 200444, Peoples R China.
181910    Chinese Acad Sci, Inst Mech, Beijing 100080, Peoples R China.
181911 RP Xia, L, Shanghai Univ, Ctr Adv Microanal, Shanghai 200444, Peoples R
181912    China.
181913 EM xialei@staff.shu.edu.cn
181914 CR CHEN HS, 1973, ACTA METALL, V21, P395
181915    COHEN MH, 1961, NATURE, V189, P131
181916    DEBOER FR, 1988, COHESION METALS TRAN
181917    DELAMARE J, 1994, J ALLOY COMPD, V216, P273
181918    ESHELBY JD, 1954, J APPL PHYS, V25, P255
181919    ESHELBY JD, 1956, SOLID STATE PHYS, V3, P79
181920    FECHT HJ, 1995, MATER T JIM, V36, P777
181921    FRIEDEL J, 1954, ADV PHYS, V3, P446
181922    GREER AL, 1995, SCIENCE, V267, P1947
181923    INOUE A, 1998, MATER SCI FORUM 2, V269, P855
181924    JOHNSON WL, 1999, MRS BULL, V24, P42
181925    LU ZP, 2002, ACTA MATER, V50, P3501
181926    LU ZP, 2003, PHYS REV LETT, V91
181927    MURTY BS, 1992, MAT SCI ENG A-STRUCT, V149, P231
181928    SHEN TD, 1999, APPL PHYS LETT, V75, P49
181929    SHINDO T, 2002, MATER TRANS, V43, P2502
181930    TAKEUCHI A, 2001, MATER TRANS, V42, P1435
181931    TANG MB, 2004, CHINESE PHYS LETT, V21, P901
181932    TURNBULL D, 1969, CONTEMP PHYS, V10, P473
181933    WANG D, 2004, APPL PHYS LETT, V84, P4029
181934    WANG WH, 2004, MAT SCI ENG R, V44, P45
181935    XIA L, UNPUB
181936    XU DH, 2004, ACTA MATER, V52, P2621
181937 NR 23
181938 TC 1
181939 SN 0021-8979
181940 J9 J APPL PHYS
181941 JI J. Appl. Phys.
181942 PD JAN 15
181943 PY 2006
181944 VL 99
181945 IS 2
181946 AR 026103
181947 DI ARTN 026103
181948 PG 3
181949 SC Physics, Applied
181950 GA 008BH
181951 UT ISI:000235014700106
181952 ER
181953 
181954 PT S
181955 AU Dai, JZ
181956    Miao, HK
181957 TI D_DIPS: An intrusion prevention system for database security
181958 SO INFORMATION AND COMMUNICATIONS SECURITY, PROCEEDINGS
181959 SE LECTURE NOTES IN COMPUTER SCIENCE
181960 DT Article
181961 AB There is a growing security concern on the increasing number of
181962    databases that are accessible through the Internet because a variety of
181963    attacks do succeed to fool the existed database protection mechanisms
181964    in many applications. Defense-in-depth strategies like intrusion
181965    prevention is urgently needed for database security. Most of research
181966    on intrusion prevention focuses on preventing attacks on operating
181967    systems and computer networks. Few efforts have been put on database
181968    intrusion prevention. Design and implementation of a database intrusion
181969    prevention system D-DIPS is presented. The goal of D-DIPS is to detect
181970    attacks caused by malicious transactions and cancel them timely before
181971    they succeed. The D-DIPS prototype shows D-DIPS can detect and stop
181972    attacks of malicious transaction in real time with low false alarm rate.
181973 C1 Shanghai Univ, Coll Comp Sci & Engn, Shanghai 200072, Peoples R China.
181974 RP Dai, JZ, Shanghai Univ, Coll Comp Sci & Engn, Shanghai 200072, Peoples
181975    R China.
181976 EM daijz@staff.shu.edu.cn
181977    hkmiao@staff.shu.edu.cn
181978 CR AMANN P, 1999, P 3 INT IFIP TC 11 W, P159
181979    CHOLTER L, 2002, P DARPA ACT NETW C E, P182
181980    INGSRISWANG S, 2001, APPL AWARE TRANSACTI
181981    JANAKIRAMAN R, 2003, P 12 INT WETICE 03 W, P226
181982    LEE SY, 2002, LECT NOTES COMPUT SC, V2502, P264
181983    LEE V, 2000, P 6 IEEE S REAL TIM, P14
181984    LOW WL, 2002, P 4 INT C ENT INF SY
181985    MATTSSON UT, REAL TIME INTRUSION
181986    MATTSSON UT, 2004, MANAGEMENT INFORM SY, P263
181987    MATTSSON UT, 2004, P 3 IASTED INT C COM, P189
181988    RYUTOV T, 2003, IEEE T PARALL DISTR, V14, P841
181989    SEKAR R, 1999, P 8 USENIZ SEC S WAS
181990    SHUN WH, 2001, P IEEE COMP SOC INT, P249
181991    STEVENS J, 2003, P 17 INT C ADV INF N, P704
181992    STOLFO S, 1997, P AAAI WORKSH AI APP
181993 NR 15
181994 TC 0
181995 SN 0302-9743
181996 J9 LECT NOTE COMPUT SCI
181997 PY 2005
181998 VL 3783
181999 BP 481
182000 EP 490
182001 PG 10
182002 GA BDQ16
182003 UT ISI:000234857600040
182004 ER
182005 
182006 PT S
182007 AU Luo, XF
182008 TI Knowledge acquisition based on the global concept of Fuzzy Cognitive
182009    Maps
182010 SO GRID AND COOPERATIVE COMPUTING - GCC 2005, PROCEEDINGS
182011 SE LECTURE NOTES IN COMPUTER SCIENCE
182012 DT Article
182013 ID SYSTEMS
182014 AB Combination of prior knowledge and implicit knowledge hidden in the
182015    data of system can enhance the quality of information services in
182016    Knowledge Grid. Fuzzy Cognitive Maps (FCMs) are constructed by experts
182017    using prior knowledge and do not acquire the implicit knowledge from
182018    the data of systems directly, which may distort the dynamical behaviour
182019    of information services systems in which knowledge representation and
182020    reasoning are based on FCMs. We propose a global concept of FCMs method
182021    to acquire implicit knowledge and modify the false knowledge maybe done
182022    by experts from the data of system. Experiments show that this method
182023    can acquire the implicit knowledge from the data of system and modify
182024    the false knowledge hidden in FCMs, which makes the learned FCMs that
182025    acquire knowledge from the data of system more natural than the FCMs
182026    constructed by experts to emulate intelligent information services
182027    behaviors in Knowledge Grid.
182028 C1 Shanghai Univ, Grid Res Lab, Dept Comp Sci & Engn, Shanghai 200072, Peoples R China.
182029    E Inst Shanghai High Educ Grid, Shanghai 200072, Peoples R China.
182030 RP Luo, XF, Shanghai Univ, Grid Res Lab, Dept Comp Sci & Engn, Shanghai
182031    200072, Peoples R China.
182032 EM luoxiangfeng@163.com
182033 CR DICKERSON JA, 1994, PRESENCE, V3, P173
182034    GROUMPOS PP, 2000, CHAOS SOLITON FRACT, V11, P329
182035    LIU ZQ, 1999, IEEE T FUZZY SYST, V7, P495
182036    NOHA JB, 2000, EXPERT SYSTEMS APPL, V19, P249
182037    ZHUGE H, 2004, IEEE INTELL SYST, V19, P13
182038    ZHUGE H, 2005, J COMPUT SCI TECHNOL, V20, P289
182039 NR 6
182040 TC 0
182041 SN 0302-9743
182042 J9 LECT NOTE COMPUT SCI
182043 PY 2005
182044 VL 3795
182045 BP 579
182046 EP 584
182047 PG 6
182048 GA BDQ17
182049 UT ISI:000234857700075
182050 ER
182051 
182052 PT J
182053 AU Tornero, V
182054    Borrell, A
182055    Aguilar, A
182056    Forcada, J
182057    Lockyer, C
182058 TI Organochlorine contaminant and retinoid levels in blubber of common
182059    dolphins (Delphinus delphis) off northwestern Spain
182060 SO ENVIRONMENTAL POLLUTION
182061 DT Article
182062 DE retinoids; common dolphin; organochlorine; blubber; biomarker
182063 ID BOTTLE-NOSED DOLPHINS; SEAL PHOCA-VITULINA; VITAMIN-A PHYSIOLOGY; MINK
182064    MUSTELA-VISON; OTTERS LUTRA-LUTRA; HALICHOERUS-GRYPUS; MARINE MAMMALS;
182065    POLYCHLORINATED-BIPHENYLS; TURSIOPS-TRUNCATUS; FRACTIONS THEREOF
182066 AB The effect of age, sex, nutritive condition and organochlorine
182067    concentration on blubber retinoid concentrations was examined in 74
182068    common dolphins incidentally caught off northwestern Spain. Age and
182069    blubber lipid content were strong determinants of the retinoid
182070    concentrations in males, while these variables did not account for the
182071    variation found in females. Retinoids were positively correlated with
182072    organochlorines in males and negatively in females. However, pollution
182073    levels were moderate and likely to be below threshold levels above that
182074    a toxicological response is to be expected. Thus, a cause-effect
182075    relationship between organochlorine and retinoid concentrations could
182076    not be properly established, and the observed correlation may be the
182077    result of an independent association of the two variables with age.
182078    Further research on the influence of the best predictor variables on
182079    retinoid dynamics is required to implement the use of retinoids as
182080    biomarkers of pollutant exposure in cetaceans. (c) 2005 Elsevier Ltd.
182081    All rights reserved.
182082 C1 Univ Barcelona, Fac Biol, Dept Anim Biol Vertebrated, Barcelona 08071, Spain.
182083    British Antarctic Survey, NERC, Div Biol Sci, Cambridge CB3 0ET, England.
182084    Age Dynam, DK-2800 Lyngby, Denmark.
182085 RP Tornero, V, Shanghai Univ Sci & Technol, Coll Sci, 516 Jungong Rd,
182086    Shanghai 200093, Peoples R China.
182087 EM victoriatornero@ub.edu
182088 CR *NRC, 1989, BIOL MARK REPR TOX
182089    ADDISON RF, 1989, CAN J FISH AQUAT SCI, V46, P360
182090    AGUILAR A, 1990, J MAMMAL, V71, P544
182091    AGUILAR A, 1994, NONDESTRUCTIVE BIOMA, P245
182092    AGUILAR A, 1994, SCI TOTAL ENVIRON, V154, P237
182093    AGUILAR A, 1999, J CETACEAN RES MANAG, P83
182094    BECKMEN KB, 1997, J WILDLIFE DIS, V33, P438
182095    BELAND P, 1993, J GREAT LAKES RES, V19, P766
182096    BERNARD HJ, 1989, J MAMMAL, V70, P211
182097    BLOMHOFF R, 1992, ANNU REV NUTR, V12, P37
182098    BLOMHOFF R, 1994, VITAMIN A HLTH DIS, P1
182099    BORRELL A, 1999, MAR ECOL-PROG SER, V185, P85
182100    BORRELL A, 2002, J CETACEAN RES MANAG, V4, P203
182101    BROUWER A, 1989, AQUAT TOXICOL, V15, P99
182102    BROUWER A, 1989, TOXICOLOGY, V58, P267
182103    BRUNSTROM B, 1991, PHARMACOL TOXICOL, V69, P421
182104    BURNHAM KP, 2002, MODEL SELECTION MULT
182105    CALABRESE EJ, 2003, NATURE, V421, P691
182106    CHU I, 1995, FUND APPL TOXICOL, V26, P282
182107    CHU I, 1998, J APPL TOXICOL, V18, P285
182108    COLLINS FS, 1998, GENET MED, V1, P3
182109    DEBIER C, 2002, CAN J ZOOL, V80, P1262
182110    DESWART RL, 1994, AMBIO, V23, P155
182111    DESWART RL, 1995, INFECT AGENT DIS, V4, P125
182112    FLETCHER N, 2001, TOXICOL SCI, V62, P166
182113    HAKANSSON H, 1992, AMBIO, V21, P588
182114    HANSEN LJ, 2004, SCI TOTAL ENVIRON, V319, P147
182115    JENSSEN BM, 1995, WHALES SEALS FISH MA, P607
182116    JENSSEN BM, 2003, ENVIRON RES, V93, P79
182117    KAKELA R, 1997, COMP BIOCHEM PHYS B, V116, P27
182118    KAKELA R, 1999, ENVIRON TOXICOL CHEM, V18, P2595
182119    KELLEY SK, 1998, TOXICOL SCI, V44, P1
182120    KRAHN MM, 2003, J CETACEAN RES MANAG, V5, P103
182121    KRASINSKI SD, 1990, J CLIN INVEST, V85, P883
182122    LAHVIS GP, 1995, ENVIRON HEALTH PERSP, V103, P62
182123    LEONARDS PEG, 1996, DEV OTTER BASED QUAL, P47
182124    LOCKYER C, 1995, REP INT WHAL COMM SP, V16, P189
182125    LOCKYER C, 1995, REP INT WHALING COMM, V16, P511
182126    MAIANI G, 1989, EUR J CLIN NUTR, V43, P749
182127    MARTINEAU D, 1987, ARCH ENVIRON CON TOX, V16, P137
182128    MOS L, 2002, CAN J ZOOL, V80, P1511
182129    MURK AJ, 1998, ENVIRON TOXICOL PHAR, V6, P91
182130    MURPHY PG, 1972, J ASSOC OFF ANA CHEM, V55, P1360
182131    NILSSON CB, 2000, TOXICOL APPL PHARM, V169, P121
182132    NYMAN M, 2003, MAR ENVIRON RES, V55, P73
182133    OSHEA TJ, 2001, ECOTOXICOLOGY WILD M, P427
182134    PEAKALL B, 1992, ECOTOXICOLOGICAL SER, V1
182135    ROLLAND RM, 2000, J WILDLIFE DIS, V36, P615
182136    ROSS SA, 2000, PHYSIOL REV, V80, P1021
182137    SCHWACKE LH, 2002, ENVIRON TOXICOL CHEM, V21, P2752
182138    SCHWEIGERT FJ, 1987, INT J VITAM NUTR RES, V57, P239
182139    SCHWEIGERT FJ, 1994, COMP BIOCH PHYSL C, V109, P11
182140    SCHWEIGERT FJ, 2002, COMP BIOCHEM PHYS A, V131, P901
182141    SIMMS W, 2000, ENVIRON TOXICOL CHEM, V19, P2844
182142    SIMMS W, 2000, TOXICOL IND HEALTH, V16, P291
182143    SIMPSON VR, 2000, ENVIRON POLLUT, V110, P267
182144    SKAARE JU, 2001, J TOXICOL ENV HEAL A, V62, P227
182145    SPORN MB, 1994, RETINOIDS
182146    TANABE S, 1988, MAR MAMMAL SCI, V4, P103
182147    TANABE S, 2002, MAR POLLUT BULL, V45, P69
182148    THOMPSON JN, 1976, COMP ANIM NUTRIT, V1, P99
182149    TORNERO V, 2004, MAR ECOL-PROG SER, V280, P275
182150    TORNERO V, 2005, J ENVIRON MONITOR, V7, P109
182151    WOLF G, 1984, PHYSIOL REV, V64, P873
182152    ZILE MH, 1992, P SOC EXP BIOL MED, V201, P141
182153 NR 65
182154 TC 0
182155 SN 0269-7491
182156 J9 ENVIRON POLLUT
182157 JI Environ. Pollut.
182158 PD MAR
182159 PY 2006
182160 VL 140
182161 IS 2
182162 BP 312
182163 EP 321
182164 PG 10
182165 SC Environmental Sciences
182166 GA 009ST
182167 UT ISI:000235133700013
182168 ER
182169 
182170 PT J
182171 AU Li, CX
182172    Qu, WL
182173 TI Optimum properties of multiple tuned mass dampers for reduction of
182174    translational and torsional response of structures subject to ground
182175    acceleration
182176 SO ENGINEERING STRUCTURES
182177 DT Article
182178 DE vibration control; damping; multiple tuned mass dampers (MTMD);
182179    asymmetric structures; ground acceleration; torsional to translational
182180    frequency ratio (TTFR); normalized eccentricity ratio (NER); frequency
182181    response curves
182182 ID LONG-SPAN BRIDGES; ABSORBER PARAMETERS; BUFFETING RESPONSE; DESIGN
182183    FORMULAS; VIBRATION; SYSTEM; PERFORMANCE; BUILDINGS; OSCILLATIONS;
182184    EXCITATION
182185 AB The application of multiple tuned mass dampers (MTMD) with identical
182186    stiffness and damping coefficient but different mass for suppressing
182187    translational and torsional responses is discussed for a simplified
182188    two-degree-of-freedom (2DOF) structure, able to represent the dynamic
182189    characteristics of general asymmetric structures subject to ground
182190    motions. This 2DOF structure is a generalized 2DOF system of an
182191    asymmetric structure with predominant translational and torsional
182192    responses under earthquake excitations using the mode reduced-order
182193    method. Depending on the ratio of the torsional to the translational
182194    eigenfrequency, i.e. the torsional to translational frequency ratio
182195    (TTFR), of asymmetric structures, the following cases can be
182196    distinguished: (1) torsionally flexible structures (TTFR < 1.0), (2)
182197    torsionally intermediate stiff structures (TTFR = 1.0), and (3)
182198    torsionally stiff structures (TTFR > 1.0). Taking into account the even
182199    placement of the MTMD within the width of the asymmetric structure, a
182200    careful examination of the effects of the normalized eccentricity ratio
182201    (NER) on the performance of the MTMD are carried out with resort to the
182202    provided analytical expressions for the dynamic magnification factors
182203    (DMF) of both the translational and torsional responses of the
182204    asymmetric structure. Extensive numerical simulations have been
182205    performed to accurately estimate the dynamic characteristics of the
182206    MTMD for asymmetric structures subject to ground acceleration. In the
182207    simulations, the dimensionless DMF parameters, bounded between zero and
182208    unity, are used as the formal indexes estimating the effectiveness of
182209    the MTMD in reducing both the translational and torsional responses of
182210    the asymmetric structure. A new basic result is that the NER affects
182211    significantly the performance of the MTMD for both torsionally flexible
182212    and torsionally intermediate stiff structures; while the influence of
182213    the NER is rather negligible on the performance of the MTMD for
182214    torsionally stiff structures, thus implying that in such a case the
182215    MTMD may be designed by ignoring the effects of torsional coupling.
182216    Likewise, the effectiveness and robustness of the MTMD strategies with
182217    different layouts are also investigated and demonstrated for the case
182218    of mitigating the torsional response of asymmetric structures, thus
182219    providing valuable guidance for the MTMD design, Furthermore, the
182220    frequency response curves of asymmetric structures without and with
182221    both the optimum MTMD and TMD are plotted for the three cases of TTFR
182222    as well, consequently obtaining some very useful results. (C) 2005
182223    Elsevier Ltd. All rights reserved.
182224 C1 Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R China.
182225    Wuhan Univ Technol, Inst Civil Engn & Architecture, Wuhan 430070, Peoples R China.
182226 RP Li, CX, Shanghai Univ, Dept Civil Engn, 149 Yanchang Rd, Shanghai
182227    200072, Peoples R China.
182228 EM li-chunxiang@vip.sina.com
182229 CR ABE M, 1994, EARTHQUAKE ENG STRUC, V23, P813
182230    AHLAWAT AS, 2003, ENG STRUCT, V25, P941
182231    ARFIADI Y, 2000, EARTHQUAKE ENG STRUC, V29, P377
182232    AYORINDE EO, 1980, EARTHQUAKE ENG STRUC, V8, P219
182233    BROCK JE, 1946, J APPL MECH, V13, A284
182234    CHEN G, 2003, EARTHQUAKE ENG STRUC, V32, P793
182235    DENHARTOG JP, 1956, MECH VIBRATIONS
182236    FUJINO YZ, 1993, EARTHQUAKE ENG STRUC, V22, P833
182237    GU M, 1992, J WIND ENG IND AEROD, V42, P1383
182238    GU M, 2001, J WIND ENG IND AEROD, V89, P987
182239    HOANG N, 2005, EARTHQ ENG STRUCT D, V34, P125
182240    IGUSA T, 1994, J SOUND VIB, V175, P491
182241    IWANAMI K, 1984, P JSME C, V50, P44
182242    JANGID RS, 1997, EARTHQUAKE ENG STRUC, V26, P307
182243    JANGID RS, 1999, EARTHQUAKE ENG STRUC, V28, P1041
182244    KAREEM A, 1995, J STRUCT ENG-ASCE, V121, P348
182245    KWON SD, 2004, J WIND ENG IND AEROD, V92, P919
182246    LI CX, 2000, EARTHQUAKE ENG STRUC, V29, P1405
182247    LI CX, 2002, EARTHQUAKE ENG STRUC, V31, P1041
182248    LI CX, 2002, EARTHQUAKE ENG STRUC, V31, P897
182249    LI CX, 2002, J STRUCT ENG-ASCE, V128, P1362
182250    LI CX, 2003, EARTHQUAKE ENG STRUC, V32, P671
182251    LI QS, 1999, WIND STRUCT, V2, P69
182252    LIN CC, 1999, ENG STRUCT, V21, P513
182253    LIN CC, 2005, J BRIDGE ENG, V10, P398
182254    LIN YY, 2000, ENG STRUCT, V22, P1195
182255    LUKKUNAPRASIT P, 2001, EARTHQUAKE ENG STRUC, V30, P537
182256    MACINANTE JA, 1984, SEISMIC MOUNTINGS VI
182257    PANSARE AP, 2003, WIND STRUCT, V6, P23
182258    PARK J, 2001, ENG STRUCT, V23, P802
182259    PINKAEW T, 2003, ENG STRUCT, V25, P39
182260    RANA R, 1998, ENG STRUCT, V20, P193
182261    SADEK F, 1997, EARTHQUAKE ENG STRUC, V26, P617
182262    SINGH MP, 2002, EARTHQUAKE ENG STRUC, V31, P749
182263    SOTOBRITO R, 1999, EARTHQUAKE ENG STRUC, V28, P1255
182264    THOMPSON AG, 1981, J SOUND VIB, V77, P403
182265    TSAI HC, 1993, EARTHQ ENG STRUCT D, V22, P957
182266    TSAI HC, 1993, J SOUND VIBRATION, V89, P385
182267    VILLAVERDE R, 1985, EARTHQUAKE ENG STRUC, V13, P33
182268    WANG JF, 2005, INT J SOLIDS STRUCT, V42, P5536
182269    WARBURTON GB, 1980, EARTHQUAKE ENG STRUC, V8, P197
182270    WARBURTON GB, 1981, EARTHQ ENG STRUCT D, V9, P251
182271    WARBURTON GB, 1982, EARTHQUAKE ENG STRUC, V10, P381
182272    XU KM, 1992, EARTHQUAKE ENG STRUC, V21, P1059
182273    XU YL, 1992, J WIND ENG IND AEROD, V40, P1
182274    XU YL, 1994, J STRUCT ENG-ASCE, V120, P747
182275    YAMAGUCHI H, 1993, EARTHQUAKE ENG STRUC, V22, P51
182276    YAU JD, 2004, ENG STRUCT, V26, P1795
182277    YAU JD, 2004, FINITE ELEM ANAL DES, V40, P341
182278 NR 49
182279 TC 0
182280 SN 0141-0296
182281 J9 ENG STRUCT
182282 JI Eng. Struct.
182283 PD MAR
182284 PY 2006
182285 VL 28
182286 IS 4
182287 BP 472
182288 EP 494
182289 PG 23
182290 SC Engineering, Civil
182291 GA 009RY
182292 UT ISI:000235131300001
182293 ER
182294 
182295 PT J
182296 AU Bao, BR
182297    Han, Y
182298    Cao, WG
182299    Yang, XC
182300    Chen, MQ
182301 TI Synthesis and crystal structure of dinitrate N,N '-didecanoylpiperazine
182302    uranyl(II)
182303 SO CHINESE JOURNAL OF INORGANIC CHEMISTRY
182304 DT Article
182305 DE N,N '-didecanoylpiperazine; crystal structure; synthesis; uranyl complex
182306 ID COMPLEXES; EXTRACTION
182307 AB The Complex UO2(DDPEZ)(NO3)2 has been prepared and characterized by IR
182308    spectroscopy and XPS spectra. The crystal structure of the complex has
182309    been determined by X-ray diffraction. The crystal belongs to Tri-clinic
182310    system and space group P (1) over bar, with cell parameters:
182311    a=0.6642(3) nm, b=0.8050(2) nm, c=1.5156(5) nm, alpha=
182312    104.39(2)degrees, beta=91.13(3)degrees, gamma=94.84(3)degrees, and
182313    V=0.7814(5) nm(3), Z=2, D-c=1676 kg center dot m(-3), mu(Mo K
182314    alpha)=0.071073 nm, F (000)=390, final R=0.0379 and wR=0.0917 for
182315    observed reflections [I>2 sigma(I)]. The results indicated that uranyl
182316    ion is coordinated with six oxygen atoms, four of them from two nitrate
182317    groups and two from carbonyl groups of different organic ligands. CCDC:
182318    284452.
182319 C1 Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
182320    Chinese Acad Sci, Shanghai Appl Phys Res Inst, Shanghai 200032, Peoples R China.
182321    Fudan Univ, Res Ctr Struct & Measurement, Shanghai 200433, Peoples R China.
182322 RP Han, Y, Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
182323 EM hanyang581@126.com
182324 CR BAO YZ, 1992, HEHUAXUE YU FANGSHE, P143
182325    CAO ZB, 1993, ACTA CRYSTALLOGR C, V49, P1942
182326    CASELLATO U, 1983, INORG CHIM A-ARTICLE, V72, P141
182327    FLEMING JE, 1960, CHEM IND-LONDON, P1415
182328    GASPARIMMI GM, 1980, SEP SCI TECHNOL, V4, P825
182329    GREGG JL, 2000, INORG CHIM ACTA, V309, P103
182330    HAN JT, 2000, ACTA CHIM SINICA, V58, P1286
182331    HAN JT, 2000, THESIS CHINESE ACAD
182332    HE HL, 1993, HEHUAXUE YU FANGSHE, P12
182333    HE MJ, 1990, MACROMOLECULE PHYSIC
182334    HU LM, 2002, WUJI HAUXUE XUEBAO, V18, P924
182335    JARVINEN GD, 1987, INORG CHIM ACTA, V129, P139
182336    JIANG D, 1992, ACTA CHIM SINICA, V50, P1091
182337    MUSIKAS C, 1988, SEPAR SCI TECHNOL, V23, P1211
182338    PANATTONI C, 1969, INORG CHEM, V8, P320
182339    REYNOLDS JG, 1977, INORG CHEM, V16, P3357
182340    RYAN RR, 1987, ACTA CRYSTALLOGR C, V43, P1295
182341    SHEN CH, 1993, HE JISHU, P42
182342    WANG HZ, 1993, ACTA CHIM SINICA, V51, P880
182343    XU GX, 1984, PRINCIPLES EXTRACTIO
182344    YANG XC, 2001, J RADIOANAL NUCL CH, V250, P573
182345    YANG XC, 2002, NUCL SCI TECHNICHES, V13, P125
182346    YANG XC, 2002, THESIS CHINESE ACAD
182347 NR 23
182348 TC 0
182349 SN 1001-4861
182350 J9 CHIN J INORG CHEM
182351 JI Chin. J. Inorg. Chem.
182352 PD FEB
182353 PY 2006
182354 VL 22
182355 IS 2
182356 BP 351
182357 EP 354
182358 PG 4
182359 SC Chemistry, Inorganic & Nuclear
182360 GA 008QB
182361 UT ISI:000235054700031
182362 ER
182363 
182364 PT S
182365 AU Kang, LY
182366    Cheng, TCE
182367    Ng, CT
182368    Zhao, M
182369 TI Scheduling to minimize makespan with time-dependent processing times
182370 SO ALGORITHMS AND COMPUTATION
182371 SE LECTURE NOTES IN COMPUTER SCIENCE
182372 DT Article
182373 DE makespan; fully polynomial approximation scheme; parallel machines
182374    scheduling
182375 ID LINEAR DETERIORATION; SINGLE-PROCESSOR; EXECUTION TIMES; JOBS
182376 AB In this paper we study the scheduling problem of minimizing makespan on
182377    identical parallel machines with time-dependent processing times, We
182378    first consider the problem with time-dependent processing times on two
182379    identical machines to minimize makespan, which is NP-hard. We give a
182380    fully polynomial-time approximation scheme for the problem.
182381    Furthermore, we generalize the result to the case with m machines.
182382 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
182383    Hong Kong Polytech Univ, Dept Logist, Hong Kong, Hong Kong, Peoples R China.
182384 RP Kang, LY, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
182385 EM 1ykang@staff.shu.edu.cn
182386 CR BACHMAN A, 2000, EUR J OPER RES, V126, P557
182387    BACHMAN A, 2002, INFORM PROCESS LETT, V81, P81
182388    BEHZAD M, 1970, FUND MATH, V69, P227
182389    BROWNE S, 1990, OPER RES, V38, P495
182390    CHEN ZL, 1995, OPER RES LETT, V17, P127
182391    CHEN ZL, 1996, DISCRETE APPL MATH, V70, P81
182392    CHENG TCE, 2000, ACTA INFORM, V36, P673
182393    CHENG TCE, 2003, NAV RES LOG, V50, P531
182394    CHENG TCE, 2004, EUR J OPER RES, V152, P1
182395    CHENG TCE, 2004, J OPER RES SOC, V55, P198
182396    GRAHAM RL, 1979, ANN DISCRETE MATH, V5, P287
182397    GUPTA JND, 1988, COMPUT IND ENG, V14, P387
182398    GUPTA SK, 1987, OMEGA-INT J MANAGE S, V15, P323
182399    HO KIJ, 1993, INFORM PROCESS LETT, V48, P315
182400    KOVALYOV MY, 1998, J HEURISTICS, V3, P287
182401    MOSHEIOV G, 1998, INFOR, V36, P205
182402 NR 16
182403 TC 0
182404 SN 0302-9743
182405 J9 LECT NOTE COMPUT SCI
182406 PY 2005
182407 VL 3827
182408 BP 925
182409 EP 933
182410 PG 9
182411 GA BDQ35
182412 UT ISI:000234885900092
182413 ER
182414 
182415 PT J
182416 AU Liu, BX
182417    Yu, JY
182418    Xu, DJ
182419 TI 2,2 '-Diamino-4,4 '-bi-1,3-thiazole-kappa N-2,N ')bis(glycinato-kappa
182420    N-2,O) nickel(II) dihydrate
182421 SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE
182422 DT Article
182423 AB In the crystal structure of the title compound, [Ni(C2H4NO2)(2)(
182424    C6H6N4S2)]center dot 2H(2)O, the Ni-II atom is located on a twofold
182425    axis and is coordinated by a diaminobithiazole ligand and two glycinate
182426    anions in a distorted octahedral geometry. The glycinate anions chelate
182427    to the Ni-II atom through the amino N and carboxyl O atoms, and display
182428    an envelope conformation. Hydrogen bonding consolidates the crystal
182429    structure.
182430 C1 Zhejiang Univ, Dept Chem, Hangzhou, Peoples R China.
182431    Shanghai Univ, Dept Chem, Shanghai, Peoples R China.
182432 RP Xu, DJ, Zhejiang Univ, Dept Chem, Hangzhou, Peoples R China.
182433 EM xudj@mail.hz.zj.cn
182434 CR *RIG MSC, 2002, CRYST STRUCT VERS 3
182435    ALTOMARE A, 1993, J APPL CRYSTALLOGR, V26, P343
182436    FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
182437    FARRUGIA LJ, 1999, J APPL CRYSTALLOGR, V32, P837
182438    HIGASHI T, 1995, ABSCOR
182439    LIU BX, 2004, ACTA CRYSTALLOGR C 3, V60, M137
182440    RIGAKU, 1998, PROCESS AUTO
182441    SHELDRICK GM, 1997, SHELXL97
182442    SUN WL, 1997, J APPL POLYM SCI, V64, P2309
182443    YU JY, 2005, ACTA CRYSTALLOGR E, V61, E2232
182444 NR 10
182445 TC 0
182446 SN 1600-5368
182447 J9 ACTA CRYSTALLOGR E-STRUCT REP
182448 JI Acta Crystallogr. Sect. E.-Struct Rep. Online
182449 PD FEB
182450 PY 2006
182451 VL 62
182452 PN Part 2
182453 BP M222
182454 EP M223
182455 PG 2
182456 SC Crystallography
182457 GA 008IN
182458 UT ISI:000235033700021
182459 ER
182460 
182461 PT J
182462 AU Liu, BX
182463    Yu, JY
182464    Xu, DJ
182465 TI Bis(2-anilinobenzoato-kappa O)diaqua(2,2 '-diamino-4,4
182466    '-bi-1,3-thiazole-kappa N-2(1),N-1)magnesium(II)
182467 SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE
182468 DT Article
182469 AB In the title complex, [Mg(C13H10NO2)(2)(C6H6N4S2)(H2O)(2)], the Mg-II
182470    ion is coordinated by two 2-anilinobenzoate anions, two water molecules
182471    and an 2-anilinobenzoate molecule in a distorted octahedral geometry.
182472    The two thiazole rings in the diaminobithiazole molecule are nearly
182473    coplanar, with a dihedral angle of 3.88 (17)degrees. The two benzene
182474    rings in each 2-anilinobenzoate anion are twisted with respect to each
182475    other, the dihedral angles being 56.32 (12) and 45.68 (12)degrees in
182476    the two anions.
182477 C1 Zhejiang Univ, Dept Chem, Hangzhou, Peoples R China.
182478    Shanghai Univ, Dept Chem, Shanghai 200041, Peoples R China.
182479 RP Xu, DJ, Zhejiang Univ, Dept Chem, Hangzhou, Peoples R China.
182480 EM xudj@mail.hz.zj.cn
182481 CR *RIG MSC, 2002, CRY VERS 3 00
182482    *RIG, 1998, PROCESS AUTO
182483    ALTOMARE A, 1993, J APPL CRYSTALLOGR, V26, P343
182484    FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
182485    FARRUGIA LJ, 1999, J APPL CRYSTALLOGR, V32, P837
182486    HIGASHI T, 1995, ABSCOR
182487    LIU BX, 2005, ACTA CRYSTALLOGR  11, V61, M2291
182488    LIU JG, 2001, ACTA CRYSTALLOGR C 4, V57, P354
182489    SHELDRICK GM, 1997, SHELXL97
182490    SUN WL, 1997, J APPL POLYM SCI, V64, P2309
182491 NR 10
182492 TC 0
182493 SN 1600-5368
182494 J9 ACTA CRYSTALLOGR E-STRUCT REP
182495 JI Acta Crystallogr. Sect. E.-Struct Rep. Online
182496 PD FEB
182497 PY 2006
182498 VL 62
182499 PN Part 2
182500 BP M231
182501 EP M232
182502 PG 2
182503 SC Crystallography
182504 GA 008IN
182505 UT ISI:000235033700025
182506 ER
182507 
182508 PT J
182509 AU Cheng, YM
182510    Peng, MJ
182511 TI Boundary element-free method for elastodynamics
182512 SO SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY
182513 DT Article
182514 DE moving least-square approximation; improved moving least-square
182515    approximation; elastodynamics; boundary integral equation; meshless
182516    method; boundary element-free method; Fourier eigen transform
182517 ID INTEGRAL-EQUATION LBIE; NODE METHOD; LINEAR ELASTICITY
182518 AB The moving least-square approximation is discussed first. Sometimes the
182519    method can form an ill-conditioned equation system, and thus the
182520    solution cannot be obtained correctly. A Hilbert space is presented on
182521    which an orthogonal function system mixed a weight function is defined.
182522    Next the improved moving least-square approximation is discussed in
182523    detail. The improved method has higher computational efficiency and
182524    precision than the old method, and cannot form an ill-conditioned
182525    equation system. A boundary element-free method (BEFM) for
182526    elastodynamics problems is presented by combining the boundary integral
182527    equation method for elastodynamics and the improved moving least-square
182528    approximation. The boundary element-free method is a meshless method of
182529    boundary integral equation and is a direct numerical method compared
182530    with others, in which the basic unknowns are the real solutions of the
182531    nodal variables and the boundary conditions can be applied easily. The
182532    boundary element-free method has a higher computational efficiency and
182533    precision. In addition, the numerical procedure of the boundary
182534    element-free method for elastodynamics problems is presented in this
182535    paper. Finally, some numerical examples are given.
182536 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
182537    Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R China.
182538 RP Cheng, YM, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
182539    200072, Peoples R China.
182540 EM ymcheng@sh163.net
182541 CR ATLURI SN, 2000, COMPUT MECH, V25, P180
182542    BELYTSCHKO T, 1996, COMPUT METHOD APPL M, V139, P3
182543    CHATI MK, 1999, INT J NUMER METH ENG, V46, P1163
182544    CHATI MK, 2000, INT J NUMER METH ENG, V47, P1523
182545    CHEN ST, 1987, CHINESE J APPL MECH, V4, P33
182546    CHENG Y, 2003, ACTA MECH SINICA, V35, P181
182547    JI X, 1997, ADV BOUNDARY ELEMENT
182548    KOTHNUR VS, 1999, INT J SOLIDS STRUCT, V36, P1129
182549    LI S, 2002, APPL MECH REV, V55, P1
182550    MUKHERJEE YX, 1997, INT J NUMER METH ENG, V40, P797
182551    ZHANG JM, 2002, INT J NUMER METH ENG, V53, P751
182552    ZHU TL, 1999, ENG ANAL BOUND ELEM, V23, P375
182553 NR 12
182554 TC 0
182555 SN 1672-1799
182556 J9 SCI CHINA SER G
182557 JI Sci. China Ser. G-Phys. Mech. Astron.
182558 PD DEC
182559 PY 2005
182560 VL 48
182561 IS 6
182562 BP 641
182563 EP 657
182564 PG 17
182565 SC Physics, Multidisciplinary
182566 GA 008AR
182567 UT ISI:000235013100001
182568 ER
182569 
182570 PT J
182571 AU Gao, YL
182572    Guan, WB
182573    Zhai, QJ
182574    Xu, KD
182575 TI Study on undercooling of metal droplet in rapid solidification
182576 SO SCIENCE IN CHINA SERIES E-ENGINEERING & MATERIALS SCIENCE
182577 DT Article
182578 DE droplet; rapid solidification; relative undercooling; impact factor
182579 ID ALLOY; NUCLEATION; BEHAVIOR; SI
182580 AB A mathematical model for the undercooling of the metal droplet during
182581    the rapid solidification is established, by which the factors that
182582    influence the undercooling of the metal droplet during the rapid
182583    solidification are analyzed, and the parameter
182584    zeta=sigma(SL)(3)/(T(L)Delta H-2) is defined as the impact factor of
182585    the undercooling for the droplet solidification. Different
182586    undercoolings of droplets induced by various rapid solidification
182587    conditions are mainly ascribed to the change of the impact factor.
182588    Moreover, it is shown that the larger of zeta the higher the relative
182589    undercooling can be gained. Meanwhile, the parameters such as
182590    solid-liquid interfacial energy sigma(SL) and latent heat of
182591    solidification Delta H also vary with the rapid solidification
182592    conditions of droplets.
182593 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
182594 RP Zhai, QJ, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
182595    China.
182596 EM qjzhai@staff.shu.edu.cn
182597 CR BISWAS K, 2004, MAT SCI ENG A-STRUCT, V375, P464
182598    BUSCH R, 1995, ACTA METALL MATER, V43, P3467
182599    CHUNG M, 2001, INT J HEAT MASS TRAN, V44, P605
182600    HU HQ, 2000, PRINCIPLES METAL SOL
182601    IEHINOSE N, 1992, SUPERFINE PARTICLE T
182602    JIAN ZY, 2000, SCI CHINA SER E, V43, P113
182603    KURZ W, 1989, FUNDAMENTALS SOLIDIF
182604    LI Q, 2004, SCI CHINA SER G, V34, P241
182605    LIU RP, 2001, ACTA MATER, V49, P439
182606    LIU Y, 2001, SCI TECHNOL ADV MAT, V2, P181
182607    PEREPEZKO JH, 1984, MATER SCI ENG, V65, P125
182608    PEREPEZKO JH, 2002, MAT SCI ENG A-STRUCT, V326, P144
182609    TURNBULL D, 1950, J APPL PHYS, V21, P1022
182610    VOLKMANN T, 1998, J APPL PHYS, V83, P3028
182611    WANG N, 2001, MAT SCI ENG A-STRUCT, V307, P80
182612    YAO WJ, 2002, J MATER SCI LETT, V21, P357
182613    YAO WJ, 2003, MAT SCI ENG A-STRUCT, V344, P10
182614 NR 17
182615 TC 0
182616 SN 1006-9321
182617 J9 SCI CHINA SER E
182618 JI Sci. China Ser. E-Eng. Mater. Sci.
182619 PD DEC
182620 PY 2005
182621 VL 48
182622 IS 6
182623 BP 632
182624 EP 637
182625 PG 6
182626 SC Engineering, Multidisciplinary; Materials Science, Multidisciplinary
182627 GA 006BN
182628 UT ISI:000234870200004
182629 ER
182630 
182631 PT J
182632 AU Li, CP
182633    Deng, WH
182634    Xu, D
182635 TI Chaos synchronization of the Chua system with a fractional order
182636 SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
182637 DT Article
182638 DE synchronization; fractional order; Chua system
182639 ID CHENS SYSTEM
182640 AB Chaos synchronization of two identical Chua systems with the same
182641    fractional order is studied by utilizing the Pecora-Carroll (PC)
182642    method, the active-passive decomposition (PAD) method, the one-way
182643    coupling method and the bidirectional coupling one. The sufficient
182644    conditions for achieving synchronization between these two systems are
182645    derived via the Laplace transformation theory. Numerical simulations
182646    show the effectiveness of the theoretical analyses. (c) 2005 Elsevier
182647    B.V. All rights reserved.
182648 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
182649    Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China.
182650    Nanyang Technol Univ, Div Engn Mech, Sch Mech & Aerosp Engn, Singapore 639798, Singapore.
182651 RP Li, CP, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
182652 EM leecp@online.sh.cn
182653 CR ARENA P, 1997, P ECCTD TU BUD BUD S, P1259
182654    BOCCALETTI S, 2002, PHYS REP, V366, P1
182655    BUTZER PL, 2000, INTRO FRACTIONAL CAL
182656    CAPUTO M, 1967, GEOPHYS J ROY ASTRON, V13, P529
182657    CHEN GR, 1999, INT J BIFURCAT CHAOS, V9, P1465
182658    DENG WH, 2005, J PHYS SOC JPN, V74, P1645
182659    DENG WH, 2005, PHYSICA A, V353, P61
182660    DIETHELM K, 2002, NONLINEAR DYNAM, V29, P3
182661    DIETHELM K, 2004, NUMER ALGORITHMS, V36, P31
182662    HARTLEY TT, 1995, IEEE T CIRCUITS-I, V42, P485
182663    HILFER R, 2001, APPL FRACTIONAL CALC
182664    KENNETH SM, 1993, INTRO FRACTIONAL CAL
182665    LI CP, 2003, INT J BIFURCAT CHAOS, V13, P1609
182666    LI CP, 2004, CHAOS SOLITON FRACT, V22, P443
182667    MADAN RK, 1993, CHUAS CIRCUITS PARAD
182668    MATIGNON D, 1996, COMPUTATIONAL ENG SY, V2, P963
182669    MUTH EJ, 1977, TRANSFORM METHODS AP
182670    OUTSLAOUP A, 1983, SYSTEMS ASSERVIS ORD
182671    PECORA LM, 1990, PHYS REV LETT, V64, P821
182672    ROSS R, 1974, LECT NOTES MATH
182673    YAN JP, 2005, CHAOS SOLITON FRACT, V23, P1683
182674 NR 21
182675 TC 1
182676 SN 0378-4371
182677 J9 PHYSICA A
182678 JI Physica A
182679 PD FEB 1
182680 PY 2006
182681 VL 360
182682 IS 2
182683 BP 171
182684 EP 185
182685 PG 15
182686 SC Physics, Multidisciplinary
182687 GA 007OZ
182688 UT ISI:000234980300003
182689 ER
182690 
182691 PT J
182692 AU Ma, GH
182693    Shen, J
182694    Zhang, ZJ
182695    Hua, ZY
182696    Tang, SH
182697 TI Ultrafast all-optical switching in one-dimensional photonic crystal
182698    with two defects
182699 SO OPTICS EXPRESS
182700 DT Article
182701 ID NONLINEAR PERIODIC STRUCTURES; WAVE-GUIDE STRUCTURE; ENHANCEMENT;
182702    STATES; ABSORPTION; SOLITONS; MODES; LAYER
182703 AB One-dimensional (1D) photonic crystals (PC) containing two-layer CdS
182704    defects are proposed and fabricated by using electron beam evaporation.
182705    Ultrafast nonlinear optical responses were characterized with the
182706    ultrafast pump-probe method in both time and spectral domains.
182707    Two-photon absorption coefficient enhancement and pump-beam-induced
182708    defect mode shift were reported. Both effects are attributed to the
182709    light localization in the defect layer of the multilayer structures.
182710    Our results demonstrated that defective photonic crystals are good
182711    candidates for fabrication of ultrafast all-optical switching devices.
182712    (c) 2006 Optical Society of America.
182713 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
182714    Natl Univ Singapore, Dept Phys, Singapore 119260, Singapore.
182715 RP Ma, GH, Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200444,
182716    Peoples R China.
182717 EM ghma@staff.shu.edu.cn
182718 CR BIEBER AE, 1995, APPL PHYS LETT, V66, P3401
182719    BROWN TG, 1998, OPT EXPRESS, V3, P385
182720    CHEN W, 1987, PHYS REV LETT, V58, P160
182721    DANLAERT J, 1991, PHYS REV B, V44, P8214
182722    HATTORI T, 1997, J OPT SOC AM B, V14, P348
182723    HUANG XQ, 2003, CHINESE PHYS LETT, V20, P1721
182724    KRAUSS TD, 1994, APPL PHYS LETT, V65, P1739
182725    LAI YC, 2003, OPT LETT, V28, P2446
182726    LARCIPRETE MC, 2003, J APPL PHYS, V93, P5013
182727    MA GH, 2004, OPT LETT, V29, P1769
182728    MA GH, 2005, APPL PHYS B-LASERS O, V80, P359
182729    MATIAS IR, 2003, OPT LETT, V28, P1099
182730    MILLER A, 1995, NONLINEAR OPTICAL MA
182731    NEMEC H, 2004, J OPT SOC AM B, V21, P548
182732    OZAKI R, 2004, APPL PHYS LETT, V84, P1844
182733    QIN Q, 2003, APPL PHYS LETT, V82, P4654
182734    RADIC S, 1994, OPT LETT, V19, P1789
182735    SANKEY ND, 1992, APPL PHYS LETT, V60, P1427
182736    SCALORA M, 1994, PHYS REV LETT, V73, P1368
182737    SCHNEIDER GJ, 2003, APPL PHYS LETT, V83, P5350
182738    SENYUK BI, 2005, OPT LETT, V30, P349
182739    TSURUMACHI N, 1999, JPN J APPL PHYS 1, V38, P6302
182740    WILD B, 2004, APPL PHYS LETT, V84, P846
182741    WINFUL HG, 1979, APPL PHYS LETT, V35, P379
182742    YABLONOVITCH E, 1987, PHYS REV LETT, V58, P2059
182743 NR 25
182744 TC 0
182745 SN 1094-4087
182746 J9 OPT EXPRESS
182747 JI Opt. Express
182748 PD JAN 23
182749 PY 2006
182750 VL 14
182751 IS 2
182752 BP 858
182753 EP 865
182754 PG 8
182755 SC Optics
182756 GA 008AG
182757 UT ISI:000235012000046
182758 ER
182759 
182760 PT J
182761 AU Xu, S
182762    Zi, HW
182763 TI Absorption efficiency of graded-index double-clad fiber
182764 SO OPTICAL ENGINEERING
182765 DT Article
182766 DE pump absorption; double-clad fibers; graded-index multimode fibers
182767 ID CIRCULAR SYMMETRY; PUMP ABSORPTION; AMPLIFIERS
182768 AB The absorption efficiency of graded-index double-clad fiber lasers and
182769    amplifiers is investigated. As ray optics are no longer valid in the
182770    case of a graded index, a mode analysis method is used. The calculated
182771    results show that, in symmetric cases, absorption efficiency is higher
182772    with graded index than that with step index. In the case of an offset
182773    core, graded index can achieve the same absorption efficiency with a
182774    much smaller offset distance. Absorption efficiency for different
182775    graded-index profiles of the inner cladding is also studied and
182776    compared. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
182777 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
182778 RP Xu, S, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
182779    Peoples R China.
182780 EM zhwang@mail.shu.edu.ch
182781 CR CHERNIKOV SV, 1997, OPT LETT, V22, P298
182782    DOYA V, 2001, OPT LETT, V26, P872
182783    GLOGE D, 1975, IEEE T           MTT, V23, P106
182784    KOUZNETSOV D, 2001, J OPT SOC AM B, V18, P743
182785    KOUZNETSOV D, 2002, J OPT SOC AM B, V19, P1259
182786    LIU AP, 1996, OPT COMMUN, V132, P511
182787    MARCUSE D, 1974, THEORY DIELECTIC OPT
182788    MUENDEL MH, 1996, CLEO 96, P209
182789 NR 8
182790 TC 0
182791 SN 0091-3286
182792 J9 OPT ENG
182793 JI Opt. Eng.
182794 PD DEC
182795 PY 2005
182796 VL 44
182797 IS 12
182798 AR 125002
182799 DI ARTN 125002
182800 PG 4
182801 SC Optics
182802 GA 006LE
182803 UT ISI:000234898200019
182804 ER
182805 
182806 PT J
182807 AU Li, WH
182808    Wei, BC
182809    Zhang, TH
182810    Zhang, LC
182811    Dong, YD
182812 TI Mechanical behavior of Zr65Al10Ni10Cu15 and Zr52.5Al10Ni10Cu15Be12.5
182813    bulk metallic glasses
182814 SO MATERIALS TRANSACTIONS
182815 DT Article
182816 DE bulk metallic glass; mechanical property; shear band; nanoindentation
182817 ID SUPERCOOLED LIQUID REGION; AMORPHOUS-ALLOYS; SERRATED FLOW;
182818    NANOINDENTATION; DEFORMATION
182819 AB The thermal stability and the mechanical behavior of Zr65Al10Ni10Cu15
182820    and Zr52.5Al10Ni10Cu15Be12.5 bulk metallic glasses (BMGs) were
182821    investigated by differential scanning calorimetry, uniaxial compressive
182822    test, ultrasonic method, and nanoindentation. The substitution of Zr by
182823    Be significantly improved the thermal stability of the amorphous phase,
182824    exhibited by a wide supercooled liquid region of 116 K. The Be
182825    containing BMG exhibited a compressive strength of 1780 MPa, and in
182826    particular a high plastic strain of about 6%. The simultaneous
182827    operation of multiple shear bands during plastic deformation in
182828    Zr52.5Al10Ni10Cu15.5 BMG is proved by the less pronounced serrated flow
182829    during the loading process in the compression and nanoindentation, as
182830    well as the fracture surface morphologies. A high Debye temperature
182831    derived from the ultrasonic measurements indicates a condensed atomic
182832    arrangement in the Be containing BMG, and may responsible for the high
182833    thermal stability.
182834 C1 Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Beijing 100080, Peoples R China.
182835    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
182836    Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, LNM, Beijing 100080, Peoples R China.
182837 RP Wei, BC, Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Beijing
182838    100080, Peoples R China.
182839 EM weibc@imech.ac.cn
182840 CR CHOIYIM H, 1997, APPL PHYS LETT, V71, P3808
182841    FAN C, 1999, APPL PHYS LETT, V75, P341
182842    INOUE A, 1990, MATER T JIM, V31, P177
182843    INOUE A, 1993, MATER T JIM, V34, P1234
182844    INOUE A, 1995, MATER T JIM, V36, P866
182845    INOUE A, 2000, ACTA MATER, V48, P279
182846    JIANG WH, 2003, J MATER RES, V18, P755
182847    JOHNSON WL, 1999, MRS BULL, V24, P42
182848    KATO H, 1996, INOUE MAT T JIM, V37, P70
182849    KAWAMURA Y, 1996, APPL PHYS LETT, V69, P1208
182850    LIU LF, 2005, MATER CHEM PHYS, V93, P174
182851    NIEH TG, 2002, INTERMETALLICS, V10, P1177
182852    OLIVER WC, 1992, J MATER RES, V7, P1564
182853    PEKER A, 1993, APPL PHYS LETT, V63, P2342
182854    SCHROERS J, 2004, PHYS REV LETT, V93
182855    SCHUH CA, 2003, ACTA MATER, V51, P87
182856    SPACPEN F, 1977, ACTA METALL, V25, P407
182857    WANG LM, 2000, APPL PHYS LETT, V77, P1147
182858    WANG WH, 2001, PHYS REV B, V63, P52204
182859    WEI BC, 2004, INTERMETALLICS, V12, P1239
182860    XIAO XS, 2003, J ALLOY COMPD, V351, P324
182861    XING LQ, 2001, PHYS REV B, V64
182862    ZHANG Y, 2000, MAT T JIM, V11, P1410
182863 NR 23
182864 TC 0
182865 SN 1345-9678
182866 J9 MATER TRANS
182867 JI Mater. Trans.
182868 PD DEC
182869 PY 2005
182870 VL 46
182871 IS 12
182872 BP 2954
182873 EP 2958
182874 PG 5
182875 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
182876    Engineering
182877 GA 005TK
182878 UT ISI:000234846500071
182879 ER
182880 
182881 PT J
182882 AU Zhang, DS
182883    Shi, LY
182884    Fang, JH
182885    Dai, K
182886    Liu, JQ
182887 TI Influence of carbonization of hot-pressed carbon nanotube electrodes on
182888    removal of NaCl from saltwater solution
182889 SO MATERIALS CHEMISTRY AND PHYSICS
182890 DT Article
182891 DE carbon nanotubes; hot-pressed; carbonization; desalination
182892 ID CAPACITORS
182893 AB Carbon nanotubes (CNTs) were hot-pressed as the electrodes of
182894    flow-through capacitor (FTC), which were used to remove NaCl from
182895    saltwater solution. The electrodes, obtained by hot-pressing CNTs with
182896    at least 20% phenolic resin (PR) binders, were investigated with
182897    battery-testing, nitrogen adsorption, scanning electron microscopy
182898    (SEM), atomic force microscope (AFM) and water contact angle. The
182899    results showed that the binders deteriorated the performance of the
182900    electrodes, and carbonization improved removal of NaCl from saltwater
182901    solution, with the efficiency up to 90%. After the electrodes being
182902    carbonized, many new pores were created on the surface; the specific
182903    surface area highly increased; the equivalent resistance greatly
182904    decreased; the hydrophilicity highly increased; the specific
182905    capacitance tremendously increased; thus, removal efficiency highly
182906    increased. (c) 2005 Elsevier B.V. All rights reserved.
182907 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China.
182908    Shanghai Univ, Sch Sci, Shanghai 200444, Peoples R China.
182909 RP Zhang, DS, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples
182910    R China.
182911 EM dengsongzh@163.com
182912 CR ANDELMAN M, 1993, 5192432, US
182913    ANDELMAN MD, 1998, FILTER SEPERAT, V35, P345
182914    DEMIRCIOGLU M, 2003, DESALINATION, V153, P329
182915    ELSAYED YM, 1999, DESALINATION, V125, P251
182916    FRACKOWIAK E, 2002, CHEM PHYS LETT, V361, P35
182917    GRUNDISCH A, 2001, DESALINATION, V138, P223
182918    MA RZ, 1999, J POWER SOURCES, V84, P126
182919    NISHINO A, 1996, J POWER SOURCES, V60, P137
182920    NOACK A, 2002, 1003457, DE
182921    ODA H, 2003, CARBON, V41, P1037
182922    REDDY BC, 1997, DESALINATION, V113, P27
182923    SEMIAT R, 2001, DESALINATION, V140, P27
182924    SHI L, 2003, 1463927, CN
182925    ZHANG DS, IN PRESS APPL MEMBR
182926    ZHANG DS, 2005, J FUNCT MAT, V36, P282
182927 NR 15
182928 TC 0
182929 SN 0254-0584
182930 J9 MATER CHEM PHYS
182931 JI Mater. Chem. Phys.
182932 PD MAR 10
182933 PY 2006
182934 VL 96
182935 IS 1
182936 BP 140
182937 EP 144
182938 PG 5
182939 SC Materials Science, Multidisciplinary
182940 GA 007RD
182941 UT ISI:000234986200023
182942 ER
182943 
182944 PT J
182945 AU Hou, JM
182946    Tian, LJ
182947 TI Excitation spectrum of spin-1 bosonic atoms in Mott insulating phase
182948 SO COMMUNICATIONS IN THEORETICAL PHYSICS
182949 DT Article
182950 DE collective excitations; optical lattice; Mott-insulating phase; spinor
182951    atoms
182952 ID OPTICAL LATTICE
182953 AB The effective action for spin-1 bosonic atom in an optical lattice is
182954    derived. The quasiparticle and quasihole dispersions are calculated for
182955    different cases by using a functional integral formalism, For all
182956    cases, the excitation spectra are analyzed. All the quasiparticle and
182957    quasihole excitations start with a gap.
182958 C1 SE Univ, Dept Phys, Nanjing 210096, Peoples R China.
182959    Nankai Univ, Div Theoret Phys, Nankai Inst Math, Tianjin 300071, Peoples R China.
182960    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
182961 RP Hou, JM, SE Univ, Dept Phys, Nanjing 210096, Peoples R China.
182962 EM jmhou@eyou.com
182963 CR BENDAHAN M, 1996, PHYS REV LETT, V76, P4508
182964    CHEN GH, 2003, PHYS REV A, V67
182965    CHOI DI, 1999, PHYS REV LETT, V82, P2022
182966    DEMLER E, 2002, PHYS REV LETT, V88
182967    GREINER M, 2002, NATURE, V39, P415
182968    HOU JM, 2003, PHYS REV A, V67
182969    JAKSCH D, 1998, PHYS REV LETT, V81, P3108
182970    JIN S, 2004, PHYS REV A, V70
182971    MORSCH O, 2001, PHYS REV LETT, V87
182972    VANOOSTEN D, 2001, PHYS REV A, V63
182973 NR 10
182974 TC 0
182975 SN 0253-6102
182976 J9 COMMUN THEOR PHYS
182977 JI Commun. Theor. Phys.
182978 PD JAN
182979 PY 2006
182980 VL 45
182981 IS 1
182982 BP 87
182983 EP 94
182984 PG 8
182985 SC Physics, Multidisciplinary
182986 GA 007BO
182987 UT ISI:000234942700017
182988 ER
182989 
182990 PT J
182991 AU Zhu, HP
182992    Zheng, CL
182993    Fang, JP
182994 TI Exact solution to (1+1)-dimensional higher-order Schrodinger equation
182995    via an extended mapping approach
182996 SO COMMUNICATIONS IN THEORETICAL PHYSICS
182997 DT Article
182998 DE extended mapping approach; Schrodinger equation; exact solution
182999 ID MULTISCALE REDUCTION; BOUSSINESQ EQUATION; SYSTEM; SOLITONS; MODELS;
183000    PDES
183001 AB Starting from a special variable transformation and with the help of an
183002    extended mapping approach, the high-order Schrodinger equation (n =
183003    3,4) is solved. A new family of variable separation solutions with
183004    arbitrary functions is derived.
183005 C1 Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China.
183006    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
183007 RP Zheng, CL, Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R
183008    China.
183009 EM zjclzheng@ayahoo.com.cn
183010 CR CALOGERO F, 2000, J MATH PHYS, V41, P6399
183011    CALOGERO F, 2001, J MATH PHYS, V42, P2635
183012    FANG JP, 2005, Z NATURFORSCH A, V60, P245
183013    GARDNER CS, 1967, PHYS REV LETT, V19, P1095
183014    HIROTA R, 1971, PHYS REV LETT, V27, P1192
183015    LOU SY, 1990, PHYS LETT A, V151, P133
183016    LOU SY, 1993, PHYS LETT A, V175, P23
183017    LOU SY, 1998, PHYS REV LETT, V80, P5027
183018    LOU SY, 1999, CHINESE PHYS LETT, V16, P659
183019    LOU SY, 2001, COMMUN THEOR PHYS, V35, P589
183020    MATVEEV VB, 1991, DARBOUX TRANSFORMATI
183021    NIMMO JJC, 1992, PHYS LETT A, V168, P113
183022    TANG XY, 2002, PHYS REV E 2, V66
183023    VEROSKY JM, 1991, J MATH PHYS, V32, P1733
183024    ZHENG CL, 2003, COMMUN THEOR PHYS, V39, P9
183025    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
183026    ZHENG CL, 2004, COMMUN THEOR PHYS, V41, P671
183027    ZHENG CL, 2004, J PHYS SOC JPN, V73, P293
183028    ZHENG CL, 2004, Z NATURFORSCH A, V59, P912
183029    ZHENG CL, 2005, COMMUN THEOR PHYS, V43, P850
183030    ZHENG CL, 2005, SOLITONS FRACTALS, V23, P1741
183031    ZHENG CL, 2005, SOLITONS FRACTALS, V24, P1347
183032    ZHENG CL, 2005, SOLITONS FRACTALS, V26, P187
183033 NR 23
183034 TC 0
183035 SN 0253-6102
183036 J9 COMMUN THEOR PHYS
183037 JI Commun. Theor. Phys.
183038 PD JAN
183039 PY 2006
183040 VL 45
183041 IS 1
183042 BP 127
183043 EP 130
183044 PG 4
183045 SC Physics, Multidisciplinary
183046 GA 007BO
183047 UT ISI:000234942700024
183048 ER
183049 
183050 PT J
183051 AU Feng, W
183052    Ma, WS
183053 TI Group theory analysis of braided geometry structures
183054 SO CHINESE SCIENCE BULLETIN
183055 DT Article
183056 DE braided geometry structure; point symbol; plane group; space group;
183057    symmetry group analysis
183058 ID PLAIN WEAVE COMPOSITES; MICROSTRUCTURE; PREFORMS; MODEL
183059 AB The braided geometry structures are analyzed with point groups and
183060    space groups for which the continuous yarn of the braided preforms is
183061    segmented and expressed in some special symbols. All structures of
183062    braided material are described and classified with group theory, and
183063    new braiding methods are found. The group theory analysis lays the
183064    theoretical foundation for optimizing material performance.
183065 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200071, Peoples R China.
183066    Jiaozuo Univ, Dept Med & Elect Engn, Jiaozuo, Peoples R China.
183067 RP Ma, WS, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200071,
183068    Peoples R China.
183069 EM mawensuo@jzu.cn
183070 CR BARBERO EJ, 2005, INT J SOLIDS STRUCT, V42, P489
183071    BYUN JH, 1991, J COMPOS MATER, V25, P1599
183072    CHEN L, 1999, COMPOS SCI TECHNOL, V59, P391
183073    LI JL, 2002, ACT MAT COMPOSITE SI, V19, P69
183074    LI W, 1990, J TEXT I, V81, P491
183075    LOEBL EM, 1968, GROUP THEORY ITS APP, P285
183076    MOURITZ AP, 1999, COMPOS PART A-APPL S, V30, P1445
183077    SRIRENGAN K, 1997, COMPOS STRUCT, V39, P145
183078    WANG RH, 1990, SYMMETRY GROUP CRYST
183079    WU DL, 1996, COMPOS SCI TECHNOL, V56, P225
183080    YANG JM, 1986, J COMPOS MATER, V20, P472
183081    ZEMAN J, 2004, INT J SOLIDS STRUCT, V41, P6549
183082 NR 12
183083 TC 0
183084 SN 1001-6538
183085 J9 CHIN SCI BULL
183086 JI Chin. Sci. Bull.
183087 PD NOV
183088 PY 2005
183089 VL 50
183090 IS 21
183091 BP 2529
183092 EP 2533
183093 PG 5
183094 SC Multidisciplinary Sciences
183095 GA 005ZW
183096 UT ISI:000234865900019
183097 ER
183098 
183099 PT J
183100 AU Fu, JL
183101    Chen, LQ
183102    Chen, XW
183103 TI Momentum-dependent symmetries and non-Noether conserved quantities for
183104    nonholonomic nonconservative Hamilton canonical systems
183105 SO CHINESE PHYSICS
183106 DT Article
183107 DE nonholonomic nonconservative Hamiltonian system; momentum-dependent
183108    symmetry; infinitesimal transformation; Lie group
183109 ID LIE SYMMETRIES; CONSTRAINTS; EQUATIONS; PARTICLE; THEOREM
183110 AB This paper investigates the momentum-dependent symmetries for
183111    nonholonomic nonconservative Hamilton canonical systems. The definition
183112    and determining equations of the momentum-dependent symmetries are
183113    presented, based on the invariance of differential equations under
183114    infinitesimal transformations with respect to the generalized
183115    coordinates and generalized momentums. The structure equation and the
183116    non-Noether conserved quantities of the systems are obtained. The
183117    inverse issues associated with the momentum-dependent symmetries are
183118    discussed. Finally, an example is discussed to further illustrate the
183119    applications.
183120 C1 Zhejiang Sci Tech Univ, Dept Phys, Hangzhou 310018, Peoples R China.
183121    Shanghai Univ, Dept Mech, Shanghai 200072, Peoples R China.
183122    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
183123    Shangqiu Teachers Coll, Shangqui 476000, Peoples R China.
183124 RP Fu, JL, Zhejiang Sci Tech Univ, Dept Phys, Hangzhou 310018, Peoples R
183125    China.
183126 EM sqfujingli@163.com
183127    lqchen@online.sh.cn
183128 CR ABRAHAMSHRAUNER B, 1995, PHYS LETT A, V203, P169
183129    CHEN XW, 2003, CHINESE PHYS, V12, P936
183130    CRASMAREANU M, 2000, INT J NONLINEAR MECH, V35, P947
183131    DJUKIC DS, 1975, ACTA MECH, V23, P17
183132    FANG JH, 2004, CHINESE PHYS, V13, P1620
183133    FRANCISCO JH, 2000, J MATH A, V33, P8217
183134    GONZALEZGASCON F, 1994, J PHYS A-MATH GEN, V27, L59
183135    GUO YX, 2001, CHINESE PHYS, V10, P1
183136    GUO YX, 2001, CHINESE PHYS, V10, P181
183137    HAAS F, 2000, J PHYS A-MATH GEN, V33, P4661
183138    HOJMAN SA, 1992, J PHYS A, V25, L291
183139    LAKSHMANAN M, 1991, J MATH PHYS, V32, P75
183140    LEVI D, 2001, J PHYS A-MATH GEN, V34, P9507
183141    LI ZP, 1981, ACTA PHYS SINICA, V30, P1659
183142    LIU RW, 1999, APPL MATH MECH-ENGL, V20, P635
183143    LUO SK, 2004, ACTA PHYS SIN-CH ED, V53, P5
183144    LUTZKY M, 1979, J PHYS A, V12, P973
183145    LUTZKY M, 1995, J PHYS A-MATH GEN, V28, L637
183146    LUTZKY M, 1998, INT J NONLINEAR MECH, V33, P393
183147    MASQUE JM, 2002, J PHYS A-MATH GEN, V35, P2013
183148    MEI FX, 1993, SCI CHINA SER A, V23, P709
183149    MEI FX, 2000, ACTA PHYS SINICA, V49, P135
183150    MEI FX, 2000, ASME, V53, P283
183151    NOETHER AE, 1918, NACHR AKAD WISS GO 2, P235
183152    PAPASTAVRIDIS JG, 1998, APPL MECH REV, V51, P239
183153    QIAO YF, 2004, CHINESE PHYS, V13, P1790
183154    SARLET W, 1987, J PHYS A-MATH GEN, V20, P1365
183155    SLEPHANE F, 2001, QUANTUM GRAV, V18, P4863
183156    SOH CW, 1999, CLASSICAL QUANT GRAV, V16, P3553
183157    VUJANOVIC B, 1978, INT J NONLINEAR MECH, V13, P185
183158    ZHANG HB, 2002, CHINESE PHYS, V11, P765
183159    ZHANG Y, 2003, ACTA PHYS SIN-CH ED, V52, P1326
183160 NR 32
183161 TC 0
183162 SN 1009-1963
183163 J9 CHIN PHYS
183164 JI Chin. Phys.
183165 PD JAN
183166 PY 2006
183167 VL 15
183168 IS 1
183169 BP 8
183170 EP 12
183171 PG 5
183172 SC Physics, Multidisciplinary
183173 GA 006OS
183174 UT ISI:000234907400002
183175 ER
183176 
183177 PT J
183178 AU Ma, ZY
183179    Zheng, CL
183180 TI Two classes of fractal structures for the (2+1)-dimensional dispersive
183181    long wave equation
183182 SO CHINESE PHYSICS
183183 DT Article
183184 DE mapping approach; DLW equation; explicit solution; fractal
183185 ID NONLINEAR SCHRODINGER-EQUATION; COHERENT SOLITON-STRUCTURES; JACOBI
183186    ELLIPTIC FUNCTION; SIMILARITY REDUCTIONS; SPACE DIMENSIONS; LOCALIZED
183187    EXCITATIONS; BOUSSINESQ EQUATION; EXPANSION METHOD; SYSTEM; CHAOS
183188 AB Using the mapping approach via a Riccati equation, a series of variable
183189    separation excitations with three arbitrary functions for the
183190    (2+1)-dimensional dispersive long wave (DLW) equation are derived. In
183191    addition to the usual localized coherent soliton excitations like
183192    dromions, rings, peakons and compactions, etc, some new types of
183193    excitations that possess fractal behaviour are obtained by introducing
183194    appropriate lower-dimensional localized patterns and Jacobian elliptic
183195    functions.
183196 C1 Zhejiang Lishui Univ, Coll Sci, Lishui 323000, Peoples R China.
183197    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
183198 RP Ma, ZY, Zhejiang Lishui Univ, Coll Sci, Lishui 323000, Peoples R China.
183199 EM ma-zhengyi@163.com
183200 CR BOITI M, 1987, INVERSE PROBL, V3, P371
183201    CHEN HS, 2000, CHINESE PHYS LETT, V17, P85
183202    CLARKSON PA, 1989, J MATH PHYS, V30, P2201
183203    FAN EG, 2002, PHYS LETT A, V295, P280
183204    FANG JP, 2004, COMMUN THEOR PHYS, V43, P245
183205    GEDALIN M, 1997, PHYS REV LETT, V78, P448
183206    GOLLUB JP, 2000, NATURE, V404, P710
183207    KIVSHAR YS, 1989, REV MOD PHYS, V61, P765
183208    LIU SK, 2001, ACTA PHYS SIN-CH ED, V50, P2068
183209    LIU SK, 2002, ACTA PHYS SIN-CH ED, V51, P10
183210    LOU S, 1993, PHYS LETT A, V176, P96
183211    LOU SY, 1989, J MATH PHYS, V30, P1614
183212    LOU SY, 1990, PHYS LETT A, V151, P133
183213    LOU SY, 1994, J PHYS A-MATH GEN, V27, P3235
183214    LOU SY, 1995, MATH METHOD APPL SCI, V18, P789
183215    LOU SY, 1997, J MATH PHYS, V38, P6401
183216    LOU SY, 2002, CHINESE PHYS LETT, V19, P769
183217    LOUTSENKO I, 1997, PHYS REV LETT, V78, P3011
183218    LU Z, 2003, CHAOS SOLITON FRACT, V19, P527
183219    PAQUIN G, 1990, PHYSICA D, V46, P122
183220    STEGEMAN GI, 1999, SCIENCE, V286, P1518
183221    TANG XY, 2002, CHAOS SOLITON FRACT, V14, P1415
183222    TANG XY, 2002, PHYS REV E, V66, P46601
183223    TANG XY, 2003, J MATH PHYS, V44, P4000
183224    WU J, 1984, PHYS REV LETT, V52, P1421
183225    ZHANG JF, 2003, CHINESE PHYS LETT, V20, P448
183226    ZHANG SQ, 2003, ACTA PHYS SIN-CH ED, V52, P1066
183227    ZHENG CL, 2002, ACTA PHYS SIN-CH ED, V51, P2426
183228    ZHENG CL, 2003, CHINESE PHYS LETT, V20, P331
183229    ZHENG CL, 2003, CHINESE PHYS, V12, P11
183230    ZHENG CL, 2003, CHINESE PHYS, V12, P472
183231    ZHENG CL, 2003, COMMUN THEOR PHYS, V40, P25
183232    ZHENG CL, 2003, INT J MOD PHYS B 2, V17, P4407
183233    ZHENG CL, 2004, CHINESE PHYS, V13, P592
183234    ZHENG CL, 2005, ACTA PHYS SIN-CH ED, V54, P1468
183235    ZHENG CL, 2005, CHINESE PHYS, V14, P676
183236 NR 36
183237 TC 0
183238 SN 1009-1963
183239 J9 CHIN PHYS
183240 JI Chin. Phys.
183241 PD JAN
183242 PY 2006
183243 VL 15
183244 IS 1
183245 BP 45
183246 EP 52
183247 PG 8
183248 SC Physics, Multidisciplinary
183249 GA 006OS
183250 UT ISI:000234907400008
183251 ER
183252 
183253 PT J
183254 AU Liu, GL
183255    Li, XW
183256 TI Mesh free method based on local Cartesian frame
183257 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
183258 DT Article
183259 DE mesh free; whole derivative; Cartesian frame
183260 AB A new mesh free method proposed by the authors was presented, in which
183261    the derivatives at each node were constructed using whole derivative
183262    formulas through the nodes selected around the node using local
183263    Cartesian frame in an autonomous manner, so that without any element it
183264    could be considered as a completely mesh free method. The method was
183265    tested with a numerical example, and reliable solution was obtained
183266    with high accuracy and efficiency.
183267 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
183268 RP Li, XW, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
183269    Peoples R China.
183270 EM xwli@staff.shu.edu.cn
183271 CR BEISSEL S, 1996, COMPUT METHOD APPL M, V139, P49
183272    FURUKAWA T, 2000, INT J NUMER METH ENG, V47, P1445
183273    LIU WK, 1995, INT J NUMER METH ENG, V38, P1655
183274    MONAGHAN JJ, 1992, ANNU REV ASTRON ASTR, V30, P543
183275    ONATE E, 1995, P 9 INT C FIN EL MET
183276    ONATE E, 1996, INT J NUMER METH ENG, V39, P3839
183277    PREMOZE S, 2003, EUROGRAPHICS, V22, P401
183278    ZIENKIEWICZ OC, 2000, FINITE ELEMENT METHO, V1
183279 NR 8
183280 TC 0
183281 SN 0253-4827
183282 J9 APPL MATH MECH-ENGL ED
183283 JI Appl. Math. Mech.-Engl. Ed.
183284 PD JAN
183285 PY 2006
183286 VL 27
183287 IS 1
183288 BP 1
183289 EP 6
183290 PG 6
183291 SC Mathematics, Applied; Mechanics
183292 GA 006NK
183293 UT ISI:000234904000001
183294 ER
183295 
183296 PT J
183297 AU Zhao, WJ
183298    Chen, LQ
183299    Zu, JW
183300 TI Finite difference method for simulating transverse vibrations of an
183301    axially moving viscoelastic string
183302 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
183303 DT Article
183304 DE axially moving strings; transverse vibration; viscoelastic; finite
183305    difference; alternating iterative; dynamical analysis
183306 ID BELT DRIVE SYSTEMS; NONLINEAR VIBRATION
183307 AB A finite difference method is presented to simulate transverse
183308    vibrations of an axially moving string. By discretizing the governing
183309    equation and the equation of stress-strain relation at different
183310    frictional knots, two linear sparse finite difference equation systems
183311    are obtained. The two explicit difference schemes can be calculated
183312    alternatively, which make the computation much more efficient. The
183313    numerical method makes the nonlinear model easier to deal with and of
183314    truncation errors, O(Delta t(2) + Delta x(2)). It also shows quite good
183315    stability for small initial values. Numerical examples are presented to
183316    demonstrate the efficiency and the stability of the algorithm, and
183317    dynamic analysis of a viscoelastic string is given by using the
183318    numerical results.
183319 C1 Qingdao Univ, Dept Math, Qingdao 266071, Shandong Prov, Peoples R China.
183320    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
183321    Shanghai Univ, Dept Appl Math, Shanghai 200072, Peoples R China.
183322    Univ Toronto, Dept Mech & Engn, Toronto, ON M5S 3G8, Canada.
183323 RP Zhao, WJ, Qingdao Univ, Dept Math, Qingdao 266071, Shandong Prov,
183324    Peoples R China.
183325 EM zhweijia@sohu.com
183326 CR ABRATE S, 1992, MECH MACH THEORY, V27, P645
183327    BEIKMANN RS, 1996, J VIB ACOUST, V118, P406
183328    CHEN LQ, 2001, ADV MECH, V31, P535
183329    CHEN LQ, 2005, APPL MATH COMPUT, V162, P305
183330    CHEN TM, 1995, INT J NUMER METH ENG, V38, P509
183331    GOBAT JI, 2001, MECH ENG, V190, P487
183332    MARCHUK GI, 1981, METHODS NUMERICAL MA
183333    NI YQ, 2000, J SOUND VIB, V238, P189
183334    ZHANG L, 1999, J APPL MECH-T ASME, V66, P396
183335    ZHANG L, 2000, J SOUND VIB, V232, P783
183336    ZHAO WJ, 2002, INT J NONLINEAR SCI, V3, P139
183337 NR 11
183338 TC 0
183339 SN 0253-4827
183340 J9 APPL MATH MECH-ENGL ED
183341 JI Appl. Math. Mech.-Engl. Ed.
183342 PD JAN
183343 PY 2006
183344 VL 27
183345 IS 1
183346 BP 23
183347 EP 28
183348 PG 6
183349 SC Mathematics, Applied; Mechanics
183350 GA 006NK
183351 UT ISI:000234904000004
183352 ER
183353 
183354 PT J
183355 AU Wang, X
183356 TI Time-harmonic dynamic Green's functions for one-dimensional hexagonal
183357    quasicrystals
183358 SO ACTA MECHANICA SOLIDA SINICA
183359 DT Article
183360 DE dynamic Green's function; one-dimensional hexagonal quasicrystal;
183361    Helmholtz equation
183362 AB Quasicrystals have additional phason degrees of freedom not found in
183363    conventional crystals. In this paper, we present; an exact solution for
183364    time-harmonic dynamic Green's function of one-dimensional hexagonal
183365    quasicrystals with the Lane classes 6/m(h) and 6/m(h)mm. Through the
183366    introduction of two new functions phi and psi, the original problem is
183367    reduced to the determination of Green's functions for two independent
183368    Helmholtz equations. The explicit expressions of displacement and
183369    stress fields are presented and their asymptotic behaviors are
183370    discussed. The static Green's function can be obtained by letting the
183371    circular frequency approach zero.
183372 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
183373 RP Wang, X, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
183374    200072, Peoples R China.
183375 CR BACHTELER J, 1998, EUR PHYS J B, V4, P299
183376    CHEN WQ, 2004, IN PRESS MECH RES CO
183377    DE P, 1987, PHYS REV B, V35, P8609
183378    DING DH, 1995, J PHYS-CONDENS MAT, V7, P5423
183379    FAN TY, 1999, ACTA PHYS SIN-OV ED, V8, P288
183380    MA XK, 1997, ELECTROMAGNETIC THEO
183381    MORSE PM, 1953, METHODS THEORETICA 2
183382    SHECHTMAN D, 1984, PHYS REV LETT, V53, P1951
183383 NR 8
183384 TC 0
183385 SN 0894-9166
183386 J9 ACTA MECH SOLIDA SINICA
183387 JI Acta Mech. Solida Sin.
183388 PD DEC
183389 PY 2005
183390 VL 18
183391 IS 4
183392 BP 302
183393 EP 306
183394 PG 5
183395 SC Materials Science, Multidisciplinary; Mechanics
183396 GA 008BG
183397 UT ISI:000235014600003
183398 ER
183399 
183400 PT J
183401 AU Yang, XD
183402    Chen, LQ
183403 TI The stability of an axially accelerating beam on simple supports with
183404    torsion springs
183405 SO ACTA MECHANICA SOLIDA SINICA
183406 DT Article
183407 DE axially moving beam; natural frequency; method of multiple scales
183408 ID VIBRATIONS; VELOCITY
183409 AB The axially moving beams on simple supports with torsion springs are
183410    studied. The general modal functions of the axially moving beam with
183411    constant speed have been obtained from the supporting conditions. The
183412    contribution of the spring stiffness to the natural frequencies has
183413    been numerically investigated. Transverse stability is also studied for
183414    axially moving beams on simple supports with torsion springs. The
183415    method of multiple scales is applied to the partial-differential
183416    equation governing the transverse parametric vibration. The stability
183417    boundary is derived from the solvability condition. Instability occurs
183418    if the axial speed fluctuation frequency is close to the sum of any two
183419    natural frequencies or is two fold natural frequency of the unperturbed
183420    system. It can be concluded that the spring stiffness makes both the
183421    natural frequencies and the instability regions smaller in the axial
183422    speed fluctuation frequency-amplitude plane for given mean axial speed
183423    and bending stiffness of the beam.
183424 C1 Shenyang Inst Aeronaut Engn, Dept Mech Engn, Shenyang 110034, Peoples R China.
183425    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
183426    Shanghai Univ, Dept Mech, Shanghai 200436, Peoples R China.
183427 RP Yang, XD, Shenyang Inst Aeronaut Engn, Dept Mech Engn, Shenyang 110034,
183428    Peoples R China.
183429 CR ABRATE S, 1992, MECH MACH THEORY, V27, P645
183430    OZ HR, 1999, J SOUND VIB, V227, P239
183431    OZ HR, 2001, J SOUND VIB, V239, P556
183432    WICKERT JA, 1990, J APPL MECH-T ASME, V57, P738
183433    YANG XD, 2005, ACTA MECH SOLIDA SIN, V18, P242
183434 NR 5
183435 TC 0
183436 SN 0894-9166
183437 J9 ACTA MECH SOLIDA SINICA
183438 JI Acta Mech. Solida Sin.
183439 PD DEC
183440 PY 2005
183441 VL 18
183442 IS 4
183443 BP 340
183444 EP 347
183445 PG 8
183446 SC Materials Science, Multidisciplinary; Mechanics
183447 GA 008BG
183448 UT ISI:000235014600008
183449 ER
183450 
183451 PT J
183452 AU Jiang, LB
183453    Li, QL
183454    Li, MM
183455    Zhou, Z
183456    Wu, LG
183457    Fan, JH
183458    Zhang, QQ
183459    Zhu, HH
183460    Xu, ZK
183461 TI A modified TMV-based vector facilitates the expression of longer
183462    foreign epitopes in tobacco
183463 SO VACCINE
183464 DT Article
183465 DE recombinant TMV; CP modification; FMDV epitope
183466 ID MOUTH-DISEASE VIRUS; MOSAIC-VIRUS; SYNTHETIC PEPTIDE; PLANT-VIRUSES;
183467    PROTEIN; SURFACE; PROTECTION; HOST
183468 AB Based upon a mutant isolated from tobacco infected with a recombinant
183469    tobacco mosaic vir-us (TMV), a new TMV-based vector was developed in
183470    which four to six C-terminal amino acid residues were deleted from the
183471    viral coat protein (CP) subunit. The new vector was quite similar to
183472    the original TMV-based vector, which all expressed a well characterized
183473    epitope peptide F11 (p(142) -A(152)) of Vp1 from foot-and-mouth disease
183474    virus (FMDV) serotype 0 in tobacco, in the infectivity, yield of the
183475    virus particles and more importantly protective activity of F11 in
183476    guinea pigs and swine against the FMDV. Furthermore, the capacity of
183477    the length of foreign peptide encoded by this new vector was much
183478    improved to successfully express a peptide F25 containing two fused
183479    epitopes F14 (R-200-L-213) and F11 of FMDV VP1, which was failed using
183480    the original vector in tobacco. Although animal assays indicated that
183481    such expressed F25 was not as efficient as F11 in the immunity,
183482    possibly due to lack of a spacer arm between the two fused epitopes,
183483    the new TMV-based vector may meet the requirement of expressing longer
183484    foreign peptides for different vaccines and other medicines. (c) 2005
183485    Published by Elsevier Ltd.
183486 C1 Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Plant Physiol & Ecol, Shanghai 200032, Peoples R China.
183487    Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China.
183488    Shanghai Acad Agr Sci, Vet Sci Inst, Shanghai, Peoples R China.
183489 RP Xu, ZK, Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Plant Physiol &
183490    Ecol, 345 Lingling Lu, Shanghai 200032, Peoples R China.
183491 EM zkxu@staff.shu.edu.cn
183492 CR BEACHY RN, 1996, ANN NY ACAD SCI, V792, P43
183493    BENDAHMANE M, 1999, J MOL BIOL, V290, P9
183494    DAWSON WO, 1990, ADV VIRUS RES, V38, P307
183495    DIMARCHI R, 1986, SCIENCE, V232, P639
183496    FITCHEN J, 1995, VACCINE, V13, P1051
183497    GOELET P, 1982, P NATL ACAD SCI USA, V79, P5819
183498    GOULDEN MG, 1992, J MOL BIOL, V227, P1
183499    JOHNSON J, 1997, ANNU REV PHYTOPATHOL, V35, P67
183500    KOO M, 1999, P NATL ACAD SCI USA, V96, P7774
183501    LACOMME C, 1998, GENET ENG P, V20, P225
183502    LAEMMLI UK, 1970, NATURE, V227, P680
183503    LOOR F, 1967, VIROLOGY, V33, P215
183504    MEZO G, 2004, J PEPT SCI, V10, P701
183505    NAMBA K, 1989, J MOL BIOL, V208, P307
183506    PARRY NR, 1989, J GEN VIROL, V70, P1493
183507    SAITO T, 1990, VIROLOGY, V176, P329
183508    SIEGEL A, 1978, VIROLOGY, V85, P494
183509    STACZEK J, 2000, VACCINE, V18, P2266
183510    STROHMAIER K, 1982, J GEN VIROL, V59, P295
183511    SUGIYAMA Y, 1995, FEBS LETT, V359, P247
183512    TURPEN TH, 1995, BIO-TECHNOL, V13, P53
183513    WU LG, 2003, VACCINE, V21, P4390
183514    XU Z, 1989, VIROLOGY, V168, P73
183515 NR 23
183516 TC 0
183517 SN 0264-410X
183518 J9 VACCINE
183519 JI Vaccine
183520 PD JAN 12
183521 PY 2006
183522 VL 24
183523 IS 2
183524 BP 109
183525 EP 115
183526 PG 7
183527 SC Medicine, Research & Experimental; Immunology; Veterinary Sciences
183528 GA 004UM
183529 UT ISI:000234777800001
183530 ER
183531 
183532 PT J
183533 AU Xu, XX
183534    Yang, HX
183535    Ding, HY
183536 TI A Liouville integrable lattice soliton equation, infinitely many
183537    conservation laws and integrable coupling systems
183538 SO PHYSICS LETTERS A
183539 DT Article
183540 ID SYMMETRY CONSTRAINT; EVOLUTION-EQUATIONS; MASTER-SYMMETRIES; HIERARCHY
183541 AB A lattice soliton equation is proposed as a typical lattice system in
183542    the hierarchy of lattice soliton equations, which is derived from a
183543    discrete matrix spectral problem. The Liouville integrability for the
183544    corresponding lattice system is demonstrated. Moreover, infinitely many
183545    conservation laws of corresponding lattice system are obtained by a
183546    direct way. Finally, the integrable coupling systems of corresponding
183547    lattice systems are deduced through enlarging associated Lax pairs. (c)
183548    2005 Published by Elsevier B.V.
183549 C1 Shanghai Univ Sci & Technol, Coll Sci, Qingdao 266510, Peoples R China.
183550    Taishan Coll, Dept Informat Sci & Technol, Tai An 271021, Peoples R China.
183551    Shandong Agr Univ, Coll Informat Sci & Technol, Tai An 271018, Peoples R China.
183552 RP Xu, XX, Shanghai Univ Sci & Technol, Coll Sci, Qingdao 266510, Peoples
183553    R China.
183554 EM xu_xixiang@sohu.com
183555 CR ABLOWITZ MJ, 1975, J MATH PHYS, V16, P598
183556    BLASZAK M, 1994, J MATH PHYS, V35, P4661
183557    FUCHSSTEINER B, 1993, APPL ANAL GEOMETRIC, P125
183558    MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
183559    MA WX, 1999, J MATH PHYS, V40, P2400
183560    MA WX, 2003, PHYS LETT A, V316, P72
183561    MA WX, 2004, INT J THEOR PHYS, V43, P219
183562    MA WX, 2004, J PHYS A-MATH GEN, V37, P1323
183563    MA WX, 2005, J MATH PHYS, V46
183564    OEVEL W, 1989, PROG THEOR PHYS, V81, P294
183565    TSUCHIDA T, 1998, J PHYS SOC JPN, V67, P1175
183566    TU GZ, 1990, J PHYS A-MATH GEN, V23, P3903
183567    WADATI M, 1979, J PHYS SOC JPN, V47, P1698
183568    WU YT, 1996, J MATH PHYS, V37, P2338
183569    XU XX, 2004, PHYS LETT A, V326, P199
183570    XU XX, 2005, NONLINEAR ANAL-THEOR, V61, P1225
183571    YANG HX, 2005, INT J MOD PHYS B, V13, P2121
183572    ZHANG DJ, 2002, CHAOS SOLITON FRACT, V14, P573
183573    ZHANG DJ, 2002, J PHYS A, V33, P7225
183574    ZHANG HW, 1991, J MATH PHYS, V32, P1908
183575 NR 20
183576 TC 0
183577 SN 0375-9601
183578 J9 PHYS LETT A
183579 JI Phys. Lett. A
183580 PD JAN 9
183581 PY 2006
183582 VL 349
183583 IS 1-4
183584 BP 153
183585 EP 163
183586 PG 11
183587 SC Physics, Multidisciplinary
183588 GA 004BJ
183589 UT ISI:000234726700020
183590 ER
183591 
183592 PT J
183593 AU Xie, F
183594    Han, MA
183595    Zhang, WJ
183596 TI Existence of canard manifolds in a class of singularly perturbed systems
183597 SO NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
183598 DT Article
183599 DE singular perturbations; canards; canard manifolds; integral manifolds
183600 AB In this paper, a class of singularly perturbed systems of ordinary
183601    differential equations are considered. Sufficient conditions for the
183602    existence of canard manifolds are obtained by the method of integral
183603    manifolds. (c) 2005 Elsevier Ltd. All rights reserved.
183604 C1 Donghua Univ, Dept Appl Math, Shanghai 200051, Peoples R China.
183605    Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China.
183606    Shanghai Normal Univ, Dept Math, Shanghai 200240, Peoples R China.
183607    Shanghai Univ, E Inst, SJTU, Div Computat Sci, Shanghai, Peoples R China.
183608 RP Xie, F, Donghua Univ, Dept Appl Math, Shanghai 200051, Peoples R China.
183609 EM xfeng@sjtu.org
183610 CR BENOIT E, 1981, COLLECTANEA MATH BAR, V31, P37
183611    CALLOT JL, 1978, CR HEBD ACAD SCI, V286, P1059
183612    DUMORTIER F, 1996, MEM AM MATH SOC, V577
183613    ECKHAUS W, 1983, LECT NOTES MATH, V985, P449
183614    FENICHEL N, 1979, J DIFFER EQUATIONS, V31, P53
183615    GRASMAN J, 1987, ASYMPTOTIC METHODS R
183616    HAN M, 2005, SCI CHINA SER A, V35, P425
183617    JONES CKRT, 1995, LECT NOTES MATH, V1609, P44
183618    KRUPA M, 2001, J DIFFER EQUATIONS, V177, P419
183619    KRUPA M, 2001, SIAM J MATH ANAL, V33, P286
183620    MISHCHENKO EF, 1994, ASYMPTOTIC METHODS S
183621    MOEHLIS J, 2002, J NONLINEAR SCI, V12, P319
183622    SHCHEPAKINA E, 2001, NONLINEAR ANAL-THEOR, V44, P897
183623    XIE F, IN PRESS J NONLINEAR
183624 NR 14
183625 TC 0
183626 SN 0362-546X
183627 J9 NONLINEAR ANAL-THEOR METH APP
183628 JI Nonlinear Anal.-Theory Methods Appl.
183629 PD FEB 1
183630 PY 2006
183631 VL 64
183632 IS 3
183633 BP 457
183634 EP 470
183635 PG 14
183636 SC Mathematics, Applied; Mathematics
183637 GA 004CO
183638 UT ISI:000234729800006
183639 ER
183640 
183641 PT J
183642 AU Song, YL
183643    Yuan, SL
183644 TI Bifurcation analysis in a predator-prey system with time delay
183645 SO NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS
183646 DT Article
183647 DE predator-prey system; time delay; stability; Hopf bifurcation; periodic
183648    solutions
183649 ID DIFFERENTIAL EQUATIONS; STABILITY; MODEL
183650 AB In this paper, a predator-prey system with a discrete delay and a
183651    distributed delay is investigated. We first consider the stability of
183652    the positive equilibrium and the existence of local Hopf bifurcations.
183653    In succession, using the normal form theory and center manifold
183654    argument, we derive the explicit formulas determining stability,
183655    direction and other properties of bifurcating periodic solutions.
183656    Finally, several numerical simulations for supporting the theoretical
183657    analysis are also given. (c) 2005 Elsevier Ltd. All rights reserved.
183658 C1 Tongji Univ, Dept Appl Math, Shanghai 200092, Peoples R China.
183659    Shanghai Univ Sci & Technol, Dept Basic Sci, Shanghai 200093, Peoples R China.
183660 RP Song, YL, Tongji Univ, Dept Appl Math, Shanghai 200092, Peoples R China.
183661 EM syl.mail@163.com
183662 CR BERETTA E, 1996, J MATH ANAL APPL, V204, P840
183663    BERRYMAN AA, 1992, ECOLOGY, V73, P1530
183664    CUSHING JM, 1977, INTEGRODIFFERENTIAL
183665    DODD RK, 1997, J MATH BIOL, V35, P432
183666    FARIA T, 2001, J MATH ANAL APPL, V254, P433
183667    FREEDMAN HI, 1995, J DIFFER EQUATIONS, V115, P173
183668    HASSARD BD, 1981, THEORY APPL HOPF BIF
183669    HE XZ, 1996, J MATH ANAL APPL, V198, P335
183670    KUANG Y, 1993, DELAY DIFFERENTIAL A
183671    RUAN SG, 2003, DYNAM CONT DIS SER A, V10, P863
183672    SONG YL, 2004, CHINESE ANN MATH SA, V25, P783
183673    WANG W, 1991, J MATH ANAL APPL, V158, P256
183674    ZHAO T, 1997, NONLINEAR ANAL-THEOR, V28, P1373
183675 NR 13
183676 TC 0
183677 SN 1468-1218
183678 J9 NONLINEAR ANAL-REAL WORLD APP
183679 JI Nonlinear Anal.-Real World Appl.
183680 PD APR
183681 PY 2006
183682 VL 7
183683 IS 2
183684 BP 265
183685 EP 284
183686 PG 20
183687 SC Mathematics, Applied
183688 GA 004CS
183689 UT ISI:000234730200008
183690 ER
183691 
183692 PT J
183693 AU Yao, FW
183694    Zhong, SS
183695    Liang, XL
183696 TI Experimental study of ultra-broadband patch antenna using a
183697    wedge-shaped air substrate
183698 SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
183699 DT Article
183700 DE patch antenna; ultra-broadband; wedge-shaped; air substrate
183701 AB In this paper, an ultra-broadband patch antenna using a wedge-shaped
183702    car dielectric substrate is introduced. By adjusting the angle alpha,
183703    the experimental ratio bandwidth of S-11 <= - 10 dB reaches 8.8:1,
183704    covering frequencies from 3.05 to 26.87 GHz. The measured impedance
183705    locus and radiation patterns at f = 6 GHz and at f = 18 GHz both are
183706    presented, and they show broadband characteristics and stability across
183707    the whole operating frequency bands, respeciively. (C) 2005 Wiley
183708    Periodicals, Inc.
183709 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
183710 RP Yao, FW, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
183711    Peoples R China.
183712 CR GARG R, 2001, MICROTRIP ANTENNA DE, CH9
183713    GE YH, 2004, IEEE T ANTENN PROPAG, V52, P3213
183714    HERSCOVICI N, 1998, IEEE T ANTENN PROPAG, V46, P471
183715    HUYNH T, 1995, ELECTRON LETT, V31, P1310
183716    WONG KL, 2002, IEEE T ANTENN PROPAG, V50, P827
183717 NR 5
183718 TC 0
183719 SN 0895-2477
183720 J9 MICROWAVE OPT TECHNOL LETT
183721 JI Microw. Opt. Technol. Lett.
183722 PD FEB
183723 PY 2006
183724 VL 48
183725 IS 2
183726 BP 218
183727 EP 220
183728 PG 3
183729 SC Engineering, Electrical & Electronic; Optics
183730 GA 004PP
183731 UT ISI:000234765000005
183732 ER
183733 
183734 PT J
183735 AU Yang, P
183736    Tan, YH
183737    Yang, JM
183738    Sun, N
183739 TI Measurement, simulation on dynamic characteristics of a wire
183740    gauze-fluid damping shock absorber
183741 SO MECHANICAL SYSTEMS AND SIGNAL PROCESSING
183742 DT Article
183743 DE Coulomb-fluid damping coupling shock absorber; dynamic characteristics;
183744    mathematical model; measurement; simulation
183745 ID BEHAVIOR
183746 AB A new kind of shock absorber with Coulomb-fluid damping through
183747    coupling oil, wire gauze, rubber and spring by ingenious tactics is
183748    designed for reinforcement of electronic-information equipment in
183749    atrocious vibration and impact. The physical mechanism of the shock
183750    absorber is systematically investigated. The key-model machine shows
183751    complex non-linear dynamic characteristics in multi-parameter coupling
183752    dynamic test; otherwise, it has a good dynamic performance for
183753    attenuating vibration and resisting violent impact. Based on this, the
183754    non-linear dynamic model for attenuating vibration mode of the shock
183755    absorber is presented by analysing coupling physical mechanism of fluid
183756    and Coulomb friction and other factors for designing the shock absorber
183757    with high validity. The analytical results obtained in experimental
183758    data have been compared with the numerical ones obtained by performing
183759    the Runge-Kutta method with the mathematical model. As the model
183760    results agree well with the test data, it can be used for engineering
183761    design. (c) 2005 Elsevier Ltd. All rights reserved.
183762 C1 JiangSu Univ, Sch Mech Engn, Res Ctr Micro Nano Sci & Engn, Zhenjiang 212013, Peoples R China.
183763    Shanghai Univ Sci & Technol, Sch Automobile Engn, Shanghai 201800, Peoples R China.
183764 RP Yang, P, JiangSu Univ, Sch Mech Engn, Res Ctr Micro Nano Sci & Engn,
183765    Zhenjiang 212013, Peoples R China.
183766 EM yangpingdm@ujs.edu.cn
183767 CR AUDENINO AL, 1995, P I MECH ENG D-J AUT, V209, P249
183768    CAFFERTY S, 1995, P I MECH ENG D-J AUT, V209, P239
183769    DENHARTOG JP, 1931, T AM SOC MECH ENG, V53, P107
183770    HARRIS CM, 1990, SHOCK VIBRATION HDB
183771    JINGCHAO S, 1980, HYDRAULIC FLUID MECH
183772    PING Y, THESIS HUAZHONG U SC
183773    PING Y, 2000, J GUILIN I ELECT TEC, V20, P87
183774    PING Y, 2003, MECH SYST SIGNAL PR, V17, P1367
183775    RAINDRA B, 1993, INT J NONLINEAR MECH, V28, P427
183776    SANKAR S, 1991, J SOUND VIBRATION, V169, P55
183777    SHEKHAR NC, 1998, J SOUND VIB, V214, P589
183778    SURACE C, 1992, NONLINEAR DYNAM, V3, P413
183779    WEN YK, 1980, T ASME, V47, P150
183780 NR 13
183781 TC 0
183782 SN 0888-3270
183783 J9 MECH SYST SIGNAL PROCESS
183784 JI Mech. Syst. Signal Proc.
183785 PD APR
183786 PY 2006
183787 VL 20
183788 IS 3
183789 BP 745
183790 EP 756
183791 PG 12
183792 SC Engineering, Mechanical
183793 GA 004JU
183794 UT ISI:000234749900011
183795 ER
183796 
183797 PT J
183798 AU Lu, SL
183799    Shao, LY
183800    Wu, MH
183801    Jiao, Z
183802 TI Mineralogical characterization of airborne individual particulates in
183803    Beijing PM10
183804 SO JOURNAL OF ENVIRONMENTAL SCIENCES-CHINA
183805 DT Article
183806 DE inhalable particulate matter(PM10); individual analysis; mineral
183807    composition
183808 ID COARSE AEROSOL COMPOSITION; DUST PARTICLES; SOUTH WALES; CHINA;
183809    CHEMISTRY; MATTER; URBAN; FINE; LUNG
183810 AB This work mainly focuses on the mineralogical study of particulate
183811    matter(PM10) in Beijing. Samples were collected on polycarbonate filter
183812    from April, 2002 to March, 2003 in Beijing urban area. Scanning
183813    electronic microscopy coupled with energy dispersive X-ray(SEM/EDX) was
183814    used to investigate individual mineral particles in Beijing PM10. 1454
183815    individual mineral particulates from 48 samples were analysed by
183816    SEM/EDX. The results revealed that mineral particulates were complex
183817    and heterogeneous. 38 kinds of minerals in PM, were identified. The
183818    clay minerals, of annual average percentage of 30.1%, were the main
183819    composition among the identified minerals, and illite/smectite was the
183820    main composition in clay minerals, reaching up to 35%. Annual average
183821    percentage of quartz, calcite, compound particulates, carbonates were
183822    13.5%, 10.9%, 11.95%, 10.31%, respectively. Annual average percentage
183823    less than 10% were gypsum, feldspar, dolomite, and so on. Fluorite,
183824    apatite, halite, barite and chloridize zinc (ZnCl2) were firstly
183825    identified in Beijing PM10. Sulfurization was found on surface of
183826    mineral particles, suggested extensive atmospheric reaction in air
183827    during summer.
183828 C1 Shanghai Univ, Sch Environm & Chem Engn, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China.
183829    China Univ Min & Technol, Dept Earth Sci, Beijing 100083, Peoples R China.
183830 RP Lu, SL, Shanghai Univ, Sch Environm & Chem Engn, Shanghai Appl Radiat
183831    Inst, Shanghai 201800, Peoples R China.
183832 EM senlinlv@staff.shu.edu.cn
183833 CR *USEPA, 2001, 454R01004 USEPA, P238
183834    *WRINU, 1992, KOSA
183835    CHAPMAN RS, 1997, ENVIRON TOXICOL PHAR, V4, P331
183836    DAVIS BL, 2000, ATMOS ENVIRON, V34, P2703
183837    DENTENER FJ, 1996, J GEOPHYS RES-ATMOS, V101, P22869
183838    FALKOVICH AH, 2001, J GEOPHYS RES-ATMOS, V106, P18029
183839    GANOR E, 2000, WATER AIR SOIL POLL, V118, P245
183840    GAO Y, 2001, J GEOPHYS RES-ATMOS, V106, P18037
183841    HE K, 2001, ATMOS ENVIRON, V35, P4954
183842    JONES TP, 2001, ATMOS ENVIRON, V35, P3573
183843    KRUEGER BJ, 2004, ATMOS ENVIRON, V38, P6253
183844    KUPIAINEN K, 2004, SCI TOTAL ENVIRON, V308, P175
183845    LI X, 2001, ATMOS ENVIRON, V35, P3145
183846    LIU XD, 1994, RES ENV SCI, V7, P10
183847    LU SL, 2004, ENV MONITORING CHINA, V20, P9
183848    MORENO T, 2004, SCI TOTAL ENVIRON, V334, P337
183849    PETER RB, 1999, P NATL ACAD SCI USA, V96, P3372
183850    RICHARDS R, 2003, MINERAL MAG, V67, P129
183851    SHAO LY, 2003, ENV SCI, V24, P11
183852    SHI ZB, 2005, J GEOPHYS RES-ATMOS, V110
183853    WANG AP, 1996, ENVIRON CHEM, V15, P488
183854    WANG P, 1982, SYSTEMIC MINERALOGY
183855    WINCHESTER JW, 1981, ATMOS ENVIRON, V15, P933
183856    WINCHESTER JW, 1984, ATMOS ENVIRON, V18, P1399
183857    XIE RK, 2005, SCI TOTAL ENVIRON, V343, P261
183858    YAO XH, 2002, ATMOS ENVIRON, V36, P4223
183859 NR 26
183860 TC 0
183861 SN 1001-0742
183862 J9 J ENVIRON SCI-CHINA
183863 JI J. Environ. Sci.
183864 PY 2006
183865 VL 18
183866 IS 1
183867 BP 90
183868 EP 95
183869 PG 6
183870 SC Environmental Sciences
183871 GA 004NM
183872 UT ISI:000234759500017
183873 ER
183874 
183875 PT J
183876 AU Lazareck, L
183877 TI Shanghai, China: a city of growth and friendship
183878 SO IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE
183879 DT Editorial Material
183880 C1 Univ Ulster, Fac Engn, Coleraine BT52 1SA, Londonderry, North Ireland.
183881    Chinese Univ Hong Kong, Ctr Biomed Engn, Sha Tin 100083, Peoples R China.
183882    Univ Ulster, Sch Comp & Intelligent Syst, Coleraine BT52 1SA, Londonderry, North Ireland.
183883    Shanghai Univ, Dept Biomed Engn, Shanghai 200041, Peoples R China.
183884    Monash Univ, Clayton, Vic 3168, Australia.
183885 RP Lazareck, L, Univ Ulster, Fac Engn, Coleraine BT52 1SA, Londonderry,
183886    North Ireland.
183887 NR 0
183888 TC 0
183889 SN 0739-5175
183890 J9 IEEE ENG MED BIOL MAG
183891 JI IEEE Eng. Med. Biol. Mag.
183892 PD JAN-FEB
183893 PY 2006
183894 VL 25
183895 IS 1
183896 BP 12
183897 EP 13
183898 PG 2
183899 SC Engineering, Biomedical; Medical Informatics
183900 GA 004MI
183901 UT ISI:000234756500006
183902 ER
183903 
183904 PT J
183905 AU Wang, ZC
183906 TI Trigonometric ally-fitted method with the Fourier frequency spectrum
183907    for undamped Duffing equation
183908 SO COMPUTER PHYSICS COMMUNICATIONS
183909 DT Article
183910 DE trigonometric fitting; multi-frequency; nonlinear periodic initial
183911    value problem; Duffing equation; Fourier series; Numerov methods
183912 ID INITIAL-VALUE-PROBLEMS; SYMMETRIC MULTISTEP METHODS;
183913    DIFFERENTIAL-EQUATIONS; SCHRODINGER-EQUATION; OBRECHKOFF METHOD; STABLE
183914    METHODS
183915 AB With non-linearities, the frequency spectrum of an undamped Duffing
183916    oscillator should be composed of odd multiples of the driving frequency
183917    which can be interpreted as resonance driving terms. It is expected
183918    that the frequency spectrum of the corresponding numerical solution
183919    with high accurateness should contain nearly the same components.
183920    Hence, to contain these Fourier components and to calculate the
183921    amplitudes of these components in a more accurate and efficient way is
183922    the key to develop a new numerical method with high stability, accuracy
183923    and efficiency for the Duffing equation. To explore the possibility of
183924    using trigonometrically-fitting technique to build a numerical method
183925    with resonance spectrum, we design four types of Numerov methods, in
183926    which the first one is the traditional Numerov method, which contains
183927    no Fourier component, the second one contains only the first resonance
183928    term, the third one contains the first two resonance terms, and the
183929    last one contains the first three resonance terms, and apply them to
183930    the well-known undamped Duffing equation with Dooren's parameters. The
183931    numerical results demonstrate that the Numerov method fitted with the
183932    Fourier components is much more stable, accurate and efficient than the
183933    one with no Fourier component. The accuracy of the fitted method with
183934    the first three Fourier components can attain 10(-9) for a remarkable
183935    range of step sizes, including nearly infinite, except individual small
183936    range of instability, which is much higher than the one of the
183937    traditional Numerov method, with eight orders for step size of
183938    pi/2.011. (c) 2005 Elsevier B.V. All rights reserved.
183939 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
183940 RP Wang, ZC, Shanghai Univ, Dept Phys, 99 ShangDa Rd, Shanghai 200444,
183941    Peoples R China.
183942 EM zc_wang89@hotmail.com
183943 CR ANANTHAKRISHNAI.U, 1982, J COMPUT APPL MATH, V8, P101
183944    ANANTHAKRISHNAI.U, 1987, MATH COMPUT, V49, P553
183945    CHAWLA MM, 1986, J COMPUT APPL MATH, V15, P213
183946    DAI Y, 2006, IN PRESS J COMPUT AP
183947    DAI YM, 2005, COMPUT PHYS COMMUN, V165, P110
183948    GUCKENHEIMER J, 1983, NONLINEAR OSCILLATIO
183949    HAIRER E, 1979, NUMER MATH, V32, P373
183950    JAIN MK, 1988, BIT, V28, P302
183951    LAMBERT JD, 1976, J INST MATH APPL, V18, P189
183952    LYCHE T, 1972, NUMER MATH, V19, P65
183953    MICKENS RE, 1981, INTRO NONLINEAR OSCI
183954    OBRECHKOFF N, 1942, SPISANIE BULGAR AKAD, V65, P191
183955    SIMOS TE, 1993, P ROY SOC LOND A MAT, V6, P283
183956    URABE M, 1966, J MATH ANAL APPL, V14, P107
183957    VANDOOREN R, 1974, J COMPUT PHYS, V16, P186
183958    WANG Z, 2005, UNPUB COMPUT PHYS CO
183959    WANG ZC, 2005, COMPUT PHYS COMMUN, V167, P1
183960    WANG ZC, 2005, COMPUT PHYS COMMUN, V170, P49
183961    WANG ZC, 2005, COMPUT PHYS COMMUN, V170, P49
183962    WANG ZC, 2005, COMPUT PHYS COMMUN, V171, P162
183963    WANG ZC, 2005, P ROY SOC A-MATH PHY, V461, P1639
183964    WU D, 2005, IN PRESS COMUPT PHYS
183965    ZHAO DY, 2005, COMPUT PHYS COMMUN, V167, P65
183966 NR 23
183967 TC 0
183968 SN 0010-4655
183969 J9 COMPUT PHYS COMMUN
183970 JI Comput. Phys. Commun.
183971 PD JAN 15
183972 PY 2006
183973 VL 174
183974 IS 2
183975 BP 109
183976 EP 118
183977 PG 10
183978 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
183979 GA 005AT
183980 UT ISI:000234795100003
183981 ER
183982 
183983 PT J
183984 AU Li, W
183985    Ma, ZQ
183986    Wang, Y
183987    Wang, DM
183988 TI Optimization of energy scope for titanium nitride films grown by ion
183989    beam-assisted deposition
183990 SO CHINESE PHYSICS LETTERS
183991 DT Article
183992 ID THIN-FILMS; MECHANICAL-PROPERTIES; SCATTERING; MICROSTRUCTURE;
183993    SURFACES; PLASMA
183994 AB The deposited energy during film growth with ion bombardment,
183995    correlated to the atomic displacement on the surface monolayer and the
183996    underlying bulk, has been calculated by a simplified ion-solid
183997    interaction model under binary collision approximation. The separated
183998    damage energies caused by Ar ion, different for the surface and the
183999    bulk, have been determined under the standard collision cross section
184000    and a well-defined surface and bulk atom displacement threshold energy
184001    of titanium nitride (TiN). The optimum energy scope shows that the
184002    incident energy of Ar+ around 110 eV for TiN (111) and 80 eV for TiN
184003    (200) effectively enhances the mobility of adatom on surface but
184004    excludes the damage in underlying bulk. The theoretical prediction and
184005    the experimental result are in good agreement in low energy ion
184006    beam-assisted deposition.
184007 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
184008 RP Li, W, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
184009 EM wli@vip.citiz.net
184010 CR BRICE DK, 1989, NUCL INSTRUM METH B, V44, P68
184011    ENSINGER W, 1997, NUCL INSTRUM METH B, V127, P796
184012    GLASS RC, 1992, J VAC SCI TECHNOL  2, V10, P1625
184013    JIANG N, 2004, PHYSICA B, V352, P118
184014    KALBITZER S, 1976, Z PHYS A ATOMS NUCL, V278, P223
184015    KASI SR, 1988, J CHEM PHYS, V88, P5902
184016    LINDHARD J, 1963, K DAN VIDENSK SELSK, V33, P14
184017    LIU TW, 2004, CHINESE PHYS LETT, V21, P2008
184018    MA ZQ, 1999, APPL SURF SCI, V137, P184
184019    MA ZQ, 2004, SOLID STATE COMMUN, V132, P347
184020    OMURA Y, 1991, J MATER RES, V6, P1238
184021    PATSALAS P, 1999, J APPL PHYS, V86, P5296
184022    PATSALAS P, 2000, SURF COAT TECH, V125, P335
184023    PATSALAS P, 2001, J APPL PHYS, V90, P4725
184024    SCHELL N, 2002, J APPL PHYS, V91, P2037
184025    SMIDT FA, 1990, INT MATER REV, V35, P61
184026    TONGSON LL, 1975, SURF SCI, V52, P263
184027    WRONSKI Z, 2003, VACUUM, V70, P275
184028    ZIEGLER JF, 1985, STOPPING RANGE IONS
184029 NR 19
184030 TC 0
184031 SN 0256-307X
184032 J9 CHIN PHYS LETT
184033 JI Chin. Phys. Lett.
184034 PD JAN
184035 PY 2006
184036 VL 23
184037 IS 1
184038 BP 178
184039 EP 181
184040 PG 4
184041 SC Physics, Multidisciplinary
184042 GA 004XT
184043 UT ISI:000234786700052
184044 ER
184045 
184046 PT J
184047 AU Cao, WM
184048    Hu, Y
184049    Yin, RH
184050    Shi, XH
184051    Zeng, SH
184052 TI Study of structure and giant magnetoresistance of electrocrystallized
184053    Cu/Co nanomultilayers
184054 SO ACTA CHIMICA SINICA
184055 DT Article
184056 DE electrocrystallization; Cu/Co nanomultilayer; X-ray diffraction; giant
184057    magnetoresistance; hysteresis loop
184058 ID MULTILAYERS; ELECTRODEPOSITION
184059 AB Cu/Co Nanomultilayers were prepared on n-type Si(111) substrate by
184060    double-bath method in boric acid plating solution and the technical
184061    conditions were determined. The appearance and structure of
184062    nanomultilayers were examined by SEM and XRD methods. It has been shown
184063    that the nanomultilayers had periodical and superlattice structure. The
184064    physics property measurement system was used to characterize magnetic
184065    properties of nanomultilayers. The results showed that coercivity of
184066    these nanomultilayers with different periodicities was all small. In
184067    this paper, the correlation between structure of nanomultilayers and
184068    giant magnetoresistance (GMR) was studied. The GMR value was increased
184069    and then decreased with the increase of Co layer thickness, while
184070    changed periodically with Cu layer thickness. With stacking number N
184071    increased, the GMR value was increased firstly and then fell. The GMR
184072    value as large as 90% was found when N was increased to 60, while N
184073    reached 80, the GMR value was constant.
184074 C1 Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200444, Peoples R China.
184075 RP Cao, WM, Shanghai Univ, Sch Sci, Dept Chem, Shanghai 200444, Peoples R
184076    China.
184077 EM cwm213@sohu.com
184078 CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472
184079    BERGER A, 1992, PHYS REV LETT, V68, P839
184080    HASEEB ASMA, 1994, J ELECTROCHEM SOC, V141, P230
184081    ITON H, 1994, J MAGN MAGN MATER, V136, P33
184082    JYOKO Y, 1996, J MAGN MAGN MATER, V156, P35
184083    KHAN HR, 2000, J MAGN MAGN MATER, V215, P526
184084    LASHWORE DS, 1998, J ELECTROCHEM SOC, V135, P1218
184085    MATHEIS R, 1993, J MAGN MAGN MATER, V121, P2839
184086    MOSCA DH, 1991, J MAGN MAGN MATER, V94, L1
184087    ROSS CA, 1993, J ELECTROCHEM SOC, V140, P91
184088    SHIMA M, 1999, J MAGN MAGN MATER, V198, P52
184089    WANG H, 1999, J FUNCT MAT DEV, V5, P71
184090    YU JX, 1997, MAT PROTECT, V30, P1
184091    ZHANG H, 1997, THESIS SHANGHAI U SH
184092    ZHAO J, 2002, ELECTROPLAT FINISH, V21, P46
184093    ZHAO WH, 1997, ACTA PHYS SINICA, V46, P2047
184094 NR 16
184095 TC 0
184096 SN 0567-7351
184097 J9 ACTA CHIM SIN
184098 JI Acta Chim. Sin.
184099 PD JAN 14
184100 PY 2006
184101 VL 64
184102 IS 1
184103 BP 32
184104 EP 36
184105 PG 5
184106 SC Chemistry, Multidisciplinary
184107 GA 003OR
184108 UT ISI:000234692000006
184109 ER
184110 
184111 PT J
184112 AU Zhou, SF
184113    Yin, FQ
184114    Ouyang, ZG
184115 TI Random attractor for damped nonlinear wave equations with white noise
184116 SO SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS
184117 DT Article
184118 DE stochastic wave equation; random attractor; Hausdorff dimension; Wiener
184119    process
184120 ID RANDOM DYNAMICAL-SYSTEMS; SINE-GORDON EQUATION; GLOBAL ATTRACTOR;
184121    DIMENSION
184122 AB We first present the existence of a random attractor of a stochastic
184123    dynamical system generated by a damped nonlinear wave equation with
184124    white noise under the Dirichlet boundary condition and estimate the
184125    explicit bound of the random attractor. And then we obtain an estimate
184126    of the upper bound of the Hausdor. dimension of the random attractor.
184127    The obtained upper bound of the Hausdor. dimension decreases as the
184128    damping grows and it is uniformly bounded if the derivative of
184129    nonlinearity is bounded; moreover, in this case, the upper bound of the
184130    Hausdor. dimension of the random attractor is just the upper bound of
184131    the Hausdor. dimension of the global attractor for the corresponding
184132    deterministic system without noise.
184133 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
184134    Nanhua Univ, Sch Math & Phys, Hengyang 421001, Peoples R China.
184135 RP Zhou, SF, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
184136 EM sfzhou@mail.shu.edu.cn
184137    fuqiyinshu@sohu.com
184138    zigenouyang@yahoo.com.cn
184139 CR ARNOLD L, 1991, LECT NOTES MATH, V1486, P1
184140    ASHWIN P, 2003, DYNAM SYST, V18, P139
184141    CARABALLO T, 2001, J MATH ANAL APPL, V260, P602
184142    CARD TC, 1987, MONOGR TXB PURE APPL, V114
184143    CARMONA R, 1988, PROBAB THEORY REL, V79, P469
184144    CHUESHOV I, 2004, DYNAM SYST, V19, P127
184145    CRAUEL H, 1994, PROBAB THEORY REL, V100, P365
184146    CRAUEL H, 1997, J DYNAMICS DIFFERENT, V9, P307
184147    DEBUSSCHE A, 1997, STOCH ANAL APPL, V15, P473
184148    DEBUSSCHE A, 1998, J MATH PURE APPL, V77, P967
184149    FAN XM, 2004, PAC J MATH, V216, P63
184150    KUKSIN SB, 2004, FUNCT ANAL APPL+, V38, P28
184151    LANGA JA, 2003, DYNAM SYST, V18, P57
184152    ROBINSON JC, 2002, J DIFFER EQUATIONS, V186, P652
184153    SCHEUTZOW M, 2002, ARCH MATH, V78, P233
184154    TEMAM R, 1997, APPL MATH SCI, V68
184155    WANG GX, 1997, J MATH PHYS, V38, P3137
184156    ZHOU SF, 1999, J MATH PHYS, V40, P1432
184157 NR 18
184158 TC 0
184159 SN 1536-0040
184160 J9 SIAM J APPL DYN SYST
184161 JI SIAM J. Appl. Dyn. Syst.
184162 PY 2005
184163 VL 4
184164 IS 4
184165 BP 883
184166 EP 903
184167 PG 21
184168 SC Mathematics, Applied; Physics, Mathematical
184169 GA 000NZ
184170 UT ISI:000234470300004
184171 ER
184172 
184173 PT J
184174 AU Xu, JQ
184175    Chen, YP
184176    Chen, DY
184177    Shen, JN
184178 TI Hydrothermal synthesis and gas sensing characters of ZnO nanorods
184179 SO SENSORS AND ACTUATORS B-CHEMICAL
184180 DT Article
184181 DE zinc oxide; hydrothermal synthesis; gas sensors; nanorods
184182 ID SENSORS; NANOWIRES
184183 AB ZnO nanorods are prepared by a hydrothermal process with
184184    cetyltrimethylammonium (CTAB) and zinc powder at 182 C. The samples are
184185    characterized by X-ray diffraction (XRD). scanning electron microscopy
184186    (SEM) and transmission electron microscopy (TEM), The gas sensing
184187    properties of the materials have been investigated. The results
184188    indicate that the as-prepared ZnO nanorods show much better sensitivity
184189    and stability than the conventional materials. The PdO doping can
184190    improve the sensitivity and selectivity of the sensors. ZnO nanorods
184191    are excellent potential candidates for gas sensors. (c) 2005 Elsevier
184192    B.V. All rights reserved.
184193 C1 Zhengzhou Univ Light Ind, Coll Mat & Chem Engn, Zhengzhou 450002, Peoples R China.
184194    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
184195    Fudan Univ, Dept Mol Sci, Shanghai 200433, Peoples R China.
184196    Fudan Univ, Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China.
184197 RP Xu, JQ, Zhengzhou Univ Light Ind, Coll Mat & Chem Engn, Zhengzhou
184198    450002, Peoples R China.
184199 EM xujiaqiang@zzuli.edu.cn
184200    chendy@fudan.edu.cn
184201 CR KOLMAKOV A, 2003, ADV MATER, V15, P997
184202    LAW M, 2002, ANGEW CHEM INT EDIT, V41, P2405
184203    LI C, 2003, APPL PHYS LETT, V82, P1613
184204    LI ZQ, 2003, INORG CHEM, V42, P8105
184205    MATSUSHIMA S, 1988, JPN J APPL PHYS, V27, P1798
184206    RAO BB, 2000, MATER CHEM PHYS, V64, P62
184207    SIYAMA T, 1962, ANAL CHEM, V34, P1502
184208    SUN XM, 2002, MATER CHEM PHYS, V78, P99
184209    TOMCHENKO AA, 2003, SENSOR ACTUAT B-CHEM, V93, P126
184210    XU J, 1998, J INORG CHEM, V14, P355
184211    YAMAZOE N, 2003, CATAL SURV ASIA, V1, P63
184212 NR 11
184213 TC 1
184214 SN 0925-4005
184215 J9 SENSOR ACTUATOR B-CHEM
184216 JI Sens. Actuator B-Chem.
184217 PD JAN 17
184218 PY 2006
184219 VL 113
184220 IS 1
184221 BP 526
184222 EP 531
184223 PG 6
184224 SC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
184225 GA 002QS
184226 UT ISI:000234626900069
184227 ER
184228 
184229 PT J
184230 AU Tan, XH
184231    Xu, H
184232    Qi, NN
184233    Ni, JS
184234    Hou, XL
184235    Dong, YD
184236 TI Study on magnetic properties and microstructure of nanocomposite
184237    Nd10.5Fe78-xCo5ZrxB6.5 alloys
184238 SO RARE METAL MATERIALS AND ENGINEERING
184239 DT Article
184240 DE nanocomposite; grain size; magnetic properties
184241 ID ZR
184242 AB The magnetic properties and microstructure of nanocomposite
184243    Nd10.5Fe78-xCo5ZrxB6.5 (x=0, 2, 3, 4, 5) alloys were investigated. It
184244    has been found that the intrinsic coercivity could be significantly
184245    improved by the addition of 2 at% Zr. The small amount addition of Zr
184246    may suppress the growth of grains of alpha-Fe and Nd2Fe14B phases.-A
184247    finer and more homogeneous microstructure with an average grain size of
184248    20 nm could be obtained for Nd10.5Fe76Co5Zr2B6.5 alloy. The enhancement
184249    of magnetic properties by Zr addition is found to be mainly due to the
184250    microstructure refinement, which leads to an enhanced exchange coupling
184251    between the hard phase and soft phase.
184252 C1 Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
184253 RP Tan, XH, Shanghai Univ, Inst Mat Sci, Shanghai 200072, Peoples R China.
184254 EM tanxiaohua123@163.com
184255 CR FISCHER R, 1999, J MAGN MAGN MATER, V191, P225
184256    HADJIPANAYIS GC, 1999, J MAGN MAGN MATER, V200, P373
184257    HARLAND CL, 2000, J APPL PHYS 3, V87, P6116
184258    KNELLER EF, 1991, IEEE T MAGN, V27, P3560
184259    SCHREFL T, 1994, PHYS REV B, V49, P6100
184260    WU YQ, 2002, J APPL PHYS 3, V91, P8174
184261    YONEYAMA T, 1990, IEEE T MAGN, V26, P1963
184262 NR 7
184263 TC 0
184264 SN 1002-185X
184265 J9 RARE METAL MAT ENG
184266 JI Rare Metal Mat. Eng.
184267 PD DEC
184268 PY 2005
184269 VL 34
184270 IS 12
184271 BP 2006
184272 EP 2008
184273 PG 3
184274 SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
184275    Engineering
184276 GA 000KF
184277 UT ISI:000234459800039
184278 ER
184279 
184280 PT J
184281 AU Li, WH
184282    Zhang, TH
184283    Xing, DM
184284    Wei, BC
184285    Wang, YR
184286    Dong, YD
184287 TI Instrumented indentation study of plastic deformation in bulk metallic
184288    glasses
184289 SO JOURNAL OF MATERIALS RESEARCH
184290 DT Article
184291 ID SERRATED FLOW; THIN-FILM; NANOINDENTATION; MICROSTRUCTURE; TEMPERATURE;
184292    COMPOSITES; DEPENDENCE; FRACTURE; HARDNESS; LIQUID
184293 AB Mechanical properties and micro-plastic deformation behavior of five
184294    bulk metallic Glasses (BMGs) were studied by instrumented indentation.
184295    These materials included La60Al10Ni10Cu20, Mg65Cu25Gd10,
184296    Zr52.5Al10Ni10Cu15Be12.5, Cu60Zr20Hf10Ti10, and Ni60Nb37Sn3 alloys.
184297    Remarkable difference in deformation behavior was found in the
184298    load-displacement curves of nanoindentation and pileup morphologies
184299    around the indents. Serrated plastic deformation depended on the
184300    loading rate was found in Mg-, Zr-, and Cu-based BMGs. The subsurface
184301    plastic deformation zone of typical alloys was investigated through
184302    bonded interface technique using depth-sensing microindentation. Large
184303    and widely spaced shear bands were observed in Mg-based BMG. The effect
184304    of loading rate on the indentation deformation behaviors in different
184305    BMGs was elucidated by the change of shear band pattern.
184306 C1 Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Beijing 100080, Peoples R China.
184307    Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
184308    Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100080, Peoples R China.
184309 RP Wei, BC, Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Beijing
184310    100080, Peoples R China.
184311 EM weibc@imech.ac.cn
184312 CR ARGON AS, 1979, ACTA METALL, V27, P47
184313    BASU J, 2003, PHILOS MAG, V83, P1747
184314    CHINH NQ, 2004, J MATER RES, V19, P31
184315    FLORES KM, 2004, INTERMETALLICS, V12, P1025
184316    GREER AL, 2002, MATER SCI FORUM, V77, P386
184317    HAYS CC, 2000, PHYS REV LETT, V84, P2901
184318    HE G, 2003, ACTA MAT, V52, P3035
184319    INOUE A, 2000, ACTA MATER, V48, P279
184320    JANA S, 2004, MAT SCI ENG A-STRUCT, V375, P1191
184321    JANG D, 2003, J APPL PHYS, V93, P9282
184322    JIANG WH, 2003, J MATER RES, V18, P755
184323    KIM JJ, 2002, SCIENCE, V295, P654
184324    LI J, 2002, PHILOS MAG A, V82, P2623
184325    MA H, 2003, APPL PHYS LETT, V83, P2793
184326    NIEH TG, 2002, INTERMETALLICS, V10, P1177
184327    OLIVER WC, 1992, J MATER RES, V7, P1564
184328    PAJARES A, 1996, MAT SCI ENG A-STRUCT, V208, P158
184329    RAMAMURTY U, 2005, ACTA MATER, V53, P705
184330    SAWA T, 1999, J MATER RES, V14, P2228
184331    SCHUH CA, 2003, ACTA MATER, V51, P87
184332    SCHUH CA, 2004, ACTA MATER, V52, P5879
184333    SCHUH CA, 2004, J MATER RES, V19, P46
184334    SPAEPAN F, 1979, ACTA METALL, V25, P407
184335    TABOR D, 1951, HARDNESS METALS, P37
184336    TURNBULL D, 1970, J CHEM PHYS, V52, P3038
184337    WEI BC, 2004, INTERMETALLICS, V12, P1239
184338    WHITEHEAD AJ, 1992, THIN SOLID FILMS, V220, P277
184339    XI XK, 2005, PHYS REV LETT, V94
184340 NR 28
184341 TC 0
184342 SN 0884-2914
184343 J9 J MATER RES
184344 JI J. Mater. Res.
184345 PD JAN
184346 PY 2006
184347 VL 21
184348 IS 1
184349 BP 75
184350 EP 81
184351 PG 7
184352 SC Materials Science, Multidisciplinary
184353 GA 002AD
184354 UT ISI:000234582900011
184355 ER
184356 
184357 PT J
184358 AU Lei, D
184359    Wu, Z
184360 TI Tabu search approach based on a similarity coefficient for cell
184361    formation in generalized group technology (vol 43, pg 4035, 2005)
184362 SO INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
184363 DT Correction
184364 C1 Shanghai Univ, Inst Automat, Shanghai 200030, Peoples R China.
184365 RP Lei, D, Shanghai Univ, Inst Automat, 1954 Huashan Rd, Shanghai 200030,
184366    Peoples R China.
184367 CR LEI D, 2005, INT J PROD RES, V43, P4035
184368 NR 1
184369 TC 0
184370 SN 0020-7543
184371 J9 INT J PROD RES
184372 JI Int. J. Prod. Res.
184373 PD JAN 1
184374 PY 2006
184375 VL 44
184376 IS 1
184377 BP 213
184378 EP 213
184379 PG 1
184380 SC Engineering, Industrial; Engineering, Manufacturing; Operations
184381    Research & Management Science
184382 GA 002AL
184383 UT ISI:000234583700011
184384 ER
184385 
184386 PT J
184387 AU Hu, XB
184388    Li, L
184389    Wu, XC
184390    Zhang, M
184391 TI Coarsening behavior of M23C6 carbides after ageing or thermal fatigue
184392    in AISI H13 steel with niobium
184393 SO INTERNATIONAL JOURNAL OF FATIGUE
184394 DT Article
184395 DE AISI H13 steel; thermal fatigue; carbides coarsening; DICTRA simulation
184396 ID WORK TOOL STEEL; LOW-CYCLE FATIGUE; DIE-CASTING DIES; STAINLESS-STEEL;
184397    TEMPERATURE; SIMULATIONS; CRACKING
184398 AB Changes of the size and morphology for carbides during thermal fatigue
184399    from room temperature (20) to 700 degrees C and ageing at 700 degrees C
184400    were studied using TEM and EDS. The coarsening behavior Of M23C6
184401    carbide at 700 'C in H 13 steel with and without micro-niobium was also
184402    simulated by DICTRA software package. The simulation was based on the
184403    assumption that thermodynamic equilibrium was simultaneously
184404    established at the moving phase interface. The results from the
184405    calculations were compared with transmission electron microscopy (TEM)
184406    observations. It was found that the size of Cr-rich carbide (in the
184407    type Of M23C6), quickly expanded during fatigue test. However,
184408    simulations as well as the experiments indicated very low coarsening
184409    rates for the carbides aged at 700 degrees C. The agreement was
184410    satisfactory, although the coarsening rate in the case of ageing was
184411    larger than that of the simulated value both in H13 and HUM steels. The
184412    coarsening rate Of M23C6 in thermal fatigue test was about 300 times
184413    bigger than in ageing for both H13 and H13Nb steels. The results from
184414    experiments and simulation showed that the addition of 0.07 wt% mobium
184415    into H13 steel could play a role to retard the M23C6 carbide
184416    coarsening. (c) 2005 Elsevier Ltd. All rights reserved.
184417 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
184418    Hubei Univ Technol, Sch Mech Engn, Wuhan 430068, Peoples R China.
184419 RP Hu, XB, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R
184420    China.
184421 EM huxbshu@163.com
184422 CR AGREN J, 1992, ISIJ INT, V32, P291
184423    ANDERSON DMW, 1972, TECH CHEM NY, V4, P1
184424    BORGENSTAM A, 2000, J PHASE EQUILIB, V21, P269
184425    CALISKANOGLU D, 2002, P 6 INT TOOL C US TO, P591
184426    DOBRZANSKI LA, 2001, J MATER PROCESS TECH, V113, P527
184427    ELIAS CN, 1992, MAT SCI TECHNOL, V9, P785
184428    ENGSTROM A, 1998, MOB2 MOBILITY DATA M
184429    FUCHS KD, 2002, P ITC 6 KARLST, P15
184430    GRELLIER A, 2002, P 6 INT TOOL C US TO, P33
184431    GUMPEL CP, 2002, P 6 INT TOOL C US TO, P3
184432    GUSTAFSON A, 1998, ADV HEAT RESISTANT S, P27
184433    GUSTAFSON A, 2000, MAT SCI ENG A-STRUCT, V287, P52
184434    HU ZF, 2003, ACTA METALL SIN, V39, P585
184435    KUZUCU V, 1998, J MATER PROCESS TECH, V82, P165
184436    MEBARKI N, 2002, P 6 INT TOOL C US TO, P617
184437    NORSTROM LA, 1981, MET TECHNOL, V8, P376
184438    PERSSON A, 2004, INT J FATIGUE, V26, P1095
184439    PERSSON A, 2004, J MATER PROCESS TECH, V148, P108
184440    PERSSON A, 2004, J MATER PROCESS TECH, V152, P228
184441    RAABE D, 1998, COMP MATER SCI, P231
184442    ROMIG AD, 1981, MET T A, V12, P243
184443    SHEWMON PG, 1989, DIFFUSION SOLIDS, P30
184444    SUNDAMAN B, SGTE SOLUTION DATABA
184445    TSUJII N, 1995, ISIJ INT, V35, P920
184446    TSUJII N, 1996, J MATER SCI LETT, V15, P1251
184447    XU Z, 2005, MAT THERMODYNAMIC, P41
184448 NR 26
184449 TC 0
184450 SN 0142-1123
184451 J9 INT J FATIGUE
184452 JI Int. J. Fatigue
184453 PD MAR
184454 PY 2006
184455 VL 28
184456 IS 3
184457 BP 175
184458 EP 182
184459 PG 8
184460 SC Engineering, Mechanical; Materials Science, Multidisciplinary
184461 GA 002OZ
184462 UT ISI:000234622200001
184463 ER
184464 
184465 PT J
184466 AU Bai, ZT
184467    Zhao, R
184468    Zhang, XY
184469    Chen, J
184470    Liu, T
184471    Ji, YH
184472 TI The epileptic seizures induced by BmK I, a modulator of sodium channels
184473 SO EXPERIMENTAL NEUROLOGY
184474 DT Article
184475 DE BmK I; intrahippocampal injection; epileptic seizures; c-Fos
184476    expression; voltage-gated sodium channels
184477 ID BUTHUS-MARTENSI KARSCH; SERRULATUS SCORPION-VENOM; C-FOS EXPRESSION;
184478    GENERALIZED EPILEPSY; FEBRILE SEIZURES; SPINAL-CORD; LIMBIC SEIZURES;
184479    NERVOUS-SYSTEM; TRANSCRIPTION FACTORS; POSSIBLE MECHANISM
184480 AB In the present study, the Susceptibility to rat epileptic seizures
184481    induced by the intrahippocampal administration of BmK 1, a modulator of
184482    sodium channels purified from the venom of Chinese scorpion, has been
184483    investigate(]. The results showed that the strong epileptic behaviors
184484    and discharges in the hippocampus were evoked by BmK I
184485    dose-dependently. The hippocampal c-Fos expression displayed two peak
184486    waves in a specific spatio-temporal pattern elicited by BmK 1. The
184487    whole cell patch clamp recordings showed that the inactivation of
184488    sodium currents in rat cultured hippocampal neurons was prolonged
184489    significantly by BmK 1, and restored partially after washing. These
184490    results indicated that the rat hippocampus is a susceptible target for
184491    the proconvulsant effects of BmK 1, and the induction of epileptic
184492    seizures may be ascribed to the modulation of BmK I on the inactivation
184493    of voltage-gated sodium Channels distributing in the rat hippocampal
184494    neurons. (c) 2005 Elsevier Inc. All rights reserved.
184495 C1 Shanghai Univ, Sch Life Sci, Shanghai 200436, Peoples R China.
184496    Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Physiol, Grad Sch, Shanghai 200031, Peoples R China.
184497    Yanan Univ, Coll Life Sci, Yanan 716000, Peoples R China.
184498 RP Ji, YH, Shanghai Univ, Sch Life Sci, Shang Da Rd 99, Shanghai 200436,
184499    Peoples R China.
184500 EM yhji@staff.shu.edu.cn
184501 CR ALEKOV AK, 2000, J PHYSIOL-LONDON, V529, P533
184502    ALEKOV AK, 2001, EUR J NEUROSCI, V13, P2171
184503    BAI ZT, 2002, NEUROSCI RES, V44, P447
184504    BAI ZT, 2003, TOXICOL APPL PHARM, V192, P78
184505    BAULAC S, 1999, AM J HUM GENET, V65, P1078
184506    BECKH S, 1989, EMBO J, V8, P3611
184507    BLUMENTHAL KM, 2003, CELL BIOCHEM BIOPHYS, V38, P215
184508    CARVALHO FF, 1998, PHARMACOL BIOCHEM BE, V60, P7
184509    CATTERALL WA, 1986, ANNU REV BIOCHEM, V55, P953
184510    CESTELE S, 2000, BIOCHIMIE, V82, P883
184511    CHEN B, 2001, NEUROTOXICOL TERATOL, V23, P675
184512    CHEN B, 2002, BRAIN RES, V952, P322
184513    CHEN B, 2002, TOXICON, V40, P527
184514    CHEN J, IN PRESS NEUROSCI LE
184515    COSFORD ND, 2002, CURR DRUG TARGETS CN, V1, P81
184516    DANIEL GH, 1996, PROG NEUROBIOL, V50, P83
184517    DRAGUNOW M, 1987, NEUROSCI LETT, V82, P157
184518    ELLERKMANN RK, 2003, NEUROSCIENCE, V119, P323
184519    ESCAYG A, 2000, NAT GENET, V24, P343
184520    ESCAYG A, 2001, AM J HUM GENET, V68, P866
184521    FATHOLLAHI Y, 1997, BRAIN RES, V758, P92
184522    FISHER RS, 1991, NEUROTRANSMITTERS EP, P247
184523    GASS P, 1992, NEUROSCIENCE, V48, P315
184524    GASS P, 1993, EUR J NEUROSCI, V5, P933
184525    GONG B, 1999, J COMP NEUROL, V412, P342
184526    GOODMAN JH, 1998, NEUROPHARMACOLOGY
184527    GOUDET C, 2002, TOXICON, V40, P1239
184528    HERDEGEN T, 1998, BRAIN RES REV, V28, P370
184529    HOFFMAN GE, 2003, EXP NEUROL, V182, P124
184530    JI YH, 1996, TOXICON, V34, P987
184531    JI YH, 1999, TOXICON, V37, P519
184532    KETELAARS SOM, 2001, NEUROSCIENCE, V105, P109
184533    KOHLING R, 2002, EPILEPSIA, V43, P1278
184534    LI YJ, 2000, J PEPT RES, V56, P195
184535    LOMBARDO AJ, 1996, NUCLEIC ACIDS RES, V24, P4812
184536    LOTHMAN EW, 1981, BRAIN RES, V218, P299
184537    MOULARD B, 1999, AM J HUM GENET, V65, P1396
184538    NENCIONI ALA, 2000, PHARMACOL TOXICOL, V86, P149
184539    PAXINOS G, 1998, RAT BRAIN STEREOTAXI
184540    PENNYPACKER KR, 1994, J NEUROSCI, V14, P3998
184541    RACINE RJ, 1972, ELECTROEN CLIN NEURO, V32, P281
184542    RAMAN IM, 1997, NEURON, V19, P881
184543    RHODES TH, 2004, P NATL ACAD SCI USA, V101, P11147
184544    ROGAWSKI MA, 2004, NAT REV NEUROSCI, V5, P553
184545    SANDOVAL MRL, 2003, BRAIN RES BULL, V62, P165
184546    SANDOVAL MRL, 2003, EPILEPSIA, V44, P904
184547    SOOKYONG K, 2001, ANN NEUROL, V50, P366
184548    TAMMARO P, 2002, BIOCHEM BIOPH RES CO, V291, P1095
184549    TAN ZY, 2001, NEUROPHARMACOLOGY, V40, P352
184550    TAN ZY, 2001, NEUROSCI LETT, V297, P65
184551    TRIMMER JS, 2004, ANNU REV PHYSIOL, V66, P477
184552    TURSKI WA, 1983, BEHAV BRAIN RES, V9, P315
184553    VREUGDENHIL M, 1998, NEUROSCIENCE, V86, P99
184554    WALKER PD, 1993, J NEUROSCI RES, V36, P588
184555    WALLACE RH, 1998, NAT GENET, V19, P366
184556    WANG CY, 2000, BRAIN RES BULL, V53, P335
184557    WESTENBROEK RE, 1989, NEURON, V3, P695
184558    WHEELER KP, 1983, PFLUG ARCH EUR J PHY, V397, P164
184559    WHITAKER WR, 2001, BRAIN RES MOL BRAIN, V88, P37
184560    WHITAKER WRJ, 2000, J COMP NEUROL, V422, P123
184561    ZHANG XY, 2002, BRAIN RES BULL, V58, P27
184562    ZHANG XY, 2003, J NEUROSCI RES, V74, P167
184563    ZUO XP, 2004, MOL NEUROBIOL, V30, P265
184564 NR 63
184565 TC 0
184566 SN 0014-4886
184567 J9 EXP NEUROL
184568 JI Exp. Neurol.
184569 PD JAN
184570 PY 2006
184571 VL 197
184572 IS 1
184573 BP 167
184574 EP 176
184575 PG 10
184576 SC Neurosciences
184577 GA 001LI
184578 UT ISI:000234534200017
184579 ER
184580 
184581 PT J
184582 AU Liu, L
184583    Wu, QS
184584    Ding, YP
184585    Liu, HJ
184586 TI Morphologies of barium chromate controlled by carriers in an emulsion
184587    liquid membrane system
184588 SO CRYSTAL RESEARCH AND TECHNOLOGY
184589 DT Article
184590 DE crystal morphology; barium compounds; inorganic compounds; nanomaterials
184591 ID BIOMINERALIZATION; CHEMISTRY; MORPHOGENESIS; PARTICLES; NANOROD; METAL
184592 AB Morphology-control of barium chromate has been studied in emulsion
184593    liquid membrane system. This system consists of Span8O as surfactant,
184594    N7301 or TBP as carrier, and kerosene as solvent. When BaCl2 solution
184595    was used as internal-aqueous phase and N7301 as carrier, the morphology
184596    of products can be varied from crystal wafers to crystal rods. X-ray
184597    diffraction and transmission electron microscopy were used to
184598    characterize the structure and morphology. A synthetic mechanism has
184599    been proposed and the optical properties of the products were also
184600    discussed.
184601 C1 Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
184602    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
184603 RP Wu, QS, Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
184604 EM qswu@mail.tongji.edu.cn
184605 CR ESTROFF LA, 2001, CHEM MATER, V13, P3227
184606    GIBSON CP, 1995, SCIENCE, V267, P1338
184607    GREENFIELD EM, 1984, AM ZOOL, V24, P925
184608    HENGLEIN A, 1989, CHEM REV, V89, P1861
184609    HIRAI T, 2000, LANGMUIR, V16, P955
184610    HU JT, 1999, ACCOUNTS CHEM RES, V32, P435
184611    KIM F, 2001, J AM CHEM SOC, V123, P4360
184612    KWAN S, 2001, CHEM COMMUN, P447
184613    LI M, 1999, NATURE, V402, P393
184614    LI YD, 1999, INORG CHEM, V38, P1382
184615    MANN S, 1988, NATURE, V332, P119
184616    MANN S, 1995, J MATER CHEM, V5, P935
184617    MANN S, 1996, NATURE, V382, P313
184618    MANNA L, 2000, J AM CHEM SOC, V122, P12700
184619    MATIJEVIC E, 1996, CURR OPIN COLLOID IN, V1, P176
184620    SONG JH, 2001, J AM CHEM SOC, V123, P10397
184621    VOET D, 1995, BIOCHEMISTRY-US, P524
184622    WEINER S, 1984, PHILOS T ROY SOC B, V304, P425
184623    WU Q, 2002, CHEM COMMUN, V5, P671
184624    XIA YN, 2003, ADV MATER, V15, P353
184625    YANG H, 1997, NATURE, V386, P692
184626    YU SH, 2002, CHEM-EUR J, V8, P2937
184627 NR 22
184628 TC 0
184629 SN 0232-1300
184630 J9 CRYST RES TECH
184631 JI Cryst. Res. Technol.
184632 PD JAN
184633 PY 2006
184634 VL 41
184635 IS 1
184636 BP 27
184637 EP 31
184638 PG 5
184639 SC Crystallography
184640 GA 002VV
184641 UT ISI:000234640900005
184642 ER
184643 
184644 PT J
184645 AU Xia, TC
184646    You, FC
184647    Zhao, WY
184648 TI Multi-component Levi hierarchy and its multi-component integrable
184649    coupling system
184650 SO COMMUNICATIONS IN THEORETICAL PHYSICS
184651 DT Article
184652 DE loop algebra; multi-component Levi hierarchy; multi-component
184653    integrable coupling system
184654 ID BI-HAMILTONIAN STRUCTURE; SOLITON-EQUATIONS; LOOP ALGEBRA; AKNS
184655    HIERARCHY; CONSTRAINED FLOWS; BURGERS HIERARCHY; EVOLUTION;
184656    NONLINEARIZATION; MODELS; FAMILY
184657 AB A simple 3M-dimensional loop algebra (X) over tilde is produced, whose
184658    commutation operation delined by us is as simple and straightforward as
184659    that in the loop algebra (A) over tilde (1). It follows that a general
184660    scheme for generating multicomponent integrable hierarchy is proposed.
184661    By taking advantage of (X) over tilde, a new isospectral problem is
184662    established, and then by making use of the Tu scheme the well-known
184663    multi-component Levi hierarchy is obtained. Finally, an expanding loop
184664    algebra (F) over tilde (M) of the loop algebra (X) over tilde is
184665    presented, based on the (F) over tilde (M), the multi-component
184666    integrable coupling system of the multi-component Levi hierarchy is
184667    worked out. The method in this paper can be applied to other nonlinear
184668    evolution equation hierarchies.
184669 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
184670    Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China.
184671 RP Xia, TC, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
184672 EM xiatc@yahoo.com.cn
184673    fcyou2008@yahoo.com.cn
184674 CR ABLOWITZ MJ, 1991, SOLITONS NONLINEAR E
184675    CAO CW, 1990, SCI CHINA SER A, V33, P528
184676    FAN E, 2001, J PHYS A-MATH GEN, V34, P513
184677    FAN E, 2001, PHYSICA A, V301, P105
184678    FAN EG, 2000, J MATH PHYS, V41, P7769
184679    FUSSTEINER B, 1993, APPL ANAL GEOMETRIC, P125
184680    GUO F, 2002, J SYS SCI MATH SCI, V22, P36
184681    GUO F, 2004, INT J THEOR PHYS, V43, P1139
184682    GUO FK, 2000, ACTA MATH APPL SIN, V23, P181
184683    GUO FK, 2002, ACTA PHYS SIN-CH ED, V51, P951
184684    GUO FK, 2003, J MATH PHYS, V44, P5793
184685    GUO FK, 2004, ACTA MATH SINICA, V27, P349
184686    LI YS, 2000, PHYS LETT A, V275, P60
184687    MA WX, 1996, CHAOS SOLITON FRACT, V7, P1227
184688    MA WX, 1999, J MATH PHYS, V40, P4419
184689    MA WX, 2002, CHINESE ANN MATH B, V23, P373
184690    NEWELL AC, 1985, SOLITON MATH PHYS
184691    TAM HW, 2005, CHAOS SOLITON FRACT, V23, P535
184692    TSUCHIDA T, 1996, J PHYS SOC JPN, V65, P3153
184693    TSUCHIDA T, 1998, J PHYS SOC JPN, V67, P1175
184694    TSUCHIDA T, 1999, J PHYS SOC JPN, V69, P2241
184695    TSUCHIDA T, 1999, PHYS LETT A, V53, P257
184696    TU GZ, 1989, ACTA MATH APPL SINIC, V5, P89
184697    TU GZ, 1989, J MATH PHYS, V30, P330
184698    XIA TC, 2004, CHAOS SOLITON FRACT, V22, P939
184699    XIA TC, 2004, COMMUN THEOR PHYS, V42, P180
184700    XIA TC, 2004, COMMUN THEOR PHYS, V42, P494
184701    XIA TC, 2004, PHYSICA A, V343, P238
184702    XIA TC, 2005, CHAOS SOLITON FRACT, V23, P1033
184703    XIA TC, 2005, CHAOS SOLITON FRACT, V23, P1163
184704    XIA TC, 2005, CHAOS SOLITON FRACT, V23, P1911
184705    XU XX, 2004, COMMUN THEOR PHYS, V41, P321
184706    XU XX, 2004, PHYS LETT A, V326, P199
184707    ZENG YB, 1991, PHYS LETT A, V160, P541
184708    ZENG YB, 1996, J PHYS A-MATH GEN, V29, P5241
184709    ZHANG DJ, 2002, J PHYS A-MATH GEN, V35, P7225
184710    ZHANG YF, 2003, ACTA PHYS SIN-CH ED, V52, P5
184711    ZHANG YF, 2003, ACTA PHYS SINICA, V53, P2190
184712    ZHANG YF, 2003, CHAOS SOLITON FRACT, V16, P263
184713    ZHANG YF, 2003, CHAOS SOLITON FRACT, V18, P855
184714    ZHANG YF, 2003, CHINESE PHYS, V12, P1194
184715    ZHANG YF, 2003, PHYS LETT A, V317, P280
184716    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P305
184717    ZHANG YF, 2004, CHAOS SOLITON FRACT, V21, P413
184718 NR 44
184719 TC 0
184720 SN 0253-6102
184721 J9 COMMUN THEOR PHYS
184722 JI Commun. Theor. Phys.
184723 PD DEC 15
184724 PY 2005
184725 VL 44
184726 IS 6
184727 BP 990
184728 EP 996
184729 PG 7
184730 SC Physics, Multidisciplinary
184731 GA 001LC
184732 UT ISI:000234533600008
184733 ER
184734 
184735 PT J
184736 AU Hou, JM
184737    Tian, LJ
184738 TI Collective excitations in spin-2 Bose-Einstein condensates
184739 SO COMMUNICATIONS IN THEORETICAL PHYSICS
184740 DT Article
184741 DE Bose-Einstein condensates; collective excitations; Green's function
184742 ID MAGNETIC RESPONSE; GAS; PHASE; SOLITONS; ATOMS
184743 AB The Green's functions and the correlation functions in spin-2
184744    Bose-Einstein condensates at finite temperature are defined and the
184745    generalized Dyson-Beliaev equations are introduced. We discuss the spin
184746    conservation in z direction and decouple the Green's functions and the
184747    generalized Dyson-Beliaev equations according to different spin
184748    conservations in z direction. The anomalous vertex functions are
184749    introduced and the self-energies are separated into the proper
184750    self-energies and the improper self-energies. The generalized
184751    Dyson-Beliaev equations are decoupled according to separation of the
184752    self-energies. We calculate the Green's functions step by step in the
184753    Bogoliubov approximation and discuss the collective excitations in
184754    spin-2 Bose-Einstein condensates in the polar, ferromagnetic, and
184755    cyclic cases, respectively.
184756 C1 SE Univ, Dept Phys, Nanjing 210096, Peoples R China.
184757    Nankai Univ, Nankai Inst Math, Div Theoret Phys, Tianjin 300071, Peoples R China.
184758    Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
184759 RP Hou, JM, SE Univ, Dept Phys, Nanjing 210096, Peoples R China.
184760 EM jmhou@eyou.com
184761 CR ABOSHAEER JR, 2001, SCIENCE, V292, P476
184762    ANDERSON MH, 1995, SCIENCE, V269, P198
184763    ANDREWS MR, 1997, SCIENCE, V275, P637
184764    BURGER S, 1999, PHYS REV LETT, V83, P5198
184765    CIOBANU CV, 2000, PHYS REV A, V61
184766    DAVIS KB, 1995, PHYS REV LETT, V75, P3969
184767    DENSCHLAG J, 2000, SCIENCE, V287, P97
184768    EDWARDS M, 1996, PHYS REV LETT, V77, P1671
184769    HAGLEY EW, 1999, PHYS REV LETT, V83, P3112
184770    HALL DS, 1998, PHYS REV LETT, V81, P1543
184771    HO TL, 1998, PHYS REV LETT, V81, P742
184772    JAVANAINEN J, 1996, PHYS REV LETT, V76, P161
184773    JIN DS, 1996, PHYS REV LETT, V77, P420
184774    KHAYKOVICH L, 2002, SCIENCE, V296, P1290
184775    KOASHI M, 2000, PHYS REV LETT, V84, P1066
184776    MADISON KW, 2000, PHYS REV LETT, V84, P806
184777    MARAGO OM, 2000, PHYS REV LETT, V84, P2056
184778    MATTHEWS MR, 1999, PHYS REV LETT, V83, P2498
184779    MEWES MO, 1996, PHYS REV LETT, V77, P988
184780    OHMI T, 1998, J PHYS SOC JPN, V67, P1822
184781    ONOFRIO R, 2000, PHYS REV LETT, V85, P2228
184782    STAMPERKURN DM, 1998, PHYS REV LETT, V80, P2027
184783    STRINGARI S, 1996, PHYS REV LETT, V77, P2360
184784    SZEPFALUSY P, 2002, PHYS REV A B, V65
184785    SZIRMAI G, 2003, PHYS REV A, V68
184786    UEDA M, 2002, PHYS REV A, V65
184787 NR 26
184788 TC 0
184789 SN 0253-6102
184790 J9 COMMUN THEOR PHYS
184791 JI Commun. Theor. Phys.
184792 PD DEC 15
184793 PY 2005
184794 VL 44
184795 IS 6
184796 BP 1025
184797 EP 1036
184798 PG 12
184799 SC Physics, Multidisciplinary
184800 GA 001LC
184801 UT ISI:000234533600015
184802 ER
184803 
184804 PT J
184805 AU Zhuang, ZH
184806    Zhou, Y
184807    Yu, MC
184808    Silverman, N
184809    Ge, BX
184810 TI Regulation of Drosophila p38 activation by specific MAP2 kinase and
184811    MAP3 kinase in response to different stimuli
184812 SO CELLULAR SIGNALLING
184813 DT Article
184814 DE Drosophila; p38; MEKK1; TAK1; PGN; RNAi
184815 ID SIGNAL-TRANSDUCTION PATHWAY; PROTEIN-KINASE; GENE-EXPRESSION; KAPPA-B;
184816    INFLAMMATORY CYTOKINES; DUAL PHOSPHORYLATION; STRESS RESPONSES;
184817    MITOGEN; JNK; CASCADES
184818 AB The p38 mitogen-activated protein kinase (MAPK) signaling pathway plays
184819    an important role in cellular responses to inflammatory stimuli and
184820    environmental stress. Activation of p38 is mediated through
184821    phosphorylation by upstream MAPKK, which in turn is activated by
184822    MAPKKK. However, the mechanism of how different upstream MAP2Ks and
184823    MAP3Ks specifically contribute to p38 activation in response to
184824    different stimuli is still not clearly understood. By using
184825    double-stranded RNA-mediated interference (RNAi) in Drosophila cells,
184826    we demonstrate that D-NKK3 is a major MAP2K responsible for D-p38
184827    activation by UV, heat shock, NaCl or peptiodglycan (PGN). Stimulation
184828    of UV and PGN activates D-p38 through D-MEKK1, heat shock-induced
184829    activation of D-p38 signals through both D-MEKK1 and D-ASK1. On the
184830    other hand, maximal activation of D-p38 by NaCl requires the expression
184831    of four MAP3Ks.
184832 C1 Chinese Acad Sci, Shanghai Inst Biol Sci, Shanghai 200025, Peoples R China.
184833    Shanghai Med Univ 2, Joint Immunol Lab, Hlth Sci Ctr, Shanghai 200025, Peoples R China.
184834    Shanghai Med Univ 2, Shanghai Inst Immunol, Shanghai 200025, Peoples R China.
184835    Shanghai Univ, E Inst, Shanghai 200025, Peoples R China.
184836    Univ Massachusetts, Sch Med, Dept Med, Div Infect Dis, Worcester, MA 01605 USA.
184837 RP Ge, BX, Chinese Acad Sci, Shanghai Inst Biol Sci, 225 S Chongqing Rd,
184838    Shanghai 200025, Peoples R China.
184839 EM gebaoxue@sibs.ac.cn
184840 CR ADACHIYAMADA T, 1999, MOL CELL BIOL, V19, P2322
184841    BRANCHO D, 2003, GENE DEV, V17, P1969
184842    BRUNET A, 1997, ESSAYS BIOCHEM, V32, P1
184843    CHEN W, 2002, J BIOL CHEM, V277, P49105
184844    CHIARIELLO M, 2000, MOL CELL BIOL, V20, P1747
184845    COBB MH, 1991, CELL REGUL, V2, P965
184846    COHEN P, 1996, ADV PHARMACOL, V36, P15
184847    CRAIG CR, 2004, EMBO REP, V5, P1058
184848    DAVIS RJ, 1994, TRENDS BIOCHEM SCI, V19, P470
184849    DEACON K, 1999, J BIOL CHEM, V274, P16604
184850    DEAK M, 1998, EMBO J, V17, P4426
184851    DERIJARD B, 1994, CELL, V76, P1025
184852    FAN G, 1996, J BIOL CHEM, V271, P24788
184853    FUKUNAGA R, 1997, EMBO J, V16, P1921
184854    GE BX, 2002, SCIENCE, V295, P1291
184855    HAMMOND SM, 2000, NATURE, V404, P293
184856    HAN J, 1994, SCIENCE, V265, P808
184857    HAN J, 1997, NATURE, V386, P296
184858    HAN SJ, 1998, J BIOL CHEM, V273, P369
184859    HAN ZQS, 1998, MOL CELL BIOL, V18, P3527
184860    HER JH, 1993, BIOCHEM J 1, V296, P25
184861    HERSKOWITZ I, 1995, CELL, V80, P187
184862    ICHIJO H, 1997, SCIENCE, V275, P90
184863    INOUE H, 2001, EMBO J, V20, P5421
184864    IORDANOV M, 1997, EMBO J, V16, P1009
184865    JOHNSON GL, 2002, SCIENCE, V298, P1911
184866    KANEKO T, 2004, IMMUNITY, V20, P637
184867    KYRIAKIS JM, 1994, NATURE, V369, P156
184868    KYRIAKIS JM, 1996, BIOESSAYS, V18, P567
184869    LEE JC, 1994, NATURE, V372, P739
184870    LEULIER F, 2003, NAT IMMUNOL, V4, P478
184871    MIHALY J, 2001, MECH DEVELOP, V102, P67
184872    MORIGUCHI T, 1996, J BIOL CHEM, V271, P13675
184873    NEBREDA AR, 2000, TRENDS BIOCHEM SCI, V25, P257
184874    NEW L, 1998, EMBO J, V17, P3372
184875    NISHIDA E, 1993, TRENDS BIOCHEM SCI, V18, P128
184876    ONO K, 2000, CELL SIGNAL, V12, P1
184877    PEARSON G, 2001, ENDOCR REV, V22, P153
184878    PIERRAT B, 1998, J BIOL CHEM, V273, P29661
184879    RAINGEAUD J, 1995, J BIOL CHEM, V270, P7420
184880    RAINGEAUD J, 1996, MOL CELL BIOL, V16, P1247
184881    ROBINSON MJ, 1997, CURR OPIN CELL BIOL, V9, P180
184882    SAMAKOVLIS C, 1992, BIOCHEM BIOPH RES CO, V188, P1169
184883    SCHAEFFER HJ, 1999, MOL CELL BIOL, V19, P2435
184884    SILVERMAN N, 2000, GENE DEV, V14, P2461
184885    SILVERMAN N, 2003, J BIOL CHEM, V278, P48928
184886    STOKOE D, 1992, EMBO J, V11, P3985
184887    STRONACH BE, 1999, ONCOGENE, V18, P6172
184888    SU B, 1996, CURR OPIN IMMUNOL, V8, P402
184889    SUZANNE M, 1999, GENE DEV, V13, P1464
184890    TAKATSU Y, 2000, MOL CELL BIOL, V20, P3015
184891    TANAKA N, 2002, EMBO REP, V3, P785
184892    TIBBLES LA, 1996, EMBO J, V15, P7026
184893    VIDAL S, 2001, GENE DEV, V15, P1900
184894    WANG XZ, 1996, SCIENCE, V272, P1347
184895    WASKIEWICZ AJ, 1995, CURR OPIN CELL BIOL, V7, P798
184896    WASKIEWICZ AJ, 1997, EMBO J, V16, P1909
184897    WHITMARSH AJ, 1997, MOL CELL BIOL, V17, P2360
184898    WIDMANN C, 1999, PHYSIOL REV, V79, P143
184899    WORBY CA, 2001, SCI STKE, V95, PL1
184900    WYSK M, 1999, P NATL ACAD SCI USA, V96, P3763
184901    YAMAGUCHI K, 1995, SCIENCE, V270, P2008
184902 NR 62
184903 TC 0
184904 SN 0898-6568
184905 J9 CELL SIGNAL
184906 JI Cell. Signal.
184907 PD APR
184908 PY 2006
184909 VL 18
184910 IS 4
184911 BP 441
184912 EP 448
184913 PG 8
184914 SC Cell Biology
184915 GA 001PU
184916 UT ISI:000234549600005
184917 ER
184918 
184919 PT J
184920 AU Li, QY
184921    Gao, XS
184922    Sun, Y
184923    Zhang, QQ
184924    Song, RT
184925    Xu, ZK
184926 TI Isolation and characterization of a sodium-dependent phosphate
184927    transporter gene in Dunaliella viridis
184928 SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
184929 DT Article
184930 DE Dunaliella viridis; sodium-dependent phosphate transporter; induced
184931    expression; yeast functional characterization
184932 ID HALOTOLERANT ALGA DUNALIELLA; SACCHAROMYCES-CEREVISIAE;
184933    POLYPHOSPHATE-HYDROLYSIS; ALKALINE STRESS; PROTEIN; CHLAMYDOMONAS;
184934    EXPRESSION; SEQUENCE; SALINA; TRANSCRIPTION
184935 AB A sodium-dependent phosphate transporter gene, DvSPT1, was isolated
184936    from a cDNA library using a probe derived from a subtracted cDNA
184937    library of Dunaliella viridis. Sequencing analyses revealed a
184938    cDNA-sequence of 2649 bp long and encoded an open-reading frame
184939    consisting of 672 amino acids. The deduced amino acid sequence of
184940    DvSPT1 exhibited 31.2% identity to that of TcPHO from Tetraselmis chui.
184941    Hydrophobicity and secondary structure prediction revealed 11 conserved
184942    transmembrane domains similar to those found in PHO89 from
184943    Saccharomyces cerevisiae and PHO4 from Neurospora crassa. Northern blot
184944    analysis indicated that the DvSPTI expression was induced upon NaCl
184945    hyperosmotic stress or phosphate depletion. Functional characterization
184946    in yeast Na+ export pump mutant G19 suggested that DvSPT1 encoded a Na+
184947    transporter protein. The gene sequence of GDvSPT1 (7922 bp) was
184948    isolated from a genomic library of D. viridis. Southern blot analysis
184949    indicated that there exist at least two homologous genes in D. viridis.
184950    (c) 2005 Elsevier Inc. All rights reserved.
184951 C1 Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Plant Physiol & Ecol, Shanghai 200032, Peoples R China.
184952    Chinese Acad Sci, Grad Sch, Beijing 10039, Peoples R China.
184953    Shanghai Univ, Sch Life Sci, Shanghai 200444, Peoples R China.
184954 RP Xu, ZK, Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Plant Physiol &
184955    Ecol, Shanghai 200032, Peoples R China.
184956 EM qyli@cjaas.com
184957    zkxu@staff.shu.edu.cn
184958 CR AGATEP R, 1998, TRANSFORMATION SACCH
184959    AMTMANN A, 2001, PLANT PHYSIOL, V126, P1061
184960    BANUELOS MA, 1998, MICROBIOL-UK 10, V144, P2749
184961    BENTAL M, 1990, EUR J BIOCHEM, V188, P111
184962    BENTAL M, 1991, BIOCHIM BIOPHYS ACTA, V1092, P21
184963    BUNYA M, 1991, MOL CELL BIOL, V11, P3229
184964    CHUNG CC, 2003, APPL ENVIRON MICROB, P754
184965    DARAM P, 1999, PLANT CELL, V11, P2153
184966    DIATCHENKO L, 1996, P NATL ACAD SCI USA, V93, P6025
184967    GRAZIANO LM, 1996, J PHYCOL, V32, P825
184968    GREGORY PD, 1999, EMBO J, V18, P6407
184969    HAYASHI N, 1991, MOL CELL BIOL, V11, P785
184970    HEINEMEYER T, 1998, NUCLEIC ACIDS RES, V26, P364
184971    KANG TJ, 1997, PLANT MOL BIOL, V35, P943
184972    KOMEILI A, 1999, SCIENCE, V284, P977
184973    LAROCHE J, 1993, J PHYCOL, V29, P767
184974    LAU WTW, 1998, GENETICS, V150, P1349
184975    MARTINEZ P, 1998, MOL GEN GENET, V258, P628
184976    OGAWA N, 1995, MOL GEN GENET, V249, P406
184977    PERSSON BL, 1999, BBA-REV BIOMEMBRANES, V1422, P255
184978    PICK U, 1990, FEBS LETT, V274, P15
184979    PICK U, 1991, PLANT PHYSIOL, V97, P1234
184980    SAMBROOK J, 1989, MOL CLONING LAB MANU
184981    SCANLAN DJ, 1993, MOL MICROBIOL, V10, P181
184982    SCANLAN DJ, 1997, APPL ENVIRON MICROB, V63, P2411
184983    SHAPIRO MB, 1987, NUCLEIC ACIDS RES, V15, P7155
184984    SHIMOGAWARA K, 1999, PLANT PHYSIOL, V120, P685
184985    SUN Y, 2005, MOL BIOTECHNOL, V30, P185
184986    ULLRICH WR, 1982, PLANT SCI LETT, V27, P155
184987    UTHAPPA TM, 2001, PLANT PHYSIOL, V127, P1854
184988    VERSAW WK, 1995, P NATL ACAD SCI USA, V92, P3884
184989    WEISS M, 2001, J PLANT PHYSIOL, V158, P1519
184990    WU JF, 2000, SCIENCE, V289, P759
184991    WYKOFF DD, 1999, P NATL ACAD SCI USA, V96, P15336
184992    YANG ZY, 2000, ACTA PHYTOPHYSIOL SI, V26, P75
184993    YANG ZY, 2000, SUCCESSFUL CULTURE D
184994 NR 36
184995 TC 0
184996 SN 0006-291X
184997 J9 BIOCHEM BIOPHYS RES COMMUN
184998 JI Biochem. Biophys. Res. Commun.
184999 PD FEB 3
185000 PY 2006
185001 VL 340
185002 IS 1
185003 BP 95
185004 EP 104
185005 PG 10
185006 SC Biochemistry & Molecular Biology; Biophysics
185007 GA 002VS
185008 UT ISI:000234640600015
185009 ER
185010 
185011 PT J
185012 AU Tan, Q
185013    Xie, S
185014    Zhu, X
185015    Lei, W
185016    Yang, Y
185017 TI Effect of dietary carbohydrate sources on growth performance and
185018    utilization for gibel carp (Carassius auratus gibelio) and Chinese
185019    longsnout catfish (Leiocassis longirostris Gunther)
185020 SO AQUACULTURE NUTRITION
185021 DT Article
185022 DE carbohydrate; Chinese longsnout catfish; gibel carp; gluconeogenesis;
185023    growth; lipogenesis
185024 ID STURGEON ACIPENSER-TRANSMONTANUS; X OREOCHROMIS-AUREUS; BASS
185025    DICENTRARCHUS-LABRAX; TROUT SALMO-GAIRDNERI; MORONE-SAXATILIS MALE;
185026    BODY-COMPOSITION; PHOSPHOENOLPYRUVATE CARBOXYKINASE; GLUCOSE;
185027    METABOLISM; NILOTICUS
185028 AB The nutritional function of monosaccharides, disaccharides and
185029    polysaccharides for omnivorous gibel carp and carnivorous Chinese
185030    longsnout catfish were investigated and the ability of these two
185031    species to utilize carbohydrates was compared. For each species,
185032    triplicate groups of fish were assigned to each of five groups of
185033    isoenergetic and isonitrogenous experimental diets with different
185034    carbohydrate sources: glucose, sucrose, dextrin, soluble starch
185035    (acid-modified starch) and alpha-cellulose. The carbohydrates were
185036    included at 60 g kg(-1) in Chinese longsnout catfish diets and at 200 g
185037    kg(-1) in gibel carp diets. A growth trial was carried out in a
185038    recirculation system at 27.8 +/- 1.9 degrees C for 8 weeks. The results
185039    showed that fish with different food habits showed difference in the
185040    utilization of carbohydrate sources. For gibel carp, better specific
185041    growth rate (SGR) and feed efficiency (FE) were observed in fish fed
185042    diets containing soluble starch and cellulose, but for Chinese
185043    longsnout catfish, better SGR and FE were observed in fish fed diets
185044    containing dextrin and sucrose. Apparent digestibility coefficient of
185045    dry matter (ADC(d)) and apparent digestibility coefficient of energy
185046    (ADC(e)) were significantly affected by dietary carbohydrate sources in
185047    gibel carp. ADC(d) and ADC(e) significantly decreased as dietary
185048    carbohydrate complexity increased in Chinese longsnout catfish except
185049    that glucose diet had medium ADC(d) and ADC(e). In both species, no
185050    significant difference of apparent digestibility coefficient of protein
185051    was observed between different carbohydrate sources. Dietary
185052    carbohydrate sources significantly affected body composition, and liver
185053    phosphoenolpyruvate carboxykinase (PEPCK), pyruvate kinase (PK),
185054    glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME)
185055    activities also varied according to dietary carbohydrate complexity.
185056    Fish with different food habits showed different abilities to
185057    synthesize liver glycogen, and the liver glycogen content in gibel carp
185058    was significantly higher than in Chinese longsnout catfish. The
185059    influence of carbohydrate source on gluconeogenesis and lipogenesis was
185060    also different in the two fish species.
185061 C1 Chinese Acad Sci, Inst Hydrobiol, State Key Lab Freshwater Ecol & Biotechnol, Wuhan, Hubei, Peoples R China.
185062    Chinese Acad Sci, Grad Sch, Beijing, Peoples R China.
185063    Shanghai Univ, Aquaculture Div, E Inst, Shanghai, Peoples R China.
185064 RP Xie, S, Chinese Acad Sci, Inst Hydrobiol, State Key Lab Freshwater Ecol
185065    & Biotechnol, Wuhan, Hubei, Peoples R China.
185066 EM sqxie@ihb.ac.cn
185067 CR *AOAC, 1984, OFF METH AN, P1141
185068    AKIYAMA T, 1982, B JPN SOC SCI FISH, V33, P112
185069    BARHAM D, 1972, ANALYST, V97, P142
185070    BERGOT F, 1979, AQUACULTURE, V18, P157
185071    BOLIN DW, 1952, SCIENCE, V116, P634
185072    BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248
185073    BUHLER DR, 1961, J NUTR, V74, P307
185074    DENG DF, 2001, AQUACULTURE, V199, P107
185075    DIAS J, 1998, AQUACULTURE, V161, P169
185076    ERFANULLAH, 1995, AQUACULTURE, V136, P331
185077    FURUICHI M, 1982, B JAPAN SOC SCI FISH, V48, P945
185078    FURUICHI M, 1986, B JPN SOC SCI FISH, V52, P99
185079    HANSON RW, 1972, AM J CLIN NUTR, V25, P1010
185080    HASSID WZ, 1957, METHOD ENZYMOL, V3, P34
185081    HEMRE GI, 2002, AQUACULT NUTR, V8, P175
185082    HILTON JW, 1982, BR J NUTR, V47, P597
185083    HSIEH SL, 2000, FISHERIES SCI, V66, P32
185084    HUNG SSO, 1989, J NUTR, V119, P727
185085    HUTCHINS CG, 1998, AQUACULTURE, V161, P187
185086    KAHN A, 1982, METHOD ENZYMOL, V90, P131
185087    LEE MH, 1981, J BIOL CHEM, V256, P2793
185088    LEE SM, 2003, AQUACULTURE, V221, P427
185089    LIN JH, 1997, AQUACULTURE, V148, P201
185090    LIN JS, 1995, FISH PHYSIOL BIOCHEM, V14, P165
185091    MORITA K, 1982, B JPN SOC SCI FISH, V48, P1617
185092    PEI Z, 2003, THESIS CHINESE ACAD
185093    PERES H, 1999, AQUACULTURE, V179, P415
185094    PIEPER A, 1980, AQUACULTURE, V20, P333
185095    QIAN XQ, 2001, THESIS CHINESE ACAD
185096    RAWLES SD, 1998, AQUACULTURE, V161, P201
185097    SHIAU SY, 1993, AQUACULTURE, V117, P327
185098    SHIAU SY, 2002, FISHERIES SCI, V68, P991
185099    SHIKATA T, 1994, FISHERIES SCI, V60, P613
185100    SHIMENO MA, 1991, GEN COMP ENDOCR, V81, P473
185101    SHIMENO S, 1977, B JAP SOC SCI FISH, V43, P213
185102    SHIMENO S, 1993, NIPPON SUISAN GAKK, V59, P827
185103    STONE DAJ, 2003, AQUAC RES, V34, P97
185104    WILSON RP, 1987, J NUTR, V117, P280
185105    WILSON RP, 1994, AQUACULTURE, V124, P67
185106    YANG Y, 2003, THESIS HUAZHONG AGR
185107 NR 40
185108 TC 0
185109 SN 1353-5773
185110 J9 AQUAC NUTR
185111 JI Aquac. Nutr.
185112 PD FEB
185113 PY 2006
185114 VL 12
185115 IS 1
185116 BP 61
185117 EP 70
185118 PG 10
185119 SC Fisheries
185120 GA 003EE
185121 UT ISI:000234663600007
185122 ER
185123 
185124 PT J
185125 AU Liu, BX
185126    Yu, JY
185127    Xu, DJ
185128 TI 2,(2,2 '-Diamino-4,4 '-bi-1,3-thiazole-kappa N-2, N
185129    ')-bis(glycinato-kappa N-2,O)zinc(II) dihydrate
185130 SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE
185131 DT Article
185132 AB In the title Zn-II complex, [Zn(C2H4NO2)(2)(C6H6N4S2)]center dot
185133    2H(2)O, the Zn-II ion is coordinated by two glycinate anions and a
185134    diaminobithiazole (DABT) molecule in a distorted octahedral geometry.
185135    Two thiazole rings of the same DABT are twisted with respect to each
185136    other with a dihedral angle of 10.56 (6)degrees. The glycinate chelates
185137    to the Zn-II ion by the amino N and carboxylate O atoms; the chelating
185138    five-membered ring displays an envelope configuration. A twofold
185139    rotation axis passes through the Zn atom and the mid-point of the C-C
185140    bond linking the two thiazole rings.
185141 C1 Zhejiang Univ, Dept Chem, Hangzhou, Peoples R China.
185142    Shanghai Univ, Dept Chem, Shanghai 200041, Peoples R China.
185143 RP Xu, DJ, Zhejiang Univ, Dept Chem, Hangzhou, Peoples R China.
185144 EM xudj@mail.hz.zj.cn
185145 CR *RIG CORP, 1998, PROCESS AUTO
185146    *RIG MSC, 2002, CRYST STRUCT
185147    ALTOMARE A, 1993, J APPL CRYSTALLOGR, V26, P343
185148    FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
185149    FARRUGIA LJ, 1999, J APPL CRYSTALLOGR, V32, P837
185150    HIGASHI T, 1995, ABSCOR
185151    LIU JG, 2001, ACTA CRYSTALLOGR C 4, V57, P354
185152    SHELDRICK GM, 1997, SHELXL97
185153    SUN WL, 1997, J APPL POLYM SCI, V64, P2309
185154    YU JY, 2005, ACTA CRYSTALLOGR  11, V61, M2232
185155 NR 10
185156 TC 0
185157 SN 1600-5368
185158 J9 ACTA CRYSTALLOGR E-STRUCT REP
185159 JI Acta Crystallogr. Sect. E.-Struct Rep. Online
185160 PD JAN
185161 PY 2006
185162 VL 62
185163 PN Part 1
185164 BP M67
185165 EP M68
185166 PG 2
185167 SC Crystallography
185168 GA 000FS
185169 UT ISI:000234446900034
185170 ER
185171 
185172 PT J
185173 AU Li, SC
185174    Li, SC
185175    Cheng, YM
185176 TI Enriched meshless manifold method for two-dimensional crack modeling
185177 SO THEORETICAL AND APPLIED FRACTURE MECHANICS
185178 DT Article
185179 DE meshless manifold method; enriched meshless manifold method; finite
185180    cover approximation theory; partition of unity; cracks; stress
185181    intensity factors
185182 ID FINITE-ELEMENT-METHOD; SMOOTHED PARTICLE HYDRODYNAMICS; UNITY METHOD;
185183    PARTITION; CONTACT; GROWTH
185184 AB The meshless manifold method is based on the partition of unity method
185185    and the finite cover approximation theory which provides a unified
185186    framework for solving problems dealing with both continuum with and
185187    without discontinuities. The meshless manifold method employs two cover
185188    systems. The mathematical cover system provides the nodes for forming
185189    finite covers of the solution domain and the partition of unity
185190    functions. And the physical cover system describes geometry of the
185191    domain and the discontinuous surfaces in the domain. The shape
185192    functions are derived by the partition of unity and the finite covers
185193    approximation theory. In meshless manifold method, the mathematical
185194    finite cover approximation theory is used to model cracks that lead to
185195    interior discontinuities in the displacement. Therefore, the
185196    discontinuity is treated mathematically instead of empirically by the
185197    existing methods. However, one cover of a node is divided into two
185198    irregular sub-covers when the meshless manifold method is used to model
185199    the discontinuity. As a result, the method sometimes causes numerical
185200    errors at the tip of a crack. To improve the precision of the meshless
185201    manifold method, the enriched methods are introduced in this work for
185202    crack problems. (C) 2005 Elsevier Ltd. All rights reserved.
185203 C1 Shandong Univ, Sch Civil & Hydraul Engn, Dept Underground Space, Jinan 250061, Peoples R China.
185204    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
185205 RP Li, SC, Shandong Univ, Sch Civil & Hydraul Engn, Dept Underground
185206    Space, Jinan 250061, Peoples R China.
185207 EM shuchenli@sdu.edu.cn
185208    cai@sdu.edu.cn
185209 CR BABUSKA I, 1996, COMPUT METHODS APPL, V139, P289
185210    BABUSKA I, 1997, INT J NUMER METH ENG, V40, P727
185211    BABUSKA I, 1998, COMPUT METHOD APPL M, V152, P1
185212    BELYTSCHKO T, 1994, INT J NUMER METH ENG, V37, P229
185213    BELYTSCHKO T, 1996, COMPUT METHOD APPL M, V139, P3
185214    BELYTSCHKO T, 1999, COMPUT STRUCT, V71, P173
185215    BELYTSCHKO T, 2001, INT J NUMER METH ENG, V50, P993
185216    CHEN JS, 1998, COMPUT MECH, V22, P289
185217    CHENG Y, 2003, ACTA MECH SINICA, V35, P181
185218    DAUX C, 2000, INT J NUMER METH ENG, V48, P1741
185219    DOLBOW J, 2001, COMPUT METHOD APPL M, V190, P6825
185220    DUARTE CA, 1996, COMPUT METHOD APPL M, V139, P237
185221    DUARTE CA, 1996, NUMER METH PART D E, V12, P673
185222    GINGOLD RA, 1977, MON NOT R ASTRON SOC, V181, P375
185223    HARLOW FH, 1964, METHODS COMPUTATIONA, V3, P319
185224    JIAN H, 2002, CHIN J ROCK MECH ENG, V21, P1655
185225    LANCASTER P, 1981, MATH COMPUT, V37, P141
185226    LI S, 2002, APPL MECH REV, V54, P1
185227    LI S, 2004, ACTA MECH SINICA, V4, P496
185228    LI SF, 2000, INT J NUMER METH ENG, V48, P1285
185229    LIBERSKY LD, 1991, NEXT FREE LAGR C, P248
185230    LIU WK, 1995, INT J NUMER METH FL, V20, P1081
185231    LUCY LB, 1977, ASTRON J, V82, P1013
185232    MELENK JM, 1996, COMPUT METHOD APPL M, V139, P289
185233    MOES N, 1999, INT J NUMER METH ENG, V46, P131
185234    NAYROLES B, 1992, COMPUT MECH, V10, P307
185235    ODEN JT, 1997, MATH FINITE ELEMENTS, P35
185236    ONATE E, 1996, COMPUT METHOD APPL M, V139, P315
185237    PERRONE N, 1975, COMPUT STRUCT, V5, P45
185238    ROBERT L, 1998, COMPUT METH APPL MEC, V152, P73
185239    SIH GC, 1990, MECH FRACTURE INITIA, P218
185240    SUKUMAR N, 2001, COMPUT METHOD APPL M, V190, P6183
185241    SWEGLE JW, 1995, J COMPUT PHYS, V116, P123
185242    TIMOSHENKO SP, 1970, THEORY ELASTICITY
185243 NR 34
185244 TC 0
185245 SN 0167-8442
185246 J9 THEOR APPL FRACT MECH
185247 JI Theor. Appl. Fract. Mech.
185248 PD DEC
185249 PY 2005
185250 VL 44
185251 IS 3
185252 BP 234
185253 EP 248
185254 PG 15
185255 SC Engineering, Mechanical; Mechanics
185256 GA 998JZ
185257 UT ISI:000234316100003
185258 ER
185259 
185260 PT J
185261 AU Liu, YS
185262    Zhang, JC
185263    Cao, SX
185264    Zhang, XY
185265    Jia, GQ
185266    Ren, ZM
185267    Li, X
185268    Jing, C
185269    Deng, K
185270 TI Microstructure, crystallization, and magnetization behaviors in MnBi-Bi
185271    composites aligned by applied magnetic field
185272 SO PHYSICAL REVIEW B
185273 DT Article
185274 ID STRUCTURAL PHASE-TRANSITION; MAGNETOOPTICAL PROPERTIES; INTERMETALLIC
185275    COMPOUND; ELECTRONIC-STRUCTURE; HIGH-TEMPERATURE; SOLIDIFICATION;
185276    TRANSFORMATION; GROWTH
185277 AB MnBi-Bi composites are fabricated by a magnetic-field-inducing
185278    technique under different fabrication fields (0, 0.3, 0.5, and 1 T) and
185279    their microstructure and magnetic properties have been investigated.
185280    Microstructure results show MnBi crystals are aligned along the c axis
185281    in a Bi matrix under relatively moderate fabrication fields (0.5 and 1
185282    T). Magnetic measurement shows a pronounced anisotropy in magnetization
185283    in directions normal and parallel to the fabrication field, resulting
185284    from this alignment. Interestingly, the fabrication field not only
185285    improves the crystal quality of MnBi-Bi composite, but also increases
185286    the spin-reorientation temperature T-s of MnBi compound as well as the
185287    change in magnetization. On the other hand, an external field applied
185288    to the fabricated composite decreases the spin-reorientation
185289    temperature T-s. During the reversible transformation from the
185290    paramagnetic state to the ferromagnetic state, the magnetic transition
185291    temperature T-C increases with the increase of external magnetic field
185292    for MnBi compound. Under a field of 10 T, a typical increase of T-C is
185293    20 K during heating and 22 K during cooling, respectively.
185294 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
185295    Shanghai Univ, Dept Mat Sci & Engn, Shanghai 200444, Peoples R China.
185296 RP Zhang, JC, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
185297 EM jczhang@staff.shu.edu.cn
185298 CR ALBERT PA, 1961, J APPL PHYS, V32, S201
185299    ASAMITSU A, 1995, NATURE, V373, P407
185300    AWAJI S, 2001, J CRYST GROWTH, V226, P83
185301    CHEN T, 1974, IEEE T MAGN, V10, P581
185302    COEHOORN R, 1985, J PHYS F MET PHYS, V15, P2135
185303    DERANGO P, 1991, NATURE, V349, P770
185304    GUO X, 1992, PHYS REV B, V46, P14578
185305    HARDER KU, 1998, J APPL PHYS, V84, P3625
185306    HEIKES RR, 1955, PHYS REV, V99, P446
185307    HIHARA T, 1970, J PHYS SOC JPN, V29, P343
185308    KANG K, 2005, J APPL PHYS, V97
185309    LAKE B, 2002, NATURE, V415, P299
185310    LEVIN EM, 2002, PHYS REV B, V65
185311    LI BQ, 1998, 50 JOM
185312    LIU S, 1994, J APPL PHYS 2, V76, P6757
185313    LIU YS, 2004, PHYS REV B, V70
185314    LU XY, 2001, IEEE T APPL SUPERC 3, V11, P3553
185315    MA YW, 2000, SOLID STATE COMMUN, V113, P671
185316    POOLE PH, 1997, SCIENCE, V275, P322
185317    RAVINDRAN P, 1999, PHYS REV B, V59, P15680
185318    SAHA S, 2002, J APPL PHYS 3, V91, P8525
185319    SCHNEIDER T, 1999, EUR PHYS J B, V8, P331
185320    SHIMAMOTO Y, 1998, J PHYS-CONDENS MAT, V10, P11289
185321    SMART JS, 1953, PHYS REV, V90, P55
185322    SOKOLOV AP, 1996, SCIENCE, V273, P1675
185323    UJI S, 2001, NATURE, V410, P908
185324    VALKO L, 1994, IEEE T MAGN, V30, P1122
185325    XU YQ, 2002, PHYS REV B, V66
185326    YANG JB, 2001, APPL PHYS LETT, V79, P1846
185327    YANG JB, 2002, J PHYS-CONDENS MAT, V14, P6509
185328    YIN DC, 2001, J CRYST GROWTH, V226, P534
185329 NR 31
185330 TC 0
185331 SN 1098-0121
185332 J9 PHYS REV B
185333 JI Phys. Rev. B
185334 PD DEC
185335 PY 2005
185336 VL 72
185337 IS 21
185338 AR 214410
185339 DI ARTN 214410
185340 PG 7
185341 SC Physics, Condensed Matter
185342 GA 998QY
185343 UT ISI:000234335400079
185344 ER
185345 
185346 PT J
185347 AU Liu, YQ
185348    Luo, SJ
185349    Fu, XN
185350    Fang, F
185351    Zhuang, ZY
185352    Xiong, WT
185353    Jia, XS
185354    Zhai, HB
185355 TI Facile construction of the pentacyclic framework of subincanadine B.
185356    Synthesis of 20-deethylenylated subincanadine B and
185357    19,20-dihydrosubincanadine B
185358 SO ORGANIC LETTERS
185359 DT Article
185360 ID INDOLE ALKALOIDS; CHIRAL AUXILIARY; CONDENSATION; PRODUCTS; STRATEGY
185361 AB We describe a facile approach for effectively constructing the
185362    pentacyclic framework of subincanadine B. The seven-step assembly of
185363    tetracyclic ketone 14 featured Michael addition, Pictet-Spengler
185364    cyclization, and Dieckmann condensation. From this key ketone
185365    intermediate, two analogues of subincanadine 13, i.e.,
185366    20-deethylenylated subincanadine B (27) and 19,20-dihydrosubincanadine
185367    B (31), were synthesized in four steps, respectively.
185368 C1 Chinese Acad Sci, Shanghai Inst Organ Chem, Shanghai 200032, Peoples R China.
185369    Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
185370 RP Zhai, HB, Chinese Acad Sci, Shanghai Inst Organ Chem, 345 Lingling Lu,
185371    Shanghai 200032, Peoples R China.
185372 EM zhaih@mail.sioc.ac.cn
185373 CR BENSON SC, 2000, TETRAHEDRON, V56, P1165
185374    COX ED, 1995, CHEM REV, V95, P1797
185375    DOWD P, 1981, SYNTHETIC COMMUN, V11, P935
185376    ENSLEY HE, 1982, J ORG CHEM, V47, P404
185377    GREENE TW, 1999, PROTECTIVE GROUPS OR, P494
185378    GUINDON Y, 1997, J ORG CHEM, V62, P9276
185379    HUIZENGA RH, 1991, TETRAHEDRON, V47, P4155
185380    JOHNSON PR, 1984, J ORG CHEM, V49, P4424
185381    KAWATE T, 1999, HETEROCYCLES, V50, P1033
185382    KOBAYASHI J, 2002, J ORG CHEM, V67, P6449
185383    LU YX, 2000, TETRAHEDRON, V56, P4355
185384    LUO SJ, 2003, ORG LETT, V5, P4709
185385    SHEEHAN JC, 1950, J AM CHEM SOC, V72, P2786
185386    SMITH AB, 1981, J AM CHEM SOC, V103, P1501
185387    SWAREN P, 1999, J AM CHEM SOC, V121, P5353
185388    THIBONNET J, 2001, TETRAHEDRON, P4787
185389    WRIGHT CW, 1990, PHYTOTHER RES, V4, P127
185390    YU JM, 2003, J ORG CHEM, V68, P7565
185391    YU JM, 2005, J ORG CHEM, V70, P3963
185392 NR 19
185393 TC 0
185394 SN 1523-7060
185395 J9 ORG LETT
185396 JI Org. Lett.
185397 PD JAN 5
185398 PY 2006
185399 VL 8
185400 IS 1
185401 BP 115
185402 EP 118
185403 PG 4
185404 SC Chemistry, Organic
185405 GA 999LU
185406 UT ISI:000234391600030
185407 ER
185408 
185409 PT J
185410 AU Xia, L
185411    Jo, CL
185412    Ding, D
185413    Dong, YD
185414 TI Microstructure, glass forming ability and magnetic properties of
185415    Nd60Al20Fe20 glass forming alloys
185416 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
185417 DT Article
185418 ID BULK METALLIC-GLASS; PRIMARY CRYSTALLIZATION; AMORPHOUS-ALLOYS; PHASE
185419 AB Glass forming ability (GFA), magnetic properties and the microstructure
185420    of an Nd60Al20Fe20 as-cast rod were investigated in comparison with
185421    as-spun ribbons. The as-cast rod with a diameter of 3 mm and as-spun
185422    ribbons exhibit typical amorphous characters in x-ray diffraction
185423    patterns and distinct glass transition in differential scanning
185424    calorimetry traces. However, glass transition, crystallization
185425    behaviours and magnetic properties of an as-cast rod are different from
185426    that of as-spun ribbons. Microstructural investigations have revealed
185427    that a few nano-crystalline particles are embedded randomly in an
185428    amorphous matrix of the as-cast rod while the as-spun ribbons are fully
185429    amorphous. The formation of these nano-crystalline particles with a
185430    structure and composition similar to the A(x) phase, as well as its
185431    effect on the magnetic properties and apparent GFA of Nd60Al20Fe20
185432    glass forming alloys, were investigated.
185433 C1 Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
185434    Shanghai Univ, Ctr Adv Microanal, Shanghai 200444, Peoples R China.
185435 RP Xia, L, Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China.
185436 EM xialei@staff.shu.edu.cn
185437 CR BUSCH R, 1995, APPL PHYS LETT, V67, P1544
185438    DELAMARE J, 1994, J ALLOY COMPD, V216, P273
185439    FAN GJ, 2000, J MATER RES, V15, P1556
185440    FRANKWICZ PS, 1996, MATER LETT, V28, P77
185441    INOUE A, 1996, MATER T JIM, V37, P99
185442    INOUE A, 1998, METALL MATER TRANS A, V29, P1779
185443    KNOCH KG, 1989, IEEE T MAGN, V25, P3426
185444    MENUSHENKOV VP, 1998, P 10 INT S MAGN AN C, P97
185445    SCHNEIDER S, 2002, APPL PHYS LETT, V80, P1749
185446    TURNBULL D, 1969, CONTEMP PHYS, V10, P473
185447    WANG XZ, 1999, J ALLOY COMPD, V290, P209
185448    WEI BC, 2002, ACTA MATER, V50, P4357
185449    XIA L, 2003, J PHYS D APPL PHYS, V36, P2954
185450    XIA L, 2003, J PHYS D APPL PHYS, V36, P775
185451    XIA L, 2003, J PHYS-CONDENS MAT, V15, P3531
185452    XING LQ, 2000, J APPL PHYS, V88, P3565
185453 NR 16
185454 TC 0
185455 SN 0022-3727
185456 J9 J PHYS-D-APPL PHYS
185457 JI J. Phys. D-Appl. Phys.
185458 PD DEC 21
185459 PY 2005
185460 VL 38
185461 IS 24
185462 BP 4335
185463 EP 4338
185464 PG 4
185465 SC Physics, Applied
185466 GA 999IK
185467 UT ISI:000234382800013
185468 ER
185469 
185470 PT J
185471 AU Qi, FP
185472    Zhai, QJ
185473    Gao, SL
185474    Zhang, HB
185475    Ding, L
185476 TI Effect of power ultrasonic on solidification structure of HT150 gray
185477    cast iron
185478 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
185479 DT Article
185480 DE power ultrasonic; HT150; gray cast iron; graphite morphology;
185481    solidification
185482 AB Power ultrasonic treatment is an efficient way to improve the
185483    solidification structure and mechanical properties of metals. The
185484    effect of 600 W power ultrasonic treatment on the solidification
185485    process and structure of HT150 gray cast iron has been studied, and the
185486    fitting mechanism of power ultrasonic has been analyzed.
185487 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
185488 RP Qi, FP, Shanghai Univ, Shanghai 200072, Peoples R China.
185489 EM fpqi@mail.shu.edu.cn
185490 CR *CAST ASS MECH ENG, 1997, CAST HDB, V1
185491    ABRAMOV OV, 1994, ULTRASONIC LIQUID SO
185492    FENG N, 1999, ULTRASONIC HDB
185493    LU WH, 1996, CASTING ALLOYS THEIR
185494    PUSKAR A, 1982, USE HIGH INTENSITY U
185495    QIAN ZW, 1992, NONLINEAR ACOUSTICS
185496    REHIM MA, 1984, METALL, V38, P131
185497 NR 7
185498 TC 0
185499 SN 1006-706X
185500 J9 J IRON STEEL RES INT
185501 JI J. Iron Steel Res. Int.
185502 PD NOV
185503 PY 2005
185504 VL 12
185505 IS 6
185506 BP 33
185507 EP 36
185508 PG 4
185509 SC Metallurgy & Metallurgical Engineering
185510 GA 000IN
185511 UT ISI:000234454800009
185512 ER
185513 
185514 PT J
185515 AU Li, L
185516    Zhang, M
185517    He, YL
185518    Bruno, D
185519    Patrick, W
185520 TI Computer-aided design of some advanced steels and cemented carbides
185521 SO JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
185522 DT Article
185523 DE computer-aided composition design; TRIP steel; cemented carbide;
185524    prehardened mould steel; concentration profile; thermodynamic; kinetic;
185525    equilibrium composition
185526 ID W-C SYSTEM; THERMODYNAMIC ASSESSMENT; TI; DATABASE
185527 AB Thermodynamic and kinetic study on TRIP (transformation induced
185528    plasticity) steels, cemented carbides and mold steel for plastics were
185529    carried out in order to design modern advanced materials. With the
185530    sublattice mod el, equilibrium compositions of ferrite and austenite
185531    phases in TRIP steels, as well as volume fraction of austenite at
185532    inter-critical temperatures for different time were calculated.
185533    Concentration profiles of carbon. manganese. aluminum and silicon in
185534    the steels were also estimated in the lattice fixed frame of reference.
185535    The effect of Si and Mn on TRIP was discussed according to
185536    thermodynamic and kinetic analyses. In order to understand and produce
185537    the graded nanophase structure of cemented carbides, miscellaneous
185538    phases in the M-Co C (M=Ti, Ta, Nb) systems and Co-V-C system were
185539    modeled. Solution parameters and thermodynamic properties were listed
185540    in detail. The improvement of machining behavior of prehardened mould
185541    steel for plastics was obtained by computer aided composition design.
185542    The results showed that the matrix composition of large section
185543    prehardened mould steel for plastic markedly influences the
185544    precipitation of non-metallic inclusion and the composition control by
185545    the aid of Ther mo-Calc software package minimizes the amount of
185546    detrimental oxide inclusion. In addition, the modification of calcium
185547    was optimized in composition design.
185548 C1 Shanghai Univ, Shanghai 200072, Peoples R China.
185549    Katholieke Univ Leuven, B-3001 Louvain, Belgium.
185550    Univ Ghent, B-9052 Zwijnaarde, Belgium.
185551 RP Li, L, Shanghai Univ, Shanghai 200072, Peoples R China.
185552 EM liling@sh163.net
185553 CR ANDERSSON JO, 1986, ACTA METALL, V34, P437
185554    BHADESHIA HKD, 1992, BAINITE STEELS
185555    BLANDER M, 1963, J CHEM PHYS, V39, P2610
185556    CACCIAMANI G, 2000, INTERMETALLICS, V8, P213
185557    DUMITRESCU LFS, 1999, Z METALLKD, V90, P534
185558    DUMITRESCU LFS, 2001, METALL MATER TRANS A, V32, P2167
185559    EKROTH M, 2000, METALL MATER TRANS B, V31, P615
185560    FRISELL J, 2001, EUR J SURG, V167, P179
185561    FRISK K, 2001, J PHASE EQUILIB, V22, P645
185562    GATELLIER C, 1993, MATER TECHNOL, V1, P87
185563    GAYE H, 1984, P 2 INT S MET SLAGS, P357
185564    GUILLERMET AF, 1987, Z METALLKD, V78, P700
185565    HE YL, 2004, J MATER SCI TECHNOL, V20, P71
185566    HILLERT M, 1957, JERNKONTORETS ANN, V141, P757
185567    HU XB, 2004, T MAT HEAT TREATMENT, V26, P57
185568    HUANG S, 2005, J ALLOY COMPD, V395, P68
185569    HUANG W, 1991, Z METALLKD, V82, P174
185570    HUANG WM, 1997, Z METALLKD, V88, P55
185571    KATSAMAS AI, 2000, STEEL RES, V71, P351
185572    KUMAR KCH, 1998, J ALLOY COMPD, V267, P105
185573    KUSOFFSKY A, 1997, CALPHAD, V21, P321
185574    LI L, 2003, J MATER SCI TECHNOL, V19, P273
185575    MATSUMURA O, 1987, T IRON STEEL I JPN, V27, P570
185576    MINOTE T, 1996, ISIJ INT, V36, P201
185577    UMEMOTO M, 1989, 131 132 NISH MEM SEM
185578    YAMASHITA T, 1999, J PHASE EQUILIB, V20, P231
185579    YE HI, 2005, T NONFERROUS METALS, V15, P437
185580    ZAKAY VF, 1967, T ASM Q, V60, P252
185581    ZHOU Y, 2002, C TRIP AID HIGH STRE, P212
185582 NR 29
185583 TC 0
185584 SN 1006-706X
185585 J9 J IRON STEEL RES INT
185586 JI J. Iron Steel Res. Int.
185587 PD NOV
185588 PY 2005
185589 VL 12
185590 IS 6
185591 BP 42
185592 EP 48
185593 PG 7
185594 SC Metallurgy & Metallurgical Engineering
185595 GA 000IN
185596 UT ISI:000234454800011
185597 ER
185598 
185599 PT J
185600 AU Cai, C
185601    Hanisch, J
185602    Huhne, R
185603    Stehr, V
185604    Mickel, C
185605    Gemming, T
185606    Holzapfel, B
185607 TI Structural and magnetotransport properties of YBa2Cu3O7-delta/Y2O3
185608    quasimultilayers
185609 SO JOURNAL OF APPLIED PHYSICS
185610 DT Article
185611 ID CRITICAL-CURRENT DENSITY; ARTIFICIAL PINNING CENTERS; THIN-FILMS;
185612    COLUMNAR DEFECTS; Y2O3 INCLUSIONS; ENHANCEMENT; GROWTH
185613 AB A series of quasimultilayers of YBa2Cu3O7-delta(YBCO)/Y2O3, namely,
185614    70x[YBCO(m)/Y2O3(n)] (m=40 pulse, and n=2, 5, 10, and 20 pulse) were
185615    prepared on single-crystal SrTiO3 using pulsed-laser deposition. X-ray
185616    diffraction measurements revealed that both in-plane and out-of-plane
185617    textures of YBCO in the present quasimultilayers are as good as in pure
185618    YBCO films. Nanoscale Y2O3 precipitates grow epitaxially inside YBCO.
185619    With increasing Y2O3 pulse number, T-c decreases slightly, while Delta
185620    T-c remains less than 1.5 K. As well, the YBCO lattice parameter c has
185621    an increasing trend with increasing n. This can be attributed to the
185622    effect of epitaxial strain induced by lattice mismatch. The flux
185623    pinning force density in films with lower Y2O3 content (such as n=2),
185624    is improved in large ranges of field and temperature. In contrast,
185625    films with high Y2O3 content show enhanced flux pinning only at low
185626    temperature, which is understandable from the temperature dependence of
185627    irreversibility fields. (c) 2005 American Institute of Physics.
185628 C1 Leibniz Inst Solid State & Mat Res, D-01171 Dresden, Germany.
185629    Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
185630    Leibniz Inst Solid State & Mat Res, D-01171 Dresden, Germany.
185631 RP Cai, C, Leibniz Inst Solid State & Mat Res, Helmholtzstr 20, D-01171
185632    Dresden, Germany.
185633 EM cbcai@yahoo.com
185634 CR BARNES PN, 2004, APPL PHYS LETT, V85, P4088
185635    CAI C, UNPUB
185636    CAI C, 2004, APPL PHYS LETT, V84, P377
185637    CAI C, 2004, PHYS REV B, V69
185638    CAI C, 2004, PHYS REV B, V70
185639    CATANA A, 1992, APPL PHYS LETT, V60, P1016
185640    CHEN XJ, 2000, PHYS REV B, V61, P3691
185641    CRISAN A, 2001, APPL PHYS LETT, V79, P4547
185642    FERNANDEZ L, 2003, PHYS REV B, V67
185643    HAN ZH, 1994, J APPL PHYS, V75, P2020
185644    HANISCH J, 2005, APPL PHYS LETT, V86
185645    HAUGAN T, 2004, NATURE, V430, P867
185646    KRUSINELBAUM L, 1996, PHYS REV B, V53, P11744
185647    LOWNDES DH, 1995, PHYS REV LETT, V74, P2355
185648    MACMANUSDRISCOLL JL, 2004, APPL PHYS LETT, V84, P5329
185649    MACMANUSDRISCOLL JL, 2004, NAT MATER, V3, P439
185650    MATSUMOTO K, 2004, PHYSICA C 2, V412, P1267
185651    MATSUMOTO K, 2005, JPN J APPL PHYS 2, V44, L246
185652    PETREAN AM, 2000, PHYS REV LETT, V84, P5852
185653    RYEN L, 1998, PHYSICA C, V304, P307
185654    TINKHAM M, 1996, INTRO SUPERCONDUCTIV
185655    VERBIST K, 1995, APPL PHYS LETT, V66, P1424
185656 NR 22
185657 TC 0
185658 SN 0021-8979
185659 J9 J APPL PHYS
185660 JI J. Appl. Phys.
185661 PD DEC 15
185662 PY 2005
185663 VL 98
185664 IS 12
185665 AR 123906
185666 DI ARTN 123906
185667 PG 6
185668 SC Physics, Applied
185669 GA 998SM
185670 UT ISI:000234339700046
185671 ER
185672 
185673 PT J
185674 AU Zhou, B
185675    Sun, RG
185676    Hu, XF
185677    Wang, LH
185678    Wu, HP
185679    Song, SP
185680    Fan, CH
185681 TI Facile interfacial electron transfer of hemoglobin mediated by
185682    conjugated polymers
185683 SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
185684 DT Article
185685 DE hemoglobin; sulfonated polyaniline; biosensors; protein
185686    electrochemistry; conducting polymers
185687 ID AMPEROMETRIC GLUCOSE SENSORS; SPECTROELECTROCHEMICAL METHOD; TRANSFER
185688    REACTIVITY; HYDROGEN-PEROXIDE; HEME-PROTEINS; DNA FILMS; BIOSENSORS;
185689    REDUCTION; OXIDASE; ENZYMES
185690 AB We herein describe a method of depositing hemoglobin (Hb) and
185691    sulfonated polyaniline (SPAN) on GC electrodes that facilitate
185692    interfacial protein electron transfer. Well-defined, reproducible,
185693    chemically reversible peaks of Hb and SPAN can be obtained in our
185694    experiments. We also observed enhanced peroxidase activity of Hb in
185695    SPAN films. These results clearly showed that SPAN worked as molecular
185696    wires and effectively exchanged electrons between Hb and electrodes.
185697 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
185698    Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.
185699    Shanghai Jiao Tong Univ, BioX Life Sci Res Ctr, Shanghai 200030, Peoples R China.
185700 RP Sun, RG, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R
185701    China.
185702 EM rgsun@shu.edu.cn
185703    spsong@sinap.ac.cn
185704 CR ACKERS GK, 1992, SCIENCE, V255, P54
185705    ARBIZZANI C, 1997, HDB ORGANIC CONDUCTI
185706    BEISSENHIRTZ MK, 2004, ANAL CHEM, V76, P4665
185707    BEISSENHIRTZ MK, 2004, ANGEW CHEM INT EDIT, V43, P4357
185708    EDDOWES MJ, 1977, J CHEM SOC CHEM COMM, P3154
185709    FAN CH, 2000, ANAL CHIM ACTA, V423, P95
185710    FAN CH, 2001, ANAL CHEM, V73, P2850
185711    FAN CH, 2001, ANALYST, V126, P1086
185712    FAN CH, 2001, BIOELECTROCHEMISTRY, V54, P49
185713    FAN CH, 2002, J AM CHEM SOC, V124, P5642
185714    FAULKNER KM, 1994, INORG CHIM ACTA, V226, P187
185715    FAULKNER KM, 1995, J BIOL CHEM, V270, P13604
185716    FOULDS NC, 1986, J CHEM SOC FARAD T 1, V82, P1259
185717    GORTON L, 1991, ANAL CHIM ACTA, V249, P43
185718    GUISEPPIELIE A, 1998, HDB CONDUCTING POLYM
185719    GUO LH, 1991, ADV INORG CHEM RAD, V36, P341
185720    HILLER M, 1996, ADV MATER, V8, P219
185721    HULTQUIST DE, 1984, CURR TOP CELL REGUL, V24, P287
185722    LEE TY, 2001, ANAL CHEM, V73, P5629
185723    NASSAR AEF, 1996, J AM CHEM SOC, V118, P3043
185724    PERUTZ MF, 1972, NATURE, V237, P495
185725    PERUTZ MF, 1998, ANNU REV BIOPH BIOM, V27, P1
185726    RAHMAN A, 2004, BIOSENS BIOELECTRON, V19, P1565
185727    RIVERA M, 1998, BIOCHEMISTRY-US, V37, P1485
185728    RUSLING JF, 1993, J AM CHEM SOC, V115, P11891
185729    RUSLING JF, 1998, ACCOUNTS CHEM RES, V31, P363
185730    RUZGAS T, 1996, ANAL CHIM ACTA, V330, P123
185731    SCHLERETH DD, 1992, BIOCHEMISTRY-US, V31, P7494
185732    SCHUHMANN W, 1993, ADV MATER, V5, P124
185733    SCHUMACHER MA, 1995, NATURE, V375, P84
185734    STELLWAGEN E, 1978, NATURE, V275, P73
185735    UMANA M, 1986, ANAL CHEM, V58, P2979
185736    VOET D, 1994, BIOCHEMISTRY
185737    WALLACE GG, 1999, TRAC-TREND ANAL CHEM, V18, P245
185738    WANG CH, 2005, ADV FUNCT MATER, V15, P1267
185739    WILLNER I, 2000, ANGEW CHEM INT EDIT, V39, P1180
185740    YU X, 2003, ANAL CHEM, V75, P4565
185741    ZHANG Z, 2002, ANAL CHEM, V74, P163
185742 NR 38
185743 TC 0
185744 SN 1422-0067
185745 J9 INT J MOL SCI
185746 JI Int. J. Mol. Sci.
185747 PD DEC
185748 PY 2005
185749 VL 6
185750 IS 12
185751 BP 303
185752 EP 310
185753 PG 8
185754 SC Chemistry, Multidisciplinary
185755 GA 998EJ
185756 UT ISI:000234301100002
185757 ER
185758 
185759 PT J
185760 AU Yao, G
185761    Chen, WY
185762    Luo, HB
185763    Jiang, QF
185764    Xia, ZX
185765    Zang, L
185766    Zuo, JP
185767    Wei, X
185768    Chen, ZJ
185769    Shen, X
185770    Dong, C
185771    Sun, B
185772 TI Identification of core functional region of murine IL-4 using peptide
185773    phage display and molecular modeling
185774 SO INTERNATIONAL IMMUNOLOGY
185775 DT Article
185776 DE 11B.11; core functional region of IL-4; IL-4; molecular modeling;
185777    peptide phage display
185778 ID AMINO-ACID-RESIDUES; MONOCLONAL-ANTIBODY; HUMAN INTERLEUKIN-4;
185779    SIGNAL-TRANSDUCTION; IN-VIVO; MOUSE INTERLEUKIN-4; CRYSTAL-STRUCTURE;
185780    RECEPTOR-BINDING; SWISS-MODEL; GAMMA-CHAIN
185781 AB Murine IL-4 is a pleiotropic cytokine with undefined core functional
185782    region for eliciting downstream signaling. We used molecular modeling
185783    to predict the binding sites recognized by an anti-IL-4-neutralizing
185784    mAb (11B.11) and peptide phage display to delineate their makeup. The
185785    results of these approaches were confirmed by site-directed mutagenesis
185786    analysis. The results suggest that the amino acid residues spanning
185787    from 79 to 86 (QRLFRAFR) on IL-4 are of the major binding site for
185788    11B.11. Furthermore, the functional experiments demonstrate that the
185789    residues R80, R83 and R86, which are located in the helix C of murine
185790    IL-4, play a crucial role in binding to the IL-4R alpha-chain. Taken
185791    together, a new core functional region of murine IL-4 is identified,
185792    which provides new insight into the interaction between IL-4 and IL-4R
185793    alpha. In addition, the results demonstrate that 11B.11 binds to a core
185794    functional region of murine IL-4, which prevents this cytokine from
185795    interacting with its cognate receptor.
185796 C1 Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem Cell Biol, Mol Cell Biol Lab, Shanghai 200031, Peoples R China.
185797    Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Bioorgan & Nat Prod Chem, Shanghai 200032, Peoples R China.
185798    Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Mat Med, Shanghai 201203, Peoples R China.
185799    GL Biochem Shanghai Ltd, Shanghai 201203, Peoples R China.
185800    Univ Texas, MD Anderson Canc Ctr, Dept Immunol, Houston, TX 77030 USA.
185801    Shanghai Univ, Inst E, Div Immunol, Shanghai 200041, Peoples R China.
185802 RP Sun, B, Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem Cell
185803    Biol, Mol Cell Biol Lab, 320 Yueyang Rd, Shanghai 200031, Peoples R
185804    China.
185805 EM xiazx@mail.sloc.ac.cn
185806    bsun@sibs.ac.cn
185807 CR ANDERSSON A, 1997, EUR J IMMUNOL, V27, P1762
185808    BASS SH, 1991, P NATL ACAD SCI USA, V88, P4498
185809    BIEDERMANN T, 2001, NAT IMMUNOL, V2, P1054
185810    BOGDAN C, 1996, CURR OPIN IMMUNOL, V8, P517
185811    BRUNGER AT, 1998, ACTA CRYSTALLOGR D 5, V54, P905
185812    CAI X, 2002, BIOCHEM BIOPH RES CO, V297, P510
185813    CHEEVER AW, 1994, J IMMUNOL, V153, P753
185814    CHOTHIA C, 1976, J MOL BIOL, V105, P1
185815    CUNNINGHAM BC, 1989, SCIENCE, V244, P1081
185816    DELANIETA MDG, 2004, TRANSPLANT P, V36, P3016
185817    DELEAGE G, 1988, COMPUT APPL BIOSCI, V4, P351
185818    DOMINGUES H, 1999, NAT STRUCT BIOL, V6, P652
185819    DUSCHL A, 1995, BEHRING I MITT, V96, P87
185820    ELZAWAHRY A, 2005, BMC CANCER, V5
185821    ERB KJ, 1997, J EXP MED, V185, P329
185822    ESSONO S, 2003, J IMMUNOL METHODS, V279, P251
185823    FAVRE N, 1993, J IMMUNOL METHODS, V164, P213
185824    FORT MM, 2001, J IMMUNOL, V166, P2793
185825    GESSNER A, 1994, INFECT IMMUN, V62, P4112
185826    GREENLUND AC, 1994, EMBO J, V13, P1591
185827    GRUNEWALD SM, 1997, J BIOL CHEM, V272, P1480
185828    GRUNEWALD SM, 1998, J IMMUNOL, V160, P4004
185829    GUEX N, 1997, ELECTROPHORESIS, V18, P2714
185830    HAGE T, 1999, CELL, V97, P271
185831    HE TC, 1998, P NATL ACAD SCI USA, V95, P2509
185832    ITO S, 2002, J BIOCHEM-TOKYO, V131, P1373
185833    KABAT EA, 1991, J IMMUNOL, V147, P1709
185834    KEEGAN AD, 1992, IMMUNOL TODAY, V13, P63
185835    KOPF M, 1993, NATURE, V362, P245
185836    KRUSE N, 1992, EMBO J, V11, P3237
185837    KRUSE N, 1993, EMBO J, V12, P5121
185838    LUZZAGO A, 1993, GENE, V128, P51
185839    MATTHEWS DJ, 1995, BLOOD, V85, P38
185840    MATTHEWS DJ, 1997, EUR J IMMUNOL, V27, P116
185841    MORRISON BW, 1992, J BIOL CHEM, V267, P11957
185842    MURATA T, 1998, INT J MOL MED, V1, P551
185843    MYERS MA, 2000, J IMMUNOL, V165, P3830
185844    MYLVAGANAM SE, 1998, J MOL BIOL, V281, P301
185845    NELMS K, 1999, ANNU REV IMMUNOL, V17, P701
185846    NISIHARA T, 2001, J IMMUNOL, V167, P3266
185847    OHARA J, 1985, NATURE, V315, P333
185848    PAUL WE, 1994, CELL, V76, P241
185849    PEITSCH MC, 1996, BIOCHEM SOC T, V24, P274
185850    PICCIOLI P, 1991, P NATL ACAD SCI USA, V88, P5611
185851    RAMANATHAN L, 1993, BIOCHEMISTRY-US, V32, P3549
185852    ROMANI L, 1992, J EXP MED, V176, P19
185853    ROSE GD, 1985, SCIENCE, V229, P834
185854    ROUSSEL A, 1991, TURBO FRODO SILICON, P86
185855    SADICK MD, 1990, J EXP MED, V171, P115
185856    SATO TA, 1993, J IMMUNOL, V150, P2717
185857    SCHNARE M, 1998, J IMMUNOL, V161, P3484
185858    TOMKINSON A, 2001, J IMMUNOL, V166, P5792
185859    VANREGENMORTEL MHV, 1989, IMMUNOL TODAY, V10, P265
185860    WALTER MR, 1992, J BIOL CHEM, V267, P20371
185861    YOSHINO S, 1998, J IMMUNOL, V161, P6904
185862    ZHU ZY, 2001, BIOCHEM BIOPH RES CO, V282, P921
185863 NR 56
185864 TC 0
185865 SN 0953-8178
185866 J9 INT IMMUNOL
185867 JI Int. Immunol.
185868 PD JAN
185869 PY 2006
185870 VL 18
185871 IS 1
185872 BP 19
185873 EP 29
185874 PG 11
185875 SC Immunology
185876 GA 000BS
185877 UT ISI:000234436500003
185878 ER
185879 
185880 PT J
185881 AU Zhang, XP
185882    Wang, SZ
185883 TI Stego-encoding with error correction capability
185884 SO IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND
185885    COMPUTER SCIENCES
185886 DT Article
185887 DE steganography; encoding; imperceptibility; error correction
185888 ID STEGANOGRAPHY; STEGANALYSIS; IMAGES
185889 AB Although a proposed steganographic encoding scheme can reduce
185890    distortion caused by data hiding, it makes the system susceptible to
185891    active-warden attacks due to error spreading. Meanwhile,
185892    straightforward application of error correction encoding inevitably
185893    increases the required amount of bit alterations so that the risk of
185894    being detected will increase. To overcome the drawback in both cases,
185895    an integrated approach is introduced that combines the stego-encoding
185896    and error correction encoding to provide enhanced robustness against
185897    active attacks and channel noise while keeping good imperceptibility.
185898 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200041, Peoples R China.
185899 RP Zhang, XP, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200041,
185900    Peoples R China.
185901 EM xzhang@staff.shu.edu.cn
185902 CR DIJK M, 2001, P 22 S INF THEOR BEN, P147
185903    ETTINGER JM, 1998, LECT NOTES COMPUT SC, V1525, P319
185904    FISK G, 2002, LECT NOTES COMPUTER, V2578, P18
185905    FRIDRICH J, 2002, P SOC PHOTO-OPT INS, V4675, P1
185906    LYU S, 2002, LECT NOTES COMPUTER, V2578, P340
185907    PETITCOLAS FAP, 1999, P IEEE, V87, P1062
185908    TSENG YC, 2002, IEEE T COMMUN, V50, P1227
185909    WANG HQ, 2004, COMMUN ACM, V47, P76
185910    WANG S, 2002, J SHANGHAI U, V6, P273
185911    WESTFELD A, 1999, LNCS, V1768, P61
185912    WESTFELD A, 2001, LNCS, V2137, P289
185913    ZHANG KW, 2003, LECT NOTES COMPUT SC, V2776, P360
185914    ZHANG XP, 2003, LECT NOTES COMPUT SC, V2776, P395
185915    ZHANG XP, 2004, PATTERN RECOGN LETT, V25, P331
185916 NR 14
185917 TC 0
185918 SN 0916-8508
185919 J9 IEICE TRANS FUND ELEC COM COM
185920 JI IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
185921 PD DEC
185922 PY 2005
185923 VL E88A
185924 IS 12
185925 BP 3663
185926 EP 3667
185927 PG 5
185928 SC Computer Science, Hardware & Architecture; Computer Science,
185929    Information Systems; Engineering, Electrical & Electronic
185930 GA 997XD
185931 UT ISI:000234281300053
185932 ER
185933 
185934 PT J
185935 AU Yang, XX
185936    Cai, P
185937    Zhang, WJ
185938    Ma, ZW
185939 TI Study on the stability of the higher-order FDTD (2,4) including lumped
185940    inductors
185941 SO IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION
185942 DT Article
185943 ID FINITE-DIFFERENCE; FDTD TECHNIQUE; DISPERSION
185944 AB The paper presents a study of the numerical stability of the
185945    higher-order finite-difference time domain FDTD (2,4) technique for
185946    calculating the lumped-inductor-loaded region. Six different cases
185947    including explicit, implicit and semi-implicit schemes based on the
185948    differential and integral equations including the lumped inductor's
185949    current-voltage characteristics are analysed in detail. Five stability
185950    condition formulas and an unconditional instability conclusion are
185951    obtained using the Routh-Hurwitz criterion. The theoretical results are
185952    validated by the numerical results gained by means of actual FDTD (2,4)
185953    simulations.
185954 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
185955    SE Univ, State Key Lab Millimeter Waves, Nanjing 210018, Peoples R China.
185956 RP Yang, XX, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
185957    Peoples R China.
185958 EM xxyang@staff.shu.edu.n
185959 CR ARANEO R, 2002, 2002 IEEE INT S EL C, V1, P119
185960    EMILI G, 2000, IEEE T MICROW THEORY, V48, P2277
185961    GEORGAKOPOULOS SV, 2002, IEEE ANTENNAS PROPAG, V44, P134
185962    ITOH T, 1998, TIME DOMAIN METHODS
185963    MONORCHIO A, 2004, IEEE T ANTENN PROPAG, V52, P2666
185964    PEREDA JA, 2001, IEEE T MICROW THEORY, V49, P377
185965    PEREDA JA, 2004, IEEE T MICROW THEORY, V52, P1052
185966    TAFLOVE A, 2000, COMPUTATIONAL ELECTR
185967    THIEL W, 2002, IEEE T MICROW THEORY, V50, P2159
185968    YANG MW, 2000, IEEE T MICROW THEORY, V48, P969
185969    ZYGIRIDIS TT, 2004, IEEE T MAGN 2, V40, P1464
185970 NR 11
185971 TC 0
185972 SN 1350-2417
185973 J9 IEE PROC-MICROWAVE
185974 JI IEE Proc.-Microw. Antennas Propag.
185975 PD DEC
185976 PY 2005
185977 VL 152
185978 IS 6
185979 BP 460
185980 EP 464
185981 PG 5
185982 SC Engineering, Electrical & Electronic; Telecommunications
185983 GA 000HO
185984 UT ISI:000234452100008
185985 ER
185986 
185987 PT J
185988 AU Wang, CQ
185989    Ren, ZJ
185990    Cao, WG
185991    Tong, WQ
185992    Wang, GP
185993 TI Synthesis of arylidene Meldrum's acids via the Knoevenagel condensation
185994    reaction under grinding
185995 SO CHINESE JOURNAL OF ORGANIC CHEMISTRY
185996 DT Article
185997 DE Knoevenagel condensation; solvent-free; grinding; Meldrum's acid
185998 ID SOLID-STATE; SOLVENT; DERIVATIVES; THIOUREAS; KETONES; ABSENCE
185999 AB Knoevenagel condensations of aromatic aldehydes with Meldrum's acids in
186000    the absence of solvent have been found to proceed with high yields
186001    under grinding conditions.
186002 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
186003 RP Wang, CQ, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
186004 EM renrui198229@yahoo.com.cn
186005 CR CHEN FE, 2002, SYNTHETIC COMMUN, V32, P3086
186006    DING WY, 1996, CHEM RES CHINESE U, V12, P50
186007    FRANCA B, 2001, TETRAHEDRON LETT, V42, P5203
186008    GENG LJ, 2002, CHINESE J ORG CHEM, V22, P1047
186009    HAGIWARA H, 1996, MOL CRYST LIQ CRYST, V279, P291
186010    IM J, 1997, TETRAHEDRON LETT, V38, P451
186011    LI JP, 2001, SYNTHETIC COMMUN, V31, P781
186012    LU J, 2003, CHINESE J ORG CHEM, V23, P958
186013    SCHEMYERS T, 1998, J CHEM SOC P2, P989
186014    SCHUSTER P, 1964, MH CHEM, V95, P53
186015    SHI DQ, 1998, CHINESE J ORG CHEM, V18, P82
186016    TANAKA K, 1991, J ORG CHEM, V56, P4333
186017    TANAKA K, 2000, CHEM REV, V100, P1025
186018    TANAKA M, 1998, J CHEM SOC CHEM COMM, P1965
186019    TODA F, 1989, ANGEW CHEM INT EDIT, V28, P320
186020    TODA F, 1989, CHEM EXP, V4, P507
186021    TODA F, 1990, J CHEM SOC P1, P3207
186022    TODA F, 1998, J CHEM SOC P1, P3251
186023    TROST RM, 1991, COMPREHENSIVE ORGANI, V2, P369
186024    WANG SX, 2004, CHINESE J ORG CHEM, V24, P447
186025    XIAO JP, 2001, SYNTHETIC COMMUN, V31, P661
186026    ZHANG LX, 1998, CHIN J ORG SYNTH, V6, P235
186027    ZHANG Z, 2004, SYNTHETIC COMMUN, V34, P1407
186028 NR 23
186029 TC 0
186030 SN 0253-2786
186031 J9 CHINESE J ORG CHEM
186032 JI Chin. J. Org. Chem.
186033 PD JAN
186034 PY 2006
186035 VL 26
186036 IS 1
186037 BP 107
186038 EP 109
186039 PG 3
186040 SC Chemistry, Organic
186041 GA 000HV
186042 UT ISI:000234452800018
186043 ER
186044 
186045 PT J
186046 AU Ni, HW
186047    Shi, ZJ
186048    Cao, WG
186049    Chen, ZX
186050 TI Synthesis and structure elucidation of spiro inclouding perfluoroalkyl
186051 SO CHINESE JOURNAL OF ANALYTICAL CHEMISTRY
186052 DT Article
186053 DE nuclear magnetic resonance; infrared; mass spectrometry; X-diffraction;
186054    spiro including perfluoroalkyl
186055 AB A spiro compound
186056    (2-(5-chloro-2,2,3,3,4,4,5,5-octafluoro-pentyl)-3-(1-iodine-Methyl)-8,8-
186057    dimethyl-7,9-dioxa-spiro [4.5] decane-6, 10-dione) has been synthesized
186058    through several steps. The products in all stops were analyzed by H-1
186059    nuclear magnetic resonance (NMR), C-13 NMR, infrared, mass spectrometry
186060    and X-diffraction. The reaction pathway was also proposed.
186061 C1 Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
186062    Chinese Acad Sci, Shanghai Inst Organ Chem, Key Lab Organoflorine Chem, Shanghai 200032, Peoples R China.
186063    Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China.
186064 RP Shi, ZJ, Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
186065 CR GUO XC, 1999, J FLUORINE CHEM, V93, P81
186066    HUANG SY, 2002, CHEM REAGENTS, V24, P287
186067    HUANG WY, 1993, CHINESE J ORG CHEM, V13, P633
186068    WELCH JT, 1987, TETRAHEDRON, V43, P3123
186069    WU FH, 1997, CHINESE J ORG CHEM, V17, P106
186070 NR 5
186071 TC 0
186072 SN 0253-3820
186073 J9 CHINESE J ANAL CHEM
186074 JI Chin. J. Anal. Chem.
186075 PD DEC
186076 PY 2005
186077 VL 33
186078 IS 12
186079 BP 1705
186080 EP 1708
186081 PG 4
186082 SC Chemistry, Analytical
186083 GA 999IF
186084 UT ISI:000234382300009
186085 ER
186086 
186087 PT J
186088 AU Dai, ZM
186089    Chen, AP
186090    Kisch, H
186091 TI Efficient sonochemical degradation of 4-chlorophenol catalyzed by
186092    titanium dioxide hydrate
186093 SO CHEMISTRY LETTERS
186094 DT Article
186095 ID ENHANCED REDUCTIVE DEGRADATION; VISIBLE-LIGHT DETOXIFICATION;
186096    PLATINUM(IV) CHLORIDE; PHOTOELECTROCHEMICAL PROPERTIES; ULTRASONIC
186097    IRRADIATION; AQUEOUS-SOLUTION; ELEMENTAL IRON; SONOLYSIS; MECHANISM;
186098    OXIDATION
186099 AB A nanocrystalline anatase hydrate (Titanhydrat-0, TH) is a highly
186100    efficient catalyst for low intensity sonochemical degradation of
186101    4-chlorophenol (4-CP). The initial disappearance rate of 4-CP increases
186102    by a factor of 95 under the TH dosage of 0.5 g dm(-3). After 120 min of
186103    ultrasonic irradiation 63% of 4-CP is completely mineralized under the
186104    TH dosage of 0.5gdm(-3). However, in homogeneous sonochemical
186105    degradation, no mineralization at all occurs. Moreover, we deduce that
186106    the process of sonochernical mineralization mainly occurs at the
186107    interface region of TH. The process of sonocatalytic degradation is
186108    simple and inexpensive, and appears to be a potentially powerful method
186109    of remediation of contaminants in water.
186110 C1 Shanghai Univ, Coll Environm & Chem Engn, Shanghai 200444, Peoples R China.
186111    E China Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 200237, Peoples R China.
186112    Univ Erlangen Nurnberg, Inst Inorgan Chem, D-91058 Erlangen, Germany.
186113 RP Dai, ZM, Shanghai Univ, Coll Environm & Chem Engn, Shanghai 200444,
186114    Peoples R China.
186115 CR ADEWUYI YG, 2001, IND ENG CHEM RES, V40, P4681
186116    BURGETH G, 2002, COORDIN CHEM REV, V230, P41
186117    CRUM LA, 1994, SCIENCE, V266, P233
186118    DESTAILLATS H, 2000, J PHYS CHEM A, V104, P8930
186119    DESTAILLATS H, 2001, ENVIRON SCI TECHNOL, V35, P3019
186120    DRIJVERS D, 1999, WATER RES, V33, P1187
186121    FLINT EB, 1991, SCIENCE, V253, P1397
186122    GUTIERREZ M, 1988, J PHYS CHEM-US, V92, P2978
186123    HENGLEIN A, 1988, J PHYS CHEM-US, V92, P3705
186124    HOFFMANN MR, 1996, ULTRASON SONOCHEM, V3, S163
186125    HONG Q, 1999, NEW J CHEM, V23, P845
186126    HUNG HM, 1998, ENVIRON SCI TECHNOL, V32, P3011
186127    HUNG HM, 2000, ENVIRON SCI TECHNOL, V34, P1758
186128    JOSEPH JM, 2000, J PHYS CHEM A, V104, P301
186129    KANG JW, 1999, ENVIRON SCI TECHNOL, V33, P3199
186130    KISCH H, 1998, ANGEW CHEM INT EDIT, V37, P3034
186131    KISCH H, 2002, CHEMPHYSCHEM, V3, P399
186132    MACYK W, 2001, CHEM-EUR J, V7, P1862
186133    MACYK W, 2003, PHOTOCH PHOTOBIO SCI, V2, P322
186134    MASON TJ, 2001, ULTRASOUND ENV PROTE, V6
186135    NIKITENKO SI, 2003, ULTRASON SONOCHEM, V10, P95
186136    PANDIT AB, 2001, ULTRASON SONOCHEM, V8, P227
186137    SEKIGUCHI H, 2001, J CHEM ENG JPN, V34, P1045
186138    SERPONE N, 1994, J PHYS CHEM-US, V98, P2634
186139    SUSLICK KS, 1990, SCIENCE, V247, P1439
186140    WEAVERS LK, 1998, ENVIRON SCI TECHNOL, V32, P2727
186141    WEAVERS LK, 2000, ENVIRON SCI TECHNOL, V34, P1280
186142    WORSLEY D, 1996, ULTRASON SONOCHEM, V3, S119
186143    YIM B, 2002, ULTRASON SONOCHEM, V9, P209
186144    ZANG L, 1998, J PHYS CHEM B, V102, P10765
186145    ZANG L, 2000, CHEM-EUR J, V6, P379
186146 NR 31
186147 TC 0
186148 SN 0366-7022
186149 J9 CHEM LETT
186150 JI Chem. Lett.
186151 PD DEC 5
186152 PY 2005
186153 VL 34
186154 IS 12
186155 BP 1706
186156 EP 1707
186157 PG 2
186158 SC Chemistry, Multidisciplinary
186159 GA 997KQ
186160 UT ISI:000234244600065
186161 ER
186162 
186163 PT J
186164 AU Sun, ZW
186165    Qiu, YH
186166    Shi, YJ
186167    Tao, R
186168    Chen, J
186169    Ge, Y
186170    Hu, YM
186171    Ma, HB
186172    Shi, Q
186173    Zhang, XG
186174 TI Time courses of B7 family molecules expressed on activated T-cells and
186175    their biological significance
186176 SO CELLULAR IMMUNOLOGY
186177 DT Article
186178 DE time course; B7 family molecules; confocal microscopy; activated
186179    T-cells; biological effects
186180 ID COSTIMULATORY PROPERTIES; DENDRITIC CELLS; CO-STIMULATION;
186181    PROLIFERATION; CD80; LYMPHOCYTES; LIGAND; MEMBER; ICOS
186182 AB B7 family molecules are mainly expressed on the outer membrane of
186183    antigen-presenting cells. Here, our results demonstrate that CD80,
186184    CD86, and PD-L1 Molecules are also expressed on T-cells that have been
186185    activated by simultaneous exposure to anti-CD3 and anti-CD28 mAbs, but
186186    PD-L2 and GL50 molecules were not detectable during the first six days
186187    of culture that follow such stimulation. We have analysed the time
186188    course of B7 family molecule expression on activated T-cells. CD28 and
186189    its ligands, CD80/CD86, have a high degree of co-localization and
186190    exhibit compartmental distribution on the membrane of activated
186191    T-cells, which is visualized by confocal microscopy. Interestingly, the
186192    co-localization of PD-1 and its ligand also exhibit similar phenomenon.
186193    Additionally, we provide evidence indicating that the CDSO, CD86, and
186194    PD-L1 molecules are functional, since T-cells expressing 137 family
186195    molecules are able to stimulate the proliferation of highly purified
186196    allogeneic or autologous T-cells. Anti-CD80, anti-CD86, and soluble
186197    CD28-Ig protein could significantly attenuate the proliferation of
186198    T-cells, whereas anti-PD-L1 mAb may lead to the expansion of activated
186199    T-cells. We can conclude that activated T-cells expressing 137 family
186200    molecules could act as "APC" to trigger purified T-cells, and 137
186201    family molecules play important roles during the activation of T-cells.
186202    These results indicate a need for further work, exploring the
186203    regulatory roles these molecules may play in immune responses. (c) 2005
186204    Elsevier Inc. All rights reserved.
186205 C1 Suzhou Univ, Jiangsu Key Lab Clin Immunol, Biotechnol Res Inst, Suzhou 215007, Peoples R China.
186206    Shanghai Univ, E Inst, Div Immunol, Shanghai 200025, Peoples R China.
186207    Suzhou Hlth Inst Vocat Technol, Div Immunol, Suzhou 215002, Peoples R China.
186208 RP Zhang, XG, 708 Renmin Rd, Suzhou 215007, Jiangsu Prov, Peoples R China.
186209 EM smbxuegz@publicl.sz.js.cn
186210 CR AZUMA M, 1993, J EXP MED, V177, P845
186211    BOISE LH, 1995, IMMUNITY, V3, P87
186212    BRESTCHER PA, 1999, P NATL ACAD SCI USA, V96, P185
186213    BROMLEY SK, 2001, NAT IMMUNOL, V2, P1159
186214    CHOI IH, 2003, J IMMUNOL, V171, P4650
186215    DONG HD, 1999, NAT MED, V5, P1365
186216    FERLAZZO G, 1999, J IMMUNOL, V163, P3597
186217    FERLAZZO G, 2002, EUR J IMMUNOL, V32, P3092
186218    FREEMAN GJ, 2000, J EXP MED, V192, P1027
186219    GRAMMER AC, 2000, ADV IMMUNOL, V76, P161
186220    GROTH SFD, 1980, J IMMUNOL METHODS, V35, P1
186221    JEANNIN P, 1999, J IMMUNOL, V162, P2044
186222    LATCHMAN Y, 2001, NAT IMMUNOL, V2, P261
186223    LENCHOW DJ, 1996, ANNU REV IMMUNOL, V14, P233
186224    LENSCHOW DJ, 1996, ANNU REV IMMUNOL, V14, P233
186225    LIANG L, 2002, CURR OPIN IMMUNOL, V14, P384
186226    MCADAM AJ, 1998, IMMUNOL REV, V165, P231
186227    MONIKA CB, 1999, IMMUNOLOGIST, V7, P9
186228    NISHIMURA H, 1999, IMMUNITY, V11, P141
186229    QIU YH, 2000, CHIN IMMUNOL, V16, P589
186230    SABZEVARI H, 2001, J IMMUNOL, V166, P2505
186231    SCHWEITZER AN, 1999, J IMMUNOL, V163, P4819
186232    SHARPE AH, 2002, NAT REV IMMUNOL, V2, P116
186233    SUN ZW, 2005, CHINESE J IMMUNOL, V21, P25
186234    SUZUKI I, 2000, J IMMUNOL, V165, P5537
186235    TAKASAKI Y, 1999, INTERNAL MED, V38, P175
186236    TAMADA K, 2000, J IMMUNOL, V164, P4105
186237    TSENG SY, 2001, J EXP MED, V193, P839
186238    URBAN JS, 2002, HUMAN IMMUNOL, V63, P1000
186239    VERWILGHEN J, 1994, J IMMUNOL, V153, P1378
186240    WANG SD, 2000, BLOOD, V96, P2808
186241    WULFING C, 1998, SCIENCE, V282, P2266
186242    YOSHINAGA SK, 1999, NATURE, V402, P827
186243 NR 33
186244 TC 1
186245 SN 0008-8749
186246 J9 CELL IMMUNOL
186247 JI Cell. Immunol.
186248 PD JUL-AUG
186249 PY 2005
186250 VL 236
186251 IS 1-2
186252 BP 146
186253 EP 153
186254 PG 8
186255 SC Cell Biology; Immunology
186256 GA 998MS
186257 UT ISI:000234323600023
186258 ER
186259 
186260 PT J
186261 AU Qiu, YH
186262    Sun, ZW
186263    Shi, Q
186264    Su, CH
186265    Chen, YJ
186266    Shi, YJ
186267    Tao, R
186268    Ge, Y
186269    Zhang, XG
186270 TI Apoptosis of multiple myeloma cells induced by agonist monoclonal
186271    antibody against human CD28
186272 SO CELLULAR IMMUNOLOGY
186273 DT Article
186274 DE CD28; agonist monoclonal antibody; multiple myeloma; cell; nuclear
186275    condensation; cytoplasm shrinkage; DNA ladder; apoptosis
186276 ID PERIPHERAL-BLOOD MONOCYTES; COSTIMULATORY MOLECULES; ACTIVATION
186277    PATHWAY; EXPRESSION; B7-2; INTERLEUKIN-6; SURVIVAL; GROWTH; LINES
186278 AB CD28 is expressed abnormally on human multiple myeloma (NIM) cells but
186279    the significance had not been identified until now. In this paper, we
186280    are suggesting that abnormal expression of CD28 might be a marker of
186281    turnout progression. We therefore took the approach of generating a
186282    hybridoma cell line capable of secreting agonist monoclonal antibody
186283    directed against human CD28 (agonist anti-CD28 mAb) and then determined
186284    the expression of CD28 molecules on the MM cell lines U266 and XG1. The
186285    biological effects of agonist anti-CD28 mAb on cell growth and
186286    proliferation of U266 and XGI cell lines were then analysed. Our
186287    results showed that the expression of CD28 on U266 and XG1 was
186288    significantly higher than that of PBTC or Jurkat cells. We found that
186289    by adding the agonist anti-CD28 mAb to cultures of U266 and XG1 cells
186290    their rate of growth and proliferation was obviously inhibited. Further
186291    morphological and molecular analyses found that U266 and XG1 incubated
186292    with agonist anti-CD28 mAb showed signs of nuclear condensation,
186293    chromatin marginal changes, cells membrane breaking, and cytoplasmic
186294    shrinkage. Vacuoles and apoptotic bodies were also observed using a
186295    transmission electron microscope and the development of typical DNA
186296    laddering patterns were found by the use of electrophoresis assays,
186297    suggesting that U266 and XG1 cells were undergoing apoptosis induced by
186298    agonist anti-CD28 mAb in vitro. (c) 2005 Elsevier Inc. All rights
186299    reserved.
186300 C1 Suzhou Univ, Biotechnol Res Inst, Suzhou 215007, Peoples R China.
186301    Shanghai Univ, E Inst, Div Immunol, Shanghai 200025, Peoples R China.
186302    Suzhou Univ, Affiliated Hosp 1, Suzhou 215007, Peoples R China.
186303 RP Zhang, XG, Suzhou Univ, Biotechnol Res Inst, Suzhou 215007, Peoples R
186304    China.
186305 EM uusqyxb@public1.sz.js.cn
186306 CR AFFIMED T, 2004, INT J CANCER, V112, P509
186307    ANDERSON DE, 1997, J IMMUNOL, V159, P1669
186308    BOISE LH, 1995, IMMUNITY, V3, P87
186309    BOUSSIOTIS VA, 1996, IMMUNOL REV, V153, P5
186310    BRESTCHER P, 1970, SCIENCE, V169, P1042
186311    BROWN RD, 1998, LEUKEMIA LYMPHOMA, V31, P379
186312    CLAVREUL A, 1998, IMMUNOLOGY, V95, P272
186313    DECEUNYNCK PC, 1994, BLOOD, V15, P2597
186314    FLEISCHER J, 1996, IMMUNOLOGY, V89, P592
186315    GREEN JM, 2000, AM J RESP CELL MOL, V22, P261
186316    GU ZJ, 2000, CHIN J MICROBIOL IMM, V20, P102
186317    GUO L, 1999, ZHONGHUA YUE YE XUE, V20, P235
186318    JACKSON GE, 2002, NAT IMMUNOL, V3, P618
186319    JU SW, 2003, HYBRIDOMA HYBRIDOM, V22, P333
186320    KLEIN B, 1989, BLOOD, V73, P517
186321    KURLBERG G, 2000, SCAND J IMMUNOL, V51, P224
186322    LENSCHOW DJ, 1996, ANNU REV IMMUNOL, V14, P233
186323    LIANG BL, 1999, J IMMUNOL, V163, P2322
186324    LIANG LD, 2002, EUR J IMMUNOL, V32, P3092
186325    LUNDER F, 1998, J EXP MED, V187, P427
186326    MONIKA CB, 1999, IMMUNOLOGIST, V7, P114
186327    MONIKA CB, 1999, IMMUNOLOGIST, V7, P9
186328    QIU YH, 1995, J CLIN IMMUNOL, V5, P12
186329    QIU YH, 2001, J CELL MOL IMMUNOL, V17, P368
186330    SCHWEITZER AN, 1998, J IMMUNOL, V161, P2762
186331    SHAPIRO VS, 2001, BLOOD, V98, P187
186332    SHARPE AH, 2002, NAT REV IMMUNOL, V2, P116
186333    THOMPSON CB, 1989, P NATL ACAD SCI USA, V86, P1333
186334    TSVETELINA PD, 2004, IMMUNITY, V21, P401
186335    TUOSTO L, 1998, EUR J IMMUNOL, V28, P2131
186336    VACCHIO MS, 2005, EUR J IMMUNOL, V35, P1
186337    VIDAN MT, 1999, AGE AGEING, V28, P221
186338    WALUNAS TL, 1994, IMMUNITY, V1, P405
186339    WATTS TH, 1999, CURR OPIN IMMUNOL, V11, P286
186340    ZHANG XG, 1989, BLOOD, V74, P11
186341    ZHANG XG, 1994, BLOOD, V83, P3654
186342    ZHANG XG, 1998, LEUKEMIA, V12, P610
186343 NR 37
186344 TC 0
186345 SN 0008-8749
186346 J9 CELL IMMUNOL
186347 JI Cell. Immunol.
186348 PD JUL-AUG
186349 PY 2005
186350 VL 236
186351 IS 1-2
186352 BP 154
186353 EP 160
186354 PG 7
186355 SC Cell Biology; Immunology
186356 GA 998MS
186357 UT ISI:000234323600024
186358 ER
186359 
186360 PT J
186361 AU Chou, KC
186362    Cai, YD
186363 TI Prediction of protease types in a hybridization space
186364 SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
186365 DT Article
186366 DE protease; FunD-PseAA predictor; functional domain; ISort predictor;
186367    hybridization space; proteomics; bioinformatics; jackknife
186368    cross-validation
186369 ID AMINO-ACID-COMPOSITION; STRUCTURAL CLASS PREDICTION; SECONDARY
186370    STRUCTURE PREDICTION; SUPPORT VECTOR MACHINES; SUBCELLULAR LOCATION;
186371    TERTIARY STRUCTURE; NEURAL-NETWORKS; CLEAVAGE SITES; FOLDING TYPES;
186372    PROTEINS
186373 AB Regulating most physiological processes by controlling the activation,
186374    synthesis, and turnover of proteins, proteases play pivotal regulatory
186375    roles in conception, birth, digestion, growth, maturation, ageing, and
186376    death of all organisms. Different types of proteases have different
186377    functions and biological processes. Therefore, it is important for both
186378    basic research and drug discovery to consider the following two
186379    problems. (1) Given the sequence of a protein, can we identify whether
186380    it is a protease or non-protease? (2) If it is, what protease type does
186381    it belong to? Although the two problems can be solved by various
186382    experimental means, it is both time-consuming and costly to do so. The
186383    avalanche of protein sequences generated in the post-genetic era has
186384    challenged us to develop an automated method for making a fast and
186385    reliable identification. By hybridizing the functional domain
186386    composition and pseudo-amino acid composition, we have introduced a new
186387    method called "FunD-PseAA(1) predictor" that is operated in a
186388    hybridization space. To avoid redundancy and bias, demonstrations were
186389    performed on a dataset where none of the proteins has >= 25% sequence
186390    identity to any other. The overall success rate thus obtained by the
186391    jackknife cross-validation test in identifying protease and
186392    non-protease was 92.95%, and that in identifying the protease type was
186393    94.75% among the following six types: (1) aspartic, (2) cysteine, (3)
186394    glutamic, (4) metallo, (5) serine, and (6) threonine. Demonstration was
186395    also made on an independent dataset, and the corresponding overall
186396    success rates were 98.36% and 97.11%, respectively, suggesting the
186397    FunD-PseAA predictor is very powerful and may become a useful tool in
186398    bioinformatics and proteomics. (c) 2005 Elsevier Inc. All rights
186399    reserved.
186400 C1 Gordon Life Sci Inst, San Diego, CA 92130 USA.
186401    Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200436, Peoples R China.
186402    Univ Manchaster Sci & Technol, Dept Biomed Sci, Manchester M60 1QD, Lancs, England.
186403 RP Chou, KC, Gordon Life Sci Inst, 13784 Torrey Del Mar, San Diego, CA
186404    92130 USA.
186405 EM kchou@san.rr.com
186406 CR APWEILER R, 2001, NUCLEIC ACIDS RES, V29, P37
186407    BAHAR I, 1997, PROTEINS, V29, P172
186408    BAIROCH A, 1997, NUCLEIC ACIDS RES, V25, P31
186409    CEDANO J, 1997, J MOL BIOL, V266, P594
186410    CHANDONIA JM, 1995, PROTEIN SCI, V4, P275
186411    CHOU JJ, 1998, CELL, V94, P171
186412    CHOU JJ, 1999, CELL, V96, P615
186413    CHOU JJW, 1993, J THEOR BIOL, V161, P251
186414    CHOU KC, 1993, J BIOL CHEM, V268, P16938
186415    CHOU KC, 1994, J BIOL CHEM, V269, P22014
186416    CHOU KC, 1995, CRIT REV BIOCHEM MOL, V30, P275
186417    CHOU KC, 1995, PROTEINS, V21, P319
186418    CHOU KC, 1996, ANAL BIOCHEM, V233, P1
186419    CHOU KC, 1999, BIOCHEM BIOPH RES CO, V264, P216
186420    CHOU KC, 2000, FEBS LETT, V470, P249
186421    CHOU KC, 2001, PROTEINS, V43, P246
186422    CHOU KC, 2002, BIOCHEM BIOPH RES CO, V292, P702
186423    CHOU KC, 2002, J BIOL CHEM, V277, P45765
186424    CHOU KC, 2003, BIOCHEM BIOPH RES CO, V308, P148
186425    CHOU KC, 2003, J CELL BIOCHEM, V90, P1250
186426    CHOU KC, 2003, PROTEINS, V53, P282
186427    CHOU KC, 2004, CURR MED CHEM, V11, P2105
186428    CHOU KC, 2004, PROTEIN SCI, V13, P2857
186429    CHOU KC, 2005, BIOINFORMATICS, V21, P10
186430    CHOU KC, 2005, CURR PROTEIN PEPT SC, V6, P423
186431    DELEAGE G, 1987, PROTEIN ENG, V1, P289
186432    FENG KY, 2005, BIOCHEM BIOPH RES CO, V334, P213
186433    FENG ZP, 2001, BIOPOLYMERS, V58, P491
186434    GAO Y, 2005, AMINO ACIDS, V28, P373
186435    HOPP TP, 1981, P NATL ACAD SCI USA, V78, P3824
186436    KLEIN P, 1986, BIOCHIM BIOPHYS ACTA, V874, P205
186437    KLEIN P, 1986, BIOPOLYMERS, V25, P1659
186438    KNELLER DG, 1990, J MOL BIOL, V214, P171
186439    LIU WM, 1999, PROTEIN ENG, V12, P1041
186440    LUO RY, 2002, EUR J BIOCHEM, V269, P4219
186441    METFESSEL BA, 1993, PROTEIN SCI, V2, P1171
186442    PAN YX, 2003, J PROTEIN CHEM, V22, P395
186443    PUENTE XS, 2003, NAT REV GENET, V4, P544
186444    RAWLINGS ND, 2004, NUCLEIC ACIDS RES, V32, D160
186445    SHEN HB, 2005, BIOCHEM BIOPH RES CO, V334, P288
186446    SHEN HB, 2005, BIOCHEM BIOPH RES CO, V334, P577
186447    TANFORD C, 1962, J AM CHEM SOC, V84, P4240
186448    WANG GL, 2003, BIOINFORMATICS, V19, P1589
186449    WANG M, 2004, PROTEIN ENG DES SEL, V17, P509
186450    WANG M, 2005, J THEOR BIOL, V232, P7
186451    XIAO X, 2005, AMINO ACIDS
186452    XIAO X, 2005, AMINO ACIDS, V28, P57
186453    ZHOU GP, 1998, J PROTEIN CHEM, V17, P729
186454    ZHOU GP, 2001, PROTEINS, V44, P57
186455    ZHOU GP, 2003, PROTEINS, V50, P44
186456 NR 50
186457 TC 1
186458 SN 0006-291X
186459 J9 BIOCHEM BIOPHYS RES COMMUN
186460 JI Biochem. Biophys. Res. Commun.
186461 PD JAN 20
186462 PY 2006
186463 VL 339
186464 IS 3
186465 BP 1015
186466 EP 1020
186467 PG 6
186468 SC Biochemistry & Molecular Biology; Biophysics
186469 GA 000CT
186470 UT ISI:000234439200042
186471 ER
186472 
186473 PT J
186474 AU Zheng, YF
186475    Evans, RJ
186476 TI Information structure considerations for decentralized large-scale
186477    systems
186478 SO ASIAN JOURNAL OF CONTROL
186479 DT Article
186480 DE decentralized control systems; differential vector space; decentralized
186481    fixed mode; local controllability; local observability
186482 ID FIXED MODES; STABILIZATION
186483 AB Decentralized control problems are studied in a differential vector
186484    space framework. A new notion called the characteristic subspace, which
186485    is described by a set of integral chains in the differential vector
186486    space of a system is introduced to describe the information structure
186487    of a decentralized control system. New criteria are presented for
186488    reconfiguring the information structure under decentralized feedback.
186489    The new criteria expose certain intrinsic properties of decentralized
186490    control systems.
186491 C1 Shanghai Univ, Dept Math, Coll Sci, Shanghai, Peoples R China.
186492    Univ Melbourne, Dept Elect & Elect Engn, Natl ICT Australia, Parkville, Vic 3010, Australia.
186493 RP Zheng, YF, Shanghai Univ, Dept Math, Coll Sci, Shanghai, Peoples R
186494    China.
186495 EM y.zheng@ee.mu.oz.au
186496 CR ANDERSON BDO, 1982, IEEE T AUTOMAT CONTR, V27, P1176
186497    CHAMBERLAND JF, 2003, IEEE T WIREL COMMUN, V2, P549
186498    CONTE G, 1999, NONLINEAR CONTR SYST
186499    CORFMAT JP, 1976, AUTOMATICA, V12, P479
186500    DAVISON EJ, 1983, AUTOMATICA, V19, P169
186501    DAVISON EJ, 1990, IEEE T AUTOMAT CONTR, V35, P652
186502    FLIESS M, 1990, IEEE T AUTOMAT CONTR, V35, P994
186503    FLIESS M, 1993, ESSAYS CONTR PERSPEC
186504    HUANG M, 2003, P IEEE C DEC CONTR
186505    ISHII H, 2002, AUTOMATICA, V38, P1745
186506    KAILATH T, 1980, LINEAR SYSTEMS
186507    KHARGONEKAR PP, 1994, IEEE T AUTOMAT CONTR, V39, P877
186508    PARK JH, 2002, J OPTIMIZ THEORY APP, V113, P105
186509    ROMAN S, 1992, 135 GTM
186510    SILJAK DD, 1991, DECENTRALIZED CONTRO
186511    STIPANOVIC DM, 2004, AUTOMATICA, V40, P1285
186512    WANG T, 1995, P 34 IEEE C DEC CONT, P2653
186513    WONHAM WM, 1984, LINEAR MULTIVARIATE
186514    YAN W, 1992, IEEE T AUTOMAT CONTR, V37, P1664
186515    YAN WY, 1989, INT J CONTROL, V49, P2057
186516    ZHENG YF, 1987, LINEAR ALGEBRA ITS A, V92, P161
186517    ZHENG YF, 1993, MATH CONTROL SIGNAL, V6, P363
186518    ZHENG YF, 2000, P WORLD IFAC WORLD C
186519    ZHENG YF, 2004, P IFAC SSC MEX
186520 NR 24
186521 TC 0
186522 SN 1561-8625
186523 J9 ASIAN J CONTROL
186524 JI Asian J. Control
186525 PD DEC
186526 PY 2005
186527 VL 7
186528 IS 4
186529 BP 424
186530 EP 432
186531 PG 9
186532 SC Automation & Control Systems
186533 GA 999KG
186534 UT ISI:000234387600009
186535 ER
186536 
186537 PT J
186538 AU Yang, Y
186539    Xie, SQ
186540    Cui, YB
186541    Zhu, XM
186542    Lei, W
186543    Yang, YX
186544 TI Partial and total replacement of fishmeal with poultry by-product meal
186545    in diets for gibel carp, Carassius auratus gibelio Bloch
186546 SO AQUACULTURE RESEARCH
186547 DT Article
186548 DE fishmeal; poultry by-product meal; replacement; gibel carp Carassius
186549    auratus gibelio
186550 ID TROUT ONCORHYNCHUS-MYKISS; SEABREAM SPARUS-AURATA; RAINBOW-TROUT;
186551    PRACTICAL DIETS; PROTEIN-SOURCES; DIGESTIBILITY
186552 AB Triplicate groups of gibel carp Carassius auratus gibelio Bloch
186553    (initial body weight: 4.89 g) were fed for 8 weeks at 24.8-30.8 degrees
186554    C with nine isonitrogenous and isoenergetic diets. The control diet
186555    (F1) used white fishmeal (FM) as the sole protein source. In the other
186556    eight diets (F2-F9), 40.5-100% of FM protein was substituted by poultry
186557    by-product meal (PBM) at 8.5% increments. The specific growth rate
186558    (SGR), feed efficiency ratio, protein efficiency ratio, protein
186559    retention efficiency and energy retention rate for fish fed PBM diets
186560    (F2-F9) were all higher, but not always significantly, than those for
186561    fish fed F1. All apparent digestibility coefficients for fish fed PBM
186562    diets were lower than those for fish fed F1. Fish fed F1 had a
186563    significantly higher hepatosomatic index value than fish fed PBM diets
186564    (P < 0.05). No significant (P > 0.05) effect of diet was found in
186565    whole-body moisture and fat content. Whole-body protein and energy
186566    content for fish fed PBM diets were slightly higher than that for fish
186567    fed F1. The optimal replacement level of FM by PBM was estimated by
186568    second-order polynomial regression to be 66.5% in protein.
186569 C1 Shanghai Univ, E Inst, Aquaculture Div, Shanghai, Peoples R China.
186570    Chinese Acad Sci, Inst Hydrobiol, State Key Lab Freshwater Ecol & Biotechnol, Wuhan, Peoples R China.
186571 RP Xie, SQ, Shanghai Univ, E Inst, Aquaculture Div, Shanghai, Peoples R
186572    China.
186573 EM sqxie@ihb.ac.cn
186574 CR *AOAC, 1984, OFF METH AN
186575    *FAO, 2001, FAO YB 2001
186576    ALEXIS MN, 1985, AQUACULTURE, V50, P61
186577    ALEXIS MN, 1997, FEEDING TOMORROWS FI, P183
186578    BOLIN DW, 1952, SCIENCE, V116, P634
186579    BUREAU DP, 1999, AQUACULTURE, V180, P345
186580    DAVIS DA, 2000, AQUACULTURE, V185, P291
186581    DONG FM, 1993, AQUACULTURE, V116, P149
186582    FAGBENRO OA, 1996, BIORESOURCE TECHNOL, V58, P13
186583    FOWLER LG, 1981, TECHNOLOGY TRANSFER, V3
186584    FOWLER LG, 1982, TECHNOLOGY TRANSFER, V1
186585    FOWLER LG, 1991, AQUACULTURE, V99, P309
186586    GALLAGHER ML, 1988, AQUACULTURE, V73, P177
186587    HARDY RW, 1990, P INT C FISH BY PROD, P109
186588    HARDY RW, 2002, RESPONSIBLE MARINE A, P311
186589    HIGGS DA, 1979, FINFISH NUTR FISHFEE, V2, P193
186590    KURESHY N, 2000, N AM J AQUACULT, V62, P266
186591    NENGAS I, 1999, AQUACULTURE, V179, P13
186592    QIAN X, 2001, THESIS CHINESE ACAD
186593    ROBAINA L, 1997, AQUACULTURE, V157, P347
186594    STEFFENS W, 1994, AQUACULTURE, V124, P27
186595    TAKAGI S, 2000, NIPPON SUISAN GAKK, V66, P428
186596    WATANABE T, 1991, NIPPON SUISAN GAKK, V57, P495
186597    WEBSTER CD, 1999, J QORLD AQUACULT SOC, V188, P299
186598    YANG Y, 2004, AQUACULT NUTR, V10, P1
186599    ZEITOUN IH, 1976, J FISH RES BOARD CAN, V33, P167
186600 NR 26
186601 TC 0
186602 SN 1355-557X
186603 J9 AQUAC RES
186604 JI Aquac. Res.
186605 PD JAN
186606 PY 2006
186607 VL 37
186608 IS 1
186609 BP 40
186610 EP 48
186611 PG 9
186612 SC Fisheries
186613 GA 999PS
186614 UT ISI:000234402900005
186615 ER
186616 
186617 PT J
186618 AU Du, XW
186619    Zhang, LS
186620    Shang, YL
186621    Li, MM
186622 TI Exact augmented Lagrangian function for nonlinear programming problems
186623    with inequality constraints
186624 SO APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
186625 DT Article
186626 DE local minimizer; global minimizer; nonlinear programming; exact penalty
186627    function; augmented Lagrangian function
186628 ID EXACT PENALTY-FUNCTION; OPTIMIZATION
186629 AB An exact augmented Lagrangian function for the nonlinear nonconvex
186630    programming problems with inequality constraints was discussed. Under
186631    suitable hypotheses, the relationship was established between the local
186632    unconstrained minimizers of the augmented Lagrangian function on the
186633    space of problem variables and the local minimizers of the original
186634    constrained problem. Furthermore, under some assumptions, the
186635    relationship was also established between the global solutions of the
186636    augmented Lagrangian function on some compact subset of the space of
186637    problem variables and the global solutions of the constrained problem.
186638    Therefore, from the theoretical point of view, a solution of the
186639    inequality constrained problem and the corresponding values of the
186640    Lagrange multipliers can be found by the well-known method of
186641    multipliers which resort to the unconstrained minimization of the
186642    augmented Lagrangian function presented.
186643 C1 Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
186644    Henan Polytech Univ, Sch Math & Informat, Jiaozuo 454010, Peoples R China.
186645 RP Du, XW, Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China.
186646 EM duxuewu@hpu.edu.cn
186647 CR BERTSEKAS DP, 1982, CONSTRAINED OPTIMIZA
186648    BURKE JV, 1991, SIAM J CONTROL OPTIM, V29, P968
186649    CONTALDI G, 1993, OPER RES LETT, V14, P153
186650    DIPILLO G, 1979, SIAM J CONTROL OPTIM, V17, P618
186651    DIPILLO G, 1982, J OPTIMIZATION THEOR, V36, P495
186652    DIPILLO G, 1985, SIAM J CONTROL OPTIM, V23, P72
186653    DIPILLO G, 1988, J OPTIMIZATION THEOR, V57, P399
186654    DIPILLO G, 1989, SIAM J CONTROL OPTIM, V27, P1333
186655    DIPILLO G, 1994, ALGORITHMS CONTINUOU, P209
186656    DIPILLO G, 1996, NONLINEAR OPTIMIZATI, P85
186657    DIPILLO G, 2001, SIAM J OPTIMIZ, V12, P376
186658    LUCIDI S, 1988, JOTA, V58, P259
186659    LUCIDI S, 1992, SIAM J OPTIMIZ, V2, P558
186660    YEVTUSHENKO Y, 1990, USSR COMP MATH MATH, V30, P31
186661 NR 14
186662 TC 0
186663 SN 0253-4827
186664 J9 APPL MATH MECH-ENGL ED
186665 JI Appl. Math. Mech.-Engl. Ed.
186666 PD DEC
186667 PY 2005
186668 VL 26
186669 IS 12
186670 BP 1649
186671 EP 1656
186672 PG 8
186673 SC Mathematics, Applied; Mechanics
186674 GA 000EN
186675 UT ISI:000234443800015
186676 ER
186677 
186678 PT J
186679 AU Guo, XY
186680    Shum, KP
186681 TI Complementarity of subgroups and the structure of finite groups
186682 SO ALGEBRA COLLOQUIUM
186683 DT Article
186684 DE complemented subgroups; minimal subgroups; saturated formations
186685 ID MINIMAL SUBGROUPS
186686 AB In this paper, we consider a finite group in which some subgroups are
186687    complemented in a special subgroup of a given group. Some new
186688    conditions are obtained for a finite group in a formation F containing
186689    the class U of finite supersolvable groups. Our results generalize the
186690    recent results on the complemented subgroups of finite groups.
186691 C1 Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
186692    Chinese Univ Hong Kong, Fac Sci, Shatin, Hong Kong, Peoples R China.
186693 RP Guo, XY, Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China.
186694 EM xyguo@staff.shu.edu.cn
186695    kpshum@math.cuhk.edu.hk
186696 CR ARAD Z, 1982, J ALGEBRA, V77, P234
186697    BALLESTERBOLINCHES A, 1999, ARCH MATH, V72, P161
186698    DOER K, 1992, FINITE SOLVABLE GROU
186699    GUO XY, 2002, J PURE APPL ALGEBRA, V169, P43
186700    GUO XY, 2003, J GROUP THEORY, V6, P159
186701    HALL P, 1937, J LOND MATH SOC, V12, P198
186702    HALL P, 1937, J LOND MATH SOC, V12, P201
186703    HUPPERT B, 1967, ENDLICHE GRUPPEN, V1
186704    LI DY, 2000, J PURE APPL ALGEBRA, V150, P53
186705 NR 9
186706 TC 0
186707 SN 1005-3867
186708 J9 ALGEBR COLLOQ
186709 JI Algebr. Colloq.
186710 PD MAR
186711 PY 2006
186712 VL 13
186713 IS 1
186714 BP 9
186715 EP 16
186716 PG 8
186717 SC Mathematics, Applied; Mathematics
186718 GA 997OS
186719 UT ISI:000234256600002
186720 ER
186721 
186722 PT J
186723 AU Huang, DG
186724 TI Characteristics of torsional vibrations of a shaft system with parallel
186725    misalignment
186726 SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL
186727    OF MECHANICAL ENGINEERING SCIENCE
186728 DT Article
186729 DE torsional vibration; shaft; lateral vibration
186730 AB Couplings are important parts in the movement of a shaft system. A
186731    coupling can transfer the torque from one shaft to another through
186732    deforming itself. If parallel misalignment exists, the couplings will
186733    produce an extra deformation besides the deformation produced by
186734    transferring the torque. The exciting moment with one-time rotating
186735    frequency produced by this extra deformation is analysed in this
186736    article. This moment will result in torsional vibration at one-time
186737    rotating frequency. By use of DK-II torsional vibration measurement
186738    system, an experimental study of torsional vibrational behaviour in a
186739    parallel misalignment shaft system is carried out. The experimental
186740    results support the conclusion of analysis.
186741 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
186742 RP Huang, DG, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
186743    200072, Peoples R China.
186744 CR HOTA D, 1984, I MECH ENG C, V310, P199
186745    HUANG D, 1995, TORSIONAL VIBRATION
186746    HUANG D, 1998, CHIN J MECH ENG, V34, P91
186747    PENG Z, 2003, TURBINE TECHNOL, V45, P42
186748    ROSENBERG RM, 1958, J APPL MECH, V25, P47
186749 NR 5
186750 TC 0
186751 SN 0954-4062
186752 J9 PROC INST MECH ENG C-J MECH E
186753 JI Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci.
186754 PD NOV
186755 PY 2005
186756 VL 219
186757 IS 11
186758 BP 1219
186759 EP 1224
186760 PG 6
186761 SC Engineering, Mechanical
186762 GA 997PS
186763 UT ISI:000234259500007
186764 ER
186765 
186766 PT J
186767 AU Liu, XB
186768    Gu, YJ
186769 TI Plasma jet clad gamma/Cr7C3 composite coating on steel
186770 SO MATERIALS LETTERS
186771 DT Article
186772 DE plasma jet cladding; microstructure; wear resistance
186773 ID ALLOY; ARC
186774 AB A wear-resistant gamma/Cr7C3 composite coating was fabricated on
186775    substrate of commercial Q235 plain carbon steel by plasma jet cladding
186776    using Ni-Cr-C elemental powder blends. The microstructure,
186777    microhardness and wear resistance of the coating were evaluated and the
186778    wear mechanisms were discussed. The results show that the plasma jet
186779    clad composite coating has a rapidly solidified microstructure
186780    consisting of primary coarse blocky carbide Cr7C3 and the inter-blocky
186781    tough gamma/Cr7C3 eutectic matrix and is metallurgically bonded to the
186782    steel substrate. The composite coating possesses high hardness and
186783    excellent wear resistance under the dry sliding wear test conditions.
186784    (c) 2005 Elsevier B.V. All rights reserved.
186785 C1 Zhongyuan Inst Technol, Dept Chem & Mat Engn, Zhengzhou 450007, Henan Prov, Peoples R China.
186786    Shanghai Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266510, Shandong Prov, Peoples R China.
186787 RP Liu, XB, Zhongyuan Inst Technol, Dept Chem & Mat Engn, 41 Zhongyuan
186788    Western Rd, Zhengzhou 450007, Henan Prov, Peoples R China.
186789 EM liuxiubo@zzti.edu.cn
186790 CR DOLIVEIRA ASCM, 2002, APPL SURF SCI, V201, P154
186791    LIU YF, 2004, CHINESE PHYS LETT, V21, P1314
186792    SHEPELEVA L, 2000, SURF COAT TECH, V125, P45
186793    ZHANG DW, 2001, WEAR, V251, P1372
186794    ZHANG DW, 2005, SURF COAT TECH, V190, P212
186795    ZHAO C, 2002, SURF COAT TECH, V155, P80
186796 NR 6
186797 TC 0
186798 SN 0167-577X
186799 J9 MATER LETT
186800 JI Mater. Lett.
186801 PD MAR
186802 PY 2006
186803 VL 60
186804 IS 5
186805 BP 577
186806 EP 580
186807 PG 4
186808 SC Materials Science, Multidisciplinary; Physics, Applied
186809 GA 996AU
186810 UT ISI:000234147600001
186811 ER
186812 
186813 PT J
186814 AU Cai, YD
186815    Feng, KY
186816    Lu, WC
186817    Chou, KC
186818 TI Using LogitBoost classifier to predict protein structural classes
186819 SO JOURNAL OF THEORETICAL BIOLOGY
186820 DT Article
186821 DE protein structure classification; LogitBoost; support vector machines;
186822    amino acid composition
186823 ID AMINO-ACID-COMPOSITION; SUPPORT VECTOR MACHINES; FUNCTIONAL DOMAIN
186824    COMPOSITION; SUBCELLULAR LOCATION PREDICTION; GENE-EXPRESSION DATA;
186825    GO-PSEAA PREDICTOR; NEURAL-NETWORKS; DECISION TREES; LOCALIZATION;
186826    RECOGNITION
186827 AB Prediction of protein classification is an important topic in molecular
186828    biology. This is because it is able to not only provide useful
186829    information from the viewpoint of structure itself, but also greatly
186830    stimulate the characterization of many other features of proteins that
186831    may be closely correlated with their biological functions. In this
186832    paper, the LogitBoost, one of the boosting algorithms developed
186833    recently, is introduced for predicting protein structural classes. It
186834    performs classification using a regression scheme as the base learner,
186835    which can handle multi-class problems and is particularly superior in
186836    coping with noisy data. It was demonstrated that the LogitBoost
186837    outperformed the support vector machines in predicting the structural
186838    classes for a given dataset, indicating that the new classifier is very
186839    promising. It is anticipated that the power in predicting protein
186840    structural classes as well as many other biomacromolecular attributes
186841    will be further strengthened if the LogitBoost and some other existing
186842    algorithms can be effectively complemented with each other. (c) 2005
186843    Elsevier Ltd. All rights reserved.
186844 C1 Gordon Life Sci Inst, San Diego, CA 92130 USA.
186845    Shanghai Univ, Dept Chem, Coll Sci, Shanghai 200436, Peoples R China.
186846    Shanghai Ctr Bioinformat Technol, Shanghai 200235, Peoples R China.
186847    Univ Manchester, Sch Med, Manchester M13 9PT, Lancs, England.
186848 RP Chou, KC, Gordon Life Sci Inst, 13784 Torrey Mar, San Diego, CA 92130
186849    USA.
186850 EM kchou@san.rr.com
186851 CR BAHAR I, 1997, PROTEINS, V29, P172
186852    BREIMAN L, 1998, ANN STAT, V26, P801
186853    BROWN MPS, 2000, P NATL ACAD SCI USA, V97, P262
186854    CAI YD, 2000, BBA-PROTEIN STRUCT M, V1476, P1
186855    CAI YD, 2000, BIOCHIMIE, V82, P783
186856    CAI YD, 2003, BIOPHYS J, V84, P3257
186857    CAI YD, 2004, J THEOR BIOL, V226, P373
186858    CAI YD, 2004, J THEOR BIOL, V228, P551
186859    CHOU KC, 1994, J BIOL CHEM, V269, P22014
186860    CHOU KC, 1995, CRIT REV BIOCHEM MOL, V30, P275
186861    CHOU KC, 1995, PROTEINS, V21, P319
186862    CHOU KC, 1998, PROTEIN ENG, V11, P523
186863    CHOU KC, 1998, PROTEINS, V31, P97
186864    CHOU KC, 1999, BIOCHEM BIOPH RES CO, V264, P216
186865    CHOU KC, 1999, PROTEIN ENG, V12, P107
186866    CHOU KC, 1999, PROTEINS, V34, P137
186867    CHOU KC, 2000, CURR PROTEIN PEPT SC, V1, P171
186868    CHOU KC, 2001, PROTEINS, V43, P246
186869    CHOU KC, 2002, J BIOL CHEM, V277, P45765
186870    CHOU KC, 2002, J PROTEOME RES, V1, P429
186871    CHOU KC, 2003, BIOCHEM BIOPH RES CO, V311, P743
186872    CHOU KC, 2003, J CELL BIOCHEM, V90, P1250
186873    CHOU KC, 2003, J PROTEOME RES, V2, P183
186874    CHOU KC, 2003, PROTEINS, V53, P282
186875    CHOU KC, 2004, BIOCHEM BIOPH RES CO, V320, P1236
186876    CHOU KC, 2004, BIOCHEM BIOPH RES CO, V321, P1007
186877    CHOU KC, 2004, BIOCHEM BIOPH RES CO, V325, P506
186878    CHOU KC, 2004, J CELL BIOCHEM, V91, P1197
186879    CHOU KC, 2004, PROTEIN SCI, V13, P2857
186880    CHOU KC, 2004, PROTEINS, V55, P77
186881    CHOU KC, 2005, BIOCHEM BIOPH RES CO, V327, P845
186882    CHOU KC, 2005, BIOINFORMATICS, V21, P10
186883    CHOU KC, 2005, BIOINFORMATICS, V21, P944
186884    CHOU KC, 2005, J CHEM INF MODEL, V45, P407
186885    CHOU MW, 1993, DRUG CHEM TOXICOL, V16, P1
186886    DETTLING M, 2003, BIOINFORMATICS, V19, P1061
186887    DING CHQ, 2001, BIOINFORMATICS, V17, P349
186888    DRUCKER H, 1996, ADV NEUR IN, V8, P479
186889    ELROD DW, 2002, PROTEIN ENG, V15, P713
186890    FREUND Y, 1997, J COMPUT SYST SCI, V55, P119
186891    FRIEDMAN J, 2000, ANN STAT, V28, P337
186892    HARUNO M, 1999, MACH LEARN, V34, P131
186893    KLEIN P, 1986, BIOPOLYMERS, V25, P1659
186894    LIU WM, 1998, J PROTEIN CHEM, V17, P209
186895    MAO BY, 1994, PROTEIN ENG, V7, P319
186896    MARDIA KV, 1979, MULTIVARIATE ANAL, P322
186897    PAN YX, 2003, J PROTEIN CHEM, V22, P395
186898    RATSCH G, 2001, MACH LEARN, V42, P287
186899    SCHAPIRE RE, 1999, MACH LEARN, V37, P297
186900    VAPNIK V, 1998, STAT LEARNING THEORY
186901    WANG M, 2004, PROTEIN ENG DES SEL, V17, P509
186902    WANG M, 2005, J THEOR BIOL, V232, P7
186903    XIAO X, 2005, AMINO ACIDS, V28, P57
186904    ZHOU GP, 1998, J PROTEIN CHEM, V17, P729
186905    ZHOU GP, 2001, PROTEINS, V44, P57
186906    ZHOU GP, 2003, PROTEINS, V50, P44
186907    ZHOU ZH, 2002, ARTIF INTELL MED, V24, P25
186908 NR 57
186909 TC 0
186910 SN 0022-5193
186911 J9 J THEOR BIOL
186912 JI J. Theor. Biol.
186913 PD JAN 7
186914 PY 2006
186915 VL 238
186916 IS 1
186917 BP 172
186918 EP 176
186919 PG 5
186920 SC Biology
186921 GA 996DI
186922 UT ISI:000234154200015
186923 ER
186924 
186925 PT J
186926 AU Jiang, XY
186927    Zhang, ZL
186928    Zhu, WQ
186929    Xu, SH
186930 TI Study of blue organic light emitting diode by inserting a red dye ultra
186931    thin layer at the emitting layer
186932 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
186933 DT Article
186934 ID ELECTROLUMINESCENT DEVICE; DISTYRYLARYLENE
186935 AB Experiments of inserting an ultra thin layer of DCJTB at three
186936    different levels in a blue emitter layer of a blue device,
186937    ITO/CuPc/NPB/TBADN/Alq/LiF/Al, were carried out. The spectra of these
186938    devices indicate that the recombination zone is chiefly located near
186939    the NPB/TBADN interface, implying that TBADN is capable of electron
186940    transport. The inserted DCJTB at TBADN/Alq interface has no
186941    contribution to emission, leaving only the blue emission from TBADN,
186942    even at high voltage. However, it improved the stability of the device;
186943    the half lifetime was prolonged twice more and the rise of applied
186944    voltage during ageing was suppressed from 3 V to 0.4 V.
186945 C1 Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R China.
186946 RP Jiang, XY, Shanghai Univ, Dept Mat Sci, Shanghai 201800, Peoples R
186947    China.
186948 CR ADACHI C, 1995, APPL PHYS LETT, V66, P2679
186949    AZIZ H, 1999, SCIENCE, V283, P1900
186950    GAO ZQ, 1999, APPL PHYS LETT, V74, P865
186951    HOSOKAWA C, 1995, APPL PHYS LETT, V67, P3853
186952    HOSOKAWA C, 1995, J APPL PHYS, V78, P5831
186953    HOSOKAWA C, 2004, SID 2004 DIGEST, P780
186954    JIANG XZ, 2000, APPL PHYS LETT, V76, P1813
186955    LEE MT, 2004, APPL PHYS LETT, V85, P3301
186956    LEE ST, 1999, APPL PHYS LETT, V75, P1404
186957    MI BX, 1999, APPL PHYS LETT, V75, P4055
186958    MORI T, 1998, APPL PHYS LETT, V73, P2763
186959    SHI JM, 2002, APPL PHYS LETT, V80, P3201
186960    STRUKELJ M, 1996, J AM CHEM SOC, V118, P1213
186961    TAO XT, 1999, APPL PHYS LETT, V75, P1655
186962    YU WL, 1999, APPL PHYS LETT, V75, P3270
186963    ZHANG ZL, 2001, J PHYS D APPL PHYS, V34, P3083
186964 NR 16
186965 TC 0
186966 SN 0022-3727
186967 J9 J PHYS-D-APPL PHYS
186968 JI J. Phys. D-Appl. Phys.
186969 PD DEC 7
186970 PY 2005
186971 VL 38
186972 IS 23
186973 BP 4153
186974 EP 4156
186975 PG 4
186976 SC Physics, Applied
186977 GA 996OH
186978 UT ISI:000234183000003
186979 ER
186980 
186981 PT J
186982 AU Zheng, YH
186983    Hua, TC
186984    Sun, DW
186985    Xiao, HJ
186986    Xu, F
186987    Wang, FF
186988 TI Detection of dichlorvos residue by flow injection calorimetric
186989    biosensor based on immobilized chicken liver esterase
186990 SO JOURNAL OF FOOD ENGINEERING
186991 DT Article
186992 DE calorimetric biosensor; chicken liver-esterase; pesticides residue
186993    detection; flow injection analysis; thermoelectric thermostat
186994 ID ENZYME THERMISTOR; ACETYLCHOLINESTERASE; PESTICIDES; ORGANOPHOSPHORUS;
186995    PRINCIPLES
186996 AB A flow injection calorimetric biosensor for dichlorvos residue
186997    detection is developed. This biosensor consists of a peristaltic pump,
186998    an injection valve, a thermoelectric thermostat, two cells (an enzyme
186999    reaction cell and a reference cell), a thermopile sensor and a
187000    computer. The reaction temperature of mix solution is stabilized at 40
187001    degrees C by the thermostat when the solution is pumped by the
187002    peristaltic pump. Chicken liver-esterase as an alternative of acetyl
187003    cholinesterase is used as the bio-recognition component. The enzymatic
187004    reaction takes place in the enzyme reaction cell when substrate is
187005    introduced into the system by injection valve. The identical reference
187006    cell is used to eliminate virtually the influence of unspecified heat,
187007    which is not produced by the enzymatic reaction. A thermopile sensor,
187008    containing 127 pairs of BiTe thermocouples, is used to measure the
187009    temperature difference of the two cells. There moelectric potential
187010    caused by enzymatic reaction without inhibition is about 5 mV. The
187011    enzymatic reaction is inhibited at 30.7% and 41.8% by 1 mg/L and 10
187012    mg/L of dichlorvos respectively, when the flow rate is 1.0 mL/min,
187013    incubation time is 10 min and the activity of immobilized enzyme is
187014    0.83 U/g. The experiments demonstrate that this calorimetric biosensor
187015    can be used as a simple and rapid method for on site pesticide
187016    detection. (c) 2005 Elsevier Ltd. All rights reserved.
187017 C1 Shanghai Univ Sci & Technol, Inst Food Sci & Engn, Shanghai 200093, Peoples R China.
187018    Natl Univ Ireland Univ Coll Dublin, FRCFT Res Grp, Dept Biosyst Engn, Dublin 2, Ireland.
187019 RP Hua, TC, Shanghai Univ Sci & Technol, Inst Food Sci & Engn, Shanghai
187020    200093, Peoples R China.
187021 EM tchua@sh163.net
187022    dawen.sun@ucd.ie
187023 CR ABAD JM, 1998, ANAL CHEM, V70, P2848
187024    ANDRES RT, 1997, TALANTA, V44, P1335
187025    BATAILLARD P, 1993, TRAC-TREND ANAL CHEM, V12, P387
187026    BIN X, 2000, TRENDS ANAL CHEM, V19, P340
187027    BOUBLIK Y, 2002, PROTEIN ENG, V15, P43
187028    BUSH FM, 1973, TOWNSEND COMP BIOC B, V44, P1137
187029    CHEPALAMADUGU S, 1992, CRIT REV BIOTECHNOL, V12, P357
187030    ELYAMANI HC, 1998, SENSOR ACTUATOR, V15, P193
187031    KIBA N, 1984, TALANTA, V31, P131
187032    LEONGONZALEZ MF, 1991, J CHROMATOGR, V534, P47
187033    MOSBACH K, 1974, BIOCHIM BIOPHYS ACTA, V364, P140
187034    MULCHANDANI P, 1999, BIOSENS BIOELECTRON, V14, P77
187035    NEUFELD T, 2000, BIOSENS BIOELECTRON, V15, P323
187036    PYLYPIW HM, 1993, J AOAC INT, V76, P1369
187037    RAMANATHAN K, 2001, BIOSENS BIOELECTRON, V16, P417
187038    RODRIGUES TC, 2001, ANAL SCI, V17, P629
187039    RUZICKA J, 1988, FLOW INJECTION ANAL
187040    SACKS V, 2000, ANAL CHEM, V72, P2055
187041    SCHELLER F, 1985, ANAL CHEM, V57, P1740
187042    SCHULZE H, 2003, BIOSENS BIOELECTRON, V18, P201
187043    WESTLAKE GE, 1983, COMP BIOCHEM PHYS C, V76, P15
187044 NR 21
187045 TC 0
187046 SN 0260-8774
187047 J9 J FOOD ENG
187048 JI J. Food Eng.
187049 PD MAY
187050 PY 2006
187051 VL 74
187052 IS 1
187053 BP 24
187054 EP 29
187055 PG 6
187056 SC Engineering, Chemical; Food Science & Technology
187057 GA 995QW
187058 UT ISI:000234119900003
187059 ER
187060 
187061 PT J
187062 AU Zhang, P
187063    Wong, SC
187064    Shu, CW
187065 TI A weighted essentially non-oscillatory numerical scheme for a
187066    multi-class traffic flow model on an inhomogeneous highway
187067 SO JOURNAL OF COMPUTATIONAL PHYSICS
187068 DT Article
187069 DE multi-class traffic flow; inhomogeneous highway; non-strictly
187070    hyperbolic conservation laws; spatially varying fluxes; WENO
187071    reconstruction
187072 ID HYPERBOLIC CONSERVATION-LAWS; EFFICIENT IMPLEMENTATION; STABILITY
187073 AB As a new attempt to solve hyperbolic conservation laws with spatially
187074    varying fluxes, the weighted essentially non-oscillatory (WENO) method
187075    is applied to solve a multi-class traffic flow model for an
187076    inhomogeneous highway. The numerical scheme as well as an analytical
187077    study is based upon a modified equivalent system that is written in a
187078    "standard" hyperbolic conservation form. Numerical examples, which
187079    include the difficult traffic signal control problem, are used to
187080    demonstrate the effectiveness of the WENO scheme in which the results
187081    are in good agreement with the analytical counterparts. (c) 2005
187082    Elsevier Inc. All rights reserved.
187083 C1 Univ Hong Kong, Dept Civil Engn, Hong Kong, Hong Kong, Peoples R China.
187084    Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
187085    Brown Univ, Dept Appl Math, Providence, RI 02912 USA.
187086 RP Wong, SC, Univ Hong Kong, Dept Civil Engn, Hong Kong, Hong Kong,
187087    Peoples R China.
187088 EM hhecwsc@hkucc.hku.hk
187089 CR BAITI P, 1997, J DIFFER EQUATIONS, V140, P161
187090    BALE DS, 2002, SIAM J SCI COMPUT, V24, P955
187091    COCKBURN B, 1989, MATH COMPUT, V52, P411
187092    COCKBURN B, 1991, RAIRO-MATH MODEL NUM, V25, P337
187093    COCKBURN B, 1998, LECT NOTES MATH, V1697, P151
187094    GOTTLIEB S, 2001, SIAM REV, V43, P89
187095    GREENSHIELDS BD, 1934, P HWY RES BOARD, V14, P448
187096    JIANG GS, 1996, J COMPUT PHYS, V126, P202
187097    KLAUSEN RA, 1999, J DIFFER EQUATIONS, V157, P41
187098    LAX PD, 1957, COMMUN PUR APPL MATH, V10, P537
187099    LAX PD, 1971, CONTRIBUTIONS NONLIN, P603
187100    LAX PD, 1973, HYPERBOLIC SYSTEMS C
187101    LEVEQUE RJ, 2002, INT J NUMER METH FL, V40, P93
187102    LIN LW, 1995, SIAM J NUMER ANAL, V32, P841
187103    LIU XD, 1994, J COMPUT PHYS, V115, P200
187104    SHU CW, 1988, J COMPUT PHYS, V77, P439
187105    SHU CW, 1998, LECT NOTES MATH, V1697, P325
187106    SMOLLER J, 1994, SHOCK WAVES REACTION
187107    TORO EF, 1999, RIEMANN SOLVERS NUME
187108    WHITHAM GB, 1974, LINEAR NONLINEAR WAV
187109    WONG GCK, 2002, TRANSPORT RES A-POL, V36, P827
187110    WONG SC, 2002, TRANSPORT RES B-METH, V36, P683
187111    ZHANG MQ, 2003, J COMPUT PHYS, V191, P639
187112    ZHANG P, IN PRESS EUROPEAN J
187113    ZHANG P, 2003, J COMPUT APPL MATH, V156, P1
187114    ZHANG P, 2005, J COMPUT APPL MATH, V176, P105
187115    ZHANG P, 2005, NUMER METH PART D E, V21, P80
187116    ZHANG P, 2005, PHYS REV E 2, V71
187117 NR 28
187118 TC 1
187119 SN 0021-9991
187120 J9 J COMPUT PHYS
187121 JI J. Comput. Phys.
187122 PD MAR 1
187123 PY 2005
187124 VL 212
187125 IS 2
187126 BP 739
187127 EP 756
187128 PG 18
187129 SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
187130 GA 995QY
187131 UT ISI:000234120100018
187132 ER
187133 
187134 PT J
187135 AU Liu, WH
187136 TI The electrolyte temperature dependence of the electrochemical hydrogen
187137    storage property of Mg-Ni alloy codeposited from aqueous solution
187138 SO JOURNAL OF ALLOYS AND COMPOUNDS
187139 DT Article
187140 DE temperature dependence; electrochemical hydrogen storage; Mg-Ni alloy;
187141    codeposition
187142 AB The temperature dependence of the electrochemical property of Mg-Ni
187143    alloy codeposited from aqueous solution was studied. Results show that
187144    not only solvating temperature, deposition temperature but also
187145    temperature variation in deposition temperature controlling will affect
187146    Mg-Ni codeposition and electrochemical hydrogen storage property of the
187147    Mg-Ni deposit synthesized.
187148    The temperature combination of solvating temperature 87.9 +/- 1.2
187149    degrees C and deposition temperature 47.9 degrees C is favourable for
187150    Mg-Ni codeposition, deposit synthesized under this temperature
187151    combination has a electrochemical capacity of 67 mAh/g. (c) 2005
187152    Elsevier B.V. All rights reserved.
187153 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
187154 RP Liu, WH, Shanghai Univ, Dept Chem, New Campus, Shanghai 200436, Peoples
187155    R China.
187156 EM weihliu@yahoo.com
187157 CR *SURF TREATM RES C, 1982, EL TECHN, P274
187158    GUO HT, 2000, ELECTROCHEMISTRY COU, P302
187159    KOHTTO T, 1999, J ALLOY COMPD, V293, P643
187160    LIU WH, 1997, J ALLOY COMPD, V252, P234
187161    LIU WH, 2004, J FUDAN U, V43, P511
187162    NIU ZJ, 1997, P 9 CHIN EL S SAND T, P345
187163    ORIMO S, 1997, ACTA MATER, V45, P2271
187164    YANG QM, 1994, Z PHYS CHEM, V183, P141
187165 NR 8
187166 TC 0
187167 SN 0925-8388
187168 J9 J ALLOYS COMPOUNDS
187169 JI J. Alloy. Compd.
187170 PD DEC 8
187171 PY 2005
187172 VL 404
187173 BP 694
187174 EP 698
187175 PG 5
187176 SC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
187177    Metallurgical Engineering
187178 GA 995KV
187179 UT ISI:000234100100160
187180 ER
187181 
187182 PT J
187183 AU Hu, HJ
187184    Liu, H
187185    Zhao, JJ
187186    Li, J
187187 TI Investigation of adhesion performance of aqueous polymer latex modified
187188    by polymeric methylene diisocyanate
187189 SO JOURNAL OF ADHESION
187190 DT Article
187191 DE aqueous polymer isocyanate; percent wood failure; potlife; shear
187192    strength; water resistance
187193 ID ISOCYANATE; WOOD; PARTICLEBOARD
187194 AB Aqueous polymer isocyanate (API), which has good adhesive properties at
187195    ambient temperature and excellent resistance to warm/boiling water, and
187196    is friendly to the environment, is widely used in the timber-processing
187197    industry. To prepare high performance API, vinyl acetate homopolymer
187198    and copolymer emulsion were respectively cross-linked by three types of
187199    polymeric methylene diisocyanate (p-MDI). The potlife, curing time,
187200    bonding strength, and water resistance of API adhesives were tested
187201    with different cross-linkers and varying loadings (5-20%). Also the
187202    effect of polyvinyl alcohol (PVOH) content of aqueous vinyl latex on
187203    the performance of API was investigated. It was shown that the potlife
187204    and curing time of API were obviously influenced by the types of
187205    cross-linker and its loading. Correct loadings of p-MDI as crosslinker
187206    can remarkably improve the adhesive performance of aqueous polymer
187207    emulsion at ambient temperature. Excess cross-linker cannot maintain
187208    such an effect of strengthening and may decrease considerably the bond
187209    properties of API. The warm- and boiling-water resistance of API
187210    improved markedly with increasing cross-linker loading, where
187211    emulsifiable isocyanate gave better cross-linking performance, and
187212    p-MDI mixed with organic solvent was the secondbest. With the increase
187213    of PVOH content, the curing time of API increased, but no statistically
187214    apparent differences in the potlife of API were found. The bonding
187215    performance of API was improved as PVOH content increases, but excess
187216    PVOH also weakenes the warm- and boiling-water resistance of the joint.
187217 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
187218    Shanghai Univ, Dept Chem Engn, Shanghai, Peoples R China.
187219    Heibei N Univ, Dept Base Courses, Zhangjiakou City, Peoples R China.
187220 RP Hu, HJ, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072,
187221    Peoples R China.
187222 EM huhongjiu@163.com
187223 CR GARDNER DJ, 1994, FOREST PROD J, V44, P62
187224    JOHNSON F, 1976, 3996154, US
187225    KILMER WR, 1998, WOOD FIBER SCI, V30, P175
187226    LIX SX, 1998, POLYURETHANE ADHESIV, P301
187227    MARTIN M, 2000, PROGR ORGANIC COATIN, V40, P99
187228    MIYAZAKI J, 2002, MOKUZAI GAKKAISHI, V48, P184
187229    MOTOTANI Y, 1996, MOKUZAI GAKKAISHI, V42, P140
187230    PAGEL H, 1981, ADHES AGE, V24, P34
187231    PAPADOPOULOS AN, 2002, HOLZ ROH WERKST, V60, P394
187232    PAPADOPOULOS AN, 2002, HOLZ ROH WERKST, V60, P81
187233    QIAO LJ, 2000, PIGMENT RESIN TECHNO, V29, P229
187234    TERBILCOX TF, 1984, ELASTOMERICS, V116, P28
187235    VICK CB, 1993, INT J ADHES ADHES, V13, P139
187236    VRAZEL M, 2004, FOREST PROD J, V54, P66
187237    ZHAO JJ, 2005, THESIS SHANGHAI U
187238 NR 15
187239 TC 0
187240 SN 0021-8464
187241 J9 J ADHES
187242 JI J. Adhes.
187243 PD JAN
187244 PY 2006
187245 VL 82
187246 IS 1
187247 BP 93
187248 EP 114
187249 PG 22
187250 SC Engineering, Chemical; Materials Science, Multidisciplinary; Mechanics
187251 GA 997NL
187252 UT ISI:000234252300005
187253 ER
187254 
187255 PT J
187256 AU Wang, XR
187257    Chen, JS
187258    You, H
187259    Ma, DG
187260    Sun, RG
187261 TI Efficiency and color coordinate improvement using codopants in blue
187262    organic light-emitting diode
187263 SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF
187264    COMMUNICATIONS & REVIEW PAPERS
187265 DT Article
187266 DE electroluminescence; organic light-emitling diode; codoping; quantum
187267    efficiency; interaction
187268 ID ELECTROLUMINESCENCE; DEVICES
187269 AB The codoping method is applied to fabricate efficient blue organic
187270    light-emitting diodes (OLEDs). With the same structure of indium-tin
187271    oxide
187272    (ITO)/N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'diamine
187273    (NPB)(80nm)/light-emittin- layer
187274    (30nm)/tris-(8-hydroxy-quinoline)aluminum (Alq(3)) (20nm)/LiF (1 nm)/Al
187275    (120 nm), a set of three devices was manufactured for comparison. For
187276    Devices 1, 2, and 3, the light-emitting layers are
187277    9,10-di(2-naphthyl)anthracene (ADN):4,4'-(1,4-phenylenedi-2,1-ethene
187278    diyl)bis[N,N-bis(4-methylphenyl)-benzenamine] (DPAVB) (1 wt %),
187279    ADN:2,5,8,11-tetra-(t-butyl)-perylene (TBPE) (1 wt %), and ADN:DPAVB
187280    (0.3 wt %):TBPE (0.7 wt %), respectively. It is found that the codoped
187281    Device 3 has the highest maximum luminance, Electroluminescence (EL)
187282    quantum efficiency and color saturation. Further study on the effect of
187283    the codopants was through a relative photoluminescence (PL) quantum
187284    efficiency measurement. The result shows that the relative PL
187285    efficiencies of Devices 1, 2, and 3 are 15.6, 19.3, and 24%,
187286    respectively, as determined using an integrating sphere system excited
187287    at 375 nm. The codoping method improves the EL efficiency
187288    intrinsically. Codopants of the heterogeneous light-emitting molecules
187289    may decrease the possibility of self-quenching from the interaction of
187290    the homogenous molecules at the same total doping concentration.
187291    Furthermore, the decrease in the interaction of homogenous molecules
187292    suppresses the light emission from the aggregations thus narrowing the
187293    emission spectrum, and results in saturated blue light emission.
187294 C1 Shanghai Univ, Key Lab Adv Displays & Syst Applicat, Shanghai 201800, Peoples R China.
187295    Chinese Acad Sci, Changchun Inst Appl Chem, Changchun 130022, Jilin, Peoples R China.
187296 RP Wang, XR, Shanghai Univ, Key Lab Adv Displays & Syst Applicat, Shanghai
187297    201800, Peoples R China.
187298 EM mdg1014@ciac.jl.cn
187299    runguangsun@126.com
187300 CR GREENHAM NC, 1995, CHEM PHYS LETT, V241, P89
187301    HAMADA Y, 1999, APPL PHYS LETT, V75, P1682
187302    HOLMES RJ, 2003, APPL PHYS LETT, V82, P2422
187303    IM WB, 2001, APPL PHYS LETT, V79, P1387
187304    KAN Y, 2004, APPL PHYS LETT, V84, P1513
187305    LIU Y, 2001, APPL PHYS LETT, V78, P2300
187306    MA DG, UNPUB
187307    NAKAMURA A, 2004, APPL PHYS LETT, V84, P130
187308    NI SY, 2004, APPL PHYS LETT, V85, P878
187309    OKUMOTO K, 2001, APPL PHYS LETT, V79, P1231
187310    SAKAI T, 2002, J SOC INF DISP, V10, P145
187311    SHI JM, 2002, APPL PHYS LETT, V80, P3201
187312    SPREITZER H, 2003, P SOC PHOTO-OPT INS, V4800, P16
187313    TANG CW, 1989, J APPL PHYS, V65, P3610
187314    WEAVER MS, 2003, P SOC PHOTO-OPT INS, V5004, P113
187315    WU YZ, 2003, APPL PHYS LETT, V83, P5077
187316    YOSHIDA A, 2003, P SOC INF DISPL S, V34, P856
187317 NR 17
187318 TC 0
187319 SN 0021-4922
187320 J9 JPN J APPL PHYS PT 1
187321 JI Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap.
187322 PD DEC
187323 PY 2005
187324 VL 44
187325 IS 12
187326 BP 8480
187327 EP 8483
187328 PG 4
187329 SC Physics, Applied
187330 GA 997CY
187331 UT ISI:000234223800041
187332 ER
187333 
187334 PT J
187335 AU Zhang, ZN
187336    Ge, XR
187337 TI Micromechanical modelling of elastic continuum with virtual
187338    multi-dimensional internal bonds
187339 SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
187340 DT Article
187341 DE virtual multi-dimensional internal bonds (VMIB); continua modelling;
187342    discrete concept; virtual internal bond (VIB)
187343 ID MECHANICS APPROACH; FORMULATION
187344 AB A micromechanical model is developed for the elastic continua with
187345    virtual multi-dimensional internal bonds. The basic idea of the
187346    presented model is that materials are discretized into mass particles
187347    and these mass particles are connected with randomized normal and shear
187348    bonds. Based oil the Cauchy-born rules and the hyperelastic theory, a
187349    constitutive relationship is derived. The Constitutive relationship
187350    bridges the Virtual bond stiffness and the macromaterial constants.
187351    i.e. Youngs's modulus and Poisson ratio. The presented model Could
187352    represent the diversity of Poisson ratio. The motivation of the
187353    presented work is to provide a useful rnicromechanical model for the
187354    numerical Simulation of material failure behaviours and improve the
187355    understanding of material failure mechanisms. To show the application
187356    of the presented model, a tensile failure example of brittle materials
187357    is analysed and numerically simulated. By comparison, a good agreement
187358    is found between the predicted and the experimental. Tile prospect of
187359    the presented model seems to be highly promising. Copyright (c) 2005
187360    John Wiley & Sons, Ltd.
187361 C1 Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R China.
187362    Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China.
187363 RP Zhang, ZN, Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R
187364    China.
187365 EM zzn@sjtu.org
187366    zhennanzhang@sina.com.cn
187367 CR CHANG CS, 2002, ENG FRACT MECH, V69, P1941
187368    CHANG CS, 2002, ENG FRACT MECH, V69, P1959
187369    CHANG CS, 2005, INT J SOLIDS STRUCT, V42, P4258
187370    CHANG CS, 2005, J ENG MECH-ASCE, V131, P120
187371    DAVIE CT, 2003, COMMUN NUMER METH EN, V19, P703
187372    GANESH T, 2004, ENG FRACT MECH, V71, P401
187373    GANESH T, 2004, INT J SOLIDS STRUCT, V41, P2919
187374    GAO HJ, 1998, J MECH PHYS SOLIDS, V46, P187
187375    GRIFFITHS DV, 2001, INT J NUMER METH ENG, V50, P1759
187376    LI QB, 1999, J ENG MECH-ASCE, V125, P1
187377    MARSDEN JE, 1983, MATH FDN ELASTICITY
187378    MILSTEIN F, 1980, J MATER SCI, V15, P1071
187379    MORIKAWA H, 1993, P 2 INT C DISCR EL M
187380    OGDEN RW, 1984, NONLINEAR ELASTIC DE
187381    TADMOR EB, 1996, PHILOS MAG A, V73, P1529
187382    TIMOSHENKO SP, 1982, THEORY ELASTICITY
187383 NR 16
187384 TC 0
187385 SN 0029-5981
187386 J9 INT J NUMER METHOD ENG
187387 JI Int. J. Numer. Methods Eng.
187388 PD JAN 1
187389 PY 2006
187390 VL 65
187391 IS 1
187392 BP 135
187393 EP 146
187394 PG 12
187395 SC Engineering, Multidisciplinary; Mathematics, Applied
187396 GA 996GD
187397 UT ISI:000234161500007
187398 ER
187399 
187400 PT J
187401 AU Li, CX
187402    Li, QS
187403 TI Evaluation of the lever-type multiple tuned mass dampers for mitigating
187404    harmonically forced vibration
187405 SO INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS
187406 DT Article
187407 DE damping; harmonically forced vibration; multiple tuned mass dampers
187408    (MTMD); lever-type multiple tuned mass dampers (LT-MTMD); long-span
187409    bridges; stroke; tuned mass damper (TMD); vibration control
187410 ID CABLE-STAYED BRIDGES; GROUND ACCELERATION; DYNAMIC CHARACTERISTICS;
187411    PERFORMANCE; SYSTEM; OSCILLATIONS; TMD
187412 AB The lever-type multiple tuned mass dampers (LT-MTMD), consisting of
187413    several lever-type tuned mass dampers (LT-TMDs) with a uniform
187414    distribution of natural frequencies, are proposed for the vibration
187415    control of long-span bridges. Using the analytical expressions for the
187416    dynamic magnification factors (DMF) of the LT-MTMD structure system, an
187417    evaluation, with inclusion of the LT-MTMD stroke, is conducted on the
187418    performance of the LT-MTMD with identical stiffness and damping
187419    coefficients but unequal masses for mitigating harmonically forced
187420    vibrations. The LT-MTMD is found to possess the near-zero optimum
187421    average damping ratio regimen when the total number of dampers exceeds
187422    a certain value. In comparison, the LT-MTMD without the near-zero
187423    optimum average damping ratio and the traditional hanging-type multiple
187424    tuned mass dampers (HT-MTMD) without the near-zero optimum average
187425    damping ratio can achieve approximately the same optimum frequency
187426    spacing (an indicator for robustness), effectiveness, and stroke.
187427    Compared with the HT-MTMD, the LT-MTMD needs lesser optimum average
187428    damping ratio but significantly higher optimum tuning frequency ratio.
187429    Its main advantage is that the static stretching of the spring may be
187430    adjusted to meet the practical requirements through the support
187431    movement, while maintaining the same robustness, effectiveness, and
187432    stroke. Consequently, the LT-MTMD is a better choice for suppressing
187433    the vibration of long-span bridges as the static stretching of the
187434    spring required is not large.
187435 C1 Shanghai Univ, Dept Civil Engn, Shanghai 200072, Peoples R China.
187436    City Univ Hong Kong, Dept Bldg & Construct, Kowloon, Hong Kong, Peoples R China.
187437 RP Li, CX, Shanghai Univ, Dept Civil Engn, 149 Yanchang Rd, Shanghai
187438    200072, Peoples R China.
187439 EM li-chunxiang@vip.sina.com
187440    li-chunxiang@263.net
187441 CR ABE M, 1994, EARTHQUAKE ENG STRUC, V23, P813
187442    CHEN G, 2003, EARTHQUAKE ENG STRUC, V32, P793
187443    CONTI E, 1996, J WIND ENG IND AEROD, V65, P189
187444    DIANA G, 1992, J WIND ENG IND AEROD, V41, P164
187445    GU M, 1992, J WIND ENG IND AEROD, V42, P1383
187446    GU M, 1994, J WIND ENG IND AEROD, V51, P203
187447    GU M, 1998, CHINESE J VIB ENG, V11, P1
187448    GU M, 2001, J WIND ENG IND AEROD, V89, P987
187449    IGUSA T, 1994, J SOUND VIB, V175, P491
187450    JANGID RS, 1995, STRUCT ENG MECH, V3, P497
187451    JANGID RS, 1999, EARTHQUAKE ENG STRUC, V28, P1041
187452    KAREEM A, 1995, J STRUCT ENG-ASCE, V121, P348
187453    KWON SD, 2004, J WIND ENG IND AEROD, V92, P919
187454    LI CX, 2000, EARTHQUAKE ENG STRUC, V29, P1405
187455    LI CX, 2002, EARTHQUAKE ENG STRUC, V31, P897
187456    LI CX, 2002, J STRUCT ENG-ASCE, V128, P1362
187457    LI CX, 2003, EARTHQUAKE ENG STRUC, V32, P671
187458    LI CX, 2004, ENG STRUCT, V26, P303
187459    LIN CC, 2005, J BRIDGE ENG, V10, P398
187460    PARK J, 2001, ENG STRUCT, V23, P802
187461    WANG JF, 2005, INT J SOLIDS STRUCT, V42, P5536
187462    XU KM, 1992, EARTHQUAKE ENG STRUC, V21, P1059
187463    YAMAGUCHI H, 1993, EARTHQUAKE ENG STRUC, V22, P51
187464    YAU JD, 2004, ENG STRUCT, V26, P1795
187465    YAU JD, 2004, FINITE ELEM ANAL DES, V40, P341
187466 NR 25
187467 TC 0
187468 SN 0219-4554
187469 J9 INT J STRUCT STAB DYN
187470 JI Int. J. Struct. Stab. Dyn.
187471 PD DEC
187472 PY 2005
187473 VL 5
187474 IS 4
187475 BP 641
187476 EP 664
187477 PG 24
187478 GA 996FJ
187479 UT ISI:000234159500008
187480 ER
187481 
187482 PT S
187483 AU Li, ZG
187484    Zhang, ZY
187485    Wu, BA
187486    Zhang, Y
187487 TI Extended application of scalable video coding methods
187488 SO IMAGE ANALYSIS AND RECOGNITION
187489 SE LECTURE NOTES IN COMPUTER SCIENCE
187490 DT Article
187491 AB SP(Synchronization-Predictive) frame coding, which enables high
187492    efficiency of switching between two video bitstreams with different
187493    qualities, is supported by H.264/AVC. And
187494    FGS(Fine-Granular-Scalability) coding is supported by MPEG-4 video
187495    standard. This paper proposes a solution for combination these two
187496    tools with each other so as to adapt to high bandwidth variations of
187497    Internet or wireless networks and to low bandwidth variations flexibly
187498    for transmitted video streams. Experimental results show that our
187499    proposed system outperforms FGS coding by 0.47dB and the
187500    H.264/AVC-based video stream switching approach by 0.23dB on average.
187501 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
187502 RP Li, ZG, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
187503    Peoples R China.
187504 EM zhgyg@mail.shu.edu.cn
187505    zhyzhang@yc.shu.edu.cn
187506    ww5bb@sina.com
187507    jakelee@graduate.shu.edu.cn
187508 CR KARCZEWICZ M, 2003, IEEE T CIRC SYST VID, V13, P637
187509    RADHA HM, 2001, IEEE T MULTIMEDIA, V3, P53
187510    SUN XY, 2003, P 2003 INT C 14 17 S, V3, P297
187511    SUN XY, 2004, IEEE T MULTIMEDIA, V6, P291
187512    UGUR K, 2003, DESIGN ISSUES PROPOS
187513    WU F, 2001, IEEE T CIRC SYST VID, V11, P332
187514 NR 6
187515 TC 0
187516 SN 0302-9743
187517 J9 LECT NOTE COMPUT SCI
187518 PY 2005
187519 VL 3656
187520 BP 359
187521 EP 366
187522 PG 8
187523 GA BDK43
187524 UT ISI:000233991100045
187525 ER
187526 
187527 PT J
187528 AU Bi, XH
187529    Sheng, GY
187530    Feng, YL
187531    Fu, JM
187532    Xie, JX
187533 TI Gas- and particulate-phase specific tracer and toxic organic compounds
187534    in environmental tobacco smoke
187535 SO CHEMOSPHERE
187536 DT Article
187537 DE environmental tobacco smoke; ETS; organic toxic compounds; human
187538    exposure; indoor environment
187539 ID AIR-POLLUTION SOURCES; POLYCYCLIC AROMATIC-HYDROCARBONS;
187540    CHEMICAL-COMPOSITION; EMISSION FACTORS; COMBUSTION SOURCES;
187541    MASS-SPECTROMETRY; MAINSTREAM SMOKE; URBAN ATMOSPHERE; VAPOR-PHASE;
187542    INDOOR
187543 AB Cigarette smoke constituents are worthy of concern and characterized as
187544    carcinogens. Different experiment conditions may affect the
187545    environmental tobacco smoke (ETS) constituents. A study was undertaken
187546    in a 75.5-m(3) spare office to evaluate ETS constituents in a real
187547    environment. Thirty-four volatile organic compounds (VOCs) including
187548    three ETS tracers: nicotine, 2,5-dimethylfuran and 3-ethenylpyridine
187549    (3-EP), 19 carbonyl compounds, 54 semi-volatile compounds (24
187550    polycyclic aromatic hydrocarbons (PAHs) and 30 alkanes) as well as CO
187551    and total particulate matter (TPM) from 15 leading commercial brands
187552    were determined. ETS constituents did not increase with increasing
187553    cigarette tar. ETS tracers nicotine and 3-EP were affected greatly due
187554    to more sorption and surface reactions in real world compared to other
187555    studies conducted in chamber, which resulted in 2-5 times lower.
187556    Benzene, toluene, ethylbenzene, xylenes, acrolein, 2-butanone and the
187557    high molecular weight compounds exhibited little affect. Pearson
187558    correlation analyses show that gas-phase and particulate-phase ETS
187559    tracers did not show significant correlation, but within each homologue
187560    many of compounds correlated significantly. Indole and
187561    cholesta-3,5-diene were also detected in ETS. These results may be
187562    useful in efforts to better understand the health effect of ETS
187563    exposure and source apportionment. (c) 2005 Elsevier Ltd. All rights
187564    reserved.
187565 C1 Chinese Acad Sci, Guangzhou Inst Geochem, Guangdong Key Lab Environm & Resources, State Key Organ Geochem, Ghangzhou 510640, Peoples R China.
187566    Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200072, Peoples R China.
187567 RP Sheng, GY, Chinese Acad Sci, Guangzhou Inst Geochem, Guangdong Key Lab
187568    Environm & Resources, State Key Organ Geochem, Ghangzhou 510640,
187569    Peoples R China.
187570 EM shenggy@gig.ac.cn
187571 CR *CAL EPA, 1997, HLTH EFF EXP ENV TOB
187572    *NAT RES COUNC, 1986, ENV TOB SMOK MEAS EX
187573    ASPERGER A, 1999, J ANAL APPL PYROL, V50, P103
187574    ATKINSON R, 1994, J PHYS CHEM REF DATA, V2, P1
187575    BENNER CL, 1989, ENVIRON SCI TECHNOL, V23, P688
187576    BI XH, 2003, ATMOS ENVIRON, V37, P289
187577    CHEPIGA TA, 2000, FOOD CHEM TOXICOL, V38, P949
187578    DAISEY JM, 1998, J EXPO ANAL ENV EPID, V8, P313
187579    EATOUGH DJ, 1989, ENVIRON SCI TECHNOL, V23, P679
187580    FENG YL, 2004, ATMOS ENVIRON, V38, P103
187581    GRIMMER G, 1987, TOXICOL LETT, V35, P117
187582    HEAVNER DL, 1992, ENVIRON SCI TECHNOL, V26, P1737
187583    HEAVNER DL, 1995, ENVIRON INT, V21, P3
187584    HODGSON AT, 1996, ENVIRON INT, V22, P295
187585    JENKINS PL, 1992, ATMOS ENVIRON A-GEN, V26, P2141
187586    JOHNS RB, 1986, METHODS GEOCHEMISTRY, V24
187587    JUNKER M, 1998, J AEROSOL SCI, V29, S289
187588    KAVOURAS IG, 1998, ENVIRON SCI TECHNOL, V32, P1369
187589    KIM YM, 2001, ENVIRON SCI TECHNOL, V35, P997
187590    KLEEMAN MJ, 1999, ENVIRON SCI TECHNOL, V33, P3516
187591    LEWIS CW, 1992, ATMOS ENVIRON A-GEN, V26, P2179
187592    LOFROTH G, 1989, ENVIRON SCI TECHNOL, V23, P610
187593    MARTIN P, 1997, ENVIRON INT, V23, P75
187594    MITRA A, 2002, CHEMOSPHERE, V49, P903
187595    MORAWSKA L, 1997, SCI TOTAL ENVIRON, V196, P43
187596    MORRICAL BD, 2002, ATMOS ENVIRON, V36, P801
187597    NELSON PR, 1992, ENVIRON SCI TECHNOL, V26, P1909
187598    NELSON PR, 1998, ENVIRON INT, V24, P251
187599    NELSON PR, 1998, J AEROSOL SCI, V29, S281
187600    NIVEN RM, 2000, OCCUP ENVIRON MED, V57, P627
187601    RAMSEY RS, 1990, ANAL CHIM ACTA, V236, P213
187602    ROEMER E, 2004, TOXICOLOGY, V195, P31
187603    ROGGE WF, 1994, ENVIRON SCI TECHNOL, V28, P1375
187604    RUFUS DE, 2001, ATMOS ENVIRON, V35, P4531
187605    RUSTEMEIER K, 2002, FOOD CHEM TOXICOL, V40, P93
187606    SABLJIC A, 1990, ATMOS ENVIRON A-GEN, V24, P73
187607    SCHAUER JJ, 1998, THESIS CALTECH PASAD
187608    SCHAUER JJ, 1999, ENVIRON SCI TECHNOL, V33, P1566
187609    SCHAUER JJ, 1999, ENVIRON SCI TECHNOL, V33, P1578
187610    SCHAUER JJ, 2001, ENVIRON SCI TECHNOL, V35, P1716
187611    SCHAUER JJ, 2002, ENVIRON SCI TECHNOL, V36, P1169
187612    SCHAUER JJ, 2002, ENVIRON SCI TECHNOL, V36, P567
187613    SHAUGHNESSY RJ, 2001, ENVIRON SCI TECHNOL, V35, P2758
187614    SINGER BC, 2002, ENVIRON SCI TECHNOL, V36, P846
187615    SINGER BC, 2003, ATMOS ENVIRON, V37, P5551
187616    SUBRAMANIAN P, 2000, J ENVIRON SCI HEAL A, V35, P999
187617    XIE JX, 2003, ATMOS ENVIRON, V37, P3365
187618    ZHANG JF, 2002, CHEMOSPHERE, V49, P1059
187619 NR 48
187620 TC 0
187621 SN 0045-6535
187622 J9 CHEMOSPHERE
187623 JI Chemosphere
187624 PD DEC
187625 PY 2005
187626 VL 61
187627 IS 10
187628 BP 1512
187629 EP 1522
187630 PG 11
187631 SC Environmental Sciences
187632 GA 995CX
187633 UT ISI:000234078600015
187634 ER
187635 
187636 PT J
187637 AU Chang, TC
187638    Geng, JY
187639    Guo, XM
187640 TI Chirality- and size-dependent elastic properties of single-walled
187641    carbon nanotubes
187642 SO APPLIED PHYSICS LETTERS
187643 DT Article
187644 ID MOLECULAR-MECHANICS MODEL
187645 AB An analytical molecular mechanics model is established to relate the
187646    chirality- and size-dependent elastic properties of a single-walled
187647    carbon nanotube to its atomic structure. Properties at different length
187648    scales are directly connected by the derived closed-form expressions.
187649    The effects of tube chirality and tube diameter are investigated. The
187650    present analytical results are helpful to the understanding of elastic
187651    properties of carbon nanotubes, and thus are important for the
187652    application of carbon nanotubes as building blocks of nanomechanical
187653    devices. (c) 2005 American Institute of Physics.
187654 C1 Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China.
187655 RP Chang, TC, Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai
187656    200072, Peoples R China.
187657 EM tchang@staff.shu.edu.cn
187658 CR ALLINGER NL, 1977, J AM CHEM SOC, V99, P8127
187659    ARROYO M, 2002, AIAA20021317
187660    ARROYO M, 2003, PHYS REV LETT, V91
187661    CHANG TC, 2003, J MECH PHYS SOLIDS, V51, P1059
187662    CHANG TC, 2005, CARBON, V43, P287
187663    CHANG TC, 2005, PHYS REV B, V72
187664    HERNANDEZ E, 1998, PHYS REV LETT, V80, P4502
187665    JIANG H, 2004, PHYS REV LETT, V93
187666    LEACH AR, 1996, MOL MODELLING PRINCI
187667    LEUNG AYT, 2005, APPL PHYS LETT, V86
187668    LI CY, 2003, INT J SOLIDS STRUCT, V40, P2489
187669    LI CY, 2003, PHYS REV B, V68
187670    LI CY, 2004, APPL PHYS LETT, V84, P121
187671    ODEGARD GM, 2002, COMPOS SCI TECHNOL, V62, P1869
187672    POPOV VN, 2000, PHYS REV B, V61, P3078
187673    QIAN D, 2002, APPL MECH REV, V55, P495
187674    SANCHEZPORTAL D, 1999, PHYS REV B, V59, P12678
187675    SHEN LX, 2004, PHYS REV B, V69
187676    SHEN LX, 2005, PHYS REV B, V71
187677    SHEN LX, 2005, PHYS REV B, V71
187678    XIAO JR, 2005, INT J SOLIDS STRUCT, V42, P3075
187679    YAKOBSON BI, 1996, PHYS REV LETT, V76, P2511
187680 NR 22
187681 TC 0
187682 SN 0003-6951
187683 J9 APPL PHYS LETT
187684 JI Appl. Phys. Lett.
187685 PD DEC 19
187686 PY 2005
187687 VL 87
187688 IS 25
187689 AR 251929
187690 DI ARTN 251929
187691 PG 3
187692 SC Physics, Applied
187693 GA 995QM
187694 UT ISI:000234118900039
187695 ER
187696 
187697 PT J
187698 AU Ding, YP
187699    Wu, QS
187700    Su, QD
187701 TI Multivariate calibration analysis for metal porphyrin mixtures by an
187702    ant colony algorithm
187703 SO ANALYTICAL SCIENCES
187704 DT Article
187705 AB A new biomimetic algorithm, Chemical Ant Colony Algorithm, has been
187706    developed, which has the characteristics of intelligent search, global
187707    optimization, robustness, distributed computation and easy combination
187708    with other heuristic, The proposed method has been successfully applied
187709    to the spectroscopy analysis of the Zn2+, Cd2+ Pb2+-porphyin tribasic
187710    color system with supramolecular properties; the errors are within +/-
187711    8.0%.
187712 C1 Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
187713    Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China.
187714    Univ Sci & Technol China, Dept Chem, Hefei 230026, Peoples R China.
187715 RP Ding, YP, Shanghai Univ, Dept Chem, Shanghai 200436, Peoples R China.
187716 EM ypding@mail.shu.edu.cn
187717 CR BONABEAU E, 2000, NATURE, V406, P39
187718    COLORNI A, 1991, P 1 EUR C ART LIF, P134
187719    COSTA D, 1997, J OPER RES SOC, V48, P295
187720    DORIGO M, 1997, BIOSYSTEMS, V43, P73
187721    GAMBARDELLA LM, 1999, J OPER RES SOC, V50, P167
187722    GAMBARDELLA LM, 1999, NEW IDEAS OPTIMIZATI, P63
187723    HEUSSE M, 1998, ADV COMPLEX SYST, V1, P237
187724    KRIEGER MJB, 2000, NATURE, V406, P992
187725    LEHN JM, 1990, ANGEW CHEM INT EDIT, V29, P1304
187726    WU QS, 1990, CHINESE J ANAL CHEM, V18, P1109
187727 NR 10
187728 TC 0
187729 SN 0910-6340
187730 J9 ANAL SCI
187731 JI Anal. Sci.
187732 PD MAR
187733 PY 2005
187734 VL 21
187735 IS 3
187736 BP 327
187737 EP 330
187738 PG 4
187739 SC Chemistry, Analytical
187740 GA 995RD
187741 UT ISI:000234120600026
187742 ER
187743 
187744 PT J
187745 AU Zhao, CY
187746    Tan, WH
187747 TI Optimum realization of the EPR paradox in the non-degenerate parametric
187748    amplification system
187749 SO ACTA PHYSICA SINICA
187750 DT Article
187751 DE non-degenerate parametric amplification; Fokker-Planck equation; EPR
187752    paradox
187753 ID PODOLSKY-ROSEN PARADOX; CONTINUOUS-VARIABLES; SQUEEZED-LIGHT;
187754    GENERATION; ENTANGLEMENT; OSCILLATION; PHASE; NOPA
187755 AB In this paper, we use the solution of the Fokker-Planck equation for
187756    non-degenerate parametric amplification to deduce the condition of
187757    demonstration of the EPR paradox. The numerical simulation shows that
187758    the optimum realization of EPR paradox can be achieved by adjusting the
187759    degree of squeezing, and this is the best condition for demonstrating
187760    the EPR paradox for a given finite loss k.
187761 C1 Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
187762 RP Zhao, CY, Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China.
187763 CR BELL JS, 1964, PHYSICS, V1, P195
187764    BELL JS, 1996, REV MOD PHYS, V38, P447
187765    BOHM D, 1952, PHYS REV, V85, P166
187766    BOHM D, 1952, PHYS REV, V85, P180
187767    EINSTEIN A, 1935, PHYS REV, V47, P777
187768    JING JT, 2003, ACTA OPT SINICA, V23, P132
187769    LI XY, 2002, ACTA PHYS SIN-CH ED, V51, P966
187770    LI XY, 2002, PHYS REV LETT, V88
187771    OU ZY, 1992, APPL PHYS B-PHOTO, V55, P265
187772    OU ZY, 1992, PHYS REV LETT, V68, P3663
187773    REID MD, 1988, PHYS REV LETT, V60, P2731
187774    REID MD, 1989, PHYS REV A, V40, P4493
187775    REID MD, 1989, PHYS REV A, V40, P913
187776    SILBERHORN C, 2001, PHYS REV LETT, V86, P4267
187777    YE L, 2000, CHINESE PHYS, V9, P171
187778    ZHANG Y, 1999, PHYS LETT A, V259, P171
187779    ZHANG Y, 2000, PHYS REV A, V62
187780    ZHAO CY, 2003, ACTA PHYS SIN-CH ED, V52, P2694
187781 NR 18
187782 TC 0
187783 SN 1000-3290
187784 J9 ACTA PHYS SIN-CHINESE ED
187785 JI Acta Phys. Sin.
187786 PD JAN
187787 PY 2006
187788 VL 55
187789 IS 1
187790 BP 19
187791 EP 23
187792 PG 5
187793 SC Physics, Multidisciplinary
187794 GA 997OZ
187795 UT ISI:000234257400005
187796 ER
187797 
187798 PT J
187799 AU Zhang, XB
187800    Cao, J
187801    Wei, FX
187802    Jiang, XY
187803    Zhang, ZL
187804    Zhu, WQ
187805    Xu, SH
187806 TI High efficiency organic red electrophosphorescence devices with
187807    changing thickness of the emitting layer
187808 SO ACTA PHYSICA SINICA
187809 DT Article
187810 DE triplet state; red dopant; electrophosphorenscence; T-T annihilation
187811 ID ELECTROLUMINESCENT DEVICES; EMISSION MECHANISM; ENERGY-TRANSFER;
187812    DERIVATIVES; DIODES
187813 AB Devices using red phosphorescent dye as dopant with exciton blocking
187814    layer were constructed. The device structure is
187815    ITO/CuPc/NPB/TPBi:Btp(2) Ir(acac)/TPBi/Alq/UF/Al. The EL spectra,
187816    luminance-current, efficiency-current characteristics of the device
187817    have been investigated. At the CIE coordinates x = 0.62, y = 0.35,
187818    efficiency 2.43cd/A has been achieved. At 20mA/cm(2) and 400mA/cm(2),
187819    luminance is 431cd/m(2) and 4798 cd/m(2), respectively. The effects of
187820    the emitting layer thickness on efficiency and EL spectra of the device
187821    have been studied also. With the decrease of the emitting layer
187822    thickness, efficiency deer-eases and the blue band of the El spectra
187823    increases. For the thickness d < 15nm, the efficiency significantly
187824    decreases. This is mainly because of pronounced triplet-Triplet (T-T)
187825    annihilation. Another factor which reduces the efficiency and impairs
187826    the color is incomplete capture of holes channeling from Btp(2)Ir(acac)
187827    HOMO energy level. For the thickness d > 20nm, the decrease of the
187828    efficiency is attributed to the added invalid emitting-layer and more
187829    annihilation centers.
187830 C1 Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China.
187831 RP Zhang, XB, Shanghai Univ, Sch Mat Sci & Engn, Shanghai 201800, Peoples
187832    R China.
187833 EM xyjiang@mail.shu.edu.cn
187834 CR ACACHI C, 2001, APPL PHYS LETT, V78, P1622
187835    ADACHI C, 2000, J APPL PHYS, V87, P8049
187836    ADACHI C, 2001, J APPL PHYS, V90, P5048
187837    BALDO MA, 1998, NATURE, V395, P151
187838    BALDO MA, 2000, PHYS REV B, V62, P10967
187839    BURROWS PE, 1996, APPL PHYS LETT, V69, P2959
187840    DENG ZB, 1997, ACTA PHYS SIN-OV ED, V6, P921
187841    GAO ZQ, 1999, APPL PHYS LETT, V74, P865
187842    HAMADA Y, 1997, IEEE T ELECTRON DEV, V44, P1208
187843    KIDO J, 1994, APPL PHYS LETT, V65, P2124
187844    KO CW, 2001, CHEM MATER, V13, P2441
187845    LI HJ, 2001, ACTA PHYS SIN-CH ED, V50, P2247
187846    LIU TH, 2003, APPL PHYS LETT, V83, P5241
187847    OBRIEN DF, 1999, APPL PHYS LETT, V74, P442
187848    SAKAKIBARA Y, 1999, APPL PHYS LETT, V74, P2587
187849    TANG CW, 1989, J APPL PHYS, V65, P3610
187850    TAO YT, 2000, APPL PHYS LETT, V77, P933
187851    TAO YT, 2002, THIN SOLID FILMS, V417, P61
187852    XIE YQ, 2005, ACTA PHYS SIN, V54
187853    YANG SY, 2000, ACTA PHYS SIN-CH ED, V49, P1627
187854 NR 20
187855 TC 0
187856 SN 1000-3290
187857 J9 ACTA PHYS SIN-CHINESE ED
187858 JI Acta Phys. Sin.
187859 PD JAN
187860 PY 2006
187861 VL 55
187862 IS 1
187863 BP 119
187864 EP 124
187865 PG 6
187866 SC Physics, Multidisciplinary
187867 GA 997OZ
187868 UT ISI:000234257400022
187869 ER
187870 
187871 PT J
187872 AU Wang, SP
187873    Zhang, JC
187874    Cao, GX
187875    Yu, J
187876    Jing, C
187877    Cao, SX
187878 TI Charge order phase and reentrant spin-glass behavior in half doped
187879    Sm0.5Ca0.5MnO3 manganite
187880 SO ACTA PHYSICA SINICA
187881 DT Article
187882 DE spin-glass; charge ordering; negative magnetic susceptibility; phase
187883    competition
187884 ID A-SITE; PEROVSKITE; TRANSPORT
187885 AB The structure, transport and magnetic properties of half doped
187886    Sm0.5Ca0.5MnO3 manganite has been systamatically studied. The results
187887    show that Sm0.5Ca0.5MnO3 compound has the O' orthorhombic structure and
187888    shows typical Jahn-Teller distortion. Throughout the temperature range
187889    used, the electric transport shows semiconducting behavior and there
187890    are no I-M transition and CMR effect. Meanwhile, it is found that the
187891    charge-order and antiferromagnetic transition temperatures of the
187892    system are around 270K and 200K, respectively, whereas at lower
187893    temperature there appears a typical spin-glass state around 41K with
187894    reentrant behavior. The negative magnetization is also observed in this
187895    compound. All these phenomena indicate that for the ground state of
187896    Sm0.5Ca0.5MnO3, there exists the competition mechanism of several
187897    complex magnetic interactions. Present study may provide abundant
187898    experimental information for understanding the mechanism of the
187899    strongly electron correlated system.
187900 C1 Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
187901 RP Wang, SP, Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China.
187902 EM jczhang@staff.shu.edu.cn
187903 CR ARULRAJ A, 1998, J PHYS-CONDENS MAT, V10, P8497
187904    BRANDT W, 1967, POSITRON ANNIHILATIO, P155
187905    CHEN JT, 1998, CHIN J LOW TEMP PHYS, V20, P245
187906    DETERESA JM, 1996, PHYS REV LETT, V76, P3392
187907    DETORO JA, 1999, PHYS REV B, V60, P12918
187908    LI RW, 1999, ACTA PHYS SIN-CH E S, V48, S105
187909    LIU N, 2003, ACTA PHYS SIN-CH ED, V52, P3168
187910    MANIYA H, 1998, PHYS REV LETT, V80, P177
187911    MYDOSH JA, 1993, SPIN GLASS EXPT INTR
187912    SURYANARAYANAN R, 2002, J MAGN MAGN MATER 2, V242, P695
187913    TOMIOKA Y, 2001, J ALLOY COMPD, V326, P27
187914    XIAO CT, 2003, ACTA PHYS SIN-CH ED, V52, P1245
187915    XV MX, 1998, ACTA PHYS SINICA, V47, P1007
187916    ZENER C, 1951, PHYS REV, V82, P403
187917    ZHAO BR, 1998, PHYSICS, V27, P705
187918    ZHU YW, 2003, CHIN J LOW TEMP PHYS, V25, P151
187919 NR 16
187920 TC 0
187921 SN 1000-3290
187922 J9 ACTA PHYS SIN-CHINESE ED
187923 JI Acta Phys. Sin.
187924 PD JAN
187925 PY 2006
187926 VL 55
187927 IS 1
187928 BP 367
187929 EP 371
187930 PG 5
187931 SC Physics, Multidisciplinary
187932 GA 997OZ
187933 UT ISI:000234257400064
187934 ER
187935 
187936 PT J
187937 AU Liu, BL
187938    McGrath, J
187939 TI Response of cytoskeleton of murine osteoblast cultures to two-step
187940    freezing
187941 SO ACTA BIOCHIMICA ET BIOPHYSICA SINICA
187942 DT Article
187943 DE cytoskeleton; osteoblast; actin filament; two-step freezing
187944 ID CRYOPRESERVATION; ORGANIZATION; OOCYTES
187945 AB Understanding the ultrastructural response of cells to the freezing
187946    process is important for designing cryopreservation strategies for
187947    cells and tissues. The cellular structures of attached cells are
187948    targets of cryopreservation-induced damage. Specific fluorescence
187949    staining was used to assess the status of the actin filaments (F-actin)
187950    of murine osteoblasts attached to hydroxyapatite discs and plastic
187951    coverslips for a two-step freezing process. The F-actin of dead cells
187952    was depolymerized and distorted in the freezing process, whereas that
187953    of live cells had little change. The results suggest that the
187954    cytoskeleton may support the robustness of cells during
187955    cryopreservation. The present study helps to investigate the damage
187956    mechanism of attached cells during the freezing process.
187957 C1 Shanghai Univ Sci & Technol, Inst Cryobiol, Shanghai 200093, Peoples R China.
187958    Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA.
187959 RP Liu, BL, Shanghai Univ Sci & Technol, Inst Cryobiol, Shanghai 200093,
187960    Peoples R China.
187961 EM blliuk@163.com
187962 CR ALBERTS B, 1994, MOL BIOL CELL
187963    HALL SM, 1993, AM J RESP CELL MOL, V9, P106
187964    HENDL A, 1987, CRYOLETT, V8, P334
187965    HUNTER A, 1995, BIOMATERIALS, V16, P287
187966    LIU BL, 2002, CELL PRESERVATION TE, V1, P33
187967    LIU BL, 2004, CELL PRESERVATION TE, V2, P133
187968    LIU K, 2000, TISSUE ENG, V6, P539
187969    MCGRATH J, 1987, EFFECTS LOW TEMPERAT
187970    POLLARD T, 2002, CELL BIOL
187971    SALTZMAN WM, 2002, PRINCIPLES TISSUE EN
187972    SONGSASEN N, 2002, FERTIL STERIL, V77, P818
187973    SUDO H, 1983, J CELL BIOL, V96, P191
187974    VINCENT C, 1989, J REPROD FERTIL, V87, P809
187975    VINCENT C, 1990, CRYOBIOLOGY, V27, P9
187976 NR 14
187977 TC 0
187978 SN 1672-9145
187979 J9 ACTA BIOCHIM BIOPHYS SINICA
187980 JI Acta Biochim. Biophys. Sin.
187981 PD DEC
187982 PY 2005
187983 VL 37
187984 IS 12
187985 BP 814
187986 EP 818
187987 PG 5
187988 SC Biochemistry & Molecular Biology; Biophysics
187989 GA 995RA
187990 UT ISI:000234120300004
187991 ER
187992 
187993 PT J
187994 AU Lu, DY
187995    Chen, XL
187996    Ding, J
187997 TI Individualized cancer chemotherapy integrating drug sensitivity tests,
187998    pathological profile analysis and computational coordination - An
187999    effective strategy to improve clinical treatment
188000 SO MEDICAL HYPOTHESES
188001 DT Article
188002 ID RECURRENT OVARIAN-CANCER; SUBRENAL CAPSULE ASSAY; ADVANCED
188003    BREAST-CANCER; TUMOR STEM-CELLS; GASTROINTESTINAL CANCER;
188004    COST-EFFECTIVENESS; COLORECTAL-CANCER; CDNA MICROARRAYS;
188005    CHEMOSENSITIVITY; RESISTANCE
188006 AB Background: Most current cancer chemotherapy is unsatisfactory. There
188007    is a trend towards changing the norm for drug selection; one approach
188008    is to seek individualized cancer chemotherapy (ICC).
188009    Methods and results: ICC is an approach to maximizing the efficacy of
188010    chemotherapy and reducing its adverse effects to a minimum. It involves
188011    choosing anticancer drugs through the following critical steps: (i)
188012    performing drug sensitivity tests in vivo and/or in vitro; (ii)
188013    analyzing pathogenic information from morphology, histology and
188014    bioinformatics, so that targeted therapy can be offered to disrupt the
188015    escalating tumorigenic molecules and pathways; (iii) introducing
188016    mathematical and computational systems to assist in improving the
188017    quality of decision-making.
188018    Conclusion: Increasing clinical evidence indicates that drug
188019    sensitivity tests, pathological profile analyses and computational
188020    coordination are ways to improve therapeutic quality. In future, each
188021    patient should have his own unique chemotherapy protocol. (c) 2005
188022    Elsevier Ltd. All rights reserved.
188023 C1 Shanghai Univ, Sch Life Sci, Dept Bioengn, Shanghai 200436, Peoples R China.
188024    Cent Hosp Jing An Dist, Dept Oncol & Thermotherapy, Shanghai, Peoples R China.
188025    Chinese Acad Sci, Shanghai Inst Mat Med, Shanghai, Peoples R China.
188026 RP Lu, DY, Shanghai Univ, Sch Life Sci, Dept Bioengn, 99 Shangda St,
188027    Shanghai 200436, Peoples R China.
188028 EM ludayong@sh163.net
188029 CR AKAO S, 1996, GAN KAGAKU RYOHO, V23, P607
188030    BAYOUMI AM, 2000, J NATL CANCER I, V92, P1731
188031    BENENSON Y, 2004, NATURE, V429, P423
188032    BERNS EMJJ, 2003, CLIN CANCER RES, V9, P1253
188033    BODGEN AE, 1978, P S US ATHY NUD MIC, P231
188034    BOSANQUET AG, 2002, J EXP THER ONCOL, V2, P53
188035    BREIDENBACH M, 2003, ANTI-CANCER DRUG, V14, P341
188036    BROWN RE, 2001, PHARMACOECONOMICS, V19, P1091
188037    CORTAZAR P, 1999, J CLIN ONCOL, V17, P1625
188038    EIKELBOOM JW, 2000, NEW ENGL J MED, V343, P1337
188039    GAZDAR AF, 1990, J NATL CANCER I, V82, P117
188040    GUO QM, 2003, CURR OPIN ONCOL, V15, P36
188041    HAMBURGER AW, 1977, SCIENCE, V197, P461
188042    HASENCLEVER D, 2001, ANN HEMATOL S3, V80, B89
188043    ICHIKAWA W, 2003, CLIN CANCER RES, V9, P786
188044    KAWAMURA H, 1997, EUR J CANCER, V33, P960
188045    KIM R, 2003, ANTI-CANCER DRUG, V14, P715
188046    KING RD, 2004, NATURE, V427, P247
188047    KONDO T, 1966, GANN, V57, P113
188048    KURBACHER CM, 1998, ANTI-CANCER DRUG, V9, P51
188049    LU DY, 1992, CHINESE J PHARM, V23, P460
188050    LU DY, 2000, J INT MED RES, V28, P313
188051    LYMAN GH, 2000, EUR J CANCER S1, V36, S15
188052    MARX J, 2004, SCIENCE, V304, P657
188053    MORIOKA H, 2001, ANTICANCER RES, V21, P4147
188054    MUHONEN T, 1994, ACTA ONCOL, V33, P431
188055    NESS RB, 2002, ANTICANCER RES, V22, P1145
188056    PENNISI E, 2003, SCIENCE, V302, P1646
188057    PUSZTAI L, 2003, ONCOLOGIST, V8, P252
188058    ROSS DD, 2004, CANCER CELL, V6, P105
188059    SALMON SE, 1978, NEW ENGL J MED, V298, P1321
188060    SERVICE RF, 2003, SCIENCE, V302, P1316
188061    SZAKACS G, 2004, CANCER CELL, V6, P129
188062    TAKAMURA Y, 2002, INT J CANCER, V98, P450
188063    TANINO H, 2001, ANTICANCER RES, V21, P4083
188064    TARABOLETTI G, 2001, CURR OPIN PHARMACOL, V1, P378
188065    ULUKAYA E, 2004, CHEMOTHERAPY, V50, P43
188066    VENESMAA P, 1991, BRIT J CANCER, V63, P84
188067    VONHOFF DD, 1986, CANCER, V58, P1007
188068    VONHOFF DD, 1990, J NATL CANCER I, V82, P110
188069    WILLIAMS NS, 2003, CLIN CANCER RES, V9, P931
188070    WILSON JK, 1990, BRIT J CANCER, V62, P189
188071    YANG JM, 2003, MOL CANCER RES, V1, P420
188072 NR 43
188073 TC 0
188074 SN 0306-9877
188075 J9 MED HYPOTHESES
188076 JI Med. Hypotheses
188077 PY 2005
188078 VL 66
188079 IS 1
188080 BP 45
188081 EP 51
188082 PG 7
188083 SC Medicine, Research & Experimental
188084 GA 994MR
188085 UT ISI:000234036400007
188086 ER
188087 
188088 PT J
188089 AU Chen, NY
188090    Ding, YM
188091    Bao, XH
188092    Liu, X
188093    Lu, WC
188094 TI SVM applied to phase diagram prediction for molten salt systems
188095 SO JOURNAL OF RARE EARTHS
188096 DT Article
188097 DE support vector machine; atomic parameters; phase diagram assessment;
188098    molten salt systems
188099 AB Support vector machine-atomic parameter method was used to make data
188100    mining of the data of known phase diagrams of molten salt systems.
188101    There can be always to find some regularities about the relationships
188102    between the atomic parameters (such as ionic radii,
188103    electronegativities, etc.) and the geometrical characteristics of the
188104    phase diagrams exists. After the regularity is found, it can be used
188105    for the assessment or the computerized prediction of phase diagrams.
188106    Using this strategy, 19 published phase diagrams of molten salt systems
188107    have already been found to be questionable and must be re-determined.
188108    Besides, based on the regularity of MeX-Me'X-2 systems, four new
188109    intermediate compounds (CsCaBr3, Cs2CaBr4, Cs3Ca2Br7 and Cs2CaF4) were
188110    predicted and confirmed by the experimental work in our laboratory.
188111 C1 Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
188112 RP Chen, NY, Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China.
188113 EM chennianyi@tsinghua.org.cn
188114 CR CHEN NY, 1997, J PHYS CHEM SOLIDS, V58, P731
188115    CHEN NY, 2001, P 6 INT S MOLT SALT
188116    CHEN NY, 2004, LI SUPPORT VECTOR MA
188117    CRISTANINI N, 2000, INTRO SUPPORT VECTOR
188118    LEVINE EM, 1974, PHASE DIAGRAMS CERAM
188119    PACIPAIKO VI, 1977, PHASE DIGRAMS INORGA
188120    REISS H, 1961, J CHEM PHYS, V35, P820
188121    SMENTSOVA DV, 1967, RISSIAN J INORGANIC, V12, P1645
188122    VAPNIK VN, 1998, STAT LEARNING THEORY
188123    VOSKRESENSKAYA NK, 1961, HDB FUSIBILITY NONAQ
188124 NR 10
188125 TC 0
188126 SN 1002-0721
188127 J9 J RARE EARTH
188128 JI J. Rare Earths
188129 PD OCT
188130 PY 2005
188131 VL 23
188132 SI Sp. Iss. SI
188133 BP 30
188134 EP 34
188135 PG 5
188136 SC Chemistry, Applied
188137 GA 995LI
188138 UT ISI:000234101400005
188139 ER
188140 
188141 PT J
188142 AU Ding, YM
188143    Zhang, TT
188144    Chen, NY
188145    Xia, YB
188146 TI Phase diagrams for systems MF-MCl(M = K, Rb, Cs)
188147 SO JOURNAL OF RARE EARTHS
188148 DT Article
188149 DE DTA; solid solution; phase diagram; MF-MCl(M = K, Rb, Cs) system;
188150    limiting liquidus slope
188151 AB The phase diagrams of MF-MCI (M = K, Rb, Cs) systems were reexamined by
188152    using differential thermal analysis(DTA) and thermodynamic calculation.
188153    Both DTA and the limiting liquidus slope at the MCI(M = K, Rb, Cs)side
188154    confirm that, significant solid solubility exist on the KCl-side of
188155    KF-KCl system (7 % +/- 0.5 % (molar fraction) KF), on the RbCl-side of
188156    RbF-RbCl system (10% +/- 0.5 % (molar fraction) RbF) and on the
188157    CsCI-side of CsF-CsCl system (8% +/- 0.5 % (molar fraction) CsF). And
188158    the phase transition of CsCl makes the phase relation on the CsCl-side
188159    of the system CsF-CsCl seem more complicated.
188160 C1 Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
188161    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
188162 RP Ding, YM, Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
188163 EM dingym@staff.shu.edu.cn
188164 CR CHEN NY, 2004, SUPPORT MACHINE CHEM, P106
188165    MAMAMTOV G, 1987, MOLTEN SALT CHEM, P79
188166    PACIPAIKO VE, 1979, PHASE DIAGRAMS SAL 3, P38
188167    PLATO W, 1907, Z PHYS CHEM-STOCH VE, V58, P350
188168    REA RF, 1938, J AM CERAM SOC, V21, P98
188169    SANGSTER J, 1987, J PHYS CHEM REF DATA, V16, P509
188170    VOSKRESENSKAYA NK, 1961, HDB FUSIBILITY SYS 2, P811
188171 NR 7
188172 TC 0
188173 SN 1002-0721
188174 J9 J RARE EARTH
188175 JI J. Rare Earths
188176 PD OCT
188177 PY 2005
188178 VL 23
188179 SI Sp. Iss. SI
188180 BP 35
188181 EP 38
188182 PG 4
188183 SC Chemistry, Applied
188184 GA 995LI
188185 UT ISI:000234101400006
188186 ER
188187 
188188 PT J
188189 AU Ding, YM
188190    Hou, N
188191    Chen, NY
188192    Xia, YB
188193 TI Phase diagram of NaF-Na2MoO4 system
188194 SO JOURNAL OF RARE EARTHS
188195 DT Article
188196 DE DTA; NaF-Na2MoO4 system; phase diagram; intermediate compound
188197 AB The phase diagrams of NaF-Na2MoO4 System were re-determined using
188198    differential thermal analysis and X-ray diffraction analysis. The
188199    results negate the existence of the intermediate compound 2NaF center
188200    dot Na2MoO4 and 2NaF center dot 3Na(2)MoO(4), but confirm the
188201    intermediate compound NaF center dot Na2MoO4. The revised phase diagram
188202    of this system is drawn. The experimental result is in agreement with
188203    the computerized prediction by support vector machine-atomic parameter
188204    method for the assessment of phase diagrams.
188205 C1 Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
188206    Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
188207 RP Ding, YM, Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
188208 EM dingym@staff.shu.edu.cn
188209 CR BARIN, 2003, THERMOCHEMICAL DATA, P1122
188210    CHEN NY, 2004, SUPPORT MACHINE CHEM, P106
188211    DEAN JA, 2003, LANGES HDB CHEM, V3, P41
188212    LI GQ, 2002, HDB PHYS DATA CHEM C, V440, P549
188213    MAAIKO ZA, 1955, J GEN CHEM USSR, V25, P1673
188214    PASIPAIKO VE, 1979, HDB PHASE DIAGRAMS S, P156
188215    VOSKRESENSKAYA NK, 1961, HDB FUSIBILITY SYSTE, P761
188216    XIA YY, 2004, HDB CHEM LAB, P36
188217 NR 8
188218 TC 0
188219 SN 1002-0721
188220 J9 J RARE EARTH
188221 JI J. Rare Earths
188222 PD OCT
188223 PY 2005
188224 VL 23
188225 SI Sp. Iss. SI
188226 BP 39
188227 EP 41
188228 PG 3
188229 SC Chemistry, Applied
188230 GA 995LI
188231 UT ISI:000234101400007
188232 ER
188233 
188234 PT J
188235 AU Zhang, J
188236    Ding, YM
188237    Chen, NY
188238 TI Preparation and characterization of a kind of composite phase change
188239    material based on palmitic acid
188240 SO JOURNAL OF RARE EARTHS
188241 DT Article
188242 DE palmitic acid; sol-gel process; composite material; phase change; heat
188243    storage
188244 ID LATENT-HEAT STORAGE
188245 AB Palmitic acid-silicon dioxide nano-composite phase change material
188246    (CPCM) was prepared by sol-gel process from tetraethyl orthosilicate
188247    (TEOS) and palmitic acid (PA). The optimum experimental conditions were
188248    described. Its structure and properties were investigated by scanning
188249    electron microscopy (SEM), Fourier transform infrared spectroscopy
188250    (FTIR) and differential scanning calorimetry (DSC). The results show
188251    that the composite material is nano-material and it has favorable heat
188252    capacity. It is expected to apply in the application of solar energy
188253    and some other applications.
188254 C1 Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
188255 RP Ding, YM, Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China.
188256 EM dingym@staff.shu.edu.cn
188257 CR BABAEV BD, 2002, INORG MATER+, V38, P83
188258    BABAEV BD, 2003, INORG MATER+, V39, P1203
188259    BUDDHI D, 2003, ENERG CONVERS MANAGE, V44, P809
188260    HE HK, 2002, SYNTHETIC FIBER CHIN, V31, P18
188261    JIANG Y, 2002, POLYMER, V43, P117
188262    LEE T, 2000, SOL ENERG MAT SOL C, V62, P217
188263    LIN YH, 2001, J JIANGHAN PETROLEUM, V23, P81
188264    NAGANO K, 2004, APPL THERM ENG, V24, P221
188265    RIFFAT SB, 2001, RENEW ENERG, V23, P313
188266    WU KZ, 2000, MULTIPURPOSE UTILIZA, V2, P15
188267    ZHUANG ZN, 2002, J XIAN JIAOTONG U, V6, P1133
188268 NR 11
188269 TC 0
188270 SN 1002-0721
188271 J9 J RARE EARTH
188272 JI J. Rare Earths
188273 PD OCT
188274 PY 2005
188275 VL 23
188276 SI Sp. Iss. SI
188277 BP 42
188278 EP 45
188279 PG 4
188280 SC Chemistry, Applied
188281 GA 995LI
188282 UT ISI:000234101400008
188283 ER
188284 
188285 PT J
188286 AU Mu, Y
188287    Ma, ZW
188288    Xu, DM
188289 TI A novel compact interdigital bandpass filter using multilayer
188290    cross-coupled folded quarter-wavelength resonators
188291 SO IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS
188292 DT Article
188293 DE cross-coupling; folded quarter-wavelength resonator; interdigital
188294    filter; multilayer structure
188295 ID WAVE RESONATORS
188296 AB In this letter, a novel compact cross-coupled interdigital bandpass
188297    filter (BPF) is developed. By using multilayer folded
188298    quarter-wavelength resonators, the size of the filter is reduced
188299    greatly, meanwhile a cross-coupling is introduced to produce
188300    transmission zeros and thereby improve the stopband characteristics of
188301    the filter. As an example, a four-pole BPF centered at 2.25 GHz with a
188302    fractional bandwidth of 31% is designed, fabricated, and measured. The
188303    simulated and measured results show an excellent agreement.
188304 C1 Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China.
188305    Saitama Univ, Dept Elect & Elect Syst, Urawa, Saitama 3388570, Japan.
188306 RP Mu, Y, Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072,
188307    Peoples R China.
188308 EM mmyynn@hotmail.com
188309 CR 2004, SONNET SUITE VER 10
188310    CHANG CY, 2002, IEEE MTT-S, P1609
188311    CHANG CY, 2003, IEEE MICROW WIREL CO, V13, P517
188312    CHEN CC, 2003, IEEE T MICROW THEO 1, V51, P120
188313    CRISTAL EG, 1975, IEEE T MICROW THEORY, V23, P1007
188314    HONG JS, 2001, MICROSTRIP FILTERS R, P235
188315    MATTHAEI GL, 1964, MICROWAVE FILTERS IM
188316    WONG JS, 1979, IEEE T MICROW THEORY, V27, P44
188317 NR 8
188318 TC 0
188319 SN 1531-1309
188320 J9 IEEE MICROW WIREL COMPON LETT
188321 JI IEEE Microw. Wirel. Compon. Lett.
188322 PD DEC
188323 PY 2005
188324 VL 15
188325 IS 12
188326 BP 847
188327 EP 849
188328 PG 3
188329 SC Engineering, Electrical & Electronic
188330 GA 994OF
188331 UT ISI:000234040400007
188332 ER
188333 
188334 EF